
Fakultät für Elektrotechnik, Informatik und Mathematik
Institut für Informatik
Zukunftsmeile 1
33102 Paderborn

Solving Heterogeneity for a
Successful Service Market

PhD Thesis
Submitted to the Department of Computer Science
in Partial Fulfillment of the Requirements for the

Degree of

Doctor of Natural Science
(Dr. rer. nat.)

by
Svetlana Arifulina, M.Sc.

Thesis Supervisors:
Prof. Dr. Gregor Engels

and
Jun. Prof. Dr. Heiko Hamann

Frankfurt am Main, February 5, 2017

Abstract

This PhD thesis is written in the context of a new software development paradigm
of the future called On-The-Fly Computing (OTF Computing). It is based on
the idea of specialized service markets called On-The-Fly (OTF) markets. OTF
markets have different properties and participants in OTF markets use different
modeling techniques to perform the activity of service engineering. Such dif-
ferences result in heterogeneity in OTF markets and complicate the execution
of automated market operations like service matching as service specifications
of different market actors cannot be automatically compared with each other.
This PhD thesis proposes a solution to cope with the mentioned heterogeneity
to foster the success of OTF markets and the OTF Computing paradigm.

In order to achieve the comparability of specifications in an OTF market, a
formal intermediate representation called core language is introduced. Auto-
mated market operations for an OTF market are defined on a core language
that optimally supports the execution of these operations in this market. This
approach spares the effort for the definition of market operations and increases
their quality.

The first contribution of this PhD thesis is the approach language Optimizer
(LOpt), which supports the systematic design of a service specification language
optimal for the execution of automated market operations in an OTF market.
LOpt uses a comprehensive core language covering various structural, beha-
vioral, and non-functional service properties. LOpt performs a configuration
of this language based on formalized market properties and a knowledge base
containing the configuration expertise. As a result, an optimal core language
for an OTF market is obtained automatically.

The second contribution of this PhD thesis is the application of the Model
Transformations By-Example (MTBE) technique to define transformations from
proprietary specification languages of market actors to the optimal core lan-
guage. The transformations are defined in a user-friendly manner, i.e., without
a need of market actors to have any knowledge in the language design. The
proposed approach mtbe generates transformations based on example mappings
between concrete specifications in both languages. The derivation approach ap-
plies the idea of genetic algorithms having rich genetic operators, which allow
the effective and efficient exploration of the solution space of possible model
transformations.

iii

Zusammenfassung

Diese Dissertation ist im Kontext eines neuen Paradigmas im Software Enginee-
ring mit dem Namen On-The-Fly Computing (OTF Computing) entstanden.
OTF Computing basiert auf der Idee von spezialisierten On-The-Fly (OTF)
Märkten. OTF Märkte haben unterschiedliche Eigenschaften und die Mark-
takteure in diesen Märkten benutzen verschiedene Modellierungstechniken für
das Service Engineering. Diese Unterschiede resultieren in Heterogenität und
erschweren deshalb die Ausführung von automatisierten Marktoperationen, da
Servicebeschreibungen von verschiedenen Marktakteuren nicht automatisch mit-
einander verglichen werden können. Für das beschriebene Problem bietet diese
Dissertation eine Lösung um einen erfolgreichen OTF Markt zu ermöglichen.

Für die Vergleichbarkeit von Servicebeschreibungen in einem OTF Markt wird
eine formale Zwischenrepräsentation (Kernsprache) eingeführt. Die Marktope-
rationen werden auf Basis der Kernsprache definiert, die die optimale Ausführung
der automatisierten Marktoperationen in dem gegebenen OTF Markt unterstützt.
Dies reduziert den Aufwand die Operationen zu definieren bei gleichzeitiger
Erhöhung der Definitionsqualität und ermöglicht neuen Marktakteuren einen
einfacheren Marktzugang.

Der erste Beitrag dieser Dissertation ist der Ansatz language Optimizer
(LOpt). Dieser ermöglicht das systematische Design einer Servicebeschrei-
bungssprache, die die Ausführung von automatisierten Marktoperationen opti-
mal unterstützt. LOpt nutzt als Basis eine reichhaltige Kernsprache, die struk-
turelle, verhaltensbezogene und nicht-funktionale Serviceeigenschaften beinhal-
tet. LOpt konfiguriert diese Sprache basierend auf formalisierten Markteigen-
schaften und einer Wissensbasis mit Konfigurationsexpertise, um eine optimale
Kernsprache zu erstellen.

Der zweite Beitrag dieser Dissertation ist die Anwendung des Model Transfor-
mation By-Example Ansatzes um den Marktakteuren ohne Expertise im Sprach-
design Transformationen von ihren proprietären Sprachen in die optimale Kern-
sprache zu ermöglichen. Der beschriebene Ansatz mtbe generiert Transformatio-
nen auf Basis von Beispielabbildungen zwischen Servicebeschreibungen zweier
Sprachen. Dabei wird die Idee genetischer Algorithmen angewendet.

v

Danksagung

An dieser Stelle möchte ich den vielen Menschen Danke sagen, die mich auf
verschiedenste Art und Weise bei dieser Arbeit unterstützt haben.

In erster Linie bedanke ich mich bei meinem Doktorvater Gregor Engels.
Er hat mich über mehrere Jahre zu diesem Ergebnis geführt, durch gute und
schwierige Zeiten. Durch seine hohen Erwartungen habe ich mich weiterent-
wickelt und seine Unterstützung war ein wichtiger Baustein für meinen beruf-
lichen Werdegang. Ich bedanke mich auch herzlich bei den Mitgliedern meiner
Prüfungskommission: Heiko Hamann, Heike Wehrheim, Lorijn van Rooijen und
Anthony Anjorin. Danke für Eure Zeit und die gründliche Betrachtung, die mir
geholfen haben meine Doktorarbeit weiter zu verbessern.

Gregor hat mir außerdem ermöglicht im Sonderforschungsbereich 901
”
On-

The-Fly Computing” zu arbeiten. Bei der engen Zusammenarbeit mit Marie
Christin Platenius im Teilprojekt B1

”
Parametrisierte Servicespezifikationen”

habe ich viel gelernt aber auch viel Spaß gehabt. Ein besonderer Dank geht
an Wilhelm Schäfer, der erheblich zu der Qualität unserer wissenschaftlichen
Ergebnisse und Publikationen beigetragen hat. Ich möchte mich außerdem für
eine tolle Zusammenarbeit bei den weiteren ProfessorInnen und KollegInnen aus
dem SFB 901 bedanken.

Während meiner Zeit als wissenschaftliche Mitarbeiterin habe ich mich sehr
wohl in der AG Engels gefühlt. Meine Kolleginnen und Kollegen waren nett
und hilfsbereit, was eine gute Zusammenarbeit und viele spannende Diskussio-
nen ermöglicht hat. Ich danke Euch allen für die schöne Zeit! Für die besondere
Unterstützung bei den Vorbereitungen auf meine Verteidigung möchte ich Mar-
vin Grieger, Marie Christin Platenius und Simon Schwichtenberg danken.

Zusätzlich haben auch viele StudentInnen zu den Forschungsergebnissen meiner
Dissertation beigetragen. Ich bedanke mich bei den TeilnehmerInnen der Pro-
jektgruppe

”
AppSolut”, bei Kavitha Jagannath und Vahide Taherinajafabadi

für ihre Masterarbeiten und bei allen SHKs des Teilprojektes B1.
Aus dem tiefsten Herzen bedanke ich mich bei den für mich wichtigsten Men-

schen: meiner Mutter Alevtina Jäger und meinem Partner Hendrik Schreiber.
Sie glauben immer an mich und geben mir den Halt jeden Tag aufs Neue wei-
terzumachen. Ein lieber Dank geht auch an meine Freundinnen und Freunde,
die auf diesem Weg die Daumen für mich gedrückt haben. Hier möchte ich
insbesondere Galina Besova, Dominik Steenken, Marlene Rathgeber und Eugen
Wiens erwähnen. Ein Dank für die Unterstützung geht auch an die Mitglieder
der Familie Schreiber und ihre Partner. Ich schätze mich glücklich, Euch alle
an meiner Seite haben zu dürfen.

vii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statements . 6

1.2.1 PS 1: Design of an Optimal Core Language 6
1.2.2 PS 2: User-Friendly Transformation into a Core Language 9

1.3 Tour of the PhD Thesis . 10
1.4 Overview of Publications . 11

2 Related Work 13
2.1 Related Work on Design of an Optimal Core Language 13

2.1.1 Review Protocol . 14
2.1.2 Evaluation of the Review Results 17

2.2 Related Work on User-Friendly Language Transformation 23
2.2.1 Review Protocol . 23
2.2.2 Evaluation of the Review Results 25

3 Requirements and Overview of the Solution 33
3.1 Requirements on the Solution 33

3.1.1 Requirements on Design of an Optimal Core Language . 33
3.1.2 Requirements on User-Friendly Language Transformation 35

3.2 Overview of the Solution . 38

4 Design of an Optimal Core Language 41
4.1 Concept of an Optimal Core Language 41

4.1.1 Core Language Definition 41
4.1.2 Core Language Optimality 44

4.2 The Approach LOpt . 49
4.2.1 Overview of the LOpt Approach 49
4.2.2 Comprehensive Core Language 50
4.2.3 Configuration Approach 63
4.2.4 Configure and Use the Optimal Core Language 80

4.3 Evaluation . 81
4.3.1 Tool Support . 81
4.3.2 Evaluation on Case Studies 84
4.3.3 Evaluation of the Requirements 97

ix

Contents

5 User-Friendly Language Transformation 101
5.1 The Approach mtbe . 101

5.1.1 Overview of mtbe . 102
5.1.2 Creation of Model Mappings 106
5.1.3 Creator . 113
5.1.4 Decoder . 122
5.1.5 Evaluator . 129
5.1.6 Selector . 134
5.1.7 Mutator . 136
5.1.8 Quality of Generated Model Transformations 141

5.2 Evaluation . 142
5.2.1 Tool Support . 142
5.2.2 Evaluation on a Case Study 144
5.2.3 Evaluation of the Requirements 154

6 Conclusion and Future work 157
6.1 Conclusion . 157
6.2 Future Work . 162

Bibliography 165

x

List of Figures

1.1 OTF markets . 2
1.2 Market operations . 3
1.3 Problem statements derived from the challenges in section 1.1 . 6

3.1 Overview of the solution . 38

4.1 Language definition based on [138] and [157] 42
4.2 Extended language definition 43
4.3 Core language optimality wrt. efficiency and effectiveness 47
4.4 Overview of the LOpt approach 49
4.5 Development approach for a comprehensive core language 51
4.6 Step to collect languages for reuse 52
4.7 Excerpt from the abstract syntax of the Ecore modeling language 54
4.8 USDL package structure . 55
4.9 Step to integrate a language . 56
4.10 Topological sort of USDL packages 57
4.11 Excerpt from the USDL package foundation 59
4.12 Definition of a view type . 62
4.13 Overview of the configuration approach 64
4.14 Formalization of market properties 65
4.15 Formalization of configuration rules 68
4.16 Service properties in the configuration knowledge base 71
4.17 Detailed service properties of operation signatures 72
4.18 Excerpt of the metamodel of the comprehensive core language . 73
4.19 Overview of the tool support for LOpt 82
4.20 Specification of service interfaces and operations in SSE 83
4.21 Specification of pre-/postconditions in SSE 83
4.22 Specification of market properties in LM configurator 84
4.23 Specification of configuration rules in LM configurator 84
4.24 Optimal core language for the OTF market for tourism 88
4.25 Optimal core language for tourism as a view type 89
4.26 Optimal core language for the OTF market for university mana-

gement . 90
4.27 Optimal core language for university management as a view type 91
4.28 Optimal core language for the OTF market for water net opti-

mization . 92
4.29 Optimal core language for water net optimization as a view type 92

xi

List of Figures

5.1 Overview of the mtbe approach 103
5.2 Overview of the derivation approach of mtbe 105
5.3 Creation of model mappings . 106
5.4 The toy language for UML class diagrams based on [154] 108
5.5 The toy language for relational data bases based on [154] 108
5.6 Model mapping 1 . 109
5.7 Model mapping 2 . 109
5.8 Coverage of the toy language for UML class diagrams 110
5.9 Class coverage of the toy language for UML class diagrams . . . 110
5.10 Class combination coverage of the toy language for UML class

diagrams . 111
5.11 Reference coverage of the toy language for UML class diagrams 112
5.12 Attribute coverage of the toy language for UML class diagrams . 113
5.13 Overview of the Creator’s logic 114
5.14 Ecore class EObject . 116
5.15 Overview of creating rule sides 119
5.16 Excerpt from the Henshin abstract syntax describing units . . . 123
5.17 Example priority unit in Henshin 124
5.18 Excerpt of the Henshin abstract syntax describing a rule 125
5.19 Example transformation rules in Henshin 126
5.20 Overview of the Decoder’s logic 126
5.21 Example phenotype . 128
5.22 Overview of the Evaluator’s logic 130
5.23 Solutions in an example Population 135
5.24 Architecture of the tool support for mtbe 143
5.25 Dialog for setting mtbe parameters 144
5.26 Overview of the evaluation procedure 145
5.27 Example pair of specification used for validation 147
5.28 Matching results for the example pair 148
5.29 Matching effectiveness for the elitism strategy 149
5.30 Matching effectiveness for the non-elitism strategy 149
5.31 Specification in SAWSDL from the example mapping 150
5.32 Specification in the core language from the example mapping . . 150
5.33 Fitness of the model transformations (elitism strategy) 151
5.34 Fitness of the model transformations (non-elitism strategy) . . . 151
5.35 Matching effectiveness for the elitism strategy 152
5.36 Matching effectiveness for the non-elitism strategy 152
5.37 Matching effectiveness for the elitism strategy 153
5.38 Matching effectiveness for the non-elitism strategy 153

xii

List of Tables

2.1 Keywords for the broad search 15
2.2 Categories of literature sources found in the review 17
2.3 Search results based on the broad search strategy 25
2.4 Search results based on the in-depth and broad search strategies 27
2.5 Comparison of existing MTBE approaches 29

4.1 Mappings from features to language constructs 72
4.2 Assignment of market properties in the case studies 86
4.3 Matching effectiveness and efficiency for the OTF market for

tourism . 95
4.4 Matching effectiveness and efficiency for the OTF market for uni-

versity management . 95
4.5 Matching effectiveness and efficiency for the OTF market for wa-

ter net optimization . 96

5.1 Excerpt of language statistics for UML class diagrams 118
5.2 References and their probabilities for UML class diagrams . . . 118

xiii

1 Introduction

1.1 Motivation

This PhD thesis is written in the scope of the Collaborative Research Centre 901
“On-The-Fly Computing” [151] supported by the German Research Foundation
(DFG). The Collaborative Research Centre 901 aims at developing concepts and
techniques for a new software development paradigm of the future called On-
The-Fly Computing (OTF Computing). OTF Computing is based on the idea
of specialized service markets called OTF markets. Services are distributed over
OTF markets according to the type of their functionality. Each OTF market
contains services of a certain functionality type. Figure 1.1 illustrates an OTF
market of Tourism as an example.

Market actors participating in an OTF market have the following types: ser-
vice providers, service requesters, and brokers. Service providers offer services
for usage or for sell. Service requesters request customized services satisfying
certain requirements. Brokers bring together the requirements of service re-
questers and the services of service providers. Brokers have expertise in trading
services in a certain OTF market, and serve as intermediaries between providers
and requesters in the market of their expertise.

The main artifacts of an OTF market are software services, service specifica-
tions, and requirements specifications. Software services are the subject of trade
in OTF markets. Software services (or services in this PhD thesis) represent
software provided over the Internet and identified by a Uniform Resource Identi-
fier. Figure 1.1 shows such example services as Hotel reservation or PB city

portal. Service providers describe services in service specifications containing
their certain functional and non-functional properties. Service requesters de-
scribe functional and non-functional requirements on a service to be discovered
in requirements specifications.

Market operations defined for each OTF market are depicted in Figure 1.2.
Market operations are performed on the artifacts of OTF markets and divided
into manual and automatic.

Specify a service is the operation to describe functional and non-functional
properties of a service with a certain specification language. This operation
plays a central role in OTF markets as specifications serve as a basis for the
automated market operations. Requesters perform this market operation to
manually specify their requirements, while service providers use it to manually
specify the properties of their services. The inheritance relation between ser-

1

1. Introduction

OTF Computing

...

Tourism

Hotel

reservation

PB

city portal

...

...

Legend:

- service provider - service requester - broker

Hotel

reservation
- software service - service specification - requirements specification

Figure 1.1: OTF markets

vice requesters and service providers depicted in Figure 1.2 means that service
providers perform all operations of service requesters and their own in addition.
As a result, either a service specification or a requirements specification is cre-
ated. This PhD thesis considers service requesters with a technical expertise,
who can understand and create formal service specifications. Requesters with
no technical expertise are considered as a future work.

Provide a service is the operation of implementing and offering a service
based on a certain service specification. Service providers perform this operation
to offer services for sell in different OTF markets. These services are composed
by brokers to build customized services required by requesters.

Match a service is the operation of comparing properties of a particular
service with the given requirements based on their specifications. The goal is to
calculate the degree of compliance of the service described by the service specifi-
cation with the requirements described by the requirements specification. This
operation is performed automatically using a special software called matcher,
which is available in an OTF market.

Discover a service is the operation of filtering out those services, which
fit to the requirements specified in the given requirements specification. This
operation is automatically performed on requirements and service specifications
by a broker, who uses the operation Match a service in the background.

Compose a service is the operation of composing existing services into a
new service. A broker performs this operation automatically with the help of
a special composition software. This operation uses the operation Discover

a service based on requirements and service specifications. The operation
produces a composed service and its specification as a result.

2

1.1 Motivation

OTF Market

Specify a service

Match a service

Discover a service

Compose a service

Analyze a service

Service

requester

Service

provider

Broker

Figure 1.2: Market operations

Analyze a service is the operation of analyzing the quality of a composed
service. The goal is to check its functional correctness and its non-functional
properties based on given requirements specification and the service specifica-
tions of its constituent services. A broker performs this operation automatically
by using different kinds of verifiers, analyzers, and simulators.

The challenges for OTF markets are presented in the following. Based on
these challenges, problem statements for this PhD thesis are identified.

This PhD thesis starts with Challenge 1: Efficient automated market
operations. In the software engineering, market operations described above
are performed manually by large software houses. The innovative idea of OTF
Computing is to automate the manual execution of these operations.

Software architects usually design a new software system. Software developers
search for software components suitable to be reused for the given design and
integrate them in a software system. This is analogous to performing the market
operations Discover a service, Match a service, and Compose a service,
which would be automated in an OTF market and, thus, facilitate the discovery
and integration of software components. Then, developers and testers check the
quality of the integrated system. This is analogous to performing the operation
Analyze a service, which would be automated in an OTF market and, thus,
increase the quality of the resulting software system.

Market operations have to be performed as efficient as possible in order to cope
with the following market characteristics. On the one hand, market operations
have to be performed on a high amount of different artifacts created in different
modeling languages. On the other hand, the results of the market operations

3

1. Introduction

computed earlier can be barely reused. Since an OTF market is highly dynamic,
new services having a better quality could be used instead of the old ones, and
the services found before can become unavailable.

Challenge 2: Formal comprehensive service specifications is the next
challenge in OTF markets. The automated market operations listed in Fi-
gure 1.2 can be performed on service specifications only. Since implementa-
tion details of services are encapsulated, relevant information about provided or
searched services is abstracted in their service specifications.

Service specifications in OTF markets have to be comprehensive. Compre-
hensive specifications contain a description of functional properties of a service,
like its structure or its behavior, as well as its non-functional properties, like
performance, privacy, or price. Performing market operations on comprehensive
specifications yields more reliable results because such specifications cover more
semantics of a service in comparison to simple specifications, which usually de-
scribe structural properties of services only. Considering semantic information
about services increases the confidence in results of the market operations.

Formal comprehensive service specifications are a prerequisite for efficient
automated market operations. Comprehensive specifications can be written in
different formal and informal notations. For example, an informal notation in
the form of a natural language can be used. However, it would complicate
the efficient execution of the automated market operations because informal
specifications are ambiguous and do not have a well-defined semantics.

Since formal specifications require a formal definition of the syntax of their
specification languages, specification languages considered in OTF markets must
have a formal syntax definition. A formal semantics definition for the specifica-
tion languages is needed as well. For example, a formal definition of behavioral
semantics of the underlying service specifications is required in OTF markets
for performing the operation Analyze a service.

Challenge 3: Heterogeneity is caused by the fact that service providers
and service requesters in OTF markets use different notations to describe their
services and requirements. They choose different general-purpose and domain-
specific specification languages and their dialects, which may be either estab-
lished or may be chosen for other reasons, e.g., legacy notations. As a result,
OTF Computing lacks a common cross-market specification standard as all mar-
ket actors follow their own standards. In order to overcome the lack of standar-
dization, specifications written in different languages have to be unified so that
they become comparable for performing the automated market operations.

To tackle the lack of standardization, OTF Computing could enforce its
own specification standard. For example, Web Service Description Language
(WSDL) [28] being a standard for the SOA architecture [4] could be used. As a
consequence, all market actors would have to provide specifications in this stan-
dard, in order to participate in OTF markets. Such a decision would introduce
a significant market barrier [127] for market actors, because they would have to
put a significant effort to enter the market. Furthermore, such a specification

4

1.1 Motivation

standard would not consider specifics of single OTF markets. All these reasons
would reduce the acceptance of OTF Computing. Thus, the enforcement of a
specification standard is not desirable. As a result, other techniques to cope
with the heterogeneity of specifications in OTF markets have to be developed.

Heterogeneity in OTF markets leads to Challenge 4: User-friendly lan-
guage transformation. To perform the automated market operations, he-
terogeneous specifications have to be comparable. This requires advanced lan-
guage design techniques like language transformations for heterogeneous specifi-
cations. For example, market actors would have to transform their specification
languages, if the market operations are not defined for these languages.

However, market actors are usually only users of specification languages but
not their designers. Thus, they lack the expertise in language design, which is
required to create the necessary artifacts and to perform the language trans-
formation. Therefore, the language transformation for market actors has to be
user-friendly, i.e., market actors should be able to perform language transforma-
tions in a simple way adapted to their expertise. This would allow them to enter
OTF markets with their own specifications and to transform them into other
specification languages. Such a language transformation has to preserve as much
semantics of the transformed languages as possible. The semantics preservation
would enable to transfer as much knowledge about a service described in its
service specification as possible.

Challenge 5: Market acceptance concerns the acceptance of OTF mar-
kets. If the acceptance of OTF markets is high, many market actors would
actively use them, thus, adopting the vision of OTF Computing.

Market actors in an OTF market provide and use services of the same kind of
functionality. Thus, the corresponding OTF market has to support the execu-
tion of the automated market operations in a way specific for this market. These
market operations have to deliver reliable results to market actors to support
their competing objectives. Based on these results, service providers should be
able to sell as many services as possible to the highest possible revenue, while
service requesters should get the most suitable service for their requirements
with the lowest possible cost. In addition, the entrance in OTF markets has to
be facilitated. The market success of market actors would increase the accep-
tance of OTF markets and, as a result, of the OTF Computing paradigm.

As mentioned above, designing service markets like OTF markets involves
different challenges. This PhD thesis focuses on solving heterogeneity in OTF
markets, in order to contribute to their success. Based on the challenges pre-
sented above, problems motivating this PhD thesis were identified. The problem
statements are discussed in detail in the following Section 1.2. Later on, this
PhD thesis proposes concepts and techniques for solving them. These concepts
and techniques contribute to the success and acceptance of OTF markets by
market actors.

5

1. Introduction

1.2 Problem Statements

In this chapter, two problem statements are derived from the challenges pre-
sented in Section 1.1. Figure 1.3 shows the connection between the challenges
and the derived problem statements. Detailed descriptions of the problem state-
ments are presented in Sections 1.2.1 and 1.2.2.

PS 1: Design of an

optimal

core language

PS 2: User-friendly

transformation into

a core language

Challenge 1: Efficient automated

market operations

Challenge 2: Formal

comprehensive service specifications

Challenge 3: Heterogeneity

Challenge 5: Market acceptance

Challenge 4: User-friendly

language transformation

Figure 1.3: Problem statements derived from the challenges in Section 1.1

1.2.1 PS 1: Design of an Optimal Core Language

According to Challenge 1, the market operations in an OTF market have
to be automated and efficient. For that, as described in Challenge 2, service
specifications serving as a basis for these automated operations have to be formal
and comprehensive. Regarding to Challenge 3, these formal comprehensive
service specifications are heterogeneous. Additionally, Challenge 5 states that
the automated market operations have to be supported in a market-specific
way. Therefore, a mechanism is needed to foster the comparability of the service
specifications, in order to be able to perform the automated market operations
in an OTF market. Furthermore, the execution of automated market operations
have to consider the specifics of the OTF market, in order to increase the success
of its market actors.

In order to address these challenges, one solution would be to provide market
operations for each pair of all existing service specification languages and their
dialects. Assume that one or several responsible market actors have to produce
all those operation definitions. This solution would require these actors to have
access to all these languages and to have the expertise in them. However, exis-
ting specification languages used by market actors are proprietary and diverse.

6

1.2 Problem Statements

Market actors would most probably provide no access to them. Furthermore, it
is also infeasible to assume that some market actors could have the expertise in
all these languages.

An alternative and more feasible solution is to provide a common intermediate
representation, for which automated market operations can be defined and per-
formed. This idea is similar to the theory of compiler construction, in which an
intermediate representation was proposed to cope with the large amount of exis-
ting programming languages [2]. The intermediate representation for an OTF
market is called a core language. The core language abstracts from heteroge-
neous service specifications by containing only those language constructs, which
are relevant for performing the automated operations in the given OTF market.
Market actors have to transform their languages into the core language and,
then, can start using the automated market operations. One transformation
per language would be needed with the expertise in the core language only.

Existing approaches propose to design core languages according to the follow-
ing main design principles.

1. Core language as an intersection: Approaches like DUALLY [89] propose
to construct a core language as an intersection of language constructs of
languages, whose comparability is aimed. The considered languages must
have a formal syntax definition. Their semantics is formalized by mapping
their language constructs to the language constructs of the DUALLY core
language. The main advantage of this design principle is that the core
language serves as a semantic bridge, which allows to transform specifica-
tions from one language into another. The main disadvantage is that such
a core language might contain a small amount of language constructs if
certain languages have very few language constructs in common.

According to Challenge 3, service requesters and service providers use
different specification languages with different expressiveness. Therefore,
if the core language was an intersection, then it would be barely expres-
sive because of the diversity of language constructs in these specification
languages. As a consequence, results of the market operations based on
specifications in such a core language would be unreliable because very
few service properties would be considered.

2. Core language as a union: Approaches like UnSCom [112] propose a core
language for specification of software services, which is a union of exis-
ting specification languages. Analogously to DUALLY, the considered
languages have a formal syntax definition, while the semantics of the lan-
guages is formalized by mappings to the UnSCom language. The main
advantage of this design principle is that the core language is comprehen-
sive and includes various kinds of service properties. Thus, it can be used
to create highly comprehensive specifications. However, the main disad-
vantage is that operations cannot be performed efficiently on specifications

7

1. Introduction

written in such a language because processing highly comprehensive spe-
cifications takes much computation time.

If the core language of the OTF market was a union, then a very expressive
core language would be produced because of the diversity of specification
languages existing in an OTF market. Such a core language would allow
to create highly comprehensive service specifications. However, this high
comprehensiveness would hamper the efficiency of the automated market
operations. As a consequence, results of the market operations would be
very reliable but the market operations could not be performed efficiently.

3 Core language as a structure in between: A core language as a structure
in between is a language, which is more expressive than an intersection
of arbitrary languages but less comprehensive than their union. Such a
language can be customized for the needs of the given scenario and the
operations defined on its specifications.

A structure in between would be the most appropriate design principle
for core languages in OTF Computing. One advantage is that the core
language could have any possible language constructs beyond the intersec-
tion but within the union. Comprehensive service specifications describing
service properties really needed for the automated market operations can
be created. Based on the choice of language constructs in the core lan-
guage, service specifications can be adapted to the market specifics. This
would allow to design a core language, which is exactly suitable for the
automated market operations thus increasing the acceptance of the corre-
sponding OTF market.

The choice of the design principle proposing the core language as a structure
in between leads to the next question for this PhD thesis: Which language
constructs should be a part of the core language for an OTF market so that
its operations can be optimally executed? In order to answer this question, the
connection between the automated market operations and the core language has
to be understood. The more suitable is the core language for these operations,
the more reliable the results of their application are and the more efficient
their application is. Thus, each OTF market requires a core language, which is
optimal for the automated market operations of this OTF market.

Therefore, the first problem being studied as a part of this PhD thesis is:

How to design a core language for service specification
optimal for efficient automated market operations in an OTF market?

The following research questions will be answered in the scope of this problem:

1. What is a systematic process for the design of an optimal core language
in an OTF market?

8

1.2 Problem Statements

2. What measurable notion of language optimality can be used for the design
and evaluation of an optimal core language?

3. How can properties of an OTF market be leveraged for the design of an
optimal core language?

4. How are conflicting requirements considered for the design of an optimal
core language?

5. How to increase the reuse of existing languages for the design of an optimal
core language?

1.2.2 PS 2: User-Friendly Transformation into a Core
Language

According to the problem statement PS 1, the automated market operations in
an OTF market are defined for an intermediate representation called a core lan-
guage. A core language is designed to optimally support these automated mar-
ket operations. According to Challenge 2 and Challenge 3 (see Figure 1.3),
market actors specify their services and requirements using arbitrary formal
and comprehensive specification languages. Based on Challenge 4, specifica-
tions in these languages have to be transformed into the core language in a
user-friendly manner, in order to perform the automated market operations on
them. As stated in Challenge 5, the specifics of each OTF market have to be
considered, in order to improve the entrance of market actors in OTF markets.

One possibility to conduct such a transformation is to engage an expert in a
given OTF market, for example, a broker. The broker performs the automated
market operations using a software available in the market, which performs
different market operations and operates on a certain optimal core language.
However, in this scenario, the broker should be able to transform arbitrary
existing specification languages used by market actors. According to PS 1,
that would lead to an infeasible effort for the broker due to the missing access
to proprietary languages of service providers and due to the necessary expertise
in knowing diverse specification languages.

Another alternative possibility is to let the market actors transform their spe-
cifications themselves. In this scenario, a service provider or a service requester
would only need to learn the optimal core language used by the broker. Both
market actors are able to do that, because this PhD thesis considers service
requesters and service providers, who have a necessary technical expertise to
understand and write formal service specifications. A technically inexperienced
requester is considered as a future work. This would also result in significantly
less transformation effort in comparison to the previous scenario, in which a
broker needed to learn all existing languages in an OTF market.

As stated in Challenge 4, the language transformation for market actors in
the OTF market has to be designed user-friendly because market actors lack the

9

1. Introduction

necessary expertise in language design. This means that market actors cannot
work on language definitions directly, but they have expertise in creating formal
specifications by using editors of their languages. Market actors usually learn
the semantics of a language based on its informal language definition and a
set of example specifications. These example specifications represent typical
language constructs of the given language and cover its most probable usage
contexts. Thus, user-friendly techniques have to be provided for market actors
to transform their service specifications into the core language.

According to Challenge 2, service specifications must have a formally defined
syntax and semantics. This implies that these formal definitions have to be
considered during the user-friendly language transformation in the OTF market.
Based on Challenge 5, the market-specifics have to be considered. In this
case, each language used in an OTF market is transformed into the optimal
core language for this market.

Therefore, the second problem being studied as a part of this PhD thesis is:

How to perform a semantic-preserving transformation of
specification languages in a user-friendly way?

The following research questions will be answered in the scope of this problem:

1. How can specification languages be transformed by a user having no ex-
pertise in language design?

2. For which specification languages is the user-friendly transformation ap-
plicable?

3. What is a suitable representation of the formal semantics of specification
languages for the user-friendly transformation?

4. How can the quality of the language transformation be measured for its
evaluation?

1.3 Tour of the PhD Thesis

The key note of this PhD thesis is solving the two presented problem statements.
At the beginning, the related work is analyzed for relevant approaches, which can
be applied for solving these problem statements. Based on the knowledge gained
from the investigated approaches, requirements on the solution are collected.
Afterwards, the proposed solution is illustrated by presenting its parts solving
each problem statement in a separate chapter. The PhD thesis is concluded by
summing up the results and by giving an outlook for future work.

Chapter 2 investigates existing approaches related to the problem statements
of this PhD thesis presented in Section 1.2. Existing approaches are grouped

10

1.4 Overview of Publications

into two areas corresponding to the problem statements. A systematic literature
review is conducted for each area. The reviews are presented correspondingly
in Sections 2.1 and 2.2.

Chapter 3 presents requirements on a solution for the problem statements and
an overview of the solution. The requirements listed in Section 3.1 are derived
from the problems statements described in Section 1.2 and related approaches
described in Chapter 2. Based on these requirements, an overview of a solu-
tion satisfying them is illustrated in Section 3.2. The solution consists of two
approaches, each addressing one of the presented problem statements.

Chapter 4 introduces the approach language Optimizer (LOpt) for the de-
sign of an optimal core language. The chapter starts by Section 4.1 defining the
notion of a core language and its optimality. Section 4.2 presents the approach
LOpt and its parts including the comprehensive core language and a configu-
ration approach for its optimization regarding a given OTF market. Section 4.3
describes the application and evaluation of the presented approach.

Chapter 5 presents the approach Model Transformation By-Example (mtbe)
for the user-friendly language transformation using genetic algorithms. This
chapter begins by defining the main notions necessary for the design of the ap-
proach. Section 5.1 explains the approach and its parts, where each genetic
operator is described in a corresponding subsection. Section 5.2 shows the ap-
plication and evaluation of the presented approach.

Chapter 6 presents the summary and future work for this PhD thesis. Sec-
tion 6.1 summarizes the results of this PhD thesis and points out their benefits
and limitations. The final Section 6.2 gives an outlook for future work that can
be conducted to improve and extend the presented approaches.

1.4 Overview of Publications

On the topic of this PhD thesis, the author and her colleagues published the
following papers at various international conferences. All papers were peer-
reviewed and presented by one of the authors at the corresponding conference.

[9] tackles the topic of ensuring the quality of formal specifications by con-
sidering the behavioral semantics of specification languages. In this paper, the
concept of test coverage is applied to the approach of Test-Driven Semantics
Specification, which is used for graph-based specification of semantics. The
concepts of this paper are used as preliminary work for the formal definition of
behavioral semantics in approaches developed in this PhD thesis.

[6] presents the idea of coping with the heterogeneity in OTF markets. The pa-
per introduces a framework consisting of a comprehensive core language, whose
parts can be mapped onto different existing languages, in order to enable their
integration for the automated market operations like service matching. The
concepts of this paper serve as a basis for the solution idea of this PhD thesis.

[8] introduces the market-optimized service specification language and match-

11

1. Introduction

ing. This paper describes the automated approach for the configuration of a
language-matcher pair for an OTF market. The configuration is performed by
customizing a comprehensive, modular service specification language and its
matching for market properties. As a result, the needs of service providers and
requesters is suited the best that increases the acceptance of the OTF market.
The concepts of this paper represent the solution approach of this PhD thesis.

[7] extends the idea of [8] by designing a market-optimized service specification
language for service composition. Such a language allows the broker to create
market-optimized specifications of composition templates and market-optimized
requirements specifications. Afterwards, the broker uses a market-optimized
service matching to build the composed service. The concepts of this paper are
elaborated as an extension for this PhD thesis.

[117] tackles the topic of a model-driven definition of matching processes by
a broker in an OTF market. This paper proposes a framework that supports
a broker in reusing existing matching approaches and combining them in exe-
cutable matching processes. The concepts of this paper are used to design and
evaluate the solution approach of this PhD thesis.

[116] describes the matching of incomplete service specifications covering the
signatures and privacy policies of services. This paper shows how fuzzy matching
can be applied to such specifications. The concepts of this paper are used to
design and evaluate the solution approach of this PhD thesis.

[10] presents the tool support for the solution approach of this PhD thesis.
This paper describes the framework SeSAME for specification of services, re-
quirements on services and service compositions, for matching of service and
requirements specifications, and for analyzing the resulting composed service.
This tool support was used for proof-of-concept and evaluation of the solution
approach of this PhD thesis.

12

2 Related Work

In this chapter, existing approaches are investigated, which address the problem
statements of this PhD thesis presented in Section 1.2.

In this PhD thesis, these related approaches are investigated in a systematic
literature review, which procedure is oriented on the “Guidelines for performing
systematic literature reviews in software engineering” by Kitchenham et al. [81,
82]. One benefit of a systematic literature review is the fact that such review
is unbiased and repeatable to a certain extent. Another benefit of such review
is a well-defined methodology that is used to conduct it. Thereby, due to the
mentioned benefits, systematic literature reviews have higher research validity
compared to unsystematic techniques for investigating related work.

Each systematic literature review has to be documented in the form of a
protocol, which allows other researchers to repeat the described review process.
The protocol describes how the review was conducted, what research questions
were answered, and what methods were used. In the protocol, a search strategy,
explicit inclusion and exclusion criteria for literature sources and an evaluation
of the found literature sources have to be defined and documented.

Existing approaches related to this PhD thesis are grouped into two ar-
eas correspondingly to the two problem statements presented in Sections 1.2.1
and 1.2.2. For each area of related approaches, a systematic literature review is
conducted, a description of the review protocol is given followed by an overview
of the review results and their evaluation. The reviews were conducted dur-
ing the time period from August to September 2014. All approaches appeared
later than September 2014 are not considered. The reviews are presented in
Sections 2.1-2.2.

2.1 Related Work on Design of an Optimal Core
Language

This section presents the systematic literature review of approaches addressing
the problem of the design of an optimal core language. The review protocol is
described in Section 2.1.1. Section 2.1.2 presents the set of literature sources
obtained according to the presented protocol followed by their evaluation.

13

2. Related Work

2.1.1 Review Protocol

The protocol of this systematic literature review starts with listing research
questions, which existing approaches considered in this review treat. These
research questions generalize the research questions from Section 1.2.1 (the ge-
neralization is performed, in order to find more related approaches and to gain
knowledge from more general approaches in this area):

1. What techniques exist to design a core language? What techniques exist
to design an optimal specification language?

2. What measurable notions of language quality or language optimality exist
for the design and evaluation of core languages or specification languages?

3. What knowledge can be leveraged for the design of a core language, a
service specification language, or an optimal specification language?

4. How are conflicting requirements considered for the design of a core lan-
guage, a service specification language, or an optimal specification lan-
guage?

5. What service specification languages exist? How to increase the reuse of
existing languages in a core language, a service specification language, or
an optimal specification language?

In this area, systematic approaches for language design and optimization are
investigated. Interesting are those approaches, which are proposed for the de-
sign of core languages but also for the optimization of specification languages.
Those approaches are considered, which provide methods to compare several
specification languages and determine the most suitable one for a certain pur-
pose. For the design and optimization, measurable notions of language quality
or language optimality are considered for specification languages, in general, and
for core languages, in particular. Consideration and resolution of conflicting re-
quirements for different kinds of specification languages is also of interest for
this review. Existing service specification languages and different possibilities
of their reuse during the language design are investigated as well.

The description of research questions is followed by a description of search
strategies. The first search strategy, which was used for this category of related
approaches, is the broad search using keywords. The search was conducted
in digital libraries, conference proceedings, and the Internet. Searched digital
libraries were Google Scholar [58], ACM Digital Library [1], IEEE Xplore [68],
and Springer Link [135]. The considered conference proceedings were from the
International Conference on Service-Oriented Computing (ICSOC) from 2008
to 2014 and the International Conference on Web Services (ICWS) from 2009
to 2013 as these conferences play a central role in the community of service-
oriented computing. For the Internet search, the search machine of Google [57]
was used.

The second search strategy, called in-depth search, was applied to the litera-
ture sources found based on the broad search strategy. According to this search

14

2.1 Related Work on Design of an Optimal Core Language

Table 2.1: Keywords for the broad search

Keywords
type

Keywords

Subject
Description, description language, description standard,

language, model, modeling language, specification, specification
language, specification standard.

Subject
property

Architecture, best, common, component, configurable, core,
customized, extensible, format, good, ideal, intermediate,

interoperability, modular, optimal, optimum, perfect, quality,
service, structure, tailored.

Action

Aggregate/aggregation, build/building, combine/combination,
compose/composition, configure/configuration,

consolidate/consolidation, construct/construction,
create/creation, define/definition, design, develop/development,

engineer/engineering, environment, evaluate/evaluation,
framework, integrate/integration, merge,

optimize/optimization, plan/planning, unify/union.

strategy, references of the found literature sources are investigated for being re-
levant to the conducted review. The same inclusion and exclusion criteria listed
below were used for both presented search strategies.

For the broad search, keywords used for search queries have to be deter-
mined. Keywords were derived from the research questions presented above
and refined by related terms from the area of language engineering. For each
of these keywords, synonyms and alternative spellings were collected using the
online thesaurus [115]. The final set of keywords is presented in Table 2.1.

The keywords are grouped into three types: Subject, Subject property,
and Action. The first type Subject refers to a subject, to which existing
approaches apply, e.g., specification language. The second type Subject

property refers to a certain characteristic of the subject, which existing ap-
proaches consider, e.g., configurable. The third type Action refers to a
certain action, which existing approaches apply to the subject, e.g., compose.
A keyword for one search query was set either as a combination of the key-
words of the types Subject and Subject property or as a combination of
the keywords of the types Subject and Action. For example, configurable
specification language and specification language composition were
used as search queries.

After keywords for the search queries have been defined, inclusion and exclu-
sion criteria for found literature sources have to be stated. Inclusion criteria
describe properties of literature sources to be considered in the review, while
exclusion criteria describe properties of literature sources to be omitted.

The inclusion criteria for this review are presented below:

15

2. Related Work

1. Only literature sources in the area of computer science.
Since this PhD thesis focuses on the research in the area of computer
science, only sources presenting research results in this area are considered.

2. Only literature sources written in English.
Since this PhD thesis is written for an international reader and, therefore,
in English, all presented approaches have to be available in English, too.

3. Only literature sources with the length of at least 6 pages.
Since profound existing approaches providing enough detail on the solution
are interesting for this review, the size of 6 pages corresponding to the
minimum size of long papers at most conferences are considered. All
literature sources, which have less pages, mostly lack either an evaluation
part or enough details on the presented approach.

4. Only literature sources available for the University of Paderborn for free.
Since the University of Paderborn gains an access to a broad range of ar-
ticles in the digital libraries mentioned above, literature sources requiring
additional payment are not considered in this review.

5. Only literature sources covering keywords from two combined keywords
types (both Subject + Subject property or both Subject + Action).
Since literature sources covering the combination of all three types of
keywords are hardly possible to find and a search with only one type
of keywords is too general for the stated research questions, search queries
containing two types of keywords seemed to be feasible for this review.

Exclusion criteria for this review are described in the following:

1. Literature sources dealing with programming languages.
Searching for the keywords presented above also delivers literature sources
describing design techniques or different properties of programming lan-
guages instead of modeling languages. Since the focus of this PhD the-
sis lies at specification languages, especially because the specification of
services and not their implementation is investigated, literature sources
dealing with programming languages are omitted for this review.

2. Literature sources dealing with natural languages or computational lin-
guistics.
Another set of found literature source describe language engineering tech-
niques from the area of computational linguistics applicable to natural
languages. Since the focus of this PhD thesis are formal languages instead
of natural languages, the latter literature sources are omitted.

3. Literature sources presenting a new modeling language only.
Such literature sources are mostly limited to describing a certain (domain-
specific) modeling language without telling much about its development.
The reason for that would be either the use of a standard language engi-
neering technique or the lack of a systematic process. Since this PhD thesis
focuses on systematic design techniques for specification languages, this
kind of literature sources is considered to be out of scope of this review.

16

2.1 Related Work on Design of an Optimal Core Language

4. Literature sources about software architectures.
During the search for the keyword combination like specification lan-

guage architecture, literature sources regarding software architectures
were found. Since this topic is out of scope of this PhD thesis, such
literature sources are omitted in this review.

5. Literature sources tackling visual modeling languages from the usability
point of view.
According to the keywords, literature sources tackling design techniques
for visual languages with the emphasis on usability were found as well.
Since the focus of this PhD thesis are specification language and their
optimization for automatic operations like service matching, the usability
of such languages is out of scope.

2.1.2 Evaluation of the Review Results

Section 2.1.2.1 presents literature sources obtained by following the protocol
described in Section 2.1.1.

2.1.2.1 Overview of the Review Results

Table 2.2 gives an overview of the literature sources found based on the broad
search strategy using the keywords from Table 2.1 and the literature sources
obtained based on the in-depth search strategy. The found literature sources
are grouped into several categories, in which approaches using similar techniques
are collected.

Table 2.2: Categories of literature sources found in the review
Category Reference

Design of core languages [12, 60, 90, 99, 129, 156]
Language architectures and

design approaches
[3, 13, 17, 33, 34, 35, 44, 54, 55, 56, 76,

96, 100, 113, 121, 128, 131, 134, 150, 166]

Language composition
[19, 25, 37, 42, 48, 52, 61, 74, 84, 98, 118,

120, 139, 143, 159, 161]
Language quality [27, 62, 65, 85, 94, 114]

Service specification languages [16, 18, 103, 105, 112, 148]

2.1.2.2 Evaluation Summary

Existing approaches investigated in this systematic literature review answer the
research questions listed in Section 2.1.1 as follows:

1. What techniques exist to design a core language?
Various approaches for the design of a core language are listed in Table 2.2,

category Design of core languages. The presented core languages are mostly

17

2. Related Work

defined for a family of specification languages. For example, DUALLY [90]
introduces a core language for interoperability of architectural specifications or
UEML [156] a core language for interoperability of enterprise specifications.

The investigated approaches define the content of a corresponding core lan-
guage as a set of language constructs common for a considered family of speci-
fication languages. For example, the DUALLY core language contains all com-
mon language constructs among different architecture description languages.
Domain-specific language constructs are omitted in the core language.

The approaches also define how to transform existing languages into the core
language and how to transform specifications in the core language into other
formats used to perform further tasks, e.g., a certain type of analysis. For
example, KLAPER [60] is a core language for performance and reliability ana-
lysis of component specifications. KLAPER contains only language constructs
modeling properties relevant for the analysis, and specifications are transformed
into KLAPER specifications, based on which analysis models are generated.

As a summary, the presented core languages are too specific for their domains
to be applicable to the problem statements of this PhD thesis. Furthermore,
in comparison to the investigated approaches, a core language as a structure in
between is a feasible solution for the OTF market as explained in Section 1.2.1.
However, the presented design principles for core languages can be followed for
the OTF market as well. These design principles include designing a family of
languages, and restricting a core language to obtain a domain-specific language,
which models only properties relevant for the chosen domain.

What techniques exist to design an optimal specification language?
The category Language architectures and design approaches in Table 2.2 pre-

sents approaches introducing different language architectures and language de-
sign approaches. None of these approaches tackles the development of an opti-
mal specification language directly. However, they propose design principles for
a good language architecture and methods to configure languages with respect
to a certain usage context. A set of properties for a good language design can
be derived based on investigated approaches. For example, Karsai et al. [76]
propose guidelines that aim to improve the design of domain-specific languages
(DSLs). Some example guidelines are to reuse existing languages using only
those domain concepts relevant for the purpose of a language, to avoid redun-
dancies, and to enable modularity.

The property of modularity is desired for the language reuse and its better
maintenance using a corresponding extension mechanism. For example, Ake-
hurst et al. [3] suggest a modular specification of the syntax of the Object Con-
straint Language (OCL). The authors define that a language module contains
a concrete syntax definition, an abstract syntax definition and a mapping from
the concrete to the abstract syntax. An extension mechanism was proposed
enabling to unify existing OCL extensions and to reuse the defined modules.
Another example is the approach of Bae et al. [13] proposing to modularize the
UML language defined as a metamodel into a set of submetamodels, in order to

18

2.1 Related Work on Design of an Optimal Core Language

cope with the complexity of UML for learning and developing editors. For that,
the approach UMLSlicer was introduced for extracting submetamodels corre-
sponding to different UML diagram types. A verification of interdependencies
and consistency is also supported for the resulting submetamodels.

Further property is the definition of viewpoints, which enable different users
work with different parts of a language. For example, Fan et al. [44] suggests
a framework supporting a process to derive a new architecture description lan-
guage from scratch or based on a reuse of existing languages. This process
includes specifying viewpoints and designing the relations between the created
languages and their viewpoints. Another approach of Goldschmidt et al. [56]
presents a taxonomy of view-based modeling from the tool perspective. The
authors explain the definitions of view, view type and view point, their relations,
and a classification of view types, views, and editor capabilities, which influence
the way of how modelers work with views. This classification can be used for a
comparison or a new development of view-based specification approaches.

The principle of reuse of existing specification languages results in an effi-
cient and less error-prone way to design a language. For example, Zschaler et
al. [166] consider families of domain-specific languages (DSLs), which are sets
of languages having core constructs and well-defined variations to serve similar
application domains. Introducing a family of DSLs fosters a systematic reuse
of their language constructs and an explicit systematic way to specify variabi-
lity between the DSLs. The variability supports adding and removing language
constructs and integrating the DSLs with other existing languages.

The property of orthogonality aims at avoiding redundancies in a language
and, thus, increasing its maintainability. This property is described in the design
principles by Paige et al. [113]. Orthogonality requires that only one way exists
to describe a concept in a language, in order to avoid redundancies. As a result,
it fosters a better understandability and maintainability of a language.

In order to customize a specification language for a slightly different usage
context, several approaches propose to explicitly specify variability points in a
language and assist in choosing a suitable alternative at the language design
time. For example, Rosemann et al. [121] introduce a concept of a configu-
rable reference modeling language that allows to explicitly capture language
configuration alternatives and to choose the necessary alternatives for a current
language configuration. As a part of this approach, a reference modeling lan-
guage is extended with configuration patterns, which represent decision points
in the reference language and possible alternatives for them. Then, the choice
of suitable alternatives can be done during the customization of the reference
modeling language. As a result, a reference language is configured at design
time and its customized configuration is used for modeling.

Further customization techniques are proposed in the category Language com-
position in Table 2.2. These approaches suggest to extend description languages
with a customized information or to configure a language by composing it from
different metamodels.

19

2. Related Work

For example, Di Ruscio et al. [37] present the framework BYADL, which allows
the modeler to incrementally customize a new architecture description language
(ADL) based on existing ones by extending existing ADLs with domain-specific
properties, views, or analysis aspects. The syntax of the new ADL is defined
as a metamodel and its semantics is defined as a mapping to the core lan-
guage of DUALLY [90] that fosters its interoperability. The framework defines
the composition operators match, inherit, reference, and expand operating on
metamodel classes.

Another example is the approach by Wende et al. [161] to modularize a lan-
guage considering both its syntax and its semantics and to compose a new lan-
guage based on its modularized parts. The approach of modularization produces
a language consisting of modules, which are syntactically and semantically self-
contained, reusable components. Composition operations are introduced for the
abstract syntax, concrete syntax and semantics of languages. The language com-
position approach consists of a composition model describing language modules,
a composition language describing a composition of modules, and a composition
technique deriving the syntax and semantics of the composed language.

As a summary, on the one hand, the proposed language design principles aim
at creating a language design of high quality but do not optimize a language
according to specific goals. On the other hand, the configurability based on
variations is the most closest means to create an optimal language found in this
literature review, but they still do not aim at delivering an optimal specification
language for a given usage context. Therefore, a new systematic approach to
design an optimal core language for the service specification has to be developed
based on the investigated techniques such as viewpoints or customization.

2. What measurable notions of language quality or language opti-
mality exist for the design and evaluation of core languages or specifi-
cation languages? Various approaches evaluating the quality of specification
languages are described in the category Language quality in Table 2.2. These
approaches propose to evaluate the language quality using different metrics and
to compare different languages based on the obtained quality values.

For example, Henderson-Sellers et al. [65] suggest using several metrics to
measure the size and complexity of languages defined as metamodels. The
authors apply their metrics to several existing languages, e.g., Unified Mode-
ling Language (UML) and Business Process Modeling Notation (BPMN), and
compare the complexity of these languages based on the obtained values.

Krogstie et al. [85] propose a framework for the language quality evaluation.
In the scope of this framework, the authors define such quality properties as the
level of comprehensiveness of the language with respect to the corresponding
domain, the extend of possible automatic reasoning on a language, or the appro-
priateness of a language with respect to standards and organizational context.
Quality values for Business Process Modeling Notation (BPMN), UML activity
diagrams, and Extended Enterprise Modeling Language (EEML) are obtained
and compared using the presented framework.

20

2.1 Related Work on Design of an Optimal Core Language

However, these approaches do not provide any explicit definition of language
optimality or any of its measurements. Therefore, a new notion of language
optimality has to be defined in this PhD thesis.

3. What knowledge can be leveraged for the design of a core lan-
guage, a service specification language, or an optimal specification
language? Several approaches presented in the category Language architectures
and design approaches in Table 2.2 propose to model the goals of a language
or to consider a conceptual model of the application domain and corresponding
stakeholders for the language design. For example, the derivation of a DSL by
Fan et al. [44] includes among others determining the goals of the language to be
designed, identifying stakeholders and a conceptual model of the given domain.
For this PhD thesis, it is necessary to identify those properties of OTF markets
that are relevant for the language design of an optimal core language and how
these properties can be leveraged.

4. How conflicting requirements are considered for the design of a
core language, a service specification language, or an optimal specifi-
cation language? Conflicting requirements can appear at several points. One
reason for conflicting requirements are different usage contexts of a language.
For example, Zschaler et al. [166] suggest to handle such conflicts by explicitly
modeling the variability in a language and customizing it for the given usage
context. Conflicting requirements can also arise, when reusing existing specifi-
cation languages in a new specification language. For example, different levels
of granularity of the languages to reuse might cause conflicts. The approach by
Pottinger et al. [118] identifies conflicts, which may occur during language com-
position, and propose ways for their resolution. The authors introduce a merge
operator for language composition, define several kinds of conflicts regarding
the abstract syntax of the language and its representation, which might happen
during the merging, and propose means for a resolution of these conflicts.

In this PhD thesis, conflicting requirements might occur during the design of
an optimal core language, e.g., during the language reuse. Conflicting require-
ments have to be identified and techniques to resolve them have to be developed.

5. What service specification languages exist?
Different specification languages and standards are presented in the category
Service specification languages in Table 2.2. Specification approaches USDL,
PCM, UnSCom, and others by W3C, OASIS and OMG are considered.

Barros et al. [16] present a unified service description language (USDL) ap-
plied in the industry. It supports the operations of discovery, composition,
provisioning, delivery, and access. USDL captures different business, operatio-
nal, and technical service properties. USDL is designed under requirements of
the comprehensive service specification with high expressive power, modularity
and extensibility of specifications. USDL is structured in modules and provides
the interconnection of its modules, thus, bringing different service properties
together. USDL varies based on different contexts. USDL specifications also
support the reuse of existing external service specifications in WSDL or BPEL.

21

2. Related Work

The Palladio Component Model (PCM) [18] is a specification language for de-
scription of performance-relevant properties of components broadly used in the
academia. This work is interesting for this review because the terms “service”
and “component” are considered synonyms for this PhD thesis as specification
techniques and operations for both are very similar. PCM supports the specifi-
cation of components, assembly, allocation, and usage profiles, which are created
by different stakeholders during the development process of a service-oriented
software system. These specifications serve as a basis for the simulation that
calculates the expected response time and other performance properties of the
modeled system. Using these simulation results, design decisions regarding the
software system under consideration can be improved iteratively.

A standardized framework for specification of software components was pro-
posed by Overhage [112]. This framework is also applicable for services as ex-
plained in the description of PCM. UnSCom defines a comprehensive language
for service specification unifying existing approaches. Thus, UnSCom enables
to describe structure, behavior, and quality properties of services. The authors
also define design principles, which UnSCom have to follow, in order to be able
to serve as an international standard for service specification.

W3C proposes a set of standards for web services. For service specification,
W3C proposed such specification languages as WSDL [28], SAWSDL [45], Web
Service Choreography [77], and OWL-S [91]. WSDL is an XML-based language
for specification of service interfaces and their operations. WSDL uses XML
Schema [26] to describe data structures and operation signatures. SAWSDL
extends WSDL with additional semantics in the form of references to ontolo-
gies. Ontologies model concepts of a given domain in a formal way using, in
particular, the Web Ontology Language OWL [93]. The Web Service Chore-
ography describes the observable behavior of collaborating services including
their interaction, ordering, and interaction constraints. OWL-S describes ser-
vice functionality, service category and service interaction. Similar to SAWSDL,
OWL-S specifications refer to ontologies.

As well as W3C, OASIS [103] suggests a set of standards for web services,
which are often named WS-* standards. Their standards include among oth-
ers the specifications of service security (WS-Security) [102], service reliability
(WS-Reliability) [72], service trust (WS-Trust) [101]. WS-Security defines a
standard for secure messaging among services using different security models
and encryption techniques. WS-Reliability defines a standard for reliable mes-
saging including a definition of reliability and reliable communication protocols.
WS-Trust defines a standard to enable trusted messaging including exchange of
security tokens and establishment of trust relationships.

Object Management Group (OMG) [104] proposes standards developed for
different academic and non-academic institutions, and end users. Among all
specifications proposed by OMG, the most interesting for this review are mode-
ling and metadata specifications [105]. They include the general-purpose Unified
Modeling Language (UML) [108] broadly used for modeling and analyzing soft-

22

2.2 Related Work on User-Friendly Language Transformation

ware and among others services in the industrial and academic contexts. OMG
also provides so-called UML Profiles, which are light-weight extensions of the
UML for modeling special kinds of software systems or software properties, e.g.,
a UML profile for Modeling and Analysis for Real-time and Embedded Systems
(MARTE) [107] or a UML profile for quality of service and fault tolerance [106].

These service specification languages aim to describe different service pro-
perties for service discovery, or service composition. Since these languages are
established for the service specification, they have to be considered for the reuse
in an optimal core language for OTF Computing. However, none of these lan-
guages can be used as an optimal core language, because they are not explicitly
optimized for performing the service operations in different service markets. In
addition, the relation between the reliability of operation results and the effi-
ciency of the service operations was not an object of a thorough study in these
approaches. As a summary, an optimal core language in the OTF market has
to be build anew by reusing the established specification languages identified in
this literature review.

How to increase the reuse of existing languages in a core language,
a service specification language, or an optimal specification language?
Languages that can be reused for the design of an optimal core language are
listed in the category Service specification languages in Table 2.2. For the reuse
of existing languages, the approaches for language composition presented in
the category Language composition in Table 2.2 can be applied as well. These
approaches can be used, in order to compose existing languages into an optimal
core language, so that these languages get reused within the core language. For
this PhD thesis, suitable approaches to compose existing languages during the
design of a core language shall be selected.

2.2 Related Work on User-Friendly Language
Transformation

This section presents the systematic literature review of approaches addres-
sing the problem of the user-friendly language transformation described in Sec-
tion 1.2.2. Section 2.2.1 describes the review protocol. Section 2.2.2 gives an
overview of the results obtained according to this protocol and their evaluation.

2.2.1 Review Protocol

Similar to the protocol in Section 2.1.1, this protocol begins with a list of research
questions, which are tackled by existing approaches considered in this review.
Research questions for this area of related work are a generalized version of the
research questions presented in Section 1.2.2.

1. What approaches for user-friendly language transformation exist?

23

2. Related Work

2. Which specification languages these approaches are applicable to?
3. How is the semantics of specification languages considered for user-friendly

transformation?
4. How can the quality of the language transformation be evaluated?

In this area of related work, approaches for transforming specification lan-
guages in a user-friendly manner are investigated. Another goal of this review
is to find out, how the semantics of languages is considered for the transforma-
tion. In addition, the review investigates how existing approaches evaluate the
quality of the language transformation.

After the research questions for the review are presented, search strategies
used to find related literature have to be described. The first search strategy
applied in this review is the broad search for classifications of language transfor-
mation approaches using keywords. The reason for this strategy is the fact that
the area of language transformations is broadly researched and systematized,
especially in comparison to the area of language optimization investigated in
Section 2.1. Based on this systematization, the goal is to find out what existing
approaches tackle user-friendly language transformations in some extent.

From the found classifications of model transformation approaches, categories
of relevant approaches are identified. The in-depth search strategy investigates
references in the literature sources for existing approaches from the relevant
categories. In order to obtain a better knowledge about the found approaches,
other literature sources by the same authors published on this topic are inves-
tigated as well. Afterwards, the broad search using keywords is applied for the
years not covered by the review, in order to find further existing approaches
for the relevant categories. The same keywords, inclusion and exclusion criteria
are used for both for broad and in-depth search. Finally, the found approaches
are compared with each other using criteria relevant for the problem statement
presented in Section 1.2.2.

The search was conducted in the following digital libraries: Google Scholar [58],
ACM Digital Library [1], IEEE Xplore [68], and Springer Link [135]. For the
Internet search, the search machine of Google [57] was used.

Keywords used for search queries in the broad search strategy have to be de-
termined. The first keyword is the term model transformations established
for referring to the transformation of languages having a formal definition. Since
classifications of model transformation approaches were investigated, the key-
word classification and its synonyms review, survey, and taxonomy were
considered. Only literature sources fully covering the defined keywords are con-
sidered since a focus on classification of model transformations is feasible and a
further broadening of the search space is not required.

After keywords have been defined, inclusion and exclusion criteria for found
literature sources are described. The inclusion criteria are the same as in Sec-
tion 2.1.1. In addition, only one exclusion criteria was defined: Literature
sources comparing the classifications of model transformations are omitted in

24

2.2 Related Work on User-Friendly Language Transformation

this review. Since the focus of this review is to understand the classification
of model transformations and not to compare the classification methods, such
approaches are irrelevant for this review.

2.2.2 Evaluation of the Review Results

Section 2.2.2.1 presents the evaluation of the review results on classification of
model transformation approaches. The goal of this evaluation is to understand
what kinds of model transformation approaches exist, and which of them address
the research questions of this review. Section 2.2.2.2 provides an overview of the
review results for the category of model transformation by-example approaches
chosen after the analysis of the classifications. Afterwards, the evaluation of the
review results is described.

2.2.2.1 Evaluation of Classifications of Model Transformation Approaches

Table 2.3 introduces literature sources for classification of model transforma-
tion approaches found based on the broad search strategy. The category of
approaches addressing the research questions of this review is highlighted.

Table 2.3: Search results based on the broad search strategy
Authors Title Reference

Czarnecki
et al.

Classification of Model Transformation
Approaches

[30]

Czarnecki
et al.

Feature-Based Survey of Model Transformation
Approaches

[31]

Kappel et
al.

Model Transformation By-Example: A
Survey of the First Wave

[75]

Mens et al. A Taxonomy of Model Transformation [95]
Taentzer et

al.
Model Transformations by Graph

Transformations: A Comparative Study
[146]

The survey by Kappel et al. is the only one considered further in this review as
it tackles model transformation by-example techniques, which is a user-friendly
approach to model transformations.

Kappel et al. present a survey of model transformation by-example ap-
proaches [75]. These approaches emerged to tackle the problem that it is difficult
for modelers to create model transformations because the modelers only know
the concrete syntax of a language and not its formal language definition. In
addition, modelers often work only on a subset of a certain language (a so-
called view), and, thus, want to have a model transformation for the relevant
part of the language but not the whole language definition. A further obstacle
for modelers to learn the formal definition of a language is a gap between the

25

2. Related Work

representation of language elements in the concrete syntax and the representa-
tion in the language definition. Considering all the issues mentioned above, the
user-friendly technique of model transformation by-example was proposed.

The idea of model transformation by-example is based on similar techniques
of query-by-example [165] and programming by-example [87]. According to
model transformation by-example, model transformations are derived based on
examples given by a modeler in the concrete syntax of a language. The authors
introduce two types of approaches: demonstration-based and correspondence-
based. In demonstration-based approaches, modifications of example models by
a modeler in the editor are recorded, and a model transformation for the cor-
responding languages is derived based on these recordings. In correspondence-
based approaches, a modeler gives correspondences between example models
of the languages, and a model transformation is derived based on these cor-
respondences. Afterwards, the authors group existing model transformation
by-example approaches into exogenous transformations, which are transforma-
tions defined between two different languages, and endogenous transformations,
which are transformations defined for models of the same language.

Why other surveys are not considered further are given in the following.
Czarnecki et al. introduce a feature-based survey of model transformation

approaches [31], which is based on their early work [30]. Its aim is to analyze
existing approaches and to make design decisions in model transformation tasks
explicit. However, the authors do not address the user-friendly aspect of model
transformation approaches.

Mens et al. propose a taxonomy of model transformation [95], which assists
in choosing a language for model transformation and tools for a transformation
task. Mens et al. indeed mention the aspect of usability, however, their term
refers to model transformation languages or tools but not to model transforma-
tion approaches.

Taentzer et al. compare four graph-based model transformation approaches
and their tool support in the comparative study [146]. This comparative study
is not considered further in this review because the authors do not address the
user-friendly aspect of model transformation approaches.

2.2.2.2 Evaluation of Model Transformation By-Example Approaches

In the previous section, the category of Model Transformation By-Example
(MTBE) approaches is selected for being relevant in this review. The survey
of Kappel et al. [75] describes the classification of existing MTBE approaches.
This section evaluates literature sources describing such approaches.

The investigated MTBE approaches have to deal with exogenous transfor-
mations, i.e., transformations between different languages. Service and require-
ments specifications written in languages other than the core language have to be
transformed into the core language, for which the automated market operations
are defined. A further restriction is the consideration of only correspondence-

26

2.2 Related Work on User-Friendly Language Transformation

based approaches and no demonstration-based ones. The reason is the highly in-
teractive nature of demonstration-based approaches [86]. The modeler is guided
to demonstrate concrete parts of the model transformation iteratively in an in-
teractive manner. Since the OTF market is designed to be highly automated
and actors of the OTF market are distributed, such interaction is not really
possible for the design of model transformations.

Table 2.4 lists approaches obtained using both in-depth and broad search
strategies. The in-depth search strategy was based on the survey by Kappel
et al. [75]. The broad search strategy was applied for literature sources from
the year 2012 to the year 2014 because literature sources till the year 2011 are
adequately covered by the survey of Kappel et al. [75]. For the evaluation, the
literature sources are grouped so that a group corresponds to a MTBE approach
having evolved over years. Each group is highlighted with a different color.

Table 2.4: Search results based on the in-depth and broad search strategies
Authors Title Reference

Balogh et
al.

Model Transformation by Example Using
Inductive Logic Programming

[14]

Dolques et
al.

From Transformation Traces to Transformation
Rules: Assisting Model Driven Engineering
Approach with Formal Concept Analysis

[40]

Dolques et
al.

Learning Transformation Rules from
Transformation Examples: An Approach Based

on Relational Concept Analysis
[41]

Dolques et
al.

Easing Model Transformation Learning with
Automatically Aligned Examples

[39]

Faunes et
al.

Genetic-Programming Approach to Learn Model
Transformation Rules from Examples

[46]

Garćıa-
Magariño et

al.

Model Transformation By-Example: An
Algorithm for Generating Many-to-Many
Transformation Rules in Several Model

Transformation Languages

[53]

Kessentini
et al.

Model Transformation as an Optimization
Problem

[79]

Kessentini
et al.

Search-based Model Transformation by Example [80]

Saada et al.
Learning Model Transformations from Examples

using FCA: One for All or All for One?
[125]

Saada et al.
Generation of Operational Transformation Rules

from Examples of Model Transformations
[124]

Strommer
et al.

A Framework for Model Transformation
By-Example: Concepts and Tool Support

[142]

27

2. Related Work

Table 2.4: Search results based on the in-depth and broad search strategies
Authors Title Reference

Varró et al. Model Transformation by Example [154]

Varró et al.
Automating Model Transformation by Example

Using Inductive Logic Programming
[155]

Wimmer et
al.

Towards Model Transformation Generation
By-Example

[162]

Table 2.5 presents the evaluation performed for six approaches presented as
groups in Table 2.4 based on chosen comparison criteria. Requirements on the
user-friendly transformation required in the OTF market motivate the compa-
rison criteria. The rationals for them are explained in the following.

The criteria Representation of abstract syntax and Representation of

example models were chosen to evaluate how an abstract syntax and exam-
ple models have to be defined to serve as input for any MTBE approach.
Definition of model correspondences is essential to understand the form,
in which existing MTBE approaches allow to define correspondences between
example models. The way to define such correspondences has to be suitable for
market actors in the OTF market. Evaluation of the quality of models

indicates whether an approach provides any means to evaluate the quality of the
input example models as their quality reflects in the quality of the transforma-
tion learned based on these example models. In order to get an overview about
the learning algorithms applied for MTBE, the criterion Underlying learning

technique is considered.
Type of model transformations is chosen, in order to understand the out-

put format of existing MTBE approaches. Executability of model trans-

formations indicates, whether a resulting model transformation can be di-
rectly executed on models, in order to perform the language transformation.
In order to understand the expressiveness of resulting model transformations,
the kinds of correspondences used in rules of this transformation are consi-
dered (Correspondences in rules). For the evaluation of resulting model
transformations, how the transformation is evaluated (Evaluation of model

transformations) and what example are used (Evaluation examples) are
considered. The final criteria are Automation of the approach and Tool

support, which are important for experiments with the corresponding MTBE
approach and its possible integration into the tool support for the OTF market.

28

2.2 Related Work on User-Friendly Language Transformation

T
ab

le
2.

5:
C

om
p
ar

is
on

of
ex

is
ti

n
g

M
T

B
E

ap
p
ro

ac
h
es

C
om

p
ar

is
on

cr
it

er
io

n
D

ol
q
u
es

et
al

.
F

au
n
es

et
al

.
G

ar
ćı

a-
M

a-
ga

ri
ñ
o

et
al

.
K

es
se

n
ti

n
i

et
al

.
V

ar
ró

et
al

.
W

im
m

er
et

al
.

R
ep

re
se

n
ta

ti
on

of
ab

st
ra

ct
sy

n
ta

x

C
on

ce
p
ts

ac
co

rd
in

g
to

R
C

A

S
et

s
of

fa
ct

te
m

p
la

te
s

M
et

am
o
d
el

s
w

it
h

O
C

L
co

n
st

ra
in

ts
M

et
am

o
d
el

s
M

et
am

o
d
el

s
m

ap
p

ed
to

p
re

d
ic

at
es

M
et

am
o
d
el

s
w

it
h

O
C

L
co

n
st

ra
in

ts
R

ep
re

se
n
ta

ti
on

of
ex

am
p
le

m
o
d
el

s

L
at

ti
ce

s
ob

ta
in

ed
u
si

n
g

R
C

A
S
et

s
of

fa
ct

s
In

st
an

ce
s

of
m

et
am

o
d
el

s
S
et

s
of

p
re

d
ic

at
es

P
ro

lo
g

cl
au

se
s

In
st

an
ce

s
of

m
et

am
o
d
el

s

D
efi

n
it

io
n

of
m

o
d
el

co
rr

e-
sp

on
d
en

ce
s

T
ra

ce
li
n
k
s

M
o
d
el

p
ai

rs
M

o
d
el

p
ai

rs

M
o
d
el

p
ai

rs
,

m
ap

p
in

g
b
lo

ck
s

b
as

ed
on

p
re

d
ic

at
es

M
o
d
el

p
ai

rs
T

ra
ce

li
n
k
s

E
va

lu
at

io
n

of
th

e
q
u
al

it
y

of
m

o
d
el

s
N

o
N

o
N

o
N

o
N

o
N

o

U
n
d
er

ly
in

g
le

ar
n
in

g
te

ch
n
iq

u
e

R
C

A
,

tr
an

s-
fo

rm
at

io
n

p
at

te
rn

s

G
en

et
ic

p
ro

gr
am

m
in

g
In

fe
re

n
ce

al
go

ri
th

m

P
S
O

,
si

m
u
la

te
d

an
n
ea

li
n
g

In
d
u
ct

iv
e

L
og

ic
P

ro
gr

am
m

in
g

P
at

te
rn

-
b
as

ed
re

as
on

in
g

T
y
p

e
of

m
o
d
el

tr
an

sf
or

m
a-

ti
on

s
J
E

S
S

ru
le

s
J
E

S
S

ru
le

s
A

T
L

ru
le

s
T

ra
ce

li
n
k
s

V
IA

T
R

A
2

tr
an

sf
or

m
a-

ti
on

A
T

L
ru

le
s

E
x
ec

u
ta

b
il
it

y
of

m
o
d
el

tr
an

s-
fo

rm
at

io
n
s

D
ir

ec
tl

y
D

ir
ec

tl
y

D
ir

ec
tl

y
N

ot
m

en
ti

on
ed

D
ir

ec
tl

y
D

ir
ec

tl
y

29

2. Related Work

T
ab

le
2.

5:
C

om
p
ar

is
on

of
ex

is
ti

n
g

M
T

B
E

ap
p
ro

ac
h
es

C
om

p
ar

is
on

cr
it

er
io

n
D

ol
q
u
es

et
al

.
F

au
n
es

et
al

.
G

ar
ćı

a-
M

a-
ga

ri
ñ
o

et
al

.
K

es
se

n
ti

n
i

et
al

.
V

ar
ró

et
al

.
W

im
m

er
et

al
.

C
or

re
sp

on
-

d
en

ce
s

in
ru

le
s

1-
to

-1
,

1-
to

-N
A

rb
it

ra
ry

A
rb

it
ra

ry
1-

to
-1

,
N

-t
o-

N
1-

to
-1

,
N

-t
o-

N
1-

to
-1

E
va

lu
at

io
n

of
m

o
d
el

tr
an

sf
or

-
m

at
io

n
s

P
ro

of
-o

f-
co

n
ce

p
t

T
es

ti
n
g

w
it

h
k
n
ow

n
tr

an
s-

fo
rm

at
io

n
re

su
lt

s

P
ro

of
-o

f-
co

n
ce

p
t

E
va

lu
at

io
n

of
fi
tn

es
s

an
d

p
re

ci
si

on
of

m
o
d
el

tr
an

s-
fo

rm
at

io
n
s

T
es

ti
n
g

on
ex

am
p
le

m
o
d
el

s

P
ro

of
-o

f-
co

n
ce

p
t

E
va

lu
at

io
n

ex
am

p
le

s

L
at

ex
→

H
T

M
L

,
U

M
L

cl
as

s
d
ia

gr
am

s
→

en
ti

ty
-

re
la

ti
on

sh
ip

m
o
d
el

s

U
M

L
cl

as
s

d
ia

gr
am

s
→

re
la

ti
on

al
d
at

ab
as

es
,

(n
es

te
d
)

se
q
u
en

ce
d
ia

gr
am

s
→

st
at

ec
h
ar

ts

11
ex

am
p
le

s

U
M

L
cl

as
s

d
ia

gr
am

s
→

re
la

ti
on

al
sc

h
em

at
a

U
M

L
cl

as
s

d
ia

gr
am

s
→

re
la

ti
on

al
d
at

ab
as

es

U
M

L
cl

as
s

d
ia

gr
am

s
→

re
la

ti
on

al
d
at

ab
as

es

A
u
to

m
at

io
n

of
th

e
ap

p
ro

ac
h

A
u
to

m
at

ed
A

u
to

m
at

ed
A

u
to

m
at

ed
d
ep

en
d
in

g
on

ex
am

p
le

s
A

u
to

m
at

ed
A

u
to

m
at

ed
w

it
h

m
an

u
al

re
fi
n
em

en
t

S
em

i-
au

to
m

at
ed

w
it

h
u
se

r
in

te
ra

ct
io

n

T
o
ol

su
p
p

or
t

E
x
is

ts
b
u
t

u
n
av

ai
la

b
le

E
x
is

ts
b
u
t

u
n
av

ai
la

b
le

E
x
is

ts
b
u
t

u
n
av

ai
la

b
le

N
ot

m
en

ti
on

ed
A

va
il
ab

le
A

va
il
ab

le

30

2.2 Related Work on User-Friendly Language Transformation

To summarize, all the presented MTBE approaches are either fully automated
or semi-automated. They output directly executable model transformation co-
vering 1-to-1, N-to-N or arbitrary correspondences for language constructs. All
of the approaches work either directly on metamodels and their instances, or
transform them in an internal format first. Concerning the evaluation of result-
ing model transformation, three of six approaches use a solid evaluation (testing
or comparison based on chosen metrics). However, none of the approaches men-
tions how the quality of the considered set of example models is evaluated.

2.2.2.3 Evaluation Summary

The research questions of this review are answered as follows:
1. What approaches for the user-friendly language transformation

exist? Section 2.2.2.1 presents the investigation of existing classifications of
model transformation approaches. From the existing classifications, only the
survey by Kappel et al. [75] describes model transformation by-example (MTBE)
approaches allowing the user-friendly language transformation. Based on this
survey, six existing MTBE approaches are compared in Section 2.2.2.2 according
to the comparison criteria relevant for the problem statement in Section 1.2.2.

2. What specification languages these approaches are applicable
to? The most MTBE approaches are applicable to languages with the abstract
syntax defined as metamodels. For example, the approach by Garćıa-Magariño
et al. requires languages represented in the form of Ecore metamodels [140] re-
fined with OCL constraints [109]. The approaches by Dolques et al. and Faunes
et al. use different formats needed for their inference algorithms like concepts
for the relational concept analysis or a set of fact templates correspondingly.

3. How the semantics of specification languages is considered for
the user-friendly transformation? In the MTBE approaches, the seman-
tics of specification languages is considered in the form of examples. Examples
represent common usage patterns of the source and target specification lan-
guages and semantic mappings between them. This guarantees that meaningful
semantic correspondences are considered in the resulting model transformation.

4. How the quality of the language transformation can be evalu-
ated? The existing MTBE approaches make use of the following techniques:
testing, proof-of-concept, or evaluation of predefined metrics. A test suite of mo-
dels with a known transformation result is used for testing of resulting model
transformations. These models usually differ from the models used for learn-
ing of the model transformation. Another possibility is to use a set of model
transformations, which are expected to result from given example models. In
this case, the resulting model transformation is compared to the expected model
transformation. For the evaluation as proof-of-concept, the developed approach
is applied to certain source and target languages. The evaluation of such metrics
as a fitness of the resulting model transformation is possible for the approaches
using optimization algorithms.

31

2. Related Work

For OTF Computing, no existing MTBE approach can be used in an OTF
market without further modifications.

On the one hand, a large search space of possible transformations exists in an
OTF market. This is because there are no restrictions on possible combinations
of language constructs from the source and target languages in the transforma-
tion rules as well as there are no restrictions on combination of such rules in a
model transformation. On the other hand, a perfectly correct transformation is
not required in the OTF market. The transformation has to transform specifica-
tions into the core language so that the service matching of these specifications
delivers results with sufficient reliability.

In order to cope with the large size of the search space and to find a suf-
ficiently correct model transformation, a metaheuristic optimization approach
is suitable. Metaheuristic is an approximate algorithm that allows an efficient
and effective solution finding to hard combinatorial optimization problems [78].
It is especially suitable for solving optimization problems under the condition
of incomplete information or limited computation capacity [20]. From the ap-
proaches presented in Table 2.5, only the approaches of Faunes et al. und
Kessentini et al. use a metaheuristic in their learning algorithms. They use
genetic algorithms and particle swarm optimization correspondingly.

In order to increase the quality of the learned model transformation, the qua-
lity of example models serving as an input for the approach has to be evaluated
and, if possible, improved by market actors. A resulting model transforma-
tion has to be directly executable without any manual adaptation needed from
market actors as they do not have the required expertise to modify the transfor-
mation. Since market actors need the model transformation to enter the OTF
market, the corresponding MTBE approach has to deliver it as fast as possible.

According to the requirements stated above, the approaches by Faunes et
al. and Kessentini et al. do not satisfy them. The approach by Faunes et al.
works on sets of facts as a representation for example models. The approach
by Kessentini et al. works on sets of predicates as a representation for example
models and does not produce a directly executable model transformation. Both
approaches do not consider the quality of example models and, thus, do not
provide means to evaluate or improve it. Regarding the convergence to an
optimal solution, both approaches use random-based operators. In order to
achieve a faster convergence, less random operators are required in the OTF
market. As a result of all the facts mentioned above, a new mtbe approach is
developed in this PhD thesis.

32

3 Requirements and Overview of
the Solution

This section introduces requirements and an overview of the solution developed
in this PhD thesis. Section 3.1 presents requirements on a solution for the
problem statements described in Section 1.2. Requirements are derived from the
motivation, problems statements and the related approaches described above.
Section 3.2 shows an overview of the solution satisfying these requirements.

3.1 Requirements on the Solution

This section starts with requirements on the approach for the design of an
optimal core language listed in Section 3.1.1. Afterwards, Section 3.1.2 presents
requirements on the user-friendly language transformation approach.

3.1.1 Requirements on Design of an Optimal Core Language

The following requirements are derived from the motivation scenario described
in Section 1.1, the problem statement described in Section 1.2.1, and the results
of the systematic literature review described in Section 2.1. The design approach
developed in this PhD thesis is called LOpt (language Optimizer).

Requirements on an optimal core language:

R.1.1.1: An optimal core language shall have a formal syntax definition,
in order to facilitate the automated execution of market operations
on specifications written in the core language. This requirement is
based on Challenge 2 described in Section 1.1 and the design prin-
ciples for core languages summarized in the Research question 1 in
Section 2.1.2.2.

R.1.1.2: An optimal core language shall have a formal definition of the
semantics for those parts, for which a formal definition of the seman-
tics is required for the execution of the automated market operations.
This requirement is based on Challenge 2 described in Section 1.1 and
the design principles for core languages summarized in the Research
question 1 in Section 2.1.2.2.

33

3. Requirements and Overview of the Solution

R.1.1.3: An optimal core language shall provide all language constructs for
the specification of structural, behavioral, and non-functional service
properties, which are relevant for the automated execution of market
operations in an OTF market, because the goal of the core language
is to optimally support these automated market operations. This
requirement is derived from the problem statement described in Sec-
tion 1.2.1 and the design principles for core languages summarized in
the Research question 1 in Section 2.1.2.2.

R.1.1.4: A core language shall be optimal for the automated market ope-
rations in a given OTF market. The optimal core language of an OTF
market contributes to the success of that market. This requirement
is based on the problem statement described in Section 1.2.1.

R.1.1.5: Service specifications written in an optimal core language shall
serve as basis for the definition and execution of the automated mar-
ket operations, in order to avoid the infeasible effort of defining the
operations for all existing specification languages. This requirement
is based on the problem statement described in Section 1.2.1 and
the design principles for core languages summarized in the Research
question 1 in Section 2.1.2.2.

R.1.1.6: An optimal core language shall have a modular structure because
it facilitates the reuse and maintainability of its parts. This require-
ment is based on the best practices for language design summarized
in the Research question 1 in Section 2.1.2.2.

R.1.1.7: An optimal core language shall be orthogonal. Orthogonality of
a language guarantees that each modeled concept is expressed in ex-
actly one good way in this language. Orthogonality is a principle of
a good language design that fosters a better maintainability of a lan-
guage. This requirement is based on the best practices for language
design summarized in the Research question 1 in Section 2.1.2.2.

R.1.1.8: An optimal core language shall reuse existing service specifica-
tion languages of market actors. This shall foster the acceptance
of an optimal core language in an OTF market, because established
language constructs and their semantics already approved by mar-
ket actors are reused. This requirement is based on the problem
statement described in Section 1.2.1, the best practices for language
design summarized in the Research question 1 in Section 2.1.2.2, and
the existing specification languages and language composition ap-
proaches summarized in the Research question 5 in Section 2.1.2.2.

R.1.1.9: An optimal core language shall be designed to facilitate trans-
formations from other service specification languages. The goal is to
enable the transformation and, thus, a reuse of specifications written

34

3.1 Requirements on the Solution

by market actors for the execution of the automated market opera-
tions. This requirement is based on Challenge 3 described in Sec-
tion 1.1 and the design principles for core languages summarized in
the Research question 1 in Section 2.1.2.2.

Requirements on the design approach LOpt:

R.1.2.1: The design approach LOpt shall provide a systematic approach
to create an optimal core language fulfilling the requirements R.1.1.1 –
R.1.1.9. This requirement is based on the investigation of existing
design techniques for languages summarized in the Research ques-
tion 1 in Section 2.1.2.2.

R.1.2.2: The design approach LOpt shall be automated. The automated
execution of LOpt allows to find an optimal core language without
subsequent manual effort from users. This requirement is motivated
in Section 1.1 as market actors have no expertise in language design.

R.1.2.3: The design approach LOpt shall leverage the properties of an
OTF market of its application, in order to consider its specifics during
the language design. This requirement is based on the problem state-
ment described in Section 1.2.1 and the discussion in the Research
question 3 in Section 2.1.2.2.

R.1.2.4: The design approach LOpt shall use a measurable definition of
the language optimality. This definition has to be used to find a core
language, for which the application of the automated market opera-
tions delivers the best results regarding the definition. This require-
ment is based on the problem statement described in Section 1.2.1
and the discussion in Research question 2 in Section 2.1.2.2.

R.1.2.5: The design approach LOpt shall adhere to the guidelines for the
design of specification languages. This requirement is based on guide-
lines like defining viewpoints or using customization summarized in
the Research question 1 in Section 2.1.2.2.

R.1.2.6: The design approach LOpt shall solve conflicts arising during
the design of an optimal core language. This requirement is based on
the problem statement described in Section 1.2.1 and the discussion
in the Research question 4 in Section 2.1.2.2.

3.1.2 Requirements on User-Friendly Language
Transformation

The following requirements are derived from the motivation scenario in Sec-
tion 1.1, the problem statement in Section 1.2.2, and the results of the systema-
tic literature review in Section 2.2. The design approach for the user-friendly
model transformation is called mtbe (Model Transformation By-Example).

35

3. Requirements and Overview of the Solution

Requirements on the model transformation:

R.2.1.1: The model transformation shall apply to languages having a for-
mal definition of the abstract syntax. This requirements is based on
the problem statement in Section 1.2.2 and the evaluation summary
in Section 2.2.2.3.

R.2.1.2: The model transformation shall be directly executable on speci-
fications of the source language. No manual refinement or adapta-
tion of the model transformation by market actors shall be required.
This requirements is based on the problem statement described in
Section 1.2.2 and the evaluation summary in Section 2.2.2.3.

R.2.1.3: The model transformation shall cover the relevant parts of the
language only. The reason is that a modeler often uses only parts of
their language because of the large size and high complexity of many
specification languages. Therefore, a more focused transformation
of the relevant language parts into the core language is required, in
order to cope with this complexity. This requirement is based on the
motivation scenario in Section 1.1 and the evaluation summary in
Section 2.2.2.3.

R.2.1.4: The model transformation shall contain arbitrary correspondences
between language constructs of the source and target languages (i.e.,
1-to-1, 1-to-N-, N-to-1, and N-to-M). This requirement is based on
the the evaluation summary in Section 2.2.2.3.

R.2.1.5: The model transformation shall lead to acceptable matching re-
sults of specifications transformed in the optimal core language. This
requirements is based on the problem statement in Section 1.2.2.

Requirements on the user-friendly language transformation approach (mtbe):

R.2.2.1: The mtbe approach shall use the technique of Model Transfor-
mation By-Example to create a model transformation. As a result,
mtbe shall derive a model transformation based on correspondences
between the source and target languages given in the form of pairs of
example specifications written in these languages, i.e., example mo-
dels. The mappings have to be given at the level of example specifi-
cations because most market actors in the OTF market are assumed
to have no expertise in language design and, thus, cannot specify
fine-grained mappings. This requirement is based on the choice of
the Model Transformation By-Example technique in Section 2.2.2.1.

R.2.2.2: The mtbe approach shall work on formal language definitions of
the source and target languages and produce a directly executable
model transformation for these languages. This requirement is based
on the requirements R.2.1.1 and R.2.1.2.

36

3.1 Requirements on the Solution

R.2.2.3: The mtbe approach shall be able to evaluate the quality of the
given example models with respect to the given languages. Thus,
market actors can control and improve the quality of their models.
This requirement is motivated in Section 2.2.2.3.

R.2.2.4: The mtbe approach shall be able to identify language parts rele-
vant for the model transformation. It is based on R.2.1.3.

R.2.2.5: The mtbe approach shall leverage the knowledge from the map-
pings between example models. This knowledge has to be used in
the metaheuristic operators of the mtbe approach. It is motivated by
the requirement that the metaheuristic has to converge effectively to
an optimal solution as explained in Section 2.2.2.3.

R.2.2.6: The mtbe approach shall use a metaheuristic for the derivation
of a model transformation. A metaheuristic allows to effectively and
efficiently find a solution to an optimization problem with a large
search space. This requirement is motivated in Section 2.2.2.3.

R.2.2.7: The mtbe approach shall create a model transformation consist-
ing of rules with arbitrary correspondences between language con-
structs (i.e., 1-to-1, 1-to-N-, N-to-1, and N-to-M) combined in a con-
trol flow of arbitrary complexity. This requirement is based on the
requirement R.2.1.4.

R.2.2.8: The mtbe approach shall be independent from any concrete model
transformation language. The approach shall provide a possibility to
create model transformations in a chosen supported model transfor-
mation language. This requirement is motivated by the fact that
some market actors might have enough expertise to work on the
model transformations directly. Thus, market actors can use dif-
ferent intuitive or familiar notations to modify the resulting model
transformations. This is similar to arbitrary languages, which market
actors are able to use for specifying services (see Section 1.1).

R.2.2.9: The mtbe approach shall define a fitness of model transformations
specific for the OTF market. The new fitness definition is impor-
tant because the main goal of the model transformation in the OTF
market is to create service specifications, which can be used for the
reliable service matching. This goal differs from the fitness functions
used in existing approaches, which optimize the model transforma-
tion with respect to the set of example models only. This requirement
is based on the requirement R.2.1.5.

37

3. Requirements and Overview of the Solution

3.2 Overview of the Solution

Section 2.1.2.2 and Section 2.2.2.3 state that no approach exists, which can be
directly applied as a solution to the problem statements from Section 1.2 and
which satisfies the requirements from Section 3.1. Thus, this section presents an
overview of the new solution, which solves the presented problem statements and
satisfies the requirements. This solution aims at overcoming the heterogeneity
in OTF markets and significantly contributes to their success and acceptance.

Figure 3.1 introduces an overview of the solution, which consists of two ap-
proaches LOpt and mtbe. Each approach addresses one problem statement.

Comprehensive core

language

Service

structure

Service

behavior

Service non-func-

tional properties

OTF Market X

Configuration

Optimal core language

Service

structure

Service non-func-

tional properties

User-friendly

transformation

LOpt

mtbe

Provider‘s/

Requester’s

language

Service matching

Optimal

service matching

Figure 3.1: Overview of the solution

LOpt is the approach to design an optimal core language for a given OTF
market. LOpt contains a comprehensive core language, which serves as a
basis for optimal core languages in different OTF markets. The comprehensive
core language covers various structural, behavioral, and non-functional proper-
ties of services and allows to specify services comprehensively. LOpt configures
the comprehensive core language to obtain a core language that optimally sup-
ports automated market operations in the considered OTF market.

Figure 3.1 shows an application of LOpt to a concrete OTF market. The
optimal core language for this market is created by omitting those parts
of the comprehensive core language, which are irrelevant for performing the
automated market operations in this market. In this case, these are Service

behavior properties.

38

3.2 Overview of the Solution

For the configuration, LOpt uses properties of the given OTF market as well
as the expertise in the domain of service engineering. As depicted in Figure 3.1,
the market operation of service matching is defined for the comprehensive core
language as well as for the optimal core language. The service matching is con-
figured based on properties of the optimal core language and of the underlying
OTF market. The configuration of the service matching is out of scope of this
PhD thesis and our papers [7, 8, 117] give more information on this topic.
mtbe aims at supporting market actors to transform their existing specifi-

cations into the optimal core language of the considered OTF market. The
approach does not require any expertise in language design from market actors.
mtbe allows the market actors to specify correspondences between semanti-

cally equivalent example specifications in their specification language and the
optimal core language. To create these specifications, the market actors have
to learn the syntax and semantics of the corresponding optimal core language.
Based on these knowledge, the market actors have to map their example specifi-
cations, which are representative for the usage of their language, into the optimal
core language. The market actors are responsible for the semantic equivalence
of the created mappings, which they also can check by using such automated
techniques as DMM [132].

Based on these correspondences, a language transformation between these
languages is derived using a metaheuristic derivation algorithm. This deriva-
tion algorithm allows the effective and efficient exploration of the solution space
of possible model transformations. The obtained language transformation pre-
serves the semantics of the considered languages defined in the given examples.
As a result, market actors can perform the optimal market operation defined
for the optimal core language on their service and requirements specifications.

In the following part of this PhD thesis, each approach is described in a
separate chapter. Chapter 4 describes the approach LOpt for the design of
an optimal core language, while Chapter 5 presents the approach mtbe for the
user-friendly model transformation.

39

4 Design of an Optimal Core
Language

This chapter presents the approach LOpt for the design of an optimal core lan-
guage for a given OTF market. This approach provides a solution for the prob-
lem statement presented in Section 1.2.1 and satisfies the requirements stated in
Section 3.1.1 that is shown as a part of the evaluation presented in Section 4.3.
This chapter starts by describing the concept of an optimal core language in
Section 4.1. Based on this concept, Section 4.2 describes the approach LOpt.
Section 4.3 presents the evaluation of this approach on case studies.

4.1 Concept of an Optimal Core Language

This section begins with a formal definition of a core language for an OTF
market. For this purpose, Section 4.1.1 extends the classic language definition
with a new formal definition of the language pragmatics. Section 4.1.2 uses this
definition of the language pragmatics to define the notion of the core language
optimality. This notion defines, which core language is considered to be opti-
mal with respect to the execution of the automated market operations in the
considered OTF market.

4.1.1 Core Language Definition

Figure 4.1 introduces a formal language definition used in this PhD thesis. This
definition is based on the notions by Stahl et al. [138] and Völter et al. [157],
and the notation of UML class diagrams [108] is chosen to illustrate it. A formal
language definition is required because specification languages have to be defined
formally, in order to create formal service specifications in OTF markets (see
Challenge 2 in Section 1.1).

As depicted in Figure 4.1, a Language consists of three parts: Abstract

Syntax, Semantics, and Pragmatics.
The Abstract Syntax represents modeling elements and their relations bet-

ween each other [138, p. 29]. Abstract syntax is independent from any con-
crete representation of modeling elements and their relations. Several tech-
niques to define the abstract syntax of a language exist. Metamodels are
an established technique according to the model-driven software development
paradigm [24, 71, 137]. A metamodel describes the abstract syntax in the form

41

4. Design of an Optimal Core Language

Language

Semantics Pragmatics

semanticsabstractSyntax pragmatics

Abstract Syntax

1 1 1

definedFor

definedFor

1

1

Figure 4.1: Language definition based on [138] and [157]

of a visual model [157, p. 27]. Syntactic metalanguages are another way to
define the abstract syntax in the form of rules. One well-known syntactic meta-
language is the Extended Backus-Naur Form [69].

The Semantics is defined for the language elements described in the ab-
stract syntax (depicted by the association definedFor between the classes
AbstractSyntax and Semantics). Völter et al. [157, p. 26] distinguish between
the static and dynamic semantics of a language, which are both represented by
the class Semantics in Figure 4.1. The static semantics defines a set of con-
straints, which a specification in this language has to conform to. A broadly
used declarative language for specifying the static semantics is the Object Con-
straint Language (OCL) [109]. The dynamic, or execution, semantics defines
the behavior of an executable specification. For the specification of the dynamic
semantics, different notations exist, e.g., graph-based approaches like Dynamic
Meta Modeling (DMM) [64, 132].

The Pragmatics is defined for the abstract syntax of a language as well. Sta-
chowiak defines a model as pragmatic, if all its elements assist explicitly specified
users in fulfilling specified operations for a certain time period [136]. In order
to formalize the notion of language pragmatics, Figure 4.2 presents an extended
language definition introduced in this PhD thesis. The language pragmatics is
formalized as a set of operations performed on this language. Operations are
represented by the new class Operation highlighted as gray. They are defined
for the abstract syntax of the language and executed on specifications written
in it (represented by the association definedFor between the classes Operation
and AbstractSyntax).

Based on the extended language definition given in Figure 4.2, Definition 1
formalizes the definition of a core language in an OTF market. This definition
is used later for the formalization of language optimality.

A core language consists of an abstract syntax asCL, a semantics semCL, and
a pragmatics pragCL. The abstract syntax asCL is defined using metamodels.

42

4.1 Concept of an Optimal Core Language

Language

Semantics Pragmatics

semanticsabstractSyntax pragmatics

Abstract Syntax

1 1 1

definedFor

definedFor

1

1

Operation

*

hasOperations

1

definedFor

Figure 4.2: Extended language definition

The reason for this choice is the central usage of metamodels in the paradigm
of model-driven software development (MDSD) [137, p. 13]. This PhD thesis
follows the principles of MDSD due to such goals like abstraction, separation
of concerns, and interoperability. The semantics semCL represents both static
and dynamic semantics of the core language. The pragmatics pragCL contains
the operation of the service matching µ formalized in the following.

Definition 1 (Core language CL)

Given asCL : AbstractSyntax, semCL : Semantics, pragCL : Pragmatics,
and µ : Operation, where µ is the operation of service matching, then CL :
Language is the definition of a core language, for which holds:
CL = {asCL, semCL, pragCL} and pragCL = {µ}.

In order to formalize the operation of service matching, Definition 2 formalizes
the set of all specifications written in a core language. This set contains all
specifications, which conform to its abstract syntax asCL.

Definition 2 (Specifications of a core language SpecsCL)

Given asCL of the core language CL and the predicate instances that de-
termines the instances of asCL, then SpecsCL = {instances(asCL)} is the set
of specifications of the core language CL.

Definition 3 formalizes the operation of service matching for a core language.
The service matching calculates, to which degree the service described in

the given service specification spec satisfies the requirements stated in the re-
quirements specification req. The service matching takes as input a service
specification spec and a requirements specification req, which are both written

43

4. Design of an Optimal Core Language

in the same core language. Then, it outputs the degree of matching, which can
be expressed in different formats, e.g., a real number in the range from 0 to 1.

Definition 3 (Service matching µ)

Given a service specification spec ∈ SpecsCL and a requirements specification
req ∈ SpecsCL, then µ : SpecsCL × SpecsCL → [0, 1] is the operation of the
service matching defined for the core language CL, which determines, to which
the degree from 0 to 1 the service described in spec satisfies req.

4.1.2 Core Language Optimality

The notion of the core language optimality is strongly connected with the no-
tion of the core language pragmatics and, thus, with the operations executed
on specifications of the core language. In this PhD thesis, the operation of ser-
vice matching is considered for the core language optimality. Other automated
market operations like service analysis are a future work. The optimality of the
core language for an OTF market is determined by the quality of the service
matching executed on specifications written in this core language.

The quality of the service matching can be characterized by the following
two properties: efficiency and effectiveness. Efficiency defines the capability to
provide appropriate performance with respect to the amount of resources used
under stated conditions [70]. Effectiveness defines a measurable degree of how
good a system achieves its objectives [63]. Formal definitions of these properties
for the service matching are given in the following.

Efficiency and effectiveness of the service matching are measured on a test
collection. A test collection represents properties specific for an OTF market,
for which this test collection was created. It contains specifications, which show
a representative usage of the core language in the considered market. Thus,
through a test collection, the specifics of this market are considered by the
calculation of the matching efficiency and effectiveness.

Definition 4 describes the notion of a test collection defined for a core lan-
guage CL. A test collection is a set of pairs of a requirements specification and
a service specification. For each pair of a service specification and a require-
ments specification from a test collection, it is truly known (based on expert
knowledge), to which degree the service described by the service specification
matches the requirements specified in the requirements specification.

Definition 4 (Test collection TC)

Given a natural number N and the oracle match : SpecsCL×SpecsCL → [0, 1]
that truly knows, to which degree a service specification matches a require-
ments specification, then TC = SpecsCL×SpecsCL× [0, 1] is a test collection
containing N specification pairs and their expected matching result:
pi = (spec, req,match(spec, req)) ∈ TC.

44

4.1 Concept of an Optimal Core Language

The matching efficiency is measured as the run time, which the service match-
ing requires to calculate matching results for a given test collection. Thus, the
run time is relative to the realization of the service matching and the chosen
test collection. Definition 5 formalizes the notion of the matching run time as
the mean run time to compute a matching result for one specification pair.

Definition 5 (Average matching run time rtTCµ)

Given µ and the run time rt(µ(specpi , reqpi)) necessary to compute a match-
ing result for pi = (specpi , reqpi ,match(specpi , reqpi)) ∈ TC, then rtTCµ =∑N

i=1 rt(µ(specpi , reqpi))/N is the average run time for the service matching
µ measured for a specification pair of the test collection TC.

Definition 6 formalizes the matching efficiency as a reversed matching run
time per specification pair of a given test collection. The definition indicates
that the longer the service matching takes to compute matching results, the
lower is the matching efficiency, and vice versa.

Definition 6 (Average matching efficiency εTCµ)

Given the average matching run time rtTCµ of a test collection TC, then
εTCµ = 1/rtTCµ is the average matching efficiency for the test collection TC.

The effectiveness of the service matching is defined by a measurable degree
of how good the services matching to the stated requirements are retrieved.
This objective can be measured by the metrics of precision and recall used in
the area of information retrieval for measuring the effectiveness of the retrieval
process [126]. In the following, the formalization of these metrics is presented.

Definitions 7–8 formalize the sets of triples from a test collection TC with
positive and negative matching results.

Definition 7 (Triples with positive matching results P TC
θ)

Given a threshold θ ∈ [0, 1] and a test collection TC, then P TC
θ = {pi ∈

TC | µ(specpi , reqpi) ≥ θ} is the set of triples with positive matching results.

Definition 8 (Triples with negative matching results NTC
θ)

Given a threshold θ ∈ [0, 1] and a test collection TC, then NTC
θ = {pi ∈

TC | µ(specpi , reqpi) < θ} is the set of triples with negative matching results.

The service matching outputs a positive matching result for a specification
pair, if its service specification complies to the requirements specification to an
acceptable extent. A threshold θ determines this extent, for which each match-
ing result with an equal or higher value is considered to be positive. Otherwise,
the matching result is considered to be negative. Thus, positive and negative
matching results are defined relatively to a certain threshold θ.

Depending on the realization of the service matching, its computed positive
and negative matching results might be incorrect. Definitions 9–12 formalize

45

4. Design of an Optimal Core Language

the sets of triples with true/false positive and true/false negative matching
results [163]. These sets are computed for specifications from a test collection,
in which their true matching results are known based on the expert knowledge.

Definition 9 (Triples with true positive matching results TP TC
θ)

Given a threshold θ ∈ [0, 1] and a test collection TC, then TP TC
θ = {pi ∈

P TC
θ |match(specpi , reqpi) ≥ θ} are triples with true positive matching results.

Definition 10 (Triples with false positive matching results FP TC
θ)

Given a threshold θ ∈ [0, 1] and a test collection TC, then FP TC
θ = {pi ∈

P TC
θ | match(specpi , reqpi) < θ} are triples with false positive matching re-

sults.

Definition 11 (Triples with true negative matching results TNTC
θ)

Given a threshold θ ∈ [0, 1] and a test collection TC, then TNTC
θ = {pi ∈

NTC
θ | match(specpi , reqpi) < θ} are triples with true negative matching re-

sults.

Definition 12 (Triples with false negative matching results FNTC
θ)

Given a threshold θ ∈ [0, 1] and a test collection TC, then FNTC
θ = {pi ∈

NTC
θ | match(specpi , reqpi) ≥ θ} are triples with false negative matching re-

sults.

Based on Definitions 9–12, Definition 13 and Definition 14 formalize the no-
tions of precision and recall correspondingly. Both definitions are based on the
definitions of precision and recall given by Salton et al. [126, p. 164] and defined
relatively to a threshold θ and a test collection TC.

The matching precision is a measurement, which indicates how precise the ser-
vice matching retrieves positive matching results for a given test collection [126,
p. 164]. It is measured as the ratio of the number of true positive matching re-
sults to the number of matching results identified as positive, i.e., true positive
and false positive matching results.

Definition 13 (Matching precision πTCθ)

Given the sets of matching results TP TC
θ and FP TC

θ , then
πTCθ = |TP TC

θ |/(|TP TC
θ |+ |FP TC

θ |) is the matching precision.

The matching recall is a measurement, which indicates how good the service
matching can retrieve all matching results considered as positive by the ora-
cle [126, p. 164]. It is a ratio of the number of true positive matching results to
the number of true positive and false negative matching results.

Definition 14 (Matching recall ρTCθ)

Given the set of matching results TP TC
θ and FNTC

θ , then
ρTCθ = |TP TC

θ |/(|TP TC
θ |+ |FNTC

θ |) is the matching recall.

46

4.1 Concept of an Optimal Core Language

Effectiveness
α

Efficiency
ε

high

highlow

low

Optimal
core language

Comprehensive
core language

WSDL

Figure 4.3: Core language optimality wrt. efficiency and effectiveness

Finally, Definition 15 formalizes the effectiveness of the service matching.
Effectiveness is a measurement of the quality of the service matching indicating
how good the service matching retrieves correct matching results. It is defined
as a harmonic mean over the precision and recall [153]. Similar to the matching
efficiency, the effectiveness is defined relatively to a realization of the service
matching µ, to a test collection TC, and a threshold θ.

Definition 15 (Matching effectiveness αTCµ)

Given the matching precision πTCθ and the matching recall ρTCθ , then
αTCµ = 2 · πTCθ · ρTCθ /(πTCθ + ρTCθ) is the matching effectiveness.

The efficiency and effectiveness build a trade-off for the service matching. As-
sume an OTF market with three languages depicted in Figure 4.3 considered as
a core language. Figure 4.3 depicts the comprehensive core language having a
very high matching effectiveness, WSDL having a very high matching efficiency
and an optimal core language, for which both values are optimized for the un-
derlying OTF market. Having test collections and the service matching defined
for these languages, the matching effectiveness and efficiency can be measured
according to Definitions 6 and 15.

On the one hand, the higher is the efficiency of the service matching, the lower
is its effectiveness (this holds under the assumption that the service matching
is always performed for all parts of a service specification and no abortion in
the middle of the matching process happens). For example, a comprehensive
core language results in a high effectiveness because it covers different structural,
behavioral and non-functional service properties, a comparison of which leads to
reliable matching results. However, the matching efficiency on its specifications

47

4. Design of an Optimal Core Language

is low because comparing all these service properties results in a high run time.
On the other hand, a high efficiency of the service matching cannot be achieved

simultaneously with its high effectiveness (this holds under the assumption that
the service matching is always performed for all parts of a service specification
and no abortion in the middle of the matching process happens). The reason is
that a high efficiency results from a low run time, which can be achieved, only
if specifications contain few service properties without many details.

For example, the well-known specification language Web Services Description
Language (WSDL) [28] covers only operations of services. This fact results in a
low run time of matching WSDL specifications as no time-consuming matching
of either behavioral or non-functional properties is considered. However, this
leads to a low effectiveness of the service matching because no reliable matching
results can be obtained by comparing the service operations only.

Finally, an optimal core language covers less service properties from the com-
prehensive core language but more service properties in comparison to WSDL.
As a result, the optimal core language has a lower effectiveness than the com-
prehensive core language and lower efficiency than WSDL, thus, serving the
trade-off between the efficiency and effectiveness in a best possible way for the
underlying OTF market. A core language is optimal for an OTF market with
respect to a realization of the service matching for this core language, a test col-
lection reflecting representative usage scenarios of this language in this market
and a threshold defined to measure the effectiveness of the service matching.

Definition 16 gives the notion of an optimal core language of this PhD thesis.

Definition 16 (Optimal core language CLopt)

The core language CLoptµ,TC is pareto-optimal with respect to the service
matching µ, a test collection TC, and a threshold θ ⇔
@L : Language ((αTCµ (L) ≥ αTCµ (CLoptµ,TC) ∧ εTCµ (L) > εTCµ (CLoptµ,TC)) ∨
(αTCµ (L) > αTCµ (CLoptµ,TC) ∧ εTCµ (L) ≥ εTCµ (CLoptµ,TC))).

The definition states that a core language is pareto-optimal relatively to
matching efficiency and matching effectiveness measured for a given test col-
lection. For the optimal core language, service matching for all other languages
cannot achieve equal (or higher) effectiveness with higher efficiency, or higher
effectiveness with equal (or higher) efficiency. In other words, improvement in
one parameter is impossible without worsening the second one. According to
this definition, core languages producing higher effectiveness at lower efficiency
or higher efficiency at lower effectiveness also lie on the pareto frontier and are
considered pareto optimal (if these also satisfy the conditions stated in Defini-
tion 16). The presented definition of the language optimality allows to develop
a core language with quality measurable based on the introduced metrics of the
efficiency and effectiveness.

The next section presents the approach LOpt for designing a core language
optimal with respect to Definition 16.

48

4.2 The Approach LOpt

4.2 The Approach LOpt

This section presents the approach LOpt (language Optimizer) for the de-
sign of an optimal core language with respect to the definitions given in Sec-
tion 4.1. LOpt consists of a comprehensive core language and a configuration
approach. The comprehensive core language integrates existing specification
languages that results in its high matching effectiveness but its low matching
efficiency (see Figure 4.3). The configuration approach customizes the compre-
hensive core language so that the resulting customized language optimizes the
trade-off between the efficiency and effectiveness for a given OTF market.

Section 4.2.1 introduces an overview of the design phase and the application
of the approach. Section 4.2.2 describes the development of the comprehensive
core language, which serves as a basis for the configuration. Section 4.2.3 pre-
sents the configuration approach that obtains an optimal core language for a
given market from the comprehensive core language. Section 4.2.4 illustrates
the application of the developed configuration approach including how the con-
figuration approach obtains an optimal core language for a certain OTF market
and how this optimal language is used for its automated market operations.

4.2.1 Overview of the LOpt Approach

The overview of the LOpt approach is introduced in Figure 4.4.

LOpt

Market

properties

Configuration approach

defined

upon

Comprehensive Core Language

Optimal

Core

Language

Figure 4.4: Overview of the LOpt approach

LOpt takes market properties as an input and outputs a core language, which
is optimal for the service matching in this OTF market according to the defini-
tion of the language optimality given in Section 4.1.2. LOpt is an automated
approach that requires a manual effort only for formalizing the properties of a

49

4. Design of an Optimal Core Language

given OTF market. The approach is deterministic and, thus, produces the same
optimal core language for the markets with the same properties.

LOpt finds an optimal core language by customizing a Comprehensive Core

Language. The comprehensive core language is designed in a way to facili-
tate this configuration. The comprehensive core language describes a variety of
structural, behavioral, and non-functional service properties, which enable to
create comprehensive service specifications using this language. Different ser-
vice properties from the comprehensive core language can be used to configure
an optimal core language for an arbitrary OTF market. The comprehensive
core language reuses existing established languages for service specification that
fosters its acceptance by market actors and its compliance to existing languages
for transformations into the optimal core languages.

Section 4.1.2 explains that such comprehensive service specifications cannot be
optimal for each and every OTF market. Thus, the configuration approach

considers the specifications of an OTF market described as Market properties.
In order to obtain an optimal core language for an OTF market, a market
actor with the corresponding expertise sets the relevant market properties to
describe this market and also their individual strategy. The configuration is
performed based on measurable goals leading to the fact that the optimality
of a core language can be objectively evaluated. The configuration approach
creates the Optimal Core Language using the view building mechanism on the
comprehensive core language described in Section 4.2.2.5.

To apply LOpt to an OTF market, market properties have to be specified and
the configuration approach has to be applied based on them. After an optimal
core language has been configured, it can be used as long as the properties for
this market do not change. If some changes in the comprehensive core language
or the configuration approach occur, the currently used core language might not
be optimal anymore. In this case, it is desirable to run LOpt again, in order
to obtain the core language optimal with regard to the recent changes.

The comprehensive core language and the configuration approach of the LOpt
approach are developed for all OTF markets in the OTF Computing. They can
be adapted if changes are necessary. After a language adaptation, those parts of
the configuration approach might need to be adapted, which are defined upon
the changed language parts. For the adaptation of the configuration approach
only, no changes in the comprehensive core language are necessary.

4.2.2 Comprehensive Core Language

This section presents an approach to develop a comprehensive core language
for service specifications. The development approach describes, how existing
languages are collected for reuse and integrated stepwise in the comprehensive
core language. Then, techniques to check the quality of the comprehensive core
language are introduced.

50

4.2 The Approach LOpt

4.2.2.1 Overview of the Development Approach

Figure 4.5 illustrates the approach to develop a comprehensive core language.
In order to develop a comprehensive core language, three steps are necessary.

Develop a comprehensive core language

Integrate a

language
4.2.2.3

Collect

languages

4.2.2.2

Ensure

hierarchy
4.2.2.4

no

all languages

are integrated

yes

Figure 4.5: Development approach for a comprehensive core language

This approach is a set of guidelines for a language engineer, who can apply
them to systematically obtain a comprehensive core language for some applica-
tion domain. This PhD thesis applies this approach to the domain of the service
specification, however it can be applied to other application domains as well.
The approach assists a language engineer to systematically perform language
integration, while ensuring a package hierarchy of the integrated language. This
results in fewer errors during the integration and a language structure that serves
as a solid basis for the configuration. In comparison, in a non-systematic ap-
proach, a language engineer would integrate languages and language constructs
in an arbitrary order that would unnecessary complicate the integration process
and, thus, result in an error-prone integration approach.

The first step Collect languages of the development approach aims at iden-
tifying service specification languages for the reuse in the comprehensive core
language. A language engineer collects existing established languages and iden-
tifies the set of service properties for the comprehensive core language.

The step Integrate a language aims at integrating the languages collected
in the previous step into the comprehensive core language. The language en-
gineer performs the integration stepwise starting with the structure of the lan-
guages and continuing with their language constructs.

After a successful language integration, the language engineer ensures the
quality of the obtained language structure. The step Ensure hierarchy in-
troduces methods to check and improve this quality. The language engineer
proceeds with the process until all identified languages are integrated into the
comprehensive core language.

4.2.2.2 Collect Languages

Figure 4.6 presents the step Collect languages refined by two substeps. In
the first step, a language engineer chooses existing languages for the reuse in
the comprehensive core language. Their language structure is also adapted, in

51

4. Design of an Optimal Core Language

order to facilitate the later configuration of the comprehensive core language.
In the second step, the language engineer prioritizes the languages and uses the
language with the highest priority as an initial for the language integration.

Collect languages

Step 1:

Choose established

languages with

package structure

for reuse

Step 2:

Prioritize languages

to order their

integration

Figure 4.6: Step to collect languages for reuse

Collect languages: Step 1 The language engineer starts by choosing which
specification languages to reuse in the comprehensive core language. Based
on her expertise, the language engineer collects established languages with the
same goal as the comprehensive core language, i.e., service specification in OTF
markets. Ideally, the chosen languages shall be comprehensive, i.e., describe
structural, behavioral, as well as non-functional service properties. The lan-
guage engineer spares the effort by choosing comprehensive languages, but it is
not a hard prerequisite as languages, which focus on a certain service property,
may refine parts of the comprehensive core language.

The approach LOpt customizes the comprehensive core language to obtain
an optimal core language. Akehurst et al [3] claim that a modular structure
of a language facilitates its customization. A modular structure realizes the
principle of separation of different concerns in a language. Its main advantage
is that parts of the language can be defined, refined, tested, maintained, and
reused separately. To facilitate the configuration in LOpt, the comprehensive
core language shall have a modular structure that allows to configure on the
level of its language parts as well as their language constructs.

Since the comprehensive core language is built by reusing established speci-
fication languages, their modular structures have to be reused as well. This
PhD thesis considers languages with their abstract syntax defined in the form
of a metamodel as motivated in Section 4.1.1. Such languages usually have a
modular structure realized by packages [71], which are used to partition and
extend metamodels. Packages group language constructs representing related
modeling elements with the purpose to reduce the complexity of a language
and to facilitate its reuse. Packages can import each other, where all language
constructs of the imported package become visible for the importing package.

The approach LOpt leverages the package structure for the configuration of
the comprehensive core language. The configuration can start at the level of

52

4.2 The Approach LOpt

packages and continue at the level of language constructs. This is how groups
of language constructs contained in a package can be selected or omitted for the
optimal core language. This method leads to less effort in comparison to the
case, when every language construct has to be considered separately.

Formalization with Ecore In order to formally describe the abstract syntax
of domain-specific languages (DSLs) in the form of metamodels, this PhD the-
sis considers the modeling language Ecore [141]. Ecore enables to define the
package structure of a language as well as language constructs of the packages.
Figure 4.7 presents the excerpt from the abstract syntax of Ecore. Since Ecore
realizes Essential Meta Object Facility (EMOF) and MOF is self-describing,
this abstract syntax is described in Ecore as well.

Figure 4.7 shows that an Ecore metamodel consists of a root package being
an object of the type EPackage. Each package consists of a set of subpackages
(see eSubpackages) and a set of metamodel classes (see eClassifiers).

Metamodel classes are represented by objects of the type EClass, which inher-
its from the class EClassifier. A metamodel class contains a set of attributes
and references (see eStructuralFeatures). The class EAttribute models class
attributes, while the class EDataType models attribute types.

The class EReference stands for containments and associations. The at-
tribute containment:EBoolean indicates, whether a reference is a containment
(containment=true) or a reference is an association (containment=false). Re-
ferences belong to their source class (see the association eContainingClass).
The association eReferenceType points to the target class of a reference. The
inheritance relations of a class are represented by the class EGenericType. Ob-
jects of this type point at a superclass of the given class using the association
eClassifier to the class Classifier, which the class EClass inherits from.
The class EGenericType is contained in the class EClass.

Running example As a running example, a comprehensive service specification
language was chosen, which abstract syntax and its package structure are for-
mally defined using Ecore. For that, the Unified Service Description Language
(USDL) [15] is introduced in detail. USDL focuses on describing technical and
commercial information about services.

Figure 4.8 shows the package structure of USDL. The USDL metamodels are
described in detail in [15]. USDL consists of packages, which do not nest any
further packages and consist of classifiers only.

Collect languages: Step 2 In Step 2 illustrated in Figure 4.6, the language
engineer has to prioritize the collected languages according to her expertise. The
prioritization is primarily guided by the operations defined for the languages,
a formal semantics definition existing for them, and the extent of their reuse.

53

4. Design of an Optimal Core Language

Figure 4.7: Excerpt from the abstract syntax of the Ecore modeling language

It determines the order of languages for the reuse in the comprehensive core
language. The highest priority language is taken as a basis for the integration.

During the reuse, the language constructs of the language with the highest
priority will be extended by language constructs of the languages with lower

54

4.2 The Approach LOpt

Figure 4.8: USDL package structure

priorities. As a result, the operations of the highest priority language will be
preserved to a large extent but might need a modification with respect to new
or extended language constructs. The operations of the lower priority languages
would need to be partially defined anew for the language constructs, which are
integrated into the language constructs of the highest priority language. The
operations of the lower priority languages could also be extended by the new
language constructs of the integrated language, in order to foster their reuse.

4.2.2.3 Integrate a Language

In the step Integrate a language introduced in Figure 4.5, the language en-
gineer stepwise integrates the initial set of packages with other languages ac-
cording to the order of their priorities. The integration is performed for the first
level packages, then for their nested subpackages, and then for their language
constructs. For that purpose, the order of the package integration is determined
first. Then, the language constructs of these packages are integrated one after
another into the packages of the comprehensive core language. After language
constructs of all packages have been successfully integrated, the process finishes.

The language engineer performs the integration based on her knowledge of the
semantics of the collected language. The language engineer knows the semantics
of the languages based on their informal or formal language definitions. An
informal language definition may be a textual specification, which gives insights
into the meaning of language constructs. A formal language definition is a
specification using some formalism that may be used to automatically check
language properties. With the help of these semantics definitions, the language
engineer solves conflicts arising for language constructs during the integration.

55

4. Design of an Optimal Core Language

Figure 4.9 shows the step Integrate a language.

Integrate a language

Sort packages

topologically

Select a package

according to the

topology

Integrate language

constructs

yes

Ensure package

hierarchy

yes

no

sort

calculated

no

all packages

integrated

Select a language

according to the

priorities

Figure 4.9: Step to integrate a language

The step begins with selecting the next language for the integration according
to the priorities assigned in the step Collect languages. Then, a topological
sort of the packages of the selected language is calculated in the step Sort

packages topologically to determine the order of their integration. The cal-
culated order helps the language engineer to integrate a language systematically
in comparison to the case, when packages are integrated in an arbitrary order.
The language engineer can integrate metamodel classes with their containments
and inheritance relations easier, because the target classes of these dependencies
are already integrated. This leads to a less error-prone integration compared to
a non-systematic approach.

Topological sort of packages The topological sort builds upon dependencies
between packages. The package p1 builds upon the package p2, if at least one
metamodel class from p1 either contains a metamodel class from p2 or inherits
from a metamodel class from p2. Associations are not considered for the sort
calculation, because they result in a case, when no correct topological sort can
be obtained due to cyclic dependencies. Cyclic dependencies of associations is
a rather common case in the language design that leads to the decision not to
consider them for the sort calculation. The consequence of that decision is the
fact that some of association dependencies cannot be integrated directly because
the integration of their target classes might be unfinished yet. In this case, the
language engineer has to integrate such associations later.

The algorithm calculates a topological sort automatically by first collecting all
packages of the language. For each package, a set of packages, which this package
depends on regarding containments, and a set of packages, which this package
depends on regarding inheritance, are calculated. For that, the targets of all
containments and of all inheritance of this package are checked. If the target
belong to another package, then this package is added to the corresponding set.

The calculation continues by identifying a set of packages, which are indepen-
dent from other packages based on both containments and inheritance. Based
on the set of independent packages, further sets containing packages depending
only of the packages of the previous sets are built. This process continues until

56

4.2 The Approach LOpt

Figure 4.10: Topological sort of USDL packages

all sets are formed and each set in the calculated order depends to the previous
sets only. If any of the sets appears to be empty, then a correct topological
sort does not exist and the algorithm finishes with the error message that no
topological sort can be calculated.

As an example, the algorithm for the topological sort is applied to the packages
of USDL depicted in Figure 4.8. Figure 4.10 visualizes the containment and in-
heritance dependencies for its packages as a directed graph. In this graph, nodes
represent the packages, while edges represent the dependencies. As a result, the
following order is obtained: sortedPackages = <foundation, servicelevel,
participant, functional, interaction, technical, pricing, legal, ser-

vicelevelbaseextension, service, usdl>.

For certain languages, a topological sort of packages cannot be calculated,
because cyclic dependencies of containments or inheritance exist, and it is im-
possible to obtain an explicit order of the packages because the packages are
dependent on each other. In order to obtain a correct topological sort, a hie-
rarchy of the language packages has to be ensured. A hierarchy means that no
cyclic dependencies between the packages exist, i.e., there are no two packages
p1 and p2, for which at least one metamodel class from p1 contains a class from
p2 or inherits from a class from p2, and at least one class from p2 contains a
class from p1 or inherits from a class from p1. If a topological sort cannot be
calculated, the language engineer has to perform the substep Ensure package

hierarchy described in Section 4.2.2.4 to constructively resolve cyclic depen-
dencies in the language (see Figure 4.9). The language engineer performs this
substep until a correct topological sort can be calculated.

57

4. Design of an Optimal Core Language

Integrate language contructs The comprehensive core language shall be or-
thogonal as stated in the requirement R.1.1.7 from Section 3.1.1. According to
Paige et al. [113], orthogonality means that each concept has to be modeled in
the language in exactly one good way, i.e., no language constructs describing the
same concept several times exist. In order to realize the orthogonality, for each
package according to the presented order, its language constructs are integrated
into the packages of the comprehensive core language. The language engineer
integrates the language constructs based on their semantics and her expertise
in languages of the considered application domain. The substep Integrate

language constructs illustrated in Figure 4.9 provides the language engineer
with detailed systematic guidelines for the integration.

As depicted in Figure 4.9, the step Integrate language constructs is re-
peated for all language constructs in this package, and for all packages of the lan-
guage to be integrated. As a result, the comprehensive core language is created
by reusing established languages. During the integration, mappings between
the integrated languages and the comprehensive core language emerge. These
mappings are used later for transforming specifications written in the integrated
languages into specifications in the comprehensive core language. The method
of user-friendly model transformations introduced in Chapter 5 is applied only
to new languages having no already existing mappings.

Topological sort of classes The integration procedure of language constructs
starts with calculating a topological sort of classes in the selected package, in or-
der to determine their integration order. This is performed similar to calculation
of a topological sort for packages. A topological sort is obtained for inheritance
and containment dependencies between metamodel classes within one package.
Dependencies between classes from different packages are already considered in
the package sort. The metamodel class c1 depends on the metamodel class c2,
if either c1 inherits from c2 or c1 has a containment with the target at c2.

This order helps the language engineer to integrate classes according to their
dependencies among each other, i.e., when the language engineer adds contain-
ment and inheritance dependencies, their target classes are already integrated
in the package. This fact results in a systematic integration approach in compa-
rison to a non-systematic approach, when the integration of language constructs
is performed in an arbitrary order.

Figure 4.11 shows an excerpt of the USDL package foundation, whose lan-
guage constructs are sorted topologically. The calculate topological order is:
sortedClasses = <AddressItem, CopyrightProtectedElement, Descripti-
on, DependencyTarget, Expression, FunctionalElementRef, ServiceLevel-
ElementRef, TimeEntity, Artifact, IdentifiableElement, Location, Time,
Classification, ElectronicAddress, PhysicalLocation, TimePattern>.

58

4.2 The Approach LOpt

Figure 4.11: Excerpt from the USDL package foundation

Integrate classes According to the calculated order, the language engineer
checks each class. If the language engineer can find an existing class for the
reuse, then they integrate both classes into one. The integration extends an
existing class with properties of a new class, integrating attributes and referen-
ces of the classes. Otherwise, if the language engineer can find a packages of the
comprehensive core language for the reuse, then the class and its properties (att-
ributes and references) are added to this package with dependencies to existing
classes, if necessary. If such package does not exist, a new package is created in
the comprehensive core language, and the class is added to this package with
dependencies to existing classes, if necessary.

The integration of two metamodel classes follow the guidelines below. The
leading class in the integration is the class from a higher priority language ac-
cording to the prioritization described in Section 4.2.2.2. Thus, class names or
their granularity are preserved from the higher priority language. The attri-
butes of an existing class are extended with either lowest cardinalities or new
attributes. As the granularity of the language with the highest priority has to
be preserved, no refinement or grouping of existing attributes is performed.

For the integration of enumerations as a special case of metamodel classes,
the language engineer adds all literals, which are not a part of the existing
enumeration yet. In case of conflicts, the language with the higher priority
leads. The integration of both classes and attributes avoids that several language
constructs represent the same concept in the comprehensive core language. As
a result, the desired orthogonality of the integrated language is supported.

After the attributes have been integrated, dependencies have to be integrated
as well. The integration starts with the inheritance and continues with con-
tainments. The target classes of the dependencies have already been integrated

59

4. Design of an Optimal Core Language

due to the topological order of the class integration. The integration procedure
continues with associations. For all kinds of dependencies, for each dependency
of the class to integrate, the language engineer checks whether a dependency to
reuse exists. In this case, the cardinalities of the existing dependency are set
to the lowest possible. If no dependency for the reuse can be found, then the
language engineer adds the dependency. For associations, a check whether the
target class exists is required due to the fact that association dependencies are
not considered in the topological sort.

Semantics of the integrated language The semantics definition of the in-
tegrated language results from the informal and formal definitions of its con-
stituent languages. The language definition of the language with the highest
priority serves as a basis. The existing language definition has to be extended
with the semantics of the new language constructs, and the definition of the
extended language constructs has to be modified.

The semantics can be formally defined using the Dynamic Meta Modeling
(DMM) approach [133, 132]. The authors propose the Test-Driven Semantics
Specification (TDSS) approach to create DMM specifications with high qua-
lity [133]. TDSS starts by creating a DMM specification formally defining the
semantics of a given language. In order to check the quality of this specification,
a test suite is defined. Each test consists of an example model and its expected
semantics described as traces of execution events. The actual semantics of test
models is calculated based on the created DMM specification. Then, the actual
and expected semantics are compared indicating the quality of this specification.

A DMM specification assists in solving semantic conflicts arising during the
language integration. For that, the existing DMM specification for the language
with the highest priority has to be extended with regard to the new and modified
language constructs. In addition, the test suite has to be modified and extended,
as well. Based on the new DMM specification for the integrated language and
the new test suite, the quality of the semantics definition is checked. For every
test case, for which the actual semantics differs from the expected one, either the
DMM specification or the test suite are improved. As a result, the semantics
of the integrated language is improved regarding conflicts and is checked for
having high quality.

4.2.2.4 Ensure Package Hierarchy

This step aims at constructively solving cyclic dependencies between packages
or classes prohibiting the calculation of a correct topological sort. This leads to
a higher quality of the language design in comparison to the case, when cyclic
dependencies exist. A correct topological sort leads to a package or class hie-
rarchy, in which each package or class builds upon one or several other packages
or classes having no backward dependencies to this one. If two dependencies
(whether inheritance or containment) exist between two packages or classes x1

60

4.2 The Approach LOpt

and x2 so that one dependency goes from x1 to x2, while the second one goes
from x2 to x1, then the package hierarchy is not given.

According the the syntax definition of Ecore, no cyclic inheritance or con-
tainment dependencies between two metamodel classes are allowed. Cyclic de-
pendencies of a combination of inheritance and containment are possible for
metamodel classes as Ecore does not check cyclic dependencies over different
types of dependencies. A language engineer has to resolve such dependencies
constructively because the language engineer is an expert in her language and,
thus, considers both the syntax of the language and its semantics. For packages,
the goal is to redistribute the classes between the considered packages so that
all existing cyclic dependencies are solved and no new cyclic dependencies are
introduced. For classes, the goal is to modify the cyclic dependencies by moving
them to other classes or by introducing new classes as their targets.

4.2.2.5 View Building

This section introduces a view building mechanism for specification languages
having a formal language definition in Ecore. LOpt uses this mechanism for
the configuration of the comprehensive core language (see Figure 4.4).

According to Goldschmidt et al. [56], a view type is a set of metamodel classes,
whose instances can be displayed to a modeler by a view. A view type is defined
at the metamodel level, i.e., for the abstract syntax of a language, while a view
is an application of the view type to specifications in this language. The confi-
guration approach creates an optimal core language as a view type containing a
subset of the language constructs of the comprehensive core language required
for the service matching in a given OTF market.

Figure 4.12 presents a formal definition of a view type given in the form of
an Ecore metamodel. A view type is defined for languages specified in the
Ecore modeling language presented in Figure 4.7. A view type replicates the
package structure of a language but contains only a subset of its packages and
their language constructs. Furthermore, language constructs in a view type can
be reduced by their attributes or references. As a result, a view type consists
of placeholders, which represent real packages and metamodel classes, which
however can contain less classes, attributes or references.

A ViewType contains a set of placeholders for packages (EPackagePlacehol-
der), placeholders for classifiers (EClassifierPlaceholder), placeholders for
attributes (EAttributePlaceholder), and placeholders for references (ERefe-
rencePlaceholder). Each of these placeholder types refers to the correspond-
ing Ecore class standing for packages (EPackage), classifiers (EClassifier),
attributes (EAttribute), and references (EReference). Using placeholders, a
metamodel class can be added to a view type without all its attributes or refe-
rences. Similarly, not all classes of package have to be added to its placeholder
and, thus, to a view type. If a view type contains two classes, one of which is a
superclass of another one, then the inheritance is automatically added between

61

4. Design of an Optimal Core Language

Figure 4.12: Definition of a view type

these classes. The information about the nested structure of package placehol-
ders is modeled in the view type by the containment subpackagePlaceholders.

A language engineer creates a view type by adding the corresponding place-
holders and selecting the language constructs for them. The language engineer
performs the selection of the placeholders stepwise. At the beginning, the lan-
guage engineer adds a package placeholder to the view type and selects a package
for it. Then, she adds classifier placeholders to the package placeholder and se-
lects classes for them. Finally, the language engineer adds attribute placeholders
and reference placeholders to the classifier placeholders.

After the selection is done, the algorithm for building a view type creates a
view type as an instance of the metamodel in Figure 4.12. During the creation,
it is guaranteed that the package, subpackage or class containing the added
packages, classes, attributes and references are automatically added to the view
type as well. For example, if a class is added to the view type, then its package
has to be added to the view type as well. The algorithm also ensures that the
created view type is well-formed. For that, for all classes of the view type, it
is checked that the target classes of their reference belong to this view type
as well. The algorithm for building a view type reveals possible errors and
feedbacks them to the language engineer.

62

4.2 The Approach LOpt

4.2.3 Configuration Approach

This section describes the development of the configuration approach introduced
in Section 4.2.1. The configuration approach customizes the comprehensive
core language developed in Section 4.2.2 to obtain an optimal core language
for an OTF market. Section 4.2.3.1 presents an overview of the configuration
approach. Section 4.2.3.2 introduces how the properties of an OTF market
are formalized for the configuration. Section 4.2.3.3 shows the formalism for
describing the configuration logic. Section 4.2.3.4 illustrates the configuration
knowledge base containing the configuration logic specified using the presented
formalisms. Section 4.2.3.5 describes the configuration procedure performing
the configuration upon the configuration knowledge base.

4.2.3.1 Overview of the Configuration Approach

Figure 4.13 introduces the configuration approach of LOpt. It consists of a
configuration procedure, a configuration knowledge base, and two formalisms
for modeling market properties and for modeling configuration rules.

The configuration procedure is responsible for creating an optimal core lan-
guage based on the properties of a given OTF market. The configuration pro-
cedure takes as an input formalized market properties, which represent the
characteristics of an OTF market relevant for finding an optimal core language.
As an output, the configuration procedure produces an optimal core language
for the described market based on the configuration logic from the configuration
knowledge base.

The configuration knowledge base contains the configuration logic specified
using the formalisms for market properties and configuration rules. The know-
ledge base is defined upon the comprehensive core language and describes how
its parts have to be configured depending on a certain market property.

4.2.3.2 Formalization of Market Properties

In order to leverage the properties of OTF markets in the configuration ap-
proach, the relevant market properties have to be identified and formalized.
The chosen market properties have to influence the service matching on speci-
fications written in a certain core language. Changes in a market property for
a OTF market should result in a need for a new optimal core language for it.

Main advantages of a formal representation of every OTF market are elimina-
ting the ambiguity in the specification of market properties and allowing their
automatic processing. The formal representation of OTF markets fosters their
standardization, which enables a unified specification of different OTF markets.
It is possible to categorize OTF markets, where each category groups OTF mar-
kets with the same formal market properties. For a market category, the same
optimal core language can be used for all its OTF markets.

63

4. Design of an Optimal Core Language

Configuration approach

defined

upon

Comprehensive Core Language

Formalization of

market properties

Formalization of

configuration rules

Configuration

Knowledge Base

uses uses

Configuration procedure

defined

upon

Market

properties

Optimal

Core

Language

Figure 4.13: Overview of the configuration approach

This PhD thesis proposes an initial set of market properties. In our research,
we used these properties to formalize several OTF markets and to compute
optimal core languages for them [7, 8]. This set can be extended by further pro-
perties or the properties can be adapted during further studies of OTF markets.

The following seven market properties belong to this initial set:

• Standardization in an OTF market (Standardization);

• Size of a OTF market (Market size);

• Sensitive data involved in a OTF market (Sensitive data);

• Complexity of services in a OTF market (Service complexity);

• Way to profit in a OTF market (Profit);

• Trade-off focus for service matching (Trade-off focus).

Figure 4.14 presents the formalization of the identified market properties de-
scribed in the form of an Ecore metamodel.

Each market property is represented as a concrete metamodel class, e.g.,
Standardization, inheriting from the abstract class MarketProperty. Each
market property is characterized by its name and its range. The names are al-
ready presented above and equal to the names of the classes representing market
properties. The range is a set of values, which can be assigned to characterize

64

4.2 The Approach LOpt

Figure 4.14: Formalization of market properties

a corresponding market property. Therefore, each metamodel class represent-
ing a market property has an attribute value. The type of this attribute is
represented by an enumeration class containing the set of range values.

The market properties, their purpose and range values are explained in detail
in the following.

The market property Standardization defines the degree, to which service
specifications existing in an OTF market are standardized with respect to the
terminology and processes. This market property influences the expressiveness
of service specifications necessary for the matching. For example, if an OTF
market is characterized by an established terminology and standardized pro-
cesses, service specifications do not have to describe the structure and behavior
of services in detail. The reason is that even simple service matching based on
names delivers a high effectiveness in such an OTF market, because names are
standardized and understood the same. Depending on the level of standardiza-
tion, the suitable level of detail of the optimal core language that leads to both
effective and efficient matching in the OTF market can be found.

The range of the market property Standardization is set by the enumera-
tion StandardizationValues containing the values TRUE, TERMINOLOGY ONLY,
PROCESS ONLY, and FALSE forming the range for Standardization. The range
value TRUE stays for both the established terminology and standardized pro-
cesses in an OTF market. The range value TERMINOLOGY ONLY indicates that
an OTF market has an established terminology but lacks a standardization of
processes. In contrary, the range value PROCESS ONLY is assigned for an OTF

65

4. Design of an Optimal Core Language

market that has standardized processes, but lacks a standardization of its ter-
minology. Finally, the range value FALSE stays for no standardization of either
terminology or processes in an OTF market.

For assigning a value for Standardization, the existence of ontologies in the
considered OTF market has to be investigated. Based on ontologies, the degree
of terminology standardization can be determined. An ontology models the con-
cepts of an OTF market in a formal way using, in particular, the Web Ontology
Language OWL [93]. The concepts are represented by their names and rela-
tions. Thus, an ontology represents the terminology of an OTF market. Since
each ontological class models a concept, it indicates a common understanding of
that concept in an OTF market. If several ontological classes connected by an
equality or synonym relations model a certain concept, it indicates that different
naming variations exist for the same concept.

To quantify the degree of the terminology standardization, one possible metric
is the amount of classes, which have close similarity values calculated using an
ontology matching approach [43]. Many ontologically equal classes indicate
that the same concept is modeled in several ways in the ontology. Thus, the
terminology is not standardized. Otherwise, if the terminology is standardized,
then one ontological class models exactly one concept in an OTF market.

Regarding the standardization of processes, different standards and ways of
their description exist. In an OTF market, one example of standardized pro-
cesses are templates for service compositions [160]. Such templates standardize
the control and data flow of composed services realizing a certain kind of func-
tionality. Thus, if a service requester searches for a concrete functionality of
this kind, a suitable composed service is built based on a standardized process
specified in the template.

The market property Market size represents the amount of provided services
in an OTF market. The more provided services are offered in the market, the
less efficient is the service discovery because all these services have to be matched
with a given requirements specification. Thus, using this market property, the
decision can be made about what level of detail of the optimal core language
leads to an acceptable efficiency with respect to the amount of provided services.

The market property Market size has three values in its range. The range
value LARGE stands for an OTF market having a lot of provided services. An
example is the OTF market of tourism including, in particular, services for hotel
or flight booking. This is an established OTF market having a high service
demand and, thus, a lot of service providers offering different services. The
range value SMALL stands for an OTF market having few provided services. Such
markets either trade rare specific services or exist for a short period of time and
have not yet developed to a larger size. An example of a small OTF market is
the market of services for university management. Since this market is relatively
new and existing services are highly customized for a concrete university, only
few services are provided. The range value MEDIUM is assigned for an OTF
market having the size in between large and small.

66

4.2 The Approach LOpt

The market property Sensitive data indicates whether services provided in
a OTF market operate on sensitive data. In this case, the importance of service
privacy increases in such a market. Using this market property, the decision can
be made about what privacy specification in the optimal core language leads to
both effective and efficient service matching.

The next market property Sensitive data has two range values: TRUE and
FALSE. The range value TRUE indicates that services in an OTF market process
sensitive data. The range value FALSE indicates the opposite. According to
privacy law, the so-called personally identifiable information (PII) is classified as
sensitive data. According to the National Institute of Standards and Technology
(NIST) [110], PII is defined as any information maintained by an institution,
which can be used to identify an individual [92]. Examples of PII are a name,
an address, a driver’s license number, or an image of an individual.

The market property Service complexity formalizes the degree of comple-
xity of the services provided in an OTF market. For complex services, a detailed
specification of their behavior is necessary as a complex functionality is encap-
sulated in the service. Thus, using this market property, the decision is made
about how detailed the service has to be specified in an optimal core language,
in order to perform both efficient and effective service matching.

This property has three range values. The range value HIGH indicates that
services in an OTF market provide complex functionality, while the value LOW

indicates that service provide simple functionality. The value MEDIUM is assigned,
when the complexity of services is in between high and low. To measure the
service complexity, existing metrics for complexity evaluation of web service
interfaces [130] or of service-oriented architectures [66] can be used.

The market property Profit defines how service providers make profit with
their services. It influences the fact, whether the service price has to be described
in the optimal core language. If service providers profit by selling licenses for
their services, then payment mechanisms have to be described. Using this mar-
ket property, it can be decided about what specification of price in the optimal
core language results in both effective and efficient service matching.

The market property Profit is defined by two range values. The value
LICENSES specifies that service providers make profit based on licenses for their
provided services. This is a traditional payment model, which is used for the
software provided for sell [111]. A user can either buy a license and use the
service unlimited, or rent a service for some rental fee and use it unlimited dur-
ing the given rental period [47]. Also the new pay-per-use models are becoming
more popular [11]. The value ADS stands for services provided for free, where
service providers make profit using advertisement. This payment model is espe-
cially relevant for mobile applications, which are often provided for free in app
stores but have different ads embedded in their user interface.

The market property Trade-off focus is a special property, which refers to
the trade-off between the efficiency and the effectiveness of the service match-
ing defined for the optimal core language of an OTF market (as described in

67

4. Design of an Optimal Core Language

Section 4.1.2). This market property is used for solving conflicts during the
configuration, when contradictory decisions regarding the level of detail of the
optimal core language result in a conflict. It has two range values EFFICIENCY

and EFFECTIVENESS. The range value EFFICIENCY is assigned, then the confi-
guration has to follow the strategy to keep the efficiency as high as possible.
The range value EFFECTIVENESS is set, when the configuration has to keep the
effectiveness of the service matching as high as possible.

4.2.3.3 Formalization of Configuration Rules

Figure 4.15 presents the second formalism of the configuration approach aiming
at formalizing configuration rules in the form of an Ecore metamodel.

Figure 4.15: Formalization of configuration rules

A configuration rule describes, how the comprehensive core language has to
be customized depending on a certain value of a certain market property. The
changes on the comprehensive core language can be of two types. Firstly, certain
packages from the comprehensive core language can be selected to be a part of
an optimal core language. Secondly, language constructs can be selected to be
a part of a certain package of the optimal core language. This conforms to
the view building defined for the comprehensive core language, which allows to
define a view type at the level of language packages and at the level of language
construct within a package.

In Figure 4.15, the metamodel class ConfigurationRule models a configu-
ration rule. A configuration rule can be of type SELECTION OF PACKAGES or
SELECTION OF LANGUAGE CONSTRUCTS. This is modeled by the metamodel class

68

4.2 The Approach LOpt

ConfigurationRule having the attribute type with a value from the enumer-
ation ConfigurationRuleTypes. Each configuration rule is defined for exactly
one market property with an assigned range value. This is represented by a
containment marketProperty from the class ConfigurationRule to the ab-
stract class MarketProperty. Configuration rules can be defined for all market
properties including all their range values presented in Figure 4.14.

Two different operators describe configuration actions on the comprehensive
core language. A configuration rule is always defined for exactly one operator
that is represented by a containment operator between the classes Configura-
tionRule and Operator. These are a select operator (SelectOperator) and a
no-select operator (NoSelectOperator). A select operator is responsible for a
selection of packages or language constructs, while a no-select operator is used,
when certain packages or language constructs have to be omitted.

Parameters of both operators are modeled in Figure 4.15 by the contain-
ment selectedPackages between the classes Operator and Package. Pa-
ckages, which have to be selected or omitted in the optimal core language, have
to be specified. Furthermore, it can be specified, which language constructs
have be selected or omitted in a certain package (see selectedConstructs

between the classes Package and LanguageContruct). Language constructs
are realized by Ecore metamodel classes or their attributes as modeled by
the associations realizedByClass and realizedByAttribute from the class
LanguageContruct to the corresponding classes EClass and EAttribute.

Listing 4.1 shows a configuration rule cr with the type SELECTION OF PACKAGES.

Listing 4.1: Example configuration rule

1 cr : Conf igurat ionRule
2 cr . type = SELECTION OF PACKAGES
3

4 cr . marketProperty = mp
5 mp : Standard i za t i on
6 mp. value = TRUE
7

8 cr . operator = op
9 op : Se l ec tOperator

10 op . s e l e c t edPackages = { fp }
11 fp : foundat ion
12 fp . s e l e c t edCont ruc t s = {Descr ipt ion , type}

The configuration rule cr is defined for the market property mp of the type
Standardization. This market property has the range value TRUE indicating
that this rule applies in an OTF market, which has both standardized termi-
nology and processes. The rule is defined with the select operator op. This
operator selects the package foundation presented in Figure 4.11 for the op-
timal core language. Furthermore, the rule selects the class Description and
the attribute type as a part of this package.

69

4. Design of an Optimal Core Language

4.2.3.4 Configuration Knowledge Base

The configuration knowledge base contains the configuration logic, which is
used by the configuration procedure (see Figure 4.13). The configuration logic
is described using the formalism for market properties and the formalism for
configuration rules introduced in Sections 4.2.3.2 and 4.2.3.3. The configuration
procedure applies relevant configuration rules from the knowledge base of given
market properties to obtain the optimal core language. Thus, the knowledge
base formalizes the knowledge needed for the configuration and, thus, supports
a systematic and automated configuration procedure.

Section 4.2.2 describes that the packages as well as their language constructs
of the comprehensive core language might change over time. In order to remain
independent from a concrete implementation of service properties in the compre-
hensive core language, configuration rules in the configuration knowledge base
are formulated as language-independent, i.e., over service properties instead of
their concrete realization as packages and language constructs. In this manner,
the configuration knowledge base can be reused for any service specification
language supporting service properties specified in the configuration rules. A
mapping between concrete packages and language constructs realizing a cer-
tain service property needs to be specified. If service properties are modeled
as features, such mapping can be specified by traces connecting a feature to a
single metamodel class and its attributes, to a single attribute, or to a set of
metamodel classes and their attributes [158].

Service properties and their mapping Figure 4.16 presents the set of coarse-
grained service properties, which are realized either as packages or as a set of
language constructs and used in the rules of the configuration knowledge base.
The notation of feature diagrams is used to represent these service properties.
In general, feature diagrams aim to model common and distinct properties in a
family of systems [29].

The feature diagram in Figure 4.16 specifies common and distinct service
properties for a family of optimal core languages. This family results from the
configuration of the comprehensive core language, which creates optimal core
languages covering its different parts. The feature diagram is a tree of features
with a root representing an optimal core language. The root contains all service
properties, whose configurations represent all possible optimal core languages.
All listed service properties together build the comprehensive core language.
Service properties are modeled as optional features. Optional features might be
added in one configuration and might be omitted in another [32].

The feature Operation signatures stands for a service property of opera-
tions constituting a service interface. A service hides its implementation and
exposes its properties in the form of interfaces. An interface has one or several
operations, which are described by their operation signatures.

The feature Pre-/Postconditions refers to the behavioral specification of

70

4.2 The Approach LOpt

Privacy

Reputation

Price

Optimal core
language

Operation
signatures

Pre-/
Postconditions

Protocols

Figure 4.16: Service properties in the configuration knowledge base

service operations in the form of conditions. Pre-/Postconditions describe the
semantics of a service. A precondition specifies properties necessary to hold for
the execution of a service operation, while a postcondition specifies properties
necessary to hold after this operation finishes its execution [97].

The feature Protocols supports another behavioral specification of services.
Protocols are described for a service, whose interface has several operations. In
this case, a protocol states the call order of these operations.

The features above describe the functionality of services, while the following
features refer to different non-functional properties describing the service quality.

The feature Reputation refers to the reputation of service providers and
requesters in an OTF market [59]. For example, this information indicates, how
good a service satisfies the promised service level agreements. Another example
is the reputation of a service requester, which states how reliable a requester is
in paying the costs for the provided service.

The feature Privacy specifies, how a certain service handles the sensitive data
of service requesters given as an input [116].

The feature Price describes the payment model for a service, i.e., how a
provider charges the usage of a service. For example, the payment can take place
according to such models as licenses, subscription-based, or pay-per-use [47].

Figure 4.17 shows fine-grained service properties used in the configuration
rules. These properties are usually modeled either by one single language con-
struct or by a small set of several language constructs. A mapping from concrete
language constructs to the fine-grained features is necessary.

The coarse-grained feature Operation signatures from Figure 4.16 is re-
fined by a set of optional fine-grained features. The feature Operation names

stands for the name of an operation in its signature, and the feature Operation

parameters refers to its parameters. The feature Operation parameters is

71

4. Design of an Optimal Core Language

Operation
parameters

Parameter
names

Operation
names

Parameter
types

Operation
signatures

Figure 4.17: Detailed service properties of operation signatures

again refined by two optional features. The feature Parameter names stands
for the names of operation parameters and Parameter types for their types.

For the configuration, a mapping from the packages and language constructs
of the comprehensive core language to the coarse- and fine-grained features
introduced above is needed.

Figure 4.18 shows the excerpt of a metamodel realizing the feature Operation
signatures in the comprehensive core language. Language constructs from this
metamodel are mapped onto the features in Figure 4.17.

The metamodel contains the class Repository representing a storage of ser-
vice interfaces modeled by the class OperationInterface. An operation inter-
face has a set of operations represented by the class OperationSignature. Both
operation interfaces and operation signatures have a name (see the inheritance
from the abstract class NamedElement having the attribute entityName of type
EString). An operation signature has a set of parameters modeled by the con-
tainment to the class Parameter. A parameter has a name as modeled by the
attribute parameterName of type EString. Furthermore, a parameter refers to
its data type as modeled by the association to the abstract class DataType.

Table 4.1 shows the mappings from the feature diagram in Figure 4.17 to the
language constructs from Figure 4.18.

Feature Class / Attribute

Operation signatures OperationSignature

Operation names entityName

Operation parameters Parameter

Parameter names parameterName

Parameter types DataType

Table 4.1: Mappings from features to language constructs

72

4.2 The Approach LOpt

Figure 4.18: Excerpt of the metamodel of the comprehensive core language

73

4. Design of an Optimal Core Language

Features are mapped either to classes or to attributes of the given metamodel.
The feature Operation signatures is mapped to the metaclass Operation-

Signature representing service operations. Its constituent fine-grained feature
Operation names is mapped to the attribute entityName inherited by the class
OperationSignature from the class NamedElement. The feature Operation

parameters is mapped to the metaclass Parameter. The feature Parameter

names maps to the metamodel attribute parameterName. The feature Parameter
types maps to the abstract class DataType and, as a consequence, to all concrete
metaclasses inheriting from it.

Configuration knowledge base In the following, the configuration rules of the
configuration knowledge base are presented. These configuration rules are also
described in our papers [7, 8].

Listing 4.2 introduces a shortened notation for configuration rules on the
example from Listing 4.1. This notation is used to describe configuration rules
in the following.

Listing 4.2: Shortened notation for configuration rules

1 cr : Conf igurat ionRule SELECTION OF PACKAGES
2 cr . marketProperty = Standard i za t i on TRUE
3 cr . operator = Se l ec tOperator { foundat ion : Descr ipt ion , type}

Listing 4.3 illustrates the configuration rules for the market property Stan-

dardization.

The rule cr1 states that the feature Operation signatures has to be selected
for the optimal core language in an OTF market with standardized terminology
and processes. Operation signatures suffice for effective matching in such a mar-
ket for several reasons. First, due to a standardized and established terminology,
service providers and requesters use the same names and data types for the same
concepts in signatures. As a result, the matching based on operation signatures
produces reliable matching results with no need for behavioral specifications
of operations with pre-/postconditions. Second, due to standardized processes,
different services realize the same functionality according to the same process.
Therefore, the specification as well as the matching of interface protocols can
be omitted without much loss in the matching effectiveness.

The configuration rule cr2 is defined for an OTF market with standardized
terminology but no standardized processes. In such a market, the service match-
ing based on operation signatures delivers reliable matching results as explained
above. However, due to non-standardized processes, different services realize the
same functionality using different processes. Therefore, the specification of in-
terface protocols and their matching are needed.

The configuration rule cr3 applies for markets having no standardized ter-
minology but standardized processes. In this case, the features of Operation

signatures and Pre-/Postconditions are required, in order to match the

74

4.2 The Approach LOpt

structure and behavior of service operations. Due to the non-standardized ter-
minology, operations cannot be reliably matched based on their signatures only.
In addition, semantic matching of operation signatures using ontologies have to
be performed. The behavior of operations have to be specified and matched
using pre-/postconditions. After the operations are matched, the order of their
execution is determined by the standardized processes of the OTF market.

Listing 4.3: Configuration rules for Standardization

1 cr1 : Conf igurat ionRule SELECTION OF PACKAGES
2 cr1 . marketProperty = Standard i za t i on TRUE
3 cr1 . operator = Se l ec tOperator {Operation s i gna tu r e s }
4

5 cr2 : Conf igurat ionRule SELECTION OF PACKAGES
6 cr2 . marketProperty = Standard i za t i on TERMINOLOGYONLY
7 cr2 . operator = Se l ec tOperator {Operation s i gna ture s , Pro toco l s }
8

9 cr3 : Conf igurat ionRule SELECTION OF PACKAGES
10 cr3 . marketProperty = Standard i za t i on PROCESS ONLY
11 cr3 . operator = Se l ec tOperator {Operation s i gna ture s ,
12 Pre−/Pos t cond i t i on s }
13

14 cr4 : Conf igurat ionRule SELECTION OF PACKAGES
15 cr4 . marketProperty = Standard i za t i on FALSE
16 cr4 . operator = Se l ec tOperator {Operation s i gna ture s ,
17 Pre−/Postcond i t ions , Pro toco l s }
18

19 cr5 : Conf igurat ionRule SELECTION OF LANGUAGE CONSTRUCTS
20 cr5 . marketProperty = Standard i za t i on PROCESS ONLY
21 cr5 . operator = NoSelectOperator {Operation s i gna tu r e s :
22 Operation names , Parameter names}
23

24 cr6 : Conf igurat ionRule SELECTION OF LANGUAGE CONSTRUCTS
25 cr6 . marketProperty = Standard i za t i on FALSE
26 cr6 . operator = NoSelectOperator {Operation s i gna tu r e s :
27 Operation names , Parameter names}

The rule cr4 states, which features to select in markets with no standardiza-
tion of either terminology or processes. In such markets, Operation signatures,
Pre-/Postconditions, and Protocols are added to the optimal core language.
Due to the lack of standardization, the structure of service operations, their be-
havior and the order of their execution have to be specified and matched.

The configuration rules cr5 and cr6 are defined for markets lacking the
standardization of terminology. The rules state that the fine-grained features
Operation names and Parameter names contained in the coarse-grained fea-
ture Operation signatures have to be omitted. Due to the lack of standardi-
zed terminology, service providers and requesters use different operation names
and parameter names for the same concepts. The matching would rely on pa-
rameter types only. Thus, names does not contribute much to the matching
effectiveness and, thus, can be omitted in the optimal core language.

75

4. Design of an Optimal Core Language

Listing 4.4 defines the configuration logic for the market property MarketSize.

Listing 4.4: Configuration rules for MarketSize

1 cr7 : Conf igurat ionRule SELECTION OF PACKAGES
2 cr7 . marketProperty = MarketSize LARGE
3 cr7 . operator = NoSelectOperator {Protoco l s , Reputation}
4

5 cr8 : Conf igurat ionRule SELECTION OF PACKAGES
6 cr8 . marketProperty = MarketSize MEDIUM
7 cr8 . operator = NoSelectOperator {Reputation}
8

9 cr9 : Conf igurat ionRule SELECTION OF PACKAGES
10 cr9 . marketProperty = MarketSize SMALL
11 cr9 . operator = Se l ec tOperator {Reputation}

The configuration rule cr7 states that the features Protocols and Reputation

have to be omitted in a large OTF market. In such markets, a lot of provided
services exist. In order to match all these services with a given requirements
specification, the service matching has to be performed very efficiently. For
that, the time-consuming matching has to be avoided. Since the matching of
service protocols involves model checking that is known as time-consuming, the
protocols are omitted from the optimal core language.

The reputation has to be omitted because the reputation values can be falsified
easily in large markets. Similar to large markets, Reputation has to be omitted
for markets with a medium size as stated in the rule cr8. In contrary to the
previous two rules, in small OTF markets, the reputation has to be specified
and considered for matching (see cr9). In small markets, service providers
cannot falsify their reputation easily because they are well-known. Therefore,
the reputation values are reliable.

Listing 4.5 presents the rules for the next market property SensitiveData.

Listing 4.5: Configuration rules for SensitiveData

1 cr10 : Conf igurat ionRule SELECTION OF PACKAGES
2 cr10 . marketProperty = Sens i t iveData TRUE
3 cr10 . operator = Se l ec tOperator {Privacy }
4

5 cr11 : Conf igurat ionRule SELECTION OF PACKAGES
6 cr11 . marketProperty = Sens i t iveData FALSE
7 cr11 . operator = NoSelectOperator {Privacy }

The rule cr10 states that, if sensitive data is involved, then the privacy of
services have to be selected for the optimal core language. Privacy is required
due to the laws obliging the service providers to handle sensitive data accordingly
and due to the wish of service requesters to keep their personal data save.
Alternatively, if no sensitive data is involved, then no privacy has to be added
to the core language (see the rule cr11).

Listing 4.6 presents the rules for the market property ServiceComplexity.

76

4.2 The Approach LOpt

Listing 4.6: Configuration rules for ServiceComplexity

1 cr12 : Conf igurat ionRule SELECTION OF PACKAGES
2 cr12 . marketProperty = ServiceComplexity HIGH
3 cr12 . operator = Se l ec tOperator {Operation s i gna ture s ,
4 Pre−/Postcond i t ions , Pro toco l s }
5

6 cr13 : Conf igurat ionRule SELECTION OF PACKAGES
7 cr13 . marketProperty = ServiceComplexity MEDIUM
8 cr13 . operator = Se l ec tOperator {Operation s i gna ture s ,
9 Pre−/Pos t cond i t i on s }

10

11 cr14 : Conf igurat ionRule SELECTION OF PACKAGES
12 cr14 . marketProperty = ServiceComplexity LOW
13 cr14 . operator = NoSelectOperator {Pre−/Postcond i t ions , Pro toco l s }

The rule cr12 defines that, if services are complex, then their structure as well
as their behavior have to be specified in the optimal core language. Complex
services usually provide their functionality in several service operations, which
must be called in a certain order. In this case, the operations often realize
complex functionality, too. Thus, the structure as well as the behavior of service
operations have to be specified for complex services. Furthermore, since the
operations have a certain call order, the protocols have to be described, too.
As a result, the features Operation signatures, Pre-/Postconditions, and
Protocols are added to the optimal core language.

The configuration rule cr13 states that, for services with medium comple-
xity, the features of Operation signatures and Pre-/Postconditions are
sufficient in the optimal core language. The reason for that is the assump-
tion that services with medium complexity provide only few service operations,
which, however, realize some complex functionality. Therefore, the description
of protocols and their matching can be omitted for such services.

For services having low complexity, the rule cr14 proposes to omit Pre-/

Postconditions as well as Protocols. This is due to the fact that simple
services mostly provide simple functionality realized by one operation only. Such
operations can be reliably matched based on their operation signatures.

Listing 4.7 presents configuration rules for the property Profit.

Listing 4.7: Configuration rules for Profit

1 cr15 : Conf igurat ionRule SELECTION OF PACKAGES
2 cr15 . marketProperty = Pro f i t LICENSES
3 cr15 . operator = Se l ec tOperator {Pr ice }
4

5 cr16 : Conf igurat ionRule SELECTION OF PACKAGES
6 cr16 . marketProperty = Pro f i t ADS
7 cr16 . operator = NoSelectOperator {Pr ice }

The rule cr15 states that, if service providers make profit by selling licenses
for their services, then the price of services has to be described in the optimal
core language. The configuration rule cr16 defines that, for services, whose

77

4. Design of an Optimal Core Language

providers make profit by using advertising, the feature Price is unnecessary in
the optimal core language. Providers usually offer this kind of services for free
with the goal to profit from the clicks on advertising banners.

Listing 4.8 shows the configuration rules for the property Trade-off focus.

Listing 4.8: Configuration rules for TradeoffFocus

1 cr17 : Conf igurat ionRule TIE BREAKER
2 cr17 . marketProperty = Tradeof fFocus EFFICIENCY
3 p r i o r i t i z e NoSelectOperator
4

5 cr18 : Conf igurat ionRule TIE BREAKER
6 cr18 . marketProperty = Tradeof fFocus EFFECTIVENESS
7 i gno r e NoSelectOperator

The rules cr17 and cr18 have the type TIE BREAKER. Their goal is to resolve
conflicts in the application of the select and no-select operators. Such conflicts
occur, if two applicable rules exist, from which one states to select a feature
and another states to omit the same feature. The TIE BREAKER rules state
whether the focus of the trade-off is set to efficiency or effectiveness in the case
of a conflict. If the trade-off focus is set to efficiency, then the rules omitting
features get a higher priority than the rules selecting features. Otherwise, if the
focus is set to effectiveness, the rules omitting features are ignored. Because of
the tie breaker rules, the LOpt can deterministically configure an optimal core
language for the same set of market properties.

4.2.3.5 Configuration Procedure

The configuration procedure applies rules from the configuration knowledge base
depending on values of the input market properties (see Figure 4.13).

The configuration procedure applies SELECTION OF PACKAGES rules with the
SelectOperator by adding the language packages corresponding to the coarse-
grained features selected by the rule. As a result of the rule application, the
selected language packages as well as all their language constructs are added to
the optimal core language. The configuration procedure applies SELECTION OF

LANGUAGE CONSTRUCTS rules with the SelectOperator by adding packages with
the selected language constructs only. The added language constructs corre-
spond to the fine-grained features stated in the rule.

When applying SELECTION OF PACKAGES rules with the NoSelectOperator,
the configuration procedure omits the coarse-grained features, which have been
added by the rules with the SelectOperator. The added language packages
and all their language constructs are removed from the optimal core language.
The configuration procedure applies SELECTION OF LANGUAGE CONSTRUCTS rules
with the NoSelectOperator by omitting the specified fine-grained features al-
ready selected for the optimal core language. Thus, the corresponding language
constructs are removed from their packages.

78

4.2 The Approach LOpt

The configuration procedure builds the optimal core language as a view type of
the comprehensive core language (see Section 4.2.2.5) . Based on a configuration
of coarse- and fine-grained features selected by applied rules, placeholders for
packages and language constructs are added to the view type based on the
mapping of features to language constructs.

To apply rules, the configuration procedure has to address the following issues:
priorities of rule application and strategies for conflict solving.

The configuration procedure has to set priorities of rule application to de-
fine the order, in which it executes the rules from the configuration knowledge
base. Rule priorities can be based on rule types or market properties. Re-
garding the rule types, the configuration procedure can apply the rules with
the SelectOperator first, followed by the rules with the NoSelectOperator.
Regarding the market properties, the configuration procedure can apply rules re-
garding a certain order of market properties, e.g., the rules for Standardization
followed by the rules for MarketSize.

The configuration knowledge base of LOpt builds the optimal core language
from an empty set of packages. The reason for this decision is the idea to op-
timize the trade-off between the matching efficiency and effectiveness starting
with the maximal efficiency because of the assumption that large OTF markets
will prevail in the OTF Computing. Since the configuration procedure starts
with an empty set, it applies rules with the SelectOperator first, in order to
initially fill the core language with packages and language constructs. After-
wards, the rules with the NoSelectOperator are executed to further optimize
the trade-off by decreasing the obtained effectiveness.

Starting with the maximal effectiveness is also possible. In this case, the
comprehensive core language represents the initial core language, which has
to be reduced, in order to optimize the trade-off. For that, some of the con-
figuration rules should be changed from using the SelectOperator to using
the NoSelectOperator. The rules with the NoSelectOperator have a higher
priority than the rules with the SelectOperator and, thus, are executed first.
Afterwards, rules with the SelectOperator are applied to increase the effec-
tiveness of the trade-off if necessary.

Regarding the prioritization with respect to market properties, the configu-
ration procedure of LOpt handles them as equally important. Alternatively,
one way to prioritize them could be the user input. For example, the users
of LOpt could give a higher priority to those properties, which they consider
as especially important in their OTF market. They could also prioritize those
properties, which values they are especially confident in. The configuration pro-
cedure would apply rules according to the given priorities of market properties.
In this strategy, the user preferences are stronger considered in comparison to
the strategy, in which the configuration starts with the minimal efficiency.

The configuration knowledge base contains rules, which stay in conflict with
each other. For example, the configuration rule cr2 selects the service property
of Protocols while the rule cr6 omits it. These two rules are applicable for

79

4. Design of an Optimal Core Language

the same OTF market, if the terminology in the market is standardized and
the market is large. This kind of conflicts reflects the trade-off between the
matching efficiency and effectiveness because, in the considered OTF market,
Protocols are needed to increase the effectiveness but, simultaneously, they
have to be omitted to maintain the efficiency.

In order to solve such conflicts, special rules of type TIE BREAKER are intro-
duced. These rules state that the users of LOpt have to specify their own
focus of the trade-off: either on efficiency or on effectiveness. If the trade-off
focus is set to efficiency, then the configuration procedure applies the rules with
NoSelectOperator omitting the already selected packages and language con-
structs in the optimal core language. Otherwise, the configuration procedure
ignores all rules with the NoSelectOperator. In this way, the configuration
procedure considers user preferences regarding the trade-off.

4.2.4 Configure and Use the Optimal Core Language

This section describes the usage of an optimal core language and illustrates the
application of the configuration procedure to a concrete OTF market [7]. For
different OTF markets, different core languages optimally support the execution
of automated market operations in these markets. Brokers, as intermediaries
between service requesters and service providers, use these core languages to
describe service compositions and their constituent services.

In order to search for services, service requesters have to transform their
requirements specifications into the optimal core language. Based on the trans-
formed requirements specification, a broker uses a special composition software
to generate corresponding specifications of a service composition and its con-
stituent services. Service providers have to transform specifications of their
provided services into the optimal core language, too. Based on these speci-
fications, the operations Match a service, Discover a service, Compose a

service, and Analyze a service (see Figure 1.2) are performed.
Brokers become primary users of the LOpt approach. Having an optimal

core language created with LOpt, a broker works with specifications, which
optimally support the operation Match a service with respect to the matching
efficiency and effectiveness. As a result, the operation Discover a service,
which uses the operation Match a service to find suitable services, and the
operation Compose a service, which uses the operation Discover a service

for discovering the constituent services for a service composition, are facilitated
regarding the service matching. Thus, a broker gains an advantage over other
brokers, who do not use an optimal core language in an OTF market, because
the broker creates composed services more effectively and efficiently.

A broker needs to select the relevant market properties to formalize the OTF
market and their strategy. Then, the configuration procedure runs to configure
the optimal core language. Finally, this optimal core language is delivered to
the broker for use in the OTF market.

80

4.3 Evaluation

For example, the broker sets the market property MarketSize based on the
amount of provided services in the market. If the search is performed on all
services of the market, then the broker cannot influence the value of this property
as the amount of services in the market depends on such market mechanisms as
supply and demand. In comparison, the broker can assign the market property
SensitiveData based on her strategy in the market. If the broker knows that
specifications of sensitive data are unreliable in the given OTF market, then the
broker can set this property to FALSE. In this case, specifications of the service
privacy will not be covered by the optimal core language and, thus, will not be
considered during the service matching. For the matching services output as a
result, the broker can check the usage of sensitive data manually.

4.3 Evaluation

This section presents the evaluation of the LOpt approach. Section 4.3.1 pre-
sents the tool support realizing LOpt. Section 4.3.2 continues with the ap-
plication of LOpt to different OTF markets, whose optimal core languages
configured with LOpt are evaluated. Section 4.3.3 compares the results with
the requirements stated in Section 3.1.1.

4.3.1 Tool Support

The tool support realizing the LOpt approach is a part of the tool suite called
SeSAME. SeSAME stands for Service Specification, Analysis and Matching
Environment [10]. This environment supports specification of services and ser-
vice compositions, service matching, functional analysis of service compositions
based on protocols and pre-/postconditions, and quality analysis of service com-
positions with respect to performance and scalability.

Figure 4.19 gives an overview over the tool support. For simplification, com-
ponents for functional and non-functional analysis are omitted.
SeSAME and its components are realized as Eclipse plugins using the Eclipse

Modeling Framework (EMF) that follows the principles of the model-driven
software development [140]. The component SSE (Service Specification Environ-
ment) [10] realizes the concept of the comprehensive core language introduced in
Section 4.2.2. SSE uses and extends the Palladio Component Model (PCM) [119]
with new service properties and language operations, e.g., view building. The
component MatchBox [117, 22] realizes the operation of service matching defined
for specifications created in SSE. The component LM configurator realizes
the language configuration explained in Section 4.2.3. LM configurator also
performs the configuration of the service matching defined in MatchBox, in order
to configure the optimal service matching for the optimal core language.

The realization of the comprehensive core language in SSE contains language
packages needed to cover all service features presented in Figure 4.16. Each

81

4. Design of an Optimal Core Language

Palladio
Component Model

Figure 4.19: Overview of the tool support for LOpt

language package is realized as a metamodel. Those language packages, which
extend the metamodels of PCM, are realized as decorator metamodels. Editors
for creating specifications as instances of these metamodels are generated using
the corresponding EMF mechanisms. Tree editors, textual editors, and graphical
editors were generated for service specification in SSE.

Figure 4.20 presents the graphical editor for the specification of service inter-
faces and their operations in SSE. Each interfaces is shown as a rectangle having
a compartment for the interface name (e.g., RequestForReservationService)
and a compartment with the operations provided by this interface (e.g., search
and reserve). For each operation, the specification contains its name, the list
of its input and output parameters, and its exceptions.

Figure 4.21 shows the specification of pre-/postconditions created in a tex-
tual editor. The specification describes pre-/postconditions for the operation
simpleSearchRoom of simpleReservationService introduced in Figure 4.20.
This editor enables the checking of the syntax and semantics of the specified
pre-/postconditions. The syntax check is performed against the language de-

82

4.3 Evaluation

Figure 4.20: Specification of service interfaces and operations in SSE

finition. The semantics check uses the underlying ontology modeling an OTF
market. In particular, it checks whether all the specified predicates really exist
in the ontology. Another check ensures that the parameters and free variables
used in the predicates are compatible with their definitions in the ontology.

Figure 4.21: Specification of pre-/postconditions in SSE

The component LM configurator realizes the configuration of the compre-
hensive core language. It allows the specification of market properties and the
configuration logic in the form of configuration rules. Figure 4.22 shows a spe-
cification of market properties created in LM configurator. This specification
is created in a tree editor that allows to specify all properties and their values
introduced in Figure 4.14. For example, the market property Standardization

is set to FALSE and the market property MarketSize is set to SMALL.
Figure 4.23 presents a specification of several configuration rules from Sec-

tion 4.2.3.4. In this specification, the rules of both types are shown. As a part of
the rule, a market property with a concrete value exist, e.g., Standardization
TRUE. Then, the application of the Select Operator to the service feature
OperationSignatures is specified.

MatchBox realizes the service matching for specifications written in the com-
prehensive core language. MatchBox contains different matching approaches,
which are defined for service specifications being instances of metamodels rea-
lizing the corresponding language packages. MatchBox enables to use these

83

4. Design of an Optimal Core Language

Figure 4.22: Specification of market properties in LM configurator

Figure 4.23: Specification of configuration rules in LM configurator

matching approaches as steps within executable matching processes, which rea-
lize a stepwise matching of comprehensive service specifications. The steps have
a certain order in a matching process. Based on the matching results calculated
for the steps, the aggregated matching result is computed according to a certain
aggregation strategy, e.g., a weighted aggregation strategy, which considers each
step result according to its given weight. Additionally, the parameters of the
matching approaches can be configured. For example, different step results can
be weighted differently in the aggregated result. Since this PhD thesis focuses
on the specification of services, MatchBox is not shown in detail here.

4.3.2 Evaluation on Case Studies

The evaluation of LOpt is performed for the OTF markets of tourism, university
management, and water net optimization. The goal of the evaluation is to show
that the LOpt approach outputs an optimal solution with respect to the trade-
off between effectiveness and efficiency illustrated in Figure 4.3.

This section starts with explaining the evaluation procedure in Section 4.3.2.1.
Section 4.3.2.2 describes the setting of market properties for the considered ser-
vice markets. Section 4.3.2.3 shows the optimal core languages, which were

84

4.3 Evaluation

configured by LOpt based on the specified market properties. Section 4.3.2.4
illustrates the test collections used to measure the matching efficiency and effec-
tiveness in the considered OTF markets. Section 4.3.2.5 presents the evaluation
of the optimal core languages based on the matching efficiency and effectiveness
measured for the introduced test collections.

4.3.2.1 Evaluation Procedure

The evaluation procedure of the LOpt approach contains four steps:

Step 1 Domain experts set the values of market properties for the given ser-
vice markets. Thereby, the markets are described as well as a certain
broker strategy is considered. For the evaluation, domain experts from
the CRC 901 created the specifications of market properties for the consi-
dered markets relying on their expertise. The value assigned to the market
properties are presented in Section 4.3.2.2.

Step 2 The LOpt approach is executed to obtain optimal core languages for
the specified market properties. The resulting core languages are shown
in Section 4.3.2.3.

Step 3 Domain experts build test collections for the considered service mar-
ket, which are used to show the optimality of the obtained core languages.
These test collections contain representative services for each market. Do-
main experts may also use existing service and requirements specifications.
In this case, they have to be transformed into the optimal core language.
The build test collections are introduced in Section 4.3.2.4.

Step 4 Finally, the optimality of the obtained core languages is shown based
on the metrics for the matching efficiency and effectiveness measured for
the presented test collections. These measurements are presented in Sec-
tion 4.3.2.5. As a result, it is shown that the LOpt approach produces
optimal core languages by design.

4.3.2.2 Setting the Values of Market Properties

Table 4.2 presents the values assigned for the market properties describing the
OTF markets from the case studies. The case studies are chosen in a way that
they cover all range values for each market property at least once. As a result,
each configuration rule from the configuration knowledge base applies.

OTF market for tourism The OTF market for tourism trade services for
trip reservation including, in particular, the reservation of hotels, flights, and
restaurants. It is an established large market, where service providers offer
many services (Market size LARGE). The terminology in this market is stan-
dardized as properties of hotels or flights are common worldwide. Furthermore,

85

4. Design of an Optimal Core Language

Market Tourism University Water net
property value management optimization

Market size LARGE SMALL MEDIUM
Standardization TRUE FALSE FALSE
Sensitive data TRUE TRUE FALSE

Service LOW MEDIUM HIGH
complexity

Profit ADS LICENSES LICENSES
Trade-off focus EFFICIENCY EFFICIENCY EFFECTIVENESS

Table 4.2: Assignment of market properties in the case studies

the processes of booking a hotel or a flight are mostly identical. Thus, the
market is considered to be have both standardized terminology and processes
(Standardization TRUE).

Many services in this market work on sensitive data, e.g., customer name,
address, or credit card needed for the reservation of a hotel or flight. Thus, it
is feasible for a broker to consider this property (Sensitive data TRUE). The
services provide mostly a simple functionality in the OTF market (Service
complexity LOW). Such services usually provide one interface having one ope-
ration realizing the service functionality. The service matching for such services
is more efficient in comparison to complex services, for which the expensive pro-
tocol matching has to be performed. The broker knows that most of the services
are offered for free in the tourism market (Profit ADS).

The broker sets the trade-off focus to efficiency as the broker wants to serve
the requesters as fast as possible (Trade-off focus EFFICIENCY). The confi-
guration of LOpt will provide the broker with the best effectiveness regarding
the given setting of market properties.

OTF market for university management The OTF market for university
management trades services providing functionality for different tasks at a uni-
versity, e.g., exam reservation, room booking, or progress reporting. The or-
ganization of universities worldwide differs significantly. The first reason is the
fact that most university management systems are proprietary software used
internally. The second reason is the lack of standardization in the domain that
causes the reluctance in offering services because of their rare compatibility to
other universities. Therefore, this market is considered to have neither standar-
dized terminology nor standardized processes (Standardization FALSE). The
university management market is a relatively young and, therefore, is a small
market having only few provided services (Market size SMALL).

Services in the university management market work on sensitive data, e.g.,
the information about students, their grades, and exams. The broker wants to
consider this property for the service matching (Sensitive data TRUE). Most

86

4.3 Evaluation

services provided in this market have a medium complexity as they provide their
functionality by single complex operations (Service complexity MEDIUM).

Most service providers in the university management market make profit by
selling licenses for their services. Thus, the broker wants to consider this service
property for the matching (Profit LICENSES). Similar to the tourism market,
the broker sets the trade-off focus on efficiency, in order to serve the coming
requesters as fast as possible (Trade-off focus EFFICIENCY).

OTF market for water net optimization The OTF market for water net
optimization trades services for optimization of water supply systems [38]. Ex-
amples of such services are solvers like Gurobi or CPLEX, or services reducing
parallel pipes and chains in a water net. The market has a medium size (Market
size MEDIUM), and is not standardized as different service providers use their
own terminology and processes for the services (Standardization FALSE). Ser-
vices for water net optimization do not involve data about individuals as these
services operate on accumulated data and profiles (Sensitive data FALSE).

The complexity of the services in this market is high because services imple-
ment complex algorithms operating on graphs representing water nets (Service
complexity HIGH). Most service providers make profit in the market by sell-
ing licenses for their services, which provide a broad functionality necessary for
the water net optimization. Therefore, the broker want to discover and com-
pose these services (Profit LICENSES). The broker sets Trade-off focus to
EFFECTIVENESS because getting a suitable optimization service is more impor-
tant for service requesters than getting the service fast.

4.3.2.3 Obtaining the Optimal Core Languages with LOpt

In the second step of the evaluation procedure, LOpt runs using the market
properties specified in Section 4.3.2.2 as an input. The optimal core languages
are obtained by configuring the feature models presented in Figures 4.16–4.17.

OTF market for tourism Figure 4.24 illustrates the optimal core language. It
contains two coarse-grained features Operation signatures and Privacy, and
all fine-grained features of the feature Operation signatures.

The configuration procedure of LOpt produced this configuration by applying
the rules cr1, cr7, cr10, cr14, cr16, and cr17 from the configuration know-
ledge base described in Section 4.2.3.4. Section 4.2.3.5 explains that the con-
figuration procedure applies the rules with the select-operator first. Thus, the
rules cr1 and cr10 select the coarse-grained features Operation signatures

and Privacy. As a part of this selection, all fined-grained features of the fea-
ture Operation signatures are selected as well. Since the trade-off focus is
set to efficiency, then the rule cr17 prioritizes the no-select operator over the
select operator. As a result, the rules cr7, cr14, and cr16 omit the features

87

4. Design of an Optimal Core Language

Privacy

Optimal core
language (tourism)

Operation
signatures

Operation
parameters

Parameter
names

Operation
names

Parameter
types

Figure 4.24: Optimal core language for the OTF market for tourism

Pre-/Postconditions, Protocols, Reputation, and Price. Since these fea-
tures were not selected during the application, the built configuration remains.

Figure 4.25 presents the view type corresponding to this configuration. The
view type contains placeholders for all packages and language constructs from
the comprehensive core language realizing the features from Figure 4.24. The
package placeholders repository and privacy realize the coarse-grained fea-
tures Operation signatures and Privacy correspondingly. These placeholders
reference the concrete packages repository and privacy of the comprehensive
core language. Both package placeholders contain all metamodel classes, their
attributes and their references, which belong to the original packages. In the
following, the package placeholder repository is explained in detail.

For the realization of the fine-grained features, the configuration procedure
used the mapping presented in Table 4.1. According to this mapping, the clas-
sifier placeholders for classes OperationSignature, Parameter and DataType

realize the features Operation signatures, Operation parameters, and Para-

meter types. The attribute placeholders for attributes entityName in the
placeholder OperationSignature and parameterName in Parameter realize the
fine-grained features Operation names and Parameter names. The classifier
placeholders for metamodel classes Repository and OperationInterface serve
as a container for service operations and data types used in a specification. The
reference placeholders for the association dataType parameter from Parameter

to DataType and for the containment parameters OperationSignature from
OperationSignature to Parameter exist in the view type as well.

OTF market for university management Figure 4.26 illustrates the con-
figuration of the comprehensive core language representing the optimal core
language for the OTF market for university management. The optimal core

88

4.3 Evaluation

Figure 4.25: Optimal core language for tourism as a view type

language consists of six coarse-grained features. The feature of Operation

signatures is reduced by the fine-granular features Operation names and
Parameter names.

The configuration procedure of LOpt obtains this configuration by apply-
ing the configuration rules cr4, cr6, cr9, cr10, cr13, cr15, and cr17 from
the configuration knowledge base described in Section 4.2.3.4. The rules with

89

4. Design of an Optimal Core Language

Privacy

Reputation

Price

Optimal core
language (university

management)

Operation
signatures

Pre-/Post-
conditions

Protocols
Operation

parameters

Parameter
types

Figure 4.26: Optimal core language for the OTF market for university
management

the select-operator cr4, cr9, cr10, cr13, and cr15 apply first. These rules se-
lect the coarse-grained features Operation signatures, Pre/Postconditions,
Protocols, Reputation, Privacy, and Price. Since the trade-off focus is put
on efficiency, the rule cr17 prioritizes the no-select operator over the select ope-
rator. This leads to the application of the rule cr6 that omits the fine-grained
features Operation names and Parameter names.

Figure 4.27 illustrates the view type representing the optimal core language
for the OTF market for university management.

Similarly, to the view type for tourism, the package placeholder repository

realizes the feature Operation signatures. It contains the classifier place-
holders Repository, OperationInterface, OperationSignature, Parameter,
and DataType. The classifier placeholder OperationSignature does not have
the attribute placeholder entityName because the feature Operation names

was omitted from the configuration. Since the feature Parameter names was
omitted as well, the attribute placeholder parameterName of Parameter does
not belong to the view type either.

The feature Pre-/Postconditions is realized by a set of language constructs
from the package structure. This set contains the classifier placeholders Pre-
condition and Postcondition. This feature is realized in the same package as
the SSE extension of the PCM operation signatures that explains the name of
the package. Package placeholder protocols stands for the package realizing
the feature Protocols. Similar to tourism, the package placeholder privacy

realizes the feature Privacy. The feature Price is modeled by the language
constructs in the package placeholder metadata, which contains different kinds
of metainformation about services. The package placeholder trustmodel stands
for the package realizing the feature Reputation.

90

4.3 Evaluation

Figure 4.27: Optimal core language for university management as a view type

OTF market for water net optimization Figure 4.28 illustrates the configura-
tion of the optimal core language for the OTF market for water net optimization.
The configuration consists of four coarse-grained features. Similar to the optimal
core language for university management, the feature Operation signatures is
reduced by the fine-grained features Operation names and Parameter names.

In order to obtain the presented configuration, the configuration procedure
applies the rules cr4, cr6, cr8, cr11, cr12, cr15, and cr18 from the configu-
ration knowledge base described in Section 4.2.3.4. The rules cr4, cr12, and
cr15 having the select-operator are executed first. These rules select the fea-
tures Operation signatures, Pre/Postconditions, Protocols, and Price.
All fine-grained features of Operation signatures are selected as well. Since
the trade-off is put on effectiveness, the rule cr18 sets to ignore all rules with
the no-select operator. Thus, the rules cr6, 8, and 11 are not applied, and the
built configuration remains.

Figure 4.29 shows the view type for this optimal core language. The view
type contains the package placeholders repository, structure, protocols,
and metadata represent the coarse-grained features Operation signatures,
Pre/Postconditions, Protocols, and Price correspondingly. Classifier pla-
ceholders for all classifiers from the referenced packages of the comprehensive
core language are added to the view type. All placeholders for attributes and
references of these classifiers are added to the view type as well.

91

4. Design of an Optimal Core Language

Price

Optimal core
language (water net

optimization)

Operation
signatures

Pre-/Post-
conditions

Protocols

Operation
parameters

Parameter
names

Operation
names

Parameter
types

Figure 4.28: Optimal core language for the OTF market for water net
optimization

Figure 4.29: Optimal core language for water net optimization as a view type

4.3.2.4 Create Test Collections

In the third step of the evaluation, domain experts of CRC 901 build test collec-
tions for the OTF markets from the case studies. These test collections are built
according to Definition 4 and contain a set of pairs each including a service spe-
cification, a requirements specification, and their expected matching result. The
experts set the expected matching result, in order to state whether a described

92

4.3 Evaluation

service satisfies the given requirements specification. The domain experts de-
scribe services typically provided in the considered OTF market. They create
their specifications in the optimal core language as they have enough expertise
to write formal service specifications in this language.

For service matching of the created specifications, several matching steps are
performed depending on the packages in the corresponding optimal core lan-
guage. Matching results from these steps are aggregated into an aggregated
matching result calculated for a pair. Based on the expected matching result
from the test collection and the calculated aggregated matching result, the effec-
tiveness of the matching is computed. The specifications in the test collection
are created in SSE, while the pairs and their expected matching results are
described using MatchBox (see Figure 4.19).

For the OTF market for tourism, the domain experts created a test collection
having 100 pairs of service and requirements specifications. This test collection
includes, in particular, the functionality for calculating a trip or for finding
points of interest in a city. Since the optimal core language consists of two
packages (see Figure 4.25), the experts had to create two specifications (one for
signatures and one for privacy), which are interconnected with each other by
references between the packages. The corresponding matching process consists
of two matching steps (one for signatures and one for privacy correspondingly).

For the OTF market for university management, the domain experts created
a test collection consisting of 100 pairs as well. The specifications from this test
collection describe, in particular, services for reserving a room, for registering
for an exam, and for printing an overview of grades. For these services, the
experts describe their interfaces and operations, their behavior in the form of
pre-/postconditions and protocols as well as such non-functional properties as
privacy, reputation, and price. The matching process for the core language
consists of six steps each corresponding to one of the listed properties.

The test collection for the OTF market for water net optimization consists of
10 pairs. The test collection describes services that realize the optimization of
water nets by reducing parallel segments or chains in it. The experts described
the interfaces and operations of these services, their behavior in the form of pre-
/postconditions and protocols, and their price. The matching process contains
four matching steps each corresponding to one of the listed properties.

4.3.2.5 Evaluation of the Optimal Core Languages

After the experts have created the test collections, as a final step in the eva-
luation, the matching runs on specifications from these test collections. The
values for the matching efficiency and effectiveness are measured as defined in
Definitions 6 and 15. The metrics of precision and recall are measured, in order
to calculate the matching effectiveness. The mean runtime per pair is measured
in milliseconds for 100 iterations of the matching executed on the test collection.
Then, the efficiency as reversed runtime is calculated.

93

4. Design of an Optimal Core Language

In order to check the optimality of the core languages obtained with the LOpt
approach, the domain experts first decide, whether the values of the matching
effectiveness and efficiency for these languages sufficiently satisfy the trade-off.
In this case, it has to be shown that the obtained languages are pareto optimal
as stated in Definition 16. For that purpose, the obtained core languages are
slightly modified. Modifications aim at finding a core language that yields the
same or higher effectiveness with the same efficiency. If such a core language
can be found, then the core language obtained with LOpt is falsely considered
optimal. Otherwise, the obtained core language is shown to be optimal for the
given OTF market. As a result, it is shown that the LOpt approach configures
optimal core language by design.

For the execution of the service matching, MatchBox provides several match-
ing strategies. For this case study, the matching strategy with the focus on
the aggregation result was chosen. The aggregation result indicates how good a
service matches which the requirements considering all its specified properties.
According to this matching strategy, all matching steps in a matching process
are executed independently of the results from the previous steps. Thus, each
matching process runs completely and executes all its constituent steps.

Based on the chosen matching strategy, adding a new language package to the
optimal core language results in adding an additional step to the matching pro-
cess defined for this language. Since the matching process executes all its steps,
an additional step has to run for specifications of the modified core language.
Thus, the mean runtime of this matching process increases by the runtime of
the added step, thus, decreasing the efficiency. Therefore, core languages having
more language packages result in lower values for the efficiency. As a result, it
is infeasible to add new language packages to the core languages.

Alternatively, removing language packages from the core language as well as
removing language constructs from these packages results in a lower runtime
of the corresponding matching steps. The reason is the fact that less packages
or language constructs have to be matched. Therefore, the efficiency of the
matching process increases. Simultaneously, if the effectiveness remains the
same after the reduction, then the current core language is not optimal.

OTF market for tourism Table 4.3 shows the results measured for the optimal
core language in the OTF market for tourism.

For the core language calculated by LOpt, the effectiveness equals to 1.00

that is the highest possible value that can be reached. The runtime per pair
equals to 26 ms. According to the experts’ opinion, the effectiveness and effi-
ciency obtained with this core language address the trade-off sufficiency. There-
fore, the experiments to improve these values are performed.

Since adding a new language package would automatically decrease the effi-
ciency, no new packages can be added. In order to improve the efficiency, the
packages and language construct realizing the selected features shown in Fi-

94

4.3 Evaluation

Core language Pre- Re- Run- Effectiveness Efficiency
cision call time

Configured by LOpt 1.00 1.00 0.026 1.00 39

No privacy 0.56 0.75 0.017 0.64 59

No operation names 1.00 0.81 0.025 0.90 40
No parameter names 0.60 0.91 0.020 0.72 50
No parameter types 0.54 0.83 0.019 0.65 53

Table 4.3: Matching effectiveness and efficiency for the OTF market for tourism

gure 4.24 are omitted. For the core language without privacy, the effectiveness
decreases by 0.36 with regard to the core language of LOpt, while the effi-
ciency increased significantly. If the feature Operation signatures is reduced
by different fine-grained features, then the effectiveness of such core languages
decreases as well. For the core language without operation names, the effective-
ness decreases by 0.10, without parameter names by 0.28 and without param-
eter types by 0.35. For all the modified languages, the efficiency increases.

As a result, the efficiency for all these variations of the core language increased
while the effectiveness always decreased. This shows that the same or higher
effectiveness cannot be achieved with a better efficiency (see Definition 16).
Thus, the core language obtained with LOpt is optimal for the OTF market
for tourism.

OTF market for university management Table 4.4 shows the evaluation of
the core language configured by LOpt for the university management market.

Core language Pre- Re- Run- Effectiveness Efficiency
cision call time

Configured by LOpt 1.00 1.00 0.100 1.00 10

No privacy 0.83 0.95 0.085 0.89 12
No price 1.00 0.69 0.081 0.82 12

No reputation 0.79 0.75 0.084 0.77 12
No protocols 0.50 0.26 0.093 0.34 11
No conditions 0.39 0.25 0.066 0.31 15
No signatures 0.33 0.07 0.060 0.12 17

No parameter types 0.03 0.04 0.025 0.03 40

Table 4.4: Matching effectiveness and efficiency for the OTF market for univer-
sity management

The core language configured with LOpt has the highest possible effectiveness
1.0 for the given test collection. The obtained values address the trade-off

95

4. Design of an Optimal Core Language

between the effectiveness and efficiency sufficiently, therefore, possibilities to
improve the calculated values are investigated.

For that, different coarse-grained features comprising the core language illus-
trated in Figure 4.26 are omitted first. For each reduced core language, the
effectiveness decreases from 0.11 to 0.88 in comparison to the core language
configured by LOpt. The efficiency of the reduced core language increases but
not significantly. For the reduction, dependencies between the matching steps
have to be taken into account. In particular, reducing the core language by sig-
natures requires the reduction by conditions, protocols, and privacy due to their
dependency to the signature matching result. Due to the amount of omitted
steps, the matching effectiveness for the core language without signatures de-
creases so significant. Since the reduction of the core language did not improve
the effectiveness, the optimal core language has to contain all the coarse-grained
features chosen by LOpt.

Afterwards, the coarse-grained feature Operation signatures is reduced
with regard to its fine-grained feature Parameter types. In this case, the
effectiveness drops to 0.60 that is a significant decrease analogously to the
reduction by signatures. Since the reduction by parameter types decreases the
effectiveness, the core language obtained by LOpt is pareto optimal according
to Definition 16 and also optimal for this OTF market.

OTF market for water net optimization Table 4.5 shows the evaluation re-
sults for the core language in the OTF market for water net optimization.

Core language Pre- Re- Run- Effectiveness Efficiency
cision call time

Configured by LOpt 1.00 1.00 0.032 1.00 31

No conditions 1.00 0.86 0.018 0.92 56
No price 1.00 0.57 0.029 0.73 34

No protocols 0.57 1.00 0.029 0.73 34
No signatures 0.43 1.00 0.010 0.60 100

No parameter types 1.00 0.43 0.010 0.60 100

Table 4.5: Matching effectiveness and efficiency for the OTF market for water
net optimization

The efficiency and effectiveness obtained with the core language configured
by LOpt sufficiently satisfy the trade-off. The effectiveness of the reduced
core languages decreases from 0.08 to 0.40. The efficiency of the reduced core
languages increases but not significantly except for the reduction by signatures
and parameter types. In this case, dependencies between the matching steps
have to be taken into account. Reducing the core language by signatures requires
the reduction by conditions, protocols, and privacy due to their dependency to

96

4.3 Evaluation

the signature matching result. Due to the amount of omitted steps, the matching
becomes so efficient. The reduction of the core language by coarse- or fine-
grained features does not reach the same effectiveness with a better efficiency.
Therefore, the core language configured by LOpt is optimal.

The presented evaluation shows that the core languages obtained with LOpt
are optimal for the given OTF markets. Therefore, it is shown that the LOpt
approach configures optimal core languages for OTF markets by design based
on its configuration knowledge base and configuration procedure.

4.3.3 Evaluation of the Requirements

This section explains how the requirements stated in Section 3.1.1 are fulfilled
by the presented solution approach LOpt.

R.1.1.1 – LOpt configures an optimal core language as a view type of the
comprehensive core language (see Section 4.2.3). The abstract syntax
of the comprehensive core language is defined formally in the form of
a metamodel (see Section 4.2.2). As a result of the view building (see
Section 4.2.2.5), the abstract syntax of the optimal core language is defined
formally as a metamodel as well.

R.1.1.2 – How the semantics of the comprehensive core language can be for-
mally defined is described in Section 4.2.2.3. As a view type of the com-
prehensive core language, the optimal core language contains a subset of its
packages and language constructs (see Section 4.2.2.5). Thus, the seman-
tics of the language constructs of the optimal core language is described
in the formal semantics definition of the comprehensive core language.

R.1.1.3 – The comprehensive core language allows the specification of struc-
tural, behavioral, and non-functional service properties, which are relevant
for the automated execution of market operations in all OTF markets (see
Section 4.2.2). After the configuration, an optimal core language contains
those properties, which are relevant for the automated execution of market
operations in a given OTF market (see Section 4.2.3).

R.1.1.4 – The configuration procedure of LOpt configures the comprehensive
core language in a way to obtain an optimal core language for the auto-
mated market operations in a given OTF market (see Section 4.2.3). The
configuration knowledge base contains the configuration logic customizing
the comprehensive core language based on the properties of an OTF mar-
ket. The evaluation in Section 4.3.2 shows that the core languages created
with LOpt are really optimal for the considered markets.

R.1.1.5 – This PhD thesis considers the operation of the service matching for
the design of an optimal core language. Section 4.1.1 defines the service

97

4. Design of an Optimal Core Language

matching, while Section 4.3.1 describes how the service matching for the
comprehensive core language is realized in the tool support. As a result
of the configuration, a matching process realizing the service matching for
the configured optimal core language is created. Thus, the operation of
the service matching can be executed on service specifications written in
the optimal core language.

R.1.1.6 – The comprehensive core language has a package structure, which fa-
cilitates the reuse and maintainability of its parts as well as supports its
configuration (see Section 4.2.2). As a view type, an optimal core language
partially repeats the package structure of the comprehensive core language
(see Section 4.2.2.5). Thus, the optimal core language is modular.

R.1.1.7 – The comprehensive core language is designed to be orthogonal as
explained in Section 4.2.2.3. For that, the integration of established service
specification languages is performed, in order to eliminate redundancies
in the comprehensive core language. As a view of the comprehensive core
language (see Section 4.2.2.5), an optimal core language does not contain
redundancies and, thus, is orthogonal as well.

R.1.1.8 – The design of the comprehensive core language includes the integra-
tion of existing service specification languages that enables their reuse (see
Section 4.2.2). As a view type of the comprehensive core language (see Sec-
tion 4.2.2.5), an optimal core language integrates and, thus, reuses existing
established service specification languages of market actors as well.

R.1.1.9 – The comprehensive core language has a package structure, in which
each package is realized by a metamodel created by reusing existing ser-
vice specification languages (see Section 4.2.2). According to the MDSD
paradigm followed in this PhD thesis, different model transformation tech-
niques defined for metamodels already exist. Furthermore, the reuse of
existing languages facilitates the transformation, because common lan-
guage constructs are used in the comprehensive core language and existing
specification languages. As a result, an optimal core language as a view
type of the comprehensive core language (see Section 4.2.2.5) facilitates
the transformation from other service specification languages.

R.1.2.1 – The design approach LOpt creates an optimal core language by cus-
tomizing a comprehensive core language based on the given formalized
properties of an OTF market (see Section 4.2). Thereby, LOpt pro-
vides guidelines for a language engineer to develop the comprehensive
core language systematically. Furthermore, the configuration approach
of LOpt consists of a deterministic automated configuration procedure,
which works upon a configuration knowledge base containing formalized
configuration logic. Thus, the design approach LOpt becomes systematic.

98

4.3 Evaluation

As described above, LOpt also creates an optimal core language satisfying
the requirements R.1.1.1 –R.1.1.9.

R.1.2.2 – The design approach LOpt is automated in the application phase,
when a user specifies the market properties manually, and the configu-
ration approach outputs an optimal core language fully automatically
(see Section 4.2.3.1). In the design phase, when the comprehensive core
language has to be created and the configuration knowledge base has to
be built, a manual effort from a language engineer is required (see Sec-
tion 4.2.2 and Section 4.2.3.5).

R.1.2.3 – The design approach LOpt formalizes the properties of OTF markets
relevant for the configuration (see Section 4.2.3.2). LOpt leverages the
formalized properties of OTF markets, in order to find an optimal core
language for the given OTF market (see Section 4.2.3.1).

R.1.2.4 – The design approach LOpt uses a measurable definition of the lan-
guage optimality presented in Section 4.1.2. The configuration logic of
the configuration knowledge base is developed regarding this definition
(see Section 4.2.3.4). Section 4.3.2 uses this measurable definition of the
language optimality to show that the core languages obtained with LOpt
are really optimal for the presented case studies.

R.1.2.5 – The design approach LOpt adheres to the guidelines for the design of
specification languages. LOpt builds modular core languages and reuses
existing specification languages (see Section 4.2.2.2). The configuration
procedure of LOpt uses the view building to create core languages (see
Section 4.2.2.5). In order to avoid redundancies in the core languages, the
orthogonality of the comprehensive core language is guaranteed by design
due to the performed language integration (see Section 4.2.2.3). The con-
figuration procedure follows the principle of building a family of domain-
specific languages through language customization, where all possible op-
timal core languages build a language family by customizing the compre-
hensive core language for different OTF markets (see Section 4.2.3.4).

R.1.2.6 – The design approach LOpt handles conflicts arising during the in-
tegration of existing languages into the comprehensive core language and
during the configuration of an optimal core language. During the in-
tegration, conflicts are solved by prioritizing languages to integrate and
by guidelines in the integration procedure (see Section 4.2.2.2 and Sec-
tion 4.2.2.3). During the configuration, the market property Trade-off

focus sets the focus on either matching efficiency or matching effective-
ness. Using the rules based on this property solves possible conflicts in
the application of configuration rules (see Sections 4.2.3.2–4.2.3.5).

99

5 User-Friendly Language
Transformation

Chapter 4 introduces concepts to design an optimal core language for an OTF
market. In order to enable the reuse of existing service specifications, the con-
cept of language transformation into the optimal core language is tackled in this
chapter. This chapter introduces the mtbe approach for a user-friendly language
transformation. This approach provides a solution for the problem statement
presented in Section 1.2.2. The solution satisfies the requirements on a solution
of this problem statement introduced in Section 3.1.2.

This chapter presents the mtbe approach in Section 5.1 and describes the
evaluation of the mtbe approach on various case studies in Section 5.2 .

5.1 The Approach mtbe

In an OTF market, the concept of language transformation is used to transform
a specification written in an arbitrary service specification language used in this
market into a specification in the optimal core language. It applies to languages
having a definition of their abstract syntax in the form of a metamodel, and
preserves the semantics of the original specification in the transformed one. If
both languages have a formal semantics definition, then the semantic equivalence
of their specifications can be checked using techniques described in [67].

The operation of language transformation is based on the artifact of a model
transformation. A model transformation contains the transformation logic,
based on which the language transformation is performed [5]. A model transfor-
mation consists of a set of transformation rules and a control structure defined
for these rules. The control structure defines the control flow, in which the
rules of the model transformation have to be executed. Each transformation
rule has a left-hand side and a right-hand side. The left-hand side defines which
language constructs of an input specification have to be transformed, while the
right-hand side states how they have to be transformed.

This section presents the mtbe approach that automatically generates a model
transformation, in order to define the operation of the language transformation
in a user-friendly manner. Providers and requesters in an OTF market use mtbe
to transform their existing service or requirements specifications into the optimal
core language for the service matching. They apply mtbe for those languages,
for which no mapping to the optimal core language is defined yet.

101

5. User-Friendly Language Transformation

The approach mtbe applies genetic algorithms to the problem of generating
model transformations from a set of examples. mtbe takes as an input a set
of model mappings between example specifications written in a language of a
market actor and the optimal core language. mtbe outputs a directly execu-
table model transformation preserving the semantics of the languages based on
the specified model mappings. mtbe derives the model transformation using
the metaheuristic approach of genetic algorithms. Genetic algorithms allow to
effectively and efficiently explore the solution space of possible model transfor-
mations, in order to find the most suitable model transformation.

Section 5.1.1 gives an overview of the mtbe approach and describes its reali-
zation with genetic algorithms. Section 5.1.2 explains how market actors create
source and target models as well as the model mappings between them. Sec-
tions 5.1.3–5.1.7 introduce different genetic operators realizing the genetic algo-
rithm of mtbe. Section 5.1.3 describes the genetic operator encoding possible
solutions. Section 5.1.4 presents the genetic operator generating a model trans-
formation based on a given encoding. Section 5.1.5 shows the genetic operator
evaluating model transformations and computing their fitness. Section 5.1.6
describes the genetic operator selecting model transformations having a high
fitness. Section 5.1.7 introduces the genetic operator modifying the selected
model transformations, in order to create new ones with a better fitness. Sec-
tion 5.1.8 discusses the quality of model transformations created by mtbe.

5.1.1 Overview of mtbe

Figure 5.1 shows the overview of the mtbe. This approach uses the technique of
Model Transformation By-Example (see R.2.2.1 in Section 3.1.2).
mtbe starts with a service provider or a service requester defining model map-

pings between specifications written in her language and in the optimal core
language. A model mapping connects two specifications, which are semantically
equivalent in the language of the market actor and the optimal core language.
mtbe works on formally defined specification languages and formal specifications
written in these languages created by market actors.

Service providers and service requesters know the concrete syntax and se-
mantics of the languages they use in an OTF market. These languages should
have a formal language definition (R.2.2.2 in Section 3.1.2). In order to create
model mappings, market actors have to learn the concrete syntax and the se-
mantics of the optimal core language of their OTF market. They can learn it
by using a formal or informal specification of the optimal core language or by
using market-specific sets of example specifications written in the optimal core
language. Such example specifications must represent certain usage scenarios of
the optimal core language in the considered OTF market.

The created specifications as well as the mappings between them serve as
an input for the derivation approach of mtbe. The mappings between example
models have to be leveraged for the derivation (see R.2.2.5 in Section 3.1.2).

102

5.1 The Approach mtbe

Optimal

Core

Language

Provider’s/

Requester’s

Language

instance of instance of

Model

mappings
source

models

target

models

Model

transformationtyped over

MTBE

typed over

Figure 5.1: Overview of the mtbe approach

Based on these model mappings, mtbe automatically derives and outputs a
model transformation between the languages of the input specifications. The
resulting transformation is typed over the source language of a provider or re-
quester and the optimal core language serving as a target language.

mtbe uses a metaheuristic for the derivation of model transformations (see
R.2.2.6 in Section 3.1.2). Several algorithms belong to the category of meta-
heuristic approaches [78]. Koza et al. [83] presents the characteristics of opti-
mization problems, which the application of genetic algorithms is suitable for.
Based on these characteristics, genetic algorithms were chosen as a well-suitable
metaheuristic approach for the mtbe approach.

The first characteristic is the need to discover the size and the shape of the
solution for the given optimization problem. In the mtbe approach, the amount
of rules in the model transformation indicating its size as well as the left- and
right-hand sides building the shape of the rules have to be found.

The second characteristic is the reuse of substructures. Reusable substruc-
tures in a model transformation can be found in rule sides. Promising substruc-
tures can be reused for the resulting model transformation.

The third characteristic is the need to maintain syntactic validity of a resulting
model transformation. This is an important requirement, since the resulting
model transformation has to be represented in a certain model transformation
language. In addition, the model transformation has to be directly executable
(see R.2.1.2 in Section 3.1.2). Thus, it has to conform to the syntax of the
chosen model transformation language.

The fourth important characteristic is the need to discover the “type of sub-
structures”, e.g., subroutines, iterations, or loops. Since the rules in the model

103

5. User-Friendly Language Transformation

transformation have to be executed in a given control flow, finding the suitable
control structure is an important task of the mtbe derivation approach.

Figure 5.2 presents the derivation approach of mtbe. The derivation approach
imitates evolution and runs for a given number of generations set in advance. In
each evolution run, a set of genetic operators are applied in a certain order. The
approach is realized based on the concepts of the framework Opt4J introduced by
Lukasiewycz et al. [88]. This modular framework for meta-heuristic optimization
is chosen, because the authors enable the efficient design and development of
solutions for complex optimization problems by providing such properties as
strict decoupling and flexibility.

The derivation starts with the execution of the operator Creator 1 , which
creates a population of solutions. The size of the population defines the number
of candidate solutions, which can be tried out in one generation. The size
influences the convergence of the genetic algorithm. At the beginning of the
evolution run, a solution contains a genotype only. A genotype is an encoding
of a model transformation, which is independent from any model transformation
language that is required in R.2.2.8 from Section 3.1.2. The genotype contains
all information necessary for the generation of a model transformation in an
arbitrary model transformation language. The Creator generates genotypes
randomly but considers the information from the model mappings.

A population containing genotypes serves as an input for the next operator
called Decoder 2 . For each genotype, the Decoder generates a representation
of the solution (phenotype), which this genotype encodes. At this point of the
evolution run, each solution in the population contains a phenotype as well. A
phenotype is specific for a certain model transformation language. Thus, the
Decoder is an operator implemented specifically for a certain model transforma-
tion language, in which the generated model transformation is described. The
idea to separate the genetic representation (genotype) from the representation
of the solution (phenotype) originates from Lukasiewycz et al. [88].

In the next step, the operator Evaluator 3 computes the fitness for the phe-
notypes in a population (see R.2.2.9 in Section 3.1.2). The fitness is computed
based on the predefined objectives implemented as a part of the Evaluator.
The calculated fitness values are added to the solutions in the population.

Then, the operator Selector 4 picks the fittest solutions and filters out
the weakest ones based on the fitness of the phenotypes. Depending on the
selection strategy, the Selector applies different filtering techniques. Based on
the amount of evolution runs to be executed in the derivation approach, the
Selector can either transfer the selected solutions to the next genetic operator
or output the solution with the highest fitness as a result.

If the evolution run continues, then the selected phenotypes are changed with
the goal to improve their fitness. For this purpose, the operator Mutator 5
performs changes on the genotypes of the corresponding phenotypes according
to a certain mutation strategy. According to the authors of [50], a crossover is

104

5.1 The Approach mtbe

Model

mappings
source

models

target

models

MTBE
Creator

Phenotypes

with fitness

Model

transformation

Fitness

Selector

Fittest

 phenotypes

Mutator

Mutated

genotypes

Phenotype

Genotype

Population of

genotypes

Decoder

Population of

phenotypes

Evaluator

Phenotype

Genotype

1

2

3

5

4

Figure 5.2: Overview of the derivation approach of mtbe

105

5. User-Friendly Language Transformation

a special kind of mutation that performs several mutations steps at once. mtbe
contains no special operator realizing a crossover because all suitable mutations
are defined in Mutator with no further distinction. The mutated genotypes
serve as an input for the Creator, which creates the new population of the next
generation. In the new population, the Creator puts the mutated genotypes as
well as creates some random ones.

As a result of the mtbe approach, the Selector outputs a model transforma-
tion with the highest possible fitness achieved over all generations. If the mtbe
approach converges to an optimum, then several model transformations with
the same highest fitness usually exist in the population of the final generations.
In this case, the Selector outputs one such model transformation.

5.1.2 Creation of Model Mappings

Service requesters and service providers create model mappings, when they need
to transform their specifications into the core language. A market actor creates
specifications, i.e., models, in the corresponding editors of her language (the
source language) and the optimal core language (the target language). The goal
of the created model mappings is to show typical transformation scenarios bet-
ween the source and the target languages in the given OTF market. A mapping
exists between two models, if they are semantically equivalent but syntactically
described in different languages. The market actor creating the mappings de-
cides on the semantic equivalence of the models based on her experience with
the source and target languages.

Creation process Figure 5.3 illustrates the process of the mapping creation.

Create model mappings

yes

no

Create a model

mapping

yes

Calculate

coverage

More

mappings

needed?

yes

Consider

coverage?

no

no

Coverage

high

enough?

Figure 5.3: Creation of model mappings

In the first step Create a model mapping, a market actor creates a single
model mapping. This step repeats until the market actor decides that no more
model mappings are needed. For the creation of model mappings, market actors
can either reuse existing specifications or create new ones from scratch.

106

5.1 The Approach mtbe

A set of typical requirements or service specifications might already exist.
Such specifications represent typical usage scenarios of a language in the con-
sidered OTF market. Market actors can directly use these specifications as a
part of the model mappings. Furthermore, based on these specifications, market
actors can learn the semantics of the language. If market actors decide to create
models from scratch, they can start with creating simple models and continue
with more complex ones. This technique is similar to the guidelines for the
creation of test cases by Soltenborn et al. [133].

Since the model mappings serve as a basis for the learning process of mtbe,
their quality directly influences the quality of the derived transformation. This
PhD thesis assumes that market actors create semantically correct mappings
between models. Since the models are qualitative per design by the market
actor, the models determine the parts of the language relevant for the model
transformation. In this case, the corresponding language is very expressive and
the market actor uses only a subset of all its language constructs. A model
transformation is derived for these language constructs only. Thus, the models
do not cover the whole language but its relevant parts only.

For the evaluation of the quality of models, Fleurey et al. [49] proposes tech-
niques for calculating the coverage. The authors define coverage criteria to
evaluate a set of models. The criteria are defined for languages having the
abstract syntax defined in the form of a metamodel. In this case, the step of co-
verage calculation together with a creation of new model mappings or modifying
existing ones are performed until the obtained coverage value is high enough.
After the market actor decides that the obtained coverage is sufficient, then the
creation process finishes.

Criteria used for calculating the coverage are listed in the following. The
criterion of the class coverage demands that each class of the abstract syntax
is instantiated at least once in the given set of models. The attribute coverage
demands that each attribute in the classes of the abstract syntax is instantiated
with a set of representative values. According to the association coverage, each
association has to be instantiated in the set of models with its representative
multiplicities. The authors also define further coverage criteria that allow to
calculate coverage values for different combinations of classes, attribute values,
and association multiplicities.

Example creation of model mappings In order to illustrate how model map-
pings are defined, the broadly-used example of a transformation between UML
class diagrams and relational data bases (RDB) is chosen as a running exam-
ple for this chapter. The example is based on [154] and involves toy languages
describing very simplified versions of the mentioned languages.

Model mappings Figure 5.4 shows the metamodel describing the abstract
syntax of the first toy language for UML class diagrams. According to this

107

5. User-Friendly Language Transformation

metamodel, a UML specification consists of classes (see classes), which have
superclasses (see parent). A class contains several attributes (see attrs) having
a type represented by Class. A specification also contains associations that
connect source and target classes (see src and dst).

Figure 5.4: The toy language for UML class diagrams based on [154]

Figure 5.5 shows the metamodel of the toy language for relational data bases.
According to it, RDBSpec contains modeling elements to describe a specification
of a relational data base. A specification consists of tables (see tables) having
columns and foreign keys (see tcols and fkeys). A table references one column
as a primary key (see pkey). A foreign key references one column that contains
its identifier (see cref) and columns of the current table (see kcols).

Figure 5.5: The toy language for relational data bases based on [154]

108

5.1 The Approach mtbe

Figure 5.6 and Figure 5.7 introduce two model mappings for the presented
toy languages. A market actor specifies these model mappings in the iterative
process illustrated in Figure 5.3.

Figure 5.6 describes a mapping of an UML class with an attribute typed
over another class. As a correspondence of this source model, the target model
contains two tables one referencing another and each corresponding to a class
from the source model. The foreign key models the attribute.

Figure 5.6: Model mapping 1

Figure 5.7 describes, how two UML classes connected by an association are
mapped. The corresponding target model contains two tables corresponding to
the classes from the source model. The corresponding target model consists of
an object of type RDBSpec. These tables have columns containing identifiers
serving as primary keys and the association is represented as a foreign key.

Figure 5.7: Model mapping 2

Coverage calculation In the following, an example calculation of coverage for
the toy language for UML class diagrams is shown. The coverage for the toy
language for relational data bases was calculated in the same way.

Figure 5.8 shows an overview of the coverage calculation for the toy language
for UML class diagrams. During the coverage calculation, four coverage criteria
were considered: class coverage, class combination coverage, reference coverage,
and attribute coverage. The coverage values for these criteria and their compu-
tation are explained in detail in the following.

Figure 5.9 introduces the results of the computed class coverage. As shown
in Figure 5.4, the metamodel of the toy language for UML class diagrams has 5
metamodel classes. Each of these classes is covered by one of the source models

109

5. User-Friendly Language Transformation

Figure 5.8: Coverage of the toy language for UML class diagrams

from the given model mappings in Figure 5.6 and Figure 5.7. Thus, the class
coverage equals to 100%.

Figure 5.10 shows the results of the computed class combination coverage.
This coverage criterion builds the combinations of different classes based on the
given lower and upper bounds. In Figure 5.10, the bounds are set to 2. This
means that all possible pairs of classes of the toy language (i.e., all combinations
of two classes) are checked for being covered by the models from the mappings.
As illustrated in Figure 5.4, the toy language has five metamodel classes that
results in 10 pairs to cover by the models. The given models cover 9 of 10 pairs
excluding the case, when the objects of types Attribute and Association

appear simultaneously in one model. Thus, the coverage results in 90%.
Figure 5.11 introduces the results of the computed reference coverage.
This coverage criterion evaluates how good the metamodel references with

their different cardinalities are covered in models. For the coverage calculation,
different ranges of cardinalities are considered depending on the original cardi-

Figure 5.9: Class coverage of the toy language for UML class diagrams

110

5.1 The Approach mtbe

Figure 5.10: Class combination coverage of the toy language for UML class
diagrams

nalities of the references and the maximal considered cardinality. To calculate
the reference coverage for the running example, the maximal considered cardi-
nality is set to 2. Thus, all references have to be instantiated with cardinalities
from lower bound to upper bound in the maximal range from 0 to 2. Based on
the cardinalities of the references in the metamodel illustrated in Figure 5.4, the
amount of checked instantiations equals to 17. Models from the mappings cover
9 out of 17 instantiation possibilities of these references. Thus, the calculation
of the reference coverage results in the value of 52%.

111

5. User-Friendly Language Transformation

Figure 5.11: Reference coverage of the toy language for UML class diagrams

112

5.1 The Approach mtbe

Figure 5.12 shows the results of the computed attribute coverage.

Figure 5.12: Attribute coverage of the toy language for UML class diagrams

This coverage criterion checks that all attributes of the metamodel classes
are covered by the models from the mappings. This coverage criterion consi-
ders different ranges to cover for each attribute depending on its data type. In
the running example, only attributes of type EString are considered. For this
type, a corresponding attribute has to be instantiated with a arbitrary String-
value at least in one of the models. Based on the metamodel in Figure 5.4,
five attributes are considered (each of five classes has or inherits the attribute
name:EString). Source models from the mappings cover 4 of 5 attributes be-
cause no objects of type UMLSpecification instantiates this attribute. Thus,
the attribute coverage equals to 80% for the given model mappings.

Summary To sum up, this section describes a process how market actors can
create model mappings serving as an input for the Creator operator described
in the next section. The presented process allows to evaluate the quality of the
model mappings by calculating the coverage of the languages by these models.
Thus, the market actors can improve the quality of their model mappings and,
thus, increase the quality of the model transformations built based on them.

5.1.3 Creator

The genetic operator Creator is responsible for creating the population of so-
lutions for each new evolution run (see Figure 5.2). Each solution contains the
genetic representation called genotype. The genotype is an encoding of a model

113

5. User-Friendly Language Transformation

transformation in a language-independent manner (i.e. independent from a con-
crete model transformation language), which can be decoded in several model
transformation languages. Based on the genotype, the genetic operator Decoder
generates a model transformation in a concrete model transformation language.

Genotype The genotype used in mtbe is defined for graph-based model trans-
formation languages with the orientation on the model transformation language
Henshin [5], which is used in the Decoder. The genotype consists of an ordered
list of model transformation rules and contains the control structure of either
independent control or priority control. Independent control defines that rules
are executed in an arbitrary order. After a rule is found, whose application was
successful, the execution stops. Priority control defines that rules are executed
according to their given priorities. After a rule applies successfully to the source
model, all following rules with lower priorities are not executed.

Creator Figure 5.13 gives an overview of the Creator’s logic.

Creator

Collect statistics

about languages

Create rule sides

using the

collected statistics

Set the control

flow in the

genotype

Figure 5.13: Overview of the Creator’s logic

In order to generate a genotype, the Creator leverages the knowledge from
the model mappings to limit the search space for the genetic algorithm. For
that, in the step Collect statistics about languages, different kinds of
statistics are collected from the given example models and their mappings. An
example of such statistics data are the probabilities of occurrence of different
language constructs in the input models. The Creator generates rule sides
with random sizes using language constructs with respect to their descending
occurrence probabilities. Then, the control flow of the genotype is set in the
second step. Afterwards, the rule sides are created in the final third step using
the collected statistics.

Collect statistics about languages Listing 5.1 presents the statistics collected
from model mappings.

The data is collected in an object called MTBEProblem, which contains all
necessary data to describe the optimization problem of model transformation
by-example. MTBEProblem contains the set ModelPairs describing the model
mappings given as an input. The data structure ModelPair describes a single

114

5.1 The Approach mtbe

mapping and contains a resource storing the source model (sourceModel) and a
resource storing the target model (targetModel). MTBEProblem also contains a
description of the properties of the source and target languages, which the source
and target models conform to. The properties of the languages are described
by the data structure LanguageElements.

Listing 5.1: Statistics collected from the model mappings

1 MTBEProblem :
2 Set<ModelPair> modelPairs
3 ModelPair :
4 Resource sourceModel
5 Resource targetModel
6 LanguageElements sourceLanguage
7 LanguageElements targetLanguage
8 LanguageElements :
9 Map<EClass , Double> c l a s s e s 2 p r o b a b i l i t i e s

10 I n t eg e r numberOfClasses
11 Map<EClass , Map<EAttribute , L i s t<Object>>
12 c l a s s e s 2 a t t r i b u t e s 2 v a l u e s
13 Map<EClass , Map<EAttribute , Double>
14 c l a s s e s 2 a t t r i b u t e s 2 p r o b a b i l i t i e s
15 Map<EReference , Double> r e f e r e n c e s 2 p r o b a b i l i t i e s
16 I n t eg e r maxModelSize
17 EClass root
18 Map<EClass , L i s t<EClass>> c lassMappings

Since the input models may cover only a part of the language, metamodel
classes, which are instantiated in the models, have to be identified. Languages
considered by mtbe are defined using the Ecore modeling language, whose ab-
stract syntax is shown in Figure 4.7. EClass represents metamodel classes.
Objects instantiating classes are represented by the class EObject shown in Fi-
gure 5.14. Instantiated classes are determined based on the types of the objects
in the models. The method eClass() of EObject is used for that.

For the instantiated classes, probabilities of their occurrence in the models
are calculated. The Creator uses this information to add classes in the rules of
the genotype according to their descending probabilities. For the calculation of
probabilities, the number of models, in which a class occurs, is divided by the
number of all models. This results in the occurrence probability of a class in one
model (classes2probabilities). The number of all instantiated classes is also
stored (numberOfClasses). Based on the instantiated classes, their instantiated
attributes are identified.

For the instantiated attributes, their values assigned in the models are col-
lected as well, in order to find out, which attributes from the source and target
models may correspond to each other. The map classes2attributes2values

stores each instantiated metamodel class with its instantiated attributes and
their values, which can be found in the models. The Ecore class EAttribute

represents attributes of metamodel classes EClass as illustrated in Figure 4.7.

115

5. User-Friendly Language Transformation

Figure 5.14: Ecore class EObject

The method eIsSet of EObject (see Figure 5.14) is invoked on an object with
its attribute as an input, in order to determine, whether this attribute is in-
stantiated in this object. The method eGet is invoked to get the value of the
instantiated attribute.

For each attribute of the instantiated classes, its probability of occurrence
in these classes is calculated. The Creator uses this information, in order to
add attributes to the classes of the rule sides according to their descending
probabilities. For each attribute of the collected classes, the number of its
instantiations in these classes is divided by the number of the occurrences of
these classes over all models (classes2attributes2probabilities).

Since the Creator needs to add references in the rule sides of the genotype,
the information about their occurrence probabilities is required as well. For
each reference contained in the collected classes, the number of occurrences
of classes containing this reference as instantiated is divided by the number
of occurrences of the classes containing this reference according to the meta-
model. The number of occurrences are calculated over all models. The map
references2probabilities stores the correspondence between the references
and their occurrence probabilities. The Ecore class EReference stands for refe-
rences between metamodel classes as shown in Figure 4.7. Similar to attributes,
the method eIsSet of the class EObject is invoked with a reference as an input
to determine, whether this reference is instantiated for a given object.

In order to limit the sizes of the rule sides created in the genotype, the infor-
mation about the maximum model size is needed (maxModelSize). Putting no
limitation on the sizes of rule sides would unlimitedly expand the search space
for the derivation approach of mtbe. This would complicate the evaluation,
which is the most expensive part of the derivation approach, and might also
hinder the convergence of the genetic algorithm.

116

5.1 The Approach mtbe

When creating rule sides of the genotype, the tree structure in metamodels
described in Ecore has to be considered. In particular, the Creator should not
add two metamodel roots into one rule side. In this case, a rule cannot apply
to a model correctly as each model has a tree structure corresponding to its
metamodel and, therefore, only one root. MTBEProblem stores the information
about the root of the metamodel (see attribute root). For each class, it is
checked, whether a containment with a target at either this class or its superclass
exists. A class serving as no target for any containment is the root.

The final data of MTBEProblem are mappings between the source classes and
the target classes corresponding to them (classMappings). For each instanti-
ated class in the source models, this map stores all classes from those target
models, which correspond to the source models containing objects of this class.
Using these mappings, the Creator can limit the combinations of classes to
those, which really occur in the given example models.

The language statistics calculated for the running example is illustrated in
the following. Afterwards, the creation of a genotype based on this information
is described.

Example of language statistics The language statistics is collected for the
toy languages and model mappings introduced in Section 5.1.2. Based on the
given model pairs, the toy languages can be described using the data structure
LanguageElements. The presented model pairs are stored in the set modelPairs
of an object of type MTBEProblem described in Listing 5.1.

The toy language for UML class diagrams serves as a source language for the
current instance of MTBEProblem. The toy language for relational data bases
serves as the target language. For these languages, the map classes2proba-

bilities contains 4 elements, which correspond to all concrete classes of its
metamodel. Thus, numberOfClasses equals to 4.

The probabilities of language classes are shown in Table 5.1. UMLSpecifi-

cation and Class occur in each model, while Attribute and Association

occur only in one model of two. Values from the map classes2attributes2-

values are also shown in Table 5.1. No attribute is added for the class UMLSpeci-
fication because no attribute is set for its objects. The map classes2attri-

butes2probabilities contains the attribute name with the probability 1 be-
cause it occurs in every object of these types.

Table 5.2 presents the map references2probabilities, which contains the
occurrence probabilities of the instantiated references. Containments with pro-
bability 1 are instantiated for each object of the classes containing them. For
example, the containment attrs has the probability 0.25 as it is instantiated in
one object of the type Class out of four objects (see Model mapping 1). The
containment associations has the probability 0.5 as it is set for one object of
the type UMLSpecification out of two (see Model mapping 2). The associa-
tion parent is not covered by the model pairs. In this case, the modeler might

117

5. User-Friendly Language Transformation

Table 5.1: Excerpt of language statistics for UML class diagrams

Language class
Class

occurrence
probability

Class
attribute

Attribute value
Attribute
occurrence
probability

UMLSpecification 1 - - -
Class 1 name Clerk, Manager 1

Attribute 0.5 name Boss 1
Association 0.5 name hasEmployee 1

left out this association deliberately because it is out of scope for the derivation
of a model transformation (see Section 5.1.2).

Table 5.2: References and their probabilities for UML class diagrams

Reference Occurrence probability

classes, dst, src, type 1
associations 0.5

attrs 0.25
parent -

The integer maxModelSize is set to 4. The root is set to UMLSpecification.
In this example, class mappings contains all objects from each source model

mapped to all objects of the corresponding target model. Therefore, in this
example, no advantage of the collect mappings is gained.

The language statistics for the toy language for relational data bases is cal-
culated in the same way.

Create the genotype Listing 5.2 presents the data structure realizing the
genotype in mtbe described in Section 5.1.3. The mtbe approach is realized
upon the framework Opt4J of Lukasiewycz et al. [88] and uses Opt4J data
structures to realize the genotype.

Listing 5.2: Genotype in the mtbe approach

1 MTBEGenotype extends
CompositeGenotype<Integer , ListGenotype<List<EObject>>>

2 St r ing cont ro lUn i t

MTBEGenotype extends the Opt4J class CompositeGenotype, which consists of
multiple simple genotypes modeled by the Opt4J class Genotype. Composite-

Genotype contains a map of two integers, each standing for the source or target
language correspondingly. The Opt4J class ListGenotype defines a genotype
in the form of a list of objects EObjects representing rules sides. Each rule side
is modeled as a list of EObjects that define, what classes are instantiated in the

118

5.1 The Approach mtbe

rule sides and what attribute values these classes have. The control unit used
in the genotype is defined by the variable controlUnit of type String, which
can be either independent or priority control unit.

The creation process starts with creating a new object of type MTBEGenotype

and choosing the control unit. The process continues by creating rule sides.
For left-hand sides of rules, a ListGenotype based on the source language is
created and set as a first element of the CompositeGenotype comprising the
MTBEGenotype. For right-hand sides, a ListGenotype is created for the target
language and is set as the second element of the MTBEGenotype. To determine
the amount of rules (i.e., the size of each ListGenotype<List<EObject>>), a
random number from 1 to a given ceiling maxAmountOfRules is taken.

The sizes of each rule side are defined by the amount of its objects. The sizes
are stored in two lists of integers: LHS Sizes and RHS Sizes. For each rule, the
size of its rule side is set to a random number between 1 and the double number
of instantiated classes of the input language (2·number of language classes).
This is a heuristic to get reasonable sizes for rule side. Any other upper bound,
which is equals or higher than the number of instantiated classes, can be used as
well. If the sum of all generated sizes is less than number of language classes,
then some classes instantiated in the given example models do not occur in the
rules. Therefore, arbitrary elements of the rule side sizes are increased by 1 until
the sum becomes equal or larger than the number of instantiated classes.

Figure 5.15 shows the process to create rule sides. The process is performed
until a rule side is created for each rule number. Rule sides are created by in-
stantiating classes of the corresponding language, their attributes and references
according to their probabilities collected as a language statistics.

Create a rule side

Add a class with its

attributes to the rule side

according to probabilities

yes

Add references to the rule

side according to

probabilities
rule side size

is reached

no

Figure 5.15: Overview of creating rule sides

To create a rule side, the probability of instantiated classes collected in the
map classes2probabilities (see Listing 5.1) is checked to determine whether
objects of these classes should be added to the rule side. If the probability of
the class is 1, i.e., the class occurs in every input example model, then an object
of this class with its attributes should be added to the rule side. If the class is
also the root of the metamodel of the input language, then this class is added
only if the rule side does not contain a root yet. This is important to preserve
the tree structure of models conformed to Ecore metamodels.

119

5. User-Friendly Language Transformation

After all the classes with the occurrence probability 1 are checked, the rule
side size might be less than the defined size. In this case, the rule side has to be
filled with objects until the size of the rule side is reached. For that, a random
class from the set of instantiated classes is taken, and its occurrence probability
is checked to be greater than a random probability obtained as a random real
number between 0 and 1. In this case, this class is added to the rule side.

For the target language, the genotype for left rule sides is already built. Thus,
only those classes of the target language should be used in the right-hand side,
which correspond to the classes instantiated in the left-hand side of that rule
according to the given example models (see classMappings in Listing 5.1). This
prevents using classes in the right-hand side, which do not have a mapping to
the classes from the left-hand side.

After rule sides are filled with objects typed over classes of the given meta-
models, attributes of these classes have to be checked. To add attributes to
objects, for each attribute of a language class, its occurrence probability from
the map classes2attributes2probabilities (see Listing 5.1) is checked. If
the occurrence probability is greater than a random probability, then the corre-
sponding attribute is set in the object. The value of the object attribute is set
to a random values from the list of all possible values of this attribute from the
map classes2attributes2values (see Listing 5.1).

After objects and their attributes are added to the rule sides, references bet-
ween these objects have to be added as well. For that, all references instantiated
in example models and stored in the map references2probabilities (see Lis-
ting 5.1) are considered. For each reference from this set, all its possible source
objects and all its possible target objects in the rule side are collected in sets
sources and targets. Afterwards, depending on the type of the references,
they are added differently between the collected source and target objects.

If the reference is a containment, then each target object of this reference has
to be contained in some source object. Occurrence probabilities are not consi-
dered for containments because they help to ensure the correct tree structure of
the rule sides. For each target object from the set targets, a random source ob-
ject (randomSource) from the set sources is chosen. If the upper bound of the
reference’s cardinalities is less than the amount of targets, which the reference of
randomSource already has, then the reference can be set from randomSource to
an object from the set targets. Otherwise, if the upper bound of the reference’s
cardinalities is reached, then the reference cannot be added. In this case, the set
sources is searched for an object, in which the current target can be contained.
So, for each object from sources, it is checked, whether the upper bound of the
reference is less than the amount of its targets for the current source object. If
the upper bound is not reached, then the reference is added between this source
and the corresponding target.

If a reference is not a containment and its occurrence probability equals 1,
then the reference is added from the corresponding target to each source object,
because it occurs for every class instantiated in example models. So, for each

120

5.1 The Approach mtbe

source object from sources, if the considered reference is set for this source
object, then the object is skipped. Otherwise, the reference is added from the
source object to the target object arbitrary chosen from the set targets.

If a reference is not a containment and its occurrence probability is less than 1,
then its occurrence probability is compared with a random probability obtained
as a random number between 0 and 1. If the occurrence probability of the
reference is greater, then a random source object is chosen from sources and
a random target object is chosen from targets. Then the reference is added
between these objects. As a result, references are added between the source and
target objects in the given rule side according to their probabilities.

Example genotype Listing 5.3 shows an example MTBEGenotype built by the
presented Creator.

Listing 5.3: Example genotype

1 MTBEGenotype :
2 (0 , < <1:UMLSpeci f icat ion (c l a s s e s (2 : Class) , c l a s s e s (3 : Class)) ,

2 : Class (name=”Clerk ” , a t t r s (4 : Att r ibute)) ,
3 : Class (name=”Manager” , a t t r s (5 : Att r ibute)) ,
4 : Att r ibute (name=”boss ” , type (3 : Class)) ,
5 : Att r ibute (name=”boss ” , type (2 : Class))>,

3 <1:UMLSpeci f icat ion (c l a s s e s (2 : Class) , c l a s s e s (3 : Class)) ,
2 : Class (name=”Clerk ”) , 3 : Class (name=”Manager”)> >) ,

4

5 (1 , < <1:RDBSpec>,
6 <1:RDBSpec(t ab l e s (2 : Table)) , 2 : Table (name=”Manager” ,

t c o l s (3 : Column) , pkey (3 : Column) , f k ey s (4 : FKey)) ,
3 : Column(name=”MngrId”) , 4 :FKey(name=”hasEmployee” ,
c r e f (3 : Column) , k co l s (3 : Column))> >)

7

8 Pr i o r i t yCont ro l

This genotype is based on the model mappings shown in Figures 5.6 and 5.7.
The representation of the genotype is based on the definition in Listing 5.2. In
the example genotype, PriorityControl was arbitrary chosen from the list of
control units. The amount of rules in the genotype is randomly determined as
2. Thus, the ListGenotypes in both map entries contain two lists. The lists
sizes are determined randomly as 5 and 3 for the left-hand sides and as 1 and 4
for the right-hand sides.

The lists modeling left-hand sides and right-hand sides are generated based on
the language definitions in Figure 5.4 and Figure 5.5. To create rule sides, the
statistics about the languages and the model mappings presented in Section 5.1.3
was used. For example, the first list contains five objects. The objects 2:Class
and 3:Class both have the attribute name arbitrary set with the values "Clerk"
and "Manager" correspondingly. The two objects are connected as targets with
the source 1:UMLSpecification by the containment classes. The reference
type is set to an arbitrary chosen object of type Class.

121

5. User-Friendly Language Transformation

Summary To sum up, this section introduces the genotype used in the mtbe
approach and the genetic operator Creator, which generates such genotypes.
The genotype encodes a model transformation including the left-hand sides and
right-hand sides of its rules and its control flow. The Creator leverages the
knowledge from the given mappings between example models for the creation of
a genotype. Based on this knowledge, the introduced methods are designed to
create a genotype that encodes a possibly correct model transformation, thus,
leading to a faster convergence of the genetic algorithm.

5.1.4 Decoder

This section describes the genetic operator Decoder (see Figure 5.2). This
operator generates a representation of a solution called phenotype based on a
genotype. The phenotype in mtbe is a model transformation. The Decoder is
specific for a certain language used to describe phenotypes. In this PhD thesis,
the Decoder is defined for the language Henshin [5].

Transformation language Henshin Henshin is a transformation language with
its origin in algebraic graph transformations [5]. Model transformations of Hen-
shin are written for languages defined as metamodels in the Ecore modeling
language. These transformations are directly applicable on instances of these
metamodels. The underlying formalism of Henshin allows the validation of
model transformations. Existing approaches define sufficient conditions for the
termination of model transformations based on algebraic graph transformations
and show the confluence of such model transformations [144]. Approaches to
check the syntactical and semantic correctness of transformation results are pre-
sented in Section 5.1.8.

Figure 5.16 shows an excerpt form the abstract syntax of Henshin in the form
of an Ecore metamodel. A more detailed description of Henshin is given in [51].

The metamodel class Module represents a Henshin model transformation. It
consists of a set of units represented by the abstract class Unit. The class
Unit stands for the control flow as well as for the transformation rules (Rule).
The class Rule represents rules for the transformation of source objects into
target objects. The class MultiUnit serves as a superclass for three con-
crete units modeling the control flow of a model transformation. The concrete
units InpedendentUnit and PriorityUnit have the same meaning as the con-
trol structures of the genotype introduced in Section 5.1.3. Further units like
SequentialUnit are considered as future work.

A unit also contains a set of parameters, which aim to model the data flow
between units. Parameters allows to parametrize complex model transforma-
tions and control the data flow. A parameter is characterized by its name and
its type modeled as the Ecore class EClassifier (see Figure 4.7). In order to
model the correspondence between the values of source parameters propagated

122

5.1 The Approach mtbe

Figure 5.16: Excerpt from the Henshin abstract syntax describing units

to certain target parameters, the class ParameterMappings is introduced. Pa-
rameter mappings belong to a unit and store the information about the source
and target parameters mapped onto each other.

Figure 5.17 presents an example model transformation written in Henshin. In
this example, a priority unit determines the control flow of this model transfor-
mation. The subunits of the priority unit are two transformation rules rule1

and rule2 shown later in this section. The priority unit propagates the value
of its parameter name:EString to the parameter name:EString of rule1. In
order to define the data flow between these parameters, a mapping is defined
from the parameter name of the priority unit to the parameter rule1.name from
rule1 (Parameter Mapping name -> rule1.name).

Figure 5.18 introduces an excerpt of the Henshin abstract syntax describing
the concept of transformation rules.

A rule in Henshin consists of a left-hand side and a right-hand side both rep-
resented as an attributed typed graph (see containments lhs and rhs). A graph
is typed over one or several metamodels, which represent the source and target
languages. A graph consists of nodes connected by edges (see containments
nodes and edges). A node might have no or many incoming and outgoing
edges, while an edge always has one source node and one target node.

Nodes represent instances of metamodel classes, while edges represent refe-
rences between them. Both classes and references come from the metamodels,
which this graph is typed over. A node has a type represented by the Ecore class
EClass, while an edge has a type represented by the Ecore class EReference

(see Figure 4.7). A node also contains a set of attributes, which model the att-

123

5. User-Friendly Language Transformation

Figure 5.17: Example priority unit in Henshin

ributes of the objects being instances of metamodel classes. An attribute has a
type represented by the Ecore class EAttribute.

The classes Node, Edge, and Attribute inherit from the abstract class Graph-
Element containing the attribute action:Action. This attribute indicates the
type of action that is performed on nodes during the execution of the model
transformation. The action types, which are considered for the Decoder are
<<preserve>>, <<create>>, and <<delete>>. The action type of a certain node
is realized by the class Mapping contained in the class Rule. This class aims at
storing the correspondences between nodes in the left-hand side (origin) and
right-hand side (image) of a rule.

The action type <<preserve>> stands for nodes, which exist in the left-hand
side as well as in the right-hand side of the rule. For these nodes, the mappings
between the rule sides exist and indicates their preservation. These nodes are
usually marked as gray in the concrete syntax representation of Henshin rules.
The type <<create>> stands for new nodes, which are added to the preserved
nodes as a result of the rule execution. These nodes exist only in the right-hand
side of the rule. Thus, these nodes do not have any correspondences in the
left-hand side and no mappings for them exist. Nodes of this type are marked
as green in the concrete syntax of Henshin. The type <<delete>> stands for
nodes from the left-hand side, which are to be deleted after the rule execution.
Similar to the newly created nodes, such nodes exist in the left-hand side only.
Thus, no mappings for them exist. These nodes are marked as red.

Figure 5.19 presents an example of two transformation rules used as subunits
in the priority unit from Figure 5.17. The graphs of these rules are mapped over
the toy language for simplified UML class diagrams presented in Figure 5.4.

124

5.1 The Approach mtbe

Figure 5.18: Excerpt of the Henshin abstract syntax describing a rule

The rules have nodes with types UMLSpecification, Class, and Attribute

from the simplified UML class diagrams. The nodes are connected by the edges
representing references existing between the corresponding classes. For example,
the edge classes represent the containment between the classes UMLSpecifica-
tion and Class. The node of type Attribute contains the node attribute name

assigned to the value of the input parameter name:EString (see name=name).

Create the phenotype Figure 5.20 gives an overview of the logic of the Decoder.

The Decoder creates a phenotype containing a model transformation written
in Henshin, which is based on the genotype built by the Creator in the previous
step. The Decoder considers all information encoded in the genotype and pro-
vides a deterministic decoding algorithm. It starts by creating a new object of
type Module (see Figure 5.16). In the next step, based on the control unit of the
genotype, a corresponding unit in Henshin is created (PriorityUnit for prio-
rity control, IndependentUnit for independent control). After all the rules are
created, the method creates a new phenotype MTBEPhenotype (see Listing 5.4).

125

5. User-Friendly Language Transformation

Figure 5.19: Example transformation rules in Henshin

For each new rule, nodes are added to the left-hand side or right-hand side
of this rule. To the left-hand side, the objects from the corresponding rule side
typed over the source language are added. Analogously, the objects from the
corresponding rule side typed over the target language are added to the right-
hand side. For each object from a rule side, a new node is created. This node
has the type of the corresponding object and its name.

After nodes are created, edges are added between the nodes already existing
in the graphs. Each object from the left- or right-hand side is considered as a
source for possible edges. Then, the instantiated references of each object are
checked. For each target object, an edge is created from the node corresponding
to the source object to the node corresponding to the target object. The type
of the edge is set to the current reference. The action of the edge is set to the
action performed on its source node. By design source and target nodes have
the same action type, otherwise, an edge cannot be added.

Attributes are added to nodes, which are already contained in the rule graphs.

Decoder

Create nodes Create attributesCreate edges

Figure 5.20: Overview of the Decoder’s logic

126

5.1 The Approach mtbe

For each object, if its attribute is set, then a new object of the Henshin type
Attribute is created (newAttribute), and the attribute is added to the node
corresponding to the current object. The action of newAttribute is set to the
action of its node.

The value of newAttribute can be in Henshin either a parameter name or
a concrete attribute value [5]. The Decoder creates an attribute value always
set to a parameter. For that reason, an existing attribute in the rule that has
the same type and the same value as newAttribute is searched. If such an at-
tribute can be found, then the value of that attribute is taken for newAttribute.
Otherwise, a new parameter is created. The new parameter has the type of the
object attribute. Finally, the value of the new attribute is set to the parameter’s
name. This means that, during the rule application, the value of newAttribute
is set to the value of this parameter.

Example phenotype Figure 5.21 shows the example phenotype using the con-
crete syntax of Henshin. The phenotype is built by the presented Decoder

based on the example genotype presented in Listing 5.3. The example genotype
encodes a model transformation containing two rules (rule1 and rule2) and
the priority control (prio). Each rule is invoked with the parameters par 0 to
par 3 mapped from the priority unit to the corresponding rule.

For each object from the lists of the example genotype, a node is created in
the corresponding rule side. The left-hand side of rule1 consists of five nodes
typed over UMLSpecification, Class, and Attribute connected by the edges
classes and attrs representing containments and the edge type representing
references. The nodes have <<delete>> as action because these nodes exist in
the graph of the left-hand side only. The right-hand side of rule1 contains one
node of type RDBSpec. It has <<create>> as action because it exists in the graph
of the right-hand side only. Base on the instantiated attributes of the objects in
the genotype, the node attribute name of type EString is created. The values of
this attribute are set to the parameters par 0 to par 3. In the left-hand side of
rule2, since no attributes name with the same values "Clerk" and "Manager"

already exist in the node, new parameters par 0 and par 1 are created. The
attributes of the nodes of type Class are assigned to these parameters.

Summary To sum up, the presented genetic operator Decoder generates model
transformations described using the graph-based model transformation language
Henshin. The Decoder can represent the explicit control flow chosen in the
genotype as well as the generated rule sides. The chosen language Henshin is
close to the presented definition of the genotype that gives an advantage of a
rather straight-forward generation of the phenotype. Henshin also supports the
data flow between different objects that allows a stronger mapping of the object
from the left- and right-hand side of a rule. Section 5.1.8 describes existing
approaches to verify such properties as termination, confluence, syntactical and

127

5. User-Friendly Language Transformation

Figure 5.21: Example phenotype

128

5.1 The Approach mtbe

semantic correctness for model transformations written in Henshin, allows to
check and increase the quality of the resulting model transformation.

5.1.5 Evaluator

The genetic operator Evaluator evaluates the fitness of phenotypes (see Fi-
gure 5.2). As a result of this evaluation, each phenotype gets a fitness value
characterizing its suitability as a solution for the given MTBE problem. For
that purpose, the Evaluator defines objectives for the evaluation of phenotypes
and metrics to measure these objectives. The Evaluator also sets the opti-
mization goals for each objective, e.g., whether the value of an objective has
to be minimized or maximized. Measurements for the objectives are defined
depending on the model transformation language chosen in the Decoder. The
Evaluator utilizes the specifics of Henshin using its graph matching.

Phenotype fitness Listing 5.4 shows the definition of the phenotype fitness.

Listing 5.4: Fitness of the phenotype in the mtbe approach

1 MTBEPhenotype :
2 Module module
3 double maxModuleCoverage
4 Map<Rule , L i s t<BestRuleModelMatch>> r e su l t ingMatches
5 BestRuleModelMatch :
6 Rule ru l e
7 URI model
8 Part ia lMatchIn fo par t i a lMatchIn fo
9 double ruleModelCoverage

10 Map<Rule , Map<URI , Double>> rule2model2maxCoverage
11 Map<Rule , Map<ModelPair , Double>> rule2modelPair2maxCoverage

MTBEPhenotype contains the model transformation generated by the Decoder
(Module module). The objective used in the mtbe approach is the coverage by
model transformation (double maxModuleCoverage). This objective defines,
how good the resulting model transformation covers the model pairs from the
mappings provided by the mtbe user. The coverage is a double value between
0 and 1 that has to be maximized. The coverage of 1 means that, each source
model from the input model pairs can be transformed into the corresponding
target model from the mappings. In other cases, the coverage is lower. The
module coverage is evaluated using the graph matching of Henshin. The graph
matching determines matches of the model transformation to a given model.
The best matches per rule are stored in the map resultingMatches.

The information about a single match is stored in the data structure BestRule-
ModelMatch. It contains a rule (Rule rule) and a model (URI model) for the
match. The information about the best match of this pair of rule and model is
represented using the data structure PartialMatchInfo explained later in this
section. The coverage by a rule of a model described in the match is set to

129

5. User-Friendly Language Transformation

ruleModelCoverage. Based on the resulting matches, two maps rule2model2-
maxCoverage and rule2modelPair2maxCoverage are computed. The first map
stores the maximal coverage achieved by a certain rule for a certain model. The
second map stores the maximal coverage achieved by a certain rule for a certain
model pair. Finally, the module coverage is computed based on these data.

Evaluate the phenotype Figure 5.22 shows an overview of the Evaluator.

Evaluator

Initialize

objectives

Calculate

coverage

Compute

matches

Figure 5.22: Overview of the Evaluator’s logic

The Evaluator starts by initializing objectives describing the phenotype fit-
ness, e.g., maxModuleCoverage. Afterwards, the graph matching of Henshin is
used to compute the matches of the model transformation and the models from
the input mappings (step Compute matches). Finally, the coverage is calculated
as an objective based on the computed matches (step Calculate coverage).
In the current version of mtbe, the Evaluator uses one objective to evaluate the
fitness of the population phenotypes. Multi-objective optimization in the mtbe
approach is considered as future work.

For the computation of matches, the method findAllMatches in the Hen-
shin class InterpreterUtil exists [51]. The method findAllMatches searches
matches for a transformation rule and a model. A match contains correspon-
dences between the nodes of the left-hand side of a rule applicable to the given
model to the objects of the model. The Henshin graph matching considers
each node in the left-hand side as a variable in a constraint-satisfaction prob-
lem [149]. For the variables, their solution spaces are created from the model
objects serving as possible matches.

The original graph matching of Henshin finds complete matches. For a com-
plete match, all nodes from the left-hand side must have a target node in the
source model. In other words, the left-hand side has to be either the same as
the source model or its subgraph. If a left-hand side is larger than the source
model, then Henshin does not output any matches for this case as such rule is
not applicable to the model.

Since the model transformations generated by the Decoder are subjects of ge-
netic evolution, their coverage might be rather low at the beginning but increase
during the improvement of the model transformations. As a result, the fact
that Henshin always outputs complete matches only is a strong limitation for

130

5.1 The Approach mtbe

the mtbe derivation approach. This limitation would lead to many phenotypes
evaluated as having no matches, while the left-hand sides of their rules might
match to the source models, if unsuitable nodes would be removed. Therefore,
in order to extent the evaluation possibilities using Henshin, its graph matching
was extended by the author of this PhD thesis.

The method findAndReportMaximalPartialMatch represents this extension.
It aims at finding partial matches of a rule to a model. This covers the case, when
the left-hand side is larger than the model but its subgraph yields a complete
match with this model. The extension tries to find a complete match for a rule
first. If a complete match for this rule does not exist, then the rule is iteratively
reduced by one node producing a set of new rules. If a rule consists of N nodes,
then, after the first reduction, N reduced rules are created having N − 1 nodes
each. The method continues by trying to find a complete match for the reduced
rules. If a complete match exists, then this match is output as a partial match
for the original rule. Otherwise, the reduction procedure recursively repeats
for the already reduced rules. This procedure continues until either a complete
match is found or the original rule becomes empty.

The worst run time complexity of findAllMatches depends on the worst run
time complexity of the underlying graph matching. For Henshin, this complexity
equals to the worst run time complexity for solving the constraint satisfaction
problem, which the graph matching problem is transformed into. This problem
is knows to be NP complete [122]. As a result, the worst case run time com-
plexity is exponential to the size of the left-hand side of the input rule. This is
also the run time complexity of the method findPartialMatchesPerRule.

The results of the execution of graph matching are stored in a report Partial-
MatchReport that stores information about complete or partial matches com-
puted for different rules and models. Based on this report, found matches are
added to the resulting matches of the phenotype (see Listing 5.4).

Listing 5.5 presents the data structure of PartialMatchReport. It contains a
mapping between a rule and the information about its match, which has the best
coverage over all considered models. The mappings are stored in rule2info.

Listing 5.5: Report of matching results

1 PartialMatchReport :
2 Map<Rule , Part ia lMatchInfo> r u l e 2 i n f o
3 Part ia lMatchIn fo :
4 Match match
5 Rule o r i g i n a lRu l e
6 ModelURI model
7 Graph de l t a
8 double coverage
9 double modelCoverage

10 double matchCoverage

PartialMatchInfo stores the match and the original rule (in the case of a
partial match). If a computed match is partial, then this match is complete for

131

5. User-Friendly Language Transformation

a reduced rule and contains a reference to the reduced rule only. The original
rule is also the rule used in the map rule2info. The URI of the model URI
model is needed to know, which model this match was computed for.

For the genetic operator Mutator, the information about the difference bet-
ween the match and the original rule is needed. This information is used for
steering the modification of genotypes with the goal to find an optimal solution.
This difference is stored as a graph delta.

The coverage of the model by the rule is stored as a number between 0 and 1
(double coverage). The value of coverage is computed based on two further
coverage values: modelCoverage and matchCoverage.

The value of modelCoverage indicates how many nodes of the model are
covered by the match. Since the graph matching outputs complete matches, the
information about how much of a model can be transformed based on this match
is needed. The formula for calculating modelCoverage divides the number of
nodes in the match (match.rule.lhs.nodes.size) by the number of nodes in
the model (graph.size).

The value of matchCoverage indicates the difference between the reduced
rule and the original rule. This value shows how many nodes and edges of
the original rule are covered in the match. In the case of a partial match, the
information about how good the original rule match to the model is needed for
the evaluation. The formula used for the calculation of matchCoverage divides
the sum of nodes and edges of the match by the sum of the nodes and edges of
the original rule. The final coverage is calculated as an arithmetic mean of the
values for modelCoverage and matchCoverage.

As the third step Calculate coverage (see Figure 5.22), the coverage for the
whole model transformation can be calculated based on the resulting matches
in the phenotype. It starts by creating a new instance of type Objective rep-
resenting the coverage. For the calculation, the following information is col-
lected first. A map rule2model2maxCoverage is created that stores the in-
formation about the model, which each rule covers the best. For the calcu-
lation of the module coverage, the map rule2modelPair2maxCoverage stores
model pairs with the maximal coverage by each rule. This coverage is computed
by obtaining the best average coverage of a model pair based on values from
rule2model2maxCoverage.

Based on the constructed map, the module coverage can be calculated. The
coverage calculation depends on the type of the control flow used in the module.
For the priority control, the coverage of each model pair by the highest priority
rule, which has a match for this model pair, is computed. These coverage values
are summed up for all model pairs and divided by their number. Finally, the
value of the objective is set to the sum of all coverages in moduleCoverage

divided by the number of model pairs in MTBEProblem.modelPairs.

132

5.1 The Approach mtbe

Evaluation of the example phenotype In the following, the fitness of the
phenotype described in Section 5.1.4 is shown.

For each model pair, maximal (partial) matches with each rule of the model
transformation are computed. Based on this information, the best match for
each model with each rule is found. For this example, 4 best matches are found
for the combinations of 2 rules with 2 model pairs.

For rule1 from Figure 5.21 and the Model mapping 1 from Figure 5.6, the
best matches are as follows. A partial match is found for the source model and
the left-hand side of the rule by reducing the left-hand side by a node of type
Attribute. Thus, the calculated match coverage equals to 8/11 ≈ 0.73. The
model coverage of this partial match equals to 5/5 = 1. As a result, the overall
coverage for the source model equals to (0.73 + 1)/2 ≈ 0.87. For the target
model, a full match is found for the right-hand side of the rule leading to the
match coverage of 1. The model coverage is low and equals to 1/7 ≈ 0.14. The
overall coverage for the target model equals to (1 + 0.14)/2 ≈ 0.57.

For rule1 and the Model mapping 2 from Figure 5.7, the best matches are
as follows. A partial match is calculated for the source model by reducing the
left-hand side by all nodes of type Attribute. This results in match coverage
of 5/11 ≈ 0.46. The model coverage equals 3/4 ≈ 0.75. The overall coverage
for this source model equals to (0.46 + 0.75) ≈ 0.61. For the target model,
the model coverage equals to 1 because of a full match. The model coverage is
1/7 ≈ 0.14. The overall coverage results in (1 + 0.14) ≈ 0.57.

For rule2 from Figure 5.21 and the Model mapping 1 from Figure 5.6, the
following best matches were found. For the source model, a full match is found
resulting in match coverage of 1. The model coverage is 3/4 = 0.75. The overall
coverage for the source model results in (1+0.75) ≈ 0.88. For the target model,
a partial match was computed by reducing the right-hand side by the node
of type FKey, which has faulty references to other objects. Thus, the match
coverage is 6/10 = 0.6. The model coverage equals to 3/7 ≈ 0.43. The overall
coverage for the target model results in (0.6 + 0.43)/2 ≈ 0.52.

For rule2 and the Model mapping 2 from Figure 5.7, the found best matches
are as follows. For the source model, the match coverage equals to 1 because of
the found full match. The model coverage is 3/4 = 0.75. The overall coverage
of the source model is (1 + 0.75)/2 ≈ 0.88. For the target model, a partial
match is found by reducing the right-hand side by the node FKey, which has
faulty references to other objects. The match coverage results in 6/10 = 0.6.
The model coverage is 3/7 ≈ 0.43. The overall coverage for the target model
equals to (0.6 + 0.43)/2 ≈ 0.52.

Then, the coverage of the whole model transformation is obtained. For that,
the coverages of each model pair by each rule are calculated first. This calcu-
lation is performed as an average of the coverage values for source and target
models presented above. Thus, for rule1 and the Model mapping 1, the cove-
rage equals to (0.87+0.57)/2 = 0.72. For rule1 and the Model mapping 2, the
coverage is (0.61 + 0.57)/2 = 0.59. For rule2 and the Model mapping 1, the

133

5. User-Friendly Language Transformation

coverage equals to (0.88 + 0.52)/2 = 0.7. For rule2 and the Model mapping 2,
the coverage is (0.88 + 0.52)/2 = 0.7.

Based on these coverage values, the coverage of the example model transfor-
mation can be calculated. In this transformation, rule1 has the highest priority.
Therefore, the average coverage of model mapping by rule1 is the coverage of
the model transformation. This coverage equals to (0.72+0.59)/2 ≈ 0.66. Thus,
the fitness of the example phenotype is calculated as 0.66.

Summary To sum up, the genetic operator Evaluator calculates the fitness of
the model transformations generated by the Decoder. For that, the Evaluator

introduces the objective of the coverage of the input model mappings by the
generated model transformation. For the coverage computation, the graph
matching of Henshin is extended, in order to compute possible complete and
partial matches of each transformation rule of the model transformation with
each model from the model pairs. Using the information about the matches, the
model transformation is evaluated based on the existence of a complete match
(match coverage) but also based on the extent of their coverage of the models
(model coverage). The Evaluator also collects the information about matches,
which the Mutator uses to improve the model transformations.

5.1.6 Selector

After the fitness of phenotypes is evaluated, the genetic operator Selector

chooses solutions with the fittest phenotypes according to a certain selection
strategy (see Figure 5.2). Opt4J realizes the elitism selection strategies such
as NSGA-II [36] and SPEA2 [164] for single- and multi-objective optimization.
The elitism strategy retains the solutions with the best fitness unchanged in
the next generation and, as a result, prevents the loss of good solutions in the
course of mutation.

Select phenotypes When choosing a selection strategy for mtbe, several de-
cisions have to be considered. As first, the decision has to be made, whether
all solutions in the population or only their subset have to be mutated. In the
latter case, the selector has to build the subset of solutions to be mutated. As
second, the decision has to be made, whether new randomly generated solutions
are added to the population. In this case, the selector has to built a set of
solutions, which have to be preserved in the population.

The Selector of mtbe follows the elitism strategy and, thus, selects only a
subset of solutions for the mutation. The approach benefits from the preserva-
tion of a subset of optimal solutions in the population. As a result, the final
evolution run always contains the fittest solution.

The possibility to preserve a set of solutions in each population and fill the
remaining part with newly generated solutions is considered. However, due to a

134

5.1 The Approach mtbe

very large solution space of the MTBE optimization problem, a newly generated
solution normally has a worse fitness than the mutated solutions. Furthermore,
due to the specifics of the mtbe operator Mutator, the mutation is based on the
information from the Evaluator and the language statistics. This fact increases
the success of a mutation yielding a higher fitness that makes mutated solutions
normally better than randomly generated ones.

In a general case, the choice of a suitable selection strategy also depends on
the input languages and the given model mappings. As a reference for mtbe,
the elitism selection strategy without adding new solutions to the population is
recommended. However, if the fitness of obtained model transformations is not
satisfying, the strategy could be changed to adding a small subset (e.g., 10% of
population size) of newly generated solution to each population.

Thus, the Selector preserves a subset of the best solutions for the next
population and selects a subset of the solutions for the mutation to fill the
remaining part. As a modification, a subset of newly generated solutions is
added to the population as well. In any case, the best solution is preserved over
the generations till the final evolution run.

In mtbe, the Selector is also responsible for the selection of the resulting
solution (the resulting model transformation) in the final evolution run of the
genetic algorithm. The resulting solution has the best possible fitness over all
phenotypes created in all runs during the mtbe derivation approach. If several
solutions have the same best fitness, then one of them is arbitrary chosen.

Example selection Figure 5.23 shows an example population to illustrate the
selection process for the running example.

Figure 5.23: Solutions in an example Population

This view is the population monitor of Opt4J, which allows to monitor the
current population and its development during the learning process. In the
population monitor, each solution is represented by its phenotype, which is
shown in the column Individual. All the presented phenotypes have been

135

5. User-Friendly Language Transformation

evaluated, which is marked in the column State of the population monitor. The
calculated coverage of the phenotypes is given in the last column representing
the evaluated objective (moduleCoverage) that has to be maximized (MAX).

The population contains 10 individuals representing 10 solutions, each con-
taining a genotype and an evaluated phenotype. Assume that the number of
solutions, which shall remain unchanged in the next population, is set to 2.
Thus, 20% of the solutions are added to the next population without a muta-
tion. The remaining 80% are mutated and added to the next population too.

Based on the coverage, the selector identifies two best solutions: the solution
#2 with the coverage 0.86 and the solution #6 with the coverage 0.85. These
solutions are added unchanged to the next population. The others are given
as an input for the mutator, in order to improve their fitness. If the Selector

needed to output the resulting model transformation after this evolution run,
the solution #2 highlighted bold in Figure 5.23 would be selected.

5.1.7 Mutator

The genetic operator Mutator is the final operator in the evolution run of the
genetic algorithm of mtbe (see Figure 5.2). The Mutator modifies the underlying
genotypes of the solutions from the current population with the goal to improve
their fitness. The mutated genotypes serve as an input for the next run of the
genetic algorithm.

In the following, the mutation of model transformations with priority control
is described. It leverages the information obtained by Evaluator in Partial-

MatchReport (see Listing 5.5) and the maximal coverage of each model pair
by each rule (rule2model2maxCoverage). Furthermore, the languages statistics
extracted from the input model mappings is used (see Section 5.1.3). Depending
on the maximal coverage, different kinds of mutations defined below are chosen.

The method starts by initializing two sets: Set<Rule> coveringRules stor-
ing the rules, which fully cover some model pair, and Set<ModelPairs> cove-

redModelPairs storing the model pairs, which are fully covered by some rule.
In order to fill these sets, for each model pair from the set of model pairs
MTBEProblem.modelPairs (see Listing 5.1) and for each transformation rule
from the model transformation phenotype.module, the coverage of this model
pair by this rule is checked for being 1. In this case, the current rule is added
to the set coveringRules, and the current model pair is added to the set
coveredModelPairs. Based on the sets coveringRules and coveredModel-

Pairs, the kind of mutation is chosen as described below.
As first, if coveredModelPairs contains all given model pairs, it is checked,

whether the model transformation contains more rules than the amount of co-
vering rules. This case indicates that unused rules exist in the model trans-
formation. The corresponding mutation of the model transformation is to
remove the unused rules. For the rules in the given model transformation
(phenotype.module.units), all those rules are removed from the genotype,

136

5.1 The Approach mtbe

which are not contained in the set coveringRules. Since a rule is represented
as a list of objects in MTBEGenotype (see Listing 5.2), the corresponding lists
have to be removed from the ListGenotypes of the CompositeGenotype.

As second, a model transformation with priority control is checked. In this
case, the module coverage (phenotype.maxModuleCoverage) can be lower than
1 even if all model pairs are covered. This indicates that rules covering model
pairs have lower priority than other rules also applicable to these model pairs.
The mutation for this case is to shuffle the rule order in the priority control. In
the case of MTBEGenotype (see Listing 5.2), the elements of ListGenotype rep-
resenting rules are shuffled so that their order changes but the correspondences
between left-hand sides and right-hand sides remain.

In the alternative case, if coveringRules does not contain all rules of the
model transformation, the module coverage of 1 is not reached by the model
transformation yet. As a mutation, corresponding sides of the transformation
rules are modified as follows.

Each rule of a model transformation, which does not cover a model pair
completely yet, is modified according to a model pair, for which this rule has
the best coverage. The idea is to use a model pair for the mutation of a rule,
which covers it the best. This allows to faster improve the coverage of the whole
model transformation. One model pair is used for mutation once, so that no two
rules are optimized for the same model. The goal is to use different model pairs,
in order to increase the amount of model pairs considered for the mutation and,
thus, improve the coverage of several model pairs in one run.

If the rule covers the source model of a model pair with the coverage lower
than 1, then its left-hand side is mutated. Similarly, if the rule covers the target
model with the coverage lower than 1, its right-hand side is mutated.

For the mutation of a rule side, the information PartialMatchInfo stored in
MTBEPhenotype (see Listing 5.5) is leveraged to perform goal-oriented mutations
instead of completely arbitrary ones. The mutation kind depends on the values
for matchCoverage (indicates the difference between the reduced rule and the
original rule in case of a partial match) and modelCoverage (indicates how many
nodes of the model are covered by a match). Mutator supports removing objects
from the rule side based on delta (stores the difference between the match and
the original rule) and based on the rule application by Henshin. Another kind
of mutation is adding or deleting random objects in a genotype.

Remove objects by delta: If match coverage is less than 1, then the rule does
not match to the model completely. In this case, both left- and right-hand sides
are reduced by objects from the computed delta, the presence of which lead to
a partial match. This method leverages information about partial matches of a
rule and a model and the difference (delta) leading to a partial match.

For each node from the nodes of delta, the object of the rule side corresponding
to this node has to be removed because it does not match with any object in the
model and, thus, prohibits a complete match. Before the object is removed, its
references are checked for containments, which are also contained in the set of

137

5. User-Friendly Language Transformation

instantiated references. Then, all references pointing to this objects are removed
from the rule side first. Then, the object is removed as well.

As a consequence of removing an object from the rule side, the rule side might
lose its conformity to the structure of Ecore models. For example, some objects
might now exist in the genotype, which are not contained in any others. This
fact contradicts the principle of a tree structure, which models have in Ecore.
As a consequence, the rule will not match to the input models. Therefore, all
references of the rule side objects, which are contained in the set of instantiated
references, are checked and added to the rule side as described in the logic of
the Creator. This shows the interlocking of the genetic operators Mutator and
Creator, where the Mutator uses the method of the Creator to create modified
genotypes for the next population.

Remove objects by application: If the right-hand side has to be mutated, the
results of the rule application to the model are used. Its goal is to check the
values of the attributes resulting from the rule application. If the application
results in objects having attribute values, which do not occur in the target
model, then the corresponding objects have to be removed from the right-hand
side of the rule. This mutation helps primarily to remove objects from the rule,
which have attributes with incorrect values regarding the given target model.

The method starts with the application of the given input rule to the source
model of the given model pair. The application is executed by the corresponding
function of Henshin. For each object from the list of model objects resulted from
the rule application, the method checks whether the current object exists in the
target model of the given model pair. Those objects, which cannot be found in
the object of the given target model, are removed from the rule side.

Add objects to model: This method applies in case, if match coverage is com-
plete but model coverage is lower than 1, i.e., a complete match was achieved
but it does not cover all objects in the model. As a mutation, new objects are
added to the rule, in order to extend the complete match of a rule to the whole
model instead of its part and, thus, to achieve the full model coverage.

The method starts with collecting the occurrences of language classes in the
corresponding rule and model. If a class from the model does not occur in the
rule or the amount of its occurrences in the model is higher than in the rule,
then an object of this type is added to the rule side. For the newly added object,
the corresponding logic of the Creator is used to add the references from and
to the existing objects to the rule side (see Section 5.1.3).

Add or delete random objects: In addition to the mutation methods presented
above, such mutations like adding or deleting a random object to or from a
genotype can be used. The objects can be created by instantiating classes
from the map classes2probabilities of MTBEProblem (see Listing 5.1). The
methods to add classes, their attributes and references to a rule side are provided
by the logic of the Creator (see Section 5.1.3).

138

5.1 The Approach mtbe

Mutation of the example genotype In the following, an example mutation of
the genotype shown in Section 5.1.3 is illustrated. This mutation is performed as
describe above using the fitness of the example phenotype shown in Section 5.1.5.

The mutation starts by finding model pairs with the coverage 1. Since the
rules of the example phenotype cover the given model pairs from Figure 5.6
and Figure 5.7 with lower coverage values, the sets of covered model pairs and
covering rules remains empty. Thus, the rule mutation is performed.

An arbitrary model pair is chosen, which has not been covered or used for
mutation yet. For the example mutation, the Model mapping 2 from Figure 5.7
is chosen. For this model pair, the rule with the maximal coverage is selected.
Based on the example evaluation in Section 5.1.5, rule 2 has the higher co-
verage 0.7 in comparison to rule 1 with the coverage 0.59. Thus, rule 2

illustrated in Figure 5.21 will be mutate. Since its coverage for both source
and target models of the chosen model pair is lower than 1 (0.88 and 0.52

correspondingly), both rule sides have to be modified.

As next, the values for match and model coverages are checked for the corre-
sponding rule side. For the left-hand side of rule 2 and the source model, the
match coverage equals 1 and the model coverage equals 0.75. These values cor-
respond to the mutation Add objects to model. According to this mutation,
two maps containing occurrences of classes in the rule side and in the corre-
sponding model are built. For the running example, the first map contains the
following entries: < (UMLSpecification, 1), (Class, 2) >. The second map
contains the entries: < (UMLSpecification, 1), (Class, 2), (Association, 1) >.
For UMLSpecification and Class, no changes in the rule side are required be-
cause the occurrences are the same in the rule and the model. For Association,
a new object of this type has to be added to the rule side.

As a result, the second entry of the source part of the example genotype
presented in Listing 5.3 is modified as illustrated in Listing 5.6. The source part
of the genotype, which were mutated, is highlighted as green.

Listing 5.6: Example mutated genotype for the left-hand side of rule 2

1 MTBEGenotype :
2 (0 , [. .]
3 <1:UMLSpeci f icat ion (c l a s s e s (2 : Class) , c l a s s e s (3 : Class) ,

a s s o c i a t i o n s (4 : As soc i a t i on)) , 2 : Class (name=”Clerk ”) ,
3 : Class (name=”Manager”) , 4 : As soc i a t i on (name=”hasEmployee” ,
dst (2 : Class) , s r c (2 : Class))>>) ,

4 (1 , [. .]
5 <1:RDBSpec(t ab l e s (2 : Table)) , 2 : Table (name=”Manager” ,

t c o l s (3 : Column) , pkey (3 : Column) , f k ey s (4 : FKey)) ,
3 : Column(name=”MngrId”) , 4 :FKey(name=”hasEmployee” ,
c r e f (3 : Column) , k co l s (3 : Column))>>)

6 Pr i o r i t yCont ro l

As a result, an object 4:Association is added with the attribute name and
its value "hasEmployee" both having the occurrence probability 1. For this

139

5. User-Friendly Language Transformation

object as a target, a containment associations is instantiated for the object
1:UMLSpecification. The object 4:Association also has two its associations
dst and src having the occurrence probability 1. These associations are instan-
tiated with the targets at objects of type Class chosen randomly. Thus, both
added associations point at the same object 2:Class.

For the right-hand side of rule 2 and the target model, the match coverage
equals to 0.6 and the model coverage equals to 0.43. Since the value for
the match coverage is lower than 1, the mutation Remove objects by delta

applies. Furthermore, since the right-hand side is considered, the mutation
Remove objects by application applies as well.

Listing 5.7 illustrates the resulting mutated part of the example genotype.

Listing 5.7: Example mutated genotype for rule 2

1 MTBEGenotype :
2 (0 , [. .]
3 <1:UMLSpeci f icat ion (c l a s s e s (2 : Class) , c l a s s e s (3 : Class) ,

a s s o c i a t i o n s (4 : As soc i a t i on)) , 2 : Class (name=”Clerk ”) ,
3 : Class (name=”Manager”) , 4 : As soc i a t i on (name=”hasEmployee” ,
dst (2 : Class) , s r c (2 : Class))>>) ,

4 (1 , [. .]
5 <1:RDBSpec(t ab l e s (2 : Table)) , 2 : Table (name=”Manager”)>>)
6 Pr i o r i t yCont ro l

As a result of removing objects from the delta from the rule side, the object
4:FKey including its attribute and references was removed. Furthermore, all
references to this object were removed as well, e.g., fkeys(4:FKey) of 2:Table.
Since this object did not have any containments, no further references were
added to the rule side.

For each object resulted from the application of rule 2 (see Figure 5.21) to
the source model of the Model mapping 2, it is checked whether this object
can be found in its corresponding target model. For these objects, their data
types and their attribute values are checked. For the right-hand side of rule

2, two objects of types FKey and Column are not found in the target model.
The reason is the parameters par 2 and par 3, which have no binding to any
attribute value from the left-hand side. As a result, the attributes name of the
objects :Column and :FKey are not assigned with any value. Thus, the objects
3:Column and 4:FKey together with references to them are removed.

As the mutation continues, the remaining rule 1 is modified based on Model

mapping 1. This mutation is performed similar as the one above illustrated for
rule 2 and Model mapping 2.

Summary To sum up, the genetic operator Mutator modifies the model trans-
formations given by the Selector. Typically, approaches using genetic algo-
rithms perform an arbitrary mutation realizing elementary changes on the geno-
type. Such elementary changes imitate the evolutionary process in nature and
aim to converge to an optimal solution, if the process runs over a large amount

140

5.1 The Approach mtbe

of generations. In mtbe, the Mutator is designed as a heavy-weighted operator
realizing larger changes with the goal to foster the convergence of the genetic
algorithm. For that, the Mutator leverages the information about the objects
hampering a complete match of a rule to a model, about the objects producing
incorrect attribute values, and about the model objects missing in the rule. Us-
ing this information, model transformations with a high coverage are obtained
faster by the mtbe approach.

5.1.8 Quality of Generated Model Transformations

This section discusses the quality of the Henshin model transformations, which
the mtbe approach outputs as a result. This section starts with properties
concerning the execution result of a model transformation.

The first considered quality property is the syntactical correctness of the
resulting model [144]. This property implies that the resulting model has to
conform to the metamodel of the target language. The mtbe approach generates
syntactically correct model transformations by design.

The next considered property is the semantic correctness of the resulting
model to the corresponding source model [144]. In mtbe, the semantic correct-
ness results from the semantic correctness of the model transformation. The
semantic correctness of the model transformation can be evaluated using, for
example, Dynamic Meta Model (DMM) [132]. Under the assumption that both
source and target languages have a formal semantics definition using DMM,
different quality properties can be checked on both source and target models
evaluating their semantic correctness.

In order to improve the quality of a Henshin model transformation, approaches
[23], [145], and [149] exist. Born et al. [23] propose to use critical pair analysis to
identify potential conflicts and dependencies of rule applications in a transforma-
tion. Taentzer et al. [145] propose to perform different refactoring strategies, in
order to improve such quality properties of a model transformation, like concise-
ness, changeability, and comprehensibility. Tichy et al. [149] presents the list of
bad smells leading to performance problems of Henshin model transformations.

Taentzer [144] discusses further quality properties to verify model transfor-
mations. Termination of a model transformation is an important property, if
loops are used in the control flow. Since the current version of mtbe does not
generate transformations with loops, the check of this property is considered
as future work. Furthermore, algebraic graph transformations provide means
to verify the confluence of model transformations. Since the current version of
mtbe generates transformations, which apply one rule only (independent and
priority control), the property of confluence is also considered as future work.

Biermann [21] introduces the definition of consistent transformation rules,
which allow to perform the analysis of critical pairs and confluence. A consis-
tent transformation rule allows the deletion or creation of nodes only together
with the deletion or creation of their containment edges. Another property of

141

5. User-Friendly Language Transformation

a consistent transformation rule is that the deletion or creation of a contain-
ment edge follows by the deletion or creation of a content node or, if a content
node already exists, then a containment edge for this node has to be created.
Furthermore, no parallel edges between two nodes are allowed as well as cycle-
capable containment edges have to be handled. The genetic operator Creator

designed in mtbe creates genotypes, which are decoded exactly in consistent
model transformations. Thus, the analysis of Biermann can be performed on
resulting model transformations in Henshin.

5.2 Evaluation

This section presents the evaluation of the mtbe approach. Section 5.2.1 explains
the tool support realizing mtbe. Section 5.2.2 continues with the application of
mtbe to the service specification languages OWL-S and SAWSDL, for which
the obtained model transformations are used for the evaluation. Section 5.2.3
compares the solution approach against the requirements stated in Section 3.1.2.

5.2.1 Tool Support

The tool support realizing the mtbe approach is developed as a part of the com-
ponent SSE (Service Specification Environment) [152] of the tool suite SeSAME

(Service Specification, Analysis and Matching Environment) presented in Sec-
tion 4.3.1. The architecture of SSE is shown in Figure 5.24.
SSE realizes the concept of the comprehensive core language introduced in

Section 4.2.2. The realization and editors of the comprehensive core language
are already explained in Section 4.3.1. Besides the comprehensive core language,
SSE realizes such language operations as view building and coverage calculation
used in Section 5.1.2 in the description of the running example. The main focus
for the evaluation in this section lies on the tool support for mtbe. mtbe uses two
frameworks: Opt4J realizing different generic algorithms and Henshin realizing
graph-based model transformations.

As shown in Figure 5.24, in addition to the mtbe approach, semantic-preserving
hand-written model transformations are implemented. These model transfor-
mations are written from SAWSDL [45], OWL-S [91] and UML [108] to the
comprehensive core language. These model transformations are implemented
by experts, who learned the abstract syntax of the listed languages and their
informal and formal semantics. The model transformations can be applied to
single service specifications as well as to test collections.

In order to run the mtbe approach, its different parameters can be initialized to
steer the learning process. Figure 5.25 shows the dialog to set such parameters.
For starting the learning algorithm of mtbe, the concrete or maximum amount
of rules in the resulting model transformation can be set. Furthermore, the con-
crete sizes of the left- and right-hand sides of rules in this model transformation

142

5.2 Evaluation

Palladio
Component Model

Comprehensive
Core Language

mtbe Hand-written
transformations

View building

Coverage
calculation

Figure 5.24: Architecture of the tool support for mtbe

can be given. The setting of the concrete amount of rules or the concrete rule
sizes is the means to determine the form of the resulting model transformation
and, thus, to restrict the search space of the mtbe learning algorithm.

As further parameters, the control flow of the resulting model transformation
can be set (e.g., Priority Unit). The size of the population is set for genetic
runs and the amount of offsprings are set for aligning the selection of phenotypes
for the next genetic run (amount of offsprings determines the amount of geno-
types to be mutated). The number of iterations determines the overall amount
of runs of the genetic algorithm of mtbe. The objective, according to which
solutions in a current population are evaluated, can be chosen as well.

143

5. User-Friendly Language Transformation

Figure 5.25: Dialog for setting mtbe parameters

5.2.2 Evaluation on a Case Study

The evaluation of mtbe is performed using a test collection of service specifi-
cations written in SAWSDL and the operation of service matching. The S3
Contest on Semantic Service Selection [123] provides this test collection.

The goal of the evaluation is to show that the matching effectiveness computed
on specifications transformed in the comprehensive core language using the mtbe
approach is comparable to the matching effectiveness computed on specifications
obtained using the semantic-preserving hand-written transformations.

For this purpose, the test collection including pairs of specifications and their
expected matching results are used to compute the matching effectiveness as in-
troduced in Definition 15. The matching effectiveness is evaluated for specifica-
tions from the test collection transformed into the comprehensive core language
using the hand-written transformations and mtbe. Since the specifications from
the same test collection are used and their expected matching results are known
in advance, the matching effectiveness can be objectively compared.

This section starts by introducing the evaluation procedure in Section 5.2.2.1.
Section 5.2.2.2 presents the evaluation of the matching effectiveness for spe-
cifications of the test collection obtained using hand-written transformations.

144

5.2 Evaluation

Section 5.2.2.3 shows the evaluation of the matching effectiveness of the spe-
cification from the same test collection obtained using mtbe. Section 5.2.2.4
concludes the evaluation by comparing the values for the matching effectiveness
presented in Sections 5.2.2.2 and 5.2.2.3.

5.2.2.1 Evaluation Procedure

Figure 5.26 shows an overview of the evaluation procedure for mtbe.

Test collection

Validation subset

in SAWSDL

Learning subset

in SAWSDL

Hand-written

transformation

mtbe

Generated

transformation

Matching

effectiveness

(hand-written)

Matching

effectiveness

(mtbe)

Step 1

Step 2

Step 3

Hand-written

transformation

Step 4

Step 5

Step 6

Step 7
Step 8

Step 9
New run

Example

mappings

Figure 5.26: Overview of the evaluation procedure

The evaluation procedure for the mtbe approach contains the following steps:

Step 1 Two subsets are built from specification pairs of the test collection: a
subset of specification pairs for validation and a subset of specification
pairs for learning. Both subsets contain pairs of requirements and service
specifications written in SAWSDL.

Step 2 The specifications of the validation subset are translated into the com-
prehensive core language using semantic-preserving hand-written model
transformations from SAWSDL into the comprehensive core language im-
plemented in SSE. As service properties in the comprehensive core lan-
guage, operation signatures and data types are considered, because these
are covered by SAWSDL.

145

5. User-Friendly Language Transformation

Step 3 Using the service matching implemented in MatchBox introduced in
Section 4.3.1, the matching effectiveness for the transformed specification
pairs is evaluated. The matching effectiveness is evaluated according to
Definition 15 presented in Section 4.1.2. For the evaluation procedure,
expected matching results for these specification pairs given in the test
collection are considered.

Step 4 A model transformation from SAWSDL and the comprehensive core
language is generated using the mtbe approach based on example map-
pings. To obtain example mappings, the learning subset of specifica-
tion pairs from the test collection is translated into the comprehensive
core language using the hand-written model transformation. The created
mappings contain semantically equal specifications in SAWSDL and the
comprehensive core language, thus, serving as example mappings.

Step 5 Using the example mappings obtained in Step 4 as an input, the learn-
ing algorithm of mtbe generates a model transformation. Since the set of
specifications used for learning and validation are disjunctive, mtbe learns
on different specifications than the resulting model transformation applies
to. This fact increases the objectiveness of the evaluation.

Step 6 Using the generated model transformation, the specifications from the
validation subset obtained in Step 1 is transformed into the comprehen-
sive core language.

Step 7 Using the service matching of MatchBox and the expected matching
results from the test collection, matching effectiveness is evaluated for the
specification pairs transformed using the generated model transformation.
Expected matching results for these specification pairs are given in the
test collection.

Step 8 The values for the matching effectiveness obtained in Step 3 and
Step 7 are compared. A conclusion, whether the different of the va-
lues is acceptable, is drawn based on the expert knowledge in matching
from the CRC 901.

Step 9 Steps 1 to 8 are repeated for different subsets of specification pairs of
the test collection. Based on several evaluation runs, the final conclusion
for the evaluation is drawn.

During the evaluation, different settings was tried out, which vary in the
size of learning subset and the settings for mtbe, e.g., population size, selection
strategy, or number of evolution runs. These parameters were changed, in order
to investigate their influence on the evaluation results.

For each evaluation setting, several numbers of runs were performed on dif-
ferent subsets of specifications from the test collection. Based on these results,

146

5.2 Evaluation

the best parameter settings were identified experimentally. For these settings,
the evaluation for two selection strategies (elitism and non-elitism) are shown
in the next chapter.

5.2.2.2 Matching Effectiveness of Specifications Obtained using
Hand-Written Transformations

This section describes, how Steps 1–3 of the evaluation procedure from Fi-
gure 5.26 were performed.

For each evaluation setting, validation subsets of size 100 pairs were built ran-
domly from the specification pairs of the SAWSDL test collection. Specifications
from these subsets were transformed into the comprehensive core language using
a semantics-preserving model transformation implemented manually in SSE us-
ing Java. Since specifications in SAWSDL cover operation signatures of services
and data types used in them, only those service properties were considered in the
comprehensive core language as well. For each of validation subsets, matching
effectiveness according to Definition 15 was calculated.

Figure 5.27 shows an example pair of specifications used for validation. Each
interface contains one operation get PUBLICATION having one input and one
output parameter.

Figure 5.27: Example pair of specification used for validation

Service matching used in MatchBox is ontological signature matching. Its set-
ting considered signature names, input and output parameters as well as their
names and data types. Matching results obtained for each of those properties
were integrated into a signature matching result, which got a value from the
interval 0 to 1. For calculating the matching precision and recall (see Defini-
tions 13 and 14), this matching result was compared with the expected matching
results given as a number 0 or 1 (binary matching result in MatchBox).

For the example pair in Figure 5.27, Figure 5.28 shows the expected Signature

Matching Results: 0% and the calculated Continuous Matching Result for
Operation Signature: 0%. The calculated result is an aggregation of match-
ing results for the operation name (100%), input parameter types (0%), output
parameter types (100%), input parameter names (0%), and output parameter
names (100%). These results are obtained by either comparing the string simi-
larity (Cosine Similarity) or the ontological similarity (Ontology Class).

147

5. User-Friendly Language Transformation

Figure 5.28: Matching results for the example pair

Figure 5.29 and Figure 5.30 show values for the matching effectiveness nor-
malized on the interval from 0 to 1. These figures show 10 evaluation runs
each. The matching effectiveness was calculated for different validation set of
100 specifications evaluated per run. The runs were executed for two selection
strategies: an elitism and a non-elitism (see Section 5.1.6).

Figure 5.29 illustrates that the matching effectiveness in the case of the elitism
strategy, in which no new individuals are added to the populations and the evo-
lution is based on mutating the initial ones. The percentage of mutated indi-
viduals was 75% of the whole population, while the remained ones filled 25%.
The values for the matching effectiveness vary from 0.41 to 0.68; the average
matching effectiveness equals to 0.54. The difference in the matching effective-
ness depends on the distribution of (true and false) positives and negatives in
each validation set.

Figure 5.30 illustrates the case of the non-elitism strategy, according to which
new individuals are added to the population in each generation. In the presented
case study, the mutated individuals filled 50% of the population, while the sets
of remained and new individuals filled 25% correspondingly. The values for the
matching effectiveness vary from 0.4 to 0.62; the average matching effectiveness
equals to 0.53.

148

5.2 Evaluation

0.41

0.47

0.58

0.52 0.51 0.52 0.51

0.6

0.68

0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
a

tc
h

in
g

 e
ff

e
ct

iv
e

n
e

ss

Evaluation runs

Validation of matching effectiveness (hand-written)

Figure 5.29: Matching effectiveness for the elitism strategy

0.48

0.62
0.59

0.49

0.4

0.59
0.57

0.51 0.51
0.54

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
at

ch
in

g
e

ff
e

ct
iv

e
n

e
ss

Evaluation runs

Validation of matching effectiveness (hand-written)

Figure 5.30: Matching effectiveness for the non-elitism strategy

5.2.2.3 Matching Effectiveness of Specifications Obtained using mtbe

This section describes how Steps 4–7 of the evaluation procedure from Fi-
gure 5.26 were performed.

In Step 4, the predefined number of specifications written in SAWSDL were
randomly selected from the test collection for obtaining specifications for the
learning set. Specifications from the learning set were transformed into the
comprehensive core language using the hand-written model transformation ap-
plied in Step 2. This evaluation was performed on a learning set of 20 pairs.
During the experiments, starting with this size of the learning set, no positive
influence of a higher size of the set was determined. In the case of the chosen
test collection, it can be explained by the following two facts. Firstly, the models
have a rather common structure. Secondly, the more possible values are there

149

5. User-Friendly Language Transformation

for a certain parameter to choose for the generation of a genotype, the lower
the probability of a match between the left and right side of the rules becomes.

Figure 5.31 and Figure 5.32 show an example mapping between two semanti-
cally equivalent specifications in SAWSDL and the comprehensive core language.

Figure 5.31: Specification in SAWSDL from the example mapping

The specifications describe a service Userscience-fiction-novelPriceSoap
with an interface having an operation get PRICE. This operation contains two
input parameters (SCIENCE FICTION NOVEL and USER) and an output param-
eter (PRICE), which are represented in SAWSDL by the language construct
TPart contained in TMessage. Ontological data types referenced by the parame-
ters are modelled as URIs, e.g., http://127.0.0.1/ontology/books.owl#User.
Language constructs TType and List Of Any URI represent that in SAWSDL.

In Step 5, mtbe generated 20 model transformations, one per evaluation run.
Figure 5.33 and Figure 5.34 show the fitness of the generated model transfor-

mations for both elitism and non-elitism strategies. In the course of evaluation,
a slightly better fitness was reached with the non-elitism strategy. The average

Figure 5.32: Specification in the core language from the example mapping

150

5.2 Evaluation

fitness in case of the elitism strategy equals to 0.89, while the average fitness
in the case of the non-elitism strategy is 0.915. The minimum obtained fit-
ness with the elitism strategy was 0.86, while the non-elitism strategy gained
0.89. For the maximum obtained fitness, the value of 0.96 was reached with
the non-elitism strategy, while 0.94 was reached using the elitism strategy.

0.92 0.92

0.86 0.86

0.94 0.94
0.93

0.89

0.94

0.91

0.75

0.8

0.85

0.9

0.95

1

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

Fi
tn

e
ss

Evaluation runs

Fitness of model transformations obtained by MTBE

Figure 5.33: Fitness of the model transformations (elitism strategy)

0.91 0.91
0.89

0.95

0.91

0.94
0.93

0.94
0.93

0.96

0.75

0.8

0.85

0.9

0.95

1

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

Fi
tn

e
ss

Evaluation runs

Fitness of model transformations obtained by MTBE

Figure 5.34: Fitness of the model transformations (non-elitism strategy)

In Step 6, specifications in SAWSDL from the validation subsets are trans-
formed into the comprehensive core language using the corresponding generated
model transformation. A generated model transformation can preserve the fol-
lowing semantic properties in service and requirements specifications: the ope-
ration name, the name of one or several operation parameters, the names of the
data types for one or several operation parameters, the ontological data types
of one or several operation parameters.

In Step 7, the matching effectiveness is calculated for the validation set
transformed using the generated model transformation. Values for the match-
ing effectiveness are presented in Figure 5.35 for the elitism strategy and in
Figure 5.36 for the non-elitism strategy. The values vary between 0.33 and

151

5. User-Friendly Language Transformation

0.53 in the case of the elitism strategy and between 0.27 and 0.47 for the non-
elitism strategy. The average fitness in case of the elitism strategy equals to
0.89, while the average fitness in the case of the non-elitism strategy is 0.915.

0.33 0.33
0.37

0.46

0.35 0.34
0.36

0.47

0.53
0.51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
at

ch
in

g
e

ff
e

ct
iv

e
n

e
ss

Evaluation runs

Validation of matching effectiveness (MTBE)

Figure 5.35: Matching effectiveness for the elitism strategy

0.47

0.41

0.27
0.3

0.36
0.39

0.35

0.46

0.38 0.39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
at

ch
in

g
e

ff
e

ct
iv

e
n

e
ss

Evaluation runs

Validation of matching effectiveness (MTBE)

Figure 5.36: Matching effectiveness for the non-elitism strategy

5.2.2.4 Comparison of Matching Effectiveness

This section presents the comparison of the values for matching effectiveness
obtained using hand-written model transformations (Figure 5.29, Figure 5.30)
and model transformations generated with mtbe (Figure 5.35, Figure 5.36). This
evaluation was performed for the elitism and non-elitism selection strategies.

In comparison to the matching effectiveness obtained using the hand-written
model transformation, the average effectiveness obtained using the generated

152

5.2 Evaluation

0.41

0.47

0.58

0.52 0.51 0.52 0.51

0.6

0.68

0.6

0.33 0.33
0.37

0.46

0.35 0.34 0.36

0.47

0.53 0.51

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
at

ch
in

g
e

ff
e

ct
iv

e
n

e
ss

Evaluation runs

Validation of matching effectiveness
(hand-written and MTBE)

Effectiveness (hand-written) Effectiveness (MTBE)

Figure 5.37: Matching effectiveness for the elitism strategy

0.48

0.62
0.59

0.49

0.4

0.59 0.57

0.51 0.51
0.54

0.47

0.41

0.27
0.3

0.36
0.39

0.35

0.46

0.38 0.39

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

run 1 run 2 run 3 run 4 run 5 run 6 run 7 run 8 run 9 run 10

M
at

ch
in

g
e

ff
e

ct
iv

e
n

e
ss

Evaluation runs

Validation of matching effectiveness
(hand-written and MTBE)

Effectiveness (hand-written) Effectiveness (MTBE)

Figure 5.38: Matching effectiveness for the non-elitism strategy

model transformations is lower for both strategies. The difference in the average
matching effectiveness is 0.13 for the elitism strategy and 0.15 for the non-
elitism strategy. The maximum delta in the case of the elitism strategy is 0.21
and 0.32 in the case of the non-elitism strategy.

Thereby, as described in Section 5.2.2.3, the average fitness of the model trans-
formations generated with the elitism strategy was lower, however the delta was
better. The better delta in the matching effectiveness can be explained by the
fact that the service semantics preserved by these model transformations results

153

5. User-Friendly Language Transformation

in a better matching effectiveness. Furthermore, the distribution of positives and
negatives in the validation sets can also influence the delta.

To sum up, the evaluation achieves its goal and shows that the matching
effectiveness computed on specifications transformed using the mtbe approach
is comparable to the matching effectiveness computed on specifications obtained
using the semantic-preserving hand-written transformations.

5.2.3 Evaluation of the Requirements

This section explains how the requirements stated in Section 3.1.2 are fulfilled
by the presented solution approach mtbe.

R.2.1.1 – mtbe applies to languages having a formal definition of the abstract
syntax in the form of a metamodel described in Ecore as well (see Sec-
tion 5.1.1). mtbe support a transformation into the comprehensive core
language as its abstract syntax is defined in Ecore (see Section 4.2.2).
Since Ecore is a broadly-used language for defining the abstract syntax
of specification languages in OTF markets, mtbe is broadly applicable in
these markets as well.

R.2.1.2 – mtbe can generate model transformations described in different trans-
formation languages using different realizations of the genetic operator
Decoder (see Section 5.1.4). These model transformations are directly
executable on specifications of the source languages as they are defined on
the formal definition of their abstract syntax. The evaluation presented
in Section 5.2.2 shows that the matching effectiveness obtained with the
generated model transformation is sufficient. Thus, no additional manual
refinement of generated model transformations is required.

R.2.1.3 – mtbe can generate model transformations for whole languages as well
as only for their parts used in the example mappings (explained in Sec-
tion 5.1.2). Using the coverage calculation of the languages by models
from the example mappings, how good the relevant parts of the language
are covered by the example mappings can be evaluated. Thus, mtbe pro-
vides to the market actors the means to cope with the complexity of their
specification languages.

R.2.1.4 – mtbe generates model transformations with arbitrary correspondences
between language constructs of the source and target languages (i.e., 1-
to-1, 1-to-N, N-to-1, N-to-N). This is achieved by the genetic operator
Creator, which arbitrary determines the sizes and language constructs
for the rule sides in a model transformation (see Section 5.1.3). As a
result, the correspondences between the left- and the right-hand side of
transformation rules are used to map the language constructs of the source
and target languages.

154

5.2 Evaluation

R.2.1.5 – mtbe generates model transformations that lead to acceptable match-
ing results of specifications transformed in the optimal core language us-
ing this transformation. The evaluation in Section 5.2.2 shows that the
matching effectiveness calculated for specifications transformed using the
generated model transformation is sufficient for market actors in the ser-
vice markets.

R.2.2.1 – mtbe uses the technique of Model Transformation By-Example (see
Section 2.2.2.2) to generate model transformations. As depicted in Fi-
gure 5.1, mtbe takes as input a set of model mappings consisting of pairs
of semantically equivalent example models. Market actors create these
pairs of specifications using the concrete syntax of the chosen source and
target languages. Thus, such mappings are created on the example level
and do not require an expertise in language design from market actors.

R.2.2.2 – mtbe works on formal language definitions of the source and target
languages as described in Section 5.1.1. The modeling language Ecore is
used to formally specify the abstract syntax in the form of metamodels. As
explained in R.2.2.5, depending on the choice of the model transformation
language, the resulting model transformations are directly executable on
models of the source language.

R.2.2.3 – mtbe provides means to evaluate the quality of the given example
models. As described in Section 5.1.2, the coverage of the source or tar-
get language by the corresponding models from the input mappings can
be calculated. Thus, market actors have the possibility to control and
improve the quality of the created models.

R.2.2.4 – mtbe provides means to create a model transformation not only for
the whole source and target languages but also for their parts used in the
model mappings (see Section 5.1.2). The presented coverage calculation
can be applied to the language parts and enables to evaluate the quality
of the models with respect to the chosen language parts.

R.2.2.5 – mtbe leverages the knowledge from mappings between example mo-
dels. The genetic operator Creator collects statistics about the source
and target languages based on the input model mappings. This statis-
tics contains language constructs used in the model mappings as well as
their occurrence probabilities. Using the knowledge from this statistics,
the Creator generates random genotypes (see Section 5.1.3). The genetic
operator Decoder generates model transformations based on genotypes
(see Section 5.1.4). Thus, the knowledge from the model mappings en-
coded in the genotype are propagated. The genetic operator Evaluator

uses the input model mappings to evaluate the fitness of the obtained
model transformations (see Section 5.1.5). Based on the calculated fitness,

155

5. User-Friendly Language Transformation

the genetic operator Mutator adapts the genotypes using the information
from the model mappings (see Section 5.1.7). Thus, the knowledge from
the model mappings is also used to evolve the model transformations.

R.2.2.6 – mtbe uses the technique of genetic algorithms, i.e., a metaheuristic, to
derive model transformations. The genetic operators of mtbe are designed
to allow a faster convergence of the genetic algorithm as explained in
Section 5.1.1. As a result, the presented mtbe approach is able to cope
with the large search space of model transformations possible as solutions
for the given source and target languages.

R.2.2.7 – mtbe generates model transformations with arbitrary correspondences
between language constructs in their rules and the control flow of arbitrary
complexity. The genetic operator Creator is used to generate left-hand
sides and right-hand sides of rules containing arbitrary chosen language
constructs from the given source and target languages. Thus, the corre-
spondences are determined on the level of rule sides.

R.2.2.8 – mtbe is independent from any concrete model transformation lan-
guage as model transformations are built based on genotypes having a
language-independent representation. The corresponding implementation
of the Decoder used by mtbe allows to choose the model transformation
language, in which resulting model transformations are described.

R.2.2.9 – mtbe defines coverage of models from example mappings by the re-
sulting model transformation as the fitness. Furthermore, the matching
effectiveness is computed for example models, in order to evaluate the
reliability of matching results obtained using the generated model trans-
formations. If the sufficient matching effectiveness can be achieved, then
the generated model transformations have a sufficient fitness.

156

6 Conclusion and Future work

This chapter presents the conclusions drawn for this PhD thesis and an outlook
of the future work. Section 6.1 describes the main contributions of this PhD
thesis. Section 6.2 introduces further topics of research, which can be tackled
as a future work based on this PhD thesis.

6.1 Conclusion

This PhD thesis is written in the scope of the Collaborative Research Centre
901, whose researchers develop concepts and techniques for a new software de-
velopment paradigm called On-The-Fly (OTF) Computing. OTF Computing
is based on the idea of specialized service markets called OTF markets. These
specialized OTF markets have different properties and their market actors use
different modeling techniques to perform service engineering in these markets.
This PhD thesis proposes a solution to address the problem of heterogeneity in
OTF markets with the goal to foster the success of OTF Computing.

The first main contribution is the approach language Optimizer (LOpt)
presented in Chapter 4. This approach provides a systematic process for the
design of a service specification language optimal for efficient automated market
operations in an OTF market (see Section 1.2.1 for problem statement). This
PhD thesis considers six market operations, e.g., Specify a service, which
market actors perform in an OTF market. Since market actors use different
specification languages to specify their services, other operations, e.g., Match a

service, would have to be defined for all existing specification languages.
Using the approach LOpt, a core language can be obtained automatically

for each OTF market after the properties of this market have been formalized
manually. A core language serves as an intermediate representation for service
specifications of market actors. The automated market operations are defined
for the core language only that spares the effort to define these operations for all
existing specification languages as well as increases the quality of the operation
definition. Using LOpt, the core language is designed in a way that it optimally
supports the execution of the market operations in a considered OTF market.

For designing an optimal core language, the approach LOpt introduces an
extended language definition. The traditional definition is extended by the lan-
guage pragmatics defined in the form of operations performed on specifications
of a language. Firstly, operations being a part of the language pragmatics have
to be defined for the language. Secondly, a measurable definition of the quality

157

6. Conclusion and Future work

of the execution of each operation has to be given. The optimality of a language
can be evaluated by measuring the quality of the execution of these operations.
For OTF markets, the pragmatics of core languages is defined by the operation
of service matching performed on specifications written in the core language
(see Section 4.1.1). The notion of the core language optimality is defined with
respect to the trade-off between the efficiency and effectiveness of the service
matching (see Section 4.1.2).

In order to obtain a core language optimal according to the presented opti-
mality definition, the approach LOpt uses a comprehensive core language and
a configuration procedure for it (see Section 4.2). The comprehensive core lan-
guage integrates existing specification languages and covers various structural,
behavioral, and non-functional service properties. The reuse of existing speci-
fication languages increases the acceptance of the comprehensive core language
by the market actors. As a result, the comprehensive core language serves as
a taxonomy of service properties for OTF markets and allows to create formal
comprehensive service specifications.

Since the core language optimality is defined regarding the operation of service
matching, using the comprehensive core language for the execution of market
operations yields reliable matching results. The reason are different service pro-
perties, whose consideration increases the reliability of the matching results.
However, the efficiency of the service matching for the comprehensive core lan-
guage is low, because comparing all these properties takes more computation
time. Therefore, LOpt customizes the comprehensive core language, in order
to optimally support the service matching in the given OTF market. The cus-
tomization is performed with respect to the trade-off between the efficiency and
effectiveness of the service matching as described in the optimality definition.

The configuration approach of LOpt performs the customization based on
the characteristics of a service market formalized by market actors in the form
of market properties (see Section 4.2.3). An example property is the level of
standardization in an OTF market. The formal market properties allow to
describe characteristics of service markets in a thorough standardized way. This
enables the automated processing of the market properties as well as the reuse of
the optimal core language created for service markets with the same properties.

Based on market properties, the configuration approach automatically creates
an optimal core language using a knowledge base containing the expertise for
the configuration. This configuration expertise is formalized in the form of
configuration rules. Configuration rules define the kind of customization of
the comprehensive core language depending on a value of a market property.
The configuration is performed on both coarse- and fine-grained levels, i.e., the
whole service property can be omitted from the comprehensive core language
or certain language constructs describing a service property in detail can be
omitted while the service property remains in the optimal core language. This
principle improves efficiency of the configuration.

The approach LOpt was successfully evaluated for several service markets, for

158

6.1 Conclusion

which optimal core languages were obtained with LOpt (see Section 4.3). The
evaluation was performed using the tool suite SeSAME containing the compo-
nent LM configurator realizing the concepts of LOpt. Section 4.3.3 presents
how the approach LOpt satisfies the requirements stated in Section 3.1.1.

The second main contribution of this solution is the approach Model Transfor-
mation By-Example (mtbe). This approach allows the market actors to define
language transformations from their proprietary specification languages to the
optimal core language in a user-friendly manner. With its help, market actors
can enter an OTF market without the need to rewrite their existing specifica-
tions. Using the obtained transformations, market actors can transform their
existing service specifications into specifications in the optimal core language,
which the automated market operations can be executed on. As a result, mtbe
enables the market actors to enter the OTF market with a few effort and to
customize their existing specifications so that the automated market operations
are executed optimally. This fosters the success of market actors in the OTF
market and, thus, the overall success of OTF Computing.

The approach mtbe aims at creating language transformations in a user-
friendly manner. The approach mtbe automatically generates a model trans-
formation for a proprietary language of a market actor and the optimal core
language of the considered OTF market. For that, a market actor creates
example mappings between concrete specifications in her language and their
semantically corresponding specifications in the optimal core language. The ap-
proach mtbe derives a directly executable transformation between the languages
preserving their semantics and based on the specified example mappings. The
derivation approach applies the idea of genetic algorithms having rich genetic
operators, which allow the effective and efficient exploration of the solution space
of possible transformations.

The approach mtbe starts by introducing a method to create model mappings
of a high quality, based on which a transformation of a high quality can be
derived. Mappings of high quality are obtained by improving the coverage of
the source and target languages by given example models (see Section 5.1.2).
By increasing the quality of the model mappings, the quality of the model
transformations built based on these mappings increases as well.

The approach mtbe applies the idea of genetic algorithms to realize the user-
friendly technique of Model Transformation By-Example (see Figure 5.2). The
genetic operators defined for the mtbe approach are less-random than in the
standard genetic algorithms and extensively use knowledge from the given exam-
ple mappings. This allows a fast conversion of the algorithm towards a solution
with a high fitness.

The genetic operator Creator is responsible for creating the population of
solutions for each new evolution run (see Section 5.1.3). Each solution contains
the genetic representation called genotype, which encodes a model transforma-
tion in a language-independent manner, i.e. independent from a concrete model
transformation language. Based on the information encoded in the genotype,

159

6. Conclusion and Future work

the genetic operator Decoder generates a model transformation correspond-
ing to this genotype using a concrete model transformation language. Thus,
the Creator produces an encoding of a model transformation, which can be
decoded in different model transformation languages. The genotype encodes
a model transformation including left-hand sides and right-hand sides of its
rules and its control flow. Thereby, the Creator leverages the knowledge from
the given mappings between example models (language statistics information).
Based on this knowledge, the introduced methods are designed to create a geno-
type that encodes a possibly correct model transformation, thus, leading to a
faster convergence of the genetic algorithm.

The operator Decoder generates model transformations based on genotypes
(see Section 5.1.4). The Decoder generates the explicit control flow chosen in the
genotype as well as the generated rule sides. The Decoder in mtbe is defined
for the graph-based model transformation language Henshin [5]. The chosen
language Henshin is close to the presented genotype definition in Listing 5.2
that gives an advantage of a rather straight-forward generation of the pheno-
type. Henshin also supports the data flow between different objects that allows
a stronger mapping of the object from the left- and right-hand side of a rule. In
order to check and to improve the quality of resulting model transformations,
Henshin provides extensive possibilities, among others its graph matching. Sec-
tion 5.1.8 describes existing approaches, which provide techniques to verify such
properties as syntactical and semantic correctness for model transformations.

The operator Evaluator is used to calculate the fitness of the model transfor-
mations generated by the Decoder (see Section 5.1.5). As a result of this evalua-
tion, each model transformation gets a fitness value characterizing its suitability
as a solution for the given MTBE problem. The Evaluator introduces cove-
rage of the input model mappings by a generated model transformation as a
fitness measurement that has to be maximized during the optimization. For the
coverage computation, the graph matching of Henshin is extended, in order to
compute possible complete and partial matches of each transformation rule of
a model transformation with each model from given example model. Using the
information about matches, a model transformation is evaluated based on the
existence of a complete match (match coverage) but also based on the extent
of their coverage of the models (model coverage). The collected information is
also used by the genetic operator Mutator that modifies model transformations
with the goal to improve their fitness.

After the fitness of model transformations is evaluated, the genetic operator
Selector chooses the fittest solutions according to a certain selection strategy
(see Section 5.1.6). Several selection strategies were investigated in this the-
sis. The elitism strategy that preserves a subset of the best solutions for the
next population and selects a subset of the solutions for the mutation to fill
the remaining part was realized. The Selector following this strategy has the
advantage of preserving the best solution over the generations till the final evo-
lution run. Additionally, the fitness of the mutated solutions is normally better

160

6.1 Conclusion

than the fitness of newly randomly generated solutions because of the large solu-
tion space of possible model transformations. This facts fosters the convergence
of the genetic algorithm. Another selection strategy is similar to the described
above with the difference of adding a small subset of new solutions to the next
population. New solutions might have a genotype that can be mutated to more
optimal solutions than existing ones. This strategy was also implemented by
the Selector and tried out in the evaluation.

The final genetic operator Mutator modifies genotypes of the model trans-
formations given by the Selector with the goal to improve their fitness (see
Section 5.1.7). Typically, approaches using genetic algorithms perform an arbit-
rary mutation realizing elementary changes on the genotype. Such elementary
changes imitate the evolutionary process in nature and aim to converge to an
optimal solution, when the process runs over a large amount of generations.
The Mutator of mtbe is designed as a heavy-weighted operator realizing larger
changes with the goal to foster the convergence of the genetic algorithm. For
that, the Mutator leverages the information about the objects hampering a
complete match of a rule to a model, about the objects producing incorrect
attribute values, and about the model objects missing in the rule. Using this
information, mtbe obtains transformations with a high coverage faster.

The evaluation of the approach mtbe is presented in Section 5.2. It was eva-
luated on a test collection of service specifications written in SAWSDL [45] and
the operation of service matching. The test collection is provided by the S3
Contest on Semantic Service Selection [123]. The goal of the evaluation is to
show that the matching effectiveness computed on specifications transformed in
the comprehensive core language using the mtbe approach is comparable to the
matching effectiveness computed on specifications obtained using the semantic-
preserving hand-written transformations. Section 5.2.2 shows that the approach
produces expected results and Section 5.2.3 explains how the requirements for-
mulated in Section 3.1.2 are fulfilled by the approach.

161

6. Conclusion and Future work

6.2 Future Work

This section introduces how the solution presented in this PhD thesis can be
developed further. It starts with possibilities to extend and generalize the de-
scribed approaches LOpt and mtbe. Afterwards, further concepts to improve
the success of OTF markets are proposed.

Future work for LOpt In this PhD thesis, the notion of language optimality is
investigated with respect to the operation of service matching. As described in
Chapter 1, such automated market operations as service composition and ser-
vice analysis have to be performed in OTF markets as well. During the service
composition, a given requirements specification is analyzed and possible con-
stituent services are identified for a composed service. Service specifications of
the constituent services are generated based on this requirements specification.
Based on these specifications, suitable services are discovered for the usage in
the composed service. Both kinds of specifications are written in the optimal
core language of the considered OTF market as service matching defined for
the optimal core language is used for service discovery. After the composed
service is built, its formal specification written in the optimal core language is
used in the service analysis, which is performed to check whether functional and
non-functional requirements on the composed service hold.

The presented approach LOpt has to consider further automated market
operations, in order to create a core language, which optimally supports these
operations as well. For that, the notion of the core language optimality has to
be extended by the optimality definition regarding further market operations.
In the next step, the comprehensive core language has to be extended by the
concepts necessary for the new market operations, e.g., special properties to de-
scribe a composed service. Then, the configuration approach has to be adapted.
The set of market properties has to be extended by properties relevant for the
new market operations. The set of configuration rules has to be extended by
rules defining the configuration with respect to the new operations. As a result,
the obtained optimal core language would support the optimal execution of all
automated market operations defined for OTF markets.

In this PhD thesis, the approach LOpt aims to design an optimal core lan-
guage for service specifications in OTF markets. However, this approach is not
only limited to the domain of service specifications and might also be applicable
to other kinds of specification languages. As future work, the presented approach
can be generalized to develop an optimal specification language in an arbitrary
domain for arbitrary automated operations performed on specifications in this
language. For that purpose, the approach LOpt has to be applied in other
domains, the missing requirements have to be identified and the approach has
to be adapted correspondingly.

The approaches developed in this PhD thesis are aimed for market actors hav-
ing a technical expertise. However, the entrance in the markets for market actors

162

6.2 Future Work

without such knowledge has to be facilitated as well. One important group of
such users consists of service requesters, who wants to use services provided in
OTF markets but lack an expertise to formulate their requirements in a for-
mal way. For such service requesters, a user-friendly approach for requirements
specification is needed. This approach would facilitate the market entrance for
service requesters without much technical expertise and, thus, contribute to the
success of the worldwide service market.

Future work for mtbe The presented approach mtbe aims at learning a lan-
guage transformation based on example mappings of semantically-equivalent
specifications written in the given formal languages. As future work, this ap-
proach can be extended by enabling the by-example specification of require-
ments. Service requesters, who do not have the necessary expertise in creating
formal specifications, could formulate their requirements in the form of concrete
example data. The requesters would need to specify how these data have to
be transformed by a service, thus, giving examples of its behavior. Then, the
information hidden in the concrete data has to be extracted and formalized
in a requirements specification suitable for the execution of automated market
operations in OTF markets.

For learning specifications from concrete data, different techniques can be
utilized. For the generation of service operation signatures and their data types,
the given examples have to be typed over the terminology of the corresponding
OTF market. Existing semantics about the terms in the market can be used
to enrich the specifications by behavioral properties, e.g., pre-/postconditions
for operation signatures. Also non-functional properties established for similar
services in the considered OTF market have to be taken into account for the
formal specification. As additional assistance for service requesters, possibilities
to provide a user-friendly concrete syntax for their specification editors have to
be investigated as well.

Future work on quality management of service specifications The success
of market actors in OTF markets depends on the quality of their service specifi-
cations with respect to their needs and the execution of the automated market
operations. Service providers are successful, if their services are used by service
requesters as often as possible. However, only those services are used, which
functional and non-functional properties really satisfy the requirements stated
in the considered requirements specifications. Thus, a service provider is suc-
cessful, if their services match for as many relevant requirements specifications as
possible. Additionally, those services, which properties do not match the given
requirements, have to be identified and should not be delivered as a result. Ser-
vice requesters are successful, if their requirements specification expresses their
requirements in a way that the most suitable composed service can be built or
the most suitable existing services can be discovered.

163

6. Conclusion and Future work

When market actors enter an OTF market, they already have their own speci-
fications. During the transformation of these specifications into the optimal core
language, syntactic and semantic information can get lost. However, the quality
of the transformed specifications influences the quality of the execution of the
automated market operations. In order to improve the reliability of the opera-
tion results, existing specifications could be adapted before the transformation,
in order to obtain most suitable specifications in the core language. Thus, a
framework for the quality management of existing specifications has to be de-
signed. This framework has to consist of two parts: 1. to evaluate the quality
of a given specification, and 2. to suggest improvements for the specification.

In OTF Computing, the quality of a service or requirements specification
given in a certain modeling language has to be evaluated with respect to the
transformation into the optimal core language. It is important to identify the
difference in service properties between existing specifications and the core lan-
guage. Properties missing in specifications but present in the core language
could be added by the market actor. In the case, if a market actor creates a
specification from scratch, a specification language, whose specifications can be
transformed into the optimal core language the best, can be recommended.

In her Master thesis [73], Kavitha Jagannath tackled the problem to iden-
tify the most appropriate design-by-contract specification language for a given
context. Design-by-contract specifications describe the behavior of services us-
ing pre- and postconditions of service operations. A precondition describes the
state of the system before the execution of an operation, and the postcondition
describes the state after. Kavitha Jagannath investigated various design-by-
contract specification languages and created a comparison scheme, using which
the most suitable design-by-contract technique can be identified for a given con-
text. This approach can be used in the scope of the framework for the quality
management, in order to evaluate existing specifications and to choose most
suitable specification languages for pre-/postconditions.

In the next step, existing specifications have to be improved so that the trans-
formation into the optimal core language yields specifications leading to reliable
results of the automated market operations. Vahide Taherinajafabadi worked
on this topic in her Master thesis [147]. She designed a framework for continuous
monitoring, analyzing and improving the quality of specifications. This frame-
work monitors matching results obtained for a specification and, if these results
do not pass the predefined quality gates, this specification has to be adapted.
The adaptation is based on a knowledge base, which contains rules recommend-
ing an improvement. For example, a specification should be extended by a
certain non-functional property because it is considered during the matching
and the specification gets rated lower as this property is missing in it. As a
result, market actors profit from the quality management because the results of
the automated market operations for their specifications get improved.

164

Bibliography

[1] ACM, Inc. ACM Digital Library. Accessible online under http://dl.

acm.org. Last access: 10.07.2014.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-Wesley Longman Publishing Co., Inc.,
1986.

[3] David H. Akehurst, Steffen Zschaler, and W. Gareth J. Howells. OCL:
Modularising the Language. Electronic Communications of the European
Association for the Study of Science and Technology (ECEASST), 9:1–20,
2008.

[4] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web
Services: Concepts, Architectures and Applications. Springer Publishing
Company, Inc., 1st edition, 2010.

[5] Thorsten Arendt, Enrico Biermann, Stefan Jurack, Christian Krause, and
Gabriele Taentzer. Henshin: Advanced Concepts and Tools for In-Place
EMF Model Transformations. In Dorina C. Petriu, Nicolas Rouquette, and
Øystein Haugen, editors, Proceedings of the 13th International Conference
on Model Driven Engineering Languages and Systems Part I, MODELS
2010, Oslo, Norway, October 3-8, 2010, volume 6394 of Lecture Notes in
Computer Science, pages 121–135. Springer, 2010.

[6] Svetlana Arifulina. Towards a Framework for the Integration of Modeling
Languages. In Ulrich W. Eisenecker and Christian Bucholdt, editors, Pro-
ceedings of the Doctoral Symposium of the 5th International Conference on
Software Language Engineering 2012, Dresden, Germany (SLE (Doctoral
Symposium)), volume 935 of CEUR Workshop Proceedings, pages 23–26.
CEUR-WS.org, 2012.

[7] Svetlana Arifulina, Felix Mohr, Gregor Engels, Marie Christin Platenius,
and Wilhelm Schäfer. Market-Specific Service Compositions: Specification
and Matching. In Liang-Jie Zhang and Rami Bahsoon, editors, 2015 IEEE
World Congress on Services, SERVICES 2015, New York City, NY, USA,
June 27 - July 2, 2015, pages 333–340. IEEE, 2015.

[8] Svetlana Arifulina, Marie Christin Platenius, Steffen Becker, Christian
Gerth, Gregor Engels, and Wilhelm Schäfer. Market-Optimized Service

165

http://dl.acm.org
http://dl.acm.org

Bibliography

Specification and Matching. In Proceedings of the 12th International
Conference on Service-Oriented Computing, ICSOC 2014, Paris, France,
November 3-6, 2014, volume 8831 of Lecture Notes in Computer Science,
pages 543–550. Springer, 2014.

[9] Svetlana Arifulina, Christian Soltenborn, and Gregor Engels. Coverage
Criteria for Testing DMM Specifications. In L. Lambers A. Fish, editor,
Proceedings of the 11th International Workshop on Graph Transforma-
tion and Visual Modeling Techniques (GT-VMT 2012), Tallinn, Estonia,
volume 47 of Electronic Communications of the EASST. European Asso-
ciation of Software Science and Technology (EASST), 2012.

[10] Svetlana Arifulina, Sven Walther, Matthias Becker, and Marie Christin
Platenius. SeSAME: Modeling and Analyzing High-quality Service Com-
positions. In Ivica Crnkovic, Marsha Chechik, and Paul Grünbacher, ed-
itors, ACM/IEEE International Conference on Automated Software En-
gineering, ASE ’14, Vasteras, Sweden - September 15 - 19, 2014, pages
839–842. ACM, 2014.

[11] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel
Rabkin, Ion Stoica, and Matei Zaharia. A View of Cloud Computing.
Communications of the ACM, 53(4):50–58, April 2010.

[12] Egidio Astesiano, Michel Bidoit, Hélène Kirchner, Bernd Krieg-Brück-
ner, Peter D. Mosses, Donald Sannella, and Andrzej Tarlecki. CASL: the
Common Algebraic Specification Language. Theoretical Computer Sci-
ence, 286(2):153–196, 2002.

[13] Jung Ho Bae and Heung Seok Chae. UMLSlicer: A Tool for Modularizing
the UML Metamodel Using Slicing. In Proceedings of 8th IEEE Interna-
tional Conference on Computer and Information Technology, CIT 2008,
Sydney, Australia, July 8-11, 2008, pages 772–777. IEEE, 2008.

[14] Zoltan Balogh and Dániel Varró. Model Transformation by Example Using
Inductive Logic Programming. Software and System Modeling, 8(3):347–
364, 2009.

[15] Alistair Barros and Daniel Oberle, editors. Handbook of Service Descrip-
tion: USDL and it’s Methods, volume XXVI. Springer Science+Business
Media, 2012.

[16] Alistair Barros, Daniel Oberle, Uwe Kylau, and Steffen Heinzl. Handbook
of Service Description: USDL and Its Methods, chapter Design Overview
of USDL, pages 187–225. Springer Science+Business Media, 2012.

166

Bibliography

[17] Rabih Bashroush, Ivor T. A. Spence, Pater Kilpatrick, T. John Brown,
Wasif Gilani, and Matthias Fritzsche. ALI: An Extensible Architecture
Description Language for Industrial Applications. In Proceedings of the
15th AnnualIEEE International Conference and Workshop on Engineering
of Computer Based Systems (ECBS 2008), Belfast, Ireland, March 31-
April 4, 2008, pages 297–304. IEEE, 2008.

[18] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The Palladio Compo-
nent Model for Model-driven Performance Prediction. Journal of Systems
and Software, 82(1):3–22, January 2009.

[19] Jean Bézivin, Salim Bouzitouna, Marcos Didonet Del Fabro, Marie-
Pierre Gervais, Frédéric Jouault, Dimitrios S. Kolovos, Ivan Kurtev, and
Richard F. Paige. A Canonical Scheme for Model Composition. In Pro-
ceedings of the 2nd European Conference on Model Driven Architecture
- Foundations and Applications, ECMDA-FA 2006, Bilbao, Spain, July
10-13, 2006, volume 4066 of Lecture Notes in Computer Science, pages
346–360. Springer, 2006.

[20] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J.
Gutjahr. A Survey on Metaheuristics for Stochastic Combinatorial Opti-
mization. Natural Computing, 8(2):239–287, 2009.

[21] Enrico Biermann. Local Confluence Analysis of Consistent EMF Trans-
formations. Electronic Communication of the European Association of
Software Science and Technology (ECEASST), 38, 2011.

[22] Paul Börding, Melanie Bruns, and Marie Christin Platenius. Compre-
hensive Service Matching with MatchBox. In Elisabetta Di Nitto, Mark
Harman, and Patrick Heymans, editors, Proceedings of the 2015 10th Joint
Meeting on Foundations of Software Engineering, ESEC/FSE 2015, Berg-
amo, Italy, August 30 - September 4, 2015, pages 974–977. ACM, 2015.

[23] Kristopher Born, Thorsten Arendt, Florian Heß, and Gabriele Taentzer.
Analyzing Conflicts and Dependencies of Rule-Based Transformations in
Henshin. In Alexander Egyed and Ina Schaefer, editors, Proceedings of the
18th International Conference on Fundamental Approaches to Software
Engineering, FASE 2015, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2015, London, UK, April
11-18, 2015., volume 9033 of Lecture Notes in Computer Science, pages
165–168. Springer, 2015.

[24] Marco Brambilla, Jordi Cabot, and Manuel Wimmer. Model-Driven Soft-
ware Engineering in Practice. Synthesis Lectures on Software Engineering.
Morgan & Claypool Publishers, 2012.

167

Bibliography

[25] Matthias Bräuer and Henrik Lochmann. Towards Semantic Integration
of Multiple Domain-Specific Languages Using Ontological Foundations.
In Proceedings of the 4th International Workshop on (Software) Language
Engineering (ATEM’07) co-located with the 10th International Conference
on Model Driven Engineering Languages and Systems (MoDELS 2007),
Nashville, Tennessee, September 30-October 5, 2007. IEEE, 2007.

[26] Charles E. Campbell, Andrew Eisenberg, and Jim Melton. XML Schema.
SIGMOD Rec., 32(2):96–101, June 2003.

[27] Albertas Caplinskas, Audrone Lupeikiene, and Olegas Vasilecas. A Fra-
mework to Analyse and Evaluate Information Systems Specification Lan-
guages. In Proceedings of the 6th East European Conference on Advances
in Databases and Information Systems, ADBIS 2002, Bratislava, Slovakia,
September 8-11, 2002, volume 2435 of Lecture Notes in Computer Science,
pages 248–262. Springer, 2002.

[28] Roberto Chinnici, Jean-Jacques Moreau, Arthur Ryman, and Sanjiva
Weerawarana. Web Services Description Language (WSDL) Version 2.0
Part 1: Core Language. W3C Recommendation REC-wsdl20-20070626,
http://www.w3.org/TR/2007/REC-wsdl20-20070626, July 2007. Last
access: 07.08.2014.

[29] Krzysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming:
Methods, Tools, and Applications. ACM Press/Addison-Wesley Publishing
Co., 2000.

[30] Krzysztof Czarnecki and Simon Helsen. Classification of Model Trans-
formation Approaches. In Proceedings of the 2nd OOPSLA’03 Workshop
on Generative Techniques in the Context of Model-Driven Architecture,
Anaheim, CA, USA, 2003.

[31] Krzysztof Czarnecki and Simon Helsen. Feature-Based Survey of Model
Transformation Approaches. IBM Systems Journal, 45(3):621–646, 2006.

[32] Krzysztof Czarnecki, Simon Helsen, and Ulrich W. Eisenecker. Staged
Configuration Through Specialization and Multilevel Configuration of
Feature Models. Software Process: Improvement and Practice, 10(2):143–
169, 2005.

[33] Eric M. Dashofy, André van der Hoek, and Richard N. Taylor. A Compre-
hensive Approach for the Development of Modular Software Architecture
Description Languages. ACM Transactions on Software Engineering and
Methodology, 14(2):199–245, April 2005.

168

http://www.w3.org/TR/2007/REC-wsdl20-20070626

Bibliography

[34] Eric M. Dashofy, van der André Hoek, and Richard N Taylor. A Highly-
Extensible, XML-Based Architecture Description Language. In Pro-
ceedings of the Working IEEE/IFIP Conference on Software Architec-
ture (WICSA 2001), Amsterdam, The Netherlands, August 28-31, 2001,
WICSA ’01, pages 103–112. IEEE, 2001.

[35] Jos de Bruijn, Holger Lausen, Axel Polleres, and Dieter Fensel. The Web
Service Modeling Language WSML: An Overview. In Proceedings of the
3rd European Semantic Web Conference, The Semantic Web: Research
and Applications, ESWC 2006, Budva, Montenegro, June 11-14, 2006,
ESWC’06, pages 590–604. Springer, 2006.

[36] Kalyanmoy Deb, Samir Agrawal, Amrit Pratap, and T Meyarivan. A
Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective
Optimization: NSGA-II. In Marc Schoenauer, Kalyanmoy Deb, Gnther
Rudolph, Xin Yao, Evelyne Lutton, JuanJulian Merelo, and Hans-Paul
Schwefel, editors, Parallel Problem Solving from Nature PPSN VI, volume
1917 of Lecture Notes in Computer Science, pages 849–858. Springer Berlin
Heidelberg, 2000.

[37] Davide Di Ruscio, Ivano Malavolta, Henry Muccini, Patrizio Pelliccione,
and Alfonso Pierantonio. Developing Next Generation ADLs Through
MDE Techniques. In Proceedings of the 32nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE 2010, Cape Town,
South Africa, 1-8 May 2010, pages 85–94, 2010.

[38] Corinna Dohle and Leena Suhl. An Optimization Model for the Opti-
mal Usage of Water Tanks in Water Supply Systems. In Proceedings of
the International Conference on Applied Mathematical Optimization and
Modelling (APMOD), pages 404–408. Books on Demand, 2012.

[39] Xavier Dolques, Aymen Dogui, Jean-Rémy Falleri, Marianne Huchard,
Clémentine Nebut, and François Pfister. Easing Model Transformation
Learning with Automatically Aligned Examples. In Proceedings of the
7th European Conference on Modelling Foundations and Applications,
ECMFA 2011, Birmingham, UK, June 6 - 9, 2011, volume 6698 of Lecture
Notes in Computer Science, pages 189–204. Springer, 2011.

[40] Xavier Dolques, Marianne Huchard, and Clémentine Nebut. From Trans-
formation Traces to Transformation Rules: Assisting Model Driven Engi-
neering approach with Formal Concept Analysis. In Proceedings of the
17th International Conference on Conceptual Structures (ICCS 2009),
Moscow, Russian Federation, volume 483, pages 15–29. CEUR-WS, 2009.

[41] Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Philippe Re-
itz. Learning Transformation Rules from Transformation Examples: An

169

Bibliography

Approach Based on Relational Concept Analysis. In Workshops Proceed-
ings of the 14th IEEE International Enterprise Distributed Object Com-
puting Conference, EDOCW 2010, Vitória, Brazil, 25-29 October 2010,
pages 27–32. IEEE Computer Society, 2010.

[42] Hartmut Ehrig, Julia Padberg, and Fernando Orejas. From Basic Views
and Aspects to Integration of Specification Formalisms. In Current Trends
in Theoretical Computer Science, Entering the 21th Century, pages 202–
214. World Scientific, 2001.

[43] Jérôme Euzenat and Pavel Shvaiko. Ontology Matching. Springer-Verlag
New York, Inc., 1st edition, 2007.

[44] Zhiqiang Fan, Tao Yue, and Li Zhang. A Generic Framework for De-
riving Architecture Modeling Methods for Large-scale Software-intensive
Systems. In Proceedings of the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, Coimbra, Portugal, March 18-22, 2013, SAC ’13,
pages 1750–1757. ACM, 2013.

[45] Joel Farrell and Holger Lausen. Semantic Annotations for WSDL and
XML Schema. W3C Recommendation REC-sawsdl-20070828, http://

www.w3.org/TR/2007/REC-sawsdl-20070828, August 2007. Last access:
07.08.2014.

[46] Martin Faunes, Houari A. Sahraoui, and Mounir Boukadoum. Genetic-
Programming Approach to Learn Model Transformation Rules from Ex-
amples. In Proceedings of the 6th International Conference on Theory
and Practice of Model Transformations, ICMT 2013, Budapest, Hungary,
June 18-19, 2013, volume 7909 of Lecture Notes in Computer Science,
pages 17–32. Springer, 2013.

[47] Daniel Ferrante. Software Licensing Models: What’s Out There? IT
Professional, 8:24–29, November 2006.

[48] Anthony Finkelstein, Jeff Kramer, Bashar Nuseibeh, L. Finkelstein, and
Michael Goedicke. Viewpoints: A Framework for Integrating Multiple
Perspectives in System Development. International Journal of Software
Engineering and Knowledge Engineering, 2(1):31–57, 1992.

[49] Franck Fleurey, Benoit Baudry, Pierre-Alain Muller, and Yves Le Traon.
Qualifying Input Test Data for Model Transformations. Software and
System Modeling, 8(2):185–203, 2009.

[50] D.B. Fogel and J.W. Atmar. Comparing Genetic Operators with Gaus-
sian Mutations in Simulated Evolutionary Processes using Linear Systems.
Biological Cybernetics, 63(2):111–114, 1990.

170

http://www.w3.org/TR/2007/REC-sawsdl-20070828
http://www.w3.org/TR/2007/REC-sawsdl-20070828

Bibliography

[51] The Eclipse Foundation. Henshin. https://www.eclipse.org/henshin.
Last access: 12.06.2015.

[52] Iván Garćıa-Magariño, Rubén Fuentes-Fernández, and Jorge J. Gómez-
Sanz. A Framework for the Definition of Metamodels for Computer-
Aided Software Engineering Tools. Information and Software Technology,
52(4):422–435, April 2010.

[53] Iván Garćıa-Magariño, Jorge J. Gómez-Sanz, and Rubén Fuentes-
Fernández. Model Transformation By-Example: An Algorithm for Ge-
nerating Many-to-Many Transformation Rules in Several Model Trans-
formation Languages. In Proceedings of the 2nd International Confe-
rence Theory and Practice of Model Transformations, ICMT 2009, Zurich,
Switzerland, June 29-30, 2009, volume 5563 of Lecture Notes in Computer
Science, pages 52–66. Springer, 2009.

[54] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. Model-
Driven Language Engineering: The ASMETA Case Study. In Proceedings
of the Third International Conference on Software Engineering Advances,
ICSEA 2008, October 26-31, 2008, Sliema, Malta, pages 373–378. IEEE
Computer Society, 2008.

[55] A. Gligor, T. Turc, C. D. Dumitru, and Al. Morar. Development of an Ex-
tensible Description Language for Virtual Instrumentation. International
Conference on Automation, Quality and Testing, Robotics, 3:1–6, 2010.

[56] Thomas Goldschmidt, Steffen Becker, and Erik Burger. Towards a Tool-
Oriented Taxonomy of View-Based Modelling. In Proceedings of the Mod-
ellierung 2012, 14.-16. März 2012, Bamberg, Deutschland, volume 201 of
LNI, pages 59–74. GI, 2012.

[57] Google. Google. Accessible online under http://google.de/. Last access:
05.08.2014.

[58] Google. Google scholar. Accessible online under http://scholar.

google.de. Last access: 01.07.2014.

[59] Tyrone Grandison and Morris Sloman. A Survey of Trust in Internet
Applications. IEEE Communications Surveys & Tutorials, 3(4):2–16, Oc-
tober 2000.

[60] Vincenzo Grassi, Raffaela Mirandola, Enrico Randazzo, and Antonino Sa-
betta. KLAPER: An Intermediate Language for Model-Driven Predictive
Analysis of Performance and Reliability. In The Common Component Mo-
deling Example, volume 5153 of Lecture Notes in Computer Science, pages
327–356. Springer, 2008.

171

https://www.eclipse.org/henshin
http://google.de/
http://scholar.google.de
http://scholar.google.de

Bibliography

[61] Martin Große-Rhode. On Model Integration and Integration Modelling:
Introduction to the Subject Area Integration Modelling. In SoftSpez Final
Report on Integration of Software Specification Techniques for Applica-
tions in Engineering, Priority Program SoftSpez of the German Research
Foundation (DFG), volume 3147 of Lecture Notes in Computer Science,
pages 567–581. Springer, 2004.

[62] Giancarlo Guizzardi, Luis F. Pires, and Marten van Sinderen. An
Ontology-Based Approach for Evaluating the Domain Appropriateness
and Comprehensibility Appropriateness of Modeling Languages. In Pro-
ceedings of the 8th International Conference on Model Driven Engineering
Languages and Systems, MoDELS 2005, Montego Bay, Jamaica, October
2-7, 2005, pages 691–705, 2005.

[63] Scott Hamilton and Norman L. Chervany. Evaluating Information System
Effectiveness - Part I: Comparing Evaluation Approaches. MIS Quarterly,
5(3):55–69, 1981.

[64] Jan Hendrik Hausmann. Dynamic Meta Modeling: A Semantics Descrip-
tion Technique for Visual Modeling Languages. PhD thesis, University of
Paderborn, 2005.

[65] Brian Henderson-Sellers, Muhammad Atif Qureshi, and Cesar Gonzalez-
Perez. Towards an Interoperable Metamodel Suite: Size Assessment as
One Input. International Journal of Software and Informatics, 6(2):111–
124, 2012.

[66] Mamoun Hirzalla, Jane Cleland-Huang, and Ali Arsanjani. A Metrics
Suite for Evaluating Flexibility and Complexity in Service Oriented Ar-
chitectures. In George Feuerlicht and Winfried Lamersdorf, editors, Re-
vised Selected Papers of the International Workshops of Service-Oriented
Computing - ICSOC 2008 Workshops, Sydney, Australia, December 1st,
2008, volume 5472 of Lecture Notes in Computer Science, pages 41–52.
Springer, 2008.

[67] Mathias Hülsbusch, Barbara König, Arend Rensink, Maria Semenyak,
Christian Soltenborn, and Heike Wehrheim. Full Semantics Preservation
in Model Transformation - A Comparison of Proof Techniques. In S. Merz
D. M’ery, editor, Proceedings of the 8th International Conference on Inte-
grated Formal Methods (IFM 2010), volume 6396 of LNCS, pages 183–198,
Berlin/Heidelberg, 2010. Springer.

[68] IEEE. IEEE Xplore Digital Library. Accessible online under http://

ieeexplore.ieee.org/Xplore/home.jsp. Last access: 10.07.2014.

172

http://ieeexplore.ieee.org/Xplore/home.jsp
http://ieeexplore.ieee.org/Xplore/home.jsp

Bibliography

[69] ISO/IEC. ”Information Technology - Syntactic Metalanguage - Extended
BNF”. http://www.cl.cam.ac.uk/ mgk25/iso-14977.pdf, 1996. Interna-
tional Standard ISO/IEC 14977:1996.

[70] ISO/IEC. Software engineering - Product quality - Part 1: Quality model.
International Standard ISO/IEC 9126-1:2001, 2001.

[71] ISO/IEC. Information technology - Object Management Group :
Meta Object Facility (MOF) Core. International Standard ISO/IEC
19508:2014(E), 2014.

[72] Kazunori Iwasa, Jacques Durand, Tom Rutt, Mark Peel, Sunil Kunisetty,
and Doug Bunting. Web Services Reliable Messaging TC WS-Reliability
1.1. OASIS Standard, 15 November 2004. Accessible online under
http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/. Last ac-
cess: 15.08.2014.

[73] Kavitha Jagannath. Service Specification in On-The-Fly Computing,
Contract-Based Specifications. Master’s thesis, Univesity of Paderborn,
2012.

[74] Gerti Kappel, Elisabeth Kapsammer, Horst Kargl, Gerhard Kramler,
Thomas Reiter, Werner Retschitzegger, Wieland Schwinger, and Manuel
Wimmer. Lifting Metamodels to Ontologies: A Step to the Semantic In-
tegration of Modeling Languages. In Proceedings of the 9th International
Conference on Model Driven Engineering Languages and Systems, Mo-
DELS 2006, Genova, Italy, October 1-6, 2006, MoDELS’06, pages 528–
542. Springer, 2006.

[75] Gerti Kappel, Philip Langer, Werner Retschitzegger, Wieland Schwinger,
and Manuel Wimmer. Model Transformation By-Example: A Survey of
the First Wave. In Conceptual Modelling and Its Theoretical Foundations
- Essays Dedicated to Bernhard Thalheim on the Occasion of His 60th
Birthday, volume 7260 of Lecture Notes in Computer Science, pages 197–
215. Springer, 2012.

[76] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Mar-
tin Schindler, and Steven Völkel. Design Guidelines for Domain Specific
Languages. In Proceedings of the 9th OOPSLA Workshop on Domain-
Specific Modeling , DSM’09, Helsinki School of Economics. TR no B-108.
Orlando, Florina, USA, October 2009, pages 7–13, 2009.

[77] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web Services Choreogra-
phy Description Language Version 1.0. W3C Candidate Rec-
ommendation CR-ws-cdl-10-20051109, http://www.w3.org/TR/2005/

CR-ws-cdl-10-20051109, November 2005. Last access: 08.08.2014.

173

http://docs.oasis-open.org/wsrm/ws-reliability/v1.1/
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109
http://www.w3.org/TR/2005/CR-ws-cdl-10-20051109

Bibliography

[78] James P. Kelly. Meta-Heuristics: Theory and Applications. Kluwer Aca-
demic Publishers, Norwell, MA, USA, 1996.

[79] Marouane Kessentini, Houari A. Sahraoui, and Mounir Boukadoum.
Model Transformation as an Optimization Problem. In Proceedings of the
11th International Conference on Model Driven Engineering Languages
and Systems, MoDELS 2008, Toulouse, France, September 28 - October
3, 2008, volume 5301 of Lecture Notes in Computer Science, pages 159–
173. Springer, 2008.

[80] Marouane Kessentini, Houari A. Sahraoui, Mounir Boukadoum, and Omar
Benomar. Search-based Model Transformation by Example. Software and
System Modeling, 11(2):209–226, 2012.

[81] Barbara Kitchenham, Pearl Brereton, David Budgen, Mark Turner, John
Bailey, and Stephen G. Linkman. Systematic Literature Reviews in Soft-
ware Engineering - A Systematic Literature Review. Information & Soft-
ware Technology, 51(1):7–15, 2009.

[82] Barbara Kitchenham and Stuart Charters. Guidelines for Performing Sys-
tematic Literature Reviews in Software Engineering. Technical Report
EBSE 2007-001, Keele University and Durham University Joint Report,
2007.

[83] John R. Koza, Martin A. Keane, Matthew J. Streeter, William Myd-
lowec, Jessen Yu, and Guido Lanza. Genetic Programming IV: Routine
Human-Competitive Machine Intelligence, volume 5 of Genetic Program-
ming Series. Springer US, 2003.

[84] Holger Krahn, Bernhard Rumpe, and Steven Völkel. MontiCore: Modular
Development of Textual Domain Specific Languages. In Proceedings of
the 46th International Conference on Objects, Components, Models and
Patterns, TOOLS EUROPE 2008, Zurich, Switzerland, June 30 - July
4, 2008, volume 11 of Lecture Notes in Business Information Processing,
pages 297–315. Springer, 2008.

[85] John Krogstie and Sofie de Flon Arnesen. Assessing Enterprise Modeling
Languages Using a Generic Quality Framework. In Information Modeling
Methods and Methodologies, pages 63–79. Idea Group, 2005.

[86] Philip Langer, Manuel Wimmer, and Gerti Kappel. Model-to-Model
Transformations By Demonstration. In Proceedings of the 3rd Inter-
national Conference on Theory and Practice of Model Transformations,
ICMT 2010, Malaga, Spain, June 28-July 2, 2010, volume 6142 of Lec-
ture Notes in Computer Science, pages 153–167. Springer, 2010.

174

Bibliography

[87] Henry Lieberman. Programming by Example: Introduction. Communi-
cations of the ACM, 43(3):72–74, 2000.

[88] Martin Lukasiewycz, Michael Glaß, Felix Reimann, and Jürgen Teich.
Opt4J: A Modular Framework for Meta-heuristic Optimization. In Na-
talio Krasnogor and Pier Luca Lanzi, editors, Proceedings of the 13th An-
nual Genetic and Evolutionary Computation Conference, GECCO 2011,
Dublin, Ireland, July 12-16, 2011, pages 1723–1730. ACM, 2011.

[89] Ivano Malavolta, Henry Muccini, and Patrizio Pelliccione. DUALLY: A
Framework for Architectural Languages and Tools Interoperability. In
Proceedings of the 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering, ASE 2008, 15-19 September 2008, L’Aquila,
Italy, pages 483–484. IEEE, 2008.

[90] Ivano Malavolta, Henry Muccini, Patrizio Pelliccione, and Damien A.
Tamburri. Providing Architectural Languages and Tools Interoperabi-
lity through Model Transformation Technologies. IEEE Transactions on
Software Engineering, 36(1):119–140, 2010.

[91] David Martin, Mark Burstein, Jerry Hobbs, Ora Lassila, Drew McDer-
mott, Sheila McIlraith, Srini Narayanan, Massimo Paolucci, Bijan Par-
sia, Terry Payne, Evren Sirin, Naveen Srinivasan, and Katia Sycara.
OWL-S: Semantic Markup for Web Services. W3C Member Submission,
http://www.w3.org/Submission/OWL-S, November 2004. Last access:
08.08.2014.

[92] Erika McCallister, Tim Grance, and Karen Scarfone. Guide to Pro-
tecting the Confidentiality of Personally Identifiable Information (PII).
Special Publication 800-122, Recommendations of the National Institute
of Standards and Technology, http://csrc.nist.gov/publications/

nistpubs/800-122/sp800-122.pdf, 2010. Last access: 25.03.2015.

[93] Deborah L. McGuinness and Frank van Harmelen. OWL 2 Web Ontology
Language. W3C Recommendation owl2-overview, http://www.w3.org/
TR/owl2-overview, December 2012. Last access: 08.08.2014.

[94] Nenad Medvidovic and Richard N. Taylor. A Classification and Compa-
rison Framework for Software Architecture Description Languages. IEEE
Transactions on Software Engineering, 26(1):70–93, 2000.

[95] Tom Mens and Pieter Van Gorp. A Taxonomy of Model Transformation.
Electronic Notes in Theoretical Computer Science, 152:125–142, March
2006.

175

http://www.w3.org/Submission/OWL-S
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf
http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf
http://www.w3.org/TR/owl2-overview
http://www.w3.org/TR/owl2-overview

Bibliography

[96] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and How to
Develop Domain-specific Languages. ACM Computing Surveys, 37(4):316–
344, December 2005.

[97] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Inc., 1st edition, 1988.

[98] Bart Meyers, Antonio Cicchetti, Esther Guerra, and Juan de Lara. Com-
posing Textual Modelling Languages in Practice. In Proceedings of the 6th
International Workshop on Multi-Paradigm Modeling, Innsbruck, Austria,
MPM ’12, pages 31–36. ACM, 2012.

[99] Peter D. Mosses. CoFI: The Common Framework Initiative for Algebraic
Specification and Development. In Proceedings of the 7th International
Joint Conference CAAP/FASE on Theory and Practice of Software De-
velopment, TAPSOFT’97, Lille, France, April 14-18, 1997, volume 1214
of Lecture Notes in Computer Science, pages 115–137. Springer, 1997.

[100] Liping Mu, Terje Gjøsæter, Andreas Prinz, and Merete Skjelten Tveit.
Specification of Modelling Languages in a Flexible Meta-model Architec-
ture. In Proceedings of the 4th European Conference on Software Archi-
tecture (ECSA’10): Companion Volume, Copenhagen, Denmark, August
23-26, 2010, ACM International Conference Proceeding Series, pages 302–
308. ACM, 2010.

[101] Anthony Nadalin, Marc Goodner, Martin Gudgin, David Turner, Abbie
Barbir, and Hans Granqvist. WS-Trust 1.4. OASIS Standard, 25 April
2012. Accessible online under http://docs.oasis-open.org/ws-sx/

ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.pdf.
Last access: 15.08.2014.

[102] Anthony Nadalin, Chris Kaler, Phillip Hallam-Baker, and Ronald
Monzillo. Web Services Security: SOAP Message Security 1.0
(WS-Security 2004). OASIS Standard 200401, March 2004. Ac-
cessible online under http://docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-soap-message-security-1.0.pdf. Last access:
15.08.2014.

[103] OASIS. Advancing open standards for the information society. Accessi-
ble online under https://www.oasis-open.org/standards. Last access:
08.08.2014.

[104] Object Management Group, Inc. OMG Homepage. Accessible online
under http://www.omg.org. Last access: 15.08.2014.

[105] Object Management Group, Inc. OMG Specifications. Accessible online
under http://www.omg.org/spec/index.htm. Last access: 15.08.2014.

176

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.pdf
http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/errata01/ws-trust-1.4-errata01-complete.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf
https://www.oasis-open.org/standards
http://www.omg.org
http://www.omg.org/spec/index.htm

Bibliography

[106] Object Management Group (OMG). UML Profile for Modeling Quality
of Service and Fault Tolerance Characteristics and Mechanisms Specifi-
cation (Version 1.1). Standard document URL: http://www.omg.org/

spec/QFTP/1.1/PDF, April 2008.

[107] Object Management Group (OMG). OMG Profile for MARTE: Modeling
and Analysis of Real-Time Embedded Systems (Version 1.1). Standard
document URL: http://www.omg.org/spec/MARTE/1.1, June 2011.

[108] Object Management Group (OMG). OMG Unified Modeling Language
(OMG UML), Superstructure (Version 2.4.1). Standard document URL:
http://www.omg.org/spec/UML/2.4.1/Superstructure, August 2011.

[109] Object Management Group (OMG). Object Constraint Language (Version
2.4). http://www.omg.org/spec/OCL/2.4, February 2014. Internation
Standard ISO/IEC 19507:2012(E).

[110] The National Institute of Standards and Technology (NIST). http://

www.nist.gov/. Last access: 25.03.2015.

[111] Arto Ojala. Software-as-a-Service Revenue Models. IT Professional,
15(3):54–59, 2013.

[112] Sven Overhage. UnSCom: A Standardized Framework for the Specifica-
tion of Software Components. In Proceedings of the 5th Annual Inter-
national Conference on Object-Oriented and Internet-Based Technologies,
Concepts, and Applications for a NetworkedWorld, Net.ObjectDays 2004,
Erfurt, Germany, September 27-30, 2004, volume 3263 of Lecture Notes
in Computer Science, pages 169–184. Springer, 2004.

[113] Richard F. Paige, Jonathan S. Ostroff, and Phillip J. Brooke. Princi-
ples for modeling language design. Information and Software Technology,
42(10):665 – 675, 2000.

[114] Patrizio Pelliccione, Paola Inverardi, and Henry Muccini. CHARMY: A
Framework for Designing and Verifying Architectural Specifications. IEEE
Transactions on Software Engineering, 35(3):325–346, 2009.

[115] Philip Lief Group. Roget’s 21st Century Thesaurus, Third Edition
Copyright. Accessible online under http://thesaurus.com. Last access:
24.07.2014.

[116] Marie Christin Platenius, Svetlana Arifulina, Ronald Petrlic, and Wil-
helm Schäfer. Matching of Incomplete Service Specifications Exemplified
by Privacy Policy Matching. In Guadalupe Ortiz and Cuong Tran, editors,
Advances in Service-Oriented and Cloud Computing, volume 508 of Com-
munications in Computer and Information Science, pages 6–17. Springer
International Publishing, 2015.

177

http://www.omg.org/spec/QFTP/1.1/PDF
http://www.omg.org/spec/QFTP/1.1/PDF
http://www.omg.org/spec/MARTE/1.1
http://www.omg.org/spec/UML/2.4.1/Superstructure
http://www.omg.org/spec/OCL/2.4
http://www.nist.gov/
http://www.nist.gov/
http://thesaurus.com

Bibliography

[117] Marie Christin Platenius, Svetlana Arifulina, and Wilhelm Schäfer.
MatchBox: A Framework for Dynamic Configuration of Service Matching
Processes. In Philippe Kruchten, Steffen Becker, and Jean-Guy Schneider,
editors, Proceedings of the 18th International ACM SIGSOFT Symposium
on Component-Based Software Engineering, CBSE 2015, Montreal, QC,
Canada, May 4-8, 2015, pages 75–84. ACM, 2015.

[118] Rachel Pottinger and Philip A. Bernstein. Merging Models Based on Given
Correspondences. In Proceedings of the 29th International Conference on
Very Large Data Bases - Volume 29, Berlin, Germany, VLDB ’03, pages
862–873. VLDB Endowment, 2003.

[119] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael Hauck,
Anne Koziolek, Heiko Koziolek, Klaus Krogmann, and Michael Kuper-
berg. The Palladio Component Model. Karlsruhe Reports in Informat-
ics; 2011,14. Karlsruhe, 2011. http://nbn-resolving.org/urn:nbn:de:
swb:90-225038.

[120] Jason E. Robbins, Nenad Medvidovic, David F. Redmiles, and David S.
Rosenblum. Integrating Architecture Description Languages with a Stan-
dard Design Method. In Proceedings of the 20th International Confe-
rence on Software Engineering, ICSE 98, Kyoto, Japan, April 19-25, 1998,
ICSE ’98, pages 209–218. IEEE Computer Society, 1998.

[121] Michael Rosemann and Wil M. P. van der Aalst. A Configurable Reference
Modelling Language. Information Systems, 32(1):1 – 23, 2007.

[122] Michael Rudolf. Utilizing Constraint Satisfaction Techniques for Efficient
Graph Pattern Matching. In Hartmut Ehrig, Gregor Engels, Hans-Jörg
Kreowski, and Grzegorz Rozenberg, editors, 6th International Workshop
on Theory and Application of Graph Transformations (TAGT’98), Se-
lected Papers, Paderborn, Germany, November 16-20, 1998, volume 1764
of Lecture Notes in Computer Science, pages 238–251. Springer, 1998.

[123] S3 Contest Organisation Committee. Annual international contest s3 on
semantic service selection. http://www-ags.dfki.uni-sb.de/~klusch/

s3/. Last access: 18.10.2015.

[124] Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, and
Houari A. Sahraoui. Generation of Operational Transformation Rules
from Examples of Model Transformations. In Proceedings of the 15th
International Conference on Model Driven Engineering Languages and
Systems, MODELS 2012, Innsbruck, Austria, September 30-October 5,
2012, volume 7590 of Lecture Notes in Computer Science, pages 546–561.
Springer, 2012.

178

http://nbn-resolving.org/urn:nbn:de:swb:90-225038
http://nbn-resolving.org/urn:nbn:de:swb:90-225038
http://www-ags.dfki.uni-sb.de/~klusch/s3/
http://www-ags.dfki.uni-sb.de/~klusch/s3/

Bibliography

[125] Hajer Saada, Xavier Dolques, Marianne Huchard, Clémentine Nebut, and
Houari A. Sahraoui. Learning Model Transformations from Examples us-
ing FCA: One for All or All for One? In Proceedings of The Ninth Interna-
tional Conference on Concept Lattices and Their Applications, Fuengirola
(Málaga), Spain, October 11-14, 2012, volume 972 of CEUR Workshop
Proceedings, pages 45–56. CEUR-WS.org, 2012.

[126] Gerard Salton and Michael J. McGill. Introduction to Modern Information
Retrieval. McGraw-Hill, Inc., 1983.

[127] Sebastian Schlauderer and Sven Overhage. How Perfect are Markets for
Software Services? An Economic Perspective on Market Deficiencies and
Desirable Market Features. In Proceedings of the 19th European Confe-
rence on Information Systems, ECIS 2011, Helsinki, Finland, June 9-11,
2011, 2011.

[128] Bran Selic. A Systematic Approach to Domain-Specific Language De-
sign Using UML. In Proceedings of the 10th IEEE International Sympo-
sium on Object and Component-Oriented Real-Time Distributed Comput-
ing (ISORC 2007), 7-9 May 2007, Santorini Island, Greece, ISORC ’07,
pages 2–9. IEEE Computer Society, 2007.

[129] Adel Smeda, Mourad Oussalah, and Tahar Khammaci. MADL: Meta Ar-
chitecture Description Language. In Proceedings of the Third ACIS Int’L
Conference on Software Engineering Research, Management and Applica-
tions (SERA 2005), 11-13 August 2005, Mt. Pleasant, MI, USA, SERA
’05, pages 152–159. IEEE Computer Society, 2005.

[130] Harry M. Sneed. Measuring Web Service Interfaces. In Giuseppe A. Di
Lucca and Holger M. Kienle, editors, Proceedings of the 12th IEEE Inter-
national Symposium on Web Systems Evolution, WSE 2010, September
17-18, 2010, Timisoara, Romania, pages 111–115. IEEE Computer Soci-
ety, 2010.

[131] Monique Snoeck, Stephan Poelmans, and Guido Dedene. A Layered Soft-
ware Specification Architecture. In Proceedings of the 19th International
Conference on Conceptual Modeling (Conceptual Modeling - ER 2000),
Salt Lake City, Utah, USA, October 9-12, 2000, volume 1920 of Lecture
Notes in Computer Science, pages 454–469. Springer, 2000.

[132] Christian Soltenborn. Quality Assurance with Dynamic Meta Modeling.
PhD thesis, University of Paderborn, 2013.

[133] Christian Soltenborn and Gregor Engels. Towards Test-Driven Semantics
Specification. In B. Selic A. Schürr, editor, Proceedings of the 12th Inter-
national Conference on Model Driven Engineering Languages and Systems

179

Bibliography

(MODELS 2009), Denver, Colorado (USA), volume 5795 of LNCS, pages
378–392. Springer, 2009.

[134] Diomidis Spinellis. Notable Design Patterns for Domain-specific Lan-
guages. Journal of Systems and Software, 56(1):91–99, February 2001.

[135] Springer, Part of Springer Science+Business Media. Springer Link. Acces-
sible online under http://link.springer.com. Last access: 10.07.2014.

[136] Herbert Stachowiak. Allgemeine Modelltheorie. Springer-Verlag, 1973.

[137] Thomas Stahl, Markus Völter, Jorn Bettin, Arno Haase, and Simon
Helsen. Model-driven Software Development - Technology, Engineering,
Management. Pitman, 2006.

[138] Thomas Stahl, Markus Völter, Sven Efftinge, and Arno Haase. Modell-
getriebene Softwareentwicklung - Techniken, Engineering, Management,
volume 2. dpunkt.verlag, 2007.

[139] Athanasios Staikopoulos and Behzad Bordbar. A Comparative Study of
Metamodel Integration and Interoperability in UML and Web Services. In
Proceedings of the 1st European Conference on Model Driven Architecture:
Foundations and Applications, ECMDA-FA 2005, Nuremberg, Germany,
November 7-10, 2005, ECMDA-FA’05, pages 145–159. Springer, 2005.

[140] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework. Addison-Wesley Professional, 2nd
edition, 2009.

[141] David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks.
EMF: Eclipse Modeling Framework 2.0. Addison-Wesley Professional, 2nd
edition, 2009.

[142] Michael Strommer and Manuel Wimmer. A Framework for Model Trans-
formation By-Example: Concepts and Tool Support. In Proceedings of
the 46th International Conference on Objects, Components, Models and
Patterns, TOOLS EUROPE 2008, Zurich, Switzerland, June 30 - July
4, 2008, volume 11 of Lecture Notes in Business Information Processing,
pages 372–391. Springer, 2008.

[143] Daniel Strüber, Gabriele Taentzer, Stefan Jurack, and Tim Schäfer. To-
wards a Distributed Modeling Process Based on Composite Models. In
Proceedings of the 16th International Conference on Fundamental Ap-
proaches to Software Engineering, FASE 2013, Held as Part of the Eu-
ropean Joint Conferences on Theory and Practice of Software, ETAPS
2013, Rome, Italy, March 16-24, 2013, volume 7793 of Lecture Notes in
Computer Science, pages 6–20. Springer, 2013.

180

http://link.springer.com

Bibliography

[144] Gabriele Taentzer. What Algebraic Graph Transformations Can Do For
Model Transformations. Electronic Communication of the European As-
sociation of Software Science and Technology (ECEASST), 30, 2010.

[145] Gabriele Taentzer, Thorsten Arendt, Claudia Ermel, and Reiko Heckel.
Towards Refactoring of Rule-based, In-place Model Transformation Sys-
tems. In Proceedings of the First Workshop on the Analysis of Model
Transformations, Innsbruck, Austria, AMT ’12, pages 41–46. ACM, 2012.

[146] Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan De Lara, Tihamer
Levendovszky, Ulrike Prange, Daniel Varro, and et al. Model Transfor-
mations by Graph Transformations: A Comparative Study. In Model
Transformations in Practice Workshop (MTIP) at MoDELS Conference,
Montego Bay, Jamaica, October 2005.

[147] Vahide Taherinajafabadi. Quality Management of Service Specifications
in On-The-Fly Computing. Master’s thesis, Univesity of Paderborn, 2014.

[148] The World Wide Web Consortium (W3C). Web of Services. http://www.
w3.org/standards/webofservices. Last access: 07.08.2014.

[149] Matthias Tichy, Christian Krause, and Grischa Liebel. Detecting Perfor-
mance Bad Smells for Henshin Model Transformations. In Benoit Baudry,
Jürgen Dingel, Levi Lucio, and Hans Vangheluwe, editors, Proceedings of
the Second Workshop on the Analysis of Model Transformations (AMT
2013), Miami, FL, USA, September 29, 2013, volume 1077 of CEUR
Workshop Proceedings. CEUR-WS.org, 2013.

[150] Kenneth J. Turner. Specification Architecture Illustrated in a Communi-
cations Context . Computer Networks and {ISDN} Systems, 29(4):397 –
411, 1997. Specification Architecture.

[151] Universität Paderborn, SFB 901 ”On-The-Fly Computing”. Official web-
page of the Collaborative Research Centre 901 ”On-The-Fly Comput-
ing”. Accessible under http://sfb901.uni-paderborn.de/. Last access:
13.10.2015.

[152] Universität Paderborn, SFB 901 ”On-The-Fly Computing”, Sub-
project B1. Official webpage of the Collaborative Research Cen-
tre 901 ”On-The-Fly Computing”, SSE - Service Specification
Environment. Accessible under http://sfb901.uni-paderborn.

de/sfb-901/projects/tools-demonstration-systems/

service-specification-environment.html. Last access: 13.10.2015.

[153] Cornelis Joost van Rijsbergen. Information Retrieval. Butterworth-
Heinemann, 2nd edition, 1979.

181

http://www.w3.org/standards/webofservices
http://www.w3.org/standards/webofservices
http://sfb901.uni-paderborn.de/
http://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/service-specification-environment.html
http://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/service-specification-environment.html
http://sfb901.uni-paderborn.de/sfb-901/projects/tools-demonstration-systems/service-specification-environment.html

Bibliography

[154] Dániel Varró. Model Transformation by Example. In Proceedings of the
9th International Conference on Model Driven Engineering Languages and
Systems, MoDELS 2006, Genova, Italy, October 1-6, 2006, volume 4199
of Lecture Notes in Computer Science, pages 410–424. Springer, 2006.

[155] Dániel Varró and Zoltan Balogh. Automating Model Transformation by
Example Using Inductive Logic Programming. In Proceedings of the 2007
ACM Symposium on Applied Computing (SAC), Seoul, Korea, March 11-
15, 2007, pages 978–984. ACM, 2007.

[156] F. Vernadat. UEML: Towards a Unified Enterprise Modelling Language.
International Journal of Production Research, 40(17):4309–4321, 2002.

[157] Markus Vöelter, Sebastian Benz, Christian Dietrich, Birgit Engelmann,
Mats Helander, Lennart C. L. Kats, Eelco Visser, and Guido Wachsmuth.
DSL Engineering - Designing, Implementing and Using Domain-Specific
Languages. dslbook.org, 2013.

[158] Markus Völter and Iris Groher. Product Line Implementation using
Aspect-Oriented and Model-Driven Software Development. In Proceedings
of the 11th International Conference on Software Product Lines (SPLC
2007), Kyoto, Japan, September 10-14, 2007, pages 233–242. IEEE Com-
puter Society, 2007.

[159] Tobias Walter and Jürgen Ebert. Combining DSLs and Ontologies Using
Metamodel Integration. In Proceedings of the IFIP TC 2 Working Confe-
rence on Domain-Specific Languages, DSL 2009, Oxford, UK, July 15-17,
2009, volume 5658 of Lecture Notes in Computer Science, pages 148–169.
Springer, 2009.

[160] Sven Walther and Heike Wehrheim. Verified Service Compositions by
Template-Based Construction. In Ivan Lanese and Eric Madelaine, edi-
tors, Formal Aspects of Component Software, pages 31–48. Springer, 2015.

[161] Christian Wende, Nils Thieme, and Steffen Zschaler. A Role-Based Ap-
proach towards Modular Language Engineering. In Proceedings of the
Second International Conference on Software Language Engineering, SLE
2009, Denver, CO, USA, October 5-6, 2009, Revised Selected Papers, vo-
lume 5969 of Lecture Notes in Computer Science, pages 254–273. Springer,
2010.

[162] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler.
Towards Model Transformation Generation By-Example. In Proceedings of
the 40th Hawaii International International Conference on Systems Sci-
ence (HICSS-40 2007), CD-ROM / Abstracts Proceedings, 3-6 January
2007, Waikoloa, Big Island, HI, USA, pages 285–294. IEEE Computer
Society, 2007.

182

Bibliography

[163] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann Publishers Inc., 2nd (Morgan
Kaufmann Series in Data Management Systems) edition, 2005.

[164] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. SPEA2: Improving
the Strength Pareto Evolutionary Algorithm for Multiobjective Optimiza-
tion. In Evolutionary Methods for Design, Optimisation, and Control,
pages 95–100. CIMNE, Barcelona, Spain, 2002.

[165] Moshé M. Zloof. Query by Example. In Proceedings of the American
Federation of Information Processing Societies (AFIPS): 1975 National
Computer Conference, 19-22 May 1975, Anaheim, CA, USA, volume 44
of AFIPS Conference Proceedings, pages 431–438. AFIPS Press, 1975.

[166] Steffen Zschaler, Dimitrios S. Kolovos, Nikolaos Drivalos, Richard F.
Paige, and Awais Rashid. Domain-specific Metamodelling Languages for
Software Language Engineering. In Proceedings of the Second Interna-
tional Conference on Software Language Engineering, SLE 2009, Denver,
CO, USA, October 5-6, 2009, Revised Selected Papers, volume 5969 of
Lecture Notes in Computer Science, pages 334–353. Springer, 2010.

183

	1 Introduction
	1.1 Motivation
	1.2 Problem Statements
	1.2.1 PS 1: Design of an Optimal Core Language
	1.2.2 PS 2: User-Friendly Transformation into a Core Language

	1.3 Tour of the PhD Thesis
	1.4 Overview of Publications

	2 Related Work
	2.1 Related Work on Design of an Optimal Core Language
	2.1.1 Review Protocol
	2.1.2 Evaluation of the Review Results

	2.2 Related Work on User-Friendly Language Transformation
	2.2.1 Review Protocol
	2.2.2 Evaluation of the Review Results

	3 Requirements and Overview of the Solution
	3.1 Requirements on the Solution
	3.1.1 Requirements on Design of an Optimal Core Language
	3.1.2 Requirements on User-Friendly Language Transformation

	3.2 Overview of the Solution

	4 Design of an Optimal Core Language
	4.1 Concept of an Optimal Core Language
	4.1.1 Core Language Definition
	4.1.2 Core Language Optimality

	4.2 The Approach LOpt
	4.2.1 Overview of the LOpt Approach
	4.2.2 Comprehensive Core Language
	4.2.3 Configuration Approach
	4.2.4 Configure and Use the Optimal Core Language

	4.3 Evaluation
	4.3.1 Tool Support
	4.3.2 Evaluation on Case Studies
	4.3.3 Evaluation of the Requirements

	5 User-Friendly Language Transformation
	5.1 The Approach mtbe
	5.1.1 Overview of mtbe
	5.1.2 Creation of Model Mappings
	5.1.3 Creator
	5.1.4 Decoder
	5.1.5 Evaluator
	5.1.6 Selector
	5.1.7 Mutator
	5.1.8 Quality of Generated Model Transformations

	5.2 Evaluation
	5.2.1 Tool Support
	5.2.2 Evaluation on a Case Study
	5.2.3 Evaluation of the Requirements

	6 Conclusion and Future work
	6.1 Conclusion
	6.2 Future Work

	Bibliography

