TY - THES AB - Spin Crossover-Komplexe (SCO) stellen ein Beispiel für potentielle molekulare Bistabilität dar, d.h. die Systeme sind durch äußere Einflüsse (z.B. Temperatur, Druck) von einem Low-Spin- (LS) in einen High-Spin-Zustand (HS) konvertierbar. Die genauen Mechanismen die einem SCO zu Grunde liegen, sind noch nicht vollständig verstanden, da sowohl auf struktureller als auch auf elektronischer Ebene komplexe Prozesse stattfinden, die mit bisherigen Standardmethoden nicht in einem Experiment untersucht werden können (Strukturänderung: XRD, XAS; Spin-Zustand: Mößbauer, SQUID).Thema dieser Arbeit ist deshalb die ausführliche Analyse bestehender Auswertungsmethoden und deren Verbesserung zur Untersuchung von temperaturabhängigen SCO-Prozessen mit Röntgenabsorptions- und Röntgenemissionstechniken. Mit Hilfe dieser Methoden ist es möglich die strukturellen und elektronischen Änderungen in einem Experiment quasi-simultan, unter gleichen experimentellen Bedingungen zu verfolgen.An einem mononuklearen Fe(II) Komplex mit graduellen SCO-Verhalten wurden temperaturabhängige EXAFS-, HERFD-XANES-, CtC- und VtC-XES-Experimente durchgeführt. Alle erhaltenen Spektren zeigten interessante, charakteristische Änderungen beim Übergang vom LS- zum HS-Zustand. Die spektralen Änderungen wurden mit verschiedenen Methoden quantifiziert und durch Vergleiche mit SQUID-Magnetisierungs-Daten konnte gezeigt werden, dass grundsätzlich alle angewendeten Methoden gut geeignet sind um SCO-Prozesse zu untersuchen. AU - Schepper, Rahel CY - Paderborn DA - 2018 DO - 10.17619/UNIPB/1-421 DP - Universität Paderborn LA - eng N1 - Tag der Verteidigung: 16.10.2018 N1 - Universität Paderborn, Dissertation, 2018 PB - Veröffentlichungen der Universität PY - 2018 SP - 1 Online-Ressource (VIII, 261 Seiten) T2 - Fakultät für Naturwissenschaften TI - High energy resolution X-ray absorption and emission based studies on the mononuclear spin crossover complex [Fe(L-N4Bn2)(NCS)2] UR - https://nbn-resolving.org/urn:nbn:de:hbz:466:2-31782 Y2 - 2026-01-13T22:17:05 ER -