TY - JOUR AB - Graffiti is an urban phenomenon that is increasingly attracting the interest of the sciences. To the best of our knowledge, no suitable data corpora are available for systematic research until now. The Information System Graffiti in Germany project (INGRID) closes this gap by dealing with graffiti image collections that have been made available to the project for public use. Within INGRID, the graffiti images are collected, digitized and annotated. With this work, we aim to support the rapid access to a comprehensive data source on INGRID targeted especially by researchers. In particular, we present INGRIDKG, an RDF knowledge graph of annotated graffiti, abides by the Linked Data and FAIR principles. We weekly update INGRIDKG by augmenting the new annotated graffiti to our knowledge graph. Our generation pipeline applies RDF data conversion, link discovery and data fusion approaches to the original data. The current version of INGRIDKG contains 460,640,154 triples and is linked to 3 other knowledge graphs by over 200,000 links. In our use case studies, we demonstrate the usefulness of our knowledge graph for different applications. AU - Sherif, Mohamed Ahmed Mohamed AU - Morim da Silva, Ana Alexandra AU - Pestryakova, Svetlana AU - Ahmed, Abdullah Fathi AU - Niemann, Sven AU - Ngonga Ngomo, Axel-Cyrille DA - 2023 DO - 10.17619/UNIPB/1-1823 PB - Universitätsbibliothek DP - Universität Paderborn LA - eng IS - 318 M2 - 1 PY - 2023 SN - 2052-4463 SP - 1-12 T2 - Scientific Data TI - IngridKG: a FAIR knowledge graph of graffiti UR - https://nbn-resolving.org/urn:nbn:de:hbz:466:2-45853 Y2 - 2024-10-08T05:55:35 ER -