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§ 106. Neue Auflisung des geodiitischen Polar-Dreiecks.*

(Bezeichnungen nach Fig. 1. und Fig. 2, § 104, 8. 524.)
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8. 7276 die Haupt-Zwischenstufen angegeben; da es sich dabel um sehr lange, im
Druek kaum 1.\'";.'1r[.'_11';.'[]?_r.;-'[;..-]'.:|.' Formelhinfungen handelt, deren mathematischer Grund-
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Fine Coéfficienten-Tabelle haben wir hiernach berechnet und auf 8. [62]—[63]
des Anhangs mitgeteilt. Zn Weiterem kionnen auch die Tabellen [47] und [48] des

Anhangs beniitzt werden,

In den vorstehenden Formeln kommen verschiedene Konstanten vor, welche wir
zum Gebrauch hier zusammenstellen:

log(1: 120%) = 8.201 96849 —20  log(e'2: 12p2) = 6.119 28327 — 20
log(1: 24 p%) = 7.990 9384:9 — 20 log(e'?: 24 p2) = 5.818 2572:B — 20
tog (1: 240 p?) = 6.362 0882 — 30 log (e'2: 240 p4) = 4,180 4070 — 30 P
log (1: 480 p4) = 6.061 0582 — 30 log (e’2: 480 p4) = 3.888 3770 — 30 &
log(1: 720 p%) = 5.884 9670 — 30 log(e'2: T20 p1) = 3.712 2858 11
log (1 : 1440 p4) = 5.583 9370 — 30 log (e'2:1440 p4) = 3.411 2558 — 380

eder fiinfter Ordnung in
unseren Breiten etwa ausmachen, haben wir die folgenden zwei Ubersichts - Tabellen

Um eine Ubersicht zu gewinnen, wie viel die G
berechnet, fiir den Gesamthetrag der 8 Endglieder in (28) und (29).

I. Glieder fimfter Ordnung in der Formel (28) fiir o, mit @ = 50°.

= 29 | =4° I =gG° =8¢ I =10°
9% || 4 0,00000" | 4 0.00000" | - 0,00001" | -+ 0,00001" | - 0.00001” T
49 —+ 0.00000 + 0,00002 - 0,00005 =< (.00010 = 0,00016 (34)
e -+ 0,00001 + 0,00006 = 0,00014 = 0.00030 + (,00048
8° - 0,00001  0,00012 —+ 0,00031 - 0.00061 = 0.00108

10° = 0,00002 ~+ 0,00018 -+ 0,00056 0,00111 L (.00186

IL. Glieder finfter Ordnung in der Formel (29) fir A, mit @ = 50°.

b= ]l = 29 [ =4° I =§/° ]l = ge 1 = 10°
29 || —0,00000" 0,00000" — (,00001" | —0,00008" | —0,00012" "
4° - 0.00001 0,00001 — 0.00001 — 0,00001 — (0,00004 oy
e — 0,00004 - 0,00006 — 0.00008 0,00005 — 0.00005
82 || — 0.00011 — 0,00020 — 0,0002 0,0002 — 0,00022
10° — 0.00028 — 0,00053 — 000070 - 1>;l'|fll'lﬂ} — 0,00078

Als erste Anwendung der entwickelten Formeln wollen wir unser fiinftes Normal-
Beispiel (5) § 74. 8. 392 nehmen in dieser Weise:
Gegeben Berlin g = 52° 3¢ 16,7

e — "o gt (36)
Konigsberg qp = 54° 42' 50,6" & i i

()
Es soll die geoditische Linie s zwischen beiden Punkten, und beide Azimute
o; und @y berechnet werden,
Man bildet zuerst das Mittel der gegebenen Breiten:
@ = 53° 36" 33,65" (37)
Damit geht man in die Hilfstafeln Seite [5] und Seite [62]—[63] des Anhangs
ein, und entnimmt die Coéfficienten:
log V = 0.000 5129.683 (3
log (A1) log (Az) log (Ag) log (Ay) log (A5)
6.17908, 5.66582, 4414, 4,756 4.065
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Damit rechnet man nach der Formel (29), mit 1 =17° 6' /' = 25560; das
Hauptglied wird 25590,208 116", dann die 5 Korrektionsglieder:

0024452 . —0:060 187 - - 0,000 003" , < 0,000021" , —0,000016°

3590,208 116" — 0,074 637" = 25580,183 479"

A=T2 & 30,133 479" (39)

Wir haben hier mit 6 Dezimalen der Sekunden gerechnet, wm zu sehen, wie

weit sich

iiberhaupt die drei letzten Glieder bemerklich machen; da dieselben nur

|

elben ganz weglassen,

}) nebst A von (39) zusammen:

0,0002" ausmachen, konnte man die
Nun nehmen wir die reduzierten Breiten zu (:
hao o4t 4801137

Konigsberg 1y = 54° 37" 24,75639"

Berlin Yy =

=i :11':'.13::-l~<”l (40)

Das dadurch bestimmte sphiirische Dreieck haben wir nach den Gaussschen
Formeln (4), (5) § 60. 8. 389 aufgeldst, wodurch gefunden wurde:
oy = 59° 83 0,6839" o = 65° 16’ 9,8650" } (41)
g = 4° 46' 1,41028" = 17161,41028"
Um o suf s zu reduzieren, braucht man wieder Coéfficienten, zuerst log U nach
der Formel (25) mit Beniitzung des sehon bei (38) berechneten log V:
log U = 8.510 2946-378.

Aus Hilfstafel Seite [62]—[63 entnimmt man mit dem Argument
P=53° 36 5 yon (37), die 5 Coefficienten-Logarithmen fiir §:

log (o) log (0g) log (04) log (05)
3.360, 4,987 5.8

Irl:,}',; Fi
5.27256

aely

5.665
und haben zuniichst das Hauptglied

Damit rechnen wir nach der Formel |
0,124 2583-851 und die 5 lug:Ll'i‘l]1|||i.~'(-'1'.--':t Korrektionsglieder:

146 4--R8:h179 - (-D000 — (0061 0-0002

Dieges giebt im ganzen:
78=  (4%)

5= 520 979,56

13:351 4 7-997 = 5:724 2591-348

log s = 5724 258 :
Die Linge s und die beiden Azimute von (41) stellen die Losung vor, welche
& 105. S, 520—531 hin-

'I]Eii_ Llc']; :'|i{‘_‘:;d'l}‘:'-]“'n‘i':‘” Werten .31' und ..:)II}’ des ‘|'LI'I'i.'g~;’!!]l b
reichend stimmen

1 : ¥ erlogty N 2aTental (9 BT o
Nach diesem wollen wir noch unser grosses Normal - Beispiel (2] § 7o. 8. 391

behandeln: LA
Gegeben g =45° 000" 140 gy o) 5
Py = 552 O D ‘ (4]

Mittel g =hoe 0 0
Damit geht man in die Hilfstafeln Heite [
mmmt die Cosfficienten: " |
log ¥ = 0.000 6020°131 log U = 8.510 8336-826 (44)
log (04 log (05 } (45)

3.700,

5] und Seite [62]- [68] ein, und ent-

log (1) log (G3)

log (4;) log ilJ._]I log (As) l (46)
' - 4,156, )

6.155 215, : :
R ied 36049,93731"
Die Redukbion fiir 4 nach der Formel (29) giebt das i[:mpigl::..,l 36049,93731

ind die 5 Korrektionsglieder:
—0,667 028" . _ 0,149 088" , — 0,001 438"

4 0.000802" , —0,000,148"
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Im ganzen: A = 36049 03731 4T

beiden reduzierten Brei
Yy = 44° 54" 14,67493" = 54° 54" 35,31462" 3

A von (47 Dreieck, desser

o = 30" 45" T 40055 49

— 42761,20996"
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Gt}
il

) 6665024 und die 5 Korrektions

S Sy o™ o [N 1 ) 0208 . 0007
Im ganzen:

™ )

logs = 6120 6663:024 < 11778 = 8.
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en & 105, 8. 530 ve

20 6674-802
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Ablhiandluong dr
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§. 107, Geoditischer Excess.

Dem sphirischen Excess, den wir in § 40. kennen gelernt haben, mit der
Qon

Formel (2

£= = bzw. —p in Sekunden (1)
5 5 E
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