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174 Weitere Reihen . § 29 .

Nun empfiehlt es sich , Näherungswerte abzusondern , nämlich :
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Dieses ist so bemessen , dass sehr nahe = und « 2 sehr nahe = (̂ -
j wir <3-> dass

also bei der Zusammenfassung die Coefficienten von x und von x2 klein werden . Die weitere Aus «
führung , auf welche hier nicht eingegangen werden kann , giebt die Gebrauchsformel auf S. VIII
unserer logar -trig . Tafeln für neue Teilung . In der „Zeitschr . f. Verm .“ 1893, S. 600—602 wird mit¬
geteilt , dass jene »neuen Formeln “ für log sin (50g— x) und log cos (50? — %), welche vom Verfasser
1893 zuerst veröffentlicht wurden , auch von Herrn Prof . Schols in Delft aufgestellt (aber nicht ver¬
öffentlicht ) wurden und es ist Herr Schols in der Ausrechnung erheblich weiter , nämlich bis zur
20te» Potenz mit 27 Stellen gegangen , wie die von ihm in der „Zeitschr . f. Verm .u 1893, S. 601 mit¬
geteilten Zahlenwerte zeigen . Die im Vorstehenden mitgeteilten Formeln und Zahlenwerte gehen
zum Teil über die Bedürfnisse des praktischen Geodäten hinaus , wir sind dazu geführt worden durch
die Berechnungen zu den „logarithmisck -trigonometriscben Tafeln für neue Teilung mit 6 Stellen
von W. Jordan , Stuttgart Wittwer 1894“, aus deren Veranlassung vielstellige Fundamentalzahlen mit¬
geteilt worden sind von Schols und Nell in der „Zeitschr . f, Verm .“ 1893, S. 600—602, 1894, S. 74—75
und S. 160. Nell giebt dort die Zahlen e, ß , 7t, Q u . s. w. auf 30 Stellen und ihre Logarithmen
auf 20 Stellen .

Als Quelle ist hier hauptsächlich zu nennen der „Thesaurus logarithmorum completus “ von
Georg Vega , Leipzig 1794, im allgemeinen mit lOstelligen Logarithmen . Derselbe giebt auf S. 308

und 309 die Zahlen TT140stellig , 110 = — , ß und e 48stellig und auf S. 633 die wirkliche Reihen -
ß

ausrechnung von 7t. auf 140 Stellen . Manches hiezu bieten auch die ersten (ältesten ) Ausgaben von
Vegas 7stelligen logar .-trig . Tafeln , und Vega -Hülsse , Leipzig 1840, ferner Steinhäuser Hilfstafeln
zur präzisen Berechnung 20stelliger Logarithmen , Wien 1880 (mit Berichtigungen von Nell , „Zeitschr .
f . Verm .“ 1893 S. 603).

All dieses vielstellige Zahlenmaterial braucht fast nur , wer sich mit feinen Berechnungen
von Zahlentafeln mathematischer oder geodätischer Art beschäftigt . Wir werden auch am Schluss
von § 30. hierauf nochmals zurückkommen .

§ 29 . Weitere Reihen.
Bei geodätischen Entwicklungen hat man oft das Bedürfnis , die Potenzen

sin " x und cos" x in den sin n x und cos nx n . s . w . auszudrücken , z . B . um jene
Potenzen zu integrieren und dergl . ; auch die umgekehrten Verwandlungen werden
gebraucht .

Man kann alles dieses schrittweise aus den einfachsten goniometrischen Formeln
herleiten :

sin 2 x = 2 sin x cos x cos 2 x = cos2 x — sm2 x
sin 3 x — sin (2 x + x) = sin 2 x cos x -j- cos 2 x sin x

= 2 sin x cos2 x + cos2 x sin x — sm2 x
sin 3 x = 2 sin x cos2 x — sinS x

In dieser und ähnlicher Weise könnte man alle Ton S . 176— 177 Formeln Schritt
für Schritt entwickeln , doch kommt man besser zum Ziel mit Hilfe der imaginärenAusdrücke für sinx und cosx , zu welchen wir nun übergehen .
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Die Reihen für sin x und für cos x stehen in Beziehung zur Exponentialreihe ex :
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Wenn man hier x — ix setzt (wobei i = ]/ — 1), so wird x2 = — x2, xs = — ia ;3,
= + *4, as6 = f a;5 u . s . w . und damit bekommt man aus den obigen drei Reihen :

■i sin x und e _ ' * = eos x — i sin x
e+ ix — e ~ ix

e+ *

oder

cos x ■

e+ <
und sin x =

2 “““ 2 i
und wenn man noch x = n x setzt , so bekommt man den Satz von Moivre :

cos nx + i sinnx — e± ' * x = (e± ' *)" = (cos x + isinx )n

Wenn man hier nach dem binomischen Satz entwickelt , so erhält man :

cos nx -j- i sin n x = cosn x - cos" - 2 x sin2 x -

cosnx — isinx = cos " x — [
”

] cos” xisinx —
^ i J cos" ~ 2 * sm2

Durch Subtraktion und Addition findet man hieraus :
' x sin$ x . . .Ylsm n x — ( ] cos " ~ 1 x sin x

g j cos" ~ 3 x sin2 x -\- | g
I cos"

cosnx = cos " a: — j cos“ - 2 a: sin2 * - t- ) cos" ~ ix s*w4 * —
(1)

Wenn man umgekehrt sin " x und cos" x als Punktion der sin n x und cos n x
haben will , so setzt man :

e+ 11 = p = cos x -+- i sin x also p m = cos mx + i sin m x

e~ ix = q = cos x — isinx „ q™= cos m x — i sinmx

dann ist p q = 1 p + g = 2 cos a: p" g™ = 2 cos w *

p — q = 2 i siM a; p ”1— gm = 2 i sin m x

wir machen davon folgende Anwendungen durch Potenzen von (p - (- q) und von (p q) '

(2 cos » )2 = (p -f- q)2 (2 i sin x)2 = (p — qfi

= (p 2 + 22) + 2 p9 = (P2 + 22) — 2 pg

4 cos2 x = 2 eos 2 a: + 2 — 4 sin2 a: = 2 cos 2 a: — 2

cos2 x — i ~ cos 2 a: sin2 ai = — -
g

- cos 2 a;

Dieses sind die bekannten goniometrischen Formeln . Wir fahren fort :

(2 cos x)4 = p 4 -+- 4p 3 q 6 p 2 g2 + 4 p g3 + g4

= (p 4 + 94) + 4 (p 2 - t- g2) p 2 + 6p 2 g2
1 1 3

16 eos4 x = 2 cos 4x -h8 cos 2x + ß oder cos4 a; =
g

- cos 4 a: + -
g

cos 2 a; + g
-
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Auf gleichem Wege bekommt man auch siw4 x , und durch Weiterverfolgung
dieses Weges kann man jede derartige Formel finden, z . B.

(2 i sin xf = (p — g)5
32 i5 sin 5 x = p 5 — 5 p 4 g + 10 p 3 g2 — 10p 2 g3 + 5 p g4 — g5

= (p 5 — g5) — 5 (p3 — gS) _p g + 10 (p 2 — g2) p g
32 i sin5 x — 2 i sin 5x — 10 i sin 3 x - j- 20 i sin 2 x

sin 5 x = ~ sin x — ^ sin 3 * + ~ sin 2 x16 16 8

(2 cos x )5 = (p + q)5 = p 5 + 5 p 4 g + 10 p 3 g2 + 10p 2 g3 4 . 5 p g4 + g5
32 cos5 x = (p 5 + g5) + 5 (p 3 + g8) p g + 10 (p 3 + g2) p g

= 2 cos 5 x ■+■10 cos 3 x + 20 cos 2 x

cos 5 x = i cos 5 x -hJI cos 3 » -f - -jj- cos 2 ®
lO lt > o

Die Coefficienten für sin“ x und cos” x sind dieselben , nur findet bei sin* x
Zeichenwechsel statt .

In solcher Weise kann man rasch die Gebrauchsformeln einzeln entwickeln ,
etwa bis st» io x und cos 45 x , welche wir nachher zusammenstellen werden . Es ist
auch möglich , allgemeine Formeln für sin* x und cos” x aufzustellen , die Entwicklung
ist aber etwas umständlich , weil man gerades und ungerades n unterscheiden muss.
Die allgemeinen Formeln sind diese :

1) für gerade Exponenten :
1 [ 2 nsin2“ x 22* - 1 1 2
1 12 n

COS2“ X
22 » - 2 1 2

j cos 2 x + cos 4 x — . . .

j cos 2x + n
cos 4 x —

2 ) für ungerade Exponenten :
1 / 12 « + 1 '2 n 1

sin 3 * +smx
’2n -+- 1cos2“ + 1 x cos 3 x +cos x +

In diesen Reihen ist so lange fortzufahren , bis ein Coefficient = 0 wird .
Entsprechend den Formelgruppen (2) und ( 1) sind die nachfolgenden einzelnen

Gebrauchsformeln bis zur 10 ,e” Ordnung angeschrieben :

sin3 x = ~ sin x - sin 3 x

sin 5 x sin 3 x + sin 5 xsm x

sin5 x cos 2 x + cos 4 x cos 6 x
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XX eos 2 x + Xn cos 4 x -
lb Ai

-i - cos 6 x + cos 8 x
lo 1 *0

21 9 9 i
xt sin 3 x + xr sin — xrs s*w 7 ® 4- öes 9 *64 64 256 25b
105 o , 15 i
256

C0S2X + 64
C0S4X - ■̂ cos6x + i eos8x - m cosl0a:

cos2 * = -- = cos 2 ®

cos3 x = —r cos x H— cos 3 ®4 _ 4

cos^ ® + -
g

- eos 2 * + eos 4 ®

5 5 1
cos 5 X = — COS® + 7777COS3 ® + . xCOS hx8 16 16

COS®X 16
15 3 1
xx eos 2 x + —x cos 4 x ■+- xy cos 6 x
32 16 Ai

„ 35 21 7 1 _cos ‘ x = xr eos x xr cos Z x xr cos 5 x -A- xt cos 7 x64 64 64 64
85 7 7 1 1

cos8 ® = -t- jg - cos 2 * -4-
Q2

cos 4 ® + -jg cos 6 * + ^ cos 8 x

63 21 9
COS8 X = - x =r COS X -f - XT cos 3 * + ~5T C0S ® * '

128 64 64
‘ r- COS7 X - -- 0 COS9 X
256 256

cos 10® = + Si I c05 2 * + ir cos 4 * + rjs cos 6 ® cos8 ® + -rir ; coslO *
256 256 64 012 256

'
512

sin 2 d = 2 sin x cos x
sin 3 x — 3 sin x cos2 x — sin3 x
sin 4 x = 4 sin x cos 3 x — 4 sin3 x cos x
sin 5 x = 5 sin x cos * x — 10 sin3 * cos 2x sin5 *
sin 6x = 6 sin x cos 3 x — 20 sin3 xcos3x-\- 6 sin3x cos x
sin 7 ® = lsinxcos 8 x — 35 sin3 xcos^ x -h 21siw5® cosa® — si»7®
sin 8 ® = 8 sin x cosi x — 56 sin3 xcos3x -+- 56 sin3xcos3x — 8 siriixcosx
sin 9 sc = 9 sin ® cos3 ® — 84 sin3 ® cos° ®-)- 126sin5® cos4®— 36 siiv xcos -'x -4- sin 8x
sin 10 x = 10 sin x cos 8 x — 120 siw3 xcos^x ~\-252 sin3x cos 3x — 120sin 7® cos3 3;

10 sin8 x cos x

eos 2 x = cos2 x — sin2 x
cos 3 ® = cos3 x — 3 cosxsin 2 x
cos 4x = cos4 x — 6 cos 8 xsin 2 x -Jj- sinix
cos 5x = eos5 cc — 10cos 8 ® sin2 ® 4- 5cos * sin* ®
cos 6x = cos e x — 15 cOS4 x sin2 x ■+- 15cos %xsin 4 x sin6 ®
cos 7 ® = cos7 ® — 21 cos5 ® si«2 ® + 35 cos3 x sin 4 x — Icosxsmx

Jordan , Handb . d . Vermessungskunde . 4. Aufl . III . Bd .
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cos 8 * = coss x — 28cos ^xsin 2 x + 70 cos 4 * sin4 * — 28 cos2 x sinß x + sin%x
cos 9 * = cos9 * — 36cos ? * sin3 * + 126cos 5 * sin4 * — 84 cos3 * si«5 * + 9 cosxsinßx
cos 10 x = cos ™ x — 45 cos« x sirfi x + 210 cos 5 x sin4 * — 210 sos4 * sin5 * + 45 cos2 * sin$x

— siw10 x

Abgekürzte Potenz -Reihen mit mittlerem Argument.

Man kann in einer Potenzreihen -Entwicklung nach dem Taylor sehen Satz immer

die Hälfte der Glieder sparen durch Einführung eines mittleren Arguments , wie sich

so zeigen lässt :

x + hMan setzt zuerst :

und dann : x

Dann hat man nach dem Taylorschen Satze :

+ ~of
' * +f (x + h) = fix -1-

f + T/
" * +f * +

Daraus findet man durch Subtraktion und Addition :

f {x + h) — f x = hf ' * +

f {x + h) + f {x) f * +

(3)

In (3) kommt kein Glied mit hP vor und in (4 ) ist kein Glied mit h -, diese

Glieder wurden durch Einführung von * + i als Argument von f und von f erspart .
a

Als einfache Anwendung der Gleichung (3 ) nehmen wir z . B . :

u + v
(u — v) coss%n u sm v

Will man hier nur bis auf (u — u)2 einschl . genau rechnen , so kann man in
dem Glied mit (u — v) nach Belieben u oder v schreiben , z . B . :

(5 )
(6)

sin u = sin v + (u — v ) cos u + (u — r)3 . . .
sin u = sin v + (n — v) cos v -+- (u — i>J3 . . .oder

Diese zwei letzten Formeln sind gleich genau , insofern Glieder von gleichem
Potenzrang in beiden vernachlässigt sind .

Eine andere Anwendung dieses Prinzips ist folgende :
Wenn f (x,x '

) eine Funktion von x und x ' ist , welche nach Potenzen von
(* ' — * ) entwickelt werden kann , so ist :

f (x , af ) = f (x , x ) -+- (* ’ — x ) f (x) + (*’ — *)2 + . .
f (* , x '

) = / ’
(* '

, x'
) + (* — x '

) f (* '
) + (* ' — * )2 + . .

Aus diesen beiden Gleichungen zusammen folgt :
f (x , X) -+- fix '

, x ') r w - f («,)fix , x ') + (* ' — *)

odet
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Es unterscheiden sich aber f (x ) und f {x '
) selbst nur um Glieder von der

Ordnung (* ' — x ) , also ist :

Dabei sind f (x,x ) und f (x ',x '
) diejenigen 2 Werte von f (x,x '

) , welche ent¬
stehen , wenn bzw . x ' = x und x = x ’ gesetzt wird .

Folgendes sind zwei einfache Beispiele hiefür :

„ / — x -t- x '
, ,yx x =

g
- 1- (x — ®)2 . . .

®2 -+- af 2 x + x'
+ (x 1 — * )2

oder in Worten : das geometrische Mittel , das Mittel der Methode der kleinsten Qua¬
drate und viele andere Mittel zweier Zahlen x und x ' sind dem arithmetischen Mittel
gleich , auf Glieder von der Ordnung (x ' — x ) einschliesslich genau .

Zum Schluss dieser Betrachtungen erinnern wir daran, dass Näherungsformeln ,
welche nur auf ein Glied genau sein sollen , am einfachsten in der Gestalt von
Differentialformeln angeschrieben werden . Wenn man z. B . sin u — sinv nur auf
Glieder von der Ordnung u — v genau haben will , so setzt man :

sin u — sin v = d sin v oder = — d sin u

und man hat damit
cos v d vd sin vd sin u cos udu

(« — v) cos vsin v = (w v) cos u

m Übereinstimmung mit den obigen ( 5) und (6) .

Reihen- Umkehrung .

Wenn eine konvergierende Potenzreihe vorliegt von dieser Form :

y = Ax + Bx 2 -hCxZ -\- Dxi -h . . . (7)

so kann man die Aufgabe stellen , umgekehrt x durch eine konvergierende Beihe nach
Potenzen von y darzustellen .

In erster Näherung giebt die Beihe ( 7) jedenfalls , nach a> aufgelöst :

also A x + B

und dieses giebt nach x aufgelöst :
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In dieser Weise kann man fortfahren , und Schritt für Schritt höhere Glieder

yS . . , yi . . . u . s . w . hinzufügen , was in besonderen Bällen oft nützlich ist . Man
kann das Verfahren auch allgemeiner darstellen , indem die Auflösung der Beihe (7)
diese Form annehmen soll :

x = a y + ß yZ + y ys + 8 yi -+- . . .

Hier haben die Coefficienten
1

“ = ~
I ’

_ 2 Bä C
r ~ Aß Ai ’

a , ß , y, 8 . . . folgende Bedeutungen :

fi = — JB
A3

8
5 B 3 5 BJG+ " ~

W

(8)

Obgleich solche Entwicklungen wohl am besten am einzelnen Fall durchgeführt
werden , wollen wir doch beispielshalber eine solche Beihenumkehrung mit 4 Elementen
hersetzen (aus „ Zeitschr . f. Verm . “ 1894 S . 38 und S . 149 ) , welche vielleicht wieder

gebraucht werden kann , oder auch umgekehrt das am Schlüsse S . 181 Gesagte begründet .

z/ = Ax — B yZ — G x3 — BxyZ ExZ — F xZ yZ + G yi I
^

A = a y + b y x ■+■c y xZ — d yZ - |- e y x 3 — f ys x >

Die schrittweise vollführte Auflösung dieser zwei Gleichungen von x und y gab

JD _'
«2

_
1_
A
2BC

Z/2C
AZ

2 Bb
AZ aZ

A A2 +
2C2 E
zf5 Ai

Az

+ 1
fSBbZ QBbG 2 B c 4GB 6HC2 26 B 3 BE F
\ AZai AiaZ AZaZ Ai aZ A* a2 AZ aZ Ai a,z AZ aZ

-4- 1(5 CZ * CE \
+ 1K Aß )

+
12 Bd 2BZb BZ G

AZ ai +
BB

[ Art AZ aß + AZ a4 Aaij
"

y = ■1 A -
*Va +A a2

/ 62 bC c '
) AZXa - Id Bb ''

) A3
a \ zf2a3 AZaZ AZ az t \ a 4 Aaij

+
14 BbZ 6 D 2Bb G 2 B c 4 6 d . f \ z/A3
[ AZ az AZ ai AZ ai AZ ai A a5 A ai )

+
12 62 G 63 26c 2 6C2

Aß az +
bE 2 Gc 6 ] z /3 A

\ AiaZ AZ ai Az aZ Ai a,z A4 a2 Aiaz
J A

z/2 /L2

(10)

(11 )

Hierin ist auch der frühere Fall (7) teilweise inbegriffen , man braucht nur in
(9 ) zu setzen :

A = A , — C = B , E = C
und dazu B = 0 , B = 0 , F ’ = 0 , Q — 0
dann geht (10 ) über in :

2 BZ 5 BZ
A*> Ai / ' \ Ad

also innerhalb der vergleichbaren Teile übereinstimmend mit (8) .

5 HO )
AZ )
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Oder man setze in (9 ) a = A , b

V = C
Ai A3

0 , e = 0 , d = — C, e = 0 , f = 0 , dann wird

was ebenfalls innerhalb des Vergleichbaren mit (8) stimmt .

In ähnlicher Weise kann man auch zwei Eeihen mit einander vergleichen ; es

sei gegeben :

Ax -^ Bx ^ + Gx 3 -}- . . . = A y + B ' z/2 + O y3 _t- . . .

Dann kann man x so darstellen :

x = ay -{- ßy 2 + yy 3 -i- . . .

wo die Coefflcienten a , ß , y . . . folgende Bedeutungen haben :

A' „ B ' B Ä *
ß = ir

—
ä *

C ' 2 B A ' B'
“

Als
CA '3

ÄT
2 732 J '3

A3

( 12 )

Solche Reihenumkehrungen kommen oft vor , es ist aber selten nützlich , solche

allgemein vorbereitete Formeln mit CoSfficienten A , B , C . . . anzuwenden , weil in den

praktischen Fällen die CoSfücienten meist auch unter sich einfache Beziehungen haben

(z. B . goniometrische ) , welche dann bei der stufenweisen Auflösung sogleich mitbe¬

nützt werden .

§ 30. Interpolation .
Wir betrachten verschiedene Werte einer Funktion y , welche gewissen in arith

metischer Progression stehenden Werten des Arguments * entsprechen und ne men

die Bezeichnungen nach folgender Anordnung : Kg . l .

Argument Funktion Differenzen

j Vi \ dyz — !- 1-

Es handelt sich am einen Zwischenwert von x , welcher z. B . zwischen xx und
-*-̂ u 11U11UV1UOlVil U.111 C1UC11ZJIIrovnvn UViV ’ " . . a • /

Hegt und = x x -+- ö * sei , wobei Sx kleiner als das allgemeine nterva * l ,

weshalb wir setzen :
6 x
d x

also z <C. 1 (1)

der zu diesem x 1 + 8 x gehörige Funktionswert y wird berechnet nach der Inter¬

polationsformel :

-- Vl + zAyy — 1 2

oder y = y x + Zl j _j_ z<i J 2 y x + gg d 3 y x + z4 d * y x -+- .
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