TY - THES AB - Das grundlegende Verständnis von makroskopischen Haftungsphänomenen beginnt bei der Analyse von molekularen Wechselwirkungen unter kontrollierten Bedingungen (Materialeigenschaften, chemische Oberflächenzusammensetzung, und weiteren Einflussfaktoren wie z.B. pH-Wert, Elektrolytzusammensetzung). In dieser Arbeit wurden die molekularen und makroskopischen Haftungseigenschaften von makromolekularer Poly(acrylsäure) (PAA) als potenzieller Haftungsvermittler auf Edelstahl und verschiedenen nanostrukturierten Zinkoxid (ZnO) Oberflächen untersucht, die mittels elektrochemischer und hydrothermalen Abscheidemethoden auf Edelstahl und feuerverzinktem Stahl (HDG) abgeschieden wurden. Molekulare Haftungsmechanismen zwischen PAA und ZnO basierend auf multi-koordinativen Bindungen in Abhängigkeit von der Oberflächenchemie und der Verweilzeit konnten mit der s.g. Einzelmolekülspektroskopie aufgeklärt werden. Die Ergebnisse aus weiteren makroskopischen Enthaftungsexperimenten und Rückseitenanalytik bei der Verwendung von verdünnten, wässrigen PAA-Lösungen zur Vorbehandlung von nanostrukturierten ZnO Filmen auf HDG Stahl untermauerten die starken Wechselwirkungen zwischen ZnO-PAA. Mittels Elektropolymerisation abgeschiedene PAA Filme zeigten eine signifikante Steigerung in den makroskopischen Haftungseigenschaften bei einem ausgewählten Model-Epoxid-Amin-Klebstoff auf Edelstahl. Die Kombination von ZnO Tetrapoden (ZnO TP) und PAA als hybridische, haftungsverbessernde Sprühbeschichtungen aus wässrigen Dispersionen auf Poly(propylen) Folien bestätigten, sowohl die chemischen, als auch mechanischen Haftungseigenschaften von nanostrukturierten ZnO/PAA Interphasen. Daher können PAA/Metalloxid-Grenzflächen die Tür in diversen technischen Ansätzen für innovative Anwendungen öffnen, wie z.B. in Sprühapplikationstechniken. AU - Meinderink, Dennis CY - Paderborn DA - 2020 DO - 10.17619/UNIPB/1-1087 DP - Universität Paderborn LA - eng N1 - Tag der Verteidigung: 30.10.2020 N1 - Universität Paderborn, Dissertation, 2020 PB - Veröffentlichungen der Universität PY - 2020 SP - 1 Online-Ressource (XI, 208 Seiten) T2 - Department Chemie TI - Molecular adhesion science and engineering of nanostructured poly(acrylic acid)/metal oxide interfaces UR - https://nbn-resolving.org/urn:nbn:de:hbz:466:2-38469 Y2 - 2025-06-24T20:02:17 ER -