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f *
I Pdt im Ganzen ist , sondern , auch , wie gross die Kraft P zu

irgend einer Zeit selbst ist . Je schneller der Stoss hei gegebenem
Impuls sich abspielt , um so grösser wird die Biegungsbeanspruchung
und bei sehr grossen Werthen von P wird es auch nöthig , die
elastische Formänderung des Stabes während des Stosses selbst zu
verfolgen , wovon bei der vorausgegangenen Rechnung abgesehen
werden konnte .

11 . Aufgabe . Man soll auf Grund des d’Alembert ’schen
Princips die Biegungsbeanspruchung berechnen, die die Pleuelstange
einer schnelllaufenden Dampfmaschine erfährt .

Losung . Schon im ersten Bande sind einige Betrachtungen
über den Kurbelmechanismus der Dampfmaschine durchgeführt

Abb . 41 .

worden , an die ich hier anknüpfen kann . Abb . 41 gleicht sonst
ganz der Abb . 55 auf S . 206 der 2 . Aufl. des ersten Bandes und
es ist hier nur noch ein Längenelement dz der Pleuelstange im
Abstande z vom Kreuzkopfzapfen besonders hervorgehoben . Die
Ordinate von dz ist mit y und die von der linken Todpunktlage
aus gerechnete Abscisse mit x bezeichnet .

Mit der schon früher benützten und für den vorliegenden Fall
stets hinreichenden Annäherung cos tft = 1 erhält man

x = z -j- r — r cos cp ; y — y r sin cp.

Beachtet man nun , dass z constant ist , so lange man immer nur
dasselbe Massentheilchen ins Auge fasst und dass auch

als constant betrachtet werden kann , so erhält man für die Be -
schleunigungscomponenten des Massentheilchens

d^x 9 z „ . 9
ä = rw cos <p ; = - y ru sm cp = •— yu “.

Die zum Längenelemente dz der Stange gehörige Masse sei mit m
bezeichnet ; dann sind die mit X und Y bezeichneten Componenten
der Trägheitskraft , die an dz angebracht werden muss,
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X = — mru 2 cos qo ; T — myu 3.
Hiernach ist X unabhängig von g , also für alle Massentheilehen
der Stange gleich gross (bei gleichem m) , während T mit y oder
mit g proportional von dem Kreuzkopfende der Stange zum Kurbel¬
zapfenende hin wächst . Die durch die Vor¬
zeichen ausgewiesenen Richtungen von X und
Y sind in Abbildung 42 noch besonders ein¬
getragen .

Um die Biegungsbeanspruchung der Pleuel¬
stange zu berechnen , muss man sich die Stange , Abt . 42 .
die hierbei als ein auf zwei Stützen ruhender
Balken aufzufassen ist , in Ruhe denken und die Trägheitskräfte als
Lasten daran anbringen . Es fragt sich dann , bei welcher Stellung
der Stange die Biegungsbeanspruchung am grössten wird . Auf die
Lastcomponenten X , die im Uebrigen zu den schon im ersten
Bande besprochenen Erscheinungen des „Massendrucks “ führen ,
kommt hei der Biegung offenbar nicht viel an , da sie nur wenig
von der Richtung der Stange abweichen , also im Wesentlichen nur
eine axiale Beanspruchung der Stange herbeiführen . Die Last¬
componenten Y stehen dagegen in allen Lagen nahezu senkrecht
zur Stange und wir müssen uns daher fragen , wann sie am grössten
werden . Dies trifft dann zu , wenn sing ) = 1 wird , oder (was
hier mit Rücksicht auf die Vernachlässigungen , die wir von vorn¬
herein machten , auf dasselbe hinauskommt ) wenn -if; seinen grössten
Werth annimmt .

Das Belastungsschema wird demnach durch Abb . 43 zum Aus¬
druck gebracht . Die grösste Intensität nimmt die Belastung am
rechten Auflager an . Für jedes Massen-
theilchen m ist dort die Last mru 3 an -

- -r ' f f
zubringen . Das ist übrigens genau der mu r
Werth der Centrifugalkraft für das den

^

'
Kurbelwarzenkreis durchlaufende Theil¬
chen und die Last muss auch diese
Grösse annehmen , da ja an dieser Stelle Avb 43.
die Trägheitskraft sich in der That auf
eine einfache Centrifugalkraft reducirt . Vom rechten Auflager nimmt
die Belastung nach links hin gleichmässig ab.

Wir . haben nun eine einfache Aufgabe der Festigkeitslehre
vor uns , die mit der in Aufg . 16 des zweiten Bandes auf graphischem
Wege gelösten fast vollkommen übereinstimmt . Die auf die Längen¬
einheit entfallende Belastung q im Abstande z vom linken Auflager ist

* = Tl rir - T ’
Q_
ß



270 Zweiter Abschnitt . Dynamik des starren Körpers etc.

wenn das ganze Gewicht der hierbei als cylindrisch vorausgesetzten
Stange mit. Q bezeichnet wird . Man kann nun leicht die Auflager¬
kräfte auf beide Stützpunkte und hiernach das Biegungsmoment

Dann sucht man das Maximal-
moment auf und berechnet die
Biegungsspannung G mit Hülfe
der gewöhnlichen Biegungs¬
gleichung .

12 . Aufgabe . Man soll
die Biegungsbeanspruchumg einer
Kuppelungsstange AB zwischen

zwei Treibrädern einer Lokomotive berechnen (vgl. Abb . 44) .
Lösung . Die Aufgabe kann ganz ähnlich wie die vorher¬

gehende behandelt werden ; sie ist aber insofern einfacher , als sich
die Bewegung der Kuppelungsstange in zwei Antheile zerlegen lässt ,
von denen der eine die gleichförmige gradlinige Translationsbewegung
darstellt , die die Stange mit dem Fahrzeuge zusammen ausführt ,
während der andere Antheil in der Relativbewegung gegen das Fahr¬

zeug besteht . Der erste Antheil kann zu keinen Trägheitskräften
führen ; man braucht sich also nur um den zweiten zu kümmern .
Dieser besteht ebenfalls in einer Translationsbewegung , bei der alle
Punkte Kreise vom Halbmesser r zurücklegen . Die Trägheitskräfte
sind daher Centrifugalkräfte von der Grösse mu 2r und gleichmässig

über die ganze Stangenlange vertheilt . Die
Biegung wird am grössten , wenn die Centri¬
fugalkräfte senkrecht zur Stange stehen , also
in der tiefsten oder in der höchsten Lage der
Stange ; bei der tiefsten addirt sich noch die
Biegung durch das Eigengewicht , das frei¬
lich gegenüber den Trägheitswirkungen bei
einer schnell laufenden Lokomotive nur ge¬
ring ist .

13 . Aufgabe . Die Mittellinie eines Stabes
hat die in Abb . 45 angegebene Z -förmige Ge¬
stalt . Der Stäb rotirt um den in der Mitte
liegenden Punkt 0 ; man soll die Biegungs¬
beanspruchung und die elastische Formände¬
rung berechnen, die der Stäb erfährt

Lösung . Der eigentlich dynamische Theil der Aufgabe ist
hier sehr einfach . Man braucht nur überall die Centrifugalkräfte
anzubringen , um die Aufgabe auf eine der Festigkeitslehre zurück¬
zuführen . Die Centrifugalkräfte am mittleren Theile tragen zur
Biegung nichts bei , sondern nur die an den Seitenfortsätzen . Für

Abb . 45.

für einen Querschnitt z berechnen .

l

Abb . 44 .
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einen Querschnitt mm berechnet man die Summe der statischen
Momente der links von mm liegenden Centrifugalkräfte C. Da
G = mu 2 r ist , hat man für die Vertikalcomponente C' von C den
Werth mu 2 a , d . h . die Lasten 0 ' sind über den Seitenfortsatz gleich-
massig vertheilt . Das grösste Biegungsmoment tritt im Punkte A
auf und es ist

ti r G 9 &
■̂ inax - — ~~~ M CI — ,9 6

wenn mit Q das Gewicht des seitlichen Armes bezeichnet wird . .
Auch der mittlere Stabtheil wird verbogen und das Biegungsmoment ,
kann für jeden Querschnitt nn ebenfalls sofort angegeben werden . .
Es ist

üiT Q 2 ^ Q % b / \ G 9 b

9 2 g 2 ^ ' g 2
Eür z = 0 wird M zu Null . — Nachdem die Biegungsmomente
bekannt sind , kann man die auftretenden Verbiegungen so wie bei .
einem Bogenträger (Band III , § 33 ) berechnen .

14 . Aufgabe . In welchem Abstande vom Schwerpunkte muss¬
ein physisches Pendel aufgehängt werden, wenn die Schwingungsdauer
möglichst klein werden soll ?

Lösung . Die Schwingungsdauer hängt von der reducirten
Pendellänge l ab und diese ist nach den Gleichungen (76) und (77)

1 = 1^ = — .
Qs s

Das Trägheitsmoment & für eine Axe , die den Abstand s vom
Schwerpunkte hat , folgt aus dem Trägheitsmomente ®0 für die
dazu parallele Schwerpunktsaxe nach der Formel (vgl . Band HI ,
Gl . (53 ) ,

0 == &o + J
si

oder, wenn man mit den Trägheitsradien t und t0 rechnet ,
f = f0

2 + s2.
Für l erhält man daher

Dieser Ausdruck soll durch geeignete Wahl von s zu einem Minimum,
gemacht werden . Durch Differentiiren findet man

~ = 1 — --j- = 0 oder s = L.ds s2 u
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Da ferner

ds 2 ^ s3 ’

■also positiv ist , hat man für s — t0 in der That ein Minimum und
zwar 7min = 2f 0 . Man erkennt zugleich , dass die Schwingungs¬
dauer für alle unter einander parallelen Axen , die denselben Abstand
vom Schwerpunkte haben , gleich gross ist . Der Kreis vom Halb¬
messer t0 um den Schwerpunkt enthält alle Aufhängepunkte , um
die der Körper seine schnellsten Schwingungen ausführen kann .
Je weiter sich der Aufhängepunkt nach aussen oder nach innen
von diesem Kreisumfange entfernt , um so langsamer werden die

Schwingungen . Wenn der Aufhängepunkt unendlich nahe dem
Schwerpunkte liegt , dauern die Schwingungen unendlich lange und

* dasselbe gilt auch , wenn der Aufhängepunkt in
einen Abstand vom Schwerpunkte rückt , der als

f " unendlich gross angesehen werden kann .
! 15 . Aufgabe . Man soll beweisen , dasß
l der Aufhängepunht und der Schwingungsmittel¬

punkt eines physischen Pendels mit einander ver¬
tauscht werden können.

Lösung . In Abb . 46 sei A der Aufhänge -

punkt , 8 der Schwerpunkt und M der Schwin¬
gungsmittelpunkt . Dann ist nach der Defi¬
nition des Schwingungsmittelpunktes AM = l

und daher nach den schon in der vorhergehenden Aufgabe be¬
nutzten Formeln

t 2
l = s -j- -j - ,

woraus , wenn man den Abstand SM mit s ' bezeichnet , folgt
s s = f0

2.

Macht man nun M zum Aufhängepunkte , so tritt s an Stelle von s
und daher nach der vorausgehenden Gleichung , die auch im neuen
Falle wieder erfüllt sein muss , zugleich s an Stelle von s '

, d . h . A
ist nun in der That der Schwingungsmittelpunkt .

Ein Pendel , das zwei Schneiden bei A und M besitzt , so dass
die in der Aufgabe vorkommende Vertauschung von Aufhängepunkt
und Schwingungsmittelpunkt sofort praktisch ausgeführt werden
kann , heisst ein Keversionspendel . Man benutzt es zur Aus¬

führung absoluter Schweremessungen , d . h . zur Messung der Fall¬
beschleunigung g . Zu diesem Zwecke werden die Schneiden mit
Hülfe von Stellschrauben so eingestellt , dass die Schwingungsdauer

Abb . 46 .
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