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Abstract

Reliability-adaptive systems allow an adaptation of system behavior based on current system
reliability. They can extend their lifetime at the cost of lowered performance or vice versa. This
can be used to adapt failure behavior according to a maintenance plan, thus increasing availability
while using up system capability fully. To facilitate setup, a control algorithm independent of a
degradation model is desired.

A closed loop control technique for reliability based on a health index, a measure for system
degradation, is introduced. It uses self-optimization as means to implement behavior adaptation.
This is based on selecting the priorities of objectives that the system pursues. Possible working
points are computed beforehand using model-based multiobjective optimization techniques. The
controller selects the priorities of objectives and this way balances reliability and performance.

As exemplary application, an automatically actuated single plate dry clutch is introduced. The
entire reliability control is setup and lifetime experiments are conducted. Results show that the
variance of time to failure is reduced greatly, making the failure behavior more predictable. At
the same time, the desired usable lifetime can be extended at the cost of system performance to
allow for changed maintenance intervals. Together, these possibilities allow for greater system
usage and better planning of maintenance.

Kurzfassung

Zuverlässigkeitsadaptive Systeme ermöglichen eine Anpassung des Systemverhaltens basierend
auf der aktuellen Systemzuverlässigkeit. Sie können damit ihre Lebensdauer und die Leistungsfä-
higkeit situationsbezogen gegeneinander abwägen. Dies kann genutzt werden, um das Ausfallver-
halten an einen Wartungsplan anzupassen, wodurch die Verfügbarkeit erhöht und das Potenzial
des Systems voll ausgeschöpft wird. Um die Implementierung einer solchen Anpassung zu ermög-
lichen, ist ein von einem Verschleißmodell unabhängiger Regelalgorithmus gewünscht.

Ein Zuverlässigkeitsregler auf Basis des health index, eines Maßes für Systemverschleiß, wird ent-
wickelt. Er nutzt dazu Selbstoptimierung als eine mögliche Umsetzung der Verhaltensanpassung.
Sie basiert auf der Auswahl von Zielen, die das System verfolgt. Mögliche Arbeitspunkte werden
vorab mit Mehrzieloptimierungstechniken berechnet. Der Regler stellt die Priorität von Zielen
ein und wägt damit zwischen Zuverlässigkeit und Leistungsfähigkeit ab.

Als Beispielanwendung wird eine automatische Einscheiben-Trockenkupplung eingeführt. Der
Zuverlässigkeitsregler wird vollständig aufgebaut und Lebensdauerexperimente werden durchge-
führt. Ergebnisse zeigen, dass die Streuung der Ausfallzeit stark reduziert werden kann, wodurch
das Ausfallverhalten besser vorhersehbar wird. Zugleich kann die gewünschte Lebensdauer auf
Kosten der Leistungsfähigkeit erhöht werden, um verlängerte Wartungsintervalle zu realisieren.
Zusammen werden eine bessere Ausnutzung der Systemleistungsfähigkeit und eine bessere Pla-
nung der Wartung ermöglicht.
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Nomenclature

To keep this list brief, only the important symbols that are used multiple times are
included.

A Availability
A Dynamics matrix
a Slope of linear function across Pareto front
aw,tend

Rms value of frequency weighted accelerations
aw Frequency weighted accelerations
α Value of behavior parameterization
αC Reliability controller output
αcur Current value of behavior parameterization
αdes Desired value of behavior parameterization
αmax Maximum allowable value of behavior parameterization
αmin Minimum allowable value of behavior parameterization
αU User input on behavior parameterization
αuse Used value of behavior parameterization
B Input matrix
b Orthogonal slope of linear function across Pareto front
C Area of friction pads
C Output matrix
CDF (·|·) Cumulative density function of . . . given . . .
D Feedthrough matrix
Dα Perturbation of system behavior
Da Distance on Pareto front
Dp Maximum distance across Pareto front
DR Disturbance on reliability
d Virtual vehicle damping
∆HI Degradation rate
∆HI lin Linearized degradation rate
∆HI nominal Nominal degradation rate
∆HI offset Offset of degradation rate
∆ω Difference in rotational velocities

Ê (·) Estimator for expected value of stochastic variable
Ef Friction work
e Optimization constraint threshold
ǫ Upper bound in ǫ-constraint method
F Failure function
f Objective function(s)
FN Normal force of clutch plates
FN,opt Optimal trajectory for normal force of clutch plates



xiv Nomenclature

f1 Objective function 1, for application example: Friction work
f2 Objective function 2, for application example: Accelerations
f1/2,cur Current experimental value of objective function 1 or 2
f1/2,max/min Maximum or minimum values of objective function 1 or 2
Gα Transfer function of full behavior control loop
Gc Transfer function of behavior controller
HI Health index

ĤI Estimated health index

H̃I Measured health index
HI 0 Health index of new system
HI des Desired health index
HI des,end Desired health index at specified lifetime tf

hh,d,b,f,a,c,g Shape parameters of friction model function
I Identity matrix
iM Motor current
J Cost function in model predictive control
Jx Cost function for states in model predictive control
Ju Cost function for system input in model predictive control
K Kalman gain
Ki Integrator amplification factor of behavior controller
Kp Proportional amplification factor of behavior controller
k Index value
km,T Motor constant for torque measurement
kuse Index of used Pareto point in Pareto front and set
l Friction plate thickness reduction

l̃ Measured friction plate thickness reduction

l̃i Measured initial position of friction plate

l̃m Current measured position of friction plate
L Slope of relationship from thickness reduction to health index
lmax Maximum permissible friction plate thickness reduction
MTTF Mean time to failure
MTTR Mean time to repair
m Number of time steps for simulation in model predictive control
µ Coefficient of friction
µ0 Nominal coefficient of friction
n Number of elements in a set, e.g. number of objective functions
O Set of all possible objective values
o objective value(s)
Ω1,2,3,4 Parameters of transfer function for acceleration evaluation
ω̂ Shape parameter for low velocity approximations
ω1 Drive motor velocity
ω2 Load motor velocity
P Set of all possible parameter values
P 0 Initial estimate covariance
PDF (·|·) Probability density function of . . . given . . .
p parameter values
p̂ Pareto set



xv

popt Optimal parameter values
pf Wear proportionality constant
Pf Friction power
Q Process noise covariance
Q1,2,4 Parameters of transfer function for acceleration evaluation
q State of generalized degradation model
R Reliability function
r1/2 Gear reduction ratio of motor 1/motor 2
Rspec Specified value of reliability function at desired lifetime tf

r Measurement residual
RUL Remaining useful lifetime
S Combined objective function in weighted sum method
S Residual covariance
s (·) Forward s-transform
s−1 (·) Inverse s-transform
σ̂ (·) Estimator for standard deviation of stochastic variable
T Duration of optimal control sequence
T0 Dry friction torque in virtual vehicle
Tp Torque transmitted at clutch plates
Tp,0 Velocity invariant torque
t Time
t0 Initial time
tend End time
tf Failure time
tk Current time step k

tp prediction time steps during model predictive control
tr Duration of one actuation cycle
ts Step size of behavior controller
tspec Specified lifetime
Θ Inertia of virtual vehicle
u Input vector
V Estimate covariance
v Multiplicative fault on generic system degradation model
W Wear volume
Wk Transfer function for acceleration evaluation
w Weights
wx Weight of states in model predictive control
wu Weight of system input in model predictive control
x State vector
x̂ Estimate of state vector
y Output vector
z Discrete z-transform





1 Introduction

Any industrial product undergoes several stages throughout its life. These range from
development over manufacturing and usage to disposal or recycling. Development and
manufacturing require ressources, which cannot be fully retrieved during recycling, if
the product is recycled at all. Limited ressources demand to be used consciously before
depletion. The most accessible way to achieve this is to use a product fully and for as
long as possible.

When a product is taken out of service and ultimately discarded, it becomes obsolete.
According to [PDG+16, pp. 45,64], obsolescence can be categorized into four classes1:

Psychological obsolescence:
„[This] kind of obsolescence comprises premature aging and the resulting exchange
of functioning products due to fashion, new technical trends and consume pat-
terns“ [PDG+16, p. 64], [BHP+14, p. 60].

Psychological obsolescence is a subjective perception that is individual for each
user and mainly relevant for consumer products, not so much for investments in
company assets. Investements into assets are usually based on a careful cost-benefit
evaluation that yields a decision whether an asset fulfills requirements and whether
it is worth investing in or not. Private users, on the contrary, might base a buying
decision on subjective feeling without careful reasoning. It is these products that
are exchanged well before their actual service life has been reached.

Functional obsolescence:
„Reasons for functional obsolescence are rapid changing of technical or functional
requirements for a product (e.g. interoperability of software and hardware of dif-
ferent electronic devices). Strong influence on functional obsolescence comes from
diverging interests of software and hardware manufacturers.“ [PDG+16, p. 64],
[BHP+14, p. 60].

Functional obsolescence is closely related to requirements that were (unconsciu-
ously) defined when the product was purchased. If at the time of purchase, these
were not known sufficiently well or if they had changed afterwards, the product
might not fulfill them after a (too) short amount of time. To be able to use a prod-
uct for a long time, it is thus of paramount importance to know how and what for
it is to be used. Actual product lifetime can be prolonged by adapting the product
to changed requirements, but this also requires the product to have this ability.

Economic obsolescence:
„Economic obsolescence describes the degradation of usage capacity of a product
since the use of product-related ressources, maintenance or repair is omitted for cost
reasons and the margin to alternative costs for a new product is too small. Reasons
are e.g. short product development cycles, rapid price drop, repair unfriendly design,

1Ordering was changed for a conclusive line of argument.
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high repair cost, lacking availability of spare parts, tools or services.“ [PDG+16, p.
65].

Economic obsolescence is directly related to repair cost. If repair cost can be
lowered, the (operational) remainder of the product can be used for longer periods
of time after repair. In order to fully use up system capability, it is thus desirable
to lower repair cost and to operate the product until all components are worn out,
at best all at the same time.

Material obsolescence:
„Material obsolescence is caused by the insufficiency of material and components.
Product aging shows e.g. as (too fast) degradation of strength by environmental cor-
rosion, plastification, setting or conversion processes“ [PDG+16, p. 64], [BHP+14,
p. 60]. This is what is commonly regarded as product failure. In order to have a
product that can be used for a long time, such failures need to be avoided.

One of the main results of [PDG+16, p. 283] is that two strategies are required for
extended usage and to counter obsolescence:

• Strategies to reach a guaranteed minimum lifetime and to prolong product lifetime,

• Strategies to prolong product usage duration.

A product manufacturer’s main influence on technical restrictions to product usage du-
ration is fulfillment of requirements. Whether a user’s requirements are fulfilled is de-
pendent on system performance. With increased system performance usually also comes
increased load on components and in turn reduced lifetime. Finding a solution to this
problem usually means deliberately selecting a trade-off between system performance
and lifetime during product development.

With more advanced systems also comes the possibility to create adaptive systems, where
such a trade-off is selected at runtime by the operator or by the system itself. This is
commonly used to adapt performance to actual current requirements, e.g. with different
operating modes in sports cars or CPU throttling in computers or cellphones. However,
with such adaptation capability also comes the possibility to change degradation behavior
of a system by adapting system operation accordingly.

The objective of this thesis is to develop a method that allows to find a balance between
lifetime and performance at runtime, in turn contributing to both strategies against
obsolescence. On the one hand, a minimum lifetime could be guaranteed at the cost of
(possibly) lowered performance. Overall product lifetime could be increased by making
maintenance or repair schedulable while using up system capability fully and avoiding
early failures. On the other hand, system performance could be increased at the cost
of lowered time to failure. If this is used to counteract functional obsolescence, where
changed requirements would require replacement before failure, the actual usage duration
could be increased. Such adaptation may not decrease system dependability.

1.1 Dependability of intelligent technical systems

The term dependability is commonly used in computer sciences and was well defined
in [ALR+04]. According to this article, „the dependability of a system is the abil-
ity to avoid service failures that are more frequent and more severe than is accept-
able“ [ALR+04, p. 13], with a service failure being „an event that occurs when the
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Figure 1.1: Dependability tree according to [ALR+04, p. 14]

delivered service deviates from correct service“ [ALR+04, p. 13]. Dependability is com-
prised of five attributes. These are availability, reliability, safety, integrity and maintain-
ability2.

In order to attain dependability in a system, several means are used. These can be
grouped into four categories: fault prevention, fault tolerance, fault removal and fault
forecasting. The dependability of a system is threatened by failures, which are character-
ized by the deviation of at least one external state of the system from the correct service
state with the deviation being called error and faults being the adjudged or hypothesized
root cause of a fault. The complete taxonomy is depicted in figure 1.1.

The five attributes of dependability have to be fulfilled during development. Of these, the
attributes reliability and availability are of paramount interest when considering online
adaptation processes. According to [Bir07, p. 9], availability expresses the „ratio of
delivered to expected service“, i.e.

A =
MTTF

MTTF + MTTR
,

where MTTF is the mean time to failure and MTTR is the mean time to repair . It
is immediately apparent that the availability of a system can be increased by either
increasing the mean time to failure or by decreasing the mean time to repair. An increase
in mean time to failure can be achieved by an increase in reliability of the system, thus
these two attributes are interconnected. According to [Bir07, p. 2], reliability is „the
probability that the item will perform its required function under given conditions for a
stated time interval. It is generally designated by R“.

To assess system reliability, probabilistic models are employed which usually give a re-
liability function R (t) as result. The reliability function is the probability distribution
for the system being fit for operation. The inverse to the reliability function R (t) is the
failure function3 F (t) = 1−R (t). It is the probability distribution for the system having
failed and takes the whole history of system operation into account as well. F (t) can
also be regarded as cumulative density function for the probability that a failure occurs.

2Confidentiality, which is mentioned in [ALR+04, p. 14] as well, can be omitted since it is not an
attribute of dependability, but one of security.

3Depending on source, it is also called failure probability. Within this thesis, the term failure function

is preferred for its disambiguousness.



4 1 Introduction

For the corresponding density function, common probability distributions, e.g. constant
failure rate (exponential distribution), normal distribution or Weibull distribution, can
be used. Constant failure rate is suitable for random failures, as the probability that a
failure occurs is equal throughout the whole operating time. It is commonly used for
electronic parts. Normal distribution is suitable for failures due to wear, but can only
model a single failure mode [BL04, p. 37]. This limits applicability for systems which
additionally also show early failures. Weibull distribution, depending on shape parame-
ter, can be used to model early failures during wear-in, constant failure rate for random
failures during operation and finally failures due to wear. To determine parameters that
closely fit actual failure behavior, multiple run-to-failure tests are required.

From the reliability function, the mean time to failure can be deduced [Bir07, p. 6]:

MTTF =
∫ ∞

0
R (t) d t.

Mean time to repair, on the other hand, is highly dependent on many factors including
logistic support, human factors and failure time4. Generally, the efficiency of a repair
is increased if it can be scheduled well in advance. In this case, presence of all required
spare parts, equipment and personnel can be planned. Such is the case in many railway
applications, where safety-critical maintenance and repair has to be conducted routinely
and is scheduled in advance [CYT06; GB06].

In order to achieve high availability, low mean time to repair is desired, making operation
until failure undesirable. Instead, maintenance (repair) is conducted before failure, thus
reducing mean time to end of operation to be slightly less than (anticipated) mean time
to failure, but reducing mean time to repair considerably. It becomes apparent that
the term mean time to failure as basis of the definition of availability is problematic.
More specialized terms such as the mean time to preventive maintenance can be used
instead. To cope with this inconsistency, within this thesis, mean time to failure shall
always denote the time until a system is taken out of service, whether for (preventive)
maintenance or for repair5.

By not only increasing the mean time to failure, but by making it more predictable and
by being able to schedule maintenance early yet flexibly, a decrease in mean time to
repair can be achieved. Both factors greatly increase availability. This can be realized
by adapting system behavior to current reliability during operation. Systems that allow
such adaptation, are called reliability-adaptive systems.

1.2 Maintenance planning

The big advantage of actively controlling the reliability of a system becomes apparent
if the whole life-cycle including maintenance is considered. Within the scope of this
thesis, it is assumed that after maintenance, a system is as-good-as-new. Traditionally,
maintenance was conducted as either corrective of preventive maintenance [Bir07, pp.
8,112]. In corrective maintenance, system functionality is reestablished once a failure
occurs. It directly leads to the term mean time to failure, as discussed in section 1.1.

4In this case, wall time, i.e. the time of day or during the year.
5If the actual mean time to failure is meant, i.e. the time t at which F (t) = 0.5, this is denoted as 50%
survival time.
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This strategy is cheap at first, but once a failure occurs and the system is unavailable,
maintenance has to be conducted as soon as possible, making the repair expensive.
Corrective maintenance is commonly followed for many consumer products, e.g. cell
phones, notebook computers or bicycles. It comes with the risk of catastrophic failures
which makes it unsuitable for many systems, e.g. trains or airplanes. Figure 1.2 shows
the effects of these approaches on system health. At first, a system is 100% healthy,
but due to degradation, the health index, which is a measure for system health and
is indicated with a solid black line, is decreased continuously. After maintenance, the
system is restored and the health index starts at 100% and decreases again, indicated by
individual gray lines. It becomes obvious that in corrective maintenance, availability is
limited due to unnecessarily long unscheduled maintenance.

Preventive maintenance, on the other hand, allows a high availability of the system by
retaining system functionality. This is achieved by conducting maintenance before a
failure occurs, making the maintenance schedulable and thus highly efficient. Usually,
suitable maintenance intervals are determined using stochastic models for large fleets
of systems. An application example is given in [JLF97], where maintenance for a fleet
of 642 police vehicles is optimized. Also car manufacturers recommend this approach
by specifying maintenance intervals for certain components. This approach has the
advantage of achieving high availability with planned maintenance intervals, but usable
lifetime until maintenance is lower than usable lifetime until failure. This increases the
cost of operation due to earlier maintenance than necessary. Also it is best suited for
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Figure 1.2: Maintenance planning techniques and their effect on usable lifetime.
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large fleets of identical systems with identical usage and can hardly be implemented for
unique machinery.

In order to overcome these drawbacks, condition based maintenance can be used. Ac-
cording to [JLB06, p. 1484], a condition based maintenance program consists of three
steps: Data acquisition, data processing and maintenance decision making. In the first
two steps, the current state of the system is assessed. After evaluation, efficient mainte-
nance policies are recommended. A condition based maintenance program is comprised
of two important aspects: Diagnostics and prognostics. In diagnostics, existing faults
are detected, isolated and identified before they lead to failure. Prognostics, on the other
hand, deals with the prediction of future faults. The main objective is to estimate the
time until a fault occurs or the probability of it occuring. Using this information, the
system can be operated without wasting usable lifetime for overly cautious maintenance
intervals and also without requiring unscheduled maintenance. While this is advanta-
geous over corrective and preventive maintenance, it remains a reactive method in which
the system degradation drives the scheduling of maintenance operations and which makes
planning of inspection and maintenance complex, see e.g. [CT05]. Also, condition based
maintenance is only possible if maintenance teams are available to perform the required
work, which imposes further restrictions on maintenance planning and could possibly
decrease system availability.

Feeding information about the current system reliability back into system operation
allows to adjust system behavior according to its current reliability. Therefore, the usual
approach can be reversed. It now becomes possible to schedule maintenance operations
with the system adapting its behavior and its degradation accordingly. The closed loop
control proposed in this thesis allows for such operation. It is based on self-optimization,
which is a means of influencing system behavior during operation.

1.3 Self-optimizing systems

In today’s market, more and more competitive and successful products are so-called
mechatronic systems. They contain not only mechanical elements, but also electrical
actuators, sensors, at least one micro computer and software. The micro computer acts
as an embedded controller, which reacts on sensor signals by controlling system movement
through actuators, thus forming a closed control loop. However, these systems are not
able to react appropriately in all new situations. Instead, they are limited to those
external events that engineers anticipated during development.

With the advent of powerful, yet small and robust computer systems, even more sophisti-
cated systems are possible. These are then not only able to react as has been anticipated
during development, but instead, they can change their behavior autonomously, based
on either a changed environment or even on changed requirements. Among these systems
are self-optimizing systems. A basic requirement for a system to be called self-optimizing
is that it adapts its behavior by means of objectives [Gau04, p. 25]. For this, desired
system operation is expressed in terms of objectives and their priorities. The working
point that is required is then selected accordingly. To adapt system behavior, a change of
working point may include changes to the structure of information processing, e.g. other
closed loop control laws, or parameter changes such as changed controller parameters.
To allow for such objective-based system operation, the fulfillment of all objectives needs
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to be quantified during operation. To compute suitable working points before operation,
fulfillment of objectives is quantified in a model of system operation. This model is then
simulated and suitability of working points is evaluated. An efficient process for this is
to use multiobjective optimization algorithms, which yield optimal working points and
where at runtime, selection of working points can be reduced to selection among these
pre-computed optimal working points. This way it is ascertained that system behavior
is optimal at all time.

A more detailed introduction to self-optimization follows in chapter 2.

However, many current mechatronic systems barely fulfill dependability requirements,
and intelligent self-optimizing systems are even more challenging. With added informa-
tion processing, in some cases with additional hardware to facilitate behavior adaptation,
and with increased communication requirements among system components and among
separate systems, complexity is even increased. With increased complexity also comes an
increased risk of malfunctions, which has to be compensated during development. These
aspects are well researched already and the risks can be compensated with suitable meth-
ods, e.g. those published in [DDD+14]. With the added complexity of self-optimization
also comes the possibility to actively influence dependability by adapting system behavior
during operation, which can be used to benefit dependability. This way, self-optimization
is used to create a reliability-adaptive system.

1.4 Reliability-adaptive systems

According to [Rak05, p. 1633], reliability-adaptive systems are defined by the fulfillment
of two requirements: „reliability observation“ and „system influence“. The reliability
observation requirement is fulfilled if it is possible to estimate the values of reliability
measures for many instants of operation and to update them permanently. Within the
context of [Rak05] and related works, stochastic reliability measures are used. System
influence is comprised of several points. At first, it has to be possible to transfer the
system into a state that would result in more reliable operation. Second, individual sys-
tems within a fleet can be operated individually so as to react on their own reliability
properties. Third, the system control can take reliability aspects into account. Fourth,
reconfiguration can be used to benefit from redundant components. Fifth, precise esti-
mation of the time to preventive maintenance is possible. All these can be combined as
required for an individual application.

One way to implement reliability-adaptivity is to employ the Safety and Reliability Con-
trol Engineering-Concept (SRCE-Concept) [SR97]. This contains closed loop to control
the reliability of a system. However, in early introductory papers (i.e. [SR97]), the au-
thors state that „Because of the fact that this control loop is not a pure technical control
approach, a part of the necessary connections can not be given yet.“ [SR97, p. 673].
In [Wol08, p. 83], using model predictive control and a model of the degradation be-
havior is suggested but not implemented. The main drawback of this concept is that
reliability is prioritized over all other aspects of system operation. It is not considered
to temporarily allow overly degradatory system behavior, which might be required in
case of user demands or the current situation. Degradation models exist for some faults,
e.g. crack growth, but generally modeling degradation becomes a challenging task that
makes implementation of such control schemes infeasible.
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In [Pab05], an approach to modeling of reliability control systems is presented. The idea
there is to form a closed description including reliability and system dynamics, which
can then be treated using general or dedicated methods from system analysis and control
theory. However, forming such a system model is difficult and error-prone. Instead, a
more generalized and robust method is desirable.

Classifications for prognostics and health management schemes into four types of increas-
ing complexity and capability are introduced in [CH08] and [GS14]. [RB15] builds on
these but proposes a new type 5, which requires an adaptation of the individual system
based on type 1 to 4 data and thus encompasses reliability-adaptive systems. It is shown
that since type 5 systems directly build on all properties of the lower types, system
complexity and the efffort during development is increased.

While reliability-adaptive systems are thus not new, self-optimization techniques as an
approach for the implementation of a suitable control strategy has not been discussed
in prior works related to reliability-adaptive systems. Also since implementation of
reliability-adaptivity had failed so far due to complexity reasons of existing methods,
to be interesting for practical usage, a new method needs to be generalizable and adapt-
able to a multitude of systems with as little effort as possible. Developing a new method
based on self-optimization is a promising approach since self-optimizating systems in-
herently offer the possibility to adapt system behavior and are always operating in an
optimal working point.

1.4.1 Multi-level dependability concept

During the course of the collaborative research center 614 „Self-optimizing concepts and
structures in mechanical engineering“, the multi-level dependability concept was devel-
oped. An early introduction can be found in [FGM+07], whereas later publications
expanded on details ([SGM+08]) and altered the graphical representation to the one
shown in figure 1.3 ([SGH+09]). The following introduction is based on [GRS09b, p.
61], which is an in-depth introduction including application examples and [DDD+14, p.
56], which includes a brief introduction. The multi-level dependability concept is com-
prised of two main components: first, evaluation and classification of the current system
state and second, means to influence system behavior. Originally it was developed to
satisfy safety requirements [FGM+07], but later it was extended to the attribute relia-
bility [SS09, p. 17]. This is made possible by the concept’s flexibility, and the fact that
by increasing reliability, impending faults, which might pose a safety threat, are avoided.
The classification is limited to four states as shown in figure 1.3. These are6:

Level I:
The system is in a safe, normal state. Only objectives of self-optimization are
pursued. Neither a dedicated prioritization of dependability nor counter-measures
against undesired events are required.

Level II:
A thread was detected, e.g. a threshold was reached. While the system is still oper-
ating in a safe state, pursuing objectives like comfort or energy efficiency only might
lead it towards an unsafe state. Self-optimization is used to prioritize dependability

6The definition of the four levels is closely based on [GRS09b, p. 62] and [DDD+14, p. 56], but is not
reproduced verbatim.
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over competing objectives. This leads to a behavior adaptation and in turn keeps
system operation dependable, but impairs other objectives.

Level III:
A fault that is considered severe has occured. In order to reach a safer state,
emergency mechanisms are triggered in real time to reach level I or II. This can be
achieved by mainly pursuing objectives that lead to safe behavior and subordinating
all other objectives. If this is not sufficient, switching actions, i.e. changes to the
structure of the system, can be executed. This might be necessary e.g. to deactivate
faulty components.

Level IV:
The system cannot be controlled anymore. A pre-defined fail-safe state has to
be reached to avoid fatal consequences. This is achieved by executing emergency
routines.

Note that these definitions mix the terms safety and dependability. If safety, being
one attribute of dependability, is increased, dependability is increased as well. In turn,
objective functions for dependability need to be able to increase safety. Reliability, which
is the main focus of this thesis, influences safety as well.

For each of these four levels, thresholds or characteristic events and counter-measures
to affect the system behavior have to be defined. Using self-optimization, the behavior
adaptation is achieved by changing the priorities of system objectives, which in turn
change system behavior. In order to control the reliability of a mechatronic system
by means of self-optimization, the relationship between objective values and resulting
reliability of the system has to be known.

To increase reliability, small influences to the priorities of objectives pursued might be
sufficient to increase system reliability. Hard switching can be used to compensate for
undesired or dangerous system states, but should not be regarded as means to satisfy
reliability demands. The switching between states, that is inherent to the multi-level
dependability concept, is contradictory to the desire to have small influences over longer
periods of operation.

Sole objective
“Safety”

Bring system
into safe state

Partial objective
“Dependability”

Objectives of
self-optimization

Level I
- Safe and optimal
- Utilization of self-optimization
- No restrictions or defaults

Level II
- Safe, but tendency towards “unsafe”
- Utilization of self-optimization to
optimize dependability

Level III
- Critical state
- First emergency measures

Level IV
- Potential accident
- Safe due to emergency
measures

Figure 1.3: Basic characterization of the four levels of the multi-level dependability con-
cept. According to [DDD+14, p. 56]
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In [Son15], an approach to implement reliability-based behavior adaptation using self-
optimization is presented. This is conducted by the multi-level dependability concept
as part of a condition monitoring for self-optimizing systems, which also forms the basis
of the thesis at hand. The active guidance control as part of a novel rail vehicle serves
as application example [Son15, p. 59]. Objectives include minimization of energy con-
sumption and minimization of wheel flange to rail head contacts, which lead to wear of
the flanges. While effectively creating a reliability-adaptive system, this work does not
include continuous control of system reliability but instead switches between several pre-
defined states and corresponding control algorithms. Switching is employed to change
operating mode at sensor failure, which considerably prolongs usable system lifetime.
The undesired effects of switching can also be observed clearly: the current configuration
influences wear drastically, while effectively impairing other objective values. After main-
tenance, fast wear with corresponding good energy efficiency can be observed, while later
during usage, wear progession is decreased but energy consumption is increased [Son15,
figure 4.28]. While this is an adequate reaction to unexpected failures, to compensate
quick wear itself, a continuous control method with a suitable trade-off being selected at
all times would be preferred.

1.4.2 Life extending control

The goal of life extending control is to extend the usable life of mechanical components,
before they fail due to fatigue. So in this context, life refers to mechanical fatigue life.
Work on life extending control was initially motivated by reusable rocket engines, which
would eventually fail due to a crack in the nozzle. Using a model of crack growth,
controllers could be designed that increased service life by reducing load on the nozzle.
Later, this was extended to other components of the rocket engine and to entirely different
systems.

Life extending control was first proposed in [LM91b], which was mainly a concept paper
introducing the basic idea. According to this paper, life extending control is always based
on multivariable control on a low system level, which makes it possible to select a trade-
off among reaching goals for each variable. According to [LM91b], „The fundamental
concept of life extending control is to control rates of change of some levels and of some
performance variables to minimize damage (or damage rates) [of] critical components
while simultaneously maximizing dynamic performance of the plant“ [LM91b, p. 1084].
It is assumed that minimizing forces on critical components extends their life. However,
large forces are required for fast control loop response times, so the „time to achieve
control performance“, i.e. the speed of a controller, is used to manage life of a critical
component.

For the life extending controller, two types of feedback variables are considered: vari-
ables that measure dynamic performance and „nonlinear functions of the performance
variables representative of the damage variables (stresses, strains, temperature and var-
ious rates)“ [LM91b, p. 1086].

Life extending control is subdivided into different classes:

Implicit life extending control: In implicit life extending control, the best control algo-
rithm is selected for a set of command transients. It is selected based on an a
priori optimization of an overall performance measure, which is composed of two
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objective functions that represent dynamic performance and damage respectively.
An autonomous adaptation at runtime is not desired.

Life management life extending control: A hierarchical structure composed of two levels
is assumed. On the lower level, system dynamics are controlled. On the upper
level, an „intelligent control system“ is used to plan which controller to select at
the lower level.

On-line minimization of the weighted damage and performance objectives is con-
ducted to select a control for the desired performance and life trade-off. In the
proposed life extending controller structure, it is assumed that a given required
task has to be fulfilled which can be simulated in full, thus creating an open-loop
controller selection trajectory for lower level controls. This trajectory is updated
from time to time, forming a closed loop control.

To exemplify implicit life extending control, a basic positioning system that is
comprised of a single hydraulic cylinder with the piston rod being the life critical
element is modeled in [LM91b, p. 1091]. Damage is given as a function of the
number of stress cycles N and the time T it takes to reach the setpoint. Two
different controllers are created. One of them is slower, i.e. less actuation cycles
per time unit, but also creates less damage per cycle, which in turn yields a higher
total number of actuation cycles.

While this structure comes close to the operator controller module structure used
for self-optimizing systems, which is introduced in more detail in section 2.2, when
and how to switch between pre-determined controllers is not considered. Online-
optimization is not feasible for systems with high dynamics or low computational
power, so this approach has limited applicability.

Direct life extending control: If it is possible to form a continuous function that allows
to predict the incremental damage or damage rate based on measured stresses,
strains and temperatures, direct control of life is possible. For this, a setpoint for
desired life is compared to the current life and lower level controllers are adapted
accordingly. This directly yields a multivariable controller with damage being one
control variable. However, such a controller is very complex and the interaction
between multiple variables is inherently included.

This is further subclassified in [LM91a, p. 231]:

Measured damage variables life extending control: If damage can be measured di-
rectly, it can be used as feedback information for a controller. For this, a
continuous damage model is used which is dependent on measured system vari-
ables such as measured stress, strains or temperatures. „The control problem
then is to minimize damage of the critical life components while maximizing
(dynamic) performance of the plant“ [LM91a, p. 231]. It is suggested to per-
mit damage to accumulate at a setpoint rate, e.g. linearly over time. „The
emphasis here is on obtaining desired system operation by an active, feedback
control approach“ [LM91a, p. 231].

Estimated damage variables life extending control: If it is impossible to directly
measure damage or damage-driving variables, a model that estimates dam-
age of critital components based on performance measurements and system
input can be used. This is similar to an observer used for estimating non-
measurable system states. The controller design itself is similar to the one
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used for measured damage variables life extending control.

Both approaches classified as direct life extending control require a very good dam-
age model and integrate high system dynamics with low damage accumulation into
a single controller. Not only does this complicate system simulation due to differ-
ent time scales, it also intermixes safety-critical dynamic controllers with auxiliary
degradation controllers. Deviations in degradation behavior results in controller
input on system dynamics, which could lead to impaired dynamic controller per-
formance and in turn to instability or unsafe operation. For setting up a reliability
control system, separation of these components is desirable.

These concepts and the proposed controller structures are based on cyclic stress in me-
chanical parts and do not form a controller structure that is universally usable for any
system. Also, within the scope of life extending control, the controller is limited to two
objectives: performance and damage.

1.4.2.1 Life extending control for reusable rocket engine

Initial motivation for life extending control came from a reusable rocket engine which
was also used as first application example. In [LM91c], an intelligent control system for
the rocket engine that includes durability is presented. The control system objective is to
handle durability issues without shutoff of the engine. While no actual implementation
is introduced, the basic setup of an intelligent control system for a rocket engine is given.
This could take system life into account.

An actual implementation for the rocket engine is given in [LSR+92; RDC+94; RDW+94;
RWC+93a; RWC+93b]. While the main focus is life prediction using models of crack
growth, a controller for system performance is setup as well. The usage scenario is
a change of operating point from steady state conditions at 2700 psi and 6.02 oxy-
gen/hydrogen ratio to a new steady state point at 3000 psi and the same ratio. The life
is limited by stress in turbine blades due to preburner and turbine operating parame-
ters. A basic open loop feed forward control is compared to one that limits damage rate
by taking damage rate constraints into account. The basic performance control yields
high damage during transient system operation, whereas total system damage is lowered
using damage constrained control without compromising system performance too much.
To compute the feed forward control, nonlinear programming is used as optimization
technique.

Up until then, the only failure mode was crack in turbine blade. [DR96b] builds on this by
introducing a damage model for the coolant channel ligament, which is a channel lining
the nozzle walls through which fuel is flowing to cool the nozzle walls. In this case, a
rocket engine similar to the space shuttle main engine is used as application example. A
thermo-fluid model of the engine dynamics and a damage model for the coolant channel
ligament is introduced. The accompanying paper [DR96a] combines this with the known
failure mode from [RDC+94] and the system dynamics introduced therein. An optimal
control problem is formulated, in which system dynamics and both failure modes are
taken into account. A feed forward control is computed which, when compared to a pure
dynamic control, reduces creep damage of the ligament and fatigue damage of the fuel
turbine blades.

A procedure that can be followed to create an open-loop control policy is introduced
in [RWC+94a; RWC+94b]. It is meant to be followed by an engineer developing a sys-
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tem, but not for automated application. It includes an optimization for determining
system parameters suitable for a system design that is able to fulfill a given mission.
This is achieved by including upper bounds for damage rate and accumulated damage.
Automated evaluation whether system dynamics is good enough is not part of the pol-
icy. Instead, it is assured by manually evaluating specific system characteristics after
optimization.

In [HTR97], the concept of multiobjective optimization as means to obtain a set of
controllers is introduced into life extending control. Several open loop feed forward
controls are computed for the known application example, the rocket engine. Using
different weights on the individual objectives, three controllers are obtained. A selection
among these is not made.

At the same time, damage models were created that specifically addressed the needs of
life extending control, such as a generic continuum fatigue damage model [Lor94]. Also
in [PR99], the model used for crack propagation in the rocket engine oxygen turbine
blades was improved while keeping the basic setup of the control loop.

In the following years, this control was extended with a means for online-selection of
the most suitable controller. In [LHR00; LHR98a; LHR98b; LRH01], a performance
controller and a damage controller are combined to create a parallel structure. This has
the advantage of using individual controllers for both aspects. However, since they are
being arranged in parallel with the sum of both outputs acting directly on the plant
input, each of them is a perturbation to the other one. This combined with the fact that
a highly nonlinear damage model is included makes stability evaluations difficult or even
impossible, as the authors note themselves in [LHR98a, p. 15]. For the performance
controller, an H∞ based controller is used. The dynamics of the performance controller
are slower than those of the damage controller. This way, the damage controller „cor-
rects“ the performance controller output to reduce damage. The damage controller is a
linear filter in state space representation, with optimization variables being the elements
of state space matrices. The same maneuver of switching operating points from 2700 psi
to 3000 psi is used as characteristic maneuver for optimizing damage and performance
at once. Using a weighted sum, a trade-off among these two objectives can be found.
Both controllers are thus competing against one another. The authors did not proof
stability of life extending control. Also, since life extending control can be regarded as
perturbation, proof that it does not de-stabilize system dynamics is be required.

This problem is avoided in [HR01a], where the damage controller directly influences the
set point of the performance controller. However, this still influences system dynamics
directly and requires one to design and to analyze stability of the whole system at once.

While the rocket engine was the first motivational application example, several others
joined in shortly afterwards. In [TCK+99], the step from rocket engine turbines to gas
turbines is performed. However, this is mainly a concept paper. Shortly after, [WG01,
p. 3707] presented first ideas towards specifically using active clearance control for gas
turbine engines as means to improve useful service life using life extending control.

1.4.2.2 Life extending control for aircraft

Aircraft are similar to space craft in the regard that they require to be light but also
robust. Life extending control was employed for several structural parts, on which load
that is highly dependent on flight dynamics can be lowered by taking damage into account
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when setting up flight dynamics controllers. Generally, flight controllers are required to
have high bandwidth and fast response, but this also leads to fast loss of fatigue life.

In a helicopter, the main rotor control horn is a highly stressed component for which
[RR98] presents a life model. Also flight controllers are designed using a model of he-
licopter dynamics. The fatigue life for several controllers with different bandwidths is
evaluated and correlation between the rotor horn life and controller performance is shown.

In the thesis [Bri03], a crack in the main bevel gear of a helicopter transmission is
controlled. Two objectives for flight controllers lead to increased wear and thus higher
operational cost. In real rotorcraft, component damage is monitored by a Health and
Usage Monitoring System (HUMS), which is implemented to allow for condition based
maintenance. Within [Bri03], GENHEL, a commercially available complex nonlinear
helicopter model, is used for simulations of an actual helicopter. Additionally, a stress
and crack growth model is implemented in GENHEL. Several H∞ and H2 controllers
with varying objectives for airspeed and damage weight are tested. While it is clearly
shown that switching between controllers allows selecting a trade-off between damage
and handling qualities, the selection step itself is not considered. The results were also
published in [BHR05], but using a linear-quadratic regulator.

A selection process is added in [Tol05]. In this work, two different controller schemes
are employed: probabilistic robust control to allow for very responsive controllers with
a certain risk of instability and damage mitigating control to find a trade-off between
responsiveness and degradation. These form the lower level operating in continuous
time. An upper level discrete event supervisor switches among several controllers of
both types. This is designed „to mimic human intelligence“ [Tol05, p. 2]. It takes flight
maps and the current location characteristics, such as the risk of shots being fired at
the (military) helicopter, into account. It does not, however, control lifetime directly.
Instead, it only selects an operating point that offers responsiveness as required and
tries to keep degradation as low as possible. It is suggested to use health and usage
monitoring systems for determining the current system state and to react thereon. An
anomaly detection is implemented for the upper level discrete event supervisor, but
direct feedback of condition monitoring results is not implemented. For the upper level
a discrete system is used which only allows for a limited number of controllers among
which selection is possible. Slight adaptations, which might be suitable to keep a specified
lifetime but are barely noticeable by users, are not considered.

Similarly, mechanical stresses lead to cracks in the structure of airplanes. In [CRJ01;
RC00; SR01] a flight controller is designed such that crack growth in the wings of the
aircraft is limited. For this, a simulation model of aircraft dynamics is augmented with
a crack growth model. However, instead of feeding back crack growth or size to the
controller to form a closed loop, only flight dynamics are controlled. This way, crack
growth may still be reduced.

In addition to structural damage to the wing, turbine engines were of concern. Wear
on the blades is actively controlled in [BKB+04]. The controller is enabled to blow
hot or cold air from the engine onto the outer engine case, thus forcing it to expand or
contract. As the engine temperature changes, the clearance between blade tip and engine
case might be reduced so far as to lead to wear at the blade tips. The resulting larger
clearance of a worn engine, in turn, leads to lower engine efficiency and to increased gas
temperatures. By including engine deterioration in active clearance control, efficiency
can be increased and usable lifetime can be extended.
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The acceleration schedule of an aircraft engine during take-off is optimized in [GCJ04]. It
is shown that by including a model of thermal mechanical fatigue damage in calculation
of the schedule, damage can be reduced without sacrificing performance.

[Guo01] describes the current state of life extending control at NASA for aircraft engines
and problems that will be addressed in the then near future. Here, several current key
areas are identified. Among these is the assumption that in the „intermediate term
(5-10 years)“, i.e. approximately 2006 - 2011, life calculation is possible closer to the
actual feedback loop. This is now the case with condition monitoring techniques being
commonly used in several applications. With these, it is now possible to directly control
remaining useful lifetime without the need for complex damage models, as was the case
at the time life extending control was developed. [Guo01, Figure 2] shows a structure
that is close to the operator controller module used within this thesis. However, no
implementations or further realizations followed.

In [MMD+10], a six degrees of freedom model of an airplane and a model of a hydraulic
actuator are combined. Controllers for flight dynamics, i.e. velocity and altitude, which
include degradation, are designed. Then, an objective function, which is a combination of
actuator degradation at final time of a given maneuver and output error as performance
measurement, is minimized. A „reconfiguration supervisor“ optimizes altitude controller
parameters at runtime to keep degradation below a pre-specified level. However, the two
layers form a close interaction which makes it hard to allow for temporary user overrides.

1.4.2.3 Life extending control for power plants

Fossil fuel power plants are also interesting subjects for life extending control, as they
are designed for a very low number of full operation cycles in a long period of usage.
In [KHR97, p. 1101] it is stated that during 40 years of useful life, it is recommended
to have only up to 100 cold starts and shutdowns. In this paper, an offline optimization
is conducted to obtain a feed forward trajectory that is used to run the plants through
transient operations. For this, a structural damage model for the main steam header is
created and included in the optimization model.

[HR01b; KR00] build on this but add a more sophisticated control scheme. In addition
to a feedforward control, switching between several feedback controllers is employed for
adaptation of the power plant. Switching is done based on a supervisory controller, which
also includes a fuzzy controller as basis of steady state feedforward computations. This
way, the supervisory controller is coupled to system dynamics.

In a tutorial paper, [Ray01], the power plant is used as application example. While this
is a good introduction to the field and to life extending control techniques, it does not
add any significant modifications or enhancements.

1.4.2.4 Experimental validation of life extending control

The first experimental application for life extending control was published in [TRC95].
The test setup consists of two masses, of which the first one is connected to the testbed
by a beam and to the other mass, which in turn is connected to a mechanical shaker.
The beam coupling the two masses is weakened by drilling a hole into it. As cracks
propagate through the remaining material, it eventually fails. The plant dynamics are
modeled using basic dynamic modeling techniques whereas fatigue damage is modeled
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in continuous form. A controller displaces the outer mass by means of the mechanical
shaker. The controller output is determined using optimal control techniques to guide the
system from an initial state to a new state. Then damage rate is included as constraint
in the optimization. Performance is degraded, compared to an unconstrained case, but
the damage rate descreased considerably. The beams failed with a lifetime that was
close to that predicted by the damage model. Also both model and real beam life were
increased by a factor of approximately 3.3 by using the constrained optimization results.
[THR+98] builds upon this, but adds a closed loop controller for the displacement of
the excited mass to allow for better tracking and disturbance rejection. The experiment
has also been used in [ZR99], but the test setup was augmented with a third mass
and the beams were made from several different materials. Also the tracking controller
is of H∞ design. In [ZRP00], a discrete event supervisory control is added. Ultrasonic
measurements for crack detection are introduced into this experiment and into the control
loop in [KGR+06]. In all these experiments, crack growth rate is reduced using life
extending control.

With life extending control having shown its applicability to several academic examples,
it started catching on in other fields as well.

1.4.2.5 Life extending control for other systems

In [LCM+03; LCM+06], a basic life extending control is applied to a boiler-turbine
system. Another system is a wind excited antenna mast, [FFC06], for which a controller
is designed to limit stress at nodes along the mast height while keeping actuation cost
within limits.

The life of polishing pads in a chemical mechanical polishing system for semiconductor
wafers is extended using life extending control in [Run01]. A model is used to predict
pad conditioning, wafer-scale uniformity and feature-scale planarity. Optimization based
on this model determines a „recipe“ for the polishing process.

Wind turbine degradation is controlled in [San07; San08]. A degradation model in con-
tinuous form is used in a model predictive control to control dynamic system behavior.
This lower control loop directly acts on the wind turbine actuators, whereas an upper
control loop specifies which system settings to use. The upper control loop interacts with
the lower control loop by adapting objective function weights, and is thus directly linked
and only offers complex means to override control loop interactions if a user wishes to
do so. The idea of adaptation of system behavior by adapting model predictive control
objective function weights for life extending control is also patented in [Ful07], but no
rules to alter weights are disclosed.

1.4.3 Other approaches for implementation of reliability- adaptive
systems

Another method for controlling a wind turbine is disclosed in [OZZ+13]. This scheme
is based on estimating failure mode and remaining useful lifetime of a component of the
turbine, then determining one or more control schemes which give different power output
and degradation. Total power production or revenue generated is maximized by selecting
an appropriate control scheme. However, for determining the control schemes and for
the selection itself, no methods are given.
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[SL15a] introduces an objective function that quantifies system degradation for an electric
motor based on work done by the motor. It is used in [SL15b] to create closed loop control
for the drive of a vehicle using model predictive control. To this end, the full Pareto front
for objectives degradation and closed loop performance is computed. An operating point
is chosen manually based on user-defined limits. While this general approach fulfills many
prerequisites for reliability control as proposed in this thesis, an automatic selection of
the working point is not part of the operating strategy.

In [SKK+13], reliability oriented online optimization for the operation of mechatronic
systems is introduced. It is comprised of prognostics of remaining useful lifetime and an
assessment whether reliability requirements are fulfilled. If this is not the case, degra-
dation is lowered to increase lifetime. System functionality is split up into basic func-
tionality and auxiliary functionality. Basic functionality has to be fulfilled, e.g. to pass
governmental standards or to fulfill guaranteed system properties. Auxiliary function-
ality, on the other hand, is designed to e.g. increase user comfort and does not directly
contribute to system functionality. Application of this auxiliary functionality is limited
to lower degradation of the system. [SKK+13] gives electronic power steering as an ap-
plication example. It is shown in simulations that different users with different usage
scenarios will experience adaptations of auxiliary functionality such that desired system
lifetime is fulfilled. During simulation, remaining system lifetime is controlled directly
using online optimization that changes the quantity of available auxiliary functionality.
This approach requires a degradation model to simulate system lifetime during opti-
mization, which inhibits applicability to arbitrary systems. It also does not allow an
adaptation of basic functions, which might ultimately be necessary to satisfy reliability
requirements.

[DyL67] presents an adaptive reliability control system for power system control as early
as 1967. The basic outline of the control system is comprised of three layers of control.
The lowest layer is direct control, which directly interacts in real time with the power
system components. The second level is optimizing control, which serves as direct control
input, and the uppermost level is adaptive control, which changes power system behavior.
It is planned to use a computer for numeric optimization to compute optimal settings of
the power system components, but to also include human decision making in the control
loop. Reliability of the power system is expressed inherently by means of minimum
operating cost. This paper is a very early first publication of a novel research project
and is thus mostly conceptual.

The whole operational strategy of a power plant is optimized in [GSA+02]. Goal is
a minimization of operating cost, which is equivalent to a maximization of revenue.
Operation of a power plant induces direct costs, e.g. fuel and operating personnel, and
indirect costs such as degradation of the plant itself. By selecting proper operating
points, the indirect costs can be lowered considerably while keeping energy production
and thus revenue high. This is achieved using model predictive control for the operation
of the plant that aims to minimize overall operating cost. Aging of the plant is expressed
by means of crack growth at critical points. While the authors clearly show that using
their approach, lifetime consumption can be lowered and revenue can be increased, this
requires knowledge about cost of every aspect of system operation. Also the adaptation at
runtime is achieved by directly optimizing the operation using model predictive control,
which requires slow plant dynamics or huge computing power.
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1.5 Objective of this thesis

Prior work has shown that it is possible to use reliability-control to increase the usable
lifetime of a system. Controller performance and damage compete with one another
and a suitable trade-off has to be found during operation. Current implementations of
reliability-adaptive systems are either limited to reactions on discrete events, are highly
system-specific, require complex degradation models, or mix dynamic controllers with
reliability controllers, thus taking the risk of system instability. While the advantages of
continuous adaptation to increase reliability are clear, application is severely limited by
the existing methods.

The goal of this thesis is to develop a novel method for reliability control. A flexible
solution is desired which can be used for arbitrary systems, yet is capable of controlling
even complex systems. It needs to be able to continuously control system behavior
such that reliability of the system is ensured by small variations in parameters over a
long time. In addition, failures need to be taken into account by discrete reactions.
While controlling system behavior according to current reliability, the control must be
compliant to user demands. This includes short-term reactions as well as changed basic
requirements, which in turn modify maintenance intervals.

The continuous adaptation must not introduce room for new vulnerabilities. For this
reason, separation between behavior adaptation control and actual system control, i.e.
dynamic controllers which directly interact with the physical system structure, is desired.
This way, system control can be validated using established methods, making it robust
against failures in the behavior control loop.

The continuous control loop must not be based on a first-principles damage model, as
these require considerable knowledge about degradation processes and are prone to er-
rors. The control method is tied into an existing framework for emergency reactions.
As solution to these requirements, a behavior adaptation control loop that enhances the
multi-level dependability concept introduced in section 1.4.1 is developed. To allow for
continuous adaptation, self-optimization is employed. Applicability is proven experimen-
tally.

1.6 Outline of this thesis

This thesis is divided into five chapters. The first chapter motivated the need for re-
liability control and gave a brief introduction to self-optimizing systems, on which the
proposed control method is based. It also includes a discussion of prior works and intro-
duces so-called reliability-adaptive systems.

A more elaborate introduction to self-optimization follows in chapter 2. It is focussed on
model-based self-optimization, which is based on a priori computation of possible working
points using multiobjective optimization and online selection among those found. This
allows for easier setup and for using low computation power during operation. Also a
method for the identification of dependability-related objectives, which can later on be
used for control, is introduced.

The main contribution of this thesis, development of a novel method for reliability control,
is outlined in chapter 3. It builds on a combination of methods from several fields, which
are introduced in this chapter. At first, a health index as suitable reference variable
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and the generation of a setpoint is discussed. Then the control loop is introduced. It
is based on a two-stage controller with a behavior controller forming the inner loop and
the actual reliability controller forming the outer loop. The behavior controller is prior
art, but due to its importance for this thesis introduced in great detail in section 3.3.2.
The whole behavior control loop is reduced to an abstract model in section 3.3.3 and a
generic nonlinear degradation model is introduced in section 3.3.5. Parameters for these
are estimated using Kalman filtering in section 3.3.6. Setup of the actual reliability
controller based on model predictive control follows in section 3.3.7. For comparison
with the desired setpoint, the actual value of the health index needs to be estimated.
Prerequisites for an estimation using condition monitoring techniques are discussed in
section 3.4. Controller stability and incorporation of the controller into existing aspects
of self-optimization are discussed at the end of chapter 3.

An experimental validation of the proposed control loop follows in chapter 4. For several
reasons, which are discussed in section 4.1, a clutch system as used in automotive appli-
cations, is used. The examined use-case and test rig setup are discussed next. For ease
of experimental setup, a scaled-down clutch system was built up. Dependability-related
objectives are identified, the clutch system is modeled and multiobjective optimization
is used to find suitable working points. The whole control loop is setup and validated
in individual stages. At first, lifetime experiments using a static working point are con-
ducted. Then system complexity is increased by introducing behavior control to the
system. Lifetime experiments show that reliability is not changed considerably. Relia-
bility control is setup and again lifetime experiments are conducted. Results show that
reliability becomes more predictably and that deviations in wearing behavior can be
compensated and that changed requirements can be realized.

The thesis ends with a conclusion and an outlook in chapter 5. All experiment results
are combined and the benefit for system operation is discussed. Ideas for further work
are given as well. These include practical applications close to the clutch system example
from chapter 4, improvements to the control loop itself and suggestions for other fields
of research that go beyond the scope of this thesis.
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Self-optimization is one way of implementing intelligence in mechatronic systems. It is
based on the idea that system behavior can be expressed in terms of objectives that the
system pursues and that behavior adaptation can be carried out by adapting objective
priorities. This allows for system operation that is optimal with regard to the currently
pursued objectives. It forms the basis of the reliability control loop developed within
this thesis. For these reasons, a detailed introduction is essential.

2.1 Self-optimization

A system is self-optimizing if it is capable of adapting its behavior to the current situa-
tion, to changed external and internal requirements and to changes in the system itself
by means of altering the objectives that it pursues [GRS09a, p. 6]. By initiating behavior
adaptation through objectives of the system, flexibility is increased over other, similar
behavior adaptation approaches. Optimization techniques can be applied to find operat-
ing points that are optimal with regard to the defined objectives. By limiting selection
to these pre-computed working points, despite changed system behavior, optimality is
not compromised. This approach is also denoted as model-based self-optimization and
is introduced in more detail in section 2.1.2. A common base for all approaches to self-
optimization is a cyclic system behavior adaptation process that is composed of three
disctinct steps.

2.1.1 Cyclic behavior adaptation process

Self-optimizing mechatronic systems are formed by combination of classical mechatronic
systems with an advanced signal processing unit. Whereas mechatronic systems have
static behavior properties, self-optimizing systems are able to adapt their behavior to
the current situation and to user demands. To do so, they select from system objectives
or create new system objectives and then find a new working point that is optimal with
regard to the currently pursued objectives. This is achieved by continuously cycling three
individual steps [Gau04, p. 22], [GRS09a, p. 6], [DDD+14, p. 3], which are depicted in
figure 2.1. The three steps are:

1. Analysis of current situation
During this step, the system state and observations of the environment are taken
into account. Observations can also be obtained indirectly by communicating with
other systems. The state of the system may also include prior observations. A
major aspect of this step is the evaluation of the degree of fulfillment of the pursued
objectives.

2. Determination of objectives
In the second step, new objectives of the system can be selected, adapted or gener-
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Figure 2.1: Cycle of the behavior adaptation of a self-optimizing mechatronic sys-
tem [DDD+14, Figure 1.2]

ated from the system’s set of objectives. A selection is possible if a finite number
of discrete possible objectives exists. An adaptation is carried out if the system’s
objectives can be altered gradually. A generation of new objectives is performed if
new objectives are created independently of known objectives.

3. Adaptation of system behavior
The system behavior is adapted to account for changes that arise from the de-
termination of new objectives. Changes to parameters of the system as well as
changes to the system structure are possible. This action forms the feedback of the
self-optimization cycle to the system.

By conducting these three steps, a system adapts its behavior from an initial state to a
new state based on outer influences [GRS09a, p. 5]. The steps are repeated continuously,
which enables the system to constantly adapt and to always operate in the best working
point. With this cyclic behavior adaptation process, self-optimizing systems are capable
of pursuing multiple conflicting objectives at the same time.

The cyclic adaptation is similar to that of a digital closed loop control. The three steps
of self-optimization can also be regarded as obtaining new sensory and state information
(„Analysis of current situation“), computing a controller output accordingly („Determi-
nation of objectives“) and actuating the system („Adaptation of system behavior“). This
similarity gives rise to the idea of viewing the behavior adaptation cycle as closed loop
control a, to find a mathematical representation and to design actual controllers for it.
This is detailed further in chapter 3.

2.1.1.1 „Analysis of current situation“ for reliability co ntrol

Controlling the reliability of intelligent mechatronic systems requires suitable means for
all three steps of the self-optimization cycle. In step 1, „Analysis of current situation“, the
current reliability of the system needs be determined. Within the scope of this thesis, this
comes down to the health state of the system at hand, which can be determined using
condition monitoring techniques. Condition monitoring techniques aim at estimating
the health state of an individual system using measurement data that is available either
during operation or at least during regular maintenance intervals long before failure. The
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techniques can be subdivided into two main groups: Model based condition monitoring
uses a dedicated model for simulating system degradation, whereas data-driven condition
monitoring relies on a model that has been learned from prior data.

Methods from both groups are suitable for reliability control. In general, model based
condition monitoring is advantageous, but requires considerable knowledge about system
degradation and yields complex models, which are difficult to setup and validate and
might require high computing power. If creating such a model is not possible, data-driven
methods offer simpler model setup at the cost of requiring large amounts of learning data,
which might need to be obtained using lifetime experiments.

A more detailed discussion of condition monitoring techniques follows in section 3.4.

2.1.2 Model-based self-optimization

Self-optimization can be implemented in two ways: As behavior-based self-optimization
or as model-based self optimization [GRS09a]. These are not contradictory, but in-
stead can also augment one another for different aspects of system operation, e.g. using
model-based self-optimization for lower level behavior control and behavior-based self-
optimization for upper level planning of objective priorities [Gau04, p. 47]. For reliability
controlled system operation, model-based self-optimization has proven suitable. As the
name suggests, a model of the system forms the basis of this method. The model is gen-
erally based on a first-principles model of dynamic system behavior, but could also be
learned from data. It is then used to evaluate performance of the system for given system
parameters in order to find suitable working points. For reliability control, the model of
system performance is augmented with a reliability model, as shown in section 2.4.

Objective functions then quantify performance and reliability measure each as a single
value. Using multiobjective optimization techniques, optimal trade-offs among conflicting
objectives can be found, which leads to the so-called Pareto front. To each point on the
Pareto front, parameters for system operation are known, which are commonly referred
to as Pareto set. During operation, system behavior can then be adapted by changing the
priorities of conflicting objectives, selecting an appropriate point from the Pareto front
and setting the corresponding parameters from the Pareto set in the actual system, as
depicted in figure 2.2. This way, optimization and operation are separated. Optimization
is conducted offline during development of the system using a validated model. In certain
situations, optimization during operation is advisable, e.g. if an updated model of system
behavior is available. This is possible parallel to re-using old results, thus keeping the
system operating. Results are Pareto front and set, which are stored for usage during
operation. Advantages include low computational requirements during operation, fast
reaction time and robustness during operation. A very detailed introduction to model-
based self optimization can be found in [Mün12].

To allow for optimization including dependability related objectives, some measure for
degradation needs to be included in the optimization model. Degradation is highly sys-
tem specific and could necessitate models as complex as Finite Element Method models
for crack growth. For these reasons, measures as simple and as universal as possible are
desired. Section 2.4 gives a method to identify suitable objectives without fully setting up
a degradation model, which can then be implemented in a multiobjective optimization
problem.
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Figure 2.2: Information flow in model-based self optimization

The separation into optimization and selection among results also allows quick behavior
adaptations with a small step size, whereas new optimization results become available
on a much longer time frame, if at all. To allow such synchronisations of different time
frames, the operator controller module was developed.

2.2 Information processing: Operator controller module

To cope with the complexity of computations and the constraints given by system control,
a three layer layout was chosen for the information processing of self-optimizing systems.
The current layout was first introduced in [HOG04], but it was based on prior work that
is referenced therein. Later on, it was updated and changed in [FGM+07], [GRS09a],
[GRS14], and other publications. The layout is shown in figure 2.3. The three layers are,
based on [GRS09a]:

Controller
The controller ascertains that system dynamics are as desired. To this end, closed
loop control is used to interact with the passive structure through sensors and
actuators. Usually, digital controllers are employed which must satisfy real time
constraints, i.e. a new controller output for the actuators must be available no later
than a fixed time after sensory inputs were acquired. The fixed time step needs to
be long enough to allow for computation of control laws, but also short enough to
not impair system stability. This loop is present in all contemporary mechatronic
systems. Behavior changes are rendered possible by changing controller parameters
or control strategies. To this end, control switching techniques are implemented,
which are initiated by the upper layer, the reflective operator.
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Reflective Operator
The intermediate layer initiates controller adaptation and controls the switching
itself. This is based on input from the upper layer, called cognitive operator,
but also as quick reaction to unforeseen events in emergency situations. In most
implementations, discrete configurations among which to switch exist. These are
implemented in the configuration control. These parts need to run in real time as
well. The reflective operator is not able to directly influence system behavior by
means of actuators.

At the same time, the reflective operator is communicating with the cognitive oper-
ator. This communication is not bound to real time constraints, since the cognitive
operator is working on a much slower time scale. It is necessary to synchronize these
time scales. To this end, buffering or asynchronous data transfer are used, which
are all part of the reflective operator. Main data that is communicated includes
information about the current system state, i.e. (pre-processed) sensor information
and the currently desired configuration.

Cognitive Operator
All complex tasks are embedded in the uppermost layer. Information data about
the current system state is passed up from controller through reflective operator to
cognitive operator. The data is evaluated to assess whether changes to the current
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operating point are required.

In model-based self-optimization, the model used for multiobjective optimization
might not be valid anymore due to e.g. unexpected outer perturbations or inner
changes in the system. To obtain new possible working points, a new optimization
may need to be conducted. This time-consuming process is running in the cognitive
operator. Results from this optimization are required at some point, but restrictions
are not as hard as real time constraints on the lower layers. Instead, soft real time,
i.e. discrete time with longer and possibly changing step size, is sufficient. Selection
of the current working point is carried out in parallel.

Continuous reliability control builds on all three layers. While the main control loop is
executed in the cognitive operator, it requires measurements from the controller and sets
the operating point by means of the reflective operator.

Model-based self-optimization implements a selection of the current working point in
the cognitive operator. The new desired working point is passed down to the reflective
operator, which then adapts the controller. This separation into different layers makes it
possible to adapt system behavior, but at the same time to guarantee that each possible
working point is known to be safe and reliable beforehand. This process is based on
multiobjective optimization results.

2.3 Multiobjective optimization

When talking about optimization, two different aspects need to be distinguished. In
engineering, the term optimization is often used to describe a process of iterative im-
provement of a product. The optimization itself is conducted by changing parameters,
re-designing parts or utilizing new materials. However, each iteration often comes with
a change of requirements, making it hard to separate actual improvement of the prod-
uct from merely adapting it to new requirements. In mathematics, on the other hand,
the goal of optimization is to find the best solution to a given problem, i.e. finding the
lowest value of a given objective function. Given a function f : P → O with parameters
p ∈ P ⊆ R

m and objective value o = f (p) ∈ O ⊆ R. The goal is then to find a solution

popt ∈ P such that f
(
popt

)
≤ f (p) ∀ p ∈ P . The function f is commonly also referred

to as cost function, metric, energy function or fitness function, but within this thesis the
term objective function is preferred7.

During development of a self-optimizing system, these two views need to be combined.
At first, the engineering problem is formulated as an objective function, then the mathe-
matical minimum of this function is found. The objective function may contain complex
models based on e.g. for multibody dynamics, controllers, structural strength or fatigue
life. Simulations of these models require long computation time, which imposes restric-
tions on optimization algorithms selection. Also if function evaluation requires system
simulations, the gradient of the objective function cannot be determined analytically,
further restricting optimization algorithm selection.

Multiobjective optimization builds on classical optimization but extends it to more than
one objective function at once. For non-conflicting objectives, one common minimum can

7The only exception being the cost function in model predictive control, section 3.3.7. The differing
name was chosen to differentiate it from system objectives and since cost function is commonly used
in model predictive control.
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be found despite multiple objectives. If instead two or more objectives are conflicting, it
is not possible to find a common minimum, so the result is set of optimal compromises
that are trade-offs among all objective functions.

Figure 2.4 shows an example for such a multiobjective optimization problem. The two
objectives are simple functions:

O1 = (p1 − 20)
2

+ (p2 − 15)
2

,

O2 = (p1 + 20)
2

+ (p2 + 15)
2

.

Arbitrary points p = [p1, p2]
T

are mapped to form a cloud in objective function space,
which apparently has restrictions so that low values cannot be reached. Since in op-
timization the minimum is desired, points to the lower left are the best points. From
figure 2.4 it is obvious that no single optimal point exists. Instead, the lower left bound-
ary of the cloud of possible objective function values needs to be found. To do so, the
general multiobjective optimization problem

min
p

(f1 (p) , f2 (p) , . . . , fn (p)) (2.1)

with parameters p ∈ P ⊆ R
m and objective functions8 f = (f1, . . . , fn) is now consid-

ered. An individual feasible working point p̂ ∈ P is then called Pareto optimal if there
is no other p ∈ P such that f (p) ≤ f (p̂) [Ehr05, p. 24]. The set of all solutions p̂

is called the Pareto set. Corresponding points in objective space f (p̂) ∈ O ⊆ R
n are

called Pareto front.

Numerical algorithms approximate Pareto front and set by a finite number of different
possible working points. Each of these points can be tested against safety requirements.
This can also be conducted automatically during optimization by including safety mea-

-20 0 20

Parameter p1

-20

-10

0

10

20

P
ar
am

et
er

p
2

Feasible parameters

Pareto set

0 1000 2000 3000 4000

Objective function O1

0

1000

2000

3000

4000

5000

O
b
je
ct
iv
e
fu
n
ct
io
n
O

2

Feasible objective values

Pareto front

Figure 2.4: Parameters and objective values for possible points and for Pareto optimal
points.

8In multiobjective optimization, strictly speaking only one objective function is utilized, but it has
multiple dimensions for multiple objectives. Loosely speaking, each of these dimensions is referred to
as an individual objective function.
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sures, e.g. stability margins of controllers or maximum forces as constraints that have to
be satisfied for a working point to be permitted into the final solution.

For the simple example with two objectives, the Pareto front is visible in figure 2.4 as
boundary that forms to the lower left. It is optimal with regard to all objectives, but the
decision which working point to use comes down to selecting a compromise between them.
Selecting a working point that deliberately deviates from the Pareto front is not advised,
as it is known to be non-optimal in at least one objective function, i.e. its objective
function values are higher than necessary. Such a non-optimal working point is called
dominated by at least one Pareto optimal working point. The Pareto optimal working
points are called dominating points. They are found using multiobjective optimization
techniques. From this, two goals can be deduced for solving a multiobjective optimization
problem [Deb01, p. 22]:

1. Finding a set of solutions that approximates the Pareto front as close as possible,

2. Finding a set of solutions that is as diverse as possible.

The second goal is specific to multiobjective optimization problems and is of utter impor-
tance for model-based self-optimization. Since behavior adaptation of the system is based
on selection of the current working point from all Pareto optimal solutions, many differ-
ent working points need to be available. These two goals make handling multiobjective
optimization problems more challenging than single objective optimization problems.

At this point, only a brief introduction is given. Interested readers are refered to dedi-
cated books, e.g. [Deb01].

For mechatronic systems, the objective functions can become quite complex. First of
all, performance as one objective is usually evaluated using a model of system dynamics,
which can be given as a set of ordinary differential equations. These are solved using
numerical integration schemes before the performance measure is computed from simu-
lation results. Parameters in this case can be set points of controllers, controller gains or
even desired state trajectories over time. This model is augmented with reliability-related
objective functions.

The solution to such complex optimization problems can generally not be found analyt-
ically. A special case is controller design for linear systems, where problems with perfor-
mance objectives only can oftentimes be solved using controller design techniques such
as LQR (linear-quadratic regulator) [Föl94, p. 479] or H∞ [LRH01, p. 999]. These ap-
proaches are limited in applicability to problems that include reliability. For this reason,
formulating an optimization problem and solving this with general purpose methods is
favored. Multiobjective optimization problems can either be reduced to one-dimensional
optimization problems or be solved using dedicated multiobjective optimization algo-
rithms.

2.3.1 Reducing multiobjective problem to single objective problem

A popular method for solving multiobjective optimization problem is to reduce all ob-
jectives to a single objective using metrics with changed parameterizations. Instead of
solving one multiobjective problem, multiple single objective problems are solved. Sev-
eral of these approaches exist. At this point, a small selection is presented to explain the
key ideas; a more detailed overview can be found in [Ehr05; Mün12].



2.3 Multiobjective optimization 29

2.3.1.1 Weighted sum method

In this method, each objective function is assigned an individual weight. To find a point
on the Pareto front, a vector w = [w1, w2, . . . wn] is created with n being the number
of weights, which is equal to the number of objectives. Now, weights are varied and for
each step j of the variation, objectives are combined as

S (p) =
1

∑n
j=1 wj

·
n∑

j=1

wj · fj (p) .

Minimizing S yields one optimal solution. By varying weights, different compromises
between objectives are found.

This is a simple and commonly used method, but it is not able to find the complete
Pareto front for all problems. If the Pareto front is non-convex, no solutions in the
region of non-convexity are found, leaving a gap between two parts of the Pareto front.
It is difficult to estimate or even know the shape of the Pareto front beforehand. When
adapting the working point by means of selection from the Pareto front, such a gap
inhibits quasi-continuous adaptation.

2.3.1.2 ǫ-constraint method

A different approach that aims to overcome the shortcomings of the weighted sum method
is minimizing just one single objective while keeping the remaining below pre-defined
constraints. This way, the multiobjective optimization problem is reformulated to a
single objective optimization problem with multiple constraints. The bounds imposed
on the remaining objectives are named ǫ. By varying bounds, several optimal solutions
can be found. This method is suitable for solving problems that yield a non-convex
Pareto front, but selecting constraints ǫ is difficult.

Several other methods exist, but none of them is sufficiently versatile to solve complex
multiobjective optimization problems satisfactory [Deb01, p. 75].

2.3.2 Direct multiobjective optimization algorithms

To overcome the shortcomings of reduction methods, direct multiobjective optimization
algorithms have been developed. These aim to find the full Pareto front, not just a single
point.

2.3.2.1 Evolutionary algorithms

Nature itself is the best optimization that exists: Through mutation and fitness evalua-
tion, living beings evolve. Fit members of the population create more or fitter offspring
than inferior members, which might die young or not find a mate. This way, the whole
population is optimized. This process is mimicked by evolutionary algorithms, as intro-
duced in [Deb01].

In a cyclic process, the population, starting with an initial population, is improved
through several steps. The initial population is a number of feasible solutions which might
have been computed offline beforehand. At first, population members are evaluated and
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fitness values are assigned to each member. After checking whether optimality conditions
are satisfied, the population members are reproduced, crossovers are created and new
members are mutated. Then, the cycle starts again for the next generation.

During evaluation and fitness assignment, objective function values are computed, for
which the user supplied objective function is executed. The evolutionary aspects come
into play in the steps of reproduction, crossover creation and mutation.

During reproduction, good solutions are identified and duplicated, while bad solutions
are removed from the population instead. This improves the average of all members, but
does not increase diversity in the solution and does not find any better new members.
The crossover operator then mixes the population by randomly exchanging parts of
two different parent solutions between one another, thus creating offspring. In order
to introduce entirely new solutions, and thus to increase diversity, existing population
members are modified randomly without any external information from other members.
These three steps form the basis of all evolutionary algorithms, but might be implemented
differently.

A main prerequisite to finding a truly optimal solution is to find a globally optimal
solution, as opposed to a locally optimal solution. Despite being suitable to solve a
large number of problems, global optimality cannot be guaranteed for genetic algorithms.
Instead, parameters, most importantly population size, must be selected suitably in order
to find globally optimal solutions.

2.3.2.2 Box subdivision algorithms

An entirely different approach are box subdivision algorithms [SWO+13]. A large initial
box is chosen in parameter or objective space, which is divided into smaller boxes itera-
tively. In each iteration, fitness of boxes is checked and boxes with dominated solutions
are disposed, whereas boxes with non-dominated solutions are further subdivided. Eval-
uation of box fitness is conducted for several points in each box. Spread of evaluation
points can be even or arbitrary, i.e. an individual Monte-Carlo simulation. These can
be combined with a descent method, which takes the derivative of objective functions
into account when selecting new parameters to evaluate. With these, efficiency can be
increased and computation time can be decreased. For applications in engineering with
complex objective functions that might include a model of system dynamics, generally the
derivative is not known analytically. While methods such as algorithmic differentiation
exist, they are not feasible for arbitrary objective functions with complex simulations.
in these cases, algorithms that use function evaluations only have to be applied. Despite
this shortcoming, computation times are sufficiently fast. An advantage is that all ob-
jective function evaluations for one iteration can be computed in parallel, making great
use of parallel computers9.

2.3.3 Optimal Control

Whereas optimization is concerned with finding the minimum of an arbitrary objective
function, optimal control aims at guiding a dynamical system from an initial state to a

9For this research, the Paderborn Center for Parallel Computing provided computing time on the su-
percomputer Oculus.
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desired state while optimizing one or multiple given objectives. This makes it necessary
to take system dynamics into account. There are several ways to achieve this.

The basis is always formed by system dynamics described by a set of ordinary differential
equations ẋ (t) = g (x (t) , u (t)) with system state x (t) and input u (t), t ∈ [0, T ]. Then
the goal is to find an input u (t), such that some optimality criteria f (x (t) , u (t)) is
optimized while fulfilling constraints c (x (t) , u (t)). As the input u is a function over
time, an optimal control problem has infinite dimension.

Several methods for solving optimal control problems exist. The direct method is popu-
lar for its simplicity of implementation and for its adaptability to a multitude of prob-
lems and models. To solve the optimal control problem, it is reduced to finite dimen-
sion, i.e. the system input is reduced to k discrete values u1 (t1) , u2 (t2) , . . . , uk (tk) with
0 ≤ t1 < t2 < . . . < tk ≤ T . Then these individual values can be regarded as optimiza-
tion parameters. The discrete states can either be considered as additional optimization
parameters or internally obtained by system simulations. An advantage of simulating
system dynamics is that the constraints originating from these are always fulfilled. How-
ever further constraints for the state, specifically for the final state at time T , need to
be taken into account as optimization constraints.

A more comprehensive discussion of these different approaches can be found in [Obe08,
pp. 16-24]. For the remainder of this thesis, a direct optimal control method was
combined with a box subdivision optimization algorithm.

To allow an inclusion of reliability in an optimization problem, corresponding objectives
need to be included.

2.4 Identifying dependabiliy-related objectives for
continuous control

As shown in section 2.1.2 and figure 2.2, model-based self optimization is based on
objective functions for the behavior adaptation process. For reliability control, suitable
objective functions need to be found. Complexity of objective function formulation has
direct impact on applicability and acceptance of the proposed reliability control loop. In
order to reduce complexity, general formulations without degradation model are desired,
as was discussed in section 1.5. In [MSS14], a dedicated method was introduced. It
consists of five steps and yields an optimization problem that includes reliability. These
steps are outlined in figure 2.5. The individual steps are:

1. Analyze system dependability
At first, a system dependability model is setup to identify all critical or relevant
failure modes, which may need to be addressed using reliability control. For each
failure mode, the corresponding critical components are identified.

2. Identify load factors
A load factor is a variable whose value originates from desired operation and which
influences the lifetime of a critical component. In mechatronic systems, most critical
components are wearing due to mechanical fatigue, abrasion, thermal processes
or similar effects. As these are commonly limiting the lifetime of components,
degradation is a common topic in research and for many components, degradation
models models can be found from literature. Examples are [DIN ISO 281] for roller



32 2 Self-optimizing systems

Augmented model

of system behavior

Critical/relevant failure

modes and components

1

●Create system dependability model
● Importance analysis

Identify load factors

Add missing load factors to

model of system behavior

Identify system parameters

corresponding to load factors

4

3

2
●Select component degradation model

●Analyze model of system behavior

Load factors for all

critical components

Include load factors as objectives

in multiobjective optimization

5

●Implement objectives and
parameters in multiobjective
optimization Augmented system of objectives

and multiobjective optimization

●Implement component reliability
model in model of system behavior

Additional optimization

parameters

Analyze system dependability

Figure 2.5: Phases and milestones for determining reliability-related objective functions.
According to [MSS14, Figure 1].

bearings, [MKH02] for cutting tools, [RS12] for crack growth, or Cox regression
models for arbitrary systems, where operating data from similar systems already
exists [Cox72]. All of these degradation models require system-usage specific input
parameter values such as forces, friction work or dissipated electrical energy. If
the magnitude of input parameters is changed, degradation and reliability change.
These input parameters are thus considered load factors of components.

3. Add missing load factors to model of system behavior
Most often, several of the load factors are already included in the performance
model, but if not, it needs to be augmented. This might necessitate the creation of
new models for effects not considered before, such as heat dissipation.

4. Identify system parameters corresponding to load factors
If changes in the existing optimization parameters do not reflect as changes in load
factors, new optimization parameters need to be identified. This can be simple,
e.g. by including controller gain values that can be changed online as variable
parameters, but sometimes might also require changes in system structure.

5. Include load factors as objectives in multiobjective optimization
By including the load factors as objective functions and the new optimization pa-
rameters in an existing multiobjective optimization problem, all required prerequi-
sites for reliability control are fulfilled.

Once the optimization problem is fully formulated and solved using suitable algorithms,
Pareto front and set are known and can be used for reliability control as well as for
performance control.



3 Actively controlling the reliability

From the introduction in chapter 1 it is apparent that actively controlling the reliability
of mechatronic systems might have great advantages for system operation. Closed loop
control based on self-optimization is desired. This control loop has to be able to actively
change system behavior at runtime by means of changing system parameters. A general
outline of the desired reliability control loop is shown in figure 3.1. The system and
its associated dynamic controllers work in hard real time and are connected as normal
control loop. During operation, some information about the system state is obtained
and passed to a reliability controller, which then computes desired system behavior and
changes the dynamic controllers accordingly. Due to the inherently slow dynamics of
system degradation, the reliability controller can work on a slower time scale in soft real
time. To cope with the complexity that arises from controlling the system state by means
of adapting system behavior, control loop setup is split up into several individual steps.
These comprise finding a control variable, residual generation and controller design. At
first, a suitable reference input needs to be defined. The controller works on the so-called
health index10.

Reliability
controller

System
dynamics
controllers

System

System behavior

System state

S
en

so
r 

si
g
n
al

s

A
ct

u
at

o
r 

si
g
n
al

s

Hard real timeSoft real time

Figure 3.1: General outline of desired reliability control loop.

10In literature, wear margin can also be found, e.g. in [VDI 2895, p. 5]. Health index and wear margin
are essentially synonymous, but wear margin misleadingly suggests limitation to abrasive wear.
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3.1 Health index

Health index is a measure for the capability of a component of the system to sustain
further degradation. It is defined as

Health index = 1 −
Prior degradation

Sustainable degradation
. (3.1)

Degradation is accumulated damage, due to e.g. abrasive wear, crack growth, or chemical
decomposition. Sustainable degradation is the amount of degradation that a component
can sustain before failure. Prior degradation is the amount of degradation that the
component has already accumulated at a given time.

The health index only captures the current component degradation state and does not
include future predictions. It is completely independent from future usage and only
depends on prior usage as far as this has influenced degradation. Its value ranges from
1 for a new component to 0 for a worn out component. By definition, the health index
is 0 if a failure occurs. Components that show self-healing can have an increasing health
index value during self-healing periods, but in general the health index is constantly
falling due to ongoing degradation. The health index is specific to a component and also
to each failure mode, i.e. a system that is composed of multiple components might have
a large number of individual health indices, each of which might limit operating time.

The health index needs to be defined for each failure mode. Since the degradation
of a component with regard to a failure mode requires energy for the actual damage
accumulation, suitable measures can be based on dissipated energy. A general energy-
based formulation of the health index is

Health index = 1 −
Accumulated dissipative energy

Total dissipative energy before failure
.

Both accumulated and total dissipative energy before failure need to be determined
for each component. This poses two challenges: For some components, computing the
accumulated dissipative energy is challenging, whereas for other components the total
dissipative energy before failure changes during operation, which is difficult to determine.

For example, if a mechanical component fails due to crack growth, the energy that is
required to elongate the crack needs to be dissipated in the mechanical component itself.
Computing these losses proves difficult if component stiffness is high and damping is
low. Also the total dissipative energy can change with operating conditions. This is the
case for components where the influence of secondary effects on lifetime and that of the
intended use of the component have approximately the same magnitude. An example is
degradation of fuel cells, where the dissipated energy can be computed easily, but the
total dissipative energy before failure increases during non-usage [KMS14]. This effect is
also known as self-healing.

However, for some systems the dissipated energy serves as good indicator. Such a health
index was used in [SL15a] for electric motors. The remaining useful lifetime RUL, which
in this case is equivalent to health index HI , was defined as RUL = 1 − Wactual

Wrated
. Wactual

is the work done by the motor and Wrated =
∫ tlife

0 Prated d t is the rated work. Nominal
lifetime tlife and rated power Prated are usually given by the manufacturer of a motor.
Systems with self-healing are not taken into account.
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To keep the reliability control approach developed in this thesis as universal as possible,
a generalized health index according to (3.1) is assumed.

3.2 Setpoint generation

In order to setup a closed loop controller for reliability, desired reliability over time needs
to be known. The time t is defined in units of system degradation time, i.e. it can either
be actual time or it can be a system-specific measure such as usage cycles. Generally, the
time value is only increased if the system is actually being used. If degradation occurs
even though the system is not used at all, this needs to be taken into account separately
in the setpoint generation.

Health index of a new system is named HI 0 = HI (t0). In most cases, HI 0 = 1. Health
index at failure time tf is, by definition, HI (tf) = 0. However, precisely measuring

the health index is impossible; instead, an estimated value ĤI is used. It can safely
be assumed that after maintenance, ĤI = 1. After a pre-defined desired lifetime tspec,
system failure is expected and desired. In ideal conditions, at this failure time the desired
health index should be HI des (tspec) = 0 to avoid wasting system capability. Generally,

some small deviation due to estimation tolerances cannot be avoided, i.e. HI 6= ĤI . This
can become severe if system operation until ĤI = 0 is desired, but the actual health
index HI is lower already and the system fails before ĤI = 0 is reached. To avoid such
early failures, a safety margin has to be kept when defining the desired health index
for the specified system lifetime HI des,end = HI des (tspec) to be used as setpoint, thus
0 < HI des,end < HI 0.

Also the setpoint needs to be strictly monotonically falling during operation time, i.e.
desired health index is lowered at all times11. If self-healing is evident in the system,
health index after periods of rest needs to be correct accordingly. Raising the health index
or even keeping the current value is not possible during operation without maintenance.
Thus, in order to serve as setpoint, the desired health index HI des needs to fulfill the
following constraints:

HI des (t = t0) = HI 0,

HI des (t = tspec) = HI des,end,

∂HI des (t)

∂t
< 0.

(3.2)

Generally, constant behavior and constant degradation are desired at all times. This
leads to the setpoint being linearly falling over the desired system usage time, i.e.:

HI des (t) = HI 0 −
HI 0 − HI des,end

tspec

· t, (3.3)

with tspec being the specified lifetime.

A problem that remains with this definition is the choice of HI des,end. As was shown, it

11Lowered at all times assumes no recovery during operation. This is true for most systems, but some
might require compensation. This is especially true for electrochemical systems, as we have shown for
fuel cells in [KMS14]. However, this special case is not considered in this thesis.
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should be greater than 0 to avoid early failures, but if an overly large value is selected,
sustainable degradation is wasted.

To cope with this problem, error of health index estimation needs to be determined. The
easiest way to create a safety margin would be to increase tspec over the actual desired
lifetime, i.e. creating a safety margin on time. However, this would necessitate knowledge
about the variance of time to failure, which is dependent on system wearing behavior,
health index estimation and reliability controller performance. Most of these variances
are unknown before actually setting up the system and the reliability controller.

From simple run-to-failure experiments with running health index estimation, time to
failure of individual systems and the corresponding estimated health index can be ob-
tained. This is shown in figure 3.212, upper left.

To determine reliability R (t) of the system, the probability density function of the failure
times tf is evaluated, as shown in figure 3.2, lower left. If the reliability controller is not
in action during these experiments, R (t) is not representative of the controlled system,
as changing the failure behavior is the main point of reliability control.

Similarly to evaluating failure times, the estimated health index can be evaluated as well.
From this, a probability density function PDF

(
ĤI |HI = 0

)
13 for failure over estimated

health index ĤI is obtained. Reliability is given by the corresponding cumulative density
function CDF

(
ĤI |HI = 0

)
= R

(
ĤI
)
, shown in figure 3.2, upper right.

Since the reliability function R is the probability of the system being functional, R
(
ĤI
)

can be evaluated to find a proper safety margin for ĤI . Assuming some specified reliabil-
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Figure 3.2: Illustration of estimated health index over time (arbitrary values) and result-
ing probability functions of values at system failure.

12The values in the diagram are arbitrary and are not to be taken as precise representation of a particular
system. Different probability distributionas could be used as well.

13PDF (A|B) denotes the probability density function of a stochastic variable A given event B.
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ity Rspec at some specified time tspec, the problem can be formulated as finding HI des,end,
such that

CDF (HI des,end|HI = 0) = Rspec. (3.4)

This can be found easily by inverting the known cumulative density function. Note that
for the type of probability distributions of time to failure and estimated health index at
failure, no assumptions have been made. While figure 3.2 shows normal distributions
for both, Weibull or other distributions might be just as suitable and can be combined
freely, depending on observed system failure and health index estimator behavior.

The resulting value HI des,end is close14 to 0 and can be either positive or negative. Posi-
tive values indicate an estimation method that usually estimates a health index greater
than the actual health index, i.e. ĤI > HI , whereas negative values can occur for an
estimation method that gives pessimistic estimates, i.e. HI > ĤI . When operating a
system with such pessimistic estimation until failure, ĤI < 0 shortly before failure. Usu-
ally, pessimistic estimates are preferred to avoid early failures. With these, maintenance
is conducted earlier than necessary, thus preventing failure but wasting some sustainable
degradation. Since reliability control also serves the purpose of avoiding early failures, it
needs to be ensured that the reliability estimator works correctly despite returning nega-
tive values which wrongly indicate that degradation at failure is greater than sustainable
degradation.

3.3 Setup of the control loop

To adapt system behavior in a closed loop control, a manipulating variable needs to be
found. It must be capable of adapting system behavior by prioritizing system objectives
of a self-optimizing mechatronic system. One way to implement this for systems with
two objectives has been introduced by Krüger et al. in [KRK+13] with the so-called
α-parameterization. It allows a choice among several objectives with abstract values,
which are then mapped onto system objective values and in turn on system parameters
by the so-called s-transform. After introduction of the α-parameterization, the control
loop is setup as two stage closed loop control. The inner loop controls system behavior
while the outer loop controls system reliability.

3.3.1 Behavior parameterization α as manipulating variable

The α-parameterization is a metric that allows a selection of the current working point
from the Pareto front, as illustrated in figure 3.3. The basic idea is that to pair of
objective function values, an individual α-value can be computed. This can be reversed
as lookup to find a suitable point in objective space for a given α-value. To each point
in objective space, i.e. each point from the Pareto front, a corresponding set of system
parameters is given in the Pareto set. By setting these in the system, the behavior can
be adapted.

Suggestions for the α-parameterization metric are made in [KRK+13, p. 3404], e.g. to
use a Simplex-based method or to calculate the ratio among two objectives. The working

14If it is not, suitability of the health index estimation method should be questioned or desired reliability
Rspec should be decreased.
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point is determined from used α-value αuse by the s-transform15 as system parameters
p = s (αuse) which are then set in the system. The system behavior is adapted by the
new parameters. It is evaluated to obtain actual current objective values (f1,cur, f2,cur).
These are s−1-transformed to determine the current value αcur = s−1 (f1,cur, f2,cur) of the
α-parameterization. The current behavior parameterization value αcur is fed back into
the controller which then corrects αuse accordingly.

The system-specific α-parameterization requires system-specific s-transform and inverse
s−1-transform as well. While they are directly related, the inverse cannot be deduced
from the forward transform without knowledge about Pareto front and set. With this
knowledge, definition on the forward s-transform based on inverse s−1-transform and
Pareto solutions is possible.

To find system parameters based on used value αuse of the α-parameterization, n ∈ N

points in Pareto front (f1,1, f2,1) , . . . , (f1,n, f2,n) and set p1, . . . , pn are assumed to be at
hand. All corresponding α-values are calculated from the Pareto front using the inverse
s−1-transform, which is for now16 assumed to be known as well:




α1

α2
...

αn




=




s−1 (f1,1, f2,1)
s−1 (f1,2, f2,2)

...
s−1 (f1,n, f2,n)




.

Then, to find system parameters for an arbitrary α-parameterization αuse, the entry
k ∈ [1, n], k ∈ N closest to the currently desired value αuse is searched:

kuse = arg min
k

(|αk − αuse|) . (3.5)
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Figure 3.3: α-parameterization as selection metric in Pareto front and set, cf. figure 2.4.

15Laplace transform is also sometimes incorrectly called s-transform, but has no connection with the
s-transform used in behavior control.

16The system-specific α-parameterization with corresponding inverse s
−1-transform is setup for an ex-

ample system in section 4.6.2.
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Next, system parameters for working point kuse are selected from the Pareto set.

In principle, one could implement (linear) interpolation between α-values and system
parameters. This is not suggested though, since optimality cannot be guaranteed for
intermediate points and stability of system controllers might be compromised, severely
reducing safety of system operation. For pre-computed Pareto points, which are known
to be optimal, stability, safety and other important attributes can either be ascertained
as constraint during optimization or checked manually afterwards. More details are given
in section 3.5.

Finding the s-transform is more involving and its definition is problem-specific. Any
function that reduces two objective function values to one common value could be used.
In the following, additional restrictions are assumed:

α (min (f1)) = −1, (3.6)

αnom = 0, (3.7)

α (min (f2)) = 1. (3.8)

The limited value range makes it possible to setup a reliability controller as proposed
in the following sections and the nominal working point αnom = 0 allows for robust
parameter estimation of the underlying abstract model of behavior adaptation.

The α-parameterization allows to select a system working point based on multiobjective
optimization results. These are based on a model of system behavior, which usually does
not cover all aspects and has limited precision. For these reasons, deviations between
optimization results and actual objective function values evaluated during operation can-
not be avoided. To compensate for these deviations and to operate close to the desired
working point, a behavior control loop based on the α-parameterization is employed.

3.3.2 Behavior controller

The behavior controller reduces the whole system adaptation and objective evaluation
to interactions by means of α-parameterization, as shown in figure 3.4. It is imple-
mented to control actual system behavior by evaluating the difference between the de-
sired α-parameterization αdes and the current α-parameterization αcur. While priorities
of objectives can be selected at will, the system behavior does not necessarily reflect
this immediately. On the one hand, an adaptation usually takes some time to take ef-
fect; on the other hand, the system model used for multiobjective optimization and the
real system might deviate from one another, thus leading to differences between desired
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objectives and achieved objectives. To overcome these shortcomings, Krüger et al. devel-
oped a closed loop control for the objectives of a self-optimizing system (see [KRK+13],
[Krü14, p. 130]), colloquially also called Pareto controller or behavior controller . The
purpose of this controller is to ascertain that a pre-selected system behavior is actually
being achieved, despite of perturbations to the system or deviations between system and
optimization results.

[KRK+13] introduces a structure for the behavior controller that is based on a linear
system description with open loop feed forward control and closed loop feedback con-
trol. Open loop control allows for quick changes in working point while closed loop
compensates deviations between desired and current system behavior. The full behavior
adaptation control loop is shown in figure 3.5. For closed loop, a PI controller is chosen
based on analysation of the linear system description, which is called abstract model.
The combined feed forward and feedback controller output is denoted as αuse and de-
termines the adapted system behavior parameterization. To allow for such control, two
different time scales are assumed: The actual dynamic system operates on a fast time
scale with highly dynamic controllers whereas behavior adaptation is slow. Its sample
time is mainly based on objective function evaluations, which are required to determine

1
αcur

G zc( )z
1

Abstract model

z
1

Dα

αdes Δα αuse

-

s-trf.

s
-1
-trf.

Objective
evaluation

Plant

Controller

Excitation

αuse

αcur ( )f , f1,cur 2,cur

Detailed model of dynamic system with behavior adaptation

Gα

αdes αuse

p

Figure 3.5: Behavior control loop according to [KRK+13, Figures 2, 3]17. Top: Further
reduced model of control loop. Bottom: detailed model of dynamic system.

17A sign error at the first sum block in the original of figure 3.5, [KRK+13, Figure 3], has been corrected
in this aggregation. Also to obtain clearer equivalence between detailed model and abstract model,
some names have been changed.
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the currently achieved objective values and from these the current behavior parameteri-
zation αcur. To setup a reliability controller, the behavior parameterization control loop
is reduced even further.

3.3.3 Reduced model of behavior adaptation

In [KRK+13], an abstract model for the behavior control loop is proposed. In figure 3.5,
the abstract model of system dynamics represents the whole process of behavior adapta-
tion including dynamical system behavior, which is shown in the lower part. This starts
with the s-transform to determine system parameters p from desired behavior param-
eterization αdes. Then these are set in the controller, which directly interacts with the
plant or system to control system dynamics. Outer perturbations occur in the form of
excitations to system dynamics, which are generally not or only approximately known.
During operation of the system, objectives are evaluated and current objective values
(f1,cur, f2,cur) are computed. These are fed into the inverse s−1-transform to determine
the current value of the behavior parameterization αcur.

As shown in figure 3.5, the detailed model of dynamic system with behavior adaptation
is reduced to an ideal transfer function 1, a perturbation Dα (z) and a unit delay 1

z ,
where z indicates the z-transform for discrete time. Step size in discrete time is assumed
to be 1 behavior adaptation cycle, this way the time unit is not coupled to actual time
but instead based on the slow behavior adaptation cycle. The additional perturbation
Dα (z) is introduced to take deviations due to e.g. outer excitations or deviations between
simulation model and actual plant into account. The unit delay 1

z represents the time
required for objective function evaluation. For the controller itself, a basic PI controller
represented by its discrete time transfer function is used in accordance with [KRK+13]:

Gc (z) =
Kp (z − 1) + ts · Ki · z

z − 1
,

with step size ts = 1 cycle and parameters Kp, Ki. The abstract model of the behavior
control loop is shown in figure 3.5, center.

Also illustrated in figure 3.5, upper part, is the desired final reduced model of the behavior
adaptation control loop. This model is a single transfer function Gα. To find this further
reduced abstract model, the block diagram from figure 3.5, center, is recombined into a
single equation, which gives:

αuse = αdes + Gc (z) ·
(

1

z
· αdes − αcur

)

αuse = αdes + Gc (z) ·
(

1

z
· αdes −

1

z
· (Dα (z) + 1 · αuse)

)

= αdes + Gc (z) ·
(

1

z
· αdes −

1

z
· Dα (z) −

1

z
· αuse

)

⇔ αuse ·
1

Gc (z)
+

1

z
· αuse = αdes ·

1

Gc (z)
+

1

z
· αdes −

1

z
· Dα (z) .

It is now assumed that the model used for objective function evaluations during multi-
objective optimization represents actual system behavior perfectly and that no unknown
outer excitations occur. This means that in the abstract model, perturbations Dα (z) = 0.
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This yields the transfer function for the whole behavior control loop:

αuse ·
1

Gc (z)
+

1

z
· αuse = αdes ·

1

Gc (z)
+

1

z
· αdes

⇒ Gα (z) :=
αuse

αdes
=

1
Gc(z) + 1

z
1

Gc(z) + 1
z

= 1. (3.9)

This transfer function now fully models the behavior adaptation control loop. The as-
sumptions that lead to perturbations Dα (z) = 0 are quite strong, but since the reliability
controller can be considerably slower than the behavior controller, and then behavior
controller dynamics become negligible, still holds.

3.3.4 Outline of reliability controller

The behavior control itself does not necessarily improve reliability of the system. In
addition, an outer loop that is dedicated to controlling system reliability is required.
This reliability controller also uses the α-parameterization to change system behavior,
but its output serves as input to the behavior controller, in effect creating two cascaded
control loops as shown in figure 3.6. The desired α-parameterization value αdes is given as
sum of the reliability controller output αC and a perturbation αU , which is a user input
and allows a user to override the reliability controller output. This serves the purpose
of making the system responsive to user demands despite reliability control selecting the
working point. The upper stage changes the desired system behavior by altering αC

based on current measured health index H̃I and desired health index HI des. Both stages
ultimately interact with the system by means of the same manipulating variable αuse.

The dynamic system now has two outputs: At first, current α-parameterization value
αcur is computed as introduced before. Secondly, the current health index H̃I as measure
of current system reliability is determined. As shown, the relationship of αdes to αuse

can be reduced to transfer function Gα (z).

As controller, model predictive control is used. In model predictive control, a prediction
of future system performance based on future system input is used to determine an
optimal system input, of which the first value is then applied to the system. This is
done continuously: during each time step, the current system state is evaluated and
future performance is simulated. More details follow in section 3.3.7. As the name
suggests, a model of the system is required for this control approach. Since health index
is the performance measure of the reliability controller, this model needs to map behavior
parameterization αuse to health index HI . For most systems, such a degradation model
cannot be found based on first principles, as it would require lengthy lifetime experiments
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Figure 3.6: Interaction of behavior adaptation and reliability control loop
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in addition to full knowledge of all influencing factors. To cope with this discrepancy, a
generic degradation model is employed which is based on parameters estimated during
operation.

3.3.5 Generic degradation model

The behavior controller and its output αuse are invariant to current health index. The
only possible way to model relationship from behavior parameterization to health index
is to integrate the health index decrease ∆HI , as shown in figure 3.7. Here, a discrete-
time integrator z

z−1 is used. Additionally, the delay due to health index estimation is

taken into account by a unit delay 1
z and additional deviations are introduced as unknwon

perturbation DR. The whole reliability control loop is setup around these health index
dynamics as shown in figure 3.7.

To find the model for use in model predictive control, a general function is assumed
that maps system parameters p (tk) for the current time step tk to a difference in health
index ∆HI (tk) = ∆HI (p). Current system parameters are given by the s-transform.
Computing ∆HI (tk) is difficult since the underlying function is unknown. Instead, an
approximation that can be parameterized during operation is desired.

The additional input αU represents changed system behavior due to user intervention,
DR is a disturbance on the reliability of the system and αC is the reliability controller
output. With these, also included in 3.7, one finds:

HI =
1

z
·

z

z − 1
· (DR (z) + ∆HI (s (Gα (αC − αU)))) ,
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where z again is the discrete time z-transform with constant step size 1 cycle. Assuming
no perturbations, i.e. DR (z) = 0, αU = 0 and Gα = 1 gives:

HI =
1

z
·

z

z − 1
· (∆HI (s (Gα (αC))))

=
1

z
·

z

z − 1
· (∆HI (s (αuse))) . (3.10)

This is essentially an integration and unit delay of the nonlinear function ∆HI (s (αuse)),
which describes behavior dependent system degradation for the current time step. With
this model, a reduced model for the behavior control loop and for the degradation be-
havior of the system is obtained.

Since step size in discrete time is set to 1 cycle, it is system-independent. Instead of
using the z-transform-based system representation from (3.10), the constant step size
can be used to reformulate from discrete time transfer function to difference equation.
This results in:

HI (tk) = HI (tk−1) + ∆HI (s (αuse (tk)))

= HI (tk−1) + ∆HI (tk) . (3.11)

To find a generic degradation model, a linear ansatz for the combination of degradation
model ∆HI (p (tk)) and s-transformation p (tk) = s (αuse (tk)) is used. Separation of
these two is not desired since in the control structure, cf. figure 3.7, they are directly
connected and no further parts of the reliability control structure are influenced by the
intermediary system parameters p. Also the parameters are system-specific and can be
arbitrary, whereas the behavior parameterization and health index are variables directly
used for reliability control. The ansatz selected is:

∆HI (tk) := ∆HI lin · αuse (tk) + ∆HI nominal + ∆HI offset (tk) (3.12)

with some unknown linearity factor ∆HI lin, an unknown constant ∆HI nominal and an
unknown time-variant correction offset ∆HI offset (tk). The constant term ∆HI nominal de-
termines the degradation rate at nominal system operation αuse = 0, cf. (3.7). The
multiplicative term ∆HI lin is charateristic for the amount of influence that changed sys-
tem parameters have on system degradation. The third term ∆HI offset (tk) is a constant
offset with the same effect as the nominal degradation rate ∆HI nominal , but unknown
and possibly varying magnitude. To allow simulation of the degradation model, these
parameters need to be determined. This ansatz is also illustrated in figure 3.8.

The nominal degradation rate is based on desired and idealized degradation behavior
for a perfect system operating at nominal conditions. This is given in continuous time
by (3.3) as

HI des (t) = HI 0 −
HI 0 − HI des,end

tspec

· t,

with tspec being the specified lifetime of the system. It is now assumed that at initial
time t0 the health index is equal to one, i.e. HI 0 = HI (t0) = 1 and that at failure time,
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which is also the desired end time, the health index is zero, i.e. HI des,end = 0:

HI (t) =

=1︷ ︸︸ ︷
HI (t0) −

=1︷ ︸︸ ︷
HI (t0) − HI des,end

tspec

· t

⇔ HI (t) − 1 = −
1

tspec

· t.

Finally, derivation and multiplication with the constant time step size ts gives the time-
invariant nominal degradation of the system for each adaptation cycle:

∆HI nominal :=

(
∂

∂t
HI (t) − 0

)
· ts = −

ts

tspec

· 1. (3.13)

In addition to the constant term, the linear term ∆HI lin needs to be defined. ∆HI nominal

is used as starting point for its value, but an additional multiplicative fault v is intro-
duced:

∆HI lin = −
ts

tspec

· v. (3.14)

The actual value of v is unkown. For a value of v = 1, the behavior parameterization value
range αuse = −1 . . . 1 could change system operation from a complete stall of degradation
to a doubled degradation rate. This limits the possible range of v to 0 < v < 1. If
additional information is available about the working points and the effect they have on
system lifetime, this can also be used to estimate the value of v.

Combination of (3.11), (3.12) and parameter equations (3.13) and (3.14) yields the com-
plete generic degradation model:

HI (tk) = HI (tk−1) − ∆HI lin · αuse (tk) + ∆HI nominal + ∆HI offset (tk)

= HI (tk−1) −
ts

tspec

· v · αuse (tk) −
ts

tspec

+ ∆HI offset (tk) , (3.15)
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which fully models system degradation dynamics for a given behavior parameterization
αuse (tk). It also includes unknown parameters ∆HI offset (tk) and v as linear approxima-
tion of unknown nonlinearities and unknown parameter value errors. These need to be
estimated.

3.3.6 Parameter estimation

During operation, the linear system model needs to be adapted to adequately represent
nonlinear system behavior, effectively forming a linearized system model that is valid
for small deviations from the current system state. For this, a parameter estimating
Kalman Filter is employed. It is now also assumed that actual health index HI cannot
be measured. Instead, all measurements are noisy and have some uncertainty. These
noisy measurements are denoted as H̃I . From the noisy measurements the actual value
is estimated, which is denoted by ĤI .

Parameter estimation can be used to detect faults in systems. For this, a fault model
is required. Generally, two kinds of faults are distinguished: Additive faults and multi-
plicative faults [Ise06, p. 63]. To distinguish one from the other, system dynamics need
to be excited sufficiently. In case of reliability control, this would mean varying the op-
erating point frequently. Doing so would yield deliberately fluctuating system behavior,
which is not desired and considered unacceptable. For this reason, an additional and a
multiplicative fault at the same time are difficult to identify and to find parameter values
for.

In the degradation model (3.15), two deviations that can be regarded as faults with corre-
sponding parameters are included: the influence of behavior parameterization on system
degradation changes with multiplicative parameter v and a constant offset ∆HI offset (tk).
As was already discussed, both faults cannot be estimated during operation. Instead, a
constant value for v is set such that parameter estimation can be limited to ∆HI offset (tk).

To find a suitable value18 for v, the influence of changed behavior parameterization αuse

on system degradation needs to be known.

To this end, ∆HI offset = 0 is assumed and (3.12) is rewritten as

∆HI (tk) = −
ts

tspec

· v · αuse (tk) −
ts

tspec

+ ∆HI offset︸ ︷︷ ︸
=0

= −
ts

tspec

· v · αuse (tk) −
ts

tspec

⇔ v = −
tspec

ts
·

(
∆HI (tk) +

ts

tspec

)
·

1

αuse (tk)

v is assumed to be time-invariant, but apparently it is dependent on ∆HI (tk) and
αuse (tk). During operation or in experiments, ∆HI (tk) changes with αuse (tk) can it
be approximated from measurement results. This leads to:

v (αuse) = −
tspec

ts
·

(
∆HI (αuse) +

ts

tspec

)
·

1

αuse
(3.16)

18Finding the correct value for v is not possible, since it changes with desired parameterization αuse.
Instead of including this nonlinearity in the model, the estimator corrects ∆HI offset to compensate.
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To determine a single value for v, nominal system behavior is evaluated. This is, by
definition, αuse = αnom = 0 (cf. section 3.3.2, (3.7)), for which (3.16) is not defined.
Nevertheless, to be able to find a value, behavior parameterizations close to zero are
evaluated and averaged. For this, a small deviation value ǫ is introduced:

v+ := v (αuse = 0 + ǫ) ,

v− := v (αuse = 0 − ǫ) ,

v =
v+ + v−

2
. (3.17)

To find value v, running experiments with the actual system, evaluating simulations of a
well-suited degradation model19 or an educated guess is necessary. Absolute precision is
not required, as deviations are compensated by an adaptation of the remaining additive
fault ∆HI offset (tk).

To estimate a value for this parameter, state estimation techniques are employed. A
popular method is Kalman filtering, which aims to estimate the state of a linear time-
invariant system. A good introduction to the basic concept can be found in [Ath11].
Additional noise inputs are assumed that act as perturbations on the system. Process
noise acts on the state itself, via some input gain matrix, and sensor noise on the
sensor output. These two cannot be distinguished, but estimations about their stochastic
properties form the basis of Kalman filter parameterization. The Kalman filter itself is
closely related to a general observer. The system model is excited by the same input
as the system itself, the difference between system output and model output is used to
correct the model state in a closed loop. The implementation for reliability control is
shown in figure 3.9. In time step k, the system with s-transformation yields measured
health index H̃I k and the generic degradation model yields a simulated value HI k. The
residual rk is formed and the degradation model state is updated with a new estimate
x̂k. The Kalman filter also serves the purpose of giving an estimated value for the true
health index ĤI .

A drawback to Kalman filtering is the limit to linear time-invariant systems. This is
overcome by newer methods like extended Kalman filter or unscented Kalman filter.
For parameter estimation of the degradation model, the basic linear filter in its discrete
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Figure 3.9: Basic outline of Kalman filter

19Recall that if a degradation model that is sufficiently precise exists, other means to achieve reliability
control are possible. Instead, it is assumed that such a model does not exist!
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form is sufficient. The discrete Kalman filter is explained in great detail in [Cat89, pp.
133-140].

To employ filtering for parameter estimation, discrete time state space representation of
degradation dynamics (3.15) is desired. For this, the state vector is defined to be health
index and constant offset:

xk =

[
HI (tk)

∆HI offset (tk)

]
.

Output vector is scalar health index:

yk =
[
ĤI (tk)

]
.

The actual input is just behavior parameterization αuse. To include constant terms
from degradation dynamics which model nominal degradation, an additional input with
constant value 1 is required:

uk =

[
1

αuse (tk)

]
.

With these, (3.15) can now be rewritten as:

xk+1 = A · xk + B (v) · uk, (3.18)

yk = C · xk + D · uk, (3.19)

with

A =

[
1 1
0 1

]
,

B (v) =

[
− 1

tspec
− 1

tspec
· v

0 0

]
,

C =
[
1 0

]
,

D =
[
0 0

]
.

Unknown parameter ∆HI offset (tk) is included in (3.18) and (3.19) as separate state vec-
tor entry. No direct connection exists from the input uk to ∆HI offset (tk) and from
∆HI offset (tk) to either HI (tk) or yk. This means that the value could not deviate from
the initial value. The Kalman filter forms a state regulator around this model and cor-
rects state vector entries such that model output and system output match up. Doing so,
the Kalman filter changes and estimates the current value for additive fault ∆HI offset (tk).

Using the model from (3.18) and (3.19), classic Kalman filter equations are used in each
time step to predict a new state estimate x̂k and a new estimate covariance V k:

x̂k = A · x̂k−1 + B · uk, (3.20)

V k = A · V k−1 · AT + Q. (3.21)

Next, measurement residual r, residual covariance S, Kalman gain K, state estimate x̂



3.3 Setup of the control loop 49

and estimate covariance V are updated:

rk = H̃I k − C · x̂k, (3.22)

Sk = C · V k · CT + R, (3.23)

Kk = V k · CT · (Sk)
−1

, (3.24)

x̂k = x̂k + Kk · rk, (3.25)

V k = (I2 − Kk · C) · V k. (3.26)

Using this approach, parameter ∆HI offset (tk) is estimated by the Kalman filter, in turn
adapting the model to fit the current working point.

An initial guess for estimation covariance V 0 is required. Generally, this can be consid-
ered to be a zero matrix, i.e. V 0 = 0, with suitable dimensions. Main tuning parameters
to achieve a satisfactory estimation are process noise covariance Q and observation noise
covariance R. To determine suitable values, experiments might be required. To re-
duce the number of experiments and to obtain a good value, observation noise can be
determined from experiments that were conducted to find value v.

With Kalman filter state estimation, the model from (3.15) can be fully parameterized
and can be used to simulate future degradation for working points close to the current
working point. This way, it can be used as part of a closed loop control for reliability
using model predictive control.

3.3.7 Model predictive control as reliability controller

The degradation process that needs to be controlled for reliability control is a complex
system with nonlinear components and unknown parameters. The controller setup needs
to be sufficiently flexible for all these effects, yet still be robust. One control algorithm
that fulfills these requirements is model predictive control, for which a good introduction
can be found in [CB00]. The aim in model predictive control is to find a system input,
such that the system output follows a given desired reference trajectory, as shown in
figure 3.10. In a time step tk, deviations between reference values and actual values are
compensated by a new feedforward control, which steers the system back to the desired
trajectory. This control is computed for a prediction horizon of m time steps ending at
tk+m. Of the computed system input, only the first value is applied at time step tk+1.
At this time, the actual system output is re-evaluated and a new input trajectory is
computed.

While this control approach is based on open loop feedforward control without feedback,
the feedback part is introduced in the form of repeated computations of open loop inputs
in regular time intervals. Each feedforward input is computed for a finite time horizon
only, but before this limited time is reached, a new feedforward control is computed. This
way, if deviations occur, they are compensated by a new corrected computation which is
valid for the actual current system state. The computation of a new system input needs
to be real time capable, with, for many systems, very short computation durations.

As the name suggests, model predictive control uses a model to find system input pa-
rameters for each open loop control sequence. Using optimization algorithms, model
input parameters are changed such that a given cost functional is minimized. Complex-
ities for real-world implementations arise from model complexity and the computation
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Figure 3.10: Model predictive control

time required for simulations. The optimization requires fast computation times for the
model, which limit model precision. Contrary to this, a good model is required to find
well-suited system input parameters.

For reliability control with the reduced model described in section 3.3.5, a basic model
predictive control algorithm as described in [CB00, p. 76] is sufficient. It uses the abstract
model from (3.15) with parameters v from (3.17) and ∆HI offset (tk) estimated according to
section 3.3.6 to calculate a feed forward input signal αC (tp), tp = tk +ts . . . tk +ts ·m, m ∈
N for the next m time steps starting with the current time step tk. This abstract model
is simple enough to yield fast computation times but also, due to parameters being
refreshed in each time step, sufficiently precise for small deviations from the current
working point. The model from eqns. (3.18) and (3.19) is parameterized with estimated
parameters and used for forward simulation starting at the current time tk. The result
of one such simulation is the predicted health index HI (tp) , tp = tk + ts . . . tk + ts · m for
the short future. This prediction can then be evaluated by the cost functional required
for solving the optimal control problem. It is:

J = wx · Jx + wu · Ju

with components Jx and Ju, which are weighed individually. Jx is the error in health
index. It determines how closely the simulated values HI and the desired value HI des fit:

Jx =
k+m∑

p=k+1

(HI des (tk + ts · p) − HI (tk + ts · p))
2

.



3.4 Condition monitoring to determine current health index 51

Differences in consecutive system input values penalize fast changes, for which cost func-
tional Ju is created. The first value of the system input is for all simulations the current
behavior controller input value αdes,k. New and variable values are reliability controller
output αC,k+1...k+m:

Ju = (αC (tk + ts) − αdes (tk))
2

+
k+m∑

p=k+2

(αC (tk + ts · p) − αC (tk + ts · (p − 1)))
2

.

The optimal system input αC (tk + ts . . . tk + ts · m) is then found by minimizing the
cost functional J over a receding horizon for m time steps coming forth, i.e. solving the
problem

αC (tk + ts . . . tk + ts · m) = arg min
αC(tk+ts...tk+ts·m)

J, (3.27)

subject to the constraints given by (3.18), (3.19) and the input constraints

− 1 = αmin ≤ αC (tk + ts . . . tk + ts · m) ≤ αmax, = 1 (3.28)

with αmin and αmax being the minimal and maximal admissible values for the behavior
parameterization αC . From this, the first value αC (tk + ts) is used as next controller
output.

3.4 Condition monitoring to determine current health
index

A closed loop controller relies on measuring the difference between a given reference
input and the system output. For this, the current system output value needs to be
known. In case of the reliability controller, knowledge of the current health index is nec-
essary20. This is a complex variable which, for most systems, cannot be measured using
traditional sensors. In addition to determining the current value of the health index,
the delay between acquirement of data and availability of new value must not be overly
long. Controller stability is limited by the drop in phase of the closed control loop. If
additional delay is introduced by state measurement, the phase drop is increased, thus
severely limiting controller stability21. Techniques to estimate the current degradation
state of a system are summarized by the term condition monitoring. There are sophisti-
cated methods for condition monitoring available, which all have individual benefits and
drawbacks. To decide whether a condition monitoring approach is suitable, accuracy and
delay of health index estimation need to be taken into account.

At first, model based and data driven methods can be distinguished. In model based
condition monitoring, a degradation model is simulated with input parameters given
by system operation and environment and the state of the system or component is ob-
tained. With model, a user-defined model, usually first principles based, is meant. For

20In [MKS15b], we assumed that estimating the health index and then having a prediction based on
this is at a slight disadvantage when compared with estimating the remaining useful lifetime. In the
meantime, the advantages of using the health index as basis became clear. The main drawback of
remaining useful lifetime is that it includes future system operation, which is adapted dynamically by
reliability control.

21System dynamics themselves are still stable and safe, as discussed in section 3.5.
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most systems, such a model has a high number of input variables, making it difficult
if not impossible to setup. Environmental input variables might include temperature,
humiditiy, ambient vibrations, uncertain material parameters or similar measures. If it
is possible to setup a degradation model, high computational requirements might make
it difficult to use it in reliability control. An example is crack growth which can be
simulated using FEM models. While there are several drawbacks when it comes to setup
of a model based condition monitoring approach, generally the assessment of current
health index is quite good, but due to long simulation times, delay might be large. Thus
suitability of a model based condition monitoring for reliability control has to be assessed
on case-by-case basis.

Data driven condition monitoring is based purely on data and does not require a first-
principles based model. Instead, machine learning algorithms are used to automatically
construct a model for all information that can be deduced from system data. This
is a mostly automated process, making setup of the model easier. Machine learning
algorithms are meant to be flexible. Usually, they suit many different kinds of problems
of which condition monitoring is only a niche application. Very few algorithms allow to
include prior knowledge about physical effects, one possible implementation is described
in [USA+14]. This general applicability brings with it the problem of selecting the most
appropriate algorithm. We presented a (limited) guide for this in [MKS15b]; a more
thorough approach can be found in [Kim16].

All data driven condition monitoring approaches rely on training data and on reference
data. From the training data, features are extracted and a machine learning algorithm
constructs a model that represents the relationship between features and reference data.
This procedure is represented in figure 3.11. In condition monitoring, reference data usu-
ally includes some measure of the current health of the system, which is also the output
variable of the learned model. The basic approach is to classify the system degradation
into several distinct states which correspond to system health. During operation, the
current state is estimated using the learned model. By taking into account the time
the system is in a given state, the remaining useful lifetime or the health index can be
estimated. While this approach has high relatively precision in estimating the current
state, it has low precision for state-based estimation of the continuous value health index
and is not well suitable for reliability controlled system operation. Instead, it could be
used to execute emergency routines based on a system classification according to the four
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Figure 3.11: Basic procedure used in data driven condition monitoring.
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levels of the multi-level dependability concept, see section 1.4.1.

Instead, estimation of the value of a continuously defined health index variable is de-
sired. Most machine learning algorithms have no inherent dynamics, i.e. they directly
map extracted condition monitoring features to current system health index. However,
features extraction itself might include complex algorithms. These include frequency-
based approaches, e.g. determination of the amplitudes of characteristic frequencies in
a vibration signal using Fast Fourier Transform. To be suitable for closed loop control,
the delay has to be kept to a minimum, i.e. the time horizon on which transformations
into frequency domain work needs to be as short as possible while also considering the
constraints given by sampling frequency and data acquisition intervals. If these prereq-
uisites are fulfilled, health index obtained from data driven condition monitoring is well
suitable for reliability control.

3.5 Stability of the controller

To assure dependable operation, controller stability has to be ascertained. Reliabil-
ity control is based on model predictive control, making stability theory for it acces-
sible. A good overview over stability for constrained model predictive control is given
in [MRR+00].

The full system model would need to include a degradation model and a detailed model
for condition monitoring, both of which would yield a highly complex model. Not re-
quiring a degradation model was also one of the main motivations for developing a novel
reliability control approach. For control purposes, a generic degradation model is setup
and parameterized at runtime, as explained in section 3.3. This model only loosely
represents actual system behavior and is not sufficient for theoretical stability analysis.

Without a sufficiently detailed model, only empirical stability evaluation remains. This
would have to be conducted during setup. Behavior controller or reliability controller
instability would not directly lead to unsafe system state though! Since only parameters
of pre-determined working points are set in the dynamic control loops, full isolation from
reliability and behavior control to dynamic control is achieved.

Figure 3.7 shows the basic setup of the whole reliability control loop. One noteworthy
specific about the chosen realization is that all controllers for system dynamics are on
a low level and the only connection between this lower level and the upper reliability
control level is the α-parameterization. It determines the working point used, but does
not directly influence system behavior – only parameters are set accordingly on the lower
level. While the selection of dynamic controllers obviously influences system reliability
and current system reliability determines controller choice, they are not able to interact
on the same time scale or even influence the same system states. This way, the two layers
of dynamic controllers and reliability controllers are as well isolated from one another as
possible.

By using multiobjective optimization, which is based on numerical computations and does
not find a continuous Pareto front, individual working points as optimal compromises
are found. The α-parameterization is limited to selection from these compromises. With
this limitation comes the inherent problem, that a perfect working point for the current
situation is highly unlikely; instead, the best compromise is selected. One could think
of ways to overcome this using interpolation methods, as was also described in [MS14,
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p. 5]. However, using such interpolation is ill-advised since the currently selected inter-
polated working point would be deviating from all pre-computed working points. Not
being able to rely on this point being an optimal working point with regards to system
objectives might not be problematic, as deviations between actually reached objective
values and pre-determined theoretical values cannot be eliminated anyway. However, one
major benefit of using multiobjective optimization to compute optimal working points is
that safety of each point can be ascertained individually. This can be done e.g. by au-
tomatically evaluating controller stability during optimization and demanding a certain
safety margin as constraint for a working point to be valid. This reduces the necessary
additions for complete system safety to proof of safety of the switching process itself.
A good overview and possible implementations of safe switching procedures, which can
also be setup in an automated process, is given in [Osm15]. To avoid unsafe states in
the full system or in collaborating systems, parts of the operator controller module can
be modeled as state machine. Continuous parts, i.e. controllers for system dynamics, are
included using hybrid states. Using this state chart, safety of all configurations can be
proved, as was shown in [GBS+04; GHH+06].

For these reasons, discrete working points are preferred over continuously adaptive pa-
rameters. If a sufficiently large number of working points with gradual differences exists,
quasi-continuous adaptation becomes possible. The larger the number of points to choose
from, the less influence the selection of the nearest discrete working points has on system
and failure behavior. One main goal in multiobjective optimization is to find a set of
solutions as diverse as possible [Deb01, p. 22]. Generally, multiobjective optimization
algorithms fulfill this goal quite well, creating a large number of possible working points
that allow for finely adapted system behavior. Due to this, the term continuous control is
used throughout this thesis for reliability control as proposed, despite being deliberately
non-continuous.

3.6 Implementation into operator controller module

The operator controller module serves as basis for the structure of information process-
ing in a self-optimizing system, see also section 2.2. On the lowest level, the controller,
dynamic controllers that directly process sensory information and compute new actuator
signals are situated. At least some of these must be adaptable by changing parameters
or by changing their setpoint. Parameters or setpoint were also used as optimization pa-
rameters during multiobjective optimization. Dedicated signal acquisition for condition
monitoring might be required, which is also executed on this system level.

The reflective operator may run the signal processing algorithms for condition moni-
toring. Either using condition monitoring or other means, e.g. signal level thresholds,
the current system state is classified into pre-defined classes. This is required for fast
reactions in case of failures using the multi-level dependability concept, see section 1.4.1.
Also behavior adaptations are initiated by the reflective operator, but actual switching
between working points is situated in the controller level.

The cognitive operator selects the currently pursued working point according to require-
ments imposed by reliability control, by user demands and by other aspects of system
operation. The processes required for synchronisation and cooperation with other sys-
tems, planning of failure times and maintenance intervals are also embedded into the
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cognitive operator.

3.7 Enhanced multi-level dependability concept

The multi-level dependability concept as introduced in [GRS09b, p. 61], [KSR12, p. 6]
enables a self-optimizing system to change its behavior based on current dependability,
i.e. reliability among other attributes, as was already discussed in section 1.4.1. It does
so by classifying the system state into four levels. In the first level, it is assumed that
dependability does not need to be taken into account when selecting current system
behavior, only in levels two and three dependability becomes an issue. Level four is
special, as in this level, the sole goal of the system is to reach a safe state.

In [SMD+12], an example for usage and setup of the multi-level dependability concept
is given. The remaining life of railway wheel flanges is used as main factor for degrading
reliability. Once the wheels reach 50% or 25% remaining useful lifetime, the current
system state is classified into different levels. However, if the remaining useful lifetime
reaches 25% after 75% at the same time, there is no need to switch states – degradation is
just as desired! In this case, continuous control would be advantageous, as it would take
the time-dependancy into account and compensate early, yet only as much as required
to reach the desired usable lifetime.

This original definition assumes that dependability is a minor aspect of system opera-
tion and that if everything is well, dependability can be neglected. Reliability controlled
operation, on the other hand, aims to always find an optimal compromise between reli-
ability as one aspect of dependability and system performance. Without taking system
reliability into account, system performance would either be worse than necessary to
achieve the desired time of operation until maintenance or the system might fail early.
So in order to meet the classifications when using reliability control, the levels need to
be redefined.

A basic characterisation of the first level is that system behavior is nominal, whereas in
the second level dependability requires some adaptation that deviates from the nominal
working point. In order to rework the definition of the multi-level dependability concept,
this notion has to be included in the definition of the discrete levels. The first two levels
are reformulated as follows:

Level I
The system is in a safe, normal state. Performance and dependability objectives
are in balance. Dependability does not need to be prioritized overly and counter-
measures against undesired events are not required.

Level II
A threat was detected, e.g. a threshold was reached. While the system is still oper-
ating in a safe state, pursuing objectives like comfort or energy efficiency only might
lead it towards an unsafe state. Self-optimization is used to prioritize dependability
over competing objectives higher than during nominal operation. This leads to a
behavior adaptation and in turn keeps system operation dependable, but impairs
other objectives.

Levels III and IV are not subject of this thesis which is focussed on continuous control to
be employed in levels I and II. Instead, the interested reader is asked to consult [Son15],
which covers these aspects in detail.
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From the attributes of dependability, cf. figure 1.1 and section 1.1, this thesis is focussed
on reliability. Of these, the attribute safety is similar to reliability. In reliability, the
likelihood of an undesired event system failure at some point in time is researched and
methods to avoid early failure are developed. The resulting failure function F (t) repre-
sents probability of the undesired event over time. In safety, consequences and likelihood
of catastrophic faults are researched. A catastrophic fault can also be regarded as unde-
sired event in the same sense as in reliability, thus making it equivalent to a system failure.
Without looking at consequences, the likelihood of a catastrophic, safety-impeding fault
can then be assessed using the same probabilistic methods as the likelihood of a system
failure in reliability. A comparison between safety measures and reliability measures can
be found in [MP10, Tab. 2.4-1]. If this likelihood can be quantified and the measure can
be embedded in an optimization, the same reliability control methods can be used to
control safety of operation. For this, the main requirements are knowledge about actual
safety risks and objectives which can be prioritized to enhance safety.

This was conducted in [MHM+13] for the collision of two parts of a railroad vehicle
linear drive system. The undesired event is a collision between vehicle mounted primary
part and track mounted secondary part. If the air gap between these two becomes
lower or equal to zero, a collision occurs. Additional difficulties arise in safety-related
multiobjective optimization from quantification of the safety measure. In [MHM+13],
probability distribution of occurences of unknown height deviations of the secondary part
is assumed to be known. The air gap is measured by a sensor with additional uncertainty.
From these two uncertain measures, the probability of the true sensor value being lower
than the unknown height deviation can be found, which is equal to the probability of
collision. By computing this collision probability during objective function evaluation,
the risk of operation can be included in a multiobjective optimization.

To fully adapt system behavior based on system safety, the current probability of an
undesired event would need to be determined at runtime. This is equivalent to obtaining
the current health index for control, cf. section 3.4. While condition monitoring is a
suitable way to estimate the health index, different means to determine the current risk
of operation would need to be found.

The other attributes of dependability are either inherently controlled as well (availability)
or cannot be controlled at all (maintainability, integrity). Focussing on reliability as one
aspect only allows a more in-depth approach including experimental validation.



4 Application and experimental
validation of reliability control

To show that the control approach outlined in chapter 3 is a feasible solution to implement
reliability control in a given system, an experimental validation is desired. By conducting
experiments, feasibility of controller setup, controller behavior and finally failure behavior
of the controlled system can be evaluated.

An arbitrary system could be selected, but to show the desired effects, several constraints
have to be taken into account. One is the obvious aspect of being a mechatronic system
that fails at some point but allows interaction. Other aspects include ease of setup, cost
of the test setup and cost of the failing specimens. At the end, decision was made to
develop and assemble a mechatronic single plate dry clutch system.

4.1 Motivation for self-optimizing clutch system

Even though several alternative means of propulsion for passenger vehicles, e.g. fuel cell
technology and purely electric vehicles, are in development or have reached acceptance in
the automotive market already, the currently most-used power source is still fossil fuels.
These are usually converted into mechanical energy using internal combustion engines
which have a minimum operating speed. If the vehicle is at low speed or even at rest, the
drivetrain needs to be operated below minimum engine speed. This is possible by means
of a dedicated connecting element. In most manually shifted gear boxes, a foot-operated
single plate dry clutch is employed, while automatic gear boxes are equipped with hy-
draulic torque converters [KSS+03, Section 5.4]. With the desire for more comfortable
vehicle operation and better fuel economy, automated manual transmissions with a single
clutch and dual-clutch transmissions were developed and make up a small but steadily
growing fraction of the whole market for passenger vehicles, see figure 4.1. Dual-clutch
transmissions usually have one clutch that engages odd numbered gears and a second one
to engage even numbered gears. By alternating between these two clutches, fast shifting
times can be achieved.

Automated manual transmissions generally are equipped with a single clutch and work
just the way regular manual transmissions do [KSS+03, p. 271]: An input clutch connects
engine to gearbox and internal meshes engage individual gears. A gear change is only
possible when no torque is being transferred. This can be achieved by opening the clutch,
which usually leads to long shift durations22. In commercial vehicles, this is hardly
noticeable since acceleration is low anyways [FS07, p. 141]. In high-power supercars,
where the drivetrain needs to cope with the high power throughput, dual clutch gearboxes
would be too heavy. There, this problem can be solved by controlling motor, gearbox
and single clutch in union [Tor12, p. 604].

22The early smart City-Coupé is a good example of this [Jac09, p. 23].
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Figure 4.1: Split of transmissions in passenger vehicles. Data from [KSS+03, Tab. 5.4-1],
[ABB+13, Tab. 5.4-1].

The acceleration from rest of a vehicle equipped with an automated manual transmission
is a prime example for an active control of the reliability. During each acceleration, the
clutch system wears and ultimately fails due to being worn out. If the clutch fails early,
the whole vehicle is unusable. While for privately used vehicles, unscheduled maintenance
is a nuisance, for commercial applications it is also very costly. The conventional approach
to avoid this is to schedule maintenance early enough to avoid unexpected failure, while
accepting wasting what is left of usable lifetime (cf. section 1.2).

Active control of the reliability of a clutch system is a good way to make scheduling
maintenance and using the clutch up to its full potential possible, thus adhering to
reliability requirements and increasing availability of the vehicle. In order to show the
feasibility of the proposed closed loop control for reliability introduced in section 3, a
clutch system test rig has been built. It is embedded into a virtual vehicle, which is
accelerated using the real clutch system.

4.2 Usage scenario for clutch system

Controlling the reliability of a clutch system is not possible without taking the surround-
ing system into account. For this reason, a full vehicle and a usage scenario are required.
The usage scenario is made up of a characteristic maneuver, which includes load on the
clutch that is representative of actual system operation, cf. [KMS15, p. 2209]. While it
might seem advantageous to just use an actual vehicle instead of an experimental test rig,
this has several drawbacks. At first there is complexity of the system and of operation,
which makes it difficult to achieve repeatability of experiments. Second is lifetime and
cost. For the evaluation of clutch plate reliability, lifetime tests need to be conducted.
If the plates were as durable as regular automotive clutch plates, large test stands and
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long experimental duration would be required.

To overcome these problems, a virtual vehicle is used as application example. This is
either simulated with a model of the clutch plates or it is used to compute input signals
to the actual clutch system. The simulation model can also be used as optimization
model.

4.2.1 Characteristic maneuver: Acceleration from rest

To avoid overly complex modeling, reasonable model simplifications have to be chosen
such that the goal of modeling is achieved, but model complexity is as low as possible.
For this, the goal of modeling needs to be clear first. As an automotive vehicle moves, the
clutch transmits power from the engine to the gearbox and in turn to the wheels. When
in motion, the vehicle dynamics can be subdivided into three categories: Vertical (body)
dynamics, lateral dynamics and longitudinal dynamics. Lateral dynamics generally have
no effect on clutch usage. The longitudinal dynamics interact directly with the clutch
plates and their wear. Vertical dynamics are only important at high accelerations, were
vertical tire forces and the longitudinal motion interact closely. For this reason, the
characteristic maneuver is limited to a longitudinal motion. There are three distinct
types of longitudinal motion that need to be addressed: constant or accelerated motion
with fully engaged clutch; no motion or purely rolling motion with the clutch disengaged;
low-speed operation, gear changes and acceleration with partially engaged clutch.

Of these, only those with the clutch being partially engaged are important, as full engage-
ment or no engagement at all yields no wear. During shifting, power transmitted is low
and so is wear. Low-speed operation at constant speed is rare and can be neglected. Then
the main driver is acceleration of a vehicle from rest, where both the velocity difference
between plates and the torque transmitted is high. There are several objectives relevant
for this characteristic maneuver, of which the first one quantifies system performance.

4.2.2 System performance objective

The main objective of operating a motor vehicle is obviously very dependent on the appli-
cation it is used for. The operators of commercial vehicles primarily pursue the total cost
of ownership being as low as possible in order to increase revenue. However, for privately
owned vehicles other factors come into play as well. Sports cars or historic vehicles, for
example, are luxury items where cost is of lower importance and the operation itself is
the goal of operation. Another prerequisite is that comfort of passengers should be high.
This also corresponds to reducing vibrations of the vehicle, which might damage cargo.

Within the scope of this thesis, a commercially used small vehicle is assumed. This
makes the main objectives with regard to acceleration from rest low energy consumption
and high comfort. Energy consumption is difficult to quantify without complex motor
models, which would extend the scope of this thesis too far. Instead, performance of the
system is only defined as comfort of the passengers.

To determine how comfortable an acceleration maneuver is for the passengers of a vehicle,
human perception has to be taken into account. To this end, longitudinal accelerations
are evaluated. Since human perception is difficult to model, it was by itself worthy of
detailed research.
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In [Alb05, pp. 86-119], machine learning is used to determine passenger comfort in
simulations. For training, measurement data and training data is required. These are
obtained using a specifically built test vehicle which is equipped with an automated
clutch system which allows to select five different actuation characteristics while driving.
23 different test drivers were subjected to these different actuation characteristics during
multiple test runs on an empty proving ground, i.e. in a controlled environment. Then,
these test runs were evaluated. For this, the group of test drivers was subdivided into
three groups of customers. After each test run, the test driver was asked „Would you
accept this system as it is?“. Answering was possible by sliding a continuously variable
sensor into an arbitrary position between the two endpoints absolutely inacceptable and
no further improvement necessary. The data obtained from the slider position as driver
acceptance measure and of vibration signals was correlated using machine learning. While
using machine learning is not possible without measurement and training data and thus
not possible within this thesis, it is noteworthy that as measurement signal, in [Alb05,
p. 71], longitudinal acceleration measured under the seat is used.

In the standard [VDI 2057-1], assessment of the effect of mechanical vibrations on the
human body is described. However, these cannot be evaluated directly since human
perception changes with frequency and direction of the excitation and posture of the
body. For the purpose of evaluating simulated acceleration signals, a filter according to
this standard could be implemented.

The vibration transmittance of the vehicle body to the driver would be neglected since it
would be difficult to model and is highly dependent on the vehicle. Perception is taken
into account by filtering the vehicle body acceleration signal which could be implemented
in the model of vehicle dynamics. The posture of the driver is assumed to be sitting.
To assess the full acceleration maneuver, the rms value aw,tend

of the frequency-weighted
acceleration signal is to be used. It is computed as

aw,tend
=

√
1

tend

∫ tend

0
(aw (t))

2
d t (4.1)

with aw (t) being the frequency-weighted acceleration and t = 0 . . . tend being the duration
of measurement. Frequency weighting could be implemented according to [VDI 2057-1,
Figure 2], where Wk is the frequency weighting curve to be used for a sitting position and a
measurement on the seat23. While the standard includes a graphical representation of the
frequency weighting curve and transmission factors for several frequencies, no parameters
for a continuous time filter are given. However, [RM07, p. 514] gives several transfer
functions including filter parameters for filtering according to international standard [ISO
2631-1], on which the national standard [VDI 2057-1] is based. The following transfer
function is given for Wk:
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23The identical curve is referred to as Wd in [ISO 2631-1] and in [RM07], while in [VDI 2057-1] it is a
different frequency weighting curve used for a measurements on the foot platform.
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Root-mean-square awT of frequency Description of perception
weighted acceleration aw (t)

< 0.01 not perceptible
0.015 threshold of perception

≤ 0.02 barely perceptible
≤ 0.08 easily perceptible
≤ 0.315 strongly perceptible
> 0.315 extremely perceptible

Table 4.1: Perception of different values for the rms value of frequency weighted acceler-
ations (Source: [VDI 2057-1, Tab. 3]).

By calculating awT (aw) = awT (Wk · ax), comfort of the acceleration maneuver can be
assessed. [VDI 2057-1, Tab. 3] also gives descriptions of the perception for intervals of
awT , which are reproduced in Tab. 4.1.

As can be seen, with the simple approach outlined in [VDI 2057-1], some effects would
need to be neglected while introducing additional factors of uncertainty. In both the
standard evualuation and the sophisticated evaluation from [Alb05], the comfort measure
is based on longitudinal acceleration. In keeping with this, for the remainder of the thesis
longitudinal accelerations are evaluated directly by computing the maximum longitudinal
acceleration during vehicle acceleration.

4.2.3 Virtual vehicle

As was discussed in section 4.2.1, a model covering longitudinal dynamics is sufficient.
They are mainly influenced by the engine, which transmits its power via clutch and
gearbox to the wheels, and the mass of the vehicle. Engine dynamics are omitted from
the simulation model. Instead, it is assumed that engine velocity is controlled and thus
constant despite perturbations from power demands. The ability to transmit power
through friction of the tires is limited by vertical force on each wheel. However, the
effect is small and mostly relevant for fast acceleration, light vehicles and a high center
of gravity. For simulation efficiency reasons, it is omitted as well.

Thus, pure longitudinal dynamics remain. For optimization and for hardware in the
loop experiments, fast simulation is required. To allow for as fast simulation as possible,
a basic model with one degree of freedom was implemented. In this, all masses of the
vehicle are lumped together into one inertia Θ, which is accelerated by clutch plate torque
Tp (FN , ∆ω, Ef):

ω̇2 (t) =





1
Θ · (−d · ω2 (t)) iff Tp < T0,
1
Θ · ((Tp (FN (t) , ∆ω (t) , Ef (t)) − T0) − d · ω2 (t)) otherwise.

(4.2)

With ω1 being constant motor velocity, d being a drag coefficient and T0 being dry friction
torque which models internal losses, e.g. bearing and seal friction. Torque computation
inputs24 are the normal force FN (t), the difference in rotational velocities ∆ω (t) =

24The reasons for FN (t), ∆ω (t) and Ef (t) as input variables for the torque computation becomes clear
in section 4.5.1.
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ω1 (t) − ω2 (t) and the friction work Ef (t).

This load model is sufficient as basis of optimization and as hardware in the loop load
model. For hardware in the loop simulations, it is coupled with a friction clutch testrig,
which is introduced in section 4.3. When used in optimization, a friction model of this
testrig is required.

4.3 Set-up of a test rig for clutch system

The test rig serves as demonstrator module for the actively controlled reliability. As
such, one of the main goals was to create a system that wears fast and has friction pads
that are cheap and can be changed quickly. This was achieved by using friction pads
made from felt. They are only capable of transferring low torques, thus scaling between
the torque applied to the virtual vehicle and to the test rig or scaling of the system itself
is necessary.

4.3.1 Structure of test rig

The test rig consists of four main components, also depicted in figure 4.2:

Friction pads
Power from the drive motor to the load motor is transmitted via two clutch plates,
which are the main components of the clutch system. The two plates are pressed
against one another and transmit power through dry friction, which induces wear
in the plates.

The requirements for the clutch plates deviate slightly from regular automotive
clutch plates. The main premise is to be able to observe wear effects in experiments
of short duration at low power. Short duration is required to be able to conduct
lifetime experiments without waiting for weeks or even months as would be required
if normal automotive clutch plates were used. Also quick changes of worn out clutch

Friction pads

Position sensor

Normal
force
sensor

Load motorDrive motor

Normal force actuator

Figure 4.2: Clutch system.
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Figure 4.3: Felt pads used as clutch plates. Left to right: Front of new plate, front of
worn plate, quick-lock holder on rear, reinforced holder.

plates are necessary to obtain short setup times. The request to use low power
comes from the desire of safe operation and easy setup of the whole test rig.

These requirements led to the selection of small clutch plates made from felt25

which are sold as polishing pads, see figure 4.3. They are equipped with a quick-
lock holder which enables unmounting with a single rotation counter-clockwise and
are readily available at low cost. Failure modes are identified in section 4.4. To
avoid the stochastic and undesired failure mode „Breaking of holder“, the quick-
lock holder is reinfored with additional glue. The plate’s intended purpose is not
to transfer torque, but to be used as a tool for polishing surfaces. As such, the
manufacturer does not publish friction properties. For this reason, a dedicated
model is parameterized in section 4.5.1.

Drive motor
The drive motor represents the engine of the vehicle. It is used to apply a pre-
defined rotational velocity to the input clutch plate. A high quality DC motor26

was selected. It is equipped with a digital incremental encoder27 and controlled
by a dedicated controller28. The motor controller is highly parameterizable and
supports multiple modes of operation. For the drive motor, speed control was
selected with the speed set point being the input variable of the drive system.
Available outputs are actual speed and current, which is proportional to torque, as
shown in section 4.3.4. The motor power is transmitted to the clutch plates with a
belt drive with reduction ratio 1:3.

Load motor
The load motor applies the rotational velocity that is computed in the virtual
vehicle model to the friction contact. The resulting torque is computed from the
current and applied to the virtual vehicle model. The same drive system comprised
of DC motor, encoder and controller as for the drive motor was selected.

Both drive and load motor are supplied with 48 V DC from a switching power
supply29. The load motor converts mechanical energy from the clutch plates into
electric energy which is fed back into the power supply circuit. Using the same 48 V
supply circuit for both drives, the drive motor uses this electric energy and converts
it into mechanical energy which is then transferred to the clutch plates. This way
it is possible to drive both motors with a comparatively small power supply which

25Pferd Combidisc CD FR 50, 440490
26Maxon DC motor RE40, 148877, 48 V, 150 W
27Maxon sensor HEDL5540 110514
28Maxon motor control ESCON 50/5, 409510
29Mean Well S-150-48
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only needs to provide the power that is dissipated in friction and in internal losses
due to drive efficiency.

Normal force actuator
The normal force actuator is again a DC motor but of smaller size30. It is not
equipped with auxiliary sensors. The normal force is applied via a planetary gear
head31 and a ball screw with integrated linear guide32. The linear guide is equipped
with two carts, of which only one is affixed to the ball screw. The motor torque is
converted into a linear force acting on this cart, from there it is transmitted into
a normal force sensor and onto the second cart which holds the load motor and
clutch plate.

The electric motor is driven by the same motor controller as the drive and load
motors, but runs at a lower voltage. For this reason it is equipped with its own
power supply made up of a transformer with rectifier and capacity for current surge
stability reasons. It controls motor current, which is proportional to motor torque
and in turn to normal force applied in the clutch plates. The set point is determined
by a force controller in the realtime control prototyping unit.

To allow for closed loop control of the normal force actuator, two sensors are in-
cluded in the system. The first one is a normal force sensor which measures the
force acting on the clutch plates. For this, a strain gauge based load cell33 with
dedicated amplifier34 is used. The second sensor is a linear potentiometer35 which
is used as position sensor that measures displacement of the moving clutch plate.
Details about the associated controllers follow in section 4.3.5.

Power supplies and controllers are contained within a control enclosure which connects
to the test rig via two dedicated cables. All signals except the force sensor value are
routed through this control enclosure. The interior of the control enclosure can be seen
in figure 4.4. The rapid control prototyping unit is connected to this box and to the load
cell amplifier via analog signal inputs and outputs.

4.3.2 Hardware used to implement the reliability control sy stem

The actual system layout is more complex than the idealized structure shown in figure 3.7.
This is mainly due to the requirements imposed by implementing it on actual hardware.
The setup is based on the operator controller module, see section 2.2 and figure 2.3. It
structures the information processing into three layers: Actual system running in real
time, reflective operator as intermediate stage and cognitive operator running in soft real
time.

On the lowest level, hardware-implemented controllers are situated. For the clutch sys-
tem, these are motor controllers and normal force sensor amplifier, which both have
internal signal and data processing. The motor controllers run a closed loop control
for velocity of the motors. Their setpoint is generated by a rapid control prototyping

30Maxon DC motor A-max 26, 110937, 12 V, 11 W
31Maxon gear GP 26 A, 406764, nominal reduction ratio 27:1
32THK KR26 02B 200, ball screw lead 2mm
33HBM U3 0.5 − 10 kN
34HBM MGCplus with connection board AP01
35Waycon LZW2-S-75
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system36 running in real time as well. The virtual load, other dynamic controllers, su-
pervisory control and state control are implemented here. Its behavior is influenced by a
host system running Windows and Matlab. All higher level routines are implemented in
Matlab, which utilizes the dSpace HIL API to interact with the rapid control prototyping
system. The HIL API allows to change variable values in the real time code at runtime
and to receive measurement data. Reliability control, behavior control and the working
point selection are all implemented in Matlab.

4.3.3 Interfaces to virtual vehicle

Embedded within the virtual vehicle is the clutch plate model, which determines the
torque transmitted from one friction plate to the other by means of dry friction. Its input
variables are the difference in rotational velocity ∆ω = ω1 − ω2 and the normal force
FN . This model is exchanged for the test rig, which has to implement Tp (FN , ∆ω, Ef).
For this reason, both motors are velocity controlled with external setpoint, which is
transmitted from the rapid control prototyping unit by means of an analog signal. In
turn, the current is measured by the controllers and transmitted to the rapid control
prototyping unit via an analog output.

However, the test rig is smaller than an actual automotive clutch and not capable of
transmitting as high a torque. This is desirable for behavior adaptation testing purposes,
but requires an adaptation between virtual vehicle and test rig. Adaptation between
small test rig and big vehicle could be achieved by using constant factors, which scale
according to approximate maximum values.

To find the values of scaling factors, similarity analysis can be conducted. One possible
way to do this is to use Buckingham’s Π theorem, which was introduced in and named

36dSpace DS 1005 PPC with I/O-boards DS 2004 and DS 2102
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after [Buc14]. An elobarate application to vehicle dynamics, both lateral and longitu-
dinal, can be found in [BA00; BA01; BA99; Bre04]. In these papers, a full vehicle
model is setup such that vehicle dynamics are similar to actual vehicle dynamics. Then
observations made at the model can be transferred to full-size vehicles. Advantages of
using the model include easier handling, safer operation and lower cost.

To adapt clutch system behavior, where pure longitudinal dynamics with a rather simple
model are employed, and where transferring experimental results from dynamics is not
desired, the approach of using similarity analysis seemed overly involved. Instead, pa-
rameters of the virtual vehicle were adapted to suit test rig dimensions, in turn creating
a small virtual vehicle as well. Since it is not based on an actual vehicle, parameters Θ
and d in (4.2) can be chosen arbitrarily.

4.3.4 Torque measurement

For cost and complexity reasons, the clutch system is not equipped with a dedicated
torque sensor. During design of the clutch system, it was assumed that the current of
the motors could be used instead, which needed additional verification.

For stationary operation (ω̇P = 0), torque and current are proportional:

Tp = km,T · iM ·
1

r1/2
,

with Tp being the torque at the friction plate, km,T being the proportionality constant
for torque detection, iM being the current and r1/2 being the gear reduction ratio.

For verification, experiments using the clutch system were conducted. For these, the
fixed motor was removed and exchanged for a lever and a force sensor, which enable
measuring the torque. The temporarily rebuilt clutch system is shown in figure 4.5. The
normal force applied was FN = 0 . . . 200 N with 8 individual values and the difference in
rotational velocity37 was ∆ω = 0 . . . 400 rad

s with 9 individual values. All 72 experiments

Figure 4.5: Rebuilt clutch system with torque sensor to determine friction model
parameters.

37For this experiment, ∆ω and ω2 are identical since the secondary plate is fixed.
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Figure 4.6: Relation of torque to current.

were conducted with the same friction pads. To reduce the influence of systematic errors,
e.g. heating-up of the friction pads, the order of the experiments was randomized. For
each experiment, the values were set before the drives were enabled. Before storing data,
1 s was given for transient effects such as the motor accelerating and the force controller
setting38 the required normal force. After this, 2 s of continuous operation were recorded
before disabling the drives again. The recorded data was averaged for each experiment.

Figure 4.6 shows the mean current and mean torque for each experiment. As can be
seen, the linear approximation fits quite well. From this data the proportionality factor
was determined to be:

km,T = 0.0566
N m

A
.

The manufacturer’s nominal value for the motor alone is km = 0.0603N m
A . From these

two values, the approximate efficiency of the clutch drive can be computed to be η =
km,T

km
= 0.94. While this value is not required for general operation during experiments,

it is reassuring to know that no major losses occur in the belt drive.

4.3.5 Normal force control

The normal force acting on the clutch plates serves as system input. Different force
trajectories are used to adapt system behavior. For these reasons, normal force of the
test rig needs to follow the setpoint precisely, which requires closed loop control. It is
measured using a normal force sensor, the corresponding actuator is an electric motor, cf.
section 4.3.1, which acts on the clutch plates via the linear guide and spindle. In [Mer14,
p. 33], a closed loop control with additional feed forward control for the motor current
was proposed. Later on, regular PI control with anti wind up proved sufficient. It
computes the desired current of the actuator from the error in normal force. The current
is limited by the maximum admissible current specified by the motor manufacturer.

Additionally, a position controller is implemented for auxiliary purposes (e.g. opening and
closing of the clutch system for friction pad changes) as PI controller. Since the force
controller is only activated at FN = 0 and the position controller tracking accuracy is not

38Obviously wrong measurements with e.g. the normal force not having reached a steady state were
rejected and repeated.
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relevant for actual system operation, hard switching from one to the other is sufficient.
At switching, both integrators are reset to avoid errors due to wound-up integrators.

During operation, controlling the normal force alone is not sufficient to guarantee good
agreement between optimization model and actual system. Instead, a velocity controller
for the load is designed that directly changes the normal force controller setpoint. To
allow this, during optimization, nominal velocity values are stored in addition to system
input parameters and objective function output values.

Storing nominal values as well allows to compensate perturbations and slight devia-
tions between optimization model and actual system by controlling intermediate values.
Without this approach, open loop control, which is highly sensitive against perturbations,
would fail or would require a better, more detailed optimization model. The resulting
clutch system control structure is shown in figure 4.7.

4.4 Identification of dependability-related objectives

In addition to performance objectives from section 4.2.2, dependability-related objectives
that increase dependability when prioritized are required. To find these, a dedicated
method was introduced in section 2.4. It consists of five steps, which are now applied to
find appropriate objectives for the clutch system in this and in the following section.

In the first step, system dependability is analyzed. A thorough reliability analysis of test
rig and clutch plates was conducted [Li15]. One main result was the different possible
failure modes of the clutch plates and the conditions necessary to excite each mode.
Three modes were found:

Carbonization of clutch plates
High friction energy leads to heating of the clutch plates, which in turn soften. At
first, the surface starts to darken, then plastic deformation sets in and the surface
starts melting, and finally the plates start carbonizing. At this point all experiments
were stopped for safety reasons, but it can be assumed that driving further friction
energy into the plates might also light them.

This failure mode is specific for the material of the plates, felt, and any information
gained from this cannot be transferred to actual clutch friction plates. For this
reason and for safety reasons, this failure mode is avoided by limiting friction work
during each cycle.
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Breaking of holder
The felt pad holder, as seen in figure 4.3, is a small sheet metal plate with stamped
threads at its center. It transfers most of the torque from motor to plate, friction
between holder and plate is secondary. The plate is held to the center of the clutch
plate with glue only. This bond breaks at random times during the experiment.

As this is a stochastic failure mode and mainly due to usage far from what the
manufacturer designed its product for, and is not at all representative of actual
clutch plates, failure due to this failure mode is not desired at all. For this reason,
each holder is manually strengthened with additional glue around the perimeter.
Regular high viscosity super glue39 was used.

Low thickness due to abrasive wear
During each clutch cycle, a tiny amount of material is removed from the surface of
the clutch plates. This wear is spread evenly over the surface of the plates. It adds
up until the plates are very thin and finally tear.

For experiments, failure due to this failure mode is assumed to be reached if com-
bined clutch plate thickness is reduced by 5 mm. All experiments strive to excite
this failure mode and reliability control can be designed around it.

The remainder of this thesis is focussed on failure mode Low thickness due to abrasive
wear. This failure mode corresponds to the components friction pads.

The second step is to find a suitable degradation model in order to identify corresponding
load factors. The model itself does not need to be parameterized. Wear models for dry
friction can be found as far back as [Rey60] or [Arc53]. According to [Rey60, p. 239],
„For a given shaft, normal wear of any rubbing surface area element is proportional to
friction work it produces[...].“. Similar statements can also be found in [Arc53, p. 985].
The proportionality factor introduced by [Rey60] suggests that to decrease wear of the
clutch plates, friction work has to be reduced. It is considered to be a load factor for the
clutch plates.

In the third step, the load factor needs to be included in the model of system behavior.
This model is setup next.

4.5 Modeling the clutch system

For model-based multiobjective optimization, a model of the behavior of the system is
required. To form the basis of the required objective functions, fast evaluation time is
more important than precision, but it needs to be ascertained that all relevant effects
are included. The system model is composed of the virtual load, a friction model which
is equivalent to the experimental setup, and all effects required for objective function
evaluation.

For modeling the vehicle itself, the virtual load is directly implemented as described in
section 4.2.3, specifically equation (4.2). It is augmented with an empirical friction model
to compute clutch plate torque Tp.

39Toolcraft Ropid 200
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4.5.1 Friction model

The torque Tp (t) transmitted in the clutch plates is mainly dependent on the applied
normal force FN (t). A common approach to model this relationship is to assume linear
dependency, i.e. Tp ∼ FN . However, preliminary measurements shown in figure 4.8
indicate that the torque transmitted by the felt pads used as friction pads decreases over
time. This was found to actually be a temperature dependency, the friction pads heat up
during each actuation cycle. Since temperature is not measured and a simulation model
would increase overall model complexity unreasonably, it is substituted for friction work
which forms the basis of heating of the friction pads. This effect needs to be included
in a more complex friction model. Due to these limitations, an empirical relationship
for velocity-independent torque Tp,0 (FN (t) , Ef (t)) is used. Parameters are normal force
FN (t) and friction work Ef (t).

An empirical fitting of a function with unknown parameters to measurement data40 is
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Figure 4.8: Measured velocity of friction plate, normal force (gray: desired values) and
resulting torque during one experiment. After an initial overshoot in normal
force and subsequent drop in velocity, stationary operating conditions are
reached after about 0.5 s. Torque lowers over the time span depicted, which
is typical for usage of the clutch plates.

40For fitting of function to measured data, Matlab Curve Fitting Toolbox was used.
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used. It was found that three main terms can fit measurement data reasonably well:

Tp,0 (FN , Ef ) = (FN − hh)
2 · hd

+ hb · arctan (hf · FN − ha) − hc

+ hg · FN · Ef . (4.3)

The first and most important term, which is quadratic in FN , models the relationship
between normal force and torque, which is usually assumed to be linear, but where
measurement results showed a slight nonlinearity. The second term arctan (. . .) has the
purpose of modeling an initial step, since the friction plates transmit a small amount
of torque even at FN = 0 N. This initial torque probably arises due to the surface of
the friction plates: When the plates are in contact, the rough felt transmits torque by
means of mechanical interlocking, not by friction. Only for higher normal forces, friction
becomes dominant. Third, relationship of normal force and friction work is modeled
with a bilinear term. As friction work increases, torque decreases. For excessive friction
work, discoloring or even melting and burning of the surface of the friction plates can
be observed. During experiments, discoloring cannot be avoided and has little impact
on torque, but melting and burning are neither included in the model nor acceptable for
reliable operation.

To parameterize and to validate the model, measurement data was obtained with auto-
mated experiments. These were conducted with rotational velocity in the range ∆ω =
0 . . . 300 rad

s in 7 steps and normal force FN = 0 . . . 100 N in 41 steps. The experiment
was repeated three times for each pair of values. The resulting time variant data for one
of these experiments is shown in figure 4.8. For all 861 experiments, such curves were
recorded and friction work Ef of each experiment was computed as

Ef (t) =
∫ t0+t

t0

Pf (τ ) d τ =
∫ t0+t

t0

Tp (τ ) · ∆ω (τ ) d τ.

All data was combined and broken down into individual time-independent combinations
{FN,i, Ef,i, Tp,0,i} , i ∈ N, of which one exists for each time step at which measurement
data was recorded. Since the resulting number of data points was too large for further
evaluations, 10 000 random samples were drawn. Equation (4.3) was fitted to these
selected data points by adapting parameters h{h,d,b,f,a,c,g} using a least squares fit. The
resulting three dimensional approximation is shown in figure 4.9. Friction model values
are graphed as shaded surface, where shading also indicates torque. It can be seen that
the data points are close to the friction model, but quality of the fitted model cannot be
estimated visually. Instead, the error was computed for each selected data point. The
error between measurement results and corresponding model values is approximately
normally distributed with low variance, as shown in figure 4.10. Correlation between
normal force or friction work and error could not be found.

The friction model is created for usage in simulations of vehicle acceleration. During
acceleration, the load clutch plate is accelerated until the driving clutch plate velocity is
reached. At this time, the difference in rotational velocity ∆ω = ω1 − ω2 becomes zero.
In coulomb friction, the subsequent lowering of transmitted torque would be modeled
as Tp = Tp,0 · sgn (∆ω). However, this approach de-stabilizes numeric simulations since
slight deviations from ∆ω = 0 yield fast switching between positive and negative torque.
To fully model system dynamics with ∆ω = 0, switching to an entirely different set
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of differential equations would be required. To cope with these problems, instead of
Coulomb friction, the slightly more complex model according to [Pop10, p. 310] is used.
It approximates a coefficient of friction µ, which normally is a fixed value, by a velocity-
dependent function µ (∆ω) = µ0 · 2

π · arctan
(

∆ω
ω̂

)
. For both high and low values of ∆ω,
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Figure 4.10: Error of fitted approximation function.
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a nominal coefficient of friction µ0 and the velocity-dependent coefficient of friction µ

become approximately equal. The less slippage occurs, i.e. close to ∆ω = 0, the lower
the coefficient of friction µ is and the less force or torque is transmitted. The main
advantage are continously defined ordinary differential equations if used in conjunction
with a model of system dynamics. This idea can also be applied to the more complex
model from (4.3). Here, instead of a coefficient of friction, torque is altered directly:

Tp (∆ω, FN , Ef) = Tp,0 (FN , Ef ) ·
2

π
· arctan

(
∆ω

ω̂

)
. (4.4)

The parameter ω̂ specifies the accuracy for low relative velocities. To balance simulation
time with model accuracy, it was set to ω̂ = 0.1 rad

s .

To use the friction model in simulations, the friction work Ef is required. Similarly to
experiment evaluation, it can be computed as

Ef (t) =
∫ t

0
Pf (τ ) d τ, (4.5)

with
Pf (t) = Tp (∆ω (t) , FN (t) , Ef (t)) · ∆ω (t) . (4.6)

Simulation of the full system is conducted in discrete time steps, where integration of Pf

to find Ef is computed by the integration scheme. This is only possible for the whole
system, which is combined from dynamics of the virtual vehicle (4.2) including friction
model (4.4) and friction work (4.5).

These are combined to form a set of differential equations with state vector

q =

[
ω2

Ef

]
, q̇ =

[
ω2

Ef

]·
=

[
ω̇2

Pf

]
.

The full set of differential equations then is

q̇ (t) =








1
Θ · (−d · ω2 (t))

Tp (ω2 (t) − ω1 (t) , FN (t) , Ef (t)) · (ω2 (t) − ω1 (t))


 iff Tp < T0,




1
Θ · ((Tp (FN (t) , ω2 (t) − ω1 (t) , Ef (t)) − T0) − d · ω2 (t))

Tp (ω2 (t) − ω1 (t) , FN (t) , Ef (t)) · (ω2 (t) − ω1 (t))


 otherwise.

According to section 2.4, step 3, load factors need to be included in the model of system
behavior. The load factor for clutch plate degradation that was identified in section 4.4
is friction work Ef . This is already included in (4.5); no further enhancements to the
model are required.

4.5.2 Modeling clutch plate degradation

For setup of the reliability control loop, no degradation model is required. However, it
is advantageous to have a full system behavior model for the evaluation of controller
behavior, and for this reason a degradation model is setup.

During the experiments conducted for the friction model in section 4.5.1, the friction
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Figure 4.11: Friction work dissipated in the clutch system during the experiments con-
ducted to parameterize the friction model.

pads were wearing down considerably. The main influence for wear due to friction is,
according to [Rey60, p. 239], [Arc53, p. 985], the friction work Ef . For each actuation
cycle k with time span t = t0 . . . t0 + tr, where tr is the duration of the actuation cycle,
the wear volume W (k) is

W (k) = pf · C · Ef (k) (4.7)

with proportionality factor pf and surface area C.

During experiments, homogenuous wear of the surfaces was observed, which implies
that energy was dissipated homogenuously as well. The relative lateral velocity of the
plates increases with distance from the rotation axis. To obtain homogenuous energy
dissipation, a non-homogenuous pressure distribution is required to compensate. While
the pressure distribution was not measured, lower pressure towards the rim of the clutch
plate holder is highly likely. The holders are made of flexible rubber material, which
deforms when the clutch is engaged.

During experiments, wear volume cannot be measured, but plate thickness can be deter-
mined quite easily. With homogenuous wear across the surface, the thickness reduction
becomes

l (k) =
W (k)

C
= pf · Ef (k) (4.8)

with the proportionality factor pf . It is assumed that new clutch plates are not worn at
all, whereas the plates are fully worn out at lmax = 5 mm41. During the experiments, both
velocity and normal force were measured. To determine the proportionality factor, the
mean for each actuation cycle is calculated. Figure 4.11 shows thickness over accumulated
friction work. It can be observed that during the first experiments, fast wearing occured,
whereas during later experiments the clutch plates were wearing linearly. From this data,
the proportionality constant was found to be pf = 4.3687 · 10−4 m

J .

Of course, this approach is limited in accuracy since several effects, such as temperature
dependency of the proportionality factor pf , are neglected. However, a good trade-off

41The pads are slightly thicker than 5 mm, but to avoid failure of the backing pads, the felt pads are
not fully worn out during experiments.
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between modeling accuracy and simulation complexity always needs to be found. For
multiobjective optimization, simulation speed is critical.

To allow for the setup of a full model of the system including degradation42, the health
index needs to be determined from simulation results. To this end, all prior actuation
cycles need to be taken into account. This is achieved by computing the sum of l (i)
from cycle i = 1 until the current cycle i = k. Then the health index for the next cycle
k + 1 can be calculated by taking the maximum amount of wear lmax of the clutch into
account. This results in the following relation:

HI (k + 1) = 1 −

(∑k
i=1 li

lmax

)
. (4.9)

4.6 Multiobjective optimization applied to the clutch
system

In order to use model-based self-optimization, optimal system parameters need to be
determined. This can be achieved using multiobjective optimization techniques, which
attempt to minimize several conflicting objective functions at once, cf. section 2.3. The
desired system behavior is, according to section 4.2, to engage the clutch and in turn to
accelerate the vehicle to engine velocity, i.e. ω1 = ω2, ∆ω = 0. The optimization parame-
ters which allow an adaptation at runtime are mainly the time it takes to accelerate from
rest to full velocity, which is equal to the actuation duration tr, and the trajectory of the
normal force FN (t) used during actuation. This leads to the multiobjective optimization
problem being a multiobjective optimal control problem, see also section 2.3.3. In such
a problem, a trajectory over time is required as system input signal.

For the clutch system, a performance objective and a dependability-related objective are
required. The performance objective has already been determined in section 4.2.3 to
be passenger comfort. The dependability-related objective is given as reduction of load
factors, see section 4.4 and equation (4.5). Formulated as objective function, this is

f1 = Ef (tr) . (4.10)

Friction work is computed from torque transmitted in the clutch system and relative
velocity between plates, which are both already known from system dynamic equations.
No further load factors need to be included.

For the fourth step according to section 2.4, additional system parameters might need to
be added. Since a change in input parameters does induce a change in load factor Ef ,
no further optimization parameters are required.

The main performance objective is to have the vehicle accelerate as comfortably as pos-
sible. This is expressed based on the comfort evaluation outlined in section 4.2.2:

f2 = max (ω̇ (t)) , t ∈ [t0, t0 + tr] . (4.11)

To compute the values of these objective functions, the dynamical model of the system
is simulated over the period t = t0 . . . t0 + tr using trajectories for FN (t) as simulation

42This is not required for reliability control, but is helpful for first controller evaluations.
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input.

Additionally, one important constraint needs to be taken into account: The relative error
in velocity ∆ω at t = tr must not be greater than a certain threshold e, so as to avoid
the trivial solution of staying at rest:

|∆ω (tr)|

ω1 (tr)
< e. (4.12)

To conclude the method outline in section 2.4, the objectives and optimization parameters
are combined into a multiobjective optimization problem:

FN,opt (t) = arg min
FN (t)

(f1 (FN (t)) , f2 (FN (t))) . (4.13)

4.6.1 Solving the multiobjective optimal control problem

To solve (4.13) subject to constraints (4.12), multiobjective optimal control is used. A
direct method was selected, in which FN (t) is discretized into several individual values, of
which each is one optimization parameter. This reduces the optimal control problem to
a general optimization problem. Additionally, actuation duration tr is an optimization
parameter. For the clutch system with load acceleration, which has comparably slow
dynamics, time of the maneuver is discretized into five individual time steps such that
one time step has a duration of approximately 1 s to 6 s. For each time step, one force
value ist required. Of these, two were set to be FN (0 s) = 0 N and FN (tr) = 100 N,
thus k = 3 variable force values remain. For times ti = 1

k+1 · i · tr, force values FN,i (ti),
i = 1 . . . 3 ∈ N are determined by the optimization algorithm. For simulation of system
behavior, intermediate values are linearly interpolated.

The discretized multiobjective optimization problem is

p =




FN

(
1

k+1 · 1 · tr

)

FN

(
1

k+1 · 2 · tr

)

...

FN

(
1

k+1 · k · tr

)

tr




, k = 3, (4.14)

popt = arg min
p

(f1 (p) , f2 (p)) , (4.15)

again subject to constraints (4.12).

As numerical solver, GAIO was chosen. It is a software package that implements sev-
eral algorithms based on box subdivision techniques, which explore parameter space
efficiently and are guaranteed to find globally optimal solutions for multiobjective op-
timization problems. From these algorithms, k_diskret was chosen for its reliance on
objective function values without the need to supply derivatives as well. More informa-
tion regarding this optimization algorithm can be found in [SWO+13].

In addition to optimal system parameters popt, the Pareto set, objective function values

f1

(
popt

)
, f2

(
popt

)
, the Pareto front, and intermediate values for load velocity ω2 (t), the

nominal values, are stored for each possible compromise.
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Figure 4.12: Pareto front of clutch system with two objective functions: f1: minimize
friction work and f2: minimize accelerations. Numbering corresponds to
Pareto set numbering in figure 4.13.

Results are shown in figure 4.12. Deviations between system and optimization model
cannot be avoided, but in case of the friction model their exact magnitude and their
effect on objective function values can only be estimated. To find out whether optimiza-
tion results are actually valid for the system, they are tested experimentally. For this,
fifteen points, which are approximately evenly spaced on the Pareto front, are selected.
With each corresponding working point from the Pareto set, multiple experiments are
conducted. The normal firce trajectories for the working points are shown in figure 4.13.
Parameters and nominal values are applied to the real system and objective function
values are computed from experimental data. This yields the experimental Pareto front,
which is also shown in figure 4.12. For each working point, mean and variance are com-
puted. As can be seen, no experimental result exactly matches the theoretical result.
Both a stochastic error and a deterministic error, i.e. a constant offset in any direction,
can be observed. The deterministic error is most probably due to model limitations. De-

0
30

50

12N
or
m
al

fo
rc
e
F
N
in

N

20 34

Time t in s

56

Sample Pareto point

7

100

810 910111213140 15

Figure 4.13: Sample trajectories from Pareto set of clutch system.
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spite these obvious errors, the shape of the computed Pareto front is closely matched by
the experiment result values. Lowering remaining differences would require more com-
plex modeling and in turn more computation time, but an exact match could probably
still not be found. For these reasons, the optimization result is assumed to be valid.

4.6.2 α-Parameterization

The basic purpose of the behavior control loop is to control the system behavior based
on the so-called α-parameterization, as outlined in section 3.3.2. To implement the α-
parameterization, two transforms are required: The s-transform to convert from α-value
to system parameters and the inverse s−1-transform to convert actual system objective
function values back to α-values. As was shown in section 3.3.2, the forward transform
can be deduced from the inverse transform, which needs to be defined system-specific.
The definition can be arbitrary as long as it adheres to restrictions (3.6), (3.7), (3.8).

For the clutch system, a definition close to that suggested in [KRK+13, p. 3404] is
employed. To this end, a linear function is constructed. Its slope a and offset is given
such that it runs through both extrema of the Pareto front.

f2 = f2,max + a · (f1 − f1,min) ,

a = −
(f2,min − f,max)

(f1,min − f1,max)
,

with (f1,min, f2,max) and (f1,max, f2,min) being the extrema of the Pareto front. The dis-
tance between both extrema is named Dp. The current value of the α-parameterization
αcur is the ratio of distance from left extremum to orthogonal projection Da to maximum
distance Dp, scaled such that it matches the given value range −1 . . . 1:

αcur = 1 −
2 · Da

Dp
. (4.16)

A graphic representation of Pareto front with projection and distances is depicted in
figure 4.14. To compute distances Da and Dp, the intersection between orthogonal pro-
jection and connecting linear function is required. The orthogonal projection function is
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Figure 4.14: α-parameterization.
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given by the current objective values (f1,cur, f2,cur) and the orthogonal slope b:

f2 = f2,cur + b · (f1 − f1,cur)

b = −
1

a
.

The intersection point (f1s, f2s) can be found to be

f1s =
f2,max − f2,k +

f1,k·(f1,min−f1,max)
(f2,min−f2,max) + f1,min·(f2,min−f2,max)

(f1,min−f1,max)

(f1,min−f1,max)
(f2,min−f2,max) + (f2,min−f2,max)

(f1,min−f1,max)

f2s = f2,max + a · (f1,s − f1,min) .

Finally, distances are:

Da =
√

(f1,max − f1s)
2

+ (f2,min − f2s)
2
,

Dp =
√

(f1,max − f1,min)
2

+ (f2,min − f2,min)
2
.

With these, the full inverse s−1-transform is setup. As desired, it reduces both current
objective values to a common parameterization value.

4.7 Condition monitoring for clutch plates

Health index of the clutch plates needs to be determined during operation according
to requirements as discussed in section 3.4. Since condition monitoring is not a main
contribution of this thesis, but a necessity, a simple model-based approach was chosen.

As discussed in section 4.4, the main failure mode is directly related to clutch plate thick-
ness, which can be measured. For this measurement, a dedicated phase was introduced
at the beginning of each experiment. In this phase, both motors are at rest and a con-
stant force is applied. Position l̃m of the load clutch plate is measured using the built-in
displacement sensor. After a change of clutch plates, initial position l̃i is measured and
set as new reference position. For position measurement, a lower value indicates thinner
clutch plates. Clutch plate thickness reduction is computed as:

l̃ = l̃i − l̃m.

The measurement phase can be seen in experiment measurement data depicted in fig-
ure 4.15. The plates wear faster at the beginning of their lifetime, which is mostly due to
wearing in, then a steady state is reached and linear thickness reduction can be observed
as shown in figure 4.16. This settling is only brief, but needs to be taken into account
when mapping position to health state. For mapping, a linear function is sufficient:

H̃I = −
1

L
·
(
l̃ − lmax

)
.

Parameters were determined to be L = 0.004732 m, lmax = 5 mm.

The position determined after each experiment is regarded as one measurement value.
As measurements are inherently noisy, filtering is required. This is implicitly done using
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Figure 4.15: Normal force and position of clutch plates over time. After an initial contact,
thickness measurement phase is from t = 2.164 . . . 2.6640 s. The actual
experiment begins at t = 3.9135 s.

the Kalman filtering approach outlined in section 3.3.6. The Kalman filter simulates
a model of system degradation parallel to actual system operation, where the system
state x = [HI , ∆HI offset ]

T
is corrected after each time step such that simulated output

complies with actual measured system output. The correction takes both model and
measurement into account. This way, measurement noise is removed from the state
estimate. Estimation of the state yields an estimate of the error ∆HI offset and a filtered
estimate of the true health index HI . The raw recorded signal and the low pass Kalman
filtered signal are shown in figure 4.17.
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Figure 4.16: Health index of clutch plates over measured thickness reduction l̃.
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Figure 4.17: Raw and Kalman filter low pass filtered health index data.

4.8 Simulation and experimental results with static
working point

To setup and validate controllers, a model of the system was simulated before expensive
and lengthy lifetime experiments were conducted. The controllers are setup individually,
increasing overall system complexity with each new control loop. Each controller is
transferred to the actual system.

To fully assess the benefit obtained with reliability control, a reference failure function
of a normal system without behavior adaptation is required. To this end, behavior and
reliability controllers were fully deactivated and the system behavior was defined by a
static working point, which also yielded static system parameters. The nominal working
point chosen is αuse = 0, cf. section 3.2. While the selection of a static working point by
means of the behavior parameterization is overly complex and would not be employed for
an actual system without behavior or reliability control, it allows for good comparison of
the results obtained to those obtained lateron with controllers activated. A simulation
and lifetime experiments with a system with this static working point were conducted.

4.8.1 Simulation results

For evaluation of system behavior, the optimization model was used, so no deviations
from desired system behavior occured, i.e. αcur = αdes. Health index decreases continu-
ously over time and the simulated system fails after 4874 cycles. The model is entirely
deterministic, and as such, no variance of time to failure is possible. The resulting failure
function F (t) is a step function and shows failure probabiliy to be zero for 4874 cycles.
After failure, failure probability is one.

4.8.2 Experimental results

As was shown in section 4.6.1 already, slight deviations between computed Pareto front
and actually achieved objective values cannot be avoided. In order to obtain results
similar to simulation results, an adapted working point has to be selected. To achieve
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αcur ≈ 0, a static working point of αuse = −0.1374 is required. The constant offset
can be explained by the difference in computed Pareto front and in actually achieved
objective values, cf. figure 4.12. Behavior parameterization during experiments are shown
in figure 4.18. This figure shows desired, used and current behavior parameterization.
The mean over all experiments is indicated by a solid colored line, the shaded area
indicates variance between experiments. This figure style is utilized for all subsequent
behavior parameterization plots; one is shown for each operating mode of the system.
To facilitate comparison between different operating modes, axis scaling is equal for all
equivalent figures, which makes it difficult to see changes in behavior for the case of a
fixed working point. Still, slight deviations of αcur over time can be observed. While
variance is small, the mean over all experiments has a minimum at approximately 2500
cycles before increasing again. This can most probably be attributed to inhomogenuous
material properties.

Failure behavior for the system with static working point is shown in figure 4.19. It is
divided into two subfigures. The upper one shows the health index over time, whereas
the lower one shows the failure function. The mean of the estimated health index is
indicated by a solid line with the shaded area again being variance. Gray lines in both
subfigures show individual failures. In the upper graph, they are merely an event in
time; as graphical representation a vertical line was chosen for each individual failure.
The failure function is a fit to cumulated failures over time, which are indicated by a
stepped plot in the lower graph. After fit, the failure function is evaluated to find the
time at which a system has 50% and 95% survival probability. These are indicated with
vertical lines. Again, this style of experiment result illustration is used for all operating
modes of the system.

To assess stochastic properties of system failure and to find the failure function F (t),
a large number of experiments is desired. Due to cost and time constraints, only seven
lifetime experiments could be conducted. The margin of error in time to failure is huge,
with a 50% survival time of 4345 cycles but a 95% survival probability at just 3848 cycles.
It becomes apparent that a great benefit is to be expected from reliability control.

The lifetime found in experiments is considerably less than the deterministic lifetime
of the model, a difference that can most probably be attributed to deviations in the
degradation model introduced in section 4.5.2. While such a deviation is undesirable,

Figure 4.18: Resulting behavior parameterization of system with static working point.
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Figure 4.19: Experimental results for systems with static working point αuse = −0.1374.

it cannot be avoided completely, which would make any kind of reliability control that
relied on such a degradation model unreliable.

4.9 Setup and validation of behavior control

In the experiments with static working point, a constant offset was sufficient to obtain
close fit of αcur to αdes. Deviations, probably due to inhomogeneous material, could be
observed though and the static offset works for a single working point only. For dynamic
working point selection, behavior control according to section 3.3.2 is implemented. It
aims at correcting the discrepancy between computed Pareto front and actual objective
values, which were also discussed in section 4.6.1. As this is the inner loop of a two-stage
cascaded control loop where reliability control forms the outer loop, separate setup and
testing is advisable.

4.9.1 Setup of the behavior control loop

With the s-transformation and the inverse s−1-transformation known from section 4.6.2,
the controller can be setup according to section 3.3.2. As was shown in section 3.3.3,
specifically (3.9), transfer function of the full behavior control loop is Gα = 1 given that
no perturbations occur and that optimization model represents system behavior per-
fectly. This also means that the feedforward part of behavior control would be sufficient,
closed loop feedback control would not be necessary and controller parameters became
irrelevant. Figure 4.12 shows that a good fit between optimization and experimental val-
idation can be achieved, but that the representation is not perfect, i.e. Gα = 1 does not
hold. Since the model used in lifetime simulations is the same one used for optimization,
it cannot be used to determine suitable controller parameters. For this reason, actual
controller parameters need to be chosen empirically; parameters of the controller are
determined based on observed system behavior. Step response was chosen as controller
criteria since system behavior is nonlinear, rendering controller design techniques for
linear systems unsuitable. The response to a step in desired behavior parameterization
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Figure 4.20: Step response of behavior controller.

from αdes = −0.5 to αuse = 0.5 of the behavior controller is shown in figure 4.20. At
100 cycles, the desired behavior is changed. The feedforward part of the behavior con-
troller reacts immediately and changes αuse, but creates some overshoot in αcur. After
approximately 20 cycles, this is reduced by the feedback part of the controller such that
αcur = αdes. No oscillations of the controller can be observed.

4.9.2 Simulation results

The behavior controlled system is simulated as close to prior simulations as possible. To
this end, αdes = 0 was selected as constant setpoint. As expected, simulation results do
not differ from the system with static working point, as αuse = αdes. These results do
not justify graphical representation.

4.9.3 Experimental results

As was discussed, the behavior controller corrects system behavior such that desired be-
havior parameterization αdes is achieved despite deviations between optimization model
and actual system. It does so by adapting the working point such that the current be-
havior parameterization value is equal to desired behavior parameterization value. In
experiments, quick adaptation of αuse can be observed to obtain αcur ≈ αdes. Controller
parameters were selected such that a steady working point is reached after only about
20 cycles but without overshoot.

Again, 7 lifetime experiments were conducted and the failure function F (t) was deter-
mined. Results are shown in figure 4.21.

Similarly to prior experiment results, a deterministic deviation in behavior, this time in
the corrected value αuse, can be observed at approximately 2500 cycles. Failure behavior,
shown in figure 4.22, was changed slightly. 50% survival time is at 4204 cycles and
95% survival probability at 3797 cycles. A small influence of the behavior controller
on failure behavior can be observed, but it cannot be estimated whether this is due to
advantageuous experimental conditions, which can yield a systematic error, due to a
small number of experiments or an actual advantage. This is also not necessary though,
as the behavior controller does not serve the purpose of increasing system reliability, it
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Figure 4.21: Dynamically adapted behavior parameterization of behavior controlled
experiments.

only needs to make system behavior more manageable for the reliability controller. But
at this point, it can safely be assumed that the controller is working and is able to control
system behavior as desired.

4.10 Setup and validation of reliability control

To compensate for non-deterministic failure behavior and in turn to reduce the variance
of time to failure while having as good system performance as possible, reliability control
is used. It is the outer loop of the full two-stage control loop and interacts with the
underlying behavior controller by means of behavior parameterization αdes. This con-
troller is based on condition monitoring to determine the current health index, which
serves as controlled variable. Since the estimated health index has some uncertainty, a
safety margin needs to be found such that early failures, i.e. failures before the desired
operating time is reached, are avoided. In a first step, this safety margin is determined

0 1000 2000 3000 4000 5000

Time in cycles

0

0.5

1

H
ea
lt
h
in
d
ex

Ĥ
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0 1000 2000 3000 4000 5000

Time in cycles

0

0.5

1

P
ro
b
ab

il
it
y 3
7
9
7

4
2
0
4

Experimental cumulative density
Failure function F (t)
95% survival limit
50% survival limit

Figure 4.22: Failure behavior of behavior controlled system.
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from all prior experiment results.

4.10.1 Health Index at Failure

In accordance with section 3.2, desired estimated health index at specified lifetime
HI des,end needs to be defined. This is based on all prior experiments without reliability
controller, but could be updated with each new experiment data. Such updating was not
implemented, instead a static desired health index HI des,end was used. Each data point
is the result of a full lifetime experiment until failure. At this stage of controller setup,
only results from systems with static working point and of systems with behavior control
are available. These are in total fourteen experiments.

As can be seen in figure 4.23, despite a limited amount of data, thickness of the clutch
plates at time of failure is approximately normally distributed. The thickness data serves
as basis of the health index estimator, which is not capable of measuring actual health
index HI directly. Instead, the algorithm introduced in section 4.7 is used to estimate
health index ĤI . The estimation algorithm lets the distribution of the estimated health
index at failure ĤI (tf), also shown in figure 4.23, deviate from the distribution of thick-
ness. Especially a slight negative skewness of the data, which is shown as gray stepped
plot, can be observed. However, while such skewed behavior could be modeled with more
complex probability distributions such as the Weibull distribution, it is not clear whether
this effect is due to actual skewedness or due to limited data. Since the actual type of
distribution is unknown, a normal distribution ĤI (tf) ∼ N

(
Ê
(
ĤI (tf)

)
, σ̂
(
ĤI (tf)

))
is

assumed for both thickness and estimated health index at failure. From the distribution
of the estimated health index at failure ĤI (tf), the value for HI des,end given an arbitrary
desired reliability Rspec = 95% can be computed by solving (3.4).

Later on, results from different reliability controller operating modes were available.
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Figure 4.23: Experimental density and fitted cumulative density function of friction plate
thickness and of estimated health index ĤI at failure for systems with static
working point and for systems with behavior control.
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Figure 4.24: Experimental density and fitted cumulative density function of friction plate
thickness and of estimated health index ĤI at failure for all experiments,
also those including reliability control.

These increased the number of total data points to 35. With the increased amount of
data, a new fit was conducted to validate the assumption that estimated health index
at failure ĤI (tf) is normally distributed. Figure 4.24 shows the full data and is good
evidence that normal distribution was a suitable choice.

4.10.2 Setup of the reliability control loop

The reliability control loop was implemented as introduced in chapter 3. Mainly, the
model predictive control for system parameterization from section 3.3.7 is implemented.
Controller weights were chosen empirically and were selected to be wx = 0.95, wu =
0.05. Prediction horizon for model simulation was selected to be m = 13 time steps,
i.e. actuation cycles. To solve the optimal control problem, Matlab’s fmincon with
active-set algorithm was selected. Model parameter v was determined to be v =
1.034542 according to section 3.3.6.

Kalman filter covariance matrices were selected as

R = 1 · 10−2

Q =

[
1 · 10−7 0

0 1 · 10−4

]

V 0 =

[
0 0
0 0

]
.

Kalman filtering steps prediction and update using (3.20), (3.21), (3.22), (3.23), (3.24),
(3.25), (3.26) follow after each actuation cycle.

The multiobjective optimal control problem from section 4.6 yields Pareto front and set
as required for reliability control. α-parameterization is restricted to values −1 . . . 1.
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Figure 4.25: Adapted behavior during simulation of full reliability control loop.

4.10.3 Simulation results

To find good controller parameters, the full control loop was simulated. Results of
the behavior adaptation are shown in figure 4.25. Slow behavior adaptation with some
overshoot before settling for a stationary working point can be observed. Also the effect
of discrete working points can be observed in this simulation quite well. The controller
output is a continuous variable αuse, but the s-transform then selects the closest working
point from all individual elements in Pareto front and set.

Between ≈ 500 and ≈ 1200 cycles, the controller selected working point is in a region of
the Pareto front where the number of points is so low, disconnected parts of the front
have formed. These can be seen in figure 4.12 quite clearly. Small controller adaptations
result in a jump in working point. Model precision also yields a jump in αcur. While this
is a general problem if the total number of working points is very low, for the system at
hand actual experiments were not affected by this.

The resulting failure behavior shows a lowered time to failure with the estimated health
index ĤI being very close to desired health index HI des. The deterministic time to failure
is slightly larger than 4000 cycles since HI des,end > 0.

4.10.4 Experimental results

For experimental validation, the full control loop was implemented for the clutch system.
Parameters are not changed from the simulation loop, but due to deviations between
model and system, actual system behavior differs from simulations. Figure 4.26 shows the
resulting behavior adaptation. It can be observed that at the beginning, the controller
initiates intense behavior adaptations, with large variance of desired system behavior
parameterization αdes between systems. At the same time, the health index, shown in
figure 4.27, has large variance during the first ≈ 500 cycles as well. This can most likely
be attributed to different wearing behavior of the plates at the beginning of each lifetime
experiment.

Clutch plates are not mounted perfectly perpendicular to their rotational axis and their
surface has some irregularities. Due to these two effects, at the beginning of their life-
time only a small fraction of the total surface area is in contact. Once the bulges are
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Figure 4.26: Behavior adaptation of experiments with reliability controlled systems.

ground down and the surface is planar, the whole area is in contact. The health in-
dex estimator does not take this into account. Resulting thickness reduction, which is
proportional to estimated health index ĤI , is fast during the initial wear-in phase, but
slows down with increasing contact area. Wear-in is different for each experiment, which
reduces estimation accuracy during the first ≈ 500 cycles. During wear-in, the controller
compensates deviations between desired health index HI des and estimated health index
ĤI by a lowered desired behavior parameterization αdes, which leads to the controller
behavior observable in figure 4.26.

Failure behavior, as shown in figure 4.27, is improved dramatically when compared to
prior results of uncontrolled systems. 50% survival time at 4047 cycles is only slightly
larger than desired lifetime, with the 95% survival limit being at 3995 cycles. From these
results, it can be deduced that the reliability controller works as expected.
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Figure 4.27: Failure behavior of clutch plates with reliability control.
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Figure 4.28: Reaction of reliability controlled system to changed requirements.

4.10.5 Reaction to changed requirements

A main goal for reliability control is to permit an inversion of the current approach to
maintenance planning: Instead of creating the maintenance plan to suit failures, failures
shall suit the maintenance plan. This requires the possibility to change requirements
at runtime, most importantly to change the time until failure. To evaluate controller
response to such changed requirements, the desired lifetime was increased after 2000
cycles to be 5000 cycles. This necessitates a different working point that is selected
by the controller as shown in figure 4.28. While the changed behavior indicates that
comfort is compromised, failure behavior is as desired. Results are shown in figure 4.29.
While the estimated health index does not differ much from prior experiments before
2000 cycles, afterwards changed wear rate can be observed. 50% survival time is 5086
cycles with 95% survival probability being 5004 cycles, close to the desired 5000 cycles.
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Figure 4.29: Failure behavior of reliability controlled system with changed requirements.
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Figure 4.30: Behavior adaptation system with reliability control and changed wearing
behavior. At 2000 cycles, part of the clutch plates is cut off.

4.10.6 Reaction to disturbances: Changed wearing behavior

To evaluate suitability for compensation of faults within the system itself, experiments
with changed wearing behavior were conducted. This was achieved by stopping system
operation after 2000 cycles, cutting part of the felt friction pads off43, and resuming oper-
ation. After cutting, system behavior is adapted to compensate, as shown in figure 4.30.
Failure behavior, as shown in figure 4.31, is virtually unchanged from normal reliability
controlled failure behavior as demonstrated in section 4.10.4. Any differences visible in
the graphs can only be attributed to the limited amount of experimental data that was
available for validation.
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Figure 4.31: Failure behavior of clutch plates with reliability control and changed wearing
behavior.

43Manual cutting leads to some uncertainty, but in all cases accelerates wear.
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Figure 4.32: Influence of different controller modes on system failure behavior.

4.11 Summary of experimental results

Main results from Figs. 4.19, 4.22, 4.27, 4.29, 4.31 are summarized in figure 4.32. The
most important difference between results is the slope of the failure function: With
increasing controller complexity, the failure function changes from high variance to being
close to the ideal step function. It can be seen quite clearly that the systems with
static working point and the behavior controlled system have very high variance. The
difference among the two is neglectable and probably not due to behavior control. On the
other hand, the reliability controlled system is able to reach the pre-defined 95% survival
time precisely. At the same time, 50% survival time is lowered. This cannot even be
impeded by changed wearing behavior, as was shown in experiments with reliability
control enabled were parts of the friction pads were cut off during experiments. This
corresponds to better known failure times and increased system performance. If, on
the other hand, longer average system lifetime is desired, this can be achieved as well
by selecting an appropriate working point. An example of such operation is given by
changing desired system lifetime to 5000 cycles, which are reached with little variance as
well.

From these experiment results, it can be deduced that reliability control operates as
expected. Variance of time to failure can be reduced with either increased system lifetime
or better system performance.



5 Conclusion and Outlook

Self-optimizing systems allow an adaptation of their behavior during operation. They can
adapt to changed operating conditions, changed requirements or changes in the system
itself. The behavior adaptation is based on the objectives that the system pursues.
A new trade-off between objectives is selected during each adaptation cycle, and the
working point is always optimal with regard to these objectives. Possible working points
to choose from are found using multiobjective optimization, which is conducted offline
before operation. This capability can be used to adapt system behavior to the current
reliability of the individual system, which is advantageous for maintenance planning.
Prior implementations of reliability-adaptive systems not based on self-optimization had
individual drawbacks. Mainly they are limited to reacting to discrete events, they are
overly system-specific or they require a degradation model, which is difficult to setup.

A self-optimization based reliability controller selects the current working point from
multiobjective optimization results based on current health index and desired health
index. The current health index is estimated using condition monitoring. As controller
algorithm, model predictive control is used. The required model of system degradation is
introduced as generic model that is parameterized automatically during operation. This
resolves the problem associated with many prior approaches to reliability adaptation,
which require an explicit model of system degradation during controller setup.

An automatically actuated single plate dry clutch is introduced as application exam-
ple. It operates a maneuver that is characteristic for system degradation, which is the
acceleration of a motor vehicle from rest. The vehicle and its motor are modeled as
virtual load, whereas the clutch plates are physical and actual wearing can be observed.
By altering the normal force trajectory, a trade-off between comfort for passengers and
wear can be selected. Lifetime experiments were conducted to show the advantages of
reliability control.

Experimental results show that the reliability controller works as desired. It is capable of
lowering variance of time to failure and to make system failure behavior more predictable.
At the same time, it maximizes system performance and allows for an adaptation of
desired useful lifetime.

A main prerequisite to controller performance is estimation of the current health index
of the system. In the experiments, wearing-in leads to some uncertainty of the health
index at the beginning of each experiment. This is in turn compensated by a behavior
adaptation, which leads to oscillations during the wear-in phase. This would not be
necessary if better condition monitoring was employed.

Self-optimization as basis of a novel method for reliability adaptation helps to contribute
against two main reasons for obsolescence:

Strategies to reach a guaranteed minimum lifetime and to prolong product lifetime:
The reliability controller is able to adapt system behavior such that desired lifetime
is reached. If faults occur, e.g. faster wearing of a component as in the experimental
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validation, these are compensated by adapted system behavior. Desired product
lifetime can also be prolonged, but only at the cost of system performance.

The reliability control introduced in this thesis lowers the margin of error of time
to failure by changing system operation. This benefits weaker individual systems
with lower than usual wear margin most, as for these systems wear is reduced by
the controller and early failures are avoided. However, it can also be used to lower
the time to failure of strong systems, i.e. systems with longer than average time
to failure. For these systems, usage is increased so that they fail earlier. However,
selecting a working point with higher wear also improves other objective function
values, which in turn offer a true benefit to system users. So while the reliability
control system can also be used adversely to decrease time to failure of strong
systems, the user also benefits from this.

Strategies to prolong product usage duration:
Whether an old product is continued to be used is highly dependend on its per-
formance. If the product becomes obsolete due to low performance, the controller
could also be used to increase system performance at the cost of lifetime. This
could increase the actual usage time and shift the reason for obsolesence to mate-
rial obsolescence, thus a benefit could be obtained.

Of course both of these aspects contradict one another. Since system operation is optimal
with regard to pre-determined objectives, of which one is for system performance and
one for reliability, an improvement in both objectives is impossible. If both shall be
improved at the same time or product usage duration has to be increased by increasing
performance while keeping the lifetime as before, structural changes are required to the
system or product.

5.1 Suggested future work

While the work documented within this thesis has reached an end, the development of
reliability-adaptive systems is far from finished. Reliability control is one promising way
to implement reliability adaptivity, but of course there are further developments and
applications.

5.1.1 Improvements to the reliability controller itself

The reliability controller introduced in this thesis is a combination of work from many
different fields. First and foremost, self-optimization with all prior research conducted
mainly at Paderborn University is to be mentioned, but it also builds on multiobjective
optimization, condition monitoring, behavior modeling, model predictive control and
parameter estimation techniques. Each of these fields is still ongoing further research,
which will further improve the methods and algorithms. All of these could be tied into
the existing framework, which is open for further enhancements.

To obtain good controller performance, the health index must be estimated as precisely
as possible. In condition monitoring, phase shift of the estimation or the delay introduced
by algorithms is largely neglected. Slow decision making without feedback to the process
does not suffer from such delay, but controller stability does. For reliability control, fast
and accurate condition monitoring is required.
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Another outer loop that plans failure behavior for each individual system is able to
adapt the desired health index such that strong behavior influences at the beginning
of operation due to wear-in are avoided. This could also be tied in with maintenance
planning and take other systems into account, making it a global supervisory setpoint
generator.

At this time, only two objectives were taken into account: performance and dependability.
If additional performance objectives exist or if multiple failure modes require reliability
controlling, reliability control from this thesis needs to be extended accordingly. The
main limiting factor is the behavior parameterization α, which needs to be defined on
multiple dimensions. With a suitable definition, one or more objectives can be decoupled
from the others. This way, e.g. a trade-off between failure modes could be selected while
keeping system performance as desired. Then either one reliability controller could be
setup for each individual α-value or a common model predictive control for all values
together could be used.

5.1.2 Application as intelligent load balancing

Clutch systems are still required for many vehicles using an internal combustion engine
for propulsion. Only recently, innovations such as serial hybrid drives are starting to
supersede them in certain applications. Regular clutch systems will most likely remain
in use in applications where efficiency of the drive train is critical and where low variations
in load are occuring. One such application are agricultural tractors, which need to be able
to work efficiently with high loads, low speeds and long stationary operating conditions.

In [GCO13], a shift concept for a powershift transmission is introduced which makes it
possible to accelerate an agricultural tractor from rest without the need for a dedicated
starting clutch. Regular powershift transmissions have a set of small clutches for the
selection of gears and one main clutch for starting up. The small clutches are designed
for the frictional losses that occur when changing gears under load, they are not suitable
for the high losses at start up. The main clutch is used only for starting from rest and
not opened afterwards. The new approach presented in [GCO13] is to use two small gear
changing clutches with their individual gear pairings in conjunction. They now work
at different velocities, but are acting in parallel until the lower gearing is completely
synchronized. At this point, the other clutch is opened and the lower gearing is fully
engaged. However, the algorithms introduced in [GCO13] do not take the wear of the
clutches into account. Instead, one leading clutch is engaged until its power limit is
reached, then a supporting clutch kicks in.

This powershift transmission is a prime example of the possibiliy to level the wear of
several components in existing industrial applications: Using condition monitoring tech-
niques, the degradation of each individual clutch could be examined and taken into
account for a comprehensive control of both clutches combined. Thus, failures of in-
dividual clutches could be avoided, making the system highly reliable. For this, the
proposed control algorithm could be used. Compared to the implementation outlined in
this thesis, an additional objective for the wear of the second clutch would need to be
taken into account, thus forming two reliability objective functions for the multiobjective
optimization problem.
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5.1.3 Maintenance planning and reliability modeling

In the introduction of this thesis, one major motivation for reliability control was an
increase in availability that could be achieved not only by increasing the time until
maintenance, but also by decreasing the time to repair. It was assumed that this could be
the result of adapting system behavior according to available repair teams. Experiment
results show that indeed reliability was increased and made predictable, while adaptation
of time to failure is possible.

The resulting advantage for maintenance planning is hard to quantify. In [MKS15a], we
made a first attempt at such a quantification. A simulation model for clutch system
reliability was setup and a fleet of 56 of these was simulated. Each instance of the
simulation model was running on a dedicated core on a high performance computing
cluster, requiring a total of about 1000 hours CPU time. A simple maintenance strategy
was implemented. The amount of time required for maintenance and the availability of
repair crews was included in the full simulation model.

It was shown that a slight increase in availability could be achieved. This was without
maintenance-driven lifetime extension though, so one of the major potentials of reliability
control was left unused. To make full use of this capability, the maintenance strategy
has to be more complex and can actually be self-optimizing itself. Such maintenance
strategies do not exist yet.

Also it was shown that common methods for modeling system reliability and availability
such as Petri nets fail to model the interaction from maintenance strategy back into the
system failure behavior. Current reliability modeling techniques are based on failure
driven maintenance, where system failure behavior is static and known. Our approach
was a full simulation model, whose computational requirements make it infeasible for
general application. Even the limitations of more advanced modeling techniques such as
Lares, which we have used in [MSS+13] to model reliability of a single self-optimizing
system, is reached if multiple systems and their interactions are considered. A combi-
nation of intelligent maintenance strategy and adaptable system failure behavior thus
requires novel modeling techniques. Developing these is a separate field far from the
topic of this thesis, but reliability control can be a good motivation.
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