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= 105 173,9” und A B — c = 269 845,7” . Damit konnte weiter gerechnet werden
log A = 10 .143 6726 und e = 70,7607" und endlich :

A ' — A * = 23,5866" B ' — £ * = 23,5866" '
0 — C* = 23,5875"

(22 )
Zieht man diese (22) von den A '

, B '
, C ' in (21 ) ah , so erhält man :

A* = 22 ° 28 ' 21,644"

B * = 78 ° 48' 21,811"

C* = 78 ° 43 ' 15,733"

Summe = 179 ° 59 ' 59,188"

w = — 0,812"
(23 )

Dieser nun noch bleibende Widerspruch w = — 0,812" rührt von den Beob¬
achtungs -Fehlern her . Die geodätische Winkel -Reduktion an sich ist damit vollendet .

Wenn man die praktische Frage aufwirft , ob die kleinen Reduktionen , mit
denen wir uns hier beschäftigt haben , bei Triangulierungen in Rechnung zu bringen
sind , so wird man beim heutigen Stande der Beobachtungskunst diese Frage für die
gewöhnlichen kleinen Dreiecke und geringen Höhen vereinen ; dagegen bei solch grossen
Verhältnissen , wie diejenigen der Triangulierung zwischen Spanien und Algier , sind
kleine Grössen wie die unter (20 ) erhaltenen neben einem nur etwa 8 mal grösseren
Messungs-Fehler w nach gewöhnlicher Anschauung nicht zu vernachlässigen .

Dieses betrifft diejenigen Reduktionen , deren Theorie in den früheren §§ 66 .,
67 . und 71 . behandelt worden ist . Die kleinen Grössen , welche durch die Theorie
dieses Kapitels X . § 110.—§ 112 gewonnen wurden , sind noch erheblich kleiner , und
der praktische Gewinn unseres ganzen Kapitels X . beschränkt sich also sogar bei der
grossen spanisch -algierischen Triangulierung auf Glieder von 0,001" Betrag .

Wenn hiernach die Theorie der Gauss sehen „Disquisitiones generales circa
superficies curvas “ sich hier nur als schöne Theorie zeigt , welche man in der Praxis
kaum unmittelbar braucht , so ist die Theorie damit doch auch praktisch nicht über¬
flüssig , denn ohne diese Theorie wüsste man eben nicht , dass die zweifellos vorhandenen
Einflüsse der Abplattung der Erde in diesem Falle so wenig ausmachen , und die höheren

sphärischen Glieder mit — in § 44 . würden ohne die Kenntnis der sphäroidischen Glieder
r i

wertlos sein.

Kapitel XI .

Bestimmung der Dimensionen des Erd -Ellipsoids .

§ 114. Bestimmung der Meridian-Ellipse durch zwei Breiten -

Gradmessungen .
Das älteste Mittel zur Bestimmung der Erddimensionen sind die sogenannten

Breiten-Gradmessungen , deren Geschichte wir in der Einleitung S . 1 9 mitgeteilt haben.

Unter einer Breiten -Gradmessung versteht man die Messung eines Meridian-
bogens der Erde und der Polhöhen oder geographischen Breiten seiner Endpunkte .

Wenn man die Messungs -Ergebnisse zweier solcher Gradmessungen unter ver¬

schiedenen Breiten kennt , so kann man die Dimensionen der dadurch bestimmten

Meridian-Ellipse berechnen .
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Ehe wir uns damit beschäftigen , ist eine Bemerkung über die Messung der
Meridianbögen zu machen. Geradezu auf einem Meridian der Erde eine Linie un¬
mittelbar zu messen, das war das Bestreben der ersten Gradmesser (vgl . z . B . S. 3,
arabische Gradmessung und S . 7 , amerikanische Gradmessuug) , und wenn der gemessene
Bogen einen kleinen Winkel a mit der Meridianrichtung bildete , so konnte man leicht
eine Reduktion auf den Meridian ausführen, welche im wesentlichen in der Multi¬

plikation des gemessenen Bogens mit cos a besteht . Auch Triangulierungsketten,
welche nach ihrer Haupterstreckung nahe der Meridianrichtung liegen , lassen sich auf
den Meridian reduzieren, wie wir ausführlicher im nächsten § 115 . zeigen werden.

Nach Andeutung von Eig . 1 . nehmen wir nun
an , man habe zwei Gradmessungen in demselben
Meridian , oder , was hier dasselbe ist , zwei Grad¬

messungen, deren Elemente in einer Meridian -Ellipse
dargestellt sind. Die erste Gradmessung habe den

Meridianbogen m mit den Breiten Ti und <jPs seiner

Endpunkte, und die zweite Gradmessung entsprechend
den Meridianbogen m' mit den Breiten <P3 un^ T4-
Zur Abkürzung wollen wir hiezu schreiben :

% — <Pl = 4 <P <Pi — V>3 = ^ q>'

q2 + <Pi _ „ Vi + <Ps
2

Fig . 1.
Zwei Breiten - Gradmessungen .

= q : — q

(1)

(2)

tn = —— M
Q

M

Nun wissen wir von § 35 . S . 210 und S . 219 , dass man die Länge m eines

massig grossen Meridianbogens als Kreisbogen berechnen kann , dessen Halbmesser der

Meridian-Krümmungs-Halbmesser M für die Mittelbreite <p> und dessen Centriwinkel
die Breiten-Differenz 4 <p ist ; d . h. man hat für die beiden Gradmessungen:

, 4q '
m = ~

Q
Dabei ist nach (21 ) und ( 19 ) S . 196—197 :

M = — M ' = — (4)m yz 1 ys

F2 = 1 + e' 2 cos2 (jp F ' 2 = 1 + e' 2 cos2 q ' (®)

Wenn man diese (5) und (4 ) in (3) einsetzt , und dann die beiden Gleichungen (3)
dividiert , so erhält man :

jm 4 <p' \ § 1 -+- e'2 cos2 q ’
^

\ m! 4 q j 1 + e'2 cos2 q
Zur Abkürzung schreiben wir :

“ Ä * = o2 (6a)
m' 4 q J ^

Die Gleichung (6) ist in Bezug auf e'2 linear , und kann daher geradezu nach

e'2 aufgelöst werden . Wenn man dabei die Abkürzung (6a ) benützt , so erhält .man

e'2 : 1 — <22 ( !)
cp cos2 q — cos2 q'

Hat man hieraus e'2 berechnet , so erhält man mit Probe aus (3) , (4) und (5) -

”- e vs4 q v oder c = F3
H <p

(8 )
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Die beiden Ellipsen -Halbaxen a und b erhält man aus e und e ’2 nach (18) S . 196 :
c , c

b = (9 )y1 + e'2
wobei man nochmals zur Probe bilden kann :

« 2 -

1 -

= e'2
O“

Damit hat man auch e2 und die Abplattung a nach (5) und (7) S . 189 :

e' 2 .. . 1
e2 :

l -f- e ' 2
: = 1 — yi — e2 oder a = 1 — (10 )

Q = a - (11 )

j/l + e'a
Auch die Länge des Meridian -Quadranten Q kann nach (246 ) S . 215 berechnet

werden :

2 ^ 2 ' 16/

Zur Anwendung der entwickelten Formeln wollen wir die bekannten klassischen

Gradmessungen von Peru und Lappland benützen .
Mach Bessels Angabe im 14 . Band , 1837 , der „ Astr . Nachr . “ S . 334 und

S. 337 sind die Ergebnisse der Gradmessungen in Peru und Lappland (Schweden ) die

folgenden :

Gradmessung in Peru :

m = 176875,5 Toisen = 344736,772 Meter
(jPj = •— 3 0 4' 32,068 ” q>2 = + 0 ° 2 ' 31,387 "

Gradmessung in Lappland :

m’ = 92 777,981 Toisen = 180 827,654 Meter I

<ps = 65 ° 31 ' 30,265 <jd4 = 67 ° 8 ' 49,830 ” f

Man bildet hieraus die Differenzen und die Mittel :

A q> = 3 ° 7' 3,455” A qf = 1 ° 37 ' 19,565"

= 11223,455 ” = 5839,565 "

q> = — 1 ° 31' 30,3405" qi
' = 66° 20' 10,0475"

Nun rechnet man nach den angegebenen Formeln :

, m w!
= 1.487 3610 -4 log -

(12 )

(13)

A qp

e' 2 =
1

’ A qp
'

■0,994606 -119

= 1 .4908843 .S logg 2 = 9 .9976511 -3

= 0,006 476 764
0,9939ÖT593 — 0)1611 )96 660

log V2 = 0 .0028017 -7 log F ' 2 = 0.000 4529-0

log c = 6 .805 9888 -4 log a ~ 6 .804 5869-6 log b = 6 .803 1850-8

a = 1 : 310,29534 Q = 10000157 Meter (14)

Wenn man statt e' 2 zuerst e2 haben will , so kann man dieses aus (7) ableiten ,

denn es ist nach (5) § 31 . S . 189 , mit Anwendung auf (7) :

e2 = __ = __ (15)
1 ef2 sin2 <jp

' — q2 sm 2 (p

Auf dieselbe Formel wird man auch unmittelbar dadurch geführt , dass man

Ton vornherein statt e und e' 2 und F 2 mit den Konstanten a , e2 und TF2 rechnet :

1F2 = 1 — e2 sM2 (fi TF' 2 = 1 — e2 sin 2 qp
' (16)



568 Beduktion eines Gradmessungs -Bogens auf den Meridian . § 115.

Wenn man dieses ebenso behandelt , wie früher (3) — (6) , so wird man auf (16 )
geführt , worauf aus (17 ) auch a mit Probe folgt .

Berechnungen von solcher Art spielten eine wichtige Bolle in der Zeit der
Gradmessungen des vorigen Jahrhunderts (vgl . Einleitung S . 7 ) ; heute ist dieses
nicht mehr der Fall , indem die Frage nach den Erddimensionen jetzt in anderer
Form auftritt .

§ 115 . Reduktion eines Gradmessungs-Bogens auf den Meridian .
Wir haben die am Eingänge des vorigen § 114 . berührte Aufgabe nun nach¬

zuholen , nämlich Berechnung des Meridianbogens m , welcher einem schief gegen den
Meridian gelegten Gradmessungs - Bogen s zwischen den Breiten der Endpunkte ent¬
spricht . Oder im Anschluss an die nachfolgende Fig . 1 . haben wir die Aufgabe , den
Meridianbogen m zu berechnen , welcher zwischen denselben Breiten qpj und (f 2 liegt,
wie ein schief gelegter Bogen AB — s, dessen Bichtung wenigstens durch ein Azimut
a bestimmt ist .

Der Bogen s kann unmittelbar gemessen sein , im allgemeinen ist aber anzu¬
nehmen , dass dieser Bogen s als lange Diagonale einer Triangulierungskette nach Art
von A B in Fig . 2 . S. 388 oder Fig . 3 . S . 389 berechnet sei , wobei die Haupt¬
erstreckung A B nach dem Meridian gerichtet ist . Dabei ist angenommen , dass auch

das Azimut « , dessen astronomische Messung nicht geradezu auf
die Sicht der Linie s gemacht werden konnte , durch Bechnung
auf s bezogen wurde .

Fig. l .

Hiernach kann man das Ergebnis s mit einem Azimut «
(oder mit zwei Azimuten « 1 ( «2 , nach Fig . 3 . S . 571) als geodä¬
tische Linie mit geodätischen Azimuten betrachten , und als solche
weiter behandeln .

Wir betrachten nun zuerst nach Fig . 1 . den einfachen
Fall , dass nur ein Azimut « gemessen sei ; wir wollen dann aber
als Erleichterung andererseits annehmen , dass dieses a ziemlich
klein sei , d . h . dass der Gradmessungs -Bogen s nahezu die Me¬
ridianrichtung habe , was ja bei reinen Breitengrad -Messungen von

vornherein angestrebt wird .
Zwischen qp2 — <Pl> s un^ a besteht eine Beziehung , welche in erster Näherung

durch die zwei ersten Glieder von (25) S . 395 ausgedrückt wird , nämlich :

F2 ufP2 — Tl (1)

Dabei ist nach (22) und (23) S . 394 :
su = cos aN t — tang g>ism a

also :
~‘TMN sin ‘i ahmg <)Pl<f>2 — <Pi =

M cos a

Dieselbe Gleichung auf den Meridianbogen m angewendet , giebt mit « = 0 :
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Dieses mit der vorhergehenden Gleichung verbunden giebt :
S2 .m = s cos « —

gjy sm2 a tang qpj + . . . (2)

Für den Quer -Krümmungs -Halbmesser N , der hier als Nenner nur im zweiten
Gliede vorkommt , kann man einen abgerundeten Näherungswert nehmen . Wenn das
Azimut a ziemlich klein ist , so wird das zweite Glied mit sin2 a sehr klein , und es
ist dann ziemlich gleichgiltig , wie der hiebei nötige Näherungswert N angenommen wird.

Man könnte die Formel (2) leicht auch noch auf höhere Glieder entwickeln ,
indem man hei (1) weitere Glieder von (25 ) S . 395 berücksichtigte ; wir wollen das
aber hier nicht ausführen , sondern ein einfaches Zahlen -Beispiel vornehmen , bei welchem
die Reduktionsformel (2) völlig ausreicht .

Als solches Beispiel soll die durch Einfachheit sich auszeichnende pennsylvanische
Gradmessung dienen , welche im vorigen Jahrhundert , 1764—1768 , von Mason und
Dixon nicht durch Triangulierung , sondern durch unmittelbare Lattenmessung aus-

gefiihrt wurde , wie wir schon in der Einleitung S . 6. angegeben haben .
Die Haupt -Zahlenangaben über diese merkwürdige Messung wurden von Prof .

J . Howard Gore in Washington in der „ Zeitschr . f. Verm. 1888 “, S . 33 — 39 mitge¬
teilt , woraus wir folgendes entnehmen :

Fig. 2.
Pennsylvanische Gradmessung (1764—1768).

N q>2 = 39 ° 56 ' 19"

132327,16’

3 ° 43' 30 '

1 ° 28 ' 45 '

m' = 32010,24-

m = 132042,98”

tu ' - m — 164 053,22™
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Die Hauptmessung erfolgte in der Geraden AB , welche von dem südlichsten
Punkte A mit der astronomisch gemessenen Breite q>i = 38° 27' 34" unter dem
Azimut a = 3 ° 43' 30" sich bis zu einem Punkte B erstreckt , dessen Breite nicht
astronomisch gemessen ist (39 ° 39 ' durch nachträgliche Interpolation ) . Dann wurde
noch ein gebrochener Zug B D C PN hinzugemessen bis zu dem nördlichsten Punkte N,
dessen astronomisch gemessene Breite <p2 = 39 ° 56' 19 " ist .

Als gemessene Längen sind angegeben : erstens die schiefe Hauptlänge
s = 434011,64 Fuss und die Summe der zwei unmittelbaren Meridianbögen G C + PN
= 104988,4Fuss . (In Fig . 2 . S . 569 soll BGB den Parallelkreis von B , und CP ein
kleines Stück des Parallels von C vorstellen.)

107Dazu wird angegeben , dass der hier benützte englische Fuss = ^ Pariser Fuss
sei , woraus man berechnet 1 Fuss = 0,30489306 Meter.

Der heutige englische Fuss ist kleiner , nämlich = 0,304 79727 »». Die in unserer Einleitung
S. 7 angegebene Reduktion 434011,64 Fuss = 132 286 Meter beruht auf dem neuen Verhältnis 1 Fuss
= 0,30479727 »**.

Mit dieser Verhältniszalil rechnen wir die beiden mitgeteilten Entfernungen in
Meter um , wie auch bei Fig . 2 . S . 569 beigeschrieben ist :

ni = 104988,4 Fuss = 32010,24 ”* und s = 434011,64 Fuss = 132327,16 ”* (3)
Nun kommt die Hauptaufgabe, welche uns hier beschäftigt , nämlich die schiefe

Länge s auf die Meridianlänge zu reduzieren, wozu die Formel (2 ) dient . Dabei ist
einzusetzen s = 132327,16 ” , « = 3 ° 43 ' 30"

, qnx = 38 ° 27' 34" und nach Seite [16]
des Anhangs genähert log N = 6 .80521 . Die Ausrechnung giebt :

m = 132 047,60” — 4,62“ = 132042,98 ”
Die beiden Teile dieser Rechnung sind in Fig . 2 . S . 569 geometrisch veran¬

schaulicht , es ist nämlich :
A t = s cos a — 132047,60 ” und t B = 4,62” , also m = A B = A t — t B (5)

Nun hat man den gesamten Gradmessungs-Meridianbogen zwischen den Pa¬
rallelen von A und N nach (3 ) und (4) :

m’ - !- m = 164053,22 ”
Hiezu die beiden astronomisch gemessenen Breiten :

<p2 = 39 ° 56'
<Pi = 38 ° 27 ' 34" ™ VI -

Mittel ~ ~ - = qp = 39 ° 11 ' 56,5"
u

Aus (6) und (8) erhält man den Meridiangrad für die Mittelbreite cp:

G = — 164 053,22“ = 110 909,22”

(Diese pennsylvanische Gradmessung wurde von Laplace , Airy und Schubert
zur Berechnung der Erddimensionen mit benützt , aber nicht von Bessel und Clarke . )

Nachdem wir an diesem geschichtlich -interessanten Beispiel die Reduktion eines
Gradmessungs-Bogens mit einem Azimut behandelt haben , gehen wir zu dem Falle
über , dass zwei Azimute gemessen sind, nämlich und <*2 in Fig . 3 . S . 571 .

Hiezu haben wir von § 77 . (21 ) S . 405 die Gleichung für Mittelbreite qp:
T2 — Ti

^2 (12— 1 - 1?2 _ 4 (10)
Z2 cos2 qocosa 1 + (2 + 3 t2 - (- 2 tf ) +
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Dieselbe Formel gilt auch für den Meridianbogen m, wenn das mittlere Azimut
a — 0 und auch der Längenunterschied 1 = 0 gesetzt wird, also :

fi + . .fz ~ fi _ m
V 2 N 8F * (11 )

Nun giebt die Division von (10 ) und (11 ) :

- 3 «2 + 2 7/2)
, l2 cos 2 f ,0m — s cos a [ 1 H- ^ ■ (12 )

Diese Formel kann man unmittelbar anwenden, wenn man
für den geographischen Längenunterschied l einen Näherungswert
einsetzt und f als Mittelbreite annimmt (auch in t/3 = e' 2 cos2 q>) .

Man kann jedoch auch in erster Näherung nach (16 ) § 77 .
S . 404 setzen :

2 cos f = -
ß .sin ix

Damit giebt (12 ) :
l s3 sin2 a mm = s cos a 11 + -

2 , y „ - - 3f2 + 2i /3)

(13)

( 14)

tfl __Für N 2 und i/2 genügen hier irgend welche leicht zu be¬

schaffende Näherungswerte .
Die soeben entwickelte Formel (14 ) wird wohl in den meisten Fällen ausreichen ,

und man könnte sie auch wohl auf dem betretenen Wege noch weiter treiben ; wir

wollen aber noch eine andere Form nach Flg>4_ Fig. 6.
Bessel geben , wobei reduzierte Breiten be- Eilipsoid , Kugel.
nützt werden .

Wenn wir zu Fig . 4 . , welche unsere
Aufgabe auf dem Eilipsoid veranschaulicht ,
auch die Übertragung auf die Kugel mit
reduzierten Breiten nach § 103. vornehmen,
so bekommen wir zu Fig . 4 . noch die ent¬
sprechende Fig . 5 . , welche dieselben Azimute
wie Fig . 4 . und im übrigen sphärische Masse
enthält , die wir nach § 106 behandeln können.
Wir wollen jedoch die Entwicklung hiezu,
welche in unserer 8 . Auflage dieses Bandes , .
1890 in § 103 , S . 503 - 505 ausführlich gegeben war , hier nicht wiederholen , wei

solche Aufgaben in der Neuzeit immer weniger Anwendung finden.

Das Schlussergebnis unserer berichteten Entwicklung ist .

cos « 2 + « 1

« 2 — « 1tvw 2

i 1 + f !^
2
^ (l + e' 2 cos ).)), + <Pa»

12 n2 (15)

fl - i- fl'2 )
. 2 + 3 cos2 a + 5 cos2 a tang 2 -

2 J
+ sin2 a .
240

~

Dieses ist im wesentlichen die Formel , welche von Bessel m, U . Ba
öeneIal Baeyers

richten 1837", S. 310 , in der „Gradmessung in Ostpreußen “ 1838, S. 44b una m

«Messen auf der sphäroidischen Oberfläche“ 1862, S 48 angegeben

bl . j
H "

,:!

i M ■!*

.
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Kg . 6.
Süd -Ende der französisch -spanischen Gradmessnng von 1792. Massstab 1 : 10000000 ).

Barcelona .

Matas <p2 = 41 ° 30' 29,04 ”
« 2 = 11 ° 26' 1,71”

<r :! ‘ 'n 10 ° 5 ' 12,575"
CI

« 2 + «i = U oi r 52,325 "

= 10 ° 57' 42,94 ”
Mola cp1 = 38° 39’ 56,11”

“ 2- « l _ Oo u , 9,385 "
u

Zu einem Zahlen -Beispiel fiir die Anwendung der Formel (15 ) nehmen wir ent¬
sprechend vorstehender Fig . 6 . eine Mitteilung von Bessel „ Astr . Nachr . , 19 . Band ,
1841 “

, S . 112— 114 , über seine Neuberechnung des südlichen Teiles der alten fran¬
zösisch-spanischen Gradmessung von Dünlrirchen bis zu den balearischen Inseln . Der
nördliche Punkt Matas liegt an der spanischen Küste bei Barcelona , und der südliche
Punkt Mola ist der südlichste Gradmessungspunkt auf der Insel Formentera .

Aus der Triangulierung hat Bessel die geodätische Linie zwischen Matas und
Mola, s = 165108,586 Tgisen oder = 321802,629 “ berechnet , sowie auch die Azimute
<9 und « 2 reduziert , welche nebst den Breiten qi t und <p2 bei Fig . 6 . eingeschrieben sind .

Wenn man damit die Ausrechnung nach der Formel (27 ) macht , so findet man :
m = 315 678,950 “ + 2,529“ — 0,001“ = 315681,478 “

Das letzte Glied der Formel (15) bringt also hier nur 1 Millimeter ; dieses Glied
wird wohl immer zu vernachlässigen sein.

§ 116 . Ansgleichung mehrerer Breiten -Gradmessungen .
Indem wir unserer Einleitung S. 7 — 10 folgen , kommen wir zu der Bestimmung

der Dimensionen des Erd -Ellipsoids aus mehr als zwei Breiten -Gradmessungen , oder zu
der Ausgleichung mehrerer Breiten -Gradmessungen nach der Methode der kleinsten
Quadrate .

Man geht dabei von der Anschauung aus , dass die astronomische Messung der
Polhöhen qo verhältnismässig viel ungenauer ist , als die geodätische Messung der
Meridianbögen m , denn ein Fehler von 1” an der Polhöhe oder Breite qp erzeugt
bereits eine Änderung von etwa 31 Meter an dem Meridianbogen m , während der
mittlere Fehler der geodätischen Meridianbogen -Messung ein viel geringerer ist .

Allerdings überzeugte man sich bald , dass auch die Messungsfehler der Polhöhen
qp nicht genügten zur Erklärung der Widersprüche in den verschiedenen Gradmessungen ;
allein man behielt doch die Form der Ausgleichungs -Rechnung , wonach die Quadrat¬
summe aller Polhöhen -Änderungen zu einem Minimum gemacht wurde , noch lange bei,
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obgleich man wusste , dass die Polhöhen -Widersprüche zum grossen Teil gar nicht in

Messungsfehlern , sondern in Lotahweichungen ihren Grund haben . Die Methode der
kleinsten Quadrate hat bei solcher Anwendung nur die Bedeutung einer empirischen
Vermittlung widerstrebender Elemente , und die dabei übrig bleibenden Fehler v geben
erste Fingerzeige , an welchen Stellen Lotablenkungen zu suchen sind .

Wir wollen nun einen Teil einer solchen Ausgleichung von Breiten -Gradmess¬

ungen vornehmen , und dazu die von Bessel 1837 — 1841 gesammelten und gesichteten

Gradmessungs -Ergebnisse benützen , aus welchen Bessel 1841 seine berühmten , heute

noch benützten Erddimensionen (vgl . S . 190 ) abgeleitet hat .
Wir wollen aber nicht die Besselsche Rechnung selbst hier vorführen , sondern

wir wollen nur einige Zahlenwerte derselben herausgreifen , um daran den Rech¬

nungsgang zu zeigen .
Von der französischen Gradmessung sollen folgende 5 Stationen benützt werden :

Station
1. Formentera
2 . Barcelona
3 . Carcassonne
4 . Pantheon
5 . Dünkirchen

Um die Fehler - Gleichungen
achtungen zu erhalten , legen wir

Polhöhe
<p , = 38 ° 39 '

<j»2 = 41

Ts = 43
T4 = 48

Ts = 51

22
12
50

2

T
56,1 "

47,9
54 .3
49 .4

8,8

/ t <p Meridianbogen

2 °
4

10
12

301 354 *‘

505 137
1131 050
1 374 572

42 ' 51,8 "

32 58,2
10 53,3
22 12,7

für eine Ausgleichung nach vermittelnden Beob -

die Besselschen Erd -Dimensionen a und e% nach

§ 81 . S . 193 zu Grunde , und bestimmen solche Verbesserungen von a und von e2,

welche die Quadratsumme aller an den Polhöhen cp anzubringenden Verbesserungen zu

einem Minimum machen .
Dazu müssen wir zuerst Beziehungen zwischen den Polhöhen -Differenzen J cp

und den zugehörigen Meridianbögen m ermitteln ; und um hiebei einfache Rechnung

zu haben , verfahren wir nach dem Satze von § 35 . S . 210 , welcher sagt , dass man

einen Meridian -Bogen m als Kreisbogen berechnen darf , mit dem Meridian -Krümmungs -

Halbmesser M der Mittelbreite und mit dem Centriwinkel d cp. Da wir die Breiten cp

auf 0,1”
, entsprechend 3 Meter , abgerundet haben , so ist die angegebene Näherung

zulässig .
Die zwei ersten gemessenen Polhöhen Ti und T2 s 'n d dem dazwischen

liegenden Meridianbogen m verbunden durch die Beziehung :

m
T2 — Tl = M '

wobei nach (17) und (15 ) S . 196 für M die Formel gilt :

Ti + T2 (2 )1 (1 — e2 sirfi t ) *
M = L-

a (T^ T mlt <p - 2
Da die hier vorkommenden Erddimensionen o und e2 für unsere Ausgleichung

die Unbekannten sind , zerlegen wir dieselben in Näherungswerte »o und ej) mit zu¬

gehörigen Verbesserungen da und de2, d. h . wir setzen :

« = n 0 - t- S a e2 = e%+ äe 2

Wir bezeichnen auch mit Mq denjenigen Wert von M , welcher durch die

Näherungs -Annahmen a — Uq und e2 = ej entsteht ; und demnach entwickeln wir nach

dem Taylor sehen Satz :
1 1 + sia . ) da + - ~ ( ^ Ue 2
M M0 da \M

(3)

d_
de 2

(4 )
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1 - =- sin2 <p (5)

Die beiden hier gebrauchten partiellen Ableitungen der Punktion ^ entwickeln
wir nur in erster Näherung, nach (2), mit Vernachlässigung aller Glieder mit e2 :

9_ /l \ _ _
1

_
9 (

'
M - ifl - l

da [ Mj
~ a2 de 2 \ Mj a ’ 2

Nun kann man zur Bildung der Fehler -Gleichungen schreiten . Die Gleichung (1),
welche wegen der Beobachtungsfehler im allgemeinen nicht erfüllt sein wird , wird
dadurch zum Stimmen gebracht, dass den beobachteten qpx und (jp2 ihre Verbesserungen
v i und v2 zugesetzt werden , also :

% — f l -1- v2, — »l = m Q

<P2 — <5Pl ' h «2 + 1 ( !)

1
M,

Wenn man hier (4) und (5) einsetzt , so bekommt man :
8 a

io as
Hier darf man in den Gliedern mit 8 a und mit 8 e2 statt der Unbekannten a,

deren Näherungswert a0 setzen ; ja wir wollen sogar , da ohnehin schon alle Glieder
mit e2 in den Coefficienten von 8 a und 8 e2 vernachlässigt sind , hier a — M, also

hm g mg
a

= M

f 1 « 3
- -

g
- sin2 (p

\ 8e 2 1
/ a |

nach (1) das Produkt - -- = '
: qp2 — (jPi setzen , und damit wird (7) :

Vl = _ ^ - fl 8 a + U —
«o V

sin2 q> (<p2 — qpj) 8 e2 ■ mg .

Um bequeme Zahlen zur Rechnung zu bekommen, wollen wir nicht 8 a und 8 e2
selbst bestimmen, sondern von 8 a das Tausendel und von 8 e2 das Tausendfache; d . h .
wir -wollen zwei neue Unbekannte x und y einführen durch die Gleichungen :

8 a
1000 y = 1000 8 e2

Dieses in (8) eingesetzt , wird geben :
v2 — « i = al x + V y + V

wobei a'
, V und V folgende Bedeutungen haben :

, Tz — 9h h’ = -+-
ct0 1000

■1000 - sin2 (f>

V = mg
mV («Pa — fi )

(9)

(10)

(11 )

(12)

vom

(13)

Als Näherungswerte a0 und e ' nehmen -wir die bekannten Bessel sehen
Jahre 1841 nach § 31 . S . 193, nämlich :

«0 = 0 377 397,155 ” log a 0 = 6 .804 6434 .6
ej» = 0,006 674 372 log e ‘ = 7 .824 4104 .2

Wir werden dadurch die Annehmlichkeit haben , dass unsere Absolutglieder V
in (12 ) geradezu gleich den Bessel sehen endgiltigen v2 — u . s . w . werden ; doch
wollen wir hier davon zunächst keinen Gebrauch machen , sondern die Anwendung der
Formeln (10 ) , (11 ), (12 ) an den zwei ersten Werten der Tabelle ( 1 ) von S . 573 zeigen :

Formentera qi1 = 38 ° 39 ' 56,1*
Barcelona cp2 = 41 ° 22' 47,9"

<p2 — <p^V 2 ° 42y 5p ;7
Mittel qp = 40 ° V 22,0"

m = 301 354”

9771,8” ( 14 )
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Damit man nach den Formeln (11 ) sofort berechnen :

et' = — 1,532 V = + 3,709 (15 )

Auch die Berechnung von l nach (12) hat keine Schwierigkeit , indem dabei M0
derjenige Wert ist , welcher den Werten «q und ej von (13) entspricht , d . h . :

«o (1 —fo)__ i0g M0 = 6 .803 5358 (16)M a = -0
(1 — e\ sirfi <p)]

Indessen können wir wohl auch den günstigen Umstand ausnützen , dass die a0
und e* von (13) die bekannten Besselsehen sind , welche auch unseren Hilfstafeln

S. [8] — [29 ] des Anhangs zu Grunde liegen ; und wir können daher , statt nach (16)

log auszurechnen , dasselbe auch von Seite [18] des Anhangs entnehmen , oder lieber

noch sofort von Seite [19] :

für cp = 40 ° 1' 22" log [1] = log Mo
hiezu von ( 14 ) log m .= log 301 354

8 .510 8893

5 .479 0770

log %£ 3 .989 9663* M,
mJ = 9771,6”
Mo

hiezu von (14) qj3 — cp1 = 9 771,8”
/ 1m

also / ' = — 0^ '7 (

Nimmt man dieses mit ( 15 ) zusammen , so hat man die erste Gleichung von

der Form (10) :
«2 - « , = - 1,53 * + 3,71 y - 0,2” (18)

Nachdem wir so die Aufstellung einer Gleichung mit Ausrechnung der Coeffi-

cienten und des Absolutgliedes in aller Ausführlichkeit gezeigt haben , werden wir das

Ergebnis der Berechnung für die 4 übrigen , welche zu den bei (1) angegebenen fran¬

zösischen Gradmessungen gehören , kurz anschreiben .

Fehlerdifferenz -Grleichungen.

Forinentera -Barcelona — «h = — 1,53 * + 3,71 ?/ — 0,2 "
|

„ -Carcassone vs — = — 2,57 * + 5,83 y — 1,4 I

„ -Pantheon Vj — Vi = — 5,75 x + 10,36 y — 2,1 |
„ -Dünkirchen v5 — »i = —■6,98 x + 11,31 y + 1,2 /

Ähnliche Gleichungsgruppen entstehen auch für alle anderen Gradmessungen,

Bessels Ausgleichung hat im Ganzen 10 solcher Gleichungsgruppen mit zusammen

38 — 10 = 28 solcher Gleichungen , wie aus unserer Zusammenstellung von § 1. S . 9

unten zu ersehen ist , wozu wir aber bemerken , dass schon in der Gruppe (1) nur

5 Stationen aufgenommen sind , während nach S . 9 die Zahl der französischen Stationen

1 ist ; wir haben deren 2 weggelassen .
Die Gleichungen (19 ) sind keine Fehler -Gleichungen in dem gewöhnlichen Sinne,

weil in jeder Gleichung zwei Verbesserungen v auftreten . Die Trennung der v ge¬

schieht dadurch , dass man für jede Gradmessung eine Polhöhen -Verbesserung « selbst

als Unbekannte einführt . Der Fall ist ganz entsprechend der Ausgleichung geodätischer

Richtungsmessungen , wo man auch für jeden Satz von Messungen eine Nullpunkts -

Korrektion als Unbekannte einführen muss.
Auf diese Weise entstehen aus den 4 Gleichungen (19) folgende 5 wirkliche

Fehlergleichungen :
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«1 = »i
= n . . . . . — 1,53 x -h 3,71 y — 0,2"

vs = ®i . . . . . — 2,57 a: + 5,83 y - 1,4"
®4 = ®i . + 10,36 y — 2,1 "
v5 = « i . + 11,31 y -j- 1,2"

(20 )

Jede der 10 Gradmessungen giebt eine solche Gruppe von Fehlergleichungen ,und da jede Gradmessung eine besondere Unbekannte v hereinbringt , wie z B . U] in
der Gruppe ( 20), so überblickt man , dass die Zahl aller Umbekannten = 10 + 2 sein
muss , nämlich die 10 besonderen v und dann die 2 eigentlichen Unbekannten x und y.

Nun steht nichts im Wege , die zugehörigen 12 Normalgleichumgen zu bilden ,
aus denen man die 10 Hilfsunbekannten v so rasch als möglich eliminieren wird.

Da der Gang der Ausgleichung hierdurch genügend klar gemacht ist , wollen
wir dabei abbrechen . Eine ausführlichere , auf die ganze Ausgleichung mit 6 Grad¬
messungen in Europa und mit zusammen 20 Stationen sich erstreckende Berechnung
war in unserer 3 . Auflage dieses Bandes 1890 , § 104 . S . 507— 516 , enthalten .

§ 117 . Längen - Gradmessung.
Wenn man eine Triangulierungskette in der Haupt¬

erstreckung von West nach Ost anlegt , und die beiden End¬
punkte durch eine astronomische Längen - Bestimmung ver¬
bindet , so erhält man eine Längen - Gradmessung .

Während in früherer Zeit , namentlich im vorigen Jahr¬
hundert , wegen der grossen Unsicherheit der astronomischen
Längen - Bestimmungen , diese Form der Gradmessung wenig
Bedeutung hatte , ist jetzt , seit die elektro -telegraphischen Zeit-
Übertragungen nahezu die Genauigkeit der Breitenmessungen
erreicht haben , das Verhältnis ein anderes geworden , und die
Längen -Gradmessungen sind jetzt den Breiten -Gradmessungen
nahezu gleichberechtigt .

Um die Theorie der Längen -Gradmessung in ihren Grundzügen zu behandeln,
brauchen wir nur die Gleichung (16 ) § 77 . S . 404 für Mittelbreite cp vorzuführen:

l cos qp = S sin « | l + -^ -
^
sin2 « iä — cos2 a (1 + rf- — 9 rfi t2) j | (1)

Dabei ist noch (1 a) S. 403 , da N = c : V die Bedeutung von S diese :
N = V = 4 - j/l + e ' 2 cos2 q> und t = tang cp (2)

dazu auch cp = Sl -ltS 2 a — *4 l ^ Ä*2 (3)Z Z
Ausser dem astronomischen Längenunterschied l und dem geodätischen Bogen s

sind auch noch die Breiten qplt qp2 und die Azimute durch Messung zu be¬
stimmen (vgl . Fig . 1 .) . Wenn die Messung unter niederen Breiten (in der Nähe des
Äquators ) stattfindet , braucht q> nicht sehr genau zu sein , und wenn der Bogen s
wesentlich west -östliche Erstreckung hat (a nahezu = 90 °) , braucht a nicht sehr
genau zu sein .

Fig . 1.
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Die Ausrechnung nach der Formel (1) hat die Bedeutung einer Reduktion der
geodätischen Linie s auf den Parallelkreis der Mittelhreite <jp, und diese Reduktion
spielt hier dieselbe Rolle wie die Reduktion einer Breiten -Gradmessung auf den Meridian,
die wir in § 115 . ausführlich für sich behandelt haben.

Wir denken nun die Reduktion nach (1) ausgeführt , und wir setzen zur Ab¬
kürzung : , , 3 , .

s sin a j1 + f — V
j

I sz«2 a t2 — cos2 a (1 4- rj2 — 9 rj2 t2) )
j
■= p (4)

Dann ist nach (1 ) und (2) :
l cos qo = — j/l + e '2 cos2 (p (5)

Hier erscheint der Parallelbogen p in gleicher Weise als gemessene Grösse wie
der Meridianbogen m hei den Breiten -Gradmessungen .

Nun sollen zwei solcher Messungen p vorliegen , nämlich ausser (5) auch noch
entsprechend : , _

V cos cp
’ = y ]/l + e ’2 cos2 <jp

' (6)

Aus den Gleichungen (5) und (6) kann man die beiden Unbekannten e' 2 und c
bestimmen ; wir schreiben hiebei zur Abkürzung :

p V cos <p
'

p ’ l cos cp
1

= 1

"PDann wird : o - — — „ „ .
q2 cos2 qp— cos2 cp

Dann mit Probe aus (5) und (6) :

c = l/l + e ,2 cos w = }/i + e ’2 cos2 qfl cos cp
r T l’ cosqf ’

(?)

(8 )

(9 )

Fig . 1.

Diese Gleichungen (7) , (8) , (9) sind ganz entsprechend den früheren für zwei
Breiten-Gradmessungen gefundenen Gleichungen in § 114 .

§ 118 . Azimut -Übertragung.
Nachdem wir gesehen haben , dass die Excentricität der Meridian -Ellipse durch

zwei Breiten -Gradmessungen bestimmt werden kann , und dass dieselbe Aufgabe auch
durch zwei Längen -Gradmessungen gelöst wird, ist drittens noch zu zeigen , dass auch
zwei Azimut - Messungen mit den zugehörigen Breiten und mit
einer Triangulierungs -Verbindung , zur Bestimmung der Excentricität
der Meridian -Ellipse führen .

Azimut -Messungen sind auch schon hei den Breiten - Grad¬
messungen und bei den Längen -Gradmessungen mit benützt worden,
aber mehr nur als Hü/s -Messungen , zur Reduktion der gemessenen
Bögen auf den Meridian oder rechtwinklig zum Meridian ; dagegen
bei der dritten Aufgabe , die wir nun Vorhaben, sind die Azimute
gerade die Hauptwerte der Messung .

Wenn man nach Andeutung von Fig . 1 . die beiden Breiten
T. (ff und die beiden Azimute a , c/f gemessen hat , so kann man
zwischen diesen 4 Grössen einerseits , und der Excentrizität der
Meridian - Ellipse andererseits , eine Beziehung hersteilen durch
Vermittlung der reduzierten Breiten .

Jordan , Handb . d . Vermessungskunde . 4. Aufl . 113. Bd . 37
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Bezeichnen wir die reduzierten Breiten mit xp und xp
'
, so ist nach (11) § 103 . S . 519 :

co, xP = — eos V ..=ry i — e2
cos ip

' = co°£

oder :
cos xp =

cos cp j/l - (- e'2

V l/l — e2

cos cp
' 1/1 —j—e' 2

COSXp = yr .

(1)

(la )

Die reduzierten Breiten xp und xp
' geben mit den Azimuten a und « ' nach (1)

§ 104 . S . 524 die Gleichung :
cos xp sin a = cos xp

' sin a’

Dieses in Verbindung mit ( la ) giebt :

(cos cp
’ sin a ' \ 2 V '2 1 4 - e '2 cos2 <p

'

ri
~~

(2)

cos cp sm a

Setzt man zur Abkürzung :
cos q>' sin «’

cos cp sin a

1 + e ' 2 cos2 cp

= 3

so wird :

Damit hat man auch :

e ' 2 =

1 + e '2 =

q2 cos2 cp — cos2 cp
'

sin2 cp
’ — q2 sm2 <p __

(3)

(4)

_ _ _ (5)
g2 cos2 <p — cos2 cp

’ 1 — e2

Man hat also in (3)— (5) abermals ein Gleichungs -System von derselben Form

wie bei zwei Breiten - Gradmessungen in § 114 und bei zwei Längen - Gradmessungen
in § 117.

Zu einem Zahlen -Beispiele nehmen wir :

Trunz cp
’ = 54° 13' 11,466" « ' = 67 ' 26' 56,156" 1 ,g,

Berlin <p = 52° 30' 16,680" a = 62' 31 ' 15,416" |

Wenn man diese (6 ) in die Formeln (3) , (4) und (5) einsetzt , so bekommt man :

0,000195 095 _log q2 = 9 .9999152 -63

loge '%= 7 .833 981

e ' 2 =
0,370 440 0839 — 0,341 846 755

1
9 .997 0468log (1 + e '2) = log

Damit ist die Excentricität der Meridian -Ellipse bestimmt . Man sieht aus den

Gleichungen (3) und (4) unmittelbar , dass das ganze Verfahren unbrauchbar wird ,

wenn die beiden Punkte , in welchen die Breiten <jp, cp
’ und die gegenseitigen Azimute

a , a ' gemessen werden, entweder auf demselben Meridian oder auf gleicher Breite

liegen , denn im Meridian ist a = a ' = 0 , also q = -jj- ; und wenn cp
' = cp ist , so muss

wegen ( 1) und (2), auch a ' = a werden , also wieder q = -jj- , d . h . unbestimmt . Auch

wenn cp und cp
' beide klein sind , d . h . die Messung in der Nähe des Äquators statt¬

findet , versagt die Methode , weil dann a und a ' sehr wenig verschieden sind , also

q nahe = 1 und e '2 nahezu = -jj-.

Hiernach ist das Verfahren anwendbar in höheren Breiten mit Erstreckung
schief zum Meridian .
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Wenn ausser den astronomischen Messungs -Ergebnissen cp, cp
’
, a , a ' auch die

Länge s der verbindenden geodätischen Linie bekannt ist , so kann man auch die
Erdaxe bestimmen .

Wir können hiezu die Gleichung (17) § 106 . S . 533 benützen , nämlich mit Ein¬

setzung von S nach (10) S . 532 :

o- Yl ^
~
e2 = — F 1 - | ( 2^ 2 Vsin « j i2 ^ eos a j (1 —f2 + J/2 + 6 )?2 12)

Hier ist nach (9) S . 189 c /̂l

Zusetzung des nötigen p :

- e2 — a , also giebt vorstehende Gleichung , mit

j 1 ~ U ( 2 (t « JW (y Haw « ^ (1 — ;iS + ^ + 6 ?2i2)jJ . (9)

Es kommt also nur noch darauf an , u zu berechnen , und das ist eine rein

sphärische Aufgabe , welche mit Hilfe der Fig . 2. bzw . der ausführlicheren Fig . 2.
in § 105 . S . 525 gelöst wird .

Als Vorbereitung hiezu berechnet man die beiden reduzierten Breiten xp und ip'
,

wobei der zuvor in (5) und (7) ermittelte Excentricitätswert e bzw . e ’ zu benützen ist .

tang \p = ]/l — e2 tang cp , tang xp
' = ]/l — e2 fang cp

' (10)

Nun hat man in dem sphärischen Dreieck von Fig . 2 . vier Stücke gegeben ,
nämlich xp, xp

’
, a , a "

; die Berechnung von ff ist also nicht bloss bestimmt , sondern

sogar überbestimmt , wodurch eine Rechenprobe entsteht , denn Fig . 2.
die reduzierten Breiten xp und xp

' nach (10 ) beruhen auf der - (entsprechendFig.ä .s . 525.)

jenigen Excentricität e bzw . e '
, welche in (3) — (5) aus den '"7'

4 Grössen cp, cp
'
, a , a ' selbst abgeleitet worden ist . Würde

also die Kechenprobe bei der Doppelbestimmung von er nicht

stimmen , so könnte der Grund entweder in der sphärischen
Rechnung nach Fig . 2 . oder aber auch in der vorhergehenden

Berechnung der reduzierten Breiten nach (10) liegen .

Die zu der genannten sphärischen Berechnung von ff nach Fig . 2. nötigen For¬

meln können wir von § 105 . S . 526 entnehmen ; wir wollen dabei zwei Werte M ein¬

führen , den ersten zu xp und « gehörig , den zweiten zu xp
' und a ' gehörig , dann ist :

a = M ' — M (11 )

Für M und M ' hat man nach (2) S. 526 :

tangM = tan^ , tangU >= ** & £ (12)J cos a cos a

Aus (12 ) und (11) hat man bereits das gewünschte ff . Die dazu gehörige ,

oben erwähnte Rechenprobe kann man auf verschiedene Art erlangen , z. B . durch Ver¬

mittlung des Bogens m, welcher für M und M ' derselbe ist . Nach (2) und (3) S. 526 ist :

sin m = cos ip sin u = cos xp
' sin <x

dann : sinM ^ ,
W

sm xp t
Damit hat man die zweite Bestimmung von M und M ’

, als Versicherung für (12).

Wenn aber M und M ’ erheblich grösser als 45 ° sind , so sind die Bestimmungen (13)

nicht günstig ; dann rechnet man lieber :
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cotg iLj = lang M sin m , cotg Ä2 = lang M ' sin m
^■2 — ^-l = ^

sin Ä. cos rl/ sin Ä cos th
svn er = - :- - = - ;- —t-

stn a sma
Die Anwendung dieser Formeln auf unser Beispiel (6 ) giebt :

Trunz ip
' = 54 ° 7' 38,6482 " a ' = 67 ° 26 ' 56,152 "

Berlin '
xp = 52 ° 24' 37,8514 ” « = 62 ° 31 ' 15,416”

M = 70 ° 26 ' 40,0950 " M ' = 74 ° 29' 58,3496 ”
M! — M = a = 4 ° 3 ' 18,2546 ”

, m = 32 ° 45' 50,2488 "
Ä2 — Ai = X = 6 ° 8 ' 45,6806 ”

, <i = 4 ° 3 ' 18,2548”

Die beiden Werte (j nach (15 ) und (16 ) stimmen unter sich hinreichend; wir
haben mit dem Mittel tj = 4 ° 3’ 18,2547 " weiter gerechnet , und damit aus (9 ) erhalten :

log rj* = 7 .385 5669 , log F 2 = 0.001 0593 .6
a = 6 380 516,074 ” — 9,543” + 0,448” = 6 380 506,979 ” , log a = 5 .804 8551 -88 (17)

Die Korrektionsglieder von (9) haben also hier nur 9,5” und 0,4” ausgemacht ,
woraus zugleich zu ersehen ist , dass keine Wiederholung der Rechnung nötig ist wegen
des in (9) vorläufig benützten c = a ~\f 1 -+- c '2.

Der Grundgedanke , die Excentricität der Meridian -Ellipse aus einer Gradmessung schief zum
Meridian zu bestimmen , ist zuerst von J . Tobias Mayer erfasst worden , wie aus „Astr . Nacbr .
13. Band , 1836“, S. 363, bervorgeht . Die erste Ausführung dieses Gedankens haben wir in der MGrad¬
messung in Ostpreussen “ von Beseel , welcher in der Vorrede S. V—VI seines Werkes über diese
Gradmessung Tobias Mayer citiert .

(14)

(15 )
(16 )

Mg, 1

§ 119. Gradmessung schief zum Meridian .
Wenn man nach Fig . 1 . eine geodätische Linie s (bzw. eine Dreieckskette)

schief zum Meridian anlegt , am Anfangspunkt und am Endpunkt derselben die Azimute
«1, ß2 und die Breiten qpj, cp2 und endlich noch den Längenunterschied l astronomisch

misst , so hat man alles das , was wir bisher als Breiten -

Gradmessung, Längen-Gradmessung und Azimut-Übertragung
getrennt behandelt haben , nun vereinigt ; und da eine
schiefe geodätische Linie mit Azimuten und Breiten an
den Endpunkten nach § 118 . hinreicht zur Bestimmung
der Ellipsen -Dimensionen, so haben wir in der Vereinigung
der 6 genannten Messungen bereits eine über das un¬
mittelbare Bedürfnis hinausgehende Bestimmung der Erd -
dimensionen.

Man kann sich dieses auch so klar machen: Ein

sphärisches Dreieck von der Form Fig . 1 . ist seiner Form
nach bestimmt durch 3 Stücke , z. B . durch qpj, <p2, h unl
auch den Halbmesser zu bestimmen , auf welchem das sphä¬
rische Dreieck' liegen soll , braucht man ein viertes Stück,
s linear gemessen . Geht man über zu einem Ellipsoid ,

auf welchem das Dreieck Fig .- 1 . liegen soll , so tritt eine weitere Unbekannte auf m
dep Excentricität , so .dass nun 5 Messungsstücke erforderlich werden. Wenn also in
Fig . -1 , (ip, ..ganzen 6 Stücke gemessen sind, , so ist auch für das Ellipsoid noch eine
Messung überschüssig , oder man hat es mit einer Ausgleichung zu thun.
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Wie gewöhnlich wird diese Ausgleichung dadurch behandelt , dass man Näherungs¬
werte der Erddimensionen einführt , und durch Differentiieren Beziehungen herstellt
zwischen Verbösserungen jener Näherungswerte einerseits und Änderungen der beob¬
achteten Grössen andererseits .

Man überblickt auch sofort , dass man mehrere solcher Systeme , wie das in Fig . 1 .
dargestellte , in eine Gesamtausgleichung zusammenfassen kann .

Dieses ist der Grundgedanke der heutigen internationalen Erdmessung . Eine

wichtige Rolle spielen dabei die Lotabweichungen , von welchen wir im nächsten

Kapitel XII noch das Nötigste behandeln werden.

Kapitel XII .

Lotabweichungen .

§ 120 . Allgemeines über lotabweicbungen .

Anknüpfend an das , was wir schon in der Einleitung S . 11 über den Begriff
der Lotabweichungen und des Geoids erwähnt haben , gehen wir nun zu näherer Be¬

trachtung der Lotabweichungen über .
Wenn wir bei unseren Triangulierungen die unmittelbar gemessenen Grund¬

linien auf die Höhe des Meeres , (bzw. auf Normal -Null ) reduzieren (vgl . S . 67 ) , so

legen wir damit unseren Messungen nnd Berechnungen eine ideale Erdoberfläche zu

Grunde , welche , in erster Näherung , mit der Oberfläche der Weltmeere zusammen¬

fallend, und unter den Kontinenten stetig fortgesetzt , angenommen wird.

Wenn wir ferner bei unseren geodätischen und astronomischen Winkelmessungen
die vertikale Axe der Instrumente durch die Wasserwage einstellen , und die so er¬

haltenen Messungen in üblicher Weise weiter rechnerisch behandeln , so nehmen wir

die durch die Wasserwage bestimmte Schwere-Richtung als geometrische Normale

jener idealen Erdoberfläche an , und führen für diese Fläche ein Umdrehungs -Ellipsoid
von gewissen Dimensionen in die Rechnung ein .

Nun haben aber schon die ersten zusamrnenfassenden Berechnungen der Grad-

messungen ergeben , dass jene ideale Erdoberfläche nicht genau ein Ellipsoid ist , und

man kann durch eine einfache physikalische Betrachtung zeigen, dass die ideale Erd¬

oberfläche, welche wir den geodätischen Messungen und Berechnungen zu Grunde legen,

kein Ellipsoid sein kann , weil auch die physische Erdoberfläche mit ihren Bergen und

Thälern , Kontinenten und Meeren, selbst nicht ellipsoidisch ist .

Die Schwerkraft , welche auf einen Punkt (bzw. ein Massen-Element ) an der

Erdoberfläche einwirkt , ist die Resultante der Anziehungen , welche alle einzelnen

Massenteile des Erdkörpers auf den Punkt ausüben , in Verbindung mit der Einwirk -

un§ der Centrifugalkraft .
Zwischen zwei Massenteilen mi und m%, welche sich im Abstand » von einan er

befinden, besteht eine Anziehung , welche proportional — i®*-
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