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§ 105. Integration der Differential-Gleichungen des Polar-Dreiecks.

& 104. (6) und (8) (s. oben) die Differential-Gleichung:
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1. und ad o das Differential des
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Hier wird nach (11) S. 169 entwickelt: )
£k X \ eb =
ens2 1) — gosd ) — ——gostu (18)

e & ' 16

gen, nach (1) § 61. 8. 347:

dicosw=dosinu

R
il

den zu Fig. 2. gehiri eichungen (2):

SN da (19)

Damit man (17) in eine Integration nach ¢ umformen, niimlich mit Rick-
sicht auf (18):

aipa a
; 3 {1 el .
I = & e2 gin m / —+ cosd L

S (20)

w!

Nun hat man wieder nach (6

G0
tosty=1—=2 oz m sins

o - cosd m sind

Ausserdem hat man sin2 x und sind

und all
welche nach cos 2z, eosdx . 5. w. fortschreitet, d. h. (20) wird:

b= A £2 3190 M /-r ‘-J' =L _H eos " w4+ L Cos 1 L iR S da |] !

Jdriickt in cos 2 & und cos 4 @ durch (9),

o ausg

susammen bringt die zu integrierende Funktion (20) anf eine Reihe,

Dah

ed x
= — eOsEm
16
C'= ——cosim
Mtel

und die Grenzen

e

t. dass foleendes

180 wie frither hei (11) und (12) eingefiihrt, so iiberblickt man

lten wird:
i y . 04

1 e B iy 4 O ] (59
~A—edginm | A’ o+ B sing cos (2 M+ 0) + 5 sit 2 g cos (4 M+ 20) | (2)

nsetzen: indem wir dieses: thun,

(93) diese letzte Form:

Hier ist noch bhei B' und (¢ der Faktor p 2
wnd anch ¢2 in die Klammer hineinziehen, bilden wir aus
=R —sinm(e' o8 sincgeos (2 M+ a)+ ) sin 20 cos (4 M+ 20)) ()

0 e= o

Enbwicklung auf hohere Potenzen.
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Wenn man hier alle konstanten der Bessel schen Excentricifit
log ¢ = 7.824 4104.287 nach S. 193) ausrechnet, bekommt man:
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| Diese Reihen gehen weit mliche Bediirfnis.
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D
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Von einem Punkte des Ellipsoids der geographischen Breite ¢ geht cine

geodiitische Linie s unter dem Azimut e« aus; man soll die Breite " des Endpunktes
dieser geoditischen Linie bestimmen, sowie das Azimut «' daselbst und den Lingen-

unterschied | beider Punkte.

Ans der gegzebenen Breite @ berechnet man die zugehtrige reduzierfe Breite 1
B | : |

B3e

nach der Gleichung tangp = Y1 — 2 lang ¢ (oder nach einem anderen in § 103. an-
gegebenen Verfahren), Mit diesem i und dem Azimut ¢ kann man in dem sphi

[y E:
und damit die Gleichung (15) oder (26) nach ¢ anflosen.

ien rechtwinkligen Dreieck in Fig. 2. die beiden Hillsgriissen m und M bestimmen

i

Damit hat man drei Stiicke 1y, @, o, mit welchen das schiefwinklige sphiirische

n Fig. 2. aufgelost werden kann, so dass die jenseitige sphiirische Breite 1)/

Draieck v

und der sphirische Lingenunterschied A bekannt we
Von der sphiirischen (reduzierten) Breite 1’ geht man zurfick zu der wirklichen
¢ durch die Gleichung fang @' = lang Y/ V' 1+ €2 (oder durch gin anderes
angegebenes Verfahren), und von der sphirischen Linge 4 kommt man zu

in § 103,
i iroidischen Liinge ! durch die Gleichung (24) oder (28), womit die Losung der

ganzen Aunfgabe vollendet ist.
Zu einem Zahlen-Beispiel hiefiir wollen wir nach (5) § 73. 8. 392 nehmen:
Berlin o = 52° 30’ 16,7000

¥ - F . * - O OO i JeiB1Y 4 8l i € sOEQ
Berlin-Konigsberg « = 59° 83" 0,6892" logs = 5.724 2501:353

1 wir ‘bereits

Die Berechnung der reduzierten Breite von Berlin habe

§103. 8. 523 behandelt und gefunden:

Berlin 1 = 52° 24’ 43,0114" (32)
Nun kommt die Berechnung von m und M nach den Gleichungen (2) und (3):
il 312 48" 81,18" M = 68°41' 19,95" (33)

Weiter brauchen wir die Coéfficienten zur Berechnung von o, und zwar zuerst
v = ¢’ cos'm nach (8), es ist:
log ¢ cos m = log ¥' = 8,843 3740
mnd damit nach (14) und (16) hinreichend genau, ohne die Weiter-Entwicklung (27):

log 4 — 0.0005270-0  log B =T7.0841599-2  log C = 3.266 286
log @ — 531389810  log § = 2.3080580:5  log y = 8.580 184
Mit diesen Coéfficienten ¢, §#, y kann man die Gleichung (15) nach o anflozen,
tllerdings nicht geradezu, weil o selbst rechfs vorkommi; allein die Reihe (15) ist

' 1 Niaherungswert von 0 nur

srend, so dass es geniigh, emen ersterl

sehr rasch konvergie
8 o
d gu setzen, womit man auch

aus dem ersten (liede von (15) zu berechnen, d. h. o = b

T ] P £ e
nden Glieder ausrechnen kann; oder kurz, man lost die Gleichung (15) durch
Dieges Ver

die folge

yhren eab in unserem Falle:

erang indirekt, stufenweise nach o anf.

& & : a T Ly =
erste Nitherung a4 =0 = 49 4§" 17,8
]

hiezu 8 sin o cos (2 M + 0) = — 16,4

o= 4° 46" 14"
1 hat

dritte Glied vom (13) ausrechnen, und

zweite Niherung
Damit kann man das zweite und
i|.'i]|[1 '[m ganzen:

Jordan, Handb. d. Vermessungskunde, 4 Aufl. IIL Bd. o
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o=
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ysm2ocos(4 M-+ 2a)

endgil [ (34)
Nun stellen wir von (32), (31), (34) zusammen:
=529 24" 43,0114" &= 99233 (0,6892" o =4° 46" 1,4105" (34a)

a

auflisen, welches v, o und A liefert;
(14) und (15) § 60. 8. 841 (in gleic

Der st

WOraus Im:an

ied A von (36

i

unt i
Wir berechnen nach (29), jedoch nur n

sIn, wo hung (28) mit

den Codtt den Gliedern

bis cost m:

log' =Tt a9 log B = 9.62045 logy = 6.088
Démmnach (24):

i =4 —380,1479" 4+ 0,0144"" + 0,0000,, .= A — 30,1335"

also nach (32):

= 79 & 0.0005" k3]

Nun haben wir in (37), (85), (28) die ganze Auflésung:

; v (W anpaere a1
Kéniesher 0. 3855 =i 7° 61 0,0005" |

Mit den erweiterten Formeln (26)—(29) wollen wir auch

Normal-Beispiel (2) nen, wofiir die Hauptzahlen

o o = 200 3

log s = 6,120 6674:805 (£ 28]

Die Rechnung beginnt 1

der reduzierten Breit

i = 44° 54" 14.67493"

Das rechtwin

sphirische Hilfsdreieck gie

m = 20° 7 8712" M — 48° 44' 4

Die Coéfficie

hnung von ¢ werden nach (27):
066, log B = 248

und damit ¢ selbst in 4 Gliedern:

log 5313 788

logy = 8.748 94

g = 42 782.021 652" 20.794 Q182 0,017 667" =+ 0,

g=11° 52" 41.20008" (44)

Mit v, & und o von (:

) (40)

(44) wird das sphiirische Dreieck :

= a4 54" 35,3145" ' 86° 45" 7.4006 (49

A=10° (' 49,11959" (46
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[ntegration der Differential-Gleichung

Die reduzierte Breite ¢ verwandelt, nach § 103, n#mlich:

a6t fa e e i
a4 (soll 55° 0° 0') {(17)

Lias

mt @ nach (45) ist bereits anch sphiroidisches Azimut; wir

also, um die Auflésung zn vollenden, nur noch A von (46) in I zn verwandeln, wozn

1) di

die Gleichu 28] mit den Codfficienten

]]il' Coéfficienten-He

schnung nach (29) giebt:

g = .

23 7864329 log i’ =

60623 log '

und damit wird:

<+ 0000020 = — 49119 558"

515 - 0,011 9¢

3): I =9° 59

l=2—49,13
T

a6 (soll = 10° 0F 0')

haben wir die vollsténdige Aufldsung

' und I von (45), (47) und (4
m von (2}

ler gestellten Aufrabe in hinreichender Ubereinstimmung mit den An

d. 3, B91.

Umbehrung der Aufgabe.

' 13 o P ; 1 o
g und A, S0 dadss 5 f LR £X

sind, sondern g
man das im Vorstehenden lelte Verfahren anch noch

und u idlich, weil die sphirischen Winkel m und M,

AnWen

i
i

in erster Niherong wenigstens m, bereits zur Redulktion von i auf 4 gebraucht werden.

dass ¢, ¢' und I gegeben, und s, @ und o

Indessen haben wir fiir den Fall,

gesucht sind, di igere Auflosung unseres nachfolgenden § 106.

Vergleichung unserer Formeln mit der Bessel schen Methode.

F elnes

bohandelt In diner Ablandlung: Uber die B

ist von Bessel

und Breiten ans geoditischen

afeln zur Berechnung

Bessel sche Theorie mit den ]

. Berlin 1862,

Formealn unseres vorstehenden

roidischen Oberfliche u.

gtafeln mit

fiied n &, & F nach (27) diaselben sind,
rithimen In der ersten Bessel schen Hilfstafel

in beiden Fillen verschieden.

ar Bearech
1 /| 1 : | 1 “Hiot
des zweiten Teilz der Dessel schen
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F1-=0,75 &
:fr"\-" l.lll
|J'.- ?l i

Indem wir fir «

% ¥ bezeichnen, und

Logarithmus des
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t als Argument

7' statt sie nach

ann .
jern man mit dem

na der Besasl
it i ) fden BwWe
1 ergten Teil und n

r konsta
woranf zn den g ; z

3" #n

NNl unsere o |
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