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Wie gewöhnlich wird diese Ausgleichung dadurch behandelt , dass man Näherungs¬
werte der Erddimensionen einführt , und durch Differentiieren Beziehungen herstellt
zwischen Verbösserungen jener Näherungswerte einerseits und Änderungen der beob¬
achteten Grössen andererseits .

Man überblickt auch sofort , dass man mehrere solcher Systeme , wie das in Fig . 1 .
dargestellte , in eine Gesamtausgleichung zusammenfassen kann .

Dieses ist der Grundgedanke der heutigen internationalen Erdmessung . Eine

wichtige Rolle spielen dabei die Lotabweichungen , von welchen wir im nächsten

Kapitel XII noch das Nötigste behandeln werden.

Kapitel XII .

Lotabweichungen .

§ 120 . Allgemeines über lotabweicbungen .

Anknüpfend an das , was wir schon in der Einleitung S . 11 über den Begriff
der Lotabweichungen und des Geoids erwähnt haben , gehen wir nun zu näherer Be¬

trachtung der Lotabweichungen über .
Wenn wir bei unseren Triangulierungen die unmittelbar gemessenen Grund¬

linien auf die Höhe des Meeres , (bzw. auf Normal -Null ) reduzieren (vgl . S . 67 ) , so

legen wir damit unseren Messungen nnd Berechnungen eine ideale Erdoberfläche zu

Grunde , welche , in erster Näherung , mit der Oberfläche der Weltmeere zusammen¬

fallend, und unter den Kontinenten stetig fortgesetzt , angenommen wird.

Wenn wir ferner bei unseren geodätischen und astronomischen Winkelmessungen
die vertikale Axe der Instrumente durch die Wasserwage einstellen , und die so er¬

haltenen Messungen in üblicher Weise weiter rechnerisch behandeln , so nehmen wir

die durch die Wasserwage bestimmte Schwere-Richtung als geometrische Normale

jener idealen Erdoberfläche an , und führen für diese Fläche ein Umdrehungs -Ellipsoid
von gewissen Dimensionen in die Rechnung ein .

Nun haben aber schon die ersten zusamrnenfassenden Berechnungen der Grad-

messungen ergeben , dass jene ideale Erdoberfläche nicht genau ein Ellipsoid ist , und

man kann durch eine einfache physikalische Betrachtung zeigen, dass die ideale Erd¬

oberfläche, welche wir den geodätischen Messungen und Berechnungen zu Grunde legen,

kein Ellipsoid sein kann , weil auch die physische Erdoberfläche mit ihren Bergen und

Thälern , Kontinenten und Meeren, selbst nicht ellipsoidisch ist .

Die Schwerkraft , welche auf einen Punkt (bzw. ein Massen-Element ) an der

Erdoberfläche einwirkt , ist die Resultante der Anziehungen , welche alle einzelnen

Massenteile des Erdkörpers auf den Punkt ausüben , in Verbindung mit der Einwirk -

un§ der Centrifugalkraft .
Zwischen zwei Massenteilen mi und m%, welche sich im Abstand » von einan er

befinden, besteht eine Anziehung , welche proportional — i®*-
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In Fig . 1 . unten , ist die Erde kugelförmig angenommen , und über die kugel¬
förmige Erdoberfläche soll eine Gebirgsmasse m hervorragen . Wenn es sich um
Bestimmung der Lotrichtung in einem ausserhalb der kugelförmigen Erdoberfläche
liegenden Punkte A handelt , so kann man die ganze Masse der Erde im Erdmittel¬
punkt konzentriert annehmen . ( Der Beweis für die Zulässigkeit dieser Annahme lässt
sich in elementarer Weise aus der Definition der Gravitation herleiten .) Es sei nun
M die Masse der Erde und m die Masse eines Gebirges , dann bekommt man für einen
Punkt A , dessen horizontaler Abstand von dem Schwerpunkt des Gebirges = r ist,
eine durch das Gebirge erzeugte Lotabweichung 0 , entsprechend der Gleichung :

_ m M m Rß .. .
tang © = -̂ : w (1)

Fig . 1.
Lotabweichimg 0 .

jß2 M r2

Das Volumen der Erde ist = -5- n Rß , und wenn
O

y die mittlere Dichte der Erde ist , so hat man die
Masse der Erde :

M — -3 - y n Rß (2 )

Das Volumen des Gebirges sei V, dessen Dichte
sei d , dann ist die Gebirgs -Masse :

m = V 8 (S)
Aus (1) , (2) und (3 ) findet man die Lotabweich¬

ung 0 als kleinen Winkel :

4 y Rr 2 n
Nach Listing „ Neue geometrische und dynamische Konstanten des Erdkörpers “,

aus den „Nachr . der König ! Gesellsch . der Wissensch . , Göttingen 1878 “
, S . 61 , ist

die mittlere Dichte der Erde : y = 5,63 ; der mittlere Erdhalbmesser ist in runder Zahl
(nach S . 225 ) : 72 = 6 370 000’“. Setzt man dieses in (4) ein , so erhält man :

(4)

0 = 0,001373 -
g
- in Sekunden (5)

Dabei ist V das Volumen des Gebirges in Kubikmetern und r die Entfernung in
Metern zu nehmen .

Als Beispiel nehmen wir die summarische Schätzung des Einflusses des nörd¬
lichen Schwarzwaldes mit dem Zentralpunkt Hornisgrinde auf die meridionale Lot¬
richtung in Durlach . Das Volumen dieses Gebirgsstocks stellt sich ungefähr dar als
Produkt von 65 000”* Breite , 43 000™ Länge und 800™ Höhe ; die mittlere Entfernung
von Durlach mag r = 46 000™ angenommen werden und die Dichte ö = 2,3 (bunter
Sandstein und Granit ) . Mit diesen Zahlen bekommt man aus (5 ) :

v = 3,3"

Durch eine ähnliche Überschlagsrechnung bekommt man für den südlichen
Schwarzwald 1,0" und für die schwäbische Alb 1,6" zusammen 5,9" .

In dieser Weise kann man mit Sicherheit schliessen , dass die sichtbaren Un¬

gleichheiten der Massenverteilung an der Erdoberfläche erhebliche Lotablenkungen
im Vergleiche mit den Lotrichtungen eines mittleren Ellipsoids erzeugen müssen , d . h .
Lotablenkungen , welche bei den Mittelgebirgen 5"— 10" betragen , und bei Hoch¬
gebirgen bis 1 ' steigen müssen .
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Ausser den sichtbaren Ungleichheiten der Massenverteilung an der Oberfläche
der Erde giebt es aber auch Massen-Ungleichheiten unterhalb der Erdoberfläche , welche
nicht durch geometrische Volumen -Berechnung bestimmt werden können.

Bas Geoid.
Nachdem erkannt ist , dass die Schwerkraft -Richtungen im allgemeinen nicht

mit den Ellipsoid -Normalen zusammenfallen , kommt man zu der Annahme einer anderen

krummen Fläche , welche von allen Schwerkraft -Richtungen rechtwinklig geschnitten
wird , und in Hinsicht der Höhenlage sich der physischen Erdoberfläche möglichst

anpasst . Diese Fläche nennt man das Geoid (nach Listing , vgl. Einleitung S . 11).

Fig . 2. Ellipsoid und Geoid .

Ellipsoid .

In vorstehender Fig . 2. ist die gegenseitige Lage der ’jphysischen Erdoberfläche ,

eines mittleren Ellipsoids und des Geoids in grob schematischer Weise dargestellt .

Die Linie für das Ellipsoid ist gerade gezogen, insofern es sich nur um einen kleinen

Teil der Erdoberfläche handeln soll und die Zeichnung nur dazu dient , die realitiven

Krümmungen zwischen dem mittleren Ellipsoid und dem Geoid zu veranschaulichen .

Die ausgezogenen Pfeillinien stellen die geometrischen Normalen des Ellipsoids ,
und die punktierten Pfeillinien stellen die physikalischen Lotlinien vor , welche recht¬

winklig zur Geoidfläche sind . Der kleine Winkel zwischen einer Ellipsoid -Normalen

und der Schwerkraft -Richtung ist die Lotablenkung ; fällt die Schwerkraft -Richtung

mit der Ellipsoid -Normalen zusammen , wie in Fig . 1 . über der Wasserfläche und in

der Höhe des Berges angenommen ist , so ist die Lotablenkung gleich Null .

Bie Geoid-Falten .
Wenn nur die sichtbaren Massen-Ungleichheiten wirksam sind , so kann man

z. B . in dem einfachen Falle von Fig . 2. , wo ein Gebirge zwischen zwei Meeren an¬

genommen ist , sofort sagen , dass unter dem Gebirge das Geoid über das mittlere Ellipsoid

emporgehoben , und über den Meeren das Geoid unter das Ellipsoid gesenkt sein muss.

Um zu schätzen , wie hoch oder wie tief die Falten zwischen dem Geoid und

einem mittleren Ellipsoid etwa
sein werden , denken wir nach
Andeutung von Fig . 3 . eine
solche Falte von kreisförmigem
Profil mit einer Lotablenkung 0
am Anfänge und am Ende , auf
eine Erstreckung s , so wird die
Höheh als Pfeilhöhe eines flachen

Fig . 3.
_ S -

GeoU-- > f,- - .-
Ellipsoid
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Kreisbogens vom Centriwinkel 2 0 mit der Sehne oder Bogenlänge s für einen Halb¬
messer r , woraus folgt :

also h s 0 bzw.2 r \ 2
s

Nehmen wir s = 100 000™ und 0 = 10"
, so giebt dieses h = 1,2”*.

Im Mittel -Gebirge handelt es sich bei den Geoid-Falten immer nur um Höhen
von einigen Metern . So giebt das Geoid des Harzes nur Höhen von l m— 2™ gegen
das Ellipsoid (s . Helmert , „Höhere Geodäsie , I , 1880 “ S . 570) .

Viel grössere Erhebungen und Vertiefungen der Geoid-Falten ergeben sich bei
der Massenwirknng ganzer Kontinente gegenüber weniger dichten Oeeanen . Im Durch¬
schnitt fiir die sämtlichen Kontinente liegt innerhalb derselben die gestörte Meeres¬
fläche (Geoid) nach der Berechnung um 700“ über der ursprünglichen Meeresfläche
(Helmert , „Höhere Geodäsie , II . , 1884 “

, S . 356).
Dieses ist aber ein Ergebnis aus Massen -Wirkungsberechnungen , welchem die

Ergebnisse von Pendelbeobachtungen gegenüber stehen . Helmert hat aus solchen
Vergleichungen geschlossen (Helmert , „Höhere Geodäsie , II . “, S . 364 —365) , „dass die
Wirkung der Kontinentalmassen mehr oder weniger kompensiert wird durch eine Ver¬
minderung der Dichtigkeit der Erdkruste unterhalb der Kontinentalmassen “. „Die
Kontinente erscheinen hiermit als Schollen der Erdkruste , welche etwas geringere
Dichtigkeit haben als letztere im allgemeinen “

, und Pendelbeobachtungen zeigen,
„ dass in der Regel Gebirge durch unterirdische Massendefekte mehr oder weniger
kompensiert sind “ .

'

Hieraus folgt , dass die Höhe der Geoid-Falten eine geringere ist , als die
Verteilung zwischen Wasser und Land nach der schematischen Darstellung von Fig . 2 .
S. 583 vermuten lässt .

Lotäblerilcung und Lotdbweichung .
Durch astronomisch -geodätische Hilfsmittel kann man immer nur Differenzen

von Lotablenkungen , oder relative Lotablenkungen bestimmen , aus zwei Gründen :
Erstens braucht man zu der Berechnung die Annahme eines Vergleich -Ellipsoids
(z . B . des Besselsehen Ellipsoides ) , und das ist eine innerhalb ziemlich weiter Grenzen
willkürliche Annahme , und je nachdem man ein Ellipsoid zur Vergleichung annimmt,
bekommt man verschiedene Lotablenkungen .

Ausserdem braucht man zu Lotablenkungs -Berechnungen irgend einen festen
Ausgangspunkt , z . B . hat das geodätische Institut hiefür den Punkt Rauenberg bei
Berlin . Nun geben alle Berechnungen nur die Vergleichung der Lotablenkungen
anderer Punkte mit der Lotablenkung des Ausgangspunktes , welche selbst unbekannt ,
zuweilen schlechthin gleich Null gesetzt , oder dem negativen Mittel aller anderen
Ablenkungen entsprechend angenommen werden kann .

Aus diesen Gründen werden verschiedene Benennungen eingeführt ; nach Helmert
( „Höhere Geodäsie , 1880 “

, I . Band , S . 514) unterscheiden wir erstens : absolute „Lot¬
ablenkungen “

, d . h . solche, welche sich auf das günstigste mittlere Vergleichs -Ellipsoid
beziehen , dessen Mittelpunkt mit dem Erdschwerpunkt , und dessen kleine Axe mit der
Umdrehungsaxe der Erde zusammenfällt , und zweitens relative „Lotabweichungen “,
welche sich auf ein vorläufig der Rechnung zu Grunde gelegtes Vergleichs -Ellipsoid
und auf eine bestimmte Lage desselben beziehen .
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Fig . 1.

§ 121. Bestimmung der Lotabweichung durch Vergleichung
astronomischer und geodätischer Messungen .

Die Lotabweichung ist der Winkel , welchen die physikalische Lotlinie eines
Punktes mit der entsprechenden Ellipsoid -Normalen bildet .

Wir wollen zuerst den einfachen Fall der
Lotabweichung im Meridian behandeln , d . h . wir
wollen annehmen , dass die Lotlinie von der El-
lipsoid-Normaien abweicht , aber in der Ebene
des Ellipsoid -Meridians sich befindet .

Dieser Fall ist in Fig . 1 . dargestellt . In
einem Punkte J des Ellipsoids haben wir die
Ellipsoid -Normale J Z mit der ellipsoidischen oder
geodätischen Breite <jp, und die Lotlinie J Z ' mit
der astronomischen Breite <jp

' . Die Lotlinie JZ
ist rechtwinklig auf der Geoidfläche , welche
durch die punktierte Linie G J G' angedeutet ist .
Der Winkel § zwischen J Z und J Z ' ist die Lot¬
abweichung im Meridian , und wir wollen § positiv zählen , wenn , wie in Fig . 1 . an¬

genommen ist , die Lotlinie JZ ' gegen den Nordpol hin von / ü abweicht . Man sagt
in diesem Falle auch , die Zenit -Abweichung § ist nördlich oder die Lot -Abweichung £
ist südlich , und wir haben hiefür nach Fig . 1 . :

| = (jp
' — (p (1)

Die Lotabweichung im allgemeinen , d . h . nicht nur im Meridian , kann in zweierlei
Weise bestimmt werden : Erstens giebt man die absolute Lotabweichung 0 und ihr
Azimut e an , oder zweitens bestimmt man die beiden Komponenten £ und tj der Lot¬

abweichung nach Norden und Osten, dieselben sind :

g = 0 eos e rj = 0 sin s (2)

Diese zwei Gleichungen , welche nach dem Vorhergehenden wohl unmittelbar
zu verstehen sind , werden wir auch wieder bestätigt finden durch die nachfolgende
Dig . 2 ., zu welcher wir nun übergehen .

Fig . 2.
z = Geodätisches Zenit , dem Ellipsoid entsprechend , 9 = geodätische (ellipsoidische ) Breite .

^ — Astronomisches Zenit , dem Geoid entsprechend , 9 ' = astronomische Breite (Polhöhe).

7 *
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In Pig . 2 . S . 585 sei Z das geodätische Zenit und Z ' das astronomische Zenit.
P ist der Pol , welcher zu beiden Zeniten in Beziehung steht . / ist ein Punkt der Erd¬
oberfläche , auf welchem geodätische und astronomische Beobachtungen gemacht werden.
Durch astronomische Beobachtungen soll die Polhöhe qp

'
, die geographische Länge X,

und ein Azimut « ' bestimmt werden , und es handelt sich um die Auffindung von
Beziehungen zwischen diesen Grössen (jD

'
, X'

, ei und den entsprechenden geodätischen
Werten qp , X , a , welche man erhalten haben würde , wenn das Zenit nicht in Z '
sondern in Z befindlich wäre .

I . Lotabweichung in Breite , £j .
Die meridionale Komponente | der Lotabweichung ist leicht zu bestimmen .
Das Komplement der Polhöhe ist immer gleich dem Bogen zwischen dem Pol

und dem Zenit , also ZP = 90° — cp, Z ' P = 90 ° — <jp
'
, wie auch bereits in Pig . 2 .

eingeschrieben ist .
Da nun das Dreieck P Z Z ' bei Z ' nur die kleine Ordinate Tj hat , kann man

die Projektion § der Seite ZZ ' = v hinreichend genau als Differenz der beiden Seiten
PZ und P Z ' annehmen , also :

| = (90 ° — <p) - (90 ° — qp
' )

£ = qp
' — <p (3)oder

Dieses ist wieder dieselbe Gleichung , die wir schon bei (1) unmittelbar ge¬
funden haben .

II . Lotabweichung in Länge , g sec qp.
Bei Vergleichung der geographischen Längen hat man zu beachten , dass alle

astronomische Längen -Bestimmung auf Ortszeit -Bestimmung beruht . Wenn X' die astro¬
nomisch bestimmte geographische Länge des Punktes J ist , bezogen auf einen west¬
lich von J liegenden Anfangspunkt / 0 (z . B . Ferro , Paris , Greenwich ) , so heisst das
so viel als : Ein Gestirn T , welches in / 0 zur Zeit t0 kulminiert , kulminiert in J
zur Zeit :

(4)t ' = t0 — X'

Diese Kulmination findet statt beim Durchgang des Gestirns durch den Dekli¬
nationskreis PZ '

; dagegen der Durchgang durch den Deklinationskreis PZ , welcher
dem geodätischen Zenit angehört , erfolgt später , und zwar um den Winkelbetrag
ZPZ ’

; oder die geodätische Kulmination erfolgt zur Zeit :
(4 a)t = t0 — X' -(- ZPZ '

Wenn nun X die geographische Länge des Beobachtungspunktes J ist , welche
dem geodätischen Zenit Z entspricht , so hat man entsprechend (4 ) :

t = t0 — X
Aus (4a ) und (5) folgt :

ZPZ ' = X' — X
wie auch bereits in Fig . 2 . eingeschrieben ist .

Um X' — X in rj auszudrücken , braucht man nur wieder das schmale lang¬
gestreckte Dreieck PZ ' Z zu betrachten , oder das schmale rechtwinklige Dreieck,
welches durch Projektion von Z ' auf die Seite PZ entsteht . Dadurch erhält man :

sin Qi — Ä)
sm rj sm rj

o qp
'
) cos qp

'
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Da hier X' — X und rj beide klein sind , und auch cp
' sich von cp nur wenig

unterscheidet , kann man aus der vorstehenden Gleichung bilden :

X' — X = t] sec <p (7)

III . Lotabweichung im Azimut , tang <p .

Bei astronomischer Azimutmessung handelt es sich um den Horizontalwinkel

zwischen der Richtung nach dem Pol P und der Richtung nach einem geodätischen

Zielpunkt , der in Pig . 2 . im Horizonte liegend als Punkt A angenommen sei. Die

astronomische Azimutmessung wird daher den Winkel am astronomischen Zenit Z '

geben , welcher in Pig . 2 . als eine Summe e' + u’ bezeichnet ist . Dabei war die ver¬

tikale Theodolit -Axe nach dem astronomischen Zenit Z ’ oder nach der physikalischen
Lotlinie J Z ' gerichtet , und das Messungs -Ergebnis e' - j- u' ist von der Lotabweichung
beeinflusst .

Wenn wir andererseits dasjenige Azimut kennen lernen wollen, welches man

ohne Lotabweichung erhalten haben würde, d . h . das geodätische Azimut, so muss man

die vertikale Theodolit -Axe nach dem geodätischen Zenit JZ gerichtet denken , und

damit erhält man das Azimut , welches bei Z als eine Summe e -hu , und in der

Horizontal -Ebene bei J als ein Winkel a = e -{- u dargestellt ist . Zur Vergleichung

haben wir also nun :
Geodätisches Azimut a = e + u (8)

Astronomisches Azimut a ' = e' + u' (9)

Differenz « — a ' = (e — «') ■+- (« — « ') (10)

Von diesen beiden Teilen t — e' und u — u ' ist der zweite Teil u — u' immer

sehr klein und meist zu vernachlässigen , wenn der geodätische Zielpunkt A im Hori¬

zonte seihst liegt , oder wenigstens nur einen kleinen Hohen- oder Tiefenwinkel hat .

Die Differenz u — u ' ist
zu vergleichen dem Fehler einer
Horizontal -Winkelmessung , der
dadurch entsteht , dass die Theo-
dolitaxe nicht genau vertikal ,
sondern etwas schief gestellt
wird.

Die hiefür giltige Fehler -
Formel haben wir schon früher
(Band II , 4 . Aufl. 1895 , 8 . 203)
entwickelt , im wesentlichen
ebenso , wie wir nun die Ent¬
wicklung machen , im Anschluss
an Fig . 3 ., welche sich von Fig . 2 .
nur dadurch unterscheidet , dass der geodätische Zielpunkt A nicht mehr im Horizont ,

sondern mit einem Höhenwinkel h angenommen wird.

Indem wir nun eine Cotang -Gleichung von § 27 . S . 164 auf das sphärische

Dreieck ZZ ' A Fig . 3 . anwenden , erhalten wir :

cotg (90 ° — h) sin 0 = cos 0 cos u + sin u cotg (180° — « ' ) (U )

Fig. 3.
Z = Geodätisches Zenit . Z' = Astronomisches Zenit .

Z



588 Bestimmung d . Lotabweichung durch Vergleich , astr . u . geodät . Messungen . § 121 .

Indem man © als klein behandelt , erhält man :
© tang h = cos u — sin u cotg u'

_ , cos u sin u’ — sin u cos u'
0 tang h = - :- =

smu
sin (w' — u)

sinu '
also : u' — u — 0 sin u tang h (12)
Wenn der Höhenwinkel h klein ist , wie es bei geodätischen Zielpunkten ge¬wöhnlich der Pall ist , so ist 0 tang h eine kleine Grösse zweiter Ordnung , welche wir

vernachlässigen , oder besonderer Berücksichtigung Vorbehalten.
Es bleibt also noch der erste Teil der Formel (10 ) , d . h . e — e ' zu untersuchen ,und hiezu machen wir eine ganz ähnliche Entwicklung wie soeben (11 ) — (12), noch¬

mals in Bezug auf das sphärische Dreieck Z Z ' P .
Wir nehmen also wieder eine Cotang -Gleichung von § 27 . S . 164 und finden

durch deren Anwendung auf das Dreieck ZZ ' P :
cotg (90 ° — cp) sin 0 = cos 0 cos e H- sine cotg ( 180° — «' )

0 tang cp = cos e — sin e cotg e'
_ , cos e sin «' — sin e cos s' sin (e' — e)0 tang w — - :— ;- = - v -—-sin e sin e

also : «' — s = © sin s tang cp (13)
Statt der absoluten Lotabweichung 0 kann man hier auch die Quer -Komponente

g — 0sine einführen , und indem wir mit der bei (12) besprochenen Vernachlässigungwieder die Azimut -Differenz a — a ' selbst betrachten , haben wir :
« ' — <x = rj tang cp (14)

Zusammenfassung der Grundformeln für Lotabiceichung .

Bezeichnungen .
Geodät .

Geographische Breite oder Polhöhe cp
Geographische Länge von Westen nach Osten positiv gezählt X
Azimut von Norden nach Osten positiv gezählt a

Astron .

cp
'

X'

a '

Absolute Lotablenkung oder Zenitablenkung = ©
Südliche Lotablenkung oder nördliche Zenitablenkung = |Westliche Lotablenkung oder östliche Zenitablenkung = g

(15)

Formeln .
i = (jp

' — qp
g = {X’ — X) cos cp
g = {cf — « ) cotg <p

Die beiden Gleichungen ( 17 ) und (18) geben die Kontroll -Gleiohung :

(16)
(17)
(18)

a ' — a = [X! — X) sin q> (19)
Zur Bestimmung der Lotabweichung £ im Meridian giebt es nur ein Mittel,nämlich nach (16 ) die Vergleichung astronomischer und geodätischer Breiten . Dagegenfür die Querabweichung g kann man nach ( 17) und (18) die Längen -Vergleichung^ ^ oder die Azimut -Vergleichung a ' — a benützen ; oder hat man beides , so ergiebtsich eine sehr erwünschte Probe , entsprechend der Gleichung ( 19) .
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Diese Gleichung (19 ) a! — a = (X
' — X) sin q) heisst Laplacesche Gleichung ;

dieselbe ist sehr wichtig , weil sie eine Beziehung giebt zwischen den beiden aus Lot¬
ablenkung entstandenen Differenzen d — a und X' — Ä, ohne dass die Lotablenkungs¬
beträge £ und r] selbst bekannt zu sein brauchen .

Wir wollen den Sinn dieser Gleichung nochmals mit geodätischer Anwendung
zurechtlegen : Von einem Punkte 0 ohne Lotablenkung geht eine geodätische Linie
nach einem Punkte J (in Fig . 3 . S. 587) und es wird Länge und Azimut von A nach J
geodätisch übertragen mit den Ergebnissen Ä und a . Diese Übertragung wollen wir
als fehlerfrei annehmen , und wenn nun im Punkt J auch astronomisch fehlerfrei ge¬
messen wird , und keine Lotablenkung stattfindet , so müssten wieder die Werte X und a
erhalten werden . Wegen der in J stattfindenden Lotablenkung wird aber astronomisch
X' und « ' gemessen , und dazu besteht die Laplace sehe Probe d — a = (X — Ä) sin <jp.

Es besteht also eine Probe für die geodätischen Übertragungen von Azimut
und Länge , unabhängig von den Lotablenkungen .

Dieses ist nur eine summarische Erläuterung des Wesens der Laplaceschen
Gleichung , deren nähere Betrachtung an die zwei letzten Gleichungen der Gruppe (6)
im folgenden § 122. S . 592 anzuschliessen wäre.

§ 122 . Astronomisch-geodätisches Netz .

Um die Bedeutung eines astronomisch -geodätischen Netzes zunächst im ganzen
zu erklären , wollen wir nochmals zurückschauen auf das rein geodätische Netz der

Preussisehen Landesaufnahme , welches in § 102 . mit der Zeichnung auf S . 520 —521 vor¬

geführt worden ist . Dort war nur ein Zentralpunkt , Berlin , astronomisch nach Breite ,

Länge und Azimut bestimmt , und daran hängt die ganze astronomische Orientierung
des Netzes .

Im Gegensatz hiezu betrachten wir in Fig . 1 . S . 590 das astronomisch - geo¬
dätische Netz , welches dem „ Arbeitspläne des geodätischen Institutes für das

nächste Dezennium “ , Berlin 1886 , entnommen ist . (Abgedruckt in der „Zeitschr . f.

Verm. “ 1886, S . 497—506 .)
Die geraden Verbindungslinien dieses Netzes kann man sich als geodätische

Linien denken , welche als Repräsentanten ganzer Dreiecksketten etwa in dem Sinne

von § 72 . Fig . 2. und Fig . 3 . S . 388—389 anftreten ; oder wir können z . B . annehmen,

dass die Verbindung Leipzig — Brocken in dem astronomisch - geodätischen Netze ans

den Dreiecken von § 102. S . 520— 521 längs den Dreiecksseiten Leipzig—Petersberg —

Kyffhäuser —Brocken als geodätische Linie berechnet worden sind, wie auf S . 389 — 390

gezeigt wurde .
Mag das nun im einzelnen Palle nach der einen oder anderen Art geschehen

sein ; wir können annehmen , dass alle Punkte unseres astronomisch -geodätischen Netzes,

jeder für sich nach geographischer Breite , geographischer Länge und mit Azimuten

astronomisch bestimmt , und dass alle diese Punkte unter sich durch geodätische Linien

verbunden seien . Nun bestehen ausser den rein geodätischen Bedingungen in unserem

Netze die Laplaceschen Gleichungen , welche wir am Schlüsse von § 121 . oben kennen

gelernt haben , und dadurch kann eine Ausgleichung des Netzes viel schärfer gemacht

werden , als nach den geodätischen Bedingungen allein möglich wäre.
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Denken -wir uns ein Netz von der Art der Fig . 1 . mit p Punkten und s Linien ,
und nehmen wir an , jede Linie sei geodätisch hin und her nach Eichtungen beobachtet ,
so hat unter Voraussetzung einer gemessenen Seite s das Netz verschiedene geodätische
Bedingungsgleichungen , deren Anzahl nach unserem I . Bande , 4 . Aufl . 1895 , S . 176 ist :

2 s — 3 p -1- 4 (1)

Astronomisch - ^eodaetisches Netz I Ordnung.

7 JGpr

,11rocken

Leipzig

Majtnheii

Massstab 1 : 10 800 000.

Dabei sind aber die geodätischen Linien selbst nicht als gemessene Grössen
gezählt , sondern nur eine davon als Basis , und wenn die übrigen s — 1 Linien als
lineare Messungen eingeführt werden , so kommt zu (1) noch die Zahl s — 1 hinzu
und wir haben dann :

2s — 3 p - l- 4 + s — 1 = 3s —■3 (p — 1) geodätische Bedingungen (2j
Dazu kommen für s Linien noch s Laplacesche Gleichungen , indem wir annehmen ,

es sei jede Linie am Anfang und am Ende mit astronomischem Azimut gemessen und
der geographische Längenunterschied zwischen den Endpunkten der Linie sei astro¬
nomisch - telegraphisch bestimmt . Also noch s Laplacesche Gleichungen zu (2) hiezu¬
genommen giebt :

4 s —■3 (p — 1) astronomisch -geodätische Gleichungen (3)
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Z . B . unser astronomisch -geodätisches Netz von Fig . 1 . hat p = 31 Punkte und
s = 42 Linien , wobei auch alle die Punkte , an welchen Brechung stattfindet , ohne
dass ein Name beigesetzt wäre , als Punkte unter der Zahl p = 31 genommen sind.
Also s = 42 und p = 31 giebt nach (3) :

168 — 90 = 78 Gleichungen zu Fig . 1 (4)
Man wird also eine Correlatenausgleichung mit 78 Normalgleichungen zu machen

haben , wobei als Beobachtungsgrössen sowohl die linearen geodätischen Linien als
auch die astronomischen Breiten - , Längen - und Azimut-Messungen auftreten (und als
Azimutdifferenzen zugleich die geodätischen Winkel ). Welche Annahmen von mittleren
Fehlern a priori für alle diese Messungen zu machen , oder welche Messungsgewichte
einzuführen sind , das ist eine Sache , welche für sich auf Grund des vorhandenen
Materials zu entscheiden ist (z . B . geodätisch nach den Betrachtungen unseres früheren

§ 24. S . 154—157).

Obgleich hiemit eine solche astronomisch - geodätische Netzausgleichung nach
ihrem Grundgedanken beschrieben ist und obgleich wir hier nicht viel weiter hierin

gehen können , mag es doch am Platze sein , die Aufstellung der Gleichungen noch etwas
näher zu betrachten , auf Grund des Werkes von Helmert : „Veröffentlichung des königl.
Preussischen Geodätischen Instituts . Lotabweichungen . Heft I . Berlin 1886“ und

Helmert : „ Höhere Geodäsie I . S . 279—296“ mit Benützung unserer früheren Behandlung
dieser Sache in der 3 . Auflage dieses Bandes 1890 , S . 539 — 549 .

Fig . 2. Kugel mit reduzierten Breiten . Fig . 3. Ellipsoid .

Hiezu nehmen wir ein geodätisches Polar -Dreieck in Fig . 2 . sphärisch mit redu¬

zierten Breiten und in Fig . 3 . sphäroidisch ; d . h . wir wollen die Theorieen von Kap . IX,

§ 106 . benützen .
Das erste ist die Aufstellung von sphärischen Differentialformeln zwischen den

Breitenänderungen xp
'
1 — xp: = dxpt und xp

'
2 — xp2 = dxp2 den Längenänderungen

— X = d Ä und den Azimutänderungen a \ — « i = d ßj und a a a %— d «%, alles

bezogen auf Fig . 2 . Diese Differentialformeln erhält man durch Differentiieren sphanseh -

trigonometrischer Formeln (in ähnlicher Weise wie z. B . bei Mond-Distanzen vorkommt) .

Die Ergebnisse sind :
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dxp2 = cos X dipi cos a2 da
sm a2dX = sin X tang xp2 d rpj +
cos rp2

— sin or2 sin a d « i
cos K» sm ff

(5)

da 2 = sm Z sec ipzdipi + sm «2 tang xp2 dcr -f- cos X cos <pj sec ip2 d « j J
Diese Gleichungen müssen auf das Ellipsoid übertragen werden, was am besten

nach unterem § 106 . geschieht und in erster Näherung giebt :

cos ldcpi ~i- V3 cos a . V2 sin a2 sin Sdai

sin l sin cp2
V2 cos cp2

cos q>2

sin a2 d s cos a2 .OI.fl IAO XA) O l/UCUO . iV A - 1- - sm S d cci
cos (]p2 c cos cp%

sin S dcci (6)d -f- V

sin « g sin <jD2 d s cos qr>1
COScp2 c COS(p2

Dabei ist S = ^ = — V, und es bezieht sich V auf die Mittelbreite — •N e ’ . . = -
2

Weiter wollen wir in der Formelentwicklung nicht gehen ; es mag genügen,
einzusehen , dass es möglich ist , lineare Gleichungen zwischen den 6 Differentialen
d qpj , di jp2 , d «i , d a2 , dl , ds aufzustellen , auf welche dann eine Ausgleichung ge¬
gründet werden kann '

. *
Es wird nämlich nun diesen Differentialen die Bedeutung untergelegt teils von

Beobachtungsfehlern und von Näherungsverbesserungen , teils auch von Lotabweichungs¬
einflüssen. Die Qnadratsumme der Beobachtungsfehler mit Gewichten wird zu einem
Minimum gemacht und daraus die Näherungsverbesserungen aller Messungsgrössen und
die Lotabweichungselemente als Unbekannte bestimmt , alles im Wesentlichen wie bei
einer reinen geodätischen Netzausgleichung, . Die a priori einzuführenden Beobachtungs¬
gewichte sind ’aus sachlichen Erwägungen zu ermitteln , wie schon bei (4) S. 591 an¬
gedeutet worden ist .

Wir wollen überlegen , wie gross die Anzahl der entstehenden unabhängigen
Bedingungsgleichungen sein wird , unter der Voraussetzung, dass jede Linie des Netzes
als geodätische Linie triangulatorisch bestimmt und astronomisch beiderseits durch
Azimute sowie zwischen ihren Endpunkten telegraphisch als Längenunterschied gemessen
sei . Dann haben wir bei p Punkten und « Linien folgende Beobachtungen :

Geographische Breiten Anzahl = p
» = »

p + 4 s (7)Längenunterschiede
Azimute
Geodätische Linien •

Diesen p 4 s Beobachtungen stehen gegenüber unabhängige Unbekannte:
Geograpische Breiten

„ Längenunterschiede
Lotabweichungs -Componenten g , rj

Anzahl = p
4 p — 3 (8)~ P — 1

2 (p - l )
Die Längenunterschiede sind nur in der Zahl p — 1 vorhanden, weil ein Punkt

(Zentralpunkt Berlin) willkürlich ist und es sich nur um die relativen Längen gegen
den Zentralpunkt handelt. Ebenso ist es mit den Lotabweichungen g , rj, welche nur
relativ gegen den Zentralpunkt bestimmbar sind.

A« s (7 ) und (8) hat man die Zahl der unabhängigen Bedfngungsgleich ungen :
p + 4 s — (4 p — 3) = 4 s — 3 (p — 1)
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Dieses stimmt mit dem früheren (3) S . 590 und giebt für das astronomisch¬
geodätische Netz von Eig . 1 . S 590 wieder die schon bei (4 ) gefundene Zahl von 78
unabhängigen Bedingungsgleichungen .

Bei der bisherigen Betrachtung sind die Erddimensionen etwa o und e2 oder
c und e '2 als gegeben vorausgesetzt. Es ist aber auch möglich, diese Dimensionen
so zu bestimmen , dass sie sich dem Netz -Material möglichst anpassen ; und dann muss
man die Gleichungen auch noch nach t und e ' 2 differentiieren und man bekommt noch
entsprechende zwei neue Unbekannte in die Ausgleichung .

Dieses sind die Grundgedanken einer astronomisch-geodätischen Netzausgleichung ,
deren Anfänge in dem auf S . 591 citierten Helmert sehen Werk des geodätischen
Instituts enthalten sind , deren Ausführung im Grossen der Zukunft Vorbehalten ist .
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