Close
Publizieren
Besondere Sammlungen
Digitalisierungsservice
Hilfe
Impressum
Datenschutz
Close
Publizieren
Besondere Sammlungen
Digitalisierungsservice
Hilfe
Impressum
Datenschutz
jump to main content
Search Details
Quicksearch:
OK
Result-List
Title
Title
Content
Content
Page
Page
Search Book
Robust motion estimation for qualitative dynamic scene analysis / von MSc-EE. Mahmoud Ali Ahmed Mohamed ; Erster Gutachter: Prof. Dr.-Ing. Bärbel Mertsching, Zweiter Gutachter: Prof. Dr. Domenec Puig. Paderborn, 2019
Content
Introduction
Active Vision System
Motion Estimation
Problem Formal Definition
Challenging of Optical Flow Estimation
Large Displacement Motion
Illumination Change
Real-Time Performance
Contributions of This Work
Thesis Outline
Related Literature
Overview
Motion Field
Motion Detection
Background Subtraction (BS)
Mixture of Gaussians (MoG)
Kernel Density Estimator (KDE)
Codebook Construction (CC)
Motion Estimation for Moving Camera and Objects
Optical Flow
Block Matching
Phase Correlation
Differential Optical Flow
Data Conservation For Differential Optical Flow
Brightness Constancy Assumption (BCA)
Gradient Constancy Assumption (GCA)
Differential Optical Flow Violation
Differential Optical Flow Estimation
Local Smoothness Based Methods
Global Smoothness Based Methods
Combined Local Global (CLG) Based Methods
Variational Optimization Framework
Coarse-To-Fine Optimization
Image Texture
Structure Texture Decomposition via Total Variation (ROF)
Normalized Cross Correlation (NCC)
Census Transform (CT)
Histogram of Oriented Gradients (HOG)
Distributed Average Gradient (DAG)
Local Directional Pattern (LDP)
Tracking of Multiple moving Objects
Metrics for Accuracy and Performance
Angular Error AE
End-point Error EE
Percentage of Outliers AEEout
Interpolation Error IE
Normalized Interpolation Error NIE
Performance Metrics
Proposed Multi-Resolution Optimization
Large Displacements Optical Flow Problem
Related Work
The Proposed Approach
Image Details Recovering Module
Optical Flow Model
Evaluation and Experimental Results
Middlebury Training Dataset
Middlebury Test Dataset
Large Displacements Optical Flow Dataset
Real Application
Summary
Proposed Robust Optical Flow Estimation
Related Work
Texture Constancy Assumption
Modified Local Directional Pattern (MLDP)
Optical Flow Model for the Texture Constraint
Color Texture
Experiments and Evaluation
Synthetic Illumination Changes
KITTI 2012 Datasets
MPI Dataset
Middelebury Dataset
Evaluation of Color Texture
Evaluation of the Execution Time
Summary
Proposed Monocular Epipolar Line Constraint
Introduction
Epipolar Constraint
Optical Flow Model
Enhancement of Fundamental Matrix
Experimental Results
Epipolar Line Constraint for Sparse Optical Flow
Epipolar Line Constraint for Dense Optical Flow
Fundamental Matrix Re-estimation
Challenging Sequences
KITTI Evaluation
Conclusion
Proposed Real-time Multi-Objects Tracking
Introduction
Related Work
The Proposed Approach
Motion Detection
Motion Estimation and Multi-Object Tracking
Occlusion Handling
Camera Motion Stabilization
Experimental Results
Multi-Objects Tracking Accuracy
Datasets
Objects Tracking with a Mobile Robot
Real-Time Performance
Outdoor Scenarios
Summary
Summary and Outlook
Summary
Applications
Outlook
Bibliography
List of Publications
List of Notations
List of Abbreviations
List of Tables
List of Figures
The search-operation requires javascript to be activated.