TY - THES AB - Diese Dissertation behandelt die Entwicklung, Erprobung und Evaluation einer mobilen Augmented Reality Anwendung (mAR-App) namens PEARL (Paderborner Elektrotechnik AR Laborpraktikum), die als Vorbereitungsmaßnahme für elektrotechnische Laborpraktika konzipiert wird. Ziel ist es, Studierenden eine zeitlich und örtlich flexible Möglichkeit zu bieten, den realitätsnahen Umgang mit Laborgeräten - primär dem Oszilloskop - zu erlernen. Die methodische Grundlage bilden der Makrozyklus von Design-Based Research (DBR) als strukturierender Rahmen und das heuristische Modell des Research Pentagons, das die Durchführung auf Mikroebene bestimmt. In insgesamt vier Research Pentagons werden didaktische, technologische, motivationale und evaluative Komponenten systematisch untersucht und weiterentwickelt. Das erste Pentagon fokussiert die Entwicklung eines didaktisch fundierten Konzepts nach dem Prinzip des Constructive Alignment, das Lernziele, Lernaktivitäten und Prüfungsformen in fünf abgestufte Lernlevel überführt. Diese reichen von der initialen Orientierung bis zur eigenständigen Problemlösung in einem freien Experimentiermodus. Im zweiten Research Pentagon wird die technische Machbarkeit von Augmented - und Virtual Reality (VR) im Laborumfeld anhand mehrerer funktionaler Prototypen evaluiert. Während sich VR aufgrund technischer Einschränkungen als ungeeignet erweist, zeigt AR - insbesondere in der markerlosen Ausführung mittels der Software Development Kits (SDKs) ARCore und ARKit - ein hohes Potenzial für den praktischen Einsatz. Im dritten Pentagon entsteht ein Onboarding-Modul, das auf die erste Version der mobilen App (V0.17.01) aufsetzt und grundlegende Funktionen eines realen Oszilloskops digital abbildet. Dabei werden Nutzer:innen schrittweise an das virtuelle Oszilloskop herangeführt und lernen zugleich die zentralen Funktionen der mAR-App kennen. Die Ergebnisse zeigen eine insgesamt neutrale bis leicht positive Nutzungserfahrung, wobei technische Schwächen (z.B. Reaktionszeit oder Objektverankerung) die Effizienz und Steuerbarkeit beeinträchtigen. Im Exkurs-Kapitel erfolgt eine Eye-Tracking-Studie zur Untersuchung visueller Aufmerksamkeit und individueller Lösungsstrategien von Expert:innen und Noviz:innen bei der Arbeit am realen Oszilloskop. Heatmaps und Zeitverläufe in definierten Areas of Interest (AOI) liefern erste Hinweise auf Unterschiede im Blickverhalten zwischen den Gruppen. Die algorithmischen Scanpfadanalysen der Blickverläufe hingegen zeigen eine geringe Trennschärfe. Das Potenzial von Eye-Tracking als Evaluationsmethode wird daher kritisch reflektiert, aber angesichts technologischer Entwicklungen und verfügbarer Eye-Tracker in Mixed Reality (MR) Brillen weiterhin als zukunftsrelevant eingeordnet. Die abschließende summative Evaluation nutzt ein Prä‑Post-Test-Design mit Kontrollgruppenvergleich mit 70 Teilnehmenden, um die Lernwirksamkeit der überarbeiteten mAR-App mit klassischen Materialien wie Videos und Handbüchern zu vergleichen. In der Interventionsgruppe (IG) zeigen sich auf kognitiver und affektiver Ebene signifikant positive Veränderungen: Die Leistungen steigen deutlich, insbesondere in den Taxonomiestufen Anwendung, Verständnis und Analyse; zugleich nehmen experimentelles Selbstkonzept und experimentelles Sachinteresse zu, während Überforderung und Ängstlichkeit im Hinblick auf die Laborpraktika abnehmen. Als Einschränkung zeigt sich, dass die mAR-App keinen klaren Vorsprung gegenüber der Kontrollgruppe (KG) erreicht, was sowohl auf die sehr gut ausgearbeiteten Materialien und Videos der KG als auch auf technische Begrenzungen der mobilen Umsetzung zurückzuführen ist: Kleine Displays, 2D-Oberflächen für 3D-Geräte und unpräzise Touch-Interaktionen erschweren komplexe, feinmotorische Aufgaben. In den begleitenden User Interface (UI) und User Experience (UX) Fragebögen spiegeln sich diese Limitationen in gemischten Bewertungen der App wider. Die Arbeit verdeutlicht, dass die mobile AR-Anwendung trotz technischer Einschränkungen wertvolle Möglichkeiten für die Vorbereitung auf Laborpraktika und das Kennenlernen von Laborgeräten bieten kann. Der Fokus bei der Entwicklung liegt von Beginn an auf einer modularen und flexiblen App-Architektur, um sie mit neuen Geräten und Aufgaben zu erweitern. Der Hauptnutzen liegt perspektivisch nicht in der mobilen Anwendung selbst, sondern in der strategischen Ausrichtung auf zukunftsfähige, skalierbare Lösungen für MR-Brillen. Diese erlauben eine authentische Gestensteuerung und realitätsnahe Interaktionen. AU - Alptekin, Mesut CY - Paderborn DO - 10.17619/UNIPB/1-2483 DP - Universität Paderborn LA - ger N1 - Tag der Verteidigung: 12.12.2025 N1 - Universität Paderborn, Dissertation, 2025 PB - Veröffentlichungen der Universität PY - 2025 SP - 1 Online-Ressource (xviii, 202, LXVIII Seiten) : Diagramme, Illustrationen T2 - Institut für Elektrotechnik und Informationstechnik TI - Entwicklung einer Augmented Reality basierten Anwendung als Vorbereitungsmaßnahme zum Laborpraktikum in der Elektrotechnik UR - https://nbn-resolving.org/urn:nbn:de:hbz:466:2-57076 Y2 - 2026-01-15T08:57:28 ER -