TY - JOUR AB - Entangled two-mode Gaussian states constitute an important building block for continuous variable quantum computing and communication protocols. In this work, we theoretically study two-mode bipartite states, which are extracted from multimode light generated via type-II parametric down conversion (PDC) in lossy waveguides. For these states, we demonstrate that the squeezing quantifies entanglement and we construct a measurement basis, which results in the maximal bipartite entanglement. We illustrate our findings by numerically solving the spatial master equation for PDC in a Markovian environment. The optimal measurement modes are compared with two widely used broadband bases: the Mercer–Wolf basis (the first-order coherence basis) and the Williamson–Euler basis. AU - Kopylov, Denis A. AU - Meier, Torsten AU - Sharapova, Polina DO - 10.17619/UNIPB/1-2487 PB - Universitätsbibliothek DP - Universität Paderborn LA - eng PY - 2026 SN - 2835-0103 SP - 1 Online-Ressource (Seite 1-7) : Illustrationen, Diagramme T2 - APL Quantum TI - Bipartite entanglement extracted from multimode squeezed light generated in lossy waveguides: Denis A. Kopylov, Torsten Meier, and Polina R. Sharapova UR - https://nbn-resolving.org/urn:nbn:de:hbz:466:2-57111 Y2 - 2026-01-30T13:06:29 ER -