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538 Geodätischer Excess . § 107 .

Im ganzen : l = 36049,93731 " — 0,817 795" = 36049,11952 "
(47 )

Die beiden reduzierten Breiten sind :
tp! = 44 ° 54' 14,67493" ip2 = 54 ° 54' 35,31462 "

(48)
Diese und %p2 nebst X von (47) bestimmen ein sphärisches Dreieck , dessen

Auflösung giebt :
er, = 29° 3 ' 15,45983 " a 2 = 36 ° 45 ' 7,40055" (49)

di = 11 ° 52' 41,20996 " = 42761,20996 "

Zur Reduktion von a auf s hat man die Formel (30 ) mit den Coefficienten (45) ;
das Hauptglied wird 6 .120 6663024 und die 5 Korrektionsglieder :

— 5 -994 , + 17 -961 , + 0 -010 , — 0 -206 , 0 -007
Im ganzen :
% s = 6 .120 6663 -024 + 11 -778. = 6 .120 6674 -802 8 = 1 320 284,365” (50 )
Die Werte (49 ) und (50) stellen die Lösung der Aufgabe vor, welche mit (40),

(41), (45) des vorigen § 105 . S . 530 verglichen , genügend stimmen .
In der „Zeitschr . f. Venn . 1883“ S. 81—82 haben wir eine Coefficienten -Tabelle für die For¬

meln (28) und (29) gegeben , welche nicht dieselbe ist wie die neu berechnete Tabelle Seite [62]—[63]
unseres Anhangs . Nur die Coefficienten ((Ti) , (tf3) , (At)> (A3) sind mit den früheren [1] , [3), (1), (3)
identisch , abgesehen von einer kleiuen Differenz in den letzten Stellen von log (6^ und log (Ai) daher

rührend , dass früher = 1 — 2 gesetzt war , was Vernachlässigung von enthält , welche in
den neuen Coefficienten (ĉ ) , (o3) , (Xt) , (As) nicht mehr vorkommt . Ausserdem besteht der Unter¬
schied , dass Funktionen sin * <p , cos* <p , cos4 <p , welche früher in die Coefficienten gezogen waren ,
nun in der Formel bleiben , damit die Coefficienten -Tafel kleinere Differenzen bekommt . Nur der in

enthaltene Faktor cos* <p ist in die Coefficienten gezogen , weil der Modul il* — e '* cos* 9 stak
analytisch gut findet , und auch formell den Faktoren t* gegenüber in den Coefficienten zum Gleich¬
gewicht beitTägt .

Als ein weiteres Beispiel für die Anwendung des im vorstehenden § 106 . be¬
handelten Verfahren können wir die Mecklenburgische Diagonale citieren , welche
schon unter unseren Normalbeispielen in § 73. S. 392 angegeben , in „ Zeitschr . f. Verm .
1896“ S . 240—248 berechnet wurde .

Kapitel X .

Allgemeine Theorie der geodätischen Dreiecke.
Vorbemerkung . Dieses Kapitel enthält im Wesentlichen den Inhalt der Abhandlung : „Disqui-

sitiones generales circa superficies curvas , auctore Carolo Friderico Gauss , Gottingae 1828 (societati
regiae oblatae d . 8. Octob . 1827) und in „Carl Friedrich Gauss Werken “, IV. Band , Gottingen 1873,
S. 217 —258. In deutscher Übersetzung herausgegeben : „Allgemeine Flächentheorie u . s. w. von A.
Wangerin , Leipzig , Engelmann 1889.“

Wir haben versucht , die analytischen Entwicklungen des ersten Teiles dieser klassischen
Abhandlung durch unsere geometrischen Betrachtungen von § 107. und 108. zu ersetzen .

§ . 107 . Geodätischer Excess.
Dem sphärischen Excess , den wir in § 40 . kennen gelernt haben , mit der

Formel (2a) S . 231

e = = bzw. o in Sekunden (0
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Fig . 2.

C 90la - M,B

entspricht ein ganz analoger Satz auf irgend einer krummen Fläche , deren Haupt -

Krümmungs-Halbmesser in einem Punkte M and N und deren mittlerer Krümmungs -
Halbmesser r = VMN ist , wobei ein unendlich kleines Dreieck vorausgesetzt ist , das,
durch geodätische Linien begrenzt , die kleine Fläche F hat .

Hiezu betrachten wir in den nachstehenden Fig . 1 . und Fig . 2 . ein kleines recht¬

winkliges geodätisches Dreieck , dessen Katheten G A — p und G B = q in den Rich¬

tungen der beiden Haupt -Krümmungen liegen , auf einer krummen Fläche , welche nach
C A den Krümmungs -Halbmesser M und nach G B den Krümmungs -Halbmesser N hat .

Wir nehmen dabei die Bezeichnungen wie gewöhnlich für das Umdrehungs -

Ellipsoid , und denken unter p und M die Beziehung zum Meridian , unter q und N
die Beziehung rechtwinklig zum Meridian (indessen kann man die nächsten Betrach¬

tungen auch allgemeiner führen ) .
Unter K m und Kn ver - Fig. l.

stehen wir die beiden Krüm¬
mungs-Mittelpunkte , so dass
für einen kleinen Bogen A G
= p die beiden Normalen G
und A K m — M und ent¬
sprechend GK n — BK „ — N
angenommen werden kann ;
damit ist auch die kleine Ent¬
fernung K „ Km = N — M
bestimmt.

Wir haben hiernach
wieder den Fall des früheren
§ 71 . S . 382 und S . 384,
und wir wollen von den dort
auf S . 386 gefundenen For - ■■ . .
mein einen Gebrauch machen , um den geodätischen Excess des geodätischen reiec

Fig . 2 mit den Katheten p und q und der Hypotenuse s zu bestimmen .

Figur 2 . giebt uns drei Dreiecke , nämlich zwei sphärische und ein geo ätisc

I . Sphärisches Dreieck mit dem Halbmesser M :
90 ° 4 - a , + ß' — 180 ° = e„

pq
«x -+- ß ' + 90 ° — «i» —

%
'
M‘z

II . Sphärisches Dreieck mit dem Halbmesser N :
90 ° + a ' - t~ ßi — 180 ° = e»

P 2
a ' -h ßj — 90 0 = «» —

2 ^ /2

III . Geodätisches Dreieck mit der geodätischen Linie s .
90 ° + a + ß — 180° = e

a -h ß — 90 ° — s
Zwischen den Winkeln dieser drei Dreiecke bestehen nach (16) S

Sende Beziehungen ;

386

(2)

(3 )

(4)
fol -

« 1 '

- « ' = -
g V2 e

1 9- « = y if e

ß — ßi : h * e

- ß = iy 2e

(5)

(6)
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Datei kann s entweder = sm oder = e„ nach (2) oder (3 ) genommen werden ,
denn wegen des Faktors ija = e ' 2 cos2 qp kommt es hier auf solche Unterscheidung
nicht an .

Durch Vergleichung von (2), (3) , (4 ) mit Rücksicht auf (5 ) und (6) findet man :

* = Sm — y2 e = em (1 •

e = e» -+- rp e =

Wenn man beachtet , dass 1
seren Grundformeln § 32 . S . 197)

pq
2 Ufa
Pi

(1 -

■(1 + ^ =
2
£

P (1 -

- t )

V2)

(7)

+- rp = V2 = N •. M (nämlich wie immer nach un-

und wenn man auch genähert 1 — if = j
setzt , so gehen die beiden Formeln (7) und (8) übereinstimmend :

pg. oder P 2
2 r 22 MN

Wir haben also zu Fig . 2 . den Satz gefunden , dass ein kleines geodätisches,
rechtwinkliges Dreieck ABC mit den Katheten p und q in den Haupt -Krümmungs¬
richtungen (so dass also p und q jedenfalls kleine geodätische Linien sind ) und mit
einer schiefen geodätischen Linie 4S = s einen geodätischen Excess « giebt , der
ganz wie der Exzess eines sphärischen Dreiecks berechnet wird , wenn man als Halb¬
messer den mittleren Krümmungs -Halbmesser r = ]/ M N an der betreffenden Stelle
der krummen Fläche annimmt .

Übergang zum allgemeinen Dreieck .
Nachdem für das betrachtete rechtwinklige geodätische Dreieck dieselbe Formel

gefunden ist , wie früher für das rechtwinklige sphärische Dreieck , ist auch der Über¬
gang zu einem allgemeinen Dreieck ebenso zu machen , wie für das sphärische Dreieck
Fig . 4 . S . 248 , und wir können daher den geodätischen Excess bis zur Ordnung
einschliesslich nun auch für ein solches geodätisches Dreieck , das sich aus zwei recht¬
winkligen Dreiecken von der Form Fig . 2 . S . 539 zusammensetzen lässt , als bewiesen
annehmen .

Das ist aber noch nicht der ganz allgemeine Fall , denn jenes rechtwinklige
Dreieck Fig . 2 . hat die Besonderheit , dass seine Katheten p und q in den Richtungen

Fig . 3. der beiden Haupt -Krümmungen der Fläche liegen ; und
wir können daher nach dem bisherigen Beweisgang den
Satz nur für solche geodätische Dreiecke als bewiesen
annehmen , welche eine Seite in einer Haupt -Krümmungs¬
richtung liegen haben .

Indessen lässt sich der Übergang von einem
solchen Dreieck zu einem beliebig gestalteten und auch
gegen dieHaupt -Krümmungsrichtungen beliebig liegenden
Dreieck vollends leicht bewerkstelligen , indem nach
Fig . 3 . das allgemeine Dreieck AB G in zwei Dreiecke
AG D und AB D zerlegt wird , welche die Seite AD in
einer Haupt -Krümmungsrichtung gemeinschaftlich haben .

Wenn «j und e2 die Excesse dieser beiden Dreiecke AG D und AB D sind, so
hat man nach Fig . 3 •

= (2 ~ 6) 2?1 O „Q c‘c2 “ (2 ' + e) p
2 r 2
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also : 2 r1
= 2ra - 8

allgemein :
F

8 ~ ~
r2

(10)

Es gilt also für kleine geodätische Dreiecke dieselbe Excessberechnung in erster

Näherung , wie für ein sphärisches Dreieck nach Gleichung (1) , wenn man nur den

mittleren Krümmungs -Halbmesser r — Y
~
M N anwendet , wobei übrigens auch noch an¬

genommen ist , dass die beiden Haupt - Krümmungs -Halbmesser M und N unter sich
N M

nahe gleich sind , so dass — = 1 + if and — = 1 — rfi gesetzt werden kann , d . h . dass

ij4 gegen y2 vernachlässigt werden kann .
Durch solche einfache Betrachtungen , welche zu den "Formeln (7) ~ {10) geführt haben , kann

man nicht bloss , wie liier geschehen , die Formel für den Excess herleiten , sondern man kann auch

noch nachweisen , dass innerhalb —— die sphärischen Formeln von § 44 , nämlich (8)—(10) S. 24G

und 247 und auch der Legendrische Satz von § 41. innerhalb also ausschliesslich —— auch für

ein geodätisches Dreieck mit kleinen geodätischen Linien auf irgend welcher krummen Fläche ebenso

gilt , wie die Excessformel . Wir haben das in der früheren 3ten Auflage dieses III . Bandes , 1890,

§ 93. gezeigt und durchgeführt , was aber nun , weil kein dringendes Bedürfnis dafür vorhanden

ist , übergangen werden soll .

Kongruente IAnien -Abbildung und geodätischer Excess .

Im Anschluss an die Betrachtungen , welche in § 68. zu der geometrischen

Definition der geodätischen Linie geführt haben , wollen wir irgend eine Linie auf

einer krummen Fläche in einzelnen Elementen nach Streckenmass und Azimutalwinkeln

anfgenommen , und entsprechend in einer Ebene aufgetragen denken. Die dadurch

entstehende Linie in der Ebene nennen wir „kongruentes Abbild “ der Linie auf der

krummen Fläche , und das ganze Verfahren nennen wir „kongruente Linien -Abbildung “.

Eine geodätische Linie giebt in solcher kongruenter Abbildung eine Gerade von

gleicher Grösse wie die Rektifikation der geodätischen Linie (vgl. § 89 . S . 474) .

Wenn von einem geschlossenen Linienzuge , auf dem Umdrehnngs -Ellipsoid oder

auf einer anderen krummen Fläche , in dieser Weise eine kongruente ebene Abbildung

gemacht wird , so wird der abgebildete ebene Zug im allgemeinen nicht Schlüssen,

und die dabei sich zeigenden Schlussfehler stehen in Beziehung zu der Krümmung der

Fläche, auf welcher der geschlossene Linienzug liegt . Nur bei einer abwickelbaren

Fläche wird die kongruente ebene Abbildung eines geschlossenen Zuges im allgemeinen

wieder geschlossen sein.
Die Schlusswidersprüche werden , wie bei den durch Messungsfehler erzeugten

Schlussfehlem der Feldmess -Züge , teils linear , teils als Winkel sich zeigen,
^

und der

in der Winkelsumme auftretende Schluss - Widerspruch soll „geodätischer Excess« heissen.

In Fig . 4 . seien AB und BO die kongruenten ebenen Abbildungen ,
zweier

Seiten eines geodätischen Dreiecks auf einer krummen Fläche , so dass die zwei Seiten

-4 B , B C und der Winkel bei B kongruent ab¬
gebildet sind ; will man aber die Abbildung auch
für die dritte Seite C A fortsetzen , so bekommt
•nan entweder 0 A ' oder A C'

, welche beide das
Dreieck ABC nicht schliessen , sondern sich in
-D schneiden

Fig . 4.

Exce:
und daselbst den geodätischen

iss e zur Anschauung bringen . Man kann
en ®icess e auch durch die Krümmung einer
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Linie Ab C veranschaulichen , welche bei A und C die Geraden A 0 ' und C A ' berührt ,denn die Gesamtkrümmung dieser Kurve A b 0 ist eben jener Winkel e und wenn
die Kurve A b G ein Kreisbogen ist , wie in Fig . 4 . mit dem Mittelpunkt E , so erscheint
der Excess s auch als Centriwinkel dieses Bogens , und es besteht zwischen der Bogen¬
länge b, dem Halbmesser R und dem Excess 6 die Gleichung b = Re .

Die in den früheren §§ 80 . und 81 . betrachteten Kegelprojektionen geben ein
gutes Beispiel für unseren Pall :

Ein Parallelkreisbogen des Umdrehungs -Ellipsoids giebt eine kongruente ebene
Abbildung , welche sich durch Kegelabwicklung leicht darstellen lässt , wie aus Pig . 1.
S . 428 mit den zugehörigen Gleichungen zu ersehen ist . In der Breite (p ist der
Kegel -Halbmesser = Ncotg cp, und für den Längenunterschied l ist die Meridian-
Konvergenz = lsin cp ; ein Parallelkreisbogen in der Breite <p mit dem Längenunter -
schied l giebt daher in kongruenter ebener Abbildung einen Kreisbogen vom Halb¬
messer Ncotg qi mit dem Centriwinkel l sin cp ; die Bogenlänge wird also = N cotg cp l sin (p= NI cos cp, übereinstimmend mit der Länge des Parallelkreisbogens selbst .

Die Kegelabwicklung giebt eine geodätisch kongruente Abbildung des Parallel¬
kreisbogens , nach Krümmung und Entfernung . Gleiches ist bei jeder abwickelbaren
Fläche der Pall .

Im Anschluss hieran betrachten wir ein durch zwei Meridiane und zwei Parallel¬
kreise begrenztes Trapez des Umdrehungs -Ellipsoids (oder einer anderen Umdrehungs¬
fläche) und suchen den Excess des Vierecks zu bestimmen .

Fig . 5 . In Pig . 5 . sei AB C D die kongruente Linien -Ab¬
bildung von drei Seiten eines solchen Trapezes , A B ent¬
spricht dem Parallelkreisbogen auf der Breite cp mit der
Länge l , es ist daher in kongruenter Linien -Abbildung A B
ein Kreisbogen vom Halbmesser A S = B S = N cotg cp und
dem Centriwinkel 0 als Meridian -Konvergenz = l sin cp, also :

B 8 = N cotg cp 0 = 1 sin cp (H)
Eine Nachbarbreite sei qp — d cp, wobei d q>als Diffe¬

rential genommen dasselbe sei , was in Fig . 5 mit A q)
bezeichnet ist ; dann giebt der Meridianbogen zwischen
den Breiten cp und cp - j- /} cp die kongruente geradlinige
Abbildung :

B C = Md cp (12)
Die dritte Seite CD ist kongruente Abbildung des

Parallelkreisbogens in der Breite cp - j- d qp, mit dem Längen¬
unterschied l, d . h . es ist CD ein Kreisbogen , dessen
Mittelpunkt S ' auf B S und dessen Centriwinkel 0 ' be¬
stimmt sind durch die Gleichungen :

C S ' = N ’ cotg (cp d cp) 0 ' = l sin (qp d cp) (18)
Ebenso wie B G auf dem Halbmesser B S , kann man auch A D ' auf A S kon¬

gruent abbilden , oder D A' auf dem Halbmesser S 'D .
Man hat also einen nicht in sich selbst zurückkehrenden Linienzug D ' ABCDA ,

wobei D ' A und DA ' als Abbildungen desselben Meridianbogens , beide in richtiger
Länge , aber in verschiedenen Richtungen dargestellt sind , so dass der kleine Winkel e,
unter dem sie sich schneiden , den Winkelschlussfehler der Abbildung oder den geo-
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dätischen Excess des Trapezes auf der krummen Fläche darstellt . Um diesen Winkel e
näher zu bestimmen , haben wir aus Fig . 5 . :

e = 0 ' — 0
- df qp) — sin <p) = l cos (p d (jp ( 14)
N l cos qp ist , kann für die Fläche des Trapezes

oder wegen (18) : e ~ l (sin (qi
Da der Parallelbogen A B ■

nach (12) angegeben werden :
F = BC .AB also F — MNl cos <$ d (p

Mit Einführung des mittleren Krümmungs -Halbmessers r also mit
(15)

MN
hat man hieraus , mit (14) :

I cos qp d (jp = ^
= e (16 )

Der Längenunterschied l kann hiebei beliebig gross sein ; zur weiteren An¬

wendung wollen wir aber auch l unendlich klein annehmen , und damit den Satz ans¬

sprechen , dass der Excess jedes unendlich kleinen Trapezes von der Form Fig . 5 . sich
nach der Formel (16) aus F und j-2 berechnen lässt . Endlich da jede andere unend¬
lich kleine Fläche als zusammengesetzt aus unendlich kleinen Trapezen betrachtet
werden darf , ist es nach dem Ergebnis unserer Betrachtung richtig , den Excess einer

irgendwie begrenzten kleinen Fläche F des Umdrehungs -Ellipsoids , oder einer anderen

Umdrehungsfläche nach der Formel (16) aus F und r2 zu berechnen.
Wir haben also für den Excess eines Trapezes einer Umdrehungsfläche dieselbe

Berechnung wie für den Excess eines kleinen geodätischen Dreiecks nach ( 10) S . 541 ,
und wir können nun den weiteren Schluss bilden , dass für irgend einen durch kleine

Dimensionen begrenzten Teil einer krummen Fläche , der geodätische Excess durch

die Formel (10) oder (16) angegeben wird.

Fig . l .

§ 108. Geodätischerechtwinklige Coordinaten undPolar-Coordinaten .
Ganz analog den Coordinaten -Systemen , welche wir in der Ebene mit g

Linien und auf der Kugel mit grössten Kreisen benützen , kann man auch au irgen
einer Fläche mit geodätischen Linien Coordinaten -Systeme anordnen . ,

In Fig . 1 . sei 0 G eine geodätische Linie , auf welcher ein Punkt P durch das

Mass 0 P = p bestimmt ist , und ebenso auch andere Punkte , u-
ihre auf der geodätischen Linie 0 G gemessenen Abstände .

In den Punkten P , P '
, P " u . s . w.

werden geodätische Linien P Q, P ' Q
’
> F " Q '

u . s . w . rechtwinklig zu 0 G gezogen , und
auf den Linien P Q werden gleiche Masse q ab¬
getragen, so dass eine geodätische Parallele HH '

entsteht , und eine zweite Parallele K Af' im
Abstande q - (- d q von der Anfangslinie 0 G.

Solcher Linien der zwei Systeme PQ
und H F ' können wir ganze Scharen gezogen
denken ; dieselben schneiden sich gegenseitig
rechtwinklig (geodätische Parallele § 70 .
S. 381 ) und bilden ein System von Vierecken,
deren eines ABGD in Fig . 1 . besonders
hervorgehoben ist .

Die ganze Anordnung der Linien in
Fig- 1 . können wir ein rechtwinkliges geo -
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Fig . 2.

dätisches Coordinaten -System nennen , mit dem Nullpunkte 0 , von welchem die Ab-
scissen p in der Richtung 0 Cr, und die Ordinaten q rechtwinklig zu 0 Cr gezähltwerden . Es hat also der Punkt B die Coordinaten p , q , der Punkt C hat p , q + dq ,der Punkt A hat p -\- dp , q u . s . w .

Der Abscissen -Unterschied PP ' ist = dp angenommen , und das entsprechendeMass B A haben wir mit ndp bezeichnet , wobei n eine von der Krümmung der
Eläche abhängige Funktion ist , mit welcher wir uns später besonders zu beschäftigenhaben werden (§ 109 . S . 546 ) .

Nachdem somit alle Verhältnisse des Vierecks klar
gemacht sind , betrachten wir in Fig . 2 . die kongruente ebene
Abbildung des Linienzuges A B C D in dem Sinne von § 107.

Der Linienzug ABC T) A wird in der kongruenten
Abbildung nicht schliessen , sondern einen Winkelschluss -Fehler
« = 0 '— 0 geben , den wir nun näher zu bestimmen haben .

Der Winkel 0 kann mit den Bezeichnungen von Fig . 2.
dargestellt werden (auch hei windschiefem Viereck ) in der Form:

0 = _ d
d q

Dabei soll 0 selbst als positiv gelten , und die Ableitung
von ndp nach q muss negativ gesetzt werden , wenn ndp
abnimmt bei wachsendem q , wie in Fig . 2 . angenommen ist.

Der kleine Winkel s = 0 '— 0 kann als Differential von
0 aufgefasst werden , d . h . :

, „ d%(ndp )e = d 0 = - V -A-1 d qd gß
Betrachtet man ferner die Fläche F des Vierecks, d. b ,

(1)

(2)

F = ndp dq , so hat man nach dem Schlusssatz von § 107. Seite 543 :
F ndpdqe
}-2 )-2

Aus (2 ) und (3) folgt :
\
7*2

11 d2 (n dp )

(3)

(4)n dp dq %
Bei dieser Betrachtung gilt aber in der zweiten Ableitung von ndp nach q

der Faktor dp als konstant (vgl . PF = dp in Fig . 1 .), es wird also :

J _ _ L d2n
(5)r2 n d g2

Man kann diese wichtige Gleichung (5 ) bezw. (4 ) auch dadurch aus Fig . 2,
ableiten , dass man eine Kurve AD betrachtet , welche AS und D ' S ' berührt , also
in ihrer Krümmung den Winkel e giebt . Der Krümmungs -Halbmesser der Kurve A B

kann als Reciproke von — genommen werden , und damit kommt man ebenfalls
auf die Formel (2 ) und dann auf (5) .

Die grosse Wichtigkeit , welche die Differential -Formel (5) für die Geodäsie
besitzt , beruht darin , dass dadurch eine Beziehung hergestellt wird zwischen geodätisch
zugänglichen Massen ndp , dq u . s. w . einerseits , und dem geodätisch unzugänglichen
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Krümmungs-Halbmesser r andererseits . Legt man das Messungs-System Fig , 1 . in
einer Ebene an , so wird das Viereck AB CD ein Rechteck mit BA = CD — PP ' -,
und auf einer krummen Fläche gestatten die geodätisch messbaren Verkürzungen von
BA und CD gegen PP '

, nach dem Gesetz der Formel (5) einen Schluss auf die
Krümmung der Fläche .

Polar -Coordinaten .

In ähnlicher Weise , wie ein System rechtwinkliger Coordinaten in Fig . 1 . ge¬
bildet wurde , kann man auch ein System von Polar -Coordinaten mit geodätischen
Linien anordnen .

Man braucht nur anzunehmen , dass in Fig . 1 . die geodätischen Linien P Q,
P ’

Q
'
, P ” Q” u . s . w. , welche alle von einer Abscissenlinie OP ausgehen , statt dessen

alle von einem Punkte (in der Verlängerung von <3 ) ausgehen , oder alle nach einem
Punkte zusammenlaufen , und dass dann die Linien H H '

, K K '
, nicht mehr geodätische

Parallelen , sondern geodätische Kreise um jenen Punkt seien ; dann kann man alles,
was sich auf Fig . 1 . bezieht , auch auf das beschriebene Polar -System übertragen .

Das Krümmungsmass .

Als „mittleren Krümmungs -Halbmesser “ r in einem Punkte einer krummen
Fläche haben wir das geometrische Mittel der beiden Haupt -Krümmungs -Halbmesser
N und M bezeichnet , also r = ]/Äf N oder r2 = MN gesetzt .

Der reciproke Wert von r2 wird nach Gauss das „Krümmungsmass “ (mensura
curvaturae) genannt , d . h . es ist :

Krümmungsmass k = (6)

und mit dieser neuen Bezeichnung schreiben wir die wichtige Gleichung (5) nochmals, d. h. :

(7)
r2 « dj 2

Gleichzeitig damit ist der Begriff und die Bezeichnung Gesamtkrümmung (cur-
vatura totalis seu integra ) eines begrenzten Flächenteils eingeführt worden, nämlich :

Gesamtkrümmung = JkdF (8)

Das Produkt eines differentialen Flächenteiles d F in das für einen einzelnen
Punkt von d F giltige und im Bereiche von d F als konstant zu betrachtende

Krümmungsmass k giebt die Gesamtkrümmung des Flächenteils d F , und das bei (8)
angegebene Integral giebt die Gesamtkrümmung des Flächenteils F .

Diese Begriffe und Benennungen hängen damit zusammen, dass die Gesamt-

krümmung eines Flächenteils F gemessen werden kann durch einen entsprechenden
Teil F ' einer Kugel vom Halbmesser = 1, indem alle Flächen -Normalen der Be¬

grenzungs-Linie von F mit sich selbst parallel in den Kugelmittelpunkt verlegt
werden , und so den Teil F ' der Kugel begrenzen , welcher gewissermassen ein Abbild
des Flächenteils F wird .

Sobald man sich überzeugt hat , dass für einen unendlich kleinen krummen
Flächenteil dF der durch kongruente Umfangs -Abbildung (§ 107 .) darzustellende
geodätische Excess d e = Je d F ist (wo 7c= 1 : r2) , so kann man auch nach geometri¬
scher Anschauung so weiterschliessen :

J ° rdan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd . 3b
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Die Fläche F wird in eine grosse Zahl kleiner Teilflächen d F zerlegt , welche
alle ihrem Umfang nach in einer Ebene geschlossen , folglich nicht kongruent , abge¬
bildet werden . Bei einem ersten Teil d F± wird in der Abbildung der Schluss er¬
zwungen durch eine lineare relative Krümmung d «j , welche irgendwo an dem Umfang
von d F \ angebracht werden muss . Ein an dieser Stelle ansetzender zweiter Flächen¬
teil d F % muss dann , wenn er in der Ebene geschlossen dargestellt werden soll, nicht
bloss seinen eigenen Excess d e2, sondern auch den von d F 1 ihm zugeschobenen Be¬
trag d «i , durch eine der konformen Abbildung widersprechende lineare Krümmung
d «j + d «j zum Ausdruck bringen . So wird das ebene Kartenbild Jd F '

, wenn es die
einzelnen Teile d F ' sämtlich geschlossen darstellt , an seinem Umfange allmählich
alle Beträge d s in Gestalt von linearen Krümmungen , die der kongruenten Abbildung
des Umfangs widerstreiten , zum Ausdruck bringen , und der Polygon -Schlussfehler e
des kongruent abgebildet gedachten Umfangs wird daher der Summe aller Einzel-
Excesse der Flächenteile gleich sein , d . h . :

e = fkdF
Dieses ist mit (8 ) übereinstimmend .
Bei einer abwickelbaren Fläche ist in jedem Punkte der eine Haupt -Krümmungs-

Halbmesser unendlich , der andere endlich , setzen wir also N = oo , M = M , so wird
auch r 8 = oo und k = 0 , folglich auch die Gesamtkrümmung nach (8) und der Excess s
nach (9) , beide = Null .

§ 109. Verbindung eines rechtwinkligen Systems und eines
Polar -Systems .

In Fig . 1 . S . 547 ist 0 der Ausgangspunkt zweier geodätischer Coordiuaten-
Systeme , eines rechtwinkligen Systems und eines Polar -Systems , so dass z. B . der
Punkt A die rechtwinkligen Coordinaten p , q und die Polar -Coordinaten s , a hat.
Entsprechend hat der Punkt B die rechtwinkligen Coordinaten p A- dp , q + dq und
die Polar -Coordinaten s - f- d s , a -\ - d «.

Ausser dem Richtungswinkel a des Polar -Sj'stems ist der Winkel ß eingeführt,
welchen der Strahl s und die Ordinate q bei A miteinander bilden .

Zwischen beiden Ordinaten q und q - )- d q bei A sei der Querabstand AB = ndp
und entsprechend AG — m d a der Querabstand bei A zwischen den beiden Strahlen
0 A und 0 B .

Dabei sind n und m Funktionen von ähnlicher Bedeutung wie n im vorigen
§ 108 . bei ( 1) — (5) S . 544 . Zur Verdeutlichung dieser Funktionen n und m mag
man sich etwa den Fall denken , dass das ganze System auf einer Kugel vom Halb¬
messer r läge , dann wäre sehr einfach :

2n = cos — sm — sin —
rr

oder entwickelt : n = 1 —

Zur Untersuchung des allgemeinen Falles irgend einer krummen Flache , auf
welcher das System Fig . 1 . S . 547 liege , betrachten wir zuerst das kleine Viereck
A G B D , welches bei C und D rechtwinklig ist . Indem wir in differentialem Sinne
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dieses Viereck als eben behandeln , entnehmen wir aus demselben durch Coordinaten-
Umformung die Gleichungen :

ds = n dp sinß -+- dq cos ß (2)
mda = dq sin ß — n dp cos ß (3)

Hg . l .

P
'

oder in Gestalt von Differential -Gleichungen :

Aus den beiden Gleichungen (4 ) folgt
durch Quadrieren :

ferner aus (4) und (5) durch Multiplizieren : / /

= (7 ) /
dp dp dq dq

Nun muss die Punktion n entsprechend /
der Flächen -Rrümmung eingeführt werden. 0 f
Um die Beziehung von n zu der Fläehen -Krümmung zunächst unbestimmt zu halten ,
wird n als algebraische Funktion mit unbestimmten Coefficienten f , g,h . . . eingeführt :

n = 1 -+- fq %+ g q3 + hq i

Dahei ist kein Glied mit der ersten Potenz q angenommen, weil nach (1) die

Bedeutung von n so ist , dass auf einer Kugel kein Glied mit q vorkommt , und weil
dasselbe auch bei dem Ellipsoid und allen Flächen von stetiger konvex-konvexer Krüm¬

mung der Fall ist , oder allgemeiner , weil dem rechtwinkligen Abgehen der Ordinaten q

0 , selbstvon der Abscissenaxe 0 P in Fig . 1 ., die erste Ableitung

entsprechen muss .
Durch die Gleichung (8) ist n nur als Funktion von q dargestellt ; um n auch

als Funktion von p zu erhalten , muss man die Coefficienten f, g , h u. s . w. von (8 )
selbst wieder als Funktionen von p darstellen , dieses geschehe durch die Annahmen :

f = fo + fiP + hP i -Jr - - -

9 — 9o 9iP + g^ p 2, - !- . . .
h = ho h }p -t- p%-I- . . .

= go + 9lP + 92P *
= ho + h}p + h%pZ + ■■

Wenn man diese Ausdrücke (9 ) in (8) einsetzt , und dabei nur die Glieder bis

zur vierten Potenz einschliesslich beibehält , so erhält man :

n = 1 + fo <p + fi p q2 + h P^ 22 + ■ ■ )
+ 9o9 3 + 9\ P 28 + • • • }

(10)
-I- ho qi + ■• • >

Wenn man dieses zweimal partiell nach q ableitet , und dann wieder die Be¬

deutung der CoSfficienten (9) berücksichtigt , oder wenn man unmittelbar (8) nach q
zweimal ableitet , so bekommt man :

d * n
= 2f + 6gq + 12hq2

d q2
(11 )
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Durch diese Annahmen für die Punktion n ist die krumme Fläche , auf welcher
das Coordinaten -System Pig . 1 . liegt , soweit charakterisiert , als für die nachfolgenden
geodätischen Aufgaben nötig ist ; für die analoge Punktion m dürfen nicht etwa eben¬
falls unabhängige Annahmen gemacht werden , weil m bereits mit n durch die erste
Gleichung (5 ) verbunden ist .

Nun kann man den Ausdruck für das Krümmungsmass nach (5 ) und (7) § 108 .
S . 545 anwenden , und wenn man (8 ) und ( 11 ) hier einsetzt , so bekommt man :

1 dßn 2f + dgq + V2h <f ‘
n dg? 1 + f q2 + g q3 -\- hq±

oder bis zur zweiten Potenz einschliesslich genau :
- k = 2 (f + 3 g q + 6 h ä2) ( 1 - fq *) = 2 (f + 3 g q + (6 h ~ p ) ql ) (12)

Wenn man hier wieder die Coöfficienten (9) einsetzt , so bekommt man bis zur
zweiten Ordnung einschliesslich :

& = — 2f 0 — 2fiP — 6 fir0 2
— 2 fsP 2 — 6 p q — (12 h0 — 2 fl ) q3 (13)

Wir werden nun aber fc auf eine lineare Punktion beschränken , d . h . wir
werden setzen :

(14)k = — 2f 0 — 2f l p — 6g 0 q
Diese Annahme (14 ) schliesst in sich , dass in (13 ) ist :

2 fl oder h( (15)

Damit reduziert sich auch das frühere » von (10 ) auf :
1

(16)n = 1 + fo ä2 + fiP 22 + 9o 23 + -
g fl ?4

Im Folgenden braucht man mehrfach auch — , weshalb man nach S . 169 die
fl

Reciproke entwickelt :

1 — / off 2 — fiPq
‘‘ goi s + -

R fl gi

Nach diesen Vorbereitungen können wir zur Theorie des geodätischen Dreiecks
übergehen .

§ 110. Reihen-Entwicklung für das rechtwinklige geodätische
Dreieck.

Wir haben von (6) § 109. S . 547 :

Um hier statt der Ableitungen von s nach p und nach q die entsprechenden
Ableitungen von s2 einzuführen , hat man :

oder :

3 (s2) da
d s dp

2 s dp 2 s dq
1 3 (s2 ) \ 2

(la )

(2)
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Denkt man sich s3 in eine Reihe nach Potenzen von p und q entwickelt , so
wird diese Reihe mit den Gliedern p 2 + q2 beginnen , weil für unendlich kleine Werte

p und q die Fig . 1 . S . 550 auf ein ebenes rechtwinkliges Dreieck zusammenschrumpft .
Wir wollen daher die Reihe für s3 zunächst in folgender Form annehmen :

s3 = p 2 + q2 _|_ A p2 q + Bp q2 (3)
wobei A und B vorläufig unbestimmt angenommene Coefficienten sind , welche durch

Vergleichung mit (2 ) bestimmt "werden müssen . Man hat zunächst aus (3) :

9 (s3)
dp

hiezu von (17) § 109 . S . 548 : — = 1 — /i» H- -

= 2 p + 2Apq + Bq 2 + . . .
(4)

Ferner aus (3) :

^ ^ = 2 q A p 2 -t- 2 B p q . (5)

Aus (4) und (5) kann man den Ausdruck (2 ) zusammensetzen ; man erhält bis

zur dritten Potenz :
aus (2) : 4 «2 = 4p 2 -+- 4 q2 + 12 Ap 2 q + 12 Bp q2

andererseits aus (3 ) : 4 s2 = 4p2 - f- 4 q%-j- 4 Ap 2 q + 4Bpq 2

Aus diesen beiden Gleichungen folgt als Coefficienten-Vergleicbung 12 A = 4A
und 12 B = 4 B , d . h . A = 0 und B = 0 .

Man findet also , dass in der Reihe (3) nur die zwei ersten Glieder bestehen,
und dass die Glieder mit dritten Potenzen p 2 q und p q2 verschwinden . Wir machen

deshalb nun eine Annahme mit Gliedern vierter Ordnung , d . h . statt (3) sei nun :

s2 = p 2 -+- q2 + A p 3 q + B p 2 q2 -h A' p q2 (6 )

Dieses giebt :
= ^ p + SAp 2 q + ^ Bpq 2 4- A ' q2

hiezu von (17 ) § 109 . S . 548 : — = 1 — f0 q* — ■■■
(7)

Ferner aus (6) :

= 2o + Apß + 2Bp 2 q + 3A ' pq 2 (8)
dq

Wenn man aus (7) und (8 ) die Formel (2) zusammensetzt , so findet man :

aus (2) : 4s 2 = 4p 2 A- 4q 2 4- lQAp 2 q + S (2B — fo) P2 q2 + ^ A ' pq 2

andererseits aus (6) : 4s 2 = 4p 2 + 4q 2 + 4Apß q + 4 B p 2 q2 + 4 A ' p q3

Die Coefficienten -Vergleichung in diesen beiden Gleichungen giebt :

16A = 4A 16 B — 8f Q — 4 B 16A ' = 4A '

4- h . : ^ = 0 JB = -| /p ^ ' = °

Folglich nun nach (6) :

S2 = p 2 + q2 + fo

Auf diesem Wege eine Stufe weiter gehend , erhält man bis zur fünften Ordnung :

» » ■ 1
f0 p 2 q2 -f - — fl »3 a2 -h ~ an V%?3 (10)
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Um zur sechsten Ordnung zu gelangen , fügen wir zu (10) noch folgende unbe¬
stimmte Glieder hinzu (wobei A , B , G wieder neue Bedeutungen haben ) :

+ A p ®-f - Bp 5 q -+- Cp 4 q2 A- Dp s qs C ' p 2 q4 B 'p q$ A- A '
q6 (10 a)

Wenn man damit den Ausdruck (2) bildet , so erhält man :

4 s2 = Ap 2 A- Aq2 A- -öfoP 2 ä2 -+- 2 fip $ q2 -t- 2 g^ p 2 qs
o

+ 24 Ap6 + 24 Bp b q + ^
24 0 + ^ fl

'

jp
4 2S + 24 Bpß q2

+ 24 Ä qd -+- 24 B ' pqS + ^
24 C -+- ^ fl ^ p 2 q4

Wenn man dieses , in Hinsicht auf die CoSfficienten, mit ( 10 ) und (10 a) ver¬
gleicht , so sieht man , dass A , B , D , B ' A ' sämtlich = 0 werden , und es wird :

Damit giebt die bis zur sechsten Ordnung vervollständigte Reihe (10 ) und (10 a) :

S2 = p Z + q
'i + i - (4 f Qp 2 q 2 + 3 f x p 2 q 2 + 3 g 0 p 2 q2) — ^ fl (p 4 q 2 + P 2 2 4) (U )

Dabei ist für lineare Funktion Je, nach (15 ) § 110 . S . 548 , f2 = 0> 9l = 0 und

ho = -
g

- fl gesetzt . (Wenn man diese beschränkenden Annahmen für f%, und ho
nicht macht , bekommt man statt der vorstehenden (11 ) die allgemeinere Formel [1] von
Art . 24 . der „Disquisitiones generales etc .) .

Einführung des Krümmungsmasses .
Der allgemeine lineare Ausdruck für das Krümmungsmass ist nach (14 ) § 109.

S . 548 :
fc = — 2 f0 — 2 /) p — 6 gn q (12)

Wenden wir diese Funktion auf unseren Fall nach Andeutung von Fig . 1. an ,
so erhalten wir :

K — ~ 2 f0 i^90 = — 2 f0 — 2 frp j, (13)
fc

/9
= - 2/o — % f \ P — )

ka + 2 h90 H- 2 kß = — (8 + 6 fx p - (- 6 fa q)
Dieses ist gerade der Ausdruck , welcher in der grossen

Klammer von (11) vorkommt , und wenn wir zugleich in der

^ letzten Klammer von . (11 ) statt Afl den Wert kl aus (13)
ß setzen , oder weil es in dem letzten Gliede einer konvergieren¬

den Reihe ist , kurzweg k statt ka , so geht (11 ) über in :

S2 = P2 + g2 + 2 fe9o ±fcg ^ 2g2 _ ^ ag2 ^ + g2) (14)
1 ü 45

Fig . 1.

Kgo q

Reihen -Entwicklungen für s sin a und s cos a .
Von den allgemeinen Differential -Formeln des § 109 . haben wir (4) S . 547 :

nsinß —
ds
dp

cos ß = ÖS
dq

und
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oder mit Einführung der Veränderlichen s2, wie oben bei (la ) :
1 9 (««) „ 1 9 (s2)n sin ß ■■

2s dp 2s dq
d (s2)

9 q
Nun ist s2 nach (11 ) bestimmt worden , woraus man durch Differentiieren findet :

2ssinß = -- -
n dp

cos ß :

2 s cos ß = (15)

d
ef

= * p + T f° pq2 ' - fiptqZ -hgoPi 3 —
45

8_'
45 flpq *

hiezu (17 ) S . 548 : = 1 — /o 2a — f\ pq 2 - 9oP

Ferner die Ableitung nach q yon (11 ) :
9 (s2) 2 ä - - fapZq + f\ P3 q -

16

(16)

( 17)
Qp

- “ it -r / 1 1 - 1 -t % 9o P2 22 —
^ flP i 9 45 foP 2 q3

Die beiden Gleichungen (15) lassen sich nach (16) und (17 ) ausführen , und geben :

* sin ß = P ~
y foP 22 — \ fl P

'2 22 —
y 9o P 23 — ^ fl P3 23 + ^ fl V 24 (18)

scosß = qJr
2

foP z q + YfiP
s q + y2oF

3 22 — ^ flP 4, <1 ~ ^ foP ^ i 3

Wenn man wieder die Krümmungsmasse nach (13) einführt , so bringt man (18)

und (19) auf diese Formen :
T 7 . . O 1.0

(20 )« sin ß = p +
*? 2 ^ ^ f - 22 (16i >2 - V 22)

S COSß -
2 kfl

4 6 360 *

- 3
_kg_0 + _3jg p 2 ? _ ^ 2 ? .(p2 + 2 ?2)
8 8 45

(21)

Diese Gleichungen gelten natürlich auch für den anderen Winkel a , und geben

mit entsprechender Vertauschung der p , q und der /c :
k? + k9o + 2k g p2 q _ —-«2 ^ ( 16 ^2 — 7j ?a)

4 6 360 ^s sm <x = q -+-

a = p - + 90 + P9l — ^ pq * (?2 + 2 p 2)
8

(22)

(23)

Zur Probe kann man auch rechnen :

(s s» ß)2 + (s cos # )2 = s2 oder (s sin a )2 + (s cos a )2 = s3

Man wird dadurch denselben Ausdruck für s2 finden , wie schon bei (14) .

Man kann die Reihen (20 ) — (23 ) auch umkehren (ähnlich wie in § 44 . S . 246

bis 247 . die Reihen für s sin a und s cos a umgekehrt wurden ). Man findet :

3 V + 2 *d ^ ^ p gB (_ p 2 + 2 ?2) (24)§3 8 ka -
| ) = 5 cos a + j sm 2 a cos a -

ö 15

s3 . 2 ka + kpo + k(3 k2 o « _ 8 o2l (25 )
q = ssma - — smacos ^ a - j

- ^ 120^ ^ ^ ° " '

Dabei ist im letzten Glied p — s cos a und q — ssin a genommen .

Ausserdem kann man durch Zeichenvertauschung auch folgende Formeln bilden :

p = s sin ß ■

q = s cos ß -

s3 . ■„ „ a k,— sm ß cos i ß
■2kß k2

g - sin 2 ß cos ß

kgo
4

2 ka + 3 kgo + 3 k|9
12qP2

2 (22 — 8 P2)

k2
15 p2 q (2 p 2 — 2 3)

(26)

(27)
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Geodätischer Excess des rechtwinkligen Dreiecks .
Nach Fig . 1 . S . 550 ist :

« = (« -t- ß + 90 °) — 180°= « + ß - 90 °
(28)

sin e = — cos (cc + ß) = sin a sin ß — cos cc cos ß (29)
Da wir die Reihen für s sin a , s sin ß, sowie s cos a , s cos ß in (20) — (23 ) haben,

können wir die zwei zu (29) erforderlichen Produkte bilden , nämlich :

s2 sin cc sin ß = pg4 - ^ - k“ + *90 + kß + ~ p3 q (7 ^ 2 __ iß g2 <

M * ka + k&0 -h2kß kl
6 4 q

ifi
+ 3ßö2>23 (— 161?2 + 7 g2)

«2 cos « cosß = p q - * £
^ p (16p * + 8 g2)

i ?3 ? 2ft a + 3/f9o+ 3Ä:j3 , g t,
3 8 + 9 ? !

— ^ p3 g (8p 2 -t- 16 92)
Wenn man diese beiden Ausdrücke von einander abzieht, und wenn man dabei

die gleichartigen Glieder zusammen ordnet, so erhält man :

s2 sin b = ^
^

(p* + ä2) + ^ k* pq (p 2 - 32)2 (30)
Hiezu hat man von ( 14 ) :

£ 3
-ti

2
= i _i_ + 2

s2 1 w 12s 2 p q ^ K

Wenn man dieses in (30) einsetzt und in den Gliedern mit &2 die einzelnen
ft« , kß, &9o nicht mehr unterscheidet (wie auch bei früheren Formeln in gleichem Falle
nicht unterschieden wurde) und wenn man die Glieder von der Ordnung ks (ebenfalls
wie bisher) ganz vernachlässigt , so erhält man aus (30) ;

« = ^
1 '

r h + | f -ä 2 (p 2 + g2) (31 )

Diese Formel, welche mit _ J jn jj e frühere sphärische Formel (3)
o Y“

S . 246 übergeht, sagt in Worten, dass man den geodätischen Excess eines rechtwink¬
ligen geodätischen Dreiecks erhält , wenn man das Dreieck wie ein sphärisches Dreieck
berechnet, dessen Kugelhalbmesser r dem arithmetischen Mittel der Krümmungsmasse
&a , ^90> %(> 'n den drei Ecken des Dreiecks entspricht.

Dieser Satz lässt sich auch leicht auf ein beliebiges schiefwinkliges Dreieck
ausdehnen, wie wir alsbald im nächsten § 111 . sehen werden.

§ . 111 . Berechnung des allgemeinen (schiefwinkligen ) geodätischen
Dreiecks.

Mit den Reihen-Entwicklungen für das rechtwinklige geodätische Dreieck, welche
wir in dem vorstehenden § 110. kennen gelernt haben , kann man durch Zusammen¬
setzung zweier rechtwinkliger Dreiecke zu einem allgemeinen (schiefwinkligen ) Dreieck
auch die trigonometrische Berechnung solcher allgemeiner geodätischer Dreiecke zu
stände bringen.
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Wir werden dabei in gleicher Weise Vorgehen , wie früher in § 44 ., wo wir mit

Fig. 4 . S . 248 aus den Formeln für zwei rechtwinklige sphärische Dreiecke den er¬
weiterten Legendreschen Satz hergeleitet haben . Ebenso werden wir nun die Formeln
behandeln, durch welche Gauss im Jahre 1827 in Art . 25 . der „Disquisitiones generales
circa superficies curvas “ den bedeutenden Schritt von Legendres Kugel-Satze zur Tri¬

gonometrie auf irgend einer krummen Fläche gemacht hat .
Indem wir im wesentlichen

die früheren Bezeichnungen bei¬
behalten, bilden wir in Fig . 1 . ein
geodätisches Dreieck mit den Seiten
b, c und a = q -hq '

, indem eine
Senkrechte p das Dreieck 6 , e, a
in zwei rechtwinklige Dreiecke p , q ,
sowie p , q

’ zerlegt .
Sind ex und e2 die geo¬

dätischen Excesse der beiden recht¬
winkligen Teildreiecke , so ist nach
(31 ) des vorigen § 110 . S . 352 :

Fig . 1. Fig . 2.

A = OCH- 00 a
Ac«K

V
/ p

Ac
K, ‘I

*i = pq ka -

«2 = o
pq

2
ka -

- kg <r
3

■^90 '

- 1-2 . .

- J2 .

( 1)

(2 )

Indem wir zunächst die Glieder von der Ordnung k2 bei Seite lassen , können
wir uns leicht überzeugen , dass der Excess «j -1- e2 = £ des ganzen Dreiecks in erster

Näherung (d . h . vorbehaltlich der Glieder mit k2) so berechnet wird :

p (q + 4 ) ka -hfa -h h /qi
«l -h *2 = « = '̂ L^

y
-

3
- W

Um die Übereinstimmung dieser Formel (3) mit der Summe von (1) und (2)

nachzuweisen, braucht man nur die der ganzen Theorie zu Grunde liegende Annahme

einzuführen , dass das Krümmungsmass k eine lineare Funktion der Coordinaten auf

der Fläche sein , also auf der Linie a = q 4- q
' sich proportional den Strecken q und q

ändern soll, d . h . es muss sein :

jt90 = h H- ——-t (h — h ) oder km {q — q
'
) = M ' + M (4)

7 yio — "'C) - - " »w '•-t -*• '

und damit geht die Summ / von (1) und (2 ) in (3) über . Man kann also nun die

Gleichung (3) so schreiben :
a p ka + ki + kc- )- 0 . . . oder « = A

ka 4~ kb 4- ko - /c2 . . (5 )
2

-
3 t • --- - - - — 3

Dabei soll A ein Näherungswert für die Fläche des Dreiecks sein, z . B . kann

Astatt = auch die Fläche eines ebenen Dreiecks sein , das man aus den drei

Seitenlängen o , 6, c konstruiert . Wenn übrigens die in (5) vernachlässigten Glieder

Ton der Ordnung £2 berücksichtigt werden sollen , dann muss auch die Bedeutung

T°n A , z . B . ob es = oder gleich der Fläche des ebenen Dreiecks o , 5 , c sein

s°ll, unterschieden werden , weil je nach dieser Unterscheidung auch die höheren Glieder

von der Ordnung fc2 verschieden ausfallen .
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In Fig . 2 . haben wir ein ebenes Dreieck gezeichnet , welches dieselben Seiten
a , b, c wie das geodätische Dreieck Pig . 1 . hat , aber deswegen andere Winkel A *, B*

, C*
haben muss , deren Summe = 180 ° ist , und deren Differenzen gegen die geodätischenWinkel A , B , G nun untersucht werden sollen .

Von (20)— (23) § 110 . S . 551 haben wir folgende 4 Gleichungen :
p Q2 3 ka + 3 kgo -1- 2 kc

3 8
_

P q[ 2 3 ka “1“ 3 kgg ~t~ 2 kb ‘
3

6 cos a = p

c cos a ' = p —

b sin a = q +

cs *« a! = q
' -|

8

p 2 q 2 k„ -+- kgg + kc
(i 4

P 2 q 2 ]za -i -f- kt~
6 4

(7)

Hieraus bildet man :
b c cos a cos a ’ — p 2 -

bc sin a sin «' = qq '

p 2 q 2 3 ka -f- 3 /lqq -j- 2 kc p 2q
'2 3 ka -f- 3 kgg -f- 2 kb

3 "
8 3 8

P2 q q 2 ka - 'r- kgg -f- k„ ^ 2 k« -f- kgg — kb
6 4 6 4

Da a 4- «' = A , also cos a cos « ' — si« a sz« « ' = cos H ist , erhält man hieraus :
b c cos A = p2 — qq ' — p 2 ka p 2 kc

24 (3 ^ + 3 <2
' 2 + 4 ? ?-

) - V (2 «2 + ^ ’)

jp2k.
24

~ (3 q2 + 3 q
' 2 + 2 q q

'
) — 9

'2 + 99
'
)

ß 2 ki
(8)

Zwischen den verschiedenen Dreiecksseiten bestehen Beziehungen , nämlich nach
( 14) § 110. S . 550 :

pß q2 ka + i k90 + kcb2 — p 2 -j- q2 — -
4

C2 = pi + q
' 2_ pi 2 tf 2 kg + 2 kgo + fct

(10)

Nun wird nach Pig . 2 . das ebene Dreieck betrachtet , welches dieselben Seiten¬
längen b , c und a — q f- q

' hat wie das geodätische Dreieck Pig . 1 . , während die
Winkel andere werden , nämlich A*, B *, G* .

Dieses Dreieck Fig . 2 . giebt die Gleichung :
a2 = (q -+ q

'
)2 = b2 + c2 — 2 bc cos 4 * (H)

Man hat also aus ( 11), (10) und (9) :
2 b c cos A* = b2 + c2 — (q2 -+ q ' 2 2 q q

')
- 2 P * - 2 Vt ~ W + « - Y (? + , - ) - «■ - ^ 4 >

Vergleicht man dieses mit (8) , so erhält man :
b c (cos A * — cos A ) = (2 q2 + 2 q

'2 + 4 q q
'
) + (q2 + i 2 + 2 q q

')

+ ^ -|
C

(92 + 9 9
'
) + (9

' 2 + 9 9’)

b c (cos A * — cos A) = ^ q
^ 2 ka (q + q

'
) + k90 (q - 1- q'

) kc q + k t q
'
j (12)
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Hier ist wieder das Krümmungsmass frg0 mit Hilfe der Gleichung (4) zu eli¬

minieren; dadurch bekommt man aus (12 ) :

6 c (cos A* — cos A) = AAt — (2 fr* + fr» + fr») (13)

Hier ist :
cos A * — cosA = (A — A *) sin A*

und 6 c sin A* = p (q + q
'
) = 2

wobei / \ , ein Näherungswert für die Dreiecksfläche sein soll . Damit giebt (13) :

A — A * = A
12 (2 fr* + fr» fr»)

Indem wir den schon bei (5) gemachten Vorbehalt bezüglich der Bedeutung

von /A als erster Näherung für die ebene oder krumme Dreiecksfläche auch hier

machen müssen , schreiben wir die sämtlichen drei Gleichungen von der Art der soeben

gefundenen zusammen :

A — A * = -A (2 fr* + fr» + fr«)

J3 _ £ • = A (fr* + 2 fr» + fr«)
1 Li

G — C* = (fr* + fr» -+- 2 fr«)

(14)

Summe : 8 = A A± *L± *I_ (15)
Ö

Dieses ist wieder dieselbe Gleichung , wie die schon bei (5) gefundene , und

wenn wir die Glieder von der Ordnung k2 vernachlässigen wollen , so ist die sphäroidische

Dreiecks-Berechnung durch die Formeln ( 14 ) und (15 ) erledigt , ebenso wie die sphärische

Dreiecks-Berechnung durch den einfachen Legendreschen Satz (11 )— (12) § 42 . S . 236 bis

zur Ordnung -i einschliesslich , aber ausschliesslich , bestimmt war.
7*4

Um nun in unserem Falle auch noch die Glieder von der Ordnung fr2

^entsprechend Aj zu finden , können wir die ganze vorstehende Entwicklung (6) (15)

mit Zusetzung aller Glieder von der Ordnung fr2 wiederholen , und es ist dabei nur

etwa das eine besonders zn bemerken , dass dann die Dreiecksfläche A nicht mehr

nach Belieben = oder = sin A* gesetzt werden darf .

Indem wir für Entwicklung mit Gliedern fr2 nun festsetzen , dass A
’

. ^
des ebenen aus den drei Seitenlangen a , h , c zu konstruieren en 1 s

sein soll , erhalten wir eine Beziehung zwischen p (<} -+- Q 1
weitere Benützung der Gleichungen (6) und (7) , nämlich .

. sin A = sin (« + « ') = sin a cos «’ + cos ec stn a ’

b c sin A = p (q + ?
’
) ( * + "

jf ^ ~~ 2 q 4

bcsin A = bc sin A * -+- kcos A* \ u . s . w.
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Da hiemit der Weg zur Entwicklung von A — A* bis auf Glieder ft2 ein¬
schliesslich verzeichnet ist , beschränken wir uns im weiteren , das Schluss -Ergebnis
der Entwicklung hier mitzuteilen , umsomehr als die Glieder mit it2, wenn man inner¬
halb derselben keine Unterscheidung zwischen ft„ , hi , ft„ mehr macht , lediglich sphä¬
rische Form annehmen , und nichts anderes sind , als die Glieder von der Ordnung ~
in den Formeln (31a) , 32a) , (33a) § 44 , S . 251 , welche wir den Formeln (14 ) schlechthin
zuzusetzen berechtigt sind .

Entweder durch solche Zusetzung , oder durch unmittelbare Weiter -Entwicklung
für das geodätische Dreieck bis ft2 findet man :

A A* — A 2 ha + hj>+ hc A a2 4 - 7 52 + 7 c2
3 4 24 15

B — Jt* A ha + 2 hb+ hc A ft2 7o 2 4 - 62 + 7 c2
3 4 24 15

C - c * — A ha hb H~ 2 hc A 7 a2 + 7 b2 + c2
3 4 24 15

A fti “h ht, + hc A ft2 a2 b2 -f- c2
AA 3 8 3

(16)

(17)

Durch diese Formeln (16) und ( 17) ist die Auflösung eines geodätischen Dreiecks
auf die Auflösung eines ebenen Dreiecks zurückgeführt , also vollkommen erledigt , und
weitere Formeln sind nicht nötig .

Wenn wir jedoch die sphärischen Vorbilder unserer Formeln in § 44 . S . 251 — 252
betrachten , so finden wir , dass uns das Analogon zu (35) , (38) und (39 ) , S . 251 —252
fehlt , das zum praktischen Rechnen zwar nicht erforderlich , aber doch so interessant
ist , dass wir im nächsten § 112 . uns damit beschäftigen werden .

§ 112 . Krumme Oberfläche des geodätischen Dreiecks.
Wir nehmen in Fig . 1 . die Vereinigung eines rechtwinkligen und eines Polar-

Systems von geodätischen Coordinaten auf der krummen Fläche wieder vor.
Fis- !• Der Punkt A hat in dem rechtwinkligen

geodätischen Coordinaten - System mit dem Ur¬
sprung 0 die Abscisse 0 P = p und die Ordinate
PA = q , und das dadurch bestimmte rechtwinklige
Dreieck OPA habe die krumme Fläche = E.

Um das Differential d F zu bestimmen,
untersuchen wir , um was sich die Fläche F ändert,
wenn p und q bzw. sich um dp und d q ändern .

Wenn P allein sich ändert , so rückt der
Punkt A in der geodätischen Parallele von A
nach D , und die Flächen -Änderung ist = I —U<
wobei mit I der Streifen P P ' D A und mit II
das schmale Dreieck ODA bezeichnet , und das
kleine Dreieckchen mit den Katheten A D und
D E vernachlässigt wird . Man kann also schreiben:

^ dp = I — II (1)dp
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In gleicher Weise hat man auch :

dF
d
~ dq = lII (2)

wenn mit III das schmale Dreieck 0 AB bezeichnet wird .

Um die drei Flächenteile I , II , III näher zu untersuchen , beginnen wir mit I ,
welches ist :

I —J
'
ndpdq = dpJ

~
ndq (3)

Dahei ist dp als Basis PP ' des Streifens I konstant .

Das Dreieck II lässt sich zu III in Beziehung setzen durch das Verhältnis

FA : AB , nämlich :
II : III = FA : AB

Dahei ist AB = dq und FA — ndp cotgß ; daraus folgt mit Rücksicht auf (2) :

II = ? F
- ndp cotgß

o 0.
(4 )

Man hat also nun aus (1) , (3 ) und (4) :

dF
- dp = dpf ndq - ndpcotgß ^

d J?
■cos ß n -w— = sinßfndq

— dq
Der Faktor dp fällt fort , und dann hat man :

sm ß -
^

+ cospn T q
oder , weil sin ß und cos ß von den früheren Entwicklungen nur in den Produkten

ssinß und s cos ß vorhanden sind, schreiben wir :

s sin ß + nscosß ^
= s sin ßfn d q (5)

Diese zur Bestimmung von F dienende Gleichung
,

soll in Übereinstimmung

gebracht werden mit der folgenden Gleichung , deren Coeffieienten A , B , , zunac

unbestimmt eingeführt werden :

F = — p q + Ap * + B q* + Cp* q + Dp 9a
2

(6 )

Nach Anleitung von (5) wird hieraus gebildet :

dF _ 1
dp

~ 2
d

ßp
= jp -t- 2Bq -hCp 2 -h2Ppq

- 2 Ap \ 2Cpq + D

KJJJ u

Hiezu nehmen wir in erster Näherung von (18) uud (19) S . 551 und ( 16) S . 548 :

s sinß = p s cos ß = q n = 1 ~t~ foi 2

Wenn man hiemit die Gleichung (5) bildet , und mit (6) vergleicht , so findet

man A = 0 , B = 0 , 0 = 0 , D = 0, d . h . die Reihe für F hat keine Glieder von der

Form p 2 q2t p ?2 .

Nachdem dieses erkannt ist , wird als neue Form angenommen :

(7 )
F — \ - pq -+- ApßqA - Bp 2lf

Ci
- Cp qz
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dF d FHieraus wird -
g

- und -
g

-
^

gebildet , hiezu in zweiter Näherung von (18), (19)
110. S . 551 nebst (16 ) § 109 . S . 548 :

ssinß = p — y/bpq
2 s cos ß = q - - foP 2 <l

n = 1 + fo q2
Dieses wird in (5 ) eingesetzt , der entstehende Ausdruck mit (7) verglichen ,

wodurch sich ergeben wird:

* A = - ±f 0 45 = 0 4 C = —
8
- /0

Und setzt man auch noch nach (13 ) § 110 . S . 550 , 2 f0 = — 7c, so giebt (7) :

F = -
% P <1 - pq

24 k (p2 + q2) (8)

In der nächsten Stufe haben wir 4 weitere unbestimmte Glieder zugesetzt von
der Form A p * q -+- B p3 q2 - 1- B ' p2 qs + A! p q4, wozu auch s sin ß, s cos ß und n ent¬
sprechend höher zu nehmen waren. Die Ausführung und Coefficienten - Vergleichung
nach dem bisherigen Verfahren gab :

F = yP <7 + fgj ( - 10 foP 2 - 10 fo ?2 - 6 fi P3 - 9 PoP2 <2 - 7 fi V <22 - 12 9o 43
)

Wenn man hier wieder die Krümmungsmasse nach ( 13 ) § 110. S . 550 einführt,
so kann man den vorstehenden Ausdruck für F auf folgende Form bringen:

F = X + m { * “ (4 ^2 + 3 qZ) + 7f9» (Bp2 + 3 98) + ^ (3 ^ + 4 q2) | (9)

Setzt man die verschiedenen ka , kp , ky hier einander gleich , schlechthin = k,
so erhält man wieder die Gleichung (8 ) .

Nun kommt es darauf an , von der Fläche F eines rechtwinkligen geodätischen
Dreiecks überzugehen auf die Fläche eines allgemeinen Dreiecks mit beliebigen Winkeln .
Der Weg hiezu ist bereits durch die Entwicklung von § 110. mit Fig . 1 . S . 553 vor¬
gezeichnet ; wir werden wieder das allgemeine Dreieck in zwei rechtwinklige Dreiecke
zerlegen , und haben dann , die Flächen der beiden rechtwinkligen Dreiecke nach dem
bisherigen mit F ^ und F % bezeichnend, und für die Gesamtfläche das Zeichen F an¬
nehmend : f = F x + F 2 (1°)

Wenn wir die Formel (9) für die Fläche F eines rechtwinkligen Dreiecks, auf
die beiden Teile von Fig . 1 . anwenden, so haben wir :

* i = y + f 4| (4 p2 + 3 q2) -+- k90 (3 p 2 + 3 q2) + h (3 p2 -+- 4 q2)j

* 2 = -
2
- + (*- (4P 2 + 3 q

'2) + Kn (3 p2 + 3 q
'2) + h (3p 2 + 4 q

'2))

p =

1 =

p =

Hiezu hat man nach (24) -

6 cos a 1 q2 3 ka + 3 h'90 *

- (27 ) §. 110 . S . 551 :
- 2 kc

'
p = ecos a

b sin a

c cos a '

i , P2 2 ka -t- 7*
90 kc

6 4
-. q 2 3 7*„ -f- 3 kgo -f- 2 kir 3 8

q
' = c sin « '

q
'2 3 ka -h 3 k90 + 2 h '

1 + 3 8
p 2 2 ka -1- 7*90 -+- kb

1
6 4

^

q2 3 kg + 3 Ti-go + 3 kt
, p = b cos a 1 3
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Dadurch ist der Weg gezeigt , auf welchem man die krumme Dreiecksfläche F
zunächst in p , q[ q' nebst den verschiedenen 1t ausdrücken kann . Dann hat man ver¬
schiedene geometrische Beziehungen in dem Dreieck selbst , z. B . p 2 + q2 = 62,
pi + q

'2 = c2 als erste Näherungen n . s . w . Wenn man nach diesen Andeutungen
die Rechnung durchführt , so wird man erhalten :

p _ b c sin A
ka (3 62 + 3 e2 — 12 bccos A) + kt (3 62 + 4 c2 — 9 6c cos Ä)

(4 62 + 3 c2 — 9 6 e cos A )j (11 )

2

Diese Gleichung ( 11 ) , welche man auch noch in zwei anderen Formen mit
acsinB und mit ab sin G, anschreiben kann , ist nicht symmetrisch , weil eines der
drei Elemente A , B , C bzw. a , b , c bevorzugt ist . Wir wollen deshalb 6csm4
durch ersetzen , und haben hiezu von (14 ) § 111 . S . 553 :

und im ebenen Dreieck : 2b c cos A* = 52 c2 — a2

Da man in den Gliedern zweiter Ordnung von (11 ) stets A mit A * vertauschen
darf, kann man mittelst der soeben geschriebenen zwei Gleichungen die ( 11 ) au
folgende Form bringen :

fo (2a 2 + 6M 2 c2)ka (a2 + 2 62 -+ 2 c2) +

ke (2 a2 + 2 62 + c2) j

(12 )

Setzt man hier k„ = h = ke = k, so erhält man :

A ĵ
1 + J }

k (a2 + 62 + c2)j (13)

Dieses entspricht dem früheren (36 ) S . 251 , und damit kann man auch (31 ) (42 )
ron S . 251 —252 leicht auf unseren Fall übertragen , was in der Formel - Zusammen¬

stellung des 113 . geschehen soll.
In der vorigen 3. Auflage dieses Ilandes , 1890, S. 480—488, hatten wir hier eine zweite Be

gründung der Grundformeln geodätischer Dreiecke eingeschaltet (auch in teilweise anderer Form

früher in der „Zeitschr . f . Verm . 1889“, S. 295—304 gegeben ), welche auf das Prinzip der reduzierten

Breite (Kap . IX ) gegründet , ein sphärisches Hilfsdreieck benützt . Dieses mag diesesmal ubergangen

werden .

§ 118. Praktische Anwendung der allgemeinen Theorie der

geodätischen Dreiecke.

(Bezeichnungen nach Fig . 1 . und 2 . S. 553.)

Wir wollen zuerst die verschiedenen von § 111 . und § 112 . zur praktischen An¬

wendung geeigneten Formeln zusammenstellen , und dazu auch noch einige zusammen-

assende Bezeichnungen einführen . Wenn die Krümmungsmasse in den drei Ecken
• — - :- .

eines Dreiecks mit ka, kt , h bezeichnet sind , so nehmen wir hiezu einen Mittelwert :

ka -f- kt + kc (1)
3
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Dieser Wert fc0 entspricht dem Schwerpunkt des Dreiecks und dem arith¬
metischen Mittel der geographischen Breiten der drei Endpunkte des Dreiecks .

Wenn die drei Seiten eines geodätischen Dreiecks die Längen a , b , c haben ,
so berechnen wir das mittlere Seitenquadrat :

a2 + 62 - |_ <52- -- = (2)

Die Winkel des geodätischen Dreiecks sind A , B , G , und die Winkel eines
ebenen Dreiecks , welches mit dem geodätischen Dreieck gleiche Seitenlangen a , b , c
hat , sind A *

, B *
, G*. Die Winkelsumme des ebenen Dreiecks , d . h . A * + B * + C*

ist = 180°
, und die Summe der Winkel des geodätischen Dreiecks , d . h . A B + G

ist = 180 ° + s, wo s der geodätische Excess des Dreiecks heisst .
Die Fläche des geodätischen Dreiecks , auf der krummen Oberfläche gemessen,

sei F , und die Fläche des ebenen Dreiecks mit den Seiten a , b , c sei = A -
Mit diesen Bezeichnungen haben wir von ( 16 ) und (17 ) § 112 . S . 556 mit Zu¬

setzung der nötigen q :

A ,i * - A 0
2fc - + foH- fc . A 7 3 «2 + 7 &2 + 7 c2

A A ~
3 Q 4 + 24 QlC 15 1 J

oder mit Einführung von fc0 und von m2 in dreifacher Form :

A — A* = A q fc0 + ^ Q (ka — fc0) + q fc2 (7 m2 — 2 a2)

B ~ b * = ir e Ä° + % Q {kb ~ h ) + hw w 17 “ 2 &2)

C - C* = -̂ - Qlc0 + ^ - (> (lcc - fc0) + A
p fc2 (7 m2 - 2 c 2)

(4)

Summe e = A Q ko + 0 A
8 Q fc2 m2 (5)

Der theoretischen Vollständigkeit wegen fügen wir auch die Formel für die
krumme Oberfläche F hier bei , nach ( 13) § 112. S . 559 :

F = /\ + -^ km 2 (6)

und als Folge von (5) und (6) :
s = F ’

ßfco + fcs . . . (7)

Endlich bildet man aus (4) und (5 ) durch Elimination von A die Differenz :

■A * = £ 2 ka fci> fcc
* lfö ^ — 2 a2 + 62 + c2), „ , (8)3 4 fc0 180 v 1 1 '

oder mit Einführung der Mittelwerte fc0 und »i2 nach (1) und (2) in dreifacher Form:

e e / fc,■A* = -

B — jB* = — +3 ^ 12

( ka k0\ £ fc , „
{
- T0 ) + W (w3 - a2)12

£ ( kb — k 0
fco

e fc
A (m2 — b2)

c - °- ' T + bA t ! <*" - ■*)

(9)

Summe « = e.
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Wo in den höheren Gliedern dieser Formeln k schlechthin steht , sind die
einzelnen ka , h , h nicht mehr unterschieden , und man kann dann nach Belieben
etwa k = fc0 nehmen .

Die Zahlenwerte von k kann man aus der Hilfstafel S . [8)— [29 ] unseres An¬
hangs entnehmen , denn es ist :

?c = -
2 > logk = log -

Auch darf man sich wohl erlauben , wenn es sich um den Mittelwert k0 nach
(1) handelt , statt des Mittels aus den k selbst , das Mittel aus den verschiedenen log k
als logk 0 gelten zu lassen , oder man kann auch logk 0 zu dem arithmetischen Mittel
der Breiten ip der drei Ecken des Dreiecks nehmen , insofern auf nicht zu weite Er¬
streckung die Differenzen zwischen den Breiten <p , zwischen den Werten k und den
Werten logk alle nahezu einander proportional angenommen werden dürfen.

Wenn die Proportionalität zwischen z/ <p und Jk nicht mehr stattfindet , so ist
auch die der ganzen Theorie zu Grunde liegende Annahme , dass k eine lineare Funk¬
tion der Flächen -Coordinaten sei , nicht mehr erfüllt (vgl. (13) und (14 ) § 109 . S . 548
und (13 ) § 110 . S . 550) .

Zu einem Zahlen - Beispiele nehmen wir zuerst wieder das klassische Dreieck
Inselsberg -Hohehagen -Brocken , welches uns schon mehrfach , auf S . 232 und S . 253
als Rechen -Beispiel gedient hat .

Wir nehmen nach S . 232 zuerst wieder die genäherten geographischen Breiten
der drei Eckpunkte des Dreiecks , und entnehmen darnach von S . [20] des Anhangs
die Krümmungsmasse :

Punkt Breite

Inselsberg
Hohehagen
Brocken

50° 51 ' 9"

51 ° 28' 31 "

51 ° 48' 2^
Mittel 51 ° 22 ' 34"

log k = log

log ka = 6 .390 1277-8
logh = 6.390 0659-4
log h = 6.390 0337-4

log k0 = 6 .390 0758-2

(10 )

Wir haben dabei ausnahmsweise scharf gerechnet , d . h . von Seite [20] zuerst
log r interpoliert , und daraus log r2 und log k gebildet . Wir wollen damit die Winkel
auf 0,000 001" genau berechnen , was nur formellen Sinn für ein Vergleichs-Beispiel hat .

Indem wir die früheren Zahlenwerte von S . 237 und S . 253 wieder benützen,
haben wir :

a = 69,194*“ b = 105,973*“ c = 84,941*“
«2 = 4787,8 «*« 52 = 11230,29 *“ c2 = 7215,0«*“ nfi = 7744,3«*“

log A = 9 .467 2167 -6 A = 2 932 356 450,"‘

hiemit nach (5) : e = 14,849 701 " + 0,000 353" = 14,850 054

dann nach (6) : F = 2 932 356 450«“ 4 - 69 693«“ = 2 932 426 143 «“

und damit e nach (7) : « = 14,850 054"
(stimmt mit (11))

(11 )

Die Gruppe (4) und (5) giebt :
A — A* = 4,949 900" — 0,000 148" + 0,000 136 " = 4,949 888" 1

B — B * = 4,949 900" + 0,000 028" + 0,000 096" = 4,950 024 " |
G — G * = 4,949 900" + 0,000 120 " + 0,000 121" = 4,950141" (

e = 14,849 700" + 0 + 0,000 353" = 14,850 053 " I
’ Oß

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd .
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Ferner gieht die Gruppe (9 ) :
A — A * = 4,950 018" + 0,000 148" -+ • 0,000 018" = 4,950 184" ,
B — B * — 4,950 018" — 0,000 028" — 0,000 021 " = 4,949 969" I
c — c* = 4,950 018" — 0,000 120" + 0,000 003" = 4,949 901”

[
^13)

e = 14,850 054" + 0 + = 14,850 054" )

Wenn man diese Winkel (12 ) und (13) mit den früheren sphärischen Angaben
auf S . 253 vergleicht , so findet man nur Differenzen von etwa 0,0001 "

, woraus zu
ersehen ist , dass in diesem Palle eines sehr grossen Dreiecks die Berechnung nach
den sphäroidischen Formeln keine merkbare Abweichung von der sphärischen Rech¬
nung bringt .

Die Zahlenwerte , welche wir hier in (12) und (13) berechnet haben , stimmen nicht überein
mit den Werten , welche Gauss selbst in Art . 28. der „Disquisitiones generales etc .“ gegeben hat , die
Gauss sehen Angaben sind nämlich :

Inselsberg A — .4* = 4,95131"

Hohehagen B — B * = 4,95113"

Brocken G — C* = 4,95104 "
~~.

6 — 14,85348"

Es rührt das davon her , dass Gauss im Jahre 1827 andere Erddimensionen seiner Rechnung
zu Grunde legte , als die erst von 1841 herrührenden Bessel sehen Erddimensionen , welche unseren
Berechnungen zu Grunde liegen .

Fig . 1. (vgl . Fig . 4. S. 23).
Trigonometrische Verbindung zwischen Spanien und Algier .

3°von Gr .

Tetlca
h =2080 '

322 2

30542
M'Sabiha

226 ° 54

- 35 '
Fi Lhaoussen

|—l—J- J—I—|—!_ ’_ » i I_ _ !_
100 Kil' 50 0 100
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Die im Vorstehenden berechneten Winkel -Reduktionen sind unabhängig von den
Reduktionen zwischen den geodätischen Linien und den vertikalen Schnitten , welche
durch die früheren Formeln von § 71 . bestimmt sind . Jene Reduktionen müssen vor¬
her schon angebracht sein , ehe die geodätische Theorie von § 109 .— 112 . zur An¬
wendung kommt .

Wir wollen dieses an einem grösseren Beispiele zeigen, welches in Fig . 1 . S . 562
dargestellt ist .

Hiezu nehmen wir eines der grossen Dreiecke , welche im Jahre 1879 von Ibanez
und Perrier zur trigonometrischen Verbindung zwischen Spanien und Algier angelegt
worden sind , wie wir schon früher auf S . 22 —23 im allgemeinen berichtet haben.

Diese grossen Dreiecke eignen sich sehr gut als Zahlen-Beispiele zur Anwendung
der geodätischen Formeln mit sphäroidischen Gliedern , und in diesem Sinne ist auch
schon eine Berechnung nach Helmerts Formeln mitgeteilt worden von Fenner in der
„Zeitschr . f. Verm . 1882 “

, S . 303— 308. Im übrigen haben wir die Quellenschriften :
„Enlace geoddsico y astronömica de Europa y Africa , Madrid 1880“ und in dem

„Generalbericht d . europ . Gradm . für 1880“ , S . 44 —57 : „Jonction gdoddsique et astro -

nomique de l ’Algdrie avec l’Espagne “, und in endgiltiger Berechnung in dem Werke :
„Memorias del instituto geogräfico y estadistico . Tomo VII . Madrid 1888“

, S . 97 — 111 .
Nach diesen Schriften und einigen Nebenberechnungen haben wir die zur Be¬

rechnung nötigen Hauptwerte der Breiten und der Azimute in Fig . 1 . zusammen¬
gestellt , welche nun in Verbindung mit Fig . 1 . S . 23 alles wesentliche giebt .

Wir wollen hier nur eines der vier Verbindungs -Dreiecke durchrechnen , nämlich
das grösste : Mulhacen , M’Sahiba , Filhaoussen .

Die gemessenen Winkel sind folgende (Memorias etc . S . 100 ) :
Mulhacen A = 22 ° 28 ' 45,269”

M’Sabiha B = 78 ° 48 ' 45,563”
(15)

Summe = 180 ° 0' 70,030”

Wir wollen jedoch für unsere Zwecke diese 3 Winkel lieber in Gestalt von
6 Richtungen darstellen , und zwar so , dass die Richtungen nahezu gleich den Azimuten
der betreffenden Seiten werden :

FilhaoussenMulhacen M ’Sabiha
(AB ) = 124° 15 ' 0,000” (BG ) = 226 ° 53 ' 0,000"

(CA ) = 327 ° 40 ' 0,000” ■>
(A C) = 146 ° 43' 45,269 ” (BÄ ) = 305 ° 41 ' 45,563” (C B) = 46 ° 23 ' 39,1 98" 1 (16)

A = 22 ° 28' 45,269" B = 78 ° 48 ' 45,563” G = 78 ° 43 ' 39,198"

Die Differenzen A , B , C sind wieder dieselben wie bei (15) . Dass (AB ) und

(BA ) u . s . w . nicht nahezu um 180° verschieden sind , obgleich die Richtungen selbst
auf etwa 1' genau Azimute sind , rührt von den Meridian-Konvergenzen her ; die Mittel¬

werte zweier solcher Gegenrichtungen sind als Mittel -Azimute genähert in Fig . 1 . ein¬

geschrieben , z . B . (147° 12 '
) als Mittel aus 146 ° 44' und 327° 40' ± 180 °.

Nun müssen die gemessenen Richtungen (16) zunächst in zweifacher Weise

wegen der Abplattung der Erde reduziert werden.
Erstens erfolgt die Reduktion wegen der Höhe der Zielpunkte über dem Meere ,

es ist nach der Formel für y in § 68 . S . 372 die Reduktion für einen Zielpunkt der

in der Höhe h über dem Meere, im Azimut a angezielt wird, in Sekunden :

g sin a cos a (17)
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Zweitens ist Reduktion erforderlich von den vertikalen Schnitten , in welchen
die Richtungen (16 ) gemessen sind , auf die geodätischen Linien ; hiefür haben wir
nach ( 16) S . 386 nebst Pig . 5 . S . 384 die Reduktion in genügender Näherung :

v
1
3 if s = g sin a cos a (18)

Der in (17) und (18 ) vorkommende Faktor if hat wie gewöhnlich die Bedeutung
tf = e ' 2 cos2 q>. Da die Breiten q> der drei Eckpunkte in Fig . 1 . angegeben sind, hat
man damit auch die Mittelbreiten für die drei Seiten , und hiezu lassen sich die drei
Werte logtft berechnen , sowie die nötigen log N aus der Tafel Seite [ 16] entnehmen :

M’Sabiba
Filhaoussen

35 ° 40'

35 ° 0 '
Mulhacen
Filhaoussen

37 ° 3 '

35 ° 0 '
Mulhacen
M ’Sabiha

37 ° 3 '

35 ° 40'

Mittelbreite qp =

loqrß
log N

35° 20'

7 .65049
6 .80513

36 ° 2 '

7 .64286
6 .80514

36° 22'

7 .63917
6 .80515 ( (19)

Da im übrigen zu der Rechnung nach den Formeln (17 ) und ( 18 ) nichts weiter
zu bemerken ist , indem , die nötigen Elemente teils in (19 ) gegeben , teils in Fig - 1

eingeschrieben sind , so teilen wir sofort die Ergebnisse dieser Rechnungen mit ;

Richtung
y
V

Mulhacen

(AB ) (MC)
— 0,039"

, — 0,074"

+ 0,126 "
, - |- 0,123"

M’Sabiha

(BC ) (BA )
+ 0,082"

, — 0,230"
— 0,021"

, + 0,126"

Filhaoussen

(CA ) (CB)
— 0,225"

, + 0,042”

4 - 0,123"
, — 0,021"

y + v + 0,087"
, + 0,049" + 0,061"

, — 0,104" — 0,102"
, + 0,021"

— 0,038" — 0,165" + 0423 "

Indem wir diese Reduktionen (20 ) den gemessenen Richtungen (16) hinzufügen,
erhalten wir folgende neue Tabelle der Richtungen , die wir zur Unterscheidung von

( AB ) u . s . w . nun mit [AB ] u . s . w . bezeichnen wollen :
Mulhacen M ’Sabiha Filhaoussen

[AB ] = 124° 15 ' 0,087"
[BO] = 226 ° 53' 0,061"

[CA] = 327 ° 39' 59,898"

[AG] = 146 ° 43 ' 45,318 "
[BA ] = 305 ° 41 ' 45,459 " [CB ] = 46 ° 23' 39,219"

A ' = 22 ° 28' 45,231 " B ' = 78° 48 ' 45,398 " C ' = 78° 43' 39,321" (21 )

Um nun das Dreieck , welchem diese Winkel angehören , auf ein ebenes Dreieck
mit gleich langen Seiten zu reduzieren , oder um die früher mit A* , B *

, C* bezeich -

neten Winkel zu finden , hat man wieder die hiefür gütigen Formeln anzuwenden,
welche wir am Anfang dieses § 113 . unter ( 1)—(9) S . 559— 560 zusammengestellt haben .

Die hiezu nötigen Krümmungsmasse Je, bzw . die entsprechenden loglcQ sind :

A , Mulhacen <p = 37 ° 3 ' log k q = log — = 1 .705 9395

B , M’Sabiha . . 35 ° 40 ' . . . . 1 .706 0732
O, Filhaoussen . . 35° 1 ' . . . . 1 .7061356

Was die Rechnung im übrigen betrifft , so haben wir die Seite AG = b = 269 926«
zu Grunde gelegt , die Winkel A , B , C zunächst vorläufig auf 180 ° ausgeglichen und

damit erste Näherungen von A*
, B *

, C* erhalten , woraus weiter folgte : BC = a
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= 105 173,9” und A B — c = 269 845,7” . Damit konnte weiter gerechnet werden
log A = 10 .143 6726 und e = 70,7607" und endlich :

A ' — A * = 23,5866" B ' — £ * = 23,5866" '
0 — C* = 23,5875"

(22 )
Zieht man diese (22) von den A '

, B '
, C ' in (21 ) ah , so erhält man :

A* = 22 ° 28 ' 21,644"

B * = 78 ° 48' 21,811"

C* = 78 ° 43 ' 15,733"

Summe = 179 ° 59 ' 59,188"

w = — 0,812"
(23 )

Dieser nun noch bleibende Widerspruch w = — 0,812" rührt von den Beob¬
achtungs -Fehlern her . Die geodätische Winkel -Reduktion an sich ist damit vollendet .

Wenn man die praktische Frage aufwirft , ob die kleinen Reduktionen , mit
denen wir uns hier beschäftigt haben , bei Triangulierungen in Rechnung zu bringen
sind , so wird man beim heutigen Stande der Beobachtungskunst diese Frage für die
gewöhnlichen kleinen Dreiecke und geringen Höhen vereinen ; dagegen bei solch grossen
Verhältnissen , wie diejenigen der Triangulierung zwischen Spanien und Algier , sind
kleine Grössen wie die unter (20 ) erhaltenen neben einem nur etwa 8 mal grösseren
Messungs-Fehler w nach gewöhnlicher Anschauung nicht zu vernachlässigen .

Dieses betrifft diejenigen Reduktionen , deren Theorie in den früheren §§ 66 .,
67 . und 71 . behandelt worden ist . Die kleinen Grössen , welche durch die Theorie
dieses Kapitels X . § 110.—§ 112 gewonnen wurden , sind noch erheblich kleiner , und
der praktische Gewinn unseres ganzen Kapitels X . beschränkt sich also sogar bei der
grossen spanisch -algierischen Triangulierung auf Glieder von 0,001" Betrag .

Wenn hiernach die Theorie der Gauss sehen „Disquisitiones generales circa
superficies curvas “ sich hier nur als schöne Theorie zeigt , welche man in der Praxis
kaum unmittelbar braucht , so ist die Theorie damit doch auch praktisch nicht über¬
flüssig , denn ohne diese Theorie wüsste man eben nicht , dass die zweifellos vorhandenen
Einflüsse der Abplattung der Erde in diesem Falle so wenig ausmachen , und die höheren

sphärischen Glieder mit — in § 44 . würden ohne die Kenntnis der sphäroidischen Glieder
r i

wertlos sein.

Kapitel XI .

Bestimmung der Dimensionen des Erd -Ellipsoids .

§ 114. Bestimmung der Meridian-Ellipse durch zwei Breiten -

Gradmessungen .
Das älteste Mittel zur Bestimmung der Erddimensionen sind die sogenannten

Breiten-Gradmessungen , deren Geschichte wir in der Einleitung S . 1 9 mitgeteilt haben.

Unter einer Breiten -Gradmessung versteht man die Messung eines Meridian-
bogens der Erde und der Polhöhen oder geographischen Breiten seiner Endpunkte .

Wenn man die Messungs -Ergebnisse zweier solcher Gradmessungen unter ver¬

schiedenen Breiten kennt , so kann man die Dimensionen der dadurch bestimmten

Meridian-Ellipse berechnen .
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