Schliessen
Publizieren
Besondere Sammlungen
Digitalisierungsservice
Hilfe
Impressum
Datenschutz
zum Inhalt
Detailsuche
Schnellsuche:
OK
Titel
Titel
Inhalt
Inhalt
Seite
Seite
Im Werk suchen
Plasmonic and dielectric metalenses for nanophotonic applications / M.Sc. Christian Schlickriede. Paderborn, 2021
Inhalt
Contents
1 Introduction
2 From conventional bulky optical elements to metasurface optics
2.1 Refractive to diffractive optical elements in a ray optics picture
2.1.1 Refractive optical lens to focus a ray of light
2.1.2 Refractive and diffractive lens-like phase profiles
2.1.3 Conventional lens equation
2.2 Fundamental concepts to describe plasmonic metasurfaces
2.2.1 The dielectric function of the free electron gas
2.2.2 The polarization of light and the geometric Pancharatnam-Berry phase
Jones Calculus
Stokes parameters and Poincaré sphere
The Pancharatnam-Berry phase
2.3 Plasmonic metalens for linear image formation at infrared wavelength
2.4 The nonlinear lens in a ray optics picture
2.5 Conclusion
3 Nonlinear plasmonic metasurfaces for image formation and further applications
3.1 Introduction to nonlinear harmonic generation processes
3.1.1 Selection rules for harmonic generation in nonlinear optics
3.2 Tailor nonlinear optical wavefront control
3.2.1 Space variant nonlinear Pancharatnam-Berry phase
3.3 From linear to nonlinear plasmonic metalenses
3.4 Imaging through nonlinear plasmonic metalens using second harmonic generation
3.4.1 Nanofabrication of plasmonic metalens
3.4.2 Optical characterization
3.4.3 Second harmonic focusing with nonlinear plasmonic metalens
3.4.4 SHG imaging of real objects
Experimental setup
A short introduction to the beam propagation method in the nonlinear regime
SHG image formation of an L-shaped aperture
3.4.5 Nonlinear plasmonic metalens as 'AND' logic gate
3.5 Further application possibilities for nonlinear plasmonic metasurfaces
3.5.1 Spin angular momentum and orbital angular momentum control
3.6 Conclusion
4 The nonlinear image formation with nonlinear dielectric metasurfaces
4.1 Dielectric versus plasmonic metasurfaces and the paradigm shift in nonlinear optics
4.2 All dielectric nonlinear metalens for third-harmonic generation
4.2.1 Design concept
4.2.2 Nanofabrication of the dielectric nonlinear metalens
4.2.3 Optical characterization with third-harmonic diffraction efficiency
4.2.4 Focusing of Gaussian beams by a THG metalens
4.2.5 Derivation of nonlinear lens equation based on the imaging of a single Gaussian beam waist
4.3 Generalized Gaussian lens equation
4.4 Higher order nonlinear spatial correlations
4.4.1 TH imaging of multiple Gaussian beams interfering on the metalens
4.4.2 Experimental demonstration of TH imaging of two apertures
4.4.3 Experimental demonstration of TH imaging of three apertures
4.5 Conclusion
5 Linear metalenses for integration in optical tweezers
5.1 A short introduction to optical tweezers
5.2 Dielectric metasurfaces for integration in optical tweezers: Schematic Concept, Metasurface Design, and Nanofabrication
5.2.1 Schematic Concept
5.2.2 Rigorous Coupled Wave Analysis
5.2.3 Nanofabrication
5.2.4 Optical Characterization of the Metalens and Vortex Metalens
5.3 Metasurface enhanced optical tweezers for two-dimensional particle manipulation
5.3.1 Experimental Setup
5.3.2 Experimental Results and Discussions
Metalens optical tweezers for 2D Polarization dependent drag and drop
5.3.3 Vortex Metalens for OAM transfer with a single tailored beam
5.4 Conclusion
6 Summery and Outlook
Bibliography
Appendix
A Derivation of the lensmaker's equation
B Polarization manipulation in an experimental setup
C Numerical simulation via beam propagation method for linear and nonlinear metalens
D Experimental demonstration of TH imaging of two and three apertures
E Scientific publications
Acknowledgments
Die detaillierte Suchanfrage erfordert aktiviertes Javascript.