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§ 85. Rechtwinklige konforme sphärische Coordinaten mit Gliedern

bis zur 4 ten Ordnung r 4 *

Indem wir darauf ausgehen , die Gauss sehen konformen rechtwinkligen Coordinaten
mit Meridiananschluss auf dem Ellipsoide zu entwickeln , wollen wir an die ersten
sphärischen Näherungen von § 50 . nochmals anschliessen , und zunächst noch auf der
Kugel bleibend , in dem Sinne der früheren Entwicklungen von § 50 . die sphärischen

Reihen bis weiterführen .H
Dazu muss vor allem das Projektionsgesetz selbst schärfer ausgedrückt werden

als in § 50 . geschehen ist . Wir müssen auf die durch Integration erhaltene strenge
Gleichung (7) § 50 . S . 280 zurückgreifen , nämlich :

oder für dekadische Logarithmen , mit fi = 0,43429 . . :

V i j. 71~ = 1 tan 9 ( x

-h 2r
Das Vergrösserungsverhältnis ist nach (5) § 50 . S . 280 zunächst streng :

d y „„„ 9

(1 )

(2)

Die Funktion ( 1) kann in einer Reihe entwickelt werden , indem man zunächst
rein goniometrisch umwandelt :

tang
1 + tang ^

1 - -

1 + t (3)

Die logarithmische Reihe von § 28 . S . 169 darauf angewendet giebt :
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Die Tangentenreihe § 28 . S . 172 gieht
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y = 9 (4)

also nach (1) und (3) :
93

, 9 5
'

6 »-3
^ 24

Diese Gleichung muss rückwärts nach i) aufgelöst werden , was durch schritt¬
weise geführte Näherung geschieht :

yS'
6rS

. Llt .
6 \ r3

(5)

9 = 2/ -

9 = y - 3 « s
'

6 r«

93 = y3 ■

yo~ ~
24r5

3 y °
6 r5

yb
6 r8 1 241 -5

Auch das Vergrösserungsverhältnis in kann man nach (2 ) bis auf -i entwickeln :

± = , _ _92 94
r 2 r2 ^ 24 H

-1 = 1 . /JL 94
r I2r2

cos

_ ) + _$1 = ! . t
24 rij + 4r « 2 i-2

' 5 t)4
24 H (6)

Dieses stimmt mit der in § 28 . S . 172 als bekannt citierten Secans -Reibe .

Man hat also m = 1 -+ - =5 -= +2 i-2 24 ri
oder mit Einführung von (5) :

m — 1 - f-

m — 1

Dazu auch die Umkehrung :
1

1
2 ^ ( 24

ll
2 J-2

ys
6 J'3

yi
24 r4-

5 yi'
24H

(7)

5yi

und in logarithmischer Form :

- = i ~ y + _m 21-2 24 ri

logm = ~ y* - '
12

Kg . 1. Das nächste ist die schär¬
fere Berechnung der Ordinaten-

lionrergenz , wozu dieselbe Be¬
trachtung wie früher bei den
Soldner sehen Coordinaten § 46 .
dient ; und um nicht dieselbe
Sache zweimal machen zu müs¬
sen , wollen wir die frühere

Gleichung in unsere neuen Be -

chpnd -KUn- 1 1 - Zeichnungen umsetzen , entspre-

t T
g
; ;; Z

™
? 1 Statt y ™d y' da™ *2 - *1 statt * - * und endlich

1 2 statt schreiben , dadurch gebt (7) § 46 . S . 260 in diese Form über :

T - T
tang - A— ._2 _ 2 r ^ ^ ^ x 2 — x1

cos - ■9i tang —
2 r

2 r
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Hiernach kann man die Differenz der sphärischen Richtungswinkel Zj und T2
scharf berechnen , beliebig weit in Reihen entwickeln , u . s . w . ; indessen brauchen wir
hievon zunächst nur das Differential :

• 5sm —
d T r

tang - 3- =
cos dy

2 r

dx
tang

oder hinreichend genau :

hier ist zunächst

also wegen (5) :

dT . X) dx- = sm — fr -
2 r 2 r

(9)

. bsm — =
r

sm — =

folglich nach (9) :

dT -- '
31 '3

6 r3

6 r 3

yz _ y_ __"
6 r 3

«3
~TT

dx
r

= ^ [ydx - "
3 r2 dx ( 10)

Nun hat man wieder dT als das Krümmungs - Differential der Kurve Ä B zu

betrachten, ähnlich w'ie in der früheren Fig . 6 . § 50. S . 283 , welche nun in Fig . 2 .

Fig. a .wiederkehrt, mit der Zeichenänderung ,
dass die schiefen Coordinaten , welche
in Fig . 6 . S . 283 mit f und i] be¬
zeichnet waren , nun durch l und z
ausgedrückt sind .

Der Grund dieser Zeichenänderung
war der , dass eine Kollision des früheren
Vund ^2mit unserem sonstigen ^2= e '2 cos- <P
vermieden werden sollte .

In demselben Sinne wie früher
hei (23 ) S. 283 haben wir also für
unseren neuen Fall aus (8 ) :

_ d22 _ dT _ 1 / dx _ j/SdscN,^ .
dlTr dip

Diese Gleichung ist auch hier
noch immer genau genug , denn es
sollte zwar statt dl gesetzt werden

n ^ m-mo-
VdlTTd & , aber es ist nach (35) S . 285 dn, oder nun dz selbst schon von er

also du» schon von der Ordnung was mit dem ohnehin schon m (11) voiha

Faktor i bereits geben würde .

Um (11) „ L ™ * - » >" ‘ “
fdem Anblick von Fig . 2 . durch folgende Coordinaten -Transformation geschi

x = x1 + lcost 1 - l* sint i
} (12)

y = j/j -t- l sin t\ + z cos fj
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Die z sind aber selbst Funktionen von l , nämlich nach (35 ) § 50 . S . 285 mit
fj = z und | = l :

l s cos fiV_ _ x
6, -2

Dieses in (12) eingesetzt giebt :

/o ^ 12 , Z3 .(2 2/1 + 2/ä) —
275 2/ i cos *1 — sm k cos tx

x = x -i + lcos tx Iscostisinti 12 23-
0

~
r ®

- i *22/1 + 2/2) + 272 2/1 *1 cos *1 +
072 sin2 *1 cos*l

, . ISCOS ^ U „ Z2 732/ - 2/i + *« » *1 A- (2 J/! + 1/2) —
g

—21/1 cos2 tj — sin tx cos2 t]

(13)

(14)

(15)
da: . s cos tx sin U , , . 2 . , , Z2 . „ ,= cos k -

072
— 1 (2 2/1 + 2/2) + 72 2/1 *1 c°s *1 + 272 k cos k

Damit kann man den ersten Teil von (11 ) bilden, nämlich y und zum zweiten
CiiTeile von (11) braucht man noch von (12) :

y 3 = i/j3 4- 3 yx2 / sxn * -|_ 3 v/j Za sin2 fi 4- Z8 si«3 ^ 4- . . . 1
, dx

| (16)dazu = cost ] ~t- . . . Idt '
Wenn man die beiden Faktoren (14), (15) und die von (16) ausmultipliziert unddie beiden Produkte nach der Vorschrift der Gleichung (11 ) vereinigt , so wird man ,nach Potenzen von l ordnend, einen Ausdruck von folgender Form erhalten:

d* z
dP = A + BI + CP + DP (17)

wobei die Cogfflcienten A , B , C, D folgende Bedeutungen haben:
. y -i ■ Vt s sin U cos t-1 , y i3 .A =

TT « » *1 — a —
67 S (2 2*1 + y *) -

374
C£W *1

siw fi cos U s cos fi „ , . „ , .= - -1 4-
6

-^ (2 i/i 4 - 2/a) (cos2 «i - smß tx)
B =

0 = 2/i
2 »-4

(— cos3 fi h- si« 2 ^ cos tx)
\ (18)

D = (— sz« tx cos 'S k — 5 sin3 tx cos k )
Ehe wir weiteren Gebrauch von diesen Coefficienten machen , werden wir die

Funktion (17) durch zweimaliges Integrieren weiter behandeln:
DU

(19)
dz __~
di ~ ° r

BP CI3- Al + ^ + ~
r -

z = Cj l -+- AP
(20)2 6 ^ 12 + 20Dabei ist Ci die erste Integrations -Konstante, und die zweite Integrations -Konstanteist gleich Null , weil l = 0- auch z = 0 geben muss . Zur Bestimmung der Konstanten

Ci dient die Festsetzung , dass l = 0 geben muss
und weiter weiss man, dass l = s auch g = 0 geben muss, also :

dz
M

dz4- di und l = s giebt

- e

+ do

A srt n -ALo0 = G1 + - s - +

M
2

Bf
IT

"

Os3 D si
3

Cs3
‘

12
'

4
D si
20
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hieraus folgt : «1 = A s Bs 2 GsS
' “

0
^ 12

öo =

Ds 4
20

'

Ds±
(21)

2
As £ s2 Os3
~
2

~ + “
3

“ + “
4
“ '

Hier sind die Cogfficienten A , B , G, I) von (18) einzusetzen, was nur noch eine

algebraische Zusammensuchung der gleichartigen Teile verlangt und nach dem Ordnen,
wenn zugleich = s sin ty = — yx und r eos ty = x2 — xy gesetzt wird , geben wird :

ai
^

1+ y2)+ % ff
3
(8y1+ 7y 2) - ^ 6̂ (8 ;/l3+ 21y 12 ^ + 24y 1^ + 7 .j/23) (22 )

und d2 entsprechend mit vertauschten 1 und 2 :

Ö,J3Z^ ±^ +^ i 3
(72/I +8y2)- ^ ^ (8 y23+2l2/23 3/1+242/2 3/13+7 2/l3)(22a)

Integration für die Länge 8 des sphärischen Bogens.

Wir haben drei verschiedene Längen zu unterscheiden : die Bogenlänge 8 auf

der Kugel, die Gerade s == Gerade A B der Abbildung und die Kurvenlänge s’ = Kurve A B

der Abbildung (vgl . Fig . 2 . S . 453) .
In differentialem Sinne besteht die Gleichung :

ds ,
m = oder

dS
dS — — ds '

m

also auch S
J ™

(23)

(24)
Dabei ist nach früherer Entwicklung (8) S . 452 :

_! - 1 2/a , 5 y±
m 2rZ 1 24 r 4

Das Differential ds '
, welches bei der früheren Entwicklung von § 50 . auf

einschliesslich genau schlechthin = d l gesetzt werden durfte , muss nun genauer an¬

gegeben werden :

ds ’ = y dfi -h ds 2 = dl ( l + y (^ 7 ) )

Da ~ schon = -I also (— )
*

= — ist , sieht man alsbald , dass das Integral
dl r 2 \ dlj r4

(23) in zwei Teile zerfällt :
/*„ /»a

(25 )
S = - dl + äl = l + H

1 f 2 \ (11/

Bleiben wir zunächst bei dem ersten Integral stehen , so müssen wir die Reihe

(24) in eine Reihe mit steigenden Potenzen von l uniformen.
Man hat dazu von (14 ) die Reihe für y , welche quadriert giebt .

y2 — yy + i (2 ^ sin ty (2 yi vs)
COS2 t

'
Tr 2

1 (5 y -p — y\ y%— y£ )-h ß
^
sm2 ti -

— 3̂ -t sin ty cos2 ty — f4 sin2 ty cos2 ty -4- ■

(26 )
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und weiter :

yi — y -£ -+- 1 4 2/j8 sin t] -t- l2 6 y j2 sin - tj -f- Z3 4 z/j sin2 tx + Z4 a***4 fi (2VWenn man damit den Ausdruck (24) zusammensetzt und nach Potenzen vonordnet, soll entstehen :

1 = 1 _ il + l2/ _
4

= ß .m 2 j-2 24 r4 : i + y za -+• ö za + « z*
also der erste Integralteil von (25 ) :

2 + ^ y + °
T + *

T
Hiezu muss man die Teile aus (26) und (27) zusammensuchen, wodurch man

T ßs 2 S3 . S4I — a s ^— i- y -
g

- + ä —

erhält :

1 = 1 _ Sl
s 2r 2

yi 's sin tj s2 sin2 ij
ßW2r 2

(
^
— 2/1 cos* % (2 2/1 + 2/2) + 5 2/i 3 s sw* <1

sä cos2 tx ( 5 yi 2 — yi y -z —
y/j + 2/12 s2 sin2 tx

1 5
3/1 ss sin t cos2 -4-

^ 2/l s3 **w3 h6 )'4

-h J + s3 sf»2 Zi cos U + s4 sini U80 r4 1 1 ' 24 r4 1
Wenn man hier überall ssintx — y%— yx und scost 1 = x .2 — * 1 setzt und diegleichartigen Teile zusammensueht, so findet man:

1 = t „ ul±im±yl _ (ß 3/j2 + 14 * ya + s y8»)

+
24 h ^ l4 + 2/l3 2/2+ 3/i2 Z/22 + 2/1 */23 + - 2*24)

Um auch den zweiten Teil des Integrals (25) zu bestimmen , müssen wir auf(35) S. 285 zurückgreifen und entnehmen (mit 77= g und | = Z) :de scostxf . \ Z l2dl = -
Ifr (

2 2/i +
2/sJ

~
^ 2/i cos ft -

^ 2 « » Zicos *,
”
2 ( (Zf) =

Wri
?
(

®2 )23,1 + 2/2)2 — / 12 s 2*1 (2 2/i + 2/z) + 2236 2/l2 — /26 *i (2 2/l + 2*2)1
\ + P2,ß %jxsint l + l^ 2) sm2 t-i \

Dieses integriert giebt mit s sin tx = y z — y\ :

T = ~
+ z7 ! / (2 2/1+ 2/2)2— 6 2/i(2 2/i + z/2) + 12 2 (j/2—3/1) (2 j/j + 3/2)+ 9 2/i(2/2~ 2/l )jI

+ 1 (2/2- 2/i)2)
All ’ dieses zusammengezogen vereinfacht sich sehr, und giebt schliesslich:

7 = HböT -4
^

j 4 2/l 2 + 7 2/i 2/2 + 4 2/22
| (29)

Wenn man die Teile I und II von (28 ) und (29 ) zusammennimmt, so hat mannach (25) :
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II
= 1 i/i 2 + i/i + yi

6, -2
'2 (5

| _ 5l )2
(4j ,12 + 7y 1 2/2 + 4 ^ 2) |

(30 )
-+-

2^ 4 (2/i4 + 2/i3 2/a + 2/i2 2/a2 + 2/i 2/a2 + J/24)

Wenn man die Mittelordinate einföhrt nach der Gleichung

_ 2/1 + 2/2
2/o

2/o

2/o'

4

,a = \ (2/12 + 2 2/12/2+ 2/a2)

,4 ^ (
'
?0±J

5 (a 2 - xi )4
(31)

= -I (4/^ -P 4 4/481/2 -f 6 2/l 2 2/22 + 4 2/1 2/23 + /'s4)
v 2 y io

und wenn man auch entsprechende Werte von — einführt , nämlich nach (8)

1 V12 5 1/ , * 1 i 2/ä2
, JLj/g 4

— - 1 —
2r2 + 24 r * »»2 2r2 24 ,4

1 2/J
2 ,

^ 2r 2 24 r*

so kann man das vorstehende (30 ) auch auf diese Form bringen .

£ = _L (
"
i . + -1 - + X 1

) _ (4 j/ !2 + 7 2/11/2 + 4 2/22) 2880s 6 \ m to0 mj 360H
. , , , ,

Das Ergebnis aller vorstehenden Entwicklungen und Bet
^

a °ht
^

nSe ”
^ j derin den zwei Gleichungen (22 ) und (22a ) für die Richtungs -̂ Reduktroner , und m de

Schlussgleichung (31 ) für die Entfernungs - Reduktion . Wenn man die Glieder m

~ weglässt , gehen die Formeln wieder zurück in die früheren Formeln (S ) , ( )

(13) in § 50 . S . 284 und S . 282 .

Einführung von Näherungen für verhältnismässig kleine x % %\ Jz

Wenn in einem sehr ausgedehnten System die Dreiec
^

v
^

m
^klein sind gegen die Ordinaten selbst , so kann man die Glieder

^ ^
die Glieder mit — unterscheiden in solche, bei welchen

7*4
die Potenzen von y selbst oder nur Potenzen von
*2 — x1 und </2 — yx überwiegen , und man kann letztere
Glieder gegen erstere vernachlässigen .

Wir wollen dieses näher verfolgen im Anschluss
an eine Abhandlung von Oberstlieutenant von Schmidt ,
Chef der trigonometrischen Abteilung der Landesauf¬
nahme, in „ Zeitschr . f. Yerm . “ 1894 , S . 399 —400 , und
indem wir die dort teilweise abweichenden Bezeich¬
nungen in die unsrigen (Fig . 3) umsetzen , haben wir
■’ort (7) 1894 S . 339 und (8) S . 340 :

ngs- Zo9S= ^ (2/l+ 4/2)?-
2£ p (2/2- 2/i)a-

i92 ^ ^ 1+ !'^ 4 (82)
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T 1~ h =
4 ^ 2 (3/1 + ^ ) 0 *2 - * l ) ~

12Ä2 (2/2 ~ 2/i ) 0*2 - * 1) '
4 ^ 4 f2/i + 2/2)3 (« 2- * 1) (33)

Es ist nicht schwer , diese Formeln als Vereinfachungen unserer Formeln (30)und (22) nachzuweisen . Nehmen wir zuerst (30) mit Vernachlässigung des Gliedes
• • • und Einführung des Mittelwertes ZutJ ' ä jm jg^ ten Gliede von (30),

so haben wir von dort :
! = 1 _ ^
s

■2/1 V2 + V22
6 r 2

Nach der logarithmischen Beihe S . 169 :

'
24 r4 '

1 (̂ 1 =
s

2/i 2 + 2/i V%-+- y$ 1

IS -

6r 2

ls = — 2/i2+ Vi y22 + y22
384 r 4

1

(2/1 + 2/ä)4 ■

(221+ 2/2)4

2/1 + 2/2

3 (2/1 + 2/2
6 r2 \ 2

(34)6 r2 192 r 4
Das letzte Glied hiev stimmt mit dem letzten Gliede von (32) , und da auch

die zwei ersten Glieder von (32) sich mit dem ersten Gliede von (34) als algebraischidentisch erweisen und der logarithmische Modul l p in den Zeichen log s und Is u . s . w.
begründet ist , haben wir nun die Formel (32 ) als Vereinfachung von (30) nachgewiesen.Noch kürzer ist einzusehen , wie (33) aus (22) hervorgeht , indem das Glied
(x2 — äu )3

360 H (22) vernachlässigt wird und im letzten Gliede von (22 ) die Klammer

= 60 ^ ~ d_—j gesetzt wird . Auch dass die zwei ersten Glieder von (33) mit dem einen
ersten Gliede von (22) identisch sind , wurde schon in § . 50 . S. 284 —285 oben bemerkt.

Die konstanten Coefflcienten - Logarithmen der Landesaufnahme - Formeln (32)
und (33 ) sind schon zum Teile auf S . 285 unten angegeben . Die noch dazu gehörigen
Coefflcienten 44er Ordnung sind :

** TMÄ * = 7 ‘184 373 l°9 18X4 = 6 -431 074

Eine praktische Anwendung der Formel (33) haben wir schon früher in Band I.
4 . Aufl . 1895 , S. 418— 419 gegeben , hei dem Schlesisch - Posen sehen Netze , mit y =
rund 350 000”1; das Glied 4*er Ordnung in (33) brachte dort noch 0,0197" .

§ 86. Konforme Gauss sehe Coordinaten.
Die konformen rechtwinkligen Coordinaten mit Meridiananschluss , welche Gauss

etwa um 1820 — 1830 in Hannover eingeführt hat , haben wir schon mehrfach im
früheren erwähnt , in der geschichtlichen Übersicht von § 59 . S . 328—329 und in der
mathematischen Entwicklung erster Näherung von § 50.

Das Quellenwerk für diese klassischen Coordinaten ist : „ Theorie der Projektions¬methode der Hannoverschen Landesvermessung von Oscar Schreiber , Hauptmann im
Königl . Hannov . 1 . Jägerbataillon , Hannover , Hahn sehe Hofbuchhandlung 1866 “ mit
einem Vorwort von Wittstein .

Im Nachfolgenden geben wir eine Bearbeitung dieser Schrift , in breiterer Dar¬
legung als im Original und mit möglichst geometrischer Auseinandersetzung dessen ,
was im Original mehr nur analytisch vorgetragen wird .
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