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518 Die reduzierte Breite . § 103.

Dieses grosse in sieh widerspruchsfrei geodätisch ausgeglichene Werk , welches
für alle praktischen Vermessungszwecke in ganz Preussen einheitliche widerspruchs¬
freie Coordinaten und Abrisse liefert , ist ein Werk , welches seinesgleichen kaum in
einem anderen Staate haben wird , welches jeden Landmesser mit Freude erfüllen muss ,
der auf irgend welchem Teile desselben und in irgend einer der Formen , in welchen
die Ergebnisse desselben noch verwertet werden können , mitzuwirken berufen sein wird .

Kapitel IX.
Polar -Dreieck mit reduzierten Breiten ,

§ 103. Die reduzierte Breite .
Eine neue Behandlung der geodätischen Linie bekommen wir durch Einführung

eines sphärischen Hilfsdreiecks mit „ reduzierten Breiten “ . Es ist das eine Theorie,
welche bei Berechnung sehr langer geodätischer Linien eine wichtige Bolle spielt.

Wir betrachten mit Fig . 1 . einen Hilfswinkel , der „redu¬
zierte Breite “ heisst , und den wir im Folgenden allgemein mit
xp bezeichnen wollen , während die geographische Breite wie
immer mit <p bezeichnet werden soll .

Fig . 1.

Man kann die gewöhnliche Ellipsen -Gleichung zur Ein:
führung von ip benützen , denn wenn für die Ellipse die Gleich¬
ung besteht :

so kann man unbedingt setzen :
x . y .— = eos xp , ~ = sm ipa T b T

Dabei ist nach (16 ) § 32 . S . 196 :

a }/ 1—e2

x cos <p y y
(3)W ’ ~

b

also :

(5)
Fig . 1.

W = y 1 — e2 sm* cpwobei gesetzt ist :
Die geometrische Bedeutung des so eingeführten Winkels tp ist durch

veranschaulicht , man wird auf die Hilfsbreite xp auch geführt durch eine bekannte
Ellipsen -Konstruktion , bei welcher zwei konzentrische Kreise mit den Halbmessern a
und b benützt werden .

Eine zweite Veranlassung zur Einführung der reduzierten Breite haben wir in
dem Satze von der geodätischen Linie , den wir in (11 ) § 69 . S . 378 gefunden haben ,
nämlich :

p sin a = k
wo p der Parallelkreis -Halbmesser des Umdrehungs -Ellipsoids ist , d . h . derselbe Wert,
der in (1) und (2) mit x bezeichnet wurde , man hat also :

a cos cpp = x = —
yjf

-*- — ° cos *P> 0 . h . cos xp = (V
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Der dadurch bestimmte Wert xp ist derselbe , den wir schon in (4) kennen ge¬

lernt und reduzierte Breite genannt haben . Damit giebt die Gleichung (6) :

a cos xp sin a — acos xp
' sin « ' = k (8)

Die letzte Gleichung ist eine Anwendung des Satzes (6) auf zwei zusammen¬

gehörige Wertpaare xp, « und xp
’
, a ’; und indem man dabei den konstanten Faktor a

und das allgemeine Zeichen Je fortlässt , hat man aus (6) oder (8) :

cos xp sin a — cos xp
' sin a ’ (9)

Dieser Gleichung (9) entspricht ein sphärisches Dreieck, das wir in Fig . 2 . des

nächsten § 104 . näher betrachten wollen ; und damit erlangt die reduzierte Breite xp,

welche nun als Repräsentant des sphäroidischen Parallelkreis -Halbmessers p = x in

Gleichung (7) erscheint , erhöhte Bedeutung .
Wir haben also durch die Gleichung (7) ausführlicher :

cos xp = (wo W = ]/ 1 — e2 sin2 (jp) (10)

oder auch mit Einführung von V = W : ]/1 — e2 wie immer nach (1) und (2) , S . 202

bis 203 :
, cos cp

cos xp = — ~ -
Vy l ~ e2

(wo V = y 1 + e ' 2 cos2 cp)

Daraus findet man durch geometrische Umformung :

sin xp = — sin cp

tang xp = tang cp y 1 ■

, cos xp
und cos cp = ■ t—

y 1 -i e’2 sin2 xp
oder■e2, oder tang qp = tang xp ]/1 j- e’2

Wir brauchen auch noch die Differentialbeziehnng zwischen cp und xp ,

sich am einfachsten aus (13) ergiebt , nämlich :

dxp _ dq >yi — e2

cos2 xp cos2 <p

also wegen (11) :
d cp
dxp

Aus (11 ) findet man auch : V2 =

= F 2 )/l — e2

1 h - e '2
1 + e ' 2 sin2 xp

und V = ]/l -| - e ' 2 cos2 cp = :

(11 )

(12 )

(13)
welche

(14)

(15)
y 1 — e2 cos2 xp

Die geometrische Bedeutung von V2 ist , nach (25 ) S. 197 , das Haupt -Krüm-

mungsverhältnis , d . h . das Verhältnis der beiden Haupt -Krütnmungs -Halbmesser N und M

in einem Punkte des Ellipsoids mit der Breite <jQ; und die Formel (15) , welche nun

F 2 bzw. V auch als Funktion von xp giebt , ist für spätere Anwendung wichtig .

Numerische Berechnung von qp—xp.

Um zu gegebenem <jp das zugehörige xp zu berechnen oder umgekehrt , kann man

zuerst die Gleichung (13) anwenden :

tang xp — tang cp ]/1 — e2 (logyi — e2 = 9 .998 5458'202) (16)

Wenn man aber besondere Zahlenschärfe wünscht , so wird es besser sein , auf

6ie Differenz cp — xp geradezu auszugehen , und hiezu hat man nach (12) und (11) .

sin cp m 7\
sm cp = V sin xp smxp = —

y
- \ i
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cos cp = vyi — e2 cosxp
cos <jp

Nun ist sin (cp — xp)
Weise auf (17 ) und (18 ) anwenden , wodurch man findet :

cos ^ =
vyr ^ 2 ^

sin cp cos xp — cos cp sin xp ; dieses kann man in zweifacher

oder :

sin ( <p

sin (cp -

. 0 1 — yi - e2
— = sm 2 qd — _2Vyi — e2
xp) = sin 2xp ~ ( l — y 1 — e2)

(19)

Hiebei ist V je nach der einen oder anderen Form von ( 15 ) zu benützen .
Zur Anwendung von (19 ) und (20) hat man von (7) S . 180 und S . 192 unten :

log ( l — ]/l — ez) = log a — 7 .524 1069 -093 (21)
Indem man noch zum Übergang von log sin (cp — xp) auf log (cp — xp) die Formel

für log sin x S . 173 benützt , bekommt man aus (19 ) und (21 ) :

log (cp — xp) = log, sin 2 cp— Inn _ ZI . 2 .538 9562-266 + [5 .23078 ] (<p — xp)2 (22 )

wobei [5 .23078 ] der Coefficienten-Logaritbmus für 7<* Logarithmenstelle ist .
Hiernach kann man in der äussersten Schärfe rechnen , z , B . :

Gegeben Berlin <p = 52° 30' 16,7"
, 2 <jp = 105° 0 ' 33,4"

Damit giebt die Hilfstafel auf Seite [5] des Anhangs log V= 0 .000 5399 -278,
und wenn man im übrigen nach der vorstehenden Formel .(22) rechnet , so erhält man :

2 .538 9562 -266
log sin 2 cp 9 .984 9249 -285

log 1 : F 9 .999 4600 -722

hiezu das letzte Glied von (22) :
2 .523 3412 -273

+ 1 .894

cp — xp = 5 ' 33,68864 "

Cp= 52° 30' 16,70000"

log (cp — xp)
<p — xp =

2 .523 3414 -167
333,68864

xp = 52 ° 24 ' 43,01136 " (23)
Mit so vielen Dezimalen wird man natürlich im allgemeinen nicht rechnen, wir

haben aber diese scharfe Rechnung hier geführt , um sie zugleich als Kontrolle für
das nachfolgende Näherungs -Verfahren zu benützen .

Die beste Form zur numerischen Berechnung von cp — xp aus gegebenen cp oder xp
erhält man durch eine Reihen -Entwicklung nach dem Grundsätze des Mittelarguments
(§ 29 . S . 178— 179) . Nach ( 13 ) ist :

fang xp = V ' — e2 tangcp
e2 e4

1 ~ "
2

“ _

andererseits

damit wird : cp

tang cp — lang xp = —- H- f<P -
cos '2 fl

8

xpf . . .

tang cp

mit 2
/ e2 e* \— t = ! ~

2 0
~
Jcos

2 (x tang cp cp = pi + — stn fi cos p

f g2 g4 \
<P — V = ( •j - + g

-pin (cp + Xp)woraus weiter :



Die reduzierte Breite . 523§ 103.

Dieses kann man noch um einen Grad weiter treiben , was hier nicht ausführlich

angegeben wird , wodurch man erhält (mit Zusetzung von p
'') :

/ «2 ei 5 \ 1
9 — V' = f J

- + y + 04 e6Je
" sm (<p — VO + §84

«6 Q
" smS (<P + »M (24)

Mit Bessels Excentricität log e2 = 7 .824 4104 -237 giebt dieses ausgerechnet :

cp — xp = 345,325 3808 sin (cp + xp) + 0,000 160 sin3 (<p + xp) (25)
(Zop = 2 .538 2285 -0) (log = 6 .2033 )

Das zweite Glied mit höchstens 0,00016 ” ist für gewöhnlich zu vernachlässigen .
Um die Formel (25 ) bequem anzuwenden , muss man einen Näherungswert von cp— xp
vorher haben , und ein solcher wird durch unsere Hilfstafel Seite [58 ] des Anhangs
geliefert ; die Anwendung mag ein Beispiel zeigen :

Gegeben Berlin <jd = 52 ° 30 ' 16,7 ”

Hiezu nach S; [58 ] : cp — ip = 5 ' 33,65 ” genähert

tp = 52 ° 24 ' 43,05 ”

<p -ftp = 104 ° 54 ' 59,75 "

log sin (cp + xp)
log 345,3 . . .

log 345,3 . . . sin (cp + ip )

9 .985 1126 .8
2.538 2285 .0

2 .523 3411 .8

345,3 . . . sin (cp + xp) = 333,68847 "

Hiezu das zweite Glied von (25 ) : + 0,00014

(cp — xp) = 333,68861”

= 5' 33,68861 ”

Ursprünglich gegeben <p = 52 ° 30 ' 16,70000 ”

. Also :
"

rp = 52 ° 24 ' 43,01139 ” (26)

Dieses stimmt hinreichend mit dem schärfer berechneten Wert (23) .

Die Frage , wie genau man den Näherungswert cp + xp haben muss , um eine

gewisse Endgenauigkeit zu erreichen , kann man durch Differentiieren von (25 ) beant¬

worten; man findet , dass ein Fehler von 1" an dem Näherungswert nur einen Fehler

von etwa 0,001 " erzeugt , weshalb eine Genauigkeit von 0,1” im Näherungswert (wie

sie die Hilfstafel Seite [58 ] gewährt ) zur endgiltigen Berechnung genügt .

Für die sphäroidischen Normal -Beispiele , welche wir in (1) —(5) § 73 . S .391 —392

vorangestellt haben , sind die geographischen Breiten cp und die entsprechenden redu¬

zierten Breiten xp die folgenden :
45 ° 0 ' 0”

xp = 44 ° 54 ' 14,67493
"

49 ° 30 ' 0" 49 ° 24 ' 18,83709 ”

50 ° 0' 0" 49 ° 54 ' 19,82230 ” T OoCOAl11
50 ° 30 ' 0" 50 ° 24 ' 20,91117 ” 54 ° 30'

55 ° 0 ’ 0” 54 ° 54 ' 35,31462 "

Tübingen cp = 48 ° 31 ' 12,4000" ip =

Hornisgrinde cp = 48 ° 36' 21,8966” xp =

Berlin cp = 52° 30 ' 16,7” xp =

Königsberg q> = 54 ° 42' 50,6” xp =

Mecklenburg
xp = 52 ° 54 ' 27,89895”

54 ° 24 ' 33,31059
”

48 ° 25 ' 29,6082 ”

48 ° 30 ' 30,2280 ”

52 ° 24 ' 43,0014 ”

54 ° 37 ' 24,7564 ”
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§ 104. Das sphärische Hilfsdreieck mit reduzierten Breiten .
Wir knüpfen an die im vorigen § 103. (9) S . 521 gefundene Gleichung an :

cos ip sind = cos ip ' sin a ’
(1)

Dieser Gleichung entspricht die nachstehende Fig . 2 .
In nachstehender Pig . 1 . sind P und P ’ zwei Punkte auf dem Ellipsoid , s die

verbindende geodätische Linie mit den Azimuten a und Die beiden Punkte P
und P ' haben die geographischen Breiten cp und cp

' und den Längen - Unterschied l.

Kg . 1. Ellipsoid . Fig . 2. Kugel .

M T

In Pig . 2 . ist ein entsprechendes sphärisches Dreieck T QQ ' gezeichnet , dessen
Bogen Q Q' dieselben Azimute « und a ’ hat wie die geodätische Linie PP ' . Der
Bogen Q Q ' ist mit a ff bezeichnet , indem der Kugelhalbmesser = a (Äquatorhalbmesser
des Ellipsoids ) und der Centriwinkel = a angenommen ist . Der Längenunterschied
zwischen q und Q' ist = Ä, verschieden von l . Auch die sphärischen Breiten ip und ip
sind andere als die ellipsoidischen , es sind die zu cp und cp

' gehörigen reduzierten
Breiten , d . h . nach (13) § 103 . S . 521 bestehen die Beziehungen :

tang ip = fang <jp
'j/l — e2 , lang ip’ = taug <jp

' ]/l — e2 ß )
Die Richtigkeit all dieser Beziehungen ist durch die sphärische Gleichung (1)

bewiesen , und wir wissen nun , dass einem geodätischen Polardreieck N P P ' auf dem
Ellipsoid immer ein sphärisches Dreieck T Q Q’ entspricht , mit gleichen Azimuten
a , « ' und mit reduzierten Breiten ip , ip '

, welche zu cp , cp
' gehören . Dagegen sind

die übrigen Stücke , die Entfernung beider Punkte und deren Längenunterschied , w
beiden Dreiecken verschieden .

Es kommt nun darauf an , eine Beziehung herzustellen zwischen s und <J und
eine Beziehung zwischen l und X, denn da zwischen allen übrigen Stücken von Fig- 1-
und Fig . 2 . vermöge der Gleichungen (1 ) und (2 ) bereits Beziehungen bestehen , werden
wir dann in allen Teilen von dem sphäroidischen Dreieck auf das sphärische Dreieck
übergehen können und umgekehrt .

Wir haben nach (1) , (2 ) S . 392 und (1) , (2) , S . 347 folgende Differential -
Gleichungen , mit den Bezeichnungen unserer vorstehenden Fig . 1 . und 2 . (geographische
Länge auf dem Ellipsoid = l , auf der Kugel = A) :
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Ellipsoid Kugel
dscos a = Md cp
d s sin a = N coscp dl

a d o cos a = a dtp
a d ff sin a = a eos ip dX

(3 )
(4)

Hieraus durch Division :
ds _ Md cp dl _ M cos ip d cp

ad s a d ip dX N cos cp dip
Hiebei ist nach (11 ) und ( 14 ) § 103 . S . 521 :

- 3̂ = ryi — e* und ^ = F2 ]/l - e«
cos xp dxp

Ml _ *2 1 M
Nach § 32 . S . 196 - 197 ist — = f- und 4

8 Hä ff
Nach § 32 . S . 196 - 197 ist -v- womit

die beiden Gleichungen (5 ) folgende einfache Gestalt annehmen :

ds = ada f̂

dl = d Xp
Die hier zweimal auftretende Grösse V ist die stets von uns benützte Funktion

der Breite , welche entweder in cp oder in ip ausgedrückt nach (15 ) § 103. S . 521 ist :

| /l — e2 cos2 ipV = ]/l + e ' 2 cos2 cp oder (8 )

Die geometrische Bedeutung von V haben wir schon in (25 ) § 32 . S . 197 angegeben,
es ist nämlich V2 das Verhältnis der beiden Haupt -Krümmungs -Halbmesser N und M.

§ 105 . Integration der Differential- Gleichungen des Polar-Dreiecks.
Wir haben vom vorigen § 104. (6 ) und (8) (s . oben) die Differential -Gleichung :

(1)ds — adoYl — e2 cos2 ip’
Diese Gleichung bezieht sich auf die untenstehenden Fig . 1 . und Fig . 2 ., indem

ds das Differential der geodätischen Linie s in Fig . 1 . und ad ff das Differential des
sphärischen Bogens a (auf den Halbmesser a bezogen) von Fig . 2 . ist ; auch ip ist
sphärische Breite eines Punktes auf dem Bogen ff.

Um die Gleichung ( 1) nach ff integrieren zu können , muss man ip in ff ausdrücken,
wozu die Formeln der sphärischen Trigonometrie dienen , welche wir schon früher in
(20 )— (22) § 60 . S . 343 angegeben haben , nämlich mit Übertragung auf unsere neue Fig . 2 . .

Fig . 1. Ellipsoid . Fig . 2. Kugel .
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sin m = cos xp sin a , tang M

sin xp cos xp cos a
cos m = —— = - —

stw M cos M

sin
cos xp cos a

also :

sin xp
' = cos m sin (M + ff)

Nun setzen wir zur Schreib-Abkürzung im Folgenden :
■M + ff = x , wobei M konstant , also da — dx
sin 2 xp

’ = cos 2 m sin2 x und cos2 xp
' = 1 — cos2 m sin2 x

Dieses in (1) gesetzt giebt :
d s = a ]/1 — e2 + e2 cos 2 m sin2 x da

= e ' 2 also d s = a yi — e2 y
'l -he 2 cos2 msin 2 xda1 — e2 '

a yi — e2 = b , e ' cosm — k , ds = by
' l -hk 2 sin2 xdx

Nun wird nach den gewöhnlichen Reihen S . 169 und S . 176 entwickelt :

yi + Tfi sin2 x = 1 -h -g - k2 sin2 x - fc-4 sin4 x

sin 2x = - cos 2x
Li Li

sin4 * = -=- - -i - cos 2 * -+- cos 4 x
Li O

(2)

(3)

(4)

(5)
(6)

(7)

(8)

(9)

Dieses zusammen giebt :

- k2 + ( — ^ k2 + ~ ki ] cos 2 x -yi + k2 sin2 a;
^

1 - |—i

Zur Integration hat

Jcos 2 x — ~ sin 2 x , j
M + e

jcos 2 a: dx = -i - [sin (2 M + 2 ff) — sin 2 M j = sin acos (2 M + ff)

cos 4x (10)

I cosAx = sin 4 x

(11)

jtf + o

sin 2 ff cos (4 M + 2 ff)4

Damit kann man die Integrale von (9) , d. h . auch die Integration von (8) zu¬
sammensetzen, wodurch man einen Ausdruck von dieser Form erhält :

s = Aba — B b sin a cos (2 M + ff) — Cb sin 2 a cos (4 M + 2 ff)
Dabei haben die Coöfficienten A , B und C folgende Bedeutungen :

R = IAk 2 — -~ U \ , 0 :

(18)

(U )

Die Umkehrung von ( 13) giebt :

+ ß sin ff cos (2 M -+ ff) + y sin 2 a cos (4M + 2 ff)

di = y i e2 cos2 xp d }.

wobei die neu eingeführten Coöfficienten sind (mit Zusetzung der nötigen £>) :

In gleicher Weise behandeln wir auch die Differential-Gleichung für den Längeu-
unterschied, nämlich nach (7) und (8) § 104. S. 525 :

(17)
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Hier wird nach (11) S . 169 entwickelt : ,
-- gZ

y 1 — e2 cos2 tp = 1 — cos2 ip ■
ei

cosiip — y^ cosSip

527

(18)

(19)

Hiebei bestehen sphärische Gleichungen , nach (1) § 61 . S. 347 :
dl cos ip = d a sin a

dann nach den zu Pig . 2 . gehörigen Gleichungen (2) :
sin m , , , sin m

sm a = - - , also dl = — s- — da
cos ip cos2 ip

Damit kann man (17 ) in eine Integration nach a umformen, nämlich mit Rück¬
sicht auf (18) :

/ •/ i es gi \
1 —f—g

- cos2 tp -h ißCOsirp + . . . j da ’
(20)

Nun hat man wieder nach (6) :
cos 2 tp = 1 cos2 m sin 2 x
bos 4 \p = 1 — 2 cos2 m sin2 x + cos4 m sin4 x

Ausserdem hat man sm 2 x und sm 4 x ausgedrückt in cos 2 x und cos 4 x durch (9 ),
und all dieses zusammen bringt die zu integrierende Funktion (20 ) auf eine Reihe,
welche nach cos 2 a;, cos4x u . s . w . fortschreitet , d . h . (20 ) wird :

1 = 1 — e2 sin m j
'
(A! + B ’ cos 2 x 4 - C' cos 4 x 4 - . . .) dx

Dabei haben die Coefficienten folgende Bedeutungen :

H ' =

£ ' =

1
2
e2
16
c4

1 8

cos2 m

e4
16
e4

e2
16 cos 2 m -

ei
16 cos2 m ■

128 e4 cos4 m

, „ eos2 m — cos4 m
16 Diä

c ' = m cosim

(21)

(22 )

Denkt man sich diese Coefficienten in (21 ) eingesetzt , integriert , und die Grenzen

ebenso wie früher bei (11 ) und (12 ) eingeführt , so überblickt man leicht , dass folgendes
erhalten wird :
l = l ~ e2 sin m ( a ' a + B ' sin a cos (2 M + er) 4 - ~ sin 2 er cos (4 M 4 - 2 a ) + . . .J (23)

Hier ist noch bei B ’ und C ' der Faktor g zuzusetzen ; indem wir dieses thun ,
und auch e2 in die Klammer hineinziehen , bilden wir aus (23) diese letzte Form .

1 = 1 — sinm er + ß ' sin a eos (2 M 4 - ff) -1- f sin 2 a cos (4 M + 2 <r)) (24)

Dabei ist :

a ' = A ’ e2 ß' = B ' e* g y = •G
' c2

(25 )

Entwicklung auf höhere Potenzen .

Wir haben in der vorstehenden Entwicklung nur so viele Glieder beinhalten ,
als man bequem überschauen kann , und so viele, als für gewöhnlich nötig sind.

Zu einem sicheren Urteil über den Einfluss der höheren Glieder muss man

die Weiter -Entwicklung der vorstehenden Reihen machen . Wir setzen nur die Schluss-

ergebnisse der Reihen -Entwicklung hier her .
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Die Reihe (15) bekommt noch ein Glied , und ist dann :

ff = « -=- + ß sin tj cos (2 M + ff) + y sin 2 ff cos (4 M -+- 2 ff) - ! 8 sin 3 ff cos (6 M + 3 ff)

Folgendes sind die dazu gehörigen Coefficienten mit Je = e ' eosm :
175a — 1-T * , A = L k2

14

ß = B-T * , B = /k2 k
\ 4 1

y = G-
A ? , C = / k4

\ 128

8 = B
, B =

/ k6

\ 1536

S =
E~Ä Q , E = ( 5 ,165536

64 hi + 256
kf>~

36384 kß

3
512

15
112

k 6 +

k6 - 35
2048 Jc&

35
8192

6144

ks

(27)

Auch die Reihe (24) bekommt ein weiteres Glied und wird :
l = X — sin m (a ' ff + ß' sin a cos (2 71/ + ff) 4- y

' sin 2 ff cos (4 M
+ 8' sin 3 ff cos (6 M

Folgendes sind die hiezu gehörenden Coefficienten :
e2 / , e2 . ei 5 e6\ e4 cos 2 m

15

- 2 er)
• 3 ff)) (28

16
3

+ jg e e cosim 11 ■ ie 2

ß’ = Q

y = q

8 = Q

cos^ m 1 + e2 + —- e4
j

— — cos4 m 1 +
1 *

*

25'
2048
75

es cos6 m

+ 4096
e8c°s6w

256
5

COS4 Ml

re2 cos6 «i

1 + ^ e2 15
4096 C8 COS6 Mi

12288
Wenn man hier alle konstanten Teile mit der Bessel sehen Excentricität e

(log e2 = 7 .824 4104 .237 nach S . 193) ausrechnet , so bekommt man :
a! = 0,003 342 773183 — [4 .447 6079] cos2 « + [1 .84854 ] cos 4 m — [9 .3843] cos6 « j
ß' = [9,762 0330 ] cos2 m — [7 .28791 ] cos4 m + [4 .87477 ] cos6 Mi
/ = [6,38482 ] cos4 m — [4 .17580 ] cos 6 m
8 ' = [3.22156] cos 6 m

Diese Reihen gehen weit über das gewöhnliche Bedürfnis . Bei geodätischen
Linien von mehreren Graden Ausdehnung braucht man von (29 ) meist nur a ' und ß
und dabei nur die zwei ersten Glieder von </ und das erste Glied von ß ' .

Etwas mehr braucht man gewöhnlich bei der Reihe (26) mit den Coefficienten
(27) , doch auch meist nur « , ß und y nur etwa bis k4. Dabei ist etwa 8 stellige
Logarithmen -Rechnung angenommen . Mit den Coefficienten (27 ) und (29) kann man
auch die grössten Fälle lOstellig berechnen .

Anwendung der vorstehenden Entwicklungen .
Durch die Gleichungen (26 ) und (28) mit den zugehörigen Coefficienten ct, ß, 7>

a ' ß' / u . s . w . sind die gesuchten Beziehungen zwischen Fig . 1 . und Fig . 2 her¬
gestellt und man kann damit das Polardreieck auf lösen in folgender Weise :
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Von einem Punkte des Ellipsoids mit der geographischen Breite qo geht eine
geodätische Linie s unter dem Azimut a aus ; man soll die Breite qp

' des Endpunktes
dieser geodätischen Linie bestimmen , sowie das Azimut «' daselbst und den Längen¬
unterschied l beider Punkte .

Aus der gegebenen Breite qp berechnet man die zugehörige reduzierte Breite ip
nach der Gleichung tang ip = )/l — e2 tang qp (oder nach einem anderen in § 103 . an¬

gegebenen Verfahren ) . Mit diesem ip und dem Azimut a kann man in dem sphä¬
rischen rechtwinkligen Dreieck in Fig . 2 . die beiden Hilfsgrössen m und M bestimmen
und damit die Gleichung (15) oder (26) nach a auflösen .

Damit hat man drei Stücke ip, a , er, mit welchen das schiefwinklige sphärische
Dreieck von Pig . 2. aufgelöst werden kann , so dass die jenseitige sphärische Breite ip'

und der sphärische Längenunterschied X bekannt werden.
Von der sphärischen (reduzierten ) Breite ip' geht man zurück zu der wirklichen

Breite cp
’ durch die Gleichung tang cp

’ = tang ip' Y 1 + e'2 (oder durch ein anderes
in § 103 . angegebenes Verfahren ) , und von der sphärischen Länge k kommt man zu
der sphäroidischen Länge l durch die Gleichung (24) oder (28 ), womit die Lösung der

ganzen Aufgabe vollendet ist .
Zu einem Zahlen -Beispiel hiefür wollen wir nach (5) § 73 . S . 392 nehmen :

Berlin cp = 52 ° 30 ’ 16,7000” (30 )
Berlin -Königsberg « = 59 ° 33 ' 0,6892” log s = 5 .724 259P353 (31)

Die Berechnung der reduzierten Breite von Berlin haben wir bereits in (26)
§ 103 . S . 523 behandelt und gefunden :

Berlin ip = 52 ° 24' 43,0114” (32 )

Nun kommt die Berechnung von m und M nach , den Gleichungen (2) und (3) :

m = 31 ° 43' 31,13" 68° 4P 19,95" (33)

Weiter brauchen wir die Coöfflcienten zur Berechnung von ff , und zwar zuerst
P = e ' cosm nach (8), es ist :

log e' cos m = log V = 8 .843 3740

und damit nach ( 14 ) und ( 16) hinreichend genau , ohne die Weiter -Entwicklung (27 ) :

log A = 0 .000 5270 -0 log B = 7 .0841599 -2 log G = 3 .266 286

log u = 5 .313 8981 -0 log ß = 2.398 0580-5 log y = 8 .580 184

Mit diesen Coöfflcienten a , ß , y kann man die Gleichung (15) nach o auflösen,

allerdings nicht geradezu , weil er selbst rechts vorkommt ; allein die Reihe (15) ist

sehr rasch konvergierend , so dass es genügt , einen ersten Näherungswert von ff nur

aus dem ersten Gliede von (15) zu berechnen , d. h . <J = zu setzen, womit man auch

die folgenden Glieder ausrechnen kann ; oder kurz , man löst die Gleichung (15 ) durch

Näherung indirekt , stufenweise nach ff auf . Dieses Verfahren gab in unserem Palle .

erste Näherung a A = ff = 4° 46 ' 17,8”

hiezu ß sin a cos (2 iH + ff) = —

zweite Näherung ff — 4 ° 46' 1,4"

Damit kann man das zweite und dritte Glied von (15) ausrechnen , und hat

dann im ganzen ;
Jordan , Handb . d. Vermessungskunde . 4 Aufi . III . Bd . 34



530 Integration der Differential -Gleichungen des Polar -Dreiecks . § 105.

a ~ = 4 ° 46' 17,8176 "
o

ß sin ff cos (2 M - j- ff) = — 16,4086"

y sin 2 a cos (4 M -+- 2 ff) = + 0,0015 "

endgiltig (7 = 4 ° 46 ' 1,4105 ” (34)
Nun stellen wir von (32) , (31 ) , (34) zusammen :
ip = 52 ° 24' 43,0114 " a = 59 ° 33' 0,6892 " a = 4 ° 46 ' 1,4105" (34a)

■ Damit kann man das sphärische Dreieck auflösen , welches ip'
, cc’ und X liefert;

die Rechnung nach den Formeln (14) und (15 ) § 60 . S . 341 (in gleicher Weise wie
das Zahlen -Beispiel auf S . 341— 342) hat ergeben :

rp’ = 54 ° 37 ' 24,7566 " « ' = 65 ° 16' 9,3655 " (35)
X — 7 ° 6 ' 30,1340" (36)

Der so gefundene sphärische Wert ip ' ist die reduzierte Breite von Königsberg,
woraus man nach § 103 . die wirkliche Breite berechnet , nämlich :

<p’ = 54° 42 ' 50,6002 " (37 )
Nun haben wir noch die Aufgabe , den sphärischen Längenunterschied X von (36)

in den sphäroidischen Längenunterschied l zu verwandeln , wozu die Gleichung (28 ) mit
den Coefflcienten (29 ) dient . Wir berechnen nach (29) , jedoch nur mit den Gliedern
bis cos4 m :

log a ' = 7 .523 8439 log ß ' = 9 .62045 log / = 6 .098
Demnach (24) :

l = X — 30,1479 " + 0,0144" + 0,0000 . . . = X — 30,1335 ”

also nach (32) :
1 = 7 ° & 30,1340 " — 30,1335 " = 7 ° 6' 0,0005" (38 )

Nun haben wir in (37) , (35 ) , (38) die ganze Auflösung :
Königsberg cp

' = 54 ° 42' 50,6002" 1 /ggj
Königsberg -Berlin « ' = 65 ° 16 ' 9,3655 "

, l = 7 ° 6 1 0,0005" )
Mit den erweiterten Formeln (26)— (29) wollen wir auch noch das grosse

Normal -Beispiel (2 ) § 73. S . 391 berechnen , wofür die Hauptzahlen folgende sind :

Gegeben cp = 45 ° 0 ’ 0" a = 29 ° 3 ' 15,4598" (40)

log s = 6 .120 6674 -805 (41 )
Die Rechnung beginnt mit der reduzierten Breite zu cp = 45 ° :

tp = 44 ° 54' 14,67493 ” (42)

Das rechtwinklige sphärische Hilfsdreieck giebt :
m = 20 ° 7 ' 8,712" M = 48 ° 44' 46,551 " (43 )

Die Coefflcienten zur Berechnung von a werden nach (27) :
log « = 5 .313 7831 -066 , log ß = 2 .483 7124 , logy = 8 .749 94 , log 8 ^ 5 .445
und damit er selbst in 4 Gliedern :

o- = 42 782,021 652" — 20,794 012" — 0,017 667" + 0,000 012"

ff = 11 ° 52' 41,20998 " (44)
Mit ip, a und ff von (42), (40) und (44) wird das sphärische Dreieck aufgelöst;

dasselbe giebt :
ip’ = 54 ° 54 ' 35,3145" « ’ = 36 ° 45' 7,4006" (4®)

X = 10 ° 0 ' 49,11952 " (46J
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Die reduzierte Breite i|/ wird in die Breite cp
' verwandelt , nach § 103 , nämlich :

cp
' = 54 ° 59 ' 59,9999 ’' (soll 55 ° 0 ' 0 "

) (47)
Das Azimut a ' nach (45) ist bereits auch sphäroidisches Azimut ; wir haben

also, um die Auflösung zu vollenden , nur noch X von (46 ) in l zu verwandeln , wozu
die Gleichung (28) mit den Coefficienten (29 ) dient .

Die Coefflcienten-Berechnung nach (29) giebt :
log « ' = 7.523 7864 -329 log ß' = 9 .706 0623 log y

' = 6.27300
und damit wird :

l = X — 49,131 513" + 0,011 935" + 0,000 020 = — 49,119 558"

also nach (46 ) : l = 9 ° 59' 59,99996"
(soll = 10 ° 0 ' 0 " ) (48)

In a ’
, cp' und l von (45) , (47) und (48) haben wir die vollständige Auflösung

der gestellten Aufgabe in hinreichender Übereinstimmung mit den Angaben von (2)
§ 73. S . 391 .

Umkehrung der Aufgabe.

Wenn nicht cp, « und s gegeben sind , sondern cp, cp
1 und X, so dass s, a und a '

gesucht werden , so kann man das im Vorstehenden behandelte Verfahren auch noch
anwenden , aber nur indirekt und umständlich , weil die sphärischen Winkel m und M,
oder in erster Näherung wenigstens m , bereits zur Reduktion von l auf X gebraucht werden.

Indessen haben wir für den Fall , dass cp, cp
' und l gegeben, und s , a und a '

gesucht sind , die günstigere Auflösung unseres nachfolgenden § 106 .

Vergleichung unserer Formeln mit der Bessel sehen Methode.

Der Grundgedanke der Auflösung eines sphäroidischen Polar -Dreiecks durcli ein sphärisches
Hilfs-Dreieck mit reduzierten Breiten ist von Bessel behandelt in einer Abhandlung : „Über die Be¬

rechnung der geographischen Längen und Breiten aus geodätischen Vermessungen , Asfcr. Nachr
Nr. 86, 4. Band 1826“ , S. 241—254, nebst „Tafeln zur Berechnung der geodätischen Vermessungen “.

Diese Bessel sehe Theorie mit den Hilfstafeln bildet auch einen Teil des Werkes : „Das Messen
auf der sphäroidischen Oberfläche u . s. w. von J . J . Baeyer , Berlin 1862“.

Um die Bessel sehe Methode nebst ihren Hilfstafelu mit den Formeln unseres vorstehenden

§ 105. zu vergleichen , bemerken wir zuerst , dass unsere Coefficienten ft, ß, y nach (27) dieselben sind ,
wie die Bessel sehen Coefficienten a , ß , y , deren Logarithmen in der ersten Besselschen Hilfstafel

enthalten sind ; allerdings ist die Form der Berechnung in beiden Fällen verschieden .
Die Coefficienten ft ', ß ' , y ' des zweiten Teils der Besselschen Hilfstafel sind mit unseren

Coefficienten cc, ßr, f von (29) nicht unmittelbar identisch , aber sie sind denselben proportional .

Es kommt bei Bessel ein konstanter Faktor in Rechnung , den wir hier F nennen wollen :

F = _ e2 - (log F — 7.825 1369-0) (49)

J/1 - 0,75 (S>
Indem wir für den nächsten Zweck der Vergleichung die Bessel sehen Coefficienten mit

6", y" bezeichnen , und mit ß ' , T die Coefficienten unserer Entwicklnug nach (29) S. 528,

kaben wir : jr ß " — a ' , Fß " — j)
’ , Ff = Y M

Als Argument für die erste Bessel sehe Tafel , log a , log ß, log J dient der Eogaufcbmus des

Modulus k — e ' cos m , welcher nach (8) und (27) auch Argument unserer a , ß, y
' Ist , also erstes

Argument — log e ' cos m. Dagegen für den zweiten Teil der Besselschen Tafel dient als Argument

eine Grösse log k', wobei k' diese Bedeutung hat :

k' = - eY 0,75 log
eY 0,75 _k) - = 8.850 8255-6 (51)

Yl - 0,75er \ y 1—0,75«* ,

(27) u
diesen Beziehungen kann man unsere Coefficienten ß , ß, y , a ’, ß 'Ty ' statt sie nach

Are
Und ^ ZWberechnen , auch aus der Besselschen Hilfstafel entnehmen , indem man mit dem

von r
nt e C°s m ' n ^ eD ersten Teil und mit dem Argument log k' nach (51) in den zweiten Teil

hach (r
18 Tafel ein bfeht , worauf zu den gefundenen log a ' und log ß ' noch der konstante log F

) zu addieren ist , um unsere a '
, ß ' zu erhalten .
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§ 106 . Neue Auflösung des geodätischen Polar -Dreiecks .*)
(Bezeichnungen nach Fig . 1 . und Fig . 2 . § 104 . S . 524 .)

Wir nehmen die zwei Differential - Grundformeln nach (6) , ( 7) § 104 . S . 525
nochmals vor : nämlich :

(1)

(2)

d ar = — d sa
dl = Vdl

wobei, wie gewöhnlich , V diese Bedeutung hat :
V = yi -ne '2 cos2 <p (e '2 cos2 (jp = rp)

Wenn die beiden Gleichungen (1 ) und (2 ) integriert sind , so sind alle Be¬
ziehungen zwischen einem geodätischen Polar - Dreieck und einem sphärischen Polar-
Hilfsdreieck (Fig . 1 . und Fig . 2. S . 524) bekannt, und man kann die Aufgabe auflösen,
wie wir in § 104 . S . 524 auseinandergesetzt haben.

Wir wollen nun die Integration der Grundgleichungen (1) und (2) durch Ent¬
wicklung nach dem Maclaurin sehen Satze bewirken , d . h . zunächst bis zur dritten
Potenz , durch Entwicklung der Beihen :

d2 ff“
] s2 d3 o"] s3

d «sj 6 (4)

d2 X~
1 l2 dU “l 13

dl 2 J 2 disj 6
Wir gehen zuerst näher auf (4 ) ein , und weil a konstant , nämlich nach (9)

§ 31 . S . 189 a = cVl — e2 ist , haben wir aus ( 1) :
d Vl s2 d2 V~l S3yi — eta Vs +

Die hier nötigen Ableitungen machen wir in gleicher Form und Behandlung
wie früher in § 74 . die Ableitungen für <jp, l und « . Auch citieren wir von dort
( 5 ), (6) , (7) , § 74 . S . 393 mit tang <f> = t :

d <p VS
~ ~ — - COStt

dl V sin a da V .sin a t
c cos cp

cos a t( 13 ) , (14 ) , S . 393 : ~ =' dqi
Weiter wird abgeleitet :

3 rfi ß ) — sira2 a t2cos2 a ( 1 — t2 + rfi

Nun kann man bereits die Formel (6) zusammensetzen, und man bemerkt , dass

früheren Beihen (vgl . (22 ) § 74 . S . 394) , wir setzen deshalb für analytisches Mass
(ohne p) :

(10)

und damit geben (6) , (8) und (9) :

ff ]/l — e2 = S 3 rß f2) — sin2 a t2cosarpt r/2 ( cos2 a (1 t2 + i)2 3 jf t2) — sin2 a t2
j l11)

*) Erstmals veröffentlicht in der „ Zeitschr. f . Verm . “
, 1883, S . 65 — 82 .
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In gleicher Weise haben wir auch die Längen -Formel zu bilden , nämlich zu¬
nächst (2) und (5) ;

, Tr , dVnl 2 d2 V~
\ ß , 10 .l = vl + diU + Tw \ li (12 )

Die hiezu nötigen Ableitungen sind :
d V _ d V d <p dq> Tro ^ _ _ _ da

dcp dl
—

j
-
j

— F 2 cotg a cos cp

— 7/2 V cotg a sin <p oder = — ifV cos a t

d l
cos cp

■■sm cpdl
dV
dT z

d2 V cos 3 cp ( I
dß

= ~ r!l V ^ j
« « 2 « (1 - 3 42 H 7/2 _ 3 t/2 42) - sin * a 42

j

Damit kann man ( 12) zusammensetzen :

(13)

(14)

■= V \ l ~ l2 cos cp
2 sin a

'

Kg . i .

12 cos2 cn 1
Ü

~
sin 2 a ^ (cos2 42+ 7/2—3 t/2 t2)~ sin 2 a t2) | (15)

Die Formeln (11 ) und (15) geben a und X

als Funktion der Ausgangsbreite cp und des Aus -

gangsazimutes a der geodätischen Linie ; wir wollen

nun aber das Prinzip des mittleren Argumentes an¬

wenden , welches bereits in § 77 . sehr nützliche

Dienste geleistet hat .
Wir nehmen zu diesem Zwecke die Bezeich¬

nungen von nebenstehender Fig . 1 . an , d. h . wir

nehmen drei Punkte in gleichen Breiten -Abständen :

q>\ + %
q>2 - q> = <p — <Pi 2

= <p (16)

Von der Mittelbreite cp geht eine geodätische
Linie s2 unter dem Azimut a 0 aus , und eine zweite

geodätische Linie äj unter dem Azimut a0 + 180 °.

Den geodätischen Linien s2 und slt deren Summe

s2 = s sei , entsprechen zwei Grössen S 2 und i>\

nach (10) , mit der Summe S2 + S1 = S . Damit giebt die doppelte Anwendung der

Formel (ll ) ;
° V^~ <& — S - — COSMq7/21 — 7/2 (cos2 af} (1 — f2 _j_jy2—s fjl ) — sin a0 t2)

4 o
Hier ist von (4) § 77 . S . 403 zu benützen :

„ n <S2 . [ sin 2 « 0 o o \
S2 — S , = — 4 - - + 3 7/2 cos a0

4 ( cos a0 7
Wenn man dieses in das Vorstehende einsetzt , so darf man auch überall a

statt a0 schreiben , und damit bekommt man :

flr]/l _ e2 :
S & I' —
gj 7/2 j

sin 2 a 2 t2 + COS2 « (1 — 42 + 7/2 + 6 7/2 42) (17)

Nun wenden wir auch die Gleichung (15) in zweifacher Weise auf Fig . 1. an

und erhalten mit l2 + l\ = l , X2 -+- Aj = X:
"
X = V ( l — - —

C2?_3L yjl cos a0 1
2 sma 0

rß (cos2 «o (1 — 3 42 + 7/2- 3 7/242) - sin2 a t2) i
6 sin 2 a 0

' '
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Hiezu hat man von (17) § 77 . S . 404 :
S2 sins cc . £ 2

(k — h ) coscp = j - sin « cos a t (2 + 3 rp)cos a 4
Hier kann man setzen Ssin a = l cos cp, also :

T . I2 sin a l2 cos a a(lo h ) = —- cos cp t 4 - T . cos W t (2 + 3 if ]' A A " 4 svn a4 cos a
Dieses setzt man in die vorhergehende Formel für A , wobei auch wieder a0

und a vertauscht werden können; dadurch erhält man:

A = f | <— ~ 7/2 {sin2 «2 12 + cos2 a (1 4 3 12 + t/2 4- 6 7/2 t2]j | (18)

Die Gleichungen (17 ) und (18 ) enthalten bereits die Lösung unserer Aufgabe,
wenn man S, a und l wenigstens näherungsweise als gegeben voraussetzt ; indessen
ist es bequemer, alles auf den Breiten -Unterschied 6 und den Längen - Unterschied l
zu reduzieren. Hiezu hat man für die Korrektionsglieder :

Ssin a = l cos cp , Scos a = l cos cp cotg « =
Dieses in (17 ) und ( 18) eingesetzt giebt :

* l , . .
';2 '' 2

- e2

72

(7 =
VI

i = n | l -

( 1 — t2 -t- t;2 | 6 7J2 12) 4- 2 l2 sin2 cpj |

(1 4- 3 12 4- 7/2 + 6 7/2 12) 4- 2 l2 sin2 cp

(19)

(20 )

24 \ 74

7/2■
24 \ ri '

Wir wollen die Coefficienten herausheben und folgende Gebrauchsformeln bilden
(mit Berücksichtigung der nötigen p) :

u = üs 11 4- (oq ) 62 + (<r2) 12 sin2 cpj (21)

X - 71 { l + (Aj) 62 (A2) 12 sin2 g>} (22)
Man kann diese Formeln auch in logarithmischer Form anwenden , z . B . wenn

log o gegeben und log s zu bestimmen ist , hat man durch Umkehrung von (21) in
logarithmischer Form:

log s = (log ff — log ü ) — px (o{) b2 — pi (ff2) l2 sin2 cp (22 )
Dabei ist 7 die bisher immer mit 7 bezeichnete Funktion :

V = y 1 + e'2 cos2 cp (24)

und U --
c Y 1 — e2

oder = — pa ^

log U = log 7 + 8 .509 7816 -695 (25)
Den Wert log 7bzw . log V2 kann man aus der Hilfstafel S . [2] — [7] unseres

Anhangs 10 stellig entnehmen und nach (25 ) hat man dann auch log U.
Für die Coefficienten (er,) , (ff2) , (Aj) , (A2) in (21 ) und (22 ) ergeben sich durch

Vergleichung mit (19) und (20) folgende Bedeutungen :

(<H ) =

(*i ) =

7/2
24 p2 VI (fl — (1 - t- 7/2 q- 6 7/2 l 2)) , ( ff2) =

(3i2 + l + ^2 + 67/2 <2 ) , (A2) =24 p2 Vi
Dabei sind die konstanten Coefficienten-Logarithmen

1 . 1

12 p2
7J2

12p2
(27)

log 24 ^ 2 = 7 .99° 9385 — 20 , log 1:2 £-2
= 8 .291 9685 - 20
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Weiter -Entwicklung bis zur fünften Ordnung .

Man kann mit den bisher entwickelten Formeln bereits geodätische Linien von
mehreren Grad Ausdehnung berechnen , wie aus der Vergleichung der nachfolgenden
Zahlen -Beispiele mit den Ergebnissen von § 105 . zu ersehen ist .

Das beste Mittel jedoch , zur Gewinnung eines Urteils über das bisher behandelte
Verfahren und über die Möglichkeit seiner Erweiterung , hat man in der Weiter -Ent¬

wicklung um eine Stufe höher , d. h . bis zur fünften Ordnung .

Wir haben diese Entwicklung durchgeführt , und in der „ Zeitschr . f. Verm., 1883“ ,
S. 72— 76 die Haupt -Zwischenstufen angegeben ; da es sich dabei um sehr lange , im

Druck kaum wiederzugebende Formelhäufungen handelt , deren mathematischer Grund¬

gedanke schon durch das Vorhergehende völlig klar gemacht ist , geben wir hier nur

die End -Ergebnisse .
Die Formeln (21 ) und (22 ) werden so erweitert (vgl . (30 ) und (31 )) :

ff = Us {l + (ffl ) 52 + (ov;) l2 sin* q, + (ffg) 64 + (<r4) 52 l2 cos2 g, + (<r6) U cos* <jp} (28)

A = VI | l + (Ai ) 52 + (Xz) ß sin 2 cp -+- (A3) 64 + (A4) 62 ß cos2 qp + (A6) 1 4 cos4 <pj (29)

Wenn man die Formeln (28) und (29 ) umgekehrt anwenden will , d; h . wenn
man z . B . s aus a berechnen will , so braucht man die Glieder (ff; )2 54, (er, ) (ff2) 52 ß sin2 cp
und (ct2)2 U sini <p , welche bei der Beihenumkehrung zunächst auftreten , nicht zu be¬

rücksichtigen , weil die Coefficienten (d ; ) und (<r2) beide den Faktor rf2 haben , und
Glieder von der Ordnung (rj4) in den Coöfficienten (og) , (ff4) und (05) überhaupt ver¬

nachlässigt sind .
Also auch , wenn man logarithmisch rechnen will , kann man (28) kurz so

umkehren:
log s = (log ff — log U) — g (<7j ) ö2 — g (tr2) ß sin 2 cp — fi (og) 54 I

— g (ff4) 62 P cos2 cp — g (ffs) U cos4 epf

In diesen Formeln (28) , (29 ) , (30) sind die Coefficienten (tTj) , (ff2) > (Ai) > fii )
dieselben, wie schon bei (26) und (27) angegeben wurde ; die übrigen haben , auf if

einschliesslich genau , folgende Bedeutungen :

(0-
3) = _ 5L _ ( 1480 gi

u - **) = [3.88838] cos2 cp (1 — t2)

(ff4) = t ,
720 pi v 1 + 2 f2 -H 15 O ) = [3 .712 229 ] cos2 cp (— 1 + 212 + 15 f4) ■ (31 )

(ff5) = rj2
72Ö p4

(9 t2 — 5 O ) = [3.712 229 „] cos2 cp (9 t2 — 5f4)

(» ) .=
?f

144Öp4 ( 1 + 15 t2) = [3 .411 256 »] cos2 cp (1 + 15 f2)

V2 ,
720 gi

'- 1 — 10 t2 + 15 f4) = [3 .712 286] cos2 <jp ( — — 10 f2 + 15 O) (32)

(A4) = rj2
240 p4

3 t2 + <4) = [4 .189 407] cos cp(— St 2 -

Die eingeklammerten Zahlen sind hier Logarithmen , und angehängtes n be¬

deutet , dass die zugehörige Zahl negativ ist . Wie immer bedeutet rj2 = e 2 cos2 cp

und t = tan g (p_
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Eine Coefflcienten-Tabelle haben wir hiernach berechnet und auf S . [62 ]— [63]
des Anhangs mitgeteilt . Zu Weiterem können auch die Tabellen [47 ] und [48 ] des
Anhangs benützt werden.

In den vorstehenden Formeln kommen verschiedene Konstanten vor , welche wir
zum Gebrauch hier zusammenstellen :

log (1 : 12 ß2) = 8 .291 9684 -9 - 20

log (1 : 24 ß2) = 7 .990 9384 -9 — 20

log (1 : 240 p4) - 6 .362 0882 — 30

log (1 : 480 p4 ) = 6 .061 0582 — 30
log ( 1 : 720 p4) = 5 .884 9670 — 30

log (1 : 1440 Qi) = 5 .583 9370 — 30

log (e '2 ; 12 p2) = 6 .119 2832 -7 — 20

log (e '2 : 24 p2) = 5 .818 2572 -8 — 20

log (e '2 : 240 p4) = 4 . 189 4070 — 30

log (e '2 : 480 Qi) = 3 .888 3770 — 30

log (e '2 : 720 q*) = 3 .712 2858 — 30

log (e '2 ; 1440 Qi) = 3 .411 2558 — 30

Um eine Übersicht zu gewinnen , wie viel die Glieder fünfter Ordnung in
unseren Breiten etwa ausmachen, haben wir die folgenden zwei Übersichts - Tabellen
berechnet, für den Gesamtbetrag der 3 Endglieder in (28) und (29 ) .

1. Glieder fünfter Ordnung in der Formel (28) für o , mit Cp= 50 °.

b = 1 + 2 ° l = 4° l = 6 ° l = 8 ° l = 10 °

2 °
4°
6 °
8 °

10 °

+ 0,00000 "
+ 0,00000
+ 0,00001
+ 0,00001
4 - 0,00002

4- 0,00000 ”
+ 0,00002
4- 0,00006
4- 0,00012
4- 0,00018

+ 0,00001 "
H- 0,00005
4 - 0,00014
+ 0,00031
+ 0,00056

+ 0,00001 "
■+ 0,00010
4- 0,00030
+ 0,00061
4- 0,00111

4- 0,00001"
4- 0,00016
4- 0,00048
+ 0,00103
4 - 0,00186

II . Glieder fünfter Ordnung in der Formel (29) für A, mit cp = 50 ° .

6 = 1 = 2 ° 1 = 4 ° l = 6 ° Z= 8 ° 1 = 10 °

2 °
4 °
6°
8 °

10 °

— 0,00000 ”
— 0,00001
— 0,00004
— 0,00011
— 0,00028

— 0,00000"
— 0,00001
— 0,00006
— 0,00020
— 0,00053

— 0,00001 ”
— 0,00001
— 0,00006
— 0,00025
— 0,00070

— 0,00003"
— 0,00001
— 0,00005
— 0,00026
— 0,00079

— 0,00012”
— 0,00004
— 0,00005
— 0,00022
- 0,00078

Als erste Anwendung der entwickelten Formeln wollen wir unser fünftes Normal-
Beispiel (5 ) § 74 . S . 392 nehmen in dieser Weise :

Gegeben Berlin <j>i = 52° 30' 16,7" 1 r36)
Königsberg qp2 = 54 ° 42' 50,6" f

Es soll die geodätische Linie s zwischen beiden Punkten , und beide Azimute
und «g berechnet werden.

Man bildet zuerst das Mittel der gegebenen Breiten :
cp = 53 ° 36' 33,65" (37 )

Damit geht man in die Hilfstafeln Seite [5] und Seite [62] — [63] des Anhangs
ein, und entnimmt die Coefficienten:

log V = 0 .000 5129 .683 (38)

log ßi ) log (A2) log ß 3) log (A4) log (A5)
6 .17908» 5 .66582« 4 .414« 4 .756 4 .065
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Damit rechnet man nach der Formel (29) , mit l = 7 ° 6' 0” = 25560 ; das

Hauptglied wird 25590,208116 "
, dann die 5 Korrektionsglieder :

- 0,024452 "
, — 0,050 137"

, — 0,000003 "
, + 0,000021 "

, — 0,000016 '
,

X = 25590,208 116" — 0,074 637" = 25590,133 479"

l = 7 ° 6' 30,133 479" (39)

Wir haben hier mit 6 Dezimalen der Sekunden gerechnet , um zu sehen , wie
weit sich überhaupt die drei letzten Glieder bemerklich machen ; da dieselben nur

0,0002" ausmachen , könnte man dieselben ganz weglassen .
Nun nehmen wir die reduzierten Breiten zu (36) nebst X von (39) zusammen:

X = l ° 6 ' 30,13348" (40)

(41 )

Berlin = 52 ° 24' 43,01137"

Königsberg rp2 = 54° 37' 24,75639"

Das dadurch bestimmte sphärische Dreieck haben wir nach den Gauss sehen

Formeln (4 ), (5 ) § 60 . S . 339 aufgelöst , wodurch gefunden wurde :
« , = 59 ° 33' 0,6889 " «2 = 65° 16 ' 9,3650"

(7 = 4 ° 46 ' 1,41023" = 17161,41023"

Um a auf s zu reduzieren , braucht man wieder Coefflcienten, zuerst log 77 nach

der Formel (25 ) mit Benützung des schon bei (38 ) berechneten log V :

log 77 = 8.510 2946-378.

Aus der Hilfstafel Seite [62] - [63] entnimmt man mit dem Argument
<p = 53 ° 36 ' 33,65" von (37 ) , die 5 Coefficienten-Logarithmen für s :

log (ffj ) log (02 ) fog (o3) log {or4) log {(Ti)

5 .27256 5 .66582» 3.360» 4 .987 5.839»

Damit rechnen wir nach der Formel (30 ) , und haben zunächst das Hauptglied
5.724 2583-351 und die 5 logarithmischen Korrektionsglieder :

— 0 -5146 + 8 -5179 + 0 -0000 — 0 -0061 + 0 -0002

Dieses giebt im ganzen :

log s = 5 -724 2583 -351 + 7 -997 = 5 -724 2591-348 s = 529 979,578™ (42 )

Die Länge s und die beiden Azimute von (41) stellen die Lösung vor , welche

mit den entsprechenden Werten (31 ) und (39) des vorigen § 105 . S . 529—531 hin¬

reichend stimmen .
Nach diesem wollen wir noch unser grosses Normal - Beispiel (2) § 73 . S . 391

behandeln :
Gegeben <7>i = 45 ° 0 ' 0"

o" )
<p2 = 55 ° 0 ' 0"

J
(43)

Mittel <p = 50 ° 0 ' 0" '

Damit geht man in die Hilfstafeln Seite [5] und Seite [62] — [63] ein, und ent¬

nimmt die Coöfficienten :
log V = 0 .000 6020-131 log 77 = 8 .510 3836-826

log (oj ) log (dg ) log (<?s) l°9 l09 (ff5)

5 .02731 5 .73542» 3 .128 » 4 .835 3

log (Aj ) log (X2) log (X3) log (X4) log (Ä5) 1

6 .155 215» 5.73542» 4 .376» 4 .506 4 .156 » J

Die Reduktion für X nach der Formel (29 ) giebt das Hauptglied 36049,93731"

und die 5 Korrektionsglieder :
— 0,667 923' '

, — 0,149 088" , — 0,001438 " , + 0,000 802” , — 0,000,148

log fa ) I
3 .759 » )

(44 )

(45 )

(46)
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Im ganzen : l = 36049,93731 " — 0,817 795" = 36049,11952 "
(47 )

Die beiden reduzierten Breiten sind :
tp! = 44 ° 54' 14,67493" ip2 = 54 ° 54' 35,31462 "

(48)
Diese und %p2 nebst X von (47) bestimmen ein sphärisches Dreieck , dessen

Auflösung giebt :
er, = 29° 3 ' 15,45983 " a 2 = 36 ° 45 ' 7,40055" (49)

di = 11 ° 52' 41,20996 " = 42761,20996 "

Zur Reduktion von a auf s hat man die Formel (30 ) mit den Coefficienten (45) ;
das Hauptglied wird 6 .120 6663024 und die 5 Korrektionsglieder :

— 5 -994 , + 17 -961 , + 0 -010 , — 0 -206 , 0 -007
Im ganzen :
% s = 6 .120 6663 -024 + 11 -778. = 6 .120 6674 -802 8 = 1 320 284,365” (50 )
Die Werte (49 ) und (50) stellen die Lösung der Aufgabe vor, welche mit (40),

(41), (45) des vorigen § 105 . S . 530 verglichen , genügend stimmen .
In der „Zeitschr . f. Venn . 1883“ S. 81—82 haben wir eine Coefficienten -Tabelle für die For¬

meln (28) und (29) gegeben , welche nicht dieselbe ist wie die neu berechnete Tabelle Seite [62]—[63]
unseres Anhangs . Nur die Coefficienten ((Ti) , (tf3) , (At)> (A3) sind mit den früheren [1] , [3), (1), (3)
identisch , abgesehen von einer kleiuen Differenz in den letzten Stellen von log (6^ und log (Ai) daher

rührend , dass früher = 1 — 2 gesetzt war , was Vernachlässigung von enthält , welche in
den neuen Coefficienten (ĉ ) , (o3) , (Xt) , (As) nicht mehr vorkommt . Ausserdem besteht der Unter¬
schied , dass Funktionen sin * <p , cos* <p , cos4 <p , welche früher in die Coefficienten gezogen waren ,
nun in der Formel bleiben , damit die Coefficienten -Tafel kleinere Differenzen bekommt . Nur der in

enthaltene Faktor cos* <p ist in die Coefficienten gezogen , weil der Modul il* — e '* cos* 9 stak
analytisch gut findet , und auch formell den Faktoren t* gegenüber in den Coefficienten zum Gleich¬
gewicht beitTägt .

Als ein weiteres Beispiel für die Anwendung des im vorstehenden § 106 . be¬
handelten Verfahren können wir die Mecklenburgische Diagonale citieren , welche
schon unter unseren Normalbeispielen in § 73. S. 392 angegeben , in „ Zeitschr . f. Verm .
1896“ S . 240—248 berechnet wurde .

Kapitel X .

Allgemeine Theorie der geodätischen Dreiecke.
Vorbemerkung . Dieses Kapitel enthält im Wesentlichen den Inhalt der Abhandlung : „Disqui-

sitiones generales circa superficies curvas , auctore Carolo Friderico Gauss , Gottingae 1828 (societati
regiae oblatae d . 8. Octob . 1827) und in „Carl Friedrich Gauss Werken “, IV. Band , Gottingen 1873,
S. 217 —258. In deutscher Übersetzung herausgegeben : „Allgemeine Flächentheorie u . s. w. von A.
Wangerin , Leipzig , Engelmann 1889.“

Wir haben versucht , die analytischen Entwicklungen des ersten Teiles dieser klassischen
Abhandlung durch unsere geometrischen Betrachtungen von § 107. und 108. zu ersetzen .

§ . 107 . Geodätischer Excess.
Dem sphärischen Excess , den wir in § 40 . kennen gelernt haben , mit der

Formel (2a) S . 231

e = = bzw. o in Sekunden (0
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