
Dissertation

On the Hardness of
Computing Local Optima

Dominic Dumrauf

Paderborn, 9. März 2011

Schriftliche Arbeit zur Erlangung des Grades
Doktor der Naturwissenschaften

an der Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

To My Mother

iii

Abstract

In this thesis, we investigate the complexity of computing locally optimal solutions
of problems arising in the fields of game theory and optimization. For our investiga-
tion, we use the framework of PLS (short for “Polynomial-time Local Search”), as
introduced by Johnson, Papadimtriou, and Yannakakis [56].
Before presenting our results, we first revisit the framework of PLS and present

the necessary notation in Chapter 2. In Chapter 3, we survey the research on the
complexity of computing locally optimal solutions. There, we concentrate on well-
known and successful local search heuristics for various problems, where our focus is
on worst case complexity along with the existence of sequences of improving steps
of exponential length. We mostly concentrate on surveying research on congestion
games, which sparked the interconnection between local search and game theory.
In game theory, congestion games are a widely accepted model to investigate

the behavior and performance of large-scale distributed networks with autonomous
participants. The class of restricted network congestion games is a subclass of
congestion games where for each player there exists a set of edges which he is not
allowed to use. Rosenthal’s potential function guarantees the existence of a Nash
equilibrium, as local minima of the potential function coincide with Nash equilibria;
moreover, Rosenthal’s potential function is polynomial-time computable. This allows
to formulate the problem of computing a Nash equilibrium in a given restricted
network congestion game as a local search problem. In Chapter 5, we show that
computing a Nash equilibrium in a restricted network congestion game with two
players is PLS-complete, using a tight reduction from MaxCut. The result holds
for directed networks and for undirected networks.

From the field of optimization, we investigate the complexity of computing locally
optimal solutions of the Maximum Constraint Assignment (in short MCA) prob-
lem and of weighted standard set problems. In a nutshell, the MCA problem which
we study in Chapter 6 is a local search version of weighted Generalized Maximum
Satisfiability on constraints (functions mapping assignments to positive integers)
over variables with higher valence. The parameters in (p, q, r)-MCAk-par simulta-
neously limit the maximum length p of each constraint, the maximum appearance
q of each variable and its valence r; additionally, the set of constraints is k-partite.
We focus on hardness results and show PLS-completeness of (3, 2, 3)-MCA3-par
and (2, 3, 6)-MCA2-par, using tight reductions from Circuit/Flip. Our results are
optimal in the sense that (2, 2, r)-MCA is solvable in polynomial time for every
r ∈ N. We also pay special attention to the case of binary variables and show
that (6, 2, 2)-MCA is tight PLS-complete. For our results, we extend and refine a
technique from Krentel [67].

v

Finally, in Chapter 7 we study the complexity of computing locally optimal solutions
of weighted standard set problems such as SetPacking, SetCover, and many more,
as pooled in problems [SP1]–[SP10] in the book of Garey and Johnson [40, page 221ff.].
We show that for most of these problems, computing a locally optimal solution is
already PLS-complete for a simple natural neighborhood of size one. For the local
search versions of weighted SetPacking and SetCover, we derive tight bounds for
a simple neighborhood of size two. To the best of our knowledge, these are one of the
very few PLS results on local search for weighted standard set problems.

The investigations in this thesis are mainly led by showing hardness results for
the local search problems outlined above. Ideally, we would like to demarcate the
tractability of computing locally optimal solutions for these problems. Moreover,
we are interested in commonalities between the reductions we present, as well as
potential sources of intractability in the problems we show hardness for. We discuss
these superior questions in Chapter 8 and point out potential directions for further
research, by stating various open problems.

vi

Acknowledgements

During the creation of this thesis, I have become deeply indebted to numerous people
without whom large parts of this work would not have been possible. First and
foremost, I would like to thank my advisor Burkhard Monien for his continuos support
and encouragement. His expertise and guidance have been a crucial factor in the
entire creation of this work.
The DFG (German Research Foundation) Research Training Group “Paderborn

Institute for Scientific Computation” (PaSCo) at the University of Paderborn did
provide me with a three year fellowship for my Ph.D. project. During that time, a
visit to the research group of Petra Berenbrink at the Simon Fraser University has
given me an inspiration that goes beyond the results obtained in Chapter 7. For
providing me with this great opportunity, I would like to thank Petra Berenbrink,
Burkhard Monien, Robert Preis, and the PaSCo GK. Furthermore, I would like to
thank Christian Scheideler for supporting me in the last months of my Ph.D. project.
During the last years, I have been very lucky to learn from and cooperate with

excellent researchers. I would especially like to thank my co-authors Tim Süß,
Karsten Tiemann, and Tobias Tscheuschner for countless discussions, inspirations,
and invaluable feedback. I am thankful to Martin Gairing and Sven Grothklags for
help and advice on the first steps of my research. For carefully reading chapters of
a preliminary version of this thesis, I would like to thank Martina Hüllmann and
Michelle Kloppenburg. I could not have been more lucky than with my excellent
office mates Karsten Tiemann and Adrian Ogierman, to whom I could always turn to
on scientific and non-scientific topics. I would also like to thank all my colleagues who
provided me with help and support. To name the ones that I did not already mention:
Ulrich Ahlers, Bernard Bauer, Yvonne Bleischwitz, Robert Elsässer, Rainer Feldmann,
Sigrid Gundelach, Henning Meyerhenke, Marion Rohloff, Thomas Sauerwald, Stefan
Schamberger, Ulf-Peter Schroeder, and Thomas Tissen.

Mother, your encouragement and faith throughout all these times have always been
a huge support for me. It is a wonderful feeling to be gifted with such a great mother!
The support and advice of Johannes Berg, Daniel Krause, Christiane Lammersen,
and Tim Süß has always been invaluable to me. Even though our roads took different
turns, I am very thankful for everything I was allowed to learn from Kristin Sommer.
Furthermore, I would like to thank Verena Appelhans, Christian Deutscher, Joachim
Gehweiler, André Größer, Anna Kortmann, Andreas Kumlehn, Irmgard Mietusch,
Marta Schlossarek, Florian Schoppmann, David Teusner, and Claudia Unterkircher.

Paderborn, March 2011 Dominic Dumrauf

vii

Contents

1 Introduction 1
1.1 Optimization Problems, Intractability, and Approximation 2

1.1.1 Standard Set Problems . 4
1.1.2 Satisfiability Problems . 5
1.1.3 Approximation of Intractable Problems 5

1.2 Local Search . 7
1.2.1 The Concept of Local Search 7
1.2.2 Successful Applications of Local Search 8
1.2.3 A Framework to Investigate the Complexity of Local Search . 11
1.2.4 Local Search and Game Theory: Optimization in Competition 12
1.2.5 The Class of Congestion Games 13

1.3 Central Questions of this Thesis . 14
1.3.1 Superior Questions . 14
1.3.2 Restricted Network Congestion Games 15
1.3.3 Maximum Constraint Assignment 16
1.3.4 Weighted Standard Set Problems 16

1.4 Publications . 17
1.5 Roadmap of this Thesis . 17

2 Notation 19
2.1 PLS, Reductions, and Completeness 19
2.2 PLS Problems Considered in this Thesis 22

2.2.1 Basic PLS Problems . 22
2.2.2 Restricted Network Congestion Games 24
2.2.3 Local Search Versions of Generalized Maximum Satisfia-

bility Problems . 25
2.2.4 Local Search Versions of Weighted Standard Set Problems . . 26

3 Related Work 31
3.1 Early Results . 31

3.1.1 Circuit/Flip . 31
3.1.2 Traveling Salesman Problem 32
3.1.3 MaxCut . 33
3.1.4 Local Search Versions of Satisfiability Problems 33
3.1.5 Weighted Set Problems and Graph Problems 33

ix

Contents

3.2 Recent Results and the Connection to Game Theory 34
3.2.1 Computing Nash Equilibria in Unweighted Congestion Games 34
3.2.2 Approximate Nash Equilibria in Unweighted Congestion Games 35
3.2.3 Player-Specific (Singleton) Congestion Games 36
3.2.4 Symmetric Singleton Congestion Games 37
3.2.5 Related: Equilibrium Search and PPAD 37

4 Our Contribution 39
4.1 Computing Nash Equilibria in Two-Player Restricted Network Con-

gestion Games . 39
4.2 On the PLS-Complexity of Maximum Constraint Assignment . 40
4.3 On the Complexity of Local Search for Weighted Standard Set Problems 41
4.4 A Note on the Presentation of Our Reductions 42

5 Computing Nash Equilibria in Two-Player Restricted Network Congestion
Games 45
5.1 The Complexity of (2)-RUNCG and (2)-RDNCG 45

5.1.1 The Network and the Reduction in a Nutshell 46
5.1.2 The Reduction . 47
5.1.3 Proving the Correctness and Tightness of the Reduction . . . 49

5.2 Conclusion and a Discussion of Questions 4 and 5 51

6 On the PLS-Complexity of Maximum Constraint Assignment 55
6.1 On the Relation of Maximum Constraint Assignment to Mini-

mum Constraint Assignment . 56
6.2 The General Method for the Intractability Proofs of (3, 2, 3)-MCA3-par

and (2, 3, 6)-MCA2-par . 57
6.2.1 The Setting . 57
6.2.2 The Idea in a Nutshell . 57
6.2.3 Assumptions and Notation for Circuit/Flip 58
6.2.4 The Concept of Propagation Trees 59

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete 59
6.3.1 The Set of Constraints . 60
6.3.2 The Set of Variables . 60
6.3.3 The Constraint-Graph of Our Reduction 63
6.3.4 A More Detailed Overview of the Reduction 63
6.3.5 The Set of Predicates . 65
6.3.6 Proving the Correctness and Tightness of the Reduction . . . 69

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete 81
6.4.1 The Set of Constraints . 82
6.4.2 The Set of Variables . 82
6.4.3 Similarities and Differences to our Reduction in Section 6.3 . 82
6.4.4 The Modified Constraint-Graph of Our Reduction 86
6.4.5 The Set of Modified Predicates 86

x

Contents

6.4.6 Proving the Correctness and Tightness of the Reduction . . . 89
6.5 A Reduction to Binary Logic . 101

6.5.1 The Reduction . 101
6.5.2 Proving the Correctness and Tightness of the Reduction . . . 102

6.6 Conclusion and a Discussion of Question 6 104

7 On the Complexity of Local Search for Weighted Standard Set Problems107
7.1 How to Show Intractability of Weighted Standard Set Problems . . . 107

7.1.1 Neighborhoods, Weights, and Tractability 107
7.1.2 The General Technique of Our Reductions 108

7.2 The PLS-Complexity of Weighted Standard Set Problems 109
7.2.1 Assumptions and Preliminaries 109
7.2.2 On the Complexity of Weighted-3-DimensionalMatching-(p, q)

and Exact-Cover-By-3-Sets-(k) 110
7.2.3 The Exact Complexity of SetPacking-(k) 116
7.2.4 On the Complexity of SetSplitting-(k) 119
7.2.5 The Exact Complexity of SetCover-(k) 119
7.2.6 On the Complexity of TestSet-(k) 122
7.2.7 On the Complexity of SetBasis-(k) 124
7.2.8 On the Complexity of HittingSet-(k) 126
7.2.9 On the Complexity of IntersectionPattern-(k) 128
7.2.10 On the Complexity of ComparativeContainment-(k) . . . 130
7.2.11 Proving the Tightness of the Reductions 132
7.2.12 On the Tractability of Weighted Standard Set Problems . . . 132

7.3 Conclusion and a Discussion of Question 7 133

8 Conclusion and Directions for Further Research 135
8.1 General Conclusion and a Discussion of Questions 1–3 135

8.1.1 Settling the PLS-Complexity of the Problems Considered in
this Thesis . 135

8.1.2 A Note on the General Structure of Our PLS Reductions . . 137
8.1.3 Possible Sources of Intractability in Our PLS-Complete Problems139

8.2 Open Problems . 140
8.2.1 Combinatorial Optimization 140
8.2.2 Game Theory . 140
8.2.3 Smoothed Complexity . 141

8.3 What is There to Take Home? . 141

Bibliography 145

xi

Chapter 1

Introduction

Imagine the following scenario: It’s already noon and it seems like work is progressing
at a snail’s pace! That pivotal meeting of the board of directors is coming up at
two o’clock, including your election to the board of directors. Besides all the bustle
at work, the kids have to be picked up from school at five. In the meantime, there
remains a lot of unfinished business in your area of responsibility:

1. There is a department moving to a new floor and it is your duty to assign the
employees to the available cubicles. There are certain constraints to obey when
designing the seating chart. Some employees need to be seated in clusters for
collaboration, some require a fax machine nearby, and others just want to be
located closest to the coffee machine; apparently, everybody wants his or her
own cubical. The priority of a given set of employees moving to the new floor
is expressed as a positive integer. This leaves you with the task of finding a
pairwise disjoint subset of the set of given sets of employees which has maximum
total priority and obeys the above constraints.

2. Since creating seating charts for moving departments is not your sole task, you
decide to hand it over to some of your assistants, as you have done before. The
assistants all have different levels of expertise and are only productive when
working in teams of like-minded colleagues. Assigning a team to a set of tasks
incurs a certain cost. All tasks must be completed and for that you are willing
to tolerate double execution of a task. This leaves you with the responsibility
of finding a least expensive subset of the given teams such that the selected
teams execute all tasks.

3. In addition to the above internal affairs, the day-to-day business needs your
attention. The set of your clients can be split into three equally large groups,
namely consumers, producers, and distributors. They need to be matched
in triples such that no triple contains two members of the same group. The
contentment of each triple is expressed in a monetary reward which is handed
to you upon assignment. Not all combinations are available, as for example
a car manufacturer can make little use of a consumer who wants green tea
and both parties interact using a broker who is specialized on florists. This
leaves you with the task of finding a matching between the three groups which
maximizes your personal reward and obeys the given constraints.

1

Chapter 1 Introduction

4. The above minutiae should not distract you from further fueling your career
in the conglomerate that employs you. An additional salary stimulus comes
from serving on as many boards of directors as possible. On the downside, each
position claims a share of your precious time; for that reason, you decided to take
at most k positions. On the upside, each taken position returns some monetary
compensation; some positions are linked to one another, as for example a
subsidiary company might share some directors with the parent group. This
leaves you with the task to single out the at most k positions to aspire in order
to maximize your income.

Due to time constraints you cannot afford to tackle each of the above problems
individually. Fortunately, you recall an optimization lecture back at the university
on the capabilities of Weighted Maximum Satisfiability. The labor-saving
approach is now to model each of the above problems as a Weighted Maximum
Satisfiability problem, i. e. to express them as a set of weighted clauses over a
set of binary variables such that an optimal solution of an instance of Weighted
Maximum Satisfiability constructed this way induces an optimal solution of the
instance of the corresponding problem you modeled. This approach reduces the
workload from constructing four approaches to the four different problems above
to creating a single approach for Weighted Maximum Satisfiability. Luckily,
decades of research in computer science have provided you with a solver for Weigh-
ted Maximum Satisfiability that supplies you with the appropriate answers such
that with great chance you will be there in time to pick up the kids from school.

1.1 Optimization Problems, Intractability, and
Approximation

The above examples in items 1–4 illustrate that we are surrounded by optimization
problems in our everyday life. The relocation of the department in item 1 is an
optimization version of a weighted SetPacking problem (see next subsection or
confer [SP3] in the book of Garey and Johnson [40] for a formal definition). Finding
a least expensive subset of the given teams such that the selected teams execute
all tasks in item 2 is an optimization version of a weighted SetCover problem
(see next subsection or confer [SP5] in the book of Garey and Johnson [40] for a
formal definition). Matching each consumer, producer, and distributor in item 3
such that the reward is maximized is an optimization version of a weighted 3-Di-
mensionalMatching problem (confer [SP1] in the book of Garey and Johnson [40]
for a formal definition). Raising the salary in item 4 by serving at most k positions
on the boards of directors simultaneously, while maximizing the revenue represents
an optimization version of a weighted HittingSet problem (confer [SP8] in the
book of Garey and Johnson [40] for a formal definition). Finally, the Weighted
Maximum Satisfiability problem as used above is an optimization version of the
well-known Satisfiability problem (see Subsection 1.1.2 or confer [LO1] in the

2

1.1 Optimization Problems, Intractability, and Approximation

book of Garey and Johnson [40] for a formal definition). Numerous theoretical and
practical applications have made both Satisfiability problems subject to intense
investigation in the literature.

Identifying and Categorizing Hard Problems

In computer science, the problems outlined in items 1–4 are pooled as set problems.
Together with the Satisfiability problems described above, they have been under
severe investigation for the last decades. The investigation of optimization problems
was in large parts led by the quest of finding algorithms which efficiently compute
solutions for the respective problems. In computer science, an algorithm is widely
accepted as efficient when its running time is polynomial in the size of the input; such
algorithms are commonly referred to as polynomial-time algorithms. A problem is
widely regarded as tractable if there exists a polynomial-time algorithm which solves
the problem. For the set problems and the Satisfiability problems outlined above,
there does not exist a polynomial-time algorithm for a single problem up to the point
of publication of this thesis; the general belief is that there is indeed little hope for
efficient algorithms.

The Class NP and the Concept of Reductions A decision problem is a problem
whose solution is either “yes” or “no”. The decision problems which can be derived
from the above optimization problems belong to the class of decision problems which
can be solved by a polynomial-time bounded non-deterministic Turing machine; the
corresponding class is called NP . On the one hand, NP contains problems for which
polynomial-time algorithms are known such as ShortestPath or LinearProgram.
On the other hand, NP also includes an extensive list of important problems for
which no polynomial-time algorithm is known, such as the Traveling Salesman
Problem, the Satisfiability problem, and decision problems which can be derived
from the set problems outlined above. In order to further categorize the problems in
NP by computational complexity, the concept of NP-completeness was introduced.
An NP problem B is NP-complete if for each NP problem A, every instance of
A can be transformed into an instance of B in polynomial time such that for each
instance of A, “yes” is a solution if and only if “yes” is a solution of the transformed
instance of B. The corresponding mapping is called a reduction. Intuitively, problem
A cannot be harder than problem B. Loosely speaking, this also means that while
there are instances of problem B which can be solved efficiently, problem B is in
general capable of capturing the complexity of the entire class NP . Note that we have
already implicitly applied reductions in the introduction. The approach to bypass
having to solve each set problem in items 1–4 individually by modeling them as a
Weighted Maximum Satisfiability problems, requires to construct a reduction
between the respective problems.

Hardness and Intractability Besides the categorization and simulation of problems,
the concept of NP-completeness also has a large impact on the existence of efficient

3

Chapter 1 Introduction

algorithms for problems in NP. By design of NP-completeness, the existence of a
polynomial-time algorithm for a single NP-complete problem implies the existence
of a polynomial-time algorithm for each problem in NP. The well-known decision
problems which can be derived from all the optimization problems outlined in the
introduction have been categorized as NP-complete. Up to the point of publication
of this thesis, there does not exist a polynomial-time algorithm for any NP-complete
problem. The general belief is that there is little hope for efficient algorithms for NP-
complete problems. NP-complete problems are widely regarded as hard problems
and are therefore also coined intractable problems.
The categorization of specific problems by tractability also has the potential to

unveil insights on the computational complexity of optimization problems in general.
Moreover, it can help derive a deeper understanding of the involved complexity classes.
For a thorough introduction to the theory of NP-completeness and intractability in
general, confer the excellent book of Garey and Johnson [40].

1.1.1 Standard Set Problems

As the examples in items 1–4 demonstrate, weighted set problems are fundamental
combinatorial optimization problems with a wide range of applications. In general, the
input to a weighted set problem consists of a set system along with a weight function
on the set system. The task is to compute a solution maximizing or minimizing some
objective function on the set system while obeying certain constraints. Besides the
examples outlined above, the application of weighted standard set problems ranges
from crew scheduling in transportation networks and machine scheduling problems
to facility location problems [52].

Intractability of Weighted Standard Set Problems Now, focus on the weighted
SetPacking and SetCover problem, which are well-known representatives of
standard set problems. For an annotated bibliography on the application of the two
problems, confer the survey by Balas and Padberg [13]. In the weighted SetPacking
problem, we are given a set C of weighted sets over a finite set B. The objective
is to compute a set S of pairwise disjoint sets from C, which maximizes the sum of
the weights of the sets in S. Analogously, on an identical input, in the SetCover
problem the objective is to compute a covering S of B—a subset S of C in which every
element from B is contained in at least one set—which minimizes the sum of the
weights of the sets in S. The book of Garey and Johnson [40, page 221ff.] pools a total
of eleven prominent unweighted set problems as decision problems in [SP1]–[SP11].
The standard set problems listed there range from matching and packing to covering
problems, including unweighted decision problems which can be derived from the set
problems outlined in items 1–4. For all set problems listed in [SP1]–[SP11], deciding
if a solution exists is NP-complete.

4

1.1 Optimization Problems, Intractability, and Approximation

1.1.2 Satisfiability Problems

The Satisfiability problem and its extensions are well-studied fundamental problems
in computer science whose groundbreaking results lead to the development of entire
subdisciplines.

The Satisfiability Problems In the optimization problem Weighted Maximum
Satisfiability, an instance consists of a finite set of weighted clauses C over a finite
set of variables X . A clause Ci ∈ C is a set of literals, where a literal is a variable
or its negation. An assignment for the set of variables X is a function X → {0, 1}.
For a given assignment, a literal flips the value of its variable if the literal is the
negation of its variable, otherwise it inherits the assignment of its variable. A clause
is satisfied by a given assignment if at least one of its literals is assigned 1. Note that
this corresponds to connecting the literals by the boolean operator OR. The task is to
compute an assignment maximizing the sum of the weights of the satisfied clauses.
The Satisfiability problem denotes a decision problem derived from Weighted
Maximum Satisfiability where each clause has weight one. The task is now to
decide if there exists an assignment which satisfies all clauses simultaneously.

Theoretical and Practical Impact In complexity theory, the Satisfiability prob-
lem was the first decision problem shown to capture the complexity of the entire class
NP [23]; Satisfiability was the initial NP-complete problem. The intractability of
Satisfiability led to the NP-completeness of 21 combinatorial and graph theoreti-
cal problems, now known as “Karp’s 21 NP-complete Problems” [60]. Succeedingly,
numerous other problems were proven to be NP-complete and the theory of complete-
ness was carried beyond decision problems; confer e.g. Ausiello et al. [11]. Extensions
of the Satisfiability problem are also fundamental for other complexity classes,
such as the class of decision problems which can be solved by a polynomial-space
bounded Turing machine [102]; the corresponding class is called PSPACE .

The NP-completeness of Satisfiability does not only show the intractability of
the problem itself but can also serve as a starting point for solving other intractable
problems. By definition of NP-completeness, the Satisfiability problem is able to
simulate each problem in NP . Furthermore, many problems can be modeled as Sat-
isfiability problems. This approach is used to solve problems arising from bounded
model checking, hardware design, planning, software verification, and countless other
problems from various disciplines [14]. The constant demand for solving the seem-
ingly omnipresent Satisfiability problem and its extension in practice, led to the
development of numerous solvers. For a survey of the applications of Satisfiability,
its derivatives, and solvers confer Gu et al. [46] and the book of Biere et al. [14].

1.1.3 Approximation of Intractable Problems

The decision problems which can be derived from the weighted set problems in the
introduction and also the Satisfiability problem are known to be NP-complete,

5

Chapter 1 Introduction

as outlined in the previous paragraphs. These problems are in good company, as over
40 years of research in computer science unveiled that roughly 3,000 problems, and
counting, are intractable. Garey and Johnson [40] compiled a list of 300 fundamental
NP-complete problems and included this catalog in their book. The problems which
are identified as NP-complete are on the one hand of great interest but on the other
hand have resisted tractability up to now. Therefore, numerous approaches have been
developed to tackle these problems.

Approximation Algorithms The general idea of approximation algorithms is to
sacrifice solution quality in return for a polynomial running time. Hence, instead of
striving for (globally) optimal solutions, one now pursues approximate solutions, i. e.
solutions which might not be (globally) optimal, but are at least good, with respect
to some measure or the personal perspective. For instance, approximation algorithms
compute solutions whose objective function value is guaranteed not to be more
than a predetermined factor away from an optimum. Several approaches have been
developed for SetPacking, SetCover, HittingSet, and other weighted standard
set problems. For a survey of approximation algorithms for covering and packing
problems, confer Paschos [88], Hoffman and Padberg [52] (and references therein).
The Satisfiability problem and its extensions have been intensively studied in
the literature with numerous approaches being developed for these fundamental
problems. For a survey of the various approaches, we refer the reader to the surveys
by Gu [45], Gu et al. [46], Kautz and Selman [61], the corresponding chapters in
the handbooks by Gonzalez [43], Kao [58], and the recently published book by Biere
et al. [14]. For a general overview of approximation algorithms, confer the book
of Hochbaum [51].

Metaheuristics Unfortunately, some problems in NP even resist polynomial-time
approximation in the sense that the existence of a polynomial-time algorithm which
computes an approximate solution would directly imply that P = NP . For example,
unless P = NP, SetPacking does not admit a constant-ratio polynomial-time
approximation algorithm [9]; moreover, SetCover and HittingSet do not admit a
polynomial-time approximation scheme [40, 84] (an approximation algorithm with an
additional input parameter ε > 0, which—when neglecting ε—produces a solution in
polynomial time that is within a factor of 1 + ε from being optimal), unless P = NP .
Håstad [49] shows that for Weighted Maximum Satisfiability where all clauses
have three literals and all weights are equal to one, no approximation algorithm can
achieve a performance guarantee better than 7/8, unless P = NP.

A popular approach to tackle problems which even resist polynomial-time approxi-
mation at a certain degree, are (meta-)heuristics. Nearly all metaheuristics like local
search, simulated annealing, evolutionary algorithms, to name a few popular ones,
share the same general approach. Starting from a given (population of) solution(s),
they compute a new (population of) solution(s) and continue the computation with
the new one(s); here, solutions with a higher quality, with respect to the objective

6

1.2 Local Search

function, are preferred. For the local search approach, the preference for improved
solutions is strict, i. e. the computation only proceeds with strictly better solutions.
This approach is most suitable for convex optimization problems since in convex
optimization problems, local optima coincide with global optima. Metaheuristics with
strict preferences for improved solutions are tailored to find local optima, by design.
If local optima are frequent in the solution space but of rather different quality with
respect to the objective function, then local search with a strict preference for new
solutions might be regarded as a drawback. For this, metaheuristics with non-strict
preferences for new solutions are suitable, since they can escape local optima. How-
ever, the focus in this thesis is on the local search approach and in particular the
complexity of computing a local optimum.

Local search is one of the most frequently used approaches to solve hard combinato-
rial optimization problems. Famous examples of successful applications of local search
algorithms are the Simplex method for solving linear programs [15, 103], the k-Opt
heuristic for finding solutions of the Traveling Salesman Problem [1], and the
k-Means algorithm for clustering objects [26, 54]. For further information on local
search, its complexity, and related problems confer also Solis-Oba [100], Yannakakis
[108, 110].

1.2 Local Search

Local search is a standard approach to approximate solutions of hard combinatorial
optimization problems. In this section, we first present the concept of local search in
Subsection 1.2.1, before surveying successful applications of local search in Subsec-
tion 1.2.2. We present the class PLS, introduced by Johnson, Papadimtriou, and
Yannakakis [56], as a theoretical framework to investigate the complexity of local
search in Subsection 1.2.3. Subsection 1.2.4 then draws the connection between local
search and game theory. Let us stress that in this thesis, we merely focus on the
complexity of computing locally optimal solutions. For an overview of the quality of
solutions obtained via local search, confer the survey by Angel [8].

1.2.1 The Concept of Local Search

Local search is a natural and intuitive approach to compute locally optimal solutions:
Starting from an arbitrary feasible solution, a sequence of feasible solutions is itera-
tively generated, such that each solution is contained in the predefined neighborhood
of its predecessor solution and strictly improves a given cost function. If no improve-
ment within the neighborhood of a solution is possible, a local optimum (or locally
optimal solution) is found. Hence, a local search problem may be constructed from
an arbitrary optimization problem by superimposing a neighborhood structure on
the set of feasible solutions. A generic local search algorithm for computing locally
optimal solutions may now work as given in Algorithm 1.

For an instance I of a local search problem P , an improving step is a move from a
solution s of I to a better neighboring solution s′ of I; note that this corresponds to a

7

Chapter 1 Introduction

Algorithm 1 GenericLocalSearch (Instance I of Local Search Problem P)
1: Compute an initial feasible solution s for instance I
2: while s is not locally optimal do
3: Compute a better solution s′ within the neighborhood of s
4: Set s := s′

5: end while
6: return s

call of the while loop in lines 2–5 in Algorithm 1. Now, assume that each single step
in lines 1–5, including verifying or disproving local optimality of a solution s in line 2
and the implicit computation of the cost of a solution s in line 3 is polynomial-time
computable. Then, there is no a priori guarantee that the number of calls of the
while loop in lines 2–5 and hence the length of every sequence of improving steps is
bounded by a polynomial in the size of the input. Now, consider the following simple
minimization local search problem:

Definition 1.1 (Exp [78]). Instances of Exponential (in short Exp) are natural
numbers n ∈ N, encoded as a binary string. The set of feasible solutions consists of all
binary strings {0, 1}n. The cost of a solution is the natural number the binary string
represents and the single neighbor is the natural number the binary string represents
minus one; the neighborhood of the all-zero vector is empty.

Starting with the all-one vector, it is obvious to see that by design, every sequence
of improving steps in a given instance of Exponential requires exponentially many
steps to reach the locally optimal all-zero vector, which is also the single local optimum.
This shows that there exist local search problems and initial feasible solutions such
that every sequence of improving steps has exponential length. Despite this general
negative result on the rapid convergence of sequences of improving steps, local search
algorithms often require only a few steps to compute a locally optimal solution in
practice. However, the running time is in many times pseudo-polynomial and even
exponential in the worst case, as pointed out above. The concept of local search
reaches back to the late 1950s and early 1960s when it was first applied to the
Traveling Salesman Problem [71]. Since then it has been successfully applied
to a wide range of problems from different areas.

1.2.2 Successful Applications of Local Search

Here, we consider three combinatorial optimization problems in which local search
celebrated its greatest practical successes, namely LinearPrograms, the Traveling
Salesman Problem, and the problem of Clustering objects.

LinearPrograms An instance of a LinearProgram consists of a matrix A and two
vectors b and c. The task is to compute a vector x maximizing cTx such that Ax ≤ b.
Due to the convexity of LinearPrograms, local optima coincide with global optima.

8

1.2 Local Search

This suggests the use of local search in a natural way. In 1947, Danzig [24] introduced
the famous Simplex Algorithm which computes an optimum by starting at a vertex
of the polytope formed by the constraints Ax ≤ b and iteratively advances to better
vertices, with respect to cTx, until an optimum is reached. Since its introduction, the
Simplex Algorithm has been successfully applied to LinearPrograms originating
from a wide range of applications, including scheduling problems, production planning,
routing problems, and problems arising in game theory. Although the running time
of the Simplex algorithm was quickly observed to be polynomial on “real-world”
instances, significant progress in speeding up the algorithm took until the end of the
1980s [15].

The existence of exponentially long improving sequences caught the interest in the
early years of the Simplex method. LinearPrograms were constructed on which
the Simplex method with the steepest descent pivoting rule takes an exponential
number of pivoting steps [65]. Similar results were shown for other pivot rules [64, 103].
Despite that, Kalai and Kleitman [57] showed that for every initial solution of a
LinearProgram with n inequalities and d variables, the distance to a local optimum
in the polytope formed by the inequalities is at most nlog d+2 pivot steps. This
raises the question whether it is possible to find such a path efficiently. However,
computing an optimum point of a LinearProgram is known to be in P due to
the Ellipsoid method by Khachiyan [62] which uses an approach different from local
search. Karmarkar [59] subsequently introduced the interior point method which
also requires polynomial time and even outperforms the Simplex algorithm in some
practical applications.

The Traveling Salesman Problem An instance of the Traveling Salesman
Problem consists of a complete undirected edge-weighted graph. The task is to
compute a round trip (or tour) of minimum weight which visits each node of the
given graph exactly once. Already in the 1960’s, local search was proposed to solve
the Traveling Salesman Problem in practice [71]. The probably most frequently
used local search heuristic for the Traveling Salesman Problem is the k-Opt
heuristic, where k = 2 in most cases. Starting from an initial tour, up to k edges may
be rearranged in an improving step in order to construct a tour of lower cost [71]. An
alternative heuristic, also based on local search, is the more complex Lin-Kernighan
heuristic (confer Johnson and McGeoch [55] for a formal definition) [72]. For random
and “real-world” Euclidean instances, the 2-Opt and Lin-Kernighan heuristics
are known to compute very good tours within a sub-quadratic number of improving
steps [55, 91].
Despite the fast convergence on practical instances, it was shown that there exist

instances and initial solutions of the Traveling Salesman Problem for which
the k-Opt heuristic for k ≥ 2 can take exponentially many improving steps [19, 73].
However, these instances do not satisfy the triangle inequality and the existence of
such instances in the metric Traveling Salesman Problem remained unsettled for
a long time. Eventually, Englert et al. [33] prove the existence of Euclidean instances

9

Chapter 1 Introduction

on which the 2-Opt heuristic can take exponentially many improving steps.

Clustering The problem Clustering asks for a partition of a set of data into
subsets (also known as clusters) such that some given measure for the similarity
within the clusters is maximized. The problem of clustering data occurs in many
applications, including pattern recognition, data compression, and load balancing with
problem-specific nuances, depending on the application. A well-studied algorithm for
clustering points in the Euclidean space is the k-Means algorithm. It starts with
an initial set of k centers for the clusters; each data point is assigned to its closest
center. Then, the solution is improved by repeatedly performing the following two
steps: First, a new center is defined for each cluster as the average of all points of
the cluster, i. e. the “mean” of all points in the specific cluster. Finally, all points
are assigned to their clusters, according to the minimum distance of the new center
points. Note that in each improving step, the sum of the distances of the data
points to their corresponding closest center, decreases; this can be regarded as a
potential function. Let us remark that in the Euclidean space, an improving step of
the k-Means algorithm is uniquely determined.

For practical instances, the number of steps of the k-Means algorithm was observed
to be linear in the number of data points [26]. Similar to the two previously mentioned
famous problems, there exist instances and initial solutions of the Clustering
problem for which the k-Means algorithm takes an exponential number of improving
steps to converge [105].

Randomized Instances and Smoothed Complexity For many years, the running
time of local search algorithms in general, and the Simplex method in particular, was
observed to be very low on most instances occurring in practical applications. Inspired
by this observation, the complexity of the Simplex algorithm was investigated for
numerous distributions of random inputs and shown to be in expected polynomial
time [6, 16, 99]. The same observation was made for the 2-Opt heuristic for computing
solutions of the Traveling Salesman Problem on random instances in the
unit hypercube [19]. However, in contrast to the constructed inputs for which an
exponential number of improving steps are possible, it can be argued that the random
instances may have certain properties that do not reflect the properties of real-world
instances.

In order to understand why the running time is polynomial on so many real-world
instances, Spielman and Teng [101] introduced the notion of smoothed complexity . In
a nutshell, smoothed complexity measures the expected running time of an algorithm
under small random perturbations of the input. The authors show that the Simplex
algorithm for LinearPrograms has polynomial smoothed complexity. Subsequently,
the notion of smoothed complexity was adapted for algorithms of various problems,
including other local search algorithms. The smoothed complexity of the 2-Opt
heuristic for Euclidean instances was shown to be polynomial [33]. Recently, the
k-Means algorithm was also shown to have polynomial smoothed complexity [10].

10

1.2 Local Search

1.2.3 A Framework to Investigate the Complexity of Local Search

Subsection 1.2.1 outlines the concept of local search and shows that in general, there
does not exist an upper bound on the length of every sequence of improving steps
which is polynomial in the size of the input. However, the previous subsection outlined
that in practice, local search algorithms often require only a few steps to compute a
locally optimal solution.

Formalizing Local Search In order to investigate the computational complexity
of local search algorithms, Johnson, Papadimtriou, and Yannakakis [56] introduced
the class PLS (short for “Polynomial-time Local Search”) in 1988. Essentially,
a problem in PLS is given by some minimization or maximization problem over
instances with finite sets of feasible solutions along with a non-negative integer cost
function. A neighborhood structure is superimposed over the set of feasible solutions,
with the property that a local improvement in the neighborhood can be found in
polynomial time. Additionally, an initial solution and the cost of a solution can be
computed in polynomial time for each instance of a PLS problem. The objective
is to find a locally optimal solution, i. e. a solution which lacks a better neighboring
solution. Note that this description matches the definition of a local search problem
in Subsection 1.2.1, except for the restrictions of a polynomial bound on the running
time of the corresponding algorithms.

Identifying and Categorizing Local Search Problems In order to establish rela-
tionships between PLS problems and to further classify them, Johnson, Papadimtriou,
and Yannakakis [56] define the notion of a PLS reduction. In essence, a PLS reduc-
tion from PLS problem A to a PLS problem B maps instances of A to instances of B
in polynomial time such that local optima of B can be transformed into local optima
of A in polynomial time. Intuitively, problem A cannot be harder than problem B.
A PLS problem B is PLS-complete if every problem in PLS is PLS-reducible to
B. The concept of PLS-completeness is in line with the general use of completeness
in complexity theory. In the case of PLS, the concept entails that if some PLS-
complete problem is polynomial-time solvable, then all problems in the class PLS
are polynomial-time solvable. Similar to NP-complete problems, no polynomial-time
algorithm is known for any PLS-complete problem. PLS-complete problems are
widely regarded as hard problems and are therefore also referred to as intractable
problems.
A drawback of PLS reductions from A to B, as outlined above, is that they may

introduce additional sequences of improving steps in instances of B such that shortcuts
between two solutions of an instance of A are opened up, under some reduction. Hence,
there is no a priori guarantee that the exclusiveness of exponentially long sequences of
improving steps is preserved under this type of reduction. Tight reductions circumvent
this obstacle, by enforcing a more structured reduction. In a nutshell, a PLS reduction
is tight if all sequences of improving steps in the instance created by the reduction
correspond to sequences of improving steps in the original problem whose length

11

Chapter 1 Introduction

may only be increased by introducing intermediate solutions. We present formal
definitions for all of the above concepts in Chapter 2. Overall, not many problems are
known to be PLS-complete, since reductions are mostly technically involved, which
seems to be in large parts due to the transformation of the neighborhood under the
reduction.

Local Search in Complexity Theory In general, not much is known about the
relation of PLS to other complexity classes. By construction, PLS is contained in
T FNP , the class of total functions from NP . It is though rather unlikely that PLS
equals T FNP, since this would imply that NP is closed under complement [56].
Nevertheless, some notions of hardness hold for PLS-complete problems, to which
Circuit/Flip (confer Definition 2.12 in Chapter 2 for a formal definition) is reducible
via a sequence of tight reductions [95]. The standard algorithm problem is, for a
given instance I of a PLS problem L and some feasible solution s, to compute
a local optimum s? which is reachable from s by successive improvements. The
standard algorithm problem of Circuit/Flip is known to be PSPACE-complete [87,
109]. Tight reductions as sketched above preserve the PSPACE-completeness of
the standard algorithm problem [87, 109]. Moreover, tight reductions also preserve
the property that there exist instances and initial feasible solutions such that every
sequence of improving steps has exponential length before reaching a locally optimal
solution [56]. Though a handful of problems have been shown to be PLS-complete,
the knowledge about PLS is still very limited and not at all comparable with our
rich knowledge about NP.

1.2.4 Local Search and Game Theory: Optimization in Competition

Recently, the field of local search has attracted additional attention from game theory,
considering the complexity of computing a pure Nash equilibrium. In this subsection,
we only consider pure Nash equilibria; thus, we omit pure for sake of readability.

Non-Cooperative Games and Nash Equilibria In game theory, a game is charac-
terized by a set of players, a set of strategies for the players, and a set of cost functions
for the players. Here, the cost function of each player represents his private cost and
depends on the choices of strategies of all other players. A state of the game is an
assignment of each player to a strategy. A famous solution concept for non-cooperative
games is the Nash equilibrium [80]. In a Nash equilibrium, no player can unilaterally
deviate and strictly improve his private cost. Hence, a Nash equilibrium defines a
stable state of the game. The definition of a Nash equilibrium gives rise to a simple
dynamics, known as Nash dynamics , to compute these stable states: In each round, a
single player is allowed to perform a selfish step, i. e. unilaterally change his strategy
and strictly improve his private cost; the dynamics terminates once no such player
exists and is synonymously referred to as the SelfishSteps algorithm. In the special
Nash dynamics known as best-response dynamics , each player selects a strategy which
maximizes the improvement of his private cost.

12

1.2 Local Search

Nash Equilibria and Local Search Problems Proving the existence of Nash equi-
libria for classes of games is usually done using some potential function argument. A
potential function maps every state of the game to a positive integer such that every
selfish step of each player strictly decreases the potential function. Local optima of
potential functions then coincide with Nash equilibria. In case of polynomial-time
computable potential functions, the problem of finding a Nash equilibrium can be
formulated as a PLS problem, where the neighborhood structure is superimposed by
the Nash dynamics. For a thorough introduction to game theory, confer the book
of Myerson [79].

1.2.5 The Class of Congestion Games

Inspired by road traffic and more recently the internet, the class of congestion games
has been under severe scrutiny for the last years. Congestion games are a widely
accepted model to investigate the behavior and performance of large-scale distributed
networks with autonomous participants.

Congestion Games and Nash Equilibria Congestion games are non-cooperative
games where n weighted players myopically select strategies si from their set of
strategies Si (subsets of the set of shared resources R) such that their individual delay
on all resources in the current state of the game s = (s1, . . . , sn) is minimized. Here,
the individual delay of a player is the sum of the delays on each resource the player
is using. The delay on resource r ∈ R is the value of the delay function dr : N→ N0

for the sum of the weights of the players using the resource. A congestion game is
unweighted, if the weights of all players are equal. In that case, nr(s) denotes the
number of players using resource r ∈ R in state s of the game. In network congestion
games, the set of strategies for each player corresponds to all his source-sink paths.
A congestion game is symmetric if all players have the same set of strategies and
asymmetric otherwise.
Unweighted congestion games are known to possess an exact potential function

Φ(s) =
∑

r∈R
∑nr(s)

i=1 dr(i), also known as Rosenthal’s potential function [92]; hence,
computing a Nash equilibrium can be formulated as finding a minimum of the
potential function. For weighted congestion games, a recent result [48] shows that
affine linear [37] and exponential [83] delay functions are the only general classes
which admit Nash equilibria. Note that for unweighted congestion games, the Nash
dynamics converges after at most a polynomial number of iterations, if all delay
functions are polynomials. In contrast to that, if a potential function exists for
a weighted congestion game, then its number of states is no longer polynomially
bounded in general.

Restricted Network Congestion Games In this thesis, our focus in the area of
game theory is on the class of restricted network congestion games. Restricted
network congestion games are network congestion games where for each unweighted
player there exits a set of edges which he is not allowed to use. Rosenthal’s potential

13

Chapter 1 Introduction

function [92] guarantees the existence of a Nash equilibrium. As in unweighted
congestion games, the problem of computing a Nash equilibrium can be formulated
as a PLS problem.

1.3 Central Questions of this Thesis

To the best of our knowledge, the exact tractability of computing locally optimal
solutions of weighted standard set problems, of Weighted Maximum Satisfia-
bility problems, and the tractability of computing Nash equilibria in restricted
network congestion games is unsettled. This leads us to the below stated central
questions which we investigate in this thesis. We classify these central questions as
superior questions which affect all problems in the class PLS and questions specific
to the problems we consider. Superior questions are stated in Subsection 1.3.1,
problem-specific questions are listed in Subsections 1.3.2–1.3.4.

1.3.1 Superior Questions

The Algorithm 1 GenericLocalSearch presented in Subsection 1.2.1 succeeds
in computing some locally optimal solution but lacks a general polynomial-time
bound on its running time. The most evident and superior question is thus whether
there exist potentially sophisticated algorithms for the problems we investigate which
compute locally optimal solutions in polynomial time.

Question 1. What is the complexity of computing a locally optimal solution of the
problems we consider?

In this thesis, our emphasis will not be on particular algorithms, but rather on
demarcating the tractability of computing locally optimal solutions of the problems
we study. For our investigation, we use the framework of PLS, as introduced
by Johnson, Papadimtriou, and Yannakakis [56]. We try to either present polynomial-
time algorithms which compute locally optimal solutions or show the intractability of
the respective problems, using reductions within the framework of PLS. Intractability
results will then suggest that there is little hope for polynomial-time algorithms
for the corresponding problems. Most of the reductions we present will be rather
technically involved and consist of problem-specific constructions. Nonetheless, we are
interested in commonalities between the reductions we present. These commonalities
might lead the way to uncover some common proof patterns or schemes behind our
reductions. Ideally, we would like to have something similar to a “recipe” for future
PLS reductions.

Question 2. Is it possible to identify a general structure behind the reductions we
present?

A PLS-completeness proof not only shows the intractability of the corresponding
problem, but also provides a valuable insight perspective of the problem. Additionally,

14

1.3 Central Questions of this Thesis

the PLS-completeness proofs we present might provide some feedback for a better
understanding of hard problems in the class PLS and how to identify them according
to tractability.

Question 3. What are the potential sources of intractability in the problems we show
PLS-completeness for?

A potential answer to the latter question might prove useful in identifying if a
future PLS problem tends to be tractable or resists tractability. In the long run, this
might fuel the hope for a non-complex, general criterion for PLS-hardness.

1.3.2 Restricted Network Congestion Games

Considering congestion games, we are interested in the complexity of computing Nash
equilibria when either the number of players, resources, or the size of each strategy
is a priori fixed. For a constant size of each strategy, Fabrikant et al. [34] give a
surrounding intractability answer, requiring only two strategies per player which can
be further lowered to at most five resources per strategy [34, 104]. We present a more
comprehensive overview of these and other results addressing congestion games in
Subsection 3.2.1. For a fixed number of resources, computing a Nash equilibrium
is polynomial-time solvable since the total number of strategies is bounded by a
polynomial in the size of the input [4]. Hence, the tractability of computing Nash
equilibria in congestion games in the presence of an a priori fixed number of players
remains unsettled.

Question 4. Which impact does the number of players have on the complexity of
computing a Nash equilibrium in a given congestion game?

For our investigation, we consider the subclass of restricted network congestion
games (confer Definition 2.13 in Chapter 2 for a formal definition). Let us remark that
Question 4 is also addressed in the work of Ackermann and Skopalik [4]. There, the
authors show that computing a Nash equilibrium in a restricted network congestion
game involving three players only is PLS-complete. In this thesis, we are interested
in the tractability of computing Nash equilibria in restricted network congestion
games involving two players only.

Question 5. What is the complexity of computing a Nash equilibrium in a restricted
network congestion game involving two players only?

Let us stress that an answer to Question 5 settles the complexity of computing Nash
equilibria in restricted network congestion games, since for one player, computing
a Nash equilibrium reduces to finding a shortest path, which is polynomial-time
computable.

15

Chapter 1 Introduction

1.3.3 Maximum Constraint Assignment

Regarding the optimization problem Weighted Maximum Satisfiability, we
study the tractability of computing locally optimal solutions of the Maximum Con-
straint Assignment problem (in short MCA; confer Definition 2.15 in Chapter 2
for a formal definition). In a nutshell, the MCA problem is a local search version of
weighted Generalized Maximum Satisfiability (confer problem [LO6] in the book
of Garey and Johnson [40] for a formal description) on constraints (functions mapping
assignments to positive integers) over variables with higher valence. Additional
parameters in (p, q, r)-MCA simultaneously limit the maximum length p of each
constraint, the maximum appearance q of each variable and its valence r. For our
investigation, we build on a work from Krentel [67], who outlines that (4, 3, 3)-MCA
is PLS-complete. We will provide more information on the work of Krentel [67] in
Subsection 3.1.4 and Section 6.2. We are mostly interested in simultaneous small
combinations of both the maximum length of each constraint and the maximum
appearance of each variable. Furthermore, we are also interested in the special case
of binary variables. As we believe that the Maximum Constraint Assignment
problem is a fundamental problem for the class PLS, we would like to delimit the
intractability of computing locally optimal solutions of the Maximum Constraint
Assignment problem.

Question 6. What are the bounds on the intractability of the Maximum Constraint
Assignment problem?

Notably, (2, 2, r)-MCA is solvable in polynomial time for every r ∈ N and this
might additionally fuel the hope for demarcating results.

1.3.4 Weighted Standard Set Problems

Local search algorithms are widely used in practice with large success to approximate
weighted standard set problems such as SetPacking and SetCover, presented in
Subsection 1.1.1. For our investigations, we choose local search versions of problems
[SP1]–[SP10] in the book of Garey and Johnson [40, page 221ff.] as representatives of
a broader class of standard set problems. We are again interested in demarcating the
tractability of computing locally optimal solutions of the corresponding weighted stan-
dard set problems (confer Definitions 2.20–2.29 in Chapter 2 for a formal definition).
Tight PLS reductions then provide a feedback for existing heuristics in the sense
that there are instances and initial feasible solutions which require an exponential
number of improving steps before reaching a locally optimal solution. When focusing
on hardness results, we are also interested in the structure of intractable instances of
the problems we investigate.

Question 7. Does the approach of local search yield polynomial-time algorithms for
the weighted standard set problems we consider?

Let us stress once more that in our investigations, we merely focus on the complexity
of computing a locally optimal solution, regardless of the solution quality. When

16

1.4 Publications

presenting polynomial-time algorithms we therefore aim to reduce the degree of
complexity of the algorithms; we suggest to regard them as proof-of-concept algorithms,
rather than algorithms to directly apply. To the best of our knowledge, this is one of
the first investigations of weighted standard set problems in the context of PLS.

1.4 Publications

This thesis is founded on four publications [28, 29, 31, 78] which are joint work with
the respective co-authors and are incorporated as follows: Predominantly Chapter 3,
but also parts of Chapter 1 and 8 are founded on a publication by Monien, Dumrauf,
and Tscheuschner [78] in the Proceedings of the 37th International Colloquium on
Automata, Languages and Programming (ICALP 2010). Chapter 5 is based on a paper
by Dumrauf and Monien [28] submitted to publication in Parallel Processing Letters
(PPL). Chapter 6 is based on a paper by Dumrauf and Monien [31] submitted to
publication in Theoretical Computer Science (TCS). Chapter 7 builds on a publication
by Dumrauf and Süß [29] in the Proceedings of the 6th Conference on Computability
in Europe (CiE 2010).

1.5 Roadmap of this Thesis

This thesis is organized as follows: Chapter 2 presents the notation, classes and
problems used in this thesis. In Chapter 3, we survey the research on the complexity
of computing locally optimal solutions in the framework of PLS. In Chapter 4, we
summarize the main results we show in this thesis, including a graphical overview
(Figure 4.1) of our main PLS reductions which we present in this thesis. Chapter 5
investigates the complexity of computing a Nash equilibrium in a given restricted
network congestion game involving two players only and discusses Questions 4 and 5.
In Chapter 6, we study the complexity of computing locally optimal solutions of the
Maximum Constraint Assignment problem and discuss Question 6. In Chapter 7,
we investigate the complexity of computing locally optimal solutions of weighted
standard set problems and discuss Question 7. We close this thesis with a general
conclusion in Chapter 8, discuss Questions 1–3, state various open problems, and
outline directions for further research.

17

Chapter 2

Notation

In this chapter, we introduce the notation, classes, and problems used in this thesis.
Section 2.1 presents the definition of a PLS problem, the class PLS, and the definition
of a PLS reduction. In Section 2.2, we introduce the PLS problems considered in
this thesis.

A Note on Our General Notation For sake of readability, we denote computational
problems as well as algorithms in small capitals; sets are denoted in calligraphic
letters, where the special sets of complexity classes have names of length at least
three. For some set S, denote S0 := S ∪ {0} and 2S the power set of S. For all
j, k ∈ N0, denote [k] := {1, . . . , k} and

[j : k] :=

{
{j, . . . , k} if j ≤ k
∅ otherwise.

Given a k-tuple T , let Pi(T), for i ∈ [k], denote the projection to the i-th coordinate.
We denote an arbitrary value of a parameter by an asterisk symbol (∗).

2.1 PLS, Reductions, and Completeness

The fundamental definitions of a PLS problem and the class PLS were introduced
by Johnson, Papadimitriou, and Yannakakis [56]. The definition of a tight reduction
was introduced by Schäffer and Yannakakis [95]. All definitions can also be found in
the book of Aarts et al. [2]. In the following definitions, we assume that all elements
of all occurring sets are encoded as binary strings of finite length.

Definition 2.1 (PLS Problems [56]). A PLS problem L is characterized by seven
parameters

L = (DL, FL, cL, NL, InitL,CostL, ImproveL).

The set of instances is given by a polynomial-time recognizable subset DL ⊆ {0, 1}∗.
Every instance I ∈ DL has a set of feasible solutions FL(I), where feasible solutions
s ∈ FL(I) are strings that have length bounded by a polynomial in the length of
I. Every feasible solution s ∈ FL(I) has a non-negative integer cost cL(s, I) and
a neighborhood NL(s, I) ⊆ FL(I). InitL(I), CostL(s, I), and ImproveL(s, I) are

19

Chapter 2 Notation

polynomial-time algorithms. Algorithm InitL(I), given an instance I ∈ DL, computes
an initial feasible solution s ∈ FL(I). Algorithm CostL(s, I), given a feasible solution
s ∈ FL(I) and an instance I ∈ DL, computes the cost of solution s. Algorithm
ImproveL(s, I), given a feasible solution s ∈ FL(I) and an instance I ∈ DL, finds a
better solution in NL(s, I) or returns that there is no better one.

For sake of readability, we drop the index of the problem, where it is is clear from
the context. Note that locally optimal solutions can be found non-deterministically in
polynomial time by first guessing a feasible solution and subsequently verifying local
optimality. It is known that if a PLS problem L is NP-hard, then NP is closed
under complement [56].

Definition 2.2 (Improving Steps [56]). Let L be a PLS problem and I ∈ DL be
an instance of L. A move from solution s ∈ FL(I) to solution s′ ∈ NL(s, I) is an
improving step if cL(s′, I) > cL(s, I) in case L is a maximization PLS problem and
cL(s′, I) < cL(s, I) in case L is a minimization PLS problem.

Definition 2.3 (All-Exp/Is-Exp Property [78]). A PLS problem L has the all-exp
property if there exists an instance I ∈ DL and an initial feasible solution s ∈ FL(I)
that is exponentially many improving steps away from any local optimum. A sequence
of improving steps has exponential length if its number of improving steps is at least
2
k
√
|I| for some k ∈ N. A PLS problem has the is-exp property if there exist instances

such that there is a sequence of improving steps of exponential length.

Note that by definition, the class all-exp is closed under polynomial reductions.
Furthermore, for problems where each solution has at most one better neighboring
solution, the is-exp property directly implies the all-exp property. In particular, this
is the case for the Exponential problem and the Clustering problem where the
neighborhood structure is superimposed by the k-Means algorithm. Remarkably, for
the combinatorial optimization problems where local search was applied in practice, as
outlined in Section 1.2.2, the is-exp property was shown but not the all-exp property.

Definition 2.4 (Local Optima [56]). Let L be a PLS problem and I ∈ DL be an
instance of L. A solution s ∈ FL(I) is locally optimal (or a local optimum), if for
every solution s′ ∈ NL(s, I), cL(s′, I) ≤ cL(s, I) in case L is a maximization PLS
problem and cL(s′, I) ≥ cL(s, I) in case L is a minimization PLS problem.

The standard algorithm problem is, for a given instance I of a PLS problem L and
some solution s ∈ FL(I), to compute a local optimum s? ∈ FL(I) which is reachable
from s by successive improvements. There exists a PLS problem whose standard
algorithm problem is PSPACE-complete [87, 109].

Definition 2.5 (The Class PLS [56]). A search problem R is given by a relation
over {0, 1}∗ × {0, 1}∗. An algorithm “solves” R, when given I ∈ {0, 1}∗ it computes
an s ∈ {0, 1}∗ such that (I, s) ∈ R or it correctly outputs that such an s does not exist.
Given a PLS problem L, let the according search problem be

RL := {(I, s) | I ∈ DL, s ∈ FL(I) is a local optimum}.

20

2.1 PLS, Reductions, and Completeness

Then, the class PLS is defined as

PLS := {RL | L is a PLS problem}.
Definition 2.6 (PLS Reductions [56]). A PLS problem L1 is PLS-reducible to a
PLS problem L2 (written L1 ≤pls L2), if there exist two polynomial-time computable
functions Φ : DL1 → DL2 and Ψ defined for {(I, s) | I ∈ DL1 , s ∈ FL2(Φ(I))} with
Ψ(I, s) ∈ FL1(I) such that for all I ∈ DL1 and for all solutions s ∈ FL2(Φ(I)), if
(Φ(I), s) ∈ RL2 then (I,Ψ(I, s)) ∈ RL1 . A PLS problem L is PLS-complete, if every
PLS problem is PLS-reducible to L.

The concept of PLS-completeness is in line with the general use of completeness
in complexity theory. For PLS, the concept entails that if some PLS-complete
problem is polynomial-time computable, then all problems in the class PLS are
polynomial-time computable. Up to the point of publication of this thesis, there does
not exist a polynomial-time algorithm for any PLS-complete problem. PLS-complete
problems are widely regarded as hard problems and we therefore also refer to them
as intractable problems. A PLS problem L is commonly regarded as tractable if
there exists a polynomial-time algorithm which computes a locally optimal solution
of each instance I ∈ DL. Note that by definition of PLS reductions, there is not
necessarily an a priori relation between each sequence of improving steps in Φ(I) and
in I. Tight PLS reductions are now more structured PLS reductions. In a nutshell,
a PLS reduction is tight if all sequences of improving steps in Φ(I) correspond to
sequences of improving steps in I whose length may only be increased by introducing
intermediate solutions.

Definition 2.7 (Transition Graphs [95]). Let L be a PLS problem and I ∈ DL be
an instance of L. The transition graph Tg(I) of instance I is a directed graph with
a node for each solution s ∈ FL(I) and an arc s→ t, whenever solution t ∈ NL(s, I)
and cL(t, I) is strictly better than cL(s, I).

Definition 2.8 (Tight PLS Reductions [95]). A PLS reduction (Φ,Ψ) from PLS
problem L1 to L2 is tight, if for each instance I ∈ DL1 , there exists an R ⊆ FL2(Φ(I))
for the image instance J = Φ(I) ∈ DL2 , such that the following properties are satisfied:

1. R contains all local optima of J .

2. For every solution s ∈ FL1(I), a solution t ∈ R can be constructed in polynomial
time such that Ψ(I, t) = s.

3. Suppose that the transition graph of J , Tg(J), contains a directed path q →
· · · → q′ such that q, q′ ∈ R but all internal path vertices are outside of R, and
let p = Ψ(I, q) and p′ = Ψ(I, q′) be the corresponding feasible solutions of I.
Then, either p = p′ or Tg(I) contains an arc from p to p′.

Tight reductions are of special interest, since they preserve the PSPACE-complete-
ness of the standard algorithm problem [87, 109], as well as the all-exp property [56].
Note that tight reductions are transitive. This allows to define the tight PLS-
completess of PLS problems recursively:

21

Chapter 2 Notation

Definition 2.9 (Tight PLS-Completeness [78]). PLS problem Circuit/Flip is
tight PLS-complete [87]. A PLS problem B is tight PLS-complete if there exists a
tight PLS reduction A ≤pls B for some tight PLS-complete problem A.

We will outline the tight PLS-completeness of Circuit/Flip in Subsection 3.1.1.
Let us remark that linear programming with the Simplex neighborhood does not
have the all-exp property [57] and is therefore not tight PLS-complete.

2.2 PLS Problems Considered in this Thesis

We next present the PLS problems which we consider in this thesis. We separate the
problems into basic PLS problems in Subsection 2.2.1 which we reduce from in later
chapters, the problem of computing a Nash equilibrium in a given restricted network
congestion game in Subsection 2.2.2, local search versions of the Generalized
Maximum Satisfiability problem in Subsection 2.2.3, and local search versions of
weighted standard set problems in Subsection 2.2.3.

On Algorithms and the Notation for Problems For all PLS problems L studied
in this thesis, the algorithms InitL and CostL are straightforward and polynomial-
time computable. The size of the neighborhood is limited by a constant which is
independent of the size of the input and therefore algorithm ImproveL(s, I) can
search the neighborhood of NL(s, I) in polynomial time. For sake of readability, we
write limitations to a problem as a prefix and the size of the neighborhood as a suffix.

2.2.1 Basic PLS Problems

The intractability results we present in this thesis rely on known intractability results
for the following three maximization PLS problems MaxCut, CNF-Satisfiability,
and Circuit/Flip. Here, MaxCut is an edge-weighted local search version of the
well-known NP problem MaxCut (confer [ND16] in the book of Garey and Johnson
[40] for a formal definition).

Definition 2.10 (MaxCut [95]). An instance I ∈ DMC of problem MaxCut (in
short MC) is an undirected graph G = (V,E) along with a function w : E → N0. The
set of feasible solutions FMC(I) consists of all partitions p : V → {0, 1}; we use the
term cut synonymously for a partition. Given a solution p ∈ FMC(I), the cost is

cMC(p, I) :=
∑

e={u,v}∈E,p(u)6=p(v)
w(e);

edge e = {u, v} ∈ E is in the cut if p(u) 6= p(v). The neighborhood NMC(p, I) of a
solution p ∈ FMC(I) consists of all solutions p′ ∈ FMC(I), where p′ results from p by
a single node switching its partition.

The PLS problem (h)-CNFSat, we reduce from in this thesis is a clause-weighted
local search version of the well-known NP problem Satisfiability (confer [LO1] in

22

2.2 PLS Problems Considered in this Thesis

the book of Garey and Johnson [40] for a formal definition). Here, the parameter
h ∈ N denotes the a priori fixed maximum length of each clause. We drop the prefix
when we refer to instances where clauses can have arbitrary length.

Definition 2.11 ((h)-CNFSat [67]). An instance I ∈ D(h)-CNFSat of (h)-CNF-Sat-
isfiability (in short (h)-CNFSat) with h ∈ N is a set of clauses C = {C1, . . . , Cm}
over a set of binary variables X = {x1, . . . , xn}. Each clause Ci(xi1 , . . . , xihi) ∈ C,
with i ∈ [m] and hi ≤ h, is a function Ci : [2]hi → {0,wi} with wi ∈ N of the form

Ci(xi1 , . . . , xihi) :=

{
wi if

(∑
j∈[hi]

(xij + bij mod 2)
)
≥ 1

0 otherwise,

where bij ∈ {0, 1} is a constant for all j ∈ [hi]. Parameter hi is also called length
of Ci and parameter wi is also called weight of Ci. The set of feasible solutions
F(h)-CNFSat(I) consists of all assignments a : X → {0, 1}. The cost of a solution
a ∈ F(h)-CNFSat(I) is

c(h)-CNFSat(a, I) :=
∑

Ci∈C
Ci(a(xi1), . . . , a(xihi));

clause Ci is satisfied if Ci(a(xi1), . . . , a(xihi)) > 0. The neighborhood N(h)-CNFSat(a, I)
of a solution a ∈ F(h)-CNFSat(I) consists of all solutions a′ ∈ F(h)-CNFSat(I), where
a′ results from a by switching the assignment of a single variable.

Let us remark that the notation for (h)-CNFSat in the above definition slightly
differs from the standard notation for the NP problem Satisfiability. We choose
this definition, since it is in line with the notation used in the Maximum Constraint
Assignment problem (see Definition 2.15). Recall that the standard definition of an
instance of the decision problem Satisfiability with maximum clause length h ∈ N
is a set of variables X = {x1, . . . , xn}, a set of literals L := {x1, . . . , xn, x̄1, . . . , x̄n},
and a set of clauses C = {C1, . . . , Cm} with Ci = {li1 ∨ · · · ∨ lihi} where i ∈ [m],
lij ∈ L, and hi ≤ h such that there exists an assignment a : X → {0, 1} with f(a) = 1,
where f(a) =

∧m
i=1(a(li1) ∨ · · · ∨ a(lihi)). Note that in our definition of (h)-CNFSat,

the constants bij take the role of negating variables.
Circuit/Flip denotes the PLS problem of finding an input assignment for a

given feedback-free boolean circuit S where the output, treated as a binary number,
cannot be increased by flipping a single input bit.

Definition 2.12 (Circuit/Flip [56]). An instance I ∈ DC/F of problem Cir-
cuit/Flip (in short C/F) is a feedback-free boolean circuit S consisting of a
set of gates G and a set of links L; denote input links X1, . . . , Xn and output
links Z1, . . . , Zn. The circuit S defines a function R : L × {0, 1}n → {0, 1}. Here,
R(`, (x1, . . . , xn)) is the value computed by S for link `, if input links X1, . . . , Xn have
input bits x1, . . . , xn. For output link Zi with i ∈ [n] and input bits x = (x1, . . . , xn),
denote Z(x)i := R(Zi, x). The set of feasible solutions of instance I is FC/F(I) :=

23

Chapter 2 Notation

{0, 1}n. The cost of a solution x = (x1, . . . , xn) ∈ FC/F(I) is defined as

cC/F(x, I) :=
∑n

i=1
2n−iZ(x)i.

The neighborhood NC/F(x, I) of a solution x ∈ FC/F(I) consists of all solutions
x′ ∈ FC/F(I), where x′ results from x by flipping the value of a single input bit.

2.2.2 Restricted Network Congestion Games

In Chapter 5, we investigate the complexity of computing a Nash equilibrium in
a restricted network congestion game. In a nutshell, restricted network congestion
games are network congestion games where for each unweighted player there exits a
set of edges which he is not allowed to use.

Definition 2.13. An instance I = (G = (V,E),N , (Ei)i∈N , (ai, bi)i∈N , (de)e∈E) of
an n-player restricted network congestion game is characterized by five parameters:

1. a directed or undirected network G = (V,E) with a set of nodes V and a set of
edges E,

2. a set of n players N = {1, . . . , n},

3. a set of edges Ei ⊆ E for every player i ∈ N ,

4. a source-sink pair (ai, bi) for every player i ∈ N , and

5. a non-decreasing delay function de : N→ N0 for every edge e ∈ E.

The strategy space for each player i ∈ N is restricted to all simple paths connecting ai
and bi via edges in Ei. We denote the state of the game by s = (s1, . . . , sn), where si
for all i ∈ N , denotes the strategy chosen by player i in s. Given some state s of the
game, denote by ne(s) := |{i ∈ N | e ∈ si}| the number of players using edge e ∈ E
in s, which we denote as the congestion on edge e in s. Player i ∈ N , given some
state s of the game, incurs a private cost of

δi(s) :=
∑

e∈si
de(ne(s));

we use the term delay synonymously. Players act selfishly and try to minimize their
private cost. A state s of the game is a Nash equilibrium if no player can unilaterally
deviate and strictly decrease his private cost.

Rosenthal’s potential function, which is polynomial-time computable, guarantees
the existence of a Nash equilibrium in every restricted network congestion game [92].
This allows to formulate the problem of computing a Nash equilibrium in a given
k-player restricted network congestion game on a directed (resp. undirected) network
as a minimization PLS problem.

24

2.2 PLS Problems Considered in this Thesis

Definition 2.14 ((n)-RDNCG/(n)-RUNCG [4]). An instance I ∈ D(n)-RDNCG
(resp. I ∈ D(n)-RUNCG) is an n-player restricted network congestion game

(G = (V,E),N , (Ei)i∈N , (ai, bi)i∈N , (de)e∈E)

on a directed (resp. undirected) network G = (V,E) with |N | = n players. The set
of feasible solutions F(n)-RDNCG(I) (resp. F(n)-RUNCG(I)) consists of all states of
the game. The cost of a solution s ∈ F(n)-RDNCG(I) (resp. s ∈ F(n)-RUNCG(I)) is
defined as the value of Rosenthal’s potential function [92] at s, i. e.

c(n)-RDNCG(s, I) = c(n)-RUNCG(s, I) :=
∑

e∈E

∑ne(s)

i=1
de(i).

The neighborhood N(n)-RDNCG(s, I) (resp. N(n)-RUNCG(s, I)) of a solution s ∈
F(n)-RDNCG(I) (resp. s ∈ F(n)-RUNCG(I)) consists of all solutions s′ ∈ F(n)-RDNCG(I)
(resp. s′ ∈ F(n)-RUNCG(I)), which result from s by a player unilaterally deviating.

2.2.3 Local Search Versions of Generalized Maximum Satisfiability
Problems

In Chapter 6, we investigate the complexity of computing locally optimal solutions of
local search versions of the well-known Generalized Maximum Satisfiability
problem (confer problem [LO6] in the book of Garey and Johnson [40] for a formal
description). Essentially, the problems we study there are extensions of (h)-CNFSat
to more generalized clauses over variables with larger valence; additionally, the appear-
ance of each variable is a priori limited. For all local search versions of Generalized
Maximum Satisfiability problems, we use the neighborhood structure where two
solutions are mutual neighbors, if they can be transformed into each other by changing
the assignment of a single variable. Except for Minimum Constraint Assignment,
all problems we consider in this subsection are maximization problems.

Definition 2.15 ((p, q, r)-MCA [31]). An instance I ∈ D(p,q,r)-MCA of (p, q, r)-Max-
imum Constraint Assignment (in short (p, q, r)-MCA), with p, q, r ∈ N, is a
set of constraints C = {C1, . . . , Cm} over a set of variables X = {x1, . . . , xn}. Each
constraint Ci(xi1 , . . . , xipi) ∈ C, with i ∈ [m] and pi ≤ p, is a function Ci : [r]pi → N0;
pi is also called length of Ci. Every variable x ∈ X appears in at most q constraints
and takes values from [r]. The set of feasible solutions F(p,q,r)-MCA(I) consists of all
assignments a : X → [r]. The cost of a solution a ∈ F(p,q,r)-MCA(I) is

c(p,q,r)-MCA(a, I) :=
∑

Ci∈C
Ci(a(xi1), . . . , a(xipi)).

We denote by (p, q, r)-Minimum Constraint Assignment (in short (p, q, r)-MinCA)
the minimization version of (p, q, r)-MCA. As a modification of (p, q, r)-MCA, we
introduce (p, q, r)-VCA where p now denotes the maximum sum of the valences of the
variables minus the number of variables in each constraint. Note that (p, q, 2)-MCA
equals (p, q, 2)-VCA, by definition.

25

Chapter 2 Notation

Definition 2.16 ((p, q, r)-VCA [31]). An instance of (p, q, r)-Value Constraint
Assignment (in short (p, q, r)-VCA) is also a set of constraints C over a set of
variables X . Parameter q has the same meaning as in Definition 2.15. Parameter
r denotes the maximum valence of the variables in X . For each constraint Ci ∈ C,∑

x∈Ci(r(x)− 1) ≤ p, where r(x) denotes the valence of variable x ∈ X .

Definition 2.17 (k-partite Constraints [31]). A set of constraints is k-partite if there
exists a partition p : X → [k] of the variables such that for every two distinct variables
x, y occurring in the same constraint, p(x) 6= p(y). Denote by (p, q, r)-MCAk-par the
subclass of all (p, q, r)-MCA instances where the set of constraints is k-partite.

Definition 2.18 (Weighted Predicates [31]). A weighted predicate P (x1, . . . , xn)
over a set of r-valued variables {x1, . . . , xn} is a function P : [r]n → {0, 1} along with
a weight w ∈ N0. A weighted predicate can be viewed as a constraint with binary
function values 0 and w.

Let x ∈ {x1, . . . , xn} be a variable in predicate P . We say that setting variable
x to a new value improves predicate P , if P was previously unsatisfied and is now
satisfied. Setting variable x to a new value violates predicate P , if P was previously
satisfied and is now unsatisfied. Note that every constraint can be decomposed into a
set of weighted predicates sharing the same set of variables; the function value for a
given assignment is the sum of the weighted predicates which are satisfied. In the
following definition, we assume that each constraint is viewed as a set of predicates

Definition 2.19 (Hierarchical Set of Predicates [31]). A set of predicates is hierar-
chical if the weight of each single predicate dominates the sum of the weights of all
predicates of smaller weight. A set of constraints is hierarchical if the union of all
constraints is hierarchical.

2.2.4 Local Search Versions of Weighted Standard Set Problems

In Chapter 7, we investigate the complexity of computing locally optimal solutions of
weighted standard set problems. All weighted standard set problems we present are
local search versions of their respective decision problems, as included in the book
of Garey and Johnson [40]. For an instance of a problem considered in this subsection,
let B denote some finite set and let C = {C1, . . . , Cn} denote a set of subsets of B.
We refer to a set of sets also as a collection. Let wC : C → N0 and wB : B × B → N0.
Denote by mB and mC positive integers with mB ≤ |B| and mC ≤ |C|.

Unless otherwise mentioned, we use the k-differ neighborhood . Here, two solutions
are mutual neighbors if they can be transformed into each other by adding, deleting,
or exchanging at most k elements which describe a solution; more details are given in
the respective definitions. Except for SetCover, all problems we consider in this
subsection are maximization problems.

Definition 2.20 (W3DM-(p, q) [30]). An instance I ∈ DW3DM-(p,q) of Weighted-
3-DimensionalMatching-(p, q) (in short W3DM-(p, q)) is a pair (n,w) with n ∈ N

26

2.2 PLS Problems Considered in this Thesis

and w is a function w : [n]3 → N0. The components of triples are identified with
boys, girls, and homes. The set of feasible solutions FW3DM-(p,q)(I) are all matchings
of boys, girls, and homes, i. e. all S ⊆ [n]3, with |S| = n, Pk(Ti) 6= Pk(Tj), for all
Ti, Tj ∈ S, i 6= j, and k ∈ [3]. Given a solution S ∈ FW3DM-(p,q)(I), the cost is

cW3DM-(p,q)(S, I) :=
∑

T∈S
w(T).

The neighborhood NW3DM-(p,q)(S, I) of a solution S ∈ FW3DM-(p,q)(I) consists of all
solutions S′ ∈ FW3DM-(p,q)(I) which result from S by replacing at most p triples and
moving up to q boys or girls to new homes.

Definition 2.21 (X3C-(k) [29]). An instance I ∈ DX3C-(k) of Exact-Cover-
By-3-Sets-(k) (in short X3C-(k)) is a tuple (C,wC), where C = {C1, . . . , Cn} is a
collection of all 3-element sets of a finite set B, with |B| = 3q for some q ∈ N. The
set of feasible solutions FX3C-(k)(I) are all collections S ⊆ C such that every b ∈ B is
in exactly one Ci ∈ S. Given a solution S ∈ FX3C-(k)(I), the cost is

cX3C-(k)(S, I) :=
∑

Ci∈S
wC(Ci).

The neighborhood NX3C-(k)(S, I) of a solution S ∈ FX3C-(k)(I) consists of all solutions
S′ ∈ FX3C-(k)(I) which differ from S in at most k sets.

Definition 2.22 (SP-(k) [29]). An instance I ∈ DSP-(k) of SetPacking-(k) (in
short SP-(k)) is a triple (C,wC ,mC). The set of feasible solutions FSP-(k)(I) are all
collections S ⊆ C with |S| ≤ mC. Given a solution S ∈ FSP-(k)(I), the cost is

cSP-(k)(S, I) :=
∑

Ci∈S∧PwD(Ci,S)
wC(Ci),

where

PwD(Ci, S) :=

{
true if ∀Cj ∈ S \ {Ci} : Ci ∩ Cj = ∅
false otherwise.

The neighborhood NSP-(k)(S, I) of a solution S ∈ FSP-(k)(I) consists of all solutions
S′ ∈ FSP-(k)(I) which differ from S in at most k sets.

Let us remark that the technical restriction on the maximum size of a feasible solu-
tion of an instance of SetPacking-(k) is crucial for our corresponding intractability
result in Chapter 7.

Definition 2.23 (SSp-(k) [29]). An instance I ∈ DSSp-(k) of SetSplitting-(k) (in
short SSp-(k)) is a tuple (C,wC). Feasible solutions FSSp-(k)(I) are all partitions of
B, i. e. all pairs (S1, S2) with S1, S2 ⊆ B, S1 ∩ S2 = ∅, and S1 ∪ S2 = B. Given a
solution S = (S1, S2) ∈ FSSp-(k)(I), the cost is

cSSp-(k)(S, I) :=
∑

Ci∈C∧Split(Ci,S)
wC(Ci),

27

Chapter 2 Notation

where

Split(Ci, S) :=

{
true if (Ci ∩ S1 6= ∅) ∧ (Ci ∩ S2 6= ∅)
false otherwise.

The neighborhood NSSp-(k)(S, I) of a solution S ∈ FSSp-(k)(I) consists of all solutions
S′ ∈ FSSp-(k)(I), which result from S by at most k elements switching partition.

Definition 2.24 (SC-(k) [29]). An instance I ∈ DSC-(k) of SetCover-(k) (in short
SC-(k)) is a tuple (C,wC) such that

⋃
Ci∈C Ci = B. The set of feasible solutions

FSC-(k)(I) are all collections S ⊆ C with
⋃
Ci∈SCi = B. Given a solution S ∈

FSC-(k)(I), the cost is

cSC-(k)(S, I) :=
∑

Ci∈S
wC(Ci).

The neighborhood NSC-(k)(S, I) of a solution S ∈ FSC-(k)(I) consists of all solutions
S′ ∈ FSC-(k)(I) which differ from S in at most k sets.

Definition 2.25 (TS-(k) [29]). An instance I ∈ DTS-(k) of TestSet-(k) (in short
TS-(k)) is a triple (C,wB,mB). Feasible solutions FTS-(k)(I) are all collections S ⊆ C
with |S| ∈ [mB]. Given a solution S ∈ FTS-(k)(I), the cost is

cTS-(k)(S, I) :=
∑

a,c∈B,a6=c∧Test(a,c,S)
wB(a, c),

where

Test(a, c, S) :=

{
true if ∃A,C ∈ S : (a ∈ A ∧ c 6∈ A) ∧ (a 6∈ C ∧ c ∈ C)

false otherwise.

The neighborhood NTS-(k)(S, I) of a solution S ∈ FTS-(k)(I) consists of all solutions
S′ ∈ FTS-(k)(I) which differ from S in at most k sets.

Definition 2.26 (SB-(k) [29]). An instance I ∈ DSB-(k) of SetBasis-(k) (in short
SB-(k)) is a triple (C,wC ,mC). The set of feasible solutions FSB-(k)(I) are all collec-
tions S = {S1, . . . , SmC}, where Si ∈ 2B with |Si| ∈ [h] for all i ∈ [mC] and some fixed
h ∈ N which is not part of the input. Given a solution S ∈ FSB-(k)(I), the cost is

cSB-(k)(S, I) :=
∑

Ci∈C∧Set(Ci,S)
wC(Ci),

where

Set(Ci, S) :=

{
true if ∃T ⊆ S : Ci =

⋃
Ti∈T Ti

false otherwise.

The neighborhood NSB-(k)(S, I) of a solution S ∈ FSB-(k)(I) consists of all solutions
S′ ∈ FSB-(k)(I) which differ from S in at most k sets.

28

2.2 PLS Problems Considered in this Thesis

Let us remark that with the technical restriction on the maximum size of each set
in a feasible solution S of an instance of SetBasis-(k), the size of the neighborhood
is again limited by a constant which is independent of the size of the input; the
technical restriction that S 6= ∅ is crucial for our corresponding intractability result
in Chapter 7.

Definition 2.27 (HS-(k) [29]). An instance I ∈ DHS-(k) of HittingSet-(k) (in
short HS-(k)) is a triple (C,wC ,mB). The set of feasible solutions FHS-(k)(I) are all
sets S ⊆ B with |S| ≤ mB. Given a solution S ∈ FHS-(k)(I), the cost is

cHS-(k)(S, I) :=
∑

Ci∈C∧S∩Ci 6=∅
wC(Ci).

The neighborhood NHS-(k)(S, I) of a solution S ∈ FHS-(k)(I) consists of all solutions
S′ ∈ FHS-(k)(I) which differ from S in at most k elements.

Definition 2.28 (IP-(k) [29]). An instance I ∈ DIP-(k) of IntersectionPattern-(k)
(in short IP-(k)) is a triple (A,B,D) consisting of two symmetric n × n matrices
A = (aij)i,j∈[n] and B = (bij)i,j∈[n] with positive integer entries and a collection
D = {D1, . . . , D`} with ` ≥ n over a finite set B. The set of feasible solutions
FIP-(k)(I) are all vectors E = (E1, . . . , En) with Ei ∈ D for all i ∈ [n]. Given a
solution E ∈ FIP-(k)(I), the cost is

cIP-(k)(E, I) :=
∑

i,j∈[n],i≤j∧|Ei∩Ej |=aij
bij .

The neighborhood NIP-(k)(E, I) of a solution E ∈ FIP-(k)(I) consists of all solutions
E′ ∈ FIP-(k)(I) which differ from E in at most k vector entries.

Definition 2.29 (CC-(k) [29]). An instance I ∈ DCC-(k) of ComparativeCon-
tainment-(k) (in short CC-(k)) is a triple (C,D,w) consisting of two collections
C = {C1, . . . , Cn}, and D = {D1, . . . , D`} over a finite set B, and a function w :
C ∪ D → N0. The set of feasible solutions FCC-(k)(I) are all sets S ⊆ B. Given a
solution S ∈ FCC-(k)(I), the cost is

cCC-(k)(S, I) := W +
∑

Ci∈C:S⊆Ci
w(Ci)−

∑
Di∈D:S⊆Di

w(Di),

where W ≥ ∑Di∈D w(Di), in order for cCC-(k)(S, I) ≥ 0 for each S ∈ FCC-(k)(I).
The neighborhood NCC-(k)(S, I) of a solution S ∈ FCC-(k)(I) consists of all solutions
S′ ∈ FCC-(k)(I) which differ from S in at most k elements.

29

Chapter 3

Related Work

In this chapter, we survey the research on the complexity of computing locally
optimal solutions in predominantly chronological order. We first focus on early results
in Section 3.1, starting with the fundamental problem Circuit/Flip. We then
continue by presenting results for the Traveling Salesman Problem, MaxCut,
and local search versions of Satisfiability problems, weighted set problems, and
graph problems. Most of the pioneering results are from Johnson, Papadimitriou,
and Yannakakis [56, 87] or from Schäffer and Yannakakis [95, 109]. We close by
surveying recent results from game theory in Section 3.2, considering the complexity of
computing pure Nash equilibria. Here, we concentrate on the research on congestion
games, which sparked the interconnection between local search and game theory.
For further known PLS-complete problems, we refer the reader to the works

of Alekseeva et al. [7], Brandt et al. [17], Klauck [63], Kochetov and Ivanenko
[66], Papadimitriou et al. [87], Prokopyev et al. [90], Vredeveld and Lenstra [107].
An excellent overview of local search algorithms in general, their applications and
known tractability results, is presented in the books of Aarts et al. [2] and Aarts and
Lenstra [1], of which the first one contains a list of PLS-complete problems known so
far. A survey of the quality of solutions obtained via local search is given by Angel
[8]. Unless otherwise mentioned, we assume that all numbers are integers, for the
remainder of this chapter.

3.1 Early Results

The early results in the field of PLS were motivated by determining the complexity
of computing locally optimal solutions of well-known hard combinatorial optimization
problems. Here, the neighborhood structure is superimposed by successful local
search algorithms, such as the ones presented in Section 1.2.2.

3.1.1 Circuit/Flip

The first PLS problem which was proven to be PLS-complete is Circuit/Flip. In
a nutshell, the intractability proof given by Johnson, Papadimtriou, and Yannakakis
[56] involves three intermediate PLS reductions:

1. First, the authors reduce an instance I of an arbitrary problem L ∈ PLS to
an instance I ′ of an intermediate problem L′ ∈ PLS; L′ only differs from L in

31

Chapter 3 Related Work

the neighborhood structure, as in L′ no feasible solution has more than one
neighbor. The design of the reduction is such that each solution s′ ∈ FL′(I ′) has
at most one neighbor and local optima coincide. For this, the single neighbor
of each solution s ∈ FL′(I ′) is defined to be the output of ImproveL(s, I).

2. Without loss of generality, assume that all solutions s ∈ FL(I) are binary strings
of length at most a polynomial in the length of I; denote the latter one by
p(|I|). Second, the authors reduce L′ to another problem L′′ ∈ PLS which has
the set of solutions of L′, but every bit string of length p(|I|) is now a feasible
solution; two solutions are mutual neighbors if they differ in a single bit. Note
that this exactly matches the neighborhood structure of Circuit/Flip. The
cost function is defined such that every minimum length sequence of bit-flips
between two solutions s, t ∈ FL′(I ′) yields an improving path s ; t if and only
if t = NL′(s, I ′). The crucial idea here is to assign every intermediate solution
u on each such minimum length sequence s ; t the cost of t scaled by some
factor plus the Hamming distance between u and t; call the resulting instance
I ′′.

3. The final reduction from L′′ to Circuit/Flip simply involves constructing a
feedback-free boolean circuit which computes the cost function of I ′′.

For all technical details, we refer the reader to the original paper [56].
Notably, this reduction is tight [87]. Hence, the exclusiveness of exponentially

long sequences of improving steps in PLS problem Exponential is preserved by
the reduction; subsequently, Circuit/Flip possesses the all-exp property. Further-
more, the tightness of the reduction implies that the standard algorithm problem for
Circuit/Flip is PSPACE-complete, since the PLS problem whose standard algo-
rithm problem is PSPACE-complete can be directly simulated using Circuit/Flip.
By Definition 2.9 in Chapter 2, Circuit/Flip is tight PLS-complete. Hence,
problems shown to be tight PLS-complete via a sequence of tight reductions from
Circuit/Flip are again tight PLS-complete, implying that these problems possess
the all-exp property and their standard algorithm problem is PSPACE-complete.

3.1.2 Traveling Salesman Problem

As outlined in Section 1.2.2, local search algorithms have been applied with huge
success to compute approximate solutions of the Traveling Salesman Problem
on random Euclidean instances [55]. On the negative side, finding a locally optimal
solution of the Traveling Salesman Problem, where the neighborhood structure
is superimposed by the well-known k-Opt heuristic [71] for some k � 1, 000 is
PLS-complete [67]. In the k-Opt neighborhood, two solutions are mutual neighbors
if they differ in at most k edges. Computing a locally optimal solution with respect
to the Lin-Kernighan heuristic [72] (confer Johnson and McGeoch [55] for a formal
definition) is also PLS-complete [85, 87].

32

3.1 Early Results

3.1.3 MaxCut

The MaxCut problem is known to be tight PLS-complete [95]. Let us remark
that in the reduction given by Schäffer and Yannakakis [95], the maximum degree
of the constructed graph is required to be unbounded. Recently, it was shown that
a maximum degree of five is sufficient such that MaxCut is PLS-complete [104].
If the maximum degree of the input graph is at most three, then every sequence of
improving steps has at most a length which is quadratic in the size of the input [89].
Hence, locally optimal solutions can be computed in polynomial time via successive
improvements. This does no longer hold for graphs of maximum degree four, as it
was recently shown that in this case MaxCut has the all-exp property [77].

3.1.4 Local Search Versions of Satisfiability Problems

In their seminal paper, Johnson, Papadimtriou, and Yannakakis [56] conjecture
that for a problem to be PLS-complete, the problem of verifying local optimality
is required to be P-complete. Krentel [68] disproves this conjecture by showing
that CNF-Satisfiability is PLS-complete, though the problem of verifying local
optimality can be solved in LOGSPACE . Let us remark that in the reduction given
by Krentel [68], the length of each clause is required to be unbounded. In a succeeding
paper, Krentel [67] outlines that (4, 3, 3)-MCA is PLS-complete. This result can be
extended to (h)-CNFSat for some fixed maximum length h ∈ N of each clause where
simultaneously the maximum appearance of each variable in every instance is fixed to
some q ∈ N which is independent of the instance [67, 104]. Furthermore, Positive-
NotAllEqual-2-Flip, a reformulation of MaxCut, is known to be PLS-complete,
along with Maximum 2-Satisfiability [95]. For any generalized local search version
of Satisfiability, the dichotomy theorem by Chapdelaine and Creignou [20] states
that the corresponding PLS problem is either in P or PLS-complete; this is in spirit
with the dichotomy theorem presented by Schaefer [94].

3.1.5 Weighted Set Problems and Graph Problems

The knowledge of the complexity of computing locally optimal solutions of weighted set
problems is rather limited. Known results are based on results for local search versions
of graph problems that can be reformulated as set problems. Besides the edge-weighted
graph problems in PLS outlined above and considered in the works of Johnson et al.
[56], Papadimitriou et al. [87], Schäffer and Yannakakis [95], Vredeveld and Lenstra
[107], we now present the following two representatives of vertex-weighted graph
problems in PLS.
The Independent Dominating h-Set problem is a minimization local search

version of Dominating Set (confer [GT2] in the book of Garey and Johnson [40]
for a formal definition). In the Independent Dominating h-Set problem, the
input consists of a vertex-weighted undirected graph of maximum degree h. Feasible
solutions are all binary assignments for the vertices, such that no two adjacent vertices
may be assigned 1 and for each vertex which is assigned 0, there exists an adjacent

33

Chapter 3 Related Work

vertex which is assigned 1. The cost of an assignment is the sum of the weights of the
vertices which are assigned 1. Given an assignment, its neighborhood consists of all
assignments, where at most k vertices switch their assignment. The Independent
Dominating h-Set problem is known to be PLS-complete for sufficiently large, but
constant h and k [63].

Shimozono [97] provides a more generalized intractability result for vertex-weighted
graph problems by showing PLS-completeness of the maximization problem Weigh-
ted Greedy Maximal-Π. In the Weighted Greedy Maximal-Π problem, the
input consists of a vertex-weighted graph. The set of feasible solutions contains all
subsets of the vertices that induce a subgraph which satisfies a fixed graph property
Π; property Π is required to be checkable in polynomial time. The cost of a solution
is the sum of the weights of its vertices; the neighborhood structure is superimposed
by an algorithm that finds a greedy maximal subgraph. If Π is any nontrivial and
hereditary graph property, then Weighted Greedy Maximal-Π is known to be
PLS-complete [97].

3.2 Recent Results and the Connection to Game Theory

Recently, the field of local search has attracted additional attention from game
theory, considering the complexity of computing a pure Nash equilibrium. In this
section, we only consider pure Nash equilibria, unless otherwise mentioned; thus, we
omit pure for sake of readability. In the following, we survey results considering the
complexity of computing a Nash equilibrium in a given congestion game, as introduced
in Subsection 1.2.5. For PLS-completeness results in other games, we refer the reader
to the works of Ackermann et al. [5], Dunkel and Schulz [32], Goemans et al. [41].
For related work including other aspects of decentralized autonomous systems like
congestion games such as the price of anarchy or network design problems, confer the
book of Nisan et al. [81].

3.2.1 Computing Nash Equilibria in Unweighted Congestion Games

First, we consider unweighted congestion games. In their seminal paper, Fabrikant,
Papadimitriou, and Talwar [34] settle the complexity of computing a Nash equilibrium.
Finding a Nash equilibrium in a symmetric network congestion game is polynomial-
time solvable by reduction to the Min-Cost-Flow problem [34]. Computing a Nash
equilibrium in a symmetric congestion game and in an asymmetric network congestion
game is tight PLS-complete; hence, these games possess the all-exp property [34].
Notably, neither the numbers of players nor the number of resources per strategy is
a priori bounded in both reductions. A recent result by Tscheuschner [104] implies
that the above intractability results of Fabrikant et al. [34] can be extended to hold
for at most five resources per strategy. Despite the polynomial-time computability
of Nash equilibria in symmetric network congestion games, an asymmetric network
congestion game having the all-exp property can be embedded; hence, the class of

34

3.2 Recent Results and the Connection to Game Theory

symmetric network congestion games possess the all-exp property [5]. The PLS-
completeness result for asymmetric network congestion games was refined to hold for
undirected networks even if all latency functions are linear, including an elegant proof
for the PLS-completeness of directed asymmetric network congestion games [5]. If
the strategy space of each player consists of the bases of a matroid over the set of
resources, then Nash equilibria can be efficiently computed, using a best-response
Nash dynamics. The matroid property is a sufficient and necessary condition on the
combinatorial structure of the players’ strategy spaces to guarantee fast convergence
to Nash equilibria [5]. On the other hand, if the strategies of a congestion game fulfill
a so called (1, 2)-exchange property, then the problem of finding a Nash equilibrium
has the is-exp property [5].

3.2.2 Approximate Nash Equilibria in Unweighted Congestion Games

Since in many cases, the computation of a Nash equilibrium is as hard as finding
a local optimum for any problem in PLS, one might hope that the computation
of approximate Nash equilibria yields a significant performance improvement. A δ-
approximate Nash equilibrium is a state of the game in which no player can unilaterally
improve his delay by a factor of at least δ. The existence of a δ-approximate Nash
equilibrium is guaranteed by Rosenthal’s potential function and may be computed
by adapting the Nash dynamics to now incorporate unilateral deviations which
improve the delay of the deviating player by a factor of at least δ. The hope for an
efficient computation of δ-approximate Nash equilibria might be additionally fueled
by the existence of an FPTAS for computing approximate local optima for all linear
combinatorial optimization problem in PLS [82]. In particular, the authors provide
a rule for choosing improving steps that lead to an approximate solution within
a polynomial number of steps. Unfortunately this notion of approximation is not
sufficient for approximate Nash equilibria, since each selfish player is ignorant of the
potential function. There might be solutions which are up to a factor of δ close to a
local optimum, considering the potential function, but a single player might still have
an incentive of δ or more to unilaterally deviate.
As outlined in Subsection 1.2.5, if all delay functions in unweighted congestion

games are polynomials, then Nash equilibria can be efficiently computed. The question
arises to which extent the delay functions can be generalized such that polynomial-
time convergence to approximate Nash equilibria is still guaranteed. A congestion
game satisfies the α-bounded jump condition, if for every resource with at least one
player, the addition of a single player increases the delay by at most a factor of α.
Note that delay functions satisfying the α-bounded jump condition are more general
than polynomial delay functions, but not exponential. This condition does not trim
the inherent complexity of congestion games, as finding a Nash equilibrium in a
symmetric congestion game satisfying the α-bounded jump condition with α = 2 is
PLS-complete [22]. On the other hand, computing a δ-approximate Nash equilibrium
in a symmetric congestion game, where each edge satisfies the α-bounded jump
condition, is polynomial-time computable, since the sequence of slightly restricted

35

Chapter 3 Related Work

δ-selfish steps converges within a number of steps that is polynomial in the number of
players, α, and δ−1. The problem of computing a Nash equilibrium in an asymmetric
congestion game satisfying the α-bounded jump condition via δ-best improvement
steps possesses the all-exp property [98]. Hence, the positive result is restricted to
symmetric congestion games. Computing a δ-approximate Nash equilibrium in an
arbitrary congestion game is PLS-complete, for every polynomial-time computable
approximation factor δ [98]. As the reduction by Skopalik and Vöcking [98] is
tight, the problem of computing a δ-approximate Nash equilibrium in an arbitrary
congestion game has the all-exp property.

3.2.3 Player-Specific (Singleton) Congestion Games

Now, we turn our attention to a variation of congestion games known as congestion
games with player-specific latency functions , originally introduced by Milchtaich [75].
While in congestion games, all players share the same delay function for a resource,
player-specific delay functions rather emphasize the players’ personal preferences
for certain resources. Note that this setting also allows to model that each player
may only use a certain subset of the resources. In the model of singleton congestion
games , every strategy of each player consists of a single resource. Symmetric singleton
congestion games are then a subclass of network congestion games where players
route their demand through a simple network of parallel edges between two nodes s
and t.

First, we consider symmetric singleton congestion games with player-specific latency
functions. In general, unweighted symmetric singleton congestion games with player-
specific delay functions possess Nash equilibria, but may not necessarily have a
potential function, even in the case of three players [75]. Moreover, this result is tight
since in the case of two players, the Nash dynamics converges [75]. In the case of
weighted players and player-specific non-decreasing latency functions, Nash equilibria
might not exist for games with three players [75]. Unweighted symmetric singleton
congestion games with player-specific linear delay functions without a constant term
possess a potential function and therefore also Nash equilibria [39]. This result
does not extend to player-specific linear delay functions. Concatenations of two
unweighted symmetric singleton congestion games possess Nash equilibria [76] but
may not necessarily have a potential function [39]. The special class of unweighted
symmetric singleton congestion games with player-specific constants, where all player-
specific delay functions are composed of a common resource-specific delay function, but
each player may have a player-specific constant for the particular resource, possesses
a potential function [74].

Now, we consider general (singleton) congestion games with player-specific latency
functions. Computing a Nash equilibrium in a symmetric network congestion game
with player-specific constants is PLS-hard [74]. Restricted network congestion games
can also be regarded as network congestion games with player-specific constants zero
or infinity. For restricted network congestion games with three players, finding a Nash
equilibrium is PLS-complete [4]. On the other hand, computing Nash equilibria in

36

3.2 Recent Results and the Connection to Game Theory

singleton congestion games can be efficiently done if all delay function are the identity
function [38]. Notably, all delay functions are required to be the identity function;
for arbitrary linear delay functions, the complexity is unknown.

3.2.4 Symmetric Singleton Congestion Games

Here, we only consider symmetric singleton congestion games where for each resource,
all players share the same latency function. In case all latency functions are non-
decreasing, Nash equilibria are guaranteed to exist [36]. If all latency functions are
linear, then Nash equilibria can be efficiently computed using Graham’s Longest
Processing Time (in short LPT) algorithm [36, 44]. Notably, these games also
possess the is-exp property, even for the best-response Nash dynamics [35]. The
simplicity of the network seems in most cases to allow for efficient algorithms which
compute Nash equilibria, but the situation somewhat changes, once weighted players
may form arbitrary non-fixed coalitions. If players may form such coalitions of size at
most 8 and in each improving step of a coalition, the maximum cost of its members
decreases, then computing a Nash equilibrium is PLS-complete [27].

3.2.5 Related: Equilibrium Search and PPAD
The previous subsections outline that the computation of a Nash equilibrium in a
congestion game can be treated as a local search problem. However, there are finite
games for which only the existence of a mixed Nash equilibrium is guaranteed by
Nash’s theorem [80]. In a mixed Nash equilibrium, each player chooses a probability
distribution over his set of strategies such that a unilateral deviation to a different
probability distribution does not strictly improve his expected private cost. Note
that pure Nash equilibria that have been considered so far are mixed Nash equilibria
where each player commits to a single strategy. Bimatrix, the problem of computing
a mixed Nash equilibrium of a 2-player game with rational utilities for the players, is
a famous example of a finite game in which in general only the existence of mixed
Nash equilibria is guaranteed.

Already in 1964, Lemke and J. T. Howsen [70] developed an algorithm that computes
a mixed Nash equilibrium for 2-player games. Their algorithm works similar to the
Simplex algorithm and is comparably successful in practical applications. However,
it is known that there are 2-player games, for which the Lemke-Howson algorithm—
even in the best case—takes an exponential number of steps before reaching a mixed
Nash equilibrium [93]. Motivated by proofs that show the existence of solutions via
the lemma that “every graph has an even number of odd degree nodes”, Papadimitriou
[86] introduced the complexity class PPAD (short for “Polynomial Parity Argument
in a Directed graph”). The problems in this class are defined via implicitly given,
exponentially large directed graphs consisting of directed paths, cycles, and single
nodes, where one artificial source is given. The problems ask for an endpoint of a
path, i. e. a source or a sink, distinct from the given source. Shapley [96] shows that
the possible steps of the Lemke-Howson algorithm induce a graph with the above

37

Chapter 3 Related Work

properties and therefore Bimatrix ∈ PPAD [106].
Significant progress in the classification of the complexity of computing mixed

Nash equilibria for games with a finite number of players was achieved by Daskalakis,
Goldberg, and Papadimitriou [25], who show that computing a mixed Nash equilibrium
for four-player games is PPAD-hard. Using their construction, Chen, Deng, and
Teng [21] show that Bimatrix is PPAD-complete. However, as for congestion games,
the approximation of mixed Nash equilibria of 2-player games appears no easier than
the computation of a mixed Nash equilibrium itself, since the existence of an FPTAS
would imply that PPAD is in P [21]. For an overview of further results related to
PPAD, we refer the reader to the survey by Yannakakis [110].

38

Chapter 4

Our Contribution

In this chapter, we summarize the main results, we present in this thesis. Here,
Section 4.1 pools our main results on the tractability of computing Nash equilibria in
restricted network congestion games, which we investigate in Chapter 5. Section 4.2
lists our results on the complexity of computing locally optimal solutions of the Max-
imum Constraint Assignment problem which we study in Chapter 6. Section 4.3
summarizes our results on the tractability of computing locally optimal solutions of
weighted standard set problems which we investigate in Chapter 7.

Our contribution consists in large parts of intractability results, which we prove
along a chain of PLS reductions. A graphical overview of the main reductions we
present is given in Figure 4.1. Here, a directed arrow between A and B denotes
a PLS reduction from A to B. The endpoints of the arrows either refer to PLS
problems or to the entire class PLS, as is the case for the upmost reduction, showing
the PLS-completeness of Circuit/Flip. Arrow labels either refer to the publication
where the corresponding reduction is given or to the corresponding theorem or lemma
where we present the proof of PLS-completeness. Braces on the left hand side of the
figure indicate the corresponding chapters, where the PLS reductions can be found.
For sake of readability, the endpoints of braces have been extended across the figure.

4.1 Computing Nash Equilibria in Two-Player Restricted
Network Congestion Games

In Chapter 5, we investigate the complexity of computing Nash equilibria in restricted
network congestion games involving two players only, as introduced in Subsection 2.2.2.
As our main result, we show the intractability of the corresponding PLS problem for
directed and undirected networks.

Theorem 5.1. (2)-RDNCG and (2)-RUNCG are tight PLS-complete for graphs
of degree at most three.

Our results are optimal in the sense that for one player, computing a Nash equilib-
rium reduces to finding a shortest path, which is polynomial-time computable. To
the best of our knowledge our result is the single PLS-intractability result for games
with two players only.

39

Chapter 4 Our Contribution

Circuit/Flip

PLS

(2, 3, 6)-MCA2-par(6, 2, 2)-MCA

MaxCut (h)-CNFSat

2-RUNCG2-RDNCG

W3DM-(6, 12) X3C-(6)SP-(2)SC-(2)SSp-(1)TS-(1) SB-(1) HS-(1)IP-(1) CC-(1)

(3, 2, 3)-MCA

(3, 2, 3)-MCA3-par(3, 2, 3)-MinCA

Ch
ap

te
r 3

Ch
ap

te
r 5

Ch
ap

te
r 6

Ch
ap

te
r 7

Th
m

5.1

Thm 5.1

Le
m

m
a

7.
11

Le
m

m
a

7.
17

Lem
m

a 7.6

Le
m

m
a

7.
19

Le
m

m
a

7.
13

Lem
m

a 7.15

Le
m

 7
.8

Le
m

 7
.4

Le
m

7.2

Lem 7.2

T
he

or
em

 6
.1

Co
ro

lla
ry

 6
.3

Theorem
 6.2

[95] [67]

[5
6]

Lem 6.1 Thm 6.1

Figure 4.1: Graphical overview of the main PLS reductions, we present in this thesis.

4.2 On the PLS-Complexity of Maximum Constraint
Assignment

In Chapter 6, we study the complexity of computing locally optimal solutions of the
Maximum Constraint Assignment problem. We first show that all intractability
results for (p, q, r)-MCAk-par extend to (p, q, r)-MinCAk-par for all p, q, r, k ∈ N.

Lemma 6.1. (p, q, r)-MCAk-par ≤pls (p, q, r)-MinCAk-par for all p, q, r, k ∈ N, using
a tight reduction.

We then focus on the hardness of (3, 2, ∗)-MCA3-par and (2, 3, ∗)-MCA2-par, as intro-
duced in Subsection 2.2.3 and optimize for minimum valence of the variables. As our
main result, we show the intractability of (3, 2, 3)-MCA3-par and (2, 3, 6)-MCA2-par,
using tight reductions.

Theorem 6.1. Circuit/Flip ≤pls (3, 2, 3)-MCA3-par using a tight reduction.

Theorem 6.2. Circuit/Flip ≤pls (2, 3, 6)-MCA2-par using tight reductions

The above intractability results are optimal in the sense that (2, 2, r)-MCA is
solvable in polynomial time for every r ∈ N. Additionally, we present a general
technique to simulate arbitrary (p, q, r)-VCA-instances with VCA-instances over
solely binary variables. We present a reduction in Subsection 6.5, where the sum of
the valences of the variables minus the number of variables in each constraint remains
constant. Our construction eventually proves the following theorem:

Theorem 6.3. For all p, q ∈ N and r ≥ 3, (p, q, r)-VCA ≤pls (p, q, 2)-VCA using a
tight reduction.

40

4.3 On the Complexity of Local Search for Weighted Standard Set Problems

As a direct consequence of Theorem 6.3, we obtain the tight PLS-completeness of
(6, 2, 2)-MCA.

Corollary 6.3. Circuit/Flip ≤pls (6, 2, 2)-MCA using a tight reduction.

For the proofs of Theorem 6.1 and Theorem 6.2, we use a technique introduced
by M. W. Krentel [67]. Krentel outlines that (4, 3, 3)-MCA is PLS-complete. His
construction is not complete and we do not think that it can be extended to obtain a
tight reduction. We sharpen essential parts of the reduction, reduce both parameters
p and q and also obtain tightness. We think that reducing the parameters p and q is
important. The tight PLS-completeness of (3, 2, 3)-MCA3-par and especially the fact
that each variable appears in at most two constraints will prove crucial in Chapter 7
in order to demarcate the tractability of SetPacking and SetCover; furthermore,
the tight PLS-completeness of (3, 2, 3)-MCA3-par will also play a vital role in order
to lower the bounds on the intractability of other local search versions of weighted
standard set problems.
Moreover, many problems can be modeled in a natural way as Satisfiability

problems. In the NP-world, this has been exploited in a large number of cases.
We think that also for PLS problems it will help to sharpen the boundary between
PLS-complete and solvable in polynomial time.

4.3 On the Complexity of Local Search for Weighted
Standard Set Problems

In Chapter 7, we investigate the tractability of computing locally optimal solutions for
the weighted standard set problems introduced in Subsection 2.2.4. We show that for
most of these problems, computing a locally optimal solution is PLS-complete for the
1-differ neighborhood. This means, that the respective problems are already intractable,
when one element describing the solution is allowed to be added, deleted, or exchanged
for another element which is not part of the solution. For SetPacking-(k) and
SetCover-(k), we delimit the tractability of computing locally optimal solutions for
the 2-differ neighborhood. As our main result, we prove the following two theorems:

Theorem 7.1. The problems SSp-(k), TS-(k), HS-(k), SB-(k), IP-(k), and CC-(k)
are tight PLS-complete for all k ≥ 1. The problems SP-(k) and SC-(k) are tight
PLS-complete for all k ≥ 2. The problems W3DM-(k, `) and X3C-(k) are tight
PLS-complete for all k ≥ 6 and ` ≥ 12.

Theorem 7.2. The problems SP-(1) and SC-(1) are polynomial-time solvable.

A graphical representation of our results in Chapter 7 is given in Figure 4.2. Here,
arrows represent problems. From bottom to top, they indicate problems which
are polynomial-time computable; from top to bottom, they indicate PLS-complete
problems. Additionally, a dashed line denotes the border between polynomial-time
computable and PLS-complete problems. Note that this dashed line is not extended

41

Chapter 4 Our Contribution

-CompletePLS

-Time ComputableP

Si
ze

 k
 o

f t
he

 N
ei

gh
bo

rh
oo

d

1

2

3

4

5

6

S
e
t
P
a
c
k
in

g
-(

k
)

S
e
t
P
a
c
k
in

g
-(

k
)

S
e
t
C

o
v
e
r
-(

k
)

S
e
t
C

o
v
e
r
-(

k
)

W
3
D

M
-(

k
,≥

12
)

7

...

C
o
m
pa

r
a
t
iv

e
C

o
n
t
a
in

m
e
n
t
-(

k
)

S
e
t
S
p
l
it

t
in

g
-(

k
)

T
e
st

S
e
t
-(

k
)

S
e
t
B

a
si

s-
(k

)

H
it

t
in

g
S
e
t
-(

k
)

In
t
e
r
se

c
t
io

n
P
a
t
t
e
r
n
-(

k
)

X
3
C

-(
k
)

Figure 4.2: Graphical overview of our results on the complexity of local search for
weighted standard set problems, presented in Chapter 7.

to the first two problems, since our results do not yield an exact border in these cases.
Let us stress that all reductions we present are tight in the sense of Schäffer and
Yannakakis [95].

Differing from previous known results, which we outlined in Subsection 3.1.5, our
results for weighted standard set problems do not rely on a reformulation of local
search versions of graph problems. To the best of our knowledge, the results we
present are one of the first PLS results directly shown for these problems. Moreover,
they are one of the very few PLS results for weighted standard set problems, as
intensively studied in the literature.

4.4 A Note on the Presentation of Our Reductions

Most of the reductions we present in this thesis tend to be rather technically involved
constructions.

Presentation of Techniques and Core Ideas For sake of presentation, we first
present the underlying techniques used in Chapters 5–7 in separate subsections of the
respective chapters. The core idea for the proof of intractability of (2)-RDNCG and
(2)-RUNCG is given in Subsection 5.1.1. We describe the technique from Krentel
[67], which we extend and refine for the intractability proofs of (3, 2, 3)-MCA3-par
and (2, 3, 6)-MCA2-par, in Subsection 6.2. The intractability proofs of locally optimal
solutions for the weighted standard set problems we investigate, follow a technique
which we present in Subsection 7.1. In Chapter 7, we additionally present the core
ideas of each reduction in a nutshell first, before stepping into the corresponding
construction.

42

4.4 A Note on the Presentation of Our Reductions

The Structure of our Presentation Each reduction includes the presentation of
the reduction function Φ and the solution mapping Ψ. The latter one often involves
a subclass of feasible solutions for the problem under investigation which we define
as standard solutions or solutions which are consistent for a certain property. In
spirit with the widely accepted “quod erat demonstrandum” symbol (�), we choose to
indicate the end of each reduction by a circle (#), for sake of readability. For rather
involved proofs, we present a roadmap before stepping into the proof of correctness
and tightness of the respective reduction. Essentially, the proofs of correctness can be
split into two parts. In the first part, we show that every locally optimal solution is a
standard solution or consistent for the respective property. In the second, part, we
show that locally optimal solutions in the constructed instance correspond to locally
optimal solutions of the input instance; here, the first part allows to solely focus on
standard or consistent solutions. Generally and for sake of readability, we drop the
index of the problem in identifiers in our presentations, where the problem is clear
from the context.

43

Chapter 5

Computing Nash Equilibria in
Two-Player Restricted Network
Congestion Games

In this chapter, we show that computing a Nash equilibrium in a restricted network
congestion game is already PLS-complete for two players. The result holds for
directed networks and for undirected networks. Our reduction from MaxCut only
requires two gadgets and is conceptionally simpler than the reduction presented
by Ackermann and Skopalik [4] which shows the intractability of computing Nash
equilibria in restricted network congestion games with three players. The results we
present are optimal, since for one player, computing a Nash equilibrium reduces to
finding a shortest path, which is polynomial-time computable. Let us remark that
the complexity of computing a Nash equilibrium in a standard network congestion
game with a fixed number of players remains unsettled.

This chapter is organized as follows: In Section 5.1, we show the PLS-completeness
of (2)-RUNCG and (2)-RDNCG. In Section 5.2, we discuss Questions 4 and 5 and
also present open problems.

5.1 The Complexity of (2)-RUNCG and (2)-RDNCG

In this section, we first present an outline of our reduction from MaxCut to (2)-
RDNCG and (2)-RUNCG in Subsection 5.1.1, before stepping into the construction
in Subsection 5.1.2 and the proofs of correctness and tightness in Subsection 5.1.3.
For our hardness result, we build on the tight PLS-completeness of MaxCut [95].
We initially show our hardness result for directed graphs of unbounded degree and
modify our construction afterwards.

The General Setting of the Reduction Let I = (GMC = (VMC, EMC),w) ∈ DMC
be an instance of MaxCut. Without loss of generality, we assume that VMC =
{1, . . . , n}. Denote

W? := 2
∑

e∈E
w(e)

45

Chapter 5 Computing Nash Equilibria in Two-Player Restricted Network Congestion Games

. . .

. . .

. . .

PT
1,1

PF
1,1 PF

n,1

PT
n,1

PT
n,n

PF
n,nPF

2,nPF
1,n

PT
1,n PT

2,n

PT
2,1

PF
2,1

QT
2QT

1 QT
n

QF
nQF

2QF
1

(GQ)

(GP)

...

...

...

...

...

...aP bP

bQ
aQ

Figure 5.1: General layout of the resulting network G = (V,E).

and let W >W?. Given I, we construct an instance

Φ(I) = (G = (V,E), {P,Q}, EP , EQ, (aP , bP), (aQ, bQ), (de)e∈E) ∈ D(2)-RDNCG.

Here, G = (V,E) is a directed or undirected graph whose edges have non-decreasing
delay functions (de)e∈E . The two players are denoted by P and Q and have source-
sink pairs (aP , bP) and (aQ, bQ). EP denotes the set of edges player P is allowed to
use and EQ denotes the set of edges player Q is allowed to use.

Notation We use the following notation in our reduction: For α ∈ {T, F}n, we
denote the i-th component of α by αi. If V = [n], then we denote a function
ρ : V → {T, F} also by a vector ρ ∈ {T, F}n. Since our reduction only involves two
players, we denote the delay function for each edge e ∈ E by de(1)/de(2).

5.1.1 The Network and the Reduction in a Nutshell

We construct a restricted network congestion game G = (V,E) which consists of a
subnetwork GP = (V,EP) for player P and a subnetwork GQ = (V,EQ) for player
Q. Edges which can be used by both players are called shared edges; edges which
can only be used by one player are called exclusive edges. Figure 5.1 depicts the
network G = (V,E). For sake of readability, we present the underlying network paths
in a compressed representation. A dashed line marked with some set of shared edges
represents a subpath. We use the two types of edges to construct two frameworks
to simulate the MaxCut-instance I in G. The first framework consists of exclusive
edges. It guarantees that by selecting strategies, each of the two players P and Q
chooses a path as indicated in Figure 5.1. For player Q, a path can be described by

46

5.1 The Complexity of (2)-RUNCG and (2)-RDNCG

α ∈ {T, F}n and for player P , a path can be described by (i, κ) for some i ∈ [n] and
κ ∈ {T, F}n. A second framework consisting of some type of shared edges heavily
punishes if α and κ differ by more than one bit, so that in a local optimum α and κ
differ by at most one bit.
Note that α and κ can also be viewed as a partition of VMC = [n]. Our approach

is rather similar to the construction used in the paper of Ackermann and Skopalik [4].
The main difference to the reduction by Ackermann and Skopalik [4], resulting in the
hardness already for two players, is that players P and Q cooperational simulate the
MaxCut-instance I. For each edge e = {u, v} ∈ EMC, two shared edges ce1 with
e1 = (u, v) and ce2 with e2 = (v, u) are introduced in E. Note that u and v define
the names of ce1 and ce2 but do not actually connect u and v in E. Our construction
is such that player P chooses an assignment for u in ce1 and for v in ce2 ; player Q
chooses an assignment for v in ce1 and for u in ce2 . If both assignments for a pair
of vertices are equal, i. e. they belong to the same partition, then both players have
a delay which is equal to the weight of the edge; if both assignments disagree, then
both players have no delay.

5.1.2 The Reduction

In this subsection, we present our reduction which implements the network depicted
in Figure 5.1 and described in the previous subsection.

Shared Edges Our construction crucially relies on first replacing every undirected
edge in the given input instance I ∈ DMC by two pairs of vertices; denote the resulting
set

E′ := {(u, v), (v, u) | {u, v} ∈ E}.

We introduce the following shared edges:

1. For every e ∈ E′ and i ∈ [n], we introduce two shared edges cTe,i and c
F
e,i, each

with delay function 0/w(e). We call these shared edges MaxCut-edges. Let C
denote the set of all MaxCut-edges.

2. For every u, j ∈ [n] with u 6= j, we introduce two shared edges dTu,j and d
F
u,j ,

each with delay function 0/W. We call these shared edges deviation tester. Let
D denote the set of all deviation testers.

Exclusive Edges, Subpaths, and Strategies As outlined in the previous subsection,
a dashed line marked with some set of shared edges

R = {r1, . . . , rk} ⊆ C ∪D

represents a subpath. The subpath is described in Figure 5.2, using additional
exclusive edges s1, s2, . . . , sk+1. Note that the vertices in Figure 5.1 are colored black
and the newly introduced vertices in Figure 5.2 are colored white. The white vertices

47

Chapter 5 Computing Nash Equilibria in Two-Player Restricted Network Congestion Games

R = {r1, . . . , rk}
u v

u v
s1 r1 s2 r2 s3 sk−1 rk sk+1

. . .

Transform Into Network Path

Figure 5.2: Constructing a network path between vertices u and v from its set repre-
sentation.

occurring on the subpath between black vertices u, v only occur on this subpath. As
indicated by Figure 5.1, the exclusive edges on a subpath defined by a set P κu,i with
κ ∈ {T, F} and u, i ∈ [n] can only be used by player P and the exclusive edges on
a subpath defined by a set Qαu with α ∈ {T, F} and u ∈ [n] can only be used by
player Q. We construct the sets P κu,i with κ ∈ {T, F} and u, i ∈ [n] such that they
are pairwise disjoint and their union is equal to C ∪D. Similar, we construct the sets
Qαu with α ∈ {T, F} and u ∈ [n] such that they are pairwise disjoint and their union
is equal to C ∪D. Let R = {r1, . . . , rk} ⊆ C ∪D define some subpath Π(R) between
black vertices u and v for, say, player P , as described above. The exclusive edges in
constructing Π(R) enforce that after entering Π(R) through u, player P can solely
traverse all shared edges in R and exit in v. Traversing less or more shared edges
than present on Π(R) would imply that player P traverses an edge which he is not
allowed to use. All edges leaving aP and all edges entering bP can only be used by
player P . So, the set of strategies for player P are then all paths connecting aP and
bP in EP . By construction, there is no connection between endpoints for subpaths
P ∗∗,i and P

∗
∗,j for all i, j ∈ [n] with i 6= j. A strategy sP for player P then consists

of selecting some path i ∈ [n] from the n available paths leaving aP and selecting
subpaths

P κ1
1,i , . . . , P

κn
n,i

with κj ∈ {T, F} for all j ∈ [n]; we denote this by sP = (i, κ). The set of strategies
for player Q are all paths connecting aQ and bQ. A strategy sQ for player Q consists
of selecting subpaths

Qα1
1 , . . . , Qαnn

with αi ∈ {T, F} for all i ∈ [n]; we denote this by sQ = α.
We now present the sets of shared edges which were used to represent subpaths. For

MaxCut-edges, our construction is such that for every pair of vertices (u, v) ∈ E′,
player P chooses an assignment for u and player Q chooses an assignment for v.
Denote E′1(u) := {(u, v) | v ∈ V, (u, v) ∈ E′}. For every κ ∈ {T, F} and u, j ∈ [n]

P κu,j :=

{
{cκe,j | e ∈ E′1(u)} if u = j

{dκu,j} ∪ {cκe,j | e ∈ E′1(u)} otherwise.

48

5.1 The Complexity of (2)-RUNCG and (2)-RDNCG

Note that subpath P κu,u does not contain any deviation tester. Denote E′2(u) :=
{(v, u) | v ∈ V, (v, u) ∈ E′}. For every κ ∈ {T, F} and u ∈ [n]

Qκu := {dκ̄u,j | j ∈ [n], j 6= u} ∪ {cκe,j | e ∈ E′2(u), j ∈ [n]}.
Note that for j 6= u, subpaths P κu,j and Q

κ̄
u intersect in deviation tester dκu,j , by design.

Definition 5.1. Let s = (sP , sQ) ∈ F(Φ(I)) be a state of the game with sP = (i, κ)
and sQ = α, where i ∈ [n] and α, κ ∈ {T, F}n. Then, s is a standard solution if
κj = αj for all j ∈ [n] with j 6= i.

Solution Mapping If s ∈ F(Φ(I)) is a standard solution then Ψ(I, s) := sQ; if s is
not a standard solution then Ψ(I, s) returns the solution p computed by InitMC(I).
This terminates the description of the reduction. #

5.1.3 Proving the Correctness and Tightness of the Reduction

In this subsection, we show that locally optimal solutions in Φ(I) yield locally optimal
solutions in I under function Ψ and that the reduction presented above is tight.
Before stepping into the proof, we first present a roadmap. In the remainder of this
subsection, let κ, α ∈ {T, F}n.

Roadmap of the Proof In Lemma 5.1, we show a crucial relationship between the
private cost of a player in a standard solution s ∈ F(Φ(I)) and the cost of solution
Ψ(I, s) for MaxCut-instance I. Lemma 5.2 unveils that every locally optimal solution
is a standard solution. Given this structural insight, we prove in Theorem 5.1 that
every locally optimal solution s ∈ F(Φ(I)) induces a locally optimal solution Ψ(I, s)
for I and that our reduction is tight. Furthermore, we extend our result to hold for
directed and undirected networks of degree at most three.

Lemma 5.1. Let s = (sP , sQ) ∈ F(Φ(I)) be some state of the game with sP = (i, κ)
and sQ = α. Solution s is a standard solution if and only if δP (s) < W or δQ(s) < W.
If s is a standard solution, then δP (s) = δQ(s) = W? − (cMC(κ, I) + cMC(α, I)).

Proof. First, let s be not a standard solution. This implies that κu = ᾱu for some
u ∈ [n] with u 6= i. Hence, players P and Q share deviation tester dκuu,i with latency
0/W. This implies that δP (s) ≥W and δQ(s) ≥W.

Now, let s be a standard solution and τ ∈ {T, F} in the following. Then, player P
is using deviation testers dκuu,i for all u ∈ [n] with u 6= i and player Q is using deviation
testers dᾱuu,j for all u ∈ [n] and j ∈ [n] with j 6= u. Hence, every deviation tester dτu,j
for u, j ∈ [n] with u 6= j is used by at most one player. Furthermore, player P is using
MaxCut-edges cκue,i for all u ∈ [n] and e ∈ E′1(u); player Q is using MaxCut-edges
cαue,j for all u, j ∈ [n] and e ∈ E′2(u). Hence, for all j ∈ [n] with j 6= i and e ∈ E′,
MaxCut-edge cτe,j is used by at most one player. Now, consider MaxCut-edge cτe,i
for some e = (u, v) ∈ E′. MaxCut-edge cτe,i is used by player P if and only if κu = τ .
MaxCut-edge cτe,i is used by player Q if and only if αv = τ . Since s is a standard
solution, the cases κi = αi and κi 6= αi have to be considered:

49

Chapter 5 Computing Nash Equilibria in Two-Player Restricted Network Congestion Games

1. First, let κ = α := β. MaxCut-edge cτe,i is used by players P and Q if and
only if κu = αv = τ . Hence, we obtain

δP (s) = δQ(s) = 2
∑

e={u,v}∈E
βu=βv

w(e)

= W? − (cMC(κ, I) + cMC(α, I)).

2. Now, let κ 6= α. Since s is a standard solution, this implies that κi 6= αi and
κj = αj := βj for all j ∈ [n] with j 6= i. Now, consider edges e1 = (u, v) ∈ E′,
e2 = (v, u) ∈ E′ with u, v 6= i, and MaxCut-edges cτe1,i, c

τ
e2,i

. Then, both
MaxCut-edges are used by players P and Q if and only if βu = βv = τ . Now,
let u = i without loss of generality. MaxCut-edge cτe1,i is used by players P
and Q if and only if κu = βv = τ . MaxCut-edge cτe2,i is used by players P and
Q if and only if αu = βv = τ . Hence, we obtain

δP (s) = δQ(s) = 2
∑

e={u,v}∈E
u,v 6=i
βu=βv

w(e) +
∑
{i,v}∈E
κi=βv

w(e) +
∑
{i,v}∈E
αi=βv

w(e)

= W? − (cMC(κ, I) + cMC(α, I)).

�

Lemma 5.2. Every locally optimal solution s ∈ F(Φ(I)) is a standard solution.

Proof. Consider any state s = (sP , sQ) ∈ F(Φ(I)) with sP = (i, κ) and sQ = α where
κu = ᾱu for some u ∈ [n] with u 6= i. By construction, players P and Q share
deviation tester dκuu,i with latency 0/W. Then, player P can improve by switching
from strategy sP to strategy s′P = (i, α). Now, s′ = (s′P , sQ) is a standard solution
and by Lemma 5.1, the private cost of player P in s′ is strictly less that W. Hence,
player P strictly decreases his private cost. Thus, s is not locally optimal.

�

Theorem 5.1. (2)-RDNCG and (2)-RUNCG are tight PLS-complete for graphs
of degree at most three.

Proof. We first show the hardness result for directed graphs of unbounded degree and
modify our construction afterwards. Assume there exists a solution s = (sP , sQ) ∈
F(Φ(I)) with sP = (i, κ) and sQ = α, which is locally optimal for Φ(I), but Ψ(I, s)
is not locally optimal for I. By Lemma 5.2, s is a standard solution. This implies
that κk = αk for all k ∈ [n] with k 6= i. Since Ψ(I, s) = α is not locally optimal for I,
there exists some node v ∈ V , which can be flipped such that the objective function
strictly increases. Denote by α(v) the vector α, where the assignment of αv is flipped,
i. e. replaced by {T, F} \ αv. We distinguish two cases:

50

5.2 Conclusion and a Discussion of Questions 4 and 5

1. First, let κ = α or cMC(α(v), I) > cMC(α(i), I). Then, player P has an
incentive to switch to strategy s′P = (v, α(v)). Then, s′ = (s′P , sQ) is also a
standard solution and by Lemma 5.1, δP (s′) = W?− (cMC(α(v), I)+cMC(α, I)).
Hence, player P strictly decreases his private cost.

2. Now, let κ 6= α and cMC(α(v), I) ≤ cMC(α(i), I). Then, player Q has an
incentive to switch to strategy s′Q = α(i). Then, s′ = (sP , s

′
Q) is also a standard

solution and by Lemma 5.1, δQ(s′) = W? − (cMC(κ, I) + cMC(α(i), I)). Hence,
player Q strictly decreases his private cost.

In both cases, we obtain a contradiction to s being locally optimal for Φ(I).
Considering tightness, we define R as the set of all standard solutions. By

Lemma 5.2, all locally optimal solutions are contained in R. Now, let s = (sP , sQ) ∈ R
with sP = (i, κ) and sQ = α and let s′ ∈ F(Φ(I)) be some better neighboring solu-
tion. Lemma 5.1 implies that s′ is also a standard solution. We show that either
Ψ(I, s) = Ψ(I, s′) or Ψ(I, s′) is a better neighboring solution of Ψ(I, s). If player
P changes strategy in s′, then Ψ(I, s) = Ψ(I, s′). If player Q changes strategy in
s′, then Lemma 5.1 implies that player Q switches to strategy s′Q = α(i). Hence,
Ψ(I, s′) ∈ NMC(Ψ(I, s), I) and by Lemma 5.1, cMC(Ψ(I, s), I) < cMC(Ψ(I, s′), I).

Now, we show that we can adapt our construction to also work for directed graphs
of degree at most three. We replace all outgoing edges from aP by a binary tree
with n leaves labeled a1

P , . . . , a
n
P . For every leaf aiP with i ∈ [n], we introduce an

edge (aiP , ai), where ai denotes the entry point to subpaths P T1,i and P
F
1,i. A similar

construction can be applied to lower the degree of node bP to three. Furthermore, we
replace all nodes connecting subpaths P κu,i and P

κ
u,i+1 for all κ ∈ {T, F}, u ∈ [n] and

i ∈ [n− 1] by a directed edge whose tail node is the exit of subpaths P κu,i and whose
head node marks the entry for subpaths P κu,i+1. All other nodes in our construction
have degree at most three.
Finally, note that by the design of our graph, replacing all directed edges in our

construction by undirected edges does not change the set of strategies for each player.
Let us first have a closer look at player Q. Also in the undirected version, a simple
path from aQ to bQ is determined by α ∈ {T, F}n and follows the path marked in
Figure 5.1 by Qα1

1 , Qα2
2 , . . . , Qαnn . If in the undirected version, a simple path would

bend after having passed Qα1
1 , , . . . , Qαii for some i ∈ [n] and go against the direction

of the edges on the subpath marked by Qᾱii , then it would never reach bQ. In the
same way, a path from aP to bP in the undirected version is determined by i ∈ [n]
and κ ∈ {T, F}n and follows the directed path described in Figure 5.1. �

5.2 Conclusion and a Discussion of Questions 4 and 5

In this chapter, we studied the complexity of computing Nash equilibria for n-
player restricted network congestion games. Nash equilibria in these games coincide
with local optima of Rosenthal’s potential function [92], which is polynomial-time
computable. This allowed to formulate the computation of a Nash equilibrium in an

51

Chapter 5 Computing Nash Equilibria in Two-Player Restricted Network Congestion Games

n-player restricted network congestion as a PLS problem. The corresponding PLS
problem for directed (resp. undirected) networks is denoted by (n)-RDNCG (resp.
(n)-RUNCG).

Results Obtained For n ≥ 3 players, the intractability of (n)-RDNCG was shown
by Ackermann and Skopalik [4], using a PLS reduction from PositiveNotAll-
Equal-2-Flip (a reformulation of MaxCut as a Maximum Constraint Assign-
ment problem over binary variables; here, each constraint is a weighted clause which
models an XOR of two variables). In this chapter, we showed that already (2)-RDNCG
and (2)-RUNCG are tight PLS-complete for graphs of degree at most three and
hence possess the all-exp property. The latter implies that there exist instances and
initial states of the game, such that every sequence of selfish steps has exponential
length. For our constructions, we first presented the underlying idea in a nutshell in
Subsection 5.1.1. The reduction from MaxCut in Subsection 5.1.2 only required two
gadgets and was conceptionally simpler than the reduction presented by Ackermann
and Skopalik [4]. The results we presented are optimal in the sense that for one
player, computing a Nash equilibrium reduces to finding a shortest path, which is
polynomial-time computable.

Discussion of Questions 4 and 5 The intractability results for (2)-RDNCG and
(2)-RUNCG which we obtained in this chapter yield a surrounding PLS-completeness
answer to Question 5. Moreover, our results settle the complexity of computing
a Nash equilibrium in a given restricted network congestion game. Considering
Question 4, we can only provide an answer for the special case of restricted network
congestion games. For restricted network congestion games, limiting the number of
players to two does not significantly smoothen the complexity of computing a Nash
equilibrium. Note that for standard congestion games with a fixed number of players,
finding a Nash equilibrium is polynomial-time computable. In that case, each strategy
of every player is explicitly given and therefore the total strategy space is bounded
by a polynomial in the size of the input. For other models, our results do not yield
an indication on the tractability of computing Nash equilibria.

Open Problems We should point out that the complexity of computing a Nash
equilibrium in a standard network congestion game with a fixed number of players
remains unsettled. Note that differing from standard congestion games, standard
network congestion games possess a compact representation of the set of strategies of
each player. Hence, the total strategy space is not bounded by a polynomial in the
size of the input any longer. When using our construction as a starting point for the
above open problem, an obstacle to overcome is how to transform the exclusiveness
of edges for certain players to standard network congestion games. Note that our
construction in Subsection 5.1.2 heavily exploited the exclusiveness of edges for certain
players; in restricted network congestion games, this can be realized by definition.
With this exclusiveness, we designed strategies for the two players which corresponded

52

5.2 Conclusion and a Discussion of Questions 4 and 5

to, node-by-node, assignments of nodes to partitions and this eventually yielded a
solution of MaxCut.

53

Chapter 6

On the PLS-Complexity of Maximum
Constraint Assignment

In this chapter, we investigate the complexity of computing locally optimal solu-
tions for the fundamental PLS problem Maximum Constraint Assignment (in
short MCA). In a nutshell, the MCA problem is a local search version of weighted
Generalized Maximum Satisfiability on constraints (functions mapping assign-
ments to positive integers) over variables with higher valence. The parameters in
(p, q, r)-MCAk-par simultaneously limit the maximum length p of each constraint, the
maximum appearance q of each variable and its valence r; additionally, the set of
constraints is k-partite. We focus on hardness results and show PLS-completeness of
(3, 2, 3)-MCA3-par and (2, 3, 6)-MCA2-par, using tight reductions from Circuit/Flip.
For our results, we extend and refine a technique from Krentel [67]. The results we
present are optimal in the sense that (2, 2, r)-MCA is solvable in polynomial time for
every r ∈ N. We are also interested in the special case of binary variables. For this,
we investigate the (p, q, r)-VCA problem which differs from (p, q, r)-MCA in p now
denoting the maximum sum of the valences of the variables minus the number of
variables in each constraint. We present a general technique to reduce VCA-instances
with arbitrary valence to VCA-instances over solely binary variables. As a corollary,
we obtain that (6, 2, 2)-MCA is tight PLS-complete.

Roadmap of this Chapter The remainder of this chapter is organized as follows:
We first present an observation that all intractability results for (p, q, r)-MCAk-par
extend to (p, q, r)-MinCAk-par for all p, q, r, k ∈ N in Section 6.1. Section 6.2
then presents the general method which we apply to prove Theorems 6.1 and 6.2.
Section 6.3 proves the tight PLS-completeness of (3, 2, 3)-MCA3-par. Section 6.4
alters the reduction from Section 6.3 and shows the tight PLS-completeness of
(2, 3, 6)-MCA2-par. Section 6.5 presents our general technique to simulate arbitrary
(p, q, r)-VCA instances with with p, q ∈ N and r ≥ 3 with VCA-instances over solely
binary variables and proves Theorem 6.3 and Corollary 6.3.

55

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

6.1 On the Relation of Maximum Constraint Assignment
to Minimum Constraint Assignment

The remainder of this chapter solely focuses on the Maximum Constraint Assign-
ment problem. Let us remark that all intractability results we show in this chapter
also extend to the Minimum Constraint Assignment problem with the same
restrictions on the set of instances, as the following lemma shows.

Lemma 6.1. (p, q, r)-MCAk-par ≤pls (p, q, r)-MinCAk-par for all p, q, r, k ∈ N, using
a tight reduction.

Proof. The following reduction (Φ,Ψ) only modifies the function values of the
constraints in a given instance of (p, q, r)-MCAk-par to construct an instance of
(p, q, r)-MinCAk-par; the set of variables and the parameter list of each constraint
remains untouched. Hence, where possible, we neglect the parameters p, q, r, k ∈ N,
for sake of readability. Let I = (C,X) ∈ DMCA be an instance of Maximum
Constraint Assignment where each constraint has length at most p and denote

W > max
Ci∈C
{Ci(a(xi1), . . . , a(xipi)) | a(xi1), . . . , a(xipi) ∈ [r]pi},

with pi ≤ p. We construct an instance Φ(I) = (C′,X ′) ∈ DMinCA of Minimum Con-
straint Assignment, where X ′ := X and for each constraint Ci(xi1 , . . . , xipi) ∈ C
with pi ≤ p, we introduce a constraint

C ′i(xi1 , . . . , xipi) := W − Ci(xi1 , . . . , xipi)

in C′. Here, Ψ(I, a) := a for each solution a ∈ F(Φ(I)). This terminates the description
of the reduction. #

Now, assume there exists a solution a ∈ F(Φ(I)) which is locally optimal for Φ(I),
but Ψ(I, a) is not locally optimal for I. This implies that there exists a variable x ∈ X
in instance I ∈ DMCA, which can be set from value i ∈ [r] to some value j ∈ [r] such
that the objective function strictly increases by some ∆ > 0. By construction,

CostMinCA(a,Φ(I)) =
∑

C′i∈C′
C ′i(a(xi1), . . . , a(xipi))

=
∑

Ci∈C

(
W − Ci(a(xi1), . . . , a(xipi))

)
= |C| ·W −

∑
Ci∈C

Ci(a(xi1), . . . , a(xipi))

= |C| ·W −CostMCA(Ψ(I, a), I).

Therefore, variable x can also be set from value i ∈ [r] to j ∈ [r] in Φ(I) and the
objective function strictly decreases by ∆ > 0. When defining R := F(Φ(I)), it is
obvious to see that our reduction is tight. �

56

6.2 The General Method for the Intractability Proofs of (3, 2, 3)-MCA3-par and (2, 3, 6)-MCA2-par

Circuit S2

l3(g
1)

l2(g
1)

l1(g
1)

Circuit S1

Circuit S0

Z0
n

X0
n

X0
1

Z0
1

l1(g
0)

l2(g
0)

l3(g
0)

Gate g0 ∈ G0

Gate g1 ∈ G1

C
om

parator (+
C

ost Function Storage)

Loading Logic Steering Logic

X2
n

X2
1

X1
1

X1
n X3

n

X3
1

Z1
1

Z1
nY 1

1 Y 1
n

Y 0
nY 0

1

...

...

...

...

...
...

. . .

. . .

best

Figure 6.1: The general setting which is modeled with constraints.

6.2 The General Method for the Intractability Proofs of
(3, 2, 3)-MCA3-par and (2, 3, 6)-MCA2-par

In this section, we present the general method which we apply in Sections 6.3 and 6.4.
We first present the setting and the general idea of our reductions before stating the
necessary assumptions for Circuit/Flip. We close with the concept of propagation
trees.

6.2.1 The Setting

We reduce from problem Circuit/Flip which is known to be tight PLS-complete [56].
Given an instance I ∈ DCircuit/Flip, we construct an instance of (p, q, r)-MCAk-par.
In more detail, given a circuit S, we construct a set of constraints of length at
most p from a set of variables, where each variable takes at most r values and
appears in at most q constraints; additionally, the set of constraints is k-partite. Our
construction extends and refines a method introduced by Krentel [67] who outlines
that (4, 3, 3)-MCA is PLS-complete. The general layout, which we model with
constraints in the reductions is now as follows.

6.2.2 The Idea in a Nutshell

We depicted the general setting of our reductions in Figure 6.1. It follows the technique
introduced by Krentel [67]. The reduction involves two copies S0, S1 of the given
circuit S, a circuit S2, a comparator, a loading logic, and a steering logic. For all

57

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

κ ∈ {0, 1}, circuit Sκ has input links Xκ
1 , . . . X

κ
n and computes the output bits in

links Zκ1 , . . . , Zκn . Additional output links Y κ
1 , . . . , Y

κ
n compute the best neighboring

solution if one exists or output the input vector otherwise. While all computations in
the given circuit S are binary, we will use values 0, 1, d for variables `, which represent
links. Binary values for ` model the computation of circuit S. The additional value d
(for “don’t care”) allows to reset the computation of circuits S0 and S1. In detail, for
the reduction this means that if all variables which represent output links of a gate g
are set to d, then variables which represent input links for g can be modified without
changing the correctness of the constraint modeling g. The output bits from output
links Z0

1 , . . . , Z
0
n and Z1

1 , . . . , Z
1
n are compared using a comparator that also stores

the current value of the cost function. The involved constraints represent a large part
of our contribution. The loading logic takes as input the result of the comparator and
additionally the better neighbors Y 0

1 , . . . , Y
0
n and Y 1

1 , . . . , Y
1
n . It controls loading the

neighbor from the circuit whichever of the first two circuits yields the bigger output
into whichever of the first two circuits yields the smaller output. Circuit S2 has
2n input links labeled X2

1 , . . . , X
2
n, X

3
1 , . . . , X

3
n and operates on the identical input

bits as circuits S0 and S1 in a local optimum. In the single output link best, S2

returns the index of the input vector with the larger binary output or e if both input
vectors yield the identical binary output. The results of best and the comparator
feed the steering logic. The steering logic controls the reset procedure for the first
two circuits and sets incentives for the special comparator. More details, outlining
the control logic, which are essential for the correctness of our reductions and the
improved results, are given in the respective sections.

6.2.3 Assumptions and Notation for Circuit/Flip

For an instance I ∈ DC/F with circuit S, we make the following assumptions: Without
loss of generality, cC/F(x, I) 6= cC/F(x′, I) for solutions x, x′ ∈ FC/F(I) with x 6= x′.
Otherwise, we may redefine the cost of each solution as

c′C/F(x, I) := M · cC/F(x, I) + num(x).

Here,M is a sufficiently large integer and num(x) denotes the numerical interpretation
of solution x. Circuit S consists of gates with at most three links. For technical
reasons, every gate with three links is solely adjacent to gates with two links; every
input link Xi and every output link Zi for all i ∈ [n] is incident to a gate with one
input link and one output link. Furthermore, for every input link Xi with i ∈ [n] and
every output link Zj with j ∈ [n], there exists a path in circuit S from Xi to Zj . For
output links Z1 and Zn, we assume that Z(x)1 = Z(x)n = 0 for all x ∈ FC/F(I). We
assume that for given input bits x = (x1, . . . , xn), circuit S additionally computes the
best solution x′ ∈ NCircuit/Flip(x, I), if such a better solution x′ exists or sets x′ = x
otherwise. Note that x′ is polynomial-time computable and thus can be implemented
in circuit S with at most a polynomial number of gates [69]. For representing x′,
additional output links Y1, . . . , Yn are used, i. e. x′i = R(Yi, x) for all i ∈ [n].

58

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

Denote by Correctg : {0, 1}i → {T, F}, with i ∈ {2, 3} depending on gate g,
the predicate describing the correct computation of the gate. We call a gate with
i ∈ {1, 2} input links and j ∈ {1, 2} output links an (i, j)-gate. We denote the gate
with input link Xκ

i for all κ ∈ {0, 1} and i ∈ [n] by gxκi . For each (1, 1)-gate g ∈ G,
we denote the input link by l1(g) and the output link by l2(g). For each (2, 1)-gate
g ∈ G, we denote the input links by l1(g) and l2(g) and the output link by l3(g). For
each (1, 2)-gate g ∈ G, we denote the input link by l1(g) and the output links by l2(g)
and l3(g).

Let I be an instance of DC/F which contains circuit S with n output links. Denote
by S0 and S1 copies of circuit S and let λ ∈ {0, 1}. Given a bit string a ∈ {0, 1}∗,
where a(xλ) denotes the assignment of input bits for Sλ, define

pos(a) :=

{
mini∈[n]{Z(a(xλ̄))i > Z(a(xλ))i} if cC/F(a(xλ̄), I) > cC/F(a(xλ), I)

n+ 1 otherwise.

We drop the assignment where it is clear from the context.

6.2.4 The Concept of Propagation Trees

In our reductions, we need to spread the value of some variable a to some auxiliary
variables. In each locally optimal solution, we require that if a has value α then all
auxiliary variables also have value α. In both reductions, we use a binary tree with
root a, consisting of auxiliary variables as nodes and predicates of length two as edges.
Here, predicates propagate the value of the parent node u to the children v1, v2. The
actual implementation in the two reductions now differs in the use of the predicates.
In our reduction for (2, 3, ∗)-MCA2-par, we include these predicates as constraints
to spread the value of a; by construction, every such constraint has length two and
every variable appears at most three times. In our reduction for (3, 2, ∗)-MCA3-par,
we introduce a constraint consisting of the predicates for {u, v1} and {u, v2}. By
construction, every such constraint has length three and every variable appears twice.
Generally, weights exponentially decrease on each level from the root node to the
leaves. We denote the root of some propagation tree T by root(T) and its set of
leaves by leaves(T).

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

In this section, we show that (3, 2, 3)-MCA3-par is tight PLS-complete. The variables,
predicates, and constraints are defined with their extensibility in mind. We present
the reduction function Φ and the solution mapping Ψ. Given an instance I ∈
DCircuit/Flip, we construct an instance

Φ(I) = (F ,X) ∈ D(3,2,3)-MCA3-par

with a set of constraints F and a set of at most ternary variables X . Every constraint
Ci ∈ F has length at most 3 and every variable x ∈ X appears in at most 2 constraints.

59

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

Identifier Meaning
Si copy i of input circuit S
Gi set of gates in circuit Si

Giin set of gates incident to some input link in circuit Si

Li set of links in circuit Si

X iL set of variables corresponding to links in Li
Q̃ Q0 ∪Q1, for all Q ∈ {G,L,XL}

Table 6.1: The labeling and meaning of identifiers we use. Here, i ∈ {0, 1, 2}.

6.3.1 The Set of Constraints

In our reduction, we use the notation for sets as listed in Table 6.1. We define
constraints which are composed of sets of predicates. In the following, whenever
we use κ in the index of a predicate this is to denote that there are actually two
predicates in F , one for κ = 0 and one for κ = 1. Constraints consisting of more than
one weighted predicate are listed in Table 6.2. All other constraints are weighted
predicates. The set of constraints is then

F := G̃ ∪ G2 ∪ {Di, Pi,Bκloadi | i ∈ [n]}∪
{Qi | i ∈ [n− 1]} ∪ {Bpropagate,BsetIncentives} ∪ T,

where T denotes the set of predicates for all propagation trees Tj with j ∈ [3] (see
next paragraph for details). We make the set of constraints hierarchical by defining
the weights of the predicates in powers of 2. For joining expressions within a predicate,
we write “|” to denote the boolean OR operator. We assign numbers (6.1), . . . , (6.23)
to the predicates and predicates with a higher number have smaller weight. Within
every label that contains more than one predicate, weights increase or decrease.

6.3.2 The Set of Variables

We will use the same letters for links and variables. With slight abuse of notation, we
denote the variables and gates for all special links Xκ

i , X
κ+2
i , Y κ

i , and Z
κ
i with i ∈ [n]

and κ ∈ {0, 1} in small letters. Recall that by assumption on input circuit S, each
gate g ∈ G̃in is a (1, 1)-gate. We introduce the link variables listed in the upper section
of Table 6.3. We additionally introduce link variables with special names yκi and zκi
in X κL and xκ+2

i in X 2
L for all i ∈ [n]. We call a variable associated to an input link

of a gate g ∈ G input variable of g, correspondingly for output links. We introduce
the variables for comparison and controlling listed in the middle and lower section
of Table 6.3; for sake of readability, we omit identical comments in succeeding rows.
Here, propagation tree T1 spreads the value of a to all a0

i , a
1
i for i ∈ [n]; propagation

tree T2 spreads the value of b to b′ and all bg for g ∈ G̃ a (1, 1)-gate; propagation tree
T3 spreads the value of c to all variables ci for i ∈ [0 : n− 1]. Eventually, the set of

60

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

C
on

st
ra
in
t,

In
de

x
Se

t
of

w
ei
gh

te
d
pr
ed
ic
at
es

Id
en
ti
fie
rs

D
i,

i
∈

[n
]

A
co

rr
(D

i
),

A
ou

t(
D
i
)

(6
.2
),
(6
.6
)

P
1

A
3 ca

rr
y(
P

1
),

A
1 ca

re
(P
i
),

C
in

ce
nt

iv
e(
P

1
)

(6
.7
),
(6
.1
0)
,(

6.
21

)
P
i,

i
∈

[2
:
n
−

2
]

A
1 ca

rr
y(
P
i
),

A
2 ca

rr
y(
P
i
),

A
3 ca

rr
y(
P
i
),

(6
.4
),
(6
.5
),

(6
.7
),

(6
.8
),
(6
.1
0)
,(
6.
22

)
A

0 ca
re

(P
i
),

A
1 ca

re
(P
i
),

C
in

ce
nt

iv
e(
P
i
)

P
n
−

1
A

1 ca
rr

y(
P
n
−

1
),

A
2 ca

rr
y(
P
n
−

1
),

A
3 ca

rr
y(
P
n
−

1
),

(6
.4
),
(6
.5
),

(6
.7
),

(6
.2
2)

C
in

ce
nt

iv
e(
P
n
−

1
)

P
n

A
1 ca

rr
y(
P
n

),
A

2 ca
rr

y(
P
n

),
A

3 ca
rr

y(
P
n

)
(6
.4
),
(6
.5
),

(6
.7
)

Q
i,

i
∈

[2
:
n
−

1
]

A
0 ca

rr
y(
Q
i
),

A
ca

re
(Q

i
),

C
κ in

ce
nt

iv
e(
Q
i
)

(6
.3
),
(6
.9
),

(6
.1
9)
,(

6.
20

)
Q
n

A
0 ca

rr
y(
Q
n

),
C

0 in
ce

nt
iv

e(
Q
n

)
(6
.3
),
(6
.2
0)

g
,

g
∈
G̃ i

n
A

co
rr

(g
),

B
co

py
(g

)
(6
.1
),
(6
.1
3)

g
,

g
∈
G̃
\G̃

in
,a

(1
,1

)-
ga

te
A

co
rr

(g
),

C
κ

+
1

va
lu

e(
g
)

(6
.1
),
(6
.2
3)

g
,

g
∈
G̃,

a
(1
,2

)-
ga

te
A
κ co

rr
(g

)
(6
.1
),
(6
.1
)

T
ab

le
6.
2:

C
on

st
ra
in
ts

co
ns
is
ti
ng

of
m
or
e
th
an

on
e
w
ei
gh

te
d
pr
ed

ic
at
e
fo
r
κ
∈
{0
,1
}.

61

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

V
ariable

Index
D
om

ain
C
onstraint

C
om

m
ent

l
l∈
X̃
L
\{
x
κi ,y

κi ,z
κi |

i∈
[n

]}
{
0
,1
,d}

g
,g
′

V
ariables

for
links

in
S

0,S
1

x
κi

i∈
[n

]
{
0
,1}

g
,B

κ̄load
i

Specialvariables
for

links
X
κi

y
κi

i∈
[n

]
{
0
,1
,d}

g,B
κload

i
Specialvariables

for
links

Y
κi

z
κi

i∈
[n

]
{
0
,1
,d}

g,
D
i

Specialvariables
for

links
Z
κi

l
l∈
X

2L \{{best}∪
{
x
κ

+
2

i
|
i∈

[n
]}
{
0
,1}

g
,g
′

V
ariables

for
links

in
S

2

x
κ

+
2

i
i∈

[n
]

{
0
,1}

g,B
κ̄load

i
Specialvariables

for
links

X
κi

best
{
0
,1
,e}

g,B
propagate

Specialvariable
for

link
best

com
p
i

i∈
[n
−

1
]

{
0
,1
,e}

D
i ,P

i
T
ernary

com
parator

variables
com

p
?2
i

i∈
[n
−

2
]

{
0
,1
,e}

P
i ,Q

i+
1

com
p
?2
i+

1
i∈

[n
−

2
]

{
0
,1
,e}

Q
i+

1 ,P
i+

1

com
p
n

{
0
,1}

D
n
,P

n
B
inary

com
parator

variables
com

p
?2
n−

2
{
0
,1}

P
n−

1 ,Q
n−

1

com
p
?2
n−

1
{
0
,1}

Q
n
,P

n

com
p
?2
n

{
0
,1}

P
n
,N

1(com
p
?2
n
)

a
{
0
,1}

N
1(a

),B
propagate

C
ontrolvariables

a
′

{
0
,1}

N
1(a
′),B

setIncentives
a
κi

i∈
[n

]
{
0
,1}

N
1(a

κi),B
κ̄load

i

b
{
0
,1}

B
propagate ,N

2(b)
b ′

{
0
,1}

N
2(b ′),B

setIncentives
b
g

g
∈
G̃
,a

(1,1
)-gate

{
0
,1}

N
2(b

g),g
c

{
0
,1
,e}

N
3(c),P

1

c
i

i∈
[0

:
n
−

1
]

{
0
,1
,e}

N
3(c

i),Q
i

T
able

6.3:T
he

set
ofvariables,their

respective
dom

ains
and

constraints
for

κ
∈
{0,1}.

H
ere,constraints

g
and

g
′refer

to
gates

w
ith

the
respective

input
or

output
variable;

N
i(x

)
denotes

the
constraint

containing
variable

x
∈
X

in
propagation

tree
T
i
w
ith

i∈
[3

].

62

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

variables is

X := X̃L ∪ X 2
L ∪ {compi | i ∈ [n]} ∪ {comp?i | i ∈ [2 : 2n]}∪

{a0
i , a

1
i , ci−1 | i ∈ [n]} ∪ {bg | g ∈ G̃, a (1, 1)-gate}∪

{a, a′, b, b′, c, best} ∪ VT1 ∪ VT2 ∪ VT3 ,

where VTi with i ∈ [3] denotes the set of variables in propagation tree Ti.

Our Notation for Values of Variables

Depending on the context, we use three different notations to denote the value of a
variable x ∈ X : If the solution a ∈ F(Φ(I)) is relevant, then we denote the assignment
of variable x by a(x). For sake of readability, we drop the solution, where it is clear
from the context and then use the following notation: For all link and control variables
`, including variable best, but excluding special link variables for input and output
links, we denote the assignment by v(`). For all other variables, we use the name and
the value of a variable interchangeable.

6.3.3 The Constraint-Graph of Our Reduction

Since every variable appears in at most two constraints, we can interpret an instance
of (3, 2, 3)-MCA3-par as a graph, where constraints are nodes and variables are edges.
Figure 6.2 shows the resulting graph of our reduction. Boxes represent constraints
containing the predicates sorted by weight in decreasing order. For sake of readability,
we additionally included the names of the variables spanning edges in the graph.
Furthermore, we used thinner lines for edges spanned by auxiliary variables from
propagation trees.

6.3.4 A More Detailed Overview of the Reduction

Figure 6.2 also depicts a more detailed overview of the reduction where boxes are
constraints and arcs are variables. The variables control different tasks, according to
the general setting outlined in Section 6.2.

The computation on three copies of input circuit S is simulated. We use variables
in X̃L to simulate circuits S0 and S1. Here, binary values 0 and 1 simulate the
computation of the corresponding circuit and the auxiliary value d allows to reset the
computation. Our construction is such that if in a locally optimal solution v(`) = d
for some link variable ` ∈ X̃L \ {xκ1 , . . . , xκn}, then v(`s) = d holds also for all link
variables `s which are successors of ` in the topological order of S. We model circuit
S2 with binary variables from X 2

L. In a locally optimal solution, circuit S2 operates
on the same input bits as circuits S0 and S1. If all predicates for gates in circuit S2

are correct, then the computation—and in particular the value of variable best—is
correct, with respect to the input. This differs from circuits S0 and S1, where all
predicates for gates may be correct, but all output variables are d and are thus of little
help in determining the circuit with the larger output. Recall that by assumption,

63

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

Gate g0
k ∈ G0

Acorr(g0
i)

C0
value(g0

i)

C1
value(g0

i)

Acorr(g0
j)

C0
value(g0

j)

C1
value(g0

j)

Acorr(g0
l)

C0
value(g0

l)

C1
value(g0

l)

Acorr(g0
k)

l1(g
0
k)

l2(g
0
k)

l3(g
0
k)

Circuit S0

Gate g1
k ∈ G1

Acorr(g1
i)

C0
value(g1

i)

C1
value(g1

i)

Acorr(g1
j)

C0
value(g1

j)

C1
value(g1

j)

Acorr(g1
l)

C0
value(g1

l)

C1
value(g1

l)

Acorr(g1
k)

l1(g
1
k)

l2(g
1
k)

l3(g
1
k)

Circuit S1

Aout(D1)

Acorr(D1)

Aout(D2)

Acorr(D2)

Aout(Dn)

Acorr(Dn)

A3
carry(P1)

A1
care(P1)

Cincentive(P1)

A1
carry(P2)

A2
carry(P2)

A3
carry(P2)

A0
care(P2)

A1
care(P2)

Cincentive(P2)

A1
carry(Pn)

A2
carry(Pn)

A3
carry(Pn)

A0
carry(Qn)

A0
carry(Q3)

Acare(Q3)

C0
incentive(Q3)

C1
incentive(Q3)

A0
carry(Q2)

Acare(Q2)

C0
incentive(Q2)

C1
incentive(Q2)

Bcorr(g)

l1(g)

l2(g)

l3(g)

Circuit S2

Gate g ∈ G2

a0
1

a1
n

B0
load1

B0
loadn

B1
loadn

B1
load1

Acorr(g
x0
1
)

Bcopy(g
x0
1
)

Acorr(gx0
n

)

Bcopy(gx0
n

)

Acorr(g
x1
1
)

Bcopy(g
x1
1
)

Bpropagate BsetIncentives

Acorr(gx1
n

)

Bcopy(gx1
n

)

best

b

b�

c

a�

a��

c0

cn−1

comp1

comp�
2

comp�
3

comp�
4

comp�
5

comp�
2n−2

comp�
2n−1

comp�
2n

compn

comp2

an
0

a1
1 T1

T2

T3

c1

c2

. . .

. . .

. . .bg1
i

bg1
j
bg1

l
bg0

l
bg0

i
bg0

j

x0
1

x0
n

x1
1

x1
n

y1
ny1

1

y0
1 y0

n
. . .

. . .

...

...

z0
1

z0
2

z0
n

z1
1

z1
2

z1
n

...

x2
1

x2
n

x3
n

x3
1

...

...

...

...

...

Figure 6.2: The constraint-graph of our reduction. Boxes are constraints and arcs are
variables.

64

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

circuit S outputs the best neighbor in case one exists or the input bits otherwise.
In our construction, the new input bits for circuit Sκ with κ ∈ {0, 1} are either the
input bits of circuit Sκ̄ if no better neighbor exists for input bits of circuit Sκ̄ or the
best neighbor for input bits of circuit Sκ̄.
The core of our reduction are predicates (6.2)–(6.7) which model the comparator.

Compared to Krentel [67], we change these predicates and this is a key modification
in order to lower the maximum length of any constraint. Additionally, this leads to a
more focused control structure and improves the readability. Predicates (6.2)–(6.7)
control the setting of the weighted output, when an improved solution is found. For
these constraints, variables, compi, comp?2i, and comp?2i+1 for i ∈ [n] are used. In a
locally optimal solution, the values of all variables modeling the comparator point
to the index of the circuit with the larger output. Variables in VT1 for propagation
tree T1 forward the result of the comparator to the loading logic for which we use
variables a.... The steering logic consists of propagation trees T2 and T3 and its
values are largely controlled by output link best of circuit S2. Variables b... in VT2

for propagation tree T2 support loading of a better neighbor. Variables c... in VT3

for propagation tree T3 set the small incentives for the comparator in dependence of
its current value and the value of best. We define the weights of the predicates in
the following decreasing order: predicates controlling the computation of circuits S0

and S1 are the heaviest, followed by predicates modeling the comparator. Predicates
which model the loading logic outweigh the corresponding predicates for circuit S2,
which are again larger than the corresponding predicates for the steering logic.

In order to show tightness of our construction, we introduce crucial additional
predicates (6.8)–(6.10). These predicates trim the possibilities for changes to variables
modeling the comparator in each improving step and are carefully designed not to
interfere with the correctness of our construction. Let us stress that for the proof of
PLS-completeness, predicates (6.8)–(6.10) are not necessary.

6.3.5 The Set of Predicates

In this subsection, we present a complete description of the set of constraints. Recall
that whenever we use κ in the index of a predicate this is to denote that there
are actually two predicates in F , one for κ = 0 and one for κ = 1. We introduce
predicates in the following three levels:

Level I: Computing and Comparing the Output

The heaviest predicates model the computation of gates. All (2, 1)-gates g ∈ G̃ are
described by predicates of length three

Acorr(g)(l1(g), l2(g), l3(g)) =

[(l1(g) = d ∨ l2(g) = d)⇒ l3(g) = d] and
[l1(g), l2(g), l3(g) ∈ {0, 1} ⇒ Correctg(l1(g), l2(g), l3(g))].

(6.1)

65

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

Note that Acorr(g) is satisfied, if l3(g) = d. All (1, 2)-gates g ∈ G̃ are described by two
predicates

A0
corr(g)(l1(g), l2(g)) = [l2(g) = d |

l1(g), l2(g) ∈ {0, 1} ∧Correctg(l1(g), l2(g))].
(6.1)

A1
corr(g)(l1(g), l3(g)) = [l3(g) = d |

l1(g), l3(g) ∈ {0, 1} ∧Correctg(l1(g), l3(g))].
(6.1)

All (1, 1)-gates g ∈ G̃ are described by predicate Acorr(g)(l1(g), l2(g)) which is defined
as predicate A0

corr(g)(l1(g), l2(g)) in (6.1). The weights of the predicates decrease in
the topological order of the gates. For each satisfied predicate, values 0 and 1 mean
that with respect to gate g, the output variable is verified to be correct and d (for
“don’t care”) means that the output variable is unverified. The core of our reduction
are the following predicates (6.2)–(6.7). For all i ∈ [n], we introduce predicates for
the comparison in

Acorr(Di)(compi, z
0
i , z

1
i) =

[compi = e ∧ z0
i = z1

i ∈ {0, 1} ∧ i < n |
compi = 0 ∧ z0

i ∈ {0, 1} |
compi = 1 ∧ z1

i ∈ {0, 1}].

(6.2)

Predicates (6.3)–(6.7) for the comparator are in interleaving order . . . , A0
carry(Qi)

,
A1

carry(Pi)
, A2

carry(Pi)
Aout(Di), A

3
carry(Pi)

, A0
carry(Qi+1), A

1
carry(Pi+1), A

2
carry(Pi+1), Aout(Di+1),

A3
carry(Pi+1), . . . for all i ∈ [n− 1] and weights decrease in this order; for i = 1, predi-

cates (6.3)–(6.5) are not defined. Recall that variables compn, comp?2n and comp?2n−1

are defined as binary variables. For all i ∈ [2 : n], we introduce predicates which
propagate the values from comp?2i−2 to comp?2i−1 in

A0
carry(Qi)

(comp?2i−2, comp?2i−1) = [comp?2i−2 = e ∧ i < n |
comp?2i−2 = comp?2i−1 ∈ {0, 1}].

(6.3)

For all i ∈ [2 : n], we introduce predicates which propagate the values from comp?2i−1

to comp?2i in predicate

A1
carry(Pi)

(comp?2i−1, comp?2i) = [comp?2i−1 = e ∧ i < n |
comp?2i−1 = comp?2i ∈ {0, 1}].

(6.4)

For all i ∈ [2 : n], we use a special predicate to propagate the value of comp?2i−1 to
compi in

A2
carry(Pi)

(comp?2i−1, compi) = [comp?2i−1 = e ∧ i < n |
compi = e ∧ i < n |
comp?2i−1 = compi ∈ {0, 1}].

(6.5)

66

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

For all i ∈ [n], we define predicates rewarding output

Aout(Di)(compi, z
0
i , z

1
i) =

[compi = e ∧ z0
i = z1

i = 1 ∧ i < n |
compi = 0 ∧ z0

i = 1 |
compi = 1 ∧ z1

i = 1].

(6.6)

For all i ∈ [n], we introduce predicates propagating the ternary values from compi to
comp?2i in

A3
carry(Pi)

(compi, comp?2i) = [compi = e ∧ i < n |
compi = comp?2i ∈ {0, 1}].

(6.7)

For every i ∈ [2 : n − 2], j ∈ [2 : n − 1], and k ∈ [n − 2], we introduce additional
predicates in

A0
care(Pi)

(comp?2i−1, comp?2i) = [comp?2i−1 = e ∨ comp?2i ∈ {0, 1}] (6.8)

Acare(Qj)(comp?2j−2, comp?2j−1) = [comp?2j−2 = e ∨ comp?2j−1 ∈ {0, 1}]. (6.9)

A1
care(Pk)(compk, comp?2k) = [compk = e ∨ comp?2k ∈ {0, 1}] (6.10)

Recall that variables compn and comp?j for all j ∈ [2n− 2 : 2n] are defined as binary
variables. The value of comp?2n is propagated to all variables aκi with i ∈ [n] and a, a′,
using propagation tree T1 where

root(T1) = comp?2n;

leaves(T1) = {a, a′} ∪ {aκi | i ∈ [n], κ ∈ {0, 1}}. (6.11)

Level II: Loading a Better Neighbor and Pushing the Comparator

For all i ∈ [n], if aκ̄i = κ then we copy the values of yκi to xκ̄i in predicates

Bκloadi(x
κ̄
i , y

κ
i , a

κ̄
i) = [xκ̄i = yκi ∧ aκ̄i = κ]. (6.12)

The weights are decreasing in i. For all xκi with i ∈ [n], we copy the values of xκi to
xκ+2
i in predicates

Bcopy(gxκ
i

)(x
κ
i , x

κ+2
i) = [xκi = xκ+2

i]. (6.13)

For all (2, 1)-gates g ∈ G2, we introduce predicates

Bcorr(g)(l1(g), l2(g), l3(g)) = [Correctg(l1(g), l2(g), l3(g))]. (6.14)

We use a similar predicate for (1, 2)-gates g ∈ G2 with the modification that
Bcorr(g)(l1(g), l2(g)) splits into two predicates; predicate B0

corr(g)(l1(g), l3(g)) describes
the dependence of l2(g) on l1(g) and predicate B1

corr(g) describes the dependence of

67

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

l3(g) on l1(g). All (1, 1)-gates g ∈ G2 are described by predicate Bcorr(g)(l1(g), l2(g))

which is defined as predicate B0
corr(g)(l1(g), l2(g)). The weights of the predicates again

decrease in the topological order of the gates. Recall that in the single output link
best, S2 returns the index of the input vector which yields the larger binary output or
e if both input vectors yield the identical binary output. If best 6= e then its value is
propagated to variable b, otherwise the value of a is copied to variable b in predicate

Bpropagate(best, a, b) =

[best = e ∧ b = a |
b = best].

(6.15)

The value of b is then propagated to variable b′ and all bg with g ∈ G̃ a (1, 1)-gate,
using propagation tree T2, where

root(T2) = b;

leaves(T2) = {b′} ∪ {bg | g ∈ G̃, a (1, 1)-gate}.
(6.16)

We determine the value of variable c in predicate

BsetIncentives(b
′, a′, c) =

[a′ 6= b′ ∧ v(c) = e |
a′ = b′ ∧ v(c) = b′].

(6.17)

The value of c is then propagated to all variables ci with i ∈ [0 : n − 1], using
propagation tree T3, where

root(T3) = c;

leaves(T3) = {ci | i ∈ [0 : n− 1]}. (6.18)

Level III: Small Incentives

For all i ∈ [2 : n] and j ∈ [2 : n− 1], we introduce predicates which reward setting all
comp?2i−2, comp?2i−1 to ci−1 and all comp?2j−2, comp?2j−1 to cj−1 in

C0
incentive(Qi)

(ci−1, comp?2i−2) = [ci−1 = comp?2i−2] (6.19)

C1
incentive(Qj)

(cj−1, comp?2j−1) = [cj−1 = comp?2j−1]. (6.20)

The weights are increasing in i. We introduce a predicate which rewards setting
comp1 to c0 in

Cincentive(P1)(c0, comp1) = [c0 = comp1]. (6.21)

For all i ∈ [2 : n− 1], we introduce an incentive to set compi according to comp?2i−1

in

Cincentive(Pi)(comp?2i−1, compi) = [comp?2i−1 = compi]. (6.22)

68

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

For every (1, 1)-gate gκ ∈ G̃ \ G̃in, we introduce small incentives for its link variables
l1(gκ), l2(gκ) for all i = 1, 2 in

Civalue(gκ)(bgκ , li(g
κ)) =

[bgκ = κ̄ ∧ li(gκ) = d |
bgκ = κ ∧ li(gκ) ∈ {0, 1}].

(6.23)

The weights of the predicates increase in the topological order of the links. Recall
that by assumption on S, every gate with three links is solely adjacent to gates with
two links.

Solution Mapping

Recall that every solution in FC/F(I) assigns values to all input links X1, . . . , Xn of
circuit S; every solution in F(Φ(I)) assigns values to all variables in X . Now, let
a ∈ F(Φ(I)) and denote

a(xλ) := (a(xλ1), . . . , a(xλn))

for λ ∈ {0, 1}. Function Ψ(I, a) returns a(xλ) if cC/F(a(xλ), I) > cC/F(a(xλ̄), I) for
some λ ∈ {0, 1} and a(x0) otherwise. This terminates the description of the reduction.

#

6.3.6 Proving the Correctness and Tightness of the Reduction

In this subsection, we prove the correctness and tightness of our reduction via a
sequence of lemmas. In Lemmas 6.2–6.6 and Corollary 6.1, we prove properties of a
locally optimal solution a ∈ F(Φ(I)). Unless otherwise mentioned, let λ ∈ {0, 1}, in
the following.

Roadmap of the Proof In Lemma 6.2, we first focus on the set of predicates
which are trivially satisfied in a and derive properties for the involved variables in
Corollary 6.1. In Lemma 6.3, we show the connection between variables b, compi, and
comp?j for all i ∈ [n] and j ∈ [2 : 2n]. In Lemma 6.4, we show that for λ = v(b), all
link variables in circuit Sλ̄ are set to d; by Corollary 6.1, all link variables in circuit
Sλ are set to binary values. In Lemma 6.5, we prove that best = e. We close our
proof by explicitly stating the variable assignment in a in Definition 6.1 and show in
Lemma 6.6 that any deviating assignment cannot be locally optimal.

Lemma 6.2. All predicates in (6.1), (6.3), (6.4), (6.11), and (6.13)–(6.18) are sat-
isfied.

Proof. Note that in each of the above predicates, at least one variable appears for
the first time, with respect to the given order. In detail, l2(g), resp. l3(g) in (6.1)
for all g ∈ G̃ and comp?2i−1 in A0

carry(Qi)
in (6.3), and comp?2i in A1

carry(Pi)
in (6.4) for

69

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

all i ∈ [2 : n]. Furthermore, xκ+2
i in (6.13), l2(g), resp. l3(g) in (6.14), b in (6.15),

c in (6.17), for all i ∈ [n], κ ∈ {0, 1}, and g ∈ G2. Thus, the value of the variable
appearing for the first time can be set to satisfy the predicate and only predicates
of lower weight may become violated. In predicates (6.11), (6.16), and (6.18) for
propagation trees, the value of each child node can be set to the value of the parent
node and only predicates of lower weight are violated. From this, the claim follows
by induction. �

Corollary 6.1. The following properties hold:

1. For all i ∈ [n] and κ ∈ {0, 1}, xκi = xκ+2
i .

2. For all ` ∈ X κL and κ ∈ {0, 1}, v(`) ∈ {d,R(`, (xκ))}; for all ` ∈ X 2
L, v(`) =

R(`, (x0, x1)}.

3. If v(`) = d for some ` ∈ X̃L, then v(`s) = d for all `s ∈ X̃L which are successors
of ` in the topological order of G̃.

4. There exists some i ∈ [2 : 2n − 2] such that comp?j = e for all j ∈ [i − 1] and
comp?j = comp?2n for all j ∈ [i : 2n].

5. For all i ∈ [n], κ ∈ {0, 1}, and t ∈ VT1, v(t) = v(aκi) = v(a) = v(a′) = comp?2n;
for all (1, 1)-gates g ∈ G̃ and u ∈ VT2, v(u) = v(bg) = v(b′) = v(b); for all
i ∈ [0 : n− 1] and w ∈ VT3, v(w) = v(ci) = v(c).

6. If λ = v(b), then v(l) ∈ {0, 1} for all l ∈ X λL .

7. All predicates in (6.2) are satisfied.

8. Let λ = v(b). For all i ∈ [2 : n], if comp?2i−1 = λ then compi = comp?2i−1.

9. Predicate A3
carry(P1) in (6.7) is satisfied; for all i ∈ [2 : n− 1], if comp?2i−1 = e,

then predicate A3
carry(Pi)

in (6.7) is satisfied.

Proof. 1. Follows since all predicates Bcopy(gxκ
i

) in (6.13) for all i ∈ [n] and κ ∈
{0, 1} are satisfied by Lemma 6.2.

2. For all g̃ ∈ G̃, ǧ ∈ G2, and µ, κ ∈ {0, 1}, predicates Aµcorr(g̃), respectively Acorr(g̃)

in (6.1), Bcopyg̃κ
i
in (6.13) and Bµcorr(ǧ), respectively Bcorr(ǧ) in (6.14) are satisfied

because of Lemma 6.2. From this, the claim follows by induction.

3. For all g ∈ G̃ and µ ∈ {0, 1}, predicates Aµcorr(g), respectively Acorr(g) in (6.1) are
satisfied because of Lemma 6.2. This implies for every g ∈ G̃, that if l(g) = d
for an input variable l(g), then also ls(g) = d for all output variables ls(g) of g.
From this, the claim follows by induction.

70

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

4. Assume that such an index i does not exist. This implies that there exists some
j ∈ [2 : 2n− 1] such that comp?j ∈ {0, 1} and comp?j+1 6= comp?j . If j = 2r for
some r ∈ [n− 1] then predicate A0

carry(Qr+1) in (6.3) is not satisfied; if j = 2r+ 1

for some r ∈ [n− 1] then predicate A1
carry(Pr+1) in (6.4) is not satisfied. In both

cases, a contradiction to Lemma 6.2.

5. All predicates for trees Ti with i ∈ [3] in (6.11), (6.16), and (6.18) are satisfied
by Lemma 6.2. From this, the claim follows by induction.

6. Suppose that the property does not hold. Let g ∈ Gλ be the smallest gate with
respect to the topological sorting of Gλ which has an output variable ` ∈ X λL
with v(`) = d. Then v(`′) ∈ {0, 1} for all input variables `′ of g. Three cases
have to be considered:

a) If ` = zλi for some i ∈ [n], then setting zλi to its correct value in {0, 1} does
not violate the corresponding predicate Acorr(g) in (6.1), Acorr(Di) in (6.2),
and Aout(Di) in (6.6) and improves C2

value(g) in (6.23) and therefore improves
the solution

b) If l = yλi for some i ∈ [n], then setting yλi to its correct value in {0, 1} does
not violate the corresponding predicate Acorr(g) in (6.1), Bλloadi in (6.12)
and improves C2

value(g) in (6.23), thus improving the solution.

c) Otherwise, ` is an input variable of some gate g′. Note that if g is not
a (1, 1)-gate, then g′ is a (1, 1)-gate. By definition, v(`s) = d for all
output variables `s of gate g′. Setting ` to its correct value in {0, 1} does
not violate the corresponding predicate Aµcorr(g), respectively Acorr(g) and
Aµcorr(g′), respectively Acorr(g′) in (6.1) for µ ∈ {0, 1} and improves C2

value(g)

in (6.23) if ` is the output variable of a (1, 1)-gate or improves C1
value(g′)

in (6.23) otherwise, thus improving the solution.

7. By (6), zλi ∈ {0, 1} for all i ∈ [n], where λ = v(b). Furthermore, for all i ∈ [n],
variable compi occurs in predicate Acorr(Di) in (6.2) for the first time, with
respect to the given order. Hence, compi can be set to satisfy predicate Acorr(Di)
in (6.2) and only predicates of lower weight are violated.

8. By (6), zλj ∈ {0, 1} for all j ∈ [n], where λ = v(b). Assume there exists
some i ∈ [2 : n] such that comp?2i−1 = λ and compi 6= λ. By (4), comp?2i =
comp?2i−1 = λ. If compi = λ̄, then setting compi ← λ does not violate heavier
predicate Acorr(Di) in (6.2), improves predicate A2

carry(Pi)
in (6.5), and only

predicates of lower weight are violated. If compi = e, then setting compi ← λ
does not violate heavier predicates Acorr(Di) in (6.2), A2

carry(Pi)
in (6.5), Aout(Di)

in (6.6), A3
carry(Pi)

in (6.7), A1
care(Pi)

in (6.10) and improves predicate Cincentive(Pi)

in (6.22).

9. First, consider the case i = 1. If A3
carry(P1) in (6.7) is unsatisfied then this implies

that comp1 ∈ {0, 1} and comp?2 6= comp1. Setting comp?2 ← comp1 improves

71

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

predicate A3
carry(P1) in (6.7) and only violates predicates of smaller weight. Now,

assume that predicate A3
carry(Pi)

in (6.7) is unsatisfied for some i ∈ [2 : n− 1]
with comp?2i−1 = e. This implies that compi ∈ {0, 1}, comp?2i 6= compi, and
predicate A1

carry(Pi)
in (6.4) is satisfied. Setting comp?2i ← compi improves

A3
carry(Pi)

in (6.7), does not violate heavier predicate A1
carry(Pi)

in (6.4), and only
violates predicates of smaller weight.

�

Lemma 6.3. compi = comp?j = v(b) for all i ∈ [n], j ∈ [2 : 2n].

Proof. By Corollary 6.1 (1), xκi = xκ+2
i for all i ∈ [n] and κ ∈ {0, 1}. By Corol-

lary 6.1 (2), the value computed in variable best is correct with respect to the input.
Recall that by definition of S2, if best = λ ∈ {0, 1} then there exists some pos ∈ [n],
such that Z(xλ)pos > Z(xλ̄)pos and Z(xλ)r = Z(xλ̄)r for all r ∈ [pos− 1]; if best = e

then for all r ∈ [n], Z(xλ)r = Z(xλ̄)r and for simplicity reasons, we will treat this as
pos = n+ 1.
By Corollary 6.1 (4) there exists some p ∈ [2 : 2n− 2] such that comp?j = e for all

j ∈ [p− 1] and comp?j = comp?2n for all j ∈ [p : 2n]. Corollary 6.1 (9) implies that if p
is even, p = 2q, and compq = α ∈ {0, 1} then comp?p = α. All predicates in (6.2) are
satisfied by Corollary 6.1 (7) and therefore comppos ∈ {λ, λ̄} (only defined if pos ≤ n)
and hence, p ≤ 2pos.

Now, let λ = v(b). By Corollary 6.1 (6), zλi ∈ {0, 1} for all i ∈ [n]. Set µ = comp?2n.
By Corollary 6.1 (5), v(a) = v(a′) = µ and v(b′) = v(b) = λ; furthermore predicate
Bpropagate in (6.15) is satisfied by Lemma 6.2. Predicate BsetIncentives in (6.17) is
satisfied by Lemma 6.2 and therefore v(c) = λ if µ = λ and v(c) = e otherwise. By
Corollary 6.1 (5), v(cj) = v(c) for all j ∈ [0 : n− 1]. In the following, we consider five
cases. In the first case, we show that compi = comp?j = v(b) holds for all i ∈ [n] and
j ∈ [2 : 2n]. Thus, the claim of the Lemma holds in this case. In all other cases, the
solution can be improved.

1. Let p = 2, µ = λ, and comp1 = λ. By assumption, comp?2t−1 = λ for all
t ∈ [2 : n]. Then, Corollary 6.1 (8), implies that compt = comp?2t−1.

2. Let p = 2, µ = λ, and comp1 6= λ. Predicate A3
carry(P1) in (6.7) is satisfied by

Corollary 6.1 (9) and therefore comp1 = e. Setting comp1 ← λ does not violate
heavier predicates Acorr(D1) in (6.2), Aout(D1) in (6.6), A3

carry(P1) in (6.7), and
A1

care(P1) in (6.10), improves Cincentive(P1) in (6.21) and therefore improves the
solution.

3. Let p ∈ [3 : 2pos] and µ = λ. By definition, comp?p−1 = e. The proof now splits
on the parity of p− 1:

a) p − 1 is even, p − 1 = 2q. Predicate A3
carry(Pq)

in (6.7) is satisfied by
Corollary 6.1 (9) and therefore compq = e. Setting comp?p−1 ← λ does not
violate heavier predicates A1

carry(Pq)
in (6.4), A3

carry(Pq)
in (6.7), A0

carry(Qq+1)

72

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

in (6.3), A0
care(Pq)

in (6.8), Acare(Qq+1) in (6.9), A1
care(Pq)

in (6.10), improves
C0

incentive(Qq+1) in (6.19) and thus improves the solution.

b) p − 1 is odd, p = 2q. Predicate A3
carry(Pq)

in (6.7) is satisfied by Corol-
lary 6.1 (9) and therefore compq ∈ {λ, e}. Recall that compn was defined
as a binary variable, thus compq = λ if q = n. Setting comp?p−1 ← λ

does not violate heavier predicates A0
carry(Qq)

in (6.3), A1
carry(Pq)

in (6.4),
A2

carry(Pq)
in (6.5), A0

care(Pq)
in (6.8), Acare(Qq) in (6.9), improves predi-

cate C1
incentive(Qq)

in (6.20) and may only violate the smaller predicate
Cincentive(Pq) in (6.22) and thus improves the solution.

4. Let p ∈ [2 : 2pos− 1] and µ = λ̄. Predicate Bpropagate in (6.15) is satisfied by
Lemma 6.2 and therefore best 6= e; thus, pos < n+ 1. Recall that by definition,
comp?p−1 = e and comp?p = µ. The proof now splits on the parity of p:

a) p is odd, p+1 = 2q. Setting comp?p ← e does not violate heavier predicates
A0

carry(Qq)
in (6.3), A1

carry(Pq)
in (6.4), A2

carry(Pq)
in (6.5), A0

care(Pq)
in (6.8),

Acare(Qq) in (6.9), improves C1
incentive(Qq)

in (6.20), may only violate the
smaller predicate Cincentive(Pq) in (6.22), and thus improves the solution.

b) p is even, p = 2q. Predicate A3
carry(Pq)

in (6.7) is satisfied by Corol-
lary 6.1 (9) and this implies that compq ∈ {e, µ}. The proof now splits on
compq.

i. If compq = e, then setting comp?p ← e does not violate heavier
predicates A1

carry(Pq)
in (6.4) (only defined if q > 1), A3

carry(Pq)
in (6.7),

A0
carry(Qq+1) in (6.3), A0

care(Pq)
in (6.8), Acare(Qq+1) in (6.9), A1

care(Pq)

in (6.10), improves C0
incentive(Qq+1) in (6.19) and therefore improves

the solution.

ii. Now, let compq = µ. By definition, Z(x0)q = Z(x1)q. Corol-
lary 6.1 (2) (6) (7) imply that zλq = zλ̄q ∈ {0, 1}. Setting compq ← e

does not violate heavier predicates Acorr(Dq) in (6.2), A2
carry(Pq)

in (6.5)
(only defined if q > 1), Aout(Dq) in (6.6), A3

carry(Pq)
in (6.7), and

A1
care(Pq)

in (6.10). If q > 1, predicate Cincentive(Pq) in (6.22) improves,
otherwise predicate Cincentive(P1) in (6.21) improves and thus improves
the solution.

5. Let p = 2pos and µ = λ̄. Recall that by definition of circuit S, if pos < n+ 1,
then pos ∈ [2 : n − 1]. Predicate A3

carry(Ppos)
in (6.7) is satisfied by Corol-

lary 6.1 (9), and Acorr(Dpos) in (6.2) is satisfied by Corollary 6.1 (7), therefore
comppos = λ̄. By definition, comp?p−1 = e. By Corollary 6.1 (2) (6) (7), zλpos = 1

and zλ̄pos = 0. Setting comppos ← λ does not violate the heavier predicates
Acorr(Dpos) in (6.2) and A2

carry(Ppos)
in (6.5), improves predicate Aout(Dpos) in (6.6)

and only predicates of lower weight become violated.

73

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

�

Lemma 6.4. Set λ = v(b). Then v(l) = d for all l ∈ X λ̄L \{xλ̄i | i ∈ [n]}, and xλ̄i = yλi
for all i ∈ [n].

Proof. By Lemma 6.3, comp?2n = v(b) = λ. By Corollary 6.1 (5), v(aκi) = comp?2n = λ
for all i ∈ [n], κ ∈ {0, 1}, and v(b′) = v(bg) = v(b) = λ for all (1, 1)-gates g ∈ G̃.
Consider the two claims of the lemma:

1. Let g ∈ Gλ̄ be the largest gate with respect to the topological sorting of Gλ̄
which has an output variable ` with v(`) ∈ {0, 1}. Three cases have to be
considered:

a) If ` = zλ̄i for some i ∈ [n] then, since zλi ∈ {0, 1} by Corollary 6.1 (6) and
compi = λ for all i ∈ [n] by Lemma 6.3, setting zλ̄i ← d does not violate
the corresponding predicate Acorr(g) in (6.1), Acorr(Di) in (6.2), and Aout(Di)

in (6.6), improves C2
value(g) in (6.23) and therefore improves the solution.

b) If ` = yλ̄i for some i ∈ [n] then setting yλ̄i ← d does not violate heavier
predicates Acorr(g) in (6.1) and Bλ̄loadi in (6.12) since v(aλi) = λ, improves
predicate C2

value(g) in (6.23) and therefore improves the solution.

c) Otherwise, ` is an input variable of some gate g′. Note that if g is not a
(1, 1)-gate, then g′ is a (1, 1)-gate. By definition, v(`s) = d for all output
variables `s of gate g′. Setting v(`)← d does not violate heavier predicates
Aµcorr(g), respectively Acorr(g) and Aµcorr(g′), respectively Acorr(g′) in (6.1) for
µ ∈ {0, 1} and improves C2

value(g) in (6.23), if ` is the output variable of a
(1, 1)-gate or improves C1

value(g′) in (6.23) otherwise, thus improving the
solution.

2. Assume there exists some i ∈ [n] such that xλ̄i 6= yλi . As shown above, v(aλ̄i) = λ.
Thus, predicate Bλloadi in (6.12) is unsatisfied. Setting xλ̄i ← yλi improves
predicate Bλloadi in (6.12) and does not violate heavier predicates (6.1), since
v(l) = d for all l ∈ X λ̄L \ {xλ̄i | i ∈ [n]}.

�

Lemma 6.5. best = e.

Proof. Assume that best = λ ∈ {0, 1}. Then, cC/F(xλ, I) > cC/F(xλ̄, I) by Corol-
lary 6.1, (2) and the definition of circuit S2. By Lemma 6.4, xλ̄i = yλi for all i ∈ [n].
But cC/F((yλi)ni=1, I) ≥ cC/F(xλ, I) by definition of variables yi. A contradiction. �

Definition 6.1. We define a final assignment B ∈ F(3,2,3)-MCA3-par(I) to fulfill the
following conditions: Set λ = v(b). For all i ∈ [n], j ∈ [2 : 2n], compi = comp?j = λ,
best = e, xλ̄i = yλi , x

0
i = x1

i = x2
i = x3

i . For all k ∈ {a, a′, b′, c}, w ∈ VT1 ∪ VT2 ∪ VT3,
i ∈ [n], j ∈ [0 : n − 1], κ ∈ {0, 1}, and (1, 1)-gates g ∈ G̃, v(w) = v(k) = v(aκi) =

74

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

v(bg) = v(cj) = λ. For all l ∈ X λL , v(l) = R(l, (xλ)). For all l ∈ X λ̄L \ {xλ̄i | i ∈ [n]},
v(l) = d. For all l ∈ X 2

L, v(l) = R(l, (x0, x1)).

Lemma 6.6. Every locally optimal assignment is a final assignment.

Proof. Assume that some assignment A is locally optimal with v(b) = λ. By
Lemma 6.5, best = e. By Lemma 6.3, compi = comp?j = λ for all i ∈ [n], j ∈ [2 : 2n].
By Lemma 6.4, xλ̄i = yλi for all i ∈ [n]. For all l ∈ X λL , v(l) = R(l, (xλ)) by
Corollary 6.1 (2), (6). For all l ∈ X λ̄L \ {xλ̄i | i ∈ [n]}, v(l) = d by Lemma 6.4.
For all l ∈ X 2

L, v(l) = R(l, (x0, x1)) by Corollary 6.1 (2). By Corollary 6.1 (5),
v(t) = v(a) = v(a′) = v(aκi) = comp?2n = λ for all i ∈ [n], κ ∈ {0, 1}, t ∈ VT1 , and
v(u) = v(b′) = v(bg) = λ for all (1, 1)-gates g ∈ G̃ and u ∈ VT2 . Predicate BsetIncentives
in (6.17) is satisfied by Lemma 6.2 and this implies that v(c) = λ. By Corollary 6.1 (5),
v(w) = v(ci) = λ for all i ∈ [0 : n − 1] and w ∈ VT3 . Variable best = e and for all
i ∈ [n], xλ̄i = yλi by Lemma 6.4, therefore x0

i = x1
i by definition of variables yκi for all

κ ∈ {0, 1}. By Corollary 6.1 (1), xκi = xκ+2
i for all i ∈ [n], κ ∈ {0, 1} and this implies

that x0
i = x1

i = x2
i = x3

i . �

Why Proving Tightness is Non-Trivial

Let I be an instance of Circuit/Flip and let x ∈ {0, 1}n be a feasible solution of I
such that Improve(Improve(x, I), I) is not a locally optimal solution of I. Let x and
x′ := Improve(x, I) differ in bit k1 and let x′ and x′′ := Improve(x′, I) differ in bit k2

with k1 6= k2. Our construction Φ(I) allows (with appropriate settings of the respective
variables) a sequence of improving steps which leads from an assignment a ∈ F(Φ(I)
with a(xλ) := x and a(xλ̄) := x′ to an assignment a′ ∈ F(Φ(I) with a′(xλ) := x′′ and
a′(xλ̄) := x′. Note that solutions x and x′′ differ in two bits. One of these bits has to
be changed first in xλ and this might be bit k2. Let x′′′ ∈ {0, 1}n be the solution that
differs from x in bit k2. We have no information about CostC/F(x′′′, I). We cannot
exclude the case that CostC/F(x′′′, I) < CostC/F(x, I) and that Improve(x′′′, I)
is a locally optimal solution of I. We design the set R ⊆ F(Φ(I) in such a way
that starting from an assignment a ∈ R with a(xλ̄) = Improve(a(xλ), I), the
assignment of xλ̄ can only be changed after the assignment of xλ has been set to
Improve(a(xλ̄), I).
Our proof of tightness relies in large parts on predicates (6.8)–(6.10) and the

following assumptions on circuit S in the given instance I of Circuit/Flip, we made
in Section 6.2: Recall that we assumed that cC/F(x, I) 6= cC/F(x′, I) for solutions
x, x′ ∈ FC/F(I) with x 6= x′. Furthermore, for every input link Xi with i ∈ [n] and
every output link Zj with j ∈ [n], there exists a path in circuit S from Xi to Zj . For
output links Z1 and Zn, we assumed that Z(x)1 = Z(x)n = 0 for all x ∈ FC/F(I).

Definition 6.2 (The Set R). For a solution a ∈ F(Φ(I)), denote a(comp?) :=
(a(comp?i))

2n−1
i=2 . For k ∈ [n], denote succ(k) := {l ∈ L | l is on a path from input link

Xk to some output link Zi, i ∈ [n]} and let X λsucc(k) denote the set of link variables

75

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

in X λL defined by links from succ(k). We define the following predicates, where for
k ∈ [n], λ ∈ {0, 1}

Q1(a, λ, k) := [a(l) = d ∀ l ∈ X λsucc(k)]

Q2(a, λ) := [a(comp?) = λ2n−2 ∧ a(compi) = λ ∀i ∈ [n]].

We define R to be the set of all solutions a ∈ F(Φ(I)) which satisfy the following
properties:

1. All predicates in (6.1) and (6.2) are satisfied.

2. There exists some λ ∈ {0, 1} such that

a) a(xλ̄) = Improve(a(xλ), I),

b) Q1(a, λ̄, k) is satisfied for some k ∈ [n], and

c) Q2(a, λ) is satisfied.

In the following Lemma, we show that for every sequence of improving solution
which starts in some solution in R, the vector comp? is, loosely speaking, of the form
e∗λ̄∗λ∗. For this, we solely focus on the set of predicates (6.3)–(6.10) and prove the
claim by induction on the number of improving steps.

Lemma 6.7. Let λ ∈ {0, 1} and let σ be a sequence of improving solutions from
F(Φ(I)), where for the first solution a0 in σ items (1), (2b), and (2c) from Defini-
tion 6.2 are satisfied and for each solution a ∈ σ, a0(xκ) = a(xκ) for all κ ∈ {0, 1}.
Fix some a ∈ σ and refer to pos(a0) by pos. Then, all predicates in (6.1) and (6.2)
are satisfied in a and

a(comp?) = uvw, where u ∈ e∗, v ∈ λ̄∗, w ∈ λ∗ (INV)

with

1. |u| ≤ 2 · pos− 2 and if |v| > 0 then |u|+ |v| ≥ 2 · pos− 1

2. For all i ∈ [n− 1] with i < pos or comp?2i−1 = λ, A2
carry(Pi)

in (6.5) is satisfied
and A3

carry(Pi)
in (6.7) is satisfied if i < n

3. A2
carry(Ppos) in (6.5) is satisfied and if a(comp?2pos) = λ̄ then a(comppos) = λ̄

Proof. We prove the lemma by induction on the number of improving steps. By
definition, (INV) is satisfied for a0. Now, let a be some solution in σ. Since a is fixed
in the following, we omit the assignment, for sake of readability, where it is clear
from the context. We show that every step which violates (INV) does not improve
a. For this, we fix some i ∈ [n] and investigate all changes to compi, comp?2i−1,
and comp?2i. These variables occur in predicates Acorr(Di) in (6.2), A0

carry(Qi)
in (6.3),

A1
carry(Pi)

in (6.4), A2
carry(Pi)

in (6.5), Aout(Di) in (6.6), A3
carry(Pi)

in (6.7), A0
care(Pi)

in (6.8), Acare(Qi) in (6.9), and A1
care(Pi)

in (6.10) and in predicates of lower weight.

76

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

For sake of readability, we refer to these predicates only by their number. A predicate
with the number (X) but defined by the parameter i− 1 is denoted by (X)−.

By assumption, all predicates in (6.1) and (6.2) are satisfied in a0 and as they are
the heaviest among the list of predicates, they remain satisfied throughout σ. Hence,
we skip predicates Acorr(Di) in (6.2) for all i ∈ [n], when listing satisfied predicates.
Furthermore, all predicates in (6.2) being satisfied implies that if for some i ∈ [n],
compi = e then z0

i = z1
i ∈ {0, 1} and if compi = µ ∈ {0, 1} then zµi ∈ {0, 1}.

First, consider changes of compi, i ∈ [n]. By (INV), predicate (6.5) is satisfied
and as it is the largest predicate after predicate (6.2) in which compi appears, it
remains satisfied in each improving step. Predicate (6.7) can only become violated
by improving predicate (6.6). If comp?2i−1 = µ ∈ {0, 1}, then predicate (6.5) being
satisfied implies that compi = β ∈ {e, µ}. Changing the value of compi cannot
improve predicate (6.6), since predicate (6.2) is satisfied. If comp?2i−1 = e, then (INV)
implies that i ≤ pos. We distinguish the cases i < pos and i = pos. First, let i < pos.
Since Z(x0)i = Z(x1)i and predicate (6.2) is satisfied, predicate (6.6) cannot improve
by setting compi to a new value. Now, let i = pos. As shown above, predicate (6.5)
is satisfied after each improving step. By (INV), it is sufficient to consider the case
comp2pos = λ̄. In this case, comppos = λ̄ by (INV) and predicate (6.7) is satisfied.
Now, predicates (6.5), (6.6), and (6.7) are satisfied and remain satisfied in each
improving step.
Now, consider changes of variables comp?j , j = 2i− 1 or j = 2i. For sake of read-

ability, we use the following notation: If j = 2i− 1, then predicate (6.3/6.4) denotes
predicate (6.3), predicate (6.3/6.4)− denotes predicate (6.4), and predicate (6.5/6.7)
denotes predicate (6.5). If j = 2i, then predicate (6.3/6.4) denotes predicate (6.4),
predicate (6.3/6.4)− denotes predicate (6.3)−, and predicate (6.5/6.7) denotes predi-
cate (6.7). For sake of presentation, we introduce an artificial variable comp?1, define
comp?1 = e to be constant, and naturally extend predicate (6.3/6.4) to comp?1. Note
that this way predicate (6.3/6.4) is satisfied, regardless of the value of comp?2. Recall
that by definition, comp?2n−2, comp?2n−1 ∈ {0, 1} and (pos ∈ [2 : n−1] or pos = n+1).
We distinguish the following eight cases, where j ∈ [2 : 2n− 1]:

1. Let comp?j−1 = comp?j = e and comp?j+1 = µ ∈ {e, 0, 1}. (INV) implies that
i < pos and predicates (6.3/6.4), (6.3/6.4)−, and (6.5/6.7) are satisfied. If µ = e,
then setting comp?j ← β ∈ {0, 1} does not improve the solution, since predi-
cate (6.3/6.4) remains satisfied and predicate (6.3/6.4)− becomes violated. Now,
let µ ∈ {0, 1}. Predicate (6.5/6.7) is satisfied and therefore compj ∈ {e, µ}. Set-
ting comp?j ← µ does not violate (INV), since predicates (6.3/6.4), (6.3/6.4)−,
and (6.5/6.7) remain satisfied. Setting comp?j ← µ̄ does not improve the
solution, since predicate (6.3/6.4)− becomes violated.

2. Let comp?j−1 = e, comp?j = comp?j+1 = µ ∈ {0, 1}, and (i < pos or i = pos and
j = 2i−1). Then, j ≤ 2n−2. (INV) implies that predicates (6.3/6.4), (6.3/6.4)−,
and (6.5/6.7) are satisfied. Setting comp?j ← µ̄ does not improve the solution,
since predicate (6.3/6.4)− becomes violated. Now, consider setting comp?j ← e.

77

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

First, let j = 2i − 1. Setting comp?j ← e does not violate (INV) since pred-
icates (6.3/6.4), (6.3/6.4)−, and (6.5/6.7) remain satisfied. Now, let j = 2i.
Predicate (6.5/6.7) is satisfied and therefore compi ∈ {e, µ}. If compi = e, then
setting comp?j ← e does not violate (INV) since predicates (6.3/6.4), (6.3/6.4)−,
and (6.5/6.7) remain satisfied. If compi = µ, then setting comp?j ← e does not
improve the solution, since predicate (6.5/6.7) becomes violated.

3. Let comp?j−1 = e, comp?j = λ̄, comp?j+1 = µ ∈ {0, 1}, and j = 2pos. Then,
j ≤ 2n − 2. By (INV), predicate (6.5) is satisfied, comppos = λ̄ and thus,
predicate (6.7) is satisfied. Setting comp?j ← β ∈ {e, λ} does not improve the
solution, since predicate (6.7) becomes violated.

4. Let comp?j−1 = e, comp?j = λ, and j = 2pos. Then, j ≤ 2n − 2. (INV)
implies that comp?j+1 = λ. Predicates (6.3/6.4)and (6.3/6.4)− are satisfied.
Predicate (6.2) is satisfied and therefore comppos ∈ {0, 1}. First, let comppos =
λ. This implies that predicate (6.7) is satisfied. Setting comp?j ← µ ∈ {e, λ̄}
does not improve the solution, predicate (6.7) becomes violated. Now, let
comppos = λ̄. This implies that predicate (6.7) is unsatisfied. Setting comp?j ←
λ̄ does not violate (INV), since predicates (6.3/6.4)and (6.3/6.4)− remain
satisfied. Setting comp?j ← e does not improve the solution, since no predicate
in (6.4), (6.7), (6.3)−, (6.8), or (6.9) improves and predicate (6.10) becomes
violated.

5. Let comp?j−1 = comp?j = µ ∈ {0, 1}. Then, predicate (6.3/6.4) is satisfied
and setting comp?j ← β ∈ {e, µ̄} does not improve the solution, since predi-
cate (6.3/6.4) becomes violated.

Let us remark that the value of comp?2n is unknown. Note that for j = 2n− 1,
the above case especially implies that if comp?2n = µ̄ then this cannot lead to a
change of comp?2n−1 which improves the solution.

6. Let comp?j−1 = λ̄ and comp?j = λ. (INV) implies that comp?j+1 = λ or j = 2n−1.
Predicate (6.3/6.4) is unsatisfied and predicate (6.3/6.4)− is satisfied, in case
j < 2n− 1. Setting comp?j ← λ̄ does not violate (INV). Now, consider setting
comp?j ← e. By definition, this is only possible for variables comp?j with
j < 2n − 1. If j is odd, then predicate (6.5) is satisfied. Setting comp?j ← e
does not improve the solution, since no predicate in (6.3) or (6.4) improves and
predicate (6.8) becomes violated. If j is even, then setting comp?j ← e cannot
improve predicate (6.7). The solution does not improve since no predicate
in (6.4), (6.7), (6.3)−, or (6.8) improves and predicate (6.9) becomes violated.

�

Lemma 6.8. (Φ,Ψ) is a tight reduction.

Proof. In this proof, we use the definition of R given in Definition 6.2. Note that
by construction, all final assignments are contained in R. Lemma 6.6 implies that

78

6.3 (3, 2, 3)-MCA3-par is Tight PLS-Complete

R contains all locally optimal solutions. Now, let a ∈ R. We consider an arbitrary
sequence σ of improving steps and show for the first solution a′ ∈ R with a′ 6= a
which is reached during the sequence, that either Ψ(I, a) = Ψ(I, a′) or Ψ(I, a′) is
a better neighbor of Ψ(I, a). By definition, all predicates in (6.1) and (6.2) are
satisfied in a and as they are the heaviest among the set of predicates, they remain
satisfied throughout σ. First, consider the case cC/F(a(x0), I) = cC/F(a(x1), I). Then,
a(x0) = a(x1) since we assumed that cC/F(s, I) 6= cC/F(s′, I) for solutions s, s′ ∈ F(I)
with s 6= s′. The input vectors a(x0) and a(x1) cannot be changed in σ, since by (2a),
a(xλ̄) = Improve(a(xλ), I) and thus a(yλi) ∈ {d, a(xλ̄)} for all λ ∈ {0, 1} and i ∈ [n].
This implies that Ψ(I, a′) = Ψ(I, a) = a(x0) for every solution a′ in σ.

Now, let cC/F(a(xλ̄), I) > cC/F(a(xλ), I). We split σ into two phases. In a locally
optimal solution a? ∈ F(Φ(I)), a?(x0) = a?(x1) by Lemma 6.6. Thus, input vectors
x0 or x1 have to change at least once.

Phase One: This Phase Continues Until Input Vector x0 or x1 Changes Since
Q1(a, λ̄, k̂) is satisfied for some k̂ ∈ [n] and by assumption on S, there exists a path
in S from input link Xk̂ to all output links Zi with i ∈ [n], therefore a(zλ̄i) = d for all
i ∈ [n]. By assumption, property Q2(a, λ) and all predicates in (6.2) are satisfied and
therefore that a(zλi) ∈ {0, 1} for all i ∈ [n]. All predicates in (6.1) are satisfied and
therefore that a(l) ∈ {0, 1} for all l ∈ X λL . Since a ∈ R, a(xλ̄) = Improve(a(xλ), I),
there are no predicates which would now become satisfied by changing the value of
some xλ̄i with i ∈ [n]. For some yλi to change its binary value in the sequence σ,
thus incentivizing changes to xλ̄, this requires that some xλi with i ∈ [n] changes its
value to produce the new output. This implies that input vector xλ changes first.
Let a◦ ∈ F(Φ(I)) be a solution which is reached at the end of phase one. There
exists some k ∈ [n] such that a◦(yλ̄k) ∈ {0, 1}, a◦(yλ̄k) 6= a◦(xλk) and a◦(l) = d for all
l ∈ X λsucc(k); for all i ∈ [n] and l ∈ X λ̄succ(i), a◦(l) takes its correct value in {0, 1}. Thus,
Q1(a◦, λ, k) is satisfied.

Now, we show that Q2(a◦, λ̄) is satisfied. Let σ1 denote the subsequence of σ until
the end of phase one. Because of Lemma 6.7, (INV) holds during σ1. Q1(a◦, λ, k) is
satisfied and this implies that a◦(zλi) = d for all i ∈ [n]. By Lemma 6.7, predicate
Acorr(Di) in (6.2) is satisfied for all i ∈ [n]. Therefore, a◦(compi) = λ̄ for all i ∈ [n].
Next, we show that a◦(comp?2) = a◦(comp?2n−1) = λ̄. Together with (INV) this
implies that a◦(comp?j) = λ̄ for all j ∈ [2 : 2n− 1]. Therefore, Q2(a◦, λ̄) is satisfied.

1. First, consider a◦(comp?2). By assumption, Z(x)1 = 0 for all x ∈ FC/F(I) and
therefore pos(a) ≥ 2. (INV) implies that predicate A3

carry(P1) in (6.7) is satisfied
in assignment a◦ and therefore, a◦(comp?2) = λ̄.

2. Now, consider a◦(comp?2n−1). We want to show that a◦(comp?2n−1) = λ̄. Assume
that a◦(comp?2n−1) = λ. (INV) implies that A2

carry(Pn) in (6.5) is satisfied in
assignment a◦ and therefore a◦(compn) = λ. A contradiction.

79

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

Phase Two: This Phase Starts with Changing the Value of xλ and Terminates
When the Entire Neighbor is Loaded For some S ⊆ {xλ1 , . . . , xλn}, denote a(xλ/S)
the input vector when flipping all input bits k ∈ S. Let k1 be the bit in which
a(xλ) and a(xλ̄) = Improve(a(xλ), I) differ and let k2 be the bit in which a(xλ̄) and
Improve(a(xλ̄), I) differ. Phase one terminated by reaching a solution a◦ which
satisfies Q1(a◦, λ, k) for some k ∈ {k1, k2} and Q2(a◦, λ̄). The input vectors are still
unmodified, thus a(xi) = a◦(xi) for all i ∈ [0, 3].
Let setting xλk ← a◦(yλ̄k) with k ∈ {k1, k2}, thus satisfying predicate (6.12) be

the first change to a◦(xλ); denote the resulting assignment a1. By definition of I,
a(xλ/{k1}) is the best neighbor of a(xλ) and this implies that cC/F(a(xλ/{k1}), I) ≥
cC/F(a(xλ/{k}), I); hence, pos(a1) = n + 1. Let σ′ be an arbitrary sequence of
improving steps without setting xλ

k̄
to a new value, where k̄ ∈ {k1, k2} \ {k} and let

a† ∈ σ′ be a solution in σ′. Note that we are under the conditions of Lemma 6.7 when
replacing a0 by a1, σ by σ′, and λ by λ̄. Lemma 6.7 now implies that a†(comp?) = uw,
where u ∈ e∗, w ∈ λ̄∗, and a†(compi) ∈ {e, λ̄} for all i ∈ [n]. All predicates Acorr(Di)

in (6.2) are satisfied and therefore a†(zλ̄i) ∈ {0, 1} for all i ∈ [n]. All predicates in (6.1)
are satisfied as shown above and therefore a†(`) ∈ {0, 1} for all ` ∈ X λ̄L . Hence, input
vector a†(xλ̄) cannot be modified. No locally optimal solution can be reached this way
and therefore xλ

k̄
is set to a new value in some solution during σ; denote the resulting

solution a′. This requires that Q1(a′, λ, k̄) is satisfied; with the same argumentation
as in phase one, Q2(a′, λ̄) is satisfied. Hence, we have reached a solution a′ ∈ R for
which Ψ(I, a′) is a better neighbor of Ψ(I, a). �

Theorem 6.1. Circuit/Flip ≤pls (3, 2, 3)-MCA3-par using a tight reduction.

Proof. By Lemma 6.6, every locally optimal assignment A for Φ(I) is a final as-
signment. Ψ(I,A) is locally optimal for I, since x0

i = x1
i holds for all i ∈ [n] and

this implies that cC/F((xλi)ni=1, I) = cC/F((yλ̄i)ni=1, I), where λ = best. Thus, no
improving flip of an input bit is possible for Ψ(I,A).

Now, we show that the resulting set of constraints in our reduction is 3-partite. We
present a tri-coloring of all variables in length three predicates and a bi-coloring of
all variables in length two predicates, using colors blue, red, and white. We slightly
extend the construction described up to now in order to allow an easier coloring. First,
consider the propagation trees in (6.11), (6.16), and (6.18). Each leaf can be colored
independent of the colors of the other leaves. This may require to extend the tree by
certain nodes of degree two. Next, consider the predicates (6.1) and (6.14) describing
the correct work of the circuits. Recall that we assumed that every gate with three
links is solely adjacent to gates with two links. Implanting gates with two links
into some links allows us to color the predicates (6.1) and (6.14) with three colors
independent of the colors given to the inputs and outputs x0

i , x
1
i , y

0
i , y

1
i , z

0
i , z

1
i , x

2
i , x

3
i

for all i ∈ [n] and best. We choose the following coloring: For all i ∈ [n] and j ∈ [2 : n],
the variables x0

i , x
1
i , z

0
i , best, and comp?2i are colored white, the variables x2

i , x
3
i , y

1
i ,

y2
i , z

1
i , comp?2j−1, and b are colored blue. For all i ∈ [n], the variable compi is colored

red. We show that this coloring is a correct 3-coloring by giving the parameter list for

80

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

Replaced

by
Acorr(g)

l1(g)

l2(g)

l3(g)
Acorr(H0

g)

Acorr(H1
g)

Acorr(g)

l1(g)

l2(g)

l3(g)
l̂1,2(g)

Figure 6.3: The modification for a predicate modeling a (2, 1)-gate.

Identifier Meaning
Si copy i of input circuit S
Gi set of gates in circuit Si

Giin set of gates incident to some input link in circuit Si

Li set of links in circuit Si

X jL set of hexary variables derived from links in Lj for j ∈ {0, 1}
X 2
L set of binary variables corresponding to links in L2

X iL set of auxiliary link variables for (2, 1)-gates in Gi
Q̃ Q0 ∪Q1, for all Q ∈ {G,L,XL,XL}

Table 6.4: The labeling and meaning of identifiers we use, extending Table 6.1. Here,
i ∈ {0, 1, 2}.

each of the remaining constraints. Variables that are leaves of propagation trees are
denoted by dc (for “don’t care”). In constraints (6.17) and (6.23), only one variable
is not a don’t care variable. For all i ∈ [n], constraint Di has variables compi, z0

i , z
1
i ;

for all i ∈ [2 : n], constraint Qi has variables comp?2i−2, comp?2i−1, dc; constraint
P1 has variables comp1, comp?2, dc; for all i ∈ [2 : n], constraint Pi has variables
comp?2i−1, comp?2i, compi; constraint (6.12) has variables xκ̄i , y

κ
i , dc; constraint (6.13)

has variables xκi , x
κ+2
i ; constraint (6.15) has variables b, best, dc. �

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

In this section, we prove that (2, 3, 6)-MCA2-par is tight PLS-complete. We show this
result by altering the reduction function Φ presented in Section 6.3. Conceptionally,
we group two variables from a length three constraint as a pair and ensure consistency
between a single variable and a grouped variable in a pair via auxiliary constraints.
We have depicted this modification in Figure 6.3 for a length three predicate from (6.1)
which simulates some (2, 1)-gate g ∈ G. Given an instance I ∈ DCircuit/Flip, we
construct an instance

Φ?(I) = (F?,X ?) ∈ D(2,3,6)-MCA2-par

with a set of constraints F? and a set of at most 6-valued variables X ?. Every
constraint Ci ∈ F? has length at most 2 and every variable x ∈ X ? appears in at
most 3 constraints.

81

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

6.4.1 The Set of Constraints

Whenever we use κ or λ when listing constraints, then this is to denote that there are
actually predicates in F? for all κ, λ ∈ {0, 1}. Constraints consisting of more than
one predicate are listed in Table 6.5. All other constraints are weighted predicates.
Eventually, the set of constraints is

F? := G̃ ∪ G2∪
{gλ | g ∈ G̃ ∪ G2 a (2, 1)-gate} ∪ {gλ | g ∈ G̃ ∪ G2 a (1, 2)-gate}∪
{Aκjoini ,B

κ
loadi ,B

κ
copyiDi, Pi, Q

κ
i , | i ∈ [n]} ∪ {Bpropagate} ∪ T1 ∪ T2,

where T1 and T2 denote the sets of predicates for the respective propagation trees
(see next paragraph for details).

6.4.2 The Set of Variables

We introduce the circuit variables listed in the upper section of Table 6.6 and the
variables for comparison listed in the lower section of Table 6.6. Some of the variables
we use in this reduction are cartesian products of variables from Section 6.3; confer the
next paragraph for general similarities and differences to our reduction in Section 6.3.
We additionally introduce link variables with special names x̂κi , ŷ

κ
i , and ẑ

κ
i in X κL

and xκ+2
i in X 2

L for all i ∈ [n]. We also outlined the interpretation of the components
and their relation to variables from Section 6.3, where possible. Here, bl denotes a
binary variable which is introduced for each link l ∈ L̃ \ {X0

i , X
1
i | i ∈ [n]} in this

reduction. Variables bl correspond to binary variables bg from Section 6.3 in the sense
that now each link variable l ∈ X̃L carries its separate bl variable. Note that, P2(k̂i)
is binary for all i ∈ [n] in order to keep the valence of k̂i at six, whereas variables ci
with i ∈ [n− 1] are defined as ternary variables in Section 6.3. We compensate for
this with additional predicates. Additional variables in tree T1 propagate the value
of P1(k̂n+1) to all P2(x̂κ+2

i) with i ∈ [n]. Additional variables in tree T2 propagate
the value of P2(k̂1) to all variables P2(l̂), which are not input links of (1, 2)-gates.
Eventually, the set of variables is now

X ? := X̃L ∪ X̃L ∪ X 2
L ∪ X 2

L∪
{ẑi, x̂κ+2

i | i ∈ [n]} ∪ {k̂i | i ∈ [n+ 1]} ∪ {best} ∪ VT1 ∪ VT2 ,

where VTi with i ∈ {1, 2} denotes the set of variables in propagation tree Ti.

6.4.3 Similarities and Differences to our Reduction in Section 6.3

While our new construction still follows the general method presented in Section 6.2,
the actual implementation with constraints differs in the representation of the involved
circuits, the comparator, the loading and steering logic. These modifications have an
effect on the set of constraints, as well as the underlying set of variables.

82

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

C
on

st
ra
in
t,

In
de
x

Se
t
of

w
ei
gh

te
d
pr
ed
ic
at
es

Id
en
ti
fie

rs
D
i,

i
∈

[n
]

A
co

rr
(D

i
),

A
ou

t(
D
i
)

(6
.2
?
),

(6
.6
?
)

P
i,

i
∈

[n
]

A
ca

rr
y(
P
i
),

A
ca

re
(P
i
),

B
co

py
(P
i
),

C
0 ti

gh
te

n(
P
i
),

(6
.7
?
),

(6
.8
?
),
(6
.1
6?
),
(6
.1
9a
?
),

C
0 re

la
x(
P
i
),

C
1 ti

gh
te

n(
P
i
),

C
2 ti

gh
te

n(
P
i
),

C
2 re

la
x(
P
i
)

(6
.1
9b

?
),
(6
.1
9c
?
),

(6
.1
9d

?
),
(6
.1
9e
?
)

Q
κ i
,

i
∈

[n
]

B
jo

in
(Q

κ i
),

B
co

py
(Q

κ i
)

(6
.1
1b

?
),
(6
.1
3a
?
)

g
,

g
∈
G̃
\G̃

in
,a

(1
,1

)-
ga

te
A

co
rr

(g
),

C
1 va

lu
e(
g
)

(6
.1
a?
),
(6
.2
3c
?
)

g λ
,

g
∈
G̃,

a
(1
,2

)-
ga

te
A

co
rr

(g
λ

),
B

co
py

(g
λ

),
C

1 va
lu

e(
g
λ

)
(6
.1
a?
),
(6
.1
8b

?
),
(6
.2
3c
?
)

g
,

g
∈
G̃,

a
(2
,1

)-
ga

te
A

co
rr

(g
),

C
0 va

lu
e(
g
),

C
1 va

lu
e(
g
)

(6
.1
b?
),

(6
.2
3b

?
),
(6
.2
3c
?
)

T
ab

le
6.
5:

C
on

st
ra
in
ts

co
ns
is
ti
ng

of
m
or
e
th
an

on
e
w
ei
gh

te
d
pr
ed
ic
at
e
w
he

re
λ
,κ
∈
{0
,1
}

83

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

V
ariable

Index
D
om

ain
C
onstraint

Interpretation
of

the
T
uple

l̂
l∈
L̃
\{
X

0i ,X
1i |
i∈

[n
]}

{
0,1,d}×

{
0
,1}

l̂
=

(l,b
l)

if
inp.

link
for

a
(1,1)-gate

g,
g
′,
N

2(l̂)
if
inp.

link
for

a
(1,2)-gate

g,
g
′0
g
′1

if
inp.

link
l̂λ

for
a

(2,1
)-gate

g,
g
′λ ,
N

2(l̂)
x̂
κi

i∈
[n

]
{
0,1}×

{
0,1}

g,
Q
κi ,B

κ̄load
i

x̂
κi

=
(x
κi ,a

κi)
ŷ
κi

i∈
[n

]
{
0,1,d}×

{
0
,1}

g,B
κload

i ,
N

2(ŷ
κi)

ŷ
κi

=
(y
κi ,b

y
κi)

ẑ
κi

i∈
[n

]
{
0,1,d}×

{
0
,1}

g,A
κjoin

i ,
N

2(ẑ
κi)

ẑ
κi

=
(z
κi ,b

z
κi)

ẑ
i

i∈
[n

]
{
0,1}×

{
0,1,e}

A
κjoin

i ,
D
i

l̂1
,2 (g

)
g
∈
G̃
a

(2,1
)-gate

{{0
,1}×

{
0
,1}}∪

d
g
κ ,
g

l̂1
,2 (g

)
=

(l1 (g
),l2 (g

))

if
l̂1
,2 (g

)∈
{0
,1}

2

x̂
κ

+
2

i
i∈

[n
]

{
0,1}×

{
0,1}

N
1(x̂

κ
+

2
i

),
Q
κi ,B

κcopy
i

x̂
κ

+
2

i
=

(x
κ

+
2

i
,a
κi)

l
l∈
X

2L \{{best}}∪
{
x
κ

+
2

i
|
i∈

[n
]}}

{
0,1}

if
inp.

link
for

a
(1,1)-gate

g,
g
′

if
inp.

link
for

a
(1,2)-gate

g,
g

0 ,
g

1

if
inp.

link
l̂λ

for
a

(2,1
)-gate

g,
g
λ

l̂1
,2 (g

)
g
∈
G

2
a

(2,1)-gate
{
0,1}×

{
0,1}

g
κ ,
g

l̂1
,2 (g

)
=

(l1 (g
),l2 (g

))

x
κ

+
2

i
i∈

[n
]

{
0,1}

B
κcopy

i ,
g

best
{
0,1,e}

g,B
propagate

k̂
1

{
0,1,e}×

{
0,1}

D
1 ,P

1 ,N
2(k̂

1)
k̂
i

=
(com

p
1 ,c

1)

k̂
i

i∈
[2

:
n
−

2
]

{
0,1,e}×

{
0,1}

P
i−

1 ,D
i ,P

i
k̂
i

=
(com

p
i ,c

i)

k̂
i

i∈
{n
−

1
,n}

{
0,1}×

{
0,1}

P
i−

1 ,D
i ,P

i
k̂
i

=
(com

p
i ,c

i)

k̂
n

+
1

{
0,1}×

{
0,1}

P
n ,
N

1(k̂
n

+
1),B

propagate
k̂
n

+
1

=
(com

p
n
,c
n
)

T
able

6.6: T
he

set
of

variables,
their

respective
dom

ains,
and

constraints
for

κ
,λ
∈
{0
,1}.

H
ere,

constraints
g
and

g
′refer

to
gates

w
ith

the
respective

input
or

output
variable;

N
i(x

)
denotes

the
constraint

containing
variable

x
∈
X
?
in

propagation
tree

T
i
w
ith

i∈
{1,2}.

84

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

In this reduction, every constraint can only have length at most two which affects
the set of predicates for circuits S0, S1, and S2. Note that the description of (1, 1)- and
(1, 2)-gates in Section 6.3 already contains predicates of length two where each variable
appears at most three times. For (2, 1)-gates, we have to change the corresponding
predicates. For each (2, 1)-gates, we first introduce auxiliary constraints that pool
the two input values in a single variable taking five values and then simulate the
actual gate in a predicate using the variable taking five values and the corresponding
output variable. Hence, we have to alter the set of predicates in (6.1). In Section 6.3,
we were able to feed the output links of both circuits directly into the comparator.
This approach is not suitable for our construction, where each constraint is limited
to length at most two. Instead, we introduce new variables ẑi for all i ∈ [n] which
take six values. Here, the first component is binary and the second component is
ternary. The design principle is such that if the second component is e, then both
circuits output the same binary value stored in the first component; otherwise the
first component holds the binary value of the circuit the second component points to.
In order to implement this, we introduce a new predicate in (6.1c?) for each output
variable zκi for all i ∈ [n] and κ ∈ {0, 1}.

The comparator in this construction requires no auxiliary variables comp?j for all
j ∈ [2 : 2n] as in Section 6.3 and manages to solely work with variables k̂i for i ∈ [n]
which are cartesian products of the respective variables compi and binary variables
ci. The newly introduced variables ẑi take their toll on our construction, as we have
to change the crucial predicates in (6.2) and (6.6). The most important change is
that predicates (6.2?) can also be satisfied in dependence on the output, in case the
comparator is binary. Additional, we introduce small incentives in predicates (6.19a?)–
(6.19e?) which supersede predicates (6.19)–(6.22) to nudge the comparator, as well
as the values of the circuits in the right direction.

Additionally, the loading logic has to be adapted to fit the requirements of the
reduction. Now, variables aκi for all i ∈ [n], κ ∈ {0, 1} from Section 6.3 are passed to
a component of newly introduced auxiliary variables x̂κ+2

i and on to a component of
variables x̂κi . Passing the value of xκi to xκ+2

i is then done in the reverse direction,
using the same constraints. This way, we are able to ensure that each variable
appears in at most three constraints. We use predicates (6.11a?)–(6.13b?) for this
construction.

Now, consider the steering logic. Propagation tree T3 is removed from the con-
struction, as we propagate the c... values from Section 6.3 within the comparator,
using the structure of the constraints in predicates in (6.16?). There are in principle
two possibilities to set the bl variables. One is to set these variables via additional
variables using e.g. a propagation tree, as done in Section 6.3. The second method is
to propagate the value within the constraints which model the given circuit, using no
additional variables. The first method increments the appearance of the respective
variable by one, since the respective variable is already contained in a constraint of
length two. So, this method is not suitable for input variables of (1, 2)-gates, which
already appear three times. The second method requires that each link variable stores

85

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

its own bl variable. By construction, l̂1,2(g) variables from (2, 1)-gates g ∈ G̃ do not
possess such a bl variable; hence, this approach is not suitable for these variables. To
overcome both obstacles, we choose a hybrid approach, where we use a propagation
tree to set the bl variables for all link variables l ∈ X̃L which are not input links of
(1, 2)-gates in predicates (6.18a?). The bl variables of input links of (1, 2)-gates are
then set by using the bl variables of incident links in predicates (6.18b?). Setting
l̂1,2(g) variables from (2, 1)-gates g ∈ G̃ to binary values or d is controlled using the
bl variables of incident links in predicates (6.23b?).

6.4.4 The Modified Constraint-Graph of Our Reduction

With these modifications, the constraint-graph from Section 6.3 is now a hypergraph
H. Here, nodes are constraints from F? and hyperedges are defined by variables
in X ?. Each hyperedge consists of two or three nodes, corresponding to the fact
that each variable occurs in at most three constraints. Note that the definition of
R(`, (x1, . . . , xn)) naturally extends to hyperedges `. The topological sorting also
carries over to the hypergraph H.

6.4.5 The Set of Modified Predicates

We modify the set of predicates presented in Section 6.3. Predicates labeled (X)
from Section 6.3 which are modified, carry the identifying label (X?). We preserve
the original hierarchical structure of the weights. Let us remark that some reused
predicates depend on three arguments, two of which are projections of the same
variable.

Level I: Computing and Comparing the Output

For all (1, 2)-gates g ∈ G̃, we replace predicates (6.1) with two predicates

Acorr(gλ)(l̂1(g), l̂λ+2(g)) =

[P1(l̂λ+2(g)) = d |
P1(l̂1(g)), P1(l̂λ+2(g)) ∈ {0, 1} ∧Correctg(P1(l̂1(g)), P1(l̂λ+2(g)))].

(6.1a?)

For all (1, 1)-gates g ∈ G̃ with input link l̂1(g) and output link l̂2(g), we replace
the existing predicate with a single predicate Acorr(g)(l̂1(g), l̂2(g)), as defined in
predicates (6.1a?). Every predicate in (6.1) for a (2, 1)-gate g ∈ G̃ is replaced by three

86

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

predicates

Acorr(gλ)(l̂λ+1(g), l̂1,2(g)) =

[l̂1,2(g) = d |
l̂1,2(g) ∈ {0, 1}2 ∧ Pλ+1(l̂1,2(g)) = P1(l̂λ+1(g))]

(6.1a?)

Acorr(g)(l̂1,2(g), l̂3(g)) =

[l̂1,2(g) = d⇒ P1(l̂3(g)) = d] and

[l̂1,2(g) ∈ {0, 1}2 ∧ P1(l̂3(g)) ∈ {0, 1}
⇒ Correctg(P1(l̂1,2(g)), P2(l̂1,2(g)), P1(l̂3(g)))].

(6.1b?)

We introduce two predicates which join the values of P1(ẑκi) in ẑi, with weights
decreasing in i

Aκjoini(ẑ
κ
i , ẑi) = [P2(ẑi) = κ̄ ∨ P1(ẑi) = P1(ẑκi)]. (6.1c?)

Recall that P1(ẑi) ∈ {0, 1} by definition. All predicates in (6.2)–(6.7) are replaced by
the following length two predicates (6.2?), (6.6?), and (6.7?), which are in interleaving
order . . ., Acorr(Di), Aout(Di), Acarry(Pi), Acorr(Di+1), Aout(Di+1), Acarry(Pi+1), . . . for all
i ∈ [n] and weight decrease in this order. For all i ∈ [n], we replace each predicate
in (6.2) with predicate

Acorr(Di)(ẑi, k̂i) =

[P1(k̂i) = P2(ẑi) = e ∧ i < n− 1 |
P1(k̂i) ∈ {0, 1} ∧ [P2(ẑi) ∈ {e, P1(k̂i)} ∨ P1(ẑi) = 1]].

(6.2?)

and each predicate in (6.6) with predicate

Aout(Di)(ẑi, k̂i) = [P2(ẑi) ∈ {e, P1(k̂i)} ∧ P1(ẑi) = 1]. (6.6?)

and each predicate in (6.7) with predicate

Acarry(Pi)(k̂i, k̂i+1) = [P1(k̂i) = e ∧ i < n− 1 |
P1(k̂i) = P1(k̂i+1) ∈ {0, 1}].

(6.7?)

All predicates in (6.8)–(6.10) are removed from the list of predicates. Instead, we
introduce predicates for all i ∈ [n] with weight increasing in i

Acare(Pi)(k̂i, k̂i+1) = [(P1(k̂i) = e ∧ i < n− 1) ∨ P1(k̂i+1) ∈ {0, 1}]. (6.8?)

All predicates in (6.11) are replaced by predicates which propagate the value of
P1(k̂n+1) to all variables P2(x̂κ+2

i) with i ∈ [n], using propagation tree T1, where

root(T1) = P1(k̂n+1);

leaves(T1) = {P2(x̂κ+2
i) | i ∈ [n]}.

(6.11a?)

For all i ∈ [n], we propagate the value of P2(x̂κ+2
i) to P2(x̂κi), where weights decrease

in i in predicates

Bjoin(Qκi)(x̂
κ+2
i , x̂κi) = [P2(x̂κ+2

i) = P2(x̂κi)]. (6.11b?)

87

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

Level II: Loading a Better Neighbor and Pushing the Comparator

Predicates in (6.12) remain unchanged

Bκloadi(x̂
κ̄
i , ŷ

κ
i) = [P1(x̂κ̄i) = P1(ŷκi) ∧ P2(x̂κ̄i) = κ]. (6.12?)

All predicates in (6.13) are replaced by predicates of weight increasing in i which
copy the value of P1(x̂κi) to xκ+2

i in predicates

Bcopy(Qκi)(x̂
κ
i , x̂

κ+2
i) = [P1(x̂κi) = P1(x̂κ+2

i)] (6.13a?)

Bκcopyi(x̂
κ+2
i , xκ+2

i) = [P1(x̂κ+2
i) = xκ+2

i]. (6.13b?)

For all (2, 1)-gates g ∈ G2, we replace all predicates in (6.14) by two predicates

Bcorr(gλ)(lλ+1(g), l̂1,2(g)) = [Pλ+1(l̂1,2(g)) = lλ+1(g)] (6.14a?)

Bcorr(g)(l̂1,2(g), l3(g)) = [Correctg(P1(l̂1,2(g)), P2(l̂1,2(g)), l3(g))]. (6.14b?)

For all (1, 2)-gates g ∈ G2, we replace all predicates in (6.14) with two predicates

Bcorr(gλ)(l1(g), lλ+2(g)) = [Correctg(l1(g), lλ+2(g))]. (6.14a?)

For all (1, 1)-gates g ∈ G2 with input link l1(g) and output link l2(g), we replace the
existing predicate (6.14) with a single predicate Bcorr(g)(l1(g), l2(g)), as defined in
predicates (6.14a?). Recall that in the single output link best, S2 returns the index
of the input vector which yields the larger binary output or e if both input vectors
yield the identical binary output. Predicate (6.15) is replaced by predicate

Bpropagate(k̂n+1, best) =

[best = e ∧ P1(k̂n+1) = P2(k̂n+1) |
best = P2(k̂n+1)].

(6.15?)

All predicates in (6.16)–(6.18) are replaced by the following predicates: For all i ∈ [n],
we introduce predicates which propagate the values of P2(k̂i+1) to P2(k̂i) in

Bcopy(Pi)(k̂i, k̂i+1) = [P2(k̂i) = P2(k̂i+1)] (6.16?)

and weights increase in i. Predicate (6.17) is removed from the list of predicates. The
value of P2(k̂1) is copied to all P2(l̂) with l̂ ∈ X̃L \ {x̂κi | i ∈ [n]}, which are not input
links of (1, 2)-gates, using propagation tree T2

root(T2) = P2(k̂1);

leaves(T2) = {P2(l̂) | l̂ ∈ X̃L \ {x̂κi | i ∈ [n]} not inp. link of a (1, 2)-gate}.
(6.18a?)

For all l̂1(g) ∈ X̃L \ {x̂κi | i ∈ [n]} which are input links for (1, 2)-gates with input link
l̂1(g) and output links l̂2(g), l̂3(g), we propagate the value of P2(l̂2(g)) and P2(l̂3(g))
to P2(l̂1(g)) in predicates

Bcopy(gλ)(l̂1(g), l̂λ+2(g)) = [P2(l̂1(g)) = P2(l̂λ+2(g))]. (6.18b?)

Weights decrease in the topological order of the gates and in λ within the gates.

88

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

Level III: Small Incentives

Predicates in (6.19)–(6.22) are removed from the list of predicates. Instead, we
introduce predicates for all i ∈ [n] with weight increasing in i in

C0
tighten(Pi)

(k̂i, ẑi) = [P2(ẑi) = P2(k̂i) = P1(k̂i)] (6.19a?)

C0
relax(Pi)

(ẑi) = [P2(ẑi) = e] (6.19b?)

C1
tighten(Pi)

(k̂i, ẑi) = [P2(ẑi) = P2(k̂i)] (6.19c?)

C2
tighten(Pi)

(k̂i) = [P1(k̂i) = P2(k̂i)] (6.19d?)

C2
relax(Pi)

(k̂i) = [P1(k̂i) = e]. (6.19e?)

Predicates in (6.23) are removed from the list of predicates. For all link variables
l̂1,2(g) ∈ X κL from (2, 1)-gates with output link l̂3(g) ∈ X κL , we introduce predicates

C0
value(g)(l̂1,2(g), l̂3(g)) =

[P2(l̂3(g)) = κ ∧ l̂1,2(g) 6= d |
P2(l̂3(g)) = κ̄ ∧ l̂1,2(g) = d];

(6.23b?)

for all link variables l̂(g) ∈ X κL \ {xκi | i ∈ [n]}, we introduce predicates

C1
value(g)(l̂(g)) =

[P2(l̂(g)) = κ ∧ P1(l̂(g)) 6= d |
P2(l̂(g)) = κ̄ ∧ P1(l̂(g)) = d].

(6.23c?)

Again, weights increase in the topological order of the gates.

Solution Mapping

Let a ∈ F(Φ?(I)) and for λ ∈ {0, 1} denote

a(xλ) := a(P1(x̂λ1)), . . . , a(P1(x̂λn)).

We drop the assignment, where it is clear from the context. Similar to Section 6.3,
function Ψ?(I, a) returns a(xλ) for λ ∈ {0, 1} if cC/F(a(xλ), I) > cC/F(a(xλ̄), I) and
a(x0) otherwise. This terminates the description of the reduction. #

6.4.6 Proving the Correctness and Tightness of the Reduction

The proof of correctness and tightness of the reduction given above follows the proof
of Theorem 6.1 in Section 6.3, as we again show properties of a locally optimal solution
a ∈ F(Φ?(I)).

89

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

Roadmap of the Proof In Lemma 6.9, we first focus on the set of predicates
which are trivially satisfied in a and derive properties for the involved variables in
Corollary 6.2. In Lemma 6.10, we show the connection between P1(k̂i) and P2(k̂n+1)
for all i ∈ [n+ 1]. In Lemma 6.11, we show that for λ = P2(k̂n+1), all link variables
in circuit Sλ̄ are set to d; by Corollary 6.2, all link variables in circuit Sλ are set
to binary values. In Lemma 6.12, we prove that best = e. We close our proof of
correctness by explicitly stating the variable assignment in a in Definition 6.3 and
show that any deviating assignment cannot be locally optimal in Lemma 6.13. To
consider tightness, we present the set R? in Definition 6.4. In Lemma 6.14, we prove
a structural invariant for the vector of variables P1(k̂i) for all i ∈ [n] in any sequence
of improving steps which starts in R? and fulfills some additional properties which
are useful in the prove of tightness of our reduction in Lemma 6.15. Theorem 6.2
then shows that (2, 3, 6)-MCA2-par is tight PLS-complete.

Lemma 6.9. All predicates in (6.1a?), (6.1b?), (6.7?)–(6.11b?), and (6.13a?)–(6.18a?)
are satisfied.

Proof. First, consider predicates (6.11a?) and (6.18a?) for propagation trees. The
value of each child node appearing for the first time can be set to the value of the
parent node and only predicates of lower weight are violated. Now, consider the
remaining predicates, except for predicates in (6.8?). Note that in each of these
predicates, at least one variable or projection of a variable appears for the first time,
with respect to the given order. In case of the propagation trees, all variables except
the root occur for the first time. In detail, P1(l̂2(g)) in (6.1a?) for all (1, 1)-gates
g ∈ G̃, P1(l̂λ+2(g)) in (6.1a?) for all (1, 2)-gates g ∈ G̃, λ ∈ {0, 1}, and l̂1,2(g) in (6.1a?),
P1(l̂3(g)) in (6.1b?), for all (2, 1)-gates g ∈ G̃. Furthermore, P1(k̂i+1) in (6.7?), P2(x̂κi)
in (6.11b?), P1(x̂κ+2

i) in (6.13a?), xκ+2
i in (6.13b?), P2(k̂n+1) in (6.15?), and P2(k̂i)

in (6.16?), for all i ∈ [n] and κ ∈ {0, 1}. Finally, l2(g) in (6.14a?) for all (1, 1)-gates
g ∈ G2, lλ+2(g) in (6.14a?) for all (1, 2)-gates g ∈ G2, Pλ+1(l̂1,2(g)) in (6.14a?), and
l3(g) in (6.14b?) for all (2, 1)-gates g ∈ G2, λ ∈ {0, 1}. Thus, the value of a variable
or a projection of a variable appearing for the first time can be set to satisfy the
predicate and only predicates of lower weight are violated. As shown above, all
predicates in (6.7?) are satisfied and this implies that all predicates in (6.8?) are
satisfied. �

Corollary 6.2. The following properties hold:

1. For all i ∈ [n] and κ ∈ {0, 1}, P1(x̂κi) = P1(x̂κ+2
i) = xκ+2

i .

2. For all l̂ ∈ X κL and κ ∈ {0, 1}, P1(l̂) ∈ {d,R(l, (xκ))}; for all l̂ ∈ X κL and κ ∈
{0, 1} with v(l̂) ∈ {0, 1}2, Pλ+1(l̂) = R(l, (xκ)); For all l ∈ X 2

L, l = R(l, (x2, x3));
for all l̂ ∈ X 2

L, Pλ+1(l̂) = R(l, (x2, x3)).

3. If P1(l̂) = d or v(l̂) = d for some l̂ ∈ X̃L ∪ X̃L then P1(l̂s) = d for all l̂s ∈ X̃L
and v(l̂s) = d for all l̂s ∈ X̃L which are successors of l̂ in the topological order
of H.

90

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

4. There exists some i ∈ [n − 1] such that P1(k̂j) = e for all j ∈ [i − 1] and
P1(k̂j) = P1(k̂n+1) for all j ∈ [i : n].

5. All predicates in (6.18b?) are satisfied.

6. For all i ∈ [n], κ ∈ {0, 1}, for all u ∈ VT1, P2(x̂κi) = P2(x̂κ+2
i) = P1(k̂n+1) =

v(u); for all i ∈ [n], w ∈ VT2 and l̂ ∈ X̃L \ {x̂κj | j ∈ [n], κ ∈ {0, 1}}, P2(k̂i) =

P2(k̂n+1) = P2(l̂) = v(w).

7. If P2(k̂n+1) = λ then P1(l̂) ∈ {0, 1} for all l̂ ∈ X λL and v(l̂1,2) ∈ {0, 1}2 for all
l̂1,2 ∈ X λL .

8. All predicates in (6.1c?) are satisfied.

Proof. 1. Follows since all predicates Bcopy(Qκi) in (6.13a?) and Bκcopyi in (6.13b?)
with i ∈ [n] and κ ∈ {0, 1} are satisfied by Lemma 6.9.

2. For all g ∈ G̃ and κ, λ ∈ {0, 1}, predicates Acorr(gλ) in (6.1a?), respectively
Acorr(gλ) in (6.1a?), Acorr(g) in (6.1b?) are satisfied because of Lemma 6.9. For
all g ∈ G2, predicates Bcorr(gλ) in (6.14a?), respectively Bcorr(gλ) in (6.14a?), and
Bcorr(g) in (6.14b?), are satisfied because of Lemma 6.9. From this, the claim
follows by induction.

3. For all g ∈ G̃ and λ ∈ {0, 1}, predicates Acorr(gλ) in (6.1a?), Acorr(gλ) in (6.1a?),
and Acorr(g) in (6.1b?) are satisfied because of Lemma 6.9. This implies for
every (1, ∗)-gate g ∈ G̃ that if P1(l̂(g)) = d for an input variable, then also
P1(l̂s(g)) = d for all output variables l̂s(g) of g. For every (2, 1)-gate g ∈ G̃, all
predicates in (6.1a?) and (6.1b?) being satisfied implies that if P1(l̂(g)) = d for
an input variable, then v(l̂1,2(g)) = d and subsequently P1(l̂3(g)) = d. From
this, the claim follows by induction.

4. Assume that such an index i does not exist. This implies that there exists some
j ∈ [n] such that P1(k̂j) ∈ {0, 1} and P1(k̂j+1) 6= P1(k̂j). In this case, predicate
Acarry(Pj) in (6.7?) is not satisfied; a contradiction to Lemma 6.9.

5. Let l̂1(g) be an input link variable of a (1, 2)-gate with two output links l̂2(g)
and l̂3(g) such that predicate Bcopy(gλ) for some λ ∈ {0, 1} in (6.18b?) is not
satisfied. All predicates in (6.18a?) are satisfied by Lemma 6.9 and therefore
P2(l̂2(g)) = P2(l̂3(g)) = µ ∈ {0, 1}; hence, Bcopy(gλ̄) is also unsatisfied. Setting
P2(l̂1(g))← µ improves predicates Bcopy(gλ), Bcopy(gλ̄) in (6.18b?) and may only
violate predicates of smaller weight.

6. By Lemma 6.9, predicates Bjoin(Qκi) in (6.11b?), Bcopy(Pi) in (6.16?) are satisfied
for all i ∈ [n] and κ ∈ {0, 1}; all predicates for propagation trees T1 in (6.11a?)
and T2 in (6.18a?) are satisfied; all predicates in (6.18b?) are satisfied by item (5).
From this, the claim follows by induction.

91

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

7. Suppose that the property does not hold. Recall that in H, constraints are
nodes and variables are hyperedges. Let l̂ be the smallest link variable with
respect to the topological sorting of H with v(l̂) = d if l̂ ∈ X λ̄L or P1(l̂) = d if
l̂ ∈ X λ̄L . By item (6), P2(l̂′) = λ for all l̂′ ∈ X λL . For all link variables l̂p smaller
than l̂, with respect to the topological sorting of H, P1(l̂p) 6= d if l̂p ∈ X λL or
v(l̂p) 6= d if l̂p ∈ X λL , by definition. The proof now splits on l̂:

a) If l̂ ∈ X λL then correctly setting l̂1,2(g) ∈ {0, 1}2 does not violate predicates
Acorr(gκ) in (6.1a?) for all κ ∈ {0, 1} and Acorr(g) in (6.1b?) and improves
C0

value(g) in (6.23b?) since P2(l̂3(g)) = λ as shown above, thus improving
the solution.

b) Now, let l̂ ∈ X λL \ {x̂λ1 , . . . , x̂λn}. Three cases have to be considered:

i. If l̂ = ẑλi for some i ∈ [n], then setting P1(ẑλi) to its correct value in
{0, 1} does not violate the corresponding predicate Acorr(g) in (6.1a?),
Aκjoini in (6.1c?), and improves Cvalue(g) in (6.23c?), thus improving the
solution.

ii. If l̂ = ŷλi for some i ∈ [n], then setting P1(ŷλi) to its correct value in
{0, 1} does not violate the corresponding predicate Acorr(g) in (6.1a?),
Bκloadi in (6.12?) and improves Cvalue(g) in (6.23c?), thus improving the
solution.

iii. Otherwise, let g ∈ Gλ be the gate such that l̂ is an output variable of
g. We distinguish two cases:

First, let l̂ be the input variable to a (1, ∗)-gate g′ ∈ Gλ. By item (3),
P1(l̂o) = d for all output links l̂o of g′. Setting P1(l̂1) to its correct
binary value does not violate predicates Acorr(g′), Acorr(g′κ), Acorr(g),
or Acorr(gκ) in (6.1a?) and Acorr(g) in (6.1b?) for all κ ∈ {0, 1} and
improves Cvalue(g) in (6.23c?), thus improving the solution.

Now, let l̂ be an input variable of a (2, 1)-gate g′ ∈ Gλ. By item (3),
v(l̂1,2(g′)) = d. Setting P1(l̂) to its correct binary value does not
violate Acorr(gκ), in (6.1a?) and Acorr(g) in (6.1b?) and improves Cvalue(g)

in (6.23b?), thus improving the solution.

8. Let λ = P2(k̂n+1). By item (7), P1(ẑλi) ∈ {0, 1} for all i ∈ [n]. Assume
there exists some i ∈ [n] and κ ∈ {0, 1} such that predicate Aκjoini in (6.1c?) is
unsatisfied. Setting ẑi ← (P1(ẑλi), λ) does not violate predicate Aκ̄joini in (6.1c?),
improves predicate Aκjoini in (6.1c?), and may only violate predicates of smaller
weight.

�

Lemma 6.10. P2(ẑi) = P1(k̂i) = P2(k̂n+1) for all i ∈ [n].

Proof. By Corollary 6.2 (1), P1(x̂κi) = xκ+2
i for all i ∈ [n] and κ ∈ {0, 1}. By

Corollary 6.2 (2), the value computed in best is correct with respect to the input.

92

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

By definition of S2, if best = λ ∈ {0, 1} then there exists some pos ∈ [n], such that
Z(xλ)pos > Z(xλ̄)pos and Z(xλ)r = Z(xλ̄)r for all r ∈ [pos − 1]; if best = e then
for all r ∈ [n], Z(xλ)r = Z(xλ̄)r and for simplicity reasons, we will treat this as
pos = n+ 1. All predicates in (6.1c?) are satisfied by Corollary 6.2 (8) and therefore
P1(ẑi) ∈ {P1(ẑ0

i), P1(ẑ1
i)} for all i ∈ [n]. Recall that P1(ẑi) ∈ {0, 1} by definition.

By Corollary 6.2 (4), there exists some p ∈ [n − 1] such that P1(k̂j) = e for all
j ∈ [p − 1] and P1(k̂j) = P1(k̂n+1) for all j ∈ [p : n]. Let λ = P2(k̂n+1). By
Corollary 6.2 (6), P2(k̂i) = P2(k̂n+1) = λ for all i ∈ [n].
First, we show that P2(ẑi) = e for all i ∈ [p− 1]. Assume that the claim does not

hold and let i ∈ [p − 1] be minimal with P2(ẑi) 6= e. This implies that predicate
Acorr(Di) in (6.2?) is unsatisfied. Setting P1(k̂i)← P2(ẑi) does not violate predicate
Acarry(Pi−1) in (6.7?) (only defined if i > 1), improves predicate Acorr(Di) in (6.2?), and
only violates predicates of smaller weight. P2(ẑpos) 6= e since all predicates in (6.1c?)
are satisfied by Corollary 6.2 (8). This implies that p ≤ pos. In the following, we
consider three cases and show that either p = 1 and P1(k̂i) = P2(ẑi) = P2(k̂n+1) for
all i ∈ [n] or the solution can be improved.

1. Let p = 1 and P1(k̂1) = λ. Then, Corollary 6.2 (4) implies that P1(k̂i) = λ for
all i ∈ [n+ 1]. Assume there exists some i ∈ [n] such that P2(ẑi) 6= P2(k̂i). The
proof now splits on P2(ẑi):

a) First, let P2(ẑi) = e. Setting P2(ẑi)← P2(k̂i) does not violate predicates
Aκjoini in (6.1c?) for all κ ∈ {0, 1}, Acorr(Di) in (6.2?), and Aout(Di) in (6.6?),
improves predicate C0

tighten(Pi)
in (6.19a?) and only violates predicates of

smaller weight.

b) Now, let P2(ẑi) = λ̄. This implies that predicate Aout(Di) in (6.6?) is un-
satisfied and setting ẑi ← (P1(k̂i), λ) improves the solution. If previously,
P1(ẑi) = 0, then predicate Acorr(Di) in (6.2?) improves. Otherwise, predi-
cate Acorr(Di) in (6.2?) remains satisfied, predicate C0

tighten(Pi)
in (6.19a?)

improves, and only predicates of smaller weight become violated.

2. Let p > 1 and P1(k̂p) = λ. Then, by definition P1(k̂p−1) = e and P2(ẑp−1) = e

as shown above. Setting P1(k̂p−1)← λ does not violate predicates Acarry(Pp−2)

in (6.7?) (only defined if p > 2), Acorr(Dp−1) in (6.2?), Aout(Dp−1) in (6.6?),
Acarry(Pp−1) in (6.7?), Acare(Pp−1), and Acare(Pp−2) in (6.8?) (only defined in p > 2).
Predicate C2

tighten(Pp−1) in (6.19d?) improves and only predicate C2
relax(Pp−1)

in (6.19e?) of lower weight becomes violated.

3. Let P1(k̂p) = λ̄. Recall that p ∈ [pos]. Predicate Bpropagate in (6.15?) is
satisfied by Lemma 6.9 and therefore best 6= e; thus, pos < n + 1. Recall
that by definition, P1(k̂p−1) = e (only defined if p > 1). Two cases have to be
considered:

a) First, let p < pos. Then, Z(x0)p = Z(x1)p and the proof now splits on the
value of P2(ẑp).

93

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

i. If P2(ẑp) = e then setting P1(k̂p) ← e does not violate predicates
Acorr(Dp) in (6.2?), Acarry(Pp−1) in (6.7?) (only defined if p > 1), Aout(Dp)

in (6.6?), Acarry(Pp) in (6.7?), and Acare(Pp−1) (only defined in p > 1),
Acare(Pp) in (6.8?). Predicate C2

tighten(Pi)
in (6.19d?) is still unsatisfied

but predicate C2
relax(Pi)

in (6.19e?) improves.

ii. Now, let P2(ẑp) ∈ {0, 1}. Setting P2(ẑp)← e does not violate predi-
cates Aκjoinp in (6.1c?) for all κ ∈ {0, 1}, Acorr(Dp) in (6.2?), and Aout(Dp)

in (6.6?). Predicate C0
tighten(Pp) in (6.19a?) remains unsatisfied and

predicate C0
relax(Pp) in (6.19b?) improves.

b) Now, let p = pos. Predicate Aκjoini in (6.1c?) is satisfied for all κ ∈ {0, 1} by
Corollary 6.2 (8) and therefore P2(ẑp) ∈ {0, 1}. This implies that predicate
Acorr(Dp) in (6.2?) is satisfied. The proof now splits on the value of P2(ẑp):

i. If P2(ẑp) = λ, then setting P1(k̂p) ← λ does not violate the heavier
predicates Acorr(Dp) in (6.2?) and Acarry(Pp−1) in (6.7?) (only defined
if p > 1)), improves predicate Aout(Dp) in (6.6?) and only predicates
of lower weight become violated.

ii. If P2(ẑp) = λ̄, then setting ẑp ← (P1(ẑλp), λ) does not violate predicates
Aκjoinp in (6.1c?) for all κ ∈ {0, 1}, Acorr(Dp) in (6.2?), Aout(Dp) in (6.6?),
C0

tighten(Pi)
in (6.19a?), and C0

relax(Pi)
in (6.19b?) and improves predi-

cate C1
tighten(Pi)

in (6.19c?). Note that predicates Aκjoinp in (6.1c?) are
satisfied for all κ ∈ {0, 1} and therefore predicate Aout(Dp) in (6.6?)
was not satisfied prior to changing the value of ẑp.

�

Lemma 6.11. Set λ = P2(k̂n+1). Then, P1(l̂) = d for all l̂ ∈ X λ̄L \ {x̂λ̄1 , . . . , x̂λ̄n},
v(l̂1,2) = d for all l̂1,2 ∈ X λ̄L , and P1(x̂λ̄i) = P1(ŷλi).

Proof. By Corollary 6.2 (6), P2(k̂n+1) = P2(l̂) for all l̂ ∈ X̃L \ {x̂κ1 , . . . , x̂κn} and
P2(x̂κi) = P1(k̂n+1) for all i ∈ [n] and κ ∈ {0, 1}. Consider the two claims of the
lemma:

1. Recall that in H, constraints are nodes and variables are hyperedges. Let l̂
be the largest link variable with respect to the topological sorting of H with
v(l̂) 6= d if l̂ ∈ X λ̄L or P1(l̂) 6= d if l̂ ∈ X λ̄L . By Corollary 6.2 (6), P2(l̂′) = λ for
all l̂′ ∈ X λ̄L . Corollary 6.2 (3) implies that for all link variables l̂s larger than l̂,
with respect to the topological sorting of H, v(l̂s) = d if l̂s ∈ X λ̄L or P1(l̂s) = d

if l̂s ∈ X λ̄L . The proof now splits on l̂.

a) If l̂ ∈ X λ̄L then setting v(l̂) ← d does not violate predicates Acorr(gκ)

in (6.1a?) for all κ ∈ {0, 1} and Acorr(g) in (6.1b?) and improves C0
value(g)

in (6.23b?) since P2(l̂3(g)) = λ as shown above, thus improving the solution.

94

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

b) Now, let l̂ ∈ X λ̄L \ {x̂λ̄1 , . . . , x̂λ̄n}. Three cases have to be considered:

i. If l̂ = ẑλ̄i for some i ∈ [n] then setting P1(ẑλ̄i)← d does not violate the
corresponding predicates Acorr(g) in (6.1a?) and Aκjoini in (6.1c?) for
all κ ∈ {0, 1}, since P2(ẑi) = λ by Lemma 6.10, improves predicate
C1

value(g) in (6.23c?) and thus improves the solution.

ii. If l̂ = ŷλ̄i for some i ∈ [n], then setting P1(ŷi)← d does not violate the
corresponding predicate Acorr(g) in (6.1a?) and Bκloadi in (6.12?) for all
κ ∈ {0, 1} since P2(x̂λi) = λ, improves predicate C1

value(g) in (6.23c?)
and therefore improves the solution.

iii. Otherwise, let g ∈ Gλ̄ be the gate such that l̂ is an output variable of
g. We distinguish two cases:

First, let l̂ be the input variable to a (1, ∗)-gate g′ ∈ Gλ̄. Setting
P1(l̂) ← d does not violate predicates Acorr(g), Acorr(gκ), Acorr(g′), or
Acorr(g′κ) in (6.1a?) and Acorr(g) in (6.1b?) for all κ ∈ {0, 1}, improves
C1

value(g) in (6.23c?) and thus improves the solution.

Now, let l̂ be an input variable to a (2, 1)-gate g′ ∈ Gλ̄. Setting
P1(l̂)← d does not violate predicates Acorr(g) in (6.1a?) and Acorr(g′κ)

in (6.1a?) for all κ ∈ {0, 1}, improves C1
value(g) in (6.23c?) and thus

improves the solution.

2. Assume there exists some i ∈ [n] such that P1(x̂λ̄i) 6= P1(ŷλi). Since P2(x̂λ̄i) = λ,
predicate Bλloadi in (6.12?) is unsatisfied. Setting P1(x̂λ̄i) ← P1(ŷλi) improves
predicate Bλloadi in (6.12?) and does not violate the corresponding heavier
predicate Acorr(g) in (6.1a?), since P1(l̂) = d for all l̂ ∈ X λ̄L \ {x̂λ̄i | i ∈ [n]}.

�

Lemma 6.12. best = e.

Proof. Assume that best = λ ∈ {0, 1}. Then, cC/F(xλ, I) > cC/F(xλ̄, I) by Corol-
lary 6.2, (2) and the definition of circuit S2. By Lemma 6.11, P1(x̂λ̄i) = P1(ŷλi) for
all i ∈ [n]. But cC/F((P1(ŷλi))ni=1, I) ≥ cC/F(xλ, I) by definition of variables ŷλi . A
contradiction. �

Definition 6.3. We define a terminating assignment B ∈ F(2,3,6)-MCA2-par(I) to fulfill
the following conditions: Set λ = P2(k̂n+1). For all i ∈ [n], P1(k̂i) = P1(k̂n+1) = λ,
best = e, P1(x̂λ̄i) = P1(ŷλi), P1(x̂0

i) = P1(x̂1
i) = P1(x̂2

i) = P1(x̂3
i) = x2

i = x3
i . For

all i ∈ [n], κ ∈ {0, 1}, and u ∈ VT1, P2(x̂κi) = P2(x̂κ+2
i) = P1(k̂n+1) = v(u); for all

w ∈ VT2 and l̂ ∈ X̃L \ {x̂κi | i ∈ [n]}, P2(k̂i) = P2(k̂n+1) = P2(l̂) = v(w). For all
l̂ ∈ X λL , P1(l̂) = R(l̂, (xλ)); for all l̂ ∈ X λL and κ ∈ {0, 1}, Pκ+1(l̂) = R(l̂, (xλ)). For
all l̂1,2 ∈ X λ̄L , v(l̂1,2) = d; for all l̂ ∈ X λ̄L \ {x̂λ̄i | i ∈ [n]}, P1(l̂) = d. For all i ∈ [n],
P1(ẑi) = P1(ẑλi) ∈ {0, 1} and P2(ẑi) = λ. For all l ∈ X 2

L, l = R(l, (x2, x3)). For all
l̂ ∈ X 2

L and κ ∈ {0, 1}, Pκ+1(l̂) = R(l, (x0, x1)).

95

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

Lemma 6.13. Every locally optimal assignment is a terminating assignment.

Proof. Assume that some assignment A is locally optimal with λ = P2(k̂n+1). By
Lemma 6.12, best = e. By Lemma 6.10, P2(ẑi) = P1(k̂i) = P1(k̂n+1) = λ for
all i ∈ [n]. By Corollary 6.2 (8), all predicates in (6.1c?) are satisfied and this
implies that P1(ẑi) = P1(ẑλi). By Lemma 6.11, P1(x̂λ̄i) = P1(ŷλi) for all i ∈ [n]. By
Corollary 6.2 (2), (7), P1(l̂) = R(l̂, (xλ)) for all l̂ ∈ X λL , Pκ+1(l̂) = R(l̂, (xλ)) for all
l̂ ∈ X λL and κ ∈ {0, 1}. By Lemma 6.11, v(l̂) = d for all l̂ ∈ X λ̄L , P1(l̂) = d for all
l̂ ∈ X λ̄L \ {x̂λ̄i | i ∈ [n]}. By Corollary 6.2 (2), v(l) = R(l, (x2, x3)) for all l ∈ X 2

L
and Pκ+1(l̂) = R(l̂, (x2, x3)) for all l̂ ∈ X 2

L and κ ∈ {0, 1}. By Corollary 6.2 (6),
P2(x̂κi) = P2(x̂κ+2

i) = P1(k̂n+1) = v(u) = λ for all i ∈ [n] κ ∈ {0, 1}, u ∈ VT1 and
P2(k̂i) = P2(k̂n+1) = P2(l̂) = v(w) = λ for all w ∈ VT2 and l̂ ∈ X̃L \ {x̂κi | i ∈ [n], κ ∈
{0, 1}}. Variable best = e and for all i ∈ [n], P1(x̂λ̄i) = P1(ŷλi) by Lemma 6.11 and
therefore P1(x̂0

i) = P1(x̂1
i) by definition of variables ŷκi . �

Definition 6.4 (The Set R?). Fix some solution a ∈ F(Φ?(I)). For k ∈ [n], denote
succ(k) := {l ∈ L | l is on a path in H from input link Xk to some output link
Zi, i ∈ [n]}. Let X λsucc(k) denote the set of link variables in X λL ∪ X λL defined by links

from succ(k). With slight abuse of notation, we write a(l̂) = d for l̂ ∈ X λsucc(k) and

k ∈ [n] to denote a(P1(l̂)) = d if l̂ ∈ X λL and a(l̂) = d if l̂ ∈ X λL . We define the
following predicates, where for k ∈ [n], λ ∈ {0, 1}

Q?1(a, λ, k) := [a(l̂) = d ∀ l̂ ∈ X λsucc(k)] and

Q?2(a, λ) := [a(P1(k̂i)) = a(P2(ẑi)) = λ ∀i ∈ [n]].

We define R? to be the set of all solutions a? ∈ F(Φ?(I)) which satisfy the following
properties:

1. All predicates in (6.1a?)–(6.1c?) are satisfied.

2. There exists some λ ∈ {0, 1} such that
a) a?(xλ̄) = Improve(a?(xλ), I),
b) Q?1(a, λ̄, k) is satisfied for some k ∈ [n], and
c) Q?2(a, λ) is satisfied.

Lemma 6.14. Let λ ∈ {0, 1} and let σ be a sequence of improving solutions from
F(Φ?(I)), where for the first solution a0 ∈ σ items (1), (2b), and (2c) from Defini-
tion 6.4 are satisfied and for each solution a ∈ σ, a0(xκ) = a(xκ) for all κ ∈ {0, 1}.
Fix some a ∈ σ and refer to pos(a0) by pos. Then, all predicates in (6.1a?)–(6.1c?)
are satisfied in a and

1. There exist p, q ∈ [n] with p < pos and [q = p or q > pos] and

a(P1(k̂i)) = e ∀ i ∈ [p− 1]

a(P1(k̂i)) = λ̄ ∀ i ∈ [p : q − 1]

a(P1(k̂i)) = λ ∀ i ∈ [q : n].

(INV?)

96

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

2. If i < pos then a(P2(ẑi)) ∈ {e, a(P1(k̂i))}.

3. Predicate Acorr(Di) in (6.2?) is satisfied for all i ∈ {pos} ∪ [q : n].

Proof. The proof of this Lemma follows the proof of Lemma 6.7 in Section 6.3. We
prove the lemma by induction on the number of improving steps. By definition, (INV?)
is satisfied for a0. Now, let a be some solution in σ. Since a is fixed in the following,
we omit the assignment where it is clear from the context, for sake of readability. We
show that every step which violates (INV?) does not improve solution a. For this,
we fix some i ∈ [n] and investigate all changes to P1(k̂i) and ẑi which affect (INV?).
These variables occur in predicates Acorr(Di) in (6.2?), Aout(Di) in (6.6?), Acarry(Pi)

in (6.7?), and Acare(Pi) in (6.8?) for all i ∈ [n]; predicates of smaller weight in which
P1(k̂i) and ẑi appear will not be considered. For sake of readability, we again refer
to predicates from Acorr(Di) in (6.2?) to Acare(Pi) in (6.8?) only by their number. A
predicate with the number (X) but defined by the parameter i+1 is denoted by (X)+.
By assumption, all predicates in (6.1a?)–(6.1c?) are satisfied in a0 and as they are
the heaviest among the list of predicates, they remain satisfied throughout σ. Hence,
we skip these predicates when listing satisfied predicates.

First, consider improvements which originate from setting P2(ẑi) with i ∈ [n] to a
new value. We have to show that properties 2 and 3 remain satisfied.

1. Let i < pos and P1(k̂i) = e. Property 2 is satisfied and therefore P2(ẑi) = e;
hence, predicate (6.2?) is satisfied. Setting P2(ẑi) ← β ∈ {0, 1} does not
improve the solution, since predicate (6.2?) becomes violated.

2. Let i < pos and P1(k̂i) = µ ∈ {0, 1}. Property 2 is satisfied and therefore
P2(ẑi) ∈ {e, µ}. Predicate (6.1c?) is satisfied and this implies that P1(ẑi) = zµi .
Consider setting ẑi to a new value with P2(ẑi)← µ̄. Predicates in (6.1c?) need
to remain satisfied and therefore ẑi ← (zµ̄i , µ̄). Predicate (6.2?) also needs to
remain satisfied and this implies that zµ̄i = 1. By assumption, i < pos and by
definition this implies that zµi = 1. This implies that predicate (6.6?) is satisfied
in a. Setting ẑi ← (zµ̄i , µ̄) does not improve the solution since predicate (6.6?)
becomes violated.

3. Consider ẑi for some i ∈ {pos} ∪ [q : n]. By property 3, predicate Acorr(Di)
in (6.2?) is satisfied. Setting ẑi to a new value in an improving step cannot
violate the satisfied predicates Aκjoini in (6.1c?) for κ ∈ {0, 1} or Acorr(Di) in (6.2?).
We will show below that in each improving step, q does not decrease if q > pos.
Hence, (INV?) is satisfied after each improving step where the value of ẑi is
changed.

Now, consider variables P1(k̂i) for all i ∈ [n]. Recall that by assumption P1(k̂n−1),
P1(k̂n) ∈ {0, 1} and (pos ∈ [2 : n− 1] or pos = n+ 1). We distinguish the following
cases.

97

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

1. Let i ≤ p− 1. Then, P1(k̂i) = e and (i = 1 or P1(k̂i−1) = e). Predicates (6.1c?)
and (6.2?) are satisfied and therefore P2(ẑi) = e and P1(ẑ0

i) = P1(ẑ1
i). The

proof now splits on P1(k̂i+1):

a) If P1(k̂i+1) = e then setting P1(k̂i)← µ ∈ {0, 1} does not improve the solu-
tion, since predicates (6.2?) and (6.6?) do not improve and predicate (6.7?)
becomes violated.

b) If P1(k̂i+1) = µ ∈ {0, 1} then setting P1(k̂i)← µ does not violate (INV?).
Setting P1(k̂i)← µ̄ does not improve the solution, since predicates (6.2?)
and (6.6?) do not improve and predicate (6.7?) becomes violated.

2. Let i = p and p < pos. Then i ≤ n − 1, P1(k̂i) = µ ∈ {0, 1}, (i = 1
or P1(k̂i−1) = e), and P1(k̂i+1) = µ. Property 2 is satisfied and therefore
P2(ẑi) ∈ {e, µ}. Setting P1(k̂i) ← µ̄ does not improve the solution, since
predicates (6.2?) and (6.6?) do not improve and predicate (6.7?) becomes
violated. Now, consider setting P1(k̂i)← e. If P2(ẑi) = e then setting P1(k̂i)←
e does not violate (INV?). If P2(ẑi) 6= e then setting P1(k̂i) ← e does not
improve the solution, since predicate (6.2?) becomes violated.

3. Let i = p = pos. Then, i ≤ n− 1, P1(k̂i) = µ ∈ {0, 1}, (i = 1 or P1(k̂i−1) = e)
, (µ = λ̄ or µ = λ = P1(k̂i+1)). Predicates (6.1c?) and (6.2?) are satisfied
and therefore P2(ẑi) 6= e and (P2(ẑi) = µ or P1(ẑi) = 1). Setting P1(k̂i) ← e
does not improve the solution, since predicate (6.2?) becomes violated. Now,
consider setting P1(k̂i) ← µ̄. If P2(ẑi) = µ then setting P1(k̂i) ← µ̄ does not
improve the solution, since predicate (6.2?) becomes violated. If P2(ẑi) = µ̄,
then predicate (6.2?) being satisfied implies that P1(ẑi) = 1. By definition,
i = pos and this implies that P2(ẑi) = λ̄. If µ = λ and P2(ẑi) = λ̄ then setting
P1(k̂i)← µ̄ does not violate (INV?). Otherwise, setting P1(k̂i)← µ̄ does not
improve the solution, since predicate (6.2?) becomes violated.

4. Let p < i < q or i > q. Then, P1(k̂i−1) = P1(k̂i) = µ ∈ {0, 1}. Setting
P1(k̂i) ← β ∈ {e, µ̄} if i ∈ [n − 2] or P1(k̂i) ← µ̄ if i ∈ {n, n − 1} does not
improve the solution, since predicate (6.7?)+ becomes violated.

Let us remark that the value of P1(k̂n+1) is unknown. Note that for i = n, the
above case especially implies that if P1(k̂n+1) = µ̄ then this cannot lead to a
change of P1(k̂n) which improves the solution.

5. Let i = q and q > pos. Then, P1(k̂i−1) = λ̄, P1(k̂i) = λ, and predicate (6.7?)+

is unsatisfied. Setting P1(k̂i)← λ̄ does not violate (INV?). Setting P1(k̂i)← e
if i ∈ [n − 2] does not improve the solution, since predicate (6.7?)+ does not
improve and predicate (6.8?)+ becomes violated.

�

Lemma 6.15. (Φ?,Ψ?) is a tight reduction from Circuit/Flip.

98

6.4 (2, 3, 6)-MCA2-par is Tight PLS-Complete

Proof. This proof follows the proof of Lemma 6.8 in Section 6.3. Here, we use the
definition of R? given in Definition 6.4. Note that by construction, all terminating
assignments are contained in R?. Lemma 6.13 implies that R? contains all locally
optimal solutions. Now, let a ∈ R?. We consider an arbitrary sequence σ of improving
steps and show for the first solution a′ ∈ R? with a′ 6= a which is reached during
the sequence, that either Ψ?(I, a) = Ψ?(I, a′) or Ψ?(I, a′) is a better neighbor of
Ψ?(I, a). By definition, all predicates in (6.1a?)–(6.1c?) are satisfied in a and as
they are the heaviest among the set of predicates, they remain satisfied throughout
σ. First, consider the case cC/F(a(x0), I) = cC/F(a(x1), I). Then, a(x0) = a(x1)
since the cost of every solution is unique by assumption. The input vectors a(x0)
and a(x1) cannot be changed in σ, since by (2a), a(xλ̄) = Improve(a(xλ), I) and
thus a(P1(ŷλi)) ∈ {d, a(P1(xλ̄))} for all λ ∈ {0, 1} and i ∈ [n]. This implies that
Ψ?(I, a′) = Ψ?(I, a) = a(x0) for every solution a′ in σ.

Now, let cC/F(a(xλ̄), I) > cC/F(a(xλ), I). We split σ into two phases. Lemma 6.13
implies that in a locally optimal solution a? ∈ F(Φ?(I)), a?(x0) = a?(x1). Thus, input
vectors x0 or x1 have to change at least once.

Phase One: This Phase Continues Until Input Vector x0 or x1 Changes Since
Q?1(a, λ̄, k̂) is satisfied for some k̂ ∈ [n] and by assumption on S, there exists a path
in S from input link Xk̂ to all output links Zi with i ∈ [n], therefore a(P1(ẑλ̄i)) = d
for all i ∈ [n]. By assumption, all predicates in (6.1c?) are satisfied and therefore
a(P1(ẑλi)) ∈ {0, 1} for all i ∈ [n]. All predicates in (6.1a?) and (6.1b?) are satisfied
and therefore a(l̂) 6= d for all l̂ ∈ X λsucc(i) and i ∈ [n]. Since a ∈ R?, a(xλ̄) =

Improve(a(xλ), I) and there are no predicates which would now become satisfied
by changing the value of some P1(x̂λ̄i) with i ∈ [n]. For some P1(ŷλi) to change its
binary value in the sequence σ, thus incentivizing changes to P1(x̂λ̄i), requires that
some P1(x̂λi) with i ∈ [n] changes its value to produce the new output. This implies
that input vector a(xλ̄) cannot be changed and input vector a(xλ) changes first. Let
a◦ ∈ F(Φ?(I)) be a solution which is reached at the end of phase one. There exists
some k ∈ [n] such that a◦(P1(ŷλ̄k)) ∈ {0, 1}, a◦(P1(ŷλ̄k)) 6= a◦(P1(x̂λk)) and a◦(l̂) = d

for all l̂ ∈ X λsucc(k). Thus, Q
?
1(a◦, λ, k) is satisfied.

Now, we show that Q?2(a◦, λ̄) is satisfied. Let σ1 denote the subsequence of σ until
the end of phase one. We are under the conditions of Lemma 6.14, when replacing a0

by a, σ by σ1, and λ by λ̄. Hence, (INV?) holds during σ1. Q?1(a◦, λ, k) is satisfied
and this implies that a◦(P1(ẑλi)) = d for all i ∈ [n]. By Lemma 6.14, all predicates
in (6.1c?) are satisfied and this implies that a◦(P2(ẑi)) = λ̄ for all i ∈ [n]. Now, we
show that a◦(P1(k̂1)) = a◦(P1(k̂n)) = λ̄. Lemma 6.14 then implies that a◦(P1(k̂i)) = λ̄
for all i ∈ [n] and hence, Q?2(a◦, λ̄) is satisfied.

1. Recall that we assumed that Z(x)1 = 0 for all x ∈ FC/F(I); hence, pos(a) > 1.
By Lemma 6.14 (2), a◦(P1(k̂1)) = a◦(P2(ẑ1)) = λ̄.

2. Now, we show that a◦(P1(k̂n)) = λ̄. Recall that by definition, P1(k̂n) ∈ {0, 1}.
Assume that a◦(P1(k̂n)) = λ. Then, by property (3) of (INV?), predicate (6.2?)

99

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

is satisfied. This implies that a◦(P2(ẑn)) ∈ {e, λ}; recall that we assumed that
Z(x)n = 0 for all x ∈ FC/F(I). A contradiction.

Phase Two: This Phase Starts with Changing the Value of xλ and Terminates
when the Entire Neighbor is Loaded For some S ⊆ {xλ1 , . . . , xλn}, denote a(xλ/S)
the input vector when flipping all input bits h ∈ S. Let h1 be the bit in which
a(xλ) and a(xλ̄) = Improve(a(xλ), I) differ and let h2 be the bit in which a(xλ̄)
and Improve(a(xλ̄), I) differ. Phase one terminated by reaching a solution a◦ which
satisfies Q?1(a◦, λ, h) for some h ∈ {h1, h2} and Q?2(a, λ̄). The input vectors are still
unmodified, thus a(xi) = a◦(xi) for all i ∈ [0, 3]. Denote a(P1(k̂)) := (a(P1(k̂i)))

n
i=1.

Let setting P1(xλh)← a◦(P1(yλ̄h)) with h ∈ {h1, h2}, thus satisfying predicate (6.12?)
be the first change to a◦(xλ); denote the resulting assignment a1. By definition of
I, a(xλ/{h1}) is the best neighbor of x and this implies that cC/F(a(xλ/{h1}), I) ≥
cC/F(a(xλ/{h}), I); hence, pos(a1) = n + 1. Let σ′ be an arbitrary sequence of
improving steps without setting P1(xλ

h̄
) to a new value, where h̄ ∈ {h1, h2} \ {h}

and let a† ∈ σ′ be a solution in σ′. Note that we are under the conditions of
Lemma 6.14 when replacing a0 by a1, σ by σ′, and λ by λ̄. Lemma 6.14 now implies
that a†(P1(k̂)) = uw, where u ∈ e∗ and w ∈ λ̄∗. For all i ∈ [n], predicates Acorr(Di)

in (6.2?) are satisfied and therefore a†(P2(ẑi)) ∈ {e, λ̄} and a†(P1(ẑλ̄i)) ∈ {0, 1}. All
predicates in (6.1a?) and (6.1b?) are satisfied by assumption and this implies that
input vector a†(xλ̄) cannot be modified. No locally optimal solution can be reached
this way, and therefore P1(xλ

h̄
) is set to a new value in some solution during σ; denote

the resulting solution a′. This requires that Q?1(a′, λ, h̄) is satisfied; with the same
argumentation as in phase one, Q?2(a′, λ̄) is satisfied. Hence, we have reached solution
a′ ∈ R for which Ψ(I, a′) is a better neighbor of Ψ(I, a). �

Theorem 6.2. Circuit/Flip ≤pls (2, 3, 6)-MCA2-par using a tight reduction.

Proof. By Lemma 6.13, every locally optimal assignment A for Φ?(I) is a final
assignment. Ψ?(I,A) is locally optimal for I, since x0 = x1 and this implies that
cC/F(xλ, I) ≥ cC/F((P1(ŷλ̄i))ni=1, I), where λ = best. Thus, no improving flip of an
input bit is possible for Ψ?(I,A). By Lemma 6.15 the reduction is tight.

Now, we show that the resulting set of constraints is bipartite. We slightly extend the
construction described up to now in order to allow an easier coloring. First, consider
the propagation trees in (6.11a?) and (6.18a?). Each leaf can be colored independent
of the colors of the other leaves. This may require to extend the tree by certain nodes
of degree two. Next, consider the predicates (6.1a?), (6.1b?), and (6.14a?), (6.14b?),
describing the correct work of the circuits. Recall that we assumed that every
gate with three links is solely adjacent to gates with two links. Implanting gates
with two links into some links allows us to color the predicates (6.1a?), (6.1b?),
and (6.14a?), (6.14b?) with two colors independent of the colors given to the inputs
and outputs x̂0

i , x̂
1
i , ŷ

0
i , ŷ

1
i , ẑ

0
i , ẑ

1
i , x

2
i , x

3
i for all i ∈ [n] and best. We choose the

following coloring: For all i ∈ [n] and κ ∈ {0, 1}, variables x̂κi , xκ+2
i are blue, all

variables x̂κ+2
i , ŷκi are red. For all i ∈ [n] and κ ∈ {0, 1}, if i is even then variables

100

6.5 A Reduction to Binary Logic

ẑκi , k̂i are blue and ẑi is red, if i is odd then variables ẑκi , k̂i are red and ẑi is blue.
Variable k̂n+1 has the opposite color of k̂n and variable best has the color of k̂n. We
show that this coloring is a correct 2-coloring by giving the parameter list for each
of the remaining constraints. For all i ∈ [n] and κ ∈ {0, 1}, constraint (6.1c?) has
variables ẑκi , ẑi, constraint Di has variables ẑi, k̂i, constraint Pi has variables k̂i, k̂i+1.
For each i ∈ [n] and κ ∈ {0, 1}, constraint Qi has variables x̂κ+2

i , x̂κi , each constraint
in (6.12?) has variables x̂κ̄i , ŷ

κ
i , each constraint in (6.13b?) has variables x̂κ+2

i , xκ+2
i ;

constraint (6.15?) has variables k̂n+1, best. �

6.5 A Reduction to Binary Logic

In this section, we present a general technique to tightly reduce instances of (p, q, r)-VCA
with p, q ∈ N and r ≥ 3 to VCA-instances over solely binary variables.

6.5.1 The Reduction

The approach we present is iterative. We first describe how to reduce the maximum
valence of each variable by one in an arbitrary given (p, q, r)-VCA-instance.

Lemma 6.16. For all p, q ∈ N and r ≥ 3, (p, q, r)-VCA ≤pls (p, q, r−1)-VCA using
a tight reduction.

Proof. We present the reduction function Φ and the solution mapping Ψ. Let
I = (C ,X) ∈ D(p,q,r)-VCA with p, q,∈ N, and r ≥ 3, variable set X , and constraint
set C . We construct an instance Φ(I) = (C ′,X ′) ∈ D(p,q,r−1)-VCA with a set of
variables X ′ and a constraint set C ′. Recall that we denote the valence of a variable
x ∈ X by r(x). Each variable x ∈ X with r(x) < r also belongs to X ′. Each variable
x ∈ X with r(x) = r is replaced by two variables x0, x1 ∈ X ′ where r(x0) = r− 1 and
r(x1) = 2. X ′ is the set of variables generated this way. Let ∆ be the domain of X ,
i. e. ∆ =

∏n
i=1[r(xi)], where X has n variables xi, i ∈ [n]. Let ∆′ be the domain of

X ′ as defined above.
We now define a mapping h : ∆′ → ∆. If x ∈ X with r(x) < r, then also x ∈ X ′

and we set h(v(x)) = v(x). If x ∈ X with r(x) = r, then x0, x1 ∈ X ′ and we set

h(v(x0), v(x1)) :=

{
v(x0) if v(x1) = 0

r if v(x1) = 1.

Note that h is not an injective mapping. If v(x1) = 1 then h(v(x0), v(x1)) = r for all
v(x0) ∈ [r − 1]. In our construction, we need further mappings from ∆′ onto ∆. For
every y ∈ X with r(y) = r, we define a mapping hy : ∆′ → ∆. Function hy differs
from h only for the values of v(y0), v(y1), where y0, y1 are the two variables in X ′
associated to y ∈ X by our construction and

hy(v(y0, v(y1)) := v(y0).

101

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

We are now ready to describe the set of constraints C ′. Let a′ ∈ F(p,q,r−1)-VCA(Φ(I)).
Each constraint C ∈ C is replaced by a constraint C ′ ∈ C ′ with parameter list
{x | x occurs in C and r(x) ≤ r − 1} ∪ {x0, x1 | x occurs in C and r(x) = r} and

C ′(a′) := C ′0(a′) +
∑

y∈H(C)
C ′y(a

′),

where H(C) is the set of variables y with r(y) = r occuring in the parameter list of
C and

C ′0(a′) := M · C(h(a′)),
C ′y(a

′) := C(hy(a′)),

where M is a sufficiently large number which will be determined later. The sub-
constraints C ′0 for C ∈ C , are called high level sub-constraints and the sub-constraints
C ′y for C ∈ C , where y ∈ H(C), are called low level sub-constraints. An improvement
on the high level shall exceed all changes on the low level. This is the case if we
choose M = 1 + m ·W, where m is the number of constraints in C and W is the
maximum value obtained by any constraint in C by any setting of the variables. By
construction, r(x) ≤ r − 1 for all x ∈ X ′, the sum of the valences of the variables
minus the number of variables in each constraint did not change, and every variable
appears in at most q constraints.

Solution Mapping Given a solution a′ ∈ F(p,q,r−1)-VCA(Φ(I)), function Ψ(I, a′)
returns a = h(a′). This terminates the description of the reduction. #

6.5.2 Proving the Correctness and Tightness of the Reduction

We have to show that if a′ is a locally optimal solution of Φ(I) then Ψ(I, a′) is a
locally optimal solution of I. We do this by proving the equivalent statement: If
Ψ(I, a′) for some a′ ∈ D(p,q,r−1)-VCA is not a locally optimal solution of I then a′ is
not a locally optimal solution of Φ(I).
So, let a′ ∈ D(p,q,r−1)-VCA and assume that a = Ψ(I, a′) is not locally optimal for

I. Hence, there exists some variable x ∈ X , whose value can be changed such that
the solution improves. Let a(x) = α and let setting a(x)← β improve the solution.
If r(x) < r or r(x) = r and α ∈ [0, r − 1] then the change can be done in Φ(I) in
one step. The solution improves on the high level and this improvement exceeds
all changes on the low level by construction. Now, let us assume that α = r and
β ∈ [0, r − 1]. Then a′(x1) = 1 and a′(x0) = δ for some δ ∈ [0, r − 1]. If δ = β, then
again setting a(x)← β can also be done in Φ(I) in one step by setting a′(x1)← 0.
Also, if δ 6= β, but a improves by setting a(x)← δ, then setting a′(x1)← 0 improves
a′ in Φ(I). The remaining case is α = r, β ∈ [0, r − 1], a′(x0) = δ, a′(x1) = 1, and
setting a(x) ← δ does not improve the solution a. We will show that in this case,
setting a′(x0)← β improves the solution a′.

Let Cx be the set of constraints in input instance I containing variable x and let â
(ǎ, respectively) be the solution obtained by setting a(x)← β (a(x)← δ, respectively).

102

6.5 A Reduction to Binary Logic

By assumption, the change from a to â improves the solution and the change from a
to ǎ does not improve the solution, thus∑

C∈C

[C(â)− C(a)] =
∑
C∈Cx

[C(â)− C(a)] > 0, and

∑
C∈C

[C(ǎ)− C(a)] =
∑
C∈Cx

[C(ǎ)− C(a)] ≤ 0.

Now, let â′ ∈ F(p,q,r−1)-VCA be the solution obtained by setting a′(x0)← β. Note that
a′(x1) = 1 and therefore the change a′(x0)← β does not influence the mapping h and
the mappings hy for y 6= x, while hx(x0, x1) = x0, i. e. hx(δ, 1) = δ and hx(β, 1) = β.
Therefore, ∑

C′∈C ′

[C ′(â′)− C ′(a′)] =
∑

C′x,C∈Cx

[C ′x(â′)− C ′x(a′)]

=
∑
C∈Cx

[C(â)− C(ǎ)] > 0.

Thus, setting a′(x0)← β improves the solution a′, as needed.
Considering tightness, we define R := ∆′, the set of all solutions of Φ(I). Fix

some solution a′ ∈ R and a better neighbor ã′ of a′ for Φ(I). By assumption, there
exists some variable x′ ∈ X ′ whose assignment is flipped between a′ and ã′. If
a′(x1) = ã′(x1) = 1 and a′(x0) 6= ã′(x0), then Ψ(I, ã′) = Ψ(I, ã). In all other cases,
Ψ(I, ã′) is a better neighbor of Ψ(I, ã). �

Performing the above construction iteratively and decreasing the maximum valence
of the variables in each construction step by 1, we obtain the following result:

Theorem 6.3. For all p, q ∈ N and r ≥ 3, (p, q, r)-VCA ≤pls (p, q, 2)-VCA using a
tight reduction.

Proof. Iterating the above described reduction decreases the maximum valence of
each r-valued variable x ∈ X by one and increases the variable list of each constraint
containing x by one auxiliary binary variable. Thus, for each constraint, the sum of
the valences of its variables remains constant. By construction, each variable appears
in at most q constraints. The correctness of the construction and the tightness of the
reduction follows by transitivity of the reduction presented above. Thus, the theorem
follows. �

As a direct consequence of Theorem 6.3, we obtain the tight PLS-completeness of
(6, 2, 2)-MCA.

Corollary 6.3. Circuit/Flip ≤pls (6, 2, 2)-MCA using a tight reduction.

103

Chapter 6 On the PLS-Complexity of Maximum Constraint Assignment

6.6 Conclusion and a Discussion of Question 6

In this chapter, we studied the Maximum Constraint Assignment problem,
which is a local search version of the well-known weighted Generalized Maxi-
mum Satisfiability problem. Our focus was on the intractability of the subclass
(p, q, r)-MCAk-par, where each constraint has length at most p, each variable appears
in at most q constraints and each variable takes at most r values; additionally, the set
of constraints is k-partite. In order to solely focus on the Maximum Constraint
Assignment problem, we first presented an observation in Section 6.1 that all in-
tractability results also extend to the Minimum Constraint Assignment problem
with the same restrictions.

Results Obtained After presenting the general method of our reductions in Sec-
tion 6.2, we first focused on the tight PLS-completeness of (3, 2, 3)-MCA3-par in
Section 6.3 and (2, 3, 6)-MCA2-par in Section 6.4. Additionally, we presented a gen-
eral technique to simulate arbitrary (p, q, r)-VCA-instances with VCA-instances
over solely binary variables in Subsection 6.5. As a corollary, we obtained that
(6, 2, 2)-MCA is tight PLS-complete. We think that reducing the parameters p
and q is important. As we will see in Chapter 7, the tight PLS-completeness of
(3, 2, 3)-MCA3-par and especially the fact that each variable appears in at most two
constraints will prove crucial in order to demarcate the tractability of SetPacking
and SetCover; furthermore, the tight PLS-completeness of (3, 2, 3)-MCA3-par will
also play a vital role in order to lower the bounds on the intractability of other local
search versions of weighted standard set problems. Besides that, we believe that the
results presented in this chapter will prove useful for establishing that further PLS
problems with small parameters are PLS-complete. Overall, this will help sharpen
the boundary between PLS-complete and polynomial-time solvable problems.

Discussion of Question 6 The intractability results for (3, 2, 3)-MCA3-par and
(2, 3, 6)-MCA2-par are optimal in the sense that (2, 2, r)-MCA is polynomial-time
solvable for every r ∈ N. Hence, our results delimit the tractability of the Maximum
Constraint Assignment problem, when neglecting the parameter r. For binary
valence, we were able to prove that (6, 2, 2)-MCA is intractable, where we are not
certain if our result is optimal.

Open Problems Nevertheless, we should mention that our discussion of Question 6
lacks a surrounding answer, as there remain some gaps between the (p, q, r)-MCA
problems known to be in P and the ones we showed PLS-complete in this chapter:

1. The results we presented for (3, 2, 3)-MCA3-par and (2, 3, 6)-MCA2-par are
optimal when neglecting the parameter r, but our results do not yield an
indication on the tractability of (3, 2, 2)-MCA3-par or (2, 3, r)-MCA2-par for all
r ≤ 5.

104

6.6 Conclusion and a Discussion of Question 6

2. For binary variables, our intractability result on the one hand only requires
that each variable appears in at most two constraints; on the other hand, each
constraint is allowed to have length up to six. Our results do not yield an
indication on the tractability of (p, 2, 2)-MCA for p ≤ 5.

Hence, the problem of determining the exact bounds of the PLS-completeness of the
Maximum Constraint Assignment problem and giving a surrounding answer to
Question 6 remains tantalizingly open. Having extended and refined the underlying
technique from Krentel [67], we believe that one would probably need substantially
new ideas in order to demarcate the tractability of the Maximum Constraint
Assignment problem for all three parameters.

105

Chapter 7

On the Complexity of Local Search for
Weighted Standard Set Problems

In this chapter, we show that for most weighted standard set problems introduced in
Subsection 2.2.4, computing a locally optimal solution is PLS-complete for the 1-differ
neighborhood. This means, that the respective problems are already intractable, when
one element describing the solution is allowed to be added, deleted, or exchanged
for another element which is not part of the solution. For SetPacking-(k) and
SetCover-(k), we delimit the tractability of computing locally optimal solutions
for the 2-differ neighborhood. We believe that most PLS-complete problems we
investigate in this chapter have the potential to serve as candidates to reduce from in
future proofs of intractability.

The remainder of this chapter is organized as follows: In Section 7.1, we present the
general technique of our reductions for weighted standard set problems. In Section 7.2,
we prove Theorems 7.1 and 7.2; we present the results for each weighted standard set
problem in a separate subsection. We summarize our investigation with a conclusion
and a discussion of Question 7 in Section 7.3.

7.1 How to Show Intractability of Weighted Standard Set
Problems

Before stepping into the reductions in the next section, we outline in Subsection 7.1.1
how the neighborhood structure and the weights occurring in the standard set
problems we investigate are related to hardness results. We then present the general
technique of our reductions for weighted standard set problems in Subsection 7.1.2.

7.1.1 Neighborhoods, Weights, and Tractability

The hardness of a PLS problem crucially depends on both the structure of the
neighborhood and the weights occurring in the problem.

If on the one hand, the neighborhood structure limits the options for improvements
in every step such that this can be exploited by polynomial-time algorithms, then the
problems become easy, regardless of the weights. This is the case in SetPacking-(1)
and SetCover-(1) where we capitalize on the neighborhood structure with a greedy
algorithm. Interestingly, for all other problems we investigate, the neighborhood

107

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

structure does not trim the complexity; loosely speaking, the neighborhood structure
does not interfere with the weights in terms of hardness. For most of the problems,
we obtain hardness results for the smallest possible neighborhood of size 1.

If on the other hand, all weights are polynomially bounded then locally optimal
solutions can be computed via successive improvements in polynomial time, regard-
less of the neighborhood structure. The problems (h)-CNFSat for some h ∈ N,
(3, 2, 3)-MCA3-par, (3, 2, 3)-MinCA, and MaxCut we reduce from in this chapter
were proven to be tight PLS-complete and the weights involved are of exponential
size. In all our reductions, we preserve the overall structure and range of the weights
of the given input instance we reduce from. Usually, we also introduce additional
weights which are not part of the input instance. They belong to auxiliary gadgets
which are specific to the reduction. The weights involved are either of size one or
such that a single weight exceeds the sum of all weights in a given instance.

7.1.2 The General Technique of Our Reductions

For all hardness results given in Section 7.2, we first present the core ideas in a nutshell
in the respective subsections before stepping into the corresponding reduction. Similar
to many non-trivial reductions in PLS [4, 27, 31, 95, 98, 104], each reduction (Φ,Ψ)
typically consists of two parts: In one part, we encode a given instance I of the input
problem in instance Φ(I) in a rather direct manner, while preserving the overall
structure and range of the weights in I. In the other part, which is specific to the
reduction and represents a large part of our contribution, we introduce auxiliary
gadgets that enforce a particular structure in all locally optimal solutions. Eventually,
these gadgets ensure that all locally optimal solutions in Φ(I) correspond to locally
optimal solutions in I. Similar to our constructions, our proofs also consist of two
parts:

1. First, we show that all locally optimal solutions in F(Φ(I) use the gadgets as
intended. As a side-effect, this also yields an insight view of the structure of
locally optimal solutions in Φ(I). Depending on the reduction, we call these
solutions standard solutions or to be consistent for some property.

2. Second, we show that all locally optimal solutions in F(Φ(I) correspond to
locally optimal solutions in F(I) under the corresponding reduction (Φ,Ψ).
Part 1 now allows to concentrate on the set of all consistent or standard
solutions.

Let us stress that reducing from (3, 2, ∗)-MCA (resp. (3, 2, ∗)-MinCA) is crucial for
us to show exact bounds on the tractability of SetPacking (resp. SetCover). In
general, we believe that reducing from very restricted but PLS-complete versions of
the Maximum Constraint Assignment problem might prove useful for establishing
that further PLS problems with small parameters are PLS-complete.

108

7.2 The PLS-Complexity of Weighted Standard Set Problems

7.2 The PLS-Complexity of Weighted Standard Set
Problems

In this section, we investigate the complexity of computing locally optimal solutions for
the weighted standard set problems introduced in Section 2.2.4 and prove Theorems 7.1
and 7.2.

Roadmap of this Section We first present the necessary assumptions and pre-
liminaries for our reductions in Subsection 7.2.1. In Subsections 7.2.2-7.2.10, we
study the PLS-complexity of W3DM-(p, q) and X3C-(k) (Subsection 7.2.2), SP-(k)
(Subsection 7.2.3), SSp-(k) (Subsection 7.2.4), SC-(k) (Subsection 7.2.5), TS-(k)
(Subsection 7.2.6), SB-(k) (Subsection 7.2.7), HS-(k) (Subsection 7.2.8), IP-(k) (Sub-
section 7.2.9), and CC-(k) (Subsection 7.2.10). The proof of tightness for all our
reductions follows a common pattern and therefore, we present a generalized proof
of tightness in Subsection 7.2.11. All our intractability results are cumulated in
Theorem 7.1, all our tractability results in Theorem 7.2; both theorems are presented
in Subsection 7.2.12.

7.2.1 Assumptions and Preliminaries

In this subsection, we present the assumptions and preliminaries for the problems
we reduce from. In general, for a given instance I of a PLS problem we reduce
from, let W ∈ N be larger than the sum of all weights occurring in I; details
for the corresponding problems are provided below. Recall that MaxCut and
(h)-CNFSat are tight PLS-complete for some fixed h ∈ N [67, 95, 104], as outlined
in Subsections 3.1.3 and 3.1.4. By Theorem 6.1 in Chapter 6, (3, 2, r)-MCA and
(3, 2, r)-MCA3-par are tight PLS-complete for all r ≥ 3. By Lemma 6.1 in Chapter 6,
all intractability results for (p, q, r)-MCAk-par extend to (p, q, r)-MinCAk-par for all
p, q, r, k ∈ N; hence, (3, 2, r)-MinCA is also tight PLS-complete.

MaxCut Let I = (G = (V,E),w) ∈ DMC be a given instance of MaxCut. Without
loss of generality, we assume that V = {1, . . . , n} and G = (V,E) is a clique, i. e.
there exists an edge {u, v} ∈ E for each pair of nodes u, v ∈ V with u 6= v. Finally,
denote W > 1 +

∑
e∈E w(e).

Minimum/Maximum Constraint Assignment and (h)-CNFSat Let I = (C,X) be
a given instance of D(3,2,r)-MCA3-par , D(3,2,r)-MCA or D(3,2,r)-MinCA for some r ∈ N.
Without loss of generality, we assume that each constraint Ci ∈ C has length 3, every
variable x ∈ X appears in 2 constraints and takes values from [r]. Furthermore, the
function value of each constraint Ci ∈ C for every assignment is strictly larger than 1.
Otherwise, we can ensure the latter property by adding a constant offset of 2 to the

109

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

function value of each constraint for every assignment. Denote

W >
∑

Ci(xi1 ,xi2 ,xi3)∈C

∑
a(xi1),a(xi2),a(xi3)∈[r]3

Ci(a(xi1), a(xi2), a(xi3)).

With slight abuse of notation, we denote the variables occurring in a constraint in I
also as literals. Let I ′ = (C′,X ′) ∈ D(h)-CNFSat for some h ∈ N, be a given instance
of (h)-CNFSat. In that case, denote W >

∑
Ci∈C′ wi. With slight abuse of notation,

we also denote the variables occurring in a clause in I ′ as literals; for each variable
x ∈ X ′ which is negated in a clause by its constant b, we denote its literal by x̄.

7.2.2 On the Complexity of Weighted-3-DimensionalMatching-(p, q)
and Exact-Cover-By-3-Sets-(k)

In this subsection, we first show that Weighted-3-DimensionalMatching-(p, q)
is PLS-complete for all p ≥ 6 and q ≥ 12. We present the reduction function Φ and
the solution mapping Ψ, which are both slight modifications of a reduction proving
that W3DM-(9, 15) is PLS-complete, presented in [30]. We also use the notation
presented therein. Given an instance I = (C,X) ∈ D(3,2,r)-MCA3-par , for some r ∈ N,
we construct an instance Φ(I) = (N,w) ∈ DW3DM-(6,12), consisting of a positive
integer N ∈ N and a weight function w : [N]3 → N0 that maps triples to positive
integer weights. Recall that for I, we assumed that every constraint has length three
and each variable appears in two constraints. Furthermore, the function value of each
constraint Ci ∈ C for every assignment is strictly larger than 1. By definition, the set
of variables X in instance I is 3-partite, using the colors blue, red, and white. Note
that each subset of the set of variables with a certain color has cardinality |X |/3.
Instances of Weighted-3-DimensionalMatching-(6, 12) constructed by our

reduction (Φ,Ψ) can be transformed into instances of Exact-Cover-By-3-Sets-(6)
such that local optima coincide, by defining each triple as a 3-element set which
possesses the weight of the corresponding triple. Therefore, our reduction is also
applicable to Exact-Cover-By-3-Sets-(6) with the same general construction.
This eventually shows that Exact-Cover-By-3-Sets-(k) is PLS-complete for all
k ≥ 6.

The Reduction

In a nutshell, the main idea is to mimic assignments of literals to values in each
constraint with triples which possess the function value of the corresponding constraint
for the given assignment. An additional gadget ensures that in every locally optimal
assignment, all variable assignments induced by the assignment of the respective
literals are consistent.

In more detail, given instance I, let σ be some order of the variables by their first
and second appearance in C. We define N := 2 · (r · |X | + |X |/3) and introduce
the following weight function w for constructed triples; we categorize the triples by
functionality:

110

7.2 The PLS-Complexity of Weighted Standard Set Problems

bx
2(0)

bx
1(0)bx

1(i)

bx
2(i)gx

2 (i)

gx
1 (i)

hx
1(i)hx

2(i)

(a) Gadget assign(i, x) for a
blue variable x ∈ X with
i ∈ [r].

gy
1 (0)

gy
2 (0)

by
1(j)

by
2(j)

gy
1 (j)

gy
2 (j)

hy
2(j) hy

1(j)

(b) Gadget assign(j, x) for a
red variable y ∈ X with
j ∈ [r]

hz
1(0)

hz
2(0)

bz
1(!)

bz
2(!)

gz
2(!) gz

1(!)

hz
1(!)

hz
2(!)

(c) Gadget assign(`, x) for a
white variable z ∈ X with
` ∈ [r]

Figure 7.1: Gadgets assign(i, x) for a blue, a red, and a white variable with two large
triples (solid triangles) and two medium triples (dashed triangles).

Forcing a Consistent Assignment We define the three sets

B :={bxs (i) | x ∈ X , i ∈ [r], s ∈ [2]} ∪ {bxs (0) | x ∈ X is a blue variable, s ∈ [2]},
G :={gxs (i) | x ∈ X , i ∈ [r], s ∈ [2]} ∪ {gxs (0) | x ∈ X is a red variable, s ∈ [2]}, and
H :={hxs (i) | x ∈ X , i ∈ [r], s ∈ [2]} ∪ {hxs (0) | x ∈ X is a white variable, s ∈ [2]},

each of cardinality N . For every blue variable x ∈ X and i ∈ [r], we define a gadget
assign(i, x) consisting of two large triples

(bx1(0), gx1 (i), hx1(i)) and (bx2(0), gx2 (i), hx2(i))

of weight 7W and two medium triples

(bx1(i), gx1 (i), hx2(i)) and (bx2(i), gx2 (i), hx1(i))

of weight 2W. We depicted a gadget assign(i, x) in Figure 7.1a for some blue variable
x ∈ X and i ∈ [r]. For every red variable y ∈ X and j ∈ [r], we define a gadget
assign(j, y) consisting of two large triples

(by1(j), gy1(0), hy1(j)) and (by2(j), gy2(0), hy2(j))

of weight 7W and two medium triples

(by1(j), gy1(j), hy2(j)) and (by2(j), gy2(j), hy1(j))

of weight 2W. We again depicted a gadget assign(j, y) in Figure 7.1b for some red
variable y ∈ X and j ∈ [r]. For every white variable z ∈ X and ` ∈ [r], we define a
gadget assign(`, z) consisting of two large triples

(bz1(`), gz1(`), hz1(0)) and (bz2(`), gz2(`), hz2(0))

111

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

of weight 7W and two medium triples

(bz1(`), gz2(`), hz1(`)) and (bz2(`), gz1(`), hz2(`))

of weight 2W. We again depicted a gadget assign(`, z) in Figure 7.1c for some white
variable z ∈ X and ` ∈ [r].

Evaluating the Assignment Without loss of generality, let x ∈ X be a blue variable,
y ∈ X be a red variable, and z ∈ X be a white variable. For every constraint
C(x, y, z) ∈ C, i, j, ` ∈ [r], and s, t, u ∈ [2], where, with respect to σ, x appears for
the s-th, y appears for the t-th time, and z appears for the u-th time, we define small
triples

(bxs (i), gyt (j), hzu(`))

of weight C(i, j, `). All other triples have weight zero. This terminates the description
of the reduction function Φ(I).

Standard Solution Extending the definition from [30], we define a standard solution
as a solution S ∈ F(Φ(I)), consisting of an assignment part and an evaluation part,
of the following form:

1. Considering the assignment part, for every blue variable x ∈ X there exists
some i ∈ [r], such that for all s ∈ [2], large triples (bxs (0), gxs (i), hxs (i)) ∈ S. For
all o ∈ [r], o 6= i, medium triples (bx1(o), gx1 (o), hx2(o)), (bx2(o), gx2 (o), hx1(o)) ∈ S.
For every red variable y ∈ X there exists some j ∈ [r], such that for all
s ∈ [2], large triples (bys(j), g

y
s (0), hys(j)) ∈ S. For all p ∈ [r], p 6= j, medium

triples (by1(p), gy1(p), hy2(p)), (by2(p), gy2(p), hy1(p)) ∈ S. For every white vari-
able z ∈ X there exists some ` ∈ [r], such that for all s ∈ [2], large triples
(bzs(`), g

z
s (`), hzs(0)) ∈ S. For all q ∈ [r], q 6= `, medium triples (bz1(q), gz2(q), hz1(q)),

(bz2(q), gz1(q), hz2(q)) ∈ S.

2. Considering the evaluation part, let x, y, z ∈ X such that large triples for x, y,
and z in S are from gadgets assign(i, x), assign(j, y), and assign(`, z) for some
i, j, ` ∈ [r]. Furthermore, let x be a blue variable, y be a red variable, and
z be a white variable, without loss of generality. Then, for every constraint
C(x, y, z) ∈ C and s, t, u ∈ [2], where x occurs for the s-th, y occurs for the
t-th time, and z occurs for the u-th time, with respect to σ, the small triple
(bxs (i), gyt (j), hzu(`)) ∈ S.

Solution Mapping Again extending [30], if S ∈ F(Φ(I)) is a standard solution, then
Ψ(I, S) := a with a : X → [r], where for all x ∈ X

a(x) :=


i if x is a blue variable and (bx1(0), gx1 (i), hx1(i)) ∈ S for some i ∈ [r]

j if x is a red variable and (bx1(j), gx1 (0), hx1(j)) ∈ S for some j ∈ [r]

` if x is a white variable and (bx1(`), gx1 (`), hx1(0)) ∈ S for some ` ∈ [r].

112

7.2 The PLS-Complexity of Weighted Standard Set Problems

If S ∈ F(Φ(I)) is not a standard solution, then Ψ(I, S) returns the solution a computed
by algorithm Init(3,2,r)-MCA3-par(I). This terminates the description of the reduction.

#

Lemma 7.1. Every locally optimal solution S ∈ F(Φ(I)) is a standard solution.

Proof. For sake of completeness, we present the proof of the lemma, as it is similar
to the proof of Lemma 1 presented in [30]. Let S ∈ F(Φ(I)) be a locally optimal
solution. In the following, let x ∈ X be a blue variable, without loss of generality.

Roadmap of the Proof of the Lemma

With variable x fixed, the proof splits into three parts. The first two parts show that
S contains an assignment part of a standard solution. The third part then shows that
S contains an evaluation part of a standard solution. In more detail, we present the
following:

1. First, we show that there exist i, j ∈ [r] such that the two large triples
(bx1(0), gx1 (i), hx1(i)) and (bx2(0), gx2 (j), hx2(j)) are in S. For every gadget as-
sign(∗, x) without a large triple in S, we prove that there are two medium triples
in S.

2. Then, we prove that the two large triples are on the same gadget assign(i, x)
for some i ∈ [r].

3. Finally, we show that all remaining small triples in S are chosen such that S is
a standard solution.

(1): Two Large Triples and Two Medium Triples First, consider the large triples.
Without loss of generality, assume that for all i ∈ [r] triple (bx1(0), gx1 (i), hx1(i)) 6∈ S.
We construct a better neighboring solution that contains (bx1(0), gx1 (i), hx1(i)) for some
i ∈ [r]. On gadget assign(i, x), the large triple (bx1(0), gx1 (i), hx1(i)) of weight 7W is
built. The necessary elements bx1(0), gx1 (i), and hx1(i) are in at most three triples,
each of weight at most 2W. Thus, we substitute a total of at most three triples to
obtain a strictly better neighboring solution.
Now, consider the medium triples. Assume there exists some j ∈ [r] such that no

large triple and not both medium triples from gadget assign(j, x) are in S. Without
loss of generality, let (bx1(j), gx1 (j), hx2(j)) 6∈ S. On gadget assign(j, x), the medium
triple (bx1(j), gx1 (j), hx2(j)) of weight 2W is built. The necessary elements are in at
most three triples of total weight at most W. Thus, we again substitute a total of
three triples to obtain a strictly better neighboring solution.

(2): Two Large Triples On A Single Gadget By (1), there are two large triples in
S for variable x. Assume that these large triples are placed on two different gadgets
assign(i, x) and assign(j, x) for some i, j ∈ [r] with i 6= j. In detail, let large triples
(bx2(0), gx2 (i), hx2(i)) ∈ S and (bx1(0), gx1 (j), hx1(j)) ∈ S, without loss of generality. We

113

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

gx
1 (j)

hx
1(j)

bx
2(j)gx

2 (j)

hx
2(j)

bx
1(j)

bx
2(0)

bx
1(0)bx

1(i)

bx
2(i)gx

2 (i)

gx
1 (i)

hx
1(i)hx

2(i)

bx
2(0)

bx
1(0)

Gadget assign(i, x) Gadget assign(j, x)

gx
1 (j)

hx
1(j)

bx
2(j)gx

2 (j)

hx
2(j)

bx
1(j)

bx
2(0)

bx
1(0)bx

1(i)

bx
2(i)gx

2 (i)

gx
1 (i)

hx
1(i)hx

2(i)

bx
2(0)

bx
1(0)

Gadget assign(i, x) Gadget assign(j, x)

Better Neighbor

Figure 7.2: Construction of a better neighboring solution, described in (2).

114

7.2 The PLS-Complexity of Weighted Standard Set Problems

depicted this situation in the upper part of Figure 7.2. Note that by construction,
there are no medium triples from gadgets assign(i, x) or assign(j, x) in S. We construct
a better neighboring solution by removing the large triple (bx1(0), gx1 (j), hx1(j)) from S.
Additionally, on gadget assign(i, x), the large triple (bx1(0), gx1 (i), hx1(i)) of weight 7W
is built. On gadget assign(j, x), the two new medium triples (bx1(j), gx1 (j), hx2(j)) and
(bx2(j), gx2 (j), hx1(j)), each of weight 2W, are built. We depicted the better neighboring
solution in the lower part of Figure 7.2. Elements bx1(0), gx1 (j), and hx1(j)) are in
the given large triple from gadget assign(j, x). The remaining elements gx1 (i), hx1(i),
bx1(j), hx2(j), bx2(j), and gx2 (j) are in at most six triples. Our construction does not
alter the number of large triples and yields an additional two medium triples, each of
weight 2W. All triples which are decomposed to obtain the necessary elements for
the large triple on gadget assign(i, x) and for the medium triples on assign(j, x) have
total weight at most W. Thus, we replace a total of at most six triples to obtain a
neighboring solution of strictly higher cost.

(3): Small Weights The above two parts show that S contains an assignment part
of a standard solution. By definition, for every variable x ∈ X , there exists some
i ∈ [r] such that the two large triples are from the same gadget assign(i, x). For every
blue variable x ∈ X this implies that elements bx1(i) and bx2(i) are not in any large or
medium triple in S; analogously for the respective elements for every red and white
variable. Without loss of generality, for some s, t, u ∈ [2] and i, j, ` ∈ [r] let x ∈ X be
a blue variable, y ∈ X be a red variable, and z ∈ X be a white variable such that
bxs (i), gyt (j), and hzu(`) are not in any large or medium triple. Let C(x, y, z) ∈ C be
such that x appears for the s-th time, y appears for the t-th time, and z appears
for the u-th time with respect to the given ordering σ. Recall that by assumption,
the function value of each constraint Ci ∈ C for every assignment is strictly larger
than 1. Assume that S deviates in the evaluation part for constraint C(x, y, z). Thus,
elements bxs (i), gyt (j), and hzu(`) are in at most three triples, each of weight zero.
By building the small triple (bxs (i), gyt (j), hzu(`)) of weight C(i, j, `), we replace at
most three triples of total weight zero to obtain a neighboring solution with strictly
improved cost. �

Lemma 7.2. (3, 2, r)-MCA3-par ≤pls W3DM-(p, q) for all p ≥ 6, q ≥ 12, and r ∈ N.

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for Φ(I),
but Ψ(I, S) is not locally optimal for I. By Lemma 7.1, S is a standard solution.
Since Ψ(I, S) is not locally optimal for I, there exists a (without loss of generality)
white variable z ∈ X in instance I ∈ D(3,2,r)-MCA3-par , which can be set from value
i ∈ [r] to some value j ∈ [r] such that the objective function strictly increases by some
∆ > 0. Let variable z appear in constraints Cp, Cq ∈ C. The neighboring solution S′

of S, where the two large triples are on gadget assign(j, z) and two medium triples
are on each gadget assign(`, z) for ` ∈ [r] with ` 6= j, and all small triples are chosen
such that S′ is a standard solution improves the cost of S by ∆, by construction. A
contradiction to S being locally optimal.

115

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

Now, consider the number of boys and girls, which move to new homes. The above
described exchange involves the six triples

(∗, ∗, hz1(0)), (∗, ∗, hz2(0)), (∗, ∗, hz1(i)), (∗, ∗, hz2(i)), (∗, ∗, hz1(j)), and (∗, ∗, hz2(j)).

The involved homes are hz1(i) and hz2(i) from gadget assign(i, z), homes hz1(j) and
hz2(j) from gadget assign(j, z) and homes hz1(0) and hz2(0) which are in each gadget
assign(∗, z). On gadget assign(i, z), girl gz2(i) and boy bz1(i) move to home hz1(i), and
girl gz1(i) and boy bz2(i) move to home hz2(i). On gadget assign(j, x), girl gz1(j) and
boy bz1(j) move to home hz1(0), and girl gz2(j) and boy bz2(j) move to home hz2(0). All
four boys and girls in small triples move from homes hz2(i) and hz1(i) to respective
homes hz2(j) and hz1(j). Thus, 12 boys or girls move to new homes. For all red (resp.
blue) variables which switch assignment, at most 10 boys or girls move to new homes;
note that the smaller number in this case arises from both boys (resp. girls) in small
triples remaining in their respective homes. �

7.2.3 The Exact Complexity of SetPacking-(k)

In this subsection, we prove that SetPacking-(k) is PLS-complete for all k ≥ 2 and
polynomial-time computable for k = 1. Given an instance I = (C,X) ∈ D(3,2,r)-MCA
for some r ∈ N, we construct an instance Φ(I) = (M,w,m) ∈ DSP-(2), consisting of
a collectionM from a finite set B, a weight function w :M→ N0 that maps sets
in collectionM to positive integer weights, and a positive integer m ≤ |M|. Recall
that for I we assumed that each constraint Ci ∈ C has length 3, every variable x ∈ X
appears in 2 constraints and takes values from [r]. Furthermore, the function value
of each constraint Ci ∈ C for every assignment is strictly larger than 1.

The Reduction In a nutshell, the main idea is to define sets which represent as-
signments of literals to values in each constraint such that inconsistent assignments
intersect. The weight of a set corresponds to the function value of the constraint,
for the variable assignment the set represents. Additional sets of weight 1 which are
pairwise disjoint from all other sets we introduce offer a relatively small incentive in
situations where sets intersect in a solution.
In more detail, given an instance I, let σ be some order of the variables by their

first and second appearance in C. We create an instance Φ(I) of SP-(2) with m := |C|.
Sets in collectionM consist of elements from the finite set

B := {ei, ci | i ∈ [m]} ∪ {xi | x ∈ X , i ∈ [r]}.

Collection M consists of the following sets: For all i ∈ [m], we introduce a set
CSP
i := {ei} of weight w(CSP

i) := 1 inM. For each constraint Ci(u, v, w) ∈ C and
every assignment a, b, c ∈ [r], we introduce a set Ca,b,ci of weight w(Ca,b,ci) := Ci(a, b, c)

116

7.2 The PLS-Complexity of Weighted Standard Set Problems

inM. Here, set Ca,b,ci := {ci} ∪ Ua ∪ Vb ∪Wc, where

Ua :=


{ua} if u ∈ X appears in Ci(u, v, w)

for the first time with respect to σ
{u1, . . . , ua−1, ua+1, . . . , ur} otherwise;

analogously for Vb and Wc. We call an element xj for some variable x ∈ X and
assignment j ∈ [r] contained in a set fromM due to the first appearance of x, with
respect to σ, direct representative of x. For i ∈ [m], denote

Ii := {Ca,b,ci | Ca,b,ci ∈M, a, b, c ∈ [r]}.

We say that a collection Ii or a set Ca,b,ci for some a, b, c ∈ [r] and i ∈ [m] is incident
to a collection Ij for some j ∈ [m] if the constraints Ci, Cj ∈ C have a common
variable.

Solution Mapping We call a solution S ∈ F(Φ(I)) set-consistent if |S| = m and
for each i ∈ [m] there is exactly one set Ca,b,ci in S for some a, b, c ∈ [r], which is
pairwise disjoint from all other sets in S. If solution S ∈ F(Φ(I)) is set-consistent,
then function Ψ(I, S) := a with a : X → [r], where for each set C∗,∗,∗i ∈ S and
every direct-representative xj ∈ C∗,∗,∗i , a(x) := j for variable x ∈ X . If S is not
set-consistent, then the assignment a computed by Init(3,2,r)-MCA(I) is returned.
This terminates the description of the reduction. #

Lemma 7.3. Every locally optimal solution S ∈ F(Φ(I)) is set-consistent.

Proof. First, assume there exists a locally optimal solution S′ ∈ F(Φ(I)) with |S′| < m.
By pigeonhole principle and the construction of our reduction, this implies that there
exists a set CSP

j ∈ M with j ∈ [m] which is not in S′. Adding CSP
j to S′ strictly

improves the cost of S′, since by construction CSP
j is pairwise disjoint from all sets in

M. A contradiction to S′ being locally optimal.
Now, let S′ ∈ F(Φ(I)) be a locally optimal solution. We distinguish the following

two cases:

1. First, assume there exists a set Ca,b,ci in S′ for some a, b, c ∈ [r] which is not
pairwise disjoint from all other sets in S′. Note that this includes the case that at
least an additional set Cd,e,fi for some d, e, f ∈ [r] is in S′; sets Ca,b,ci , Cd,e,fi ∈M
are not disjoint, since they share element ci ∈ B, by construction. By definition
of SetPacking-(2), Ca,b,ci does not contribute to the cost of S′. By pigeonhole
principle and the construction of our reduction there exists a set CSP

j ∈M for
some j ∈ [m] which is not in S′. Exchanging set Ca,b,ci ∈ S′ for set CSP

j ∈ M
strictly improves the cost of S′, since w(CSP

j) = 1 and CSP
j is pairwise disjoint

from all sets in M. All other sets which did intersect with Ca,b,ci may only
become pairwise disjoint and thus improve the cost of S′. A contradiction to S′

being locally optimal.

117

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

2. Now, assume there exists an i ∈ [m] such that no set from Ii is in S′. Let Ii be
incident to collections Io, Ip, and Iq, with o, p, q ∈ [m]. By item 1, we have that
for every j ∈ [m], at most one set C∗,∗,∗j ∈ S′ which is pairwise disjoint from
all other sets in S′. If present in S′, assume that sets Ca,∗,∗o , Cb,∗,∗p , Cc,∗,∗q ∈ S′

for some a, b, c ∈ [r]. As shown above, |S′| = m and by assumption, no set
from Ii is in S′. This implies that there exists a set CSP

j ∈ S′ for some j ∈ [m].
Exchanging set CSP

j ∈ S′ for set Ca,b,ci ∈M—if sets from incident collections are
not present in S′, choose an arbitrary value for the respective variable—strictly
increases the cost of S′, since Ca,b,ci is pairwise disjoint from all sets in S′ by
construction and w(Ca,b,ci) > w(CSP

j), by assumption on I. A contradiction to
S′ being locally optimal.

�

Lemma 7.4. (3, 2, r)-MCA ≤pls SP-(k) for all r ∈ N and k ≥ 2.

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for
Φ(I), but Ψ(I, S) is not locally optimal for I. By Lemma 7.3, S is set-consistent.
Since Ψ(I, S) is not locally optimal for I, there exists a variable x ∈ X in instance
I ∈ D(3,2,r)-MCA, which can be set from value i ∈ [r] to some value j ∈ [r] such
that the objective function strictly increases by some ∆ > 0. Let variable x appear
in constraints Cp(x, ∗, ∗), Cq(x, ∗, ∗) ∈ C. Exchanging the sets Ci,∗,∗p and Ci,∗,∗q

for sets Cj,∗,∗p and Cj,∗,∗q in S yields a set-consistent neighboring solution and by
construction this strictly increases the cost of S by ∆. A contradiction to S being
locally optimal. �

Despite the intractability result for SetPacking-(k) for all k ≥ 2, it is possible to
compute a locally optimal solution of all instances I ∈ DSP-(1) in polynomial time.

Lemma 7.5. SetPacking-(1) is polynomial-time solvable.

Proof. Given an instance I = (M,w,m) ∈ DSP-(1), we use the following algorithm
GreedyPacking: Starting from the initial feasible solution S := ∅, process all sets
inM by weight in descending order and add the heaviest yet unprocessed set to S, if
it is disjoint from all sets Si ∈ S and |S| ≤ m after the addition. In order to prove
that each solution computed by GreedyPacking is locally optimal, assume that
GreedyPacking terminated and the returned solution S ∈ FSP-(1)(I) is not locally
optimal. We distinguish the following three cases, where the cost of S can be strictly
improved:

1. Assume there exists a set Si ∈ M with Si 6∈ S which can be added to S.
This implies that Si is pairwise disjoint from all sets in S and |S| < m. Thus,
GreedyPacking would have included set Si. A contradiction.

2. Assume there exists a set Sj ∈ S which can be deleted from S. This implies
that Sj intersects with some set from S and GreedyPacking would have not
included Sj . A contradiction.

118

7.2 The PLS-Complexity of Weighted Standard Set Problems

3. Assume there exists a set Sj ∈ S which can be exchanged for some set S` ∈M
with S` 6∈ S. This implies that S` is pairwise disjoint from all sets in S \ {Sj}
and w(S`) > w(Sj). Thus, GreedyPacking would have included S`. A
contradiction.

�

7.2.4 On the Complexity of SetSplitting-(k)

In this subsection, we prove that SetSplitting-(k) is PLS-complete for all k ≥ 1.
Given an instance I = (G = (V,E),wMC) ∈ DMC, we construct an instance Φ(I) =
(M,w) ∈ DSSp-(1) consisting of a collection M from a finite set B and a weight
function w :M→ N0 that maps sets from collectionM to positive integer weights.

The Reduction SetSplitting is also known as Hypergraph-2-Colorability
and we use a reduction which does not involve additional gadgets: From instance
I, we define an instance Φ(I) of SSp-(1) with the finite set B := V . For every edge
e = {u, v} ∈ E, we introduce a set eSSp := {u, v} inM with w(eSSp) := wMC(e). Here,
for each solution S = (S1, S2) ∈ F(Φ(I)), function Ψ(I, S) := p with p : V → {0, 1},
where p(u) := 0 for all nodes u ∈ S1 and p(v) := 1 for all nodes v ∈ S2. This
terminates the description of the reduction. #

Lemma 7.6. MaxCut ≤pls SSp-(k) for all k ≥ 1.

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for Φ(I),
but Ψ(I, S) is not locally optimal for I. This implies that there exists a node v ∈ V
in instance I ∈ DMC which can switch partition such that now edges ei1 , . . . , eip ∈ E
with i1, . . . , ip, p ∈ [|E|] are in the cut, edges ej1 , . . . , ejq ∈ E with j1, . . . , jq, q ∈
[|E|] \ {i1, . . . , ip} are not in the cut and the cost of Ψ(I, S) strictly increases by
∆ > 0. By construction, this implies that in Φ(I), element v ∈ B can switch partition
and in the resulting neighboring solution S′ = (S1, S2) sets eSSp

i1
, . . . , eSSp

ip
∈ M are

not entirely contained in either S1 or S2 and sets eSSp
j1
, . . . , eSSp

jq
∈ M are entirely

contained in either S1 or S2. By definition of w, this strictly increases the cost of S
by ∆. A contradiction to S being locally optimal. �

7.2.5 The Exact Complexity of SetCover-(k)

In this subsection, we prove that SetCover-(k) is PLS-complete for all k ≥ 2 and
polynomial-time computable for k = 1. Given an instance I = (C,X) ∈ D(3,2,r)-MinCA
for some r ∈ N, we construct an instance Φ(I) = (M,w) ∈ DSC-(2), consisting of a
collectionM from a finite set B, and a weight function w :M→ N0 that maps sets
in collectionM to positive integer weights.

The Reduction In a nutshell, the main idea is to reuse the encoding of literal as-
signments and constraints as sets, presented for SetPacking-(2) in Subsection 7.2.3,

119

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

such that for every consistent assignment of literals to values, there exists a covering
where no element is covered by two sets of the solution. Shifting the weight of each
set by a large constant incentivizes dropping sets which cover elements more than
once.

In more detail, given instance I, let σ be some order of the variables by their first
and second appearance in C. We create an instance Φ(I) of SC-(2) with m := |C|
and the finite set

B := {ci | i ∈ [m]} ∪ {xi | x ∈ X , i ∈ [r]}.

For each constraint Ci(u, v, w) ∈ C and every assignment a, b, c ∈ [r], we introduce a
set Ca,b,ci of weight

w(Ca,b,ci) := Ci(a, b, c) + W

inM. Here, set Ca,b,ci is defined as in Subsection 7.2.3.

Solution Mapping The definition of an incident set or collection, a set-consistent
solution, and the solution mapping Ψ(I, S) is as in Subsection 7.2.3, except that
for each solution, which is not set-consistent, the assignment a, with a : X → [r],
computed by Init(3,2,r)-MinCA(I) is now returned. This terminates the description of
the reduction. #

Lemma 7.7. Every locally optimal solution S ∈ F(Φ(I)) is set-consistent.

Proof. Note that by the construction of our reduction and the definition of F(Φ(I)),
|S| ≥ m for each solution S ∈ F(Φ(I)); otherwise this would imply that there exists
an element ci ∈ B for some i ∈ [m] which is not contained in the union of all sets in S.
This also implies that for all i ∈ [m] there exists a set Ca,b,ci ∈ S for some a, b, c ∈ [r].

Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) with |S′| > m. By
pigeonhole principle and the construction of our reduction, this is implies that there
are two sets Ca,b,ci and Cd,e,fi of total weight at least 2W in S for some i ∈ [m] and
a, b, c, d, e, f ∈ [r]. Note that sets Ca,b,ci and Cd,e,fi are not disjoint. By assumption,
S′ is a feasible solution and therefore, there exist sets Co,∗,∗h , Cp,∗,∗j , Cq,∗,∗` ∈ S′ for
some o, p, q ∈ [r] and h, j, ` ∈ [m] from collections Ih, Ij , and I` incident to sets
Ca,b,ci , Cd,e,fi ∈ S′. Exchanging the two sets Ca,b,ci , Cd,e,fi for set Co,p,qi yields a feasible
neighboring solution and strictly decreases the cost of S′, since w(Co,p,qi) < 2W, by
construction. A contradiction to S′ being locally optimal.
Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) with |S′| = m. By

pigeonhole principle and the first part of the proof, there exists exactly one Ca,b,ci ∈ S′

for all i ∈ [m] and some a, b, c ∈ [r] which is now pairwise disjoint from all other sets
in S′; otherwise, there exists an element x ∈ B which is not contained in the union of
all sets in S′. �

Lemma 7.8. (3, 2, r)-MinCA ≤pls SC-(k) for all r ∈ N and k ≥ 2.

120

7.2 The PLS-Complexity of Weighted Standard Set Problems

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for
Φ(I), but Ψ(I, S) is not locally optimal for I. By Lemma 7.7, S is a set-consistent
assignment. Since Ψ(I, S) is not locally optimal for I, there exists a variable x ∈ X in
instance I ∈ D(3,2,r)-MinCA, which can be set from value i ∈ [r] to some value j ∈ [r]
such that the objective function strictly decreases by some ∆ > 0. Let variable x
appear in constraints Cp(x, ∗, ∗), Cq(x, ∗, ∗) ∈ C. Exchanging sets Ci,∗,∗p and Ci,∗,∗q for
sets Cj,∗,∗p and Cj,∗,∗q in S yields a feasible and set-consistent neighboring solution
and by construction, this strictly decreases the cost of S by ∆. A contradiction to S
being locally optimal. �

Despite the intractability result for SetCover-(k) for all k ≥ 2, it is again possible
to compute a locally optimal solution of all instances I ∈ DSP-(1) in polynomial time.

Lemma 7.9. SetCover-(1) is polynomial-time solvable.

Proof. Given an instance I = (M,w) ∈ DSC-(1), we use the following algorithm
GreedyCover: Starting from the initial feasible solution S :=M, process all sets in
S by weight in descending order and remove the heaviest yet unprocessed set, if S is
still a legal cover of B after the removal. In order to prove that each solution computed
by GreedyCover is locally optimal, assume that GreedyCover terminated and
the returned solution S ∈ FSP-(1)(I) is not locally optimal. We distinguish the
following two cases, where the cost of S can be strictly decreased:

1. Assume there exists a set Si ∈ S which can be removed. This implies that S is
still a legal cover of B after the removal of Si. Thus, GreedyCover would
have removed set Si as well. A contradiction.

2. Assume there exists a set Si ∈ S which can be exchanged for a set Sj ∈M with
Sj 6∈ S and w(Sj) < w(Si). This implies that set Sj of smaller weight covers all
elements B \⋃S`∈(S\{Si}) S`, i. e. all elements which are uncovered if Si would
be removed from S. Since Si has larger weight and S′ := (S\{Si})∪{Sj} is still
a legal cover, GreedyCover would have deleted Si from S. A contradiction.

�

A Remark on the Maximum Size of the Sets

In the literature, the two problems SetPacking and SetCover are often considered
when each set is of small size. For this, the maximum cardinality of each set in
every instance is fixed to a constant ` ∈ N. The problems are then referred to as
Weighted-`-SetPacking and Weighted-`-SetCover. For Weighted-`-Set-
Packing, the restriction to sets of size at most ` properly includes multi-dimensional
matching problems [18]. The Weighted-`-SetCover is of practical relevance, as
for example Goldschmidt et al. [42] cite applications in the semiconductor industry
and in manufacturing. The quality of approximation algorithms for Weighted-`-
SetPacking and Weighted-`-SetCover is measured in dependence on ` with

121

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

an established set of algorithms [18, 47, 53] and inapproximability results [49, 50].
We now take a closer look at the maximum cardinality of each set in our results for
SetPacking-(k) and SetCover-(k) for all k ≥ 2.
In our investigation of SetPacking-(k) and SetCover-(k) in Subsections 7.2.3

and 7.2.5, our primary objective was to show intractability for all k ≥ 2, regardless
of the maximum cardinality of each set. For sake of presentation, we chose not
to implement the following improvements directly, but rather present them here:
When using the PLS-completeness of (3, 2, 3)-MCA and (3, 2, 3)-MinCA presented
in Theorem 6.1 and Lemma 6.1 in Chapter 6 as an advanced starting point, the
reductions for SetPacking-(2) and SetCover-(2) both create collections where
each set has at most 2 + 2 + 2 + 1 = 7 elements. This maximum number of elements is
reached in each set that models a constraint, where all three variables appear for the
second time. The maximum size of the sets can be further lowered by the following
two observations:

1. First, recall that by Theorem 6.1 in Chapter 6, (3, 2, 3)-MCA3-par is tight PLS-
complete. By merging two colors, this implies that the subclass of (3, 2, 3)-MCA
where all variables are bi-colored such that no constraint is monochromatic is
also PLS-complete. This implies that for a fixed instance I ∈ D(3,2,3)-MCA3-par ,
there exists an ordering of the variables by first and second appearance in the
set of constraints such that not all variables appear for the second time in each
constraint. Therefore, for each instance Φ(I) ∈ DSC-(2), the maximum number
of elements in each set created by the reduction for SetCover-(2) is now at
most 2 + 2 + 1 + 1 = 6.

2. Additionally, we can conclude from Theorem 6.1 in Chapter 6 that there exists an
ordering of the variables by first and second appearance in the set of constraints
such that in I not all variables appear for the first time. This can be used in
the reduction for SetPacking-(2). Note that for an instance Φ(I) ∈ DSP-(2),
all pairwise distinct sets for each i ∈ [m] also intersect in elements other than
ci, by construction. Hence, element ci ∈ B can be removed from each set C∗,∗,∗i

in Φ(I). In combination, this lowers the maximum number of elements in each
set in Φ(I) ∈ DSP-(2) to 2 + 2 + 1 = 5.

7.2.6 On the Complexity of TestSet-(k)

In this subsection, we prove that TestSet-(k) is PLS-complete for all k ≥ 1. Given
an instance I = (G = (V,E),wMC) ∈ DMC, we construct an instance Φ(I) =
(M,w,m) ∈ DTS-(1). Here, Φ(I) consists of a collection M from a finite set B,
a weight function w : B × B → N0 that maps tuples of elements of B to positive
integer weights, and a positive integer m ≤ |M|. Recall that for I we assumed that
G = (V,E) is a clique, i. e. there exists an edge {u, v} ∈ E for each pair of nodes
u, v ∈ V with u 6= v.

122

7.2 The PLS-Complexity of Weighted Standard Set Problems

The Reduction The main idea consists of two parts: On the one hand, we encode
the assignment of each node to a partition in the choice of the respective singleton
sets, in every locally optimal solution. On the other hand, we simulate the evaluation
of the cut in the weight function w. Additional small incentives reward the inclusion
of singleton sets, whereas medium incentives reward the inclusion of unique partitions
for each node.

In more detail, given instance I, we construct an instance Φ(I) of TS-(1) with the
finite set B := {v0, v1 | v ∈ V }. We set m := |V | and define

M := {{v0}, {v1} | v ∈ V }.

For every edge e = {u, v} ∈ E and κ ∈ {0, 1}, we define

w(uκ, vκ̄) := wMC(e) + W

w(uκ, vκ) := W.

For each v ∈ V and κ ∈ {0, 1}, we define

w(vκ, vκ̄) := 1.

Solution Mapping We call a solution S ∈ F(Φ(I)) positive-element-consistent if
|S| = m and for every set {vκ} ∈ S with κ ∈ {0, 1}, {vκ̄} 6∈ S. If solution S ∈ F(Φ(I))
is positive-element-consistent, then function Ψ(I, S) := p with p : V → {0, 1},
where p(v) := κ for each {vκ} ∈ S with κ ∈ {0, 1}. If S is not positive-element-
consistent, then the solution p computed by InitMC(I) is returned. This terminates
the description of the reduction. #

Lemma 7.10. Every locally optimal solution S ∈ F(Φ(I)) is positive-element-
consistent.

Proof. Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) with |S′| < m.
Since by construction |M| = 2m, there exists a set {vκ} ∈ M with {vκ} 6∈ S′ for some
κ ∈ {0, 1}. Recall that by definition |S′| ≥ 1. Adding {vκ} to S′ increases the cost of
S′ by at least 1, since w(vκ, u) = w(u, vκ) ≥ 1 for each {u} ∈ S′, by construction. A
contradiction to S′ being locally optimal.
Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) such that S′ contains

two sets {v0}, {v1} ∈ S′; recall that by definition, |S′| ∈ [m]. By pigeonhole principle,
there exist sets {u0}, {u1} ∈ M with {u0}, {u1} 6∈ S′. Recall that for I we assumed
that G = (V,E) is a clique, i. e. there exists an edge {u, v} ∈ E for each pair of nodes
u, v ∈ V with u 6= v. Exchanging {v0} for {u0} increases the cost of S′, since no
weight W is lost and the additional weights of w(v1, u0) = w(u0, v1) ≥W dominate
the sum of the weights lost due to the removal of {v0}. A contradiction to S′ being
locally optimal. �

Lemma 7.11. MaxCut ≤pls TS-(k) for all k ≥ 1.

123

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for Φ(I),
but Ψ(I, S) is not locally optimal for I. By Lemma 7.10, S is positive-element-
consistent. Since Ψ(I, S) is not locally optimal for I, there exists a node v ∈ V in
instance I ∈ DMC, which can switch partition such that now edges ei1 , . . . , eip ∈ E
with i1, . . . , ip, p ∈ [|E|] are in the cut, edges ej1 , . . . , ejq ∈ E with j1, . . . , jq, q ∈
[|E|] \ {i1, . . . , ip} are not in the cut and the cost strictly increases by ∆ > 0. This
implies that in Φ(I), set {vκ} ∈ S with κ ∈ {0, 1} can be exchanged for set {vκ̄} ∈ M.
On the one hand, for every node u ∈ V with u 6= v for which there is an edge
e` = {u, v} with e` ∈ {ei1 , . . . , eip} we have that set {uκ} ∈ S and

w(uκ, vκ̄) = w(vκ̄, uκ) = wMC(e`) + W.

On the other hand, for every node x ∈ V with x 6= v for which there is an edge
et = {x, v} with et ∈ {ej1 , . . . , ejq} we have that set {xκ̄} ∈ S and

w(xκ̄, vκ̄) = w(vκ̄, xκ̄) = W,

by construction. All other pairs of elements of B remain unchanged in S. By definition
of w, this strictly increases the cost of S by 2∆. A contradiction to S being locally
optimal. �

7.2.7 On the Complexity of SetBasis-(k)

In this subsection, we prove that SetBasis-(k) is PLS-complete for all k ≥ 1. Given
an instance I = (C,X) ∈ D(h)-CNFSat for some h ∈ N, we construct an instance
Φ(I) = (M,w,m) ∈ DSB-(1) consisting of a collectionM from a finite set B, a weight
function w :M→ N0 that maps sets in collectionM to positive integer weights, and
a positive integer m ≤ |M|. Let us stress that our reduction is independent of the
maximum cardinality ` ∈ N of the sets which may be replaced in an improving step
in Φ(I). Recall that parameter ` is not part of the input and plays a crucial role in
the definition of SetBasis-(k) as a PLS problem.

The Reduction In a nutshell, the main idea is to encode every satisfying assignment
of a clause via sets containing the respective literals and possessing the weight of the
clause. This is polynomial in the size of the input since the length of each clause in a
given instance I ∈ D(h)-CNFSat is at most h. In order for locally optimal solutions to
be a collection of singleton sets, we add large incentives to include singleton sets and
medium incentives to include unique literals for each variable.

In more detail, given instance I, we construct an instance Φ(I) of SB-(1) with the
finite set B := {x, x̄ | x ∈ X} and we define m := |X |. For every x ∈ X , we introduce
two sets

CSB
x := {x}, CSB

x̄ := {x̄}
in M of weight w(CSB

x) = w(CSB
x̄) := 2W. For every x, y ∈ X with x 6= y, we

introduce four sets

CSB
xy := {x, y}, CSB

x̄y := {x̄, y}, CSB
xȳ := {x, ȳ}, and CSB

x̄ȳ := {x̄, ȳ}

124

7.2 The PLS-Complexity of Weighted Standard Set Problems

in M which all have weight w(∗) := W. We encode each satisfying assignment
for every clause Ci ∈ C by a set containing the corresponding elements from B,
define it to possess the weight of clause Ci, and add it to M. In detail, for every
clause Ci(xi1 , . . . , xihi) ∈ C of length hi ≤ h and weight wi and every assignment
a : {xi1 , . . . , xihi} → {0, 1} which satisfies clause Ci, we introduce sets

C
SB(a)
i := {ϕ(xi1), . . . , ϕ(xihi)},

inM of weight w(C
SB(a)
i) := wi, where for all x ∈ {xi1 , . . . , xihi},

ϕ(x) :=

{
x if a(x) = 1

x̄ otherwise.

Solution Mapping We call a solution S ∈ F(Φ(I)) single-set-consistent if |Si| = 1
for each Si ∈ S and for every {x} ∈ S, {x̄} 6∈ S. Recall that by definition of
SetBasis-(k), |S| = m. If solution S ∈ F(Φ(I)) is single-set-consistent, then function
Ψ(I, S) := a with a : X → {0, 1}, where for all x ∈ X

a(x) :=

{
1 if {x} ∈ S
0 otherwise.

If S is not single-set-consistent, then the assignment a computed by Init(h)-CNFSat(I)
is returned. This terminates the description of the reduction. #

Lemma 7.12. Every locally optimal solution S ∈ F(Φ(I)) is single-set-consistent.

Proof. Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) which contains
a set Si ∈ S′ with |Si| 6= 1. By definition of SetBasis-(k), |Si| > 0, and therefore
|Si| ≥ 2. Hence, Si is only used in the union of sets which by construction have total
weight strictly less than 2W. By pigeonhole principle, there exists a set {x} ∈ 2B

which is not in S′. Exchanging set Si for {x} strictly increases the cost function.
Now, set CSB

x can be constructed and the weight of CSB
x is larger than the sum of the

weights of the sets which cannot be constructed any more due to the removal of Si.
A contradiction to S′ being locally optimal.

Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) which contains two sets
{x}, {x̄} ∈ S′. By pigeonhole principle, there exists a set {y} ∈ B with {y}, {ȳ} 6∈ S′.
Thus, by exchanging {x̄} for {y}, the additional sets CSB

xy and CSB
yx can now be

constructed. Consider the remaining changes to the cost function by the levels of
the weights: Set CSB

x̄ cannot be constructed any more and set CSB
y can now be

constructed; hence, no weight 2W is lost due to the exchange operation. As shown
above, |Si| = 1 for each Si ∈ S. For each two sets CSB

x̄z and CSB
zx̄ with {z} ∈ S′ and

z 6= x which cannot be constructed any more, the two sets CSB
yz and CSB

zy can now
be constructed; hence, no weight W is lost due to the exchange operation. Sets CSB

xy

and CSB
yx both have weight W and this dominates the sum of the weights of the sets

which cannot be constructed any more due to the removal of {x̄}. Thus, the cost of
S′ strictly increased. A contradiction to S′ being locally optimal. �

125

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

Lemma 7.13. (h)-CNFSat ≤pls SB-(k) for all k ≥ 1.

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for Φ(I),
but Ψ(I, S) is not locally optimal for I. By Lemma 7.12, S is single-set-consistent.
Since a = Ψ(I, S) is not locally optimal for I, there exists a variable x ∈ X in
instance I ∈ D(h)-CNFSat, which can be flipped such that in the resulting solution
a′ ∈ F(I), clauses Ci1 , . . . , Cip ∈ C with i1, . . . , ip, p ∈ [|C|] become satisfied, clauses
Cj1 , . . . , Cjq ∈ C with j1, . . . , jq, q ∈ [|C|]\{i1, . . . , ip} become unsatisfied and the cost
strictly increases by ∆ > 0. Without loss of generality, let {x} ∈ S. Now, this implies
that in Φ(I), set {x} ∈ S can be exchanged for set {x̄} ∈ 2B. For some clause Ci ∈ C,
denote by a′i the assignment of a′ restricted to the set of variables in Ci. All sets

C
SB(a′i1)

i1
, . . . , C

SB(a′ip)

ip
∈M

can be constructed as the union of a subset of sets of S involving {x̄}, and all sets

C
SB(a′j1)

j1
, . . . , C

SB(a′jq)

jq
∈M

cannot be constructed as the union of a subset of sets of S. Set CSB
x cannot be

constructed any more and set CSB
x̄ can now be constructed; hence, no weight 2W is

lost due to the exchange operation. For each two sets CSB
xy and CSB

yx with {y} ∈ S
and y 6= x which cannot be composed any more, the two sets CSB

x̄y and CSB
yx̄ can now

be composed; hence, no weight W is lost due to the exchange operation. These are
the only changes. By definition of w, this strictly increases the cost of S by ∆. A
contradiction to S being locally optimal. �

7.2.8 On the Complexity of HittingSet-(k)

In this subsection, we prove that HittingSet-(k) is PLS-complete for all k ≥
1. Given an instance I = (C,X) ∈ DCNFSat, we construct an instance Φ(I) =
(M,w,m) ∈ DHS-(1) consisting of a collection M from a finite set B, a weight
function w :M→ N0 mapping sets in collectionM to positive integer weights, and
a positive integer m ≤ |B|. In this subsection, we say that a set C ∈ M is hit in
solution S ∈ F(Φ(I)) if C ∩ S 6= ∅.

The Reduction In a nutshell, the main idea is to encode every clause as a set
containing the respective literals which possesses the weight of the clause. In order to
ensure consistency of the induced variable assignment in each locally optimal solution,
we add large incentives to include at least one literal from every variable, but not
both.
In more detail, from instance I, we create an instance Φ(I) of HS-(1) with the

finite set B := {x, x̄ | x ∈ X} and we define m := |X |. For every variable x ∈ X , we
introduce a set

CHS
x := {x, x̄}

126

7.2 The PLS-Complexity of Weighted Standard Set Problems

in M with w(CHS
x) := W. For every clause, we introduce a single set possessing

the weight of the respective clause which contains the set of variables according
to their positive or negative evaluation in the clause. In detail, for every clause
Ci(xi1 , . . . , xihi) ∈ C of length hi ∈ N and weight wi, we introduce a set

CHS
i := {ϕ(xi1), . . . , ϕ(xihi)

}

inM of weight w(CHS
i) := wi, where for all xj ∈ {xi1 , . . . , xihi},

ϕ(xj) :=

{
xj if bj = 0

x̄j otherwise.

Recall that by definition of CNFSat, constants bj take the role of negating variables.

Solution Mapping We call a solution S ∈ F(Φ(I)) element-consistent if |S| = m
and for every x ∈ S, x̄ 6∈ S. If solution S ∈ F(Φ(I)) is element-consistent, then
function Ψ(I, S) := a with a : X → {0, 1}, where for all x ∈ X

a(x) :=

{
1 if x ∈ S
0 otherwise.

If S is not element-consistent, then the assignment a computed by InitCNFSat(I) is
returned. This terminates the description of the reduction. #

Lemma 7.14. Every locally optimal solution S ∈ F(Φ(I)) is element-consistent.

Proof. Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) with |S′| < m.
Since |B| = 2m, there exists an element x ∈ B with x, x̄ 6∈ S′. Thus, adding x to S′

increases the cost of S′, since no weight is lost and set CHS
x with w(CHS

x) = W is hit.
A contradiction to S′ being locally optimal.

Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) such that S′ contains
two elements x, x̄ ∈ S′. By pigeonhole principle, there exists an element y ∈ B with
y, ȳ 6∈ S′. Exchanging x for y in solution S′ increases the cost of S′. All sets of weight
W that were previously hit are still hit. Additionally, set CHS

y is now hit and w(CHS
y)

is larger than the sum of all sets CHS
i ∈ M with Ci(∗, . . . , x, . . . , ∗) ∈ C that where

hit due to the membership of x ∈ S′, by construction. A contradiction to S′ being
locally optimal. �

Lemma 7.15. CNFSat ≤pls HS-(k) for all k ≥ 1.

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for Φ(I),
but Ψ(I, S) is not locally optimal for I. By Lemma 7.14, S is element-consistent.
Since Ψ(I, S) is not locally optimal for I, there exists a variable x ∈ X in instance I ∈
DCNFSat, which can be flipped such that clauses Ci1 , . . . , Cip ∈ C with i1, . . . , ip, p ∈
[|C|] become satisfied, clauses Cj1 , . . . , Cjq ∈ C with j1, . . . , jq, q ∈ [|C|] \ {i1, . . . , ip}

127

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

become unsatisfied and the cost strictly increases by ∆ > 0. Without loss of generality,
let x ∈ S. Now, this implies that in Φ(I), element x ∈ S can be exchanged for element
x̄ ∈ B and now sets CHS

i1
, . . . , CHS

ip
∈M are hit, and sets CHS

j1
, . . . , CHS

jq
∈M are not

hit; set CHS
x is still hit and those are the only changes. By definition of w, this strictly

increases the cost of S by ∆. A contradiction to S being locally optimal. �

7.2.9 On the Complexity of IntersectionPattern-(k)

In this subsection, we prove that IntersectionPattern-(k) is PLS-complete
for all k ≥ 1. Given an instance I = (G = (V,E),w) ∈ DMC, we construct an
instance Φ(I) = (A,B,M) ∈ DIP-(1) consisting of two symmetric n × n matrices
A = (aij)i,j∈[n], and B = (bij)i,j∈[n], and a collectionM from a finite set B. Recall
that for I we assumed that V = {1, . . . , n} and G = (V,E) is a clique, i. e. there exists
an edge {u, v} ∈ E for each pair of nodes u, v ∈ V with u 6= v. In this reduction, we
also assume that for each pair of nodes u, v ∈ V with u 6= v, the lexicographical order
agrees with the labeling of the nodes, i. e. u < v. In the following, denote γ := |V |−1,
the number of incident nodes of each node v ∈ V .

The Reduction In a nutshell, the main idea is for each node v ∈ V and each
assignment of v to a partition to introduce sets of identical cardinality which have
distinct cardinality from all other sets. A set representing a certain assignment of
a partition to v contains elements which encode cuts for all edges where node v is
an endpoint of. If an edge e = {u, v} ∈ E is in the cut by a given partition, then
the intersection of the two corresponding sets for u and v has cardinality two. In
this case, the weight of the edge is added to the solution. Large incentives ensure
that—identified by cardinality—the sets for variables are placed in the right position
in every locally optimal solution.
In more detail, given instance I, define n := |V |. We create an instance Φ(I) of

IP-(1) with the finite set

B := {veκ | v ∈ V, κ ∈ {0, 1}, e = {u, v} ∈ E, u ∈ V, u 6= v}∪
{v`κ | v ∈ V, κ ∈ {0, 1}, ` ∈ [v]}.

For every node v ∈ V and κ ∈ {0, 1}, we introduce a set CIP
vκ inM, where

CIP
vκ := {veκ, ueκ̄ | e = {u, v} ∈ E, u ∈ V, u 6= v} ∪ {v`κ | ` ∈ [v]}.

Note that by construction and assumption on I, for every v ∈ V and κ ∈ {0, 1},
|CIP
vκ | = 2γ + v. In the n× n matrix A in Φ(I), we define

aij :=

{
2γ + i if i = j

2 otherwise

128

7.2 The PLS-Complexity of Weighted Standard Set Problems

for all i, j ∈ [n] with i ≤ j. In the n× n matrix B in Φ(I), we define

buv :=

{
W if u = v

w(e) otherwise, where e = {u, v} ∈ E

for all u, v ∈ [n] with u ≤ v.

Solution Mapping We say that a solution S ∈ F(Φ(I)) is position-consistent if for
each i ∈ [n], set CIP

v∗ on position i has cardinality aii. If solution S ∈ F(Φ(I)) is
position-consistent, then function Ψ(I, S) := p with p : V → {0, 1}, where p(v) := κ
for each CIP

vκ ∈ S with κ ∈ {0, 1}. If S is not position-consistent, then the solution p
computed by InitMC(I) is returned. This terminates the description of the reduction.

#

Lemma 7.16. Every locally optimal solution S ∈ F(Φ(I)) is position-consistent.

Proof. Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) which is not
position-consistent. This implies that there exists a position i ∈ [n] such that for set
CIP
v∗ ∈ S′ on position i, |CIP

v∗ | 6= aii. Exchanging CIP
v∗ ∈ S′ for set CIP

u∗ ∈M on position
i in S′ with |CIP

u∗ | = aii strictly improves the cost of S′, since by construction

bii >
∑

j∈[n],j>i
bij +

∑
`∈[n],`<i

b`i

and entries bij for all j ∈ [n], j > i and b`i for all ` ∈ [n], ` < i are the only terms
that may be lost in the cost of S′ due to the exchange. A contradiction to S′ being
locally optimal. �

Lemma 7.17. MaxCut ≤pls IP-(k) for all k ≥ 1.

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for Φ(I),
but Ψ(I, S) is not locally optimal for I. By Lemma 7.16, S is position-consistent.
Since by assumption, Ψ(I, S) is not locally optimal for I, there exists a node v ∈ V in
instance I ∈ DMC, which can switch partition such that now edges ei1 , . . . , eip ∈ E
with i1, . . . , ip, p ∈ [|E|] are in the cut, edges ej1 , . . . , ejq ∈ E with j1, . . . , jq, q ∈
[|E|] \ {i1, . . . , ip} are not in the cut and the cost strictly increases by ∆ > 0.
Now, this implies that in Φ(I), set CIP

vκ ∈ S with κ ∈ {0, 1} can be exchanged
for set CIP

vκ̄ ∈ M on position v in S. By construction, for each e` = {u, v} with
e` ∈ {ei1 , . . . , eip},

|CIP
uκ ∩ CIP

vκ̄ | = 2 = auv

and for each et = {v, x} with et ∈ {ej1 , . . . , ejq},

|CIP
vκ̄ ∩ CIP

xκ̄ | = 0 6= avx.

By definition of B, this strictly increases the cost of S by ∆. A contradiction to S
being locally optimal. �

129

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

7.2.10 On the Complexity of ComparativeContainment-(k)

In this subsection, we prove that ComparativeContainment-(k) is PLS-complete
for all k ≥ 1. Given an instance I = (C,X) ∈ D(h)-CNFSat for some h ∈ N, we
construct an instance Φ(I) = (M,N ,w) ∈ DCC-(1). Here, Φ(I), consists of two
collections M and N from a finite set B and a weight function w : M∪N → N0

that maps sets from collectionsM∪N to positive integer weights.

The Reduction In a nutshell, the main idea is to encode every satisfying assignment
of a clause via sets containing the respective literals and possessing the weight of the
clause. This is polynomial in the size of the input since the length of each clause in I
is at most h. Additionally, we add large incentives to include some literal of each
variable and medium incentives to exclude that both literals of a variable are picked
up in every locally optimal solution.

In more detail, given instance I, we construct an instance Φ(I) of CC-(1) with the
finite set B := {x, x̄ | x ∈ X}. For every x ∈ X , we introduce a set

XCC
x := {y, ȳ | y ∈ X , y 6= x}

in N with w(XCC
x) := 2W. This terminates the description of N . Now, we define

collectionM. Let

Rx := {y, ȳ | y ∈ X , y 6= x}.

For every x ∈ X , we introduce two sets CCC
x := Rx ∪ {x} and CCC

x̄ := Rx ∪ {x̄} in N
with w(CCC

x) = w(CCC
x̄) := W. Let

ICi := {x, x̄ | x does not appear in clause Ci ∈ C}

denote the set of all “fan-out” variables, i. e. all variables in B which are irrelevant for
satisfying clause Ci ∈ C. Extending the technique from Subsection 7.2.7, for every
clause Ci ∈ C, we encode each satisfying assignment for Ci by a set containing the
corresponding elements from B, add all variables irrelevant for satisfying the clause,
define it to possess the weight of clause Ci and add it to M. In detail, for every
clause Ci(xi1 , . . . , xihi) ∈ C of length hi ≤ h and weight wi and each assignment
a : {xi1 , . . . , xihi} → {0, 1} which satisfies clause Ci, we introduce a set

C
CC(a)
i := ICi ∪ {ϕ(xi1), . . . , ϕ(xihi)},

inM with w(C
CC(a)
i) := wi, where for all x ∈ {xi1 , . . . , xihi},

ϕ(x) :=

{
x if a(x) = 1

x̄ otherwise.

130

7.2 The PLS-Complexity of Weighted Standard Set Problems

Solution Mapping We slightly modify the definition an element-consistent solution
S ∈ F(Φ(I)) from Subsection 7.2.8. Here, we call a solution S ∈ F(Φ(I)) element-
consistent if |S| = |B|/2 and for every x ∈ S, x̄ 6∈ S. If solution S ∈ F(Φ(I)) is
element-consistent, then function Ψ(I, S) := a with a : X → {0, 1}, where for all
x ∈ X

a(x) :=

{
1 if x ∈ S
0 otherwise.

If S is not element-consistent, then the assignment a computed by InitCNFSat(I) is
returned. This terminates the description of the reduction. #

Lemma 7.18. Every locally optimal solution S ∈ F(Φ(I)) is element-consistent.

Proof. Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) with |S′| < |B|/2.
This implies that there exists an element x ∈ B with x, x̄ 6∈ S′. Adding x to S′

increases the cost of S′, since now S′ 6⊆ XCC
x . The weight of XCC

x both dominates the
sum of the weights lost due to S′ 6⊆ CCC

x̄ and the sum of the weights of the remaining
sets inM in which S′ is not entirely contained any more. A contradiction to S′ being
locally optimal.
Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) with |S′| > |B|/2. By

pigeonhole principle there exists an element y ∈ S′ with ȳ ∈ S′. Removing ȳ ∈ S′

increases the cost of S′, since, on the one hand, it does not alter any containment of S′

in sets from N . On the other hand, S′ ⊆ CCC
y now and the weight of CCC

y dominates
the sum of the smaller weights of sets inM in which S′ is not entirely contained any
more. A contradiction to S′ being locally optimal.
Assume there exists a locally optimal solution S′ ∈ F(Φ(I)) such that S′ contains

two elements x, x̄ ∈ S′. The above cases imply that |S′| = |B|/2. By pigeonhole
principle, there exists an element y ∈ B with y, ȳ 6∈ S′. Thus, exchanging x for y
increases the cost of S′, since now S′ 6⊆ XCC

y , S′ ⊆ CCC
x̄ and still S′ 6⊆ XCC

x ; the sum
of the weights of XCC

y and CCC
y dominates both the sum of the weights lost due to

S′ 6⊆ CCC
ȳ and the sum of the smaller weights of sets inM in which S′ is not entirely

contained any more. A contradiction to S′ being locally optimal. �

Lemma 7.19. (h)-CNFSat ≤pls CC-(k) for all k ≥ 1.

Proof. Assume there exists a solution S ∈ F(Φ(I)) which is locally optimal for Φ(I),
but Ψ(I, S) is not locally optimal for I. By Lemma 7.18, S is element-consistent.
Since a := Ψ(I, S) is not locally optimal for I, there exists a variable x ∈ X in
instance I ∈ D(h)-CNFSat, which can be flipped such that in the resulting solution
a′ ∈ F(I), clauses Ci1 , . . . , Cip ∈ C with i1, . . . , ip, p ∈ [|C|] become satisfied, clauses
Cj1 , . . . , Cjq ∈ C with j1, . . . , jq, q ∈ [|C|]\{i1, . . . , ip} become unsatisfied and the cost
strictly increases by ∆ > 0. Without loss of generality, let x ∈ S. Now, this implies
that in Φ(I), element x ∈ S can be exchanged for element x̄ ∈ B; call the resulting
solution S′. Note that S ⊆ XCC

∗ if and only if S′ ⊆ XCC
∗ for all XCC

∗ ∈ N . As in

131

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

Subsection 7.2.7, for some clause Ci ∈ C, denote by a′i the assignment of a′ restricted
to the set of variables in Ci. Now, S′ is entirely contained in each set

C
CC(a′i1)

i1
, . . . , C

CC(a′ip)

ip
∈M,

and S′ is not entirely contained in each set

C
CC(a′j1)

j1
, . . . , C

CC(a′jq)

jq
∈M;

furthermore, S′ 6⊆ CCC
x and S′ ⊆ CCC

x̄ . By definition of w, this strictly increases the
cost of S by ∆. A contradiction to S being locally optimal. �

7.2.11 Proving the Tightness of the Reductions

In this subsection, we consider the tightness of all reductions presented in Subsec-
tions 7.2.2–7.2.10. We prove the following lemma:

Lemma 7.20. All reductions presented in Subsections 7.2.2–7.2.10 are tight.

Proof. First, consider the reduction for SetSplitting-(k) in Subsection 7.2.4. When
defining R as FSSp-(1)(Φ(I)) for a given instance I ∈ DMC, it is obvious to see that
our reduction is tight.

Now, let P be a weighted standard set problem for which we show intractability in
Subsections 7.2.2, 7.2.3 and 7.2.5–7.2.10 and let I be an instance of P . We define
the set RP to be the set of all standard or consistent solutions in FP (Φ(I)), where
the definition of a standard or consistent solution is with respect to P . As shown
in the respective subsections, RP contains the set of all locally optimal solutions in
FP (Φ(I)). An improving step in the given neighborhood leads from a standard or
consistent solution S ∈ FP (Φ(I)) to a standard or consistent solution S′ ∈ FP (Φ(I)).
Solution Ψ(I, S′) is a better neighbor of Ψ(I, S) and can only differ in the assignment
of a single variable, since, otherwise, this would require a larger neighborhood than
the one given. �

7.2.12 On the Tractability of Weighted Standard Set Problems

Subsections 7.2.2–7.2.10 yield the following intractability results for weighted standard
set problems, as introduced in Section 2.2.4:

Theorem 7.1. The problems SSp-(k), TS-(k), HS-(k), SB-(k), IP-(k), and CC-(k)
are tight PLS-complete for all k ≥ 1. The problems SP-(k) and SC-(k) are tight
PLS-complete for all k ≥ 2. The problems W3DM-(k, `) and X3C-(k) are tight
PLS-complete for all k ≥ 6 and ` ≥ 12.

Subsections 7.2.3 and 7.2.5 provide the following two tractability results for Set-
Packing and SetCover:

Theorem 7.2. The problems SP-(1) and SC-(1) are polynomial-time solvable.

132

7.3 Conclusion and a Discussion of Question 7

7.3 Conclusion and a Discussion of Question 7

Set problems are fundamental combinatorial optimization problems with a wide range
of applications. In this chapter, we studied the tractability of computing locally
optimal solutions for weighted standard set problems. For almost all problems we
investigated, the neighborhood structure is superimposed by the k-differ neighborhood.
Here, two solutions are mutual neighbors if they differ in at most k elements which
describe a solution. Before stepping into the PLS reductions, we presented the
general technique of our intractability proofs in Section 7.1.

Results Obtained For most of the weighted standard set problems we investigated,
we showed the intractability of computing locally optimal solutions for the respective
1-differ neighborhood in Section 7.2. This means that the problems are already
hard, when one element describing the solution is allowed to be added, deleted, or
exchanged for another element which is not part of the solution. For the problems Set-
Packing and SetCover, we derived tight bounds on the tractability of computing
locally optimal solutions for the respective 2-differ neighborhood in Subsection 7.2.3
and Subsection 7.2.5. This means that SetPacking-(1) (resp. SetCover-(1)) is
polynomial-time computable, whereas SetPacking-(k) (resp. SetCover-(k)) is
tight PLS-complete for all k ≥ 2. Furthermore, we proved in Subsection 7.2.2 that the
problems Weighted-3-DimensionalMatching and Exact-Cover-By-3-Sets
are already PLS-complete for a smaller neighborhood than previously known [30].

Discussion of Question 7 Considering Question 7, we were able to present the
non-sophisticated polynomial-time algorithms GreedyPacking and GreedyCover.
These algorithms were sufficient to prove the tractability of computing locally optimal
solutions for SetPacking-(1) and SetCover-(1). Let us stress that GreedyPack-
ing and GreedyCover were designed without bearing the quality of the obtained
solutions in mind, but only focusing on the tractability of the respective problems.
For all remaining weighted standard set problems we investigated, we were able
to show their intractability, as outlined in the previous paragraph. According to
the concept of PLS-completeness, the intractability of the corresponding weighted
standard set problems suggests that there is little hope for polynomial-time algorithms
for these hard problems. Moreover, our investigations suggest that—up to a few
exceptions—PLS-completeness seems to be the natural behavior of computing locally
optimal solutions for weighted standard set problems. This indicates that computing
locally optimal solutions for these problems via successive improvements may not
yield a sufficient performance improvement over computing globally optimal solutions,
in general. Our analysis also unveils that the hardness of the problems we investigated
stems from a combination of a numerical problem on an underlying combinatorial
problem.

Open Problems Despite this insight, the exact tractability of Weighted-3-Di-
mensionalMatching-(k, `) and Exact-Cover-By-3-Sets-(k) for k < 6 or ` < 12

133

Chapter 7 On the Complexity of Local Search for Weighted Standard Set Problems

remains unsettled. In general, our investigation can only serve as a starting point
to sharpen the boundary on the tractability of weighted standard set problems, as
intensively studied in the literature. To the best of our knowledge, the results we
present are one of the very few PLS results for local search on weighted standard
set problems. Our knowledge of their tractability is rather limited and not at all
comparable with the rich knowledge we have about computing globally optimal
solutions for standard set problems, as given in the book of Garey and Johnson [40].

134

Chapter 8

Conclusion and Directions for Further
Research

In this chapter, we present a general conclusion which recapitulates the problems
investigated and the results obtained in the course of this thesis. Additionally, we
outline directions for further research. In Section 8.1, we first summarize the results
we presented in the course of this thesis and discuss Questions 1–3. In Section 8.2, we
present open problems related not only to the problems we studied in this thesis, but
also from the field of local search in general. In Section 8.3, we close this thesis with
some remarks on our knowledge of the tractability of computing of locally optimal
solutions we would like the reader to take from this thesis.

8.1 General Conclusion and a Discussion of
Questions 1–3

In this section, we discuss Questions 1–3, given in Subsection 1.3.1. We first pass in
review the problems for which we were able to settle the complexity of computing a
locally optimal solution, as asked for in Question 1. We proceed with a bird’s-eye view
of our reductions, identifying commonalities between them, as inquired in Question 2.
We close with the potential sources of intractability of the PLS problems which we
identified as hard, as asked for in Question 3.

8.1.1 Settling the PLS-Complexity of the Problems Considered in this
Thesis

In this thesis, we studied the tractability of computing locally optimal solutions for
problems arising in the fields of game theory and optimization. For our investigation,
we used the framework of PLS, as introduced by Johnson, Papadimtriou, and
Yannakakis [56].

1. In game theory, congestion games are a widely accepted model to investigate the
behavior and performance of large-scale distributed networks with autonomous
participants. The class of restricted network congestion games which we studied
in Chapter 5 is a subclass of congestion games where for each player there
exists a set of edges which he is not allowed to use. Rosenthal’s potential

135

Chapter 8 Conclusion and Directions for Further Research

function guarantees the existence of a Nash equilibrium, as local minima of the
potential function coincide with Nash equilibria; moreover, Rosenthal’s potential
function is polynomial-time computable. This allows to formulate the problem
of computing a Nash equilibrium in a given restricted network congestion game
as a PLS problem. The input consists of a restricted network congestion
game and the neighborhood structure is superimposed by the SelfishSteps
algorithm. Our results yielded a surrounding intractability answer to this PLS
problem. Not only is the problem of computing a Nash equilibrium in a restricted
network congestion game involving two players only PLS-complete, it also has
the all-exp property. This means that there exist instances and initial states
of the games, such that every sequence of selfish steps has exponential length.
The results hold for directed and undirected networks. Notably, our results are
optimal, since for one player, computing a Nash equilibrium reduces to finding
a shortest path. Hence, our results settle the complexity of computing Nash
equilibria in restricted network congestion games.

2. From the field of optimization, we investigated the complexity of computing
locally optimal solutions for the Maximum Constraint Assignment problem
in Chapter 6 and for weighted standard set problems in Chapter 7.

The Maximum Constraint Assignment (in short MCA) problem is a
local search version of weighted Generalized Maximum Satisfiability
on constraints over variables with higher valence. Two solutions are mutual
neighbors, if they differ in the assignment of a single variable. In Chapter 6, we
focused on the subclass (p, q, r)-MCAk-par, where each constraint has length
at most p, each variable appears in at most q constraints and takes at most
r values; additionally, the set of constraints is k-partite. We extended and
refined a technique from Krentel [67] and showed that (3, 2, 3)-MCA3-par and
(2, 3, 6)-MCA2-par are tight PLS-complete. When neglecting the valence of
the variables, our results are optimal, since (2, 2, r)-MCA is polynomial-time
computable for every r ∈ N. Additionally, we obtained that for the special case
of binary variables, (6, 2, 2)-MCA is tight PLS-complete.

The weighted standard set problems we considered in Chapter 7 are local search
versions of their respective decision problems, as intensively studied in the
literature. For most of these problems, we used the k-differ neighborhood, where
two solutions are mutual neighbors if they differ in at most k elements which
describe a solution. Our investigations unveiled that up to a few exceptions,
all weighted standard set problems we considered are tight PLS-complete, even
for the 1-differ neighborhood. For Weighted-3-DimensionalMatching and
Exact-Cover-By-3-Sets, we obtained intractability results for a smaller
neighborhood than previously known, where we are not certain if our results
are optimal. For the problems SetPacking and SetCover with the 1-differ
neighborhood, we presented polynomial-time algorithms; again for the 2-differ
neighborhood, we were able to provide tight PLS reductions from (3, 2, 3)-MCA

136

8.1 General Conclusion and a Discussion of Questions 1–3

and (3, 2, 3)-MinCA, respectively.

The hardness results presented in the course of this thesis demarcate the tractability
of computing locally optimal solutions for the respective problems, up to a few
exceptions. The intractability results we obtained suggest that there is little hope for
polynomial-time algorithms for the corresponding problems. Moreover, computing
locally optimal solutions for intractable problems via successive improvements may not
yield a sufficient performance improvement over computing globally optimal solutions,
in general. From our results, we get the feeling that PLS-completeness is the
natural behavior of many local search problems arising from intractable optimization
problems.
We would like to stress that we put an emphasis on proving the tightness of all

the reductions we presented in the course of this thesis. We believe that the tight
PLS-completeness of all problems we proved to be intractable—and especially the
rather technically involved tight PLS-completeness of the Maximum Constraint
Assignment problems in Chapter 6—might prove useful in establishing that other
problems are tight PLS-complete.

8.1.2 A Note on the General Structure of Our PLS Reductions

At first glance, the reductions we presented in the course of this thesis tend to be
rather problem-specific constructions. They mostly involved gadgets that exploit
certain characteristics of the PLS problem under investigation. For example, consider
the assign(∗, ∗) gadget, presented in Subsection 7.2.2. This gadget was a crucial part
of our construction to prove the intractability of Weighted-3-DimensionalMat-
ching (resp. Exact-Cover-By-3-Sets). With the help of the assign(∗, ∗) gadget,
we created a framework which eventually ensured that the variable assignments
induced by each locally optimal matching (resp. covering) are consistent. In the
design of the gadget, we exploited a characteristic of the problem that in each feasible
solution, every element can only be contained in a single triple (resp. set). At first, it
might seem hard to imagine how to reuse that problem-specific knowledge in other
reductions which involve problems from potentially different areas.

Nonetheless, all reductions from PLS problem A to some PLS problem B which
we presented share some commonalities. Let I ∈ DA be an instance of A and denote
Φ(I) ∈ DB an instance of B, which we constructed in the course of this thesis. We
attempt to identify and categorize the common fragments of all our reductions by
weight. In spirit with the seminal work of Krentel [67], we identify these weights to
be either large, medium, or small :

1. Note that all of our rather technically involved reductions used some sort of
construction to create a framework to simulate I in Φ(I). Here, gadgets with
large weights ensured that locally optima solutions in Φ(I) correspond to locally
optimal solutions in I. Typically, a single large weight exceeded the sum of all
weights on all lower levels. A framework can, for example, ensure the consistency

137

Chapter 8 Conclusion and Directions for Further Research

of the variable assignment or the partition of the set of nodes in I which is
induced by a solution in FB(Φ(I)), as in most reductions in Chapter 7. Note
that the reduction for SetSplitting-(1) presented in Chapter 7 lacks such
a construction, since the reduction presented there is straightforward. In our
reductions for (2)-RDNCG and (2)-RUNCG in Chapter 5, one construction
created a framework involving large weights which ensured that the choices of
strategies of the two players induced assignments, which did not differ in more
than one bit. In our reductions for (3, 2, 3)-MCA3-par and (2, 3, 6)-MCA2-par
in Chapter 6, the predicates for gates in circuit S0 and S1 created a framework
which ensured that the computation of circuits S0 and S1 was always correct,
with respect to the ternary logic used in the construction. Let us stress that
all of the above described constructions are carefully designed such that for
every solution which is not locally optimal, there exists a sequence of improving
steps that terminates within the framework. The size of the weights allows to
neglect all weights on the lower levels in an improving step on the largest level,
by construction.

2. In most of our reductions, we simulated instance I in Φ(I), using a problem-
specific construction which involved medium weights. If present, the framework
created in item 1 ensured that locally optimal solutions in Φ(I) have certain
structural properties. By construction, we stored the value of the objective
function of a solution of the given instance I on this level. Note that the value
of the objective function throttled the search for a better solution, in case the
objective function could be improved. This was the core of all our reductions.

3. Additional constructions involving small weights gave modest incentives in case
the framework on the largest level outlined in item 1 was not fully rolled out or
the entire simulation of instance I in Φ(I) needed to be nudged in a certain
direction. For example, in our reduction for SetPacking-(2) in Chapter 7,
auxiliary dummy sets of small weight served as “escape options” in case the sets
of a solution of Φ(I) intersected. They allowed to replace an intersecting set
with an intersection-free dummy set at a minimal reward. Afterwards, dummy
sets could again be safely removed from the solution, such that locally optimal
solutions in Φ(I) induced locally optimal solutions in I. In our reductions for
(3, 2, 3)-MCA3-par and (2, 3, 6)-MCA2-par in Chapter 6, all predicates of small
weight played a vital part in nudging circuits S0, S1, and the comparator in
the direction of the improved solution. Once the large weights caught up, the
construction on the small level was reset by the medium weights for the next
run.

The structure of our proofs mostly followed the layout of the weights in a natural
way. We first showed that each locally optimal solution obeys the framework installed
in item 1. We usually identified such solutions as standard solutions or to be consistent
for some property. In the actual proof of PLS-completeness, we could then solely
focus on standard or consistent solutions.

138

8.1 General Conclusion and a Discussion of Questions 1–3

Let us remark that most of the PLS-completeness proofs presented in the literature
that we are aware of follow this approach with minor modifications. Nonetheless, we
should mention that Skopalik and Vöcking [98] present a slightly different general
layout. In their paper [98], the authors present a reduction which implements a binary
counter on the largest level. All succeeding levels then handle the simulation of the
given input problem. By construction, the authors can guarantee that the potential
stored on the counter is at least the largest possible improvement of the potential
function for the problem to be simulated.

8.1.3 Possible Sources of Intractability in Our PLS-Complete
Problems

In general, the tractability of a PLS problem crucially depends on both the range of
the involved numbers and the structure of the neighborhood.

1. If all involved numbers are polynomially bounded, then locally optimal solutions
can be computed via successive improvements in polynomial time, regardless of
the neighborhood structure. Note that for all intractability results we provided
in this thesis, the range of the involved numbers is exponential.

2. Most of the neighborhood structures of the problems we studied in this thesis
are rather non-involved. Yet, we were able to show intractability for these simple
neighborhoods. Only in the special cases of SetPacking and SetCover with
the 1-differ neighborhood, could we capitalize on the neighborhood structure
with greedy algorithms. In both cases, the neighborhood structure limited the
options for improvements in every step such that the problems became easy,
regardless of the range of the weights.

The PLS-completeness proofs we presented in the course of this thesis indicate
that the intractability of a PLS problem we investigated stems from a combination of
a numerical problem on an underlying combinatorial problem. In restricted network
congestion games, which we investigated in Chapter 5, the numerical problem is
embedded in the delay functions of the resources and the combinatorial problem is
given by the structure of the underlying network. Let us remark that our construction
in Chapter 5 heavily exploited the potential complexity of the underlying network. We
designed strategies which were intensively interwoven, yet each player still simulated
an assignment of nodes to partitions, node-by-node, in his exclusive subnetwork.
Transforming this construction to standard network congestion games was one of the
obstacles we could not overcome in order to extend our result. In the Maximum
Constraint Assignment problem, which we studied in Chapter 6, the numerical
problem is embedded in the weights of the predicates which define constraints. We
get the impression that the combinatorial problem arises from the rich set of defining
satisfying assignments for predicates along with the interconnection of predicates and
constraints themselves. In local search versions of weighted standard set problems,
our analysis in Chapter 7 unveils that the numerical problem is embedded in the

139

Chapter 8 Conclusion and Directions for Further Research

weight function on the set system and the combinatorial problem is encoded in the
structure of the sets.

8.2 Open Problems

In this section, we present an excerpt of additional open problems, besides the ones
we presented in the course of this thesis. We categorize them as problems from
combinatorial optimization, game theory, and smoothed complexity.

8.2.1 Combinatorial Optimization

As outlined in Section 3.1, several hardness results have been established for PLS
problems arising from combinatorial optimization. While these results show that the
problems are in general PLS-complete, the exact bounds on the PLS-complexity of
the problems are still unknown. For MaxCut, we outlined in Section 3.1 that the
problem is PLS-complete for unbounded degree and polynomial-time solvable for
maximum degree three. While the result of Krentel [67], implies that MaxCut is
PLS-complete for some fixed maximum degree, the minimum degree required for the
problem to be PLS-complete is still unknown. A recent result by Tscheuschner [104]
shows that a maximum degree of five is sufficient such that MaxCut is PLS-complete.
Yet, the exact complexity remains unsettled as to the best of our knowledge we are not
aware of any tractability or intractability results for MaxCut with maximum degree
four. Similarly, for the Traveling Salesman Problem where the neighborhood
structure is superimposed by the well-known k-Opt algorithm, the only published
results imply the PLS-completeness for k � 1, 000. The exact complexity for
2 ≤ k � 1, 000 is still unsettled. Considering the Simplex algorithm, the question
arises, if there exists a pivot rule which guarantees a polynomially upper-bounded
number of steps of the Simplex algorithm.

8.2.2 Game Theory

Section 3.1 outlines that except for special cases, general congestion games are PLS-
complete. For a thorough understanding of these games, determining the source
of the inherent complexity would be beneficial. To this extent, the precise impact
of the players, the resources, and their mutual interaction on the hardness are yet
to be determined. For example, the exact complexity of network congestion games
with a finite number of players is still unknown. As outlined in Section 3.2 and
settled in Chapter 5, exact results only exist for the special case of restricted network
congestion games. In the simplest model of singleton congestion games and arbitrary
non-decreasing latency functions, no results are known, considering the complexity
of computing a Nash equilibrium. Turning to approximation, the complexity of
computing δ-approximate Nash equilibria for symmetric congestion games, which do
not satisfy some smoothness condition is still unsettled. Turning to coalitions in the
symmetric singleton congestion game model, there remains a gap on the complexity

140

8.3 What is There to Take Home?

of computing a Nash equilibrium. For coalitions of size one, the problem is known
to be computable in polynomial time, while if users may form arbitrary non-fixed
coalitions of size at least eight, the problem becomes PLS-complete [27].

8.2.3 Smoothed Complexity

The concept of PLS-completeness implies that computing a locally optimal solution
of some PLS-complete problem is as hard as computing a locally optimal solution
of any problem in the class PLS. Loosely speaking, while this states that there
exist instances on which local search algorithms take exponential time, what is the
smoothed complexity of PLS-complete problems? Let us remark that smoothed
complexity results only exist for problems from Section 1.2.2; for all other problems
outlined in this thesis, especially for MaxCut and congestion games, we are not
aware of any results considering their smoothed complexity.

8.3 What is There to Take Home?

Local search is a standard approach to approximate solutions of hard combinatorial
optimization problems which has proven to be successful in a wide range of areas over
the last decades. The framework of PLS was introduced to theoretically investigate
the complexity of local search problems and drew additional attention from game
theory in recent years. In general, our knowledge about the class PLS is currently
rather limited and by far not comparable with the rich knowledge which we have
about the class NP. As we have outlined and contributed to in the course of this
thesis, the complexity of a handful of PLS problems has been settled; for numerous
other problems, determining their complexity remains tantalizingly open.

141

Lists

List of Figures

4.1 Graphical overview of the main PLS reductions, we present in this
thesis. 40

4.2 Graphical overview of our results on the complexity of local search for
weighted standard set problems, presented in Chapter 7. 42

5.1 General layout of the resulting network G = (V,E). 46
5.2 Constructing a network path between vertices u and v from its set

representation. 48

6.1 The general setting which is modeled with constraints. 57
6.2 The constraint-graph of our reduction. Boxes are constraints and arcs

are variables. 64
6.3 The modification for a predicate modeling a (2, 1)-gate. 81

7.1 Gadgets assign(i, x) for a blue, a red, and a white variable with two
large triples (solid triangles) and two medium triples (dashed triangles).111

7.2 Construction of a better neighboring solution, described in (2). . . . 114

List of Tables

6.1 The labeling and meaning of identifiers we use. Here, i ∈ {0, 1, 2}. . . 60
6.2 Constraints consisting of more than one weighted predicate for κ ∈ {0, 1}. 61
6.3 The set of variables, their respective domains and constraints for

κ ∈ {0, 1}. Here, constraints g and g′ refer to gates with the respective
input or output variable; N i(x) denotes the constraint containing
variable x ∈ X in propagation tree Ti with i ∈ [3]. 62

6.4 The labeling and meaning of identifiers we use, extending Table 6.1.
Here, i ∈ {0, 1, 2}. 81

6.5 Constraints consisting of more than one weighted predicate where
λ, κ ∈ {0, 1} . 83

6.6 The set of variables, their respective domains, and constraints for
κ, λ ∈ {0, 1}. Here, constraints g and g′ refer to gates with the
respective input or output variable; N i(x) denotes the constraint
containing variable x ∈ X ? in propagation tree Ti with i ∈ {1, 2}. . . 84

143

Bibliography

Remark: Each entry is followed by a list of pages which refer to the publication.

[1] E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley & Sons, Inc., New York, NY, USA, 1997. ISBN 0471948225. 7, 31

[2] E. Aarts, J. Korst, and W. Michiels. Theoretical Aspects of Local Search
(Monographs in Theoretical Computer Science. An EATCS Series). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2007. ISBN 3540358536. 19,
31

[3] S. Abramsky, C. Gavoille, C. Kirchner, F. M. auf der Heide, and P. G. Spirakis,
editors. Proceedings of the 37th International Colloquium on Automata, Lan-
guages and Programming (ICALP 2010), Part I, volume 6198 of Lecture Notes
in Computer Science, 2010. Springer. ISBN 978-3-642-14164-5. 149, 151

[4] H. Ackermann and A. Skopalik. On the Complexity of Pure Nash Equilibria
in Player-Specific Network Congestion Games. In X. Deng and F. C. Graham,
editors, Proceedings of the 3rd International Workshop on Internet and Network
Economics (WINE 2007), volume 4858 of Lecture Notes in Computer Science,
pages 419–430. Springer, 2007. ISBN 978-3-540-77104-3. 15, 25, 36, 45, 47, 52,
108

[5] H. Ackermann, H. Röglin, and B. Vöcking. On the Impact of Combinatorial
Structure on Congestion Games. Journal of the ACM (JACM), 55(6):1–22,
2008. ISSN 0004-5411. 34, 35

[6] I. Adler, R. M. Karp, and R. Shamir. A Simplex Variant Solving an m × d
Linear Program in O(min{m2, d2}) Expected Number of Pivot Steps. Journal
of Complexity, 3(4):372–387, 1987. 10

[7] E. Alekseeva, Y. Kochetov, and A. Plyasunov. Complexity of Local Search for
the p-Median Problem. European Journal of Operational Research, 191(3):736 –
752, 2008. ISSN 0377-2217. 31

[8] E. Angel. A Survey of Approximation Results for Local Search Algorithms. In
E. Bampis, K. Jansen, and C. Kenyon, editors, Efficient Approximation and
Online Algorithms, volume 3484 of Lecture Notes in Computer Science, pages
30–73. Springer Berlin / Heidelberg, 2006. 7, 31

145

Bibliography

[9] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification
and Hardness of Approximation Problems. In Proceedings of the 33rd Annual
Symposium on Foundations of Computer Science (FOCS 1992), pages 14–23.
IEEE Computer Society, 1992. 6

[10] D. Arthur, B. Manthey, and H. Röglin. k-Means has Polynomial Smoothed
Complexity. The Computing Research Repository (CoRR), abs/0904.1113, 2009.
10

[11] G. Ausiello, P. Crescenzi, V. Kann, Marchetti-Spaccamela, G. Gambosi, and
A. M. Spaccamela. Complexity and Approximation: Combinatorial Optimization
Problems and Their Approximability Properties. Springer, January 2000. ISBN
3540654313. 5

[12] L. Babai, editor. Proceedings of the 36th Annual ACM Symposium on Theory
of Computing (STOC 2004), 2004. ACM. ISBN 1-58113-852-0. 148

[13] E. Balas and M. W. Padberg. Set Partitioning: A Survey. SIAM Review, 18(4):
710–760, 1976. 4

[14] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications,
2009. IOS Press. ISBN 978-1-58603-929-5. 5, 6

[15] R. E. Bixby. Solving Real-World Linear Programs: A Decade and More of
Progress. Operations Research, 50(1):3–15, 2002. 7, 9

[16] K. H. Borgwardt. Probabilistic Analysis of Simplex Algorithms. Contemporary
Mathematics, 114:21–34, 1990. 10

[17] F. Brandt, F. Fischer, and M. Holzer. Symmetries and the Complexity of Pure
Nash Equilibrium. Journal of Computer and System Sciences (JCSS), 75(3):
163 – 177, 2009. ISSN 0022-0000. 31

[18] B. Chandra and M. M. Halldórsson. Greedy Local Improvement and Weighted
Set Packing Approximation. In Proceedings of the Tenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 1999), pages 169–176. ACM/SIAM,
1999. 121, 122

[19] B. Chandra, H. J. Karloff, and C. A. Tovey. New Results on the Old k-Opt
Algorithm for the Traveling Salesman Problem. SIAM Journal on Computing
(SICOMP), 28(6):1998–2029, 1999. 9, 10

[20] P. Chapdelaine and N. Creignou. The Complexity of Boolean Constraint
Satisfaction Local Search Problems. Annals of Mathematics and Artificial
Intelligence, 43(1-4):51–63, 2005. ISSN 1012-2443. 33

[21] X. Chen, X. Deng, and S.-H. Teng. Settling the Complexity of Computing
Two-Player Nash Equilibria. Journal of the ACM (JACM), 56(3), 2009. 38

146

Bibliography

[22] S. Chien and A. Sinclair. Convergence to Approximate Nash Equilibria in Con-
gestion Games. Games and Economic Behavior, In Press, Accepted Manuscript,
2009. 35

[23] S. A. Cook. The Complexity of Theorem-Proving Procedures. In Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing (STOC 1971),
pages 151–158. ACM, 1971. 5

[24] G. Danzig. Programming in Linear Structure. Technical report, U.S. Air Force
Comptroller, USAF, Washington, D.C., 1948. 9

[25] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The Complexity of
Computing a Nash Equilibrium. SIAM Journal on Computing (SICOMP), 39
(1):195–259, 2009. 38

[26] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern Classification. John Wiley
& Sons, Inc., 2000. 7, 10

[27] D. Dumrauf and B. Monien. On the Road to PLS-Completeness: 8 Agents
in a Singleton Congestion Game. In C. H. Papadimitriou and S. Zhang,
editors, Proceedings of the 4th International Workshop on Internet and Network
Economics (WINE 2008), volume 5385 of Lecture Notes in Computer Science,
pages 94–108. Springer, 2008. ISBN 978-3-540-92184-4. 37, 108, 141

[28] D. Dumrauf and B. Monien. Computing Nash Equilibria for Two-Player
Restricted Network Congestion Games is PLS-Complete. submitted to Parallel
Processing Letters, 2010. 17

[29] D. Dumrauf and T. Süß. On the Complexity of Local Search for Weighted
Standard Set Problems. In F. Ferreira, B. Löwe, E. Mayordomo, and L. M.
Gomes, editors, Proceedings of the 6th Conference on Computability in Europe
(CiE 2010): Programs, Proofs, Processes, volume 6158 of Lecture Notes in
Computer Science, pages 132–140. Springer, 2010. ISBN 978-3-642-13961-1. 17,
27, 28, 29

[30] D. Dumrauf, B. Monien, and K. Tiemann. MultiProcessor Scheduling is
PLS-Complete. In Proceedings of the 42nd Hawaii International International
Conference on Systems Science (HICSS-42 2009), pages 1–10. IEEE Computer
Society, 2009. 26, 110, 112, 113, 133

[31] D. Dumrauf and B. Monien. On the PLS-Complexity of Maximum Constraint
Assignment. submitted to Theoretical Computer Science, 2010. 17, 25, 26, 108

[32] J. Dunkel and A. S. Schulz. On the Complexity of Pure-Strategy Nash Equilibria
in Congestion and Local-Effect Games. Mathematics of Operations Research,
33(4):851–868, 2008. 34

147

Bibliography

[33] M. Englert, H. Röglin, and B. Vöcking. Worst Case and Probabilistic Analysis
of the 2-Opt Algorithm for the TSP. Electronic Colloquium on Computational
Complexity (ECCC), 13(092), 2006. 9, 10

[34] A. Fabrikant, C. H. Papadimitriou, and K. Talwar. The Complexity of Pure
Nash Equilibria. In Babai [12], pages 604–612. ISBN 1-58113-852-0. 15, 34

[35] R. Feldmann, M. Gairing, T. Lücking, B. Monien, and M. Rode. Nashification
and the Coordination Ratio for a Selfish Routing Game. In J. C. M. Baeten,
J. K. Lenstra, J. Parrow, and G. J. Woeginger, editors, Proceedings of the 30th
International Colloquium on Automata, Languages and Programming (ICALP
2003), volume 2719 of Lecture Notes in Computer Science, pages 514–526.
Springer Verlag, 2003. 37

[36] D. Fotakis, S. C. Kontogiannis, E. Koutsoupias, M. Mavronicolas, and P. G.
Spirakis. The Structure and Complexity of Nash Equilibria for a Selfish Routing
Game. In P. Widmayer, F. T. Ruiz, R. M. Bueno, M. Hennessy, S. Eidenbenz,
and R. Conejo, editors, Proceedings of the 29th International Colloquium on
Automata, Languages and Programming (ICALP 2002), volume 2380 of Lecture
Notes in Computer Science, pages 123–134. Springer, 2002. ISBN 3-540-43864-5.
37

[37] D. Fotakis, S. Kontogiannis, and P. Spirakis. Selfish Unsplittable Flows. Theo-
retical Computer Science, 348(2-3):226–239, 2005. ISSN 0304-3975. 13

[38] M. Gairing, T. Lücking, M. Mavronicolas, and B. Monien. Computing Nash
Equilibria for Scheduling on Restricted Parallel Links. In Babai [12], pages
613–622. ISBN 1-58113-852-0. 37

[39] M. Gairing, B. Monien, and K. Tiemann. Routing (Un-) Splittable Flow in
Games with Player-Specific Linear Latency Functions. In M. Bugliesi, B. Preneel,
V. Sassone, and I. Wegener, editors, Proceedings of the 33rd International
Colloquium on Automata, Languages and Programming, (ICALP 2006), Part I,
volume 4051 of Lecture Notes in Computer Science, pages 501–512. Springer,
2006. ISBN 3-540-35904-4. 36

[40] M. R. Garey and D. S. Johnson. Computers and Intractability; A Guide to the
Theory of NP-Completeness. Mathematical Sciences Series. W. H. Freeman &
Co., New York, NY, USA, 1990. ISBN 0-7167-1045-5. vi, 2, 3, 4, 6, 16, 22, 23,
25, 26, 33, 134

[41] M. X. Goemans, V. S. Mirrokni, and A. Vetta. Sink Equilibria and Convergence.
In Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2005), pages 142–154. IEEE Computer Society, 2005. ISBN
0-7695-2468-0. 34

148

Bibliography

[42] O. Goldschmidt, D. S. Hochbaum, and G. Yu. A Modified Greedy Heuristic
for the Set Covering Problem with Improved Worst Case Bound. Information
Processing Letters, 48(6):305–310, 1993. 121

[43] T. F. Gonzalez. Handbook of Approximation Algorithms and Metaheuristics
(Chapman & Hall/CRC Computer & Information Science Series). Chapman &
Hall/CRC, 2007. ISBN 1584885505. 6

[44] R. L. Graham. Bounds on Multiprocessing Timing Anomalies. SIAM Journal
on Applied Mathematics, 17(2):416–429, mar 1969. ISSN 0036-1399. 37

[45] J. Gu. Local Search for Satisfiability (SAT) Problem. IEEE Transactions on
Systems, Man, and Cybernetics, 23(4):1108–1129, 1993. 6

[46] J. Gu, P. W. Purdom, J. Franco, and B. W. Wah. Algorithms for the Sat-
isfiability (SAT) Problem: A Survey. In D.-Z. Du, J. Gu, and P. Pardalos,
editors, Satisfiability Problem: Theory and Applications, DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, pages 19–152. American
Mathematical Society, 1997. 5, 6

[47] M. M. Halldórsson. Approximating Discrete Collections via Local Improve-
ments. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 1995), pages 160–169. ACM/SIAM, 1995. 122

[48] T. Harks and M. Klimm. On the Existence of Pure Nash Equilibria in Weighted
Congestion Games. In Abramsky et al. [3], pages 79–89. ISBN 978-3-642-14164-5.
13

[49] J. Håstad. Some Optimal Inapproximability Results. Journal of the ACM
(JACM), 48(4):798–859, 2001. 6, 122

[50] E. Hazan, S. Safra, and O. Schwartz. On the Complexity of Approximating
k-Set Packing. Computational Complexity, 15(1):20–39, 2006. 122

[51] D. S. Hochbaum, editor. Approximation Algorithms for NP-hard Problems.
PWS Publishing Co., Boston, MA, USA, 1997. ISBN 0-534-94968-1. 6

[52] K. L. Hoffman and M. Padberg. Set Covering, Packing and Partitioning
Problems. In C. A. Floudas and P. M. Pardalos, editors, Encyclopedia of
Optimization, pages 3482–3486. Springer, 2009. ISBN 978-0-387-74758-3. 4, 6

[53] C. A. J. Hurkens and A. Schrijver. On the Size of Systems of Sets Every t of
Which Have an SDR, with an Application to the Worst-Case Ratio of Heuristics
for Packing Problems. SIAM Journal on Discrete Mathematics, 2(1):68–72,
1989. 122

[54] A. K. Jain, M. N. Murty, and P. J. Flynn. Data Clustering: A Review. ACM
Computing Surveys, 31(3):264–323, 1999. 7

149

Bibliography

[55] D. S. Johnson and L. A. McGeoch. The Traveling Salesman Problem: A
Case Study. In E. H. L. Aarts and J. K. Lenstra, editors, Local Search in
Combinatorial Optimization, pages 215–310. Wiley and Sons, New York, 1997.
9, 32

[56] D. S. Johnson, C. H. Papadimtriou, and M. Yannakakis. How Easy is Local
Search? Journal of Computer and System Sciences (JCSS), 37(1):79–100, 1988.
ISSN 0022-0000. v, 7, 11, 12, 14, 19, 20, 21, 23, 31, 32, 33, 57, 135

[57] G. Kalai and D. Kleitman. A Quasi-Polynomial Bound for the Diameter of
Graphs of Polyhedra. Bulletin of the American Mathematical Society, 26(2):
315–316, 1992. 9, 22

[58] M.-Y. Kao, editor. Encyclopedia of Algorithms. Springer, 2008. ISBN 978-0-
387-30162-4. 6

[59] N. Karmarkar. A New Polynomial-Time Algorithm for Linear Programming.
Combinatorica, 4(4):373–396, 1984. 9

[60] R. M. Karp. Reducibility Among Combinatorial Problems. In R. E. Miller
and J. W. Thatcher, editors, Complexity of Computer Computations, The IBM
Research Symposia Series, pages 85–103. Plenum Press, New York, USA, 1972.
5

[61] H. Kautz and B. Selman. The State of SAT. Discrete Applied Mathematics,
155(12):1514–1524, 2007. ISSN 0166-218X. 6

[62] L. Khachiyan. A Polynomial Algorithm in Linear Programming. Doklady
Akademiia Nauk SSSR, 20(1):1093–1096, 1979. 9

[63] H. Klauck. On the Hardness of Global and Local Approximation. In Proceedings
of the 5th Scandinavian Workshop on Algorithm Theory (SWAT 1996), pages
88–99, London, UK, 1996. Springer-Verlag. ISBN 3-540-61422-2. 31, 34

[64] V. Klee and P. Kleinschmidt. The d-Step Conjecture and its Relatives. Mathe-
matics of Operations Research, 12(4):718–755, 1987. 9

[65] V. Klee and G. J. Minty. How Good is the Simplex Algorithm? In O. Shisha,
editor, Inequalities III, pages 159–175. Academic Press, 1972. 9

[66] Y. Kochetov and D. Ivanenko. Computationally Difficult Instances for the Unca-
pacitated Facility Location Problem. In T. Ibaraki, K. Nonobe, and M. Yagiura,
editors, Metaheuristics: Progress as Real Problem Solvers, volume 32 of Opera-
tions Research/Computer Science Interfaces Series, pages 351–367. Springer
US, 2005. ISBN 978-0-387-25383-1. 31

[67] M. W. Krentel. Structure in Locally Optimal Solutions (Extended Abstract).
In Proceedings of the 30th Annual Symposium on Foundations of Computer

150

Bibliography

Science (FOCS 1989), pages 216–221. IEEE Computer Society, 1989. v, 16, 23,
32, 33, 41, 42, 55, 57, 65, 105, 109, 136, 137, 140

[68] M. W. Krentel. On Finding and Verifying Locally Optimal Solutions. SIAM
Journal on Computing (SICOMP), 19(4):742–749, 1990. ISSN 0097-5397. 33

[69] R. E. Ladner. The Circuit Value Problem is Log Space Complete for P. SIGACT
News, 7:18–20, January 1975. ISSN 0163-5700. 58

[70] C. E. Lemke and J. J. T. Howsen. Equilibrium Points of Bimatrix Games.
SIAM Journal on Applied Mathematics, 12(2):413–423, June 1964. 37

[71] S. Lin. Computer Solutions of the Traveling Salesman Problem. Bell System
Technical Journal, 44:2245–2269, 1965. 8, 9, 32

[72] S. Lin and B. W. Kernighan. An Effective Heuristic Algorithm for the Traveling-
Salesman Problem. Operations Research, 21(2):498–516, 1973. 9, 32

[73] G. S. Lueker. Manuscript. Princeton University, Princeton, NJ, 1975. 9

[74] M. Mavronicolas, I. Milchtaich, B. Monien, and K. Tiemann. Congestion
Games with Player-Specific Constants. In L. Kucera and A. Kucera, editors,
Proceedings of the 32nd International Symposium on Mathematical Foundations
of Computer Science (MFCS 2007), volume 4708 of Lecture Notes in Computer
Science, pages 633–644. Springer, 2007. ISBN 978-3-540-74455-9. 36

[75] I. Milchtaich. Congestion Games with Player-Specific Payoff Functions. Games
and Economic Behavior, 13(1):111–124, 1996. 36

[76] I. Milchtaich. The Equilibrium Existence Problem in Finite Network Con-
gestion Games. In P. G. Spirakis, M. Mavronicolas, and S. C. Kontogiannis,
editors, Proceedings of the 2nd International Workshop on Internet and Network
Economics (WINE 2006), volume 4286 of Lecture Notes in Computer Science,
pages 87–98. Springer, 2006. ISBN 3-540-68138-8. 36

[77] B. Monien and T. Tscheuschner. On the Power of Nodes of Degree Four in the
Local Max-Cut Problem. In T. Calamoneri and J. Díaz, editors, Proceedings of
the 7th International Conference on Algorithms and Complexity (CIAC 2010),
volume 6078 of Lecture Notes in Computer Science, pages 264–275. Springer,
2010. ISBN 978-3-642-13072-4. 33

[78] B. Monien, D. Dumrauf, and T. Tscheuschner. Local Search: Simple, Successful,
But Sometimes Sluggish. In Abramsky et al. [3], pages 1–17. ISBN 978-3-642-
14164-5. 8, 17, 20, 22

[79] R. B. Myerson. Game Theory: Analysis of Conflict. Harvard University Press,
September 1997. ISBN 0-674-34116-3. 13

151

Bibliography

[80] J. F. Nash. Non-Cooperative Games. Annals of Mathematics, 54(2):286–295,
1951. 12, 37

[81] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic Game
Theory. Cambridge University Press, New York, NY, USA, 2007. ISBN
0521872820. 34

[82] J. B. Orlin, A. P. Punnen, and A. S. Schulz. Approximate Local Search in
Combinatorial Optimization. In J. I. Munro, editor, Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2004), pages
587–596. SIAM, 2004. 35

[83] P. N. Panagopoulou and P. G. Spirakis. Algorithms for Pure Nash Equilibria
in Weighted Congestion Games. J. Exp. Algorithmics, 11:2.7, 2006. ISSN
1084-6654. 13

[84] C. Papadimitriou and K. Steiglitz. Combinatorial Optimization – Algorithms
and Complexity. Prentice Hall, Englewood Cliffs, 1982. 6

[85] C. H. Papadimitriou. The Complexity of the Lin-Kernighan Heuristic for the
Traveling Salesman Problem. SIAM Journal on Computing (SICOMP), 21(3):
450–465, 1992. ISSN 0097-5397. 32

[86] C. H. Papadimitriou. On the Complexity of the Parity Argument and Other
Inefficient Proofs of Existence. Journal of Computer and System Sciences
(JCSS), 48(3):498–532, 1994. 37

[87] C. H. Papadimitriou, A. A. Schäffer, and M. Yannakakis. On the Complexity of
Local Search. In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing (STOC 1990), pages 438–445, New York, NY, USA, 1990. ACM.
ISBN 0-89791-361-2. 12, 20, 21, 22, 31, 32, 33

[88] V. T. Paschos. A Survey of Approximately Optimal Solutions to Some Covering
and Packing Problems. ACM Computing Surveys, 29(2):171–209, 1997. 6

[89] S. Poljak. Integer Linear Programs and Local Search for Max-Cut. SIAM
Journal on Computing (SICOMP), 24(4):822–839, 1995. ISSN 0097-5397. 33

[90] O. A. Prokopyev, H.-X. Huang, and P. M. Pardalos. On Complexity of Uncon-
strained Hyperbolic 0-1 Programming Problems. Operations Research Letters,
33(3):312 – 318, 2005. ISSN 0167-6377. 31

[91] G. Reinelt. TSPLIB - A Traveling Salesman Problem Library. INFORMS
Journal on Computing, 3(4):376–384, 1991. 9

[92] R. W. Rosenthal. A Class of Games Possessing Pure-Strategy Nash Equilibria.
International Journal of Game Theory, 2:65–67, 1973. 13, 14, 24, 25, 51

152

Bibliography

[93] R. Savani and B. von Stengel. Hard-to-Solve Bimatrix Games. Econometrica,
74:397–429, 2006. 37

[94] T. J. Schaefer. The Complexity of Satisfiability Problems. In Proceedings of the
10th Annual ACM Symposium on Theory of Computing (STOC 1978), pages
216–226. ACM, 1978. 33

[95] A. A. Schäffer and M. Yannakakis. Simple Local Search Problems that are
Hard to Solve. SIAM Journal on Computing (SICOMP), 20(1):56–87, 1991.
ISSN 0097-5397. 12, 19, 21, 22, 31, 33, 42, 45, 108, 109

[96] L. S. Shapley. A Note on the Lemke-Howson Algorithm. In R. W. Cottle,
L. C. W. Dixon, B. Korte, T. L. Magnanti, M. J. Todd, E. L. Allgower, R. Bartels,
V. Chvatal, J. E. Dennis, B. C. Eaves, R. Fletcher, J.-B. Hiriart-Urruty, M. Iri,
R. G. Jeroslow, D. S. Johnson, C. Lemarechal, L. Lovasz, L. McLinden, M. W.
Padberg, M. J. D. Powell, W. R. Pulleyblank, K. Ritter, R. W. H. Sargent,
D. F. Shanno, L. E. Trotter, H. Tuy, R. J. B. Wets, C. Witzgall, E. M. L. Beale,
G. B. Dantzig, L. V. Kantorovich, T. C. Koopmans, A. W. Tucker, P. Wolfe,
and M. L. Balinski, editors, Pivoting and Extension, volume 1 of Mathematical
Programming Studies, pages 175–189. Springer Berlin Heidelberg, 1974. ISBN
978-3-642-00758-3. 10.1007/BFb0121248. 37

[97] S. Shimozono. Finding Optimal Subgraphs by Local Search. Theoretical
Computer Science, 172(1-2):265 – 271, 1997. ISSN 0304-3975. 34

[98] A. Skopalik and B. Vöcking. Inapproximability of Pure Nash Equilibria. In
R. E. Ladner and C. Dwork, editors, Proceedings of the 40th Annual ACM
Symposium on Theory of Computing (STOC 2008), pages 355–364. ACM, 2008.
ISBN 978-1-60558-047-0. 36, 108, 139

[99] S. Smale. On the Average Number of Steps in the Simplex Method of Linear
Programming. Mathematical Programming, 27:241–262, 1983. 10

[100] R. Solis-Oba. Local Search. In T. F. Gonzalez, editor, Handbook of Approxi-
mation Algorithms and Metaheuristics (Chapman & Hall/CRC Computer &
Information Science Series). Chapman & Hall/CRC, 2007. 7

[101] D. A. Spielman and S.-H. Teng. Smoothed Analysis of Algorithms: Why
the Simplex Algorithm Usually Takes Polynomial Time. Journal of the ACM
(JACM), 51(3):385–463, 2004. 10

[102] L. J. Stockmeyer and A. R. Meyer. Word Problems Requiring Exponential
Time: Preliminary Report. In Proceedings of the 5th Annual ACM Symposium
on Theory of Computing (STOC 1973), pages 1–9. ACM, 1973. 5

[103] M. Todd. The Many Facets of Linear Programming. Mathematical Programming,
91(3):417–436, 2001. 7, 9

153

Bibliography

[104] T. Tscheuschner. Settling the Complexity of Local Max-Cut (Almost) Com-
pletely. The Computing Research Repository (CoRR), abs/1004.5329, 2010. 15,
33, 34, 108, 109, 140

[105] A. Vattani. k-Means Requires Exponentially Many Iterations Even in the
Plane. In J. Hershberger and E. Fogel, editors, Proceedings of the 25th ACM
Symposium on Computational Geometry (SoCG 2009), pages 324–332. ACM,
2009. ISBN 978-1-60558-501-7. 10

[106] B. von Stengel. Computing Equilibria for Two-Person Games. In R. Aumann
and S. Hart, editors, Handbook of Game Theory with Economic Applications,
volume 3 of Handbook of Game Theory with Economic Applications, chapter 45,
pages 1723–1759. Elsevier, May 2002. 38

[107] T. Vredeveld and J. K. Lenstra. On Local Search for the Generalized Graph
Coloring Problem. Operations Research Letters, 31(1):28 – 34, 2003. ISSN
0167-6377. 31, 33

[108] M. Yannakakis. The Analysis of Local Search Problems and Their Heuristics. In
C. Choffrut and T. Lengauer, editors, Proceedings of the 7th Annual Symposium
on Theoretical Aspects of Computer Science (STACS 1990), volume 415 of
Lecture Notes in Computer Science, pages 298–311. Springer, 1990. ISBN
3-540-52282-4. 7

[109] M. Yannakakis. Computational Complexity. In E. Aarts and J. Lenstra, editors,
Local Search in Combinatorial Optimization, pages 19–55. Wiley, Chichester,
1997. 12, 20, 21, 31

[110] M. Yannakakis. Equilibria, Fixed Points, and Complexity Classes. Computer
Science Review, 3(2):71–85, 2009. ISSN 1574-0137. 7, 38

154

	Introduction
	Optimization Problems, Intractability, and Approximation
	Standard Set Problems
	Satisfiability Problems
	Approximation of Intractable Problems

	Local Search
	The Concept of Local Search
	Successful Applications of Local Search
	A Framework to Investigate the Complexity of Local Search
	Local Search and Game Theory: Optimization in Competition
	The Class of Congestion Games

	Central Questions of this Thesis
	Superior Questions
	Restricted Network Congestion Games
	Maximum Constraint Assignment
	Weighted Standard Set Problems

	Publications
	Roadmap of this Thesis

	Notation
	PLS, Reductions, and Completeness
	PLS Problems Considered in this Thesis
	Basic PLS Problems
	Restricted Network Congestion Games
	Local Search Versions of Generalized Maximum Satisfiability Problems
	Local Search Versions of Weighted Standard Set Problems

	Related Work
	Early Results
	Circuit/Flip
	Traveling Salesman Problem
	MaxCut
	Local Search Versions of Satisfiability Problems
	Weighted Set Problems and Graph Problems

	Recent Results and the Connection to Game Theory
	Computing Nash Equilibria in Unweighted Congestion Games
	Approximate Nash Equilibria in Unweighted Congestion Games
	Player-Specific (Singleton) Congestion Games
	Symmetric Singleton Congestion Games
	Related: Equilibrium Search and PPAD

	Our Contribution
	Computing Nash Equilibria in Two-Player Restricted Network Congestion Games
	On the PLS-Complexity of Maximum Constraint Assignment
	On the Complexity of Local Search for Weighted Standard Set Problems
	A Note on the Presentation of Our Reductions

	Computing Nash Equilibria in Two-Player Restricted Network Congestion Games
	The Complexity of (2)-RUNCG and (2)-RDNCG
	The Network and the Reduction in a Nutshell
	The Reduction
	Proving the Correctness and Tightness of the Reduction

	Conclusion and a Discussion of Questions 4 and 5

	On the PLS-Complexity of Maximum Constraint Assignment
	On the Relation of Maximum Constraint Assignment to Minimum Constraint Assignment
	The General Method for the Intractability Proofs of (3,2,3)-MCA3-par and (2,3,6)-MCA2-par
	The Setting
	The Idea in a Nutshell
	Assumptions and Notation for Circuit/Flip
	The Concept of Propagation Trees

	(3,2,3)-MCA3-par is Tight PLS-Complete
	The Set of Constraints
	The Set of Variables
	The Constraint-Graph of Our Reduction
	A More Detailed Overview of the Reduction
	The Set of Predicates
	Proving the Correctness and Tightness of the Reduction

	(2,3,6)-MCA2-par is Tight PLS-Complete
	The Set of Constraints
	The Set of Variables
	Similarities and Differences to our Reduction in Section 6.3
	The Modified Constraint-Graph of Our Reduction
	The Set of Modified Predicates
	Proving the Correctness and Tightness of the Reduction

	A Reduction to Binary Logic
	The Reduction
	Proving the Correctness and Tightness of the Reduction

	Conclusion and a Discussion of Question 6

	On the Complexity of Local Search for Weighted Standard Set Problems
	How to Show Intractability of Weighted Standard Set Problems
	Neighborhoods, Weights, and Tractability
	The General Technique of Our Reductions

	The PLS-Complexity of Weighted Standard Set Problems
	Assumptions and Preliminaries
	On the Complexity of Weighted-3-DimensionalMatching-(p,q) and Exact-Cover-By-3-Sets-(k)
	The Exact Complexity of SetPacking-(k)
	On the Complexity of SetSplitting-(k)
	The Exact Complexity of SetCover-(k)
	On the Complexity of TestSet-(k)
	On the Complexity of SetBasis-(k)
	On the Complexity of HittingSet-(k)
	On the Complexity of IntersectionPattern-(k)
	On the Complexity of ComparativeContainment-(k)
	Proving the Tightness of the Reductions
	On the Tractability of Weighted Standard Set Problems

	Conclusion and a Discussion of Question 7

	Conclusion and Directions for Further Research
	General Conclusion and a Discussion of Questions 1–3
	Settling the PLS-Complexity of the Problems Considered in this Thesis
	A Note on the General Structure of Our PLS Reductions
	Possible Sources of Intractability in Our PLS-Complete Problems

	Open Problems
	Combinatorial Optimization
	Game Theory
	Smoothed Complexity

	What is There to Take Home?

	Bibliography

