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Abstract

Technical systems become more and more complex. Even human experts cannot
fully understand the behavior of some systems and thus, cannot define precise rules
to detect when a system fails. On the other hand, sensors have become very cheap
and machines can send their measurements using the Internet of Things (IoT) to
any place in the world where the data can be analyzed. This price decay allows
incorporating a lot of sensors into machines and perceiving the state of the machine
very accurately. Furthermore, the sent data can be easily processed in data centers
with huge computational power. To detect a system’s failures while overcoming its
complexity, experts only state when a system’s behavior is normal. Solely using
data of the normal operation a deviation from this normal behavior can be detected.
Additionally, machines often execute a sequence of actions repeatedly while every
action changes the machine state which can be detected using some built-in sensors.
To model systems, discrete event systems (DES) are a feasible system class that

abstract from the real (continuous) machine states but usually preserve the important
information using discrete states only. We model machines as such systems and
observe sequences of machine events and the time between two subsequent events.
Furthermore, we assume that the observed sequences only describe the normal beha-
vior of the machines and thus, the described failure detection problem corresponds
to a one-class problem.

In this thesis we present a new timed-automata-based approach consisting of three
steps that tackle the described problem of detecting anomalies (e.g. failures or misuse)
in timed sequences (e.g. consisting of machine events): We start with developing
the Probabilistic Deterministic Timed Transition Automaton (PDTTA) that can
represent the normal behavior of a discrete event system. Then, we develop the
Probabilistic Deterministic Timed Transition Automaton Learning (ProDTTAL)
algorithm that learns a PDTTA given a set of normal timed sequences by first
learning solely the order of events followed by the time behavior of subsequent events.
Last, the Automata-based Anomaly Detection Algorithm (AmAnDA) solves the
anomaly detection problem and labels a given sequence as normal and abnormal
with respect to a previously learned timed automaton model.

Compared to existing timed automaton models, the PDTTA represents the time
behavior between events more accurately but is inferior in some elaborated scenarios.
AmAnDA is the first anomaly detection algorithm that can be used for various auto-
maton models (e.g. PDFA, PDTTA, PDRTA, PDTA) while improving the anomaly
detection performance using vector-based one-class classifiers. In the experimental
evaluation, we first develop a systematic approach to evaluate sequence-based ano-
maly detection algorithms. Then, we utilize this approach to compare ProDTTAL
with the state-of-the-art algorithms Real-Time Identification from Positive Data
(RTI+) and Bottom-Up Timed Learning Algorithm (BUTLA) on synthetic and
real-world ATM data. The results of this comparison are twofold, as ProDTTAL
outperforms RTI+ and BUTLA only in some scenarios, but is inferior in others.

iii





Zusammenfassung

Technische Systeme werden immer komplexer, sodass selbst Experten das Verhalten
mancher Systeme nicht vollständig verstehen. Daher ist es sehr schwer, präzise Regeln
aufzustellen, die Fehler im System erkennen. Zugleich sind Sensoren sehr preiswert
geworden und Maschinen können ihre Messungen durch das Internet of Things (IoT)
überall hin senden, wo die Daten analysiert werden können. Durch diesen Preisverfall
können Maschinen mit vielen Sensoren ausgestattet werden, sodass ihr Zustand sehr
präzise bestimmt werden kann. Außerdem können gesendete Daten in Rechenzentren
mit viel Rechenleistung verarbeitet werden. Um nun Fehler in Systemen trotz
ihrer Komplexität zu erkennen, beschreiben Experten nur das normale Verhalten
eines Systems. Abweichungen von diesem normalen Verhalten können entdeckt
werden, wenn ausschließlich Daten der normalen Bedienung vorliegen. Zusätzlich
führen Maschinen oft repetetive Sequenzen von Aktionen aus, wobei jede Aktion
eine Zustandsänderung auslöst, die durch eingebaute Sensoren erkannt werden kann.
Um Systeme zu modellieren, können unter anderem Diskrete Ereignis Systeme

(DES) genutzt werden. DES abstrahieren zum einen den realen Maschinenzustand,
modellieren aber mit diskreten Zuständen meist die wichtigen Informationen. Wir
modellieren Maschinen als DES und beobachten Sequenzen von Maschinenaktionen
und die Zeit zwischen zwei Aktionen. Dabei nehmen wir an, dass alle beobachteten Se-
quenzen das Normalverhalten der Maschinen beschreiben, wodurch das beschriebene
Problem der Fehlererkennung einem Ein-Klassen (eng. one-class) Problem entspricht.

In dieser Arbeit präsentieren wir einen dreiteiligen Ansatz basierend auf zeitlichen
Automaten, der das zuvor beschriebene Problem der Anomalieerkennung (z.B. Fehler
oder Missbrauch) für zeitliche Sequenzen (z.B. bestehend aus Maschinenereignis-
sen) löst: Zuerst entwickeln wir den Probabilistischen Deterministischen Zeitlichen
Transitions Automaten (eng. PDTTA), der das Normalverhalten von DES abbil-
den kann. Dann entwickeln wir den PDTTA-Lern-Algorithmus (ProDTTAL), der
bei Eingabe einer Menge von normalen, zeitlichen Sequenzen einen PDTTA lernt.
Dazu wird zuerst nur die Ereignisreihenfolge gelernt, gefolgt von dem Zeitverhalten
aufeinander folgender Ereignisse. Abschließend löst der Automatenbasierte Ano-
malieerkennungsalgorithmus (eng. AmAnDA) das Problem der Anomalieerkennung,
indem eine gegebene Sequenz als normal oder anormal gekennzeichnet wird im Bezug
auf einen zuvor gelernten zeitlichen Automaten.

Verglichen mit bestehenden zeitlichen Automatenmodellen repräsentiert der PDTTA
das Zeitverhalten zwischen Ereignissen genauer, ist in gewissen Szenarien aber unterle-
gen. AmAnDA ist der erste Algorithmus zur Anomalieerkennung, der für verschiedene
Automatenmodelle (z.B. PDFA, PDTTA, PDRTA, PDTA) genutzt werden kann
und gleichzeitig die Performance der Anomalieerkennung durch vektorbasierte Ein-
Klassen-Klassifizierer verbessert. In der experimentellen Evaluation entwickeln wir
zuerst einen systematischen Ansatz, um sequenzbasierte Anomalieerkennungsalgo-
rithmen zu evaluieren. Anschließend verwenden wir diesen Ansatz, um ProDTTAL
mit den modernsten Algorithmen RTI+ und BUTLA auf synthetischen und realen
Daten zu evaluieren. Dabei übertrifft ProDTTAL RTI+ und BUTLA in einigen
Szenarios, während er in anderen Szenarios unterliegt.
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1
Introduction

Nowadays, technical systems become more and more complex because more and
more functionalities are built into them. Every machine e.g. in manufacturing and
every car contains a bunch of actuators and sensors that control some process and
constantly measure it. In Germany, this digitization of processes in the industry is
called “Industrie 4.0” which describes the process of constantly measuring technical
systems and gaining benefit from the measured data. Today, terms like Internet of
Things (IoT) describe that every machine is connected to the internet and can send
its measured data to places where the data is analyzed. At the same time, these
machines usually contain a lot of subsystems that solve certain tasks. Because of the
increasing complexity of these systems it is difficult for computers and human experts
to automatically detect failures or bugs. Failures can be caused by two different
reasons: First, a bug in the system can cause the system itself to fail or second, the
system can become vulnerable for attacks. [Gib15] reports of an airbus A400M crash
because of a software failure that caused the turbines to stop. In [Gre15] hackers
attacked the software system of a jeep, hijacked it and disabled the brakes of the
driving car (for demonstration purposes). Most of these failures could be prevented
if we monitor the potentially failing system as a whole. If we precisely know how the
system should behave we can detect those failures.

Unfortunately, we encounter two problems if we want to monitor complex systems:
First, we do not exactly know the desired behavior (called the behavior model)
and all allowed states of the system because it is simply too complex. Second,
no human can monitor a whole complex technical system, e.g. by looking at 100
sensors simultaneously and detect a failure in a combination of those sensor signals.
Furthermore, it is too expensive and slow to have one human monitoring one machine
at a time and communicating with other humans to detect a combination of abnormal
signals. Therefore, an automatic approach is needed to monitor technical systems.

Most often, a failure can be seen as a deviation from the normal behavior which is
called an anomaly. Figure 1.1 shows the process described so far. This process is
called model-based anomaly detection (also known as model-based diagnosis). We are
faced with a system which we can observe and we want to know when this system
does not behave as expected. Additionally, we want to build a behavior model of
the system (called model formation). Then, we can simulate the behavior model
and compare the expected behavior with the observed (real) behavior of the system.
If these two types of behavior deviate with respect to some criterion this deviation
indicates an anomaly.

Up to now, we described the process of model-based anomaly detection which can
be handled by humans as well as by computers. In the past, human experts received
a system model and observed a system by watching sensor signals. With increasing

1
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system

observed

behavior
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behavior

behavior

model

observation

model formation

X

anomaly detection

simulation

Figure 1.1: Essential steps of model-based anomaly detection (from [Kle+14]).

system complexity this process of model-based anomaly detection is automatically
performed by computers in two steps: First, we automate the model formation
step—building (or learning) a model from a given system. Second, we automate the
step of anomaly detection—detecting a deviation between the real system and its
model.
Both of these tasks can be solved separately: First, for a given real system a

behavior model should be built—by a human or automatically. Second, given such a
behavior model anomalies should be detected. In this thesis, we apply techniques
from artificial intelligence to solve both tasks. Adapting the notation of the field of
artificial intelligence, we deal with automatic model formation and anomaly detection.
The anomaly detection problem can be modeled as a one-class problem. Usually,

a one-class setting occurs in the context of classification. In this classification setting
we want to assign a class label to a sample (e.g. some execution steps of a process).
In the one-class setting we only have samples from the normal class and do not know
how anomalies look like. If we face a new sample we want to label it as normal or
abnormal. Hence, we define anomalies as everything we would not label as normal.
In addition to automatically detecting anomalies, we need to identify a system

class which can represent certain types of systems as an abstraction of the real-world
system. Real-world systems can be modeled in different ways and depending on the
chosen system model a different behavior model has to be applied. We focus on
Discrete Event Systems (DESs) because they are a limited but powerful abstraction
of real-world systems. In DES we usually deal with sequences of events that occur at
various time stamps.

Summarizing, we focus on sequence-based approaches (incorporating time stamps)
for anomaly detection (as a one-class problem). Moreover, we are looking for a
model and an algorithm to detect ATM manipulation and fraud in a research project
with the ATM manufacturer Diebold Nixdorf. ATMs are very complex systems
that can be modeled as DES, but manually modeling the normal behavior of an
ATM is almost impossible—even for domain experts. Additionally, ATMs emit a
lot of data in form of timed sequences that can be used to learn a behavior model.
As state-of-the-art approaches for model learning, the models themselves and the
anomaly detection algorithms suffer certain drawbacks, we needed to develop a new
automaton model, a learning algorithm for this model and an anomaly detection
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algorithm that circumvents most of the drawbacks.
In the next section, we briefly present anomaly detection approaches that partly

solve the anomaly detection problem tackled in this thesis.

1.1 Background

Anomaly detection has been applied in many technical systems. In 2000, the Defense
Advanced Research Projects Agency (DARPA) organized a challenge to detect
intrusion into a network system analyzing the TCP payload [Lip+00]. Even years
after the competition in 2004, the Payload-based AnomalY Detector (PAYL) was
developed to automatically detect network intrusion [WS04]. In [Nig+12], instead
of detecting functional anomalies a hybrid automaton is used to detect abnormal
energy consumptions in production plants. For identifying faults in web service
processes a web service orchestration language is transformed into a synchronized
automaton to detect faulty executions of specific services [Yan+09]. [Men+10] reports
on model-based diagnosis of a real-world electrical power system in a NASA research
center using Bayesian networks. In [AS12], an expert system is applied to reduce the
time for detecting faulty parts in an automotive systems based on error codes.
In some of these approaches, rule engines are used where a human expert defi-

nes rules of the normal behavior. In others, the system behavior is not modeled
sequence-based but the system’s behavior is examined at a fixed frequency. We will
apply our automatic anomaly detection approach in a sequence-based manner for
detecting manipulations of Automated Teller Machines (ATMs) to prevent fraud
(cf. Section 6.5).

Real-Time Identification from Positive Data (RTI+) [VdW10] is the first algorithm
that solves the problem of automatic model generation for timed sequences. The
algorithm can be applied for generating a so called Probabilistic Deterministic Real-
Time Automaton (PDRTA) from a set of timed and normal sequences. But RTI+
only deals with the automatic model formation and does not solve the anomaly
detection problem. Furthermore, it requires the input of histogram bins which are
hard to define (even for human experts).
The Bottom-Up Timed Learning Algorithm (BUTLA) [Mai14] is the second

algorithm that automatically generates models for given data containing timed
sequences. The resulting model called Probabilistic Deterministic Timed Automaton
(PDTA) can be used in the ANOmaly Detection Algorithm (ANODA) to detect
anomalies for new sample sequences. However, BUTLA and ANODA have certain
drawbacks which we will point out in the remainder of this thesis (cf. Sections 2.4.3.1
and 6.2.3.2).

1.2 Main Contributions

In this thesis, we deal with the problem of sequence-based anomaly detection in
discrete event systems and its evaluation as a one-class problem. We can split our
main contributions into six different parts:
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Chapter 1 Introduction

Relating Research Areas We identify different research areas (cf. Chapter 3) that
tackle the same or at least similar problems—namely Process Mining, Grammatical
Inference and Sequence-based Anomaly Detection. Surprisingly, these research areas
develop mostly independent and do not apply methods from the other area. We relate
these research areas and give an overview on the different notations and approaches.

Automaton Model PDTTA We present a new automaton model called Probabilistic
Deterministic Timed Transition Automaton (PDTTA) (cf. Section 4.2) that represents
a good trade-off between the models learned by the state-of-the-art algorithms RTI+
(PDRTA) and BUTLA (PDTA). The PDTTA does not require the specification of
global histograms (as a PDRTA) but represents time behavior locally. Furthermore,
it models time behavior more precisely than a PDTA.

PDTTA Learning Algorithm ProDTTAL For learning a PDTTA from data we
present the modular Probabilistic Deterministic Timed Transition Automaton Le-
arning (ProDTTAL) in Section 4.3. ProDTTAL is a combination of learning the
event structure with a PDFA learner and modeling the time behavior with Kernel
Density Estimation (KDE). We analyze ProDTTAL’s runtime (polynomial in terms
of the size of the training set and some other factors; Section 4.3.2) and show that
ProDTTAL converges in the limit (under some assumptions). Additionally, we give
an overview on the different timed automata learning algorithms.

Automata-based Anomaly Detection Algorithm (AmAnDA) We present the Auto-
mata-based Anomaly Detection Algorithm (AmAnDA) as anomaly detection algo-
rithm (cf. Section 4.4) that detects anomalies for a given timed automaton learned
with RTI+, BUTLA or ProDTTAL and an input sequence. AmAnDA is built in a
modular way and can use most state-of-the-art one-class classification algorithms.
Not considering the runtime of the one-class algorithm, AmAnDA requires polynomial
runtime in terms of the length of the given sequence (and some other factors that we
present in Section 4.4.2.3).

Systematical Evaluation Method for Anomaly Detection Approaches We present
a systematical evaluation method for anomaly detection approaches in Discrete
Event System (DES) (cf. Chapter 5). To be able to evaluate anomaly detection
approaches, we need a test data set that contains normal as well as anomalous
sequences. Therefore, we identify five types of anomalies that can occur in DES
and show how every type of these anomalies can be interspersed into data sets that
do not contain anomalies. For interspersing anomalies, we propose two different
approaches—namely the random anomaly insertion and the model-based anomaly
insertion. Furthermore, we propose a method to systematically evaluate the scalability
of automata-based algorithms in terms of runtime and memory consumption.

Empirical Comparison Our last contribution is the empirical comparison of the
timed automata learning algorithms RTI+, BUTLA and ProDTTAL in Chapter 6.
To the best of our knowledge, neither of these algorithms have been compared with
each other. We evaluate the algorithms’ performance on synthetically generated
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data sets and on a real-world data set gathered on a publicly available Automated
Teller Machine (ATM). Finally, we investigate how well the algorithms scale using
our proposed method.

Parts of this thesis have already been published. In [KAK14; Kle+14], we present
and refine the PDTTA, ProDTTAL and a naive version of AmAnDA. In [Kle+14] we
additionally identify four types of anomalies that can occur in Discrete Event System
(DES). Furthermore, we describe how to randomly intersperse these anomalies into
an anomaly-free data set.

1.3 Structure
The structure of this thesis is closely related to the main contributions presented in the
preceding section. First, we present existing concepts in Chapter 2. In particular, we
review probability density functions followed by different system classes for modeling
systems. Then we present automata classes and automaton models. After that we
describe inference algorithms that infer automata of the different classes. We finish
the chapter with the presentation of one-class classification algorithms.

In Chapter 3, we review related work. First, we relate the research areas of Process
Mining, Grammatical Inference and Sequence-based Anomaly Detection. For every
of these areas we present the mostly used models and algorithms and describe the
different notations for events, sequences, data sets and the problem of anomaly
detection. We also point out the differences between the research areas. Then, we
review algorithms from other research areas that also solve the anomaly detection
problem on sequence-based data sets. We start with approaches that deal with
anomaly detection for vector-based data sets, followed by anomaly detection on
data streams in which the data can be read only once. We conclude the chapter by
presenting work on ATM fraud detection.

Chapter 4 contains three main contributions. First, we introduce the new automa-
ton model PDTTA, show how this model is learned with the algorithm ProDTTAL
and analyze ProDTTAL’s runtime. After pointing out differences to the other auto-
mata learning algorithms RTI+ and BUTLA we develop the AmAnDA which solves
the anomaly detection task given a timed automaton (that obeys some properties)
and an unlabeled timed sequence. The chapter finishes with a discussion on the
differences between one-class, two-class and multi-class sequence-based anomaly
detection.
In Chapter 5, we present how sequence-based anomaly detection algorithms can

be evaluated. First, we review different performance metrics for anomaly detection
(including their strengths and weaknesses). Then, we present five types of anomalies
that can occur in DES, followed by how every type of these anomalies can be
inserted into data sets that do not contain any anomalies. We conclude the chapter
with an approach how we can create experiments for evaluating the scalability of
sequence-based anomaly detection algorithms.
In Chapter 6, we compare the approaches RTI+, BUTLA and ProDTTAL ex-

perimentally. We first describe the experiment setup and perform preliminary
experiments on synthetic data which we sample from a manually created model.
Then, we sample more data from similar automata and apart from interspersing
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anomalies into normal data sets we directly sample anomalies from these automaton
models. After evaluating the different approaches on real-world data gathered on
a publicly available ATM, the chapter finishes with an evaluation how well the
approaches scale in terms of runtime.

We conclude this thesis in Chapter 7 where we summarize the results of this thesis
and give an outlook on future work.
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2
Fundamentals

In this chapter we present the fundamental concepts we deal with in the remainder
of this thesis. We first introduce probability density functions because they are used
in some automaton models (cf. Section 2.1). Then we introduce different types of
system classes where we mainly focus on discrete event systems (cf. Section 2.2).
In Section 2.3, we present automaton models that are capable of modeling various
system classes, followed by algorithms that are capable of inferring these automaton
classes from data in Section 2.4. Finally, we present machine learning algorithms
that can be used in one-class classification domains and, thus, are well suited for
anomaly detection (cf. Section 2.5).

2.1 Probability Density Functions
Probability density functions (PDFs) are a common way to model probability distri-
butions. PDFs should not be mixed up with probability functions. The values of a
PDF may become greater than one which is not possible for probability functions.
In PDFs, the probabilities are represented by the area under the PDF.

Given a continuous PDF f and a random variable X, the following equation holds:

Pr(X = a) = 0 (2.1)

Pr(a ≤ X ≤ b) =
b∫
a

f(x)dx (2.2)

Equations (2.1) and (2.2) state that the PDF value for a single value is always
zero, i.e. it cannot model the probability for a certain value (Eq. (2.1)). However, a
PDF can give the probability of the random variable X being in the interval [a; b]
(Eq. (2.2)).

Additionally, it holds that the area under a PDF f must integrate to one:
∞∫
−∞

f(x)dx = 1 (2.3)

Furthermore, the cumulative distribution function (CDF) FX(x) of a PDF f
describes the probability that a random variable X will have outcome x or less.

FX(x) =
x∫

−∞

f(x)dx (2.4)
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When given one-dimensional data, PDFs can be used to approximate the characte-
ristics of the data. In the following we will present common types of PDFs.

Gaussian Distribution The Gaussian distribution (or Normal distribution) is mo-
deled by two parameters: The mean µ and the standard deviation σ. The Gaussian
distribution has its maximum at the mean and is symmetric around the mean. Furt-
hermore, the density decreases the farther away from the mean the value is, but the
value never becomes zero. The density function is defined as:

f(x) = 1√
2πσ

e−
1
2 (x−µ

σ
)2 (2.5)

Uniform Distribution The uniform distribution is modeled by two parameters a
and b with b > a and models that all values between a and b have the same density
value ( 1

b−a). Hence, the density function is defined as:

f(x) =
{ 1
b−a if x ∈ [a; b]
0 else

(2.6)

Other Distributions There exist many other distributions with other parameters
like exponential, χ2, β distribution (and many more) that will not be explained in
detail. Instead, we will focus on how complex PDFs can be estimated from given
data. Hence, we present the kernel density estimation.

Kernel Density Estimation (KDE) Kernel Density Estimation (also called Parzen
window) [Par62] is a method to estimate a PDF of unknown shape from given data
points. As the name indicates a kernel K is used to estimate the PDF. Furthermore,
a bandwidth parameter h is needed, that defines the smoothness of the resulting PDF.
Opposed to the distributions above, the KDE is a non-parametric model because its
shape is not only determined by a fixed set of parameters, but also by some training
data (which is a kind of parameter, too)1.
The idea of the kernel density estimation is to lay a kernel-defined distribution

on every data point and to compute the density for an unknown point x by taking
into account the distributions of the given data points around x. For data points
(x1, . . . , xn), bandwidth h and kernel K the kernel density estimation f is defined as:

f(x) = 1
nh

n∑
i=1

K(x− xi
h

) (2.7)

Different kernels K exist, like the Gaussian, Cauchy, Picard kernel and others. In
this thesis we mostly focus on the Gaussian kernel, which is defined as:

K(t) = 1√
2π
e−

1
2 t

2 (2.8)

1Note, that non-parametric models can also contain parameters, e.g. the bandwidth h. Parametric
models only contain a fixed set of parameters and this set does not grow with increasing training
data size.
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If we use the Gaussian kernel in a kernel density estimator, Eq. (2.7) becomes:

f(x) = 1
nh

n∑
i=1

1√
2π
e−

(x−xi)
2

2h2 (2.9)

2.2 System classes

Systems theory is an established field of research that deals with describing systems
by some characteristics and showing properties of the respective systems. A system
can be seen as a black box with inputs and outputs (cf. Fig. 2.1). This blackbox can
have certain properties which we will present in this section.

OUTPUTINPUT

SYSTEM

Figure 2.1: Abstract system view.

We can distinguish between stateful and stateless systems. As the latter rarely
occur in reality because their expressiveness is limited, most technical systems are
stateful. The stateful systems can be further distinguished into discrete, continuous
or hybrid systems. Depending on whether the signals emitted by the system are
discrete or continuous, the system satisfies the respective property. Hybrid systems
are a mixture of discrete and continuous systems because they contain both discrete
and continuous signals. Figure 2.2 shows a partial overview of different system classes
according to [Cas07]. In the following we describe the different properties in the
nodes of the tree.

Static vs. Dynamic Static (or state-/memoryless) systems produce an output that
only depends on the current input and not on the input the system got before. The
output of dynamic (or stateful/with memory) systems does not only depend on the
current input, but also on the state of the system. This state originates from inputs
the system has seen before.

Time-varying vs. Time-invariant Time-varying systems change their behavior with
the time. This means that the system may change independently of the inputs. Hence,
the output of the system does not only depend on the input and the system’s state,
but also on the point of time when the input was seen. Sometimes, this effect is also
known as concept-drift. On the other hand, time-invariant systems always produce
the same output if they are in a certain state and get a certain input.
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Linear vs. Non-linear In linear systems the output of the system has a linear
dependency to the input of the system. Hence, the system behavior can be modeled
as a linear function from input and system state to the output. As systems can be
of arbitrary complexity, this linearity is usually not present. Hence, for non-linear
systems, the output does not need a linear dependency to the input and state.

Continuous-state vs. Discrete-state In continuous-state systems the representa-
tion of the state is continuous, hence the system has infinitely many states. Usually,
the state is modeled by many real-valued variables. As it is very hard to model
the behavior with real-valued numbers, discrete-state systems can be seen as an
abstraction of continuous-state systems. In discrete-state systems the number of
states is discrete and finite or countably infinite.

Time-driven vs. Event-driven Time-driven systems change their state after some
time has elapsed. Usually, these systems obey some periodicity after which the state
changes. Event-driven systems do not change their state after some time but only
with the occurrence of events. The time gap between events may be arbitrary. As
long as no event occurs the system stays in its current state.

Deterministic vs. Stochastic Deterministic systems always produce the same out-
put in a certain state and for a given input. In stochastic systems the output of
the system is described by some random variable(s). Hence, the output may be
different for the same state and input, but not in an arbitrary manner but obeying
the underlying random process.

Discrete-time vs. Continuous-time In discrete-time systems all system variables
(input, state, output) are defined only at discrete points in time. Hence, the time
can be modeled with the natural numbers. In continuous-time systems all system
variables can be observed for any possible (continuous) point in time. However, in
practice, the sensors to observe a system can only measure at a fixed frequency and
therefore, they are discrete by their nature.
As we focus on discrete event systems in this thesis, we will shortly explain

continuous systems and discrete systems thoroughly.

2.2.1 Continuous-state Systems

A continuous system model contains the input of various sensors where the sensor
values stem from the real (physical) system. The system changes its state through
actors that perform actions, but the actors themselves are not part of the system
model. However, the actions of the actors may be observed with the sensors. Every
sensor may have a different resolution and the system model acquires the sensor
values with its own resolution. Thus, a continuous system consists of various time
series of the respective sensors. One can think of such systems as analog systems
where no preprocessing or abstraction (apart from the sensor resolution) is applied.
Therefore, it may be difficult to learn behavior from the combination of the sensor
values because changes in the system are continuous and the system has infinitely
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SYSTEMS

DYNAMIC

TIME-INVARIANT

LINEAR

CONTINUOUS-STATE DISCRETE-STATE

TIME-DRIVEN EVENT-DRIVEN

NONLINEAR

TIME-VARYING

STATIC

DETERMINISTIC STOCHASTIC

DISCRETE-TIME CONTINUOUS-TIME

DISCRETE EVENT
SYSTEM S (DES)

Figure 2.2: Overview of different system classes (according to [Cas07]).

many states. Furthermore, an abstraction of states may not be easy because an
expert has to define when the system changes its abstract state. Hence, a system can
be easily modeled as continuous system, but learning the model may be a hard task.

2.2.2 Discrete Event Systems
Discrete event systems (DES) are a limited, but still powerful abstraction to model
certain systems. DES are often used to model technical systems where certain actors
perform actions and change the state of the system with these actions. The state of
the system may be observed by some discrete sensors. In [Cas07] DES are described
to have three main properties:

1. Discrete: The number of possible states in the system is discrete (or finite).

2. Dynamic: The next state of the system depends on an observed event and the
current state (but not on the states before).

3. Event-driven: State changes are caused by events only. The events occur at
arbitrary points in time.

As shown in Fig. 2.2 DES can be further distinguished based on certain properties.
In this thesis we will focus on discrete-time DES because most systems are not
fully deterministic at a particular abstraction level. We only apply the discrete-time
variant because at a very low level sensors measure only with some fixed frequency,
thus the measurement rate is discrete.
Figure 2.3 shows a sample execution path of a DES with states qi, events ei and

time points ti. The sample path represents how the model is traversed and which
states are visited. At the beginning the system is in state q2. Then, event e1 happens
at timestamp t1. The system changes its state to q5 and stays in that state until
event e2 happens at timestamp t2. This procedure continues as shown and at the
end the system is in state q6.
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Figure 2.3: Sample path in an abstract DES for a given abstract sequence.

A simple example for a DES is the board game chess (cf. Fig. 2.4). Every board
configuration corresponds to one state in the chess system. Every move of a chess
piece corresponds to one event. A state change is only caused when a chess piece is
moved and the possible moves (events) depend on the current board configuration
(on the current state) and not on the previous moves (in which states the system was
before). A change of the board configuration (state) only occurs if a chess piece is
moved after some time by a player (an event occurs) and not by a (periodic) system
behavior.

8 rmblkans
7 opopopop
6 0Z0Z0Z0Z
5 Z0Z0Z0Z0
4 0Z0Z0Z0Z
3 Z0Z0Z0Z0
2 POPOPOPO
1 SNAQJBMR

a b c d e f g h

Figure 2.4: Initial state of a chess game.

One can think of a DES as a digital system where every sensor can only have
finitely many values. The actors can still perform continuous actions, e.g. moving
an object, but the sensors can only detect the object at certain (discrete) positions.
On the one hand, we can regard a DES as a discrete abstraction from a real system
that does not fully reflect the state of the underlying system. On the other hand,
we often do not need the detailed state because it does not contain any information
of additional value compared to the abstract state. Furthermore, it may be hard
for a learning algorithm to extract insights from continuous states. Hence, the
discretization of a DES may help learning algorithms to focus on the learning of the
behavior of the system.
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2.3 Automata classes
In this section we first present the basic concept of formal languages, followed by dif-
ferent automata classes starting with a simple Deterministic Finite Automaton (DFA)
to the more complex Probabilistic Deterministic Real-Time Automaton (PDRTA) by
adding probabilities, time information and transition guards based on time values.
As non-deterministic automata are very hard to learn, they will not be part of this
section.

2.3.1 Languages
Before we introduce automata classes we present the concept of formal languages in
this section.

2.3.1.1 Untimed Languages

An untimed language L is a set that contains arbitrarily many words. A word is
a sequence (or list) of symbols. Languages can be finite or infinite. A language L
is usually defined over an alphabet Σ with each word w in the L (written w ∈ L)
containing only symbols of Σ. For example, the word w1 = abab is part of the language
L = {w ∈ Σ∗|w = (ab)n, n ≥ 0}. In [Cho56] Chomsky presents a hierarchy over
formal languages, ranging from powerful languages (Chomsky type-0 called recursively
enumerable languages) to less powerful but still mighty languages (Chomsky type-3
called regular languages). We only deal with languages of Chomsky type 3 (regular
languages) because these languages can be expressed by finite automata and several
algorithms exist for inferring finite automata from a given finite set of words. An
abstraction of regular languages are the stochastic regular languages, which are
recognized by probabilistic automata (cf. Section 2.3.2.2). They do not only contain
the words w in the language L but also a probability density function over the all
possible words Σ∗.

2.3.1.2 Timed Languages

Alur and Dill [AD94] present an overview over timed languages and timed automata
(cf. Section 2.3.3). Timed languages contain timed words that contain symbols and
time values. We refer to a slightly different notation of timed words [OW07] that
better suits our formalism but is equivalent to the one presented in [AD94]. In
[OW07] at first the definition of Alur and Dill is given but then they write a timed
word as a sequence of timed events. Following this event notation a (finite) timed
word consists of a word w ∈ Σ∗ consisting of symbols w = e1, . . . , en and associated
time values T = v1, . . . , vn. Hence, we have two ways of expressing a timed word wt
for symbols w = e1, . . . , en and time values T = v1, . . . .vn:

1. wt = (w, T ) = ((e1, . . . , en), (v1, . . . , vn))

2. wt = (e1, v1), . . . , (en, vn)

We can now define a timed language in the same way as we did for untimed langua-
ges. In the following section we will first present untimed automata, followed by
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timed automata. We will use the concept of timed languages for timed automata
(Section 2.3.3) and for learning timed automata from a finite set of timed words
(Section 2.4.3).

2.3.2 Untimed Automata

We first introduce untimed automata as a basic concept. Even though there are
other automata classes we only present the ones necessary in this thesis, namely
the Deterministic Finite Automaton (DFA), the Probabilistic Deterministic Finite
Automaton (PDFA) as an extension of the DFA and the Non-Deterministic Finite
Automaton (NFA) as the non-deterministic variant of the DFA.

2.3.2.1 Deterministic

A Deterministic Finite Automaton (DFA) [MP43] is the most simple automaton.
Sometimes it is also called Finite State Machine (FSM). It is used in many applications
and systems as it can describe the basic flow of a process. It starts in a start state,
reads inputs and based on the inputs it proceeds to successor states until it reaches a
final state or an input that is not valid. Formally, a DFA is defined in the following
way:

Definition 1 (DFA). A Deterministic Finite Automaton is a five-tuple (Σ, Q, q0, δ, F )
with the following semantics:

• Σ: The finite, non-empty alphabet containing symbols.

• Q: The finite, non-empty set of states.

• q0 ∈ Q: The start state.

• δ : Q× Σ→ Q: The state-transition function assigning a state and symbol the
successor state (for some state-symbol combinations it may be undefined).

• F ⊆ Q: A set containing the final states (may be empty).

Figure 2.5 shows a DFA with the states {q0, q1, q2} and the events {e1, e2, e3}. q0
is the start state and the only final state is q2. Starting in q0 and observing the
event e1, the automaton changes to q1. In q1 the automaton changes to state q0
again if event e2 is observed or to the final state q2 if event e3 is observed. The tuple
representation of this DFA is:

A = ({e1, e2, e3}, {q0, q1, q2}, q0, {(q0, e1, q1), (q1, e2, q0), (q1, e3, q2)}, {q2})

The language represented by A is L(A) = {w ∈ Σ∗|w = e1ue3;u = (e2, e1)n;n ≥ 0}

2.3.2.2 Probabilistic

Rabin invented the Probabilistic Deterministic Finite Automaton (PDFA) [Rab63]
as an extension of a DFA (cf. Section 2.3.2.1), where probabilities are added to the
transitions and the final states. Hence, a sequence as input cannot only be rejected
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Figure 2.5: DFA with three states {q0, q1, q2} and three symbols {e1, e2, e3}.

or accepted, but it is also possible to compute the likelihood of this sequence for the
given PDFA, indicating how likely it is that the Probabilistic Deterministic Timed
Automaton (PDTA) generated the sequence. Even though it seems odd, a PDFA is
deterministic because it does not contain two transitions from one state q with the
same symbol e.

Definition 2 (PDFA). A Probabilistic Deterministic Finite Automaton is a five-tuple
(Σ, Q, q0, δ, π) with Σ, Q, q0 and δ from the DFA (Definition 1) and the set of final
states F replaced by π that has two profiles.

• π1 : Q×Σ→ [0, 1]: The transition probability function assigning every transition
a probability.

• π2 : Q → [0, 1]: The final state probability function assigning every state a
probability.

Sometimes, instead of introducing a second signature for the final state probability,
an end symbol, e.g. # is introduced that does not belong to the alphabet and models
the final state probabilities. Hence, the following expressions are equivalent for the
end symbol #:

π2(q) =̂ π1(q,#) (2.10)

If it is clear from the context we write π instead of π1 or π2.
Figure 2.6 shows a PDFA with the same events and states as the DFA in Fig. 2.5.

For the transition probabilities we denote the probability with p at every transition.
The probability function π contains the following elements:

π = {(q0, e1, 1.0), (q1, e2, 0.7), (q1, e3, 0.3), (q0, 0.0), (q1, 0.0), (q2, 1.0)}

The transition probability function can be interpreted as how probable it is that a
transition is taken while the final state probability function indicates the probability
of a sequence ending in that current state. Furthermore, π is constrained that the
transition and final probabilities in every state q must sum up to one:

π(q) +
∑
e∈Σ

π(q, e) = 1 (2.11)

Given a PDFA A it is possible to compute the probability of every sequence that is
generated by A. The intuition is to aggregate the probabilities at every transition by
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Figure 2.6: PDFA with three states (q0, q1, q2), three symbols (e1, e2, e3) and proba-
bilities p.

multiplication and finally multiply the final probability in the current state. If there
is no transition for some symbol, the probability of the sequence is zero. Hence, the
probability PA(s) generating a sequence s = e1, . . . , en from a PDFA A (Σ, Q, q0, δ, π)
is:

PA(s) =
{∏n

i=1 π(qi, ei) · π(qn), if (qi, ei) ∈ δ with qi+1 = δ(qi, ei) and q1 = q0

0, else
(2.12)

2.3.2.3 Non-Deterministic

A Non-Deterministic Finite Automaton (NFA) [RS59] is the non-deterministic variant
of the DFA. Opposed to the DFA, a combination of state and symbol can have more
than one successor state in the NFA. Nevertheless, the NFA is language-equivalent
to the DFA, hence they can model the same set of languages. Formally, an NFA is
defined in the following way:

Definition 3 (NFA). A Non-Deterministic Finite Automaton is a five-tuple (Σ, Q,
q0, δ, F ) with Σ, Q, q0 and F from the DFA (Definition 1) and the transition function
δ replaced by the following one:

• δ : Q× Σ→ P(Q): The state-transition function assigning a state and symbol
arbitrarily many successor states.

As for the DFA a probabilistic variant of the NFA exists—the PNFA. It adds
probabilities to the automaton that sum up to one per state. Figure 2.7 shows an
NFA (Fig. 2.7a) and its probabilistic variant (Fig. 2.7b) that is similar to the DFA
shown above. Opposed to the shown DFA, the state q1 has two outgoing transitions
with symbol e2, leading to states q0 and q2, respectively.

In the following we describe automata that not only incorporate the event structure
but also the associated time values.

2.3.3 Timed Automata

Timed automata add timing information to automata. They were first described
in [AD94] where they can contain many clocks on which the time (a real valued
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(a) Non-Deterministic Finite Auto-
maton (NFA).

(b) Probababilistic Non-
Deterministic Automaton
(PNFA).

Figure 2.7: (Probababilistic) Non-Deterministic Automaton ((P)NFA).

number) ticks when the automaton resides in some state. Then, a transition is taken
based on the symbol and the time on a clock (expressed by guards on the transition).
Transitions could also reset some clocks if they are taken. As we do not need the
whole expressiveness of timed automata in this thesis, we will not explain general
timed automata in detail, but instead a less expressive formalism that is sufficient
for the content of this thesis.
A more strict version of timed automata is the One-Clock Deterministic Timed

Automaton (1-DTA) [AD94] (sometimes also called Deterministic Real-time Auto-
maton (DRTA)). It has only one clock that represents the time delay between two
consecutive events and the guards on the transitions constrain the time delay on the
clock. The clock is reset after any transition was taken, hence it counts the waiting
time in a certain state. The time values must be taken from the natural numbers. In
theory, this may be a limitation, but in practice, the time is always discrete because
of discrete measurements.

Definition 4 (1-DTA). A One-Clock Deterministic Timed Automaton is a six-
tuple (Σ, Q, q0, δ, F, T ) with Σ, Q, q0, δ and F from the DFA and the time guards
T : Q× Σ→ N× N.

T constrains the time when a transition may be taken, e.g. (q0, a) 7→ 4, 6 means
that if the automaton is in state q0 and reads symbol a, then the time must be
between 4 and 6 time units. The time values must be greater or equal than zero and
the first value of a time guard must be smaller or equal to the second value.
To keep determinism of a 1-DTA, the successor state must be unique for any

combination of symbol and time value. This determinism is achieved by constraining
the time guards on the outgoing transitions for one state and symbol such that
they do not overlap, i.e. T (q0, a) = [4, 6] and T (q0, a) = [5, 8] is forbidden, whereas
T (q0, a) = [4, 6] and T (q0, a) = [7, 8] is allowed. Whereas the guards must not
overlap for a single symbol, overlapping guards for different symbols are allowed,
e.g. T (q0, a) = [1, 5] and T (q0, b) = [3, 7]. In this way the following state can still be
determined deterministically and thus, the whole automaton is still deterministic.
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2.3.3.1 Probabilistic

Mainly two different probabilistic automaton models exist so far. They both belong
to the class of Stochastic Deterministic Timed Automaton [Vod13]. In this section we
present the PDTA [Mai14] and the Probabilistic Deterministic Real-Time Automaton
(PDRTA) [VdW10]. Both automaton models are an extension of the 1-DTA but
additionally contain probabilities for events. While a PDTA contains probabilities
at the transitions, a PDRTA contains probabilities for an event in every state and
additionally probabilities for a time value in every state. Thus, a PDRTA contains
two probability distributions whereas a PDTA only contains one.

Definition 5 (PDTA). A Probabilistic Deterministic Timed Automaton is a seven-
tuple (Σ, Q, q0, δ, F, T, π) with Σ, Q, q0, δ, F and T from the 1-DTA and the transition
probability function π from the PDFA that models the probability of a transition.

Figure 2.8 shows a PDTA with five states ({q0, q1, q2, q3, q4}) and four events
({a, b, c, d}). For simplicity, there are no final state probabilities in states that have
outgoing transitions (q0, q2). Every transition is labeled with an event, probability p
and a time interval (or time guard).
As for the PDFA the probabilities of all outgoing transitions (including the final

probability) for a state must sum up to one. Thus, π must take a third argument,
namely the time guard. In [Mai14] the constraints on the probabilities for transitions
are defined in a different way. The following formula for state q is given:

q0

q1

q2 q4

q3

a
[1,5]

p=0.6

b

p=0.4[3,6]

[1,2]
c p=0.3

p=0.7
[5,7]
d

Figure 2.8: PDTA with five states, four events, transition probabilities and time
guards (similar to [Mai14]).

π(q) +
∑

qi,qj∈Q,e∈Σ
π(qi, qj , e) = 1 (2.13)

Equation (2.13) should express that the probabilities of all transitions from state q
to any successor state and the final state probability of q must sum up to one. But
the formula does not cover the case that for a symbol e there may be more than
one transition because there are different time guards for e. We present the correct
formula (cf. Eq. (2.14)) in our notation that also comprises the different time guards
in a state q.

π(q) +
∑
e∈Σ

∑
t=(q,e,∗,∗)∈T

π(q, e, t) = 1 (2.14)
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2.3 Automata classes

Even though a PDTA cannot be directly transformed into a PDRTA, the PDRTA
is an extension of the PDTA to some extent. Only the modeling of the event
probabilities is slightly different, but the rest of the two automata classes is the same.
As the PDRTA contains information about the probability of time values, it is more
expressive than a PDTA. In [VdW10] a PDRTA is defined in the following way:

Definition 6 (PDRTA). A Probabilistic Deterministic Real-Time Automaton is
a four-tuple (A′, H,S, T ) with A′ a 1-DTA, H a finite set of time intervals in
the form [v, v′], called histograms, S a finite set of event probability distributions
Sq = {Pr(S = e|q) : e ∈ Σ, q ∈ Q} and T a finite set of time-bin probability
distributions Tq = {Pr(T ∈ h|q) : h ∈ H, q ∈ Q}.

Figure 2.9 shows a PDRTA with two states ({q0, q1}), two events ({a, b}) and four
histogram bins ({[0, 1], [2, 3], [4, 5], [6, 10]}). The symbol probabilities are shown next
to the corresponding state, e.g. for state q0 the probability of observing the event a
is the same as observing b (0.5). The probabilities for the time bins in state q0 are
shown on the left, the probabilities for the time bins in state q1 on the right.
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0.3

0.2

0.4

0.1

b
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Figure 2.9: PDRTA with two states, two events and four time buckets (similar to
[VdW10]).

As the time is modeled with histograms and there is no further information how
the time values are distributed in the histograms, a uniform distribution of the time
values is assumed in every histogram. Hence, the probability for a certain time value
t in a state q is:

Pr(T = t|q) = Pr(T ∈ h|q)
v′ − v + 1 (2.15)

where h = [v; v′] ∈ H such that t ∈ [v; v′]. The event e and the time value t are
modeled conditionally independent given the state q. Hence, the probability of
observing an event-time tuple (e, t) in a state q is the product of the probability of
the event in q and the time value in q:

Pr((e, t)|q) = Pr(S = e|q) · Pr(T = t|q) (2.16)

Then, the probability of a timed sequence of event-time tuples is the product of
the probabilities of the tuples of the sequence. Please note that the probabilities of
symbols and time values do not depend on which transition was taken, but on which
symbol and time value are observed in which state. Hence, the symbol probability
depends on the state q and the symbol e and the time probability also depends on q
and the time value t.
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Chapter 2 Fundamentals

2.3.4 Hybrid Automata

In addition to the mentioned models there also exist hybrid models for every type
of model. Hybrid automata additionally model continuous signals from continuous
inputs. Every state contains a function θ modeling the continuous signal in the
respective state. The hybrid automaton is most often called Probabilistic Deter-
ministic Hybrid Timed Automaton (PHyTA) [Mai14] or Stochastic Deterministic
Hybrid Automaton (SDHA) [Vod13]. In discrete event systems continuous signals
do not exist and thus, hybrid models are not explained in more detail. For more
information see Section 3.4.3.2.

Summary

In this section we introduced automaton models ranging from simple DFAs without
time information to the more complex PDRTAs. As there are different names for
very similar automaton model, Table 2.1 gives an overview on some of the different
names of automata and their occurrences. In the remainder of this thesis, we will
mostly focus on the PDFA, PDTA and PDRTA.

Probabilistic Deterministic Finite Automaton (PDFA) [Rab63]
Stochastic Deterministic Finite Automaton (SDFA) [Vod13]

Probabilistic Deterministic Real-Time Automaton (PDRTA) [VdW10]
Probabilistic Deterministic Timed Automaton (PDTA) [Mai14]
Stochastic Deterministic Timed Automaton (SDTA) [Vod13]

Table 2.1: Different notations for automata classes

2.4 Automata Inference Algorithms
In this section algorithms that learn or infer automata are presented. The algorithms
learn different types of automata, depending on the input and the algorithm itself.
Before presenting the algorithms we describe some common basics that are used in
most of the algorithms.

2.4.1 Common Elements

In classical machine learning tasks the input data consists of instances of equal length
that contain data for arbitrary attributes. An instance entry vi in any instance x
contains the value for the attribute ai. In this thesis we mostly deal with sequence
data that cannot be expressed as instances of equal length because sequences can have
arbitrarily varying length. We distinguish between timed and untimed sequences.

2.4.1.1 Notation

An untimed sequence se is a succession of events ei from an alphabet Σ. The number
of occurrences of an event is not limited, so it may occur more than once or not at
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2.4 Automata Inference Algorithms

all. The important aspects of the sequence are the occurring events and their order.
For an alphabet Σ = {a, b, c} the untimed sequences se1 = acb and se2 = aabba are
two examples of length three and five, respectively.

A timed sequence st not only contains events but also time values related to every
event. The events are contained in an alphabet and the time values stem from N0.
As for an untimed sequence, the length is arbitrary and not known in advance. The
order and the occurring events are still important, but additionally the time value
associated with each event is important. We will write a timed sequence in the form
st = (e1, v1), (e2, v2), . . . , (en, vn) with ei representing the symbol at position i and
vi representing the associated time value. For an alphabet Σ = {a, b, c} the timed
sequence st3 = (a, 2), (c, 1), (b, 20) contains three events (a, c, b) and their associated
time values (2, 1, 20). The timed sequence st3 contains the untimed sequence se1 = abc
but is enriched with time values. The length of st3 is still three (as for se1). To denote
a set of timed sequences, we write St. A set of sequences without time information
is denoted as Se. The size of a (timed) sequence set is defined as the number of
sequences it contains. As we deal with sequences that are usually generated by an
underlying model M , we define positive (or normal) sequences:

Definition 7 (Normal Sequence). A sequence s+ is normal (or positive) with respect
to a set of sequences S which are generated by an underlying model M if s+ stems
from M .

The respective positive input sequence sets are denoted as S+
t and S+

e . Sometimes
we deal with sequences that stem from a different model:

Definition 8 (Abnormal Sequence). A sequence s− is abnormal (or negative) with
respect to a set of sequences S which are generated by an underlying model M if s−
does not stem from M .

The respective negative input sequence sets are denoted as S−t and S−e . If a
set contains both negative and positive sequences it is denoted as S+/−

t and S+/−
e ,

respectively.

2.4.1.2 Probabilistic Prefix Tree Acceptor

Most algorithms that process (un-)timed sequences first build a Probabilistic Prefix
Tree Acceptor (PPTA) in an initial step. It is a tree that accepts sequences and con-
tains probabilities for every transition. The PPTA is similar to the Frequency Prefix
Tree Acceptor (FTA) that contains frequencies instead of probabilities. Sometimes a
PPTA is called a Prefix Tree Acceptor (PTA) even though it is still probabilistic. In
the following we will also adapt to this notation and use PTA if we mean PPTA or
FTA2.

Definition 9 (PPTA). A Probabilistic Prefix Tree Acceptor (also Prefix Tree Accep-
tor) is a special kind of a PDFA (cf. Definition 2). It is a tree with the start state
being the root node, has a unique path from any state to any other state and does not
contain cycles. Apart from that it is a PDFA.

2FTAs can be easily converted into PPTAs and most often, a PPTA is stored as FTA internally.
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A non-probabilistic prefix tree acceptor is a special prefix tree for accepting event
sequences. It is a tree representation for a set of untimed event sequences and
contains all information about the event order, but lacks the information how often
events and sequences occur. A PPTA contains this frequency information implicitly
because it contains the probabilities of events and sequences. Figure 2.10 shows
a PTA, a PPTA and an FTA with root node q0 and Σ = {e1, e2, e3}. The PTA
(Fig. 2.10a), PPTA (Fig. 2.10b) and FTA (Fig. 2.10c) accept the same sequences
(e1, e4 and e1, e2, e1, e3) but the PTA lacks the probability or frequency information
at the transitions.

(a) Prefix Tree Acceptor
(PTA).

(b) Probabilistic Prefix Tree
Acceptor (PPTA).

3

1

1

1

2

(c) Frequency Prefix Tree
Acceptor (FTA).

Figure 2.10: Differences between PTA, PPTA and FTA.

A PTA is created from a set of event sequences S+
e that only contains positive

examples. It is a perfect representation for S+
e , thus only accepting sequences from

S+
e and rejecting all other sequences. The initial PTA only contains the start node
q0. For every sequence in S+

e the current PTA is traversed as long as possible until
the sequence ends or there is no possibility to traverse an edge. For every transition
taken the occurrence counter is increased by one and if a node is reached at the
end of the sequence the stopping counter of the current state is increased by one.
If there is no transition for a symbol the rest of the sequence is added as a subtree
with occurrence count of one for every transition and a stopping counter of zero for
every state except the last state—its stopping counter is initialized with one.
Figure 2.11 illustrates the process of an FTA creation for the input set S+

e =
{e1e2e1, e1e3, e1, e1e2e1e3}. The sequences are added one after the other. Changes in
the frequency counter at the transitions are marked red. If no transition exists for a
symbol in a given state, the transition is created and points to a newly created state.
Figure 2.11a shows the initialization with the first sequence e1e2e1. After adding the
sequences e1e3 and e1, Fig. 2.11d shows the addition of the last sequence e1e2e1e3
which is also the final FTA. At the end, the probabilities can be calculated from the
occurrence and stopping counters. In some algorithms the counters instead of the
probabilities are needed, thus the probabilities are not always calculated for a PTA,
but only on-the-fly.

A PTA can be constructed in linear time because every sequence is processed just
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(a) Initialization with
sequence e1e2e1.
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(b) Adding sequence
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(c) Adding sequence
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(d) Adding sequence
e1e2e1e3.

Figure 2.11: FTA generation for sequences S+
e = {e1e2e1, e1e3, e1, e1e2e1e3}.

once and no further (non-linear) computation is done afterwards. Thus, the runtime
is O(n) with n = |S+

e | the number of sequences in S+
e . However, not only the number

of sequences n matters but also their length. In worst case—every sequence occurs
once—the PTA cannot generalize anything and thus, creates a new state for every
symbol (even if the symbol was seen before in another sequence). Let lmax be the
length of the longest sequence, then the number of states for a PTA is O(|S+

e | · lmax).
So on a more granular level the runtime for creating a PTA is polynomial in the
length of the longest sequence and size of the sequence set S+

e .

2.4.1.3 Hoeffding Bound

As some of the presented algorithms use the Hoeffding bound, we will not describe
it for every algorithm but instead only once. Hoeffding’s inequality [Hoe63] is a
concentration inequality that provides a bound on how strong the mean deviates from
the expected value. From this inequality, a test can be derived to check whether an
empirical outcome f significantly differs from a probability value p with a confidence
parameter α and n observations:∣∣∣∣p− f

n

∣∣∣∣ <
√

1
2n log 2

α
(2.17)

As we compare two empirical outcomes f, f ′ (the frequencies of state visits) when
merging automata we apply the Hoeffding bound with n, n′ many observations for
two outcomes and check whether they are significantly different with respect to α:

∣∣∣∣fn − f ′

n′

∣∣∣∣ <
√

1
2n log 2

α
+
√

1
2n′ log 2

α
(2.18)

⇔
∣∣∣∣fn − f ′

n′

∣∣∣∣ <
√

1
2 log 2

α
·
( 1√

n
+ 1√

n′

)
(2.19)

After introducing common elements we continue with the algorithms that mostly
use PTAs in an initial step and then merge states in the PTA to achieve a more
compact representation.
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2.4.2 Learning Untimed Automata

In this section we present algorithms that learn Probabilistic Deterministic Finite
Automata (PDFA, cf. Definition 2) from a positive set of event sequences S+

e . The
algorithms just employ event sequences without any time information. Despite the
input set S+

e they may require other parameters which are then described in the
respective subsection. There exist various algorithms that also learn PDFAs but we
focus on ALERGIA and Minimal Divergence Inference (MDI) as they are used later
in this thesis because of their comprehensibility and simplicity.

2.4.2.1 ALERGIA

ALERGIA [CO94] by Carrasco was one of the first algorithms where a state merging
technique was applied. The algorithm consists of two steps and needs an additional
confidence parameter α. In a first step a preefix tree acceptor (PTA) is constructed
from a set of input sequences. In a second step the states of the PTA are recursively
merged based on the Hoeffding bound with α as criterion. Given the PTA, for every
pair of two states (more specific: a pair of a state and one of the predecessors of this
state) the algorithm recursively checks whether these two states are compatible. Two
states are regarded as compatible if the number of arriving and ending sequences in the
states are equal according to the Hoeffding bound, the number of arriving sequences
and the number of outgoing transitions for every symbol are also equal according
to the Hoeffding bound and if the two criteria also hold for the successors of the
respective states. Let n and n′ be the number of arriving sequences at the respective
state and f and f ′ the number of ending or outgoing sequences for a symbol. The
Hoeffding bound is used for testing whether two estimates are significantly different
(cf. Eq. (2.19)).

If two states are found to be compatible, the ingoing and outgoing transitions are
bent to or away from the first state. This bending may create non-determinism for
the first state because there may have already been an outgoing transition for some
symbol x and the second state may have also had an outgoing transition with symbol
x. In this case, the two target states that are reached with symbol x are also merged
in the same manner. Algorithm 1 shows the pseudo code of ALERGIA. At first, the
PTA is initialized from the input set S+

e (line 1). Then, two nested loops iterate over
all state pairs (lines 2 and 3) and check for compatibility of the states (line 4). If
two states are found to be compatible, they are merged (line 5) and the resulting
automaton is made deterministic again (line 6). A merge of two states qi and qj is
performed by bending all incoming transitions of qi and qj into a newly created state
qk while keeping the source states of the transitions. The same is performed for all
outgoing transitions of qi and qj such that those transitions leave qk while keeping
their destination states.

Runtime Complexity ALERGIA runs in O(n3) [CO94] with n the number of states
in the PTA constructed from S+

e . Comparing every pair of two states takes O(n2)
time, every such comparison takes at most O(n) time (recursively checking the
successor states for compatibility) and the comparison is possibly followed by a
recursive merge step that also takes O(n), so we end up with O(n2 · (n+n)) = O(n3).
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ALGORITHM 1: ALERGIA
Data: Positive set of (untimed) event sequences S+

e , significance parameter α
Result: PDFA A

1 A′ ←−PTA(S+
e );

2 for i = 1 to n− 1 do
3 for j = 0 to i− 1 do
4 if compatible(qi, qj , α) then
5 A′ ←− A′.merge(qi, qj);
6 A′.determinize();
7 break j-loop;

ALGORITHM 2: ALERGIA-compatible
Data: States qi, qj , significance parameter α
Result: true/false

1 n←− arriving(qi);
2 n′ ←− arriving(qj);
3 f ←− ending(qi);
4 f ′ ←− ending(qj);
5 if HoeffdingBound(n, n′, f, f ′, α) then
6 return false;
7 foreach e ∈ Σ do
8 out←−outgoing(qi);
9 out′ ←−outgoing(qj);

10 if HoeffdingBound(n, n′, out, out′, α) then
11 return false;
12 if not compatible(δ(qi, e), δ(qj , e), α) then
13 return false;

14 return true;

In general, the less the PTA can generalize the input sample and the less ALERGIA
finds compatible states and merges them, the longer the (real) runtime of ALERGIA.
In [CO94] the experimental runtime is found to be O(n) but the experiments are
biased. The input sample S+

e is very big but the resulting PTA is quite small. Hence,
most of the time is needed for constructing the PTA and the merging of a small PTA
is done quite fast.

A drawback of ALERGIA is that it only checks whether two states are compatible
by looking at the two states and their successors. It is not checked whether a merge
improves the PDFA with respect to the training set. Hence, Thollard et al. proposed
the MDI which is presented next.
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2.4.2.2 Minimal Divergence Inference (MDI)

The Minimal Divergence Inference [TDH00] was proposed to outperform ALERGIA
because ALERGIA only has a local view on two states and their predecessors but
not a global view on how the automaton generalizes from the training set. Instead
of applying a local merge criterion, the Kullback-Leibler (KL) divergence is used to
compare two automata before and after a merge step to decide whether the performed
merge step was useful. Given two automata A and A′ the KL divergence D(A||A′)
is defined as:

D(A||A′) =
∑
se∈Σ∗

PA(se) · log PA(se)
P ′A(se)

(2.20)

with PA(se) as defined in Section 2.3.2.2. As it is computationally expensive to
compute the KL divergence for every merge in this way it can be incrementally
computed. Let A1 be the automaton obtained by merging a state in the initial PTA
A0 and let A2 be an automaton that results from a possible state merge in A1. The
divergent increment ∆ going from A1 to A2 then is:

∆(A1, A2) = D(A0||A2)−D(A0||A1) (2.21)

The computation of ∆(·, ·) still involves the computation of D(·||·) twice, thus
requiring a lot of computation. With a trick, the difference ∆(A0, A2) between
the initial PTA A0 and any automaton A2 can be computed only considering the
intermediate automaton A1 and the states that were merged when going from A0 to
A2:

∆(A0, A2) = D(A0||A1) +
∑

qi∈Q012

∑
e∈Σ∪{#}

ci · π0(qi, e) · log
π1(qi, e)
π2(qi, e)

(2.22)

Q012 is the set of states in A0 which have been merged to obtain A2 from A1, ci is
the probability of reaching qi from the root node, and πi is the transition probability
function in Ai and qi is the representative state that remains when merging qi and
some other state. With dynamic programming the divergence values can be stored
and have to be computed only once for every pair and a lot of recomputation is not
necessary.
The decision whether to keep a merge when obtaining A2 from A1 is considered

compatible with the training data if the divergence increment relative to the size
reduction (i.e. decrease in number of states) is small enough. The number of states
of the automaton is denoted as | · |. Formally, the merge is performed if the following
inequality holds for some compatibility threshold α:

∆(A1, A2)
|A1| − |A2|

< α (2.23)

Algorithm 3 shows the pseudo code of MDI. As for ALERGIA all states are
inspected (lines 2 and 3), but in contrast to ALERGIA the merge is always executed
(line 4). Then the resulting automaton is determinized (non-determinism is removed;
line 5) and the old and the new automaton are compared for compatibility using
Eq. (2.23) (line 6). If the new automaton is a better representation, it is kept and
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the old automaton is discarded (line 7).

ALGORITHM 3: MDI
Data: Positive set of (untimed) event sequences S+

e , significance parameter α
Result: PDFA A

1 A←−PTA(S+
e );

2 for i = 0 to n− 1 do
3 for j = 0 to i− 1 do
4 A′ ←− A.merge(qi, qj);
5 A′.determinize();
6 if compatible(A,A′, α) then
7 A←− A′;
8 break j-loop;

Runtime In [TDH00] Thollard et al. state that “the overall complexity of this
algorithm, evaluated as the number of state pairs which are considered for merging,
is O(N2) where N denotes the size of the PPTA”. Although this statement is true, it
can be misleading. One could think that the runtime is O(n2) with n the size of the
PPTA, but this is not true. The runtime is “evaluated as the number of state pairs
which are considered for merging”. Every such consideration for merging takes at
most again O(|Σ| · n) steps with n the number of states in the PTA because every
consideration must compute Eq. (2.22). This computation consists of iterating over
the alphabet Σ and the set of states that changed from one automaton to the other
Q012 that may be in O(n). Hence, the overall runtime of MDI is O(n3 · |Σ|) with n
the number of states of the PTA.

2.4.2.3 Other Algorithms

Apart from MDI and ALERGIA there exist several other algorithms that infer a
PDFA from a positive set of untimed event sequences S+

e . As MDI and ALERGIA
are two of the more famous ones they are presented in detail while others are not.
Nevertheless, a short excerpt of other inference approaches is given in Section 3.3.3.1.

2.4.3 Learning Timed Automata

In this section we present algorithms that learn Probabilistic Deterministic Timed
Automata (PDTA, cf. Definition 6) from a positive set of timed event sequences S+

t .
Compared with the algorithms presented so far, the following algorithms employ
timed event sequences, thus process time information. Despite the input set S+

t they
may require other parameters which are then described in the respective subsection.
To the best of our knowledge only the two algorithms presented here (Real-Time
Identification from Positive Data (RTI+) and Bottom-Up Timed Learning Algorithm
(BUTLA)) learn a PDRTA from a positive set of timed sequences.
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2.4.3.1 BUTLA

The Bottom Up Timed Learning Algorithm (BUTLA) was proposed by Maier in
[Mai14]. In the literature there exists another version of BUTLA that includes a
split operation (cf. [Mai+11]), but we will describe the most recent version presented
in [Mai14]. The main idea of BUTLA is first to globally detect discrepancies in time
values for any event, then to split this event into two or more new events and finally
apply a bottom up state merging step utilizing the Hoeffding bound.
BUTLA is a state merging algorithm that consists of four steps:

1. Global preprocessing of time values for every event

2. PTA-creation based on the preprocessing

3. Merging states from the created PTA

4. Adding time guards based on the mean time values of every event

In the following we will describe every step in detail.

Preprocessing In the preprocessing step the time values for every symbol are
gathered globally. Then for every symbol and all the gathered time values a kernel
density estimator with Gaussian kernel is computed. Instead of a fixed bandwidth h,
a variable smoothing factor of 5% of every gathered value on the density estimator
is used. The authors claim that this smoothing is well suited for the identification
of normal behavior of production plants (cf. [Mai14]). Hence, the modified kernel
density estimation (h exchanged with 0.05 · xi) with a Gaussian kernel and time
values (x1, . . . , xn) is3:

KDE(t) = 1
n

n∑
i=1

1√
2π · 0.05 · xi

· e−
(t−xi)

2

2·(0.05·xi)2 (2.24)

In the next step the local minima of the KDE are calculated. It is assumed that a
mode is between two minima. Every such mode represents a new symbol and for
every mode a new symbol is added to the alphabet. The point where a minimum is
located is used as a strict border for a symbol even though the underlying distribution
is assumed to be Gaussian. Figure 2.12 shows the kernel density estimation of time
values that occurred for a single symbol e. The minima in the density estimation
are located (M1,M2) and three new symbols e1, e2, e3 are created that represent the
respective modes. The symbol e is transformed into e1 if the time value of e lies
between zero and the first minimum M1. For e2 the time values of e have to be
between M1 and M3, and for e3 the time value has to be greater than M2.

PTA-creation The PTA is created in the same way as described in Section 2.4.1.2.
3In [Mai14] the formula is presented with an undefined variable x and the denominator in the
exponent is not squared. We try to correct the formula and interpret it as presented here.
Another possible interpretation (with h2 exchanged with 0.05 · xi) would be:

KDE(t) = 1
n

∑n

i=1
1√

2π·0.05·xi
· e−

(t−xi)2
2·0.05·xi
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0

t

M1 M2

e1 e2 e3

Figure 2.12: BUTLA event split for event e into three subevents e1, e2, e3 (similar to
[Pap16]).

State merging The states of the PTA are merged based on the Hoeffding bound
(cf. Section 2.4.1.3). The merge criterion is similar to ALERGIA (cf. Section 2.4.2.1)
but instead of comparing the number of outgoing transitions the number of incoming
transitions are used (cf. Algorithm 4). The other difference to ALERGIA is that the
loops that iterate over the states are reversed such that the BUTLA operates in a
bottom-up order instead of top-down. The result is from the same model class as
ALERGIAs result: a PDFA.

ALGORITHM 4: BUTLA-compatible
Data: States qi, qj , significance parameter α
Result: true/false

1 n←− arriving(qi);
2 n′ ←− arriving(qj);
3 f ←− ending(qi);
4 f ′ ←− ending(qj);
5 if HoeffdingBound(n, n′, f, f ′, α) then
6 return false;
7 foreach e ∈ Σ do
8 in←−incoming(qi);
9 in′ ←−incoming(qj);

10 if HoeffdingBound(n, n′, in, in′, α) then
11 return false;
12 if not compatible(δ(qi, e), δ(qj , e), α) then
13 return false;

14 return true;

Time guards After a PDFA is learned with BUTLA, the time guards have to be
added to the PDFA in order to obtain a PDRTA. BUTLA adds time guards based
on the mean µ and the standard deviation σ of the time values for a given symbol.
Hence, for every symbol, the time guard is defined as the interval [µ− k · σ;µ+ k · σ]
with k ∈ R+. Assuming a symbol was split into several symbols in the preprocessing,
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and based on the choice of k, intervals for the same symbol may overlap. As overlaps
are forbidden by the definition of a PDTA we assume that BUTLA sets the border of
the two intervals to be the point where the symbol was split into two symbols in the
preprocessing step. Figure 2.13 shows the time guards for a symbol e that has been

t

e1 e2 e3

20 25 30

(a) PDTA with incorrect (overlapping) intervals.

t

e1 e2 e3

20 25 30

(b) PDTA with correct (non-overlapping) intervals.

Figure 2.13: Incorrect and correct interval generation for a PDTA with BUTLA.

split into e1, e2 and e3. Assuming that the standard deviation σ for e1, e2 and e3 are
the same (which is not necessarily the case) with k = 1 and µ1 = 20, µ2 = 25, µ3 = 30
and σ = 6 the time guards for e would overlap as shown in Fig. 2.13a. The red
arrows point at the overlapping time intervals. We assume that the correct PDTA
would look as shown in Fig. 2.13b—by setting the border of the time guards to the
point where the event was split in the preprocessing.

Runtime Complexity As BUTLA is similar to ALERGIA with additional prepro-
cessing, a slightly modified compatible function and a bottom up merging order, the
merge step of BUTLA has the same runtime as ALERGIA. Thus, the merge step of
BUTLA runs in O(n3) with n the number of states in the constructed PTA.

In Lemma 1 in [Mai14] the author states that BUTLA runs in O(n3
0) with n0 the

number of states in the constructed PTA. We state that the given runtime does not
completely cover the runtime of BUTLA. The author references Proposition 8 which
gives the runtime complexity for the preprocessing step. This preprocessing is not
analyzed in detail. The author states that the minima of Eq. (2.24) are found in
O(n) but he does not prove it. Finding the minima of a function like Eq. (2.24) is a
non-trivial problem and may be harder than O(n).

When analyzing the runtime of BUTLA, the author correctly states the merge step
runtime to be O(n3

0), but the author even misuses his own proposition. According to
Proposition 8 the preprocessing runtime is O(n) with n the number of observations.
As the number of observations n may be much higher than the number of states n0
in the PTA, the term O(n) cannot be neglected.
Hence, if Proposition 8 in [Mai14] holds, the runtime complexity of BUTLA is
O(n3

0 +n) with n0 the number of states of the PTA and n the number of observations.
As the runtime of the preprocessing was not thoroughly analyzed in Proposition 8,
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the runtime of BUTLA is O(n3
0 + Prep(n)) with Prep(n) the runtime complexity for

the preprocessing step.

2.4.3.2 RTI+

The RTI+ algorithm was the first algorithm that inferred a PDRTA from positive
data. It is an adaptation of the RTI algorithm (cf. Section 3.3.3.1) to be trained only
with positive data.

As most of the presented algorithms, RTI+ builds a PTA and merges this PTA.
While merging states, not only the symbols and their occurrences are considered,
but also the time values. Therefore, RTI+ uses an Evidence-Driven State-Merging
(EDSM) approach to merge states based on their symbol and time properties. To
consider time values, the time information must be encoded in the prefix tree acceptor.
Hence, RTI+ uses a timed prefix tree acceptor, which is a PTA with time guards
(that are initialized with the maximum time values, and refined later). Opposed to
the other algorithms presented before, RTI+ does not only apply a merge but also
a split operation. The split operation is the opposite of a merge operation, thus it
does not generalize but refines the model. Instead of merging two states (and their
successors) into one new state, the split operation divides one state into two states
and also creates new successor trees.

RTI+ applies a red-blue framework. In this framework a state is red, blue or white.
Red states are confirmed states, blue states are the (non-red) successors of red states
and white states are all other states. While the algorithm runs, more states will be
confirmed (i.e. more blue states become red), then more white states become blue
and at the end, all states are red.
RTI+ proceeds in the following way: At the beginning, all states except the root

state are white. In a loop, RTI+ iterates as long as there are non-red states:

• Color the successor states of all red states blue.

• Pick the most visited transition δ = (qr, qb, e, g) from a red state (qr) to a blue
state (qb).

• Evaluate all possible splits of δ. Perform the most significant split, if it exists.

• Evaluate all possible merges of the blue state qb with all red states. Perform
the most significant merge, if it exists.

• If no split or merge has been performed, color qb red.

If two states are merged, there is no choice how the merge is performed. In the
merged model the two states are combined and their subautomata are also combined.
If a transition is split there are several possibilities where to split the transition.

More precisely, the transition can be split between any two time values that are in
between the lower and upper bound of the time guard. Let [n;n′] be the time guard
of the transition to split. Then the split can be performed between n and n+ 1 or
n′ − 1 and n′ or all other time values that are between n′ and n. Hence, there are
n′ − n many possibilities of a split, that have to be executed and evaluated.
For the evaluation of splits and merges, RTI+ applies the likelihood ratio test.
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Likelihood Ratio Test The likelihood ratio test computes the likelihood ratio (LR)
of the model before (M) and after (M ′) an operation (split or merge) with respect
to the training data S+ and checks for significance of the null hypothesis using the
degrees of freedoms of the models by applying the χ2 test.

LR = likelihood(S+,M)
likelihood(S+,M ′) (2.25)

The likelihood for the whole training data as a set of timed sequences can be computed
by multiplying the likelihoods for every sequence for a given PDRTA (cf. Eq. (2.16)).
This ratio is compared to the parameters (or degrees of freedom) using the χ2 test.
This test indicates whether a change in the automaton significantly improves the
model, hence it outputs a p value.

The degrees of freedom of a PDRTA are the number of choices in every inner state
(in a state without any outgoing transitions there is no choice). They are defined
as the number of symbols one could observe in a state q and the number of time
bins (or histograms) a time value could fall into. Thus, for an inner state q we have
|Σ| − 1 choices for the symbols and |H| − 1 choices for the time values, resulting in
(|Σ| − 1) · (|H| − 1) choices for an inner state q. For a PDRTA with k inner states,
we get k · (|Σ| − 1) · (|H| − 1) degrees of freedom. When comparing two models M
and M ′ we only need to take into account the difference in the degrees of freedom.
Let n and n′ be the degrees of freedom of the PDRTAs M and M ′. The likelihood
ratio test determines whether it is a good idea to spend more degrees of freedom for
a significantly better model. Formally, we introduce function F which provides the p
value for the χ2 with n′ − n degrees of freedom:

Fχ2(n′−n)(x) = 1− CDF (χ2(n′ − n), x) (2.26)

The result of F with −2 · ln(LR) is the p value (or significance) that the operation
was good. Hence, the following terms are compared:

Fχ2(n′−n)(−2 · ln(LR)) ≶ α (2.27)

Depending on whether a merge or split operation was performed, α must be smaller
or greater than the p value. As a merge decreases and a split increases the degrees of
freedom, the comparison with α must be handled in two different ways. If a merge is
tested the merge is significantly good if the p value is greater than α. For a split the
p value must be smaller than α.
The authors introduced an additional technique called pooling for handling tran-

sitions with small frequencies. Transitions with small frequencies contain a lot of
unused parameters and especially near leaf nodes the test for significance cannot be
performed well. The idea of the pooling is to combine the frequencies of time bins
and symbols if their frequencies are low and treat them as a single symbol or time
occurrence. Hence, the number of parameters is reduced. For further details we refer
to [VdW10].

According to [VdW10] the runtime complexity of RTI+ is polynomial. Even though
it is not stated in which term the runtime is expressed, we assume that the runtime
is polynomial in the size of the input S+ because the likelihood ratio test includes
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repeated iterating over the input data. A tighter runtime bound is not given. The
convergence of RTI+ is only conjectured.

2.4.4 Algorithm Analysis Frameworks

In this section we review two important algorithm analysis frameworks for machine
learning, namely learning in the limit and PAC learning. The frameworks demand
different solution qualities of the learned model and when a model is considered to
have converged, among others.

2.4.4.1 Learning in the Limit

Learning in the limit (in the case of automata learning also language identification in
the limit) is a framework first presented in [Gol67]. In this framework the learning
algorithm (or learner) may observe infinitely many examples (without having to
ask for them). After each seen example the learner has to provide a new model
(automaton). A learner identifies a language in the limit if it converges to the correct
identification of the language (i.e. the automaton representing this language) after a
finite number of examples. Nevertheless, the learner itself does not know when this
convergence is reached. In [Gol78] Gold showed that it is impossible to identify a
DFA in the limit from positive samples (i.e. from a regular language) only.

2.4.4.2 PAC Learning

Probably approximately correct learning (PAC learning) was proposed by Valiant in
[Val84]. In contrast to the learning in the limit, the PAC framework helps analyzing
the solution quality of the model even if the learner does not receive infinitely many
samples. The PAC framework also analyzes how many samples are needed to find a
“good” model with high probability.

As the learning task usually becomes harder with less samples, the learner does not
need to learn the exact underlying model (automaton): Instead, with high probability
(“probably”) the learner will find a good model (“approximately”) that is not too far
away from the underlying (true) model. Usually, two parameters δ and ε are used
to describe that with probability 1− δ the learner finds a model that has an error
of ε or less compared to the underlying model if the learner received a number of
samples polynomial in 1

ε and 1
δ . Furthermore, the framework is called polynomial

PAC learning if the runtime of the learner has to be polynomial in the number of
examples received.

2.5 One-class Classification
A classification problem describes the process of assigning a class label for a given
instance. Usually, a classification model (or classifier) is built in a training phase,
where labeled examples are presented. Based on the data presented in the training
phase, the classifier usually tries to find borders that separate the classes. In a test
phase, one ore more unlabeled example are presented and the classifier shall decide
which label to assign to the given example(s).
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We distinguish between two-class (binary), multi-class and one-class problems. In
the common two-class problem, only two labels (most often 0 and 1) are allowed and
examples with both labels are presented in the training phase. In the multi-class
classification setting, we do not only deal with two, but more than two labels (e.g.
0, 1, 2, . . . ), that are also presented in the training phase. When testing the classifier
it labels every unknown test example with one of the classes it has seen during the
training phase (0 or 1 for a two-class problem, 0,1,2,. . . for a multi-class problem).
For one-class problems, labeled examples (in the training phase) are only available
for one class (usually denoted as the positive class). While testing, the classifier can
only denote whether the given example belongs to the positive class or not (meaning
it belongs to some other class).
In classification tasks we usually deal with an input consisting of instances of

fixed length (every example is a such an instance). As for normal (and abnormal)
sequences (cf. Definitions 7 and 8), we can define normal (and abnormal) instances
with respect to the underlying model in the following way:

Definition 10 (Normal Instance). An instance x+ is normal (or positive) with
respect to a set of instances X which are generated by an underlying model M if x+

stems from M .

Definition 11 (Abnormal Instance). An instance x− is abnormal (or negative) with
respect to a set of instances X which are generated by an underlying model M if x−
does not stem from M .

In the following we will present algorithms that can be applied to solve one-
class classification problems. Some of these algorithms are adaptations of two-class
algorithms.

2.5.1 One-class Classification Algorithms
In this section we present the basic concepts of algorithms that are applied in the
remainder of this thesis—namely the support vector machine (SVM) and clustering.

2.5.1.1 Support Vector Machine

The support vector machine (SVM) [BGV92] is a supervised binary classifier that
constructs one or more hyperplanes to separate the data points into two classes. In
its basic implementation (called linear SVM), the SVM can only separate data that
can be separated by a hyperplane into two classes. The hyperplane can be written
as:

wTx+ b = 0 (2.28)

with w the normal vector and some bias b. Depending on where a point lies
relative to the hyperplane it is assigned to one of the two classes. As infinitely many
hyperplanes exist between two linearly separable classes, the SVM tries to find that
hyperplane which maximizes the distance (or margin) to the nearest points of both
classes. Figure 2.14 shows two linearly separable classes and two possible hyperplanes
with hyperplane A having a higher margin to both classes than hyperplane B.
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Figure 2.14: Two possible hyperplane separations for a linearly separable data set
(Figure from https://de.wikipedia.org/wiki/Support_Vector_Machine (Ennepe-
taler86, CC BY 3.0, http://creativecommons.org/licenses/by/3.0/)).

If linear separability is assumed, the so called hard-margin SVM is used which
computes the hyperplane and does not allow any points to lie on the wrong side of
the hyperplane. If the data is not linearly separable the idea is to allow a wrong
classification for some points. Hence, slack variables ξi > 0 are introduced that allow
some of the data points to lie within the margin. Additionally, a parameter C controls
the trade-off between maximizing the margin and allowing training points within
the margin. The SVM with slack variables ξi and parameter C is called soft-margin
SVM because the hyperplane softly separates the classes (allowing some classification
mistakes). As the hard-margin SVM is a special case of the soft-margin SVM with
C = ∞, we only present the formulas for the soft-margin SVM. Let the data set
be of the form {(xi, yi)|i = 1, . . . ,m; yi ∈ {−1, 1}} with xi being the input instance
and yi the according label. To compute the separating hyperplane the following
optimization problem has to be solved with w the normal vector as in Eq. (2.28):

minimize ||w||
2

2 + C
n∑
i=1

ξi (2.29)

subject to: yi(〈w,xi〉 − b) ≥ 1 for all i

This minimization problem can be solved using quadratic programming. Instead of
the primal, we can also solve the dual problem which usually requires less calculations
when making predictions with the SVM. Therefore, we first formulate the normal
vector w as linear combination of the training samples:

w =
m∑
i=1

αiyixi (2.30)

Then, we can reformulate the problem using Lagrange multipliers and the following
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equation has to be maximized:

maximize
m∑
i=1

αi −
1
2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi,xj〉 (2.31)

subject to:
n∑
i=1

αi · yi = 0, and 0 ≤ αi ≤ C for all i

Moreover, αi 6= 0 exactly when xi lies on the hyperplane or in the margin (ξi > 0).
For the classification of a new point it is checked on which side of the hyperplane

the point is located. This is done according to the following equation:

f(x) = sign(〈w,x〉+ b) (2.32)

= sign
(

n∑
i=1

αiyi〈xi,x〉+ b

)
(2.33)

Every αi is a weight in the classification function of the SVM. Usually, most αi = 0,
hence those xi are not necessary for the computation of f . Only some αi and their xi
have to be stored for the classification function. These xi are called support vectors.

Kernel Trick The soft- and hard-margin SVM only find a good representation of
the data if the data is more or less linearly separable. For linearly non-separable data
sets, a feature mapping function φ is introduced that transforms the input instances
into a higher dimension:

φ : Rd1 → Rd2 ,x 7→ φ(x) with d2 > d1 (2.34)

In this higher dimensional space it is often possible to linearly separate the data
points that were not linearly separable before. Implementing the feature mapping φ
into the SVM is straight forward. Every dot product of the input instances 〈xi,xj〉
is replaced by the dot product of the transformed input instances 〈φ(xi), φ(xj)〉. But
the calculation of this product is very expensive.
To circumvent this costly calculation, we apply the kernel trick. Therefore, we

utilize Mercer’s theorem [Mer09], thus we use some kernel function K that satisfies
Mercer’s condition (the kernel matrix has to be positive semi-definite) and is easier
to calculate than the dot product in Rd2 . Instead of explicitly computing the feature
mapping φ and the dot product, we can compute the kernel function K(xi,xj) which
is equivalent to the dot product in Rd2 :

K(x,xi) = 〈φ(x), φ(xi)〉 (2.35)

Then, the feature mapping φ and the dot product can be replaced by the kernel
function K for every calculation of the SVM. This replacement must be done for the
optimization step and for the classification function. For example, the classification
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function (Eq. (2.33)) becomes:

f(x) = sign
(

n∑
i=1

αiyiK(xi,x) + b

)
(2.36)

A popular example is the RBF-kernel, which is is defined as follows (with σ a free
parameter):

K(xi,xj) = exp
(
||xi − xj||2

2σ2

)
(2.37)

One-class SVM A special variant of the SVM can also be used for one-class
classification [Sch+99]. Instead of having input instances containing the labels
{−1,+1} they only contain the label +1. Figure 2.15 illustrates the idea of the
one-class SVM. All input instances are separated from the origin and the distance of

ρ

w

Figure 2.15: One-class SVM illustration (similar to [San+15]).

the created hyperplane to the origin shall be maximized. The slack variables ξi allow
for some errors as in the binary SVM. The classification function returns +1 only for
that region where most training examples are located, thus the density of already
seen examples is high.
The minimization problem (cf. Eq. (2.28)) is reformulated by using ν instead of

C and ρ instead of b (acc. to [Sch+99]; with φ the feature mapping function as in
Eq. (2.34)):

minimize ||w||
2

2 + 1
νn

n∑
i=1

ξi − ρ (2.38)

subject to:
yi(〈w, φ(xi)〉 − b) ≥ ρ− ξi for all i

ν is also known as the target rejection rate and plays an important role. It
represents an upper bound on the fraction of training samples that are treated as
outliers and it is a lower bound on the number of training examples that are used as
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support vectors (αi 6= 0 in the dual optimization problem). Although the ν-SVM
is still applicable to the binary setting, the one-class SVM is also known as ν-SVM
because of the importance of ν.
The classification function for the ν-SVM is also similar to the binary SVM

(Eq. (2.36)):

f(x) = sign (〈w, φ(x)〉 − ρ) (2.39)

= sign
(

n∑
i=1

αiK(xi,x)− ρ
)

(2.40)

2.5.1.2 Clustering

Clustering is an unsupervised learning technique that forms clusters that consist of
similar samples. All the samples belonging to the same cluster are similar based on
the distance metric that has to be defined (e.g. Euclidean distance). As clustering
is an unsupervised method, a class label for samples is not needed, hence it can
also be used as one-class classifier. In this thesis we present two approaches how to
transform a clustering algorithm into a one-class classifier. These approaches may be
applicable to many other clustering algorithms, but we only show this for the two
algorithms presented: k-Means [Llo82] and DBSCAN [Est+96].

The first approach is to cluster the instances from the positive class (training set)
and additionally add the unknown test sample. If the test sample is a noise point
(or anything similar), it is classified as an outlier. This approach is applicable to all
clustering algorithms that label instances as core or noise points, e.g. DBSCAN.
For the second approach the clustering is performed once with all instances from

the positive class only. As additional hyperparameter a distance threshold t has to
be set. For every unknown test instance the distance to the nearest characteristic
cluster point is computed. If this distance is greater than the predefined threshold t,
the test instance is classified as outlier. A characteristic point may be the cluster
center or a non-noise point (depending on the chosen clustering algorithm). For
k-means (among others) this approach is described in [KMD10].

Now we present the two clustering algorithms—DBSCAN and k-Means—that can
be transformed into a one-class classification algorithm using one of the mentioned
approaches.

DBSCAN DBSCAN [Est+96] is a density based clustering algorithm. The idea
is to check for every point how many neighboring points are in its neighborhood.
If there are enough points, the point is classified as core point. If there are not
enough points, the point can be a border point if it has at least one core point in its
neighborhood. If there are too few points and no core point in the neighborhood,
the point is a noise point. A cluster is formed by assigning the same cluster number
to all core and border points that are in each others (transitive) neighborhood.

Two parameters must be specified: ε and n, where ε defines the neighborhood as
the distance or radius in which neighboring points are searched, and n defines the
size of the neighborhood, thus the minimal number of points in distance not greater
than ε.
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Figure 2.16 shows the classification of points when applying DBSCAN with n = 3.
There are 3 points in the ε-neighborhood of point A, hence A is a core point. The
same holds for the other red points which are also core points. Point B and C are
border points because their distance to a core point is at most ε. Point N is a noise
point because less than 3 points and no core point is in distance of ε.

A C

B

N

Figure 2.16: Point classification in DBSCAN with n = 3 (Figure from https://en.
wikipedia.org/wiki/DBSCAN (by Chire, CC BY-SA 3.0, http://creativecommons.
org/licenses/by-sa/3.0/)).

Figure 2.17 shows the outcome of applying DBSCAN on a two dimensional data
set. The data set is split into two clusters (blue and red) with noise points in gray.
As DBSCAN is a density based clustering algorithm, the form of the clusters is
influenced by the density of the points.
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Figure 2.17: Example outcome of DBSCAN with two clusters (Figure from https://en.
wikipedia.org/wiki/DBSCAN (by Chire, CC BY-SA 3.0, http://creativecommons.
org/licenses/by-sa/3.0/)).

Properties The runtime complexity of DBSCAN is O(n2) in its naive implemen-
tation with n the number of points. With the help of indexing structures, the runtime
complexity becomes O(n · logn). The order in which the points are processed does
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not heavily influence the result of DBSCAN. Due to a different processing ordering,
only the border points may be assigned to different clusters and the cluster numbers
may change.

k-Means k-Means [Llo82] is a partitioning algorithm that divides a given data set
into k partitions. Opposed to DBSCAN the number of clusters k must be known in
advance. k-Means tries to minimize the overall squared distance of points to their
respective cluster center, formally:

minimize
k∑
i=1

∑
xj∈Si

‖xj − µi‖2 (2.41)

with xj the points, Si the cluster assignments and µi the centers of the clusters.
k-Means starts with k mean points (cluster centers) by some initialization strategy.
Then it iteratively performs the following two steps.

1. Assign every point to the cluster with the nearest cluster center.

2. Recompute the mean (cluster center) for every cluster as the mean of all points
assigned to this cluster.

Figure 2.18 shows the clustering of a small data set (the squares represent data
points) with k-Means and k = 3. The initial centers (colored circles) are chosen
randomly (cf. Fig. 2.18a). Then the assignment of points to the cluster centers is
performed in Fig. 2.18b (squares are colored based on the assigned cluster). Based
on this assignment the means of the clusters are recomputed in Fig. 2.18c, hence, the
centers are “moved”. After some iterations of assignments and recomputations, the
final result of the algorithm with the respective assignments and centers is shown in
Fig. 2.18d.

(a) Initialize k-Means
with 3 centers.

(b) Assign the points
to the nearest clus-
ter.

(c) Recompute the
mean of every
cluster.

(d) Result after some
iterations.

Figure 2.18: Sample execution of k-Means with 3 clusters (Figure from https://en.
wikipedia.org/wiki/K-means_clustering (by Weston.pace, CC BY-SA 3.0, http:
//creativecommons.org/licenses/by-sa/3.0/)).

Properties k-Means is very sensitive to the initialization of the cluster centers
and may become stuck in local optima. Depending on how the cluster centers are
initially chosen, the result can notably differ. Furthermore, the worst case runtime
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complexity is exponential in the number of points n (for only two dimensions and
certain initializations) [Vat11]. Hence, a lot of variants have been proposed to
circumvent some of these drawbacks.

Variants As k-Means is a very popular clustering algorithm, many variants exist.
Instead of computing means as centers, the median can be computed (k-Medians), the
cluster centers can be initialized in a more elegant way than randomly (k-Means++),
the data points may belong to a cluster with some degree (Fuzzy C-Means), etc. If
the number of clusters k is unknown the elbow heuristic is a common method to
iteratively increase k and check whether data is modeled much better (with respect
to some metric) with the higher k or whether the model quality increases only
marginally. If the data is not modeled better the previous k should be chosen. In
this thesis we apply two special variants of k-Means (G-Means and X-Means) which
also deal with “guessing” the number of clusters.

G-means and X-means G-Means [HE04] and X-Means [PM00] are extensions
of k-Means without the necessity to specify the number of clusters k. Even though
both work different in some sense, they both tackle the same problem of not knowing
the number of clusters in advance by assuming some distribution of the data.
X-Means was the first adaptation of k-Means to guess the number of clusters. It

utilizes the Bayesian Information Criterion (BIC) [KW95] or a similar criterion (e.g.
Akaike information criterion (AIC) [Aka98]). The criterion indicates how well the
model fits to the data while penalizing a large number of parameters because a more
complex model will always fit the data better than a simple one. To obtain the
correct number of clusters X-Means starts with an initial clustering with k-Means
and a small k. Then X-Means locally splits every cluster into two new clusters and
runs k-Means locally for the two new clusters. If this split improved the information
criterion of the local clusters (thus it fits the data better and does not increase the
model complexity too much), there is evidence that there really exist two (or more)
clusters, locally. Hence, in case of improvement the split is accepted, otherwise
rejected. Then a new iteration is performed until all further splits are rejected.

G-Means is another extension of k-Means that guesses the number of clusters. G-
Means outperforms X-Means because the BIC in X-Means does “not penalize strongly
enough the model’s complexity” [HE04]. While X-Means applies an information
criterion, G-Means assumes a subset of the data follows a Gaussian distribution.
Therefore, G-Means also splits every cluster center into two centers and performs a
local k-Means clustering. Instead of using an information criterion G-Means performs
a statistical test for each cluster center based on the Anderson-Darling statistic
[AD52]. The test checks whether the data around the center follows a Gaussian
distribution or whether the split into two centers was significantly better. If the data
is Gaussian (according to the test), the old center is kept, otherwise it is replaced by
the two new centers.

Even though it was shown that G-Means outperforms X-Means on some data sets,
we will apply both algorithms in Chapter 5 because in most cases the results depend
on the data set the algorithm was applied on.
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2.5.2 Anomaly Detection
Anomaly detection is usually defined as a one-class problem where the anomalies are
not known in advance. For some special problems the anomalies may be known, but in
general one cannot describe all possible anomalies but instead only model the normal
behavior. Hence, the anomaly detection problem can most often be formulated as a
one-class problem. Sometimes it is also referred to as outlier detection.
In Chapter 3 we describe approaches that deal with anomaly detection for fixed-

length instances. In the following we review the first anomaly detection algorithm
for timed sequences.

2.5.2.1 Anomaly Detection for Timed Automata

To the best of our knowledge only one algorithm for detecting sequence anomalies
with timed automata exists. Most automata learning algorithms were invented in
the grammatical inference community. This community mainly focuses on inferring
automata but not on detecting anomalies using the inferred automata. The ANOmaly
Detection Algorithm (ANODA) [Mai14] is an anomaly detection algorithm only for
PDTAs.

ANODA is a very naive algorithm that checks for anomalies only considering the
existence of transitions. It operates in the following way: ANODA requires a PDTA
and a timed test sequence as input. The PDTA is traversed starting in the initial
state q0. Then every time-event tuple from the timed sequence is read and it is
checked whether a transition fits to the current time-event tuple. If so, ANODA
proceeds to the next time-event tuple. If such a transition does not exist, ANODA
outputs “unknown event” or “wrong timing” depending on whether the event was
unknown or the timing did not fit to a transition.

In this way, ANODA can detect simple anomalies that did not occur in the training
data of the learned model. On the other hand, if only one abnormal sequence was
part of the training data and is not removed in the model learning step (which does
not happen for BUTLA), this abnormal sequence would be labeled as normal by
ANODA because a path in the automaton model exists for this sequence. Hence,
ANODA is not robust to outliers that (somehow) became part of the automaton
model.

In Section 4.4.2, we present a new anomaly detection algorithm called Automata-
based Anomaly Detection Algorithm (AmAnDA) that solves the same anomaly
detection problem for timed event sequences as ANODA does. Opposed to ANODA,
AmAnDA can handle different automata types (PDTAs, PDRTAs and Probabilistic
Deterministic Timed Transition Automatons (PDTTAs)) and does not only take
into account the existence of a transition but also the probabilities of all time-event
tuples in the test sequence.

In this chapter, we described the fundamentals of this thesis—probability density
functions, different system classes, automata classes to represent system classes,
learning algorithms for automata classes and one-class classification algorithms. In
the next chapter, we review related work and describe different research areas that
partly tackle the sequence-based anomaly detection problem.
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Related Work

In this chapter, we review related work and relate different research areas that all
deal with sequence-based anomaly detection. Sequence-based anomaly detection
has been studied and applied in several research areas. However, the main focus of
these research areas differs, the knowledge transfer between them is small, and other
notations and algorithms are used in the respective areas.

This chapter gives an overview of the different research areas—namely Process Mi-
ning, Grammatical Inference and Sequence-based Anomaly Detection. Their notations,
similarities, differences, and algorithms are presented in Sections 3.2 to 3.4. For every
research area, we present which type of data is usually processed (Sections 3.2.1, 3.3.1
and 3.4.1), how anomaly detection is performed (Sections 3.2.2, 3.3.2 and 3.4.2) and
which models and algorithms are used (Sections 3.2.3, 3.3.3 and 3.4.3). In Section 3.5,
we present anomaly detection approaches that do not operate on sequences, but solve
the anomaly detection task e.g. on vectors of fixed length.

3.1 Research Area Overview

The problem of sequence-based anomaly detection is mostly tackled in the research
areas Process Mining, Grammatical Inference and Sequence-based Anomaly Detection.
However, the main focus of the research areas is different and so is the way how they
solve the anomaly detection problem. Before we present the details of the respective
research areas in Sections 3.2 to 3.4, we outline to what extent the research areas
solve the anomaly detection problem for timed sequences.

Process Mining focuses on extracting process models from given process logs and
analyzing and interpreting these models. The process logs may not only contain
events and time values but also other information. The time values are used for
predicting when a process will be finished or for analyzing bottlenecks in the process
flow. The anomaly detection task is solved using conformance checking approaches
that check whether a process log and a predefined model are still conformal. To the
best of our knowledge, the conformance checking algorithms do not consider time
values, but only check for the order of events.

Grammatical Inference deals with the problem of inferring language models from
samples of a given language with the goal to infer a model that represents exactly the
language from which the samples were drawn. Hence, the main goal of Grammatical
Inference is the identification of the original language rather than the anomaly
detection. A language most often consists of (untimed) words ((untimed) sequences),
but some approaches also solve the grammatical inference task for timed languages
(a set of timed sequences).
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Sequence-based Anomaly Detection solves the problem of detecting anomalies in
sequence data—depending on the approach for untimed or timed sequences. In this
research area, anomalies shall be detected in unknown sequences after learning a
model from training sequences that do not contain anomalies.

In the following sections, we describe the different research areas more extensively
including notation, models and algorithms, followed by other anomaly detection
approaches that originate from other areas that anomaly detection, e.g. intrusion
detection or ATM fraud detection.

3.2 Process Mining
Process Mining bridges the gap between process modelling and data mining and deals
with the modeling and extraction of process models from log data. A good overview
is given by van der Aalst [Aal11]. Usually, a process model is extracted from software
and business process log data (process discovery). The extracted models can be
analyzed by humans or the models are employed to detect irregularities in running
processes by checking whether new log data is still conformal with the process model
(conformance checking). Usually, the processes are modeled in the Business Process
Model and Notation (BPMN) language.
In this section, we give an overview on process mining. Therefore, we first

introduce the data that usually belongs to a process log, then review a process
discovery algorithm (α-algorithm) and different conformance checking approaches.

3.2.1 Data Format
Process data is usually saved in a process log (or event log). Apart from meta data
a process log consists of arbitrary many traces. Traces are sometimes referred to
as single process instances or cases. A trace has a unique identifier (case id) and
consists of one or more events. Each event belongs to exactly one trace and can
consist of several attributes. Every event must have a case id, an activity and must
be ordered with respect to other events in the same case. The case id indicates to
which case the event belongs and the activity represents the event’s name. Apart
from these two attributes, often occurring attributes are the following:

• Event id: A unique identifier for the event. This identifier is often a running
number.

• Timestamp: A timestamp or date that represents the point in time when the
event occurred. If a timestamp is given, the order of the events should reflect
the temporal order of the timestamps.

• Resource: A resource the event is related to. This may be the name of a
customer, an object that is processed, the person or machine producing this
event etc.

• Cost: The amount of cost for the event.

Table 3.1 shows an excerpt of a process log for handling compensations. Every
event has an event id, a timestamp, an activity, a resource and a cost value. The
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case id is only shown for the first event of a case for simplicity. In a real log, every
event would have a value in the field “Case id”. The “Activity” represents the name
of the action taken, the “Resource” the person performing the action and the “Cost”
the cost value associated with the event. The first case represents a trace where a
compensation request starts with the activity “Register request” performed by Pete
with cost 50 at 30-12-2010:11.02 with event id 35654423. This event is followed by the
activity “Examine thoroughly” performed by Sue with cost 400 at 31-12-2010:10.06
with event id 35654424. The first case is completed with the activity “Reject request”
performed by Pete with cost 200 at 07-01-2011:14.24 with event id 35654427. Then
the cases with case ids 2, 3 and 4 follow where each case consists of different events.

Table 3.1: A fragment of an event log for handling compensations: each line corre-
sponds to an event (according to [Aal11])

Case id Event id Timestamp Activity Resource Cost
1 35654423 30-12-2010:11.02 Register request Pete 50

35654424 31-12-2010:10.06 Examine thoroughly Sue 400
35654425 05-01-2011:15.12 Check ticket Mike 100
35654426 06-01-2011:11.18 Decide Sara 200
35654427 07-01-2011:14.24 Reject request Pete 200

2 35654483 30-12-2010:11.32 Register request Mike 50
35654485 30-12-2010:12.12 Check ticket Mike 100
35654487 30-12-2010:14.16 Examine casually Pete 400
35654488 05-01-2011:11.22 Decide Sara 200
35654489 08-01-2011:12.05 Pay compensation Ellen 200

3 35654521 30-12-2010:14.32 Register request Pete 50
35654522 30-12-2010:15.06 Examine casually Mike 400
35654524 30-12-2010:16.34 Check ticket Ellen 100
35654525 06-01-2011:09.18 Decide Sara 200
35654526 06-01-2011:12.18 Reinitiate request Sara 200
35654527 06-01-2011:13.06 Examine thoroughly Sean 400
35654530 08-01-2011:11.43 Check ticket Pete 100
35654531 09-01-2011:09.55 Decide Sara 200
35654533 15-01-2011:10.45 Pay compensation Ellen 200

4 35654641 06-01-2011:15.02 Register request Pete 50
35654643 07-01-2011:12.06 Check ticket Mike 100
35654644 08-01-2011:14.43 Examine thoroughly Sean 400
35654645 09-01-2011:12.02 Decide Sara 200
35654647 12-01-2011:15.44 Reject request Ellen 200

As a lot of software and business produce log data, the process mining community1
decided to form the IEEE Task Force on Process Mining2. This task force discusses
important matters of process mining, e.g. a standard format for saving and exchanging

1http://www.processmining.org/
2http://www.win.tue.nl/ieeetfpm
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process logs, i.e. log files that contain data extracted from processes. The current
standard format for process logs is called eXtensible Event Stream (XES)3. Figure 3.1
shows a part of the log data from Table 3.1 in the XES format. The case with the id
or concept:name “1” contains events. These events contain the attributes shown in
Fig. 3.1 and their corresponding values.

<log xes.version="1.0" ...>
...
<trace>

<string key="concept:name" value="1"/>
<event>

<string key="concept:name" value="register request"/>
<string key="org:resource" value="Pete"/>
<date key="time:timestamp" value="2010-12-30T11:02:00.000+01:00"/>
<string key="Event_ID" value="35654423"/>
<string key="Costs" value="50"/>

</event>
<event>

<string key="concept:name" value="examine thoroughly"/>
<string key="org:resource" value="Sue"/>
<date key="time:timestamp" value="2010-12-31T10:06:00.000+01:00"/>
<string key="Event_ID" value="35654424"/>
<string key="Costs" value="400"/>

</event>
<event>

<string key="concept:name" value="check ticket"/>
<string key="org:resource" value="Mike"/>
<date key="time:timestamp" value="2011-01-05T15:12:00.000+01:00"/>
<string key="Event_ID" value="35654425"/>
<string key="Costs" value="100"/>

</event>
<event>

<string key="concept:name" value="decide"/>
<string key="org:resource" value="Sara"/>
<date key="time:timestamp" value="2011-01-06T11:18:00.000+01:00"/>
<string key="Event_ID" value="35654426"/>
<string key="Costs" value="200"/>

</event>
<event>

<string key="concept:name" value="reject request"/>
<string key="org:resource" value="Pete"/>
<date key="time:timestamp" value="2011-01-07T14:24:00.000+01:00"/>
<string key="Event_ID" value="35654427"/>
<string key="Costs" value="200"/>

</event>
</trace>
<trace>

<string key="concept:name" value="2"/>
<event>

<string key="concept:name" value="register request"/>
<string key="org:resource" value="Mike"/>
<date key="time:timestamp" value="2010-12-30T11:32:00.000+01:00"/>
<string key="Event_ID" value="35654483"/>
<string key="Costs" value="50"/>

</event>
...

</trace>
...

</log>

Figure 3.1: A fragment of an event log in XES format (according to [Aal11])

3.2.2 Anomaly Detection

In Process Mining the anomaly detection task is solved applying conformance checking
approaches [AM05]. In conformance checking the conformance of a given trace
(sequence) with respect to the model is checked. Therefore, the trace is replayed
on the model and it is checked whether rules are violated during this replay (also
called log replay). To the best of our knowledge conformance checking is only done

3http://www.xes-standard.org/
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on an event level without considering the time values. In Section 3.2.3.2 we present
algorithms that deal with conformance checking.

3.2.3 Models & Algorithms
Several models exist to represent a process and several mining algorithms can infer
the model from given data. In most cases, Petri nets are used for modeling processes
[Aal98; AS11]. The most commonly used algorithm for inferring a Petri net from
process logs is the α-algorithm [AWM04]. In this section, we review the α-algorithm
and the model extracted by it, and describe different approaches for conformance
checking.

3.2.3.1 α-Algorithm (Petri net inference)

In [AWM04] the α-algorithm for the process discovery step is explained. The α-
algorithm extracts a Structured Workflow net (SWF-net) (a special Petri net4) from
a given event log and can then be used for conformance checking of the found model
compared to new log data. Workflow nets (WF-nets) are used to describe the pattern
of a process with transitions modeling events and also so called “AND”-splits/joins.
Places contain marks (as usual) but also model “OR”-splits/joins. Figure 3.2 shows
a WF-net for the process steps A, B, C, D and E. It also contains an “OR”-split
after transition “A” and an “AND”-split that models parallelism.

Figure 3.2: A workflow net (WF net) for the process steps A, B, C, D and E
(cf. [AWM04]).

WF nets must satisfy the following three properties:

1. Object creation: The workflow net contains a starting place that has no ingoing
transitions.

2. Object completion: The workflow net contains a stopping place that has no
outgoing transitions.

3. Connectedness: The workflow net is connected if adding a transition which
connects the starting and stopping place yields strong connectivity.

Structured Workflow nets (SWF-nets) additionally require that choices (“OR”-splits)
should not be mixed with synchronizations (“AND”-joins) and that “OR”-joins

4For an introduction to Petri nets we refer to [Mur89].

47



Chapter 3 Related Work

should not precede “AND”-splits5. A workflow log of a WF net contains sequences
that are accepted by the WF net (e.g. AED or ABCD for the WF net in Fig. 3.2).
Furthermore, four relations (direct ordering (>), direct causality (→), parallelism (||),
no direct ordering (#)) on pairs of events in a workflow log are defined. Given these
definitions and making assumptions about the underlying model, the α-algorithm can
infer the underlying model: Given a sound Structured Workflow net (SWF-net) N (i.e.
N is safe, properly completes, can always complete, and contains no dead transitions)
with no short circuits (circuits of length one or two) and a complete workflow log of
this SWF-net N (the log contains all possible direct orderings > of transitions and
every transition occurs in the log) the α-algorithm provably reconstructs N from
the complete workflow log. For non-structured WF nets the α-algorithm does not
provably reconstruct the original workflow net.

The α-algorithm works as follows: All transitions are reconstructed from the direct
ordering >. The initial and stopping place can be inferred from the sequences, as
well. Then, the algorithm finds all causal links between all possible sets of transitions
and discards all but the largest sets. Doing so yields those transitions that can safely
be executed in parallel.

3.2.3.2 Conformance Checking

Given the α-algorithm for the process discovery step, conformance checking is applied
in several approaches. In this section we review different approaches of conformance
checking.
In [AM05] the authors apply the α-algorithm to analyze traces of user-system

interactions (audit trails) to detect security violations. It is assumed that the workflow
log only contains acceptable audit trails (only normal behavior). These audit trails
are regarded as complete workflow log and the underlying WF net is sound. Then
the so called “token game” can be played by moving tokens from one place to the
other in the WF net as long as firing a transition is possible. If firing a transition
is not possible and the stopping place has not been reached, an anomalous process
execution is found at the current place. Additionally, the authors provide a means
to check whether specific patterns are true for given log data. Therefore, a subnet is
built from the pattern and the conformance is checked for the subnet.
[Aal05] investigates how to compare defined processes and user behavior for

business processes. Delta analysis compares the predefined and the real processes and
conformance checking is applied to measure the fit between the event logs and the
predefined processes. For the delta analysis the authors apply the Greatest Common
Divisor (GCD) and Least Common Multiple (LCM) on processes as defined in [AB01].
Applying the GCD (LCM) on processes yields common superclasses (subclasses)
of the two process models. Hence, these metrics show similarities or differences
in the predefined process model and the one extracted from the process log. For
the conformance checking, a predefined model is directly compared with an event
log. The authors distinguish between two possibilities of conformance violations:
underfitting and overfitting. Underfitting (in terms of conformance violations) is
described as behavior that exists in the process log but is not possible according to

5For the formal definition we refer to [AWM04].

48



3.3 Grammatical Inference

the predefined model. Overfitting means that the log file is covered by the predefined
process model but parts of the predefined process model are not addressed by the
process log. According to the authors it is difficult to quantify overfitting, thus they
only present different metrics for underfitting. If a sequence of events is checked
for conformance, even after a failure (non-blocking semantics) it is possible to show
which transition in the process model usually differs with respect to the log.

In [ASS11] process models are enriched with timing information to predict the
completion time of running instances. Instead of using the α-algorithm to construct
a Petri net a state-transition system similar to an automaton is constructed. In the
first step an abstraction function is applied, e.g. to only take into account the set of
events of a sequence instead of regarding the sequence and the ordering of events.
As in the previous approach, the authors mention over- and underfitting, but do not
present approaches to reduce these problems. For the prediction of remaining time
until completion of a sequence, every sequence in the (training) log is replayed and
for every (abstract) state that is visited during the replay, the remaining execution
time is added to a bag of the (abstract) state. Then, general prediction functions
are introduced that predict the remaining time of a sequence given, which part of
the sequence has already been executed and how long this execution lasted. For
specific prediction functions, the authors propose the average, minimum, maximum
or standard deviation of the bag values of an abstract state.

Most of the models and mining algorithms are freely available in the process mining
workbench ProM [Don+05]. ProM offers to load data in various formats (XES, csv,
etc.), mine models from the data and store the mined models. Thus ProM fulfills
the same tasks in the field of process mining as Weka [Hal+09] for machine learning.
The International Business Process Intelligence Challenge (BPIC) is a challenge

that aims at comparing different approaches for solving process mining problems. It is
held in conjunction with the International Workshop on Business Process Intelligence
(BPI)6 for the fifth time. At the challenge, a data set consisting of different process
logs from a company or public authority is made available and questions related to
the data set should be answered.

3.3 Grammatical Inference
Grammatical Inference studies the field of inferring (or learning) a language L from
a set of words S where each word in S is contained in L. Usually, an inference (or
learning) algorithm constructs a model from S that reflects L as good as possible.
Depending on the complexity of L, different algorithms and models perform better
than others. Usually, the complexity of L is given in advance such that the best
learning algorithm and model can be chosen. Some Grammatical Inference algorithms
and their models are presented in Section 2.3 and Section 2.4.
In most cases, L is a regular language and a Deterministic or Non-Deterministic

Finite Automaton is used to construct (or sample) words from L. Given a set of
words S from this language L, the goal is to construct a model that accepts only
the words in L and rejects all other words. Sometimes, the set of words S is also
called input sample and the words are called strings. Every word (or string) consists

6http://www.win.tue.nl/bpi/
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of arbitrary many letters, symbols or characters. The word abcab is a sample word
from the alphabet Σ = {a, b, c}.
After presenting the data format of the grammatical inference research area, we

review different algorithms from this area and present results of a grammatical
inference challenge—the PAutomaC challenge.

3.3.1 Data Format

The data format of the grammatical inference community was mainly developed
during the PAutomaC challenge. This data format is defined in the following way:
The alphabet Σ may only contain consecutive integers, so no characters are allowed.
The first line of the input file must contain the number of words in the input sample
followed by the alphabet size. Every following line contains one word, starting with
the length of the word followed by its symbols (integers in this case). Figure 3.3
shows an input sample with five words and an alphabet size of eight (Σ = 8). The
first word contains twelve symbols, the second seven symbols etc.

5 8
12 5 4 1 1 5 3 4 7 4 7 5 0
7 4 4 7 4 4 4 7
12 2 4 4 5 5 4 2 2 7 1 0 3
2 1 3
9 5 4 3 2 3 3 2 4 2

Figure 3.3: A PAutomaC input sample containing five words with |Σ| = 8

Even though most algorithms focus on (untimed) words, Verwer, de Weerdt, and
Witteveen introduced the RTI+ algorithm for timed words that learns a (real-)time
automaton. A timed word (or timed string) does not only contain letters from an
alphabet Σ but also time values corresponding to every letter. Thus, a timed word is
a sequence of letter-time value tuples st = (a1, t1)(a2, t2) . . . (an, tn) with ai ∈ Σ and
ti ∈ N. Every time value ti represents the time delay between an event ai and its
successor ai+1.
For timed words Verwer introduced another input format which is related to the

one presented in PAutomaC—apart from letters the timed words also contain the
associated time values in form of tuples, separated by a double space. Figure 3.4
shows a timed input sample derived from Fig. 3.3 enriched with time values. The log
still contains five sequences and an alphabet of size eight (Σ = 8). The first sequence
contains twelve symbols. It starts with the symbol ’5’, then waits 20 time units,
followed by symbol ’4’ waiting nine time units etc.

5 8
12 5 20 4 9 1 0 1 200 5 17 3 19 4 23 7 29 4 31 7 37 5 41 0 42
7 4 1 4 2 7 3 4 4 4 5 4 6 7 7
12 2 1 4 9 4 5 5 7 5 9 4 3 6 12 2 11 7 14 1 6 0 0 3 2
2 1 5 3 7
9 5 1 4 2 3 3 2 4 3 5 3 6 2 7 4 8 2 9

Figure 3.4: An input sample in Verwer’s file format containing five timed words with
|Σ| = 8
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3.3.2 Anomaly Detection
Grammatical Inference deals with inferring language models from given data. There-
fore, the task is to infer exactly the same model from which the data was sampled
from. Most often, the difference between the sampling model and the inferred model
is computed, instead of measuring how many anomalies are detected. When applying
Grammatical Inference to detect anomalies, the problem reduces to the word accep-
tance problem. For a new word, it is checked whether the word is accepted by the
inferred model. If the word is not accepted, it is marked as anomaly.

3.3.3 Models & Algorithms
In this section, we mainly review PDFA-inference algorithms with different theoretical
bounds or in different scenarios. Then, we present the approaches and results of
the PAutomaC challenge for which different models are inferred to reconstruct an
unknown language. Last, we describe an approach that infers an automaton model
to classify truck driver behavior in a semi-supervised fashion.

3.3.3.1 PDFA Inference

In this section, we review PDFA-inference algorithms that probably converge in the
PAC framework or operate on data streams. Then, we review models and algorithms
that were applied in the PAutomaC challenge, and briefly summarize the result of
the challenge.

PAC-Learning PDFAs As described in Section 2.4.4, different algorithm analysis
frameworks exist. ALERGIA and MDI converge in the limit, but not in the PAC
framework, while the algorithms reviewed here do so. Before reviewing the algorithms
we review a common definition of automata, namely the µ-distinguishability: A
PDFA is µ-distinguishable if for any two states q1, q2 their suffix distribution (of
strings) differs at least by µ.

In [CT04] Clark and Thollard present an algorithm that polynomially PAC learns
a PDFA (cf. Section 2.4.4.2). The algorithm applies a state-merging technique and
uses the Kullback-Leibler Divergence (KLD; Section 2.4.2.2) as error measure. To
be able to compute a PDFA in the PAC framework, the algorithm requires data
polynomial in the following three parameters:

• The number of states of the target automaton n.

• The distinguishability of the automaton µ.

• The maximum expected length of strings generated from any state of the target
automaton.

For computing the target automaton the algorithm additionally requires the following
parameters7:

• The confidence parameter δ.
7We do not present the algorithm here but instead refer to [CT04].
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• The precision parameter ε.

• The alphabet Σ.

Hence, for PAC learning a PDFA the algorithm requires six parameters with some
of them possibly being hard to specify. Sometimes, this algorithm is also called the
C-T algorithm.
Castro and Gavaldà describe another algorithm that also PAC learns PDFAs in

[CG08]. It is closely related to the C-T algorithm but PAC learns in a stronger
sense. Additionally, the algorithm does not require the distinguishability parameter
µ as input and the runtime neither depends on the precision parameter ε nor on
the maximum expected length of strings. Opposed to the C-T algorithm their
approach tries to extract as much information as possible from a given sample instead
of demanding the calculated number of required samples. The authors perform
preliminary experiments and provide calculations that the polynomial of the runtime
of the C-T algorithm is in the order of 1024 for interesting parameters (δ, ε, µ, . . . )
whereas their algorithm’s runtime is much lower. Finally, they believe (but cannot
prove) that all but the confidence parameter δ can be removed while still satisfying
the PAC requirements.

PDFA-Inference on Data Streams [BCG12] presents an approach where PDFAs
are not learned in a batch manner but from a stream of sequences (or words).
Therefore, the algorithm always keeps a structure hypothesis (DFA). Every state
is marked as safe, candidate or insignificant, with safe states being fixed in the
hypothesis, candidate states being potential safe states and insignificant states being
statistical noise. As for batch PDFA learners, states can be merged, but in the
stream scenario only candidate and safe states can be merged, and the similarity of
two states is only tested after some time. Additionally, a parameter search algorithm
is presented that finds the right hyperparameters for the PDFA inference algorithm
because the hyperparameters are hard to estimate at the beginning of the stream.
Finally, the authors present a change detection test that computes whether the
current hypothesis (DFA) significantly differs from the recent content of the sequence
stream.

PAutomaC Challenge The PAutomaC challenge [VEH14] was held in 2012 as a
competition between various language learning algorithms. The organizers supplied
(untimed) data sets of languages that were sampled from randomly constructed
NFAs, PDFAs and Hidden Markow Models (HMMs; [Bau+70]). The aim of the
challenge was to test algorithms on different types of problem domains and to figure
out whether one algorithm is superior to others or whether the choice of the right
algorithm is problem-specific. The participants had to submit an algorithm that
learns a model on a training set Strain and computes a probability for every word
of a test set Stest. After every algorithm submission, the organizers evaluated every
algorithm on a test set of every language, that was known (sic!) to the participants,
but the participants did not know the generating model. For every string in the
test set, the probability computed by the respective algorithm was compared with
the real probability for that string computed by the generating model. Hence, the
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challenge was not limited to automaton models, but every algorithm that computes
a probability for an unknown word was allowed to participate. For the PAutomaC
challenge a simple version of ALERGIA was given as a baseline.

Five teams submitted algorithms that scored results by being among the top four
algorithms for at least one data set. In the following we will shortly present the
different approaches.

Team Shibata-Yoshinaka In [SY12] team Shibata-Yoshinaka describes their appro-
ach of Collapsed Gipps Sampling (CGS) [BJ06] applied to finite automata learning.
Therefore, they assume a Dirichlet distribution of the transition probabilities such
that the computation becomes easier. Using Gibbs Sampling for every state they
iteratively fix all but one state (and their transition probabilities) and update the
transition probabilities of that one state. Finally, they sample the states (and their
transition probabilities) multiple times and use their average as result. Even though
the PAutomaC challenge did not have any bounds on algorithm runtime, the orga-
nizers point out that CGS is computationally much more expensive than all other
algorithms submitted to the challenge.

Team Hulden In [Hul12] team Hulden presents their software package Treba
that contains algorithms that infer NFAs, PDFAs and HMMs. For the PAutomaC
challenge they started with an n-gram approach that counts the subwords of length
n and computes their probabilities. Later, they changed to an approach that starts
with a random non-deterministic finite automaton of fixed size and then applies the
Baum-Welch algorithm [Wel03] (an expectation maximization algorithm) to refine
the automaton.

Team Llorens Team Llorens submitted a modified version of ALERGIA that
does not directly perform a merge if two significantly similar states are found, but
also computes the similarity of all other states. Then it performs the merge that is
the most significant.

Team Bailly In [Bai11] team Bailly describes the quadratic weighted automaton
(QWA) as a probabilistic model for estimating string probabilities. For finding the
QWA they apply a spectral approach that uses a Hankel matrix that represents the
counts of every possible prefix-suffix pair. The Hankel matrix factorization directly
yields the parameters of the QWA.

Team Kepler In [KMB12] team Kepler presents their approach of n-grams of
variable length for learning probabilistic automata. As n-grams of variable length
result in a huge memory consumption, they are stored in a tree that is pruned using
a threshold to reduce the memory footprint. Surprisingly, this approach performed
worse than a 3-gram on almost all data sets.

PAutomaC Result Team Shibata-Yoshinaka clearly won the PAutomaC chal-
lenge, while team Hulden and team Llorens almost achieved the same result with
team Hulden closely leading. Team Bailly’s first submissions were among the best
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ones but they were ranked fourth at the end. Team Kepler achieved a low score,
resulting in the fifth place.

PDFA-Inference for Labeled Sequences Regular Positive and Negative Inference
(RPNI) [OG92] is the two-class variant of ALERGIA and learns a PDFA from labeled
untimed sequences. Hence, the event sequences either belong to the positive sequence
set S+

e or to the negative one S−e . RPNI ensures that the resulting automaton does
not accept negative sequences from the training data. It starts by building a prefix
tree. In contrast to ALERGIA, RPNI does not apply a statistical significance test to
check whether two states are similar. Instead, RPNI performs a merge operation and
checks afterwards whether the resulting automaton accepts negative sequences. If
so, the merge is rejected, and accepted otherwise. Furthermore, Oncina and García
prove that RPNI converges to the true model in the limit and its runtime is cubic in
the input data.
Real-Time Identification (RTI) [VWW11] is the two-class variant of RTI+ (cf.

Section 2.4.3.2), and also applies the Evidence-Driven State Merging approach
(EDSM). As RTI+, it learns a PDRTA from given data. The sequences in the
training data have to be labeled, thus the training data contains positive and negative
sequences S+/−

t , and not only positive sequences S+
t . If the data originates from a

real-world system, the data is distinguished into correct sequences and sequences
that are either faulty or do not originate from the system. The resulting PDRTA
accepts all positive sequences from the training data and rejects all negative ones.
RTI operates similarly to RTI+. It also builds a prefix tree with the positive

sequences and additionally holds a set of rejecting states that represents the negative
sequences. As RTI+, RTI computes the evidence value for every possible split and
merge for every pair of red and blue states (red-blue framework). Additionally, RTI
checks for every split or merge whether this operation caused an inconsistency. An
inconsistency is present if red states are rejecting states or if a transition from a red
state is taken via a positive and negative sequence. Then RTI performs the action
with the highest evidence score. Verwer, Weerdt, and Witteveen prove that RTI
runs in polynomial time, is correct, complete and converges efficiently to the correct
PDRTA (in the limit) [VWW11].

3.3.3.2 Classification of Truck Driver Behavior

In [VDW11] Verwer, De Weerdt, and Witteveen describe a semi-supervised approach
of applying RTI+ to classify the driving behavior of truck drivers. Therefore, they
first generate discrete events from continuous signals which are recorded while the
truck is driving. Additionally, the time intervals between two succeeding events are
stored. Using the extracted timed sequences, RTI+ is applied to infer a PDRTA that
describes the possible driving behavior of a truck driver. To be able to distinguish
between two classes of driving behavior (e.g. accelerating too quick or normally), a
few labeled sequences are generated in a supervised fashion. With the help of these
labeled sequences the learned PDRTA is augmented with accepting and rejecting
states that represent the two classes. Using the augmented PDRTA, it is possible to
correctly classify 79% of the test sequences.
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3.4 Sequence-based Anomaly Detection

Sequence-based Anomaly Detection deals with the automatic model generation and
anomaly detection in discrete event systems. While Process Mining and Grammatical
Inference mostly deal with automatic model generation, Sequence-based Anomaly
Detection also focuses on the anomaly detection. The model reflects the normal
behavior of some system and the anomaly detection is used to detect anomalies while
the system is running. These two parts can be considered separately, but both parts
play an equally important role.
As Sequence-based Anomaly Detection deals with sequences, the input for the

model generation is called set of sequences. This set consists of (timed) sequences
with every sequence consisting of event-time value tuples.

The set of sequences can be acquired from most technical system. A (technical)
system often writes events to a log file. This log file contains at least events and a
timestamp for each event and may contain even more information, e.g. a payload. As
this log file contains the essential items of timed sequences (events and time values)
it can be interpreted as a set of timed sequences.

3.4.1 Data Format

We decided to introduce a third file format for timed sequences. On the one hand,
the XML format for process logs is very verbose, needs a lot of storage space and
contains more information than usually needed for sequence based model generation.
On the other hand, the file format introduced by Verwer (cf. Fig. 3.4) is hard to read
as it uses integers for both the events and the time values. Furthermore it uses spaces
between events and the corresponding time value and double spaces as separator
between event-time value tuples. Often, the difference between a single and a double
space is not visible and thus, events and time values are mixed up when reading such
a log. Nevertheless, it only contains information about the timed sequences.

Thus, our proposed file format combines the advantages of both previously presen-
ted file formats. It is closely related to the Verwer file format, omits some information,
and also enhances readability. The new file format only contains the needed informa-
tion for timed sequences, allows event qualifiers to be arbitrary strings, and encloses
event-time value tuples with brackets. The entries on the size of the file, the size of
the alphabet and the length of a sequence are omitted. Figure 3.5 shows the same
data as in Fig. 3.4 but with a different alphabet. Every integer from the alphabet
was replaced by a character (a to g) except the integer 7 that was replaced by the
event qualifier “some_event”. The brackets show the event-time value tuples such
that a confusion between an event qualifier and a time value will be less likely.

(f,20) (e,9) (b,0) (b,200) (f,17) (d,19) (e,23) (some_event,29) (e,31) (some_event,37) (f,41) (a,42)
(e,1) (e,2) (some_event,3) (e,4) (e,5) (e,6) (some_event,7)
(c,1) (e,9) (e,5) (f,7) (f,9) (e,3) (g,12) (c,11) (some_event,14) (b,6) (a,0) (d,2)
(b,5) (d,7)
(f,1) (e,2) (d,3) (c,4) (d,5) (d,6) (c,7) (e,8) (c,9)

Figure 3.5: An input sample in the new file format containing five timed sequences,
with the alphabet Σ = {a, b, c, d, e, f, g, some_event} and |Σ| = 8
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3.4.2 Anomaly Detection

Sequence-based Anomaly Detection deals with detecting anomalies in data consisting
of sequences of different length. The task is to label unknown sequences as abnormal
or normal with the help of a model that has been learned before. As presented in
Section 2.5.2.1 ANODA is the only algorithm that solves the anomaly detection for
timed sequences given a timed automaton model (PDTA).

In the following section, we present approaches from the research area of sequence-
based anomaly detection that operate on slightly different data, e.g. on untimed
sequences or hybrid data (processing also continuous signals).

3.4.3 Models & Algorithms

Sequence-based anomaly detection has been applied using different approaches and
in several different scenarios. In the following, we present a selection of approaches
to give an overview of possible approaches and applications.

3.4.3.1 Untimed Sequence Data

Apart from PDFA-learning algorithms like ALERGIA, other approaches have been
used to detect anomalies in untimed sequences. We review t-stide and a k-NN
approach as representatives for frequency- and distance-based approaches.

t-stide (frequency-based) A well-known sequence-based anomaly detection met-
hod is the threshold-based sequence time delay embedding (t-stide) proposed by
Warrender, Forrest, and Pearlmutter [WFP99]. For every (untimed) test sequence
se, t-stide computes an anomaly score that is defined as the relative frequency of
se in the training set. The idea is that rare sequences are likely to be anomalies.
A test sequence is determined as anomaly if its anomaly score is smaller than a
predefined threshold t. The t-stide method has been successfully applied to various
application, e.g. in operating system intrusion detection based on sequences of system
calls [WFP99; CLM01].

k-NN (distance-based) Chandola, Mithal, and Kumar [CMK08] propose a k-
nearest neighbor (k-NN) approach for sequence-based anomaly detection. The
anomaly score for a test sequence se is equal to the inverse distance of se to its kth
nearest neighbor in the training set. If its anomaly score is lower than a predefined
threshold t, the test sequence is considered as anomaly. In spite of its simplicity, this
approach has been shown to be quite effective, and it is even able to outperform a
complex clustering-based technique [CMK08]. However, the runtime of the approach
increases with the size of the training set because the distance between the test
sequence se and every training sequence must be computed. Additionally, the
performance quality of the approach depends on the chosen distance metric. The
normalized length of the longest common subsequence has been shown promising for
anomaly detection in sequence data [Bud+06]. Another possible distance metric for
sequences is the Dynamic Time Warping (DTW) algorithm [SC78].
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3.4.3.2 The Hybrid Bottom-Up Timed Learning Algorithm (HyBUTLA)

The Hybrid Bottom-Up Timed Learning Algorithm (HyBUTLA) [Nig+12] is an
extension of BUTLA that infers a PDTA and additionally learns continuous signals
for every state. The resulting model is called hybrid automaton which is a PDTA
enriched with functions Θ that describe the continuous signals in every state with
θq ∈ Θ. This hybrid automaton can model hybrid systems (Section 2.2) which are a
mixture of discrete and continuous systems.
HyBUTLA requires a different input than BUTLA consisting of signal measure-

ments at a fixed frequency. The signals have to be distinguished into discrete signals,
continuous input and output signals, and the time itself. A change in a discrete
signal is transformed into an event (or symbol). This event generation can also be
done for BUTLA.

After the PTA generation (based on the events) continuous signals can be mapped
to states because the signals between two events can be tracked. Then, all continuous
signals in a state q are gathered and a function θq is learned e.g. with simple linear
regression or more complex regressors. The time can also be incorporated into θq.

In the merge step, states are checked for compatibility as in BUTLA. Additionally,
the similarity of the continuous signal functions has to be examined. For every
regressor the similarity check is different and may introduce additional complexity
[Vod13]. For linear regression, at least 50% of the coefficients had to be similar
according to some predefined threshold to merge a state.
HyBUTLA can also be used for detecting anomalies in hybrid systems. Then, it

does not only track event and time values (as ANODA does for BUTLA) but also
keeps track of the continuous signals. An alarm is raised if in a state q the predicted
continuous signals θq differ too much from the measured signals.

3.5 Other Anomaly Detection Approaches

In this section, we review approaches that tackle the anomaly detection problem on
vectors of fixed length (Section 3.5.1), on data streams (Section 3.5.2) or that try to
prevent fraud on ATMs (Section 3.5.3).

3.5.1 Vector-based Anomaly Detection

Vector-based anomaly detection deals with detecting anomalies in a data set that
consists of vectors of fixed length. Various vector-based approaches are evaluated on
a data set published by the DARPA in 1999.

DARPA Challenge

In 2000 the Defense Advanced Research Projects Agency (DARPA) organized the
second offline intrusion detection challenge in which participants try to detect attacks
in a data set containing network traffic. In [Lip+00] the results of the second
DARPA challenge are presented. The organizers generate network data similar to a
government site with hundreds of users and thousands of hosts. The data is split
into three weeks of training and two weeks of test data. In this period 200 attacks
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were launched consisting of 58 different types of attacks. The participants apply
host- and network-based intrusion detection systems as well as forensic analysis on
file system data. The best participant was not able to detect ten (out of 58) types of
attacks, hence the detection rate for some attacks was very poor. After the DARPA
challenge was organized, newly developed approaches were tested on the DARPA
data set because the data set was considered as being “hard to solve”.
PAYL [WS04] is a payload-based anomaly detector that computes a profile byte

frequency distribution in the training phase and compares test data against the built
profile. Due to the fact that different ports behave differently, for every port and
length of the network packet a new byte frequency distribution of the packet payload
is created during the training phase. A new byte distribution of the respective
payload is computed for an arriving packet and compared against the distribution
for the according port and packet length. For comparing the two distributions the
authors apply Mahalanobis distance and use a threshold to detect outliers. On the
overall DARPA data PAYL achieves 60% detection rate at a false positive rate of
1%. For port 80 PAYL achieves 100% detection rate with 0.1% false positive rate.

[HLV03] applies Robust SVMs (RSVMs; [SHX02]) on the data set of the DARPA
challenge. The standard SVM is very sensitive to noise in the training data. Robust
SVMs are less sensitive to noise because they are not penalized for misclassification in
the training set. Instead, the aim is to obtain a smooth decision boundary with fewer
support vectors. The authors compare RSVMs with standard SVMs and a k-nearest
neighbor (kNN) approach. To show the superiority of RSVMs over SVMs a part of
the DARPA data set is mixed with noise. Surprisingly, the RSVM outperformed the
kNN approach and the SVM not only on the noisy data set, but also on the clean
data set, achieving 80% detection rate at a false positive rate of 1%. Additionally,
RSVMs require less support vectors to represent the training data. The authors
conclude that RSVMs generalize better because of less support vectors and—as a
consequence—a smoother decision boundary.
In [CMA03] two approaches are presented—namely Learning Rules for Anomaly

Detection (LERAD) and Clustering for Anomaly Detection (CLAD). Usually, rule
learners compute rules in the form (A = x)→ (B = y) with A,B attributes of the
vector and x, y arbitrary values. These rules demand that if attribute A has value x
then attribute B has to have value y. For anomaly detection LERAD computes rules
(A = x)→ (¬B = y) that demand that if attribute A has value x then attribute B
must not have value y. If B has value y the given vector is a possible anomaly. For
every rule a likelihood is computed and all violated rules define the anomaly score of
a given vector x.

CLAD assigns every vector x to one or more clusters. First, it computes a maximal
cluster widthW by sampling pair-wise point distances and using the average distance
of the closest neighbors as W . CLAD checks for every vector x whether it is at
most distance W away from a cluster centroid. If so, x is assigned to this cluster
and else, x becomes a new cluster centroid itself. In a second phase, every vector
x is also assigned to clusters that are within distance W of x. After the clustering,
every cluster that is sparse and distant from the other clusters is considered as
anomalous. For the definition of sparsity and distance in the context of CLAD we
refer to [CMA03].
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LERAD and CLAD are evaluated in the DARPA 99 dataset [Lip+00]. The best
original DARPA participant detected 85 anomalies out of 201 with a hand-built
signature detector. LERAD is able to detect 117 anomalies, but CLAD only 76.
However, LERAD assumes an anomaly-free training set while CLAD does not.

3.5.2 Anomaly Detection on Data Streams

Up to now we reviewed approaches that deal with the anomaly detection problem in
a batch manner. In a batch manner the whole (training) data is available and can be
used more than once. In the data stream domain new data is continually arriving and
has to be processed without being able to store all arriving data points. Furthermore,
for every data point some property (e.g. a class label) has to be computed before the
next data point arrives. Thus, every data point can be processed only once and the
property computation must be done fast and efficiently. Sometimes, data streams
pose additional challenges when the nature of the data slowly changes (concept drift),
abruptly changes (concept change), new classes arise (concept evolution) or new
features occur (feature evolution).

As WEKA [Hal+09] exists for classical machine learning, Massive On-line Analysis
(MOA) [Bif+10] is built for data stream mining. MOA contains a collection of stream
mining algorithms in the fields of stream classification, regression, clustering, outlier
detection and online recommender systems. In this section we present approaches
that are not available in MOA, but cover an important aspect of data stream mining.

[Zho+03] presents an approach for KDEs on data streams. Even though KDEs are
not directly related to anomaly detection, they play an important role in this thesis
and hence, we also describe the streaming application. The idea of the approach is
to merge kernels with the same value to have a single (M-)kernel for those values.
In the offline scenario an M-kernel has three parameters: a weight, a mean and a
bandwidth. For a possibly infinite stream only storing one M-kernel per distinct
value would still result in an infinite amount of required memory. Hence, the authors
introduce the approximate kernel merging that merges not only kernels with the
same value but also similar ones according to a presented similarity measure. Thus,
the number of kernels is fixed such that the KDE always uses the same amount of
memory. In the experiments the authors show that their streaming approach and
the standard KDE almost yield the same result.

In [Mas+13] a stream classification approach is presented that deals with concept-
drift, concept evolution and feature evolution at once. The authors state that most
approaches only cover the possibly infinite length of a stream and a concept drift.
They propose an ensemble classification framework with majority voting that covers
all data stream challenges. It processes the stream in chunks of fixed size and learns
a classifier on one chunk after it has been labeled (by a human expert). Concept
drift is covered by always learning new classifiers from the most recent stream
data and removing the worst classifiers from the ensemble. Each classifier in the
ensemble is equipped with a novel class detector that stores the recent outliers and if
enough outliers were found, the detector checks whether a new class exists in those
outliers. For handling feature evolution the authors propose a lossless feature set
homogenization technique (cf. [Mas+10]). In the experiments the approach is found
to be superior to existing data stream classification approaches.
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3.5.3 ATM Fraud Detection
In the experiments of this thesis (cf. Section 6.5) we apply our approach on real-world
ATM data to detect manipulations of ATMs. Therefore, we review related techniques
that try to prevent ATM fraud, too.

In [DS06] an image-based fraud detection system for ATMs is proposed that tries
to detect whether money is withdrawn by the owner of a credit card or by a criminal
who stole the card. Most ATMs contain cameras that capture the face of the person
withdrawing money. The authors assume that criminals would mask their face while
withdrawing money with a stolen card. Hence, they propose a pipeline that takes the
camera input and detects moving objects with a mixture of Gaussians, then detects
the face region and finally extracts facial features, e.g. hiding the eyes with a cap
or sunglasses, covering everything but the eyes with a mask, etc. Based on these
features and manually defined thresholds a video sequence is classified as normal or
fraud. The approach is only tested on few sample videos but no real-world evaluation
is performed.

[RNM12] deals with the problem of detecting counterfeit cards usage by visualizing
ATM usage patterns. The visualization is presented to a human to detect the fraud.
Criminals usually follow patterns when committing credit card fraud. First, they
steal or copy credit cards and capture the PIN (called counterfeiting phase). In the
distribution phase cards are distributed among different persons as they are sold or
bought on the black market. Finally, the criminals check whether a card is valid
and how much cash is available on the card (called reconnaissance phase). Only
then, money is withdrawn from the card (cashing out phase). For the reconnaissance
and cashing out phase criminals use less frequented ATMs during the night that do
not have camera surveillance. There, they first check the validity and balance of
cards in a batch manner without withdrawing money, but only sorting out invalid
cards. Second, they empty accounts or withdraw the maximum daily amount, again
for a batch of cards. These patterns can be visualized and are easily detectable for
humans. For future work the authors propose to automate the process of detecting
suspicious behavior.
In [DE15] Demiriz and Ekizoglu proposes a rule-based approach based on spatio-

temporal relations to prevent banking fraud. The authors gathered data from different
ATMs in Turkey and found usage patterns that could separate customers based on
their behavior. If a customer behaves differently from his or her normal behavior an
alarm could be raised. The paper visually shows a lot of usage patterns and gives
hints on what could be implemented, but it neither implements a rule-based system
nor presents results on the efficiency of the approach.
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Summary
In this chapter, we reviewed related work and related different research areas—namely
Process Mining, Grammatical Inference and Sequence-based Anomaly Detection. For
every research area, we described the data format, which models and algorithms are
applied and to what extent anomaly detection is performed. In the field of process
mining, most often Petri nets are mined from data using the α-algorithm. With
the help of these Petri nets, conformance checking analyzes whether the current
process deviates, e.g. because of an anomaly. The grammatical inference research
area mainly deals with learning automaton models (and grammars) from predefined
languages, that are hidden from the learner. Some of the researchers deal with timed
languages and timed automata. These models can then be used to check whether a
given word is accepted by a previously learned automaton. Sequence-based anomaly
detection utilizes various different models and algorithms ranging from k nearest
neighbor methods to hybrid automata learning algorithms. All approaches have in
common that the learning of a model enables detecting anomalies in unknown data
afterwards.
Table 3.2 summarizes the content of this chapter with the rows containing the

notations of the respective research area for the terms event, sequence and set of
sequences. For some entries more than one term exists, thus the table cell contains
two (or three) terms. Even though the different research areas do not cooperate
much, they partially solve a similar or even the same task.
Furthermore, we presented other anomaly detection approaches that do not ori-

ginate from the reviewed research areas. These approaches tackle the anomaly
detection problem on vectors of fixed length, on data streams and for detecting ATM
fraud.

In the following chapter, we present a new automaton model for representing timed
sequences (PDTTA), a learning algorithm for this model (Probabilistic Deterministic
Timed Transition Automaton Learning (ProDTTAL)) and an anomaly detection
algorithm for timed automaton models (AmAnDA).

Table 3.2: Overview of different notations for events, sequences and sets of sequences.

research area notationfor
event

notation for
sequence

notation for
set of
sequences

Process Mining event trace / case (process) log
Grammatical
Inference

symbol / letter /
character

word / string input sample

Sequence-based Ano-
maly Detection

event (timed)
sequence

set of (timed)
sequences
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In this chapter, we present three contributions of this thesis. First, we present a
new automaton type called Probabilistic Deterministic Timed Transition Automaton
(PDTTA) (cf. Section 4.2) that models time more accurately than existing automa-
ton models. Second, we develop the Probabilistic Deterministic Timed Transition
Automaton Learning (ProDTTAL) that learns PDTTAs from given positive timed
sequence data, and analyze its runtime and convergence (cf. Section 4.3). Third, we
present the Automata-based Anomaly Detection Algorithm (AmAnDA) that can
detect sequence-based anomalies given a PDTTA or a similar automaton model that
meets certain requirements (cf. Section 4.4), and analyze the runtime of AmAnDA.
Finally, we describe how these algorithms could be applied in a two-/multi-class
setting and which difficulties would emerge (cf. Section 4.5).
The PDTTA, a preliminary version of AmAnDA and a naive anomaly detection

algorithm have already been published in [KAK14; Kle+14]. Apart from that the
content of this chapter is developed in this thesis only and was never published
before.

4.1 Motivation

Automata of various types are adequate models for detecting anomalies in many
technical systems. The automata should be learned from data because defining an
automaton model for a complex system is very time-consuming or impossible—even
for a domain expert. Additionally, the automaton should be capable of detecting
anomalies for a new event sequence. Regarding timed sequences in technical systems
the state-of-the-art algorithms Real-Time Identification from Positive Data (RTI+)
and Bottom-Up Timed Learning Algorithm (BUTLA) still face challenges.

As already presented in Section 2.4.3.2 the RTI+ algorithm has several drawbacks,
e.g. the necessity to globally define histogram intervals for the time values and the poor
execution time of the algorithm. On the other hand RTI+ learns a real Probabilistic
Deterministic Real-Time Automaton (PDRTA) and takes time information into
account when merging or splitting states.
BUTLA tries to circumvent some drawbacks with an event split based on the

global time values for every event in a preprocessing step. After the event split a
Probabilistic Deterministic Finite Automaton (PDFA) is learned via state merging
and the time guards are added afterwards based on the global timing information
of each event. A split of automaton states is not executed at all. The event split
based on global timing information can lead to undesired behavior because huge
deviations in a local state may not even be reflected in the globally executed event
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split. Nevertheless, the execution time of BUTLA is lower compared to RTI+.
We introduce a new type of automaton called PDTTA that considers the timing for

every transition in the automaton locally and is easy to learn in terms of computational
complexity and evaluated runtime. After introducing the PDTTA (Section 4.2) we
present the learning algorithm (called ProDTTAL) that learns a PDTTA given a
positive set of timed sequences S+

t (Section 4.3). Then we show how we can decide
for a test timed sequence st whether it is an anomaly given a PDTTA (Section 4.4).

4.2 Probabilistic Deterministic Timed Transition Automaton
(PDTTA)

In this section we present the Probabilistic Deterministic Timed Transition Auto-
maton (PDTTA) with which we model discrete event systems. We first described
PDTTA in [KAK14] and refined it in [Kle+14]. The PDTTA is an extension of a
Probabilistic Deterministic Finite Automaton (PDFA) (cf. Section 2.3.2.2) with an
additional function τ that assigns a plausibility function to every transition. Every
plausibility function models the plausibility of a time value when the corresponding
transition is taken. The definition of a PDTTA (with the elements of a PDFA) is as
follows:

Definition 12 (PDTTA). A Probabilistic Deterministic Timed Transition Automa-
ton is a six-tuple (Σ, Q, q0, δ, π, τ) with

• Σ is a finite alphabet comprising all relevant symbols.

• Q is a finite set of states.

• q0 ∈ Q is the start state.

• δ : Q× Σ→ Q: The state-transition function assigning a state and symbol the
successor state (for some state-symbol combinations it may be undefined).

• π twofold:
– π1 : δ → [0, 1]: The transition probability function assigning a probability
to every transition .

– π2 : Q→ [0, 1]: The final state probability function assigning a probability
to every state .

• τ : δ → Θ is a transition time plausibility function, which assigns a plausibility
distribution θ ∈ Θ to each transition, with Θ being the set of all possible
plausibility distributions. Every θ ∈ Θ has the signature θ : N0 → [0, 1], with
N0 representing all possible time values.

As for the PDFA we also write π instead of π1 or π2 if it is clear from the context.
Figure 4.1 shows a PDTTA with the underlying PDFA from Fig. 2.6 in Section 2.3.2.2.
In addition to the states, symbols and event probabilities, the function τ is added to
represent the time value plausibility functions. Every plausibility function expresses
how plausible a time value is with 1 being the most plausible outcome and 0 being
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not plausible. In contrast to probability functions, the sum of all plausibility values
may be greater than one. As we utilize the PDTTA for anomaly detection, modeling
time values using plausibility functions is a reasonable choice because different time
values may be equally plausible (with their plausibility value being one) which would
not be possible with probability functions.
The time plausibility function for the transition (q0, e1, q1) contains two modes

with high plausibility for the time values around these two modes and zero plausibility
for the rest of the time values. The other time plausibility functions only contain
one mode with the function of transition (q1, e2, q0) being less spiky than the one for
transition (q1, e3, q2).

time
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Figure 4.1: PDTTA with three states (q0, q1, q2), three symbols (e1, e2, e3), event
probabilities and time plausibilitiy functions.

The idea of adding τ to a PDFA is to model the waiting time for every transition.
Opposed to Probabilistic Deterministic Real-Time Automata (PDRTAs) we do not
model the time as a strict decision criterion that may be true or false. In a PDRTA,
the time value 4.0 with event e1 may be a valid input in some state q, but the time
value 4.000001 with the same event e1 in the same state q may be invalid1 In the
PDTTA, we model the time values more smoothly and assign a plausibility to every
time value. Note, that we limit the model not being able to have more than one
successor node for a state-event pair, or in other words, the transition to take depends
on the current state and the symbol, but not on the time value. This limitation
is still consistent with the definition of discrete event systems as state changes are
caused by events.

4.3 Learning PDTTAs
In this section we present how to learn a PDTTA from a positive set of timed
sequences S+

t . The learning of a PDTTA was first described in [KAK14] and refined
in [Kle+14]. In this thesis we analyze its runtime and show how Monte Carlo sampling
is applied for approximating plausibility values of new sequences.

1In a Probabilistic Deterministic Real-Time Automaton (PDRTA) the time value is strictly in the
interval bounds or outside, but nothing in between.
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4.3.1 PDTTA Learning Algorithm ProDTTAL

In this section we present an algorithm for learning PDTTAs called Probabilistic
Deterministic Timed Transition Automaton Learning (ProDTTAL). For obtaining
a PDTTA from a positive set of timed sequences S+

t ProDTTAL performs two
steps. In the first step, a PDFA A′ is learned with a state-of-the-art inference
algorithm by leaving out the time information in S+

t . Thus, we transform the
set of timed sequences S+

t into a set of untimed sequences S+
e by transforming

every timed sequence st = (e1, v1), (e2, v2), . . . , (en, vn) into an untimed sequence
se = e1, e2, . . . , en. Every algorithm that infers a PDFA from S+

e can be used in this
step. We will focus on Minimal Divergence Inference (MDI) and ALERGIA because
they are well known, simple and thus easy to understand.

In the second step, we enrich the PDFA A′ from the first step with time information,
thus adding the transition time plausibility function τ (cf. Definition 12) to A′ and
obtaining a PDTTA. We call this second step time learning. In the following we will
use the expression to traverse a PDFA with a timed sequence, i.e. we traverse the
PDFA with the untimed part of the given sequence. In general a PDFA can only
process untimed sequences.

To obtain a PDTTA from a PDFA A′, we adapt a technique from process mining
called event log replay. For every timed sequence st = (e1, v1), (e2, v2), . . . , (en, vn) ∈
St, we traverse A′ with st and for every transition that is taken because of an event
ei, we store its time value vi in a bucket that belongs to this transition. After all
sequences are replayed, we fit a probability density function (PDF) for every bucket
using a Kernel Density Estimation (KDE). Then, we apply a probability-possibility
transformation to compute the plausibility function from the PDF. More formally,
the second step proceeds as follows (cf. Algorithm 5: ProDTTAL-time-learning):

Given the PDFA A′ from step one, for every transition (qi, ei, qj) ∈ δ for a state qi,
a symbol ei and the successor state qj we initially create a bucket B(qi,ei,qj) (line 2).
As the transition is already uniquely defined by the state and a symbol, we use a short
notation Bqi,ei instead of B(qi,ei,qj). For every timed sequence st ∈ St we traverse A′
starting with the current state being the initial state q0 (line 4). Then we process st
and for every symbol ei in st and the current state q we store the associated time
value vi in the bucket Bq,ei (line 6), traverse the transition (q, ei, qj) ∈ δ (line 7) and
set the current state to qj (line 8). Finally, we compute τ by approximating a time
plausibility function θq,e for every transition (qi, ei, qj) ∈ δ (line 10). The details of
this approximation are explained in the following section.

4.3.1.1 Time Plausibility Approximation

In this section, we describe how we approximate the time plausibility functions.
Even though we compute the plausibility values for the anomaly detection step, the
approximation influences the runtime of the model learning algorithm ProDTTAL
because we apply a preprocessing step.
For the approximation of the time plausibility functions we first fit probability

density functions for the gathered time values at every transition. Then, we apply a
probability-possibility transformation [Dub+04] to obtain plausibility functions.

We use a KDE to approximate the density functions of the time values because KDE
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ALGORITHM 5: ProDTTAL-time-learning
Data: Positive set of timed event sequences S+

t , PDFA A′ = (Σ, Q, q0, δ, π)
Result: transition time plausibility function τ

1 foreach transition (qi, e, qj) ∈ δ do
2 initialize(Bqi,e);
3 foreach sequence st ∈ S+

t do
4 q ←− q0;
5 foreach tuple (ei, vi) ∈ st do
6 Bq,ei .add(vi);
7 t←− getTransition(q, ei);
8 q ←−getTargetState(t);

9 foreach transition (qi, e, qj) ∈ δ do
10 τ(qi, e, qj)←−approximateTheta(Bqi,e);
11 return τ

is a non-parametric estimator that does not assume anything about the underlying
distribution but use the data to model approximate the density. In the case of
ProDTTAL we do not know anything about the underlying distribution, either2.

Given a density function f̂q,e for a bucket Bq,e which is associated with the transition
from state q and event e, we can compute the plausibility θq,e(v) when observing
the time value v. Therefore, we compute the area under the density function where
the density value f̂q,e(x) is lesser or equal than the density at point v. Hence, the
plausibilty function θq,e for every bucket with [[·]] the indicator function is computed
as follows:

θq,e(v) =
∫

[[f̂q,e(x) ≤ f̂q,e(v)]]f̂q,e(x)dx (4.1)

Computing or approximating the integral may become a hard task. We will first
present the density estimation in detail and then explain how we compute the integral.
The fitting of a probability density function (PDF) depends on the algorithm

used to fit the PDF. We found that KDE perform well in most applications3. It is
possible to set the kernel and bandwidth the same for every transition or apply some
heuristic to obtain a good kernel and a good bandwidth. As the values obtained for
the different transitions may vary in magnitude, it may be poor to choose the same
bandwidth for all KDEs. Hand-tuning the bandwidth for every transition is a hard
task as well and requires a lot of expert knowledge. Hence, we use the rule of thumb
from [Sil86] as an approximation for the bandwidth h of every transition with σ̂ the
standard deviation of the sample and n the number of samples4:

h = 1.06σ̂n−
1
5 (4.2)

2The described probability-possibility transformation is also applicable to parametric distributions.
3We are aware that kernel density estimators and PDFs generally deal with continuous data. We
use them to approximate integer data that stems from an underlying continuous process with a
fixed (integer) resolution.

4The whole formula (including the constant 1.06) is deduced in [Sil86].
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We will now explain how we approximate the time plausibility functions Θ when
given density estimators f̂q,e for any state q and event e. Instead of trying to compute
the exact integral for the already approximated density function f̂q,e, we approximate
this function with Monte Carlo integration applying uniform sampling [Pre+96].
In case of bad approximations this may lead to poor results but it is a reasonable
tradeoff between accuracy and computation time. Recall, that we want to find the
area under f̂q,e where the density value f̂q,e(x) is lesser or equal than the density at
point v. For simplicity we will assume that f̂q,e is a one-dimensional function5.

Figure 4.2 shows the steps of the Monte Carlo sampling: We approximate the area
under f̂q,e by uniformly sampling a fixed number m of two-dimensional points (x, y)
and choosing only those (blue) points with y ≤ f̂q,e(x). Let Mq,e be this sample with
|Mq,e| ≤ m. If we know the minimum and maximum of f̂q,e and the minimum and
maximum x-values it is feasible to sample only in this range. Hence, |Mq,e| and m
differ by a constant factor, only, so m = O(|Mq,e|).

Figure 4.2: Monte Carlo sampling for given KDE.

If we want to compute the plausibility θq,e(v) of a point v, we do the following
(cf. Fig. 4.3 for the illustration): First, we compute the density value f̂q,e(v) at point
v (Fig. 4.3a) and second, we select all points (x, y) ∈Mq,e where the density value of
x is lesser or equal than the density of v (Fig. 4.3b). Formally, let Kq,e(v) be this
set with Kq,e(v) = {(x, y)|(x, y) ∈ Mq,e ∧ f̂q,e(x) ≤ f̂q,e(v)} (Fig. 4.3c). Third, we
compare the number of points in Kq,e(v) and to the number of points in Mq,e. The
fraction of the cardinality of the two sets is the approximated plausibility of the time
value v, hence θq,e(v) ≈ |Kq,e(v)|

|Mq,e| .
To compute Kq,e(v) quickly, we sort the points in Mq,e ascending according to

their density value of the x-coordinate (f̂q,e(x)). If two points have the same density
value we use the y-coordinate as a tiebreaker.

Algorithm 6 shows the Probabilistic Deterministic Timed Transition Automaton
Learning (ProDTTAL) algorithm in pseudo code. Given a positive set of timed event

5Nevertheless, Monte Carlo integration can be computed for arbitrary functions.
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(a) Density for time value v
and intersection.

(b) Intervals with lower and
higher density.

(c) Comparison of density
areas.

Figure 4.3: Plausibility approximation of a time value t.

sequences S+
t and a PDFA learner L, ProDTTAL first infers the PDFA A′ using L

and then computes the time plausibility functions using ProDTTAL-time-learning
(Algorithm 5).

ALGORITHM 6: Probabilistic Deterministic Timed Transition Automaton
Learning (ProDTTAL)
Data: Positive set of timed event sequences S+

t , PDFA learner L
Result: PDTTA A

1 A′ ←− L.learnPDFA (S+
t );

2 τ ←−ProDTTAL-time-learning(S+
t , A

′);
3 A←−PDTTA(A′, τ);
4 return A

Figure 4.4 shows the (simplified) behavior of the two steps for a small sample
consisting of the following sequences:

• st1 = (e1, 2s), (e3, 4s)

• st2 = (e1, 8s), (e2, 3s), (e1, 8s), (e3, 7s)

• st3 = (e1, 2s), (e3, 6s)

In the first step a Prefix Tree Acceptor (PTA) is created from the input sample S+
t .

This PTA is merged with a PDFA learning algorithm (e.g. ALERGIA) to obtain a
PDFA.

In the second step (time learning) the sequences are replayed and the time values
are stored for every transition. After all sequences have been processed, a probability
density function is approximated from the values in the respective bucket for every
transition using kernel density estimators. Then, we sample points for every density
function and store them. These points are needed later to compute the plausibility
of an unknown time value.
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(a) Build the PTA. (b) Learn a PDFA.

4s
7s
6s

2s
8s
8s
2s

3s

(c) Replay sequences. (d) Fit KDEs.

Figure 4.4: Learning a PDTTA from timed sequences.

4.3.2 Runtime Complexity
In this section we will analyze the runtime complexity of ProDTTAL. As our algorithm
uses a PDFA inference algorithm and a KDE, its complexity also depends on the
respective algorithms. Moreover, the complexity of the inference algorithm and the
KDE is based on different criteria: Given an input sample S+

t in most cases the
complexity of the PDFA algorithm depends on the size of the PTA that is constructed
from S+

t (cf. Sections 2.4.2.1 and 2.4.2.2). The complexity of the KDE depends on
the number of samples that the estimator has to take into account. Because of these
different factors, we introduce the following notation:

• |S+
t |: The number of sequences in the input sample S+

t .

• lmax: The longest sequence in S+
t (in terms of sequence length).

• Bmax: The bucket containing the most time values (Bmax = arg maxBq,e{|Bq,e|}).

• |PTA(S+
t )|: The number of states in the PTA that is constructed from S+

t .

If we apply ALERGIA or MDI for learning the PDFA we need to take into
account the respective runtime, which depends on the PTA creation (O(|S+

t | ·
lmax); cf. Section 2.4.1.2) and the merge step (O(|PTA(S+

t )|3) for ALERGIA and
O(|PTA(S+

t )|3 · |Σ|) for MDI (with |Σ| the size of the alphabet; cf. Section 2.4.2.1).
For other PDFA-inference algorithms the runtime may not depend on the PTA built
from S+

t . In the following we will denote the complexity to infer the PDFA from the
input S+

t with PDFA(S+
t ).

For the event log replay the runtime complexity does neither depend on the size of
the PTA nor the size of the PDFA but only depends on the number of time values
occurring in the input S+

t . If we assume that all sequences have equal length l and
thus equally many time values, the number of time values in the input is |S+

t | · l.
If we do not assume anything about the sequence length, we can upperbound the
number of time values by using the maximal sequence length lmax. The upper bound
for the number of time values TV in the input S+

t for the bucket filling is:

TV
(
S+
t

)
= O

(
|S+
t | · lmax

)
(4.3)
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We will now describe the runtime complexity of the steps performed to approximate Θ
with Monte Carlo integration. In this section we will only describe the preprocessing
that is done once for every bucket while inferring the PDTTA. Every computation
of a plausibility value θq,e(v) for a time value v in a state q and event e requires
additional effort that is described in Section 4.4.2.3.
At first we will focus on the preprocessing for one single bucket Bq,e. At the end

we will calculate the complexity for all buckets. For the Monte Carlo integration
we need to compute the PDF of the KDE a couple of times based on the desired
resolution. Recall, that we sampled two-dimensional points and stored those points
that are under the PDF in the sample set Mq,e with m = O(|Mq,e|). This sample set
defines the resolution of the Monte Carlo approximation.

Proposition 1. The runtime complexity of the preprocessing step for a single bucket
with two-dimensional Monte Carlo integration is

O (m · (|Bq,e|+ logm))

with m being an upper bound on the number of points sampled and |Bq,e| the size of
the bucket for state q and event e.

Proof. For every sampled point we have to check whether it is contained inMq,e so we
have to compute the density for every sampled point. Computing the density k times
for a sample of n points requires O (k · n) many evaluations of the kernel function.
Transferred to our notation with n = |Bq,e| and k = m we end up with O (|Bq,e| ·m)
many evaluations of the kernel function for one bucket Bq,e. Additionally, we sort
Mq,e according to the density values of the points. If we save the density value
for every sampled point after checking whether the point is contained in Mq,e, we
must only sort Mq,e, which requires O (|Mq,e| · log |Mq,e|) = O (m · logm). Hence,
the runtime complexity for the Monte Carlo preprocessing for one bucket Bq,e is:

Single bucket Monte Carlo preprocessing =̂O (|Bq,e| ·m+m · logm)
=O (m · (|Bq,e|+ logm)) (4.4)

�

The calculation from Proposition 1 has to be done for every bucket. We can now
analyze the runtime for the Monte Carlo preprocessing for the whole PDTTA:

Proposition 2. The runtime complexity of the preprocessing step for all buckets of
a PDTTA with two-dimensional Monte Carlo integration is

O
(
m ·

(
TV

(
S+
t

)
+ |δ| · logm

))
with m an upper bound on the number of points sampled, |δ| the number of transitions
in the PDFA, and TV

(
S+
t

)
the number of time values in the input S+

t .

Proof. As the preprocessing for the Monte Carlo integration (Proposition 1) has to
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be done for every bucket, we sum up the costs for all buckets6:

Monte Carlo preprocessing =̂O

 ∑
(q,e,∗)∈δ

(m · (|Bq,e|+ logm))


=O

m · ∑
(q,e,∗)∈δ

(|Bq,e|+ logm)


=O

m ·
 ∑

(q,e,∗)∈δ
logm+

∑
(q,e,∗)∈δ

|Bq,e|


=O

m ·
|δ| · logm+

∑
(q,e,∗)∈δ

|Bq,e|

 (4.5)

As the sum over the size of all buckets
(∑

(q,e,∗)∈δ |Bq,e|
)
is the same as the number

of time values in the input, we use the upper bound from Eq. (4.3) and rewrite
Eq. (4.5):

Monte Carlo preprocessing = O
(
m ·

(
TV

(
S+
t

)
+ |δ| · logm

))
(4.6)

�

Now, the runtime of the whole θ-preprocessing step can be easily formulated:

Lemma 3. The runtime complexity of the θ-preprocessing step with two-dimensional
Monte Carlo integration is

O
(
m ·

(
TV

(
S+
t

)
+ |δ| · logm

))
with m an upper bound on the number of points sampled, |δ| the number of transitions
in the PDFA, and TV

(
S+
t

)
the number of time values in the input S+

t .

Proof. The runtime directly follows from adding the costs for replaying the time
values (filling the buckets), which is exactly the number of time values in the input
S+
t and the runtime from Proposition 2:

θ-preprocessing =̂ TV
(
S+
t

)
︸ ︷︷ ︸
bucket filling

+ O
(
m ·

(
TV (S+

t ) + |δ| · logm
))

︸ ︷︷ ︸
Monte Carlo preprocessing (Proposition 2)

=O
(
m ·

(
TV

(
S+
t

)
+ |δ| · logm

))
(4.7)

�

Note that the runtime of Lemma 3 is an upper bound on the number of evaluations
of the kernel function of the KDE. Depending on the chosen kernel the runtime
complexity may be constant (uniform kernel) or include the computation of a point

6There is one bucket for every transition.
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on an exponential function (Gaussian kernel). Thus, we will ignore the complexity of
the kernel function.
Now we can formulate the runtime for the inference of a PDTTA:

Theorem 4. The runtime complexity of inferring a PDTTA (ProDTTAL) from a
positive timed sequence set S+

t in combination with two-dimensional Monte Carlo
integration for approximating the time value plausibilities is

O
(
PDFA

(
S+
t

)
+m ·

(
TV

(
S+
t

)
+ |δ| · logm

))
with PDFA

(
S+
t

)
the runtime for inferring the PDFA, m an upper bound on the

number of points sampled, |δ| the number of transitions in the PDFA, and TV
(
S+
t

)
the number of time values in the input S+

t .

Proof. The runtime follows from the runtime complexity of the PDFA-inference
algorithm and Lemma 3 (Eq. (4.7)):

O
(
PDFA

(
S+
t

)
+m ·

(
TV

(
S+
t

)
+ |δ| · logm

)
︸ ︷︷ ︸

θ−preprocessing (Lemma 3)

)
(4.8)

�

If we use e.g. ALERGIA as inference algorithm, we can specify the time needed for
the PDFA inference PDFA(S+

t ). This inference requires to create and merge a PTA.
The runtime of the θ-approximation is independet of the PDFA-inference runtime.

O
(
|S+
t | · lmax︸ ︷︷ ︸

PTA creation

+ |PTA
(
S+
t

)
|3︸ ︷︷ ︸

PTA merge

+m ·
(
TV

(
S+
t

)
+ |δ| · logm

)
︸ ︷︷ ︸

θ−preprocessing (Lemma 3)

)

=O
(
|PTA

(
S+
t

)
|3 +m ·

(
TV

(
S+
t

)
+ |δ| · logm

) )
(4.9)

For the PDTTA inference and using ALERGIA for the PDFA inference we end
up with a runtime complexity that depends on the number of states of the PTA
(|PTA

(
S+
t

)
|), the size of the sample drawn for the Monte Carlo integration (m;

larger value leads to better approximation), the number of time values in the input
(TV

(
S+
t

)
) and the number of transitions in the PDTTA (|δ|).

4.3.3 Convergence of ProDTTAL

In this section, we discuss the convergence of the resulting PDTTA inferred by
ProDTTAL. The convergence of ProDTTAL depends on various factors—namely
on the underlying PDFA-inference algorithm, on the KDE and the Monte Carlo
integration.

As the Monte Carlo approximation can become arbitrarily poor with respect to the
original function, it does not provably converge (neither in the limit nor in the PAC
framework). In the remainder of this section, we analyze the convergence without
taking into account the Monte Carlo approximation.
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First, we discuss the convergence of the underlying PDFA-inference algorithm.
Depending on the underlying algorithm different statements can be made. ALERGIA
converges in the limit to the true PDFA from which the data was sampled [CO94;
DT00]. As presented in Section 3.3.3.1 it has been shown in [CT04] that PDFAs
are also polynomially PAC-learnable with the (sometimes called) C-T algorithm.
The algorithm presented in [CG08] does not require the distinguishability µ as input
but still polynomially PAC learns a µ-distinguishable PDFA. Hence, the underlying
PDFA can be learned in the limit and in the PAC framework.

The other factor is the convergence of the KDE. To the best of our knowledge, PAC
learnability of KDEs has not been shown in the literature because KDEs are mostly
studied in the field of statistics (and not in the field of machine learning). Instead,
the research focuses on consistency. An estimator f̂n (dependent on the number of
samples n) of an unknown distribution f is (weak) consistent if the probability tends
to zero that the difference between f and f̂n is greater than some ε > 0 in the limit:

lim
n→∞

Pr
(
|f̂n − f | > ε

)
= 0 (4.10)

Strong consistency demands that the estimator f̂n convergences to the true distribu-
tion f in the limit with probability one (Pr(limn→∞ f̂n = f) = 1). If we assume that
the underlying function f is uniformly continuous, it can be shown that KDEs are
strongly consistent if we choose a suitable kernel function and bandwidth [WW12].
Hence, KDEs converge in the limit. For further details, we refer to [WW12].
Summarizing, ProDTTAL learns the underlying PDTTA in the limit if we omit

the Monte Carlo approximation and assume a uniformly continuous density function
of the time values.

4.3.4 Properties of Timed Automata Inference Algorithms

After we introduced the PDTTA and ProDTTAL, we can compare properties of the
inference algorithms ProDTTAL, RTI+ and BUTLA. Some properties directly follow
from the model they infer (PDTTA, PDRTA and Probabilistic Deterministic Timed
Automaton (PDTA)) and some are caused by the algorithm itself. Table 4.1 shows
properties of the respective algorithms.
While RTI+ and BUTLA process time values globally, ProDTTAL applies time

processing locally in every state. RTI+ requires the user to specify histograms,
whereas BUTLA assumes a Gaussian distribution of the time values and splits events
based on this assumption into subevents. All algorithms merge states based on events
but only RTI+ can also split states (because of events or time)7. RTI+ is also the
only algorithm capable of merging states because of their time behavior. ProDTTAL
cannot identify time-based substructures because the automaton structure is inferred
only from the event data (without regarding the corresponding time data). BUTLA
can identify time-based substructures using its global and time-based event split
while RTI+ identifies these substructures with its Evidence-Driven State Merging
approach (EDSM). The probabilities of events and time values solely depend on the
current state for RTI+ (because of the PDRTA) and the time values are assumed to

7The BUTLA event split is a simplified global state split inducing new symbols.
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Table 4.1: Properties of ProDTTAL, RTI+ and BUTLA.
algorithm ProDTTAL RTI+ BUTLA
model PDTTA PDRTA PDTA
time processing local global

(histograms; symbol
independent)

global
(subevents; symbol
dependent)

event-based merge yes yes yes
event-based split no yes no
time-based merge no yes no
time-based split no yes no
time-based
substructures

no yes yes (preprocessing)

event probabilities transition state transition
time probabilities/
distribution

transition /
KDE / plau-
sibilities

state /
uniform

transition /
not defined

be uniformly distributed. For ProDTTAL and BUTLA the event probabilities depend
on the transition taken because both build on some PDFA inference algorithm. The
time probabilities can have arbitrary shape for ProDTTAL because they are modeled
with KDEs and later transformed into plausibilities (but with the same shape). For
BUTLA they are not defined, but a Gaussian distribution is assumed during the
event split.
Based on these properties we infer the following strengths(+)/weaknesses(-):

ProDTTAL

+ More accurate modeling of time values with plausibilities.

+ Local time model for every transition.

- Different substructures based on time values cannot be identified.

- Event model (PTA) can only be merged (no split).

RTI+

+ Different substructures based on time values can be identified.

+ Event model (PTA) can be refined via split.

- Global, user-defined time histograms.

- Difficult to distinguish time values of different magnitude with histograms.

- Probabilities based on current state (instead of transition).
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BUTLA

+ Event split based on time values is performed once via preprocessing.

- Global event split.

- Gaussian distributions of time values should not overlap.

In Chapter 5 we present PDRTAs that contain weaknesses which are hard to
detect for RTI+ and ProDTTAL, respectively. We experimentally show that these
weaknesses influence the anomaly detection of automata inferred with RTI+ and
ProDTTAL.

4.4 Anomaly Detection

In this section we present how to detect anomalies given a PDTTA from Section 4.3.
First we will formulate the anomaly detection problem as a one-class problem,
present the anomaly detection algorithm and then analyze its runtime complexity.
In [KAK14; Kle+14] we only gave a naive solution for the anomaly detection using
two thresholds. In this thesis we additionally present more elaborate techniques how
to apply vector-based one-class algorithms to the sequence based anomaly detection.

4.4.1 Anomaly Detection Problem

We formulate the anomaly detection problem as a one-class problem:

Definition 13 (Anomaly Detection). Given a positive set of timed sequences S+
t

and a timed test sequence st, determine whether st is an anomaly with respect to S+
t .

This definition does not make any assumption about the algorithms used. It only
states that we deal with timed sequences and a positive set of timed sequences S+

t .
In terms of one-class classification, we are given samples from one class (the normal
sequences) and we want to decide whether a given sample belongs to the one class (is
normal) or does not belong to this class (is anomalous). In [And+14] we evaluated
various one-class algorithms in the context of untimed sequences. We are not limited
to an approach inferring PDTTAs when we refer to Definition 13. Hence, we refine
the anomaly detection definition to be model-based:

Definition 14 (Model-based Anomaly Detection). Given a model A inferred from
a positive set of timed sequences S+

t and a timed test sequence st, determine whether
st is an anomaly with respect to A.

This definition still captures the one-class case but better suits our needs as we
first infer a model (e.g. a PDTTA; cf. Section 4.2) and second decide for a timed test
sequence whether it is an anomaly. With Definition 14 we can present the anomaly
detection algorithm to solve the problem described at hand.
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4.4.2 Automata-based Anomaly Detection Algorithm (AmAnDA)

In this section we develop the Automata-based Anomaly Detection Algorithm
(AmAnDA). AmAnDA decides whether a timed test sequence st is anomalous with
respect to an PDTTA A. Recall, that in a state q in a PDTTA A we can obtain
an event probability and a plausibility of a time value for a given event-time tuple
(ei, vi):

• π(q, ei) assigns a probability for observing the event e in the current state q.

• τ(q, ei) assigns a transition time plausibility function θ that models the plau-
sibility of observing any time value. Given θ we obtain the plausibility of
observing the time value vi when in state q and observing event ei.

The idea of the algorithm is to traverse the given PDTTA A, compute the respective
probabilities/plausibilities and store them. As the probabilities of events (π) and
plausibilities of time values (τ) are of different nature they are stored separately.
Hence, we obtain two lists: One list containing event probabilities (PE) and one
containing time plausibilities (PT).
In the following we present the anomaly detection algorithm with a PDTTA A

as input. Nevertheless, the automaton does not need to be a PDTTA. With small
changes we can also apply our anomaly detection algorithm to PDRTAs (learned
with RTI+) and PDTAs (learned with BUTLA). We only require to obtain two lists
containing the event probabilities PE and the time plausibilities PT.
Algorithm 7 shows the pseudo code of the Automata-based Anomaly Detection

Algorithm (AmAnDA). As input we require a timed event sequence st, a PDTTA A
(or a similar timed automaton), a feature extractor FE and a classifier C . The feature
extractor FE and the classifier C will be described in Sections 4.4.2.1 and 4.4.2.2.
The feature extractor extracts some features from the two lists and returns one vector
on which the classifier C decides whether the vector is an anomaly.

We start in the start state q0 of the automaton A (line 1). For every tuple (ei, vi)
in the input sequence st (line 2) and the current state we traverse the transition
t indicated by state q and event ei (line 3) and store the probability of this event
π(q, ei) in the event probability list PE (line 4)8. For the time value vi we analogously
store its plausibility τ(q, ei)(vi) in the time plausibility list PT (line 5)8. Then we
continue with the following state (line 6). At the end of the timed sequence st we add
the final state probability to the event probability list (line 8). We extract features
from the event and time lists (PE/PT) using the feature extractor FE (line 9) and
finally return whether the input sequence st is an anomaly using the classifier C
with the extracted feature vector x as input (line 9).

4.4.2.1 Feature Extraction

Our feature extraction method extracts features from the lists containing event
probabilities (PE) and time plausibilities (PT). We do so because most classifiers need
a vector of fixed length as input but the extracted lists may have arbitrary length

8As every event-time tuple defines a unique transition, we may also write π(t) or τ(t) instead of
π(q, ei) or τ(q, ei) for a transition t = (q, ei, qj).
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ALGORITHM 7: Automata-based Anomaly Detection Algorithm (AmAnDA)
Data: timed event sequence st, PDTTA A = (Σ, Q, q0, δ, π, τ), feature extractor

FE , classifier C
Result: true/false

1 q ←− q0;
2 foreach tuple (ei, vi) ∈ st do
3 t←− getTransition(q, ei);
4 PE.append(π(t));
5 PT.append(τ(t)(vi));
6 q ←−getTargetState(t);
7 PE.append(π(q));
8 x←− FE .extractFeatures(PE,PT);
9 return C .isAnomaly(x);

depending on the input sequence. Hence, we apply a fixed set of transformations
which we call feature extraction. As long as we extract the same features for every
sequence, we can add or remove any features. We will now give examples for simple
features and then describe one complex feature—the length-normalized sequence
aggregation—in detail. Every feature is extracted twice: Once from the event
probability list PE and once from the time plausibility list PT.

Simple Features The following list shows an example of features that can be
extracted from a list of real-valued entries (p1, . . . , pl). We use these aggregation
functions as a starting point provided by most programming languages, but we are
aware that other features may improve the performance of AmAnDA. We are aware
that we deal with probabilities for the events and plausibilities for the time values.
However, these aggregations are only a starting point that can be computed for
probabilities and plausibilities. We only have to make sure that probabilities and
plausibilities are not mixed.

• Length: The length of the sequence (l).

• Minimum: The minimal value of the respective list (min{pi}).

• Maximum: The maximal value of the respective list (max{pi}).

• Mean: The arithmetic mean of the respective list (µ = 1
l

∑l
i=1 pi).

• Variance: The arithmetic variance of the respective list (1
l

∑l
i=1(pi − µ)2).

• Min-difference: The minimum difference between two succeeding entries
(min{|pi − pi+1|}).

• Max-difference: The maximal difference between two succeeding entries
(max{|pi − pi+1|}).
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Length-Normalized Sequence Aggregation This feature is inspired by the average
probability of the event list (p1, . . . , pl), and works similarly for plausibilities because
their maximal value is also 1. We already introduced it in [KAK14; Kle+14]. To
aggregate of the whole sequence a naive approach would be to multiply the entries
with each other (∏l

i=1 pi). This naive approach has the drawback that we deal with
sequences of different length, so the resulting feature value would decrease for longer
sequences. Hence, for a long sequence the sequence’s aggregation would always be
smaller than for a short sequence. As we compare sequences of different length and
want the features to be comparable, we normalize the sequence aggregation according
to the length. We do so by taking the lth root of the product of the entries:

length-normalized sequence aggregation = l

√√√√ l∏
i=1

pi (4.11)

As this length-normalized sequence aggregation leads to very small values because of
multiplying many values lesser or equal than one, it may happen that these small
numbers cannot be represented in usual programming languages any more. Hence,
we compute the length-normalized sequence aggregation in the logarithmic space for
numeric stability, but without a change in semantics:

log-length-normalized sequence aggregation = ln

 l

√√√√ l∏
i=1

pi


= ln

( l∏
i=1

pi

) 1
l


=1
l
· ln

(
l∏

i=1
pi

)

=1
l
·

l∑
i=1

ln pi (4.12)

Runtime The runtime of the feature extraction algorithm is polynomial in the
number of extracted features and length of the given list.

Proposition 5. Given a list PX = (p1, . . . , pl) extracting k of the presented features
requires O(l · k) steps.

Proof. Every presented feature requires at most one run over the list PX. As this is
done for k features, the proposition directly follows. �

In this section we presented features that can be extracted for a feature vector.
Given this feature vector we describe the algorithms and models we apply for detecting
anomalies in the next section.
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4.4.2.2 Anomaly Classification

Anomaly classification deals with the challenge of classifying a given vector as normal
or abnormal. Most classification algorithms require a training set that contains
samples from an underlying unknown process. The aim of the algorithm or the
model produced by the classification algorithm is to predict the class given a test
sample. As described in Section 2.5.1 the classification algorithm may work in a
supervised or unsupervised manner. If we consider two-class problems (one class
the positive and one the negative class) the training set may contain samples for
both classes (common binary classification) or just samples from the positive class
(one-class classification).

In our setting we consider one-class problems where the training set only contains
normal sequences as samples. In the test case a sequence may be normal or abnormal.
As most one-class classifiers need vectors of fixed length in the training and test
set we transform the respective sets containing timed sequences to sets containing
vectors of fixed length using the feature extractors described earlier in this section.
Now we can define the anomaly classification problem:

Definition 15 (Anomaly classification). Given a set of normal vectors obtained
from a PDTTA A and a training set S+

t via a feature extractor, decide whether a
given timed test sequence st is normal with respect to A and S+

t .

Training the Classifier Most classifiers require a training phase in which the clas-
sification model is built. The training works similar to AmAnDA (Algorithm 7)
but instead of calling isAnomaly in line 9 we train the classifier with the vector x
obtained in line 8. As input we require the input S+

t , the learned PDTTA A and a
feature extractor FE. For every st ∈ S+

t we calculate the probability/plausibility
lists PE and PT using the PDTTA A and then compute a feature vector v with the
feature extractor FE. This feature vector is handed to the one-class classifier for
training9.

Choosing the Classifier We can utilize different one-class classifiers for the anomaly
classification. The classifier must be able to handle real-valued vectors of fixed length.
Depending on the classifier, we also normalize the vector entries to [0; 1]. In the
following we present potential classification algorithms and their requirements for
our anomaly classification setting. These algorithms were explained in Section 2.5.1.

One-Class SVM The one-class support vector machine (SVM) (cf. Section 2.5.1.1)
is a special kind of SVM that can handle training with samples from only one class.
Therefore, an additional parameter ν is introduced that defines the target rejection
rate. By adjusting ν we can vary the percentage of training data that is considered as
outlier. Hence, ν can be seen as some threshold. Like every SVM, also the one-class
SVM requires training and tuning of various hyper parameters.

9This training can be easily transformed to a batch training by first extracting and storing the
feature vector for every timed sequence st and then training the classifier with all stored feature
vectors.
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Clustering Although not a real classification algorithm, we can expand clustering
to become a one-class classification algorithm as described in Section 2.5.1.2. There
are two possibilities to apply clustering for one-class classification10:

1. We cluster the data in the training phase, store all clusters and remove noise
points. In the test phase we compute the distance of the test vector to k nearest
neighbor points and determine whether the distances are smaller than a given
threshold.

2. We store all points in the training phase. In the test phase we add the test
point to the points from the training phase, cluster all points and determine
whether the test point belongs to a cluster or is classified as a noise point.

For both approaches we must specify at least a distance metric and depending on
the clustering algorithm even more hyperparameters. For the first approach we also
need a threshold on the distance. The second approach may not be applicable to all
clustering algorithms as some clustering algorithms do not classify outliers as noise
points but instead assign every point to a cluster.

Threshold Classifier As most of the above described approaches require the
input of a threshold, the naive approach is to specify a threshold on every vector
entry. Depending on the feature extractor the amount of thresholds to specify may
become large and thus inconvenient. The classifier labels a test vector as anomaly if
one or all of its entries are below or above the respective threshold. Opposed to the
other classifiers mentioned above, the threshold classifier does not need any training.

Outlier Robustness In this paragraph we briefly describe how outlier-robust the
PDTTA in combination with ProDTTAL and AmAnDA is. The one-class setting
requires that the training data only contains samples from one class. Usually, this
requirement is not fully satisfied but few samples in the training data are also from
another class that should be labeled as outliers. As already described, ANOmaly
Detection Algorithm (ANODA) (cf. Section 2.5.2.1) is not outlier-robust. Consider
a sequence s− that is an outlier but part of the training data. If a path in the
automaton model exists for such a sequence (as it usually does when learning a
model with BUTLA), ANODA labels s− as normal.

If we learn a PDTTA with ProDTTAL, this sequence s− would also be part of the
resulting PDTTA. However, if we then traverse the automaton, the probability for
one transition is presumably low because no other sequences in the training data
traverses this transition. Depending on the feature extraction, this low probability is
an entry in the feature vector that probably separates this wrong training sample
from the rest of the training samples. As the applied one-class classifiers are usually
outlier-robust to some extent, s− will be labeled as outlier if it is presented to
AmAnDA in the test data. Model-based approaches can also be made outlier-robust
by not incorporating those samples into the learned model. For example, we would
have to remove rarely occurring sequences from the learned PDTTA by removing
10Some clustering algorithms may not be applicable to both methods.
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transitions with a low event probability but we did not implement this because
AmAnDA should take care of the outliers.

In [KAK14; Kle+14] we introduce the anomaly detection for timed sequences with
PDTTAs. We extracted one feature (length-normalized sequence aggregation) and
applied the threshold detector with two thresholds for the aggregation of the PE and
PT, respectively.

4.4.2.3 Runtime Complexity

In this section we will analyze the runtime complexity for the anomaly detection
algorithm given one timed test sequence st. We only analyze the runtime complexity
for the anomaly detection algorithm without taking into account the complexity of
the classifier in detail. Then we will roughly describe the impact on the runtime if
we employ a classifier that needs training.

The calculation of the time value plausibility θ(v) (line 5 in Algorithm 7: AmAnDA)
has the main impact on the runtime of the anomaly detection because it involves the
Monte Carlo integration. Except lines 5, 8 and 9 every other line requires constant
time. As we will not analyze the runtime of the latter two lines because they involve
the feature extractor and the classifier, we only analyze the runtime complexity of
the Monte Carlo integration in line 5.
If we applied the preprocessing described in Section 4.3 the computation of θ(v)

is easier. In the following runtime analysis we assume that the preprocessing was
applied. We will first describe the computation of θ(v) for one time value timeV alue
and then add the costs for computing θ(·) for a whole sequence.
Lemma 6. The runtime complexity of the computation of a single plausibility θq,e(v)
for state q, event e and time value v is

O (|Bq,e|+ logm)

with m an upper bound on the number of points sampled and |Bq,e| the size of the
respective bucket.

Proof. Assuming that we compute θq,e(v) for transition t = (q, e, ∗) with bucket
Bq,e we must compute the density f̂q,e(v) at point v. As we applied kernel density
estimators this computation requires O(|Bq,e|) evaluations of the kernel function.
Then we compute the subset of the sampled points Mq,e where the density of the
x-value is higher than f̂q,e(v): Kq,e = {(x, y)|(x, y) ∈ Mq,e ∧ f̂q,e(x) ≥ f̂q,e(v)}.
Finally, we divide |Kq,e| by |Mq,e|. In the θ-preprocessing we sorted the points in
Mq,e according to their density value. Now we exploit this sorting when we compute
the cardinality of Kq,e. We apply binary search to find the first point with the density
higher than f̂q,e(v), which can be found in O(log |Mq,e|) = O(logm). Knowing the
index of this point and the cardinality of Mq,e we also know the number of points
that are contained in Kq,e, hence we know |Kq,e|.

Summing up, the computation costs of θq,e(v) for a single time value v are:

θq,e(v) =̂ O(|Bq,e|+ logm) (4.13)

�
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Now, we can formulate the runtime of the probability/plausibility computation for
a whole sequence.

Theorem 7. The runtime complexity of the probability/plausibility computation for
a timed sequence st = (e1, v1), . . . , (el, vl) is

O (l · (|Bmax|+ logm))

with m an upper bound on the number of points sampled and |Bmax| an upper bound
on the number of points in one bucket.

Proof. Assuming that st = (e1, v1), . . . , (el, vl) leads to state visits (q1, . . . , ql) we
sum up the runtime for every single time value plausibility computation θqi,ei(vi)
from Lemma 6 (the event probability can be accessed in constant time from the
underlying PDFA):

probability/plausibility computation =̂O
( l∑
i=1

θqi,ei(vi)︸ ︷︷ ︸
Lemma 6

)

=O
( l∑
i=1

(|Bqi,ei |+ logm)
)

=O
( l∑
i=1

(|Bmax|+ logm)
)

=O
(
l · (|Bmax|+ logm)

)
(4.14)

�

Given the runtime from Theorem 7 for a timed sequence st, extracting k features
using the feature extractor presented in Section 4.4.2.1 and expressing the runtime
of the classification as variable C, the runtime complexity of the anomaly detection
algorithm AmAnDA (Algorithm 7) is:

anomaly detection =̂ O
(

l · (|Bmax|+ logm)︸ ︷︷ ︸
prob./plaus. comp. (Theorem 7)

+ (l · k)︸ ︷︷ ︸
feature extr. (Proposition 5)

+ C
)

(4.15)

Classifier Training Runtime Now we will shortly describe the impact on the runtime
of the chosen classifier. If we choose a classifier that requires training, we have to
insert an additional step after the ProDTTAL-time-learning (Algorithm 5). As
described earlier, after applying ProDTTAL we transform and extract features from
the input S+

t with a feature extractor and gain a set of vectors X+ with |X+| = |S+
t |.

This transformation is similar to the anomaly detection, except that every vector
x ∈ X+ is not classified but instead used as input to the classifier. Hence, we run a
slightly adapted version of the anomaly detection for the input S+

t with the following
runtime:
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Theorem 8. The runtime complexity of transforming a set of positive timed sequences
S+
t into a set X+ containing vectors of length k is

O
(
|S+
t | · lmax · (|Bmax|+ logm+ k)

)
with lmax the length of the longest sequence in S+

t , m an upper bound on the number
of points sampled, and |Bmax| an upper bound on the number of points in one bucket.

Proof. We have to compute the lists of probabilities/plausibilities PE and PT (cf. The-
orem 7) for every sequence in the input and extracted k features from the two lists
(cf. Proposition 5). Hence, we obtain the following runtime (with the sequence length
l upperbounded by lmax):

O
(
|S+
t | ·

(
lmax · (|Bmax|+ logm)︸ ︷︷ ︸

prob./plaus. comp. (Theorem 7)

+ (lmax · k)︸ ︷︷ ︸
feature extr. (Proposition 5)

))

=O
(
|S+
t | · lmax · (|Bmax|+ logm+ k)

)
(4.16)

�

Theorem 8 solely represents the runtime complexity for the transformation from
S+
t to a vector set X+. Depending on the chosen classifier the runtime complexity

for training may e.g. be O(|X+|2) (linear SVM) or constant (Parzen window). For
testing whether a vector is an anomaly, for the linear SVM the runtime depends on
the support vectors chosen in the training phase, and the Parzen window requires
O(|X+|) many evaluations of the chosen kernel function.

4.5 Anomaly Detection in a Two-/Multi-class Setting
In this section we will briefly discuss whether and how the presented one-class anomaly
detection algorithm can be applied in a two- or multi-class setting. In the two-class
(or binary) setting positive and negative samples (normal and abnormal) samples are
presented to the classifier in the training and the test phase. The multi-class setting
extends this setting to more than two classes.

4.5.1 Two-class Setting

Usually, for feature vectors a two-class problem is easier to solve than a one-class
problem because the two-class classifier can learn a separation between the two
classes. In the one-class setting the classifier can only try to fit a boundary for the
positive class, maybe neglect some of the training samples because of noise in the
training data, and then hope that the boundary is not too tight or too loose.

As already presented in Section 3.3.3.1 the RPNI algorithm can infer a PDFA from
positive and negative (untimed) sequences. For timed sequences, the RTI algorithm
can even infer a PDRTA from positive and negative timed sequences11. Nevertheless,
an anomaly detection algorithm for PDRTAs was not presented, so only a naive
11RTI+ is an adaptation of RTI from the two- to the one-class problem.
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classification approach of checking whether a path exists for a given test sequence is
feasible.

Our approach of learning PDTTAs from positive data and using feature extractors
and one-class classifiers cannot be easily adapted to the two-class setting. At first
sight, it seems straight forward to exchange the one-class algorithms by a two-class
approach. Obviously, for learning the PDFA (the event structure) we could exchange
e.g. ALERGIA or MDI with RPNI. The feature extraction could stay the same
and instead of using a one-class classifier we could apply a two-class vector-based
classification algorithm like an SVM, a neural network, etc.
But when doing so, we face a problem in the training phase: For an abnormal

sequence we do not know whether it is abnormal because of its event structure
or because of its time values. If we omit the time values and do not change the
labels, we may present a sequence se to RPNI that is abnormal because of timing
behavior but normal regarding its event structure. We may also present the same
event sequence se as normal because its timing behavior is normal, too. Hence, RPNI
is confused because the same sequence se may occur twice: once as normal and once
as abnormal.

We could circumvent this issue if we introduce additional information whether an
abnormal timed sequence is abnormal because of its event structure or its timing
behavior. If it was abnormal because of the event structure we would present it to
RPNI as a negative sample and would not present it to the vector-based classifier.
If it was abnormal because of the timing behavior (and not because of the event
structure) we would present it to RPNI as a normal sample and would present it as
an abnormal sample to the vector-based classifier. In this way we would feed the
respective algorithms only with those samples which are really distinguishable based
on the information presented to them.

4.5.2 Multi-class Setting

Adapting our automaton-based approach of classifying length-varying timed sequences
to a multi-class setting is not straightforward because we do not deal with anomaly
detection or binary classification any more but with labeling a timed sequence with a
multi-class label. An automaton model can accept or reject a sequence by traversing
transitions starting in the initial state. Acceptance and rejection of sequences can
be regarded as the two classes from the binary classification. For the multi-class
setting one would need a timed automaton model that does not only accept or
reject sequences but assigns multi-class labels to the sequences. To the best of our
knowledge such a multi-class automaton model for length-varying timed sequences
does not exist. If a multi-class automaton would exist, we still lack an efficient
algorithm that can infer a timed multi-class automaton model.
On the other hand if we could solve the binary classification problem for length-

varying timed sequences, we could use k different binary classifiers in a one-vs-all
fashion. Every classifier would predict whether a given timed sequence belongs to a
class i ∈ {1, . . . , k} or not.
In [ISS00] Ishiguro, Sawada, and Sakano propose an algorithm for assigning

multi-class labels to untimed fixed-length sequences using an adapted version of
an AdaBoost classifier [FS95]. It may be possible to adapt this approach to deal
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with timed sequences but adapting to the length variation of the sequences is not
straightforward. As this thesis focuses on one-class classification the mentioned ideas
are beyond the scope of this thesis, but may be used as a possible starting point to
adapt our approach to the two-/multi-class setting.

Summary
In this chapter, we presented the new automaton model for timed sequences Pro-
babilistic Deterministic Timed Transition Automaton (PDTTA) (Section 4.2), the
corresponding algorithm that learns PDTTAs from positive data (Probabilistic De-
terministic Timed Transition Automaton Learning (ProDTTAL); Section 4.3) and
the Automata-based Anomaly Detection Algorithm (AmAnDA) for detecting ano-
malies with timed automata (Section 4.4). We concluded with an outlook how the
approaches could be transferred to a two-/multi-class setting (Section 4.5).
The PDTTA models sequences enriched with time information, but opposed to

current automaton models, the time is modeled more granularly from a local point of
view. For modeling the event data, we apply state-of-the-art Probabilistic Determi-
nistic Finite Automaton learning algorithms, e.g. ALERGIA or MDI. The time values
are modeled using Kernel Density Estimations (KDEs) as a good approximation of
unknown time value distributions. These KDEs are transformed into plausibility
functions using Monte Carlo integration. The plausibility functions express how
plausible the time values of unknown sequences are.

The learning algorithm ProDTTAL learns a PDTTA from positive sequence data
(Section 4.3.1). Its runtime complexity is polynomial in the size of the training set
(and some other factors; Section 4.3.2) and under some assumptions it converges in
the limit to the underlying model (Section 4.3.3). In Section 4.3.4 ProDTTAL is
compared to other state-of-the-art timed automata learning algorithms and strengths
and weaknesses of the respective approaches are pointed out.

We continue with the anomaly detection using timed automata (Section 4.4), pre-
sent the Automata-based Anomaly Detection Algorithm (AmAnDA) (Section 4.4.2)
that can detect anomalies given various timed automata and analyze its runtime
complexity (Section 4.4.2.3). For an unknown sequence, AmAnDA traverses the
automaton model and stores all probabilities and plausibilities in two separate lists.
Then, it uses a feature extractor to extract features from these two lists. These
features are handed over to a one-class classifier that decides whether the unknown
sequence is an anomaly.
Finally, we argue why it is not straightforward to transfer our approach to a

two-/multi-class setting and describe hurdles that would arise (Section 4.5). In the
two-class setting, we only know that a sequence is normal or abnormal, but we do
not know whether it is an anomaly because of its event or time value. However, this
information would be needed, e.g. to build the correct automaton structure because
a time-abnormal sequence still contains a valid event sequence. The transformation
into a multi-class approach would be even harder, but could be implemented in a
one-versus-all manner.

In the next chapter, we describe how sequence-based anomaly detection approaches
can be evaluated systematically given an anomaly-free data set.
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In this chapter, we deal with the challenge of how to evaluate approaches that try
to solve the sequence-based anomaly detection problem in Discrete Event System
(DES). First, we review possible performance metrics (Section 5.1). In Section 5.2
we identify five types of anomalies that can occur in DES (Section 5.2.1). Then, we
introduce a random anomaly insertion (Section 5.2.2) and a model-based anomaly
insertion approach using a Timed Prefix Tree Acceptor (TPTA) (Section 5.2.3).
Both approaches can insert the identified anomaly types into an anomaly-free data
set to obtain a data set that contains anomalies and, hence, can be used for the
experimental evaluation. Furthermore, we discuss the influence of the anomaly rate
on the anomaly detection performance. Finally, we propose an approach how to
evaluate the scaling of algorithms that solve the timed sequence anomaly detection
problem (Section 5.3).
Four types of anomalies and the random anomaly insertion have already been

published in [Kle+14]. The rest of this chapter has not been published and was
developed during this thesis.

5.1 Performance Metrics

In this section, we explain how to measure the performance of the different approaches.
In the field of grammatical inference, where only the inference algorithm is of interest,
performance is measured by sampling sequences from a generative model, inferring
another model from these sequences and comparing the resulting model and the
generating model. This comparison does not state anything about the quality of
the model in anomaly detection. In anomaly detection the quality of an approach
depends on the quality of the model as well as on the anomaly detection algorithm.
As this is a one-class classification problem, we will present different classification
metrics.

Typical measures for performance evaluation of classifiers in the two-class setting
are true positives (tp), false positives (fp), true negatives (tn) and false negatives (fn).
True positives are the number of times the classifier predicted the positive class when
the presented sample was indeed positive. False positives are the number of times
the classifier predicted the positive class while the presented sample was labeled with
the negative class. True negatives and false negatives are defined analogously. We
let anomalies be the positive class and normal samples the negative class.
Based on these numbers other metrics like precision, recall, F-Measure (or F1

score), accuracy and many more are defined in literature. In this thesis we mainly
focus on F-Measure and the Matthews Correlation Coefficient (MCC) (Eq. (5.6)).
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The precision is the proportion of samples that are correctly labeled as positive out
of all samples that are labeled as positive.

precision = tp

tp+ fp
(5.1)

It represents how far the method can be trusted if it labels a sample as positive
(anomaly). A precision of one indicates that every anomaly that was labeled as such
was indeed an anomaly. The precision does not state anything about how many
anomalies were actually detected.
Therefore, the recall (also sensitivity) is defined as the ratio between correctly

labeled positives and all positives:

recall = tp

tp+ fn
(5.2)

It indicates how often a method misses an anomaly (positive) and falsely labels it as
normal (negative). A high recall states that many anomalies were detected and thus
labeled as anomaly.
A high recall can always be achieved by classifying every sample as anomaly but

this strategy results in a low precision. The optimal approach would detect every
anomaly (recall = 1) and label every normal sample as normal (precision = 1). The
F-Measure (also F1 score) is a suitable metric because it combines precision and
recall. It enables to optimize an approach while tuning only a single metric. The
F-Measure is the harmonic mean of recall and precision:

F-Measure = 2 · precision · recallprecision + recall (5.3)

An F-Measure of one can only be achieved with precision and recall being one.
For any other case the F-Measure weights precision and recall equally. For weighting
precision over recall or vice versa the Fβ score was designed. As we do neither prefer
precision nor recall we only employ the F1. The F-Measure can also be expressed in
terms of true and false positives or negatives:

F-Measure =2 · precision · recallprecision + recall = 2 ·
tp

tp+fp ·
tp

tp+fn
tp

tp+fp + tp
tp+fn

=
2·(tp)2

(tp+fp)·(tp+fn)
tp·(tp+fn)

(tp+fp)·(tp+fn) + tp·(tp+fp)
(tp+fn)·(tp+fp)

=
2·(tp)2

(tp+fp)·(tp+fn)
tp·((tp+fn)+(tp+fp))

(tp+fn)·(tp+fp)

= 2 · (tp)2

(tp+ fp) · (tp+ fn) · (tp+ fn) · (tp+ fp)
tp · (2 · tp+ fn+ fp)

= 2 · (tp)2

tp · (2 · tp+ fn+ fp)

= 2 · tp
2 · tp+ fn+ fp

(5.4)

Equation (5.4) shows that the F-Measure is biased by the true positives (tp) and

88



5.1 Performance Metrics

the true negatives (tn) do not even influence the result. Moreover, the definition of
which class is positive or negative heavily alters the outcome. As a rule of thumb
one should always define that class as the positive one for which less samples exist.
The accuracy does not incorporate the difference between the class definition. It

is defined as the fraction of correctly classified instances among all instances:

Accuracy = tp+ tn

tp+ tn+ fp+ fn
(5.5)

However, the accuracy is biased if the two classes (positives and negatives) are of
different size. Hence, the Matthews correlation coefficient (MCC; also Phi coefficient)
can be used. It is related to the χ2-test [Pla83] for two classes and does not depend
on the definition of the classes or their sizes [Pow11]. The Matthews correlation
coefficient is defined as:

MCC = tp · tn− fp · fn√
(tp+ fp) · (tp+ fn) · (tn+ fp) · (tn+ fn)

(5.6)

While the F-Measure ranges from zero to one where one means perfect classification
and zero means no true positive, the Matthews correlation coefficient ranges from −1
to +1. The result is −1 if there are no correctly classified samples, 0 if the classifier
is not better than a random predictor and 1 if the classifier is perfect.
The area under the receiver operating characteristic curve (also (ROC-)AUC) is

often used to measure the performance of a binary classifier. It describes the classifiers
performance as a function of a single decision threshold. The F-Measure, accuracy
and MCC can only be computed for one particular value of the decision threshold.
But in our scenario we may be faced with more than one decision threshold or at least
with more than one parameter that influences the decision. Then, the computation
of the AUC becomes non-trivial. Moreover, the AUC weighs misclassification for
different models differently [Han09].

So far, we have presented a selection of commonly used performance metrics with
their strengths and weaknesses. Table 5.1 shows the presented performance metrics
for the same experiment result for an imbalanced data set depending on which class
is defined as the positive one. Even though the result is not very good (for one of the
classes only 50% were classified correctly) the accuracy is large and the F-Measure is
large in one case while low in the other one. The MCC is quite small for both cases
which better reflects the result. In the remainder of the evaluation we will mostly
focus on the Matthews correlation coefficient (MCC) because it does not depend on
the definition which class is positive and negative and is not biased towards one of
the classes.

Apart from the metrics that measure the quality of the classification performance
other metrics are important as well. The best algorithm in terms of classification
performance is useless if the training may take years and the class prediction of one
sample a whole day. Moreover, the algorithm should run on commodity hardware
and should not need a server farm to operate.

Hence, we will also measure the execution time for training and prediction as well
as the number of states in the model and—related to the number of states—the
memory consumption. The worst case runtime complexity was already analyzed
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Table 5.1: Performance values for same experiment result with different definitions
of the positive/negative class.

tp tn fp fn F-Measure Accuracy MCC
900 5 100 5 0.94 0.90 0.13
5 900 5 100 0.09 0.90 0.13

(cf. Sections 4.3.2 and 4.4.2.3), but sometimes the worst case runtime complexity
heavily differs from the experimental runtime. We will investigate whether such a
difference exists for the particular algorithms. We are aware that the experimental
metrics depend on the computer, the operating system, the programming language
etc. Nevertheless, if all algorithms are written in the same programming language
and the evaluation is performed on the same computer, the metrics are comparable.

5.2 The Curse of One-class Evaluation

In the usual classification setting the training and the test data contain samples from
all classes that shall be classified. If only one data set exists, this data set is e.g. split
into a training and a test set. In the one-class setting, the training data only contains
samples from the positive class. The training of the classifier can be performed with
samples from the positive class, but when it comes to testing (or evaluation) negative
samples must be at hand to measure the performance of the classifier. Without
negative samples it is not possible to decide whether the classifier correctly labeled a
sample as positive or negative. Usually, there do not exist any negative samples1.
Therefore, it is harder to measure the performance of one-class classifiers. Assuming
that a real-world data set containing only positive samples from a technical system
exists, several approaches to produce negative samples (anomalies) are possible:

(a) Real-world anomalies. Examples are derived from monitoring the technical
system for a long time, hoping to capture an anomaly. This anomaly has to be
labeled as anomaly by an expert.

(b) Physically simulated anomalies. Examples are derived from the reproduction
of known anomalies under laboratory conditions using a real-world copy of the
technical system.

(c) Model-based simulated anomalies. Examples are derived from the reproduction
of known anomalies by manipulating a (learned) behavior model. This mani-
pulation has to be performed by an expert, too.

(d) Artificially generated anomalies. Examples are generated by some probabilistic
or random process.

1If there were many negative samples, the problem would not be a one-class problem.
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In [Kle+14] we state that it is most often impossible to acquire real-world or
physically simulated anomalies. The first ones are hard to find and the latter ones
are very expensive (if possible at all) because a copy of the technical system has
to be built and then modified or even damaged. Before we describe a systematical
approach of generating random- and model-based anomalies, we first describe which
types of anomalies can occur in discrete event systems in the next section.

5.2.1 Anomalies in Discrete Event Systems

In [Kle+14] we presented four types of anomalies that can occur in discrete event
systems. During our subsequent research we identified a fifth type of anomaly—the
Anomalous ending. In this section we present the already known and the new type
of anomaly. Let a sample path be one possible pass through a model.

1. Anomalous event. Given a sample path, a single event is anomalous if it causes
a transition to an irregular system state. In a stochastic setting, an event can
also be anomalous if its probability of occurrence is lower than some anomaly
threshold. An anomalous event could be caused by an action that is not allowed
in the current state.

2. Anomalous sample path. A sample path is anomalous if every single event is
normal but the aggregation of the events’ individual occurrence probability
is lower than some anomaly threshold. This anomaly type only applies to
a stochastic setting. In a real-world system an anomalous sample path may
indicate a manipulation which forces the system to use allowed but rarely
occurring events.

3. Anomalous event timing. Given a sample path, a single event e has an ano-
malous timing if the time gap between e and its directly preceding event is
outside the regular range. If a single component works faster or more slowly,
this change may result in an anomalous event timing.

4. Anomalous sample path timing. The timing of a sample path is anomalous
if every single event has a normal timing but the aggregation of the events’
individual timing is lower than some anomaly threshold. An anomalous sample
path timing may be caused by a slowdown of the whole system whereas the
slowdown of every component is still in the acceptable range.

5. Anomalous ending (new). Given a sample path, the ending is anomalous if the
sample path ends in a state that is not a final state. In a stochastic setting,
an ending can also be anomalous if sample paths ended in the final state very
rarely. If the logging module in a system does not operate correctly, sequences
may not contain every event and thus end in the wrong state.

In the next section we describe how we insert anomalies artificially (cf. [Kle+14]),
followed by a new model-based anomaly insertion approach (Section 5.2.3).
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5.2.2 Random anomalies

For inserting anomalies randomly, we split the data into a training, validation and
test set and for every type of anomaly (cf. Section 5.2.1) we modify normal sequences
in the validation and test set only. The training set is not modified because we
operate in a one-class setting in which the training set may only contain positive
sequences. The modifications are performed in the following way2:

1. Anomalous event: Replace a randomly chosen event e from the timed event
sequence by another event e′ from the alphabet.

2. Anomalous sample path: Replace the timed event sequence by another sequence
that occurs relatively rarely in the validation and test set respectively.

3. Anomalous event timing: Modify a single time value in the timed event sequence.

4. Anomalous sample path timing: Modify every time value in the timed event
sequence.

5. Anomalous ending: Cut the sequence at some point and discard the right part.

As these anomalies are very artificial it is hard to interpret the results an anomaly
detection algorithm achieves. Hence, we also apply model-based simulations with
anomalies inserted into the model to obtain more interpretable results. In the next
section we describe this procedure.

5.2.3 Model-based simulated anomalies

Instead of randomly interspersing anomalies into normal sequences, we infer a Prefix
Tree Acceptor (PTA) with timing information as model and modify the resulting
tree. We call the Prefix Tree Acceptor (PTA) with timing information Timed Prefix
Tree Acceptor (TPTA) because it is a PTA (containing event probabilities) enriched
with the a time density function (similar to τ from the Probabilistic Deterministic
Timed Transition Automaton (PDTTA) (cf. Section 4.2)). We chose to employ
the TPTA because it models the event data perfectly. The time data itself is not
modeled optimally because a TPTA cannot model time-dependent substructures
(no transition split based on time values). To circumvent this drawback we apply
the preprocessing of the Bottom-Up Timed Learning Algorithm (BUTLA)3 before
inferring the TPTA. Like in the PDTTA we use kernel density estimators (KDEs)
for modeling the time values in the TPTA as a reasonable approximation of the time
value density function.

Opposed to a PDTTA, a TPTA does not generalize or merge any states and the
number of states may become very large. This largeness and missing generalization
may become a problem for anomaly detection, but for the use case of simulating

2We described only four anomaly types in [Kle+14], but now added the fifth one (anomalous
ending).

3For the KDE in the preprocessing we utilize the original KDE formula (Eq. (2.9)) instead of the
specialized BUTLA variant because we experimentally found that the specialized BUTLA variant
(Eq. (2.24)) does not result in a good event split.
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anomalies the size of the model does not matter4. In the following we describe how
a TPTA is inferred from data.

5.2.3.1 TPTA Inference

Given a positive data set S+
t containing only positive timed sequences, we want to

build a model from which we can sample positive and negative timed sequences
obtaining validation and test sets S+/−

t . The inference of a TPTA from S+
t is similar

to inferring a PDTTA with BUTLA preprocessing except that we omit the merge
step:

1. Preprocess S+
t to split events based on time behavior.

2. Build a PTA A′ from S+
t omitting the time values (cf. Section 2.4.1.2).

3. Apply ProDTTAL-time-learning (Algorithm 5) to A′.

ProDTTAL-time-learning (Algorithm 5) can be applied because it accepts every
Probabilistic Deterministic Finite Automaton (PDFA) as input and a PTA is a
special kind of PDFA. Figure 5.1a shows an excerpt of a TPTA with four states
and three events. The state q3 is the only visible accepting state. The transition
probabilities as well as an event split are left out for simplicity.
Now we will describe how we modify the obtained TPTA to generate anomalies.

5.2.3.2 Anomaly Insertion

Given S+
t we infer a TPTA, copy it and insert one type of anomaly into every copy

as described in the remainder of this section. Figure 5.1 shows an excerpt of this
process. As we elaborated five types of anomalies we obtain five different TPTAs
to ensure that anomalies do not overlap in any way. Hence, an abnormal sequence
is always abnormal because of a single manipulation in the respective TPTA and
not because of a mixture of different anomalies. We employ the modified TPTAs
only for sampling abnormal sequences and sample the normal sequences from the
initial (unmodified) TPTA (Fig. 5.1a). For every type of anomaly the initial TPTA
is modified as follows:

1. Anomalous event: On every tree level of the TPTA we choose a state uniformly
at random and modify the symbol of one outgoing transition to another symbol
that does not occur in the selected state (Fig. 5.1b). If there is only one
outgoing transition on the current level for all states we do not modify anything
because we want normal and abnormal transitions on every level.

2. Anomalous sample path: We compute the likelihood of all event paths that
occur in the TPTA and select the k least probable ones. These paths are
labeled as anomalous and are also removed from the TPTA that we apply to

4Compact and general models are needed for the anomaly detection on embedded monitoring
devices where memory and computational power may be very limited. For the purpose of
simulating anomalies devices with a huge amount of memory and computational power can be
used.
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sample normal sequences. If we do not remove these paths they may be labeled
as normal when sampled for the training data set.

3. Anomalous event timing: Similar to the anomalous event we choose an outgoing
transition uniformly at random from the states on every tree level and heavily
increase or decrease the outcome of its time distribution when sampling time
values from it (Fig. 5.1b).

4. Anomalous sample path timing: Similar to the anomalous sample path we
compute the likelihood of all event paths that occur in the TPTA. To avoid
overlapping of the respective sample path anomalies we select the k most
probable sample paths. On these paths every outcome of the time distribution
at every transition is slightly increased or decreased. Opposed to the sample
path anomaly we do not remove these paths from the initial TPTA as they
contain different time values.

5. Anomalous ending: On every tree level we select all states that are not final
states, i.e. states with zero final state probability. We pick one of those states
uniformly at random and add a small, but varying final state probability. Then
we adjust the probabilities of outgoing transitions such that they sum up to
one again.

...

(a) Normal TPTA.
...

(b) Event e1 (e2) has been
exchanged with e4 (e5)
(red).

...

(c) Two density functions
were replaced with the
red ones.

Figure 5.1: Excerpt of normal and modified TPTAs with anomalies of type one and
three.

Given these modifications we can sample the five types of anomalies. We start at
the root node of the respective TPTA and repeatedly choose a transition according
to the transition probabilities. Eventually, we choose a final transition and stop. A
sequence from an abnormal TPTA is labeled abnormal if an abnormal transition on
the sample path from the root node to the final state was chosen. With a sequence
labeled as normal or abnormal we can evaluate the performance of a model by
computing different metrics on the decisions made by the model.
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5.2.4 Anomaly Rate

Given ways to insert anomalies we now discuss how many anomalies shall be inserted
into the test set. If we train a classifier on the same (anomaly-free) training set, the
resulting classifier is always the same. Hence, we assume that the classifier labels
the same percentage of anomalies correctly or incorrectly, i.e. the true/false positive
and true/false negative rates are constant. As usual, we define anomalies as positive
class. We exemplarily show the respective metrics for two different classifiers and
different anomaly insertion rates. Classifier A predicts anomalies with a true positive
rate ( tp

tp+fn) of 70% and a true negative rate ( tn
tn+fp) of 90%, whereas classifier B

predicts anomalies with a true positive rate of 60% and a true negative rate of 80%.
Thus, classifier A is better than B in terms of true positive and true negative rate
and should always achieve higher performance metrics. Table 5.2 shows how the
performance metrics F-Measure, Accuracy and MCC (Section 5.1) would change for
a test set containing 1000 test samples, classifiers A and B and different anomaly
insertion rates. Classifier A is always better than classifier B for all metrics. With
increasing anomaly rate the F-Measure increases whereas the accuracy drops. The
MCC first rises and drops again with the highest MCC at 50% of inserted anomalies.
As the ordering of the classifiers is not influenced by the anomaly insertion rate, we
fix the anomaly insertion rate for the remainder of this thesis to 50%.

Table 5.2: Performance values for same experiment result with different definitions
of the positive/negative class.

% anomalies # anomalies classifier tp tn fp fn F1 Acc. MCC
1 % 10 A 7 891 99 3 0.12 0.90 0.19
1 % 10 B 6 792 198 4 0.06 0.80 0.10
5 % 50 A 35 855 95 15 0.39 0.89 0.39
5 % 50 B 30 760 190 20 0.22 0.79 0.21
10 % 100 A 70 810 90 30 0.54 0.88 0.49
10 % 100 B 60 720 180 40 0.35 0.78 0.28
50 % 500 A 350 450 50 150 0.78 0.8 0.61
50 % 500 B 300 400 100 200 0.67 0.7 0.41
75 % 750 A 525 225 25 225 0.81 0.75 0.52
75 % 750 B 456 200 50 294 0.73 0.66 0.35

In the next section we describe how the developed anomaly insertion approaches
can be used to experimentally evaluate the scaling of timed sequence-based model
learners.
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5.3 Experiment Design / Scaling of Experiments

In this section we will focus on how to design fair and comparable experiments
while increasing the size of the data or its complexity. As already stated in the
description of ALERGIA (cf. Section 2.4.2.1), the runtime experiments for ALERGIA
[CO94] are biased because the size of the training set |S+

e | was increased by sampling
more sequences from an automaton although the runtime of ALERGIA does not
directly depend on the training set size |S+

e | but on the size of the resulting PTA
(|PTA(S+

e )|). Thus, we may observe heavily differing results for the same size of
the training set |S+

e |. If an algorithm does not create a PTA or if the algorithm
computes how well the model fits the training data, the runtime depends on the size
of the training set |S+

e |. We must take into account that sampling more sequences
from a single model increases the runtime of such an algorithm.

Hence, we must not only care about the size of the training set |S+
e | when comparing

algorithms and their runtime, but we must also care about how the increase of |S+
e |

is accomplished, e.g. by only sampling more sequences from a single model or
by sampling sequences from a small model and a bigger model. Different scaling
approaches of changing an existing generative model are possible to increase the
runtime of the algorithms:

• Add event-based transition: We add new event-based transitions to the existing
model without increasing the number of states or changing the alphabet. In an
automaton we could add transitions to a state if it does not contain outgoing
transitions with all symbols. Event-based means that we add a transition with
a new event.

• Add time-based transition: We add a transition similar to the event-based case.
Instead of adding a new symbol we add new timing behavior. This is only
possible if the model we sample from can distinguish between transitions with
the same symbol but different time behavior.

• Add states: We add new states and for states that have more than one outgoing
transition we set the target state of one transition to the newly created state.
In this way we do not increase the number of transitions because we only bend
existing transitions, but we must make sure that every state is still reachable.

• Enlarge the alphabet: We introduce new symbols without changing the number
of states or transitions of the existing model. For some transitions we exchange
the existing symbol with a new one and simultaneously ensure that every
symbol is used at least for one transition.

• Bigger training set: We sample more sequences from the same generative model
without any changes to the model.

Every of the presented approaches increases only one aspect that may increase the
runtime but a combination of the approaches is possible. Such a combination may
increase the runtime but it will not be clear which change is responsible for the
runtime increase.
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When evaluating the scaling of the algorithms (cf. Section 6.6) we will apply every
of the presented scaling approaches. After describing how we implemented the scaling
approaches, we will present the expected runtime increase and compare it with the
observed runtime for every investigated algorithm .

Summary
In this chapter, we reviewed classification performance metrics and their strengths
and weaknesses with the Matthews Correlation Coefficient (MCC) being a good
performance metric for anomaly detection. Then, we presented five types of anomalies
that can occur in Discrete Event System (DES), followed by the random and the
model-based anomaly insertion approach to insert anomalies into anomaly-free timed
sequence data. The random anomaly insertion approach picks normal sequences,
modifies these sequences according to the anomaly type and changes the label to
abnormal. The model-based approach builds a Timed Prefix Tree Acceptor (TPTA)
from the anomaly-free data and modifies the resulting tree with respect to the
anomaly type. After discussing the influence of the anomaly rate, we presented
a systematic approach how to investigate the scalability of timed sequence-based
model learners in the last section. Therefore, we proposed to sample sequences from
an automaton, systematically increase the number of transitions, states, sampled
sequences or the alphabet, and investigate how different learners behave under these
circumstances.

In the next chapter, we implement the proposed anomaly insertion approaches to
experimentally evaluate different algorithms (mainly ProDTTAL,BUTLA and RTI+)
on synthetic and real-world data.
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6
Experimental Evaluation

In this chapter, we present the experimental evaluation we conducted on synthetic
data and real-world data gathered on a public Automated Teller Machine (ATM). For
every type of data, we ran the algorithms Probabilistic Deterministic Timed Transition
Automaton Learning (ProDTTAL), Real-Time Identification from Positive Data
(RTI+) and Bottom-Up Timed Learning Algorithm (BUTLA) (and the two baselines
ALERGIA and the Timed Prefix Tree Acceptor (TPTA)) on the respective data.
To the best of our knowledge, neither of the three algorithms have been compared
with each other up to now. First, we present how we tuned the hyperparameters
of the respective method (Section 6.1), followed by the default experiment setup
(Section 6.2). Then, we present preliminary experiments (Section 6.3) and more
thorough experiments (Section 6.4)—both on synthetic data. After evaluating
the approaches on real-world data (Section 6.5), we conclude the chapter with
implementing the scaling approach from the previous chapter and giving some
insights on the runtime of the analyzed approaches (Section 6.6). All in all, we
evaluated approximately 4.5 million different algorithm configurations (parameter
settings), resulting in a duration of about 3 CPU years.

6.1 Hyperparameter Tuning
All used algorithms require the specification of various hyperparameters. The right
configuration of these hyperparameters is crucial for the algorithms to work well.
Finding the best algorithm configuration can be very difficult. Instead of defining a
lot of default values and applying a grid search over the remaining hyperparameter
space, we use a state-of-the-art hyperparameter configuration algorithm that we
present in the following section.

SMAC
Sequential Model-based Algorithm Configuration (SMAC) 1 [HHL11] is an algorithm
to automatically find a good configuration for a given parametric algorithm A like
RTI+, BUTLA or ProDTTAL. We will only present the idea of SMAC. For further
details, we refer to [HHL11].
SMAC requires the following inputs:

• An algorithm A.

• A set of data sets to train and test A on.
1Freely available at http://www.cs.ubc.ca/labs/beta/Projects/SMAC/ under AGPLv3.
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• A metric m that measures the performance of A on a data set.

• A description of the hyperparameters of A, their possible values and the domain
they stem from (e.g. natural number, categorical, ordinal, . . . ).

• A default configuration for the hyperparameters.

SMAC builds a model to predict the performance of A. It builds a model with the
default configuration, then iteratively chooses and executes one of the most promising
configurations in terms of performance improvement and refines the model based on
the result of the executed configuration.

As model, SMAC applies a random forest [Bre01]. The idea of this random forest
is to train k regression trees on a random subsample of the training data and during
training of each tree, at every inner node, only a subset of the features is considered
eligible to split the tree. Given a random forest, for predicting a performance value
for an unknown algorithm configuration the mean over the outputs from all trees is
returned. The variance is also computed, as it is required in the next step.
To choose a promising configuration, the expected improvement (EI) [JSW98] is

applied. It is a metric that utilizes the mean and variance (as uncertainty measure)
to express the expected improvement for a given configuration. SMAC computes
the EI for all previous configurations and for the highest of them it performs a local
search in the hyperparameter space starting at the respective configuration. In the
local search the EI is calculated with the predicted mean and variance from the
random forest for every candidate configuration. If no configuration with larger EI
can be found in the neighborhood of a given configuration, the search is terminated.
The found configuration is the candidate to be executed next.

6.2 Experiment Setup
In this section we describe the default setup of our experiments. If not mentioned
otherwise every experiment is run as described here.

6.2.1 SMAC Setup
As mentioned in the last section (Section 6.1) all of our experiments are performed
with SMAC. In this way me make sure to find a good hyperparameter setting for
every algorithm. Usually, SMAC operates in the following way: At first SMAC tries
to find the optimal hyperparameter setting on train sets by always computing the
performance (in terms of Matthews Correlation Coefficient (MCC)) of the algorithm
on the train sets. After that SMAC validates the found setting on validation sets. As
we deal with a one-class problem we cannot compute the performance of the found
hyperparameters on the training data. Hence, we put the training and validation
data into single files and use these files for the training phase of SMAC. In this way
we already perform the validation phase during the SMAC train runs. For the SMAC
validation, we also build the model on train sets but evaluate its performance on test
sets. Therefore, every data file contains normal sequences for training and a mixture
of normal and abnormal sequences for validation/testing. For the anomaly creation
we usually apply the random and the model-based anomaly insertion approach
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(cf. Section 5.2). If we can sample anomalies directly from a modified automaton
model, we also do this. As the percentage of anomalies in the test set may be
arbitrarily set as long it is the same for all approaches when using the MCC as
performance metric we always fix it to (an arbitrarily chosen value of) 50%2. We
provide ten files for the training phase and ten files for the validation phase of SMAC.
Doing so gives SMAC the opportunity to reevaluate a hyperparameter setting on
different files. Depending on the size of the data set, we run SMAC for a different
amount of time and present this time in the respective section. The final performance
value is the mean of the algorithm’s performance in terms of MCC on all data files.

To tune the hyperparameters the respective hyperparameter values must be spe-
cified before. As every algorithm has a lot of hyperparameters that can be set the
values can be found in Appendix A.1.

6.2.2 Default Environment

Some parameters in the experiments are always set to a fixed value if not mentioned
otherwise. In this section we will describe which parameters are fixed and why.

6.2.2.1 Hardware

We ran our experiments on computers that all had the same hardware configuration.
Every job we ran was able to run on a single dedicated CPU core which it did not
share with any other job. Additionally, we limited the amount of memory for every
job to 4 GB RAM (by specifying a Java Virtual Machine (JVM) argument). As the
computers contained 8 GB RAM and an Intel Core i7-2600 CPU, we usually ran two
jobs in parallel on one computer.

6.2.2.2 Feature Extractors

In Section 4.4.2.1 we described how to extract features from a list of probabilities /
plausibilities. The features we extract are the following:

1. The length-normalized sequence aggregation.

2. The minimal value of the list.

3. The maximal value of the list.

4. The arithmetic mean of the list.

5. The arithmetic variance of the list.

6. The minimum difference between two succeeding entries.

7. The maximal difference between two succeeding entries.

8. The length of the sequence.
2Please note that 50% is an arbitrary value. As we focus on comparing different algorithms the
percentage of anomalies should not influence the ranking of the algorithms, but if anything the
MCC value (Section 5.2.4).
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Usually we evaluate four different feature extractors ranging from a single feature
to all features. Ideally, we would have tried all combinations of features, but that
would have blown the experiment duration. Thus, we decided to create four feature
creator settings as a good trade-off between experiment duration and parameter
space covering3. The first feature creator only contains the first feature, the second
feature creator contains features 1–3, the third contains the features 1–4, and the
fourth feature creator contains all features.

6.2.2.3 One-class Classification Algorithms

As our approach for anomaly detection presented in this thesis is modular with
respect to the one-class classification algorithm we could evaluate our approach with
every possible one-class classification algorithm. We chose some algorithms that we
already presented in Section 2.5.1. The following algorithms are used as one-class
classification algorithms:

• Threshold on every entry of the feature extractor

• DBSCAN with a single threshold on the distance to the next core point

• k-Means/X-Means/G-Means with a single threshold on the distance to the
next cluster center

• One-class SVM (ν-SVM) with ν as the percentage of rejections of samples from
the training set (target rejection rate)

6.2.2.4 Anomaly Insertion

We evaluate every approach on different data sets. For the experiments on synthetic
data, we insert anomalies directly into the data-generating model. Additionally, we
apply our random and model-based anomaly insertion approach for every experiment
to insert anomalies into anomaly-free data. All anomaly insertion approaches can
insert different types of anomalies that range from easily detectable to very hard.
We evaluate every type of inserted anomaly on separately and additionally provide a
mixed data set that contains all types of anomalies at the same proportion.

6.2.3 Algorithm Improvements and Implementation Details

In this section we will present which problems can occur with BUTLA and RTI+
and also present improvements for those problems.

6.2.3.1 RTI+

The source code of RTI+ is freely available4, but the implementation crashes even for
simple examples without any error message. Hence, we reimplemented the algorithm.
Additionally, we added some minor bug fixes and a small modification, that we also

3We chose four feature creators arbitrarily. Any other value that does not blow the experiment
duration could have also been chosen.

4RTI+ source code available under GPLv3 at http://www.cs.ru.nl/~sicco/software.htm.
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take into account the probabilities that a sequence ends in a state even although
a Probabilistic Deterministic Real-Time Automaton (PDRTA) does not contain
final state probabilities. Furthermore, we added the possibility to obtain a list of
likelihoods of a given timed sequence for a given PDRTA. To generate the histograms
we split the time values into k quantiles with k as a hyperparameter (originally, the
histograms have to be user-defined, but Verwer implemented the same functionality).
Apart from that we had to interpret how some implementation details are supposed
to work (following the description in [VdW10]). Nevertheless, the choices we had to
make do not have a big impact in the algorithm according to preliminary experiments.

6.2.3.2 BUTLA

For BUTLA the situation is different compared to RTI+ because we did not find
a sound and clear description of the algorithm. In this section we present different
problems we encountered when applying BUTLA [Pap16].

KDE Formula As presented earlier (cf. Section 2.4.3.1) the Kernel Density Esti-
mation (KDE) function in [Mai14] is not defined correctly. Hence, we tried to find
out the meaning of the KDE while still keeping the variable smoothing factor of
0.05. Figure 6.1 shows the comparison of a KDE with Gaussian kernel compared to
all possible meanings of the KDE function in [Mai14] (for more details we refer to
[Pap16]). The data represents time values that occur for the same event. The time
values were sampled from overlapping Normal distributions with the mean marked
as E(ai). As BUTLA assumes a Gaussian distribution of subevents, it should locate
splits (local minima) only between two succeeding subevents. The blue line shows the
KDE with Gaussian kernel and bandwidth h = 10. It represents the data very well
and finds exactly the local minima where the event should be split into subevents
(between the mean values of two subevents).

t
E (a1) E (a2) E (a3) E (a4) E (a5) E (a6) E (a7)

Orig. formula
(Maier 14)

Our interpretation #1 Original KDE formula

Our interpretation #2

Figure 6.1: Original KDE and the possible interpretations of the KDE described in
[Mai14].
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The light red line shows the KDE as presented in [Mai14]. The approximation
heavily oscillates, especially for low values, and does not correctly model the distri-
bution for higher values. The dark red and black line show the approximation of our
interpretation of the correct KDE in BUTLA (cf. Eq. (2.24)). Both approximations
heavily oscillate for low values, but model the distributions better than the light red
line. Nevertheless, compared to the original KDE (blue line), all possible interpre-
tations of the KDE formula for BUTLA result in too many local minima and thus
split the data into too many subevents.

During preliminary experiments with large time values BUTLA crashed for some
runs because it split an alphabet with 17 events (|Σ| = 17) into more than 850
subevents. An alphabet of that size leads to a big prefix tree consuming a lot of
memory and CPU time for merging those subevents. Hence, BUTLAs original KDE
formula is not feasible, especially when dealing with large time values.

Overlapping Subevents As described in Section 2.4.3.1 BUTLA performs the event
split for generating subevents globally. Then every tuple of symbol and time value is
mapped to a subevent. As it is assumed that the time values of the subevents follow
a Normal distribution these Normal distributions may overlap.
Figure 6.2 shows such an overlap for events a1 and a2. We call the overlap the

critical area. The dotted line indicates the time value at which BUTLA splits the
events into two subevents.

a1 a2

critical area

Figure 6.2: Critical area for two overlapping subevents a1 and a2.

When encountering (globally produced) critical areas it may happen that events
with time values in the critical area may be mapped to the wrong subevent. In
Fig. 6.2 the time value around the dotted line may belong to event a1 or a2. Hence,
some events that are subevents of type a1 are transformed to a2 and vice versa.
This incorrect mapping induces incorrect subtrees in the prefix tree. In [Pap16] we
proposed two possible solutions. The first approach globally isolates critical areas
and introduces a separate event (e.g. a1.5 between a1 and a2) for every critical area.
The second approach locally identifies states in which only one of the two subevents
occurs. For every such state all time values are mapped to the occurring subevent
by locally extending the subevents interval. Figure 6.3 shows two distributions with
a critical area. No time value would be definitely mapped to a2 locally. Hence, the
interval of a1 is locally extended to include the critical area because all time values
belong to a1 or to the critical area.

Additionally, we also implemented BUTLA in a top-down manner and can compare
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q
a1 a2

a1 a2

Figure 6.3: Local interval extension based on unused critical area (from [Pap16]).

the numbers of outgoing instead of incoming transitions. In the remainder of this
chapter we will evaluate and most often use the improvements of BUTLA. We call
these improvements Improved Bottom-Up Timed Learning Algorithm (BUTLA-i).
The source of all algorithms we evaluate is implemented in Java and freely available
at https://github.com/TKlerx/SADL under GPLv3.
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6.3 Preliminary Synthetic Experiments
In this section we present preliminary experiments on a small model. We exploit the
properties of ProDTTAL and RTI+ in Section 4.3.4 to build special PDRTAs from
which we sample anomalies. Additionally, we investigate the performance of BUTLA
and compare it to its improved version BUTLA-i (cf. Section 6.2.3.2).

6.3.1 PDRTA Data Generation

In this experiment we sample normal and abnormal sequences directly from a PDRTA.
We inserted anomalies into the PDRTA in two distinct ways—one that cannot be
detected by a Probabilistic Deterministic Timed Transition Automaton (PDTTA),
but can be detected by a PDRTA and vice versa. As the PDTTA does not create
more than one transition for a single symbol and different time values it cannot
detect anomalies that occur in substructures that are reached because of the same
symbol but different time values (called substructural). The PDRTA can distinguish
between different timings and create more than one transition for a single symbol.
On the other hand the PDRTA handles time values and symbols independently,
hence it cannot detect an abnormal time value v in conjunction with symbol a if v is
normal in conjunction with symbol b (called interdependent).
Figure 6.4 shows the normal PDRTA with the two modifications we performed

(marked red). The initial PDRTA is shown in Fig. 6.4a, Fig. 6.4b shows the mo-
dification that cannot be detected by a RTI+ (interdependent) and Fig. 6.4c the
modification that cannot be detected by a ProDTTAL (substructural). In Fig. 6.4b
we swapped the time guards from q0 for symbols a and b. In Fig. 6.4c we swapped
the time guards from q1 for the symbol c.
The normal sequences are always sampled from the initial automaton while the

anomalies are sampled from the automatons in Figs. 6.4b and 6.4c. We sample 700
sequences for training as this is enough to learn such a small automaton. For testing
we sample 300 sequences with an anomaly rate of 50% (as mentioned in Section 6.2).
Every configuration is evaluated with SMAC for four hours. These four hours are
enough since the automaton is simple and the data set is small. We expect RTI+ to
perform poorly on anomalies sampled from Fig. 6.4b, and ProDTTAL to perform
poorly on anomalies from Fig. 6.4c because these anomalies were designed to not be
detectable by the respective algorithm.

6.3.2 Results

For comparison we evaluate the other algorithms (BUTLA, ALERGIA, TPTA) on
the same data sets as well.
Table 6.1 shows the results of this experiment in terms of Matthews Correlation

Coefficient (MCC) without any improvements of BUTLA (cf. Section 6.2.3) or a
preprocessing step for the other algorithms. The best MCC is printed in bold and
the number of states of the final model is given in round brackets (lowest in bold).
ALERGIA is given as a baseline, but as the inserted anomalies are only visible if
the time values are taken into account, the result is not surprising5. We expected

5Recall that an MCC of zero is equivalent to random guessing.
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a [1, 5] p=0.5

b [6, 10] p=0.5

c [1, 5] p=0.5

c [6, 10] p=0.5

d [1, 10] p=1.0

e [1, 10] p=1.0

f [1, 10] p=0.5

(a) Normal PDRTA that is used for sampling normal sequences.

a [6, 10] p=0.5

b [1, 5] p=0.5

c [1, 5] p=0.5

c [6, 10] p=0.5

d [1, 10] p=1.0

e [1, 10] p=1.0

f [1, 10] p=0.5

(b) Interdependent anomaly in q0 for symbols a and b.

a [1, 5] p=0.5

b [6, 10] p=0.5

c [6, 10] p=0.5

c [1, 5] p=0.5

d [1, 10] p=1.0

e [1, 10] p=1.0

f [1, 10] p=0.5

(c) Substructural anomaly in q1 for symbol c.

Figure 6.4: PDRTA modifications for tailored anomaly creation.

the TPTA and ProDTTAL to perform similarly on both data sets as the TPTA
is a PDTTA without merges but both represent similar (timed) languages. While
this assumption holds for the substructural data, ProDTTAL even outperforms
the TPTA in the interdependent data with an optimal result (MCC = 1). We
believe that the TPTA overfits the training data whereas ProDTTAL generalizes
well. As expected, ProDTTAL performs poorly on the substructural anomalies
(0.31) and optimal on the interdependent ones, while RTI+ performs poorly on the
interdependent anomalies (0.38) and optimal on the substructural ones. BUTLA
(without improvements) performs poorly on the substructural anomalies (0.08) as
well as on the interdependent anomalies (0.46).

The number of states is almost equal for both anomaly types and the algorithms
ALERGIA, ProDTTAL and RTI+ (5), whereas BUTLA requires more states (19 and
11). As the TPTA does not merge any states, it contains a huge amount of states
(685 and 870).

In addition to performing the original algorithms we also evaluate the improved
version of BUTLA (BUTLA-i; cf. Section 6.2.3). For a ALERGIA, TPTA and
ProDTTAL we first perform the BUTLA-preprocessing to overcome the problem of
not detecting substructural anomalies.
Table 6.2 shows the result of the experiments with the improved algorithms. We

expected that the BUTLA-preprocessing (time-based event split) enables ALERGIA,
TPTA and ProDTTAL to detect substructures based on different time behavior, and
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Table 6.1: MCC for data sampled from PDRTAs with substructural and interdepen-
dent anomalies.

anomaly ALERGIA TPTA ProDTTAL RTI+ BUTLA
substructural 0.01 (5) 0.31 (685) 0.31 (4) 1.00 (5) 0.08 (19)
interdependent 0.12 (5) 0.83 (870) 1.00 (5) 0.38 (5) 0.46 (11)

thus, increase the respective MCC. Surprisingly, the BUTLA-preprocessing does not
improve the MCC for those algorithms, but sometimes even decreases the algorithms’
performance. On the other hand, the improvements in BUTLA (BUTLA-i) boost its
performance to an (almost) optimal MCC of 1.00 (0.97).
The number of states remains (almost) the same for the algorithms ALERGIA,

TPTA and ProDTTAL. However, BUTLA requires more states compared to the not
optimized version for substructural anomalies (49 instead of 19), but less states for
interdependent anomalies (6 instead of 11).

Table 6.2: MCC for data sampled from PDRTAs with different types of anomalies
and algorithm improvements.

with BUTLA-preprocessing
anomaly ALERGIA TPTA ProDTTAL BUTLA-i
substructural 0.00 (6) 0.27 (685) 0.29 (4) 0.97 (49)
interdependent 0.03 (5) 0.83 (870) 1.00 (5) 1.00 (6)

To give an impression of how many hyperparameter settings were evaluated, Ta-
ble 6.3 shows the number of different hyperparameter settings for the respective
algorithm (without improvements). SMAC stopped evaluating after 4 hours. De-
pending on the runtime of the algorithm, SMAC evaluated a different number of
hyperparameter settings. Please note that SMAC spawns a new process for every
new hyperparameter setting. Hence, the overhead of spawning Java processes may
be even bigger than the actual runtime of the algorithm. Nevertheless, the table
gives an indication on the runtime of the algorithms. The TPTA performs the least
evaluations because it has to build a KDE and approximate the integral for every
transition. As the TPTA is a tree, it contains roughly as many transitions as states
and has to approximate a lot of integrals. ProDTTAL first runs ALERGIA and then
approximates the KDEs via Monte Carlo integration. It is obvious that ProDTTAL
runs slower than ALERGIA. Surprisingly, RTI+ runs quite fast. This fast runtime
may yield from the small data set and the simple automaton. For bigger data sets
the table may look different. BUTLA runs slightly faster than RTI+ and ALERGIA
is the fastest algorithm because ALERGIA only operates on events and discards the
timing information.
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Table 6.3: Number of hyperparameter settings evaluated by SMAC in 4 hours for
the algorithms without improvements.

anomaly ALERGIA TPTA ProDTTAL RTI+ BUTLA
substructural 7492 2452 4583 5136 5782
interdependent 8411 2736 4727 5739 6237

Additionally, we evaluated Minimal Divergence Inference (MDI) as a Probabilistic
Deterministic Finite Automaton (PDFA)-learning algorithm for ProDTTAL. Unfor-
tunately, MDI did not increase the classification performance as standalone or in
conjunction with ProDTTAL. The results in terms of MCC and number of states are
the same as the ones with ALERGIA in Table 6.1. Maybe, the automaton we sample
the data from is too simple such that ALERGIA and MDI can infer an (almost)
optimal PDFA. Hence, we investigate MDI again on real data in Section 6.5.
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6.4 Synthetic Data Evaluation

In this section we evaluate the algorithms RTI+, BUTLA and ProDTTAL on more
synthetic data. Therefore, we construct different automata and sample data from
these automata. As we control the model (automaton) that generates the positive
data, we have two possibilities to sample positive and negative data:

1. Insert anomalies into the automaton and sample positive and negative sequences
directly from the automaton.

2. Sample only positive sequences from the automaton and create negative sequen-
ces artificially or model based (with a TPTA) as described in Section 5.2.3.

For both approaches no currently existing automaton model can represent the
behaviors of PDRTA, PDTA and PDTTA at the same time. The PDRTA cannot
model probability distributions other than a uniform distribution for every time bin.
For the PDTA no distributions are defined for the time intervals. The PDTTA cannot
model different substructures based on time values because it does not contain any
time guards.

If we chose one of the models to sample the sequences from, the performance may
not be comparable because the results may be biased (probably towards the learning
algorithm for the type of model the sequences were sampled from).
Still, we could sample sequences from a PDRTA and a PDTTA6 being aware

of possibly biased results or try to create a more expressive model. For the latter
option we propose to build a non-deterministic PDTTA (called Probabilistic Non-
Deterministic Timed Transition Automaton (PNTTA)) where the same event e may
occur for more than one transition from a single state q.

Definition 16 (PNTTA). A Probabilistic Non-Deterministic Timed Transition
Automaton is a six-tuple (Σ, Q, q0, δ, π, τ) with

• Σ is a finite alphabet comprising all relevant events.

• Q is a finite set of states.

• q0 ∈ Q is the start state.

• δ : Q× Σ→ P(Q): The state-transition function assigning a state and symbol
arbitrarily many successor states.

• π twofold:

– π1 : δ → [0, 1]: The transition probability function assigning a probability
to every transition .

– π2 : Q→ [0, 1]: The final state probability function assigning a probability
to every state .

6For a PDTA it is not possible to sample sequences as no probability distribution over the time
values is defined.
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• τ : δ → Θ is a transition time plausibility function, which assigns a plausibility
distribution θ ∈ Θ to each transition, with Θ being the set of all possible
plausibility distributions. Every θ ∈ Θ has the signature θ : N0 → [0, 1], with
N0 representing all possible time values.

The resulting PNTTA can represent different substructures based on the time
value observed in combination with an event.

Hence, we have two options to sample artificial sequences from:

1. Sample from a PDRTA or PDTTA being aware of possibly biased results.

2. Sample from a PNTTA.

We end up with nine possibilities how to generate positive and negative sequences
as shown in Table 6.4.

Table 6.4: Nine possibilities how to generate synthetic data sets.
anomaly generation generative model
sampled directly PDRTA

PDTTA
PNTTA

artificially PDRTA
PDTTA
PNTTA

model-based PDRTA
PDTTA
PNTTA

In the following we will present the respective automaton instantiations of the
PDRTA, PDTTA and PNTTA and how we modified them to directly produce
anomalies. For the artificial and model-based anomaly creation we refer to Section 5.2.

6.4.1 Direct Anomaly Insertion

Figure 6.5 shows the initial automaton from which we sample the normal sequences.
It is a very simple automaton with four states consisting only of one branch and join
and one loop.
The automaton model, their symbols and probabilities, and the respective time

distributions for the transitions t1 to t5 are shown in Table 6.5. The transition
probabilities are the same for all automaton models. The symbol for transition t2
differs between the PDTTA and the other models (a or b) because the PDTTA
cannot contain two transitions from a single state with the same symbol (in this
case q0). The time distributions for the PDTTA and the PNTTA are the same. The
PDRTA can only represent uniform time distributions and thus we adapted them to
produce a (to some extent) similar time behavior. We use N (U) as symbol for a
normal (uniform) distribution. Overlapping distributions are indicated by the set
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Figure 6.5: Automaton for sampling normal and abnormal sequences.

union ’∪’. The final state probability for state q3 is initially set to an arbitrarily fixed
value greater than zero. We fix π(q3) = 0.5 such that we do not obtain too long
sequences.

Table 6.5: Overview on the symbol and time distributions for the different automaton
models.

automaton property t1 t2 t3 t4 t5

all probability 0.5 0.5 1 1 0.5
PDTTA symbol a b c d b
PNTTA symbol a a c d bPDRTA
PNTTA time N (2.5, 1) N (10, 2) N (50, 10) N (5, 1) U(1, 20)PDTTA ∪N (15, 2)
PDRTA time [0; 5] [6; 15] [0; 100] [0; 10] [1; 20]

Table 6.6 summarizes how we insert the anomalies A1, . . . , A7 directly into the
respective automaton models. The anomalies can be defined independently of the
specific automaton model because we only change specific aspects of the transitions
that are common in all automaton models. These anomalies should not be confounded
with the anomaly types 1–5 that we identified for Discrete Event System (DES).
Instead, they change symbols or time behavior in the data-generating automaton
that should be hard to detect based on the properties of the respective algorithms.
The anomalies A1 and A2 change symbols but do not touch time behavior while the
anomalies A3 and A4 only change the time behavior. Anomaly A5 changes the final
state of the automaton and the anomalies A6 and A7 change both, symbols and time
behavior, in the respective automaton model.

In addition to the direct anomaly creation, we sample data from the normal automa-
ton and create the anomalies artificially and model-based (type 1–5; cf. Section 5.2).
Furthermore, we create a mixed data set that contains anomalies of all types in equal
size. As in the preliminary experiments (cf. Section 6.3) every configuration is evalu-
ated with SMAC for four hours. These four hours are enough since the automaton
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Table 6.6: Overview of ways of directly inserting anomalies.
anomaly type description

A1 Exchange symbol of t3 and t4.
A2 Exchange symbols of t1 and t2.
A3 Exchange time distributions of t1 and t2.
A4 Exchange time distributions of t3 and t4.
A5 Make q0 the final state with the same probability (0.5) and

remove q3 as final state (adapt the transition probabilities
accordingly).

A6 Exchange t3 and t4.
A7 Exchange t1 and t2.

is simple and the data set is small. As before we sample 700 sequences for training
as this is enough to learn such a small automaton. For testing we again sample 300
sequences with an anomaly rate of 50% (as mentioned in Section 6.2). For BUTLA
we added all improvements as optional parameters to SMAC such that they can be
used if SMAC finds them useful (cf. Section 6.2.3). As performance metric we used
the MCC as in the previous experiments. Even though the BUTLA-preprocessing
did not lead to good results in the preliminary experiments for ALERGIA, TPTA
and ProDTTAL we added the BUTLA-preprocessing as optional hyperparameter.
The preliminary results may be data dependent and hence, the preprocessing may
yield better results for different data. Depending on whether the preprocessing is
enabled for ALERGIA, its anomaly detection performance may increase for particular
anomalies.

In the following we will present all results of the experiments with synthetic
data. We start with data sampled from the same automaton as in the preliminary
experiments, but with a different setup, and then present the anomalies we sampled
from the automaton shown in Fig. 6.5. As we can implement this automaton as a
PDRTA, PDTTA or PNTTA we present results for every such implementation. For
all experiments we do not show the standard error because it is very small (or not
existent at all), most probably because the all test data sets were sampled from the
same data-generating process.

The experiments have to be read with care because the random or model-based
anomaly insertion is arbitrary and inserting anomalies in any other way may yield
different results. Still, they give a good overview how the approaches perform in
different setups. In general, the anomalies of type 1 (abnormal single event) and 5
(abnormal ending) can be detected very easily by all approaches. The approaches
ProDTTAL, RTI+ and BUTLA-i (which we will call relevant) usually outperform
ALERGIA and TPTA because ALERGIA cannot represent time and the TPTA does
not generalize. Sometimes, (almost) all approaches achieve the same result which is
an indication that no better than the achieved performance can be achieved for the
respective data set.
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6.4.2 Additional Results for the Initial PDRTA
Figure 6.6 shows the experiment similar to the preliminary experiments, except we
create a data set in which we equally mix all anomaly types and apply our random and
model-based anomaly insertion approach. The directly inserted anomalies (Fig. 6.6a)
are a recap of the preliminary experiments (including algorithm improvements).
Additionally, we evaluate the performance on a mixture of both anomalies. ALERGIA
(red) performs slightly better in the mixed case, but still very poorly compared to
the other approaches. The TPTA (blue) performs almost as good as ProDTTAL
(green) and RTI+ (purple) while BUTLA-i (orange) performs almost optimal. The
interdependent and substructural anomaly types were already presented in the
preliminary synthetic experiments (Table 6.1 in Section 6.3).
For the random anomalies (Fig. 6.6b) ALERGIA and TPTA perform equally for

the mixed case, but show differences for the non-mixed case: ALERGIA performs
way worse than the TPTA on anomalies of types 2–4, but slightly better on types 1
and 5. Therefore, the almost equal performance on the (equal) mixture of anomalies
surprises. ProDTTAL performs as good as RTI+ and BUTLA-i on all anomaly types
except for type 2. In this case, the inferiority of ProDTTAL for type 2 explains
the slightly worse performance on the mixture of anomalies. RTI+ and BUTLA-i
perform best and equally well on all anomaly types and hence, also equally on the
mixture of anomalies.
For the model-based anomalies without preprocessing, all approaches perform

optimal on anomalies of type 1 and 5 (TPTA only almost optimal).
The difference between the model-based anomalies with and without preprocessing

is quite small. The ranking of the approaches is mostly the same for both approaches
but the results strongly differ for type 2 (performance of all algorithms is higher
with preprocessing) and type 4 (ProDTTAL and BUTLA-i perform better with
preprocessing).
Summarizing, BUTLA-i optimally classifies on direct anomalies (cf. preliminary

experiments in Section 6.3), ProDTTAL performs worse than RTI+ and BUTLA-i
on random anomalies, and for model-based anomalies the three relevant approaches
perform similarly.
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Figure 6.6: MCC for different types of anomalies sampled from the PDRTA of the preliminary experiments.115



Chapter 6 Experimental Evaluation

6.4.3 PDRTA Data Generation
Figure 6.7 shows the results of the experiments with data sampled from a PDRTA
based on the automaton model in Fig. 6.5 with the direct anomaly insertion as
described in Table 6.6.

For the directly inserted anomalies, ALERGIA (red) performs very poorly except
for anomaly A5 (for which every approach performs optimal). Hence, ALERGIA’s
overall performance is quite low. The other approaches perform quite well except
for anomaly A2, for which we cannot explain this very poor performance. The
performance of the TPTA (blue) is better than ALERGIA’s, but always behind the
relevant approaches. For all anomalies RTI+ (purple) performs best with an optimal
performance for A1, A3, A5, A6, A7. This performance is not very surprising because
the data-generating model is a PDRTA. ProDTTAL (green) is slightly worse than
RTI+ in all cases with a bigger discrepancy for A3. In almost all cases, BUTLA-i
(orange) performs almost as good as ProDTTAL.

For the random anomalies (Fig. 6.7b) the result is similar to the direct anomalies.
RTI+ performs best on all types of anomalies followed by ProDTTAL and BUTLA-i.
Surprisingly, ALERGIA performs very poor on anomalies of type 2–4, but almost as
good as the TPTA for the mixture of anomalies. It seems that the anomalies from
type 1 to type 4 become harder to detect for all approaches (decaying with every
type) whilst the anomalies of type 5 are easy to detect.
The results for the model-based anomaly insertion are similar for the mixture of

anomalies but differ when looking at every single type of anomaly. Looking at the
model-based anomalies without preprocessing (Fig. 6.7c) the relevant approaches do
not differ much in terms of MCC. Even ALERGIA and the TPTA deliver comparable
results except for anomaly types 3 and 4 and ALERGIA can even detect time-based
anomalies of type 3. As usual, the anomaly types 1 and 5 are very easy to detect.
Type 2 is still well detectable with an MCC of 0.8. For types 3 and 4 the performance
of all approaches is quite low (≈ 0.4) with the baselines a bit worse (type 3) or quite
bad (type 4).
The model-based anomalies with preprocessing (Fig. 6.7d) only yields a different

result for the anomaly types 2 and 3. For type 2, the performance is lower than
without preprocessing (0.8 vs. 0.5) and ALERGIA and the TPTA slightly beat
RTI+ (difference to ProDTTAL and BUTLA-i is approx. 0.1 in MCC). On the other
hand, the performance for type 3 improves to an MCC of almost 0.8 (0.4 without
preprocessing) with only one change in the ranking (TPTA performs better than
RTI+).
All in all, RTI+ detected the best when sampling data and anomalies from a

PDRTA, slightly followed by the other relevant approaches ProDTTAL and BUTLA-i.
Some anomaly types are very easy to detect while for others the anomaly detection
performance is far from being optimal.
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Figure 6.7: MCC for different types of anomalies sampled from a PDRTA.117



Chapter 6 Experimental Evaluation

6.4.4 PDTTA Data Generation
Figure 6.8 shows the results of the experiments with data sampled from a PDTTA
based on the automaton model in Fig. 6.5. For the direct anomalies (Fig. 6.8a)
all approaches except ALERGIA (red) perform very well with ProDTTAL (green)
performing optimal, followed by BUTLA-i (orange), RTI+ (yellow) and TPTA
(blue). ProDTTAL and BUTLA-i usually perform optimal for all inserted anomalies
(A1, . . . , A7). The TPTA performs slightly worse than optimal for all anomalies. RTI+
performs better than the TPTA except for anomaly A3 for which RTI+’s performance
drops below 0.8. ALERGIA performs optimal for anomalies A1, A2, A5, A6 and A7
but not better than random for anomalies A3 and A4. The mixture of anomalies
summarizes the single anomalies. ProDTTAL and BUTLA-i perform (almost)
optimal, followed by the equally well performing RTI+ and TPTA. ALERGIA shows
the worst, but still acceptable performance.
Figure 6.8b shows the performance for the random anomalies. The anomalies of

type 1 and type 5 are detected very well by all approaches, whilst the anomalies of
type 2 and 4 are detected very poorly. As expected, ALERGIA is unable to detect
the time-based anomalies of type 3 and 4. Apart from that, all approaches (even
ALERGIA) perform almost equal, and the performance on the mixture of anomalies
is also comparable.

For the model-based anomaly insertion the trend is comparable to the model-based
anomalies for the PDRTA (Fig. 6.7). Comparing the the performance with and
without preprocessing, we observe a similar performance for the mixture of anomalies
but differences for the anomaly types 2–4. The MCC for the mixed anomalies is also
around 0.6 for both model-based approaches.
For the model-based approach without preprocessing (Fig. 6.8c), all relevant

approaches perform similar on all anomalies (and their mixture) and also the TPTA
performs comparable. As usual, ALERGIA cannot detect the time-based anomalies
of type 3 and 4.
Figure 6.8d shows the comparison for the model-based anomaly insertion with

preprocessing. While the performance for the anomaly types 1 and 5 is (almost)
optimal for all approaches, no approach dominates any other approach for the
anomaly types 2–4. Unusually, ALERGIA can detect time-based anomalies of type 3.
For the mixture of anomalies, ProDTTAL is the only algorithm that achieves an
MCC greater 0.6. While BUTLA-i and RTI+ closely follow ProDTTAL, the TPTA
and ALERGIA achieve an MCC of approx. 0.5.
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Figure 6.8: MCC for different types of anomalies sampled from a PDTTA.
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6.4.5 PNTTA Data Generation
Figure 6.9 shows the results of the experiments with data sampled from a PNTTA
based on the automaton model in Fig. 6.5. Compared to Fig. 6.8 (sampling from a
PDTTA) the performance of ProDTTAL (green) for mixed anomalies is as good as
the TPTA (blue) and worse than RTI+ (purple) or BUTLA-i (orange) for directly
inserted anomalies (Fig. 6.9a). ALERGIA (red) achieves a poor performance on the
mixture of anomalies because it performs not better than random guessing except for
anomaly A5 (optimal detection). Not further considering ALERGIA, all approaches
perform (almost) optimally for anomalies A1, A4 and A5, and very poor for A2. The
differences for anomalies A3, A6 and A7 show the same trend as the mixture of
anomalies: TPTA and ProDTTAL perform almost equally, but much worse than
RTI+ and BUTLA-i which also perform almost equally.
This trend is similar, but not as strong for the random anomalies (Fig. 6.9b) for

type 2 and 3, and the mixture of anomalies. As usual, anomalies of type 1 and
5 are very well whereas type 4 is hardly detectable. Hence, RTI+ and BUTLA-i
outperform TPTA and ProDTTAL for all cases, but the difference is smaller than
for the direct anomalies (Fig. 6.9a). ALERGIA performs very well for type 1 and 5,
and very badly for type 2–4.

For the model-based anomaly insertion with and without preprocessing (Figs. 6.9c
and 6.9d) all relevant approaches perform similarly with an MCC between 0.5 and
0.6. Again, ALERGIA can detect time-based anomalies (type 3) for the model-based
approach without preprocessing (Fig. 6.9c).

Summary
The experiments on synthetic data showed that depending on the type of anomaly
and from which model type we sample the anomalies, one of the relevant approaches
(ProDTTAL, RTI+ or BUTLA-i) achieves the highest performance in terms of MCC,
and every relevant approach always beats the baselines ALERGIA and TPTA. For
some anomaly types the anomaly classification is optimal (e.g. anomaly type 1 in
Fig. 6.8a with MCC = 1) while for others it is no better than randomly guessing (e.g.
A2 in Fig. 6.7a with MCC = 0). On the one hand, the results of the model-based
anomaly insertion have to be read with care because approaches achieved a good
performance for anomalies that should not be detectable for those approaches (e.g.
ALERGIA sometimes detects time-based anomalies of type 3). We conclude that
the TPTA is not a suitable approach for inserting anomalies into an anomaly-free
data set. On the other hand, the random anomaly insertion seems consistent with
the capabilities of the applied approaches. Considering only the direct and random
anomaly insertion, RTI+ performs best if we generated the data from a PDRTA
or PNTTA. ProDTTAL performs best if the data-generating model is a PDTTA.
In the next section we will evaluate the classification performance of the respective
approaches on real-world ATM data.
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Figure 6.9: MCC for different types of anomalies sampled from a PNTTA.121
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6.5 Real-world Data Evaluation
In this section we evaluate the algorithms RTI+, BUTLA-i (BUTLA with impro-
vements; cf. Section 6.2.3) and ProDTTAL on real-world data. We use data of cash
machines (ATMs) that we gathered in cooperation with Diebold Nixdorf during the
research project InverSa, that was partly funded by the German Federal Ministry
of Education and Research (BMBF) within the Leading-Edge Cluster “Intelligent
Technical Systems OstWestfalenLippe” (it’s OWL). In this research project, we
investigated how to integrate our approach into an ATM fraud detection system.
This approach has been published in [Pri+15]. In [And+14] we presented the ATM
fraud detection problem and preliminary results using non-timed sequence data.

The real-world data was gathered on a publicly available ATM in a period of nine
months without registering any fraud. We only monitored process data from the
workflow but no data related to the customer withdrawing money as this data is
encrypted and not contained in the log files. The data was gathered via the diagnosis
& serviceability (D&S) platform and from there written to a text log file. The
recorded log file was 1.6 GB big and contained 15 million status messages. Before
we actually performed evaluations on the data we had to apply some preprocessing
and filtering.

6.5.1 Preprocessing

In this section we describe the format of the data and how we preprocess and filter the
data. Listing 6.1 shows an excerpt from the log. Every line starts with a timestamp,
followed by the module that produces this line (in square brackets), a message id
(“MessageId”), and sometimes one or more payload values (“Value”).

Listing 6.1: Excerpt from the event log of a Wincor Nixdorf ATM.
17.06.2013 11:37:13.968 [SEL] MessageId : SE_DOOR_OPEN
17.06.2013 11:37:14.171 [EPP] MessageId : EPP_SERIAL_STATUS , Value : FFTEST1023101407
17.06.2013 11:37:14.171 [EPP] MessageId : EDM_REMOVAL_SWITCH_STATUS , Value : 192
17.06.2013 11:37:52.921 [PRT] MessageId : TP07_SENSOR_CODE , Value : 0
17.06.2013 11:37:53.000 [PRT] MessageId : TP07_ERROR_CODE , Value : 0
17.06.2013 11:37:57.390 [CHD] MessageId : CHD_INIT_START_STATUS , Value : 2000000000000
17.06.2013 11:37:57.390 [CHD] MessageId : CHD_TYPE , Value : 50
17.06.2013 11:38:00.343 [CHD] MessageId : CHD_INIT_STOP_STATUS , Value : 2000000000000
17.06.2013 11:38:00.343 [CHD] MessageId : CHD_STATUS_TRANSPORT , Value : 0

For the preprocessing we create unique events by concatenating the module name
and the message id and then removing both fields in a first step. After this step,
the log file contains 40 different message types. As we do not process the payload
values at all, we also remove them. Hence, the log only contains a timestamp and a
string that uniquely identifies the message type. In the following we treat this unique
identifier as the event identifier.

Up to this point it is not possible to regard this log file as a set of timed sequences
on which we can apply the algorithms presented in this thesis for three reasons:

1. The log file contains periodic events logged by the D&S platform which may
confuse the learning algorithms.

2. The log file does not consist of a set of sequences but of one big sequence.
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3. The timestamps are absolute values instead of waiting intervals.
Solving the first problem is not as easy as it may seem. As an ATM is a very
complex system with messages from various hardware components, even an expert
from Wincor Nixdorf is not able to identify the periodic events. Furthermore, some
messages seem periodic in some interval (e.g. occurring once a second) but regarding
another interval they do not seem periodic any more. Hence, we compute some
basic statistics on the periodicity of the respective events like min/max/mean period
between two events of the same type and present these statistics to the expert. With
his help we identify 17 different message types that are not regarded as periodic7.
We solve the second problem with the help of an expert from Wincor Nixdorf,

too. Therefore, we split the single sequence at the message id ’CHD_ENTRY_-
STOP_STATUS’ that indicates that a new process of card insertion has been started.
Hence, we obtained roughly 13 000 sequences.
For the third problem we compute the time interval between two succeeding

timestamps. As we need an entry point, the time interval of the first event is always
0. This does not matter too much, as the first event is always the same, too, as
we split at a specific event. In contrast to our synthetic evaluation (cf. Sections 6.3
and 6.4) the time values are not equally distributed in a small range ([0; 10]) but
sometimes even range between numbers with one and ten digits. As mentioned in
Section 6.2.3.2 the original BUTLA KDE split does not work for large time values
and may generate a lot of subevents (more than 850 subevents for 17 events as input).
Therefore, we disabled the original BUTLA preprocessing formula and enabled the
preprocessing only with the original KDE formula.

6.5.2 Experiment Setup
No attacks were registered in the period in which we gathered the data on the public
ATM8. On the one hand missing attacks are positive because no monetary damage
was caused. On the other hand we do not have any data of real attacks at hand.
Unfortunately, there is no other way of obtaining real-world data of attacks/ATM
fraud because banks do not hand over their data generously, not even to an ATM
manufacturer. They do this because they are very concerned about the privacy of
their customers. Furthermore, it is not possible to manipulate ATMs in a lab without
damaging or destroying them. Therefore, we insert anomalies as we already did in
Sections 6.3 and 6.4. For the real-world data we do not have direct anomalies because
we do not sample the data from a model we could manipulate. Hence, we can only
insert anomalies model-based and randomly. Opposed to our synthetic experiments
before, we ran the algorithms on a bigger data set consisting of 9000 training sequences
and 4000 test sequences. As usual, we interspersed 50% of anomalies into the test
data. From the experiments on scaling (Section 6.6) we know that the algorithms
need more time for inferring a model given a big data set. Because of the huge size
of the real-world data set we have every approach run seven days with SMAC on a
dedicated CPU core with 4 GB memory to find a good hyperparameter combination.

7Because of confidentiality we cannot give any further information about which statistics we
computed and which message types were chosen/rejected.

8Usually, manipulations are found after some time. For this ATM, no money was stolen and no
manipulations were found during and after the gathering period.
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6.5.3 Results

Figure 6.10 shows the result of the respective algorithm with anomalies inserted
randomly (Fig. 6.10a) and model-based (without and with preprocessing; Figs. 6.10b
and 6.10c). As in the experiments on synthetic data, we evaluate the algorithms
on a mixed data set containing all types of anomalies (type 1–5) and create a data
set for every single type of anomaly. Additionally, we add the original version of
BUTLA (yellow) as comparison which performs worse than BUTLA-i (orange) for
all but one anomaly type and often even worse than ALERGIA (red).

The anomalies of type 2 are easily detectable by all approaches while the anomalies
of type 3 are hard to detect. For synthetic data the results for these types of anomalies
were mixed. In line with the synthetic data experiments the anomalies of type 1 and
type 5 are easily detectable by all algorithms. Hence, we do not describe anomalies
of type 1 and 5 in more detail.
Regarding the randomly inserted anomalies (Fig. 6.10a) ProDTTAL (green) per-

forms best on the mixed data set, closely followed by the TPTA (blue). Surprisingly,
RTI+ (purple) performs even worse than ALERGIA. As we deal with anomaly
detection for timed sequences, the anomalies of type 3 and 4 are important. For
these anomaly types ALERGIA performs very badly and RTI+ is outperformed by
the TPTA, ProDTTAL (green) and BUTLA-i (orange). For anomalies of type 3,
TPTA, ProDTTAL and BUTLA-i perform almost equally whereas for type 4 TPTA
slightly outperforms ProDTTAL which outperforms BUTLA-i. However, the TPTA
was only given as a baseline because it does not generalize and consists of many
states. Regarding the three timed automata inference algorithms (ProDTTAL, RTI+
and BUTLA-i), ProDTTAL slightly outperforms BUTLA-i followed by RTI+.
For the model-based anomalies (Figs. 6.10b and 6.10c) ALERGIA can detect

anomalies of type 3 and 4 (time-based) surprisingly well, which should not be
possible9. If the time-based anomalies are randomly generated (Fig. 6.10a) ALERGIA
cannot detect them at all. As reported earlier we let SMAC choose whether to apply
the BUTLA-preprocessing for ALERGIA. Because of that we checked whether the
good performance of ALERGIA for time-based anomalies results from BUTLA-
preprocessing. However, SMAC chose to not apply the preprocessing. We cannot
explain the performance of ALERGIA for time-based anomalies (type 3/4) with
the model-based anomaly insertion approach. Hence, the results for these types of
anomalies should be taken with care. Additionally, the results of the model-based
anomaly insertion approach seem odd in general. All algorithms perform almost
equally except on the suspicious anomaly types 3 and 4. If we do not take anomaly
types 3 and 4 into account the model-based evaluation does not yield any insights.
We conclude that the model-based anomaly insertion approach with the TPTA as
model is not suitable for inserting anomalies into an anomaly-free data set. In the
following sections, we will evaluate the influence of the underlying PDFA-learner for
ProDTTAL and the influence of different one-class classifiers.

9Recall, that the experiments with synthetic data and the model-based anomaly insertion approach
yielded results where algorithms (especially ALERGIA) performed well for (time-based) anomalies
which should not be detectable for them (cf. Section 6.4.5).
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(b) model-based without preprocessing
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Figure 6.10: MCC for real-world data with different types of anomalies.
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6.5.3.1 MDI vs ALERGIA

In the preliminary experiments (Section 6.3) using MDI as PDFA learner did not
show any influence compared to ALERGIA. We repeat the same setup on the real-
world data set to assess whether the similarity in the preliminary experiments results
from the simplicity of the data. Figure 6.11 shows the comparison of ALERGIA
(red) and MDI (blue) used in ProDTTAL on the real-world data set with random
anomalies interspersed. The experiments are performed with SMAC for one week
(as for all real-world data experiments). Surprisingly, even on the real-world data
set the performance of MDI and ALERGIA as ProDTTAL learner is similar. For
the anomalies of type one, three and the mixture, ALERGIA performs better than
MDI whereas MDI performs better on anomalies of type three. For the remaining
anomaly types the approaches perform almost equally. Hence, we conclude that MDI
does not improve the anomaly detection performance even though its PDFA should
represent the underlying language L better than ALERGIA [TDH00].
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Figure 6.11: MCC for ProDTTAL with MDI and ALERGIA on real-world data with
random anomalies.

6.5.3.2 One-class Classifier Influence

As presented earlier in Section 6.2.2.3 we applied different one-class classifiers for
the final anomaly detection. The choice of the classifier does not heavily influence
the anomaly detection approach in any experiment. Nevertheless, we show the
anomaly detection performance of ProDTTAL on the real-world data set with
random anomalies interspersed in Fig. 6.12. The threshold detector (red), DBSCAN
(blue) and SVM (green) perform almost equally for every type of anomaly. We only
give this glimpse on the classifier choice because the results look similar for all data
sets. Hence, we conclude that the choice of the automaton learning algorithm and
the tuning of the hyperparameters is more important than the choice of the one-class
classifier (for the approaches evaluated in this thesis).
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Figure 6.12: MCC for ProDTTAL and different detector methods on real-world data
with random anomalies.

Summary

In this section we evaluated the algorithms RTI+, BUTLA-i and ProDTTAL on
real-world ATM data. For this data set the model-based anomaly insertion approach
led to unexpectedly odd results whereas the random anomaly insertion seemed
reasonable. For the random anomaly insertion ProDTTAL outperformed BUTLA-i
and RTI+ ranked third. Additionally, we found that the underlying PDFA-learner
(MDI vs. ALERGIA) for ProDTTAL and the chosen one-class classifier (threshold
vs. SVM vs. DBSCAN) do not heavily influence the anomaly detection performance.
In the next section we will evaluate how well the different algorithms scale.

6.6 Evaluation of Algorithm Scaling

In this section we present how we implement the scaling we described in Section 5.3
and its results. We perform the scaling evaluation on data sampled from a densely
connected PDRTA (Fig. A.1) and consider time and space needed by the respective
algorithm10. We measure the training time only, because the time needed for
classification is very small compared to the training time. Concerning the memory
consumption, it is more difficult to only measure the memory needed for training.
Hence, we measure the average memory consumption with a sample rate of 1 Hz
during the whole algorithm run.

6.6.1 Scaling Approaches

For every scaling approach (cf. Section 5.3) we modify an initial PDRTA by adding
the respective elements (states, transitions, . . . ) randomly. The elements are added
in the following way:
10For the scaling evaluation we cannot reuse the automaton from Section 6.3 because it is too small

for reasonably increasing the alphabet or the number of transitions.
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1. Event-based transition: We pick a state that does not have outgoing transitions
for every symbol and add a transition to a (randomly chosen) state with a
symbol such that the automaton is still deterministic (i.e. the state does not
contain more than one outgoing transition with the same symbol).

2. Time-based transition: We pick a state and for a transition t with event e we
add another transition to a (randomly chosen) state with event e but different
time guards. We have to care that the time guards for event e do not overlap.

3. State: We pick a state that has more than one outgoing transition and bend
one of the transitions to a newly created state. The new state has to become a
final state.

4. Alphabet: We pick a transition t and exchange the event e by a newly created
event e′. We ensure that the old event e still exists somewhere in the automaton.

5. Input size: We sample more sequences from the original automaton.

Some of the scaling approaches mentioned above are constrained by the size of the
automaton while others are not. Recall that we want to apply one scaling approach
at a time. On the one hand it is possible to sample any number of sequences from an
automaton independent of its size. We can also add as many time-based transitions as
possible by using arbitrary (non-overlapping) time intervals. On the other hand the
size of the alphabet is upperbounded by the number of transitions in the automaton,
hence |Σ| ≤ |δ|. If an automaton contains n transitions it is not possible to have
an alphabet of size n + 1 because we could not assign a different symbol to every
transition. Therefore, the initial automaton already contains many states and a
huge alphabet of equal size (|Q| = |Σ|) while no state contains outgoing transitions
for every symbol. Similarly, we set the number of outgoing transitions to be an
arbitrarily small fraction related to the number of states |Q| (here: 1

4 |Q|
2) to be able

to add enough (here: 3
4 |Q|

2) additional event-based transitions11. The number of
(reachable) states is also bounded by the number of transitions (|Q| ≤ |δ|).

The parameters of the initial automaton are set to the values shown in Table 6.7.
The maximal possible values for the respective elements (states, event-/time-based
transitions, alphabet size) are also shown. We count a transition as time-based if there
already exists one transition from a state q with a symbol e. The initial automaton
contains |Q| = 25 states, 1

4 |Q|
2 = 1

4 ·252 = 156 event-based transitions, an alphabet of
size |Σ| = 25 and we sample 1000 sequences. As we want to keep the initial structure
of the automaton, we can only bend all but one transition in each state, so we can
add less states than we have initial transitions (156− 25 = 131). For the unbounded
approaches we set the maximum values in the following way: We choose the maximum
number of time-based transitions in a way that the number of transitions does not
become greater than for the event-based approach (156 + 469 = 625). The maximum
number of samples is set to a value such that the experiments can still be performed
in a reasonable amount of time.
In Appendix A.2.1 we show how the initial PDRTA would look like for 10 states,

50 transitions and an alphabet of size 10. We did not include the time intervals as all
11We can have at most |Q|2 many transitions.

128



6.6 Evaluation of Algorithm Scaling

Table 6.7: Initial and maximal values for the runtime evaluation.

scaling event-based time-based states alphabet drawn
approach transitions transitions size samples
initial PDRTA 156 0 25 25 1000
1 625 0 25 25 1000
2 156 469 25 25 1000
3 156 0 131 25 1000
4 156 0 25 156 1000
5 156 0 25 25 20 000

time intervals are equal ([1; 100]). The PDRTA is not shown in this section because
it is quite dense and does not yield any additional insights.

6.6.2 Expectations
In this section we present the expectations on how the algorithms scale in terms
of runtime and memory consumption when increasing the sample size or the data
complexity.

6.6.2.1 Runtime

Every algorithm computes a Prefix Tree Acceptor (PTA) and hence the runtime
depends at least linearly on the size of the training set S+

t . Thus, the algorithm
runtime should grow with an increased sample size.

ALERGIA ALERGIA’s runtime is cubic in the size of the constructed PTA. Hence,
adding event-based transitions or states should increase ALERGIA’s runtime.

TPTA As the TPTA does not perform any merges, it does not consume time for
merging (as the other algorithms do) but requires a lot of samples for estimating the
KDE for many transitions. If we increase the number of event transitions the TPTA
has to approximate more KDEs via Monte Carlo sampling. Hence, we expect the
TPTA’s runtime to increase with growing sample size and growing number of event
transitions and stay constant for other scaling approaches.

ProDTTAL ProDTTAL first applies ALERGIA and then approximates KDEs with
Monte Carlo integration. Hence, we expect ProDTTAL to perform slightly worse
than ALERGIA because the linear term for the Monte Carlo integration (cf. Eq. (4.9))
does not influence the runtime that much.

BUTLA BUTLA consumes time for computing the event split and then performs a
modified version of ALERGIA12. For every time-based transition BUTLA increases
12We disabled the original BUTLA KDE formula because it produces too many subevents.

129



Chapter 6 Experimental Evaluation

the alphabet with a subevent. Hence, we expect BUTLA’s runtime to increase
if we add more symbols (time-based transitions) because BUTLA has to apply a
preprocessing for every symbol (time guard). Apart from that the runtime of BUTLA
and ALERGIA should be similar (if both implementations work in a similar way).

RTI+ According to [VdW10] RTI+ runs in polynomial time but no other runtime
bound is given. As RTI+ computes the likelihood given the current automaton and
the input data before and after each split (or merge), we expect RTI+ to perform
very poor in terms of size of the input data. For the rest of the scaling approaches
we cannot give a reasonable expectation on the runtime of RTI+.

6.6.2.2 Memory Consumption

The memory consumption of the different algorithms is not easily measurable. For
the runtime measurement we measure the time before and after the training phase
to receive the time that is really needed for training. For the memory consumption
we can only measure the memory consumption of the whole Java process, but we
cannot distinguish what the memory is used for. Some memory is needed for reading
the input, some is acquired by the Java Virtual Machine (JVM) and may remain
used until the garbage collector frees this memory.

Nevertheless, we will give a short overview of what we expect. ALERGIA should
need much memory for building the PTA but then the memory consumption should
drop13. As the TPTA does not perform any merges we expect it to consume a lot of
memory because it builds a KDE approximation for every transition in the unmerged
PTA. ProDTTAL should require slightly more memory than ALERGIA for the
additional KDE approximation. BUTLA’s memory consumption should be slightly
higher than ALERGIA’s memory consumption because the resulting automaton will
contain more states because of the event split. We expect RTI+ to consume much
memory because it applies the split operation that splits transitions and then copies
the subtree of the transition. Hence, every split doubles the memory consumption of
the respective subtree.

Because of the difficulties in measuring the algorithms’ memory consumption and a
possibly misleading interpretation we present the results on the memory consumption
in the appendix (Appendix A.2.2) for completeness.

6.6.3 Experiment Setup
While the anomaly detection performance of the approaches is not the main goal of
the runtime evaluation we still tune the hyperparameters with SMAC optimizing the
anomaly classification in terms of MCC. If we optimized for runtime instead, the
hyperparameters would be chosen to execute the algorithm very fast regardless of the
classification performance. Thus, we tune the hyperparameters for every approach
on data sampled from the initial PDRTA. As the anomaly detection performance is
independent of the runtime we intersperse anomalies into the test data artificially
(cf. Section 5.2.2). We run SMAC on every data set for 1 day because the sample
13We cannot measure a drop in memory consumption during the training phase because we only

measure the memory consumption over the whole training phase.
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size is comparable to the synthetic experiments (except for the scaling in sample
size). Additionally, we only use the threshold classifier because it does not bias the
runtime by needing additional training time (opposed to e.g. an SVM).
In this experiment, we also compute standard error bars because the measured

durations differed for repeated executions. Hence, the standard error SEx̄ of the
mean x̄ is computed as usual using standard deviation σ and sample size n:

SEx̄ = σ√
n

(6.1)

6.6.4 Runtime Results

Before presenting the results we want to point out that every runtime value shown
depends on the hyper parameters found with SMAC. It may happen that SMAC
finds good hyper parameters that run fast and and lead to a good MCC and a slight
increase in MCC may result in a very bad runtime. The runtime could also change
(increase or decrease) for a different hyper parameter setting which SMAC could find
if it runs for a longer period.
Nevertheless, the experiments show some trends on how the algorithms scale.

Figure 6.13 shows the runtime behavior of the respective algorithm for the different
scaling approaches. The first data point is the same for all plots even though it may
seem different because of the different scale of the y-axis.

For increasing number of event transitions (Fig. 6.13a) only RTI+’s runtime heavily
increases for about 200 event transitions and then starts dropping again. All other
algorithms require roughly the same time with only minor oscillation. We expect
RTI+’s behavior to be the source of this strange behavior because by performing a
split operation it can increase the PTA size and thus the runtime.

Figure 6.13b shows the runtime of the different approaches for increasing number of
time transitions. All algorithms except RTI+ require nearly constant time. ALERGIA
usually runs fastest followed by BUTLA, ProDTTAL and the TPTA. For 250 time
transitions the increase in ALERGIA’s runtime is also visible for ProDTTAL (that
uses ALERGIA internally). We assume this increase to be caused by the random
generation of the initial PDRTA. For RTI+ the results are surprising again. The
runtime steeply increases, stays constant in the middle (except for one drop) and
drops again in the end. Again, we expect the split to be the cause of this behavior.
Nevertheless, we observe a connection to the behavior for event-based transitions
(Fig. 6.13a) as the runtime with 500 additional transitions is almost the same for
RTI+ (2 minutes).

The increase in the number of states (Fig. 6.13c) does not give any valuable insights.
Unfortunately, the way we increase the number of states while keeping the number
of transitions constant leads to a very simple model. Hence, we conclude that the
number of states itself does not have a big influence on the runtime, but we assume
that the combination of more states and transitions may increase the runtime.
Figure 6.13d shows the runtime of the different approaches for an increasing

number of symbols (bigger alphabet size). All approaches but RTI+ show a roughly
constant runtime. For RTI+ we observe a similar behavior as for the increase of
time-based transitions (Fig. 6.13b): A steep increase at the beginning, a constant
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runtime with one small drop in the middle, and a steep drop of runtime at the end.
Again, we can only explain this behavior with the split operation. Please note that
the highest runtime is 70 minutes whereas it was 10 minutes for the increase in event-
and time-based transitions.

A real trend can be observed for the increase of samples in the data set (Fig. 6.13e).
In this figure the y axis reaches to 1400 minutes. For ALERGIA and ProDTTAL we
observe a similar trend with ProDTTAL being slightly slower than ALERGIA. The
TPTA shows a slow increase in runtime, then it jumps for 9500 samples and then
drops again. A possible explanation is the circular shape of the automaton we sample
from. If we sample more sequences we will sample new sequences that increase the
size of the PTA and hence increase ALERGIA’s and ProDTTAL’s runtime. For the
TPTA an additional path in the tree does not heavily influence the runtime.

The data sets with 9500 samples seem to contain an unusual characteristic because
the runtime of the TPTA heavily increases and no results exist for BUTLA. BUTLA
runs very fast compared to the other algorithms but for more than 14 000 samples
BUTLA crashes because of a stackoverflow. As this would result in a change in
the implementation of BUTLA and a possible influence on other results we did not
change the implementation of BUTLA but suspect the runtime to continue the trend.

The runtime of RTI+ behaves as expected. For the likelihood ratio test RTI+ has
to compute the likelihood of the current automaton given the input data set before
and after each operation (split or merge). As the input data set grows the likelihood
computation requires much more time. For more than 14 000 samples at RTI+ does
not finish at all in the allowed runtime of SMAC.
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Figure 6.13: Runtime behavior of the algorithms for different scaling approaches.
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Summary
In this chapter we experimentally compared ProDTTAL with BUTLA, RTI+ and
two baselines (ALERGIA and TPTA) on synthetic as well as on real-world ATM data.
The synthetic data is generated by various manually created automaton models,
whereas the real-world data originates from a public ATM. In the preliminary
(synthetic) experiments we found that BUTLA does not perform very well in its
original description from [Mai14]. Our improved version BUTLA-i performs almost
optimally for the preliminary experiments.
For the remaining experiments, the random and model-based anomaly insertion

approaches allow the insertion of anomalies into initially anomaly-free data. These
approaches enable us to experimentally compare the approaches but the results on
these modified data sets may not be as reliable as a data set that contains real-world
anomalies14. In general, no approach dominates the other approaches on all data
sets while all approaches outperform the baselines (ALERGIA and TPTA) in almost
all cases. Depending on the anomaly-free data set, the results heavily varied in terms
of the performance metric MCC and how the algorithms are ranked based on the
MCC. Most often, ProDTTAL and BUTLA-i slightly outperform RTI+ followed by
the baselines. The model-based anomaly insertion delivers unexpectedly odd results,
e.g. ALERGIA detects time-based anomalies but does not model time at all. The
random anomaly insertion results are inline with our expectations such that the
algorithms can only detect those anomalies for which they incorporate the necessary
information.
For the synthetic experiments, we can also intersperse anomalies into the data-

generating model. For these directly inserted and the randomly created anomalies,
RTI+ performs best if the data-generating model is a PDRTA or a PNTTA. If we
sample data from a PDTTA, ProDTTAL outperforms the other approaches.

On the real-world ATM data, we insert the anomalies randomly and model-based.
As before, the model-based approach yields odd results. ProDTTAL achieves the best
performance for the random anomalies. BUTLA-i and RTI+ perform surprisingly
badly—even worse than the baselines ALERGIA and TPTA.
We also investigated the influence of the one-class classifier and the underlying

PDFA-learner for ProDTTAL. All one-class classifiers and also the PDFA-learners
performed similarly after tuning the hyperparameters. If we had not tuned the
hyperparameters, the performance would have heavily alternated for different one-
class classifiers and PDFA-learners.
Finally, we evaluated the scalability of the algorithms in terms of runtime. For

the size of the data set, the runtime increases with growing size of the data set. For
the other scaling approaches, the runtime behavior does not show any obvious trend.
RTI+ heavily oscillates whereas the other algorithms show almost constant behavior
(or at least oscillating considerably less).

14No real-world data set containing anomalies was available to us.
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Conclusion and Future Work

This chapter concludes this thesis and gives an outlook on some directions for future
work.

7.1 Conclusion

In general, learning models of Discrete Event Systems (DESs) for detecting anomalies
becomes more important, especially in the industry. However, only few approaches
exist to learn models that deal with timed sequences. After describing the funda-
mentals (Chapter 2), we reviewed related work and linked the research areas Process
Mining, Grammatical Inference and Sequence-based Anomaly Detection in Chap-
ter 3. These research areas (partly) deal with sequence-based anomaly detection, but
develop rather independently. Hence, we reviewed the applied approaches, models
and algorithms, and pointed out the differences and similarities.
In Chapter 4 we presented the Probabilistic Deterministic Timed Transition Au-

tomaton (PDTTA), the Probabilistic Deterministic Timed Transition Automaton
Learning algorithm (ProDTTAL) and the Automata-based Anomaly Detection Al-
gorithm (AmAnDA). Compared to state-of-the-art models (PDRTA, PDTA) the
PDTTA models time more granularly using Kernel Density Estimations (KDEs)
instead of assuming uniform distributions (Section 4.2). For learning PDTTAs from
data consisting of timed sequences, we introduced ProDTTAL (Section 4.3). ProDT-
TAL does neither require the specification of global and hard-to-guess histograms
like Real-Time Identification from Positive Data (RTI+) nor does it require the
time values to follow a Gaussian distribution like the Bottom-Up Timed Learning
Algorithm (BUTLA). On the other hand, the PDTTA learned by ProDTTAL cannot
represent different substructures depending on the time value associated with an
event. In the experiments, we also pointed out this drawback.
The anomaly detection algorithm AmAnDA is the first algorithm that performs

anomaly detection for timed automata in a sophisticated way (Section 4.4). Previous
algorithms only checked for non-existing transitions or time values, whereas AmAnDA
takes into account the probabilities and plausibilities of events and their time values.
With minor modifications AmAnDA can be applied to models learned with RTI+,
BUTLA or ProDTTAL. It requires two lists of probabilities/plausibilities to be
extractable from the automaton given a timed sequence. After extracting a set of
features from the two lists, a state-of-the-art one-class classification algorithm is
applied to label the given sequence as normal or abnormal. Additionally, we analyze
the runtime complexity of ProDTTAL and AmAnDA (both polynomial in terms of
different variables, cf. Theorems 4 and 7), and show that ProDTTAL converges to
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the underlying model in the limit (under some assumptions). Last, we explained
why the developed algorithms cannot be easily adapted to a two-/multi-class setting
(Section 4.5).

In Chapter 5 we presented five types of anomalies that can occur in DES. An
anomaly insertion approach was needed to experimentally evaluate the automata
learning algorithms later in this thesis. We proposed two approaches how to insert
these types of anomalies into anomaly-free data sets—namely the random and model-
based anomaly insertion. As the name suggests, the random anomaly insertion
inserts anomalies randomly whereas the model-based anomaly insertion builds a
model (Timed Prefix Tree Acceptor (TPTA)) and intersperses anomalies into this
model. After reviewing suitable performance metrics, we introduced an approach
to complicate the learning task by increasing different aspects of the model and
data set. Therefore, we proposed how to systematically increase the number of
transitions, states, symbols and samples while leaving the other aspects untouched.
This approach was used to evaluate the automata learning algorithms later on.

In Chapter 6 we experimentally evaluated the anomaly detection performance of
RTI+, BUTLA and ProDTTAL, and compared them with the baselines ALERGIA
and TPTA. We found that the original BUTLA version does not detect anomalies well
(even worse than the baseline), and proposed improvements, called Improved Bottom-
Up Timed Learning Algorithm (BUTLA-i). With these improvements BUTLA’s
performance heavily increased. We evaluated the approaches on synthetic data
that we sampled from a predefined automaton in which we interspersed anomalies.
Additionally, we inserted anomalies with the random and model-based anomaly
insertion approaches proposed in Chapter 5 into synthetic data and real-world data
from an Automated Teller Machine (ATM). The results are ambiguous depending
on the data set and the anomaly insertion approach. Most often, ProDTTAL
and BUTLA-i slightly outperform RTI+. Especially for the real-world data set,
ProDTTAL performed slightly better than the other approaches. The choice of one-
class classification algorithm did not have any important influence on the anomaly
detection performance at all. Still, measuring the performance of anomaly detection
algorithms is a challenging task and the performance of the different approaches
varies depending on the data set. Furthermore, we evaluated the change in the
runtime of the investigated approaches when complicating the model-learning task.
Except for increasing size of the data set the runtime behavior did not show any
obvious trend.
Finally, we conclude that the sequence-based anomaly detection problem beco-

mes more and more important in real-world applications, especially for monitoring
technical systems. Our proposed model (PDTTA), its learning algorithm ProDTTAL
and the detection algorithm AmAnDA are a new approach to solve this anomaly
detection problem. Especially AmAnDA helps improving the anomaly detection rate
even of existing approaches.
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7.2 Future Work
In this thesis we compared state-of-the-art approaches for sequence-based anomaly
detection. Nevertheless, some aspects remain open for further investigation. In the
following, we give a glimpse on topics that could be investigated in the future.
First, we compared ALERGIA and MDI for inferring the underlying PDTTA.

Even though both algorithms showed a comparable performance in terms of anomaly
detection, other Probabilistic Deterministic Finite Automaton (PDFA)-learning
algorithms might be tested as well. The same applies to the usage of the one-class
classifiers.
Furthermore, we reviewed a PDFA-learning algorithm and a kernel density esti-

mation for data streams (cf. Section 3.5.2). It would be interesting whether it is
possible to apply ProDTTAL and AmAnDA in the scenario of data streams. Even
though the single task of PDFA-learning and kernel density estimation are solved in
the streaming scenario the combination of both approaches might not be as easy as
it may seem. The time plausibility approximation (i.e. the Monte Carlo integration)
would have to be recomputed for every change of the kernel density estimation.
Additionally, if the underlying PDFA changes after the arrival of a new data point,
at least one transition changes and the density estimation itself would have to be
recomputed for the changed transition. Both of the mentioned aspects require a
recomputation that is not easily possible in the streaming scenario.
In the experiments (Chapter 6) we compared and evaluated algorithms from the

research field of Grammatical Inference and Sequence-based Anomaly Detection. One
could try to adapt approaches from Process Mining to also incorporate time values
and compare its performance to the algorithms presented in this thesis. Furthermore,
we systematically built our anomaly insertion and scaling approaches, but they did
not work as intended in every scenario. These approaches could be fine-tuned to
better create anomalies and increase the learning task difficulty, respectively.

As presented in the real-world data experiments, the log files of ATMs do not only
contain time stamps and events but also additional system messages. These system
messages could be incorporated into an even more sophisticated automaton model
that can use the system messages to improve the anomaly detection performance.

Incorporating BUTLA’s preprocessing into ProDTTAL did not result in an increa-
sed anomaly detection performance. Nevertheless, we presented improvements for
BUTLA that greatly increased its anomaly detection performance. In the future
BUTLA and ProDTTAL could be connected in a different manner to further increase
the anomaly detection performance to monitor technical systems automatically.
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A
Experimental Evaluation

In the following we present settings and results of the experimental evaluation
from Chapter 6. First, we show the hyperparameter values and their ranges which
were used as input to Sequential Model-based Algorithm Configuration (SMAC)
(Section 6.1) to optimize the respective algorithms. Then, we present the more results
of the experimental algorithm scaling that suffered problems of not measuring the
memory consumption correctly.

A.1 Hyperparameter Values
Table A.1 shows the hyperparameters we tuned to improve the anomaly detection
performance in the experimental evaluation (Chapter 6). For every hyperparameter
we provide the parameter type, the parameter name and a range from which the
parameter can be chosen. The parameter type indicates to which algorithm the
parameter belongs.

Table A.1: Hyperparameter value ranges.
parameter type parameter

name
range

general automaton algo-
rithm

{ALERGIA, TPTA, ProDTTAL,
BUTLA, RTI+}

general feature extractor {minimal, some, most, all}
general anomaly classifier {OC-SVM, DBSCAN, {k,X,G}-

Means, threshold-based}
ALERGIA α [0; 1]
ALERGIA
ProDTTAL
TPTA

BUTLA-
preprocessing

{true, false}

ALERGIA
ProDTTAL
TPTA

BUTLA-
bandwidth

[10 000; 1 000 000]

ProDTTAL
TPTA

KDE-bandwidth-
estimate

{true, false}

Continued on next page
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Table A.1 – continued from previous page
parameter type parameter

name
range

ProDTTAL
TPTA

KDE-bandwidth [0.0000001; 1000]

ProDTTAL
TPTA

Monte Carlo m [10; 40 000]

ProDTTAL PDFA-learner {ALERGIA, Minimal Divergence In-
ference (MDI)}

ProDTTAL α [0; 1]
BUTLA α [0; 1]
BUTLA bandwidth [10 000; 1 000 000]
RTI+ α [0; 1]
RTI+ histogram bins [1; 100]
OC-SVM ν [0; 1]
OC-SVM γ [0; 1015]
OC-SVM ε [0; 1]
OC-SVM kernel {linear, polynomial, RBF, Sigmoid}
OC-SVM d [0; 2 000 000 000]
OC-SVM estimate probabi-

lity
{true, false}

DBSCAN n [1; 100]
DBSCAN ε [0; 1]
DBSCAN distance threshold [0; 1]
k-Means k [2; 1000]
{k,X,G}-Means minimum points [0; 100]
{k,X,G}-Means distance threshold [0; 1]
threshold single event [0; 1]
threshold single time [0; 1]
threshold aggregated events [0; 1]
threshold aggregated times [0; 1]

A.2 Evaluation of Algorithm Scaling

In this section we present more results on the evaluation of the algorithm scaling
from Section 6.6.

A.2.1 Initial Automaton

Figure A.1 shows how the initial Probabilistic Deterministic Real-Time Automaton
(PDRTA) from Section 6.6.1 would look like for 10 states (0− 9), 50 transitions and
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an alphabet of size 10 (0 − 9). As already described before, the automaton does
not contain a lot of transitions so that we can increase the number of transitions
drastically. On the other hand we can remove some transitions without dividing the
automaton into two parts to be able to bend some transitions to new states. We did
not include the time intervals as all time intervals are equal ([1; 100]).
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Figure A.1: Sample PDRTA for the runtime evaluation with 10 states, 50 transitions
and alphabet of size 10 (without time intervals).

A.2.2 Memory Consumption for Different Scaling Approaches

In this section we present the average memory consumption of the scaling approaches
from Section 6.6.2.2. As already described, the memory consumption is not only
influenced by the algorithm itself but also by the Java Virtual Machine (JVM). We
measured the experimental runtime of any algorithm in terms of training time. For
the memory consumption, we can only measure the memory consumption of the
whole Java process. The memory of the Java process can be occupied by a lot of
factors, e.g. the input data, the testing procedure, etc. Additionally, the JVM frees
memory from time to time and if it reaches its memory cap. So it may seem that a
process consumes a lot of memory because it never reaches its memory cap while the
memory is unused but never freed. Hence, the results of the experimental memory
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consumption may be misleading, but we show them for the sake of completeness.
Figure A.2 shows the experimental average memory consumption for the different

algorithms and every scaling approach. As for the experimental training runtime, we
tuned the hyperparameters with SMAC running for one day for a good Matthews
Correlation Coefficient (MCC) (anomaly detection performance) and not for a good
memory consumption. The number of event and time-based transitions (Figs. A.2a
and A.2b) are very similar and do not heavily influence the memory consumption of
any algorithm. RTI+ constantly consumes about 2 GB of memory, while ALERGIA,
TPTA and ProDTTAL only need about 200 MB. BUTLA-i oscillates between 400
and 1000 MB but we cannot explain this behavior. banana dance
The increase in states (Fig. A.2c) leads to dropping memory consumption for all

algorithms. RTI+ and BUTLA-i start with a high memory consumption and drop
rapidly, such that all approaches only need between 50 and 200 MB for 120 states.
As already mentioned in Section 6.6.4 the increase in states lead to a very simple
model that neither requires a lot of time nor space.

With an increasing alphabet (Fig. A.2d) the memory consumption of ALERGIA,
TPTA and ProDTTAL is constant at 200 MB or increases slightly. The memory
consumption of RTI+ is high at the beginning and even drops below 200 MB for 110
states and then jumps up and down without any obvious trend. Most of the runs of
RTI+ did not finish in the allowed time and only the configuration that did not need
much memory completed its run (but lead to a very poor MCC). BUTLA-i starts
at 1000 MB for 25 states, and then seems to settle down at 600 MB from 90 states
onwards.
For an increasing sample size (Fig. A.2e) BUTLA-i oscillates around 1100 MB

but cannot handle more than 14 000 sequences in its original implementation. RTI+
starts at 1800 MB and then decreases to 200 MB and remains there because only a
memory-efficient configuration completed in the allowed time. For 14 000 or more
sequences no configuration completed in the allowed time. ALERGIA, TPTA and
ProDTTAL start at 200 MB and slowly increase to 500 MB for 20 000 samples. As
we sample data from an automaton that contains cycles, sampling more sequences
eventually leads to longer sequences. Hence, the Prefix Tree Acceptor grows and the
algorithms consume slightly more memory.

The evaluation of the memory consumption for the different scaling approaches did
not yield the expected insights because of the mentioned problems with measuring
memory consumption during training. Nevertheless, the experiments show that
ALERGIA, TPTA and ProDTTAL require similar amounts of memory, and less
memory than BUTLA-i and RTI+.
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Figure A.2: Memory consumption of the algorithms for different scaling approaches.
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Acronyms

ALERGIA A popular state merging algorithm inferring a PDFA (Algorithm 1 on
Page 25; cf. [CO94]).

AmAnDA (Automata-based Anomaly Detection Algorithm): An algorithm using
(timed) automata for detecting sequence-based anomalies (Algorithm 7 on
Page 78).

ANODA ANOmaly Detection Algorithm (Section 2.5.2.1; cf. [Mai14]).

ATM Automated Teller Machine (also Cash Machine).

BUTLA (Bottom-Up Timed Learning Algorithm): A Probabilistic Deterministic
Timed Automaton (PDTA) inference algorithm (Section 2.4.3.1; cf. [Mai14]).

BUTLA-i (Improved Bottom-Up Timed Learning Algorithm): The improved version
of BUTLA (Section 6.2.3.2).

DES Discrete Event System(s) (Section 2.2.2; cf. [Cas07]).

DFA Deterministic Finite Automaton (Definition 1 on Page 14; cf. [MP43]).

FTA Frequency Prefix Tree Acceptor (Section 2.4.1.2).

KDE Kernel Density Estimation (Section 2.1; cf. [Par62]).

MCC (Matthews Correlation Coefficient): A metric for an experiment result compu-
ted from true/false positives and negatives (Eq. (5.6) on Page 89).

MDI (Minimal Divergence Inference): Another popular state merging algorithm
inferring a PDFA (Algorithm 3 on Page 27; cf. [TDH00]).

NFA Non-Deterministic Finite Automaton (Definition 3 on Page 16; cf. [RS59]).

PDFA Probabilistic Deterministic Finite Automaton (Definition 2 on Page 15;
cf. [Rab63]).

PDRTA Probabilistic Deterministic Real-Time Automaton (Definition 6 on Page 19;
cf. [VdW10]).

PDTA Probabilistic Deterministic Timed Automaton (Definition 5 on Page 18;
cf. [Mai14]).

PDTTA Probabilistic Deterministic Timed Transition Automaton (Definition 12 on
Page 64).

PNTTA Probabilistic Non-Deterministic Timed Transition Automaton (Definition 16
on Page 110).
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Acronyms

PPTA Probabilistic Prefix Tree Acceptor (Section 2.4.1.2).

ProDTTAL (Probabilistic Deterministic Timed Transition Automaton Learning): A
PDTTA inference algorithm (Algorithm 6 on Page 69).

PTA Prefix Tree Acceptor (Section 2.4.1.2).

RTI+ (Real-time Identification from Positive Data): A PDRTA inference algorithm
(Section 2.4.3.2; cf. [VdW10]).

SMAC (Sequential Model-based Algorithm Configuration): An algorithm for tuning
hyperparameters (Section 6.1; cf. [HHL11]).

SWF-net Structured Workflow net (Section 3.2; cf. [Mur89]).

TPTA Timed Prefix Tree Acceptor (Section 5.2.3).

WF-net Workflow net (Section 3.2; cf. [Mur89]).
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Notation

α A confidence parameter (usually an input for automata merging algorithms).

Σ The alphabet containing symbols.

δ The transition function of an automaton.

t A transition of an automaton.

e An event (symbol).

F The set of final states of an automaton.

q A single state of an automaton.

Q The set of states of an automaton.

q0 The start state of an automaton.

s A sequence.

s+ A positive sequence representing normal behavior.

s− A negative sequence representing abnormal behavior.

S A set of sequences.

st A timed sequence.

St A set of timed sequences.

S+
t A set of positive timed sequences (representing normal behavior).

S−t A set of negative timed sequences (representing abnormal behavior).

S
+/−
t A set of positive and negative timed sequences (representing normal and

abnormal behavior).

se An event sequence (without time values).

Se A set of event sequences (without time values).

S+
e A set of positive (untimed) event sequences representing normal behavior.

S−e A set of negative event sequences (without time values) representing abnormal
behavior.

S
+/−
e A set of positive and negative (untimed) event sequences (representing normal

and abnormal behavior).
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Notation

v A time value.

x A vector.

X A set of vectors.

X+ A set of positive vectors (representing normal behavior).
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