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Das sphärische Polar -Dreieck . 337§ 60 .

die zeichnerische Darstellung der Vermessungs -Ergebnisse , und aus diesem Grunde
ist der Wert und die Dauer einer Landesvermessung zum grössten Teil durch die
mehr oder weniger gute Wahl eines Coordinaten -Systems bedingt .

Eine für die ganze Erde zu Land und zu Wasser gütige Art der Punktbe¬
stimmung durch geographische Coordinaten (geogr . Breiten und Längen ) ist auch bei
den Landesvermessungen immer angewendet worden , und in manchen Vermessungen
wurden die geographischen Netzlinien für Längen und Breiten als einziger mathe¬
matischer Zusammenhalt genommen .

Allein diese geographischen Netzlinien liegen dem Feld - und Landmesser , der
im Kleinen misst , zu fern , sie passen nicht in sein tägliches Geschäft mit rechten
Winkeln, denn die Meridiane eines Landes sind zwar für das Feldmessen als Gerade
zu betrachten , aber sie sind unter sich nicht parallel , und die Parallelkreise sind
nicht gerade .

Der Feldmesser muss rechtwinklige Coordinaten haben , und zwar solche , die
auf die Erdkrümmung Rücksicht nehmen und den "Übergang zwischen der Kleinver¬
messung und den höheren geodätischen Rechnungen mit geographischen Coordinaten
vermitteln .

In dieser Beziehung haben die süddeutschen Landesvermessungen , namentlich
Bayern und Württemberg unter Soldner und Bohnenberger am Anfang dieses Jahr¬
hunderts bahnbrechend gewirkt , die Systeme jener Vermessungen waren nachahmungs¬
wert, so lange man nichts besseres hatte .

Das ist nun aber der Fall seit 1866 , da die Gausssche konforme Projektion
durch Wittstein -Schreiber der Öffentlichkeit übergeben ist ; und im nächsten Jahr¬
hundert wird die konforme Projektion nach Gaussschem Prinzip ebenso unbestritten
als zweckmässigste für Landesvermessungen und Katasteraufnahmen gelten , wie heute
die vor kaum 2 Jahrzehnten noch für „unausführbar “ erklärte Gauss sehe Ausgleichung
der Kataster -Dreiecksmessungen .

Zwischenbemerkung .
Mit den geographischen Coordinaten sind wir so weit in der Theorie der Geodäsie gelangt ,

als zum praktischen Verständnis unserer deutschen Landesvermessungen im Ganzen nötig ist .
Für weitergehende Zwecke ist nun der richtige Weg zur geodätischen Linie vorgezeigt ,

welche in unserem nächsten Kapitel VI . behandelt werden wird .
Wenn nun trotzdem noch in diesem Kapitel V. eine Anzahl rein sphärischer Aufgaben ab¬

gehandelt wird , so hat das den Zweck der Vorbereitung von späteren sphäroidischen Aufgaben .
Eine Aufgabe spielt dabei eine durchlaufende Bolle , nämlich Herstellung der Beziehungen

zwischen den geographischen Coordinaten zweier Punkte einerseits und der Entfernung nebst
den Azimuten ihrer Verbindungslinie andererseits , oder umgekehrt , in verschiedenem Zusammenhang .

Wir haben dieses früher „Hauptaufgabe der höheren Geodäsie “ genannt , werden aber nun
das mehr bezeichnende Wort „Polardreiech “ anwenden .

Das Polardreieck spielt in der Geodäsie eine gleich wichtige Bolle wie das astronomische
oder nautische Dreieck (Pol -Zenit -Stern ) in der praktischen Astronomie . Auch eine von Gauss

gebrauchte Bezeichnung T oder t für das Azimut und dann auch für Richtungswinkel der Geodäsie

scheint auf jene Verwandtschaft hinzudeuten , indem das Azimut in dem geodätischen Polardreieck
dem Stundenwinkel t des astronomischen Dreiecks entspricht .

§ 60. Das sphärische Polar-Dreieck.

Wir knüpfen nochmals an den früheren § '56 . an und setzen auch die Fig . 1 .
von S . 312 nochmals her .
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Zwei Punkte P und P ' haben die geographischen Breiten qp und qp
' und

zwischen sich den geographischen Längenunterschied X. Der Verbindungsbogen PP
als grösster Kreisbogen hat den Wert a als Centri-
winkel am Erdmittelpunkt und die Azimute a und a'

an seinen Endpunkten . Der Halbmesser der Kugel,
auf welcher das Dreieck P P ' N liegend angenommen
ist , kommt nicht in Betracht .

Unsere Aufgabe wird eine zweifache sein :
entweder ist cp , qp

'
, X gegeben und

ff , a , a' gesucht
oder es ist qp , a , a gegeben und

<jp
'

, X , a ' gesucht .
Da wir uns hier nur mit der rein sphärischen Auf¬

lösung der fraglichen Aufgaben beschäftigen , und da wir
einsehen , dass es sickin beiden Fällen nur darum handelt,

ein sphärisches Dreieck aus zwei gegebenen Seiten und dem eingeschlossenen Winkel
aufzulösen , liegen im Grundsatz keine Schwierigkeiten vor , und es handelt sich also
nur darum , die verschiedenen Auflösungs -Formen , welche die sphärische Trigonometrie
für unsern Fall bietet , zu betrachten , und für unsere Zwecke zurecht zu legen (wozu
Gauss in den „Untersuchungen über Gegenstände der höheren Geodäsie “

, erste Ab¬
handlung , 1843 , art . 16 . und 17 . die Wege gezeigt hat ) .

Ehe wir zu unseren Formel -Entwicklungen und zur numerischen Anwendung
von sphärischen Formeln übergehen , wollen wir zwei scharf (mit 10 stelligen Logarith¬
men ) berechnete Beispiele voraus schicken , welche in verschiedener Weise als Normal -
Beispiele dienen können :

Fig . l .

Kleines sphärisches Normal -Beispiel .
(Bezeichnungen nach Flg . 1.)

_ qo
' H- qo _

<p = 49 ° 30' 0"

<fo =

« ' + ««o =
2
.

a ' ■— a

50 ° O' O"
cp

' = 50 ° 30 ' 0"
^ ~ ^ = 0 ° 30’ 0"

X = 1 ° 0 ' 0"

-4 = 0 ° 30' 0"

= 32 ° 44' 0,2384"

= 0 ° 22' 58,9470"

« ' = 33° 6 ' 59,1854"
« = 32 ° 21' 1,2914"

- ff = 0 ° 45 ' 57,89393
”

~ = 0 ° 35 ' 39,74093 "
u

o = l ° 11 ' 19,48186 "
er = 4279,48186 "

qp = 45° 0 ' 0"

Grosses sphärisches Normal -Beispiel .
(Bezeichnungen nach Fig . 1.)

= £ + * = 5 o « 0 , 0„<Po

«o = - ^
a = 32 ° 49' 54,6437"

qp
' = 55 ° 0 ' 0"

= 5 ° O' O"

2
ff' — a~~

2 :

« '

: 3 ° 50' 55,8355 "

= 36 ° 40' 50,4792”
=28 ° 58 ' 58,8082"

X = 10 ° 0 ' 0"

A = 5 ° O' O"

- ff = 7 ° 4P 51,67100”

4 = 5 ° 55 ' 51,32153 "
Li

ff = 11 ° 51 ' 42,64306 "
ff = 42702,64306 "

(1)

(2)
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I . Gegeben cp, cp
'
, A. Gesucht er, a , a ' .

Ia . Die Gauss sehen Gleichungen der sphärischen Trigonometrie .

Wenn man die Gauss sehen bzw. Neper sehen Gleichungen von § 27 . S . 165

auf unseren Pall anwendet , so bekommt man , ebenso wie schon hei (1) § 56. S. 312

mit den Abkürzungen (jp0 und «0 für die Mittelwerte , folgendes :

= COS<jp0 StW -
g

-

. <p ' — cp A
= sm ■■■—

q
cos -

g
-

cr . «' — « . . A
cos sm — _— = sm <po sm

ü a u

sm sm a 0

sm cos or0a

cf a
COS-jr - cos —

u
— a cp' —
2

= eos 2
<SP

(3)

Wenn man die erste und zweite , dann die dritte und vierte dieser Gleichungen
dividiert , und zur Abkürzung für das folgende , die Zeichen Z und A7, Z ' und W für

die Zähler und Nenner der entstehenden Brüche einführt , so erhält man :

tang « 0 =
cos cpQ sm g

-

. ® ' — cp A
sin —

y
- cos -

g
-

Z
N

. a £
sm = —— :

2 sm «0
_ N _
COS« 0

tang
sin <p0 sin g

-

— cp A

2
- C°S 2

CT
cos T = -

: W '

IV'

— a

W

(5)

Zu einem Zahlen -Beispiel nehmen wir nach (1) :
<p = 49 ° 30' 0" cp

' = 50 ° 30' 0" A = l c 0 ' 0"

also <p0 = 50° O' O"
,

9
n ~ =
Li

Die logarithmische Bechnung gieht :

= 0 ° 30' 0” = 0° 30' 0"

log Z
log N

7 .748 9093 -6
7.940 8253 -2

log Z '

log N ’
7.825 0958-3
9 .999 9669-3

log tang a 0 9 .808 0840 -4 7 7 «' — «
loglang 2

7 .825 1289-0

7 * <7/op sm — 8 .015 9282 -7 7 ff
cos 9.999 9766 -3

k 0 = 32 ° 44' 0,238"

- a = 0 ° 22' 58,947"

S = 0 ° 35' 39,741"
a
a = 1 ° 11 ' 19,482"

(6)

(? )

a ' = 33 ° 6' 59,185'
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Von den beiden Bestimmungen für nämlich aus sin Z und aus cos ~ ist
Li Li 2

in diesem Palle , da a Hein ist , nur die erste scharf, während die zweite aus cos,
nur als summarische Probe benützt werden kann.

Ib . Eineeiformeln für er, a und
Zur Bestimmung von ff allein dient die Cosinusformel S . 164 :

cos er = sin qpsin cp
r + cos cp cos qp

' cos A (8)
Da aber in unseren Pallen immer ff klein ist , kann man nicht geradezu nach

cos (7 rechnen; indessen kann man die vorstehende Formel leicht umformen , indem
man setzt :

cos er = 1 — 2 sin2 -

Damit findet man leicht :

und cos A = 1 ■

- qp - cos qpcos qp
' sm2

, sin2 A
‘

2

X
(9)2 ■ — T — T — 2

Man rechnet dann mit einem Hilfswinkel fi ähnlich wie hei der Bestimmung
einer Hypotenuse aus zwei Katheten :

• V
' — cp

tang pi
sin Ycos cp cos cp

'

, <P — <P
sin -

g
- = -

2

oder sin -jy Ycos qpcos qp
'

sm pi cos fl
Unser kleines Normal-Beispiel (1) S . 338 gieht :

7 . qp
' — qplog szn -zl~

2
x 7 .940 8418 -6

log sin — y . . . 7 .748 8693 -3

log tang fi 0 .191 9725 -3

log sin ~ 8.015 9282 -7

fi = 57 ° 16' 11,981"

4 = 0 ° 35' 39,741 "

(10)

o- = 1 ° 11 ' 19,482"
Auch für die Azimute a und a! gieht die sphärische Trigonometrie unmittel¬

bare Lösungen , nämlich nach den cotg-Formeln von S . 164 :
tang qp

' cos qp . , , mi \cotg a = — — - — sm cp cotg A Uv
SIWA

cotg (« ’ + 180 °) = Zyß _ sin , cgt ^ (12)
sin A

Unser grosses Normal-Beispiel (2) gieht hiefür folgende Anwendung :
: 45° 0'

, qp
' = 55° 0’

, A = 10 ° 0’
cotg a = 5,815 512 455 — 4,010 201 831 = 1,805 310 624
log cotg a = 0 .256 5519 -4 a = 28° 58' 58,808"
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Dagegen giebt das kleine Normal -Beispiel (1) :

qp = 49 ° 80'
, qp

' = 50 ° 30'
, X = 1 ° 0 '

cotg a - 45,142 3983 — 43,563 6286 = 1,578 7697

log cotg <x = 0 .198 3187 -8 a = 32 ° 21 ' 1,290" (13 a)

Wenn qp und qp
' nahezu gleich sind , und X klein ist , so geben die Formeln

( 11 ) und (12 ) keine scharfen Bestimmungen , weil dabei eine Differenz zweier nicht

sehr verschiedener Werte auszurechnen ist , wie ( 13 a) mit 45,14) . . . — 43,56 . . . deut¬

lich zeigt.
Man kann noch manche andere Auflösungs -Formen für die vorgelegte erste

Aufgabe I . finden , wie sich aus der Analogie mit der zweiten Aufgabe II . ergeben
wird, zu der wir nun übergehen .

II . Gegeben qp, er, a . Gesucht qp
'
, X, ß' .

II a . Auflösung durch die Gauss sehen Gleichungen .

Die Anwendung der Gauss sehen bzw. Neper sehen Gleichungen von S. 165

auf unseren Fall giebt :

tang -

. 90 ° — qp - l- er . a
^

sin - ? — — sm -
g

-
Z

. 90 ° — qp — er ß N
sm -

g
“ - cos

. 90 ° — qp
' N

X ß’
— cos -

(14)

tang
ß ' — X cos

90 ° — qp . a . ß
- sm T_ _ Zf

90 ° — qp — er ß N '
cos - - cos -

g
-

cos
90 ° — qp

' Z ' N '

ß' — X

(15)

Bei unserem kleinen Normal -Beispiel (1) ist :

Gegeben qp = 49° 30' 0” er = 1 ° 11' 19,482" ß = 32° 21 1,291

Man hat also zur Anwendung von (14 ) und (15 ) :

— - <L± _(T = 20 ° 50 ' 39,741" -S - = 16 ° 10 ' 30,646"
2 «

90°
- - = 19 ° 39 ' 20,259"

log Z j 8 .996 1858 -3
log N | 9 .509 2708 -3

log tang \ 9 .486 9150 0
U

QO° _ Cf)'
logsin

™— - ? - : 9 .528 8096 -8

log Z '

log N '

ß ' — X
log tang —

^
—

log cos
90° . qp

'

9 .415 5449-8
9 .956 3857-0

9 .459 1592-8

9 .973 6708-5
2
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= 17 ° 3 ' 29,592"
U

- -7 - = 16 ° 3 ' 29,592 "
U

= 33 ° 6 ' 59,184"
X = 1 ° 0 ' 0,000"

Ilb . Einzel -Formeln für cp
'
, a ' und X.

Zur Bestimmung von cp
’ aus cp, a und a hat man die Cosinus -Formel S. 164

und für a! und A hat man je eine der Cotangenten -Formeln (9) S . 164 anzuwenden .
Man erhält auf diesem Wege folgende drei Auflösungen :

90° - cp
'

= 19 ° 45' 0,000"

90 ° — <p ' = 39 ° 30 ' 0,000"

cp
' = 50 ° 30' 0,000"

(15 a)

sin cp
' = sin tp cos er cos cp sin er cos a

, , cos a cos a — sin <j tang fficotg a = - a

cotg

sm a

^ _ cotg a cos cp — sin cp cos a

Zur Anwendung auf unser kleines Normal -Beispiel haben wir :

(16)

(17)

(18)

Gegeben cp = 49 ° 30 ' 0"
, cs = 1 ° 11 ' 19,482"

, « = 32 ° 21 ' 1,291 "
Die Ausrechnung nach (16 ), (17 ) und (18) giebt :

sin cp
' = 0,760 2423 -+- 0,011 3823 = 0,771 6246

log sin cp
' = 9 .887 4061 <p ' = 50 ° 30 ' 0,00"

cotg a ' — 1,578 4299 — 0,045 3947 = 1,533 0352
log cotg « ' — 0.185 5521 a ' = 33 ° 6 ' 9,19"

cotg X = 31,897 9570 ~ 0 .642 3847 _ 30,655 5723
sin, a sin a

log cotg X = 1 .758 0785 X = 1 ° 0 ' 0,00" (W)
An diesen drei Auflösungs -Formeln ist nichts auszusetzen ; sie geben cp

' a'
und X einzeln mit gewöhnlicher Schärfe . Der von manchen Rechnern gescheute mehr¬
fache Übergang von den Logarithmen zu den Zahlen und umgekehrt , kann nötigen¬
falls durch Benützung von Additions - und Subtraktions -Logarithmen vermieden werden .

II c. Rechtwinklige Projektion des Nordpols auf die Seite ff.
Fig . 2.

Hilfswinkel M und m.
In Fig . 2. , welche etwas anders gezogen ist

als die frühere Fig . 1 . , aber im wesentlichen das¬
selbe darstellt , ist von dem Nordpol N eine Senk¬
rechte N P 0 auf die verlängerte PP ' gefällt , wo¬
durch sowohl die Länge m dieser Senkrechten selbst,
als auch die Länge PP 0 bestimmt ist , welche wir
mit 90 ° — M bezeichnen wollen .

Da nun das grosse rechtwinklige Dreieck
PN P 0 durch unsere gegebenen <p und a vollständig
bestimmt ist , und da durch Abtragen von PF = ff
auf PP 0 auch der Punkt P '

, und damit das zweite
kleinere rechtwinklige Dreieck P ' NP 0, bestimmt
ist , sowie auch damit das schiefwinklige Restdreieck
P P ' N , ist nun unsere ganze Aufgabe auf die Be-
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handlang zweier rechtwinkliger sphärischer Dreiecke zurückgeführt , weshalb wir die

nötigen Formeln (die man auch rein goniometrisch aus den Formeln (16) , (17 ) , (18)

herleiten könnte ) sofort in der zur Rechnung nötigen Aufeinanderfolge hier hersetzen .

Zur Bestimmung von M und m hat man :
sin cp

cos cp eos a
cos cp cos a J> (20)

tang M =

tang a ’ = (21 )

(22 )

(23)

sin cp ,
C0SW = ÄM

°der cosm ~ -
coiM

sin m — sin cc cos cp
Nachdem so M und m bestimmt und versichert sind , hat man weiter :

tang m
cos (M + o)

sin cp
’ = cos m sin (M -+- ff) tang cp

' = tang (M + ff) cos cc'

sin ff sin a '
_ sin cc sin cc

smX = -
C()x f(

- - cos <p'

Die Anwendung auf unser kleines Normal -Beispiel mit den gegebenen Werten

cp, a und o nach (1), führt auf die Hilfswinkel :

M = 54 ° 11 ' 19,61" to = 20 ° 20 ' 7,75”

womit die Werte cp
'
, a ' und X sich wie früher ergeben .

lld . Rechtwinklige Coordinaten x , y für den Punkt P ’.

In Fig . 3 . ist der Meridian P N gerade
gezogen , und durch P ’ P x eine Senkrechte an¬

gedeutet , welche von P ' auf den Meridian von
P gefällt wurde , so dass die rechtwinkligen
sphärischen Coordinaten P P x = x und P 1 P ’ = y
zur Anschauung kommen . Diese Werte x und y
sind bestimmt durch die Gleichungen :

tang x = tang er cos a (24)
und sin y — sin o sin a , tangy = sin x tang cc (25 )

Mit * hat man auch cp -+- x und 90° —

(cp -+- sc) die Kathete NP x des grossen recht¬

winkligen Dreiecks N P x P ’
, welches cp

' und X
giebt, nämlich :

(26 )

Fig . 3.
Rechtwinklige Coordinaten

P,P ' + y.

und

cos (<jp — ff)
sin cp

' = sin (cp -t- *) cos y
tang cp

' = tang (cp -+- x ) cos X

Endlich nach dem Sinussatze :
sin cc eos cpsin a ' =

cos qc

(27) - tp
'+Jh

(28)

Diese einfache und naheliegende Auflösung
hat Gauss (in Art . 16 . der „ Untersuchungen über
Gegenstände der höheren Geodäsie , erste Abtei¬
lung , Göttingen 1843 “ ) noch verfeinert , erstens
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dadurch , dass der kleine Breiten -Unterschied 8 zwischen den Punkten Pj und P ' für
sich dargestellt wurde , und zweitens dadurch , dass auch die Meridian -Konvergenz /xzwischen Pj und P ' und ausserdem der sphärische Excess e des rechtwinkligen Drei¬
ecks P P 2 P ' beigezogen wurde .

Denkt man sich diese drei kleinen Werte 8 , y1 und e bestimmt , so ist die
Breite bestimmt durch :

(<p + * )) = 8

(29)cp
' — cp -hx — 8

ferner für die Azimute :
a ' — yx + ß = 90 ° und « -+- ß = 90 ° -t- e

«' — a = yi — sworaus :
Um den sphärischen Excess s zu bestimmen , haben wir die schon in § 44.

S. 245 benützte Entwicklung :
(Jcotg a cotg ß = cos a — 1 — 2 sin 2

(Jcos acos ß — sin a sin ß — 2 sin a sin ß sin 2

cos (a -f- ß) = — sine — — 2 sin cc sin ß sin2 ~

. sinx . . astne = 2 stn a - - sm 2 —vvtv k, — u omc w. —. - owr - r-
smu 2

<7 .sm e = lang sm x sm a

Für hat man aus dem rechtwinkligen Dreieck NPiP ’ :

(31)

lang (90 ° — (qp -t- as))tang (90 fl ) = ~
siny

~-

(32)tang yi = tang (cp -+- x ) sin y = tang (cp - )- x ) sin o sin a
Um auch noch 8 zu bestimmen , hat man zunächst nach (29 ) :

sin 8 = sin ((qp -+- a;) — qp
'
) = sin (cp -+- ac) cos cp

' — cos (cp -+- x ) sin cp
'

(cp -t- x) cos cp
' (tang (cp -+- x ) — tang qp

'
)

Es ist aber in dem rechtwinkligen Dreieck N P 1 P ' :

tang qp
' = tang (cp + x ) cos X = tang (cp -h x ) ( 1 — 2 sin2 -

und damit wird

sin 8 = 2 sin (cp -f - sc) cos qp
' sin2

Wenn man hier noch yj nach (32) zuzieht und cos qp
' sin X = sin y berücksich¬

tigt , so erhält man :

(33 )sin 8 = cos (qp -+- sc) tang tang yxLi
Der Gang der Rechnung ist nun folgender :
Man bestimmt x und y sowie auch X wie im einfachen Pall , nach (24) , (25 ) , (26),

dann folgen e und yx nach (31 ) und (32) und 8 nach (33) , worauf man cp
' und « '

nach (29) und (30 ) zusammensetzen kann .
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Die Anwendung auf unser Heines Normal -Beispiel gestaltet sich so :

Gegeben <p = 49 ° 30' 0" er = 1 ° 11 ' 19,482" « = 32° 21 ' 1,291"

Nach (24), (25), (26) findet man :

a = 1 ° 0 ' 15,420 " y = 0 ° 38' 9,813" A = 1 ° 0' 0,000"

Die Formeln (31 ), (32), (33) liefern :

« = 0 ° 0 ' 20,0687 "
yx = 0 ° 46 ' 17,9616” 8 - 0 ° 0 ' 15,4199"

und nun setzt man so zusammen :

7l = 0° 46 ' 17,9616 " a? = 1° 0 ' 15,420"

e ~ 0° 0 ' 20,0687" 8 = 0 ° 0 ' 15,420"

y — s = 0 ° 45 ' 57,8929 " = « ' — « , x — 8 = 1 ° 0' 0,000"

« = 32 ° 21 ' 1,291” <SP = 49 ° 30 ' 0,000"

« ' = 33° 6 ' 58,184 " <p
' = 50 ° 30' 0,000"

Der Vorteil dieser Berechnung im Vergleich mit allen früher beschriebenen
besteht darin , wenn <t selbst klein ist (was hier immer der Fall ist), dass dann auch
alle andern , die Endergebnisse beeinflussenden Grössen x , y , y \ , s seihst klein sind,
und daher aus sin oder tang sich sehr scharf berechnen lassen.

Man kann durch diese verfeinerten Formeln in Hinsicht auf Rechenscbärfe , mit
einer gewöhnlichen 7 stelligen Logarithmentafel nahe dasselbe erreichen , wozu man
mit den früheren Formeln nahezu 10 stellige Logarithmen braucht .

Bemerkungen zur Meridian -Konvergenz .

Nachdem schon am Schlüsse von § 45 . S . 256—257 zur Wort -Erklärung und
zur sachlichen Begriffsbestimmung der „Meridian -Konvergenz “ das Nötigste gesagt
worden ist , können wir noch mit beistehender Fig . 3 . einiges zufügen :

Die Meridian -Konvergenz « ' — cc ist gleich dem
sphärischen Excesse y des Vierecks AB P ' P Fig . 3, , denn
da dieses Viereck bei A und B rechte Winkel hat , besteht
die Gleichung :

90° + 90 ° + (180 ° — « ) + ££' — 360 ° = y
d. h . cc' — cc = y (a)

Bezeichnet man ferner mit e den sphärischen Excess
des Dreiecks PP ' JV, welches hei N den Längen -Unter -
schied A enthält , so hat man :

A -v- « + ■(180 ° — cc' ) — 180° = 8
d . h . : X — (cc' — et) h- s oder a ' — cc = A — « (b)

Das letzte ist auch unmittelbar klar , indem A der
Excess des ganzen Dreiecks AB N sein muss .

Diese beiden Gleichungen (a) und (b) sind sphärisch streng richtig .
Wenn die beiden Punkte P und P ' auf gleichen Breiten q> und cp

' liegen , so
ist der Winkel , den die Meridian -Tangenten von P und P ’ oben in der Erdaxe

einschliessen, genau gleich A sin qo, wie man aus Fig . 1 . § 61 , alsbald entnehmen
kann ; und das kann man auch so aussprechen , dass A sinq > gleich dem sphärischen
Excess des Vierecks AB P ’ P ist , wenn <jp = cp

' und wenn P P ' nicht als Gross -

kreisbogen der Kugel , sondern als Parallel kreisbogen , parallel dem Äquator A B auf-

Fig . 3.
Meridian -Konvergenz .

ff ' — a — y.
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gefasst wird . Das Viereck hat dann 4 Winkel , welche alle = 90 ° sind , aber der
Parallelkreisbogen PP ' hat dann eine geodätische Krümmung = X sin cp, welche bei
der Kegelabwicklung sich auch in der Ebene darstellen lässt .

Im gewöhnlichen Sinne ist dieses X sin cp aber durchaus nicht die genaueMeridian -Konvergenz a — « ' für zwei Punkte unter gleichen Breiten cp
' = cp, denn

dazu müsste PP ' ein Grosskreisbogen sein .
Was in diesem Falle k' — a wird , das lässt sich aus der Gleichung (5) S. 339

leicht entnehmen , diese giebt für cp
’ = cp den Wert

, « ' — a X .tang — ^— = tang sm <pu u («)

Das kann man auch unmittelbar begründen , wenn man in Fig . 1 . S . 338 qf = <p
• ■ Xnimmt und bei N den Halbierungsbogen für -=- rechtwinklig auf PP ' zieht .u

Die Gleichung (c) giebt allerdings in erster Näherung a ’— a = X sin qo, wie immer
in erster Näherung , aber streng gilt dieses Xsinpp nur für zwei Meridiantangenten
unter den gleichen Breiten cp

’ = <p .
Um diese Begriffe auch sofort für die späteren Berechnungen mit der geo¬

dätischen Linie festzustellen , müssen wir nun im Anschluss an Fig . 1 . sagen : Unter
Meridian -Konvergenz zwischen zwei Punkten P und P ' verstehen wir die Differenz der
Azimute a und a! , welche der verbindenden geodätischen Linie P P ' in P und F
in dem Sinne von Fig . 3 . zukommen .

Indessen eine absolut im Sprachgebrauch der Geodäsie feststehende Definition
ist auch dieses nicht ; wir werden später finden , dass Gauss in seiner konformen
Projektion der Hannoverschen Landesaufnahme mit dem Worte Meridian -Konvergenz
wieder etwas anderes bezeichnet hat , was zwar in erster Näherung mit dem Gesagten
übereinstimmt , aber in aller Strenge gar nicht ohne jene besondere Projektionsart
definiert werden kann .

Wenn nichts Besonderes bemerkt ist , werden wir das Wort Meridian -Konvergenz
in dem Sinne von « ' — a nach Fig . 3 . S . 345 für PP ' als geodätische Linie anwenden .

Damit kann man auch den Satz bilden , dass der sphärische bzw. sphäroidische,
Excess eines geodätischen Dreiecks gleich der algebraischen Summe der drei zuge¬
hörigen Meridian -Konvergenzen ist .

§ 61» Differential -Gleichungen des sphärischen Polar-Dreiecks .
Die geschlossenen Formeln der sphärischen Trigonometrie , welche wir im vorigen

§ 60 . behandelt haben , erfüllen nicht alle Bedürfnisse ; es ist in vielen Fällen nützlich ,
geschlossene Formeln in Reihen aufzulösen , und der erste Schritt hiezu ist die Auf¬
stellung von Differential -Formeln .

Wir betrachten in Fig . 1 . S . 347 das schon früher benützte sphärische Dreieck
PP N , jedoch nehmen wir nun an , dass die Entfernung P P ' der beiden betrachteten
Punkte sehr Hein — ds werde , wodurch auch alle anderen Differenzen cp

'— q , — a <^
klein werden , was wir in Fig . 1 . und Fig . 2. durch Differential -Zeichen d cp, da u . s . w.
angedeutet haben .

Wir betrachten in Fig . 1 . eine Kugel .mit zwei Punkten P und P '
, deren Ent¬

fernung PP = ds klein ist . Die Breiten dieser Punkte seien bzw. cp und cp + dq>>
so dass die kleine Breiten -Differenz d cp zwischen den Parallelkreisen von P und P '
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