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Zusammenfassung

In dieser Arbeit geht es um das Design und die Eigenschaften verschiedener Antennen
im optischen Frequenzbereich. Relevante Größen wie z.B. die Intensitätsverstärkung
oder die Richtcharakteristik werden dabei durch verschiedene semi-analytische und
numerische Methoden simuliert und mittels automatischer Optimieralgorithmen opti-
miert, was u.U. zu komplett neuartigen oder nicht intuitiven Strukturen führen kann.
Da Ableitungen der benötigten Gleichungen nur für die einfachsten Systeme analytisch
berechnet werden können, kommt es in dieser Arbeit hauptsächlich zur Anwendung
von nicht-gradientenbasierten Algorithmen, was zu einer beträchtlichen Erhöhung der
benötigten Iterationen und damit zu extremer Rechenleistung führt. Daher ist ein
wesentlicher Bestandteil einer solchen Optimierung, die Rechenleistung jeder Iteration
zu minimieren, z.B. durch geeignete Wahl von Randbedingungen oder Inkaufnahme
systematischer Abweichungen, die nach der Optimierung bereinigt werden können.

Im wesentlichen gibt es zwei verschiedene Antennentypen: Empfangende Antennen, die
die Energie von ebenen Wellen auf einen sehr kleinen Bereich fokussieren, und sendende
Antennen, die aus einer Dipolquelle eine gewünschte Abstrahlung generieren, meistens
möglichst in eine Richtung.

Zuerst werden bereits existierende, empfangende Antennen, die sich durch eine hohe
Feld- oder Intensitätsverstärkung in einem sehr kleinen Bereich auszeichnen, als Start
einer Optimierung betrachtet. Es ist bereits bekannt, dass solche Antennen besser
funktionieren, wenn sie nicht isoliert, sondern in einem periodischen Gitter angeordnet
sind. Hier wird jedoch gezeigt, dass manche Geometrien in solchen Gittern darüber hin-
aus Resonanzen besitzen, die auf kollektive Gittermoden zurückgeführt werden können.
Dadurch wird nicht nur die maximale Intensitätsverstärkung drastisch erhöht, sondern
diese Moden sind auch langlebiger, sodass mehr Energie aus der ebenen Welle verwen-
det werden kann. Danach wird eine freie Optimierung diskutiert, mit dem Ergebnis
einer neuen Struktur, deren Leistung nochmals deutlich besser ist, als vergleichbare
existierende Antennen.

Anschließend werden sendende Antennen behandelt, die sich durch eine hohe
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Richtcharakteristik auszeichnen sollen. Diese basieren auf Interferenzeffekten von
Dipolen (oder höherer Pole) und sollen optimiert werden. Die aus dem Rundfunk-
Bereich bekannten Yagi-Uda Antennen besitzen vor allem zwei Probleme bei optis-
chen Frequenzen: Erstens besitzen metallische Strukturen bei optischen Frequenzen
hohe Verluste und zweitens strahlen Dipole, die auf einem Substrat sitzen, bevorzugt
in ebendieses ein, wodurch die Anzahl an Dipolen (oder Antennenelementen), und
damit die Leistung der Antenne, begrenzt ist. In dieser Arbeit wird aufgezeigt, dass
beide Probleme durch geeignete, dielektrische Strukturen, die einem schwach führen-
dem Wellenleiter entsprechen, gelöst werden können. Diese Antenne ist zwar größer,
zeigt aber eine deutliche Verbesserung der Richtcharakteristik und ist robust bzgl. der
Fabrikationstoleranzen, was experimentell nachgewiesen wurde. Daneben wird eine
weitere dielektrische Antenne vorgestellt, die deutlich kleiner als die Wellenlänge des
emittierten Lichtes ist, und mit der verschiedene gewünschte Abstrahlungsbilder erzielt
werden können.
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Abstract

This thesis focuses on the design and characteristics of different antennas in the optical
frequency range. Relevant quantities such as intensity enhancement or directive gain
are calculated by several semi-analytical and numerical methods and are optimized via
automatic optimization algorithms, which might lead to new or unintuitive structures.
Since the derivatives of the corresponding equations can be calculated analytically only
for the most simple systems, in this work mainly non-gradient based algorithms are
used, resulting in an increase of necessary iterations and thus also the computational
effort. Therefore a main task is the minimization of the needed computation power
for each iteration, e.g. by choice of boundary conditions or acceptance of systematic
deviations, which can be resolved after the optimization.

In principle there are two different antenna types: Receiving antennas, which focus the
energy of plane waves on a very small area, and sending antennas, which transform the
nearly isotropic emission of a dipole source into a desired radiation pattern, mainly a
beam into the desired direction.

First, already existing, receiving antennas, which are characterized by a high field or
intensity enhancement in a very small area, are considered as the start of an optimiza-
tion. It is already known that the performance of such antennas is increased, if they are
not isolated, but are arranged in a periodic array. However, it is shown here that some
geometries in such arrays also have resonances that can be traced back to collective
array modes. As a result, not only the maximum intensity enhancement is drastically
increased, but these modes also exhibit a higher lifetime, so that more energy from the
plane wave can be used. After that a free optimization is discussed, resulting in a new
structure, whose performance is significantly increased compared to already existing
antennas.

Subsequently, transmitting antennas, which are characterized by a high directive gain,
are discussed. They are based on interferences of dipoles (or higher poles) and are
optimized in this work. The Yagi-Uda antennas, which are known from the radio
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frequency regime, have two main problems in the optical frequency regime: Firstly,
metallic structures exhibit high losses at optical frequencies, and secondly, dipoles
sitting on a substrate radiate preferentially into the substrate, whereby the number of
dipoles (or antenna elements ), and thus the performance of the antenna, is limited.
In this thesis it is shown that both problems can be solved by means of suitable,
dielectric structures that correspond to a weakly guiding waveguide. Although this
antenna is larger, it shows a significant improvement in the directive gain and is robust
with respect to fabrication tolerances, which has been demonstrated experimentally.
In addition, a dielectric antenna is proposed, which is significantly smaller than the
wavelength of the emitted light, and with which various desired radiation patterns can
be obtained.
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1. Introduction

Antennas basically have two purposes: Either they receive electromagnetic waves from
a remote source in order to extract contained information or to exploit the transmitted
power, or they create a well-defined radiation pattern from a point source, enabling
the electromagnetic waves to travel over large distances in free space. Today they
are mainly used as an interface between locally processed information, consisting of
electrical signals, and the free-space, wireless transmission of information, encoded
in several degrees of freedom of electromagnetic waves, such as frequency, phase, or
amplitude. There are ample approaches to design antennas in the radio frequency (RF)
regime, which are understood well and found their way in almost every part of the
current technology (e.g. radios, mobile phones, WLAN, Headphones, wireless bus
systems [1], or for power transfer in modern TVs [2]).

There are several (semi-) analytic concepts for their design, mostly using the well-
reasoned assumption, that the currents in such antennas appear only on its surfaces.
That this is the case not only for ideal metals, known as perfect electric conductor
(PEC), but also for real metals like copper, can be understood by comparing the skin
depth - the penetration depth of the electric field into the metal - of real metals to
the dimensions of the structure. The skin depth of an electromagnetic wave with a
frequency of f = 2.4GHz (one of the three WLAN frequency bands) is δCU = 1.3µm.
The vacuum wavelength of such a wave is then λ = 12.5cm. For antennas to work
properly, their dimensions have to be (roughly) in the same order of magnitude as the
wavelength. With the skin depth being smaller by a factor of around 100,000, one
can safely assume, that the currents are surface currents only, leading to much simpler
calculations of the properties of antennas.

Over the past decade the progress in structuring techniques enabled the fabrication
of high-quality metallic nano structures with nearly arbitrary geometrical shapes [3].
Since many of the (surface-plasmon based) properties can be controlled via the geo-
metrical shape and the dimensions of the structure, this field has gained a tremendous
interest over the last years. Particularly the transfer of the knowledge of antennas
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1. Introduction

in RF regime to optical frequencies have been of interest, known as optical or nano
antennas, leading to plenty of new applications [4], e.g. enhancing [5] and directing [6]
the emission of single molecules. It can also be used for small volume spectroscopy [7],
nonlinear spectroscopy [8], for holographic multiplexing [9], coherent control of surface
plasmon polaritons (SPPs) [10], or coupling of free-space waves to surface plasmon
waveguides [11].

However, since the skin depth becomes comparable to the dimensions of optical anten-
nas, one cannot assume to have only surface currents any more, making the simulations
more complicated, but also offering new properties of such. Since the optical field usu-
ally penetrates through the whole structure, they affect the free electrons within the
metal simultaneously, leading to so called plasmonic resonances, which are very sensi-
tive to the geometrical shape and the dimensions of the antenna. The usage of such
a surface plasmon polariton (SPP) further leads to smaller dimensions, since their
wavelength is much smaller than the wavelength of light with the same frequency in
vacuum.

Using appropriate geometries, those structures can be used to focus optical fields to
very small areas, acting as a receiving antenna. Using conventional lenses one can
theoretically focus a Gaussian beam of light to a minimum radius of half of its wave-
length. For light of the wavelength of λ = 800nm the beam waist would be then
d = 400nm, where nanoantennas can focus the light to areas with radius of a few tens
of nanometers. When dealing with nanoantennas one usually measures the electric
field or intensity enhancement in a defined point or area instead of the area of focus.
Particularly for nonlinear processes in small structures like quantum dots or molecules
such antennas provide a huge advantage, because for such experiments extremely high
field strengths are required, which could, if distributed uniformly over a large area,
evaporate the nano structures or the substrate. Typical antennas enhance the inten-
sity by a factor of several hundred, so that, if the antenna and the nano structure are
positioned appropriately, the intensity of the exciting optical fields can been reduced
correspondingly, saving energy, increasing the life time of the investigated structures,
and decreasing the experimental complexity, though increasing the effort in fabricating
those structures significantly.

Many different geometries have been investigated so far, e.g. bow-ties [12], a dimer
consisting of spheres [13], nanorods [14], or dumbbell-shaped nanorods [15], just to
name a few. All have in common, that the designer had a structure in mind, where only
existing parameters have been roughly optimized, mainly by trial-and-error. Models
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containing design rules are only known for the most simple antennas [16]. In this work
an automatic optimization process is used firstly to optimize already existing structures
like the bow-tie and secondly to perform a free-form optimization. By the usage of
such automatic optimization algorithms one often ends up with unintuitive structures,
which are not limited by the creativeness of a designer, but also might give more
insight into the mechanisms in such antennas. Therefore such automatic optimization
routines can also be used as an analysis tool. Unfortunately they usually need extremely
high computation power to get results and a convergence to a reasonable structure
requires many constrains and therefore the optimization process becomes complicated.
Also with increasing degrees of freedom one gets theoretically an increasing number of
concurrent solutions, but ends up with only one, which might not be the best.

So far only receiving antennas, which couple to the far field and change the near field
patterns, have been discussed. With the technology available nowadays, semiconduc-
tor structures can be fabricated with dimensions much smaller than the wavelength of
waves in the optical frequency regime. A prominent representative of such a semicon-
ductor heterostructure is the quantum dot (QD). They are already widely used, e.g.
in QD lasers, diodes, or single electron transistors. Additionally, they are promising
candidates for quantum information processing, e.g. for manipulation and storage of
quantum information [17]. Since the charge carriers are confined in all three dimen-
sions, the energy levels are discrete in all dimensions like in atomic systems. Thus they
are often called artificial atoms. Optically excited they become a perfect point (dipole)
source, since they are stable and some parameters can be controlled well (e.g. dimen-
sions, energy levels), though the positioning of such small emitters is still a challenge.

Such quantum dots can be used as stable and efficient single photon sources [18], but
they radiate like a point dipole, i.e. in all directions, where many of the generated
photons cannot be used properly. However, this can be overcome by structuring the
dielectric environment, e.g. in Ref. [19] little trumpets have been used to couple the
single photons to a Gaussian beam. Also the usage of antennas may generate useful
radiation patterns.

A QD (as well as nitrogen-vacancies in diamond) can also be used to store a quantum
bit (qubit), the quantum mechanic analogue of a classical bit. To be able to optically
address each single qubit, they have to be spatially separated, but entangling operations
between qubits can be achieved by exploiting single-photon interference effects [20]. For
that high performance nanoantennas would be extremely useful, since they are able
to collimate the emission into a narrow beam. Such antennas can be divided into two
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1. Introduction

groups: plasmonic and dielectric antennas.

Plasmonic antennas usually consist of metals or other conducting materials (e.g.
graphene) and exhibit large scattering cross sections, which means, that they have a
strong effect on their environment. In principle one could transfer much of the knowl-
edge of directive antennas from studies made in radio-frequency, e.g. classical Yagi-Uda
antennas for TVs, but there are also many differences like plasmonic resonances or the
parasitic impedance of the substrate, on which the antennas are positioned. In Ref. [21]
a 5-Element Yagi-Uda like antenna has been investigated using cathodoluminescence
spectroscopy. However, all plasmonic antennas show high intrinsic losses for optical
frequencies, resulting in low efficiencies, rendering them almost useless for quantum
computation, though they are still useful for spectroscopy.

Dielectric antennas consist of dielectric, i.e. non-conducting, materials, where either
the dielectric environment is manipulated (e.g. using transformation optics [22]) or the
interference of dipole (or higher order pole) resonances are utilized. Using appropriate
materials one can design antennas almost without material losses, giving them a huge
advantage over plasmonic based antennas, though often with the drawback, that such
dielectric antennas become significantly larger than their plasmonic counterparts. In
this work several improvements of directive nanoantennas are shown for the near-
infrared (NIR) regime, starting with the optimization of the classical Yagi-Uda antenna
and then turning to other materials and geometries.

1.1. Structure of this work

The structure of this thesis is divided into 5 chapters. The simulation of electromag-
netic waves is shown in chapter 2, where the main properties of the finite integration
technique (FIT) together with the dielectric function of gold are discussed. Although
part of the work is obtained by the usage of the finite difference time domain (FDTD)
method, it is not described here, because it is assumed, that this method is already
known well or can be read upon, e.g. in the book in Ref. [23]. Additionally, the
coupled dipole approximation (CDA) is shortly discussed, where only dipole fields are
calculated, which is useful to identify the mechanisms of Yagi-Uda antennas.

In chapter 3 a very brief overview of the optimization theory in general and some
algorithms is given. Though not developed in the scope of this work, it is important to
understand how they work, because the results depend strongly on how an automatic
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1.1. Structure of this work

optimization algorithm is applied.

In chapter 4 optical antennas, which focus light on a small area, are discussed. As
mentioned above the main quantity is the intensity enhancement in a defined point or
area close to the antenna, which is dependent on many parameters like the material,
geometrical shape, or the arrangement in an array of such antennas. A nearly free
optimization is shown as well as fabrication related constraints.

In chapter 5 an overview of directive antennas is given, starting with the classical
antenna theory, developed for the RF regime. Then the plasmonic based antennas
are optimized for optical frequencies, switching to dielectric materials. At the end this
chapter the design of an extremely small antenna, made of silicon, is discussed, allowing
several useful radiation patterns by changing only the size of this antenna.

The last chapter 7 concludes this work and gives a short outlook on possible future
works.

In the appendix obtained parameters are listed in section A. In section B the equations
for the CDA, calculated for 5 particles, are given.
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2. Simulation of electromagnetic
waves

In this work nano structures, which modify light, are investigated. The frequencies
lie in the optical and near-infrared regime and can be described via the macroscopic
Maxwell’s equations. These have to be solved numerically to calculate the desired
properties of the nano structures. In this work the light and material are assumed to
behave classically, which means neither electromagnetic fields nor the energy states in
matter are quantized. This is a reasonable assumption, since the nano structures are
large compared to e.g. a typical quantum dot and the density of photons is sufficiently
high.

In the following chapter first the well known Maxwell’s equations are summarized. Since
analytical solutions are only available for simple structures, all results are achieved by
numerical calculations. So one of the not so well known methods, the finite integration
technique (FIT), which has mainly been used in this work, is introduced in detail in
this chapter as well. Apart from this method many results have been achieved by an
in-house code of a standard finite difference time domain (FDTD) algorithm, which is
mainly based on Ref. [23], the standard book for this method, so the formal description
has been omitted.

Since the FIT and FDTD solve the full Maxwell’s equations, it is useful to investigate
some structures with a simplified model to get a simple picture of a given system. So a
short introduction to the coupled dipole approximation (CDA) has been made as well,
mostly to identify, if the investigated antenna can be described by dipoles only and
therefore get a deeper insight into the mechanisms of the nanoantennas.
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2. Simulation of electromagnetic waves

2.1. Maxwell’s equations and propagation of
electromagnetic waves

The propagation of electromagnetic waves can be described by the macroscopic
Maxwell’s equations, a system of four partial differential equations. The integral for-
mulation is given in equations (2.1a) - (2.1d).

∮
∂A

E(r, t) · ds = −
∫
A

∂

∂t
B(r, t) · dA (Faraday’s law) (2.1a)∮

∂A
H(r, t) · ds =

∫
A

Ç
∂

∂t
D(r, t) + J(r, t)

å
· dA (Ampère’s law) (2.1b)∮

A
D(r, t) · dA =

∫
V
ρ(r, t)dV (Gauss’s law) (2.1c)∮

A
B(r, t) · dA = 0 (2.1d)

Using Gauss’s and Stokes’ law, one can derive the equivalent, differential formulation
of Maxwell’s equations (2.2).

∇×E(r, t) = − ∂

∂t
B(r, t) (2.2a)

∇×H(r, t) =
∂

∂t
D(r, t) + J(r, t) (2.2b)

∇ ·D(r, t) = ρ(r, t) (2.2c)

∇ ·B(r, t) = 0 (2.2d)

In order to solve them, one needs the constitutive material relations in equations (2.4),
which are given in a general form in time domain.

D(r, t) = ε0E(r, t) + P (r, t) (2.3a)

B(r, t) = µ0 (H(r, t) +M (r, t)) (2.3b)

J(r, t) = σ(r, t)E(r, t) + Jinc(r, t) (2.3c)

Using the Fourier transform, or more accurately the differentiation theorem, one ob-
tains Maxwell’s equations in frequency domain. For homogeneous, linear and isotropic
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2.1. Maxwell’s equations and propagation of electromagnetic waves

media one can simplify the material relations in frequency domain to:

D(r, ω) = ε0εr(ω)E(r, ω) (2.4a)

B(r, ω) = µ0µr(ω)H(r, ω) (2.4b)

J(r, ω) = σ(r, ω)E(r, ω) + Jinc(r, ω) (2.4c)

If the relative permittivity εr and permeability µr are independent of the frequency
ω, which can only be an approximation in a limited frequency range according to
Kramers-Kronig relations, the first two material relations can be transformed back to
time domain.

D(r, t) = ε0εrE(r, t) (2.5a)

B(r, t) = µ0µrH(r, t) (2.5b)

(2.5c)

Taking the curl of the equations (2.2a) and (2.2b), leads to the so called wave equation
for electromagnetic waves:

∇×∇×E(r, t) = −µ0
∂2

∂t2
D(r, t) (2.6)

Transforming this equation into the Fourier domains, one obtains the generic dispersion
relation for transversal waves (k ·E = 0)

k =
»
εr(ω,k)

ω

c0
, (2.7)

where k = |k| is the wave number and ω the angular frequency of the electromagnetic
wave and c20 =

1
ε0µ0

is the speed of light in free space.

One important property of Maxwell’s equations is the implicitly stated continuity equa-
tion. It is derived by taking the divergence of eq. (2.2b) and using eq. (2.2c) to simplify
the equation

∇ · J(r, t) = − ∂

∂t
ρ(r, t), (2.8)
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2. Simulation of electromagnetic waves

which means, that a current changes the charge carrier density and vice versa.

2.2. The Finite-Integration-Technique (FIT)

The dynamics of electric and magnetic fields can be described via Maxwell’s equations,
together with the constitutive material equations and appropriate boundary condi-
tions. They build a system of coupled partial differential equations, which can be
solved analytically only for very simple problems. Since optical devices are usually
of more complex structure, one has to solve these equations numerically. Within the
last century several methods have been developed to do so, e.g. the finite element
method (FEM), the FDTD or boundary element method (BEM).

During the 1970th the fundamentals of the FIT were proposed [24], but still much
research is done to enhance accuracy and simulation time or to develop new features.
As a result, the commercial software package CST Microwave Studio [25], which is
based on the FIT, has been very successful over the last years, and is also used in this
work. In the following chapter only the fundamental concept is summarized, with the
notation mainly used from [26].

2.2.1. Discretization of the computational domain

As known from other numerical models, the computational domain Ω ∈ R3 has to
be decomposed into a finite number of simplicial cells Vi. Note, that the FIT is not
restricted to Cartesian meshes, but allows unstructured meshes as well [27, 28]. In
frequency domain an unstructured grid (consisting of e.g. tetrahedral cells) is often
used, but in this work mainly a structured grid consisting of hexahedral cells has been
used, since it is advantageous for time domain calculations. Similar to the Yee-Cube
in the FDTD method [23] two orthogonal grids are used, the primary (here referred to
as G) and the dual grid (here referred to as G̃), as sketched in Fig. 2.1.

The points P on the primary grid G can be addressed in an arbitrary coordinate system
with the coordinates u, v and w. In eq. (2.9) the sampling of the grid is given by the
maps of u(i), v(j), and w(k).

P (i, j, k) = u(i)eu + v(j)ev + w(k)ew (2.9)
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Fig. 2.1.: The spatial allocation of a cell and a dual cell of the grid doublet {G, G̃} is shown.
The primary grid is colored red, the dual grid blue.

For the implementation of the FIT it has been advantageous to replace the indexing
(i,j,k) by one index n, defined in eq. (2.10).

n = i+ (j − 1) nu︸︷︷︸
Mv

+(k − 1)nunv︸ ︷︷ ︸
Mw

(2.10)

For a better readability an arbitrary coordinate is referred to as ν, which is ether u, v, or
w. The corresponding two other coordinates are then ξ and ζ. With this definition the
edges sν , facets Aν , and volumes V within the computational domain can be expressed
in a parametric representation depending on the index n, given in eqs. (2.11) to (2.13).

sν(n) =

P (n) + aνhν∆νneν |aν ∈ [0, 1]

 (2.11)

Aν(n) =

P (n) +
∑
λ=ξ,ζ

aλhλ∆λneλ |aξ,ζ ∈ [0, 1]

 (2.12)

V (n) =

P (n) +
∑

λ=ν,ξ,ζ

aλhλ∆λneλ |aν,ξ,ζ∈ [0, 1]

 (2.13)

Please note, that the quantities sv and Av are often used for both, the grid edges (or
facets) and the corresponding lengths (or areas), which usually is clear from the con-
text. The variables hi are the metrical factors of the corresponding coordinate system,
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2. Simulation of electromagnetic waves

whereas ∆λ describes the step size of each coordinate axis. With this definition one
obtains some redundant grid points, which lie outside of the computational domain.
However, to maintain the symmetry of the resulting matrix these points are still allo-
cated, but set to zero. Using this indexing one obtains np = nunvnw grid points and
volumes and 3np grid edges and facets.

In order to solve Maxwell’s equations, each cell is filled homogeneously with one mate-
rial, which means a spatially constant relative permittivity (εr) and permeability (µr),
causing a geometrical discretization error. The mesh has to be generated not only to
ensure a stable solution of Maxwell’s equations, but also to ensure an accurate repre-
sentation of the simulated structure. This is illustrated in Fig. 2.2 (a). This example
consists of two elliptical cylinders of the same material, a large one (light blue) and a
smaller one (green). Two cross sections are shown, one of each cylinder. The resolution
of the mesh (gray) is a uniform mesh, which means that all cells have the same size.
The resolution of this example is high enough to get a stable solution of Maxwell’s
equations, but to low to resolve the geometry. For the most simple case, that a cell is
filled with the material, which covers more than half of the cell, one would get a square
of four cells for the small cylinder.

In order to improve the resolution, one can either decrease the size of the cells uniformly
or refine the mesh locally. The latter case is often preferred, when one has to deal with
structures of different length scale such as a nano structure on substrate, surrounded
by vacuum. Advantage compared to the first case is a reduction of memory and com-
putation time. Disadvantage is an increased numerical dispersion, which might lead
to some artifacts especially if the computational domain is large in comparison with
the incident wavelength of the light. This is illustrated in Fig. 2.2 (b) for the two
cylinders again. There one can see, that in a hexahedral grid the local mesh refinement
extends in normal direction to the shown cut plane, which reduces the reduction of
computation time.

For all four Maxwell’s equations to be discretized over space an additional grid is
required, the so called dual grid G̃. It is defined by taking the foci of the cells of the
primary Grid G as its grid points (c.p. Fig. 2.1). For a uniform hexahedral grid,
the points of P̃ (n) of the dual grid G̃ are displaced by the half of the step width in
direction of each coordinate. As a consequence facets Ãν(n) are each pierced through
by the edges sν(n) of the primary grid, which are perpendicular to the facets. In
contrast to the primary grid, all points P̃ (n) of the dual grid lie in the computational
domain.

22



2.2. The Finite-Integration-Technique (FIT)

(a) Uniform grid of two elliptical cylinders consit-
ing of the same material. Two cross sections are
shown, one in the small and one in the large cylin-
der.

(b) Non-uniform grid with local mesh refinement of
two elliptical cylinders consiting of the same ma-
terial. Two cross sections are shown, one in the
small and one in the large cylinder.

Fig. 2.2.: Illustration of a rectangular mesh for two cylinders of the same material. The
gray lines show the primary grid only. In a) a cross section of each cylinder with
a uniform grid is shown. For the case, that the cylinder covers more then half of
a cell, the cell is filled with the material of the cylinder (indicated by dark green
and blue). Though the size of the cells is small enough for a stable solution of
Maxwell’s equations, particularly the small cylinder is represented poorly, for it
would look like a square. In b) the same geometry is shown, albeit with a non-
uniform grid and a local mesh refinement. In order to better resolve the small
cylinder, the cells inside of it are much smaller, than around.

2.2.2. Discretization of Maxwell’s equations

In contrast to the Finite Difference method, the integral Maxwell’s equations are solved
in the Finite Integration method. For that it is convenient not to evaluate the dis-
cretized electric and magnetic fields, but to use grid voltages and and fluxes instead,
defined in equations (2.14).

Ûeν(n) = ∫
sν(n)

E(r, t) · ds (electric grid voltage) (2.14a)Ûhν(n) =
∫
s̃ν(n)

H(r, t) · ds (magnetic grid voltage) (2.14b)ÛÛdν(n) =
∫∫

Ãν(n)
D(r, t) · dA (electric surface flux) (2.14c)ÛÛbν(n) =

∫∫
Aν(n)

B(r, t) · dA (magnetic surface flux) (2.14d)ÛÛjν(n) = ∫∫
Ãν(n)

J(r, t) · dA (grid current) (2.14e)

q(n) =
∫∫∫

Ṽ (n)
ρ(r)dV (grid charge) (2.14f)
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Fig. 2.3.: A cell Vn of the primary grid G with the allocation of the grid voltages Ûe on the
edges of An and the magnetic facet flux ÛÛb through the corresponding surface.

Using these definitions and replacing the closed line integral by the sum of line integrals
over the edges of the surface, one obtains the discretized representation of equations
(2.1a) and (2.1b) for the volume Vn. Figure 2.3 illustrates the meaning of equation
(2.15) using a standard Cartesian coordinate system. Please note, that the sign for the
directions of the edges is in general arbitrary, but here only the common notation is
shown.

Ûeξ(n)− Ûeξ(n+Mζ) + Ûeζ(n+Mξ)− Ûeζ(n) = − d

dt

ÛÛbν(n) (2.15)Ûhξ(n)− Ûhξ(n−Mζ) + Ûhζ(n−Mξ)− Ûhζ(n) = − d

dt

ÛÛdν(n) +
ÛÛjν(n) (2.16)

In the same manner equations (2.1c) and (2.1d) can be discretized.ÛÛdu(n)−
ÛÛdu(n− 1) +

ÛÛdv(n)−
ÛÛdv(n−Mv) +

ÛÛdw(n)−
ÛÛdw(n−Mw) = q(n) (2.17)ÛÛbu(n)−

ÛÛbu(n+ 1) +
ÛÛbv(n)−

ÛÛbv(n+Mv) +
ÛÛbw(n)−

ÛÛbw(n+Mw) = 0 (2.18)

For a compact notation the grid voltages (Ûe(n), Ûh(n)) and fluxes (ÛÛd(n), ÛÛb(n), ÛÛj(n))
are condensed into vectors with 3np elements (Ûe, Ûh, ÛÛd, ÛÛb, ÛÛj). The corresponding grid
charge q is then a vector of np elements. The vectors are exemplarily defined in eqs.
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2.2. The Finite-Integration-Technique (FIT)

(2.19).

Ûeν = (Ûeν(1) . . . Ûeν(np))
T ÛÛdν =

ÅÛÛdν(1) . . .
ÛÛdν(np)

ãT
q = (q(1) . . . q(np))

T (2.19a)

Ûe =

áÛeνÛeξÛeζ
ë ÛÛd =

àÛÛdνÛÛdξÛÛdζ

í
(2.19b)

Additionally the matrices Pν are defined as

P i,j
ν = −δi,j + δi,j−Mν , (2.20)

where Mv = 1. The matrices Pν can be interpreted as a discrete form of the partial
derivative with respect to the coordinate ν. With this definition one can build the
discrete curl operator C, as well as the divergence operator S, where the operators C̃
and S̃ are defined on the dual grid.

C =

á
0 −Pw Pv

Pw 0 −Pu

−Pv Pu 0

ë
C̃ = CT (2.21)

S =
(
Pu Pv Pw

)
S̃ =

(
−Pu −Pv −Pw

)
(2.22)

In this compact representation the equations (2.15) to (2.18) are reduced to equations
(2.23). Since this system of coupled equations is the discrete equivalent of Maxwell’s
equations, they often are called Maxwell-Grid-Equations.

...
CÛe = − d

dt

ÛÛb (2.23a)

C̃Ûh =
d

dt

ÛÛd +
ÛÛj (2.23b)

S̃ÛÛd = q (2.23c)

SÛÛb = 0 (2.23d)

An important feature of the Maxwell-Grid equations is the built-in continuity equation:
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S̃(C̃Ûh) = 0 (2.24)

= S̃
Ç
d

dt

ÛÛd +
ÛÛjå (2.25)

=
d

dt
q + S̃ ÛÛj = 0 (2.26)

The discrete continuity equation ensures that no spurious charges will occur. Such
non-physical charges would result in additional static fields, contaminating discrete
transient field solutions [29].

Please note, that so far no approximation has been made, i.e. the Maxwell-Grid-
Equations are an exact representation of the integral Maxwell’s equations on a grid
doublet. However, when introducing the discretization of the constitutive material
equations, approximations are inevitable.

2.2.3. Discretization of material relations

As mentioned the approximation of the Finite Integration method enters, when the
integral state variables, which are allocated on the two different cell complexes G

and G̃, are to be related to each other by the constitutive material equations. Since
in this work only a Cartesian grid is considered, the cell complexes G and G̃ are
dual orthogonal and represent a so called Delaunay-Voronoi-Grid doublet [29]. So
the directions associated to the facet and to the dual edge penetrating this facet are
identical.

For linear, isotropic, and lossless materials the local relation between Ûeν and ÛÛdν can be
calculated by eq. (2.29).ÛÛdν(n) = ε0

iν∑
i=1

εr
Ä
n−M (i)

ν

ä ∫
Ã

(i)
ν (n)

E(r, t) · dA (2.27)

≈ ε0
Ûeν(n)
sν(n)

iν∑
i=1

Ã(i)
ν (n)εr

Ä
n−M (i)

ν

ä
(2.28)

=
Ãν(n)

sν(n)
εν(n)Ûeν(n) (2.29)

The identifier M (i)
ν serves to index the neighboring primary volumes, whose intersec-

tions with the dual facets, which are directed in ν-direction, define the facets Ã(i)
ν :
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2.2. The Finite-Integration-Technique (FIT)

Ã(i)
ν (n) = Ãν(n) ∩ V (n−M (i)

ν ) (2.30)

In eq. (2.29) the local, averaged permittivity is then given by

εν(n) = ε0
iν∑
i=1

Ã(i)
ν (n)

Ãν(n)
εr
Ä
n−M (i)

ν

ä
. (2.31)

As for the state variables, the averaged permittivities of the cells can be written as
vectors.

εν =

á
εν(1)

...
εν(np)

ë
ε =

á
εu

εv

εw

ë
(2.32)

Similarly the averaged permeability can be derived, though it is convenient to use the
inverse of the permeability. Ûhν(n) ≈

s̃ν(n)

Aν(n)
µ−1
ν (n)

ÛÛbν(n) (2.33)

with µ−1
ν (n) = µ−1

0

jν∑
j=1

s̃(j)ν (n)

s̃ν(n)
µ−1
r

Ä
n+M (j)

ν

ä
(2.34)

Defining the diagonal permittivity and permeability matrices

Dε = Diag {ε} , Dµ−1 = Diag
¶
µ−1

©
(2.35)

and matrices containing the lengths and areas of the grid cells,

Ds = Diag


á

su

sv

sw

ë , sν =

á
sν(1)

...
sν(np)

ë
(2.36)

DA = Diag


á

Au

Av

Aw

ë , Aν =

á
Aν(1)

...
Aν(np)

ë
(2.37)
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one obtains a compact form of the discretized material relations in eq. (2.38).ÛÛd = D̃ADεD−1
s
Ûe = MεÛe (2.38a)Ûh = D̃sDµ−1D−1
A

ÛÛb = Mµ−1
ÛÛb (2.38b)

One consequence of using a hexahedral grid is, that the material matrices are in diag-
onal form, which significantly reduces the computational effort for solving the system
of equations.

2.2.4. Boundary conditions

Solving Maxwell’s equations in finite domain requires some conditions for the bound-
aries, in order to simulate realistic systems accurately. In this chapter the most promi-
nent conditions are briefly discussed, for they are well known in literature and their
principles work for most numerical methods in a similar way.

Electric Boundary Conditions (PEC-BC)

The most simple boundary condition is the electric one, where the tangential compo-
nents of the electric grid voltage at the boundaries are set to zero, i.e. n× Ûe = 0, with
the normal vector n of the corresponding boundary. Consequence of this is, that the
normal component of the magnetic grid flux has to be zero as well, i.e. n · ÛÛb = 0. This
can be easily implemented in the FIT by setting the corresponding elements of the
operator C to zero. The electric boundary conditions are equivalent with an enclosure
of the computational domain with a perfect electric conductor (PEC), thus the often
used name PEC Boundary Condition.

Periodic Boundary Conditions (PBC)

Periodic boundary conditions are used to model an infinite array of identical structures.
In the general case, the tangential components of the grid voltages of two edges, which
lie on the opposite sides of the computational domain, have a fixed phase relation, i.e.Ûe∥,1 = Ûe∥,2eiϕ, which has already been implemented in 1986 [30]. Therefor the number
of degrees of freedom is reduced, since the state variables at the boundary of one side
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2.2. The Finite-Integration-Technique (FIT)

depends on the state variables on the other side. Thus such boundary conditions are
called Master-Slave-Boundary-Conditions for the finite element method. It is clear
then, that the mesh at opposite sides of the computational domain has to be identical.

Open Boundary Conditions

Open boundary conditions are used to simulate an isolated structure. In order to do
that, they have to fulfill many requirements. Propagating and evanescent electromag-
netic waves have to be able to penetrate through these boundaries with almost no
reflection. This has to be the case for almost any angle of incidence and for wide range
of frequencies simultaneously. Since the proposal in [31] the perfectly matched layer has
been the most often used boundary condition. With that the computational domain
is extended by a few layers of an impedance matched conducting material, which has
no physical relevance, but absorbs an electromagnetic wave almost without reflection.
A more detailed description of the PML in FIT can be found in [32, 33, 34].

2.2.5. Time integration of Maxwell’s equations

While several time integration algorithms were developed, the Leapfrog algorithm has
been the method of choice for solving Maxwell’s equations since the publication of Yee
in 1966 [35]. This has been developed for the Finite Difference method (FDTD), but
is easily implemented within the FIT.

Main advantage of the Leapfrog algorithm is, that it is time invariant and, as conse-
quence, the law of energy conservation is fulfilled. Also it is an explicit algorithm, i.e.
for calculating the state variables of the next time step mainly matrix products are
necessary, which saves much computational effort compared to implicit methods. Due
to the sparsely populated material and operator matrices, the computational effort
scales linearly with the degrees of freedom.

The two equations, which have to be integrated over time, can be written as in equations
(2.39) and (2.40).

d

dt
Ûh(t) = −Mµ−1CÛe(t) (2.39)

d

dt
Ûe(t) = M−1

ε

Å
C̃Ûh(t)− ÛÛj(t)ã (2.40)
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Since the surfaces and volumes of the grid cells remain constant over the simulation,
one can take the time derivative out of the integrals, with which one obtains an ordinary
derivative instead of a partial one with respect to time. This makes the integration more
stable, since one has to care less about the characteristics, which play an important
role for integrating a system of partial differential equations1. As a consequence one
can use a constant step size for all time steps.

The Leapfrog algorithm employs a central difference scheme, i.e.

d

dt
f (m+1/2) =

f (m+1) − f (m)

∆t
+O(∆t2), (2.41)

with the time step size ∆t. Therefor it is convenient to describe the state variablesÛh, ÛÛb and ÛÛj on a time grid with the points ti = i∆t. The other variables Ûe and ÛÛd are
defined on the points in between, i.e. ti = (i+1/2)∆t. With that, the time derivatives
can be replaced by this central difference scheme:

d

dt
Ûh(i+1/2)

≈
Ûh(i+1)

− Ûh(i)

∆t
(2.42)

d

dt
Ûe(i+1) ≈

Ûe(i+3/2) − Ûe(i+1/2)

∆t
(2.43)

Inserting the central differences into equations (2.39) and (2.40), one obtains the update
scheme for the finite integration technique in time domain:

Ûe(i+1/2) = Ûe(i−1/2) +∆tM−1
ε

Ç
C̃Ûh(i)

− ÛÛj(i)å (2.44)Ûh(i+1)
= Ûh(i)

−∆tMµ−1CÛe(i+1/2) (2.45)

Please note, that the update equations for a hexahedral grid are identical with the ones
known from the FDTD method, but the treatment of the boundaries is different. Also
these state variables are different from FDTD, where the electric and magnetic fields
are directly calculated.

1In this context the difference between integrating an ordinary and a partial derivative with respect
to time is not significant, since the speed of light is constant in each cell. However, if electro-optical
effects are included, i.e. the refractive index becomes dependent on the electric field strength, the
speed of light in each cell is also dependent on the electric field. For such simulations the differ-
ence is not negligible any more. This is not a pathological example, since this effect is used e.g.
in integrated-optical Mach-Zehnder interferometers, which are commonly used in telecommunica-
tions.
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So far only the grid quantities have been calculated. To get the (physical) electric and
magnetic fields, one has to divide the state variables by the edge length or face area,
respectively.

eν(n) =
Ûeν(n)
sν(n)

hν(n) =
Ûhν(n)

s̃ν(n)
(2.46)

bν(n) =

ÛÛbν(n)

Aν(n)
dν(n) =

ÛÛdν(n)

Ãν(n)
(2.47)

Formulating these quantities in the condensed form, where all state variables were put
in one vector (see chapter 2.2.2), and using the diagonal matrices containing the lengths
and areas of the edges and faces of the cells, one obtains:

e = D−1
s
Ûe (2.48a)

h = D̃−1

s
Ûh (2.48b)

b = D−1
A

ÛÛb (2.48c)

d = D̃−1

A

ÛÛd (2.48d)

2.2.6. Numerical stability

In order to derive a stability criterion it is necessary to have a closer look at the dis-
persion relation of a plane, electromagnetic wave in vacuum. In the case of continuous
Maxwell’s equations (in vacuum) it is well known:

k2
x + k2

y + k2
z =

ω2

c2
, (2.49)

with the angular frequency ω and the wave vector k = (kx, ky, kz)
T . After discretization

of space and time, one can derive the dispersion relation for a Cartesian grid of space
and time [26]:

(
sin(1

2
kxsx)
sx
2

)2

+

(
sin(1

2
kysy)
sy
2

)2

+

(
sin(1

2
kzsz)

sz
2

)2

=
1

c2

(
sin(1

2
ω∆t)

∆t
2

)2

, (2.50)

with the speed of light in vacuum c and the corresponding lengths of the cell edges
si. It is required for all natural oscillations and their superposition that the field
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energy remains bounded, which means that in case of harmonic oscillations the angular
frequencies ω have to be real-valued. This can be achieved by the conditionÇ

sin(1
2
ω∆t)

å2

≤ 1. (2.51)

Equivalent requirements for the three terms on the left side lead to a condition for the
size of the time steps, which is called Courant-Friedrichs-Lewy (CFL)2 condition:

∆t = a
1

c

1√
1
s2x

+ 1
s2y

+ 1
s2z

, (2.52)

with a constant a ∈ [0, 1[. This condition is only valid for homogeneous, equidistant
grids. In practice one usually deals with several materials and non-uniform grids (often
with a local mesh refinement), so that the condition above has to be modified:

∆t = a

√
εiµi…

1
s2x,i

+ 1
s2y,i

+ 1
s2z,i

(2.53)

This expression is an empirical one, where the time step size depends on the size of the
smallest cell within the computational domain.

This expression is only a compromise between to different errors made by the integra-
tion with respect to time. Consider one cell of an equidistant grid and a time step size
higher than calculated by the expression above, then one would neglect influences by
the fields in the cells next to the one considered, i.e. one would get a non-physical be-
havior of the fields, because one would underestimate the implicated speed of light. On
the other hand, if the time step size is chosen way to small, one would consider influ-
ences of neighboring cells too much, i.e. one would overestimate the implicated speed
of light. This results in an unwanted dispersion (the so called numerical dispersion),
but mostly the simulation is stable. To systematically treat this problem, one would
have to integrate each cell with a different time step size, which is unpractical. This is
why one has to choose the maximum time step, where the simulation still runs stable.
For most applications typical values for the parameter a lie in between a = 0.9 and

2Particularly in the community of the finite difference time domain method, this condition is often
only called the Courant condition. Reducing this method to 1D and using an equidistant grid, one
obtains the so called magic time step, where the relation between time step size and cell lengths
is exact and no numerical dispersion occurs, because the time integration is done exactly on one
of the so called characteristics. Further information can be found in [23].
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a = 0.99. In this range the numerical dispersion can be neglected for most applications
and small simulation spaces, but in some applications like resonators the numerical
dispersion can be significant, which results in e.g. shifts in resonance frequencies.

2.3. Near-Field to Far-Field transformation

In this work directional antennas are optimized. Characteristic of such antennas are
quantities such as directivity or gain, which are both determined in the far field. How-
ever, using a FDTD or FIT algorithm usually gives you information about the near
field only, so a near to far field (NTFF) transformation has to be applied. Using the
near-field data obtained in a single FDTD modeling run, this transformation efficiently
and accurately calculates the complete far-field radiation pattern of such an antenna.
In this section only a short summary of this transformation will be described. A more
detailed derivation can be found in [23].

The standard NTFF-transformation formulation is based on the surface equivalence
theorem. The idea is, that knowledge of the equivalent electric and magnetic currents
tangential to any closed path, surrounding a two dimensional structure is sufficient to
calculate the far field by integration of those currents [36].

Consider an arbitrary structure surrounded by vacuum, such as in Fig. 2.4 (a). It
can be assumed, that all of the space is filled with the electric field E1 and magnetic
field H1, generated by the electric and magnetic current sources J1 and M1, which are
flowing on the surface of the structure. By removing the structure the fields inside of
the space S change to (E,H).

Since the fields within S can be anything, it is useful to assume them to be identically
zero. So the original structure can be replaced by an empty space with equivalent
currents on its surface (Fig. 2.4 (b)), where the equivalent current densities can be
expressed as

JS = n̂×H1 (2.54)

MS = −n̂×E1 (2.55)

with the unit outward normal vector n̂ to S. Following this concept and using inverse
Fourier transform leads to the expression for the near-to-far-field in time domain:
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Fig. 2.4.: Sketch of the electric and magnetic fields and the equivalent electric and magnetic
virtual currents, used in the surface equivalence theorem. (a) The gray shape
indicates an arbitrary scattering structure, with the corresponding surface currents
M1 and J1. (b) The space now is empty and without fields, but on the surface are
the equivalent surface currents.

...Eθ(r, t) = −Z0Wθ(r, t)− Uϕ(r, t) (2.56)

Eϕ(r, t) = −Z0Wϕ(r, t) + Uθ(r, t) (2.57)

where Z0 =
»
µ0/ε0 is the impedance of free space and the components of the electric

field vector Ei, i = r, θ, ϕ in spherical coordinates. Since in electromagnetic waves in
free space are of almost pure transversal nature, the radial component of the electric
field is Er(r, t) ∼= 0. Wi and Ui are the angular components of the vector potentials,
which can be determined by the following integrals of the equivalent current densities.

W (r, t) =
1

4π|r|c0
∂

∂t

∫
S

JS

Ç
t− |r| − r′ · r̂

c0

å
dS ′

 (2.58)

U(r, t) =
1

4π|r|c0
∂

∂t

∫
S

MS

Ç
t− |r| − r′ · r̂

c0

å
dS′

 (2.59)

where r denotes the position of the observation point and r′ the position of the source
point in S. The unit vector r̂ then points into the direction of r. Note, that in the
argument of JS and MS a time delay can be seen. This is the propagation delay of an
electromagnetic wave over the distance from the source r′ to the observation point r
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in free space and is given by

τ =
|r| − r′ · r̂

c0
=

|r| − |r′| cosΨ
c0

, (2.60)

with the angle Ψ between the two vectors r and r′.

This formalism is developed for the propagation of electromagnetic waves in free space.
Simply by substituting the speed of light in the corresponding medium (c = c0/n),
which homogeneously surrounds the structure, one can also calculate the far fields in
a dielectric medium. However, often a near-to-far-field transformation has to be done
for a half space filled with two different media, which makes this approach much more
complicated.

A formal correct way to obtain a NTFF for a half space is described in detail in [37],
where a spectral dyadic Green’s function is used, determined by several integrals and
Fourier transforms. Since in this work automatic optimization plays an important
role, where the calculation time is a critical point, a less costly approach is used. The
near-to-far-field transformation is applied for both media and the results are simply
combined. There might appear minor errors directly at the interface between both
media, but since the interesting values are far away located from this interface, the
errors can be neglected.

2.4. The dielectric function of metals (Drude model)

In order to describe the behavior of metals in optical fields, an appropriate model has
to be introduced. In this work a simple model, known as Drude model, is used.

The main assumption within this model is, that many electrons are not bound by the
ions of the metal, i.e. they can be treated as a free electron gas, but the electrons
cannot propagate over the boundary of the metal either. They oscillate in response
to the applied electromagnetic field, their motion is damped via collisions occurring
with a characteristic collision frequency γ = 1/τ , whereas τ is known as the relaxation
time of the free electron gas. The resulting equation of motion for an electron with the
charge of e = −q in the metal is given in eq. (2.61).

d2

dt2
r(t) + γ

d

dt
r(t) = − e

me

E(t) (2.61)
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with the electron mass me. By using the velocity v = d
dt
r of the electron the differential

equation simplifies to

d

dt
v(t) + γv(t) = − e

me

E(t) (2.62)

Fourier transform via differentiation theorem yields:

v(ω) = − e

me (−iω + γ)
E(ω) (2.63)

Using the relation of the current density j(ω) = −env = σ(ω)E(ω) for linear and
isotropic media under the assumption, that the electrons don’t interact with each
other, one obtains the conductivity σ(ω).

σ(ω) =
ne2

me

1

−iω + γ
(2.64)

With the conductivity the generalized permittivity can then be calculated by

ε̃(ω) = ε0ε∞ +
iσ

ω
= ε0

(
ε∞ −

ω2
p

ω2 + iωγ

)
(2.65)

The parameter ωp =
ne2

ε0me
is the plasma frequency and γ the collision frequency of the

electrons in the free electron gas. They are phenomenological parameters and need
to be fitted to experimental measurements. The real-valued permittivity ε∞ is called
the background permittivity, since it is caused by the background ions, which are not
considered in this free electron gas model. It is also often marked with an ∞, because
it becomes the dominant term, when the frequency is very large, i.e. ω >> ωp. The
commonly used dielectric function consists of the generalized permittivity divided by
ε0:

εr(ω) = ε∞ −
ω2
p

(ω2 + iωγ)
(2.66)

It is insightful to have a closer look at the dielectric function for different frequency
regimes. In Fig. 2.5 a fit of this Drude model to experimental data [38] of gold for
frequencies between 250THz and 400THz is shown (for parameters see table A.1).
In order to obtain the fit the deviation of the model to the experimental data in the

36



2.4. The dielectric function of metals (Drude model)

specified frequency regime has been calculated and then minimized. For the minimiza-
tion the CRS2LM algorithm has been used, which is described in detail in chapter
3.3. This model is in good agreement for frequencies below 500THz. One can see,
that with increasing frequency the imaginary part becomes negligible, which doesn’t
correspond to measurements and cannot be modeled by a single Drude pole. In this
region interband transitions within the d-shell of the molecules are possible, so the
losses increase significantly, which is not included in the Drude model.

Fig. 2.5.: Real part and imaginary part of the dielectric function of gold. The black line is
given by the Drude model, with the parameters fitted to the experimental data (red
dots).

This region can be modeled by considering, that not all electrons have necessarily the
same binding frequency, i.e. that one needs to take several of such poles into account,
which are just added up [39]. In eq. (2.67) one can see an extension of this model,
with the index p for each pole.

...εr(ω) = ε∞ −
P∑

p=1

ω2
p

(ω2 + iωγp)
(2.67)

In Fig. 2.6 the Drude model with P = 4 poles is fitted to the experimental data. One
can see now a good agreement even for higher frequencies. However, this model is more
costly than the standard Drude model, since several poles have to be calculated all the
time.

For lower frequencies, the model seems to be accurate. We consider now the regime
of very low frequencies, i. e. ω ≪ γ. Dividing the complex permittivity into real and
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2. Simulation of electromagnetic waves

Fig. 2.6.: Real part and imaginary part of the dielectric function of gold. The black line is
given by the Drude model using P = 4 poles, with the parameters fitted to the
experimental data (red dots).

imaginary parts ϵr(ω) = ε′(ω)+ iε′′(ω), the real and the imaginary part of the complex
index of refraction are of comparable magnitude:

n ≈ κ =

√
ε′′

2
=

Ã
ω2
p

2γω
(2.68)

In this region metals are mainly absorbing, with an absorption coefficient of

α =
ℑ(n(ω))ω

c0
=

(
ω2
pω

2γc20

)1/2

, (2.69)

where c0 is the speed of light in vacuum. Beer’s law of absorption states, that for
low frequencies the field inside the metal decreases exponentially with ∼ exp(−x/δ).
δ then defines the skin depth and can be calculated by the inverse of the absorption
coefficient, i.e.

δ =
1

α
=

(
2γc20
ω2
pω

)1/2

. (2.70)

For room temperature, the skin depth for typical metals is around δ ≈ 100nm. Since
most devices for low frequencies are much larger than 100nm, metals can be treated as
PEC in e.g. the RF regime. A more detailed study of the low-frequency behavior shows,
that this description is indeed valid, as long as the mean free path of the electrons is
much smaller than the skin depth [40].
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Integration of this dielectric function for metals in a time dependent solver for Maxwell’s
equations is straight forward3. In eq. (2.71) Ampere’s law in the time domain can be
expressed for this medium as

∇×H = ε0ε∞
∂E

∂t
+ σE +

P∑
p=1

Jp (2.71)

where Jp is the polarization current associated with the p’th Drude pole [23]. Since
the dielectric function is obtained in the frequency domain, the corresponding current
density, given in eq. (2.72), where˜ indicates the frequency dependence of the vectors,
needs to be transformed.

J̃p = −iωε0

(
ω2
p

ω2 − iωγp

)
Ẽ (2.72)

Applying the differentiation theorem and integrating once with respect to time, one
obtains the equation of motion for the current density in time domain (eq. (2.73)),
which can be used in eq. (2.71).

∂Jp

∂t
+ γpJp = ε0ω

2
pE (2.73)

Using the semi-implicit scheme, this can be easily and accurately implemented in an
FDTD code [23]. A simple finite-difference expression centered at time-step n + 1/2

for the current density yields

(
Jn+1
p − Jn

p

∆t

)
+

(
Jn+1
p + Jn

p

2

)
= ε0ω

2
p

Ç
En+1 +En

2

å
(2.74)

Solving eq. (2.74) for Jn+1
p , one obtains

...
Jn+1
p = kpJ

n
p + βp

Ä
En+1 +En

ä
(2.75)

with

3A detailed description can be found in [23], from which also the notation is taken for a better
readability. For the case, that one uses a hexahedral grid in FIT, its update equations are exactly
the same than in a standard FDTD, which is also described in [23].
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kp =
1− 1

2
γp∆t

1 + 1
2
γp∆t

βp =
1
2
ω2
pε0∆t

1 + 1
2
γp∆t

(2.76)

In order to obtain the En+1 component, one uses again the semi-implicit scheme, which
leads to the expression:

En+1 =

á
2ε0ε∞ −∆t

P∑
p=1

βp − σ∆t

2ε0ε∞ +∆t
P∑

p=1
βp + σ∆t

ë
En

+

á
2∆t

2ε0ε∞ +∆t
P∑

p=1
βp + σ∆t

ë
·

∇×Hn+1/2 − 1

2

P∑
p=1

(1 + kp)J
n
p

 (2.77)

2.5. Coupled Dipole Approximation (CDA)

For some applications it is insightful not to solve the full Maxwell’s equations, but
instead use a simplified model, for it is simpler then to distinguish between different
effects, which lead to the performance of the investigated device. This is particularly
useful when using automatic optimization routines in order to design the device, since
one obtains only well performing solution of the objective function. However, in practice
it is often much harder to understand the optimized result than to obtain it. In this
section the model of the CDA is discussed.

When nano particles, which are surrounded by homogeneous, isotropic and linear mate-
rial, are excited by e.g. a plane wave, the structure gets polarized. If the polarizability
is known, one can derive an analytic expression for a dipole moment of the investi-
gated particle. With the dipole moment one can calculate the electric field everywhere
in space analytically, as well as other properties like extinction cross section, radar cross
section, directivity, etc. As is clear from the name, it is assumed, that only dipoles are
excited, i.e. all higher order poles are neglected, which can lead to significantly different
results compared to full Maxwell simulations. A drawback of this model is, that there
are few particle geometries, for which analytical expressions for the polarizability can
be found. The concept of the CDA is taken from [41, 42], where it has been discussed
in more detail.
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2.5. Coupled Dipole Approximation (CDA)

2.5.1. System of equations for CDA

Consider a system of N nano particles, which are assumed to be dipoles. Each dipole
has a polarization of Pi = αiEi. The electric field Ei at the position of each dipole is
then the incident field plus the contribution of each of the other N − 1 dipoles, with
which one obtains the dipole moments:

pi = αiEi = αi

Ñ
Eincident,i −

∑
j ̸=i

Aijpj

é
(2.78)

The incident field can be chosen arbitrarily, as long as the field is homogeneous over
the whole particle size. In this case a plane wave satisfies all requirements:

Eincident,i = E0 exp(ik · ri − iωt) (2.79)

The coupling matrices Aij consist basically of dyadic Green’s functions and can be
analytically derived:

Aij
i̸=j
=

exp(ikrij)
rij

[
k2(n̂ij ⊗ n̂ij − I3) +

ikrij − 1

r2ij
(3n̂ij ⊗ n̂ij − I3)

]
(2.80)

with rij = |rij|, rij = ri − rj, and n̂ij =
rij
rij

. The sign ⊗ denotes the dyadic product
of two vectors, yielding a 3× 3 matrix in this case. By defining the diagonal elements
Aii = α−1

i , the scattering problem reduces to 3N complex linear equations:

Np∑
j=1

Aijpj = Eincident,i (2.81)

That solved for two dipoles p1 and p2 yields:

(I3 − α1A12α2A21)︸ ︷︷ ︸
=M1

p1 = α1 (Eincident,1 − A12α2Eincident,2) (2.82)

p1 = M−1
1 α1 (Eincident,1 − A12α2Eincident,2) (2.83)

(I3 − α2A21α1A12)︸ ︷︷ ︸
=M2

p2 = α2 (Eincident,2 − A21α1Eincident,1) (2.84)

p2 = M−1
2 α2 (Eincident,2 − A21α1Eincident,1) (2.85)
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With the dipole moments of the two interacting particles one can calculate the total
electric field anywhere in space according to equation (2.86).

E(r) = Eincident(r) + A(r − r1)p1 + A(r − r2)p2 (2.86)

2.5.2. Polarizability of spheroid particles

Assuming, the geometrical shapes of the metal particles are ellipsoids (a ≥ b ≥ c),
whose surface is specified by

x2

a2
+

y2

b2
+

z2

c2
= 1 (2.87)

or - more specific - prolate spheroids (b = c) with the major axis along the x-axis,
the polarizabilities can be analytically derived [43]. In equation (2.88) one gets the
polarizability component for the direction of each of the three axis of the spheroid.

αj = 4πabc
εm(ω)− εd

3εd + 3fj(εm(ω)− εd)
, (2.88)

with j = x, y, z, the permittivity of the particle εm(ω) and the permittivity of the
surrounding dielectric material εd. Unfortunately the surrounding material has to be
homogeneous, since for a particle, which is placed on a substrate, a closed analytical
expression is very hard (and for most cases not possible) to obtain. The parameters
fj are geometry dependent factors and are usually hard to determine, though for the
special case of spheroids analytic expressions have been derived within a quasi-static
limit. With a given eccentricity e

e2 = 1− b2

a2
, (2.89)

the x-component of the geometry factors is then

fx =
1− e2

e2

Ç
−1 +

1

2e
ln
Ç
1 + e

1− e

åå
. (2.90)

Once one component of these factors are known, the others can be easily calculated
via the relation
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fx + fy + fz = 1 (2.91)

⇒ fx + 2fy = 1. (2.92)

In Fig. 2.7 one can see the geometry factor fx (when x is the direction of the major
axis of the ellipsoid) over the eccentricity. The insets show exemplary shapes for the
eccentricities e = 0, e = 0.5, and e = 0.9. The eccentricity of e = 1 is not defined, but
would correspond to an infinitesimal thin line, pointing in x-direction.

Fig. 2.7.: The geometry factor fx in dependency of the eccentricity e for prolate spheroids.
The higher the eccentricity, i.e. the smaller the minor axis of the ellipsoid becomes
compared to the major axis, the lower the value of fx and therefore the lower the
polarizability. The insets show examples of prolate spheroids with eccentricities of
e = 0.9 (cigar shaped), e = 0.5, and e = 0 (sphere).

This results then in a polarizability tensor for the prolate ellipsoid

αi =

á
αx
i 0 0

0 αy
i 0

0 0 αz
i

ë
(2.93)

If the axes of the prolate ellipsoid are not pointing into the directions of the Cartesian
coordinate system, one can multiply the polarizability tensor with a rotational matrix
for a proper alignment. For the special case, that the eccentricity is e = 0, one obtains
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a spherical particle. The polarizability tensor then consist only of identical diagonal
elements, thus it is often reduced to a scalar. When using the refractive index of the
surrounding material instead of its permittivity, one obtains the so called Clausius-
Mosotti polarizability:

α0 = 4πR3 εm(ω)− n2

εm(ω) + 2n2
(2.94)

Often the particles are so small, that some finite size effects, which are included in the
full dipolar Mie expansion coefficients, play a significant role, thus the polarizability
has to be corrected. In [41] and [44] several of such corrections have been investigated,
but for spherical particles only. For the case, that kd → 0, with the wavenumber k and
the largest dimension of the particle d = a, the polarizability is exact. But it has been
shown, that for all other cases a radiative reaction correction of the order O[(kd)3]

should be included. In eq. (2.95) a correction is shown, which has been derived for the
long-wavelength limit (kd ≪ 1), but also works as long as |n|kd < 1, which has been
shown empirically:

α̃ =
α

1 + α
d3

î
(b1 + n2b2 + n2b3S)(kd)2 − 2

3
i(kd)3

ó , (2.95)

b1 = −1.891531, b2 = 0.1648469, (2.96)

b3 = −1.7700004, S =
3∑

j=1

(âj êj)
2, (2.97)

where â and ê are unit vectors defining the incident direction and the polarization state.
Comparison with FIT calculations for one particle have shown, that this correction also
works for a low number of particles instead of an infinite array and also for prolate
spheroids instead of spheres. A simpler version of this correction is used in [42] in
which the constants b2 and b3 are zero, which works well for kd < 1, but causes some
resonance shifts, if kd ≪ 1.
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Focus of this chapter is the mathematical description of automatic optimization and
some algorithms, which are often used in economy, natural science and technical ap-
plications. In general there are two types of algorithms, the local one, where only
the nearest minimum is investigated, and the global one, where one is more concerned
with the global minimum. All algorithms may also be divided in a gradient based and
a gradient free algorithm, which describes how an algorithm is choosing it’s function
evaluations.

This chapter gives a short overview of the optimization theory and a summary of several
algorithms, which have been used in this work and is based on [45, 46].

3.1. General description of optimization problems

A mathematical optimization problem (P ) is the task to find the minimum (or max-
imum) of a continuous objective function f : Ω ⊂ Rn → R. The search region Ω

(or parameter space) is usually a box, defined by bound constraints. The parameters
(often called degrees of freedom (DOF)) then build a n-dimensional vector x, so that
this problem can be written as:

min
s.t. x∈Ω

f(x) (3.1)

A point xopt is called a global minimizer, if

f(xopt) ≤ f(x), ∀x ∈ Ω. (3.2)

Maximizing the objective function is usually reduced to the minimizing problem. Con-
sider an objective function f̃(x), which should be maximized. This problem
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max
s.t. x∈Ω

f̃(x) (3.3)

is equivalent to

min
s.t. x∈Ω

f(x), (3.4)

if the objective function f is defined as f(x) = −f̃(x). In this chapter only minimiz-
ing problems are considered, though in later chapters the objective function is often
maximized.

Generally, unless both the objective function f(x) and the parameter space Ω are
convex, there may be several local minima. A local minimum then is defined as a point
x0 for which exists some δ > 0, so that for all x in a sub-domain of Ω

∥x− x0∥ ≤ δ (3.5)

the expression

f(x0) ≤ f(x) (3.6)

holds. In other words, on some region around x0 all other function values are greater
or equal to the found minimum. A large number of algorithms proposed for solving
non-convex problems are not capable of making a distinction between local and global
optimal solutions. If the objective function is not known, which is most often the case, if
no analytic expression for it is known, one cannot distinguish between local and global
optimum, i.e. whenever an optimum is found, there still might be a better solution.
However, many of the developed algorithms can be classified into a local and a global
optimization algorithm, which basically means that they have different chances to find
the global optimum.

One also can have several objective functions, which adds to the problem’s complexity,
particularly if they are competing with each other. Then one has to weight these
objective functions. However, it is hard to define an optimum then, because the favorite
solution would be a compromise of both functions and depends on the problem at hand.

One of Fermat’s theorems states, that optima of unconstrained problems are found
at stationary points, where the gradient of the objective function is zero or undefined
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(e.g. at the boundary of the parameter space). This is a necessary, but not a satisfying
condition, and is therefore called a first order condition. If this is fulfilled, one may
check the Hessian matrix, which is then called the second order condition. Are both
conditions fulfilled, one has reached at least a local optimum. There are plenty of
algorithms, which are based on evaluating the gradient of the objective function, thus
they are called gradient based algorithms. Example of such an algorithm would be the
BFGS-algorithm, which is based on the Newton method [45]. Since in this work the
objective function has to be evaluated numerically, the computational effort in order
to determine the gradients would be much too costly, so this chapter is restricted to
gradient free algorithms only.

Often additional constraints for the parameters (apart from bound constraints) are
required for a proper optimization. Constraints can be either hard constraints, which
set conditions for the variables that are required to be satisfied, or soft constraints,
which have some variable values that are penalized in the objective function, if the
conditions on the variables are not satisfied. In general one distinguishes inequality
and equality constraints, where the latter are harder to solve. Often the equality
constraints can be converted into inequality constraints by the Lagrange multipliers,
but still should be avoided, if possible.

Since the constraints effectively constrict the parameters, the search region Ω often
becomes not-convex, which significantly influences the performance of many algorithms
like simplex methods, where a simplex is contracting towards the (global) minimum
of the objective function. Thus many algorithms do not provide the possibility to use
constraints.

In many applications, e.g. in engineering, the objective function may be nonlinear,
non-smooth, and / or simulation based. Therefor several methods were developed,
which do not require much information about the function itself. Some of them are the
DIRECT algorithm [47], simulated annealing [48], differential evolution [49], genetic
algorithms [50] and the controlled random search [51]. In the following sections three
algorithms, which have mainly been used in this work, are shortly summarized.

3.2. COBYLA

The constrained optimization by linear approximation (COBYLA)-algorithm has been
developed for gradient-free optimization with nonlinear inequality and equality con-
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straints, by M. J. D. Powell [52]. It constructs successive linear approximations of the
objective function and constraints via a simplex of n+1 points (with an n-dimensional
parameter space) and optimizes these approximations in a trust region at each step.

For that it employs the values of the objective function f(xi), i = 0, 1, ..., n at the
vertices of a simplex, which is changed after each iteration. They are interpolated by
a linear polynomial L(x), x ∈ Ω, where each iteration requires a trust region radius
∆ > 0, which is adjusted automatically. The next vector of variables is then obtained
by minimizing L(x) with subject to ∥x − x0∥ ≤ ∆, where f(x0) is the least value of
the objective function that has been found so far. Thus, in the unconstrained case, x
is the point

x = x0 −
Ç

∆

∥∇L∥

å
∇L, (3.7)

which is different from all the vertices of the current simplex, consisting of the vertices
xi. The value f(x) is calculated and then the simplex for the next iteration is formed
by replacing just one value of the old simplex by x. To avoid misleading gradients of
the polynomial L, one usually defines a lower bound for ∆, depending on the requested
accuracy of the algorithm.

The COBYLA algorithm is a so called local optimization algorithm, i.e. it only finds
the minimum nearest to the initial parameter set. The version used in this work
has some minor improvements, e.g. the simplex steps are pseudo-randomized, which
improves the robustness by avoiding accidentally taking steps that don’t improve the
conditioning.

3.3. Controlled Random Search with Local Mutation

The controlled random search (CRS) algorithm is a direct search technique and is
purely heuristic. It starts by initially filling a set S with a sample of N , N ≫ n points,
which are uniformly distributed over Ω. The sample S is then gradually contracted by
replacing the current worst point xhigh with a better point x, called the trial point.

In order to obtain the trial point, one has to form a simplex consisting of the points
x1,x2, ...,xn+1. The point x1 is the current best point of S, whereas the other n points
are randomly chosen from S. The trial point is now obtained by reflecting the point
xn+1 in the centroid of the remaining n points of the simplex, such as given in eq.
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(3.8).

x =
2

n

n∑
j=1

xj − xn+1 (3.8)

This process of finding a trial point x and replacing the current worst point xhigh in
S, if the x is better than xhigh, is repeated until a certain stopping condition is met.

The controlled random search with local mutation (CRSLM) modifies the point gen-
eration scheme by introducing a local mutation. In the standard CRS the trial point
x is discarded, if the function value f(x) is not better than the function value of the
current worst point f(xhigh). This results in a waste of generating points. If a trial
point fails to replace xhigh in S, the local mutation scheme generates a second trial
point x̃, exploring the region around the current best point xlow. In particular this is
done by coordinate-wise reflection of x through xlow:

x̃i = (1 + ωi)x
i
low − ωix

i, (3.9)

where the index i denotes the corresponding component of the vectors x̃, x, and xlow

and ωi is a random number in [0, 1] for each i. The new trial point then competes with
the current worst point in S. The local mutation scheme results in more exploration
in earlier stages of the algorithm, when the points in S are widely spread, i.e. it has a
global effect.

Since the points in S are uniformly distributed over Ω, this algorithm explores not only
the region around the initial parameter set, i.e. it is a global optimization algorithm.
However, depending on the objective function, the CRSLM will probably find the best
of some optima, but still not the globally best solution. Since it needs many function
evaluations, it is often recommended to implement rough stopping criteria, and use a
local optimization algorithm like COBYLA afterwards, to find the exact optimum. A
more detailed description and some performance tests can be found in [53].

In this work the CRSLM has been slightly modified for a better processing of addi-
tional constraints. Using other inequality constraints as bound constraints often turns
the parameter space into a non-convex space, which means, that the simplex cannot
contract towards an optimum anymore. As a result such constraints are not fulfilled
or the algorithm does not converge. To overcome this obstacle, such constraints have
been implemented as soft constraints, which adds a penalty for the objective function,
if a constraint is not fulfilled.
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Another slight modification deals with the discretization of the simulation space within
the FDTD, where the simulation space has been divided into e.g. 4nm × 4nm × 4nm
cells. Since simplex algorithms cannot handle a discretized parameter space (or most of
their strengths would then vanish), one gets often similar parameters after discretiza-
tion (particularly if the algorithm is almost converged). In order to reduce redundant
simulations, a lookup table has been created. Before each function evaluation it has
been checked, if an identical simulation has been performed. If so, then instead of
starting the simulation, the corresponding value of the objective function has been
taken from the table. These evaluations have not been counted has iterations.

3.4. Particle Swarm Algorithm

The particle swarm (PSA) optimization is similar to a genetic algorithm [54] in the
sense, that the system is initialized with a population of random solutions. Unlike
a genetic algorithm, however, each potential solution is also assigned a randomized
velocity and these potential solutions, called particles, are then flown through hyper-
space. Each particle then keeps track of its coordinates, which are associated with the
current best solution, and the corresponding values of the objective function. After
each iteration the velocity of the particles is changed towards the best solution so far.
The acceleration of each particle is weighted by a random term.

These particles behave like a swarm of, let’s say, insects, roughly following their queen,
but still showing a partial independent behavior. It is a so called global optimization
algorithm, but has the advantage, that when all the particles move towards the best
solution (which still moves), the immediate region around these optima is investigated
as well, i.e. one can get some kind of sensitivity analysis during the optimization
process. This is important, because often local minima are unstable with respect to
slight changes of the parameters. A more detailed discussion and a variant of the PSA
for local optimization can be found in [55].

3.5. Rough Benchmark studies for selected algorithms

In order to state some properties of different optimization algorithms, a simple perfor-
mance test as been done. For that an objective function has been defined, of which
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the global minimum can be derived analytically. The objective function consisted of
N n-dimensional Gaussian minima with different depths ∆i:

f(x) = −
N∑
i=1

∆ie
−
(

(x1−µi,1)
2

σ2
i

+
(x2−µi,2)

2

σ2
i

+
(x3)

2

σ2
i

+···+ (xn)2

σ2
i

)
, (3.10)

with the corresponding component of the parameter vector in the subscript. With that
this objective function has many local optima, but is still smooth, so all algorithms
should be able to find at least a local minimum. In Fig. 3.1 the objective function for
the case, that n = 2, can be seen.

Fig. 3.1.: The used objective function consists of several n-dimensional Gaussian functions
and has therefore several local minima. This function is still smooth, so all algo-
rithms should be able to find a (local) minimum.

In Fig. 3.2 the convergence dependent on the degrees of freedom can be seen. The
blue points show a complete random search, i.e. for a number of complete random
points in Ω the value of the objective function has been calculated and the best value
has been chosen. Unfortunately only for n = 2 and n = 3 the best value roughly hit
the global minimum. In all other attempts the best value came not even close to any
of the local optima. This is probably the most primitive optimization algorithm and
gives a reference to the optimization problem at hand.

The green points show the results of a standard genetic algorithm (including
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crossovers.) One can easily see the greatest disadvantage of this method, the ex-
tremely high number of function evaluation needed for convergence. An advantage of
it is, that, with appropriate parameters, it most often finds the global minimum of
the objective function. For n ≥ 25 it didn’t find the global optimum, because the
maximum number of function evaluation was limited to 50,000. Another advantage is,
though it is not shown in the graph, that this algorithm is very robust, i.e. it still finds
at least local optima, if the objective function is non-smooth, has many sharp local
minima and large areas, where a variation of parameters effects no change in its value.
The particle swarm algorithm (PSA) is not included in this performance check, since
it behaves much like the genetic scheme.
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Fig. 3.2.: Comparison of the CRSLM algorithm with a genetic one and a complete random
search. All optimization processes have been converged, but many didn’t find the
global minimum (indicated by dashed lines), but often found a local minimum, in
which the value of the objective function was close to the global optimum.

The red points show the results of the CRSLM algorithm. Compared to the genetic
scheme, it converges very fast1, but finds the global optimum only for n ≤ 5. In all other
cases it still finds a local minimum, where the value of the objective function is still
close to the global minimum. Like the genetic algorithm the CRSLM is very robust and
yields good starting points for local optimizers, even if it is not converged. Additionally
other inequality constraints than bound constraints can be easily implemented without

1Compared to gradient-based algorithms it still converges slower, which is not shown here.
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slowing down the optimization process.

Note, that this little performance check gives only a hint to the properties of the
algorithms, since the objective function is a very unproblematic one. In practice almost
every optimization problem would be much more complex, which is the case when
optimizing nano antennas. Additionally each function evaluation means a complete
simulation of Maxwell’s equations, i.e. depending on the computational domain and
used materials, it takes between a few minutes and several hours of time. Since it is
nearly impossible to calculate derivatives of the objective function with respect to the
design variables, gradient-based algorithms cannot be used in this work. One option
would have been an automatic differentiation algorithm, like ADOL-C [56], but the
implementation of such a method would have required a completely new FDTD or FIT
code and was therefore not practical in this work.

For optimizations with the FDTD method the library nlopt [77] has been used. This
library contains a collection of the most used optimization algorithms. The aim of
this section is to compare the CRSLM with the most commonly known (the genetic)
algorithm and the worst one (pure random tries). We chose the CRSLM algorithm for
optimization problems, where a nasty objective function is expected, i.e. an objective
function with many local optima, steep gradients and large areas, where the gradient
is (almost) equal to zero. Although this algorithm did not find the global maximum as
often as the genetic one, it has always been close, and since the necessary number of
iteration have been considerably smaller compared to the genetic algorithm, it suited
the requirements. For simulations with CST Microwave Studio, where the parameter
space Ω could be limited easily, the built-in particle swarm algorithm is used, which is
not implemented in the nlopt library.
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4. Optical and NIR antennas for light
intensity enhancement

Nanoantennas are able to highly increase the electric field in small areas [57], which
has a wide field of possible applications, e.g. solar energy conversion [58], spectroscopy
[59, 8], sensing applications [60], or enhancement of excitation and emission of quantum
emitters [61, 62, 63]. Due to the complex interplay of near-field interference, recursive
coupling and plasmonic modes, the field enhancement is very sensitive to the geometri-
cal shape [64]. The most commonly used geometries are bow-ties [65, 66], rods [67] and
discs [8]. Therefore, it is essential to achieve a design, which is simple to fabricate and
is capable of generating the highest intensity enhancement for the desired frequency.
Optimization of these structures is often done by trial-and-error, which might not re-
sult in an optimal enhancement. Models, which contain design rules, are only known
for the simplest antennas [16].

It is well known, that with sharp metal tips, the electric field near to those tips can
be highly enhanced, so most investigated structures have such sharp tips. But the
geometrical shapes are limited to the creativity of the designer, i.e. other surprising
shapes might exist, which are not that intuitive in their functionality. So recently,
automatic optimization of plasmonic antennas became more popular, for instance where
the distances between several nano discs were varied [68] or an optimized structure was
used as an inspiration for a new antenna shape [69]. Particularly in the latter paper,
an optimization with many degrees of freedom has been performed, allowing an almost
arbitrary shape of the resulting antenna. But, as is almost the case, the definition of
the objective function and the constraints determines the outcome of the optimization.

In this section first some fundamentals and principles of nanoantennas are discussed.
Then the popular bow-tie is optimized to be used as a reference, with which the fol-
lowing optimization of an (almost) arbitrary geometrical shape can be compared. The
sections 4.4 and 4.5 are based on Refs. [63, 70].
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4.1. Localized surface plasmon polaritons

In this section some fundamentals of surface plasmon polaritons are briefly discussed,
taken from [71], where a much more detailed study can be found. Though the Drude
model, which has been discussed in chapter 2.4, is not exact, some important features
of metals in optical or NIR light fields can be derived. For large frequencies, that
means γ ≪ ω < ωp, the metals still retain their metallic character, but the damping
becomes negligible. In this region the permittivity ε(ω) is predominantly real-valued
and becomes

ε(ω) = 1−
ω2
p

ω2
, (4.1)

with the plasma frequency ωp. Inserting equation (4.1) into (2.7), one obtains

ω =
√
ω2
p + |k|2c20 (4.2)

the dispersion relation for traveling waves in metal. This relation is plotted in Fig.
4.1 for an arbitrary metal, which can be modeled via the free electron gas model.
One can see, that for frequencies below the plasma frequency ωp no propagation of
electromagnetic waves is allowed. However, for frequencies above the plasma frequency
a transverse wave is able to propagate through the metal, with the group velocity

vg =
dω

dk
, (4.3)

where k = |k| is the corresponding wave number. For the frequency ω = ωp the
group velocity of the wave would be zero, i.e. this wave is not traveling. This can be
understood as a collective longitudinal oscillation of the conduction electrons (which
have been treated as free electrons) versus the background consisting of the ion cores
and the bound electrons. This leads to the so called bulk plasmons.

In order to describe SPP, one usually starts with the wave equation in (2.6), for the
case, that all external stimuli are absent, i.e. ∇ ·D(r, t) = 0. Using the identities

∇×∇×E(r, t) ≡ ∇(∇ ·E(r, t))−∇2E(r, t), (4.4)

∇ · (εr(r)E(r, t)) ≡ E(r, t)∇εr(r) + εr(r)∇ ·E(r, t), (4.5)

the wave equation can be rewritten as
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4.1. Localized surface plasmon polaritons

Fig. 4.1.: Dispersion relation for a free electron gas (red) as given in eq. (4.2) compared to the
dispersion relation in free space (blue). One can see, that an electromagnetic wave
can only propagate, if ω ≥ ωp, though for the frequency ω = ωp the propagation
constant of the wave would be zero.

∇
Ç
− 1

εr(r)
Er(r, t) · ∇εr(r)

å
−∇2E(r, t) = −µ0ε0εr(r)

∂2

∂t2
E(r, t). (4.6)

If the material distribution is homogeneous, i.e. ∇εr(r) = 0, it simplifies to equation
(4.7).

∇2E(r, t) = µ0ε0εr(r)
∂2

∂t2
E(r, t) (4.7)

This equation then has to be solved in each region with constant εr separately, and
the solutions have to be matched via appropriate boundary conditions. Assuming now
an electric field with harmonic time dependence, one obtains the so called Helmholtz
equation. Analogous to the wave equation for the electric field, another one for the
magnetic field can be derived.

For the geometry of an infinite metal plate, covered by an arbitrary insulator (e.g. air),
the Helmholtz equation will result in a system of two sets of self-consistent solutions
with different polarization properties, the so-called transversal magnetic (TM) and
transversal electric (TE) waves, which are independent of each other. With an appro-
priate ansatz, it can be shown, that indeed no TE waves exist for surface plasmons.
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The wave equation for a TM wave propagating in x-direction is then:

∂2

∂z2
Hy +

Ä
k2
0εr − β2

ä
Hy = 0, (4.8)

with the propagation constant β = kx. For a surface plasmon polariton propagating
at a single interface between a metal and a dielectric material, the dispersion relation
can directly be calculated as

β = k0

 
εmεd

εm + εd
, (4.9)

with the relative permittivity of the metal εm and the dielectric εd. For such traveling
SPPs one needs a metal-dielectric interface. They are damped, so a propagation length
Lx = (2ℑ(β))−1 has been established, typically between 10 and 100 µm in the visible
regime. Since the SPP fields perpendicular to the interface fall off in the dielectric
exponentially, i.e. ∼ exp(−|kz||z|), one can calculate the penetration depth, which is
in this case Lz = 1/kz, with

kz =

Ã
β2 − εd

Ç
ω

c0

å2

. (4.10)

For a gold-air interface for λ = 800nm the penetration depth reaches around Lz ≈
570nm, which is important for simulations regarding the computational domain, which
has to be calculated. The wavelength of such a surface plasmon is then

λSPP =
2π

ℜ(β)
, (4.11)

which is usually much smaller than the wavelength in free space. All those characteris-
tic lengths are depending on the used material system. SPPs propagating along a flat
interface are basically two-dimensional waves. Since their dispersion relation differs to
the light line, the excitation by three-dimensional light beams is not possible, unless
special techniques for optical phase matching are used, such as prism or grating cou-
pling. More relevant in this work are the so called localized surface plasmon polaritons,
which are non-propagating excitations of the conduction electrons of metallic particles,
which are smaller than the wavelength.

In chapter 2.4 it has been shown, that for typical metals the skin depth in the optical
regime can reach δ ≈ 100nm. If the particle has smaller dimensions d than the skin
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4.1. Localized surface plasmon polaritons

depth in propagation direction of the incident field, one can excite an electric field inside
of this sub-wavelength particle. If the wavelength is much larger than the particle size,
the phase of the electric field within the particle can be assumed to be constant, i.e.
all electrons within the particle are subject to the same external force given by the
electric field. Thus the electrons collectively oscillate driven by the external field and
a localized SPP is excited. The region with the relation of d < δ and d ≪ λ, is usually
called electrostatic limit.

Using the electrostatic potential ϕ and solving the Laplace equation, one can derive
an expression for the scalar potential for a sphere, which is the most simple geometry
[39]. The sphere is excited by a plane wave, and due to the symmetry the azimuthal
angle can be neglected. The resulting scalar potential ϕout, ∀r > a outside the sphere
is then:

ϕout = −E0r cos θ + εm − εd
εm + 2εd

E0a
3 cos θ

r2
, (4.12)

with the radius of the sphere a and the polar angle θ. Introducing the dipole moment
p and using the polarizability from equation (2.88), one obtains

ϕout = −E0r cos θ + p · r
4πε0εdr3

, (4.13)

with the dipole moment and polarizability

p = 4πε0εda
3 εm − εd
εm + 2εd

E0 (4.14)

= ε0εdαE0 (4.15)

α = 4πa3
εm − εd
εm + 2εd

. (4.16)

With the scalar potential one can calculate the distribution of the electric field:

Eout = E0 +
3n(n · p)− p

4πε0εd

1

r3
(4.17)

In addition to the excitation with the strength E0, one gets an (dipolar) enhance-
ment of the electric field around the particle. The dipole moment is basically the
polarizability with some prefactors, so all of its properties are projected into the field
enhancement. Since the polarizability strongly depends on the geometry and volume
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4. Optical and NIR antennas for light intensity enhancement

of the particle (see chapter 2.5.2), the geometrical shape plays an important role for
the desired performance of such particles.

So far only the quasi-static behavior of such particles has been discussed. If the particle
gets excited by an oscillating electric field, i.e. E(r, t) = E0(r)e

−iωt, the dipole moment
oscillates in phase with the exciting field. Thus the second term in equation (4.17) leads
to a dipole-like radiation. Since the focus of this chapter lies on the field enhancement
of metal nano particles close to it’s surface, it is sufficient to discuss the quasi-static
regime. Further details about the radiation of such induced dipoles can be found in
[39].

Since fabricated structures usually show non-perfect geometries, with deformed shapes
and a surface roughness, the electrostatic potential can most often not be described
analytically. Apart from these difficulties, the derivation based on the quasi-static limit
is only valid, if the particle is significantly smaller than the wavelength. Numerical
simulations show, that for other particle geometries one might obtain not only a dipole
moment, but also higher order poles like a quadrupole moment.

4.2. Intensity enhancement of a one-particle
nanoantenna

An important statement of the previous section was, that one can achieve an enhance-
ment of the electric field close to the surface of metal nano particles, if they are excited
resonantly. In this section this is investigated in more detail and some properties of
such a particle are discussed. Starting point is a single rod antenna consisting of gold,
which is probably one of the most often fabricated nano structures, shown in Figure
4.2.

The nano rod consisting of gold (for parameters see table A.1) has a length of L =

160nm, a width of w = 40nm, and a height of h = 40nm. Since sharp edges are
hard to fabricate and cause some numerical difficulties, the endings of the brick have
been blended with a radius of rvert = 20nm. Additionally the top edges have been
blended with a radius of rtop = 10nm. This structure has been excited by a plane wave
propagating in z-direction, with a polarization vector parallel to the y-axis. A field
probe has been placed close to the surface of the rod, with a distance of only 5nm.
The resulting field enhancement is shown in Fig. 4.3.
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4.2. Intensity enhancement of a one-particle nanoantenna

Fig. 4.2.: Investigated geometrical shape of the rod with the definition of the corresponding
coordinate system.
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Fig. 4.3.: Electric field enhancement close to the surface of the rod in dependence of the
incident wavelength.

The maximum field enhancement in this spot is Eenh = 15 with an excitation wave-
length of λres = 755nm. As is usual for plasmonic antennas, the peak is spectrally
broad, caused mainly by the dipolar emission into the far field.

In order to get a closer look at the plasmonic mode within this metallic rod, the electric
field enhancement has been plotted for a cross section in the z = 20nm plane (Fig.
4.4). For the case of an infinite, constant excitation with the wavelength of λ = 755nm,
both the components perpendicular to the propagation direction of the incident wave
and the vectorial depiction of the electric field enhancement are shown.

With a time domain solver such electric field plots are obtained by taking the Fourier
transform of the time signal in each cell and picking the Fourier component of the
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(a) x-component of the
electric field enhance-
ment.

(b) y-component of the
electric field enhance-
ment.

(c) electric field enhancement
indicated by arrows.

Fig. 4.4.: Electric field enhancement of a single rod antenna, excited by a plane wave po-
larized along the antenna axis. Within the cross section at the z = 0 plane, in
a) the x-component, b) the y-component and in c) 2D vectors of the electric field
enhancement is shown. The color scale for all three figures is the same.

desired frequency. Thus one obtains a complex field value for each component of the
electric field. It is convenient to use the polar form of the complex values, where one
has the amplitude and the phase for each component of the field.

One can clearly see the dipolar characteristic of the electric field outside of the nano
rod in Fig. 4.4 c), with the main direction of the electric field parallel to the y-axis.
However, inside of the particle the electric field points into the opposite direction,
parallel to the −y-axis.

As has been shown in chapter 2.4, one can also have a look to the current density. Using
the continuity equation eq. (2.8) one can also calculate the charge carrier density. In
Figure 4.5 the current density within the nano rod is shown. It is not surprising, that
for a phase ϕmax, where the electric field reaches its maximum, the absolute value of
the current density is also maximal, but with opposite sign. The maximum is located
exactly in the center of the nano rod. In contrast to the electric field, the x-component
of the current density is significantly smaller than the y-component, but always points
inwards.
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Fig. 4.5.: a) Cross section of the current density Jy within the rod antenna, excited by a
plane wave with polarization along the antenna axis in the z = 20nm plane. Since
the current density along the other axes are one order of magnitude smaller, their
influence can be neglected. b) The current density along a line parallel to the
antenna axis in the middle of the particle. Below the calculated charge carrier
density is shown along the same line.

Another important class of geometries is the so called ellipsoid, or more specifically the
spheroid. In order to compare another geometry to the rod, in the following a prolate
spheroid with similar length is discussed. The spheroid consists of gold, and the radii
are rx = 20nm, ry = 80nm, and rz = 20nm (Fig. 4.6). The spheroid is more difficult
to fabricate, but the dipole moment can be calculated analytically. Since the endings
appear to be sharper compared to the rod, a higher field enhancement is expected.

Fig. 4.6.: Investigated geometrical shape of the rod with the definition of the corresponding
coordinate system.

In order to compare both structures, the same simulation (and also the distance be-
tween field probe and surface of the particle) has been performed. In general the
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electric field distribution looks similar, apart from minor changes due to the different
geometry. The spectra of both antennas are shown in Fig. 4.7. First of all, the electric
field enhancement is almost twice as high than for a rod, which of course can partially
attributed to the sharper ending.
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Fig. 4.7.: Electric field enhancement close to the surface of the spheroid (blue) and rod (red)
in dependence of the incident wavelength.

Interestingly, the resonance of the spheroid is blue shifted compared to the rod, though
both particles have the same length. With increasing volume of a particle with fixed
length, e.g. if it becomes broader, the main plasmon resonance experiences a slight blue
shift. Since the rod has a larger volume than the spheroid, one would have expected a
red shift, which is not the case here. This can be attributed to the different geometry,
for the resonance of the polarizability strongly depends on both the geometrical shape
of the particle and it’s volume.

An important feature of such antennas is the spatial distribution of the field enhance-
ment, because for nonlinear applications high fields have to be generated. On the one
hand it is advantageous, to have as small a field enhanced spot as possible, on the
other hand that would make the positioning of the nano emitter more difficult. In Fig.
4.8 the field enhancement is shown in dependence of the distance to the surface of the
particle.

The red curve shows the field enhancement calculated with the coupled dipole approx-
imation. In this model it is assumed, the particle behaves like a dipole, i.e. in the near
field the electric field is proportional to 1/r3. The FIT simulations otherwise show,
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Fig. 4.8.: Electric field enhancement in dependence of the distance to the surface of the
particle. The blue curve shows the simulation of the full Maxwell equations, the
red one the simplified coupled dipole model.

that additionally to the dipole radiation the evanescent field of the plasmonic mode
contribute to the field enhancement. As discussed in chapter 4.1, such evanescent fields
can penetrate far into the surrounding space, but are still bound to the particle. The
radiated field is a perfectly dipolar, as can be seen in Fig. 4.9, thus the name for such
antennas.
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Fig. 4.9.: Radiated far field pattern for the spheroid. Since the radiation is constant for all
polar angles θ, only the azimuthal angle ϕ is shown here. The magnitude of the
radiated field is normalized to 1.
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Since the magnetic field in the near field region is significantly smaller than the electric
field, it is sufficient to characterize the electric field only. Many applications, in which
such nano antennas can be used, depend on the intensity of a light field [71], which is
in the near field region1 for high frequencies (such as NIR or optical)

I =
c0nε0
2

|E|2. (4.18)

The intensity enhancement is then, with the electric field in the region of interest EROI ,

Ienh =

∣∣∣∣∣EROI

E0

∣∣∣∣∣
2

. (4.19)

Thus in the following sections only the intensity enhancement is investigated.

4.3. Intensity enhancement of a two-particle
nanoantenna

Placing two or more particles close to each other leads to an increased intensity en-
hancement within the gap of such an antenna, if they are properly aligned. In this
section two of the most prominent geometries, the rod and bow-tie antenna, and some
of their properties will be discussed.

4.3.1. Single nano rod and Bow-Tie antennas

In this section the main properties of dipole antennas consisting of two rods and two
triangles are discussed. In Fig. 4.10 a) a standard rod antenna with the corresponding
coordinates is shown. It consists of two rods like in the previous section, though with
a length of each rod of Ly = 130nm. The gap between those rods has been chosen to
Lgap = 16nm, because it is too large for quantum mechanical effects like the tunnel-
effect to occur and still yields a high intensity enhancement. In Fig. 4.10 b) a so called

1The space around an antenna is usually divided into different regions: the near field region, which
is very close to the antenna, the far field region, and an intermediate region, which has both
characteristics. The bounds of such regions can be defined in very different ways. Most often one
uses the emission pattern of a dipole. In the near field the term proportional to 1/r3 dominates,
which is definitely the case for distances smaller than the half of the wavelength. In the far field
region the term proportional to 1/r dominates, for distances greater than 2 wavelengths. In the
intermediate region both terms yield a significant contribution to the electric field.
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(a) (b)

Fig. 4.10.: Sketch of the geometrical shape of a) a rod and b) a bow-tie antenna, with a gap
of 16nm.

bow-tie antenna is shown, with the tips pointing to each other. Each arm consists of
an isosceles triangle with a tip angle of ϕ = 45◦ and a length of Ly = 145nm, with
a gap of the same size as for the rod antenna in between. Since fabrication of such
structures never leads to sharp edges, all vertical edges have been blended with a radius
of rvert = 20nm, and all horizontal edges on the top of the structure with a radius of
rtop = 10nm. The height of both antennas has been Lz = 28nm. The surrounding
material has been vacuum. All parameters are summarized in A.3.

These antennas have been excited via a plane wave propagating along the z-direction,
with a polarization parallel to the y-axis. Again a transient solver has been used, for
to obtain the complete spectrum only one simulation is needed. For that the incident
plane wave has been chosen to be of the form of a Gaussian pulse in time domain. The
spectrum of the point in the middle of the gap has then been divided by the spectrum
of the incident field. In Fig. 4.11 the spectrally resolved intensity enhancement of
both antennas can bee seen. They both perform similarly, with the bow-tie yielding
a slightly higher intensity enhancement. The parameters have been chosen such that
the main resonance peak appears at a vacuum wavelength of λres = 800nm. The
resonance of such antennas usually exhibits spectrally broad peaks and therefore low
Q-factors, which is not due to ohmic losses, caused by collisions of the electrons within
the material.

Since each particle can be considered a resonator, one can qualitatively describe such
an antenna by a coupled resonator model (often referred to as mass and spring model
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Fig. 4.11.: Spectrally resolved intensity enhancement for a rod and a bow-tie antenna.

[57]). When arguing with this simple model it becomes apparent, that two different
modes appear due to the mode splitting - the so called bonding mode at lower and
the anti-bonding mode at higher frequencies. The resonance depicted in Fig. 4.11 of
both antennas correspond to the bonding mode. Since it consists of dipole-like charge
oscillations, it can easily be excited by a plane wave illumination polarized along the
antenna axis. If the impedance of such antennas is around the vacuum impedance, the
excited plasmon leads to an effective emission of dipolar radiation, reducing the energy
within this antenna to zero within femto seconds. As a result the resonance of this
mode becomes broad and very bright in spectroscopic measurements. In Fig. 4.12 the
normalized electric field enhancement for the main resonance has been plotted. The
color scale is in dB and reaches from -40 (blue) to 0 (red).

Slightly outside of the range of the spectrum in Fig. 4.11 at a wavelength of λ ≈ 550nm

another peak arises, which correspond to the anti-bonding mode. It is characterized
by a charge distribution which exhibits mirror symmetry, with the mirror plane in
the middle of the gap. This mode doesn’t emit into the far field as efficiently as the
bonding mode, because one gets the radiation of two dipoles, oscillating out of phase
and therefore interfering destructively. As a consequence it is much more difficult to
excite such a mode, as long as the illumination path remains fully symmetric [57].
Therefor when illuminating with a plane wave, the field enhancement of the anti-
bonding mode is much smaller than that of the bonding mode. The anti-bonding
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4.3. Intensity enhancement of a two-particle nanoantenna

(a) (b)

Fig. 4.12.: Normalized electric field enhancement of a) a rod and b) a bow-tie antenna at
the resonance frequency of the bright mode. The color scale is in dB and reaches
from −40 dB (blue) to 0 dB (red).

mode is designated as dark mode.

Compared to the resonance of a single particle, the bonding mode is red-shifted2,
which cannot be explained by the mass and spring model [72]. But the inter-particle
coupling can also be described by a hybridization model, which relates to molecular
orbital theory, where the overlap of wave functions is taken into account to derive the
energy splitting [73]. In general one can state for ensembles of plasmonic particles, that
whenever modes are spectrally and spatially overlapping, this coupling results in mode
splitting including resonance shifts, analogous to atomic orbital hybridization [57].

For comparison in Fig. 4.13 a) the normalized current density of the bright mode
has been plotted for the rod along a line parallel to the antenna axis. Below the
corresponding charge carrier density has been calculated using the continuity equation
in eq. (2.8). One can see, that both particles exhibit qualitatively the same behavior
of the single particle rod in Fig. 4.5, though the maxima are shifted towards the gap.
Therefor the difference of charge carriers at both sides of the gap is higher, which results
in a stronger intensity enhancement. In Fig. 4.13 b) both, the current and charge
carrier density have been plotted for the bow-tie. On the one hand, the maximum of
the current density is much closer to the gap compared to the rod antenna, on the
other hand the absolute value of the current density is smaller, so that the difference
of the charge carrier density between both antennas is comparable. Thus the intensity

2For comparison the resonances of the two-particle antennas should be around the frequency of the
resonance of the one-particle antenna. In order to compensate the red shift, the lengths of the
antenna arms have been reduced.
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Fig. 4.13.: Normalized current density and the resulting charge carrier density along a line
through the center of a) the rod and b) the bow-tie antenna, parallel to the antenna
axis.

enhancement of both, bow-tie and the rod antenna, are close to each other.
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Fig. 4.14.: Maximum intensity enhancement (solid line) and the corresponding resonance
wavelength (dashed line) of a rod and a bow-tie antenna in dependence of a) the
length of each antenna arm and b) the size of the gap in between the two antenna
arms.

The dependence of the maximum intensity enhancement and the corresponding reso-
nance wavelength to the length of the antenna is depicted in Fig. 4.14 a). There all
parameters have remained fixed except the length of each antenna arm. As predicted
by Novotny (Ref. [16]) the resonance wavelength grows linearly for increasing length
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4.3. Intensity enhancement of a two-particle nanoantenna

of each antenna arm. At a length of around Ly ≈ 145nm the resonance of the bow-tie
grows stronger, which is due to a deformed resonance peak. However, the maximum
intensity enhancement is not increasing linearly as one would have expected. The rea-
son is, that while the amount of material, which "collects" light is increasing linearly,
the ohmic losses within the structure are increasing nonlinearly, since the permittivity
is a nonlinear function with respect to the frequency.

In Fig. 4.14 b) one can see the maximum intensity enhancement and the corresponding
wavelength in dependence of the gap between the two particles. While the resonance
shifts only slightly compared to the spectral width of the peak, the intensity enhance-
ment changes dramatically, since the middle of the gap is closer to the surface of both
particles and thus more influenced by the evanescent field of the localized surface plas-
mon. If a high intensity enhancement is needed, one needs the smallest possible gap,
in which another particle can be positioned. If the gap becomes smaller than 2nm,
the intensity enhancement cannot be calculated by classical methods alone, since at
least the tunnel effect, where the electrons may tunnel from one particle to another,
has to be considered. This might result in a dramatical decrease of the performance of
such an antenna [74]. Apart from that, placing e.g. a quantum dot into the gap of an
antenna will cause a shift of the resonance, which will be discussed later.

 0

 0.25

 0.5

 0.75

 1

 30  60  90no
rm

al
iz

ed
 in

te
ns

ity
 e

nh
an

ce
m

en
t

polarization angle [deg.]

rod
cos2

Fig. 4.15.: Normalized intensity enhancement (red) in dependence of the polarization angle
ϕ of the incident light field for a rod and bow-tie, which are identical. The blue
line indicates a cos(ϕ)2 fit.
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4. Optical and NIR antennas for light intensity enhancement

This section is closed with a short look at the polarization of the incident light field.
For this the incident light field has the form of

E(r, t) =

á
sin(ϕ)
cos(ϕ)

0

ë
E0e

kzz−ωt, (4.20)

with the polarization angle ϕ. In Fig. 4.15 the normalized intensity enhancement
in dependence of the polarization angle is shown (red dots), which is identical for
both antennas. Additionally the function f(ϕ) = cos2(ϕ) (blue) is plotted, which
corresponds to the y-component of the electric field. It might be surprising that all
three curves are identical, since the bow-tie consists of two triangles, so it should be
more robust regarding the polarization of the incident light field. It is actually not,
since both antennas exhibit a mirror symmetry regarding the x = 0 mirror plane. Thus
for the excitation of the whole plasmonic mode only the y-component of the electric
field is responsible. This can be further affirmed, by looking at the resulting mode in
a field plot, in which only the strength, not the shape of the mode is changed with the
polarization angle.

4.3.2. Nano antenna arrays

So far only an isolated dimer antenna has been discussed. Since these antennas emit
dipolar radiation, it is expected, that an array of antennas will strongly couple, chang-
ing the intensity enhancement and shifting the resonance frequency. Some properties
of antenna arrays will be discussed in this section.

Starting point is a single two-particle antenna with the same parameters as in the
previous section. In order to simulate an infinite array of antennas, periodic boundary
conditions (PBC) for the two opposite sides of the computational domain have been
used. In Fig. 4.16 a) PBC have been used only for the x-direction, which is perpendic-
ular to the antenna axis and the propagation direction of the incident light field and
in b) only for the y-axis. This corresponds to a single line of antennas with infinite
length.

An infinite line of antennas parallel to the antenna axis, and therefore parallel to the
dipole moment of the antenna, causes a difference for the intensity enhancement only in
the region, where the periodicity is smaller than Λy < 1000nm. While a small periodic-
ity, compared to the wavelength of the incident light, leads to destructive interference,
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Fig. 4.16.: Maximum intensity enhancement and the corresponding resonance wavelength of
a rod and a bow-tie antenna in dependence of the periodicity in a) x-direction,
which is perpendicular of the antenna axis and the propagation direction of the
incident light field, and b) y-direction, which is parallel to the antenna axis.

which results in a lower intensity enhancement compared to a single antenna, a pe-
riodicity around the wavelength results in an increased intensity enhancement. With
increasing periodicity then the behavior matches that of a single antenna. Both the
change of the intensity enhancement and the corresponding resonance wavelength are
not that significant.

When varying the periodicity in x-direction, which is perpendicular to the antenna
axis and the propagation direction of the incident light, both the maximum intensity
enhancement and the corresponding resonance wavelength change dramatically. In Fig.
4.16 a) one can observe a strong increase of the intensity enhancement for a periodicity
Λx < 850nm, compared to the single antenna. For higher period length the intensity
enhancement first drops to a value of Ienh ≈ 1000, an then asymptotically goes up to
the value of a single antenna. One can also see, that the bow-tie performs much better
than the rod, reaching an intensity enhancement of around Ienh ≈ 8300 (compared to
the rod, whose maximum is Ienh ≈ 3800).

Responsible for this behavior are two effects. First, the antennas radiate like dipoles,
i.e. the small gaps of an array of such antennas can be seen as a grid of dipole sources.
Since it takes the radiation only around 3fs to cover the distance to the next antenna,
it can interfere with the incident pulse. If the distance of these gaps is roughly around
the wavelength, the radiation of the next neighbors is in phase with the incident light
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4. Optical and NIR antennas for light intensity enhancement

field (both are polarized parallel to the y-axis at these points), and therefore interfere
constructively. So some of the radiated energy is reabsorbed by neighboring antennas,
which adds to the intensity enhancement. Such a behavior is known for other resonant
dipole emitters like quantum dots [75], but, to my knowledge, has not been reported
for antennas.

The second effect is, that such an array of antennas can be seen as many coupled
resonators, which will exhibit a collective mode. This usually leads to a mode splitting
as discussed in section 4.3. Since many particles are involved in this mode, it is much
more complicated to describe than the mode splitting of just two particles, but one
would expect a redshift of the resonance, which can be clearly seen in Fig. 4.16.
Additionally, much of the energy is then stored between the antennas, so the damping
becomes small and the radiation insignificant. This can be further affirmed by looking
more closely to the time dependence of such a mode. For this a short Gaussian pulse
has been used for the incident wave.
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Fig. 4.17.: a) Calculated normalized electric field in dependence of time, taken in the middle
of the gap of an array of bow-tie antennas with lattice constants Λx = 780nm and
Λy = 770nm (red) and a single bow-tie antenna (blue). b) The corresponding
electromagnetic energy in the whole computational domain for both, an array
(red) and a single bow-tie antenna (blue).

In Fig. 4.17 a) one can see the normalized electric field, taken in the middle of the gap
of the antenna, for both, a single (blue) and the array (red) of bow-ties. The field for
the single antenna has almost the same form as the incident light field with only short
oscillations afterwards. This antenna gets excited and almost immediately loses the
energy, stored in the localized SPP, in terms of radiation. The damping of the material
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4.3. Intensity enhancement of a two-particle nanoantenna

is not that important here. In contrast to this behavior, though the electric field of
the array of antennas starts similarly, one can see an additional rise of the electric
field strength a few femto seconds after the first maximum. This corresponds to the
time needed for light to travel between two antennas within this array. Afterwards the
electric field strength is decreasing much slower, than is the case for a single antenna.
This can be explained by a collective mode of the array of antennas, using the coupled
resonator model. Much of the energy in this mode is stored between the antennas,
which leads to decreased radiation losses.

That these calculations were indeed stable3 can be seen in Fig. 4.17 b), where the total
electromagnetic energy in the computational domain is plotted vs. time. One can see
the increase of energy with the excitation pulse, followed by an exponential decrease
afterwards, which is expected. One can also see that right after the energy maximum
the energy of both, the single and the array of antennas decreases more rapidly, though
it is barely visible for the array. The reason is, that in order to establish this mode
some time is needed, in which each antenna radiates individually, until a collective
oscillation is achieved. Thus the wavelength dependence of the antenna array cannot
be calculated by dividing the obtained spectrum in the gap by the spectrum of the
incident wave. For this a continuous wave, which increases linearly in strength at the
beginning has been used. After the electric field within the gap has been settled, the
amplitude divided by the amplitude of the incident wave has been picked for each
wavelength.

The spectral performance of the antenna arrays are shown in Fig. 4.18, for comparison
the single antennas are included. One can see that the bow-tie array achieves a much
higher intensity enhancement than the array of rod antennas, for such the effect of
a collective mode is much smaller compared to the bow-tie antenna array. Also the
resonance is red-shifted, which again indicates a collective mode of coupled resonators
(c.p. chapter 4.3).

One can also see, that due to the coupling of an array of antennas, the resonance
peaks becomes much more narrow. This is can be affirmed by the determination of the
quality factor (or short Q-factor), which can be estimated through

Q ≈ λ0

∆λFWHM

, (4.21)

3A convergence test has been made once in the beginning and then checked for every unexpected
result. To increase the number of cells here had no effect on the performance of this antenna.
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Fig. 4.18.: Spectrally resolved intensity enhancement of a two-rod antenna (red) and a bow-
tie (blue) isolated (dashed lines) compared to corresponding arrays (solid line).

with the wavelength of the maximum of the peak λ0 and the spectral width at half
maximum ∆λFWHM . In table 4.1 the estimated Q-factors for the rod antenna and
bow-tie are shown. When comparing the Q-factors of the single rod antenna and the
single bow-tie, one can deduce, that the bow-tie has a broader resonance peak. This
is one of the said advantages of the bow-ties, because the two triangles represent the
two-dimensional analog of a biconical antenna, which also leads to lower Q-factors.
Another often said advantage of the bow-tie compared to the rod antenna is a higher
intensity enhancement, because of a higher lightning-rod effect at the apex. However,
while the resonance of the bow-tie is spectrally broader, compared to a rod antenna, a
significant higher intensity enhancement for single antennas could not be observed as
long as the sharp edges have been blended, which agrees with Ref. [57].

It turns out, that the Q-factors for the antenna arrays are significantly higher, i.e.
narrower resonance peaks compared to the corresponding single antennas. And due to
the coupled mode of the bow-tie array, its Q-factor is even higher, than the Q-factor
of the rod antenna array.

In this configuration the bow-tie array reaches an intensity enhancement in the middle
of the gap of Ienh ⋍ 9000, which is more than twice the intensity enhancement of the
rod antenna array. In Fig. 4.19 the absolute value of the normalized a) electric and b)
magnetic field strength of this mode is shown. In contrast to the field of a single antenna
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4.3. Intensity enhancement of a two-particle nanoantenna

antenna Q-factor

single rod antenna 8.3

rod antenna array 14.9

single bow-tie 4.9

bow-tie array 16.7

Tab. 4.1.: Estimated Q-factors for the calculated antennas.

in Fig. 4.12 b) a high field strength can be seen between the antennas, particularly the
magnetic field. Thus the impact of the damping of the antenna material becomes less
important for the performance.

(a) normalized electric field (b) normalized magnetic field

Fig. 4.19.: a) Electric and b) magnetic field plot for the coupled mode of an array of nano
antennas. The frequency of the incident wave is f = 363THz, which corresponds
to the maximum in Fig. 4.16 a). The color scale is in dBi (so normalized)
reaching from −40 dB (blue) to 0 dB (red).

4.3.3. Influence of the substrate and surrounding particles

So far the antennas have been surrounded by vacuum. Since fabricated structures
usually lie on a substrate, in this chapter a small overview of the effect of the substrate
is given.
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4. Optical and NIR antennas for light intensity enhancement

In equation (4.10), the penetration depth of the evanescent field of a surface plasmon
polariton into the surrounding material is calculated. Thus it is apparent, that the
permittivity of the environment has a strong effect on antennas, where localized SPPs
are generated. Unfortunately the equation is only valid, if the particle is surrounded
by only one material, which is not the case, if a nanoantenna is placed on substrate.

In Fig. 4.20 a) the maximum intensity enhancement and the corresponding resonance
wavelength have been calculated for a varying permittivity of the substrate. The
intensity has been taken again in the middle of the gap, 10nm above the substrate.
One can see, that with increasing permittivity the maximum intensity enhancement
decreases rapidly, while the corresponding resonance wavelength is increasing almost
linearly. In practice often silicon dioxide (SiO2) is used as substrate, where from the
initial intensity enhancement of Ienh = 1700 only a value of Ienh = 500 remains for
the bow-tie. The performance might be improved by optimization of the geometrical
parameters though.
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Fig. 4.20.: Maximum intensity enhancement and the corresponding resonance wavelength of
a rod and a bow-tie antenna in dependence of a) the relative permittivity of the
substrate, on which each antenna is grown and b) the relative permittivity of a
sphere with a radius of r = 6nm in between the two antenna arms, which is
surrounded by vacuum.

An often used application of these antennas is the usage of the intensity enhancement
for nonlinear processes like second harmonic generation (SHG) or third harmonic gen-
eration (THG), where very high fields are used. For that one can place a nano particle
with high nonlinear coefficient within the gap of the dipole antenna in order to increase
the efficiency of these processes, as has been done in [76]. Such an incorporation of a
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4.4. Optimization of the intensity enhancement of an arbitrary nanoantenna

particle, however, changes the properties of the antenna itself.

In Fig. 4.20 b) the effect of a sphere with a radius of rsph = 6nm in dependence of
the permittivity of the sphere is shown, while the antenna itself is surrounded by vac-
uum. Although the particle is relatively small compared to the antenna, the maximum
intensity enhancement drops dramatically, the resonance wavelength though remains
almost constant.

4.4. Optimization of the intensity enhancement of an
arbitrary nanoantenna

As stated before there has been done almost no optimization of these nanoantennas.
In this section first the already known bow-tie antenna will be optimized and then
afterwards an optimization of an arbitrary geometry will be performed.

4.4.1. Optimization of the intensity enhancement of a bow-tie

Starting point is the bow tie, which is again illuminated from top with a linearly
polarized plane wave of wavelength λ = 800nm and the electric field in the middle
of the gap is monitored. The propagation of light for the optimization is numerically
calculated with a standard FDTD [23] code and the metal is treated with the same
Drude parameters as before (c.p. table A.1). In order to validate the optimization
process the design variables of the bow-tie have been reduced as much as possible.
Therefore, the distance between the two antennas has been fixed to dgap = 16nm and
the thickness (in propagation direction) to h = 32nm. The only two degrees of freedom
left are the opening angle φ of the underlying triangle and the length L. As before, all
vertical edges have been blended with a radius of rvert = 20nm and the horizontal edges
with a radius of rtop = 10nm. The periodicity parameters were set to Λx = 500nm and
Λy = 700nm, which is not close to the resonance discussed in section 4.3. A sketch of
the design variables can be found in Fig. 4.21 a). Note, that in this approach only one
arm is investigated, whereas the other arm is a mirrored version of the optimized one.
The reason for that is, that the excitation of the antenna is symmetrical with respect
to the y-axis.

The goal of the first optimization is to find the geometrical parameters for which the
intensity enhancement in the gap is at maximum assuming an excitation wavelength of
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4. Optical and NIR antennas for light intensity enhancement

λ = 800nm. For that the nlopt-library [77] has been included into the FDTD solver4.

(a) (b)

Fig. 4.21.: a) Sketch of a bow-tie with the definition of the design variables, which can be
optimized. b) Sketch of the optimization process using the CRSLM algorithm
included in a FDTD code.

The optimization process is sketched in Fig. 4.21 b). The process is started by an
initial guess of the design variables, with which the current value of the objective
function is numerically calculated. This value is fed to the optimization algorithm,
which first checks, if the convergence condition has been reached, and, if this is not
the case, determines a new set of parameters. This routine is repeated until either the
convergence has been reached or a predefined number of function evaluations has been
performed.

The objective function in this case is simply the maximum intensity enhancement, so
it can be formally expressed:

min
s.t. x∈Ω

−
∣∣∣∣∣EROI

E0

∣∣∣∣∣
2

(x), (4.22)

with the vector of design variables x = (L,φ)T and the corresponding bound constraints

4The FDTD solver maexle, which has been used in this work, is written by Prof. Dr. Jens Förstner.
It was parallelized via OpenMP and was usually running on 8 cores simultaneously.
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x1 ∈ [Lmin, Lmax], (4.23)

x2 ∈ [φmin, φmax]. (4.24)

Fig. 4.22.: Systematic parameter sweep for the case of constant periodicity in x- and y-
direction. It is apparent, that the resonance length of the bow-tie does not depend
on the opening angle of the underlying triangle.

For the case of two design variables the objective function can be calculated systemati-
cally, as has been done for comparison in Fig. 4.22. For this plot over 1000 calculations
have been done, each taking at least 5 minutes of computation time, which means a
total time of 84 hours. One can see that the resonance length of the bow-tie does
not depend on the opening angle of the underlying triangle, though magnitude of the
intensity enhancement does. With increasing opening angle the resonance peak be-
comes broader, which leads to lower Q-factors, but makes the antenna more robust
against a deviation of the length. The optimal opening angle of the bow-tie in this
configuration (including the periodicity) is then φ2DV = 70deg. and the optimal length
L2DV = 145nm.

The optimization itself converged after around 140 iterations, leading to an intensity
enhancement a bit over I2DV ≈ 4000, which is actually the global maximum, with an
angle of φ = 70deg. and a length of L = 144nm. For two parameters this seems a great
number of iterations, but compared to the number of calculations done in order to
obtain the data for the systematic parameter sweep, this number seems to be trivial.
In Fig. 4.23 a) the optimization history is plotted. There one can see the random
behavior of the CRSLM algorithm. Though a parameter set at least close to the global
maximum has been found already in the first stage of the optimization process, still
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many iterations are needed for convergence. The rough stopping condition used in this
process is apparent, since the objective function still visibly varies for each run shortly
before the optimization was finished.
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Fig. 4.23.: Optimization history for the optimization of a bow-tie for a) 2 and b) 4 design
variables using the CRSLM algorithm with a rough stopping condition. In both
graphs the random behavior of the algorithm is apparent, where the global max-
imum is found in the early stage of the process, but still needs many function
evaluations for convergence due to the global search within the parameter space.

For the case that the periodicity parameters Λx and Λy are turned to design variables
another optimization has been applied, for which in Fig. 4.23 b) the optimization
history is shown. For 4 design variables the optimization took around 340 function
evaluations for convergence, still with a relatively rough stopping condition. In the
ideal case one would take the result and apply a local optimization afterwards in order
to find the exact maximum. In contrast to the case with 2 design variables, for this
optimization it is likely that several local maxima exist, since the periodicity may
depend on the opening angle of the triangles. Still, with this rough optimization a
maximum intensity enhancement of I4DV = 7500 has been found, which is close to the
predicted maximum in the previous chapter, with almost the same parameters.

The optimization of a bow-tie is a relatively simple task, since a good parameter set was
already known, so the bound constraints could be set close to the expected values of the
design variables. However, it is apparent at least for the case of 4 design variables, that
in order to get a sufficient parameter set, the optimization routine is very efficient. A
small estimation helps to emphasize this point. If for every design variable 10 values are
simulated, one ends, if only 4 design variables are investigated, with 10,000 simulations,
for all permutations have to be considered. However, when doing such optimization,
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4.4. Optimization of the intensity enhancement of an arbitrary nanoantenna

it is mandatory to reduce both, the number of design variables and the computation
time as much as possible.

4.4.2. Optimization of the intensity enhancement of a
nanoantenna with arbitrary geometrical shape

As stated before, many different geometrical shapes have been investigated in the past,
e.g. bow-ties, ellipsoids, bi-pyramidal structures, discs and rods. All structures have
in common, that they depend on the creativity of the developer, who comes up with
a (new) idea. In this section the optimization of an almost free geometrical shape is
performed. Though the results did not lead to a satisfying geometry, it is a convenient
example to address some other issues, which are important for all optimizations.

Starting point for this approach is a polygon with n points. Since both, the periodicity
and the height of the structure are kept fixed, one obtains N = 2n design variables.
Again only one antenna arm is optimized, while the other one is mirrored. In this
approach, a polygon with 10 edges has been optimized, leading to 20 design parameters.
In Fig. 4.24 a) a sketch of the optimization approach is shown. The gray region
indicates the bound constraints, in which all edges of the polygon have been placed. In
the middle of the gap again the intensity enhancement has been used for the objective
function.

Note, that a slight variation of the structure near the gap results in a significant
change of the objective function, whereas a variation far away of the gap influences
the objective function only, if the resulting intensity enhancement of this structure is
near to a (local) maximum. This means, that in a large part of the parameter space Ω

a variation of the parameters lead to no change in the objective function itself. Since
most gradient based algorithms would stop the process then, which is one reason why
a non-gradient based algorithm, or more specific the CRSLM, has been chosen, which
is known to be robust.

The CRSLM converged after around 12,000 iterations and results in a complex struc-
ture, consisting of several particles, caused by intersections of the polygon, and a very
sharp tip. In Fig. 4.24 b) the resulting structure is pictured together with the intensity
enhancement, when excited resonantly. This structure reached an intensity enhance-
ment of around Ipoly = 10, 000, but is highly unrealistic. Firstly it is very challenging
to fabricate small structures, and the smallest particles had a size of around 10nm,
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which is at the current stage of technology impossible to fabricate in a controlled man-
ner. Secondly this structure is very sensitive to slight changes, e.g. if the smallest
particle has been moved 10nm upwards or its size changed by 5nm, the intensity en-
hancement would be reduced to around 2,000. Even the increase of the grid resolution,
which causes a slight change in the geometrical representation of the structure, led to
a significant change of the objective function.

(a) (b)

Fig. 4.24.: a) Sketch of the optimization approach with the parameter space Ω indicated by
the gray shaded box. b) Resulting structure of the optimization and the intensity
enhancement for a resonant excitation in logarithmic scale, with the lowest value
1 (blue) and the highest value 10,000 (red).

Unfortunately most maxima in this approach were that unstable, so in order to follow
this approach, which has some advantages, one would have to implement several re-
strictions and / or constraints. One has to ensure, that no “small” particles are used,
with a proper definition of “small”. One way to do this would be to allow only convex
polygons, but this restricts the parameter space drastically and the simplex might not
contract around the global maximum, which means most algorithms would not be able
to perform the optimization successfully. Another way could be the usage of a density
filter, rounding all sharp edges and ensuring that all particles have a minimum size,
but the structure would then be modified to beyond recognition and the computational
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4.4. Optimization of the intensity enhancement of an arbitrary nanoantenna

effort would be very high.

The sharp tip close to the gap, however, is the result of the definition of the objective
function, since the intensity enhancement has been determined only in one point. It
can be partially avoided by defining a face with a constant width and height, on which
the intensity enhancement is spatially averaged. Then the high values caused by a
sharp tip become less significant and more flattened tips might lead to better results.

For this work the most efficient solution was an approach using simple geometries,
which have been combined to more complex structures.

4.4.3. Optimization of the intensity enhancement of a
nanoantenna consisting of bricks

A more promising alternative to using the positioning of polygon points, is the usage
of several simple geometries, which can be combined to more complex structures. Here
a region, which can contain up to ten blocks of gold material of arbitrary size and
position, is introduced, which results in 40 design variables. A sketch of this approach
can be seen in Fig. 4.25 a). Additionally, constraints were added, which ensured, that
too small structures, i.e., side lengths smaller than 16nm, were not considered. There
are implicit constraints by using boxes, e.g. all angles in the structure are fixed to
90◦, which perfectly matched the FDTD grid. Unfortunately it might lead to weird
geometries and is computationally demanding to blend the edges of all structures during
the optimization process, so they have been left sharp.

Since even more needed function evaluations were expected than for the polygon ap-
proach, the computational domain in propagation direction of the incident light field
has been decreased to Λz = 400nm, i.e. the distance from the surface of the antenna
to the open boundary (perfectly matched layers (PML)) has been roughly 200nm. The
penetration depth of the electric field of a surface plasmon at a gold-air interface can be
up to 570nm. Though the penetration depth of localized surface plasmons can be much
smaller, one still should expect part of the field penetrating into the boundary, i.e. that
part of the evanescent fields, which are not radiated, get damped by the boundaries.
Calculations have shown, that the intensity enhancement has been reduced roughly by
less than 10%, which is a systematical error, where all structures have been affected
similarly.

Again PBC have been used in lateral directions in order to reduce the computation
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time. The periodicity has been fixed to Λx = 500nm and Λy = 700nm, which is still
far away from the collective mode discussed in chapter 4.3.

As mentioned in the previous section, the objective function now was modified in the
sense, that not only one point was taken into account, but a face Ωf with the side
lengths ∆w = 16nm and ∆h = 28nm, where the intensity enhancement was spatially
averaged. It was expected that the hot spots, caused by sharp edges of the bricks,
would become less significant then. The optimization problem can then be formulated
by (4.25).

min
s.t. x∈Ω

−
∣∣∣∣∣
1
N

∑N
i Ei

E0

∣∣∣∣∣
2

(x), (4.25)

with the electric fields Ei monitored at the positions pi ∈ Ωf .

Additionally, a simplicity constraint has been implemented in order to avoid overly
complex structures. For that first the minimum number of bricks have been calculated,
with which the structure could be replaced, without changing it. It was possible for the
bricks to overlap and therefore some bricks could be fully enclosed by others. For every
brick used more than 3 a penalty of p has been attributed to the objective function, so
it was actually a so called soft constraint. If all 10 bricks had been needed to obtain
the current structure and the penalty had been p = 5% for each brick, the intensity
enhancement has been reduced by 35%. Several optimization processed have been
started with values for p between 0% ≤ p ≤ 5%, which needed between 6500 and 8000
iterations to converge.

Interestingly, the code always converged towards a geometrical setup built of only two
blocks. Each antenna arm consisted of a sharp tip plus an additional bigger block. It
is not surprising that adjacent to the gap region a very thin metal tip has been found
as sharp edges are known to give rise to large field gradients. It is interesting though
that the intensity enhancement can be further increased by supporting the “small”
antennas with a bigger block. The parameter sets from each optimization differed, but
yielded almost identical performances, so it is likely, that only a local maximum has
been found and even better solutions might exist. One parameter set can be found in
table 4.2 a).

In Fig. 4.25 b) one example of the optimized antenna can be seen. The intensity
enhancement with respect to a plane wave traveling in free space is logarithmically
scaled and covers four orders of magnitude. The intensity enhancement in the middle
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(a) (b)

Fig. 4.25.: a) Sketch of the optimization approach with the parameter space Ω indicated by
the gray shaded box. b) Resulting structure of the optimization and the intensity
enhancement for a resonant excitation in logarithmic scale, with the lowest value
1 (blue) and the highest value 10,000 (red).

of the antenna is around 7000, which is almost twice as much as the best bow-tie with
this periodicity as discussed in the previous section. As is known for other antennas
the resonance frequency can be shifted by scaling the lengths of the two boxes.

Now the question arises, how the size of the supporting box influences the performance
of the antenna. For that we changed the width of this box, recording the intensity
enhancement in the middle of the antenna (c.p. Fig. 4.26). Here only a single antenna
is calculated, which is surrounded by a PML in all directions, otherwise the periodicity
of the array would have been changed as well and the results would not have been
comparable. For this parameter sweep the simulation space is kept big enough to
ensure, that the evanescent fields did not reach into the boundaries. One can see
resonances with equidistant intervals of roughly 500 nm, which indicates some kind of
standing wave inside of the supporting box.

To explain this we investigated the current density of these structures. In contrast to
already known antennas, the optimized antennas current density has a large contri-
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parameter size

width of supp. box 300nm

length of supp. box 108nm

width of tip 16nm

length of tip 24nm

height 28nm

gap 16nm

periodicity Λx 500nm

periodicity Λy 700nm

(a) H-Antenna w/o array mode

parameter size

width of supp. box 253nm

length of supp. box 115nm

width of tip 16nm

length of tip 21nm

height 28nm

gap 16nm

periodicity Λx 760nm

periodicity Λy 785nm

(b) H-Antenna with array mode

Tab. 4.2.: Parameter set for an optimized box antenna. In a) the periodicity in x- and y-
direction have been kept constant, whereas in b) they have been used as additional
design variables.

Fig. 4.26.: Variation of the width of the supporting box of the optimized antenna, without
changing any other parameters.

bution in the direction perpendicular to the polarization of the incident light field. A
line plot of the current density in the supporting box is shown in Fig. 4.27 a) for the
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first two maxima and minima of Fig. 4.26. The second maximum (blue) looks like
the first maximum (red), but has two half periods of an oscillation mode. This can
be seen even better for the first two minima (green and pink). One can also see, that
the closer one gets to the boundary of the supporting box, the more the oscillation
becomes deformed. This is often attributed to a reactance at the ends of nanoantennas
[16].

Fig. 4.27.: a) Line plot of the current density parallel to the x-axis as indicated in the inset
for different widths of the supporting box.

The two minima exhibit a node in the middle of the box (where the tip is placed) with
a small steepness, i.e. only a low charge carrier density is flowing to the tip. In contrast
to that, the two maxima exhibit their maximum current density at that point, but have
a change of the sign, which leads to a very high charge carrier density at the tip and
with that a very high intensity enhancement within the gap of the antenna. Thus the
width of the supporting box is crucial for a proper performance of this antenna.

In order to understand why such a high current density perpendicular to the polar-
ization of the incident wave is generated, a sketch of the charge separation, when this
antenna is excited resonantly, is shown in Fig. 4.28 a). If one looks to the electric
field along the line, where the current density has been plotted, one would notice an
inhomogeneity in particular for the Ey component, which increases when getting closer
to the tip. Inserting this inhomogeneity into Maxwell’s equations (2.2a) and (2.2b)
results in an electric field pointing to the x-direction (or −x-direction respectively).
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The induced field then causes the large current density parallel to the x-axis, with the
charge carriers “flowing” towards the tip. This is more illustrated by Fig. 4.28, where
the current density within the structure is pictured with arrows. The normalized ab-
solute value is indicated by the color of the arrows (linearly scaled), reaching from 0
(dark blue) to 1 (red).

(a) (b)

Fig. 4.28.: a) Sketch of the charge separation for the optimized antenna when excited res-
onantly. If one draws a line perpendicular to the antenna axis, it is apparent
that the closer one gets to the tip, the higher an inhomogeneity of the resulting
electric field becomes. Therefor a current towards the tip is induced, which fur-
ther increase the charge at the tip, leading to a higher intensity enhancement. b)
Current density inside of the antenna when excited resonantly. The color of the
arrows indicate the absolute value (color scales linearly). Around the structure
the electric field enhancement can be seen, with a logarithmic color scale.

Now the question arises, if a collective array mode of this H-antenna5 can be obtained.
For that another optimization with the distance to neighboring antennas in x- and y-
direction as additional design variables has been started. Since the stopping conditions
have been finer as before (due to the reduction of design variables), the optimization
converged after 1800 iterations. The found parameter set can be found in table 4.2 b).
As discussed in section 4.3.2, a collective mode leads to a redshift of the resonance.
Since the maximum intensity enhancement for the specific wavelength of λ = 800nm

5For a shorter name the optimized box antenna is from here on referred to as “H-antenna”, because
it looks like an H rotated by 90◦.
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has been optimized, the resulting antenna had to be slightly smaller in order to com-
pensate the redshift. In Fig. 4.29 the spectrally resolved intensity enhancement for this
antenna is shown (red line), which reaches at its maximum an intensity enhancement
of around Ienh ≈ 35000, which is almost 4 times as much as the best bow-tie achieved.
The Q-factor is Q = 18.1, affirming that a collective array mode of these antennas has
been found.

To confirm that this high enhancement, the same structure has been calculated with
the frequency domain solver in CST Microwave Studio. There the grid is a tetrahedral,
unstructured grid, where a staircase effect can be avoided. Also the problem of the
epsilon averaging, where cells are partially filled with material, becomes not significant.
Also the boundary conditions are implemented differently, and instead of an iterative
time integration a large system of equations has to be solved. So this method, though it
is still a FIT, works different in many critical points. As one can see, that in the results
obtained by the frequency domain solver (green dots) are almost identical compared
to the results before. The convergence in both simulations has been carefully checked,
so one can safely assume, that this high intensity enhancement is not resulting from
a numerical instability. To my knowledge this is by far the best performing antenna
with a gap of 16nm.
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Fig. 4.29.: Spectrally resolved intensity enhancement of the optimized H-Antenna calculated
in time domain (red line) and in frequency domain (green dots) with the param-
eters given in table 4.2 b). For comparison the best obtained bow-tie is shown
(blue).
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4.5. Fabrication related constraints

In this section the fabrication and experimental characterization of such nanoantennas
is wrapped up. Since this is a theoretical work only, this section is kept brief, address-
ing only some restrictions or requirements, which have to be considered even when
simulating nanoantennas.

As mentioned in the previous sections, the performance of nanoantennas is very sensi-
tive with respect to the geometrical shape and its dimensions. Therefor the fabrication
of such requires reliable and reproducible techniques with a typical resolution below
10nm, which proves to be one of the main challenges in the realization of plasmonic
devices. For that several approaches are possible, but in this section only the electron
beam lithography (EBL), which is one of the most popular techniques, is discussed,
based on [57].

The EBL (sketch in Fig. 4.30) is a top-down approach, usually starting with a sub-
strate (e.g. glass) covered with a thin film of an optically transparent but electrically
conducting material (often ITO), which is needed to avoid charging effects. On top of
this a layer of an electron-sensitive resist (e.g. Poly(methyl methacrylate), also known
as Plexiglas, (PMMA)) is deposited. With a focused electron beam 2D shapes can be
written into the resist, which then can be selectively removed. A thin film of metal
(e.g. gold) is then evaporated, covering both, the voids and the remaining resist. Fi-
nally within the so called lift-off the remaining resist including the covering metal is
removed, leaving the metal structures in the voids unaffected.

Since the writing is done by a focused electron beam, the spatial resolution of the
pattern is usually below 5nm. However, the evaporated gold layer is usually poly-
crystalline, i.e. during the lift-off some small gold crystals are removed. This not only
leads to a strongly increased surface roughness, but to a decreased structural resolution.
Partially the surface roughness can be healed by tempering the sample though. In order
to increase the stability of the structure, one often deposits titanium or chromium as
a thin adhesion layer (below 5nm). The drawback of such adhesion layers is often a
significant increase of damping for surface plasmon polaritons.

It has been shown, that indeed single-crystalline gold can be grown in mesoscopic
dimensions, where the structure can be cut out by focused ion-beam milling (FIB).
This leads to a significant reduction of surface roughness, increased resolution and,
unfortunately, much increased costs [78].

For the simulations some consequences arise for the design of nanoantennas. Firstly
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Fig. 4.30.: Sketch of the most important steps in order to fabricate gold nanoantennas using
electron beam lithography.

one cannot fabricate sharp edges or infinitely thin structures. A minimum diameter of
the resulting structure depends on the used machine, but is usually around 40nm. One
can still fabricate structures with smaller diameter, but with rapidly decreasing quality.
Secondly during the lift-off a part of the gold is removed at the most unstable regions,
which are the highest horizontal edges, i.e. they become rounded. This is essentially
no problem, but since the antennas are very sensitive to the geometrical shape and its
dimensions, one has to adjust the parameters when designing a nanoantenna.

In Fig. 4.31 a) this has been illustrated. After blending all horizontal and vertical
edges, another optimization has been performed in order to compensate the different
amount of material. Additionally the width of the tip has been enlarged from 16nm to
40nm (c.p. table 4.3). Please note, that the height and the gap in between of the two
arms has been kept constant. In Fig. 4.31 b) one can see the spectrum of both, the
H-antenna with sharp edges (blue), discussed in the previous section, and the obtained
antenna with blended edges (red). Due to the broader tip the intensity enhancement is
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Fig. 4.31.: a) Illustration and coordinate system of the optimized H-antenna with blended
edges. b) Corresponding spectrally resolved intensity enhancement.

decreased by 20%, but not as much as expected. The resonance is still narrow, which
indicates, that again an array mode has been excited.

parameter size

width of supp. box 272nm

length of supp. box 110nm

width of tip 40nm

length of tip 33nm

height 28nm

gap 16nm

periodicity Λx 770nm

periodicity Λy 786nm

Tab. 4.3.: Parameter set for the H-antenna. All horizontal edges have been blended with
a radius of rtop = 10nm. All vertical edges have been blended with a radius of
rvert = 20nm.

Now this blended antenna is placed on a SiO2 substrate with a refractive index of
n = 1.46 as illustrated in Fig. 4.32 a). As shown in chapter 4.3.3 it is expected, that
the intensity enhancement decreases dramatically, while the resonance is slightly red
shifted. The corresponding spectrally resolved intensity enhancement is shown in Fig.
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4.32 b). There the blended H-antenna (blue) is compared to the optimized bow-tie
(red). One can see two overlying peaks, though this is not apparent for the bow-tie. In
case of the H-antenna one resonance occurs at an incident wavelength of λ1 ≈ 840nm,
the other at λ2 ≈ 1120nm. That first peak is still narrow, compared to the resonance
of the bow-tie, which again indicates an array mode.
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Fig. 4.32.: a) Illustration and coordinate system of the optimized H-antenna with blended
edges placed on a SiO2 substrate. b) Corresponding spectrally resolved intensity
enhancement.

There is an additional feature of the H-antenna, which has not been discussed yet. As
could be seen for the optimized bow-tie, e.g. in Fig. 4.22, the length of each antenna
arm has been independent on the opening angle of the underlying triangle. For an
incident wavelength of λ = 800nm, the optimal length has been around LBT = 144nm.
Though the H-antenna has an optimal length of roughly LH = Ltip + Lsb between
130nm and 140nm, the resonance can be shifted via the width of supporting box as
well without a significant decrease of the performance. However, since such structures
are calculated before fabrication, it is beneficial to optimize all design parameters
instead of adjusting just one.

Before the chapter is finished, a short remark about the measurement of plasmonic
modes (and therefore the intensity enhancement) is necessary. For the characterization
of such plasmonic modes several techniques have been developed over the years, of
which some should be mentioned here. The most outstanding techniques are certainly
electron energy-loss spectroscopy (EELS) [79] and cathodoluminescence (CL) [80], with
which the highest resolutions have been obtained. In these experiments a beam of fast
electrons is focused onto the sample, where some electrons are able to transfer energy
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into the nano structure via electromagnetic interaction [81]. In the case of EELS the
corresponding loss of energy of the transmitted electrons is measured, whereas in the
case of CL the emitted light is detected (mostly in reflective geometry). In Ref. [82],
where both methods have been applied simultaneously, it is shown, that the CL is
only able to measure bright modes, while the EELS also gives data about dark modes.
Apart from these two techniques, other experimental setups like scanning near-field
optical microscopy are also available, but the spatial resolution is usually much worse
[83].

To summarize this chapter, many properties of dipole antennas have been discussed.
The bow-tie antenna, surrounded by vacuum, has been systematically optimized and
then set a reference. Then different ways of optimizing more general structures have
been discussed, where it seems convenient to use simple geometries to form more com-
plex shapes in order to reduce design variables and define proper constraints. It is
evident, that the whole optimization process strongly depends on the definition of the
objective function and the used constraints, particularly if several objective functions
have to be combined (e.g. maximizing the field in area A and simultaneously min-
imizing the field in area B). In such cases one has to make sure, that the order of
magnitude of both goal functions is similar. Since they often contradict each other,
one has somehow reformulate the problem and weight the objective functions.

The optimization using bricks has been very successful, yielding a geometrical shape
which generates an intensity enhancement four times higher compared to the opti-
mized bow-tie. Even when blending the edges, the antenna performed 3.5 times better
than the reference. Placing both, the optimized bow-tie and the H-antenna on glass
substrate, resulted, as expected, in a dramatic decrease of the performance, but the
H-antenna still performed much better than the bow-tie.

This shows, that there is still room for optimization, for not only a better performance
has been achieved, but also a surprising geometrical shape found. Using automatic
optimization routines leads to shapes, which might not have been thought of, and yields,
while trying to understand an optimized structure, to more insight of the problem at
hand and the involved processes.
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For future light-on-chip integration the control of visible or infrared light is crucial on
nanoscale dimensions [84]. Due to the diffraction limit, conventional optical devices
like lenses are not functional in sub-wavelength scale, which is why antennas and meta-
materials are often considered. Optical and infrared antennas provide a promising way
to couple photons in and out of nanoscale objects [85, 64]. As counterpart of conven-
tional radio antennas, they are able to increase optical fields in sub-wavelength volumes
[63, 62], to enhance excitation and emission of quantum emitters, to direct light, emit-
ted by quantum emitters [86, 87, 88, 89, 4] or to apply a color routing [90, 91]. So far,
these functionalities have been mainly pursued by surface plasmon based devices [92],
like nanolenses [93], nano-waveguides [94] or nanoantennas [95, 96, 97, 57]. Most of
these devices become complicated due to coupling of several metallic particles and their
sensitivity to the geometrical shape. However, there were many successes during the
past years, but the main drawback of using plasmonic structures is their high intrinsic
losses.

So far, in order to obtain a near infrared (NIR) directional antenna, usually the conven-
tional Yagi-Uda antenna is scaled down and the lengths of the elements are adjusted
to plasmonic resonances. The concept is theoretically and experimentally proven [61],
but the directivity of such an antenna is not nearly as good as in the RF regime, which
has several reasons, e.g. the coupling between plasmonic modes in different elements
or the influence of the substrate.

As a promising alternative to plasmon based directional antennas, recently all-dielectric
antennas are investigated. Tang et al. have changed the dielectric background using
transformation optics [22], whereas in a more recent approach small silicon spheres are
positioned similar to a Yagi-Uda antenna to direct the emitted light [84, 98]. In the
experiment a plane wave is applied, since the positioning of the quantum emitter is
crucial, but very difficult, for this kind of antenna.
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First some aspects of the classical antenna theory are summarized. In the following
sections an optimization of nanoscopic antennas in the near infrared regime starting
from a metallic Yagi-Uda structure has been performed. The optimization is done
via a particle-swarm algorithm, using full time domain finite integration simulations
to obtain the characteristics of the investigated structure, also taking into account
substrates. Furthermore dielectric antennas are shown, which perform even better,
due to the lack of losses by an appropriate choice of the dielectric material. The
section1 5.2.2 is based on Ref. [99].

5.1. Classical antenna theory

In this section some important quantities and properties of classical antennas are sum-
marized. It is based on Ref. [100], in which a much more detailed discussion can be
found.

Starting point is the radiation of electromagnetic waves by a general current (and
charge) distribution. Typically, the current distribution is localized in a defined region,
e.g. a wire antenna and it can generate electromagnetic fields, which can propagate to
a far distance from the source position. In order to describe this radiation it proves con-
venient to use the electric and magnetic potentials instead of the electric and magnetic
fields.

Since the divergence of the magnetic flux is zero (c.p. equation (2.2d)), one can define
the so called vector potential, from which the magnetic flux can be calculated:

B(r, t) = ∇×A(r, t) (5.1)

Inserting this into Faraday’s law in equation 2.2a leads to the definition of the so called
scalar potential

E(r, t) = −∇φ(r, t)− ∂

∂t
A(r, t). (5.2)

These potentials are not uniquely defined, since they can be changed by adding con-
stants to them. Additionally, Maxwell’s equations are gauge invariant, with the Lorenz
condition known as the most often used gauge:

1Publications for sections 5.3 and 5.4 are in preparation.
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∇ ·A(r, t) +
1

c20

∂

∂t
φ(r, t) = 0. (5.3)

After a short calculation, one can derive the wave equations for those potentials under
the assumption, that ε and µ are constant with respect to r.

1

c20

∂2

∂t2
φ(r, t)−∇2φ(r, t) =

1

ε
ρ(r, t) (5.4)

1

c20

∂2

∂t2
A(r, t)−∇2A(r, t) = µJ(r, t) (5.5)

So the charge density ρ and the current density J may be considered as sources, which
generate the potentials φ and A, from which the electric and magnetic fields can be
calculated. The main (or causal) solution of the wave equations (5.4) and (5.5) for the
case, that the source densities φ and A are known, is given by the so called retarded
potentials in equations (5.6) and (5.7), where R = |r− r′| is the distance from a point
in the region of the source density to the field point.

φ(r, t) =
∫
V

ρ(r′, t− R
c0
)

4πεR
d3r′ (5.6)

A(r, t) =
∫
V

µJ(r′, t− R
c0
)

4πR
d3r′ (5.7)

So far the retarded potentials are general and apply to any current and charge distri-
bution. For typical radiation problems several approximations have to be made, e.g.
the far field approximation, which assumes that the investigated field point r is very
far located from the current source. Additionally a first order expansion of the distance
R = |r−r′| ≃ |r|− r̂ ·r′ ≃ |r| has been applied. This is indeed valid as long as the di-
mension of the source region l is much smaller than r = |r|. Assuming a time harmonic
dependence, transforming the potentials into frequency space and using spherical co-
ordinates, one obtains the phasor part of the retarded potentials. With the definition
of the wave vector k = kr̂, where k is the magnitude, the retarded single-frequency
potentials in the far-field approximation can be expressed as follows:

φ(r) =
e−ikr

4πεr

∫
V
ρ(r′)eik·r

′
d3r′ (5.8)

A(r) =
µe−ikr

4πr

∫
V
J(r′)eik·r

′
d3r′ (5.9)

In these expressions the radial dependence has been separated from the angular de-
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pendence. Since the integral factors are important for the directional properties of
the radiated fields, the charge form-factor Q(k) and the radiation vector F (k) are
introduced. Basically, they are calculated by the three dimensional spatial Fourier
transform of the charge and current density distribution. Since they are depending on
the radial unit vector r̂, they can be written in dependence of the polar angle θ and
the azimuthal angle ϕ.

Q(θ, ϕ) =
∫
V
ρ(r′)eik·r

′
d3r′ (5.10)

F (θ, ϕ) =
∫
V
J(r′)eik·r

′
d3r′ (5.11)

The retarded potentials are then described by equations (5.12) and (5.13).

φ(r) =
e−ikr

4πεr
Q(θ, ϕ) (5.12)

A(r) =
µe−ikr

4πr
F (θ, ϕ) (5.13)

Neglecting all terms, which fall off faster than 1/r, one obtains the expressions for the
radiated electric and magnetic fields in equations (5.14) and (5.15), which are generated
by a current source.

E = ikZF
e−ikr

4πr
(r̂ × F )× r̂ (5.14)

H = −ik
e−ikr

4πr
r̂ × F , (5.15)

with the impedance ZF =
»
µ/ε. If the radiation vector is decomposed into a lon-

gitudinal and transversal part F = r̂Fr + F⊥, which can be done with any vector
field according to Helmholtz’s theorem, one can show, that neither the electric nor the
magnetic field is depending on the radial component Fr, thus they may be expressed
with the transversal component of the radiation vector only:

E = −ikZF
e−ikr

4πr
F⊥ (5.16)

H = −ik
e−ikr

4πr
r̂ × F⊥. (5.17)

The flux vector of the electromagnetic energy can then be calculated by the time
averaged Poynting vector:
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P =
1

2
ℜ(E ×H∗) = r̂

ZFk
2

32π2r2
|F⊥(θ, ϕ)|2 (5.18)

The power radiated into a solid angle dΩ will flow through the surface area dS, thus
the power density is given by equation (5.19).

dP

dS
=

dP

r2dΩ
= Pr =

ZFk
2

32π2r2
|F⊥(θ, ϕ)|2 (5.19)

Please note, that in many publications the power density is denoted by p(θ, ϕ) = Pr.
Often the radiation intensity is defined as in equation (5.20), with which the radiation
pattern is characterized.

U(θ, ϕ) =
dP

dΩ
= r2Pr =

ZFk
2

32π2
|F⊥(θ, ϕ)|2 (5.20)

The total radiated power then is obtained by integrating the radiation intensity over
all solid angles dΩ = sin θdθdϕ:

Prad =
∫ π

0

∫ 2π

0
U(θ, ϕ)dΩ (5.21)

In order to characterize antennas, a useful concept is the comparison of a radiation
pattern with an isotropic radiator, whose radiated power is equally distributed over all
solid angles. Thus the isotropic radiation intensity is

UI =
Prad

4π
. (5.22)

To get insight into an antenna behavior, one often uses the so called directive gain,
defined in equation (5.23), which is the radiation intensity of the investigated structure
normalized with by the corresponding isotropic intensity.

D(θ, ϕ) =
U(θ, ϕ)

UI

=
4πPr

Prad

(5.23)

It measures the ability of the structure to direct power towards a given direction. The
maximum of the directive gain is called the directivity2, so that

2In most publications concerning nanoantennas the directive gain is confused with the directivity. It
is often referred to as directivity and the maximum directivity respectively, but by the context it
becomes clear, what exactly is meant.
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Dmax =
Umax

UI

. (5.24)

Expressing the power density in terms of the directive gain gives

Pr =
PradD(θ, ϕ)

4πr2
, (5.25)

which motivates the definition of the directive gain. Please note, that the directive
gain is a relative quantity, i.e. that losses have not been considered so far, though they
play a significant role within the design of an antenna. To include losses, the power
gain is introduced in equation (5.26).

G(θ, ϕ) =
4πU(θ, ϕ)

Ptotal

=
4πU(θ, ϕ)

Prad + Ploss

(5.26)

By defining the radiation efficiency

η =
Prad

Ptotal

, (5.27)

one can rewrite the power gain to its most popular form:

G(θ, ϕ) = ηD(θ, ϕ). (5.28)

Another useful quantity is the half-power beam width, which is the angle between the
points, where the directive gain (or the power gain) is equal to the half of its maximum
value. Apparently the opening angles are defined separately for θ and ϕ and are denoted
with ∆θB and ∆ϕB respectively.

To summarize this description, in order to describe an antenna, one usually needs the
directive gain, radiation efficiency and the half-power beam width angles. It is easy
to see, that with increasing directivity the beam width angles become smaller, so the
radiation is directed more efficiently. Unfortunately most antennas exhibit side lobes,
which means that a part of the radiation is directed into an entirely different direction
compared to the main lobe with the maximum directive gain. For a proper design of
antennas, the side lobes should be as small as possible, since some of the radiation is
lost with them.

Another important quantity is the so called front-to-back ratio rfb, for which many
different definitions are used. The most common definition is the ratio of the directive
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5.1. Classical antenna theory

gain in direction of the main lobe and the directive gain in the opposite direction.
Assuming the maximum directive gain is obtained for the angles θmax and ϕmax, it can
then expressed by

rfb =
D(θmax, ϕmax)

D(π − θmax, ϕmax − π)
. (5.29)

However, since this work is about nanoantennas, which usually lay on a substrate, it is
expected, that the largest part of the radiation of a point source will penetrate through
it. Thus another definition of the front-to-back ratio is convenient, where the polar
angle is left constant:

Rfb =
D(θmax, ϕmax)

D(θmax, ϕmax − π)
(5.30)

5.1.1. Radiation pattern of a Hertzian Dipole

Now a Hertzian dipole will be discussed. It is actually the simplest linear antenna
consisting of an infinitesimal thin wire with the length L, located at the origin and
directed along the z-axis. The current density is the of the form J(r) = ẑI(z)δ(x)δ(y),
where I(z), −L/2 ≤ z ≤ L/2, is the current distribution along the antenna element.
A sketch of this linear antenna is shown in Fig. 5.1 a).

It is evident, that the radiation vector F from equation (5.11) will have only a z-
component:

F = ẑFz = ẑ
∫ L/2

−L/2
I(z′)eikzz

′
dz′ (5.31)

The wave vector k can be transformed to Cartesian coordinates, with kz = k cos θ.
Further it is assumed, that the antenna length is electrically short, i.e. L ≪ λ0, which
leads to the current distribution of a Hertzian dipole I(z) = ILδ(z). With that the
z-component of the radiation vector can be expressed as in eq. (5.32).

Fz =
∫ L/2

−L/2
I(z′)Leikz

′ cos θdz′ = IL (5.32)

For this simple antenna Fz is a constant and independent of θ. Transforming the unit
vector ẑ to spherical coordinates yields the transversal part of the radiation vector in
spherical coordinates:
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F⊥(θ) = θ̂Fθ(θ) = −θ̂Fz(θ) sin θ (5.33)

The calculation of the electric and magnetic radiation fields can then be calculated as
in equations (5.34) and (5.35).

E = θ̂Eθ = θ̂ikZF
e−ikr

4πr
IL sin θ (5.34)

H = ϕ̂Hϕ = ϕ̂ik
e−ikr

4πr
IL sin θ (5.35)

The fields are omnidirectional, that is, independent of the azimuthal angle ϕ. The
radiation intensity from eq. (5.20) is then

U(θ) =
ZFk

2

32π2
|IL|2 sin2 θ (5.36)

and the directive gain

D(θ) =
4πU(θ)

Prad

=
4πU(θ)
ZF k2|IL|2

12π

=
3

2
sin2 θ. (5.37)

The directive gain has been plotted in a polar plot in Fig. 5.1 b) for the polar angle θ.
It is apparent that such a source won’t radiate along the z-axis (i.e. for θ = 0). Since
the polarization of the radiation fields are perpendicular to the radial unit vector r̂,
one obtains, depending on θ, electromagnetic waves with polarizations along all three
coordinate axes (for Cartesian coordinates). The directivity of a Hertzian dipole is
Dmax = 1.5, which is close to an isotropic radiator.

In practice point sources are usually implemented in algorithms like FIT or FDTD by a
short and thin antenna. In the extreme this antenna would cover only one cell, but, at
least in the case of the used CST Microwave Studio, slightly longer wires significantly
increase the stability of the simulations.

5.1.2. Yagi-Uda antenna in radio frequency regime

In this section a prominent directive antenna in the radio frequency regime, the Yagi-
Uda antenna (or often called Yagi antenna), will be discussed. It is simple to construct
and has a high gain, typically G ≥ 10dBi. For most applications they are designed to
work in HF or UHF bands, which means a range from about 3MHz to 3GHz, though
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Fig. 5.1.: a) Sketch of a linear antenna. For the case, that the length L is electrically small,
it becomes the well known Hertzian dipole. b) Polar plot of the directive gain for a
Hertzian dipole. Interesting is only the polar angle θ, since the directive gain does
not depend on the azimuthal angle ϕ. A three dimensional representation of the
directive gain would look like a donut.

their bandwidth is rather small (typically a few percents of the center frequency). They
were first published in Japan in 1926 by Shintaro Uda, but presented in English, and
thus made available for engineers in the whole world, by his colleague Yagi.

Fig. 5.2.: Sketch of a classical Yagi-Uda antenna in radio frequency regime. The feed ele-
ment is connected to a coaxial cable and therefore acting as a dipolar source. The
reflector, typically larger than the feed, is effectively reflecting radiation backwards
towards the feed, while the directors further decrease the light beam width.
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5. Optical and NIR antennas with high directivity

The basic geometry is shown in Fig. 5.2. It consists of a single feed element, which
is usually a dipole antenna. This feed is the only element that is externally excited,
typically via a connected coaxial cable. The rest of the elements are parasitic, i.e. they
only help to reflect or further direct radiation emitted by the feed into the desired
direction. Almost always only one reflector exists, so the feed is the second element
to the end. It has to be resonant to the excitation frequency, which means a length
LF of the feed slightly smaller than half of the wavelength, in order to compensate the
presence of the other parasitic dipoles.
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Fig. 5.3.: Sketch and Directivity for both, a reflector (a) - b)) and a director (c) - d)) next
to the feed. The polar plot show the azimuthal angle, since for this structure the
radiation in plane of the antenna axis (x-axis) and the polarization of the feed
(y-axis) is interesting. The frequency of the excitation signal has been f = 1GHz.

On one side of the feed the reflector is placed, which is slightly larger than the feed.
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With a length slightly larger than the resonance length, the current on the reflector
lags the induced voltage. Thus the impedance of the reflector becomes inductive. The
opposite is the case for the directors, which are placed on the other side of the feed.
They are smaller than the resonance length, so their impedance becomes capacitive.
This arrangement causes a phase distribution to occur across the elements, simulating
the phase progression of a plane wave across the array of elements. This leads to
the array being designated as a so called traveling wave antenna. By choosing the
lengths in this manner, the Yagi-Uda antenna becomes an end-fire array. Within the
RF-regime the electromagnetic fields don’t really penetrate into the metals, i.e. one
can assume, that the currents are flowing on the surface of the wires, which simplifies
all calculations significantly.

In Fig. 5.3 the two most simple Yagi-Uda arrays are shown. In a) the feed with a
reflector and no director is illustrated, with the simulated directive gain in b). The same
has been done for the feed with a director and no reflector present. While the reflector
essentially reflects the radiation in backwards direction, but does not qualitatively
change the radiation pattern in forward direction, the director clearly collimates the
light beam, with only a slight decrease of the radiation in backward direction.

For a larger array, i.e. reflector, feed, and several directors, the lengths and distances
have to be adjusted. Even in the RF regime, a closed expression for the design has not
been found yet, so it is a typical optimization problem, dependent on the application,
the frequency band, the used materials, the required space, etc. Thus over the years a
vast amount of lookup tables have been published, where these parameters have been
calculated or experimentally determined. One of the first is given in Ref. [101], which
has been determined by extensive experimental studies.

The Yagi-Uda antenna sketched in Fig. 5.2 consists of a reflector, the feed and three
directors. For parameters given in Tab. 5.1 the radiation pattern of the Yagi-Uda
antenna looks like in Fig. 5.4. In a) and b) polar plots of the directive gain for the
azimuthal angle ϕ and the polar angle θ in the far field are shown. One can see a nicely
directed radiation towards the x-axis, with three small side lobes. The front-to-back
ratio rfb = Rfb = 7.4. In Fig. 5.4 c) a 3D radiation pattern without axes is shown,
which is essentially the combination of the polar plot of the azimuthal angle for many
polar angles. They often are shown to give an impression of the directivity. In d) a
color plot of the directive gain over both angles is shown. Though not common, it
is the preferred illustration of radiation patterns in this work, since it contains the
most information. It might appear unintuitive, but one just has to keep in mind, that
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Fig. 5.4.: Directive gain of a Yagi-Uda antenna with three directors in polar plots for a) the
azimuthal angle ϕ with constant polar angle θ = 90◦, which is actually the xy-plane,
and b) the polar angle θ with constant azimuthal angle ϕ = 0◦, which corresponds to
the zx-plane. In order to get a qualitative impression of the behavior, one might
also plot the three dimensional radiation pattern in spherical coordinates as has
been done in c), where the axes have been neglected. However, such an illustration
is not that practical, if one is interested in the absolute values of the directive gain.
A better illustration is shown in d), where a color map over both angles is given.
Since such a plot contains more information than the former ones, it is preferred
in this work.

the angle (θ = 90◦, ϕ = 0◦) points into the direction of the x-axis, whereas the angle
(θ = 90◦, ϕ = 90◦) points into the direction of the y-axis.

As stated before, the directivity can be increased with the number of directors, as is
shown in Fig. 5.5. The red dots represent the directivities of antennas, which have been
simulated with CST Microwave Studio. They consist of copper, with parameters taken

108



5.1. Classical antenna theory

parameter size in
wavelengths

length of reflector LR 0.482

length of feed LF 0.45

length of director 1 LD1 0.428

length of director 2 LD2 0.424

length of director 3 LD3 0.428

spacing between elements di 0.2

radius of all wires R 0.004

Tab. 5.1.: Parameter set for a Yagi-Uda antenna with three directors taken from [101].
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Fig. 5.5.: Directivity in dBi of a Yagi-Uda antenna with varying number of director elements.
A fit of a square root has been plotted, so one can can see, how the directivity
behaves with increasing number of directors. Also increasing are the losses for real
metals, so that a maximum power gain is achieved at about 20dBi.

from [101], which probably can be further optimized. One can see, that with increasing
number of directors the directivity increases. Please note, that here the directivity is
expressed in dBi, which is common within the antenna community. Additionally, a
square root function has been fitted to the directivities of the different antennas. Since
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in real metals losses cannot be avoided, the radiation efficiency decreases with increasing
number of directors. So the power gain exhibits a maximum when using between 15 and
20 directors, depending on the material system and the detailed geometry used. Thus
with this simple geometry a maximum power gain of about G = 20dBi (or linearly
scaled G = 100) has been achieved. Additionally, some other geometries have been
applied, leading to even higher directivities.

To summarize this section, the principle of the Yagi-Uda antenna design has been
discussed, together with a reference in the radio frequency regime. In the next section
this concept is applied to near infrared antennas, where all dimensions are scaled down
and adjusted. There are two major differences. Firstly, the structures become so small,
that, in contrast to the RF regime, the electric field penetrates through the antenna and
thus might excite plasmons. Secondly, the antennas are not free-standing anymore, but
laying on a substrate, which probably causes a completely different radiation pattern.

5.2. Optical Yagi-Uda antennas

5.2.1. Optical Yagi-Uda antenna in vacuum

In chapter 5.1.2 the Yagi-Uda antenna in the radio frequency regime has been discussed.
In this section the entire concept is transferred to plasmonic antennas, which operate
in the near infrared. As mentioned before, the material behaves differently and such
antennas cannot be fabricated free-standing, i.e. they usually lay on a substrate, which
again changes the material behavior and modifies the radiation pattern of a dipole
source.

It consists basically of a feed, which is resonant to the desired frequency, a reflector,
which is slightly larger than the feed, and some directors, which are smaller than
the feed. While the feed is driven, the other elements are parasitic, i.e. they are
not externally excited. Responsible for high directive gains is the interference of the
dipolar radiation of all elements. This is a hand-waving argument, though reasonable,
but has to my knowledge not been proven so far, since analytical expressions as for the
Hertzian dipole are not available due to the complexity of the antenna. Following this
argument however, means, that one can create a Yagi-Uda like antenna by a collection
of any particles, which have appropriate dipole resonances, which will be proven in this
section.
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Starting point is a five element Yagi-Uda like antenna, consisting of prolate spheroids,
whose dipolar radiation has been calculated via the coupled dipole approximation,
where all higher order moments have been neglected (c.p. chapter 2.5). Only the feed
element has been excited with a vacuum wavelength of λ0 = 800nm, thus the other 4
elements are parasitic. The material of the elements has been chosen to be gold, with
the same Drude parameters as in previous chapters (see also in table A.1).

The solved equations for 5 coupled dipoles are given in appendix B, equation (B.1).
They are placed along the x-axis, with their major axis parallel to the y-axis. The exci-
tation light field has been polarized along the y-axis as well. Then the size parameters
have been optimized, where the directive gain along the x-axis (θ = 90◦ and ϕ = 0◦)
has been maximized (see table 5.2). According to Ref. [41] one can easily calculate the
extinction cross section by equation (5.38).

Cext =
4πk

|E0|2
Np∑
j=1

ℑ(E∗
incident,j · pj) (5.38)
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Fig. 5.6.: a) Color plot for the directive gain in spherical coordinates, with the polar angle θ
and the azimuthal angle ϕ. b) Extinction cross section for each element (isolated)
for the 5 element Yagi-Uda antenna.

The resulting directive gain is shown in Fig. 5.6 a) in spherical coordinates. As one can
see, this antenna works similarly good as the RF counterpart in the previous chapter,
which is actually surprising. In order to get more insight to the antenna, in 5.6 b) the
extinction cross sections of all elements (isolated) has been calculated. There one can
see, that the resonance of the feed is slightly below the incident wavelength due to the
compensation of the parasitic elements. As expected, the resonance of the reflector
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is above of the incident wavelength, whereas the resonance of the directors is smaller
compared to the feed. If one looks to the parameter set, one can actually see, that
the directors, though almost identical in length, are separated differently. That the
optimization process indeed converged, can be seen in Fig. 5.7, where the extinction
cross section3 of the whole antenna is plotted, showing a narrow peak at exactly the
incident wavelength.
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Fig. 5.7.: Extinction cross section of the whole Yagi-Uda like antenna, consisting of 5 prolate
spheroids.

It is apparent then, that also with other particles, which exhibit a sufficient scattering
cross section, Yagi-Uda like antennas can be built, even if the particles don’t consist of
metal, which will be shown later.

5.2.2. Plasmonic Yagi-Uda antennas on substrate

As a reference antenna we chose the one proposed by Curto et al. [61], because it was
theoretically and experimentally well investigated. In Fig. 5.8 a) the structure of this
antenna is illustrated, where the sphere indicates the location of the point source. In
this publication the point source has been a core-shell quantum dot, which has been

3Usually the standard extinction cross section is calculated with the whole structure excited by a
plane wave. In this case only one particle (the feed) has been excited, so that the extinction cross
section should be treated carefully.
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element ry [nm] rx,z [nm] separation [nm]
reflector 95 30 177

feed 90 30
director 1 84 30 193
director 2 82 30 350
director 3 82 30 308

Tab. 5.2.: Parameter set for the optimized spheroids building a Yagi-Uda like antenna. The
radius of the major axis is ry, and the radii of the minor axes are rx and rz,
respectively.

excited by a circularly polarized laser beam with a wavelength of λ = 633nm. After
some relaxation the quantum dots emit light between 720nm and 880nm.

All simulations are done with the commercial software CST Microwave Studio, using
the time-domain solver (see chapter 2.2). In order to get the desired antenna properties,
a near-field to far-field transformation is applied, taking into account the substrate,
which is glass with εr = 2.25.

To model the material gold, a second order fit to the experimental data [38] is used,
which perfectly matches the standard Drude model with appropriate parameters. In
general the hexahedral mesh had 15 cells per wavelength, but for accurate results a
local mesh refinement is applied, i.e. a non-uniform grid is used, where the cells in or
near to the gold structure had a maximum size of 5nm×5nm×5nm. Furthermore the
adaptive mesh refinement has been used, where the mesh is locally refined at certain
hot spots, until (according to defined criteria) the simulation is converged.

In Fig. 5.8 b) the calculated radiation pattern is shown. The maximum directivity
of this antenna was D = 12.1 and the radiation efficiency was approximately η ≈ 0.5

(own calculations) for an incident wavelength of roughly λ = 900nm. The front-to-
back ratio, defined in equation 5.30 is then RFB ≈ 6dBi. The half power beam width
angles are ∆θ = 25◦ and ∆ϕ = 74◦, which agrees with the publication.

In order to get more insight into the difference between Yagi-Uda antennas in optical
and in RF regime, in Fig. 5.9 the radiation patterns of the building blocks of the
antenna are shown. In a) only the feed remains, excited by a point source. The major
difference to the RF regime is, that the radiation splits into two bulbs, in positive
and negative x-direction. Also the radiation almost completely penetrates into the
substrate, making it difficult to build a sending-receiving antenna system. In b) the
reflector is added. That it indeed reflects the electromagnetic field and does not absorb
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(a) (b)

Fig. 5.8.: a) Illustration of the investigated antenna in Ref. [61]. The sphere indicates
the position of the point dipole. b) Color plot for the directive gain in spherical
coordinates, with the polar angle θ and the azimuthal angle ϕ.

(a) (b)

(c) (d)

Fig. 5.9.: Directive gain in spherical coordinates with the polar angle θ and the azimuthal
angle ϕ. The calculated antennas consist of a) only feed, b) a reflector and feed, c)
a reflector, feed and one director, and d) a reflector, feed and two directors. The
color scale is the same as in Fig. 5.8 b).
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one half, can be seen when comparing the radiation efficiency and the directivity of
both configurations. While the radiation efficiency slightly decreases, i.e. that a bit
light is absorbed by the reflector, which is expected, the directivity strongly increases.

In c) and d) one additional director has been added to the system. One can see, that
with each director the increase of the directivity decreases, while the radiation efficiency
decreases as expected. One reason for this is, that the radiation penetrates into the
substrate below the directors, i.e. that each added director becomes less relevant for the
system. The second reason is, that this system has not been optimized. As discussed
before, the presence of parasitic dipoles changes their resonance frequency, so at least
the lengths have to be adjusted. This becomes clear, when the antenna with two
directors in d) is compared with one, which has three directors (5.8 b)). While the
directivity only slightly increases by adding the third director, the radiation efficiency
decreases almost as much as was the case with less directors, which means, that the
third director still interacts with the radiated field.

Though the directivity is comparable to RF antennas, the radiation efficiency is quite
low, i.e. about the half of the emitted light is absorbed by the antenna. To emphasize
this, if one looks to a sending-receiving antenna system, 75% of the emitted power would
be lost within the antennas themselves, with additional losses neglected, which arise,
when the beam width becomes larger then the dimensions of the receiving antenna.
For strongly coupled quantum systems the energy transfer is of utmost importance, if
they are spatially separated. This leads to the question, if such an plasmonic antenna
can be improved, thus this structure has been optimized.

For the optimization process the Particle Swarm Algorithm is chosen, which is close to
a genetic one. The algorithm is purely heuristic and is a so called global optimization
algorithm. It is very robust, which means, that it is still working well, when the
objective function has many local maxima and minima. Unfortunately it needs many
function evaluations for convergence, but for our cause the robustness is far more
important (see chapter 3.4).

We started with a 5-element Yagi-Uda antenna, where all parameters, determining the
geometry, were optimized. For simplicity all elements had the same height. Several
constrains were introduced, e.g. a minimum width of each element of w = 35nm for an
easier fabrication and a minimum distance between two elements to avoid numerical
instabilities. The system was excited by a single electric point source, which was placed
at the end of the feed element and 10 nm above the substrate. The electric field was
y-polarized, which means along each element and perpendicular to the antenna axis.
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(a) (b)

Fig. 5.10.: (a) Optimization of a five element Yagi-Uda antenna consisting of gold leads to
the shown antenna geometry. The quantum emitter is indicated by a small sphere
above the substrate. The reflector is left, the feed element next to it. The three
directors (right) don’t have the same size and separation any more. (b) Directivity
of the optimized gold antenna in spherical coordinates. The angle ϕ is in plane
of the antenna axis, θ is orthogonal.

Using 15 design parameters, the optimization process converged after approximately
800 iterations.

element length [nm] width [nm] separation [nm]
reflector 232 102 150

feed 163 45
director 1 174 71 146
director 2 131 79 208
director 3 136 35 153

Tab. 5.3.: Parameters of the optimized Yagi-Uda antenna consisting of gold. The elements
are listed from left to right, with the second element acting as feed element. The
height of each element is 100nm.

The resulting structure is illustrated in Fig. 5.10 a), the corresponding parameters are
enlisted in Tab. 5.3. As expected, the reflector (left) is bigger than the feed element
(next to the reflector), but the directors have different sizes and separation distances,
which might be explained by the coupling of plasmonic modes in these elements. The
directive gain of this antenna is shown in Fig. 5.10 b), where the directivity is roughly
D = 21, which is almost twice as good, compared to the reference antenna. The
radiation efficiency is around η = 0.4, so the losses are higher than these of the reference
antenna, which is caused by the usage of more lossy material. Taking the power gain
into account, the performance of this optimized antenna is still 40% higher than of the
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(a) (b)

(c) (d)

Fig. 5.11.: Directive gain in spherical coordinates with the polar angle θ and the azimuthal
angle ϕ. The calculated antennas consist of a) only feed, b) a reflector and feed,
c) a reflector, feed and one director, and d) a reflector, feed and two directors.
The color scale is the same as in Fig. 5.10 b).

reference antenna.

In Fig. 5.11 the radiation patterns of the cumulatively built antenna are shown (with
the same color scale as the corresponding directive gain of the full antenna shown in Fig.
5.10 b)). In a) only the feed remains, exhibiting a typical, non-directed dipole radiation,
where the dipole lays on the substrate. In b) one can see, that the left most elements
indeed reflects the light and not just absorbs the light emitted in backwards direction.
The radiation along the −z-axis decreases significantly due to the interference of the
dipoles. By adding the directors in c) and d) the main bulb of the directive gain becomes
more distinguished, but simultaneously the radiation efficiency decreases. Dependent
on the application and the corresponding requirements one would probably use the
three element antenna from c), because its directivity is already higher compared to
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the reference antenna, but exhibits a higher radiation efficiency.

The directivity of the full optimized antenna is about D = 21 with a radiation efficiency
of about η = 0.4. The half power beam width angles are ∆θ = 30.3◦ and ∆ϕ = 55.2◦.
The front-to-back ratio RFB = 21.4dBi, which is approximately three times as much
compared to the reference.

5.2.3. Optical Yagi-Uda antennas using dielectrics

As shown in chapter 5.2.1, such antennas can be build with any particles, which exhibit
a sufficient dipole resonance. To emphasize this point, in this section a Yagi-Uda-like
antenna consisting of silicon is shown. Since this is not a plasmonic antenna, the
point dipole does not couple to the feed element like before to get the Hertzian Dipole.
For this reason the feed element has been replaced by the point dipole. Again the
geometrical parameters have been optimized, leading to the structure in Fig. 5.12 a).
The corresponding radiation pattern is shown in Fig. 5.12 b), with a directivity of
D = 12.5. This seems to be not better than the reference antenna, but the radiation
efficiency of this antenna is η ≈ 0.98, which is nearly lossless. The parameters of this
antenna can be found in table A.6.

(a) (b)

Fig. 5.12.: (a) Optimization of a four element Yagi-Uda antenna consisting of silicon leads to
the shown antenna geometry. The dipole moment of the point source is indicated
by a yellow arrow. The reflector is left, the feed element next to it. The three
directors (right) don’t have the same size and separation any more. (b) Directivity
of the optimized silicon antenna in spherical coordinates. The angle ϕ is in plane
of the antenna axis, θ is orthogonal.

In Fig. 5.13 the antenna is again shown decomposed, with the insets showing which
elements have been simulated. The reflector does not significantly increase the direc-
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tivity, which is not surprising, because of its large distance to the dipole source. The
directors on the other hand significantly increase the directivity, without decreasing the
radiation efficiency. However, they also increase the radiation in backwards direction,
leading to a lower front-to-back ratio. Thus one can see a reflector for this antenna is
sorely needed.

(a) (b)

(c) (d)

Fig. 5.13.: Directive gain in spherical coordinates with the polar angle θ and the azimuthal
angle ϕ. The calculated antennas consist of a) only reflector, b) only director,
c) reflector and director, and d) reflector and two directors. The color scale is
the same as in Fig. 5.12 b). Note, that the feed has been replaced by the point
source, whose dipole moment is indicated by a yellow arrow.

Please note, that the optimization might have found only a local optimum, so this
antenna can probably further optimized. One can also replace the silicon reflector with
a golden one, leading to hybrid antennas. Advantage of such is a better performance,
disadvantage is the significantly increased difficulty in the fabrication of such structures.
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5.3. Highly directive, all-dielectric optical antennas

5.3.1. A large, but high performance, all-dielectric antenna

As discussed in the previous chapter, Yagi-Uda antennas can be built by particles with
fitting dipole resonances. In [84] a directional antenna was made by several silicon
spheres of different sizes. Since it is hard to place a quantum emitter in such an
antenna, we tried to design an antenna, which is similar to the plasmonic one, but
made of another material. For that we chose Hafniumoxide (HfO2), which is already
established in the semiconductor industry, because it can be structured on small scales,
is transparent for visible light and the dielectric function is almost constant in the visible
(ε ≈ 3.57).

Fig. 5.14.: (a) Optimization and simplification of a dielectric antenna leads to the shown
structure, where the left element is the reflector and the right element acts as a
director. The quantum emitter is indicated by a small sphere above the substrate.
(b) Corresponding directivity of the optimized antenna in spherical coordinates.
The angle ϕ is in plane of the antenna axis, θ is orthogonal.

The setup for the optimization process including the design parameters were the same
as before, only the material of the antenna was changed. Also the point source was
placed between the two left elements, replacing the feed element of the plasmonic
antenna (again 10nm above the substrate). After approximately 900 iterations the al-
gorithm converged to a geometry, where all four elements on the right of the source had
roughly the same size, with the minimum distance between them. So the geometry was
further simplified to the one shown in Fig. 5.14 a), without loosing any performance.

The parameters are enlisted in tab. 5.4 b). As can be seen, the size of this dielectric
antenna is more than twice the size of the optimized gold antenna, but the performance
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is dramatically increased as well. The directive gain of this antenna is shown in Fig.
5.14 b), with a directivity of D = 30.3 and a radiation efficiency of η ≈ 1.0.

element length [nm] width [nm] separation [nm]
reflector 786 180 220
director 600 2200 40

Tab. 5.4.: Parameters of the optimized, all-dielectric antenna. The first element is placed to
the left of the source, the second element to the right. The height of the dielectric
antenna is 180nm. The polarization of the source has been parallel to the y-axis,
which is perpendicular to the antenna axis.

Fig. 5.15.: In a) a snapshot of the absolute value of the electric field is pictured. One can
see, that most of the light is traveling along the interface of substrate and antenna
element, before it is scattered at the end of the antenna. The appearance of
the rings in Fig. 5.14 b) around the main lobe can be seen as well. In b) the
directivity of the dielectric antenna is shown in dependence of length and width
of the element to the right of the source.

In order to understand this antenna, the absolute value of the electric field at a wave-
length of λ = 900nm is plotted in Fig. 5.15 a). This is obtained via a Fourier transform
in every point of the simulation grid, where the desired frequency component is picked.
In this plot one can see, that the small element indeed acts as a reflector, whereas the
huge element is more like a lossy waveguide. The electric field propagates along the
interface between substrate and antenna element, until it is finally scattered into the
substrate. While traveling along this interface one can see, that some light is coupled
out in equidistant periods, corresponding to the half of the wavelength of the light in-
side of the material. Each of these spots is directed in a slightly different angle, which
explains the half-rings in the directivity of this antenna (Fig. 5.14 b) ). However,
though clearly visible in this plot, these spots are small compared to the main lobe
scattered at the end of the element.
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In Fig. 5.15 b) the maximum directivity is plotted in dependence of length and width of
the big element. Increasing the width of this element leads to a smooth increase of the
directivity. One consequence of this is, that the antenna is robust against fabrication
tolerances. Another one is, that the size of this antenna can be reduced without loosing
much of the performance as well.

The spots of the waveguide, where some energy is coupled into the substrate can be seen
as new dipole sources, which interfere with each other. Thus this leaky waveguide works
quite similar to a classical Yagi-Uda antenna, where several dipole sources (caused by
the polarizability of the corresponding particles) in different positions - and thus also
with different phase - interfere with each other.

To prove this point, the HfO2 waveguide has been replaced by a number of point
dipoles, achieving a comparable directive gain. The number and positions of those
point dipoles can be read out from Fig. 5.15 a). The necessary phase difference is
then φ = βxi, where xi denotes the distance of each source to the primary one and β

is the propagation constant for the leaky waveguide mode. To obtain the propagation
constant a 2D eigenvalue solver has been applied, additionally calculating the mode
profile, which is shown in Fig. 5.16 a). The resulting parameters of the dipoles are
listed in Tab. A.7, with a calculated propagation constant β = 1.0239420 · 1071/m.

(a) (b)

Fig. 5.16.: a) Electric field strength for the mode profile of calculated leaky mode in HfO2
waveguide (linear scale), leading to propagation constant β. b) Resulting directive
gain, where the HfO2 waveguide has been replaced by 7 coherent dipoles.

In Fig. 5.16 b) the resulting directive gain is shown in spherical coordinates. The
main lobe as well as the side lobes (or rings) look even quantitatively like the radiation
pattern of the hafnium oxide antenna, though the radiation in backward direction here
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is much stronger. Please note, that this model is at best an estimation, since the
positions and the phase differences are roughly estimated. Still one can deduce, that
this leaky waveguide is not so different to a classical Yagi-Uda antenna, since it consists
of a number of interfering dipoles.

Apart from that a major problem for optical antennas has been overcome here. Such
small antennas cannot be designed as free standing Yagi-Uda antennas as is possible
in the RF regime, but have to placed on a substrate. The interfering dipoles then
emit light primarily into the substrate - not directly to the other dipole elements. As
a consequence each added director will become less relevant for the antenna, since
there is not much radiation left, which can excite this added director. That means,
that for plasmonic antennas one gets no increased performance after placing three or
four directors. However, using this leaky waveguide, the main energy is following the
interface between glass and hafnium oxide, so adding some additional length increases
the directivity as much, as is the case for RF antennas. Additionally, this antenna
exhibit no losses at all, i.e. the power gain is more than 5 times better compared to the
reference antenna. Also this antenna is less sensitive regarding fabrication tolerances,
since the propagation constant does not change dramatically with the variation of the
geometrical parameters.

In Fig. 5.17 the maximum directivity over the wavelength for three different antennas
can be seen. The optimized plasmonic antenna (blue) works best for the wavelength of
λ = 900nm, which is a good sign, that the optimization algorithm has found the global
maximum. The FWHM of this antenna is around ∆λFWHM = 150nm. The other two
lines correspond to the dielectric antenna with two different lengths of the big element,
indicated by the marks A and B in Fig. 5.14 b), both working best for the wavelength
λ = 830nm. The smaller variant of this dielectric antenna (red) has a much broader
peak (∆λFWHM = 550nm), than the optimized plasmonic antenna. The bigger variant
(green) is working for even a broader variety of wavelengths, there doesn’t seem to be
a peak for smaller wavelengths any more, which makes it a perfect broadband antenna.

5.3.2. Experimental verification of the HfO2 antenna

The fabrication of the antenna with the parameters in 5.4 has been realized by a two-
step lithography by cooperation partners. First4 the HfO2 structure has been deposited

4This step has been done by Christian Schlickriede, who works in the group of Prof. Dr. Thomas
Zentgraf, Paderborn University.
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Fig. 5.17.: The spectra of the optimized plasmonic (blue) and two realizations of the opti-
mized dielectric antenna, one with a shorter (red) and one with a longer (green)
second element, are pictured.

on glass as described in chapter 4.5. In the second step5 a layer of PMMA has been
placed on the sample. Then the area, where quantum dots should be deposited, has
been defined by the exposure of a focused electron beam, and the PMMA layer there
has been removed. After functionalizing this area, CdSe core-shell quantum dots have
been deposited, building a link to the substrate via the functionalizing, so that they
stay at their respective position, when the PMMA layer has been removed by a lift-off
process. A more detailed description of this fabrication process can be found in [102].
The resulting structure is shown in Fig. 5.18, where the quantum dots are not resolved,
but the area where they are deposited is indicated by the red circle.

The quantum dots are then pumped with blue light and, after some relaxation, emit
light around λ = 780nm, with a radiation pattern comparable to a point dipole. The
emitted light has been focused via an objective, which has a numerical aperture of
NA = 1.49, and detected by a standard ccd-camera. As a result of this setup, only
radiation propagating into the substrate (θ > 90°) could be detected. In Fig. 5.19
one can see the measured fluorescence intensity in spherical coordinates. One can
clearly see a directive behavior, where much more energy is directed along the positive
x-direction (ϕ = 0◦) than along negative x-direction (ϕ = ±180◦). The narrow main
bulb is prominent, as are the first two rings below it. Also a relatively bright ring for
higher polar angles can be seen, which is caused by quantum dots, which do not couple

5This second step as well as the measurement itself has been done by Manuel Peter, who works in
the group of Prof. Dr. Stefan Linden, Bonn University.
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Fig. 5.18.: Electron micrograph of hafnium oxide antenna by Manuel Peter, Bonn Univer-
sity. The red circle indicates the spot, where some quantum dots are deposited.

to the leaky wave guide mode. Those quantum dots have been deposited far from the
desired position or exhibit a dipole moment parallel to the antenna axis.

It seems, that the ratio of the intensity of the main bulb and the first ring is rather
small compared to the theoretical results. This is caused by the fact, that only a part
of the main lobe is actually detected. For smaller polar angles the intensity is definitely
higher, but the critical angle is reached, which means, that instead of being detected
by the camera, this part of the main lobe is subject to total internal reflection. The
ideal critical angle θc = 111◦ is indicated by the white circle, which is determined by
product specifications of the objective.

The main difference to former simulations is the fact, that colloidal quantum dots have
been used, which means that they have equal distributions of dipole moments pointing
in x-, y-, and z-direction. Thus the antenna, which has been designed for a point
dipole pointing in y-direction, loses some of its performance, but the unidirectional
behavior is still prominent. Also apparent is the good agreement between simulation
and experiment.

That this antenna is indeed robust against fabrication tolerances can be seen in Fig.
5.20, where the same procedure has been used to fabricate a structure, where the
geometrical parameters (except the height) are scaled by a factor of a) 0.8 and b) 1.4.
Though the performance decreases significantly, one can still see all features of this
structure, including the directional properties.
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(a) Experimental result, only Ey (b) Experimental result, only Ex

(c) Simulation, only Ey (d) Simulation, only Ex

Fig. 5.19.: Angular distribution of the normalized quantum dot fluorescence guided by the
antenna. The angular θ′ is defined in spherical coordinates by θ′ = 180◦ − θ,
which is zero in the origin. In a) and b) the normalized intensity of the Ey and
Ex components of the experimental measurements are shown. For comparison
the numerical simulations are shown in c) and d). The white circle indicates the
ideal numerical aperture. For larger values of θ′ the light is reflected back into
the substrate and cannot be measured.

5.3.3. A one-material, all-dielectric directional antenna

In the studies of the previous section, only glass was considered as a substrate, but
using different substrates is of interest, since the choice of the substrate depends on
the growing of an appropriate point source. In our theoretical investigations we are
not restricted to use certain materials, so we placed this antenna on a substrate with
varying relative permittivity, without changing the antenna itself.

In Fig. 5.21 the maximum directivity over the permittivity of the substrate (red) and
the corresponding vertical angle of the main lobe of the radiation (blue) are plotted.
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(a) Dimensions scaled by factor of 0.8,
experimental result

(b) Dimensions scaled by factor of 1.4,
experimental result

(c) Dimensions scaled by factor of 0.8,
simulation

(d) Dimensions scaled by factor of 1.4,
simulation

Fig. 5.20.: Angular distribution of the normalized quantum dot fluorescence guided by the
antenna. Essentially the same as in Fig. 5.19. The lateral dimensions of the
antenna have been scaled by the factor of 0.8 in a) and c), and by the factor of
1.4 in b) and d).

One can see, that there appear some minor resonances, but at least for εr > 2 the
directivity never drops below a value of D = 19. As expected, with increasing per-
mittivity the main lobe angle of the radiation decreases. At one point (εr = 3.57) the
substrate and the antenna have the same relative permittivity, but still a strong direc-
tivity (D = 20) can be seen. That means, that such an antenna, where the antenna is
structured into the substrate, might work for all substrates, with the right geometry
parameters.

For comparison we again chose the plasmonic antenna proposed in Ref. [61], designed
for a wavelength of λ = 900nm, as a reference, as it was theoretically and experimen-
tally well investigated. The maximum directivity of this antenna was D = 12.1 and
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Fig. 5.21.: HfO2 antenna from Fig. 5.14 on a substrate with varying relative permittivity.
One can see that the directivity (red) never drops below D = 19 for a permittivity
εsubstrate ≥ 1.5. Also with increasing permittivity the main lobe angle decreases
as expected, i.e. the more the substrate becomes optically dense, the steeper the
radiation penetrates into the substrate.
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Fig. 5.22.: Sketch of the top view of investigated GaAs structures placed on GaAs substrate.
a) Antenna consisting of a small brick, acting as a reflector, and a large brick,
adding to the directivity. The point source, indicated by a red arrow, is polarized
parallel to the y-axis. b) Antenna using two orthogonal, large bricks as in a) to
direct emitted light in x- and y-direction. The reflector consists then of a hollow,
quarter cylinder. The point source, again indicated by a red arrow, might point
anywhere in the x-y-plane.

the radiation efficiency was approximately η = 0.5 (own calculations). In Fig. 5.22
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a) a sketch of the structure (top view) is shown with all necessary parameters for the
optimization process.

In contrast to the reference GaAs was chosen for both, substrate and antenna material
(εr = 12.9), and the parameters were optimized for a wavelength of λ = 900nm

(which corresponds to the smallest emission wavelength of InGaAs quantum dots).
For the optimization process again the Particle Swarm Algorithm [55] is chosen, which
is similar to a genetic algorithm. The method is purely heuristic and is a so called global
optimization algorithm. It is very robust, which means, that it is still working well, even
if the objective function has many local maxima and minima. It needs many function
evaluations for convergence, but in this case the robustness is far more important.
Due to constraints the parameter space becomes strongly non-convex, comparable to
Swiss Cheese, thus most simplex methods like the CRSLM would have difficulties.
The resulting parameters are enlisted in Tab. 5.5. Note, that this parameter set might
correspond to a local optimum and maybe can be further optimized.

Fig. 5.23.: Angular resolved directive gain (far field) of structured substrate, as sketched in
Fig. 5.22 a), in spherical coordinates, where ϕ is the azimuthal and θ the polar
angle.

In Fig. 5.23 one can see the resulting directivity in spherical coordinates in the far
field. The main lobe points into the x-direction with a polar angle of θ = −27 degree
(down into the substrate). This angle is surprisingly small, since the main lobe angle
of a simple dipole source on a GaAs substrate would be around θ = −70 degree. A
part of this behavior still can be seen, for the directivity has a side lobe for θ = −75

degree. Still the main lobe exhibits a directivity of D = 25.7 with an angular width
of ∆ϕ = 29 degree of the azimuthal and ∆θ = 17 degree of the polar angle, which is
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element length [nm] width [nm] separation [nm]
reflector 408 210 90
director 530 1400 20

Tab. 5.5.: Parameters of the optimized, GaAs antenna. The first element is placed to the
left of the source, the second element to the right. The height of the dielectric
antenna is 140nm. The polarization of the source has been parallel to the y-axis,
which is perpendicular to the antenna axis.

very narrow compared to known plasmonic Yagi-Uda like antennas, such as discussed
in [61].
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Fig. 5.24.: 2D cross sections of the simulation space showing a) the electric field component
Ey and b) the power flow |S⃗| in the x-z-plane, and same quantities in a plane
parallel to the main lobe in c) and d).

In order to explain this radiation pattern both the electric field component Ey and
the absolute value of the Poynting vector has been plotted in Fig. 5.24. In a) and b)
the x-z-plane is shown. Since the system is excited by a point source, the power flow
reaches the saturation close to the origin. There one can see four paths, where almost
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the whole amount of energy is directed to. Two of them point into the −z-direction,
whose interference leads to the noisy appearance of the directive gain for large polar
angles (θ > 160◦). Another path is directed basically in negative x-direction, but with
larger polar angle (θ ≈ 130◦). The main lobe, however, contains the strongest power
flow. The high directivity of this antenna corresponds to a very narrow opening angle
both in θ and in ϕ.

In order to have a more detailed look, again the electric field component Ey and the
absolute value of the Poynting vector are plotted in Fig. 5.24 c) and d), but this time
in a plane parallel to the main lobe, with the plane normal n⃗. The insets show the
3D radiation pattern of the structure and the corresponding coordinate system. There
one can see, that the light is directed in two directions (ϕ ≈ ±20◦), leading to an
interference (akin to a double slit experiment), where the effective radiation is directed
at ϕ = 0◦. However, small residues of both directions can also be seen in the radiation
pattern (Fig. 5.23). It is safe to assume at this point, that no resonances of either the
materials or the geometries have been used. Instead this antenna works by using simple
interference and the habit of light to use the paths with the optical densest materials.
A consequence of this is, that such an antenna works for any material system at any
wavelength, given the right geometrical parameters.

Since the far field results consist of two simulations, where in one simulation the far
field for polar angles θ > 90◦ and in the other one the far field for θ ≤ 90◦ have been
calculated, the directivity has been checked by obtaining all quantities using the near
field power flow. Both approaches yielded the same results.

Also interesting is the spectral performance of such a structure. In Fig. 5.25 the maxi-
mum directive gain, also called directivity, in dependence of the incident wavelength is
shown for this structure (red) and the plasmonic reference antenna (green). One can
see, that the optimization algorithm indeed did not find the global maximum, since this
structure has the highest directivity for a wavelength of λ = 750nm with a directivity
of D = 29. Please note, that losses of the material have not been considered in Fig.
5.25, which would increase significantly for smaller wavelengths due to the band gap
of GaAs. The point here is, since the Maxwell equations are scalable with the wave-
length, that the directivity of D = 29 should be easily obtainable in the NIR region as
well. The maximum directivity never drops below D = 19 in the shown region with-
out a significant variation of the main lobe direction, which is necessary for a proper
broadband antenna. Further numerical calculations show that simulated fabrication
tolerances like rounded edges do not change the performance significantly.
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Fig. 5.25.: Dependence of the maximum directivity on the radiation wavelength for the plas-
monic Yagi-Uda antenna on glass (green), and the structured substrate (red).

A logical continuation of this approach is the combination of two such antennas, which
are orthogonally aligned, such as in Fig. 5.22 b). Since the reflectors would have
crossed and therefore drastically decreased the performance, they have been replaced
by a quarter of a hollow cylinder, with an outer radius of 265nm and an inner radius
of 95nm. Any polarization in the x-y-plane can be decomposed in a x- and y-polarized
wave, each directed into the orthogonal direction by the corresponding antenna arm. In
Fig. 5.26 the directive gain for three different incident polarization angles are shown.
In a) the electric field is x-polarized, leading to a directivity of D ≈ 19 into the y-
direction. The opposite occurs for a y-polarized incident field. Exciting this antenna
with a polarization vector along the angle of ϕ = 45 deg. (exactly between x- and y-
axis), the radiated power gets symmetrically split up and directed into both directions.

Unfortunately, the maximum directive gain drops to slightly above D = 19, which is
mostly caused by the compromise to obtain one reflector for all polarizations. This also
results in the increased (unwanted) emission towards high polar angles (so basically
straight down into the substrate).

Summing up it has been shown, that one can direct light emitted by point sources,
like quantum dots, efficiently by dielectric antennas. Such an antenna can consist
of the same material as the substrate and reached a directivity of D = 25.7 with
almost no losses for GaAs in the NIR regime. This enables a variety of possibilities for
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(a) x-polarized (b) xy-polarized (c) y-polarized

Fig. 5.26.: Angular resolved directive gain (far field) of structured substrate, as sketched in
Fig. 5.22 b), in spherical coordinates, where ϕ is the azimuthal and θ the polar
angle. The electric field of the source is a) x-polarized, c) y-polarized, and b) in
x- and y-polarized.

designing optical antennas on nearly all material systems. Dependent on the properties
of the used materials, the antenna becomes considerably larger than the plasmonic
counterpart, but the directivity can be much higher, and the radiation efficiency can
be close to 1 (dependent on material and wavelength). Additionally, these antennas
are relatively easy to fabricate and much more robust to fabrication tolerances than
plasmonic antennas. Still the main challenge might be the placing of the nano emitter
within the gap of the antenna.

Adding another antenna arm to the system and modifying the reflector, one effectively
obtains a broadband, polarization splitter for small dipole sources, leading to many
possible applications, e.g. in spectroscopy.

5.4. One-particle, super small, all-dielectric optical
antenna

As mentioned above, recently very small antennas have been studied, where a point
source has been placed inside of a silicon sphere. It can be shown, that such a point
source excites an electric and a magnetic dipole moment in a perfect sphere [103]. For
materials with high permittivity these two, orthogonal dipoles exhibit similar strengths
in the visible regime, if the size of the sphere is properly adjusted. These two dipoles
then interfere with each other, which leads to a directed emission. In non-perfect
spheres also higher order moments can be excited, which can lead to even more complex
interference patterns. In order to increase the directivity of such a small particle, a
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notch has been cut out of the sphere, in which the point source has been placed.
Thus the excitation of higher order modes became the main effect responsible for high
directivities. This has been theoretically and (partially) experimentally investigated in
[98, 104, 105, 106, 84], though without any point sources.

There is one main drawback in this approach: Such an antenna is very sensitive to the
positioning of the source. This source was actually “floating” within the notch around
50nm above the substrate. Since such an approach is unpractical, the content of this
chapter is about a similar concept based on silicon nanodisks. Some properties, like
the equivalence of the spectrum by excitation of a plane wave and a point-like dipole
source, are already studied by J. van de Groep [107]. This chapter is also the result of
a cooperation with BSc. David Hähnel.

Starting point is a silicon cylinder in vacuum, excited by a point source, which is
placed 5nm next to the cylinder and polarized along the y-axis. For the beginning no
substrate is considered, in order to characterize the cylinder itself, so the point source
is “floating” at the middle of the height of the cylinder. The material has been modeled
via a 10th order fit to the experimental data taken from Ref. [38], though in the shown
frequency regime the complex permittivity is relatively smooth.

For this system the far field pattern has been calculated and the spectrally resolved
directivity is shown in Fig. 5.27 for three different dimensions of the cylinder. The top
curve shows a maximum of the directivity for λ = 480nm. More important though
are the two minima at λe = 428nm and λm = 535nm. The insets show the radiation
patterns for these two wavelengths, which closely resemble the radiation patterns of
dipoles, which is further affirmed by the directivity of about Dmax ≃ 1.5. Interestingly,
these dipoles are orthogonal to each other, so that they can be identified as the electric
dipole at λe = 428nm and the magnetic dipole at λm = 535nm. The maximum between
these two points is then the interference of those dipoles, which is the definition of a
Huygen’s source.

In contrast to perfect spheres, the nanodisk offers two degrees of freedom for the design
of antennas. In the middle curve the directivity of the same cylinder with larger height
is shown, as well as a cylinder with the same height but larger diameter in the bottom
curve. There one can see, that with both parameters the maximum can be shifted to
higher wavelengths without decreasing the directivity. Particularly the center plot is
of interest here. One can see that for smaller wavelengths additional maxima appear,
which is the result of contributions of excited higher order multipole moments. The
maximum at a wavelength of λ = 445nm is caused by the interference of the electric
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5.4. One-particle, super small, all-dielectric optical antenna

Fig. 5.27.: Directivity depending on the wavelength for three different sizes of the nanodisk:
the diameter and height are in a) 130nm and 60nm, b) 130nm and 110nm, and
c) 170nm and 60nm. The two insets are calculated far field radiation patterns,
showing basically two orthogonal dipoles, with the electric at 428nm and the mag-
netic at 535nm.

dipole (λed = 475nm) and the magnetic quadrupole moment (λmq = 425nm). In
principle this holds true for the top and bottom case as well, but here the diameter
and the height are close to each other, so that the higher order moments can be
formed easier. In the following first the interference of the electric and magnetic dipole
moments will be exploited, then the interference of higher order moments. In both cases
the excitation wavelength is λ = 545nm, which corresponds the maximum directivity
in the bottom curve.

In order to get more insight into the structure, it is useful to have a closer look to
the position of the source. For that the source has been shifted along the x-axis from
the center to a point of 35nm outside of the disk. In Fig. 5.28 the directive gain in
forward (θ = 90◦, ϕ = 0◦, blue) and backward (θ = 90◦, ϕ = 180◦, red) direction
is shown. The dashed black line indicates the end of the disk. For a source position
of x = 31nm one obtains a remarkably high front-to-back ratio of R31nm

FB = 16.2dBi,
which is several times as much as has been found using perfect spheres. For a source
position of x = 86nm a similar behavior can be seen, only in backwards direction. The
reverse of the front-to-back ratio is then (R86nm

FB )−1 = 12dBi.
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5. Optical and NIR antennas with high directivity

Fig. 5.28.: Directive gain in forward and backward direction depending on the position of the
point source for a nanodisk with diameter 170nm and height 60nm. The insets
show the radiation pattern for the points with the highest front-to-back ratio.

In contrast to any structure with a “floating” dipole, it is possible to grow a disk
with an embedded quantum dot, acting as a dipole source [108]. However, using the
interference of the magnetic and electric dipole can reach high front-to-back ratios,
but not high directivities, as discussed in [98]. In order to increase the directivity of
the system, now the interference of the magnetic hexapole and the electric dipole is
exploited.

As mentioned earlier, the dimensions of the cylinder have to be appropriate for a
hexagonal mode to form. Consider a standard hexagon with all six side lengths a. The
height (distance from flat to opposite flat side) is then h =

√
3a and the width (tip to

opposite tip) is w = 2a. For a hexagon to form within the cylinder, a good start for
the dimensions would be a ratio of diameter of the cylinder and its height d/h =

»
4/3.

The resulting disk had a diameter of d = 228nm and a height of h = 200nm. The
optimal source position has been x = −73nm from the center, but well within the disk.
In Fig. 5.29 the corresponding directive gain in spherical coordinates is shown. There
one can see a clear hot spot in positive x-direction achieving a directivity of about
D ≃ 9. Unfortunately the front-to-back ratio decreased to RFB ≃ 5dBi.

In order to get more insight into the structure, in Fig. 5.30 a) the directivity is plotted
in a polar plot for the polar angle θ. Also in b) the cross section (x-z-plane) of the
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5.4. One-particle, super small, all-dielectric optical antenna

Fig. 5.29.: Directive gain in spherical coordinates with the polar angle θ and the azimuthal
angle ϕ for a silicon cylinder with diameter 228nm and height 200nm, where the
source is positioned 73nm from the center.

normalized, absolute value of the electric field is shown in logarithmical color scale. The
pattern of the electric field corresponds to the interference of an electric dipole and a
magnetic hexapole, leading to an asymmetric radiation, with the hexagon perfectly
fitting into the nanodisk. With increasing (or decreasing) y, the width becomes much
smaller than the height, which results in the concentration of the energy towards the
center (y = 0nm). Thus the beam width angular is small not only for the polar angle,
but the azimuthal angle as well. Also the side lobes are well suppressed, though the
front-to-back ratio is small com-pared to a Huygens source.

Placing this cylinder on a SiO2 substrate (n=1.46), does not change the mechanism
itself (Fig. 5.30 c) and d)), only the angle of radiation is changed due to the change of
the dielectric environment. Otherwise the field pattern remains the same, leading to a
directivity of almost D=16.

The next step is the manipulation of the radiation pattern by cutting a cylinder out
of the silicon nanodisk. The dipole source is placed in the middle of the cut out, 5nm
above the SiO2 substrate. Also the dimensions are changed (diameter d = 295nm and
height h = 185nm), because the air gap within the cylinder leads to distortions of the
hexagon, i.e. the previous estimation is not applicable in this case. A demonstration of
the fabrication of such hollow cylinders and an investigation of their dipole resonances
can be found in Ref. [109].

In Fig. 5.31 a) the maximum directive gain into the air and into the substrate are
plotted versus the radius of the cut-out. If no cut-out is present, the nanodisk resembles
the one of the previous section, only with the source at the bottom at x = 0nm. In
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Fig. 5.30.: a) Polar plot of the directive gain for the polar angle θ (constant ϕ = 0). b)
Corresponding normalized, absolute value of the excited electric field in dB scale,
reaching from -40 dB (blue) to 0 dB (red). The shown cross section is normal to
the dipole source and results from an excited magnetic hexapole moment. c) and
d) Same plots as in a) and b) but for a structure placed on glass substrate.

this case the hexapole is rotated due to the different position of the source. Since the
nanodisk radiates to the direction opposite of the source, in this configuration over 95%
of the power is radiated straight into the air (θ = 0◦), as can be seen in the first inset.
One could argue, that the silicon nanodisk, which has the highest index of refraction in
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5.4. One-particle, super small, all-dielectric optical antenna

this system, is placed on top of the point source, so that the light is just propagating
through the optically densest medium. But then the size of the nanodisk, if sufficiently
large, would not change much of the radiation pattern, which it actually does. Apart
from that one would get a typical dipole radiation pattern, which cannot be seen here.
This radiation pattern might be advantageous for spectroscopic applications, since the
total internal reflection becomes insignificant then.

(a) (b)

Fig. 5.31.: a) Polar plot of the directive gain for the polar angle θ (constant ϕ = 0). b)
Corresponding normalized, absolute value of the excited electric field in dB scale,
reaching from -40 dB (blue) to 0 dB (red). The shown cross section is normal to
the dipole source and results from an excited magnetic hexapole moment. c) and
d) Same plots as in a) and b) but for a structure placed on glass substrate.

For large radii the radiation into the air becomes negligible, and the radiation pattern
becomes similar to a single dipole on the substrate alone. This actually makes sense,
since the radius of the cutout is so large then, that the small silicon ring does not
influence the radiation pattern of a small source. In the intermediate region one can
see a resonance, where roughly 80% of the energy is propagating directly into the
substrate (θ = 180◦) in a narrow beam with a directivity of D = 9.8. Thus by changing
the size of the cut-out one can choose if the power is radiated directly into the air or
into the substrate.

Also interesting is the further utilization of the magnetic hexapole. This can be ob-
tained by shifting the cut-out together with the dipole source (here in x-direction). For
that a radius of the cutout of r = 30nm has been chosen, since it is, to my knowledge,
possible to fabricate and still the hexapole can be seen in our simulations. Of course
one can observe distortions of the field profile due to the missing material. In Fig.
5.31 b) the maximum directive gain into the air as well as into the substrate region

139



5. Optical and NIR antennas with high directivity

is shown, depending on the shift of the cutout starting from the center. There one
can see, that starting from the straight up / down radiation pattern (left inset), the
behavior evolves to a unidirectional radiation pattern with a directivity of D = 8 (for
a radius of r = 150nm).

To sum up this chapter, it has been shown, that with using a simple silicon nanodisk
one can achieve a Huygens source as well as unidirectional antennas, just by changing
the geometrical parameters of the disk (to adjust the electric and magnetic multipoles)
and the source position. However, this only works, if the source is embedded in the
middle of the height of the cylinder. Since the parasitic impedance of the substrate
makes it difficult to excite the higher order poles of the disk, if the source is located at
its bottom, at least the dimensions of the nanodisk have to be adjusted.

If the source cannot be embedded in the silicon disk, one can also etch a cylindrical
cutout into the disk, place the source directly onto the substrate, and either get the
radiation directed straight up into the air or down into the substrate, just by changing
the radius of the cut out. By changing the position of the cut-out one may get directed
emission also to the side, if desired. All in all, one can get almost any radiation
pattern by changing the geometrical parameters of the disk and the source position.
A consequence of this though is, that the system is sensitive to these parameters,
so the fabrication might be challenging. Please note, that in this chapter almost no
optimization has been done, so there is room for improvement, e.g. using an elliptical
cutout instead of a circular one.
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6. Conclusion and Outlook

6.1. Conclusions

In this work two different types of antennas are investigated and optimized, receiving
antennas, yielding high intensity enhancement, and sending antennas, creating well
defined radiation patterns from a small dipole source.

The receiving antennas, consisting of two particles, and their most important properties
are discussed. Since the material of all considered receiving antennas has been gold,
they are affected by high losses. But since they couple efficiently to the far field these
losses become negligible compared to the (re-) emitted radiation from the antennas. It
could be confirmed, that such antennas achieve a higher intensity enhancement in an
array compared to isolated antennas. While with varying periodicity along the antenna
axis the change of the maximum intensity enhancement was rather low, it dramatically
changed with the periodicity perpendicular to the antenna axis. If the periodicity was
around the wavelength of the incident light, one could achieve constructive interference
between the incident light and the emitted light from neighboring antennas, resulting
in a collective mode of the whole array. As a result the intensity enhancement becomes
much higher and radiation losses significantly smaller. This effect is known for other
resonators like quantum dots, but has not been reported for antennas so far, and still
needs investigation, because such modes appear stronger for some structures like bow-
ties, or weaker for others like rod antennas.

Apart from the optimization of an array of bow-ties and rod antennas, a nearly free
geometry optimization, using a number of bricks with varying size, has been investi-
gated. The result is a surprisingly simple antenna roughly shaped like an H, utilizing
the inhomogeneity at its tip, which leads to a current perpendicular to the polariza-
tion of the incident light field, effectively collecting the charge carriers close to the
gap, which leads to an intensity enhancement almost 5 times higher than has been
observed for bow-ties. Although the intensity enhancement is decreased by placing the

141



6. Conclusion and Outlook

optimized antenna on glass substrate, its intensity enhancement is more than 5 times
higher compared to the optimized bow-tie, still showing signs of the collective array
mode, which has vanished for bow-ties.

A free form optimization process has been briefly shown with an example of a polygon,
where additional filter would have been necessary to obtain useful structures, requir-
ing much additional computation power. Another approach could be to define a grid
of small squares, where each square is filled with material or not. Since the parame-
ter space would become binary (apart from being huge), this approach would render
the strengths of optimization algorithms useless, resulting in a tremendous increase of
required computation power. It turned out, that an optimization process, where struc-
tures are built by combination of simple geometries like bricks or triangles, is much
more efficient than a free form optimization, since constraints are much easier imple-
mented and processed by the corresponding algorithm, and almost arbitrary shapes
can be generated.

Also the Yagi-Uda antennas, sending antennas generating required radiation patterns,
are discussed. It has been shown, that common design rules, which have been developed
for the radio frequency regime, only roughly apply in the optical regime, due to plasmon
resonances and the parasitic impedance of the substrate. A Yagi-Uda antenna, which
has been designed by such rules and thoroughly investigated, could be optimized, where
the directivity increased from roughly D = 12 (reference) to D = 21 (optimized), but
with the prize of a slightly decreased radiation efficiency.

More important, it could be shown using the coupled dipole approximation that indeed
the directive properties are caused by the interference of appropriate dipole sources.
A consequence of this is, that for such antennas any materials and geometrical shapes
may be utilized, if they exhibit sufficient dipole resonances, which has been shown
exemplarily for silicon bricks. An apparent drawback of plasmonic antennas is their
high loss, caused by the used metal. Apart from that another drawback of such Yagi-
Uda like antennas is, that most of the radiation penetrates into the substrate, so that
the performance of such antennas cannot be increased by addition of further elements.

This can be overcome by utilization of a leaky waveguide, for which HfO2 has been
used in this work, since it exhibits almost no losses in the optical regime. The point
source couples to the leaky waveguide mode, where all those points, where some of the
radiation couples to substrate modes can be considered as new point sources. These
point sources again interfere and thus generate the desired radiation pattern, in this case
an extremely narrow main lobe with a directivity of D = 30. The phase difference of
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those sources is manipulated by the geometric parameters of the HfO2, which changes
the propagation constant of the waveguide mode. Advantages of such an antenna
are an extremely high directivity, caused by an increased number of participating,
interfering sources, the lack of losses, and the robustness of the structure, since the
propagation constant is not that sensitive to fabrication tolerances. Disadvantage is
the significantly increased dimension (almost a factor of 2) compared to the plasmonic
(reference) antenna.

One can also decrease the size of such an antenna by interference of higher order poles
with the point source. This has been shown with silicon nanodisks, where the point
dipole couples to the magnetic hexapole mode of the disk, leading to a relatively high
directivity (D = 16) for a silicon nano cylinder on SiO2 substrate. By changing the
position of the source this magnetic hexapole gets rotated, leading to radiation in
other directions, e.g. straight up into the air, which might be useful for spectroscopic
measurements. One can also cut a smaller cylinder out of the nanodisk, letting a point
dipole like colloidal quantum dots fall into the cutout, and obtain, depending on the
size and position of the cutout, different radiation patterns, e.g. straight down into the
substrate, or sidewards with high directivity, similar to Yagi-Uda antennas.

6.2. Outlook

In principle antennas, with the highest intensity enhancement couple best to the far
field, resulting in only short-lived plasmonic modes and huge radiation losses. But this
can be somewhat overcome, if a collective array mode can be excited, which has been
shown in chapter 4.3.2. As mentioned, publications dealing with such modes are sparse,
though such modes might significantly increase the performance. Also the strength of
such modes is depending on the used geometry, i.e. there is potential for additional
optimization, especially if a better understanding of such modes leads to design rules
for such structures.

There are also some fundamental aspects of the optimization process itself, which are
worth to look at, e.g. finding better algorithms for this type of problem or maybe
develop a gradient-based optimization process. Finally one might use such antennas
not only to increase the field in an area, but also to give that area a specific form, using
interference or polarization effects.

For the sending antenna much more work is necessary, if they shall be used for quantum
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information processing or computing. The Yagi-Uda antennas can further be minia-
turized by choosing high index materials. It would be interesting, if the directive gain
could further be increased by the usage of hybrid-material antennas. Also worth of in-
vestigation are other geometries like disk antennas. The silicon nanodisk can obviously
improved further by usage of other (lossless) materials. Also interesting would be the
utilization of other poles, which interfere with the dipole source.
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A. Parameters

A.1. Nanoantennas for intensity enhancement

In order to model the behavior of noble metals like silver or gold, the standard Drude
model with the following parameters has been used.

parameter value

ε∞ 11.1

ωp 1.431 · 1016 rad.
s

γp 1.357 · 1014 rad.
s

Tab. A.1.: Used parameters to simulate the behavior of gold for a wavelength of 500nm ≤
λ ≤ 1500nm. In this region only one pole is necessary for accurate results.

parameter value

Lx 40nm
Ly 160nm
Lz 40nm
rvert 20nm
rtop 10nm

Tab. A.2.: Geometrical parameters for a single rod with the lengths Li of the corresponding
coordinates and the radii of the blending of the edges.
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parameter value

Lx 40nm
Ly 130nm
Lz 28nm
rvert 20nm
rtop 10nm

(a) rod dimer

parameter value

φ 45◦

Ly 145nm
Lz 28nm
rvert 20nm
rtop 10nm

(b) bow-tie

Tab. A.3.: Geometrical parameters for a golden rod dimer with lengths Li and a bow-tie with
the opening angle φ and the lengths Li. All horizontal edges have been blended
with a radius of rtop and the vertical edges with rvert. The structure has been
excited via a plane wave propagating in z-direction.

parameter size

width of supp. box 272nm

length of supp. box 110nm

width of tip 40nm

length of tip 33nm

height 28nm

gap 16nm

periodicity Λx 770nm

periodicity Λy 786nm

Tab. A.4.: Parameter set for the H-antenna. All horizontal edges have been blended with
a radius of rtop = 10nm. All vertical edges have been blended with a radius of
rvert = 20nm.

A.2. Nanoantennas for high directivity
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element length [nm] width [nm] separation [nm]
reflector 232 102 150

feed 163 45
director 1 174 71 146
director 2 131 79 208
director 3 136 35 153

Tab. A.5.: Parameters of the optimized Yagi-Uda antenna consisting of gold (see chapter
5.2.2). The elements are listed from left to right, with the second element acting
as feed element. The height of each element is 100nm.

element length [nm] width [nm] separation [nm]
reflector 319 77 289

director 1 294 76 127
director 2 292 71 120
director 3 240 75 256

Tab. A.6.: Parameters of the optimized Yagi-Uda antenna consisting of silicon (see chapter
5.2.3). The elements are listed from left to right, with the feed element replaced
by the point source. The height of each element is 98nm.

No. of dipole distance to primary source [nm] Phase difference [π]
1 386 0.069
2 679 0.121
3 985 0.176
4 1297 0.232
5 1602 0.286
6 1914 0.342
7 2224 0.397

Tab. A.7.: Parameters of the dipoles, with which the hafnium oxide waveguide has been re-
placed, to obtain a similar radiation pattern.
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B. CDA equations for 5 elements

Starting from equation (2.81), the solution for 5 particles can be analytically derived.
In order to make it short, some definitions are needed.

B1 := A−1
12 A11 − A−1

22 A21 B2 := A−1
12 A13 − A−1

22 A23

B3 := A−1
12 A14 − A−1

22 A24 B4 := A−1
12 A15 − A−1

22 A25

B5 := A−1
12 A11 − A−1

32 A31 B6 := A−1
12 A13 − A−1

32 A33

B7 := A−1
12 A14 − A−1

32 A34 B8 := A−1
12 A15 − A−1

32 A35

B9 := A−1
12 A11 − A−1

42 A41 B10 := A−1
12 A13 − A−1

42 A43

B11 := A−1
12 A14 − A−1

42 A44 B12 := A−1
12 A15 − A−1

42 A45

B13 := A−1
12 A11 − A−1

52 A51 B14 := A−1
12 A13 − A−1

52 A53

B15 := A−1
12 A14 − A−1

52 A54 B16 := A−1
12 A15 − A−1

52 A55

C1 := B−1
2 B1 − B−1

6 B5 C2 := B−1
2 B3 − B−1

6 B7 C3 := B−1
2 B4 − B−1

6 B8

C4 := B−1
2 B1 − B−1

10 B9 C5 := B−1
2 B3 − B−1

10 B11 C6 := B−1
2 B4 − B−1

10 B12

C7 := B−1
2 B1 − B−1

14 B13 C8 := B−1
2 B3 − B−1

14 B15 C9 := B−1
2 B4 − B−1

14 B16

D1 := C−1
2 C1 − C−1

5 C4 D2 := C−1
2 C3 − C−1

5 C6

D3 := C−1
2 C1 − C−1

8 C7 D4 := C−1
2 C3 − C−1

8 C9

Ẽ2 := B−1
2 (A−1

12 E1 − A−1
22 E2) Ẽ3 := B−1

6 (A−1
12 E1 − A−1

32 E3)

Ẽ4 := B−1
10 (A−1

12 E1 − A−1
42 E4) Ẽ5 := B−1

14 (A−1
12 E1 − A−1

52 E5)
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B. CDA equations for 5 elements

Ê3 := C−1
2 (Ẽ2 − Ẽ3) Ê4 := C−1

5 (Ẽ2 − Ẽ4)

Ê5 := C−1
8 (Ẽ2 − Ẽ5)

Using these definitions, one can shortly write the expressions for the dipole moments
as in equation (B.1), where the local excited, electric field is simply written as Ei.

p1 = (D−1
2 D1 − D−1

4 D3)(D−1
2 (Ê3 − Ê4)− D−1

4 (Ê3 − Ê5)) (B.1a)

p5 = D−1
2 (Ê3 − Ê4)− D−1

2 D1p1 (B.1b)

p4 = C−1
2 (Ẽ2 − Ẽ3)− C−1

2 C1p1 − C−1
2 C3p5 (B.1c)

p3 = B−1
2 (A−1

12 E1 − A−1
22 E2)− B−1

2 B1p1 − B−1
2 B3p4 − B−1

2 B4p5 (B.1d)

p2 = A−1
12 E1 − A−1

12 A11p1 − A−1
12 A13p3 − A−1

12 A14p4 − A−1
12 A15p5 (B.1e)
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C. Notations and symbols

C.1. Acronyms

ADOL-C automatic differentiation by overloading in C++

BEM boundary element method

CDA coupled dipole approximation

CFL Courant-Friedrichs-Lewy

CL cathodoluminescence

COBYLA constrained optimization by linear approximation

CRS controlled random search

CRSLM controlled random search with local mutation

DOF degrees of freedom

EBL electron beam lithography

EELS electron energy-loss spectroscopy

FDTD finite difference time domain

FEM finite element method

FIB focused ion-beam milling

FIT finite integration technique

ITO indium tin oxide

NIR near-infrared

NTFF near to far field

PBC periodic boundary conditions

PEC perfect electric conductor
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C. Notations and symbols

PML perfectly matched layers

PMMA Poly(methyl methacrylate), also known as Plexiglas,

PSA particle swarm algorithm

qubit quantum bit

QD quantum dot

RF radio frequency

SHG second harmonic generation

SPP surface plasmon polariton

TE transversal electric

THG third harmonic generation

TM transversal magnetic
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