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Allgemeines . 485i 92.

Wir wollen aber auch noch die Coordinatenformeln betrachten , in welchen eine
Breitendifferenz d cp als Funktion eines Abscissenwertes x vorkommt oder umgekehrt .
Z. B. die Dessauer queraxigen Coordinaten § 88 . S . 441 geben mit y = 0 und k = 0
aus (24 ) und (27 ) S . 441 :

. F3 3 x 3 x3
1 + *2 — 1/2+ 5 J?2 t 2) (5 )

und _ d Cp C 3 z/qü C d Cp3 C
ß F3 ' 2 75 ’ ■ 2 e3 F

Diese Formel für m stimmt mit der Formel für m in (37) § 35. S. 218, wie
es sein muss , und ebenso auch mit (33 ) § 78 . S. 413 . Die andere Formel d cp ist
die Umkehrung von x , wie man sich unmittelbar überzeugen kann . Wenn es sich
nun um Hilfstafeln zu den Formeln S. 441 oder ähnlichen handelt , so wird man zuerst
die Hauptglieder von (5 ) und (6 ) tabulieren , wie wir für die Dessauer Formeln S . 441
gethan haben , (nicht nur für x und d cp, sondern auch für y und X zu 8 . 441) , und
ebenso kann man auch die folgenden Gliedern von (5) und (6 ) tabellarisch ausrechnen,
dabei auch die gleiche Zeichen habenden Glieder mit x und x3, sowie d cp und d (p3

zusammenfassen u . s. w . ; und solche Tafeln scheinen uns besser und bequemer als die
Tafel der Werte B selbst von S . [55 ]— [57] , weil man durch Untertabellen mit d cp =
V dann 10" 1" 0,1 " . . . die Sache so bequem einrichten kann , dass nur noch glattes
Zusammensetzen nötig ist , alles dieses unter der Voraussetzung , dass die x und A cp

verhältnismässig klein sind , (bei queraxigen Coordinaten ).
Dann kommt aber noch die Frage , ob die Coordinaten kongruent oder konform

sind , also in § 83 , ob die Formeln (24) , (27 ) S . 441 oder (36 ) , (39) S . 444 benützt
werden sollen , oder ob die Hilfstafeln so eingerichtet werden sollen , dass sie auf beide
Fälle passen.

Alles dieses sind kleine Formfragen , welche aus Veranlassung der Formeln
von § 83 . aufgestellt wurden , welche auch durch tabellarische Hilfen bereits teilweise

beantwortet wurden , ohne dass hier weiter darauf einzugehen wäre.

Kapitel VIII .

Konforme Abbildung des Ellipsoids auf die Kugel.

§ 92. Allgemeines.
Ausser der konformen Abbildung des Ellipsoids auf die Ebene , welche wir in

Ten früheren §§ 86 .- 88 . behandelt haben , verdanken wir Gauss auch noch eine weiter¬

gehende Theorie dieser Axt, bei welcher das Umdrehungsellipsoid auf eine Kugel kon¬
form abgebildet wird , so dass nur noch die Formeln der sphärischen Trigonometrie
erforderlich sind , um geodätische Aufgaben des Ellipsoids zu lösen.

Ausser den schon in § 86. S. 459 zusammengestellten allgemeinen Litteraturangaben ist hier
besonders als Quelle zu nennen : .Untersuchungen über Gegenstände der höheren Geodäsie von Carl
Friedrich Gauss“. erste Abhandlung , der Königl. Sozietät überreicht 1843, Okt. 23. In der esam
Ausgabe „Carl Friedrich Gauss ,Werke'“ ist diese Abhandlung aufgenommen in Band IV, Göttingen
ls,3. 8. 259—300.

Die Theorie der konformen Abbildung des Ellipsoids auf die Kugel hat in

jüngster Zeit erhöhte Bedeutung erlangt , indem die trigonometrische Abteilung der
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preussischen Landesaufnahme diese Theorie zur Anlage eines konformen rechtwinkligen
Coordinatensystems über ganz Preussen verwertet hat , von welchem schon in dem
früheren § 59 . S . 381 kurz die Rede war , mit einigen Citaten , zu welchen auch noch
eine Mitteilung von General Schreiber in den „ Verhandlungen der 1887er Konferenz
der perm . Kommission der internat . Erdmessung , Berlin 1888 “

, Annex X*>, S . 10—11
gehört .

Die fragliche Anwendung , bestehend in einer Doppelprojektion , werden wir in
dem nachfolgenden § 101 . ausführlich behandeln . Zunächst haben wir die reine Kugel¬
projektion vorzunehmen .

Wir behandeln in dem nachfolgenden Kapitel die Abbildung des "Ellipsoids auf die Kugelnach den citierten klassischen Gausssehen Original -Schriften.
Wir haben in unserer Bearbeitung die Bezeichnung von Gauss beibehalten , jedenfalls dieKonstanten P, Q, a, m. u. s. \\\ , während im übrigen unser auch sonst gebrauchtes F2= 1 -j- *}* sichnützlich erwiesen hat.
Weggelassen haben wir alle Entwicklungen über die dritte Ordnung, unter Verweisung aufdas Original -Werk .
Ändern mussten wir in § 98. den Art. 13, welcher über Azimut-Reduktion handelt, weil hiebeiGauss die geodätische Linie als kürzeste Linie nach der Theorie der Variations-Rechnung einführt»die in unseren Gang (Geodätische Linie S. 367—376) nicht passt , weshalb wir eine andere Entwick¬lung § 98. an Stelle von Art. 13 gesetzt haben.
Dazu wurde in § 99. eine andere allgemeine Formel von Schols eingefügt.

Fig. 1.
Ellipsoid.
N

Fig. 2.
Kugel.

§ 93. Grundformeln.
^ eze i°hnet ds das Differential einer geodätischen Linie auf dem

ipsoid und in Fig . 2. ist d s' das Differential eines entsprechenden Grosskreisbogens
auf einer Kugel vom Halbmesser A . Im übrigen gelten
folgende Bezeichnungen und daraus folgende Beziehungen :

Ellipsoid Kugel
Punkt p q
Breite qp a (1)
Längen -Unterscbied dl dk = adl (2)

Hiebei ist « eine vorläufig eingeführte Konstante,
deren Wert sich nachher ergeben wird . Weiter haben wir
einander entsprechend :

Paralleibogen P \ P ' = Ncosqidl Q] Q ' = Accsuadl (3)
Meridianbogen PP ^ Mdcp QQ1= Adu G)

Dabei sind M und N wie gewöhnlich die beiden
Hauptkrümmungs - Halbmesser des Umdrehungs - Ellipsoids .

Wenn nun QQiQ ' konforme Abbildung von PP \P
’

sein soll , so müssen die Seiten der beiden Dreiecke ein
konstantes Verhältnis haben , welches mit m bezeichnet sei ,
also :

Adu
Md {p

a A cos u
N cos cp

(5)

Hieraus erhält man als Beziehung zwischen der sphärischen Breite u und der
sphäToidischen Breite cp die Differentialgleichung :

du M cos u= o - —
d cf Ar cos cp



Grundformeln . 487

Das Krümmungs -Verhältnis M : N wird nach (25) § 32 . S. 197 eingeführt :
u cos u
V%cos <p

oder in anderer Form , mit TV2 statt F2 nach (25) § 32 . S . 197 :

du _ « (1 — e2) dtp __ a (l — e2) dtp
cos u

M 1 t du
N 1-2 also d tp

:

W ‘2 costp 1 — e2

Zur Integration zerlegen wir in Teilbrüche :
1 — e2 _ 1 1 e2 cos <p

(1 — e2 sin t̂p) cos tp
~ cos tp

eos q,

1 e2 cos tp

(6)

(7)

Damit giebt die Integration von (7 ) :
2 1 -j- e sin <jp 2 1 — e sin tp

tang 45° - =« | log tang ^45 °
t ) ~ Y e log ^ e sin ^

- elog (1 — e sin tp) | •

Dabei ist — log ~ als Integrations -Konstante zugesetzt ; die vorstehende Gleich-
fi

ung lässt sich damit auch so schreiben :

tang ( 45 ° tang a ( 45
- e sin tp \ £_«

2 (8 )
1 + e sin cp

Wenn diese Beziehung zwischen u und q> erfüllt ist , so wird m aus beiden

Formeln (5) übereinstimmend erhalten , und zwar nach der zweiten Form von (5) , mit

Einsetzung von N nach (22) S . 197 , N = a : W also aus (5) :
« A cos u

m = N cos tp
oder auch nach S . 189 und S . 197 :

W V

A cos u TT_a - W
a cos (p

(9 )

also m = (10)
a c c cos cp

Die Beziehung zwischen den geographischen Längen l und X ergiebt sieb, da a

konstant ist , nach (2) sofort : .. ..
X = al (n )

Die Gleichungen (8), (10) und (11) enthalten bereits die Lösung der gestellten

Aufgabe im Grundzuge , und wir wollen im Anschluss an die umstehenden Fig . 8 . und

Fig. 4. die bis jetzt gewonnenen Ergebnisse zusammenfassen :

Fig . 3 . S. 488 stellt ein geodätisches Polar -Dreieck auf dem Elllpsoid vor, mit den

Breiten tp und tp
' und dem Längen unterschiede l ; die geodätische Linie , welche die

beiden Punkte mit den Breiten q? und cp
' verbindet , hat die lineare Grösse s und die

beiden Azimute a und
Fig . 4 . S . 488 ist das konforme sphärische Abbild von Fig . 3 . -, den Breiten tp und qf

entsprechen die sphärischen Breiten u und u' nach der Gleichung (8) ,
.
der sphärische

Eängenunterschied X = al wird ans dem Längenunterschied l des Ellipsoids erhalten

durch Multiplikation mit einem konstanten Faktor a ; und der Grossireisbogen s
.
steht

zu der geodätischen Linie s in Beziehung durch das Vergrösserungs -Verhältnis m, in em

s' =/mds sein muss .
Die Azimute ß und ß ’ auf der Kugel sind nicht genau gleich den Azimuten

a und ei auf dem Ellipsoid , jedoch werden bei den nachfolgenden Anwendungen die

ß und a wenigstens nahezu einander gleich sein.
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Fie- 3- Fig. 4 .
Ellipsoid . Kugel mit dem Halsmesser 4.

Ax =o, i

Durch die Breiten - Bezeichnungen cp = P - t- p und w = Q + q ist angedeutet ,dass P eine gewisse Normalbreite auf dem Ellipsoid und Q die entsprechende Normal -
breite auf der Kugel ist , sowie dass p und q Breiten -Differenzen sind .

§ 94. Wahl der Konstanten.
Die Grundgleichungen (8) , ( 10 ) und (11 ) , welche am Schluss des vorigen §98 . gefundenwurden , enthalten drei willkürliche Konstanten , nämlich und den Kugel -Halbmesser 4 .
Man hat nun in seiner Gewalt , durch zweckmässige Bestimmung dieser Kon¬

stanten a , k und A zu bewirken , dass für ein bestimmtes Gebiet die Abweichung des
Vergrösserungs -Verhältnisses m von dem Wert 1 möglichst klein wird .Zu diesem Zwecke nehmen wir einen etwa der Mitte des Gebietes zugehörigenWert P der Breite cp an , welchem auch ein gewisser Wert Q der Breite u auf der
Kugel entsprechen wird .

Indem wir zugleich auch die Bezeichnungen p und q für Breiten - Differenzen
auf dem Ellipsoid und auf der Kugel einführen , haben wir , wie auch schon in Fig - 8 .
und Fig . 4 . des vorigen § 93 . eingeschrieben ist , die zusammengehörenden Bezeichnungen :

Ellipsoid -Breite cp = P -+- p (1)
Kugel -Breite u — Q - j- q (2)

In der Normalbreite P , bzw . Q soll das Vergrösserungs -Yerhältnis m = 1 , slso
log m = 0 sein , und für irgend welche andere Breite soll log m bestimmt sein durch
eine Reihe , deren erste Glieder die Ableitungen

^ ^0& m
und §_J2 £JÜ! sein werden .

. du dtfiWir können nun über die drei Konstanten a , Je und A. so verfügen , dass auch
diese beiden ersten Ableitungen für die Normalbreite verschwinden , wir haben also
für die drei Konstanten a , Je und Ä folgende drei Bedingungen :

für u = Q soll sein : 1) m = 1 oder log m = 0
dlogm = Qa n

o , d 2 log m __' 1 d « 2 - u

(3)

W
(5)
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Hiernach haben wir uns zuerst mit den beiden ersten Ableitungen von logm
zu beschäftigen, und nehmen zuerst von ( 10) und (6) § 98 . S . 487 die zwei Gleichungen :

A a cos u „
cosqi

und d cp
d u

wobei V -

F 2 cos cp

- Y 1 + e ' 2 cos2 cp

a cos u
Durch Ableitung von F erhält man , ebenso wie bei (13) § . 74 . S . 393 :

dV _ e ' 2
dcp V

Nun giebt (6) :

sm cp eos cp : ~ -
y tang <p

log m -
d log m

d u
d log m

du
d2 log m _

d m2
d2 logm _

Cltt2

: log
A a- le

tang u

log cos u — log cos (p
F 2 cos cp+■tang cp - - —

(wo rj2 = e ' 2 cos2 cp)

+- log V

Ji2 F 3 cos cp
4r tang cp —— -f

(6 )

(7)

(8)

■tang u ■

1
cos%u
1

sm cp
b . —

« COSu
1 / F 2 cos cp■ - „ cos <p -

a cos 2 u \ a cos u
■sm tp sm u

- «2 + F 2 cos2 cp - |- a sin cp sin u)

(9)

(10 )
a 2 COS2 u . ,

Um nun die Bedingungen (3), (4) und (5) einzuführen , hat man in (6), (9) und
(10) zu setzen : q9 = P und u = Q . Dieses giebt :

aus (6) :

aus (9 ) :

aus ( 10) :

^ _ A a cos Q y
c cos P

0 = — tang Q ■

(wo F 2 :

sin P

1 + e ' 2 cos2 P )

a cos Q
0 = — a 2 -+- F 2 cos2 P + asinP sin Q

Nun giebt sofort (12 ) : a sin Q = sin P

Dieses in (13) gesetzt giebt , mit Rücksicht auf F 2 in ( 11) :
« 2 = 1 + e '2 fiOs4P

(14) giebt auch et2 cos2 Q — a %
giebt : c

( 11 )

(12 )

(13)
(14)

( 15)
siw2 P und dieses nebst (15) in ( 11 ) gesetzt ,

C (16)A = yi ~
1 + e ' 2 cos2 P

Dieses ist nach (24) § 32 . S . 197 der mittlere Krümmungs - Halbmesser in der

Breite P . Aus (14 ) und (15 ) findet man auch :
a 2 cos2 Q = (1 + e ' 2 cos* P ) — (sm2 P ) = cos2 P + c ' 2 cos^ P

= cos2 P (1 + e ' 2 cos2 P )
a cos Q — cos P V wobei Y 2 = 1 + « ’2 P

Aus ( 14) und (17 ) folgt auch :
tang Q = V tang P

Aus (15) und (16 ) haben wir also die Konstanten a und A , und durc ( j
wird auch die dritte Konstante jfc bestimmt , insofern dadurch P und Q miteinander

verbunden sind ; setzt man nun in (8) § 93 . S . 487 (jp = P und u = Q , d . h . wen et

man jene Gleichung auf die Normalbreite an , so erhält man :

(17)

(17a)

tang c
h =

P
45 ° + y

tangl 45 °

; sin P
1 + e sin P ,

( 18)
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Es bietet sich nun folgender Gang der Rechnung dar : Man nimmt eine Normal -
breite P auf dem Ellipsoid willkürlich an , berechnet damit den mittleren Krümmungs-
Halbmesser A nach (16) , dann a nach (15) , Q nach (14) und endlich k nach (18) ;
dann kann man für jede Ellipsoidbreite q> die zugehörige Kugelbreite u und auch das
zugehörige Vergrösserungsverhältnis m nach (8) und (9 ) § 93 . S . 487 berechnen .

Statt dessen kann man aber auch so verfahren , dass nicht eine Normalbreite P
auf dem Ellipsoid , sondern eine Normalbreite Q auf der Kugel als willkürlich (runde
Zahl ) angenommen wird . In diesem Falle , der nicht wesentlich verschieden von dem
ersten Palle ist , kann man aber nicht geradezu nach den Formeln ( 14 ) und (15 ) rechnen ,
sondern man muss aus ( 14) und (15) die Breite P eliminieren , um a 2 in Q aus¬
zudrücken . Wenn man hiezu aus ( 14) nimmt :

cos4 P = (1 — a 2 sin 2 Q)2 = 1 — 2 «2 sin2 Q + sin* Qund wenn man dieses in (15 ) einsetzt , so wird man auf eine Gleichung geführt , welche
ct2 und enthält , und nach a 2 aufgelöst dieses giebt :

« 2 : - Sltf- y cos -
(19)2 e ' 2 sin4 Q

Diese Gleichung (19) nebst (14) gestattet dann die Weiterrechnung in der
früheren Weise .

Da aber die Formel (19 ) zur unmittelbaren Ausrechnung sehr wenig geeignetist , d . h . unmittelbar angewendet keine scharfe Berechnung geben kann , empfiehlt es
sich , sie in eine Reihe zu entwickeln nach S . 196 :

j/l -(- 4 e ' 2 sin 2 Q cos 2 Q I -t- y e ' 2 sin 2 Q cos2 Q - e ' 2 sin 4 Q cos41

64
'

16 e ' 6 sinß Q cos 6 Q - ■ 256 e ' 8 sin* Q cos8 Q1 60

(20)

nächst -

Damit giebt ( 19 ) eine Reihe , deren drei erste Glieder sind :
<x2 = l A- e ’2 cosi Q — 2 « '4 sin 2 Q cos8 Q + 5e' 6 sw 4 Q cos8 QDamit ist alles zur Anwendung vorbereitet .

Es handelt sich um Einführung einer Normalbveite P oder Q . Das tia -.n -,
liegende wäre , die Ellipsoidbreite P als runde Zahl für die Mitte des geographischen
Anwendungsbereiches anzunehmen ; aber Gauss hat einen sphärischen Normalwert Q

. zu Grunde gelegt , nämlich :
Kugel Q = 52 ° 40 ' 0" (21)

Ausserdem werden von Gauss als Besselsche Erddimensionen angenommen :
loga = 6 .514 8235 *337 für Toisen

ur*d log a ~ 6 .804 6434 *637 für Meter (22)
log yT ^ e2 = 9 .998 5458 *202 (23)

löge = 8 .912 2052*079 log e2 = 7 .824 4104 158 (24) .Diese Werte (23) und (24) sind dieselben wie die von uns in § 31 . S . 190
angegebenen , während löge 2 nach (24) in den letzten Stellen von unserer Annahme auf
S . 191 abweicht . Dieses rührt von den Unsicherheiten her , welche früher überhaupt
in Bezug auf die letzten Stellen der Bessel sehen Erddimensionen bestanden haben
(vgl . § 31 . S . 190— 191 ).

Die trigonometrische Abteilung der Preussischen Landesaufnahme hat von der
ganzen Gauss sehen Theorie der konformen Kugelabbildung mit ihren eigenen Konstanten
(d . h . mit den auf S . 191 fett gedruckten Zahlen ) eine Neuberechnung mit Tabellen
durchgeführt , welche wohl später auch veröffentlicht werden wird .
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Soweit wir im Folgenden eigene Berechnungen angeben , haben wir die Zahlen

von S . 191 und S . 193 beibehalten , nämlich :

log a = 6 .804 6434 -637 für Meter (25)

log c = 6 .806 0976 -435 „ „ (26 )

log e2 = 7 .824 4104 -237 , log P 2 = 7 .827 3187 -833 (27)

log{1 - e2) = log ^ ^ = 9 .997 0916 -404 (28)

Damit wollen wir die übrigen Konstanten nach den vorstehenden Formeln aus¬

rechnen . Als willkürliche Annahme wird zu Grunde gelegt , wie bei (21 ) angegeben :

Normal -Kugelbreite <2 = 52 ° 40' 0" (29)

Damit berechnet man a 2 nach der Reihe (20) :
a 2 = 1,00090 88703 - 28399 + 111 = 1,00090 60415

log ix = 0 .000 1966-553 (80)

« = 1 + 0,000 425 918 • 1
. = 1 — 0,000 452 713 (31)

Es folgt die Berechnung von P nach ( 14) ; man findet :
P = 52 ° 42 ' 2,53251" (32)

logsin P = 9 .9006297 -679 , logeosP = 9 .7824573 -113 , logtangP = 0 .1181724-566

Mit cos P hat man auch :
log e ' 2 cos2 P = log rf = 7 .392 2334-059 (33)

und damit kann man geradezu F 2 = 1 + rfi berechnen :
log F 2 = 0 .001 0702 .432 , log V = 0 .000 5351-216 (84)

Zur Probe kann man auch log F 2 nach der Formel (24 ) S . 211 berechnen , oder

log V durch Interpolation aus der Hilfstafel S . [57 ] des Anhangs bestimmen ; beides

giebt dasselbe Ergebnis wie (34) .
Ehe man weiter geht , kann man auch die Probe nach (17 ), <x cos Q = FcosP

anstellen, welche mit einem Fehler von 0 -001 schliesst , der nicht weiter zu verfolgen ist .

Mit log F 2 nach (34) hat man auch nach ( 16) den Kugelhalbmesser A , die

Ausrechnung mit (26) und (34) giebt : ,OK.
log A = 6 .805 0274-003 (35)

Endlich ist auch noch k nach (18 ) zu berechnen , man hat hiezu esinP

— 0,064 988 270 546 und weiter :

, / I — esinP \ gi
loa

{TT7Värp ) e
p \

log tanga ^
45 0

log cotg ^
4b °

9 .997 6898 -845

9 .471 9371-356

9 .528 7020-994

: 9 .998 3291 -195

log-. : 0 .001 6708-805

Gauss giebt log ^
= 0 .001 6708-804 (36)

Hier haben wir die unerhebliche Differenz 0 .001 gegen die Angabe von Gauss

>n Art . 6 . der „Untersuchungen über Gegenstände der höheren Geodäsie“ , während

die anderen Konstanten P , log « , log A nach (32 ), (30 ), (35 ) bis auf die letzte Dezimale

mit den Angaben von Gauss stimmen .
Dieses ist eine Versicherung , dass die Verschiedenheit der Werte log e2 m (24)

»ml (27 ) sich in den Konstanten P , a , A und k bei Rechnung mit lOstelligen Loga¬

rithmen nicht mehr bemerklich macht ; während in den späteren Coöfficienten -Berech-

nungen , wenn der Faktor rfi auftritt , die kleine Verschiedenheit in den Annahmen

Ton e2 i)2w- e ' 2 bemerklich wird .
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Wir haben früher auch ein Zahlenbeispiel zur Bestimmung von u und m bei
gegebenem qp durchgerechnet , nach den Grundformeln (8) und (10) § 93 . S. 487 . DieEinzelheiten dieser Rechnung waren in den früheren Auflagen , z . B . 3 . Aufl. 1890,S . 431 —432 angegeben , wir wollen hier nur noch das Ergebnis dieser Rechnung her -setzen , für die Karlsruher Breite :

<p = 49 ° 0' 0” u = 48 ° 58 ' 18,08" log m = 0 .000 0002 -7 (37)Die genaueren Werte hiefür , welche man aus der Hilfstafel S . [60] des Anhangsdurch Interpolation finden kann , sind :
<p = 49 ° 0 ' 0" u = 48° 58 ' 18,0784"

log m = 0 .000 0002 '48 (38)Die Übereinstimmung zwischen (37) und (38) ist insofern hinreichend , als dieWerte u und logm von (37 ) nur mit 7stelligen Logarithmen (+ 0 -25 ) gerechnet sind.Die Rechnung nach den geschlossenen Formeln (8) und (10 ) § 93. S. 487 istumständlich und verhältnismässig ungenau .
Ein besseres Rechnungs -Verfahren erhält man durch Reihen -Entwicklungen , zuwelchen wir in § 96 .—97 . übergehen werden .

§ 95. Goniometrische Hilfsgrössen .
Unsere vorstehenden Entwicklungen und Berechnungen zur Bestimmung derKonstanten in den Grundformeln sind sachlich nichts anderes , als was Gauss in Art .3 .— 5 . der „ Untersuchungen über Gegenstände der höheren Geodäsie , erste Abhand¬lung “ gegeben hat . In der Form aber sind wir von Gauss abgewichen , indem wirdie bisherigen Bezeichnungen unseres Buches , namentlich F 2 = 1 + mit if1 = e'2 cos (ffibeibehielten , und dann die Ausrechnung auf dem zuerst sich darbietenden Wegemachten ; und da wir damit den Gauss sehen Zahlenwerten innerhalb der GenauigkeitlOstelliger Logarithmen -Rechnung gleichgekommen sind , wäre nichts weiter zu bemerken.
Nun hat aber Gauss in Art . 4. der „ Untersuchungen “ u . s . w . eine Gruppe vongoniometrischen Hilfsgrössen , qp, f , jj, © eingeführt , welche dazu dienen sollen , die

logarithmischen Rechnungen bequemer und schärfer zu machen , deren Zusammenhangunter sich und mit den übrigen Grössen e, P , Q nicht sofort einzusehen ist .Dieser Zusammenhang ist uns durch eine sphärische Figur am besten klar ge¬worden , welche wir in Fig . 1 . 8 . 493 nebst den zugehörigen Gleichungen mit-teilen .
Dabei behalten wir die Gauss sehe Numerierung der Gleichungen bei , indemz . B . die Nummern (13 ) , (14) u . s . w . der Gauss sehen Original -Abhandlung „ Unter¬suchungen über Gegenstände der höheren Geodäsie , erste Abhandlung “ entsprechen.
Es wird zuerst ein Hilfs Winkel qp eingeführt durch die Gleichung :

sin q: = e (1®)
damit wird : e ' 2 = = tangZ cp

Folglich nach ( 15) § 94 . S . 489 :
«2 = 1 + e '2 co.s4 P = 1 -+- fctnjf2 qp cos 4 P

Nun setzt man abermals :
tang cp cos2 P = tang £

a2 = 1 - t- tany 2 £ , a = —- -
cos £

folglich : (14)
(16)
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Fip . 1.

Weiter wird gesetzt : 00 ,
e sin P = sin 0

Die durch (13) , (14) und (22) eingeführten Hilfswinkel <p, £ und 0 lassen sich

nebst den Breiten P und Q in einer sphärischen Figur vereinigen , welche in Fig . 1 .

gezeichnet ist . Man hat hiebei den Bogen iB = 0 , auf welchem die Bögen AD

und BD rechtwinklig aufgesetzt sind , so dass D der Fol von AB ist , also bei D

der Winkel 0 wieder erscheint .
Nach (13 ) und (22) ist BG = P die

Hypotenuse eines rechtwinkligen sphärischen
Dreiecks ABC , dessen eine Kathete AB = 0
und dessen Winkel bei C = cp ist . Dadurch
ist der Punkt C bestimmt und es wird von
ihm eine Senkrechte 0 F auf B D gefällt ,
ferner FB ' = FB abgetragen , so dass BGB '

ein gleichschenkliges Dreieck wird . Dass der
bei C eingeschriebene Winkel BCF = 90 ° — £
in Übereinstimmung mit (14) ist , zeigt sich so :

Dreieck GBF giebt
cos P — cotg (90 ° — £) cotg (90 ° — x)

Dreieck GBA giebt cos P — cotg q cotg x
woraus durch Multiplikation die Gleichung (14)
folgt .

Von ( 14 ) und ( 16 ) haben wir :
sin Q = sin P cos £ (17)

Dieses entspricht dem rechtwinkligen
Dreieck BCF als Sinus -Gleichung , ausführlich
geschrieben:

sin Q = siu Psin (90 ° — £)
Nun haben wir das Recht , aus der sphä¬

rischen Figur , Fig , 1 . beliebige Gleichungen ,
herauszulesen, welche die gleiche Berechtigung haben , wie wenn sie aus den bis erigen
Gleichungen rein goniometrisch abgeleitet wären . Die Senkrechte C F — g wird aus ein

rechtwinkligen Dreieck GFB erhalten durch die Gleichung :

tang 7/ = sin £ tang P
Dasselbe Dreieck GFB giebt auch :

- /-> p (18)cos 77cos Q — cos F ' '
U11d ,sin ?/ = tang £ tang Q
mi wenn man auf dasselbe Dreieck GFB eine der Gleichungen anwendet welche
durch Division der zweiten und vierten Gauss sehen Gleichungen von §
entsteht , so bekommt man :

tang
'■ ■Q .

sin 1/2 90 ° — (90 ° — £)
- - tang -,

sin l/2 ( 90 ° + (90 ° — £j

p _ Q £ 77
tang — -E = tang tang2

(20 )
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Das Dreieck 0 D B ' giebt :
sin (cp — 2 £ ) _ sin ©

sin (2Q — 90 °) sin P
Dann wegen (22) und (13) :

sin (2 £ —- cp) = e cos 2Q = sin cp cos 2 Q (21)
Aus den rechtwinkligen Dreiecken ABC und B C F findet man :

cos <jp = sin x cos 0
cos (90° — x ) = sin (90 ° — £ ) cos r\ , oder sin x = cos £ cos tj

und durch Elimination von x aus diesen beiden Gleichungen :
cos cp = cos £ cos tj cos 0 (23)

Unser V 2 lässt sich ebenfalls in <p und 0 ausdrücken. Nach (22) und (13) ist :

F2 = 1 + e ' 2 cos2P =

Nach (9 ) S . 189 :

1 — ea sin2 P
F - e2

cos" 0
COS2 cp

a = c y 1 - = c cos <p dazu A = > a ŝ0 :
a cos cpA = -
cos2 0

Der Hilfswinkel © von (22 ) (s . oben bei ( 16) , nämlich sin0 — esinP , giebt
auch eine Umformung für k nach (18) § 94 ., nämlich zunächst nach (22) :

1 — esinP 1 — sin 0 / 90° + 0 \
1 + 1 sin V ~

1 - sin 0
= C° tg (

"
2 j

Damit geht die frühere Formel für h von ( 18 ) § 94 . über in :
tang a (45 0 + i/a P )k
tang (45 ° + i/2 Q)

■cotga e (45° tya ©)

Wir werden im Nachfolgenden die goniometrischen Hilfsgrössen nicht anwenden,
merken uns aber zum Umsetzen unserer Bezeichnungen in jene, hauptsächlich die oben
nach (23) gefundene Beziehung :

cos 0 = V eos cp

§ . 96. Beihen -Entwicfelung für die Breiten -Differenz.
Die Beziehung zwischen der Breite cp auf dem Ellipsoid und der zugehörigen

Breite w auf der Kugel ist zwar durch die Gleichung (8) § 93. S. 487 gegeben, welche
zu jedem Werte qo den zugehörigen Wert u berechnen lässt ; allein mancherlei Bedürf¬
nisse werden dadurch doch nicht befriedigt ; jene geschlossene Formel ist zur Rechnung
überhaupt unbequem (vgl . das Zahlenbeispiel § 94 . S . 492) , und kann zur Auflösung
nach cp hei gegebenem u nur etwa indirekt benützt werden. Dieses und andere Gründe
machen eine Reihen-Entwicklung erwünscht.

Da auf dem Ellipsoid eine Normalbreite P und auf der Kugel eine Normal-
breite Q angenommen wurde, sollen die Breiten allgemein durch ihre Differenzen gegen
P und Q ausgedrückt werden , d. h . wir setzen nach § 94 . ( 1) und (2) S . 488 :

Ellipsoid q) = P -p- p (1)
Kugel u = Q + q (2)

Da die Beziehung zwischen P und Q bekannt ist , handelt es sich jetzt nur
noch um eine Beziehung zwischen p und q , welche in zwei Formen aufgestellt werden
kann, nämlich :
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entweder:
d (p

-\p = j -- 1
d u_

oder :
d u ~l

9 == ^ > +

~
| „ |

^ qn g*
,

d «2 J 2 d «3 J
( 1 y2 d2 M4
2J ¥ + dlpU

6 + • ■•

-f . . .

(3)

W

d «2
d2 jz

d <pj ^ 1 d^ J 2 ' d <jp3j 6

Dabei soll das Zeichen ] andeuten, dass nach Ausführung der Differentiierungen,

p = 0 und q = 0 , oder qp = P und w = Q zu setzen sei.
Wir wollen zuerst die Form (4 ) vornehmen und haben hiezu von (6) § 93 . S . 487 :

du _ 1 acosu
d, cp F 2 cos <p

Hiebei ist , wie schon früher in § 34 . S . 208 angegeben:

V = Yl 4- e ' 2 cos2 qp = y 1
dB ü2

(5)

d qp
d F ”

n rfi F n_ z t

- p

(t = tang qp)

drf1

(6)

(7)

(8 )
, _ , „ und = — nrf l t

dtp ‘ dcp
‘

Dieses haben wir, weil es wiederholt gebraucht wird , vorausgeschickt, und nehmen

die ebenfalls mehrfach vorkommende Ableitung des zweiten Faktors von (5) besonders :

d fa cos u \ 1 / . du „
( - = - — asm u -=— cos cp -ha cos u sm <p

d cp \ cos cp / cos2 qp ( d cp
Setzt man hier (5 ) ein , und berücksichtigt F 2 = 1 ?;2 nach (6), so wird :

d fa cos u \ _ 1 acosu f a sinu~ ^ + ^ t
d cp \ cos cp )

~~ V2 cos cp \ cos cp
Wenn man nun (5 ) nochmals ableitet , so hat man zuerst wegen (8 ) :

d2 u _ 2 7/2 a cos u 1 _
d

_
/ « cos «

d qp2 F -i cos cp F 2 d qp \ cos cp

(9)

(10)

Setzt man den bereits in (9) vorbereiteten Wert ein , so erhält man :

d2 u 1 acosu / asinu
- — - -- - 11 4 - 3 rß t — - - —
dqp 2 F4 cos qp ( a >« g>

(11 )

Als Vorbereitung der nächsten Ableitung hievon behandeln wir zuerst den

letzten Teil , und finden in ähnlicher Weise wie oben bei (9) und (10 ) :

d fasinu \ 1 i/acosu \ z

d cp \ cos cp )
~~ F2 cos qp / cos cp

Nun giebt (11 ) weiter :
a sin u )

t ( l 4- J?2) (12 )

d3 u
d qp3

’ 4 j?2 a cos u
~
W *

“h

cos g)
1 d fa cos u

d g) \ cos (p
1 a cos u

V4 cos cp
( 1

« 4- 3 rfit -

t2) -

(13)
COS(fl

a sin u \
cos g) )

d fa sin u \
■6 »12 <2 + 3 tf (1 -h i2) - j

-
[

Da wir bei der dritten Potenz stehen bleiben wollen , handelt es sich jetzt

darum, alle die Substitutionen zu machen , welche bei (3) und (4 ) durch ] angedeutet

S11)d , d. b . cp — p t u __ q zu setzen. Es ist aber nach (14) und (17) § 94 . S . 4 9

« sin Q = spn p un (j a cos q _ y eos p , un (j fiaraus folgt :
(14)a sm u '

sin cp _
a smu

cos qp _
= t

a cos u
cos qp] - (14)
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und dieses in (10) und (12) gesetzt , giebt (da V2 = 1 -f- f/2 ist ) :
d u cos « 1 _ rf- 1 du sin u ~1 _ (2d y cos qp J V d (jp cos qp J

Wenn man diese (14) und (15) in den drei allgemeinen Ableitungen (5) , (11)und (13 ) einsetzt , so ziehen sich diese Ableitungen sehr zusammen , und wenn man
alles gleichartige zusammen ordnet , so erhält man :

dfi u
d q)0 - 1- 1ys

du ~i 1
dy J

= V
ds MT __ 3 7}2
dqßj

~

Mit diesen (16) und (17 ) kann man die Formel (4) zusammensetzen :

- (1 — t2 + v2 + 4 t?2 t2)

3 t?2 t~ ~ V“ t o 1 772 ,,1 — TTP -+ - ~
2

~
y 3 V + ~

2 y
-
y (1 - t2 ~t~ 7/2 ~h 4 I/2 t2) pß

(16)

(17)

(18)

Auf ähnlichem Wege wie diese Reihe , welche nach Potenzen von p fortschreitet,kann man auch die umgekehrte Reihe (3) finden , welche nach Potenzen von q fort¬
schreitet und p bestimmt ; indessen , wenn wir nicht weiter als bis zur dritten Ord¬
nung gehen , bekommen wir die umgekehrte Reihe auch dadurch , dass wir geradezudie Reihe (18) stufenweise umkehren (vgl . § 29 . S. 179— 181 ) . In erster Näherung
giebt ( 18) :

p = q V -r q2 . . . , p 2 = q2 V%4 - q$ . . .

p = qy — ~ q2 n2 t , P2 = q2 V2 — 2>q2 Vp 2 t -+-
C

Dieses p 2 und pß = qS F3 , in (18 ) eingesetzt , und alles nach gleichen Potenzen
geordnet , giebt sofort :

pz = q F —
y77232 i + 1 + t2 — v2 -\- b7]2 t2) qS (19)

In den Reihen ( 18) und (19) sind p und q in analytischem Masse verstanden ;wir wollen nun statt dessen die unabhängige Veränderliche p in ( 18 ) , q in (19) in
Graden , und die Funktion q oder p in Sekunden zählen ; dann nehmen die Reihen
(18 ) und (19) folgende Formen an (welche (6) und (5 ) S . 485 entsprechen ) :

3600 8600 8 7721' = - n - - ‘
2 (— 1 H- t2 — 7/2 — 4 772*2) jpS (20 )

p = mmV q -
^ ^ t tq 2 +

^
ßf ^ ( - l + t2 - r12 + hr 12 t2) q2 (21 )

Wenn man hier die Coefficienten mit den Konstanten von § 94 . ausrechnet , so
bekommt man :

q = 3595,566 945 p 0,304 138 6587 p * — 0,000 946 265 801 p& + . . . (22 )
p = 3604,438 521 q — 0,305 264 9836 + 0,001 002 642 525 fl -i- . . . (23 )

Wenn man diese Reihen als konvergierend und mit der dritten Potenz ab¬
brechend behandeln will , so braucht man die Coöfficienten nicht mit so vieles
Stellen ; wir haben jedoch viele Stellen ausgerechnet zur Vergleichung mit den Zahlen -
angaben von Gauss , welcher in Art . 6 . und Art . 8 . der Untersuchungen über Gegen¬stände der höheren Geodäsie die Reihen bis zur fünften Potenz ausgeführt giebt.
Insbesondere die zur Tafel -Berechnung von Gauss angegebene Reihe von Art . 8 . ist
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hiezu
<P

p ~ q = 443,852122 ^

- 3952,649 780
2

[3 .484 6769-820]

+ 1002,642 506
3

[3 .001 1461 -121]

+ 4119,589 282
4

[3 .614 8539-196]

- l3lm “ Bö
5

[2 .634 661 ]

Anwendung dieser Reihe auf q = — 7 ° und q = + 7 ° giebt
u ~ Q + q = 45 ° 40 ' 0” 59 ° 40 ' 0”

q = — 7 ° q = + 7°
— 31,069 995” + 31,069 965
— 14,957 984 — 14,957 984
— 0,343 906 -t- 0,343 906
+ 0,098 911 | 0,098 911
-0 0,000 725 — 0,000 725

p - - q = — 46,272 219 + 16,554 073
p = - - 7 ? 0 ' 46,272 219”

, + 7 ° 0 ' 16,554 073”

p = 52 ° 42' 2,53251” 52 ° 42' 2,53251”

-= p + p = 45 ° 41' 16,26029" 59 ° 42' 19,08658”

(24)

Diese Werte liegen bereits jenseits der Grenzen der Gauss sehen Tafel, von der
wir einen an den Grenzen etwas erweiterten Auszug auf Seite [60] —[61] des Anhangs
gegeben haben .

Da das letzte Rechnungsglied immer noch 0,0007” ausmacht , und die Kon¬
vergenz nicht sehr stark ist , kann man schliessen , dass für die Genauigkeit von
0,00001 ”

, welche Gauss seiner Tafel gegeben hat , die Werte q = 7 ° und q = + 7
als äusserste Grenzen zu betrachten sind .

§ 97. Reihen - Entwicklung für das Vergrösserungs- Verhältnis.
Das Vergrösserungs -Verhältnis ist nach (10) § 93 . S . 487 :

A aeost (1)
c cos cp

In der Normalbreite <jp = P (und u = Q) ist dieses Verhältnis m — 1 , nnd
wenn, wie bisher , irgend eine Breite auf der Kugel tt = Q -h q gesetzt wird, so wir
för irgend eine solche Breite sich das Verhältnis m als Funktion von q darstellen
lassen, oder die Reihe für log m habe zunächst diese Form :

log m
d log m'

]dj + J 2 T dqs J6
Da aber die beiden ersten Ableitungen von log m gleich Null gesetzt wurden

(I ) und (5) § 94_ g . 4gg)j so zieht sich (2) zusammen auf :

d2 logm ~

^

d2 log m ~
j q2

i
ds log m,

J
q (2 )

log m = d g3
Jordan , Handb . d . Vermessungskunde . 4. Aufl .

¥ + * •
IIL Bd .

(3)

32
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Hiezu haben wir von ( 10 ) § 94 . S . 489 die zweite Ableitung :
d? log m __

— a 2 + F 2 cos 2 q> a sin cp sin u Z

also weiter :

d u2 «2 cos 2 u
d2 logtn _ 1 fdZ d N r/~

dW
~ ~

N 2 lI m
^ du ^

N (4)

(5)

Wenn man nachher wieder die Substitutionen für die Normalbreiten Q und P
nach (14 ) § 96 . S . 495 zu machen hat , wird man finden , dass der Zähler Z in (4)
verschwindet , es bleibt also nur von (5) :

cP’ log m 1 d Z ~
|

du 3 J iV d w_| (6)

Da auch a 2 im Zähler Z von (4) konstant ist , handelt es sich also nur noch um :
d Z d
du du ( F 2 cos2 cp + a sin cp sin u )

r d V= ( 2 V cos2 cp — 2 V2 cos cp sin cp j
-t- a cos q> sin u + a sin cp cos u (7)

Dabei ist nach (8 ) und (7) § 94 . S . 489 zu beachten mit tangcp = t :
dV~
d cp

~ V '

Dieses in (7 ) eingesetzt giebt :

•ti2 , d cp F 2 cos cp— f und = - - -
du a cos u

|7 2̂ COSff V2 COSff(— 2 ?/2 t cos2 cp ~ 2 V2 cos cp sin cp) — ~ ~t acosff - “ sin u + a sin cp cos u
ex cos u a cos u

Nun muss man wieder die Substitutionen (14) § 96 . S . 495 machen , wodurch
F 2 cos ®
„ „ = v wird , und die vorstehende Gleichung giebt dadurch mit t = tangcp -.tv COS U

dZ
du

Wenn man weiter den Nenner N = a 2 cos2 u aus (4 ) zusetzt und wieder von

(14 ) § 96 . S . 495 berücksichtigt , dass C
^ - $ . = _ L

, so wird man vollends erhalten :
iv v 2

J = — 2 Vift cos2 cp — 2 F 3 cos cp sin cp + « cos cp F + a sin cp cos t

auß J V
1 1
f ‘ + t *

und mit V2 = 1 tft zieht sich dieses zusammen , wobei nun t = tcmg P wird :
ds log m ~l — 4 t]2 . 4 n2 . „ (8)d u2

'-1 =
- 4 t]2 4 tf
y

~ t = —
y

- langP

Die gesuchte Reihe für logm ist daher nach (3) :

. . . mit t = tang P
, 2 r/2logm = — -J

ytq 2 -+- q* (9)

Wenn man hiebei stehen bleiben will , d . h . wenn man g 1 und vernach¬
lässigen will , so kann man leicht auch logm in p 2 ausdrücken , denn da nach ( )
§ 96 . S. 496 in erster Näherung p = q V ist , kann man (9 ) auch so schreiben :

log tn ■■ 2 r? o
lFl ^ 3 + ' mit t = tang P (10)
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In (9 ) und ( 10 ) bedeutet log den natürlichen Logarithmus ; will man also ge¬
wöhnliche Brigg sehe Logarithmen haben , so muss man noch den Modulus ß zusetzen,
nnd wenn man zugleich die Formeln für q oder p in Graden einrichten will, so muss
man noch mit q °s dividieren ; d . h . man erhält aus (9) :

log m = 31 t qZ mit t = tang P (11 )'
e ° s a r '

Die Ausrechnung mit den Konstanten von (25)—(28) § 94. S. 491 giebt für
Einheiten der siebenten Logarithmenstelle :

log m = — 0 -049 796 165 q* + . . . (12)
Auf gleiche Weise erhält man von (10) ;

logrn = — 0-049 612 434 p3 + . . . (13)
In Art . 7 . und Art . 9 . der „Untersuchungen über Gegenst . d. höheren Geodäsie“

hat Gauss diese Entwicklungen bis zur sechsten Potenz fortgesetzt , wodurch erhalten
wurde :

jm = — 49796 -16894 L | Q
- 16150-3076 JL ] — 23973-954

100 /

— 125 671 -0

m \
nJL

100

(14)

Dabei ist q in Einheiten von 1 ° und log in in Einheiten der 7ten Dezimale des
Logarithmus gezählt . Unsere Formel (12) ist also nur die erste Näherung der Gauss-
schen Formel (12a) , nach welcher die Gauss sehen Werte log w unserer Anhangstafel
Seite [60 ] — [61 ] berechnet sind . Beispielshalber nehmen wir für q — 4 ° oder
u = 46 ° 40 ' und für q = + 4 ° oder m = 58 ° 40 ' aus jener Tafel log m = + 10 -559
und logm = — 10 ' 990, während die Näherungsformel (12) in beiden Fällen nur giebt
ioS m = -flo -7 und = — 10 -7 .

Bisher haben wir immer nur log m behandelt , eine Formel für m selbst eihalten
wir, da in (9) und (10) natürliche Logarithmen gelten , sehr einfach hieraus ;

„o

m = 1 2 iß 2 TI2
-
g y 1 28 + • • • oder m = 1 — y ^ t pä

and umgekehrt (wobei immer t — tang P bedeutet ) :

1 9. r& 1
m

l + y ^ rfä 3 °der -Jl = 1 +
m

l -Sity »
3 F *

( 15 )

(16)

Reduktion von Entfernungen. .
Der Wert m gilt nur für unendlich kleine Entfernungen , <L h . wenn eine

leine Entfernung auf dem Ellipsoid und ds die entsprechende Entfernung
-ugel bedeutet , so ist

m =
d s
iS

oder d S ■ - d s
KAJKJ

»d um auch endliche Entfernungen s und 8 vergleichen zu können , hat man d
^

s®

Eichung zu integrieren , ähnlich wie schon in § 50, S. 282 und in § 85 .
äschehen ist .

Zu diesem Zwecke zählen wir die sphärische Breiten -Differenzen q von einem
fee an , welcher dem Anfang des ganzen Bogens s entspricht und die Länge es
°gens s selbst zählen wir ebenfalls vom Anfang an mit -4- x in dem Azimut ßv
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Da der Kugelhalbmesser = A ist , haben wir die Breiten -Differenz q — qi als
eine Reihe nach Potenzen von x mit dem Ausgangs -Azimut ßit d . h . wir können dazu
die früheren allgemeinen Reihenentwicklungen von § 64 . benützen , d . h . wir haben

von (27 ) S . 359 mit u = -^j- cos ßi und mit « = -^ - sin ß { :

Breitendifferenz q — gq = cos ßi — sin 2 ß l fang (Q -+- q0)

Es genügt für das Folgende zu wissen , dass dieses eine quadratische Funktion

von x ist , und dass damit auch ~ nach (16) sich in eine nach steigenden Potenzen

von x fortschreitende Reihe entwickeln lassen wird , ganz ebenso wie bei einer früheren

ähnlichen Betrachtung von § 85 . sich der Ausdruck i als eine Potenzreihe u + ßlm
-t- y V- + . . . auf S . 456 . oben darstellen liess .

Das genügt auch , um die Beziehung zwischen einer auf dem Ellipsoid liegenden
geodätischen Linie S und ihrem Abbilde s auf der Kugel durch eine Beziehung dar¬
zustellen , welche der früheren (31) § 85 . S . 457 oder auch (16) § 50. S. 282 ent¬
sprechend , in erster Näherung so lautet :

4
(17)H- h —

wobei das Yergrösserungs -Verhältnis am Anfang , m0 in der Mitte und m2 am Ende
bedeutet .

Wenn die verschiedenen m nicht sehr verschieden sind , so kann man noch mehr
genähert rechnen , und z . B . logarithmisch kurz so nehmen :

Das ist auch dasselbe , wie wenn man schreibt :

= ]/m 1 m2 (1®)

Dazu sei auch nochmals bemerkt , dass S die geodätische Linie auf dem Ellipsoid

(19)

und s die entsprechende Linie auf der konformen Kugel vom Halbmesser A ist .

§ 98. Azimut-Reduktion.
Wenn zwei Punkte des Ellipsoids auf die Kugel konform abgebildet sind , so

kann man auch die Verbindungslinien beider Punkte in Betracht ziehen , und zwar
denken wir uns auf dem Ellipsoid beide Punkte durch eine geodätische Linie und auf
der Kugel durch einen Grosskreisbogen verbunden .

Man darf aber nicht annehmen , dass nun der Grosskreisbogen schlechthin die
Abbildung der geodätischen Linie sei ; das ist ebensowenig der Fall , als dass bei der
ebenen konformen Abbildung von § 50 . die Gerade in der Ebene als Abbildung des
Grosskreisbogens genommen werden dürfte , und wir werden eine ähnliche Betrachtung
wie bei Fig . 5 . S . 281 oder Fig . 2 . S . 453 nun auch für die Kugelabbildung anzustelleu
haben .
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« =Q+1

In nebenstehender Fig . 1 . , welche sich aut die Kugel bezieht , betrachten wir
zwei von dem Ellipsoid herübergetragene Punkte mit den Kugelbreiten u und u und
dem Längen - Unterschied al . Der mit K bezeichnete Fig . 1. (Kugel ).
Verbindungsbogen sei grösster Kreisbogen der Kugel , ^
und ausserdem haben wir eine Kurve G gezogen , welche
das konforme Kugel -Abbild der geodätischen Linie des
Ellipsoids ist .

Eine geodätische Linie des Ellipsoids bildet sich ,
wie schon zu Anfang bemerkt wurde , im allgemeinen
nicht als Grosskreisbogen der Kugel ab , und es handelt
sich nun darum , die Azimut -Differenzen a — ß und ß ' «
zwischen dem Abbild G der geodätischen Linie und dem

Grosskreisbogen K zu bestimmen .
Nach dem Prinzip der Konformität sind hiebei

die Azimute a und a '
, welche das Abbild der geodä¬

tischen Linie auf der Kugel zeigt , gleich den Azimuten
_a und d der geodätischen Linien auf dem Ellipsoid , so dass die Azimut -Differenzen

a - ß und d - ßf der sphärischen Fig . 1 . das sind, was wir bestimmen müssen .
Unsere nächste Aufgabe wird sein , das Krümmungs - Differential der Lime

relativ gegen K (Fig . 1 .) zu bestimmen , und dafür Fig. 2.
haben wir mit Fig . 2 . eine Differential - Figur zu
Fig . 1. besonders herausgezeichnet .

Wir betrachten mit Fig . 2 . die Meridian -
Konvergenz « 2 — « i für ein kleines Stück des Ab¬
bildes der geodätischen Linie , und die Meridian -Kon¬
vergenz ß2 — fl, für ein entsprechendes , zwischen
denselben Meridianen liegendes Stück des Kreis¬
bogens. Dabei ist d l der Längenunterschied auf
dem Ellipsoid , also a dl der entsprechende Längen -
unterschied auf der Kugel , wobei a. die Längen -
Keduktionskonstante nach (15 ) § 94 . S . 489 bedeutet .

Dazu bestehen zwei Differentialgleichungen :

Grosskreisbogen KK !

Ellipsoid oder Kugel -Abbild GGf
Also die Differenz 8 = (ß2 — ßi ) — (« 2 — « i) = ä l (« sin u — smcp)

.
Diese Differenz 8 ist die Krümmung des Bogens GG , indem die drei an

Seiten des unendlich kleinen Vierecks Fig . 2 . als Grosskreisbogen keine geodätische
Krümmung haben und in der Differentialbetrachtung als Gerade zu betracii en sin .
Es ist nämlich die Winkelsumme des kleinen Vierecks von Fig . 2. .

(180 °- ft ) + ft , + ( i80 _ ß2) + « ! = 360 ° + (ßa- W - («a - = 36° ° + 8
und dieses stimmt mit dem in Fig . 2 . eingeschriebenen Winkel <5 , sowie mit
deutung von 8 in der Gleichung (3).

Zur schärferen Begründung der Gleichung (3) mag auch noch
^ s s„ , ze igenQuerabstand„ der Linien K und ff sich nachher als sehr Wein , nur von der 0 ,

fwird und deswegen kommt der sphärische Excess des kleinen Vierec s , .
neben der Linienkrümmung , nicht ln Betracht .

ft — ßi = dl sincp

cc2 _ « ] = a d l sin u
(1)

(2 )

(3)
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Wir wollen nun mit Fig . 3 . ein sphärisches Coordinatensystem x y annehmen ,
wobei der Kreisbogen Qj Q2 als x -kxe die Bedeutung von der Linie K in Fig . 1 . und

der Linie I ! von Fig . 3 . dieselbe Be¬
deutung wie die Linie G in Fig . 1. hat,
nämlich konformes Abbild der geo¬
dätischen Linie .

Da man nun aus den schon an¬
gegebenen Gründen das sphärische Co¬

ordinatensystem x y in erster Näherung wie ein ebenes rechtwinkliges System behandeln
darf , dürfen wir auch das bei (3) gefundene Krümmungs -Differential zu der Gleichung
benützen :

Fig . 3.

<22 y _ 8
dx 2 dx (a sin u — sin cp) dl

dx

Dabei mussten wir die linke Seite negativ schreiben , weil bei dem Coordinaten¬
system von Fig . 3. die Kurve L ' gegen die x -kxe, konkav ist .

Nun kommt es zuerst darauf an , die Funktion asinu ■— sin <p zu entwickeln ,
und dazu haben wir nach Fig . 3 . und Fig . 4 . § 93 . S . 488

<jv = P + p u = Q -hq
also nach der Taylor sehen Reihe :

p2sm <jp = sw P -+- p cos P — - sin P

a sinu = a sin Q -+- a q cos Q — a K- sin (
Li

(5)

(6)

Zur Vergleichung zwischen p und q hat man nach (18) § 96 . S . 496 die Reihe :

, - P
s p 2 tang P P)

Zugleich beachte man auch die Grundformeln für P und Q nach (14 ) und (17)
§ 94 . S . 489 :

a sin Q = sin P und a cos Q = V cos P (®)
Aus (5) und (6) bekommt man zunächst , da sich die ersten Glieder wegen (8)

aufheben :

asinu — sin <p = aqcos Q — p cos P -+- ^ ^ sin P (®)
Li

Wegen (8) und (7) ist aber :

« q cos Q = V cos P -j- 1P2 tang pj
und wegen (7) :

p 2 = g2 yi — q2 (1 _j_ ^2) oder p 2 — g2 = ^ ip

Damit kann man (9) zusammensetzen :
3 iß

t, — fit« C(\ = - -asmu — am (p ■■ 1 rß
2 r 2 Pi sinP + -

^
- j ^ ij2 sinP

2 rßa sm u — smq >= p %sin P oder 2 rf q2 sin P (10)
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Zuriickgreifend auf (4 ) haben wir also die Krümmlings - Differentialgleichung :

d'l y
d a;2

=2 jy2 g2 sinP -dl
dx

(11 )

Das Differential d l der geographischen Länge l hat man nach der allgemeinen

Reihenentwicklung von (6 ) § 74 . S . 393 :
V sin a d S sin a n 0

d l — — "ir ‘ ( J-“ )
c cos cp N cos cp

Statt dS für die geodätische Linie können wir in unserem Falle genügend

genau dx setzen , und indem wir auch noch in erster Näherung <p = P nehmen,
haben wir aus (11 ) und ( 12) :

d^ y 2 ij2
dx 2 N g2 sin a tang P (13)

Dabei beziehen sich N , a und P auf das Ellipsoid , und wenn wir zur Kugel

übergehen wollen , ist N — A V zu setzen (da N die Bedeutung von r in (24 ) § 32.
S. 197 hat ) . Das Azimut a kann hinreichend genau gleich dem Kugelazimut ß gesetzt
werden und nach (8) ist tang Q = VtangP , folglich giebt nun (13) beim Übergang
zur Kugel : -S = sin ß tang Q (14)
wobei wir zur Abkürzung schreiben wollen :

sin ß tang Q = F (I 5)
A V *

»der ß tm9 P = F ^ 5 ^

Um auf x überzugehen , haben wir in erster Näherung nach Fig . 4, zu setzen :

2 = 3i + cos ß x + . . . also g2 = g? + 2 g_x ~ cos ft + . . . (16)

Fig . 4.
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gehört . In gleicher Weise haben wir auch für das Azimut ß , welches der Breite q
und der Abscässe x entspricht , nach (29) S . 359 mit v = ~ sin :

A
X

ß = ßi + -
j sin ßx tang Qt

sin ß = sin ß } -\- ~ sin ß , cos ß , tang Qi (17)
Man hat also aus (16) und (17) :

q2 sin ß = q \ sin ß^ + ~ (2 q^ sin ßi cos ßi + q \ sin ß 1 cos ß^ tang Qi) (18)A

Dieses ist eine lineare Funktion von x , welche zur vorübergehenden Abkürzungso geschrieben werden mag :
q2 sin ß = f - j- g x , wobei f = sin2 ß 1 (19)

Damit wird nach (14) und (15) :

(20)

integriert : — ^ = — if , + F [ fx + - )f ) (21)

- * = - * , « + ! ■
( £ + -f ) B2)

Dabei ist — \p1 hei (2 ) als Integrations - Konstante zugesetzt , während in (22)bei y , das mit x = 0 verschwinden muss , keine weitere Integrations -Konstante hinzu¬
kommt . Wenn x = s wird , so muss y = 0 und — — ip2 werden , dieses giebt aus

CISC
(22 ) und (21 ) folgende zwei Gleichungen :

0 = - ^ 1 s + F’
(/^ + ^

3

)

+ ^ 2 = — % + F ( f S + g

Diese zwei Gleichungen dienen zur Bestimmung von ip1 und ip2 , und gebennach ip! und aufgelöst :

oder = ^ (2 f + f -j - gs ) (23)

rp2 = F S ( ( + g
S

3
) °der =

IT ff + 2 9 S) ) (24)
Die Bedeutungen von f und g sind durch (19 ) zu bestimmen :

für x = 0 wird qx2 sin 2 ß1 = f
„ x = s „ §22 sin? ß%= f -h g s

Diese zwei Gleichungen in Verbindung mit (23) und (24) geben :
, i, _ Fs Ztfsinßi + q ] sinß 2 F s q \ sin jS, + 2 q \ sin ß2 r9S))Vl ~ ~

2 3 ^ = ^2
-

8
Um den Faktor F nach (15) oder (15a) einzuführen , und nachher das , wassich tabellarisch berechnen lässt , abzutrennen , führen wir die Funktion ein :

y ^ tangQq 2 oder -
y tang P q2 = h
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Dieses allgemeine k wird auf den Anfangspunkt und auf den Endpunkt an¬

gewendet mit :

ki = -ytang P gq2 und k3 = -ytang P g22 (27)

Damit gehen die Formeln (25) und (26) in diese Formen über :

= (28 )
o A.

„ , h sin a , + 2 k* sin a s s .
^ 2 - « 2 = ^ 2 = - i - —

g
- - - - -

J
(29 )

Zur Anwendung in Zahlen muss man die Funktion k nach (26 ) auf bestimmtes
Mass einrichten . Nehmen wir wie bisher q in Graden und dann die kleinen Winkel

ip in Sekunden , so hat man zu setzen :

k = % tan9 = 20 n ^ tang P q*

mit den Konstanten von § 98 . wird dieses ausgerechnet :
k = 0,208 259 386 q2 (log = 1.798 1798-684)

Die hiernach berechneten Werte k sind nur erste Näherungen , welche von den

genaueren Werten k der Gauss sehen Tafel ähnliche Abweichungen zeigen , wie zwischen
den ersten Näherungen und den genauen Werten von logm , welche wir bei (14 ) § 97 .
S. 499 zusammengestellt haben .

§ 99. Allgemeine Beziehung zwischen dem Vergrösserungs -Ver¬
hältnis m und dem Krümmungs-Differential der Abbildung .

Im vorigen § 98 . haben wir das Krümmungs -Differential ö des Abbildes einer

geodätischen Linie durch eine Differentialbetrachtung in Fig . 2 . S . 501 aus den beson¬

deren Eigenschaften unseres Abbildungsfalles hergeleitet , und es wird wohl immer

möglich sein , die besondere Art einer konformen Abbildung zu Bat zu ziehen, um

jenes Krümmungs -Differential zu erlangen .
So haben wir z . B . auch in § 50 . mit Fig . 2 . S . 288 und in § 85 . mit Fig . 2 .

S. 453 , und auch noch bei der Gauss sehen konformen ebenen Abbildung in § 88.
S, 472 verfahren .

Es giebt aber eine ganz allgemeine Beziehung zwischen dem Differential d m

TOd dem Krümmungs -Differential 8 = , mit Hilfe deren man , sobald m, das man

ja jedenfalls haben muss , entwickelt ist , sofort auch ö finden kann .
Die allgemeine Theorie zur Bestimmung von ö aus m ist von Gauss in Art .

12. 13 . der Untersuchungen über Gegenstände der höheren Geodäsie und in §. 14. von

Schreiber, Theorie der Projektionsmethode der Hannoverschen Landesvermessung , Han

Dover 1866 , gegeben , wobei beidemal die geodätische Linie nach den Hegeln der

Variationsrechnung als kürzeste Linie anfgefasst wird.
Eine mehr geometrisch anschauliche Entwicklung und Darstellung dieser Bahn

hat Professor Schols in Delft gegeben in der Abhandlung : Annales de l’e'cole poly-

technique de Delft . Ire livraison . Leide , E . J . Brill 1884. Sur l ’emploi de la pro-

jection de Mercator pour le calcul d'une triangulation dans le voisinage de 1 dquateur,

Par Ch . M . Schols .
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In § 10. dieses Werkes wird mit beistehender Pig . 1 . entwickelt :
Das Rechteck A B G D des Urbildes sei aus unendlich kleinen geodätischenLinien gebildet , und werde konform abgebildet in dem krummlinigen Viereck ab cd.Durch die Mitten e und f der Seiten a b und c d werden Linien gezogen , in welchendas Vergrösserungs -Verhältnis konstant ist .
( Diese Linien für konstantes Vergrösserungs -Verhältnis m sind in Pig . 1 . punk¬tiert gezogen , wobei auch bemerkt sei , dass e die Mitte von a b sein sollte , was in

dem Holzschnitt etwas verfehlt dargestellt ist ) .
Wenn dg der Parallelabstand der beiden punktierten Linien und ß deren

Winkel mit ab ist , so haben wir :

ac — bd = ef
^ S

- (1)cos ß
Kg . 1.

-/5 !:_

Die kurzen Linien c a und d b werden ver¬
längert bis zu ihrem Schnitte o , so dass oo der
Krümmungs -Halbmesser der Kurve ab ist , woraus
folgt :

oc _ oa + ac _ cd
o a oa ab

also aus ( l ) und (2) zusammen :
dz , 1 ^ 2oa -i- = 1 +cos ß o a cosß

c d
hb (3)

o a
h(un ist zu beachten , dass Fig . 1 eine Differentialfigur sein soll , dass also cd

und ab unendlich klein sind , dass also längs cd und ab das Vergrösserungs -Verhältnis
m als konstant gilt , und zwar sei :

m = a b
AB und m + dm = cd cd

CD =
AB

cd _ _ m -+- dm
ab m

Man hat also aus (3 ) und (4 ) :

d m
m

, 1 dz , dm
o o cos ß ni

Bezeichnen wir den Krümmungs -Halbmesser o a mit R oder die Krümmung mit
1 : R , so haben wir also :

Krümmung 1 _ dm
R mdz cos ß (5)

oder wenn mit log m der natürliche Logarithmus von m bezeichnet wird :

Krümmung ’ — = 1°
/ ~ cos ß (6)R dz ^

Als erste Anwendung dieser allgemeinen Formel wollen wir den besonderen
Pall von § 50 . S . 281 nehmen mit :

m = 1 + 0der l09 m = (7)

Die Richtung der z ist hier mit der Richtung y übereinstimmend , weil die Linie"
für konstantes m nach Pig . 3 . S . 279 parallel der m-Axe gehen , und ß von (6) ist
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der Bichtungswinkel von Big . 6 . S . 283, es giebt also die allgemeine Gleichung (6)
in unserem besonderen Falle :

Krümmung

y&
1

R
ä 2 r2 y- , cos ii = cos f.

Ay 1 r 2 (8 )

Dieses (12) stimmt mit (28) Fig . 50 . S . 283 , wenn man das auf der folgenden

Seite 284 oben stehende = cos t , berücksichtigt , und auch das Vorzeichen — ent -
a g

sprechend der Lage des Coordinatensystems einsetzt .

Nach dieser ersten Anwendung auf den einfachen Fall von § 50 . wollen wir

auch die Anwendung der allgemeinen Formel (6) auf unseren Fall der konformen Ab¬

bildung des Ellipsoids auf die Kugel vornehmen .

Dabei ist es zuerst nötig , die Bedeutung des Winkels ß aufzusuchen, d . h . des

Winkels , welchen eine ahzubildende geodätische Linie mit den Linien konstanter Ver -

grösserung m bildet , nnd da in unserem Falle die Vergrösserung m nur von der geo¬

graphischen Breite ahhängt , ist das ß der allgemeinen Formel (6) entsprechend 90 ° — a ,
wenn a das von der Meridianrichtung an gezählte Azimut ist . Setzen wir ausserdem

die Krümmung 1 : R — .— — — in dem Sinne von Fig . 3 . nnd Fig . 4 . § 98 . S . 502
d #2

und 503 , so haben wir aus (6) zunächst :

(Rjl
dx %

d logm sm cc oder dlogm sin ß (9 )
du de

wobei die Azimute k und ß von Fig . 4 . § 98 . S . 503 hinreichend als gleich ange¬

nommen werden können . Weiter haben wir von (9) und (10) § 97 . S . 498 :

logm = —
Vi tang PpS oder = — j ^ tangPq * (10 )

Das Differential d z , welches in der allgemeinen Formel (6) vorkommt , ist in

der Meridianrichtung zu suchen , d . h . es ist d z — A d q, wobei nach (24) S . 197 der

mittlere Krümmungs -Halbmesser des Ellipsoids , welcher als Kugelabbildungs -Ha

messer dient , ist :
c N

A = y 3
- oder auch A = y

weshalb man nun hat :

dlogm _ dlogm dq _ 2rp p dg
dz dq dz V dz

d log ni _ 2tf gp
<Tz

~ ~ YÄT tang P =
2 rp ff2~WÄ tang Q (11 )

Dabei ist tang Q = Vtang P gesetzt nach (17a) § 94 . S . 489.

Aus (6) und (7 ) hat man also jetzt :

d2 z _ 2 7/2 g2

d aj2 F 2 A tang Q sin ß (12)

.
Dieses (8) stimmt mit dem früheren (14) § 98 . S . 503, womit also eine zweite

ertung des Krümmungs -Differentials gegeben ist , aus welchem die Azimut-Keduktionen

Ton § 98 . sich ergehen .
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§. 100 . Hilfstafeln und Zahlenbeispiele .
Gauss hat eine ausführliche Tafel zur Reduktion der sphärischen Breiten auf

sphäroidische Breiten nebst log m und Je berechnet und in den „Untersuchungen über
Gegenstände der höheren Geodäsie “ , erste Abhandlung S . 37—45 mitgeteilt . (Carl
Friedrich Gauss ’ Werke , IV . Band , Göttingen 1873 , S . 293 — 300 .)

Auf Seite [60] — [61] unseres Anhangs haben -wir einen Auszug der Gauss scheu
Tafel abgedruckt , mit dem lOfachen Intervall Jw — W , (ziu = V bei Gauss).Ausserdem haben wir auf Seite [59] eine Hilfstafel zur Reduktion der geographischen
Längen mit der Konstanten a beigegeben .

Unsere Haupttafel Seite [60]— [61] verlangt Interpolation mit zweiten Diffe¬
renzen , wozu § 30 . S . 183 Anleitung giebt . Damit bekommt man nahezu dieselbe
Genauigkeit , wie mit der Originaltafel selbst , so dass für einzelne Fälle der Auszug
als Ersatz des nicht immer zugänglichen Originals dienen kann . Auch giebt der Aus¬
zug eine bequeme Übersicht der Gesamt -Verhältnisse ; man sieht z . B . , dass logm
nicht über 0T geht auf der ganzen breiten Zone von 51 ° 20 ' bis 54 ° 0' . Ähnlich
verhält es sich mit den Azimut -Korrektionen , welche von der Tafelgrösse Je abhängen;
man kann also auf dieser ganzen nahe 3° oder rund 300 000 Meter breiten Zone eine
Triangulierung sphärisch berechnen , ohne eine andere Nebenarbeit als das Verwandeln
der Breiten q> und u durch Aufschlagen in der Tafel .

Wenn die neuen Berechnungen der trigonometrischen Abteilung der Preussi-
schen Landesaufnahme , die wir schon in § 94 . bei (24)— (25) S. 490 erwähnt haben ,
veröffentlicht sein werden , so werden diese an Stelle der alten Gauss sehen Original¬
tafeln zu benützen sein.

Ausser der Gauss sehen Tafel ist in neuerer Zeit noch eine zweite solche Tafel mit süd¬
licherer Normalbreite , nämlich Q = 46° 36' , berechnet worden von Marek und Horsky . Dieselbe ,
welche , wie die Gauss sehe Tafel , die Bessel sehen Erddimensionen zu Grunde legt , ist mitgeteilt in
dem Werke von Marek : „Technische Anleitung zur Ausführung der trigonometrischen Operationendes Katasters , Budapest 1875“ , S. 252 262. Einiges weitere hierüber haben wir früher in der
„Zeitschr . f . Verm . 1877“, S. 40—46 mitgeteilt , und einen Auszug der Marek sehen Tafel gab unsere
frühere dritte Auflage , Karlsruhe 1878, S. 403—404.

Als Anwendung der Gauss sehen Theorie und der zugehörigen Hilfstafeln wollen
wir die Berechnung unseres kleinen sphäroidischen Normal -Beispiels (1) § 73 . S . 391
nehmen in dieser Form :

Gegeben : qp, = 49 ° 30' 0" <js2 = 50 ° 30' 0 ' ' (Ü
7 = 1 ° 0 ' 0"

(2)
Gesucht : «lt «2 und s.

Das erste ist , die Breiten qq und q>2 auf die Kugel zu übertragen , d . h . die
entsprechenden i«; und w2 aus der Tafel zu entnehmen . Von Seite [60] unseres An¬
hangs haben wir :

M q) Differenzen
49 ° 20' 0" 49 ° 21 ' 44,31358 "
49 ° 30' 0" 49 ° 31 ' 45,38838 "

= 601,07480 "

+ 10 ' 1,07480 ” — 0,01736"

10 ' 0”
= 600"

q> = 49 ° 30'

und

hat gegen die Nachbarwerte die Differenzen :
— 8 ' 15,68642" = — 495,68642 " I
+ 1' 45,38838 " = -\- 105,38838" )

601 ’07480"
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Die Interpolation mit Rücksicht auf zweite Differenzen gab :

m = 49 ° 28' 14,79882"

Die Rechnung nach der Gauss sehen Originaltafel gab auf 0,00001" genau das¬
selbe, nämlich die Zusammenstellung für alle Werte , die uns hier interessieren :

Ellipsoid , cp Kugel , w logm k
49 ° 30 ' 0" ux = 49° 28 ' 14,79881" 1 -609 2,049'

50 ° 0 ' 0" 49 ° 58' 11,67462" 0 -969 1,462 '

50 ° 30' 0" m2 = 50 ° 28' 8,70541" 0 -525 0,973'
(3)

Aus den drei Werten log m bilden wir einen Mittelwert nach dem Gesetze der

Gleichung (17 ) § 97 . S . 500 , welcher in der dort angegebenen Weise auch für logm

gilt, und in unserem Falle giebt :

log m — 1 -609 + 4 X 0 -969 + 0 -525
6

= 1 -017 (4)

Der Längenunterschied 1 — 1 ° 0 ' 0" wird auf die Kugel reduziert durch Mul¬

tiplikation mit der Konstante a , bzw. durch Benützung der Hilfstafel Seite [59] des

Anhangs , mit dem Ergebnis :
X = « l = 1 ° 0 ' 1,630505" (5)

Nun macht man mit % und w2 von (3) nebst X von (5) eine sphärische Polar -

Dreiecksberechnung nach (4) und (5) § 60 . S . 339 , wodurch man erhält :

Sphärische Azimute = 32 ° 25' 21,4923" & = 33 ° 11 ' 19,4197” (6)

log sin ? , = 8 -015 5452 -409 ,
? = 0 ° 35' 37,85453"

Li U

s ' - A — giebt log s' = 5 .121 6104 -130

hiezu nach (4) — log m = — 1017

^ 77 ^ 51216103013 , s = 132 315,375” (7)

Es folgen noch die Azimut -Reduktionen nach den Formeln (28 ) und (29) § . 98 .

S. 505 . Man hat hiezu die schon bei (3) angegebenen Je und die abgerundeten Azimute :

ftj = 2,049” h = 0,973"

« 1 = 32 ° 25' «2 = 33 ° 11 '

Die Ausrechnung nach den Formeln (28 ) und (29 ) S . 505 giebt :

= « l — ßi = + 0,0189" = n>2, = «2 - ßz = “ ° -0149"

Diese Reduktionen zu ßx und ß2 in (6) hinzugefügt , geben die sphäroidischen

Azimute ;
« ! = 32 ° 25 ' 21,5112 " a 2 = 33 ° H ' 19,4048" (8)

In diesen (7) und (8) besteht die Auflösung der gestellten Aufgabe, und diese

(7) und (8) stimmen auch hinreichend überein mit den entsprechenden Zahlenwerten

von § 73 . ( 1) S . 391 .

§ 101, Doppel - Projektion der Preussisehen Landesaufnahme .

Die Gauss sehe konforme Abbildung des Ellipsoids auf die Kugel ist zu einer

wichtigen, praktischen Anwendung gebracht worden durch General Schreiber bei er

trigonometrischen Abteilung der Preussisehen Landesaufnahme .
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Als Quellenschriften hiefür sind zu citieren :
„Verhandlungen der 1887er Konferenz in Nizza der perm . Komm . d . intern . Erdm . , Berlin

1888, Annex Xb “, S. 1Ö--12, und frühere Mitteilung in Jordan -Steppes „Deutsches Vermessungswesen ,1882, L “, S. 151—154. Weiteres ist auch citierfc und erläutert in „Zeitschr . f. Verm ., 1886“, S. 253—256,und „Zeitschr . f. Verm ., 1889“, S. 8—14.
Namentlich v. Schmidt : Projektionsmethode der trigonometrischen Abteilung der KÖDigLPreuss . Landesaufnahme , „Zeitschr . f, Verm ., 1894“. S. 385 —401 und S. 409—418.
Es mag auch hier nochmals an das erinnert werden , was wir schon in § 59. S. 330—332

hiezu angegeben haben .
Wenn man nach der Gauss sehen Theorie das Ellipsoid auf eine Kugel ah -

gebildet hat , so dass jedem Punkte mit der Länge l und der Breite g> auf dem Ellip¬
soid, ein Punkt mit der Breite u und der Länge X auf der Kugel entspricht , so kann
man mit diesen sphärischen geographischen Coordinaten w, X beliebige sphärische Um¬
wandlungen vornehmen , z . B . daraus sphärische rechtwinklige Coordinaten x , i) ab¬
leiten , und diese letzteren Coordinaten kann man wieder konform in ebene rechtwink.
lige Coordinaten x , y abbilden .

Dieses ist das System der Doppel -Projektion , welches für die trigonometrische
Abteilung der Preussischen Landesaufnahme angenommen worden ist .

Als Vorbereitung hiezu haben wir bereits in § 50 . und in § 85 . manches gehabt,
was nun weiter auszuführen ist .

I . Berechnung der sphärischen rechtwinkligen Coordinaten x , i).
In Fig . 1 . haben wir die Gausssche Kugel , vom Halbmesser A (nach § 94 .

S . 489) , und darauf einen Meridian T O T '
, von welchem die Längen X gezählt werden .

Irgend ein Punkt F habe von diesem An¬
fangs -Meridian an gezählt , die Länge X , nach
Osten positiv , und ferner die Breite u . Derselbe
Punkt habe auch die rechtwinkligen Coordinaten
x , g in Bezug auf den Ursprungs -Meridian , in
welchem der Nullpunkt O mit der Breite % an‘
genommen wird . Die Ordinate t) liegt auf einem
Bogen Q Q' rechtwinklig zu TOT ' und bestimmt

Hg . 1.
Kugel mit dem Halbmesser A.

D F — t)

auf T O die Fusspunktsbreite «j des Punktes D-
Wir betrachten auch einen Parallelbogen zu
T O T '

, um die Meridian -Konvergenz y zur An¬
schauung zu bringen , welche in dem Punkte 1
gegen den Anfangs -Meridian stattfindet .

Wenn wir nun die Aufgabe stellen , aus
gegebenen a 0 , u , X die rechtwinkligen Coordi-T

naten * , i) , nebst der Meridian -Konvergenz y zu bestimmen , So liefert uns die sphä¬
rische Trigonometrie sofort :

tang u
tang Wj — Wq (1)

• 's) • ,s%n — = sm X cos u (2)

(3)

A

tang y = tang X sin u
Diese Formeln werden wir in dieser geschlossenen Form benützen , und nicht

in Beihen entwickeln , weil es sich um grosse Werte x und 1) handelt , bei welch ®11
die Entwicklung viele Glieder haben müsste .
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In Pig . 2 . haben wir wieder dieselben Verhältnisse , wie in der vorhergehenden
Pig. 1. , jedoch mit zwei Punkten F und G , welche bzw. die rechtwinkligen Coordi¬
naten x , i) und tj

' haben .
Hg . 3.Hg . 2.

Kugel mit dem Halbmesser Ä.

T

Pig . 3 . zeigt ein ebenes
Abbild von Pig . 2 . , wobei
zuerst der Anfangs -Meridian
TEDOT ' wieder als
TEDOT ' erscheint , und
zwarin unveränderter Grösse ,
so dass also ODE in Fig . 2 .

Ebene .

T

und in Fig . 3 . in gleichen gr w T
Massen dargestellt sind , l I
namentlich auch OD — OD \ \ J
und D E = J > E in beiden \ \ /
Figuren. \ . \ /

Da der Punkt D die
Breite und 0 die Breite % T1
hat , erhält man die Abscisse
* des Punktes D und aller Punkte auf der Ordinate D F aus der Differenz Wj — «0 :

x = («i — Uq)

52 ° 40 ' 0”und «o1 .490 6022 -671wobei :

Die Ordinatenlinie D F ' und EG ' in Pig . 3. sind geradlinig rechtwinklig zu
T T ’ gezogen, und die Ordinatenlängen D F ' = y und EG ' = y' sollen so gewählt
werden , dass die Abbildung konform wird , d . h . so dass die beiden rechtwinkligen
Dreiecke FG H und F ' G ' R \ die wir nun als unendlich klein annehmen , einander

ähnlich werden . Hiezu ist nötig , dass zwischen den Katheten ein konstantes Ver¬

hältnis besteht :
H ' G 'F ' H '

Hiebei ist :
H ’ G 'F ' H ‘

HG = d t)F ü = d x cos

Daraus folgt :

cos —

Die Integration dieser Gleichung giebt :

log lang 45
. r~ ■ .

°
,

ei ’ w*e gewöhnlich , // der logarithmische Modulus ist . Nachdem die Beziehung

zwischen und y bestimmt ist , hat man auch das Vergrösserungs -Verhältnis m nach

(4) und (7) :
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Diese Punktion kann man in eine Reihe entwickeln , wie schon in § 85 . S . 451 ,
452 gezeigt wurde , namentlich nach (5) S . 452 , wobei nun statt r der Wert A ge¬
nommen wird :

y = l) +
WÄ * + ~

2A (10)

Dabei ist t) linear (in Metern ) vorausgesetzt ; wenn man aber i, in Winkelmass
hat , was durch t)" (d . li . I, in Sekunden ) ausgedrückt sein soll , so hat man (10) so
zu schreiben ;

fr , i rr \ * . i /rvy -■Ai - + - (ry , i_
\ Q

" 6 [q
" J

^
2A \ q ' (11)

oder : V ■
A r ■ A

9
" 3. - h" 5

24 1
g

' 6 p31

und mit ausgerechneten Cogfflcienten -Logarithmen :
y = [1 .490 6022 -671] ■+ [0.083 6007 -5 ] tfs + [8 .85269] t)" s (11a)

Statt der Reihe ( 11 ) kann man auch eine Reihe entwickeln , welche y als Funk¬
tion von sin 1) giebt . Nach § 28 . S . 172 ist die ctre sira-Reihe :

3

also nach (10) :

! = sin -5- + ~ si«s - _|_ JL sinb JL
A A 6 A 40 A

A ~ (s>»} -hl sinS _l 3 u

V ~ A sin -
1- j ^ „ h a

A ' 3 - : sin , »
5 A

+ | ( sm 3 }
1 . , t;

+ 24 Sm A

(12)

und mit ausgerechneten Coefflcienten -Logarithmen :

y = [6.80502 74-003] sin 4 + [6 .327 9061] sinß ■+ [6.10606] si» 5 4 (l 2a)A A A
Diese Entwicklung bis zur fünften Ordnung ist ausreichend für Abstände etwa bis zu 3 ,

für weitere Ausdehnung ist eine Entwicklung von Schols gegeben in der Abhandlung : Annales de
Fecole polytechnique de Delft , Ire livraison , Leide , 1884. Sur l’emploi de la projection de Mercator
pour le calcul d’une triangulation dans le voisinage de l ’equateur , par Ch. M. Schols . Bis zur
Ilten Ordnung giebt Schols § 25. :

— ü -l -L _91 1 ^- 4- _®L -i_ 277 4. 50521 v)uy “ y ~
6 A3 *“ 24 Ä* 5040 A3 ' 72576 A3 ^ 39916800 A“>

und die Umkehrung :

1 y* 1 y* 61 y*» 277 y« 50521 2/’1
6 A2 ^"

24Ä4
" —

5Ö4ÖT 3" 72576 A8 39916800 A“>

Schols giebt auch die Umkehrung unserer Formel (12) bis zur 11. Ordnung und noch vieles
Interessante , was auch zu unserem früheren § 85. in Beziehung steht .

Alles weitere , was für die Preussische Landesaufnahme gebraucht wird , haben
wir schon in § 50 . und in § 85, entwickelt und es ist nur noch zu bemerken , dass
der dort mit r bezeichnete Kugel -Halbmesser nun überall durch A zu ersetzen ist,
mit log A — 6 .805 0274 *003 nach (85 ) § 94 . S . 491 .

Wir wollen die Anwendung der besprochenen Theorieen an unserem schon mehr¬
fach benützten hannoverschen Beispiele Ägidius -Wasse-rturm zeigen (vgl . S . 809 , 314
und Fig . 3 . S . 315) .
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Diese beiden Punkte haben folgende geographische Coordinaten im Systeme der
Landesaufnahme.

Breite Längei l = i31 °
Ägidius <jpa = 52 ° 22' 14,9611" i 2 = 27 ° 24 ' 24,6290" Z2 = — 3 ° 35 ' 35,3710”

}
Wasser - l (13)

türm (pi = 52 ° 21 ' 49,9080 " L x = 27 ° 22 ' 25,0168" lx = — 3 ° 37 ' 34,9832" |
Differenzen + 0 ' 25,0531" + 1' 59,6122" = + 1' 59,6122"

Die Reduktion auf die Gauss sehe Kugel geschieht bei <p durch Anwendung der
Hilfstafel Seite [61 ] (bzw . der Gauss sehen Originaltafel ) , und bei l durch Multipli¬
kation mit der Konstante a — 1,000 452 918, bzw. nach der hiezu gehörigen Hilfstafel
Seite [59 ] . Man findet auf diese Weise :

Ägidius w2 = 52 ° 20 ' 13,92412" A2 = — 3 ° 35 ' 41,22966 "
Wasserturm ux = 52 ° 19 ' 48,90327 " Xx = — 3 ° 37 ' 40,89604" (14)

Differenzen + 0 ' 25,02085" + 0 ' 59,66638"

Für die weitere Rechnung nach den sphärischen Formeln (1) und (2) wollen wir
eine kleine Zeichenänderung machen , nämlich die Fusspunktsbreite , welche in Fig . 1 .
und in den Gleichungen (1 ) mit ux bezeichnet ist , soll nun mit u' bezeichnet werden,
also :

tang u’ tangu
cosX % =

u — «o

1)1

sin ~ = sin X eos u
A

Hiernach ist berechnet :
Ägidius

= 52 ° 23' 36875"

logsin % = 8 .583 3160 -272A

^ £ = 2 ° 11 ' 44,00948 "

= 7904,00948 "

y2 = 2 ° 50' 49,5606 "

7i ~~ 7%= l 1 33,9039
Wir gehen über zur Berechnung von x :

Ägidius
u{ = 52 ° 23 ' 30,36875 "
«0 = 52 ° 40'

tang y = tang X sin u

Wasserturm
u{ = 52 ° 23 ' 9,01197"

log sin = 8 .587 3764-060

(15)

(16)

q = 2 ° 12 ' 58,29036"

= 7978,29036”

7l = 2 ° 52 ' 23,4645"

(17)

Wasserturm
Ui = 52 ° 23 ' 9,01197"

_ «0 = 52 ° 40'
_

— u0 =z — 16 ' 29,63125" u{ — u0 = — 16 ' 50,98803"

= — 989,63125" = — 1010,98803”

Dann nach der Gleichung (4) ausgerechnet :

x2 = — 30624,970 ’” xx = — 31285,873”* (18)

Die Berechnung der y geschieht nach der Reihe (11 ) bzw. (11a) und giebt :

— 244 596,2079“ — 246 894,8920“

— 59,8609 — 61,5645
— 0,0220 _

— 0,0230

v/2 = — 244 656,0908“ iß = — 246 956,4795“

Jordan , Handb , d . Vermessungskunde . 4. Aull . III . Bd .

(19 )

33
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Zur Kontrolle kann man auch nach der Eeihe (12) hzw. (12a) rechnen , was in¬

sofern angenehm ist , als man ja die log sin \ bereits von der Rechnung (17 ) her hat.

Man bekommt in unserem Palle :
— 244 536,3511 ”

— 119,6339
— 0,1053

— 246 833,3323 ”
— 123,0368

_ — 0,1104

2/! = — 246 956,4795 ”1/2 = — 244 656,0903 “
Dieses stimmt hinreichend mit (19 ) .
Aus (18 )—(20) haben wir also nun in Zusammenstellung :

Ägidius 2/2 = — 244 656,090 ” '
xz = — 30624,970 ”

Wasserturm y \ = — 246 956,480“ ■31285,873 “ (21)

Zu diesen von uns selbst auf dem angegebenen Wege berechneten Coordinaten
stellen wir auch die im Jahre 1887 amtlich von der Landesaufnahme erhaltenen
Werte zur Vergleichung :

Ägidius 2/2 = — 244 656,090” x2 = — 30 621,971” |
Wasserturm 2/1 = — 246 956,479 “ x x — — 31 285,875” |

Die Übereinstimmung zwischen (21 ) und (22 ) ist genügend . Wir behalten (22 )
bei , und haben davon :

2/2 — 2/1 = H- 2300,389 ” « 2 — x x — + 660,904 “ (23)
Hieraus die Richtungswinkel , von Nord über Ost , zunächst eben :

lang tx = 2/2— 2/i tang f2 = 2/1 • 2/2
X\ — a;2

253 ° 58' 14,12"
x 2 — x1

h = 73 ° 58' 14,12" t2 -
Hiezu kommen die Korrektionsglieder nach (31 ) und (32) § 50 . S . 284 , nämlich:

T{ — t , = [0 .92622 ] (a:2 — * 1) (2 yx + y2) = — 0,41"
T2 — t2 = [0 .92622 ] (a^ •— x 2) (yx 4 - 2 y2) = -+- 0,41"

Nehmen wir auch die schon bei (17 ) berechneten Meridian -Konvergenzen y dazu,
so haben wir :

Ägidius Wasserturm
ebene Richtungswinkel : tx = 73 ° 58' 14,12" f2 = 253 ° 58' 14,12"

Tx — t : — 0,41" T2 — ig = + 0,41 "

sphär . Richtungswinkel : Tx = 73 ° 58 ' 13,71"

yx = — 2 ° 52 ' 23,46"
2V
y%-

: 253 ° 58' 14,53"

2 ° 50' 49,56"

Azimute : <xx = 71 ° 5 ' 50,25" «2 = 251 ° 7 ' 24,97"

Um auch die Entfernung zu bestimmen , haben wir zunächst eben :

s = to - Ml = h s = 3 379 02g6sm tx cos tx
Die Reduktion auf S geschieht nach (14 ) § 50. S . 282 , und giebt :

log S — log s = — 3220
S = 2391,672 “ — '

(24 )

log S = 3 .378 7016 W
Bei dieser kleinen Entfernung kann man log s — log S auch kurz = log in

= log 1 4 - nehmen , indem man für y das Mittel aus y x und y%, nämlich

y = — 245 806“ nimmt , nämlich y = — 245 806” ; dieses genügt hier , weil die frag¬
liche Entfernung sehr klein ist .
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Zur Berechnung von m in beiden Punkten getrennt , hat man auch noch die
scharfe Formel (9) nämlich :

9m = see -~
A

Nimmt man hiezu die bei (17 ) angegebenen Winkel - — hm . - g , so findet man :
A. J±

Ägidius log sec 2 ° 11 ' 44,009" = 0,000 3189-4

> Wasserturm log sec 2 ° 12' 58,290" = 0,000 3249-6

Mittel log m = 0,000 3219-5 (26)
Dieses stimmt mit 3220 bei (25 ) .
Zur Versicherung können wir auch noch die früheren Berechnungen mit Soldner-

schen Coordinaten zuziehen , nämlich in § 56 . S . 315 wurde gefunden (18) log s
= 3.378 7020 , und auf S . 314 bei (14) log s = 3.378 7016 , was alles mit dem neuen

(25) log S — 3 .378 7016 genügend stimmt .
Auch hatten wir früher schon die Azimute bei (14) S . 314 :

« = 71° 5' 50,33" a' = 71° 7 ' 25,05" (27 )

Diese a und a ' sollen mit unserem neuen (24) übereinstimmen (abgesehen von

± 180 ° bei a '). Wenn nun kleine Differenzen von 0,28" zwischen (24) und (27) be¬

stehen, während wir doch in allen trigonometrischen Rechnungen mindestens auf 0,01 ”

scharf gerechnet haben , so ist das hier doch unerheblich , weil der Rechnungsweg über

rechtwinklige lineare Coordinaten (22) geführt hat , die auf 0,001” als letzte Rechen¬

einheit angegeben wurden , so dass sie die gewöhnlichen Abrundungs -Unsicherheiten
in den rechtwinkligen Coordinaten hei kurzer Entfernung bereits 0,01” erheblich be¬

einflussen.
Oder kurz : Ebenso wie auf S. 314 —315 die Berechnungen für geographische

Coordinaten und rechtwinklige Soldner sehe Coordinaten in Bezug auf den Meridian

von Celle hinreichend unter sich gestimmt haben , so stimmen auch nun alle Berech¬

nungen mit den konformen rechtwinkligen Coordinaten in Bezug auf den 31 . Längen¬

grad als * -Axe , sowie alle unsere auf die konforme Abbildung des Ellipsoids auf die

Kugel gemachten Berechnungen völlig hinreichend unter sich überein.

§ 102. Die Haupt -Dreiecksketten und Netze der Preussischen
Landes -Triangulation.

Im Anschluss an die Projektions -Theorie der Preussischen Landes-Triangulation

wollen wir auch noch eine Übersichts -Karte der Haupt -Dreiecksketten und Netze der

Preussischen Landes -Triangulation hier vorführen in der Zeichnung von S . 520 —521 .

Dieselbe ist eine verkleinerte und vereinfachte Darstellung nach dem VII . Teil

des Werkes : „Preussische Landes -Triangulation , Hauptdreiecke , gemessen und bearbeitet

von der trigonometrischen Abteilung der Landesaufnahme , Berlin 1895“ (Mittler & Sohn,

Kochstrasse 68/70) . Dieser schon auf S . 134 von uns citierte Band enthält eine Karte

i» 1 : 2 000 000 mit allen Dreieckspunkten I . Ordnung , nach welcher unsere verkleinerte

Übersichtskarte in 1 : 5 000 000 hergestellt wurde.

Es sind darauf alle Haupt -Dreiecksfrettera dargestellt mit allen Dreieckspunkten

und Verbindungslinien , und mit Namen der Punkte au den Grenzen der et en ,

während alle Namen einzuschreiben der Baum nicht ausreichte .
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Im unteren Teile von S . 520 — 521 ist auch eine Übersicht aller Ketten und
Netze seit 1834 , im wesentlichen nach der Zeitfolge geordnet , beigefügt , wobei die
„Netze “ , d . h . die Ausfüllnetze zwischen den Ketten , mit kleinerer Schrift angegeben
sind . Diese Füllnetze , im ganzen sechs an der Zahl , konnten in unserer Figur S . 520
und 521 nur als leere Räume angedeutet werden , weil die ursprünglich versuchte
Punkt - und Linien -Ausführung in diesen Ketten den Zusammenhang der Ketten nicht
mehr deutlich hätte hervortreten lassen . Die kleinen Füllnetze im Nordosten sind
auch in dem Originalplan des VII . Teiles , Hauptdreiecke , nur als leere Flächen an¬
gegeben , während die schönen Netze von 1872 an , dort mit allen Sichten ausgeführt
sind . (Zu bemerken ist auch , dass Mecklenburg , welches ganz von preussischen Ketten
umschlossen ist , nicht preussisches Netz , sondern eigenes mecklenburgisches Netz ist,
dessen Projektions -Theorie in unseren §§ 80 .—81 . S . 419 — 431 mitgeteilt wurde .)

Wie schon in unserem früheren § 21 . S . 134 unten zusammengestellt wurde ,
sind einzelne Ketten und Netze schon besonders von uns beschrieben worden und als
Ergänzung jener Citate S . 134 wollen wir auch noch einige Berichte aus der „ Zeitschr.
f. Verm . “ hier anfübren , die übrigens mit jenen auf S . 134 angegebenen Darstellungen
zum Teil übereinstimmen .

„Zeitschr . f.Verm .“ 1888 S. 382 und S. 399 die Elbkette ,
„ „ 1889 'S. 4 das "Wesernetz ,
„ „ 1891 S. 229,
„ „ 1891 S. 456 die Elbkette ,
* „ 1892 S. 193,
„ * 1893 S. 1,
„ „ 1894 S. 3, mit Netzbild 8. 9,
„ „ 1894 S. 454 das Schlesiscb-posensebe Dreiecksnetz,
* „ 1895 S. 115,
„ „ 1895 S. 311 Hannoversch -sächsische Kette und sächsisches Netz .

Obgleich durch alle diese Einzeldarstellungen dev Gang der Preussischen Landes-
Triangulation im wesentlichen als bekannt vorausgesetzt werden kann , wird es doch
beim Anblick der Übersichtskarte S . 520 und 521 , da das nun vor 60 Jahren begonnene
Werk im wesentlichen fertig vorliegt , angezeigt sein , folgendes kurz zu rekapitulieren :

Der wissenschaftliche Grund zu der heutigen Landes -Triangulation wurde gelegt
durch die berühmte Gradmessung in Ostpreussen von Bessel und Baeyer 1832—1834
und durch die daran anschliessende Küstenvermessung von Baeyer 1837— 1846.

Die heutigen geographischen Coordinaten der Landesaufnahme wurden 1859
bestimmt durch eine astronomische Messung bzw. Annahme für den Ausgangspunkt
Berlin Sternwarte bzw. dessen Übertragung auf den benachbarten Punkt Rauenberg,
und durch ein astronomisches Azimut , Rauenberg -Marienturm (vgl . liiezu § 59 . S . 331).

Man könnte die Frage aufwerfen , warum für ein so grosses Gebiet von rund
1100*”" Länge und 800*”“ Breite nicht mehr als ein astronomischer Orientierungs¬
ausgangspunkt genommen wurde , etwa mit Ausgleichung der Lotablenkungswidersprüche
an den Grenzen n . s . w. ?

Indessen wären solche Fragen nicht angebracht , angesichts der Entwicklung ,
welche ein so wichtiges Staatsunternehmen unter wechselnder Leitung seit mehr als
einem halben Jahrhundert thatsächlich genommen hat .

Man hat dem rein trigonometrischen widerspruchsfreien Zusammenhang aller
geodätischen Elemente des grossen preussischen Staates den Vorzug gegeben vor dem
Hereinziehen astronomisch -physikalischer Elemente , und erst das nächste Jahrhundert
und künftige Generationen von Erd - und Landmessern werden hierin Neues sehen .
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Acht Grundlinien , mit dem Besselsehen Apparate gemessen , geben die lineare

Fundierung in den verschiedenen Landesteilen , nämlich Königsberg 1834, Berlin 1846,
Bonn 1847 , Strehlen 1854 , Braak 1871, Oberhergheim 1877, Göttingen 1880 , Meppen 1883
mit Nachmessungen von Strehlen , Berlin , Bonn. (Näheres hiezu s . S . 101 — 102 und
S . 146 .)

Der Ausgleichungsgang ist nun im wesentlichen ganz klar : Die Ketten legen
sich zunächst frei aus , nur mit ihren eigenen inneren Bedingungsgleichungen aus¬

geglichen , und erst wenn eine Anzahl von Ketten sich zu einem Kranze schliessen,
muss auch Polygonausgleichung stattfinden , deren Zwang dann gewöhnlich die letzte
Kette zu tragen hat , weil , dem Fortschreiten der Messungen II .—III . Ordnung ent¬

sprechend, man unmöglich mit dem Kranzabschluss warten konnte , bis alle Ketten

gemessen waren .
Als Beispiel hierfür wollen wir aus unserem I . Band , „Handb . d . Verm. * , 4 . Aufl.

1895 , S . 511 (oder auch „ Zeitschr . f, Verm .“ 1895, S . 313 ) entnehmen , dass die Han¬

noversch-sächsische Kette 1880 —1881 zwischen Hagelsberg und Lüss einem Anschluss¬

zwang von 0,173”* in y und von 0,367”* in x zu tilgen hatte .

Ist ein Kranzsystem geschlossen , so folgt die Einschaltung des Füllnetzes eben¬

falls mit Anschlusszwang am Bande , wie ebenfalls in Band I , 4 . Aufl . 1895 , S . 512

(oder Zeitschr . 1895 , S . 314) an dem Beispiele des sächsischen Dreiecksnetzes 1881 —1882

ersehen werden kann , oder an dem Beispiele des Schlesisch-posensehen Netzes in

Band I , 4 . Aufl. 1895 , S . 415 .
Je weiter die Ketten und Netze hinausgehen , desto grösser muss natürlich der

Anschlusszwang wachsen , doch ist er nirgends so gross , dass deswegen die praktische

Verwendung der ausgeglichenen Coordinaten Schwierigkeiten begegnete .
Von besonderem Interesse für die Theorieen solcher Zwangsanschlüsse ist eine

Abhandlung von Krüger : „Über den Anschluss eines sekundären Dreiecksnetzes an ein

Hauptnetz “ in „ Zeitschr . f. Verm. “ 1895, S . 289—807 , S . 339 — 347 und S . 368 375 .

Es wird hier zuerst die Theorie der konformen Übertragung mit Anschluss an 2 feste

Punkte (S . 291) , 3 feste Punkte (S . 293) und 4 feste Punkte (S . 298) behandelt mit

Citaten nach Baur und Schols , und auch der allgemeine Fall mit n festen Punkten

(S. 306 ) behandelt .
Nach diesem wird ein Nähernngsverfahren angegeben (S . 342 ) , welches darin

besteht , dass die Coordinaten -Transformationsformeln mit solchen Konstanten für lineare

Vergrösserung und für Verdrehung versehen werden , welche den aus allen Anschlüssen

hervorgehenden Mittelvergrösserungen und Mittelverdrehungen sieh am besten anpassen .

Solches Verfahren wird dann angewendet („Zeitschr . 1895“ S . 368) auf das thü

ringische Dreiecksnetz 1880 , dessen Lage aus unserem kleinen Netzhilde S . 520 —521

genügend ersehen werden kann , indem es gegen Norden die 4 festen Anschlusspunkte

Inselsberg , Ettersberg , Wilsdorf , Leipzig hat , und im übrigen frei ausliegt . Krüger

giebt an der citierten Stelle ( „ Zeitschr . f. Verm. 1895 “, S . 368— 375 ) zwei eigene Aus

gleichungen nach seinem angegebenen Nähernngsverfahren und deren Vergleichung mi

der amtlichen Ausgleichung der Landesaufnahme , welch letztere nach der
^

Correlaten

methode unter Einführung von 6 Zwangsanschlussgleichungen gemacht ist (König .

Preuss. Landestriangulation , Hauptdreiecke , VII . Teil , 1895 , S . 79 85 ) .

Nach diesen nicht unwichtigen Citaten Krüger betrachten wir nochmals die

Gesamtheit der Preussischen Landes -Triangulation in dem Übersichtsbilde S . 520 - 521 .
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Dieses grosse in sieh widerspruchsfrei geodätisch ausgeglichene Werk , welches
für alle praktischen Vermessungszwecke in ganz Preussen einheitliche widerspruchs¬
freie Coordinaten und Abrisse liefert , ist ein Werk , welches seinesgleichen kaum in
einem anderen Staate haben wird , welches jeden Landmesser mit Freude erfüllen muss ,
der auf irgend welchem Teile desselben und in irgend einer der Formen , in welchen
die Ergebnisse desselben noch verwertet werden können , mitzuwirken berufen sein wird .

Kapitel IX.
Polar -Dreieck mit reduzierten Breiten ,

§ 103. Die reduzierte Breite .
Eine neue Behandlung der geodätischen Linie bekommen wir durch Einführung

eines sphärischen Hilfsdreiecks mit „ reduzierten Breiten “ . Es ist das eine Theorie,
welche bei Berechnung sehr langer geodätischer Linien eine wichtige Bolle spielt.

Wir betrachten mit Fig . 1 . einen Hilfswinkel , der „redu¬
zierte Breite “ heisst , und den wir im Folgenden allgemein mit
xp bezeichnen wollen , während die geographische Breite wie
immer mit <p bezeichnet werden soll .

Fig . 1.

Man kann die gewöhnliche Ellipsen -Gleichung zur Ein:
führung von ip benützen , denn wenn für die Ellipse die Gleich¬
ung besteht :

so kann man unbedingt setzen :
x . y .— = eos xp , ~ = sm ipa T b T

Dabei ist nach (16 ) § 32 . S . 196 :

a }/ 1—e2

x cos <p y y
(3)W ’ ~

b

also :

(5)
Fig . 1.

W = y 1 — e2 sm* cpwobei gesetzt ist :
Die geometrische Bedeutung des so eingeführten Winkels tp ist durch

veranschaulicht , man wird auf die Hilfsbreite xp auch geführt durch eine bekannte
Ellipsen -Konstruktion , bei welcher zwei konzentrische Kreise mit den Halbmessern a
und b benützt werden .

Eine zweite Veranlassung zur Einführung der reduzierten Breite haben wir in
dem Satze von der geodätischen Linie , den wir in (11 ) § 69 . S . 378 gefunden haben ,
nämlich :

p sin a = k
wo p der Parallelkreis -Halbmesser des Umdrehungs -Ellipsoids ist , d . h . derselbe Wert,
der in (1) und (2) mit x bezeichnet wurde , man hat also :

a cos cpp = x = —
yjf

-*- — ° cos *P> 0 . h . cos xp = (V
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