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466 Vergrösserungsverhältnis . § 87 .

Wenn in A die zwei Tangentialrichtungen A P / und A Pj rechtwinklig auf
Aqpj ' und auf A qpj gezogen werden , so ist NAP { — y

' die Meridian - Konvergenz
zwischen cp{ und A in dem gewöhnlichen Sinne von a ' = </. in Fig . 3 . S . 345 .

Um diese wahre Meridian - Konvergenz y
' zu bestimmen , nehmen wir von den

Reihenentwicklungen des früheren § 74. Gleichung (27) S . 396 bis zur dritten Ordnung
mit u = 0 und v = und t = tang qpj

' für die Ausgangsbreite qP]
' :

V tang cpi - yi
tang cpi (1 + 2 tang 2 qpj

’+ J/i 2)Ni
. * T1 6

Hiezu von (26) S . 395 mit denselben Substitutionen :
y ys

(35)

X COS<f>i =
3 Ni s tang 2 (fi{

Also durch Division von (35) und (36) :

y
' = X sin (p{ ( 1 y*

6 N , 2 (1 + 5

y
' = Xsin qpj

' ■ sin cpi cos2 cpi (1 + rf2) (37)

Zur Reduktion von der Pusspunktsbreite (jp̂ auf die Punktbreite qp können
wir als hinreichend die frühere Formel (17) § 55 . S . 305 nehmen :

V? ) 2

also

Ti ' = T ■

sin q}i = sing >

sm cpcos cp

V2 X2
sin cp cos2 cp

Dieses wird mit (37 ) verbunden , wobei 1 + g2 F 2 zu beachten ist , also :
W F2

y
' = Xsincp - - sin cp cos2 cp

Dieses ist die wahre Meridian -Konvergenz , welche mit der Gauss sehen Meridian -
Konvergenz y in (33) verglichen giebt :

Hs
y — f = sin cp cos2 qp (2 i/2 + 2 174)o

oder in erster Näherung genügend :

■y
' = ~ X2 t)2 sin cp cos2 <pO

(39)

Dieses ist auch der Meine Winkel P { A Pj in Pig . 4 . , und da dieser Winke
besteht und nicht gleich Null ist , so wird erkannt , dass die geodätische Linie cpi -A
nicht das ellipsoidische Bild der ebenen Ordinate y sein kann , sondern dass eine
andere Linie cpi A für jenes Bild eintreten muss .

Der ellipsoidische Faktor ?f in (37 ) zeigt , dass die Differenz y— / nur aU
dem Ellipsoid , nicht aber auf der Kugel existiert .

§ 87 . Vergrösserungsverhältnis .
Nach (1) und (5 ) § 86 . S . 460 ist das Vergrösserungsverhältnis m bestimmt durch.

m2 = ds 2 _ _d S2 ~
(Md qp)2 + (Ncp cosd V)2

dx 2 + dy 2
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1 dx ' 2

dyi = *£ _ ,dl 2 / / Md <p \ 2
iST2 cos2 qpl 1 + [ß C0s qid x

(1)

Nach Pig . 1 . und 2 . § 86 . S . 459 hat man in den rechtwinkligen Dreiecken :
dx

— cotg t und Mdcp - cotg a. N cos cp dl
Wo t der Richtungswinkel im ebenen System und a das Azimut auf dem Ellipsoid

ist , damit wird (1) :
„ ,dy 2 1 + cotgU ^m2 :

m =

d l 2 N2 cos2 <p (1 -f- cotg2 «)
d y 1 sin a

(2)dl Ncos cp sint
Wir betrachten nun besonders den Pall , dass a = 90 ° werde , d. h . dass der

Ellipsoidbogen d S auf einem Parallelkreis liege , was zur Folge hat , dass cp konstant
ist und ferner , dass t = 90 ° — y wird , wenn y die Meridian -Konvergenz ist , welche in
Pig. 3. S . 464 konform abgebildet wird . Damit erhält man aus (2) :

dy secym = -=4 = — —-
dl Neos cp

Hiezu hat man aus (32) § 86 . S . 464 :
l 2d y

dl

dy i _
dl Neos cp

Ferner hat man aus (33) § 86 . S . 464 :

also

N cos <p + ^ N cos2 cp (1 ■

12
1 -+ -

y
cos 2 <f>(1

- rf )

+ - rf )

y — lsincp -c- l 2 . . yi l 2 sin2 <p
secy = 1 + o = 1 + 2

(4)

(5)

Dieses genügt , um in erster Nahrung m zu bilden , nämlich als Produkt von
(4) und (5) :

12,
m — 1 •+■-

g
- cos 2 cp ( 1 -

l 2
- 12 + rf ) + -H- sin2 cp

»i = l l 2
cos2 cp (1 + rf ) (6)

U
Das ist zunächst nur das Vergrösserungsverhältnis in der Richtung des Pa¬

rallelkreises , also rechtwinklig zum Meridian ; da aber bei der konformen Projektion
» «ach allen Seiten gleich ist , können wir das in (6) gefundene m sofort allgemein
gelten lassen.

Um übrigens eine Probe zu haben , wollen wir doch auch noch m für den
Meridian besonders bestimmen , und schreiben zu diesem Zwecke aus (1) , (4) und (5)
§ 86 . S . 460 :
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Gehe n wir auf den Meridian über , so wird hier nach Fig . 8 . § 86 . S . 464
dy — tan 9 y und ferner d X = 0 ,

’d x \ sec (jp

zu bilden , hat man von (18 ) § 86 . S . 462

Ä-
x = B N sin cp cos cp + A4 . . .

A2 fdN sin cp cos cp N cos 2 cp — N sin 2 cp2 \ d cpd cp 2 \ d cp
Dabei ist nach § 34 . Gleichung (e) S . 208 :

A2 / C
if sin 2 <p 4 - — cos 2 cp2 \ F3

COS2 C(1 1 t 2 - t- rf , dabei ist M

dx 1
cos2 <J)( 1

clcp M
Das ist dasselbe wie bei (4 ), also muss auch die Weiterrechnung für m in der

Meridianrichtung denselben Wert geben wie früher bei (4)— (6) in der Parallel¬
kreisrichtung . Es ist also die Formel (6) allgemein giltig , in der Meridianrichtung ,
rechtwinklig dazu , und in allen Eichtungen .

Um die Formel für m , welche in (6 ) nur bis A2 geht , auch noch bis A4 zu
entwickeln , müssen wir auf (17 ) § 86 . S . 461 zurückgehen und von dort entnehmen :

cos2 cpl 1 cos4 cp (5 — 18 f2 + f4)dXNcos q)
und von (38 ) § 86 . S . 464 :

7 = A sin cp + — sin cp cos2 cp ( 1 -+- 3 rf + 2 rf )

sin 2 cp + sin 2 cp cos2 cp (8 -+- 5 f2)

Wenn man diese (8 ) und (7) nach Anleitung von (3 ) multipliziert , so erhält man :

m — 1 cos2 V (1 + rf ) -+-
^ cos4 <p (5 — 4 t2)

Das ist die Weiterentwicklung von (6) bis auf A4 einschliesslich , aber mit
Weglassung aller Glieder 7j2 u . s. w . in den CoSfficienten von A4. Innerhalb dieser
Vernachlässigung stimmt unsere Formel (9) auch mit der entsprechenden Gleichung
von Schreiber S . 36 . (wie immer nach goniometrischer Umformung ) .

Es ist auch leicht , innerhalb der angenommenen Genauigkeit die Formel (
auf y zu reduzieren , denn es ist nach (20 ) § 86 . S . 462 :

— " _ * n _ _ +2N cos cp 6 N s cos cp
'

_ z _ n _ /i _ m
N 2 cos2 cp 3 N * cos2 cp

'
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Damit wird (9) : 2
m ~ 1 + ^ ^ +

24JVi (1 + if “ ■• •)

Es ist aber JV = c
T und c also

TV2 ' Y1 _ 1 + ??2
/■- r 2 ’

also to = 1 « 2 « 4

2rä + 24H
(10 )

Der Nenner r 4 im zweiten Gliede gilt nur näherungsweise , doch kann man
ihn wohl annehmen , da wir ja ohnehin alle 1 im zweiten Gliede vernach -

lässigt haben . Darum ist auch inbegriffen , dass bei dem Übergang von k auf y in

N nicht mehr unterschieden wurde , ob es zu <p oder zu gehören soll, d . h . es ist

die Reduktion (25 ) § 86 . S . 463 nicht mehr angebracht worden ; und innerhalb der

ersten Näherung haben wir nun in (10 ) wieder dieselbe Formel wie früher in der

sphärischen Entwicklung von § 50. Gleichung (10) S . 281 .

Entfernungs -Reduktion .

Wenn die wahre Länge einer geodätischen Linie auf dem Ellipsoid = S und
deren ebenes Abbild = s ist und m das Vergrösserungsverhältnis in differentialem
Sinne , so ist :

(11)* = A
j m

äs

und hiezu ist der Wert von ni aus der Formel (10 ) einzusetzen ; wir wollen aber
dabei das Glied mit H nicht mitnehmen , weil eine hierauf sich erstreckende Inte¬

gration schon früher in § 85 . gemacht worden ist . Es wird also zunächst nur genommen :

I _ i (12)
to 2 r*

und insoweit könnte es scheinen , als ob die einfache Entwicklung von § 50 . wieder
ihre Stelle fände , allein jene Entwicklung war nur sphärisch mit konstantem r , während
wir nun den mittleren Krümmungs -Halbmesser r nach den Ellipsoidgesetzen veränderlich

annehmen müssen .
Es kommt dabei wieder die Änderung von V in Frage , nämlich nach (25)

§ 86. S . 463 :
* 1
N = 1 • (tp — (jDi)

F2 if t oder
r *

_
vJ

= l • 4 (qp— <Pi)
v % t

und da
1 _

&

i = ~ U

F4

1$ , hat man auch :

ri 2

Es ist aber in erster Näherung :

<P

also , ebenfalls in erster Näherung :

4 (qp— <Pi )
V2 1j

'2 t

X —
9,1 = T

_
1_

f2
= —Ji . iÖL- J &Vt (13)
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N = r gesetzt , wofür auch ty

(14)

Dabei ist im zweiten Glied einfach F 2 M
geschrieben werden kann .

Aus (12) und (13) hat man also :
1

_ 1 __ JL / i _
4 te _

-
vm 2n 2 V r 1

Dieses m gehöre zu einem Punkte mit den Coordinaten x y , an irgend welcherStelle des Bogens ACB von Fig . 2 . § 85 . S . 453 , welcher als Abbild einer geodä¬tischen Linie 8 auftritt . Wenn man nur bis zur 3ten Ordnung einschliesslichrechnet , so kann man sowohl die Gerade A B als auch den Bogen A s' B als Abbild¬
länge s der geodätischen Linie S annehmen , denn die Unterscheidung zwischen BogenACB und Sehne A B kam erst bei der 4ten Ordnung in Betracht , wie wir in
§ 85 . bei (23 ) S. 455 gesehen haben .

Die Kurve A B in Fig . 2 . § 85 . S . 455 sei bestimmt durch eine Gleichungzwischen l und z , indem ein schiefes Coordinatensystem gelegt wird mit AB alsAxe der l und einer Axe der z , welche gegen AB um -+- 90 ° gedreht ist . Indessenbrauchen wir innerhalb der ângegebenen 3ten Ordnung die z selbst gar nicht zu
berücksichtigen , es genügt zunächst zu setzen (als Abkürzung von ( 12) § 85 . S . 453) :

x = Xy -+■l cos ty y — yi -+- l sin ty (15)also wird (14) :
4 l cos ty ^ i-- = 1m

(j/1 + 1 sin ty )2
2 r , 2

“ V >)■x \ ' /Es ist zu bemerken , dass das letzte t hier wie immer die Bedeutung t = tang <phat , während tj der Richtungswinkel von A B im System x y ist .Die Gleichung ( 16 ) wird nach Potenzen von l geordnet , und soll dabei geben :

m • (17)
Coefficienten er, ß , y, d folgende Bedeutungen :
a — i y?

2 r x2 (18)

ß = V\ «*» *1,2 Vl2 COSty
ry2

~
r3 ’’ (19)

y = sin 2 ty 4 yy sin ty cos ty
2ry 2

~l
-r - t (20)

<5 = 2 sin 2 t , cos U „+ -
ri >r > (21)

Wenn man die Funktion (17) entsprechend (11) integriert und zwar zwischenden Grenzen l = 0 und l — s, so bekommt man :
N

... > V Wi
(22>s ^

2 ^ 3 ^ 4
Andererseits führen wir drei Werte von i ein ,mund für den Endpunkt der Linie A B , nämlich :

7 = 0 soll geben — = a
nii

1

für den Anfang , für die Mitte

l = s

ß s-- = « -+- ~ ■mQ 2

■
*- = a -+- ß s -

)«2

S2 s3~
n + d

8

y s2 - äs »
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Dieses mit (22) verglichen wird geben :
8 1/1 4 1- = ( - 1- 1-
s 6 (mj ma m2

(23)

Wenn man also die drei verschiedenen — nach der Funktion (12) ausrechnet , und

zwar nicht bloss für die drei verschiedenen y , sondern auch mit Rücksicht auf die

Veränderlichkeit von r , entsprechend den geographischen Breiten ĝ , tp0> <f>2 oder den

Abscissen x0, X\ , x%, so bekommt man nach (23) die richtige Entfernungs -Reduktion ,
ohne dass man dabei die Coäfflcienten a , ß , y, 8 gebraucht hätte ; es hat genügt ein¬

zusehen , dass sich i durch eine Funktion 3ten Grades von der Form (17 ) aus-
m

drücken lässt .
Trotzdem wollen wir doch auch noch den Ausdruck (22 ) mit Einsetzung der

CoSfficientenwerte a , ß , y , 8 nach (18 ) — (21 ) bilden , und zwar mit Umsetzung
s sin tj = y%— yA und s cos tj — x%— xit wodurch man erhält :

6 rp \ (2/i2 + 2/12/2 2/22) - (®2 — * 1) (2/ i z + 2 2/12/2 + 3 2/ 22)
Of3

Hier kann man noch r [ auf den Mittelwert r0 reduzieren , nach (13 ) :

_1
n >2

1 +
4 (x — *1) 1/2 1

Dieses mit (24) verbunden giebt :

f = 1 ~
öy oä

W + 2/1 2/2 + 2/22) - ^ ^ ^ - Vlt) (25)

Hier gilt r 0 als mittlerer Krümmungs -Halbmesser für die mittlere Breite gp0
oder für die mittlere Abscisse xa der betrachteten Linie A B .

Die Gleichung (25) in logarithmischer Form geschrieben wird :

log S — log s = — (y^ + xji 2/2 + 2/22) — ^ r3 ^ ~ ^ ^ )

Dieses stimmt mit Schreiber S. 49, -wenn man wie immer die gegenseitigen Z
^ ^ungen macht . In erster Näherung stimmt dieses auch mit dem früheren (1

§ 88 . Richtungs - Reduktion .

Um das Krümmungs - Differential zu bestimmen , betrachten wir in Fig . 1 . und

J'ig- 2 . S . 472 zwei benachbarte Punkte , welche auf dem Ellipsoid durch einen kleinen

Bogen dS und in der Ebene durch ds verbunden sind , und untersuchen die ver¬

schiedenen dabei in Betracht kommenden Richtungen und "Winkel , unter Zuziehung

dessen , was schon in § 86 . bei Fig . 4 . S . 465 über die beiden Meridian-Konvergenzen

7 auf dem Ellipsoid und y in der Ebene gesagt worden ist .
Dann wird man aus Fig . 1 . alsbald die folgenden Gleichungen herauslesen können :

T l = a l — )\ Ti = a 2 — y2

ri -~ r 2 = (/ a - yi) - («2 - « i)

2"
! - Tt .= fo ' - n ') + (te - 7z ) - (h - h ' i) - («2 — «1)

°der als Differential : /in
dT = dy ' + d {y - y

t) - da Gl
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