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Dieses mit (22) verglichen wird geben :
8 1/1 4 1- = ( - 1- 1-
s 6 (mj ma m2

(23)

Wenn man also die drei verschiedenen — nach der Funktion (12) ausrechnet , und

zwar nicht bloss für die drei verschiedenen y , sondern auch mit Rücksicht auf die

Veränderlichkeit von r , entsprechend den geographischen Breiten ĝ , tp0> <f>2 oder den

Abscissen x0, X\ , x%, so bekommt man nach (23) die richtige Entfernungs -Reduktion ,
ohne dass man dabei die Coäfflcienten a , ß , y, 8 gebraucht hätte ; es hat genügt ein¬

zusehen , dass sich i durch eine Funktion 3ten Grades von der Form (17 ) aus-
m

drücken lässt .
Trotzdem wollen wir doch auch noch den Ausdruck (22 ) mit Einsetzung der

CoSfficientenwerte a , ß , y , 8 nach (18 ) — (21 ) bilden , und zwar mit Umsetzung
s sin tj = y%— yA und s cos tj — x%— xit wodurch man erhält :

6 rp \ (2/i2 + 2/12/2 2/22) - (®2 — * 1) (2/ i z + 2 2/12/2 + 3 2/ 22)
Of3

Hier kann man noch r [ auf den Mittelwert r0 reduzieren , nach (13 ) :

_1
n >2

1 +
4 (x — *1) 1/2 1

Dieses mit (24) verbunden giebt :

f = 1 ~
öy oä

W + 2/1 2/2 + 2/22) - ^ ^ ^ - Vlt) (25)

Hier gilt r 0 als mittlerer Krümmungs -Halbmesser für die mittlere Breite gp0
oder für die mittlere Abscisse xa der betrachteten Linie A B .

Die Gleichung (25) in logarithmischer Form geschrieben wird :

log S — log s = — (y^ + xji 2/2 + 2/22) — ^ r3 ^ ~ ^ ^ )

Dieses stimmt mit Schreiber S. 49, -wenn man wie immer die gegenseitigen Z
^ ^ungen macht . In erster Näherung stimmt dieses auch mit dem früheren (1

§ 88 . Richtungs - Reduktion .

Um das Krümmungs - Differential zu bestimmen , betrachten wir in Fig . 1 . und

J'ig- 2 . S . 472 zwei benachbarte Punkte , welche auf dem Ellipsoid durch einen kleinen

Bogen dS und in der Ebene durch ds verbunden sind , und untersuchen die ver¬

schiedenen dabei in Betracht kommenden Richtungen und "Winkel , unter Zuziehung

dessen , was schon in § 86 . bei Fig . 4 . S . 465 über die beiden Meridian-Konvergenzen

7 auf dem Ellipsoid und y in der Ebene gesagt worden ist .
Dann wird man aus Fig . 1 . alsbald die folgenden Gleichungen herauslesen können :

T l = a l — )\ Ti = a 2 — y2

ri -~ r 2 = (/ a - yi) - («2 - « i)

2"
! - Tt .= fo ' - n ') + (te - 7z ) - (h - h ' i) - («2 — «1)

°der als Differential : /in
dT = dy ' + d {y - y

t) - da Gl
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Auf dem Ellipsoid ist nach (38 ) § 86 . S . .464 :
y

' — l sin qp -t- X3 . . ,
also d / ’= dl sin cp -hl cos cp d <p

Eig . X. Ellipsoid . Fig . 2 . Ebene .

äS/l

Dagegen das Differential der Meridian -Konvergenz zwischen den beiden Punktenselbst wie immer nach § 69 . Gleichung (5) S. 378 :
d a = dl sin cp (®)

Also nun aus (1), (2), (3) zusammen :
d T — 1 cos <p d (p -t- d (y — y

'
) W

Von früher (39 ) § 86 . S . 466 hat man :
2

7 — 7
' = 1$ ifi sin y cos %cpQ

Auch dieses differentiiert giebt :
d (y — 7

'
) = 2 k2 sin <p cos2 cp dl

Also im ganzen mit (4) zusammen :
d T = 1 cos <jDd cp + 2 jj2 Ä2 sin q>cos %cp dl

Hiebei ist nach den Grundformeln von (3) und (4) § 69 . S. 378 :
dxd cp —
M

und

Also wird (5) :

Xcos cp =T N also d 1 cos <p =
y dx'
WN '

dy~
N

dT = >£ ZT+ 2tftZ s dy

(5)
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Hier ist genau M N = r % und im zweiten Gliede kann man genähert i \r3 = r3
setzen also :

+ (6)

Damit wird wieder ebenso verfahren wie bei (23 ) § 50 . S. 283 oder wie bei (9 )
§ 85 . S . 453, nämlich mit den Bezeichnungen l und e nach Big . 2 . § 85 . S . 453.

_ d̂ _ dT = y_ dx
2 H ŷ _ dy

dP ~ dl r2 dl + 1V ' rs dl ( ’

Es soll wieder r2 als veränderlich angenommen werden nach dem früheren (13)
§ 87. S . 469 :

also wird (7) :
(ße
dl 2

''

1
7*2

y

l i - 4 (aj — Xy)
rfi t (8)

(9)
r i “ \ r

Die Coordinatenumwandlung wieder ebenso wie (15) § 87 . S. 470 giebt :

x — Xy -+- 1 cos ti und V = V\ + l sin h 1
dx dy . (
jj = cost , y j

Diese ( 10) in (9 ) eingesetzt , werden wieder eine algebraische Funktion geben
von dieser Form :

= A + Bl ^ Gl 2 Ui )
a lz

wobei die Cogfficienten folgende Bedeutungen haben :

. 1 2A = -
^ y\ c°s <i 11 yi2 sm h

B = —L sin ty cos ty ~t-j-ji
(sin2 ty — cos2 ty)

C --
2 t]2 t

r 2
sin ty (sin3 ty — 2 cos2 ty )

(12 )

(13

(14)

Die übrige Rechnung nimmt wieder den früheren Gang bei (29) § 50 .
und (19) | 85 . g _ 454 nämlich :

As Bs 2 Cs 3
Oi = 2

A s
T

6
Bs 2

^2 — O ' 3

12
Cs 3

(15)

(16)

Die Einsetzung von A , B , 0 aus (12)— (14) in (15) und (16 ) wird geben :

. rft , . ift .
01 ^ (% i 2+ 2^ 2+ ^ 2) (17)

Xz—Xy(yi + 2y2) ~ ^ (x2- Xy)2 (yi + ^ ) + ^ (y2- yi ) (?/i 2+ 22/i2/2 + 3j/22) ( 18)t]H ,
6r 22 — *' irvyi -i- 'j y 2r T- Qr3 K,

Die Überführung von rj 2 in einen Mittelwert wird diesesmal so gemacht .

„ 2 Xy + x2®i* - 3

* 12 - % =
y (* a — Xy)

und

und

* 21 = -Xy ~H 2 X2

« 21 - ■*2 = 4 - 0*1— ®2)also
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Deshalb nach (13 )

£ (* 2 — * 1)
(19)

Damit gehen (17 ) und (18 ) über in :

öj = "
q7

-
§
j (2 y \ + 3/2) — * i )2 (3/2 — 2/1) -+- l

‘

r 3(2/2 - 3/1) (32/ i 2+ 2 ^ y <i + y £ ) (2°)

h = y (3/1 + 2 1/2) + (*2 — ^ 2 (j/!— 1/2) + (3/2 - 3/1) (3/l2 + 2 3/13/1+ 3 2/23) (21)
Diese Formeln stimmen mit Schreiber , S. 46 , wenn man die Bezeichnungsumänderungen

berücksichtigt ; und in erster Näherung haben wir auch "
Übereinstimmung mit den früheren (31)—(32)

§ 50. S. 284.

Schlussbetrachtung .
Alle Formeln , welche in den vorstehenden §§ 86 .— 88 . gefunden worden sind,

gehen in die entsprechenden früheren Formeln von § 58 . und § 50 . über , wenn man
die höheren Glieder weglässt , wie wir an den betreffenden Stellen bereits angegebenhaben . Insbesondere sind die Formeln von § 87 . und 88 . bei Weglassung aller f
lediglich die sphärischen Formeln von § 50 ; und wenn man sich damit begnügen will,
so kann man auch die viel einfacheren sphärischen Entwicklungen von § 50 . an Stelle
der umständlichen §§ 87 . und 88 . treten lassen.

Für kleine Geltungsbereiche , etwa von der Grösse der vierzig preussischen
Katastersysteme , würden in der That die früheren Formeln von § 50 . und § 58 . mit
demselben Rechte angewendet werden können , wie die ebenfalls nicht weiter getriebenen
sogenannten Soldner sehen Formeln .

Ein Land mit praktischer Anwendung der Gauss sehen konformen Theorie giebt
es zur Zeit in Deutschland nicht (nachdem das Hannoverische System aufgegeben
worden ist vgl . S. 329) und deswegen wollen wir auch Zahlenanwendungen zu den
§§ 86 .— 88 . hier unterlassen .

§ 89. Vorteile der konformen Coordinaten.
Nachdem wir schon in § 52 . eine Vergleichung der kongruenten (Soldner sehen)

und der konformen Coordinaten angestellt haben , welche am Schlüsse daselbst S . 297
in allem Wesentlichen zu Gunsten der konformen Coordinaten ausgefallen ist , ist es
angezeigt , nochmals hierauf zurückzukommen .

Dabei sei auch ein Wort über die Bezeichnung kongruente Coordinaten " eingeschaltet .
Wir wollen unter kongruenter geodätischer ebener Abbildung einer auf einer krummen Fläche ge¬
zogenen Linie diejenige ebene Abbildungslinie verstehen , welche ein Landmesser auf der krummenFläche mit Theodolit und Messlatten messend , nach gewöhnlichen Feldmess - und Kechenregeln auf
einer Zeichenebene herstellen würde (abgesehen von dem Verjüngungsmassstabe der Zeichnung ).
Wir bedienen uns dabei wie bei der mathematischen Definition der geodätischen Linie (§ 68. S. 373)
der Feldmessoperationen als Veranschaulichung einer mathematischen Begriffsbestimmung , und
wir finden hierauf leicht den Satz , dass die geodätisch kongruente ebene Abbildung einer geodä¬tischen Linie immer eine Gerade der Ebene ist , deren lineare Grösse der rektifizierten geodätischenLime gleich ist . Die „geodätische Krümmung “ ist in diesem Falle gleich Null (vgl . hiezu § 107).

Die Ordinaten y und ji, der ebenen Soldner sehen Projektion Fig . 1. § 46. S. 275 sind in diesem
Sinne geodätisch kongruente Abbildungen der sphärischen Ordinaten y und y * von Fig . 1 § 46. S. 257,
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