TY - THES AB - This thesis deals with current control and system identification of a permanent magnet synchronous machine. To learn a data-driven controller for current control, a model of the motor is required. Such model can be constructed with the utilization of neural ordinary differential equations. Through this approach, expert knowledge can be used in combination with learnable parameters to identify the motor parameters. With the help of this model, a neural network can then be trained to control the current. The proposed approach will be compared with both model-based and model-free methods for current control. AU - Meyer, Marvin CY - Paderborn DA - 2022 DO - 10.17619/UNIPB/1-1656 DP - Universität Paderborn LA - eng N1 - Tag der Abgabe: 24.11.2022 N1 - Universität Paderborn, Masterarbeit, 2022 PB - Veröffentlichungen der Universität PY - 2022 SP - 1 Online-Ressource (iv, 76 Seiten) T2 - Institut für Elektrotechnik und Informationstechnik TI - Combined current control and system identification of a PMSM with neural ordinary differential equations UR - https://nbn-resolving.org/urn:nbn:de:hbz:466:2-44183 Y2 - 2026-01-19T01:49:26 ER -