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Hier ist wieder das Krimmungsmass kg, mit Hilfe der Gleichung (4) zu eli-

minieren: dadurch bekommt man aus (12):

2 (g -+ q' )2 i1
- ¢os A) = ; f‘ji | = k) l\lﬂ
Hier
ecos A¥ cos A = (4 — A*) sin A”

und besin A* = p(g+q)=2

wobei / ein Niherungswert fiir die Dreiecksiliche gein soll. Damit giebt (13):

A

A—A*= 5 @k+h+ k)

Indem wir den schon bei (5) gemachten Vorbehalt beziiglich der Bedeutung
ebene oder krumme Dreiecksfliche auch hier

r Niherung fiir die

von /N als er
machen miissen, schreiben wir die simtlichen drei Gleichungen von der Art der soeben

gefundenen zusammen:

A
e - Dk 4 k) (14)

o ks n'IL'.'- Ti Jl:.' i1E,
Summe: &= = (15)

schon bei (5) gefundene, und

Dieses ist wieder dieselbe Gleichung, wie dis

. wollen, so ist die roidische

wenn wir die Glieder von der Qrdnung k2 vernachli
MO wie die -“-l’]'ii-'ll"cllhe

Dreiecks-Berechnung durch die Formeln (14) und (15} erled
endre schen 8

(12) §42. 5. 236 bis

urch den einfache

Dreiecks-Berechnn
Ordnung — einschliesslich, i ansschliesslich, bestimmu wat.
r2 rd

Um nun in unserem Falle auch mnoch die Glieder von der Ordnung &

nze vorstehende Entwicklung (6)
istdabel nur
nicht mehr

entsprechend — | zu finden, konnen wir die ga

\ |'-"
mit Zusetzung alle

vo 12 wiederholen, und es

Glieder von der Ord

etwa das eine nders zn bemerken, dass dann die Direieclksiiache

?n’ [

0

e L) ap £ i y ]
nach Belieben = L oder = sin A* gesetzt werden dart.
5] = B

die Flache

Indem wir fiir Entwicklung mit G

an festsetzen, dass /A
ro1ecks J."ig:".'- 2.

st durch

edern

des ebenen aus den drei Seitenlingen a, b, ¢ zu konstruierenden Hilf

iehung zwischen j q) and N

sein soll, erhalten wir eine Be

weitere Beniitzune der Gleichungen (6) und (7), nim

'
sin A = sin (e~ o) = sin @ 003 0 - C0§ & S K

§

¢ I: ; ; Ll
besin A=p g+ )| 1+ = (p2—2494 "I.'

e e
A —be| sin d* 4= keos A7 | L 5.

. Ww.
b sin .
o




a6 Kramme Oberfliche des geoditischen Dreiecks. § 112,

Da hiemit der Weg zur Entwicklung von A4 — A* bis auf Glieder k2 ein-

zeichnet ist, beschriinken wir uns im weiteren, das Schluss-Ergebnis

der Entwicklung hier mitzuteilen, umsomehr als die Glied

r mit k2, wenn man inner-

halb derselben keine Unterscheidung zwischen k., ks, ¥ mehr macht, ledielich sphi-
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rische Form annehmen, und nichts anderes sind, als die Glieder von der Orduung
rd
in den Formeln (31a), 32a), (33a) § 44, 8. 251, welche wir den Formeln (14) schlechthin
zuzusetzen

erechtiet sind.

Entweder durch solche Zusetzung, oder durch unmittelbare Weiter-Entwicklung
fiir das geoditische Dreieck bis %2 findet man:
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Durch diese Forme

weitere Formeln sind nicht notig.
Wenn wir jedoch die sphirischen Vorbilder unserer Formeln in § 44. 8. 251—2

betrachten, so finden wir, dass uns das Analogon zu (35), (38) und (39), 8. 251
fehlt, das zum praktischen Rechnen zwar nicht erforderlich, aber doch so interessant

ist, dass wir im nichsten & 112, ung damit bes werden,

L

§ 112. Krumme Oberfliche des geodiitischen Dreiecks.
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