
Handbuch der Vermessungskunde

Jordan, Wilhelm

Stuttgart, 1896

Kapitel V. Sphärische Coordinaten.

urn:nbn:de:hbz:466:1-83087

https://nbn-resolving.org/urn:nbn:de:hbz:466:1-83087


Übersicht der Coordinaten -Systeme. 255§ 45 .

sprechenden Entwicklungen für Dreiecke mit geodätischen Linien in der klassischen Abhandlung

von Gauss „Disquisitiones generales circa superficies curvas , art . 24—28“. Wir betrachten unseren

§ 44. als Vorbereitung für unsere späteren analogen Entwicklungen für Dreiecke auf dem Ellipsoid .
Über den Maximal -Einfluss der sphärischen Glieder von der Ordnung 1 : r < giebt schon

Baeyer (Messen auf d . sphär . Oberfl . S. 73—74) eine Erörterung .
In unserer zweiten Auflage , 1878, S. 131, hatten wir eine solche Untersuchung mit der

Nebenbedingung konstanter Dreiecks -Fläche . Helmert untersucht in math . u . phys . Theorieen der

höheren Geodäsie I . § 16. den Maximal -Einfluss der höheren Glieder mit der Nebenbedingung , dass

die Quadratsumme der Seiten , d . h . a2 + &2 c3= 3 »iJ konstant sei .

Kapitel V.

Sphärische Coordinaten .

§ 45 . Übersicht der Coordinaten -Systeme.

Wir betrachten in der Folge die Erde als Kugel von gegebenem Halbmesser .
Bei dieser Betrachtungsweise werden manche Formeln und Bechen -Verfahren

gefunden werden (mit kleinen Gliedern von der Ordnung 1 : r2) , welche man sofort

auch auf das Ellipsoid , bzw. auf Messungen an der Erd - Oberfläche anwenden kann ,
wenn man nur den Kugel -Halbmesser r der Erd -Krümmung an der betreffenden Stelle

einigermassen anpasst .
Andere der in diesem Kapitel zu entwickelnden Formeln (mit Gliedern von

der Ordnung 1 : r ) werden keine so unmittelbare Übertragung auf das Ellipsoid zu¬

lassen , und daher nur als Vorbereitungs -Formeln in irgend welchem Sinne zu be¬

trachten sein.
Indem wir nähere Untersuchungen dieser Art auf die besonderen Fälle ver¬

schieben, betrachten wir jetzt die einzelnen Arten der Punkt -Bestimmung auf der

Kugel.

I . Geographische Coordinaten .

In Fig . 1 . ist O der Mittelpunkt einer
Kugel , welche , als Darstellung der Erde , den
Nordpol N , Südpol 8 , also die Axe N 8 und den
Äquator A A! hat .

N AS und N B S sind zwei Meridiane
mit darauf liegenden Punkten P und P ' ; die
gegenseitige Lage zweier Meridiane wird durch
den Längen -Unterschied A bestimmt , welcher ent¬
weder als Winkel A am Pol N oder als Bogen
A. B auf dem Äquator dargestellt werden kann .

Auf einem Meridian N A wird ein Punkt
P bestimmt durch seine geographische Breite qi ;
welche entweder als Erd -Centriwinkel AOP = (p
«der als Meridian -Bogen A P (für den Halb¬
messer = 1) dargestellt werden kann .

Fig . l .
Sphärische Coordinaten .

A N
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II . Polar -Coordinaten .
Wenn P als fester Punkt gilt , so kann man einen zweiten Punkt P ' dagegen

festlegen durch Angabe des Entfernungs -Bogens PP ' und des Azimutes NPP ' = a.
Die Azimute werden meist von Norden über Osten gezählt , wie in Pig . 1 . mit a bei
P eingeschrieben ist .

Ein zweites Azimut a ' hat der Bogen PP ' im Punkte P ' und zwar erscheint
in Fig . 1 . der Winkel «' entweder als nordöstliches Azimut von PP ' in der Ver¬
längerung über P '

, oder als südwestliches Azimut von P ' P .
Die Differenz der beiden Azimute a und a ' führt den Namen „Meridian -Kon¬

vergenz “ , d . h .
Meridian -Konvergenz = « ' — a (1)

Dabei ist der dem Äquator zugewendete Winkel a ' der grössere , also die
Meridian -Konvergenz in dem Sinne der Gleichung (1) gezählt , positiv .

III . Rechtwinklige Goordinaten .
Fig. 2.

Rechtwinklige Goordinaten
y•

A N

In Fig . 2 ., welche einen besonderen Fall von Fig . 1.
darstellt , ist P ' P 1( ein Grosskreisbogen , rechtwinklig zu
PN , und der Punkt P ' wird in Bezug auf P bestimmt,
durch die Abscisse P Pj = x , auf dem Meridian N P ge¬
messen , und durch die Ordinate P x P ' = y , rechtwinklig
zum Meridian gemessen .

Als Meridian -Konvergenz bei rechtwinkligen Coor-
dinaten gilt der Winkel y , welcher in P ' liegt zwischen
dem Meridiane P ' N und dem Bogen P ' N '

, welcher eine
Parallele zu P x N ist .

Dieses ist nur eine andere Ausdrucksweise für die schon bei II . gegebene all¬
gemeinere Erklärung der Meridian -Konvergenz , denn wenn das Azimut bei P \ den
besonderen Wert 90 ° annimmt , so ist die Meridian -Konvergenz für die Punkte P \
und P ' die Differenz :

PP 1 P ' — P l P ' N = 90 ° — (90° — y) = y (2)
Dabei kommt der Ursprungs -Punkt P und die Abscisse x gar nicht in Be¬

tracht , sondern nur der Fusspunkt P, .

Bemerkungen zur Meridian -Konvergenz .
Die Benennung Meridian -Konvergenz rührt ursprünglich davon her , dass für

zwei Punkte unter gleicher Breite die Meridiane sich in einem Punkte der Erdaxe
schneiden und in ihrem Schnittwinkel daselbst die Konvergenz der Meridian -Tangenten
genau darstellen .

In erweitertem Sinne wird die Benennung Meridian -Konvergenz für die Azimut-
Differenz a ' — a dadurch erklärt , dass man den Bogen PP ' als unendlich kleine
Gerade betrachtet , und die Meridian -Tangenten in P und P ' mit entsprechender
Näherung als sich schneidend annimmt ; denkt man sich den Schnittpunkt T , dann
hat man ein langgestrecktes schmales Dreieck P P ' T , wo P P ' die unendlich kleine
Gerade und T der Schnittpunkt der beiden Meridian -Tangenten ist . In diesem
schmalen ebenen Dreieck ist nun der Winkel bei T gleich « ' — a .
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Es ist auch leicht einzusehen , dass die Meridian -Konvergenz in erster Näherung
durch A sin q ausgedrückt ist , denn wenn die zwei Punkte P und P ’ in Fig . 1 .
unter sich unendlich nahe , in der Mittelbreite qp liegen , so ist für den Kugel -Halb¬
messer r der Parallelkreis -Halbmesser daselbst = r cos q , also der Parallelkreisbogen
= r cos q A, aber die Tangentenlänge PT = P ' T = r cotg A , also der Winkel bei T
gleich r cos q A : r cotg q = A sin q .

So viel genügt hier zur Wort -Erklärung und zur ersten geometrischen Betrachtung
der Meridian -Konvergenz , von welcher später noch weiter gehandelt werden wird.

(Vgl . hiezu Fig . 1 . § 61 . und die Schlussbemerkungen von § 60 .)

§ 46 . Rechtwinklige sphärische (Soldnersehe ) Coordinaten .
Der einfache Grundgedanke der rechtwinkligen sphärischen Coordinaten ist

etwa um 1809 von Soldner zur Vermessung des Königreichs Bayern und unabhängig
von Bohnenberger in Württemberg angewendet worden , und da diese Vorgänge Nach¬
ahmung bei vielen anderen deutschen Vermessungen gefunden haben , werden diese
Coordinaten häufig nach Soldner benannt .

Wir denken uns in Fig . 1 . einen
Meridian NOS der kugelförmigen Erde
als Anfangsmeridian des Systems ange¬
nommen , und darauf einen Punkt 0 als
Ursprung oder Nullpunkt .

Um einen Punkt A durch Coor¬
dinaten zu bestimmen , legen wir einen
Grosskreisbogen Q' A1 AQ durch den Punkt
A , rechtwinklig zu dem Meridian 0 N ,
wobei auf 0 N der Fusspunkt der
Senkrechten A Al ist und Q ' sowie Q die
sogenannten Pole des Meridians SON sind .

Durch den Fusspunkt At wird be¬
stimmt :

0 A1 = x , die Abscisse von 4 I .
-4 ] A = y , die Ordinate von A | 1 '

Wenn noch ein zweiter Punkt B
durch Coordinaten bestimmt werden soll ,
so legt man durch ihn wieder einen Grosskreis Q' Bj B Q , welcher den Fusspunkt B ]
liefert , und durch dieselben Polpunkte Q' und Q geht , wie der Bogen für A .

Durch den Fusspunkt B ] wird dann bestimmt :
0 Bi = as' die Abscisse von B 1
B 1 B = y' die Ordinate von B )

Wir zählen die Abscissen x nördlich positiv und die Ordinaten y östlich positiv .

Richtungswinkel .
Ausser den Coordinaten selbst haben wir den Begriff des Richtungs -Winkels

festzustellen . Der Richtungs -Winkel cc, welcher dem Grosskreisbogen A B in A zu¬
kommt, ist der Winkel , welchen dieser Bogen A B mit dem zu dem Meridian von 0

parallel gezogenen Bogen AP im Punkte A bildet .
Jordan , Handb . d . Vermessungskunde . 4 . Auf ]. III . Bd .

Fig . 1.
• N

ll
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Bei der vorhin angegebenen Lage des Coordinaten -Systems , mit - (- x nach
Norden und -+- y nach Osten , werden die Richtungs -Winkel « vom nördlichen x
gegen östliches y hin positiv gezählt , wie in Fig . 1 . eingeschrieben ist .

Der Winkel « , welcher hier Richtungs -Winkel genannt ist , ist derselbe , wie
auch schon in den Formeln für ebene Coordinatenrechnung in unserem II . Bande ,
4 . Aufl. 1895 , S . 225 ein Winkel in diesem Sinne eingeführt wurde .

Ausser dem Richtungs -Winkel « von AB m A ist auch der Richtungs -Winkel ß
von B A in B bestimmt als Winkel zwischen der Parallelen -Tangente B P ' und dem
Strahle B A , im positiven Sinne gezählt .

Wir haben neben ß bei B auch noch den Winkel « ' eingeschrieben , welcher
um 180 ° kleiner ist als ß , oder allgemeiner :

« ' = (3 + 180 °
(3)

Dieser Winkel a ' bedeutet also im wesentlichen dasselbe wie ß , er ist aber in
den Formeln meist angenehmer als ß seihst , weil a — « ' eine Meine Grösse ist , welche
in einer Reihen -Entwicklung benützt werden kann . Man nennt auch , nach Analogie
der Meridian -Konvergenz , diese kleine Grösse :

« — « ' = Ordinaten -Konvergenz . (1)
Wohl zu unterscheiden von dem Richtungs -Winkel « des Strahls A B im

Punkte A der Fig . 1 . ist das Azimut dieses Strahles AB , denn das Azimut von
AB wäre der Winkel , welchen A B mit dem Meridiane A N in A bildet (vgl . Fig . 1.
5 . 255).

In Fig . 1 . wäre also der in der Figur nicht angezeichnete Winkel zwischen
A N und A B das Azimut von AB in A , und der mit a bezeichnete Winkel zwischen
A P und A B ist der Richtungs -Winkel von AB in 4 .

"Was wir hier Richtungs -Winkel nennen , heisst auch in den Veröfientlichungen der trigono¬metrischen Abteilung der preussischen Landes -Aufnahme „Richtungs -Winkel “ , dagegen bei der
preussischen Kataster -Vermessung „Neigungs -Winkel “.

In der deutschen Sprache bezeichnet „Neigung * im allgemeinen einen Winkel in einer Ver¬
tikal -Ebene , man sagt z. B. der Wind weht in der Richtung N.O. in einer Neigung von 5a aufwärts
oder abwärts .

Auch die Benennung „ebenes Azimut * wird von Vielen für jenen Richtungs -Winkel ange¬wendet . So lange man es nur mit einem ebenen Systeme zu thun hat , wo gar keine Unterscheidungzwischen ebenem Azimut (bei Gauss „Azimut in plano “) und sphärischem oder sphäroidischemAzimut vorkam , kann man sich die kurze Ausdrucksweise Azimut wohl erlauben ; aber nun , da
solche Unterscheidung nötig wird , wollen wir das Wort „Azimut “ für die Abweichung von dem
Meridian Vorbehalten , und die Abweichungen von der Parallelen konsequent mit „Richtungs -Winkel
bezeichnen .

Entwicklung der Grund -Formeln .
Mit Beziehung auf Fig . 1 . stellen wir folgende Aufgabe :
Gegeben sind die Coordinaten x und y eines Punktes A , ferner die Länge s

des Bogens A B und dessen Richtungs -Winkel « in A.
Gesucht sind die Coordinaten x ' und y' des jenseitigen Punktes B und der

jenseitige Richtungs -Winkel ß des Bogens BA in B , oder statt ß seihst die Ordi¬
naten -Konvergenz a — « ' .

Wir werden diese Aufgabe mit Hilfe des sphärischen Dreiecks A B Q von
Fig . 1 . lösen können , und haben deshalb dieses Dreieck in Fig . 2 . nochmals besonders
herausgezeichnet .
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Alle Seiten und Winkel dieses Dreiecks stehen in einfacher Beziehung zu
den besprochenen Coordinaten und Richtungs -Winkeln , z . B . der Winkel bei A ist
= 90 ° — a und der Winkel bei B ist = 90 ° + «'

, wie die Vergleichung mit Pig . 1 .
unmittelbar ergiebt ; und im übrigen
ist nur noch die Bemerkung zu machen,
dass die linearen Werte von Pig . 1 . nun
in Fig . 2 . , durch Division mit dem Erd-
Halbmesser r , auf Erd-Centriwinkel in
analytischemMasse gebracht sind, z . B.

die Entfernung s in Pig . 1 . giebt

in Fig . 2 . u . s . w . Der Wert

rig . 2.
Dreieck A BQ von Fig . 2.

r
X' — X

r
erscheint in Fig . 2 . zweimal , erstens
als Bogen Ai Bi und zweitens als Win-

90 ”+ '?.'

\ 90 - a

sind .kel Q, weil Q A1 und Q Bi beide Quadranten , d. h . analytisch — ^
Nach dieser Vorbereitung benützen wir drei Formeln der sphärischen Trigono¬

metrie, nämlich:
1) eine Cosinus-Pormel (von S . 164),
2 ) eine Sinus-Formel (von S . 164) ,
3) eine Gausssche Formel (S . 165) .

Im einzelnen geben diese 3 Formeln ausführlichst geschrieben :

1) cos

2 )

3) tang

= cos — cosr
■sin sin ( - ) cos (90 ° — a)

. x —
sm -

r sin (90° — «)

Sin - j;-

(90 ° ■+• a '
) h- (90 ° — a)

cos 1/2
cotg

x ' — x
2r

cos l/2 |

Wenn man diese drei Gleichungen , welche sehr ausführlich geschrieben sind ,
damit ihre Entstehungsweise ersichtlich bleibt , vereinfacht, so erhält man :

1) für y ' : sin = cos — sin - -+- sin — cos — sin a (5)s . ycos — sm —
r r

■sin — cos — sin a
r r

2 ) für

3) für

, sin —
. x — x r

sm - = — cos cc
r ycos —

r

cos y' — y

(6 )

cotg - 2 r x ' — x
— = — cotg -

2 . y -i” ysm — i —
2 r

2r
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und wenn man hier Zähler und Nenner umkehrt , so hat man

V
' + y

y — y

Zuerst nehmen wir die Gleichung (5) allem vor :

s ysm — cos -z— cos a
v r

Auf die hierin vorkommenden sin und cos kleiner Grössen werden die Potenz-
Reihen für sin und cos nach S . 172 angewendet , jedoch mit Beschränkung auf Glieder
dritter Ordnung ; dieses giebt :

sm a

Wenn man mit Vernachlässigung der höheren Glieder weiter rechnet , so er¬
hält man :

y — = y 1 — z — ) h- s sm a ( 1 — — ?

Diese Gleichung soll nach y' aufgelöst werden ; man hat es also mit einer
cubischen Gleichung zu thun . Da jedoch von vornherein alle Glieder von höherer als
der dritten Ordnung vernachlässigt worden sind , so kann auch die Auflösung von (8)
entsprechend genähert ausgeführt werden . Man bildet nämlich zuerst eine erste
Näherung für y*:

1
y ' = w -f- s sm a -f-

Dieser Näherungs -Wert von y f genügt , um das zweite Glied in (8) auf

Glieder von der Ordnung ~ einschliesslich genau zu bestimmen . Man hat daher

durch Einsetzen der ersten Näherung in jenes zweite Glied :

(y -b s sm a )3 = y s sm a -{- y s sm ec —

3 s2 y — 3 s* y sin* a sin 3 ccs° sm ay -+■s sm a
6 r *

S* y COS2 <X S%sin (X cos2 ccy ' = y S sm a —

Damit ist die Gleichung für yf erledigt , und wir gehen über zur Entwicklung
für Zur Bestimmung von x ' — x haben wir die Gleichung (6) :

y cos a
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Dieses giebt bis zur dritten Ordnung entwickelt :
s s3

x ' — x (x ' — x )s r 6 r 3
r 6 r 3

x ' — x (*' — a )3
r 6 ?’3

™ (x' - *)3

- cos a

2 »-2
S
_

Sä \ / J/j
r 6r 3/ 1, .

' 2i -2

S2 y
' 2

COS«

6 r 2 = S CO# « / 1 —

folglich:

Erste Näherung x ' — x = s cos cc

, „. _ (s cos a )3
6 7*2

s cos a -

s cos a -

6r 2 2 r 2

s3 cos a s cos a y
'2

6 )-2 2r 2

s cos a y ' 2 s3 cos a sm2 «
(10)

2 r2 6 r2

Damit ist auch die zweite Gleichung für x ' erledigt , und wir gehen zur Ent¬

wicklung für die Ordinaten -Konvergenz . Zur Bestimmung von a — a ' haben wir die

Gleichung (7 ), bei deren Entwicklungen man überall schon beim ersten Gliede stehen

bleiben kann , weil dadurch schon rechts ein Glied von der Ordnung entsteht ,

über welches wir nicht hinaus gehen . Wir haben daher kurz aus (7) :

y ' + y
a — a ' 2 r ' " x ' — x

“
2 h - ~

f _
—

2 r

a — a = y_ ±y
2 »-2 (x1 — x) (11)

Eine etwas andere Form bekommt man hiefür , wenn man y ' — y + s sin flM • • •
nach (9) einsetzt , nämlich :

In (11 ) und (12) ist zur Reduktion auf Sekunden noch der Faktor q = 206 265
hinzu zu setzen.

Zusammenfassung .
Zur Übersicht führen wir noch eine abkürzende Bezeichnung ein , indem wir

setzen :
s sin « = v und s cos a — u (1 ®)

Damit geben die Formeln (9), ( 10) und (12), letztere mit Zusetzung von q :

y = y -

— cc —{—il -

ifiy ifiv
2 r 2 6 r 2

u y ‘ U « 2

2 r2 6 r 2

, o (> , „ y + y 6
■* = uy -jfc + uv ^ oder = u - ^

-
w

Hiezu ß = a ' + 180 °,
also : ß = a + 180c ■uy - 2r -

(14)

(15)

( 16)

( 16 a)
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Die von r abhängigen Coefficienten dieser und einiger verwandter Formeln
kann man hei gegebener geographischer Breite immer nach der Bilfstafel Seite [8]— [29]
des Anhangs bestimmen ; für die Breiten <jp = 45 °, 50 °

, 55 ° sind die Logarithmen
dieser Coefficienten folgende (mit Weglassung der — 10 u . s . w .) und bei y, für Ein¬

heiten der Stelle :

<p l°9 W * l°g ~ s - 109 ^ l°9 ^ 109 h
45 ° 6.08969 5 .61257 1.70514 1.40411 2 -72747 2 -25035
50 ° 6 .08918 5 .61206 1 .70464 1 .40361 2 -72697 2 -24985
55° 6 .08869 5 .61157 1 .70415 1 .40312 2 -72648 2 -24936

Wenn man in den Formeln (14) , ( 15 ) , (16 ) den Halbmesser r = oo setzt , d . h .
wenn man die Kugel in die Ebene übergehen lässt , so bekommt man :

y ' = y -f- g sin a x ' = x + s cos a a ' = a (17)
Dieses sind die für die ebene Coordinaten -Rechnung gültigen Formeln .
Dasselbe hat man in anderer Form , wenn man nicht r — aber die Ent¬

fernung s und damit auch m und n sehr klein setzt ; man sieht daraus , dass die
sphärischen Formeln von selbst in die Formeln der Ebene übergehen , sobald die
Entfernungen so klein werden , dass sich das Anbringen der Korrektions -Glieder

nicht lohnt .

Unsere Schluss -Formeln (14) , (15 ), (16 ) werden auch noch in manchen anderen
Formen gebraucht , wie für die Ordinaten -Konvergenz schon bei ( 11 ) und (12) ge¬
zeigt wurde .

Auch die Ordinaten -Formel (14) kann umgeformt , d . h . etwa so geschrieben
werden :

y ' — y = s sin ec — 2 y -t- y '
~

3 2 j '2 (18)
Der algebraisch scheinbar störende Umstand , dass in der Gleichung (15 ) für $

das erst zu bestimmende y' selbst vorkommt , ist für unsere Anwendungen unwesent¬
lich , wenn y' zuerst bestimmt wird , um es für die Einsetzung in das Korrektions -Glied
für x zu haben ; sollte ausnahmsweise x allein zu bestimmen sein , so müsste man
zur Berechnung des ersten Korrektions -Gliedes von x einen Näherungs - Wert von

y ' — y + s sin a nehmen .

Pig . S.
a — a ’.

Geometrische Bedeutung der Ordinaten -Konvergenz .
Die Formel (11 ) hat eine sehr einfache geometrische

Bedeutung , es ist nämlich a — a! der sphärische Excess des
Vierecks APBi rij , dessen Fläche , eben , genähert

= ^ ist

Man kann diese Bedeutung von a — a ' unmittelbar
leicht nachweisen , nämlich nach Fig . 8 . ist der Excess des
Vierecks :

90 ° + (90 ° -4- « ) + (90° — « ') — 860 ° = a — a ’ (19 )
Dieses ist dieselbe Anschauung , welche auch auf die Meridian -Konvergenz (§ 45 .)

angewendet werden kann .
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Rechen-Hilfsmittel für die Korrektions -Glieder der Soldner sehen Formeln .

Wenn man zu häufiger Anwendung dieser Coordinaten -Formeln Schemate litho¬

graphiert , und hiebei die konstanten Coefficienten -Logarithmen log log u - s- w>

mit vordruckt , so geht die Rechnung nach den Formeln ( 14 ), (15 ) , (16) ziemlich
rasch ; doch sind auch schon mehrfach besondere Hilfsmittel angewendet worden.

In unserem Anhang Seite [44] haben wir zwei kleine Tabellen I . und II . für
die Korrektions -Glieder der Formeln (14), (15), ( 16) gegeben , insofern alle diese Glieder

im wesentlichen die Form
A2 B
T (-2

~ oder A B—x» p haben , doch sind diese Tabellen I . und II .

auf Seite [44] nicht zum eigentlichen Rechnen bestimmt , sondern nur zur Übersicht ,
oder als Hauptwerte zu graphischen Darstellungen , oder auch zur Unterstützung von

Rechnungen mit dem Rechenschieber u . dergl .
Eine ausführlichere , für qp = 51 ° gültige , zum unmittelbaren praktischen Ge¬

brauch bestimmte Tabelle der Werte . „ ist enthalten in dem Werke : »Die trigono -
2 r2

metrischen und polygonometrischen Rechnungen in der Feldmess -Kunst von F . G .
Gauss“

, 2 . Aufl. 1892 , II . Teil , S . 54— 61 .
Graphische Hilfsmittel für die Soldner sehen Korrektions -Glieder sind bei der

badischen Landes -Vermessung benützt worden (uns jedoch nicht näher bekannt ge¬
worden). Drei Schichten -Tafeln für den vorliegenden Zweck giebt Franke , »Die
Grundlehren der trigonometrischen Vermessung “ , Leipzig 1879, Anhang Tafel I ., II ., III .

Alle diese Hilfsmittel sind aber kaum im stände , das unmittelbare Ausrechnen
der Korrektions -Glieder zu ersetzen , zumal man bei solchen Rechnungen , zum Schutz

gegen die vielen Abrundungs -Häufungen die einzelnen Glieder meist auf 0,001m aus¬
rechnet , um im Schlussergebnis 0,01“ noch scharf zu haben , und hiezu ist das Aus¬
rechnen der Glieder im vorgedruckten Schema mit 4— 5 stelligen Logarithmen immer
noch das Beste .

Die Soldner sehen Korrektions -Glieder sind zwar alte von der Ordnung 1 : i'2,
aber unter sich doch gewissermassen von verschiedener Ordnung , je nachdem s sin a ,
scosa oder y , y ' selbst , mehr noch , je nachdem s2 «*

'»2 « , s^ cos^ a oder iß , y' z

darin auftreten , denn die s sin cc = v und s cos v. = u sind im allgemeinen erheblich

kleiner als die y , und deswegen ist das Glied ■ d: (15 ) das erheblichste von allen .

Wir werden später bei den konformen Coordinaten (§ 52.) finden , dass dort solche

Glieder mit «/2 nicht Vorkommen.
Die Unmöglichkeit genauer und bequemer Hilfstafeln für die Soldner sehen

Korrektions -Glieder ist ein Übelstand des Systems selbst , der namentlich bei der

Vergleichung mit den später in § 52 . zu behandelnden konformen Coordinaten zu

Tage tritt .

§ 47. Beispiel der Soldnerscheu Coordinaten -Berechnung.

Zu einem zusammenhängenden Zahlen -Beispiel , an welchem der ganze Gang der

Soldnersehen Coordinaten -Berechnung gezeigt werden kann , eignet sich sehr gut der

nördliche Teil des badischen Netzes , den wir schon früher mehrfach behandelt haben.
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Dieses in der nachfolgenden Fig . 1 . dargestelite Netz wurde aus badischen und
einigen anderen Winkeln zusammengesetzt und (unabhängig von den amtlichen Be¬
rechnungen ) in sich selbst ohne weitere Anschlüsse ausgeglichen und 1870 veröffent¬
licht in den „astronom . Nachrichten “ 75 . Band , S . 289 —306 „über die Genauigkeitsüddeutscher Triangulierungen “ , und jene Ausgleichung ist auch unverändert in den
ersten zwei Auflagen dieses Werkes 1873 und 1878 aufgenommen , dagegen in 3 . Aufl.I . Band , 1888, S . 194—204 schärfer neu berechnet , wobei die Winkel sich teilweise
um 0,001" oder 0,002" geändert haben . In der 4 . Aufl. I . Band , 1895 , S . 174 ist
die Ausgleichung nicht mehr aufgenommen , weshalb wir nun die ausgeglichenenWinkel und Seiten von 3 . Aufl. I . Band , 1888 , S . 202—203 hier benützen , wie sie in
dem nachfolgenden Abrisse (S . 265) sich darstellen .

Mg- 1- Das Netzbild mit An-
Coordinaten -System mit dem Ursprung Mannheim .

deutung des Coordinaten --1- x nach Norden , I- y nach Osten . ^ . . . , , 7Systems ist m nebenstehen¬
der Fig . 1 . gezeichnet .

Von demPunktMann -
heim Sternwarte , der als
Coordinaten -Nullpunkt dient,
zählt die amtliche badische
Vermessung -f- « nachSüden
und + y nach Westen , wäh¬
rend wir nun , dem allgemei¬
neren Gebrauche in Deutsch¬
land entsprechend , + % nach
Norden und -t- y nach Osten
zählen wollen .

Auf der Sternwarte
Mannheim wurde das Azimut
nach Speyer astronomisch
gemessen , von Norden über
Osten gezählt :
Azimut Mannheim -Speyer

= 183 ° 40 ' 25,291" (1)
Dieses Azimut Mann¬

heim -Speyer wird man unter
der Bezeichnung Bichtungs -
winkel in dem nachfolgenden
Ausgleichungsabrisse S . 265
wieder finden , denn im Coor-

dinaten -Nullpunkt , durch welchen der Meridian als « -Axe geht , ist das Azimut gleichdem .Richtungswinkel , während in allen anderen Punkten die Richtungswinkel sich
von den Azimuten unterscheiden .

Mobbergr * X
MeUio^

— *7

/ • IOOO ooo

111
10 ~

^oIülom,

Wir geben sofort den ganzen Abriss des Netzes mit ausgeglichenen Richtungs¬winkeln a und ausgeglichenen Entfernungen log s , obgleich zwar alle log s als Ergeb¬nisse der Netzausgleicbung eingesetzt werden können , die Spalten der Richtungswinkel u
aber erst allmählich im Laufe der nachfolgenden Coordinatenrechnung sich füllen werden.
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Abriss der Triangulierung des Netzes Fig . 1 . S . 264 mit Soldner sehen Coordinaten .

Stationen
und

Zielpunkte

ßicl

sphärisch
a

ltungsw

Redukt ,
8 a

mkel

« 0 =

eben

= a + 8 a

; *

j sphärisch
log 8

intfernu

Redukt .
8 log s

eben
logs Q

1. Mannheim .
Speyer . : 183° 40' 25,29" - 0,02 183° 40 25,27" 4.275 4362-8 + o-o 4.275 4362-8

Oggersheim . . . . 273 42 22,23 + 0,00 273 42 22,23 3.7791890 -3 + 0-3 3.779 1890-6

2. Speyer.
Mannheim . 3° 40' 25,23" + 0,04 3° 40 25,27" 4.275 4362-8 + o-o 4.275 4362-8

Königsstuhl . . . . 65 10 11,04 ■— 0,25 65 10 10,79 ! 4.358 8019-0 + M 4.358 8020-1
St . Michael . . . . 161 20 31,86 + 1,13 161 20 32,99 4.430 2529-8 + 0-8 4.430 2530-6

Langenkandel . . . 215 0 1,15 — 0,63 215 0 0,52 4.502 8974-0 + 5-0 4.502 8979-0

Calmit . . 270 34 57,86 + 0,00 270 34 57,86 14.418 4219-3 + 0-3 4.418 4219-6

Oggersheim . . . . 345 59 7,49 + 0,13 345 59 7,62 4.296 5476-9 + 0*3 4.296 5477-2

3. Oggersheim .
Melibocus . 35° 38' 31,00" — 0,07 35° 38' 30,93 : 4.507 0618-5 + 1-9 4.507 0620-4

Mannheim . . 93 42 22,24 — 0,01 93 42 22,23 ’ 4.779 7890-3 + 0-3 3.779 1890*6

Königsstuhl . . . . 110 37 58,62 + 0,14 110 37 58,76 4.435 7945*9 + 0-9 4.435 7946-8

Speyer . 165 59 7,85 — 0,23 165 59 7,62 4.296 5476-9 + 0-3 4.296 5477'2

Calmit . . . 228 30 28,54 — 1,02 228 30 27,52 4 456 1549-3 + 7-7 4.456 1557*0

Donnersberg . . . . 294 51 17,21 + 1,17 294 51 18,38 4.549 3120-0 + 5-6 4.549 3125*6

Klobberg . 336 22 4,82 + 0,75 336 22 5,57 4.479 8976-0 + 7-2 4.479 8983-2

4. Calmit.
Oggersheim . . . . 48° 30' 26,93" + 0,59 48° 30' 27,52" 4.456 1549-3 + 7-7 4.456 1557-0

Speyer . . 90 34 57,88 — 0,02 90 34 57,86 4.418 4219-3 + 0-3 4.418 4219-6

Dangenkandel . . . 163 12 53,76 — 1,29 163 12 52,47 4.439 5852-2 + 26-9 4.439 58791

Donnersberg . . . . 342 23 54,18 + 3,44 342 23 57,62 4.5501058 -1 + 52-3 4.5501110 -4

5. Donnersberg.
Klobberg . 57° 29' 38,98" + 0,08 57° 29' 39,06" 4.375 9182-8 + 13-2 4.375 9196-0

Oggersheim . . . . 114 51 18,88 + 0,50 114 51 18,38 4.549 3120-0 + 5-6 4.549 3125-6

Calmit 162 23 59,80 — 2,18 162 23 57,62 4.550 1058-1 + o2'3 4.550 1110-4

6. Klobberg .
Melibocus . ■ 92° 51' 35,28" — 0,02 92° 51' 35,26" 4.489 6442-5 + 0-3 4.489 5442-8

Oggersheim . . . . 156 22 6,51 — 0,94 156 22 5,57 : 4.479 8976-0 + 7-2 4.479 8983*2

Donnersberg 237 29 40,80 — 3,74 237 29 39,06 ! 4.375 9182'8 + 13-2 4.375 9196-0

7. Melibocus. i
Königsstuhl . . . . 169° 13' 40,29" + 1,49 169° 13' 41,78" 4.560 7787'3 + 13-9 4.560 7801-2

Oggersheim . . . . 215 38 30,55 + 0,38 215 38 30,93 4.507 0618-5 + 1-9 4.507 0620 4

Klobbero- 272 51 35,26 + 0,00 272 51 35,26 4.489 5442-5 + 0-3 4.489 5442-8

S. Königsstuhl.
St. Michael . . . . 199° 2' 30,38" + 1,23 199° 2' 31,61" 4.569 8613-7 + 9-2 4.569 8622-9

Speyer . 245 10 10,59 + 0,20 245 10 10,79 4.358 8019-0 + i -i 4.358 8020-1

Oggersheim . . . . 290 37 58,96 - 0,20 290 37 58,76 4.435 7945-9 + 0-9 4.435 7046-8

Melibocus . 349 13 43,21 — 1,43 349 13 41,78 ; 4.560 7787-3 + 13-9 4.560 7801 2

9. St . Michael .
Königsstuhl . . . . 29° 2' 32,78" — 1,17 19° 2' 31,61" 1 4.5698613 *7 + 9-2 4.569 8622-9

Kangenkandel . 268 48 10,93 + 0,86 268 48 11,79 ; 4 .429 4468-0 + 0 4.429 4468-0

Speyer . 341 20 32,27 — 0,27 341 20 32,00 ; 4.430 2529-8 + 0-8 4.430 2530*6

10. Langenhandel . j
Speyer . . 34° 59' 59,18" + 1,34 35° 0' 0,52" ij 4.502 8974-0 + 5-0 4.502 8979-0

St . Michael 88 48 10,91 + 0,88 88 48 11,79 ; 4.429 4468-0 + o-o 4.429 4468-0

Calmit 343 12 50,62 + 1,85 343 12 52,47 . 4.439 5852-2 + 26 9 4 439 5879-1
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Zuerst müssen wir die nötigen Konstanten für die Soldnersehen Glieder zweiter
Ordnung bilden :

Der Coordinaten -Nullpunkt hat die geographische Breite rund qp = 49 ° 30 '
, und

damit bilden wir nach Seite [20] des Anhangs die für uns nötigen konstanten Coef-
ficienten -Logarithmen :

log 272 = 6 -08923 lo!) 6^ 2 = 5 -61211 lo9 372 = 5 -91314

log = 1 .70469 log = 1.40366 log ^ = 0 .92654» r2 " 2 r2 w 6 r2
Wir beginnen mit dem schon bei (1 ) angegebenen Ausgangswerte

Mannheim -Speyer a 0 — 183 ° 40' 25,291" und log s = 4 .275 4362 '8 (3)
Damit können wir sofort die Coordinaten y '

, oef von Speyer berechnen , und zwar
vereinfachen sich diesesmal die allgemeinen Formeln deswegen , weil die Ausgangs-
Coordinaten y , x für Mannheim beide Null sind . Setzt man also y = 0 und * = 0
in den Formeln (13)—(16) § 46 , S . 261 , so bekommt man :

Speyer

s stn a 0 = v
w2 v

V = v -
6r 2

« ' = « o
P

2f2
U V

s cos a 0 — u
, u v2

* = w -4- s - jr (4)

Nun rechnen wir hiernach mit 7stelligen Logarithmen (mit einer an sich un¬
sicheren , durch Interpolation nach Schrön erhaltenen 8 . Kontrollestelle 0 -l ) :

log s 4 .275 4362 -8 logs 4 .275 4362 -8
a 0 = 183 ° 40 ' 25,291 " log sin a 0 8 .806 6825 -0, log cos a a 9 .999 1066-6,

logv 3 .082 1187 -8, log u 4 .274 5429 -4,
v = — 1208,144 ”* u = — 18816,678 ”* (5)

Hiezu die Korrektions -Glieder nach (4) :

logu 2 8 .5491 log u 4 .2745,
log v 3.0821, log v2 6 .1642

log (— 1 : 6 j-2) 5 .6121, log ( 1 : 3 r2) 5 .9131
7 .2433 6 .3518,

-+- 0,0017 — 0,0002 (6)
Diese kleinen Beträge zu (5) hinzunehmend hat man :

Speyer y = — 1208,142”* x = — 18 816,678 ™ (7)
Endlich noch die Ordinaten -Konvergenz :

logu
log v

lo 9 {— p : 2r 2)

4 .2745,,
3 .0821,
1 .4037 ,
8 .7603, — 0,058' (8)
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Man hat also nun in Zusammenfassung :

Richtungs -Winkel Mannheim -Speyer « = 183 ° 40 ' 25,291"

hiezu nach (8 ) : — 0,058

« ' = 183 ° 40' 25,233"

±180 °

Also Richtungs -Winkel Speyer -Mannheim k2 = 3 ° 40' 25,233” (9)

Nun kann man die Richtungs -Winkel aller von Speyer ausgehenden Strahlen

angehen, denn man braucht nur die auf Speyer ausgeglichenen Winkel mit k2 zusammen¬

zusetzen . Dazu brauchen wir , wie der Anblick des Netzbildes Fig . 1 ., S . 264 zeigt ,
die ausgeglichenen Dreieckswinkel der Station Speyer , welche nach Band I , 3 . Aufl .

1888 , S. 202, 203 sind :

Mannheim
Königsstuhl
St . Michael
Langenkandel
Calmit
Oggersheim
Mannheim

. . . = 61 ° 29 ' 45,804" ,
[15] = 96 10 20,829 /
[16 ] = 53 39 29,285 \
[19 ] = 55 34 56,714 /

[22] = 75 24 9,630 \

. . . = 17 41 17,738
'

360° 0' 0,000"

Wenn man diese 6 Winkel zu dem soeben berechneten 3 ° 40' 25,233" nach¬

einander addiert , so erhält man die sämtlichen Richtungswinkel , wie sie für die

Station 2 . Speyer auf S . 265 angegeben sind , auf 0,01" abgerundet .
Nach diesem ersten Beispiele können wir kurz sagen , dass auch die zweite vom

Nullpunkt Mannheim ausgehende Richtung Mannheim -Oggersheim ebenso wie Mann¬

heim-Speyer behandelt wird , und dann auch den Abriss 3 . Oggersheim auszufüllen

gestattet , wie auf S . 265 zu sehen ist .
Nach diesem kommen aber die allgemeinen Coordinatenformeln von (14 )— (16)

§ 46 , S . 261 , deren Anwendung an dem Beispiel Speyer-Langenkandel gezeigt werden soll :

Aus dem soweit ausgefüllten Abrisse S . 265 entnimmt man hiezu :

Speyer-Langenkandel a = 215 ° 0 ' 1,150' ’ und log s = 4 .502 8974’0

log s
log sin a

4 .502 8974-0
9 .758 5947 -8»

log v 4 .261 4921 -8»

logs | 4 .502 8974 -0

log cos a i 9 .913 3628 '3»

logu \ 4 .416 2602 -3»

v = — 18 259,639 u = — 26 077,156

Speyer (7) gegeben : y = — 1 208,142 % = — 18 816,678

y + „ = _ 19 467,781 x 4 - u = — 14 893,834

Langenkandel genähert = y genähert = x'

Korrektions -Glieder für y.
logu % 8 .8325 log M2 8 .8325 log u 4 .4163
l°gy 3 .0821» log n 4 .2615» log -y

'2 8 .5786
% (- l : 2r2) 6 .0892» ?o <ji( - l : 6r2) 5 .6121» log (1 : 2r2) 6 .0892

8.0038 8 .7061 9 .0841,
+ 0,010 4 - 0,051 - 0,121

Korrektions -Glieder für x .
logw

log
log(—1 : 6r2)

4 .4163»
8 .5230
5 .6121 »

8 .5514
- 0,036
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Zusammenfassung :

y -hv = — 19 467,781 “
+ 0,010
-+- 0,051

x -+ ■u = — 44 893,834 ”
— 0,121
-+- 0,036

Langenkandel : y ' — — 19 467,720 X* = — 44 893,919

Korrektions -Glieder für a :

log u ■■4 .4163» log u 4 .4163» Statt dessen kann auch die
log y j 3 .0821„ log v 4 .2615» Rechnung geführt werden nach

log (— q : r2 ) : 1 .7047„ log (— g : 2r 2) 1 .4037» der zweiten Formel (16) § 46 . S . 261
9 .2031» 0.0815» , y + y ' q— 0,160 - 1,206 «

2 r 2

Zusammenfassung : a = 215 ° 0 ' 1,150"
— 0,160
— 1,206

« ' 214 ° 59 ' 59,784"
+ 180°

« 10 = 34 ° 59 ' 59,784 " = Richtungs -Winkel Langenkandel -Speyer.

Mit diesem Eichtungs -Winkel « 10 und mit den auf Langenkandel ausge¬
glichenen Dreiecks -Winkeln kann man nun von neuem einen orientierten Abriss für
die Station 10 . Langenkandel aufstellen , wie auf S . 265 zu sehen ist .

In dieser Weise wird in dem ganzen Netze auf verschiedenen Wegen herum
gerechnet , wobei zahlreiche Proben sowohl für die Bichtungs -Winkel als auch für die
Coordinaten entstehen , z. B . nachdem die beiden Stationen 2 . Speyer und 3 . Oggers¬heim erledigt sind , kann man nach 4 . Calmit von beiden Seiten her rechnen , und
man wird finden :

von 2 . Speyer her : 4 . Calmit y4 = — 27 414,066 ” x4 = — 18 550,134”
„ 3 . Oggersheim her : „ ,065 ,135

also hinreichende Übereinstimmung . Ebenso auch die Richtungs -Winkel :

von 2 . Speyer her : Richtungs -Winkel (4 .2) = 90 ° 34 ' 57,882 "
» 3 . Oggersheim her : „ (4 .3) = 48 ° 30' 26,932 ”

Diese beiden Richtungs -Winkel werden in den Abriss der Station Calmit ein¬
gesetzt , und geben mit den auf Calmit ausgeglichenen Dreiecks -Winkeln Proben,welche in unserem Palle zu Abänderungen von 0,002 " und 0,003” geführt haben,was jedoch auf S . 265 , wo alles auf 0,01" abgerundet ist , nicht mehr bemerklichwerden kann .

Man sieht , dass die Stations -Abrisse von S . 265 in Hinsicht auf die Richtungs¬winkel allmählich entstehen . Die Endwerte der Coordinaten sind folgende :
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Punkt

1. Mannheim
2 . Speyer . . .
8. Oggersheim .
4. Calmit . . .
5. Donnersberg .
6 . Klobberg . .
7. Melibocus . .
8. Königsstuhl .
9. St . Michael .

10 . Langenkandel

y

0 ,000™
— 1 208,142
— 6 001,777
— 27 414,066
— 88 145,688
-- 18 104,628
+ 12 727,470
+ 19 525,476
-t- 7 407,498
— 19 467,721

x

0 ,000™
— 18 816,676
+ 388,767
— 18 550,134
+ 15 278,872
+ 28 049,296
+ 26 509,100
— 9 223,075
— 44 332,386
— 44 893,918

Rechtwinklige sphä¬
rische Soldner sehe

Coordinaten aller
Punkte des Netzes
Fig . 1 . S . 264. Null¬
punkt Mannheim mit
+ x nach Norden ,
und + y nach Osten.

MW)

Vergleichungen dieser Coordinaten mit den amtlichen Coordinaten von Baden , Bayern
Hessen , und Bemerkungen dazu , wurden gegeben in Band I, Aufl . 3, 1888, S. 203—204, II. Band
Aufl. 2, 1878, 8 . 272 und astr . Nachr ., 75. Band , 1870, Nr. 1795 - 1796, S. 289—306 und S. 367.

Der grosse Abriss von S . 265 wäre für die Zwecke der Soldner sehen Coor-
dinaten-Behandlung genügend , wenn er die sphärischen Richtungs -Winkel a und die
sphärischen Entfernungen log s enthielte . Wir haben aber auch noch die ebenen
Richtungs -Winkel a 0 und die ebenen Entfernungen s0 dazu berechnet , nach den ein¬
fachen Formeln :

tang = y ' — y
x ' — x

_ y’ — y _ x> — x
S° sin a 0 cos a

wobei die Coordinaten x y , x ' y' selbst die sphärischen in der vorstehenden Tabelle (10)
enthaltenen sind . Die Differenzen 8 a und 8 log s sind dann einfach aus a 0 — a und
l°9 so — T-°g s erhalten . Wie man diese 8 a und Slogs selbständig berechnet , wird
im folgenden § 48 . gezeigt werden .

Wir haben diese 8 a und 8 log s auf S. 265 mit aufgenommen , auch wegen
der späteren Vergleichung mit den konformen Coordinaten .

§ 48 . Bestimmung von Entfernung und Richtungs -Winkeln
aus Soldnerschen Coordinaten .

Es handelt sich um Umkehrung der bisherigen in § 46 .—47 . behandelten Auf¬
gabe , und um die Übersicht zu gewinnen , wollen wir an die entsprechenden einfachen
Aufgaben der Ebene erinnern . Man hat bekanntlich in der Ebene :

y ' - - y = s sin a x' — x = scos a (a)

a = y' — y und y' — y __ x' — x
(b)

x ' — X sin a cos a

(C)oder s = V (y' - yf + (+ - ie)2

Während in § 46 . die sphärischen Analogieen zu den ebenen Formeln (a)
behandelt worden sind , handelt es sich jetzt darum , auch zu den umgekehrten For -
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mein (b) und (c) das zu finden , was entsprechend auf der Kugeljgilt , d . h . wir stellen
die Aufgabe : Gegeben sind die sphärischen Coordinaten zweier Punkte P und P ,
nämlich :

Gesucht ist :

x und y Coordinaten von P
x ’ und y '

„ • !

die Entfernung PP ' = s
der Richtungs -Winkel (PP '

) — «
„ , (P ' P ) = ß = a ' ± 180°

(1)

(2)

I . Gemeinsame Formeln für s und a .
Man kann diese Aufgabe lösen durch Umkehrung von ( 14 ) , ( 15 ) § 46 . S . 261 ,

wobei in den Korrektions -Gliedern u = x' — x und v = y ' — y gesetzt wird . Auf
diese Weise erhält man :

ssina = (y ’ — y ) + (x ' — x )2 y (x ' — x )2 (y ' — y ) _

s cos a = (x ' — x) -

2 r 2

(x ' —x ) y '2
6, -2

(x ’ — x ) (y ' ■yf

= (y' — y) + 8 y

— (x' — x) + 8 x

(3)

2 j-2 6 r2
Die hier geschriebenen Zeichen 8 y und 8 x sollen nur die Zusammenfassung

der Korrektions -Glieder ausdrücken , denn man hat nun weiter :
( tf — y) + 8ytang a =

. _ (y' — y) + 8
.y

(x ' — x)

oder =

I- 8 x

(x' — x ) ■

(5)

■8 x
sm a cos a

Um auch den Gegenrichtungs -Winkel ß zu finden , braucht man nur die Be¬
zeichnungen für die Punkte P und P ' umzukehren , was wir nicht durch besondere
Formeln von der Form (5 ) und (6) anzuzeigen für nötig halten (vgl . das nachfolgende
Zahlen -Beispiel ) .

Statt dessen kann man aber auch die Formel (16 ) § 46 . S . 261 anwenden :

« ' = « — (* ’ — x ) (y ' + y) 2r 2

oder a — (a;' — sc) y - ■(sc' — *) (y' ■ ' ^ 2%

(7)

(7 a)

(7 b)und dann : ß = «' ± 180 °

Damit sind alle Bedürfnisse befriedigt ; es ist jedoch aus vielen Gründen
erwünscht , die Entfernung s auch ohne die Richtungs -Winkel oder andererseits einen
oder beide Richtungs -Winkel ohne die Entfernung zu bestimmen .

II . Einzelformel für s.
Um die Entfernung s allein aus den Coordinaten abzuleiten , kann man sofort

die Gleichungen (3) und (4) benützen , denn wenn man diese quadriert und addiert ,
so erhält man :

(* ' — ft)2 V , (« ' — xf (y ' — y) \ 2
*2 =

(̂ (y
’ — y ) +

-f- [ (x ' — *)

2 r2

(* ' — * ) y'2
2 r2

(* '
6 r 2

■* ) (V
' - - y)2

6 r 2
2
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Wenn man die Quadrierungen ausfülirt und dabei alle Glieder von der Ordnung
1 : r2 vernachlässigt , so erhält man :

(* ' — x ? (y ' — y ) y (* ' — xf (</ — yf
r 2 3 ,-2

s2 = (y ' — y )2 +

(,„ - _ ^ 2 __ (x' ~ x )2 v ' 2 («' — s )2 (y ' — y)2

Zusammengefasst und geordnet giebt dieses :

«2 = (y' - y)2 + (af - * )2 + (3 y [y - y) + 2 (y' - 2/)2 - 3 y '^
j

*2 = {y ' — y )2 + (»’ — x )2 — ^
2 + y y' + (8 )

Hier bezeichnen wir die ersten Glieder , welche der Rechnung mit ebenen Coor¬
dinaten entsprechen mit s2

, d. h . :

(y ’ — y)2 + O ' — x )2 = so (9 )

und da man in den Korrektions -Gliedern s0 mit s verwechseln kann , wird (8) geben :

cos2 as2 = «0 ( 1 (:y2 + y y ' + y ' 2)

cos^ a y"'cos2 (X
(y2 + y y ' + y" (10

oder logarithmisch :

log s = log s0 — cos 2 a (y2 4 - y y ' -+- y
' 2) ( 11 )

III . Mnzelformel für a .

Um auch für a eine unmittelbare Formel zu bekommen , denken wir uns die
Formeln (3) und (4) so zerlegt :

s sin a = (</' — y ) + d y [ (12)
s cos a = (»' — x ) -+- d x J

wo die Bedeutung von d y und d x sich durch Vergleichung mit (3) und (4) giebt ,
d . b . es sind dy und dx die negativen Werte der oben mit dy und Sx bezeichneten

Zusammenfassungen , oder ausführlich :

, (« ' — x )2 y , (»' — x)2 {y ' — y) \
dy — — - 1- 5^ 5 I

(13)
(x ’ — x ) y'2 (x ' — x ) (y ' — y )2 |

X ~ 2r 2 + - 672 J

Wir wollen auch « selbst entsprechend zerlegt denken in a 0 4- d a und

naben dann :
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■i ;

Nach dem Taylor sehen Satze giebt dieses :

, y' — y

und

a 0 = arc tang (

d a = dy
y V- x ' — x

1 y
— tl \ 2

d a = ■

x ' — xj
x ' — X

1 +

- dy -

V — y\ 2 (« ' — a:)2
x f — xt

TS d x

: äx

(15)

(16 )
(* ' — ®)2 -+- (y

' — yf
"" j

(cd — xf -+- (y
' — 2/)2

Setzt man die oben bei (13) erklärten Bedeutungen von dy und dx ein , so
erhält inan aus ( 16 ) :

da = w^ ly C0S2 a .
I r*

(x' — x ) (y ' — y)
6 cos 2 a + cos « sin alr &

(̂ *} (y
' -

_ yl sin 2 a (i7 )6, -2
Dieses kann auch so geschrieben werden:

d a -- (x ' — x ) y cos 3 a ■ V ‘
sin 2 a - , («' - a ) y

-= y ) co82c (18)2, -2 4 r3 6 r3

Nützlicher ist noch eine andere Umformung von (17 ) , welche im dritten Gliede
von (17 ) den Faktor sm3 a erzeugt, nämlich :

x' — x „ , , x ' — x . „ I 3 y ' %da = cos3 « (2 y + y -
) + ?-

6
-^ si«3 a

y
- (2( ~ y)

hier ist 3 y '2
- (*/ ' — V) = 2 j/ + + y2 + yy ' -t- y '2

y — y y — y
und setzt man dieses in das vorhergehende ein, so bekommt man :

— x — a? (d a - ~
0r % Vy + y '

^ + 672 ^ (2/
'8 _ 2/3) (19)

Dieses da ist die Verbesserung , welche an dem Näherungswert a0 von (15)
noch anzubringen ist ; man kann also im Zusammenhang für den Richtungs-Winkel
von einem Punkte P (mit x , y) nach P ' (mit x '

, y ') schreiben , zugleich mit Zu¬
setzung der nötigen q :

«o + gf 2 (* ' — *) (2 y + y '
) ■ Q X' — X

6 r3 s3 (*/
'3 — ■2/ s)

“ — K0 + •
g J.2 (*

' — x ) (2 y + y
'
) + (^ 2 + y y

' + j,
’3) .sw a COS«

Auf den jenseitigen Punkt angewendet giebt diese Formel :

(20 )

(20 a)

: a° 6 r3 ^ (y + 2 y
'
) + zweites Glied von oben .

Diese beiden Formeln geben subtrahiert :

— a =
272 - *) (y + y '

) (21)
Dieses ist wieder die Formel für die Ordinaten-Konvergenz nach (11 ) § 46*

S . 261 , was auch unmittelbar eingesehen werden kann.
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Fig . 1.
X: 5 000 000.

+X

IV . Zahlenbeispiele .
Um die vorstehenden Formeln anzuwenden , kann man in den Zahlenangaben

von § 47. reiche Gelegenheit finden , indem aus den Coordinaten von ( 10) S . 269
sich die Richtungs -Winkel und die Entfernungen
des grossen Abrisses S . 265 wieder rückwärts
finden lassen müssen . Dieses als Übung anheim¬
gebend, wollen wir ein grösseres Zahlenheispiel
hier durchrechnen , hei welchem die Korrektions -
Glieder mehr ausmachen .

Nach nebenstehender Fig . 1 . nehmen wir
die zwei Punkte Katzenbuckel und Feldberg in
dem badischen Coordinatensystem (1870— 1871
von uns festgelegte und ins badische System
eingerechnete Gradmessungspunkte ). Die mitt¬
lere Breite ist rund = 49 ° und dazu

hg ~ = 6 .39031 .r6
Die nachfolgenden Rechnungen sind nicht bloss
7 stellig sondern mit dem 10 stelligen Thesaurus
gemacht , um die Proben formell jedenfalls bis
auf 0,001" zum Stimmen zu bringen , was bei
diesem Schulbeispiel formell erwünscht ist .

Katzenbuckel
Mannheim

Feldberg

K , Katzenbuckel y ' = + 42 176,169 '“
F , Feldberg y = — 34 075,071

x ' = — 1 575,546"
x = — 179 239,479

y ' — y = + 76 251,240
Hiezu werden die Korrektions - 1 „ | — 13,210
glieder nach (3) u . (4) berechnet : j ^ | + 9 ,854

- x = + 177 663,933
- 3,881
• 4,229

8 x

(y
' _ y) + öy = + 76247,884 (xf — x) + 8 x = + 177 664,281

damit geben die Formeln (5) und (6) :
(F , R ) = a = 23° 13 ' 38,920 " log s = 5.286 3099 -9 s = 193 334,779

Die Umkehrung der Bezeichnungen giebt :
F , Feldberg y' = — 34 075,071” *' = — 179 239,479”
K , Katzenbuckel y = -+- 42 176,169 x = — 1 575,546

(21)

y r — y — 76 251,240
Korrektionsglieder 1 „ j — 16,350
nach (3) und (4) j

° y \ - 9,854

- a; = — 177 663,933
- 2,534
- 4,229

8 x

Zähler = — 76 244,744 Nenner = — 177 665,628
damit wieder nach (5) und (6) :

(K , F ) = ß = 203 ° 13 ' 35,275 " log s = 5.286 3099-8 s = 193 334,778” (22)
Durch (21 ) und (22) ist also bereits die Entfernung s auf 0,001” sicher gestellt .
Um auch die Richtungs - Winkel a und ß zu versichern , hat man nach (7) und

(7 a) die Differenz beider Richtungs -Winkel und zwar bei (7 a) abermals doppelt , je
nachdem man die Bezeichnungen P und P ' entsprechend F und K , oder umgekehrt ,■wählt ; man bekommt für unser Beispiel :

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 1 ^
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aus (7) : « ' — a = — 3,646"
(23)

aus ( 7 a) : « ' — « = + 30,674" — 34,320 " = — 3,646” (23 a)
oder „ „ : ß' — ß = + 37,966 — 34,320 = + 3,646"

(23 b)
Diese 3 Werte stimmen unter sieh , und mit der Differenz von (21 ) und (22),

■welche 3,645" beträgt , auf 0,001" .

Nun haben wir noch die Formeln (10 ) und ( 11 ) , welche zuerst eine Berechnung
von Sq bzw - log s0 verlangen, d . h . eine Berechnung , welche ebenen Coordinaten ent¬
spricht ; und dabei berechnen wir auch zugleich einen ebenen Wert a0 :

a 0 = 23° 13' 42,356" log s0 = 0 .286 3122 -4 s0 = 193 335,782 ”* (24)
Hiezu nach (11 ) und (10) : — 22 -6 — 1,004

logg = 5 .286 3099 -8 « = 193 334,778 (25)
Dieses stimmt hinreichend mit (21 ) und (22) .

Endlich haben wir noch verschiedene Formeln für d a . Die Formel ( 18) g-iebt
in zweifacher Anwendung:

«o = 23 ° 13 ' 42,356 " ßo = 203 ° 13 ' 42,356 "
— 12,951 — 16,080
+ 1,633 -+- 1,066
+ 7,881 + 7,881

a = 23° 13' 38,919 " ß = 203 ° 13 ' 35,273 ” (26)
Endlich giebt die Formel (20) ebenfalls zweifach:

«o = 23 ° 13 ' 42,356 "
ßo = 203 ° 13 ' 42,356 "

— 3,897 - 7,543
+ 0,460 + 0,460

a = 23 ° 13 ' 38,919” ß = 203 ° 13' 35,273" (27)

Damit ist alles mit zahlreichen Proben berechnet, man sieht , dass man mit
solchen sphärischen Coordinaten alles rechnen kann, was auch in der Ebene vorkommt ,
allein die neben der Hauptrechnung herlaufenden Korrektions-Glieder von der Ord¬

nung ^2
~ mac^en doch ziemlich viele Mühe und wir wollen gleich hier bemerken , dass

bei den konformen Coordinaten, welche wir später (§ 50 .) kennen lernen werden , die
Nebenrechnungen mit 1 : r2 erheblich einfacher und zugleich viel übersichtlicher werden.

Ein weiteres Zahlenbeispiel mit Soldner sehen Coordinaten, nämlich sphärisches Rückwärts-
Einschneiden bei gegebenen Coordinaten dreier Zielpunkte hatten wir in 2. Aufl ., II . Band 1878,
S. 278 279 ausführlichst und in 3. Aufl., III . Band 1890, 8. 276—277 noch im Auszug gebracht, welches
nun übergangen werden mag.

Die „Soldnersehen“ Coordinaten, welche in den vorstehenden § 46.- 48. behandelt wurden,
sind zuerst öffentlich mitgeteilt von Bobnenberger in der Abhandlung „De computandis dimen-
sionibus trigonoraetricis etc.“ Tübingen 1826, § 15—16, und Bohnenberger sagt dazu in §
„formulae (entsprechend unseren (14), (15), (16) § 46. S. 261) conveniunt cum iis , quibus usns es^
cel. Soldner in computandis dimensionibus bavaTicis .“ In Württemberg sind diese Coordinaten
zur Landesvermessung eingeführt und Bohnenbergers Entwicklungen stets hochgehalten worden,
wie namentlich zu ersehen ist aus „Prosa, Lehrbuch der praktischen Geometrie“, Stuttgart 1838,
S, 314 und aus dem amtlichen Werke von Köhler, „die Landesvermessung des Königreichs

'Würt¬
temberg u. s . w. 1858“, S. 125—146.
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Von Württemberg aus gelaugten diese Coordinaten auch in die Bayerische geodätische
Litteratur , nämlich in Bauernfeinds „Elemente der Vermessungskunde , 1. Auflage , II . Band 1858“,
S. 201—206, wo (ohne Quellenangabe ) ein Auszug aus Bohnenberger „De computandis etc .“ § 15—17
mit drei Zahlenbeispielen Bohnenbergers gegeben sind als „Berechnung einiger Dreiecke der wärt -

tembergischen Vermessung .“

Soldners Entwicklungen , von 1810 stammend , wurden erst 1873 veröffentlicht in „Bayerische
Landesvermessung in ihrer wissenschaftlichen Grundlage “, München 1873, S. 263—281.

Alle diese Schriften geben die Grundformeln (14)—(16) § 46. S. 261 und in Betreff der Um¬

kehrung nur die Formeln (3)—(7) S. 270. Die weiteren Formeln (10)—(20) S. 271—272 sind zuerst

aufgestellt in unserer 1. Auflage , „Taschenbuch der praktischen Geometrie 1873“, S. 326.

§ 49 . Karten-Zeichnung nach rechtwinkligen sphärischen
(Soldnersehen) Coordinaten .

Man benützt die rechtwinkligen sphärischen Coordinaten zur Karten -Zeichnung ,
indem man dieselben wie rechtwinklige ebene Coordinaten behandelt .

Dadurch erhält man ein verzerrtes Bild der krummen Erdoberfläche in der
Ebene, und es ist unsere Aufgabe , die Verzerrungen , welche hier , wie bei allen anderen
ebenen Abbildungen der Erdoberfläche unvermeidlich sind , zu untersuchen .

Hiezu brauchen wir nur die bereits in § 48 . entwickelten Formeln anzuwenden .

Wir haben von (10 ) und (9) § 48 . S . 271 .
cos2 «

* = «o 1 (y2 -hyy ' A- y’2) (l ) Fig . 1.

Soldner sehe Coordinaten in ebener
Darstellung .so = V (y

’ — y )2 + (» ' — ®)2 (2)
Indem wir in Fig . 1 . die Punkte A und

B mit ihren Coordinaten x , y und x '
, y ' im

ebenen System dargestellt haben , finden wir
offenbar die Entfernung s0 von (2) als geradlinige g
Entfernung A B , und man benützt das Verhält¬
nis dieser geradlinigen Karten -Entfernnng s0 zu
der wahren Entfernung s zur Berechnung des x-x
Verzerrungs -Verhältnisses , d . h . man setzt :

y2 + yy ' + y ' -
cos2 a

II A
Für eine sehr kurze Linie s ist y' = y

zu setzen, und dann hat man :

cos2 « (4)

Dieses ist der allgemeine Ausdruck für die Vergrösserung einer kurzen Linie
in irgend einem Punkte mit der Ordinate y , in der Richtung a . Die Vergrösserung
v ist nicht abhängig von der Abscisse x , sondern nur von der Ordinate y und von
der Richtung a . In Bezug auf a erreicht v seine äussersten Werte mit <x = 0 ° oder
180 ° einerseits und mit a = 90° oder 270 ° andererseits , nämlich :

a = 0 ° giebt = 1 + J72 (Meridian , a -Axe)

a = 90 °
„ zw = 1 (West -Ost, y-Axe) (6)

(5)
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Diese zwei Ergebnisse sind an und für sich leicht verständlich . In der West-
Ost -Richtung werden die Ordinaten sowohl auf der Kugel als auch in der Ebene
gleich aufgetragen , d . h . es ist v = 1 ; dagegen in der Nord -Richtung müssen die

Mg . 2.

-2 _ 3L

ein Parallelkreisbogen vom Halbmesser
findet , hat man :

m! = AB -

ebenen Masse zu gross erscheinen , weil die
in Wirklichkeit konvergierenden Ordinaten y
in der ebenen Zeichnung parallel sind.

Hiezu ist Pig . 2 . gezeichnet mit dem
Masse m in der Abscissen -Axe selbst und
einem Masse m! parallel der Abscissen-Axe ,
im Abstand y . In der Ebene werden aber
die Ordinaten y parallel , also m' gleich m
dargestellt , und das Vergrösserungs -Verhält-

nis ist daher = Nach Fig . 2 . ist A B
m'

r ' = r cos -— und da hei 0 der Winkel — sich
r r

m . y= — r = m cos —

« 2

2r2
oder m

m '
« 2

2r2 (?)

Dieses ist eine Bestätigung von (5 ).
Zur Übersicht der linearen Verzerrungs -Verhältnisse haben wir nach (5) folgende

Zahlen -Werte berechnet mit log = 6 .08918 für qi = 50°.

y y2
2rä ■S iooora y y2

2 7-2 — 1000“

10*“ 0,000 0012 0,001“ 70 l" 0,000 0602 0,060 “
20 0,000 0048 0,005 80 0,000 0786 0,079
30 0,000 0111 0,011 90 0,000 0995 0,099
40 0,000 0196 0,020 100 0,000 1228 0,123
50 0,000 0307 0,031 150 0,000 2763 0,276
60 0,000 0442 0,044 200 0,000 4912 0,491 .

oder in runden Zahlen beträgt die Verzerrung

5 '“ auf 1000“ oder für y = 64 Kilometer20 000 *

10 '“ auf 1000“ oder \ für y — 90 Kilometer10 000 *
(9)

Mg . 3. Wenn ein rechteckiges Kartenblatt AB A ' B ' (Fig . 3.)
in der beschriebenen Weise behandelt wird , so erscheint zwar
der Südrand A A' und der Nordrand B Ti ' in richtiger Grösse ,
dagegen der Westrand A B und der Ostrand A' B ' werden
etwas zu gross .

Wir wollen annehmen , der Westrand AB habe die
Ordinate y — 90 000“ und der Ostrand A! B ' habe y ' = 100 000”,
dann wird nach der Zahlen -Übersicht (8) , in der Zeichnung
der Westrand um 0,0099 % und der Ostrand um 0,0123 °/o
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Eu gross , oder wenn A B = A! B ' = 1“ Papiergrösse hat , so giebt das hier einen
Fehler von nur etwa 0,1 “ , der aber bei y — 2001” rasch auf 0,5”* ansteigt .

Solche Yerzerrungen mögen in der Karten -Zeichnung und auf dem Messtisch
unschädlich sein , in der Messung und Berechnung von Polygon -Zügen sind sie es nicht .

Geht ein solcher Zug von 1000“ Länge in der Meridian -Richtung von einem

trigonometrischen Punkte zu einem zweiten trigonometrischen Punkt , so wird , wenn
gar keine Messungs -Fehler Vorkommen , doch der Zug die Entfernung beider Punkte
um 10'” kleiner gehen als die Coordinaten der Punkte , so lange man nur die ebene
Coordinaten-Rechnung anwendet .

In Bayern , wo die Ordinaten in dem einen System des Münchner Meridians
bis zu rund 200 Kilometer betragen , mussten daher in der Zugsberechnung besondere

sphärische Korrektionen angebracht werden , über welche berichtet wird in der „In¬
struktion für neue Katastermessungen in Bayern “ , 1885, § 28 und in „Technische

Anleitung “ u . s . w . von Dr . J . H . Franke , München 1889, S. 121 .
Wir wollen aber gleich hier bemerken , dass die Soldner sehen Coordinaten -

Verzerrungen hauptsächlich deswegen schädlich wirken , weil sie nach verschiedenen
Seiten verschieden sind . Wir werden später die konformen Coordinaten kennen lernen ,
bei welchen die Verzerrung in einem Punkte nach alleu Richtungen gleich ist , und
es ist leicht einzusehen , dass bei konformen Coordinaten jene bayrischen besonderen
Reduktionen der Züge überflüssig würden , weil sie einfach als allgemeine Massstabs -

Veränderung (etwa als konstante logarithmische Reduktion ) auf weitem Gebiete kon¬
stant den trigonometrischen Netzfehlern zuzuschlagen wären , ganz ebenso wie die
von der Höhe des Landes über dem Meere herrührenden Reduktionen , welche nach

§ 9. S . 67 für h = 100“ den Betrag von 16““ auf 1*“ geben . Z . B . München mit
rund 500“ Höhe hat hieraus eine Massstabsvergrösserung von 8C“ auf 1*“ . welche,
weil nach allen Seiten gleich , auch nicht besonders berücksichtigt wird.

In Württemberg und Baden gehen die Ordinaten bis rund 100 Kilometer ,
in Preussen bis 70 Kilometer .

Weitere Ausführungen .

Wenn die Fig . 1 . S . 275 nicht bloss eine Abbildung der Punkte A und B
von der Kugel auf die Ebene vorstellen soll, sondern auch eine Abbildung der Linie
A B , d. h . des auf der Kugel gezogenen Gross-Kreisbogens A B , so ist zuerst einzu¬
sehen, dass in Fig . 1 . die Gerade A B = s0 nicht das Abbild jenes Bogens AB ist ,
sondern der Bogen AGB .

Allerdings in Hinsicht auf die Länge ist die Gerade A B = So und der ®°?en

AGB in Fig . 1 . bei der von uns überhaupt eingehaltenen Genauigkeit von nicht

sä
su unterscheiden , denn die Pfeilhöhe des Bogens AGB ist nur von der Ordnung

und daraus kann man schliessen , dass der Krümmungs -Halbmesser der Kurve von der

Ordnung ~— und endlich dass der Unterschied zwischen dem Bogen AGB und der
s

Sehne A B nur von der Ordnung ist , was in allen unseren bisherigen Entwick¬

lungen vernachlässigt wurde .
Dagegen in Hinsicht auf die Richtungen in A und B ist der Bogen AGB
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und die Sehne A B in Pig . 1 . durchaus nicht zu verwechseln , und wenn der Bogen
ACB in Pig . 1 . das Soldnersehe Projektions-Abbild des sphärischen Bogens AB
auf der Urhildkugel Pig . 1 . S . 257 ist , dann sind die Richtungs -Winkel , welche diesem
Bogen (bzw . seinen Tangenten in A und B ) gegen die aj-Axe zukommen , nicht die
Richtungs -Winkel a und ol des Urbildes , weil die Abbildung nicht konform ist .

Dieses ist in Pig . 4 . nochmals
besonders dargestellt , und aus einer
besonderen Untersuchung , welche
in „Zeitschr . für Verm . 1891 “,
S . 289 — 294 mitgeteilt wurde , stel¬
len wir , ohne auf alles Einzelne

einzugehen , folgendes zusammen :
A und B sind zwei Soldner sehe
Projektions -Punkte mit den Coor¬
dinaten x y und x '

y
' . Die Sold¬

ner sehe Abbildung des sphärischen
Bogens A B ist die Curve AGB
von Pig . 4 . , deren Tangenten A A'

und BB ' gewisse Richtungs -Winkel
und « 2 haben , welche aber weder

den bisher betrachteten a und «'

noch den « 0 gleich sind ; für <xa
hat man :

Fig . 4.

A
A

temg «0 = tf — l
x' — x

Dazu nach (20 „) § 48 . S . 272 :

sin a cos cc
(2 y + y ') 4 - (z/a + y (10)(z/a + y y' + y 2)

Dann nach „Zeitschr . f. Verm . 1891 “
, S . 292 :

(2 y + y
’
) ( 1 -+- sin %a ) (11)

(12 )a — « i = - „ - sin a cos a
6 V*

- sin a cos a

Bei konformer Projektion verschwindet « — a v

§ 50 . Rechtwinklige konforme Coordinaten .
Wir haben gefunden , dass bei den rechtwinkligen Soldner sehen Coordinaten das

Vergrösserungs -Verhältnis in der Ebene nach den verschiedenen Bichtungen , welche
von einem Punkt ausgehen , seihst verschieden ist , es fand sich nämlich in (5) und (6)
§ 49 , S . 275 , indem wir nun statt v das Zeichen m nehmen ;

'llß1= 1 h-
^ 2 in der Kichtung der sc-Axe

m v = 1 in der Richtung der y -kxz
Diese Vergrösserungs -Yerhältnisse beziehen sich auf eine Zeichnung , in welcher

die rechtwinkligen sphärischen Coordinaten als rechtwinklige ebene Coordinaten , im
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übrigen aber in natürlicher Grösse aufgetragen werden , so dass die Grosskreisbögen
x und y auf der Kugel sich nachher im Abbild in der Ebene als Gerade darstellen .

Wir wollen nun eine andere Art der ebenen Abbildung betrachten , bei welcher
das Vergrösserungs -Verhältnis in jedem Punkte nach allen Richtungen dasselbe sein soll.

Man nennt eine solche Abbildung , konform “ nach dem Vorgänge von Gauss,
welcher die allgemeine Theorie solcher Abbildungen aufgestellt und die konformen

Abbildungen zuerst in die trigonometrischen Berechnungen eingeführt hat .
Unter konformer Abbildung im allgemeinen versteht man eine solche geome¬

trische Beziehung zwischen zwei Flächen , dass jedem Punkte der einen Fläche ein
bestimmter Punkt der anderen Fläche entspricht , und dass das Abbild dem Urbild in
den kleinsten Teilen ähnlich ist .

Die letztere Bedingung ist durch neben - Fig . l.
stehende Fig . 1 . und Fig . 2 . deutlicher ge- Urbild ,

macht in diesem Sinne : C
Es seien A , B , G drei unter sich sehr

nahe liegende Punkte einer gegebenen Fläche
(Urbild] und A! B ’ C ' die entsprechenden
Punkte einer anderen Fläche (Abbild ) ; die
Abbildung soll nach einem solchen Gesetze
erfolgen, dass das kleine Dreieck A! B ' G'

dem entsprechenden kleinen Dreieck A B C A B
ähnlich wird , dass also die Winkel « , ß , y
beider Dreiecke einander gleich sind und dass zwischen den Seiten
Verhältnis besteht :

Fig . 2.
Abbild .

ein konstantes

A ' B ' B ' 0 0 A'

AW ~ BG
~ GA

~ m (1)

Nach diesen allgemeinen Vorbemerkungen gehen wir über zu den rechtwink¬

ligen konformen Coordinaten , welche Gauss etwa um 1820—1830 in der Hannover¬
schen Landesvermessung eingeführt hat , aber wir geben zunächst nur die sphärische
Theorie mit Gliedern bis zu 1 : r 3 ein¬
schliesslich, d . h . das Analogon zu den in
§ 46 .behandelten Soldner sehen Coordinaten .

In Fig . 3 . wird die Erde kugel¬
förmig dargestellt mit dem Nordpol N , dem
Südpol N ' und einem Meridian N 0 N ' .
Alle Grosskreise , welche rechtwinklig auf
diesem Meridian von 0 stehen , müssen
sich in den Polen Q und Q' des Meridians
schneiden.

Zwei solche auf dem Haupt -Meridian
rechtwinklige Grosskreise sind die beiden
Bögen QBQ ' und QjEQ '

, welche zur
Bestimmung der rechtwinkligen Coordi¬
naten zweier Punkte F und G dienen ,
indem 0 D = x die Abscisse von F und
D F = $ die Ordinate von F ist , und

Fig . 3. (FS = ä S).
N
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ebenso ist 0 E die Abscisse und E G die Ordinate von G , wobei D F — E H , also
F H eine geodätische Parallele zu D E .

Die Coordinatenlinien zwischen 0 und F G sind geradlinig abgebildet in Pig . 4 .,indem D F ' und E G’ parallel und beide rechtwinklig auf ODE sind , mit 0 D = x
und D E = dx in beiden Systemen gleich , oder im Sinne der Abbildung kongruent,

während D F ' = y mit D F = Tj nicht gleich ist , auch E G '
nicht gleich mit EG , sondern es sollen die Abbildungs -Ordi -
naten y im Vergleich mit den Urbilds -Ordinaten t) gewisse
Verzerrungen erleiden , deren Gesetz dadurch bestimmt wird ,
dass das rechtwinklige Differential -Dreieck E ' B! G ' dem Ur-
dreieck FÜG ähnlich wird . Indem man die Hypotenusen
in diesen Dreiecken mit d s und d 8 bezeichnet , wird man
das Verhältnis dieser Hypotenusen betrachten , welches wir m
nennen wollen :

Fig . 4.

d s
Ts = m (2)

Es sei auch gleich bemerkt , dass immer d s grösserals dS und m grösser als 1 ist (s grösser als <S nach feststehender Bezeichnung der
trigonometrischen Abteilung der Landesaufnahme ).

Nach dem Prinzip der Gleichung (1 ) mit Fig . 1 . und Fig . 2. sollen nun in
Fig . 3 . und Fig . 4 . die beiden unendlich kleinen Dreiecke FGH und F ' G ' H ein¬
ander ähnlich sein, woraus folgt :

F ' B! B ' G '
FB ~ HG ~ W

Hierbei ist F ' H = dx B ' G ' ~ dy
und F jff als Parallelkreisbogen im Abstande ^ von D E hat einen Parallelkreishalb¬
messer r ' = r cos und da bei Q ' der Winkel = sich findet , hat man :

FH = r ‘ dx
r

= d x cos 1
r

und HG = d

Aus (3 ) und (4) hat man :

m =
d ^

(4)

(5)

dy
r

1 d ^
r

Diese Gleichung kann man integrieren , nämlich :
y
r

= Z tang 4 ' 2r

(6)

(7)

Wir wollen jedoch zunächst von der strengen Integration keinen Gebrauch
machen , sondern nur in erster Näherung rechnen :

2r 2 = 1 + JL2
2 r2



§ 50. Rechtwinklige konforme Coordinaten . 281

also nach (5) : dy ~ ( 1 + & )
(9)

Dadurch ist die Beziehung zwischen y und 1) bestimmt und ebenso auch das
Vergrösserungsverhältnis m ; indessen kann man dabei in den Korrektionsgliedern auch
t) und y vertauschen , also :

oder m (10 )

Dieses gilt in differentialem Sinne in einem Punkte nach allen Richtungen ,
oder in einem unendlich kleinen rechtwinkligen Dreieck , wie z. B. F ' G ' Pf Fig . 4.,
gilt derselbe "Wert m für beide Katheten und für die Hypotenuse .

Wir gehen nun von einem unendlich kleinen
Bogen über zu einem endlichen Bogen A B in Fig . 5 ., Fis'
dessen Endpunkte A und B die Projektions -Coordi-
naten xx yx und x 2 y2 haben , und wir überzeugen juns zuerst , dass in Fig . 8 . und Fig . 4 . der Bogen
FO sich in eine Linie F ' G ' abbildet , welche bei
unendlich Meiner Ausdehnung als Gerade gilt , welche
aber bei endlicher Entfernung nicht mehr gerad -
linig wird, sondern krummlinig , wie in Fig . 5 . zu

X2_ X| 1 yysehen ist , in welcher die Kurve A B als Abbild
eines entsprechenden Bogens der Kugel auftritt , '’

ij/ /wahrend die Gerade A B lediglich Hilfslinie in der — -
Projektion ist .

Von dieser Kurve A B in Fig . 5 . kann man *i
auch alsbald sagen , dass sie gegen den Abscissen -
meridian 0 N konkav sein muss , denn das gerad -

,linige Viereck 4,5,54 hat eine Winkelsumme = 360°, während das entsprechend
sphärische Viereck wegen des sphärischen Excesses mehr als 360 Winke sura

^
®

muss . Da aber wegen der Konformität die richtige WinkelsmmnO in der Abbildung
erhalten werden muss , wird die konforme Abbildung der Linie A B sic in em
gekrümmt darstellen müssen , wie Fig . 5 . zeigt .

Mit den Bezeichnungen von Fig . 5 . hat man für die gerad mige n ernu
und den Richtungswinkel tx in dem ebenen rechtwinkligen Systeme , wie im

yi _
— vitang tx x2 — x1 ( 11)

x
s — . —

sin tx cos t ]
- 1 = Y (y2 - y xf -+■(x 2 - x xf

In erster Näherung
“

kann die Sehnenlänge 45 der
gesetzt werden, oder es kann mit äs sowohl das Differential der Geraden Ai *
auch des Bogens AB bezeichnet werden .

TTnifernung derAndererseits sei S die sfMrisehe in Fig . 5 . nicht dargestellte Entfernung
D_ i i •Punkt A und B , dann besteht die Differentialgleichung :
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dS = ~ ds =
m
J *

Lds ■
2r2 rf= s _ / V

J2r
S

S = s

■h ) ds

v2 äy
r 2 sin t

yä
2 r 2 sin t 3

Zwischen den Grenzen 2/1 und y% giebt dieses :
1

_ fjt
JZr *

h Integr .-Const .

S = s -
6 r 2 sin t

1 y£ -

(yi — yi )̂

- 2/ i 3 2/2 — 2/1

= 1 ■

6 r 2 2/2 — 2/1
1 S/23 — 2/l8

sm f

= 1 —
67 2 ’

1 2/23 — 2/i3 „
6r 2 2/2 — 2/1

! + 2/2 2/1 + 2/l2) (12)
s 6 r2 ?/2 — 2/1

Dieses ist bereits eine brauchbare Formel , man kann sie aber noch passend
uniformen durch Einfuhren der Mittel -Ordinate

= (12a)

Mit 4 i/o2 = 2/12 b 2 2/i 2/2 + 2/22 wird (12) auf diese Form gebracht :

! = 1 “
T^ 2 Ö/i2 + 4 2/o2 + 2/22) (13>

Dieselbe Formel in logarithmischer Form lautet :

logs — loyS = Yf ^i (2/i2 + 4 2/o2 + 2/z2) (14*

0(361 =
T272 (2/]2 + (yi + 2/2>2 + ^ (15)

Auch kann man noch eine andere Form bilden , indem man für den Anfang ,
für die Mitte und für das Ende der Strecke drei Werte m ausrechnet in dieser Weise :

1 2/12mi - 1 + 2^ 2 „ 1 (2/1 + 2/z)2m° ~ 1 + g r2
- 1 _l_w2 = 1 + 2 t 2

oder - 1- = 1 — ~
mi 2 r 2

1 _ P (2/1 + 2/2)2
m0 8 r 2

1 _ 1 2/ä2
» 2 2 r 2

und dann
oder auch logarithmisch :

s _ 1 / 1 4 11
S 6 \ mi mg m ^j

(16)

log s lcg s _ lo9 m l + 4 Io9 mo + lo9 (17)

Wenn die Differenzen (y z — y{j und (ai2 — *i ) verhältnismässig klein sind ,
gegen die y1 und y2 selbst , so dient die Formel :

log s - log S = ^ {Vl + y2)2 + ^ (y2 - Vif (l8)

Wenn (y%— i/l ) sehr klein ist im Vergleich mit i/i und 1/2, so kann man das
zweite Glied hier gegen das erste vernachlässigen .

Übergehend zur Bestimmung der Richtungs -Reduktionen knüpfen wir nochma s
an die Betrachtung an , welche im Vorstehenden zu der Erkenntnis geführt hat , dass



50. Rechtwinklige konforme Coordinaten. 283

die konforme Abbildung des Grosskreisbogens FG von Fig . 3 . sich in Fig . 5 . als
eine flache Kurve darstellen muss , welche in Fig . 5 . nach rechts hin konvex sein muss.

Diese Betrachtung giebt auch sofort die Summe der beiden kleinen Winkel öj
und d2, denn diese Summe öj -+- S2 muss gleich dem sphärischen Excess des Vierecks

sein , d . h . auf - y einschliesslich genau :

ö , -+- 8o = (^2 — xi ) (s/2 + yi)
2r a (19 )

Wenn die beiden Punkte A und B sehr nahe zusammenrücken , so giebt dieses
die Differentialformel :

darji (20 )
,-2

2 8 ■

Fig . 6.
(AB — s)

Die Formel (19 ) ist nichts anderes als die Ordinaten -Konvergenz, welche auch
bei den Soldner sehen Coordinaten § 46. in ( 12) und (19 ) S. 261 u . 262 au zwei
verschiedenen Wegen so gefunden worden ist .

Nun betrachten wir in Fig . 6 . ein neues rechtwinkliges Coordmatensystem ,
dessen Ursprung im Punkte A liegt , dessen
Abscissenrichtung + f von A nach B und
dessen Ordinatenrichtung + r\ rechtwinklig zu
A B liegen soll . Wenn in diesem Systeme die
flache Kurve A B durch eine Gleichung zwischen
£ und rj dargestellt ist , so kann der Krüm¬
mungs -Halbmesser B dieser flachen Kurve hin¬
reichend genähert dargestellt werden durch die
Gleichung:

_L - dll (21 )B d | 2
Wenn man ausserdem mit 2 8 wie bei

(20) die Bogenkrümmung auf die Erstreckung
des Bogenelementes d s bezeichnet , so hat man :

d s = B . 2 8 (22 )
also aus (20 )— (22 ) die Differentialgleichung
für rt ‘.

d2 r] __ y dx
d | 2 d s

Da man aber auch hinreichend genähert da = d § setzen darf , so haben w‘

aus dem Vorstehenden die Differential -Gleichung der Kurve AB .

d2 ij_ y dx
d §2 ~ r2 d §

Dieses ist zunächst ohne Vorzeichen entwickelt , wenn jedoch die Kur
,

ihrer konkaven Seite gegen die | -Axe liegt , wie in Fig . 6 ., so muss die zweite

leitung negativ sein , also :
d2 rj y dx (23)
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Nach dem Anblick von Fig . 6 . hat man in erster Näherung :

x = Xy -t- | cos ty und y = yl + f sin ty

also aus (22) :

oder

dx
dl

= COSty

d2 rt Vi I ■= sm h cos h

d2 T]'
d¥

: A + Bl

(24)

(25)

wobei die Bedeutung von A und B aus der Vergleichung von (24) und (25 ) folgt :

A = ff - cos h B = sin ti cos ti
(26 )

(27)

Die Gleichung (25 ) wird zweimal integriert :

är i - C + ^

n $- -*4 -B- r? = oil + - ^ - + / (28)
Dabei ist Cy die Integrations -Konstante für die erste Integration , und für die

zweite Integration kommt keine Konstante mehr hinzu , weil , wie man sofort über¬
blickt , für | = 0 auch r\ = 0 werden muss . Um die Konstante Cy zu bestimmen,
hat man nach dem Anblick von Pig . 6 . , dass | = 0 den Wert ^ = + Sy und | = s

den Wert —
dl

^
= — ö2 geben muss , ebenso muss auch 1 = s den Wert 77= 0 gehen,

- 01 = 0 ,
~f- dg = Cy A s Bs 2

'
2

. _ As 2 BsS , . n As BS *0 = Cy s -4— gl
— I—

ß
- > oder 0 = Cy H—

g
— ^ 6

Diese drei Gleichungen geben :

,, As JB s2 As B s2= ~
2 !

6
~ ™d,S« = T + T

Oder wenn man die Bedeutungen von A und B nach (26) einsetzt :

öl

(29 )

^ (3 V\ -+- s sin ty) und d2 = S
(3 yy -+- 2 s sin ty) (30)

Endlich , da ssinty = y2 — yy und scosty = x 2 — ist , kann man dieses
auch so schreiben , zugleich mit Zusetzung von q :

^ *1 = öj = (a?2 — Xy) (2 yy - (- y2)

T z — h = ö2 = ^ (« j — * 2) (2/j -+- 2 y 2) 1

(31)
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Diese Formeln werden von der trigonometrischen Abteilung der Landesauf¬
nahme meist in dieser Form geschrieben :

T\ ~ *i = 4^2
— *i ) (2/1 + 2/2) — ^ (*2 — *1) (2/2 — 2/i ) (33)

r 2 — h =
472 (* 1 — * 2) (^ 2 + 2/i ) — ^ (* 1 ~ * 2) (2/1 — 2/2) (34 )

Diese Formeln , welche mit den vorhergehenden algebraisch identisch sind ,
sollen dazu dienen , die relative Kleinheit der zweiten Teile auszudrücken für den
Fall , dass die CoorAimtten -Differenzen (a;2 — » 1) und (?/2 — 2/1) verhältnismässig klein
sind gegen die Ordinaten y 1 und j/2 selbst , was bei Triangulierung III . Ordnung ent¬
fernt von der Axe eintritt ; und dann kann man häufig die zweiten Glieder in (83 )
und (34) gegen die ersten Glieder sogar vernachlässigen .

Gleichung der Kurve A B .

Nachdem die Coefficienten A , B nebst der Integrations -Konstanten bestimmt
sind , kann auch die Kurvengleichung nach (23 ) angeschrieben werden :

„ , A | 2 B & As f. , Rs 2
j. BP

01 s 2 6
~

2 6 § 2 6

* = ^ (« - 1 ) + ^ (s2 - ■I 2) = fj cos fi (s -

oder nach Potenzen von | geordnet mit s sin tj = 3/2
. s cos ti ,’J = I ~-

g ^5i (2 Fi + 2/2)

— 2/i :

^ Vicosh — ^ sinti cos h (35 )

Hiernach erscheint die Kurve A B Ton Fig . 6 . dargestellt durch ein< ® eic!*un
|dritten Grades , aus welcher , man auch nochmals rasch zur Probe le 1 un 2

Differentiieren bestimmen kann .

Ausrechnung der konstanten Coefficienten .

Die vorstehenden Formeln finden zur Zeit am meisten Anwendung bei dem

grossen über ganz Preussen sich erstreckenden konformen System der trigonometrischen
Abteilung der preussischen Landesaufnahme , dessen a -Axe im 31 ten Längengrad
(3' 41,25 " westlich von der Berliner Sternwarte ) und dessen Nullpunkt auf der Breite
52 ° 42 ' 2,53251 " in diesem Meridian liegt . Der mittlere Erdkrümmungs -Halbmesser
für diese Breite , gewöhnlich mit A bezeichnet , ist :

log A = 6 .805 0274 -003
und damit sind folgende Konstanten berechnet , indem bei den Coefficienten [mit ft
der Wert log ft = 6 -6377843 von S. 193 für Einheiten der 7*en Logarithmenstelle
angenommen ist .

Z°P 2l 2 = 6-088 '9152 = 5 -787 8852
l°9 2A2 = 2 '? 266995 log ~ i = 2 -1246395

% 2 ^ 2 = 1 -4033403 log ^ = 1 .1023103

% ei = 5 -6117939

% g^ = 2-2495773

% 6
- i = 0 -9262191

^ 1^ 2= 5 -310 7640

1-6475185

^ i & = ° -6251891
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Für die Mittelbreite von Deutschland kann man annehmen qo = 50 ° und den mitt¬
leren Krümmungs -Halbmesser

log r = 6 .804 8936 -173

und dafür gelten die folgenden Coöfficienten :

log ~ = 6 .089 1828* 2r 2

log jAj = 2 -726 9671y 2 r2

log ^ L = 1 .403 6079y 2r 2

Zoo -i - = 5 .788 1528 \ log -̂ = 5 .612 0615
! w 6r 2

log ~^ = 2-124 9071

Zo<̂ = 1 .102 5779

logj
1-̂ 2 -249 8458

6r 2

Zoo ^ = 0 .926 4866y 6r 2

70,? ^ = 5 .3110315

l ° 9nT ~v — 1*6477858y 24 r 2

0 -6254567n 12 r2

Gewöhnlich braucht man diese Coefficienten nur 4 — 5 stellig , für alle Fälle
haben wir sie hier 7 stellig hergesetzt .

In den Hilfstafeln des Anhanges Seite [45] und [46] haben wir einige Funk¬

tionen zur konformen Projektion ausgerechnet , nämlich log in = ~
ß V%auf Seite [46] ,

zunächst bis y = 100 000" mit kleinem Intervall von 1000” und unten am Schlüsse
zur allgemeinen Übersicht nur 5 stellig bis y = 690*" .

Dazwischen von y — 230*" bis 255*" ist eine besondere Gebrauchstafel für die
Gegend von Hannover , welche aber auch auf dem ganzen 35 *” breiten Streifen Göt¬
tingen — Hannover —Hamburg —Kiel und östlich Neisse —Breslau —Posen — Stolp , ge¬
braucht werden kann . Die trigonometrische Abteilung der Landesaufnahme hat eine
solche Tafel für ganz Preussen ; es kann sich jedermann für einen gerade in Arbeit
genommenen Bereich eine solche Tafel selbst rasch berechnen nach der Gleichung :

log m = — j V2 = [2 -726 700] y*

Allerdings bei grossen y kommt noch ein Glied vierter Ordnung hinzu , so dass man hat :

log m = & y2 ~
wm yi = [2 '726 6995] 2/2 - ß '83849 ] yi

Dieses werden wir erst später behandeln können .
Die andere Tafel Seite [45] giebt oben die Coordinaten -Vergrösserung

Y~ V = & = [5 -6H 794] ys
wobei Y dasselbe bedeutet wie p in den vorstehenden Entwicklungen zu Fig . 3 .
S . 279 , wo p die sphärische Ordinate ist . Dann der untere Teil von Seite [45 ] giöW
die differentiale Ordinaten -Verzerrung oder konforme allgemeine Linear -Verzerrung

zusammen mit der Höhenreduktion — , worauf im späteren § 52. weitere Schlüsse

gegründet werden sollen.
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§ 51 . Beispiel der konformen Coordinaten -Berechnung ,

In nachstehender Big . 1 . wird unser Pfälzer Netz von § 47 . nochmals vorge¬
führt , im wesentlichen wie früher , nur mit einer Schar von Parallel -Linien mit
konstantem y , also parallel zur x -Axe , deren Bedeutung im Nachfolgenden erklärt
werden wird, während zunächst nur das Netz an sich gebraucht wird.

Wir haben dieses Pfälzische Triangulierungs -Netz , welches in § 47 in Soldner-

schen Coordinaten behandelt worden ist , nun in konforme Coordinaten umgerechnet
und zwar für die Mittelbreite cp = 49 ° 30' mit den Konstanten :

log r = 6.804 8686 l°g 6 ^a
= kernt 100 =^

5 = 2-72702y 2 ?-2 (1)

Fig . 1.

Offypfsheim Af/tiüiheün -

1: 1000 000

! I

I ’U

&

70
1

0 io 7-0 30 to Adam -

Wenn man (abweichend von der Bezeichnung fl in § 50 .) die Soldnerschen Or-

dinaten mit y und die konformen Ordinaten mit X bezeichnet , so hat man nach (9)

§ 50 . S . 281 :
(2)

■£ s = y + [5 -61211 ]Y = y
T b Ueund zur Übersicht der Differenzen Y — y ^ann ^

e
.
n °

b2 ° 42’ gilt , wäh-
Seite [45] des Anhangs benützen , obgleich derselbe ür ie r

Ordinaten ytend unser Pfälzisches Netz die Mittelbreite 49 ° 30' hat , denn flu Weine

macht das fast keinen Unterschied .
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Nach vorstehender Formel (2 ) sind die Y — y in folgender Tabelle berechnet :

Punkt y
Soldner

y *
6r3

— r — y

Y
konform X

logm

1. Mannheim . . . 0,000” m 0,000” 0,000“ o -o
2. Speyer . — 1208,142 0,000 — 1208,142 — 18 816,676 o-i
3. Oggersheim . . — 6001,777 0,001 — 6001,778 + 388,767 1-9
4 . Calmit . — 27 414,066 0,084 — 27 414,150 — 18 550,134 40 -1
5. Donnersberg . . — 38145,688 0,227 — 38 145,915 + 15 278,872 77 -6
6 . Klobberg . . . . — 18 104,628 0,024 — 18 104,652 + 28 049,296 17 -5
7. Melibocus . . . + 12 727,470 0,008 + 12 727,478 + 26 509,100 8-6
8. Königsstuhl . . + 19 525,476 0,030 + 19 525,506 — 9223,075 20 -3
9 . St. Michael . . -+- 7407,498 0,002 + 7407,500 — 44 332,386 2 -9

10. Langenkandel . — 19 467,721 0,030 — 19 467,751 — 44 893,918 20 -2

^ 672 = 5 '61211 % 2^ = 2™

Aus diesen Coordinaten y , x können wir auch alle Entfernungen und Bichtungs -
winkel berechnen nach den Formeln (11 ), (18) und (81 ) des vorigen § 50 . S . 281 , 282
und 284 , wie wir an einem Beispiele Donnersberg-Calmit zeigen wollen :

konform
Calmit ?/2 = — 27 414,150 “ x2 = — 18 550,134“
Donnersberg y1 = — 38 145,915 x x = + 15 278,872

2/2 — 2/l = + 11 731,765 x 2 — x x = — 33 829,006
logfo —yx) 4 .030 6711 -5
log (x2 — ajj) 4 .529 2892 -4„

log tang tx 9 .501 3819T » tj = 162° 23' 56,83 "

log sin tx 9 .480 5595 -8 log cos tj 9 .979 1776 -6 »
log (2/2 — 2/1) 4 .030 6711 -5 log (x2 — xi ) 4 .529 2892 -4»

log s 4 .550 1115-7 logs 4 .550 1115 -8
Dieses ist rein ebene Bechnung und nun kommen die Korrektionen mit 1 : »’2-

3/1 + 2/2 - 65 560
2/2 = — 27 414
2/2 = — 27 414
2/] = — 38 146
2/i = — 38 146

22/2 + 2/1 = — 92974
2 2/1 + 2/2 = - 103 706

% (2/1 + 2/2)
log {yx + 2/2)2

log (ju : 2 »-2)

4 .81 664 log (2 y , + «„)
9 .63 328 log (x 2 — a^)
2 .72 701 log (p : 6 r2)

5 .01 582» log (2 y2 + 2/1)
4 .52 929» log {xx — x2)
0 .92 654 log (g : 6 r2)

4 .96 836»
4.52 929
0.92 654

2 .36 029 log (Tl ~ 0.47 165 log (7 S — t2) 0.42 419

(2/l = 229 -24 - ix = - [- 2,962" T%— f2 = — 2,656"
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■46ms der Triangulierung des Netzes Fig . 1 . S . 387 mit Iconformen Coordinaten .

Stationen

und

Zielpunkte

Ric

sphärisch
T

ltungsw

t — T

inkel

eben

t

i

sphärisch

log s

intfernu

log s
— logS

ng

eben

log s

1. Mannheim .
Speyer . m c 40' 25,29" — 0,02' 183c 40' 25,27" 4.275 4362-3 + o-o 4.275 4362-3
Oggersheim . . . . 27B 42 22,23 + 0,00 273 42 22,23 3.7791890 -8 + 0-6 3.7791891 -4

2. Speyer.
Mannheim . 3° 40' 25,23" + 0,04" 3° 40 25,27" 4.275 4362‘3 + o-o 4.275 4362-3
Königsstuhl . . . . 65 10 11,05 — 0,14 65 10 10,91 4.358 8019-1 + 6-2 4.358 8025-3
St. Michael . . . . 161 20 31,87 + 0,11 161 20 31,98 4.430 2529 9 + 0-8 4.430 2530-7
Langenkandel . . .. 215 0 1,16 — 0,48 215 0 0,68 4.502 8974-0 + 7-4 4.5028981 -4
Calmit . 270 34 57,83 + 0,02 270 34 57,85 4.4184219 -3 + 14-0 4.4184233 -3
Oggersheim . . . . 345 59 7,47 -j- 0,14 345 59 7,61 4.296 5476-5 + 0-8 4.296 5477-3

S. Oggersheim.
Melibocus . 35° 38' 31,00" — 0,02" 35° 38' 30,98" 4.507 0618-9 + 2-2 4.507 0621-1
Mannheim . 93 42 22,23 — 0,00 93 42 22,23 4.779 7890-8 + 0-6 4,779 7891*4
Königsstuhl . . . . 110 37 58,62 + 0,06 HO 37 58,68 ! 4.435 7946-2 + 5*3 4,435 7951-5
Speyer . . . 165 59 7,82 — 0,21 93 59 7,61 4.296 5476-5 + 0-8 4.296 5477-3
Calmit . . . 228 30 28,54 — 0,63 228 30 27,91 ! 4.456 1549-5 + 16-9 4,456 1566-4
Donnersberg . . . . 294 51 17,20 4 - 0,63 294 51 17,83 4.549 3120-2 + 30-6 4.549 3150-8
Klobberg . 336 22 4,82 4 - 0,70 336 22 5,52 4.479 8976‘1 + 8-4 4.479 8984*5

4. Calmit.
Oggersheim . . . . 48° 30' 26,94" 4 - 0,97" 48° 30' 27,91" 4.456 1549-5 + 16-9 4.456 1566-4
Speyer . . . 90 34 57,90 — 0,05 90 34 57,85 . 4.418 4219-3 + 14*0 4.418 4233*3
Langenbandel 163 12 53,74 — 3,65 73 12 52,09 4.4395851 *8 -j- 29‘8 4.439 5881-6
Donnersberg . . . . 342 23 54,17 4~ 2,66 342 23 56,83 1 4.550 1057-9 + 57*8 4.5501115 -7

o. Donnersberg ,
Klobberg 57® 29' 38,99" 4- 1,02" 57° 29' 40,01" 4.375 9183-2 + 44-0 4.375 9227*2
Oggersheim . . . . 114 51 18,87 — 1,04 114 51 17,83 : 4.549 3120-2 + 30-6 4.549 3150-8
Calmit 162 23 59,79 — 2,96 162 23 56,83 , 4.550 1057-9 + 57-8 4.5501115 -7

6. Klobberg. 1
Melibocus . 92° 51' 35,28" — 0,03" 92° 51' 35,25" 4.489 5442*7 + 4-6 4.489 5447*3
Oggersheim . . . . 156 22 6,51 — 0,99 156 22 5,52 : 4.479 8976-1 + 8-4 4.479 8984-5

Donnersberg . 237 29 40,81 — 0,80 237 29 40,01 4.375 9183-2 + 44-0 4.375 9227'2

7. Melibocus.
Königsstuhl . . . . 169° 13' 40,29" 4- 1,36" 169° 13' 41,65" i! 4.560 7787-6 + 14*1 4.560 7801-7
Oggersheim . . . . 215 38 30,55 4- 0,43 215 38 30,98 ;| 4.507 0618-9 + 2-2 4.507 0621-1

Klobberg 272 51 35,26 — 0,01 272 52 35,25 ^ 4.48954427 + 4-6 4.489 5447*3

<9. Königsstuhl.
;i

St. Michael 199° 2' 30,37" 4- 1,38" 199° 2' 31,75" ;! 4.569 8613*6 + 10*3 4.569 8623-9
Speyer . . . . 245 10 10,60 4 - 0,31 245 10 10,91 ii 4.358 80191 + 6-2 4.358 80253
Oggersheim . . . . 290 37 58,95 - 0,27 290 37 58,68 4.435 7946*2 + 5-3 4.435 7951-5
Melibocus . 349 13 43,21 — 1,56 349 18 41,65 4.560 7787*6 + 14*1 4.560 7801-7

2. St. Michael
K°ulgsstuhl . . . . 19° 2' 32,77" — 1,02" 19® 2' 31,75" . 4.569 8613-6 + 10-3 4.569 8623-9

Langenkandel , 268 48 10,93 — 0,00 268 48 10,93 4.429 44680 + 5*1 4.429 4473-1
Speyer . 341 20 32,27 — 0,29 841 20 31,98 4.430 2539-9 + 0-8 4 430 2530-7

lo . Langenhandel .
Speyer . 34° 59' 59,80" + 0,88" 35° 0' 0,68" 1 4.502 8974-0 + 7-4 4 502 8981-4
St. Michael 88 48 10,92 4- 0,01 88 48 10,93 | 4.429 4468-0 + 5-1 4.429 4473-1
Calmit 343 12 50,61 4 - 1,48 343 12 52,09 ; 4.439 58518 + 29-8 4 439 5881-6

Jordan , Handb . d. Vermessungskunde . 4. Aufl. III . Bd . 19
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Zu 22924 , welches = 4 log m0 ist , nehmen wir die schon in der Tabelle S . 288
stehenden log m2 — 40T und log mi = 77 -6 für Calmit und Donnersberg und daraus
für unsere Strecke :

ls — logS = 77 -6 + 229 '24 + 40T = 57-8 (3)

In Zusammenfassung haben wir also :

logs = 4 .5501115 -7
— 57-8

logS = 4 .550 1057-9

tx = 162° 23 ' 56,83”

+ 2,96

Tx = 162 ° 23' 59,79 ”

Donnersberg

t a = 342 ° 23’ 56,83"

— 2,66

T2 = 342 ° 23' 54,17"

Calmit

(4)

So sind diese Werte in dem Abrisse von S . 289 eingesetzt , und der ganze Ab¬
riss ist so entstanden , da wir die Coordinaten als gegeben angenommen haben .

Wenn umgekehrt die ganze Triangulierung mit einer Basis und einem Aus¬
gangsazimut bezw. Ausgangsrichtungswinkel berechnet wird , so hat man im wesent¬
lichen dasselbe zu thun . Man rechnet am bequemsten vorläufige Coordinaten nur etwa
auf l m genau , die man ja zu anderen Zwecken meist ohnehin braucht , die Dreiecks¬
seiten S hat man aus der Netzausgleichung und Netzberechnung ; rechnet man dazu
alle log s — log S und zunächst nur das erste t —■T, so kann man die ganze Coordi-
naten -Bechnung in der Ebene durchführen und braucht nur noch die sämtlichen t — T
zuzufügen , um den ganzen Abriss von S . 289 aufzustellen . In dieser Weise haben
wir schon früher das Hannoversche Stadt -Netz im konformen System der Landes¬
aufnahme behandelt in unserem I . Band , 4 . Aull. 1895 , Abriss S . 204.

Die Vergleichung dieses Verfahrens mit der Soldner sehen Methode (Abriss § 48 .
S . 265) fällt zum Nachteil der Soldnerschen Methode und zum Vorteil der konformen
Methode aus.

Tabellarische und graphische Behandlung der Reduktionen .

Da das Vergrösserungsverliältnis m nur von der Ordinate y abhängt , kann man
es leicht tabulieren , z . B . für das Pfälzische Netz mit cp = 49 ° 30 ' und log r = 6 .80487
hat man die Hauptwerte

y = 10 000“ 20 000“ 30 000“ 40 000“ 50 000’

5 -3 21 -3 48 -0 85 *3 133-4

Eine ausführliche Gebrauchstabelle wäre leicht herzustellen . Wir wollen darauf
hier nicht eingehen , aber noch die graphische Behandlung der Sache bemerken . Man
kann das Netzbild mit einer Schar von Parallelen zur «i-Axe, also Parallelen für kon¬
stante y überziehen , welche gewissen runden Werten von m oder von log m entsprechen
und damit kann man für jeden Punkt sein log m abstechen .

In unserem Halle ist

lo9 m = 272 ^ mit log sS = 2 .72 702 — 10y 2r2

y = ^ - Viog m = [3 .63 649] yiögrm (6)
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Danach ist folgendes berechnet :

log m = 10 -0 20-0 30 -0 40 -0 500 600 70 -0 80 -0 90-0

y = 13,7*” 19,4 23,7 27,4 30,6 33,5 36,2 38,7 41,1
Hiernach sind die Parallelen in Pig . 1 . gezeichnet ; man kann daraus

nehmen (S . 287) :
Donnersberg Mitte Calmit

78 57 40
78 + 4 -57 + 40 78 + 228 + 40 _ 346

6
~

6
" 6log s — log S =

100-0
48,3ta

z. B . ab-

logs — log S = 57 -7
Dieses soll dasselbe sein wie das frühere 57-8 in (3).
In dem kleinen Netzhilde von Fig . 1 . ist die graphische Interpolation für log m

wohl nicht völlig genügend , aber jedenfalls zur Kontrolle der Rechnung nützlich ; hat
man Netze II . und III . Ordnung entfernt von der Hauptaxe , wo die logm grösser
und die Parallelen mehr gleichabständig werden , so wird das Verfahren sehr gut .
Wir betrachten noch die Reduktionen der Richtungen :

(^ 2 — *i ) (2 Vi + 2/2) =
2^ 2 (*2 — *1) 2/’ mit

t 2 — h = . = gfä (*1 — *2) y" mit y" =

Hier kann man auch die y'
, y" geradezu mit dem Zirkel abnehmen , sowie die

x2 — * i > wenn man dieselben nicht ohnehin schon in der Rechnung stehen hat , und

da Ä =
3^ 5

Kilometer , so kann man glatt mit dem Rechenschieber rechnen :

' 1,1= ^
395

" y
' UDd Ts _ *2 =

* * ~x2

z. B. S . 287 Donnersberg
k2 — x1 = — 33,8 tm y' = -

21
! — tx = + 2,96"

34,6“”

395 a

Calmit
— ®2 = + 38,81” y” = — 31,0*“

T2 — <2 = — 2,66"

§ 52. Yergleichnng der kongruenten und der konformen
Coordinaten.

Das im vorigen § 51 . behandelte System der rechtwinkligen ^ edinaten * , y hat die Eigenschaft , dass es von einem Teil er ^ge 0
ebene Darstellung bietet , welche dem Urbilde in den kleinsten Taten

^
ahnlic t

Diese Eigenschaft , welcher Gauss die Benennung . konfome « AbWding gegeben
hat, wollen wir durch Vergleichung der Verzerrungsformeln ür as

n ergchenfür das Gausssche System näher untersuchen . Wir nennen a ei
.

ie
^Coordinaten kongruente Coordinaten , weil die Ordinaten y e enso wie

welcherin geodätischem Sinne kongruent abgebildet werden , d .
.

h . ein an
^ einer

längs einer abgesteckten Ordinate y müsse , ohne zu wissen,
.

ass er
auftrüge .

brummen Fläche befindet , und dann seine Messung in einer Zelchnu"
^

s
&n Uaearerwürde für y eine Gerade erhalten , welche dem Bogen y au er

Ausdehnung gleich ist .
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Zuerst betrachten wir die beiden Formeln für die lineare Projektionsverzerrung ,
nämlich (10 ) § 48. S. 271 und (12) § 50 . S . 282 , und indem wir beidemal die Be¬
zeichnungen der Landesaufnahme anwenden , nämlich S für die wahre (sphärische)
Entfernung und s für die Projektions -Entfernung , haben wir zur Vergleichung :

Soldner , kongruent -5- = 1 ■
o

2/ i 2 + 2/12/2 + 2/22

Gauss , konform ± = 1 + OlL
8 ^

6 r 2

' 2/ 12/2 ■

cos2 t

■2/2*

6 7

(1)

(2)

Lässt man die y alle einander gleich werden , so bekommt man daraus wieder
das Vergrösserungsverhältnis in differentialem Sinne :

«2
kongruent «ij = 1 -+- yZ

27 cos2 1 (3)

konform m2 = 1 -t- 2 r2 (4)

Von diesen beiden Werten ist m2 in einem Punkte nach allen Richtungen hin
<y2konstant , dagegen veränderlich zwischen den äussersten Werten 1 + ^ gund 1,

- ist ; und dieser Zwischenwert ist auch gleich dem4
deren Zwischenwert = 1

durch Integration zu findenden Mittelwert ,i, weil j
~
c

2 »

cos2 t d t = n .

Man kann auch leicht die Flächen vergleichen : Ein Streifen dxdy im Urbild
wird abgebildet werden :

kongruent dF -i = d $ 1

konform d F z = d % ( 1 -+-

2 7
«2

27 dy 1 2/2 d x ( 1 + yi dy27 J
" ~ ‘ 7

Als Integral zwischen den Grenzen 0 und y giebt dieses , wenn y d x = F
gesetzt wird :

kongruent F 1 = F fl ^
. JL
6 7

konform
und das Verhältnis beider :

F 1 + yZ
372

iZ
27

y 'Z
Einige Zahlenwerte von haben wir bereits in (8)

(5)

i 49 . S . 276 ausgerechnet ,

man sieht daraus , dass z. B . für y = 80 000m die lineare Verzerrung ^ = 0,00001127
oder 11 Milliontel oder 11”»» auf l 1** ist , und dass auch die konforme Flächenver¬
zerrung um 11 Milliontel grösser ist als die kongruente Flächenverzerrung .

Man kann in diesen Betrachtungen auch noch weiter gehen , und so habe ich
in der „ Zeitschr . f. Verm . 1875 “ , S. 27—34 eine theoretische Betrachtung angestellt
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über die Quadratsummen der linearen Projektions -Verzerrungen in beiden Pallen , und
gefunden , dass die konforme Projektion eine solche Quadratsumme fl giebt , welche
bei konstantem Grenzwert T sich zu der entsprechenden Quadratsumme oo der kon¬
gruenten Projektion verhält fl : oo = 8 : 3 , und dass für fl = oo die Grenzordinate Y
des konformen Systems sich zu der entsprechenden Grenzordinate y des kongruenten
Systems verhält Y \ y = 0,82 : 1 ; und hiernach dürfte die konforme Projektion nur
auf 82 % der Pläche ausgedehnt werden , welche der kongruenten (Soldner sehen)
Projektion zugänglich ist .

Alle Messungsfehler sind hiebei gleich Null gesetzt . ,

Diese Verzerrungs -Vergleichungen fl und oo, welche von der „ Zeitschr . f. Verm.
1875 “, S. 27—34 auch noch in unserem „Handbuch d . Verm ., 2 . Aufl. 1878“ , S. 276
bis 278 abgedruckt waren , haben wir vor kurzem in der „ Zeitschr . f. Verm. 1896 “ ,
S. 249 einer neuen Bearbeitung unterzogen , auf welche wir zurückkommen werden.

Solche Integrationen für die linearen Verzerrungselemente in verschiedenen
Formen , z . B. auch nach den neueren Theorieen von Tissot 1881 (vgl. „ Zeitschr . f.
Verm . 1896 “ , S . 210—213 ) geben aber ein einseitiges theoretisches Kriterium , welches
in der Praxis nicht Stand hält , und namentlich für Landesvermessungen mit Triangu¬
lierungen zu vollständigen Fehlschlüssen führt .

Die Theorie jener fl und oo erscheint sofort injganz anderem Lichte , wenn
man auch die bisher gleich Null gesetzten Messungsfehler zuzieht , d . h . wenn man
von der Theorie zur Praxis übergeht .

Z. B . in Preussen wurde festgesetzt , dass die linearen Fehler , die durch die
Benützung der rechtwinkligen sphärischen Coordinaten als ebene Coordinaten entstehen ,

nicht grösser als 1
20 000 oder 5““ auf l tm sein sollen (F . G . Gauss , „ die trigonome¬

trischen und polygonometrischen Bechnungen in der Feldmesskunst , 1 . Aufl. 1876 “ ,
S. 299 und „Zeitschr . f. Verm . 1896 “ , S . 196 und 200) und schon damit wird jener
Theorie der fl und oo u . s . w. der praktische Boden entzogen , denn jene Fehler
werden bei Einhaltung der Grenze y = 64*"“ nicht grösser als 5C»‘ auf l ta , mag man
die Benützung in der Ebene nach Soldner kongruent oder nach Gauss konform machen.

Die Plächenprojektionsfehler sind verschwindend klein im Vergleiche mit den
Fehlern , welche beim wirklichen Peldmessen mit Messlatten , Winkelspiegel u . s . w.
entstehen ; und grössere Flächen , welche polygonometrisch an das System angeschlossen
werden , nehmen von den Projektionsverzerrungsfehlern den unschädlichen Anteil in
sich auf.

Der lineare Projektionsfehler von 0,005 »/0 oder 5"” auf 1000" oder 0,05 ”"“ auf
1 “ oder auch 0,25’“’“ auf 5 “ , kann auch verglichen werden mit dem metronomisch
zulässigen Fehler von 1,6 ”"“ an einer hölzernen Messlatte , welcher immer noch das
Sechsfache des Projektionsfehlers ist .

Die oben berichtete Theorie der fl : oo hat ein rein lineares Messungsverfahren
vorausgesetzt :

Wenn man in jedem Punkt nach allen Richtungen kleine Linien gezogen und
dadurch die ganze Aufnahme bewirkt denkt . . . d. h . es ist ein spekulatives Messungs
verfahren vorausgesetzt , welches es praktisch nicht giebt . Der Schwerpunkt unserer
modernen Vermessungen liegt nicht in den linearen Messungen , sondern in den Winkel-

är
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Messungen , von denen wir nachher (bei den Gleichungen (6) und (7) unten zu handeln
haben werden ) .

Es ist auch der Gedanke ausgesprochen worden , bei konformen Coordinaten,
mit grossen Gebieten , z . B . mit Ordinaten y , die grösser als 70 000 ” sind , für alle
weiter von der Coordinatenaxe abliegenden Gemarkungen besondere Reduktionen der
Strecken oder Elächenangaben einzuführen .

Wenn die Projektions -Verzerrungsfehler praktisch zu gross werden , so müsste
man nicht bloss bei konformen Coordinaten besondere Reduktionen der Strecken und
der Flächen einführen , sondern bei den Soldner sehen Coordinaten wäre das noch viel
mehr nötig — ja man müsste im Soldner sehen System nicht bloss gemarkungsweise
Reduktionen anbringen , sondern , wie ein Kollege sich ausdrückte , man müsste eine

ganze Windrose von Massstäben anbringen , nach jeder Richtung einen besonderen .
Wenn man ausnahmsweise mit den Verzerrungsfehlern an die Messungsfehler

herankommt , was bei feinen Stadtvermessungen oder auch z . B . in Bayern wegen der

grossen Ordinaten eintreten kann , dann bringt die Soldner sehe ungleiche Verzerrung
ganz ungeheuerliche Widerwärtigkeiten , welche zu ersehen sind aus der „Instruktion
für neue Katastermessungen in Bayern, “ 1885 § 23 . und noch deutlicher in tech¬
nische Anleitung etc . Dr . J. H . Franke , München 1889 , S . 121 . Alles was dort im
Interesse der Rechnungserleichterung etc . gesagt ist , wird mit einem Schlage über¬
flüssig , wenn die Projektion konform ist .

Der Schwerpunkt unserer modernen Vermessungen liegt nicht in den linearen
Messungen , sondern in den TFmkcimessungen , und während für erstere der Satz gilt
„Es ist darnach zu trachten , die vernachlässigten Grössen möglichst klein zu machen ,
nicht aber nach allen Richtungen möglichst gleich — “, gilt für Triangulierungen
gerade das Gegenteil , hier ist darnach zu trachten , die Verzerrungen nach allen Rich¬
tungen möglichst gleich zu machen , damit die Dreiecke ähnlich bleiben . In der

Triangulierung III . Ordnung gestattet die konforme Projektion auf viel weitere Gebiete
ohne alle sphärische Korrektionen von der Ordnung 1 : r2 auszudehnen , als die Sold¬
ner sehe , weil die schlimmsten Glieder der Soldner sehen Methode bei der konformen
Projektion fortfallen .

Um dieses zu zeigen , machen wir die Vergleichung der Richtungsreduktionen ,
nämlich nach (20 )— (21 ) § 48 . S . 272 und (31 ) § 50 . S . 284 beidemal mit den Be¬
zeichnungen der Landesaufnahme , T für sphärischen und t für ebenen Richtungswinkel :

Soldner,kongr . T1 — 11 = ^ {x2 — x {) {9ly l + y ^ + -^ sin ^ cost ^ y ^ + yiyi + yi ) (6)

Gauss , konform T 1 — t1 = (x 2 — (2 y 1 + y 2) (7)

Das schlimmste Glied (y 23 — y \s ) von Soldner fällt bei Gauss rund¬

weg fort . Wir wollen dieses Glied noch besonders betrachten :

(* 2 — * i ) (y2 — y {) , „ , sin t cos t , „ . . . mg -
672^2

- (2/l + 2/12/2 + 2/23) = 9 6y2 (2/l2 + 2/11/2 + Vr >

Bei einer Kleintriangulierung entfernt von der Hauptaxe sind die x %— * i un^

2/2 — 2/i verhältnismässig klein gegen die y selbst , sie gelten als von nächst kleinerer
Ordnung , und damit haben wir den wichtigen Satz :
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Die trigonometrischen Verzerrungsfehler der Gauss sehen Kleintriangulierung
entfernt von der Axe sind nur von nächst kleinerer Ordnung als hei der schwer¬

fälligen Soldner sehen Triangulierung .

Zu näherer Ausführung wollen wir die sämtlichen y x . . . kurz mit y und

die neg— %i , y %— y x mit äx und ä y bezeichnen , dann wird :

Soldner , kongruent Gauss , konform

T — t = g {äx + y sin t cos t) T — t — Q (8)

Setzt man in runden Zahlen für Triangulierung III . Ordnung d x = 5000 ”,

dagegen y als sehr gross = 100 000 ” und t = 45 °
, so wird :

Soldner , kongruent Gauss , konform

T — t = 1,3" 4- 12,7" = 14,0" T — t = 1,3 "

also hei Gauss rund 1"
, was in III . Ordnung leicht zu verschmerzen ist , aber hei

Soldner 14" .
Das ist die Richtungsverzerrung . Die lineare Verzerrung giebt bei Soldner

in diesem Pall ein Schwanken im Logarithmus zwischen 0 .00005 und 0.00000 , d. h.

Unmöglichkeit auch nur mit 5 stelligen Logarithmen glatt eben zu rechnen , während

bei Gauss das lineare Element als Mittelwert bereits in den Anschluss -Coordinaten
II . Ordnung steckt und dem Rechner in III . Ordnung gar nicht mehr zu Gesicht kommt .

Hiebei ist auch die Höhenreduktion in Vergleichung zu ziehen , welche wir

früher hei der Basismessung in § 9 . S . 67 erwähnt haben . Wenn in der Höhe h

über dem Meere eine Strecke s unmittelbar , z . B . mit Messlatten , gemessen ist , so

kann sie nicht unmittelbar mit einer Triangulierungsseite verglichen werden , son¬

dern sie muss auf den Meereshorizont reduziert werden s — —-
j . Die Reduktion

s h— hat nach S . 67 für h, = 100” den Betrag 15,7”“ auf 1000” oder 15,7 Milliontel.

Diese Höhenreduktion wirkt der Netzverzerrung günstig entgegen , denn eine

Strecke s geht infolge der Höhenreduktion und der Netzreduktion über in :

Eine Übersichtstafel dazu haben wir auf Seite [45 ] des
Man entnimmt daraus z . B . , dass bei 400 ” Höhe und r ma en V

vonform ist ,samtreduktion allgemein nahezu gleich Null ist , wenn *e
. wion kongrUentdagegen schwankend zwischen Null und 6C” auf 1 ” , we

handeln 1(nach Soldner ) ist . (Auch dieses wollen wir später noch nä er e
. .

Pür die Höhenreduktion haben wir bisher vorausgesetzt , dass die
Bgselbst mit ihrer Basis auf den Meereshorizont reduziert sei ,

lierungsho rizontgiebt aber auch Ausnahmen , z . B . in Württemberg m
;th^ igche Reduktion844 Pariser Puss = 274,16 ” über dem Meere , was em g

y ^ %186-6 oder 43 ”” auf 1*« bringt , welche zwar der Soldner sehen Netzreduktion
^ r2

^ ^
entgegen wirkt , aber nicht nach allen Richtungen wirksam , weil
konform ist .
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Eine Gesamtreduktion ist auch in Mecklenburg eingeführt . Die Netzreduktion
ist dort 1 - f- weil die Hauptaxe nicht meridional , sondern westöstlich liegt . Der

Maximalwert 1 + ist logarithmisch = 357 '0 , und deswegen wurde eine Gesamt¬
reduktion = 178 -5 eingeführt , oder = für P m , welche einer Höhenreduktion
für h — 262,4 m gleichkommt , d . h . die Mecklenburgische Triangulierungsergebnisse
sind mit einer solchen Gesamtmassstabs -Veränderung versehen , als ob der Horizont
der Basis und die Triangulierung im Ganzen 262,4m über dem Meere wäre.

Dadurch wurde erreicht , dass die Gesamt -Netzreduktion in dem ganzen Bereiche
von rund 80 '- südlich und 80lm nördlich von dem Normalparallel nur zwischen den
Grenzen von rund + 4cm auf P “ und — 45m auf P " sich bewegt , während sie sonst
auf 8C”* für P ”* gestiegen wäre.

Nach all diesem ist an den grossen Vorteilen der Konformität für Triangu¬
lierung und Katastervermessungen nicht zu zweifeln.

Mit Zurückgreifen auf 1875 haben wir daher zwei Sätze :

I . Satz 1875. Wenn man eine Landesvermessung durch unendlich viele kleine
Streckenmessungen machen würde und dabei auch alle Messungsfehler , selbst = Null
setzte und wenn man die Quadratsumme aller Streeken -Verzerrungs -Fehler als einziges
Kriterium annähme , so würde die Soldner sehe Projektion mit etwa ein Fünftel der
Fläche im Vorteil sein.

II . Satz 1896 . Wenn man eine Landesvermessung nach moderner Art mit
Triangulierung und Polygonzügen macht , so ist die konforme Projektion unbedingt
weit im Vorteil : man kann dann mit dem Messungsgebiet so weit gehen (ohne andere
Rücksichten und alles in III . Ordnung als eben behandeln ) als es die praktischen
Erwägungen der linearen Fehler gestatten , d . h . wenn man in letzterer Hinsicht den
preussischen Bestimmungen folgen will , bis zu einer Ordinatenlänge y — rund 100s”.

Zum Schlüsse wollen wir noch die beiden Triangulierungs -Abrisse von § 47 .
S . 265 und § 51 . S . 289 in dem Sinn vergleichen , dass wir die Mittelwerte der
Richtungs -Reduktionen und der logaritlimischen Seiten -Reduktionen bilden . Dieses giebt:

durchschnittliche durchschnittliche logarithmische
Richtungs -Reduktion Seiten -Reduktion

kongruent S. 265 + 0,70" + 7 -5
konform S . 289 + 0,64 + 13 -6
In der kongruenten Projektion sind die linearen Reduktionen im Vorteil und

in der konformen Projektion sind die Richtungen im Vorteil ; d . h . was wir allgemein
erkannt haben , zeigt sich auch in den Zahlenbeispielen bestätigt . Doch ist der vor¬
liegende Fall des Netzes Fig . 1 . S. 287 zum Veranschaulichen der Vorteile der Kon¬
formität wenig geeignet , weil die Axe durch das Netz selbst hindurch geht und keine
grossen Ordinaten Vorkommen.

Wir wollen auch noch einen Blick auf das Hannover sehe Stadttriangulierungs¬netz III . Ordnung werfen, welches in unserem I . Bande , 4 . Aufl. 1895, S . 204 in
konformen Coordinaten der Landesaufnahme und S , 207 in kongruenten Kataster -
Coordinaten berechnet ist . Obgleich die konformen Ordinaten im Mittel y = 245000”
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und die kongruenten Ordinaten nur y = 23000 ” lang sind , war doch die konforme
Berechnung bequemer als die Soldner sehe kongruente , weil bei ersterer die Reduktionen
sich viel bequemer in Richtungs -Reduktionen und Entfernungs -Reduktionen trennen ,
von denen ausserdem die letzteren sich leicht tabellarisch erledigen lassen . (Vgl. die

Hilfstafel für log —^ yt auf S . [46 ] des Anhangs .)

Noch in anderem Sinne wollen wir die beiden Stadtnetz -Triangulierungs -Coor -
dinaten vergleichen : In dem vorgeschriebenen Kataster -System Celle ist im Mittel

y = 23000” und dazu nehmen wir im Mittel a 2 — aq = 3000” = d x , und damit
rechnen wir nach der Formel (8) :

kongruent T — t = 0,17" + 0,67 = 0,84"

konform T — t = . 0,17"

Die konforme Reduktion 0,17" ist gerade an der Grenze der Vernachlässig -

keitszulassung für das grundlegende Netz einer feinen Stadtvermessung , während
0,84 " schon zu gross ist . Wegen dieser Beträge von 0,84" etc . haben wir uns damals
entschlossen, die auf 0,1 " ausgeglichene Triangulierung noch in den 6 Hauptpunkten
sphärisch zu rechnen ; mit 0,17” hätten wir das wohl auch schon ersparen können.

Alle diese Vergleichungen gestatten bereits ein Urteil zu fällen , das zu Gunsten
der konformen Projektion , und zu Ungunsten der kongruenten Soldner sehen Projektion
sich stellen wird ; wir werden jedoch in einem späteren Kapitel nochmals auf diese
Sache zurückkommen .

§ 53. Sphärische geographische Coordinaten cp, l und recht¬
winklige Coordinaten x , y .

Die geographischen Breiten und Längen q> und X lediglich auf die Erde als

Kugel bezogen , haben wenig praktischen Wert , denn die Abplattung der Erde ist bei
diesen Coordinaten viel einflussreicher als bei den rechtwinkligen Coordinaten x , y.

Trotzdem haben wir die Aufgabe , <jo und X aus x und y zu berechnen , und

nachher umgekehrt , hier in dem Kapitel über sphärische Coordinaten mit aufgenommen,
weil es möglich sein wird , durch kleine Kunstgriffe den Übergang von der Kugel zum

Ellipsoid noch soweit klar zu machen (in dem nachfolgenden § 54.) , als zum ersten

Verständnis unserer heutigen Landesvermessungen und Katastervermessungen und zur

Einsicht in die Feld - und Landmesser -Anweisungen der deutschen Staaten nötig ist .

Die verschiedenen Beziehungen zwischen geographischen Coordinaten qp, X und

rechtwinkligen Coordinaten x , y werden wir in zwei Aufgaben darstellen , und zwar zuerst .

] . Gegeben x und y . Gesucht cp und X.

Nach Fig . 1 . und Fig . 2 . S. 298 nehmen wir folgende Aufgabe :

Gegeben ist die Breite epo eines angenommenen Coordinaten -Ursprungs O und

dazu die rechtwinkligen Coordinaten x , y eines Punktes P .
Gesucht ist die Breite qp2 des Punktes P , der Längen -Unterschied X zwischen

G und P und die Meridian -Konvergenz y für P und P \.
Die Abscissen x sollen nach Norden positiv , die Ordinaten y nach Osten positiv,

ünd die Längen X ebenfalls nach Osten positiv gezählt werden.
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Aus Fig . 1 . entnehmen wir sofort die Beziehung zwischen der Ursprungsbreite (jpg,
der Fusspunktsbreite qoj und der Abscisse x , nämlich :

Kg - l .

N

Fig . 2.
Rechtwinkliges Dreieck NP,P

von Fig . 1 .

<Pi — % = — bezw. = (1)

Alles weitere wird durch das rechtwinklige sphärische Dreieck N P -̂ P geliefert,weshalb wir dieses Dreieck in Fig . 2 . nochmals besonders herausgezeichnet haben.
Dieses Dreieck giebt zuerst die Cosinus-Gleichung :

cos (90° — <p2) = cos (90° — <pj ) cos ^

oder ohne 90 ° :

umgekehrt :

sin q>2 = sin <pj ( 1

sm (jpj — sm cp2

2 rz
y*

~
2 sm q>i

also :

Nun ist aber in erster Näherung (z . B. nach S . 179) :
sin (jPj — sin <p2 = (qpj — <p2) cos cp1

yZ9l — f2 = ^ 2 tan 9 Vl
Zweitens giebt das rechtwinklige Dreieck Fig . 2. zur Bestimmung von A :

, V_ V

(2)

tang A =
tang

]L
cos (fix \ r

y3
'

3731

r coscpi

sin (90 ° — <pj ) coscp1
Die arc iang -Ueihe, S. 172, giebt :

A = arc tang A = tang A — (t®*1!)

cos <Pi [ r 3 r sj 3 r3 coss cpiWenn man die Glieder mit y3 zusammenordnet , so bekommt man :
ys tancfi ipx

3 rs cos cpi
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Drittens giebt das rechtwinklige Dreieck Fig . 2. zur Bestimmung von y :

tang (90° — y) — tang (90° — qq)

sin y
oder tang y ■ ■ y .■sm — tang q>y

tang 7 = \ -
j
y r

6 »-3 tang qq

7 = {r —£ * ) *"* n - yS'
3r8 tangS qq

y yS
, ^ tang <jq — tang qq (1 -t- 2 tang 2 qq) (4)

Durch diese Gleichungen (1) — (4 ) ist unsere Aufgabe gelöst , wir wollen aber

noch zwei neue Gleichungen bilden , welche (3), (4) entsprechen , aber überall statt der

Pusspunkts -Breite qq die Breite qpa enthalten sollen . Zur Bestimmung von X nimmt

man dann :

sin X :

• Vsm —
r

sm y

sin (90 ° — q>2)
Die arc .sm-Beihe , S . 172 , giebt :

X = arc sin X =

1

_ = _
1 ( jt

cos cos cp2 \ r
y6

6 r‘

: sin X ■

X = y_
cos <p2 \ r

VX =

(sin Ä)3
6

y3 \ ,_ y3
6r 3/ 6r s cos3cp2

y3 tang 3 <p2
6 r3 cos q)2r cos <p2

Ferner zu einer zweiten Formel für y aus Fig . 2 . :
y

(5)

cos (90 ° — y) =
tang ■

tang (90 °

sin y =

y8

■qpz)
sin y = tang ~ tangq >2

7 + fej tanWz

y = (i + &*} **»!> v* ■

7 = -- tang <p2 ■

■ tang * <p2

■ tang q>2 (2 + tang 2 % )
or d

(6)

Mit diesen Formeln (l )- ( 6) haben wir den zu Anfang Vorgesetzten Zweck er

reicht, und zwar bei X und y sogar doppelt . . . , t j pr
Ohne zwingenden Grund fürs folgende wollen wir auc noc *

nämlich :
beiden zweigliederigen Formeln (8) und (5) eine emgliederige orme i >

(7)

setzt :
1 - sec ^ - -
r

Man kann diese bequeme Formel (7 ) leicht rückwärts begründen , indem man

COS%L
-h2 (pa = COS(pi -

jPr + lyg = g,i _ l (^ 1 _ (p2)

2
- (qq — (jp2) sin qq = cos qq 1 + -

g
- (<Pi — Vs:) tan9 9h

: 2l + ?5s = _ — fl - -I (qpi - <fii ) tang qi, )
3 eos qq \ o /
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Wegen (2 ) giebt dieses :

.. . . Vi + 2 qp2 1 ■tang 2 cp±3 cos <pL 8 r2
Dieses in (7) gesetzt , führt zurück auf (3), womit (7) bewiesen ist .Man kann eine Umformung ähnlicher Art auch für die Meridian -Konvergenzmachen , denn (4) oder (6) lässt sich auf diese Form bringen :

7 = ■<p2 g?! -
sec

• 2qp 2
(8)

Fig . 1.

IT. Gegeben qp, k. Gesucht x . y .
Die Umkehrung der vorigen Aufgabe heisst :
Gegeben sind die geographischen Coordinaten

<p2, k eines Punktes P , und zwar die Länge k bezogen
auf den Meridian eines gegebenen Coordinaten -Systems ,
dessen Ursprungs -Breite <jD0 ebenfalls gegeben ist .

Gesucht sind die rechtwinkligen Coordinaten x , y
des Punktes P , und die Meridian -Konvergenz y .

Auch diese Aufgabe lässt sich mittelst des recht¬
winkligen Dreiecks , das wir in Fig . 1 . wieder haben,
leicht lösen .

Zur Bestimmung von qp; — cp2 hat man :
tang (90 ° — (px) _ tang cp2

tang <px
cos k =

tang (90° — <p2)
1 — k2

k2tang <px = tang <p2 oder tang <px — tang <p2 = tang cpiCi
Andererseits ist in erster Näherung

tang qp1 — tang (p2 = <Pi — n
COS2 tpi

also : k2
(9)

— <jP2= sm Ti c°s <p2
Bei den Entwicklungen für k und y kann man wieder wie im ersten Teil ent¬weder alles auf <px oder auf qp2 beziehen , wir wollen die beiden Entwicklungen neben¬einander hersetzen , ohne Erläuterungen durch Worte , welche nach dem vorhergehendennicht mehr nötig sein werden .

tang —
tang k = — - J - = [k + cos <p , sin k =

’ = rkcos (px +
rks

cos cp2
ks
6 cos (p2

- COS(p ! siw 2 <p x

cos (90° — y) = sin k cos (90° — <pj )
*3
6

r k2

siny = -

y — A sin <px —

| sm <p x

y = rk cos <p2 -
g

- cos <p2 sin2 <jp2 (1?).

cos (90 ° — q>2) = cotg k cotg (90 ° — y)
/ k2

tang y = tang ksin (p2 = ( k - f- -
g

-
k* •-
g

- sm <px cos2 <jD[ y = k sin ip2 ■ - sin <p2 cos2 <p2 (11 )
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Der Gang der Auflösung würde nun so sein, dass man zuerst nach (9) aus der
gegebenen Breite <p2 die Fusspunkts -Breite <jp1 ableitet , und daraus , durch die Differenz
gegen die Ursprungs -Breite qp0, die Abscisse x berechnet , nämlich :

Vi — $ o rex = (<Pi — <jp0) r bezw. (12)

Darauf hat man für y und y je zwei Formeln , nämlich (10) für y , und (11)
für y, woraus man nach Umständen die eine oder andere auswählen kann , um y und
y zu berechnen. Oder man kann auch zur Probe Doppelrechnung anwenden.

Die Doppel-Formeln (10) und (11 ), welche zweigliederig sind, kann man auch in
je eine eingliederige Formel überführen , in ähnlicher Weise wie dieses früher bei (7)
und (8) gezeigt wurde . Man findet :

Umwandlung von (10) : y = rl cos
<*Pl

o (13)

2 «Pi + <Pz
(11 ) : y = Xsin (14)

§ 54. Übergang zum Ellipsoid.
Nachdem wir die rein sphärischen Beziehungen zwischen den geographischen

Coordinaten und den rechtwinkligen Coordinaten eines Punktes im vorigen § 53 .
keimen gelernt haben , müssen wir auch die sphäroidischm Beziehungen hiefur ,
wenigstens in erster Näherung hersteilen .

Zuerst behandeln wir die Rektifikation des Meridian -Bogens sc zwisc
Breiten q>0 und <ph wofür in (1) § 53 . S . 298 die Gleichung gefunden wurde :

oder a; = (qpj — <p0)<3Po= *

Wenn die Abscisse x nicht auf einem Kreisbogen vom Halbmesser r , sondern
auf dem Bogen einer Meridian -Ellipse abgewickelt wird , so kann man doch, wenn x
nicht sehr gross ist , die Rechnung mit einem Kreisbogen führen , dessen Halbmesser

aber dann gleich dem Meridian -Krümmungshalbmesser M für die Mittelbreite

zu nehmen ist , wie wir bereits in § 35 . ausführlich gezeigt haben (nämli ’ (
S. 210 und dann nochmals besonders bei (43) S . 218 219).

inWir haben dabei gefunden , dass der Fehler ^ eses Näherungs -Yeifahren m
unseren Breiten nur etwa 5* ”1 anf 1 ° beträgt (vgl . die Hilfstafel für g, . \. . . . - -dass namentlich bei den kleinen Geltungsbereichen , welc e z. . e

„„ „ipich gehrKataster-Coordinatensysteme haben , jenes Verfahren ganz zu ässig
bequem ist .

Ausserdem kann man auch eine Hilfstafel von der Art Seite [38] des Anhangs- tuiivjj wjio i ^iuonar ^i tim
enützen , über welche auf S . 216 das Nötige gesagt wurde.

Dieses war rasch erledigt , etwas mehr Überlegung ist nötig , um
;

"
. „gfahrtwelche im vorigen § 53 . mit dem unbestimmten Halbmesser r a ge

wurde , einen greifbaren Halbmesser in Zahlen zu finden .
miinsoid wesent-In dieser Beziehung finden wir , dass die Übertragung auf das Ellipsotd we

^- i • - •
-. jiimcu

„.
"
will er recht¬lich erleichtert wird durch den Umstand , dass der Ordina en

. wesentlich ver-winklig zum Ursprungs -Meridian ist , mit seinen Endpunkten in m
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schiedenen Breiten liegt , weshalb wir uns erlauben dürfen , die Ordinate y zu betrachten
als liegend auf einem Kreisbogen , dessen Halbmesser der Quer -Kriimmungshalbmesser
Ni der Fusspunkts -Breite <p 1 ist .

Wir machen also die Annahme

r = 2Vi (2)
l yi + e' 2 C0S2 g,j

gültig für die Fusspunkts -Breite <p1. Die Formel für Arj wurde früher in § 32 . (22)
S. 197 entwickelt und statt der Ausrechnung in Zahlen für den einzelnen Fall können
wir uns kurzer Hand der Hilfstafel auf Seite [8]—[29 ] des Anhangs bedienen .

Diese Annahme reicht aus zur Berechnung von X und y aus gegebenen <jpi und
y oder umgekehrt , aber zur Berechnung von qd2 oder cp, d. h . der Breite des End¬
punktes einer Ordinate y müssen wir noch eine dritte Überlegung machen , zu welcher
wir einen neuen Begriff einführen :

Der verkürzte Breiten - Unterschied .

Von allen Wirkungen der Elliptizität der Erdoberfläche ist die bedeutendste
und niemals zu vernachlässigende , wenn überhaupt von der Elliptizität die Bede ist ,
die Abweichung zweier aufeinander folgender Normalen in einem Meridian , wodurch
der kleine Winkel ö entsteht , der in der nachstehenden Fig . 1 . eingezeichnet ist .

Wir werden diesen Winkel 6 näher untersuchen .
In Fig . 1 . seien Pi S1 und P 2 S2 zwei

Normalen einer Meridian -Ellipse , welche sich

/nicht in einem Punkte der Umdrehungsaxe son¬
dern in einem anderen Punkte 8 schneiden, und
zwar unter einem Winkel d cp, welcher gleich
der Differenz der Breiten <pj und <p2 beider Punkte
P l und P 2 ist , d . h . :

% — «Pi = ä cp (1)
Wenn ferner der Meridianbogen Pj P 2 = dt»

gesetzt wird , und der Meridian -Krümmungshalb¬
messer für die Mittelhreite = M (d . h . nahezu
M = P , S = P 2 8 ) , so hat man für Differential¬
betrachtung :

dm = M d q> (2)

Fig . 1.
df ' = dg >-

Andererseits kann man in erster Näherung auch setzen :
dm — Ndcp '

(wo P 1 Sx = JV)
Es ist also das Verhältnis von (2 ) und (3) :

d cp _ N
dcp '

und daraus ergieht sich die Differenz :

dcp^ dM - m ^ dcpU .

(3)

M INo = dcp

ijiy

(5)
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Hiebei ist nach (25 ) § 32 . S . 197 :

~ = V 2 = 1 + e'2 cos2 (jp (6)

Da das Produkt e'2 cos2 cp sehr häufig vorkommt , bezeichnen wir es besonders ,

wie schon früher in (b) S . 208 , indem wir setzen :

e'2 cos2 q> = rj2 , also V 2 = 1 + if (7 )

Damit wird nach (5) :

ö = d
^ v* (8)

Fig. 2.

T
Diese Formeln geben Veranlassung , eine

neue Benennung einzuführen für den Winkel d tp
’

von Fig . 1 ., welcher mit der Bezeichnung A tp
'

auch in Fig . 2 . wiederkehrt .
Wenn allgemein A tp ein kleiner Breiten -

Unterschied ist , so ist der entsprechende auf die
Erdaxe reduzierte Wert A cp

' nach (4) und (6) :

Aw' = ^~ = verkürzter Breiten -Unterschied (9)
V 2

Zu jedem gegebenen kleinen Breiten -Unter¬
schied kann man den entsprechenden „verkürzten
Breiten -Unterschied “ A cp

' mit Hilfe von V 2 nach unserer Hilfstafel Seite [8] [29 ] .

des Anhanges leicht berechnen ; es sei z . B . : <Pi = 49 ° 30 , <P2 — 80 , also

A tp = 1 ° - 3600" und die Mittelbreite cp = 50° 0'
, dann hat man:

log A qi
von Seite [21 ] : log V 2

log A cp
'

3 .556 303
0 .001 204

3 .555 099 A tp
’ = 3590,04"

Acp' = 0 ° 59 ' 50,04"

Der verkürzte Breiten -Unterschied dient dazu , um in erster Näherung sphä-

roidische Bögen auf einen Mittelpunkt in der Erdaxe zu reduzieren .
In Fig . 2. ist K ein solcher Mittelpunkt in der Erdaxe , aber unter dem

Ellipsoidmittelpunkt gelegen . Hat man einen Bogen Pi P %= s , so kann man zuerst

einen Centriwinkel <j berechnen :

Dabei ist N = P j K der Quer -Krümmungs -Halbmesser des Ausgangspunktes Py .

Diese Art der Beduzierung auf einen Zentralpunkt IT ist , wie mehrfach betont ,

nur genähert , sie ist aber um so besser , je kleiner der Breiten -Unterschied ist , um

den es sich dabei handelt . Deswegen ist das Verfahren genügend für unsere Aufgabe

der Breitenbestimmung aus rechtwinkligen Coordinaten xy , denn hiebei steht der

Ordinatenbogen y rechtwinklig auf dem Abscissen -Meridian x und deswegen wer en

die Fusspunktsbreite tp, von y und die Endbreite <p nicht sehr von einander ver¬

schieden sein .
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§ 55. Sphäroidische Coordinaten cp, X und x , y .
Um die sphärischen Formeln von § 53 . mit Hilfe von § 54. auf das Bllipsoid

zu übertragen , nehmen wir zuerst die Formel (2) S. 298 zur Hand , nämlich :

9>i — fz = tang 9)i W
Zuerst ist für r der Quer -Krümmungs -Halbmesser N : der Fusspunkts -Breite %

zu setzen , also :
(2)

yVi — 0>2 = tan 9 <Pi

Diese Differenz qp* — qp2 ist sphärisch berechnet , d . h . „verkürzt “ in dem früher
in § 54. erörterten Sinne ; die wirkliche Breiten -Differenz qpj — qp wird daher nach
(4) § 54 . S . 302 : au _ m w

w

F 2 2/a , a \91 — 9 = - jr ^ tang (fi (4)

jL - f . =
&

= V2
<Pl — <jP2 M

also :

Fig . 1.

'Pi

(3) S . 298 :

2 N ‘

Dabei wird F 2 als zur Breite qpj gehörig genommen ,
weil unter der Breite qpj Berührung des y -Bogens mit dem
Parallelkreis stattfindet .

Da wir nun nichts mehr weiter zu thun haben , als
in den sphärischen Formeln von § 53. S . 298—300 überall
-ZVj statt r und qp statt qp2 zu schreiben und die nötigen
Q zuzusetzen , erhalten wir mit Benützung der vorstehenden
(1 ) und (4) und im Anschluss an nebenstehende Fig . 1-
folgendes :

Gegeben qp0 , x , y
Gesucht cpi , cp , X und y

Auflösung : <jPi = <jP0 + Q

qp = <Pi —

Vi = 9>o

F 2 y2
2 m

M

g tang cpi

x F 2 «2
<P = <Po + e — -

j
- p tang Vi

(5) S . 299 oder :

(4) S . 299 :

X =

1 =

y
N i cos (pi
y i

3 N \ cos cfi

Nl cos qp 6 N [ cos cp

tang 2 qpj

tang 2 cp

y = w 9 tan 9 <Pi ■
6 IV? q tang qpx (1 + 2 tang 2 qpj)

(6) S . 299 oder : ■- JL q tang qp

(5)

(6)

(?)

(8)

(9)

(10)

(11)

(12>g tang qp (2 -t~ tang * cp)
Nun wollen wir noch die Haupt -Coefficienten [1] und [2] unserer Hilfstafel

von S . [8]— [29] des Anhangs einführen , nämlich :

~ = [1] für die Mittelbreite

-~ r = [2] für die Fusspunkts -Breite qpj

(13)

(14)
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Damit werden die vorstehenden Formeln :
‘Pi — To + [1] x

myf V2
<P = <Pr 2p tang q 1

q = q0 + [ l] x — F2 tang ^

A =

2 Q
[2] y / [2] y

cos (pj (cos «pj / 3 p2j si«2 qoj

oder + W * ,,
cos <p \ cos q J 6 p2; sm2 q

305

(6 *)

(7 *)

(8*)

(9*)

(10 *)

A = [2] y tang (p, — ' *an9 Tl (1 + 2 tang ^ q ; ) (11 *)

oder A = [2] y tang q + tang V (2 + <anS® T) d 2*)

Nachdem wir den ersten Teil der Formeln von § 53 . von der Kugel auf das
EHipsoid übertragen haben , kann keine Schwierigkeit bestehen , auch den zweiten
Teil jener Formeln von § 53 . S . 300—301 so zu übertragen . Wir schreiben hiefür
sofort die Ergebnisse :

Gegeben q , A nebst <p0 (15)
Gesucht x , y , y (16)

(9) S . 300 : J72
<Pi = q -+-

2 ^
A2 sin q cos q (17)

(12) S. 301 : _ q 1 — <p0
[1]

(18)

(10) S . 300 : A A3 1
y =

pj
cos <Pi +

pj 3^ 2 cos Ti sm2 Ti (19)

oder A A3 1
y = -

^
C°sq - — . — cos (pnn * <p (20)

(11 ) S . 300 : y = A sm (pj — A3 sin q l cos2 ipj (21 )

oder y — A sin q A3 — sin q cos2 q
OQ &

(22)

Nun geben wir auf S . 308 —309 ein Zahlen -Beispiel sowohl für die Formeln
(1*)— (12*), als auch für deren Umkehrung ( 17) - (22) . Da die ganze Rechnung mit
allen Einzelzahlen angegeben ist , wird zur Erklärung nichts weiter nötig sein ; auch

einige vorübergehend eingeführte Zwischen -Bezeichnungen (a) , (b) u . dgl . erklären
sich selbst als kleine Übergangshilfen , mit Rücksicht auf Raummangel .

Die Coefficienten-Logarithmen log [1], log [2], log V2, log (l -{- 2 <2), log (2 + t ),
sind aus den verschiedenen Hilfstafeln unseres Anhanges entnommen .

Im Übrigen sei nur noch bemerkt , dass man das Vorzeichen von y oder A
nicht in der ganzen Rechnung durchführen muss , wie bei uns theoretisch nötig war,
man braucht nur am Schlüsse zu merken , dass y, A und / immer gleiche Zeichen haben.

Der im nachstehenden Beispiele S . 308 und 309 benützte Coordinaten u
Punkt Celle ist einer der 40 preussischen Kataster -Nullpunkte , welche im Jahre 1

ringeführt worden sind .
Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 20
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Meridianbögen und Breiten -Differenzen .

Bei den kleinen Geltungsbereichen der Preussischen Kataster -Coordinaten -Systeme
wird die Beziehung zwischen der Ahscisse x und der Breiten -Differenz <f>i — <jp0 hin¬
reichend genau durch den Meridian -Krümmungs -Halbmesser M der Mittelbreite gegeben ,
nämlich :

= — - — M odere _ <h — <Po
[1]

wobei M der Meridian -Krümmungs -Halbmesser für die Mittelbreite ist , oder [1]
Ci

der entsprechende Coöfficient nach (13 ) S. 304 .
Indessen bei grösserer Ausdehnung empfiehlt sich andererseits eine allgemeine

Tafel der Meridianbögen , z. B . diejenige , welche auf S . 216 erwähnt wurde , welche
auch in unserem Anhänge Seite [38 ] von 10 ' zu 10 ' gegeben ist , oder besser in
neuer Berechnung Seite [55 ]— [57 ] von 1 ' zu 1 ' .

Bei Benützung einer solchen Tafel braucht man für den Coordinaten -Nullpunkt
mit gegebener Breite <p0 nur ein für allemal den Meridianbogen -Wert Bq zu be¬
stimmen , um dann für jede andere Breite <pi den zugehörigen Wert B \ und dann
x = Bi — Bq zu finden.

Pür den Wert qpo = 52 ° 37 ’ 32,6709 ”
, welcher zu dem Coordinaten -Nullpunkt

Celle gehört , haben wir die fragliche Interpolation schon beispielshalber aus anderer
Veranlassung behandelt , nämlich am Schluss von § 35 . S . 220 wurde gefunden
Bq = 5 832 371,046” als Meridianbogen vom Äquator bis zu dem Punkte Celle.

Hat man längere Zeit mit Punkten eines Geltungsbereiches zu thun , so kann
man auch noch weiteres allgemein tabellarisch vorbereiten , man kann z . B . eine Tafel
anlegen , welche für gegebene Pusspunkts -Breite gq sofort die Abscisse x giebt oder
umgekehrt . Z . B . in der Gegend von Hannover -Linden , im Geltungsbereiche Celle ,
benützen wir folgende Hilfstafel :

hische Breite = g> Meridianbogen = B B - Bq — X
52 ° 37 ' 32,6709 " 5 832 371,046 “ 0,000 ”

52 ° 30 ' 5 818 380,341 — 13 990,705 “
52 29 5 816 525,942 — 15 845,104
52 28 5 814 671,549 — 17 699,497
52 27 5 812 817,162 — 19 553,885
52 26 5 810 962,779 — 21 408,267
52 25 5 809 108,401 — 23 262,645
52 24 5 807 254,029 — 25117,017
52 23 5 805 399,662 — 26 971,384
52 22 5 803 545,301 - 28 825,745
52 21 5 801 690,944 — 30 680,102
52 20 5 799 836,593 — 32 534,453

A x

1854,399 ”*

1854,393
1854,388
1854,382
1854,378
1854,372
1854,367
1854,361
1854,357
1854,351

Man sieht übrigens aus dem Zusammenhang dieser Zahlenwerte , dass wenn
man den Meridian von Celle als x -Axe benützen will , damit der Punkt Celle als
Nullpunkt für die Berechnung gar keine Bolle spielt ; man könnte gerade so gut z. B .
qPo = 52 ° 30 ' als Nullpunktsbreite nehmen , dann würden alle x um 13 990,705 “ grösser ;
alle Differenzen der x und alles Übrige blieben aber gleich .
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Die Abscissen x eines solchen Coordinaten -Systems können beliebig lang sein,
sie könnten z . B . vom Äquator bis zum Nordpol hingehen , wenn man eine Tafel der
durchgehenden Meridianbögen , beniitzt .

Das führt auf den Gedanken , dass man z. B . den Meridian von Celle auch so
benützen könnte , dass die x schlechthin = B gesetzt würden , mit Weglassung
einer runden Zahl , etwa 5000 000 ; dann bekäme Celle als Zufallspunkt die Abscisse
x = 832 371,046“ und die Ordinate y = 0(000” .

In diesem Sinne , d . h . mit Zählung der x vom Äquator der Erde an , wollen
wir auch noch die beiden Formeln (17 ) und (18) zusammen so schreiben :

x = jqr sin V eos <P (23)
[ ij

Setzt man hier <p0 = 0 , d . h . zählt man vom Äquator an, so nimmt das erste
Glied von (23 ) den Wert B an , d . h . den Meridianbogen vom Äquator bis zur Breite <p ,

o Nund da im zweiten Gliede [TI = — =- und V2 = ist , so hat man :L J M M

A2
x — B + : N sin cp cos cp = B - X2 sin cp cos <p

2 Q
(24 )' 2 p [2]

Dabei wird N oder [2] zur Breite cp gehörig genommen , während wir es früher
zur Fusspunkts -Breite cp] genommen haben . Solche und ähnliche Unterscheidungen
würden sich erst in den höheren Gliedern , die hier nicht mehr mit genommen sind,
ausdrücken. Wir werden der Formel (24) oder ähnlichen , auch später wieder begegnen .

Rechnungs-Formular der preussischen Kataster -Anweisung IX . vom 25 . Oktober 1881.

Da in Preussen die Veröffentlichungen der trigonometrischen Abteilung der
Landesaufnahme in Form von geographischen Coordinaten geschehen , der Feld - und
Landmesser aber rechtwinklige Coordinaten haben muss, kommt die gegenseitige Ver¬

wandlung solcher Coordinaten so oft vor , dass die Kataster -Anweisung hiefür ein

„Trig. Form . 6 . “ gegeben hat .
Die dazu nötigen Hilfstafeln sind aber in der amtlichen Anweisung IX . nicht

enthalten, sondern es wird hiefür verwiesen auf die trigonometrischen und polygono-
metrischen Rechnungen in der Feldmesskunst von F . G . Gauss 1876 und 2 . Aufl . 1892.
Als Quellenschrift für die Methode des Form . 6 . wird angegeben : „Börsch , Anleitung
zur Berechnung der rechtw . sphär . Coordinaten
u. s. w. 1868, 1869, S. 19 und 1885 , S . 91 * . Na¬
mentlich die Rechnung mit Additamenten , welche

, , Xs cos cp sin2 cpunseren Gliedern dritter Ordnung -
g
-

u. s. w . entspricht , ist aus Börsch in das preus -
sische Kataster übergegangen .

Das erwähnte Form . 6 . betrifft nur die
Verwandlung der geographischen Coordinaten in
rechtwinklige Coordinaten , und nicht umgekehrt ;
auch ist die Berechnung der Meridian -Konver¬
genz nicht mit aufgenommen .

Fig . 2.
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Geographische Coordinaten g>, l aus rechtwinkligen Coordinaten w,
Coordinaten -Nullpunkt Celle mit <jD0 = 52 ° 37 ' 32,6709 "

Gegeben Agidius x = — 28 308,394“
Genäherte Berechnung von (p± — % aus x nach

der Hilfstafel Seite [39] des Anhangs ; mit
rund <jp = 52i /2 °

L 0 = 27° 44' 54,8477 ' '

y = — 23 271,813”
20 000” giebt 10 ' 47,1 "

8 000 „ 4 ' 18,85
300 „ 9,70

8 „ 0,24

<jP» = 9h + Wo= 52 ° 29' 54,72" Wo ■■
— 15 ' 15,89"

52 ° 37 ' 32,67"

Damit geben die Hilfstafeln des Anhangs :
mit cpm

Seite [33], log [1] = 8 .509 9477 -2

Genähert <pa = 52 ° 22' 16,78"

mit (jpj
Seite [33] , log [2] = 8 .508 8706 -9

„ [21 ] , log F2 = 0 .001 086

<Pi = 9>o + i1] *

W = Wi - {
^

y
^ Vnangcp l

i [2] y / [2] « IB i
X = -DAA - sm 2 qpcos cp1 \ cosqD] / 3 p2

oder :
, [2 ] y [ [2] y \ s 1 . „X == + -L+ A sm% qpcos cp \ COSCpj 6 ^

y = m -y tang cp1 — h (1 +

oder :

y = [2] y ^ ng w + * (2 + <!)

log [1] ! 8 .509 9477 -2
log x j 4 .451 9152 -3»

log [2]
logy

8 .508 8706 -9
4 .366 8302 -2»

log [2] y 2.875 7009 -1»
log tang (jp; 0 .113 OOll ’l

log [1] x | 2 .961 8629 -5»
[1] x = — 915,9314 "

log [2] y
log cos qpx

2 .875 7009 -1»
9 .785 7153 -5

log (c) 2 .988 7020 -2»
(c) = — 974,3209 "

Hilfstafel Seite [49 ]
log (b)

(6) = -
3 .089 9855 -6»
1230,2278 "

i°9 ([2] y2
log tang cpj

log V2
- q -- 2e )

log (o)
(«) = —

5 .751402
0 .113 001
0.001086
4 .384545 »
0 .250034 »

1,7784"

Celle g>0 = 52° 37 ' 32,6709"
+ [ l ]x = — 0° 15 ' 15,9314

Wl 52 ° 22' 16,7395"
1,7784(«) ;

_
__ cp = 52 ° 22 ’ 14,9611 "

Agidius (Hannover ).

(6)3 | 9.2700 »
sw * qpj 9 .7974

- (1 --V )
(*)

(6'
)3

sirfi qp

8.8940 » (1 6 pS)
7 .9614 - W )

9 .2699»
9 .7974

8 .5930
7 .6603»

-1- 0,0091" — 0,0046" + 0,0094 "

log [2] y 2 .875 7009 -1» log [2] y
log cos cp 9 .785 7202 -1 log tang cp

log (6 ') 3 .089 9807 -0» (c')
(5'

) :
(&) — (c)

— 1230,2278"
-+- 0,0091

■1230,2141 "

(6 '
) + (c ' )

— 1230,2141 "
— 0,0046

([2] 2/3
h

(1 + 2 <2)
- (l :6e2)

(c?)

8 .6271”
0 .1130
0 .6399
8 .5930»
7 .9730

( [2] yf i 8-6271.u J
( ! 0.1130

(2 + t2) | 0.5661
(1 :6p2)~
+ W \ 7.8*

_ 0,0079
"

(C
'
) :

(c) — (d)

- 974,3209"
0,0094

— 1230,2187" — 1230,2187 "
X = — 0 ° 20 ' 30,2187 ”

Celle L 0 = 27° 44' 54,8477
Agidius L = 27 ° 24 ' 24,6290 "

2 .875 7009-1»
0. 11 2 9933^
27988 694287

. 974,3035
"

(c'
) + (<?)

_ 974,3035
"

_ _0,0079 _
^ +974,sTl4- 974,3115

Meridian -Convergeni
: - 16 ' 14,311 "
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Rechtwinklige Coordinaten w, y aus geographischen Coordinaten cp, X.
<p0 = 52 ° 37 ' 32,6709"

cp = 52 ° 22' 14,9611"
Coordinaten -Nullpunkt Celle

Gegeben Ägidius
L0 =
L =

27° 44' 54,8477"

27° 24' 24,6290"

Differenzen ■<p0 = — 15 ' 17,7098" X = — 0 ° 20 ' 30,2187"

1230,2187"

Z2
2p

Ä.2 sin cp cos <p9>i = <P -

<Pi — <Po
[1]

-

Anhang Seite [21 ] giebt

logX 3 .089 9823-2
logXS 6 .179 965

log sin cp 9 .898 714
log cos cp 9 .785 720

log F2 0 .001 086
log (1 : 2 g) 4 .384 545

log (o) 0 .250 030

cp = 52° 22' 14,9611 "
+ («) -h 1,7784

<Pi = 52° 22' 16,7395 "

% = 52° 37' 32,6709 ''Celie

cpx - cpü = ~ 15' 15,9314"
= — 915,9314

<pm= 5El±SEo = 52 ° 29' 54,7052 "

(o) = 1,7784"

Mit tp! giebt die Hilfstafel Seite [33] des

Anhangs :
log [2] = 8 .508 8706-9

und mit (pm giebt dieselbe Hilfstafel
Seite [33 ] :

log [1] 8 .509 9477-2
hiezu log (<pj — <p0) 2.961 8629-5

log x 4 .451 9152-3
— 28308,394-»

y
[2]

c°s -
1 • [2] | 1 .491 1293 -1

3.089 9823-2»
9 .785 7153-5

is

X
GOSIpj

4 .366 8269-8,,

3^ 2 608 ^ sin 2 «pj oder y = C0S (P “ Xs i
[2] 6p 2 cos ^ sm2 ^

(5) 4 .3668» 1 : [2] 1.491 1293-1 (>
1

4 .3668»
Xs 6 .1800 X 3 .089 9823-2» 6 .1800

sinS ® , 9 .7974 cos cp 9.785 7202-1 sin%cp 9 .7974
(1 : 3 08) 8 -8940 ~

W ) 4 .366 8318 -4» — (1 : 6 p2) 8 .5930»

(e) 9.2382» («' ) 8 .9372

(b) = — 23 271,639
(c) = _ 0,173~
y

~
= — 23 271,812

(V) = — 23 271,900
(d) = + 0,087”

y = — 23 271,813

y ■■ Xs

X
üi _
l <*>i

X sin cp1 — sin cpi cos%ipx
3 .089 9823 -2»
9-898 7164-6
2 9̂88 ögsTst

oder i = X sin cp ■ Xs
'
3 p2 sin cp eos2 tp

Ä sin <p1
X*

2 .9887»
6 .1800

X
sin cp

3 .089 9823-2»
9 .898 7135-7

sin X cp
Xs

2 .9887»
6 .1800
9 .5714
8.8940COS2 Cpi

— (1 : 6 p2)
9 .5714
8 .5930»

X sin <p 2 .988 6958-9» eos2 <p
(1 : 3 p2)

(d) 7 .3331 (d
') 7 .6341»

X sin <pi = — 974,3136 "
(d) = -+- 0,0022 "

'
7 = ^ 974(3114” — 16' 14,3114"

X sin pp = _ 974,3072"
— 0,0043"

y = ^ W4Mi5 r

Schluss -Ergebnis : Ägidius y = — 23 271,813 *" x = — 28 308,394“

Meridian -Konvergenz y = — 16 ' 14,311" .
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In Fig . 2 . S. 307 sind die Bezeichnungen dieses Formulars eingeschrieben,
es ist nämlich :

<Po die Breite des Coordinaten -Ursprungs ,
<fs die Breite des Ordinaten -Fusspunktes ,
<p die Breite des gesuchten Punktes ,
X0 die Länge des Coordinaten -Ursprungs ,
X die Länge des gesuchten Punktes ,
x und y die gesuchten Coordinaten .

Dabei ist x von qp0 bis qp/ auf dem Meridian nördlich positiv , südlich negativ
gezählt und y rechtwinklig zum Meridian östlich positiv , westlich negativ gezählt .

Die Aufgabe lautet : Aus gegebenen qp0, qp, k0, X die Coordinaten x , y zu
berechnen .

Die Differenz X — Xq wird in Sekunden verwandelt , mit rf ’ bezeichnet , und
weiter kommt die Breiten -Differenz qp/ — qp = ip" in Betracht , welche aus ?f berechnet
wird nach der Formel

-r - •/ v
Dieses entspricht unserer Formel (17) S . 305 für qPi —■qp, d . h . :

qpj — qp = A2 ~ - sin cp cos cp W
&Q

Daraus ergieht sich , dass der Faktor q in der Formel (25 ) , umgesetzt in
unsere Bezeichnungen der Formel (26), diese Bedeutung hat :

7 =
2 p

sm cp cos qp 1* 0

y2Bei dieser Gelegenheit bemerken wir , dass das hier gebrauchte auch in

den Formeln und Tafeln der trigonometrischen Abteilung der Landesaufnahme vor¬
kommt mit der Bezeichnung (3) , wie wir in § 39 . S . 228 schon angegeben haben.
In einem Formular kann man den konstanten Logarithmus log (1 : 2 p) = 4 .384 545
gedruckt aufnehmen , so dass also eine Tafel für log F 2, welche man zu sehr vielen
anderen Zwecken ohnehin braucht , genügt ; auch log sin cp und log cos cp nehmen wir
lieber besonders , als vereinigt in der Tafel für logq , weil es hier angezeigt ist,
mindestens 6 stellig scharf zu rechnen .

Nachdem man in dem genannten Formular 6 . rp" zu qp addiert , und damit qp;
erhalten hat , kann man aus der Differenz cp/ — qjg die Abscisse x berechnen . Das
Formular bedient sich hiezu der schon oben (S . 306) von uns citierten und beschrie¬
benen Hilfstafel von F . G . Gauss , wobei aber zu bemerken ist , dass die Interpolation
eine Rechnung mit 7 stelligen Logarithmen verlangt . Auch unsere Rechnung auf
S. 309 mit der Mittelbreite qpm ist hier noch nicht die beste ; auf ein bequemeres
Rechnungsverfahren , nach der Formel (37) § 35 . S . 218 werden wir später zurück¬
kommen ; auch ist hier die neue Tafel Seite [55]—[57] zuzuziehen .

Um vollends die Ordinate y zu erhalten , rechnet jenes Formular 6 . mit Läng®'
Sekunden L und mit Additamenten , wodurch in anderer Form dasselbe erhalten wird,
wie durch die Reihen -Entwicklung (19) S . 305.

Wenn man unser Beispiel Ägidius von S . 309 nach dem fraglichen Formular 6.
behandelt , so bekommt man in dem Teile für y .
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<P/ = 52 ° 22 ' 16,7395 " y ■■
log rf’

0 ° 20 ' 30,2187 "

= log 1230,2187 " 3 .089 9823

y = 23271,81-

Diesem entspricht bei unserer Rechnung S . 309 :

log
Addit .-Tafel für 3 .089 + 2 Arf '

Tafel der log L für cp = 52 ° 23 ' log L ,
Interpolation für — 43,2605 "

, dlogL

51
1 .276 7268

1179

43,2605
z/1 "

1 .6361
1 .4354

r3 .0815

log lang (y : r)
Addit .-Tafel für 4 .367 — 2 A y

4 .366 8321
— 19

logy 4 .366 8302

Hilfstafel Seite [33 ] für 52 ° 22 ' 15 "
, log [2] 8 .508 8707 -0

(V) 4 .3668
l°g (1 : [2]) 1.491 1293 -0 42 6 .1800

4 = 0 ° 20 ' 30,2187 " = 1230,2187 , logl 3 .089 9823 -2 sin2 cp 9 .7974
<jp = 52 ° 22 ' 14,9611 " log cos cp 9 .785 7202 -1 - (1 : 602 ) 8 .5930 „

(oder Formel (13 ) S . 301 log (&
') 4 .366 8318 -3 log [d) 8 .9372 „

mit cos 52 ° 22 ' 15,5539 " ) (b') = 23271,900 (C) = - - 0,087

y = 23271,813-

Es mag unentschieden bleiben , welche der verschiedenen Rechnungen die bessere
ist , wir haben aber die Vergleichung hier hergesetzt , weil die Landmesser oft den
Wunsch haben , ausser der ihnen durch amtliches Formular vorgeschriebenen Rechnung
eine unabhängige Kontrollrechnung nebenher zu haben .

Bemerkung über die geographischen Längen und Breiten.
Die geographischen Längenunterschiede X werden teils in Bogenmass teils in Zeitmass an

gegeben , zu deren gegenseitiger Verwandlung unsere Hilfstafel auf Seite [42] des Anhangs benützt
werden kann.

Als Beispiel wollen wir im System der Preussischen Landesaufnahme nehmen :

Berlin , Kauenberg Xo= 31° 2> 4,9280" = 2» 4« 8,328533«
Celle x — 27° 44"54,8477" = 1Ä 50«»59,656514«

Differenz Xo~ X = 3° IV 10,0803" = 0* 13«» 8,672019s
Bei der Benützung der Hilfstafel Seite [42] kann man beliebig viele Dezimalen schreiben,

° gleicl1 nur 0,0001« angegeben ist . Z. B. für vorstehendes J),0 — X bat man :
3°
17' =
10" =
0,08" =
0,0003" =

0?» 12«» 0«
lm 8«

0,666 667«
0,005 333«
0,000 020«

Summe 0» 13«» 8,672 020«

0* 13 «»=
8« =
0,6* =
0,07« =
0,002« s=
0,00002« =

3° 15' 0"
2' 0"

9,0"
1,05"
0,030"
0,00030"

Summe 3° IT 10,08030"

fü - geographische Breiten , betont ,Was die Zahlenscharfe solcher Angaben , ebenso wie auch t g
ß (ygL § 36. S. 162 bisso kommt die etwaige astronomische Messung dabei für uns nie

^ maBS-Beßtimmungen auf der163). In geodätischer Beziehung gelten Längen und Breiten
g0 bringt 0,001" immerOberfläche des EUipsoids ; und da z. B. 1' ' & Breite rund —

Coordinaten auf 0,0001" oderaoeh 0,03«» oder 3 Centimeter , uud man muss daher geograp «
Ue&mng en , mit der immergar auf 0,00001" genau angeben , wenn man die Genauigkeit geo &

Breiten ausdrücken will,formell etwas übertrieben notigen Scharfe , durch geographisc e an
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mg. l .
Sphärisches Polardreieck .

... . § 56 .

§ 56 . Entfernung und Azininte ans geographischen Coordinaten.
Die Einführung des verkürzten Breiten -Unterschiedes nach § 54 . S . 302 genügt

bereits , um auf massige Ausdehnung von Dreiecken III . Ordnung mit geographischen
Coordinaten Entfernungen und Azimute zu berechnen .

Indem wir zunächst die Aufgabe rein sphärisch betrachten , haben wir im An¬
schluss an Eig . 1 . folgendes :

Wenn zwei Punkte P und P ' durch ihre geo¬
graphischen Breiten qp und qp

' nebst ihrem geographi¬
schen Längen -Unterschied X gegeben sind , so wird da¬
durch ein sphärisches Dreieck NPP ' bestimmt , dessen
Seite NP = 90° — cp, dessen Seite N P ' = 9 0 ° — cp

1
und dessen Winkel bei N = X ist .

Man kennt also von dem Dreieck zwei Seiten
und den eingeschlossenen Winkel , und daher ist auch
die dritte Seite a und die beiden anderen Dreiecks -
Winkel a und 180 ° — «' bestimmt , d . h . man kann
dann die Entfernung beider Punkte PP ' = ff und die
beiden Azimute in P und in P \ bezw . = a und = cf
berechnen .

Wenn man die Gauss sehen (bzw. Neper sehen ) Gleichungen von § 27 . S . 165
auf unseren Pall anwendet , so bekommt man :

. er . «sin -
g

- sm —
g

-

. tr a ’ -t-sm -
g

- cos —
g

-

a cp' -h cp . X— = eos - fr — sm - jr-Z z
a . <»' -f- Cp X— sm cos -=

Z Z
(T . a ' — « . qp' qp . Xcos - jr- sin — =— = sm — — smZu z z
a a —

coscos -
2

- cp — qp X■cos 0 cos
z z

(1)

Wir wollen die Mittelwerte besonders bezeichnen :

und --— = a 0

cp und a ’ ■

cp + cp-
2

= <*>
a -p- a

2
Wenn <j und X klein sind , so werden auch qp

'
hat man genähert aus (1 ) :

ff sin a 0 = cos cp0 X
ff cos a 0 = cp

’ — cp
a ' — a = sin qp0 k

Die beiden ersten Gleichungen (2) geben :
Ä cos <p0tang a 0 =

k cos (
<P

' — <P
_ ¥ — V

cos a 0
oder = Y (cp

' — <p)2 -+- (X cos cp0)2

■a klein und dann

(2)

(3)

(5)

Diese sphärischen Formeln kann man auf das Ellipsoid übertragen , wenn man
f,r _ ™ Jfnur überall nach (9) § 54. S. 303 den verkürzten Breiten -Unterschied = W — ^ N
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an Stelle des sphärischen Breiten -Unterschiedes setzt , und im übrigen den Quer-

Rrümmungs -Halbmesser N der Mittelbreite
(p + <p als Kugelhalbmesser r zu Grunde legt .

Die Aufgabe sei mit Bezugnahme auf Fig . 2 . so gefasst :

Gegeben sind zwei Punkte auf dem Ellipsoid , mit den Breiten

<jP und tjp
' und mit dem Längen -Unterschied X ; es soll die Entfernung

beider Punkte = s , linear auf dem Ellipsoid , und die beiden Azimute

a und a’ berechnet werden.
Die Gleichungen (3), (4 ) und (5) geben :

-+- f
'

~
2

~ ~« ' — a = X sin <p0 = Ä sin -

tang a0 — tang
' -t- a _ X cos <p0

_ s _ X COS<p(,
N sin «o

(<P
’ — 9>)

(V — <P)

M
N

M
N

COS« o

oder W — fl»)
M \ 2
N

■(it COS(jDj))2

Wir wollen diese Formeln etwas umstellen , und auch die nötigen q zusetzen ,

wodurch wir erhalten :

oder

tana
C0S Vo - F 29 0 ~ M (jip' - <p) <p ' — <p

(7)

N . M
— X. cos qo0 — (<p — qP) (8)

sm «o COS« 0

= y [j
x ws gi,o)

2
+ ^ (9)

Oder endlich wenn man = [ 1] und ^ = [2] setzt , wie in unseren Hilfs -
M N

tafeln angenommen ist , (vgl . § 40 . S . 230 ) kann man die Formeln auch so schreiben :

tang «0 = lang - pq
cos «Po

P
[1]

pi
COS<Po

sin a0

<jP ~ <f>

[ 1]
cos a0

oder X \ 2

m
603 ^ )

■ w —ß"
PT

(10)

di )

(12)

Zu einem Zahlen -Beispiel nehmen wir die zwei trigonometrischen Hauptpunkte

der Stadt Hannover , welche nach Mitteilung der trigonometrischen Abteilung der

Landesaufnahme von 1887 folgende geographische Coordinaten haben :
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Ägidius . . . cp
' = 52° 22 ' 14,9611 " L ' = 27 ° 24' 24,6290" 1

Wasserturm . cp = 52° 21 ' 49,9080 ' ' L = 27° 22 ' 25,0168 " } (13)

Differenzen eff— qD= + 0 ° 0' 25,0531 " 4 = 0 ° 1 ' 59,6122 "
= 25,0531" = 119,6122 "

Mittel <jp0 = 52 ° 22' 2,43455 "
Mit dieser Mittelbreite geht man in die Hilfstafel des Anhangs Seite [22] ein,nnd entnimmt durch leichte Interpolation :

log [1] = 8 .509 9574 log [2] = 8 .508 8708
und die weitere Eechnung nach den Formeln (6 ) und (10 )— (12 ) giebt :

o:0 = " = 71 ° 6 ' 37,69”

0 ° 0' 47,36"

a! = 71 ° 7 ' 25,05"
a = 71° 5 ' 50,33"

log s
S :

: 3 .378 7016
: 2391,672 » (14)

Azimute und Richtungswinkel .
Während die verschiedenen Coordinaten cp, X und x , y in ihrer Bedeutung für

die Kartenzeichnung sofort verständlich sind , bedürfen oft die Begriffe von Azimut
und Richtungswinkel und ihrer Differenz -Meridiankonvergenz , noch anderer Klarlegung,wozu unser mehrfach benütztes Beispiel Wasserturm -Ägidius , das in Fig . 3 . S . 315
dargestellt ist , dienen soll .

In Fig . 3 . ist Celle, (Stadtkirche , Helmstange ) nordöstlich von Hannover , der
Nullpunkt , auf welchen sich die rechtwinkligen Coordinaten von W und A beziehen ;es sind also die Geraden A A' und W W ' Parallelen zu dem Meridian von Celle,
folglich W ’ WA = a und W AA " = a' die Richtungswinkel (Preuss . Katasterbezeich¬
nung „Neigungen “) der Geraden WA in W und A.

Das sind dieselben Winkel , welche in Fig . 2 . S . 259 mit a und « ' bezeichnet
waren , während wir jetzt , mit Änderung der Buchstaben -Bezeichnungen , die Richtungs¬winkel mit a , dagegen die Azimute mit a bezeichnen , so dass die Meridian -Konver¬
genzen in W und A diese sind ;

/ — ^ — <* , — y = a — a G °f
Wir bemerken , dass hier y und y

’ negativ sind , weil in unserem Falle Fig . 3.die Ordinaten y negativ sind , und y stets das Vorzeichen von y hat .
Der Gang unserer Berechnungen ist dieser :

Punkt Geogr . Breite Geogr . LängeCelle, Stadtkirche . . . 52 ° 37 ' 32,6709 " 27 ° 44 ' 54,8477 ”
Ägidius (Hannover ) . . . 52 ° 22' 14,9611" 27 ° 24 ' 24,6290"
Wasserturm (Linden ) . . 52 ° 21 ' 49,9080 " 27 ° 22' 25,0168 " ,Wie man hieraus , unter Annahme des Punktes Celle als Coordinaten -Nullpunkt ,die rechtwinkligen Coordinaten des Punktes Ägidius berechnet , haben wir auf S . 309

ausführlichst gezeigt , und da man für den zweiten Punkt Wasserturm dieselbe Berech¬
nung machen kann , ist nachgewiesen , auf welche Weise man zu den rechtwinkligenCoordinaten von Ägidius und Wasserturm gelangt , nämlich ;

(16)
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Fig . 3.

* X

- U - 6 — -
Celle

•'-1

/ o/Ä .Aegidius

Ägidius . . y' = — 23 271,813 ’» af = - 28 308,394-» ■>
Wasserturm y = — 25 538,489” ® = — 29 071,472» l (17)

Differenzen y ' — y = -+- 2 266,676 d — * = + 763,078

Dadurch ist die Linie Wasserturm -Ägidius nach Entfernung und Richtung fest¬

gelegt im ebenen rechtwinkligen (Soldner sehen) Coordinatensystem :

log WA = 3 .378 7020 WA = s = 23 91,674» (18)

o = {WA ) = 71 ° 23 ' 39,0" d = (A W ) ± 180° = 251 0 23' 39,0" (19)

Andererseits haben wir oben bei (14 ) gefunden :

s = 2391,672 » « = 71 ° 5' 50,3" a ' = 71 ° 7 ' 25,0" (20)

Die Vergleichung von ( 19) und (20) giebt :

a — a = 17' 48,7" d — « ' = 16 ' 14,0” (21)

Dieses muss stimmen mit der Berechnung von y auf S. 309 für Ägidius und

mit der entsprechenden Berechnung für Wasserturm , nämlich :

y ~ — 17 ' 48,9” / = — 16' 14,3" (22)

Dass hier zwischen (20 ) und (22) noch Heine Differenzen bis zu 0,3" Vor¬

kommen, hängt damit zusammen , dass schon die Rechnung von S . 309 nicht unbe¬

dingt auf 1»» sicher ist , weshalb auch (18) und (20) um 2»» differieren.
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Wenn man bedenkt , dass bei solchen Verhältnissen die letzten Stellen 0,001*
und 0,1 " gar keinen inneren Sinn mehr haben , sondern nur als überschüssige Kontroll¬
stellen für die vorhergehenden 0,01” und 1" mitgeführt werden , so wird man sagen:
die Proben (18 ) und (20 ) , sowie (21 ) und (22) stimmen innerhalb der beabsichtigten
Rechenschärfe .

§ 57. Karten mit geographischen Netzlinien .
Wenn der Plan einer Stadt oder einer Feldmark in rechtwinkligen sphärischen

Coordinaten bearbeitet ist , was gewöhnlich in grossem Massstab geschieht , so dass
viele Einzelblätter entstehen , so kann man daraus auch Übersichtskarten und topo-

Fig . r .
Stadt und Feldmark Linden bei Hannover mit Coordinaten -Netzlinien und mit geographischen

Hetzlinien . Massstab 1 : 37 000.

i Techn. HochschuLe

X*- 27000;
Christus «i

j Han «

?*\ l3XL
Martin Ä

/ 93;Wasserturm

.Bahnhof

Zuckerfabrik

HenndorT" önjesberg

Maasstab 1: 37000.
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graphische Karten kleinen Massstabes herstellen , in welchen immer wieder das qua¬
dratische Netz der rechtwinkligen Coordinaten den festen Eahmen für die Zeichnung
und Vervielfältigung bietet .

Bei topographischen Karten in 1 : 25 000 und wohl auch schon hei Stadt -Über¬
sichtskarten in 1 : 5 000 bis 1 : 10 000 verlangt man aber wegen des Anschlusses an
die allgemeine Landes -Topographie , und zur allgemeinen geographischen Orientierung ,
die Binzeichnung von Meridianen und Parallelkreisen für runde Werte der geographi¬
schen Längen und der geographischen Breiten , oder kurz , die Einzeichnung von geo¬
graphischen Netzlinien , welche die Karte in geographische Trapeze einteilen .

Die Bestimmungsstücke hiefür bekommt man durch die Formeln , welche wir
in § 55 . entwickelt und durch die Bechenschemate S . 308 und S . 309 erläutert haben.
Insbesondere das zweite Schema S . 309 wird hier gebraucht , indem man für gegebene
runde Werte der Längen und Breiten L und <jp die zugehörigen rechtwinkligen Co¬
ordinaten y und * berechnet , und darnach die Trapez -Bcken in das rechtwinklige
Coordinaten-System einträgt .

Als Beispiel hiefür nehmen wir die Karte der Stadt und Gemarkung Linden
bei Hannover, deren Aufnahme wir in den Jahren 1887—1889 gemacht haben (vgl .
hiezu II . Band , 4 . Aufl. 1893 , S . 353 ) .

Die rechtwinkligen Coordinaten beziehen sich auf das Preussische Kataster¬

system 27 . Celle.
Die Gemarkung liegt etwa zwischen den geographischen Längen 27 ° 21 ' und

27 ° 24 ' und zwischen den geographischen Breiten 52 ° 21 ' und 52 ° 23'
, sie umfasst

also 6 Minuten -Abteilungen ; und wir haben für die 12 Ecken des entsprechenden
Minuten-Netzes die rechtwinkligen Coordinaten y und x nach dem Schema von S . 309
berechnet, wie in folgender Übersicht angegeben ist .

X~ 27° 21' X= 27° 22' ;L=r27 0 23' X= 27° 24'

<P — 52° 23' y = — 27 135,04™

x = — 26 896,63»»
y — — 26 000,36m

as— — 26 902,74«
y = — 24 865,68«

x = - 26 908,61m
y = — 23 731,00»

x = — 26 914,22»

IP= 52° 22' y = — 27 145,26m
x = — 28 750,98m

y = — 26 010,14m

x = - 28 757,09m

y = — 24 875,04m

3!= — 28 762,96m

y = — 23 739,94m

z = — 28 768,56m

= 52° 21' y ~ — 27 165,47m
x = — 30 605,30«

y = — 26 019,93m

x = — 30 611,45m
y — 24 884,40m

cc= — 30 617,32*»
y — — 23 748,87m

x = — 30 622,90m

Man kann diese Coordinaten in ihren Differenzen durch die Meridianbögen und

arallelbögen der Tafeln auf Seite [38 ] — [41 ] unseres Anhanges kontrollieren , z . B . in
em Meridian von 1 = 27 ° 21 ' haben wir aus dem vorstehenden :

QD= 52° 23'
<p = 52 ° 22'

T = 52 ° 21 '

* = — 26 896,63“

x = — 28 750,98”

x = — 30 605,30”

A x = 1854,35”
Ax = 1854,32”

Nach der Tafel Seite [38] des Anhangs ist zwischen 52 ° 20 ' und 52 ° 30 ' der

Meridianbogen = 18 543,748“ , also für 1 Minute m = 1 854,37”, was mit den vor¬
stehenden Werten A x insofern genügend stimmt , als für genauere Rechnung schärfere
Interpolation in der Tafel Seite [38] nötig wäre , und eine kleine Abweichung zwischen
wi und A x auch in der Soldner sehen Projektion begründet ist .
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Um auch die Ordinaten -Differenzen zu kontrollieren , könnte man die Längen-
Grade der Tafel Seite [36]—[37 ] oder Seite [41] des Anhangs

"benützen , wobei aber
viel zu interpolieren wäre ; sicherer geht man zu Wege durch die unmittelbare Be¬
rechnung von 1 Längenminute nach § 36 . S . 220 , nämlich :

v _ N cos cp 60 cos cp~ ~
q

~ -
[2]

wo log q
' — 3 .536 2739 ist , und log N aus der Hilfstafel Seite [20] oder log [2] auf

Seite [33] des Anhangs gefunden wird , z . B . für qp = 52 ° 23' findet man log N — 6 .805 5547
oder sofort log [2] = 8 .508 8704 und damit nach vorstehender Formel V = 1134,69",
während die Ordinaten auf dem Parallel von <p = 52 ° 23' nach der obigen Tabelle geben :

X = 27 ° 21 ' y = — 27 135,04™
X = 27 ° 22 ' y = — 26 000,36 ”*
X = 27 0 23 ' y = — 24 865,68“
X = 27 ° 24' y = — 23 731,00“

Jy - 1134,68“

dy = 1134,68“

Ay - 1134,68”

Diese Ay stimmen hinreichend mit dem vorhin berechneten l' = 1134,69" .

Als zweites Beispiel dieser Art nehmen wir das in Preussen eingeführte Grad¬
netz für topographische Karten .

Das Netz der Meridiane und Parallelkreise für eine topographische Karte kann
man auf zweierlei Art herstellen , entweder unmittelbar durch Konstruktion der Tra¬
peze aus den Meridianbögen und den Parallelbögen , oder durch Einrechnen der Trapez-
Eckpunkte in ein rechtwinkliges Coordinatensystem , das man zu Katastervermessungen ,
Stadtvermessungen und dergl . ohnehin hat .

Wir wollen dieses an dem Beispiele der zwei Messtischblätter der topographi¬
schen Abteilung der Landesaufnahme zeigen , auf welche die Stadt - und Feldmark von
Hannover mit Linden fällt , wie in Fig . 2 . S . 319 gezeichnet ist .

Die zwei Trapeze AB CD und GDEF liegen zwischen den Breiten 52 ° 30 ',
52 ° 24 '

, 52 ° 18' und zwischen den Längen 27° 20' und 27 ° 30' und haben Seitenlangen,
welche in Tabellen verfügbar sind , auf Seite [41 ] des Anhangs , woraus wir entnehmen :

cp = 52° 30' MB = 11 316,99 “
52° 24' CD = 11 342,65"
52 ° 18 ' EF = 11 368,27»

AC = BD = 11126,31 “
CE = DF = 11126 .12“

j
Dazu auch die Flächen :

A B CD = 126,0591 «*” und CD EF = 126,3423 «*“
Wenn man etwa diese Masse nicht vorrätig hat , aber wenigstens die Krümmungs-

Halbmesser M für den Meridian und N für den Querbogen , so kann man die Trapez¬
seiten ebenfalls berechnen , z. B . :

4C = ^ 6 ' = f (2)
Q [1]

a Tt ^ 1/u 600 ict)AB — — 10 cos cp = — • W
Q [2]

wobei M oder [1] zur Mittelbreite von A und C, und N oder [2] zu der Breite von
A und B selbst gehört .

'

Die Linien AB , CD , EF sind streng genommen ein wenig gekrümmt zu
zeichnen , doch macht das im Massstab 1 : 25 000 für die preussischen Messtischblätter
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Fig . 2.
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so wenig aus , nämlich höchstens 0,1 ”"" als Querabweichung in der Mitte zwischen dem
Bogen A B und der Sehne A B , dass es neben der Unsicherheit des Papiereinganges
u . s . w. vernachlässigt werden kann . Wir werden dieses später behandeln .

Jedenfalls kann man mit den bei (1) angegebenen Trapezseiten die Trapeze
scharf auftragen und dann versieht man noch die obere und untere Seite jedes Tra¬
pezes mit einer gleichförmigen Teilung von 10 ' = 600"

, ebenso die linke und rechte
Seite mit einer Teilung von 6 ' = 360”

, worauf man jeden Punkt scharf in das Blatt
eintragen kann , dessen geographische Coordinaten vorhanden sind .

So kann man z . B . die 6 Hauptpunkte von Hannover , welche in Fig . 2 . ein¬
gezeichnet sind , eintragen nach den geographischen Coordinaten , welche wir früher
mitgeteilt haben in „ Handb . d . Verm . “ I . Band , 4 . Aufl. , 1895 , S . 324 .

Dieses ist das Verfahren der topographischen Abteilung der preussischen Landes¬
aufnahme .

Ein zweites Verfahren bietet sich dar , wenn man über eine Aufnahme in recht¬
winkligen Coordinaten verfügt , etwa in einem der 40 preussischen Katastersysteme,
wie wir an dem Beispiele von Hannover zeigen wollen, unter Zugrundlegung des vor¬
geschriebenen Coordinatensystems mit dem Nullpunkt Celle.

Es handelt sich darum , die rechtwinkligen Coordinaten x , y zu berechnen für
diejenigen Punkte A , B . . ., welche als Eckpunkte der geographischen Trapeze auftreten.

Man kann sich dazu der Rechnung nach dem Schema von § 55 . S . 309 be¬
dienen . Wir haben etwas schärfer nach anderer Formel gerechnet , die erst später
mitgeteilt werden kann . Jedenfalls muss auch die Rechnung nach dem Schema von
S . 309 auf l c“ genau Folgendes geben :

y
Eckpunkt A (N .W .) — 28195,133 ”*

„ B (N .O .) - 16878,268
„ G (W. ) — 28259,063
„ D (O . ) - 16916,537
„ E (S .W .) — 28322,905
„ F (S . O .) — 16954,754

x
— 13909,649 ”* \
— 13961,659 /
— 25035,885 (
— 25087,943 /
— 36161,934 l
— 36214,040

'

0)

Mit diesen rechtwinkligen Coordinaten trägt man die Trapez -Eckpunkte in
das rechtwinklige Coordinatennetz ebenso ein wie alle anderen Punkte der Vermessung,
und die Trapeze ergeben sich dann ganz von selbst , allerdings mit ganz kleinen Än¬
derungen , welche von der Projektionsverzerrung herrühren . Folgendes ist die Berech¬
nung der Trapezseiten aus den Coordinaten :

Seite Ay A x Y A ■+■A aj2
AB 11316,865”* 52,010 11316,985 ”*
CI0 11342,526 52,058 11342,645
EF 11368,151 52,106 11368,270AC 63,930 11126,236 11126,420GE 63,842 11126,049 11126,232BD 38,269 11126,284 11126,350DF 38,217 11126,097 11126,163

Dann ist die Vergleichung zwischen den wahren Seiten nach (1) und deren
Projektionen in (5) :
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Trapezseite wahr Projektion Differenz
AB 11316,99 ” 11136,99” 0,0 ”
CB 11342,65 11142,65 0,0
EF 11368,27 11368,27 0,0
AC 11126,31 11126,42 + 0,11
CE 11126,12 11126,23 + 0,11
BD 11126,31 11126,35 + 0,04
DF 11126,12 11126,16 + 0,04

Die Süd- und Nord -Seiten werden in der Projektion richtig darges

(6)

sein muss , dagegen die West - und Ost -Seiten sind in der Projektion zu gross um
0,11™ und um 0,04” , was von der Projektionsverzerrung herrührt , nämlich :

f ^ ACote ^ ClS

Mit y = 28200 und y — 16900 , und log r = 6 .8040 giebt dieses gerade die
oben bei (6) erhaltenen Abweichungen 0,11” und 0,04” , womit alles rechnerisch
sichergestellt ist .

Die Projektionsverzerrungen , welche nach (6) höchstens 1 : 100 000 betragen ,
sind in der topographischen Kartenzeichnung ganz unmerklich , es sind dieselben ,
welche auch in der viel feineren Katasterzeichnung schon vernachlässigt werden.

Wenn man den Trapezrahmen nach den rechtwinkligen Coordinaten (4) auf¬
getragen hat , bekommt man also innerhalb der äussersten Zeichenschärfe von 0,05“”
genau dasselbe wie bei der Behandlung mit den unmittelbaren Trapezseiten von (1),
und im übrigen giebt sich auch die Vergleichung der beiden Verfahrungsarten aus
dem bisherigen leicht :

I . Aufträgen des Trapezes nach den Massen (1) giebt einen Bahmen für geo¬
graphische Coordinaten .

II . Aufträgen des Trapezes in dem Bahmen eines rechtwinkligen (Kataster -)
Systemes giebt die Möglichkeit , alle Kataster - oder Stadtvermessungs -Coordinaten
(z. B. die 114 Punkte in unserem I . Bande , „Handb . d . Verm . 4. Aufl. 1895“ , S . 400
bis 401 ) unmittelbar auch in die topographische Karte zu übertragen , oder kurz alles
Kataster - und Stadtvermessungs -Material in seinem eigenen Coordinatensystem auch
für die Topographie lediglich durch geometrische Verkleinerung zu verwerten .

Ausser den 6 Eckpunkten von Fig . 2 . haben wir auch noch drei andere Trapez¬
ecken nach Coordinaten berechnet , wie schon im I . Bande , 4 . Aufl. 1895 , S . 407 zu

em Netzbild S . 411 jenes Bandes angegeben wurde , nämlich , mit Wiederholung
von N W :

L = 27 ° 20'
, <p = 52° 30'

27 40 52 30
27 20 52 12
27 40 52 12

Katastersystem Celle
y = — 28195,13”

— 5561,31
— 28386,66
— 5599,09

x = — 13909,65“
— 13987,55
— 47287,79
— 47365,11

(7)

Wenn man trigonometrische Kataster -Aufnah men zur Topographie benützen
will , so ist es das erste , die geographischen Netzlinien in solcher Weise einzu¬
rechnen , nicht bloss die eigentlichen Trapez -Ecken der topographischen Abteilung

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 21
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der Landesaufnahme , sondern wie wir es bei Linden gethan haben , enger , etwa von
Minute zu Minute .

Wenn die Flurkarten gar nicht mathematisch orientiert sind , (wie z. B. in
einem grossen Teile der Provinz Hannover ), ist es immer noch rationeller , durch einige
rasch und rauh eingemessene und eingerechnete Rückwärtsschnitte zuvor das x «/-System
in die Flurkarten hinein zu interpolieren , und dann nach der vorher genannten Me¬
thode zu verfahren , als sich nur auf das empirische Zusammenstimmen nach Weg¬
ecken u . s . w . auf dem Messtische zu verlassen .

§ 58. Geographische Coordinaten q>, X und konforme recht¬
winklige Coordinaten oc T.

Zwischen den kongruenten Coordinaten x , y und den konformen Coordinaten x , Y
bestehen nach § 50 . die einfachen Beziehungen :

x = x V = YS
6r 2

(1)

Wenn man daher cp und X in x und y umwandeln kann und umgekehrt , so
hat man auch q> und X als Funktion von x und Y und umgekehrt ; sei es , dass man
nur die y und Y vermöge (1) zahlenmässig verwandelt , etwa mit einer Hilfstafel
S . [45] des Anhangs , oder auch indem man die Einsetzung von Y statt y analytisch
durchführt .

Wir wollen dieses thun und dazu die Formeln von § 55 . nochmals hersetzen ,
aber um den Coordinaten -Nullpunkt ganz aus dem Spiele zu lassen mit der Annahme ,
dass die Abscissen x stets vom Äquator an gezählt werden . Bezeichnet man dann
mit B den Meridianbogen vom Äquator bis zur Breite cp und mit x den Meridian¬
bogen vom Äquator bis zur Fusspunktsbreite qq , so hat man aus § 55 . folgende
Formeln (S . 304) :

a1—&£)

f = Ti - Fi2 tan 9 fl

QV p yS sin 2 qq
cos qq 3 iV) 3 cos3 qq

, ,3
y = tang Ti — tang <Pi G + 2 t<*n92 Ti)

und die Umkehrung (S . 807 und S . 305) :
-d W N

x = B + -

60Ö

-a—sr svn cp cos <p2 p2 ^ r

NX
- cos cp - NXß

6 p3

*3
3 p!

siw2 cp cos qp

y = X sin qp + sin cp cos2 qp

(2)

(3)

(4)

(5)

(6)

(7)

Wenn man hier y durch Y nach (1) ersetzt , so gieht das bei (2) keine Änderung
innerhalb der hier eingehaltenen Grössenordnung , und bei (3) und (4) gestaltet sich

die Umformung leicht , so dass man im ganzen hat :
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£2O

<P = <Pi - p Y2
"

2 N -fi

X =

Fi 2 tang <pi

p Y8
N -i cos qil
q r

6 iVj 2 cos qpj
p Y8 tangtyi

(1 + 2 tang 2 qoj)

7 =
^

- *« ,^ -
^

-
^

(8)

(9)

(10 )

Bei der Umwandlung der zweiten Gruppe (5)—(7) bleibt auch wieder x und
ausserdem y unverändert , und bei (6) verfährt man in üblicher Weise genähert , wo¬
durch man rasch erhält :

sS'S
o

„ A2 N .x — B + •=- -=- sm cp cos <p2 p2 ( ii )

^ NX NX 3 .Y = - COScp + TT -5- COSCPcos 2 f
p 6 p8 (12)

X3
y — X sin CP+ s sin cp cos2 cp

o Q“
(13)

Diese Formeln (8)— ( 10 ) und (11 )—(13 ) stimmen in erster Näherung überein
mit den Gausssehen Formeln nach Wittstein und Schreiber ; die letzteren genaueren
Formeln haben noch höhere Glieder , welche wir erst in einem späteren Kapitel
finden werden.

Es ist in dem Gange der Rechnung begründet , dass bei X und y alles in der

Fusspunktsbreite <fi ausgedrückt ist und bei y und y alles in der Breite <p des
Punktes selbst ; aber wenn mit cp begonnen wird , kann man es auch zu Ä und y be¬
nützen, und andererseits , wenn x — B berechnet ist , hat man auch <jPj, und deshalb
mögen zur Kontrolle auch noch folgende Formel -Gruppen erwünscht sein , zuerst zu
der Gruppe (8 )—(10 ) :

p Y2

CO

f = fl — Fi2 tan 9 ‘Pi

p Y p Y3 cos 2 cp

y =

Ni

Nt

cos cp

Y tang cp

6 JVj 8 cos 3 ip
p Y8 sin cp

6 Ni 3 cos8 cp
und andererseits zu der Gruppe ( 11 ) —(13) :

Ä2 N
x — B +

fl = f +

2ps sm cp cos cp

F 2 X3 .—„ - sm cp cos cp2 p

(14)

(15)

(16)

(17)

NX„ JV X3
Y = cos cPj + -

g
-
p

- cos8 tpi (1 + 2 tang 2 qp1)

X . X3 . 0
7 = — sm cpi — - -j sm CPicos2 CPi

p ‘ 6 p2 1

Näch den vorstehenden Formeln (11) und ( 12 ) bezw. (17 ) und (18) haben wir
ür die Ubungsmessungen in der Gegend von Hannover und namentlich Hildesheim ,
Salzdetfurt , ein Coordinatensystem angelegt , dessen x -Axe der 28,e Längengrad ist ,

(18)

( 19)
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mit Zählung der x yom Äquator der Erde an , aber mit Abkürzung um rund 5000000*1.
Die Längen A stehen daher zu den Längen L der Landesaufnahme in der Beziehung
A = L — 28°.

Wir wollen di & Bechnung für einen Punkt nach den Formeln (11) und (12)
hier hersetzen :

Ägidius L ■■
L 0 :

27 ° 24' 24,6290 "
: 28°

cp = 52 ° 22' 14,9611"

<p0 = 52° 20'

A = — 0 ° 35' 35,3710 " A cp = + 2 ' 14,9611"

A = — 2135,3710 " A <p = 134,9611"

Aus dem Anhang Seite [33] entnimmt man für cp = 52 ° 22' 15" den Wert

log [2 ] = log (q -. N ) = 8 .508 8707 , und für die Mittelbreite 52 ° 21 ' 7” den Wert

log [1] = 8 .509 9585 ,
aus Seite [38] für (p = 52 ° 22 ' . B 0 = 5 799 836,593
logarithmisch auszurechnen A cp : [1] . . . = 4 171,095

. = 165,598
2 Q [2]

X = 5 804 173,286
Weiter wird logarithmisch ausgerechnet nach der Formel (12 ) :

N X cos <p X cos cp

A cos qp A2
[2] 6p2

cos 2 cp

— 403 94,557 “

+ 0,184“

konform Y = — 403 94,373“ (21)

Konforme Coordinaten Y und x in dem System mit L = 28 ° und cp = 0 °.

Punkt Geographische Coordinaten Bechtw . konf . Coordinaten Höhe
’ iihar N . N.

l qp X X
, 000 000«

Ägidius . 27° 24 24,6290" 52° 22 14,9611" — 40 394,37«* + 804 173,29 125,37« An.

Wasserturm . . . . 27 22 25,0168 52 21 49,9080 — 42 663,69 + 803 418,07 111,96 R.

Wehrstedt , Kirchturm 27 40 45,8901 52 2 40,3138 — 21992,64 + 767 753,55 143,98 Kn.

Sauberg , Pyramide 27 42 30,3539 52 3 31,0969 - 19 995,69 + 769 314,59 317,19 Pf.

Detfurth , Kirchturm . 27 41 16,75 52 4 29,21 — 21390,13 + 771 116,35 123,40 Ünt.

Wesseln , Pyramide 27 43 56,5389 52 4 37,5592 — 18 346,32 + 771 362,23 293,27 Pf.
Wesseln , Kirchturm . 27 42 0,37 52 5 4,64 — 20 554,95 + 772 207,79 111,50 Kd.

Gross -Düngen , Pyr . . 27 41 4,4376 52 5 8,8156 — 21 619,28 + 772 341,35 195,01 Pf.
Gross -Düngen , Kircht . 27 41 15,03 52 5 46,53 — 21 412,60 + 773 505,02 121,84 Kn.
Klein -Düngen , Pyr . 27 42 44,6860 52 5 22,8490 - 19 708,97 + 772 767,11 142,35 Pf.
Heinde , Pyramide . . 27 43 34,8287 52 6 40,5926 — 18 745,39 + 775 166,06 146,97 Pf.
Heinde , Kirchturm 27 42 24,25 52 6 2,78 — 20 093,05 + 774 002,68

Kn.Lechstedt , Kirchturm . 27 41 39,3608 52 6 54,7459 — 20 940,62 + 775 612,21 163,04
Breinum , Pyramide 27 38 41,4808 52 2 39,6577 — 24 363,44 + 767 744,30 228,90 Pf-
Almstedt , Pyramide . 27 37 43,3101 52 3 47,2945 — 25 461,30 + 769 840,10 359,15 Pf.
Weifenhöhe , Pyramide 27 39 35,04 52 4 1,98 — 23 330,93 + 770 283,62 292,54 Ob.

Hammberg , Pyramide . 27 38 58,3354 52 4 44,5595 — 24 023,68 + 771 602,73 306,33 Pf.

Eggenstedt , Kirchturm 27 39 42,7418 62 6 11,6524 — 23 165,55 + 774 290,28 117,22 Kn.

Bodenburg , Schlosst . . 27 40 33,2205 62 1 41,2544 — 22 242,21 + 765 929,45 186,91 Kn.



Die rechtwinkligen Coordinaten -Systeme des Deutschen Reiches . 325
§ 59 .

Bei den Höhenangaben bedeutet Kn . = Knopfmitte , R . = Rand des Turmes ,

Pf. = Pfeileroberfläche ( = Oberfläche des trigonometrischen Signalsteins ), Unt . = Un¬

terer Dachrand , Ob. = Oberer Rand = höchster Punkt .
Die Coordinatenrechnung ist nur auf Centimeter geführt , also mit + 0,01 ™, was

für den vorliegenden Zweck genügte .
Rechnet man zur Kontrolle von (21) auch noch nach den Formeln (17) und ( 18) , so

findet man % = 52 ° 22' 20,3192 " und dann Y = — 403 93,196 — 1,174 = — 403 94,370™,

was mit dem früheren (21 ) hinreichend stimmt .

Dieses ist konformes Y, und wenn man kongruentes y haben will , so hat man

noch zu rechnen = 0,270™, was zu dem Yorigen giebt kongruent y = — 403 94,100™.
6 r2

Also in Zusammenfassung , zugleich für Wasserturm :

kongruent y konform Y X — 5000 000 = »

Igidius — 40394,10 » — 40394,37» + 804173,29™

Wasserturm — 42663,42 — 42663,69 -+- 803418,07

Diese Y und x sind in der Tabelle S. 324 eingesetzt .
Auf beschränktem Gebiete kann man die x noch weiter kürzen , etwa durch

konstantes Weglassen von 700 000“ .

§ 59. Die rechtwinkligen Coordinaten -Systeme des
Deutschen Reiches.

Eine Übersicht der Deutschen rechtwinkligen Coordinaten -Systeme , welche zu¬

gleich ein gutes Stück Geschichte der Deutschen Vermessungen überhaupt vor Angen

führt , haben wir in Fig . 1 . S . 326 gebildet .
Im Folgenden haben wir die aus verschiedenen Quellen gesammelten geschicht¬

lichen Angaben über die verschiedenen Landes - und Provinzial -Coordinaten -Systeme

zusammengestellt , obgleich unsere Theorieen teilweise noch nicht soweit gediehen sind,

um alles im Einzelnen zu verstehen . In einem späteren Kapitel wird weiter darüber

zn handeln sein , inzwischen genügt die Kenntnis der rechtwinkligen kongruenten

(Soldner sehen) Coordinaten (§ 46 .) und der rechtwinkligen konformen Coordinaten

(§ 50 .) zum allgemeinen Verständnis , jedenfalls in geschichtlicher Beziehung .

Es ist hier auch nochmals an die geschichtlichen Abrisse zu erinnern , die wir

schon im I . Bande , 4 . Aufl. 1895, S. 479 — 551 gegeben haben . Auch sind die ge¬

schichtlichen Abschnitte in Jordan -Steppes , , Deutsches Vermessungswesen , 1881“
, zu¬

zuziehen.
Über die rechtwinkligen geodätischen Coordinaten im Allgemeinen ist voraus-

zuschicken , dass dieselben ohne Zweifel französischen Ursprungs sind , sie wurden

schon 1734 von Cassini angewendet , zuerst wohl lediglich als zusammengesetzte recht¬

winklige ebene Coordinaten und schrittweise auf kurze Entfernungen geradezu in der

Form von ebenen Coordinaten behandelt , und Clairaut erkannte darin den unwill¬

kürlich betretenen Weg zur geodätischen Linie (Helmert , höhere Geodäsie I , S. 240).

Soldner hat in der monatlichen Korrespondenz zur Beförderung der Erd - und

Himmelskunde 11 . Band 1805 , S . 7 —23 eine Abhandlung über die kürzeste Linie

auf dem Sphäroide geschrieben , in welcher er auf S . 15—17 auch auf die recht¬

winkligen Coordinaten kommt , und als „gewöhnliche Methode den Perpendikel und
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Abstand zu finden“
, die ebene Rechnung mit asina und acosa anführt , so dass

also anzunehmen ist , dass Soldners spätere Behandlung der Sache in Bayern sich
hieraus entwickelt hat .

Fig . 1.
Die rechtwinkligen Coordinaten -Systeme des Deutschen Reichs.

_ ^ Schwerin

pPMn gWnKmor- Q~ -

Masssiab II9400000

M̂ünchen

Bayern .
Das Bayerische Coordinaten -System wurde im Jahr 1810 von Soldner angelegt,mit der Mitte des nördlichen Frauenturms in München als Coordinaten -Ursprung , und

dem Meridian dieses Punktes als Abscissen -Axe. Weiteres hierüber giebt das amt¬
liche Werk : „Die Bayerische Landesvermessung in ihrer wissenschaftlichen Grund¬
lage , München 1873 “ , S. 253.

Dieses System gilt nur für das eigentliche rechtsrheinische Bayern ; für die
bayerische Pfalz gilt derselbe Nullpunkt Mannheim wie für Baden .Die eine Bayerische Meridian -a>Axe, welche durch den Münchener Frauenturm
geht , war zur Zeit der Anlage dieses Systems , da es sich nur um Messtisch -Aufnahmen
in 1 : 5000. handelte , genügend , und für die Übersichtlichkeit des ganzen nützlich.
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Die grössten Ordinaten dieses Systems sind östlich bei Passau y = 56 000

Ruten = 163tra und nordwestlich bei Aschaffenburg y — 64 000 Ruten = lSl km, was

qßt
eine "

Verzerrung = 0,00043 oder 0,43” auf l tm giebt . Da diese Verzerrung in

der Kleinmessung Schwierigkeiten bereitet , hat man sich bis jetzt geholfen durch

Einführung von Lokal -Systemen mit schiefen x -Axen , d . h . mit solchen Axen, welche

gegen den Meridian des Nullpunkts um die Meridian -Konvergenz verdreht sind .

Vergl . hierzu : „Technische Anleitung zu den trigonometrischen Netz - nnd Coordinaten -

Bechnungen von Dr . J . H. Franke , München 1889“, S. H nnd S. 99. Ferner „Transformation rechtw .-

Bphär. Coordinaten , Astr . Nachr ., 126. Band 1890“, 8 . 355, System I, nnd „Korrespondenz -Blatt des

bayerischen Geometer -Vereins , Band IX , München Februar 1894“, Nr . 1., „Betrachtungen über das

Coordinaten - und Blatt -System der bayerischen Landesvermessung von Dr . J . H. Franke “, S. 1—21.

Da Bayern durch den Übergang von der Messtischzeichnung zu der trigono¬

metrischen Rechnung jetzt Veranlassung hat , zwei neue Axen westlich und östlich

von München anzulegen , so wäre das die beste , vielleicht in 100 Jahren nicht so

schön wiederkehrende Gelegenheit , unbeschadet der alten Messtischeinteilung , die

neuen Axen meridional und mit '
konformen Coordinaten anzulegen .

■Württemberg.
Die Sternwarte von Tübingen als Ursprung eines rechtwinkligen Coordinaten -

Systems, und der Meridian von Tübingen , als x -Axe , wurde von Bohnenberger schon

im vorigen Jahrhundert für seine Karte von Schwaben angenommen , das dabei orien¬

tierende Azimut Tübingen -Kornbühl wurde schon 1792 gemessen , und auch bis heute

beibehalten , obgleich die Messung von 1819 eine Änderung um 15 " ergab , so dass

also das heutige Württembergische System um 15" gegen den Meridian von Tübingen

verdreht ist .
Am Anfang dieses Jahrhunderts rechnete Bohnenberger in Württemberg recht¬

winklige geodätische Coordinaten schrittweise wie eben , was hei der damaligen Ge¬

nauigkeit der Messungen auf Minuten genügte . Bohnenberger hat aber auch alsbald

die wichtigste Aufgabe , welche sich hieran anscbliesst , meisterhaft gelöst , nämlich

die Umformung zwischen rechtwinkligen und geographischen Coordinaten und um¬

gekehrt .
In dieser Sache scheint uns Bohnenbergers Verdienst höher zu stehen als

Soldners ; die wenigen sin - und eos-Entwicklungen Soldners waren viel leichter als

die Formeln zwischen x , y und <js, A, welche Bohnenberger im Jahre 1802 veröffent¬

licht und schon vor 100 Jahren angewendet hat , mindestens ebenso gut und teil¬

weise besser als heute 1896 geschieht ; und das System im Ganzen, mit rechtwinkligen

und geographischen Coordinaten hat Bohnenberger schon vor Soldner gehabt , er

berichtet 1826 in seiner Schrift De computandis dimensionibus etc . § 16 . über seine

Formeln für rechtwinklige Coordinaten : „conveniunt cum iis , quibus usus est cel .

Soldner in computandis dimensionibus bavaricis “.
Alles , was wir hierüber Geschichtliches finden konnten , haben wir gesammelt

und veröffentlicht in Jordan -Steppes , „Deutsches Vermessungswesen , 1882“ , I . S . 244

bis 259.
Baden .

Die topographische Vermessung des Grossherzogtums Baden wurde schon

frühe auf ein rechtwinkliges Coordinaten -System bezogen , mit der Sternwarte in
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Mannheim als Nullpunkt und mit dem Meridian von Mannheim als x -kxe . Das zur
Orientierung dienende Azimut Mannheim -Speyer (vgl . § 47 . S . 264) ist schon imJahre 1820 von Nicolai gemessen worden . Die Coordinaten waren früher als ebenberechnet ; das heutige sphärische rechtwinklige System der badischen Katasterver¬
messung stammt etwa aus der Zeit von 1840 ; dasselbe wurde von dem ObergeometerRheiner eingeführt .

Hessen -Darmstadt .
In dem „ Gesetz , die Vollendung des Immobiliar -Katasters betreffend “ undInstruktion vom 30 . Juni 1824 , wird in Art . 3 . bestimmt : „ Sphäroidische Coordinaten ,der Meridian von Darmstadt soll hiebei als Hauptaxe angenommen werden “. Über

einige Eigentümlichkeiten der Hessischen rechtwinkligen Coordinaten haben wir inJordan -Steppes , „Deutsches Vermessungswesen “ , S. 289 , berichtet .

Für die Hannover sehe Landesvermessung hat Gauss schon frühzeitig ein recht¬
winkliges spbäroidiscbes konformes Coordinaten -System mit dem Ursprung Göttingenund dem Meridian von Göttingen als x -kxe angeordnet , dessen Theorie wir in erster
Näherung in § 50. u . § 58 . behandelt haben . Die vollständige Theorie dieses klassi¬schen Coordinatensystems können wir erst in einem späteren Kapitel bringen .Zur Geschichte dieser Coordinaten entlehnen wir aus dem Berichte von Gädein der „ Zeitschr . f. Verm . 1885 “

, S . 113, 145 , 161 , 177 , 193 , 225 Folgendes :
Im Anschluss an die dänische Gradmessung , welche 1816 von Schumacher begonnen wurde ,führte Gauss die geodätischen Messungen des Gradbogens zwischen Göttingen und Altona in denJahren 1821—1823 aus (Netzbild hiezu giebt unser I. Band , 4. Aufl . 1895, S. 493).Eine weitere Ausdehnung gegen “Westen zum Zweck eines neuen Anschlusses , der Ursprung *lieh nicht projektiert war , erfuhren die Gauss sehen Dreiecke 1824 und 1825. Dabei wurden ausserdem wissenschaftlichen Interesse der GradmeRsung sehr frühe auch die Zwecke der Landesver¬messung ins Auge gefasst . „Es ist jetzt allgemein anerkannt , dass eine genaue Landesvermessungohne eine gehörige Triangulierung unmöglich ist “ (Gauss 1824). Im Jahre 1823 hat Gauss eigensauf dem Ägidiusturm in Hannover , der nicht zu den Gradmessungspunkten gehörte , Winkelmess -ungen zu topographischen Aufnahmen angestellt . Aus solchen Nebenmessungen erzielte Gauss1821—1825 über 400 gut bestimmte Punkte , im ganzen wurden es 26Q0. Diese Punkte wurden nachCoordinaten berechnet und auf die Messtische aufgetragen . „Die Angabe der Lage von einembeliebigen Anfangspunkt (der Göttinger Sternwarte ) bis auf wenige Fuss genau , muss als die Haupt¬ausbeute betrachtet werden .“

Am 25. Marz 1828 wurde die Ausdehnung der Triangulierung über das ganze Königreichbefohlen , sie fand ihren Abschluss 1844. (Das Netzbild der Hauptdreiecke mit 89 Punkten im Mass¬stab 1 . 1000 000 ist enthalten in „Papens Geogr . Karte des Königreichs Hannover und HerzogtumsBraunschweig “.)
Im Jahre 1830 schrieb Gauss : „Späterhin könnte es geraten sein , das Verzeichnis von2600 Punkten durch den Druck zu veröffentlichen , für den Augenblick noch nicht , erstlich weileine wissenschaftliche Entwicklung der Zahlen nur in Verbindung mit der Entwicklung der mireigentümlichen mathematischen Theorieen gegeben werden kann , welche ich in etwa 3—4 Abhand¬lungen zu liefern beabsichtige .“ (Davon sind nur die „Untersuchungen über Gegenstände der höherenGeodäsie “ 1845 und 1846 erschienen .) Der Abschluss der rechnerischen Bearbeitung der Landes¬vermessung hat sich bis 1848 verzögert . Im Jahre 1859, 4 Jahre nach Gauss ’ Tode , wünschte dasMinisterium die Herausgabe durch den Druck , den aber der Generalstab ablehnte , „w-eil die Coor¬dinaten nicht nur einen ausserordentlich relativen Wert haben und viele derselben unzuverlässigund gar falsch sind ; von solchen müsste das Verzeichnis zuvor gesäubert werden “.Die Theorie dieser Coordinaten ist der Wissenschaft gerettet worden in dem Werke : „Theorieder Projektionsmethode der Hannoverschen Landesvermessung von Oskar Schreiber , Hauptmannim Kömgl . Hannov . l . Jäger -Bataillon Hannover , Hahnsche Hofhuchhandlung 1866“.
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Die Vorrede dieses Werkes von Wittstein (Mai 1866) sagt : Selbst in Hannover , wo auf

Grundlage der Gauss sehen Projektion fortwährend topographische Aufnahmen stattgefunden haben ,
war die Kenntnis der Fundamente dieser Projektion so gut wie verloren gegangen , und man ar¬
beitete nur unter dem Einflüsse einer Art von Tradition nach überlieferten Schablonen . Es kam
darauf an , die vorhandenen Andeutungen und Bruchstücke aufzusuchen , mit Sorgfalt an dieselben

anzuknüpfen , und so den Versuch zu wagen , die analytischen Entwicklungen , welche Gaues schon
besessen haben muss , vollständig wieder ins Leben zu rufen .

Bald darauf erschien auch : „Allgemeines Coordinaten -Verzeichnis als Ergebnis der Han¬

nover sehen Landesvermessung aus den Jahren 1821—1844, abgedruckt zum Zwecke der Benützung
bei den Vermessungsarbeiten zur Vorbereitung der anderweitigen Begebung der Grundsteuer , Han¬

nover 1868“, Druck von Wilh . Riemschneider , mit einer Einleitung von Wittstein , enthaltend die

wichtigsten Coordinaten -Formeln mit Gliedern von der Ordnung l : r2 einschliesslich .

Inzwischen war Hannover preussisch geworden , und man dachte daran , die
Gauss sehen Coordinaten auch zur Katastervermessung zu benutzen , welche bisher

gemarkungsweise mit Kette und Bussole u . dergl . gemacht worden war.
Dabei verfiel man aber auf den Gedanken , die Coordinaten nach der politischen

Kreis -Einteilung des Landes in 31 Partialsysteme zu zerstückeln . Wittstein hatte
für die 31 neuen Nullpunkte die Meridian -Konvergenzen und Vergrösserungs -Coeffi-
cienten m zu berechnen , und darnach wurden die Partialsysteme umgerechnet . Die
Stadt Hannover bekam den neuen Nullpunkt Osterwald , dessen Reduktionsformeln
in unserem II . Bande , 3 . Aufl . 1888 , S . 196 —197 mitgeteilt sind.

Katastersekretär Clotten in Hannover (gestorben etwa 1887) , welcher über
die Vermessungen im ehemaligen Königreich Hannover mehreres geschrieben hat

(Zeitschr . f . Verm . 1881 , S . 22 , 292 , 376 , 425 , 445 und 1882 S . 22, 256) hat uns
früher manches über die Übergangszeit nach 1866 mitgeteilt . Da man in der kon-

formen Projektion in jedem Punkte einen Vergrösserungsfaktor m — 1 + ^72
berechnen

kann , scheint man geglaubt zu haben , dass man bezirksweise solche Reduktions -

Coöfficienten rechnen und benützen müsse , und dieser Irrtum kann der Grund für

jene Zerlegung des Gauss sehen Systems in 31 Partialsysteme gewesen sein , indem

man dann mit der Zerlegung soweit ging , bis man glaubte , jene 1 •+- hinreichend

genau = 1 setzen zu können .
Die 31 konformen Partialsysteme wurden 1879 wieder abgeschafft , und durch

neue Systeme nach süddeutscher (Soldner scher) Art ersetzt , mit den Nullpunkten
27 . Celle, 28 . Kaltenborn , 29 . Silberberg , 30 . Windberg u . s . w.

Als Hannoveraner hätten wir gewünscht , die alte klassische Göttinger Ase

(schon aus Pietät gegen Gauss ) zu erhalten und dadurch in der Übergangszeit 1880
bis 1890 viele Umrechnungsmühe zu ersparen , und später eine durchgreifende Kritik der
alten Coordinaten zu ermöglichen . Östlich von dem Göttinger Meridian sind Ordinaten
von nur etwa 70 im Länge , mit Ausnahme des Kreises Dannenberg in der nordöstlichen
Ecke , der aber von dem 9*” nach Osten verschobenen System 27 . Celle auch ausge¬
schieden und dem System 23 . Magdeburg zugeteilt ist . (Vgl . „ Zeitschr . f. Verm . 1896 ,
S . 197— 199 .)

Kurhessen .
Die Triangulierung von Gerling hatte ursprünglich kein rechtwinkliges Coor -

dinaten-System , dagegen wurden die Längen und Breiten aller 48 Hauptpunkte im

Anschluss an Göttingen berechnet (Gerling , „Beiträge zur Geographie Kurhessens ,
Cassel 1839“

, S . 200—204) . An diese geographischen Coordinaten wurden dann von
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den Kataster -Behörden rechtwinklige Partial -Systeme angeschlossen , mit dem Kirch¬
turm der jeweiligen Gemarkung als Ursprung und dem Meridian des jeweiligen Kirch¬
turms als a>Axe . Wo der Anschluss an die Haupt -Triangulierung fehlte , mass man
eine kleine Basis mit Messlatten und ein Azimut durch korrespondierende Sonnen¬
höhen , für jede Gemarkung besonders .

Als um das Jahr 1853 die General -Katastervermessungen in den Provinzen
Hanau und Fulda ausgeführt und auf das übrige Hessen ausgedehnt werden sollten ,
wurden die geographischen Coordinaten der für Kataster -Vermessungen brauchbaren
trigonometrischen Punkte in rechtwinklige sphärische Coordinaten für den Indifferenz¬
punkt Cassel , Martinsturm , umgerechnet (mit Erddimensionen nach Walbeck , vgl. S. 334).

(Vorstehendes ist zusammengestellt aus gütiger Mitteilung von Herrn Landes¬
vermessungsrat Kaupert , sowie Gehrmann , in Jordan -Steppes , „ Deutsches Vermessungs¬
wesen II . “

, S . 105 .)

Thüringen -Gotha.
In einer Schrift „Über die Ergänzung der topographischen Aufnahme und Kar¬

tierung von Deutschland in Bezug auf Thüringen , von C . Frhrn . von Gross, Kammei¬
herrn etc ., Weimar 1848 “ ist auf S . 33— 72 eine von dem Astronomen und Geodäten
Hansen in Gotha verfasste „Instruktion für die Ausführung der Triangulation “ ver¬
öffentlicht , welche in mancher Beziehung interessant ist , und in Hinsicht auf Coor-
dinaten eine Meridian -K-Axe annimmt , von welcher die geographischen Längen nach
Osten -+- 10'

, -+- 20’ u . s . w . , nach Westen — 10'
, —• 20 ' u . s . w . gezählt werden.

Auf diesem Meridian ist die Polhöhe 50° 36 ' als Nullpunkt für die Abscissen x be¬
stimmt . Die rechtwinkligen Coordinaten werden zuerst genähert als eben berechnet ,

| , rj, S. 51 , worauf noch Korrektionen von der Ordnung (̂ S . 53 g
' = bin-

zukommen , wodurch Coordinaten x , y erhalten werden , „ auf der krummen Oberfläche
der Erde , jedoch in einem etwas anderen Sinne , wie man diese Coordinaten früher
aufgefasst hat “ (S. 53 ) . Die Theorie dieser Coordinaten wird nicht mitgeteilt , die
angegebenen Formeln (S. 53) sind in Bezug auf x und y symmetrisch (was bei den
Soldner sehen und Gauss sehen Formeln nicht der Fall ist ) und können durch Zu¬

fügung weiterer einfacher Glieder ebenfalls von der Ordnung (S . 72 ) in die recht¬

winkligen ebenen Coordinaten der stereographischen Projektion übergeführt werden.
Nach neuesten Mitteilungen über die Thüringischen Vermessungen ist diese

Hansen sehe Instruktion von 1848 mit ihren eigenartigen Coordinaten xy nur Ent¬
wurf geblieben .

Nassau .
Das Herzogtum Nassau hat etwa um 1855 ein rechtwinkliges System mit dem

Ursprung Schaumburg nach Soldners Theorie angenommen . (Weiteres s . „ Zeitschr .
f. Verm . 1882 “ , S . 315—316 und I . Band , 4 . Aufl. 1895 , S . 535 .)

Preussen , Landesaufnahme .
In Preussen sind sehr lange die Punkte nur nach geographischen Coordinaten

berechnet worden .
Bessel hat sich mit der Frage der Coordinaten gelegentlich beschäftigt , aber

in „astr . Nachr . , 1 . Band Nr . 3 vom Dezember 1821 “ nur die ebenen Coordinaten
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„das Resultat der Formeln % = s sin a ■+- . . . und y = s cos a + . . . “ in Betracht

gezogen , wie in der „Bayerischen Landesvermessung “ S . 253 bemerkt wird .
Eine lithographierte „Instruktion für die topographischen Arbeiten des Königl .

Preussisehen Generalstabes “ von dem Chef des Generalstabes der Armee von Müffling,
Berlin den 15 . Januar 1821 , giebt für Berechnung geographischer Coordinaten die

nötigen Gebrauchsformeln , welche entsprechend sind einer Abhandlung von Soldner

„Ober die kürzeste Linie auf dem Sphäroide “ in der monatlichen Korrespondenz zur

Beförderung der Erd - und Himmelskunde 1805 , S . 7—23.
Die Einführung rechtwinkliger Coordinaten in die Preussisehen Generalstabs¬

messungen geschah erst nach 1870 durch General Schreiber , welcher die Sache auch

in die Öffentlichkeit gebracht hat durch eine autographierte Schrift „Rechnungsvor¬
schriften für die trigonometrische Ableilung der Landesaufnahme vom 8 . September
1877 “, welche er zur Verfügung stellte für das Werk Jordan -Steppes , „Deutsches

Vermessungswesen, I . Band 1882 “, S. 151—164. Dort findet sich auch auf S . 103

bis 121 eine nach Schreiber sehen Angaben von uns bearbeitete Darstellung der Rech¬

nungsvorschriften für geographische Coordinaten , deren Gehrauchsformeln und Tabellen

schon in unserem Citate auf § 39 . S . 228 erwähnt sind . Was die von Schreiber

eingeführten rechtwinkligen Coordinaten betrifft , so beruhen sie auf einer konformen

Doppelprojektion , nämlich zuerst konforme Projektion des Ellipsoids auf die Kugel
nach Gauss’ Untersuchungen über Gegenstände der höheren Geodäsie“, erste Abhand¬

lung 1843, und dann konforme Projektion der Kugel auf die Ebene , deren erste

Näherungen wir bereits in § 50.—52 , behandelt haben . Alles weitere hierüber auf

ein späteres Kapitel versparend , müssen wir hier nur noch zur allgemeinen Orien¬

tierung folgendes bemerken :
Die geographischen Längen und Breiten , welche die trigonometrische Abteilung

der Landesaufnahme veröffentlicht , stützen sich alle auf einen Fundamentalpunkt , die

Sternwarte Berlin , bzw. deren Übertragung auf den benachbarten Triangulierungspunkt

Rauenberg , woselbst auch ein die ganze Landesaufnahme orientierendes Azimut Marien¬

turm bestimmt wurde . Die hiefür noch heute benützten Annahmen wurden im

Jahre 1859 gemacht , und insbesondere dabei die geographische Länge der Sternwarte

= 31 ° 3 ' 41,25" östlich von Ferro (d . h . 11 ° 3 ' 41,25" östlich von Paris ) angenommen.

Nach neueren telegraphischen Bestimmungen ist diese Länge erheblich anders , näm¬

lich 31 ° 3' 28,30"
, oder um 12,95" kleiner als die Annahme von 1859.

Diesen Betrag 12,95” müsste man an allen Längenangaben der Landesaufnahme

abziehen , wenn man dieselben mit neueren astronomischen Bestimmungen in Über¬

einstimmung bringen wollte . Indessen kämen dann noch viele andere Reduktionen

für Lotabweichungen u . s . w. hinzu , und für die Feld - und Landmessung , wo es sich

immer nur um Differenzen geographischer Längen handelt , kommt eine konstante

Verschiebung überhaupt nicht in Betracht .
Die astronomischen Bestimmungen auf dem Fundamentalpunkt Rauenberg bei

Berlin, insbesondere das für die Landesaufnahme massgebende Orientierungs -Azimut

daselbst , sind in neuerer Zeit wiederholt worden , und es hat das Azimut gegen früher

die Differenz 3,88" ergeben . („Veröffentlichung des K . Preuss . geodätischen Instituts ,

astronomisch -geodätische Arbeiten I . Ordnung “, Berlin 1889, S . 186 .)
Hiezu ist auch noch anzuführen : von Schmidt , „Projektionsmethode der trigono¬

metrischen Abteilung der preussisehen Landesaufnahme “ , Zeitschr . f . Verm. 1894

S . 385—401 und 409 —418 , mit Fundamentalzahlen S . 386—387. Das konforme
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System der Landesaufnahme hat als aj -Axe den Meridian von 31 ° Länge (Berlin ).
Als Nullpunkt dient der Punkt mit der Breite 52° 42' 2,53251 "

, entsprechend der
Breite 52 ° 40 ' auf der Gauss sehen konformen Kugel , der mittlere Krümmungs -Halb¬
messer A dieser Breite ist gegeben durch log A = 6 .805 0274 -003 . Die Ordinaten
gehen westlich bis y = 540*” bei Metz und östlich bis y = 622*'” bei Lyck. Die
Verzerrungsverhältnisse sind daher sehr bedeutend ; wie aus der Hilfstafel Seite [46]
des Anhangs zu sehen , geht logm bis 0 .002 oder m selbst bis 1,0046 oder 4,6mm
auf 1“ , so dass schon die Excentricitäten bei excentrischen Theodolit -Aufstellungen
und ähnliche örtliche Masse dem Verhältnis m entsprechend reduziert werden müssen .
Aus diesem Grunde , d . h . seiner Grösse wegen , ist dieses System zur unmittelbaren
praktischen Anwendung nicht geeignet , es findet seinen Hauptzweck in dem Zusammen¬
halt der Triangulierungen I .—n . Ordnung .

Innerhalb eines schmalen Streifens von etwa 100*'” links und rechts vom Ber¬
liner Meridian könnten aber die konformen Coordinaten der Landesaufnahme unmittel¬
bar praktisch benützt werden .

Preussen , Katastervermessung .
Auch in der Preussischen Katastervermessung haben die rechtwinkligen Coor¬

dinaten -Systeme grösserer Ausdehnung verhältnismässig spät Eingang gefunden .
In der Broschüre von General Baeyer „ Mein Entwurf zur Anfertigung einer

guten Karte u . s . w. , Berlin 1868 “
, welche für die geschichtliche Entwicklung des

Preussischen Vermessungswesens die beste Quelle ist , werden die rechtwinkligen Coor¬
dinaten -Systeme , welche damals schon seit einem halben Jahrhundert sich in Süd¬
deutschland bewährt hatten , nicht erwähnt . (Auch eine Notiz in unserem I . Bande ,
4 . Aufl. 1895 , S. 529 mag hier zugezogen werden . )

Die „Anweisung vom 7 . Mai 1868 für das Verfahren bei den Vermessungs-
Arbeiten in den Provinzen Schleswig -Holstein , Hannover und Hessen -Nassau , zweite
Ausgabe , Berlin 1870“ , sagt in § 40 . S . 35 : „ Zum Zwecke des weiteren Gebrauches
der trigonometrischen Messungen ist die Lage der Dreieckspunkte gegeneinander nach
rechtwinkligen Coordinaten zu berechnen , welche auf die wirkliche Mittagslinie eines
nach der Bestimmung des Katasterinspektors hiezu zu wählenden geeigneten Punktes
zu beziehen sind . “

Über die rechtwinkligen Coordinaten -Systeme in den Preussischen Rheinlanden
haben wir folgende Mitteilung von P . G . Gauss in Jordan -Steppes , „Deutsches Ver¬
messungswesen 1881 “

, S . 165 :
Durch die Instruktion vom 12. März 1822 wurde allgemein eingefülirt , dass die Detailnetze

durch Netze höherer Ordnung miteinander verbunden , sowie dass die Dreiecksseiten derselben aus
Seiten I . Ordnung abgeleitet nnd nach diesen orientiert wurden .Für sämtliche Punkte sollten rechtwinklige Coordinaten berechnet werden , welche sich für
die Punkte I . Ordnung auf den Kölner Dom und dessen Meridian , für die Punkte II . bis IV Ord¬
nung auf einen passenden , in dem betreffenden Distrikt liegenden Punkt I . Ordnung und dessen
Meridian beziehen sollten . Hiervon ist abgewichen worden , indem für die Punkte II . hi « IV 0rä ‘
nung nicht der Meridian des als Ausgangspunkt für die Coordinaten benützten Punktes I . Ordnung ,sondern die durch diesen gelegte Parallele zum Meridian von Köln als Abscissenaxe angenommennnd die ohne Berücksichtigung der Erdkrümmung berechneten Coordinaten durch Addition der¬
selben zu denen des Ausgangspunktes sämtlich nominell auf den Kölner Dom bezogen wurden .
Thatsächlich bestand demnach aber auch ferner eine grössere Zahl von Coordinaten -Systemen .
Der Umfang derselben richtete sich nach der Einteilung der Arbeitsbezirke und war sehr verschieden
von einzelnen Oemeindebezirken bis zu einigen Kreisen . Für die Punkte , welche in mehreren
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Systemen vorkamen , wurden in jedem System andere Abstände vom Meridian und Perpendikel des
Kölner Doms berechnet , da die Berechnungder Ooordinaten , als in der Ebene liegend , die gegen¬
seitige Übereinstimmung der Bezifferung nicht ermöglichte .

In den östlichen Provinzen Brandenburg , Pommern , Sachsen , Schlesien , Posen ,
Preussen sind vor 1876 keine umfangreichen genauen Parzellaraufnahmen ansgeführt
worden , allgemeine Coordinaten -Systeme waren nicht vorhanden .

In dem Werke P . G . Ganss , „die trig . und polygon . Rechnungen der Peld -

messkunst 1876“, S . 297—301 werden die Soldner sehen Ooordinaten nach süddeutschen

Quellenschriften erwähnt und ein Zahlenbeispiel mit dem Nullpunkt Berlin Marien¬

kirchturm gegeben .
Denselben Nullpunkt Marienkirche hatte auch die Stadtvermessung von Berlin

vorläufig; die Ooordinaten wurden aber transformiert auf den Nullpunkt Rathausturm ,
welcher für die Stadtvermessung beibehalten wurde . (Zeitschr . f . Verm . 1881 , S . 14 .)

Die „Anweisung IX . vom 25 . Oktober 1881 , für die trigonometrischen und

polygonometrischen Arbeiten bei Erneuerung der Karten und Bücher des Grundsteuer¬

katasters , Berlin 1881 “ , giebt in dem Anhang S . 337 —351 die „Bestimmungen vom

29 . Dezember 1879 über den Anschluss der Spezial -Vermessungen an die trigono¬

metrische Landes -Vermessung “ . Dadurch werden 40 Coordinaten -Nullpunkte festge¬
stellt , die wir in unserer Übersichtskarte S . 326 aufgezeichnet haben .

Oldenburg .
Als Nullpunkt des rechtwinkligen Coordinaten -Systems dient der Schlossturm

zu Oldenburg , der durch diesen Punkt gelegte Meridian dient als Abscissenaxe mit

+ x nach Süden , — x nach Norden , und entsprechend wird -\- y nach Westen und

— y nach Osten gezählt .
Über die durch Güte der Herren Vermessungs -Inspektor Treiss und Vermessungs -

Direktor Scheffler in Oldenburg erhaltenen geodätischen Schriften von 1836 und von

1838 haben wir bereits in Band I , 4 . Aufl. 1895 , S . 537 —539 berichtet , und um

nicht wiederholen zu müssen , verweisen wir auf jene erste Mitteilung , welche aber

in Hinsicht auf die Art der rechtwinkligen Coordinaten noch nicht zu einem Schluss¬

ergebnis gelangen konnte .
Inzwischen haben wir auch noch die geographischen Coordinaten zugezogen mit

Rücksicht auf die dabei benützten Erddimensionen . Es ist nämlich in dem Werke

„Ergebnisse der 1835 —1837 ausgeführten Triangulierung des Herzogtums Oldenburg ,

abgeleitet aus der Hannoverschen Gradmessung “ auf S . 1 angegeben : „ Bei allen

Rechnungen ist unterstellt worden , dass unsere Erde ein Ellipsoid , das Abplattungs¬

verhältnis = 1 ; 302,78 , der mittlere Erdmeridiangrad = 57009,76 Toisen sei “ .

Dieses sind die bekannten Walbeck sehen Erddimensionen , welche wir schon in

der Einleitung § 1 . S. 8 - 9 erwähnt haben , und es kam nun die Aufgabe , dieselben

zur Coordinatenrechnung herzurichten . Dazu haben wir zuerst berechnet :

Meridianquadrant Q = 10 000268,30 ”* , log Q = 7 .0000117,
dann nach § 35 . S . 215 , Gleichung (24b ) und Tabelle unten :

mit « = 1 : 302,78 , log a = 6 .804 6093.

Dazu auch log b = 6 .803 1726 , log c = 6 .806 0460

= 2 a — «2 , log e* = 7.819 1.850 , log e' %= 7.822 0585

log (1 — e2) = log = ^ <5®
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Dann eine Tabelle der log [1] und log [2] nach S . 230 :

Hilfstafel für Walbecks Erddimensionen .

% ^ = log [1] log = log [2]

52 ° 30' 8 .509 9797 8 .508 9126
52 ° 40' 509 9676 508 9086
52 ° 50' 509 9556 508 9046

509 9435 508 9006
53 ° 10 ' 509 9314 508 8965
53 ° 20' 509 9194 508 8925
53° 30’ 509 9074 508 8885
53 ° 40' 500 8953 508 8845

Damit berechneten wir ein Dreieck Crapendorf -Windberg -Quekenberg , dessen
Lage auf unserem Netzbilde von § 21 . S . 129 insofern angegeben ist , als die Punkte
Windberg und Quekenberg dort im westlichen Teile geradezu Vorkommen, und Crapen-
dorf ungefähr in der Gegend von Cloppenburg angenommen werden kann .Aus den geographischen Coordinaten dieser drei Punkte , welche bereits in
unserem I . Bande , 4 . Aull . 1895 , S . 538 angegeben sind , haben wir die Berechnungnach den sphäroidischen Mittelbreitenformeln unseres späteren § 77 . (aber mit den [1]und [2] nach Walbecks Erddimensionen ) gemacht und folgende Entfernungen und
Azimute gefunden :

1 . Crapendorf log S Azimut Winkel
Quekenberg 4 .587 4672 209 ° 17 ' 7,07”

ß ,70 iA , AR ^ V,67 ° 44 ' 46,11”Windberg 4 .535 6446 277 1 53,18

2 . Windberg
Crapendorf 4 .535 6446 96 ° 37' 40,47”
Quekenberg 4 .6111920 117 49 42,35

61° 12 ' 1,88"

3 . Quekenberg
Crapendorf 4 .587 4672 29 ° 3 ' 48,39 ”
Windberg 4 .611 1930 338 0 33,23

51 ° 3 ' 15,16”

180 ° 0 ' 3,15"

Die Winkelsumme 180 ° 0 ' 3,15” stimmt auch , wenigstens innerhalb 0,1” mWdem sphärischen Excess , und die log 8 stimmen mit den Sinus der Winkel wenigstensbis zur 6te n Stelle genau , die Bechnung mag also innerhalb der hier nötigen Genauig¬keit als stimmend gelten . Nun haben wir aus den rechtwinkligen Coordinaten , die
ebenfalls schon in Band I , 4. Aufl. 1895, S . 538 mitgeteilt sind , die Entfernungenzweifach berechnet , erstens unter der Annahme , dass die rechtwinkligen Coordinatenkongruent nach Soldner und zweitens dass dieselben konform nach Gauss seien ; Fol¬
gendes ist die Vergleichung :
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i

§ 59 .

Dreiecksseite l°9 So
Oldenburg

logSi
aus <jp und l

log s
eben

log iS '
Soldner

log S "

konform

1. Windberg-Quekenberg
2. Crapendorf-Quekenberg
3 . Windberg-Crapendorf

4 .611 1937
4 .587 4703
4 .535 6451

4 .6111930
4 .587 4672
4 .535 6446
= log S ’

4 .611 2004
4 .587 4690
4.535 6443

4 .611 1933
4 .587 4668
4.535 6442
= log

4 .611 1922
4 .587 4662
4.535 6401

Die Oldenhurgischen log Sa sind entnommen aus dem Generalbericht für die

mitteleuropäische Gradmessung für 1865 , Seite 26 , Dreieck Nr . VIII , mit dem Ver-

wandlungslogarithrnus 0 .575 9082 zum Übergang von Preussiscben Buten in Meter.

Dort sind auch die Dreieckswinkel angegeben , bis zu 1" abweichend von unseren aus

<Pi 1 rückwärts berechneten Winkeln .
Bleiben wir nun bei den vorstehenden Seitenvergleichungen stehen , so stimmen

am besten log und log 8 ' unter sich , und — soweit aus diesen wenigen Ver¬

gleichungen Schlüsse gezogen werden dürfen — müsste man nun annehmen , dass die

Oldenhurgischen Coordinaten bereits in den Jahren 1835 und 1836 dieselben waren ,
wie die gleichzeitigen Bayerischen und Württembergischen Coordinaten von Soldner

und Bohnenberger .

Mecklenburg .

Mecklenburg ist zur Zeit der einzige Staat in Deutschland , der die Vorteile

der Konformität bis zu den Katasterkarten sich nutzbar gemacht bat . Dort ist das

konforme Prinzip praktisch geodätisch in I .—III . Ordnung der Triangulierung erhalten

geblieben durch den mecklenburgischen Geodäten Paschen , welcher als unmittelbarer

Schüler von Gauss auf der Universität Göttingen in die feinen geodätischen Ideen

des Meisters eingeweiht wurde und in sein Heimatland Mecklenburg zurückgekehrt , das

Gelernte zur Anwendung gebracht hat , in einer von der hannover sehen abweichenden,
der geographischen Erstreckung von West nach Ost angepassten Form .

Es ist die konforme Kegelprojektion mit Berührung nach dem Mittelparallel
des Landes in der Breite P = 53° 45 '

, und entsprechend ist das Coordinatensystem
so angelegt , dass die a;-Axe in dem Meridian des Schlossturmes von Schwerin liegt
und die y -Axe rechtwinklig dazu in der Breite 53° 45' . Allerdings wurde dazu noch

eine Verschiebung der x nm den konstanten Betrag 13919,812”“ vorgenommen , um

den Nullpunkt in den Schweriner Schlossturm selbst zu verlegen , aber das hat nur

formelle Bedeutung ; denn in allen Fällen theoretischer Bechnung mit den Mecklen¬

burgischen Coordinaten muss man die ursprünglichen von der Breite 53 ° 45 aus ge¬

rechneten Abscissen x benützen . Die Linear -Verzerrung ist in erster Näherung über¬

einstimmend mit derjenigen des Gauss sehen konformen Systems , nämlich in Mecklen¬

burg m ~ 1 + entsprechend dem Gauss sehen 1 + weil die » an Stelle der y

treten , und ebenso gehen auch die übrigen Formeln von § 50 . in erster Näherung in

die Mecklenburgischen Formeln über , wenn man überall x und y vertauscht .

In Hinsicht auf die Verzerrung m = 1 + bat aber Mecklenburg durch einen

kleinen Kunstgriff den Maximalwert auf die Hälfte reduziert , indem ein Zwischenwert
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eingeschaltet wurde gleich der Hälfte des Maximalwertes , und da hei der Ausdehnung
von 0° 45' in der Breite oder 82,5 tm von dem Normalparallel nach Süden und nach
Norden der Maximalwert log m ~ 0.0000371 beträgt , was 85,4™“ auf l 1'”* entspricht,
so ist die lineare Maximalverzerrung durch jene Verschiebung in ganz Mecklenburg
auf den Maximalwert von rund 4™ auf P “ beschränkt worden .

Die Theorie der Mecklenburgischen Projektion können wir erst in einem späteren
Kapitel dieses Bandes behandeln ; das amtliche Werk hierüber ist :

Grossherzoglich Mecklenburgische Landes -Vermessung . V. Teil . Die konforme Kegel*
Projektion und ihre Anwendung auf das trigonometrische Netz I. Ordnung . Herausgegeben im
Aufträge der Grossherzoglichen Ministerien des Innern und der Finanzen , Abteilung für Domänen
und Forsten , von Dr . W. Jordan , Professor an der technischen Hochschule in Hannover , Karl
Mauck , Kammeringenieur in Schwerin , R. Vogeler , Kammeringenieur in Schwerin . Mit einer litho*
graphischen Netzkarte . Schwerin 1895. Zu beziehen durch die Stiller sehe Hofbuchhandlung (J . Ritter ).

Vgl . hiezu auch „ Zeitschr . f. Verm . 1896 “ , S . 257—263 .

Sachsen .
Im Bereiche des Königreichs Sachsen sind auf unserer Übersichtskarte zwei

Punkte , Grossenhain und Leipzig eingetragen , und zwar nach einer Mitteilung von
Nagel vom 5 . Mai 1889 , wornach als eigentlicher Nullpunkt für Sachsen der Pfeiler
für den Basis -Zwischenpunkt ist , welcher den Namen Grossenhain führt . Der Pfeiler
B . Leipzig auf der Pleissenburg in Leipzig gilt nur als Coordinatenanfang für die
Leipziger Stadt -Vermessung .

Dabei hat man in Sachsen (nach Mitteilung von Fuhrmann in der „Zeitschr .
f. Verm . 1894 “

, S . 266—270) noch eine Art Lokal -Systeme angenommen , in welchen
bezirksweise wie eben gerechnet werden kann , aber mit dem Opfer de 3 Zusammen¬
schlusses im Ganzen.

Elsass -Lothringen .
Für die Kataster -Vermessung von Elsass -Lothringen wurden zwei Coordmaten -

Nullpunkte angenommen , Delme und Sausheim , worüber eine erste Mitteilung von
Vermessungs -Kontroleur Rodenhusch gemacht wurde in der „Zeitschr . f. Verm. 1888“,
S . 545—552. Die amtlichen Angaben hiezu sind enthalten in dem Werke : „ Anweisung
vom 30 . Januar 1889 für das Verfahren bei der Stück -Vermessung von Gemarkungen
zum Zwecke der Errichtung von Kataster -Urkunden , Strassburg 1889 “ , S . 9.

Schlussbetrachtung .
Die Übersichtskarte der deutschen Coordinaten -Systeme und der Rückblick auf

ihre allmähliche Entstehung zeigen beide ein treues Abbild der ungleichen politischen
Entwicklung der einzelnen Staaten unseres Vaterlandes .

In geodätischer Beziehung haben wir diese Ungleichheit in der Vergangenheitnicht zu beklagen . Aus der 100jährigen Arbeit der Bohnenberger , Soldner , Rheiner,
Schleiermacher , Gauss , Raschen , Schreiber , und wie sie alle heissen , ist eine solche
Fülle von Erfahrungen verfügbar geworden , dass wir heute , um das richtige zu treffen ,
fast keine eigene Arbeit mehr aufzuwenden , sondern nur noch richtig auszuwählen
brauchen .

Die Coordinaten -Systeme unserer Landesvermessungen sind von grundlegender
Bedeutung für die Vermessungen selbst , für die mathematische Festlegung nnd füv
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die zeichnerische Darstellung der Vermessungs -Ergebnisse , und aus diesem Grunde
ist der Wert und die Dauer einer Landesvermessung zum grössten Teil durch die
mehr oder weniger gute Wahl eines Coordinaten -Systems bedingt .

Eine für die ganze Erde zu Land und zu Wasser gütige Art der Punktbe¬
stimmung durch geographische Coordinaten (geogr . Breiten und Längen ) ist auch bei
den Landesvermessungen immer angewendet worden , und in manchen Vermessungen
wurden die geographischen Netzlinien für Längen und Breiten als einziger mathe¬
matischer Zusammenhalt genommen .

Allein diese geographischen Netzlinien liegen dem Feld - und Landmesser , der
im Kleinen misst , zu fern , sie passen nicht in sein tägliches Geschäft mit rechten
Winkeln, denn die Meridiane eines Landes sind zwar für das Feldmessen als Gerade
zu betrachten , aber sie sind unter sich nicht parallel , und die Parallelkreise sind
nicht gerade .

Der Feldmesser muss rechtwinklige Coordinaten haben , und zwar solche , die
auf die Erdkrümmung Rücksicht nehmen und den "Übergang zwischen der Kleinver¬
messung und den höheren geodätischen Rechnungen mit geographischen Coordinaten
vermitteln .

In dieser Beziehung haben die süddeutschen Landesvermessungen , namentlich
Bayern und Württemberg unter Soldner und Bohnenberger am Anfang dieses Jahr¬
hunderts bahnbrechend gewirkt , die Systeme jener Vermessungen waren nachahmungs¬
wert, so lange man nichts besseres hatte .

Das ist nun aber der Fall seit 1866 , da die Gausssche konforme Projektion
durch Wittstein -Schreiber der Öffentlichkeit übergeben ist ; und im nächsten Jahr¬
hundert wird die konforme Projektion nach Gaussschem Prinzip ebenso unbestritten
als zweckmässigste für Landesvermessungen und Katasteraufnahmen gelten , wie heute
die vor kaum 2 Jahrzehnten noch für „unausführbar “ erklärte Gauss sehe Ausgleichung
der Kataster -Dreiecksmessungen .

Zwischenbemerkung .
Mit den geographischen Coordinaten sind wir so weit in der Theorie der Geodäsie gelangt ,

als zum praktischen Verständnis unserer deutschen Landesvermessungen im Ganzen nötig ist .
Für weitergehende Zwecke ist nun der richtige Weg zur geodätischen Linie vorgezeigt ,

welche in unserem nächsten Kapitel VI . behandelt werden wird .
Wenn nun trotzdem noch in diesem Kapitel V. eine Anzahl rein sphärischer Aufgaben ab¬

gehandelt wird , so hat das den Zweck der Vorbereitung von späteren sphäroidischen Aufgaben .
Eine Aufgabe spielt dabei eine durchlaufende Bolle , nämlich Herstellung der Beziehungen

zwischen den geographischen Coordinaten zweier Punkte einerseits und der Entfernung nebst
den Azimuten ihrer Verbindungslinie andererseits , oder umgekehrt , in verschiedenem Zusammenhang .

Wir haben dieses früher „Hauptaufgabe der höheren Geodäsie “ genannt , werden aber nun
das mehr bezeichnende Wort „Polardreiech “ anwenden .

Das Polardreieck spielt in der Geodäsie eine gleich wichtige Bolle wie das astronomische
oder nautische Dreieck (Pol -Zenit -Stern ) in der praktischen Astronomie . Auch eine von Gauss

gebrauchte Bezeichnung T oder t für das Azimut und dann auch für Richtungswinkel der Geodäsie

scheint auf jene Verwandtschaft hinzudeuten , indem das Azimut in dem geodätischen Polardreieck
dem Stundenwinkel t des astronomischen Dreiecks entspricht .

§ 60. Das sphärische Polar-Dreieck.

Wir knüpfen nochmals an den früheren § '56 . an und setzen auch die Fig . 1 .
von S . 312 nochmals her .

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 22
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Zwei Punkte P und P ' haben die geographischen Breiten qp und qp
' und

zwischen sich den geographischen Längenunterschied X. Der Verbindungsbogen PP
als grösster Kreisbogen hat den Wert a als Centri-
winkel am Erdmittelpunkt und die Azimute a und a'

an seinen Endpunkten . Der Halbmesser der Kugel,
auf welcher das Dreieck P P ' N liegend angenommen
ist , kommt nicht in Betracht .

Unsere Aufgabe wird eine zweifache sein :
entweder ist cp , qp

'
, X gegeben und

ff , a , a' gesucht
oder es ist qp , a , a gegeben und

<jp
'

, X , a ' gesucht .
Da wir uns hier nur mit der rein sphärischen Auf¬

lösung der fraglichen Aufgaben beschäftigen , und da wir
einsehen , dass es sickin beiden Fällen nur darum handelt,

ein sphärisches Dreieck aus zwei gegebenen Seiten und dem eingeschlossenen Winkel
aufzulösen , liegen im Grundsatz keine Schwierigkeiten vor , und es handelt sich also
nur darum , die verschiedenen Auflösungs -Formen , welche die sphärische Trigonometrie
für unsern Fall bietet , zu betrachten , und für unsere Zwecke zurecht zu legen (wozu
Gauss in den „Untersuchungen über Gegenstände der höheren Geodäsie “

, erste Ab¬
handlung , 1843 , art . 16 . und 17 . die Wege gezeigt hat ) .

Ehe wir zu unseren Formel -Entwicklungen und zur numerischen Anwendung
von sphärischen Formeln übergehen , wollen wir zwei scharf (mit 10 stelligen Logarith¬
men ) berechnete Beispiele voraus schicken , welche in verschiedener Weise als Normal -
Beispiele dienen können :

Fig . l .

Kleines sphärisches Normal -Beispiel .
(Bezeichnungen nach Flg . 1.)

_ qo
' H- qo _

<p = 49 ° 30' 0"

<fo =

« ' + ««o =
2
.

a ' ■— a

50 ° O' O"
cp

' = 50 ° 30 ' 0"
^ ~ ^ = 0 ° 30’ 0"

X = 1 ° 0 ' 0"

-4 = 0 ° 30' 0"

= 32 ° 44' 0,2384"

= 0 ° 22' 58,9470"

« ' = 33° 6 ' 59,1854"
« = 32 ° 21' 1,2914"

- ff = 0 ° 45 ' 57,89393
”

~ = 0 ° 35 ' 39,74093 "
u

o = l ° 11 ' 19,48186 "
er = 4279,48186 "

qp = 45° 0 ' 0"

Grosses sphärisches Normal -Beispiel .
(Bezeichnungen nach Fig . 1.)

= £ + * = 5 o « 0 , 0„<Po

«o = - ^
a = 32 ° 49' 54,6437"

qp
' = 55 ° 0 ' 0"

= 5 ° O' O"

2
ff' — a~~

2 :

« '

: 3 ° 50' 55,8355 "

= 36 ° 40' 50,4792”
=28 ° 58 ' 58,8082"

X = 10 ° 0 ' 0"

A = 5 ° O' O"

- ff = 7 ° 4P 51,67100”

4 = 5 ° 55 ' 51,32153 "
Li

ff = 11 ° 51 ' 42,64306 "
ff = 42702,64306 "

(1)

(2)
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I . Gegeben cp, cp
'
, A. Gesucht er, a , a ' .

Ia . Die Gauss sehen Gleichungen der sphärischen Trigonometrie .

Wenn man die Gauss sehen bzw. Neper sehen Gleichungen von § 27 . S . 165

auf unseren Pall anwendet , so bekommt man , ebenso wie schon hei (1) § 56. S. 312

mit den Abkürzungen (jp0 und «0 für die Mittelwerte , folgendes :

= COS<jp0 StW -
g

-

. <p ' — cp A
= sm ■■■—

q
cos -

g
-

cr . «' — « . . A
cos sm — _— = sm <po sm

ü a u

sm sm a 0

sm cos or0a

cf a
COS-jr - cos —

u
— a cp' —
2

= eos 2
<SP

(3)

Wenn man die erste und zweite , dann die dritte und vierte dieser Gleichungen
dividiert , und zur Abkürzung für das folgende , die Zeichen Z und A7, Z ' und W für

die Zähler und Nenner der entstehenden Brüche einführt , so erhält man :

tang « 0 =
cos cpQ sm g

-

. ® ' — cp A
sin —

y
- cos -

g
-

Z
N

. a £
sm = —— :

2 sm «0
_ N _
COS« 0

tang
sin <p0 sin g

-

— cp A

2
- C°S 2

CT
cos T = -

: W '

IV'

— a

W

(5)

Zu einem Zahlen -Beispiel nehmen wir nach (1) :
<p = 49 ° 30' 0" cp

' = 50 ° 30' 0" A = l c 0 ' 0"

also <p0 = 50° O' O"
,

9
n ~ =
Li

Die logarithmische Bechnung gieht :

= 0 ° 30' 0” = 0° 30' 0"

log Z
log N

7 .748 9093 -6
7.940 8253 -2

log Z '

log N ’
7.825 0958-3
9 .999 9669-3

log tang a 0 9 .808 0840 -4 7 7 «' — «
loglang 2

7 .825 1289-0

7 * <7/op sm — 8 .015 9282 -7 7 ff
cos 9.999 9766 -3

k 0 = 32 ° 44' 0,238"

- a = 0 ° 22' 58,947"

S = 0 ° 35' 39,741"
a
a = 1 ° 11 ' 19,482"

(6)

(? )

a ' = 33 ° 6' 59,185'
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Von den beiden Bestimmungen für nämlich aus sin Z und aus cos ~ ist
Li Li 2

in diesem Palle , da a Hein ist , nur die erste scharf, während die zweite aus cos,
nur als summarische Probe benützt werden kann.

Ib . Eineeiformeln für er, a und
Zur Bestimmung von ff allein dient die Cosinusformel S . 164 :

cos er = sin qpsin cp
r + cos cp cos qp

' cos A (8)
Da aber in unseren Pallen immer ff klein ist , kann man nicht geradezu nach

cos (7 rechnen; indessen kann man die vorstehende Formel leicht umformen , indem
man setzt :

cos er = 1 — 2 sin2 -

Damit findet man leicht :

und cos A = 1 ■

- qp - cos qpcos qp
' sm2

, sin2 A
‘

2

X
(9)2 ■ — T — T — 2

Man rechnet dann mit einem Hilfswinkel fi ähnlich wie hei der Bestimmung
einer Hypotenuse aus zwei Katheten :

• V
' — cp

tang pi
sin Ycos cp cos cp

'

, <P — <P
sin -

g
- = -

2

oder sin -jy Ycos qpcos qp
'

sm pi cos fl
Unser kleines Normal-Beispiel (1) S . 338 gieht :

7 . qp
' — qplog szn -zl~

2
x 7 .940 8418 -6

log sin — y . . . 7 .748 8693 -3

log tang fi 0 .191 9725 -3

log sin ~ 8.015 9282 -7

fi = 57 ° 16' 11,981"

4 = 0 ° 35' 39,741 "

(10)

o- = 1 ° 11 ' 19,482"
Auch für die Azimute a und a! gieht die sphärische Trigonometrie unmittel¬

bare Lösungen , nämlich nach den cotg-Formeln von S . 164 :
tang qp

' cos qp . , , mi \cotg a = — — - — sm cp cotg A Uv
SIWA

cotg (« ’ + 180 °) = Zyß _ sin , cgt ^ (12)
sin A

Unser grosses Normal-Beispiel (2) gieht hiefür folgende Anwendung :
: 45° 0'

, qp
' = 55° 0’

, A = 10 ° 0’
cotg a = 5,815 512 455 — 4,010 201 831 = 1,805 310 624
log cotg a = 0 .256 5519 -4 a = 28° 58' 58,808"



Das sphärische Polar -Dreieck . 34160 .

Dagegen giebt das kleine Normal -Beispiel (1) :

qp = 49 ° 80'
, qp

' = 50 ° 30'
, X = 1 ° 0 '

cotg a - 45,142 3983 — 43,563 6286 = 1,578 7697

log cotg <x = 0 .198 3187 -8 a = 32 ° 21 ' 1,290" (13 a)

Wenn qp und qp
' nahezu gleich sind , und X klein ist , so geben die Formeln

( 11 ) und (12 ) keine scharfen Bestimmungen , weil dabei eine Differenz zweier nicht

sehr verschiedener Werte auszurechnen ist , wie ( 13 a) mit 45,14) . . . — 43,56 . . . deut¬

lich zeigt.
Man kann noch manche andere Auflösungs -Formen für die vorgelegte erste

Aufgabe I . finden , wie sich aus der Analogie mit der zweiten Aufgabe II . ergeben
wird, zu der wir nun übergehen .

II . Gegeben qp, er, a . Gesucht qp
'
, X, ß' .

II a . Auflösung durch die Gauss sehen Gleichungen .

Die Anwendung der Gauss sehen bzw. Neper sehen Gleichungen von S. 165

auf unseren Fall giebt :

tang -

. 90 ° — qp - l- er . a
^

sin - ? — — sm -
g

-
Z

. 90 ° — qp — er ß N
sm -

g
“ - cos

. 90 ° — qp
' N

X ß’
— cos -

(14)

tang
ß ' — X cos

90 ° — qp . a . ß
- sm T_ _ Zf

90 ° — qp — er ß N '
cos - - cos -

g
-

cos
90 ° — qp

' Z ' N '

ß' — X

(15)

Bei unserem kleinen Normal -Beispiel (1) ist :

Gegeben qp = 49° 30' 0” er = 1 ° 11' 19,482" ß = 32° 21 1,291

Man hat also zur Anwendung von (14 ) und (15 ) :

— - <L± _(T = 20 ° 50 ' 39,741" -S - = 16 ° 10 ' 30,646"
2 «

90°
- - = 19 ° 39 ' 20,259"

log Z j 8 .996 1858 -3
log N | 9 .509 2708 -3

log tang \ 9 .486 9150 0
U

QO° _ Cf)'
logsin

™— - ? - : 9 .528 8096 -8

log Z '

log N '

ß ' — X
log tang —

^
—

log cos
90° . qp

'

9 .415 5449-8
9 .956 3857-0

9 .459 1592-8

9 .973 6708-5
2
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= 17 ° 3 ' 29,592"
U

- -7 - = 16 ° 3 ' 29,592 "
U

= 33 ° 6 ' 59,184"
X = 1 ° 0 ' 0,000"

Ilb . Einzel -Formeln für cp
'
, a ' und X.

Zur Bestimmung von cp
’ aus cp, a und a hat man die Cosinus -Formel S. 164

und für a! und A hat man je eine der Cotangenten -Formeln (9) S . 164 anzuwenden .
Man erhält auf diesem Wege folgende drei Auflösungen :

90° - cp
'

= 19 ° 45' 0,000"

90 ° — <p ' = 39 ° 30 ' 0,000"

cp
' = 50 ° 30' 0,000"

(15 a)

sin cp
' = sin tp cos er cos cp sin er cos a

, , cos a cos a — sin <j tang fficotg a = - a

cotg

sm a

^ _ cotg a cos cp — sin cp cos a

Zur Anwendung auf unser kleines Normal -Beispiel haben wir :

(16)

(17)

(18)

Gegeben cp = 49 ° 30 ' 0"
, cs = 1 ° 11 ' 19,482"

, « = 32 ° 21 ' 1,291 "
Die Ausrechnung nach (16 ), (17 ) und (18) giebt :

sin cp
' = 0,760 2423 -+- 0,011 3823 = 0,771 6246

log sin cp
' = 9 .887 4061 <p ' = 50 ° 30 ' 0,00"

cotg a ' — 1,578 4299 — 0,045 3947 = 1,533 0352
log cotg « ' — 0.185 5521 a ' = 33 ° 6 ' 9,19"

cotg X = 31,897 9570 ~ 0 .642 3847 _ 30,655 5723
sin, a sin a

log cotg X = 1 .758 0785 X = 1 ° 0 ' 0,00" (W)
An diesen drei Auflösungs -Formeln ist nichts auszusetzen ; sie geben cp

' a'
und X einzeln mit gewöhnlicher Schärfe . Der von manchen Rechnern gescheute mehr¬
fache Übergang von den Logarithmen zu den Zahlen und umgekehrt , kann nötigen¬
falls durch Benützung von Additions - und Subtraktions -Logarithmen vermieden werden .

II c. Rechtwinklige Projektion des Nordpols auf die Seite ff.
Fig . 2.

Hilfswinkel M und m.
In Fig . 2. , welche etwas anders gezogen ist

als die frühere Fig . 1 . , aber im wesentlichen das¬
selbe darstellt , ist von dem Nordpol N eine Senk¬
rechte N P 0 auf die verlängerte PP ' gefällt , wo¬
durch sowohl die Länge m dieser Senkrechten selbst,
als auch die Länge PP 0 bestimmt ist , welche wir
mit 90 ° — M bezeichnen wollen .

Da nun das grosse rechtwinklige Dreieck
PN P 0 durch unsere gegebenen <p und a vollständig
bestimmt ist , und da durch Abtragen von PF = ff
auf PP 0 auch der Punkt P '

, und damit das zweite
kleinere rechtwinklige Dreieck P ' NP 0, bestimmt
ist , sowie auch damit das schiefwinklige Restdreieck
P P ' N , ist nun unsere ganze Aufgabe auf die Be-
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handlang zweier rechtwinkliger sphärischer Dreiecke zurückgeführt , weshalb wir die

nötigen Formeln (die man auch rein goniometrisch aus den Formeln (16) , (17 ) , (18)

herleiten könnte ) sofort in der zur Rechnung nötigen Aufeinanderfolge hier hersetzen .

Zur Bestimmung von M und m hat man :
sin cp

cos cp eos a
cos cp cos a J> (20)

tang M =

tang a ’ = (21 )

(22 )

(23)

sin cp ,
C0SW = ÄM

°der cosm ~ -
coiM

sin m — sin cc cos cp
Nachdem so M und m bestimmt und versichert sind , hat man weiter :

tang m
cos (M + o)

sin cp
’ = cos m sin (M -+- ff) tang cp

' = tang (M + ff) cos cc'

sin ff sin a '
_ sin cc sin cc

smX = -
C()x f(

- - cos <p'

Die Anwendung auf unser kleines Normal -Beispiel mit den gegebenen Werten

cp, a und o nach (1), führt auf die Hilfswinkel :

M = 54 ° 11 ' 19,61" to = 20 ° 20 ' 7,75”

womit die Werte cp
'
, a ' und X sich wie früher ergeben .

lld . Rechtwinklige Coordinaten x , y für den Punkt P ’.

In Fig . 3 . ist der Meridian P N gerade
gezogen , und durch P ’ P x eine Senkrechte an¬

gedeutet , welche von P ' auf den Meridian von
P gefällt wurde , so dass die rechtwinkligen
sphärischen Coordinaten P P x = x und P 1 P ’ = y
zur Anschauung kommen . Diese Werte x und y
sind bestimmt durch die Gleichungen :

tang x = tang er cos a (24)
und sin y — sin o sin a , tangy = sin x tang cc (25 )

Mit * hat man auch cp -+- x und 90° —

(cp -+- sc) die Kathete NP x des grossen recht¬

winkligen Dreiecks N P x P ’
, welches cp

' und X
giebt, nämlich :

(26 )

Fig . 3.
Rechtwinklige Coordinaten

P,P ' + y.

und

cos (<jp — ff)
sin cp

' = sin (cp -t- *) cos y
tang cp

' = tang (cp -+- x ) cos X

Endlich nach dem Sinussatze :
sin cc eos cpsin a ' =

cos qc

(27) - tp
'+Jh

(28)

Diese einfache und naheliegende Auflösung
hat Gauss (in Art . 16 . der „ Untersuchungen über
Gegenstände der höheren Geodäsie , erste Abtei¬
lung , Göttingen 1843 “ ) noch verfeinert , erstens
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dadurch , dass der kleine Breiten -Unterschied 8 zwischen den Punkten Pj und P ' für
sich dargestellt wurde , und zweitens dadurch , dass auch die Meridian -Konvergenz /xzwischen Pj und P ' und ausserdem der sphärische Excess e des rechtwinkligen Drei¬
ecks P P 2 P ' beigezogen wurde .

Denkt man sich diese drei kleinen Werte 8 , y1 und e bestimmt , so ist die
Breite bestimmt durch :

(<p + * )) = 8

(29)cp
' — cp -hx — 8

ferner für die Azimute :
a ' — yx + ß = 90 ° und « -+- ß = 90 ° -t- e

«' — a = yi — sworaus :
Um den sphärischen Excess s zu bestimmen , haben wir die schon in § 44.

S. 245 benützte Entwicklung :
(Jcotg a cotg ß = cos a — 1 — 2 sin 2

(Jcos acos ß — sin a sin ß — 2 sin a sin ß sin 2

cos (a -f- ß) = — sine — — 2 sin cc sin ß sin2 ~

. sinx . . astne = 2 stn a - - sm 2 —vvtv k, — u omc w. —. - owr - r-
smu 2

<7 .sm e = lang sm x sm a

Für hat man aus dem rechtwinkligen Dreieck NPiP ’ :

(31)

lang (90 ° — (qp -t- as))tang (90 fl ) = ~
siny

~-

(32)tang yi = tang (cp -+- x ) sin y = tang (cp - )- x ) sin o sin a
Um auch noch 8 zu bestimmen , hat man zunächst nach (29 ) :

sin 8 = sin ((qp -+- a;) — qp
'
) = sin (cp -+- ac) cos cp

' — cos (cp -+- x ) sin cp
'

(cp -t- x) cos cp
' (tang (cp -+- x ) — tang qp

'
)

Es ist aber in dem rechtwinkligen Dreieck N P 1 P ' :

tang qp
' = tang (cp + x ) cos X = tang (cp -h x ) ( 1 — 2 sin2 -

und damit wird

sin 8 = 2 sin (cp -f - sc) cos qp
' sin2

Wenn man hier noch yj nach (32) zuzieht und cos qp
' sin X = sin y berücksich¬

tigt , so erhält man :

(33 )sin 8 = cos (qp -+- sc) tang tang yxLi
Der Gang der Rechnung ist nun folgender :
Man bestimmt x und y sowie auch X wie im einfachen Pall , nach (24) , (25 ) , (26),

dann folgen e und yx nach (31 ) und (32) und 8 nach (33) , worauf man cp
' und « '

nach (29) und (30 ) zusammensetzen kann .
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Die Anwendung auf unser Heines Normal -Beispiel gestaltet sich so :

Gegeben <p = 49 ° 30' 0" er = 1 ° 11 ' 19,482" « = 32° 21 ' 1,291"

Nach (24), (25), (26) findet man :

a = 1 ° 0 ' 15,420 " y = 0 ° 38' 9,813" A = 1 ° 0' 0,000"

Die Formeln (31 ), (32), (33) liefern :

« = 0 ° 0 ' 20,0687 "
yx = 0 ° 46 ' 17,9616” 8 - 0 ° 0 ' 15,4199"

und nun setzt man so zusammen :

7l = 0° 46 ' 17,9616 " a? = 1° 0 ' 15,420"

e ~ 0° 0 ' 20,0687" 8 = 0 ° 0 ' 15,420"

y — s = 0 ° 45 ' 57,8929 " = « ' — « , x — 8 = 1 ° 0' 0,000"

« = 32 ° 21 ' 1,291” <SP = 49 ° 30 ' 0,000"

« ' = 33° 6 ' 58,184 " <p
' = 50 ° 30' 0,000"

Der Vorteil dieser Berechnung im Vergleich mit allen früher beschriebenen
besteht darin , wenn <t selbst klein ist (was hier immer der Fall ist), dass dann auch
alle andern , die Endergebnisse beeinflussenden Grössen x , y , y \ , s seihst klein sind,
und daher aus sin oder tang sich sehr scharf berechnen lassen.

Man kann durch diese verfeinerten Formeln in Hinsicht auf Rechenscbärfe , mit
einer gewöhnlichen 7 stelligen Logarithmentafel nahe dasselbe erreichen , wozu man
mit den früheren Formeln nahezu 10 stellige Logarithmen braucht .

Bemerkungen zur Meridian -Konvergenz .

Nachdem schon am Schlüsse von § 45 . S . 256—257 zur Wort -Erklärung und
zur sachlichen Begriffsbestimmung der „Meridian -Konvergenz “ das Nötigste gesagt
worden ist , können wir noch mit beistehender Fig . 3 . einiges zufügen :

Die Meridian -Konvergenz « ' — cc ist gleich dem
sphärischen Excesse y des Vierecks AB P ' P Fig . 3, , denn
da dieses Viereck bei A und B rechte Winkel hat , besteht
die Gleichung :

90° + 90 ° + (180 ° — « ) + ££' — 360 ° = y
d. h . cc' — cc = y (a)

Bezeichnet man ferner mit e den sphärischen Excess
des Dreiecks PP ' JV, welches hei N den Längen -Unter -
schied A enthält , so hat man :

A -v- « + ■(180 ° — cc' ) — 180° = 8
d . h . : X — (cc' — et) h- s oder a ' — cc = A — « (b)

Das letzte ist auch unmittelbar klar , indem A der
Excess des ganzen Dreiecks AB N sein muss .

Diese beiden Gleichungen (a) und (b) sind sphärisch streng richtig .
Wenn die beiden Punkte P und P ' auf gleichen Breiten q> und cp

' liegen , so
ist der Winkel , den die Meridian -Tangenten von P und P ’ oben in der Erdaxe

einschliessen, genau gleich A sin qo, wie man aus Fig . 1 . § 61 , alsbald entnehmen
kann ; und das kann man auch so aussprechen , dass A sinq > gleich dem sphärischen
Excess des Vierecks AB P ’ P ist , wenn <jp = cp

' und wenn P P ' nicht als Gross -

kreisbogen der Kugel , sondern als Parallel kreisbogen , parallel dem Äquator A B auf-

Fig . 3.
Meridian -Konvergenz .

ff ' — a — y.
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gefasst wird . Das Viereck hat dann 4 Winkel , welche alle = 90 ° sind , aber der
Parallelkreisbogen PP ' hat dann eine geodätische Krümmung = X sin cp, welche bei
der Kegelabwicklung sich auch in der Ebene darstellen lässt .

Im gewöhnlichen Sinne ist dieses X sin cp aber durchaus nicht die genaueMeridian -Konvergenz a — « ' für zwei Punkte unter gleichen Breiten cp
' = cp, denn

dazu müsste PP ' ein Grosskreisbogen sein .
Was in diesem Falle k' — a wird , das lässt sich aus der Gleichung (5) S. 339

leicht entnehmen , diese giebt für cp
’ = cp den Wert

, « ' — a X .tang — ^— = tang sm <pu u («)

Das kann man auch unmittelbar begründen , wenn man in Fig . 1 . S . 338 qf = <p
• ■ Xnimmt und bei N den Halbierungsbogen für -=- rechtwinklig auf PP ' zieht .u

Die Gleichung (c) giebt allerdings in erster Näherung a ’— a = X sin qo, wie immer
in erster Näherung , aber streng gilt dieses Xsinpp nur für zwei Meridiantangenten
unter den gleichen Breiten cp

’ = <p .
Um diese Begriffe auch sofort für die späteren Berechnungen mit der geo¬

dätischen Linie festzustellen , müssen wir nun im Anschluss an Fig . 1 . sagen : Unter
Meridian -Konvergenz zwischen zwei Punkten P und P ' verstehen wir die Differenz der
Azimute a und a! , welche der verbindenden geodätischen Linie P P ' in P und F
in dem Sinne von Fig . 3 . zukommen .

Indessen eine absolut im Sprachgebrauch der Geodäsie feststehende Definition
ist auch dieses nicht ; wir werden später finden , dass Gauss in seiner konformen
Projektion der Hannoverschen Landesaufnahme mit dem Worte Meridian -Konvergenz
wieder etwas anderes bezeichnet hat , was zwar in erster Näherung mit dem Gesagten
übereinstimmt , aber in aller Strenge gar nicht ohne jene besondere Projektionsart
definiert werden kann .

Wenn nichts Besonderes bemerkt ist , werden wir das Wort Meridian -Konvergenz
in dem Sinne von « ' — a nach Fig . 3 . S . 345 für PP ' als geodätische Linie anwenden .

Damit kann man auch den Satz bilden , dass der sphärische bzw. sphäroidische,
Excess eines geodätischen Dreiecks gleich der algebraischen Summe der drei zuge¬
hörigen Meridian -Konvergenzen ist .

§ 61» Differential -Gleichungen des sphärischen Polar-Dreiecks .
Die geschlossenen Formeln der sphärischen Trigonometrie , welche wir im vorigen

§ 60 . behandelt haben , erfüllen nicht alle Bedürfnisse ; es ist in vielen Fällen nützlich ,
geschlossene Formeln in Reihen aufzulösen , und der erste Schritt hiezu ist die Auf¬
stellung von Differential -Formeln .

Wir betrachten in Fig . 1 . S . 347 das schon früher benützte sphärische Dreieck
PP N , jedoch nehmen wir nun an , dass die Entfernung P P ' der beiden betrachteten
Punkte sehr Hein — ds werde , wodurch auch alle anderen Differenzen cp

'— q , — a <^
klein werden , was wir in Fig . 1 . und Fig . 2. durch Differential -Zeichen d cp, da u . s . w.
angedeutet haben .

Wir betrachten in Fig . 1 . eine Kugel .mit zwei Punkten P und P '
, deren Ent¬

fernung PP = ds klein ist . Die Breiten dieser Punkte seien bzw. cp und cp + dq>>
so dass die kleine Breiten -Differenz d cp zwischen den Parallelkreisen von P und P '
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erscheint. Durch die beiden Meridiane NP und NP ' kommt auch der Längen¬
unterschied dX zum Ausdruck und werden die Azimute des Bogens ds in Pund in P

bestimmt, diese Azimute seien bzw. a und a + da .

Fig . 1.

S

Fig . 2

Besonderer Teil von Fig . 1.
PP ' — ds =zrdG

Man kann nun auf die beiden Punkte P und P ' mit ihren Breiten qt, <f>+ d <p,
zrmuten a , a -+- d a und ihrer Entfernung d a und dem Längenunterschied d Ä die

allgemeinen Gauss sehen Formeln (3 ) § 60 . S . 339 anwenden ; und wenn man dabei ,

im Sinne der Differential -Rechnung ,
' da d <J

sm -Tr- = ö " ’ eos — 1 se^ s * w*> so ge^en
u £

die drei ersten jener Gleichungen (3) § 60. S. 339 folgendes :

d <7 sin a = dXcos <p ( i )

da cos a — d (p ^

da = dXsin <jp
^

Dieses sind die sehr wichtigen Differential -Gleichungen des sphärisch -geodä¬
tischen Polar -Dreiecks .

Man kann diese Gleichungen (1) , (2), (3) auch leicht geometrisch in Fig . 1 .

nachweisen, wozu zuerst das kleine , als rechtwinklig eben zu behandelnde Dreieck

2*
1PP ’

, welches in Fig . 2 . besonders herausgezeichnet ist , dient . Dasselbe giebt
mit rda — ds -.

d $ sin a = P \P '

dscos a = PPi

Diese Gleichungen sind entsprechend (1) und (2), wozu für (2a) nur einzusehen

ist , dass PP , ein Meridianbogen = rd (p für den Halbmeser r oder kurz = d g> für

6en Halbmesser 1 ist . Sodann für ( la ) hat man den Parallelkreis -Halbmesser p = r cos Q>
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zu betrachten (bzw. = r cos (cp + d cp), welcher mit r = 1 und für den Längen -Unter-
schied d X den Parallelkreis -Bogen P ' = dXcos qp giebt .

Während die zwei ersten Gleichungen (1) und (2) sich geradezu aus dem kleinen
rechtwinkligen Dreieck PPj P ' geometrisch herleiten lassen , ist zur geometrischen
Begründung der dritten Gleichung (3 ) die Betrachtung der Meridian -Tangenten PS
und P S nötig . Insofern P P x unendlich klein ist , schneiden sich diese beiden Tan¬
genten in einem Punkte S der Erdaxe und bilden dort den Winkel d a , wie aus dem
geradlinigen Dreiecke SPP ' folgt .

In dem langen gleichschenkligen Dreiecke P x P ' S hat man
PiP '

da =
PiS

Hier ist , wie schon erwähnt , der Parallelbogen P 1 P = r cos cpdX und die
Tangentenlänge Pj S findet sich = r cotg qp ; es ist also :

da ■d X sin cp
r cos cp dX

r cotg qo
womit die Gleichung (3) begründet ist .

Die Meridian -Konvergenz d a ist die Differenz der Azimute des Grosskreis -
Bogens PP ' in P und in P '

, d . h . in der besonders herausgezeichneten Pig . 2. ist :
d a = cd — a (4)

wobei cd sowohl = P P 'Q als auch = N P 'P " ist , indem die beiden mit a ' bezeich-
neten Schnittwinkel in P ' für einen Grosskreis -Bogen PP ' P " gleich sind .

Nachdem wir so die wichtigen Differential -Grundformeln nach allen Beziehungen
erörtert haben , wollen wir auch noch eine praktische Anwendung derselben machen .

Wenn man die Differential -Pormeln ( 1) , (2 ) , (3 ) auf endliche Differenzen an¬
wendet und dabei statt der allgemeinen Werte cp und a die Mittelwerte qpQ und «psetzt , so hat man aus (1), (2), (3) :

• cp H- qp
'

-
2

= * » er sin «0 = X cos <po (5)

a -4- a ’
_ __ a er cos a 0 = qp

'— qp
2 0 a '— a = X sin qp0

Dieses sind wieder dieselben Gleichungen wie (2) —(3) § 56 . S . 312.
Aus (5) und (6 ) findet man :

cos <p0'tang a 0

ff = * COS? o oder
svn a 0 cos a 0

(V

(S)

(9)
Man kann auch unmittelbar ff durch Quadrieren und Addieren von (5) und (6)finden :

ff = V (<P
'~ cp)2 + (X cos «0)2 (10)

Nachdem « '+ a = 2 a 0 aus (8) und (« '— u ) aus (7) berechnet sind , hat man
auch a ’ und a .

Wir wollen diese Näherungs -Formeln auf unser kleines sphärisches Normal -
Beispiel anwenden :

Gegeben cp = 49 ° 30'
qp

' = 50 ° 30 ' X = 1 ° 0 ' = 3600"
qp0 = 50 ° 0 '

cp
'— cp ~ 1 0 0 ' = 3600" .
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Aus (8) findet man : a 0 = 32 ° 43 ' 56,67 " (11 )

Aus (7 ) findet man : = 0 ° 22 ' 58,88 " (12)

« = 33 ° 6 ' 55,55 " (13 )
« = 32 ° 20 ' 57,79 " (14)

Aus (10 ) findet man : <7 = 4279,57 " = 1 ° 11 ' 19,57 " (15)

Die im vorigen § 60 . mehrfach berechneten genaueren Werte sind :

« ' = 33 ° 6' 59,19 ”
, a = 32 ° 21 ' 1,29 ”

, a = 1 ° 11 ' 19,48 " (16 )

Bei a beträgt der Fehler des Näherungswertes (15) nur 0,09 " . Die bequemen

Näherungsformeln (5 )— (10) sind zu manchen Berechnungen unmittelbar zu brauchen ,

z. B . in der Kartographie und überhaupt in Fällen , wo es nicht auf äusserste Schärfe

ankommt.
Indessen werden wir nun zur Aufstellung genauerer Formeln dieser Art übergehen .

§ 62. Reihen-Entwicklungen mit der Mittelbreite.

T
~

48 Wsm a
48

ff ffS
2 48

Kürzer geschrieben :

ff 2
24

ff2
24

cos a —

(isma |^
1

(J cos all

= 4 cos qp 1 —

Wir nehmen die Gauss sehen Gleichungen (3) § 60 . S . 339 nochmals vor ; wir

wollen jedoch die Bezeichnungen nun ein wenig anders wählen , nämlich nach An-

deutung von untenstehender Fig . 1 .

Breiten : und <jp2 ,
<P2 + <Pl

2
= q> , 9>2 — <Pi = ß (1)

Azimute : und « 2 ,
(%2 + CC\

2
= « , « 2 — « 1 = y (2)

Längen -Unterschied : X (3)

Verbindungs -Bogen : a (4)
Damit werden die Gleichungen (3) § 60 S. 339 : Fig . 1.

<J . ycos — sm ~~
U ü
(7 y

COSCOS ^

. A
sm -q- cos qpa

(5)

. ß l
sm cos

ü U
(6)

. X .
- sm 2 sm cp (?)

X ß
: COS-

g
- COS-

g
- (8)

Wir nehmen zuerst (5) und (6) , welche entwickelt
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Hier kann man in den Korrektionsgliedern als erste Näherung setzen :
(72 = ß2 + *2 C0S2 cp (li )

Wenn man dieses in (9) und (10) links einsetzt , und dann nach osina und
a cos a auf löst und ordnet , so findet man :

, n ß2 X2 sin 2 qoasma = Xcoscp [ 1 + ^ —

ß 1

(12)

(13)
k2 k2 cos2 ffi\"
8 + '

S! ]
Durch Division dieser zwei Gleichungen findet man tang a , und dann a aus

jeder einzeln . Man kann jedoch auch (12 ) und (13 ) quadrieren und addieren, und
damit eine unmittelbare Formel für er2 finden , nämlich :

ff2 = ß
‘i + k2 cos 2 <p + 4 (— 3 ß 2 k2 -+ - 2 ß 2 } 2 co §2 cp — U COs2 <p sin 2 <p) (14)

oder

12

y p -t- a cos q 8 ff2 ^ 12 a 2 24a 2 j v

Man kann diese Formel auch leicht aus (9 ) § 60 . S . 348 herleiten .
Um auch die Meridian -Konvergenz zu erhalten , bilden wir zunächst aus (7) und (8)

durch Division :
, y . X sin cptang -y = tang y

- -~
C0S T

Dieses ebenso wie das frühere entwickelt , giebt :
k k«

r
l4 = » r

24 _ sin cp / .
ß 2

" ~
2

^ "

8

k3
12

Erste Näherung y — Xsin cp, also y3 = k3 sin3 qp +
k3 sin3 m , . / k2

i
_ Jlf + Xsmq ) l -l- ig

-7 = '

1 + ß2

: y = k sin qp 1 + lk-ß2 k2
12 cos2 <p 15)

In diesen Formeln ist nach analytischem Masse gerechnet , und wenn man die
kleinen Winkel in Sekunden haben will , muss man alle quadratischen Glieder in den
Klammern durch q2 dividieren . Dieses giebt für (12 ), (13) und (15) die folgenden
Gebrauchsformeln :

ß2 k2 sin2 cpa sin a — k cos qp 11

a coscc = ß ( l

a 2 — « i = 7 = k siw qo ( 1 +

24 fi 2 24 <?2

k2
'
8 Q2

k2 cos2 qp
24 q2

! k2 cos2 cp

Durch Division von (16) und (17 ) findet man auch :

_ Xcos cp f , ß2 k2

(16)

(17)

(18)

(19)
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Die konstanten Coeffleienten zu den vorstehenden Formeln sind :

log = 8 .468 0597 log = 8 .291 9685 log —
^ = 7 .990 9385 (20)

Man kann die vorstehenden Formeln (17) , (18 ) , (19 ) auch logarithmisch an¬
wenden , nämlich in dieser Form :

log a sin a — log X eos q> + ß2 — ^2 ^ (21 )

log ocosa = logß — ^ ~ W + W cos2 <p (22)

log y = log X sin <fi + ^ ^ ^ cosS V (23)

Man braucht dann statt (20 ) folgende Konstanten für 7 . Logar .-Stelle :

log ~ = 5 -105 8441 log -# -5 = 4-929 7528 log ö = 4 -628 7228 (24)
8 p2 12 p2 24 g*

Wir wollen dieses Rechen -Verfahren auf unser kleines Normalbeispiel (1) § 60 .
S . 338 anwenden und zwar zuerst mit den Formeln (16 ) , (17) , ( 18 ) .

Gegeben qoj = 49 ° 30'
qp2 = 50 ° 30' Ä = 1 ° 0 '

also q> = 50 ° 0’ ß = 1 ° 0' = 3600" X = 3600”

Die Rechnung nach (16 ) , (17), (18) giebt :

Xcoscp = 2314,0352 ' '

+ 0,0294
— 0,0172

ß = 3600,0000 '
— 0,1371
+ 0,0189

Xsincp = 2757,7600"

+ 0,1050
+ 0,0289

ff sin a = 2314,0474 " <jcoscc = 3599,8818"
y = 2757,8939"

/ = 0 ° 45' 57,8939”

« = _ 32 o 44' 0,2385" a = 4279,4819"

4 = 0 ° 22' 58,9470 " er = 1 ° 11 ' 19,4819"
ü 2

« 2 = 33 ° 6 ' 59,1855"

« , = 32° 21 ' 1,2915"

Ausserdem kann man auch die logarithmischen Formeln (21 ) , (22 ) , (23) an¬
wenden, wobei man dasselbe , wie soeben , nur in anderer Form , bekommt , nämlich :

log X cos cp 3 .364 3700 -0
+ 55 -1
— 32 -3

logß 3 .556 3025 -0
— 165-4
+ 22 -8

log X sin <jp 3 .440 5564-7
+ 165 -4
+ 45 -5

log 0 sin a 3 .364 3722 -8 log 0 cos a 3.556 2882 -4 logy 3 .440 5775-6

Wenn man damit weiter rechnet , so bekommt man dieselben Werte a , o , y
u. s . w . wie vorhin .

Wenn man etwa <r seihst nicht braucht , so rechnet man tang a geradezu aus
der Formel (19 ) , welche in unserem Falle giebt :

log tang a = 9 .808 0675 -0 + 165 -4 = 9 .808 0840 -4 .
Dieses stimmt , wie es sein soll , mit der Differenz von log er sin a und log a cos a .
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Wir haben auch noch die Formel (14 a) auf das kleine Normalbeispiel mit
(3 = 1 °, X = 1 °

, qp= 50 ° an gewendet und gefunden :
(7 = 4279,5747 "— 0,1153 "— 0,0093 " + 0,0318 " = 4279,4819 " = 1 ° 11 ' 19,4819 "

Man kann auch hier die Korrektionsglieder in logarithmischer Form berechnen.

Umkehrung der Formeln .
Man kann die Formeln (16 ) , (17 ) , (18) nicht bloss zur Bestimmung von er, <+

bei gegebenem qplt qp2, X anwenden, sondern auch umgekehrt dazu, um bei gegebenen
qpi, er, «j die fehlenden qo2> X, a2 zu berechnen. Allerdings geht dieses nur auf in¬
direktem Wege , indem Näherungs -Werte der Unbekannten benützt und allmählich
verbessert werden .

Auch sind dann einige Umformungen von (16 ) , (17 ) , (18) vorzunehmen ; wir
bilden zuerst durch Division von (16 ) und ( 18) :

L ß2 X2 cos2 qp ß2 X2 sin2 qp\y = <rs in * tang <p ( 1

In den Korrektionsgliedern gilt aber die erste Näherung
(j2 — ß2 cos2 qp

und damit giebt das vorstehende :
ff2 X2 sin2 qp)

12 p2 +
24p2

~

(17) und (16) geben umgestellt :

8p 2
'

ß2 ffi sin* <p ) ^7)cos qp ( 24p 2 24p 2 /
Man kann diese Gleichungen auch in logarithmischer Form anwenden, ähnlich

wie (21 ) , (22 ), (23), was wir aber hier nicht mehr besonders schreiben wollen .
Zu einer Zahlen-Anwendung wollen wir von unserem kleinen Normalbeispiel

(1) § 60 . S . 338 annehmen:

y = er sin a tang qp 1 + (25)

ß = a cos a 1 +
X2 cos2 qp' ~

24p2
~

X2 sin2 cp

Gegeben qpx = 49° 30 ' 0"
, ff = 1 ° 11 ' 19,482"

, = 32 ° 21 ' 1,291 " (28)
Für qp2 und X habe man von irgend wo her, z . B . von einer topographischen

Karte, die Näherungswerte :

(<p2) = 50 ° 30’ 10”
, X = 1 ° 0 ' 10 " = 3610" (29>

Nun nimmt man aus qpj und (qp2) den genäherten Mittelwert (qp) = 50 ° 0' 5 '
und rechnet mit (X) = 3610"

, erstmals genähert (y) — (X) sin (cp) = 2765,48
= 0 ° 46 ' 5,48"; davon die Hälfte zu « j nach (28) addiert, giebt die erste Näherung
für a : (a) = 32° 44 ' 4" .

Nun rechnet man mit (qp) = 50 ° 0 ' 5" und (a) = 32 ° 44' 4" und mit dem
genau gegebenen ff = 4279,482 " die Hauptglieder der Formeln (25 ), (26 ), (27) aus ,
und erhält :

00 = 2757,93 "
= 0 ° 45' 57,93"

(ß) = 3599,76'
(X) = 3600,14 '
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Mit diesem (y) bildet man ein neues

(a ) = Kl + ^ = 82 ° 44' 0,25"
(31 )

Nun sind die Näherungen (ß ) und (X) in (30 ) jedenfalls vollauf genügend zur
Berechnung der Korrektions -Glieder in (25) , (26), (27 ), und für die Haupt -Glieder hat
man ausser dem gegebenen a die bereits sehr gute Näherung (31 ) , weshalb man die
Ausrechnung nach (25 ) , (26) , (27 ) bereits fast endgiltig machen kann . Wenn hiebei
y und ß nicht völlig übereinstimmend erhalten werden mit den in beiden Haupt¬
gliedern ct sin a tang <jp und ct eos a benützten Werten y und ß , so muss man die
Rechnung mit verbesserten a und cp so lange wiederholen , bis völlige Übereinstim¬
mung stattfindet .

Andere Form der Korrektions -Glieder .
Da in den Haupt -Gliedern nur a und qp, aber nicht l vorkommt , kann man

die allmähliche Verbesserung der Näherungswerte auf diese zwei Elemente , bezw . auf
y und ß , beschränken ; allerdings bei der ersten Näherung wird man X nicht ent¬
behren können , weil eine erste Näherung für y wohl kaum anders als durch X sin ff)
zu erhalten sein wird ; hat man aber einmal eine solche erste Näherung für / , so
führt man diese auch möglichst unmittelbar in die Korrektions -Glieder ein . Dieses
geschieht durch die Näherungs -Gleichungen :

ff2 = ß%h- Ä2 cos2 qp , y2 = A2 sin2 <jp
er2 + ft = ß2 ■+- X* (32)also auch

Damit schreibt man die Gleichungen (26 ) und (25 ) für unseren neuen Zweck so :

ß = ct eos a [ 1 + 24 g2 12p 2 (33)

/ ff2 y2 \
i

1 +
12p 2 + 24p 2;

(34)

oder auch in logarithmischer Form , ähnlich wie (21 ), (22), (23) .
Diese Gleichungen (33) und (34) geben nun eine indirekte Auflösung für qo2

und a 2 bezw. für ß und y, ähnlich wie dieses schon bei (25), (26), (27) gezeigt wurde ;
die dritte Grösse X kommt bei (33) und (34) nur in einem Korrektions -Gliede vor
und wird, nachdem ß und y gefunden sind , endgiltig durch die frühere Gleichung (27 )
bestimmt .

Das in vorstellendem beschriebene indirekte Berechnungs -Verfahren ist sehr genau , dasselbe
ist auch (gegen erstes Vermuten ) sehr bequem .

Gauss selbst sagt hierüber in Art . 20. der Untersuchungen über Gegenstände der höheren
Geodäsie zweite Abhandlung : . Die Bequemlichkeit dieses Verfahrens wird allerdings erst dann in
ihrer vollen Grösse fühlbar , wenn man sich die Hilfen des kleinen Mechanismus bei Handhabung
derartiger Methoden zu eigen gemacht hat . Ich begnüge mich , hier nur anzudeuten , dass , was wie
eine mehrfache Rechnung erscheint , nicht in der Form von .mehreren getrennten Rechnungen ,
sondern wie eine einzige geschrieben werden soll , indem man bei jeder neuen Überarbeitung nur
die letzten Ziffern ergänzt oder verbessert . Jedenfalls braucht man immer nur die letzte Rechnung
aufzubewahren , und gerade darin besteht ein grosser Vorteil , zumal bei Messungen von bedeutendem
ürnfang , dass man dann den ganzen wesentlichen Kern der Berechnung für alle Dreiecksseiten im
möglichst kleinen Raume und in der übersichtlichsten zu beliebiger Prüfung der Richtigkeit geeig -

sondern wie eine einzige geschrieben werden soll , indem man bei jeder neuen Überarbeitung

Umfang , dass man dann den

beten Form besitzt .“
Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 23
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§ 63. Weiter-Entwicklung bis zur 5 . Ordnung .
(Bezeichnungen nach Fig . 1. S. 349.)

Man kann die vorstehenden Entwicklungen , welche bis zur 3 . Ordnung , d . h.
bis zu Gliedern (33, X2 u . s. w . gehen , noch um eine Stufe weiter , d . h . bis ß5, l5
u . s . w . treiben . Allerdings hat das keinen unmittelbar praktischen Zweck, denn die
Formeln werden dadurch so umständlich , dass man vorziehen müsste , nach den strengen
geschlossenen Formeln der sphärischen Trigonometrie zu rechnen ; indessen bietet die
Entwicklung der Glieder 5. Ordnung das beste Mittel zur Gewinnung eines Urteils
über die Grenzen der Anwendung der abgekürzten Formeln , und diese sphärischen
Glieder 5 . Ordnung werden auch später hei der analogen sphäroidischen Aufgabe von
Bedeutung sein.

Wir nehmen nun von den strengen Gauss sehen Gleichungen (5)— (8) § 62.
S . 349 nochmals zunächst die zwei ersten vor :

. a . . Ä
sm ^r- sma = sin cos cp

sm -p- cos a = sm -
Li

- cos ■
2 2

Diese entwickeln wir nun bis zur 5 . Ordnung (vgl . S . 172) :
'

(7

(1)

(2)

ff 3 ff5 \ .
48 + 384öJ Sma = ( X A3

+
iS ) cos <p (3)48 1 3840 /

ff 3 ff5 \
48 + 3840 C0Stt = (4 ß s

48 + J0 - )3840 /
A2 Xi \
8

+ 384/
W

er
2
~

Um diese Gleichungen nach er sin cc und er cos a aufzulösen , denken wir uns
links abgesondert :

(7*ff 2
'

24
1

- = 1 + x -

1920

x2 = 1 +

= 1 — x , d. h . x =

er 2 7 ff4

ff «
24

' ff4
'
192Ö

1 — x ' 24

Hier ist nach (14) § 62 . S . 350 :

ß2 X2

5760 (5)

also

ff2 = ß2 - f- \ 2 COS2 Cp-

ßi + Xi cos4 cp ■

X4 sin 2 cp cos2 cp ß2 X2
cos2 (jP (6)

(?)

4 12
ff4 = ßi + 14 cosi cp + 2 ß2 X2 cos2 cp

Wenn man diese (6 ) und (7) in (5) einsetzt , und damit die rechten Seiten von
(3) und (4) multipliziert , so erhält man die gewünschten Ausdrücke für ff sin a und
er cos « . Ebenso kann man auch die Reihe für die Meridian -Konvergenz y finden, und
durch ff2 sin2 a + ff3 cos2 a hat man auch eine Reihe für ff2 unmittelbar .

Da deT Weg aller dieser Entwicklungen genügend gezeigt ist , schreiben wit
sofort die Ergebnisse , und zwar zunächst :

ff sin a = X cos cp | 1 + ^ (ß2 — 2.2 + X2 cos2 cp)

_ 1_
5760 (7ß4—70j32A2+ 3A4+ 54/42A2cos2<jo+ 72.4cos4(jD—10A4cos2<jC'—

clPj\ ism2epcos 2<p)
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Ehe wir auch die Formeln für er cos a u . s . w . anschreiben , wollen wir eine be¬
stimmte Ordnung der Glieder einführen und zur Abkürzung zwei neue Zeichen schreiben .
Die Faktoren cos2 cp und sin2 cp kann man jedenfalls alle in cos2 cp ausdrücken , und
da dieselben immer in Yerbindung mit A2 auftreten , stellen wir überall gleiche Po¬
tenzen von A2 und von cos2 cp hervor , indem z. B. gesetzt wird :

A4 cos2 <p = A4 cosi cp (1 -+- tang 2 cp) (9)
Der Parallel -Kreisbogen X cos cp werde besonders bezeichnet , indem wir setzen :

X cos cp — p und tang cp = t (10)
Damit bekommen wir eine neue Schreibung der ersten Formel (8), und fügen

sofort auch die übrigen Formeln dieser Art bei :
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Die Formeln (11 ) und ( 12 ) für ff sin a und a cos a wird man lieber in loga-
rithmischer Form haben wollen , man kann daher dieselben entwickeln nach der Formel :

log (1 -h x ) = p (x — ~ ) (15)
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Auf diese Weise bekommt man , zugleich mit Zusetzung der nötigen g , folgende
Formeln :

log <j sin a = log p -+- (ß2 —p 2 t2) )
6 (16)

+ 2 ( ßi - 2 (4 + 1512) ~ pi (12 <a + <4) ) I

log a cos a = log ß — ^
9 p 2 (2 + 3 t2) |24 ^ (17)

—
28^ 4(2 ß2 P2 (4 + 15 *2) + P4 (14 + 40 ß + 15 I

Hiebei hat man die Konstanten für ß und p in Sekunden und für Einheiten
der 7 . Logarithmen -Stelle :

Die höheren Glieder in (16 ) und (17 ) kann man in dieser Form schreiben :

A (log ff sin a ) = I ßi — II ß- A2 — III Xi (5 . Ordnung) (19)
A (log ff cos « ) = — IV ß2 A2 — V A4 (5 . Ordnung ) (20)
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Die Cogfficienten I , II u . s . w . haben wir für verschiedene Breiten cp ans¬
gerechnet , wie aus folgender Tabelle zu entnehmen ist , wobei jedoch ß und X nicht
wie bei (18 ) in Sekunden , sondern für (19) und (20) in Graden zu nehmen sind.

9 log I log II log III log IV log V '

40° 6-1459 7-3786 6-6345 7*3786 7-3784
45° 6-1459 7-4247 6-6578 7-4247 7-3827
50° 6-1459 7-4663 6-6583 7-4663 7-3828
55° 6*1459 7-6031 6-6371 7-5031 7-3789
60° 6-1459 7-5351 6-5950 7-5351 7*3716 ,

Ferner haben wir für eine Breite , cp = 50 °
, die Glieder ausgerechnet , indem

der Reihe nach ß und X = 2 °
, 4 °

, 6 °
, 8 ° , 10 ° gesetzt wurde . Die Ergebnisse dieser

Ausrechnung zeigen folgende zwei Tabellen :

d (log ff sin a ) , na eh Formel (19), 5 . Ordnung , für cp = 50 ° .

ß - 1 = 2" A = 4“ 1 = 6“ II CO oii

2° — 0-053 — 0‘304 — 1-012 — 2-615 — 5-724
4° — 0-157 — 0-831 — 2-239 — 4-826 — 9-198
6° — 0-247 — 1-621 — 4-201 - 8-426 — 14-902
8* — 0-184 — 2-540 - 6-759 — 13-279 — 22-708

10° + 0-221 — 3-399 — 9-726 — 19-196 - 32-416

(log er cos a ), nach Formel (30) , 5 . Ordnung , für <jp =

(3 = 1 = 2“ 1 = 4° 1 = 6“ OOII II O

2° - 0-085 — 0-805 — 3-551 — 10-640 - 25-314
4° — 0-225 — 1-368 — 4-814 — 12-887 — 28*824
6° — 0-460 — 2-303 - 6-921 — 16-632 — 34-677
8Ö — 0-789 — 3-614 — 9-871 — 21-877 - 42-871

10° — 1*210 — 5-299 — 13-664 — 28-620 — 53-405

In gleicher Weise haben wir auch die Formel (13) für die Meridian -Konvergenz
behandelt ; es fand sich :

d (y) = VlXßi — VIIXS ßz + VIIIX * (24^
wobei die Cogfficienten folgende Werte haben :

log VI log VII log VIII
4.4465 3.7291 3.6012
4.4880 4.0901 4.3556
4.5227 4.3068 3.0233
4.5518 4.4606 1.6891»
4.7560 4.5963 2.8772»

(25)

Insbesondere ist , für cp = 50 °
, hiernach folgendes berechnet :

Korrektion 5 . Ordnung für Meridian -Konvergenz nach Formel (13) für cp — $0 °-

ß = ; Ä = 2“ A= 4“ A= 6“ A = 8“ II o

2° ;l 0,0000" — 0,0002" — 0,0007" — 0,0003" + 0,0030"
4° ,i+ 0,0014" + 0,0014" — 0,0011" — 0,0063" — 0,0133"
6° ii+ 0,0080" + 0,0127" + o,ono " + 0,0006" — 0,0192"
8° | + 0,0263" + 0,0464" + 0,0547" + 0,0463" + 0,0174"

10° 1+ 0,0650" + 0,1204" + 0,1569" + 0,1663" + 0,1411"
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§ 64 . Reihen-Entwicklungen nach Potenzen von a.
Die sehr wichtigen Reihen , welche cp

’ — <p , a ' — a

und k in steigenden Potenzen der Entfernung er ausdrücken ,
kann man auf mancherlei Arten entwickeln .

Wir wollen zuerst daran erinnern , dass bei gegebenem

cp, a und er die drei anderen Werte cp
'
, a ' und k sich durch

geschlossene Formeln der sphärischen Trigonometrie angeben
lassen, die wir schon in § 60 . in (16 )— (18 ) S . 342 angegeben
haben. Jene Formeln kann man geradezu in Reihen ent¬
wickeln , wie bis zu ai einschliesslich in unserer vorigen
3 . Auflage 1890 , in § 59 . gemacht ist ; wir wollen aber hier
davon abseh en und lieber gleich zu der Entwicklung nach
dem Maclaurinsehen Satze übergehen , welche beliebig weit

ausgedehnt werden kann .
Die Anwendung dieses Satzes auf unseren Fall giebt

bis zur 6*eu Ordnung :

(P
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Nach Ausführung der Differentiierungen ist in den erhaltenen Differential -

s. w . der Wert cp
' — <p = 0 zu setzen , d . h . die Differential -Quotienten ~ 0 ~ $ ud a d a2

Quotienten sind für den Ausgangs -Wert cp und ebenso für den Ausgangs -Wert a

auszurechnen .
Die ersten Differential -Quotienten erhalten wir aus (1), (2), (3) § 61 . S . 347 ,

nämlich in der für uns geeigneten Form :
' d cp

d <t = cos a

dl
d a cos cp

ä a
d a

= sin a tang cp

Nun leiten wir (4 ) weiter ab , und finden , mit Zuziehung von (6) :

d2 qp . da . „ . „t . = — stna — = — sin 2 a tang cpda 2 da
Dieses nochmals abgeleitet giebt :

di o) da . , d <p
^ 3 = — 2 sin a cos a tang cp — sin 2 a ( 1 + tang 2 cp)

aiso mit Rücksicht auf (6) und (4 ) :

W
(5)

(6)

(7)

= — 2 sin 2 a cos a tang 2 cp — sin 2 a cos « (! -+- tang 2 (p )ds cp
d <j3
di tp

j = — sin 2 a cos a ( 1 + 3 tang 2 cp) (8)

i
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Dieses wird abermals differentiiert :

= (— 2 sin cc cos3 « + sin 3 a ) sin <x tang qp(1 + 3 tang 2 qp)
— sin 2 et eos a 6 4 (1 -f - 42) cos a

di cp

(9)

d a4 = sin 4 o:4ang qp(1 + 3 fang '2 qp) — 4 sin 2 a cos 2 a tang cp (2 + 3 fang 2 cp) (10)

In dieser Weise kann man fortfahren , wir schreiben dabei wie gewöhnlich
tang cp = t und damit wird :

= sin * a cos a (1 - )- 30 42 4 - 45 t4) — 4 sin 2 a cos 3 « (2 -+- 15 i2 -+- 15 t4)

Ä6qp
d c;6

- sin 3 a 4 (1 4 - 30 42 - |- 45 t4) -+- 4 sin 4 a cos 2 a t (22 + 1351 2 + 135 44)
— 8 sin 2 a cos 4 0: t ( 17 + 60 42 -+ - 45 44)

Zu den Ableitungen von X übergehend , haben wir nach (5 ) :
dX _ sina
da ~

coscp
d2 X cos ad a sin <p d qp
o ff2 coscp ds cos 2 qp d s

also mit Berücksichtigung von (4 ) und (6) :
d* X
da 2

(11)

(12)

(13)

(14)

cos a sm a . sm cpstn cp -\- sma -— cos acosz (p cos 2 qp
d2 X tang cp „ .= z sin a cos a — = 2 s^n a cos a tang cp sec cpcos cp a ^der 2 (15)

Da man bald bemerkt , dass der Nenner coscp , oder der Faktor sec cp sich in
allen Gliedern der Entwicklung von X einstellt , und dass die Potenzen von tangcp
sich wie im vorigen Fall finden , schreibt man auch die Ableitung von sec q0 stets in
der Form t sec Cp, und damit bekommt man (überall tangcp — t gesetzt ) weiter :

-
^ ^ — 2 (cos2 « — sin2 « ) sin attseeep

+ 2 sin a cos a (1 -+- 42) sec cp cos a
2 sin acosatt sec qp cos «

d3 X

di X
d ai '

d3 X

dßX _
d ff3 '

— sin 3 a sec cp (2 42) 2 sin a cos 2 a sec qp (1 -+- 3 t2) (16)

diesem '
Wege findet man auch :

8 sec cp t <
j
— sin3 « cos a (1 + 3 42) -f- sin a cos8 « (2 + 3 i2)j (17)

8 sec qp •
jsin

5 a (42 + 3 44) — sin 3 a cos2 a (1 + 20 t2 -+- 30 44)

-+- sin a cos 4 a (2 4 - 15 42 + 15 i 4) j (18)

16 sec qp4
| sin ®a cos a (2 + 301 2 + 45 44) — sin 3 a cos 3 a (26 4 - 150 42 d- 150 44)

4- sin a cos5 a (17 4- 60 i 3 —(- 45 i4) > (19)



64 . Reihen -Entwicklungen nach Potenzen von ff. 359

In ähnlicher Weise erhält man auch die Ableitungen von a nach ff :

<2 a— = sm a ta a
d2 «

— sm a cos a (1 + 2 42)

d3 a = — sm3 a 4 (1 -+ 2 42) + - sin « cos2 a t (5 4- 642)

d* a .= — sin 3 « cos ß (1 - f- 20 t2 4- 24 14) 4- sin a cos3 « (5 -f- 28 42 + 24 44)

dfi a
ß (ß = si«5 a t (1 4- 20 42 + 241 ^) — 2 sin 3 ß cos2 ß 4 (29 4- 140 42 120 44)

sin cc cos4 ß t (61 4- 180 42 4- 120 t4)

de ß
^ ig = sm5 ß cos a ( 1 4- 182 t2 4- 840 44 4- 720 46)

— sin 3 ßcos 3 ß (58 4- 1316 42 4- 3600 44 4- 2400 iß)
4- sin a cos 5 ß (61 4- 662 42 - j- 1320 44 4- 720 46)

(20 )

(21 )

(22)

(23)

(24 )

(25)

Nun können wir die Formeln (1 ) , (2 ), (3) zusammensetzen ; wir wollen dieses

jedoch hier nur bis zur 4 . Ordnung thun , wir setzen dabei :

ff sin ß = v ff cos ß = u tang <jp = 4 (26 )

Wenn wir zugleich überall die nötigen p zusefczen, so erhalten wir :

<p — q> = u ■
2 ?

_ 1
"“

6p 2

-U
24pB

V4t (1 + 3 <2) '
6V3

^ “2 ^ 2 -

O2 4

o2 w ( l -f 3 42) (27 )

3 42)

X cos w = n - |- v u t
Q
1 1

'
3p 2 # «2 (l + 3 42)

3p 2 vS ^

—
3^ 3 u t (1 + 3 *2) +

3^ 8 * uS 4 (2 -f 3 42)

(28)

ß ’ — ß = ® 4 4- v u (1 -|- 2 42)

.
^ ^ (1 + 2 42) 4 - ~ ini 2 4 (5 - 6 42)

20 42 4 - 24 44)

+ o/v ; '« “s (5 + 28 <2 + 24i4 )
24p 3

Hiebei sind die konstanten Coefficienten-Logarithmen :

(29 )

log 1 = 4 .685 575 , log ~ = 4 .384 545 , log ^ = 8 .89403 , log

lop ~ = 3 .579 603 , log = 3 .278 573 ,
’

8 .59300
> (30 )

^ 2Tp3
= 2 -676 518 )
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Wir wollen hiernach unser kleines Normal -Beispiel berechnen , nämlich :
Gegeben : cp = 49 ° 30 ' 0" « = 32° 21 ' 1,291" <j = 1 ° 11' 19,4819"

= 4279,4819 "
Für die von t abhängigen Coefficienten kann man die Hilfstafel unseres An¬

hanges Seite [47]— [51] benützen , oder wenigstens zur Versicherung zuziehen.
In unserem Falle mit qp = 49 0 30 ' hat man :

log (1 + 2 f2) = 0.573 078 log ( 1 + 3 f2) = 0 .70865 log (5 + 6 f2) = 1.12141
log (1 + 20 i2 + 24 *4) = 1 .86642 log (5 + 28 f2 + 24 f4) = 1.94689
Im übrigen giebt die Ausrechnung nach den Formeln (27) — (29 ) :

Breite
+ w = + 3615,2710 "
— iflt . . . — 14,8830
— v* w . . . — 0,3797
+ vi . . . + 0,0008
— v3 ifi . . . — 0,0093"

cp
’ - qp = + 3599,9998 "

= 0 ° 59’ 59,9998 "

+ v sec cp
- \- vut . .
— 1)3 . . .
+ V M2 . .
— V3 U . .
+ V U3 . .

Länge
= + 3525,9626 "

+ 72,3593
— 0,1986
+ 1,8460
— 0,0152
+ 0,0452

Azimut
+ 2681,1680 "

+ 75,0907
— 0,2061
+ 1,8155
— 0,0152
+ 0,0455

a = + 2757,8934 "

= + 45 ' 57,8934 "

die Glieder 5 . Ordnung in

l = + 3599,9993 "
= + 0 ° 59 ' 59,9993 "

Wir könnten nun weiter untersuchen , wie viel ___ _ _. _
gewissen Fällen ausmachen ; da wir aber hierüber bereits in anderer Weise in § 63
(22), (23 ), (26) S . 356 uns Klarheit verschafft haben , wollen wir die Glieder 5 . Ord
nung unserer neuen Formeln übergehen , dagegen noch für einen Fall die Glieds
6 . Ordnung in Betracht nehmen , nämlich für die Azimut -Berechnung , bei welchei
nach (3) und (25 ) das Glied 6 . Ordnung folgendes ist :

d «6 = ^20 ^5 j sl,i5 a cos a (1 + 182 f2 + 840t 4 + 720 f6)
— sin 3 a cos 3 a (58 + 1316 t2 + 3600 f4 + 2400 t«)

+ sin a cos3 a (61 - |- 662 i2 + 1320 + 720 18) j
Um einen einfachen Fall zu haben , setzen wir die Breite cp = 45 °

, also
t = tang <p = 1 , und damit wird :

z/ «6 = ff6
720 p5 11743 sin 5 acos a — 7374 sin 3 a cos 3 a + 2763 sin a cos 5 a [

Durch einige Versuche findet man , dass diese Funktion zwischen 0 ° und 90
zwei Maxima , etwa bei a = 16 ° und a = 77 °

, und ein Minimum bei a = 47 ° hat;
das absolute Maximum ist bei 16 °

, und giebt :

(d a s) max = ;
Setzt man <7 = 2 ° = 7200"

= 491720 p5
so erhält man :

(d a 6) max = 0,00025 "
Dagegen für a = 3 ° erhält man schon 0,0029 " und für (7 = 4 ° erhält man

0,0162" .
Aus all diesem ziehen wir folgende Schlüsse :
Die Glieder 6 . Ordnung werden hei Ausdehnung von mehreren Graden bereits

merkbar , namentlich in höheren Breiten , wo die Glieder mit f2, f4, f5 sehr rasch
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wachsen . Da nun schon die Glieder 5 . Ordnung ungemein beschwerlich sind , em¬

pfehlen sich sphärische Reihen -Entwicklungen höchstens bis zur 4 . Ordnung einschliess¬
lich , z . B . die Gauss sehen Mittelbreiten -Formeln ( 16) — (19 ) § 62 . S . 350 , welche
äusserlich nur Glieder bis zur dritten Ordnung enthalten , aber wegen des Mittel -

Arguments noch um einen Grad genauer , d . h . auf Glieder 4 . Ordnung einschliesslich

genau sind.
Hat man Fälle mit Ausdehnung etwa über 2 °

, für welche nach S . 356 die

Glieder 5 . Ordnung bereits merkbar sind , so thut man besser, nach den geschlossenen
Formeln der sphärischen Trigonometrie mit 8 — 10 stelligen Logarithmen zu rechnen ,
als die viel grössere Mühe der Glieder 5 . oder gar 6. Ordnung aufzuwenden.

Von diesen Überlegungen werden wir auch später bei den sphäroidischen Be¬

rechnungen Gebrauch machen .

Kapitel VI .

Normalschnitte und geodätische Linie .

§ 65. Gegen -Normalschnitte.

Der wichtigste Schritt , den wir in unsei 'er geodätischen Theorie vorwärts zu

machen haben , besteht in der Erkenntnis , dass zwischen zwei Punkten des Sphäroids
im allgemeinen zwei Normalschnitte bestehen .

Es seien in Fig . 1 . A und B zwei Punkte des Umdrehungs -Ellipsoids , unter

verschiedenen Breiten , und es sei A K a die Flächen -Normale im Punkte A , sowie

BK t die Flächen -Normale im Punkte B \ hiebei pig j
bemerkt man zuerst , dass die Punkte , in welchen
die Umdrehungsaxe von diesen Normalen getroffen
wird, d . h . Ka und Kt , bei schiefem Schnitte nicht
znsammenfallen.

Ebenso wie man im allgemeinen zwei Axen-
Schnittpunkte K a und K h hat , bestehen auch zwei
Normalschnitt -Ebenen , welche beide durch die Nor¬
malen der Punkte A und B gehen .

Dieses verhält sich genauer so :
Die Normalschnitt -Ebene im Punkte A ist

diejenige Ebene , welche durch die Normale A K a
und durch den Punkt B geht ; diese Ebene schneide die Ellipsoidfläche in einem

Bogen A a B . Andererseits haben wir als Normalschnitt -Ebene im Punkte R die¬

jenige Ebene , welche durch die Normale B K b und durch den Punkt A geht und die

Ellipsoidfläche in dem Bogen Bb A schneidet .

Es giebt besondere Fälle , in welchen die beiden Normalschnitte zwischen zweien

Punkten zusammenfallen :
Erstens . Für irgend zwei Punkte , die auf demselben Meridian liegen , ist

dieser Meridian auch. Normalschnitt in zweifachem Sinne . Hier ist auch der beson-
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