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Summary
Quantum optics is a rapidly advancing field that enables many new applications, especially in
communication and sensing. Two perspectives, depending on the measurement, are found in this
field, namely the continuous-variable (CV) and discrete variable (DV) pictures. In this thesis, we
want to combine these perspectives by applying CV interpretations and DV counting techniques
with new methods towards mesoscopic quantum states.

We will discuss newly developed methods in quantum state generation, detection, and charac-
terization. For state generation, we show a new method to efficiently calculate photon-number
probabilities and use it to find limits for generating higher-order Fock states in parametric down-
conversion. We show the generation of higher-order Fock states up to n = 7 with high gener-
ation rates above 1000 counts/s, which are possible due to high squeezing values above 11 dB.
On the detection side, we enhance current multiplexing schemes that enable photon-number re-
solved measurements using binary detectors. Using a novel time-multiplexing unit with 2x128
time bins, we increase existing characterization tools beyond the few-photon level and reveal
non-classical signatures of up to ten photons spread over up to 64 modes with correlation func-
tions. Additionally, we also demonstrate a new measurement scheme with a massively increased
dynamic range of 123 dB, which can handle average powers in the nW range. This enables us
to perform quantum characterizations in a completely new regime, making it possible to di-
rectly compare single-photon detectors with of-the-self power meters. Finally, we combine our
generation and detection work to experimentally show quantum tomography with three new
characterization schemes based on overlap variations and phase space sampling that allow for
higher losses and stronger phase fluctuations. We develop a new ‘truly local’ local oscillator
approach that helps us to overcome existing power and security constraints.

Although all measurements are made in the photon number basis, we discuss the reconstructed
state in the phase-space picture and show that the interplay between CV and DV pictures enables
new, robust measurements with applications in metrology and quantum communication, pushing
ahead the field as a whole.
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Zusammenfassung
Die Quantenoptik ist ein rasant wachsendes Gebiet mit Anwendungen im Bereich der Kommu-
nikation und der Metrologie. Zwei Sichtweisen werden hierbei besonders häufig verwendet, die
als kontinuierliche Variablen (CV) und diskrete Variablen (DV) bezeichnet werden. In dieser
Arbeit verbinden wir beide Perspektiven im Hinblick auf mesoskopische Zustände, indem wir
DV Messungen im CV Bild interpretieren.

Wir werden neue Methoden im Bereich der Zustandserzeugung, Detektion und der Charakter-
isierung diskutieren. Für die Erzeugung zeigen wir eine neue, effiziente Methode für die Berech-
nung von Photonen-Wahrscheinlichkeiten, die es ermöglicht die Limitationen der parametrischen
Fluoreszenz in Hinblick auf höhere Fock-Zustände zu finden. Wir zeigen die Erzeugung von
Fock Zuständen bis n = 7 mit hohen Raten über 1000 Events pro Sekunde, die durch hohe
Squeezing-Werte über 11 dB erreicht werden. Im Bereich der Detektion werden wir Mul-
tiplexverfahren weiterentwickeln, die Photonenzahlmessungen ermöglichen, selbst wenn die
Detektoren dazu nicht in der Lage sind. Mit einem neuen Zeitmultiplexverfahren mit 2x128
Zeitmoden erweitern wir bestehende Charakterisierungsmöglichkeiten jenseits des Einzelpho-
tonenlevels und zeigen Nicht-Klassizität mit bis zu zehn Photononen in 64 Moden. Zusätzlich
zeigen wir ein neues Messschema mit einem stark erweiterten dynamischen Umfang, der sich
bis in den nW Bereich erstreckt und somit die Charakterisierung in einem völlig neuen Regime
ermöglicht. Durch diese Methode ist es möglich Einzelphotonendetektoren direkt mit herkömm-
lichen Powermetern zu vergleichen. Abschließend werden wir Erzeugung und Detektion für die
experimentelle Charakterisierung verwenden. Drei neue Verfahren, basierend auf der Varia-
tion des Messüberlapps und des Phasenraumsamplings, ermöglichen es stärkere Verluste und
Phasenfluktuationen zu tolerieren. Wir führen einen „tatsächlich lokalen“ Lokaloszillators ein
der bisherige Leistungs- und Sicherheitsbeschränkungen aufhebt.

Obwohl alle Messungen in der Photonenzahlbasis durchgeführt werden, diskutieren wir die
Ergebnisse im Phasenraumbild und zeigen, dass dies neue und robuste Messungen mit Anwen-
dungen in der Metrologie und Quantenkommunikation ermöglicht.
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Introduction
CHAPTER 1

Explaining the properties of light and understanding its nature is a fascinating topic that has
been discussed from many perspectives over the last centuries. A very prominent example is a
dispute from Isaac Newton and Christiaan Huygens in the 17th century. Newton believed that
light was made out of small, solid particles that can, for example, be redirected by an elastic
collision (reflection). On the other hand, Huygens postulated that light can be described as a
wave [1] to explain the same phenomena. After both scientists had died, the old debate gained
further scientific insights with the double-slit experiment by Young in 1802. It seemed that
the argument was decided in favor of Huygens’ wave theory, because destructive interference
effects could not be explained with particles. However, with the work from Planck in 1901 [2]
and the discovery of the photoelectric effect and a novel explanation by Einstein in 1905 [3],
the particle idea experienced a revival, although in a slightly different form and not as a solid
particle. Einstein posited that light can only occur in discretized amounts, which are called
photons. After this discovery, quantum theory experienced an enormous growth, which led to
the uncovering of surprising features such as entanglement [4–6]. From the application side, a
wave-like description stayed mostly sufficient for a rather long time. At first, matter properties
were considered as quantum objects (first quantization), which led to the discovery of the maser
[7] and laser [8]. This was a milestone for optics that opened many paths of research because
light fields with well-defined properties could be generated. Quantum optics was one of these
new research fields. With the first generation of non-classical states [9] (states that cannot be
explained with a classical theory), the era of second quantization became practically important,
and the electromagnetic wave was finally treated as a quantum object.

From a modern perspective, still, two descriptions of the light field are popular, to some extent
analogous to the discussion from Newton and Huygens. On the one hand, we can describe light
in terms of different photon numbers n that can occur. Importantly, and in contrast to the clas-
sical particle picture, the different photon numbers can have special relations, which are called
coherence terms [10]. This description is known as the discrete variable (DV) perspective, as
photons can only ever be measured in discretized values. On the other hand, we have a wave-
inspired picture, where we measure amplitude and phase of the electromagnetic wave. This is
called the continuous variable (CV) picture because these measurements have a continuous out-
come spectrum. Both views can completely characterize an arbitrary quantum state. Depending
on the exact application and measurement, one or the other might be more efficient or insightful
and it is common to stick to one of the two sides. Nevertheless, a number of links have been
established (e.g. [11–16]). One additional problem is that these works are often restricted to
the few photon regime. Scaling, however, is a crucial factor for quantum technologies as many
systems show their advantages for an increasing size, such as boson sampling [17], quantum
sensing [18], or high-dimensional quantum cryptography [19]. Unfortunately, the scaling pro-
cess is non-trivial because an increasing size often enforces new experimental constraints such
as lower acceptable loss values. Also detecting larger states requires, in general, completely new
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CHAPTER 1 Introduction

measurement schemes that can enable efficient readouts.
In this thesis, we will address these points and strengthen the connection between the CV and

DV picture combined with new detection methods towards the characterization of mesoscopic
quantum states. As a common theme, we will perform measurements in the photon number
basis i.e. DV measurements. Nevertheless, we will often interpret our results (especially in
Chap. 4) from the CV perspective. We will show new measurement schemes for the detection of
large quantum states as well as new characterization methods that allow us to perform quantum
tomography in these new parameter regimes.

The structure of this thesis is as follows: At first, we will introduce the parametric down-
conversion process (PDC) in Chap. 2, which is one of the most widely used processes to generate
non-classical states of light. Generating these quantum states is a non-trivial task and we will
briefly discuss existing PDC applications, especially for single-photon generation. As a next
step, we will discuss our new work regarding the generation of higher-order photon-number
states. Although highly desirable for various applications, these special states are extremely
fragile and difficult to generate. In fact, we will show some fundamental limitations for their
generation via PDC with a new theoretical approach to describe the generated multimode states
efficiently. In Chap. 3 we will focus on detection techniques in the photon number basis. Single-
photon detection is a fast-growing field, with great improvements on the detector side over the
last years. Nevertheless, many detectors are not intrinsically photon-number resolving, which
led to the idea of detector multiplexing [20–25]. In detector multiplexing, an incoming light
pulse is distributed over many detectors to allow for an approximate photon-number resolu-
tion. We will demonstrate a new 128-bin time-multiplexing unit and show efficient readout
schemes to handle these large multiplexing devices. In addition, we also report on a new detec-
tor scheme that can handle detector saturation effects to investigate extremely bright states and a
new readout scheme for multi-element detectors. The discussed detection methods will be used
in Chap. 4, where we focus on the quantum characterization aspect and show three new methods
to characterize quantum states. We will use photon counting in combination with phase-space
interpretations to demonstrate these new characterization tools. Finally, we will conclude our
work in Chap. 5 and give an outlook on further extensions of our work.
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Quantum state generation
CHAPTER 2

Contents
2.1 Background . . . . . . . . . . . . 3
2.2 PDC for generating single-

photon states . . . . . . . . . 8
2.3 PDC for generating higher-order

Fock state . . . . . . . . . . . 12
2.4 PDC in the continuous variable

picture . . . . . . . . . . . . . 20
2.5 Conclusion . . . . . . . . . . . . . 24

Generating optical states that cannot be ex-
plained classically is a non-trivial task. It re-
quires a profound understanding of the under-
lying physics to design the appropriate gen-
eration process. In this thesis, we will focus
on parametric down-conversion (PDC), a pro-
cess where a pump photon decays into two
daughter photons to generate these quantum
states. PDC is one of the most widely used
processes in quantum optics to generate non-
classical states and we will discuss existing

schemes from the discrete and continuous variable side. Despite the widespread use of PDC,
there are still open research questions about PDC applications especially in the multimode
regime. We therefore investigate the generation of higher-order Fock states and introduce a
new, efficient method to calculate photon number probabilities from multimode PDC states in
Sec. 2.3.3. But to start with, we will discuss the physical basics of the underlying process.

2.1 Background

In order to understand and design our desired quantum process, we will consider the underlying
physics from the classical perspective first. As a next step, we will quantize our process to learn
more about the specific properties of our quantum state.

2.1.1 Nonlinear optics

In nonlinear optics, an optical light field interacts with a medium in a non-trivial way. Non-
trivial in this context means that we can see effects on top of the well-known interactions such
as reflection and absorption. Frequency modifications in a medium are, for example, a clear indi-
cation of nonlinear effects. Historically, one of the major challenges in nonlinear optics was the
required light intensity to see these higher-order effects. With the discovery of stimulated light
emission in lasers, optical fields were strong enough to see, for example, frequency doubling in
a nonlinear optical crystal [26].

The deeper reason behind the generation of new frequencies are accelerated charges inside the
nonlinear medium, which can create new electromagnetic waves. An incoming light field can
dynamically change the orientation of atomic dipoles p. The combination ofN dipoles will lead
to an overall polarization P = Np. The relation between the polarization P and the electric
field is given by the so-called electric susceptibility χ, a material property that quantifies the
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CHAPTER 2 Quantum state generation

degree of polarization given an electric field

P = ε0χE . (2.1)

To give a more formal definition of nonlinear optics, we can expand the polarization in terms of
the electric field

P = ε0

(
χ(1)E + χ(2)EE + χ(3)EEE

)
. (2.2)

If the polarization depends linearly (χ(1)) on the electric field, resulting effects are considered
as linear optics. We will only consider the first nonlinear term mediated by χ(2) in this thesis
and neglect higher-order terms, which have a cubic (or even higher) dependence on the electric
field. Depending on the frequency combinations involved, these processes have established
names such as difference frequency generation (DFG), sum-frequency generation (SFG), second
harmonic generation (SHG, special case of SFG) or optical rectification (OR). In this thesis,
we will only consider second-harmonic generation, where the incoming light field is doubled
in frequency and the decay of a high-frequency photon into two daughter photons with lower
energy, known as parametric down-conversion (PDC). To capture the full dynamic behavior,
we will now explicitly write out the time dependency of the parameters e.g. E(t), which will
become important in the following.

Up to now, all fields were treated classically. A very common method to quantize these fields
is to start with the energy (Hamiltonian) of the system. As a preparatory step, we can therefore
write the total energy in a nonlinear medium, which is given by [27]

H(t) =

∫
d3r

 H(t)∫
0

B(t) · δH′(t) +

D(t)∫
0

E(t) · δD′(t)

 , (2.3)

with a magnetic flux density B(t), a magnetic field strength H(t) and an electric displacement
field D(t) = ε0E(t) + P(t). Instead of using this rather complex equation, we will use the
better-known equation of a linear medium instead

H(t) =
1

2

∫
d3rB(t)H(t) + E(t)D(t) , (2.4)

which gives the same results up to normalization constants.

2.1.2 Quantizing the Hamiltonian

The quantization of the electromagnetic field is a complex process and a variety of methods
have been suggested [28–30]. As a rather easy first step, we will quantize a monochromatic
electromagnetic field with an angular frequency ω inside a defined volume V (e.g. [31]). The
resulting potential is described by a quadratic function of a harmonic oscillator. Solving the
eigenequation of the Hamilton operator we can find the discrete energy eigenstates, as shown
in Fig. 2.1. The energy eigenvalues are given by En = ~ω(n + 1

2). Due to the structure of the
Hamilton operator, the energy eigenstates are directly linked to photon numbers n. Therefore

4
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Energy

x

hω

^

n=0

n=1

n=2

n=3

Figure 2.1 – Probability densities of the four lowest energy eigenstates in a harmonic potential.
Transitions between these states can be made with the annihilation â or creation â†

operator. See text for further details.

we can identify each eigenstate with a photon number. We can also define the annihilation â and
creation â† operators as introduced by Dirac for transitions between the photon-number states
|n〉

â |n〉 =
√
n |n− 1〉

â† |n〉 =
√
n+ 1 |n+ 1〉 .

(2.5)

These fulfill the commutation relation
[
â, â†

]
= 1, which means that the order of the operators

cannot be swapped.

As a next step, we want to consider our nonlinear medium. We can divide the Hamiltonian
in Eq. 2.3 into two parts; a harmonic oscillator part, as we have discussed before and, more
importantly, an interaction term HI(t), which is given by the interplay of an electric field E(t)
and the nonlinear polarization [32]

HI(t) ∝
∫
dV PNL(t) ·E(t) . (2.6)

We can expand this equation via Eq. 2.2 to

HI(t) ∝
∫
dV χ

(2)
klmEk(t)El(t)Em(t) . (2.7)

In general, Eq. 2.7 includes 27 possible combinations of the three fields. As discussed before,
we only want to focus on the PDC case where a pump photon decays into two daughter photons.

5



CHAPTER 2 Quantum state generation

By quantizing the electric field, we can write the PDC Hamiltonian as

ĤPDC(t) ∝
∫
dV 2Ê(+)

p (t)
(
Ê

(−)
1 (t)

)2

︸ ︷︷ ︸
part I

+Ê(+)
p (t) Ê

(−)
1 (t)Ê

(−)
2 (t)︸ ︷︷ ︸

part II

+h.c. , (2.8)

with the electric field operator

Ê
(−)
j (t) = Ê

(+)†
j (t) ∝

∫
dωj exp [−i(kjz + ωjt)] â

†
j(ωj) . (2.9)

We can see that the down-converted photons can either be generated in the same (part I) or
orthogonal polarization modes (part II), which we call signal and idler modes. We refer to these
cases as a type I or a type II PDC process, respectively.

The derived Hamiltonian ĤPDC(t) completely describes the (quantum) behavior of our pro-
cess. We are interested in calculating the resulting quantum state |Ψout〉 for a given input state
|Ψin〉, which is given by a unitary transformation Û

|Ψout〉 = Û |Ψin〉 , (2.10)

resulting from the Schrödinger equation. Unfortunately, we cannot use the simple definition
Û = exp

(
iĤt/~

)
because our PDC Hamiltonian is time dependent1. Therefore, we have to

integrate over the interaction time to derive our unitary operator

ÛPDC = exp

[
− i
~

∫
dt ĤPDC(t)

]
. (2.11)

To evaluate this expression further, we make some assumptions: The pump field has a very
high mean photon number, which justifies a classical treatment. This allows us to perform the
integration over the pump frequency and the integration over the crystal length (we assume
a waveguided crystal, which allows us to integrate over the transversal coordinates giving a
constant factor [35]). Finally, we can derive our desired unitary operator [36]

ÛPDC = exp

[
− i
~

(
A

∫
dωs

∫
dωi α(ωs + ωi)Φ(ωs, ωi)â

†
s(ωs)â

†
i (ωi) + h.c.

)]
, (2.12)

with a pump function α(ωp) and a phase-matching function

Φ(ωs, ωi) = sinc

(
(kp − ks − ki)L

2

)
exp

(
i
(kp − ks − ki)L

2

)
(2.13)

over a nonlinear crystal of length L.

1Actually the situation is even worse, as the Hamiltonian does not even commute with itself for different times.
To give a physical explanation for this: If a very large amount of pump photons decay into daughter photons,
these new photons can reconvert to a pump photon. These additional conversion paths are called time-ordering
effects. The effect of time-ordering has been studied [33, 34] but is rather small for PDC, especially in the low
gain regime. Therefore, we will neglect the effects of time-ordering throughout this thesis.

6



SECTION 2.1 Background

Over the last decades, a number of naming conventions have been established to describe the
PDC process, which we will also use in this thesis:

• We see that the spectral properties of the PDC state can be summarized in a so-called joint
spectral amplitude (JSA) function f(ωs, ωi) = α(ωs + ωi)Φ(ωs, ωi).

• We refer to this state as a spontaneous parametric down-conversion (SPDC) state if
the PDC process is acting on the vacuum field |ΨSPDC〉 = ÛPDC |0〉. In general, the PDC
operation can be applied to any input state, which is known as seeding when the input
state is non-vacuum.

• The resulting state after a type-II (or a type-I, where the generated photon pairs can be sep-
arated in frequency) PDC process is called a two-mode squeezed state. Otherwise, it is a
single-mode squeezed state. We will revisit squeezed states from an intuitive perspective
in Sec. 2.4.1.

As a last step, we want to write down the single-mode and two-mode squeezed vacuum states
(TMSV) in the photon number basis. To simplify this step, we will only consider the output
state in a single spectral mode and therefore drop time and frequency dependencies. After some
algebra, as shown in [37], we can derive our states

|ΨSPDC, single-mode〉 =
√

sech(r)

∞∑
n=0

tanhn(r)

√
(2n)!

2nn!
|2n〉 , (2.14)

and

|ΨSPDC, two-mode〉 = sech(r)
∞∑
n=0

tanhn(r) |n, n〉 . (2.15)

2.1.3 Time-frequency modes

Before we can start to discuss applications that involve PDC, we want to review the concept of
time-frequency modes (sometimes also known as temporal modes [38]). Throughout this thesis
we will use pulsed laser light, which has a broad spectral distribution in the frequency domain.
However, the quantization of the vacuum modes only considered single-mode creation and an-
nihilation operators â† and â, respectively. To capture quantum states in broadband modes, sets
of broadband operators were introduced [39]

Â†j =

∫
dω fj(ω)â†j(ω) , (2.16)

with normalized weight functions fj(ω). These operators still fulfill the standard bosonic com-
mutation relation [Âj , Â

†
k] = δjk. In addition, it is very convenient to consider complete∑

j f
∗
j (ω)fj(ω

′) = δ(ω − ω′) and orthogonal
∫
dω f∗j (ω)fk(ω) = δjk. If we analyze the free-

space case, no basis is preferred. However, for the PDC process, we will see that a description
in a specific mode naturally follows, such as Hermite-Gauss modes [40, 41].
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idler

signal

Figure 2.2 – Schematic illustrating the generation of single-photon states via SPDC. Step I: A high-
energy pulse train is sent to a nonlinear material. Step II: Pump pulses are probabilis-
tically decaying into pairs of signal and idler photons via SPDC. Step III: The idler
mode is measured with a single-photon detector. Due to the detection and photon
number correlations between signal and idler modes, the positions of single-photons
are known.

2.2 PDC for generating single-photon states

One of the main applications for SPDC is the generation of single photons. These states are
highly relevant for many situations, for example, in fundamental physics [42, 43] or metrology
[18, 44]. In this section, we will briefly review important aspects of the single-photon generation
with SPDC, before we start to discuss our new analysis of generating higher-order Fock states
in the next section.

We have already derived the SPDC state in the photon-number basis in Eq. 2.15. As each
pump photon can only decay into a pair of signal and idler photons, we always have perfect
photon-number correlations in these modes. Therefore, by detecting one photon in the idler
mode, we can be certain that we also have one photon in the signal mode. Due to the probabilistic
nature of the decay process, we cannot predict when a pump photon decays, but we have an
indicator (herald) for it, as shown in Fig. 2.2. This process is known as heralding and is one of the
most widely used methods to generate single photons [45–49]. Still, many imperfections such
as losses, spectral correlations, or noise contributions from higher-order photon components
(more than one pump photon decays) will decrease the quality of the heralded state. All these
limitations have been studied in detail for the single-photon generation by Christ et al. [50]. We
have to differentiate fundamental limitations resulting from the probabilistic nature of SPDC and
adjustable factors such as losses and spectral properties. In the following, we want to focus on
spectral properties, which are highly relevant for optimizing the quality of the heralded single-
photon state.

2.2.1 Spectral properties

A crucial factor in the heralding process are spectral correlations between signal and idler modes.
If these correlations are present, the heralding process will project the signal photon in a mixed
state and degrades the usability for many following applications. Therefore it is desirable to
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SECTION 2.2 PDC for generating single-photon states

produce a decorrelated SPDC state, which can produce pure single-photon states. To quantify
this aspect, we have to analyze the JSA function f(ωs, ωi). This function describes all spectral
correlations between signal and idler modes. We want to investigate this function further in or-
der to generate quantum states with tailored properties.

Schmidt decomposition
As a first step, we need to quantify the correlations by analyzing the JSA function f(ωs, ωi)
[51]. To do so, we will use a mathematical tool known as the singular-value decomposition (in
this context known as the Schmidt decomposition) to write this function as a tensor product of
two orthonormal sets {|φ〉k} and {|ψ〉k} [36, 52]

− i
~
Af(ωs, ωi) = B

∑
k

λk |φ〉k ⊗ |ψ〉k . (2.17)

The factors λk ≥ 0 are called Schmidt coefficients, which are labeled in descending order
λk ≥ λk+1 and the individual states |φ〉k⊗|ψ〉k are called Schmidt modes. To express the result
from the Schmidt decomposition in a single number we define an effective Schmidt number K
[53]

K =
1∑
k λ

4
k

. (2.18)

This Schmidt number K quantifies our desired goal of measuring the spectral correlations. A
Schmidt number of one implies no correlations between signal and idler modes, which means
that measuring the idler mode does not improve our knowledge about the signal mode. Spectral
correlations are indicated by a higher Schmidt number. With these definitions, we can also define
a squeezing value rk per mode k [36]

rk = Bλk . (2.19)

The value is often quantified in a logarithmic way via squeezing [dB] = −10 log10(e−2rk). This
squeezing parameter also defines the mean photon number per mode

〈nk〉 = sinh2(rk) . (2.20)

However, it is often advantageous to quantify the optical pump strength independently of the
Schmidt decomposition. For this purpose, the more general optical gain parameter B is used,
which is the generalized version of the squeezing parameter for multimode systemes (also typi-
cally given in dB). Experimentally this parameter can be modified by changing the pump inten-
sity and therefore the PDC decay probability. We can now write our SPDC state as a product of
two-mode squeezers [37]

|ΨSPDC〉 = ÛPDC |0, 0〉

=
⊗
k

|ΨSPDC, two-mode〉 . (2.21)
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Figure 2.3 – Decorrelated JSA f(ωs, ωi) with Gaussian pump bandwidth α that is matched to the
Gaussian phase-matching bandwidth Φ.

If we can write the JSA as a double Gaussian function, the Schmidt coefficients are exponentially
decreasing [54]

λk =
√

1− µ2µk , (2.22)

with µ ∈ [0, 1]. For this case, an analytic expression for the Schmidt modes can be found [41].

Spectral engineering
We are now able to quantify spectral correlations in an SPDC state via the JSA function. As a
next step, we are interested in ways to modify this behavior. We have seen in Sec. 2.1.2 that
the JSA function f(ωs, ωi) depends on the pump function α and the phase-matching function Φ
(illustrated in Fig. 2.3). Both terms (as well as the nonlinear coefficient) need to be sufficiently
large in order to enable an efficient nonlinear process. The constraint given by the pump function
is directly connected to energy conservation. If a pump photon with the energy Ep decays, the
same energy must be present in signal and idler modes (Es and Ei respectively)

Ep = Ei + Es . (2.23)

The phase-matching function Φ is linked to momentum conservation with a potential mismatch
∆k given by

∆k = kp − ks − ki . (2.24)

For some wavelength combinations and nonlinear materials, phase matching is directly possi-
ble. Small deviations can also be compensated by adjusting the crystal orientation (critical phase
matching) or temperature (noncritical phase matching) [55]. However, these variations are often
not sufficient to generate the desired wavelength combination. Therefore a process known as
periodic poling was invented. Here the crystal orientation is periodically inverted to compen-
sate for the phase mismatch [56]. With this technique, it is possible to design a process with
the specified center frequencies. Nevertheless, adjusting the Schmidt number and therefore the
correlations inside the JSA can be challenging. For example, the sharp edges at the beginning
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Figure 2.4 – JSA functions of a SPDC state with a broad (a), matched (b), and narrow (c) pump
bandwidth. If the pump bandwidth (white dotted) is not matched to the phase-
matching function (white dashed), additional correlations in the SPDC state can be
seen.

and end of the crystal, where the nonlinearity is suddenly turned on and off, cause a sinc-shaped
phase-matching function, which causes additional correlations. Special poling patterns have
been investigated to overcome this limitation [57–59].

An additional problem that cannot be solved with periodic poling is the angle between the
abscissa and the phase-matching function. In order to create a decorrelated state with bandwidth
matched signal and idler photons, it is necessary to have a phase-matching function perpendicu-
lar to the pump function. The phase-matching angle is given by the dispersion properties of the
material. For communication purposes, light emission at 1550 nm is advantageous, as optical
losses in fibers are minimal for this wavelength. Potassium titanyl phosphate (KTP) has become
the workhorse for generating decorrelated states at this wavelength, as it offers nearly 45◦ phase
matching.

Last but not least, the crystal length will change the phase-matching bandwidth. It is neces-
sary to adjust the pump bandwidth to match the phase-matching bandwidth to avoid additional
correlations, as shown in Fig. 2.4. This process, combined with selecting an appropriate phase-
matching function, is often referred to as spectral engineering and has been shown first for bulk
crystals at 830 nm [60]. Later the material was changed to KTP to enable single-mode emission
at 1550 nm [61–63]. Figure 2.3 shows the perfect case of a decorrelated state where phase-
matching bandwidth and pump bandwidth are matched.

In principle, spectral filtering could be used to generate a decorrelated JSA. However, this
comes with the cost of additional losses [64]. Therefore, spectral engineering is crucial for high
performance single-mode PDC emission, which enables the generation of pure single-photon
states.
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CHAPTER 2 Quantum state generation

2.2.2 Solutions for deterministic single-photon generation

To overcome the fundamental limitations of SPDC, two solutions are possible. Firstly, the proba-
bilistic nature of SPDC can be overcome by combining multiple sources into one channel (source
multiplexing), as summarized in a recent review article by Meyer-Scott et al. [65]. To do so,
an active element and fast processing (feed-forward) is crucial. Secondly, it is also possible
to generate single-photon states with a deterministic process. For example, quantum dots are
investigated in this context, but they often suffer from different disadvantages such as lower in-
distinguishability or fidelity [66], although many solutions are discussed [67–69]. Nevertheless,
PDC has the advantage that additional states can be generated with this process. One example is
the already mentioned generation of higher-order Fock states, which we will discuss in the next
section.

2.3 PDC for generating higher-order Fock state

Fock states, also known as photon-number states, are fascinating fundamental quantum states.
These states are highly non-classical as they have no energy uncertainty. In contrast, we are
still able to understand these states intuitively from the DV particle picture [70]. In addition to
the fundamental point of view, Fock states are also essential from the application perspective.
For example, Fock states are a key resource to generate Schrödinger cat states [71] or Holland-
Burnett states which are advantageous for phase estimation [72]. Besides, Fock states also have
the potential to improve spectroscopy applications [73–75], and quantum information processing
protocols [76].

Despite their broad interest, generating Fock states is a challenging task and various ways
have been explored [77–81]. In this section, we will discuss how high-order Fock states can be
generated with spontaneous parametric down-conversion (SPDC). In previous theoretical works,
only up to two photons or Schmidt modes have been considered [50, 82, 83]. We use a new
method to theoretically investigate the limitations of SPDC for Fock state generation with up to
seven photons and 35 modes and compare our theory with experimental data. The content of
this section was published in [84].

2.3.1 Generation scheme

The most common method to generate higher-order Fock states is a type-II SPDC process [85–
90]. This process is very similar to the single-photon generation scheme. The main difference
is that we will deliberately enforce multiple decay events, which results in multiple photon pairs
in the signal and idler modes. As these photons are always produced in pairs from a pump
photon, the signal and idler modes show perfect photon-number correlation. Therefore, post-
selecting (heralding) on a specific photon number n in the idler mode enables the preparation
of an n-photon number state in the signal mode, which can be used for further purposes. One
drawback of generating higher-order Fock states with SPDC is again the probabilistic nature of
this process. To some extent, the generation probability can be changed by varying the incoming
pump intensity and, therefore, the chance of a photon decay. The photon number probability pn
of generating an n-photon state will be a key parameter in the following calculations. The second
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Figure 2.5 – A two-mode squeezed state is generated with parametric down conversion (PDC).
The polarization modes, named signal and idler, are split on a polarizing beam split-
ter (PBS). Losses and multimodeness will influence the detected signal state that is
prepared given a specific measured photon number in the idler mode. Reprinted from
[84]. ©2019 by American Physical Society

important figure of merit is the fidelity of the generated state to a single-mode n-photon Fock
state. Two main mechanisms can degrade the quality of the produced state, namely losses and
multimodeness. The calculation of the state fidelity in the presence of (spectral) multimodeness
presents a particularly challenging problem.

2.3.2 Parametric down-conversion limitations: single-mode

As we have seen in Sec. 2.2.1 the general multimode SPDC state |ψ〉PDC can be described as a
product of two-mode squeezed vacuum states in orthogonal modes k

|ψ〉PDC =

∞⊗
k=1

√
1− |Λk|2

∞∑
n=0

Λnk |n, n〉k . (2.25)

Here Λk = tanh(rk) defines the squeezing as a function of the squeezing parameter r. In the
following, we will analyze the limitations of this process for the single-mode case and then
generalize our findings with a new theoretical tool for the multimode case.

As a first step, we will consider the single-mode case (Λk 6=1 = 0). We will denote this case
with a capitalK = 1 and consider the idler mode as the heralding arm ρi = trs(|ψ〉〈ψ|PDC,K=1).
The probability pn of heralding an n-photon state in the idler arm is then given by

pn,K=1 = tr (|n〉〈n| ρi)
= (1− |Λ1|2)Λ2n

1

= q1(1− q1)2n ,

(2.26)

where the vacuum probability q1 = (1 − |Λ1|2) was introduced. If we want to maximize the
heralding probability for a specific photon number, we can change the pump power to change the
squeezing strength. As we can see from Eq. 2.26 the photon number pn is given by a geometric
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distribution. Therefore each photon number n has a maximum generation probability

pmax,K=1(n) =
nn

(1 + n)1+n
. (2.27)

This means that the PDC pump power can be varied to optimize the heralding probability pn,
but the maximum value exponentially decreases with the photon number n.

In addition to the heralding probability, we will investigate the quality of the heralded state.
Therefore we choose the fidelity F to the desired n-photon Fock state as the figure of merit
[91]. We will assume ideal photon number resolution for the detection, which is approached in
practice by transition edge sensor (TES) detectors [92]. In this chapter, we will treat detectors as
a black box with perfect properties (n photons produce an n-detection event and detectors have a
frequency-independent response). We will discuss further details about the detection process in
Chap. 3. The dominating experimental imperfection that needs to be considered is optical loss.
In contrast to the limits of the heralding probability, unit fidelity can be reached in principle.
As a first step, we will only take losses for the heralding arm into account as losses for the
heralded mode will depend on the actual application scenario. We have already discussed the
measurement operator for lossy photon number detection Πn with a transmission η in Eq. 3.4.
Therefore the heralded signal state after the detection of n photons in the idler mode can be
written as

ρs =
tri(Πn |ψ〉〈ψ|)
〈ψ|Πn |ψ〉

. (2.28)

With this result, the fidelity to the desired Fock state |n〉 can be written as

F(|n〉〈n| , ρs) = 〈n| ρs |n〉

=
ηnq1(1− q1)2n∑∞

i=n

(
i
n

)
(1− η)i−nηnq1(1− q1)2i

.
(2.29)

Heralding probability and heralded state fidelity are shown in Fig. 2.6 (a,b) as a function of
the optical gain, which is equivalent to the squeezing parameter in the single-mode case. All
plots are shown for three different loss values in the heralding arm, and three heralded photon
numbers.

It can be seen that the general shape of the heralding probability is independent of heralding
losses. Losses can always be counteracted with higher squeezing values. This effect can be
explained if we consider only the idler mode of the two-mode squeezed vacuum (signal mode is
traced out). The resulting state is a thermal state, which stays thermal under losses.

The situation is quite different for the heralded state fidelity. For the lossless case, detect-
ing n photons in the heralding mode will project the heralded state to an n-photon Fock state.
However, if we consider losses in the heralding arm, heralding n photons in the heralding mode
will project on at least n photons in the signal mode, as additional photons could have been lost.
These additional higher-order photon number contributions will lower the fidelity. It can be seen
that both higher losses and stronger squeezing increase these higher-order terms and therefore
reduce the state fidelity. In general, we can see a trade-off between state fidelity and generation
probability. For weak squeezing values, the heralding probability increases with pump power,
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Figure 2.6 – Heralding probability (a) and fidelity to a Fock state (b) as functions of the optical gain
for idler transmission values of 1.0 (cyan), 0.85 (blue), and 0.5 (red). Fundamental
limits for the heralding probability are shown with grey horizontal lines. Heralding
probability and fidelity plots can be combined as a parametric plot (c). See text for
further details.

whereas the state fidelity is decreasing.
Figure 2.6 (c) combines heralding probability and state fidelity as a parametric plot. These

combined plots are ideal for analyzing the performance of any probabilistic photon source and
have been shown for the single-photon case in [50]. The optimal working point is (independent
of the photon number) in the right top corner where a deterministic source with unit fidelity
is situated. For single-mode sources (see next section for the multimode case) the heralding
probability is limited due to the geometric distribution of a thermal state. In addition, losses will
limit the accessible parameter range further.

2.3.3 Efficient modeling of multimode PDC

As a next step, we want to generalize our findings for multiple (spectral) modes. Unfortu-
nately, this extension is not obvious because the detectors cannot distinguish individual fre-
quency modes. Therefore, calculating the probability pn of having n photons independent of
the (spectral) mode is challenging. Previously this problem has been investigated with gener-
ating functions [93] or calculated analytically for two Schmidt modes [83]. To illustrate the
underlying problem we can write the detection probability pn as

pn =
∑
|i|=n

pi . (2.30)

The kth entry of the multi-index i defines the photon number in the kth spectral mode. Calculat-
ing Eq. 2.30 can be a demanding task as all permutations that lead to a total photon number of n
need to be considered. For example, calculating the probability of detecting only three photons
n = 3 occupying three modes K = 3 requires ten terms

pn = p3,0,0 + p0,3,0 + p0,0,3 + p2,1,0 + p2,0,1 + p1,2,0 + p0,2,1 + p1,0,2 + p0,1,2 + p1,1,1 , (2.31)
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where for example p2,1,0 = pn=2,k=1pn=1,k=2pn=0,k=3 with a probability pn,k of having n
photons in the kth mode as given by Eq. 2.15. It can be directly seen that the number of terms
that need to be considered grows exponentially in n and K.

In [84], we present a new approach to calculate the convoluted photon number probability pn
based on discrete phase-type distributions [94]. It requires that all spectral modes have the geo-
metric distribution of a thermal state with a vacuum probability qk. These vacuum probabilities
are easy to calculate given a squeezing value rk

qk = sech(rk)
2 . (2.32)

With the vacuum probabilities qk and considering Kmax spectral modes we can calculate the
photon number probability pn with

pn(q) = αMn+Kmax−1M0 , (2.33)

where the matrix M is defined by

M =


1− q1 q1 0 . . . 0

0 1− q2 q2 . . . 0
0 0 1− q3 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1− qKmax

 , (2.34)

with α = (1, 0, ..., 0) and M0 = (0, ..., 0, qKmax)
T . For this new approach it is straight forward

to calculate the photon number probability pn as only matrix multiplications need to be carried
out. With this new tool, we are now able to investigate the heralding process for the multimode
case.

2.3.4 Parametric down-conversion limitations: multimode

We want to consider both figures of merit, the generation probability pn and the state fidelity F
to the desired Fock state, in the general multimode case as well. Without loss of generality, we
will consider spectral modes as an example for multimode emission. We have already discussed
that this problem is more demanding as the heralding detector cannot resolve the time-frequency
modes of the SPDC state. Detecting n photons, therefore, produces a mixed state that can occupy
a variety of different modes, even for the lossless case. As we have discussed in the previous
section, we suggest a new method to compute the generation probability pn (see Eq. 2.33). This
very general approach can be simplified further if we assume a double Gaussian joint spectral
intensity function (see Sec. 2.2.1). We have seen that for this case the squeezing value per
Schmidt number is exponentially decreasing (see Eq. 2.22). Using the vacuum probability qk
for the kth Schmidt mode, we can calculate the heralding probability via

p(n) =

Kmax∑
j=1

(−1)j(1− qj)n+Kmax−1∏
m6=j |qj − qm|

·
Kmax∏
i=1

qi , (2.35)
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where Kmax defines the largest Schmidt mode that is still considered, as we have shown in [84].

Investigating the fidelity is an even more challenging task. To start with, we will differenti-
ate two different infidelities in this context. As already stated, in general we are interested in
the state fidelity to a specific Fock state n in a single spectral mode (and vacuum in all other
modes). It is advantageous to define the desired mode with n photons as the first Schmidt mode
because any desired squeezing value in this mode can be reached with minimal pump power.
However, measuring this fidelity can be hard as current single-photon detectors do not resolve
time-frequency modes. Therefore we will also introduce the fidelity to a multimode photon
number state (mmPNS) for this purpose. We define a mmPNS as a state with a specific photon
number n that occupies an incoherent mixture of modes. In the following we want to specify
both fidelities.

Firstly, we only consider losses in the heralding arm. We can calculate the state fidelity
to a single-mode state with the probability of having n photons in the signal and idler mode
pk=1(n, n) and vacuum in all other spectral modes for signal and idler pk>1(0, 0).

F(|n〉〈n|k=1 ⊗ |0〉〈0|k>1 , ρs)

=
1

pn
pk=1(n, n)pk>1(0, 0) .

(2.36)

The heralding probability pn defines the probability of having n photons independent of spectral
properties and can be calculated with Eq. 2.35. If losses in the signal mode are also considered,
more cases can lead to the desired photon number n in the first spectral mode. The full derivation
can be found in the supplement of [84]. The final fidelity is given by

F(|n〉〈n|k=1 ⊗ |0〉〈0|k>1 , ρ)

=
1

pn

n∑
i=0

pk=1(n, n− i)pk>1(0, i) ,
(2.37)

where all probabilities already incorporate losses. Likewise the fidelity for the mmPNS can be
found

FmmPNS(ρ) =
∑

∑
nk=n

F
(⊗

|nk〉〈nk| , ρ
)
, (2.38)

which we will become important for comparing our findings to experimental data in the next
section.

Similar to the single-mode case, the results of the previous equations are illustrated in Fig. 2.7.
Different colors represent three different Schmidt numbers of 1.0, 1.5 and 2.0 (blue, green,
yellow, respectively). The heralding probability actually increases with an increasing Schmidt
number Fig. 2.7 (a). The reason behind this finding comes from the fact that the convolution of
geometric distributions approaches a Poissonian distribution. Therefore, the maximum heralding
efficiency in the limit of an infinite Schmidt number is given by [95]

pmax, multimode(n) =
e−nnn

n!
. (2.39)
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Figure 2.7 – Heralding probability (a) and fidelity to a Fock state in a single spectral mode (b) as
a function of the optical gain for a Schmidt number of 1.0 (blue), 1.5 (green), and
2.0 (yellow). All curves are calculated for a heralding efficiency of 0.85. Heralding
probability and fidelity to a Fock state plots can be combined as a parametric plot (c).
See text for further details.
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Figure 2.8 – (a) Absolute limits for the heralding probability as a function of the photon number
for the single mode and multimode case. (b) Limits for the state fidelity as functions
of the Schmidt number for three different photon-number states.

Although the effect of an increased heralding probability seems desirable, this effect is cumber-
some for most applications. This becomes apparent if we additionally analyze the state fidelity
to a single-mode Fock state. As shown in Fig. 2.7 (b) the state fidelity decreases with an increas-
ing Schmidt number. In addition and in contrast to losses, an increased Schmidt number cannot
be counteracted with a lower optical gain. Optimizing the SPDC state for single-mode emission
(see Sec. 2.2.1) is therefore desirable for Fock state generation.

The absolute limits of heralding higher-order Fock states with SPDC are shown in Fig. 2.8.
Due to the underlying distribution (geometric distribution for the single-mode case and Poisson
for the multimode case) a maximum heralding efficiency can be calculated (see Fig. 2.8 (a)).
The Schmidt number will limit the achievable state fidelity to the desired single-mode Fock
state (Fig. 2.8 (b)).
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Figure 2.9 – Experimental setup for heralding higher-order Fock states. A two-mode squeezed
vacuum state is split on a polarizing beam splitter (PBS). Both modes are detected
with transition-edge sensors (TES). See text for further details.

2.3.5 Experimental setup

In order to compare our theoretical findings with experimental data, we recorded both modes of
a two-mode squeezed vacuum state with transition-edge detectors (TES) [84]. These TES de-
tectors as introduced in Sec. 3.2 offer intrinsic photon number resolution such that convolutional
effects from multiplexing are not apparent. However, TES detectors cannot distinguish between
the time-frequency modes of the SPDC state, as they have a constant frequency response func-
tion over the measurement spectrum. The two-mode squeezed vacuum state is generated inside
a source-engineered periodically poled potassium titanyl phosphate (PPKTP) crystal via type-II
SPDC. Single-mode emission around 1550 nm [61–63] and very high brightness [89] have been
demonstrated for these waveguided sources. The crystal is pumped with a frequency shaped
(4f-configuration) Ti:Sapph oscillator at 767.5 nm and a repetition rate of 200 kHz. For this ex-
periment, a non-ideal pump spectrum was chosen in order to increase the Schmidt number and
therefore amplify multimode effects. The setup can be seen in Fig. 2.9.

2.3.6 Results

The comparison between experimental data and multimode theory is shown in Fig. 2.10, where
heralding probability and the fidelity to an mmPNS are investigated. In contrast to the previous
sections, signal losses are considered as well to match the experimental data. The theoretical
model can describe our experimental findings with high accuracy. For these plots only signal and
idler losses and the effective Schmidt number are fitted to the experimental data. We estimate
signal and idler efficiencies (Klyshko efficiency) of 0.64 and 0.59, respectively, as well as a
Schmidt number of 1.61. The highest measured mean photon number corresponds to an initial
squeezing value of 11.5 dB at the source. As expected for this multimode case, a heralding
probability above 25% is measured.

Measuring the fidelity to a single mode Fock state is a very demanding task and would require
a time-frequency mode selective measurement. This has been shown, for example, by using a
local oscillator, which acts as a frequency selective filter (see Chap. 4). However, this approach
poses additional constraints for the local oscillator generation, which often limits the available
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Figure 2.10 – Experimental data for the heralding probability (a) and state fidelity to an mmPNS
state (b) as functions of the measured mean photon number. The fidelity to a single-
mode Fock state is shown in red as a comparison. See text for further details.

pump power for the PDC process [88, 96]. Therefore, we measure the fidelity to a multimode
photon number state, which is independent of the underlying mode structure. Nevertheless, the
presented approach of fitting our multimode theory to the experimental data offers insights to the
underlying mode structure. Therefore it is possible to gain information about the spectral mode-
structure without mode-resolved detection. To be more specific, it is obviously not possible
to determine the shape of an individual spectral mode without any reference, but the effective
Schmidt number and, to some extent, the mode distribution can be extracted.

These results highlight the advantages of a single-pass SPDC configuration in combination
with waveguides because low losses and high squeezing values can be reached simultaneously.
Our new theoretical approach is still able to model these parameter regimes efficiently. An addi-
tional application for our theory can be found in Appendix B, where we investigate multimode
measurements in the high gain regime. The presented theory, therefore, is a tool to evaluate the
feasibility of new experiments that require Fock states. At the same time, this work also shows
the need for new approaches [80, 81, 97] to generate high-quality higher-order Fock states.

2.4 PDC in the continuous variable picture

Up to now, we have considered PDC in the discrete variable (DV) picture. This means that we
have always measured properties with a discrete outcome (in our case, photon numbers). In
this section, we will consider a different class of observables instead, which have a continuous
output spectrum (continuous variable (CV) measurements). To simplify our discussion, we will
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Figure 2.11 – The complex electric field with an amplitude E0 is rotating with an angular fre-
quency ω around the origin (a). The projection on the abscissa reveals the real part
of the electric field (b).

restrict ourselves to the single-mode case. Both descriptions are equivalent, but, depending on
the measurement and the application, one or the other point of view might be more favorable.
Following the measurement, also representing the state is generally done on one or the other
side. For a photon-number measurement, a description as a density matrix in the Fock basis is
natural, whereas quadrature measurements can be better expressed in the phase-space picture
(although we see in Chap. 4 that a link between these worlds can be beneficial). We want to
motivate these phase-space functions in a simple form known as a phasor-diagram.

2.4.1 Phasor diagrams

Phasor diagrams can be very insightful to get an intuitive understanding of many quantum states
and processes. To understand these diagrams, we will start again from the classical perspective
where we can write a monochromatic electric field E(t) as a complex number

E(t) = E0 exp(iωt+ Φ0) . (2.40)

The imaginary and the real part of the electric field E(t) can be illustrated as projections of a
rotating vector (see Fig. 2.11 (a)). These diagrams are called phasor diagrams [98]. The time-
varying projection of the electric field vector on the abscissa can be seen in Fig. 2.11 (b). In the
next step, we can quantize the electric field operator Ê. Instead of using this operator directly, it
is more common to define dimensionless quadrature operators X̂1 and X̂2

X̂1 =
1

2
(â+ â†)

X̂2 =
−i
2

(â− â†) ,
(2.41)

which still have the same characteristics as the electric field operator. The quadrature operators
do not commute ([X̂1, X̂2] = i), which limits the knowledge of both values according to the
generalized Heisenberg uncertainty principle.
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Figure 2.12 – Phasor diagram of a coherent state |α〉 with a quadrature uncertainty ∆X̂1 =
∆X̂2 = 1/2 (a). The coherent state has an amplitude and phase uncertainty (∆n,
∆Φ respectively), which is changing relative to the amplitude (b). Time dependence
of the electric field in terms of X̂1 (c).

To see the impact of this finding in the phase space picture, we will investigate coherent states

|α〉 = e
−|α|2

2

∞∑
n=0

αn√
n!
|n〉 . (2.42)

These states have the smallest equally-split uncertainty with respect to the quadrature operators

σX̂1
= σX̂2

=
1

2
, (2.43)

with a quadrature standard deviation given by σX̂ =
√
∆X̂ =

√
〈X̂2〉 − 〈X̂〉2. The uncertainty

is often indicated as a circle in the phasor diagrams (Fig. 2.12 (a)). Figure 2.12 (b) illustrates
that these quadrature uncertainties also have an effect on the amplitude and phase uncertainty.
However, these uncertainties change as a function of the mean photon number n̄ = 〈n̂〉 = |α|2.
If we, for example, consider the photon number uncertainty σn relative to the mean photon
number n̄, we can see that the uncertainty is vanishing for large photon numbers

σn
n̄

=
1

|α|
. (2.44)

This is also the underlying reason why the discretized nature of the electric field is barely visible
for bright states.

2.4.2 Generating squeezed states

In addition to the generation of Fock states, we can also use SPDC to produce squeezed states.
We have already seen the phasor diagram of a coherent state in Fig. 2.12. With parametric
down-conversion, it is possible to reduce the uncertainty along one quadrature axis at the cost
of increasing the uncertainty in the orthogonal quadrature. If the PDC process is acting on the
vacuum field, a single-mode squeezed vacuum field is generated (Fig. 2.13 (a)). In contrast to
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Figure 2.13 – Phasor diagrams of single-mode squeezed states. The squeezing operation can be
applied on the vacuum field (a) or on a coherent state (b,c). Depending on the phase
between the coherent state and the squeezing operation, we can distinguish phase
squeezing (b) or amplitude squeezing (c). The coherent state uncertainty is indicated
with a dashed circle.

our previous considerations, we can also apply PDC to a coherent state. These states are known
as bright squeezed states, and the squeezing will have an additional phase with respect to the
coherent state phase. If the squeezing is perpendicular or parallel to the amplitude vector, these
states are called phase (Fig. 2.13 (b)) or amplitude (Fig. 2.13 (c)) squeezed states, respectively.

If we consider a type-II PDC process (or non-degenerate type-I), we will produce a two-
mode squeezed state instead. Here the individual signal and idler modes (the second mode
is traced out) show the increased noise level of a thermal state. No quantum correlations are
visible as shown in Fig. 2.14 (a,b). However, if we consider joint measurements of the signal
and the idler mode, we can uncover quantum correlations Fig. 2.14 (c). For this reason, we
define superposition quadrature operators, which are given by the quadrature measurements in
the signal X̂s and idler X̂i mode [31]

X̂1,super =
1√
2

(X̂1,i + X̂1,s)

=
1

2
√

2
(âi + â†i + âs + â†s) ,

(2.45)

and the second quadrature operator defined by X̂2,super = 1√
2
(X̂2,i + X̂2,s). We will come back

to details of these phasor diagrams in Chap. 4.
Both single-mode squeezing and two-mode squeezing have a wide range of applications, es-

pecially in quantum sensing. A prime example where squeezing is readily used is gravitational
wave detection [99]. Compared to the generation of other exotic quantum states, the generation
of squeezing is rather simple and deterministic, and it can be shown that the phase sensitivity in
lossy interferometers is optimal for squeezed states compared to all other states [100]. Neverthe-
less, squeezed states are loss sensitive and the additional work required to generate these states
needs to be justified. In general, it can be said that squeezing can improve a lot of phase-sensitive
measurements if classical optimizations (increasing optical power, reducing classical noise from
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Figure 2.14 – Phasor diagrams of a two-mode squeezed state. The individual signal and idler
modes on their own show an increased noised level compared to a coherent state
(a,b), which is indicated with dashed circles. Correlations can only be seen if the
quadrature values between both modes are measured jointly (c).

the laser) cannot give additional benefits. In this case, the achievable amount of squeezing often
limits the measurement sensitivity. Therefore, it is desired to increase the effective nonlinearity
as much as possible. In most cases either cavity systems or waveguided crystals are used to in-
crease the pump power per interaction volume. As we have seen for the Focks state generation,
in this thesis we will focus on the latter, which has been studied in detail in recent years [35, 47,
61, 63, 89]. We will use squeezed states in the context of quantum tomography in Chap. 4.

2.5 Conclusion

In this chapter, we have introduced the process of PDC and discussed how we can describe it
from the DV and CV perspectives. As an example of the generation of large quantum states, we
investigated the production of higher-order Fock states. Absolute limits for the generation prob-
ability and state fidelity were derived as a function of the heralded Fock state n and the degree of
multimodeness quantified by the Schmidt numberK. For typical squeezing values (below 7dB),
we have a trade-off between state fidelity and heralding probability. In this range, increasing
one parameter comes at the cost of reducing the other, while for higher squeezing values, both
parameters are reduced. We compare our new theoretical model described in Sec. 2.3.3 with
experimental data and show that this data can be modeled with very high accuracy. To achieve
high heralding rates for the higher-order Fock states (up to n = 7) in a single-pass configuration,
waveguided nonlinear materials are required. With this configuration we show inferred squeez-
ing values above 11 dB. These achievements build the foundation for the next chapters, where
we will use SPDC states as a resource.
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In general, a variety of detectors have
been designed to uncover quantum proper-
ties of light. In this chapter, we will fo-
cus on photon-number measurements and
demonstrate new detection methods towards
the measurement of mesoscopic states.These
measurements have discretized outcomes due
to energy quantization, which is connected to
the DV perspective. However, we can often
rephrase the results to get insights into the CV
perspective as well. Therefore this chapter
is also a building block for further quantum
state characterizations shown in Chap. 4.

3.1 Background

Before we can start to investigate the photon-number detection process, we will briefly discuss
the meaning of measurements in quantum optics. As a next step, typical measurement imperfec-
tions, namely losses and single-photon detector properties, will be considered. Finally, we will
have a look at the Mandel Q-parameter as a specific example to quantify non-classicality in the
photon-number basis.

3.1.1 Measurements in quantum optics

Measurements in quantum optics do not fulfill the intuition from our ‘classical’ daily living. For
example, in quantum mechanics, the measurement process will influence the measured quantity -
in contrast to our experiences. Even Albert Einstein had some problems with this fact, which lead
to his famous quote ‘I like to think the moon is there even if I am not looking at it’. Despite the
unintuitive nature of quantum measurements, this process was studied in detail in the last century
and precisely formalized. Still, the exact transition between a quantum state wave function and a
measurement outcome (measurement problem in quantum mechanics) remains an open research
problem [101]. Following an axiomatic approach to quantum mechanics [28] a measurement
can be identified with Hermitian (self-adjoint) operators performing a projection on the quantum
state. The eigenvectors of these operators form an orthonormal basis. After the measurement,
the state will be projected onto one of these eigenstates of the operator. To cover all cases,
measurements have to be described in a more general way. To illustrate this, we will consider
an example from quantum optics, which is a lossy measurement (more details about losses can
be found in Sec. 3.1.2). In the case of no losses, the measurement projects on photon-number
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states which form an orthogonal set. If losses are present, two different photon-number states
can have the same detection outcome, which means that the measurements are not orthogonal
anymore. Instead, the measurement can be described as a set of Hermitian positive semidefinite
operators Ei which have to fulfill

n∑
i=1

Ei = I . (3.1)

This general measurement scheme is called positive-operator valued measure (POVM). Accord-
ing to Neumark’s dilation theorem, a POVM can always be expressed as a projective measure-
ment on a larger Hilbert space. For our example this means that the corresponding larger Hilbert
space would also include all the photons that are lost (in an additional mode). From the ex-
perimental side, lost photons cannot be detected, which shows that a description with POVMs
is required. At the same time, the informational content of the measurement is changed. This
means, for example, that we cannot infer the initial photon number if we consider a single-shot
measurement.

3.1.2 Measurement losses

Optical linear losses are the most important experimental imperfection for many quantum ex-
periments. From a theoretical point of view, losses are equivalent to a random sampling of the
optical field. This can be modeled by a propagation through a beam splitter with a transmission
value of η and a vacuum field entering through the other input port. If we now consider n pho-
tons that pass through this beam splitter, we can calculate the probability of having n′ photons
remaining with a binomial distribution. In matrix notation, this can be expressed as

Ln′n(η) =

(
n

n′

)
ηn
′
(1− η)n−n

′
. (3.2)

For known photon-number probabilities pn of a quantum state, the photon-number probabilities
after losses pn′ can be simply calculated via

pn′ = Ln′n(η)pn . (3.3)

If not stated otherwise, the Einstein summation convention is used. The POVM of a lossy
photon-number measurement is therefore given by

Πn′ = Ln′n(η)πn , (3.4)

with πn = |n〉〈n|.

3.1.3 Single-photon detectors

To characterize our quantum state in the photon number basis, we require single-photon detec-
tors that can resolve discretized energy levels. However, intrinsic photon-number resolution is
a desired but seldom property of detectors at the single-photon level. One example where this
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is fulfilled is a Transition-Edge Sensor (TES) [92]. Here a superconducting material is operated
at the transition region between the superconducting and normal-conducting state, which causes
an extremely high resistance change for a given temperature change. This dependence is, in fact,
strong enough to measure the temperature increase due to an absorbed photon. As the transition
region is linear within a specific range, n absorbed photons will change the resistance n times
stronger than a single photon. The resistance change can then be transformed into a voltage
signal using sophisticated electronic components. With this technique, efficiencies above 97%
have been shown [92]. The drawback of TES detectors is that they need to be operated in the
mK regime, which requires expensive and technically challenging cooling strategies.

Other detectors like Single-Photon Avalanche Detectors (SPADs) are easier to operate as they
do not require cryogenic cooling. However, these detectors have a very limited detection effi-
ciency of around 25% at the telecom wavelength of 1550 nm (minimal absorption wavelength
for optical fibers, which is crucial for various applications). A very promising compromise
is given by a rather new detector type, which is known as Superconducting Nanowire Single-
Photon Detector (SNSPD). These detectors have a very thin and meandering nanowire, which
is superconducting and biased with a constant current. If a photon is absorbed by this material,
a local, normal conducting hotspot is generated, which produces a voltage peak. SNSPDs only
require cryogenic cooling of around 1 K, which is much easier to achieve than the demanded
temperature for TES detectors. The main advantage of SNSPDs is that very high efficiencies of
98% [102] in addition to other desired properties such as low dark-count rates [103], fast recov-
ery time after a detection event [104], and very low intrinsic jitter values [105] are possible. For
these reasons, SNSPDS are becoming a standard tool for quantum optical experiments and all
experiments presented from this point on will be based on these detectors.

One major drawback of SPADs and SNSPDs is that they cannot distinguish individual photon
numbers. Instead, they have a binary response, which means that they either ‘no-click’ if vacuum
is present or they ‘click’ if at least one photon is present. Therefore these detectors are also often
called ‘click’-detectors. Their corresponding POVM elements are given by ‘no-click’: π0 and
‘click’: π1 = 1 − π0. Measuring a photon number distribution is not possible with binary
detectors. We discuss this problem in detail in Sec. 3.2.

3.1.4 Mandel Q-parameter

As a last step, we want to briefly discuss the ‘quantum’ aspect of photon number distributions.
One could assume that measuring the discretized nature of the light field is already a proof for
non-classicality. However, this result on its own could be described with a classical particle the-
ory [70]. This shows that identifying non-classical light is a non-trivial task. Different methods
have been developed that focus on a particular aspect of the quantum field and therefore reveal
criteria that are sufficient but not necessary to identify non-classicality. Here we want to focus
on the Mandel Q-parameter [106] as a specific example, which can be calculated by knowing
the photon-number distribution of a quantum state. The Mandel Q-parameter is defined as

Q =
(∆n)2 − 〈n〉
〈n〉

(3.5)
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Figure 3.1 – Three photon-number probability distributions are plotted. Red: photon-number dis-
tribution of a coherent state which is given by a Poisson distribution. The mean and
the variance of this distribution have the same value. Blue: super-Poissonian light
where the variance is higher than the mean value. Green: sub-Poissonian light (non-
classical) where the variance is smaller than the mean value.

where 〈n〉 is the mean photon number and (∆n)2 = 〈n2〉 − 〈n〉2 is the photon-number vari-
ance. Fig. 3.1 shows three different photon-number distributions. One of the most common
distributions is known as a coherent state (red) which has a Poissonian distribution

pcoh(n) = e−|α|
2 |α|2n

n!
. (3.6)

For example, the photon-number distribution produced by a laser is often a coherent state. The
Mandel Q-parameter for a coherent state is 0 as mean and variance are equal. Secondly, if an
incoherent mixture of coherent states is present, the variance of the photon-number distribution
will be larger than the mean (blue), and the Mandel Q-parameter is Q > 0. Thirdly, the interest-
ing case for Q < 0 describes a state that has a photon-number variance that is smaller than its
mean photon number. This is a sufficient criterion for having non-classicality. The extreme case
is given by photon-number states with Q = −1, which are also known as Fock states. These
states do not have any uncertainty in the photon number. As typical for many non-classicality
criteria, losses have a strong effect on this value. For example, a photon-number state after loss
will tend towards a Poissonian distribution.

This concludes our discussion of some basic properties required for photon-number measure-
ments. We will now focus on the problem of measuring photon-number distributions with binary
detectors.
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SECTION 3.2 Time-multiplexed detection for large input states

(A) (B)

Figure 3.2 – Two examples of the multiplexing concept. In both cases an incoming light field
with five photons is characterized. After each beam splitter (black lines) one possible
splitting case of the five photon state is shown. (a) Spatial multiplexing: The incoming
light beam is divided by seven beam splitters into eight spatial modes which are then
detected by eight detectors. (b) Temporal multiplexing: The incoming light beam is
divided at a beam splitter. Then one mode is delayed with a fiber delay line before
both modes are combined at the next beam splitter. With this method an incoming
pulse is split into two spatial modes with four time bins each and only two detectors
are required for the detection.

3.2 Time-multiplexed detection for large input states

We have seen that binary detectors, especially SNSPDs, offer many advantages but cannot re-
solve individual photon numbers. Nevertheless, photon-number resolution is a necessary prop-
erty for many quantum characterization methods, which led to the development of multiplexing
[20–25]. The idea is quite simple: an incoming light field is split on multiple beam splitters into
m modes. If this number is large compared to the maximal photon number nmax in the state, the
probability that two photons are in the same mode is small. These modes can now be measured
with binary detectors, and the number of ‘clicks’ is a good approximation of the photon number
as the probability of for higher photon number contributions is small. To be more specific, the
action of multiplexing is often expressed as a convolution matrix Ckn that maps the probability
of having n photons to k clicks. This matrix is given by (e.g. [107])

Ckn =

(
m

k

)
k!

mn
S(k, n) , (3.7)

where S is the Sterling number of second kind. Multiplexing can be implemented in different
physical systems. Fig. 3.2 illustrates how multiplexing can be achieved in the spatial or in the
temporal domain (cf. [108, 109]). If we compare the effect on an increasing number of output
modes, we can see a big difference between these approaches: While the number of detec-
tors increases with the output mode size for spatial multiplexing, it stays constant for temporal
multiplexing. However, time-multiplexing detection (TMD) requires pulsed input to identify
individual output modes. In this thesis, this assumption is fulfilled, as we will always consider
pulsed states.

Previously up to eight-bin TMDs have been demonstrated (e.g. [109]). In this section, we
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want to investigate the detection of large quantum states and demonstrate new TMD units. A
naive approach would suggest that larger TMDs are always beneficial for detecting an unknown
quantum state. If more bins are available, the measured click-distribution approximates the ac-
tual photon-number distribution more precisely. However, this simple consideration neglects the
effects of optical losses, which also increase for an increasing number of modes. Therefore we
can find a trade-off between available bin size and loss value. This effect has been studied in
detail in [110] and an optimal bin number of< 256 was derived. However, it is important to note
that the actual optimum depends on the specific measurement. Here, single-shot experiments (a
measurement for a single input state is evaluated) and ensemble measurements (a measurement
for many identical input states) have to be distinguished. The optimal bin number < 256 was
derived for a single-shot configuration and a specific figure of merit (overlap of a Fock state be-
fore and after TMD). In general, the optimal bin number can be much higher than this value. For
example, we can consider a recently demonstrated approach to characterize a PDC process with
correlation measurements (moment generating functions) [111], which is loss robust. In this
scenario, larger TMDs can uncover non-classicality due to higher correlation functions, whereas
smaller TMDs would not be able to achieve this goal. Therefore we will discuss properties of
TMDs in this section and analyze how large TMDs can be designed. Additionally, we demon-
strate a new, highly efficient 128-bin TMD with two input modes that is able to detect large
quantum states.

3.2.1 Designing TMDs

The most important design rule is that the TMD must be tailored to the final single-photon
detector. All design parameters will depend on the specifications of these detectors. In this sub-
section, we will focus on SNSPDs; nevertheless, other single-photon detectors such as SPADs
can be used as well. One of the most important specifications is the dead time of the detector
(time after a detection event before the detector is able to detect a photon again with full effi-
ciency). The detector dead time defines the minimal spacing between the individual time bins.
To date, typical SNSPDs have dead times in the tens of ns range, which makes free space TMDs
unreasonable. For this reason, we will only discuss fiber-based TMDs here. We will investigate
the critical single-photon detector properties and implications for the TMD.

Polarization
SNSPD property: Typical SNSPDs are polarization-dependent due to their specific geometry.
TMD: The TMD should be built from polarization maintaining fiber for maximal detection ef-
ficiency. Otherwise, the polarization can be different for the individual time bins, which results
in a bin-dependent efficiency. Note: For polarization maintaining fiber, the input light must be
inserted in one of the two main axes because the relative phase between these polarization axes
is not fixed for polarization maintaining fiber.

Dead time
SNSPD property: After a detection event, the detector needs some time before it can detect the
next photon. This effect is known as detector dead time.
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2x2 splitter design 4x4 splitter design

Beam splitter loss < 0.1 dB < 0.25 dB
Number of beam splitters 7 4
Fiber 7 4
Required fiber length 20 m, 40 m, 80 m, 160 m,

320 m, 640 m, 1280 m
20 m, 40 m, 60 m, 80 m,
160 m, 240 m, 320 m,
640 m, 960 m

Expected loss 1.34 dB 1.48 dB
Required detectors 2 4

Table 3.1 – Comparison of a 2x2 and 4x4 TMD design.

TMD: The detector dead time defines the minimal spacing between two time bins.

Timing jitter and dark counts
SNSPD property: The single-photon detector, in combination with the readout electronics, will
have a specific timing jitter. We will assume that the time duration of the optical state is much
shorter than the timing jitter. In addition, the single-photon detector will have a dark count rate
often specified in counts/s.
TMD: The detection jitter will define the width of the individual detection time bins. In combi-
nation with the detector dark count rate, this defines the noise floor of the TMD measurement
and, therefore, the lower limit of the TMD dynamic range.

Dispersion
TMD: Dispersion is a fiber property that can in principle require additional bin time-bin sepa-
ration (see [110]). For typical specifications (> 100 fs pulse duration, < 100 ns dead time and
< 256 time-bins) this effect can be neglected with respect to the detector dead time. However,
as shown in Sec. 3.2.3 this effect can significantly broaden the detection windows and therefore
influence the detection noise floor.

Finally, the fiber TMD can be arranged in different geometries. The typical design is based
on 2x2 fiber beam splitters (see Fig. 3.2 (b)) with straight connections or fiber delay lines in
between. The fiber delays have to be chosen in such a way that each propagation path has a
unique delay (which are separated at least by the detector dead time τ ). The jth delay should
have a length τ2j . For very large TMDs (> 256 bins), it can be beneficial to use a different
geometry, for example, based on 4x4 beam splitters to avoid effects from fiber dispersion and
fiber loss. For this design, the required fiber length is shorter, but the loss per beam splitter is
higher due to fabrication process.
For our specified goal of a 128-bin TMD, a 2x2 beam splitter design is still optimal as shown in
Table 3.1.
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3.2.2 Assembly of a 128-bin TMD

As discussed in the last section, we have designed a 128-bin TMD that consists of seven 2x2
beam splitters and fiber delay lines (20 m, 40 m, 80 m, 160 m, 320 m, 640 m and 1280 m). To
minimize coupling losses between the individual components, a Fujikura polarization aligning
fusion splicer was used. This device is able to give an approximation for the splice loss through
a CCD image of the splice connection. All splices had an estimated loss below 0.01 dB. Special
care was taken to design a compact TMD that can be moved between labs. The final TMD is
shown in the Appendix in Fig. F.1.

3.2.3 Characterization

The most important parameter for a TMD is the device efficiency η. If sub-Poissonian light is
investigated, losses will broaden the photon-number distribution (towards a Poisson distribution)
and therefore diminish the non-classicality. Although this effect can be partially overcome using
sophisticated analysis tools [112], practical restrictions such as noise counts and time-dependent
fluctuations during the measurement will limit these approaches. Therefore it is always desir-
able to aim for highly efficient TMDs. In addition, we will also characterize the bin dependence
of our TMD. A non-uniform bin click probability pj can fake sub-Poissonian distributions and
therefore should be included in the analysis as a systematic error. As an example to illustrate this
problem, consider the extreme case where only one of the 128-bins is functioning. For bright
(classical or not) light states, the recorded click probability ck (probability of k simultaneous
clicks) will always show one click, which is a highly non-classical distribution. Therefore con-
sidering the click probability is an important factor.

Efficiency characterization:
We characterized the device efficiency with a continuous-wave laser at the desired wavelength of
1550 nm. For the first input, an average transmission losses of 0.65 dB (86.1% transmission effi-
ciency) was found whereas the second input had an average loss of 0.90 dB (81.3% transmission
efficiency). The difference between the two input ports can be explained by an additional 1.3 km
of polarization maintaining fiber after the second input port. This fiber is needed to separate the
exiting pulses from the first and second input port in time. The overall efficiency is better than
expected as the (maximal) loss specifications for the individual TMD components (fiber beam
splitters and fiber delay lines) was calculated to be 1.34 dB (74% efficiency).

Time-bin characterization:
The bin click probability pj was characterized with a pulsed input laser with a repetition rate of
50 kHz and a pulse length of 200 fs. The timing histogram of the exiting pulse train is shown
in Fig. 3.3 (a). As expected, it can be seen that dispersion broadens the pulses, which naively
results in the appearance of a strongly decreasing bin click probability. In the next step, the
individual bins are integrated over the time windows to calculate the bin click probability. The
bin dependent click number for the first input mode is shown in Fig. 3.3 (b). The click number
is slightly decreasing with increasing bin number due to the additional fiber delay loss. Still a
high uniformity with a standard deviation of 7% is found. This uniformity is an important factor
for quantum state characterizations, as we discuss in Sec. 3.5.3.
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Figure 3.3 – Timing histogram of the first output (a). A jump from bin 64 to 65 can be seen, that
marks the end of input one and the beginning of input two (slightly higher input power
on input two compared to input one). The pulse amplitude decreases due to dispersive
broadening of the pulses, as shown in detail in the insets that magnify the first and the
last time bin. (b) Integrated click number for the first input mode of the TMD (bins
1 to 64 from output one and two). The red line shows the mean number of counts
and the standard deviation. An overall high uniformity in the bins can be seen with a
slightly decreasing bin height due to fiber losses.

With these characterizations, we have shown that our device is able to investigate quantum
states. The presented unit is the largest TMD demonstrated so far and is a building block for
measuring large quantum states, as shown in [89]. Our work proves that time-multiplexing is
a low-cost alternative to investigate large quantum states that were previously investigated with
demanding (in terms of costs and handling) TES detectors.We will now discuss new readout
strategies that are required to evaluate large TMD units before we investigate quantum correla-
tions with the 2x128-bin TMD.

3.3 Evaluating time-multiplexed detection data

Large detection schemes, as shown in the previous section, directly challenge existing readout
methods. For example, our new TMD unit can generate 2256 ≈ 1077 individual click patterns,
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which is approaching the estimated number of atoms in the universe. This shows that it is crucial
to extract, process and store the relevant information. In the context of our TMD unit, we have to
address the two questions, which contain the required information: ‘How many times has a bin
clicked?’ (bin probability) and ‘Which bins have clicked simultaneously?’ (coincidences). A
variety of electrical devices can be used to analyze the voltage response from the single-photon
detector. Here we want to discuss the methods that were used and newly developed to analyze
TMD data.

3.3.1 Oscilloscope

The most important advantage of an oscilloscope is that it is generally available in laboratories.
However, in order to use the full advantage of e.g. SNSPDs with respect to their timing jitter (few
ps) it is important to use oscilloscopes with a very high input bandwidth (> 100 GHz) which are
not that common due to their high cost. Another disadvantage is that standard oscilloscopes can
only record data for a specific time interval (measurement trace). After the measurement, the
data needs to be processed and stored, which prevents continuous data recording (without any
timing gaps). Last but not least, an oscilloscope has vertical resolution (can measure different
voltage values). This is an advantage for many debugging scenarios but causes a significant data
overhead if only the arriving time of a photon is of interest. For these reasons, oscilloscopes are
great for debugging, but time taggers are, generally speaking, the better choice to record data
from binary detectors.

3.3.2 Time tagger

The concept of a time tagger is that a timestamp is stored each time a specific voltage threshold
on an incoming electric signal is surpassed. Inside every time tagger, a key component known
as a Time-to-Digital Converter (TDC) is used to accomplish this task. The working principle is
quite simple; a high-speed internal counter is increased every time step (state of the art: 1 ps).
Each time a signal reaches the TDC, the counter value is stored as a raw timestamp (one time
tag). As many operations must be carried out simultaneously, Field Programmable Gate Ar-
rays (FPGAs) are used for this task and the additional processing. The timestamps contain all
required information to answer our two initial problems of bin probabilities and coincidences.
Two basic strategies, which were developed in the context of this thesis, will be compared. In
the beginning, a way to analyze TDC data in post-processing using C++ is shown. Then we
focus on a more recent approach that enables a broad range of TDC data evaluation on the fly.

For work presented in this thesis, two commercial time taggers were used (TTM 8000 from
Austrian Institute of Technology GmbH and TimeTagger Ultra from Swabian Instruments). The
manufacturers offer several basic functions e.g. shifting channels, applying dead times, etc. The
following sections describe how these functions can be extended to analyze TMD data.

3.3.3 Analyzing raw timestamps

A common way to analyze TMD data is to save all timestamps to a hard drive without any further
processing. At a later point, the raw data is loaded and processed further. This method offers a
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SECTION 3.3 Evaluating time-multiplexed detection data

lot of flexibility as analyzing parameters such as an artificial dead time can be changed after the
measurement. However, it is not possible to analyze the data instantaneously, which might be
desired for aligning the experiment. Besides, a substantial amount of data can be produced with
these measurements (GByte/min) requiring careful data analysis code optimization. Although
all data acquisition code used in this thesis was written in the Python programming language,
this code in the standard form is not fast enough to analyze large data sets in a reasonable time.
Therefore C++ was chosen to analyze large raw data files, which are then passed to Python code
for further processing.

While handling these large file sizes, it is important to read in large data blocks. If data is
loaded time tag after time tag from a hard drive, this process is often inefficient as executing
this command produces an additional timing overhead. On the other hand, data blocks cannot
be too large as they need to be stored in the RAM for further processing. Analyzing data blocks
comes with some additional difficulties. Often timestamps will depend on each other e.g. a time
tag should be discarded if it arrives within the detector dead time. Therefore the information
about these cases has to be passed from one block to the next. Both time tagger companies
provide basic functions to solve these problems. In this thesis, functions for introducing global
delays per channel, applying artificial dead times and evaluating multi-coincidences were used.
In addition to these basic functions, the analysis of time tags from a multiplexed detector was
implemented in C++ (see Appendix C).

3.3.4 Analyzing TDC data on the fly

Instantaneous timestamp analysis offers many advantages. For example, specific measurements
can be directly graphically visualized to optimize the parameters in an experiment and not all raw
timestamps need to be stored. Two main approaches to handle the data are possible. Either the
data is directly processed on the FPGA or the raw timestamps are sent to a connected computer
where the analysis is carried out. Direct FPGA processing offers the advantage of calculating
many operations simultaneously due to the intrinsic parallel architecture of an FPGA. However,
adapting the FPGA code to new tasks is rather complicated and the manufactures of FPGAs
typically do not offer user-specific modifications. In contrast, computer-based evaluation is
much more flexible but comes with the disadvantage of requiring a considerable amount of
computational power. If complex functions have to be computed based on timestamps with a
high repetition rate, the computational power might not be sufficient. This means that whenever
timestamps are analyzed on a computer, special care should be taken that no events are lost.
Swabian Instruments offers many basic functions for timestamp analysis, which can be easily
controlled and adjusted using a high-level programming language like Python, which would
be otherwise too slow to handle calculations itself. An essential concept for this kind of data
analysis is the virtual channel. Here a time tag stream from a physical channel is copied and
shifted in time with a constant offset. This process can be repeated as long as the computer
processor is still able to handle all time tags from all generated channels. Further measurement
classes handle virtual channels and physical channels in the same way.

In the following, a new method is explained showing how TMD data can be analyzed in a very
efficient way. This method is based on the basic functions provided by Swabian Instruments. As
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Figure 3.4 – Illustration for the get_gate function. A trigger signal from the time tagger is used
to generate multiple delayed copies using the inbuilt function DelayedChannel.
The trigger is delayed such that the new positions encircle the time positions of the
TMD bins (marked in blue). Then the gate channel is generated using the inbuilt
Combiner-function.

an example, the analysis of a 2-bin TMD is shown.

Step 1 - Generating a gate-signal:
As a first step, a virtual channel called gate has to be generated. This channel will mark the
positions of the time bins for further processing steps. Fig. 3.4 illustrates the two stages that are
needed to generate the gate channel. The initial trigger signal (physical channel that connects
the optical experiment with the time tagger) is used to generate multiple delayed copies. This
can be realized with the Swabian Instruments DelayedChannel function. For an n-bin TMD,
2n delayed copies have to be generated in order to mark the beginning and the end of all time
bins. Now the Swabian Instruments Combiner function is used to merge all created channels.
The resulting channel is called the gate channel and separates the timeline into 2n + 1 areas
(labeled with Roman numerals in Fig. 3.4). An example function to generate the gate signal
can be found in App. C.1. It is important that the complexity of this problem only scales linearly
in the number of bin n.

Step 2 - Measuring clicks:
As a second step, the Swabian Instruments function CountBetweenMarkers is called to
measure how many clicks have occurred in different areas. The function is set such that it will
generate a list with (2n+1)·M entries, whereM defines the number of measurements (=number
of recorded trigger events). Additionally, a detector channel and the gate channel are passed to
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Figure 3.5 – This figure illustrates how the Swabian Instruments CountBetweenMarkers
function is used to measure TMD data. A Detector channel (green) and the gate
channel (a) are used to generate a data list (b). This list is reshaped to an array for
further processing (c). Time bins from the TMD are marked in blue. See text for
further details.

the function. The working principle of CountBetweenMarkers is as follows: With the first
event from the gate channel, an internal counter is started. Each time an event from a detector
channel is detected, the counter is increased. If a new event from the gate channel is recorded,
the function stores the value of the counter in the output data list, the internal counter is reset,
and the function moves to the next entry of the data output list (for further details see [113]).
This behavior is illustrated in Fig. 3.5 (a) and (b). The resulting data list contains the information
of how many events have occurred in each individual area.

Step 3 - Reshaping and analyzing the data:
In the last step, the data list from CountBetweenMarkers is reshaped into a (2n + 1,M)-
dimensional matrix (see Fig. 3.5 (c)). Each row in this matrix represents now a new measure-
ment, which starts with a trigger signal from the experiment and consists of 2n + 1 time areas.
Each column specifies one of the time areas. We are interested in all even columns as they
contain the information of the TMD time bins (blue areas in Fig. 3.5). Now two different sum-
mations can be carried out. If we sum over all rows, we are left with 2n + 1 entries containing
the information of which areas have clicked how many times (area-click frequency). For stan-
dard TMDs, this information does not give any insights into the quantum state as all bins have
the same click probability. Only for asymmetric bin-click probabilities, this property should be
considered further (cf. Sec. 3.5). In contrast, if we sum over all areas (columns), the resulting
array of length M contains the information of how many bins have clicked each measurement
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Figure 3.6 – Example evaluation for the clicks shown in Fig. 3.5. The summation over all rows
of the output matrix (Fig. 3.5 (c)) gives the bin-click frequency (a). From the sum-
mation over all columns the coincidence probability ck of having k coincidences per
measurement can be calculated (b). See text for further details.

run. From this list, we can calculate the coincidence probability ck of having k simultaneous
clicks per measurement. This property is crucial for many non-classicality measures (e.g. [114])
as it is directly linked to the photon-number probability of the input state (see Sec. 3.2).

As an example evaluation, we will consider the case shown in Fig. 3.5 (a). After the first
trigger, an event occurred in the first TMD time-bin. After the second trigger (measurement
two), both TMD bins had recorded an event, and for the third trigger, only the last bin was
occupied. This means that both TMD time-bins saw two events (shown in Fig.3.6 (a)). For two
measurements, only one of the two bins “clicked”, while for one measurement both of them
were occupied. This results in a coincidence probability ck, as shown in Fig. 3.6 (b).

Simulating pj and ck requires considerably different approaches as well. For calculating
the bin-click probability pj each bin can be treated individually. However, if we calculate the
coincidence probability ck, conditional probabilities need to be considered. As an example, we
can assume a single photon at the input. If the first bin has detected an event, this will change
the probability of the second bin (which now is zero as only one photon can be detected). For
arbitrary bin-click probabilities, this is a computationally demanding task.

From the experimental side, special care should be taken to ensure that the detection dead
time is larger than the TMD time window (blue regions). Otherwise, measured counts will be
affected by additional noise counts. At the same time, the detection dead time should be shorter
than the time window separation. If this is not the case, the bin efficiency will depend on previous
measurement results, which can strongly influence non-classicality measures.

The same analysis process can be generalized for multimode inputs (e.g. both modes from
a two-mode squeezed vacuum state into two separate TMDs). Here for each trigger event, the
number of clicks per mode is recorded. All relevant information is then stored in a ck,j matrix
where the number of simultaneous clicks in the first mode k and the second mode j are stored.

The final ck,j matrix can be calculated in both ways, either by analyzing the raw timestamps
after the measurement or using the presented approach that enables instantaneous analysis. The
analysis of large TMDs (>60 bins) is preferably done after the measurement as the requirements
for the computer CPU and RAM become demanding.
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Figure 3.7 – Benchmark protocol in the spatial (a) and temporal (b) domain. Three steps can be
seen: The generation of an N -photon state by heralding a PDC state. A propagation
step, where the photons are spread over M modes and, finally, the detection with
photon-number-resolving detectors (ideal) or D detection bins. For the temporal case
we can combine these steps. We will use the first section (before vertical line) of our
TMD for distributing our photon-number state and the second part for the detection.
Please note: the shown temporal case is a simplification with MD = 16. For our
experimental realization we will use a much larger TMD with MD = 128.

3.4 Quantum correlations in high-dimensional systems

In this section, we want to combine our newly developed 2x128-bin TMD with our readout
schemes, discussed in the previous section, to investigate quantum correlations in large photonic
systems. Currently, various physical systems are under investigation to provide a scalable plat-
form for quantum algorithms [115–119]. In general, these platforms require very complex forms
of quantum entanglement [120–127]. However, it has recently been shown that non-classicality
can be regarded as an equally valuable resource [128].

Photonic systems have gained an increasing interest in this context over recent years because
highly complex quantum systems can be designed by spreading many photons over many modes
[129–135]. One of the most well-known examples in this context is boson sampling, where
several indicators for quantum enhancements have been developed [136–141].

Here, we will present a new benchmark protocol to investigate large-scale photonic systems.
In our theory, we analyze the three steps of quantum state generation, distribution, and detection
jointly, in contrast to previous works.
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3.4.1 Measurement scheme and theoretical considerations

To investigate large photonic systems with our TMD unit, we will theoretically split the TMD
into two sections. The first section will be used to spread a PDC state over M modes, while the
second part is used for the detection with D time bins. Figure 3.7 shows the schematic setup
with its spatial analog.

If we herald an N -photon state with our setup and distribute it over M modes, we can write
the resulting state as

|ΨN,M 〉 =
∑

n1,...,nM∈N
n1+...+nM=N

(
1

MN

N !

n1!...nM !

)1/2

|n1, ..., nM 〉 , (3.8)

being highly entangled. By measuring this state with photon-number resolution, we can calcu-
late the correlation functions

G(m1,...,mM ) = 〈: n̂m1
1 ...n̂mMM :〉

=
1

Mm1+...+mM

N !

(N − [m1 + ...+mM ])!
.

(3.9)

As a next step we want to quantify non-classicality in a single mode or a subset of K <
M output modes. Here, we have to consider our binary detectors at the TMD output as an
experimental imperfection. To account for this, click counting techniques were derived [142].
We will use the matrix of moments that can be calculated from the measurement outcome to
investigate K-mode non-classicality [143]

ΓK =
[
G(m1+m′1,...,mK+m′K ,0,...,0)

]
(m1,...,mK),(m′1,...,m

′
K)

, (3.10)

with the multi-index m and m′ defining the rows and columns, respectively.
Finally, we want to discuss how we can define non-classicality with this approach. If we have

classically correlated light inK modes, we have a corresponding positive-semidefinite matrix of
moments ΓK ≥ 0. This means that we can uncover non-classicality if the minimal eigenvalue is
negative. In order to calculate these eigenvalues, we can use the symmetry of the output (exiting
time-bins can be swapped)1. Otherwise, calculating eigenvalues without this approach is not
feasible (matrix of moments has the size 1019 × 1019).

3.4.2 Experimental setup

The experimental setup is shown in Fig. 3.8. A Ti:Sapph laser is directly coupled to a period-
ically poled KTP waveguide after pulse picking with an electro-optic modulator (50 kHz). No
spectral filtering is employed for the pump, as the measurement is independent of the spectral
mode structure. Inside the waveguide a (spectrally multimode) two-mode squeezed state is gen-

1We can take the bin-probability variation, shown in Fig. 3.3, to calculate a systematic error connected with this
approach.
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Figure 3.8 – A Ti:Sapph laser is pulse picked with an electro-optic modulator (EOM) and used for
pumping a PDC type-II process in a periodically poled KTP waveguide (ppKTP WG).
Signal and idler beams are split on a polarizing beam splitter (PBS) and polarization
optimized with half-wave plates (HWP) and quarter-wave plates (QWP) before cou-
pling to our TMD. The exiting modes are measured with two SNSPDs.

erated. Signal and idler are spatially separated with a polarizing beam splitter and coupled to
our previously described 2x128-bin TMD unit. Both TMD output modes are measured with
SNSPDs with a dead time of 60 ns (TMD time-bin separation is 100 ns). The SNSPD response
is measured with a time tagger and stored for the additional analysis.

One important result from our TMD characterization is that time-bins can experience huge
dispersive broadening, depending on the fiber delay. We therefore fit Gaussian functions to
the exiting pulse train to extract the mean and variance of each time-bin. As a result, we can
dynamically adjust our evaluation time-windows to the optical beam width. For the analysis, we
show 2σ and 3σ time windows.

3.4.3 Results

With our setup, we can record a click-correlation matrix between signal and idler mode, as shown
in Fig. 3.9. For our additional analysis, we use the idler mode for heralding up toN = 10 counts
(before statistical uncertainties become dominating). Figure 3.10 shows all ten heralded states,
which are spread over M = 64 modes. Therefore, we are able to analyze correlations in K = 1
to K = 64 modes. As expected, it can be seen that the minimal eigenvalue is decreasing for
increasing mode size M (better indication for non-classicality). For example N = 1 and K = 1
does not show any signs of non-classicality due to high noise values when all other 63 modes are
traced out. Likewise, for N = 10 statistical uncertainties prevent a clear identification of non-
classicality. In a range from N = 3 to N = 7, we can identify non-classicality with the highest
significance (simultaneously accounting for the absolute value and measurement uncertainties).

In summary, we have shown a new benchmarking tool to analyze state generation, propa-
gation, and detection jointly. With our setup, we could demonstrate nonclassical correlation
signatures with binary detectors between the output modes. Up to ten photons spread over up to
64 correlated modes were analyzed with correlation functions, having a maximal order of 128.
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Figure 3.9 – Coincidence matrix between signal and idler mode for a pump power of 500µW. For
the analysis 3σ time windows were chosen.
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Figure 3.10 – K-mode non-classicality derived via the minimal eigenvalues of the matrix of mo-
ments ΓK with N ∈ {1, ..., 10} heralded photons distributed over M = 64 modes.
Shaded area shows one-standard-deviation error margin and includes random and
systematic errors. For the analysis, a dynamical 2σ time window was chosen for the
exiting pulses. Nearly all 640 analyzed cases can verify non-classicality.
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3.5 High dynamic range detection

In this section, we will discuss how the dynamic range of single-photon detectors can be ex-
tended even further. The content of this section was published in [144, 145]. To be more precise
about the dynamic range, we will differentiate between four different response areas. Initially
at very low light levels, many detectors have a noise floor where the detector response is inde-
pendent of the incoming light field. Secondly, we can see a linear region where the response
function is proportional to the incoming light intensity. This region is crucial to extract informa-
tion about the incoming light field from the detector response. Above this region, we define the
saturation region as an area where the response function from the detector is again independent
of the incoming light intensity. It is finally limited by the breakdown intensity, which is the point
where the detector response is permanently changed (i.e. damaged or latched).

We have already seen in Sec. 3.2 that ‘click’-detectors have an extremely low (single-shot)
dynamic range as they can only differentiate between ‘no-photons’ and ‘one or more - photons’.
For many situations (e.g. quantum state tomography), this extreme case is not valid, and ensem-
ble measurements, where the same copy of an incoming pulse is investigated multiple times,
must be considered. In this case, the lower limit of the linear dynamic range can be substantially
decreased as it is bounded by the dark-count rate per measurement time window. Still, the upper
end of the linear range is given by one photon per measurement window. The idea of multiplex-
ing was developed to extend the dynamic range towards the few-photon regime. This idea can be
realized in various physical implementations, which have been analyzed in detail over the past
few decades [20–25, 109, 146–154]. However, saturation effects in multiplexed detectors were
avoided and considered as a limiting factor [110]. Although saturation effects can be compen-
sated to some extend by careful calibration routines, the fundamental problem is still present:
large intensity fluctuations cause small response changes. The effect of detector saturation has
also been addressed for intrinsic photon-number-resolving detectors [155]. However, the fun-
damental problem stays: If additional noise sources (for example from coupling drifts or dark
counts) are present, a precise inversion of the photon-number convolution from the multiplexing
element is often not possible.

In [145] we addressed this problem and explored the saturation region of multiplexed detec-
tors. The key property of the experimental setup is an asymmetric multiplexing scheme where
the bin click probability is changing (in our case exponentially decreasing due to the cycling
loop configuration). This has the advantage that the initial bins can be saturated (which means
limited informational content) while later bins are not. The next sections will illustrate how this
method can be implemented to significantly increase the upper limit of the linear dynamic range
far beyond the few photon regime and therefore increase the dynamic range of single-photon
detectors. As an application, a direct calibration routine for single-photon detectors is shown.

3.5.1 Measurement scheme

The measurement scheme for the high dynamic range detector is shown in Fig. 3.11. The setup
itself is an old concept that was introduced in 2003 [22] and further investigated in [24, 146,
156]. An incoming light pulse is split on a beam splitter that has a (variable) transmission value.
In the following, we will differentiate two schemes. Firstly, a beam splitter reflectivity R that is
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R(t)

Pulsed light source

On-off
detector

Adaptable coupling

Loop delay
       

Figure 3.11 – Pulsed light is sent to a beam splitter with a variable reflectivity R(t). Light exiting
the loop will follow an exponential decay. See text for further details. Reprinted
from [145]. ©2019 Optical Society of America.

constant for all times (passive case) and secondly a beam splitter that transmits everything for
the first incoming pulse and has a constant reflectivityR for all later times (active case). For both
cases, the one output port of the beam splitter is connected to the second input port of the same
device. Therefore some parts of the light field will stay inside the loop while some proportion is
constantly coupled out and detected with a ‘click’ detector. Due to the constant coupling ratio,
the pulses leaving the loop exponentially decrease in intensity. The separation of these pulses τ
is given by the loop traveling time and should be set such that the pulse separation τ is longer
than the dead time of the detector.

3.5.2 Theoretical considerations I: Calculating click probabilities

For the following calculations, it is important to know the click probabilities for the j-th time-
bin pclick

j leaving the loop. This probability will depend on the dark-count rate per bin ν and the
probability of having n photons present in the j-th bin pj(n). Using the unit measure axiom for
the probabilities we can write

pclick
j = 1− pj(0)pno dark counts

= 1− pj(0)(1− ν)

= 1− pj(0) + pj(0)ν .

(3.11)

In order to calculate the vacuum probability pj(0), we have to take into account the actual
measurement scheme (active or passive case). Especially the first bin (j = 1) shows a difference
as either the whole light is coupled into the loop (active) or some proportion is directly coupled
to the detector (passive). The probabilities can be written as

pj=1(0) =

{
[1− η (1−R)]n active
(1−R)n passive .

(3.12)
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For all following bins, the click probability is given by

pj≥2(0) =


[
1− (Rη)j−1 η (1−R)

]n
active[

1− (Rη)j−1R−1 (1−R)2
]n

passive .
(3.13)

With these equations we can now derive analytic expressions for Fock states pFock(n) = δn,n̄,
coherent states pcoh(n) = exp [−n̄] n̄

n

n! and thermal states ptherm(n) = n̄n

(1+n̄)n+1 with the same
mean photon number n̄. For the active case, this results in

pclick, Fock
j = 1− (1− ν)

[
1− (1−R)R−1 (Rη)j

]n̄
, (3.14)

pclick, coh
j = 1− (1− ν) exp

[
− (1−R)R−1 (ηR)j n̄

]
, (3.15)

pclick, therm
j = 1− (1− ν)

R

R+ (1−R) (Rη)j n̄
. (3.16)

For the passive case, the probabilities are given by

pclick, Fock
j =

1− (1− ν) (1−R)n̄ j = 1

1− (1− ν)
[
1− (1−R)2R−1 (Rη)j−1

]n̄
j ≥ 2 ,

(3.17)

pclick, coh
j =

{
1− (1− ν) exp [−Rn̄] j = 1

1− (1− ν) exp
[
− (1−R)2R−1 (ηR)j−1 n̄

]
j ≥ 2 ,

(3.18)

pclick, therm
j =

{
1− (1− ν) 1

1+Rn̄ j = 1

1− (1− ν) R2η

R2η+(1−R)2(Rη)j n̄
j ≥ 2 .

(3.19)

Figure 3.12 shows the bin click probability for these three states and two mean photon numbers
of n̄ = 1 and n̄ = 800 in the active case. It can be seen that the shape of the bin probabilities is
state-dependent. This is a unique feature for asymmetric loop architectures causing non-uniform
bin click probabilities in combination with saturation. This feature can be understood intuitively
by considering the non-linearity of the bin height with respect to the number of incoming photons
for this bin. For example, we can compare coherent states and thermal states with the same mean
photon number. The probability of having a photon number smaller than the mean is now higher
for a thermal state compared to a coherent state. If we are close to the saturation region, having
more photons has a weaker effect on the bin probability than having fewer photons. Therefore
the thermal state has lower values in the transition from the saturation region to the exponential
decay region compared to the coherent state (see Fig. 3.12 (b)). We will revisit the effects of the
photon-number distributions more quantitatively in the next section.

For now, we will investigate one of these states, namely the coherent state in detail. The click
probability versus bin number is shown in a linear and logarithmic scale in Fig. 3.13, where
we can identify three different areas I-III. Area I shows the saturation regime of the detector
where the mean photon number per bin is far above one and therefore the click probability is
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Figure 3.12 – Calculated click probabilities pj for a Fock state (blue), coherent state(green) and
thermal state(red) for a mean photon number of n̄ = 1 (a) and n̄ = 800 (b). Both
figures show active switching with a beam splitter reflectivity R = 0.5 and a loop
transmission η = 0.9. See text for further details.

nearly one. After the saturation region, we can see an exponential decay with a linear slope in
the logarithmic plot (area II). This area is of practical interest as these bins are susceptible to
small intensity variations. It is important to note that this area always exists independent of the
incoming light field. For higher or lower light intensities, it is simply shifted to lower or higher
bin numbers. In other words, this detection method is self-adjusting the linear range of the
detector. The only limiting factors are the damage threshold, where the detector is permanently
changed, and the dark count level. For high intensities, the first bin will receive a significant
amount of the incoming light field, which can cause a permanent change of the detector. For
very low light intensities the detector dark-count rate becomes important. This level is finally
shown in area III.

3.5.3 Theoretical considerations II: Mandel Q-parameter revisited

In this section, we will discuss how features of non-classical light can be uncovered using the
loop. In Fig. 3.12 we have already seen that the bin click probabilities pj are state-dependent.
Here we want to be more quantitative about this property and use the idea of the Mandel Q-
parameter as discussed in Sec. 3.1.4 to quantify non-classicality. Although the Mandel Q-
parameter is a straightforward concept, it is usually difficult to compute as the actual photon-
number distribution needs to be known. This problem has been addressed in [114], where the
concept of the Mandel Q-parameter was generalized for click detectors. In this case, the bi-
nomial distribution of click detectors with the corresponding QB-parameter is investigated. The
QB-parameter is able to identify non-classicality for equally split multiplexed detection schemes.
Unequal splitting combines a majority of photons in a few bins. Therefore it is intuitively clear
that unequal splitting can fake sub-Poissonian light if this effect is not appropriately accounted
for. Theoretically, this property was analyzed in [157], where an additional factor is added to
compensate for this effect. The final parameter which is suitable to quantify the non-classicality

46



SECTION 3.5 High dynamic range detection

5 10 15 20 25 30 35 40 45
Bin number

0.0

0.2

0.4

0.6

0.8

1.0

C
lic

k 
pr

ob
ab

ili
ty

(a)

5 10 15 20 25 30 35 40 45
Bin number

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

C
lic

k 
pr

ob
ab

ili
ty

(b)

I II III

Figure 3.13 – Expected bin click probability (passive case) for a coherent state with a mean photon
number of 800 on a linear (a) and logarithmic scale (b). In the logarithmic case
(b) three different areas can be identified (separated with red lines). (I) Saturation
regime with unit click probability, (II) exponential decay region with a linear slope
in the logarithmic plot and (III) noise level from detector dark counts.

for the given loop detector is called the QPB-parameter which is defined as

QPB = N
〈(∆c)2〉

〈c〉 (N − 〈c〉)−N2σ2
− 1 . (3.20)

Here the mean and variance of the probability ck that k bins detect a photon at the same time are
given by

〈c〉 =

N∑
k=0

kck; 〈(∆c)2〉 =

N∑
k=0

(k − 〈c〉)2 ck . (3.21)

Likewise the mean probabilitym and variance σ of the bin click probability pj can be calculated
from a total number of N bins

m =
1

N

N∑
j=1

pj ; σ
2 =

1

N

N∑
j=1

(pj −m)2 . (3.22)

All these parameters commonly require the knowledge of the number of bins ck that clicked
simultaneously, instead of only evaluating the average bin probability pj . We have already seen
that bin click probabilities pj can be easily calculated, whereas the calculation of ck is more
demanding. Likewise, it is also not possible (without the knowledge of the quantum state) to
convert the bin probabilities pj into the number of bins that simultaneously clicked ck. If the
quantum state is known, calculating ck from pj is, in general, still a complicated problem as
all permutations leading to k simultaneous events need to be considered. A trivial example,
however, is the coherent light field as it does not show any photon-number correlations after
a beam splitter. This means that the click probability for each bin is independent of all other
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Figure 3.14 – Experimental setup showing a loop with a dynamically variable beam splitter. Either
thermal light and heralded single photons from a KTP waveguide or coherent states
from a diode laser can be coupled to the loop. The amount of light exiting the loop
can be determined with a half-wave plate (HWP). Reprinted from [145]. ©2019
Optical Society of America.

bins. It can be shown that the QPB-parameter is zero for a coherent state, and a negative value
indicates sub-Poissonian light and therefore non-classicality.

3.5.4 Experimental setup

One advantage of our detection scheme is that the experimental setup can be realized with only
a beam splitter and a fiber delay line. Here we used a slightly more complicated setup to dy-
namically change the beam splitter reflectivity while the light pulse is traveling in the loop,
as shown in Fig. 3.14. The switching was realized with a free-space electro-optic modulator
(EOM), which enables high transmission values above 98 % and fast switching times in the µs
regime. For this reason, a round trip time of 2.4µs was chosen corresponding to a loop length of
480 m. We have investigated coherent states from a PicoQuant diode-laser, thermal states, and
heralded single photons from parametric down-conversion. Further details about this setup are
shown in [158]. The exiting light field was measured with an SNSPD, which is connected to
a time tagger. Start-(multi)stop histograms were recorded with the incoming laser pulse as the
trigger.

3.5.5 Results

The recorded histograms were analyzed each measurement run (one incoming pulse to the loop
defines one measurement) to evaluate the bin click probability pj and the simultaneous click
probability ck. This enables us to calculate the QB-parameter and the QPB-parameter, which
are shown in Fig. 3.15. The measurement illustrates that an asymmetry in the splitting ratio
must be considered in the analysis; otherwise, as given by the QB-parameter of the thermal
light, non-classicality signatures can be counterfeit. The error bars were calculated based on a
Monte-Carlo-simulation with 10000 runs, where the mean and variance of the ck parameter are
experimentally determined.
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3.5.6 Application: Calibration of single-photon detectors

To show the full potential of our new measurement scheme, we want to address an outstanding
problem for single-photon detectors: A direct calibration of a single-photon detector based on
a reference power meter. On the one hand, calibrated power meters are available, which are
typically sensitive down to the few 100 pW range where the noise floor starts to dominate the
measurement. One the other hand single-photon detectors can typically only resolve count rates
up to a few MHz before they alter their operation (e.g. change to a permanently normal con-
ducting state in case of SNSPDs), which is equivalent to an optical power of around 100 fW
assuming not more than one photon per count. In order to close this gap and calibrate single-
photon detectors to a known power meter reference, calibrated attenuators are necessary (e.g.
[159, 160]). In [145], we showed for the first time that for SNSPDs, today one of the most
commonly used single-photon detectors, the dynamic range can be extended to the nW range.
This enables direct calibration of SNSPDs without the need for attenuators.

3.5.6.1 Theoretical considerations

In the following, we will derive a calibration procedure for the passive case. Further information,
for example, about the active case and additional considerations regarding the measurement
uncertainties, can be found in [145]. All equations shown above relate the photon numbers
before the multiplexing loop to a click probability. If the beam splitter reflectivity R and loop
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losses η are known, we can relate the input and output power

n̄out =
n̄in(−R− η + 2Rη)

−1 +Rη
, (3.23)

where n̄in is the mean photon number per pulse present before entering the loop and n̄out the
mean photon number after the loop. In case R and η are not known, a simple measurement can
be performed to extract these values. An unknown attenuator is placed in front of the loop. It
is important to note that the value of this attenuator is irrelevant for all further calculations. The
only reason for this attenuator is to lower the optical power going to the click detector such that
the first bin is not saturated anymore. If this is the case, then a simple fit based on Eq. 3.18
can be used to extract R and η. This additional measurement is only necessary for the passive
case where the first bin is distinct (light in this bin does not see the loop loss η. Therefore, the
symmetry between R and η for all later bins is not present). In the active case, this additional
step is not necessary as only the product ofR and η can be observed, which is given by the slope
of the exponential decay region. Nevertheless, we concentrate here on the calibration procedure
based on the passive case because a reliable, ultrafast active switch is difficult to implement.
After this measurement, the additional attenuator can be removed. Using Eq. 3.18 and Eq. 3.23
we can now calculate for each bin individually the expected number of photons having measured
the click probability pj

n̄out|j =


(R+η−2ηR) ln

[
1−ν
1−pj

]
R(1−Rη) j = 1

(R+η−2ηR)(Rη)1−jR ln

[
1−ν
1−pj

]
(1−Rη)(R−1)2

j ≥ 2 .

(3.24)

Considering the individual uncertainties an estimate for the measured photon number can be
derived

n̄measured =

∑
j wjn̄out|j∑

j wj
, (3.25)

where
wj =

1

σ2
n̄out|j

(3.26)

shows the uncertainty per bin σn̄out|j . By either placing an optical power-meter after the loop or
connecting it directly to SNSPDs the system detection efficiency ηSDE of the click detector can
be calculated without the need of changing the power level

ηSDE =
n̄measured

n̄PM
. (3.27)

A detector calibration procedure requires the following steps

1. Connect a pulsed laser to a loop detector, as shown in Fig. 3.16.

2. Measure the optical power with a calibrated power meter after the loop.
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Figure 3.16 – Schematic picture of the calibration procedure. The loop detector is either connected
to a single-photon detector or a power meter. Reprinted from [145]. ©2019 Optical
Society of America.

3. Connect the loop to the SNSPD.

4. Measure the bin click probability pj .

5. Insert unknown attenuator before the loop such that the first bin is not saturated anymore.

6. Measure the bin click probability p′j again.

7. Calculate beam splitter reflectivity R and loop efficiency η based on p′j .

8. Calculate the measured mean photon number based on Eq. 3.25.

9. Calculate the system detection efficiency based on Eq. 3.27.

3.5.6.2 Experimental realization

The suggested calibration routine presented in the previous section is now implemented to de-
termine the system efficiency of an SNSPD. A key result from our work is that the response
from an SNSPD is, to first-order, independent of the pulse peak power. The laser repetition rate,
however, is a more critical parameter. Therefore high average optical powers can be measured if
the repetition rate is low and the peak power is high. This behavior is shown in Fig. 3.17, where
the number of counts is shown as a function of the laser repetition rate and photon number per
pulse. White areas show regions where latching occurred. For the experiment again a PicoQuant
diode-laser with a repetition rate of 50 kHz is used to generate a pulse train entering the loop.
The exiting pulse train is either measured with a reference power meter or an SNSPD and a time
tagger. The key property is that the same power level can be measured without the need for ad-
ditional attenuators for the single-photon detector. An example histogram from the time tagger
is shown in Fig. 3.18 (a). Exiting pulses have a separation of 156 ns, which is determined by
the loop round trip time. In contrast to the previously described experimental setup, we will use
a polarization-maintaining fixed-ratio beam splitter and a polarization-maintaining delay fiber
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Figure 3.17 – Detector count rate in dependence on the laser repeititon rate and pulse energy. De-
tector latching occoured in white areas. See text for further details. Reprinted from
[145]. ©2019 Optical Society of America.

for the loop. This guarantees maximal stability for the required parameters during the measure-
ment run. A polarizer was placed before the setup to couple to the polarization preserving axis
of the fiber. All clicks are integrated over a four ns time window around these maxima of the
histogram. We will refer to these windows as time bins. Knowing the number of clicks per time
bin, the bin click probability pj can be calculated, which is shown in Fig. 3.18 (b). The three ar-
eas (saturation regime, decay region, and noise level) can be clearly seen in the logarithmic plot
Fig. 3.18 (c). From the noise level of 10−7 photons/pulse to the latching threshold of > 2.5 · 105

photons/pulse, we can span a dynamic range of 123 dB with our detection scheme. Follow-
ing the calibration steps shown before, we can also calculate the detector system efficiency of
82.8± 4 %.

In summary, we have shown that our new characterization device can characterize optical
states over a very large dynamic range and is still able to identify sub-Poissonian light statistics.
In this context, another link between CV and DV is important: Bright amplitude squeezed states
have sub-Poissonian light statistics [15, 161] (if the squeezing value is not too high with respect
to the amplitude). As squeezed states are becoming more important for sensing applications
(e.g. [162]), we have created a new method that will be helpful to verify the quantum aspect of
these states.
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Figure 3.18 – Time tagger histogram of the exiting pulse train detected with a single photon de-
tector. Pulse heights vary due to the binning of the detected clicks (compare with
inset showing a single time bin). All time bins are integrated over a 4 ns window to
determine the bin click probability shown on a linear scale (b) and logarithmic scale
(c). Error bars (black lines) are calculated from the measured binomial distribution.
See text for further details.

3.6 Multi-element SNSPDs

While the previous sections focused on temporal multiplexing, we will now consider spatial
multiplexing as an alternative. One way to achieve spatial multiplexing is to split the active
area of a binary detector into multiple detectors with smaller active areas (known as pixels).
This research field has gained increasing attention in recent years, mainly because it offers the
possibility to use SNSPD detectors with their advantages for image reconstruction. In addition,
SNSPDs can be designed to be sensitive to wide range of optical frequencies such as mid- and
far-infrared [163], making them a perfect candidate for exoplanet search or military imaging
applications. To date, SNSPD units of 1024 pixels have been demonstrated [154] and the route
towards megapixel detectors is under investigation. On the quantum side, larger detectors enable,
for example, the characterization of bright quantum states, which are interesting for metrology
applications.

One major challenge for these detectors is a suitable readout strategy. Connecting each pixel
individually from the detector to the readout electronic is not feasible as this significantly in-
creases the heat load on the cryogenic system. For this reason, a variety of readout schemes
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Figure 3.19 – Four-pixel SNSPD wired in series (red). Each pixel is connected to a resistor Rp
which acts as a shunt resistor. All pixels are constantly biased with a current Ibias
using a bias T configuration. The output voltage Vout is measured across a load
resistor RL.

has been investigated [164] based on on-chip or off-chip processing. In this section we will
show a readout method based on a single electric wire. The discussion shown here focuses on
multi-element SNSPDs in the context of photon-number resolution. Nevertheless, the presented
method can be adapted to imaging applications as well.

In the context of the readout scheme, we will also analyze the error associated with the read-
out. Although we focus in this section on a quite specific example (single-channel readout
scheme for multi-pixel SNSPDs), the analysis shown here is more general. Significantly, the
distinction between ensemble measurements and single-shot experiments is often neglected in
the literature. An ensemble measurement records data for multiple measurement runs. Then
an outcome value is extracted from this data set. In contrast, a single-shot experiment extracts
an outcome value for each measurement. As an example, a complete state characterization is
possible with a single binary detector (see Chap. 4, ensemble measurement), whereas the same
detector is entirely unsuitable for heralding of higher-order Fock states (see Sec. 2.3, single-
shot). Therefore we differentiate these two cases in our error analysis. The content of this
section was published in [165].

3.6.1 Single-channel readout method

In order to read out a multi-pixel SNSPD with a single electric channel, the individual pixels
are connected in series, as shown in Fig. 3.19. All pixels are biased with a constant current
using a bias T configuration. If a photon is absorbed by one pixel, the resistance of this pixel
increases, and the current is redirected through the corresponding parallel resistorRP. This leads
to a voltage peak Vout, which can be measured over a load resistor RL. The measured voltage
will have discrete amplitude values depending on the number of pixels that detected a photon.
We can model the voltage response V (t) after an event with n pixels with an exponentially
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Figure 3.20 – Schematic measurement setup used to evaluate a four-pixel SNSPD. See text for
further details.

decreasing function
Vn(t) = nAe−

t
τ (3.28)

with a decay constant τ and an amplitude A.
In many measurement configurations, SNSPDs are evaluated with time taggers (see Sec. 3.3).

The drawback of such a measurement is that the time tagger is only sensitive to a specific thresh-
old. However, the information on the ‘how many pixels’ is encoded in the peak height of the
voltage pulse. Here an oscilloscope measurement would be better suited but suffers from the
disadvantages described in Sec. 3.3. We therefore suggest a new method, which is based on
the time-over-threshold value of a multi-pixel SNSPD. For this method, both the time when the
signal rises past the threshold A0 as well as the time when the signal falls past this value is
recorded. The time difference defines the time-over-threshold value tover thres

tover thres(n) = −τ ln

(
A0

nA

)
, (3.29)

which will be used to determine the number of pixels that detected a photon n. As a comparison,
we will use an oscilloscope measurement as a reference.

3.6.2 Experimental setup

The measurement setup consists of a pulsed diode laser (PicoQuant, pulse duration 50 ps) that
emits light with a repetition rate of 100 kHz and a wavelength of 1550 nm (see Fig. 3.20). The
emitted light pulses are attenuated with an optical attenuator to the few photon level and detected
with a four-pixel SNSPD detector (PhotonSpot), as shown in Fig. 3.19. The electrical output
from the detector is either measured with an oscilloscope or a Time Tagger Ultra (Swabian
Instruments). Twenty-five different thresholds A0 are investigated with the time tagger and the
corresponding time-over-threshold value is recorded.

3.6.3 Evaluating click probabilities

In order to evaluate the quality of the presented readout scheme, we have to calculate the click
probability ck of k simultaneous detection events. The general idea of the evaluation is demon-
strated in Fig. 3.21. The voltage response of 500 outcomes of a four-pixel detector is shown as
a heatmap in (a). As a next step, the time-over-threshold value is recorded for three different
thresholds (12 mV, 16 mV, and 28 mV) and plotted as a histogram (b)-(d). Finally, we compare
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Figure 3.21 – Evaluating click probabilities using the time-over-threshold value. A heatmap show-
ing 770 oscilloscope traces (a) is cut at three voltage levels (b-d). The resulting
histograms are integrated to calculate the click probability and compared with time
tagger measurements and a reference value derived from the voltage maximum of the
oscilloscope trace (e-f). See text for further details. Reprinted from [165]. ©2020
Optical Society of America.

the time-over-threshold method from the oscilloscope c′k,osci with the time-over-threshold value
from the time tagger c′k and the reference value from the oscilloscope derived from the voltage
height in the maximum ck (see subfigures (e) - (g)). An overall correspondence between the
values can be seen.

To be more precise about the derivation of the click probabilities, we have to distinguish be-
tween ensemble measurements and single-shot evaluation as discussed before.

Ensemble measurement:
For ensemble measurements, we record a histogram of the time-over-threshold value for the
oscilloscope hexp, osci (see Fig. 3.21 (b)-(d)) and time tagger hexp, tagger (see Fig. 3.22 (b)-(d)). As
a next step, Gaussian functions gk with a mean value µk are fitted to the histogram hexp, tagger.
Finally, the click probability can be calculated by

c′k =
1

M

∫
dt gk(t) (3.30)

where M is the total number of measurements.

Single-shot measurement:
For a single-shot evaluation, we have to estimate for each measurement the number of detectors
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Figure 3.22 – Error probability for ensemble measurements. See text for further details. Reprinted
from [165]. ©2020 Optical Society of America.

that detected a photon simultaneously k. We also record the time-over-threshold value in this
case. In the next step, we divide this time duration into k sections based on the mean value of
the fitted Gaussian functions µk. The upper boundaries uk of these sections are given by

uk =

{
µk+1+µk

2 k < kmax

∞ kmax
. (3.31)

Note that an optimal position of these boundaries will depend on the optical input state, and an
initial ensemble characterization step is required. Here we chose the center position between the
Gaussian maxima, which is optimal for a constant click probability ck or no a priori information
about the input state. Depending on the actual measurement scenario, this value can be modified.
The lower boundaries are given by lk = uk−1 with the special case of l1 = 0.

With these time-sections, every measurement can be connected with a specific event with k
clicks. The total click probability for single-shot experiments c′′k is given by

c′′k =

uk∑
lk

hexp, tagger . (3.32)

3.6.4 Error analysis

As shown for the derivation of click-probabilities, we will split the error analysis into ensemble
measurements and single-shot experiments.
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Ensemble measurement:
For the ensemble measurements, we will compare the measured click probabilities c′k with the
oscilloscope reference measurement ck to quantify the relative error

perror,k =
|ck − c′k|

ck
. (3.33)

The relative error perror,k is shown in Fig. 3.22 (a) for 25 different threshold values. For low
threshold values the error probability, especially for the three and four click event, is significant
due to highly overlapping Gaussian functions (see Fig. 3.22 (d)). With an increasing threshold,
this error decreases as the overlap of the Gaussian functions is reduced. For high thresholds
(> 18 mV), the error bar of the single-click component starts to increase because the threshold
starts to exceed the voltage response of the single-click event. For even higher values (not shown
in the figures) also the errors for the two, three and four-fold events would increase. Therefore
an optimal threshold can be found around 16.2 mV. Further information about the error bars can
be found in [165].

Single-shot measurement:
The situation for single-shot measurements is slightly more complicated. To start with, we have
to compare our single-shot results to ensemble measurements to determine the errors because the
photon number of each measurement run is fundamentally unknown for a characterizing coher-
ent state. In addition, we have to differentiate two situations; entirely analogous to errors of type
I and II in hypothesis testing. Firstly, we can miss an event with k detected photons. Secondly,
we can accidentally identify an event with j 6= k photons as an event with k detected photons.
This means that the first error will decrease and the second error will increase the probability
ck. Depending on the actual application, these errors can have very different implications. As
an example, we will consider heralding of higher-order Fock states (for more information see
See. 2.3). Here a missed click will reduce the heralding probability whereas a misidentified
click-probability will lower the fidelity of the heralded Fock-state. In order to quantify both
relative errors, we can define both values as

pmissing click, k = 1− 1

M ′k

uk∫
lk

dt gk(t) (3.34)

and

pmisidentified click, k =
1

N ′k

∑
i 6=k

uk∫
lk

dt gi(t) . (3.35)

Strictly speaking, the missing click value is not an error probability as the definition allows for
negative values (probability of an event is higher than expected). We therefore refer to this value
as a missing-click factor. Both errors are shown in Fig. 3.23. The dependency for the missing-
click factor is analogous to the ensemble measurement. Low thresholds suffer from overlapping
Gaussian functions, whereas high thresholds miss the single-click component. The situation is
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Figure 3.23 – Missing click factor and misidentified click probability for single-shot measure-
ments. See text for further details. Reprinted from [165]. ©2020 Optical Society of
America.

slightly different for the misidentified click probability. Here the error simply decreases with
an increasing threshold because the Gaussian functions have a lower overlap. For thresholds
above 25.7 mV the error for the single-click counts can not be calculated because no clicks were
recorded.

3.6.5 Scaling

An important factor that should be considered for any scheme is scalability. Here scalibility
means increasing the number of pixels in order to achieve better photon-number resolution. For
a given threshold a0 the difference in the time-over-threshold tover thres(n) for two neighboring
events n and n+ 1 will decrease logarithmically in n (see Eq. 3.29). This becomes problematic
in the presence of noise, which we want to investigate further. We will assume that all noise
sources have a Gaussian distribution. The timing noise σt arises from a time tagger detection
jitter, SNSPD rise time jitter, and an electric noise component σv on the falling slope of the
detector response that is measured as an additional timing jitter. We can neglect the time tagger
jitter and the SNSPD rise time jitter as they are much smaller compared to the jitter from the
electric noise. Following a simple error propagation, we can relate both values via

σt = σv

∣∣∣∣∣ d

dt
nAe−t/τ

∣∣∣∣
t=tover thres(n)

∣∣∣∣∣ =
σva0

τ
. (3.36)
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Figure 3.24 – Maximum pixel number as a function of the signal-to-noise value β. See text for
further details. Reprinted from [165]. ©2020 Optical Society of America.

This expression does not depend on n due to the exponential decay of the voltage response. If
we consider a detector with nmax bins, we will consider the misidentified click probability of the
second last event nmax−1 as a worst-case scenario (clicks from nmax and nmax−2 contribute). We
will evaluate the outcome at a threshold A0 = A− σv, which has shown to be a suitable value.
In addition, we will define a signal to noise value β as

β = A/σv . (3.37)

If we assume that the click probability of having n simultaneous detection events is constant and
that the error from all other events nmax−3,4,... does not contribute, we can find a solution using
error functions (see [165]). More importantly, we can approximate the solution with a Gaussian
distribution

pmisidentified click,nmax−1 ≈
2

3
e
− (β−1)2

2ς2 , (3.38)

where the width ς = a + bnmax, and a = −1.69 and b = 1.64 are numerically determined
constants. If we allow for a specific error value pth we can calculate the maximum bin number
nmax in dependence on the signal to noise value

nmax ≈
1

b

 β − 1√
2ln
[

2
3pth

] − a
 , (3.39)

which is shown in Fig. 3.24 for three threshold values. This means that for current signal-to-
noise ratios of up to 55 [166] this readout method can handle up to twelve pixels with a 1% error.
Slight modifications in our readout scheme, such as a box-car averaging unit, can increase this
number further.
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3.7 Conclusion

In this chapter, we have seen how photon-number resolved measurements can be realized. The
established idea of multiplexing to achieve photon-number-resolved measurements was dis-
cussed in detail and extended to measure very bright states. We have reported on a large 2x128-
bin TMD unit that still features very high transmission values of over 81% and no intrinsic
cross-talk between detection bins. We have investigated non-classical signatures of up to ten
photons spread over up to 64 modes with correlation functions. To investigate even brighter
optical states, a high dynamic range detector was described that utilizes the saturation regime
in order to extend the dynamic range to 123 dB from 10−7 photons/s to 2.5 · 105 photons/s. At
the upper end of the dynamic range, this detector can withstand a few nW of average power,
making it directly comparable to typical power meters. We have shown that this enables a di-
rect calibration procedure of single-photon detectors. Finally, we discussed a single-channel
electrical readout scheme for multi-pixel SNSPD detectors, which can enable direct (pseudo)
photon-number-resolved measurements in the future.

The shown extension of the dynamic range makes it possible to characterize quantum states in
a new parameter regime. These very bright states are highly interesting for sensing applications.
In addition, we have shown that new methods, such as the direct calibration of single-photon
detectors, go hand in hand with the extended dynamic range. In the same sense, our methods
also enable us to quantify very bright classical light beams, if a future quantum standard for
optical intensities is available. In the next chapter, we will use the discussed photon-number-
resolved measurements for quantum state characterization.
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In this chapter, we will finally combine pre-
viously presented techniques on source en-
gineering and photon counting to investigate
quantum states. In contrast to classical state
characterizations, reconstructing a quantum
state from a single measurement is fundamen-
tally prohibited. Therefore, we have to inves-
tigate a set of identical states (ensemble) from
different ‘directions’ to determine the whole
state. This approach is also widely used in
the classical domain, although not fundamen-

tally required. For example, in image tomography, the shape of a 3D object is calculated from its
2D projections. Analogous to this method, the process of quantum state reconstruction is known
as quantum state tomography.

If we have characterized our quantum state, it is common to either describe it as a density
matrix in the Fock basis or as a quasi-probability distribution. These approaches can be directly
connected to the DV or CV picture, respectively, and a link between both worlds is for example
given in [11]. Interestingly, interpreting photon-number-resolved measurements is often more
intuitive with respect to the phase-space picture (especially if phases need to be determined),
establishing a natural connection between both interpretations. In the following, we will describe
three main projects and show how the CV-DV synergy effects help to measure quantum states
with single-photon detectors. We will start with two new methods that are based on overlap
variations and incomplete phase-space measurements. In the second part of this chapter, we will
focus on a new scheme that uses a dedicated laser for the characterization and revisit ultrafast
laser properties that are relevant in this context. Before introducing new methods, we will briefly
revisit some basics on phase-space functions.

4.1 Background

4.1.1 Theoretical considerations of phase-space distributions

Phase-space distributions are very helpful to describe a quantum state with all its properties.
Many interesting features, such as non-classicality, can be directly identified in this description.
To derive the first phase-space representation, we can decompose an arbitrary state ρ in the
overcomplete basis of coherent states |α〉

ρ =

∫
d2αP (α) |α〉〈α| . (4.1)
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This function P (α) is one example of a phase-space distribution and known as the Glauber-
Sudarshan P representation of a quantum state. Representing quantum states in this way has a
direct link to classical probability theory and helps for example to compute expectation values
of operators [11]

tr
[
ρ(â†)n(â)m

]
=

∫
d2αP (α)(α∗)nαm . (4.2)

In contrast to a classical theory, the probability function can have negative values (and is there-
fore called a quasiprobability distribution). Equation 4.2 also reveals a major difficulty asso-
ciated with this approach. On the left side of the equation, we cannot change the ordering of
the operators â† and â due to their commutation relation [â, â†] = 1. On the right side of the
equation, however, the complex numbers α and α∗ can commute. In order to account for this
problem and to expand previous works with different orderings, Cahill and Glauber introduced
a generalized phase-space functionW(α, s) of a state ρ in 1969 [11, 167]

W(α, s) = tr

[
ρ

2

π(1− s)
D̂(α)

(
s+ 1

s− 1

)n̂
D̂†(α)

]
, (4.3)

with an additional factor of 1
π for normalization compared to the original equation e.g. [168].

Here the parameter s ∈ [−1, 1] can account for different operator orderings. For the case s = 1,
we find the already discussed Glauber-Sudarshan P-function P (α) =W(α, 1), where the oper-
ators are in normal ordering (all â† to the left). We can also arrange the operators in symmetric
ordering or anti-normal ordering. These special cases s = 0 and s = −1 are known as the
Wigner function and Husimi Q-function, respectively.

First, we want to discuss some properties of the Glauber-Sudarshan P-function P (α). Unfor-
tunately, this function is highly singular. We can see from Eq. 4.1 that coherent states have the
form of delta distributions. Fock states are even ‘sharper’ as they can be expressed as derivatives
of delta distributions. Despite the lack of intuition, the Glauber-Shudershan P representation is
perfectly suited to define non-classicality formally: All states that are positive in all represen-
tations (as |α〉〈α| is an overcomplete basis the representation is not unique) are classical states.
Non-classical states, on the other hand, have a negative value somewhere.

As a second example, we want to highlight the Wigner function, which was the first phase-
space function discussed in the literature [29, 169]. The Wigner function is of practical interest,
as it can be directly addressed with homodyne measurements (see Sec. 4.1.2). For example, if
we modify Eq. 4.3, we can link the Wigner function to the photon number parity (even photon
number contributions minus odd photon number contributions) of the displaced state as

W (α) =
2

π

∞∑
n=0

(−1)n 〈n|D(−α)ρD(α) |n〉 . (4.4)

Compared to the Glauber-Shudershan P representation, the Wigner function is better ‘behaving’
as no delta distributions for physical states can occur. We can therefore visualize the Wigner
function in a 3D-plot, as shown in Fig. 4.1 for the vacuum state (a) and a squeezed state (b). The
squeezed state also shows another discrepancy between the two distributions: Squeezed states
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(a) (b) 

Figure 4.1 – Wigner function of the vacuum (a) and a squeezed state (b). The marginals of the X̂1

and X̂2 quadrature axes are shown in dark-green.

are non-classical but have positive values everywhere. This means that having a negativity is still
a sufficient criterion for having a non-classical state, but it is not necessary anymore. Illustrating
squeezing, we can also directly see the link to phasor diagrams, as discussed in Sec. 2.4.1. The
Wigner function can be understood as a more formal version of these phasor diagrams. We refer
to these states as Gaussian states if we can express our quantum state with a double Gaussian
function. It has been shown that Gaussian states with Gaussian operations (all operations that
map Gaussian states on Gaussian states), are not sufficient for many important applications, such
as entanglement distillation [170] and universal quantum computation [171–173]. This can be
understood intuitively as Gaussian states can be characterized efficiently in a covariance matrix
and a mean value. Therefore these states and operations are easy to simulate classically. For
this reason, non-Gaussian states are highly relevant for quantum optical applications. As an
example, a single-photon and a two-photon Fock state can be seen in Fig. 4.2.

4.1.2 Measuring phase-space distributions

We have seen that phase-space distributions are a great tool to describe quantum states and
investigate their properties. Maybe even more important: These distributions can be accessed
experimentally. To achieve this, we always require a second field (local oscillator, LO), which
is combined with our state under test (SUT). This LO acts as a reference and enables us to
consider our SUT from different ‘directions’. A more detailed discussion about the LO can be
found in Appendix D. We want to distinguish two measurement schemes depending on the LO
mean photon number and detector characteristic, which are known as strong-field homodyning
and weak-field homodyning. We will see that these measurements very distinct, as they either
produce CV or DV outputs.
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(a) (b) 

Figure 4.2 – Wigner function of a single-photon (a) and a two-photon state (b). Negative values
are shown in blue whereas positive values are indicated in red. The marginals of the
X̂1 and X̂2 quadrature axes are shown in dark-green.
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Figure 4.3 – Comparison between strong-field homodyning (a) weak-field homodyning (b) and di-
rect probing (special case of direct probing) (c). A local oscillator (LO) is combined
with a state under test (SUT) on a beam splitter. The outgoing field is either detected
with pin-photodiodes (PD) or single-photon detectors (SPD). In the direct probing
case, a beam splitter with high transmission is used in combination with photon num-
ber resolving single photon detectors. See text for further details.

Strong-field homodyning
Strong-field homodyning (SFH), or simply homodyning, is one of the most established tech-
niques for quantum state characterization. In this thesis, we will use the full term strong-field
homodyning (SFH) to distinguish it from quantum state characterization with a weak local oscil-
lator and single-photon detectors. SFH consists of a 50/50 beam splitter, where SUT and LO are
combined (see Fig. 4.3 (a)). Both output ports from the beam splitter are detected with photodi-
odes. The resulting photocurrents are finally subtracted, amplified and recorded. To understand
the working principle of SFH, we will revisit phasor diagrams introduced in Sec. 2.4.1. These
phasor diagrams are intuitively linked to a semi-classical approach, where we split the optical
state α into a classical amplitude α0 with additional quantum fluctuation along the quadrature
axes δX

α(t) = (α0 + δX1(t) + δX2(t)) eiωt . (4.5)
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With this approach and the assumption of a strong local oscillator (neglecting all terms that are
not linear in α), we can calculate the photocurrent difference ι−,which is given by [174]

ι−(t) ≈ 2αLO (δX1,SUT(t) cos(φ) + iδX2,SUT sin(φ)) , (4.6)

with a relative phase φ between SUT and LO. Equation 4.6 reveals some interesting findings:
Firstly, we can see that the photocurrent difference is independent of LO quantum fluctuation.

This means that the measured photocurrent variance will only depend on quantum fluctuations
resulting from δXSUT. We therefore have a tool to investigate the quantum noise properties of
the SUT. Historically, showing the reduced noise characteristics of a squeezed state was the first
application for SFH in the quantum regime [175].

Secondly, Eq. 4.6 shows that the measured quantum fluctuations δXSUT scale linearly with
the LO amplitude. Here another reason why SFH requires a bright LO becomes apparent. All
photodiodes will produce a so-called dark current, which can be interpreted as a constant noise
level. In order to see any quantum fluctuations, they need to be ‘amplified’ by the LO to surpass
the photodiode noise floor.

Finally, we can see that the photocurrent difference can be interpreted as a projective mea-
surement of the SUT on the quadrature axes. By changing the relative phase φ we can perform
a full scan of all quadrature projections1. This scan is sufficient for a full quantum state charac-
terization, which has been shown in 1989 [176], four years after the demonstration of squeezed
light. The transformation which is required to convert the SFH results to a Wigner function is
known as a Radon transformation. Four years after this theoretical finding, quantum state to-
mography was shown experimentally [177]. SFH is of special interest because the projection
along the quadrature axes is a natural measurement basis for squeezed states. This means that
squeezed light can be directly identified with SFH without any further processing [175, 178].
Therefore, SFH is also the primary example of a CV measurement as it can measure quadrature
values introduced in Sec. 2.4.1.
Weak-field homodyning
A more natural choice of quantum state characterization from the DV perspective is homodyn-
ing with a weak coherent state |α| ∼ 1 as a local oscillator and single-photon detectors (see
Fig. 4.3 (b)). We will refer to this characterization scheme as weak-field homodyning (WFH).
In contrast to SFH, WFH is a non-Gaussian measure due to the single-photon detection. This
means, for example, that we can directly measure negativities of the Wigner function without
applying any reconstruction algorithm. WFH characterization techniques were proposed in the
1990s after the development of SFH [168, 179, 180], although some basic ideas can be found
earlier [181, 182]. One major challenge of WFH was the lack of high efficiency single-photon
detectors, despite the fact that additional losses can be incorporated in the detection scheme
[168]. Nowadays, with the advent of TES detectors, highly efficient photon-number-resolving
detectors are available. Compared to photodiodes, superconducting detectors still face some ad-
ditional challenges due to their cryogenic cooling and single-mode fiber coupling, which makes
SFH for the moment more attractive from the application side (especially if squeezed light is
involved [162]). However, a wide class of important problems cannot be solved in the Gaussian

1Strictly speaking, these are the marginal distributions p(x) =
∫
dy p(x, y).
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framework [170], leaving WFH as an interesting ingredient.
One specific configuration of WFH should be highlighted because it can link photon-number

measurements and the Wigner function in a very intuitive way. We have seen in Eq. 4.4 that the
photon-number parity is directly linked to the value of the Wigner function at the origin of the
phase space distribution. As the photon-number parity needs to be evaluated, photon-number-
resolving detectors are required. Obviously, it is not sufficient to only characterize the Wigner
function at a single point. However, with a displacement operation, we can pointwise address
the full Wigner function, as suggested by Banaszek and Wodkiewicz in 1996 [180]. Fortunately,
a displacement operation can be easily implemented with a highly transmissive beam splitter, as
shown in Fig. 4.3 (c). Due to this pointwise sampling of the Wigner function, this technique is
called direct probing (DP). Arguably the first implementation of DP has been shown in [183],
but without photon number resolution and with classical states (also used in [184]). With the
development of time-multiplexing [23, 25] (also see Sec. 3.2), measuring the photon number
distribution was possible, which led to the first complete quantum experimental realization by
Laiho et al. [185]. We will show measurements for both, the DP and the balanced WFH con-
figuration in the next sections. To start with, we will introduce a new method for quantum
tomography, which is based on overlap variations that reveal a major difference between SFH
and WFH.

4.2 Tomography by the overlap

Tomography schemes, as discussed before, always require a set of non-identical measurements
to gain knowledge about the full quantum state, i.e. we have to vary at least one parameter
between measurements. On the one hand, we have SFH, where the phase of the LO is changed
to perform a full quantum state reconstruction. On the other hand, we can consider WFH to
determine the SUT. For WFH different approaches including the variation of losses [186–190],
amplitude [168, 179, 180, 183, 185] and thermal states [191] have been shown.

Here we show a new WFH scheme based on varying the overlap between the SUT and LO
modes. The effect of overlap variations are very different for SFH and WFH approaches. In SFH
non-overlapping parts are not ‘amplified’ by the LO and therefore not detected, which can be
considered as loss. To prevent these effective measurement losses, it is critical to match the LO
to the SUT [192] in all degrees of freedom (polarization, time and frequency spectrum, spatial
mode). In WFH, however, all optical fields, whether overlapping or not, will be detected, which
simplifies the characterization of multi-mode states [183]. Without loss of generality, we can
always decompose our SUT and LO modes into an overlapping part and a non-overlapping part
[193]. The single-photon detector therefore sees a convolution of the overlapping (and therefore
interfering) and the non-interfering part. We will use this result as a new tool for quantum state
reconstruction.

Measuring non-overlapping fields is not only a new method for investigating the quantum
state but also a tool for characterizing the mode structure. Knowing the mode shape of a quan-
tum state in addition to the photon number characteristics is an important factor [194, 195] that
can, for example, limit the complexity of boson sampling [196, 197]. Still, single-mode states
are often an implicit assumption in quantum tomography although the generation of quantum
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Figure 4.4 – Measurement scheme for the simplest single-mode case (a) of tomography by the
overlap. LO and SUT are combined on a beam splitter. One of the outgoing modes
is detected with a binary detector. The scheme can be extended to the multimode
regime, where Kmax modes are entering the beam splitter (b). Reprinted from [214].
©2018 IOP Publishing.

states in various mode shapes has been shown [198–211]. SFH reconstruction techniques have
been shown e.g. in [212]; however, we will show that the intrinsic mode insensitivity of WFH
is an advantage. Overlap variations have previously been used for characterizing single-photon
states [213]. We will generalize this idea and demonstrate, for example, that the overlap mod-
ulus of an arbitrary state can be determined, in combination with a detector efficiency variation
[194], beyond the scope of SFH. In addition, we will also demonstrate a trade-off between inves-
tigating the underlying mode structure and the quantum state itself. The experiment is done in
a resource-efficient way by employing only a single binary detector. The content of this section
was published in [214].

4.2.1 Measurement scheme

The simplest overlap measurement scheme can be realized with a beam splitter to combine the
SUT and LO and a binary detector, as shown in Fig. 4.4. To start with, we will consider a
measurement where the SUT and LO can be treated as single-mode fields. In this case, we can
write the quantum state as a function of broadband creation a†x and annihilation operators ax, as
described in Sec. 2.1.3

ax =

∞∫
0

dω fx(ω)ax(ω) , (4.7)

where x denotes either the SUT (s), or the LO2. We will always refer to these broadband opera-
tors if no explicit frequency dependence is written. In general these two broadband modes will

2Single-mode state does not mean that the quantum state consists of a single monochromatic frequency. Rather, it
implies that the mode can be written as a coherent superposition of these monochromatic frequencies.
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be non-identical, so we can define an overlap φ between both states

φ =

∞∫
0

dω fs(ω)f∗LO(ω) . (4.8)

We will assume that both the beam splitter with transmission T and the detector will act frequency-
independently such that we can write the "no-click" probability c0 as

c0 = tr
[
: exp(−T 2η(a†sas + µ2a†LOaLO + µφa†saLO + µφ∗a†LOas)) : ρLOρs

]
, (4.9)

where η is the detection efficiency, µ =
√

(1− T )/T and :: denotes operator normal ordering.
For the extreme case of no overlap φ = 0 we can directly see that Eq. 4.9 simplifies to the
product of having no counts from the LO and the SUT, c0 = c0,sc0,LO. In general (φ 6= 0),
however, both fields will interfere and c0 will also depend on the relative phase between SUT
and LO.

To simplify Eq. 4.9 further we will decompose both states in the coherent state basis as shown
in Eq. 4.1. However, here we will approximate the state with a discrete set as common in data
pattern tomography schemes [215–219]

ρx =
∑
j

cj,x|αj〉〈αj |. (4.10)

Therefore we can rewrite the no-click probability c0 as

c0 =
∑
ij

cj,sci,LO exp
(
−T 2η(|αj |2 + µ2|βi|2 + µφα∗jβi + µφ∗β∗i αj)

)
. (4.11)

This equation shows the general idea behind overlap tomography: We can either infer the overlap
if both input states are known, or we can characterize the SUT with a controlled variation of the
overlap φ. We will discuss these options in the following.

4.2.1.1 Inferring the overlap

As common for WFH, we will assume that the LO is a coherent state |β〉. We can therefore
simplify Eq. 4.11 as

c0 = 〈β̄|ρ̄s|β̄〉 exp
(
−(1− T 2)η|β|2(1− |φ|2)

)
, (4.12)

with the density matrix of the damped signal ρ̄s defined as

ρ̄s =
∑
j

cj,s|
√
ηTαj〉〈

√
ηTαj | , (4.13)
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and a damped amplitude of the LO β̄ = −
√
η(1− T 2)φ∗β. If the phase between LO and SUT

is varied during the measurement, we will calculate the phase averaged version instead

c0 =

∞∑
n=0

pn
ηn|φβ|2n(1− T 2)n

n!
exp

(
−(1− T 2)η|β|2

)
, (4.14)

where pn is the probability of having n photons in the SUT. Most importantly, the zero-click
probability c0 is monotonous in the overlap modulus, which means that we can invert the func-
tion. We can therefore measure the overlap modulus for an arbitrary state with a known photon
number distribution pn in a single measurement. In addition, we can also determine the photon
number distribution by simply changing the detector efficiency to extract pn and overlap, as pro-
posed in [194]. This remarkable result is not possible for SFH as both the overlapping and the
non-overlapping parts are required for these combined measurements.

4.2.1.2 Inferring the mode profile

We can also use the same considerations to determine the SUT mode profile. To do so, the LO
is prepared in various known shapes, and the overlap value is measured. For example, we can
introduce a simple time-delay between LO and SUT. The resulting overlap is then connected to
the mode profiles via a Fourier transformation

φ(δt) =

∫
dωfs(ω)f∗LO(ω) exp {−iωδt}, (4.15)

with a time delay δt. Interestingly we can also extract information about the SUT mode, even
though we only measure the overlap modulus. In this case, the equation can be directly linked to
the phase-retrieval problem, a well-studied task in image reconstruction (phase is extracted from
an intensity measurement) [220]. To perform the mode reconstruction, it is often advantageous
to decompose the modes into a superposition of basis states, e.g. Hermite-Gaussian functions in
the case of SPDC [211].

4.2.1.3 Inferring the signal state

Complementing the modal analysis, we can also characterize the quantum state itself. We can
rewrite Eq. 4.12 in terms of the Husimi Q-function Q(α, α∗) for the SUT

c0 =
exp

(
−(1− T 2)η|β|2(1− |φ|2)

)
1− ηT 2

∫
d2α e−σ|α−β̄|

2
Q(α, α∗) , (4.16)

with σ = ηT 2

1−ηT 2 . This equation generalizes the results shown in [168] for non-ideal overlap
values and has the shape of a Weierstrass transformation. In order to perform state tomography
Eq. 4.16 needs to be invertible. We have proven this property in Appendix A in [214].

Still, performing the full inversion can be a complex task, especially with respect to error
propagation. Therefore, we will follow an alternative approach by investigating the Q-function
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in the Fock basis

Q(α, α∗) =
1

π
e−|α|

2
∑
n,m≥0

ρn,m
(α∗)nαm√
n!m!

, (4.17)

where ρn,m defines the matrix elements of the SUT in the Fock basis. Therefore the no-click
probability is given by

c0 = exp
(
−η(1− T 2)|β|2

) ∑
n,m≥0

ρn,m√
n!m!

exp

(
− |y|

2

1 + σ

)
∂ny ∂

m
y∗ exp

(
|y|2

1 + σ

)∣∣∣∣
y=σβ̄︸ ︷︷ ︸

f(β̄,β̄∗)

.

(4.18)
Again, we will assume the SUT occupies a finite-dimensional subspace such that we can truncate
the Fock space. In this case, a finite number of β̄ is sufficient for state reconstruction, as we
can always approximate f(β̄, β̄∗) with Lagrange polynomials and therefore determine the Q-
function.

Finally we can directly extract the matrix coefficients ρn,m with established techniques in-
volving least-square [216, 219] or maximium-likelihood methods [194].

4.2.1.4 Comparison to amplitude variation

As a summary of the theoretical discussion, we want to compare our tomography overlap scheme
with amplitude-modulated WFH. As an example, we can consider a case where both SUT |α〉
and LO |β〉 are coherent states. Therefore we can rewrite Eq. 4.11 in a logarithmic form

ln c0 = −T 2η
(
|α|2 + µ2|β|2 + µφα∗β + µφ∗β∗α

)
. (4.19)

We can directly see that the logarithmic no-click probability ln c0 scales linearly with overlap
φ and quadratically with coherent state strength β. Therefore we cannot find a set {β} that
reproduces an overlap variation without knowing α. This shows that amplitude variations and
overlap variations are fundamenntally different. In addition, it can be shown that the Fisher
information between these two measurements is indeed different [214].

4.2.2 Experimental setup

In the following, we want to compare our theoretical findings with experimental data. The
measurement setup is shown in Fig. 4.5. Light from an OPO system is frequency doubled,
spectrally shaped with a 4f setup and used for pumping a type-II PDC process in a periodically
poled KTP waveguide. Both PDC polarizations are spectrally filtered with a bandpass filter.
In combination with the 4f line, this enables the generation of a spectrally decorrelated state
at 1550 nm. The idler beam (bottom beam path) is split on a 50/50 beam splitter for spatial
multiplexing. A tap-off from the OPO system is used to generate the LO. In order to match
frequency shape and spectral phase of the LO to the signal (from fiber dispersion), we use a
commercial programmable frequency shaper (Finisar Waveshaper). After frequency shaping,
the LO is attenuated. The order of frequency shaping and attenuation cannot be interchanged as
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Figure 4.5 – Setup for performing state tomography by the overlap. Light from a 1550 nm OPO is
frequency doubled (SHG) and used for pumping a type-II PDC process in a periodi-
cally poled KTP waveguide (PPKTP). The PDC modes are separated with a polarizing
beam splitter (PBS) and spectrally filtered (BP) before fiber coupling. A tap-off from
the OPO is used as a LO and spectrally shaped with a Finisar Waveshaper before at-
tenuation. The LO and SUT/signal are combined on a fiber 50/50 beam splitter (BS).
The idler polarization is also split on a 50/50 beam splitter for spatial multiplexing.
Polarization controllers (PC) are used to optimize efficiencies, while an acousto-optic
modulator (AOM) and an electro-optic modulator (EOM) are used to lower the laser
repetition rate. Finally, all fields are measured with single-photon detectors (SPD).

the Finisar Waveshaper emits light from a calibration lamp through the output fiber. Signal and
LO are combined on a second 50/50 beam splitter. Finally, all beam splitter output modes are
detected with SNSPDs. To account for the detector dead time, the laser repetition rate is reduced
with an acousto-optic modulator (AOM) and an electro-optic modulator (EOM) to 1 MHz. The
timing offset between the LO and the signal can be controlled with a free-space optical delay.

For the measurement 81 delay settings with an acquisition time of 150 s each were recorded.
Between the measurements, we used automated shutters for calibration purposes and to account
for drifts between different delay settings. For example, by blocking the LO beam path (top
shutter), we investigate the detection efficiency with the Klyshko method [221]. If the PDC
beam is blocked instead, we can characterize the beam path with the calibrated LO, revealing a
slight beam splitter asymmetry of 43.6/56.4. We can also investigate the maximal mode over-
lap by interfering a heralded single photon with a coherent state similar to a Hong-Ou-Mandel
interference [45] 3. For all measurements the LO coherent state had a mean photon number of
0.19.

3Note that even for perfect overlap non-unit visibility can be seen due to the coherent state photon number distribu-
tion [193]
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Figure 4.6 – Experimental data for measuring the photon number distribution by varying the over-
lap. Zero-click probability as a function of the LO time delay for a heralded one-click
(a) and two-click (c) event. Black dots show experimental data, whereas the red line
represents the theoretical fit. The reconstructed photon number distribution ρnn can
be seen in (b) and (d) in light grey. Narrow dark grey bars show the expected photon
number distribution calculated from measured experimental parameters. All measure-
ments are phase averaged. Reprinted from [214]. ©2018 IOP Publishing.

4.2.3 Results

As a first step, we want to determine the photon number distribution of a heralded one- and
two-click state. Figure 4.6 (a,c) shows the zero-click probability c0 as a function of the LO time
delay. The probability peak around 1.4 ps, where SUT and LO are interfering, can be seen clearly
in the raw data. During the data acquisition, the zero-click probability increased due to coupling
drifts, which were probably caused by temperature variations in the lab. These drifts were
monitored, using the reference measurements, and accounted for in the data analysis. Based on a
least squares method with linear constraints the photon number distributions were reconstructed
using Eq. 4.11 and Eq. 4.14 (see Fig. 4.6 (b,d) in light grey). Error bars are based on a data
bootstrapping technique. The reconstructed photon number probabilities are compared to the
expected photon number probabilities (smaller, black bars) based on the measured experimental
parameters (efficiency after the combining beam splitter η = 0.59 and a squeezing value of
r = 0.382). Both measurements show good agreement between the overlap tomography and the
expected values. Higher-order photon numbers are caused by rather strong squeezing values in
combination with optical losses in the heralding arm.

We can also determine the state overlap from a known SUT, as shown in Sec. 4.2.1.1. Fig-
ure 4.7 shows the inferred overlap modulus for different LO delays. The expected overlap is
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Figure 4.7 – Measured overlap values for a known quantum state (squares) as a function of the LO
time delay. In comparison, the expected overlap is shown as a red dotted line. Statis-
tical measurement uncertainties are small compared to the size of the data symbols.
Reprinted from [214]. ©2018 IOP Publishing.

shown as a red dotted line, which is in good agreement with the estimated overlap. Using over-
lap tomography, we have therefore shown that we can either determine the SUT or the overlap
modulus.

4.2.4 Multimode description

Up to now, we have only considered single-mode fields for the SUT and the LO that have an
overlap φ. In the following, we want to generalize our results to multimode fields. We consider
the broadband operators before (a†l,k) and after (b†l,k) the combining beam splitter, where l = 1, 2
labels the two input (output) modes and k = 1, . . . ,Kmax the spectral modes. The input-output
relation is given by a unitary matrix U

b†l,k =
∑
j=1,2

Ul,ja
†
j,k , (4.20)

or in matrix notation b† = (U ⊗ I)a† with the Kmax-dimensional identity matrix I and a =
(a1,a2) with al = (al,1, . . . , al,Kmax). We can write the two states ρ(l) that enter the beam
splitter in the Fock basis as

ρ(l) =
∑

n,m≥0

ρ
(l)
n,m|n〉〈m|, |n〉 ≡

Kmax∏
k=1

(
a†lk

)nk
√
nk!

|0〉 . (4.21)
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In this notation, the combined zero-click probability for the two output ports with detection
efficiencies ηl is given by

c0(η1, η2) = tr

ρ(1) ⊗ ρ(2) : exp

−∑
l=1,2

ηl

Kmax∑
k=1

b†l,kbl,k

 :


= tr

[
ρ(1) ⊗ ρ(2) : exp

(
−b
[(

η1 0
0 η2

)
⊗ I
]
b†
)

:

]
= tr

[
ρ(1) ⊗ ρ(2) : exp

(
−a
[
U †
(
η1 0
0 η2

)
U ⊗ I

]
a†
)

:

]
.

(4.22)

Following the considerations as for the single-mode theory, i.e. writing the SUT as a multimode
Husimi Q-function Q(1)(α,α∗) and assuming a coherent LO, we can simplify this equation to

c0(η1, η2) = κ−Kmax exp

(
− η1η2

1− κ
|β|2

)
∫
dµ(α) exp

(
−1− κ

κ

∣∣∣∣α +
(η1 − η2)U11U

∗
21

1− κ
β

∣∣∣∣2
)
Q(1)(α,α∗) , (4.23)

where κ = 1−η1|U11|2−η2|U21|2, dµ(α) =
∏Kmax
k=1 d

2αk and α = (α1, . . . , αKmax). Equivalent
to the single-mode case we can characterize a given SUT ρ(1) with a coherent LO ρ(2) = |β〉〈β|
with only one detector c0(η1, 0) (second detector is treated with zero efficiency). To be more
precise Eq. 4.23 is proportional to a multi-dimensional Weierstrass transformation, which allows
to perform the inverse transformation.

4.2.5 Conclusion

In summary, we have seen in this section how state tomography can be performed by varying the
SUT and LO overlap. We have seen that we can either characterize the quantum state (known
overlap) or determine the overlap value (known state) in a single measurement configuration. A
simple experimental setup, using an optical delay line and a single binary detector, was built and
showed high agreement with our theoretical predictions. This work not only demonstrates a new
tool to perform state characterization, it also highlights the difference between SFH and WFH.
Because non-overlapping modes of the LO are still visible in a WFH, the overlap modulus can
be found for an unknown quantum state. This advantage of WFH is useful for characterizing
multimode quantum states or ruling out side-channel attacks in quantum communication [222].

4.3 Incomplete detection of generalized phase-space functions

The verification of non-classicality is one of the main goals for quantum tomography. In this
context, generalized phase-space functions, as discussed in Sec. 4.1.1, are very helpful, as non-
classicality is connected to negative regions in the quasi-probability distribution. In general,
however, specific phase-space representations such as the Wigner function are very susceptible
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to experimental imperfections such as loss. For example, the Wigner-negativity of a single-
photon state is erased after 50% loss [46]. Therefore investigating the Wigner function of a
quantum state under realistic conditions often requires inversion algorithms that account for
imperfections [185, 219, 223–225]. Surprisingly, a specific experimental restriction, namely
the number of available binary detectors N , can be an advantage for verifying non-classicality.
Here we want to investigate the generalized phase-space functions experimentally in the con-
text of detector multiplexing as theoretically proposed by Luis et al. [226]. In general, this
technique requires phase stability between the SUT and LO. However, as we will investigate
phase-symmetric single-photon states, we can lift this constraint. In addition, we will also link
the generalized phase-space parameter s with the detection loss η to allow for direct, loss-robust
state characterization without the need for inversion algorithms. The content of this section was
published in [112].

4.3.1 Theoretical considerations

We have already introduced the generalized phase-space function in Eq. 4.3. This work was
further investigated in the context of pseudo-photon number resolution with N binary detectors
by Luis et al. [226]. The modified generalized phase-space function for N detectors can be
expressed as

WN (α, s) =
2

π(1− s)

N∑
k=0

(
η(1− s)− 2

η(1− s)

)k
ck(α) (4.24)

with the probability of ck(α) simultanous detection events at a displacement α and a detection
efficiency η [226]. That approximates the generalized phase-space function W for sufficiently
high N . For even numbers of N , a negative value is also a sufficient criterion for having non-
classicality. We combine the detection efficiency η and the s-parameter in a new x-parameter
[112], to highlight the connection between both values

WN (α, x) = A

N∑
k=0

(
x− 2

x

)k
ck(α) , (4.25)

with x = η(1 − s) and a numerical constant A. This shows that, to some extent, losses can be
counteracted by simply increasing the s-parameter, similar to the results shown in [183]. In prac-
tice, we will see that efficiency drifts and noise counts during the measurement can significantly
increase the uncertainty, which is given by

(∆WN (α, x))2 = A

N∑
k=0

(
x− 2

x

)2k ck(α)(1− ck(α))

M
(4.26)

with a total number of M recorded measurements per recorded displacement α [226]. We can
also define the statistical significance of our measured data as [112, 226]

Σ =
WN (α, x)

∆WN (α, x)
. (4.27)
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Figure 4.8 – Setup for measuring generalized phase-space functions. Light from a 1550 nm OPO
is frequency doubled (SHG) and used for pumping a type-II PDC process in a pe-
riodically poled KTP waveguide (PPKTP). Both PDC modes are separated with a
polarizing beam splitter (PBS) before fiber coupling. The idler mode is spectrally
filtered (BP). A tap-off from the OPO is used as a LO and spectrally shaped with
a Finisar Waveshaper before attenuation. The LO and signal/SUT are combined on
a highly transmissive fiber beam splitter (BS). The idler polarization and the beam
splitter output are coupled to a TMD unit (2x8bins). Polarization controllers (PC)
are used to optimize efficiencies, while an acousto-optic modulator (AOM) and an
electro-optic modulator (EOM) are used to lower the laser repetition rate. Finally,
both TMD output modes are measured with single-photon detectors (SPD).

As a next step, we will now investigate the interplay of the number of detectors N and the
generalized x parameter in an experiment.

4.3.2 Experimental results

To experimentally investigate the generalized phase-space function, we perform an experiment
similar to the setup we have shown for the overlap tomography. Therefore, we will only describe
the modifications between these setups (see Sec. 4.2.2 for further details). A schematic is shown
in Fig. 4.8. In contrast to the overlap measurement, we only record data for the maximal over-
lap value of around 70% between SUT and LO, determined with an interference measurement.
Furthermore, both modes are combined on a highly transmissive beam splitter to displace the
SUT and to allow for direct sampling of the Wigner function. Using a calibrated variable atten-
uator, we can change the LO mean photon number. The bandpass filter (BP) in the signal arm
is removed to maximize the tomography efficiency. Finally, the light fields are temporally sepa-
rated in a TMD unit (two inputs with eight time bins each) to allow for pseudo-photon-number
resolution. We can combine individual time bins in post-processing to effectively measure with
a two-, four- or eight-bin TMD. We calculated a detection efficiency of 21%.

Using the idler mode, we can prepare heralded single-photon states that can be investigated
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(a) (b)

Figure 4.9 – Generalized phase-space function as a function of the LO strength with x = 0.21 (a).
Calculated significance Σ of the generalized phase-space function as a function of x
(b) without any displacements (α = 0), as defined in Eq. 4.27. For both figures a her-
alded single-photon state was investigated. Reprinted from [112]. ©2018 American
Physics Society.

with the phase-averaged LO. Figure 4.9 (a) shows such a measured generalized phase-space
function as a function of the displacement α and an x value of 0.21. Like the Wigner function
of a single-photon Fock state, the maximal negativity is found at the origin. Another important
factor for the displaced single-photon state is that the phase-space function also shows positive
values for higher α. Without a sufficient overlap between SUT and LO, these positive values for
a single-photon state cannot be reached.

In addition we evaluate the significance Σ of the phase-space function in Fig. 4.9 (b) (see
Eq. 4.27). Here, we restrict ourselves to the point of the strongest negativity (origin, no dis-
placement α = 0). We can see the surprising result that fewer detectors can actually increase the
detected significance, in accordance with the predictions from [226]. Besides, for all detector
values N an optimal phase-space function x can be found to maximize the significance Σ. This
can be understood more intuitively, as low x values show a weak negativity of the phase-space
functionW , while high x values significantly increase the measurement uncertainty.

4.3.3 Conclusion

In summary, we have shown that the link between pseudo-photon-number-resolved measure-
ments and phase-space functions can be fruitful to determine the quantum state. This link allows
us to show a loss-robust method that is able to directly investigate state properties without any
state inversion algorithms. In addition, experimental restrictions, such as the number of avail-
able binary detectors, can actually be an advantage for measuring non-classicality. This work,
therefore, provides a useful new measurement tool to determine non-classical properties under
realistic conditions.
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Figure 4.10 – Schematic illustrating the ‘truly local’ LO generation. (a) Common single-laser to-
mography scheme where SUT and LO are transmitted to the detection side. (b) New
two-laser approach, where the LO is generated at the receiver side.

4.4 Generating a ‘truly local’ local oscillator

In contrast to the previously shown detection schemes, we will now use a second, dedicated laser
for generating the LO. In this section, we will discuss technical details connected to this approach
before we apply our new tool for quantum state characterization in Sec. 4.5. The technical
difficulties we encountered fostered a strong collaboration with the electrical engineering group
of Professor Scheytt from Paderborn University, which resulted in further projects involving the
generation of low-noise electrical signals and a proposal for reducing timing jitter measurements
with squeezed light. These projects are briefly described in Sec. 4.4.5 and Sec. 4.4.6.

To the best of our knowledge, all described quantum tomography schemes in the literature
have in common that the generated quantum state and the local oscillator are derived from the
same laser source. This is a huge constraint that we want to address with our new ‘truly local’
LO approach (see Fig. 4.10). Firstly, a ‘truly local’ Lo is an important ingredient for CV commu-
nication. CV communication is an interesting research topic with increasing attention in recent
years [227–230]. One of the advantages is that nowadays classical information is already trans-
mitted using similar tools (quadrature amplitude modulation, QAM e.g. [231]) and therefore
promises a rather easy implementation of quantum communication based on existing technolo-
gies. Crucial to extract the encoded information in CV communication is an LO that provides
a phase reference. In existing CV quantum communication schemes, the LO is transmitted to-
gether with the quantum state. However, this reduces the security of the communication, as the
LO can be manipulated while being sent to the transmitter. Secondly, sending the LO requires a
significant part of the transmission bandwidth, which can be avoided with our approach. Finally,
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having a ’truly local’ LO implies that more power is available for the quantum state generation,
as no tap-off is required. In previous measurement schemes, power constraints were often a
limiting factor (e.g. [96, 112])

4.4.1 Why pulsed quantum optics?

Pulsed light emission from a laser system is a key resource for many quantum optical applica-
tions. However, it poses severe difficulties for overlapping pulses from spatially separate lasers
(especially for femtosecond pulses) compared to continous-wave experiments. We will discuss
in the following why these benefits are crucial and justify additional stabilization efforts. Firstly,
the peak power of a pulsed laser is much higher than CW light with the same average power.
Therefore the resulting non-linearity is higher and, for example, higher squeezing values can be
reached (whithout additional restrictions such as thermal induced heatings). Secondly, pulsed
light has an intrinsic timing reference that can be used for synchronization. If probabilistic oper-
ations have to be carried out, high repetition rate experiments can increase the overall data rate.
Successful events will still occur randomly but can only happen in predefined time-windows. Fi-
nally, generating high-quality (and single-mode) quantum optical states can be easier with pulsed
light, especially for type-II PDC. We have seen in Sec. 2.2.1 that the phase-matching bandwidth
of a group-velocity matched type-II process should correspond to the laser pump bandwidth.
The phase-matching width is directly connected to the inverse of the crystal length. A narrow
phase matching, therefore, corresponds to a long nonlinear crystal. High-quality single-photons
from a KTP crystal have been shown up to the picosecond regime, with a crystal length of
2.5 cm [135]. However, with increasing crystal length, fabrication errors become more pro-
nounced [232]. For this reason, we will follow the standard approach in this thesis of using
femtosecond pulses with a broad spectral bandwidth to generate high-quality, decorrelated PDC
states. Typical laser parameters used for the following tomography experiments are shown in
Table 4.1. Before we discuss these experiments further, we will briefly revisit the generation of
ultra-short pulses because a profound understanding of the involved parameters is essential for
the manipulation.

4.4.2 Passively mode-locked lasers

Just a few years after the demonstration of the first laser [8], the first ideas of generating short
laser pulses were discussed [233]. In general, the laser resonator cavity allows a discrete set of
frequency modes in the laser cavity. In combination with the optical gain from the laser medium,
some subset of these laser modes will be populated. An example laser spectrum, which is often
referred to as a frequency comb, can be seen in Fig. 4.11 (a). In order to start pulsed laser
operation, all populated frequency modes need to have a specific and fixed phase relation. This
process is known as mode-locking and has been shown with active [234] and passive elements
[235]. Here we will focus on passive mode-locking as it enables the formation of ultrafast fs
pulses. The basic idea of passive mode-locking is that the laser cavity loss is reduced if all laser
modes are constructively interfering. In other words, we have an intensity-dependent cavity loss,
which favors pulsed operation with high intensities over all other lasing regimes. The formation
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Frequency Property Typical
Value

Time Property Typical
Value

Additional
Information

frep: frequency-comb
separation

76 MHz Trep: pulse separa-
tion

13.2 ns frep = 1
Trep

. De-
fined by the cavity
length of the laser

σf : comb width 2.5 THz σt: pulse duration 177 fs Defined mainly by
the gain medium
and dispersion
properties in the
cavity

δ: frequency linewidth
of a comb tooth

< 500 kHz Tc: coherence time >2µs The very long time
duration Tc is not
shown in Fig. 4.11

f0: center frequency 387 THz
(775 nm)

T0: carrier period 2.6 fs

fCEO: carrier envelop
frequency

0 ≤ fCEO <
frep

φCEO: carrier en-
velop phase

uncontrolled in this
experiment

Table 4.1 – Frequency and corresponding time properties of a mode-locked laser system are com-
pared in this table. Compare Fig. 4.11 for an illustration of these parameters.

of pulses is only possible for a very short time as many frequency modes are involved. To be
more specific, the number of frequency modes (spectral width of the laser) is inversely linked
to the pulse duration. Similarly, a variety of laser parameters such as laser repetition rate frep,
comb center frequency f0 or comb linewidth δ can be defined in the spectral domain or the
corresponding temporal domain. Figure 4.11 and Table 4.1 show the links between these two
sides. It is important to understand these parameters if multiple ultrafast lasers are connected.

One parameter that is of particular interest is called the carrier-envelope offset (CEO) fCEO.
We can extrapolate the frequency comb down to lower frequencies, as shown in Fig. 4.11 (a).
In general, there will be a non-vanishing offset of the first frequency component, which defines
the carrier-envelope offset frequency fCEO. Applying a Fourier transformation of the frequency
comb, we can see that a non-zero CEO frequency will cause a varying phase between the pulse
envelope and the carrier field (carrier-envelope phase, Fig. 4.11 (b)). CEO properties have been
discussed in great detail in classical optics [236–241], especially for very short few-cycle pulses
[240]. In this extreme regime, the electric field amplitude depends strongly on the CEO. In order
to control the CEO, different techniques have been shown [237, 239]. One common method to
extract the CEO phase for stabilization is called an f-2f interferometer. Here one part of the
comb at frequency f is frequency doubled using SHG and interfered with an additional fre-
quency component from the comb at 2f . Obviously, this requires an octave-spanning spectrum
of the frequency comb that includes both frequencies f and 2f . For the lasers here, this condi-
tion is not fulfilled. Although frequency broadening techniques such as self-phase modulation
have been explored to broaden the spectrum [242], we will not implement CEO stabilization
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Figure 4.11 – The output light field of a mode-locked laser system can be either described in the
frequency domain (a) or in the time domain (b). The frequency spectrum has comb
structure with a center frequency f0, a comb separation frep and an overall envelop
function with a width σ. If the comb is theoretically extended to DC frequency (red)
there is, in general, an offset between zero frequency and the first extended comb
line. This offset is called fCEO. The electric field is defined by a fast oscillating
electric carrier field which is amplitude modulated with a pulsed envelope function
(red-dashed). Pulses have a distance of trep and a width of σt. It can be seen that
the phase between the carrier field and the envelope function changes from pulse to
pulse. This phase drift from one pulse to the next is called the CEO phase. See text
and Table 4.1 for further details.
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techniques in this thesis due to the additional experimental requirements. Instead, we will dis-
cuss a tracking technique to monitor the CEO to compensate for this effect (see Sec. 4.5.2). In
our final experiment, we will interfere two passively mode-locked lasers for quantum tomog-
raphy. Therefore, recording the phase value in combination with the detected photon numbers
is important, as the relative phase between LO and SUT will vary from pulse to pulse due to
the CEO offset between both lasers. In addition to these fluctuating phases, already achieving
a constant overlap between both pulse-envelope functions is challenging. Therefore, we will
define noise parameters that are relevant for the characterization as a next step.

4.4.3 Defining noise properties for mode-locked lasers

It is important to characterize the described laser parameters carefully, especially if multiple
lasers are combined, as shown in Sec. 4.5. For this purpose we will define some important terms
as follows:

• Phase noise and timing jitter: For this definition we will only consider the temporal
pulse envelope function. This function can have a phase that shifts the absolute position
of the pulse train with respect to a global timing reference. Any noise terms that shift the
pulse train are referred to a phase noise which cause a timing jitter of individual pulses
compared to the timing reference. Timing fluctuations will decrease the overall overlap
between two light field and therefore decrease the interference visibility.

• Optical phase noise: Phase fluctuations of the optical carrier field will be named optical
phase noise. These noise terms, for example, influence the interference pattern of two
light field (destructive or constructive interference).

• Sideband phase noise: If the pulse train is measured with a fast photodiode, the gener-
ated electrical signal in the frequency domain will show a series of peaks spaced by the
laser repetition rate. For an ideal configuration these peaks are a series of delta functions.
However, noise processes such as phase noise or amplitude noise of the pulse train will
broaden these peaks. The shape around these peaks will be referred to as sideband phase
noise. We will use the sideband phase noise to find an upper bound of the phase noise
value.

After discussing the basics of mode-locked lasers, we are able move forward to the area of
laser locking.

4.4.4 Laser locking

As we have seen, laser locking can imply the control of a variety of parameters. We focus here
on stabilizing the envelope function of the pulsed laser system. In other words, the repetition
rate of two laser systems is stabilized, such that the pulse trains from the lasers have the same
spacing. We characterize the individual RMS timing jitter value from each laser system with
the help of a signal source analyzer and evaluate the overall jitter performance of the two laser
systems based on pulse resolved optical interference measurement.
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4.4.4.1 Stabilising the repetition rate

In order to have a high mode overlap between the SUT and the LO, we have to exactly match
the pulse spacing (in the time domain) from both lasers. Therefore the cavity length of the
mode-locked laser needs to be changed to adjust the repetition rate of the laser system. We
use two commercially available stabilization options from Coherent and NKT-Photonics (previ-
ously OneFive) for this task. Both systems use different actuators in order to change the cavity
length. The Synchrolock-option from Coherent uses a very slow stepper motor for pre-adjusting
the cavity length. Then two faster actuators enable tuning of the cavity with a bandwidth of
up to 10 kHz. These modulations are fast enough as the main noise contributions result from
temperature fluctuations and mirror vibrations. The NKT-Photonics system uses temperature
tuning to adjust the cavity length for slow drifts and a piezo element for fast tuning, enabling
a stabilization bandwidth of up to 10 kHz. In order to stabilize the repetition rate, a feedback
signal is needed for the locking electronics. Therefore some part of the laser beam is sent to a
fast photodiode. The resulting electrical signal is compared with a stable reference signal and an
error signal is derived, which is fed back to the laser actuators. The working principle is com-
pletely analogous to well-known electrical phase locked loops (PLL), which are used to lock to
a reference frequency.

Unfortunately, two effects (amplitude noise and repetition rate jitter) can affect the locking
mechanism. This problem has been studied in the past and it has been shown that both effects
scale differently while going to higher harmonics of the electrical signal [243]. If the amplitude
noise is slowly varying compared to the laser repetition rate (which is a valid assumption for
passively mode-locked lasers), the amplitude noise is constant for all harmonics. The repetition
rate jitter, however, scales quadratically with the harmonics. Therefore the effect of amplitude
noise can be suppressed by selecting higher harmonics. The NKT-Photonics origami laser locks
on the 40th harmonic at 3.04 GHz, while the Coherent Mira laser locks either on the fundamental
frequency at 76 MHz or the 9th harmonic at 684 MHz. Although higher harmonic locking is
required to achieve low jitter values, the absolute time position of the pulse train cannot be
recovered anymore. In other words, locking to the n-th harmonic randomly selects one of n
positions with respect to the fundamental pulse train. Only the Coherent Mira laser can resolve
this problem with an additional fundamental lock. Here the laser system initially locks on the
fundamental frequency before the harmonic locking is enabled (and finally, the fundamental lock
is turned off). This enables locking the pulse train to an absolute position.

4.4.4.2 Direct jitter measurements

Measuring the jitter of the laser pulse envelope function down to the fs level is a non-trivial
task. Here we want to convert the optical signal to an electrical signal where measurement
equipment is available to determine the phase noise. A perfect optical pulse train in combination
with a perfect photodiode would result in a series of delta peaks in the frequecy domain (of
the photodiode signal). However, imperfections such as intensity fluctuations or repetition rate
variations will broaden these peaks. With the so-called Von der Linde method we can relate
this sideband phase noise to a timing fluctuation [243]. The measurement setup is shown in
Fig. 4.12. Either a Coherent Mira laser or an NKT Photonics Origami laser is investigated.
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Figure 4.12 – Schematic illustrating jitter measurements of the laser repetition rate. Light from a
Coherent Mira laser is detected by a Thorlabs DET02AFC photodiode (a) or light
from an NKT photonics Origami 1550 laser is detected by a Thorlabs DET01CFC
photodiode (b). Appropriate impedance matching is guaranteed with a 1dB attenu-
ator followed by a ceramic bandpass filter (Mini-Circuits ZX75BP-915-S), which is
selecting the 12th harmonic of the electrical signal. The jitter is finally measured by
an AnaPico APPH20G Signal Source Analyzer.

The optical pulse train from these laser systems is converted to an electrical signal with fast
photodiodes (∼ 1 GHz), which are used in combination with a 1 dB attenuator to provide 50 Ω
termination. The Fourier transformation of the electrical signal is a flat frequency comb with a
peak separation of the laser repetition rate 76 MHz4. The maximal comb frequency is given by
the photodiode bandwidth, which is in this case around 1 GHz for the 3 dB roll-off. In order
to suppress the effect from amplitude noise in the measurement, we use a ceramic bandpass
filter (Mini-Circuits ZX75BP-915-S) to select the 12th harmonic of the electrical signal (c.f.
Sec. 4.4.4.1). The sideband phase noise is finally measured with a signal source analyzer. This
device is able to measure very low noise values that correspond to a temporal jitter on the order
of fs. To achieve such low sideband phase noise measurements, the incoming signal can be
analyzed with cross-correlation techniques to lower the internal device noise floor.

The resulting sideband phase noise measurements for the Coherent Mira Laser are shown in
Fig. 4.13. The upper plot shows the measured sideband phase noise from 1 Hz to 100 MHz
around the 12th harmonic at 912 MHz. The lower plot shows the integrated RMS jitter value
resulting from this phase noise. The jitter value is the integrated sideband phase noise from
the given frequency to 100 MHz. For example the green curve shows a jitter value of around
2 ps at 10 Hz. This means that the integrated sideband phase noise from 10 Hz to 100 MHz
corresponds to 2 ps. Four different locking configurations where investigated. Blue: open loop,
Green: fundamental locking, where the laser only locks to the fundamental repetition rate, red
and purple: harmonic locking where the laser locks to the 9th harmonic of the repetition rate.
More information about the laser repetition rate locking can be found in Sec. 4.4.4.1. It can be
seen that harmonic stabilization is required for low jitter values. Especially a noise source around
100 Hz can be seen in the sideband phase noise measurement, which could result from cavity

4Note this frequency comb is fundamentally different than the optical frequency comb centered in the THz regime
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Figure 4.13 – Sideband phase noise measurement from a Coherent Mira laser system. The upper
plot shows the sideband phase noise value with respect to the carrier from 1 Hz to
100 MHz sideband frequency. The lower plot shows the RMS jitter value resulting
from phase noise integration. The system jitter was measured at the 12th harmonic
of the laser repetition frequency. Four different synchronization methods are inves-
tigated. See text for further details.

mirror resonances or pump laser fluctuations. These noise sources can be strongly reduced with
appropriate locking parameters, as seen in the purple trace. Jitter values down to 140 fs from
1 Hz to 100 MHz can be observed for this configuration.

Fig. 4.14 shows the corresponding jitter measurement for the NKT-photonics Origami laser.
Jitter values down to 360 fs from 1 Hz to 100 MHz can be observed for this configuration. It can
be seen that this laser experiences lower jitter values in the open-loop (unlocked) configuration
than the Coherent Mira laser. If locking is enabled, jitter values are comparable. The difference
can mainly be explained by the RF generators used to lock the laser. The Origami laser requires
a signal at 3.04 GHz, whereas the Mira laser locks to a 76 MHz signal. The jitter values from
these RF-sources are measured and show a timing jitter of 350 fs from 1 Hz to 100 MHz for the
3.04 GHz signal and a value of 140 fs from 1 Hz to 100 MHz for the 76 MHz oscillator. Details
about the RF- source measurement can be found in App. E. The measured jitter values for both
laser systems are therefore mainly limited by the phase noise from the RF sources.

4.4.4.3 Interference measurement

In addition to the discussed jitter characterization method based on the Von der Linde method,
we will also characterize the jitter with an optical interference measurement. In principle, optical
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Figure 4.14 – Sideband phase noise measurement from a NKT-photonics Origami laser system.
The upper plot shows the sideband phase noise value with respect to the carrier from
1 Hz to 100 MHz sideband frequency. The lower plot shows the RMS jitter value
resulting from phase noise integration. The system jitter was measured at the 12th
harmonic of the laser repetition frequency. Three different synchronization methods
are investigated. See text for further details.

methods are better suited to determine very small noise values [244, 245], but often require the
combination of two lasers. Here we will investigate the performance of the 775 nm Mira laser
with the frequency-doubled 1550 nm Origami laser. Figure 4.15 shows the schematic setup,
where both laser fields are combined on a beam splitter and measured with a fast photodiode.
The generated electrical signal is, in this case, measured in the time domain with an oscilloscope.
An example time trace can be seen in Fig. 4.16, where interference is only happening on rather
short time scales of 150µs (regions with higher voltage values due to constructive interference).
This plot is an often encountered example, where the laser locking is not sufficiently correcting
for the environmental noise sources.

In combination with the signal-source analyzer, we have found a set of settings enabling low
jitter values (see Fig. 4.17). We have found that we either have to pre-stabilize the master laser
on a low jitter external oscillator, similar to the results in [246], or, as a second approach, we can
also lock both laser systems to a common shared clock. In any case, the reference signal must be
generated carefully. It should have the appropriate power level at the desired locking frequency
and low phase-noise values, especially below 10 kHz, where the laser actuators can follow the
reference signal.

We still observed some long term drifts on the order of seconds. These could result from
varying path length between the laser systems due to temperature fluctuations in the lab (lasers
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Figure 4.15 – Schematic illustrating the optical interference measurement.

have a separation of 4 m). However, these drifts do not prevent our final measurement as we
have to post-select on high interference value for phase reconstruction anyway (see Sec. 4.5.2).

With this, we have proven that repetition-rate locking of two-laser systems can be achieved.
Before we apply our work to quantum tomography, we will briefly describe two side projects
that were realized in collaboration with the electrical engineering group of Professor Scheytt
from Paderborn University, while investigating the laser noise-properties.

4.4.5 Generating low phase-noise electrical signals

Our results have shown, that mode-locked laser systems can be considered as a very precise
timing reference. Exact timing references are a crucial ingredient for many electrical devices,
from satellite navigation systems, to analog to digital converters, to our communication systems.
In many applications, surface acoustic wave or quartz oscillators are the workhorse to generate
low noise timing signals. However, if we are searching for stable timing references on very short
time scales, passively mode-locked lasers have shown outstanding performance [247–249]. For
these lasers, the mode-locking mechanism itself and the associated coherence length sets an
upper bound for variations. We will discuss the fundamental limits for high-frequency noise
term in the next section. In collaboration with the group of Professor Scheytt we utilized these
properties to derive a low-noise electrical signal. Different approaches have been suggested to
convert the low noise optical pulse train to an electrical signal with low phase-noise values [250–
255]. We implemented a new approach based on a Mach-Zehnder modulator [256] similar to the
work in [257] but with a wide tuning range of the electrical output signal (5 GHz to 10 GHz in
76 MHz steps). With this configuration we have shown jitter values down to 13.8 fs at a carrier
frequency of 10.032 GHz integrated from 1 kHz to 100 MHz (better than previous works with
this method [257]) and a rather compact device suitable to generate low noise electrical signals.

4.4.6 Squeezing for ultra low timing jitter measurements

We have already discussed that mode-locked lasers have superior noise performance in specific
frequency ranges. This poses the question about the fundamental limits with classical and non-
classical light for these noise values. To study this question, we want to focus on time scales
shorter than 1µs, where laser cavity fluctuations from thermal drifts and mirror vibrations can
be neglected (e.g. [258, 259]). A detailed analysis of noise sources has been reported based
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Figure 4.16 – Interference signal between a Ti:Sapph and a frequency-doubled erbium laser. (Top)
full oscilloscope trace. Areas with high values are given when pulses from both
lasers are (constructively) interfering. Due to a rather high jitter, most of the time,
no interference is happening. (Middle) 40µs section of the oscilloscope trace show-
ing a time area where interference is happening. (Bottom) 200 ns section of the
oscilloscope trace showing an individual pulse from the photodiode. The recorded
oscilloscope trace contains 25 MSamples recorded with 5 GSamples/s. See text for
further details.

on classical and semi-classical models [260–264]. On the quantum optical side, the idea of
using squeezed light to improve timings in the context of time transfer between different parties
has been proposed [265] and recently demonstrated [266]. Here we want to suggest amplitude
squeezed light to reduce the phase noise level of a single laser to improve the derived clock
stability.

To do so, we have to differentiate two noise sources in pulsed lasers. On the one side, we can
identify a noise process that decreases quadratically as 1/f2 in frequency f . A laser following
this noise behavior is called quantum limited. This noise results from different quantum effects
such as spontaneous emission from the gain medium that occurs inside the laser cavity. There-
fore the laser characteristics perform a random walk. Most importantly is that this noise appears
inside the laser cavity and cannot be compensated by amplitude squeezing after the laser. On
the other side, we have the so-called shot-noise limit (SNL) with a frequency-independent noise
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Figure 4.17 – Interference signal between a Ti:Sapph and a frequency-doubled erbium laser. (Top)
full oscilloscope trace. Due to a very low timing jitter, interference can be seen
over the full oscilloscope trace. (Middle) 40µs section of the oscilloscope trace
showing a time area where interference is happening. (Bottom) 200 ns section of the
oscilloscope trace showing an individual pulse from the photodiode. The recorded
oscilloscope trace contains 25 MSamples recorded with 5 GSamples/s. See text for
further details.

spectrum (white) from the amplitude uncertainty of a coherent state. This noise level will affect
the timing error (phase noise) and amplitude noise of the optical pulse train [267]. Interestingly,
the optical timing jitter can still be detected, even though the pulse response from the photodiode
might be orders of magnitude slower than the optical pulse duration [267].

From now on, we will only concentrate on the SNL, which will be the leading contribution
at higher frequencies. We suggest amplitude squeezed light to reduce this noise level. This
squeezed light, for example, could be generated in an optical fiber inside an asymmetric Sagnac-
interferometer (e.g. [268]). However, the major technical challenge will not only be to generate
the non-classical light but also to detect the extremely low noise level, which is already extremely
low for SNL lasers.

Based on Eq. 9 in [262] we can estimate the noise level of a shot-noise limited laser. For
the given parameters of our NKT-photonics Origami laser (τpulse = 200 fs, λ = 1550 nm,
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Pavg =10 mW) we can estimate a noise floor of 0.3 zs2/Hz from

S(f) = 0.2647
hν

Pavg
τ2

pulse (4.28)

for the two-sided spectral power density of the pulse timing error for sech2 shaped pulses [262].
This low noise value poses a major challenge for the detection method. We can see from Eq. 4.28
that the timing jitter caused by shot noise scales quadratically with the pulse duration. Therefore
the detection is rather easy for actively mode-locked laser systems with long pulse durations.
For passively mode-locked lasers with pulse durations in the fs range the detection becomes a
major challenge. To achieve ultra-low noise measurements a method based on optical cross-
correlations has been demonstrated (e.g. [269]). Here the noise floor of the measurement is
below the shot noise level. Another approach can be found in [267] where in-house-fabricated
photodetectors with electrical cross-correlation were used to achieve a very low noise level (-
182 dBc/Hz).

In summary, we propose that the timing jitter from mode-locked lasers can be improved with
optical squeezing if the laser pulse train is already shot-noise limited. We clarify that a ‘quantum-
limited’ laser output is not sufficient. For the simple case where the pulse train is investigated
without an optical LO, amplitude squeezing of the optical carrier field is required to achieve
lower timing jitters. Currently, the detection of the ultra-low phase noise values present in SNL
passively mode-locked lasers is a major technical challenge. However, the SNL will eventually
limit the timing jitter derived from mode-locked lasers. The suggested squeezing approach can
overcome this classical barrier.

4.4.7 Conclusion

In this section, we have discussed that a ‘truly local’ LO is beneficial for quantum characteriza-
tion because it avoids power constraints, as the full power of the transmitter laser can be used for
the quantum state generation. In addition, our approach can be beneficial for CV quantum com-
munication, where the local aspect of our LO improves security aspects and avoids bandwidth
limitations. We have experimentally shown that the pulse trains from both laser systems can be
stabilized with femtosecond precision. In collaboration with the group of Professor Scheytt, we
developed new projects involving the generation of low-noise electrical signals and a proposal
for reducing timing jitter measurements with squeezed light. In the following, we will show how
two repetition-rate-locked lasers can be used to perform quantum tomography.

4.5 Two-laser tomography

As a next step, we want to use the presented two-laser approach for quantum tomography and
profit from its advantages. To demonstrate a prove-of-concept experiment, we have to show a
phase stable experimental setup. Even for a single-laser case (LO and quantum state are de-
rived from the same laser), phase stability poses a major challenge, especially for WFH schemes
due to an intrinsically low signal to noise ratio. For this reason, only a few experiments have
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shown phase-sensitive measurements for non-classical states [270–272] with single-photon de-
tectors. These papers have recorded up to two simultaneous events per displaced mode and
shown phase-dependent correlations between individual events. Instead, we want to investigate
larger quantum states and show phase stability for the full correlation distribution. In addition,
we will demonstrate that overcoming the phase-stability challenge for WFH opens the door for
new detection methods such as an improved squeezing measurement with respect to SFH.

4.5.1 Measurement scheme

Measuring squeezed light is a primary application for SFH because reduced noise variances can
be directly seen from the measurement output, as discussed in Sec. 4.1.2. Two main mechanisms
limit the amount of detectable squeezing, namely optical loss and phase fluctuations between
SUT and LO (optical phase jitter). We will focus on the latter, which has been described in
detail in the literature [273–276]. In this section, we want to discuss a new approach to measure
squeezing with a weak local oscillator in the direct probing (DP) configuration (see Sec. 4.1.2).

The fundamental reason behind the jitter-induced squeezing limit is illustrated in Fig. 4.18.
SFH performs a projection of the squeezing ellipse on a quadrature axis. The phase θ that
defines the rotation of the ellipse is directly connected with the relative phase between LO and
SUT. Depending θ, either squeezing or anti-squeezing values can be observed, as shown in
Fig. 4.18 (b) (green, dashed). It can be seen that quadrature variances with an uncertainty smaller
than the vacuum can only be seen for a rather small phase range (area I). Any optical phase
fluctuations during the measurement will limit the minimal detectable amount of quadrature
variance as areas with higher variance are coupled to the measurement. This effect becomes
more pronounced for higher squeezing values (area I becomes narrower) [275]. We have already
seen in Sec. 4.1.2 that DP can perform a cut of the Wigner function instead of a projection.
Here we want to use this feature to perform phase jitter robust squeezing measurements, as we
suggest in [165]. By cutting an ellipse, sub-shotnoise variances can be seen over a wide phase
range (blue curve and area II in Fig. 4.18 (b)). This directly implies that an optical phase jitter
does not affect the measured squeezing value as strongly as in SFH. In some sense, SFH is
rather optimized for measuring anti-squeezing as opposed to measuring squeezing. Our new
method, instead, is optimized for measuring squeezing. In our experimental realization we will
investigate a two-mode squeezed vacuum (TMSV) state because in quantum communication
schemes the entanglement between signal and idler mode can be directly used.
Measuring two-mode squeezing
Our newly suggested method can be extended for a TMSV state, as described in Eq. 2.15. In
this case the Wigner function is a 4D function of the two complex parameters β1 and β2 [277]

W (β1, β2) =
4

π2
exp

(
−e2r

∣∣β1 + β∗2e−iϕ
∣∣2 − e−2r

∣∣β1 − β∗2e−iϕ
∣∣2) , (4.29)

and a phaseϕ resulting from the pump. Harder et al. suggested an interesting method to measure
squeezing without any phase stability that is restricted to this two-mode squeezing case [277].
In their work, they only vary one parameter β1 in a phase-averaged way while the other is kept
at zero β2 = 0 and show that a reduced quadrature variance can still be seen. We have already
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Figure 4.18 – Single-mode squeezed vacuum state rotated with a phase θ. Vacuum variance is
indicated as a red dotted circle (a). Measured squeezing values as a function of θ are
shown for SFH (green, dashed curve) and DP (blue curve). Areas I and II indicate
the phase range where non-classicality can be observed. See text for further details.

discussed in Sec. 4.1.2 that different points in the Wigner function can be addressed in the DP
scheme with displacements. This means for two-mode squeezing that we have two LOs in the
signal and idler polarization for displacements (βs = β1 and βi = β2). However, the suggested
special cut of the 4D Wigner by Harder et al. is non-optimal to detect squeezing. For a fixed
LO strength |βi| + |βs| we can see from Eq. 4.29 that the case of βi = βs is better suited to
uncover squeezing. For illustration purposes, we can link this to the single-mode case: Harder
et al. is cutting the squeezing ellipse under a 45◦ axis, whereas a cut parallel to the semi-minor
axis of the ellipse would be optimal. We will demonstrate this optimal cut βi = βs in the next
section, which still features the suggested optical phase noise robustness as the discussed single-
mode case. This means that our suggested method is able to uncover squeezing for a single- and
two-mode squeezing case.

4.5.2 Experimental setup

In this section, we will show experimental results for our new method on measuring squeezing
with a weak local oscillator in combination with a ‘truly local’ LO. The experimental setup is
shown in Fig. 4.19. On the transmitter side, a Ti:Sapph Coherent Mira laser is used to generate
light at 775 nm. The light field is then frequency shaped with a 4f setup and used for pumping
a type-II degenerate PDC process inside a periodically poled KTP waveguide. The remaining
pump field and the two-mode squeezed vacuum (TMSV) field are sent to the receiver5. The
LO light field at the receiver side is produced by an NKT-Photonics Origami erbium based fiber
laser. The LO is frequency doubled inside a second bulk KTP crystal (in-house fabrication).
This second crystal accomplishes two tasks at once. Firstly, the produced second-harmonic field
at 775 nm is interfered with the remaining pump from the transmitter side to extract the relative
phase between the processes. Secondly, the crystal also delays the horizontal and the vertical
polarization with respect to each other to compensate for the birefringence delay of the first

5Note: In general, sending the pump field is not required if both laser systems are CEO stabilized. For our proof of
concept experiment, we will use the pump field to substitute CEO stabilization.
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Figure 4.19 – Experimental setup for performing two-laser tomography. AOM: acousto-optic
modulator, PD: photodiode, ppKTP WG: waveguided periodically poled potassium
titanyl phosphate, (V)SP: (variable) short pass filter, SBC: Soleil-Babinet Compen-
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plate. See text for further details.

crystal (second crystal has half the length of the first crystal). The 1550 nm light that will be
used for the displacement is then attenuated with shortpass filters to the single-photon level and
adjusted with an in-house-built variable short pass filter. The relative phase between horizontal
and vertical polarization is adjusted with a Soleil-Babinet Compensator (SBC). As a next step,
the light fields from both lasers are combined on a broadband, highly transmissive beam splitter.
The top output from this beam splitter is directly measured with a fast silicon photodiode that
measures the interference pattern between LO and transmitter 775 nm light. The second output
port is filtered with a 10 nm bandpass filter around 1550 nm. Signal and idler modes are then
separated with a polarizing beam splitter and polarization adjusted with wave plates. Finally
a 2x8-bin time multiplexing unit with SNSPDs is detecting both modes. To account for the
detector dead time both laser systems use pulse pickers to lower the pulse repetition rate to
500 kHz. Both laser systems are also repetition-rate stabilized and locked to a global clock (see
Sec. 4.4.4.1 for more details about the repetition rate locking). To perform full state tomography,
the displacements of both signal and idler fields (βs, βi) and their phases need to be controlled.
To show the working principle, we will restrict ourselves to the optimal cases of measuring
two-mode squeezing with equal displacement (βi = βs).

The phase sensitivity of the experiment is a critical factor that requires some discussion. If
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Figure 4.20 – Cut of the 4D-Wigner function where both LOs are equal β = βi = βs. Yellow
dots show anti-squeezing, blue x mark the shot noise level and green dots show
squeezing. These points show the raw data (no correction for losses is performed).
From the data, an initial squeezing value of 6 dB, a detection efficiency of 16%
and an LO to TSVM overlap value of 20% can be inferred. Solid lines show the
theoretically expected values assuming these parameters. Error bars based on the
measured binomial click statistics are smaller than the data symbols.

no phase stability is achieved, we will measure a phase-averaged state that does not show any
non-classical correlations. We will use the interference from the 775 nm fields to infer the phase
of the 1550 nm field in post-processing. It is therefore important to note that the 1550 nm and
775 nm light fields from both lasers follow a common path. A subtle point is that the inter-
ference patterns have some ambiguity with respect to the underlying phase. We therefore only
post-select on maximal interference events, where this ambiguity is avoided. Still, there is a π
phase uncertainty at 1550 nm because the phase is retrieved at the second harmonic frequency.
However, this poses no additional problems for the final measurement due to the π symmetry
of the squeezed state. We can finally scan the relative phase between signal and idler LO with
an SBC. Note that only one phase needs to be scanned for this experiment as the phase of the
second displacement can be treated as a global phase that does not affect the measurement6.

4.5.3 Results

Figure 4.20 shows first results on the two-mode squeezing measurement. Scanning the relative
phase with an SBC, two positions for seeing squeezing and anti-squeezing can be identified. For
these two settings, we performed a scan of the LO strength β = βi = βs with an in-house-
fabricated position-dependent short-pass filter. Squeezing and anti-squeezing showing a rather

6The pump phase ϕ can be combined with the β2 phase in Eq. 4.29. Therefore only a relative phase between both
LO polarizations needs to be changed.
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weak significance due to the detection efficiency of 16%. In addition, we faced some major
problems when preparing the LO in the appropriate spectrum. All three fiber couplings (signal,
idler, pump) were aligned on the waveguided PDC crystal. However, as the waveguide is only
single-mode for the 1550 nm light, we found that the pump wavelength was exiting this crystal
in a different spatial mode (waveguide is not single-mode for the pump wavelength). However,
the three LO fields (SHG field, displacement for signal, displacement for idler) do not show
this slight deviation. Therefore, we could not perfectly match the LO beam to the three fibers
due to a limited number of free parameters (common path geometry for 775 nm and 1550 nm
is required). Unfortunately, we found spatial-spectral correlations in the outside regions of the
Gaussian LO beam. These features were visible directly after the laser output and degraded the
overlap between SUT and LO to 20%.

4.5.4 Discussion

We showed that phase stability can be achieved with a two-laser approach and investigated joined
photon-number statistics beyond the analysis of previous WFH experiments. Up to now, our gen-
erated squeezing values are comparable with single-laser tomography schemes [96]. However,
a more powerful transmitter laser can easily solve this constraint.

Also, if we focus on world record squeezing measurements [278], our demonstrated scheme
requires improvements. One crucial point is that losses in WFH are too high to compete with
SFH experimental demonstrations. In SFH, a total detection efficiency of 97.5% has been re-
alized [278], way above experimental values with photon counting, which are around 80% for
bulk sources [18, 279] and below 70% for waveguided sources [89]. Nevertheless, huge im-
provements have been made in this field over the last years. For example, the development of
highly efficient SNSPDs [102, 159] and the possibility for (pseudo) photon-number resolution
[153, 154] might pave the way for new photon-number resolved detection schemes.

Besides, optical phase jitter values have been extensively optimized for SFH squeezing mea-
surements. State of the art experiments feature optical phase jitters values smaller than 2 mrad,
which do not degrade modern squeezing measurements [278]. Nevertheless, as optical phase
jitter values become more important for stronger squeezing values, these might limit future
measurements. More importantly is that these stability values have only been shown for well-
controlled lab environments. For CV quantum communication purposes, optical phase jitter
values are highly relevant. Here photon-number resolved schemes, as we suggested, can be
beneficial.

4.5.5 Conclusion

In summary, we have shown a new scheme for measuring squeezed light with a weak local
oscillator that can handle higher optical phase jitter values compared to standard SFH. We there-
fore overcome a fundamental limit for the detection of squeezing that allows for communication
channels with higher (phase) noise levels. In addition, we also demonstrate a ‘truly local’ LO
approach generated at the receiver side. This special LO improves the security aspect in CV
communication scenarios and reduces the communication bandwidth requirements, as the LO is
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not transmitted in combination with the quantum state. By measuring a TMSV state, we demon-
strate that we can achieve phase-stability (via post-processing), which is a crucial ingredient for
CV quantum communication. Therefore, this work opens the route for highly efficient quantum
communication schemes and shows how hybrid CV-DV approaches can enable new detection
methods.
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CHAPTER 5

In this thesis, a variety of new methods for quantum state generation, detection, and character-
ization were discussed. Finally, we want to summarize the results and give a brief outlook for
the individual topics.

Chapter 2 - Quantum state generation: In this chapter, we focused on the PDC process,
which is one of the most widely used processes to generate quantum states. We discussed ex-
isting schemes to generate interesting, non-classical states in the CV and DV picture with this
process. Theoretically and experimentally we focused on the generation of heralded higher-
order Fock states. We have shown heralded states of up to n = 7 and a high generation rate
of at least 1000 count/s. To reach these rates, high squeezing values above 11 dB are required.
Typically, these high squeezing values are mainly interesting in the context of CV computation
as they decrease the fidelity for heralded single-photon sources. However, here we show that
high squeezing values also become important for DV experiments to achieve sufficient herald-
ing rates for higher-order Fock states. Single-pass waveguide sources are ideal for this purpose
as they feature low loss and high confinement to achieve high effective non-linearities.

In addition, we have identified fundamental limits for the Fock state generation due to the
probabilistic nature of the PDC process and imperfections such as loss and multimodeness. A
new approach, based on the connection to discrete phase-type distributions, enables these cal-
culations. With our work, it is straight forward to analyze the feasibility of new experiments
requiring higher-order Fock states, e.g. quantum non-gaussianity tests [280]. Moreover, our
work also stresses that novel generation schemes [80, 81, 97] for generating these states, espe-
cially with feed-forward capabilities, need to be explored further.

Our work is a first step towards generating larger quantum states, which are rare at the mo-
ment. Large in this context should mean that the ‘quantum’ aspect is large (beyond a displaced
single-photon state, which also can have a high mean photon number, e.g. [281, 282]). Even
more challenging are bright states, which are genuinely non-Gaussian. This problem was in-
vestigated and precisely defined last year by Lachman et al. [280]. However, only quantum
non-Gaussian states for n = 1 have been demonstrated so far. This highlights the need for new
generation methods.

Chapter 3 - Photon number detection: We have seen in this chapter that detector multiplex-
ing is a crucial tool, as many detectors do not have intrinsic photon number resolution. With
our new high dynamic range detection scheme, we have shown that we can measure optical en-
ergies from 10−7 to 2.5 · 105 photons per pulse with the same detection configuration and no
experimental modifications. Our detector, therefore, spans a dynamic range of 123 dB (orders
of magnitude larger than previously shown multiplexing schemes) and keeps its ability for iden-
tifying non-classicality. However, for this presented detection scheme, single-shot evaluations
lose precision with increasing light intensities (although the exact transition remains an open
research problem). Therefore, we also designed a second TMD unit with equal bin probabili-
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ties. The TMD has 2x128 time-bins, which makes it the largest TMD device demonstrated so
far. Still, it shows very high transmission values (above 81%), making it attractive for various
applications, especially as this design does not show any form of detection cross-talk. With this
device, we have investigated non-classical signatures of up to ten photons spread over up to 64
modes with correlation functions. Finally, we also investigated the upcoming topic of multi-pixel
SNSPDs with intrinsic pseudo photon number resolution due to spatial multiplexing. We show a
new readout scheme that is able to determine the number of detection events. Our scheme does
not require additional readout wires and therefore does not pose additional heat loads on the
cryostat. With increasing pixel size [154], this will become more important and our method can
help to read out detectors or subpixel-regions. In summary, we have shown new multiplexing
designs in combination with improved detector multiplexing strategies to extend photon number
measurements for mesoscopic states. These states are of general interest because they allow to
study the crossing from the quantum to the classical world. In addition, large quantum states are
also interesting for applications such as sensing, but more research is necessary in this area.

For future studies, a variety of new challenges need to be overcome. For example, efficient
readout schemes will become more important for increasing bin size. With our new 2x128-bin
TMD, we are already in a regime where storing all click patterns between all bins is impossible
(2256 possibilities, similar to the number of atoms in the universe). Extracting the relevant
information will become more important for higher bin numbers, as megapixel SNSPDs will
become feasible in the next years. This poses technical challenges for detector readout as well
as a need for characterization techniques that can handle the data. Our presented work is a first
step in this direction.

Chapter 4 - Quantum state tomography: We finally combined the discussed strategies of state
generation and detection for quantum state characterization. We showed three new methods to
investigate quantum states at the single-photon level. Firstly, we have shown a new tomography
approach that utilizes overlap variations to determine the quantum state. In this scheme, only
the discrete outcomes from a single click-detector is sufficient to reconstruct the full Husimi-Q
function. Likewise, we have shown that we can characterize the mode profile or the overlap
if the state is known. This work highlights the need for quantum state characterizations that
also involve modal properties. Knowing the shape of the mode structure is often an implicit as-
sumption in quantum tomography, while we are able to address both properties with our scheme
directly. As a next step, performing multimode quantum tomography and a comparison to other
approaches such as the quantum pulse gate [208] is an interesting direction and would highlight
the full potential for quantum characterization with a weak LO.

Secondly, we implemented a proposed scheme [226] for measuring the generalized phase-
space function with multiplexed detectors. We confirmed the surprising finding that sometimes
non-classicality can be measured with higher significance if fewer detectors are used. Besides,
our theory combines the effect of optical losses and the phase-space parameter s, making our
approach robust to experimental imperfections. In addition, no inversion process is required
to characterize the quantum state. Therefore, our work is an easy to use new measurement
tool for future quantum state tomography that shows a link between the phase-space picture
and the discrete outcome of multiplexed detectors. Especially for bright states, tomographically
complete measurements can be demanding (states might be more susceptible to losses and the
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overall parameter space is larger). Future measurements will require efficient indicators for
non-classicality, such as the negativity of the generalized phase-space function. Incomplete
multiplexing schemes, as shown in our work, are a first step in this direction.

Thirdly, we present a new tomography scheme with a truly local LO that is useful for remote
characterization and CV communication. In this scheme the LO is generated at the receiver side
by a second laser. Therefore, our scheme reduces bandwidth constraints on the communication
channel, as the LO is not transmitted in combination with the quantum state. Moreover, the local
aspect of the LO generation provides security advantages and helps to overcome previous pump
power constraints. Apart from our truly local LO we also show a new method for characterizing
squeezing values in an optical-phase-jitter robust way by performing a cut through the squeezing
ellipse with photon-counting measurements. We compared our theory to experimental data and
investigated a two-mode squeezed state with this direct probing technique. For this detection, the
integration of a DV measurement in an otherwise CV-inspired context was a crucial factor. This
work is important for future measurements with increased optical phase stability requirements
that can result from a noisy communication channel or high squeezing values. As a next step,
the shown overlap values between the SUT and LO need to be improved as well as the generated
squeezing value. Here for example an amplifier system such as the Coherent RegA could be used
to increase the available pump power. In addition, using CEP stabilized lasers and improved
locking electronics (to account for long term drifts) could significantly increase the overall data
rate. This could even enable locking without a global clock if a reference sequence is encoded in
the signal. Finally, the experiment should be tested under realistic assumptions by investigating
a noisy fiber link. In this context, violating a Bell-type inequality would prove the capabilities
of our scheme (e.g. [272]). Finally, showing our two-laser approach for SFH is an interesting
research direction that would allow a direct comparison between both schemes.

Furthermore, technical challenges encountered in laser locking stimulated discussions with
the system and circuit technology group led by Prof. Dr. Christoph Scheytt. Resulting from
these discussions we propose a new idea to reduce high-frequency timing jitters with amplitude
squeezing. The research field of highly stable optical clocks in combination with quantum opti-
cal tools is very interesting as it promises easy to implement solutions to a well-known problem.
This research field has the potential to link quantum optics with our daily life because timing
references are so important in our world.

In summary, DV measurements, in combination with CV interpretations, helped us to derive
new detection methods. Future work can profit from new DV tools, such as the recently proposed
scheme that combines the generalized phase-space description in combination with correlation
measurements to show improved non-classicality measures [283]. The interplay between CV
and DV is also a promising field for quantum communication purposes as it can combine exist-
ing telecommunication infrastructures with non-Gaussian DV measurements.

So from a modern perspective, who was right in the end: Newton with his particle picture,
Huygens with the wave interpretation or both? The answer is neither of them was correct [70]
as both classical theories fail to describe quantum optical states sufficiently. Modern CV and
DV approaches can handle these quantum properties. Still, we have shown that changing the
perspective from time to time can be a useful tool for exploring new methods.
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B High-gain measurements

As an application of our multimode theory derived in Sec. 2.3.3, we want to consider multimode
effects for measurements in the high-gain regime. In general, measurements that post-select on
a specific photon number (e.g. heralding higher-order Fock states) have to be distinguished from
experiments that detect light based on the total photon number (e.g. photon subtraction). Both
cases have in common that we want to increase events related to a specific mode. For the post-
selection, we consider a specific photon number n′ and the probability to generate this photon
number pn′ in our pre-specified mode. As discussed in Sec. 2.3.4 we can see that the heralding
probability with respect to a specific mode decreases in general with increasing optical gain.
This result is different for the second case, where the total number of photons n̄k per mode k
is relevant. For higher optical gain B the mean photon number n̄k grows exponentially. As the
dominant Schmidt mode grows faster than all other modes, the mean photon number is mainly
determined by this mode: lim

B→∞
n̄k+1

n̄k
= 0. This means, for example, that subtracting a photon

from the dominant Schmidt mode of a multi-thermal state is advantageous for high optical gain.

These considerations also become apparent for a common measure of the Schmidt number,
namely the unheralded g(2) measurement. As already pointed out in [36] the g(2) value is only
related to the Schmidt number in the low gain regime because of a sinh(rk) ≈ rk assumption in
the derivation. In the following, however, we want to discuss the high gain regime further. The
unheralded g(2) is defined as

g(2)(0) =
〈n2〉 − 〈n〉
〈n〉2

(B.1)

Figure B.1 illustrates how the g(2) value changes with increasing optical gain. We want to dis-
cuss three different aspects of this function.

Dominating mode
The dominating Schmidt mode grows faster than all other modes. For this reason, the mea-
sured (total) photon number is dominated by the first Schmidt mode for high optical gain values.
Therefore the g(2) value approaches the single-mode case (g(2)

single mode = 2) in the high gain
regime because photons are mainly detected from the dominating mode (Fig. B.1 orange).

Detector saturation
In most cases, unheralded g(2) values are recorded with binary detectors in a Hanbury-Brown-
Twiss configuration as these detectors offer many critical advantages (see Sec. 3.2). For high
optical gain values, special care must be taken in order to avoid saturation effects. These effects
will overestimate coincidences between the detectors, which results in a decreasing g(2) value
(Fig. B.1 green). In order to compensate for saturation effects, additional variable attenuators
can be added in front of the detectors in such a way that the count rate is kept constant while
changing the optical pump power. This method is able to reproduce the precise g(2) measured
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Figure B.1 – Comparison of unheralded g(2) measurements from photon number resolved mea-
surements (orange) and binary click-detectors in a Hanbury-Brown-Twiss configura-
tion (red and green). The photon detection rate is kept constant for the red case by
adapting optical losses to the optical gain. Saturation effects will decrease the g(2)

value if no additional attenuators are applied (green). The indicator line (blue) should
have a constant value of two and shows, where numerical errors become apparent due
to Hilbert space truncation (nmax = 500). For example, the decrease of the orange
line is caused by numerical errors.

with photon number resolving detectors (Fig. B.1 red, please mind the numerical errors in the
plot).

Optical losses
Finally, we have shown that optical losses in the high gain regime can act differently on the in-
dividual Schmidt modes [84]. This effect can change the convolved photon number distribution
(from a detector that cannot distinguish individual modes). However, for all practical situations,
this effect is not visible for unheralded g(2) measurements.

In addition, we can also see numerical errors in Fig. B.1 resulting from the Hilbert space trun-
cation at nmax = 500. For this reason, values above 20 dB should be treated carefully. Note
that we always consider a double Gaussian joint-spectral intensity here. The situation is differ-
ent for specially designed Schmidt modes [284] with equal weighting, where the g(2) value is
independent of the optical gain.
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C Example code

C.1 get_gate

Listing C.1 – get_gate function in Python

c l a s s g e t _ g a t e ( Combiner ) :
’ ’ ’
Th i s c l a s s w i l l g e n e r a t e a g a t e ( v i r t u a l ) c h a n n e l .

P a r a m e t e r s
−−−−−−−−−−
t a g g e r : t a g g e r

swabian t ime t a g g e r
t r i g _ c h : i n t

t r i g g e r c h a n n e l number
pos : a r r a y

peak p o s i t i o n s from h i s t o g r a m ( i n ps a f t e r t r i g g e r )
window : long

d e f i n e s t h e measurement window f o r a l l t ime b i n s ( i n ps )

R e t u r n s
−−−−−−−
Gate : v i r t u a l _ c h a n n e l

Gate c h a n n e l f o r CountBetweenMarkers

’ ’ ’
def _ _ i n i t _ _ ( s e l f , t a g g e r , t r i g _ c h , pos , window ) :

s e l f . ch = [ None ] * ( 2 * l e n ( pos ) + 1 )
s e l f . ch [ 0 ] = DelayedChanne l ( t a g g e r , t r i g _ c h , 0 )
f o r i , v a l in enumerate ( pos ) :

s e l f . ch [ 2 * ( i +1)−1] = DelayedChanne l ( t a g g e r , t r i g _ c h , va l−window )
s e l f . ch [ 2 * ( i + 1 ) ] = DelayedChanne l ( t a g g e r , t r i g _ c h , v a l + window )

super ( g e t _ g a t e , s e l f ) . _ _ i n i t _ _ ( t a g g e r , [ s e l f . ch [ k ] . g e t C h a n n e l ( )
f o r k in range ( l e n ( s e l f . ch ) ) ] )

C.2 TMD_eval

Listing C.2 – TMD evaluation function for raw timestamps in C++

/ * * @brie f e v a l u a t e s a 2x8−b i n l o o p y
* t h i s f u n c t i o n e v a l u a t e s da ta from an AIT t i m g e t a g g e r : 64 b i t t i m e stamp ,
* 3 b i t channe l , 1 b i t s l o p e
* t h e l a s t t r i g g e r t i m e i s s t o r e d i n a g l o b a l v a r i a b l e o ldTime64
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* /
void l o o p y _ c o u n t ( D a t a P a c k e t _ t RawDataPacket )
{

i n t TimetagCnt , Channel ;
s t r u c t Time tag I64 * Time tag I64 ;
u i n t 6 4 _ t Time64 ;
long t i m e p o s ;

long maxpos_det1 [ 8 ] = { 1664 ,2840 ,3922 ,5098 ,6504 ,7681 ,8763 ,9939 } ;
/ / Peaks d e t e c t o r 1

long maxpos_det2 [ 8 ] = { 1716 ,2893 ,3975 ,5150 ,6556 ,7733 ,8815 ,9990 } ;
/ / Peaks d e t e c t o r 2

i n t window = 3 0 ; / / c o i n c i d e n c e Window
i n t t r i g _ c h =0;
i n t ch1 =1; / / c h a n n e l f o r d e t e c t o r 1
i n t ch2 =2; / / c h a n n e l f o r d e t e c o t r 2

TimetagCnt = RawDataPacket . Header . D a t a S i z e ;
T ime tag I64 = ( RawDataPacket ) . Data . T ime tag I64 ;
f o r ( i n t i = 0 ; i < TimetagCnt ; i ++)
{

Channel = TimetagI64−>Channel ;
Time64 = TimetagI64−>Time ;
i f ( Channel == t r i g _ c h )

oldTime64 = Time64 ;
t i m e p o s = Time64 − oldTime64 ;
i f ( Channel == ch1 )
{

f o r ( i n t k = 0 ; k < 4 ; k ++) / / f rom i n p u t 1
{

i f ( ( t i m e p o s < maxpos_det1 [ k ] + window )
&& ( t i m e p o s > maxpos_det1 [ k ] − window ) )

{
count_mode1 ++;

}
}
f o r ( i n t k = 4 ; k < 8 ; k ++) / / f rom i n p u t 2
{

i f ( ( t i m e p o s < maxpos_det1 [ k ] + window )
&& ( t i m e p o s > maxpos_det1 [ k ] − window ) )

{
count_mode2 ++;

}
}

}
i f ( Channel == ch2 )
{

f o r ( i n t k = 0 ; k < 4 ; k ++) / / f rom i n p u t 1
{

i f ( ( t i m e p o s < maxpos_det2 [ k ] + window )
&& ( t i m e p o s > maxpos_det2 [ k ] − window ) )

{
count_mode1 ++;
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}
}
f o r ( i n t k = 4 ; k < 8 ; k ++) / / f rom i n p u t 2
{

i f ( ( t i m e p o s < maxpos_det2 [ k ] + window )
&& ( t i m e p o s > maxpos_det2 [ k ] − window ) )

{
count_mode2 ++;

}
}

}
i f ( t i m e p o s == 0) / / t h i s was a t r i g g e r
{

ckmat [ count_mode1 , count_mode2 ] + + ;
count_mode1 =0;
count_mode2 =0;

}
T ime tag I64 ++;

}
}
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D Local Oscillator
We want to briefly discuss the question why we need a local oscillator (LO) for quantum state

characterization. In general, we can distinguish two types depending on the SUT and LO fre-
quency; if SUT and LO have the same frequency, the measurement is called homodyning. Oth-
erwise, the beat frequency of both fields is investigated, which is referred to as heterodyning1.
In this thesis, we want to concentrate on homodyning schemes. In Chap. 3 we have already seen
that we can investigate quantum states by measuring the photon number distribution pn. How-
ever, as we point out in Sec. 4.1.2 performing full quantum state tomography requires a local
oscillator (LO). This reference field provides three main advantages.

Firstly, and most importantly, knowing the photon number distribution pn is not sufficient to
characterize the full quantum state. The additional correlations between the individual photon
numbers n cannot be seen in this projection. Therefore, a crucial resource to perform full quan-
tum state tomography is a phase reference provided by the LO, which allows interrogating the
phases between photon numbers.

Secondly, the local oscillator also provides a reference for the mode structure. Only the over-
lapping part between our SUT and the LO will interfere, and the remaining part stays unchanged.
Therefore, with the knowledge of our LO mode structure, we can characterize the modal struc-
ture of our SUT. We will investigate this aspect further in Sec. 4.2.

Thirdly, and specific for WFH, is that many characterization scenarios do not require full
quantum state tomography. Instead, showing that the SUT is non-classical with respect to a
specific property is sufficient. As an example, we can consider the negativity of the Wigner
function for uncovering a non-classical SUT. We have seen that even photon number states |2n〉
do not show any negativity at the origin. Here, it is beneficial to investigate specific points in the
phase space, which can be realized with a LO that displaces the SUT.

In common for all state characterizations is that the LO state itself must be known. Typically
the LO is a coherent state which is often readily available in the lab and robust against losses.
Nevertheless, other types of LO states have been used [191]. In this thesis, however, we will
always assume that the LO is a coherent state.

As a final interesting remark, we can note that for the discussed measurement schemes, neither
the quadrature uncertainty nor the photon number variation of the LO (coherent state) degrades
the measurement. As an example, we can revisit the direct probing case. The amount of noise
that couples to the detector is a linear function of the beam splitter reflectivity and independent
of the LO amplitude. Therefore, it is easy to reduce this error source by using a highly transmis-
sive beam splitter [179]. Any imperfection can also be modeled with an additional optical loss
followed by a perfect displacement operation. In other words, the additional noise contribution
from the LO comes from an additional vacuum-noise term.

1Note: alternative definitions for homodyning and heterodyning depending on the beam splitter reflectivity used to
combine the SUT and the LO can be found. Sometimes measuring a state with two homodyning setups is also
called heterodyning.
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E Timing jitter from RF source

The jitter values for two commercial RF-sources were investigated to determine the repetition
rate fluctuation. The 76 MHz source is an internal oscillator from the Coherent Synchrolock unit.
For the 3.04 GHz signal, we used a commercial signal generator Anritsu MG3690C. The jitter
measurements for these sources can be seen in Fig. E.1. The phase noise value for the 3.04 GHz
source is much higher as the phase noise value scales with the carrier frequency. The RMS jitter
value in fs is carrier frequency independent and can be used to compare these sources. It can be
seen that the 76 MHz signal has a slightly better performance.
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Figure E.1 – Phase noise measurement for two RF-sources. Upper plot shows the phase noise
value in respect to the carrier from 1 Hz to 100 MHz sideband frequency. Lower plot
shows the RMS jitter value resulting from phase noise integration. See text for further
details.
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F 128-bin detector
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Figure F.1 – Picture of a 128-bin TMD with two input and two output ports (top).
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