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458 Konforme Gauss sehe Coordinaten .

T 1~ h =
4 ^ 2 (3/1 + ^ ) 0 *2 - * l ) ~

12Ä2 (2/2 ~ 2/i ) 0*2 - * 1) '
4 ^ 4 f2/i + 2/2)3 (« 2- * 1) (33)

Es ist nicht schwer , diese Formeln als Vereinfachungen unserer Formeln (30)und (22) nachzuweisen . Nehmen wir zuerst (30) mit Vernachlässigung des Gliedes
• • • und Einführung des Mittelwertes ZutJ ' ä jm jg^ ten Gliede von (30),

so haben wir von dort :
! = 1 _ ^
s

■2/1 V2 + V22
6 r 2

Nach der logarithmischen Beihe S . 169 :

'
24 r4 '

1 (̂ 1 =
s

2/i 2 + 2/i V%-+- y$ 1

IS -

6r 2

ls = — 2/i2+ Vi y22 + y22
384 r 4

1

(2/1 + 2/ä)4 ■

(221+ 2/2)4

2/1 + 2/2

3 (2/1 + 2/2
6 r2 \ 2

(34)6 r2 192 r 4
Das letzte Glied hiev stimmt mit dem letzten Gliede von (32) , und da auch

die zwei ersten Glieder von (32) sich mit dem ersten Gliede von (34) als algebraischidentisch erweisen und der logarithmische Modul l p in den Zeichen log s und Is u . s . w.
begründet ist , haben wir nun die Formel (32 ) als Vereinfachung von (30) nachgewiesen.Noch kürzer ist einzusehen , wie (33) aus (22) hervorgeht , indem das Glied
(x2 — äu )3

360 H (22) vernachlässigt wird und im letzten Gliede von (22 ) die Klammer

= 60 ^ ~ d_—j gesetzt wird . Auch dass die zwei ersten Glieder von (33) mit dem einen
ersten Gliede von (22) identisch sind , wurde schon in § . 50 . S. 284 —285 oben bemerkt.

Die konstanten Coefflcienten - Logarithmen der Landesaufnahme - Formeln (32)
und (33 ) sind schon zum Teile auf S . 285 unten angegeben . Die noch dazu gehörigen
Coefflcienten 44er Ordnung sind :

** TMÄ * = 7 ‘184 373 l°9 18X4 = 6 -431 074

Eine praktische Anwendung der Formel (33) haben wir schon früher in Band I.
4 . Aufl . 1895 , S. 418— 419 gegeben , hei dem Schlesisch - Posen sehen Netze , mit y =
rund 350 000”1; das Glied 4*er Ordnung in (33) brachte dort noch 0,0197" .

§ 86. Konforme Gauss sehe Coordinaten.
Die konformen rechtwinkligen Coordinaten mit Meridiananschluss , welche Gauss

etwa um 1820 — 1830 in Hannover eingeführt hat , haben wir schon mehrfach im
früheren erwähnt , in der geschichtlichen Übersicht von § 59 . S . 328—329 und in der
mathematischen Entwicklung erster Näherung von § 50.

Das Quellenwerk für diese klassischen Coordinaten ist : „ Theorie der Projektions¬methode der Hannoverschen Landesvermessung von Oscar Schreiber , Hauptmann im
Königl . Hannov . 1 . Jägerbataillon , Hannover , Hahn sehe Hofbuchhandlung 1866 “ mit
einem Vorwort von Wittstein .

Im Nachfolgenden geben wir eine Bearbeitung dieser Schrift , in breiterer Dar¬
legung als im Original und mit möglichst geometrischer Auseinandersetzung dessen ,
was im Original mehr nur analytisch vorgetragen wird .
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Allerdings die Grundgleichung der konformen Abbildung auf Grund der Funk¬
tionen komplexer Veränderlicher , nämlich die nachfolgende Gleichung (6) , x + iy
= f (q + i X) , müssen wir hier als bekannt voraussetzen .

Die Gauss sehen Originalschriften über die Theorie der konformen Abbildung sind :
Allgemeine Auflösung der Aufgabe , die Teile einer gegebenen Fläche so abzubilden , dass

die Abbildung dem Abgebildeten in den kleinsten Teilen ähnlich wird , von C. F . Gauss . Als Beant¬
wortung der von der Königlichen Societät der Wissenschaften in Kopenhagen für 1822 gestellten
Preisaufgabe , veröffentlicht in Schumachers astronomischen Abhandlungen , Heft 3, Altona 1825.

Untersuchungen über Gegenstände der höheren Geodäsie von Carl Friedrich Gauss , erste
Abhandlung , der Königl . Societät überreicht 1843, Art . 23.

Den Hauptinhalt dieser Theorieen haben wir schon früher in unserem II . Bande , 2. Auflage ,
1878, S. 377—379 abgedruckt u , kommentiert , weshalb es hier genügen mag , hierauf zurückzuverweisen ,
oder auf irgend ein mathematisches Werk über Funktionen komplexer Veränderlicher Bezug zu
nehmen , zur Begründung der nachfolgenden Gleichung (6) , der einzigen , die wir aus jenen all¬
gemeinen Theorieen brauchen .

Hier ist auch nochmals das Hannover sehe Coordinatenverzeichnis mit Einleitung von Witt¬
stein zu erwähnen , dessen genauer Titel schon in § 59. S. 329 (im Kleingedruckten ) angegeben wurde .

Überall im Folgenden haben wir unsere gewöhnlichen Bezeichnungen V3, y 2 u. s. w. angewendet ,
nach deren Umsetzung unsere Schlussformeln mit den Formeln von Schreiber und Wittstein über¬
einstimmen .

Nach diesen Vorbemerkungen gehen wir über zur mathematischen Behandlung
6er Sache , indem wir in Fig . 1 . ein Stück des Erd - Ellipsoids und in Fig . 2 . dessen
ebene konforme Abbildung betrachten .

Kg . 1. Fig . 2.
Ellipsoid . Ebene .

O Aequato ' Aequal'or

Breiten
^ ^em Ellipsoid Fig , 1 . werden zwei Punkte A und A' betrachtet mit den

. . . V un (* <p -i- d <p und mit den Längen X und Ä+ dX -, dann hat man ein un-
lc kleines rechtwinkliges Dreieck ADA ! , in welchem ist :

A D = Md (p , D A’— NcostpäX
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also A A' = d S = \f {M d qp)3 —H- {Neos cp d A)2 (1)
Dabei sind M und N wie gewöhnlich die beiden Hauptkrümmungs -Halbmesser ,und indem wir auch wie sonst N : M = F 2 setzen und weiter zur Abkürzung einführen:

dqp M _ dq > _ ^
coscpN

~ F 2 cos <f>
— ®

erhalten wir (1) in dieser neuen Form :
dS = iVcos tp

"
{/d §2 + d Ä.2

Ausser dem Dreieck ADA ' besteht auf dem Ellipsoid noch ein zweites eben¬
falls rechtwinkliges Dreieck A C A '

, welches zur Bildung rechtwinkliger Coordinaten
konform abgebildet wird in der Ebene Fig . 2 . durch das Dreieck aca ' mit der Hypo¬tenuse ds ; es ist also in der Ebene :

(2)

(3)

ds = yd a;2 + d y2
Aus (3) und (4) folgt das Vergrösserungsyerhältnis :

äs ydx %-m = irs = - - dy2
Yä {

(5)
iq * -h dX2 Ncos (p

Nun kommt die allgemeine Theorie der konformen Abbildung in Betracht , welche
wir bereits in der Einleitung dieses Paragraphen erwähnt haben .

Diese allgemeine Theorie sagt aus , dass die in (5) behandelte Abbildung dann
konform ist , wenn x -\- iy eine Funktion von q + iX oder von q — iX ist , d . h. es
muss sein :

(x + i y) = f (q + iÄ) (6)
wobei f eine zunächst beliebige Funktion bedeutet , über welche nachher weiter verfügt
werden soll .

Die Funktion f in (6 ) wird nach der Taylor sehen Beihe entwickelt :
m + ai = m + («) im Aiy + <* »£ + . , . ,« q 2 dq 2- o dq *

Da i = y — 1, i2 = — 1, z3 = — i , z4 = -+. 1 u . s . w . , so giebt dieses :

W ’ dq 2 dq 2 6 dq $
Die Funktion f (q), welche bisher noch unbestimmt ist , muss nun entschieden

werden , und zwar soll dafür genommen werden der Meridianbogen B vom Aequatorbis zur Breite <p, wie in Fig . 1 . eingeschrieben ist . Dieser Bogen B ist eine Funktion
von qp; in unserem früheren § 35 . ist B in einer Reihe als Funktion von qp,
sin4q } u . s . w . entwickelt worden , und die Zahlenwerte B sind tabellarisch genügend
dargestellt in unseren Tafeln Seite [38] und [55 ] — [57] des Anhangs .Da auch dq nach (2) eine Funktion von <p ist , und da von f (q) nichts weiter
verlangt wird , als dass es eine Funktion von q sein soll, so entspricht die Wahl f (q) —
der gestellten Konformitätsbedingung und führt andererseits die Aufgabe ihrem geo¬dätischen Ziele entgegen . Indem wir nach (6) zurückgreifen , haben wir also :

x -hiy = B+ a — _ ^ ■ as d° B d6B- -udq 2
"
dg 2 *

6 dq * + 24 dqX
+ 120 dg 3 720 dg « + " '

Die Vergleichung der reellen und der imaginären Teile giebt :
x = ■ j-4 diB Xe d« B

2 d cß
^ 24 dqi 720 d qS

1 " (7)
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dB Ä3 MB ^ MB
V ~ ' K

äq 6 dqs
+ I2Ö dg * 1 " '

Die Form dieser zwei Beihen ist sofort einleuchtend , weil der als # - Axe
genommene Meridian eine Symmetralaxe ist . Der Wert x — B kann als Potenzreihe
nur die geraden Potenzen Ä2, Ä4 . . . enthalten , und es muss mit X = 0, * — B — 0 ,
d. h. x — B werden . Ebenso zweifellos muss mit X — 0 auch y = 0 werden , und da
y mit X gleiches Zeichen haben , im übrigen für + X absolut genommen gleich bleiben
muss, kann die Beihe (8) nur die ungeraden Potenzen X, X%. . . enthalten .

Die Ableitungen von B nach q müssen ausgeführt werden, wozu man hat :

d B = Mdcp —

also

<BB _
dq dcp

~

-fgdV und dq 1
d cp

~
cos cp

(9)

dB c
(10)— = — cos cpdq V T

c d V c .
-W ^ cos v - v sm v

Schon früher gebraucht (§ . 34. S . 208) ist ~ ^ f, also

d* B
dqdcp

d cp

- = {rp sin cp — F 2 sin <pj = sin cp — (1 ■

d cp

- t )

MB
dq * :

c sm w cos cp
T7.„- sm cp -j -z- = - -- r
F3 r dq F

(11)

Wenn man in diesen Formeln weiter differentiiert , so bekommt man :

dBB ccos3 * , , ,,= -

t -
^ sin cp cos3 <p (5 — t2 -+- 9 rp -+■4 rj4)

dq± V
Von hier ab wollen wir nur noch die sphärischen Glieder , d . h . die Glieder

ohne jy2 differentiieren , und finden mit solcher Abkürzung :
dß>B , c
dgä + y cos &cp (5 - • 18 ß + t4)

(12 )

(13)

(14 )

d« B c
— — -

y
sin cp coso cp (61 — 58 t2 -h 4 t4) (15)

Nun kann man die Formeln für x und y nach (7) und (8) zusammensetzen,

^ gleich mit Berücksichtigung , dass ~ = N ist und mit Zusetzung der nötigen p :

~ _ H , Ka N . X4 N \
J3 ~h ~

2 sm $ cos tp -f- oT siw V cosS (5 — t2 -c- 9 rß + 41f )
^ | (16)

Je N
+ —

g
sin cp cos5 cp (61 — 58 f2 + 4 f4) j

_ 1 N X3 N J5 AT
y - x — COS<p -f- — -

3
- cos3 cp ( 1 — t2 + J22) + ^ ^ cos$ cp(5 - 181 2 ■+ ü ) (17)

a a
D

)eses sind die Formeln von Schreiber (6) S. 10, abgesehen von den Gliedern mit ip n . s . w.

vnr,
^t8r und 6ter Ordnung , und innerhalb der Ordnung haben wir damit die Formeln

n Wlttstein , s . X. oben .

( Igj g 5g^ ^
ster Näherung stimmen diese Formeln (16) und (17) auch mit unseren früheren (11) und
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In den Formeln (16) und (17 ) sind q> und X die gegebenen geographischenCoordinaten eines Punktes , und zwar X nach Osten positiv gezählt von irgend einemMeridian , der als as-Axe eines rechtwinkligen konformen Coordinatensystems angenommenist . B bedeutet den Meridianbogen vom Äquator bis zur Breite cp , x und y sind die
gesuchten ebenen konformen Coordinaten , und zwar x gezählt wie B vom Äquatorder Erde , y rechtwinklig zu x , nach Osten positiv wie X (vgl . Fig . 1 . und 2 . S . 459).Da B und x auf diese Weise sehr grosse Zahlen werden , kann man sie beliebigabkürzen oder von irgend einem Nullpunkt in dem Vermessungsbereich selbst zählen.Doch spielt das in der Theorie keine Bolle , weil immer nur die Differenz x — £ in
den Formeln auftritt , und deswegen rechnen wir am einfachsten in den Formeln mitB seihst .

Umkehrung der Formeln (16) und (17) .
Man kann die Formeln für x und y geradezu umkehren , was wir nun ausfiihren

wollen , aber nur bis zu Gliedern von der 4*en Ordnung einschliesslich , d . h . also zu¬
nächst aus (16) und (17) :

JV sin <p cos cp + N sin q>cos3 qo (5 — t2 -+- 9 rj2 -+- 4 ?y<)

y — XN cos cp + N cos3 cp (1 — t2-h X2)

(18)

(19)

welche insZuerst wird (19 ) umgekehrt mit erster Näherung X
zweite Glied gesetzt giebt :

(l - V + r? )

N cos cp
’

N cos cp 6 A73 cos (f'
Daraus bildet man auch die zweite Ordnung :

( l _ <2 + ?72)N 2 cos2 cp 3 W4 cos2 q>
und dieses in (18 ) eingesetzt giebt :

x — B (1 -+- 3t 2-t- 5ij 2 + 4 ?j4)2 N 24 iV3 (21)

Nach diesem soll der Meridianbogen x — B in der zugehörigen Breitendifferenz
qq — <jp ausgedrückt weiden , was nach dem früheren § 35 . Gleichung (37 ), S . 218 mit
qq als Ausgangshreite sich so giebt :

Q 71fB — sc = Mj (qp - qq ) -t- -
j r/j2 *! (qp — qq )2

x — B = M 1 (<pl - cp) ~ ^ ^ tj12 t1 (cpl ~ cp)2 (22)(22)
oder

Dabei gehören Mx, iq 2 t] , alle zu der Fusspunktsbreite cplt während in (18)— (21)
alles sich auf die Breite cp des Punktes selbst bezog . Aus (21) und (22) bekommt
man als erste Näherung für die Breitendifferenz qq — cp :

cpi — cp q) = qq2 MjN
lang cp = lang qq ( 1 ■+ h 2)2 Mx N

2 M , AT

Hieraus
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Für den weiteren Gebrauch in den höheren Gliedern braucht aber fl und f,
sowie -A7! und N nicht mehr unterschieden zu werden , also :

yit 1 n ,t = U (1 + fi 2) — ti2 M x N \
r ' "l ~> 1,1 2 ^ 2

Dabei ist berücksichtigt , dass allgemein A7: M

1 2 A7j2
Dieses in (21 ) eingesetzt giebt :

V%h y i h'
2 A7

(l + % 2) (1 + tjü )

= F 2 = 1 + ifi ist , also :

+ (23a )

■B (— 5 — 3 t2 — if — 6 if fl + 4 rft) (24 )24 IVjS
'

Weiter muss im ersten Gliede N durch IVj ersetzt werden , was nach früherem

§ 34. S . 208 , unten Gleichung (1) , geschieht . Wir wollen dabei auch bemerken , dass
in den höheren Gliedern cp und qpj u . s . w . nicht mehr unterschieden wird . Damit
ist nach der citierten Gleichung unten auf S . 208 mit Rücksicht auf (23 ) :

Wi _ i , (<Pi — <p) y2 v2 (2 _ i , y2 1? t-
N 1 + F 2 v * 1 + 2 M N F2 + 2 A72 (25 )

Dieses mit (24 ) giebt :

, y 2 hB = y 4 <i
2IV , 241V . 3 ( _ 5 — 3 — rjz f 4 ??4) (26 )

Nun sind die Ausdrücke in (22 ) und (26 ) einander gleich , was vollends die

Auflösung nach cpj — cp giebt :

_ H- h - — . (5 + 3 fl + t?2 — 9 ??2 t2 - 4 rfi (27 )—
2 Afj IVi 24 M 1

'

Damit ist die erste Formel (18 ) vollständig umgekehrt , und um auch vollends
(19), d. h . die vorläufig schon hergerichtete (20 ) zu erledigen , brauchen wir von (23 )
mit N : M = F 2 = 1 -+- ^ 2 die Entwicklung :

cos cp = COS<Pj +
jv ^

s*w V'1 = C<M 1)01 + O ?
^ ^ sm ^

Dazu nach (25 ) :
1 1

A7eos cp
1

A7! cos

1

1 +

1 —
Neos cp A7! cos cp1

Dieses in (20 ) eingesetzt giebt alsbald :

y y3

2 IV2 2A ’2 l

?/2i2
2 IV2

- (1 + 2t 2 + ?/2) (28)
1V[ cos qsj 6 A^ cos qpx

Nun haben wir in (27 ) und (28 ) die gewünschten Formeln zur Bestimmung von

$ und L und indem wir auch die nötigen Q zusetzen , stellen wir zusammen a s

Gebrauchsformeln :

i) — ij i - ■' ^
p .* 1 2 M l N 1
* (5 + 3 f!* + 9 <ia — * 5i 4)

24 Mt IVjä
(29)

. . (30)
7V[ cos qpj 6 cos cp[

Diese Formeln entsprechen den Formeln von Schreiber (11) S. 25 und Wittstein S. X. unten .
Diese Formeln stimmen auch in erster Näherung mit unseren früheren (8) und (9) § 58. S. 323.

a = yg _ y 3 e - (H - 2 (12 + J?12)
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i

Kg . 3.

Meridian -Konvergenz .
Wenn in Mg 3 . NA S das konforme Bild eines Meridians , und WAE das

konforme Bild eines Parallelkreises ist , wobei sich diese beiden Linien in einem Punkte
A schneiden , durch welchen wir auch die
Parallelen A B und A G mit den Coordinaten -
axen ziehen , so entsteht ein kleiner Winkel
y, welchen hier Gauss „Meridian -Konvergenz “
nennt (vgl . hiezu den Schluss dieses § , S . 465 ) .

Wenn wir die Gleichung des Parallel¬
kreis -Bildes WAK als Punktion zwischen
den ebenen rechtwinkligen Coordinaten x und
y aufstellen können , so brauchen wir nur noch

— zu bilden , um tang y zu haben .
Um in diesem Sinne die Gleichung

des Parallelkreises zu bilden , brauchen wir
nur qp konstant zu denken , und A allein ver¬
änderlich , d . h . wir leiten die Gleichungen
(18 ) und (19 ) partiell nach A ab , und erhalten
damit :

dx •> , T • A8 .
^ = A N svn cp cos qp + -

g
- N srn qpcos8 qp(5 — <2 9 ^2 ■4 r,i)

dy
— N cos qp - A2

■rP)^ ^ — - . wo \y -1— K cos3 (jp (1 — /;2

Die Division von (31 ) und (32) giebt :

= | a sin qp + ~ sin qp cos2 qp (5 — *2 + 9 4 ^ ) | | l _ ^ cosz (1 — t2 + f )

4 rji) = tang 7

(31)

(32)

dx . . A8 .— = X sm qp- i- -
g

- sm qpcos 2 <p (2 + 2 f2 .+ . ß ^2

Nun ist nach der arc tang -Reihe § 2

7 = fang 7 — wobei

also mit dem vorhergehenden

S . 172 :

tangZy A3= -5- sin qp cos2 qp t2

y = dJL1 dx
und alles zusammengenommen :

-
g

- 2 sin qp cos2 qp (2 f2)

iv cos qp 6 JV 3 cos qp

Diese Gleichung ist anzuwenden , wenn ein Punkt durch qp und A gegeben ist;
wenn aber x und y als gegeben vorliegen , dann empfiehlt es sich , erstens X in y MS "
zudrücken und zweitens auch alles , was von qp abhängt , auf qpj , d . h . auf die Fusspunkts-breite zu reduzieren .

Für das erste haben wir von (20 ) :
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Dieses in (33) eingesetzt giebt :

? = f t + IÄ (1 + t2 + 5, ?2 + 4,j4)2V
Weiter haben wir für t und jV bereits die Gleichungen (23 a) und (25), welche

zusammen geben :

fl -t- <* + ?f + tj2 *2)) ( l + 2^ 2 ^ tß)

(34)

N ~ Nx y 2 N%
'

Dieses mit dem vorhergehenden vereinigt giebt endlich :
ys, - lfc7 -

iYx
1 ’

3iVi »h (1 + ti2 - %2- 2 ,/i4)
Die Zeichen ^ und de

"
uten an , dass diese Werte ,

^Punktion der Fusspunktsbreite qpi zu nehmen sin , we c e er
piiedern derrektifizierten Meridianbogenlänge x entspricht . Auch in en

obeleichFormel (34) haben wir durchaus * * ■ « . s. w. in diesem Smne geschr eben obgleich
in der vorhergehenden Entwicklung die Unterscheidung von <p un qq

.̂. jGliedern nicht eingebalten wurde , weil sie in der ohnehin zugelassenen gn
der nächstfolgenden y * u . s . w . keine Konsequenz

J,ormel c s_3l>raä voll-Die Gleichung (34) stimmt innerhalb ihrer Ordnung
^

’
einscUies6l jcb geht ,ständig mit der 'Formel c won Wittstem , S. XI , welche a

Wahre Meridian-Konvergenz.
Die Meridian - Konvergenz y , wie sie im Anschiuss an Fig . 8. S . 464 definwrt

wurde , ist von der besonderen Natur der vorliegenden Abbildung » S
entspricht nicht genau der Definition Meridian -Konvergenz a a vo
S. 345, wie auch schon auf S . 346 bemerkt wurde .

Figi ^Um auch die Meridian -Konvergenz Eilipsoid .in dem früheren Sinne a '— a Fig . 3 . S. 345 ^zu bestimmen , betrachten wir in Fig . 4.
einen Punkt A mit der Breite cp und der
Länge X gegen den Anfangsmeridian NO,auf welchem in der Breite qq eine geo¬
dätische Linie qq

’ A rechtwinklig nach A
abgeht, so dass man sageD kann , auf dem
Ellipsoide sei von 0 bis qq ' die Ahscisse
und von qq ' bis A die Ordinate des Punktes
A , und zwar Ahscisse und Ordinate beide
als geodätische Linien verstanden .

Ausser dem Punkte qq' nehmen
wir noch auf dem Meridian 0 N einen
Punkt qq , von welchem ebenfalls recht¬
winklig eine Linie nach A abgeht (in
Pig. 4. punktiert gezeichnet ) ; diese zweite
Linie qq A ist aber nicht eine geodätischeLinie, sondern eine sehr flach gekrümmteandere Linie , von welcher sich nachher er¬
geben wird , dass sie das Eilipsoid - Bild
zu der geraden Ordinaten -Linie y des kon¬
formen Coordinatensystems ist .

gQJöraan , Handb . d. VermessungsSunde . 4. Aufl . III . Bd .
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Wenn in A die zwei Tangentialrichtungen A P / und A Pj rechtwinklig auf
Aqpj ' und auf A qpj gezogen werden , so ist NAP { — y

' die Meridian - Konvergenz
zwischen cp{ und A in dem gewöhnlichen Sinne von a ' = </. in Fig . 3 . S . 345 .

Um diese wahre Meridian - Konvergenz y
' zu bestimmen , nehmen wir von den

Reihenentwicklungen des früheren § 74. Gleichung (27) S . 396 bis zur dritten Ordnung
mit u = 0 und v = und t = tang qpj

' für die Ausgangsbreite qP]
' :

V tang cpi - yi
tang cpi (1 + 2 tang 2 qpj

’+ J/i 2)Ni
. * T1 6

Hiezu von (26) S . 395 mit denselben Substitutionen :
y ys

(35)

X COS<f>i =
3 Ni s tang 2 (fi{

Also durch Division von (35) und (36) :

y
' = X sin (p{ ( 1 y*

6 N , 2 (1 + 5

y
' = Xsin qpj

' ■ sin cpi cos2 cpi (1 + rf2) (37)

Zur Reduktion von der Pusspunktsbreite (jp̂ auf die Punktbreite qp können
wir als hinreichend die frühere Formel (17) § 55 . S . 305 nehmen :

V? ) 2

also

Ti ' = T ■

sin q}i = sing >

sm cpcos cp

V2 X2
sin cp cos2 cp

Dieses wird mit (37 ) verbunden , wobei 1 + g2 F 2 zu beachten ist , also :
W F2

y
' = Xsincp - - sin cp cos2 cp

Dieses ist die wahre Meridian -Konvergenz , welche mit der Gauss sehen Meridian -
Konvergenz y in (33) verglichen giebt :

Hs
y — f = sin cp cos2 qp (2 i/2 + 2 174)o

oder in erster Näherung genügend :

■y
' = ~ X2 t)2 sin cp cos2 <pO

(39)

Dieses ist auch der Meine Winkel P { A Pj in Pig . 4 . , und da dieser Winke
besteht und nicht gleich Null ist , so wird erkannt , dass die geodätische Linie cpi -A
nicht das ellipsoidische Bild der ebenen Ordinate y sein kann , sondern dass eine
andere Linie cpi A für jenes Bild eintreten muss .

Der ellipsoidische Faktor ?f in (37 ) zeigt , dass die Differenz y— / nur aU
dem Ellipsoid , nicht aber auf der Kugel existiert .

§ 87 . Vergrösserungsverhältnis .
Nach (1) und (5 ) § 86 . S . 460 ist das Vergrösserungsverhältnis m bestimmt durch.

m2 = ds 2 _ _d S2 ~
(Md qp)2 + (Ncp cosd V)2

dx 2 + dy 2
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