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also auch zwischen zwei Kurven -Tangenten in einem Punkte einander gleich , und es
wäre also im Punkte B für jede Kurve ß = ß '

, wenn ABC Pig . 1 . S . 373 als ein
Element der Kurve gilt ; wenn dagegen der Kurventeil A B C aus zwei oder mehr
Elementen bestehend angenommen wird , oder mit anderen Worten , wenn man in dem
Punkte B die Krümmung der Kurve ABC untersuchen will , dann sind die beiden
mit ß bezeichneten Winkel nur für den Fall gleich , dass die beiden in dem Punkte B
zusammentreffenden Elemente der Kurve gemeinsam in einer Ebene liegen, welche
auch die Flächen -Normale des Punktes B enthält , d . h . Schmiegungs -Ebene in B ist,
so dass dann auch diese Flächen -Normale in B als Schnitt der Schmiegungs -Ebene und
der durch T T ' gehenden Flächen -Normalebene erscheint .

All dieses ist nun bei der geodätischen Linie erfüllt , und wenn man daher
eine geodätische Linie AB CD . . . (Fig . 1 . S . 373) durch eine Schar von anderen
geodätischen Linien MN , M ' N ' u . s . w. schneidet , so sind alle dabei auftretenden
Schnittwinkel ß und ß in B , y und y in C u . s . w . einander gleich .

Wir werden als geodätische Linien M N , M 'N ’ u . s . w. von Fig . 1 . S . 373 ,welche sämtlich von einer geodätischen Linie AB C D geschnitten werden, später
namentlich die Meridiane des Ümdrehungs -Ellipsoids finden , wo a , ß , y die Azimute
sind , und deswegen sprechen wir das , was über die Winkel ß , ß , sowie y, y u . s . w.
erkannt wurde , sofort aus in dem Satze : die geodätische Linie schneidet jeden Meri¬
dian unter gleichen Scheitel -Azimuten .

Krümmungs -Linien .
Zur allgemeinen Klärung der Begriffe empfiehlt es sich , neben der geodätischen Linie auch

noch die Krümmungslinie zu erwähnen . Eine auf einer brummen Fläche gezogene Krümmungt -
linie hat die Eigenschaft , dass je zwei aufeinander folgende , ihr zugehörige Flächen -Normaleil sich
schneiden , was bei der geodätischen Linie nicht der Fall ist , wie z. B. aus den zwei Punkten Kaund Kb Fig . 1. § 65. S. 361 zu ersehen ist .

Eine Krümmungslinie folgt stets der grössten oder der kleinsten Krümmung , deren Richt¬
ungen nach dem Euler sehen Satze (§ 33. S. 199) zu einander rechtwinklig sind ; und daher bilden
die sämtlichen Krümmungslinien einer Fläche zwei Scharen von Kurven , die sich überall gegenseitig
rechtwinklig schneiden .

Ein Flächenpunkt , in welchem die beiden Hanpt -Krümmungs -Halbmesser (und damit auch
alle Normalschnitts -Krümmungs -Halbmesser ) gleich sind , heisst „Nabelpunkt “ der Fläche . Z. B. sind
die beiden Pole des Umdrehungs -Ellipsoids Nabelpunkte in diesem Sinne ; die Meridiane sind
Krümmungslinien der einen Schar , und die Parallelkreise sind Krümmungslinien der zweiten Schar.
Bas strahlenförmige Ausgehen der Meridiane als erster Schar vom Pol als Nabelpunkt ist jedochnur besonderer Fall und findet z. B. bei den vier Nabelpunkten des dreiaxigen Ellipsoids nicht
mehr statt .

Wenn eine Krümmungslinie zugleich geodätische Linie sein soll , so muss sie ganz in einet
Ebene liegen , weil jede Flächen -Normale sowohl von den beiden benachbarten Flächen -Normalen
geschnitten werden , als auch in der Ebene zweier benachbarten Kurven -Elemente liegen muss , was
bloss bei einer ebenen Kurve möglich ist ; dagegen umgekehrt eine Krümmungslinie , die in einerEbene liegt , ist deswegen niobt notwendig geodätische Linie .Auf dem Umdrehungs -Ellipsoid (sowie auf jeder anderen TJmdrehungsfläclie ) ist jederMeridian geodätische Linie und , Krümmungslinie ; ein Parallel kreis ist Krümmungslinie aber nicht
geodätische Linie .

§ 69. Differential -Gleichungen der geodätischen Linie.
Nachdem wir am Schluss des vorigen § 68. den Satz von den gleichen Scheitel -

Azimuten der geodätischen Linie gefunden haben , können wir die Differential -Gleich-
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ungen dieser Linie auf irgend einer Umdrehungsfläche aufstellen , in ähnlicher Weise
wie wir früher bei Fig . 1 . § 61 . S . 347 die Differential -Gleichungen des grössten
Kreises auf der Kugel durch geometrische Betrachtungen nachgewiesen haben .

Obgleich die nachfolgenden Betrachtungen auf jede beliebige Umdrehungsfläche
bezogen werden können , legen wir doch sofort in Fig . 1 . unser Umdrehungs -Ellipsoid
zu Grunde, weil wir für andere Flächen keine Anwendung haben .

Im Anschluss an Fig . 1 . und Fig . 2 . stellen wir eine geometrische Differential-

Betrachtung an , welche ganz analog dem früheren Falle auf der Kugel (Fig . 1 . und
Fig. 2 . § 61 . S . 347) ist . Wir betrachten dabei Fig . 2 . als polyedrisches Analogon
zu der wirklichen krummen Fläche , und haben dabei den Grenzfall für unbegrenzt
abnehmendes d s im Auge .

Fig. l .
S

Fig. 2.
Besonderer Teil von Fig. 1.

Eine geodätische Linie P P ' P " schneidet schief über zwei Meridiane und zwei

Parallelkreise des Umdrehungs -Ellipsoids hin , wodurch ein Trapez PP -[ P ' Q für uns
von Wichtigkeit wird , dessen Diagonale P P ' ein Stück d s der geodätischen Linie ist .

Indem wir die Breiten <p und cp 4- d cp und den Längenunterschied A X sowie
den Meridian -Krümmungs -Halbmesser M und den Quer-Krümmungs -Halbmesser N
nach alter Bezeichnung annehmen , haben wir (nach Andeutung von Km und AL in

Fig. 1 . und Fig . 2 .) die Seiten des Trapezes :
AS oder PP \ — Md cp W

P Q oder P t P ' = Ncos cp d \ (2)

Wenn nun das Azimut der geodätischen Linie bei P den Wert a hat , und das

Element der geodätischen Linie selbst = d s gesetzt wird , so erhält man in erster
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Näherung , da der Winkel ß bei P 1 mit unbegrenzt abnehmendem d s gegen 90°
konvergiert :

aus ( 1) : dscosa — Mdcp (3)aus (2) : d s sin a = N cos <jp dX = p dX (4)
Um auch für d a eine Differential -Formel zu erhalten , betrachten wir das lang¬

gestreckte schmale Dreieck PP ' S , welches oben bei S den Winkel d a enthält ; das¬
selbe giebt genau in derselben Weise , wie früher bei der Kugel in (3 a) § 61 . S . 348
gezeigt wurde , die Gleichung :

da = dX sin <p (5)
Dabei ist aber zu beachten , dass dieses d « zunächst nur gilt für die Differenz:

QP ' P — P XPP ' = da (6)
allein wegen des Satzes von den gleichen Seheitel - Azimuten der geodätischen Linie,den wir eingangs citiert haben , sind die beiden in Fig . 2 . bei P ' mit a ' bezeichneten
Azimute einander gleich , oder noch ausführlicher geschrieben :

T P ' P " = QP ' P , also nach (6) : T ' P ' P " — P x P P ' = da (V
Nun haben wir in (3), (4) und (5) bereits die gesuchten Differential -Gleichungender geodätischen Linie auf dem Umdrehungs -Ellipsoid , und überzeugen uns auch, dass

dieselben ähnliche Form haben wie die früheren Gleichungen (1 ) , (2), (3) S. 347 ,welche für den Grosskreisbogen auf der Kugel gelten .
Die Meridian -Konvergenz d a kann man auch dadurch darstellen , dass man in

Fig . 2 . eine Parallele P ' Q ' zu Pj P zieht , dann wird der kleine Winkel Q
' P '

Q = da
derselbe Wert wie d a an der Spitze S von Fig . 1 . Dieses führt auch auf eine neue
Formel für da , denn es ist nach Fig . 2 . :

ia = (8)P Q a s cos a
Nun ist Q Q ' das Differential von P Q oder von Pj P '

, wofür wir diesesmalden Parallelkreis -Halbmesser Neos q> = p einführen wollen , indem PQ = pdX ist.
Damit wird :

QQ ' = — d (pdX ) = — dpdX (9)
Wir haben dieses negativ genommen , weil der Parallelkreisbogen bei wachsen¬der Breite (d <p positiv ) abnimmt . Wir haben also nun aus (8) und (9) :

Wenn man hiezu wieder

d a = —

(4 ) nimmt ,

dp dX
äs cos a
und dX eliminiert , so hat man :

pcosada = — äpsina (1®)
Dieses ist das Differential von :

p sin a = 1c(konstant ) (^ )
und damit haben wir als erste Integration der Differential -Gleichungen der geo¬dätischen Linie einen wichtigen Satz (11 ) , welcher in Worten lautet :

Pas Produkt aus dem Purallelkreis -Halbmesser p in den Sinus des Azi¬
muts a ist für den ganzen Lauf der geodätischen Linie konstant .

Dieser Satz , welchem auf der Kugel der Sinussatz der sphärischen Trigono¬metrie entspricht , giebt sofort Aufschluss über den Gesamtverlauf einer geodätischenLinie auf dem Umdrehungs -Ellipsoid .
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Die beiden Faktoren p und sin a , deren Produkt nach (11 ) konstant = k bleiben
muss, schwanken selbst zwischen leicht angebbaren Grenzen. Das Azimut a kann
im allgemeinen nicht = Null werden (was dem besonderen Fall des Meridians ent¬

spricht), sondern hat seinen kleinsten Wert dann , wenn p seinen grössten Wert hat ,
d. h. im Äquator , wo p = a ist ; also :

■Sin Clmin= — ( 12)
a

Der grösste Wert von a , d . h . 90 °
, entspricht dem kleinsten Wert von p ,

d. h . mit sin a = 1 hat man : p min = k (IS)
Die Konstante k der Formel ( 11 ) ist also der Halbmesser des nördlichsten oder

südlichsten Parallelkreises , den die geodätische Linie erreichen kann ; und dadurch ist
auch eine gewisse äusserste geographische Breite bestimmt , über welche eine geo¬
dätische Linie nicht hinaus kommen kann .

In Fig . 3 . § 69 . S . 375 ist diese äusserste Breite = 60° . Die geodätische Linie

berührt abwechselnd den nördlichen und den südlichen äussersten Parallelkreis , und da

sie im allgemeinen nicht in sich selbst zurückkehrt , umläuft sie zwischen den genannten
äussersten Parallelen das Sphäroid in unendlich vielen spiralförmigen Windungen .

Übersicht der Haupt -Formeln .
Wir wollen unsere gefundenen Formeln , die zu weiterem gebraucht werden,

nochmals zusammenstellen :
(3) d s cos a = M dtp (l 1)

(4) d s sin a = JSf cos q dX W

(5) und (4 ) da = dX sin q oder da = ^ sin a tang q ia)

(11 ) p sin a = k (p = N cos q) WO

Dabei ist M der Meridian -Krümmungs -Halbmesser , N der Quer-Krümmungs -

Halbmesser und p der Parallelkreis -Halbmesser für die Breite q .

Die letzte der vorstehenden Gleichungen , welche wir mit (tp) bezeichnet haben,
weil sie später auf die „reduzierte Breite “ tp angewendet wird , kann man auch

unmittelbar aus Fig . 2 . herleiten , indem man in erster Näherung setzt :

P 1 P ' = ds sin a und PQ = ds sin « ' (l4 )
also p l p ' sin a < = PQ sin a , wobei P \ P ' = p' dX und P Q = p dX (15 )
Daraus folgt p ' sin a ' = p sin <x = Konstant . ' ^

§ 70 . Die geodätische Linie als kürzeste Linie .
Im Anschluss an Fig . 1 . nehmen wir

zuerst folgende Aufgabe : Man habe ein Prisma
mit den drei Kanten A A '

, B ' B , PQ , die
wir (zur Vereinfachung der Anschauung ) so
gelegt denken, dass A A' und B ’B in einer
horizontalen Ebene und PQ im Abstand h
darüber sich befindet . Es soll auf der oberen
Kante ein Punkt S so bestimmt werden,
dass die Summe der schiefen Verbindungen
4 S -)- S J = (s) (,sri nach zwei festen
Funkten A und B möglichst klein werde.

Fig. 1.
3 eingeklammerten Masse (s), (s')> W , (’M *>e-

auf fH« schiefen Ebenen.
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