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390 Sphäroidisches Polar -Dreieck . 73.

Sphäroidische Goordinaten .
Ein letztes , und wohl das beste Verfahren , lange geodätische Linien aus Drei¬

ecksketten zu berechnen , können wir durch Torgreifendes Citieren der Theorieen unserer
nächsten Kapitel angeben : Man rechnet die geodätische Übertragung von Länge ,
Breite und Azimut schrittweise von Dreiecksseite zu Dreiecksseite durch die ganze
Kette hindurch nach § 77 . (oder auch nach § 74 .) und dann kann man die ganze
Linie vom Anfangspunkt bis zum Endpunkt nach Kap . VII . berechnen .

Bei diesem Verfahren braucht man , ohne indirekt rechnen zu müssen , nicht
mehr Voraussetzungen zu machen , in Bezug auf die Erddimensionen und auf die
Breiten des Anfangspunktes und das Azimut der Anfangs -Eichtung , als unbedingt
nötig ist . Eine völlig voraussetzungslose Berechnung geodätischer Linien giebt es nicht .

Über die Bedeutung der geodätischen Linie für die praktische Geodäsie im
allgemeinen lässt sich so viel sagen : Die Einführung der Theorie der geodätischen
Linie in der Geodäsie ist keine Notwendigkeit , wie z . B . die Theorie der geradlinigen
ebenen Dreiecke es für die ebene Triangulierung ist ; man könnte die Aufgaben der
höheren Geodäsie auch z . B . durch Sehnen -Dreiecke und polyedrisch -räumliche Punkt-
Bestimmungen und in noch manch anderer Weise behandeln ; allein die geodätische
Linie hat sich bis jetzt als bestes Mittel bewährt , zwischen den unmittelbaren geo¬
dätischen und astronomischen Messungen einerseits und den Annahmen über die Erd¬
oberfläche andererseits , die nötigen mathematischen Beziehungen herzustellen .

Kapitel VII .

Geodätische Coordinaten .
Vorbemerkung . Wir werden in diesem Kapitel im wesentlichen das mit der geodätischen

Linie auf dem Ellipsoid behandeln , was schon in Kapitel V. mit dem Normalschnitt auf der Kugel
gemacht worden ist .

Der Übergang von der Kugel zum Ellipsoid von § 54. mit Hilfe des elliptischen Meridian *

bogens und des „verkürzten “ Breitenunterschiedes war ein erster Notbehelf , welcher genügte ,
K3

um die sphärischen Coordinaten -Formeln dem Ellipsoid anzupassen und in übertragener Form für
erstes Verständnis unserer Landesvermessungen plausibel zu machen . Mit der Theorie der geodä¬
tischen Linie wird all das in neuer und heller Beleuchtung erscheinen .

§ 73. Sphäroidisches Polar-Dreieck.
In Fig . 1 . S . 891 bezeichnet A einen Punkt des Umdrehungs -Ellipsoids (Spbäroids)

mit der Breite <p , entsprechend B einen Punkt mit der Breite (p
r
; der Längen -Unter-

schied dieser beiden Punkte , d . h . der Winkel , welchen ihre Meridian -Ebenen NA . und NB
einschliessen , sei l (von West nach Ost positiv gezählt ) . Die beiden Punkte sind durch
eine geodätische Linie AB verbunden , deren lineare Grösse = s sei und welche bei
A und B die Azimute a und a ' hat .

Wir zählen im allgemeinen die Azimute von Nord über Ost , wie et im Punkt A \
und das gleichfalls nordöstlich gezählte Azimut im Punkte B wäre also = cc' i 180 ,
wenn a ' der in Fig . 1 . eingeschriebene Winkel ist .
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§ 73 . Sphäroidisches Polar -Dreieck . 391

Indem man in solchen Pallen unterscheidet diesseitiger
Punkt A und jenseitiger Punkt B , kann man auch festsetzen ,
dass im diesseitigen Punkt « von Nord über Ost gezählt und im
jenseitigen Punkt stets + 180° zu dem Wert cP zuzufügen ist ,
den die Formeln geben . (Mit anderen Worten : Wir wollen die
Azimute nordöstlich zählen , aber das dabei für den jenseitigen
Punkt nötige Zusetzen von + 180 ° in den Formeln weglassen .)

Zwischen diesen 6 Grössen , cp, cp
'
, l, s, a , a '

, bestehen
Beziehungen von ähnlicher Art wie für das sphärische Dreieck
Pig. 1. § 60 . S . 338 , welche hauptsächlich in zwei Aufgaben¬
formen sich- ausdrücken , nämlich erstens : gegeben cp, cp

' und l,
gesucht s , « und cP oder zweitens : gegeben cp, s und a ; gesucht
<p\ l und a \

Die Lösungen dieser beiden Aufgaben gehen mehrfach
ineinander über .

Ehe wir an die verschiedenen Auflösungen der Aufgabe
selbst gehen , schicken wir einige Beispiele hiefür voraus (ähnlich
wie wir dieses auch für die sphärische Aufgabe S . 338 gethan
haben). Dass diese Beispiele in sich richtig sind , können wir
jetzt noch nicht beweisen ; dieses wird sich aus der überein¬
stimmenden Berechnung nach den verschiedenen später zu ent¬
wickelnden Methoden ergeben .

Fig. l .
I\!

I . Kleines sphäroidisches Normal -Beispiel .

cp = 49 ° 30' 0”

cp + cp 50 ° O' O"

= 32 ° 48 ' 20,4580 "

“
~
"
7L-a = 0 ° 22' 58,9471 ”

cP = 33° 11 ' 19,4051"

a = 32 ° 25' 21,5109 "

cp
' = 50 ° 30' 0" 1 = 1 ° O' O"

cp
'— cp = 1 ° O' O"

cP - a = 0 ° 45 ' 57,8942"

% s = 5 .121 6103-131

8 = 132 315,375”

( 1)

II . Grosses sphäroidisches Normal -Beispiel .

cp = 45 ° 0 ' 0"

- = 50 ° O' O”

= 32 ° 54' 11,4302"

—~ = 3 ° 50' 55,9704”

<p
' = : 55 o 0 ' 0" l = 10 ° 0 ' 0”

<p
'— <p = 10 ° 0 ' 0”

cP— a = 7 ° 41 ' 51,9408"

log s = 6 .120 6674-805

«' = 36 ° 45' 7,4006" s = 1 320 284,366”

a = 29° 3 ' 15 .4598"

(2)



392 Reihen -Entwicklungen nach Potenzen von s. § 74.

Ein Beispiel , das zwischen den beiden vorhergehenden liegt , ist von den Meck¬
lenburgischen Geodäten als Kontroll -Diagonale über das ganze Land gerechnet worden .
(„ Zeitschr . f. Yerm . “ 1896 , S . 240—242) . Dasselbe giebt mit den Bezeichnungen
von Eig . 1 . folgendes :

III . Mecklenburgische Diagonale .

cp = 53 ° 0 '

cp
' -H <p

2
a ' -h a

<P

2
a ’— «

2

= 53 ° 45' (ff— qe

= 54 ° 8' 20,77402 "

= 1 ° 24' 41,59056 "

«' = 55 ° 33' 2,36458 "
« = 52° 43 39,18346 "

= 54 ° 30' l = 3 ° 30'

= 1 ° 30 ’ l = 12 600"

« ' - « = 2° 48' 23,18112 "

logs - 5 .454 5946 -712

s = 284 835,8642 “

(3)

Ein kleines Beispiel , mit nicht runden Zahlen , nehmen wir aus Bohnenbergers
Triangulierung von Württemberg :

IV . JP = Hornisgrinde . P ' = Tübingen .

q> = 48 ° 36' 21,8966" <p
' = 48 ° 31 ' 12,4000"

l = 0 ° 50' 55,5537 " = 3055,5537 "
(4)

« = 98 ° 21 ' 29,9583 " « ' = 98° 59 ' 40,6800 "

log s = 4 .801 8443 -0 s = 63 364,218 “

Endlich nehmen wir noch ein grösseres Beispiel mit nicht runden Zahlen,
welches auch schon anderwärts mehrfach benützt worden ist .

V. P — Berlin . P ’ = Königsberg .
q> = 52 ° 30' 16,7" <p' = 54 ° 42' 50,6" I

? = 7 ° 6 ' 0" = 25 560" l
(5)

a — 59 ° 33' 0,6892" « ' = 65° 16 ' 9,3650"
(

log s = 5.724 259L353 s = 529 979,578 ” >

% 14 . Reihen-Entwicklungen nach Potenzen von s.
(Bezeichnungen nach Eig . 1 . S. 391 .)

Die drei Differential -Gleichungen , welche wir in § 69 . S . 379 entwickelt haben,
sind , wenn wir nun den Längenunterschied mit l bezeichnen , folgende :

d s cos a = M d qp
d s sin a — N cos cp dl ^

d a = dl sin cp ®
Dabei ist M der Meridian -Krümmungs -Halbmesser und N der Quer -Krümnrongs

Halbmesser für die Breite <p , d . h . wie immer nach § 32 . S . 197 :

M = -
yj , N — — ■ , wobei F = }/l + e' 2 cos2 (p ^



§ 74. Reihen -Entwicklungen nach Potenzen von s . 393

Wenn man diese Bezeichnung F einführt , und zugleich d l aus (3) mittelst (2)
eliminiert, so erhält man aus (1), (2) und (3) :

d cp 1
, - = — F 3 cos ads c

dl _ 1 y
sin a

ds ~~
c cos qs

F sin u lang cp

(5 )

(6)

(7)
d a
ds c

Hierauf kann man eine Entwicklung nach dem Maclaurin sehen Satze gründen ,

ganz entsprechend der früheren sphärischen Entwicklung von § 65 . Wir haben bis

zur fünften Potenz :

cp
' -

a! -

Da wir bei den fortgesetzten Differentiierungen stets auch die Ableitung von F

brauchen (vgl . hiezu auch das frühere § 34 . S . 208 ) , schicken wir diese voran :

d V e'2 sin q> cos q>
d cp

~ F

d cp
~| d2 ®-

I s2 d3 qr 1 s3 diffi-I si d5 qr 1 s5
(8)cp =

äs _1 S + ds2_1 2 + ds3 _IT + dT „1 24 1 1120 + ' • ’

di¬ 1 d 2 Ir IS 2 d3 1 -I s3 di l ~7 S4 d5 l ~
1 *5

-4-l =
el s _r + d72j 1 2 + ds 3 _16

+ dsi _| 24 + dsL I 120 + - ‘ ' (9 )

da '
j| d2 al I s2 dß al [ «8 di al | s4 dß IXl s5

(10)a =
d sj 2

+ d s3 J 1 6 + ds 4 J 24 + dß J 120
+ ' ‘ '

F = f/ 1 - t- e'2 cos2 cp

Zur Abkürzung werden wir immer schreiben :

e’2 cos 2 cp = t]2 und tang cp = t

und damit wird (11) : F 2 = 1 + jf

dV __ dVdcp
ds d cp ds

Nun leiten wir (5) weiter ab :
dep _ V3 . d2 cp

(11 )

d V _ y2
d <p

= — V
‘‘ V2

— n2 - cos cc t
e

( 12 )

(13)

(14)

also wegen (14 ) und (7 ) :
d2 cp

3 F 2 d V VS da
, — cos a , = - -5— cos a - - sm a

ds c ds 2 c ds c d s

ds 2
= - Zv* ^ rCOs

2 at
Fi sin2 a t

Fi
c2

3 cos2 a 1f t) (15)d2 cp
d7 2

= -
W (sin2at

Wenn wir dieses weiter ableiten , so ist es nützlich , die Funktion rj2, weiche

nach ( 12) Punktion von cp ist , stets so zu behandeln (ebenso wie früher S . 208 ) :

— — 2 jft allgemeiner — — nrßt (10)

In dieser Weise leiten wir (15 ) nochmals ab (mit Beachtung , dass F 3 = F ( + 172)) :

dZqp 4 VS / V2 W |
- -

g
- ( — ~ r cos cc tj

Isin 2 « t + 3 cos2 a rj2 t \

Vi ( . y y
{ 2 sin a cos cc - - sin at 2 -h sin 2 « ( 1 + t2) —— cos a (1 + rf )

— 6 cos a sin a sinatrj 2 t -ßS cos2 a (— 21 ft 2 + if (1 -

lui -t



394 Reihen-Entwicklungen nach Potenzen von s. § 74.

| sm2u (1 -+- 3t 2 -1- ifi - 9 7/2 t2) -+- cos2 a (3 tp- 3 t?2 t2 + 3 ij4 - 15 t?4 t2) | (17)

Wenn man dieses ordnet, so findet man
cZ3 qp_ F 5 cos a
d s3 c3

In gleicher Weise werden auch die anderen Ableitungen behandelt, so dass vir
bis zur dritten Ordnung einschliesslich erhalten :

d2^ _ 2 F 2
d «2

d?> l
C2 cos <f >

2 P 3

sin a cos a t

a cos 2 a (1 -+- 31 2 -+- t;2) — sin3 a t2 |

(18)

(19)

- sin a cos a (1 + 2 t2 + ifi)

d s8 c3 cos cp
<ßcc _ F 2
d s2 c2
d3 a V3 ( 1
ds 3

” =
I
S*

'Wa COsZ“ * ® + ’i2 — 4 rji) — sin3 a t (1 + 2 Z2 + if ] > (21)

Ehe wir weiter entwickeln , wollen wir abkürzende Bezeichnungen einführen ,
wobei wir uns zu merken haben, dass = N der Quer -Krümmungs-Halbmesser für
die Breite <p ist . Wir setzen dann :

s sin aN V s sin a = v

% s cos a = — F s cos aN
Dabei ist s die geodätische Linie linear (in Metern ) gemessen und nach S . 198 :

log = 8 .508 3274 -897 log : 1 .491 6725 -103 (24)

Weitere Entwicklungen bis zur fünften Ordnung.
Ohne die Einzelheiten der Differentiierungen anzugeben, stellen wir im folgenden

die weiteren Differential-Quotienten zusammen und zwar bis zur 4ten Ordnung mit
allen Gliedern die überhaupt auftreten, bei der 5 ten Ordnung nur noch mit den Gliedern
ohne 7/2, d. h . mit den sphärischen Gliedern. Um die Abkürzungen v und u nach
(22) und (23) anwenden zu können, setzen wir links immer s , s2, s3 u . s . w. als
Faktor zu , und nehmen auch den konstanten Faktor F 2 bei cp, und cos (p hei l auf
die linke Seite herüber.
dtp s~
ds W = + “

<Z2 * s2
d S2 W = v2 t ~~ “2 (3 »?2 1)

d3 cp s3
~
d s3

”
V% ~ 1,2 u (1 -+- 3Z2 -t- t/2 — 9 t/2 f2) — 3 n3 7/2 (1 — Z2 + 7y2 — 5 jy2 Z2)

d4 cp s4
ds * W = -l- ^ t ( l -t- 3 t2 + 7y2 — 9 772Ä2) — 2r,2 M2 £ (4 + 6 t2 — 13 t;2 —

+ 45 Tji f4) + «4 i 772( 12 -I- 69 772 — 45 r? f2 + 57 rfr — 105 rf <2)
d5 <jp s3
~
dsS y¥ = + vi “ (4 + 30 Z2 + 45 Z4) -+- 2 ®2 n3 (4 + 40 Z2 4 - 30 Z4)



Reihen -Entwicklungen nach Potenzen von s. 395§ 74 .

dl-
jy s cos qj = + v

d? l 0
cTsJ s cosy = + 2

dßl os3 cos <p = + 2 v i# (1 + 3 l2 + rf) — 2 4)3 )2

rf41 ,S4 COS<J) = 8 4) 4«3 1 (2 + 3 l2 + 7)2 — 7)4) — 8 4)3 4t (1 + 3 l2 + 7)2)

<252 „
^ 5 s5 cos f = 8 4>ui (2 4 - 15 l2 + 15 14) _ 8 4)3 M2 ( 1 + 20 «2 + 30 14) + 8 «5 t2 (1 + 3 (2)

(Pa , + 2i 2 + »/2)

d3 a"
Tg S3 = 4) 4t2 1 ( 5 + 6 12 _|_ Ĵ 2 — 4 7)4) — 4)3 1 (1 + 2 l2 + 7)2)

y - S4 = 4) 4(3 (5 + 28 l2 + 24 14 + 6 ?)2 + 8 7)2 l2 — 3 7)4 + 4 7)4 l2 — 4 7)6 + 24 7)6 l2)
4)3 44(1 + 20 l2 + 24 14 + 2 7)2 + 8 7)2 l2 + 7)4 + 12 7)4 l2)

^ 5 «5= vui 1 (61 + 18012 + 12014 ) — 4)3 4t21 (58 + 28012 -f 24014 ) + 4)51 (1 + 201 2 + 2414)

Mehr als diese Glieder wird man fast nie brauchen . Übrigens haben wir in
der vorigen 3 . Auflage 1890 S . 392 die Glieder bis zur 5 ‘e“ Ordnung mit allen Zu¬
sätzen 7/2 u . s . w . und dann noch 6te Ordnung wenigstens sphärisch , d . h . ohne if
gegeben .

Zur Abkürzung kann man etwa bis zur 4ten Ordnung sphärisch gehen , und dann
auch schon in dritter Ordnung nur noch ?)2 mitnehmen und alle if weglassen.

Damit bekommen wir folgende zur praktischen Anwendung zugerichtete Formeln ,
in welchen u und v die Bedeutungen von (22 ) und (23) haben :

¥

7)2 (l2 — 1 — 7)2 + 5 7)2 l2) / (25 )
( 1 + 3 12 + 7)2 — 9 7)2 12) +

1 (2 + 312)1 (1 + 3 l2)

l COS(p = 4) - |- .L_ 4) 44t

( 1 + 3 l2 + 7)2)

e
4)3 4) 4t2 (26 )

01 ( l + 3l2 ) + | Jl (2 + 3l2 )
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, . vua - a = vt +
^ {l

Beihen -Entwicklungen nach Potenzen von s.

2 f2 _|_ ^2)

-f- 2 *2 -

i 74.

U8
_

6^ 2 f ( 1 „, V U2 , ,' ri ) + 6^ (5 ■6 *2 +

«3 w -?j ?/3-
24^ 3 l1 + 20 <2 24 tA) + ^ 8 (5 + 28 t* + 24 * )

Die hiebei nötigen konstanten Logarithmen sind :

log - = 4 .685 5750
Q

log 2 (,2
: 9 .070 120

l0g 3^ 3 = 3 ' 57960

log ^
= 4 .384 5449

l°g 3^ 2
= 8 .894 028

lo9ir „„ = 3 .27857

log -r — = 4 .8616661y 2 p

7o^ -^ = 8 .592998y 6 ^2

2 -67651

Wenn man in (25), (26), (27) alle if weglässt , so bekommt man wieder die
sphärischen Formeln (27)— (29) § 64 . S . 359 , wie es sein muss .

Mit diesen konstanten CoSfficienten kann man auch unsere Hilfstafeln Seite
[47 ] — [51 ] des Anhangs benützen .

Wir wollen unser kleines sphäroidisehes Normal -Beispiel (1) § 73 . S . 391 in
dieser Weise berechnen :

Gegeben cp = 49 ° 30 ' 0" a = 32 ° 25' 21,5909 " log s = 5,121 6103.1
hiezu von Seite [21 ] des Anhangs log [2] = 8 .508 9420 -3 und log V2 = 0.0012290-7

Im übrigen giebt die Ausrechnung nach dem angegebenen Verfahren , in ähn¬
licher Weise wie bei dem sphärischen Beispiel § 64 . S . 360 :

log [2]
„ *

„ sin a

log v

8 .508 9420 -3
5 .121 6103 -1
9 .729 2947 -4

3 .359 8470 -8

log [2]
„ s
„ cosa

logu

8 .508 9420 -3
5 . 121 6103 -1
9 .926 4021 -9

3 .556 9545 -3

Die weitere Ausrechnung hat folgendes gegeben :

Breite . Länge . Azimut .
+ V2 U = 4- 3615,6269" v — 4- 3526,1653 " V t = + 2681,3172"
— V2 . . . — 14,9269 + V u . - 1- 72,1660 4- Vll . . 4- 74,9467
— U2 tj2 . . — 0,3146 — V3 . . — 0,1986 _ V3 . . . _ 0,2063
— U2 V . . . — 0,3774 *4- V U2 . 4- 1,8371 + V u2 . 4- 1,8061
4- M8 rj2 . . 4- 0,0006 — -w8 u . — 0,0152 «J8 u . — 0,0152
4- » “* . . . - I- 0,0008 + V M8 . + 0,0452 4- V Us . 4- 0,0455
— V2 U2 . . — 0,0093

¥ — <p = 3600,0001" X = 4- 3599,9998 " a ' — a = 2757,8940
"

II 0 © ©ooo = 0 ° 59 ' 59,9998 - 45 ' 57,8940
soll 0,0000 soll 60,0000 soll 57,8942

.(28)



§ 75 . Näherungs -Formeln bis s3. 397

Meridianbogenlänge .

Unsere Formeln enthalten auch den besonderen Fall der Meridianbogen -Rekti¬

fizierung , wenn das Azimut a — Null wird . Setzen wir dann auch den zugehörigen
Wert s — m, so werden wir aus (25 ) folgendes erhalten bis zur dritten Ordnung :

Dieses ist die Umkehrung der früheren Formel (37) in § 35 . S . 218 , wie sich

deutlicher zeigt , wenn man jene Formel so schreibt :

m _ qf—cp~
N

~ “
W

“
U2 / 2 ' t V2 ~ 1 “ ^ ~~ 4 ^ <2) (80)

Dass diese beiden Formeln (29) und (BO) unter sich übereinstinamen, kann man
leicht durch genäherte Auflösung nachweisen .

Die erste Entwicklung nach Potenzen der geodätischen Linie (bis s3 einschliesslich ) zur

Übertragung von Breiten , Längen und Azimuten , ist gegeben von Legendre in den Memoiren der

Pariser Akademie von 1806. Diese Legendreschen Formeln sind bei der badischen Landesvermessung

benützt worden . Helmert , höhere Geodäsie I . 1880, S. 296—300 giebt die Entwicklungen bis zur

dritten Ordnung mit e2 und dann noch 4.—5. Ordnung sphärisch , mit Litteraturangaben S. 300, Um

die in vorstehendem § 74. behandelten Reihenentwicklungen praktisch im Grossen anzuwenden ,

müsste man bequeme und genaue Coefficienten -Tabellen herstellen , wobei in den Reihen (25)—(27)

die Cocfficienten mit allen Gliedern i}2 einzuführen wären .
Von der Vermessung des Staates New -York und von der Küsten - und Landesvermessung

der Vereinigten Staaten wird ein solches Verfahren angegeben in einem Berichte in der „Zeitschr .

f. Verm.“ 1890, S. 177 - 179.
Bei der preussischen Landesaufnahme sind Formeln von ähnlichem Charakter im Gebrauche ,

die wir schon in § 39. S. 228 und § 59. S. 331 erwähnt haben , Schreiber , „Rechnungsvorschriften '1u . s . w.:

Die zugehörigen Entwicklungen sind amtlich nicht veröffentlicht , aber in Jordan -Steppes , „Deutsches

Vermessungswesen I “, 1881, S. 113—121. Man kann diese Schreibersche Theorie kurz bezeichnen

alseine sphäroidische Weiterführung der Gausssehen sphärischen Behandlung des Polardreiecks

nach Fig . 3. § go. 8. 343. Die praktische Anwendung der Schreiberschen Rechenvorschriften ver¬

lang die Ausrechnung von 19 Gliedern ähnlicher Art wie die 19 Glieder der Formeln (25)—(27).

§ 75. Näherungs-Formeln bis s 3.

Wie die Ausrechnungen am Schlüsse des vorigen § 74 . S . 396 zeigen , kann man

mit den Potenzreihen bis zur 4ten Ordnung bei Entfernungen bis zn rund 100fc™oder Brei¬

ten - und Längen -Differenzen bis zu 1 ° eine Genauigkeit bis zu etwa 0,0001 ” erreichen .

Die Rechnung ist aber etwas umständlich , und würde nur etwa durch Beigabe

ausführlicher Coöfficienten-Tabellen die nötige Geschmeidigkeit erlangen , man hat m

der Breite 7 Glieder und in Länge und Azimut je 6 Glieder .
Anders steht die Sache , wenn man nur Näherungswerte auf etwa 0,1 ” genau

berechnen will , welche nach dem später zu beschreibenden Verfahren von § 77 . noch

verbessert werden sollen . In diesem Falle rechnet man nur die Hauptglieder mit dem

Coefficienten [2] streng , nebst 7 * bei der Breite , im übrigen nimmt man nur noch

die sphärischen Glieder (setzt also rj2 = 0) und kann dann die Coefflcienten-Tabe e

unseres Anhangs Seite [47]—[51] benützen .
In diesem Sinne haben wir die Ausrechnung auf S . 398 gemacht , in en

„
anp

gliedern nur 6 stellig , dann 5 - und 4 stelllg . Die Genauigkeit geht auf 0,01 und

0,03” in Breite und Länge , und auf 0,10” im Azimut , was alles als erste Näherung

für späteren Gebrauch in § 77 . vollauf genügend ist .
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Geographische Coordinaten .
Näherungs -Berechnung bis zur dritten Ordnung .

Gegeben cp = 49 ° 30' 0,0" a = 32° 25' 21,5" log s — 5 .121 610

Bilfstafel S . [21] giebt für <jp :
log F2 = 0 .001 229

log tang <p = log t = 0 .068 501
log «2 = 0 .137 002

log cos <p = 9 .812 544

log [2] 8 .508 942
log sin a 9 .729 295

log s 5 . 121 610

log v 3 .359 847
logtfi 6 .719 694
log iß 0 .079 541

log [2]
log cos cc

log s

8.508 942
9.926 402
5.121610

log w 3.556 954
log «2 7 .113908

y 2 p 2̂ Q T̂ 2
V 9P = F2 u - t —

g
-
^ 2 m ( 1 + 3 42) - « 2 e' 2 <p cos qp

log F2 0.001 229 — F2 0 .00123 » _ V2 0 .0012 „ — F2 0.0012,
log u 3 .556 954 V3 6 .71969 V2 6 .7197 M

l

2 7.1139
F2 u 3 .558 183 t 0 .06850 u 3 .5570 3 e' 2 : 2 g 2.6861

+ 3615 .63 " 1 : 2ß 4 .38454 1 + 342 0 .7088 s in cp 9.8810
= + 1 ° 0 ' 15,63 " 1 .17396 » 1 : 6 p2 8 .5930 cos cp 9.8125

— 14,93 " 9 .5797 » 9.4947 ,
— 0,38" — 0,81"

l = V 1 V u t «3 42 V iß (1 + 3 42)
COS cp Q COS cp 3 ()2 cos <p 3 p2 cos <p

log v 3 .359 847 v sec <p 3 .54730 — v sec cp 3 .5473» v sec cp 3.5473
log sec <p 0 .187 456 u 3 .55695 V3 6 .7197 iß 7.1139

v sec cd 3 .547 303 t 0 .06850 42 0 .1370 1 + 342 0.7088
+ 3526,17" t ! !^

4 .68557 1 : 3 ^2 8 .8940 1 : 3 ^2 8.8940
= + 0 ° 58' 46,17" 1 .85832» 9 .2980» 0.2640

+ 72,16” OC3o
.
1 + 1,84

"

V utx' — a = v 4 +
^ (1 + 2 42) — vS * n 9 m , v “2 1

^
- ( l + 2t *) + -

ßa
(5 + 6 42)

log v 3 .359 847 V 3 .35985 — vt 3 .4283,, V t 3.4283
log 4 0 .068 501 u 3 .55695 1}2 6 .7197 M2 7.1139

V t 3.428 348 1 + 242 0 .57306 1 + 2 42 0 .5731 5 + 642 1.1214
+ 2681,32 1 : 2q 4 .38454 1 : 6p2 8 .5930 1 : 6 ^2 8.5930

= + 44 ' 41,32"
1.87440 9 .3141» 0.2566

-9- 74,89" — 0,21" + 1,81
"

cp = 49° 30' 0,00 ' ' — 14,93'
+ 1 0 15,63 — 0,38

— 0,31
+ 50 ° 30' 15763" - 15,62'

qp
' = 50 ° 30 ' 0,01 "

soll 0,00"

Zusammenfassung :
+ 0 ° 58' 46,17" — 0,20"

+ 1 12,16
+ 1,84

+ 1 ° 0r 0, 17" — 0,20"

l = + 0 ° 59 ' 59,97"
soll 60,00”

« = 32 ° 25 ' 21,50 " — 0,21
- t- 0 44 41,32
+ 1 14,89
+ 1,81 _ „
+ 33 ° 11 ' 19,52" —^ 21

« ' = 33 ° 11 ' 19,31"
soll 19,41"
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§ 76 . Sphärische Mittelbreiten-Formeln.

Obgleich die sphärischen Mittelbreiten -Formeln nach Gauss schon in unserem

früheren § 62. entwickelt sind , wollen wir doch, ehe auf die sphäroidisclien Formeln

dieser Art übergegangen wird , nochmals die Sache sphärisch betrachten .
Wenn wir also hier noch eine zweite Herleitung der sphärischen Mittelbreiten -

Formeln vornehmen , so geschieht es nicht bloss in dem Sinne einer Versicherung der

ersten Herleitung , sondern vielmehr zum Zweck der Vorbereitung entsprechender

sphäroidischer Formeln , mit welchen wir uns im folgenden § 77 . beschäftigen werden.
In Fig , 1 . betrachten wir 3 Punkte mit

den Breiten <pl5 q , qja, wobei q der Mittelwert Flg' 1'

ist, d . h . :

% - <P = <P - <Pi , = 9’ ^

Da die Breiten -Unterschiede cp — cjpj und
<jp2 — qd hiernach gleich sein sollen , so werden
für einen Bogen, welcher die drei Parallelen zu
den Breiten cplt cp, (jp2 schneidet , die Abstände
Uj und cr2i deren Summe + ff2 = a seb “ ich!
gleich , aber auch nicht sehr ungleich werden ,
und ähnlich verhält es sich mit den zugehörigen
Längen-Unterschieden und A2, deren Summe

+ A2 = >. sei.
Die Azimute , welche der Bogen in den

Breiten q x, q und q 2 hat , seien bezw. «i , « o
und a 2, und es werden dabei ähnliche Verhält¬
nisse stattfinden , wie hei den Längen - Unter¬
schieden , d . h . es werden « 0 — «i und «2 ~~ ao
nicht sehr verschieden sein ; das Mittel aus «i
und a 2 sei mit « bezeichnet , d . h . :

« 1 + « 2— 2 = a (2)

N

Dieses Mittel wird nicht gleich «0, aber auch nicht sehr viel von «o ver¬

schieden sein.
Eine frühere Abkürzung sei hier wieder benützt , nämlich .

tang q = t ^

und nun wenden wir die Potenzreihe für den Breiten -Unterschied (27 ) § 64 .

auf unsern Fall zweifach an , und erhalten :
fjt (j3

Vz — cp ~ er2 eos a 0 - £ sin 2 a 0 t — si»2 a Q cos a 0 (1 ■+ 3 t2)
a v

— ~ skfi a 0 1 -+- ~ sz»a «o cos ccq (1 4- 3 f2)q x — q = — (?! cos K0 2

(4)

(5)

Diese zwei Gleichungen gehen subtrahiert :

. sin2 Ko t _ + ^ sm 2 cc0 cos «o ( 1 + 3 <2) Wq 2 — qi = (o-
2 + di ) cos a 0 -
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Ferner giebt wegen der Gleichheit der Breiten -Unterschiede nach (1 ) die Ad¬
dition von (4) und (5) :

0 = (ff2 — Oj) cos ß 0 — - sin 2 a 0 t — — - sin 2 ß 0 cos a 0 (1 + 3 12) (7)u V
Dieses ist eine Gleichung zur Bestimmung der Differenz er» — ffi , und da mansofort sieht , dass diese Differenz Ton der Ordnung ff2 ist , kann man in (7) das letzte

Glied weglassen , und im zweiten Gliede cr| = <jf setzen , so dass man damit
aus (7) erhält :

Wenn man diese Gleichung mit <x3
die Quadrat -Differenz :

a 2 sin 2 «0— —t4 cos « 0 (3)

■Oi = <j multipliziert , so erhält man auch

Sin %cc-H (9)4 cos a 0
Dieses (9) setzt man in (6) , zugleich darf man dort im letzten Gliede fff = fff

ff \ 3
-
g

- 1 setzen , und dadurch erhält man :

<P 2 ~ <Pi = o- cos « o — $ ^ t2 — st sinZ « o cos « (1 - t- 3 t2) (10)ö cos ß 0 24
Diese Gleichung müssen wir zunächst so stehen lassen und nun mit den Azi¬

muten beginnen . Hiezu haben wir in (29 ) § 64 . S . 359 die nötige Gleichung , welche
auf unseren Fall zweifach angewendet giebt :
« 2 — « o = Oh sm « o t + sin a ° cos « o (1 + 2 12) — ^ sin 2 « 0 t ( l + 2 12)

ff-+ - si « « o COS2 « 0 t (5 + 6 t 2)

(11)

Kj — a 0 = — ffi sw a 0 1 + sin ß 0 cos « 0 (1 + 2 t 2) . -— siw3 a0 i (1 + 2 $ )
'

(12)
(7-

-
g

- sincc 0 cos 2 a Qt (5 + 6t2)

Auch diese Gleichungen (11 ) und ( 12) werden subtrahiert und addiert ; zuerst
giebt die Subtraktion :

a■2 — « l = (02 + Oh) sin a 0 t -f - )

fff + fff

— sin a 0 cos a 0 ( 1 + 2 t 2)

- sin 3 cc0 t ( 1 + 2 l2)
rjli sm « o cos 2 a 0 £ (5 H- 6 fi )

(13)

6 . u - v- ' “ - ) ' g
Bei der Addition von (11) und ( 12) lassen wir die Differenzen dritter Ordnung

o | — fff ganz fort , da dieselben auf Glieder von der Ordnung ff4 führen würden ; in¬
dem wir dann auch das Mittel -Azimut = « setzen , wie in (2) angenommen wurde,
erhalten wir aus ( 11 ) und (12 ) durch Addition :

a 2 + a i — « o ß - 0*
2 - ~ <T|■<xo = sm a 0 t ■ ff§ + erf sin a 0 cos a 0 (1 + 2 f2)2 " u - '

T - “ o - i ■—
4

-
und setzt man hier noch die Differenz ff3 — o 1 nach (8 ) ein , so erhält man :

ff2 sin 2 « n „ 0-2" *
¥ Jos «7

* + T sm a ° c0s “ 0 (1 + 2 i2) (14)
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Hieraus bilden wir za verschiedenem Gebrauche :

sin «o = sin a — sin 8 <x ß — ^ sin a cos2 a (1 + 2 ß ) (15)

cos a 0 = cos a 4 - — K
t2 + sin2 « cos et (1 + 2 i2) (16)u 8 cos u 8

In diesen (15) und (16 ) ist in den Gliedern mit <72 schlechthin a statt des aus
(14) sich ergebenden «0 geschrieben , weil nach (14) sich a und «o selbst nur um
Glieder von der Ordnung c 2 unterscheiden .

Nun kehren wir wieder zu der Gleichung (10) zurück, setzen im ersten Gliede
daselbst (16) ein , und erhalten , da die quadratischen Glieder sich heben :

<p2 — <Pi = er cos a + sin 3 a cos a (2 + 3 ß ) ( 17 )
2A

Auch die Gleichung (13 ) lässt sich nun weiter führen ; wir schreiben diese
Gleichung zunächst von neuem mit Zusammenziehung der (t3 und Oj :

(jZ _ _Q-Za 2 — «i = a sin a 0 1 h— ~ sin «0 cos a o (1 + 2 ß )

— ^ sin 3 a 0 f (l + 2i 2) + |
*

sin «o cos2 a 0 t (5 + 6 ß )
Hier hat man zuerst cr| — a \ nach (9 ) einzusetzen , wodurch man erhält , indem

man zugleich in den Gliedern mit statt <*o den Wert a schreibt :
(j3a2 — oq = <t sin a 0 i •+- — sin3 « t (1 + 2 ß )O

— ~ sin s a t (1 -F 2 ß ) -+- sin a cos2 a t (5 4 - 6 t2)

Auch hat man noch im ersten Gliede sw «q durch sin a zu ersetzen , was durch
(15) geschieht ; und wenn man zusammenfasst und ordnet , so erhält man :

cr2 — = (7 sin a t + ~ sin a t (sin2 « (2 - f- ß ) 4 2 cos2
aj (18)

Nun bleibt als dritte Aufgabe nur noch die Bestimmung des Längen -Unter -
schiedes X. Hiezu haben wir nach (28) § 64 . S. 359 in zweifacher Anwendung :

cos <p = (j „ sin «0 q- (j | sm « 0 cos «o * — ^ s*«3 Ko $ + "
j^ a o cos2 ßo 0 - + 3 12)

~ 7-1 cos ip = — sin ß ()_|_ (jj Ko cos ß0 1 4 - -
g

1 szw3 ap t2 — ^ s^w Ro c0s2 ßo (1 + 3 1 )

Durch Subtraktion bekommt man , sofort die Glieder dritter Ordnung zusammen
nehmend , und in diesen Gliedern a statt «0 schreibend :

Acos cp = ff sin a 0 4 - ( cr| — erj) sin acosat — ^ sin3 a ß 4 - jg K cos2 a “t" ^ ^

Wenn man wieder , wie in den beiden vorigen Fällen , o\ — ff? nach (9) und
*"* “o nach (15) einsetzt , so erhält man :

X cos cp = tr sin u 4 - sin « (sin2 a t2 cos2 a ) (1®)

Die Differenz X2 — X1 haben wir hiebei nicht gebraucht ; der Gleichförmigkeit
wegen wollen wir jedoch diese Differenz auch angeben , nämlich :

(h — Ai ) sin <p = ~
7os «

t -ir -
2

smacosat ^

Jordan , Handb . d . Vermessungskunde . 4. Aufl , III . Bd . ^
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Unsere gestellte Aufgabe ist in den Gleichungen (17 ) , (18 ) , (19 ) gelöst, die wir
in etwas anderer Form nun zusammenstellen :

<p2 — (jPj = er cos « ^
1 + ^ (2 o2 sin 2 a + 3 ff2 si»8 a tang 2 <p)j (21)

A =
( l + ~ ( ff2 s» 2 a tangt (jp — ff2 cos2 a )j (22)

a 2 — «i = ff sm a tang q>
^

1 + (2 er2 + er2 siw2 « ta«#2 qp)j (23)
Hier kann man in den Korrektions -Gliedern setzen :

a cos a = ß er sin a = A cos cp a sin a tang cp = y (24)
wobei ß ein Näherungs -Wert für qp2 — <Pi und y ein Näherungs -Wert für «2 — a x sein
soll . Ausserdem bestehen die Näherungs -Gleichungen

ff2 = (32 -+- A2 cos2 <p , ff2 -4- ji = ß2 -+- A2 (25)
Wenn man dieses in (21 ) und (22 ) berücksichtigt und die Gleichungen umstellt,

dann (22 ) und (23) dividiert , so erhält man :

ff cos a = (qp2 — (jDj) ^
1 — ~ (3 A2 — A2 cos2 <p)j (26)

ff sina = X cos g>
^

1 — ~ (A2 sm 2 qd — ß2)J (27)

« 2 — « i = A srä qp ^
1 + ^ (3 ß2 + 2 A2 cos2 <p)j (®)

Dieses sind dieselben Gleichungen wie (17 ) , (16 ) , (18 ) § 62 . S . 350 ; und es
sind also jene Gleichungen hiemit zum zweitenmale hergeleitet .

§ 77. Sphäroidische Mittelbreiten-Formeln.
Mg . 1.

N
Dasselbe , was wir im vorigen § 76 . sphä¬

risch gemacht haben , müssen wir nun auch sphä -
roidisch mit der geodätischen Linie thun .

Wir werden dabei eine Entwicklung be¬
kommen , welche der sphärischen Entwicklung
ganz entsprechend ist , welche sogar alle früheren
Glieder von § 76 . wieder enthält , aber noch
weitere Glieder von der Ordnung ?/2 und if
hinzubringen wird , und da wir in § 76 . eine

gute Vorbereitung haben , können wir uns mit
der neuen Entwicklung kurz fassen.

Die Bezeichnungen nehmen wir wieder im

wesentlichen wie in § 62. , indem die neben¬
stehende Fig . 1 . sich von der früheren Fig. b

S . 349 nur dadurch unterscheidet , dass überall s

statt ff, und bei den Längen l statt A steht.
Unter s verstehen wir eine geodätische

Linie , linear gemessen , und unter S die ent¬

sprechende Reduktion auf Centriwinkel durch

Division mit dem Quer -Krümmungs -HalbmesseriV
d . h . wir wollen setzen :
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= S oder
TV1 (1)

je nachdem in analytischem oder geometrischem Masse gerechnet wird . Wir wollen
auch wieder als Abkürzung nehmen :

= 8 sin a = v nnd s cos a
: S cos cc = u ( la )N N

Damit erhalten wir ans der Breiten-Formel (25) § 74. S. 395 als Anwendung
auf den nördlichen Teil unserer Fig . 1 . folgendes:

Tä — <f> Si'
y 2

~ — $2 oos a0 — ~ t (sin2 a0 -f 3 Tj2 cos2 a0)

^ sin 2 a0 cos «0 (1 + 3t 2 + i]2 — 9 ?j2 t2) }

2
§?
6

I03 I
cos3 a 0 (3 rj2 ■— 3 rß t2 + 3 ?/4 — 15 t/4 t2) J

Die entsprechende Formel für (joj — cp hat überall — Sj statt S2> also :

— = — S1 cos a 0 — S* . . . + ~ sm2 a0 cos0 ■• • + ^ cosS «o • ■•

Diese beiden Gleichungen geben subtrahiert:
fp2 — Tl , c , n ,— “I" $ i ) cos Ko ' SJ - SJt (sw2 «0 + 3 ?/2 cos2 «0)

Ta

— s*w2 «o cos «o (1 + 3 t2 + t]2 — 9 1f t2)

— C0S3 a 0 (3 ff — 3 1}2 t2 + 3 rf — 15 Tji t2)

Ferner giebt die Addition von (3) und (3 a) :

0 = (S2 — S t ) cos «o — t (sin2 Ko + 3 V2 cos2 ao)

S2 - S1 = S
4 - t (S

^ -^ ^ cosa 0)L 1 4 \ cos a0 /
Dieses (4) in (3) eingesetzt giebt nach Ordnung der Glieder.

S3 fn sin* a0 t2 + sin, aQCOScc0 (1 + 3 t2 + J/2 + 9 ti2 12)

^ cos3 «o (3 ?/2 - 3 »?312 + 3 ^ + 12 ^ tD

(2)

(2 a)

(3)

vi ~ = S cos «o — ~ ( 3r 24 \ cos «o

(4)

(B)

Ehe wir dieses weiter verfolgen, machen wir dieselbe Behandlung auch mit den
Azimuten, d . h . nach (27) § 74. S . 396 :

02
2 ~~ a 0 = $2 Sl

'n «0 P + ~cT s^n a 0 cos a 0 (4 + 2 <2 + Tj2

8»
sin3 a0 t ( 1 + 2 i2 + 7?2) + ^ sin «o cos2 ao * (B + 3 *2 ■+"i/2 4 J/4)

“ l — «o = ■Si sin «o t + y •
S?

sin3 ciq . . . - / sin «o ■

(6 )

(7)

« j .
® evon brauchen wir zunächst nur die Addition, d . h. :

2 ao °der cc — cc0 = — 1 sin «0 1 + — smo ;0 cos « 0 (1 + 2i 2 -hif ) Iß)
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Die Differenz S2 — Si von (4 ) hier in (8 ) eingesetzt giebt :
S 2 (sin3 kök0 = -5- 1- -- 12 + sin a0 cos k0 (1 + 2 f2 + rfi 4 - 3 ?/2 i2)u 8 ( cos «o

u u v ' ,
Damit werden die mehrfach gebrauchten S sin k0 und S cos k0 :

8 sin <Xq = S sin a — ~ (
^
sin3 a <2 _|_ a cos2 a (1 + 2 f2 + if + 3 ?y2 f2)j (10)

S cos k0 = 8 cos a -+- 4 . « cos a (1 - I- 2 f2 -+- tß + 3 rfi t2) ) (11)8 \ cos a I
Wenn man dieses (11 ) in (5 ) einsetzt , wobei man in den Gliedern mit S3

schlechthin a statt k0 schreiben darf, so erhält man :
S2—

y
-^1 = Scos k 1 1 + ^ s*«2 « (2 4 - 32 2 + 2 if ) 8 COS2 K 7̂ 2 (1— t2-+-J?2H-4 7/212)

Wir bilden nun auch die Subtraktion von (6 ) und (7) :
Si — Sik2 — Kj = (S2 + Sß sin k0 i + -?

3L+ Sf

— sm k0 cos k0 (1 4 - 2 f2 + rf)

sin3 a0 t (1 4- 21 2 + j/2) — s^ k0 cos2 k0 f (5 + 6 i2 4- j/2 — 4 j;4)

Hier ist wieder S2 — Sj nach (4) zu berücksichtigen ; dieses giebt :
S3 f“ 2 — « 1 = 8 sm k 0 t - ! ^ t I siw3 a 0 (2 + 41 2 + 2 ^2)

-h sin k0 cos2 k0 (5 4- 6 f2 4- 10 rf -+- 18 tf*f2 4- 5 j|4)J
und wenn man endlich noch «S sin Kq nach ( 10 ) einsetzt , wobei in den höheren Gliedern
k0 mit k schlechthin verwechselt werden darf, so erhält man :

«
ß2 02 1

1 -h gj siw2 k (2 4- i2 4- 2 1/2) 4- =7 cos2 K (2 + 7T?2-| - 9j/2 f2+ 5i74)J(13)

Es bleibt nun noch die Formel für l zu entwickeln , wozu wir in zweifacher
Anwendung von (26) § 74. S . 395 haben :

+ 2a cos (f — Sz sincc0 + Slsina 0 cosa 0 t -~ ^ fi 3 a Qt2 — sina 0 cos2 «„ (1 4- 3f2 4- rf ) j (1

SS- li cos q> = — sin k0 4- Sf . . . 4- -
g

-

Die Differenz hievon giebt (da 22 4- 2} = 2, und S%+ — S ist ) :

(15)

lcosq>= S sin k0 4- (S| — 80 sin Kg cos a0 t — ^
g

~^4
| s*«3 k0 ß —sin k0 cos2 k0 ( 14-3 f2 4 J/2)

Hier ist wieder /S2 — Si nach (4) und S sin a 0 nach (10 ) zu berücksichtigen,
wodurch man erhalten wird :

l cos <p = S sin a ^ sin a jstw
2 aß — cos2 k ( 1 4- »f — 9rf f2) j

Wenn man von (14 ) und ( 15) auch die Summe bildet , so bekommt man eine

Gleichung, welche jetzt nicht nötig ist , aber später noch nützlich sein wird , nämlic ' -

(H )(h -
jS>2 sifi &ct S %

- ?j) cos <p = — — t -h ~~r- sin acos cct (2 + 3 if )1 r 4 cos a 4
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Die Gleichungen (12) , ( 13) und ( 16) enthalten die Lösung der gestellten Auf¬

gabe ; man kann jedoch durch Division von (13) und (16) auch noch eine vierte

Gleichung bilden :

«2 — = l sin cp 11
- t- ^ [ sirft cc (2 + 2 if ) -+- cos2 a (3 -f- 8 r/2 + 5 tfi) j j (18)

(18 a)
Dabei kann man auch in dem Gliede mit sin 2 cc schreiben :

2 + 2 rji = 2 (1 + if ) = 2 F2

Die ersten Näherungen von (12 ) und (16 ) sind :

■Jh _ ± _
F 2

S „ <f 2 '
cos cc = b cos a = — = =-

N F 2

-== sin cc = S sin cc = Z cos cpN
Dabei soll 6 nur als Abkürzung für <jp2 — <Pi dienen .

Damit lassen sich die Formeln (12) , (16) und (18) so schreiben :

(19)

(20 )

__ s cos cc
F 2

l COS(p :

N
s sin cc' w ~

1 -1

1 -1

a2 — « i = l sin cp ( l +
^ c7j

2 9 y -2
V 12

24

Z2 sin ®<p
24

Z2 cos 2 (jp

Z2COS2 «P
(2 + 3 t2 + 2 J?2) + g^ jTJ

2 ((3 _ l _ ^ _ 4 ^ i2) j (21)

(1 + J72) — 9J ?2 !2) ) (22)Z>2
'
24 F *

62
, (3 -1- 8 772-p- 5 ^4) (23 )

12 ' ' 24 Fi v“ ' ” ' ' ‘
7

Nun wollen wir die Coöfficienten der gefundenen Formeln besonders bezeichnen

und herausheben , und dabei auch die nötigen p zusetzen . Zuerst nehmen wir für die

Glieder erster Ordnung die schon zu anderen Zwecken mehrfach eingeführten Haupt -

Coefficienten :
9 ; = [2] , £ oder £ F 2 = [1]

AT
~ L“J ’ M ““ “ N

Es ist also wegen der Bedeutung von S wie bei (22 )— (24 ) § 74 . S . 394 :

v = S sin a = [2] s sin a , u = S cos a = [1] s cos cc

Zugleich wollen wir noch folgende weitere Coefficienten festsetzen :

(24 )

(25 )

[3] =
24 p2 M =

. rf , — 9 ^2 f2

24 p2

24 p2
(2 + 3 Z2 + 2 ^2)

[7j = F2

[6 ] =
^ a - Z2

F4

tz - l - rp - lrpfl
Vi

_iL _ k 2 rai - _J *_ 3 + 8 ZZ2 + 5^4
12 p2 1SJ — 24 p2 F4

Dabei bedeutet /j , den logarithmischen Modulus für Einheiten d ;elle

log n = 6 .637 7843 , und wir können dazu auch gleich ausrecbnen :

lo9 -J ^ r = 5 -105 8441 ^ l ^V ^ 4 '929 7528 ’
(2?)

Hit diesen Abkürzungen werden die Formeln (21 ) — (25 ) so dargestellt :

, s sin a
- — | 1 ~t ~ - t“ ÖW 14-
coscp \ fi F

Fortsetzung s . S. 408 .

Z = [2]
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n ~. J p2w s /
/ 1

« 2+« 4

— oJ

Sphäroidische Mittelbreiten -Formelii ,
Gegeben q>x = 49 ° 30 ' <p2 = 50 ° 30 ' l = 1 ° 0'

cp = 50° 0' 0" 6 = 1 ° = 3600" 1 = 1 ° = 3«
Gesucht sind s , und « 2.

Die Hilfstafeln des Anhangs geben mit cp = 50 ° 0':
Seite [32 ] : log [1] = 8 .510 1335 -3 log [2] = 8.508 9295-0

Seite [54 ] giebt mit cp = 50 ° 0 ' :

, , r , „ „ JZoö [5] = 5 .4257 log [6] = 2.151% L3] _ 4 .6287 ^ [4] - 4 -6119
j^ [Vj = 4 _9310 ^ [8] = 5.1085

Cfebrauchsformeln.

log s sin a = log — [3] Z2 sin2 cp + [4] 62
L4J

k2- « , =T
log s cos k = Zop

z / <p
TiJ

- [5] Z2 cos2 <p — [6] Z>2

log J a = log l sin cp + [7] Z2 cos2 <jp+ [8] V-

L ä n j

log Z
log eos cp

log l cos cp
log [2]

, l COSw'«» ■ -
pr

log Z2 cos2 qp

3 .556 3025 -0
9 .808 0675 -0
3 .364 3700 -0
8 .508 9295 -0

4 .855 4405 -0

6.7287

— 32 -35 ■53 -02

+ 20 -67
4 .855 44054 )
4 .855 4425 -7
5 .046 1546 -8

s sm a
s cos a

tang a \ 9 .809 2878 -9
« = 32 ° 48' 20,458 ''

~ = 0 ° 22' 58,947"

a 2 = 33 ° 11 ' 19,405 "
« 1 = 32 ° 25 ' 21,511 "

Breite

log b [ 3 .556 3025 -0
log [1] 8 510 1335-3

log — 5.0461689 -7

log 62 | 7 .1126

Azimut

log l
log sin cp

log l sin cp

3.556 3025-0
9 .884 2539-7

3.440 5564-7

fä siffl (p 6.8811 Z>2 7 .1126 Z2 cos2 cp 6 .7287 &2 7. 1126 Z2 cos 2 cp 6 .7287
4 .6287 » + M 4 .6119 - [5] 5 .4257 » - [6] 2 .151 » + m 4 .9310 + [8]
1 .5098 » 1 .7245 2 .1544 » 9 .2636 » 1 .6597

— 142 -72 - 0 -18
— 142 -90

5 .046 1689 -7
5.046 1546 -8

s sm a
sin a

log s

4.855 4425-7
9.733 8322-5
5.121 6103-2

s cos a
cos a

log s

5.046 1546-8
9.924 5443*7
5.121 6103-1

f = 132 315,3

log Z2 s7»2 j g .88ii

flX.
Um

j 2.2192
■45 -68 -1- 165-61

+ 211-35

3 .440 55647
3 .440 5776 -0

Ja = 2757 ,8942 "

Ja = 0 ° 45 ' 57 ,8942"

0 ° 22 ' 58,9471
”

2
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§ 77 . Sphäroidische Mittelbreiten -Formeln . 407

Sphäroidisohe Mittelbreiten-Formeln
mit indirekter Auflösung .

Gegeben log s = 5,121 6108 -1 <f>i = 49 ° 30 ' 0,0000 " a x = 32 ° 25 ' 21,511 "

Genähert l = 1 ° 0 ' 0,1 " <f z = 50 ° 30 ' 0,1 " <x2 = 33 ° 11 ' 19,5 "

= 3600,1 "
cp = 50 ° 0 ' 0,05 " a = 32 ° 48 ' 20,5055 "

Mit <jp = 50 ° 0' 0,0 " geben die Hilfstafeln des Anhangs

Seite [32 ] : log [1] = 8 .510 1335 -3 log [2] = 8 .508 9295 -0

und die Hilfstafel Seite [54 ] giebt :

= 4.6287 log [4 ] = 4 .6119 | log \ h} = 5 .4257 log [6] = 2 .151 | log [7] = 4 .9310 log [8] = 5,1066

, , , . / [2 ] s sin a \
log l = log 4 J - ■—Hy 1 cos qp

Gebrauchs formein .

112 «W2 g, _ [4]

logdcp = log [ [l ] scosaj
-f- [5] Z2 cos2 <p + [6] i 2

log d a = log ^ [2 ] s sin a tang qo ) + [7 ] Z2 cos2 qp + [8] Z>2 + [3] Z2 sin2 (p — [4] 62

Länge Breite Azimut

ftsirßty
+ pq

6.8811 62
4 .6287 — [4]
1.5088

-j- 32*35

7 .1126
443119 »

| 1 .7245Ö

53 -02

Z2 cos 2 cp
+ [&]

6 .7287
5 .4257

| 2 .1544

142 -72

52
j

7 .1126
- [6] 2 .151

| 9 .264

4- 0 -18

Z2 cos2 qp
+ m

6,7287 62

4 .9310 -f [8]

1 .6597

7 .1126
5 .1066

2.2192

- 45 -68 165 -67

• 20 -67 142 -90 211 -35
. 20 -67

log (Z) 8.556 8048 -4
— 20 .7

log (5) 3 .556 2881 -4

+ 142 -9
log (da )

logl 3.556 3027 -7 log Zf qp 3 .556 3024 -3 log d a

Z= 3600,0022 "
soll 0,0000

d cp = 3599,9994"

soll 0,0000

d a =

190 -68

3,440 5588 -9

+ 190 -7

3 .440 5779 -6

: 2757,896
soll ,894

/ K

i . & i

log s 5 .121 6103 -1 log s 5 .121 6103 -1 logs 5 .1216103 -1 ‘ |. /
"* •■

log [2] 8 .508 9295 -0 log [1] 8 .510 1335 -3 log [2] 8 .508 9295 -0

log sin a 9.733 8324 -0 log cos a 9 .924 5443 -0 log sin a 9 .733 8324 -0 , ,

[2] s sin a 3.364 3722 -1 [1] s cosa 3 .556 2881 -4 log tang cp 0 .076 1866 -8 . \ i

log cos qp 9 .808 0673 -7 = log b log (d a) 3 .440 5588 -9 • j ;

MZ ) 3 -556 30484 = log l sin cp

([2]s sin ß)3— log V co$2 <p = 6.7287 log ö2 = 7 .1126 log Z2 sin2 cp = 6.8811 1
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Fortsetzung von S. 405 .
. 151

ßm
ß

ß COS* « + ES &2
— <Pi = d cp — [1] s cos a

a 2 — a i — 4/ « = l sin cp ^
1 + ^

und d u = [2] s sin a. tang cp fl -+- — ß cos2 a + — i>2 -+- — \%sin:2 a — — b2 ) (31)\ ß ß ß ß I

ß cos2 <z + öl 62

Dazu auch die Umkehrungen :
l cos cp
IWs sin a = 1 — ® ß sin2 a + öl &2

ß
d cp .scos a — f 1 ■ - Pcos * a — Öl 62

ß
. [5]

i« ß
d a = lsincp ^

1 + “ ■l2 c0s2 ijP+ ^ h2
j

Daraus folgen die logarithmischen Gebrauchsformeln, wie sie in dem Zahlen¬beispiel auf S . 406 und 407 obenan gestellt sind.

(34)

Umkehrung der Mittelbreiien-Formeln .
Wenn qplt <Xi und s gegeben und <jp2, «2 und l gesucht sind , so kann man dieMittelbreiten - Formeln nicht unmittelbar anwenden , wohl aber mittelbar durch Ein¬führung von Näherungs - Werten , wie schon am Schlüsse von § 62. S. 353 bei densphärischen Mittelbreiten - Formeln mit Gauss’ eigenen Worten angegeben ist . Wasdie nötigen Näherungswerte betrifft, so kann man die Längen und Breiten schon ausdem Netzbilde der Triangulierung entnehmen und damit auch die Meridian -Konvergenzen= \ sincp ebenso genau ; wir wollen aber annehmen , man habe das ganze Netz vor¬läufig nach den Formeln dritter Ordnung von § 75 . S. 398 durchgerechnet, was un¬gefähr von ähnlicher Bedeutung ist wie das vorläufige Durchrechnen einer Triangulierungfür die Zwecke von Centrierungen, sphärischen Excessen u. dergl. Kurz, wir wollenannehmen, man habe Breiten , Längen und Azimute auf etwa 0,1" genau und danngenügt eine oder höchstens zwei Durchrechnungen nach S. 407 , um alles bis auf 0,0001"

zum Stimmen zu bringen.
Jedenfalls kann man alle Coefficenten-Logarithmen log [1] , log [2] u. s . w.sofort mit der vorläufigen Mittelbreite qo hinreichend endgiltig genau aus den Hilfs¬tafeln von S . [30] — [35] und S . [52]—[54] entnehmen und damit die Bechnung vonS. 407 durchführen.
Die Schlusswerte kommen auf S. 407 noch mit Fehlern innerhalb 0,001 " iaBreite und Azimut heraus , welche durch eine abermalige Durchrechnung vollendsgetilgt werden müssen.
Es könnte hiernach scheinen, dass das Verfahren umständlich und mühsam sei,das ist aber nicht der Fall , denn die Wiederholung erstreckt sich nur auf die dreiLogarithmen log sin a , log cos a , log tang cp; alles andere, namentlich die Korrektionenzweiter Ordnung bleiben stehen. Erst wenn Breite und Azimut stimmen , wird auch dieLänge nachgeholt .
Das Beispiel S . 407 zeigt , dass man mit jeder Durchrechnung um etwa zweiStellen weiter kommt, und dazu ist das Beispiel ein sehr grosses, mit dcp und 1 = 1und s = 132im; in der Praxis sind die Seiten viel kürzer und dann geht die Näherungs -

Konvergenz auch noch viel rascher.
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Die Entwicklung sphäroidiscber Mifctelbreiten -Fonneln und ihrer Umkehrung bildet den
Inhalt der „Untersuchungen über Gegenstände der höheren Geodäsie “ von Gauss , zweite Abhandlung ,
Göttingen 1846. Gauss hat hier den ungemein nützlichen Grundsatz des Mittel -Arguments bei Reihen -
Entwicklungen auf Geodäsie mit schönstem Erfolge angewendet , und eine zweifach unabhängige
Begründung gegeben , erstens durch die konforme Flächen -Abbildung und zweitens durch unmittel¬
bare Reihen -Entwicklung nach Potenzen der geodätischen Linie .

Die von Gauss beigegebene Coefficienten -Tabelle erstreckt sich aber nur von 5l ° —54° Breite .
Eine Ausdehnung dieser Tabelle auf 45° —55° gaben wir in den früheren Auflagen dieses Buches ,
und eine Tafel der Gauss sehen Coefficienten -Logarithmen log (1), log (2) . . . log (6) in der ganzen Aus¬
dehnung von 93= 340 bis fp = 70° wurde berechnet von Biek , und veröffentlicht in der russischen
Übersetzung von Jordan , „Handbuch der Vermessungskunde “ S. 652 —665 (vgl . das genauere Citat
8. 229; .

Was im vorstehenden § 77. gegeben ist , beruht auf dem Gauss sehen Gedanken , ist aber nach
Entwicklung und Coefücienten -Darstellung in andere Form gebracht , weil es uns schien , dass die
Gausesche Form der Korrektions -Glieder mit drei Elementen s, ß und r (t = Meridian -Konvergenz )
ohne in mancher Beziehung nicht günstig ist .

§ 78. Weitere Formeln ffir Soldnersehe Coordinaten .
Die Formeln von § 55. zur Berechnung von cp und X aus Soldner sehen * und y

und umgekehrt gehen nur his zur dritten Ordnung , und sind auch bezüglich der
sphäroidischen Zusätze mit ifl u . s . w . unscharf ; man bekommt genauere Formeln
einfach dadurch , dass man in den Formeln (25 )— (27 ) § 74 . S . 395 das Ausgangs -
Azimut a = 90 ° und die Entfernung s = y setzt , also

Die in § 74 . mit cp bezeichnete Ausgangs - Breite nimmt dann die Bedeutung
der Fusspunktsbreite an und soll daher ebenso wie in § 55 . nun mit <jPx bezeichnet
werden und die Breite des Punktes x , y , welche in § 74. mit cp

' bezeichnet war , sei
nun <p (vgl . Eig . p . g . 410) und mit alledem geben die Formeln (25)— (27 ) von § 74
mit Ergänzung bis s5 nun folgendes (ohne p ) :

1 (1 + 3 (2)2N2 ‘ 24 N*

( 1 + 3f2 )15 jys

( 1 + 20 <2 + 24 <<)(1 + 2 f2 + J/2) + 120 N s

(2)

(3)

(4)

Dabei gehören F2 und N = c : V und t — tang qpr alle zur Fusspunktsbreite gPi
entsprechend Fig . 1 . g . 410 . Diese Formeln sind bis y± nicht wesentlich anders als
die früheren (7), (9), (11 ) § 55 . S. 304 . Bei cp ist noch ein Glied mit y * hinzugekommen
und hei y noch ein kleiner Zusatz rp und dann sind noch die Glieder 5 *er Ordnung
bei X und y dazu gekommen . Es sind also die früheren Formeln von § 55 . mit ihrer
elementaren sphäroidischen Herleitung von § 54. innerhalb ihres beabsichtigten An
Wendungsbereichesgenügend nachgewiesen .

In der „Bayerischen Landesvermessung in ihrer wissenschaftlichen Grundlage ,
1873“

. S . 542- 546 sind solche weitgehende Formeln wegen der grossen Ordmaten m
Bayern (vgl. S. 327) angewendet .

Nach diesem wollen wir noch in anderem Sinne eine Weiterentwicklung zu
Soldner sehen Coordinaten geben , die wir schon früher in der „Zeitschr . f. Vera .
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Fig. 1.
N

S . 33 — 42 und 147 — 152 behandelt haben , nämlich Aufstellung von Formeln , welche
qp, A und y lediglich als Funktion der Veränderlichen x und y geben , indem die Ur¬
sprungsbreite <p0 des Systems als Konstante in alle Coefficienten eingeht . Bei mir
einigermassen grossen Abscissen x wird diese Form nicht unmittelbar nützlich sein ,
aber z. B . bei den kleinen Geltungsbereichen der preussischen 40 Katastersysteme
können die neuen Formeln neben andern mit Vorteil gebraucht werden .

Unter Annahme der Bezeichnungen zur nebenstehenden
Fig . 1 . wollen wir die allgemeinen Formeln (25 )— (27) § 74.
S . 895 auf den Fall von Fig . 1 . zweifach anwenden , nämlich
erstens zum Übergang von P 0 auf P x mit « = 0 und s = X
und zweitens zum Übergang von P 1 auf P mit a = 90 °
und s = y .

Der erste Übergang giebt , mit Weglassung der g
aus (25 ) , S . 895 , indem wir zugleich qp1 —-qp0 = ö setzen ’.

= JL _ -i u + (t 02- i ) (5)F 02 F 02 N o 2 JV02^ ° 0 2 JV03 /0 V0

dabei sollen F 0, N ü, r\0, f0 sich sämtlich auf die Nullbreite
qp0 beziehen . Bei x z in (5) ist ijq4 vernachlässigt .

Die beiden anderen Formeln (26 ) und (27 ) S . 395
geben mit a = 0 nur X = 0 und « ' — « = 0 , d . h . nichts
neues ; dagegen giebt die zweite Anwendung , mit a = 90 °

und s = y , zum Übergang von Pj auf P aus den drei
Grundgleichungen (25 )— (27 ) S . 895 (mit Weglassung der g) :

<P — Vi .
2 W, 2 h Vi

24 h (1 + 8 *!*)

I cos <pt = -jF -
8 iV,s 1

v - y - u7 ~
Nt

1 - U (1 + 2 t x2 - j- 1ft 2)6 WjS H

Hier ist überall cpj auf <jp0 zu reduzieren , wozu die Beziehung (5) dient , indem
damit z . B . tj = tang tjDj entwickelt werden muss .

Indem wir dieses tbun und tang <jp0 kurz mit f0 bezeichnen , auch <pi — <Po = ^
setzen , wie schon bei (5) , haben wir goniometrisch nach § 28 . S . 167 :

h = to ( 1 + to2) —t- ö2 (1 —j—102)
dieses genügt , während wir cos qpj bis zur dritten Ordnung brauchen :

( <$2 Ö3 \cos ipj = cos ipo f 1 — d —
2

"
g

-
J

und die Umkehrung , wie auch schon auf S . 167 angegeben :

(9)

1 _
cos epo

<52 ÖS ,
2

" (1 + 21 02) + -
g

- 10 ( 5 - - 61 02), 1 + Ö tn -
COSCPi cos cp0 \ u

Um auch F zu entwickeln , welches als Bestandteil von JV = c : F mehrfach
vorkommt , brauchen wir die schon in § 34 . S . 208 unten bei (i) gemachte Vorbereitung ,
wieder mit <pj — qp0 = d":

= 1
ö z?o2 10 <52 % 2

(1 — f02 + j?02) (ID
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Nun sind wir genügend vorbereitet , um die Formel (6) zu behandeln , und wir
bemerken zuerst , dass das letzte Glied derselben , weil von 4 . Ordnung , schlechthin
mit N0 statt und tü statt tx geschrieben werden kann , und der Anfang von (6)
gestaltet sich so :

<t — <P1
r 0*

N^ h yi
2 N02 u JVjä t0 24 W04 t0 (1 + 3 f02)

Da aber N0 = c : F 0 und Wi = c : Fj ist , hat man , mit Näherung im zweiten
Gliede :

(P — (Pi = _ y2 . Vj^ h yi
F02 2 iV02 *° F04 t0

+ 24 2V04 l1 + 3 «o )

Mer ist nach (11) und (9) hinreichend genau :

. 4 § ?o2 *o

( 12)

Fi-̂ - fl
^ o

-
l

1 " F02

1 + - ö

und mit Einsetzung aus (5 ) :

1 -+- f02 4- %2 — 3 %2 to2) + 02 C1 + %2)

^ 4/j x2

V
~i %

“ 1 + APÖ (1 + f°2 + %2 _ 3 %2 *°2) +
Wö2 (1 + ^

Dieses (13 ) in (12 ) gesetzt giebt :

(13)

frVi y
^

= -
^

fo -
2̂ ( l + to2 + %2- 3 %2 «o2) - | ^ 4 io (l + io2) + 24̂ o4

«o(l + 3to2) (14)

Nun kann man aus ( 14) und (5) den gesuchten Breitenunterschied zusammen¬
setzen , wobei wir aber zur Abkürzung nur noch N statt Na, t statt f0 u , s . w . schreiben
wollen :

.2y t•») r» Tiro ^
X
U 2W2 ‘ 2 m 1 2 JV3 ( 1

■t*) + 24 Ni

3 t?2 t2)

t (1 + 3 <2) |
(14 a)

da F2 = N : M und MN — r2 ist , kann man das auch so schreiben :

di p = <jp . x «2
<JPo _ Tr 2 * '

#3

3 x2
T/2 t y* x

i )

2 r2

2/2 x2
~

2 .V2 r2

(1 + t 2 -
2r * N

t (1 -+- t2) + 24 (^ 272

ri2 — 3 ??2 t2)

t (1 + 3t 2)
(15)

Dieses ist die Schlussformel für <p — <jp0 , « r welche wir insofern eine Probe

haben , als mit y = 0 die frühere Formel (29) von § 74 . S . 397 wieder erscheinen muss.

Dieses ist hinreichend der Fall , wie man am besten in (14 a) sieht , indem nur das Glied

mit ®3 r/a (tz _ 1} von dem Gliede mit mßrfi in (29 ) § 74 . S . 397 in höheren Gliedern

mit 7?2 in der Klammer abweicht , was schon bei (5) S . 410 bemerkt wurde.

Auf ähnlichem Wege wie (15) erhalten wurde , haben wir nun auch (7) zu be¬

handeln :
<12

A = y yi

x =

N 1 cos q>i 3 W] 3 cos q>i

y Vi cosi jt)0 ys h 2

N ü cos <p0 V0 cos cpi 3 JNj3 cos <pi
(16)
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Hierbei ist nach ( 10) und (11 ) , indem man beide Reihen zusammen multipliziert ,und wie bei (14a ) und ( 15) nur noch t statt f0 u . s . w . schreibt :

^ c^
= 1 + 4 t + + + + + (17)

Das letzte Glied von (16 ) giebt bei der Reduktion auf qt0 zwei Glieder , nämlich
wegen (9) und (10), mit Weglassung des unteren Zeigers 0 :

lj 2 j/3 t2
3 cos q}j 3 N s cos cp

_ 2/s t2
~

3 AT8 cos cp
^

1 + T ( ! + «*)

« s t 8
(2 + 3 fä)

1 + öt

(18)

Nun muss man ( 17) und (18 ) in (16 ) einsetzen , und zugleich nach (5) berück¬
sichtigen :

ö x 3 ®s „ , ö2 x2 3 a;3 , ,Ta Yi ~ m ~ -W ri 4 (19)

Thut man dieses alles , so wird man aus ( 16) — (19 ) erhalten :
-i V yxt yx 2 „ „A -

NiSTqi
^

Wcosy
+

2N * ä ^
( l + 2 ^ + V )

l 2 yx * t ySxtyä
3 W8 cos qp

' 6 N ± cos qp
( 5 + 6 l2) 3 W4 cos qp

(2 + 3 l2)

Um auch noch die Meridian -Konvergenz nach (8) zu entwickeln , haben wir (6)
zunächst mit Absonderung von t0 und N 0 :

V , *
No 0 Fn t .

^ rM l + 21 12 + , /l 2) (21)

Hier wollen wir nur bis zur dritten Ordnung gehen , weil die Meridian -Konvergenznicht so scharf erforderlich ist wie die Breite und Länge ; also nach (9) und (11) durch
Ausmultiplizieren :

r 0 h
62

w (1 + 4S) (22)

Hier ist wieder S nach ( 19 ) einzusetzen , wodurch man (21 ) und (22 ) bis zur
dritten Ordnung genügend erhält (mit Weglassung der Zeiger 0) :

Nun haben wir in (15 ), (20 ) , (23 ) die Lösung unserer Aufgabe , nämlich (jp— qpo>1 und y als konvergierende Reihen nach Potenzen von x und y darzustellen . Es ist
nur noch zu bemerken , dass in den Formeln (15 ), (20 ), (23 ) überall der für analy¬tische Entwicklung weggelassene Faktor q zur numerischen Anwendung zugesetzt
werden muss , also z. B . in (23 ) y = q t + q (1 + «2 + jf .) u . s . w.

Wir wollen nun unsere Formeln (15) , (20 ), (23 ) anwenden auf den Fall des
Coordinaten -Systems Celle , für welches wir haben :

qp0 = 52 ° 37 ' 32,6709 "
, tangcp a = t
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log sin <p0 = 9 .900 1963 -4 log cos qo0 = 9 . 783 2021-9 logt = 0 .1169941 -5
'

log F2 = 0 .001 0739 -2 log cos2 qp0 = 9 .566 4043-8 % f2 = 0 .2339883 -0
log M = 6 .804 4867 -7 log N = 6.805 5606-9 logr = 6.8050237 -3
logrfi = 7 .393 7231 -6 logifllß = 7 .627 7114-6 log r2 = 13 .610 0474-6

t = 0,002 4758 -43

logg = 5 .314 4251 -3
7/2 i2 = 0,004 243341

logj ^ = 8 .509 9383-6

= log [1]

t2 = 1,7139111588

% J, = 8 .5088644 -5
= log [2]

Wenn man damit alle CoSfficienten von [15] , [20 ] , [23 ] ausrechnet , überall das
nötige g zusetzt , welches in [1] und [2] enthalten ist , so erhält man :

cp ~ % = [8 .509 9383 -6]* — [1 .520 3418] y* — [9.391 186] *2
- [5 .029 738] xy 2 + [1 .845 154 ] X3 - [8 .34389] x2 7/2 + [7 .61833] y*

X = [8 .725 6622 -6] y -+- [2.037 0957] yx + [5 .459 944] y X*
— [4 .871 408] 2/3 + [8 .88204] y aß — [8 .80266J y3 x

y = [8 .625 8586 -0] y + [2. 137 2921] yx + [5 .44 8333] y x2
_ [4 .882 776] 2/3

Die Formeln (15 ), (20) , (23) müssen auch umgekehrt werden, d . h .
*> V und 7 auch als Funktion von qp und X dargestellt werden.

Aus (19 ) § 55 . S . 305 haben wir , da [2] = g : N u . s . w. ist :

P
y = X Ni cos qoj + Ni sm2 qoj cos q>iÖ

(

Dieses in (6) eingesetzt liefert :

9>— Vi _~
r ^

~ -
2 rl ^ ' 24

Von (20) und (22) § 55 . S. 305 haben wir :

Aa . A4 . „ Ksm cp1 cos <]Pi + 57 sm q>x co.ss cp1 ( l ~ 5 t‘1)

Xs
y = XN cos cp — ß - N sirfi cp cos cp

(25)

(26)

} (27)

es muss

(28 )

(29)

(30 )

und , . a» . . .. . .
y = Xsmcp + — smcp cos%cp (31)

Um auch (29) auf cp statt qtq zu bringen , hat man in erster Näherung :

A.2
qo, = q(> + 75- F 2 sw qricos2 qoU

und damit weiter aus (29) :
<Pi — (Y) A2 Vt
— = -

^ sin cp cos V* + 24 Sin *3° cosS <P (5 — *2) (32 )

Der Übergang von qpj auf cpQ ist schon früher in (13) § 35 . S . 218 gemacht ,
nämlich :

Dabei ist cpt — qp0 = (cp — cp0) — (cp — qtq) . Das letzte Glied in (33) enthält
auc alle Glieder mit 7/2, welche bei der entsprechenden Formel (15) nicht mehr

genommen sind .
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Nun hat man nur noch cp durch cp0 zu ersetzen , d . h . indem <p — <p0 = A <p
gesetzt wird , nach S . 166 :

«Po + A cp cos (jD0

cos <Pq — d <P sin qr)0 cos cpo

sin cp = sin (cp0 -+- A cp) = sin cp0 + A cp cos qo0

cos cp —

Wenn man dieses in (30 )— (32 ) einsetzt und auch im übrigen den genügend
angegebenen Gang einhält , so wird man finden :

2 V 2 v

+ ~ M cos2 cp (1 — t2 + iß X2 Acp
1 v2

- -
g

- Df
Tpj

- ( 1 — t 2 + rj2 + 4 772iß A cps — Nsin cp cos <pX 2 A cp2

+ ~ N sin cp cos2 cp (5 — t2) Xi

NcoscpX — M sin cp X Acp — ^ ^ 2 (1 + r/2 + 3 ^2 j2) Azl <p2

- 1 Wsin2 cp cos cp iVsin qs cos2 cp (2 — f2) is J qp

•+• -i - M sin cp A A cp2

Al cp XAcp2
- — /Vl.QlYl— - Z_

IH A cp +

y = Xsincp -h X sin cp - j- sin cp cos2 cp

(34)

(35)

(36)
Auch die Einsetzung der Konstanten von Celle nach (24 ) lässt sich ausführen

und giebt :
* = [ 1.4900616 -4] A cp + [5 .5590789 ] X2 + [3 .8613711 ] A cp2 \

— [9 .978721 ] AcpX2 — [7 .793405] Acp 3 \ (SV
— [5 .23126 ] Acp 2 X2 + [3 .93411 ] Xi

'

y = [1.2743377 -4] X — [6 .0758328 ] AcpX — [0.3488631] AqßX
— [9 .667729 ] X2

— [3 .69281] Acp A» + [4 .66883] AqßX

[9 .978721 ] AcpX 2 — [7 .793405 ] Acp -

7 - [9 .9001963 -4 ] X + [4 .468 777] XAcp — [8.97032 ] X A cp2 + [8 .36063] X2 (39)
Zwei Zahlenbeispiele und noch verschiedene weitere Einzelheiten hiezu sind

in der „Zeitschr . f. Verm . “ 1894 , S . 40 —41 und S . 150 — 153 gegeben , wovon hier
abgesehen wird .

Uber die ganze Anordnung dieser Auflösungsform , welche schon etwa 1820
von Schleiermacher in Hessen angewendet wurde ( „Zeitschr . f . Verm . “ 1884 , S . 421 —434 )
ist im allgemeinen zu sagen , dass sie im Vergleich mit der Bohnenberger sehen Form
von § 55 . S . 308 — 309 kaum eine Rechenersparung bringt , und zur allgemeinen An¬
wendung noch Hilfstafeln für die Hauptglieder erster Ordnung und noch manches
andere verlangen würde .

Trotzdem haben wir das Verfahren in unserem System Celle mit Vorliebe an-
gewendet . Wir haben nach den Formeln (25 ) — (27 ) und (37 ) — (39) autographierte
Schemata angelegt , in welchen alle konstanten Coefficienten mit vorgedruckt sind ,
so dass man nur noch eine Logarithmentafel braucht , um einen Fall auszureebnen;
dazu hat man die durchschlagende Prnhe rWo tt ;„ „ „ ,1 u „,. _ muss .

’■ auch die meisten der in § 58 . erwähnten Rechnungen dieser Art gemacht.
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Gerade die Unabhängigkeit von allen tabellarischen und litterarischen Hilfsmitteln
sichert dem Verfahren Beliebtheit in Fällen , wo man nicht viele Punkte auf ein mal ,
aber immer wieder dann und wann den einen und anderen Fall , vorzunehmen hat .

Es ist auch noch ein Umstand zu erwähnen , betreffend die Nullpunktsbreiten <p0,
welche zur Zeit meist unrunde Zahlen sind , so dass man z . B . in Preussen die Coöffi-
cienten für alle 40 Systeme einzeln ausrechnen müsste , während für runde Zahlen
<Po = 52“ 0 '

, <p0 = 52° 30' u . s . w . die Sache besser würde.

Näherungsformeln für Coordinaten -Differeneen .

Wenn man auf beschränktem Gebiete nur zunächst von einem Punkte sowohl
die rechtwinkligen Coordinaten x , y , als auch die geographischen Coordinaten cp, X
kennt , so kann man für benachbarte Punkte die Differenzen A x , A y einerseits und
Acp, AX andererseits durch Näherungsformeln aus einander ableiten .

Wir nehmen hierzu die Formeln (8*) und (10 *) § 55 . S . 305 :

([2] y) 2
9 = <Po + [1] *

X =

2 Q
[2] y , ( PH y Y5 1

6 (f

F 2 lang cp

„ sin2 QD
eos cp

'
[cos cp/ Ho 2

(a)

0»)

Diese Formeln hat man zu differentiieren , man erhält also aus (a) :

A cp — [1] A x — EL y F 2 tang g>A y + . . . (c)

In der zweiten Formel (b) können wir in erster Näherung das zweite Glied weg¬
lassen , und im ersten Gliede von (&) setzen wir

cp = cpc + [1] A x
d. h , wir zählen von einer konstanten Breite <p„ welche einem Zentralpunkte entspricht .

/ A xDamit wird cos cp = cos cpc — [ 1] A x sin cpc = cos cpe 1 — [1] n
- tang

1.21 !l
cos cp,

A X — -E3 - A v — tang cpe Ax + . . . (d)

also
X = [PMa :

1 + — -- iangwe
Q

Ay — ELL -! -- tang cps A x + .
COS(p , Q COScp.

In (c) und (d) haben wir die gesuchten Beziehungen zwischen A cp, A X einer¬
seits und A x , Ay andererseits . Diese Beziehungen sind nur roh genähert , indem
schon die Glieder mit A x% und A y% weggelassen sind.

Zur praktischen Anwendung wird man die Konstanten [1] , [2] , y , cp, (und
9*1 = cp,) einem Zentralpunkte entsprechend wählen , von welchem aus man nachher
die A cp, AX , A x , A y zu rechnen beabsichtigt .

Wir haben dieses Verfahren 1891 mehrfach angewendet , als viele Punkte der
Stadt Hannover für die Landesaufnahme nach cp und >. zu berechnen waren , d . h . wir
haben die Formeln (o) und (d) lediglich zu summarischer Kontrolle neben anderen
strengeren Formeln benützt .

I . Aegidius als Zentralpunkt hat
X — 27 ° 24' 24,6290 "

cp, = 52° 22' 14,961"

y = — 23271,81 ” * = — 28308,40”

= [8.723 156] Ay — [6 .39851] Ax , Acp = [6 .1842] A y - ■[8 .509 948] A x
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II . Hochschule als Zentralpunkt .
A = 27 ° 23 ' 8,233 ” <p„ = 52 ° 23 ' 1,328 "

y = — 24709 77“ x = — 26868,28 “
JA = [8 .723 277 ] J ?/ — [6 .42 486 ] / ix , J ip = [6.2105 ] / ly + [8 .509 947 ] J «

III . Dreifaltigkeit als Zentralpunkt .
A = 27 ° 25 ' 15,744 "

qp, = 52 ° 22 ' 59,973 "
«/ = — 22298,58 “ m = — 26921,72 “

J A = [8 .723 273 ] J y — [6 .38076 ] zf x , J <p = [6 .1659 ] J y + [8 .509 947 ] Ax
Nehmen wir z. B . Weifenkaserne mit y = — 23180,99 «, und x = — 26485,30»

und rechnen nach II und nach III , so finden wir
II von Hochschule aus : A = 27 ° 24 ' 28,971 " <p = 52 ° 23 ' 13,970 "

III von Dreifaltigkeit aus : 27 ° 24 ' 28,981 " 52 ° 23 ' 13,965 "

Jedenfalls genügt das Verfahren , wenn man rasch einen Punkt von Hannover
nur etwa auf 0,1 " für Topographie , Vergleichung mit astronomischer Bestimmung u. s. w.haben will , was manchmal vorkommt .

§ 79 . Coordinaten- Umformung.
An den Grenzen zweier Coordinaten -Gebiete wird es oft Vorkommen , dass man

die Coordinaten des einen Systems in die des anderen Systems umzurechnen wünscht.

(+ X)

(+ x ‘)

Fig . 1. Ohne irgend welche neueFormeln
zu entwickeln , kann man Coordi¬
naten verschiedener rechtwink¬

liger Systeme auf dem Ellipsoid
dadurch in einander umformen,
dass man denUmweg über geogra¬
phische Coordinaten (geographi¬
sche Breiten und Längen ) nimmt.

■ Tl
I

- 7f - ~ . [. -r U/ iictüii iNUiueu , t if --
) Osten und ein Punkt A habe

Es sei z . B . in nebenstehen¬
der Fig . 1 . der Ursprung O eines

rechtwinkligen Systemes mit
-+- x nach Norden , + y nach

a

(+ n 1 Axe ™ Meridian von A nach
^ n / XT— i . . . . j j, *,. Movirlifln -

in diesem System die Coordi¬
naten a und 5 . Dieser Punkt
A wird zum Ursprünge eines

Systemes gemacht , dessen -f- ®'-

Norden liegt und die Meridian-

Konvergenz y in A gegen den

ersten Ursprung O bildet . Irgend
ein anderer Punkt B habe im

ersten Systeme die Coordinaten
x , y und im zweiten Systeme
die Coordinaten af y

’■

i
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Denkt man sich das Ganze auf dem Ellipsoid liegend , so kann man bei gegebener
Breite qi0 des Ursprungs 0 auch die Breiten - und Längenunterschiede der Punkte
A und B , und die Meridian -Konvergenzen berechnen , nach den Formeln von § 55 . oder
§ 78.

Wir wollen beispielshalber setzen (Zahlenbeispiel „Zeitschr . f. Verm, “ 1891 , S . 164 ) :
Punkt 0 , qp0 = 48° 0 ' 0”

(1)
„ B , y = — 100 000”*, x = — 100 000 » (2)
„ A , 6 = — 200 000”*, a = — 200 000” (3)

Indem diese Coordinaten alle negativ sind , haben wir A und B beide süd¬
westlich vom Ursprung 0 zu denken .

Wir rechnen nach der Tafel S . [55 ] :
Punkt B Punkt A

(p = 48 ° 0’
B = 5 317 885,233” B = 5 317 885,233
x = — 100 000 a = — 200 000

5 217 885,233 5 117 885,233
durch Interpolation = 47 ° 6 ' 1,6896" <px = 46 ° 12 ' 2 .8698"

Dieses sind die Fusspunktsbreiten , zu welchen aus S . [31 ] , [30 ] und S . [ 19] ent¬
nommen wird :

log [2] = 8 .509 0025 -3
log F2 = 0 .001 3501

log [2] = 8 .509 0253-3
log V2 = 0 .001 3957

Die weitere Bechnung geht nach § 55 . S . 309, was allerdings für die grossen
Werte a und 6 = 200 000” kaum ausreicht , doch im wesentlichen noch genügt . Es
fand sich

A = — 1 0 19 ' 2,378"

qp = 47 ° 5 ' 34,414"

t

40 = — 2 ° 35' 26,337"

To = 46 ° 10 ' 17,124"

? = — 1 ° 52’ 10,36"
(4)

Nun wird A als neuer Coordinaten -Nullpunkt genommen , weshalb die zugehörigen
T und X im vorstehenden mit <p0 und Z0 bezeichnet sind , dieselben geben auch die
Differenzen

— - -
(5)cp - - <p0 = + 00 55 ' 17,290"

/IX = .+ 4583,959 " d q, = + 3317,290"

Nun kann man umgekehrt aus d X und d <p nach (5) die rechtwinkligen Co¬
ordinaten von B in Bezug auf A berechnen (nach dem Schema von § 55 . S . 309 ) nämlich :

Punkt B i/' = 4 96659,79” , af = + 103 209,21” (6)
Damit ist die erste Berechnungsart erledigt ; wir haben keine anderen Formeln

und Entwicklungen anzuwenden gehabt , als die zu vielen anderen Zwecken ohnehin
nötigen Beziehungen zwischen rechtwinkligen und geographischen Coordinaten .

Indessen gestattet unsere Aufgabe auch noch eine zweite einfachere Behandlung ,
zu der wir nun übergehen :

Wenn die Coordinatensysteme als eben betrachtet werden , so hat man bekanntlich
die Umwandlungsformeln :

2/ ' = (y — b) cos y + (* — a) sin y (7)
x ' — (x — a) cos y — (y — 6) sin y (®)

und entsprechende Formeln sind nun noch mit Gliedern von der Ordnung 1 : r2 zu bilden .
Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 27

i- «

4 4
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Die Soldner sehen Formeln von § 46 . (14)—(16 ) S . 261 lassen sich in zweifacher
Weise auf unseren Fall anwenden , nämlich nach der Fig . 1 . S . 416 .

System 0 :
(x — a )2 b (x — a) 2 (y — b )

y — b = s sin a -

x — a = s cos cc +

Im System A :

y ' -

2 r 2

(x — a ) yZ (x -
6 r 2

- a ) {y — 6)2
2 r 2 6 r 2

x ’ = s cos « ' +

* ' 2 y'

of j/ '2
3 r2

(9)

(10)

(ü )

(12)

Dabei ist « ’ = cc -

(13)
(14)

■y, also :
sin a ' = sin cccosy -h cos cc sin y
cos a ' = cos cc cos y — sin cc sin y

Damit kann man sina ' und cos cc' eliminieren , und Verbindungen zwischen (9)
und (11 ) sowie zwischen (10) und (12) herstellen .

y' = s sin cc cos y s cos cc sin y

Dann wegen (8) und (9 ) :

(x — a )2 b
y ' = [ (y — &) +

x 2 y‘
g r%

x — « )3 {y — 6)
2 r2

x — cc
(* - «) - 2 ‘

6r 2 cos y

~
e7r ^ - l^ ) sin y - X

^
Wenn man dabei bedenkt , dass y nach (11 ) oder (12 ) § 55 . S . 304 selbst von

der Ordnung — ist und dass man daher in den höheren Gliedern sin y = 0 und cos y = 1

setzen darf , so wird man finden :

y' = (y — b) cos y -+- (x — a ) sin y
(x — a)3 6 (x — a)2 (y — b) x ' 2 y ’

H
(Tr2 1 6r 2 Tr 2

”

Im letzten Gliede ist es aber genügend , x ' = x — a und y ' = y — 6 zu setzen,
so" dass nur übrig bleibt :

y ' = (y — 6) cos y -+- (* — a ) siw y +

und auf ganz ähnlichem Wege findet man auch :

(* — a)2 6
2 ^ 2

(15)

, , , , , , . (x — a ) b (b — 2y )x = (x — a ) cos y — (y — bj sin y -+- -- - (16)

Diese Endformeln unterscheiden sich von den im Eingang für ebene Coordinaten

angegebenen Formeln (7 ) und (8) nur durch einfache Zusatzglieder von der Ordnunĝ --

Um diese Formeln (15) und (16) auf das Zahlenbeispiel (1) (2) (3) anzuwenden ,
muss man zuerst die Meridiankonvergenz y nach (4) benützen , d . h ., wenn die übrige zu

(4 ) gehörige Rechnung nicht gemacht wird , hat man y für sich nach S . 309 zu bestimmen :

y = — 1 ° 52 ' 10,36" ( 17)
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Weiter hat man aus (2) und ( 3) :

y — b = + 100 000“ x — a = + 100 000”
b = — 200 000 b — 2 y = 0

Dazu für rund cp = 47 ° nach Seite [18] log — = 6 .390 515.

Damit rechnet man nach den Formeln (15) und (16) :

y ' = + 99946,770 — 3262,392 — 24,576 = + 96659,802"*
af = -+- 99946,770 + 3262,392 — 0,000 = -+- 103 209,162“

Dieses soll mit dem früheren (6) stimmen , was bei y ' auf 0,01“ und hei x ' auf
0,05” der Fall ist . Diese kleinen Widersprüche mögen wohl darauf beruhen , dass,
wie schon hei (4) bemerkt wurde , die a und b = 200 000“ für unsere Formeln etwas
zu gross sind.

Für kleinere Verhältnisse , etwa für die Grenzverwandlungen zwischen den 40
Preussischen Katastersystemen sind die Formeln jedenfalls genügend .

§ 80. Sphärische konforme Kegelprojektion.
Wenn ein Land seine Haupterstreckung von West nach Ost hat , so eignet sich

eine Meridian-Axe nicht als Hauptvermessungs -Axe , sondern es ist darnach zu trachten ,
die Hauptaxe in die West -Ost -Richtung zu bringen .

Eines der Mittel , welche dazu führen , ist die Kegelprojektion , und namentlich
die konforme Kegelprojektion , welche in Mecklenburg durch Paschen zu diesem Zwecke
angewendet worden ist .

Wir werden diese Projektion zuerst sphärisch und dann im nächsten § 81 . auch
noch sphäroidisch behandeln .

In Fig . 1 . ist O der Mittelpunkt der als
Kugel vom Halbmesser r angenommenen Erde ,
welche längs eines Parallelkreises AA ' durch
einen Kegel berührt wird , dessen Spitze S in
der verlängerten Erdaxe liegt .

Wenn für den Berührungskreis AA ' die
Normalbreite = P ist , so sieht man sofort
cm , dass die Kegelmantellinie sein wird

S A = jRq = r cotg P (1)
Dieser Kegel ist in Fig . 2 . S . 420 ab¬

gewickelt dargestellt , so dass S A = Bq die¬
selbe Länge wie Sri in Fig . 1 . ist , und A" A B
aE Kreisbogen um den Mittelpunkt S die
kongruente Abbildung des Parallelkreisbogens
AB A ’ von Fig . 1 . vorstellt .

Auf dem Kreise ri " A B Fig . 2 . werden
die Bögen A B in natürlichem Masse von
Kig. 1 . nach Fig . 2 hinübergetragen , so dass
auch die Winkel X' bei S in beiden Figuren dieselben werden.

Diese Winkel X’ sind die Meridian -Konvergenzen und stehen zu den Längen X in
der einfachen Beziehung :

Fig . l .

rcos P

X' = X sin P (2)
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Denn es ist für die Normalbreite P der Parallelkreis -Halbmesser in Fig. 1.
D A = r cos P , also A B = r cos P 1 , folglich 1 ’ = A B : -ff0 , was mit R 0 = r cotg P
aus (1) sofort zu der Gleichung (2 ) führt . Damit können wir alle Meridiane als

rig . 2. gerade Badialstrahlen von S aus in Fig. 2.
abbilden , aber wir haben erst einen Parallel¬
kreis , nämlich denjenigen für die Normal¬
breite P . Die anderen Parallelkreise sollen
auch als Kreise um den Mittelpunkt 8
dargestellt werden , z . B . soll in Fig . 2.
der Kreis vom Halbmesser S C = R der
Breite <p entsprechen , und man könnte
als einfachstes Gesetz hiefür annehmen ,
A C = r (<p — P ) zu machen , so dass auch
alle Meridianbögen in Fig . 2 in richtiger
Grösse dargestellt würden .

Es giebt das in der That eine Kegel¬
projektion , aber nicht eine konforme,
welche ein anderes Gesetz der Meridian¬
bogenabbildung verlangt . Dazu betrachten

wir in Fig . 3 und Fig . 4 . die Differentialfiguren für ein unendlich kleines geographisches
Trapez und dessen Abbildung .

Wenn das Trapez auf der Kugel zwischen den Breiten cp und cp + dq ) , sowie
zwischen zwei Meridianen mit dem Längenunterschied
dl liegt , so hat es den Meridianbogen rdcp und
den Parallelbogen r cos cp dl ; und das Abbild m
Fig . 4 . hat entsprechend — d R und R d 1 ' und
zwar — d R , weil das Wachsen von R dem Wachsen
am <p entgegengesetzt ist .

Nun sollen die beiden unendlich kleinen Trapeze
Fig . 3 . im Urbild und Fig . 4 . im Abbilde einander
ähnlich sein , also , wenn zugleich das Vergrösserungs-
verhältnis mit m bezeichnet wird , hat man :

d R R dl '
m = - =— = - ,r d <p r cos cpd 1

oder weil V — 1sin P noch (2) ist , giebt dieses :

d R R sin P
r d cp r cos (p

\ dK

f -dR

RdX

sin P d qp_ (LR -
R cos <p

Dieses ist die Differentialgleichung für das Gesetz der Änderung von R , deren
Integration alsbald giebt :

— log R = sin P log tang ^
45 ° + j -+- . . . W

Um die Integrations -Konstante zu bestimmen , setzen wir fest , dass für die
Normalbreite P der Kegelstrahl die Länge — R 0 annehmen soll , d . h.

P
2

— log R 0 = sin P log tang ( 45 ° (5)
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Aus (4) und (5) zusammen hat man :

log R — log R 0 = sin P j log tcmg
«der in Quotientenform :

45 ° ■

, R .
logjr = smPlog -

tang ( 45

— logtang ( 45

P+ 2
(6)' u fang [ 45 ° -h

Man kann dieses auch noch auf eine andere Form bringen , denn es ist bekanntlich :

1 - (- cos x = 2 cos 2

1 — cos x „ «— = tnno 2
cosx J 21

und mit x = 90 ° -+- P oder mit x = 90 ° -f- cp giebt dieses

P \ _ 1 + sin P
, 2 / 1 — sinP

also wird (6) :
R sin P

tangi 45 ° + — = 9J -
2

log

und tangZ |^
45 °

(1 + sin P ) ( 1 — sin cp)

1 - j- sin cp
1 — sin cp

2 (1 — sin P ) (1 -+- sin (p)
«der wenn man von den Logarithmen zu den Zahlen übergeht :

M ( 1 4- sin P 1 — sin (
R<\

inP~2
~

(7 )

(8)

Nach diesen Formeln (6), (7) oder (8 ) kann man zu jedem Werte q> das zuge¬
hörige R berechnen , nachdem 720 schon aus (1) erhalten worden ist . Auch das dazu
gehörende Yergrösserungsverliältnis m kann aus (3) berechnet werden und damit schiene
alles erledigt , aber die Rechnung nach diesen geschlossenen Formeln ist mühsam und
ungenau , wenn sie nicht mit lOstelligen Logarithmen geführt wird . Es kommt weniger
auf R selbst an , als auf die Differenz R 0 — R , und diese werden wir besser erlangen
durch eine Reihen -Entwicklung , zu welcher wir nun übergehen .

Nach dem Maclaurin sehen Satze wird jedenfalls folgende Form bestehen :

„ _ dR -1 , rfSRi Ja 2
(9)Ä “ Ä0 + d^ J /:/ti, + "

d (p2 J 2
_ +

dV »J 6 24
Wir wollen aber nicht geradezu die Funktion R von (8) differenzieren , sondern

das Konstante absondern und deswegen setzen :
R F
Rn

Oder wegen (8) sollen die F und Fq folgende Bedeutungen haben :

und F ,o
- sin P
- sin PF _ fl — sincp \

\ 1 ~f~ siyt/ (jpJ
Nun giebt (10 ) durch Ableitung :

1_ (FR __ _ 1
__

dF

Rn d cp F 0 d q>
und damit kann man die Maclaurin sehe Reihe (9) auch so schreiben .

1 dF -\ . I diF ~
\ dcp * , 1 dZF -

[ rf <ps 1 d * FlR
= 1 + F 0 dtp] ^ 9 _ _~

Fq dqß J
~

2 ^ F ^ dipsj 6
' F 0 dcpi

J <p*
~

2T

( 10)

( 11)

( 12)

(13 )
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Nun müssen wir die 4 ersten Ableitungen der Funktion F von (11 ) bilden und
beginnen :

dF _ sin P fl — sin cpVpp _ i t — cos cp (1 -+ •sin cp) — (1 — sin cp) cosc
2 \ 1 -\- sin cp)

2
| (1 •

- sin cp
'VPl _ i | — 2 cos cp

dcp ■sin qp)2
fl — sin cp\ aPl - i f — 2 cos cp )
\ l + sin (p)

"
( (1 + sin cp)2 )

1 — sin= — sin P

sin cp)2 )
sin cp cos cp

sin qp)2(1 + sin cp) 1 — sin cp (1
Also mit Wiedereinsetzung von F selbst nach (11) :

dF . _ cos m — sin PF
^— = — smPF r̂ - ^ — — -
dcp 1 - (14)in2 cp cos (jp

Diese auf etwas umständlichem Wege erlangte erste Ableitung , die sich so
kurz darstellt , kann man auch unmittelbar aus (10) und (12) und (4) entnehmen , was
insofern natürlich ist , als in ( 14 ) nichts anderes als die Bückwärts -Differentiierung der
vorhergegangenen Integration ist .

Die Weiter -Differentiierung von ( 14) giebt :
d 2 F sinPfdF T , .cos cp + Fsm cpd <p2

d 2 F
d cp2

d2 F
dcp3
d2 F

cos2 cp \ dcp

= + sin P F sin P — sin cp

= sin P

cos2 cp
F sin P sin P -

(15)

- sm cp
cos cp cos2 cp

F
— cos8 cp ■ ■(sin P — sinj >) 2jMsqidn9

cos4 cp
_ . (sin P — sin cp, „ = FsmP { - -- —d (jp3 | cos2 cp

. II— sm Pi - ,- (2 sin cp — sin P ) cos cp)
(16)

Nochmals abgeleitet :
d4 F _ — F sin 2 P tsin P — sin cp
d cp4 cos Cp I cos3 cp

fSsinP sin cp- Fsin P

(2 sin cp — sin P )

cos4 cp -

1
coscjp

3 sin 2 cp cos 2 cp
cos4 <jp

2 sin cp—sin P

sin cp

(17)
COS6 cp

sin P — sm qp .
H- 5- — 2 cos cp - „ „ ICOs3 cp COS2 cp )

Dieses könnte man noch weiter ordnen , da wir aber hier abbrechen , ist es
nicht nötig ; wir müssen nämlich nun nach dem Maclaurinsehen Schema (13) diejenigen
besonderen Werte unserer vier Ableitungen bestimmen , welche gelten für d cp = 0,
oder was dasselbe ist qp = P . Beginnen wir mit (14) und (15), so haben wir alsbald :

Tcp \ = ~ FotangP und
^

Auch (16) und (17 ) reduzieren sich sehr mit cp = P , sie geben :

f & i = - F ° tanS p und = v tan9* P (W)

Setzt man alles dieses in das Maclaurin sehe Schema (13) ein , so erhält iaan;

= 0 (18)

R
= 1 — d cp tang P - dcp3

lang P - d cp4
'

24 tang 2 P (20)
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Wir wollen zur Abkürzung setzen :

f P = t und R n — R = A R

Damit wird die vorhergehende Keihe (20) :

A R = Rq A cp t R0 4ft + B0 ~ rt *Jcp 4 J
24

(21 )

(22)

Rechtwinklige Com-dinaten x , y.

Fig . 5.Der Mittelmeridian A S un¬
serer Abbildung wird als a -Axe
eines rechtwinkligen Coordinaten -
systems genommen , mit einer
y -kx % welche in A den Normal -
parallelkreis A B berührt , wie in
Fig. 5 . gezeichnet ist .

Wenn nun irgend ein Punkt
E die Länge X gegen den Mittel¬
meridian und die Breite cp hat , so
kennt man auch die Meridian -
Konvergenz A S E = A' = X sin P
u. die meridionale Strecke BE = AR
nach Gleichung (22 ), folglich hat
man nach Fig . 5 :

x = Bq — Roos X’ und y = R sin A'

Man könnte nach diesen Formeln unmittelbar rechnen ; besser aber sind Reihen-

Entwicklungen , welche sich sehr leicht geben :

X>=ÄjsinP

x , R , , , R
jS^ ^ jP 4 — 1 “ “rT-
Ä 0 Xio -«0

R

A2 sw2 P
"

2

A4 sin4 P '
'

24

und wenn man aus (20 ) einsetzt , so bekommt man :
Rq

= 1 — 1 — A qi t - A cps Acp*
t* 1

A2 sin2 P A4 si»4 P
'

2 H 24i ?o
*

T 6
^ 24

Die Multiplizierung mit Vernachlässigung der Glieder über der 4ten Ordnung giebt :

= A cp f+
A2 si«2 P AcpXZsinZP . Acp* PsinXP 4 .^ *2 (24)„- -s - t T- 5“ r 24 ^ 24 A

R 0
~ “ 'l, ‘ - r

2 2

aber nach (1) ist R a t = B 0 tang P = r , also :

6 24

AcpX^ sin 2 P Acps Xi sin 3 Pcos P AcpH mK-
2
- + ~

6
- 24

- + ~
24

’ (25)

In gleicher Weise bekommt man auch die Reihe für y , denn es ist zunächst :

■ n ■ n ■ i ■ -n A3 sin3 P
sin X - sm (A sm P ) = Xsm P - --

and nach (20 ) ■
" AV

x . A2
,.

— A cp + — sin P cos P -

Rn
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also nach (23) :

Sphärische konforme Kegelprojektion .

?L
R

V

= X sin P - X2 sin 2 P
6 1 — A cpt - A ® 3 .

6
■# ' )

1 • -n
' A 1 ■ -nt -̂3 ' qti A cp X2 sm 2 Pt Acp 2 XsmPt_ = Xsin P — ü ml smPt - sm 2 p n- z— - z— —R 6 6 6

y = XeosP — A qoXsinP - X2 . „ A (pX2 sm 2 P A cp2 XsmP- sm 2 P cos P + - - —-— — - „-o 6 6
Es fehlen noch die Umkehrungen dieser Gleichungen zur Bestimmung von A cpund X aus gegebenem x und y . Dazu hat man zunächst nach dem Anblick von Fig. 5.

die geschlossenen Formeln :

(27)Rn — x
R 2 = (_R0 — x )2 -+- y2 und tangX ' =

Also aufgelöst nach (21 ) :
R 2 = (R 0 _ ä Rf = R 02 — 2 R 0 A R + d R 2 = R 02 — 2 R 0 x + x2 + y2

AR
R 0

AR 2 x2 2/*

. / / Op3A cp t + —— t

A A cp2 t2 A cp2 . AmiA Cpt - ^ - - ~ t - ZL (2 —

2 if 02 2 Ä 02

A q>i
- t2 (29)

Nach (22) ist :
A

_
R

Tffo
" 1 6 ” ‘ 24

also auch hinreichend genau

also wieder mit dem vorhergehenden (29 ) eingesetzt in (28) :
x x2 y2

6 " 8 " — J?q 2RÖ2
~

2Rn 2
Diese Gleichung soll durch allmähliche Näherung nach A cp aufgelöst werden .

Jedenfalls ist in erster Näherung :
CC T%A cp t = — hi 2 . . . also A cp2 t2 = -+- * 3 . . .Rn

(31)

RA
x2

Zweite Näherung

062 V2

Mn 2 jKq2 2 .Äq^
. , ® V1
9 “

5o
~

2A 02
'

A cp2 t2 ■ x2 x y2
w

A cp2 t2 = X2

Also von neuem bis zur dritten Ordnung :
a;2 x y2 x2A cpt ■ x2

2A 02 2iü 03 6
_
A 03 12 A 0

A cp t =
Rn

yi xy 2
2 A02

£C3
2J ?n2

2A 02
Damit bis zur 4ten Ordnung :

A cp2 12 =

A Cp2 t2 : X8

;r y*
'
W

2 Ä03 6 Rn2 t2

Xix2 y2
RA 3 RA t2

y4

2 A04 und A cpHi -

4 i ?04

«4
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Alles dieses in (81 ) eingesetzt giebt die Schlussgleichung:

d qt - x y* 2 1/2
2 ß 02

a -5y
2Rr ? ^ 2Rd

xA yi x2 •2 4/2y- x4

6 ß 04 f2 8 £ 04
# #2 y2

B ,

6 P 03 f2 4 P 04 fl 8 Ä 04 fl

2 U02 2 i ?02

Diese Schlussgleichung kann man geradezu nach dipt auflösen, nämlich:

d qt = x y% xy “2- x 3 ä:2 y2
~

2 ^ 2
~

2143
—

6I4372
~ l ~

Rfffl
und weil P 0 1 = r ist , giebt dieses schliesslich :

2 f2 — 1 - a;4
24 P 04 fl 8P 04 (32)

da = 7 - i _ f _ 42 .* r 2 r2 2r3
y2 * ’y’ii2 s 3

6 r3 ■T? ‘ ( a ‘! - l ) - Ä , + W 1' <8 !»
Um vollends A nach (27) zu erhalten, brauchen wir mit A' = XsinP :

tang (A si« P ) = y
B 0 - X

y

l sin P +
Erste Näherung :

* o (
l

A3 sirfl P
3

=

A sin P =

x_
Po

1/ « a;

Po
£C *2 a;3

-®0J

y xfl y x3

JL
Rn

y x
P (T2

+ . .

A3 sin 3 P =
3 ?/3 s

-Rft8

A sin P + yS
3 ( Pn3

A si« P ==
Rq

, 3 y3 ®\
+ Ä 04 )

2/ 2/ *
P 0 Äo2

yx 3 2/ *3
+ p ^

+ p 74

y x 1 s/ *2 y3 y%X i y *3
-

RqZ
~1 i ?o3 3P 0S P 04 + P „4

oder weil Bq t = Rg tangP = r ist , giebt dieses:

X cos P =z y.. + V * t + ^ «2 _ ^ t* .
<y2 ^3 ?’4 9'4

(34)

(35)
t r'z ry 8

Damit ist alles für die Coordinaten nötige vorhanden ; es fehlt nur noch die

eihe für m, dessen geschlossener Ausdruck nach (3 ) ist , mit Rq = r eotg P :

R sin P , B cos P
m - -

r cos QD
oder Ä 0 cos q

hiezu hat man nach (20) : ~ ^ <p3
= l — d <pt - -

g
— *

Md weil <p = p 4 - d q ist , hat man nach § 28 . S . 167 :
dq 2

JL
Rn

(36)

(37)

Tf j . A , 'f 'Z . ^ Ô3 J
cos <jp= cos P j 1 — d qt -

g
— I- g

— t

Die Umkehrung giebt , wie ebenfalls schon auf S. 167 angegeben:

Sf = 1 + <P * + - “/ *) + V * +
2 + (J 9 j

— 1 d q t t 5 + 6 fl1 + 2 fl



426 Sphärische konforme Kegelprojektion.

Die beiden Reihen (37 ) und (38) zusammen multipliziert geben :
Aq *

, Aq 3 t« i = l -+ - -
g

- H— -
m

Um dieses m auch als Punktion der Coordinaten % und y darzustellen, hat man
aus (33) :

A (jo2 =

A qj = x
r

x

y*
t

2 r2

t zJ (*̂2 y2
Diese A qfi und A q 3 in (39) eingesetzt geben :

x3
rs

, *2 X iß X3 ,TO= 1 + g
- — t -h t (40)

, 1 »2 x 1/2 X3oder — = 1 — x- s + t — TTßtm 2 r2 2 r3 6 r3 (41)
Für das praktische Rechnen wird man auch log m nehmen,

Grössenordnung sehr einfach ist , nämlich nach (40) und (41 ) :
was innerhalb dieser

, fl a:2 fl X «2 fl x3
(42)

oder +m 2 r2 2 r3 6 r3 (43)

1In erster Näherung, d . h. mit Beschränkung auf also Weglassung von ^
sind diese Formeln (40)— (43) entsprechend den früheren (10 ) § 50. S . 281 , wenn man
x und y vertauscht , was auch ganz natürlich ist .

Obgleich für die meisten Zwecke diese Formeln (40)—(43) ausreichen, wollenwir doch auch noch die 4*e Ordnung dazu entwickeln , wozu man nach (20 ) hat:
JR - .

1^ = 1 - A <? t Acp 3
__ A cp*'

6 24 (44)
und weil q = P -f - A q , hat man nach § 28 . S. 167 :

cos q = cos P
^

1
Die Umkehrung giebt :

. A aß A cp3 A qiAqt - + T
24

cos P
cos q

A q-

A <p2
~

T " Aq 3 )
*

• T ( |

A q t -h ■
2 / 1

Die Ausrechnung hievon , welche auch schon auf S. 167 angegeben wurde ,bis zur 4*en Ordnung:

Aqij
24

6 <2 - 28 «2 + 24 t4) (45)
Man hat die beiden Reihen (44) und (45) zu multiplizieren , um zu der Rei5e

für m zu gelangen , die Ausführung giebt :
A <p2 Aq 3 t Aqt

6 24 - 3 t2 (46)
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Um m auch als Funktion von x und y darzustellen hat man aus (33 ) :

A (p2 =

Dieses in (46 ) eingesetzt giebt
x2 xy '

X X V\ 2 X3

r 2r 2 2r3 6r3

X2 xy 2 x2 y2 a;4- yi= — i
r 2 r 2 r * 3r 4 4 r 4

X3 3 x 2 y 2
t und A cpi : as4

^ 3 2 r 4 )-4

»8 = 1 + 2 r 2
fl ®3

2 r s + 6r3
' '

3 x 2 y 2

4 ,-4
f2 » 4

'
24 r *

- 3 <2

Die Umkehrung davon giebt :

1 Ix 2
2 r2

'
2 rB

: 1 __ jgj xy2
t t

2 ?-2 '

3 * 2 4/2
4r 4

« 4
24 r 4

- 31 -

«4
'

8H
f2 (47 )

2r2 1 2 r ® " 6r3

Für das praktische Rechnen wird man auch logm nehmen :

®2 198 \ a 2 xifl l / x 2

Sri
t2

Im — l [ 1 _
. _ a 2 ay 2

2r 2 WVs
^ - ’ J

- 2r2
~

2fs t + ’ " ~ ' ~
2 {2r 2

'

(48 )

(49)

lopm = ^ -
x2

— ^ x y 2
r , f1 ®3

* 8 m * 2 2/2
,9

2 ?-2
+ _ß

24 r 4
- 2 + 3 «2

) + f -̂ 2 (50 )

Die hiev auftretenden Glieder 4 ter Ordnung werden wir später dazu benützen

können , um sie ' auch den sphäroidischen Formeln , die wir an sich nur bis zur dritten

Ordnung entwickeln werden , anzuhängen .

Die vorstehenden Formeln sind auch mit den bis zur 4 *es Ordnung geführten

sphärischen Formeln übereinstimmend , welche wir in der „Zeitschr . f . Verm . 1896 ,

S . 129— 141 entwickelt haben , wobei aber zu beachten ist , dass dort die Coordinaten

nach Mecklenburger Art mit + x nach Süden und + y nach Westen gezählt sind

(»Zeitschr . “ 1896 , S . 130 ), während wir hier , wie sonst üblich , + ® nach Norden und

+ y nach Osten zählen , so dass z . B . unsere obenstehende Formel (47) für «1 uber¬

geht in (52 ) S. 138 „Zeitschr . “ 1896 , wenn man in x und in y die Vorzeichen ändert ,

so dass im ganzen nur die ungeraden Potenzen x y 2 und x s Umschlagen , aber x

x2 y2, x4 und yi im Zeichen bleiben .

* § 81 . Konforme Kegelprojektion des Ellipsoids.

Mecklenburgische Coordinaten .

Fir
^ ertragung der sphärischen Betrachtungen des vorigen § 80 . auf das

PS01d ist , soweit die Grundformeln in Betracht kommen , nicht schwierig . Wenn

t Quer -Krümmungs -Halbmesser für die Normalbreite ist , so wird nach Fig . 1 .

■ 428 die Kegelstrahllänge :
R ^ = NcotgP (1)

Die Meridian -Konvergenz -Formel bleibt dieselbe wie früher , nämlich :

A' = A sin P (2)
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Auch die Ähnlichkeitsbedingung hat im wesentlichen die frühere Form , nämlichnach Fig . 2 . und Fig . 3 . S . 429 :
d B E d X— - — -

Md cp Neos cp dX
Kg . 1.

S

NcosP

Es ist nur statt des früheren Kugel-
Halbmessers r nun M für den Meridian und
N für den Querbogen genommen . Auch die
Einsetzung von (2) gestaltet sich wie früher
und giebt :

_ dB _ RsinPm ~
Md cp

~
Neos cp

dB . n M dep- — = sm P -B N cos cp
M

Für — wollen wir nach (25 ) § 32.

S . 197 setzen :
M _ 1 — e2
.V

" ~
W *

~

Also nach der vorhergehenden .Gleichung :

(1 — e2) d (jp

- e2 sin2 cp

dB
■~ = smP -

jy (4)■ez sin2 <p ) cos cp
Die Integration wird auf dem Wege der Teilbrüche gemacht , indem man zuerst

so zerlegt :
1 — e2 1

coscp>

I

(1 — e2 sin2 <p) cos <p cos <p 2 1
Folglich wird das Integral von (4 ) :
(1 - e2) d cp _ 7i . ( AKO , <f \ 1

2

1 e2 cos cp
esmep

(1 - e2 sin 2 cp) cos cp
l tang ( 45 ° —

i ^ 1 '

1 e2 cos cf>
2 1 — e sin cp

1- e sin <p) -+- -A- c l ( 1 — e sin cp)

= l tang I 45 ° cpn . 1 1 — e sm Cf'
2 ) 2 e

1 + e sin cp
Die linke Seite von (4) gieht integriert — l B , und indem man auf beidenSeiten von den natürlichen Logarithmen l zu den gewöhnlichen Logarithmen log über¬

geht , hat man nun also als Integration von (4 ) :
. I im <P \ c , 1 — e sin qp1r tang 45 + log - .— r -+■• - •\ 2 j 2 y 1 -f- e sin <p )

Zur Bestimmung der Integrations -Konstanten setzen wir fest , dass Bq und P
zusammengehörige Normalwerte sein sollen , also :

P \ e , 1 — e sin PI

— log B = sin P | logt

— log Bq = sin P j log tang ^45 ° -i
also durch Subtraktion der beiden letzten Gleichungen :

tang ^ih 0 -+-

e 7 1
2 ( r 2 9 1 + e sin Pj

R
log = sin Plog

ferner ( 45 ° •+■

e . 1 — esinP l + esincp
2 sm F log TTesinP 1 — e sin cp

(5)
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Auch den geschlossenen Ausdruck für m hat man aus (3) :
R sin P , R cos P

m = -r~f- — oder m = , ,—N cos (p Rq cos (fi
(6)

Fig . 2. Fig . 3.

s

IdX

NcosqodA

- dR

RdX

Nun muss man alle die Reihenentwick¬
lungen , welche wir im vorigen § 80 . sphärisch
gemacht haben , auch mit diesen sphäroidisehen
Formeln durchführen , doch kann das hier nicht
ausführlich geschehen . Wir verweisen hiefür
auf das Werk „ Grossherzoglich Mecklenburgische
Landes -Vermessung “ V . Teil : Die konforme Kegel¬
projektion u . s . w . von Jordan , Mauck , Vogeler,
Schwerin 1895 (vgl . § 59 . 8 . 335 ) .

Wir wollen die wichtigsten Formeln von
dort ausziehen, aber mit einigen Änderungen :

Erstens hat Mecklenburg die Coordinaten -
zählung + * nach Süden , + y nach Westen ,
auch A nach Westen positiv , während wir hier
nach Fig . 5 . § 80 . S . 423 wie gewöhnlich + x nach Norden , + y nach Osten und
auch A nach Osten positiv zählen werden . Auch die geographische Breitenzählung ,
welche mecklenburgisch mit P — cp = p nach Süden geht , nehmen wir nun <p — P = A <p
nach Norden.

Zweitens ist in den Mecklenburgischen Formeln meist der Kegelstrahl Rq als
Konstante genommen , während wir nun , wegen der späteren Vergleichung mit anderen
Formeln , den Quer -Krümmungs -Halbmesser N der Normalbreite als Hauptkonstante
nehmen wollen , so dass wir haben : Rq — NcotgP , also RQtangP — N oder ab¬
gekürzt geschrieben : R 0 t = N .

Wir werden auch nicht alle sphäroidisehen Glieder höherer Ordnung 7/4 u . s . w .
aus den Mecklenburgischen Formeln hier mitnehmen . Die Citate Meckl. S . . . be¬
ziehen sich auf die Seitenzahlen des im vorstehenden citierten Mecklenburgischen Werkes .

I . Breitenunterschied A q> und Längenunterschied A als Funktion der Coordinaten
* und y , Meckl. S . 23 und 22 :
A ijp
n : X

N
~ 3 *2

2N2 1

Aco « p .- i , v xt
n ^ m

y2
: ~

2 m
*2 ?/2 f

y *2 fl

t - x y2 12

1 + 212

2/3 fl
+

*4 1 y 4 f3
—

24ÄV4
+ 8

"
IV4

y *3 fi y '1x fi
iV4

~
NS 3iV3

1 m

II . Coordinaten as und y als Funktion von A (p und A, Meckl. S. 19 .

A <p
N '

N

3 A qp2
2
"

F4 7/2 t - A2 . „ 7J- ~=- smPcos F -
a

r sin^ P -1- ^-9- ( l -~
2

~
yz sm 1 6 F6 \

A <p )fi - 47/2 — 3 7/2fl

A4
.

t ~ sinS P cos P
24 FS 24

= A cos P F2
XAcps sin P

X/lq >sin P - ~ cos Pfir ? - 7
^ sin2 PcosP

F4
\ A-

1 + 4 7/2— 3 7/2*2
j

+ -
g

A3 A cp
T * sinS p

(8)

’ (9)

(10)

6 F6
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In allen diesen Formeln ist gesetzt t = tang P , F 2 = 1 = c ' 2 cos2 P , AT= c : V.
Die sphärischen Bestandteile dieser Gleichungen müssen übereinstimmen mit (33), (35),
(25), (26) des vorigen § 80.

Ausser dem im vorstehenden citierten amtlichen Mecklenburgischen Werke
(dessen genauer Titel schon auf S . 336 angegeben ist ) haben wir auch noch einige
Ergänzungen zu berichten .

Die Reduktionen für Entfernungen und Richtungswinkel , welche wir hier weder
in § 80 . noch in § 81 . entwickelt haben , sind in erster Näherung dieselben wie hei
•der konformen , meridionalen Projektion in § 50 . Gleichungen ( 12 ) S . 282 und (31),
(32) S. 284 , jedoch mit Vertauschung der Bezeichnungen x und y . Die nächsten Glieder
hiezu , welche zur praktischen Rechnung mit 7 stelligen Logarithmen bei den Richtungs¬
winkeln auf 0,01" ausreichen , sind in dem Mecklenburgischen Werke § 10 . angegeben ;
mit Gliedern von der Ordnung

X
^ nn d V XA X

,

Eine Ergänzung mit den Gliedern auch noch und —~ g- — , welche äussersten -

falls noch 0,01" erreichen , haben wir in „ Zeitschr . “ 1895 , S . 421— 424 gegeben , und
•endlich , um jedem theoretischen Einwand zu begegnen , haben wir noch in „ Zeitschr.
f . Verm . “ 1896 , S . 129 — 143 die ganze Entwicklung sphärisch , mit allen Gliedern

4ter Ordnung , d . h . auch noch dazu gemacht .T**

Hiernach haben die Mecklenburgischen Geodäten eine Kontroll -Diagonale von
285 *™ Länge über ihr Land gerechnet ( „ Zeitschr . für Verm . “ 1896 , S . 240—248) mit
1 ° 30’ ßreitenunterschied und 3° 30’ Längenunterschied , d . h . die Diagonale , welche
wir auch schon unter den sphäroidischen Normalbeispielen in § 73 . S . 392 angegeben
haben . Diese Diagonale wurde zweifach berechnet , erstens als geodätische Linie mit
reduzierten Breiten nach unseren neuen Formeln , welche in dem späteren Kapitel VIII-
zu behandeln sein werden , und zweitens als Projektions -Gerade in der konformen Kegel-
Projektion , mit sphäroidischen Reduktionen . Folgendes ist die Vergleichung (nach
„ Zeitschr . f. Verm . “ 1896 , S. 241 , 242, 244 , 248) :

aus geographischen Coordinaten aus rechtwinkligen Coordinaten
<Pi = 53 ° 0 '

Vl = + 67129,7368 ™ x t = 4- 82986,8632”

qp2 = 54 ° 30 '
y2 = _ 161 922,5986 ™ ®2 = — 86318,9409 ”

(Bezeichnungen nach Fig . 1 . § 76 . S . 399)
8 = 284 835,8642 ™ 8 = 284 835,8648 ™

logS = 5 .4545 946 -712 log S = 5 .4545 946 -721
Azimut «! = 52 ° 43 ' 39,1835 ” Azimut a x = 52 ° 43 ' 39,1858 '

„ a 2 = 55 ° 33' 2,3646 "
„ «2 = 55 ° 33 ' 2,3612 "

( -+- y nach Westen , -f - x nach Süden )
+ 0,0006™

+ 0 -009
+ 0,0023

"

— 0,0034 "

Die übrigbleibenden Fehler sind so weit ausser aller praktischen Schädlichkeit,
■dass damit die Mecklenburgische konforme Projektion nicht nur für die praktischen
Vermessungszwecke , sondern für alle aus irgend welchen Gründen an sie zu stellen
Forderungen genügend nachgewiesen ist .

In rein praktischer Beziehung als Grundlage für topographische und Kataster¬
messungen ist die Mecklenburgische Triangulierung mit ihrer konformen Projektion
-die beste von allen deutschen Landesvermessungen . Aus Veranlassung einer Gegen -
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hemerkung hat Kammeringenieur Vogeler in Schwerin die Überlegenheit der Mecklen¬
burgischen Projektion über andere deutsche , namentlich die sogen . Soldnersche Pro¬
jektion in überzeugender und anschaulichster Weise dargelegt in „ Zeitschr . f. Verm. “

1896 , S. 257 —263.

§ . 82 . Queraxige sphärische Coordinaten.

In Fig . 1 . ist die kugelförmige Erde in solcher Projektion dargestellt , dass der

Äquator als Kreis ED FE ' erscheint , in dessen Mittelpunkt der Nordpol F projiziert
ist. In einem Punkte 0 ist rechtwinklig zum Meridian P 0 ein Grosskreisbogen EOF

gelegt, auf welchem eine Länge 0 B = y Kg. i .
abgemessen ist zur Bestimmung eines
Punktes B , welcher mit B A — x recht¬
winklig zu OB festgelegt wird . Es ist
also im Sinne gewöhnlicher sphärischer
Coordinateny die Abscisse und x die Ordi¬
nate des Punktes A , wobei es aber gleich -
gütig ist , wenn wir statt dessen nun y
Ordinate und x Abscisse nennen ,

Der Bogen B A wird verlängert E
einen Punkt 0 treffen , welcher Pol des
Bogens EOF ’ genannt wird , und es
werden alle Bögen x , welche rechtwinklig
auf der Axe EOF stehen , sich in diesem
Punkte C schneiden .

Wenn die TJrsprungsbreite in 0 den
Wert (jDohat , so ist auch der Bogen C P = (jPo, D
und um die geographischen Coordinaten
von A zu erhalten , müssen wir noch P A ziehen , welches mit dem Bogen P A = 90
— <p und dem Winkel 0 P A = X die geographische Breite <p und die geographische
Länge X von A bestimmt .

Zieht man dazu noch den Bogen CA in Betracht , so hat man C A = -
g

—

und bei A den Winkel PAC = y als Meridian -Konvergenz , sowie hei C den Winkel

P C A = .r
Nun bietet das sphärische Dreieck C P A alles was zur Lösung unserer Auf¬

gabe nötig ist , nämlich Bestimmung von <p , X, y, aus gegebenen <Po>y , x und umgekehrt .

Um zuerst cp zu bestimmen , haben wir die Cosinus-Gleichung :

-j- sin cpQsin
qp) = cos cpo coscos (90 ° — (jp) = cos <p 0 cos -j- sin (po sin r

-+- sin <po coscos cpo sm (1)

Zunächst nur bis zur dritten Ordnung entwickelt giebt dieses :

sin cp = cos (p0
—



432 Queraxige sphärische Coordinaten . § 82.

sm cp = cos (jPo
x3

'
673

sin cp • - sm <jp0 = — cos cpo -

x2 —{—y2
+ sm <jPo ^

1 -
2^ -

t 2 —{—-j/2 <vß
- - 2rf Sing,0 ~

6 ^ COS(Po
Andererseits wird gesetzt qp = cpo -+- xl qp

also nach S . 166, Taylor sehe Reihe :

, x( qp2sm qp = sm <p0 -t- A qp cos qp0 ■
2 sinepo —

6
Die beiden letzten Gleichungen zusammen gehen mit tang g>0 = t

A cp3 cos qp0.

A qp ■ Aqfi Acp3 x2 + y2
2 6

Hieraus als erste Näherung :
A XA qp = —

r
und dann in bekannter Weise fortgesetzt :

2r 2

2 r 2

t -h . . .

6 r 3

Acp yi f - a;
i2r 2 r2 2 r 8

Um zur4 ten Ordnung zu gelangen , entwickeln wir aus ( 1) weiter :
a:2 aA \ 7

^ + s iB g,0 ^ p + ^
H _ .

a;2 + 2/2 , xi + 6 *2 y2 + y4
6 r 8

si»j qp = cos qp0 ( — — X

: x x8
sin qp = cos qp0 ( -

_ , _r
2r 2 24 H

sin qp0 ( 1

sm qp — sm qp0 = cos ( 5C2 - t- 2/2
t -

2 r 2

a;3
24 r 4

2 r 2 ”
6 r3

Andererseits ist mit cp = qp0 + A qp nach S . 166 :

aA + 6 os2 2/2 -f- y4 A
247 /

sin qp = sin cp0 -j- A cp cos qp0 - xl qp2 x/ qp3-^ - siw qp0 -
^

- cos <p0
Dieses mit dem Vorhergehenden verglichen giebt :

xf epi .
24 sm qo0

(2)

(3)

x/ qp
x? qp2 A cp3 x/ qpi a:' ""

24
"" * =

7
m2 + j/2 a:3 aA + 6 a:2 y2 + y4

^2 6 ' 24 r
““

2r 2 v "
6r 3 1 24r 4

Da wir die Näherung bis zur dritten Ordnung in (3) bereits haben , so kann
man daraus entwickeln :

A „ x2 x y2 , X2 yl t2 -+-

A qp3 = a:3 3 a:2 y2
t , A epi =

jr
4r 4

tp4

t2

r s 2 ri “ ’ “ ^ H
Wenn man diese Ausdrücke in (4) einsetzt und ordnet , so bekommt man :

xl qp = - £ -T r 2r 2
xy 2

'
2 j-3 i2 • ■^ i3 + 2f7 < (1 + 8i2 ) (5)

Damit haben wir x/ qp, und um zu X zu gelangen , schreiben wir eine Contan
gentengleichung an in Bezug auf das Dreieck CPA , nämlich :

cotg
n x ^ .—

J
sin qp0 = cos qp0 cos — -t- sin — cotg (180° — Ä)
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tang sin cpg = cos (jPocos - sin cotg /l

, „ . y 1tang k = sm — sec opn-» r
-ru „ 8

cos - - tang — tcmg <Po (6)

Der Nenner entwickelt giebt :
J - tang — t = 1 - yi ‘

3rs ; r 2r 2
'

3r -3
davon die Eeciproke entwickelt , wird :

i/2 # 3
1 + x2

3r3 *j + l ^ i2 + l .f ^ + 73 ^ (7)

Wenn man sin — = —
r r

ordnet , so erhält man :

<y3
• von (6) damit multipliziert und alle Glieder

d r *

(8 )

rs £ -h i

Ua A = fang A — braucht man in erster Näherung von (8) :
o

tang A = sec cp0 j

also (tang A)3 = sec3 qp0 t + . . .

- F = “^ £ o + *o + ^ ‘ <' + ‘!>
Dieses vom Vorhergehenden (8) abgezogen giebt :

^ sec % {| + ^ f _ g i2 + ^ <2 + | | , ( i + St2 ) _ ^ (l + 6t2 ) } (9)

Um umgekehrt x und y als Funktion von ziep und A darzustellen , kann man
verschiedene Wege einschlagen ; aus Fig . 1 . S . 431 hat man :

' ncos - ■cos <p0 cos (90 ° — qs) + sin qp0 sin (90 ° — <p) cos (180 ° — A)

• vj -sm~ — cos (jD0 sm cp — sm <p0 cos cp cos k

A2sin — cos CjpQsin cp — sin (p0 cos cp ^
1 —

^
. x . /A2 A<

sm — = sm (q>— <p0) + sm qp0 cos q> I ■ —
24

cp = cp® zl cp

cos cp = cos epo— A cp sin cp0 -

A4
'

24

ziep 2
cos epo

a q;2 ;Sin epocos cp = cos 2cpo ( t — ziept 2 -
p

— t

ziep2
2

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd .

sin— = sin A cp + cos2 q)0 1 ( 1 — zl QDt
A4
24

28
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' A2 A4 „ A2 zlffi 2 A2'
— -st — A Cpt ^z- iSC ! tsin = sin A cp -+- cos2 9>o M -

y
—

24
— ^ <P 4

2
—

4

erste Näherung »
*

= dcp + cos 2 <jp0 1

T isinvf = ~~
W

~ + Tb J T2 *a cos2 'JPo*12 '

Da — = siw — + i ( sin — ^ und sin A cp = Acp — ^
^ , so wird aus dem Vor-

r r 6 \ r I 6
stehenden , da die Glieder mit A <jp3 und Acp 2 X2 fortfallen :

x . A2 eos2 tönt * X2 „ „ A4 „- = Acp -i- 5-^ — ^ 95 -
Q

- cos <Po ( M C0S ?0 * (10)

VUm — zu erhalten , nehmen wir von Fig . 1 . :

lang Cpsin cpo = ■— cos <jp0 cos X + sin 1 cotg ■

Vtang — = sinX
(11)

r cos <f)0 (tang cp tang <p0 + cos X)
<p = <jp0j+ A cp, tang cp0 = t giebt nach S . 167 :

tang cp = tang <p0 + A cp (1 + f2) + A q) 2t (1 + t2) + ( 1 + 41 2 + 3 <4)ö

tang cp tang cp0 = t2 - f- A <p t (1 + t2) + A cp2 t2 (1 -f - 12) + - t (1 + 4t 2 -1- 3 U)
o

x2
und da cos A = 1 -

g
- + . . . hat man den Nenner von (11 ) :

V+ t2 + A <p t (1 + 12) + A cp2 t2 ( 1 + i2) + ^ t (1 + 41 2 + 3 t4) — y

und da 1 4 - i 2 +
1

cos2 cp0
, wird nun (11 ) :

tang = sin A cos cp0-
1 + A cp t + A cp2 t2 + ^ cos2 <jD0 1 (1 + 4 f2 + 8 <4) - '

j

Die Eeciproke des Nenners entwickelt

x
= 1 — * x2 — a;3 giebt :

qj | ^ 0)3 |tang A- = sin X cos cp0 j1 — A cpt + -
g

- cos2 <p0 — Ut- t — A cp X2 cos2 (jPo

A2
cos2

sfw A = A - A3
bringt :

^ = A cos <jp0 j 1 — Z/ qo t + ^ - cos2 <jD0 (2 — t2) t45 ? <
3

A2
(12)

+ z/ <p — cos 2 <j>0 f (— 5 + 6f2)

Dann der Übergang von ferner auf -^ bringt noch :

Vtang — = A cos cp0 — A cp X cos cp0 t
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1 f . v \ 3 X2 cos2 cp0 . .
Y ( tang ^ j = -

g
—° — AcpX2 cos2 <p0 1.

Diese beiden Glieder oben bei (12) abgezogen geben :

y
= Ä cos (jp0 j 1 — Acpt — ~ cos2 <Po & — ~

y
~ t + d <P y (13)

So haben wir nun in (5 ) , (9) , ( 10) , ( 13) alle Formeln zur Bestimmung von A cp
und Ä aus x , y und umgekehrt .

Diese vier Reihen sind unmittelbar aus geschlossenen Formeln der sphärischen
Trigonometrie abgeleitet , und zur Probe kann man sie auch noch gegenseitig verbinden .

In diesem Sinne wollen wir die Gleichung (9) umkehren , d. h . nach y
auflösen . Man

findet durch Reciprok -Entwicklung aus (9 ) :

Hier ist nach (10) und (13) :

t :
r

7$ Tfi
■Acft — y cos2 (pofi -hZlcp y cos2 (jp0 ß

V
y

= X cos <jp0 — A cpX cos cp0 t

J2 2
y cos2 <jp0 —

y
A <p X2 cos2 <pQtj /2

.
3 r2

x% A <jp8 x y2 _ A cp
3T 2 = ~

§
~ ’ Tr 2 ~ ~

1T

Dieses alles oben eingesetzt wird geben :

y2 cos2 qiQ

' I2) | (14)r ■COS<p0 11
— A (p t —

y COS2 <j90 t2 - y tA Cf) y COS2 epo t (1

Wegen cos2 qp0 ( 1 -+- t2) = 1 , ist dieses (14) mit ( 13) identisch .
Wir wollen auch noch die zwei Gleichungen (5) und (9) zusammennehmen , um

eine Auflösung nach — daraus abzuleiten . Jedenfalls geben dieselben in erster Näherung :

xy

— — Aw und
r

— A cp X eos <p0

— = X cos cp0T

^ = X2 cos2 »Po
aus (5) :

— = Acp + ^ cos2 cp0 t 1 - = \ coscp0 — AcpXcoscppt
TZ T

xy 2
r2 — A cp X2 U- = X2 cos2 q>0 — 2AcpX 2 cos2 qp0 t

r2
Damit aus (9 ) bis zur dritten Ordnung :

y
= A cp + \ cos2 q 0 1 -

A cp ,- X2 cos2 <p0 <2

man aus (14)
y2 14,

= X2 cos2 <p0 — 2 A <p X2 cos2 ep0 i — =- cos4 cp0 t2 -p- A cp2 X2 cos2 % t2
O

2 2
Um zur 4 ‘en Ordnung zu gelangen , braucht man aus (14) genauer als vorher :

Xi
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und xy 2 X^
A (pX2 cos2 pp — 2 A qc2 2. 2cos a <Po * + ~ä cos 4 'Po *

die letzten Glieder in (5) sind genügend :
x 2 y2

r i = A q>2 X2 cos2 g)0
V— = A4 cos 4 <Po

Wenn man mit alle diesem die Gleichung (5) nach — auflöst , so findet man ,

dass die drei Glieder mit A q>2 A2 sich aufhehen und dass im übrigen die frühere
Gleichung (10) wieder herauskommt .

Dadurch sind die vier Gleichungen (5 ), (9) , ( 10 ), (13) auch unter sich nochmals
versichert .

Es fehlt noch die Meridian -Konvergenz , welche auf verschiedenen Wegen er¬
halten werden kann .

Das Dreieck C4P Fig . 1 . S . 431 giebt :

yl — vuö i ~ - — l vuö - r- isori.(
7t CC

-
g

, n x \ y . _= cos | -
g
- ~ I cos -

y + sm ~ cotg y

x . x y . y ,eotg <po cos —- = sm — cos -+- sm ^ cotg y

tang y = sin -
y t

tang y = sin — t

x . x y , .cos - sm — cos — 11r \ r r ,

.. x 2
1 j*2

£C3
6 r3 2r 2

tang y =
1 x x2

r 2 r 2
a;3 x «2

673 < + 2 ^ * ' m4
24 H

tang y ■■

tang y --

ys \ , as , x2 „ „ ® «2 a;3 t’ ft Q ^ \ 1 H- t + - - (1 + 2 t2) - 0 Q t + ^- T (5 -6r3 / r 2 r2 2 r3 6r 3 '

■11 üJ (i ,
r 6r 2

~
2 r2 '

2 x y% x s t „24 ) -
y ^ r * + 67 § (5 ' 5t2) |

Durch den Übergang von tang y auf y hat man :

1 = !L t + M - t2,r r 2
„ 2/3 3 2/3 *

y3 = —„ & + a
r3 r 4

3r 2 r s
_ ZI _ y_ t /

S
~

f !

? = ^ ‘ j1 + V < - | 3 ( l + 2 1.) + ^ (l + 2 .») - | 5t (2 + 3 .-) | ^
CC3 t

'
678 (5 + 6 t2)

Um auch y in cp und X auszudrücken , nehmen wir aus Fig . 1 . S . 431 die
sphärisch -trigonometrische Gleichung :

cotg cp0 cos q> = sin cp cos X + sin A cotg y
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sin A sin <p0

437

I 2 '
cos (jPo cos <jp + sin qn0 sin <jp 11

- -

sin A sin <p0
A2

cos {cp — (p0) — sin cp sin <p 0U

cp = cp0 + z/ cp , sin cp = sin % -+- A cp cos cp0
sin (p sin q 0 = sin2 cpQ+ d <p st« (p0 cos <p0

tang y =
sin A sin Cp0

1 - ^ - ySm
2 (o0 — Jipycos

2 cp0 t
2 2

/ zf ®2 A2 A2 \
tang y = sin A sin (JD0 f 1 “•- ^ — b y «i»2 (p0 + / / cp y cos2 (p0 1J

/ X2 J (V)2 ^.2 A2 \
ion^ 7 = A sin cp0 1 —

y + — + y sin2 <p + J <jp y cos2 qp0 i I

ion^ 7 = A sin qp0 ^
1 + + y (3 sin 2 ?>o _ I) + ^ <? J c<w2 'Po

/ = A sin <po -+- • • •
73 = ^3 sin 3 <jpq + . . .

7 = A sin qp0 ^
1 + - - cos2 <p0 + xd (jfy cos2 <p0 1 j (16)

Zur Probe kann man auch noch die Formeln (15) und (16) gegenseitig in
einander umwandeln . Wir wollen zu diesem Zwecke ( 15 ) und (16) nochmals aufgelöst
schreiben :

' = f ‘ + f ts - ig >, (1 + 2 '! ) + 2 ! (, + !! ‘0 - | S ‘s '2 + s ‘!' + i? 3
! ,5 + 6 '’, (ro

7 = A sin <p0 -+- - Xsin <p0 — y sin <pg cos2 <p 0 + d <p y sin (Po cos2 (p0 1 (18)

Um (18 ) in (17) umzuwandeln , hat man nach (9 ) :

Asm % = l < + ^ f2 _ ^ iB + ^ t3 + 0 2 (l + 3 t2) - g ^ ( l + 6 ^ )

ferner von (5) :
1 a: v2
1 qp = - - t -* r 2 r2

d (f, = *± ?jt t^ a*2 ro

dqZXsincpo = - ~ t — ^ | - ta +

As sin3 qp0 = | g t3 + - ~ t* und ^ sin g>0 cos2 (Po = ^ 3 < + ^ IT

4* <T sot g 0 eos 2 (f0 1 =
2^ 4

!

Wenn man alles dieses in (18 ) einsetzt , so wird man nach kurzem Zusammen-

fassen (i 7) erhalten .

f

. • i' :
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In derselben Weise kann man auch (17) in (18) überführen , indem man zuerst
~ t = X sin <p0 ( 1 — . . .) aus (13) nimmt , ferner entwickelt :

t — /JqiXsinqiQ— d <p2 Asin qp0 1 -+- 4 . sinqi 0 cos z cp0 t — — dqiX 2 sin (jr0 eos2 cp0 t2

~
$

= Ä3 cos8 Vo — 3 d <jp Ä3 cos3 <p0 1 u . s . w.

Alles dieses in (17 ) eingesetzt und geordnet , wobei das Glied mit dqß Xsin <f0 t
Terschwindet , wird den Übergang auf (18) richtig geben , so dass nun die Formeln (17)und (18 ) bezw. die beiden (15 ) und (16 ) für y in allen Beziehungen kontrolliert sind .

Unmittelbare Anwendungen werden diese sphärischen Formeln nicht geben,
ebensowenig als z. B . bei den Soldner sehen Coordinaten die sphärischen Reihen von
§ 53 . zur unmittelbaren Anwendung brauchbar waren . Die entsprechenden Formeln
für das Ellipsoid werden wir im folgendem § 83 . neu und selbständig entwickeln , aber
nur bis zur dritten Ordnung , weil die Glieder 4*« Ordnung , welche wir hier nur
sphärisch entwickelt haben , auch den sphäroidischen Gliedern 3ter Ordnung noch an¬
gehängt werden können .

§ 83 . Queraxige sphäroidische Coordinaten.
Dessauer Coordinaten .

Die Lage des Coordinaten -Systems haben wir wie auch im vorigen § 82 so an¬
genommen , wie in Fig . 1 . angedeutet ist , dass nämlich + x nach Norden , + y nach
Osten geht . Die Hauptaxe oder eigentliche Axe ist die y -Axe , welche den mittleren

Parallelkreis berührt , dessen Breite in der nach¬
folgenden Anwendung mit <p0 = 51 ° 50 ' ange¬
nommen werden wird .

Wir gehen aus von den Formeln (25), (26)
(27) § 74 . S. 395 , welche gelten für den Über¬
gang von einem Punkte in der Breite <p, Länge
Null , mit der geodätischen Linie s , die unter
dem Azimut a ausgeht zu einem Punkte mit der
Breite <p '

, Länge X und Endazimut also
Meridian -Konvergenz «'— a .Jene Formeln haben wir zweifach anzuwenden , erstens auf den Übergang von

0 nach B und zweitens von B nach A in Fig . 1 . § 82 S . 431 .
Der erste Übergang von <p0 nach <p , mit s = x , « = 90 ° giebt mit u = 0,

yV ^ ~ Zlir ^ en Ordnung :

Fig . 1.

+ x

51 ° 50 1
-y +y

- X

<Pl— <Po _ V_ _ f
F 02 2Nq2

° (1)

(2)

(3)
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Die zweite Anwendung geht vom Punkte cph Zj , yi mit a = y, und s = x nach
dem Punkte <jp, gegen (<pj , Ä2) und y — yj als Meridian -Konvergenz . Dieses giebt
aus (25), (26 ), (27) S . 395 bis zur dritten Ordnung einschliesslich :

" *
^ o2

)
- | | 27i 3 i 1 -

2 ^
2 (1 - 4i 2 + ’/i 2- 5 ^ si 2) W

II

qp— <Px _ fl i -i
r,2

-
Nl \

1 '
2 N (p

x y , , -̂ yr h (1 + 2 t -p -|- t] j2)

(5)

(6)
2 N 0

Ehe wir diese beiden Gruppen , von Gleichungen addieren , müssen wir die Ni
auf Nq , tj auf t0 u . s . w. reduzieren , auch wollen wir überall die N durch V aus-
drücken , denn es ist allgemein N = c : V.

Dazu hat man nach § 34 . S . 208 , Gleichung (1) :

jVo
Ai

D
^ 0

’ « I - Sir -J » ,, ,

also wegen (1) :

-ft = 1 + 24 ^ f«2 = 1 + 45
! ^ to2

-̂ ,1 . 3 v/2 F02
- 7o 2 *o2 (7 )

Ni c c ^
‘ 2 e2

Zur Reduktion von cos q j auf cos q 0 und tang qq auf tang q 0 hat man wegen (1) :

Tb — To ~h (rfi — Io ) — Io — ^ 2 io

V2 . •
cos (jfj = cos sm Io

y2
<Pi = ta # ^ “

2cä ^ H~ ^

d . h. *i ~ <0 2 c2 fo ( 1 + ^o2)

(8)

(8a)

.
Damit giebt die Gruppe II mit Beschränkung überall auf 3te Ordnung , wobei

ln en höheren Gliedern schlechthin t statt (0 u . s . w . geschrieben wird :

II a

9 - * * =
t F °3

( x + 4 S F2 <a
) ( i - & 7242

3 #2 7.3
2

”
c2 vir i2 t — ^ 3

I75 (1 — t2 -H J?2 — 5 ??2 t2)

^ (eos <p0 + ^ . . .j = ^ | F 2 t + ^ F3 t2

f - fi = ^ | F 2 t2 + ^ f F3t (l + 2t 2 + 7?2)

(9)

(10)

(11 )

Wenn man dieses II a mit dem ursprünglichen I zusammennimmt , auch uberal

(7) berücksichtigt, so erhält man, indem in den höheren Gliedern nur noch t statt t0
s. w. geschrieben wird :
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<P - <Po

(12)
— — + f — t 2) — V &<2 (1 — 37 /2)

III X cos q 0 v* t + VS t 2

F 2 t2 + F3 t (1 + 2 i2 + 7/2)0̂ *0 +

(13)

(14)

Diese Gleichungen entsprechen den früheren sphärischen Gleichungen (5) , (9)
(15 ) im vorigen § 82 . S . 432 , 433 , 436 , his zur dritten Ordnung .

Es handelt sich nun darum , die Gleichungen (12 ) und ( 13 ) nach x und y auf¬
zulösen , was durch fortgesetzte Näherung geschehen muss . Dabei wollen wir uns zur
Bequemlichkeit erlauben , statt V0 und t 0 u . s . w . kurz V und t n . s . w . zu schreiben ;
während also in (12 )— (14 ) , wenigstens in den ersten Gliedern , noch V0 sowie t0 und
cos q 0 geschrieben war , können wir jetzt , da keine Verwechslung mehr zu befürchten
ist , auch in den Gliedern erster Ordnung die Vereinfachung V und t annehmen ; wir
dürfen aber zum Schlüsse nicht vergessen , dass alles dieses sich auf den Ausgangspunkt
q o der Breiten beziehen muss .

Gehen wir nach dieser Zwischenbemerkung über zu der indirekten Auflösung
der Gleichungen (12 ) und (13 ), so haben wir jedenfalls in erster Näherung ;

*
= und y_ ^ Xcosq

(15)VS VS c
—

V
X2 _ A q 2
C2 “ y 2

_ I 2 cos z <p X y AqXcosq
C2 F 2 ~

c2
~ —

F4
Diese Näherungen in (12) und ( 13 ) eingesetzt gehen his zur 2ten Ordnung :

x _ A q X2 cos2 cp 3 Aq 2
2 F5 (16)

und i ' . = L C0SJi _ dyl cos cp f (17)

Nun nochmals , bis zur 3*en Ordnung aus (16 ) und (17 ) ;
x2 _ A q 2

| j qr-X2 cos2 <p t , , 4 ^ ^
c2 ~ ~

VT H yi h ä ~
vs

~^ t

7/2
_ X2 cos 2 q 2 A q X2 cos 2 q

c2 ~
F2 W t

( 18)

(19)c2 F2 F4
xy _ Aq X'Cos q A q 2 X cos q>t

(2 — 3 7/2)cos3 <p j

für die Glieder 3ter Ordnung kurz die Näherungen (15 ) , so bekommt man :
^ V' X2 3 A cp2cos2 q t cos2 q t2 -+ 2 F5

?/2 (— 1 -+- f2 — 7/2 — 4 7/2 <2)
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X cos <f AqX cos q>t A8
■■ y .COS8 (f' t2 3 4 ^ C0S (pt 2r ]Z (22)yoFS 6 F “”“ " 2

Endlich kann man auch noch die Meridian -Konvergenz in (14) durch (16)—(22)
als Punktion von q> und Ä darstellen :

y = X sin qr
A3 F2

sin q cos 2 q
/] (jr2 A sin q

2T 2 (23 )

Zur Probe kann man auch wieder dieses (23 ) mit Hilfe von (12 ) und (13) in
(14) zurückverwandeln , was stimmen wird .

Nun haben wir in (12 ) — (14 ) und in (21 )— (23 ) alle nötigen Formeln bis zur
3*en Ordnung.

Dazu wollen wir auch noch die rein sphärisch entwickelten Glieder 4ter Ordnung
zusetzen , welche im vorigen § 82 . unter den Nummern (5 ) , (9) , ( 15) und (10) , (13 ),
(16) enthalten sind . Wenn wir ausserdem auch überall die nötigen g zusetzen , so
bekommen wir folgende sechs Gleichungen , wobei nochmals zu beachten ist , dass wir
zur Bequemlichkeit nur V und t statt der früheren F 0 und *o schreiben und dass
9 ~ 9o = 4/ cp gesetzt ist :

A q, = ~ F3 g — V* t g — Vi iß t g + ^ F 5 1 (- 1 + *2 - 1 + 5 1 ^ P J

- at *) e [- | | g
F8t8 (l _ 3l/ *) e - x2 z/2

Xcosq = JL V (> +- ^ - F8ip -h ^ F8i8ß _ ^ F3tSß + 0t (l + 8ta )ß

- Jftd + et 2) ,

7 =
J Vt9 + ^ V2 ßg -+- ^ Vn (\ + 2fi + if ) g —̂ V‘n {\ + 2 ^ + if-) g

]

(24 )

(25 )

g V3
X2 c'

2 gW
C0S2

ys
Sifß 9 + 4 4s 92 *

- 6t 2) ß

2 fi2 F 5

_ a cos qi c H qn A cos q c

Jrf { 14,.

J ^ SV7 V2 (- 1 + t2 - »?2 - 4 z?2 t2) -
g 4

cos2 y. t

- — ~ cos* qß - ~ ^ cos cp fl t

A cps X c sin cf' AqX 2 c sin q
S

~
gi

1 6gi

Tr3

(27)

(28 )

(29 )7 - Xsinq>— s in q. cos 2 rf + + ~^ r slrfi eos 9

Man kann die Coefflcienten dieser Formeln teilweise auch in mehr anschaulicher
Form schreiben , denn es istn , denn es ist

F3 _ 1
c

~ ~
M

V
c N

F4
~
0 72
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wobei M und N die Haupt-Krümmungs-Halbmesser und r der mittlere Krümmungs-
Halbmesser sind.

Bei den Gliedern 4ter Ordnung, welche nur sphärisch entwickelt sind , haben
wir schlechthin c als Halbmesser gesetzt ; wir haben diese Glieder auch noch besonders
sphäroidisch entwickelt und gefunden für qp— epp:

yi retve <3 ( l + nz . . .) + (1 + 3 «2 + if . .)

Man könnte also wohl den Faktor VS in den zwei letzten Gliedern von (24 ) zusetzen ,
aber da die vernachlässigten Glieder mit ifi . . . das alles nochmals ändern können ,
indem F2 = 1 + ift ist , haben wir kurzer Hand c4 in allen Gliedern 4 ‘er Ordnung
stehen gelassen , obgleich N4 oder H statt c4 sich vielleicht mehr empfehlen würde .
Es kommt uns bei jenen Gliedern 4ter Ordnung nur auf die wenigen ersten Stellen an.

Zur ,Anwendung dieser Formeln auf die Dessauer Normalbreite 51 ° 50 ' hat man
folgende Konstanten :

log cos (p = 9 .790 9541 -080
log cos* cp = 9 .581 9082 -160
log e'2 = 7 .827 3187 -833

log sin cp — 9 .895 5421 -736
log sin%cp = 9 .791 0843 -472

log rß = log e' ĉosZ cp = 7 .409 2269 -993
log i;212 = log c'2 sw2 qp = 7 .618 4031 -305

rfi = 0 .002 5658 -248
?/2 tfi = 0 .0041533 -940

F2 = 1 + 7/2 = 1,002 565824805
log 7/4 = 4 .818 4540
log 7/4 £2 = 5.027 6301

t/4 = 0,00000 65835
7/4 1‘2 = 0,00001 06569

log V2 = 0 .001 1128 -964
log V4 = 0 .002 2257 -928
log F5 = 0 .002 7822 -4

log V = 0 .000 5564 -482
log V3 = 0 .001 6693 446
log F ? = 0 .003 8591 -4

tang qj = t,logt = 0 . 104 5880 -656
*2 = 1,618 7363 -954log t2 = 0 .209 1761 -312

4 .685 5748 -668log q = 5 .314 4251 -332

log c = 6 .806 0976 -435
log c3 = 0 .418 2929 -3

log c2 = 3 .612 1952-870
lug c4 = 7 .224 3905 -7

Wenn man diese Konstanten in die vorhergehendenFormeln einführt, so erhält man:
für congruente Coordinaten x , y

Jcp = [8 .509 9968-343] x — [ 1 .508 0137 -1] y2 - [9 .394 3620 ] x ^
-+- [1 -811 208] »3 — [4 .803 7047] x y* — [8 .10277 ] a;2 y2, + [7 .58202] y4

X = [8 .717 9298-299] y + [2 .016 9767 ] x y + [5 .316 0226] «2 y— [4.838 9023 ] y3 + [8 .69416] x* y — [8.65540] x ßi
y = [8 .613 4720 -035] y + [ 1 .912 5188 -8] x y + [5 .328 6062] a;2 y— [4 .851 4850] y3 — 8 .6582] xy3 + [8 .688 74] & y

x = [1 .490 0031-657] A q, + [5 .562 1572 -1] A2 _ [0 .351 2073] A cpW
+ [3 .864 3715] A q * _ [7 . 744 955] ^ g,3 _ [3 .854 68] X4

y = [1 .282 0701 -701 ] A — [6 .071 1200-1] AqX — [9 .666 1530] *3
— [8 .445 4885 ] A gU — [4 .96682] A cpßX + [4 .66579] AqX 3

y = [9 .895 5421 -736] X — [8 .071 5618] A3 + [8 .964 5490] J cp* X
-+- [3 .33773] A cp A3
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Zu einer ersten Anwendung dieser Formeln wollen wir in runden Zahlen nehmen :

(30)x = 50 000 m y — 50 000 “

Daraus erhält man :

J qp = 1609,761 561 " = 26 ' 49,761 561 "

1 = 2637,728 348" = 43' 57,728 348"

y = 2073,867 723" = 34' 33,867 723"
(31)

und die Rückverwandlung :
x = 50000,00015 ”“

y = 50000,00063“

y = 2073,867 640" = 34 ' 33,867 640"

Die Proben stimmen in x auf 0,15 "'” , in y auf 0,63 ’““ und in y auf 0,000083
also überall befriedigend .

Einzelheiten hiezu sind in der „Zeitschr . f. Verrn .“ 1896, S. 88—89 angegeben , wobei aber zu
bemerken ist , dass die Coefficienten zu x3 und zu J 9>s dort ein wenig anders , d . h . etwas weniger
genau in Bezug auf die Glieder t?2 angegeben waren .

Übergang zu bonformen Coordinaten x , y.
In den bisherigen Formeln ist angenommen , die Coordinaten x , y seien na ur ,

unverzerrte (kongruente ) , wie in dem Beispiele (30 ) ; wir wollen nun a er anne
.

men ,
das Coordinatensystem sei ein konformes , entsprechend dem früheren § , wo ei

^
nun die x die Rolle der früheren y übernehmen . Dann geht jedes x über in * + 6r 2

während die y ungeändert bleiben , oder wir wollen nun , indem wir die konform

mit X bezeichnen , setzen :

wobei für die Breite 51 ° 50 ' l° 9 5 .611 879 und l° <7g r 2
2 .249 66 j

wobei übrigens in den Gliedern 4ter Ordnung , wie schon früher , c und »

unterschieden zu werden brauchen . , , . w-
Betrachten wir zuerst die Gleichung (24 ) für Jqp , so sieht man , dass

führung von (30 ) nur auf das erste Glied einwirkt , indem es gie

(1 + rf ) X? (34)

Hiezu kommt das Glied in (24 ) , welches * 3 selbst enthält und nun auch mit

AS geschrieben werden kann , nämlich :

Xö~
6eä Fä (- Si72 <2 + 3i72 -F3 ^ —

Dieses mit dem letzten Gliede von (31) zusammengenommen giebt :

■yg
— ~ Vö (1 = 4 — 3 if *2 + 3 r,i — 15 rfr P )

In dieser Form werden wir dieses Glied ln
mit demwiederfinden . In (25 ) bringt das zweite Glied eine A d

J ist ) ^ohnehin vorhandenen Gliede x$ y 9 wo wir aber , weil
weglassen , also :
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X cos q>= — V -h ~̂Vl \ x -
c

— M- V3 .
cs

pX VH -

X3
'

6 c2

yXßt
6 c4

X 3 y t
(1 + 3 t 2) ■

3 c4

(- 1 + 2 + 6 *2) = . y X 3 t
(1 + 6 <2c ca 6 c4 ' ' . 6 c4

Dieses Glied wird sich in der nachfolgenden Gleichung (37 ) finden .
Ähnlich wird auch y behandelt , was wir nicht näher auseinandersetzen wollen.
In der Umkehrungsformel (27 ) für x erhält man beim Übergang auf konforme

Coordinaten (ohne g) :
„ X 3 dCp 12 C „ . ,X

6 c3 ^
F 3 + 2 V C0S t f + ' • ■

also wenn man das Glied mit X 3 auf die rechte Seite bringt , wird :
X = dq X2 c . „ A3 Vi

(cos2 q>t) J ^ + .
3 / / (jT2 Ä2 C3 COS2 Cpt \ V &

öT 2

Z/ .jfE - 4 ft 2)V3 “ 1

M <r s oI - + C3 - , - -\ F9 1 2 F 7
dqSV 2 dq 2 X2

„ Jff .2
TTT { + T7T c ^ < + . + -^ F7

Das erste und das dritte Glied lassen sich zusammennehmen (mit F 2 = 1 + ?/2)

% r[> (1 — <2 + ?/2 + 47?n 2)

und dadurch wird :

X = Ä (1 - 4 7/2 — 3 rf (2 + . 3 ,/4 -+ 12 7/4 t 2) . dq 2 x2
c cos2 q>t -f-5 FF ‘ 1 " 1 “ ■' 1 - “ •/ - / ■ 4 ^ 3

Das sind nur die Glieder , welche sich in (27 ) ändern ; im Ganzen hat man dann die
Gleichung , wie sie in nachstehender Zusammenstellung bei (39 ) sich findet . Die Formeln
für X und y sind dieselben geblieben wie früher (28 ) und (29 ) . Hiernach hat man
folgende Gebrauchsformeln für konforme X , y :

^ =4 ^ -
2̂ ^ - 3 X V 4 7/2 t PFS (1 + 4 7/2- 3 ?/2t2 + 3 774- 15 7/4«2) p j

- fjFS ^ 1

XcOS (f - ~ - V Q ■

y = ±Vt Q -

Xy
C3 F 3 tg

2 c3

~ 3 ti2) g

X2 y

■3 t 2 ) g

C3 ys t%Q — JL
^ ys g

^ 2/t (l + 6t2 ) p _ gt (l + 6i2 ) p

>(37)

X y V2 tg - X2 y
2 c3 FS t (1 + 2 <2 + 7/2) p

’
O (1 + 20 + ,/») *, - Xj/ _

3
‘

3 c4

X 3 n

Für die Umkehrung der Aufgabe hat man :
dq c , 1.2 c _ 0 , zJcpX2 c

3 c4

t2 ( 2 -

<2 ( 2 -

ot 2) g

3 <2) g

+

X

d <jps c
g F3 2p 2 y COS3 q f -

2 p 3 F3 sin2 q ■ 3 zJ cp2 c'
¥

“
§ 2

“
FS 7/2 t

y , (1 + 4 7/2— 3 7/2<2 4- 37,4 + 12 ^ 2) . dq » X2
CCOS2 (f ' t -

A4 c
(39)

cos2 qi t, g-s ‘ ‘ - 7 t 4 v '"”“ 4 ”
24p 4

Die früheren (28 ) und (29 ) bleiben auch bei konformen Coordinaten gütig un
sind hier einzufügen .
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(36a)

(37a)

(38a)

(40 )

Mit ausgerechneten CoSfficienten-Logarithmen bekommt man folgende Formeln :

für konforme Goordinalen X , y
ziep = [8 .509 9968 -343] X — [1 .508 0137 -1 ] y2 — [9 .394 3620] »2

- [4 .119 7471] X3 — [4 .803 7047] Xy * — [8.10 277 [ X2 yt + [7.58 202] yi
X = [8 .717 9298 -299] y + [2 .016 9767] Xy + [5 .316 0226] X2 y

- [4 .838 9023] yS + [8 .65 540] F3 y _ [8 .65 540] X yS
y = [8 .613 4720 -035] y + [ 1 .912 5188 -8] X y + [5 . 328 6062] X2 y

- [4.851 4850] 4/3 _ [8 .6582 ] XyS + [8 .6582] X » y
X = [1.490 0031 -657] A cp + [5 .562 1572-1] A2 - [0 .351 2073] cp A X* I . 0

i- [3 .864 3715] A <p2 + [0 .079 8989] A cp3 + [4 .63 283] A cp* X2 — [3 .85 468] iWJ
1 ;

Die früheren (28) und (29) gelten auch hier wieder.
Wenn man hiernach das grosse Beispiel (30 ) rechnen will, so muss man zuerst

« = 50 000“ umwandeln in :

X = * + = 50 000,51143“ , y bleibt = 50000“
6 r 2

und damit erhält man aus (36), (37 ) , (38 ) :
Acp = 1609,761 560" = 0 ° 26 ' 49,761 560”

X - 2637,728 353 = 43' 57,728 353" } (41 )

y = 2073,867 605 = 34 ' 33,867 723"

und die Rückverwandlung nach 39 giebt :
X = 50 000,51161“ (42 )

Dieses stimmt auf 0,18““ mit dem Ausgangswert in (40 ) , y und y bleiben hier
dieselben wie bei (32) .

Um auch eine Anwendung mit recht¬
winkligen Coordinaten zu haben , stellen wir
zuerst mit Fig . 2 . die Formeln auf ,

-welche
aus § 50 . dadurch hervorgehen , dass man x
und y vertauscht , wie in Fig . 2. angedeutet ist .

Indem wir im übrigen mit t und T die
Richtungswinkel wie früher bezeichnen , haben
wir nach Fig . 2 . :

tangti = ^ ¥l
x2

tangt^ — y.]
~ y^

®1—«2

Fig . 2.

sin ti cos tj

. V\ — 2/2 _ x l a 2
COS

+x

T,
T2 12

ti

*1
x 2

h
0

=
j/ (2/2 — 2/l )2 + (* 2 * l )2

Xi -b * 2
4x 0a + *22)>wobei

Dieses gilt wie immer in der Ebene .
Zum Übergang auf das Ellipsoid (bzw . genähert Kugel) hat man :

tl - ZWj/2

- ^ 2 =

log 8 = t,

(43 )
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Der mittlere Krümmungs -Halbmesser r hängt von der geographischen Breite ab .Wir nehmen an , wie schon bei (33 ) S . 443 :
<jp0 = 51 ° 50 ' womit log r = 6 .804 9847

log = 1 .403426 log ^ = 4-948 684

für 7. log Dezimale . . . 1 .948 634
Die Coordinaten zweier Punkte sind :

konform
Pi yx = + 10 000“ X x = H- 10 000“
P 2 y2 = + 30 000

*

* X2 = + 40 000“ (44)
Hz — 3/i = -i- 20 000“ X 2 — Xj = + 30 000“

Man kann auch die zu den konformen X gehörigen kongruenten x berechnen ,nämlich wie schon bei (31 ) angegeben :

* = z ( ‘ - S ) = x -
ä? - 5jm m )

Xj = 10000,000 “ X 2 = 40000,000 “ konform
— 0,004 — 0,262

Xi — 9999,996 “ as2 = 39999,738 “ kongruent .
Nach den Formeln (43) wurde berechnet :

h = 33 ° 41' 24,2431 " f2 = 213 ° 41 ' 24,2431"
— 1,0127 -+- 1,5190

. Tx = 33° 41 ' 23,2304" P 2 = 213 ° 41 ' 25,7621"

log s = 4 .5569 716-8
— 37 -3

(45)

(46 )

% S = 4 .5569 679-5 (47)
Nun werden aus (44 ) die geographischen Coordinaten nach den Formeln (36) —(38)

berechnet :
*1 = 8 ' 43,353 035" ^ = 51 ° 55 ' 23,265 935 7, = 6 ' 51,469 147 " 1
*2 = 26' 19,494 863"

q>2 = 52 ° 11 ' 31,394 840 y2 = 20 ' 41,84472 " J
1

Aus diesen X und ip nach den Mittelbreiten -Formeln des früheren § 77 . wurde
berechnet :

log S = 4 .5 5 6 9 6 79 -5 (49)
was vollständig mit (47) stimmt , und ferner die Azimute .-

« ! = 33 ° 48' 14,6988” «2 = 214 ° 2 ' 7,6060" (50)
das giebt die Probe :
von (46) T ] == 33° 41' 23,2304" X2 = 213 ° 4V 25,7621 "
von (48) 7i = 6 ' 51,4691 "

72 = 20 ’ 41,8447 "

Pj -4- 7x = 33 ° 48 ' 14,6995" P 2 + ^ = 214 ° 2^ 7^6068"
soll (50) «i = 33 ° 48’ 14,6988" « 2 = 214 ° 2 ' 7,6060"

Abweichungen . 0,0007 "
0,0008 ”

Diese kleinen Abweichungen sind bei Azimuten und Richtungswinkeln gleich
giltig . Das Zahlenbeispiel stimmt also in sich selbst vollständig , der angewendeten
Rechenschärfe entsprechend .
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Indessen müssen wir zu den konformen Coordinaten , welche von Gleichung (38)
an eingeführt wurden , doch noch eine reservierende Bemerkung machen :

Während die ganze Entwicklung Ms dorthin (33 ) in sich konsequent auf Potenz -

reihenentwicklungen beruhend ist , wobei auch klar ist , welche Glieder mit rp mitgenommen
und welche vernachlässigt sind , ist das von (33 ) an nicht mehr ebenso der Fall . Für
die Ausdehnung mit X — 50000 ” und y = 50000 ” ist die Brauchbarkeit auch der
konformen Formeln innerhalb 1”'” gezeigt worden ; ob aber beim Übergang zur Kon¬
formität die Glieder 3ter Ordnung nicht auch Änderungen in den Zusätzen if . . .
erfahren , das wäre durch eine schärfere Entwicklung , etwa ähnlich wie in §§ 86 . - 88 . ,
noch zu behandeln .

§ 84 . Allgemeines über queraxige Coordinaten .

In den vorstehenden § § 82 . und 83 . haben wir queraxige Coordinaten kennen

gelernt , bei welchen in einem angenommenen Ursprungspunkt ein Quernormalbogen
von West nach Ost (in der Richtung des sogenannten ersten Yertikals ) gelegt , als

Hauptaxe angenommen wird .
Indessen in weiterem Sinne können wir auch die aus der konformen Kegel¬

projektion hergeleiteten rechtwinkligen Coordinaten queraxig nennen , weil dort ein

Parallelkreisbogen zunächst gewissermassen als Hauptaxe dient , dem dann im Ursprungs¬
punkt eine Queraxe , in der Ebene berührend , angelegt wird .

Wir wollen diese beiden Arten von queraxigen Coordinaten zuerst unter sich

vergleichen und dann auch noch ohne Vergleichung mit den meridionalaxigen Systemen
im allgemeinen behandeln .

Dass bei den beiden Arten queraxiger Coordinaten die Reduktionen für Ent¬

fernung und für Richtungen bis auf Glieder -i dieselben sind , fällt sofort in die Augen ,

denn bei der Coordinatenzählung von Fig . 1 . § 83 . S . 445 bat man für beide Fälle *.

m = 1 + ä | = 1 + Wß ( *12 + ^ +

Ti — t\ = (^2 — Vii (2 X1 ■+■X2>

In der Mecklenburgischen konformen Kegelprojektion reichen in der Tbat diese

Glieder schon in II .— III . Triangulierungs -Ordnung praktisch aus , und nur in I . Ord¬

nung kommen noch weitere Glieder 3ter Potenz mit in Betracht .

Um auch die Coordinaten -Formeln zu vergleichen , brauchen wir nur die Formeln

von §§ 80 .— 81 . einerseits und §§ 82 .- 83 . andererseits zusammenzustellen ; indessen

wollen wir dabei alle sphäroidischen Bestandteile rf- . . . u . s . w . ausser Betracht lassen ,
also nur die sphärischen Glieder vergleichen .

Die Normalbreite ist hiebei natürlich als gleich anzunehmen , wir wollen aber

die Zeichen P und <p , welche für die Normalbreiten benützt wurden , auch weiter

schreiben, um sofort hieran die Formeln zu erkennen ; es soll also die Mecklenburgische

Normalbreite für konforme Kegelprojektion mit P bezeichnet werden und die zugehörigen

rechtwinkligen Coordinaten mit aq y u dann die Normalbreite für queraxige konforme

Coordinaten (Dessau ) mit q , und die Coordinaten mit 3/2-
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Da wir nur die sphärischen Glieder zur Vergleichung ziehen , können wir für
die konforme Kegelprojektion den § 80 . benützen , dagegen die queraxigen Coordinatensind in § 82 . sphärisch nur kongruent , müssen daher als konform aus § 88 . Gleichung
(36 ) , (37 ) , (39 ) , (28) ausgezogen werden durch Weglassung aller sphäroidischen Ele¬
mente rfi u . s . w.

Auf diesem Wege sind folgende Vergleichungen erhalten worden :
dqS -

24-§ 80 . (25) % = dq + \ -sinPcosP — d cpî -sin 2P +T Z • Z 0
^4 // (p4■jsirßPcosP -b g

-“—tangP

§ 83 . (39 ) ^ = Ziep —sin (p cos cp-
T u

Ä2
- dq -

^ sin 2 cp . dq 3 X4

xr - x 1 X4 . dq 4 ±— = —
24 sm (p cos y —

2t tang rp

6 _
—

24sm <r, cos<i!+ dq 2 X2
smqeoscp

§ 80 . (26) — = Xcos P —XdqsinP -r
A3- -„- sinZPcosP -ho

^ sin (p cos (p

/ JcpX3sin s P / lqßXsinP

(i )

§ 83 . (28 ) % = A cos q — Xd (p sin q — —sin2 cpcos cp -

6

dqX ^ sinq
6

dqftXsinq -
3

yg— z/i dq,X s .— + - smq cos2 q - dqßX sin q (2)

■3 . y\2 t * lZ/i 2 t2 oq 3
r 2 r 2 2 rs 6 )'3

a52 2/ 2% * 2 2/2% , * 23
r

^ 2 -
2r2

- aq

2 rS 6r8

*2 y2 1

aq 4 l
24 r 4

*22 2/2% a , V24 t
2 r 4

4 r 4
xH
24r 4

24 H

y4 t
24 r 4

( 1 + 312)

(3)

§ 80 . (35) 11cos
r

§ 83 . (37) Xcoscp = 3 .
r

y i *i t , y\ x\* s> y^ t2-
jr t +

3ir
2/2 * 2 + , 2/2 * 22

, , 2/23 <2
r 2 +

r 3 *
3 »-s

y\Sxl ts j 2/1 *i3
r 4 r4

2/23» 2
6H t ( l + 6i 2) -+- % % + (l + 6t2)

0 _ V2i^ i _ ^ 3as u «3 m
»• 6r 4 6r 4

Die hier auftretenden Differenzen kontrollieren sich gegenseitig , d . h . es ist
(1) = (3 ) und (2) = (4), wenn man in den höheren Gliedern nimmt — = dq und —= Xeosq,

r rwobei auch aq von a;2 und tq von y2 nicht mehr zu unterscheiden sind .
Diese Differenzenproben sind erwünscht als durchgreifende Kontrollen aller

sphärischen Entwicklungen für x , y , d q , X in § § 80 . - 83.Betrachten wir diese Differenzen näher , so sagen dieselben aus , dass die kon¬
forme Kegelprojektion und die queraxige konforme Projektion so nahe verwandt sind,dass sie sich nur um Glieder 4ter Ordnung in x und y unterscheiden .Bei der Meridian -Konvergenz , welche zwischen (1 ) § 80 . S . 419 und (29 ) § 83 S. 441
zu vergleichen ist , beträgt der Unterschied dritte Ordnung , welche aber in dieser Be¬
ziehung mit der 4*en Ordnung in x und y gleichartig zu achten ist . Da die Glieder 4‘eI
Ordnung in den Coordinatenrechnungen sehr wenig ausmachen , kann man für kleinere
Ausdehnung die Kegelprojektion und die queraxige Projektion fast als identisch betrachten.
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Vergleichen wir weiter und setzen etwa den Fall , man wolle für ein Land von
ausgesprochen west - östlicher Ausdehnung , wie z. B. Sachsen oder die Schweiz , ein
west-östlich angepasstes System anlegen , so empfiehlt sich das konforme Kegelsystem
durch die scharfe Definition seines Prinzips , das in geschlossener Form angebbar und
bis zu allen nötigen Ordnungen bereits entwickelt vorliegt (Mecklenburg). Als kleiner
Nachteil ist nur die algebraische Form der Richtungsreduktionen zu betrachten , welche
für Triangulierung I . Ordnung mit ~ nicht ausreicht , sondern noch ~ und nach

Umständensogar noch einzelne -i verlangen kann ; doch ist schon von der Triangulierung

II . Ordnung an die Richtungsreduktion mit — genügend .

Solche Glieder mit i treten bei der eigentlich queraxigen Projektion (§ 82.— 88 .)
nicht auf, und das queraxige System ist insofern im Vorteil ; aber andererseits müssen
wir hiezu bemerken , dass eine vollendete Entwicklung der Formeln für rein quer-
axiges System in unseren vorstehenden §§ 82,—83 , noch nicht vorliegt . Jene §§ 82 . 83.
sind bei massiger Ausdehnung , wie sie in § 83. vorausgesetzt wurde , jedenfalls aus¬
reichend , aber im Falle der Ausdehnung auf ein erheblich grösseres Land wäre diese
Theorie noch weiter auszubilden , wie auch schon am Schlüsse von § 83 . bemerkt wurde.

Alles bisherige bezog sich auf die Vergleichung der beiden Arten queraxiger
Coordinaten unter sich ; wir wollen auch noch das nötigste zur Vergleichung queraxiger
Coordinaten mit den üblichen meridional -asigen Coordinaten beifügen (aus einem Vor¬
trag über deutsche Coorclinaten-Systeme , „ Zeitschr . f. Verm . “ 1895, S . 342).

Alle süddeutschen und auch die 40 preussischen Systeme haben als Hauptaxe
je den Meridian eines Punktes , und man hat sich daran gewöhnt , das als zu einem
ordentlichen Coordinaten - System gehörig anzusehen , allein der Meridian ist dabei
nicht wesentlich . Bayern , Württemberg , Baden haben ihre Haupterstreckung von
Süden nach Norden , und da war es natürlich , die Hauptaxe in den Meridian zu legen,
zumal der Meridian eine jedem Laien geläufige geodätische Linie ist . Wenn aber
ein Land wesentlich west -östlich erstreckt ist , wip z. B . Sachsen, Mecklenburg , Anhalt ,
so liegt kein Grund mehr vor , die Hauptaxe in den Meridian zu legen , im Gegen¬
teil, ohne Rechnung kann jeder einseben , dass dann eine Queraxe von West nach Ost
eine Menge Verzerrungen ersparen muss .

Diesen naheliegenden Gedanken hatte ich gelegentlich früher („ Zeitschi . f. Verm.
1876 , S. 266) ausgesprochen , und 1894 wurde daraus Veranlassung gegeben zu einer
amtlichen Behandlung der Sache (vgl . Queraxige rechtwinklige konforme Coordinaten,
»Zeitschr. f . Verm .“ 1894 , S . 65 —74 mit Mittelbreite <p0 = 51 ° 50 ' S. 72).

In Hinsicht auf die rechtwinkligen Coordinaten selbst ändert sich dabei gar
nichts, als dass die Bedeutung der x und y vertauscht wird, und auch die Beziehungen
zwischen rechtwinkligen und geographischen Coordinaten werden den früheren ganz
entsprechend, d . h . sie werden nicht schwieriger als für die Meridianaxe . Der Unter¬
schied liegt eben nur in der Anpassung der Hauptaxe an die Haupterstreekung es
Landes . Der Meridian an sich hat allerdings den Vorzug , dass er als Axe beliebig
iang sein kann , also z . B . vom Äquator bis zum Pol als Axe eines Systems dienen
könnte; allein wenn es sich auch in

'
der Richtung der Hauptaxe seihst nur um massige

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd .
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Erstreckung handelt , z . B . um wenige hundert Kilometer , dann tritt dieser Vorzug fast
ganz zurück , und dann hat die Queraxe auch für die mathematische Formelentwicklung
dieselbe Berechtigung wie der Meridian .

Wie wichtig aber die Anpassung der Axe an die Landesform ist , mag an dem
Beispiel von Mecklenburg gezeigt werden . Dieses Land hat von Süd nach Nord nur
etwa 2/g der Ausdehnung , welche von West nach Ost stattfindet , und durch die kon¬
forme Kegelprojektion , welche im wesentlichen queraxig ist , ist daher die Maximal-

/ 2 ' 2 4
Verzerrung nur = — oder kaum die Hälfte von der Verzerrung , welche eine
Meridianaxe bringen müsste .

Auch der kleine Staat Anhalt hat wesentlich west -östliche Erstreckung , nämlich
rund 110*“ von West nach Ost und nur 55 *“ von Süd nach Nord . Mit einer Quer¬
axe unter 51 ° 50' Breite sind die grössten Abscissen nach Norden rund SO1” , also
nach der Tabelle (8 ) § 49 . S . 276 ist die grösste Linearverzerrung nur 0,011 " auf
1000“ , während bei Wahl der Magdeburger Meridianaxe die grössten Ordinaten nach
Osten 66*“ würden mit Linearverzerrung (nach S . 276) an rund 0,05“ auf P " , d . h .
5mal so gross als im ersten Falle , und in den Winkelverzerrungen stellt sich die
Sache noch viel ungünstiger für die Magdeburger Axe.

Als Anhang zu § 84 . nehmen wir noch eine kurze Betrachtung über
Schiefaxige Coordinaten .

In theoretischer Beziehung könnte man noch weiter gehen und z. B . einem
Lande , dessen Haupterstreckung von Südwest nach Nordost ginge , eine Hauptaxe
im Azimut 45 ° anlegen u . s . w. Allein solche Abnormitäten sind höchstens für rein
kartographische Zwecke versucht worden ; für praktisch geodätische Zwecke dürfen wir
die zwei Hauptrichtungen nicht verlassen , weil sonst die Beziehungen zu den von der
Drehung der Erde vorgeschriebenen geographischen Coordinaten zu verwickelt würden.

Dagegen sind schiefaxige Coordinaten in anderem Sinne schon mehrfach ein¬
geführt worden . Z . B . die in den Preussischen Rheinlanden früher angelegten Co-
ordinaten -Systeme in grösserer Zahl , welche wir schon in § 59 . S . 332 (unten im Klein-
gedruckten ) erwähnt haben , sind als schiefaxige zu betrachten , indem die „Parallele
zum Meridian von Köln “ als Abscissenaxe angenommen wurde .

Auch die bayrischen „Lokalsysteme “
, über welche wir ebenfalls schon in § 59 .

S . 327 berichtet haben , sind ähnlich schiefaxig , denn es bat jedes solche System in
dem Lokalnullpunkt eine m-Axe, welche um die Meridian -Konvergenz verdreht ist gegen
den Meridian des Lokalnullpunktes . Als Vorteil davon wird angegeben , dass bei den
Coordinaten - Transformationen dadurch einige Rechenglieder erspart werden — das
mag sein , aber schief axige Coordinaten bringen in Bezug auf die niemals abzuschaffenden
geographischen Coordinaten so viel Unzuträglichkeiten mit sich , dass dagegen jene
kleinen Vorteile zurücktreten .

Vgl . Transformation rechtwinklig - sphärischer Coordinaten auf neue Normal¬
punkte , von Dr . J . H . Franke in München , Astr . Nachr . 126. Band , Dezember 1890 ,
S . 355 , Systeme II , und Bauernfeind , „ Zeitschr . f. Verm . “ 1891 , S . 161 —165 .

Eine neuere Mitteilung von Franke über diese Lokalsysteme giebt „ Zeitschr .
f . Verm .“ 1896, S . 327—332 .

Die bayrischen Reduktionsformeln für die Lokalsysteme gehen aus unseren
Formeln von § 79. (15 ) und (16 ) S . 418 einfach dadurch hervor , dass man y = Null setzt .
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§ 85. Rechtwinklige konforme sphärische Coordinaten mit Gliedern

bis zur 4 ten Ordnung r 4 *

Indem wir darauf ausgehen , die Gauss sehen konformen rechtwinkligen Coordinaten
mit Meridiananschluss auf dem Ellipsoide zu entwickeln , wollen wir an die ersten
sphärischen Näherungen von § 50 . nochmals anschliessen , und zunächst noch auf der
Kugel bleibend , in dem Sinne der früheren Entwicklungen von § 50 . die sphärischen

Reihen bis weiterführen .H
Dazu muss vor allem das Projektionsgesetz selbst schärfer ausgedrückt werden

als in § 50 . geschehen ist . Wir müssen auf die durch Integration erhaltene strenge
Gleichung (7) § 50 . S . 280 zurückgreifen , nämlich :

oder für dekadische Logarithmen , mit fi = 0,43429 . . :

V i j. 71~ = 1 tan 9 ( x

-h 2r
Das Vergrösserungsverhältnis ist nach (5) § 50 . S . 280 zunächst streng :

d y „„„ 9

(1 )

(2)

Die Funktion ( 1) kann in einer Reihe entwickelt werden , indem man zunächst
rein goniometrisch umwandelt :

tang
1 + tang ^

1 - -

1 + t (3)

Die logarithmische Reihe von § 28 . S . 169 darauf angewendet giebt :

ß ß ti t$
_ _~

2 ^ g 4 5

t-2
"

¥
“ ¥ 4 5

log ( 1 -4- t) = fi ( t -

log ( 1 — t) = ß (— t

log ; rt = + i
<5

5
Die Tangentenreihe § 28 . S . 172 gieht

' I» b , b3

ß =

2401'5

b5
+ 8 r s + 32

, b 5
32 ri

b 5
12 ?-s 48 r 5

b 3 , b 5

X -,i !
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y = 9 (4)

also nach (1) und (3) :
93

, 9 5
'

6 »-3
^ 24

Diese Gleichung muss rückwärts nach i) aufgelöst werden , was durch schritt¬
weise geführte Näherung geschieht :

yS'
6rS

. Llt .
6 \ r3

(5)

9 = 2/ -

9 = y - 3 « s
'

6 r«

93 = y3 ■

yo~ ~
24r5

3 y °
6 r5

yb
6 r8 1 241 -5

Auch das Vergrösserungsverhältnis in kann man nach (2 ) bis auf -i entwickeln :

± = , _ _92 94
r 2 r2 ^ 24 H

-1 = 1 . /JL 94
r I2r2

cos

_ ) + _$1 = ! . t
24 rij + 4r « 2 i-2

' 5 t)4
24 H (6)

Dieses stimmt mit der in § 28 . S . 172 als bekannt citierten Secans -Reibe .

Man hat also m = 1 -+ - =5 -= +2 i-2 24 ri
oder mit Einführung von (5) :

m — 1 - f-

m — 1

Dazu auch die Umkehrung :
1

1
2 ^ ( 24

ll
2 J-2

ys
6 J'3

yi
24 r4-

5 yi'
24H

(7)

5yi

und in logarithmischer Form :

- = i ~ y + _m 21-2 24 ri

logm = ~ y* - '
12

Kg . 1. Das nächste ist die schär¬
fere Berechnung der Ordinaten-

lionrergenz , wozu dieselbe Be¬
trachtung wie früher bei den
Soldner sehen Coordinaten § 46 .
dient ; und um nicht dieselbe
Sache zweimal machen zu müs¬
sen , wollen wir die frühere

Gleichung in unsere neuen Be -

chpnd -KUn- 1 1 - Zeichnungen umsetzen , entspre-

t T
g
; ;; Z

™
? 1 Statt y ™d y' da™ *2 - *1 statt * - * und endlich

1 2 statt schreiben , dadurch gebt (7) § 46 . S . 260 in diese Form über :

T - T
tang - A— ._2 _ 2 r ^ ^ ^ x 2 — x1

cos - ■9i tang —
2 r

2 r
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Hiernach kann man die Differenz der sphärischen Richtungswinkel Zj und T2
scharf berechnen , beliebig weit in Reihen entwickeln , u . s . w . ; indessen brauchen wir
hievon zunächst nur das Differential :

• 5sm —
d T r

tang - 3- =
cos dy

2 r

dx
tang

oder hinreichend genau :

hier ist zunächst

also wegen (5) :

dT . X) dx- = sm — fr -
2 r 2 r

(9)

. bsm — =
r

sm — =

folglich nach (9) :

dT -- '
31 '3

6 r3

6 r 3

yz _ y_ __"
6 r 3

«3
~TT

dx
r

= ^ [ydx - "
3 r2 dx ( 10)

Nun hat man wieder dT als das Krümmungs - Differential der Kurve Ä B zu

betrachten, ähnlich w'ie in der früheren Fig . 6 . § 50. S . 283 , welche nun in Fig . 2 .

Fig. a .wiederkehrt, mit der Zeichenänderung ,
dass die schiefen Coordinaten , welche
in Fig . 6 . S . 283 mit f und i] be¬
zeichnet waren , nun durch l und z
ausgedrückt sind .

Der Grund dieser Zeichenänderung
war der , dass eine Kollision des früheren
Vund ^2mit unserem sonstigen ^2= e '2 cos- <P
vermieden werden sollte .

In demselben Sinne wie früher
hei (23 ) S. 283 haben wir also für
unseren neuen Fall aus (8 ) :

_ d22 _ dT _ 1 / dx _ j/SdscN,^ .
dlTr dip

Diese Gleichung ist auch hier
noch immer genau genug , denn es
sollte zwar statt dl gesetzt werden

n ^ m-mo-
VdlTTd & , aber es ist nach (35) S . 285 dn, oder nun dz selbst schon von er

also du» schon von der Ordnung was mit dem ohnehin schon m (11) voiha

Faktor i bereits geben würde .

Um (11) „ L ™ * - » >" ‘ “
fdem Anblick von Fig . 2 . durch folgende Coordinaten -Transformation geschi

x = x1 + lcost 1 - l* sint i
} (12)

y = j/j -t- l sin t\ + z cos fj
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Die z sind aber selbst Funktionen von l , nämlich nach (35 ) § 50 . S . 285 mit
fj = z und | = l :

l s cos fiV_ _ x
6, -2

Dieses in (12) eingesetzt giebt :

/o ^ 12 , Z3 .(2 2/1 + 2/ä) —
275 2/ i cos *1 — sm k cos tx

x = x -i + lcos tx Iscostisinti 12 23-
0

~
r ®

- i *22/1 + 2/2) + 272 2/1 *1 cos *1 +
072 sin2 *1 cos*l

, . ISCOS ^ U „ Z2 732/ - 2/i + *« » *1 A- (2 J/! + 1/2) —
g

—21/1 cos2 tj — sin tx cos2 t]

(13)

(14)

(15)
da: . s cos tx sin U , , . 2 . , , Z2 . „ ,= cos k -

072
— 1 (2 2/1 + 2/2) + 72 2/1 *1 c°s *1 + 272 k cos k

Damit kann man den ersten Teil von (11 ) bilden, nämlich y und zum zweiten
CiiTeile von (11) braucht man noch von (12) :

y 3 = i/j3 4- 3 yx2 / sxn * -|_ 3 v/j Za sin2 fi 4- Z8 si«3 ^ 4- . . . 1
, dx

| (16)dazu = cost ] ~t- . . . Idt '
Wenn man die beiden Faktoren (14), (15) und die von (16) ausmultipliziert unddie beiden Produkte nach der Vorschrift der Gleichung (11 ) vereinigt , so wird man ,nach Potenzen von l ordnend, einen Ausdruck von folgender Form erhalten:

d* z
dP = A + BI + CP + DP (17)

wobei die Cogfflcienten A , B , C, D folgende Bedeutungen haben:
. y -i ■ Vt s sin U cos t-1 , y i3 .A =

TT « » *1 — a —
67 S (2 2*1 + y *) -

374
C£W *1

siw fi cos U s cos fi „ , . „ , .= - -1 4-
6

-^ (2 i/i 4 - 2/a) (cos2 «i - smß tx)
B =

0 = 2/i
2 »-4

(— cos3 fi h- si« 2 ^ cos tx)
\ (18)

D = (— sz« tx cos 'S k — 5 sin3 tx cos k )
Ehe wir weiteren Gebrauch von diesen Coefficienten machen , werden wir die

Funktion (17) durch zweimaliges Integrieren weiter behandeln:
DU

(19)
dz __~
di ~ ° r

BP CI3- Al + ^ + ~
r -

z = Cj l -+- AP
(20)2 6 ^ 12 + 20Dabei ist Ci die erste Integrations -Konstante, und die zweite Integrations -Konstanteist gleich Null , weil l = 0- auch z = 0 geben muss . Zur Bestimmung der Konstanten

Ci dient die Festsetzung , dass l = 0 geben muss
und weiter weiss man, dass l = s auch g = 0 geben muss, also :

dz
M

dz4- di und l = s giebt

- e

+ do

A srt n -ALo0 = G1 + - s - +

M
2

Bf
IT

"

Os3 D si
3

Cs3
‘

12
'

4
D si
20
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hieraus folgt : «1 = A s Bs 2 GsS
' “

0
^ 12

öo =

Ds 4
20

'

Ds±
(21)

2
As £ s2 Os3
~
2

~ + “
3

“ + “
4
“ '

Hier sind die Cogfficienten A , B , G, I) von (18) einzusetzen, was nur noch eine

algebraische Zusammensuchung der gleichartigen Teile verlangt und nach dem Ordnen,
wenn zugleich = s sin ty = — yx und r eos ty = x2 — xy gesetzt wird , geben wird :

ai
^

1+ y2)+ % ff
3
(8y1+ 7y 2) - ^ 6̂ (8 ;/l3+ 21y 12 ^ + 24y 1^ + 7 .j/23) (22 )

und d2 entsprechend mit vertauschten 1 und 2 :

Ö,J3Z^ ±^ +^ i 3
(72/I +8y2)- ^ ^ (8 y23+2l2/23 3/1+242/2 3/13+7 2/l3)(22a)

Integration für die Länge 8 des sphärischen Bogens.

Wir haben drei verschiedene Längen zu unterscheiden : die Bogenlänge 8 auf

der Kugel, die Gerade s == Gerade A B der Abbildung und die Kurvenlänge s’ = Kurve A B

der Abbildung (vgl . Fig . 2 . S . 453) .
In differentialem Sinne besteht die Gleichung :

ds ,
m = oder

dS
dS — — ds '

m

also auch S
J ™

(23)

(24)
Dabei ist nach früherer Entwicklung (8) S . 452 :

_! - 1 2/a , 5 y±
m 2rZ 1 24 r 4

Das Differential ds '
, welches bei der früheren Entwicklung von § 50 . auf

einschliesslich genau schlechthin = d l gesetzt werden durfte , muss nun genauer an¬

gegeben werden :

ds ’ = y dfi -h ds 2 = dl ( l + y (^ 7 ) )

Da ~ schon = -I also (— )
*

= — ist , sieht man alsbald , dass das Integral
dl r 2 \ dlj r4

(23) in zwei Teile zerfällt :
/*„ /»a

(25 )
S = - dl + äl = l + H

1 f 2 \ (11/

Bleiben wir zunächst bei dem ersten Integral stehen , so müssen wir die Reihe

(24) in eine Reihe mit steigenden Potenzen von l uniformen.
Man hat dazu von (14 ) die Reihe für y , welche quadriert giebt .

y2 — yy + i (2 ^ sin ty (2 yi vs)
COS2 t

'
Tr 2

1 (5 y -p — y\ y%— y£ )-h ß
^
sm2 ti -

— 3̂ -t sin ty cos2 ty — f4 sin2 ty cos2 ty -4- ■

(26 )
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und weiter :

yi — y -£ -+- 1 4 2/j8 sin t] -t- l2 6 y j2 sin - tj -f- Z3 4 z/j sin2 tx + Z4 a***4 fi (2VWenn man damit den Ausdruck (24) zusammensetzt und nach Potenzen vonordnet, soll entstehen :

1 = 1 _ il + l2/ _
4

= ß .m 2 j-2 24 r4 : i + y za -+• ö za + « z*
also der erste Integralteil von (25 ) :

2 + ^ y + °
T + *

T
Hiezu muss man die Teile aus (26) und (27) zusammensuchen, wodurch man

T ßs 2 S3 . S4I — a s ^— i- y -
g

- + ä —

erhält :

1 = 1 _ Sl
s 2r 2

yi 's sin tj s2 sin2 ij
ßW2r 2

(
^
— 2/1 cos* % (2 2/1 + 2/2) + 5 2/i 3 s sw* <1

sä cos2 tx ( 5 yi 2 — yi y -z —
y/j + 2/12 s2 sin2 tx

1 5
3/1 ss sin t cos2 -4-

^ 2/l s3 **w3 h6 )'4

-h J + s3 sf»2 Zi cos U + s4 sini U80 r4 1 1 ' 24 r4 1
Wenn man hier überall ssintx — y%— yx und scost 1 = x .2 — * 1 setzt und diegleichartigen Teile zusammensueht, so findet man:

1 = t „ ul±im±yl _ (ß 3/j2 + 14 * ya + s y8»)

+
24 h ^ l4 + 2/l3 2/2+ 3/i2 Z/22 + 2/1 */23 + - 2*24)

Um auch den zweiten Teil des Integrals (25) zu bestimmen , müssen wir auf(35) S. 285 zurückgreifen und entnehmen (mit 77= g und | = Z) :de scostxf . \ Z l2dl = -
Ifr (

2 2/i +
2/sJ

~
^ 2/i cos ft -

^ 2 « » Zicos *,
”
2 ( (Zf) =

Wri
?
(

®2 )23,1 + 2/2)2 — / 12 s 2*1 (2 2/i + 2/z) + 2236 2/l2 — /26 *i (2 2/l + 2*2)1
\ + P2,ß %jxsint l + l^ 2) sm2 t-i \

Dieses integriert giebt mit s sin tx = y z — y\ :

T = ~
+ z7 ! / (2 2/1+ 2/2)2— 6 2/i(2 2/i + z/2) + 12 2 (j/2—3/1) (2 j/j + 3/2)+ 9 2/i(2/2~ 2/l )jI

+ 1 (2/2- 2/i)2)
All ’ dieses zusammengezogen vereinfacht sich sehr, und giebt schliesslich:

7 = HböT -4
^

j 4 2/l 2 + 7 2/i 2/2 + 4 2/22
| (29)

Wenn man die Teile I und II von (28 ) und (29 ) zusammennimmt, so hat mannach (25) :
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II
= 1 i/i 2 + i/i + yi

6, -2
'2 (5

| _ 5l )2
(4j ,12 + 7y 1 2/2 + 4 ^ 2) |

(30 )
-+-

2^ 4 (2/i4 + 2/i3 2/a + 2/i2 2/a2 + 2/i 2/a2 + J/24)

Wenn man die Mittelordinate einföhrt nach der Gleichung

_ 2/1 + 2/2
2/o

2/o

2/o'

4

,a = \ (2/12 + 2 2/12/2+ 2/a2)

,4 ^ (
'
?0±J

5 (a 2 - xi )4
(31)

= -I (4/^ -P 4 4/481/2 -f 6 2/l 2 2/22 + 4 2/1 2/23 + /'s4)
v 2 y io

und wenn man auch entsprechende Werte von — einführt , nämlich nach (8)

1 V12 5 1/ , * 1 i 2/ä2
, JLj/g 4

— - 1 —
2r2 + 24 r * »»2 2r2 24 ,4

1 2/J
2 ,

^ 2r 2 24 r*

so kann man das vorstehende (30 ) auch auf diese Form bringen .

£ = _L (
"
i . + -1 - + X 1

) _ (4 j/ !2 + 7 2/11/2 + 4 2/22) 2880s 6 \ m to0 mj 360H
. , , , ,

Das Ergebnis aller vorstehenden Entwicklungen und Bet
^

a °ht
^

nSe ”
^ j derin den zwei Gleichungen (22 ) und (22a ) für die Richtungs -̂ Reduktroner , und m de

Schlussgleichung (31 ) für die Entfernungs - Reduktion . Wenn man die Glieder m

~ weglässt , gehen die Formeln wieder zurück in die früheren Formeln (S ) , ( )

(13) in § 50 . S . 284 und S . 282 .

Einführung von Näherungen für verhältnismässig kleine x % %\ Jz

Wenn in einem sehr ausgedehnten System die Dreiec
^

v
^

m
^klein sind gegen die Ordinaten selbst , so kann man die Glieder

^ ^
die Glieder mit — unterscheiden in solche, bei welchen

7*4
die Potenzen von y selbst oder nur Potenzen von
*2 — x1 und </2 — yx überwiegen , und man kann letztere
Glieder gegen erstere vernachlässigen .

Wir wollen dieses näher verfolgen im Anschluss
an eine Abhandlung von Oberstlieutenant von Schmidt ,
Chef der trigonometrischen Abteilung der Landesauf¬
nahme, in „ Zeitschr . f. Yerm . “ 1894 , S . 399 —400 , und
indem wir die dort teilweise abweichenden Bezeich¬
nungen in die unsrigen (Fig . 3) umsetzen , haben wir
■’ort (7) 1894 S . 339 und (8) S . 340 :

ngs- Zo9S= ^ (2/l+ 4/2)?-
2£ p (2/2- 2/i)a-

i92 ^ ^ 1+ !'^ 4 (82)
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T 1~ h =
4 ^ 2 (3/1 + ^ ) 0 *2 - * l ) ~

12Ä2 (2/2 ~ 2/i ) 0*2 - * 1) '
4 ^ 4 f2/i + 2/2)3 (« 2- * 1) (33)

Es ist nicht schwer , diese Formeln als Vereinfachungen unserer Formeln (30)und (22) nachzuweisen . Nehmen wir zuerst (30) mit Vernachlässigung des Gliedes
• • • und Einführung des Mittelwertes ZutJ ' ä jm jg^ ten Gliede von (30),

so haben wir von dort :
! = 1 _ ^
s

■2/1 V2 + V22
6 r 2

Nach der logarithmischen Beihe S . 169 :

'
24 r4 '

1 (̂ 1 =
s

2/i 2 + 2/i V%-+- y$ 1

IS -

6r 2

ls = — 2/i2+ Vi y22 + y22
384 r 4

1

(2/1 + 2/ä)4 ■

(221+ 2/2)4

2/1 + 2/2

3 (2/1 + 2/2
6 r2 \ 2

(34)6 r2 192 r 4
Das letzte Glied hiev stimmt mit dem letzten Gliede von (32) , und da auch

die zwei ersten Glieder von (32) sich mit dem ersten Gliede von (34) als algebraischidentisch erweisen und der logarithmische Modul l p in den Zeichen log s und Is u . s . w.
begründet ist , haben wir nun die Formel (32 ) als Vereinfachung von (30) nachgewiesen.Noch kürzer ist einzusehen , wie (33) aus (22) hervorgeht , indem das Glied
(x2 — äu )3

360 H (22) vernachlässigt wird und im letzten Gliede von (22 ) die Klammer

= 60 ^ ~ d_—j gesetzt wird . Auch dass die zwei ersten Glieder von (33) mit dem einen
ersten Gliede von (22) identisch sind , wurde schon in § . 50 . S. 284 —285 oben bemerkt.

Die konstanten Coefflcienten - Logarithmen der Landesaufnahme - Formeln (32)
und (33 ) sind schon zum Teile auf S . 285 unten angegeben . Die noch dazu gehörigen
Coefflcienten 44er Ordnung sind :

** TMÄ * = 7 ‘184 373 l°9 18X4 = 6 -431 074

Eine praktische Anwendung der Formel (33) haben wir schon früher in Band I.
4 . Aufl . 1895 , S. 418— 419 gegeben , hei dem Schlesisch - Posen sehen Netze , mit y =
rund 350 000”1; das Glied 4*er Ordnung in (33) brachte dort noch 0,0197" .

§ 86. Konforme Gauss sehe Coordinaten.
Die konformen rechtwinkligen Coordinaten mit Meridiananschluss , welche Gauss

etwa um 1820 — 1830 in Hannover eingeführt hat , haben wir schon mehrfach im
früheren erwähnt , in der geschichtlichen Übersicht von § 59 . S . 328—329 und in der
mathematischen Entwicklung erster Näherung von § 50.

Das Quellenwerk für diese klassischen Coordinaten ist : „ Theorie der Projektions¬methode der Hannoverschen Landesvermessung von Oscar Schreiber , Hauptmann im
Königl . Hannov . 1 . Jägerbataillon , Hannover , Hahn sehe Hofbuchhandlung 1866 “ mit
einem Vorwort von Wittstein .

Im Nachfolgenden geben wir eine Bearbeitung dieser Schrift , in breiterer Dar¬
legung als im Original und mit möglichst geometrischer Auseinandersetzung dessen ,
was im Original mehr nur analytisch vorgetragen wird .
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Allerdings die Grundgleichung der konformen Abbildung auf Grund der Funk¬
tionen komplexer Veränderlicher , nämlich die nachfolgende Gleichung (6) , x + iy
= f (q + i X) , müssen wir hier als bekannt voraussetzen .

Die Gauss sehen Originalschriften über die Theorie der konformen Abbildung sind :
Allgemeine Auflösung der Aufgabe , die Teile einer gegebenen Fläche so abzubilden , dass

die Abbildung dem Abgebildeten in den kleinsten Teilen ähnlich wird , von C. F . Gauss . Als Beant¬
wortung der von der Königlichen Societät der Wissenschaften in Kopenhagen für 1822 gestellten
Preisaufgabe , veröffentlicht in Schumachers astronomischen Abhandlungen , Heft 3, Altona 1825.

Untersuchungen über Gegenstände der höheren Geodäsie von Carl Friedrich Gauss , erste
Abhandlung , der Königl . Societät überreicht 1843, Art . 23.

Den Hauptinhalt dieser Theorieen haben wir schon früher in unserem II . Bande , 2. Auflage ,
1878, S. 377—379 abgedruckt u , kommentiert , weshalb es hier genügen mag , hierauf zurückzuverweisen ,
oder auf irgend ein mathematisches Werk über Funktionen komplexer Veränderlicher Bezug zu
nehmen , zur Begründung der nachfolgenden Gleichung (6) , der einzigen , die wir aus jenen all¬
gemeinen Theorieen brauchen .

Hier ist auch nochmals das Hannover sehe Coordinatenverzeichnis mit Einleitung von Witt¬
stein zu erwähnen , dessen genauer Titel schon in § 59. S. 329 (im Kleingedruckten ) angegeben wurde .

Überall im Folgenden haben wir unsere gewöhnlichen Bezeichnungen V3, y 2 u. s. w. angewendet ,
nach deren Umsetzung unsere Schlussformeln mit den Formeln von Schreiber und Wittstein über¬
einstimmen .

Nach diesen Vorbemerkungen gehen wir über zur mathematischen Behandlung
6er Sache , indem wir in Fig . 1 . ein Stück des Erd - Ellipsoids und in Fig . 2 . dessen
ebene konforme Abbildung betrachten .

Kg . 1. Fig . 2.
Ellipsoid . Ebene .

O Aequato ' Aequal'or

Breiten
^ ^em Ellipsoid Fig , 1 . werden zwei Punkte A und A' betrachtet mit den

. . . V un (* <p -i- d <p und mit den Längen X und Ä+ dX -, dann hat man ein un-
lc kleines rechtwinkliges Dreieck ADA ! , in welchem ist :

A D = Md (p , D A’— NcostpäX
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also A A' = d S = \f {M d qp)3 —H- {Neos cp d A)2 (1)
Dabei sind M und N wie gewöhnlich die beiden Hauptkrümmungs -Halbmesser ,und indem wir auch wie sonst N : M = F 2 setzen und weiter zur Abkürzung einführen:

dqp M _ dq > _ ^
coscpN

~ F 2 cos <f>
— ®

erhalten wir (1) in dieser neuen Form :
dS = iVcos tp

"
{/d §2 + d Ä.2

Ausser dem Dreieck ADA ' besteht auf dem Ellipsoid noch ein zweites eben¬
falls rechtwinkliges Dreieck A C A '

, welches zur Bildung rechtwinkliger Coordinaten
konform abgebildet wird in der Ebene Fig . 2 . durch das Dreieck aca ' mit der Hypo¬tenuse ds ; es ist also in der Ebene :

(2)

(3)

ds = yd a;2 + d y2
Aus (3) und (4) folgt das Vergrösserungsyerhältnis :

äs ydx %-m = irs = - - dy2
Yä {

(5)
iq * -h dX2 Ncos (p

Nun kommt die allgemeine Theorie der konformen Abbildung in Betracht , welche
wir bereits in der Einleitung dieses Paragraphen erwähnt haben .

Diese allgemeine Theorie sagt aus , dass die in (5) behandelte Abbildung dann
konform ist , wenn x -\- iy eine Funktion von q + iX oder von q — iX ist , d . h. es
muss sein :

(x + i y) = f (q + iÄ) (6)
wobei f eine zunächst beliebige Funktion bedeutet , über welche nachher weiter verfügt
werden soll .

Die Funktion f in (6 ) wird nach der Taylor sehen Beihe entwickelt :
m + ai = m + («) im Aiy + <* »£ + . , . ,« q 2 dq 2- o dq *

Da i = y — 1, i2 = — 1, z3 = — i , z4 = -+. 1 u . s . w . , so giebt dieses :

W ’ dq 2 dq 2 6 dq $
Die Funktion f (q), welche bisher noch unbestimmt ist , muss nun entschieden

werden , und zwar soll dafür genommen werden der Meridianbogen B vom Aequatorbis zur Breite <p, wie in Fig . 1 . eingeschrieben ist . Dieser Bogen B ist eine Funktion
von qp; in unserem früheren § 35 . ist B in einer Reihe als Funktion von qp,
sin4q } u . s . w . entwickelt worden , und die Zahlenwerte B sind tabellarisch genügend
dargestellt in unseren Tafeln Seite [38] und [55 ] — [57] des Anhangs .Da auch dq nach (2) eine Funktion von <p ist , und da von f (q) nichts weiter
verlangt wird , als dass es eine Funktion von q sein soll, so entspricht die Wahl f (q) —
der gestellten Konformitätsbedingung und führt andererseits die Aufgabe ihrem geo¬dätischen Ziele entgegen . Indem wir nach (6) zurückgreifen , haben wir also :

x -hiy = B+ a — _ ^ ■ as d° B d6B- -udq 2
"
dg 2 *

6 dq * + 24 dqX
+ 120 dg 3 720 dg « + " '

Die Vergleichung der reellen und der imaginären Teile giebt :
x = ■ j-4 diB Xe d« B

2 d cß
^ 24 dqi 720 d qS

1 " (7)
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dB Ä3 MB ^ MB
V ~ ' K

äq 6 dqs
+ I2Ö dg * 1 " '

Die Form dieser zwei Beihen ist sofort einleuchtend , weil der als # - Axe
genommene Meridian eine Symmetralaxe ist . Der Wert x — B kann als Potenzreihe
nur die geraden Potenzen Ä2, Ä4 . . . enthalten , und es muss mit X = 0, * — B — 0 ,
d. h. x — B werden . Ebenso zweifellos muss mit X — 0 auch y = 0 werden , und da
y mit X gleiches Zeichen haben , im übrigen für + X absolut genommen gleich bleiben
muss, kann die Beihe (8) nur die ungeraden Potenzen X, X%. . . enthalten .

Die Ableitungen von B nach q müssen ausgeführt werden, wozu man hat :

d B = Mdcp —

also

<BB _
dq dcp

~

-fgdV und dq 1
d cp

~
cos cp

(9)

dB c
(10)— = — cos cpdq V T

c d V c .
-W ^ cos v - v sm v

Schon früher gebraucht (§ . 34. S . 208) ist ~ ^ f, also

d* B
dqdcp

d cp

- = {rp sin cp — F 2 sin <pj = sin cp — (1 ■

d cp

- t )

MB
dq * :

c sm w cos cp
T7.„- sm cp -j -z- = - -- r
F3 r dq F

(11)

Wenn man in diesen Formeln weiter differentiiert , so bekommt man :

dBB ccos3 * , , ,,= -

t -
^ sin cp cos3 <p (5 — t2 -+- 9 rp -+■4 rj4)

dq± V
Von hier ab wollen wir nur noch die sphärischen Glieder , d . h . die Glieder

ohne jy2 differentiieren , und finden mit solcher Abkürzung :
dß>B , c
dgä + y cos &cp (5 - • 18 ß + t4)

(12 )

(13)

(14 )

d« B c
— — -

y
sin cp coso cp (61 — 58 t2 -h 4 t4) (15)

Nun kann man die Formeln für x und y nach (7) und (8) zusammensetzen,

^ gleich mit Berücksichtigung , dass ~ = N ist und mit Zusetzung der nötigen p :

~ _ H , Ka N . X4 N \
J3 ~h ~

2 sm $ cos tp -f- oT siw V cosS (5 — t2 -c- 9 rß + 41f )
^ | (16)

Je N
+ —

g
sin cp cos5 cp (61 — 58 f2 + 4 f4) j

_ 1 N X3 N J5 AT
y - x — COS<p -f- — -

3
- cos3 cp ( 1 — t2 + J22) + ^ ^ cos$ cp(5 - 181 2 ■+ ü ) (17)

a a
D

)eses sind die Formeln von Schreiber (6) S. 10, abgesehen von den Gliedern mit ip n . s . w.

vnr,
^t8r und 6ter Ordnung , und innerhalb der Ordnung haben wir damit die Formeln

n Wlttstein , s . X. oben .

( Igj g 5g^ ^
ster Näherung stimmen diese Formeln (16) und (17) auch mit unseren früheren (11) und
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In den Formeln (16) und (17 ) sind q> und X die gegebenen geographischenCoordinaten eines Punktes , und zwar X nach Osten positiv gezählt von irgend einemMeridian , der als as-Axe eines rechtwinkligen konformen Coordinatensystems angenommenist . B bedeutet den Meridianbogen vom Äquator bis zur Breite cp , x und y sind die
gesuchten ebenen konformen Coordinaten , und zwar x gezählt wie B vom Äquatorder Erde , y rechtwinklig zu x , nach Osten positiv wie X (vgl . Fig . 1 . und 2 . S . 459).Da B und x auf diese Weise sehr grosse Zahlen werden , kann man sie beliebigabkürzen oder von irgend einem Nullpunkt in dem Vermessungsbereich selbst zählen.Doch spielt das in der Theorie keine Bolle , weil immer nur die Differenz x — £ in
den Formeln auftritt , und deswegen rechnen wir am einfachsten in den Formeln mitB seihst .

Umkehrung der Formeln (16) und (17) .
Man kann die Formeln für x und y geradezu umkehren , was wir nun ausfiihren

wollen , aber nur bis zu Gliedern von der 4*en Ordnung einschliesslich , d . h . also zu¬
nächst aus (16) und (17) :

JV sin <p cos cp + N sin q>cos3 qo (5 — t2 -+- 9 rj2 -+- 4 ?y<)

y — XN cos cp + N cos3 cp (1 — t2-h X2)

(18)

(19)

welche insZuerst wird (19 ) umgekehrt mit erster Näherung X
zweite Glied gesetzt giebt :

(l - V + r? )

N cos cp
’

N cos cp 6 A73 cos (f'
Daraus bildet man auch die zweite Ordnung :

( l _ <2 + ?72)N 2 cos2 cp 3 W4 cos2 q>
und dieses in (18 ) eingesetzt giebt :

x — B (1 -+- 3t 2-t- 5ij 2 + 4 ?j4)2 N 24 iV3 (21)

Nach diesem soll der Meridianbogen x — B in der zugehörigen Breitendifferenz
qq — <jp ausgedrückt weiden , was nach dem früheren § 35 . Gleichung (37 ), S . 218 mit
qq als Ausgangshreite sich so giebt :

Q 71fB — sc = Mj (qp - qq ) -t- -
j r/j2 *! (qp — qq )2

x — B = M 1 (<pl - cp) ~ ^ ^ tj12 t1 (cpl ~ cp)2 (22)(22)
oder

Dabei gehören Mx, iq 2 t] , alle zu der Fusspunktsbreite cplt während in (18)— (21)
alles sich auf die Breite cp des Punktes selbst bezog . Aus (21) und (22) bekommt
man als erste Näherung für die Breitendifferenz qq — cp :

cpi — cp q) = qq2 MjN
lang cp = lang qq ( 1 ■+ h 2)2 Mx N

2 M , AT

Hieraus
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Für den weiteren Gebrauch in den höheren Gliedern braucht aber fl und f,
sowie -A7! und N nicht mehr unterschieden zu werden , also :

yit 1 n ,t = U (1 + fi 2) — ti2 M x N \
r ' "l ~> 1,1 2 ^ 2

Dabei ist berücksichtigt , dass allgemein A7: M

1 2 A7j2
Dieses in (21 ) eingesetzt giebt :

V%h y i h'
2 A7

(l + % 2) (1 + tjü )

= F 2 = 1 + ifi ist , also :

+ (23a )

■B (— 5 — 3 t2 — if — 6 if fl + 4 rft) (24 )24 IVjS
'

Weiter muss im ersten Gliede N durch IVj ersetzt werden , was nach früherem

§ 34. S . 208 , unten Gleichung (1) , geschieht . Wir wollen dabei auch bemerken , dass
in den höheren Gliedern cp und qpj u . s . w . nicht mehr unterschieden wird . Damit
ist nach der citierten Gleichung unten auf S . 208 mit Rücksicht auf (23 ) :

Wi _ i , (<Pi — <p) y2 v2 (2 _ i , y2 1? t-
N 1 + F 2 v * 1 + 2 M N F2 + 2 A72 (25 )

Dieses mit (24 ) giebt :

, y 2 hB = y 4 <i
2IV , 241V . 3 ( _ 5 — 3 — rjz f 4 ??4) (26 )

Nun sind die Ausdrücke in (22 ) und (26 ) einander gleich , was vollends die

Auflösung nach cpj — cp giebt :

_ H- h - — . (5 + 3 fl + t?2 — 9 ??2 t2 - 4 rfi (27 )—
2 Afj IVi 24 M 1

'

Damit ist die erste Formel (18 ) vollständig umgekehrt , und um auch vollends
(19), d. h . die vorläufig schon hergerichtete (20 ) zu erledigen , brauchen wir von (23 )
mit N : M = F 2 = 1 -+- ^ 2 die Entwicklung :

cos cp = COS<Pj +
jv ^

s*w V'1 = C<M 1)01 + O ?
^ ^ sm ^

Dazu nach (25 ) :
1 1

A7eos cp
1

A7! cos

1

1 +

1 —
Neos cp A7! cos cp1

Dieses in (20 ) eingesetzt giebt alsbald :

y y3

2 IV2 2A ’2 l

?/2i2
2 IV2

- (1 + 2t 2 + ?/2) (28)
1V[ cos qsj 6 A^ cos qpx

Nun haben wir in (27 ) und (28 ) die gewünschten Formeln zur Bestimmung von

$ und L und indem wir auch die nötigen Q zusetzen , stellen wir zusammen a s

Gebrauchsformeln :

i) — ij i - ■' ^
p .* 1 2 M l N 1
* (5 + 3 f!* + 9 <ia — * 5i 4)

24 Mt IVjä
(29)

. . (30)
7V[ cos qpj 6 cos cp[

Diese Formeln entsprechen den Formeln von Schreiber (11) S. 25 und Wittstein S. X. unten .
Diese Formeln stimmen auch in erster Näherung mit unseren früheren (8) und (9) § 58. S. 323.

a = yg _ y 3 e - (H - 2 (12 + J?12)
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i

Kg . 3.

Meridian -Konvergenz .
Wenn in Mg 3 . NA S das konforme Bild eines Meridians , und WAE das

konforme Bild eines Parallelkreises ist , wobei sich diese beiden Linien in einem Punkte
A schneiden , durch welchen wir auch die
Parallelen A B und A G mit den Coordinaten -
axen ziehen , so entsteht ein kleiner Winkel
y, welchen hier Gauss „Meridian -Konvergenz “
nennt (vgl . hiezu den Schluss dieses § , S . 465 ) .

Wenn wir die Gleichung des Parallel¬
kreis -Bildes WAK als Punktion zwischen
den ebenen rechtwinkligen Coordinaten x und
y aufstellen können , so brauchen wir nur noch

— zu bilden , um tang y zu haben .
Um in diesem Sinne die Gleichung

des Parallelkreises zu bilden , brauchen wir
nur qp konstant zu denken , und A allein ver¬
änderlich , d . h . wir leiten die Gleichungen
(18 ) und (19 ) partiell nach A ab , und erhalten
damit :

dx •> , T • A8 .
^ = A N svn cp cos qp + -

g
- N srn qpcos8 qp(5 — <2 9 ^2 ■4 r,i)

dy
— N cos qp - A2

■rP)^ ^ — - . wo \y -1— K cos3 (jp (1 — /;2

Die Division von (31 ) und (32) giebt :

= | a sin qp + ~ sin qp cos2 qp (5 — *2 + 9 4 ^ ) | | l _ ^ cosz (1 — t2 + f )

4 rji) = tang 7

(31)

(32)

dx . . A8 .— = X sm qp- i- -
g

- sm qpcos 2 <p (2 + 2 f2 .+ . ß ^2

Nun ist nach der arc tang -Reihe § 2

7 = fang 7 — wobei

also mit dem vorhergehenden

S . 172 :

tangZy A3= -5- sin qp cos2 qp t2

y = dJL1 dx
und alles zusammengenommen :

-
g

- 2 sin qp cos2 qp (2 f2)

iv cos qp 6 JV 3 cos qp

Diese Gleichung ist anzuwenden , wenn ein Punkt durch qp und A gegeben ist;
wenn aber x und y als gegeben vorliegen , dann empfiehlt es sich , erstens X in y MS "
zudrücken und zweitens auch alles , was von qp abhängt , auf qpj , d . h . auf die Fusspunkts-breite zu reduzieren .

Für das erste haben wir von (20 ) :
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Dieses in (33) eingesetzt giebt :

? = f t + IÄ (1 + t2 + 5, ?2 + 4,j4)2V
Weiter haben wir für t und jV bereits die Gleichungen (23 a) und (25), welche

zusammen geben :

fl -t- <* + ?f + tj2 *2)) ( l + 2^ 2 ^ tß)

(34)

N ~ Nx y 2 N%
'

Dieses mit dem vorhergehenden vereinigt giebt endlich :
ys, - lfc7 -

iYx
1 ’

3iVi »h (1 + ti2 - %2- 2 ,/i4)
Die Zeichen ^ und de

"
uten an , dass diese Werte ,

^Punktion der Fusspunktsbreite qpi zu nehmen sin , we c e er
piiedern derrektifizierten Meridianbogenlänge x entspricht . Auch in en

obeleichFormel (34) haben wir durchaus * * ■ « . s. w. in diesem Smne geschr eben obgleich
in der vorhergehenden Entwicklung die Unterscheidung von <p un qq

.̂. jGliedern nicht eingebalten wurde , weil sie in der ohnehin zugelassenen gn
der nächstfolgenden y * u . s . w . keine Konsequenz

J,ormel c s_3l>raä voll-Die Gleichung (34) stimmt innerhalb ihrer Ordnung
^

’
einscUies6l jcb geht ,ständig mit der 'Formel c won Wittstem , S. XI , welche a

Wahre Meridian-Konvergenz.
Die Meridian - Konvergenz y , wie sie im Anschiuss an Fig . 8. S . 464 definwrt

wurde , ist von der besonderen Natur der vorliegenden Abbildung » S
entspricht nicht genau der Definition Meridian -Konvergenz a a vo
S. 345, wie auch schon auf S . 346 bemerkt wurde .

Figi ^Um auch die Meridian -Konvergenz Eilipsoid .in dem früheren Sinne a '— a Fig . 3 . S. 345 ^zu bestimmen , betrachten wir in Fig . 4.
einen Punkt A mit der Breite cp und der
Länge X gegen den Anfangsmeridian NO,auf welchem in der Breite qq eine geo¬
dätische Linie qq

’ A rechtwinklig nach A
abgeht, so dass man sageD kann , auf dem
Ellipsoide sei von 0 bis qq ' die Ahscisse
und von qq ' bis A die Ordinate des Punktes
A , und zwar Ahscisse und Ordinate beide
als geodätische Linien verstanden .

Ausser dem Punkte qq' nehmen
wir noch auf dem Meridian 0 N einen
Punkt qq , von welchem ebenfalls recht¬
winklig eine Linie nach A abgeht (in
Pig. 4. punktiert gezeichnet ) ; diese zweite
Linie qq A ist aber nicht eine geodätischeLinie, sondern eine sehr flach gekrümmteandere Linie , von welcher sich nachher er¬
geben wird , dass sie das Eilipsoid - Bild
zu der geraden Ordinaten -Linie y des kon¬
formen Coordinatensystems ist .

gQJöraan , Handb . d. VermessungsSunde . 4. Aufl . III . Bd .
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Wenn in A die zwei Tangentialrichtungen A P / und A Pj rechtwinklig auf
Aqpj ' und auf A qpj gezogen werden , so ist NAP { — y

' die Meridian - Konvergenz
zwischen cp{ und A in dem gewöhnlichen Sinne von a ' = </. in Fig . 3 . S . 345 .

Um diese wahre Meridian - Konvergenz y
' zu bestimmen , nehmen wir von den

Reihenentwicklungen des früheren § 74. Gleichung (27) S . 396 bis zur dritten Ordnung
mit u = 0 und v = und t = tang qpj

' für die Ausgangsbreite qP]
' :

V tang cpi - yi
tang cpi (1 + 2 tang 2 qpj

’+ J/i 2)Ni
. * T1 6

Hiezu von (26) S . 395 mit denselben Substitutionen :
y ys

(35)

X COS<f>i =
3 Ni s tang 2 (fi{

Also durch Division von (35) und (36) :

y
' = X sin (p{ ( 1 y*

6 N , 2 (1 + 5

y
' = Xsin qpj

' ■ sin cpi cos2 cpi (1 + rf2) (37)

Zur Reduktion von der Pusspunktsbreite (jp̂ auf die Punktbreite qp können
wir als hinreichend die frühere Formel (17) § 55 . S . 305 nehmen :

V? ) 2

also

Ti ' = T ■

sin q}i = sing >

sm cpcos cp

V2 X2
sin cp cos2 cp

Dieses wird mit (37 ) verbunden , wobei 1 + g2 F 2 zu beachten ist , also :
W F2

y
' = Xsincp - - sin cp cos2 cp

Dieses ist die wahre Meridian -Konvergenz , welche mit der Gauss sehen Meridian -
Konvergenz y in (33) verglichen giebt :

Hs
y — f = sin cp cos2 qp (2 i/2 + 2 174)o

oder in erster Näherung genügend :

■y
' = ~ X2 t)2 sin cp cos2 <pO

(39)

Dieses ist auch der Meine Winkel P { A Pj in Pig . 4 . , und da dieser Winke
besteht und nicht gleich Null ist , so wird erkannt , dass die geodätische Linie cpi -A
nicht das ellipsoidische Bild der ebenen Ordinate y sein kann , sondern dass eine
andere Linie cpi A für jenes Bild eintreten muss .

Der ellipsoidische Faktor ?f in (37 ) zeigt , dass die Differenz y— / nur aU
dem Ellipsoid , nicht aber auf der Kugel existiert .

§ 87 . Vergrösserungsverhältnis .
Nach (1) und (5 ) § 86 . S . 460 ist das Vergrösserungsverhältnis m bestimmt durch.

m2 = ds 2 _ _d S2 ~
(Md qp)2 + (Ncp cosd V)2

dx 2 + dy 2
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1 dx ' 2

dyi = *£ _ ,dl 2 / / Md <p \ 2
iST2 cos2 qpl 1 + [ß C0s qid x

(1)

Nach Pig . 1 . und 2 . § 86 . S . 459 hat man in den rechtwinkligen Dreiecken :
dx

— cotg t und Mdcp - cotg a. N cos cp dl
Wo t der Richtungswinkel im ebenen System und a das Azimut auf dem Ellipsoid

ist , damit wird (1) :
„ ,dy 2 1 + cotgU ^m2 :

m =

d l 2 N2 cos2 <p (1 -f- cotg2 «)
d y 1 sin a

(2)dl Ncos cp sint
Wir betrachten nun besonders den Pall , dass a = 90 ° werde , d. h . dass der

Ellipsoidbogen d S auf einem Parallelkreis liege , was zur Folge hat , dass cp konstant
ist und ferner , dass t = 90 ° — y wird , wenn y die Meridian -Konvergenz ist , welche in
Pig. 3. S . 464 konform abgebildet wird . Damit erhält man aus (2) :

dy secym = -=4 = — —-
dl Neos cp

Hiezu hat man aus (32) § 86 . S . 464 :
l 2d y

dl

dy i _
dl Neos cp

Ferner hat man aus (33) § 86 . S . 464 :

also

N cos <p + ^ N cos2 cp (1 ■

12
1 -+ -

y
cos 2 <f>(1

- rf )

+ - rf )

y — lsincp -c- l 2 . . yi l 2 sin2 <p
secy = 1 + o = 1 + 2

(4)

(5)

Dieses genügt , um in erster Nahrung m zu bilden , nämlich als Produkt von
(4) und (5) :

12,
m — 1 •+■-

g
- cos 2 cp ( 1 -

l 2
- 12 + rf ) + -H- sin2 cp

»i = l l 2
cos2 cp (1 + rf ) (6)

U
Das ist zunächst nur das Vergrösserungsverhältnis in der Richtung des Pa¬

rallelkreises , also rechtwinklig zum Meridian ; da aber bei der konformen Projektion
» «ach allen Seiten gleich ist , können wir das in (6) gefundene m sofort allgemein
gelten lassen.

Um übrigens eine Probe zu haben , wollen wir doch auch noch m für den
Meridian besonders bestimmen , und schreiben zu diesem Zwecke aus (1) , (4) und (5)
§ 86 . S . 460 :
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Gehe n wir auf den Meridian über , so wird hier nach Fig . 8 . § 86 . S . 464
dy — tan 9 y und ferner d X = 0 ,

’d x \ sec (jp

zu bilden , hat man von (18 ) § 86 . S . 462

Ä-
x = B N sin cp cos cp + A4 . . .

A2 fdN sin cp cos cp N cos 2 cp — N sin 2 cp2 \ d cpd cp 2 \ d cp
Dabei ist nach § 34 . Gleichung (e) S . 208 :

A2 / C
if sin 2 <p 4 - — cos 2 cp2 \ F3

COS2 C(1 1 t 2 - t- rf , dabei ist M

dx 1
cos2 <J)( 1

clcp M
Das ist dasselbe wie bei (4 ), also muss auch die Weiterrechnung für m in der

Meridianrichtung denselben Wert geben wie früher bei (4)— (6) in der Parallel¬
kreisrichtung . Es ist also die Formel (6) allgemein giltig , in der Meridianrichtung ,
rechtwinklig dazu , und in allen Eichtungen .

Um die Formel für m , welche in (6 ) nur bis A2 geht , auch noch bis A4 zu
entwickeln , müssen wir auf (17 ) § 86 . S . 461 zurückgehen und von dort entnehmen :

cos2 cpl 1 cos4 cp (5 — 18 f2 + f4)dXNcos q)
und von (38 ) § 86 . S . 464 :

7 = A sin cp + — sin cp cos2 cp ( 1 -+- 3 rf + 2 rf )

sin 2 cp + sin 2 cp cos2 cp (8 -+- 5 f2)

Wenn man diese (8 ) und (7) nach Anleitung von (3 ) multipliziert , so erhält man :

m — 1 cos2 V (1 + rf ) -+-
^ cos4 <p (5 — 4 t2)

Das ist die Weiterentwicklung von (6) bis auf A4 einschliesslich , aber mit
Weglassung aller Glieder 7j2 u . s. w . in den CoSfficienten von A4. Innerhalb dieser
Vernachlässigung stimmt unsere Formel (9) auch mit der entsprechenden Gleichung
von Schreiber S . 36 . (wie immer nach goniometrischer Umformung ) .

Es ist auch leicht , innerhalb der angenommenen Genauigkeit die Formel (
auf y zu reduzieren , denn es ist nach (20 ) § 86 . S . 462 :

— " _ * n _ _ +2N cos cp 6 N s cos cp
'

_ z _ n _ /i _ m
N 2 cos2 cp 3 N * cos2 cp

'
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Damit wird (9) : 2
m ~ 1 + ^ ^ +

24JVi (1 + if “ ■• •)

Es ist aber JV = c
T und c also

TV2 ' Y1 _ 1 + ??2
/■- r 2 ’

also to = 1 « 2 « 4

2rä + 24H
(10 )

Der Nenner r 4 im zweiten Gliede gilt nur näherungsweise , doch kann man
ihn wohl annehmen , da wir ja ohnehin alle 1 im zweiten Gliede vernach -

lässigt haben . Darum ist auch inbegriffen , dass bei dem Übergang von k auf y in

N nicht mehr unterschieden wurde , ob es zu <p oder zu gehören soll, d . h . es ist

die Reduktion (25 ) § 86 . S . 463 nicht mehr angebracht worden ; und innerhalb der

ersten Näherung haben wir nun in (10 ) wieder dieselbe Formel wie früher in der

sphärischen Entwicklung von § 50. Gleichung (10) S . 281 .

Entfernungs -Reduktion .

Wenn die wahre Länge einer geodätischen Linie auf dem Ellipsoid = S und
deren ebenes Abbild = s ist und m das Vergrösserungsverhältnis in differentialem
Sinne , so ist :

(11)* = A
j m

äs

und hiezu ist der Wert von ni aus der Formel (10 ) einzusetzen ; wir wollen aber
dabei das Glied mit H nicht mitnehmen , weil eine hierauf sich erstreckende Inte¬

gration schon früher in § 85 . gemacht worden ist . Es wird also zunächst nur genommen :

I _ i (12)
to 2 r*

und insoweit könnte es scheinen , als ob die einfache Entwicklung von § 50 . wieder
ihre Stelle fände , allein jene Entwicklung war nur sphärisch mit konstantem r , während
wir nun den mittleren Krümmungs -Halbmesser r nach den Ellipsoidgesetzen veränderlich

annehmen müssen .
Es kommt dabei wieder die Änderung von V in Frage , nämlich nach (25)

§ 86. S . 463 :
* 1
N = 1 • (tp — (jDi)

F2 if t oder
r *

_
vJ

= l • 4 (qp— <Pi)
v % t

und da
1 _

&

i = ~ U

F4

1$ , hat man auch :

ri 2

Es ist aber in erster Näherung :

<P

also , ebenfalls in erster Näherung :

4 (qp— <Pi )
V2 1j

'2 t

X —
9,1 = T

_
1_

f2
= —Ji . iÖL- J &Vt (13)
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N = r gesetzt , wofür auch ty

(14)

Dabei ist im zweiten Glied einfach F 2 M
geschrieben werden kann .

Aus (12) und (13) hat man also :
1

_ 1 __ JL / i _
4 te _

-
vm 2n 2 V r 1

Dieses m gehöre zu einem Punkte mit den Coordinaten x y , an irgend welcherStelle des Bogens ACB von Fig . 2 . § 85 . S . 453 , welcher als Abbild einer geodä¬tischen Linie 8 auftritt . Wenn man nur bis zur 3ten Ordnung einschliesslichrechnet , so kann man sowohl die Gerade A B als auch den Bogen A s' B als Abbild¬
länge s der geodätischen Linie S annehmen , denn die Unterscheidung zwischen BogenACB und Sehne A B kam erst bei der 4ten Ordnung in Betracht , wie wir in
§ 85 . bei (23 ) S. 455 gesehen haben .

Die Kurve A B in Fig . 2 . § 85 . S . 455 sei bestimmt durch eine Gleichungzwischen l und z , indem ein schiefes Coordinatensystem gelegt wird mit AB alsAxe der l und einer Axe der z , welche gegen AB um -+- 90 ° gedreht ist . Indessenbrauchen wir innerhalb der ângegebenen 3ten Ordnung die z selbst gar nicht zu
berücksichtigen , es genügt zunächst zu setzen (als Abkürzung von ( 12) § 85 . S . 453) :

x = Xy -+■l cos ty y — yi -+- l sin ty (15)also wird (14) :
4 l cos ty ^ i-- = 1m

(j/1 + 1 sin ty )2
2 r , 2

“ V >)■x \ ' /Es ist zu bemerken , dass das letzte t hier wie immer die Bedeutung t = tang <phat , während tj der Richtungswinkel von A B im System x y ist .Die Gleichung ( 16 ) wird nach Potenzen von l geordnet , und soll dabei geben :

m • (17)
Coefficienten er, ß , y, d folgende Bedeutungen :
a — i y?

2 r x2 (18)

ß = V\ «*» *1,2 Vl2 COSty
ry2

~
r3 ’’ (19)

y = sin 2 ty 4 yy sin ty cos ty
2ry 2

~l
-r - t (20)

<5 = 2 sin 2 t , cos U „+ -
ri >r > (21)

Wenn man die Funktion (17) entsprechend (11) integriert und zwar zwischenden Grenzen l = 0 und l — s, so bekommt man :
N

... > V Wi
(22>s ^

2 ^ 3 ^ 4
Andererseits führen wir drei Werte von i ein ,mund für den Endpunkt der Linie A B , nämlich :

7 = 0 soll geben — = a
nii

1

für den Anfang , für die Mitte

l = s

ß s-- = « -+- ~ ■mQ 2

■
*- = a -+- ß s -

)«2

S2 s3~
n + d

8

y s2 - äs »
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Dieses mit (22) verglichen wird geben :
8 1/1 4 1- = ( - 1- 1-
s 6 (mj ma m2

(23)

Wenn man also die drei verschiedenen — nach der Funktion (12) ausrechnet , und

zwar nicht bloss für die drei verschiedenen y , sondern auch mit Rücksicht auf die

Veränderlichkeit von r , entsprechend den geographischen Breiten ĝ , tp0> <f>2 oder den

Abscissen x0, X\ , x%, so bekommt man nach (23) die richtige Entfernungs -Reduktion ,
ohne dass man dabei die Coäfflcienten a , ß , y, 8 gebraucht hätte ; es hat genügt ein¬

zusehen , dass sich i durch eine Funktion 3ten Grades von der Form (17 ) aus-
m

drücken lässt .
Trotzdem wollen wir doch auch noch den Ausdruck (22 ) mit Einsetzung der

CoSfficientenwerte a , ß , y , 8 nach (18 ) — (21 ) bilden , und zwar mit Umsetzung
s sin tj = y%— yA und s cos tj — x%— xit wodurch man erhält :

6 rp \ (2/i2 + 2/12/2 2/22) - (®2 — * 1) (2/ i z + 2 2/12/2 + 3 2/ 22)
Of3

Hier kann man noch r [ auf den Mittelwert r0 reduzieren , nach (13 ) :

_1
n >2

1 +
4 (x — *1) 1/2 1

Dieses mit (24) verbunden giebt :

f = 1 ~
öy oä

W + 2/1 2/2 + 2/22) - ^ ^ ^ - Vlt) (25)

Hier gilt r 0 als mittlerer Krümmungs -Halbmesser für die mittlere Breite gp0
oder für die mittlere Abscisse xa der betrachteten Linie A B .

Die Gleichung (25) in logarithmischer Form geschrieben wird :

log S — log s = — (y^ + xji 2/2 + 2/22) — ^ r3 ^ ~ ^ ^ )

Dieses stimmt mit Schreiber S. 49, -wenn man wie immer die gegenseitigen Z
^ ^ungen macht . In erster Näherung stimmt dieses auch mit dem früheren (1

§ 88 . Richtungs - Reduktion .

Um das Krümmungs - Differential zu bestimmen , betrachten wir in Fig . 1 . und

J'ig- 2 . S . 472 zwei benachbarte Punkte , welche auf dem Ellipsoid durch einen kleinen

Bogen dS und in der Ebene durch ds verbunden sind , und untersuchen die ver¬

schiedenen dabei in Betracht kommenden Richtungen und "Winkel , unter Zuziehung

dessen , was schon in § 86 . bei Fig . 4 . S . 465 über die beiden Meridian-Konvergenzen

7 auf dem Ellipsoid und y in der Ebene gesagt worden ist .
Dann wird man aus Fig . 1 . alsbald die folgenden Gleichungen herauslesen können :

T l = a l — )\ Ti = a 2 — y2

ri -~ r 2 = (/ a - yi) - («2 - « i)

2"
! - Tt .= fo ' - n ') + (te - 7z ) - (h - h ' i) - («2 — «1)

°der als Differential : /in
dT = dy ' + d {y - y

t) - da Gl
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Auf dem Ellipsoid ist nach (38 ) § 86 . S . .464 :
y

' — l sin qp -t- X3 . . ,
also d / ’= dl sin cp -hl cos cp d <p

Eig . X. Ellipsoid . Fig . 2 . Ebene .

äS/l

Dagegen das Differential der Meridian -Konvergenz zwischen den beiden Punktenselbst wie immer nach § 69 . Gleichung (5) S. 378 :
d a = dl sin cp (®)

Also nun aus (1), (2), (3) zusammen :
d T — 1 cos <p d (p -t- d (y — y

'
) W

Von früher (39 ) § 86 . S . 466 hat man :
2

7 — 7
' = 1$ ifi sin y cos %cpQ

Auch dieses differentiiert giebt :
d (y — 7

'
) = 2 k2 sin <p cos2 cp dl

Also im ganzen mit (4) zusammen :
d T = 1 cos <jDd cp + 2 jj2 Ä2 sin q>cos %cp dl

Hiebei ist nach den Grundformeln von (3) und (4) § 69 . S. 378 :
dxd cp —
M

und

Also wird (5) :

Xcos cp =T N also d 1 cos <p =
y dx'
WN '

dy~
N

dT = >£ ZT+ 2tftZ s dy

(5)
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Hier ist genau M N = r % und im zweiten Gliede kann man genähert i \r3 = r3
setzen also :

+ (6)

Damit wird wieder ebenso verfahren wie bei (23 ) § 50 . S. 283 oder wie bei (9 )
§ 85 . S . 453, nämlich mit den Bezeichnungen l und e nach Big . 2 . § 85 . S . 453.

_ d̂ _ dT = y_ dx
2 H ŷ _ dy

dP ~ dl r2 dl + 1V ' rs dl ( ’

Es soll wieder r2 als veränderlich angenommen werden nach dem früheren (13)
§ 87. S . 469 :

also wird (7) :
(ße
dl 2

''

1
7*2

y

l i - 4 (aj — Xy)
rfi t (8)

(9)
r i “ \ r

Die Coordinatenumwandlung wieder ebenso wie (15) § 87 . S. 470 giebt :

x — Xy -+- 1 cos ti und V = V\ + l sin h 1
dx dy . (
jj = cost , y j

Diese ( 10) in (9 ) eingesetzt , werden wieder eine algebraische Funktion geben
von dieser Form :

= A + Bl ^ Gl 2 Ui )
a lz

wobei die Cogfficienten folgende Bedeutungen haben :

. 1 2A = -
^ y\ c°s <i 11 yi2 sm h

B = —L sin ty cos ty ~t-j-ji
(sin2 ty — cos2 ty)

C --
2 t]2 t

r 2
sin ty (sin3 ty — 2 cos2 ty )

(12 )

(13

(14)

Die übrige Rechnung nimmt wieder den früheren Gang bei (29) § 50 .
und (19) | 85 . g _ 454 nämlich :

As Bs 2 Cs 3
Oi = 2

A s
T

6
Bs 2

^2 — O ' 3

12
Cs 3

(15)

(16)

Die Einsetzung von A , B , 0 aus (12)— (14) in (15) und (16 ) wird geben :

. rft , . ift .
01 ^ (% i 2+ 2^ 2+ ^ 2) (17)

Xz—Xy(yi + 2y2) ~ ^ (x2- Xy)2 (yi + ^ ) + ^ (y2- yi ) (?/i 2+ 22/i2/2 + 3j/22) ( 18)t]H ,
6r 22 — *' irvyi -i- 'j y 2r T- Qr3 K,

Die Überführung von rj 2 in einen Mittelwert wird diesesmal so gemacht .

„ 2 Xy + x2®i* - 3

* 12 - % =
y (* a — Xy)

und

und

* 21 = -Xy ~H 2 X2

« 21 - ■*2 = 4 - 0*1— ®2)also



474 Vorteile der konformen Coordinaten .

Deshalb nach (13 )

£ (* 2 — * 1)
(19)

Damit gehen (17 ) und (18 ) über in :

öj = "
q7

-
§
j (2 y \ + 3/2) — * i )2 (3/2 — 2/1) -+- l

‘

r 3(2/2 - 3/1) (32/ i 2+ 2 ^ y <i + y £ ) (2°)

h = y (3/1 + 2 1/2) + (*2 — ^ 2 (j/!— 1/2) + (3/2 - 3/1) (3/l2 + 2 3/13/1+ 3 2/23) (21)
Diese Formeln stimmen mit Schreiber , S. 46 , wenn man die Bezeichnungsumänderungen

berücksichtigt ; und in erster Näherung haben wir auch "
Übereinstimmung mit den früheren (31)—(32)

§ 50. S. 284.

Schlussbetrachtung .
Alle Formeln , welche in den vorstehenden §§ 86 .— 88 . gefunden worden sind,

gehen in die entsprechenden früheren Formeln von § 58 . und § 50 . über , wenn man
die höheren Glieder weglässt , wie wir an den betreffenden Stellen bereits angegebenhaben . Insbesondere sind die Formeln von § 87 . und 88 . bei Weglassung aller f
lediglich die sphärischen Formeln von § 50 ; und wenn man sich damit begnügen will,
so kann man auch die viel einfacheren sphärischen Entwicklungen von § 50 . an Stelle
der umständlichen §§ 87 . und 88 . treten lassen.

Für kleine Geltungsbereiche , etwa von der Grösse der vierzig preussischen
Katastersysteme , würden in der That die früheren Formeln von § 50 . und § 58 . mit
demselben Rechte angewendet werden können , wie die ebenfalls nicht weiter getriebenen
sogenannten Soldner sehen Formeln .

Ein Land mit praktischer Anwendung der Gauss sehen konformen Theorie giebt
es zur Zeit in Deutschland nicht (nachdem das Hannoverische System aufgegeben
worden ist vgl . S. 329) und deswegen wollen wir auch Zahlenanwendungen zu den
§§ 86 .— 88 . hier unterlassen .

§ 89. Vorteile der konformen Coordinaten.
Nachdem wir schon in § 52 . eine Vergleichung der kongruenten (Soldner sehen)

und der konformen Coordinaten angestellt haben , welche am Schlüsse daselbst S . 297
in allem Wesentlichen zu Gunsten der konformen Coordinaten ausgefallen ist , ist es
angezeigt , nochmals hierauf zurückzukommen .

Dabei sei auch ein Wort über die Bezeichnung kongruente Coordinaten " eingeschaltet .
Wir wollen unter kongruenter geodätischer ebener Abbildung einer auf einer krummen Fläche ge¬
zogenen Linie diejenige ebene Abbildungslinie verstehen , welche ein Landmesser auf der krummenFläche mit Theodolit und Messlatten messend , nach gewöhnlichen Feldmess - und Kechenregeln auf
einer Zeichenebene herstellen würde (abgesehen von dem Verjüngungsmassstabe der Zeichnung ).
Wir bedienen uns dabei wie bei der mathematischen Definition der geodätischen Linie (§ 68. S. 373)
der Feldmessoperationen als Veranschaulichung einer mathematischen Begriffsbestimmung , und
wir finden hierauf leicht den Satz , dass die geodätisch kongruente ebene Abbildung einer geodä¬tischen Linie immer eine Gerade der Ebene ist , deren lineare Grösse der rektifizierten geodätischenLime gleich ist . Die „geodätische Krümmung “ ist in diesem Falle gleich Null (vgl . hiezu § 107).

Die Ordinaten y und ji, der ebenen Soldner sehen Projektion Fig . 1. § 46. S. 275 sind in diesem
Sinne geodätisch kongruente Abbildungen der sphärischen Ordinaten y und y * von Fig . 1 § 46. S. 257,
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wie auch die sphärischen Abscissen x und x , von Fig . 1. S. 257 geodätisch kongruent abgebildet
werden (während für irgend eine andere Linie z. B. A B = s in Fig . 1. S. 257 die Abbildung durchaus
nicht mehr geodätisch kongruent ist ).

Aus diesen Gründen haben wir die sogenannte Soldner sehe Coordinaten -Projektion , um
eine kurze mathematische Benennung zu haben , „kongruente “ Projektion genannt im Gegensatz
zu der Gauss sehen „konformen Projektion “.

Zuerst nochmals auf das allgemeine Prinzip der Konformität zurückkommend,
nach welchem zwei kleine Dreiecke im Urbild und im Abbild einander ähnlich sind
(vgl . § 50 . S. 279) wollen wir unterscheiden , ob die Änderung des Massstabsverhält¬
nisses m von Punkt zu Punkt so beträchtlich ist , dass auf ein und demselben Karten -
hlatt die Veränderlichkeit bemerklich wird . Nehmen wir z . B . das bekannte stereo¬

graphische Halbkugelhild der Erde , so hat dasselbe am Rande doppelt so grossen
Massstab als in der Mitte ; und deswegen ist der Vorteil der Konformität in diesem
Palle nicht unbedingt Ausschlag gebend , denn wenn man doch einmal auf einem
Blatte verschiedene Massstäbe an verschiedenen Punkten haben muss, ist die Verschie¬
denheit des Massstabes in einem Punkte nach verschiedenen Richtungen auch nicht
mehr so sehr schlimm .

Andererseits betrachten wir den Pall , dass eine grosse Karte einheitlicher
konformer Projektion in so viele einzelne Blätter zerschnitten wird , dass innerhalb
des einzelnen Blattes der Massstab als konstant gelten kann ; und dann tritt die
Konformität in ihr schönstes Licht .

Diesen Fall haben wir aber bei unseren Katasterkarten ; setzen wir z . B . als
sehr gross y x = 99000 ™ und y2 = 100 000 '», so wird entsprechend (vgl . § 49 . S . 276 ) :

m 2 = 1 + = 1,000 1228mj = 1 + = 1,000 1203
A r “

nii — 1 = 0,1203 '»»* für 1"* — 1 = 0,1228m »* für 1 »*

Diese zwei Werte sind so nahe einander gleich , dass man ihren Mittelwert ,
0,1215 »»» für l m , als konstant für das ganze Blatt annehmen kann , dass man also
mit einem Massstabe für das ganze Blatt ausreicht ; dieses gilt für konforme Coordinaten.

Dagegen bei Soldner sehen Coordinaten , bei welchen die Formel (4) S . 275 oder

(4) S . 292 gilt , kommt man mit einem Massstabe für jedes Kartenblatt nicht aus,
sondern man würde in die unangenehme Lage versetzt , eine ganze Windrose von

Massstäben auf die Karte zu zeichnen , bei denen für jeden einzelnen das Vergrössei -

ungsverhältnis nach cos2 « berücksichtigt werden muss.

Durch einen kleinen Kunstgriff kann man die Maximalverzerrung leicht auf
Oie Hälfte ihres Wertes herunterbringen , indem man einen Mittelwert als konstante

Verzerrung einführt , etwo so , dass y = b dem Maximalwert % und y = c dem Mittel¬

wert ro0 entspricht , also ;

Nimmt man c2 = so wird für y = 0 und y — b \
u

Man kann auch e2 anders annehmen , z. B . so dass die Quadiatsumme aller

( 1 j 2 , als Integral aufgefasst f ein Minimum wird , was eintritt mit c2 . b
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Solche und ähnliche Betrachtungen , für konforme und für Soldner sehe Coordinaten
haben wir angestellt in „ Zeitschr . f. Verm . “ 1896 , S . 249 —252 , worauf hier verwiesen
werden mag .

Die Fläehenverzerrungen , von welchen auch schon in § 52 . S. 293 gesprochenwurde , sind in der Soldner sehen Projektion im allgemeinen halb so gross als hei
der konformen Projektion , und dieser einzige Vorteil ist von Anhängern der Soldner-
schen Projektion lebhaft hervorgehoben worden , jedoch ist dazu folgende Überlegungzu machen :

Wenn z. B . bei der preussischen Ordinatengrenze y — 64 000”* die Flächenver¬
zerrung 1 : 20000 in Soldner scher Projektion beträgt , und 1 : 10000 in konformer
Gauss scher Projektion , so ist das in beiden Fällen unschädlich neben den Messungs¬fehlern ; z. B . auf l ä“ macht jenes 1 : 10000 nur 1«” , während nach preussischer An¬
weisung die zulässige Abweichung zweier Bestimmungen hiefür 80*“ oder der mittlere
Fehler einer Bestimmung etwa 80

3 y j
= rund 204" beträgt , d . h . das 20 fache des

Verzerrungsfehlers . Nimmt man grössere Flächen , etwa 1«*” , so kann allerdings
scheinbar der von der Projektionsverzerrung herrührende Flächenfehler an den Mess¬
ungsfehler heranreichen , aber dann ist es zunächst ziemlich gleichgiltig , ob dieses im
Verhältnis etwa 1 : 8 oder 1 : 4 stattfindet ; zweitens aber werden grosse Flächen nicht
selbständig gemessen , sondern sie werden auf irgend welchen , z . B . polygonometri-schen , Wegen aus den Netzcoordinaten abgeleitet und nehmen von dort die Netzver¬
zerrungsfehler als unschädlich mit in sich auf , gerade wie auch die Höhenreduktionen
vgl . S . 295) , welche gewöhnlich auch nicht besonders berücksichtigt werden. Es
ist hier viel richtiger , dass alle Netzproben genügend in sich selbst stimmen , als dass
die Netzverzerrung als ganzes mit in Rechnung gebracht wird , was übrigens auch
ungehindert geschehen könnte , sowohl in der Soldner sehen als in der konformen
Projektion .

Fig . i .

HDOO > 3

Übergehend zur Triangulierung betrachten wir
mit Fig . 1 ein rechtwinkliges gleichschenkliges Drei¬
eck, dessen Hypotenuse parallel der m-Axe des Coordi-
natensystems liegt mit j/ , = y 2 = -+- 64000 ™, und mit
der Seite 1.2 = 2000” . Der dritte Punkt 3 . hat dann
y2 = + 65000”.

Dieses sind Naturmasse auf der Kugel ohne
Rücksicht auf ebene Kartenprojektion , und es folgen
daraus die drei Dreieckswinkel , da das Dreieck hin¬
reichend als eben berechnet werden kann , so :

Wlnkel 1. Winkel 2. Winkel 3.45 ° 0 ' 0,00 " 45 ° 0 ’ 0,00" 90 ° 0 ' 0,00 " (ü
Wenn man eine Mittelbreite (jo = 50 ° annimmt , so hat man nach § 50 . S . 286 :

% 2^2 = 6 ‘089 188< % = 5 '612 062 Und l°9 g
“

2 = °'926 487
und damit werden die Coordinaten in Soldner scher und in konformer Projektion be¬
rechnet nach (7) § 49 . S ! 276 und nach (9) § 50 . S . 281 , wie folgt :
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I Projektion Soldner , kongruent :

Punkt 1. jfj = + 64000 ”1 = -+- 0,0000 ”

„ 2. y 2 = + 64000 x 2 = + 2000,1006
„ 3. 2/3 = + 65000 x 3 = + 1000,0503

1000,0000
tang (1,3)

1000,0503
(1,3 ) = 44 ° 59 ' 54,813 '

ys — 3/, = -+. 10000 x3 — xt = 4 - 2000,1006 = 1414,2491”
y2 — 2/1 = -H 0 xs — Xj = -+- 1000,0503

Die Winkel des ebenen geradlinigen Dreiecks in der Soldner sehen Projektion er¬

geben sich hieraus :
Winkel 1. Winkel 2. Winkel 3.

44 ° 59 ' 54,813 '3" 44 ° 59' 54,813 " $

Winkelsumme = 180 ° 0 ' 0 ,000 "
90 ° 0' 10,374 ' (2 )

II . Projektion Gauss , konform.
^ . . .

‘4 . P 2 = - b 64001,0730
3 . r 3 = + 65001,1241

1000,05112000,1006 tang (1,3) 1000,0503x3 = 4 - 1000,0503

•+- 1000,0511 x 3 — aji = + 1000,0503 1414,2853 ’

0,0000 x$ — x2 = + 2000,1006
Es sind also die Winkel des ebenen geradlinigen Dreiecks in der Gauss sehen

konformen Projektion :
Winkel 1. Winkel 2. Winkel 3.

45 ° 0 ' 0,082 " 45 0 0 ' 0,082 " 89 ° 59 ' 59,836 "

Winkelsumme = 180 ° 0 ' 0,000 "

Die Richtungsreduktionen nach den Formeln (6) und (7) § 52 . S . 294 werden

für die Sichtung (1,2) :
Soldner V 12 — — + 0,163 ” 4 - 5,268 " = -4- 5,431 "

Ganss T i2 — t12 = - t- 0,163 ' '

Dabei bezieht sich 0,163 " auf die der Dreiecksseite durch die Projektion er¬

teilte Krümmung , welche in beiden Projektionen gemeinsam ist und der zweite Teil

5,268" ist von der eigentümlich schädlichen Soldner sehe einseitige Verzerrung her¬

rührend . Wir wollen diese Reduktionen T — t hier nicht weiter verfolgen . (Bei

Soldner scher Projektion wären dabei die früher in Fig . 4 . § 50 . S . 278 behandelten

Verhältnisse zu berücksichtigen ) .
Es ist uns hier vielmehr um die Betrachtung der ebenen geradlinigen Dreiecke

in beiden Projektionen zu thun , welche durch die Dreieckswinkel (2) und (3 ) im Ver¬

gleiche mit ( 1) genügend charakterisiert sind . Während in der konformen Projektion

die grösste Winkelverzerrung 0,2 " beträgt , steigt diese Verzerrung auf 10,4 in der

Soldner ’schen Projektion , und damit ist der grosse Schaden der letzteren , d . h . der

Soldner sehen Projektion für Kleintriangulierung und Polygonzugsmessung deutlich

Tor Augen gelegt .
Der Mecklenburgische Kammeringenieur Vogeler , welcher die Vorteile der kon

formen Projektion in seinem Lande besitzt , hat in der „ Zeitschr . f. Verm . “ 1896 ,

S. 260— 261 die Vergleichung so zusammengefasst : _
Bei der konformen Projektion in Mecklenburg kann die Triangulirung III — •

Ordnung ohne alle Reduktionen 4 ausgeführt werden , und zwar bis zu 100 '""
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Entfernung von der Hauptaxe , es sind hierbei Winkelverzerrungen von grösseren
Beträgen als etwa 1 " —2" nicht zu befürchten .

Dagegen bei dem Soldner sehen System werden alle Winkel III .—IV . Ordnungbis herunter zu den Polygonzugswinkeln durch Verzerrungen von 5" — 10" entstellt,
wenn man die Systemgrenze von 60000” vom Meridian erreicht , oder um ein geringes
überschreitet .

Die nachstehende Tabelle lässt alle Vorzüge der konformen Gauss sehen Pro¬
jektion und die Nachteile , die die Soldner sehen Coordinaten mit sich bringen , klar
erkennen . Dabei ist für die Mittelbreite 50° nach S . 286 loa — = 0 .9264 9 :J 6 ?-2

T — t nach den Formeln (7) und (6 ) § 52 . S. 294.

/Jx = x 2—ajj
und

Ay = yr - y \

2/1 =
30 000”

2/1 =
40 000”

2/1 =
60000 ”

2/1 =
80 000”

2/1 =
100 000“

03

* Soldner

0303fl
s Soldner

j

93
sö Soldner

a>
cöO Soldner

0303flcö
<5

3fl
5
o05

50” 0,0 i,i 0,0 2,0

"

0,0 4,6

rr

0,0

rt

8,1 0,0 12,7
100” 0,0 1,2 0,0 2,0 0,0 4,6 0,0 8,1 0,0 12,7
500” 0,0 1,2 0,1 2,1 0,1 4,7 0,1 8,2 0,1 12,9

1000“ 0,1 1,3 0,1 2,2 0,2 4,8 0,2 8,4 0,3 13,0
5000” 0,4 1,7 0,5 2,8 0,8 5,7 1,0 9,6 1 .8 14,0

10000” 0,8 2,4 1,1 3,7 1,6 7,0 2,1 11,3 2,6 16,6
20000” 1,9 3,9 2,4 5,6 3,4

1
9,6 4,4 14,7 5,4 20,8

Hier fällt zuerst in die Augen , dass bei abnehmender Entfernung die Richtungs-
Reduktionen bei der konformen Gauss sehen Projektion verschwinden , bei der Soldner sehen
Projektion aber nicht .

Ferner geht aus dieser Übersicht hervor , dass eine ebene Kleintriangulierungmit einer Genauigkeit von + 2" bis 3"
, welche den heutigen Instrumenten entsprichtund durchaus wünschenswert ist , bei der Soldner sehen Projektion schon von y = 40000”

an zur inneren Unmöglichkeit wird . Die Soldner sehen Katastersysteme müssten auf
30 bis 40*” Abstand von der Hauptaxe beschränkt werden , wenn sie den konformen
Coordinaten mit einem Geltungsbereiche von 80 bis 100*” Abstand vom Meridian
das Gleichgewicht halten sollten .

In Bayern werden daher nach einer Mitteilung von Franke in „ Zeitschr . f. Verm .“
1896, S . 332 schon von y = 20*“ an die sphärischen Korrektionsglieder der Soldner sehen
Formeln berücksichtigt und zwar mit graphischen Hilfsmitteln , die wir schon in § 46 .
S. 263 kurz erwähnt haben , und so bleibt die Bayerische Kleintriangulierung immer
noch innerhalb 1" — 2" richtig , während z. B . im Pr .eussischen Kataster mit «/ = 60tm
ohne sphärische Korrektionen sich Winkelverzerrungen einstellen , welche die Messungs¬
fehler guter Theodolite bereits merklich übersteigen , und zum mindesten als inkonsequent
bezeichnet werden müssen . . .

Eine Triangulierungs -Betrachtung mag noch auf die Centrierungen bei excen¬
trischen Triangulierungspunkten Bezug nehmen .
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Wenn mit y = ei *"” im Soldner sehen System eben trianguliert wird, so werden
süd -nördliche Verschiebungen von 5 ™ auf l tm vernachlässigt , oder z. B . IS'" auf 3*”.

Es ist das ähnlich wie wenn ein Trigonometer bei Turm -Centrierungen oder

dergl . bei rund 4*“ Zielweite in nordwestlicher Richtung eine süd-nördliche Excentri -

cität von 15 ' “ vernachlässigen wollte , während er gleichzeitig sich abmühte , seine
Winkel am Theodolit auf wenige Sekunden genau zu messen ; — denselben Fehler

begehen die Katastervermessungen , welche bei Soldner sehen Coordinaten bis y — 64tm

eben triangulieren .

Eine letzte Betrachtung mag sich noch auf Polygonmessungen beziehen, welche
bei Soldner sehen Coordinaten mit y = 64*” auch schon mehr Verzerrungen erleiden
als hei genauen Messungen , z. B . bei einigermassen feinen Stadtvermessnngszügen
zulässig ist . Die Polygon winkel erleiden im Soldner sehen Systeme nach der Tabelle
S . 478 Verzerrungen ganz unabhängig von der Streckenlänge bezw. Zielweite, welche
bei Zügen zu rund 50" — 150" angenommen werden mag . Nimmt man y%— yi =
xi— = 100 ” oder = 50” , so entsteht bei y = 60*” eine maximale Richtungsreduktion
von 4,6" also eine maximale Winkelverzerrung von 9,2" . Im ganzen kann man hei

y — 64»” eine Winkelverzerrung von 5" —10 " annehmen , was bei feinen Stadtvermess¬

ungszügen bereits erheblich an die Messungsfehler heranreicht oder sie überschreitet .

Oder betrachte man die linearen Verschiebungen von rund 1 : 20000 oder 5””

auf 100”, so sind diese auch schon zu hoch bei feinen Stadtvermessungen .
Statt die Entfernungen s und die Richtungswinkel « einzeln nach den Formeln (3)

®. 292 und S . 294 unten , zu reduzieren , könnte man zwar auch nur die s cos a nach (4)
S. 292 reduzieren , allein das würde wieder andere Übelstände mit sich bringen .

Mag man nun solche Fehler als unerheblich oder als bereits schädlich betrachten ,
jedenfalls muss man vor Augen führen , dass alle diese kleinen Widerwärtigkeiten
uiit einem Schlage verschwinden , wenn man statt der Soldner sehen Projektion die
konforme Gfauss sehe Projektion anwendet .

Vgl. hiezu auch mehrere Artikel in der „Zeitschr . f. Verm .“ 1896, S. 193—215 , S. 249—2o2,
S. 257- 263, S. 321—339.

§ 90. Preussische Polyeder-Projektion.

Ausser den verschiedenen in diesem Kapitel behandelten mathematischen Pro¬

jektionen zur ebenen Darstellung rechtwinkliger oder geographischer Coordinaten wollen
wir zum Schlüsse noch eine Projektionsart betrachten , welche sich hauptsächlich für

geographische Coordinaten und Messtischzeichnung eignet , nämlich die Preussische

sogenannte Polyeder - Projektion , welche wir in ihren Grundzügen schon in § 57.

kbg- 2 . S . 319 kennen lernten .
Es war dort davon die Rede , dass man die bekannten Messtisch -Trapeze der

topographischen Abteilung der Landesaufnahme auf zweierlei Arten auftragen kann,
erstens unmittelbar nach ihren Vierecksseiten {AB , CD , AG u . s. w. S . 318) und

zweitens durch die Coordinaten ihrer Eckpunkte in irgend welchem anderen System.

Von letzterem sei aber nun nicht die Rede , sondern nur von dem Aufträgen
'ter einzelnen Trapeze , welche als geradlinig behandelt , mit ihren Rändern links un

rechts zusammengelegt eine zusammenhängende Projektion eines Parallelkreisstrei ens

geben , aber mit ihren Nord - und Südrändern nicht scharf zusammenpassen können.
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Das so entstehende Klaffen ist in der Praxis gleichgiltig , insofern man niemalsmehr als einige benachbarte Blätter zusammenzulegen hat , wobei der Papiereingangviel wichtiger ist als jenes unmerkliche Klaffen ; und wir betrachten daher die Her¬
stellung nach S . 318 mit der Hilfstafel von S . [41] des Anhangs als
erledigt , und haben nur noch eine Kleinigkeit nachzutragen , welche

früher in § 57 . S. 318 unten und S . 319 kurz berührt worden ist,
nämlich die schwache Krümmung der Süd - und Nord - Ränder .

Wir nehmen hiezu nebenstehende Pig . 1 . in Beziehung zu
der früheren Pig . 1 . § 81 . S . 428 , und betrachten die Kegel¬
abwicklung SAB zur Breite cp

' und SCD zur Breite cp. Dann
ist der Abwicklungs -Halbmesser SC = SD = SE = Ncotgcp und
der Bogen CD = N cos cp X , wenn N wie gewöhnlich der Quer-
Krümmungs -Halbmesser zur Breite cp ist . Dann gieht Pig . 1 die
kleine Pfeilhöhe h in bekannter Näherung :

h -
2 SE

oder für k in Minuten

JlL
8ß

' 2

Nehmen wir rund <p

C -B2 (i Neos cp X)^ 7?
2 N cotg cp 8 N sin cp eos cp

h = N sin cp cos cp = 1*
N sin 2 qp (1)16 (>'2

50 °
, also nach S . [20] log N = 6 .80550 ,

dazu Ä = 10'
, so gieht vorstehende Formel (1) :

h = 3,328 ’“
Dieses ist natürliches Mass und gieht in der Kartendarstellung in Verjüngung

3,328”
1 : 25000 den kleinen Wert

25000 = 0,00013 ” = 0,13 '"” ,
Dieser Betrag von rund 0,1 ”” ist so klein , dass man ihn kartographisch wohl

vernachlässigen kann , indessen würde seine Berücksichtigung auch leicht sein.
Klaffen der Blätter . Ohne auf alles einzugehen , was hier in kartographischer Beziehung noch

angefügt werden könnte , wollen wir nur noch bemerken , dass die im Vorstehenden beschriebenen
preussischen Blätter in Parallelkxeisschichten sich zwanglos aneinander fügen lassen , dass aber eine
Schichte mit einer Mittelbreite <P an die benachbarte Schichte mit der Mittelbreite <p+ 6' oder g>- 6 nicht
völlig anscbliessen kann . Ohne die Formel für das Klaffen zwischen je zwei solchen Schichten hier
zu entwickeln , wollen wir nur wenigstens die Formel selbst angeben . Wenn b der richtige Meridian¬
bogen zwischen <p und ’P -f- d (P ist: und /. die Länge eines Meridians von der Mitte an gezählt , so
wird in diesem Meridian statt des wahren Bogens b ein Bogen b' anftreten nach dem Verhältnis

V -f c■
j
-= 1+ V1-

g
-cos i <p mit Fa = 1 —f- e*2ros»</>

Man kann hieraus berechnen ' mit dtp — 6’, b =zMdq >, und ^ = 10° , dass V — 6 = 70” oder
verjüngt 6’ — 6= 70” : 25000 = 8” ” wird , woraus sich die praktische Unschädlichkeit des fraglichenKlaffens im Vergleich mit dem Papiereingang u. s. w. herausstellt .

Wir wollen aber hieran noch eine weitere Bemerkung knüpfen , dass das Verhältnis -
j
- —

*4" cos* CP(das übrigens hier auch nur genähert angegeben ist ), dazu führen kann , aus der vor¬
stehenden Betrachtung eine Art von konformer polykonischer Projektion abzuleiten , welche in erster
Näherung mit der Gauss sehen konformen Projektion von § 86. übereinstimmt . Dieses später näher
auszuführen möge Vorbehalten bleiben .

Wir wollen nun noch die Umkehrung derjenigen Aufgabe vornehmen , welche
bereits in § 57 . S . 319 durch Einrechnen der Trapezecken in ein Kataster -Coordinaten-
system behandelt worden ist , d . h . wir wollen nun umgekehrt die Aufgabe stellen, in
ein vorhandenes Messtischblatt der topographischen Karte 1 : 25000 die X - und «/-Linien
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eines Katastersystems einzurechnen , etwa ran Kartennachträge aus dem Kataster in
das topographische Blatt bequem und genau hinüberzutragen u. s . w . Insofern es
sich nur um Zeichnung im Massstab 1 : 25000 handelt , wollen wir uns mit Genauig¬
keit von rund 0,1 " in den Breiten qo und in den Längen L begnügen .

Man könnte daran denken , für runde Werte x und y die zugehörigen Breiten
<p und L nach § 55 . S . 308 auszurechnen , und darnach das Netz der * - und (/-Paral¬
lelen in das topographische Blatt hineinzubringen ; und man kann das wohl thun , wozu
aussei dem Schema S . 308 keine weitere Anleitung nötig ist . Aber es bietet sich
ein graphisch besseres Verfahren so dar , dass man nur die Bawdschnitte bestimmt ,
d. h. auf dem West - und Ost -Rand des Blattes die Schnitte für runde os, und auf dem
Süd- und Nord -Rand die Schnitte für runde y , wie auf nachfolgender Pig . 2 zu sehen ist .

Fig . 2.
Preussisches Messtischtrapez (vgl . Fig . 2. S. S19) mit eingerechneten Randschnitten für x und y.

<P — 52° 30' 0,0"

52° 29' 24,7

52®26' 42,9'

52®24' 1,2"
P = 52®24' 0,0"

A
X=- 15000 ™ i

B

£0Oow
OJ

i
i
i£
, 00
: O
; 0

x=-2 cooo ™
11
>>

0

!>>

li
X= -25000 m ! „ P

(p = 52®30' 0,0"

52®29' 26,4"

52®26' 44,6"

52° 24' 2,8"
(p = 52®24' 0,0"

Bleiben wir zuerst hei dem West - und Ost -Rand , so wird die Aufgabe lauten :
für gegebene Länge L und Abscisse x soll die Breite qi berechnet werden. Wenn <p<>
und L0 die Grundwerte des benützten Kataster - Coordinatensystems sind , z . B . nach
s - 308—309 :

Celle <Po = 52 ° 37 ' 82,6709 " L 0 := 27 ° 44 ' 54,8477
' ' (2)

so hat man auch für jedes <f und L die
(3 )Differenzen <P — <jPo = 4 <P L - Lo = i

Aas (8) § 55 . S . 304 und (19 ) S . 305 folgt

Af ' ~ ~
F2v 22sin (p cos qp h- . . •

31

(4)

Jordan , Handb. d . Vermessungskunde . 4. AUti. m . Bä .
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Desgleichen aus (10 ) S . 804 mit tp = qp0 H- dcp \

x = y Q_ L V d f tangcp 0 + . . . (5)

(6)
(7)

N cos qi0 N cos qp0
Die Ausrechnung mit dem Konstanten (2) giebt :

<p = 52 ° 37 ' 32,67" + [8 .509 938] z — [4 .06902 ] X2
L = 27 ° 44 ' 54,85" 4 - [8 .725 662] y + [3.52823 ] yd <p

Diese Näherungsformeln genügen für den angegebenen Zweck, auf 0,1 " genau ;
auf genauere Berechnung , welche leicht zu machen wäre , wollen wir hier nicht eingehen .

Man wird natürlich nach einem Netzbilde zuerst überlegen , welche Schnitte
überhaupt in Frage kommen , und so wollen wir nach Fig . 2 . S . 481 z . B . berechnen den
Schnitt von x = — 20 000“ auf dem West - und Ost -Band :

West -Band
£ 0 = 27 ° 44 ' 54,85"
L = 27 20
X = — 24' 54,85"

= — 1494,85
x = — 20000“

JL0 = 27 ° 44' 54,85 "

L = 27 30
X = — 14’ 54,85"

= 894,85 "
x — — 20000“

Die Ausrechnung nach der Formel (6) giebt :
qp0 = 52° 37 ' 32,67” <p0 = 52 ° 37 ' 32,67

- 10 47,10 — 10 ' 47,10
— 2,62 — 0,94

cp = 52 ° 26 ' 42,95" <p = 52 ° 26' 44,63"

Zweitens wollen wir ausrechnen die Schnitte von y — — 25000“ mit dem Nord-
und Süd-Rand : Nord -Band

<p0 = 52 ° 37 ' 32,67 ”
<p = 52 ° 30'

Süd -Rand
% = 52° 37 ' 32,67 "
<p = 52 ° 24'

dip = — 13' 32,67"

dcp = — 812,67 "

y = — 25000”“

J <p = — 7 ' 32,67"
dcp = — 452,67 "

y = — 25000““
Die Ausrechnung nach der Formel (7) giebt :

£ 0 = 27 ° 44 ' 54 .85" L 0 27 ° 44 ' 54 .85"
— 22 ' 9 .24 — 22 ' 9 .24”
-r 3 .82 + 6 .86"

L = 27° 22 ' 49^43" L = 27 ° 22 ' 52 .47'
In Fig . 2 . sind diese Schnitte nebst anderen eingetragen . Diese Fig . 2

das nördliche Blatt der Stadt Hannover , welches auch schon in § 57 . S . 319 nn
AB C D gezeichnet ist .

Es sei dazu auch noch kurz erwähnt , dass man die nun berechneten Ban
schnitte von Fig . 2 . auch dadurch erhalten kann , dass man die früher in § 55 . S . 318
berechneten Bandmasse proportional einteilt , z . B . auf dem West -Band AG hat man .

A p = 52 ° 30 ' a = — 13909,6 ö x = 1090,4
x = — 15000 5000,0
x = — 20000 5000,0
x = — 25000 35,9

G cp = 52 ° 24' x = — 25035,9
d Cf 0 ° 6 ’ dx = 11126,3 11126,3

Wenn man den 8 x entsprechende 8 cp proportional einrechnet , so bekommt man
dieselben Werte wie nach den Formeln (6) und (7) .
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§ 91 . Abscissen als Meridianbogen .
Obgleich die Meridianbogenlängen schon in § 35 . gründlich behandelt worden

sind, wollen wir nun doch zum Schlüsse dieses Kapitels über geodätische Coordinaten
nochmals darauf zurückkommen , und noch eine ausführliche Tafel der Meridianbogen¬
längen B vom Äquator cp — 0 bis zur Breite <jp, von Minute zu Minute , in den An¬
hangstafeln Seite [55]—[57] beigeben .

Um die Berechnung dieser Tafel nachzuweisen , greifen wir zuerst zurück auf
die Werte B von § 35 . S . 216 , welche im Folgenden wiederkehren , (mit weiteren Dezi¬
malstellen) nebst den Minutenbögen m, welche nach dem ersten Gliede von (40) S . 218
für A cp = T berechnet sind :

m = M = M ^ = [3.269 8237 -607] (1)
g g' g V'i Vt

Dabei ist V oder log V für den Mittelwert cp zu nehmen, z. B . wenn es sich
am m zwischen 45 ° 0' und 45 ° T handelt , so ist der Mittelwert cp = 45° 0' 30” zu
nehmen , um aus der Tafel Seite [4] des Anhangs log V — 0 .000 7280-957 zu ent¬
nehmen . So ist das Folgende entstanden :

Meridianbogenlängen B von. 0 ° bis <f und Minutenbogen m von cp bis cp -+- 1 ■

<p B von cp bis cp + 1' m zJ m
a m

8 “ Tür

45° 4 984 439,266 150“ von 45° 0' bis 45° 1 ' 1851,993567“
0,324671“ 0,0054112“

46 5 095 568,458 505 „ 46 ° 0 '
» 46 ° 1 ' 1852,318238

0,324366 0,005406147 , 5 206 717,124 088 , 47 ° 0 ' . 47 ° 1' 1852,642604 0 3̂23667 0,005394448 5 317 885,233 043 „ 48 ° 0 '
„ 48 ° 1 ' 1852,966271

0,322572 0,005376249 5 429 073,731 700 , 49° 0'
„ 49° T 1853,288843

0,321082 0,005351450 5 540 279,542 823 „ 50 ° 0 ' . 50 ° 1' 1853,609925 0,319202 0,005320051 5 651 505,565 163 „ 51 ° 0 ' , 51 ° T 1853,929127
0,316930 0,005282252 5 762 750,674 593 „ 52 ° 0 '

„ 52 ° 1 ' 1854,246057 o
’
314265 | 0,005237853 i 5 874 014,723147 „ 53° 0'

„ 53° 1 '
( 1854,560322

0,311221 ! 0,005187054 | 5 985 297,540 011 „ 54 ° 0 '
„ 54 ° 1 ' | 1854,871543

| 0,307794 0,005129955 j 6 096 598,930 561 „ 55 ° 0 '
„ 55 ° 1 ' 1855,483323

Wie man sieht , sind die = 6 schon einigermassen beständig ; und durch
60

allmähliches Aufaddieren dieser ö könnte man bereits eine Tafel der m selbst er¬
stellen, welche dann schrittweise zu den B addiert auch zu einer Tafel der B führen
müssten. Das kann man aber besser machen durch Ausrechnung der 6 als Differen¬
tiale nach (35 ) S . 217 :

fi
" = * * = 4 * e '2 cosa 9 tan9 * = i sin2 <p

und für Intervall von 1 ' :
3 ce ’%sin2cp _8 = "
2 ^ 2

-
Z. B . zwischen <p = 45° und <p = 46°

9 — 45 ° 5 ' 45 ° 15' 45 ° 25 '

0,0054116 0,0054117 0,0054115

[7 .7369599]

haben wir ausgerechnet :
45 ° 35' 45 ° 45 '

0,0054113 0,0054108

(2)

45 ° 55 ’

0,0054102
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Die Summe dieser 6 ist 0,0324671 und das 10 fache = 0,324 671 füllt also
gerade das Intervall d m zwischen den zwei ersten m unserer Tabelle S . 483.

Allerdings ist in der Gegend von cp = 45 ° die, ganze Rechnungsart am günst¬
igsten , weil hier der Faktor sin 2 cp in der Gleichung (2 ) nahezu konstant ist ; aber
auch in weiter abstehenden Breiten bleibt das Verfahren brauchbar , und es ist somit
nachgewiesen , dass man nach Ausrechnen der nöthigen 8 durch einfaches Aufad¬
dieren (mit der Rechenmaschine ) die Tabellen Seite [55 ] — [57 ] des Anhangs hersteilen
kann . Dieses ist geschehen in Verbindung mit der vergleichenden Zuziehung der
schon auf S . 216 zugezogenen Tabellen von F . G . Gauss und Hartl . Wir haben auch
dort schon gesehen , dass die verschiedenen Berechner in den letzten Stellen deswegen
von einander abwichen , weil sie von verschiedenen Annahmen in Bezug auf die
letzten Stellen der Bessel sehen Erddimensionen ausgegangen sind . Unsere neue Tafel
S . [55 ] — [57 ] des Anhangs giebt nun die Werte B und m entsprechend den Konstan¬
ten der preussischen Landesaufnahme von § 31 . S . 191 unten ; allerdings auch nicht
mit voller Gewähr der letzten Millimeterstelle , weil dazu die bei (2 ) angedeutete
Rechnungsart noch etwas schärfer gemacht werden müsste , was in Ermanglung eines
Bedürfnisses scharfer Millimeterangaben vorerst unterblieben ist . Auch muss daran
erinnert werden , dass die frühere Tabelle S . [38] aus den angegebenen Gründen die B
ungefähr um 1“ "‘ kleiner giebt als die nun ausführliche Tabelle S . [57 ] .

Um eine Anwendung unserer Tabelle Seite [55 ] — [57 ] zu zeigen , wollen wir
nochmals das Beispiel Celle von S. 220 vornehmen :

Celle <p0 = 52 ° 37 ' 32,6709 "
Dazu soll B gefunden werden . Man nimmt aus Seite [57 ] :

für qp = 52 ° 37 '
8 cp = 32,6709"

Hiernach kann man ausrechnen :

B , 5 831 361,276 “
mit m = 1854,441”“

log 8 cp 1 .514 1611
log 60 1 .7781513

log 8 cp : 60 9 .736 0098
log m 3 .268 2130

log 8 B 3 .004 2228 8B = 1009,771 “
(3)

breite cp = 52 ° 37 ' 16,33545" giltis : , also .
man weiterrechnet :

log [1] 8 .509 9387
log 8 cp 1.5141611

log (d> : [ l ]) 3 .004 2224

B = 5832 371,047 “
Bequemer und ausserdem noch etwas schärfer rechnet man mit Zuziehung der

Coefficienten [1] aus der Anhangstalei S . [30] —[35] , In unserem Falle ist die Mittel-

B 1 = 5 831 361,276“
d B = 1009,770 “

B = 5 832 371,046 “ (4)
Dieses stimmt mit B 0 von S . 220 , weil die Tafeln S . [38] und S . [57 ] an dieser

Stelle übereinstimmen , was, wie schon mehrfach bemerkt , sonst nicht auf 1““ genau
der Fall ist .

Mit den Anhangstafeln S . [38] und S . [55] — [57 ] kann nun stets der Meridian¬
bogen B , welcher in den Formeln von § 58 . S . 323 und dann in § 86 . S . 461 vor¬
kommt , als Funktion einer Breite cp bestimmbar betrachtet werden , ebenso wie auch
umgekehrt qp als Funktion des zugehörigen B ; und alle unsere Coordinatenformeln.
in welchen ein solches B vovkommt , sind dadurch gesichert .



Allgemeines . 485i 92.

Wir wollen aber auch noch die Coordinatenformeln betrachten , in welchen eine
Breitendifferenz d cp als Funktion eines Abscissenwertes x vorkommt oder umgekehrt .
Z. B. die Dessauer queraxigen Coordinaten § 88 . S . 441 geben mit y = 0 und k = 0
aus (24 ) und (27 ) S . 441 :

. F3 3 x 3 x3
1 + *2 — 1/2+ 5 J?2 t 2) (5 )

und _ d Cp C 3 z/qü C d Cp3 C
ß F3 ' 2 75 ’ ■ 2 e3 F

Diese Formel für m stimmt mit der Formel für m in (37) § 35. S. 218, wie
es sein muss , und ebenso auch mit (33 ) § 78 . S. 413 . Die andere Formel d cp ist
die Umkehrung von x , wie man sich unmittelbar überzeugen kann . Wenn es sich
nun um Hilfstafeln zu den Formeln S. 441 oder ähnlichen handelt , so wird man zuerst
die Hauptglieder von (5 ) und (6 ) tabulieren , wie wir für die Dessauer Formeln S . 441
gethan haben , (nicht nur für x und d cp, sondern auch für y und X zu 8 . 441) , und
ebenso kann man auch die folgenden Gliedern von (5) und (6 ) tabellarisch ausrechnen,
dabei auch die gleiche Zeichen habenden Glieder mit x und x3, sowie d cp und d (p3

zusammenfassen u . s. w . ; und solche Tafeln scheinen uns besser und bequemer als die
Tafel der Werte B selbst von S . [55 ]— [57] , weil man durch Untertabellen mit d cp =
V dann 10" 1" 0,1 " . . . die Sache so bequem einrichten kann , dass nur noch glattes
Zusammensetzen nötig ist , alles dieses unter der Voraussetzung , dass die x und A cp

verhältnismässig klein sind , (bei queraxigen Coordinaten ).
Dann kommt aber noch die Frage , ob die Coordinaten kongruent oder konform

sind , also in § 83 , ob die Formeln (24) , (27 ) S . 441 oder (36 ) , (39) S . 444 benützt
werden sollen , oder ob die Hilfstafeln so eingerichtet werden sollen , dass sie auf beide
Fälle passen.

Alles dieses sind kleine Formfragen , welche aus Veranlassung der Formeln
von § 83 . aufgestellt wurden , welche auch durch tabellarische Hilfen bereits teilweise

beantwortet wurden , ohne dass hier weiter darauf einzugehen wäre.

Kapitel VIII .

Konforme Abbildung des Ellipsoids auf die Kugel.

§ 92. Allgemeines.
Ausser der konformen Abbildung des Ellipsoids auf die Ebene , welche wir in

Ten früheren §§ 86 .- 88 . behandelt haben , verdanken wir Gauss auch noch eine weiter¬

gehende Theorie dieser Axt, bei welcher das Umdrehungsellipsoid auf eine Kugel kon¬
form abgebildet wird , so dass nur noch die Formeln der sphärischen Trigonometrie
erforderlich sind , um geodätische Aufgaben des Ellipsoids zu lösen.

Ausser den schon in § 86. S. 459 zusammengestellten allgemeinen Litteraturangaben ist hier
besonders als Quelle zu nennen : .Untersuchungen über Gegenstände der höheren Geodäsie von Carl
Friedrich Gauss“. erste Abhandlung , der Königl. Sozietät überreicht 1843, Okt. 23. In der esam
Ausgabe „Carl Friedrich Gauss ,Werke'“ ist diese Abhandlung aufgenommen in Band IV, Göttingen
ls,3. 8. 259—300.

Die Theorie der konformen Abbildung des Ellipsoids auf die Kugel hat in

jüngster Zeit erhöhte Bedeutung erlangt , indem die trigonometrische Abteilung der
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