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Sphérische Dreiecksberechnung.

§ 40. Der sphiirische Excess.
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Der sphirische Excess. § 40,
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schieden won den Winkel sphiirischen Dr ANCENOT

gehen wir nun
zwei Winkel mit d sphiirischen Dreieck gemein, dafi
Mit Beziehung anf Fig. 1. und 1

auf aus, ein ebenes Hilfs zu suchen,

aber andere Seiten hat.

mken wir uns ein sphirisc
i 'i'.']1 R!'itl'}] i :'.II|1

Fig, 2 3

Gegenwinkeln ¢ wund “f. und

goreher

hiezu ein ebenes Hilfsdreieck.

hat wie d

selben Winkel & und 8
D ;

ik

damit notwendig an

ben muss.

Nach dem Sinus-Satze fiir das :

a @ = Dreieck und nach dem Sinus-S8

ebene Dreieck haben wir die zwei (

gin
sth r L StH a
P = L und . = (1)
SER '{ . ] ] L
oy )
¥

¥ 0O
s
r G 0
a 6 #2 3
s L 5]
i ] b3
) . o
|J.|'_
befriedigt, wenn man
b b3
! &g—-—— und b B—
6 2 6 r2
allge iir irgend eine Dreiecks-Seite s hat
T e (4

) ] - J T L] . 9 xs i
Der so bestimmte Wert 5 18t das lineare Additament fiir die Seite und

by =

wenun man den Halbmesser r kennt, kann man eine Tafel der Wi berechnen,

3 0

"B "

z. B. filr die Mittelbreite g — 50° hat man:
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Tafel I., d. h. der ober
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Dreiecks-Berechnung, weil man geradezu mit log & (fir ¢ in Metern) einzugehen hat,

wihrend man im Falle IT., d. h. im unteren Teile von Seite zuvor log —— bilden
/=
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dbar ist.
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o
Hohehagen pB =86 13 58,840 |
Brocken %

Basis b 105 072

2zl braucht man
¢ [43] des Anhar

den kann. Da jedoch jene Hilfst
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f'-;r‘r b2 1 0.0503!

log (1 6 rZ) A
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log (B 2 sin I_‘J"j 11
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loga’ | 4.840 06057 log b

Logar. Additament Logar, ."{II.|-|_

B

loga | 4.840 0690-8

:'." i c

@ = 69 194,105% b = 84 041.060 (14)
Dieses stimmt hinreichend mit (15)
I soeben bei (13)
Hilfstafel L.
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einem einzelnen Dreieck oder bei
abhingigkeit von allen besonderen Hilfen, denn
n bei dem anderen Verfahren doch auch

z emphehlt sich

seltener Anwendung, durch seine T

kennen, und der Le
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ur den Logarithmus der Basis des Netzes
das ganze Dreiecks-Netz mit den sphs
t lauter reduzierte Werte loga’, log ¢ u. s. w., die man dann aber nachher alle
Tafel auf loga, loge n. s. w. reduzieren kanm.

Ein Vorteil des Additamenten-Verfahrens besteht auch darin, dass man nur eine
Tabelle der Dreiec
Satz eine zweite Tabelle der «, 8, 7 notig ist, welche nicht nur die Akten yer-

sung zu Irrtéimern geben kann, r zur Coor-
wieder die sphirischen Winkel selbst gebraucht werden.

egen bel ganzen Drei n zusammenhingend zu rechnen-
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Zusammenhang zwischen dem Legendreschen Satze und der Additamenten-Methode.
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5 > 2 | g B

Nun ist 8 = =, und wenn man in den Korrektions-Gliedern ebene und sphi-
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5
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4 A } 2
. 2
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Dieses
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sinw &y e : be HE G re
: | — - — 1 +
sin b G2 P r2 b, he
L v o
B 52

o A
=

42, =, 238 mit der Additamenten-Methode iiber-

TIent

Dieses stimmt nach (1), (;

gin: es ist also der oben a hewiesen.

Additamenten-Tafeln als une

finden sich in manchen

1 I1L., Reduktion von

ZNn «8ner

Aunch die Zal in der Bremiker acl

am Fuss jeder Be

161 1n ¢ Beziehung zn unseren A

anten, E

3. Verschiedene sphiirische Aufgaben.

Nachdem wir die Redu

auf ein ehenes Hi
e Aufea
in Winkeln

aus zwel

.],:u‘ lh

ition eines sphiirischen Drei
her Weise kennen

dreieck in zwe

kéinnen wir auch

als die znerst behandelte Berechnung

Seite und
rischen Dr

kel und dann die sphirische Aufoy

lasen. Wir wollen hier noch die Bestimmung eines s

Seiten und dem eingeschlossenen Win

idens vornehmen:

LETRIMURG ednes .\'Ii';rf-':ti'-'l.-c.".llff’!-' Diyeieels F.ll 0 neeeh dem Legendreschen Satz.

Wenn zwei Seiten b, ¢ und der eingeschloss

¢ gepeben sind, 80

aus sofort den Excess & berechnen:

e

=% C $in (74
D 2

> Summe der beiden andern Winkel A und »:

i

B+7=180°+¢&—q 2)
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Verschiedene sphirische Aufgaben.

ksichtigt, dass:

man nun das Legendre sche ebene Hilfsdreieck und ber

Betrach

5 {
{
[ o 2
| | [ =
4 a | W] ] f
o 1 o

hungen der ebenen Trigonomet

'|'l|| - r"| tns 5 3
’ 2 & E
— (3)

a— e

(S

(L ) 291
L C) Sth 9
Z N
a= -
!--F e ’I g L
“n 5] COS

man also 8 +y und B —y, folglich auch § und y und

(4) hat
die Aufrabe gelost ist.

womit

Aus (2) and

mit Probe g aus (4},
IT. Bestimmuna eines sphdrischen Drelecks b, e, « nach der Additamenten-Methode.
¢ logarithmisch gegeben sind, so ist folgende Rechnung bequemer

Wenn b 1
als die vorige:

vorige :
ein eher

it Einfi

¢ und den Winkeln § und p

5 Drei mit den Seiten 3" und
rang eines Hilfswinkels A folgendes:

7} 1! 1

hat man, n
tang A

— Landg ,-

s tang i

: 5
3 = ¥ i g " i
. [ , 4150
tang - = !f'-”_’fl ~ L a.--'..', (A + 45°)

.

he Dreieck setzen wir entspreche

= I z ,".-_-_-Jr ¢ = loge A
¢ sind. Man rechnet nun den Hilfs-

die Additamente von b und

Ay, und A.

\IIII-\] A nach der 1"-\'-'_"II‘J:'.
cotg A= — (2]

s-Berech-

Fxcess & dur

dann bestimmt man den sphiris

nung, und hat dann:
By =180%4¢&—1¢

tangy - I Lany 5]

<k

a
8-+ r
Angs -l n # und

h dem Legendre schen Satz als

lann sowohl nacl

Die a kann man st

nach der Additamenten-Methode bestimmen

andirts- Einschneiden.

I R

3. 944 dieselben Berechnungen

Wir nehmen in Fiz 1. S. wie frither fiir die shenes
i II. 4, Anfl. 1893, § 89. und wir haben auch

nur

ts-Kinschneiden in DB:

1 v
Ewiirts-

Ta
bl

dern.

o5 A u)
heren Rec

wenig an der




h-trigon. Reihen-Entwicklungen bis zur Ordnung — einschl, §& 44,

Drei Punkte A4, M, B sind gegenseitic festeelegt durch die Seiten A4 M = a,
MB=~5 und den Winkel B M 4 = y; ein Punkt P soll dureh Messung der Winkel
« und 8 gegen 4, M, B festgelegt

werder

Man ldst diese Aunfgabe zunichst vorlinfie

Fig. 1. genihert auf, indem man die I-:;:-n' als eben be-

handelt (d. h. man rechnet zuerst nach Band II,

i ¥ Aufl. 1898, § 89). Dann hat n so viel An-

= = r halt, um die sphéirischen Excesse & und & der

- beiden Dreiecke # A M und P M B zu berechnen, und

\ o damit ist anch die Summe @ + ¢ bestimmt, namlich:
s S &% o ---
a 5 /2 Sh Q + W = 860° 4+ & + & a+f+7 (7
N /’-- Mit den logarithmischen Additamenten A,
o 7% nnd 4, reduzi
07'#
P loga— A, =loga’ und logh — 4y = logl'

dann lasst sich die Rechnung wie fiir ein ebenes Viereek weiterfithren: man setat:
ez A

und findet:

tang - fanyg cotg (A -+

Nachdem somit durch (7) und (8) die beiden Winkel g und Y bestimmt sind,
nach der Addita-

kimnen alle Dreiecks-Seiten nach dem Le-g.-;u_.lre.«u-h._-n Satze oder
menten-Methode weiter berechnet werden.

Dipge &
und mit der Additament
berechnet zu werden pfl

§ 44. Sphiirisch-trigonometrische Reihen-Entwicklungen bis zur

Ordnung i einschliesslich.

Der Legendresche Satz und die Additamenten-Methode bernhen auf sphérisch-
trigonometrischen Reihen-Entwicklungen, die wir beim Legendre sehen Satze nur bis
auf Glieder von der Ordnung 1 : 4
delt haben. Bei der Additamenten-Methode haben wir in (8) § 42. 8. 259 nocl

* einschliesslich genan im Schluss-Ergebnis behan-

Glied von der Ordnung 1 :#4 hinzugenommen, weil sich das ohne besondere Mihe

nebenbei ergah; dass dieses hthere Glied hei den praktiseher

id es hat sich gezeigt,
Berechnungen mit Dreiecks-Seiten bis 100 000= und dariiber unmerklich ist.
Obgleich dadurch die Wahrsche “lllllhlw nahe gelegt wird, dass anch in den
iibrigen verwandten Entwicklungen die
wir doch, um ein sicheres Urteil zn haben, die htheren G
Allerdings ist dabei zu beriicksichtigen, dass eine sehr weit und fein gefiihrte
sphdrische Berechnung fiir die Geodisie zuniichsi wenig Wert hat, solange die sphiirische

er yvon der Ordnung 1:+2 geniigen,

der kennen lernen.

Berechnungs-Art fibe rhaupt nicht strenger begrindet wird als dieses in unserem § 38
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E : Y

8. 226—227 geschehen ist; denn ausser den hoheren Gliedern von der Ordnung 1: 4
sollte man auch den Einfluss der Ungleichheit der Kriimmungen nach verschiedenen
Richtungen und die von der geographischen Breite abhiingigen Andernngen der
Kriimmungen untersuchen.

Dieses konnen wir erst spiter thun, und wenn wir jetzt die hoheren Glieder
von der Ordnung 1 :#4 untersuchen, so hat das zundchst den Sinm, dass wir uns
fiherzeugen, ob die Entwicklungen bis 1: r2 einschliesslich, hinreichend sind, nm die
gesehlossenen sphirischen Formeln, welche man ja auch anwenden kionnte, zu ersetzen,
und zweitens sollen durch die nachfolgenden Entwicklungen unsere spiteren Entwick-

lungen mit der geoditischen Linie zweckmissig vorbereitet werden.
Beim ersten Studium der hoheren Geodisie im Sinne des Yerstindnisses unserer
heutigen Landes-Vermessungen wird man den hier folzenden § 44. zunichst ganz

iibergehen und erst viel spiter nach Bedtirfnis nachholen.

Fig. 1
I. Der sphirische Kxeess. ,P
Wir betrachten in Fig. 1. das rechiwinklige sphiirische o
Dreieck A BC mit der Hypotenuse s, mit den Katheten p und o
g und mit den Winkeln 90°, g und ¢, Da einer der Winkel = 90°
ist, ist der sphiirische Excess:
E = - |J| i '-":]i' 1230 I \
&= ¢ —80° | i_.'
Dieses rechtwinklige Dreieck Fig. 1. .L'ﬁ'
r:"1|
8 )
cotq ¢ cotg f = cos p
. I ;
Ly
oder = 1—2sin?
aif
1 . ey ‘o R sin o stn [§ — cos @ €08 rr,'
al50 2 gind — 1 — eotg x colg p = s o
L P Cotly q | Shannn
. . iy -
r SN 8 8ins
oo arE eos (e -+ ) sin &
4 oEin- _—— S — . ; -
2r sin@sin i stn o sin 3 o s
- haxd 3 B
T
[ . I’JIl
S Sin
. 5 r ;
sins = (2)
5 s
2 5
Dieses bis ; entwickelt giebt:
r '
o : o f A
B ne o\ [ g g / \
\ o Bra/ |\ ¢ 6 3 [ 5 q |||..!r|ll-,‘3 e ,j-,:} \ I_-I . o2y
St ALY o - — : [1 4 -
52 \2 | 22 12 14 I\ 4r2)
Ly [ = \ tmeel
]| R r2 \




246 Sphirisch-trigon. Reihen-Entwicklungen bis zur Ordnung einschl.  § 44,

so giebt dieses

= 2 - g2 setzen dar
i q

Da man aber in den hoheren Gliedern s2

alshald :

[~=]

P (IR e =
g — — [ e = g=) |

dys  24d

Fig. 2 I1. Die Katheten-Formeln,
ziebt nach

Um diese Gleichungen nach ¢ bzw. nach p

die ersten Niaherungen :

q = S s5tn ¢ 4 = . P = B COB & H-— ...
re it
1 L3
i 52 pngd g |
wil " (5} o
e 1= y = T
: 2
S0 e & & ;
g = o SERS M= 8 cos £ + . 5 Q08 (X — ——2 COSO (X
G ra 0 e o e
2 ]
i L : e FR
g = 8 SEH & — ——— 52N (¢ cose o ) = 5008 (& S 2 008 0 (D)
2

B

ben, wollen

noch um ein Glied weiter
tt (5) hat man dann:

Wir werden diese Entwicklung
dieses aber nur noch an der Formel fiir q ausfithrlich z

r].f’, ..Il..':- f 23 ob 3 =
g— = =+ ) =) SEH ()
q 6 2 120) 74 G 2 ]‘,"'| yd |
hiezu hat man nach (6)
qe = g9 13 . _‘,.wn:'rc cos g ..
6 2
q° = &5 sind ¢

Wenn man diese beiden Ausdrilcke fiir ¢® und q® in (7) einsetzt, so bekommt man

: B L §9 :
q=s8ERa — = 8in (& . SR X
62 120 4
ol ] . ey o
S (o — SIS X 0038 (X
0= :E 2 ¥
o

- send e
12() 4
Wenn man dieses ordnet und berticksichtigt, dass:

o i oa I\ o
8% = g* (4nE o - r’_fr.'_\'J )2

g0 findet man:

g %3
[

—..'.'J-,' i s G : " P T . - ]
q S SN i 52 SEN 0 COS2 0f — 190 7d sen ot cos? e (8 sin g — cosd g

8)
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§ 44,  Sphirisch-trigon. Reihen-Entwicklungen bis zur Ordnung —— einschl.
: 7

Dieses ist die Weite
entwicklung der zweiten Formel der Gru

entwicklung der ersten Formel der Gruppe (6); die Weiter-
» (6) wird ebenso gemacht und giebt:

3 y &9 [ . -
3008 0+ — SINS ¢ COs & —+ sinl o cos (2 sind o0 — cos? @) (9)

Unikehrung der Reihen (8) und (9).
Man kann die Reihen (8) und (9) auch umkehren, d. h. man kann s sin & und
i@ in Potenzen von ¢ und p ausdriicken. (Man konnte hiezu das allgemeine Ver-
las wir in § 29. 5. 180—181 angedeutet haben; wir ziehen es

iren anwenden,

hier vor, ohne alle Vorbereitungs-Hilfsmittel zu verfahren.)

Jedenfalls hat man in erster Niherung aus (8) und (9):

SRR =0 T cun 3

folghi

lich sofort in zweiter N aus (8) und (9):

G HIN ff =5 T ssa 5 COs s i g T
5 i o

sum Hinsetzen in die hoheren Glieder von (8) und (9):

5
o2 samd oy o ¥ = A\ 0 o
S S X === g= 005= ( 1 — 4 5
Fa
e d
SIS eos = (o=t "5 5 == 5 o = i o
y B o e o

(10)

(11)

II1. Die Hypotenusen-Formel.

pine For-

ben gewonnenen Formeln (10} und (11) Eann man ]
] iert und addiert. Wenn

ellen, indem man s und s cos & quad

igt, 'so bekommt man:

0o o
= p*
V130

g o i
56 POSS (f = e ==
£




sch-trigon. Reihen-Entw

n bis zur Ordnung "_! ginsechl, § 44,

Wenn man dieses

zusammennimmt und ordnet, so findet man:

o]

]

I diese

Nach And
ecke zn einem

Dreieck

= g bilden, zu wal

A B C,

die gemeinscha

indem die beiden K

g und ¢ nun

als Hohe gehd

\
.-";' b
i B"}\
/ \ ol
C *____q g |] N A0

—_—

1 I
= 180° ist, entsprechen den Winkeln o, 3’ 7" in der fritheren T
Der Dreiecks-Winkel b si
beiden rechtwinklig:

Die Winkel 4*, B*, (* des ehenen D eiscks, Fig. 5., deren Summe 4*

L BFL(*
2. § 41. 8.

nkeln ¢ und o

nun aus den beiden Wi
3 80 Zusammen :

o, also cosd = eos@eos o

— SIN 0 BN [ L)

Nun hat man n:

1 (11):

beose —p — & PO ek e ”

. 16 p2 + (14)
o= 260 4 s
Yoatd 108

ceosed =p —24- PL- 15,0 g, 15)
312 B60gpd'

b sin i = [ e 4 = }:.: 1

¥ fa 9
. i p=—1bgs [ LD}
6 2 860 4 £ /A
L !.f a’ he "f.
cEn o = 'fl 4, = i 1 Tp2—16 ¢'2 (17

- i g BN
G 72 360 4 =

Wenn man (14) und (15)

multipliziert, dabei die hoheren (lisder ver
und dann nach gleichen Poten

ordnet, so bekommt man:

1 yEoly T 2 g2

Leenseens o = PE— }_' : 024 (16 p2 =8
S rd 360 4 L
2 j.;.ﬂ g2q'2
L L i
0 3
S ol TN

A0 rd - 2
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& 44.  Sphirisch-trigon. Reihen-Entwicklungen bis zur Ordnung einschl. 249
; = © pd
Anf gleiche Weise findet man auch auns (16) und (17):
ey e
: : . . e r B i GBS e
D¢ sin e sin o gq —-* '_;Jl i ‘,'r f (7T p2 — 16 ¢2)
B e 360 r4
PEgq | prag
8 e i 26 4
P2aq . :
= (TpEt—161¢ =)
T 360 4" !
Diese beiden Ausdriicke zusammen geben:
beleosmens ' — sinesine)=becos (- )= becosd =n4—gq—— = el q4')
. . 9.2
ya ,
= j (16p292 + 16p2q'2+ 24p2g g + 84+ 844 — 404292 — 16¢3¢" — 16g"3g) (18)
60 p4° : i / q . ]
Nun hat man nach der Hypotenusen-Formel (12):
b= l?;'-
(19)
2 = Jl,l:
und unmittelbar a? = (g (20)

g. 5. ein ebenes Dreieck eingefiihrt, dessen Seiten a, b, ¢
gleich sind den Seiten des sphirischen Dreiecks, und dessen Winkel A%, Bf, C* be-
stimmt werden sollen. Fiir das ebene Dreieck hat man bekanntlich die Gleichung:

Zugleich wird in F

F
B

2 he eos _.'! L |'J'2 hp r,':' .l."-l-
und wenn man hier die Werte (19) und (20) einsetzt, so bekommt man:

(2 o) -l“l-: L I o R L S, o 21)
g\ T I8 T g\ T e i !

]
44

beceog A% = f": — g |Jr' —

ichen, wodurch man nach einiger

a8 (21) wird mit dem fritheren (18) ver
alzebraischer Umformung finden wird:

- (g + 42~ o R A

be(cos A* — cos A) Bp2+(e+q)2—8¢q) (22)

" B2 ae) g4
Das hier vorkommende Produkt p (g q') steht in naher Beziehung zu b ¢ sin A,
denn wir haben aus (16) und (15) mit Weglassang der letzten Glieder:
5
Pl fllf J|'J|l|l fll' -
) e |

0
o) T

besinocos e = pg— :
2

Entsprechend geben auch (14) und (17):
o oot
. el T A R il
e e A T
£ C08 X S 2o I1 ,."'-:: ;1,-_'
Die Addition dieser beiden Gleichungen giebt:
1 (e = '.'f' ; .
.‘E“JI_ 'p3 __2”“4, )
0 e

2qq)] (23)

] (4 |_-"‘.J"E @ cos o’ - cosesine)l = be _-.'?-,u.l A=plg-—+ 'J"l- -

[”'!J‘_’_

also: P g gl=becsin A1 — —
| 1 ) G2

Das Ziel dieser Entwicklung ist die kleine Winkel-Differenz zwischen A und A%,

und wir wollen deshalb setzen:

[

A— 4% - I {




Setzt

sichtigh (

Damit entwickelt man eine zwe

durch bekommt man:

L2

ter Niherung:
WL / 2 ) (28)

4 — gos (A*

i
und beriick-

man dem entsprechend ¢

3) gendhert, mit 4 = A% so erhi n:
(26)

¥ 4 3 P . %
=7 £ (o At sin A = gin A* = | a)eos A
62 Mt £ 62t :
; & P &
sin A st A 1 i q ) cotg A (2D &
N = :
4% aus (21) ond (23) gendhert
9 '
Ne — {71
cotg A*¥= = :
! | ;
Dieses in (26a) gesetz
4 . i% [ 7 9
st A sin.A%( 1 l=

Damit kann man in (23) die Fun

P g —+ rf-l:l = b esin A* 1
nlg gl =bestn A* |1 < l qq | 2 I ~ q4q
plg q) ) ¢ sun AT | 1”_2-{ { = { g2t

benen Dwreiecks eingefiihrt, nimlich:

Hier haben wir die Fliche A\ des
b e sin A*
o

durch

Nun gehen wir zum zweiten Male auf (22) zuriick, und

setzung von (28):
g A 4 2 (208 il g2 Aaqq
: S o a4 o o | fL |
be(cos AT —cns A) = e ! - f
/ 8 9 8 a0 12 r2

womit man finden wird:

nimlich mit 4 — 4* = .

k. zu berficksichtizen :

Hier ist nach Fig.

P2+ g2 = b2 PP gi=¢ und (q-+ q')2 = a®

- 2 /N2 3 4 el — a)

(-]

beleos A* — cos A) = - SR
g 00 2 { T

Non wird die frithere Entwicklung (25) noch um

cos A o8 (A% 4+ 1) = cog A* — xsin A* — —C0

e0s A —ctos A* = — gin A% (2
.

(98

|‘2!|_|
Ein-
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i

resetzt, zugleich mit Rilcksicht aunf (29) giebt:

i

=
o
o
mn

0 1

— o |__'.'. BE 32— g?) (50 a)

=
_E' .

Tt e p )

| - gin AT = =

2 b L]

d 4;|.|L|_
> A B RD ’ ’ ;
i 5 AED2 2 — gl B ; 5
Cotg At = = 05 (b2 = c2 a=)
. aad O Y 3 R B
- o P afN 1ad

Dieses in (30a) gesetzt giebt:
s (T B2 T ¢ 4+ a?) (31)

vtischem Masse dargestellt;
Thut man dieses

Hiebei ist die Winkelreduktion 4 — A% =

um auf Sekunden fiberzugehen, muss man den Faktor ¢ zusetzen.

und schreibt zueleich auch die zwei anderen entsprechenden Formeln fiir B — B* und

C— C*, so hat

o (a2 - T b2+ T ¢2) (31 a)

Y B—B*=_—p- "'nl lt,.Trr—' - he 7 ed) (32a)
2= V50 74
. Talioe Th 4 o8 (83 a)

o (a2 + b2 4+ ¢2) (34)

25T Dyl

des ebenen Dreiecks verstanden, das aus den drei

Unter A\ ist hier die Fli
@, b, ¢ konstruiert werden kannm,
eln, weil noch héhere Glieder vernachl

and die vorstehenden Formeln sind immer
of sind. Wenn man
beniitzt, so hat man

Niherungs-Fi
gegen die kugelftrmize Oberfl
die schon frither in (2a) & 40. 8. 231 aufgestellte strenge Formel:

dche F des sphiirischen Dreiecks

I : (35)

ichung von (35) und (34) hat man auch eine Vergleichung zwischen

LTI L e
a { ¢ (36)

F =N (L=

24 y2

Hiefiir kann man auch noch eine andere Form finden, indem man nach I\-;IE.J

. . \
sin A—=sin A* L+ = oz A* =sin A% |1 +3 r cotg A” |
0rs ! o /




Sphirisch-trigon. Reihen-Entwicklungen bis znr Ordnung

J"J

Nimmt man 1 die einfacl

2N =besin A* so findet man:
sind . Br@—at
: - = ] + =
sin A* 12 2

auch auf die he andern Winkel an

sin d sin Bain O
sin B* sin

Von dhnlicher Be

; n 1), so wird fiibe
ersetzt und man hat:
] a8 & ) b2 4 a8
T AR T 72
E B N ‘2 h2
B—B s il
: 20 e
{ P il A
: -

Sumine E=F

Endlich kann man hier noch eine kli

ine Form-Veri
dass man den Mittelwert m2 von a2. b2 und 2 einfiihrt

g L = =

Damit werden die vorstehenden Formeln :

o (5141

Fiir ein gleichseitizes Dreie
sich klar ist.

Nimmt man ein rechtwinklices gleichschenkli:
und @, also @ = 242 so wird:

£ == | 3md—=p2L g2 2a5 , m= a=.

m~
-
1
e
=
=
a
0
=
=
o
=
1]

zweiten

ai e
..:{”H{.- = — (,L,0D03
at
e 40} 4 g = U005

ad
A0 pd ¥

n Beziehungen, 2 ecos A% = p2

t auch die aus (34) folgende Glei

ck verschwinden die zweiten Glieder,

(40)

dadurch,

Wwas auch an

an Katheten @

a). (42
&), (xa

b)

and
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ehends

ng der vor Form auf ein Zahlen-Beispiel nehmen

einer Anwend:

Zu £
wir wieder das klassische Dreieck Inselsherg, Hohehagen, Brocken, das wir schon

fach, in § 40.—42. benfitzt haben.
Mit Z

S. 283 und § 41. 8. 237 erhalten wir:

1den Berechnungen § 40.

als vorliufi

grundlegung der hi

logr = 6.804 9621 , log [\ = 94672168 , log F = 0.467 2271

und dann nach (31 a), (81 D), (31 ¢):

A — A* = 4,949 900" + 0,000 136" = 4,950 036"

B— B* 4,949 900 —+ 0,000 096 = 4,949 9006

o — " {940 000 -+ 0,000121 = 4950021

240 700" == 0,000 353" 14 350 053"

E=1

Diasselbe bekommt man auch nach den Formeln (42 a), (42b), (42 ¢c), niamlich:

0000 018" = 4,950.0:

A—A* = 4,950
B— B*= 4,050018 —0,000021 = 4,949 967

C— (% = 4950018 =+ 0000008 = 4,950021

g = 14.850 054" 4 0,000 000" = 14,850 54"

429 964"

86 15 53.890 004

Inselsbere 4 =

chagen B

0 = 53 6 45.630053 (* — 53 B 40.680032

Summe 1802 0" 14 850 053" 1202 O 0,000 000

Wenn man mit diesen Winkeln sre Berechnung (13)—(15
holt, so muss man mindestens 10 stellic rechnen, um den Unters
iren Logarithmen ist der Unter-

| 8, 237 wieder-
1

noch wahr-

auch in den 10 stel
d. h.= 0001, und z. B. an der Dreiecks-Seite

nehmbar zn machen: in
sehied

chied von 0,00002™

irfere Rechnung nur einen Unt

issten in der deutschen Geodisie ist,

Dreieck eines der gri
eder vernachli

h mit Huhe die htheren ( igen.

wir hierna

5 . 1 . Fh o L m, Na
Sehlusse dieser Entwicklungen wollen wir noch eine 1 bersichts-Tabelle
Ordnung zum Legendre schen

i

berechnen fiir die Werte des Korrektions-Gliedes 4.

Satze, d. h. nach (42a) fiir das Glied:
£ . a4 b2
g4 : —— (mEd—a?) , Wwo m® =

Ol = o

(m? — a2) desselben sind von einander unabhingig;
Dreiecks und der Faktor (m2 — a?) ist ein Mas
it des Dreiecks. Wenn ein Dreieck sehr
wenn ein Dreieck
man

yktoren &

ie beiden

der Excess & misst die Fliche

die Un U

ymmetrie und

n2 — q?) gross sein;

schmal 1st, so

pitie ist, so wird & gross und (m2 — a2) klein;
umfassen durch eine Tabelle fiir A A, mit
reben wird:

nahezu g

kann also alle denkbaren Fille am besten

zwei unabhingigen Eingingen ¢ nnd m? — a2, wie im folgenden g




1

Y .y & I . 4
mtwicklungen bis zur Ordnung — einschl. § 44
rd :

25 Sphirisch-trigon.

2 vatz.

Winkel-Korrekiton 4. Ordnung, A 4, zwm Legendre
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Kapitel V.
Sphérische Coordinaten.

§ 45. Ubersicht der Coordinaten-Systeme.
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