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Abgeltiirete Potenz-Reihen mit mittlerem Argument.

Man kann in einer Potenzreihen-Entwicklung nach dem Taylorschen Satz immer
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Daraus findet man durch Subtraktion und Addition:
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Eine anders Anwendung dieses Prinzips ist folgende:
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Es unterscheiden sich
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Differentialformeln angeschrieben werd
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Woraus entsteht:
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Reihen-Umbkehrung.

Wenn eine konvergierende Potenzreihe vorliegt von dieser Form:
y=Ax+Bx: +Cat+Daxt+... (7)

80 kann man die Aufrabe stellen, umg
Potenzen von g darzustellen.
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Oder man setze in (M e= 4, b=0,e=0,d=—0, e=0, =0, dann wird
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