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“Electric lamps were not invented by improving candles.”
Henri Audier



Kurzfassung

Organische Halbleiter finden aufgrund ihrer günstigen Herstellungsweise und ihren
besonderen Eigenschaften wie z.B. Flexibilität immer mehr Anwendungen in moderner
Elektronik. Da ein effizienter Ladungstransport dabei häufig zwingend notwendig ist,
wird dieser am Beispiel von dem Polymer Poly(3-hexylthiophene) (P3HT) in dieser Arbeit
untersucht. Im ersten Teil liegt der Fokus auf der Identifizierung von transporthem-
menden strukturellen Defekten. Diese werden durch eine Vielzahl von Konfigurationen
modelliert, deren Eigenschaften im Rahmen der Dichtefunktionaltheorie bestimmt wer-
den. Als besonders transportschädigend herausgestellt haben sich dabei die Adsorption
von Sauerstoff an das Kohlenstoff-Rückgrat der Polymerstränge sowie eine Verdrehung
von zwei aufeinander folgenden P3HT Monomeren um Winkel im Bereich von 90◦.
Da eine starke Kopplung von ionischen und elektronischen Freiheitsgraden interessante
physikalische sowie technologisch relevante Effekte ermöglicht, steht diese Kopplung
im Zentrum der weiteren Betrachtungen. In P3HT wird die Elektron-Phonon-Kopplung
durch die Einführung von Polaron-Quasiteilchen berücksichtigt, welches zudem eine tem-
peraturabhängige Beschreibung der Transporteigenschaften ermöglicht. Die Ergebnisse
zeigen eine stark ausgeprägte Kopplung sowie eine maximale Ladungsträgerbeweglichkeit
in Kettenrichtung von gut 40 cm2/(Vs) bei Raumtemperatur, für P3HT-Filme ohne
strukturelle Defekte.
Neuere Entwicklungen beruhen zudem zunehmend auf der konkreten Ausnutzung von
speziellen Eigenschaften von Nanomaterialien, z.B. in Form von Quantenpunkten und
Nanodrähten. Aus diesem Grund werden im letzten Teil der Arbeit Indium-Nanodrähte
auf einer Siliziumoberfläche charakterisiert. Der Schwerpunkt liegt dabei auf einer
theoretischen Beschreibung eines experimentell beobachteten, optisch getriebenen
Phasenübergangs, da dieser vor allem durch eine stark gekoppelte, zeitabhängige
Atomkern- und Elektron-Dynamik charakterisiert werden kann. Die Ergebnisse erklären
dabei die Wirkmechanismen während dieses Phasenübergangs, wobei die theoretisch
vorhergesagten Übergangszeitkonstanten dabei sehr gut mit dem Experiment überein-
stimmen. Eine zusätzlich durchgeführte Bindungsanalyse visualisiert zudem den Verlauf
des Phasenübergangs und gibt detaillierte Einblicke auf atomarer Ebene.





Abstract

Organic semiconductors experience increasingly applications in modern electronics due
to their cheap manufacturing and their special properties like, e.g., flexibility. In general
these applications require an efficient charge transport, which is investigated here using
the example of the polymer Poly(3-hexylthiophene) (P3HT). Thereby, the focus is on
the identification of strongly transport limiting structural defects. These defects are
modeled by a variety of configurations for which the properties are determined in the
framework of the density functional theory. An adsorption of oxygen to a polymer
strand’s carbon backbone as well as torsion angles around 90◦ between two adjacent
P3HT monomers are found to strongly reduce the conductivity.

A strong coupling between ionic and electronic degrees of freedoms enables interesting
physical and technological relevant effects. Therefore, the analysis of such couplings
constitutes the main part in the following considerations. The electron-phonon coupling
in P3HT is accounted for by introducing the polaron quasiparticle, which enables
also a temperature-dependent transport description. The results indicate a distinct
coupling and predict a maximum charge carrier mobility of about 40 cm2/(Vs) at room
temperature in polymer chain direction for P3HT films without structural defects.

Since modern processings exploit increasingly the particular properties of nanomaterials
like, e.g., quantum dots and nanowires, the last part of the thesis deals with indium
nanowires on a silicon surface. The representative focus is here on the theoretical
description of an experimentally observed optically driven phase transition. This transi-
tion is characterized by strongly coupled, time-dependent ion and electron dynamics.
The microscopic details of the phase transition are elucidated and the results are, e.g.,
additionally visualized by a detailed bonding analysis. The predicted phase transition
time constants are thereby in good agreement with the experimental measurements.
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1
Introduction

Todays technology advances with a tremendous speed. On the one hand, the consumer
electronics like smartphones, tablets, etc. become smaller and smaller, which is mainly
achieved by an increasing density of electronic components. On the other hand, also
the integrated circuits used in electronics contain more and more transistors per volume.
This has also the advantage that the decreased size and distances between the transistors
allows for a faster clock rate. Moreover, it enables the designs of system on chips
(SoCs) with enhanced functionalities while small chip sizes are maintained.

Already in 1965 Gordon E. Moore published his observation that every two years the
number of circuit components in an integrated circuit doubles [1]. To accommodate such
a large number, the distance between circuit paths, transistor gate sizes, etc. need to
be downsized. For instance, Intel uses currently a 14 nm manufacturing technology [2].
For comparison, 14 nm are more than 5000 times smaller than the thickness of a human
hair. Moreover, Intel has announced the release of its new 10 nm processor generation
with the codename Cannonlake in 2017, while IBM produces already 7 nm test chips [3].

The miniaturization of the semiconductor devices makes several challenges like heat
dissipation and electromigration becoming more and more significant. In addition, the
low-dimensionality and nanostructuring leads to an increased surface/volume ratio,
where quantum mechanical effects become apparent. For instance, aside the laws of
classical physics, one has to take care of a possible tunneling of charge carriers through
a barrier, thereby causing leakage currents. Such effects are amongst others analyzed
in Sec. 4.1, where the tunneling probability change from one metal nanowire to an
adjacent one is investigated upon exposure to oxygen. In these nanowires charge carriers
exhibit a strong coupling to each other without being directly connected.
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Figure 1.1: Organic solar cells offer a large
flexibility for new application possibilities.
The image is taken from Ref. 4 and under a
Creative Commons License (CC BY-NC-SA
3.0).

However, there are also various applica-
tions which demand large transmission
probabilities. For example, if electrical
components need to be contacted, the
resulting interface should impede the
charge carrier transport between the
different materials as less as possible.
Thus, another important research topic
deals with the search for well-conducting
and controllable organic materials. Re-
cently, the application of organic semi-
conductors in consumer products has increased considerably - ranging from organic
light-emitting diode (OLED) displays to organic solar cells. Organic semiconductors have
the advantage that they are usually cheap to produce and offer interesting properties like
being mechanically flexible. Their manifold compositions give additional variabilities for
design, thus opening up new application possibilities. Unfortunately organic materials
suffer from relatively fast degeneration compared to inorganic semiconductors. In this
context, a large part (Sec. 3.1) of this thesis pays attention to the influence of several
kinds of defects in the organic polymer Poly(3-hexylthiophene) (P3HT) which is often
used for organic solar cells.

Since interesting physics and technological relevant effects arise when electron and ion
dynamics are coupled to each other, this work investigates also the coupling of ionic
and electronic degrees of freedom by means of two different systems: (i) In Sec. 3.2
the polaron quasiparticle is introduced to account for the coupling between electrons
and phonons in P3HT. The description allows for including also temperature effects
due to ionic vibrations, which goes beyond the so far static transport characterization
of P3HT. (ii) The last section 4.2 goes even further by examining the coupling of ion
and electron dynamics yet time-resolved in indium nanowires. This system was chosen
due to its very distinct coupling between electrons and ions. The focus is thereby
on an in-depth analysis of a collective motion of the indium atoms towards another
phase upon electronic excitation by a laser pulse. The mechanisms, leading to the
experimentally realized phase transition, are investigated and visualized from different
perspectives for which even a bonding analysis tool was implemented.
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The thesis is divided into three parts: In the first one (Chap. 2), theoretical foundations
needed to understand the following results are presented. It starts with a motivation and
introduction of the density functional theory (DFT) followed by two different transport
approaches which are used in the following chapter 3 to characterize the transport
properties of the polymer P3HT. The last chapter deals with the widely studied indium
nanowires on a Si(111) substrate and their interesting properties like an insulator-metal
transition.
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Theoretical foundations

In order to investigate material properties at the nanoscale from the theoretical point of
view, it is often necessary to describe the system quantum mechanically. This requires
a solution of a many-body problem as the studied systems include usually several nuclei
and even more electrons.

This chapter deals with the theoretical framework used to describe the many-body
problem from first principles. It starts with a general formulation of the many-body
Schrödinger equation which needs to be simplified, leading to the density functional
theory whose basics are shortly outlined afterwards.

2.1 The many-body problem

Starting point for a quantum mechanical description is the many-body Hamiltonian [5]

which is the key operator in the Schrödinger equation

H = He,kin + Hee + HI,kin + HII + HeI. (2.1)

He,kin and HI,kin denote the kinetic energy of the electrons and the atomic nuclei. The
Coulomb interaction of the electrons is included by Hee and that of the nuclei via HII.
The term HeI takes the Coulomb interaction between electrons and nuclei into account.
This Hamiltonian 2.1 acts onto a many-body wave function with all in all 3Ne + 3NI

coordinates1 (labeled {r} and {R}, respectively) where Ne denotes the number of
electrons and NI the number of ions

HΨ ({r}, {R}) = EΨ ({r}, {R}) . (2.2)

1The factor 3 regards the three degrees of freedom of each particle along the spatial directions x, y
and z.
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Within the limits of the Born-Oppenheimer approximation [6], one can separate the
“movement” of the electrons and ions. This can often be justified by the large mass
difference between electrons and nuclei, assuming that the electrons can follow the ions’
movements instantaneously. This approximation allows for considering the ion positions
{R} as (fixed) parameters so that the many-body problem needs only to be solved
for the electrons. The ion positions can afterwards be optimized by minimizing the
system’s total energy, e.g., with a gradient descent scheme. This requires the solution
of the electronic many-body problem for each altered ion configuration.

Effects like electron-phonon couplings are neglected due to the Born-Oppenheimer
approximation although they are crucial, e.g., for charge transport in organic semi-
conductors at finite temperatures. This disadvantage is overcome by employing a
tight-binding model later on to include also polaronic effects. This model is presented
in more detail in Sec. 2.6.

2.2 Density functional theory

Since the electronic wave function depends on 3Ne coordinates even after separation
of the ions and electrons by means of the Born-Oppenheimer approximation, the
many-electron problem is still too complicated to be solved directly.

A remedy is found by the density functional theory (DFT): According to the Hohenberg-
Kohn theorem [7], the electron density n(r) is an unique functional of a given potential
V (r), hence requiring the determination of the electron density n(r) exclusively instead
of the full wave function Ψ ({r}). This offers the tremendous advantage that the
desired functional depends only on three variables instead of 3Ne.

Unfortunately the Hohenberg-Kohn theorem does only say that the electron density
n(r) is sufficient to describe the system completely but not how to determine physical
quantities like the total energy E in dependence on the electron density. Hence, one
searches for a description of the total energy in functional dependence on the electron
density. A general starting point is given by the following ansatz

E[n] = 〈Ψ | He,kin + Hee | Ψ〉+ 〈Ψ | vext(r) | Ψ〉 = F [n] +
∫
vext(r)n(r)d3r, (2.3)

where F [n] denotes the unknown functional expression for the kinetic energy and the
electron-electron interaction in dependence on the electron density. The second term
contains the external potential vext(r), especially the Coulomb potential generated by
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the atomic nuclei. According to Kohn & Sham [8] one can write

F [n] = T0[n] + 1
2

∫ ∫ n(r)n(r′)
|r− r′|

d3rd3r′ + Exc[n] (2.4)

for the functional F [n] (in atomic units2). The kinetic energy T [n] of an interacting
particle system is approximated by the kinetic energy T0[n] belonging to a system of
non-interacting particles. The Coulomb interaction (second term) is also expressed for
a system of non-interacting particles. The differences between an interacting and a
non-interacting system is accounted for by adding Exc[n], i.e., the so-called exchange-
correlation correction3. Moreover, this term should take care of many-body effects like,
e.g., the exchange-correlation hole. However, for the general case the exact expression
for Exc[n] is still unknown and has to be approximated, leading to a broad range of
applicable exchange-correlation functionals which will be discussed later on (e.g., various
flavors of the local density approximation, generalized gradient approximation, etc. cf.
Refs. 11–18).

The electronic ground state (energetic minimum) is determined by calculating the
functional derivative with respect to the electron density

δE[n]
δn

!= 0. (2.5)

The variation has to be performed with the constraint that the particle number needs
to be preserved. This additional condition can be formulated via ∫ n(r)d3r = Ne and
is mathematically realized by a Lagrange multiplier [19] µ

δ

δn

{
E[n]− µ

(∫
n(r)d3r−Ne

)}
= 0. (2.6)

Inserting Eqs. 2.3 and 2.4 yields

δE[n]
δn

= δF [n]
δn

+ vext(r) = δT0[n]
δn

+ Veff(r) = µ, (2.7)

with
Veff(r) = vext(r) +

∫ n(r′)
|r− r′|

d3r′ + δExc

δn
, (2.8)

which can be seen as an equation for a system of non-interacting particles in an
effective potential Veff

[8]. The interacting particle system was thereby transformed into

2Atomic units are an alternative to the SI units. They offer the advantage to be very convenient for
atomic physics calculations due to their property that the four fundamental physical constants me, e,
~ and the Coulomb constant are unity by definition. For more details see, e.g., Ref. 9.

3Many-body effects beyond the exchange in the Hartree-Fock theory [10], which is based on a single
Slater determinant description, are summed up by the term correlation.
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a single-particle description4 with the same ground-state density n(r). This offers the
possibility to introduce one-particle wave functions φi(r) for the independent particles.
The ground-state density can then be calculated with5

n(r) =
∞∑
i=1

fi|φi(r)|2, (2.9)

where fi denotes the occupation number of the orbital φi(r). While there exists no
exact expression for the kinetic energy T [n] of the interacting particle system, the
kinetic energy T0[n] of the independent particle system can easily be calculated with
the one-particle wave functions

T0[n] = T0

[ ∞∑
i=1

fi|φi(r)|2
]

=
∞∑
i=1

fi 〈φi| −
∇2

2 |φi〉 . (2.10)

Performing the functional derivative in Eq. 2.7 with respect to φ∗i (r) leads to one-particle
Schrödinger equations [20], which can be used to determine the orbitals φi(r)

−
∇2

2 +

Veff︷ ︸︸ ︷
vext(r) +

∫ n(r′)
|r− r′|

d3r′ + δExc

δn
(r)

φi(r) = εiφi(r). (2.11)

These equations are also known as Kohn-Sham equations6.

To summarize the idea of the framework so far: The many-body wave function depends
on too many variables and is therefore replaced by the electron density. By introducing a
reference system of independent particles with the same ground-state electron density as
the interacting system, the energy functional can be easily evaluated to find the energy
minimum. The Hohenberg-Kohn theorem ensures thereby that the ground-state energy
of both systems - the interacting and non-interacting one - is exactly the same [24].

The Kohn-Sham eigenvalues εi are not equal to the energy eigenvalues of the interacting

4The equation describes quasi-independent particles since the influence of the other electrons enters
only indirectly through the effective potential Veff(r) (mean field theory).

5The system must be describable in terms of a single Slater determinant.
6For comparison, the Hartree-Fock equations [10,21,22] are

[
−∇

2

2 + vext(r) +
∫ n(r′)
|r−r′|d

3r′
]
φi(r) +∫

Σx(r, r′, εi)φi(r′)d3r′ = εiφi(r) with Σx(r, r′, εi) = −
occ∑
k

∫
δσi,σk

φ∗k(r′)φk(r)
|r−r′| . It looks similar,

but the exchange potential Σx is nonlocal due to the integral over φi(r′), leading to an increased
computational effort. In the GW approximation [21,23], the exchange potential Σx becomes the self-
energy which includes also dynamically screening effects, not included in the Hartree-Fock method.
Such screened charge carriers are called quasiparticles and the imaginary part of the self-energy
expectation value gives hints towards the lifetime of their corresponding states (used in Sec. 4.2.1).
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system, however, they are often a good approximation and are frequently used7.

As Veff(r) in Eq. 2.11 depends itself on the solution of the Kohn-Sham equation
φi(r) (cf. Eq. 2.8 after inserting Eq. 2.9)), this equation has to be solved as an
integro-differential equation self-consistently.

The exact expression for Exc, which is needed in Eq. 2.8 to determine the effective
potential Veff , is still an unsolved problem. As already mentioned, there exist several
functionals, where some of which contain to a certain extent exact (Hartree-Fock)
exchange (e.g., B3LYP [15,16] or HSE06 [18]).

A simple but often successfully applied approximation is called local density approxi-
mation (LDA)8

Exc[n] =
∫
n(r)εxc[n]d3r =

∫
n(r)εLDA

xc (n(r))d3r +O[∇n]. (2.12)

The function εLDA
xc (n(r)) depends only locally on the electron density (no functional

any longer). There are several suggestions for parameterizing this function (e.g. Refs.
25 & 26).

The local density approximation can be generalized by taking beside the local density
n(r) also the local density gradient ∇n(r) into account in order to better incorporate
effects based on inhomogeneities of the density. This semi-local approximation is called
generalized gradient approximation (GGA). The generalization is not unique - there
exist several GGA functionals which depend in different ways on n(r) and ∇n(r). A
simple, commonly used generalized gradient approximation functional is called PBE and
was suggested by Perdew, Burke and Ernzerhof [13,14] in 1996. Nevertheless, even with
this functional the (i) self-interaction and (ii) long range Coulomb interaction remain
unsolved problems. The latter one is considered in the following section.

2.3 Van der Waals interaction

As mentioned in the last section, the semi-local GGA functionals take beside the local
density n(r) also the gradient of the local density ∇n(r) into account. Now, if one
considers a positively charged molecule, there will be a distance at which nearly no
electron density is expected any more. Nevertheless, in a real system, the long range
Coulomb interaction exists even at this distance, e.g., being able to attract a remote
electron towards the molecule. However, this attractive force cannot be described

7Beside some exceptions, this approximation is also applied in this work.
8This approximation is exact for a homogeneous electron gas.
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correctly within LDA or GGA as the local density and its derivative vanish between
molecule and electron.

Long-range effects like the van der Waals (vdW) interaction (dispersion) can be
accounted for by extending the functional to long-ranged correlation contributions. This
extended description is not only important for charged systems but in particular, e.g., for
molecules adsorbed on surfaces. Moreover, the dispersion is essential for the interaction
between molecules in an organic semiconductor (a molecular crystal). Since this work
also deals with the organic polymer P3HT, the vdW interaction was included, namely
by using the method of Grimme [27]. The Kohn-Sham equation is thereby extended by
a R−6 damped term

Edisp = −s6

NI−1∑
i=1

NI∑
j=i+1

Cij
6

R6
ij

fdmp(Rij). (2.13)

The sums take all pairwise interactions between each of the NI atoms with distance
Rij and interaction strength Cij

6 into account and s6 is a global scaling factor. The
damping function

fdmp(Rij) = 1
1 + e−d(Rij/Rr−1) (2.14)

is added to avoid singularities at small Rij. Rr corresponds thereby to the sum of the
van der Waals radii of the atoms i and j. Grimme [27] suggests a value of 20 for the
parameter d. The interaction coefficients Cij

6 can be determined from the geometric
mean

Cij
6 =

√
Ci

6C
j
6 , (2.15)

where the atom specific coefficients Ci
6 have been tabulated in Ref. 27.

2.4 Pseudopotentials

This work makes use of plane-wave expansions of the electron wave functions as they
are well-suited for periodic systems and very efficient due to the availability of the fast
Fourier transform (FFT). However, the expansion of electron wave functions requires
a large basis set to describe the strongly oscillating behavior accurately in the region
close to an atomic core. As the computational effort increases enormously with the
size of the basis set, an alternative is needed to describe the regions around the cores.
The augmented plane wave (APW) method [28] offers a possibility which uses atomic
orbitals as basis set for the region around the cores and plane waves in the interstitial
region. The pseudopotential method is another alternative which is used in this work.
The basics of the pseudopotential formalism are shortly outlined in the following.
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V

VPS

ϕAE

ϕPS

rc

r

Figure 2.1: Schematic comparison of the
pseudopotential VPS with the original core
potential V. Furthermore, the corresponding
wave functions φPS and φAE are depicted.
Both wave functions have to be equal from
the cutoff radius rc [29], [30].

First of all, the electrons are separated
into two categories - the core electrons
which are mainly located close to the nu-
clei and the valence electrons which are
responsible for forming bonds. The frozen
core approximation assumes that the core
electrons remain unaffected by chemical
bonds. Hence, their influence onto the
valence electrons can be incorporated into
the core potential, thereby reducing the
effective number of electrons to deal with.
In the worst case this reduces the accu-
racy of the results by about 0.1 eV [31].
However, in general this approximation is
well-justified. After this, the many-body
problem is only solved for the valence elec-
trons whose external potential is replaced
by an atom-specific pseudopotential containing the core electrons. The wave function of
the valence electrons is called pseudo wave function φPS due to differences compared to
the all-electron (AE) wave function9. The potential VPS belonging to φPS is optimized
during the pseudopotential generation to get a preferably smooth pseudo wave function.
This reduces the number of plane-wave basis functions needed for the expansion. The
potential is thereby also smoother and does not exhibit the diverging 1/r property close
to the core (cf. Fig. 2.1).

Pseudopotentials have the property that the pseudo wave function and the all-electron
wave function are equal outside of an atom-centered cutoff radius rc (called aug-
mentation region). The all-electron wave function inside the cutoff region can even
be reconstructed mathematically for projector augmented wave (PAW) pseudopoten-
tials [32,33], to get the AE wave function from a pseudopotential calculation. The linear
reconstructing transformation T is derived in the following

|φAE〉 = T |φPS〉 . (2.16)

As already mentioned, it is assumed that the pseudo wave function and the all-electron
wave function differ only within the cutoff radius (cf. Fig. 2.1). Hence, one can build

9This is the “real” wave function of the system where no pseudopotentials are used and all electrons
are included in the calculation.
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up the transformation from single atom centered contributions

T = 1 +
∑
α

Tα. (2.17)

The index α sums over all atoms. Tα is only non-zero within the cutoff radius which
ensures that |φAE〉 = |φPS〉 for r > rc (cf. Eq. 2.16 after insertion of Eq. 2.17).

An expression for Tα can be found by expanding the system’s solution |φAE〉 and |φPS〉
in any atom-centered basis (e.g partial wave functions)

|φAE〉 =
∑
i,α

cαi |Φα
i 〉 and (2.18)

|φPS〉 =
∑
i,α

cαi |Φ̃α
i 〉 , (2.19)

where i is a macro index which runs over all quantum numbers of the system (e.g., l,m
for the angular momentum). Eq. 2.19 requires that the basis functions for the pseudo
wave function are chosen in that way that the expansion coefficients cαi are equal to
the ones of Eq. 2.18. Moreover, one can define a projector |p̃ βj 〉 having the property

〈p̃ βj |Φ̃α
i 〉 = δi,jδα,β. (2.20)

Applying this projector onto Eq. 2.19 one obtains

cαj = 〈p̃ αj |φPS〉 (2.21)

for the expansion coefficients cαi . The difference between the all-electron wave function
and the pseudo wave function can be written as

|φAE〉 − |φPS〉 =
∑
i,α

cαi
(
|Φα

i 〉 − |Φ̃α
i 〉
)

⇔ |φAE〉 =
∑
i,α

cαi
(
|Φα

i 〉 − |Φ̃α
i 〉
)

+ |φPS〉 .
(2.22)

Inserting the expansion coefficients determined in Eq. 2.21 yields

|φAE〉 =
∑
i,α

(
|Φα

i 〉 − |Φ̃α
i 〉
)
〈p̃ αi |+ 1

 |φPS〉 . (2.23)

Comparing with Eq. 2.17 gives the prescription for the reconstructing transformation T

T = 1 +
∑
i,α

(
|Φα

i 〉 − |Φ̃α
i 〉
)
〈p̃ αi | . (2.24)
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In praxis, the linear transformation between the all-electron wave function and the
pseudo wave function can be obtained by calculating the all-electron wave function
|φAE〉 for a simple reference system consisting of one single atom. This solution can
be expanded in any atom centered basis |Φα

i 〉 getting the expansion coefficients cαi (cf.
Eq. 2.18). After this, the system is solved again. However, now the pseudopotential
is used to obtain also the pseudo wave function |φPS〉 for the reference system. The
requirement that both wave functions have the same expansion coefficients cαi allows for
the determination of the atomic basis |Ψ̃α

i 〉 for the pseudo wave function by inverting
Eq. 2.19. Moreover, the projector |p̃ αi 〉 can also be obtained by inverting Eq. 2.20.
Thus, all needed functions for T have been calculated (cf. Eq. 2.24). Assuming
transferability of the pseudopotential10, one can apply the determined T also to every
other system.

The calculation of expectation values of any observable O (e.g., for the total energy of
the system) would actually need the all-electron wave function

〈O〉 = 〈φAE|O|φAE〉 . (2.25)

This causes considerably computationally costs since every time the pseudo wave
function has changed, the all-electron wave function has to be reconstructed. Moreover,
this would wreck the advantage of the smaller plane-wave basis set because one needs
much more plane waves to expand the AE wave function. By means of the PAW
transformation one can avoid this additional effort. For this, Eq. 2.16 is inserted into
Eq. 2.25 for the expectation value calculation

〈O〉 = 〈φPST †|O|T φPS〉 = 〈φPS| T †OT︸ ︷︷ ︸
=Õ=O+∆O

|φPS〉 (2.26)

with

∆O =
∑
i,j,α

|p̃ αi 〉

〈Φα
i |O|Φα

j 〉 − 〈Φ̃α
i |O|Φ̃α

j 〉︸ ︷︷ ︸
=Oαi,j

 〈p̃ αj | . (2.27)

Hence, one only needs to determine the additional term ∆O for each observable O.
This circumvents the expensive transformation to the AE wave function, because now
every expectation value can be calculated with the pseudo wave functions directly. For
instance, to solve the Kohn-Sham equations 2.11, one has to transform the respective

10The wave functions localized at the core are assumed to remain unchanged as these orbitals
participate only negligible in bonds.
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Hamiltonian H. H̃ is obtained via ∆H using Eq. 2.27

∆H =
∑
i,j,α

| p̃ αi 〉Hα
i,j〈p̃ αj | . (2.28)

According to Ref. 24 one can use the separable Kleinman-Bylander pseudopotential
representation in which an operatorOα

i,j from Eq. 2.27 becomes diagonal (Oα
i,j = Õα

i δi,j).
This approximation is used in the ballistic transport formalism presented in Sec. 2.5.3.
For ∆H this results in

∆H =
∑
i,α

H̃α
i | p̃ αi 〉〈p̃ αi | . (2.29)

2.5 Ab initio description of the quantum
conductance through a scattering region

This section deals with the calculation of the quantum transport along a scattering
region. For the ab initio description of this kind of transport several open source
programs are available which follow different approaches to determine the desired
transmission probabilities. For instance, the Quantum Espresso [34] package tool WanT
makes use of Green’s functions expressed in real space (cf. Ref. 35 for theoretical
details). The WanT code requires thereby the electronic wave functions expressed in
a maximal localized basis set. This requirement constitutes the largest drawback of
this method as many supercell based programs (including the Quantum Espresso
package) use plane-wave basis sets, which makes a time-consuming and error-prone
conversion between both basis sets necessary. Moreover, it is rather difficult to expand
strongly dispersive bands in Wannier functions used as maximal localized basis set in
the WanT program. Hence, to circumvent the transformation into Wannier functions,
an alternative ab initio approach is chosen here, which is not based on the Green’s
function formalism. It is implemented in the PWCond program which works in reciprocal
space and is also part of the Quantum Espresso package.

Two simple examples illustrate the quantum transport first and introduce the utilized
concept, to become familiar with the described physics. After this introduction the
more general formalism is presented. The latter is later-on applied to real systems like
the polymer P3HT (Sec. 3.1) and indium nanowires (Sec. 4.1).

2.5.1 Transport through an ideal quantum wire

The concept of the quantum conductance is applicable if the influence of inelastic
scattering events (e.g., with atom cores) can be neglected. Moreover this transport
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Lx

Ly

z

kz

E(kz)

eUleft moving states on 
the right side of the wire

right moving states on 
the left side of the wire

Figure 2.2: Ideal quantum wire (left) with parabolic band structure (right). The
energy levels differ due to an applied voltage U to the ends of the ballistic conductor.

plays a role if the elongation of the scatterer is comparable small to the mean free path
of the charge carriers [35]. This length is even at room temperature (300 K) in the two
digit nanometer range for metals [36].

The ideal quantum wire depicted in Fig. 2.2 is the simplest system demonstrating the
quantum conductance. With additional metallic contacts one can apply a voltage which
creates a potential difference eU between the ends of the one dimensional ballistic11
conductor that leads a current flow.

The (ballistic) current induced by an applied voltage U can be calculated by simple
considerations (for the sake of simplicity for one single band): Each charge carrier with
quasi-momentum k adds its contribution Ik to the total current

Ik = envk = e
1
L

1
~
∂εk
∂k

, (2.30)

where n = 1/L denotes the charge carrier density and vk the group velocity of those in
transport direction. Summing up all contributions gathers the total current through
the 1D ballistic conductor

I =
kF∑
k

Ik = e

L~

kF∑
k

∂εk
∂k

. (2.31)

The density of states in k-space becomes nearly continuously for large L, hence the
sum in Eq. 2.31 can be rewritten as an integral (∑k → L

2π
∫
dk)

I = 2 · e

2π~

∫ kF

0

∂εk
∂k

= 2 · e

2π~

∫ εF

0
dε. (2.32)

The additional factor of 2 takes the assumed spin degeneracy into account. The real
flowing net current is then given by the superposition of the currents flowing from left

11The transport is called ballistic if any scattering events can be neglected.
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to right and vice versa

Itotal = Ir→l + Il→r = 2 · e

2π~

∫ εF

0
dε− 2 · e

2π~

∫ εF

eU
dε = 2e2

h
U. (2.33)

The conductance G can be evaluated with the formula G = I/U

G = 2e2

h
= G0. (2.34)

Notably, the conductance is independent of the length of the ballistic conductor. This
follows from the fact that the charge carrier density n decreases with increasing L
(∝ 1/L) but the number of k-states per energy interval increases (∝ L). Hence, both
effects cancel each other.

So far, no scatterer was considered and it was said that the length scale of the ballistic
transport is smaller than the mean free path of the charge carriers. This provokes the
question where does the resistance come from? The answer is that it is not an intrinsic
resistance of the quantum wire but a contact resistance with energy dissipation at the
interfaces between the wire and the surrounding metallic contacts. It arises due to the
fact that the metallic contacts carry approximately infinitely many modes compared to
the quantum wire which has usually only a few ones [35]. This mismatch in the number
of current carrying modes at the interfaces requires a redistribution of the total current,
thereby leading to an interface resistance. Therefore, one can say that the contact
resistance of a single mode conductor is G−1

0 ≈ 12.9 kΩ.

2.5.2 Quantum conductance across a potential barrier

The foregoing section presented the simplest version of quantum conductance - the
ballistic conductor, the ideal conductor. This system is now extended by a scattering
potential barrier.

Fig. 2.3 depicts the potential shape of a system with scattering region in sector II on

Contact ContactT

I IT

(1-T)I

V0

V(z)

z0 L

I II III

Figure 2.3: Left: System with a scattering region in which a current I is transmitted
with a probability T and reflected with a probability (1− T ). An example for a simple
scattering region is a potential barrier (right).
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the right. For electrons with an energy smaller than eV0 the transmission probability
equals the tunneling probability through the barrier. The conductance formula 2.34
can be extended with the transmission probability, to calculate the conductivity of a
system with scattering region

G =

G0︷︸︸︷
2e2

h
T. (2.35)

The contact resistance can be separated from the resistance induced by the scatterer
by rewriting Eq. 2.35

G−1 = G−1
0

1
T

=

contact
resistance︷︸︸︷
G−1

0 +

scatterer
resistance︷ ︸︸ ︷

G−1
0

1− T
T

, (2.36)

which correctly describes the fact that the system has no intrinsic resistance for T = 1.

The required transmission probability is obtained by solving the 1D Schrödinger equation
for an incoming wave (e.g., eikz from left). For the wave function in the three sectors I,
II and III the ansatz

Ψ(z) =


eikz + r · e−ikz z in I
A · eiκz +B · e−iκz z in II
t · eikz z in III

(2.37)

can be used. The four unknowns in Eq. 2.37 (t, r, A and B) are determined by the
continuity conditions for the wave function and its derivative at the interfaces between
the sectors. The transmission probability is given by T = |t|2, the reflection by R = |r|2.

2.5.3 Determining the quantum conductance in real systems

The following subsection explains a possible method for calculating the quantum
transport in realistic, three dimensional systems. The theoretical considerations are
based on Refs. 37 and 38.

The investigated systems consist of semi-infinite periodically repeated contacts, repre-
sented by unit cells which surround the scattering region (cf. Fig. 2.4). The quantum
conductance will be calculated along these contacts in z direction for a given mode
energy E. For technical reasons the system is assumed to be periodic in the xy plane.
Therefore, surrounding vacuum has to be chosen large enough if 1D structures are
investigated.
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x

y

z

contact contact
scattering
region

Figure 2.4: Composition of the system to be analyzed. The middle scattering region
is allowed to inherit every kind of defect, however, the surrounding ideal contact unit
cells have to be semi-infinite periodically repeated along z direction.

The essential parts to calculate the transport can be divided into three steps:

1. Calculation of all possible wave functions in the three regions left & right contact
and the scattering region without specifying the boundary conditions at the
borders of the regions12 (Sec. 2.5.3.1).

2. Determination of existing k modes in both contacts. Therefore, the complex
band structure13 needs to be calculated (Sec. 2.5.3.2).

3. Similar to the potential barrier example above, for each propagating mode14 in
the left contact the transmission and reflexion coefficients are determined via
continuity conditions at the boundaries (Sec. 2.5.3.3).

The listed steps will be explained in more detail in the following. These details might
be skipped up to Eq. 2.70ff. to get directly to the final results.

2.5.3.1 Calculating the wave function

This part deals with the calculation of all possible wave functions with still open
boundary conditions for a given mode energy E in all three regions. Starting point is
the Kohn-Sham equation extended by an additional reconstruction term due to the use

12With fixed boundary conditions there would be only one wave function due to the need for unambiguity
(except some degenerated states).

13In the complex band structure complex k values occur also beside real k values. These k modes do
not spread over the full crystal but appear at interfaces. More details can be found in Sec. 2.5.3.2.

14A k mode is propagating if it neither diverges nor converges towards zero for z → ±∞. This is
equivalent to a real valued k as the Bloch theorem states that a wave function differs only by a
complex phase factor in two unit cells if k does not contain an imaginary part which would change
the absolute value of the phase factor eikz = ei<(k)z · e−=(k)z.
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of pseudopotentials

E |ψ〉 = − ~2

2m∇
2 |ψ〉+ Vloc |ψ〉+

∑
i,α

H̃α
i |p̃ αi 〉 〈p̃ αi |︸ ︷︷ ︸

=∆H cf. Eq. 2.29

ψ〉. (2.38)

The local potential Vloc contains the electrostatic potential from the cores modified by
the pseudopotentials and the exchange and correlation contributions. In the following,
the bra-ket notation is dropped in order to make use of an explicit argument listing of
the various functions

Eψ(r) = − ~2

2m∇
2ψ(r) + Vloc(r)ψ(r) +

∑
α,l,m

∑
R⊥

Zα
l W

α
lm(r− τα −R⊥)

×
∫
d3r′[Wα

lm(r′ − τα −R⊥)]∗ψ(r′),
(2.39)

where τα denotes the position of the αth atom in the unit cell. The last term
corresponds to ∆H in Eq. 2.38 after transformation into the angular momentum basis
with the angular momentum quantum numbers l and m. Wα

lm & Zα
l thereby include

H̃α
i and the projectors 〈p̃ αi | of the pseudopotentials. Due to the periodicity in the xy

plane, R⊥ sums over all lattice vectors in this plane. The periodicity allows for the
application of the Bloch theorem ψ(r + R⊥) = ψ(r)eik⊥·R⊥ , where k⊥ is perpendicular
aligned to the transport direction (kz). Hence, Eq. 2.39 can be rewritten as

Eψ(r) = − ~2

2m∇
2ψ(r) + Vloc(r)ψ(r) +

∑
α,l,m

Cα,l,mZ
α
l

∑
R⊥

eik⊥·R⊥Wα
lm(r− τα −R⊥)

(2.40)
with

Cα,l,m =
∫
d3r′[Wα

lm(r′ − τ )]∗ψ(r′). (2.41)

Eq. 2.40 is an inhomogeneous integro-differential equation. It can be solved in two
steps:

1. At first, only the homogeneous part of the equation is solved

Eψn(r) = − ~2

2m∇
2ψn(r) + Vloc(r)ψn(r), (2.42)

where n numbers the linear independent solutions for the system.

2. Subsequently, a particular solution of the inhomogeneous equation needs to be
found. Therefore, only one Cα,l,m is set to 1 whereas all other coefficients are
set 0. This is done sequentially for one after another giving an inhomogeneous
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differential equation for each Cα,l,m

Eψα,l,m(r) = − ~2

2m∇
2ψα,l,m(r) + Vloc(r)ψα,l,m(r)

+Zα
l

∑
R⊥

eik⊥·R⊥Wα
lm(r− τα −R⊥).

(2.43)

The general solution of Eq. 2.40 is obtained by combining the solutions of the
homogeneous and the particular equations

ψ(r) =
∑
n

anψn(r) +
∑
α,l,m

Cα,l,mψα,l,m(r). (2.44)

The yet undetermined coefficients an and Cα,l,m will be later determined by the boundary
conditions of the three regions. Different k⊥ do not couple to each other in Eq. 2.40,
hence the system can be solved separately for each k⊥. The obtained transmission
probabilities can be summed up subsequently (weighted with the corresponding weight
wk⊥).

In the following, the solution strategy for the homogeneous equation 2.42 is presented
first. After this, the same strategy will be used in a slightly modified manner to solve
the inhomogeneous equation 2.43.

Solution of the homogeneous equation

Due to the periodicity in the xy plane, the wave function ψn(r) and the local potential
Vloc(r) can be expanded in plane waves in lateral direction

ψn(r) =
∑
G⊥

ψn(G⊥, z)ei(k⊥+G⊥)·r⊥ , (2.45)

Vloc(r) =
∑
G⊥

ψn(G⊥, z)eiG⊥·r⊥ .

This transforms the homogeneous equation into

Eψn(G⊥, z) = ~2

2m

{
− d2

dz2 + |k⊥ + G⊥|2
}
ψn(G⊥, z)

+
∑
G′⊥

Vloc(G⊥ −G′⊥, z)ψn(G′⊥, z).
(2.46)

The solution of this equation requires the local potential Vloc in dependence on G⊥
and z. It can be obtained from Vloc(G) if the supercell approach is also applied in z
direction with periodicity Lz. The latter is calculated beforehand in self-consistent DFT
runs for each of the three regions separately.
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The periodic continuation in z direction leads to a systematic inaccuracy in the potential
of the scattering region as this sector does not have an intrinsic periodicity. This is
in contrast to the surrounding semi-infinite contacts and causes discontinuities at the
interfaces. The mismatch can be minimized by including several contact unit cells into
the scattering region. This increases the distance between the scatterer and its periodic
image. Thereby it improves the potential matching at the boundaries between the
scattering region and the ideal contacts.

contact contact

scattering
region contact contact

scattering
region

Figure 2.5: Possibilities to model a gold chain with an adsorbed CO scatterer.

Fig. 2.5 depicts different possibilities to model an infinite gold chain with a CO molecule
as scatterer. With respect to the periodically repeated contact unit cells to semi-infinite
leads, both possibilities describe formally the same system. However, there will be
large differences in the results due to the periodic continuation of the scattering region
potential: In the left model the periodically repeated CO adsorption dominates the
scattering region much more than in the right model, leading to wrong results as the
description of a single scatterer is desired.

Figure 2.6: Exemplary division of an unit cell of an infinite gold chain into 18 slabs.

Vloc(G) is transformed into Vloc(G⊥, z) by dividing the unit cell into N slabs with
z-independent local potential (cf. Fig. 2.6)15. Thereby N denotes the number of FFT
supporting points of the local potential along the z axis.

Every slab gets a z-independent potential Vp(G⊥) assigned which is obtained by

15It is also possible to make use of the equation Vloc(G⊥, z) =
∑
Gz
Vloc(G)eiGzz, however, Ref. 37

considers this way as numerical less accurate. This is caused by the fact that numeric is always less
accurate than analytic evaluation which is used in the following.
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inverting the following equation

Vloc(G) =
N∑
p=1

[
1
Lz

∫ zp

zp−1
e−iGzzdz

]
Vp(G⊥), (2.47)

where zp = pLz/N denotes the z coordinate of the right boundary of the pth slab.

After this partition, the wave function ψpn belonging to the pth slab has the conditional
equation

Eψpn(G⊥, z) = ~2

2m

{
− d2

dz2 + |k⊥ + G⊥|2
}
ψpn(G⊥, z)

+
∑
G′⊥

Vp(G⊥ −G′⊥)ψpn(G′⊥, z).
(2.48)

Eq. 2.48 needs the second derivative with respect to z which is a numerical problem16.
Therefore, the ansatz

ψpn(G⊥, z) =
∑
λ

Ψp
λ(G⊥){apλneik

p
λ

(z−zp−1) + bpλne
−ikp

λ
(z−zp)} (2.49)

is used for the wave function with kpλ =
√

2m(E − Ep
λ)/~. Ψp

λ(G⊥) and Ep
λ are

obtained by solving the z-independent eigenvalue equation

Ep
λΨp

λ(G⊥) = ~2

2m |k⊥ + G⊥|2Ψp
λ(G⊥) +

∑
G′⊥

Vp(G⊥ −G′⊥)Ψp
λ(G′⊥). (2.50)

This equation can be rewritten as a matrix system for G⊥ = Gxn,ym where Ψp
λ(G⊥)

denotes the solution vector. With the abbreviated form axn,ym = ~2

2m |k⊥ +Gxn,ym |2+
Vp(0) for the diagonal elements and bxn,ym;x′r,y′q = Vp(Gxn,ym − G′x′r,y′q) for the non-
diagonal elements, one obtains

Ep
λ


Ψp
λ(Gx1,y1)

Ψp
λ(Gx2,y1)

...
Ψp
λ(Gxn,yn)

 =


ax1,y1 bx1,y1;x′2,y′1 . . . bx1,y1;x′n,y′n

bx2,y1;x′1,y′1 ax2,y2 . . . bx2,y1;x′n,y′n... ... . . . . . .
bxn,yn;x′1,y′1 bxn,yn;x′2,y′1 . . . axn,yn

 ·


Ψp
λ(Gx1,y1)

Ψp
λ(Gx2,y1)

...
Ψp
λ(Gxn,yn)

 .
(2.51)

The dimension of the matrix is determined by the number of G⊥ vectors which

16It is of course possible to determine the derivative by difference quotients, however, this would also
couple different z coordinates to each other (instead of only the G⊥’s). The dimension M of the
resulting matrix system would increase by a factor of N while the computational effort is O(M3).
This is asymptotically much slower than the method presented in this section which offers a linear
scaling with the number of slabs N .
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will be denoted as N2D in the following. An eigenvalue problem solver provides the
N2D eigenvalues Ep

λ and eigenvectors Ψp
λ(G⊥) numerically. Inserting this into the

original ansatz in Eq. 2.49 yields the wave function for slab p which still contains the
undetermined coefficients apλn and bpλn. As λ sums over all N2D eigenvalues in ansatz
2.49, there will be N2D apλn’s and bpλn’s per slab. Eq. 2.48 has to be solved for each
slab to obtain the wave function ψn(G⊥, z) over the full unit cell. This increases the
number of undetermined coefficients by the factor N (number of slabs). All together
there are 2 ·N2D ·N unknowns which have to be determined to obtain an unambiguous
wave function ψ(G⊥, z). This is accompanied by two equations for each G⊥ due to the
required continuity of the wave function and its derivative at the interfaces between the
slabs. As there are N − 1 interfaces between N slabs (cf. Fig. 2.6), 2 ·N2D · (N − 1)
unknowns can be determined from this equations17. Hence, 2N2D degrees of freedom
are remaining which can be used to construct 2N2D linear independent solutions for
ψn(G⊥, z).

Solution of the inhomogeneous equation

Solving the inhomogeneous equation 2.43 requires a similar procedure like the one
for the homogeneous equation (described in the previous section). Analog to the
homogeneous wave function in Eq. 2.45, the inhomogeneous wave function ψα,l,m(r) is
expanded in plane waves

ψα,l,m(r) =
∑
G⊥

ψα,l,m(G⊥, z)ei(k⊥+G⊥)·r⊥ . (2.52)

Inserting into the inhomogeneous conditional equation 2.43 and splitting into N slabs
results in

Eψpα,l,m(G⊥, z) = ~2

2m

{
− d2

dz2 + |k⊥ + G⊥|
}
ψpα,l,m(G⊥, z)

+
∑
G′⊥

Vp(G⊥ −G′⊥)ψpα,l,m(G′⊥, z)

+ Zα
l W

α
lm(k⊥ + G⊥, z − ταz )e−i(k⊥+G⊥)·τα⊥ .

(2.53)

Again, to numerically stabilize the differentiation with respect to z, an ansatz for the
wave function ψpα,l,m is used

ψpα,l,m(G⊥, z) =
∑
λ

Ψp
λ(G⊥)

{
fpλ,α,l,m + apλ,α,l,me

ikp
λ

(z−zp−1) + bpλ,α,l,me
−ikp

λ
(z−zp)

}
.

(2.54)
17Further details about the determination of the unknowns by the continuity conditions can be found
in Refs. 37 and 38.
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Here, Ψp
λ(G⊥) denotes the eigenvector solution of Eq. 2.50, which was determined

in the previous part to construct the homogeneous solution. fpλ,α,l,m is the particular
solution which can be obtained with the following equation{

~2

2m
d2

dz2 + E − Ep
λ

}
fpλ,α,l,m(z) = Zα

l

∑
G⊥

[Ψp
λ(G⊥)]∗Wα

lm(k⊥ + G⊥, z − ταz )e−i(k⊥+G⊥)·τα⊥ .

(2.55)
Ep
λ is the eigenvalue which belongs to the eigenvector Ψp

λ(G⊥). This equation can be
solved with the Green’s function

gpλ(z) =

 eik
p
λ
z/(2ikpλ) z ≥ 0

e−ik
p
λ
z/(2ikpλ) z < 0

(2.56)

as resolvent for the operator
{

~2

2m
d2

dz2 + E − Ep
λ

}
which results in

fpλ,α,l,m = Zα
l

∑
G⊥

[Ψp
λ(G⊥)]∗e−i(k⊥+G⊥)·τα⊥

∫ zp

zp−1
dz′gpλ(z − z′)Wα

lm(k⊥ + G⊥, z′ − ταz ).

(2.57)

The coefficients apλ,α,l,m and bpλ,α,l,m of the ansatz 2.54 are again determined by the
continuity conditions for the wave function ψα,l,m(G⊥, z) and its derivative at the
interface between two adjacent slabs. Here, the Green’s function 2.56 is only used to
solve Eq. 2.55. It has nothing to do with the common method which calculates the
quantum transport directly with the help of Green’s functions [35,39].

This section dealt with the solution of the homogeneous (2.42) and the inhomogeneous
equation 2.43. The general solution for Eq. 2.40 is obtained by superposition of both
solutions (cf. Eq. 2.44). The remaining degrees of freedom have to be chosen in order
to construct a wave function which is continuously differentiable at the boundaries
between the contacts and the scattering region.

2.5.3.2 Calculating the complex band structure in the contacts

This section covers the second of all in all three steps to solve the scattering problem.
Therefore, the wave functions in the contacts are assumed to be periodic with the unit
cell length Lz. Applying the Bloch theorem yields

ψk(G⊥, z + Lz) = eikLzψk(G⊥, z). (2.58)

This condition can be used to determine the current carrying, propagating modes in
the contacts. These modes are characterized by a real valued k (= kz) and constitute
eigenstates of an infinite, periodically repeated contact. Moreover, Eq. 2.58 gives also



2.5 Ab initio description of the quantum conductance 25

modes with complex k - those are called evanescent modes18. Due to the complex
k, the absolute value of the corresponding wave function ψk increases or decreases
(depends on the sign of the imaginary part) in each unit cell. That is why those modes
cannot be eigenstates of an infinite system. However, here in the third step they have to
be taken into account as the interface between contacts and scattering region disturbs
the periodicity, causing the existence of those imaginary modes.

The k modes, which fulfill the Bloch theorem 2.58, are obtained by inserting the basis
sets {ψn} and {ψα,l,m}, calculated in the previous sections, in the ansatz

ψk =
2N2D∑
n=1

an,kψn +
Na∑
α=1

∑
l

l∑
m=−l

Cα,l,m,kψα,l,m. (2.59)

Here, Na denotes the number of atoms whose augmentation region lies in the unit cell
range 0 ≤ z ≤ Lz. An atom is even included in Na if it is not itself positioned in the
range 0 ≤ z ≤ Lz, but its augmentation sphere extends into the considered region. In
particular one has to take care of the periodicity of the atoms. This leads to a double
counting of atoms whose augmentation region cuts the left or right boundary. For
instance, one periodic replica of an atom whose sphere cuts the z = 0 plane, will cut
the z = Lz plane - hence, there are contributions from two atoms.

All together 2N2D coefficients for an,k and Na
∑
l (2l + 1) coefficients for Cα,l,m,k have

to be determined. The periodic boundary conditions give for each of the N2D G⊥’s
two conditional equations by using the Bloch theorem

ψk(G⊥, Lz) = eikLzψk(G⊥, 0) and
ψ′k(G⊥, Lz) = eikLzψ′k(G⊥, 0), (2.60)

where ψ′k denotes the derivative of ψk with respect to z. Hence, there are Na
∑
l (2l + 1)

conditions missing to determine a mode ψk uniquely. The missing conditions are given
by the previously mentioned Eq. 2.41

Cα,l,m,k =
∫
d3r[Wα

l,m(r− τα)]∗ψk(r), (2.61)

whereby the integral is over the total real space. However, as the pseudopotential
projectors Wα

l,m(r − τα) are only non-zero inside an (atom centered) augmentation
region, the effective integration area can be strongly reduced. Nevertheless one has to
take care of projectorsWα

l,m(r−τα) which are non-zero outside the interval 0 ≤ z ≤ Lz

since the ψn’s and ψα,l,m’s are only defined inside this interval. This problem can be
solved by using the Bloch theorem ψk(G⊥, z) = e−ikLzψk(G⊥, z + Lz) for the region

18disappearing, volatile partial waves
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−Lz ≤ z ≤ 0 and ψk(G⊥, z) = eikLzψk(G⊥, z − Lz) for Lz ≤ z ≤ 2Lz. Therefore,
equation

Cα,l,m,k =
∫ Lz

0
dz
∫
d2r⊥[Wα

l,m(r− τα)]∗ψk(r)

+ e−ikLz
∫ Lz

0
dz
∫
d2r⊥[Wα

l,m(r− τα − ezLz)]∗ψk(r)
(2.62)

can be used instead of Eq. 2.61 for atoms whose augmentation sphere cuts the z = 0
plane. Similarly, one obtains

Cα,l,m,k =
∫ Lz

0
dz
∫
d2r⊥[Wα

l,m(r− τα)]∗ψk(r)

+ eikLz
∫ Lz

0
dz
∫
d2r⊥[Wα

l,m(r− τα + ezLz)]∗ψk(r)
(2.63)

for atoms whose augmentation region cuts the z = Lz plane. The number of these
atoms cutting either the z = 0 or z = Lz plane will be denoted with Nc in the following.
For those Nc atoms the equations 2.62 and 2.63 are used while Eq. 2.61 is valid for
the remaining Na −Nc atoms.

Inserting ansatz 2.59 into the conditions Eqs. 2.60 - 2.63 gives a generalized eigenvalue
problem of the form AX = eikLzBX where A and B are quadratic matrices. The
eigenvector X contains the desired coefficients an,k and Cα,l,m,k. The eigenvalues eikLz
constitute the complex band structure by resolving to k. Eq. 2.61 plays a special role
for the generalized eigenvalue problem as it does not contain a eikLz factor. After
inserting ansatz 2.59, this equation gives (Na−Nc)

∑
l (2l + 1) conditions which couple

the an,k and Cα,l,m,k to each other

Cα′,l′,m′,k =
∑
n

an,k

∫
d3r[Wα

l,m(r− τα)]∗ψn(r)

+
∑
α,l,m

Cα,l,m,k

∫
d3r[Wα

l,m(r− τα)]∗ψα,l,m(r).
(2.64)

This equation can be resolved to Cα,l,m,k for (Na −Nc) atoms in dependence on the
other coefficients. Inserting these equations into the generalized eigenvalue problem
reduces its dimension by (Na −Nc)

∑
l (2l + 1) to (2N2D +Nc

∑
l (2l + 1)).

All together one can determine (2N2D +Nc
∑
l (2l + 1)) k modes ψk in the contacts

which can be divided into propagating and evanescent modes, depending on the
imaginary part of the corresponding k value. If only evanescent modes are found, the
calculation can be stopped for the originally given energy channel E, as only propagating
modes can extend itself over a semi infinite contact, thereby carrying a current.

Finally, only the determination of the transmission probability is still missing which will
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be covered in the following section.

2.5.3.3 Determination of transmission and reflection coefficients

Based on the results of the previous sections, the transmission and reflection coefficients
can be determined for each propagating mode ψk. The possibility of one mode to
scatter into another is thereby automatically included in the calculation.

For the sake of simplicity, it is temporarily assumed that both contacts are equal here.
Similar to the simple potential barrier (cf. Sec. 2.5.2), one can use an ansatz for
the wave function Ψ in the three sectors contact–scattering region–contact for each
propagating (real-valued) k in the left contact

Ψ =



ψk +
∑
=(k′)≤0

rk,k′ψk′ z < 0∑
n

anψn +
∑
α,l,m

Cα,l,mψα,l,m 0 ≤ z ≤ L∑
=(k′)≥0

tk,k′ψk′ z > L .

(2.65)

=(k′) ≤ 0 comprises all left running modes in the left contact and =(k′) ≥ 0 all right
running modes in the right contact. The left and right propagating modes (=(k) = 0)
are distinguished according to the sign of their probability current in z direction

Ik(z) = =
[
~
m

∫
d2r[ψk(r)]∗ ∂

∂z
ψk(r)

+2
~
∑
α,l,m

Zα
l C
∗
α,l,m

∫ z

−∞
dz′

∫
d2r′⊥[Wα

l,m(r′ − τα)]∗ψk(r′)
 . (2.66)

In a system without pseudopotentials, the first part of Eq. 2.66 is equivalent to the
integrated quantum-mechanical probability current density. However, since ψk is a
pseudo wave function, one has to add the subsequent correction term [37] here.

In the following, the determination of the unknowns in Eq. 2.65 is presented. There
are all in all (2N2D + Nc

∑
l (2l + 1)) k modes (cf. previous section), a value which

coincidences with the joined number of rk,k′ and tk,k′ . Moreover, there are 2N2D

plus Na
∑
l (2l + 1)) degrees of freedom due to the an’s and Cα,l,m’s, respectively.

In summary, this results into the need for 4N2D + (Nc +Na)
∑
l (2l + 1) conditional

equations.

The requirement of a continuously differentiable wave function at the boundaries
between the three regions results in two conditions per G⊥ for each interface. These
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are sufficient to determine 4N2D unknowns. Inserting the ansatz 2.65 for the scattering
region into Eq. 2.41 gives Na

∑
l (2l + 1) further conditions

Cα,l,m =
∑
n

an

∫
d3r[Wα

l,m(r−τα)]∗ψn(r)+
∑

α′,l′,m′
Cα′,l′,m′

∫
d3r[Wα

l,m(r− τα)]∗ψα′,l′,m′(r).

(2.67)

In Sec. 2.5.3.1 it was mentioned that parts of the contacts have to be included also
into the scattering region. This improves the transition between scattering region and
contacts and reduces the systematic inaccuracy due to the periodicity of the scattering
region’s potential in z direction. In the previous section, atoms, whose augmentation
sphere cuts the z = 0 plane, generated Nc/2 equations. Further Nc/2 equations were
generated by cuts through the z = Lz plane (cf. Eqs. 2.62 and 2.63). Since several
contact unit cells are included in the scattering region, the same kind of atoms cut
the z = 0 and z = L plane19 as in the periodically continued contacts in the previous
section.

contact contact contact

scattering
region

Figure 2.7: The red marked interface is surrounded by the same atoms in the periodically
continued contact (left) and the full scattering system (right).

Fig. 2.7 visualizes the situation using the example of an infinite gold chain with CO
adsorption. Since there are the same atoms around the red marked boundary in the
ideal contact as well as in the full scattering system, the corresponding Cα,l,m’s in
the contacts and in the scattering region have to be equal. After inserting the ansatz
2.59 for ψk in Eq. 2.65 on gets Nc/2

∑
l (2l + 1) conditions for the z = 0 plane by

coefficient comparison

Cα,l,m = Cα,l,m,k +
∑
=(k′)≤0

rk,k′Cα,l,m,k′ . (2.68)

By the same arguments, further Nc/2
∑
l (2l + 1) conditions are obtained for the z = L

plane
Cα,l,m =

∑
=(k′)≥0

tk,k′Cα,l,m,k′ . (2.69)

19interfaces between the three sectors; scattering region has length L while contacts have length Lz
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Altogether one has 4N2D + (Nc + Na)
∑
l (2l + 1) conditional equations forming an

equation system for the unknowns rk,k′ , an, Cα,l,m and tk,k′ . Solving this system gives
the desired transmission coefficients tk,k′ . These coefficients have to be weighted with
the probability current Ik (cf. Eq. 2.66) to obtain the transmission for a propagating
mode ψk

Tk = 1
Ik

(∑
k′
Ik′|tk,k′|2

)
. (2.70)

The sum runs over all right propagating modes k′ in the right contact. This is equivalent
to a real valued k′ and a probability current Ik′ > 0 for the belonging mode ψk′ .

Generalization of Eq. 2.35 gives the conductivity for the originally selected energy
channel (given by the parameter E in Eq. 2.38)

G = 2e2

h

∑
k

Tk. (2.71)

The full procedure can be repeated to obtain the conductivity for other energy channels
E.

A scattering region without defects, i.e., without scatterer, constitutes a limiting case
in which one has tk,k′ = δk,k′ . This reduces the quantum conductance to the strict
ballistic regime with

G(E) = 2e2

h

∑
k

1 = 2e2

h
·Nk(E), (2.72)

i.e., it corresponds simply to the number of bands Nk(E) at the given energy E. This
ballistic conductor is solely limited by the contact resistance (cf. Sec. 2.5.1). Eqs.
2.70 and 2.71 describe thereby the defect induced deviations from the strict ballistic
limit in Eq. 2.72 due to scatterers. In this sense, the present approach goes beyond
the ballistic regime, whereby temperature dependent effects and a finite bias can be
partially taken into account in linear response by [35]

I = 2e
h

∫ ∑
k

Tk(E) · (fµ(E)− fν(E))dE. (2.73)

Here, fµ/ν are the Fermi distributions (at arbitrary temperatures) with the chemical
potentials µ and ν in the left & right contacts20, respectively. µ and ν can be unequal
due to an applied bias U = µ−ν

e
. If the transmission is approximately constant over the

20Here it is assumed that the transmission probability from left to right equals the one in the opposite
direction (right to left).
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energy range where the transport occurs, one can rewrite Eq. 2.73 as [35]

I ≈ 2e
h

∑
k

Tk(Ef )
∫

(fµ(E)− fν(E))dE = 2e
h

∑
k

Tk(Ef ) · (µ− ν)

⇒ G = 2e2

h

∑
k

Tk(Ef ).
(2.74)

This equation accounts for the temperature broadening of the Fermi distribution while
the described scattering mechanisms are restricted to static defects. Dynamic scattering
effects due to electron-phonon interactions are investigated with a different approach
which is presented in the following section.

2.6 Temperature dependent mobility

The previous section described a possibility to calculate the quantum conductance
through a scattering region. This method is well suited to analyze the influence of
static defects suppressing the transport. However, for dynamic distortions, e.g., caused
by phonons, this concept is not appropriate. The temperature dependent transport
is analyzed to full extend by taking all phonons into account, which requires a new
theoretical transport description. Therefore, the formalism presented in Refs. 40 & 41
is used to investigate the charge carrier mobility in organic crystals. This formalism has
already proven to successfully describe the transport properties of naphthalene [42,43],
durene [43,44] and guanine [43,45] in the relevant temperature regime. In the following,
this theoretical framework is shortly sketched, for details the reader is referred to the
original publications 40 and 41.

The temperature dependent mobility tensor µαβ can be theoretically accessed by a
current-current correlation function by means of the Kubo formula [46]

µαβ = 1
eNc

1
2kBT

∞∫
−∞

〈jα(t)jβ(0)〉H dt. (2.75)

Here, Nc denotes the number of charge carriers contributing to the current density j.
Equation 2.75 is evaluated by calculating the operator of the current density j

j = dP
dt

= 1
i~

[P, H], (2.76)

where P = e
∑
M RMa

†
MaM expresses the polarization operator in second quantization

using the particle annihilation (creation) operators a(†)
M in real space (located at site

RM). The commutator in Eq. 2.76 contains the Hamilton operator which can also be
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expressed in second quantization

H =
∑
M,N

εM,Na
†
MaN +

∑
Q

~ωQ

(
b†QbQ + 1

2

)
+
∑
M,Q

~ωQg
Q
M,M

(
b†Q + b−Q

)
a†MaM .

(2.77)
The Hamiltonian consists of a pure electronic part with the transfer integrals εM,N , a
pure phononic part, where a harmonic oscillator is assumed, and a coupling between
both parts weighted with the electron-phonon (el-ph) coupling constant gQ

M,M . Note
that Q is a macro index summing over the phonon wave vectors q as well as over all
phonon modes λ.

This Hamiltonian can be approximately diagonalized by introducing the polaron quasi-
particle, describing the charge carriers dressed by phonons

H̃ =
∑
M,N

a†M ε̃M,NaN +
∑
Q

~ωQ

(
b†QbQ + 1

2

)
, (2.78)

with the polaron transfer integrals

ε̃M,N = εM,N exp
−∑

Q

(1
2 +NQ

)
|gQ
M,M − g

Q
N,N |2

 , (2.79)

where NQ is the phonon occupation number according to the Bose-Einstein statistics
NQ =

(
exp

[
~ωQ
kBT

]
− 1

)−1
. As can be seen from Eq. 2.79, the polaron transfer integrals

are smaller than the bare charge carrier transfer integrals εM,N , leading to a decreased
band curvature (dispersion) and therefore to an increased effective mass of the polarons.
This effect is also known as band narrowing [40,41].

Transferring the polaron part of the Hamiltonian in Eq. 2.78 from real to reciprocal
space gives

H̃ =
∑

k
ε̃(k)a†kak +

∑
Q

~ωQ

(
b†QbQ + 1

2

)
, (2.80)

with the polaron band structure ε̃(k), which can be calculated from the polaron transfer
integrals

ε̃(k) =
∑
N ′
ε̃M,N ′e

−ikRN′ =
∑
N ′
ε̃0,N ′−Me

−ikRN′−M

L=N ′−M︷︸︸︷=
∑
L

ε̃0,L︸︷︷︸
ε̃L

e−ikRL . (2.81)

Here, it was used that the transfer integral εM,N , describing the charge transfer from a
molecule in unit cell M to one in unit cell N , depends only on the relative distance
between M and N . Therefore, for the sake of simplicity, one index can be suppressed
by making the coordinates relative to a molecule located at the origin.
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Evaluating now Eq. 2.75 including a thermal average results into two mobility contribu-
tions, which describe different transport regimes

µαβ = µ
(coh)
αβ + µ

(inc)
αβ . (2.82)

The coherent contribution (“band transport”) is given by

µ
(coh)
αβ = − e

2NckBT~2

∑
L,M,N

RL,αε̃0,LRN,β ε̃0,N
1
NΩ

∑
k1,k2

e−ik1(RM+RN )eik2(RM−RL)

× n(k1) (1− n(k2))
∫ ∞
−∞

e(it/~)[ε̃(k1)−ε̃(k2)]dt,

(2.83)

where the sums L,M and N run over the nearest neighbors with lattice vectors RL/M/N .
NΩ is the number of unit cells and n(k) the Fermi-Dirac distribution

n(k) =
(

exp
[
ε̃(k)− ζ
kBT

]
+ 1

)−1

, (2.84)

with the temperature and charge carrier number dependent chemical potential ζ(T,Nc).
The sums over k1 and k2 can be interpreted as an scattering event from initial
momentum k1 to final momentum k2. The probability for such an event is proportional
to the occupation number n(k1) of the state k1 times the probability of the final
state k2 being empty (1 − n(k2)) which is also known as Pauli blocking. The sum
index M occurs only in the exponentials which can be simplified to a Kronecker delta
δk1,k2 , showing the momentum conservation for the coherent transport. This implies
that ε̃(k1) = ε̃(k2), which leads to an infinite mobility due to the time integral over t.
However, this is expected for the coherent transport without any scattering mechanism.
This is also in accordance with the quantum conductance formalism presented in the
previous section since the intrinsic resistance of a quantum wire without defects is
zero (cf. Eq. 2.36) and the current is only limited by the contact resistance. As the
approach of this section does not explicitly take the contact interface into account and
since there are always scatterers in real crystals, one can assume a dephasing time τ
which renders the coherent mobility finite

µ
(coh)
αβ =

√
πeτ

2NckBT

∑
k1

n(k1)(1− n(k1))ṽα(k1)ṽβ(k1), (2.85)

with the polaron band velocity

ṽα(k) = 1
~
∂ε̃(k)
∂kα

. (2.86)
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The second contribution to the total mobility is the phonon-assisted incoherent hopping
transport

µ
(inc)
αβ =− 1

eNc2kBT

(
e

~

)2 ∑
L,M,N

RL,αε̃0,LRN,β ε̃0,N

× 1
NΩ

∑
k1,k2

e−ik1(RM+RN )eik2(RM−RL)n(k1)(1− n(k2))
∞∫
−∞

e(it/~)[ε̃(k1)−ε̃(k2)]

×
{

exp
[
−
(
δM0 − δML − δM−N + δML−N

)∑
λ

Φλ(t)g2
λ

]
− 1

}
e−(t/τ)2

dt,

(2.87)

with Φ(t) = Nλe
iωλt+ (1 +Nλ)e−iωλt. Note that these expressions have been simplified

by restricting to optical phonons which are assumed dispersionsless (q independent).

As the el-ph coupling constants for the polymer P3HT are very large (cf. Sec. 3.2),
there exists an approximation for Eq. 2.87 which becomes more and more accurate
with increasing temperature. It is based on the fact that the exponential factor in
Eq. 2.79 leads to a strongly reduced bandwidth compared to the pure electronic band.
Hence, one approximates ε̃(k1) = ε̃(k2). Accordingly, the Fermi distribution becomes a
constant (nk → c). This leads to the so-called Narrow Band Approximation [40]

µ
(NBA)
αβ = e0(1− c)

2~2kBT

∑
L

RLαRLβ ε̃
2
L

∫ ∞
−∞

exp
[
2
∑
λ

Φλ(t)g2
λ

]
e−(t/τ)2

dt. (2.88)

Based on this approximation, one can apply further approximations to evaluate the mobili-
ty for two phonon modes analytically. The integrand exp [2g2

1Φ1(t) + 2g2
2Φ2(t)] e−(t/τ)2

with Φλ(t) = Nλe
iωλt + (1 +Nλ)e−iωλt can be rewritten [47] in order to expand it into

modified Bessel functions In

µ ∼ ε̃2

kBT

∫ ∞
−∞

exp
[
2g2

1Φ1(t) + 2g2
2Φ2(t)

]
e−(t/τ)2

dt

= ε̃2

kBT

∫ ∞
−∞

ez1 cos[Θ1(t)]+z2 cos[Θ2(t)]e−(t/τ)2
dt

= ε̃2

kBT

∫ ∞
−∞

∞∑
n1=−∞

In1(z1)en1Θ1(t)
∞∑

n2=−∞
In2(z2)en2Θ2(t)e−(t/τ)2

dt,

(2.89)

with zλ = 4g2
λ

√
N2
λ +Nλ and Θλ(t) = ωλt + i ~ωλ

2kBT . This integral can be evaluated
analytically. By inserting Eq. 2.79 for the polaron transfer integrals and taking only
I0(zλ) as dominating order in the Bessel expansion into account, one receives

µ ∼ ε2
√
πτ

2kBT
· e−2g2

1(1+2N1)I0(z1) · e−2g2
2(1+2N2)I0(z2). (2.90)
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The exponential terms originate from the band narrowing in Eq. 2.79, leading to lower
mobilities at higher temperatures as the effective masses of the polarons increases with
the number of coupling phonons Nλ. The leftover Bessel functions originate from the
integral and increase with the temperature as more phonons are available to contribute
to the hopping process. Hence, there are two competing processes which either decrease
or increase the mobility.

The analytic results are further analyzed by assuming that ~ω1 < kBT and ~ω2 � kBT .
This allows for an investigation of soft phonon modes and high-frequency modes,
respectively. For the first mode one can approximate I0(z1) = ez1/

√
2πz1, which is

valid for large zλ. For the second mode, z2 is close to zero as this mode is nearly
unoccupied (N2 ≈ 0). Therefore, one can approximate I0(z2) ≈ 1 leading to

µ ∼ ε2
√
πτ

2kBT
· e
−2g2

1 tanh
(

~ω1
4kBT

)√√√√sinh
(

~ω1
2kBT

)
4πg2

1
e−2g2

2 . (2.91)

This equation will be used in Sec. 3.2.4.1 to analyze the influence of different phonon
modes.

2.7 Bonding analysis

As described in Sec. 2.4 about pseudopotentials, this work employs plane waves as
basis set to expand the Kohn-Sham orbitals, which allows for an efficient and reliable
control of the numerical convergence. Moreover, plane waves do not suffer from
the basis set superposition errors occurring for bases formed from a finite number of
localized atom-centered functions. However, they are delocalized and, thus, do not
give immediate access to electron partitioning and bonding information. This is in
contrast to an atomic orbital description of the electronic structure [48–51], where this
information can be obtained in a more straightforward way. A bonding analysis can
also be performed for plane-wave calculations by applying projection techniques [52–58].

One important bond analysis tool is the crystal orbital Hamilton population (COHP),
proposed by Dronskowski and Blöchl [50] using a linear muffin-tin orbital (LMTO)
approach. It has been identified as a successful bonding indicator for extended structures
and is based on a rewriting of the band-structure energy as a sum of orbital pair
contributions. Calculating the energy dependent COHP(E) diagram within a specified
energy range allows for the identification of bonding, nonbonding and antibonding
states in the band structure for selected bonds. Moreover, the total bond strength can
be accessed by an energy integral of COHP(E).
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A scheme to calculate COHP diagrams within plane-wave frameworks based on Blöchl’s
projector augmented wave method [59] has been proposed in Refs. 57 and 58. They offer
also a free binary of their implementation (called LOBSTER) developed at the RWTH
Aachen. The following methodology and own implementation is based on their published
results and achieved a substantial speedup (several orders of magnitudes faster, cf.
Fig. 2.9 in the next section) in the COHP calculation. This enormous improvement
allows an application of the formalism also for large systems like the indium nanowires
presented in Sec. 4. The remarkable speedup is achieved by making use of a rigorous
application of the PAW formalism, presented in Sec. 2.4, and simplifications coming
with norm-conserving pseudopotentials as will be described in the following.

According to Blöchl [50], crystal orbital Hamilton population is formally defined as

COHPµ~T ,ν ~T ′(E) =
Hµ~T ,ν ~T ′

∑
j,~k

fj(~k)C∗
µ~T ,j

(~k)Cν ~T ′,j(~k)δ(εj(~k)− E), (2.92)

where Cµ~T ,j denotes the expansion coefficient of the jth band in terms of the atomic
orbital µ at the atomic position ~T . Hµ~T ,ν ~T ′ are the matrix elements of the Hamiltonian
in atomic orbitals, εj(~k) is the eigenvalue corresponding to the jth electron state and
fj(~k) its occupation number. In extended systems, a frequently used bonding indicator
are the off-site COHP quantities [50,56,57] with ~T 6= ~T ′. Note that the occupation number
in Eq. 2.92 may be omitted, e.g., for characterizing also the bonding character of
conduction states. In plane-wave calculations, the expansion coefficients Cµ~T ,j are
obtained by projecting the latter onto atomic orbitals in a postprocessing step. The
choice of the atomic orbitals is thereby not unambiguously – one possibility are Bloch
sums [60] χµ(~k) set up from contracted multiple-ζ Slater-type orbitals as suggested in
Ref. 57. The all-electron (AE) PAW wave functions |φAE

j (~k)〉 are projected onto such
an atomic basis via

Tµj(~k) = 〈χµ(~k)|φAE
j (~k)〉 . (2.93)

Thereby the AE wave function |φAE
j (~k)〉 = T |φPS

j (~k)〉 is reconstructed from the PAW
pseudo wave function |φPS

j (~k)〉 as already derived in Sec. 2.4 using the transformation
T (Eqs. 2.23 & 2.24)

T = 1 +
∑
µ,~T

(
|Φµ~T 〉 − |Φ̃µ~T 〉

)
〈p̃µ~T | . (2.94)

Here, |Φµ~T 〉 and |Φ̃µ~T 〉 denote the all-electron and pseudo partial waves, respectively and
〈p̃µ~T | the projector function. Thus, the atomic orbital projection formalism presented
in Ref. 57 involves three distinct scalar products (indicated below) which have to be
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evaluated on different grids for accurate results

Tµj(~k) =

(1)︷ ︸︸ ︷
〈χµ(~k)|φPS

j (~k)〉
+
∑
µ,~T

〈χµ(~k)|
(
|Φµ~T 〉 − |Φ̃µ~T 〉

)
︸ ︷︷ ︸

(2)

〈p̃µ~T |φ
PS
j (~k)〉︸ ︷︷ ︸

(3)

.
(2.95)

Especially the part including the sums becomes more and more time consuming with
increasing system size as the number of scalar products increases with the number of
orbitals µ. In order to reduce the number of scalar products to be evaluated, a different
application of the PAW projection is used here. Instead of using contracted multiple-ζ
Slater-type orbitals as atomic wave functions, the |Φµ,~T 〉, already contained in the PAW
pseudopotential, are utilized to set up the Bloch sums

|χµ(~k)〉 = 1√
N~T

∑
~T

ei
~k ~T |Φµ~T 〉 . (2.96)

This approach requires pseudopotentials with atomic wave functions generated on a
sufficiently large radial grid (the standard used in the Quantum Espresso pseudopo-
tential database is large enough). As will be derived in the following, the use of the
wave functions contained in the pseudopotentials in combination with norm-conserving
pseudopotentials is an important key to drastically reduce the computational effort.
Inserting Eq. 2.96 into Eq. 2.93 yields

Tµj(~k) = 1√
N~T

∑
~T

e−i
~k ~T 〈Φµ~T |φ

AE
j (~k)〉

= 1√
N~T

∑
~T

e−i
~k ~T 〈Φ̃µ~T |T

†T |φPS
j (~k)〉 ,

(2.97)

where the T †T transformation can be expressed as

T †T = 1 +
∑
µ,ν,~T

|p̃µ~T 〉
(
〈Φµ~T |Φν ~T 〉 − 〈Φ̃µ~T |Φ̃ν ~T 〉

)
︸ ︷︷ ︸

∆S
µ,ν,~T

〈p̃ν ~T | . (2.98)

With this reformulation, Eq. 2.97 can be solely evaluated on the Fourier grid using
the pseudopotential specific constants ∆Sµ,ν,~T , the pseudo wave functions |φPS

j (~k)〉
(and |Φ̃µ~T 〉) and the projector functions |p̃µ~T 〉. Strictly speaking, the whole projection
evaluation is now rigorously based on information included in the pseudopotentials. An
enormous speedup can be gained by taking advantage of the fact that all constants
∆Sµ,ν,~T vanish for norm-conserving PAW pseudopotentials. Hence, the projection
scheme is reduced to a single scalar product of |χ̃µ(~k)〉 (containing the pseudo partial
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waves |Φ̃µ~T 〉) with the pseudo wave function |φPS
j (~k)〉. This makes the sum over the

scalar products (2) and (3) in Eq. 2.95 obsolete, therefore saving an increasing number
of scalar products with growing system size. The implementation presented in the next
subsection is able to reduce the overall runtime for the COHP calculation by about
90 % for the indium nanowires (cf. Sec. 4) due to this property of norm-conserving
pseudopotentials. This improvement enables the usage of the COHP bonding analysis
as a standard post-processing tool for which the implementation is presented in the
following section.

2.7.1 Technical Implementation in Fortran
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Figure 2.8: Flowchart for the calcu-
lation of COHP(E).

The methodology described above was imple-
mented as post-processing tool for the Quantum
Espresso-package including an input file de-
scription and an user guide for other users.
The application flow chart is depicted in Fig.
2.8. The starting point is the computation of
the Bloch sums from the atomic pseudo wave
functions |Φ̃µ~T 〉 (used as atomic orbitals (AO)),
which yields a k-dependent basis set (cf. first
block in Fig. 2.8). In the next step, this basis
set is orthonormalized to use it for the determi-
nation of the expansion coefficients21 C(k).

Thereby, the application of Löwdin’s symmetric
orthonormalization procedure ensures that the
wave function modifications are limited to a
minimum [61]. The calculations are parallelized
by the implementation which makes use of the
Message Passing Interface (MPI). The scalar
products calculated in the first steps in Fig. 2.8
are thereby parallelized over plane waves. Note
that the calculation of the coefficients C(k) was
not parallelized with respect to k points22, as this would lead to considerable more
random-access memory (RAM) needed for large systems. Nevertheless, once the C(k)
are determined, there are no plane-wave dependent data to be processed anymore.

21C(k) = Cµ~T ,j(k) and Tµj(k) differ only by a complex factor for orthogonalized basis sets (cf. Ref.
57 for more details).

22No usage of the standard “pool” parallelization of the Quantum Espresso package.
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Hence, the following block in Fig. 2.8 makes use of an explicit efficient parallelization
with respect to k points. This concerns the re-orthonormalization of the projected wave
function – the orthonormality of the PAW bands might be lost due to the projection –
and the calculation of the Hamiltonian matrix elements HKS. Here ε(k) denote the
Kohn-Sham eigenvalues from the density functional theory.
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Figure 2.9: Computation time needed to determine a
COHP diagram using LOBSTER and the present imple-
mentation for bulk diamond and indium nanowires with
8 and 1152 atomic orbitals, respectively (calculated
on a single node with 24 cores; note the logarithmic
scale).

With respect to the used k-
point sampling, two ways were
implemented to obtain the
COHP quantity: The tetrahe-
dron method [59,62] offers a
highly accurate way to visualize
the results, but needs at least
four k points. As an alterna-
tive, especially for molecules, a
Gaussian broadening visualiza-
tion was also added.

The presented implementation
and projection scheme was op-
timized in a way to offer best
balance between memory consumption and speedup as the former limits the number of
parallel processes per node for large systems. A comparison of the computation times
between the presented implementation and the original projection scheme of Ref. 57
(LOBSTER) is made in Fig. 2.9. For the sake of comparability, both implementations
were executed on a single compute node with 24 cores as LOBSTER makes solely use of
Open Multi-Processing (OpenMP) parallelization which is restricted to shared memory.
The computation time is evaluated for two systems, bulk diamond and the indium
nanowires presented in Sec. 4.

As can be seen in Fig. 2.9, the present implementation is considerably faster than
LOBSTER. The absolute as well as the relative speed difference between both implemen-
tations increases more and more with increasing number of atomic orbitals due to more
and more saved scalar products in the present projection scheme. Moreover, one has to
mention again that the present approach is not restricted to shared memory so that a
further speedup can be achieved by using several nodes in parallel.

To answer the question how the results obtained with the present implementation
compare with the ones from the LOBSTER code, a COHP calculation was performed for
bulk diamond as a simple and well defined model system. For the present implementation,
the DFT electronic structure is obtained by the Quantum Espresso package within
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the generalized gradient approximation in form of the PBE functional [13,14]. The Kohn-
Sham orbitals are expanded in plane waves up to an energy cutoff of 400 eV and the
Brillouin zone is sampled with a 23×23×23 tetrahedron grid.
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Figure 2.10: Chemical bonding results for a
carbon-carbon bond in diamond with compar-
ison between Ref. 57 (red) and the present
implementation for the Quantum Espresso
package (blue). Tetrahedron smearing is used
in both cases to obtain smooth curves. Note
that the x axis plots the negative COHP quan-
tity to have antibonding left and bonding
states right.

The COHP diagram is compared with
the results of the LOBSTER program for
which the electronic structure was ob-
tained by the Vienna Ab initio Simu-
lation Package (VASP) using the same
convergence parameters. The results
are in good agreement as can be seen
in Fig. 2.10, although both programs
use a different atomic basis set.

Negative and positive COHP values in-
dicate bonding and antibonding contri-
butions of electronic states within a spe-
cific energy interval. Hence, all occupied
diamond valence states have a bonding
contribution while the conduction states
above the band gap are antibonding.
Therefore, the present result suggests
that doping or an electronic excitation
will lead to a decreased carbon-carbon
bond strength in bulk diamond.





3
Transport properties of Poly(3-hexylthiophene)

(P3HT)

The first part of this work deals with the characterization of the p-type transport
properties of the polymer Poly(3-hexylthiophene) (P3HT). P3HT belongs to one of
the most studied organic semiconductors with various application, e.g., in field-effect
transistors (FETs) as well as solar cells. To optimize these devices, it is very important
to understand the transport limiting processes like disorder, imperfections and lattice
vibrations in P3HT.

Figure 3.1: Left: P3HT single chain, Right: Model for a bulk P3HT crystal from side
view with two monomers per unit cell (blue).

Fig. 3.1 depicts the structure of an ideal P3HT polymer chain on the left. It consists
of thiophene rings in alternating transformation to which hexyl side chains are attached.
Two adjacent thiophene rings and their hexyl side chains make up one P3HT monomer
which can be stringed together to form a P3HT chain. These single chains can further
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be combined to a P3HT crystal - thereby the hexyl side chains interdigitate slightly.
These interdigitated polymer layers are further stacked along the normal vector of the
thiophene rings (interchain direction). Moreover, every second of these layers is shifted
around one half of the unit cell size in intra-chain direction.

The conductivity of P3HT has been already addressed by numerous publications. It has
been reported that high molecular weight (long continuous polymer chains) P3HT films
show improved transport properties [63–66]. This has been associated with the efficient
band transport in intrachain direction in these films [67], while for low molecular weight
films hopping processes dominate. In addition, the conductivity in high molecular-weight
polycrystalline P3HT films has been found to be highly anisotropic with a mobility
parallel to the chains larger than perpendicular to them [68–70].

The transport characterization of P3HT is divided here into two parts: First, the
influences of static disorder such as chain deformations, displacements and impurities like
oxygen degenerations are analyzed with the help of the presented quantum conductance
framework. Second, also dynamic effects like the interaction of charge carriers with
phonons are considered to determine the temperature-dependent mobility of P3HT.

3.1 Influence of structural defects

In previous studies on the electronic properties of P3HT it has been found that the
molecular electron and hole wave functions are delocalized over several thiophene rings.
These wave functions can become spatially confined due to ring torsions and chain
bendings [71–73] as well as fluctuations of the electrostatic potential caused by adjacent
polymer chains [74].

When modeling different kinds of defects in P3HT, one has to keep in mind that the
P3HT potential energy surface depends critically on the side chain formations, which
have a significant influence onto ring torsions and chain bendings. Moreover, the system
cannot be “downsized”, e.g., by using bithiophene [75] as a simplified substitute, since
this leads to other torsional angle distributions causing different atomic orbital overlaps.
The related transfer integrals are very sensitive to torsional angles [69,76,77] so that such
simplifications would severely influence the calculated transport properties. Hence,
much attention is paid to a realistic modeling of the details of the molecular geometry
within periodic boundary conditions. This is necessary to achieve an accurate solution
of the scattering problem [35] based on the electronic structure obtained within density
functional theory.

In this section several kinds of defects are investigated, thereby calculating the quantum
conductance for various systems. The formalism used here and presented in Sec. 2.5,
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can in principle take moderate bias voltage effects into account by using different
Fermi-levels in the contacts, thereby neglecting dissipative scattering effects. This
restricts meaningful quantitative predictions to conditions with small bias but should
not affect qualitative trends like the influence of, e.g., structural deformations onto the
conductance. In particular, the systems analyzed in this section model the contacts as
ideal, infinite P3HT polymers which offer strongly dispersive and well separated valence
bands (cf. section 3.1.4). Therefore, p-type conductance suppressing bias voltage
effects can be expected to be small.

Moreover, the approach used in this section is exclusively restricted to structural and
electronic scattering centers as, e.g., inelastic scattering with phonons is neglected.
Hence, temperature-dependent effects beyond thermal occupation of the one-particle
levels according to the Fermi-Dirac statistics are not part of this section. However, to
analyze also temperature-dependent effects, a different approach was used for which
the results are presented in Sec. 3.2. Nonetheless, even without an explicit temperature
treatment, the obtained results, e.g., for chain torsions are in excellent agreement with
previous reports based on transfer integral calculations. Furthermore, the quantum
conductance formalism is used to investigate defects which cannot that easily be
described with transfer integral methods.

In this section, the density functional theory implemented in the Quantum Espresso
package is used to calculate the ionic & electronic ground states for the following
transport calculations. The wave functions are expanded in a plane-wave basis set
up to an energy cutoff of 40 Ry. For the exchange & correlation functional the PBE
parametrization [13,14] of the generalized gradient approximation (GGA) is used. Since
dispersion interaction plays an important role in soft matter such as P3HT aggregates [78],
the so-called DFT-D2 approach, i.e., a semi-empirical London-type correction term [79–81]

with the parameters suggested by Grimme [27], is taken into account to obtain the correct
ionic ground state. The Brillouin zone in polymer chain direction is sampled by 14
equidistant Monkhorst-Pack [82] k points for a single monomer while the k-point mesh
in the other directions and for larger unit cells is adjusted accordingly.

The results of this section are divided into four subsections to investigate the influence
of layer displacements, torsions, bendings and oxygen degeneration separately. It starts
with an offset between two P3HT layers since for this model it exists an analytic
approximative description which illustrates the concept of the quantum conductance by
means of a real system.
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3.1.1 P3HT layer displacements

−400

−350

−300

−250

−200

−150

−100

−50

0

50 0 5 10 15 20 25

ef
fe

ct
iv

e 
po

te
nt

ia
l [

eV
]

z coordinate [Å]

0.0 Å disp.
0.2 Å disp.
1.0 Å disp.
8.2 eV

interchain

intrachain

Δ

Δ
disp.

Δ

Figure 3.2: The effective electron potential
(top) is calculated along a line through the
thiophene rings for various displacements
between two molecular layers (bottom).

To start this chapter about quantum con-
ductance in an illustrative way, a defective
P3HT bulk crystal is used. The crystal is
made of polymer strands which arrange in
layers perpendicular to the thiophene rings.
To model a dislocation, the distance be-
tween one layer pair is varied (cf. lower
part of Fig. 3.2). Such displacements
might be caused by defects embedded in
the solid state matrix.

The upper part of Fig. 3.2 depicts the self-
consistently calculated effective electron
potential evaluated along a line marked
in red.

To calculate the quantum conductance,
one has to set up an arrangement of left
& right contact as well as a scattering
region (cf. Sec. 2.5). Ideal bulk P3HT
unit cells are used as contacts which sand-
wich the scattering region that effectively
contains three bulk P3HT unit cells with
one displaced layer in the middle (cf. Fig. 3.2). After a self-consistent run for each
region, the quantum conductance for the interchain direction (= stacking direction)
can be evaluated. As the hole transport in P3HT occurs mainly in the valence band
maximum (VBM), the following calculations are energetically determined for the VBM.
The results are shown in Fig. 3.3 for varying layer spacings between two crystal layers
in red.

As expected, the transmission follows a roughly exponential decay with increasing layer
spacing caused by a reduced overlap of the molecular orbitals in transport direction.
Notably, the conductance is reduced by about one order of magnitude already for
displacements of 0.5 Å. Hence, it is expected that crystallographic defects, causing
such a displacement, can dramatically reduce the cross-sectional area available for hole
transport.

The results can be illustrated by thinking of the transport as a tunneling through the
lattice spacing. This can approximately described by the Wentzel-Kramers-Brillouin



3.1 Influence of structural defects 45

(WKB) approximation [83]

T = e
−2
∫ z2
z1

√
2m
~2 (V (z)−E)dz

, (3.1)

where the transmission is determined from a potential barrier V (z) which separates
the propagating modes with energy E in the left and right crystalline regions. For the
sake of simplicity it is assumed that V (z) is constant in the displaced region of length
∆ and equal to the maximum of the self-consistently calculated value along the line
depicted in Fig. 3.2. The mode’s energy E is taken from the valence band maximum.
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Figure 3.3: Quantum conductance perpen-
dicular to the P3HT layers in dependence on
the additional offset between two layers. Red:
results of the full scattering approach. Blue:
values obtained within the WKB approxima-
tion.

As can bee seen by the blue line in Fig.
3.3, this simple approximation describes
the transmission dependence upon in-
creased layer spacing in reasonable agree-
ment with the more sophisticated scat-
tering approach.

However, this simple approximation in
Eq. 3.1 is not versatile enough to be
applied to more complicated defects like
chain torsions and bendings. Hence, af-
ter this illustrative example for the inter-
chain transport, the scattering approach
is exclusively used in the following to

investigate the intrachain transport of P3HT in the next subsections.

3.1.2 Chain Torsions

It has been found by electrodeless conductivity measurements using charges produced
by pulse radiolysis that conjugated polymer chains are characterized by large carrier mo-
bilities (∼ 103 cm2/Vs) [84] which will also be confirmed by the temperature-dependent
calculations in Sec. 3.2. However, due to conformational imperfections likely occurring
in actual blends [85,86] as well as molecular impurities, e.g., by exposure to ambient
conditions [87], the mobility may be drastically reduced from its ideal value.

Therefore, the following subsection addresses the influence of twisted P3HT chains onto
the quantum conduction. The system’s setup, to determine the transport properties
along the structural defects, is shown in Fig. 3.4.

The scattering region consists of 6 P3HT monomers where the atoms of the outermost
monomer on each side are kept fixed during the relaxation. This ensures that the
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scattering region

structural relaxation

Figure 3.4: System setup for quantum conductance calculations across a chain torsion.
Note that the atoms of the outer two monomers (shaded blue) of the scattering region
are kept frozen during structural relaxation to guarantee a consistent structural interface
between the scattering region and the ideal contacts. Moreover, two monomers outside
the scattering region are added (shaded red) to decouple the torsion from its periodic
images in the self-consistent calculations.

enforced overall torsion is not reversed by the relaxation. Furthermore, the fixing is
necessary to have a continuous potential transition between contacts and scattering
region.

Due to the employed periodic boundary conditions in the present calculations, one
additional monomer is added on each side outside the scattering region, to improve the
decoupling of the torsional defect from its periodic images. All in all the total region
used in the self-consistent calculation contains 400 atoms in a cell which is about 63 Å
long. After the electronic structure is determined, only the potential of the 6 innermost
monomers is used for the transport calculations. The potential of the extra added
monomers outside the scattering region is dismissed as they suffer most from the used
periodic boundaries. To be able to calculate the quantum conductance only for a selected
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Figure 3.5: Calculated quantum conductance along single twisted thiophene-thiophene
bonds (red) and configurations which distribute the total torsion angle over several
thiophene-thiophene linkages due to structural relaxation (green). The geometries for
zero and 180◦ rotation (indicated by arrows) are shown as insets, respectively. The
encircled data point (90◦) corresponds to the configuration shown in Fig. 3.8.
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range, the available PWCond source code was extended by a suitable implementation.
The extension allows for a combination of calculations with differently dimensioned
systems for self-consistent field (scf) and transport calculations, respectively. This is
especially necessary for scattering regions which offer no intrinsic periodic behavior, like
the one in this subsection:

As a starting point, the torsion affecting only a single thiophene-thiophene bond is
considered. Since the p-type conductivity of P3HT is governed by the states close to
the VBM, it is expected that the transport results will strongly depend on the original
shape of the valence band. This band corresponds to overlapping pz orbitals of the
thiophene rings that are perpendicular to the thiophene plane. This overlap of the pz
orbitals is directly affected by the torsion. Hence, one can expect a strong decrease of
the quantum conductance with increasing torsion angle, as shown earlier by transfer
integral calculations [69,76,77].

Figure 3.6: Depiction of a charge density isosurface of the highest valence band (HVB)
for a structure with a 90◦ torsion between two thiophene rings.

The calculated quantum conductance through single twisted thiophene-thiophene bonds
is depicted in Fig. 3.5 in red. It shows indeed a strong reduction with increasing twist
angle. The curve offers thereby a pronounced minimum for square angles which expresses
the fact that no delocalized π-bonds can be formed anymore. Beyond the vanishing
orbital overlap directly at the twisted bond, one can also observe a fragmentation of
the highest valence band (HVB) in the adjacency of the defect in Fig. 3.6. The results
for a single twisted thiophene-thiophene bond (red) are more or less symmetric with
respect to its minimum. The slight differences are caused by the fact that the 0◦ and
180◦ torsions are not identical configurations (cf. insets in Fig. 3.5). Additionally the
angles 140◦ and 220◦ are not equivalent as the polymer is slightly bent (cf. side view
in Fig. 3.5). The total energy as a function of a single twist angle (cf. red line in Fig.
3.7) shows this asymmetry more obviously.

In Fig. 3.7 a steep increase of the total energy for torsion angles exceeding 130◦ can
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Figure 3.7: Bond twisting induced change in the total energy for the case that only a
single bond is twisted (red) and for the configurations in which the torsion is realized
by a sequence of twists (green). Dispersion contributions to the single bond twisting
are shown in blue.

be observed (red curve). This effect is caused by the steric repulsion of the hexyl side
chains which is not compensated by attractive van der Waals (vdW) forces (blue curve
in Fig. 3.7). The green curve shows the total energy for polymer geometries resulting
from structural relaxations where the overall torsion angle is enforced by fixed outer
two monomers. The relaxation distributes the overall twisting angle over all freely
moving monomers, which models a chain that is not constrained by the surrounding
polymer matrix. Moreover, the hexyl side chains can evade each other to reduce the
steric repulsion. An example of such a relaxed structure is depicted in Fig. 3.8.

Both energy curves (red and green) exhibit a very shallow increase at small torsions
in Fig. 3.7 which suggests angles of about 20◦ due to thermal activation at room
temperature if the chain motion is not strongly constrained otherwise. This result is in
accordance with previous molecular dynamic simulations [88].

Since the red conductance curve in Fig. 3.5 suggests that only torsions larger than
about 60◦ affect the polymers conductance in an appreciable way, one can suppose
that the conductance decrease will be less severely if the overall torsion is distributed
from one single bond to several ones, making up a sequence of twists. Therefore, by
determining also the quantum conductance for the relaxed structures, a remarkably
difference to the corresponding curve for single bond twists is found, cf. green curve in
Fig. 3.5. One can see that the conductance drop at small angles is reduced and its
onset is shifted to larger angles. Moreover, the minimum of the transmission curve
has shifted from nearly square angles to about 120◦. These findings can be explained
with the angle distribution depicted in Fig. 3.8 as inset. It can be seen that the
maximum angle between adjacent thiophene rings is usually much smaller than the
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Figure 3.8: a) Relaxed atomic structure for an overall torsion angle of 90◦ forced by
the fixed boundary monomers. The resulting twist angles between adjacent thiophene
rings are highlighted. The data point, belonging to the calculated quantum conductance
for this configuration, is marked with a circle in Fig. 3.5. The inset depicts the twist
angle distributions calculated for various torsions. b) Visualization of the HVB by an
isosurface overlaying the same structure as above.

enforced total torsional angle. For instance, for the 90◦ case the maximum twist angle
between two adjacent thiophene rings is 41◦ (cf. Fig. 3.8a)). This leads still to a
slight delocalization of the wave function along the polymer chain, which results into a
larger transmission than in the case, where a full 90◦ torsion is located on one bond
(cf. Fig. 3.5). However, for total torsions as large as 120◦, maximum twist angles of
about 83◦ occur in the relaxed structure which quenches the conductance severely due
to the vanishing overlap of the carbon pz orbitals and a strongly fragmented highest
valence band (cf. fragmentation in Fig. 3.8b) for a total torsion of 90◦). Therefore,
both findings can be well rationalized by an analysis and comparison of the atomic
configurations.

Since the atoms of the inner monomers are allowed to move freely, the overlap across
thiophene-thiophene linkages might not only be reduced by a torsion. A possible
additional interference might arise from an out-of plane movement of linking carbon
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atoms which would cause sp3 hybridized configurations. An analysis showed a maximum
out-of plane movement of about 0.04 Å which can be expected to have a subsidiary
influence estimated from results of the following subsection 3.1.3 (chain bendings).

One might calculate the product of the transmission coefficients determined for single
twists as an approximation to the transmission through a complete chain including
several torsional defects. This is though only a rough approximation as, e.g., the
product of the transmission coefficients for the relaxed 90◦ case is about twice as large
as the transmission coefficient obtained by solving the complete scattering problem of
this structure, cf. encircled data point in Fig. 3.5. The difference might be related
to the fact that in case of extended defects, the HVB is much stronger fragmented
and interrupted than one might expect (cf. Figs. 3.6 and 3.8 b)). This additional
fragmentation effect cannot attributed for by simply analyzing only the angles between
next-nearest neighbors. Therefore, the approximation mentioned above provides only
an upper limit for the transmission. This has to be kept in mind when performing
common transfer integral approaches for such kinds of complex deformation patterns:
Only in case of single confined twists one can attribute the reduced charge transfer
solely to the narrowed orbital overlap between neighboring thiophene rings.

One has to mention that the present total energy calculations depicted in Fig. 3.7
suggest that the minimum energy configuration for a fixed overall torsion angle is given
by a sequence of single twists of similar angles, i.e., a helix configuration. To confirm
this assumption, the total energy for such an atomic configuration was calculated for
comparison with the results shown as green curve in Fig. 3.7. Thereby it was found
that the energy gain upon helix formation is small, as it is only of the order of a few
meV. Moreover, the formation of such regular structures will in general be prevented by
the surrounding P3HT matrix, e.g., resulting in chain bending.

3.1.3 Chain Bending

A common defect in P3HT next to chain torsions is the polymer chain bending [89]. To
model this defect, several folded P3HT chains were analyzed and characterized by the
respective minimum curvature radius along the polymer chain. The geometric setups
are structurally relaxed, whereas the atoms of the inner 5 monomers (250 atoms) are
free to move and the outer 2 monomers are kept frozen. An example of such a polymer
geometry is shown in Fig. 3.9.

It is found that structures characterized by small curvatures are rather regular with
straight and ordered hexyl side chains. With increasing curvature additional disorder
including torsional defects is observed, see Fig. 3.9.
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Figure 3.9: A relaxed bended chain with a minimum curvature radius of 8 Å. The
HVB is indicated by a blue isosurface. The quantum conductance in dependence on
different curvature radii is shown in the inset.

The quantum conductance results are shown in the inset in Fig. 3.9. It is remarkably
that the conductance stays nearly unaffected by the structural deformations for curvature
radii larger than about 17 Å. This can be attributed to an observed very efficient local
relaxation mechanism which smooths the polymer structure, thereby preventing sharp
kinks which would drastically influence the overlap between adjacent carbon pz-orbitals.
Moreover, the chain bending is less serious than the chain torsions as the former leads
to an overlap decrease/increase on opposite polymer sides.

Nevertheless, the calculated conductance is strongly quenched for small curvature radii
which can be expected to arise, e.g., when two polymer chains cross each other. In Fig.
3.9 one can also observe bond twists (in addition to the bending) caused by structural
relaxations in response to hexyl side chain related strain. This critical influence of the
hexyl side chains onto the backbones planarity has already been pointed out in Ref. 86.
Therefore, one can define a curvature radius of about 12 Å as critical chain bending
similar to the 60◦ angle found for chain torsions. In addition, similarly as observed for
torsion patterns, a HVB fragmentation can be seen upon bending in Fig. 3.9 (shown
for a 8 Å curvature radius).

3.1.4 Isomer defect

So far, only regioregular head-to-tail P3HT (rr-HT-P3HT) was investigated since this
isomer is of particular interest for organic semiconductor devices due to its large carrier
mobility. The identifier head and tail refers to the coupling between two thiophene
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Figure 3.10: Setup to determine the transport across an isomer defect. The defect
consists of a so-called HH-TT linkage between the thiophene rings which is caused by
a swapped position of a hexyl side chain (red rectangle). The contacts are made of
ideal regioregular HT-P3HT. In the left contact the atomic numbering is indicated. H
denotes the second and T the fifth position.

rings where H denotes the second and T the fifth position on the ring, with numeration
starting at the sulfur atom as shown in Fig. 3.10. The numeration direction is chosen
in the way that the hexyl side chain is at the third position (poly-3-hexyl-thiophene).

The influence of an isomer defect onto the transport properties can, e.g., be investigated
by changing the position of the hexyl side chain as depicted in Fig. 3.10. This leads to
a head-to-head (HH) and tail-to-tail (TT) coupling aberrant from the ideal head-to-tail
(HT) connection. Thereby ideal head-to-tail P3HT (HT-P3HT) monomers are used to
contact the isomer defect. As done for the other quantum conductance calculations,
additional HT coupled P3HT segments are included in the scattering region, in order
to allow for a realistic modeling of the geometric and electronic environment of the
defect embedded in the polymer.

The resulting quantum conductance across the isomer defect (red) is compared in Fig.
3.11 with the quantum conductance of an ideal P3HT chain (blue line in the middle
of the left figure). The latter can easily be obtained by Eq. 2.72, which reduces the
calculation to a counting of the number of bands at a given energy (cf. blue band
structure on the left-hand side in Fig. 3.11).

Since the holes will almost exclusively move at the Fermi edge in the p-type conducting
P3HT, a maximum quantum conductance of 1 G0 = 2e2

h
is found for a single, ideal

(HT)-P3HT chain.

Figure 3.11 depicts also the electronic band structure (green and orange) for two
scattering regions used for the transport calculation in intrachain direction (Γ–X), only
differing by the number of ideal HT-P3HT monomers included. Note that the green
curve thereby exhibits several small gaps between the bands at the Γ and the X point
in the Brillouin zone (exemplary marked with red circles). However, these gaps are not
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Figure 3.11: Lhs, left part: Band structure of rr-HT-P3HT (blue) in intrachain direc-
tion. Lhs, middle part: Ideal quantum conductance for rr-HT-P3HT (blue) compared
to calculations for a single isomer defect shown in Fig. 3.10 (red). Lhs, right part:
Band structure of the scattering region used for the transport calculation (green) and
a second region extended by additional two contact monomers on each side (orange).
Rhs: Orbital character of selected states labeled a), b), and c) in the right band
structure on the left hand side.

reflected by the red transmission curve. This can be understood if one remembers the
setup for the quantum conductance calculation. The transmission is determined for a
system consisting of a single defective scattering region, surrounded by semi-infinite,
ideal contacts. In contrast to this, the band structure of the scattering region belongs
to a periodically repeated defect. One can decrease the influence of the periodicity
by increasing the distance between two defects by including additional ideal contact
monomers in the scattering region. For instance, the orange band structure includes
two ideal monomers on each side more than the green one. As this scattering region
comes closer to the actual transport system, the orange curve matches better the red
transmission results, i.e., the gaps are smaller and will disappear in the limit of infinite
contacts.

The red transmission curve in Fig. 3.11 on the left shows a small defect induced
conductance reduction close to the Fermi edge. Apart from that only for energies at
about 2.3 eV below the valence band maximum a notable drop occurs due to the isomer
defect. This conductance modification is far below the hole transport channel at the
VBM and will therefore barely affect the charge carrier transport. Nonetheless, it is
interesting to clarify the physical origin of this striking, sharp drop. The right part
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of Fig. 3.11 shows that the effect is related to a strong wave function localization
at the defect for this special energy. The localization changes from strongly localized
(close to the defect, cf. Fig. 3.11 a)) via an intermediate localization (Fig. 3.11 b)) to
delocalization along the whole thiophene chain (Fig. 3.11 c)) depending on the energy.

Nevertheless, as already mentioned above, the isomer defect has only minor influences
onto the transport properties which confirms that the P3HT conductance is mainly
determined by the thiophene rings rather than the hexyl side chains. This weak impact
onto the electronic properties is also desirable as the hexyl side chains are usually
intended to improve the processing properties of polythiophene [90] exclusively.

In summary, in this subsection it is found that the conductance is relatively robust with
respect to isomer defects. However, such defects affect the bulk morphology [91] and
increase the disorder in the material. Hence, even if such isomer defects have only
minor direct influence onto the quantum conductance, they might attract other defects
which more strongly influence the electronic performance of the polymer.

3.1.5 Oxygen impurities

The previous subsections investigated the influence of structural defects onto the
quantum conductance of P3HT. To analyze also the impact of impurity atoms, several
types of oxygen degenerations are modeled. Such defects might originate from an
unintentionally exposure to ambient atmosphere and aging. Thereby O2 can undergo
chemical reactions forming covalent bonds with the carbon and sulfur atoms of P3HT [92].
The formation of R-SOx and R-COOH compounds has been detected experimentally
by X-ray photoelectron spectroscopy [93]. This has a serious impact onto the charge

Figure 3.12: Three investigated oxygen impurities in P3HT. The COOH and SO2
defects have been identified by Ref. 87 as stable oxygen-chemisorbed structures while
the additionally investigated defect labeled COH-CO turns out to be even more stable.
This defect has a stronger influence onto the geometry than the other two since the
OH molecule pulls the attached carbon atom out of the thiophene ring plane.



3.1 Influence of structural defects 55

infinite chain molecular crystal
defect DFT-D2 DFT-D2 LDA
2 SO 0.89 0.80 1.30
COOH 2.01 2.16 2.85
SO2 2.39 2.53 2.44
COH-CO 2.91
R-COOH 3.17

Table 3.1: Calculated binding energies (in eV, with respect to gas phase O2) for various
defect configurations. The results are compared with the values obtained for molecular
crystals in Ref. 87.

carrier mobility and organic solar cell efficiency which have been found to decrease
when P3HT is simultaneously exposed to light and oxygen [94–99].

As depicted in Fig. 3.12 three different kinds of oxygen adsorptions are investigated. The
notation follows the one of Ref. 87 which identified the two defects “SO2” and “COOH”
as stable oxygen-chemisorbed structures by molecular dynamic (MD) simulations.
Additionally, a further alternative labeled COH-CO in Fig. 3.12 is investigated here,
which turns out to be even more stable (by about 0.5 eV) than the structures found in
Ref. 87. The binding energies of all investigated oxygen defects are tabulated in Tab.
3.1 on the left where they are compared with Ref. 87 on the right.

The higher stability of the COH-CO defect results from a double bond formation

0

1

2 SO2 defect

COOH defect

0

1

Tr
an

sm
is

si
on

 [G
0]

E-EF [eV]

COH-CO defect

0

1

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

Figure 3.13: Transport results for a SO2 (top), a COOH (middle) and a COH-CO
defect (bottom). The shaded region is the maximum possible quantum conductance
for rr-HT-P3HT (cf. previous subsection 3.1.4).
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between the carbon and oxygen and a notably relaxation of the connected thiophene
ring and its neighborhood. Thereby it is found that the COOH defect distorts the
affected thiophene ring structure only slightly while the OH molecule pulls the bound
carbon atom away from the ring plane in the more stable COH-CO defect. This results
into a sp3 hybridized configuration accompanied by a 34◦ kink in the polymer plane,
leading to a kind of local chain bending (cf. subsection 3.1.3).

Following the system setup of the previous sections, the influence of the various oxygen
related defects onto the charge transport properties are determined for a defective
scattering region of 6 monomers sandwiched between ideal rr-HT-P3HT contacts. The
obtained quantum conductance for all defects is shown in Fig. 3.13. Note that the gray
shaded area indicates the conductance of an ideal P3HT chain. Thereby it becomes
obvious that the defects differ strongly in their impact onto the transport properties.
Similar to the isomerism defect, the SO2 impurity barely influences the transport. Only
around 2.2 eV below the VBM sulfur related conduction channels are broken. The
COOH and COH-CO defects in contrast behave remarkably different as they significantly
reduce the quantum conductivity over a broad energy range. Especially the transport
through a chain with a COH-CO defect is nearly completely quenched. Only around
2.2 eV and 1.3 eV below the VBM residual channels of minor transmission are found.
An almost as strong quenching of the hole transport is also observed for the planar
COOH, though it is mainly restricted to about 0.8 eV below the VBM. This defect
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Figure 3.14: Top: Density of states calculated for chains containing oxygen impurities
(gap states highlighted with dashed lines) in comparison to the pure P3HT polymer.
Bottom: pDOS projected onto the s (green) and p (black) states of the two oxygen
atoms. The s contribution is negligible in the investigated energy range.
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causes also a sharp drop of the conductance at around 1.5 eV below the VBM. This
effect is similar to the case analyzed for the isomer defect (cf. Fig. 3.11) as this drop
is also induced by a charge carrier localization which is caused by the p electrons of the
impurity O atoms (see also Fig. 3.14).

The observed different behavior of the SO2 defect on the one hand and the defects
attacking the thiophene carbon atoms on the other hand can be explained by an analysis
of the density of states (DOS) and projected density of states (pDOS). All considered
oxygen impurities have in common that they induce electronic states in the upper half
of the gap which is indicated by dashed lines in the DOS in the upper part of Fig. 3.14.
Apart from that and small oxygen-localized p states below -2.4 eV, the SO2 DOS nearly
matches the respective calculations for the ideal polymer. This is in large contrast
to the much stronger deviations in the case of the COOH and COH-CO impurities.
These defects show a widely modified valence band DOS along with additional oxygen
p states. This large contrast is though expected as the P3HT valence band is formed
by pz orbitals of the conjugated chain which is little influenced by adsorption to the
sulfur, but heavily affected by a direct oxidation of a thiophene group carbon atom.
Hence, the latter have a major influence onto the transport in the valence band.

Moreover, in Fig. 3.15 a strong HVB fragmentation at the position of the oxygen
impurity can be observed, extending over almost two monomers for the COH-CO defect.

SO2 COOH

COH-CO

Figure 3.15: HVB indicated as isosurface for the three investigated defects.
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Note that this observed fragmentation is not restricted to the HVB and leads to a
dramatic reduction of the quantum conductance over a broad energy range.

This localization can be evident in varying degree, depending on the structural pertur-
bation of the polymer chains, which also explains differences in the transport properties
of the COOH and the COH-CO defect. Since the COH-CO defect is located at two
thiophene ring carbon atoms and leads to a noticeable local chain bending, it lowers the
conductivity along the chain most efficiently among all investigated impurity defects.
Fig. 3.13 shows that the COH-CO defect blocks the hole transport nearly completely
for an energy window extending several eV below the Fermi level.

This section dealt with the influence of static defects like disorder and impurities onto the
coherent quantum conductance. Another application of the used transport formalism
are interfaces between different compounds like P3HT and Phenyl-C61-butyric acid
methyl ester (PCBM) which is a typical material combination in organic solar cells [100].
The p-type conducting polymer P3HT creates electron-hole pairs upon absorption of
light and transfers the electrons to the PCBM. The hybridized state between P3HT
and PCBM is expected to be decisive for the required fast transport through the
interfaces [101]. We have still work in progress to model the interface as a scatterer,
using the results of the quantum conductance formalism as a measure for the quality
of the interface.

Since temperature-dependent effects play also a crucial role for technical applications,
the next section makes use of a different approach to determine a temperature-dependent
mobility. The mobility µ is linked to the specific conductance via σ = qnµ where q is
the charge and n the charge carrier concentration1. Note that the gained results for the
influence of static disorder and impurity effects in the last section can be expected to
remain important at room temperature since the identified modifications of the HVB
will affect the mobility strongly. This is supported by the results of the following section
which clearly show a strong influence of phonon modes which deform the HVB.

1G and σ are linked by a factor depending on the geometry of the conductor - e.g., G = σ ·A/l for a
homogeneous conductor with constant cross section A and length l.
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3.2 Temperature-dependent hole mobility of P3HT

Several studies attacked the temperature influence onto the transport properties of P3HT
which is mainly characterized by the influence by phonons. Therefore, molecular dynamic
simulations have been performed to analyze the structure and transfer integrals [102–105].
Another approach is to fit analytical expression to experimental conductivities, extracting
physical quantities from the gained models parameters. A model, which is often used,
is based on one effective vibration and the associated phonon frequency and electron-
phonon (el-ph) coupling constant, cf. Refs. 64,106 & 107. Another approach is
called mobility edge model which accounts also for disorder effects by separating the
density of states into immobile (trapped) and mobile states to reproduce experimental
data [108–110] with fitted parameters. This method is able to give first indications of the
maximum intrinsic carrier mobilities of P3HT films with a much fewer number of traps
than experimental realizable today. Nevertheless, theoretical models, relying on fits
to experimental data, suffer from the difficulty to separate the respective influence of
disorder and intrinsic polaronic effects on the mobility [111]. Therefore, this work takes
a different approach: Instead of relying on fits to experimental data, the polaronic
effects in an idealized P3HT crystal are analyzed by a first principles tight-binding
description (cf. Sec. 2.6). The required material parameters including all optical
phonon frequencies and electron-phonon coupling constants are obtained from density
functional theory (DFT), which is described in the following in more detail.

3.2.1 Tight-binding band structure

Figure 3.16: P3HT monomer in its
unit cell.

The density functional theory implemented
in the Vienna Ab initio Simulation Package
(VASP) is used to calculate the required mate-
rial properties like phonon frequencies & pat-
terns, el-ph coupling constants and transfer
integrals for an idealized P3HT crystal with
one monomer (50 atoms) per unit cell from
ab initio. The crystal structure depicted in
Fig. 3.16 makes use of periodic boundary
conditions and is based on the results of Ref.
78. The technical parameters are chosen in
accordance with the previous section: Wave
functions are expanded in a plane-wave basis
set up to an energy cutoff of 400 eV. The
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exchange & correlation functional is given by the GGA in form of the PBE parametriza-
tion [13,14]. Dispersion interaction is again taken into account by the so-called DFT-D2
approach, i.e., a semi-empirical London-type correction term [79–81] with the parameters
suggested by Grimme [27]. Since P3HT bulk is considered in this section, the 3D Brillouin
zone is now sampled by an equidistant Monkhorst-Pack [82] k-point mesh with 16 k
points in interchain direction (z), 8 in intrachain (x) and 4 k points along the hexyl
side chain direction (y) (cf. axes labels in Fig. 3.16).

The P3HT band structure in intrachain direction is depicted in Fig. 3.17, left. The
highest valence band offers a large dispersion which is responsible for the hole transport
in P3HT. To determine the tight-binding material properties, this HVB can be fitted to
a tight-binding band structure. Thereby one obtains the transfer integrals which enter
the mobility framework described in Sec. 2.6. As the dispersion in the direction of the
hexyl side chains turned out to be negligible, the analytic tight-binding expression used
here includes only transfer integrals in inter- and intrachain direction

ε(k) = ε0 + 2εa cos(k · a) + 2εc cos(k · c)
+ 2ε2c cos(2k · c) + 2ε3c cos(3k · c),

(3.2)

where ε0 is an energy offset that does not influence the result and a and c denote the
lattice vectors in z and x direction. Figure 3.17 depicts the tight-binding fit together
with the original DFT results on the right. The transfer integrals obtained by this fit
are εa = 162 meV, εc = 421 meV, ε2c = −26 meV and ε3c = 22 meV which reflects the
much larger dispersion in intrachain (c) than in interchain (a) direction.
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valence band (labeled HVB) together with the tight-binding band fit across the Brillouin
zone.
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3.2.2 Electron-phonon coupling constants

The P3HT unit cell used here contains 50 atoms which results into 150 phonon modes,
there of which three are acoustic and the rest are optical ones. The frequencies ωλ and
displacement patterns of all these modes are determined by DFT calculations for the
first time. Moreover, the electron-phonon coupling constants gλi for all optical phonons
λ and all directions (i = 0 for local coupling and i = a, c,2c,3c for nonlocal coupling)
are obtained by numerical differentiation of the transfer integrals εi to the (square root)
mass weighted phonon displacement X [112]

gλi = ∂εi
∂Xλ

· 1√
2ω3

λ~
. (3.3)

The dispersion of the phonon modes is neglected as the determination of the full
q-dependence of all electron-phonon interaction parameters for all modes would be a
prohibitive expensive task. This approximation has also been used in Refs. 40,41,45,47
& 112.

The obtained coupling constants gλi are used to determine an effective coupling constant
g2
λ for each individual mode λ

g2
λ = 2

∑
i

(
gλi
)2
. (3.4)
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Figure 3.18: Electron-phonon coupling constants calculated for P3HT (blue) by the
method described above. The bars shown in red belong to results derived from model
fits to experimental data from Refs. 113 and 114 (redshifted by 4 meV). Note that the
references (i) provide relative coupling strengths only and (ii) are restricted to phonon
energies above 70 meV. The labeled phonon modes are further discussed in Sec. 3.2.4.1
and visualized in Figs. 3.23 and 3.24. The DFT calculations suggest a phonon gap
between 190 meV and 363 meV which is suppressed in the figure.
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The calculated electron-phonon (el-ph) coupling constants are summarized in Fig. 3.18
and are compared to present literature data. Unfortunately this data is only available
for phonon frequencies above 70 meV. Though, the phonon frequencies and coupling
strengths calculated here agree well with the available and 4 meV redshifted parameters
determined in Refs. 113 & 114. However, one has to mention that their experimental
fit parameters contain one prominent mode at about 250 meV. This does neither match
the experimental frequencies nor the present calculations which predict a phonon gap
between 190 meV and 363 meV, in agreement with Raman and Fourier transform
infrared spectroscopy (FTIR) measurements in Ref. 115. The mode might either be an
artifact of the fitting procedure or belongs to a defect related local vibrational mode or
an unknown defect.

The calculated vibrational spectrum shows dominating strongly coupling modes at low
energies (indicated as modes 1) to 6) in Fig. 3.18). Their large coupling strength
is a consequence of their low frequency, which enters inversely as a pre-factor in the
coupling constant calculation (cf. Eq. 3.3). Nevertheless, also at higher frequencies
strong coupling modes can be found which are further analyzed in section 3.2.4.1.

3.2.3 Temperature-dependent chemical potential

After the determination of all material parameters, one has to calculate the temperature-
dependent chemical potential ζ(T,Nc) which enters into the Fermi-Dirac distribution
n (ε̃(k), T,Nc) (cf. Eq. 2.84 which is used in Eqs. 2.85 and 2.87 for the calculation of
the total mobility). In accordance with previous publications [40,45,116], a very low charge
carrier concentration of Nc/NΩ = 10−6 holes per unit cell is used.

The position of the chemical potential ζ(T,Nc) for a given temperature and hole
concentration can be determined by asserting that

Nc

!︷︸︸︷=
∫
BZ

n (ε̃(k), T,Nc) d3k. (3.5)

Note that ε̃(k) is the polaron band structure introduced in Eq. 2.81.

To determine the chemical potential ζ(T,Nc), a bisection algorithm was implemented
which basically evaluates the number of charge carriers per unit cell for different chemical
potentials (starting with guesses). Based on these results, the choice of the chemical
potential is refined till the evaluated number of charge carriers has converged to the
chosen Nc (within a relative tolerance of 10−4). This procedure has to be repeated for
a representative set of temperatures as the polaron band structure ε̃(k) as well as the
Fermi-Dirac distribution are temperature dependent. Figure 3.19 shows the distribution



3.2 Temperature-dependent hole mobility of P3HT 63

for two different temperatures on the right hand side (chemical potentials denoted as ζ
and ζ‘). Due to the increased smearing at higher temperatures the chemical potential
must increase in energy to keep the charge carrier concentration constant.
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Figure 3.19: Polaron band structure with sketched Fermi-Dirac distribution on the
right hand side. The chemical potential is indicated in red while the two curves on the
right hand side represent the Fermi-Dirac distribution at different temperatures with
their respective chemical potential ζ and ζ‘.

3.2.4 Temperature-dependent hole mobilities

Based on the material parameters gained above, the hole mobility in P3HT can be
calculated according to Eqs. 2.85 and 2.87. Therefore, the equations were implemented
in C++, which also allows to determine the temperature-dependent chemical potential.
The dephasing time ~/τ = 0.1 meV is a small parameter which is chosen within the limit
of ultrapure crystals. Beyond being a mere numerical parameter in the first place, τ can
also be assigned an additional role as effective scattering time, which then describes
scattering mechanisms not explicitly treated in the formalism.

The integral in Eq. 2.87 was evaluated using the gsl_integration_qag routine of
the GNU Scientific Library (GSL). Unfortunately, the integrand oscillates rapidly due to
the Φλ(t) function in the exponent, which requires many integration steps to achieve
accurate results. As this integral is the inner part of the sums over L,M,N,k1 and
k2 it needs to be evaluated many times, making the evaluation of Eq. 2.87 very time
consuming. To speedup the calculation a different way was devised, defining a new
function

I(E, J) =
∞∫
−∞

e(it/~)E
{

exp
[
−J ·

∑
λ

Φλ(t)g2
λ

]
− 1

}
e−(t/τ)2

dt, (3.6)
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where the parameter E substitutes the expression [ε̃(k1)− ε̃(k2)] and J the term(
δM0 − δML − δM−N + δML−N

)
. This Eq. 3.6 can be tabulated (for each temperature),

making use of the fact that the range of E can be calculated from the maximum and min-
imum of the polaron band structure and J can adopt only the values {−2,−1, 0, 1, 2}.
Moreover, the range spanned by E decreases with increasing temperature due to the
band narrowing (cf. Eq. 2.79).

Parallelization over E

via bisection, k parallelization

k parallelization

In
it

ia
liz

a
ti

o
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k parallelization

Figure 3.20: Flowchart for the calculation
of the coherent µ(coh)

αβ and incoherent µ(inc)
αβ

mobility. This work flow has to be repeated
for every temperature value T .

This procedure clearly speeds up the eval-
uation of the incoherent mobility in Eq.
2.87 as the integral evaluation is reduced
to a simple linear interpolation in E be-
tween two tabulated values.

The full application flow is depicted in Fig.
3.20, right. The C++ program makes use
of the Message Passing Interface (MPI)
to parallelize the work flow without being
restricted to shared memory. Thereby it
distributes the workload across the large
number of k points. Additionally, the fill-
ing of the table, containing the integrals
I(E, J), is distributed across all MPI pro-
cesses to speed up this part of the initial-
ization.

The calculated total mobilities are shown
in Fig. 3.21 a) and b) as linear and Ar-
rhenius plot, respectively. The mobilities
increase with temperature, reaching about 50 cm2/(Vs). These large intrinsic mobilities
are conveyed by the large electronic coupling along the polymer chain in the ideal P3HT
crystal with dominating εc = 421 meV. Despite this huge transfer integral, the main
contribution comes from the phonon-assisted transport (Eq. 2.87), which is large due
to the strong coupling modes with low vibrational energies.

Since the material parameters are obtained for a perfect P3HT crystal, the calculated
mobilities represent a special case under idealized conditions. This makes it hard
to directly compare with experimental measurements, especially as experimentally
only an average mobility is measured which accounts also for charge carriers that
are trapped [111,117,118]. Thereby one has to keep in mind that already the choice of
another solvent for the P3HT-film preparation can change the mobility by several orders
of magnitude [119]. Hence, it is reasonable to better compare with experiment-based
estimates of the intrinsic mobilities. There are already several publications [67,89,111,119,120]
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Figure 3.21: a) Total mobility results for a P3HT crystal in intra- and interchain
direction. b) Same data as in a) but as Arrhenius plot.

dealing with the experimental challenge to enter the regime of non-trap-limited mobilities
in P3HT, thereby attempting to obtain indirect estimates of the intrinsic mobilities.
One approach is the fitting of temperature-dependent transport data to a mobility-
edge model. This gives intrinsic mobility estimates of about 1 cm2/(Vs) [109,117] (with
some variability) which are orders of magnitude larger than the range of trap-limited
values typically encountered [67,89,111,119,120]. Beside the mobility-edge model estimates
from trap-limited transport, there is also a theoretical work of Northrup [121] employing
an acoustic deformation potential scattering model [122]. He calculated a mobility of
31 cm2/(Vs) at room temperature which fits well the present results depicted in Fig.
3.21 (44 cm2/(Vs)).

From the Arrhenius dependence over a large temperature range (cf. Fig. 3.21 b)),
one can extract an activation energy for the transport of about 8 meV. As anticipated,
this value is lower than in trap-limited transport regimes which is consistent with the
higher mobilities calculated here. Moreover, it was found that experimentally measured
activation energies, ranging between 50 and 140 meV [111,123], depend strongly on the
presence of defects such as grain boundaries [124–126] which are not taken into account
here. In addition, even in high molecular-weight films, the P3HT chains are strongly
kinked and folded [120,123], increasing the resistivity and, thus, the activation energy
distinctly above its intrinsic value. Chang et al. [111] factorized the effective mobility as
the product of a disorder and a polaron term yielding activation energies between 5
and 30 meV.

Figure 3.21 depicts also the transport anisotropy for interchain and intrachain mobilities
which reaches a factor of about 25, whereas the interchain transport shows a similar
temperature activation as the intrachain transport. Experimentally it was found that
the intrachain mobility is at least an order of magnitude larger than the interchain
mobility [126], similar to the present calculations. Ref. 127 observed that the mobility
anisotropy decreases clearly with increasing temperature due to melting effects. These
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effects as well as thermally induced crystallization and creation of small crystallites with
additional grain boundaries and reduced number of bridging chains [128] are not included
in the present theory.

In contrast to models relying on fits to experimental data, the ab initio description used
here allows for an analysis of the influence of certain phonon modes in more detail. The
following subsection examines how low- and high-frequency phonon modes affect the
mobility of P3HT, respectively.

3.2.4.1 Characterizing the influence of P3HT phonon modes
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Figure 3.22: Calculated hole mobility as-
suming that the six lowest phonon frequen-
cies are increased by 10 % (turquoise) or
that the phonon frequencies exceeding 80
meV are increased by 10 % (orange) in com-
parison to the actual values (red).

To get a deeper understanding of the
phonons’ influence onto the intrinsic
charge transport and to possibly assist
the molecular design in this regard, the
affect of the most relevant phonon modes
on the transport characteristics is scru-
tinized. One possibility to analyze only
some selected modes could be realized by
reducing their el-ph coupling constant by
a certain factor and attribute the change
in the calculated mobility to these modes.
This approach has the disadvantage that
it is not well-suited to give realizable opti-
mization hints for experimentalists, since
a direct manipulation solely of the el-ph-
coupling constants is hardly possible. Instead, a better way is to blue-shift selected
phonon frequencies which can experimentally more easily be achieved by making the
polymer matrix more stiff. As the coupling constants depend on the frequencies via
gλ ∼ ω

−3/2
λ (cf. Eq. 3.3), the originally intended goal of reduced coupling constants

is also fulfilled with this approach. In the following, the low energy and high-energy
modes are modified separately to analyze their individual impact onto the mobility due
to reduced el-ph couplings through increased mode frequencies (by 10%).

The resulting temperature-dependent mobilities are depicted in Fig. 3.22. For the
orange curve, phonon modes with energies higher than 80 meV are shifted, while for
the turquoise curve the lowest six modes are modified. Especially the latter scenario
could be realized by making the P3HT polymer backbone less flexible, for instance.
Fig. 3.22 shows that a frequency blueshift by 10 % of the lowest six phonon modes
(turquoise) increases the low-temperature mobility considerably, but has less influence
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for temperatures at or above room temperature. Therefore, a stiffening of the polymer
matrix, in order to lock torsional modes (cf. Fig. 3.23) or at least increase their
vibrational frequency, can indeed moderately improve the P3HT transport properties.

Fig. 3.22 shows a crossing of the orange and turquoise curves at about 80 Kelvin so
that a modification of the low-frequency modes yields a more increased mobility for
temperatures below 80 K. To understand this effect in the low temperature regime,
one can simplify Eq. 2.87 to evaluate it analytically, assuming that there are only
two effective phonon modes – one with low frequency (~ω1 < kBT ) and one with
high frequency (~ω2 � kBT ). The mobility depends on the frequencies and coupling
constants (g1 and g2) according to (cf. Eq. 2.91 in Sec. 2.6 for the derivation)

µ ∼ ε2
√
πτ

2kBT
·

√√√√sinh
(

~ω1
2kBT

)
4πg2

1
e
−2g2

1 tanh
(

~ω1
4kBT

)
e−2g2

2 →

↪→ ∼ T−
3
2 e
−

~ω1g
2
1

2kBT · e−2g2
2 .

(3.7)

This equation shows that the influence of a mode energetically far above kBT is roughly
independent of temperature and frequency and enters only via its coupling constant (cf.
mode 2 in Eq. 3.7). This remaining factor is caused by the zero-point vibration which
every quantum mechanical oscillator possess even at “zero” temperature. Nevertheless
these zero-point vibrations still have a lowering influence onto the mobility (e−2g2

2),
especially for a strong coupling mode.

Since the low frequency modes in P3HT have much larger coupling constants (cf. Fig.
3.18) than the high-frequency ones, a tuning of the former leads to a predominant
mobility increase in this low temperature regime. With rising temperatures, the

2.29 meV 5.04 meV 5.32 meV 7.86 meV 8.28 meV 11.91 meV1) 2) 3) 4) 5) 6)

g² = 3.11 g² = 3.05 g² = 0.18 g² = 0.04 g² = 0.76 g² = 0.25

Figure 3.23: Calculated eigenvectors of the lowest frequency phonon modes.



68 3 Transport properties of P3HT

approximation made in Eq. 3.7 for the high-energy modes is not valid any longer
so that their high frequency enters the exponent and overcompensates the lower
coupling constants. Hence, the blue-shift of the high-frequency modes (orange) leads
to considerably increased hole mobilities, in particular at room temperature and above
(cf. orange curve in Fig. 3.22). The overall increase of the mobility compared to
the unmodified phonon modes (red curve in Fig. 3.22) can also be understood in
terms of the polaron binding energy Epol = ∑

λ
1
2g

2
λ~ωλ which decreases with increasing

frequency and decreased el-ph coupling constants (according to Eq. 3.3). The polaron
binding energy acts as a barrier for the phonon-assisted transport. Since the high-
frequency modes contribute more to Epol, the mobility increase is also larger upon
tuning those. Moreover, one has to mention that these weakly excited high-energy
modes constitute energetic traps due to their large polaron binding energies. Therefore,
they do not contribute to an increased hopping rate at room temperature but decrease
the mobility by trapping charge carriers. Thus, it is necessary to identify the important
high-frequency phonon modes of P3HT and to investigate their displacement patterns
in order to potentially modify them in P3HT.

Fig. 3.24 depicts the 17 most relevant high-frequency modes ranked by their contribution
to Epol. This rating is different from a sorting by coupling constants as it includes
also the frequency dependent pre-factor. The modes A) and B) are by far the most
important ones among the phonons shown in Fig. 3.24. These modes feature strong
vibrational amplitudes at the ring carbon atoms and thus affect strongly the upper
most valence band (labeled HVB, isosurface shown on the top left in Fig. 3.24) which
explains their relevance for the hole mobility. The HVB corresponds to π-states at
the C=C ring bonds and has nodes at the interring connection and at the C-C bond
opposite to sulfur.

The phonon modes D), F), and M) involve also carbon atoms of the thiophene rings
but they stretch and compress mainly the node positions of the HVB, hence affecting
the transfer integrals somewhat less. The modes K) and N) influence the transfer
integrals also less as their stretching and compression of C=C bonds nearly compensate
each other due to the asymmetric nature of the vibration. Moreover, out of plane
movements of C atoms (e.g., in mode J)) are also of little relevance as they are
accompanied by small bond-length changes only.
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A) 150 meV, Epol=32 meV B) 148 meV, Epol=30 meV D) 88 meV, Epol=14 meV

I) 164 meV, Epol=4 meVH) 123 meV, Epol=4 meV

L) 145 meV, Epol=3 meV M) 184 meV, Epol=3 meV O)152 meV, Epol=3 meVN) 145 meV, Epol=2 meV

J) 106 meV, Epol=3 meVG) 80 meV, Epol=5 meV

124 meV, Epol=2 meV 

F) 99 meV, Epol=5 meV

Q) 169 meV, Epol=1 meVP)

C) 173 meV, Epol=15 meV E) 171 meV, Epol=10 meV

K) 190 meV, Epol=3 meV

HVB visualization

Figure 3.24: Calculated eigenvectors of relevant high-energy phonon modes exceeding 80 meV,
ordered according to their polaron binding energy. The HVB orbital character is indicated on the
top left (relevant for all the modes shown).
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Some of the important strong-coupling modes from Fig. 3.18, whose phonon patterns
are depicted in Fig. 3.24, have also been identified in experiments: Refs. 115 and 129
find a strong symmetric C=C mode at 179 meV which is in good agreement with the
present mode C). Moreover, a weaker antisymmetric C=C mode was reported at 187
meV [115,129] which coincidences well with mode K) at 190 meV. Refs. 129 and 115
detected also a C-C stretching mode at 171 meV, perfectly matching the present mode
E), where the C-C bonds opposite to the sulfur atom are compressed and stretched.
Furthermore, mode G) with an energy of 80 meV involves a vibration of the sulfur
atoms which is detected in Ref. 115 at 84 meV.

It is found that high-energy modes, involving mainly hydrogen oscillations, are typically
negligible for the relevant transfer integrals. This does not apply for mode F) at 99
meV (experimentally detected as “CH out of plane bending of the thiophene ring” at
102 meV [115]) as this phonon mode involves also backbone C atoms. Similarly, one
finds that the influence of hexyl side chain vibrations on the transfer integrals are minor
(cf. modes O) – Q)) as long as they do not affect carbon backbone atoms as in modes
G), H) and L).

Summarizing the temperature-dependent transport results of this section, a well defined
limit for the mobility in crystalline material including polaron effects was determined.
This helps in the interpretation of experimental data, where disorder as well as polaron
effects manifest themselves in qualitatively similar ways [111]. Thereby it was found
that high-frequency molecular vibrations with strong coupling constants reduce the
hole mobility considerably at room temperature. Especially modes deforming the
C=C bonds in the thiophene ring are harmful for the charge transport. Hence, one
might think about material modifications which reduce the influence of these modes.
However, the calculated mobility limit demonstrates that far better improvements can
be expected from further increasing the crystallinity of present P3HT-based devices.
The comparison of the predicted theoretical limit for ideal crystals with measurements
for various P3HT films thereby implies that the experimental samples suffer from
significant structural disorder. These imperfections influence the device performance
most strongly by decreasing the carrier mobility by more than two orders of magnitude.



4
Indium nanowires on Si(111)

Indium nanowires form by self-assembly upon annealing of a monolayer of indium on a
Si(111) surface, thereby having the advantage of easy preparation and reproduction.
These atomic-scale wires constitute an important model system since they offer a broad
range of interesting physics due to their strongly intertwined structural, vibrational,
and electronic properties [130]. It is very beneficial that their physical properties can
be accessed by high-resolution surface analysis tools. Furthermore, the wires have
long been investigated as model systems for phase transitions in quasi one-dimensional
structures and electron transport on the atomic scale [131–140]. The computationally
tractable size of the system allows thereby the theoretical analysis of these properties.

(4x1) unit cell

(8x2) unit cell

Figure 4.1: (8×2) hexagon low temperature phase (top) and (4×1) room temperature
phase forming regular zig-zag chains (bottom).
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The indium nanowires are known to form a low-temperature semiconducting and a
room-temperature metallic phase. The former consists of indium hexagons arranged in
a 8×2 translational symmetry [141] (cf. Fig. 4.1, top). This phase lowered its energy
compared to the metallic phase by opening a band gap1 of about Eg ≈ 100 meV [142–144].
Above around Tc =120 K a reversible phase transition occurs and the indium atoms
arrange into regular zigzag chains with 4×1 symmetry [133,145], see Fig.4.1, bottom.
This insulator-metal transition is accompanied by a resistance decrease of about three
orders of magnitude [146]. It is found that adsorbates, depending on their species, either
decrease [147–151] or increase the critical temperature Tc [151,152]. Besides, also a possible
application as a spin filter has been pointed out in Ref. 138 by analyzing the Rashba
splitting in the band structure of the nanowires.

This chapter is divided into two parts: The first section analyzes the quantum conduc-
tance anisotropy of the metallic 4×1 phase with the formalism already used for P3HT.
By other approaches this kind of investigation was prohibitive expensive before so far.
The second section takes a closer look on the 8×2 → 4×1 transition between the
two phases. In contrast to a thermally driven phase transition, the focus is here on a
detailed explanation of a phase transition induced upon laser excitation, experimentally
observed in Refs. 153 and 145.

4.1 Quantum conductance of regular indium
nanowires upon oxygen adsorption

In this section the quantum conductance of the 4×1 regular zig-zag phase is investigated.
Thereby special emphasis is given to the conductivity change in inter- as well as
intrawire direction upon exposure to oxygen. The results are of particular interest for
characterizing the coupling between adjacent indium wires. The formalism applied
here follows the one which successfully described the transport properties of oxygen
degenerated P3HT in Sec. 3.1.5. It allows for a determination of the coherent
transmission coefficients across the oxygen contaminated indium wires.

Density functional theory (DFT) and scanning tunneling microscope (STM) stud-
ies [154,155] found that atomic oxygen adsorbs on threefold coordinated intra-chain sites
as depicted in Fig. 4.2. The oxygen adsorbs thereby either above or below one of the
two zig-zag chains, or between them [154,155].

To answer the question how strongly the adsorbed oxygen affects the transport along and
perpendicular to the wire direction, quantum conductance calculations are performed

1This effect is also called Peierls transition [142,143].
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α-type β-type γ-type

Figure 4.2: Three different kinds of oxygen defects commonly observed in indium
nanowires. The structure and labeling is adopted from Ref. 154 who find a population
ratio of α : β : γ = 10 : 3 : 1 by STM measurements for the three kinds of defects.

for the energetically most stable and commonly called α-type oxygen defect. The
system setup for the transport in intra- as well as interchain direction is depicted in Fig.
4.3. The composition is similar to the one used in the previous sections: The scattering
region contains an adsorbed oxygen atom and is sandwiched between semi-infinite ideal
contacts which contain the undisturbed indium nanowires. Several additional ideal
unit cells are added to the scattering region, for which the total potential is gained
self-consistently (cf. Fig. 4.3), to be able to include also longer-range effects of the
oxygen impurity onto adjacent unit cells.

To make the ab initio quantum conductance calculation feasible for such extended
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Figure 4.3: Schematic setup for the transport calculations along the two directions
intra- and interchain. The scattering unit cell containing the oxygen scatterer is
sandwiched between ideal wire segments that model semi-infinite ideal contacts.
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systems, the silicon substrate is reduced to a single bilayer saturated with hydrogen. A
convergence test (for a less extended scattering region) showed that this approximation
changes the relative conductivity results (σ||/σpure

|| and σ⊥/σpure
⊥ ) only marginally. This

is related to the fact that the reduction of the substrate affects the relevant indium
bands only in a minor way compared to a supercell with three double-layers substrate.
Moreover, a plane wave energy cutoff of 40 Ry is found to be sufficient enough for the
transport description. To sample the 4×1 Brillouin zone (BZ) a 16 (intrachain) × 4
(interchain) × 1 equidistant Monkhorst-Pack [82] k-point mesh is used. The number of
k points is reduced for more extended unit cells accordingly (e.g., the scattering cells).

For the intrawire configuration a significant conductance drop is obtained: The oxygen
adsorption decreases the conductance at the Fermi edge to σ||/σpure

|| ≈ 0.65. This
ratio agrees quantitatively well with the previous work of Ref. 156 who solely focused
onto the intrachain transport, using a Green’s function formalism [35,39]. Thereby they
showed that mainly two effects cause the strong decrease in the indium nanowire
conductivity: On the one hand the oxygen atom forms an effective scatterer due to an
induced potential well, on the other hand the impurity leads to deformations of the
ideal nanowire structure. The latter was also observed for P3HT in Sec. 3.1.5, where
the adsorbed oxygen destroyed the planar polymer backbone, and thus, the conducting
delocalized π-system.

In contrast to the previous work [156], here it is also focused onto the comparison of the
intra- and interwire transport. Therefore, also the conductivity change in the direction
perpendicular to the wires upon oxygen adsorption is determined. A ratio of σ⊥/σpure

⊥ ≈
0.45 is found which indicates that the coherent transport perpendicular to the wires is
slightly more affected than the parallel one. Hence, the results suggest a strong interwire
coupling which is disturbed by oxygen adsorption. Here, the available experimental
data is controversial since the experiments of Refs. 157 & 158 did not report a change
in the σ⊥ component. However, Ref. 140 finds unambiguously that both the intra-
and interwire couplings are affected by adsorption, which is supported by conductivity
measurements showing very similar decay rates for the intra- and interwire transport
upon oxygen adsorption. The contradicting experimental results might be related to
different preparation schemes as it was found that the flash-annealing temperature,
used for cleaning and preparation of the Si(111) surface, has a critical influence onto
the conductivity perpendicular to the wires [159]. Nevertheless, the calculated changes
in the coherent transport are in good agreement with the measurements of Ref. 140 if
one considers that a space charge layer, present in the experimental films and causing
an isotropic background, is not included in the calculations.

In summary the quantum conductance calculations show a clear effect of single oxygen
defects onto the intra- but also onto the interwire electron transport. This reveals an
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effective interwire coupling which is also supported by experimental measurements of
Ref. 140 who find a gradual decrease of σ⊥ with increasing oxygen dose.

In the next section it is switched from mainly pure electron dynamics considered so far2
to a coupled motion of electrons and ions in an insulator-metal transition after optical
excitation.

4.2 Optically driven phase transition

Phase transitions between equilibrium states of matter as function of temperature,
pressure, magnetics fields, etc. are ubiquitous. However, their direct atomic scale
observation is usually not possible. They are typically described in terms of statistical
ensembles and phenomenological models, see e.g., Ref. 160. Hence, it is very interesting
to analyze phase transitions on the atomic scale. This includes also the detailed
investigation of the speed they evolve at and how they can be driven.

Here, the phase transition between the hexagon 8×2 and the metallic 4×1 phase is used
as a prototype example to analyze and answer these questions for this broadly studied
system. Thereby the focus will be not on the temperature driven phase transition
which has been extensively studied in the past [131,136,139,147,148,151,152,161,162], but on the
optically driven phase transition upon laser excitation which has been experimentally
observed (recently) in Refs. 145 and 153. Wall et al. & Frigge et al. monitored
the phase transition using time-resolved reflection high energy electron diffraction
(RHEED) on the femtosecond scale. To achieve such a fine time resolution in the
pump-probe experiments, an enormous effort was made to tune the experimental setup.
For instance, to compensate the velocity mismatch between the laser pump and the
RHEED-electron probe pulses, a tilted pump-pulse front [163] was used. This 120 fs
pump laser pulse with a photon energy of 1.55 eV turns the low-temperature 8×2
geometry into the room-temperature 4×1 while the measured temperature is far below
Tc. Hence, conventional thermal melting can be excluded, suggesting that the phase
transition is driven by non-thermal processes [164–169].

The microscopic elucidation of this optically driven phase transition is the central goal
of this chapter.

The theoretical description of the system is based on DFT within the local density
approximation (LDA) as this functional (in contrast to PBE) is able to predict the
relative energies between the phases accurately [130,136,137,145,154,161,170–172].

2 With exception of the polaron quasiparticle description in Sec. 3.2
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(8x2) unit cell

15 Å 

Figure 4.4: Side view onto the sur-
face of the (8×2) hexagon phase
modeled by three bilayers of silicon
with hydrogen termination and a va-
cuum spacing of 15 Å.

The surface is modeled within a supercell, con-
taining three bilayers of silicon with a hydrogen
saturated bottom layer. It is separated from
its periodic image by 15 Å vacuum, cf. Fig.
4.4. Moreover, norm-conserving pseudopoten-
tials in conjunction with a plane-wave basis set
limited by a cutoff energy of 50 Ry are employed
to describe the electronic structure. A shifted
2×8×1 Monkhorst-Pack mesh [82] is used for BZ
sampling.

The following part is divided into four subsec-
tions: The system’s band structure is analyzed at
first to identify states contributing to the phase
transition. After this, a detailed bonding analysis
is presented, explaining and visualizing the impact of various excited states onto the
surface bonds. Next, molecular dynamic (MD) simulations are shown to consider also
the time dynamics of the structural phase transition. Finally, the lower and upper
excitation thresholds and transition speeds are compared with the experimental results.

4.2.1 Identify contributing states
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Figure 4.5: Potential energy surface (PES)
of the electronic ground state along the
energetic minimum path between the 8×2
hexagon (right) and the 4×1 regular zig-zag
chain phase (left).

Potential energy surfaces (PESs) are a
well suited tool to characterize the ener-
getic behavior during a phase transition.
Figure 4.5 shows the 1D-PES for the
electronic ground state at “zero” Kelvin,
where the 8×2 hexagon phase clearly
constitutes the global minimum. A mi-
nor minimum appears also in the shape,
corresponding to the room-temperature
4×1 phase, which forms a metastable
configuration at “zero” temperature. This
phase is separated by a distinct energy
barrier of about 50 meV from the global

minimum formed by the 8×2 phase. The reaction coordinate Q in Fig. 4.5 was chosen
along the minimum energy path on the electronic ground-state PES.
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Figure 4.6: Example system in which an excitation from orbital 2 to 4 is modeled. b)–e)
show possible configurations which might arise during electronic relaxation. Figures b)
and d) constitute thereby converged situations. However, Fig. d) shows an unintentional
excited state as the band ordering has changed causing an occupation of different states
than selected in a).

To investigate an optically driven phase transition, constrained DFT [173] is used to model
laser induced excitations in this work. This means that the occupation numbers of the
electronic states are kept frozen to describe a specific excited electron configuration.
Thereby different electronic excitations can be analyzed whether they are able to drive
the phase transition or not.

As the actual available Quantum Espresso-code (v6.0) allows constrained occupation
numbers only for calculations with one single k-point, it was extended to support also
systems using an arbitrary number of k points. This implementation allows also to
use Quantum Espresso’s k-point parallelization and receives the band-, k-point- and
occupation-numbers to be modified from a newly defined input card within the standard
input file. Figure 4.6 a) shows an exemplary system for which the excitation should
invert the occupation of orbitals 2 and 4. As such a change in the occupation numbers
causes a different potential in the system, the band number of a specific orbital can
be different in the ground and the excited state. This leads to the problem that the
system can electronically relax into an excited state other than desired. Figures 4.6 b)
and c) show possible configurations how the orbital energies can evolve in following
self-consistent field (scf) steps after the occupation numbers were changed to model an
excited state. Figure 4.6 b) depicts the converged situation where the orbital numbers
2 and 4 still form the desired excited state. In contrast to this, Fig. 4.6 c) depicts the
case in which the electronic relaxation led to a permutation of band 3 and 4. As the
code only excites according to the orbital number, a wrong conductance band is filled
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now, while the (red marked) originally fourth one is emptied. This reoccupation of the
orbitals leads to an abrupt change in the potential which can lead to two consecutive
situations: (i) Fig. 4.6 d) shows the case in which the system converged into a state in
which the undesired fourth state stays filled while (ii) Fig. 4.6 e) shows the situation
in which the electronic relaxation leads to a re-swapping of the bands again. The latter
will usually never converge as the charge is periodically shuffled between the two states
which interchange their band number in dependence on their occupation.

Altogether, only the state in Fig. 4.6 b) constitutes a desired excited state while
the others are unintended or do not converge. This problem occurs more and more
frequently, the closer in energy the bands are.
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SCF step

overlap with stored wave-
functions reveals permutated

bands → update band numbers
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groundstate orbitals

Figure 4.7: New program flow in
order to guarantee a convergence to
the desired excited state.

To overcome this problem, the new implemen-
tation needed to be modified to guarantee an
electronic relaxation into the desired excited state.
Therefore, in the present implementation this is
now achieved by analyzing the overlap of the
wave functions during their self-consistent deter-
mination. The new program sequence is sketched
in Fig. 4.7.

The code expects the band ordering of the ground
state in the input file. At the beginning it does
not change the occupation numbers according
to the input file, hence converging towards the
electronic ground state. Shortly before the solver
stops due to convergence, the implementation
saves the wave functions of the bands to be
modified into a separate variable and changes
the occupation numbers according to the input
file. From now on, the program calculates the
overlap of the stored wave functions with the
new ones every electronic step and dynamically changes the band number if the overlap
reveals a changed band ordering. This way guarantees that always the occupation
number of the same orbital is modified and that this orbital coincidences with the one
selected for the ground state (cf. Fig. 4.7).

For such realized frozen excited states, 1D-PESs are determined as they allow for an easy
classification whether the phase transition is energetically possible and not prevented by
an energy barrier. Since the experiment is based on laser excitation, the explored excited
electron configurations are restricted to charge neutral ones. Nevertheless, the excited
states are not forced to conserve momentum due to possible electronic relaxations
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caused by scattering processes subsequent to vertical optical excitations. However,
the photon energy used to trigger the phase transition in the experiments of Ref. 153
& 145, 1.55 eV, allows for exciting a far larger number of electronic configurations
than computationally accessible. Hence, it is necessary to restrict the excited state
configurations only to those ones which are long-living enough to drive the phase
transition.

The quasiparticle lifetimes due to electron-electron interaction provide corresponding
estimates and can be accessed by GW calculations using the imaginary part of the
electronic self-energy (cf. Sec. 2.2). Using the G0W0 approximation, one can determine
the lifetime τnk of a quasiparticle state εQP,0nk by [174]

τnk = 1
2< [Znk]=

[
Σnk

(
εQP,0nk

)] , (4.1)

where Znk is only a renormalization factor and Σnk is the electronic self-energy. Before
this approach is applied to the indium nanowires, the quasiparticle lifetimes are calculated
in aluminum bulk, which used as a well studied reference system, and compared with
literature data. The Brillouin zone of aluminum is sampled with a 12×12×12 Monkhorst-
Pack mesh [82] and 32 bands are included in the calculation.
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Figure 4.8: Left/Middle: Quasiparticle lifetimes calculated for aluminum using Eq.
4.1 (depicted in different units). Right: Figure from Ref. 175 showing their G0W0
results obtained with the ABINIT program package [176] (triangles), older theoretical
predictions from Zhukov et al. [177] (a) and experimental results by Bauer et al. [178] (b).

Figure 4.8, left/middle shows the quasiparticle lifetimes calculated with Eq. 4.1 using
the Vienna Ab initio Simulation Package (VASP) (depicted in the units [fs] and [eV]).
It can be seen that the lifetimes decrease rapidly the further the electron/hole energy
is apart from the Fermi level, while directly at the Fermi level infinite lifetimes are
possible. A figure from Ref. 175 is depicted on the right hand side of Fig. 4.8, which
contains (quasiparticle) lifetimes theoretically as well as experimentally obtained for
aluminum. The lifetimes determined with VASP agree thereby well with the theoretical
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and experimental results from the literature. Encouraged by this accordance, the
quasiparticle lifetimes are now investigated in the 8×2 indium nanowire phase.
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Figure 4.9: G0W0 quasiparticle lifetimes (left) and the experimentally measured
population decay time (right, from Ref. 153) for the 8×2 phase.

However, due to the large system size (136 atoms) the G0W0 calculation did not complete
within the maximum allowed wall clock time. Therefore, the GW implementation of
VASP had to be modified in order to write arrays containing intermediate results to
hard disc drive. With this extension one was able to restart the GW calculation several
times after the maximum allowed runtime was reached. The quasiparticle lifetime
results are shown in Fig. 4.9, left. The calculations are restricted to 1290 bands
(240 occupied + 1050 unoccupied) and 10 k points due to their enormous expense.
However, comparing the G0W0 results with experimental measurements of the bands
population decay time on the right of Fig. 4.9, the agreement is quite good. This
is especially true if one keeps in mind that the quasiparticle lifetimes account not for
all possible decay channels covered in the experimental measurements (e.g., electron-
phonon, electron-defect scattering and recombinations are not included). Moreover,
the GW approximation describes a system including an additional hole (electron) and is
therefore related to (inverse) photoemission spectroscopy, respectively [22,179]. This is in
contrast to the charge-neutral excitonic excitation experimentally realized here.

Nevertheless, both curves confirm that in particular the electronic states close to the
band gap are long-living enough and therefore possible candidates to drive the (8×2)
−→ (4×1) phase transition. In addition, especially the experimental data shows rapidly
decreasing lifetimes to only a few femtoseconds for states at higher energies so that
these do not have to be considered for the phase transition. The comparably too
high quasiparticle lifetimes of those states in the G0W0 approximation have also been
observed for other systems in Ref. 174 who conclude that “G0W0 generally overestimates
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the lifetime of the quasiparticle states far from the Fermi level”.

Due to time reversal symmetry3, the shifted 2×8×1 Monkhorst-Pack mesh is reduced
to 8 k points in intrachain direction, cf. red line through the sketched Brillouin zone in
Fig. 4.10 a). Each k-point represents one of eight sectors used to address different
excited state configurations. The potential energy surfaces for some vertical excitations
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Figure 4.10: a) Cut through the Brillouin zone in intrachain direction. The cut is
discretized using 8 k points, where each represents one sector which is used to address
different excited state configurations. The color of the bands indicates whether they
originate from the silicon substrate or the indium nanowires while the shaded gray area
visualizes the projected silicon bulk band structure. b) Potential energy surfaces for the
ground state (known from Fig. 4.5) and different vertical excitations over the band gap.
The solid lines excite only between the highest valence band (HVB) and the lowest
conduction band (LCB) in one sector (0.25 e−/8×2 unit cell), while the dashed lines
include also the symmetric counterpart (0.5 e−/8×2 unit cell). The orange arrow in
part a) shows exemplary the excitation H4 → L4. c) Further excited state configurations
which do not necessarily conserve momentum due to electronic relaxation. The green
curve models an excited state with holes in sectors 1 & 8 in the HVB and the underlying
HVB-1 and electrons in sectors 4& 5 in the LCB and LCB+1 (1.0 e−/8×2 unit cell).

3Spin-orbit coupling was neglected since it does not noteworthy affect the total energy and forces in
the system and has only a slight influence onto the band structure (cf. Ref. 138).
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between the valence- and conduction band edges in different sectors are shown in Fig.
4.10 b). The excitation H4 → L4, belonging to the orange PES, is sketched in Fig. 4.10
a) to clarify the excited configuration labeling. It can be seen that many excitations
decrease the barrier between the 8×2 and the 4×1 phase. Though, the 8×2 phase is
energetically still favored or an energy barrier hinders a direct transition to the 4×1
phase. Especially an occupation inversion at the smallest band gap in sectors 1& 8 will
not lead to a phase transition as can be seen at the blue curves in Fig. 4.10 b). Only
an occupation inversion in the middle of the Brillouin zone in sectors 4& 5 offers a very
small gradient towards the 4×1 phase (cf. orange dashed line). However, there are
also several excited state configurations whose PESs show a clear gradient towards the
4×1 phase, hence driving the phase transition as can be seen in Fig. 4.10 c). If one
compares the configurations of excited states driving the phase transition, one finds
that they have holes in sectors 1&8 at the valence band edge and electrons in sectors
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Figure 4.11: a) Band structure of the 8×2 phase as depicted in Fig. 4.10. b) Band
structure of the 4×1 phase (in a 8×2 cell for easier comparison). The turquoise
highlighted bands correspond to the S1 and the orange ones to the S2 band in the
4×1 cell (see, e.g., Refs. 130 & 138 for labeling conventions). All these shaded bands
around kx = 0 and kx = ±0.5 constitute the crucial parts in the Brillouin zone for
driving the phase transition by excitation.
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4&5 at the conduction band edge in common. The green PES in Fig. 4.10 c) can even
considerably increase the energy gradient by taking the underlaying valence band in
sectors 1& 8 and overlaying conduction band in sectors 4& 5 additionally into account.
The excitation of these configurations are clear candidates for driving the (8×2) −→
(4×1) phase transition.

One has to mention that excited states composed of several excitations cannot simply
be broken down into the PESs corresponding to single excitations. As an example, the
H1,8 & 4,5 → L1,8 & 4,5 excitation in Fig. 4.10 c) is obviously not given by the sum of the
H1,8 → L1,8 (dashed blue) and H4,5 → L4,5 (dashed orange) PESs in Fig. 4.10 b).
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Figure 4.12: Excerpt of the band structure
for a structure slightly before (closer to the
8×2 phase, top) and after (bottom) the
maximum of the potential barrier. Orange
drawn bands are occupied while black ones
are empty.

The special role of the identified bands
and sectors for the phase transition can be
understood with the help of Fig. 4.11 a)
and b), where the band structure of the
8×2 phase is compared with the one of the
4×1 phase, respectively. One finds that
the marked excited states in the Brillouin
zone center move downwards while the
emptied ones at the BZ boundary move
upwards during the phase transition. By
occupying the downwards moving bands4,
the system gains energy for the phase tran-
sition while the states moving upwards5
are emptied and therefore cannot impede
the structural change.

With this explanation one can also under-
stand the physics behind the maximum
in the ground-state PES (depicted in Fig.
4.5 and 4.10) which constitutes the po-
tential barrier: For reaction coordinates Q
between the 8×2 phase and the maximum,
the identified states at the BZ center are
empty so that the system does not gain
energy upon lowering these states. On
the other hand the system needs to pay
energy to raise the states at the BZ border
which are filled in the ground state. The
4Labeled S1 in the 4 ×1 cell in the literature [130,133,138], sometimes also m1, e.g., in Ref. 143
5Usually labeled S2 (m2) in the 4 ×1 cell
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gradient of the PES changes into a falling behavior when the states at the BZ center
are lowered so far that they become occupied even in the electronic ground state. An
excerpt of the band structure slightly before and after the position of the potential
barrier maximum is shown in Fig. 4.12. At the turning point, the Fermi distribution
shuffles the charge carriers from the raised states at the BZ border to the center, hence
doing exactly the kind of reoccupation which was identified to drive the phase transition.
From this critical point on, at which the important states become naturally occupied,
the PES shows also in the ground state a clear gradient towards the 4×1 phase (cf.
Fig. 4.5).

The orbitals belonging to the marked parts in the band structure in Fig. 4.11 a)
are depicted in Fig. 4.13 in corresponding colors. As can be seen on the left hand
side, the states in the Brillouin center belong to In-In bonds across the hexagons.
During the phase transition, the distance between these indium atoms is reduce which
explains the observed lowering of the bands in Fig. 4.11. Moreover, the occupation
of these bonds results into a force that exerts an attractive interaction between the
respective indium atoms and thus actively drives the phase transition. In more detail,
the attractive force exerted by exciting electrons in these bonds across parallel In-In
zigzag chains excites an In-chain shear phonon mode. This mode occurs at about 28 and
18 cm−1 for the (4×1) and (8×2) phase [172], respectively and has also been detected
by Raman spectroscopy [180]. The mode is energetically below the phase-transition
temperature of about kBT = 83 cm−1 and has been suggested to be responsible for the
lattice deformation characteristic in the (8×2) −→ (4×1) phase transition [136,141,181,182].
Additionally, a second important phonon mode, a hexagon rotational mode at about 27

(8x2) unit cell

Figure 4.13: Orbitals belonging to the special bands and sectors for the phase transition.
The colors correspond to the ones used in Fig. 4.11 to mark the orbitals in the band
structure. The arrows indicate two important phonon modes for the phase transition.
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cm−1 has also been identified [136] to be characteristic for the phase transition. This
mode might be excited by a depopulation of the orbitals depicted in Fig. 4.13 on the
right as the indium atoms can move more freely in the indicated mode direction.

4.2.2 A detailed bonding analysis

Since the analysis of bond strengths is usually a well suited “measure” for structural
phase transitions, this subsection determines the bond strengths upon excitation and
during the phase transition to gain further insights.

Therefore, the crystal orbital Hamilton population (COHP) analysis, introduced in
Sec. 2.7, is applied as it allows for determining the strength of selected indium-indium
bonds within the complicated nanowire structure. Moreover, it is possible to track
quantitatively the bond strength changes during the phase transition with this method.

(8x2) unit cell

(8x4) unit cell

Figure 4.14: Left: A COHP bonding analysis between the green and blue marked
atoms inside the 8×2 unit cell will include also unwanted but strong contributions
from the interaction of the green marked atom with the closer periodic image of the
blue atom. Right: By extending the unit cell to a 8×4 one, the periodic images are
separated far enough to exclude their influence onto the bonding results.

The COHP formalism does not distinguish between a selected atom and its periodic
image in other unit cells. Hence, the calculated bond strength between two atoms can
contain also unwanted contributions from interactions with the periodic images of the
atoms as depicted in Fig. 4.14, left. This problem can be solved by increasing the size
of the unit cell in a way that every interaction with a periodic image is negligibly small
compared to the one with both atoms in the same unit cell. Therefore, a 8×4 surface
unit cell with 272 atoms is used which is depicted in Fig. 4.14, right.
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Figure 4.15: Crystal orbital Hamilton population (COHP) analysis for the 8×2 and
4×1 phase. The curves on the left show the COHP results for two selected bonds
marked on the right in the same color. COHP values smaller/larger than zero indicate
bonding/antibonding states, respectively. The energy integral over such COHP curves
weighted with the occupation number of the corresponding states yields the total bond
strength. These calculations are performed for all possible atom pairs and are depicted
as color coded bonds (right), where dark drawn bonds indicate the ones with the largest
bond strengths.

The COHP curve for a selected bond once in the 8×2 and once in the 4×1 phase is
depicted in Fig. 4.15, left. The results allow for the classification in bonding (COHP
< 0) and antibonding (COHP > 0) as well as nonbonding (COHP ≈ 0) states. The
integral over such curves (including the occupation number in Eq. 2.92) gives a
measure for the bond strength. As the purple marked bond has much larger bonding
contributions in the COHP curve on the left, it is notably stronger than the green
marked one. These bond strengths are also determined for all other possible In-In
interactions and depicted as color code for the (8×2) and (4×1) phase in Fig. 4.15,
right. The bonding results for the (8×2) phase coincident well with the commonly
assumed indium hexagons (cf. Fig. 4.1). The COHP analysis for the 4×1 phase
confirms the typical model of two regular outer zig-zag chains, but with strong bonds
between these two rows which are usually omitted in drawings (cf. Fig. 4.1).

To answer the question whether the bond strengths change abruptly or in a rather
smooth process, the COHP bond strengths of selected bonds are monitored during
the phase transition for the electronic ground state in Fig. 4.16. In contrast to the
ground-state PES (also depicted in Fig. 4.16 in black), the bond strengths have no
turning point in the curvature but change rather smoothly and monotonous between
the two phases. In fact, the green and orange marked bonds are quite remarkable as
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Figure 4.16: Top: The black curve depicts the known potential energy surface, which
exhibits two minima belonging to the 8×2 phase (right), and the 4×1 phase (left),
whose bonds are color coded as insets (from Fig. 4.15). The colored ellipses mark
those bonds for which the bond strengths are traced along the phase transition in the
lower graph.

they considerably increase in strength during the phase transition. Other bonds, in
particular the one indicated blue between outer-row In atoms, loose strength upon 4×1
phase formation.

The results fit well the localizations of the already identified orbitals (Fig. 4.13) driving
the phase transition: While the green and orange marked bonds perfectly match the
localization of the excited orbitals in the Brillouin center, the emptied orbitals at the
BZ boundary have both a localization at the blue indicated bond. Hence, one can
expect that the significant excited states modify the most important bonds strengths
in the direction towards the 4×1 phase. This can be also visualized by plotting the
COHP analysis exemplary for the green marked bond next to the known ground-state
band structure of the 8×2 phase in Fig. 4.17. By depopulating the valence bands
at the BZ boundary and occupying the relevant conduction bands in the middle of
the Brillouin zone, one shifts charge carriers from antibonding (red) to bonding states
(green). Therefore, one can already estimate from the ground-state properties that this
excitation will lead to an increased bond strength of the green bond.

After the bonding properties of the excited states were determined qualitatively and
solely on the basis of a ground-state analysis, the excited configurations are now modeled
with constrained occupation as it was done for the determination of the PESs in Fig.
4.10. For the application of the COHP formalism three representative excited states
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Figure 4.17: Left: Band structure of the 8×2 hexagon phase from Fig. 4.11 a). Right:
COHP diagram for the indium-indium bond marked green in Fig. 4.16.

are selected whose PESs are shown in Fig. 4.18, left. The blue curve belongs to an
occupation inversion at the BZ boundary while the red and green curve excite 0.5 and
1.0 electrons per 8×2 unit cell between the identified orbitals marked in Fig. 4.11 a),
respectively. For the calculations in the 8×4 unit cell, the number of excited electrons
is doubled.

The right hand side of Fig. 4.18 depicts the change in the bond strengths upon
particular excitations for selected positions on the PESs shown left. Blue and red drawn
bonds indicate an increase and decrease in bond strength, respectively, compared to
the electronic ground-state configuration. In agreement with the ground-state analysis,
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COHP changes due to the selected excitations. Letters denote the respective positions
on the PESs shown left. Blue drawn bonds increase while red drawn ones decrease in
strength upon excitation.
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the bond in the 8×2 phase, which gains most strength upon excitation, coincidences
with the orange marked bond in Figs. 4.16 and 4.18 A). As already pointed out, this
fits the need for the phase transition, as this bond is indeed much stronger in the 4×1
than in the 8×2 phase, cf. Figs. 4.15 and 4.16.

Remarkably, the green bond which is strongly involved in the phase transition, is
only slightly drawn in blue in the beginning (Fig. 4.18 A)). However, as the phase
transition has started, this changes completely as can be seen in Fig. 4.18 D), showing
the situation in the middle of the phase transition. This means that the excitation
strengthens the green bond more and more during the phase transition. This matches
perfectly the needs for the phase transition as the gradient of the (green) bond strength
curve grows the stronger the closer the system reaches the 4×1 phase (cf. Fig. 4.16,
green graph). Similarly suitable acts the excitation onto the pink bond: At the beginning
of the phase transition this bond is nearly not influenced (cf. Fig. 4.18 A)) but in the
middle of the transition (cf. Fig. 4.18 D)), this bond is more and more weakened in
accordance with the gradient of the corresponding pink curve in Fig. 4.16.

The bonds between the outermost indium chain atoms (marked yellow and blue) are
also influenced by the electronic excitation. In particular, if two electrons per 8×4 cell
are excited, the yellow marked bond, weaker in the 8×2 than in the 4×1 phase, is
strengthened (cf. Fig. 4.18 C)).

So far, one can conclude that electronic excitations, involving holes at the BZ boundary
and electrons in the zone center conduction states, amplify exactly the important bonds
which increase in strength during the transition according to Fig. 4.16. In addition,
the bonds pulling in the opposite directions of the green bond are notably weakened,
which makes it more easier for the involved indium atoms to decrease the “green” bond
length. The bonding analysis therefore nicely illustrates how the excitations identified
above drive the phase transition.

Why do some excitations fail to drive the transition? To answer this question, it is
illustrative to analyze the occupation inversion at the BZ boundary (cf. blue PES curve
in Fig. 4.18). In the 8×2 hexagon phase, this excitation shows a similar change in the
bond strengths compared to the one electron per 8×4 excitation discussed above (cf.
Figs. 4.18 A) & B)). Both excited state configurations strengthen in particular the
bonds marked orange and green, thereby initiating the phase change. This matches the
nearly equal descent of the corresponding red and blue PESs at the beginning of the
phase transition. However, the two excitations differ more and more from each other
when the phase transition has started: While the red PES continues decreasing, making
the 4×1 phase most favorable, the blue PES increases again, leading to a barrier which
cannot be overcome. Therefore, a bonding analysis in the middle of the phase transition
is needed. The COHP results reflect the gradient behavior nicely - while for the falling
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red PES the important green and orange marked bonds are strongly strengthened (cf.
Fig 4.18 D)), this is not the case for the rising blue PES (cf. E)). Hence, there are no
strong forces pulling the atoms towards the 4×1 phase any more, thus, the transition
is not completed and the system oscillates back.

To summarize all bonding results, the COHP analysis has nicely illustrated why particular
excitations so strongly drive the phase transition: They weaken/strengthen the important
bonds dynamically so that these bonds become closer to the bonds in the 4×1 phase.
Moreover, the dynamic behavior is very important as there are excitations which are
suitable at the beginning but change their influence in the wrong way during the
transition, thus being not able to drive the phase transition.

4.2.3 Time dynamics of the phase transition

After having identified, characterized and illustrated the electronic configurations
that are prone to trigger the (8×2) −→ (4×1) phase change, the time dynamics of
the corresponding structural modifications have to be addressed. For this purpose,
energy conserving molecular dynamic (MD) simulations are performed in adiabatic
approximation, again for the three earlier selected excited-state configurations. Their
potential energy surfaces are shown in Fig. 4.19, left.

The calculated structural deviation to the 4×1 phase vs. time is shown in Fig. 4.19 on
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Figure 4.19: Left: Three selected potential energy surfaces from Fig. 4.10 for which
MD simulations are performed. Right: Time evolution of the structural deviation to
the 4×1 phase for the three selected excitations starting from the 8×2 phase. The
number of excited electrons refers to a 8×2 unit cell.
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the right for the three excited state configurations. The blue dashed PES on the left in
4.19 has a barrier in the middle of the phase transition and a global minimum slightly
offset from the hexagon ground-state phase. Starting in this ground-state geometry, the
excited system transforms its potential energy into kinetic energy while moving towards
its global minimum. Afterwards it overshoots due to its kinetic energy but cannot
overcome the barrier, hence moving back towards its global minimum. This is confirmed
by the MD simulation shown in Fig. 4.19 right, where the blue curve clearly shows this
oscillation around its global minimum close to the original 8×2 phase. In contrast to
this excitation, the green and red curves constitute excited state configurations having
their global minimum at the 4×1 phase. Thereby it is found that the speed of the
transition is scalable by the excitation strength. Corresponding to the larger gradient of
the PES, involving one electron (green) compared to the half-electron excitation (red),
the phase change in the former case occurs much faster, with a time constant of about
400 rather than 700 femtoseconds, cf. Fig. 4.19, right.

An analysis of the atoms’ movement shows that the energy of the excited electron
configurations is at first primarily transformed into the indium structural degrees of
freedom. There exists an aligned movement in the phase space of all atoms towards
the 4×1 phase before the phase transition completes (mainly the shear and rotational
mode, analyzed in Sec. 4.2.1).
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Figure 4.20: Short time Fourier transfor-
mation of the atom velocities obtained by
a molecular dynamic simulation with only
two phonon modes (18 cm−1 & 27 cm−1)
excited at t = 0. A Welch window [183] of
length 1.8 ps is used to reduce the artifacts
caused by a limited window size. The inset
shows the contributions coming solely from
the indium atoms.

After the 4×1 phase is reached, the atoms’
movement dephases quickly in the high-
dimensional phase space6. Moreover, the
shear and rotational mode can excite fur-
ther phonon modes which do not lead to
an aligned movement back towards the
8×2 phase. Instead one finds oscillations
around the 4×1 phase and an energy dissi-
pation into the substrate, thereby heating
it up.

To support these findings quantitatively,
further MD simulations on the ground-
state PES are performed. Here, the start-
ing velocities are initialized according to
the pattern of the shear (18 cm−1) and
rotational (27 cm−1) mode, which were
already visualized in Fig. 4.13. By making
6Already the different frequencies of the shear and rotational mode lead to a “wrong” phase for a
direct back oscillation.
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use of the short time Fourier transformation of the atom velocities, one can calculate a
time-dependent frequency spectrum which is depicted in Fig. 4.20. As can be seen,
at t = 0 the two low frequency modes are strongly excited but decay rapidly due to
excitations of many different modes with an energy roughly up to 160 meV. This is
especially true if one considers the contributions coming solely from the indium atoms
(depicted as inset in Fig. 4.20). Already at 200-300 fs, when the transition is close to
the 4×1 phase, many modes with higher energies are excited, hence confirming that a
fast decay prevents from oscillations between the 8×2 and 4×1 phase as the aligned
movement of all atoms is lost.

4.2.4 Excitation thresholds
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Figure 4.21: Excitation thresholds visu-
alized by means of PES gradients. The
green, red and blue curves depict the already
known PESs from the previous section. The
turquoise PES is based on a full occupation
inversion between the highest occupied va-
lence and the lowest unoccupied conduction
band (2 e−). The number of electrons shuf-
fled for the red PES is lowered by 25 % to
about 0.4 e− for the pink one.

After having identified the driving mech-
anisms and the time dynamics for the
optically induced (8×2) −→ (4×1) phase
transition, the question of the lower and
a possible upper limit for the excitation
strength remains open.

To answer this question, PESs are deter-
mined systematically for decreased and
increased excitation strengths to probe
possible limits. Figure 4.21 shows two
PESs additional to the already selected
ones from the previous sections. The pink
curve depicts the case where the number
of charge carriers excited for the red PES
is reduced by 25% to around 0.4 e−, lead-
ing to an energy barrier which is minimal
over-topped by the starting energy. There-
fore, one can roughly estimate that an
excitation which involves less than 0.4 e−
per 8×2 unit cell cannot drive the phase
transition. In contrast, the turquoise PES
is based on a full occupation inversion be-
tween the highest occupied valence and
the lowest unoccupied conduction band,
thereby involving 2.0 e− per 8×2 unit cell.

As can be seen in Fig. 4.21, the gradient between the green (1.0 e−/8×2 cell) and the
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turquoise (2.0 e−/8×2 cell) PES does not increase notably. Hence, one can vaguely
estimate that the speed of the phase transition saturates at excitations around 1.0
e−/8×2 cell.
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Figure 4.22: Phase-transition time constant τ in
dependence on excitation strength. The blue curve
depicts the theoretically predicted results for differ-
ent numbers of excited electrons per 8×2 unit cell.
The red points show the experimentally determined
transition times of Ref. 153, measured by Tim Frigge
in dependence on the exciting laser fluence.

These thresholds can also be rec-
ognized in Fig. 4.22 which de-
picts the theoretically predicted
phase-transition time constants
in dependence on the number
of excited electrons in the 8×2
unit cell (blue curve). Moreover,
Fig. 4.22 shows the experimen-
tally observed time constants for
different exciting laser fluences
in red. Similar to the theoret-
ical predictions, the experimen-
tal results show also a minimum
excitation threshold for fluences
at about 0.9 mJ/cm2 and a sa-
turation of the transition speed
for 3 mJ/cm2. The experimen-
tally observed minimum and max-
imum time constants as well as
the overall progression are thereby in good accordance with the theoretical results. Due
to this nice agreement, the laser fluence and the theoretically predicted number of
excited electrons can be used to estimate the absorption rate in the surface to about
0.4%.

Given that the phase-transition speed saturates for excitations above 1.0 e−/8×2
cell, one wonders whether this is the speed limit for the phase transition in this
nanowire system or if there are possibilities speed up the transition. By varying the
lattice constant of the silicon substrate, one can add additional strain to the indium
nanowires which results into differently steep PESs. Strained silicon can experimentally
be obtained by using materials with slightly different lattice constants as substrate
for the pseudomorphic epitaxial growth of silicon. For instance, using the germanium
compound Si0.7Ge0.3 as substrate can laterally strain the silicon by about 1% [184]. This
in-plane strain ε‖ leads to a compression of the (111)-silicon layers in growth direction
(out-of-plane strain ε⊥), which can be calculated using linear elasticity theory [185,186]

ε‖
ε⊥

= −C11 + C12 + 4C44

C11 + 2C12 + C44
, (4.2)
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where C11 = 165.6 GPa, C12 = 63.9 GPa and C44 = 79.6 GPa are the stiffness
constants of silicon [184,185]. The minus sign in Eq. 4.2 takes into account that a lateral
expansion causes a vertical compression and vice versa. This formula is used to calculate
the correct vertical strains for several lateral ones. The resulting phase-transition time
constants for differently strained silicon substrates are depicted in Fig. 4.23.
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Figure 4.23: Phase-transition time constants in dependence on the applied strain (top
axis) and the averaged change in bonding energies in the first layer (bottom axis).

To better characterize the strained systems, also the average bonding energies in the
uppermost layer are calculated and plotted on the lower axis (unstrained case as origin).
For lateral strains ≥ 4% and ≤ -3% new phases with different physical behavior are
found, therefore Fig. 4.23 is restricted to the range -2% to 3%.

The results show a monotonous decrease of the phase-transition time constant with
increasing bonding energies. In a simple picture the bond strengths can be associated
with an effective spring constant D which pulls the atoms towards the 4×1 phase.
This coherent motion is mainly executed by the two identified phonon modes (cf. Sec.
4.2.1). Since the oscillation speed of a spring pendulum is proportional to

√
D (and

in this simple picture ∼
√
EBonding), the phase-transition time in dependence on the

bonding energy change might be described by a displaced 1/
√

∆EBonding function. A
corresponding fit is shown in Fig. 4.23 as a slightly blue curve which indeed nicely
matches the previously calculated transition times.

In summary, Fig. 4.23 shows that a slight transition speed increase can be achieved by
a lateral compression, however, it becomes also clear that the equilibrium unstrained
silicon already offers a speed close to the fastest possible optimum.



5
Conclusion

Starting from todays increasing interest in nanostructures and organic semiconductors,
the electronic and structural dynamics of materials in various dimensions were examined,
using the framework of density functional theory. To realize an in-depth analysis, huge
efforts were invested to develop several additional methods and numerical implementa-
tions: (i) a polaron description was implemented to investigate temperature dependent
charge transport. In addition, (ii) several extensions were written for the molecular editor
Avogadro [187] to generate and analyze atomic structures. Besides, (iii) the modeling
of excited states via constrained occupation was realized by extending the quantum
chemistry package Quantum Espresso [34]. This extension allows also for tracking
ionic movements on an excited potential energy surface. An additionally implemented
analysis technique (iv) determines bond strengths, giving access to comprehensible
visualizations of the underlying physics.

These methodological developments provided the tools to obtain the results presented in
the following. During the investigation of organic semiconductors, special emphasis was
given to the transport properties of the polymer Poly(3-hexylthiophene) (P3HT), which
is a commonly used conjugated π-system in organic solar cells and field-effect transistors
(FETs). All of these applications have in common that the p-type conducting polymer
has to offer a conductivity and mobility as high as possible. Since the morphology
and degeneration progress has a crucial influence onto the transport properties of
a polymer like P3HT, a large number of possible imperfections and defects present
in disordered polymer films were modeled and characterized in this thesis. Using a
scattering approach, isomerism and small bending defects were identified to have a
rather minor influence onto the transport properties. This is in contrast to chain torsions
and strong bendings which strongly quench the transport along the affected chains.
The latter effect was visualized and related to a reduced overlap of adjacent carbon pz
orbitals. These orbitals constitute the uppermost valence band by forming a delocalized
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π-electron system which is severely disturbed and fragmented by these kinds of defects.

Figure 5.1: One of
the analyzed oxygen
impurities.

The observed fragmentation thereby goes beyond the simple
picture of a reduced overlap between adjacent orbitals.

Moreover, polymers like P3HT are susceptible to environmental
influences like ambient air. In this context, an oxygen degenera-
tion was investigated by modeling three different kinds of oxygen
adsorptions. While an oxygen adsorption to the sulfur atom has
negligible effects, an attachment to the carbon backbone has a
crucial influence onto the transport properties. This is due to two
reasons - on the one hand the oxygen adsorption disturbs also
the delocalized π-electron system as it breaks a double bond. On
the other hand it causes a structural change in the backbone and reduces the planarity
of the thiophene rings.

Figure 5.2: One
of the important
high frequency
modes reducing
the charge carrier
mobility.

Since the mobility in P3HT is not only limited by static defects,
a different theoretical framework was implemented and presented
afterwards, to describe also temperature effects. The important
coupling between electron and ion dynamics was thereby modeled
within a polaron quasiparticle description. In contrast to the coher-
ent scattering approach considered so far, this framework includes
the coherent as well as the incoherent, phonon assisted hopping
contributions to the total mobility. The required material parameters
were calculated from first principles, thereby having access to all
phonon patterns and frequencies. A subsequent analysis identified
those modes with the largest impact onto the transport properties:

It was found that modes affecting the carbon backbone have in
general a much larger electron-phonon (el-ph) coupling constant
than modes affecting, e.g., the hexyl side chains. As those modes are
characterized by oscillations between adjacent atoms, they posses
usually much higher frequencies than, e.g., modes bending the full
polymer chain. Nevertheless, although these high-energy modes

are barely excited at room temperature, it was demonstrated that they have a severe
influence onto the mobility already due to their zero point vibrations. Hence, the
suppression of these modes gives a further possibility for tuning the transport properties
of P3HT, although one has to keep in mind that reducing disorder effects in real polymer
films will gain a larger mobility increase.

After the analysis of the transport properties of 1D-P3HT chains and 3D-polymer bulk,
the last chapter dealt with a single crystalline system which consists of quasi-1D indium
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nanowires stabilized by a Si(111) surface. By comparing the relative change in the
quantum conductance parallel and perpendicular to the wires upon oxygen adsorption,
it was found that the nanowires couple strongly to each other without being directly
connected. Such a crosstalk between adjacent wires is a large challenge in electronic
chip design on the nanoscale as it increases the leakage current and can causes severe
malfunctions.

Figure 5.3: The two investigated
indium nanowire phases.

These nanowires undergo also an interesting
insulator-metal transition upon optical excitation,
which was recently observed in experiments by
the Horn-von Hoegen group in Duisburg on the
femtosecond scale [153]. The exciting physics arises
thereby from the time-dependent coupled dynam-
ics of electrons and ions. Therefore, the last part
of this thesis presented an in-depth analysis and
explanation of this phenomenon, to understand
the optically driven phase transition from the the-
ory point of view. The microscopic insights were
achieved by a detailed density functional theory study for which several of the program
extensions mentioned above were necessary; the implementations enabled, e.g., the
access to bonding properties during the transition. Moreover, the important electronic
states were identified with the help of potential energy surfaces, whose visualization in
combination with the bonding analysis gives an intuitive and thorough explanation of the
underlying physics. This is especially true for the understanding of the dynamic coupling
between the electronic states and the ions movement. Furthermore, potential energy
surfaces helped to identify excitation thresholds while additionally performed molecular
dynamic simulations provided the opportunity to trace the atomic movements during
and subsequent to the phase transition. The thereby obtained theoretical predictions
are in strikingly good agreement with the experimental observations - ranging from the
excitations thresholds to the phase transition time constants.

The methods developed in the context of this work are in general of broad interest for
further work in the field of quantum transport and optically/externally driven phase
transitions: Technically, the already mentioned various program modifications and
extensions (written during this work) will be of great help (i) to improve the efficiency
for creating, editing and analyzing atomic structures (cf. appendix A) and (ii) to have
a larger portfolio of postprocessing tools to retrieve physically relevant information like
bond strengths. Here, the well documented bond analysis tool will be very helpful in
various scenarios, e.g., to characterize phase transitions or chemical adsorption. The
developed extensions allow (iii) to unambiguously model frozen excited states with an
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arbitrary number of k-points or even more technically, but not less important (iv) to
restart aborted GW calculations after the wall clock time limit was reached.
Moreover, the mentioned implementation of the polaron transport prediction for organic
semiconductors allows, based on material parameters determined from first principles, for
an easy and efficient evaluation of the temperature dependent mobility. An application
of this code on modified structures will help in tailoring the properties of the investigated
materials. For P3HT, one can for instance think about alternative molecular structures
which offer an easier processing to less imperfect molecular crystals and a minor
appearance of traps induced by high-frequency modes with high polaron binding
energies.
Last but not least one has to stress the detailed analysis of the optically driven phase
transition from plenty of different perspectives. These range from identified distinctive
parts in the band structure over a visualization of the corresponding orbitals and their
relation to excited phonon modes up to a comprehensible explanation on the level of
bond strengths. This analysis framework is not restricted to the indium nanowires,
but can be applied to many other systems undergoing phase transitions or chemical
reactions, e.g., in the area of photocatalysis.



A
Extensions and modifications of the molecular

editor Avogadro

The powerful and open-source molecular editor Avogadro [187] was widely used to create,
check and manipulate atomic structures for ab initio calculations in this work. To
extend the functionality of this program (v. 1.1.0), I developed several extensions in
C++ from which some are shortly presented in the following.

A.1 Input files

Avogadro relies on the open-source library Open Babel to import and export atom
configurations from various chemical file formats. As this library (v. 2.3.2) has only
very limited support for Quantum Espresso’s input files and no support for its output
files, it was necessary to extend this library to work with Avogadro in a reasonable way.
Thereby the input file was parsed using regular expressions implemented in the boost
library. Moreover, Quantum Espresso’s additional information about fixed atoms in
the in- and output files is now kept in mind and can be used for structural relaxations
with force field methods inside Avogadro.

A.2 Minor Bug fixes and Changes

Avogadro offers the possibility to duplicate a unit cell and its atoms in all three lattice
directions which can be used, e.g., to build up a larger crystal or to investigate the
distances between the atoms of an unit cell and another. However, for some unit cells
(e.g., diamond unit cell) this did not work properly.
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When copying atoms, Avogadro converts the geometry in a more general format (MDL
Molefile format), first, before copying it into the clipboard. However, this back and
forth conversion did not work reliable and often led to a crashing of Avogadro or took a
very long time to complete after pasting. To reduce the error-prone overhead, a simple
copy & paste routine was added which does only work inside Avogadro as it does not
make use of the clipboard nor does it convert to a special format. Instead, it provides
an exact positioning of the pasted atoms relative to the original atom coordinates.

In addition, I used Avogadro to build up systems from scratch adjusting the unit cell size
afterwards to the created atomic configuration. However, in the original implementation
of Avogadro, a resizing of the unit cell led to a scaling of the atom positions by the
same factor which was undesired for my purpose.

Avogadro, Open Babel and Quantum Espresso used slightly different constants, e.g.,
for the conversion between bohr and angstrom. This led to a reduced accuracy in the
atomic coordinates every cycle of importing and exporting in Avogadro. To overcome
this problem, every conversion constant in Avogadro and Open Babel was adjusted
to the one in the Quantum Espresso package to be fully compatible.

A.3 Maximize periodic distance

Figure A.1: Dialog box of the “Maximize periodic distance Extension”.

The Quantum Espresso package makes use of periodic boundary conditions which are
not always desired, especially if one wants to deal with surfaces, nanowires or single
molecules. The latter require an increased unit cell filled up with vacuum to reduce
the influence of the periodic boundary conditions. However, as Quantum Espresso
relies on a plane wave expansion of the electron wavefunctions, the size of the basis set
(and thus the computational effort) increases strongly with the size of the unit cell. To
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reduce the amount of additional vacuum needed, one can orientate the structure in the
unit cell in a way that the distance between the atoms in one cell and in a neighboring
one is maximized. This was usual a trial and error work where the molecule was rotated
by hand controlled by the displayed distance between two selected atoms from different
cells. This approach had also the disadvantage that meanwhile another atom pair can
come too close which requires further rotations.

To automate this procedure, I implemented an additional extension into Avogadro
whose dialog box is pictured in Fig. A.1. It displays the nearest periodic neighbor
distance on the top right whereas this value is only evaluated for selected spatial
directions on the left. In the lower part the user can provide up to three independent
rotational axes which the program uses to maximize the nearest periodic neighbor
distance by rotations.

9.1 Å

11.4 Å

Figure A.2: Left: Carbon nanotubes in a unit cell with a nearest periodic neighbor
distance of 9.1 Å. Middle: Same geometry from the side view. Right: Rotated structure
by the implemented extension which increased the nearest periodic neighbor distance
to 11.4 Å.

Fig. A.2 shows the application of the new extension using an example of carbon nan-
otubes linked by oligo(phenylene-ethynylene). The goal was to model the conductance
of this 1D system so that a periodicity in the plane perpendicular to the nanotubes was
undesired. Therefore, it was necessary to increase the unit cell perpendicular to the
transport direction in such a way that the nearest periodic neighbor distance is large
enough to assume that the influence of the periodicity is negligible.

While the periodic minimum distance is about 9.1 Å in the structure alignment depicted
on the left, the extension was able to increase it to 11.4 Å by rotating the geometry
around the blue indicated z axis.
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A.4 Try to restore a molecule from folded atoms
into the unit cell

Some programs (e.g. VASP) translate all atoms into the unit cell, which is an equivalent
representation due to the periodic boundary conditions. However, these structures are
harder to understand as the visualization of them shows only connected fragments (cf.
left hand side of Fig. A.3).

Figure A.3: Left: All atoms are folded into the unit cell. Right: New extension restored
the full molecule.

To restore the original geometry I developed a further extensions which tries to maximize
the size of the fragments which ideally leads to only one fragment containing all the
atoms. Thereby the extension makes use of the fact that the atoms can be moved by
multiples of the lattice vectors without changing the physical structure. An exemplary
result of the extension is depicted in Fig. A.3, right.

A.5 Show PWCond system

The quantum conductance code PWCond sets up usually onto three different self-
consistent field (scf) calculations for the three regions left & right contact as well as
the scattering region. The atom positions in this three regions have to be adjusted
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Figure A.4: Input dialog in which the Quantum Espresso input files for the left &
right contacts as well as for the scattering region can be selected separately.

in the unit cell to match when they are combined to the overall transport system in
PWCond.

The implemented extension allows for selecting three different Quantum Espresso scf
input files (cf. Fig. A.4) whose geometry is afterwards loaded into Avogadro and
displayed like PWCond would arrange it. Moreover, it offers the possibility to adjust the
atom positions in the regions to match at the interfaces and to save these changes
afterwards back to three files for the left & right contact and the scattering region.

A.6 Measure plane angle

The polymer Poly(3-hexylthiophene) (P3HT) conducts charge carriers mainly along its
carbon backbone of the thiophene rings. This transport is very prone to tilting angles
between the thiophene ring planes (cf. Fig. A.5 depicting a twisted polymer chain).

Figure A.5: The angles between two adjacent thiophene rings has a crucial influence
onto the transport properties of the polymer P3HT.

To get an easy access to the angles between two adjacent thiophene rings, I implemented
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a new extension which can calculates the angle between planes. A plane is determined
by providing an atom and two bonds which span the plane.

A.7 Put in plane

Especially for aligning molecules as adsorbates onto surfaces I programmed the Avogadro
extension called “Put in plane”. The starting point is a molecule lying in an arbitrary

Figure A.6: Left bottom: SiC surface and an arbitrarily oriented P3HT molecule.
Middle top: Dialog box for the “Put in plane” extension which asks for the actual
and the desired plane. Both planes can optionally be determined by the extension by
providing an atom and two bonds spanning the plane. Right bottom: Aligned molecule
onto the SiC surface by the extension.
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plane which should be aligned parallel to the surface. Figure A.6 depicts this situation in
the lower left part for a P3HT molecule whose thiophene ring planes should be aligned
parallel to a silicon carbide (SiC) surface. By selecting an atom and two bonds of one
thiophene ring the extension determines the actual plane of the molecule. Moreover,
the new plane can be specified in the upper part of the dialog box in Fig. A.6 - in this
case it is the xy plane with an offset of 20 Å to the origin along the z direction.

The lower right of Fig. A.6 shows the aligned molecule after clicking the “Apply”
button.
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B3LYP Becke, three-parameter, Lee-Yang-Parr 9
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COHP crystal orbital Hamilton population 34–36, 38, 39, 85–90, 134, 138, 139

DFT density functional theory 3, 6, 20, 38, 43, 59–61, 72, 75, 97, 136

DFT-D2 DFT including dispersion correction according to Grimme [27] 43, 55, 60

DOS density of states 57, 59

el-ph electron-phonon 30, 33, 59, 61, 62, 66, 68, 96, 136

FET field-effect transistor 41, 95

FFT fast Fourier transform 10, 21

FTIR Fourier transform infrared spectroscopy 62

GGA generalized gradient approximation 7, 9, 10, 38, 43, 60

GSL GNU Scientific Library 63

GW Self energy Σ of a many-body system is expressed as a truncated expansion of
the single particle Green’s function G and the screened Coulomb interaction W
8, 79, 80, 98

G0W0 Approximations are used for G→ G0 and W → W0 in GW calculations 79, 80
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HSE06 Heyd-Scuseria-Ernzerhof 9
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HVB highest valence band 47, 49–51, 57, 58, 60, 68, 69, 81, 134–136, 138

LCB lowest conduction band 81, 138

LDA local density approximation 7, 9, 10, 55, 75

LMTO linear muffin-tin orbital 34

MD molecular dynamic 55, 76, 90, 91, 97, 139
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OLED organic light-emitting diode 2
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HT-P3HT head-to-tail P3HT 52, 135

rr-HT-P3HT regioregular head-to-tail P3HT 51, 53, 55, 56, 135

PAW projector augmented wave 11, 13, 34–37

PBE exchange-correlation functional suggested by Perdew, Burke and Ernzerhof 9, 38,
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pDOS projected density of states 56, 57, 136

PES potential energy surface 76, 78, 82–84, 86–93, 95, 97, 137, 139

RAM random-access memory 37

RHEED reflection high energy electron diffraction 75

scf self-consistent field 47, 77

SoC system on chip 1

STM scanning tunneling microscope 72
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