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wachsen . Da nun schon die Glieder 5 . Ordnung ungemein beschwerlich sind , em¬

pfehlen sich sphärische Reihen -Entwicklungen höchstens bis zur 4 . Ordnung einschliess¬
lich , z . B . die Gauss sehen Mittelbreiten -Formeln ( 16) — (19 ) § 62 . S . 350 , welche
äusserlich nur Glieder bis zur dritten Ordnung enthalten , aber wegen des Mittel -

Arguments noch um einen Grad genauer , d . h . auf Glieder 4 . Ordnung einschliesslich

genau sind.
Hat man Fälle mit Ausdehnung etwa über 2 °

, für welche nach S . 356 die

Glieder 5 . Ordnung bereits merkbar sind , so thut man besser, nach den geschlossenen
Formeln der sphärischen Trigonometrie mit 8 — 10 stelligen Logarithmen zu rechnen ,
als die viel grössere Mühe der Glieder 5 . oder gar 6. Ordnung aufzuwenden.

Von diesen Überlegungen werden wir auch später bei den sphäroidischen Be¬

rechnungen Gebrauch machen .

Kapitel VI .

Normalschnitte und geodätische Linie .

§ 65. Gegen -Normalschnitte.

Der wichtigste Schritt , den wir in unsei 'er geodätischen Theorie vorwärts zu

machen haben , besteht in der Erkenntnis , dass zwischen zwei Punkten des Sphäroids
im allgemeinen zwei Normalschnitte bestehen .

Es seien in Fig . 1 . A und B zwei Punkte des Umdrehungs -Ellipsoids , unter

verschiedenen Breiten , und es sei A K a die Flächen -Normale im Punkte A , sowie

BK t die Flächen -Normale im Punkte B \ hiebei pig j
bemerkt man zuerst , dass die Punkte , in welchen
die Umdrehungsaxe von diesen Normalen getroffen
wird, d . h . Ka und Kt , bei schiefem Schnitte nicht
znsammenfallen.

Ebenso wie man im allgemeinen zwei Axen-
Schnittpunkte K a und K h hat , bestehen auch zwei
Normalschnitt -Ebenen , welche beide durch die Nor¬
malen der Punkte A und B gehen .

Dieses verhält sich genauer so :
Die Normalschnitt -Ebene im Punkte A ist

diejenige Ebene , welche durch die Normale A K a
und durch den Punkt B geht ; diese Ebene schneide die Ellipsoidfläche in einem

Bogen A a B . Andererseits haben wir als Normalschnitt -Ebene im Punkte R die¬

jenige Ebene , welche durch die Normale B K b und durch den Punkt A geht und die

Ellipsoidfläche in dem Bogen Bb A schneidet .

Es giebt besondere Fälle , in welchen die beiden Normalschnitte zwischen zweien

Punkten zusammenfallen :
Erstens . Für irgend zwei Punkte , die auf demselben Meridian liegen , ist

dieser Meridian auch. Normalschnitt in zweifachem Sinne . Hier ist auch der beson-
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dere Fall inbegriffen , dass einer der beiden betrachteten Punkte in einem Pole der
Erde liegt ; wenn ein Pol der Erde als erster Punkt A gilt , und irgend ein anderer
Erdpunkt als zweiter Punkt B , so ist der Meridian des Punktes B sowohl Normal-
schnitt von . B nach A , als auch Normalschnitt Ton A nach B . Da jedoch die Erd¬
pole nicht zugänglich sind , hat dieser Fall für uns keine praktische Bedeutung .

Zweitens . Wenn zwei Punkte unter gleichen Breiten cp liegen , so fallen auch
die beiden Normalschnitt -Ebenen zusammen , weil dann die beiden Ax-Schnitte E,und Ki der Normalen yon A und von B nach Fig . 1 , auf der Erdaxe identisch werden.

Wegen der Kleinheit der Abplattung unserer Erde ist das erkannte Auseinander¬
gehen zweier Gegen -Normalschnitte für messbare Dreiecksseiten sehr gering , und wir
haben bisher stillschweigend davon abgesehen , wenn wir die Erde als Kugel behan¬
delten -, aber zur Gewinnung eines richtigen Urteils hierüber ist es das erste Erfor¬
dernis , die Konvergenz der beiden Normalschnitte durch Beclinung zu bestimmen.

Fig 2 In Fig . 2 . ist nochmals der eine von den
_ beiden Schnitten gezeichnet , nämlich derjenige von

A nach B , und es ist auch das Azimut a dieses
Schnittes in A angedeutet , sowie der Centriwinkel
A KaB — ü , welcher dem linearen Bogen AB = s
entspricht und zwar in erster Näherung einfach als
Kreisbogenrechnung :

\\ / v
K - V 0 \

l \ \\ \ J\ s \ .\ \ k ,

. i

s
(i )

wenn mit Aj der Quer -Krümmungs -Halbmesser A E,
in dem Punkte A bezeichnet wird .

Die beiden Schnitte A B und B A sind in

Fig . 3.
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Fig . 3 . nochmals gezeichnet mit zwei Tangenten A B ' und A B "
, von welchen A B '

zu dem Schnitte A B und A B " zu dem Gegenschnitte B A gehört , so dass also

B 'AB " = a — « ' die gesuchte Konvergenz vorstellt.
Zugleich bedeutet B 'A B = fi den Winkel der Tangente A B ' mit der Sehne

A B , und wenn wir auf Fig . 2 . und Gleichung (1) zurückblicken , erkennen wir leicht,
dass in erster Näherung , (nämlich für A B als Kreisbogen um Ii als Mittelpunkt )

u
ß = -

g
- ist , also (nach Fig . 5 .) : ^

' t =
T

=
2 N -,

(2 )

Nun kommt die sphärische Fig . 4 . in Betracht , welche dadurch entsteht , dass

man um A als Mittelpunkt eine Kugelfläche mit beliebigem Halbmesser beschreibt ,
auf welcher jeder von A ausgehende Strahl sich als Punkt , und jede von A ausgehende
Ebene sich als Grosskreisbogen zeigt .

Wir haben auch alle Punkte in Fig . 4 . mit denselben Buch¬
staben bezeichnet , welche auf den entsprechenden Strahlen von Fig . 3 .
Vorkommen , so dass also B in Fig . 4 . dem Strahl A B von Fig . 3 .
Ka in Fig . 4 . dem Strahle A Ka von Fig . 3 . entspricht u . s . w.

Die Normalschnitt -Ebene AB K a in Fig . 3 . giebt den Bogen N
B Ka in Fig . 4 . und die Meridian-Ebene AT JKa Kb von Fig . 3. giebt
den Bogen T K a K b in Fig . 4 . , folglich ist der Winkel B K „ T = a
das Azimut der Normalschnitt -Ebene 4Bf , im Punkte A .

In Fig . 4 . ist auch der Winkel B K b K a = cc” eingeschrieben ,
welcher das Gegenazimut « ' von Fig . 3 . hinreichend darstellt , insofern a " den Winkel

zwischen der Gegenschnittebene B K b A und der Meridianebene T A K a K b bedeutet ,
während allerdings a ' von Fig . 3 . sich streng genommen auf die etwas anders liegende
Schnittebene B K a A bezieht . Diesen kleinen Unterschied ausser Betracht lassend ,
setzen wir in gleicher Näherung wie in den Gleichungen (1) und (2) :

Fig. 6.

|A B‘

« ' = a." (®)

Der kleine Winkel Ö , welcher zwischen den Strahlen AIi a und A K b liegend ,
leicht aus Fig . 3 . in Fig . 4 . übertragen wird , ist eine uns schon aus der Betrachtung

von § 54 . über den verkürzten Breitenunterschied geläufige Grösse , nämlich gemäss

(8) § 54 . S . 303 :

wobei A <p in unserem Falle der Breitenunterschied der Punkte A
wie gewöhnlich rfi = e’2 cos 2 <jp für die Mittelbreite qp.

wshpninff nachEs ist auch leicht , A cp in o und « auszudrücken , m erster Näherung
dem Anblicke von Fig . 2 . S . 303 :

= A q>’ = ~ cos a = a cos a

Also nach (4 ) : / r -,
tfj = rß a cos a oH

Auf das sphärische Dreieck B K „ K b von Fig . 4 . werden wir eine Cotangenten -

Gleichung von S . 164 anwenden :

cotg (90 ° — ju) sin = cos ö1 cos (180°— « ) + sin (180 ° — « ) eotg «"

tang ß sin Öi = — cos cos cc + stn cc cotg cc

(6 )
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oder weil fi und S1 klein sind :

ß öj = — cos « -+- sin « cotg a " =
— cos « sin «" -(- sin « cos a "

sin a "

,u ö] sin a " — sin (« —■«"
) = « — a "

Zurückschauend nach (5), (4) und (3) hat man hieraus :

Eig . 6.

a — « ' = tp sin a cos « (V)ü
Hier hat der zweite Faktor die geometrische

Bedeutung , wie in Fig . 6 . angedeutet ist , weshalb wir
setzen :

<r 2 sin a cos a ,0\

Dieser Wert e ist genähert der sphärische (oder
sphäroidisehe ) Excess eines Dreiecks AB G, welches bei
C rechtwinklig ist , so dass B C nicht ein Parallel-
Kreisbogen , sondern ein Bogen rechtwinklig zum Meri¬
dian AGN ist ; doch kann in erster Näherung für die
Fläche des Dreiecks ABC auch B G als Parallelbogen
gelten .

Mit dieser Hilfs -Bezeichnung e nach (8) lautet
unsere Formel (7 ) kurz :

a — cc' = t]2 « (9)
Dieselbe Formel (9) , welche hier für « — a ' gefunden wurde , gilt in gleicher

Näherung auch für die Azimut -Differenz in dem zweiten Punkte B ; also wenn dort
die Azimute mit ß bezeichnet werden , wird sein :

a — a ' = ß — ß ' — rß 6 (10)
Nimmt man beispielshalber eine Entfernung s = 100 000m unter dem Azimut

« = 45 °
, zugleich unter der Breite q> = 45 °

, so wird :
« = 12,7" « — « ' = 0,043” (11)

Damit haben wir unseren Hauptzweck erreicht . Wir wissen nun , dass die
Konvergenz der beiden Gegenschnitte sich in geringen Beträgen von wenigen
Hundertel -Sekunden bewegt , so lange die Dreieeksseiten die Grenze von 100im nicht
überschreiten , und damit ist die früher ohne Kenntnis dieser Verhältnisse angenommene
sphärische Triangulierung von § 40 .—43 ., bei welcher die « — « ' einfach vernach¬
lässigt werden , genügend gerechtfertigt .

Querabstand der beiden Schnittbögen .
Es wird noch zur Veranschaulichung dienen , den linearen Querabstand g zu

bestimmen , welchen die beiden Normalschnitte auf der Erdoberfläche in der Mitte
ihres Verlaufes zwischen sich lassen ; und dazu brauchen wir zuerst den Winkel , den
die beiden Schnittebenen unter sich bilden .

Dieser Schnittwinkel r ist in Fig . 8 . veranschaulicht . Denkt man sich in der
Mitte der Sehne A B (Fig . 7 .) eine Ebene KG D rechtwinklig gelegt , so wird diese
ein nahezu gleichschenkliges kleines Dreieck ausschneiden (Fig . 8 .) , dessen beide



Gegen-Normalschnitte . 365§ 65 .

Schenkel p den Winkel 1> zwischen sich fassen und den Querabstand q dem Winkel v
gegenüber haben . Die Schenkellänge p ist gleich der Pfeilhöhe eines Bogens s für
den Halbmesser N , d . h . nach Pig . 7 . : '

6-2
p ~ 8N

Fig. 7. Fig. 8.

Fig. 9.

_ S

(12)

Was den Schnittwinkel v betrifft , so ist dieser in Pig . 4 . S . 362 der kleine
Winkel bei B , unter dem sich die beiden Ebenen B ' B Ka und B " B Kt schneiden

(» ist in Pig . 4 . S . 362 nicht eingeschrieben , aber in Pig . 2 . des folgenden § 67
S . 368 ). Man entnimmt also leicht genähert :

öi sin a " öj sin a
sin v oder tang » = = -

T (13)V COS-
g

-

oder wegen ( 5) und (8 ) hinreichend genau :
g

v = ?;2 ff sin a cos a = 2 r/2 —

Da nach Fig . 8 . der kleine Querabstand q = pi > ist ,
und (13) :

(14>

hat man also aus (12)

<Z = -f - iZ2 * bzw -

Die Ausrechnung mit denselben Annahmen wie bei
9 = 45 ° und er = 45 °

, s = 100 000” giebt :

q = 0,005”

(15)

( 10) und (11 ) ; nämlich

( 16)

Dieses Zahlenbeispiel entspricht ungefähr der
^

“
^

“
^ ^ einweisen undman also von Hannover nach dem Brocken eine Gera

mnsekehrt vommit Backen und Fahnen abstecken würde , und wenn man “ 8
del Er^eBrocken nach Hannover ausführte , so würden wegen er

.
P

^ Verlaufes,beiden abgesteckten Linien nicht zusammenfallen , so
.
n ern in

.
(in der Gegend von Salzgitter ) um 5 Millimeter

anhand
«

geodätischerDieses handgreifliche Beispiel zeigt am besten
Vernachlässigung dieser Abweichung .



366 Konvergenzwinkel in zweiter Näherung . § 66-

§ 66. Konvergenzwinkel in zweiter Näherung.
Obgleich die Bestimmung von a — a ' in erster Näherung = rj2 e im vorigen

§ 65 . für alle praktischen Zwecke vollauf genügt und es auch gar nicht theoretisch
ratsam ist , diese Sache alsbald weiter zu verfolgen , wollen wir doch die Näherung« ' = u"

, welche in (3) § 65 . S . 365 angenommen wurde , noch näher untersuchen,um vor jedem theoretischen Ein wand geschützt zu sein .
Wir wollen hier auch einige Entwicklungen geben , welche im Anschluss an

Bohnenbergers Abhandlung „De computandis etc . “ (vgl . das Citat S . 274) in der
vorigen 3 . Auflage 1890 , § 67 .— 68 . gemacht , nun nicht mehr als Hauptbestandteilunseres Entwicklungsganges genommen , aber doch auch nicht völlig weggelassen

werden sollen . Es mag nach
Fis- ! • alledem anheimgegeben werden,

diesen ganzen § 66 . zu über¬
schlagen .

In Fig . 1 . haben wir die
Verhältnisse von § 65 . Fig . 3.
S . 362 wiederholt und noch deut¬
licher gemacht .

A und B sind zwei Punkte
des Umdrehungs -Ellipsoids , auf
zwei Meridianen T A und T S,
welche bei T den Längenunter¬
schied \ zwischen sich fassen .

Die Breite von A sei qPi
und die Breite von B sei (pf,
ferner sei A K „ die Normale von
A und A Kb die Normale von B.

Die Breiten <jPi un ^ %
kommen bei K a und Kb M®
Ausdruck , denn es ist :

AK a T = 90 ° — (j)! und B Kt T = 90 ° — ip2 (!)Winkel
Ein Theodolit , in A richtig aufgestellt , wird seine vertikale Axe nach AK ,

gerichtet haben , und die Sicht nach B wird in AaB erfolgen unter dem Azimut «•
Zieht man auch noch Ka B , so ist das nicht Normale in B , allein man hat nun doch
ein Dreikant K a, ABT mit der Spitze K a, auf welches die sphärische Trigonometrie
angewendet werden kann .

Während a und ß zweifellos Azimute in dem bisherigen Sinne sind , d. b .
Winkel zwischen Normalschnitten und einem Meridiane , und zwar sowohl für das
Ellipsoid als auch für die beiden sphärischen Dreiecke , in welchen <x und 180 ß
Vorkommen, ist dieses hei a" und ß” nur noch der Fall für die sphärischen Hilfs¬
dreiecke , aber nicht mehr für das Ellipsoid .

Z • B . der Winkel a " kann als Azimut des Schnittes Ab B in A bezeichnet
werden , allein nur bei Annahme eines fingierten Erdmittelpunktes Kb , welcher gar
nicht in der Normalen von A liegt .

In Bezug auf das Ellipsoid hat der ebene Schnitt Ab B K b im Punkte A über¬
haupt kein Azimut in dem gewöhnlichen Sinne , und wenn man dem Bogen Ab B
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dennoch auch in A ein ellipsoidisches Azimut zuteilen will , so kann man nur die
Tangente des Bogens A 6 B in A betrachten , indem man durch diese Tangente und
die Normale A Ka eine Ebene legt , welche mit der Meridian -Ebene A T einen anderen
Winkel a ' bildet (der in Pig . 1 . nicht angegeben ist ).

Man kann schon jetzt überblicken , dass die beiden hier genannten Winkel
« ’ und a" nur sehr wenig von einander verschieden sind ; zunächst kam es nur darauf
an , die geometrischen Begriffe völlig klar zu legen .

Nach diesem wollen wir an die Bestimmung der beiden kleinen Winkel öi
und ö2 und der excentrischen Entfernungen Sj und S2 gehen.

Hiezu brauchen wir die mit d± und d2 in Pig . 1 . eingeschriebenen Abstände
der Schnitte K „ und K b vom Mittelpunkt des Ellipsoids .

Wenn yx die Ordinate von A ist , in dem Sinne der früheren Pig . 1 . § 31 .
S . 188, und Wj die Normale oder der Quer-Krümmungs -Halbmesser A Ka, so ist mit
den Bezeichnungen von § 32. S. 194 :

c e ( 1 — e2) sm <pi
- 2/1 . N 1 = ~W~ ’ y = -d ,

also :

also :

Ni sin qDj

d , = C2 « 1
V\

d 2 ~~ di = e2 c

Pi
(2)

und d2

sm qo2

= e2 c sm
2

sm tyi
P2 Vi

Die schmalen Dreiecke AK * Kt und BK * Kb von Pig . 1 . geben :

_ (d2 — <?i ) cos <px ^ _ (di — d2) cos q>2
lang öi und tang ö2 = -

(4)

(5 )

(6)

W] + (d2 — di ) smtp !
“““ “a N 2 + (dj — d2) sin <jp2

In gleicher Weise kann man auch die Entfernungen S\ und S2 nach Pig . 1 .
bestimmen :

S * = A'
( —j—(d2 — di )2 -I- 2 Ni (d2 — di ) sin (jPi

S | — IVf + (dj — d2)2 + 2 W2 (di — d2) sin %
Man kann alle diese Pormeln auch in Reihen entwickeln , wie in unserer

3 . Auflage 1890, S . 349—351 geschehen ist .
Es ist aber darauf aufmerksam zu machen , dass die vorstehenden Pormeln

(2) (6 ) streng giltig sind für beliebig weit entfernte Erdorte . Auch der Depressions¬
winkel g kann nach Fig . 5 . § 66 . streng angegeben werden durch

tang (900 — fi) _ S2 sin er oder
N

tang fisma = -
g

- - cos a (7)

Vgl.

Ni — iS2 cos <T
Solche strenge Formeln könnten etwa in Frage kommen bei Mondbeobachtungen ,

hiezu auch : „Über das Geoid, von J . Bischoff, München 1889“ .
Wir haben hiezu ein Zahlen -Beispiel berechnet :

cp1 = 49 ° 30' <jp2 = 5 ° ° 30 ' I
Mittel cp = 50 ° 0 ' Differenz J cp = 1 ° = 3600 ' f

Damit wurde sowohl nach den geschlossenen Pormeln als nach verschiedenen
Beihen berechnet :

öj = 10,06 958”
«L
IV,

= 1,000 057 1638

log -
^

i - = 0 .000 0248 -252

ö2 = 9,86 285”

■ÜA = 0,999 941 9985
N2

log -~3- = 9 .999 9748-096

(8 )
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Die beiden sphärischen Dreiecke haben ergeben :
Za ABT

<Pi = 49 ° 30' 0 ' '
, X = 1 ° 0 ' 0"

<p8 — Ö2 = 50° 29 ' 50,13715 "
a = 32° 25' 21,5294 "

ß” = 33 ° 11’ 19,3674"

. = 1 ° 11 ' 11,22445"

(9)

(10)

nicht vorge -

Fig . 2.

ZiABT
% = 50 ° 30 ' 0"

, X = 1 ° 0 ' 0"

Tl + öi = 49 ° 30' 10,06958 "
a" = 32 ° 25 ' 21,4739 "

ß = 33 ° 11 ' 19,4237 "
= 1 ° 11 ' 10,97855 "

Hieraus ziehen wir auch die Differenzen :
a ~ cc" = 0,0555 " ß __ ß" _ o,0563 "

Der im vorigen § 65. mit « ' hezeichnete Winkel ist hier garkommen ; um auch zu diesem zu gelangen , haben wir in nachstehender Mg . 2 . im
wesentlichen die Verhältnisse der früheren Fig . 4 . § 65 . S . 362 wiederholt .

q oflo ,
0

? fTT ’ W6lCheS dei’ Ge^ en -N°™ alschnitt BZ b A in A hat ( vgl . Fig. 2.
S. 362) ist als Winkel zweier Ebenen zunächst nicht vertreten , weil die Ebene BZA

in A nicht normal ist . Allerdings bildet diese
Ebene B Z b A mit der Meridian -Ebene von A
einen gewissen Winkel a "

, welchen wir schon
kennen gelernt haben , und von dem wir auch
schon wissen , dass er nahezu gleich dem Azimute
« ' ist ; und jenen Winkel a ” finden wir in Fig. 2.
leicht wieder , nämlich bei Z b zwischen dem
Meridianbogen Z b Z a T und dem Gegen-Schnitt -
bogen Z b B .

Das Gegen -Azimut ft' selbst muss zunächst
in Fig . 3 . S . 362 dadurch konstruiert werden,
dass man die Tangente A B " an die Gegen-
Schnittkurve B A in A zieht ; und wenn man
gleichzeitig auch die Tangente AB ' an den

Schnittbogen AB in A zieht , so liegen diese
beiden Tangenten in der Berührungs -Ebene des
Punktes A , und fassen den kleinen Winkel
ft — ft' zwischen sich .

Auf diesem Wege ist die Differenz « — «'

auch leicht in unsere neue Fig . 2 . hinüber zu

tragen ; man macht den Bogen B B ' entsprechend
dem Depressions -Winkel fi der Sehne A B gegen
die Tangente A B '

, dann B ' B " rechtwinklig zu
B B ’

, worauf sich B " als Schnitt der Horizon¬
talen B ’ B " mit der Schiefen Z b BB " ergiebt .

Indessen kann man nicht nur diese kleine
Differenz a — a '

, sondern auch das Azimut a'

selbst in Fig . 2 . auffinden , indem man den Bogen
B " Z zieht , welcher der Ebene B " A Z ent¬

spricht , und mit dem Meridian Z a T das fragliche
Azimut ft ' macht .

gezogene Bogen B " Z a ist = 90 °
, weil die Strahlen A B"

M- C6

a - 0£'

9D”- CZ'

Der in Fig . 2 .
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und A ZT in Fig . 3 . S . 362 als Tangente und als Normale des Ellipsoids auf einander
rechtwinklig sind , und ebenso ist auch B ' ZT = 90 °

, also B ZT« = 90 ° — g .
Nun wollen wir noch den kurzen Bogen ZT N rechtwinklig zu B " ZT ziehen,

wodurch auch B" N = 90 ° und folglich der Bogen Ka N = n , gleich dem Winkel n
hei B" wird.

Dieses n ist der Neigungs -Winkel der Normalen AK „ gegen die Gegenschnitt -
Ehene BAKt , und eine entsprechende Neigung n ' kann man ZT N ’ — n ' ebenfalls
angeben , d . h . den Neigungs -Winkel ri , welchen die jenseitige Normale B ZT, mit der
diesseitigen Normalschnitt -Ebene AB Zt„ bildet .

Unsere Fig . 2 . zeigt bei B den Winkel ’v, welchen die beiden Normalschnitt -
Ebenen unter sich bilden , und endlich haben wir noch die kleine Seite ZTZT = dj
entsprechend dem kleinen Winkel Ka A Kt, = d^ in Fig . 1 -, den wir auch schon früher
kennen gelernt haben .

Nachdem wir so alle Winkel , die uns hier interessieren , in den sphärischen
Dreiecken von Fig . 2 . dargestellt haben , können wir alle Beziehungen , welche zwischen
diesen Winkeln bestehen , durch die sphärische Trigonometrie aus Fig . 2 . ableiten .

Wir gehen zuerst darauf aus , die Differenz a — «" zu bestimmen ; hiezu giebt
eine Cotangenten - Gleichung S . 164 , auf das Dreieck BKiKt angewendet , genau
wieder wie in (6) § 65 . S . 363 :

cotg (90 ° — fi) sin dj = cos dj cos (180 ° — ft) -t- sin (180 ° —- « ) cotg a”

tang fi sin dj = — cos di cos « + sin a cotg ft"

/ di \ sin a cos ft"
tang fi sin dj = 2 sW ~ — 11 cos a h-

tang fi sin dj — 2 cos a sin2 - sin (ft — ft" )
sin a " (11 )

Dadurch ist a — a " bestimmt ; und um auch die Differenz ft " ft ' zu finden,
betrachten wir das kleine rechtwinklige Dreieck ZT« ZT, ZV, dessen sphärischer Excess
gerade zu = a " — a! ist , denn der Winkel dieses rechtwinkligen Dreiecks bei ZT ist
= 90 ° — a '

, weil K„ B" rechtwinklig auf Ka N steht ; es ist also :

« " -4- (90 ° — ft' ) = 90 ° -+- (ft” — «'
) (12)

Hiefür giebt die Hypotenusen -Formel S . 164 :

cotg ft" cotg (90 ° — ft ') = cos dj

cos « " sin a ' = sin a " cos « '
|^

1 — 2 sin 2

sin (ft" — ft '
) = 2 sin 2 sin a " cos a ' (13)

Nachdem durch (11) und (13) auch ft — ft' bestimmt ist , erhält man aus dem
oberen rechtwinkligen Dreieck B B ’ B" in Fig . 2 . :

und

tang v =

tang n =
oder aus dem Dreieck B ZT N :

tang (ft — ft’) (14)
sm (x

sin (ft — ft ' ) (15)
tang fi

z sin ■v COS{l
24

(16)
. Aufl . III . Bd .
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Dadurch ist n zweifach bestimmt , wie überhaupt noch manche Kontrollgleichung
aus Fig . 2 . abgelesen werden kann (wozu noch p! , m und m’ eingeschrieben sind).
Um n und ri auch unmittelbar in auszudrücken , hat man aus den kleinen recht¬

winkligen Dreiecken Ka K N und K a Kt N in Fig . 3 . :
sin n = sin öj sin a " sin n ' = sin ö'

j sin a (17)
Um zur Entwicklung von « — a " zu gelangen , haben wir zuerst aus (11 ) :

« — a " = <5j — ^ cos « j sin a (18)

Der von der Breiten -Verkürzung herrührende Winkel muss aus der geschlos¬
senen Formel (5) für dj auf S . 367 entwickelt werden , was hier nicht näher im
Einzelnen dargelegt wird ; das Ergebnis ist :

« 1 rß A q ' 1 A cp
' '

“
2

"

Dabei ist gesetzt :
-yf = Aq '

, tang q = t

Auch der Depressionswinkel p wird nach (7 ) genauer gebraucht , was als Beihen-

Entwicklung hier nicht nachgewiesen wird (3 . Auflage 1890 , S . 360—361 ). Das

Schlussergebnis ist :

a — a " = rß A q ' sin a m (10)

Dabei bezieht sich rfi auf die Mittelbreite , wie auch am
Weiter wurde gefunden :

a — cd = if A q ' s
2 R sin <xm

das Mittel -Azimut ist.

(20)

«" — cd = rß A q ' sin a cos2 a (21)

Der Unterschied von « — cd gegen a — cd ' nach (20) und (19 ) besteht darin,
dass bei (19 ) der Quer -Krümmungs -Halbmesser N im Nenner steht , dagegen bei (20)
der Krümmungs -Halbmesser B in der Richtung des Bogens A B .

Diese Formeln sind genau auf Glieder von der Ordnung if ff3 und ?/4 ff2 nun
schliesslich .

Die letzte Differenz a " — cd nach (21 ) hat den Faktor rj*, ist also von nächster

Ordnung im Vergleich zu a — «' und a — cd ' .
Die Ausrechnung nach diesen Formeln hat für das Zahlenbeispiel (7)—(10)

ergeben :
a — a ' = ß — ß ’ = 0,0560 " (22)

Um dieses mit « — « ' ' = 0,0555" und mit ß — ß " = 0,0563 nach (10) S . 368
zu vergleichen , sollte man noch die Reduktion a " — cd nach (21 ) anbringen , welche
aber nur 0,0001” bringt , und neben unserer weniger genauen trigonometrischen Rech¬

nung zu vernachlässigen ist . Hiernach stimmt (22) genügend mit dem früheren (10)
S . 368.

Ellipseiibogen der Bormalschnitte .
In Fig . 3 . ist nochmals der ebene Schnitt A B K von Fig . 1 - dargesteMi

und wir möchten noch die elliptische Bogenlänge AB = s kennen lernen , ohne je oc
die Einzelheiten der Reihen -Entwicklung (von 3 . Auflage 1890 , S . 353—354) hei zu
setzen . Ans den Gleichungen (6 ) muss es möglich sein , zu entwickeln :
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4l - = 1 — %r- ff2 cos 2 a (23)
iVj a

Dadurch ist die Kurve A B (Fig . 3 .) in Polar -Coordinaten
bestimmt, und um s in er auszudriieken , hat man nur die Bogen¬
länge s durch Integration zu finden . Hiezu giebt Fig . 3 . die Differen¬
tial-Gleichung :

ds 2 = (52 dtr )2 + (dS 2)2 (24)
Hier ist S2 als Funktion der Veränderlichen a nach (24) ein-

zuführen; JVj ist konstant , und auch a und ift gelten hier als
konstant. Man hat daher aus (23) :

*^ 7 = — Ni rfi cos 2 aa , (d S %)2 = rj* . . . da 2

Fig . 3.

K „

(25)

Wenn wir Glieder mit 7/4 vernachlässigen , können wir (24) kurz so schreiben :

d s = S$ d <t = Ni ^1 — (fl cos%
itj d ff

Die Integration mit den Grenzen er = 0 und ff = ff giebt :

s = IV] ( <j — ff3 cos2 «

oder auch : a = N\ il ~ ff2 cos2 « ) (26)

Das Korrektionsglied beträgt -L
[ßrj

cos2 a 6
" Sekunden . Mit cp = a = 45 °

und s = 100 000"1 giebt dieses nur 0,0002' '
(man kann daher bei einzelnen Dreiecks¬

seiten das zweite Glied von (26) vernachlässigen ) .
Nach dem Satz von der verkürzten Breitendifferenz (8) § 54 . S . 303 kann man

hier setzen ffcos « = == dep '
, also wird (26 ) :

r d qo
' 2

j oder s = Ni ff ( 1 — d qp
'2 (27)

In dieser Form haben wir das Zahlen -Beispiel (7)—(9) S . 368 behandelt und
berechnet :

s = IV-j a x (1 — . . .) = 132 315,392” — 0,019“ = 132 315,373” (28)
s = N 2 ff2 (1 — . . .) = 132 315,394“ — 0,019” = 132 315,375” (29)

Das Korrektionsglied von (27 ) macht also hier nur etwa 2 Centimeter aus .
Die beiden Werte s nach (28) und (29) sind innerhalb der ßechenscbärfe als gleich
zu betrachten , und wir werden später in § 71 . auch finden, dass sie innerhalb der
Rechenschärfe auch gleich lang sind , wie die geodätische Linie zwischen A und B .

§ 67 . Einfluss verschiedener Höhen.
Im Bisherigen haben wir immer die Voraussetzung gemacht , dass die in Be¬

dacht kommenden Punkte A , B beide auf der Oberfläche des Umdrehungs -Ellipsoid
e?en . Dür Triangulierung , Azimutmessung u . dgl . zwischen zwei Punkten ist diese

. .
"nähme Physisch nicht möglich , weil die Erde nicht durchsichtig ist . In Wirk -

1>
^e®n <̂en die Punkte auf Berghöhen , Türmen u . dgl . , und es fragt sich,

0 adurch eine Änderung gegen die frühere Annahme stattfindet .



372 Einfluss verschiedener Höhen . 67 .

Fig. 1.

Wir wollen zunächst annehmen , der Standpunkt des Beobachters befinde sich
auf der Ellipsoidfläche selbst , welche unseren Betrachtungen zu Grunde gelegt wird ;
dagegen sei der Zielpunkt in einer Höhe h über der Ellipsoidfläche befindlich , wie in
Big . 1 . mit dem Standpunkt A und dem Zielpunkt H angedeutet ist .

Einen solchen Zielpunkt denken wir uns auf das Ellipsoid projiziert mittelst
der Ellipsoidnonnalen (wobei von einer Krümmung der Lotlinien abgesehen wird).

In Fig . 1 . sei H ein hochgelegener Punkt
und B ' dessen Projektion , wobei B E b die Nor¬
male von B ist . Wenn nun von einem entfernten
Punkt A , der in der Ellipsoidfläche selbst liegt ,
mittelst des Theodolits nach B gemessen wird,
so geschieht dieses in der Ebene A H E a, welche
in A normal ist , und der Theodolit projiziert
den Punkt H nicht nach B '

, sondern nach .5 .
Um den dadurch entstehenden Azimutal -

Fehler B AB ' = y zu bestimmen , brauchen wir
wieder den kleinen Winkel K a HEt = ö, nämlich
nach (4 ) § 65 . S . 363 in erster Näherung :

9 d <f> 9 s

F

1 \ \\ Ea JV \ \
K1 /

ö :

wobei s die lineare Entfernung A B und N der Quer -Krümmungs -Halbmesser ist.
Damit hat man den Projektionsfehler B B ' im Meridian :

B B ' = h ö = rf ^ cos a' N

Der entsprechende Azimutfehler y ist :
B B ' sin a

7 = - :- ?;2 -== sin a cos «' N
Mit <p und a = 45 ° giebt dieses :

y = 0,054"
1000

Also für h = 1000” giebt dieses bereits 0,054" .
Wenn der Punkt A selbst nicht in der Ellipsoidfläche liegt , sondern darüber ,

so ändert das an der bisherigen Betrachtung nichts , weil A in seiner eigenen Nor¬

malen E «A gehoben ist , wobei die vertikale Theodolit -Axe von A mit der Normalen
A E a zusammenfällt .

Wirkung der Refraktion . Infolge der Abplattung der Erde und der Niveau¬
schichten der Atmosphäre findet eine Ablenkung eines Lichtstrahles durch Refraktion
nicht bloss in vertikalem Sinne , sondern auch in horizontalem Sinne statt . Je zwö
aufeinander folgende Elemente eines Lichtstrahls liegen in einer Ebene , welche die

Lotlinie der Trennungsfläche zwischen zwei verschieden dichten und verschieden
brechenden Schichten der Atmosphäre enthält . Da die Trennungsfläche zweier solcher
Schichten rechtwinklig zur Lotrichtung sein muss , finden wir für den Lauf einer
Lichtkurve durch die Atmosphäre ein ähnliches Gesetz wie für die geodätische Lime

(vgl . Fig . 2 . in § 68 . ) , dass nämlich die Schmiegungs -Ebene der Lichtkurve überall
Normalebene der lichtbrechenden Fläche sei oder die Lotlinie dieser Fläche ent¬

halten muss.
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Auf Grund dieses Gesetzes sind Untersuchungen über die azimutale Ablenkung des Licht¬
strahles angestellt worden von Andrae , Sonderhof und Helmert (s. Helmert , höhere Geodäsie II .
S. 565), in ähnlicher V' eise , wie für den Lauf der geodätischen Linie auf dem Erdellipsoid zwischen
den beiden Normalschnitten . Da die Lichfckurve in ihrer Hauptkrümmung viel flacher ist als die

geodätische Linie auf der Erde , so wird auch der Querabstand zwischen den Normalschnitten in

demselben Verhältnisse kleiner , und ebenso auch die kleinen Winkel beider Lichtkurven kleiner als
für die geodätische Linie auf der Erde . Das Erümmungsverhältnis zwischen der Lichtlinie und
einer Erdliuie ist der sogenannte Refraktions -Coefficient , im Mittel etwa fr = 0,13, und hiernach ver¬
hält sich die azimutale Ablenkung des Lichtstrahls zu der entsprechenden geodätischen Reduktion
wie 0,18 zu 1. Da nun diese geodätische Reduktion selbst sehr gering ist , so ist nach den citierten

Untersuchungen von Andrae , Sonderhof und Helmert die Lichtablenkung zu vernachlässigen .

§ 68. Die geodätische Linie.
Nachdem wir in § 65 . uns überzeugt haben , dass zwischen zwei Punkten A

und B der ellipsoidischen Erdoberfläche im allgemeinen gm» verschiedene Norm
schnitte bestehen , in welchen bei Theodolit -Beobachtungen von nac nn
B nach A die Sicht -Linien sich befinden , können wir auch angeben , was füre

Linienzug erhalten wird , wenn man mehrere aufeinanderfolgende Punkte
(Pig . 1 .) durch fortgesetztes Theodolit -Einweisen , wie eine Gerade in der E ene , a s

In Fig . 1 . stehe in A ein
Theodolit mit lotrechter Axe, mit
welchem ein entfernter Punkt B
angezielt oder eingewiesen wird ,
wobei die Sicht Aa B stattfindet .
Hierauf begiebt man sich mit dem
Theodolit nach B , stellt denselben
dort ebenfalls mit lotrechter Axe
auf, zielt zurück nach A , was in
der Sicht Bi A geschieht , dreht
dann um 180 ° und bekommt die
neue Sicht Bi G. Hierauf geht
man nach C, nimmt wieder die
Sicht rückwärts C c B , und um 180 °
gedreht vorwärts Co D , und so fort .

Die Theorie von § 65 . hat
uns gezeigt , dass bei diesem Ver¬
fahren allerdings im allgemeinen
zwei Verbindungslinien zwischen je zwei Punkten A und B , B und , u . s . w .
Betracht kommen , nämlich Aa B von A nach B und Bi A von B nach

.
u . s . w ,

doch sind die Abweichungen zwischen a und i , c und d u . s . w . so klein , ass
selbst bei Dreiecksseiten von 100 000 Meter auf unserer Erdoberfläche noch vernacü -
lässigt werden können . . ,Wäre unsere Erde stärker abgeplattet , so würden auch diese Abweichunge
stärker sein ; und im Sinne der Theorie kommt es auf den Grössen e rag er

.
weichungen jetzt nicht an , sondern darauf , dass das mathematische Gesetz es
Zuges A , B , G, D erkannt werde . . , , , . uJedenfalls werden hei der Krümmung , wie sie unser Erdellipsoid hat , e
weichungen a i immer kleiner , wenn die Zielweiten A B , B G u . s . w.
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verkürzt werden . Die kleinen Azimutverschiebungen a Ab u . s. w. wachsen nach (7)
§ 65 . S . 364 nur mit dem Quadrate der Zielweiten ; und lässt man die Zielweiten
A B , B C . . . . selbst unendlich klein (im Sinne der Differential -Rechnung ) werden,
so werden die Schleifen AaBb u . s . w. sich schliessen , und man bekommt statt des
Schleifen -Zuges eine stetige Linie AB Ol ) , rvelche geodätische Linie heisst , und im
allgemeinen eine Kurve doppelter Krümmung ist .

Als Richtungswinkel , bezw. Azimute der geodätischen Linie , welche nach dem
Zusammenfallen der Schleifen in Fig . 1 . entsteht , sind die Winkel a , ß , y, S zu be¬
trachten , oder genauer die Grenzwerte , gegen welche diese Winkel « , ß , y, <5 bei
unbegrenzt abnehmenden Strecken A B , B G u . s . w . konvergieren .

Mit den Begriffen der Feld - und Landtnessung in der Ebene kann man die
geodätische Linie kurz so erklären :

Man macht auf der ellipsoidischen Erdoberfläche .genau dasselbe , was der Land¬
messer thut , wenn er eine sehr lange Gerade AB in der Ebene stückweise absteckt,
indem er seinen Theodolit zuerst in A , dann in B , C, B aufstellt , und jedesmal einen
Brechungswinkel von 180 ° absetzt .

Oder : eine geodätische Linie ist in Bezug auf fortgesetztes Einweisen mit
kurzen Zielweiten auf einer krummen Fläche dasselbe , was in der Ebene ein gerade
gestrecktes Polygon mit lauter Brechungswinkeln von 180 ° ist .

Es ist deswegen eine vorzügliche Benennung , welche Soldner in der „monat¬
lichen Correspondenz zur Beförderung der Erd - und Himmelskunde “ 1805 § 7. an¬
wendet , in der er sagt : eine „geodätisch gerade Linie “ .

Eine geodätische Linie auf irgend einer krummen Fläche ist in der angegebenen
Beziehung auch dasselbe , was auf einer Kugelfläche ein grösster Kreisbogen ist .

Wenn hiernach die Absteckung in kleinen Teilstrecken in der Ebene für die
Gerade , auf der Kugel für den Grosskreisbogen und auf dem Ellipsoid oder irgend
einer andern krummen Fläche für die geodätische Linie , einander analog sind, so ist
dagegen für die Absteckung oder Sichtung auf die Gesamtlänge diese Analogie nicht
mehr vorhanden , was durch Fig . 2 . näher erläutert werden soll .

In Fig . 2 . sei eine geodätische
Linie A ab c . . . gh B durch schritt¬
weises Abstecken mit den kleinen Ziel¬
weiten A a — ab = b c u . s . w. er¬
halten , wobei der Theodolit in a , b, 6
u . s . w . immer Brechungswinkel von
180 ° zeigt .

Stellt man aber nach Absteckung
der Einzelpunkte den Theodolit wieder
in A lotrecht auf , und zielt auf einmal
nach dem Endpunkte B (sofern die Exd-

krümmung dieses gestattet ), so bekommt
man eine ganz andere Sichtlinie als vorher , nämlich nun A A 'B als vertikalen Schnitt
von A nach B , und ebenso in B die Sicht B B 'A als vertikalen Schnitt von B nach J -

Um dieses noch deutlicher zu zeigen , haben wir in Fig . 3 . die beiden Normal¬
schnitte (Vertikalschnitte ) zwischen zwei Punkten A und B , nebst der dazwischen
verlaufenden geodätischen Linie auf einem Umdrehungs -Ellipsoid mit der Abplattung
1 : 3 dargestellt .

Fig. 2.
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Diese Fig . 3 . ist nach einem Modell gemacht , dessen grosse Halbaxe a — 15 '”1

und dessen kleine Haibase B — 10c” ist . Es ist also die Abplattung a = - - - = i ,a 3
'
« 2 — 62

aß
~

'
0 2 — &2
— t = 1,118. Die Normal-die Excentricität e — 0,745 und e' =

schnitte und die geodätische Linie sind nach mathematischen Gesetzen konstruiert .

Fig . S.

Schmiegungs - Ebene und Scheitel -Azimute .

Wenn wir die im vorstehenden , aus den Begriffen des Feld - und Landmessens

hergeleitete Erklärung der geodätischen Linie in abstraktere Form fassen , so brauchen
wir den Begriff der Schmiegungs -Ebene (Osculations -Ebene ), d . h . einer Ebene , welche

durch zwei aufeinander folgende Elemente einer Kurve , in unserem Falle zwei auf¬

einander folgende Elemente der geodätischen Linie geht .
Nach unserer Feld -Absteckungs -Erklärung ist dieses die Ebene , in welcher in

jedem Punkte der rückwärts und vorwärts gerichtete Strahl eines Brechungswinkels
von 180° liegt , nnd da diese Ebene durch die Vertikalaxe des Theodolits geht , ist sie

Normal-Ebene der krummen Fläche , auf welcher die geodätische Linie abgesteckt

gedacht wird ; und deswegen gilt der Satz :

Die Schmiegungs -Ebene der geodätischen Linie ist überall Normal -Ebene der

brummen Fläche , auf welcher die geodätische Linie verläuft .

Wenn in irgend einem Punkte der geodätischen Linie , z . B . B Fig . 1 . S . 373,
irgend eine Flächen -Tangente TT ' gezogen wird , so sind die beiden Scheitelwinkel
bB T = ß und T 'B b — ß , welche die geodätische Linie mit dieser Tangente bildet ,
einander gleich .

Es könnte auf den ersten Blick scheinen , als ob das selbstverständlich und bei
«11-allen Kurven der Fall wäre ; allerdings sind Scheitelwinkel zwischen zweien Geraden,
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also auch zwischen zwei Kurven -Tangenten in einem Punkte einander gleich , und es
wäre also im Punkte B für jede Kurve ß = ß '

, wenn ABC Pig . 1 . S . 373 als ein
Element der Kurve gilt ; wenn dagegen der Kurventeil A B C aus zwei oder mehr
Elementen bestehend angenommen wird , oder mit anderen Worten , wenn man in dem
Punkte B die Krümmung der Kurve ABC untersuchen will , dann sind die beiden
mit ß bezeichneten Winkel nur für den Fall gleich , dass die beiden in dem Punkte B
zusammentreffenden Elemente der Kurve gemeinsam in einer Ebene liegen, welche
auch die Flächen -Normale des Punktes B enthält , d . h . Schmiegungs -Ebene in B ist,
so dass dann auch diese Flächen -Normale in B als Schnitt der Schmiegungs -Ebene und
der durch T T ' gehenden Flächen -Normalebene erscheint .

All dieses ist nun bei der geodätischen Linie erfüllt , und wenn man daher
eine geodätische Linie AB CD . . . (Fig . 1 . S . 373) durch eine Schar von anderen
geodätischen Linien MN , M ' N ' u . s . w. schneidet , so sind alle dabei auftretenden
Schnittwinkel ß und ß in B , y und y in C u . s . w . einander gleich .

Wir werden als geodätische Linien M N , M 'N ’ u . s . w. von Fig . 1 . S . 373 ,welche sämtlich von einer geodätischen Linie AB C D geschnitten werden, später
namentlich die Meridiane des Ümdrehungs -Ellipsoids finden , wo a , ß , y die Azimute
sind , und deswegen sprechen wir das , was über die Winkel ß , ß , sowie y, y u . s . w.
erkannt wurde , sofort aus in dem Satze : die geodätische Linie schneidet jeden Meri¬
dian unter gleichen Scheitel -Azimuten .

Krümmungs -Linien .
Zur allgemeinen Klärung der Begriffe empfiehlt es sich , neben der geodätischen Linie auch

noch die Krümmungslinie zu erwähnen . Eine auf einer brummen Fläche gezogene Krümmungt -
linie hat die Eigenschaft , dass je zwei aufeinander folgende , ihr zugehörige Flächen -Normaleil sich
schneiden , was bei der geodätischen Linie nicht der Fall ist , wie z. B. aus den zwei Punkten Kaund Kb Fig . 1. § 65. S. 361 zu ersehen ist .

Eine Krümmungslinie folgt stets der grössten oder der kleinsten Krümmung , deren Richt¬
ungen nach dem Euler sehen Satze (§ 33. S. 199) zu einander rechtwinklig sind ; und daher bilden
die sämtlichen Krümmungslinien einer Fläche zwei Scharen von Kurven , die sich überall gegenseitig
rechtwinklig schneiden .

Ein Flächenpunkt , in welchem die beiden Hanpt -Krümmungs -Halbmesser (und damit auch
alle Normalschnitts -Krümmungs -Halbmesser ) gleich sind , heisst „Nabelpunkt “ der Fläche . Z. B. sind
die beiden Pole des Umdrehungs -Ellipsoids Nabelpunkte in diesem Sinne ; die Meridiane sind
Krümmungslinien der einen Schar , und die Parallelkreise sind Krümmungslinien der zweiten Schar.
Bas strahlenförmige Ausgehen der Meridiane als erster Schar vom Pol als Nabelpunkt ist jedochnur besonderer Fall und findet z. B. bei den vier Nabelpunkten des dreiaxigen Ellipsoids nicht
mehr statt .

Wenn eine Krümmungslinie zugleich geodätische Linie sein soll , so muss sie ganz in einet
Ebene liegen , weil jede Flächen -Normale sowohl von den beiden benachbarten Flächen -Normalen
geschnitten werden , als auch in der Ebene zweier benachbarten Kurven -Elemente liegen muss , was
bloss bei einer ebenen Kurve möglich ist ; dagegen umgekehrt eine Krümmungslinie , die in einerEbene liegt , ist deswegen niobt notwendig geodätische Linie .Auf dem Umdrehungs -Ellipsoid (sowie auf jeder anderen TJmdrehungsfläclie ) ist jederMeridian geodätische Linie und , Krümmungslinie ; ein Parallel kreis ist Krümmungslinie aber nicht
geodätische Linie .

§ 69. Differential -Gleichungen der geodätischen Linie.
Nachdem wir am Schluss des vorigen § 68. den Satz von den gleichen Scheitel -

Azimuten der geodätischen Linie gefunden haben , können wir die Differential -Gleich-
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ungen dieser Linie auf irgend einer Umdrehungsfläche aufstellen , in ähnlicher Weise
wie wir früher bei Fig . 1 . § 61 . S . 347 die Differential -Gleichungen des grössten
Kreises auf der Kugel durch geometrische Betrachtungen nachgewiesen haben .

Obgleich die nachfolgenden Betrachtungen auf jede beliebige Umdrehungsfläche
bezogen werden können , legen wir doch sofort in Fig . 1 . unser Umdrehungs -Ellipsoid
zu Grunde, weil wir für andere Flächen keine Anwendung haben .

Im Anschluss an Fig . 1 . und Fig . 2 . stellen wir eine geometrische Differential-

Betrachtung an , welche ganz analog dem früheren Falle auf der Kugel (Fig . 1 . und
Fig. 2 . § 61 . S . 347) ist . Wir betrachten dabei Fig . 2 . als polyedrisches Analogon
zu der wirklichen krummen Fläche , und haben dabei den Grenzfall für unbegrenzt
abnehmendes d s im Auge .

Fig. l .
S

Fig. 2.
Besonderer Teil von Fig. 1.

Eine geodätische Linie P P ' P " schneidet schief über zwei Meridiane und zwei

Parallelkreise des Umdrehungs -Ellipsoids hin , wodurch ein Trapez PP -[ P ' Q für uns
von Wichtigkeit wird , dessen Diagonale P P ' ein Stück d s der geodätischen Linie ist .

Indem wir die Breiten <p und cp 4- d cp und den Längenunterschied A X sowie
den Meridian -Krümmungs -Halbmesser M und den Quer-Krümmungs -Halbmesser N
nach alter Bezeichnung annehmen , haben wir (nach Andeutung von Km und AL in

Fig. 1 . und Fig . 2 .) die Seiten des Trapezes :
AS oder PP \ — Md cp W

P Q oder P t P ' = Ncos cp d \ (2)

Wenn nun das Azimut der geodätischen Linie bei P den Wert a hat , und das

Element der geodätischen Linie selbst = d s gesetzt wird , so erhält man in erster
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Näherung , da der Winkel ß bei P 1 mit unbegrenzt abnehmendem d s gegen 90°
konvergiert :

aus ( 1) : dscosa — Mdcp (3)aus (2) : d s sin a = N cos <jp dX = p dX (4)
Um auch für d a eine Differential -Formel zu erhalten , betrachten wir das lang¬

gestreckte schmale Dreieck PP ' S , welches oben bei S den Winkel d a enthält ; das¬
selbe giebt genau in derselben Weise , wie früher bei der Kugel in (3 a) § 61 . S . 348
gezeigt wurde , die Gleichung :

da = dX sin <p (5)
Dabei ist aber zu beachten , dass dieses d « zunächst nur gilt für die Differenz:

QP ' P — P XPP ' = da (6)
allein wegen des Satzes von den gleichen Seheitel - Azimuten der geodätischen Linie,den wir eingangs citiert haben , sind die beiden in Fig . 2 . bei P ' mit a ' bezeichneten
Azimute einander gleich , oder noch ausführlicher geschrieben :

T P ' P " = QP ' P , also nach (6) : T ' P ' P " — P x P P ' = da (V
Nun haben wir in (3), (4) und (5) bereits die gesuchten Differential -Gleichungender geodätischen Linie auf dem Umdrehungs -Ellipsoid , und überzeugen uns auch, dass

dieselben ähnliche Form haben wie die früheren Gleichungen (1 ) , (2), (3) S. 347 ,welche für den Grosskreisbogen auf der Kugel gelten .
Die Meridian -Konvergenz d a kann man auch dadurch darstellen , dass man in

Fig . 2 . eine Parallele P ' Q ' zu Pj P zieht , dann wird der kleine Winkel Q
' P '

Q = da
derselbe Wert wie d a an der Spitze S von Fig . 1 . Dieses führt auch auf eine neue
Formel für da , denn es ist nach Fig . 2 . :

ia = (8)P Q a s cos a
Nun ist Q Q ' das Differential von P Q oder von Pj P '

, wofür wir diesesmalden Parallelkreis -Halbmesser Neos q> = p einführen wollen , indem PQ = pdX ist.
Damit wird :

QQ ' = — d (pdX ) = — dpdX (9)
Wir haben dieses negativ genommen , weil der Parallelkreisbogen bei wachsen¬der Breite (d <p positiv ) abnimmt . Wir haben also nun aus (8) und (9) :

Wenn man hiezu wieder

d a = —

(4 ) nimmt ,

dp dX
äs cos a
und dX eliminiert , so hat man :

pcosada = — äpsina (1®)
Dieses ist das Differential von :

p sin a = 1c(konstant ) (^ )
und damit haben wir als erste Integration der Differential -Gleichungen der geo¬dätischen Linie einen wichtigen Satz (11 ) , welcher in Worten lautet :

Pas Produkt aus dem Purallelkreis -Halbmesser p in den Sinus des Azi¬
muts a ist für den ganzen Lauf der geodätischen Linie konstant .

Dieser Satz , welchem auf der Kugel der Sinussatz der sphärischen Trigono¬metrie entspricht , giebt sofort Aufschluss über den Gesamtverlauf einer geodätischenLinie auf dem Umdrehungs -Ellipsoid .
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Die beiden Faktoren p und sin a , deren Produkt nach (11 ) konstant = k bleiben
muss, schwanken selbst zwischen leicht angebbaren Grenzen. Das Azimut a kann
im allgemeinen nicht = Null werden (was dem besonderen Fall des Meridians ent¬

spricht), sondern hat seinen kleinsten Wert dann , wenn p seinen grössten Wert hat ,
d. h. im Äquator , wo p = a ist ; also :

■Sin Clmin= — ( 12)
a

Der grösste Wert von a , d . h . 90 °
, entspricht dem kleinsten Wert von p ,

d. h . mit sin a = 1 hat man : p min = k (IS)
Die Konstante k der Formel ( 11 ) ist also der Halbmesser des nördlichsten oder

südlichsten Parallelkreises , den die geodätische Linie erreichen kann ; und dadurch ist
auch eine gewisse äusserste geographische Breite bestimmt , über welche eine geo¬
dätische Linie nicht hinaus kommen kann .

In Fig . 3 . § 69 . S . 375 ist diese äusserste Breite = 60° . Die geodätische Linie

berührt abwechselnd den nördlichen und den südlichen äussersten Parallelkreis , und da

sie im allgemeinen nicht in sich selbst zurückkehrt , umläuft sie zwischen den genannten
äussersten Parallelen das Sphäroid in unendlich vielen spiralförmigen Windungen .

Übersicht der Haupt -Formeln .
Wir wollen unsere gefundenen Formeln , die zu weiterem gebraucht werden,

nochmals zusammenstellen :
(3) d s cos a = M dtp (l 1)

(4) d s sin a = JSf cos q dX W

(5) und (4 ) da = dX sin q oder da = ^ sin a tang q ia)

(11 ) p sin a = k (p = N cos q) WO

Dabei ist M der Meridian -Krümmungs -Halbmesser , N der Quer-Krümmungs -

Halbmesser und p der Parallelkreis -Halbmesser für die Breite q .

Die letzte der vorstehenden Gleichungen , welche wir mit (tp) bezeichnet haben,
weil sie später auf die „reduzierte Breite “ tp angewendet wird , kann man auch

unmittelbar aus Fig . 2 . herleiten , indem man in erster Näherung setzt :

P 1 P ' = ds sin a und PQ = ds sin « ' (l4 )
also p l p ' sin a < = PQ sin a , wobei P \ P ' = p' dX und P Q = p dX (15 )
Daraus folgt p ' sin a ' = p sin <x = Konstant . ' ^

§ 70 . Die geodätische Linie als kürzeste Linie .
Im Anschluss an Fig . 1 . nehmen wir

zuerst folgende Aufgabe : Man habe ein Prisma
mit den drei Kanten A A '

, B ' B , PQ , die
wir (zur Vereinfachung der Anschauung ) so
gelegt denken, dass A A' und B ’B in einer
horizontalen Ebene und PQ im Abstand h
darüber sich befindet . Es soll auf der oberen
Kante ein Punkt S so bestimmt werden,
dass die Summe der schiefen Verbindungen
4 S -)- S J = (s) (,sri nach zwei festen
Funkten A und B möglichst klein werde.

Fig. 1.
3 eingeklammerten Masse (s), (s')> W , (’M *>e-

auf fH« schiefen Ebenen.
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Wenn die in Fig . 1 . eingeschriebenen Masse a , b , c, d , x nebst dem Winkel «für die Grundriss -Ebene gelten , so hat man :
e2 = «2 + a;2 + 2 a x cos a , c’2 = 62 -+- x 2 — 2 6 x cos a (1)

Wenn weiter (s) und (s ’) die schiefen Entfernungen A S und SB bedeuten,und h die Höhe von S über A und B , so ist :
(s)2 = e2 + A2 (s'

)2 = c' 2 -+- Ifi (2)
Nun soll (s) + (s'

) ein Minimum werden , d . h . :
]/ci2 -+- cc2 + 2 a x cos a A2 y 62 -t- a:2 — 2 6 x cos a A2 = Minimum (3)
Wenn man dieses (3) nach der unabhängigen Veränderlichen x differentiiert ,so findet man :

x + a cos a x — 6 cos a . . ..- - 1- 7- 7T — = 0 4(s) (s )
Es ist aber nach Fig . 1 . im Grundriss gemessen :

x -h a cos a = PS , b cos a — x = Q S
Damit wird (4) :

PS QS
w

" =
(?T

° “er cos ^ = cos ^
also : (cp) = (ip) (5)

Diese Gleichung (5) sagt : der kürzeste Weg auf zweien sich schneidend®Ebenen , über die ICante PQ hinweg , liegt so , dass auf der Scheitel -Kante PQ die
beiden Winkel (qc) und (tfi) einander gleich sind .

Wenn wir diese einfache Betrachtung dazu anwenden , um die Differential -
Eigenschaft der kürzesten Linie auf irgend einer krummen Fläche , insbesondere aufdem Umdrehungs -Ellipsoid , zu bestimmen , so können wir an Stelle der Kanten AJ '

, BFu . s. w. die aufeinander folgenden Meridiane treten lassen , und wir wissen nun , dasseine Kurve alle diese Meridiane auf kürzestem Wege überschreitet , wenn die dabei
vorkommenden Scheitel -Azimute gleich sind , d. h . die kürzeste Linie hat , in Hinsichtauf die Azimute , dieselbe Eigenschaft wie die geodätische Linie , wie wir am Schlussvon § 68. S . 376 gesehen haben .

Wir sehliessen hieraus , dass die geodätische Linie und die kürzeste Liniezwischen zwei Punkten identisch sind .
Dabei nnd bei allen ähnlichen Betrachtungen nehmen wir stillschweigend an ,dass zwischen zwei Punkten nur eine geodätische Linie und nur eine kürzeste Liniebestehe , wir sehliessen also Fälle , welche z . B . einem Centriwinkel über 180 ° auf der

Kugel entsprechen , und ähnliche aus .

Geodätischer Kreis und geodätische Parallele .
Aus dem Begriffe der kürzesten Linie lassen sich durch einfache geometrischeBetrachtung zwei Sätze herleiten , betreffend den „geodätischen “ Kreis und die nge0‘

dätische Parallele “ . Gauss hat in der Abhandlung „Disquisitiones generales circa
superficies curvas “

, Art . IS . und 16 . dieses so dargestellt :
Geodätischer Kreis . Wenn auf einer krummen Fläche von einem Anfang®

punkte unendlich viele kürzeste Linien , alle von gleicher Länge ausgehen , so ist die
ihre Enden verbindende Linie zu allen einzelnen normal .
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Es seien in Fig . 2 . A B und AB ' zwei gleich lange kürzeste

Linien, welche den unendlich kleinen Winkel bei A zwischen sich

fassen ; und wir wollen zunächst annehmen , die beiden Winkel hei

B und B ' seien nicht beide = 90 ° , sondern weichen um eine end¬

liche Grösse von 90 ° ab , so dass nach dem Gesetz der Stetigkeit
der eine grösser , der andere kleiner als 90 ° wäre , z . B . B = 90° —w .
Dann nehmen wir auf der Linie B A einen Punkt G so an , dass

BG = BB ' eosecoo wird ; und insofern das unendlich kleine Dreieck
BB ' G als eben angesehen werden kann , folgt hieraus GB ' = B Gcos co
und ferner ;

AC + CB ' = AG -hBCcosw = AB — BC (l — cosm).

Es ist aber von vornherein angenommen , dass AB = AB '

sei , also :
A G + CB ' = A B '— B G (1 — cos co) .

Hiernach würde man von A nach B ' einen kürzeren Weg
über C haben als unmittelbar AB '

, was der Annahme , dass A B ' selbst eine Kürzeste
sei , widerspricht . Es kann also oo keine endliche Grösse sein, sondern die Winkel
bei B und bei B ' sind beide = 90 ° .

Geodätische Parallele , Wenn auf einer krummen Fläche eine beliebige Linie

gezogen wird, von deren einzelnen Punkten rechtwinklig zu der Linie und nach der¬

selben Seite hin unendlich viele kürzeste Linien von gleicher Länge ausgehen , so

schneidet die Kurve , welche die anderen Endpunkte derselben verbindet , sie alle

rechtwinklig.
Man kann dieses ähnlich beweisen wie bei Fig . 2 ., indem man wieder einen

kleinen Winkel ® einfuhrt und zwei unendlich nahe benachbarte geodätische Linien
wie zwei Gerade in der Ebene behandelt .

Dieser zweite Satz über die geodätische Parallele ist allgemeiner als der erste
Satz vom geodätischen Kreis , welcher in dem zweiten Satze mit enthalten ist , wenn
man nur als gegebene Linie einen unendlich kleinen um A beschriebenen Kreis annimmt .

Ein naheliegendes Beispiel für geodätische Kreise und für Parallelen bietet
das System der Meridiane und der Parallelkreise auf der Kugel oder auf dem Um-

drehungs-Ellipsoid (und auf anderen Umdrehungs -Flächen ) . Die Parallelkreise sind

geodätische Kreise in Bezug auf den Pol als Zentralpunkt der Meridiane und geo¬
dätische Parallelen in Bezug auf irgend einen Parallelkreis .

Ebenso wie diese Parallelkreise selbst nicht geodätische Linien sind , sind auch

die geodätischen Kreise und geodätischen Parallelen im allgemeinen selbst nicht geo¬
dätische Linien .

Fig. 2.

Kürzeste Linie auf einer abwickelbaren Fläche .

. o 070 sind die Kanten B BBei der geometrischen Betrachtung von Fig - • ■ . un (j g weicheund A A’ selbst unwesentlich , es handelt sich nur um zwei
^ un (j g selbstüber die dritte Kante PQ hinweg verbunden werden sollen .
alicll schliessen,können beliebige andere Gerade gehen . Man kann deswegen aus

jj^ enedass eine kürzeste Linie auf einer abwickelbaren Fläche nach
AA '

, BB '
eine Gerade sein muss (Gleichheit der Winkel (cp) und WO)* *

kennen auch aufund PQ , welche in unserer Fig . 1 . parallel angenommen wur
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einer abwickelbaren Fläche parallel sein (Cylinder ), im allgemeinen aber müssen ,wenn die Fläche abwickelbar sein soll , je zwei aufeinander folgende solcher Geradensich schneiden .

Fig . 1.

§ <1. Tergleichung der , geodätischen Linie mit den
Normal - Scli nitten .

Die geodätische Linie erscheint auf kurze Erstreckung im Sinne des Feld¬
messens m allen ihren Teilen wie eine Gerade ; würde man dieselbe in kurzen Strecken
landmesserisch als polygonalen Zug aufnehmen , so würde man lauter Brechungswinkelvon 180 finden , wie bei einer Geraden in der Ebene .

In Fig . 1 . und Fig . 2 . betrachten wir zwei
Punkte A und B unter den Breiten cp und cp

' mit
dem Längenunterschied X.

AaB ist der Normalschnitt von A nach B
und B b A ist der Normalschnitt von B nach A,
und dazwischen verläuft die geodätische Linie As B.
was im voraus gesagt sein soll .

Zur Veranschaulichung der Krümmungsver- (
hältnisse denken wir uns in A einen Feldmesser
mit einem richtig aufgestellten Theodolit als Beob¬
achter , welcher die Azimute a '

, a , a 1 der drei Kurven
von dem als Gerade erscheinenden Meridian AB
messen oder einstellen kann .

Der Normalschnitt AaB mit dem Azimut «i
erscheint diesem in A mit einem Theodolit ausge¬
rüsteten Feldmesser als eine Gerade , denn er hat
die ganze Linie AaB beim Auf- und Niederkippen
seines Fernrohrs in einer Sicht am Fadenkreuz, wie
es das Wesen des Normalschnittes von A nach B
verlangt .

Die geodätische Linie As B mit dem Azimute a macht dem Feldmesser , der
m A mit seinem Theodolit steht , in ihren ersten Teilen ebenfalls den Eindruck der

eraden , wie m Fig . 2 . § 68 . S . 374 angedeutet ist , dass streckenweise Aab , dann
a b c u . s . w. ohne Brechung erscheinen . Aber die Gegenschnittlinie Ab B mit dem

Fia . l . Azimute a ' macht dem Feldmesser in A den
Eindruck einer Kurve , denn nur von B aus
erscheint Ab B als Gerade ebenso wie um¬
gekehrt AaB zwar in A als Gerade erscheint ,
aber in B als Kurve .

Wir wollen darauf ausgehen , den Krüm¬
mungs -Halbmesser R ' zu bestimmen , unter
weichem die Kurve Bb A dem Beobachter
in A erscheint , oder den Krümmungs -Halb¬
messer , unter welchem die Kurve AaB
einem Feldmesser in B erscheint ; beide werden
nahezu gleich sein .
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Dazu haben wir die weiteren Fig . 3 . und 4 . gezeichnet , von denen Fig . 4 .

«in Lageplan wie Fig . 2 . und Fig . 3 . der zugehörige Vertikalschnitt rechtwinklig zu

Ab ist.

Wenn B der Krümmungs -
Halbmesser des ebenen Gegen -
Schnittes Ab B m A ist , d . h . B
in erster Näherung auch gleich dem
Krümmungs - Halbmesser ß nach
dem Euler sehen Satze (1) § 32.
S . 199 , oder auch nur in erster
Näherung gleich dem mittleren Erd -
kriimmungs -Halbmesser , was zu¬
nächst auch schon genügt , und
wenn n der Heine Neigungswinkel
der Schnittebene Ab A gegen die

A

Ka!

Fig . 3.
R1

Flächen -Normale A Ka im Punkte A ist , so wird
die Kurve A b in dem Horizont von A betrachtet (Fig . 4 .) einen sehr viel grösseren
Krümmungs-Halbmesser B ' geben , welcher ist :

ß , 1
R — . — oder —,sinn K

sin n
Tß

” (1)

Man nennt diese Be¬
ziehung in der analytischen
Geometrie den „ Satz von
Meunier “ ; man kann ihn
fast unmittelbar eiusehen ,
wenn man nur bedenkt , dass
die Ordinaten y der Kurve
A C von Fig . 3 . sich im
Verhältnis sin n : 1 verkürzt
in Fig . 4 . wieder finden ,
dass also auch ~ unddx da?
in der Nähe des Punktes A
ebenso verkürzt werden und
die Kurve A b in Fig . 4.
entsprechend flacher wird .

Innerhalb der nur
einzuhaltenden ersten Näher¬
ung kann man (1) auch so
schreiben:

Fig . i .

1 _ n
_ (2)

b: n
Wir müssen nun darauf ausgehen , die oben eingeführte Neigung n zwischen

der Schnittebene Ab B und der Flächennormalen AK « zu bestimmen , und wir be¬

dachten dazu die früheren Fig . 1 . § 65 . S. 361 und Fig . 1 . § 66. S. 366.

Dort wird sich der fragliche Neigungswinkel n finden, und man wird auch
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sehen , dass er in erster Näherung auch gleich dem Neigungswinkel v der beidenSchnittebenen ist , d . h . nach (14 ) § 65 . S . 365 nehmen wir :
n = v = if a sin acos a = rp

s sin a cos a (3)
Dieses ist für unseren nächsten Zweck genügend . Wollte man genauer ver¬fahren , so müsste man die beiden Gleichungen (17 ) § 66 . S . 370 zu Rate ziehen , auswelchen zu ersehen ist , dass die 3 Neigungswinkel n , n’ und v alle zusammen in

erster Näherung den Wert ösina oder rfi a sin a cos n haben , wie in vorstehender
Gleichung (3) geschrieben ist .

Ans (2) und (3) zusammen folgt :

W if a eos a
XL iV (4)

Dabei ist B der Erdkrömmungs -Halbmesser im Azimut a und N der Querkrümmungs-Halbmesser ; indessen für den Zweck erster Näherungsbestimmungen brauchen wirdas nicht zu unterscheiden ; wir wollen schlechthin B = N = r gleich dem mittleren
Erdkrümmungs -Halbmesser für eine Mittelbreite zwischen <jp und <p' setzen , wie maues für Triangulierungen thut , also wird (4 ) :

-i - = ??a -4 - sin cc cos a (3)XL T"

Nun haben wir unsere 3 Linien
nochmals dargestellt in Fig . 5 . mit An¬
nahme eines Coordinatensystems xy , das
einer Abbildung in der Ebene entspricht,
so dass nun die geodätische Linie AsB
als Gerade erscheint , und die beiden an¬
deren Kurven mit ihren relativen geodä¬
tischen Krümmungen sich als Kurven
A sj B und B A darstellen .Die geodätische Linie A B kann zunächst selbst als Abscissenaxe betrachtetwerden , und durch kurze geodätische Ordinaten -Linien rechtwinklig hiezu, können

benachbarte Punkte hierauf bezogen werden , ähnlich wie auf der Kugel bei den
Soldner sehen Coordinaten .

Was die dabei nötigen Vernachlässigungen betrifft , so wissen wir von (15) § 33.
S . 365 , dass die Ordinaten eines solchen Systems nur von der Ordnung iß ff3 sind .Die Ordinaten -Konvergenz (in erster Näherung sphärisch nach Fig . 3 . S . 262 berech¬net ) , wird dann nur von der Ordnung rp tr4, woraus man weiter schliesst , dass es
für unsere Zwecke genügt , die fraglichen Coordinaten wie ebene rechtwinklige Coor¬dinaten zu behandeln , indem die kleinen Winkel fi und v u . s . w . nur von der Ord¬
nung rf - (j 2, erscheinen werden .

Diesen Bedingungen entsprechend ist das Coordinaten -System in Fig - 3. ge_
zeichnet . A B ist das geradlinig erscheinende Abbild der geodätischen Linie A Bi
jedoch als Abscissenaxe des Coordinaten -Systems wird nicht A B , sondern die TangenteA C des Normalschnittes von Asi B genommen , was mit gleicher Näherung zulässig ist-

Die Kurve A sj B denken wir uns dargestellt durch eine Gleichung y — f (®)'und die Reciproke des Krümmungs -Halbm'essers IV dieser Kurve ist hinreichend aus-
gedrüekt durch 1 $2 y

W =
dx 2

Tlg . 5.
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Da auch Abscisse x und Kurvenlänge ]/d x2 ■
können wir mit Zuziehung von (5) auch schreiben :

d2 y „ x

d y2 verwechselt werden dürfen ,

wobei

Die Kurvengleichung (6) zweimal integriert giebt :
d y _ x2
dx 2 q

x2
y ■-

Integrations -Konstanten kommen nicht hinzu , weil für x

; = 0 werden soll .
den praktischen Landmesser rasch orientierende

Zwi Irücken , nämlich dass die Kurve (9) nichts anderes
ist , übliche cubisclie Parabel , welche als Übergangskurve
zwischen Geraden und Kreisbögen dient .

Nun hat man nach dem Anblicke vo Fig . 5 . :
d y ~i _ s2
dau ,r = s 2g
JM = i !. :
* J* = « 6g

Auch die Kurvenlänge A Si B , kurz = h ' lern
in Fig . 5 . die Grenzabscisse AC = c gesetzt wirc

0 auch y 0 und

xp = /u ' + v

40 72 / 90 g2

Damit ist alles gefunden , was in Fig . 5 . sich auf die untere Kurve As \ B
bezieht; und um die entsprechende Untersuchung auch für die obere Kurve A s%B
zu führen , könnte man auch die Gleichung dieser Kurve aufsuchen nach den Be¬
dingungen, dass die Kurve durch die beiden Punkte A und B gehen und in A den
selben Krümmungs -Halbmesser haben soll , welcher die erste Kurve im Punkte
B hat = Ä '6) denn wir haben ja schon in (4) eingesehen , dass innerhalb der ersten
Näherung B '

a — B \ ist . Dann ist aber auch die zweite Kurve s2 überhaupt keine
Jordan , Handb . d. Vermessungskunde . 4. Aufl . III . Ed . 25

dazu die Länge der geodätischen Linie selbst :

= j/x 2 -+- y2

Die Differenz von (12 ) und (13) giebt , indem nun wieder c = s gesetzt wird :

s $ ( 1 1 ] s $

q2
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andere , als die erste Kurve su nur liegt sie umgekehrt , und in Fig . 5 . sind die
Winkel fi = fi ' und r = •/ .

Wir wollen auch noch den Querabstand v zwischen der geodätischen Linie
und jeder ihrer Begleitkurven bestimmen (vgl . Fig . 5 .) . Dieser Querabstand ist nach (9) :

/ S \ 3

_ 1 (fL) _ iAz_ - J3
V - ^ [ öq ) 6 q

“
16 q

oder 2 o = (15)8 q
Nun ist in allen unseren Formeln noch die eine Konstante q nach (7) ent¬

halten , welche wir aber nicht unmittelbar einsetzen wollen , denn es lässt sich besser
alles in dem Excess s nach Fig . 6 . § 65 . S . 364 ausdrücken , nämlich :

also wegen (7) :

s2 sin a cos a
2t 2

1

2
und damit geben die verschiedenen vorstehenden Formeln :

Winkel :
2

ju = -
g

- rf e

■v = | fe

•»' =
y tp e

2
p! = — rps

fi -+- v = t/2 s fi ' + V = rfi s

Kurvenlängen

Querabweichung

«1 — s = s2 - ■s = ^ ts

2 v = • - rf* s -

(16)

(17)

(18)

Der letzte Ausdruck stimmt überein mit dem früheren (15) § 65 . S . 365 .
Zu einem ersten Zahlenbeispiele wollen wir nehmen s = 100 000 ” und <jp= 45 ,

sowie « = 45 ° ; damit wird log r = 6 .8046 , rfi = 0,00336 , und damit zunächst s = 12,66

fi = fi' = 0,028" v = = 0,014”
2 v = 0,005 ” sj — s = s2 — s - 0,00000 00002 ”

Der Wert 2 v = 5“ ” stimmt mit dem früheren (16 ) § 65 . S . 365 . Ein zweites
mehrfach von uns benütztes Beispiel mit der Mittelbreite <p == 50 °

, den beiden End¬
breiten 49 ° 30 ' und 50 ° 30 ' und 1 = 1 ° giebt : s = 132 315 ” a = 32 ° 48 '

log r = 6 .80489 log rt?2 = 7 .44345
fi = fi' = 0,0373" v = ■»’ = 0,0187”

2 v = 0,009 ” «j — s = s2 — s = 0,00000 00004 ”

Diese Zahlenbeispiele zeigen , dass für die gewöhnlichen Dreiecksseiten bei de®

heutigen Stande der Messkunde die kleinen Winkel fi und v vernachlässigt werden
können . Die Differenz «j — s wäre nicht einmal mikroskopisch messbar .

Höhere Glieder der vorstehenden Formeln .
Man kann die Entwicklungen , welche im vorstehenden immer nur die eisten

Näherungen berücksichtigt haben , auch auf diesem Wege noch weiter treiben , wie ®
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unserer 3 . Auflage 1890 , § 75 . gezeigt worden ist ; es hat aber keinen praktischen
Zweck , und ist deswegen im vorstehenden nicht mehr berücksichtigt . Nur eine Sache
davon wollen wir wenigstens mit Worten behandeln .

In Fig . 6 . ist der besondere Fall behandelt , dass die Punkte M und B , zwischen
welchen die geodätische Linie und die beiden
Normalschnitte gezogen sind , auf gleicher I ’lg' 6'
Breite liegen . ReodätLinJe ^

In diesem Falle fallen die beiden Nor- • ' '
malschnitte (vertikale Schnitte ) in einen zu¬
sammen , und die geodätische Linie kann daher

Bnicht mehr zwischen den beiden liegen . A
Dass die geodätische Linie nicht selbst

mit diesen beiden ebenen Schnitten zusammenfallen kann , ist unmittelbar einzusehen,
insofern die geodätische Linie in diesem Fall nicht selbst eine ebene Kurve sein kann .

Die geodätische Linie verläuft dann über dem vertikalen Schnitte , aber mit so
kleinen Winkeln £ , dass dieselben innerhalb der Näherungen unserer g und v von (16)
gar nicht mehr zum Ausdruck kommen , die genauere Entwicklung giebt nämlich :

tang cp = e‘ sin qp cos cp

Denkt man sieh eine Dreiecksseite § = 100 000” in der Breite cp — 45 ° , so
giebt dieses nur £ = 0,0001" .

§ 72. Bedeutung der geodätischen Linie für die praktischen
Vermessungen.

Die geodätische Linie ist niemals Gegenstand der unmittelbaren Messung,
sondern nur der Berechnung , und dadurch mittelbar ein Hilfsmittel für ausgedehnte
geodätische Messungen .

Bei der Messung der einzelnen Dreiecke ist von geodätischen Linien nicht die
Bede , denn die Sichten der Theodolit -Messung erfolgen zweifellos in vertikalen Schnitten ,
und nicht in geodätischen Linien ; und auch die astronomischen Azimut -Messungen
beziehen sich nicht auf die geodätische Linie , sondern ebenfalls auf vertikale Schnitte .

Man kann die gemessenen Azimute und die gemessenen Horizontal -Winkel
von den vertikalen Schnitten auf die geodätischen Linien reduzieren , wie im vorigen
§ 71 . gezeigt worden ist ; die Reduktion beträgt sehr wenig , nämlich für 45 ° Breite
und Azimut 45 ° bei einer Entfernung von 100 000” nur 0,04" im Azimut , so dass
diese Reduktion meist vernachlässigt wird.

Sei es nun , dass man diese kleinen Reduktionen (nebst anderen , z . B . Höhen¬
reduktion von § 67 ) vernachlässigt , oder sie in Rechnung bringt ; jedenfalls leann man
letzteres thun , und an Stelle eines in Normalschnitten gemessenen Dreiecks -Netzes
kann man also nun ein Dreiecks -Netz setzen , dessen Seiten geodätische Linien sind,
und dessen Winkel von den horizontalen Tangenten der geodätischen Linien in den
Eckpunkten eingeschlossen werden .

Wie man ein solches sphäroidisches Dreiecks -Netz geodätischer Linien in theo¬
retischer Strenge berechnen kann , werden wir erst in einem späteren Kapitel kennen
lernen ; in der Praxis genügt fast immer die sphärische Dreiecks -Berechnung .
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Fig . 1.

Um nun weiter zu langen geodätischen Linien überzugehen , welche die Aus¬
dehnung nicht bloss einzelner Dreiecks -Seiten , sondern ganzer Dreiecks -Ketten haben,
wollen wir nach Fig . 1 . dieJAnnahme machen , eine Dreiecks -Kette zwischen den

Punkten A und B enthalte einen Zug
AG D E B , welcher in 0 , D und E bei
der Messung zufällig lauter Winkel -von 180°

geliefert habe .
Dann kann die Linie AC + GD + BE

EB = AB , mit den Azimuten a und a'

an ihren Endpunkten geradezu als eine lange
geodätische Linie weiter behandelt werden,
indem man in den einzelnen Strecken AC,
CB u . s . w . die Azimut -Eeduktionen zwischen

M der geodätischen Linie und den Normal-
schnitten entweder vernachlässigt , oder in
Rechnung gebracht denkt .

Ohne diese kleinen Reduktionen erscheinen
die Strecken AC , CD , BE u . s . w . mit Brechungs -Winkeln von 180 °

, als Elemente
der geodätischen Linie AD in dem differentialen Sinne der früheren Eig . 2. § 68 . S. 374.

Die in Pig . 1 . gemachte Annahme , dass bei der Triangulierung zwischen A
und B in den Punkten C, D und E Brechungs -Winkel von 180° erhalten werden,
kann als Vorbereitung desJallgemeineren Palles von Pig . 2 . dienen , wobei die geo¬

dätische Linie zwischen A
Fig- 2- und B nicht mit Dreiecks¬

seiten selbst zusammenfällt,
sondern verschiedene Drei¬
ecks -Seiten in den Punkten
ab cde schneidet , und am
Anfang und am Ende ge¬
wisse Winkel S und y mit
Dreiecks -Seiten bildet .

Sobald man einen die¬
ser Winkel 8 und y wüsste ,
könnte man die ganze geo¬
dätische Linie A abcdeB
sphärisch berechnen , indem
man die einzelnen Strecken
als Seiten sphärischer Drei¬
ecke behandelte , z. B . A a als
Seite des Dreiecks A Ga oder
AF a , dann a b als Seite
des Dreiecks aFb u . s . w-

Die Azimut -Übertragung in a , b u . s . w . müsste stets nach dem Gesetz der gleichen
Scheitel -Winkel geschehen , also so , dass Winkel Aa G = Winkel b a F u . s . w.

All dieses setzt , wie schon erwähnt , voraus , dass man den einen Winkel
oder y kenne , und da das in Wirklichkeit nicht genau der Pall ist , kann das ganze
Verfahren nur mittelbar angewendet werden . Man rechnet nämlich die ganze Dreiecks
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Kette, mit Annahme eines mittleren Krümmungs -Halbmessers zuerst sphärisch durch ,
und dadurch sind auch die beiden Winkel 8 und y sphärisch bestimmt . Man kann
zu ihrer Ausmittlung z . B . Soldner sehe oder konforme Coordinaten oder sphärische
geographische Coordinaten , oder irgend welche andere geschlossene oder entwickelte
Formeln der sphärischen Trigonometrie anwenden ; erste Näherungen der Winkel 6
und y werden sich jedenfalls finden lassen .

Mit einer solchen Näherung , z. B . für 8, beginnt man nun eine zweite schärfere
Rechnung, formell auch sphärisch , aber so , dass in jedem der Dreiecke AaF , baF ,
u . s . w . ein besonderer , der mittleren geographischen Breite des Dreiecks entsprechender
Krümmungs-Halbmesser angewendet wird . Wenn dann am Ende das letzte Dreieck
EeB oder eHB nicht schliesst , d . h . wenn man den Endpunkt B verfehlt hat , so
bann man aus der Querabweichung und der Gesamtlänge A B leicht eine Verbesserung
berechnen, mit welcher die ganze Rechnung wiederholt und dann wohl zum Schluss
gebracht werden kann .

Stimmt diese ganze Rechnung von A bis B in sich , sind also auch die Winkel
8 und y bekannt , so kann man auch die in A und B etwa gemessenen Azimute
ß und ß '

, welche sich als astronomische Messungen auf die Dreiecks-Seiten A C und
B E beziehen , nun auf die Azimute a und a ' der geodätischen Linie A B , bzw. B A
reduzieren, denn es ist :

a — ß + 8 , a ' — ß ' + y W

Sphärische Polar -Coordinaten .

Von den verschiedenen möglichen Formen der sphärischen Coordinaten , die wir
erwähnt haben , wollen wir eine Form , nämlich sphärische Polar -Coordinaten noch
besonders betrachten , weil diese Form bei Bessels „ Gradmessung in Ostpreussen “
zur Anwendung kam und zu manchen Erörterungen Veranlassung gegeben hat .

Denken wir uns in Fig . 3 . , welche im wesentlichen dieselbe Bedeutung hat ,
wie Fig . 2 ., ausser A B auch noch die Linien AD und AE gezogen, so ist klar ,
dass man das Dreieck AG D berechnen kann aus den zwei Seiten AC , CD und
dem von ihnen eingeschlossenen Winkel hei G. Damit hat man die Entfernung
d D = und 'auch den Winkel ß bei A , und alle Winkel bei D .

Man kann daher nun ein zweites langgestrecktes Dreieck ADE berechnen,
welches die neue Entfernung A E = s2>
den kleinen Winkel y ■— ß hei A und alle
Winkel bei E liefert . Ein letztes lang¬
gestrecktes Dreieck endlich liefert die Ent¬
fernung AB = s , den kleinen Winkel
^ y bei A , also auch ö selbst , und alle
Winkel hei B . Hiebei kann man die
einzelnen Dreiecke nicht bloss sphärisch ,
sondern auch sphäroidisch berechnen . Ein
Zahlenbeispiel zu dem Bessel sehen Ver¬
fahren gab unsere 2 . Auflage 1878 , S . 340
bis 342, und verschiedene Citate hiezu
gab 3. Auflage 1890, S . 385.

Kg . 3.
E
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Sphäroidische Goordinaten .
Ein letztes , und wohl das beste Verfahren , lange geodätische Linien aus Drei¬

ecksketten zu berechnen , können wir durch Torgreifendes Citieren der Theorieen unserer
nächsten Kapitel angeben : Man rechnet die geodätische Übertragung von Länge ,
Breite und Azimut schrittweise von Dreiecksseite zu Dreiecksseite durch die ganze
Kette hindurch nach § 77 . (oder auch nach § 74 .) und dann kann man die ganze
Linie vom Anfangspunkt bis zum Endpunkt nach Kap . VII . berechnen .

Bei diesem Verfahren braucht man , ohne indirekt rechnen zu müssen , nicht
mehr Voraussetzungen zu machen , in Bezug auf die Erddimensionen und auf die
Breiten des Anfangspunktes und das Azimut der Anfangs -Eichtung , als unbedingt
nötig ist . Eine völlig voraussetzungslose Berechnung geodätischer Linien giebt es nicht .

Über die Bedeutung der geodätischen Linie für die praktische Geodäsie im
allgemeinen lässt sich so viel sagen : Die Einführung der Theorie der geodätischen
Linie in der Geodäsie ist keine Notwendigkeit , wie z . B . die Theorie der geradlinigen
ebenen Dreiecke es für die ebene Triangulierung ist ; man könnte die Aufgaben der
höheren Geodäsie auch z . B . durch Sehnen -Dreiecke und polyedrisch -räumliche Punkt-
Bestimmungen und in noch manch anderer Weise behandeln ; allein die geodätische
Linie hat sich bis jetzt als bestes Mittel bewährt , zwischen den unmittelbaren geo¬
dätischen und astronomischen Messungen einerseits und den Annahmen über die Erd¬
oberfläche andererseits , die nötigen mathematischen Beziehungen herzustellen .

Kapitel VII .

Geodätische Coordinaten .
Vorbemerkung . Wir werden in diesem Kapitel im wesentlichen das mit der geodätischen

Linie auf dem Ellipsoid behandeln , was schon in Kapitel V. mit dem Normalschnitt auf der Kugel
gemacht worden ist .

Der Übergang von der Kugel zum Ellipsoid von § 54. mit Hilfe des elliptischen Meridian *

bogens und des „verkürzten “ Breitenunterschiedes war ein erster Notbehelf , welcher genügte ,
K3

um die sphärischen Coordinaten -Formeln dem Ellipsoid anzupassen und in übertragener Form für
erstes Verständnis unserer Landesvermessungen plausibel zu machen . Mit der Theorie der geodä¬
tischen Linie wird all das in neuer und heller Beleuchtung erscheinen .

§ 73. Sphäroidisches Polar-Dreieck.
In Fig . 1 . S . 891 bezeichnet A einen Punkt des Umdrehungs -Ellipsoids (Spbäroids)

mit der Breite <p , entsprechend B einen Punkt mit der Breite (p
r
; der Längen -Unter-

schied dieser beiden Punkte , d . h . der Winkel , welchen ihre Meridian -Ebenen NA . und NB
einschliessen , sei l (von West nach Ost positiv gezählt ) . Die beiden Punkte sind durch
eine geodätische Linie AB verbunden , deren lineare Grösse = s sei und welche bei
A und B die Azimute a und a ' hat .

Wir zählen im allgemeinen die Azimute von Nord über Ost , wie et im Punkt A \
und das gleichfalls nordöstlich gezählte Azimut im Punkte B wäre also = cc' i 180 ,
wenn a ' der in Fig . 1 . eingeschriebene Winkel ist .
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