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Zusammenfassung

In dieser Arbeit wird der Entwurf einer Positionsregelung für eine Parallelkinematik be-
schrieben, mit dem eine möglichst hohe Regelungsbandbreite erzielt werden soll. Dazu
werden, nach einer Analyse des Stands der Technik, die Synthese verschiedener Regler-
und Beobachterkonzepte erläutert sowie die Leistungsfähigkeit dieser Ansätze vor allem
unter dem Aspekt der realen Umsetzung analysiert. Dabei erweist sich eine flachheits-
basierte Folgeregelung in globalen Koordinaten in der Kombination mit einem Sliding-
Mode-Beobachter in lokalen Gelenkkoordinaten als besonders gut geeignet. Weiterhin
wird eine Methode angewandt, mit der Solltrajektorien für Parallelkinematiken in Echt-
zeit so gefiltert werden können, dass die Stellgrößenbegrenzungen des realen Systems
nicht erreicht werden. Auf diese Weise wird der Windup-Effekt, der typisch für Syste-
me mit Stellgrößenbegrenzung ist, vermieden. Es wird sichergestellt, dass stets die volle
Leistungsfähigkeit des Systems ausgenutzt wird.

Für die Positionsregelung eines hydraulischen Hexapoden kann mit dem resultierenden
Gesamtkonzept eine Bandbreite von bis zu 60 Hz nachgewiesen werden. Das stellt eine
signifikante Erweiterung zum Stand der Technik dar, in dem für die Bewegungssimulation
mit Parallelkinematiken bisher nur Anregungen im Bereich von wenigen Hertz betrachtet
wurden.

Abstract

In this thesis the design of a position control concept for a parallel kinematic machine
with focus on the closed loop control bandwidth is described. An analysis of the state
of the art is followed by the discussion of the synthesis of different control and observer
concepts. These are investitaged, mainly considering their realization. The combination of
a flatness based control in global coordinates with a sliding mode observer in local joint
space coordinates turns out to be particularly suitable. Moreover, a method to filter the
reference trajactory for parallel kinematics, in order to avoid input saturations, is applied.
Proceeding in this manner, the windup effect, which is typical for systems with input
saturations, is prevented and the best usage of the dynamic potential is ensured at all
times.

For the motion control of a hydraulically actuated hexapod using the resulting control
concept a closed loop bandwidth of 60 Hz can be proved. This represents a significant ex-
tension of the state of the art, in which for motion contol systems with parallel kinematics
only excitations in the range of few Hertz have been considered so far.
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Einleitung 1

1 Einleitung

Am Lehrstuhl für Regelungstechnik und Mechatronik der Universität Paderborn wird der-
zeit eine Hardware-in-the-Loop (HiL)-Simulation für PKW-Achsen mit aktiven Kompo-
nenten, wie beispielsweise aktiver Federung, entwickelt. Ziel ist, das dynamische Mo-
dell eines PKW innerhalb einer Echtzeitsimulationsumgebung über eine virtuelle Straße
fahren zu lassen. Die zu testende Achse ist nicht Teil des Echtzeitmodells, sondern als
reales System im Prüfstand eingebunden. Über eine geeignete Prüfstandsaktorik werden
die simulativ berechneten Schnittkräfte/-momente zwischen Reifen und Radträger bzw.
die translatorischen und rotatorischen Bewegungen am Radträger der realen Achse auf-
gebracht. Die entsprechende Reaktion der Achse wird messtechnisch erfasst und an das
Echtzeitmodell zurückgemeldet. Es ist vorgesehen, die Regelung der aktiven Komponen-
ten ebenfalls auf der Echtzeithardware zu implementieren, wobei auch die Einbindung
von realen Steuergeräten denkbar ist. Eine ausführliche Diskussion des Prüfstandskon-
zepts kann in [FJT14] nachgelesen werden.

Die Aktorik zur Realisierung des HiL-Konzepts muss fähig sein, die in der Echtzeitsi-
mulation berechneten Schnittdaten mit ausreichender Bandbreite und Genauigkeit nach-
zubilden. Fahrzeughersteller fordern hierzu eine Bandbreite von 50 Hz im Kleinsignalbe-
reich1. Derzeit verfügbare Prüfstände für PKW-Achsen, die eine entsprechende Dynamik
besitzen, werden eingelernt. Das bedeutet, dass mit Hilfe von zeit- und kostenaufwän-
digen Iterationsschleifen die Solltrajektorien für die Aktorik so verändert werden, dass
der gewünschte Verlauf mit der geforderten Genauigkeit nachgefahren wird. Eine so ge-
regelte bzw. gesteuerte Aktorik eignet sich prinzipiell nicht zur Einbindung in die HiL-
Simulation von aktiven PKW-Achsen, denn hier werden die in der Simulation berechneten
Kräfte und Momente, die in Echtzeit am Radträger aufzubringen sind, vom Verhalten der
aktiv geregelten Komponenten beeinflusst. Diese wiederum reagieren auf das Verhalten
der zu testenden Achse, welches mit dem Prüfstand untersucht werden soll und somit
im Vorfeld nicht bekannt ist. Aus diesem Grund können keine Iterationen durchgeführt
werden. Diese Problematik führt zu einer wichtigen Forschungsfrage, die zur Umsetzung
des HiL-Konzepts für PKW-Achsen beantwortet werden muss: Die Auswahl, Dimensio-
nierung und echtzeitfähige Regelung der Prüfstandsaktorik ohne die Notwendigkeit von
Iterationen.

Aufgrund der systembedingten Vorteile, die im Verlauf dieser Arbeit noch erläutert wer-
den, wurde zur Anregung des Achsprüflings eine parallelkinematische Aktorik in der
Form eines hydraulischen Hexapoden ausgewählt. Ein solcher hydraulischer Hexapod
wurde für die spezielle Anwendung im Achsprüfstand dimensioniert, aufgebaut und steht
am Heinz Nixdorf Institut zur Erforschung geeigneter Regelungskonzepte zur Verfügung.
Bild 1-1 zeigt eine Fotografie dieses Hexapoden.

Regelungskonzepte, die eine entsprechend breitbandige Echtzeitanregung der Achse er-
lauben, sind noch nicht Stand der Technik. Dies gilt sowohl für parallelkinematische Ma-
schinen (PKM) im Allgemeinen als auch für Hexapoden im Speziellen und bezieht sich
gleichermaßen auf freie Systeme, in denen eine PKM rein positionsgeregelt betrieben

1Aussage aus Fachgesprächen mit Vertretern verschiedener Automobilhersteller und -zulieferer



2 Kapitel 1

Bild 1-1: Hydraulischer Hexapod als Teil eines Prüfstands zur HiL-Simulation von PKW-
Achsen

wird, und gebundene Systeme, bei denen Kraft- oder Wegregelungen oder Kombinatio-
nen aus beiden zur Anwendung kommen.

Die vorliegende Arbeit liefert einen Beitrag zur Erforschung geeigneter Regelungskon-
zepte für hochdynamische PKM im Allgemeinen und für den Hexapoden zur Verwendung
innerhalb des Achsprüfstands im Speziellen. Aufbauend auf flachheitsbasierten Konzep-
ten zur Positionsregelung des freien Hexapoden schafft sie die Basis für weiterführende
Arbeiten, welche die Regelung des im Prüfstand gebundenen Hexapoden betreffen.

Im Folgenden wird zunächst die spezifische Problematik, die mit der Regelung von allge-
meinen PKM einhergeht, erläutert. Es folgt die Definition der Zielsetzung für die Arbeit,
dieser schließt sich eine Erläuterung des Aufbaus an.

1.1 Problemstellung

PKM zeichnen sich gegenüber seriellen Kinematiken durch ihre vergleichsweise kleinen
bewegten Massen aus. Dadurch bergen sie strukturbedingt ein großes Potenzial zur Erzeu-
gung hochdynamischer Weg- und Kraftanregungen in mehreren Freiheitsgraden (FHG).
Sie werden daher häufig im Laborbetrieb eingesetzt. Der strukturbedingte Vorteil von
PKM kann jedoch laut [DGH04] nur mit einer adäquaten Regelungsstruktur nutzbar ge-
macht werden, welche die nichtlineare Verkopplung der Aktoren berücksichtigt. Dies ist
beispielsweise durch die Verwendung modellbasierter Regelungsansätze möglich.

Bewegungs- oder Kraftvorgaben für den Endeffektor einer PKM erfolgen im Allgemeinen
in globalen Koordinaten. Im Gegensatz dazu sind in der Regel nur die lokalen Gelenkko-
ordinaten, beim Hexapod beispielsweise die Längen der einzelnen Aktoren, messbar. Für
eine direkte Regelung der globalen Koordinaten ist demnach die Existenz einer entspre-
chenden Transformationsvorschrift erforderlich. Eine Herausforderung bei der Regelung
von PKM ist, dass die Lösung dieses Direkten Kinematischen Problems (DKP) für PKM
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(bis auf wenige Ausnahmen) nicht eindeutig analytisch möglich ist. In der Praxis wer-
den daher häufig Sollpositionen mit Hilfe des Inversen Kinematischen Problems (IKP),
welches für PKM eindeutig lösbar ist, in lokale Gelenkkoordinaten umgerechnet. Die-
se Sollgrößen können dann lokal eingeregelt werden. Bei dynamischen Sollvorgaben in
mehreren FHG führt dieser Ansatz aufgrund der nichtlinearen Aktorkopplung schnell zu
Oszillationen und Instabilitäten, die nur durch eine Reduktion der Reglerverstärkungen
behoben werden können, vgl. [BOF08]. Das eigentliche Potenzial der PKM wird auf die-
se Weise nicht ausgeschöpft.

Die zuvor charakterisierte Problematik beschäftigt seit Beginn der 90er Jahre Wissen-
schaftler auf der ganzen Welt, wie durch eine Vielzahl von Publikationen dokumentiert
wird. In [Mer02] wird festgestellt, dass die strukturbedingten Vorteile parallelkinemati-
scher Strukturen bisher nur als Potenzial betrachtet werden können. Zur vollständigen
Ausschöpfung desselben müssten alle verwendeten Komponenten optimiert werden. Dies
beträfe sowohl den mechanischen Aufbau als auch die Regelung und Informationsverar-
beitung. Laut [PAM09] bleibt unter dem Aspekt der Regelung noch ein großes Verbes-
serungspotenzial - dafür sollten die bisher verwendeten Regelungskonzepte noch einmal
überdacht werden.

Kern der bisher publizierten fortgeschrittenen Regelungskonzepte für PKM ist die mo-
dellbasierte Kompensation der strukturbedingten Nichtlinearitäten in Kinematik und Dy-
namik. Eine solche Kompensation erfordert Kenntnisse über den aktuellen Systemzustand
in globalen Koordinaten, welcher jedoch in der Regel nicht direkt messbar ist. In der Lite-
ratur existieren verschiedene Ansätze zur Lösung dieser Problemstellung. Weit verbreitet
ist die Verwendung der Sollzustände zur Berechnung der Kompensationsterme. Auf diese
Weise wird die Erforderlichkeit der Lösung des DKP umgangen. Nachteilig ist, dass zur
Regelung weiterhin die lokalen Gelenkkoordinaten verwendet werden, sodass nicht die
eigentliche Sollvorgabe geregelt wird.

Weniger zahlreich sind in der Literatur die Ansätze vertreten, die zur Kompensation der
nichtlinearen Kopplung den Istzustand in globalen Koordinaten verwenden. Dabei vertre-
ten mehrere Autoren, wie bspw. in [PAM09], die Hypothese, dass solche Regelungen zur
Ausschöpfung des dynamischen Potenzials von PKM eigentlich die geeigneteren seien.
Die entsprechenden Publikationen beschränken sich jedoch aufgrund der Problematik des
nichtlösbaren DKP im Wesentlichen auf theoretische Arbeiten. Neben der verbreiteten
iterativen Lösung des DKP wurden auch Ansätze zur direkten optischen Messung sowie
die Nutzung redundanter Messgrößen vorgeschlagen. Vereinzelt finden sich auch Ansätze
zur Beobachtung des Endeffektorzustands aus den verfügbaren Messdaten. Dieses Vorge-
hen erscheint insbesondere für den Regelungstechniker naheliegend, entsprechende Pu-
blikationen über den Einsatz von Beobachtern zur Realisierung möglichst breitbandiger
Regelungen sind jedoch rar, wie in Abschnitt 3.2.3 dieser Arbeit erläutert wird.

Regelungen für PKM, welche die nichtlineare Dynamik und Kinematik exakt kompensie-
ren, können als flachheitsbasierte Zustandsregelungen charakterisiert werden. Mit ihnen
geht eine Zustandsentkopplung einher, die solche Ansätze prädestiniert für die Regelung
von PKM erscheinen lassen. Durch ihre verkoppelte Kinematik sind in der Regel alle
Aktoren an einer Bewegung in eine Raumrichtung beteiligt, wodurch eine ensprechen-
de Zustandsentkopplung besonders reizvoll wird. Der Einsatz von Zustandsbeobachtern
macht auch die Verwendung von geschätzten Istzuständen anstelle von Sollzuständen zur
Kompensation der nichtlinearen Dynamik möglich.
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1.2 Zielsetzung

Konzepte zur flachheitsbasierten Positionsregelung von PKM sind Stand der Technik,
ihre beobachterbasierte Realisierung mit hoher Dynamik, wie für den Hexapoden im
Achsprüfstand gefordert, jedoch nicht. Ziel dieser Arbeit ist die Beantwortung folgender
Fragen:

• Welche Form der Realisierung ist generell geeignet für die hochdynamische Rege-
lung von PKM?

• Welche Form der Zustandsschätzung ist sinnvoll?

• Welche Maßnahmen können zur Optimierung der Regelgüte in realen Systemen mit
Stellgrößenbegrenzungen und realer Sensorik ergriffen werden?

• Welches ist die unter diesen Gesichtspunkten optimale Regelstrategie für das Ziel-
system?

1.3 Aufbau der Arbeit

Das nachfolgende Kapitel 2 enthält theoretische Grundlagen, die zum Verständnis der
Arbeit unerlässlich sind. Nach einer kurzen Vorstellung des Zielsystems wird die dy-
namische Modellierung von seriellen und parallelen Kinematiken im Allgemeinen so-
wie der im Zielsystem vorhandenen hydraulischen Aktoren erläutert. Weiterhin werden
regelungstechnische Grundlagen erörtert, welche die Zwei-Freiheitsgrade-Regelung, das
flachheitsbasierte Entwurfskonzept, die Zustandsschätzung und die Regelung von hydrau-
lischen Aktoren umfassen.

In Kapitel 3 wird der für die Zielsetzung dieser Arbeit relevante Stand der Technik vorge-
stellt. Es werden schwerpunktmäßig Lösungsverfahren für das DKP sowie Regelungsan-
sätze für PKM behandelt. Das Kapitel schließt mit der Identifikation offener Fragen und
eines Handlungsbedarfs sowie der Themeneingrenzung und Zieldefinition.

In Kapitel 4 wird die Auslegung flachheitsbasierter Regelungen für PKM mit endlicher
Dynamik und Stellgrößenbegrenzungen diskutiert. Dazu werden zunächst die Gleichun-
gen für verschiedene Realisierungsformen sowie eine geeignete Methode zur Synthese
erläutert und auf das Zielsystem angewendet. Es folgt ein Abschnitt zur Filterung der
Solltrajektorie zur Vermeidung von Windup-Effekten, die durch Stellgrößenbegrenzun-
gen hervorgerufen werden und praktisch in jedem realen System auftreten. Schließlich
werden die betrachteten Konzepte simulationsbasiert analysiert.

Kapitel 5 ist der Zustands- und Störbeobachtung von PKM gewidmet. Nach der Klä-
rung der Beobachtbarkeit werden verschiedene Realisierungsformen eines Kalman-Bucy-
Filters und eines Sliding-Mode-Beobachters für PKM diskutiert. Das Kapitel schließt
ebenfalls mit der modellbasierten Analyse der Konzepte.

In Kapitel 6 werden die Konzepte und Erkenntnisse aus den Kapiteln 4 und 5 zusammen-
geführt: Es wird das Verhalten beobachterbasierter Regelungen für PKM betrachtet. Diese
werden simulationsbasiert und auf Basis von realen Prüfstandsergebnissen analysiert.

Kapitel 7 enthält eine Zusammenfassung der Arbeit sowie einen Ausblick auf weiterfüh-
rende Fragestellungen.
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2 Theoretische Grundlagen

PKM in der Form von Hexapoden werden bereits seit den 1940er Jahren im Bereich
der Fahrzeugentwicklung eingesetzt. Zunächst wurden sie für Reifentests verwendet, vgl.
[Mer06, S. 5 f.], später im Bereich der Fahrsimulation, vgl. [Zee10], und Fahrwerks-
prüfung, vgl. [SDM+05]. Hexapoden sind die populärste und meistverbreitete Form von
PKM, im Laufe der Zeit wurden jedoch auch alternative Formen von PKM konzipiert und
umgesetzt. Eine ausführliche Erörterung dieser Thematik ist jedoch nicht Gegenstand die-
ser Arbeit, sondern es wird auf das Buch [Mer06] von Jean-Pierre Merlet verwiesen.

Die in den nachfolgenden Abschnitten diskutierten Aspekte legen die Basis zum Ver-
ständnis der Arbeit. Dabei werden zunächst der Aufbau und die Komponenten des Ziel-
systems erläutert, gefolgt von Ausführungen zur Modellierung und zu regelungstechni-
schen Grundlagen.

2.1 Aufbau und Komponenten des hydraulischen Hexapoden

Der hydraulische Hexapod, der als Zielsystem für diese Arbeit dient und im Rahmen des
Prüfstands zur HiL-Simulation von PKW-Achsen eingesetzt werden soll, wurde bereits
in der Auslegungsphase im Hinblick auf die geplante Anwendung und mögliche Rege-
lungskonzepte optimiert - ganz nach der bereits in Abschnitt 1.1 erwähnten Empfehlung
aus [Mer02], wo zur Ausschöpfung des strukturbedingten Potenzials einer PKM die Op-
timierung aller beteiligten Komponenten gefordert wird. Bild 2-1 zeigt den Hexapoden.
Er besteht im Wesentlichen aus sechs hydraulischen Aktoren, die über Kardangelenke mit

Bild 2-1: Hydraulischer Hexapod (Zielsystem)

der Aufspannplatte und über Kugelgelenke mit der Endeffektorplattform verbunden sind.
Die Gelenke sind, wie es für Hexapoden charakteristisch ist, symmetrisch auf einem vir-
tuellen Kreis angeordnet. An der Endeffektorplattform wird im späteren Prüfbetrieb eine
Messnabe zur Erfassung der Kräfte und Momente, die am Radträger wirken, befestigt.
Ihr Messpunkt dient als virtueller Tool Center Point (TCP), der als Bezugspunkt für die
in dieser Arbeit betrachteten Positionsvorgaben und -regelungen gilt.
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Die hydraulischen Aktoren sind als Gleichlaufzylinder mit hydrostatischer Lagerung aus-
geführt. Sie werden durch je zwei hochdynamische Servoventile gesteuert. Die Verwen-
dung von je zwei parallelen Servoventilen ist notwendig, um den hohen Volumenstrom-
bedarf der Zylinder zu stellen. Zur Modellbildung können beide Servoventile zu einem
zusammengefasst werden. Die Ölzufuhr zu den Zylindern ist in die Kardangelenke inte-
griert, die Zufuhr von den Ventilen zur oberen Zylinderkammer erfolgt über Kanäle, die
in die Zylindergehäuse integriert sind. Diese Ausführung ist optimiert für den hochdy-
namischen Betrieb, da sie die Anzahl flexibler Schläuche reduziert. Der Hexapod ist so
konstruiert, dass die maximal möglichen Zylinderhübe voll ausgenutzt werden können.

Die Messsignale zur Regelung des Systems werden durch Sensoren erzeugt, die in die Zy-
linder integriert sind. Wegsensoren messen die translatorische Bewegung der Zylinderkol-
ben, Differenzdrucksensoren die Druckdifferenz zwischen den einzelnen Zylinderkam-
mern. Alle Sensoren wurden hinsichtlich ihrer Bandbreite optimiert. Die Wegsensoren
liefern ein digitales Signal mit einer Abtastfrequenz von 10 kHz. Die Differenzdrucksen-
soren arbeiten nach dem DMS-Prinzip und werden analog verstärkt, mit einer Bandbreite
von 10 kHz.

Zur Realisierung der Regelungen steht ein leistungsfähiges Echtzeitsystem mit vier Pro-
zessorkernen zur Verfügung. Es ist in der Lage, alle Ein- und Ausgangsdaten sowie die
Algorithmen zur Regelung mit einer Abtastfrequenz von bis zu 10 kHz abzuarbeiten.

2.2 Modellbildung

Um die Besonderheiten parallelkinematischer Strukturen im Gegensatz zu ihrem seriell-
kinematischen Pendant zu verdeutlichen, wird im Folgenden kurz die dynamische Mo-
dellierung von seriellen Kinematiken thematisiert. Es folgt eine Beschreibung der Dy-
namik von Parallelkinematiken mit der abschließenden Überführung in eine nichtlinea-
re, eingangsaffine Zustandsraumdarstellung. Diese bildet die Basis für die Betrachtungen
zur Regelungs- und Beobachtersynthese in den nachfolgenden Kapiteln. Die Gleichun-
gen sind zunächst allgemein gehalten und gelten für alle voll aktuierten Systeme mit
η = 2 . . . 6 Aktoren und η FHG, d. h. es werden keine über- oder unteraktuierten Struk-
turen betrachtet. Der letzte Abschnitt dieses Unterkapitels ist der Modellierung servohy-
draulischer Aktoren gewidmet.

2.2.1 Serielle Kinematiken

Allgemeine seriellkinematische Strukturen bestehen aus einer offenen kinematischen Ket-
te mit mehreren translatorischen und/oder rotatorischen Aktoren, an deren Ende sich der
Endeffektor mit dem körperfesten Koordinatensystem E befindet, wie Bild 2-2 beispiel-
haft zeigt. Die Dynamik einer solchen Struktur kann mit Hilfe der Gelenkkoordinaten
q ∈ Rη und ihrer zeitlichen Ableitungen vollständig und eindeutig beschrieben werden.
Eine klassische Formulierung ergibt sich aus der Anwendung des Lagrange Formulismus.
Die entsprechende Bewegungsgleichung lautet, vgl. [WSB96, S. 22]:

M (q) q̈ + CCC (q, q̇) q̇ + G (q) = τq. (2-1)
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Bild 2-2: Serielle Kinematik (nach [WSB96, S. 5])

Dabei ist M (q) ∈ Rη×η die symmetrische und positiv definite Trägheitsmatrix der Struk-
tur. τq ∈ R

η bezeichnet den Vektor der Aktorkräfte in Gelenkkoordinaten, wobei τqi der
Kraft bzw. dem Moment am Gelenk i entspricht. Je nachdem, ob es sich um ein translato-
risches oder rotatorisches Gelenk handelt, ist der Eintrag τqi eine Kraft oder ein Moment.
Weiterhin bezeichnet G (q) ∈ Rη den Vektor der Gewichtskräfte und CCC (q, q̇) q̇ ∈ Rη den
Vektor der Coriolis- und Zentrifugalkräfte bzw. -momente (im Folgenden stets vereinfa-
chend „Vektor der Coriolis- und Zentrifugalkräfte“ genannt).

Da für serielle Kinematiken die Dynamik des Systems explizit analytisch durch die Ge-
lenkkoordinaten beschreibbar ist, kann eine modellbasierte Regelung direkt in diesen
erfolgen. Die erforderlichen Größen sind einfach detektierbar, bspw. durch den Einsatz
von Inkrementalenkodern oder die Messung der Motorströme bei elektrischen Aktoren,
vgl. [AH10].

2.2.2 Parallele Kinematiken

Bei Parallelkinematiken wird der Endeffektor durch eine geschlossene kinematische Struk-
tur aus mehreren Aktoren bewegt. Bild 2-3 zeigt dies am Beispiel eines Hexapoden, einer
parallelkinematischen Struktur mit η = 6 translatorischen Aktoren. Der Zustand einer
solchen Struktur kann im Allgemeinen nur durch die Lage und Orientierung x ∈ Rη des

Bild 2-3: Parallele Kinematik - Hexapod
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Endeffektorschwerpunkts bzw. seines lokalen Koordinatensystems E in einem globalen
Koordinatensystem und dem entsprechenden Vektor der Geschwindigkeiten und Winkel-
geschwindigkeiten v ∈ Rη eindeutig beschrieben werden. Grundsätzlich sind Art und Ort
des globalen Koordinatensystems frei wählbar, in Bild 2-3 ist exemplarisch ein kartesi-
sches Koordinatensystem N eingezeichnet, wie es auch zur Modellierung des Zielsystems
verwendet wird.

Die Lage des Endeffektorschwerpunkts in N sei durch die Koordinaten px in xN , py in yN

und pz in zN beschrieben, die Orientierung des lokalen Koordinatensystems E in N durch
die Winkel αN um xN , βN um yN und γN um zN . Entsprechend sind die Vektoren x und v
wie folgt definiert:

x =
[
px py pz αN βN γN

]T
,

v =
[
ṗx ṗy ṗz ωx ωy ωz

]T
=

[
vx vy vz ωx ωy ωz

]T
.

Für die Modellierung ist zudem die zeitliche Ableitung des Positions- und Orientierungs-
vektors ẋ, mit

ẋ =
[
vx vy vz α̇N β̇N γ̇N

]T
,

relevant, der im Gegensatz zu v die zeitlichen Ableitungen der Winkel anstatt der Winkel-
geschwindigkeiten enthält.

Bei der Verwendung der Endeffektorkoordinaten und -geschwindigkeiten für allgemeine
parallele Strukturen mit η Aktoren und η FHG lautet die (2-1) entsprechende Bewegungs-
gleichung gemäß [AH10]

M (x) v̇ + CCC (x, v) v + G = τx. (2-2)

τx ∈ R
η bezeichnet den Vektor der Kräfte und Momente, die am Endeffektorschwerpunkt

angreifen und aus den Aktorkräften bzw. -momenten resultieren, in globalen Koordinaten.
Die Trägheitsmatrix M (x) ∈ Rη×η und der Coriolis- und Zentrifugalterm CCC (x, v) v ∈ Rη

sind Funktionen von x bzw. x und v. Da die Wirkrichtung der Gravitationskraft in globalen
Koordinaten konstant ist, bleibt auch der Vektor der Gewichtskräfte in (2-2) konstant und
ist damit unabhängig von x.

Die Struktur einer PKM erlaubt nur das Aufbringen von Kräften und Momenten in Rich-
tung der Gelenkkoordinaten q, beschrieben durch den Vektor τq ∈ R

η. Die Modellierung
und Simulation der Bewegung des Endeffektors erfordert demnach eine Umrechnung in
globale Koordinaten, resultierend in τx. Der entsprechende Zusammenhang ist durch die
inverse Transponierte der Jakobimatrix, J−T (x), gegeben, welche für PKM eine Funktion
der Position und Orientierung des Endeffektors x ist:

τx = J−T (x) τq, (2-3)

vgl. [AH10]. Mit (2-2) und (2-3) kann die Dynamik der Endeffektorplattform in Abhän-
gigkeit von τq beschrieben werden:

M (x) v̇ + CCC (x, v) v + G = J−T (x) τq. (2-4)
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Die Jakobimatrix J(x) stellt auch den Zusammenhang zwischen den zeitlichen Ableitun-
gen der Gelenkkoordinaten und dem Vektor der globalen Geschwindigkeiten des Endef-
fektors her,

v = J (x) q̇, (2-5)

vgl. [AH10]. Aufgrund des strukturellen Aufbaus ist die Beziehung zwischen der Position
und Orientierung x und den entsprechenden Gelenkkoordinaten q, das IKP, bei PKM ein-
deutig lösbar, im Gegensatz zu seriellen Kinematiken. Sie wird durch die Funktion q(x)
beschrieben:

q = q (x) . (2-6)

Zur Berechnung des IKP für PKM können geometrische Zusammenhänge genutzt wer-
den.

Die Inversion von (2-6) ist für parallele Kinematiken im Allgemeinen nicht eindeutig
analytisch möglich. Es existiert kein eindeutiger Zusammenhang, der die Ermittlung der
Position und Orientierung des Endeffektors x aus den Gelenkkoordinaten q und damit die
Lösung des DKP erlaubt. In [Mer06, Kap. 4] wird für verschiedene parallelkinematische
Strukturen die Anzahl der Lösungen aufgeführt. Zudem werden verschiedene Quellen
genannt, in denen mit unterschiedlichen Methoden übereinstimmend gezeigt wird, dass
für das DKP einer allgemeinen PKM mit sechs translatorischen Aktoren insgesamt 40
Lösungen existieren. Der erste Beweis dazu wurde demnach im Jahre 1992 in [RV92]
geführt. Laut [Mer06, S. 105] existiert kein bekannter Algorithmus zur Ermittlung der
aktuell richtigen Lösung unter den möglichen Lösungen.

Zur Bestimmung der Jakobimatrix in Abhängigkeit der aktuellen Position und Orientie-
rung x genügt die Lösung des IKP. Durch partielle Ableitung von (2-6) ergibt sich der
Zusammenhang zwischen den zeitlichen Ableitungen von q und x:

q̇(x, ẋ) =
∂q(x)
∂x
· ẋ. (2-7)

Bei mehr als einem rotatorischen FHG muss für die Berechnung von v aus ẋ die gewählte
Rotationsreihenfolge berücksichtigt werden. Die entsprechende Abhängigkeit wird durch
die Kinematikmatrix H (x) ∈ Rη×η beschrieben,

v = H (x) ẋ, (2-8)

die wie folgt definiert ist:

H(x) =
∂v
∂ẋ

= J(x) ·
∂q
∂x
. (2-9)

H(x) kann aus der schiefsymmetrischen Matrix Nω̃NE der Winkelgeschwindigkeiten im
globalen Koordinatensystem N für die Bewegung des Endeffektors in demselben berech-
net werden. Für allgemeine Drehungen im Raum gilt dabei, vgl. [RS88, S. 81]:

Nω̃NE =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 = ṪNE · T T
NE. (2-10)
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Die Einträgeωx,ωy undωz sind die Winkelgeschwindigkeiten um die x−, y− und z−Achse
des kartesischen Koordinatensystems N. Die gewählte Drehreihenfolge wird durch die
Rotationsmatrix TNE berücksichtigt, mit der beliebige Vektoren vom körperfesten Endef-
fektorkoordinatensystem E, z. B. Er, in N überführt werden können, z. B. Nr = TNE ·

Er.
Die Orientierung des Endeffektors im globalen Koordinatensystem ist in x enthalten, TNE

und ṪNE sind daher Funktionen von x und ẋ:

TNE = TNE(x), (2-11)
ṪNE = ṪNE(x, ẋ). (2-12)

Die Winkelgeschwindigkeiten entsprechen einzelnen Einträgen des Geschwindigkeits-
vektors v. H(x) kann daher durch partielle Differentiation gemäß (2-9) und einem Ko-
effizientenvergleich aus (2-10) ermittelt werden. Dadurch bleibt H(x) unabhängig von ẋ,
das ist auch in (2-9) erkennbar.

Die inverse Jakobimatrix J−1(x) lässt sich dann aus (2-7) und (2-8) so berechnen, dass sie
(2-5) genügt:

q̇(x, v) =
∂q(x)
∂x
· ẋ =

∂q(x)
∂x
· H−1(x)︸            ︷︷            ︸

J−1(x)

·v

⇒ J−1(x) =
∂q(x)
∂x
· H−1(x). (2-13)

Zum Zwecke der numerischen Simulation kann die analytische Darstellung der inversen
Jakobimatrix verwendet werden. Die (direkte) Jakobimatrix kann numerisch durch Inver-
sion berechnet werden. Inversionsschwierigkeiten ergeben sich in der Nähe von Singula-
ritäten, die innerhalb des Arbeitsraums der betrachteten Struktur jedoch nicht auftreten.

Für die Regler- und Beobachtersynthese wird vielfach eine Zustandsraumdarstellung der
Bewegungsgleichung (2-4) benötigt. Die Systemdynamik kann für allgemeine PKM als
nichtlineares, eingangsaffines MIMO-System (Multiple Input Multiple Output) wie folgt
formuliert werden:

ż = f (z, u) = fa(z) + fb(z)u (2-14)
y = g(z). (2-15)

Dabei bezeichnet z,

z =
[
xT vT

]T
, (2-16)

den n-dimensionalen Zustandsvektor, n = 2 · η, der sich aus dem Positions- und Ge-
schwindigkeitsvektor zusammensetzt. Der Eingangsvektor u ∈ Rη entspricht dem Vektor
der Aktorkräfte in Gelenkkoordinaten,

u = τq, (2-17)

also den Stellgrößen im Falle einer Regelung. Die in der Regel messbaren Gelenkkoordi-
naten formen den Ausgangsvektor y ∈ Rη:

y = g(z) = q(x). (2-18)
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Mit (2-4) und (2-8) können die Funktionen fa(z) und fb(z) aus (2-14) wie folgt angegeben
werden:

fa(z) =

[
0 H−1 (x)
0 −M−1 (x) CCC (x, v)

]
z +

[
0

−M−1(x)G

]
, (2-19)

fb(z) =

[
0

M−1 (x) J−T (x)

]
. (2-20)

Die Orientierung des Endeffektors beeinflusst nur diejenigen Einträge der Trägheitsma-
trix M(x), die mit rotatorischen Freiheitsgraden verknüpft sind. Die Gewichtskraft wirkt
jedoch nur in eine translatorische Richtung – das Produkt aus M−1 (x) und G ist somit
konstant und der zweite Term in fa(z) unabhängig vom Zustandsvektor z:

fa(z) =

[
0 H−1 (x)
0 −M−1 (x) CCC (x, v)

]
z + KG. (2-21)

Der Vektor KG ∈ R
n entspricht damit dem Vektor der Gravitationsbeschleunigung im

gewählten globalen Koordinatensystem.

2.2.3 Hydraulische Aktoren

Im Folgenden wird die Modellierung der zur Reglersynthese wesentlichen Charakteristika
von hydraulischen Servoaktoren in der Form von Gleichlaufzylindern, wie sie im Zielsys-
tem verbaut sind, beschrieben. Je Zylinder werden zwei parallel angeordnete Servoventile
verwendet, die für die Modellbildung zu einem Ventil mit zweifach nominaler Volumen-
stromverstärkung zusammengefasst werden können. Bild 2-4 zeigt die Funktionsweise
eines hydraulischen Aktors anhand einer Prinzipskizze mit allen relevanten Größen. Das
Servoventil stellt die Volumenströme QA und QB, die in bzw. aus den Kammern A und B
des Zylinders fließen. Am Ventil liegen dabei der Versorgungsdruck pP und der Tankdruck
pT an. In den Zylinderkammern stellen sich die Kammerdrücke pA und pB ein.

Modellierung der Kolbenbewegung
Der auf die Kolbenfläche wirkende Differenzdruck ∆p,

∆p = pA − pB, (2-22)

erzeugt eine Kraft, die eine Bewegung des Zylinderkolbens (yzyl) gegen die extern wirken-
de Kraft Fext und die geschwindigkeits- bzw. richtungsabhängigen Reibkräfte Fd und FR

bewirkt. Durch die hydrostatische Lagerung entsteht ein Leckagevolumenstrom QL, der
von der Kammer mit höherem Druckniveau in die Kammer mit niedrigerem Druckniveau
fließt.

Die Bewegungsgleichung für den Zylinderkolben lautet

mK · ÿzyl = Azyl∆p − FR − Fd − Fext, (2-23)

mit

FR =FR0 · sign(ẏzyl), (2-24)
Fd =dzylẏzyl. (2-25)
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Bild 2-4: Hydraulischer Aktor (schematisch)

Die extern wirkende Kraft Fext entspricht bei der Modellierung des Gesamtsystems einer
einzelnen Aktorkraft τq,i,

Fext = τq,i. (2-26)

Modellierung des Servoventils
Die Vorgabe der Steuerschieberposition yV erfolgt über die Ventilsteuerspannung uV . Eine
interne Regelung sorgt mit Hilfe eines Torquemotors, eines Düse-Prallplatten-Verstärkers
und einer internen Wegsensorik (alle in Bild 2-4 nicht dargestellt) für die Einregelung
der vorgegebenen Sollposition. Diese Aktorik ist komplex und ihr dynamisches Ver-
halten kann prinzipiell durch eine Reihe nichtlinearer Differentialgleichungen beschrie-
ben werden. Detaillierte Informationen zu Aufbau und Funktionsweise finden sich bspw.
in [Fin06, S. 622 ff.] oder [MR11, S. 125]. Für die Verwendung des Servoventils in einer
übergeordneten Regelung genügt jedoch die Beschreibung des geschlossenen Schieber-
positionsregelkreises als lineares Übertragungsglied zweiter Ordnung mit der Übertra-
gungsfunktion GV(s),

GV(s) =
YV(s)
UV(s)

=
KV

1
4π2 f 2

0,V
s2 + 2DV

2π f0,V
s + 1

, (2-27)

wobei f0,V die Ventileckfrequenz und DV die Lehrsche Dämpfung beschreibt. Ventilher-
steller geben in der Regel amplitudenabhängige Frequenzkennlinien an, die eine Abschät-
zung dieser Parameter erlauben. Die Amplitudenabhängigkeit resultiert aus den begrenz-
ten Kräften, die zur Positionierung des Ventilschiebers zur Verfügung stehen. Daher sind
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in der Regel im Kleinsignalbereich wesentlich höhere Eckfrequenzen erreichbar als bei
Vollaussteuerung. Für die Modellierung eines Servoventils innerhalb einer Druckrege-
lung können die höheren Eckfrequenzen aus dem Kleinsignalbereich verwendet werden,
da größere Volumenströme nur zur Kompensation von Volumenänderungen benötigt wer-
den, die in der Regel erheblich langsamer sind als der Druckaufbau.

Die Ventilschieberposition wird als auf ±1 normierter Wert vorgegeben, dabei entspricht
eine Ansteuerung von uV = uV,max dem maximalen Ventilschieberweg in positiver Rich-
tung, ensprechend gilt für uV = uV,min der Wert yV = −1. Die Verstärkung KV ergibt sich
zu

KV =
1

uV,max
. (2-28)

Der Volumenstrom über eine voll geöffnete Steuerkante des Ventils kann in Abhängigkeit
der anliegenden Druckdifferenz ∆pS durch die Blendengleichung

Qmax = Qnenn

√
∆pS

∆pnenn
(2-29)

beschrieben werden, vgl. [Fin06, S. 603]. Dabei bezeichnet Qnenn den Volumenstrom über
eine Steuerkante des Ventils, der sich bei Nenndruckdifferenz ∆pnenn und Nennansteue-
rung uV,nenn = uV,max einstellt. Diese Größen werden in der Regel vom Ventilhersteller als
Kenngrößen angegeben.

Der Volumenstrom über eine nur teilweise geöffnete Steuerkante eines Servoventils ist
proportional zur normierten Ventilschieberposition yV . Es gilt demnach mit (2-29):

Q(yV ,∆pS ) = yV Qnenn

√
∆pS

∆pnenn
. (2-30)

Der Volumenstrom ist also zudem abhängig von der aktuell an der betrachteten Steuer-
kante anliegenden Druckdifferenz ∆pS . Bei dem in Bild 2-4 dargestellten Ventil handelt
es sich um ein 4/3-Wegeventil, bei dem jeweils zwei Steuerkanten zur Steuerung der Vo-
lumenströme QA und QB vorhanden sind (jeweils die Verbindung der Arbeitsanschlüsse
A und B zur Versorgung mit QP und pP und zum Tank mit QT und pT ). Laut [Fin06, S.
601] gilt im statischen Fall für die Druckdifferenz über eine Steuerkante eines solchen
symmetrischen Ventils bei gleichflächigen Zylindern

∆pS =

{
pP − pA = pB − pT für yV > 0
pP − pB = pA − pT für yV ≤ 0 , (2-31)

bzw. zusammengefasst

∆pS =
pP − pT − (pA − pB)sign(yV)

2
. (2-32)

Mit (2-30) ergibt sich für die einzelnen Ventilvolumenströme:[
QA

QB

]
=

[
+1
−1

]
yV · Qnenn

√
∆pS

∆pnenn
. (2-33)
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Modellierung des Zylinders
Bei der Modellierung eines Zylinders als hydraulischer Aktor eines Hexapoden ist die Be-
schreibung der Dynamik der Kammerdrücke pA und pB entscheidend. Die daraus resul-
tierende Druckdifferenz ∆p bestimmt die hydraulische Kraft, die, unter Vernachlässigung
der als Störkräfte zu betrachtenden Reibkräfte und der Trägheit des Zylinderkolbens, di-
rekt der Aktorkraft τq,i in Gelenkkoordinaten entspricht. Zur Regelung des Zielsystems
sind diese Vereinfachungen sinnvoll, da die Masse eines Zylinderkolbens (ca. 6 kg) im
Verhältnis zur Masse der Endeffektorplattform (ca. 200 kg) klein ist. Die Kolbenmassen
mK,i werden für die Modellierung (vgl. Abschnitt 2.2.2) des Hexapoden der Masse des
Endeffektors zugeschlagen, es resultiert die Ersatzmasse mE. Auch das Vernachlässigen
der Reibkräfte zur Reglersynthese ist zulässig, da die Zylinder des Zielsystems über eine
hydrostatische Lagerung verfügen und die Reibkräfte demnach klein sind, vgl. [Sch14].
Unter diesen Voraussetzungen wird aus (2-23)

Fext = τq,i = Azyl · ∆p. (2-34)

Für den Druckaufbau in einer beliebigen hydraulischen Kapazität CH gilt gemäß [Mur01,
S. 71]

ṗ =
1

CH
·
∑

i

Qi. (2-35)

Die zeitliche Änderung des Drucks ist demnach proportional zur Summe aller zuflie-
ßenden Volumenströme. Die hydraulische Kapazität ist definiert als Quotient aus dem
ursprünglichen Volumen V0 (vor der Kompression) und dem Ersatzkompressionsmodul
E
′

Öl
:

CH =
V0

E′
Öl

. (2-36)

In dem Ersatzkompressionsmodul E
′

Öl
werden alle beteiligten Elastizitäten, z. B. des Öls

und der Wandung, berücksichtigt, vgl. [Mur01, S. 53]. Für die Summe der zufließenden
Volumenströme gilt für die Kammern A und B gemäß Bild 2-4:∑

i

Qi,A = QA − Azylẏzyl − QL (2-37)∑
i

Qi,B = QB + Azylẏzyl + QL. (2-38)

Der Leckagevolumenstrom QL ist mit dem Faktor KL proportional zur Druckdifferenz:

QL = KL∆p. (2-39)

Die Ausgangsvolumina der Kammern A und B setzen sich aus den jeweiligen Totvolumi-
na Vtot und den positionsabhängigen Verdrängungsvolumina zusammen:

V0,A = Vtot,A + Azylyzyl (2-40)
V0,B = Vtot,B + Azyl(yzyl,max − yzyl). (2-41)
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Aus (2-35)-(2-41) resultieren die Differentialgleichungen für das dynamische Verhalten
der Kammerdrücke pA und pB:

ṗA =
E
′

Öl

Vtot,A + Azylyzyl
(QA − Azylẏzyl − KL∆p) (2-42)

ṗB =
E
′

Öl

Vtot,B + Azyl(yzyl,max − yzyl)
(QB + Azylẏzyl + KL∆p). (2-43)

Im Zielsystemkontext entspricht die Zylindergeschwindigkeit ẏzyl,i der Geschwindigkeit
q̇i des betrachteten Aktors i in Gelenkkoordinaten. Die entsprechende Aktorlänge qi re-
sultiert aus der Aktorlänge l0 in Mittelstellung des Zylinders (yzyl,0 = 0, 5 · yzyl,max), sowie
der aktuellen Kolbenposition. Es gilt:

qi = l0 −
1
2
· yzyl,max + yzyl,i. (2-44)

2.2.4 Parameter des Zielsystems

In Tabelle 2-1 sind alle wesentlichen Parameter zur Modellierung des Zielsystems auf-
gelistet. Es handelt sich dabei vorwiegend um Daten, die aus Konstruktionsunterlagen
und Datenblättern extrahiert wurden. Die Parameter KL, dzyl und FR wurden in [Sch14]
experimentell für einen Zylinder ermittelt, der nahezu baugleich zu den im Zielsystem
verbauten Aktoren ist.

Zur Modellierung des Zielsystems gemäß (2-4) werden alle bewegten Massen zu einer
Ersatzmasse mE zusammengefasst, deren Schwerpunkt mit dem der Endeffektorplattform
zusammenfällt. Die angegebenen Rotationsträgheiten gelten für die Ersatzmasse und sind
definiert um den Schwerpunkt im lokalen Endeffektorkoordinatensystem E (vgl. Bild 2-
3). Der Einfluss der Gelenke und Kolbenstangen auf die Rotationsträgheiten wird ver-
nachlässigt und wirkt am realen System als Parameterunsicherheit, die von der Regelung
ausgeglichen werden muss.
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Tabelle 2-1: Parameter des Zielsystems
Ersatzmasse (Endeffektor + Kolbenmassen) mE 216, 9 kg
Rotationsträgheit der Ersatzmasse um xE* Ixx 23, 3 kgm2

Rotationsträgheit der Ersatzmasse um yE* Iyy 17, 2 kgm2

Rotationsträgheit der Ersatzmasse um zE* Izz 19, 9 kgm2

Radius der Bodenplattform rB 0, 75 m
Radius der Endeffektorplattform rE 0, 45 m

Vektor vom Mittelpunkt des Endeffektorgelenk-
kreises zum Endeffektorschwerpunkt in E*

E pME,S P

 0, 000
−0, 028

0, 211

 m

Länge der Aktoren in Mittelstellung l0 0, 9 m
max. Hub der Aktoren yzyl,max 0, 23 m
Kolbenfläche der Zylinder Azyl 7, 424 cm2

Ersatzkompressionsmodul E
′

Öl
1, 8 · 109 N/m2

Ventileckfrequenz f0,V 350 Hz
Ventildämpfung (Lehrsches Dämpfungsmaß) DV 0, 7
Nennvolumenstrom je Servoventil Qnenn,S V 38 l/min
Nenndruckdifferenz je Ventilsteuerkante ∆pnenn 35 bar
Pumpendruck pP 280 bar
Tankdruck pT 3 bar
Ventilverstärkung KV 0, 1 V−1

Totvolumen Kammer A Vtot,A 79 · 10−6 m3

Totvolumen Kammer B Vtot,B 115 · 10−6 m3

Leckagefaktor KL 1, 6 · 10−12 m5/Ns
Reibkoeffizient dzyl 108 Ns/m
Coulombsche Reibkraft FR 51 N

*E: lokales Endeffektorkoordinatensystem, vgl. Bild 2-3
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2.3 Regelungstechnische Grundlagen

Die nachfolgenden Abschnitte behandeln regelungstechnische Grundlagen, die im Kon-
text der Arbeit relevant sind. Es werden zunächst Regler- und Beobachterkonzepte in
ihrer grundlegenden Funktionsweise erläutert, gefolgt von einem Abschnitt zur lokalen
Differenzdruckregelung hydraulischer Servoaktoren.

2.3.1 Zwei-Freiheitsgrade-Regelung und flachheitsbasiertes
Entwurfskonzept

Die Kombination aus Steuerung und Regelung wird als Zwei-Freiheitsgrade-Regelung be-
zeichnet und wurde bereits in den 1960er Jahren in [Hor63] eingeführt (zit. in [Föl13, S.
9 ff.]). Die Grundidee dabei ist, der Regelstrecke durch eine Steuerung das gewünschte
Führungsverhalten aufzuprägen und gleichzeitig Abweichungen davon durch einen Rück-
führzweig zu kompensieren. Dieses wird schematisch in Bild 2-5 gezeigt, dessen Grund-
struktur aus [Föl13, S. 10] stammt.

Bild 2-5: Blockschaltbild einer Zwei-Freiheitsgrade-Regelung [Föl13, S. 10]

Die Steuerung erzeugt modellbasiert eine Stellgröße uS , die im idealen Fall (d. h. bei
exakter Übereinstimmung von Modell und Strecke) genau den Sollverlauf w am Stre-
ckenausgang y herbeiführt. Da dieser Fall aufgrund von Modellungenauigkeiten und Stör-
einflüssen in der Realität praktisch nicht auftritt, wird in einer weiteren Schleife ständig
der von der Vorsteuerung berechnete Referenzzustand zre f mit dem aktuellen Zustand z
der Strecke verglichen und, im Falle einer Abweichung |e| > 0, vom Regler eine Korrek-
turgröße ur berechnet. Steuerung und Regelung wirken dabei parallel und können im Fall
linearer Systeme unabhängig voneinander entworfen werden. Aus diesen zwei Entwurfs-
freiheitsgraden resultiert die Bezeichnung Zwei-Freiheitsgrade-Struktur.

Zur Auslegung von Steuerung und Regelung existiert eine Vielzahl von Entwurfsverfah-
ren. Bei bekanntem Sollverhalten kann die Steuerung im Vorfeld offline berechnet wer-
den – hier kommen häufig Optimierungsverfahren zum Einsatz, die sowohl eine optimale
Stellgröße als auch den optimalen Referenzzustand für das gewünschte Regelziel berech-
nen. Dieses sog. Optimalsteuerproblem wurde z. B. in [Tim13] für ein Mehrfachpendel
diskutiert.

In dieser Arbeit wird ein komplexes System betrachtet, dessen Solltrajektorie im Vorfeld
nicht bekannt ist. Im linearen Fall können hier beispielsweise statische oder modellge-
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stützt dynamische Vorsteuerungen verwendet werden, vgl. [Föl13, S. 322 ff.]. Für den
Steuerungs- und Regelungsentwurf für nichtlineare Systeme wurde in [Fli92] das Kon-
zept der Flachheit eingeführt (zit. in [RRZ97]). Die Haupteigenschaften flacher Systeme
werden in [RRZ97] wie folgt beschrieben:

„Wesentliches Merkmal flacher Systeme ist die Existenz eines fiktiven Ausgangs y, der
„flacher Ausgang“ genannt wird. Ein solcher Ausgang enthält ebensoviele (differenti-
ell) unabhängige Komponenten yi, i = 1, . . . ,m wie der Eingang u und beschreibt das
dynamische Verhalten des Systems im folgenden Sinne vollständig: Alle Zustände und
Eingänge des Systems können als Funktion der yi und einer endlichen Anzahl von Zeita-
bleitungen y(k)

i , k ≥ 1 dargestellt werden. Aus der Kenntnis eines flachen Ausgangs kann
direkt eine Steuerung für das nichtlineare System bestimmt werden.“

Als Beispiel wird die Steuerung eines seriellen Roboters genannt, bei der die zur Verfol-
gung einer Trajektorie erforderlichen Gelenkkräfte τq durch Umstellen der Bewegungs-
gleichung (vgl. (2-1)) direkt aus den Gelenkkoordinaten q und den zeitlichen Ableitun-
gen q̇ und q̈ berechnet werden können. q stellt damit einen flachen Ausgang dar. Flache
Systeme sind zudem exakt zustandslinearisierbar [RRZ97], sodass der Entwurf der Re-
gelung auf Basis des exakt zustandslinearisierten Systems mit Hilfe linearer Methoden
vergleichsweise einfach erfolgen kann.

Aufgrund dieser Eigenschaften ist das flachheitsbasierte Konzept ein mächtiges Werk-
zeug zum Entwurf von Zwei-Freiheitsgrade-Regelungen. In Analogie zum o. g. Beispiel
lässt sich auch für vollständig aktuierte PKM ein flacher Ausgang definieren, sodass die
Anwendung des Konzepts zur Regelung von PKM prädestiniert ist.

2.3.2 Zustandsbeobachtung

Der Entwurf von Zustandsbeobachtern für lineare und nichtlineare Systeme wurde be-
reits ausgiebig erforscht. Einen guten Überblick zur Beobachtersynthese für lineare Sys-
teme bietet [Föl13], für nichtlineare Systeme [Ada09]. Auch zur Anwendung der bekann-
ten Methoden für die Zustandsbeobachtung bei PKM existieren bereits einige Arbeiten.
Grundsätzlich lassen sich dabei kontinuierliche (stetige) und diskontinuierliche (unsteti-
ge, schaltende) Ansätze unterscheiden.

Den meisten Ansätzen gemein ist die Nutzung einer Struktur, die derjenigen eines klassi-
schen Luenberger-Beobachters entspricht (vgl. Bild 2-6): Ein (lineares oder nichtlineares)
Modell der Strecke, das Beobachtermodell, wird mit der gleichen Stellgröße u beauf-
schlagt, die auch auf die Strecke wirkt. Der Ausgang des Beobachtermodells ŷ wird mit
dem gemessenen Systemausgang y verglichen. Aus der entsprechenden Differenz, dem
Ausgangsfehler ey,

ey = y − ŷ, (2-45)

wird dann eine Korrekturgröße k ermittelt, welche in das Beobachtermodell zurückge-
führt wird. Die „Kunst“ des Beobachterentwurfs ist es, die Berechnungsvorschrift für die
Ermittlung von k so zu wählen, dass der Schätzfehler ez,

ez = z − ẑ, (2-46)
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Bild 2-6: Allgemeine Beobachterstruktur

in einem zu definierenden Sinn möglichst klein wird. Im Falle einer kontinuierlichen Zu-
standsschätzung resultiert k aus dem Produkt der Beobachtermatrix L mit dem Ausgangs-
fehler:

k = L · ey. (2-47)

Die Matrix L kann dabei konstant sein (L = const.) oder wird abhängig vom geschätzten
Zustand zur Laufzeit berechnet (L = L(ẑ)). Im Falle einer diskontinuierlichen Zustands-
schätzung mit sog. Sliding-Mode Beobachtern (SMB) enthält die Berechnungsvorschrift
für k mindestens eine Schaltfunktion in Abhängigkeit von ey:

k = k(sign(ey)). (2-48)

Bei hinreichender Beobachtergüte ist der resultierende Schätzfehler klein. Ist die Strecke
zudem vollständig beobachtbar, so entsprechen die Zustände des Beobachtermodells in
guter Näherung denen der Strecke und können zur Regelung verwendet werden.

2.3.3 Lokale Kraftregelung hydraulischer Aktoren

Die in Abschnitt 2.2.2 verwendete Art der Modellierung von PKM basiert auf der An-
nahme ideal kraftgeregelter Aktoren. Gleiches gilt für die Mehrheit der fortgeschrittenen
und modellbasierten Regelungskonzepte, die in Kap. 3 vorgestellt werden. Zur Anwen-
dung modellbasierter Regelungsansätze am Zielsystem muss demnach die hydraulische
Aktorik lokal kraft- bzw. differenzdruckgeregelt werden. Dazu wird in dieser Arbeit der
in [RSSS12] präsentierte Ansatz verwendet. In [DP07] und [KKL00a] finden sich ähn-
liche Ansätze zur lokalen Kraftregelung hydraulischer Aktoren in PKM, unlängst wurde
das Konzept in [PA14] für zwei gekoppelte Zylinder behandelt.

Der nachfolgend geschilderte Regelungsansatz wurde bereits in [Sch14] erfolgreich an
einem realen Teststand erprobt. Das Vorgehen entspricht prinzipiell einer exakten Zu-
standslinearisierung, vgl. [Ada09, S. 182], der hydraulischen Strecke, deren Modellie-
rung bereits in Abschnitt 2.2.3 erläutert wurde. Für die dann als lineares System zu be-
trachtende Regelstrecke kann ein einfaches überlagertes Regelgesetz entworfen werden.
Zur Durchführung der exakten Linearisierung wird das durch die Differentialgleichungen
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(2-42) und (2-43) beschriebene hydraulische System zunächst als eingangsaffines System
der Ordnung n = 1 und der Form

ż = a(z) + b(z)u
y = z (2-49)

dargestellt. Dazu sind folgende Annahmen notwendig:

(i) Die Kolbenposition yzyl und Kolbengeschwindigkeit ẏzyl ändern im Vergleich zu den
Systemdrücken pA und pB nur langsam ihren Wert und können damit in (2-42) und
(2-43) als konstante Parameter angenommen werden.

(ii) Die Dynamik des Ventilschiebers, beschrieben durch (2-27), ist schneller als die
Dynamik des Druckaufbaus und kann ebenfalls vernachlässigt werden. Es gilt dem-
nach der stationäre Zusammenhang zwischen Eingangssignal und Ventilschieber-
position.

Diese Annahmen wirken sich auf das erforderliche Design der Zylinder aus. Damit An-
nahme (i) gültig ist, müssen die Kolbenflächen und Volumina so dimensioniert sein, dass
die Eigenfrequenzen, die aus der Lagerung der Endeffektorplattform auf den Ölfedern
der einzelnen Zylinder resultieren, kleiner sind als die Dynamik der Druckänderungen
und damit der auszulegenden Differenzdruckregelung. Zur Erfüllung von Annahme (ii)
muss die Dynamik des Ventilschiebers deutlich schneller sein als die Dynamik der Dif-
ferenzdruckregelung. Dies muss bei der Auswahl der Servoventile beachtet werden. Bei
entsprechender Systemauslegung kann für die eingangsaffine Systemdarstellung (2-49)
der Zustandsvektor z als

z = ∆p (2-50)

definiert werden. Die Eingangsgröße u entspricht der anliegenden Ventilspannung uV . Mit
(2-22), (2-42) und (2-43) kann folgende Zustandsgleichung angegeben werden:

∆ ṗ =
E
′

Öl

Vtot,A + Azylyzyl

(
QA − Azylẏzyl − KL∆p

)
−

E
′

Öl

Vtot,B + Azyl(yzyl,max − yzyl)

(
QB + Azylẏzyl + KL∆p

)
. (2-51)

Die Ventilvolumenströme QA und QB lassen sich durch (2-33) angeben. Für die Druck-
differenz ∆pS über eine Steuerkante gilt mit (2-22) und (2-31)

∆pS =
pP − pT − sign(yV)∆p

2
. (2-52)

Einsetzen in (2-51) liefert die Terme zur Formulierung der Systemdynamik als eingangs-
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affines System gemäß (2-49),

a(z) = − E
′

Öl

(
Azylẏzyl + KL∆p

)
(2-53)

·

(
1

Vtot,A + Azylyzyl
+

1
Vtot,B + Azyl(yzyl,max − yzyl)

)

b(z) =E
′

ÖlKV Qnenn

√
pP − pT − sign(yV)∆p

2∆pnenn
(2-54)

·

(
1

Vtot,A + Azylyzyl
+

1
Vtot,B + Azyl(yzyl,max − yzyl)

)
,

wobei nach Annahme (ii) mit (2-27) gilt:

yV = KV · uV .

Zu beachten ist, dass für das Zielsystem aufgrund der Verwendung von zwei Ventilen
pro Zylinder der in Tabelle 2-1 genannte Wert für die Verwendung in (2-54) verdoppelt
werden muss. Es gilt:

Qnenn = 2 · Qnenn,S V .

Der Zustand ∆p des Systems (2-49) ist gleichzeitig sein Ausgang und die zu regelnde
Größe. Damit wirkt der Eingang direkt auf die erste zeitliche Ableitung des Ausgangs
und es handelt sich um ein System der Differenzordnung δ = 1, die gleich der System-
ordnung n ist. Laut [Ada09, S. 181 f.] ist ein System unter dieser Voraussetzung exakt
zustandslinearisierbar. Dazu wird der Kompensationsansatz

uV =
1

b(z)
· (υ − a(z)) mit u = uV (2-55)

gewählt. Einsetzen von (2-55) in (2-49) liefert

∆ ṗ = υ. (2-56)

Folglich hat das exakt linearisierte System mit dem neuen Eingang υ das lineare Verhalten
eines einfachen Integrators.

Nach [RSSS12] kann zur Synthese der Differenzdruckregelung die linearisierte Strecke
als Reihenschaltung aus der durch ein Übertragungsglied erster Ordnung approximierten
Ventildynamik und Integrator betrachtet werden. Dann kann ein P-Regler mit der Me-
thode des Betragsoptimums, vgl. z. B. [Föl13, S. 201], so ausgelegt werden, dass der
geschlossene Regelkreis Oszillographendämpfung (D =

√
0, 5) aufweist. Es gilt

KP =
π · f0,V

2 · DV · KV
, (2-57)

mit DV , f0,V und KV aus Tabelle 2-1.

Bild 2-7 zeigt ein Blockschaltbild der Differenzdruckregelung. Entgegen der Annahme
(ii) ist die Dynamik des Ventils hier durch GV(s), vgl. (2-27), berücksichtigt. Handelte
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Bild 2-7: Blockschaltbild zur Differenzdruckregelung

Bild 2-8: Vereinfachtes Blockschaltbild zur Differenzdruckregelung

es sich bei den nichtlinearen Übertragungsgliedern (gekennzeichnet durch doppelte Um-
randung) um lineare Übertragungsglieder, so dürfte die Reihenfolge der Blöcke im Vor-
wärtszweig nach dem Prinzip der Vertauschbarkeit, vgl. [Föl13, S. 72], beliebig verändert
werden. Die Nichtlinearitäten könnten gekürzt werden und es resultierte das in Bild 2-8
dargestellte vereinfachte Blockschaltbild. Das dynamische Verhalten der Differenzdruck-
regelung ließe sich dann durch die lineare Übertragungfunktion dritter Ordnung GA(s),

GA(s) =
1

1
4π2 f 2

0,V KPKV
s3 + DV

π f0,V KPKV
s2 + 1

KPKV
s + 1

, (2-58)

beschreiben. Dass der Fehler, der durch diese Vereinfachung entsteht, gering ist, verdeut-
lichen die in Bild 2-9 gezeigten Simulationsergebnisse einer Sprungantwort für einen
Sollsprung von 0 bar auf 26, 9 bar (entspricht 2000 N) bei t = 0, 01 s. Die hellgraue Linie
visualisiert die Sprungantwort von GA(s), die dunkelgraue, gestrichelte Linie die eines dif-
ferenzdruckgeregelten Streckenmodells, welches alle zuvor beschriebenen hydraulischen
Nichtlinearitäten berücksichtigt. Die Kolbenstange wurde dazu virtuell in der Zylinder-
mittelstellung fixiert. Es wird deutlich, dass sich beide Modelle sehr ähnlich verhalten.
Die Differenzdruckregelung ist nicht stationär genau. Dies ist auf die Leckageverluste
zurückzuführen, die durch die P-Regelung nicht vollständig kompensiert werden können.
Diese relativ kleine statische Abweichung muss durch die übergeordnete Regelung ausge-
glichen werden, ist jedoch unkritisch. Es ist demnach zulässig, die Dynamik der Aktoren
zur Synthese der übergeordneten Positionsregelung durch GA(s) zu approximieren.

Für die Auslegung der übergeordneten Positionsregelung ist die Dynamik der Differenz-
druckregelung von großem Interesse. Daher ist in Bild 2-10 der Frequenzgang von GA(s)
dargestellt. Es ergibt sich eine (-3dB-)Bandbreite von 213 Hz. Die Eigenwerte lauten wie
folgt:

λ1 = −1540 λ2/3 = −769 ± 1369i.
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Bild 2-9: Simulationsergebnisse zum dynamischen Verhalten der Druckregelung
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Die in Bild 2-7 dargestellte Strecke ließe sich auch unter Berücksichtigung der Ventildy-
namik exakt zustandslinearisieren (als System 3. Ordnung), da das Übertragungsverhalten
die maximale Differenzordnung δ = 3 besitzt. Dann müsste jedoch auf innere Zustände
der Ventildynamik zurückgegriffen werden.
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3 Stand der Technik und Methoden zur Regelung von

Parallelkinematiken

Laut [AHK08] sind Beiträge zu Regelungen von Parallelkinematiken in der Literatur im
Vergleich zu Regelungen von seriellen Kinematiken rar. Ein leistungsfähiges, überzeu-
gendes und praktikables Regelungskonzept existiere noch nicht. Die Herausforderungen
bei der Positionsregelung parallelkinematischer Strukturen lassen sich auf die bereits in
Kap. 1 genannten zwei wesentlichen Punkte reduzieren: Die nicht eindeutige analyti-
sche Lösbarkeit des DKP sowie die nichtlineare Kinematik und Dynamik der Strukturen,
welche in der Regelung zu berücksichtigen sind. Es folgt eine Analyse des Stands der
Technik und Methoden zur Regelung von parallelen Kinematiken. Anschließend werden
noch offene Fragen diskutiert und das Thema dieser Arbeit entsprechend eingeordnet und
eingegrenzt.

3.1 Regelungsansätze

Grundsätzlich lassen sich Regelungen für parallelkinematische Strukturen nach der gere-
gelten Größe in Regelungen in Gelenkkoordinaten (engl. „joint space“ (JS)) und Regelun-
gen in globalen Koordinaten (engl. „operational space“, (OS)) einteilen, aus Gründen der
Einfachheit im Folgenden als „Regelungen im JS“ und „Regelungen im OS“ bezeichnet.
Für Regelungen im JS wird die Sollvorgabe für die Bewegung des Endeffektors, die im
Allgemeinen in globalen Koordinaten erfolgt, durch die Lösung des IKP in Gelenkkoordi-
naten transformiert. Da die entsprechenden Istgrößen in der Regel direkt als Messgrößen
zur Verfügung stehen, können die Aktoren im einfachsten Fall lokal mit einer Einzelak-
torregelung geregelt werden. Wie jedoch bereits einleitend in Kap. 1 erläutert wurde, er-
fordert das Ausschöpfen des strukturbedingten Potenzials von PKM die Berücksichtigung
der Systemdynamik innerhalb der Regelstruktur.

Die Autoren von [Neu06] gingen im Jahre 2006 dennoch davon aus, dass auch weiterhin
die „konventionelle Einzelachsregelung zur Anwendung kommen“ wird, vgl. [Neu06, S.
85]. Zuvor (S. 84) wird zwar darauf hingewiesen, dass es zahlreiche Ansätze zur Mehr-
größenregelung gebe - deren „potentiellen Vorteilen“ stünden jedoch u. a. die „Latenz-
zeiten der derzeitig verwendbaren Kommunikationssysteme [...] gegenüber.“ Wie jedoch
in [Neu06, S. 84] ebenfalls erwähnt wird, finden sich in der Literatur trotz der genannten
Problematik zahlreiche Ansätze zur Mehrgrößenregelung für PKM, die eine modellba-
sierte Berücksichtigung der Gesamtsystemdynamik vorsehen. Mit dem Fortschritt, der
durch Entwicklungen im Bereich der digitalen Rechentechnik seit 2006 erzielt wurde, ist
deren Realisierung heutzutage durchaus mit vertretbarem Aufwand möglich.

Die nachfolgenden Ausführungen zur modellbasierten Regelung von PKM beschränken
sich auf Regelungskonzepte, die im Hinblick auf die geplante Anwendung relevant und
interessant sind, wobei kein Anspruch auf Vollständigkeit erhoben wird. Dazu gilt die
Annahme, dass die Solltrajektorie vollständig durch xre f , vre f und v̇re f bzw. xre f , ẋre f und
ẍre f spezifiziert, jedoch im Vorfeld nicht bekannt ist. Iterativ lernende oder adaptive Re-
gelungskonzepte sind in diesem Kontext nicht anwendbar und werden nicht betrachtet.
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3.1.1 Basisreglerstrukturen

Allen modellbasierten Regelungsansätzen für PKM gemein ist die Tatsache, dass die ein-
zelnen Aktoren als lokal kraftgeregelt angenommen werden – die Ausgangsgröße der glo-
balen Regelung entspricht demnach dem Vektor der Aktorkräfte in Gelenkkoordinaten,
τq. Die Mehrheit dieser Ansätze kann grundsätzlich entweder als Zwei-Freiheitsgrade-
Regelung mit flachheitsbasierter Vorsteuerung in Kombination mit einer nichtlinearen
Regelung oder als flachheitsbasierte Folgeregelung interpretiert werden, vgl. [RRZ97]
(s. a. Abschnitt 2.3.1).

Im Falle einer flachheitsbasierten Folgeregelung wird dem nichtlinearen System durch
exakte Zustandslinearisierung ein lineares Verhalten aufgeprägt und der Reglerentwurf
kann am vereinfachten, linearen System erfolgen. Zur Anwendung des Ansatzes für PKM
muss die Bewegungsgleichung (2-4) zunächst in eine Systembeschreibung mit dem fla-
chen Ausgang x überführt werden. Dies ist möglich, da sich die Geschwindigkeiten und
Beschleunigungen mit (2-8),

Ḣ =
∑

i

∂H(x)
∂xi

ẋi = Ḣ(x, ẋ), (3-1)

und

v̇ = Ḣ(x, ẋ)ẋ + H(x)ẍ (3-2)

durch x und seine zeitlichen Ableitungen ausdrücken lassen. Mit (2-4) ergibt sich die
gesuchte Bewegungsgleichung zu

M(x)H(x)ẍ +
(
M(x)Ḣ(x, ẋ) + CCC(x, ẋ)H(x)

)
ẋ + G = J−T (x)τq. (3-3)

In Analogie zu der in [RRZ97] angegebenen Berechnungsvorschrift zur flachheitsbasier-
ten Folgeregelung für serielle Kinematiken resultiert für PKM

u = τq, f b = JT (x)
(
M(x)H(x)(ẍre f + uR) + (3-4)(
M(x)Ḣ(x, ẋ) + CCC(x, ẋ)H(x)

)
ẋ + G

)
.

Die Reglerausgangsgröße uR kann als Beschleunigungsabweichung in globalen Koordi-
naten interpretiert werden. Sie wird, je nachdem, ob es sich um eine Regelung im JS
oder im OS handelt, aus der Differenz der Soll- und Istgrößen in den entsprechenden
Koordinaten berechnet. Bei der flachheitsbasierten Folgeregelung werden in der Regel
die Koordinaten im OS verwendet, da die entsprechenden Istgrößen zur Realisierung der
exakten Zustandslinearisierung ohnehin bekannt sein müssen. Aufgrund dieser Tatsache
spricht man dabei auch von feedback linearization (im Folgenden: fb-Linearisierung),
vgl. [KWRS10].

Wegen der bereits genannten Problematik der analytisch nicht eindeutigen Lösbarkeit des
DKP werden jedoch in der Praxis häufig die Sollwerte xre f und ẋre f zur Berechnung der
nichtlinearen Terme in (3-4) verwendet. Dann wird aus der flachheitsbasierten Folgerege-
lung eine klassische Zwei-Freiheitsgrade-Regelung mit flachheitsbasierter Vorsteuerung
und nichtlinearer Regelung,

u = τq, f f = JT (xre f )
(
M(xre f )H(xre f )(ẍre f + uR) +

(
M(xre f )Ḣ(xre f , ẋre f )

+ CCC(xre f , ẋre f )H(xre f )
)
ẋre f + G

)
, (3-5)
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deren Berechnungsvorschrift die Summe aus Steuerung

τqv, f f = JT (xre f )
(
M(xre f )H(xre f )ẍre f +

(
M(xre f )Ḣ(xre f , ẋre f )

+ CCC(xre f , ẋre f )H(xre f )
)
ẋre f + G

)
(3-6)

und Rückführung

τqr, f f = JT (xre f )M(xre f )H(xre f )uR (3-7)

ist. Gleichung (3-6) wird auch als inverse Dynamik bezeichnet. Diese Art der Regelung
kann als Linearisierung auf Basis der Sollgrößen interpretiert werden, daher spricht man
auch von feed forward linearization (im Folgenden: ff-Linearisierung) oder computed
torque control (CTC), vgl. [KWRS10], bzw. computed force control (CFC), vgl. [AH10].
Die Berechnung von uR erfolgt in diesem Fall meistens aus den Soll- und Istgrößen im
JS, da so auf die Berechnung der Istgrößen im OS verzichtet werden kann.

Bild 3-1 zeigt die entsprechenden Arten der Linearisierung, jeweils mit der Art der Rege-
lung (JS/OS), mit der sie in den meisten Fällen kombiniert werden. Der Block „Regler“
steht stellvertretend für mögliche Reglerstrukturen. Im Falle der Regelung im OS müssen
x und v bzw. ẋ durch die Lösung des DKP berechnet oder mittels eines Zustandsbeobach-
ters rekonstruiert werden; q̇, die Geschwindigkeiten im JS, seien mess- oder mit einfachen
Mitteln schätzbar. Im Folgenden werden die Regelstrategien vereinfacht als „Regelungen
im JS“ oder „Regelungen im OS“ bezeichnet.

Bild 3-1: Basisreglerstrukturen (oben: Regelung im OS mit fb-Linearisierung, unten: Re-
gelung im JS mit ff-Linearisierung)

In vielen Fällen beschränkt sich die Reglersynthese auf die Vorgabe einer Fehlerdynamik
zweiter Ordnung für das exakt zustandslinearisierte System. Dies ist jedoch formal nur
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für die fb-Linearisierung möglich, denn durch die Verwendung der Sollgrößen in der ff-
Linearisierung entsteht ein Fehler. Dennoch wurden modellbasierte Regelungen im JS
mit ff-Linearisierung vielfach theoretisch und praktisch umgesetzt, mit der Begründung,
dass nur durch die Vermeidung der Lösung des DKP Echtzeitfähigkeit bei vertretbarem
Rechenaufwand garantiert werden kann, vgl. z. B. [WKS08], [AH10], [WG06].

Ihnen gegenüber stehen die Regelungen im OS: Hier werden für die Berechnung der Ter-
me zur exakten Zustandslinearisierung die tatsächlichen Istzustände verwendet. Eigen-
schaften einer solchen Regelung sind nach [WKS08] ein gutes Führungsverhalten, wobei
die echtzeitfähige Lösung des DKP unerlässlich ist. Daher wurden solche Regelungen bis-
her zwar vielfach theoretisch betrachtet, jedoch selten praktisch umgesetzt, vgl. [PAM09].
Um die Lösung des DKP zu umgehen, können auch mittels Beobachtung geschätzte Zu-
stände zur Regelung verwendet werden. Hierzu sei auf Abschnitt 3.2.3 verwiesen.

Laut [AM06] ist bereits in vielen theoretischen Arbeiten gezeigt worden, dass eine Re-
gelung im OS sinnvoller ist. [PAM09] begründet dies wie folgt: Für serielle Kinematiken
entspreche die Regelung im JS einer Zustandsregelung, da sich der Zustand einer seri-
ellen Kinematik vollständig durch die Gelenkkoordinaten beschreiben lasse. Für PKM
sei eine Regelung im JS hingegen eine „verzerrte Beobachterregelung“, wohingegen die
Regelung im OS einer Zustandsregelung entspreche. „As a conclusion, the joint space
control seems to be inherently imperfect and unadapted for parallel kinematic machines.
Since the latter are completely defined by their endeffector pose, improvements could be
found in the Cartesian space (S E3) control“ [PAM09, S. 400].

3.1.2 Verschiedene Ansätze zur Reglersynthese für PKM

Regelungen, die auf einer exakten Zustandslinearisierung des Systems basieren, arbei-
ten bestmöglich, wenn Modell und Strecke exakt übereinstimmen. In vielen Fällen ist
es jedoch weder möglich noch sinnvoll, die Modellierungstiefe der Modellrepräsentati-
on entsprechend hoch zu wählen, denn dies erschwert für die modellbasierte Regelung
die Inversion der Bewegungsgleichungen und ihre echtzeitfähige Berechnung. Stattdes-
sen werden Modelle verwendet, die bestimmte Effekte bewusst idealisiert oder gar nicht
abbilden, wie beispielsweise die Dynamik der einzelnen Aktoren oder die Reibung in
Gelenken. Entsprechende Abweichungen müssen dann von der Regelung oder durch zu-
sätzliche Elemente im Regelkreis kompensiert werden. In der Literatur finden sich meh-
rere Veröffentlichungen, in denen Reglerstrukturen und Verfahren zur Reglersynthese für
PKM vorgestellt werden. Ziel ist es jeweils, das Verhalten des geregelten Systems trotz
Modell- und Messunsicherheiten zu optimieren. Im Folgenden werden verschiedene Re-
gelungsansätze vorgestellt.

TU Braunschweig - SFB 562
Im Rahmen des Sonderforschungsbereichs 562 (Robotersysteme für Handhabung und
Montage, 2000-2010, TU Braunschweig) wurden Regelstrategien für PKM entwickelt.
Als Beispielsystem diente der einfache Parallelroboter FIVEBAR mit zwei translatori-
schen FHG, der durch zwei rotatorische Gelenke elektrisch angetrieben wird, vgl. Bild
3-2. Im Gegensatz zu vielen PKM ist für dieses Beispielsystem die Lösung des DKP
einfach, daher eignete es sich gut zur vergleichenden Untersuchung von Regelungen im
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Bild 3-2: Parallelroboter FIVEBAR [Tec15]

JS und OS. In den Arbeiten [WKS08] und [KWRS10] werden die entsprechenden Er-
gebnisse präsentiert. Zur Regelung wird eine Kaskade aus Geschwindigkeits- und Posi-
tionsregelung vorgeschlagen, jeweils in den entsprechenden Koordinaten im JS oder OS.
Weiterhin sollen die Referenzsignale für die Soll-Istwertvergleiche durch Tiefpassfilter
mit der Dynamik der Aktorik verzögert werden – ein Ansatz, der auch im Verlauf dieser
Arbeit aufgegriffen wird, s. Abschnitt 4.3.

Zur Synthese der Positions- und Geschwindigkeitsregler sowie zur Filterung der Refe-
renzsignale werden Verfahren und Berechnungsvorschriften empfohlen, welche die Sys-
temdynamik sowie bekannte Modellunsicherheiten berücksichtigen. Zur Verbesserung
des Störverhaltens wird der Einsatz eines Störbeobachters vorgeschlagen. Alternativ zur
Kaskadenregelung im JS oder OS wird auch die Verwendung einer Sliding-Mode-Rege-
lung im OS für das exakt linearisierte System diskutiert, welche die explizite Berücksich-
tigung von Modellunsicherheiten in der Entwurfsphase erlaube. Alle vorgeschlagenen
Reglerstrukturen wurden experimentell untersucht, die Ergebnisse werden in [WKS08]
präsentiert. Dabei kristallisierte sich die Sliding-Mode-Regelung als vielversprechende
Alternative zu den „klassischen“ Regelungen heraus. Dennoch wird eine Kaskadenrege-
lung im JS für Kinematiken mit komplexem DKP empfohlen, da diese Echtzeitfähigkeit
garantiere und verrauschte Geschwindigkeitssignale durch die Vorsteuerung keinen Ein-
fluss auf die exakte Linearisierung hätten. Regelungen im OS hingegen würden für gutes
Führungsverhalten sorgen, während es ihnen jedoch an Robustheit gegenüber Modellun-
sicherheiten bei der Anwendung einer Störgrößenkompensation fehle.

Die betrachteten Regelungskonzepte wurden anhand von sprungförmigen Solltrajektorien
untersucht mit dem Ziel, ihre Eignung für Handling-Aufgaben zu analysieren.

Technische Universität Athen
An der Nationalen Technischen Universität Athen entstanden Arbeiten zur Positionsre-
gelung eines hydraulischen Hexapoden, der als Bewegungssimulator zur Flugsimulation
eingesetzt werden soll. Die Aktoren des Hexapoden bestehen jeweils aus einem Differen-
tialzylinder, der durch ein Servoventil gesteuert wird. Eine Übersicht über die betrachteten
Regelungskonzepte findet sich in [DP08]. Sie entsprechen im Wesentlichen den in Bild
3-1 gezeigten Basisreglerstrukturen. Zur Reglersynthese wird die Vorgabe einer Dynamik
zweiter Ordnung für das linearisierte System vorgeschlagen, dies entspricht im Prinzip
einer Polvorgaberegelung, vgl. [Föl13, S. 329 f.].
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Für die Berechnung der Terme zur exakten Zustandslinearisierung wird ein vereinfachtes
6-FHG-Modell des Hexapoden verwendet, welches nur die Masse der Endeffektorplatt-
form berücksichtigt und die Aktormassen vernachlässigt. Dabei werden immer (auch zur
Regelung im JS) die aktuellen Werte von x und v verwendet, wodurch die Berechnung des
DKP in jedem Fall erforderlich wird. Als Rechenzeit für die iterative Lösung des DKP
werden 5 − 15 ms angegeben, dies genüge für die Echzeitimplementierung. Für Anwen-
dungen, in denen eine schnellere Berechnung erforderlich ist, wird auf die Verwendung
redundanter Messgrößen verwiesen. Da demnach eine Berechnung des DKP in jedem Fall
erforderlich ist, wird die Regelung im OS favorisiert, da dort eine Lösung des IKP nicht
erforderlich ist. Ein Konzept, das auf der direkten Messung der Endeffektorposition ba-
siert, wird aufgrund der geringen Praxisrelevanz nicht weiter verfolgt. Die vorgeschlagene
Regelung wird anhand von Simulationsdaten validiert. Dazu werden sinusförmige Soll-
vorgaben in allen FHG mit Frequenzen < 1 Hz betrachtet.

Zur Ansteuerung der hydraulischen Aktoren wird aus den Ausgangsgrößen der überge-
ordneten Regelung, die den Sollaktorkräften und damit den Sollgrößen für eine loka-
le Aktorsteuerung entsprechen, der Strom zur Ansteuerung der Servoventile berechnet.
Nachdem in einer ersten Veröffentlichung in [DP07] ein ähnlicher Ansatz zur lokalen
Kraftregelung verfolgt wird, wie er in Abschnitt 2.3.3 beschrieben ist, wird in [DP08] der
Verzicht auf die Rückführung der aktuellen Kammerdrücke propagiert. Der gewünschte
Differenzdruck wird demnach nicht explizit geregelt, sondern lediglich gesteuert.

Universität Hannover - DFG-Schwerpunktprogramm „Fertigungsmaschinen mit
Parallelkinematiken“
Am Mechatronik-Zentrum der Leibniz Universität Hannover wurde im Rahmen des DFG-
Schwerpunktprogramms „Fertigungsmaschinen mit Parallelkinematiken“ von 2000-2006
der Versuchsstand PaLiDA (vgl. Bild 3-3) eingesetzt. Ziel des Projektes war die Erfor-
schung der Kombination paralleler Konstruktionen mit hochdynamischen Antrieben, so-
wie ihre Untersuchung und Weiterentwicklung, vgl. [Mec15]. Die Handhabungs- und Fer-
tigungsmaschine PaLiDA besitzt lineare Direktantriebe mit veränderlichen Längen. Laut
[AH10] führt deren Integration in eine parallelkinematische Struktur zu einem großen
dynamischen Potenzial.

Im Rahmen des o. g. Forschungsvorhabens und in der Folgezeit entstanden mehrere Ar-
beiten, u. a. zur Modellierung und Regelung von PaLiDA, bspw. die bereits zitierten
Veröffentlichungen [AHK08], [DGH04], [DHA06]. In [AHK08] werden die wesentli-

Bild 3-3: Versuschsstand PaLiDA am Mechatronik-Zentrum Hannover [AHK08]
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chen Erkenntnisse des Projektes zusammengefasst, im Fokus steht dabei die Präsentation
einer praktikablen und recheneffizienten Reglerstruktur für dynamische parallelkinema-
tische Systeme. Es wird die Verwendung einer modellbasierten Kompensation im Vor-
wärtszweig und einer Regelung im JS empfohlen. Die rechenintensiven Terme sollen auf
den Vorwärtszweig beschränkt bleiben, während die Regelung möglichst einfach gehal-
ten werden soll. Dabei wird auch die aus dieser Vorgehensweise resultierende Proble-
matik diskutiert: Der Coriolis- und Zentrifugal-Term CCC (v, x) v zur Kompensation der
nichtlinearen Dynamik wird für die „gewünschte“ Position xre f und Geschwindigkeit vre f

berechnet – der entsprechende Fehler führe zu einer Verkleinerung des Stabilitätsgebiets.
Die vorgeschlagenen Feedback-Terme zur Kompensation von Modell- und Messunsicher-
heiten berücksichtigen solche Modellunsicherheiten bereits in der Synthese. Sie bestehen
aus zwei Teilen: Einem auf Basis passivitätsbasierter Methoden ausgelegten, kontinuier-
lichen Anteil und einem Sliding-Mode-Anteil.

Parallelkinematiken sind passiv von den Aktorkräften zu den Aktorgeschwindigkeiten.
Die für die passivitätsbasierte Regelung erforderlichen Aktorgeschwindigkeiten q̇ können
aus den gemessenen Aktorlängen mit Hilfe eines Beobachters geschätzt werden. Diese
Tatsache wird dazu genutzt, um mit Hilfe einer Lyapunov-Funktion eine passivitätsba-
sierte Regelung unter der Berücksichtigung der Vorsteuerung sowie des Geschwindig-
keitsbeobachters auszulegen. Eine zusätzliche Sliding-Mode-Regelung dient der Kom-
pensation von nicht modellierten Reibkräften. Der vorgeschlagene Regelungsansatz wur-
de simulativ und experimentell untersucht. Als Vergleich diente eine „klassische“ CTC-
Regelung nach [AGH05], die eine modellbasierte Vorsteuerung gemäß (3-6) mit einer
PID-Einzelaktorregelung kombiniert. Deren Führungsverhalten bei kontinuierlichen und
sprungförmigen Sollvorgaben erwies sich im Vergleich zur vorgeschlagenen passivitäts-
basierten Regelung mit Sliding-Mode-Anteil als deutlich schlechter. Zur vergleichenden
Analyse der betrachteten Regelungskonzepte wurden kreis- (d = 20 mm) und rechteck-
förmige (a = 28 mm) Solltrajektorien vorgegeben, die maximale Aktorgeschwindigkeit
betrug 1, 5 m/s.

Seoul National University of Technology
An der Seoul National University of Technology entstanden Arbeiten zur robusten Zu-
standsschätzung und Regelung von Hexapoden. In [KKL00b] wird eine robuste Regelung
im JS beschrieben. Modellunsicherheiten werden explizit in der Reglersynthese berück-
sichtigt, deren Stabilität mit Hilfe von Lyapounov-Funktionen bewiesen wird. Der Ansatz
wird mit Hilfe eines hydraulischen Hexapoden simulativ und experimentell für Anre-
gungsfrequenzen < 5 Hz validiert.

In [KCL05] wird ein ähnlicher Ansatz zur Regelung im OS verwendet. Zur Lösung des
DKP wird dort nicht der in [KKL00a] vorgeschlagene Zustandsbeobachter (vgl. Abschnitt
3.2.3) verwendet, sondern eine iterative Lösung mittels Newton-Raphson-Verfahren und
alpha-beta-Tracker (vgl. Abschnitt 3.2.1) vorgeschlagen. Zur Verbesserung der Regelgüte
wird ein Reibbeobachter genutzt, mit Hilfe dessen axial wirkende Reibkräfte direkt kom-
pensiert werden. Der Ansatz wird simulativ und experimentell am Beispiel eines elek-
trisch aktuierten Hexapoden für sinusförmige Anregungssignale mit Frequenzen von 0, 5
und 1 Hz untersucht.
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National Taiwan University
In den Arbeiten [CF08], [CHF08] und [CF13], die in Taiwan entstanden, steht der Ent-
wurf eines Zustandsbeobachters zur Realisierung einer Sliding-Mode-Regelung im OS
mit fb-Linearisierung im Vordergrund. Als Beispielsystem dient ein Bewegungssimula-
tor in Form eines hydraulischen Hexapoden, dessen Endeffektormasse mit 243 kg in et-
wa derjenigen des in dieser Arbeit verwendeten Zielsystems entspricht. Zur verwendeten
Zustandsbeobachtung sei auf Abschnitt 3.2.3 verwiesen. In [CF08] wird die Synthese
des Sliding-Mode-Reglers beschrieben, sowie seine beobachterbasierte Umsetzung auf
Basis von Simulationsdaten für sinus- bzw. kreisförmige Sollvorgaben mit 7 rad/s (ent-
spr. 1, 1 Hz) validiert. Die Dynamik der Aktoren wurde in der Simulation vernachlässigt.
Die erreichte Sprungantwortzeit beträgt für die translatorischen FHG 0, 6 s, für die rota-
torischen 0, 5 s. In [CF13] werden experimentelle Ergebnisse für Anregungsfrequenzen
< 1 Hz präsentiert.

Korea University
Ebenfalls in Seoul, an der privaten Korea University, entstanden weitere Arbeiten zur Re-
gelung von Hexapoden, deren Ergebnisse in [LSCH03] präsentiert werden. Dort weicht
der Ansatz von der klassischen Linearisierung ab, mit der Begründung, dass die kon-
figurationsabhängige Berechnung der dazu erforderlichen Terme äußerst rechenintensiv
sei. Im Vergleich zu seriellen Kinematiken besäßen PKM jedoch einen beschränkten Ar-
beitsraum, sodass die entsprechenden konfigurationsabhängigen Matrizen durch konstan-
te Matrizen angenähert werden könnten. Der vorgeschlagene Regelungsantsatz behandelt
die so entstandenen Fehler als Störungen und Unsicherheiten, zu deren Kompensation ei-
ne H∞-Regelung ausgelegt wird. Als Literaturquelle zur H∞-Regelung sei an dieser Stelle
auf [Föl13, S. 380 ff.] verwiesen. Zum Verständnis soll hier die Aussage genügen, dass
H∞-Regelungen so ausgelegt sind, dass sie gegenüber Unsicherheiten in gewissen, be-
schränkten Bereichen robust sind.

Die vorgeschlagene Regelungsstrategie entspricht einer Linearisierung unter der Verwen-
dung von konstanten Termen in Kombination mit einer Regelung im OS, bei der für die
einzelnen FHG PID-Regler vorgesehen sind. Diese Struktur wird gewissermaßen als mo-
dellgestützt dynamische Vorsteuerung, vgl. [Föl13, S. 326], verwendet. Die Fehler, die
aus der Linearisierung resultieren, werden durch eine H∞-Regelung im OS kompensiert,
bei deren Entwurf die Quantität möglicher Abweichungen in den Systemmatrizen expli-
zit berücksichtigt wird. Das Problem der Nichtlösbarkeit des DKP wird nicht adressiert,
die aktuelle Position werde mit einem „optical encoder“ gemessen. Die Leistungsfähig-
keit der vorgeschlagenen Regelung wird anhand von Experimenten mit einem elektrisch
aktuierten Hexapoden untersucht. Dessen Arbeitsfrequenz wird als „normalerweise unter
10 Hz“ angegeben. Zur Untersuchung werden horizontale Kreisfahrten mit 0, 5 Hz und
2, 5 Hz betrachtet.

L’Université Blaise Pascal-Clermont II
An der Blaise-Pascal Universität in Clermont-Ferrand, Frankreich, wurde in den vergan-
genen Jahren an der Modellierung und Regelung von PKM unter der Nutzung zusätzlicher
Sensorik geforscht. Diese Thematik ist sehr eng mit dem DKP verbunden, dessen explizi-
te Lösung damit überflüssig wird. In [ÖAM10] wird eine dynamische Modellierung und
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Regelung von PKM mit Hilfe redundanter Messgrößen diskutiert. Diese erlauben eine li-
neare Formulierung der Modellgleichungen. Die vorgestellten Modelle nutzen nur lineare
Algebra und die nicht-redundanten Variablen können durch Linearkombinationen der re-
dundanten Variablen ausgedrückt werden. Auf diese Weise wird es möglich, die Dynamik
des Systems linear zu beschreiben, und somit eine Regelung nur mit Hilfe linearer Alge-
bra zu entwerfen. Redundante Messgrößen können z. B. die Neigungen der einzelnen
Aktoren bei einem Hexapoden sein, welche zusätzlich zu den einzelnen Aktorlängen ge-
messen werden. Der in [ÖAM10] präsentierte Ansatz wurde in der Dissertation von Erol
Özgür [Özg12] untersucht und lieferte vielversprechende Ergebnisse in Experimenten
mit einem Delta-Roboter. Zur Analyse der Regelung wurden kreis- und rechteckförmi-
ge Solltrajektorien verwendet, was den Schluss nahelegt, dass der Fokus stärker auf der
Durchführung von Handling-Aufgaben als im Bereich der Bewegungssimulation lag.

3.2 Lösung des direkten kinematischen Problems

Wie bereits in Abschnitt 2.2.2 dargelegt wurde, existiert keine eindeutige analytische Lö-
sung des DKP für PKM. In der Literatur finden sich verschiedene Ansätze, dennoch die
Endeffektorposition einer PKM zu ermitteln, um sie für die Regelung zu verwenden. Ge-
nerell lassen sich diese den folgenden drei Gruppen zuordnen:

• Iterative Verfahren

• Direkte Messung

• Schätzung aus den verfügbaren Messdaten

Im Folgenden wird der Stand der Wissenschaft für die einzelnen Verfahren aufgezeigt.

3.2.1 Iterative Verfahren

In [Mer06, S. 136 ff.] werden verschiedene iterative Verfahren zur Lösung des DKP vor-
gestellt. Allen gemein ist die Erforderlichkeit von a priori Kenntnissen, beispielsweise in
Form einer Startposition, die durch den konstruktiven Aufbau des Mechanismus vorgege-
ben ist.

Weit verbreitet ist die Verwendung iterativer Newton-Verfahren in verschiedenen Ausprä-
gungen. Generell ist die Funktionsweise dieser Verfahren wie folgt: Mit dem (z. B. aus
einer Messung bekannten) Vektor der Gelenkkoordinaten qm und dem gegebenen funk-
tionalen Zusammenhang (2-6), q = q(x), ergibt sich für die Iteration i + 1 der Wert

xi+1 = xi + Θ · (qm − q (xi)) . (3-8)

Zu Beginn der Iteration (i = 0) muss der Zustand x0 geschätzt und als Startwert vorgege-
ben werden. Das Iterationsverfahren endet, wenn |qm−q (xi) | < ε für eine zuvor definierte
Schranke ε gilt. Die verschiedenen Varianten der Newton-Verfahren unterscheiden sich in
der Wahl der Matrix Θ. Im Kontext mit der Lösung des DKP für PKM wird in der Lite-
ratur in der Regel das Newton-Raphson-Verfahren (vgl. z. B. [KCL05]) genannt, welches
die Verwendung der Jakobimatrix J (xi) für Θ vorschreibt. Quasi-Newton-Verfahren nut-
zen ebenfalls die Jakobimatrix J für Θ, diese wird jedoch nicht in jeder Iteration neu be-
rechnet. Stattdessen erfolgt die Berechnung jeweils nach einer benutzerdefinierten Anzahl
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von Iterationen, wobei auch die Nutzung einer konstanten Matrix Θ bis zur Konvergenz
möglich ist.

Newton-Verfahren konvergieren bei sinnvoll gewählter Startposition x0 schnell. Es ist je-
doch nicht gesichert, dass die gefundene Lösung auch die richtige Lösung des DKP ist, z.
B. wenn x nahe an einer Singularität liegt.

Eine weitere Möglichkeit zur iterativen Lösung des DKP bildet das Intervall-Analyse-
Verfahren. In [Mer04] wird seine Anwendung am Beispiel eines Hexapoden vorgestellt.
Im Unterschied zu den Newton-Verfahren garantiert das Intervall-Analyse-Verfahren die
Korrektheit der gefundenen Lösung. Es bietet zudem die Möglichkeit, physikalische Rand-
bedingungen sowie Mess- und Modellunsicherheiten zu berücksichtigen.

Sowohl Newton- als auch Intervall-Analyse-Verfahren können, je nach geforderter Be-
rechnungsschrittweite, im Echtzeitkontext verwendet werden. In [Mer06, S. 145] werden
entsprechende Berechnungszeiten aufgeführt (ermittelt mit Dell D400, 1, 2 GHz). Die Be-
rechnungszeiten variieren für verschiedene Ausprägungen des Quasi-Newton-Verfahrens
im Bereich von 1, 3−6, 1 µs, für das Intervall-Analyse-Verfahren von 300−460 µs. Aller-
dings bemerkt [AHK08], dass iterativ berechnete Lösungen des DKP sich nur bedingt für
die Anwendung innerhalb einer Reglerstruktur eignen würden. Dies gelte vor allem, wenn
zur Regelung auch Geschwindigkeits- und Beschleunigungssignale benötigt würden, die
durch Differentiation aus der iterativen Lösung des DKP ermittelt werden müssten. Diese
weisen dann einen großen Rauschanteil auf (vgl. [AHK08, Fig. 1]). Entsprechende Fil-
ter zur Glättung führen zu einem Phasenabfall im offenen Regelkreis und somit zur einer
Begrenzung der erreichbaren Bandbreite des geschlossenen Regelkreises.

In [KCL05] werden aus der iterativ nach den Newton-Raphson-Verfahren berechneten
Lösung des DKP die Geschwindigkeiten mit Hilfe eines alpha-beta-trackers geschätzt.
Ein alpha-beta-tracker ist ein spezielles Filter zur Schätzung von Geschwindigkeiten aus
Positionen. Das diskrete Filter wird durch die Größen α und β charakterisiert, die z. B.
durch das Lösen der algebraischen Riccati-Gleichung bestimmt werden können. Es kann
somit als spezielle Form eines Kalman-Filters betrachtet werden (vgl. [PKJ90]), bei dem
das Beobachtermodell einem doppelten Integrator entspricht.

3.2.2 Direkte Messung

Wie bereits in Abschnitt 3.1.2 erwähnt wurde, entstanden an der Blaise-Pascal Universität
in Clermont-Ferrand mehrere Arbeiten, in denen die direkte Messung der Endeffektorpo-
sition sowie die Nutzung redundanter Messgrößen thematisiert werden, so z. B. [PAM09]
und [ÖAM10]. Nach Kenntnis der Autoren von [PAM09] sind Verfahren zur direkten
Messung rar, wobei laser- oder kamerabasierte Methoden die „Hauptkandidaten“ seien.
Laser-Tracker würden eine sehr schnelle und präzise Positionsmessung erlauben (genannt
werden die Werte 20 µm, 3 kHz), seien jedoch teuer und schwer zu verwenden. Außer-
dem seien Orientierungsmessungen nicht möglich. Den Autoren sind nur Anwendun-
gen zur kinematischen Kalibrierung bekannt (wie z. B. [NBHW00]), keine Nutzung in
Regelkreisen.

Die Verwendung kamerabasierter Methoden, die mit Hilfe einer intelligenten Bildverar-
beitung die Position des Endeffektors detektieren, wird auch als computer vision bezeich-
net, ihre Nutzung als feedback-Signal im Regelkreis als visual servoing. Laut [PAM09]
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ist dieses Verfahren zwar langsamer und ungenauer als Laser Tracking, dafür jedoch ein-
facher zu implementieren. Außerdem sei visual servoing bisher nur im Zusammenhang
mit einfachen Reglerstrukturen für PKM untersucht worden, Ansätze zur Einbindung in
eine dynamische Regelung würden bisher nur für serielle Kinematiken existieren.

3.2.3 Beobachtung aus den verfügbaren Messdaten

Die Gelenkkoordinaten q einer PKM lassen sich in der Regel messtechnisch relativ ein-
fach erfassen. Gleiches gilt für die Stellgrößen τq in Form von Aktorkräften oder -momen-
ten. Diese Tatsache kann dazu genutzt werden, den Zustand des Endeffektors mittels ei-
nes Beobachters zu schätzen. Der Beobachterentwurf für PKM ist dabei laut [KKL00a]
aufgrund der strukturellen Nichtlinearitäten besonders komplex und wird durch Parame-
terunsicherheiten erschwert.

In Seoul, an der National University of Technology, beschäftigte man sich neben der
Regelung (vgl. Abschnitt 3.1.2) auch mit robuster Zustandsbeobachtung für PKM. In
[KKL00a] wird ein Ansatz zum Beobachterentwurf erläutert und experimentell validiert.
Dabei beschränken sich die Autoren auf die reine Beobachtungsaufgabe; die Verwendung
der beobachteten Zustände zur Regelung wird nicht weiter thematisiert. Der vorgestellte
Ansatz basiert auf der Lösung einer algebraischen Riccati-Gleichung für das linearisierte
System zur Ermittlung einer konstanten Beobachtermatrix. Die so vernachlässigten Nicht-
linearitäten sowie Parameterunsicherheiten führen zu Fehlern, die in einem definierten be-
rechenbaren und begrenzten Bereich liegen. Im Gegensatz zur „klassischen“ Vorgehens-
weise des Beobachterentwurfs mittels Riccati-Gleichung (=Kalman Filter, vgl. [Ada09,
Kap. 6]) werden Modell- und Messunsicherheiten nicht über Kovarianzmatrizen, sondern
über die zuvor ermittelten Fehlergrenzen explizit berücksichtigt. Die experimentelle Va-
lidierung des Ansatzes erfolgt an einem hydraulischen Hexapoden, der als Flugsimulator
eingesetzt werden soll.

Wissenschaftler der National Taiwan University in Taipei, Taiwan entwickelten einen An-
satz zur Zustandsbeobachtung für PKM, der die Beobachtungsnormalform, vgl. [Ada09,
Kap. 6], nutzt. Die Auslegung des Beobachters, dessen Differentialgleichung im OS im-
plementiert wird, erfolgt am zustandstransformierten System. Die Zustandsvariablen die-
ses transformierten Systems sind Größen in Gelenkkoordinaten: q und q̇. Die Synthe-
se der Beobachtermatrix für dieses System kann, da es in seinen Zuständen entkoppelt
ist, mittels Eigenwertvorgabe erfolgen. Dabei werden die nichtlinearen Terme, die die
Kopplung über die nichtlineare Kinematik enthalten, als Störungen in gewissen Gren-
zen interpretiert und vernachlässigt. Die Rücktransformation der so ermittelten Matrix
für die Verwendung im Beobachter im OS erfolgt unter Zuhilfenahme der inversen Beob-
achtbarkeitsmatrix Q−1

B (ẑ) (zu ihrer Definition sei auf Abschnitt 5.1.1 verwiesen). Dieser
Beobachterentwurf sowie die Verwendung des Beobachters zur Sliding-Mode-Regelung
(vgl. Abschnitt 3.1.2) werden in [CHF08] vorgestellt. Dort wird der Ansatz anhand von
Simulationsergebnissen mit dem Modell eines elektrohydraulischen Hexapoden validiert,
wobei das Reglerausgangssignal als Beobachtereingang dient. Die Aktordynamik wird in
der Simulation vernachlässigt, das Verhalten der hydraulischen Aktoren wird als linear
angenommen. Eine experimentelle Validierung des Ansatzes wird in [CF13] präsentiert –
allerdings ohne nähere Angaben über die Aktorik des Zielsystems. Es bleibt offen, ob hier
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ebenfalls ein hydraulischer Hexapod verwendet wird. Ein Vergleich der geschätzten mit
einer offline iterativ berechneten Lösung des DKP zeigt, dass die Schätzung sehr genau
ist und sich zur Einbindung in eine Regelung eignet.

In den USA wurde im Jahre 2000 von [FW00] erstmals die Verwendung eines Exten-
ded Kalman-Filters, vgl. [Ada09, Kap. 6], zur Beobachtung der Endeffektorposition einer
PKM vorgeschlagen. Den Autoren sind bis dahin keine weiteren Arbeiten dazu bekannt.
Ihr Ziel ist es, ihnen bekannte Methoden zur Beobachtung der Orientierung von Satel-
liten so zu erweitern, dass sie für eine generische Stewart-Gough-Plattform anwendbar
werden. Dabei werden realistisch verfügbare Sensorsignale wie bspw. Wegsensoren, Gy-
roskope und Beschleunigungssensoren berücksichtigt. Die vorgestellten Simulationser-
gebnisse demonstrieren, dass die vorgeschlagene Vorgehensweise dazu verwendet werden
kann, den Zustand einer PKM zu beobachten. Die Autoren weisen jedoch darauf hin, dass
die Validierung der Praxistauglichkeit durch entsprechende Experimente noch aussteht.
Dennoch erwarten sie diese aufgrund der Tatsache, dass Kalman-Filter routinemäßig zur
Beobachtung von Satellitenorientierungen eingesetzt werden.

3.3 Tabellarische Übersicht

Alle im Vorfeld genannten Strategien zur Regelung von PKM und zur Lösung des DKP
sind nachfolgend in Tabelle 3-1 aufgeführt. Die Tabelle enthält weiterhin Angaben über
das jeweilige Zielsystem sowie darüber, ob der Ansatz simulativ und/oder experimentell
validiert wurde und über die verwendeten Solltrajektorien.

Tabelle 3-1: Arbeiten zur Regelung und Beobachtung von PKM

Ort und
Quelle

Regelungs-
konzept

Lösung des
DKP

betr. Solltra-
jektorie si

m
.

ex
p.

*

Anwendung

Seoul,
Korea,
[KKL00b]

- Robuste
Zustandsbe-
obachtung

sinusförmige
Signale, 1 Hz

x x hydraulischer
Hexapod zur
Bewegungs-
simulation

Seoul,
Korea,
[KKL00a]

robuste Re-
gelung im JS

- sinusförmige
Signale,
< 5 Hz

x x hydraulischer
Hexapod zur
Bewegungs-
simulation

Seoul,
Korea,
[KCL05]

robuste Re-
gelung im
OS

Newton-
Raphson mit
alpha-beta-
tracker

sinusförmige
Signale, 0, 5
und 1 Hz

x x elektrisch
aktuierter
Hexapod

Taipei,
Taiwan,
[CHF08]
[CF13]

Sliding-
Mode-
Regelung
im OS mit
fb-Lin.

transf.
Normalform-
beobachter

sinusförmige
Signale, 1 Hz

x x hydraulischer
Hexapod

*Untersuchung simulativ und/oder experimentell
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Ort und
Quelle

Regelungs-
konzept

Lösung des
DKP

betr. Solltra-
jektorie si

m
.

ex
p.

*

Anwendung

Gaithers-
burg, USA,
[FW00]

- Extended
Kalman-
Filter

kontinuierlich,
keine Anteile
>1 Hz

x - Hexapod

Braun-
schweig
[WKS08]
[KWRS10]

versch. Reg-
ler mit ff-
und fb-Lin.
im JS und
OS

DKP für
Beispiel-
system
eindeutig
lösbar

sprungförmig,
Punkt-zu-
Punkt

- x Zwei-FHG
PKM, Hand-
ling und
Montage

Athen,
Griechenl.,
[DP08]

Polvorgabe-
regelung im
JS/OS mit
ff-/fb-Lin.

iterativ sinusförmige
Signale,
< 1 Hz

x - hydraulischer
Hexapod zur
Flugsimulati-
on

Hannover,
z. B.
[AH10]

Komb. aus
passivitäts-
bas. und
Sliding
Mode Rege-
lung im JS,
ff-Lin.

- Kreis- und
Rechteck-
trajektorie

x x elektrischer
Hexapod
PaLiDA

Seoul,
Korea,
[LSCH03]

H∞-
Regelung
mit linearer,
modell-
gestützt
dynamischer
Vorsteue-
rung

direkte
Messung
(optisch)

horizontaler
Kreis, ho-
rizontales
Rechteck,
2, 5 Hz

- x elektrisch
aktuierter
Hexapod

Clermont-
Ferrant,
Frankreich,
[Özg12]

Regelung
mit red-
undanten
Messdaten

- kreis- und
rechteck-
förmige
Signale

x x Delta-
Roboter

*Untersuchung simulativ und/oder experimentell
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3.4 Handlungsbedarf

Im Bereich der Regelung von PKM sind noch einige Fragen offen. Dies gilt im Spezi-
ellen im Hinblick auf Regelungen mit einer Bandbreite im zweistelligen Hz-Bereich für
kontinuierliche Sollvorgaben, die im Vorfeld nicht bekannt sind. Aus Tabelle 3-1 wird
deutlich, dass alle berücksichtigten Regelungskonzepte mit Hilfe von kontinuierlichen
Solltrajektorien, die keine Anteile über 5 Hz enthalten, getestet wurden. Ausnahmen da-
von bilden nur Mechanismen, die im Bereich der Handhabung und Montage eingesetzt
werden sollen; hier wurden z. T. sprungförmige Solltrajektorien über Pfade und Maxi-
malgeschwindigkeiten definiert. Arbeiten, die sich mit Regelungen für kontinuierliche
Trajektorien befassen, die Anteile im zweistelligen Hertz-Bereich enthalten, wurden im
Zuge der Literaturrecherche nicht offenkundig.

Eine weitgehende Einigkeit herrscht bei der Verwendung der Basisreglerstrukturen gemäß
Bild 3-1: Die Mehrzahl der betrachteten Regelungen verwenden das Konzept der exakten
Zustandslinearisierung, sei es im Zuge einer fb- oder ff-Linearisierung. Einige Autoren
vertreten die These, dass Regelungen im OS für hochdynamische Anwendungen besser
geeignet sind als Regelungen im JS, so z. B. [PAM09], vgl. auch Abschnitt 3.1.1. Unter-
suchungen von [WKS08] bestätigen dies für eine PKM mit zwei FHG, dennoch werden
vielfach Regelungen im JS aus Gründen der Echtzeitfähigkeit umgesetzt und empfohlen.
Vergleichende Analysen für PKM mit sechs FHG und für kontinuierliche Sollvorgaben
im Bereich mehrerer Hertz finden sich in der Literatur nicht.

Die Lösung des DKP mittels Zustandsbeobachtung erscheint dem Regelungstechniker
naheliegend. Merlet bezweifelt jedoch in [Mer06, S. 144] die Genauigkeit von Beobach-
tern und sie wurden laut [KCL05] bisher nur selten für PKM mit sechs FHG eingesetzt.
Dennoch finden sich vereinzelt Ansätze, die bisher jedoch ebenfalls nur für Anregungen
mit niedrigen Frequenzen simulativ und experimentell untersucht wurden. In [CF13] wird
gezeigt, dass eine Beobachtung durchaus sehr genau sein kann und damit ein großes Po-
tenzial zur Anwendung in hochdynamischen Regelungen birgt. Dies ist vor allem vor dem
Hintergrund der Rechenleistungen heutiger Echtzeitsysteme interessant, mit Hilfe derer
ihre Umsetzung heutzutage mit vergleichsweise wenig Aufwand möglich ist.

3.5 Themeneingrenzung und Zieldefinition

Ziel dieser Arbeit ist es, einen Beitrag zur beobachterbasierten Regelung von PKM mit
dem Ziel einer möglichst hohen Bandbreite zu leisten. Die Bearbeitung dieser Zielsetzung
erfolgt am Beispiel eines hydraulischen Hexapoden. Für diesen soll eine Regelung ent-
worfen werden, die seinen Einsatz im Rahmen einer HiL-Simulation für mechatronische
PKW-Achsen erlaubt.

Schwerpunkt dieser Arbeit ist die Untersuchung von hochdynamischen Regelungen für
PKM im JS und OS. Durch eine geeignete Reglersynthese muss eine Vergleichbarkeit
gewährleistet werden, die eine entsprechend objektive Bewertung erlaubt. Durch die Ver-
wendung der in Bild 3-1 gezeigten Basisreglerstrukturen kann diese Forderung erfüllt
werden: Die Linearisierung der Systemdynamik führt zu einer Entkopplung in den Zu-
ständen, sodass die Regelstrecke sowohl für die Regelung im JS als auch für die Re-
gelung im OS idealisiert als Reihenschaltung aus Aktordynamik und zweifachem Inte-
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grator modelliert werden kann. Die Reglersynthese kann dann durch die Vorgabe einer
Fehlerdynamik für das linearisierte System erfolgen. Es resultiert eine Reglermatrix R in
Diagonalform. Sie kann für beide Strukturen gleichermaßen verwendet werden.

Die Ausführungen beschränken sich auf den Entwurf und die Umsetzung solcher Ent-
kopplungsregelungen, weitere Konzepte, wie z. B. robuste Ansätze, werden nicht betrach-
tet. Für beide Regelungsansätze existieren Unsicherheitsfaktoren, deren Auswirkung auf
die Regelgüte durch theoretische Betrachtungen nur schwer einzuordnen sind. Welche
Auswirkung hat z. B. für Regelungen mit ff-Linearisierung die Tatsache, dass zur Berech-
nung der Terme zur Zustandslinearisierung die Soll- und nicht die korrekten Istzustände
verwendet werden? Andererseits kann eine fb-Linearisierung nur durch den Einsatz nu-
merischer Verfahren oder von Zustandsbeobachtern realisiert werden. Welchen Einfluss
hat dies auf die resultierende Regelgüte?

Beide Regelungskonzepte, sowohl die Regelung im JS als auch diejenige im OS, las-
sen sich grundsätzlich mit einer ff- oder einer fb-Linearisierung kombinieren, daher wird
auch die bisher selten erwähnte Kombination einer fb-Linearisierung mit einer Regelung
im JS betrachtet. Diese erscheint sinnvoll: Während die Linearisierung aufgrund der Ver-
wendung der Istgrößen auch bei größeren Abweichungen von der Solltrajektorie, z. B.
durch die Auswirkung von Stellgrößenbegrenzungen, korrekt ist, erfolgt die letztendli-
che Regelung in direkt messbaren Koordinaten - dies bietet für den Anwender zumindest
eine scheinbar größere Sicherheit gegen die Auswirkung von Fehlbeobachtungen. Aller-
dings ist die Verwendung einer ff-Linearisierung bei einer Regelung im OS nicht sinnvoll,
da die aktuellen Zustände zur Regelung ohnehin bekannt sein müssen, daher wird diese
Kombination nicht betrachtet.

Unter dem zweiten Aspekt des identifizierten Handlungsbedarfs wird die Verwendbarkeit
zweier Konzepte untersucht, für die bereits in [FOT14] erste Ergebnisse veröffentlicht
wurden. Es handelt sich dabei um ein kontinuierliches Kalman-Filter (auch: Kalman-
Bucy-Filter) und einen Sliding-Mode-Beobachter. Diese Konzepte werden in [FOT14]
lediglich zur Beobachtung im OS verwendet, in dieser Arbeit wird auch ihre Realisierung
im JS untersucht. Während die Literaturrecherche in Bezug auf Kalman-Filter bereits ver-
wandte Ansätze zur Zustandsbeobachtung für PKM offenbarte (z. B. [KKL00a], [CF13],
[FW00]), stellt die Anwendung von Sliding-Mode-Beobachtern in diesem Kontext eine
Neuheit dar.

Alle o. g. Regler- und Beobachtervarianten werden im Zuge dieser Arbeit hinsichtlich
folgender Aspekte untersucht:

(i) Robustheit ggü. Modellunsicherheiten

(ii) Rechenaufwand: Welche Vereinfachungen sind ggf. möglich?

(iii) Robustheit ggü. Sollvorgaben, die durch die Aktorik nicht gestellt werden können

(iv) Eignung für die geplante Anwendung im Rahmen eines Prüfstands zur HiL-Simu-
lation von PKW-Achsen

Unter den Aspekten (i)-(iii) sollen im Sinne der o. g. Zielsetzung allgemeingültige Aus-
sagen für die breitbandige Regelung von PKM gefunden werden, während unter Aspekt
(iv) die Lösung für eine konkrete Aufgabenstellung zu finden ist.
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4 Reglersynthese für PKM mit endlicher Dynamik und

Stellgrößenbegrenzungen

Zur globalen Regler- und Beobachtersynthese wird das in Abschnitt 2.2.2 vorgestellte
Modell verwendet. Da die Aktoren des Zielsystems gemäß der in Abschnitt 2.3.3 vorge-
stellten Methode kraftgeregelt werden, können sie für die Regler- und Beobachtersynthese
als ideale Kraftsteller mit einem Verzögerungsverhalten betrachtet werden. Daher sind die
Ausführungen auf allgemeine PKM mit kraftgeregelten Aktoren übertragbar.

Wie in Abschnitt 3.5 beschrieben, sollen in dieser Arbeit die Basisreglerstrukturen ge-
mäß Bild 3-1 bei der Verwendung einer vergleichbaren Regelung untersucht werden. Im
Folgenden werden zunächst die Terme zur Realisierung der flachheitsbasierten Folgere-
gelung mit exakter Zustandslinearisierung sowie zur Zwei-Freiheitsgrade-Regelung mit
flachheitsbasierter Vorsteuerung für vollaktuierte Systeme mit η FHG hergeleitet. Es folgt
die Beschreibung der Reglersynthese für das linearisierte System unter Berücksichtigung
der begrenzten Aktordynamik. Schließlich wird ein Ansatz zur echtzeitfähigen Vorfilte-
rung eines Sollsignals vorgestellt, der zur Vermeidung von Strecken-Windup dient.

4.1 Flachheitsbasierte Steuerungen und Regelungen für PKM mit
sechs FHG

Der Positions- und Orientierungsvektor x kann als flacher Ausgang des dynamischen
Modells zur Beschreibung der Bewegung von PKM definiert werden. Daher sind PKM
prädestiniert zur Anwendung von flachheitsbasierten Reglerentwurfsverfahren. Die Glei-
chungen (3-4) zur flachheitsbasierten Folgeregelung sowie (3-5) zur flachheitsbasierten
Vorsteuerung mit nichtlinearer Regelung wurden bereits in Abschnitt 3.1.1 genannt und
sind nachfolgend für eine bessere Übersicht noch einmal aufgeführt.

Flachheitsbasierte Folgeregelung für PKM:

u = τq, f b = JT (x)
(
M(x)H(x)(ẍre f + uR) + (4-1)(
M(x)Ḣ(x, ẋ) + CCC(x, ẋ)H(x)

)
ẋ + G

)
.

Zwei-Freiheitsgrade-Regelung mit flachheitsbasierter Vorsteuerung für PKM:

u = τq, f f = JT (xre f )
(
M(xre f )H(xre f )(ẍre f + uR) +

(
M(xre f )Ḣ(xre f , ẋre f )

+ CCC(xre f , ẋre f )H(xre f )
)
ẋre f + G

)
. (4-2)

Im idealisierten Fall, für den eine Übereinstimmung der Sollgrößen mit den Istgrößen
angenommen wird (x = xre f , ẋ = ẋre f ), liefern beide Regelungen die gleiche Stellgrö-
ße u = τq. Der Einfluss des Fehlers, der aus der Verwendung der Sollgößen in (4-2)
entsteht, kann analytisch kaum ermittelt werden. Es ist daher sinnvoll, die Leistungsfä-
higkeit der Regelungsansätze im Nachgang simulativ und experimentell zu vergleichen.
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Im Folgenden wird aus diesem Grund nur der Entwurf für die flachheitsbasierte Folge-
regelung beschrieben. Hier ergibt sich, falls Modell und Strecke exakt übereinstimmen,
eine Entkopplung in den Zuständen und ein doppelt integrales Verhalten für jeden FHG,
beschreibbar durch die Zustandsgleichung[

ẋ
ẍ

]
=

[
0 Iη×η
0 0

] [
x
ẋ

]
+

[
0

Iη×η

] (
ẍre f + uR

)
. (4-3)

Für das so linearisierte System kann mit den klassischen Methoden der linearen Rege-
lungstechnik eine Regelung mit

uR = RP(xre f − x) + RD(ẋre f − ẋ) (4-4)

entworfen werden, wobei RP, RD diagonalförmig sind, was einer PD-Regelung des ent-
koppelten Systems entspricht. Überdies können die P- und D-Reglerverstärkungen der
einzelnen FHG jeweils gleich gewählt werden,

RP = r1 · Iη×η, RD = r2 · Iη×η, (4-5)

was den Entwurf weiter vereinfacht.

4.1.1 Realisierung im OS

Solltrajektorien für PKM sind durch die Verläufe von xre f , vre f und v̇re f bzw. xre f , ẋre f und
ẍre f spezifiziert; der Vektor der Istgeschwindigkeiten liegt, z. B. durch Zustandsschätzung
(vgl. Kap. 5), als v bzw. v̂ vor. Es ist daher sinnvoll, die Berechnung von τq, f b gemäß (4-1)
so zu formulieren, dass sie mit den bekannten Größen v, v̇ statt ẋ, ẍ, durchgeführt werden
kann.

Die zeitliche Ableitung der Kinematikmatrix wurde bisher mit (3-1) als

Ḣ =
∑

i

∂H(x)
∂xi

ẋi = Ḣ(x, ẋ)

angegeben und soll nun in Abhängigkeit von x und v ausgedrückt werden. Mit (2-8),
v = H(x)ẋ bzw. ẋ = H−1(x)v, wird

Ḣ =
∑

i

∂H(x)
∂xi

ẋi =
∑

i

∂H(x)
∂xi

H−1
(i) v = Ḣ(x, v), (4-6)

worin H−1
(i) die i-te Zeile von H−1 bedeutet und für den resultierenden Ausdruck einfach-

heitshalber Ḣ(x, v) geschrieben wird.

Aus dem Regelungsgesetz (4-4) ergibt sich

uR = RP(xre f − x) + RD

(
H−1(xre f )vre f − H−1(x)v

)
(4-7)

und mit (3-2) gilt für ẍre f :

ẍre f = H−1(xre f )
(
v̇re f − Ḣ(xre f , vre f )H−1(xre f )vre f

)
. (4-8)
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4.1.2 Realisierung im JS

Die Bewegungsdifferentialgleichung (2-4) für PKM kann auch im JS formuliert werden.
Dann gilt nach [AHK08]

Mq(x)q̈ + CCC,q(x, v)q̇ + JT (x)G = τq, (4-9)

mit der Massenmatrix in Gelenkkoordinaten Mq(x),

Mq(x) = JT (x)M(x)J(x), (4-10)

und der entsprechenden Matrix der Coriolis- und Zentrifugalkräfte CCC,q(x, v),

CCC,q(x, v) = JT (x)CCC(x, v)J(x) + JT (x)M(x)J̇(x, v). (4-11)

Die resultierende Bewegungsgleichung (4-9) weist eine große Ähnlichkeit zur Bewe-
gungsgleichung einer seriellen Kinematik (2-1) auf, allerdings mit dem Unterschied, dass
die Matrizen Mq und CCC,q weiterhin von den Vektoren x und v abhängen und nicht
von den Zustandsvariablen q und q̇. Da das DKP, wie bereits in Kap. 2 erläutert wur-
de, nicht analytisch lösbar ist, kann (4-9) nicht so umgeformt werden, dass die Matrizen
von den Zustandsvariablen q und q̇ abhängen. Das ist vermutlich der Grund für die Aussa-
ge in [PAM09], dass eine Regelung im JS keine Zustandsregelung, sondern eine verzerrte
Beobachterregelung („biased observer feedback control“) sei.

Auch (4-9) kann dann in eine nichtlineare, eingangsaffine Zustandsraumdarstellung mit
dem Eingang u = τq überführt werden. Es gilt in Analogie zu (2-14) und (2-15):

żq = f (zq, u) = faq(zq) + fbqu mit u = τq (4-12)

y =
[
Iη×η 0

]
zq, (4-13)

mit

zq =
[
qT q̇T

]T
(4-14)

und

faq(zq) =

[
0 Iη×η
0 −M−1

q (x)CCC,q(x, v)

]
zq +

[
0

−M−1
q (x)JT (x)G

]
, (4-15)

fbq(zq) =

[
0

M−1
q (x)

]
. (4-16)

Dabei fällt auf, dass die Zustandsraumdarstellung zwar nichtlinear in x und v, jedoch
linear im Zustand zq ist. Zudem ist q ein flacher Ausgang des Systems, sodass sich die o. g.
Konzepte der flachheitsbasierten Folgeregelung und der Zwei-Freiheitsgrade-Regelung
mit flachheitsbasierter Vorsteuerung ebenfalls anwenden lassen. Analog zu (4-3) resultiert
ein doppelt integrales Verhalten für das zustandslinearisierte System,

żq =

[
0 Iη×η
0 0

]
zq +

[
0

Iη×η

]
(q̈re f + uq), (4-17)
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für welches eine lineare Regelung mit

uq = R(zq,re f − zq) = RP(qre f − q) + RD(q̇re f − q̇) (4-18)

ausgelegt werden kann. Da das Verhalten der zustandslinearisierten Systeme in JS und
OS äquivalent ist, kann in beiden Fällen die gleiche Reglermatrix R,

R =
[
RP RD

]
=

[
r1 · Iη×η r2 · Iη×η

]
(4-19)

(vgl. (4-5)) verwendet werden.

Zur Realisierung der flachheitsbasierten Regelungen im JS sind zwei Möglichkeiten denk-
bar: Einerseits können die Gleichungen analog zu (4-1) und (4-2) aus (4-9) abgeleitet wer-
den. Andererseits kann uq als Beschleunigung im JS interpretiert und mittels des Trans-
formationsgesetzes

ẍ = H−1(x)
(
J(x)q̈ + J̇(x, v)q̇ − Ḣ(x, v)H−1(x)J(x)q̇

)
(4-20)

zwischen den Beschleunigungen q̈ im JS und ẍ(q̈) im OS direkt in eine Stellgröße uR

umgerechnet werden. Diese wird dann in das Regelungsgesetz (4-1) bzw. (4-2) eingesetzt,
was mit (4-18) auf

uR,JS , f b = H−1(x)
(
J(x)R(zq,re f − zq) + J̇(x, v)q̇ (4-21)

− Ḣ(x, v)H−1(x)J(x)q̇
)

führt für die flachheitsbasierte Folgeregelung im JS bzw. auf

uR,JS , f f = H−1(xre f )
(
J(xre f )R(zq,re f − zq) + J̇(xre f , vre f )q̇ (4-22)

− Ḣ(xre f , vre f )H−1(xre f )J(xre f )q̇
)

für die Zwei-Freiheitsgrade-Regelung mit flachheitsbasierter Vorsteuerung im JS nach
Bild 3-1.

Hierbei wird davon ausgegangen, dass die Referenztrajektorie xre f , ẋre f , ẍre f , wie auch
im Bild 3-1 dargestellt, im OS vorliegt. Diese Darstellung des Regelungsgesetzes ist da-
her besonders für die Zwei-Freiheitsgrade-Regelung geeignet, da zur Realisierung nur
das IKP gelöst werden muss, während die flachheitsbasierte Folgeregelung die Lösung
des DKP bzw. eine Zustandsbeobachtung erfordern würde. (4-22) entspricht auch der
in [AHK08] angegebenen Berechnungsvorschrift zur flachheitsbasierten Regelung mit
modellbasierter Vorsteuerung.

Anmerkung zur Berechnung der zeitlichen Ableitung der Jakobimatrix
Die zeitliche Ableitung der Jakobimatrix, J̇(x, v), kann nicht analytisch aus den Geome-
triedaten einer PKM berechnet werden, die inverse Jakobimatrix J−1(x) und ihre zeitliche
Ableitung J̇−1(x, v) hingegen schon. Für das Zielsystem kann gezeigt werden, dass J−1(x)
im gesamten effektiven Arbeitsraum regulär ist. J(x) ist demnach jederzeit durch nume-
rische Inversion berechenbar. Es ist davon auszugehen, dass dies für den effektiven Ar-
beitsraum der Mehrzahl aller realisierten PKM zutrifft. Die gesuchte Matrix J̇(x, v) kann
dann wie folgt berechnet werden: Es gilt

J−1(x)J(x) = Iη×η (4-23)
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und damit auch

J̇−1(x, v)J(x) + J−1(x)J̇(x, v) = 0. (4-24)

Durch Umstellen ergibt sich die Berechnungsvorschrift für die zeitliche Ableitung der
Jakobimatrix zu

J̇(x, v) = −J(x)J̇−1(x, v)J(x). (4-25)

4.2 Regelungsentwurf unter Berücksichtigung der Aktordynamik im
Zeit- und Frequenzbereich

Die Entkopplung durch exakte Linearisierung führt dazu, dass die Regelstrecke für je-
de „Zustandsrichtung“ das gleiche Übertragungsverhalten, spezifiziert durch (4-3) bzw.
(4-17), aufweist. Das gilt sowohl für Regelungen im JS als auch für Regelungen im OS.
Es ist daher ausreichend, einen FHG bzw. eine „Zustandsrichtung“ zu betrachten und zur
Auslegung einer Zustandsregelung ein SISO-System (Single Input Single Output) zweiter
Ordnung zu formulieren. Nach erfolgter Reglersynthese können gemäß (4-19) zur Rege-
lung des Gesamtsystems die einzelnen Einträge der resultierenden Reglermatrix r,

r =
[
r1 r2

]
,

durch Diagonalmatrizen der Größe η × η ersetzt werden.

Falls die Dynamik der kraftgeregelten Aktoren nicht um ein Vielfaches schneller ist als die
gewünschte Bandbreite der Zustandsregelung, sollte sie bei der Reglersynthese ebenfalls
berücksichtigt werden. Dies ist bei dem Zielsystem der Fall; hier kann die Aktordynamik
durch ein Modell der Ordnung nAkt = 3 approximiert werden (vgl. Abschnitt 2.3.3). Das
gesamte SISO-Modell der Regelstrecke ergibt sich dann aus der Reihenschaltung von
Aktordynamik und doppelt integralem Verhalten und weist eine Dynamik der Ordnung
n = nAkt + 2 = 5 auf.

Anmerkung: Die o. g. Annahme, dass sich die zustandslinearisierte Regelstrecke durch
eine Reihenschaltung aus Aktordynamik und doppelt integralem Verhalten modellieren
lässt, ist formal nicht korrekt. Es handelt sich um ein nichtlineares System, für welches das
Prinzip der Vertauschbarkeit einzelner Übertragungselemente, vgl. [Föl13, S. 72], nicht
gilt. Die nichtlineare Systemcharakteristik lässt sich demnach durch die Linearisierung
nicht einfach „herauskürzen“. Dass diese Annahme für das Zielsystem dennoch zulässig
ist, wird am Ende dieses Unterkapitels in Abschnitt 4.2.3 demonstriert.

Die Synthese der Reglermatrix r erfolgt durch die Analyse des geregelten Systemver-
haltens im Zeit- und Frequenzbereich. Dazu genügt es, den Rückführzweig zu betrach-
ten. Dies ist möglich, da für das System durch die exakte Zustandslinearisierung lineares
Verhalten angenommen werden kann. Die Einflüsse der Vorsteuerung und der Regelung
überlagern sich, ohne sich gegenseitig zu beeinflussen, vgl. [Föl13, S. 328]. Bild 4-1 vi-
sualisiert die zu berücksichtigende Struktur mit dem Zustandsvektor sn ∈ R

n×1 und dem
Messvektor sζ ∈ R2×1, sζ ⊂ sn. Die Indizes „sn“ charakterisieren die Systemmatritzen
des Streckenmodells der Ordnung n = nAkt + 2. Für das Verhalten des gemäß Bild 4-1
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Bild 4-1: Zustandsregelung unter Berücksichtigung einer linearen Aktordynamik (nach:
[Föl13, S.328])

geregelten SISO-Systems lassen sich folgende Zustandsgleichungen angeben:

ṡn = Asnsn + Bsnr · (sζ,re f − sζ) (4-26)
y = Csnsn. (4-27)

Im vorherigen Abschnitt wurden bereits die Gleichungen zur Zustandslinearisierung im
OS und JS angegeben. Im Folgenden wird erläutert, wie für allgemeine PKM die Regler-
matrix r für ein SISO-Streckenmodell optimal ausgelegt werden kann. Schließlich wird
die Vorgehensweise am Beispiel des Zielsystems demonstriert.

4.2.1 Vorgehensweise

Zunächst sind zwei Streckenmodelle unterschiedlicher Ordnung zu definieren - eines der
Ordnung ζ = 2, welches nur die zur Regelung verwendeten Zustände berücksichtigt, und
eines der Ordnung n, welches die Dynamik der Aktorik berücksichtigt und damit das
Verhalten der gesamten Regelstrecke repräsentiert. Die Matrizen der Zustandsraumdar-
stellungen der Ordnung 2 sind nachstehend mit den Indizes „sζ“ gekennzeichnet.

Im nächsten Schritt wird ein Initialwert für die Reglermatrix r bestimmt, im Folgenden
als r0,

r0 =
[
r0,1 r0,2

]
,

bezeichnet. Dies kann beispielsweise durch einen Polvorgabeentwurf, vgl. [Föl13, S. 328
ff.], für das Streckenmodell der Ordnung ζ = 2 erfolgen. Anschließend werden die Zu-
standsgleichungen für das mit r0 geregelte System n-ter Ordnung (Indizes „rn“) bestimmt.
Mithilfe von Sprungantworten und Frequenzkennlinien kann dessen dynamisches Verhal-
ten analysiert werden.

Bei der Synthese von Regelungen für dynamische Anwendungen ist davon auszugehen,
dass sich das gewünschte dynamische Verhalten durch eine beliebige Wunschübertra-
gungsfunktion Gre f (s) spezifizieren lässt, bspw. durch ein PT2-Glied mit entsprechender
Zeitkonstante und Dämpfung. Da die Ordnung n des geregelten Systems bekannt ist, kann
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eine Zielübertragungsfunktion GZiel(s) derselben Ordnung formuliert werden, die dieses
Wunschverhalten annähert. Die Sprungantwort und der Frequenzgang dieser Zielüber-
tragungsfunktion werden dazu genutzt, eine Funktion JG im Sinne eines Gütemaßes zu
definieren, welche einer gewichteten Summe der quadrierten Fläche zwischen den Kenn-
linien des geregelten Systems und denen des Zielsystems entspricht und von Einträgen r1

und r2 der Reglermatrix r abhängt. JG kann dann im Rahmen einer Optimierung mit den
Optimierungsvariablen r1 und r2 und den Startwerten r0,1 und r0,2 minimiert werden.

4.2.2 Anwendung auf das Zielsystem

Es folgt die Anwendung der o. g. Vorgehensweise auf das Zielsystem.

SISO-Streckenmodell
Das Verhalten der linearisierten PKM lässt sich für eine „Zustandsrichtung“ durch fol-
gendes SISO-System der Ordnung ζ = 2 beschreiben:[

ẋ1

ẍ1

]
=

[
0 1
0 0

]
︸   ︷︷   ︸

Asζ

[
x1

ẋ1

]
+

[
0
1

]
︸︷︷︸

Bsζ

ẍ1,re f (4-28)

mit dem Ersatzzustand sζ ,

sζ = [ x1 ẋ1 ]T . (4-29)

Es entspricht somit, wie bereits mehrfach erwähnt, dem Verhalten eines doppelten In-
tegrators. Die Dynamik des geschlossenen Kraftregelkreises kann durch eine Übertra-
gungsfunktion dritter Ordnung approximiert werden (vgl. (2-58), Abschnitt 2.3.3), hier
aus Gründen der Übersicht nochmals angegeben:

GA(s) =
1

1
4π2 f 2

0,V KPKV
s3 + DV

π f0,V KPKV
s2 + 1

KPKV
s + 1

. (4-30)

Eine Transformation auf die Regelungsnormalform, vgl. [Föl13, S. 248 ff.], ergibt die
Darstellung im Zustandsraum:

ẋ f =

 0 1 0
0 0 1

−4π2 f 2
0,V KPKV −4π2 f 2

0,V −4π f0,V DV

︸                                                  ︷︷                                                  ︸
AA

x f

+

 0
0

4π2 f 2
0,V KPKV

︸               ︷︷               ︸
BA

fre f (4-31)

y = f = [ 1 0 0 ]︸        ︷︷        ︸
CA

x f
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mit dem Zustandsvektor x f ,

x f = [ f ḟ f̈ ]T , (4-32)

und den Systemmatrizen AA, BA und CA.

Durch die exakte Zustandslinearisierung wird die Umrechnung von ẍ1,re f in fre f gewähr-
leistet, sodass für die Reglersynthese ẍ1,re f = fre f angenommen werden kann. Aus der
Reihenschaltung von Aktordynamik und doppelt integralem Verhalten resultiert eine Stre-
ckendynamik fünfter Ordnung, charakterisiert durch die Zustandsgleichung[

ṡζ
ẋ f

]
=

[
Asζ Bsζ ·CA

03×2 AA

]
︸                ︷︷                ︸

Asn

[
sζ
x f

]
︸︷︷︸

sn

+

[
02×1

BA

]
︸   ︷︷   ︸

Bsn

fre f (4-33)

und mit dem Zustandsvektor sn,

sn =
[

sT
ζ xT

f

]T
. (4-34)

Bestimmung der Startreglermatrix mittels Polvorgabe
Der im Folgenden verwendete Ansatz zum Reglerentwurf mittels Polvorgabe ist dem
Buch [Föl13, S. 329 f.] entnommen. Für SISO-Systeme in Regelungsnormalform müs-
sen demnach das charakteristische Polynom der Regelstrecke in der Form

sn + an−1sn−1 + · · · + a0 (4-35)

sowie das eines Modells gleicher Ordnung, welches das Wunschverhalten repräsentiert,
in der Form

sn + pn−1sn−1 + · · · + p0 (4-36)

gegeben sein. Dann ergibt sich die gesuchte Reglermatrix zu

r =
[

p0 − a0 p1 − a1 · · · pn−1 − an−1

]
. (4-37)

Im vorliegenden Fall wird die Regelstrecke durch die Zustandsraumdarstellung (4-28) des
reduzierten Systems charakterisiert. Sie liegt bereits in Regelungnormalform vor, sodass
das charakteristische Polynom direkt abgelesen werden kann. Es besteht nur aus s2. Für
Regelstrecken zweiter Ordnung liegt es nahe, das Wunschverhalten durch eine gewünsch-
te Eigenkreisfrequenz ω0,re f sowie ein gewünschtes Dämpfungsmaß Dre f zu spezifizieren.
Es resultiert das charakteristische Polynom

s2 + 2Dre fω0,re f s + ω2
0,re f . (4-38)

Die gesuchte Startsreglermatrix r0 kann in Abhängigkeit der Parameter ω0,re f und Dre f

mittels Koeffizientenvergleich aus den Gleichungen (4-35)-(4-38) ermittelt werden:

r0 =
[
ω2

0,re f 2Dre fω0,re f

]
. (4-39)
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SISO-Modell des geregelten Systems mit Aktordynamik
Zur Analyse des dynamischen Verhaltens werden die Zustandsgleichungen des geregel-
ten Systems gemäß Bild 4-1 und (4-26) erstellt. Für das Zielsystem resultieren folgende
Gleichungen:

ṡn = Asnsn + Bsnr · (sζ,re f − sζ)

ṡn =
(
Asn −

[
Bsnr 05×3

])︸                      ︷︷                      ︸
Arn

sn + Bsnr · sζ,re f (4-40)

y = x1 =
[

1 0 0 0 0
]

sn. (4-41)

Durch die Berechnung der Eigenwerte von Arn,

Arn = Asn −
[

Bsnr 05×3

]
, (4-42)

ist bereits eine Aussage zur Stabilität des geregelten Systems möglich.

Zur Analyse des dynamischen Verhaltens einer Zustandsregelung eignet sich im Allge-
meinen die Simulation des Systemsverhaltens bei einer Anfangsauslenkung, charakteri-
siert durch den Anfangszustand sn,0 für t = 0 bei der Vorgabe eines Referenzzustands
von sζ,re f = 01×2 für t = 0, vgl. [Föl13, S. 328]. Dadurch lassen sich Aussagen zur Dy-
namik und stationären Genauigkeit treffen. Diese Vorgehensweise kann auch umgekehrt
werden, indem für t = 0 ein Führungsgrößensprung vorgegeben wird, der einer Endlage
entspricht, in die das System aus einem beliebigen Anfangszustand, der als sn,0 = 01×n

gewählt werden kann, überführt werden soll, vgl. [Föl13, S. 332].

Für das Zielsystem entspricht dies einer Analyse des Verhaltens vom Eingang sζ,re f (1) =

x1,re f , welcher der gewünschten Endposition entspricht, zum Ausgang y = x1 für sn,0 = 0
für t = 0. Bei der Betrachtung dieses einzelnen Übertragungspfads wird aus (4-40)

ṡn = Arnsn + Bsnr1 · x1,re f . (4-43)

Entsprechend kann als Eingangsmatrix zur Analyse des geregelten Systemverhaltens die
Matrix Brn,

Brn = Bsn · r1, (4-44)

definiert werden. Mit den Matrizen Crn,

Crn =
[

1 0 0 0 0
]
, (4-45)

und Drn,

Drn = 0, (4-46)

ergibt sich ein vollständiges Zustandsraummodell
∑

r, abhängig von den Parametern r1

und r2.
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Reglersynthese mittels Optimierung
Zunächst ist eine Wunschübertragungsfunktion Gre f (s) beliebiger Ordnung festzulegen.
Für das Zielsystem wird eine geregelte Bandbreite von mindestens 50 Hz gefordert. Un-
ter der Berücksichtigung der erreichten Dynamik der lokalen Kraftregelung wird zur Reg-
lersynthese als Zielverhalten eine geregelte Bandbreite von 80 Hz bei oszillographischer
Dämpfung, also einem Lehrschen Dämpfungsmaß von etwa Dre f =

√
0, 5, definiert. Dem-

nach lässt sich die Wunschübertragungsfunktion durch folgendes PT2-Glied angeben:

Gre f (s) =
1

1
(2π·80)2 s2 +

2·
√

0,5
2π·80 s + 1

. (4-47)

Anschließend ist eine Zielübertragungsfunktion GZiel(s) mit der Systemordnung n zu de-
finieren, die das Verhalten von Gre f (s) annähert. Für das Zielsystem der Ordnung n = 5
hat sich dazu folgende Übertragungsfunktion als geeignet erwiesen:

GZiel(s) =
1(

1
(2π·115)2 s2 + 2·0,75

2π·115 s + 1
)2
·
(

1
5·2π·115 s + 1

) . (4-48)

Bild 4-2 zeigt die Frequenzgänge von Gre f (s) und GZiel(s). Es ist zu erkennen, dass GZiel(s)
den Amplitudenverlauf von Gre f (s) bis 100 Hz gut annähert, während der Phasenverlauf
nach unten abweicht. Dies ist aufgrund der höheren Ordnung unvermeidlich, für das Ziel-
system jedoch akzeptabel, da hier für hohe Frequenzen vor allem Amplitudentreue ge-
wünscht ist.
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Bild 4-2: Frequenzgänge von Gre f (s) und GZiel(s)

Für die Optimierung der Reglerauslegung können zunächst zwei Gütemaße definiert wer-
den. Das erste, JG,step, entspricht der quadrierten Fläche zwischen der Sprungantwort von
GZiel(s) und

∑
r. Zu seiner Berechnung können die Systemantworten yZiel und yrn mittels

Simulation für einen Sollsprung von 0 auf 1 zum Zeitpunkt t0 = 0 für die Zeitpunkte

ti = t0 + (Ns − 1)∆t, i = 1 . . .Ns
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mit der Schrittweite ∆t ermittelt werden. Amplitude und Einheit können für diese Be-
trachtung vernachlässigt werden, da es sich um eine lineare Systemabbildung handelt,
deren Verhalten definitionsgemäß unabhängig von der Anregungsamplitude ist. Für

yZiel,i = yZiel(ti), i = 1 . . .Ns,

yrn,i = yrn(ti), i = 1 . . .Ns,

ergibt sich

JG,step =

Ns∑
i=1

((yZiel,i − yrn,i) · ∆t)2. (4-49)

Das zweite Gütemaß entspricht der gewichteten Summe der Flächen zwischen den Fre-
quenzkennlinien der Systeme GZiel(s) und

∑
r. Werden für die Frequenzen

fi = f0 + (Nb − 1)∆ f , i = 1 . . .Nb

die Amplituden-

| |Ziel,i = | |Ziel ( fi), i = 1 . . .Nb,

| |rn,i = | |rn ( fi), i = 1 . . .Nb,

und Phasenverläufe

∠Ziel,i = ∠Ziel( fi), i = 1 . . .Nb,

∠rn,i = ∠rn( fi), i = 1 . . .Nb,

berechnet, so kann das Gütemaß JG,bode als mit θb gewichtete Summe wie folgt bestimmt
werden:

JG,bode =(1 − θb)
Nb∑
i=1

(
(| |Ziel,i − | |rn,i) · ∆ f

)2

+ θb

Nb∑
i=1

(
(∠Ziel,i − ∠rn,i) · ∆ f

)2 . (4-50)

Schließlich wird das Gesamtgütemaß JG als gewichtete Summe aus JG,step und JG,bode

berechnet,

JG = (1 − θG)JG,step + θG JG,bode, (4-51)

mit dem Gewichtungsfaktor θG. Durch Minimierung von JG in Abhängigkeit der Parame-
ter r1 und r2 und mit den Startwerten r0,1 und r0,2 wird der optimale Regler bestimmt.

Die Gewichtungsfaktoren θb und θG sind durch iteratives Ausprobieren zu ermitteln. Für
das Zielsystem ist die Amplitudentreue wichtiger als die Phasentreue; daher wird θb = 0, 2
gewählt. Der Faktor θG ist so zu wählen, dass die einzelnen Summanden in (4-51) die glei-
che Größenordnung besitzen. Dazu müssen zunächst die Gütemaße JG,step und JG,bode im
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Rahmen einer Optimierung minimiert werden. Die entsprechenden Optimierungsproble-
me lassen sich wie folgt formulieren:

JG,step,min = JG,step(r1,step, r2,step) = Minimierer1,r2 JG,step (4-52)
JG,bode,min = JG,bode(r1,bode, r2,bode) = Minimierer1,r2 JG,bode. (4-53)

Es handelt sich dabei jeweils um einfache Einzieloptimierungsprobleme, die ohne die
Angabe von Nebenbedingungen mit der Funktion fminsearch und den Anfangswerten
r0,1 und r0,2 in Matlab gelöst werden können. Das Aufstellen der Matrizen von

∑
r,step und∑

r,bode erlaubt die Analyse des dynamischen Verhaltens der gemäß JG,step,min und JG,bode,min

optimal geregelten Systeme im Step- und Bodeplot. Damit und mit Hilfe der resultieren-
den Werte für JG,step,min und JG,bode,min kann ein geeigneter Wert für θG bestimmt und das
Optimierungsproblem

JG,min = JG(r1,opt, r2,opt) = Minimierer1,r2 JG (4-54)

formuliert und gelöst werden. Als optimale Reglermatrix ropt resultiert

ropt =
[
r1,opt r2,opt

]
. (4-55)

Der Faktor θG ist itarativ so lange zu variieren, bis das System
∑

r,opt das gewünschte
Verhalten aufweist.

Für das Zielsystem haben sich folgende Parameter als geeignet erwiesen:

ω0,re f = 2π · 80 rad/s Dre f =
√

0, 5
∆t = 0, 5 ms Ns = 501,
t0 = 0 s ∆ f = 1/(2π) Hz
f0 = 1/(2π) Hz Nb = 81,
θb = 0, 2 θG = 10−5.

Damit resultiert

ropt =
[
1, 036 · 105 485, 5

]
. (4-56)

Bild 4-3 zeigt die Kennlinien und Eigenwerte für das Zielsystem.

Variation der Reglerverstärkung als Reaktion auf Modellunsicherheiten
In der Praxis treten häufig Modellunsicherheiten auf, die auch nach sorgfältiger Modell-
identifikation nicht eliminiert werden können. Dies betrifft vor allem PKM, für die eine
modellbasierte Regelung nach o. g. Methodik entworfen und in Betrieb genommen wer-
den soll. Hauptursache dafür ist die Zusammenfassung aller bewegten Massen zur Er-
satzmasse mE mit dem entsprechenden Trägheitstensor in Diagonalform. Die bewegten
Massen der Aktoren können bspw. dazu führen, dass sich die Schwerpunktlage konfigu-
rationsabhängig verschiebt und auch das Trägheitsverhalten eine Richtungsabhängigkeit
aufweist. Dies kann bewirken, dass die Regelung mit den ursprünglich ausgelegten Para-
metern näher an die Stabilitätsgrenze kommt, die Reglerparameter daher reduziert werden
müssen.
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Bild 4-4: Eigenwerte des geschlossenen Regelkreises bei Variation der Reglerverstärkung

Für die Gewährleistung einer gewissen Dämpfung im geschlossenen Regelkreis empfiehlt
es sich nicht, die ganze Reglermatrix R zu faktorisieren, denn so ergeben sich für kleine
Faktoren sehr geringe Dämpfungsmaße. In Anlehnung an (4-39) ist es vielmehr ratsam,
die reduzierte Reglermatrix gemäß

rskal =
[
skal · r1

√
skal · r2

]
(4-57)

zu bestimmen, wobei der Skalierungsfaktor skal den Skalierungsgrad beschreibt. Damit
wird die Kreisfrequenz bei gleichbleibender Dämpfung skaliert. Für das Zielsystem erge-
ben sich die in Bild 4-4 dargestellten Eigenwerte für die gemäß (4-57) reduzierte Regler-
matrix.

Die Anpassung der Reglerparameter kann für eine Regelung im OS auch für einzelne
FHG erfolgen, da hier das System in den einzelnen FHG nach Raumrichtungen entkop-
pelt ist. Das ist für Regelungen im JS nicht möglich: Hier würde die Änderung einzelner
Parameter dazu führen, dass die einzelnen Aktoren mit unterschiedlicher Dynamik gere-
gelt würden. Dies hätte einen größeren Einfluss des Direktionalitätsproblems (vgl. Ab-
schnitt 4.3) zur Folge, welches für die Regelung von PKM ohnehin eine Herausforderung
darstellt. Wie groß dieser Vorteil für Regelungen im OS tatsächlich ist, hängt von dem
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jeweils betrachteten Zielsystem ab und muss entsprechend anwendungsspezifisch unter-
sucht werden.

4.2.3 Zur Linearisierbarkeit der Regelstrecke

Die zuvor beschriebene Vorgehensweise zur Reglersynthese basiert auf der Annahme,
dass sich die Regelstrecke als Reihenschaltung aus Aktordynamik und doppeltem Inte-
grator modellieren lässt. Dieser Abschnitt behandelt die Gültigkeit dieser These.

Vereinfachend kann der Rückführzweig einer flachheitsbasierten Folgeregelung im OS
für PKM mit sechs FHG wie in Bild 4-5 dargestellt werden. Hier sind die nichtlinea-
ren Systemcharakteristika zu einem nichtlinearen Übertragungsglied NL zusammenge-
fasst, dessen Umkehrfunktion NL−1 die Terme zur Zustandslinearisierung repräsentiert.
Die Aktorik ist als Parallelschaltung aus sechs Aktoren modelliert. Grundsätzlich ließe
sich dieses Bild analog für eine flachheitsbasierte Folgeregelung im JS zeichnen, dann
müsste der im Bild verwendete Ersatzzustand im OS,

ξ =
[
xT ẋT

]T
,

durch zq ersetzt werden.

Bild 4-5: Regelkreis mit Nichtlinearität

Handelte es sich bei dem nichtlinearen Übertragungsglied um ein lineares Übertragungs-
glied, so dürfte die Reihenfolge der Blöcke nach dem Prinzip der Vertauschbarkeit, vgl.
[Föl13, S. 72], beliebig verändert werden. NL ließe sich gegen NL−1 kürzen und es resul-
tierte als Regelstrecke eine Reihenschaltung aus Aktorik und doppeltem Integrator, wie
in Bild 4-6 dargestellt.

Da das Vertauschbarkeitsprinzip für nichtlineare Übertragungsglieder nicht gilt, ist die-
ses Vorgehen formal nicht korrekt. Simulativ kann jedoch gezeigt werden, dass sich die
gemäß Bild 4-5 und Bild 4-6 modellierten Systeme für das Zielsystem sehr ähnlich ver-
halten. Dazu gelte

ξ0 =
[
xT

0 0
]T
.
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Bild 4-6: Regelkreis mit Strecke als Reihenschaltung aus Aktorik und doppeltem Integra-
tor

Als Referenz wird eine konstante und vergleichsweise große Abweichung von diesem Zu-
stand vorgegeben, um auch größere Abweichungen aus der Nulllage zu berücksichtigen.
Es gelte

ξre f =
[
xT

0 + ∆xT
re f 0

]T
.

Dies kann, wie bereits erläutert, als Ausregelung einer Anfangsauslenkung interpretiert
werden, vgl. [Föl13, S. 332]. Bild 4-7 zeigt die Simulationsergebnisse für eine Abwei-
chung von jeweils 100 mm in yN- und zN-Richtung (∆xT

re f =
[
0 100 100 0 0 0

]
mm).

Auf der linken Seite sind die Bewegungen in den translatorischen FHG aufgezeichnet, auf
der rechten Seite diejenigen in den rotatorischen FHG.

In den Bewegungsrichtungen yN und zN sowie in αN , dieser FHG ist aufgrund der kine-
matischen Zusammenhänge stark mit der Bewegung in die yN-Richtung gekoppelt, zei-
gen sich erkennbare kleine Abweichungen. Für die anderen FHG sind die Abweichungen
ebenfalls erkennbar, allerdings bei Betrachtung der dargestellten Größenordnung margi-
nal. Dies lässt den Schluss zu, dass die Regelstrecke zur Reglersynthese aus einer Rei-
henschaltung aus Aktordynamik und doppeltem Integrator modelliert werden kann und
dass die daraus entstehenden Fehler so klein sind, dass sie von der Regelung kompensiert
werden können. Das ist plausibel, da die kraftgeregelte Aktorik eine Verstärkung von eins
hat, die Sollkräfte also bis zu den Grenzen der Aktordynamik amplitudentreu eingestellt
werden. Es kann demnach davon ausgegangen werden, dass die oben beschriebene Vor-
gehensweise zur Reglersynthese für die Mehrzahl aller PKM mit kraftgeregelten Aktoren
geeignet ist.
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Bild 4-7: Simulation des Einflusses der Nichtlinearität im Großsignalbereich
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4.3 Filterung der Solltrajektorie zur Vermeidung von
Windup-Effekten

Bei der Realisierung von Regelungen ist zu beachten, dass die zur Reglersynthese vielfach
als linear angenommenen Stellglieder in der Realität Stellgrößenbegrenzungen unterlie-
gen. In diesem Zusammenhang umfasst der Begriff Windup sämtliche unerwünschten Ef-
fekte, die durch solche Stellgrößenbegrenzungen hervorgerufen werden. Gemäß [Hip07]
reichen die Folgen dieses Effekts vom einfachen Überschwingen bis hin zu instabilem
Verhalten. Es gibt „zwei auslösende Faktoren, nämlich die Dynamik des Reglers (Regler-
Windup), und die Dynamik der Strecke (Strecken-Windup)“, vgl. [Hip07]. Bei Mehrgrö-
ßensystemen kommt zusätzlich das sog. Direktionalitätsproblem hinzu. In [Hip06] wer-
den Ursachen und Folgen des Windup-Effekts ausführlich diskutiert. Die Ausführungen
in dieser Arbeit beschränken sich auf die zur Regelung von PKM relevanten Effekte sowie
entsprechende Gegenmaßnahmen.

Im Falle der Regelung von PKM mit den zu Beginn dieses Kapitels diskutierten Rege-
lungskonzepten ist der Effekt des Strecken-Windup relevant. Er resultiert aus der Tatsa-
che, dass vom Regler berechnete Stellgrößen, in diesem Fall also der Vektor der Sollak-
torkräfte bzw. -momente τq, nicht zu jedem Zeitpunkt durch die Aktorik gestellt werden
können. Das ist z. B. der Fall, wenn eine zu schnelle Änderung der Endeffektorposition
vorgegeben wird – dies erfordert eine zu hohe Beschleunigung und damit zu große Aktor-
kräfte, die durch die reale Aktorik nicht gestellt werden können. Hinzu kommt das Direk-
tionalitätsproblem, welches bei PKM relevant ist, da aufgrund der verkoppelten Struktur
alle Aktoren an einer Bewegung beteiligt sind. Es äußert sich wie folgt: Erreichen ein
oder mehrere Aktoren ihre Begrenzung, so können Bewegungen nicht wie gewünscht
umgesetzt werden, sondern werden verzerrt. Als Konsequenz daraus ergeben sich uner-
wünschte Bewegungen in anderen FHG.

Als mögliche Maßnahme zur Vermeidung der genannten Windup-Effekte wird in [Hip06,
S. 19] die (ggf. temporäre) Reduktion der Referenzgrößen genannt. Die Idee, einem Sys-
tem nicht mehr abzufordern als es mit seiner Aktorik realisieren kann, erscheint vor allem
vor dem Hintergrund der zu Beginn dieses Kapitels diskutierten Regelungsansätze sinn-
voll: Sie lassen sich auf die bereits in Abschnitt 2.3.1 angeführte Zwei-Freiheitsgrade-
Regelung zurückführen, für die gemäß [Trä09] das Motto „Bekanntes steuern, Unbekann-
tes regeln“ gilt. Stellgrößenbegrenzungen sind in der Regel bekannt und sollten daher in
der Vorsteuerung berücksichtigt werden. Denn: Wenn bereits die Vorsteuerung der Akto-
rik mehr abfordert, als sie leisten kann, dann bleibt für die Regelung kein Spielraum mehr,
um „Unbekanntes“ auszugleichen.

In [Had02] wird ein Konzept zur Control Input Compensation für PKM vorgestellt, mit
dem Solltrajektorien so gefiltert werden können, dass sie innerhalb der Stellgrößenbe-
schränkungen liegen. Dies geschieht jedoch vor dem Betrieb, sodass die Solltrajektorie
im Vorfeld bekannt sein muss. Das Verfahren eignet sich daher nicht für den Einsatz im
Sinne der Zielsetzung dieser Arbeit.

In [Hip06, S. 105] wird das in Bild 4-8 gezeigte Schema zur Vermeidung von Windup-
Effekten eingeführt. Anstelle des Blocks Steuerung in der allgemeinen Zwei-Freiheitsgra-
de-Struktur nach Bild 2-5 tritt nun ein Trajektorienfilter. Seine Aufgabe ist es, die Sollgrö-
ße w so zu verändern, dass die aus der Vorsteuerung resultierende Stellgröße uS innerhalb
des Stellbereichs der Aktorik bleibt und genügend Reserve für korrigierende Eingriffe aus



Reglersynthese für PKM mit endlicher Dynamik und Stellgrößenbegrenzungen 59

Bild 4-8: Schema zur Vermeidung von Windup-Effekten bei Zwei-Freiheitsgrade-
Regelungen mit Stellgrößenbegrenzung (nach [Hip06, S. 105])

dem Rückführzweig bleibt. Die Stellgrößenbegrenzung wird als symmetrische Eingangs-
begrenzung angenommen. Es gilt:

satu0(u) =


u0, u > u0

u, −u0 ≤ u ≤ u0

−u0, u < u0 .
(4-58)

Die entsprechend veränderte Sollgröße wird durch den Sollausgang yre f repräsentiert, der
veränderte Referenzzustandsvektor durch zre f . Die Filterung erfolgt zur Laufzeit, sodass
die Sollgröße nicht im Vorfeld bekannt sein muss.

In den folgenden Abschnitten werden zwei Filtervarianten vorgestellt, mit denen Refe-
renzgrößen zur Vermeidung von Windup-Effekten bei PKM geeignet und zur Laufzeit
gefiltert werden können. Sie nehmen den Platz des Blocks Referenztrajektorie in Bild 3-1
ein und können für alle in dieser Arbeit betrachteten Regelungskonzepte für PKM glei-
chermaßen verwendet werden. Wie Bild 4-9 zeigt, ist die Eingangsgröße der Filter der
Verlauf der Sollposition xW . Ausgänge sind die Referenzbeschleunigung ẍre f , sowie der
Referenzersatzzustand ξre f und der Sollausgang yre f . Beide Varianten übernehmen neben

Bild 4-9: Ein- und Ausgänge eines Trajektorienfilters für PKM

der Filterung auch die Berechnung der ersten beiden zeitlichen Ableitungen des Refe-
renzsignals.

Die erste im Folgenden vorgestellte Filtervariante, das Mehrgrößenzustandsfilter, berück-
sichtigt dynamische Begrenzungen, die sich durch die beschränkte Bandbreite der Aktorik
ergeben. Die zweite Variante, ein modellgestütztes nichtlineares Führungsfilter, bezieht



60 Kapitel 4

hingegen auch statische Begrenzungen, die sich aus den begrenzten Stellkräften ergeben,
ein. Darüber hinaus bietet dieses Filter bei geeigneter Implementierung eine Lösung für
das Direktionalitätsproblem bei PKM.

4.3.1 Mehrgrößenzustandsfilter

Das in dieser Arbeit als Mehrgrößenzustandsfilter (MZF) bezeichnete Element beschreibt
ein Tiefpassfilter zweiter Ordnung. Die Entwurfsparameter sind die Eckfrequenz des Fil-
ters, fFilt in Hz, sowie das Lehrsche Dämpfungsmaß DFilt. In [KWRS10] wird vorgeschla-
gen, den Referenzzustand ξre f zur Regelung um die zu erwartende Aktordynamik zu ver-
zögern. Dies erscheint vor dem Hintergrund der Zwei-Freiheitsgrade-Struktur sinnvoll,
denn: Selbst wenn die Aktorkräfte aus dem Vorsteuerzweig korrekt berechnet werden,
können sie nur mit der vorhandenen Aktordynamik gestellt werden. Das führt zu unnötig
großen Regeldifferenzen, falls der Referenzzustand nicht entsprechend verzögert wird.
Bild 4-10 visualisiert eine geeignete Implementierung des Mehrgrößenzustandfilters für
PKM als Blockschaltbild. Die mögliche Verzögerung des Referenzzustands um die Ak-
tordynamik GA(s) nach (2-58) ist ebenfalls berücksichtigt.

Bild 4-10: Mehrgrößenzustandsfilter für PKM

Bild 4-11 zeigt Simulationsergebnisse verschiedener Konfigurationen des MZF für das
Zielsystem. Die Daten wurden mit folgenden Konfigurationen erzeugt:

• Streckenmodell: Sechs-FHG-Modell mit Berücksichtigung aller kinematischen Zu-
sammenhänge, einer Masse und idealisiert, als Verzögerungsglied dritter Ordnung
implementierter Aktorik. Die Aktorik ist zusätzlich gemäß (4-58) stellgrößenbe-
grenzt.

• Regelung: Flachheitsbasierte Folgeregelung im OS. Die Gesamtausgangsgröße wird
begrenzt (τq,re f = satu0(u), u0 = τq,max = 2, 04 · 104 N).

• DFilt = 1

• Simulation 1: MZF mit fFilt = 500 Hz, ohne Verzögerung von ξre f

• Simulation 2: MZF mit fFilt = 80 Hz, ohne Verzögerung von ξre f

• Simulation 3: MZF mit fFilt = 80 Hz, mit Verzögerung von ξre f um GA(s)
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Bild 4-11: Simulationsergebnisse für verschiedene Konfigurationen eines Mehrgrößenzu-
standsfilters für PKM
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Im oberen Graphen sind zunächst die Sollausgangsgrößen yTCP,re f der Filter mit den be-
trachteten Eckfrequenzen für einen Sprung um 5 mm in die zN-Richtung des globalen Ko-
ordinatensystems in schwarz dargestellt. Eingezeichnet ist die relative Abweichung von
der Nullage xTCP,0. Die grauen Linien markieren die erreichten Istpositionen des TCP,
xTCP,ist, für die verschiedenen Simulationen. Deutlich zu erkennen ist, dass das System
bei sehr schnell, fast ideal aufgebrachtem Sprung erheblich langsamer ist als bei stärker
gefilterter Sollvorgabe. Es bewegt sich sogar zunächst entgegen der gewünschten Bewe-
gungsrichtung. Bei stark gefilterter Sollvorgabe hingegen wird die Sollgröße schneller
und, bei zusätzlich um die Aktordynamik verzögertem Referenzzustand, ohne Oszillatio-
nen eingeregelt. Es wird offensichtlich, dass Simulation 3 die beste Systemkonfiguration
berücksichtigt. Die Ursache dafür wird bei der Betrachtung der begrenzten Sollaktorkräf-
te τq deutlich, die in den unteren Graphen für den Aktor 1 dargestellt sind. Sie setzen sich
additiv aus den im Vorsteuer- (τq,v) und Rückführzweig (τq,r) berechneten Anteilen zu-
sammen. Diese Anteile arbeiten vor allem bei der schnellen Filterung stark gegeneinander
und die resultierende Sollkraft läuft schnell zwischen oberer und unterer Begrenzung hin
und her – eine typische Ausprägung des Windup-Effekts –, was dazu führt, dass zunächst
sogar ein Unterschwingen im Positionsverlauf auftritt. Die Ergebnisse aus Simulation 3
hingegen zeigen, dass dort zunächst die Kräfte aus der Vorsteuerung aufgeschaltet wer-
den und die Regelung aufgrund des um die Aktordynamik verzögerten Referenzzustands
erst später und weniger stark eingreifen muss. Hier wird demnach der Grundgedanke der
Zwei- Freiheitsgrade-Regelung am besten umgesetzt.

Die Verzögerung des Referenzzustands ξre f gegenüber dem Referenzausgang yre f um
die Aktordynamik GA(s) führt offensichtlich zu einem verbesserten Regelungsverhalten.
Daher wird diese Vorgehensweise für alle weiteren Betrachtungen in dieser Arbeit ge-
wählt. In Simulationen wird als „Sollsignal“ für die Regelung weiterhin der Referenzaus-
gang yre f angegeben, da dieser phasenmäßig zu dem Eingang für die Vorsteuerung, ẍre f ,
passt.

Die in den unteren Graphen in Bild 4-11 dargestellten Verläufe zeigen Sollaktorkäfte –
die Istaktorkräfte wurden in der Simulation mittels GA(s) nach (2-58) berechnet. GA(s) ist
ein Verzögerungsglied dritter Ordnung und damit auch ursächlich für die Verzögerung in
den oben dargestellten Positionsverläufen, die wie eine Totzeit erscheint.

Das MZF eignet sich gut zur Vermeidung dynamischer Begrenzungen. Es erreicht jedoch
bei statischen Stellgrößengrenzungen gemäß (4-58), wie sie in fast jedem realen System
vorhanden sind, schnell seine Grenzen. Diese bewirken neben dem Direktionalitätspro-
blem, welches das MZF nicht lösen kann, eine Amplitudenabhängigkeit der erreichbaren
Systemdynamik. So können bspw. kleine Amplituden mit großer Dynamik, große Am-
plituden hingegen nur vergleichsweise langsam gestellt werden. Bei zyklischen, im Vor-
feld bekannten Solltrajektorien mit konstanter Amplitude und Frequenz kann die Verwen-
dung eines MZF sinnvoll sein. Für das Nachfahren von Solltrajektorien mit einem breiten
Frequenz- und Amplitudenspektrum, die im Vorfeld nicht bekannt sind, müssen ande-
re Wege gefunden werden. Als mögliche Lösung zur Anwendung in der Regelung von
PKM hat sich eine Anpassung des in [Hip06] beschriebenen modellgestützen nichtlinea-
ren Führungsfilters erwiesen, dessen Funktionsweise und Auslegung im nachfolgenden
Abschnitt thematisiert werden.
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4.3.2 Modellgestütztes nichtlineares Führungsfilter für PKM

Das Modellgestützte nichtlineare Führungsfilter (MNF) für PKM basiert auf einem An-
satz, der von Peter Hippe in [Hip06, S. 105 ff.] beschrieben wird. Dieser wiederum ist
eine Weiterentwicklung der Kaskadenregelstruktur für Regelungssysteme mit Begrenzun-
gen nach Hansruedi Bühler, vgl. [Büh00], zit. in [Hip06, S. 92]. In [Rie14] werden der
generelle Aufbau und die Funktionsweise des MNF im Hinblick auf die geplante Anwen-
dung für das Zielsystem erläutert, sowie die entsprechende Auslegung dokumentiert. Die
nachfolgenden Ausführungen basieren auf dieser Arbeit.

Bild 4-12 zeigt die Grundstruktur des MNF für ein SISO-System nach [Hip06, S. 109]. Es
besteht aus einem Streckenmodell ohne Begrenzungen, welches nicht notwendigerweise
stabil sein muss, einer Abbildung der Stellgrößenbegrenzung satr0 , sowie zwei Regelkas-
kaden. Damit handelt es sich gewissermaßen um eine Erweiterung der modellgestützten
dynamischen Vorsteuerung, wie sie in [Föl13, S. 327] beschrieben wird. Die Kaskaden
entsprechen prinzipiell klassischen Zustandsregelungen mit Vorfilter, vgl. [Föl13, S. 322].

Bild 4-12: Grundstruktur des MNF nach [Hip06, S. 109]

Für die modelltechnische Abbildung der Strecke werden Linearität, Zeitinvarianz und
vollständige Steuer- und Beobachtbarkeit gefordert, vgl. [Hip06, S. 108]. Die Begren-
zung satr0(ub) „ist das zentrale Element, um die ausgegebenen Stellgrößen innerhalb der
zulässigen Grenzen zu halten“, vgl. [Rie14, S. 33]. Die Auslegung der Reglermatrizen
kT

a und kT
b , Vorfilter ma und mb, sowie der Begrenzung r0 erfolgt iterativ und auf der

Basis von Simulationen. Hierzu werden geeignete Sollsignale, z. B. in der Form von Ein-
heitssprüngen, aufgebracht und die sich ergebenden Stellgrößen uS und Referenzzustände
zre f analysiert. Die Reglermatrizen werden mittels Polvorgabe (vgl. auch Abschnitt 4.2.2)
ausgelegt. Die Vorfilter können nach erfolgter Reglersynthese aus der Forderung nach
stationärer Genauigkeit bestimmt werden, vgl. [Föl13, S. 322].

Im Zuge der Auslegung wird zunächst der Regler kT
a dimensioniert. Basierend auf dem

Regelgesetz

ua = −kT
a zre f + maubs (4-59)

werden die Eigenwerte des geschlossenen Regelkreises mittels Polvorgabe platziert. In
[Hip06, S. 119] wird für Systeme ohne Ausgangsbeschränkung empfohlen, für diese erste
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Kaskade einen Eigenwert in s = 0 zu legen. Dies lässt sich wie folgt begründen: Falls alle
Eigenwerte der ersten Kaskade einen negativen Realteil besitzen, bewirkt die Begrenzung
r0 eine Beschränkung des Referenzausgangs yre f und damit auch des realen Systemaus-
gangs y. Werden jedoch die Eigenwerte der ersten Kaskade so gewählt, dass ein Eigenwert
im Ursprung der komplexen Ebene liegt, so existiert diese Ausgangsbeschränkung nicht.
Die innere Kaskade weist somit integrales Verhalten auf und kann durch die äußere Kas-
kade stationär genau, jedoch ohne Ausgangsbeschränkung, geregelt werden. Das Vorfilter
ma kann beliebig, z. B. zu ma = 1, gewählt werden, vgl. [Hip06, S. 119].

Die Begrenzung r0 kann zunächst gleich der Begrenzung im realen System, charaktrisiert
durch u0, gewählt werden, wird jedoch im weiteren Verlauf des Entwurfsprozesses noch
angepasst. Für die Auslegung der zweiten Kaskade wird die Begrenzung vernachlässigt
und die Reglermatrix kT

b wird abermals mittels Polvorgabe ausgelegt. Nun werden jedoch
alle Eigenwerte in die linke Hälfte der komplexen Ebene gelegt. Dabei repräsentiert die
innere Kaskade die Regelstrecke, die Begrenzung wird für den Regelungsentwurf ver-
nachlässigt. Das Vorfilter mb wird so ausgelegt, dass die äußere Kaskade stationär genau
ist, vgl. [Hip06, S. 111].

Nach dieser ersten Dimensionierung können die Parameter des MNF auf der Basis von
Simulationen optimiert werden. Dazu werden die Größen ua und yre f betrachtet, wobei
stets

−u0 ≤ ua ≤ u0 (4-60)

gelten soll. Dies ist das wichtiste Ziel der Auslegung, vgl. [Hip06, S. 109], denn ist diese
Forderung erfüllt, so verlässt der Eingang des Systemmodells nie den zulässigen Sig-
nalbereich. Um dies zu erreichen, wird der Wert r0 so weit reduziert, dass auch bei den
größten zu erwartenden Sprungamplituden (4-60) erfüllt ist. Durch die Analyse der Sprun-
gantwort yre f wird das dynamische Verhalten des MNF iterativ eingestellt. Dazu werden
die Filterparameter so variiert, dass sich das Filter günstig bei großen und kleinen Sprun-
gamplituden verhält.

Zur Verbesserung der Filtercharakteristik können weitere Kaskaden vorgeschaltet werden.
Die entsprechend erweiterte Struktur verdeutlicht Bild 4-13. Durch zusätzliche Kaskaden

Bild 4-13: MNF mit zwei zusätzlichen Kaskaden ( [Hip06, S. 116])

kann das dynamische Verhalten des MNF besonders im Hinblick auf kleine Amplituden
optimiert werden. Theoretisch lässt sich eine beliebige Anzahl von Kaskaden vorschal-
ten, in der Praxis ist ihre Zahl jedoch begrenzt. In [Rie14, S. 35] werden dazu folgende
Überlegungen zum Ausdruck gebracht:
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• „Die zusätzliche Verbesserung wird mit jeder weiteren Schleife geringer.

• Mit zunehmender Anzahl von Kaskaden steigt das Risiko instabilen oder oszillie-
renden Verhaltens innerhalb der Vorsteuerung.

• Die Vorsteuerung muss auf der gegebenen Hardware realisiert werden. Die Eigen-
werte [...] dürfen nur so weit links liegen, dass das gewählte Integrationsverfahren
bei vorgegebener Schrittweite noch stabil arbeitet.“

Grundsätzlich werden die Regler der äußeren Schleifen so dimensioniert, dass die Eigen-
werte der Kaskaden von innen nach außen weiter links in der komplexen Ebene liegen, die
Regler demnach nach außen hin an Schnelligkeit gewinnen. Auch bei zusätzlichen Kaska-
den erfolgt die Dimensionierung aller Filterparameter nicht streng systematisch, sondern
durch einen iterativen Prozess, in dem simulierte Sprungantworten betrachtet werden. Die
nachfolgend genannten Aspekte, die in [Rie14] aus [Hip06] zusammengetragen wurden,
liefern jedoch wichtige Richtlinien zur Auslegung:

• Die innere Schleife sollte nicht zu schnell ausgelegt werden. Dies ist zwar günstig
für kleine Sprungamplituden, wirkt sich jedoch überaus negativ auf das dynamische
Verhalten bei größeren Amplituden aus. Das Kleinsignalverhalten sollte vor allem
durch die zusätzlichen Kaskaden optimiert werden.

• Bei der Synthese der Kaskaden ist besonders auf eine korrekte Begrenzungssequenz
zu achten. Die äußere Kaskade muss stets diejenige sein, die als erste in die Begren-
zung läuft und die letzte, die sie wieder verlässt.

• Ein strenger Stabilitätsnachweis des MNF ist aufgrund seines strukturellen Auf-
baus und durch die Begrenzungen nicht trivial, [Hip06, S. 104]. Für den Fall eines
linearen Streckenmodells mit Eingangsbegrenzung kann das Phasenkriterium zur
Anwendung kommen, vgl. [Hip07].

Das Phasenkriterium stellt eine Richtlinie zur Wahl der Eigenwerte für die einzelnen Kas-
kaden dar und basiert auf dem Kreiskriterium. Das Kreiskriterium ist ein Stabilitätskrite-
rium für nichtlineare Regelkreise und kann als „Erweiterung des bekannten Nyquistkrite-
riums verstanden werden“, vgl. [BHZ86, S. 138]. Es kann bspw. für den Nachweis global
asymptotischer Stabilität genutzt werden, vgl. [HW99]. Eine umfassende Erörterung des
Kriteriums kann in [HM68, S. 385 ff.] nachgelesen werden.

Im Folgenden soll nur kurz aus anwendungsorientierter Sicht der Einsatz von Kreis- und
Phasenkriterium nach [HW99] beschrieben werden. Es sei GORK(s) die Übertragungs-
funktion eines offenen Regelkreises mit Eingangsbegrenzung, GGRK(s) die entsprechende
Übertragungsfunktion des geschlossenen Regelkreises unter Vernachlässigung der Ein-
gangsbegrenzung. Diese Struktur gilt bei Einhaltung der korrekten Begrenzungssequenz
für das MNF stets: Für die äußerste Kaskade, die sich in der Begrenzung befindet, verhal-
ten sich die inneren Kaskaden linear, da sie sich bei Einhaltung der Begrenzungssequenz
noch nicht in der Begrenzung befinden dürfen. Weiter außen liegende Kaskaden beein-
flussen das Stabilitätsverhalten der betrachteten Kaskade nicht.

Die zur Anwendung der o. g. Kriterien relevante Größe ist Γ, die Differenz der Phasen
beider Übertragungsfunktionen. Es gilt

Γ = ∠GGRK( jω) − ∠GORK( jω). (4-61)
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Mit Hilfe des Kreiskriteriums lässt sich global asymptotische Stabilität nachweisen,
falls

|Γ| ≤ 90◦. (4-62)

Nach [HW99] führt jedoch für Regelungssysteme mit Begrenzungen die Einhaltung des
Kreiskriteriums zu einer unnötig langsamen Dynamik, dies habe sich in Untersuchungen
und Anwendungen über zwei Jahrzehnte gezeigt. Es wird stattdessen eine Lockerung des
Kreiskriteriums in Form des sog. Phasenkriteriums vorgeschlagen, welches

|Γ| ≤ 120◦ . . . 140◦ (4-63)

fordert. Dieser Phasenbereich hat sich laut [HW99] als ausreichend erwiesen, um Oszil-
lationen durch die begrenzende Nichtlinearität zu vermeiden. Weiterhin sei dieses Kri-
terium eine einfache Synthesevorschrift für Systeme mit Eingangsbegrenzung und stelle
einen Kompromiss zwischen der Minimierung oszillatorischen Verhaltens und der Ma-
ximierung der Schnelligkeit von Sprungantworten dar. In [Hip06] wird das Phasenkrite-
rium mehrfach zur Auslegung des MNF empfohlen. Allerdings handelt es sich um eine
Art Faustformel, die als Ausgangspunkt für die iterative Optimierung der Filterparameter
dienen kann. Je nach Anwendungsfall können sich bspw. auch Auslegungen als geeignet
erweisen, bei denen die Phasendifferenz unterhalb des vom Phasenkriterium geforderten
Bereichs bleibt. Dies hat sich beispielsweise bei der Auslegung des MNF für das Zielsys-
tem gezeigt.

Anwendung des MNF zur Regelung von PKM
Das MNF ist prädestiniert zur Anwendung in der Regelung von PKM in Verbindung
mit flachheitsbasierten Entwurfskonzepten. Diese bewirken eine exakte Linearisierung
des Streckenverhaltens, resultierend in einem doppelt integrierenden Verhalten bei einer
Verstärkung von eins. Dies lässt sich sehr einfach als Streckenmodell in das MNF inte-
grieren.

Die Eingangsbegrenzung der realen Aktorik wirkt auf der Kraft- bzw. Momentenebene
in Gelenkkoordinaten und kann auf einfache Weise in eine näherungsweise Begrenzung
auf Beschleunigungsebene transformiert werden, um die o.g. Form für das Streckenmo-
dell zu erhalten. Die Tatsache, dass auch die einzelnen Aktorwege begrenzt sind, wird
bei der Filterung nicht berücksichtigt und muss bei der Generierung der Sollvorgabe xW

berücksichtigt werden.

Es hat sich als zweckmäßig erwiesen, das MNF zunächst für den Eingrößenfall im JS
zu entwerfen und anschließend auf den Mehrgrößenfall zu erweitern. Die maximale Be-
schleunigung im JS kann als Eingangsbeschränkung interpretiert werden. Für die Arbeits-
raummittelstellung x0 bei PKM gilt

u0 = q̈max = max(M−1
q (x0) · 1η×1 · τq,max). (4-64)

Dabei ist 1η×1 ein Vektor der Länge η, der nur mit Einsen besetzt ist.

Diese wenigen Angaben genügen bereits zur Auslegung des MNF für eine gegebene PKM
gemäß der oben skizzierten Vorgehensweise. Dabei können zur Optimierung des Filters
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auch Simulationen mit detaillierten Streckenmodellen, wie bspw. im Fall des Zielsystems
eines hydraulischen, geregelten Aktors, durchgeführt werden.

Für die Erweiterung auf den Mehrgrößenfall, der Filterung von η-dimensionalen Solltra-
jektorien für PKM, ist zu beachten, dass die Vorgabe xW in globalen Koordinaten vor-
liegt. Die Zustandsgrößen des eindimensionalen Filters, das im JS ausgelegt wurde, müs-
sen demnach durch die globalen Vektoren x, ẋ und ẍ ersetzt werden. Bild 4-14 zeigt die
Struktur eines MNF für PKM mit drei Kaskaden und den entsprechenden Signalpfaden.
Sie kann für mehr bzw. weniger Kaskaden entsprechend reduziert bzw. erweitert werden.
Das integrierte Modell besteht aus einem η-fachen doppelten Integrator. Die für den Ein-

Bild 4-14: Struktur des MNF für PKM

größenfall bestimmten Parameter der einzelnen Kaskaden sind zur Erweiterung auf den
Mehrgrößenfall lediglich durch Einheitsmatrizen zu erweitern. Für die erste Kaskade gilt
bspw.

Ka =
[
ka,1 · Iη×η ka,2 · Iη×η

]
Ma = ma · Iη×η,

die Matrizen für die weiteren Kaskaden werden analog gebildet.

Die Extrapolation der für das eindimensionale Filter bestimmten Begrenzung r0 ist hin-
gegen nicht trivial: Sie verkörpert eine Begrenzung der Aktorbeschleunigung in Gelenk-
koordinaten, während die Filterzustände und die Sollvorgabe in globalen Koordinaten
definiert sind. Es ist nicht möglich, diese Begrenzung bspw. durch Anwendung der Ja-
kobimatrix in globale Koordinaten umzurechnen. Durch die verkoppelte Struktur einer
PKM wirkt die Begrenzung der Aktorstellgrößen immer auf alle globalen FHG. Die Ma-
ximalkraft für einen FHG ist abhängig von den für die anderen FHG geforderten Kräften
und Momenten und kann nicht isoliert betrachtet werden.

Es ist sinnvoll, als begrenzende Größe anstatt der für den Eingrößenfall verwendeten Be-
schleunigung die maximal erzeugbare Aktorkraft zu verwenden. Dies lässt sich wie folgt
begründen: Die Beschleunigungsbegrenzung in Gelenkkoordinaten ist nach (4-64) ab-
hängig von x, wohingegen der Wert von τq,max konstant ist. Der für den Eingrößenfall
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bestimmte Wert r0 kann als um den Faktor k reduzierte Maximalbeschleunigung interpre-
tiert werden:

r0 = k · q̈max. (4-65)

Der Skalierungsfaktor k findet entsprechend in der Berechnung der begrenzenden Aktor-
kraft für das Mehrgrößenfilter Anwendung:

τr = k · τq,max. (4-66)

Zur Lösung der o. g. richtungsabhängigen Begrenzungsproblematik hat sich der Algo-
rithmus redτr (u) als geeignet erwiesen. Die Bedeutungen der Matrizen J(x), H(x), Ḣ(x, v)
können Abschnitt 2.2.2 entnommen werden.

Algorithmus zur Berechnung von uS = redτr (u)
Eingang: Zu begrenzende Größe u, Filterzustandsgrößen xF , ẋF , Begrenzung τr

1 v = H(xF) · ẋF

2 v̇ = H(xF) · u + Ḣ(xF , v) · ẋF

3 τx = M(xF) · v̇
4 τq = JT (x) · τx

5 if max(|τq|) > τr

6 r = τr/max(|τq|)
7 τx,red = r · τx

8 v̇ = M−1(xF) · τx,red

9 uS = H−1(xF)(v̇ − Ḣ(xF , v) · ẋF)
10 else
11 uS = u
12 end

Ausgang: Begrenzte Größe uS

Die Funktionsweise dieser Berechnungsvorschrift lässt sich wie folgt umschreiben: Aus
der Eingangsgröße u, die als globale Beschleunigung ẍ interpretiert werden kann, werden
zunächst mit Hilfe der Massenmatrix die zur Ausführung dieser Beschleunigung erfor-
derlichen Aktorkräfte τq berechnet. Falls der betragsmäßig maximale Eintrag von τq die
Begrenzung τr überschreitet, so wird der gesamte Kraftvektor τx um den entsprechenden
Anteil reduziert, in eine Beschleunigung ẍ umgerechnet und als us ausgegeben. Prinzi-
piell entspricht dieser Vorgang einer Reduktion des gesamten Beschleunigungsvektors in
globalen Koordinaten, sodass er durch die reale Aktorik in dem jeweiligen Betriebspunkt
stellbar wird. Auf diese Weise wird sichergestellt, dass eine zu hohe Beschleunigungsan-
forderung in einem FHG nicht zu einer Verzerrung in anderen FHG führt. Die Einbindung
des o. a. Algorithmus in das MNF verkörpert somit eine Lösung für das Direktionalitäts-
problem bei PKM bei gleichzeitig optimaler Ausnutzung der systemischen Stellgrößen-
begrenzungen.

Für das MNF zur Regelung des Zielsystems haben sich die in Tabelle 4-1 gelisteten Pa-
rameter als geeignet erwiesen, vgl. [Rie14, S. 62]. Bild 4-15 und Bild 4-16 zeigen Simu-
lationsergebnisse, welche die Funktionalität des so ausgelegten MNF für das Zielsystem
belegen. Die Daten wurden mit dem gleichen Setup wie Simulation 1-3 (s. Bild 4-11)
erzeugt, d. h.
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Parameter Zahlenwert
kT

a [0 80]
kT

b [25600 240]
kT

c [846400 1760]
kT

d [19360000 8720]
ma 1
mb 25600
mc 846400
md 19360000
k 0, 7

Tabelle 4-1: Parameter des MNF zur Regelung des Zielsystems

• Streckenmodell: Sechs-FHG-Modell mit Berücksichtigung aller kinematischen Zu-
sammenhänge, einer Masse und idealisiert, als Verzögerungsglied dritter Ordnung
implementierter Aktorik. Die Aktorik ist zusätzlich gemäß (4-58) stellgrößenbe-
grenzt.

• Regelung: Flachheitsbasierte Folgeregelung im OS. Die Gesamtausgangsgröße wird
begrenzt (τq,re f = satu0(u)).

Folgende Sollvorgaben und Filterkonfigurationen wurden verwendet:

• Simulation 4: Sprung von 0 auf 5 mm bei t = 0, 01 s in xN , MZF mit fFilt = 80 Hz,
DFilt = 1

• Simulation 5: Sollvorgabe wie Simulation 4, MNF

• Simulation 6: Sprung von 0 auf 50 mm in xN bei t = 0, 01 s, MZF mit fFilt = 80 Hz,
DFilt = 1

• Simulation 7: Sollvorgabe wie Simulation 6, MNF

In allen Fällen wurde der Referenzzustand ξre f für die Regelung um die Aktordyna-
mik GA(s) verzögert. Im oberen Graphen sind jeweils die gefilterte Sollbewegung in xN-
Richtung und die entsprechenden Systemantworten aufgezeichnet. Im zweiten Graphen
ist die Systemantwort in βN-Richtung, also der Rotation um die yN-Achse, aufgetragen.
Dieser rotatorische FHG ist stark verkoppelt mit der Bewegung in die xN-Richtung und
daher besonders anfällig für Abweichungen, die sich aus dem Direktionalitätsproblem er-
geben. Für βN ist die Sollvorgabe konstant null (wie für alle FHG außer der xN-Richtung).
Ein gutes Regelungskonzept sollte dafür sorgen, dass die Abweichungen gering sind. Die
beiden unteren Graphen zeigen jeweils die von der Regelung ausgegeben Sollaktorkräfte
für den Aktor 1.

An Bild 4-15 ist im dritten Graphen zuerst erkennbar, dass die geforderten Aktorkräfte
größer sind als bei einem Sprung in zN-Richtung in gleicher Filterkonfiguration (vgl. Bild
4-11). Die Kraft, die aus dem Rückführzweig resultiert, übersteigt in erheblichem Maße
die Begrenzung. Dies ist darauf zurückzuführen, dass die xN-Richtung gegenüber der zN-
Richtung aufgrund der kinematischen Struktur des Hexapoden schlechter aktuiert ist. Die
Gesamtaktorsollkraft bewegt sich zunächst in die obere, dann in die untere Begrenzung,
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Bild 4-15: Simulationsergebnisse zum Vergleich von MZF und MNF für kleine Amplituden
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Bild 4-16: Simulationsergebnisse zum Vergleich von MZF und MNF für große Amplituden
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bevor sie sich einpendelt. Dieser Effekt ist typisch für Systeme mit Eingangsbegrenzung.
Im Führungsverhalten führt er zu einem leichten Überschwingen, wie am oberen Gra-
phen zu erkennen ist. Am zweiten Graphen ist gut das Direktionalitätsproblem bei PKM
zu erkennen: Dadurch, dass die Aktoren nicht gleichförmig begrenzen, ergibt sich eine
deutliche Abweichung in βN . Da sich die Aktoren bereits in der Begrenzung befinden,
hat die Rückführung keine Chance, die Abweichung auszugleichen. Das MNF hingegen
sorgt durch seine spezielle Struktur dafür, dass alle Stellgrößen innerhalb ihrer Begren-
zung bleiben. Im unteren Graphen ist zu erkennen, dass die gesamte Stellgröße deutlich
durch die Vorsteuerung dominiert wird, der Regler muss kaum eingreifen. Hier wird al-
so die Idee der Zwei-Freiheitsgrade-Struktur deutlich besser umgesetzt. Es resultieren
keine Abweichungen in βN . Der einzige Nachteil des MNF ist, dass die Referenzgröße
etwas stärker verlangsamt wird. Dabei wird die Sollgröße etwas später, dafür gänzlich
ohne Überschwinger eingeregelt. Unter der Betrachtung der Vorteile des MNF im Groß-
signalbereich, die in Bild 4-16 deutlich werden, lässt sich diese Abweichung von etwa
5 ms jedoch leicht in Kauf nehmen. Bei einem Sollsprung der zehnfachen Höhe zeigt das
System bei der Verwendung des MZF sehr schlechtes Führungs- und Störverhalten, die
Stellgrößen erreichen mehrfach die Begrenzungen. Das MNF hingegen sorgt weiterhin
für die Einhaltung der Grenzen und damit gutes Verhalten.

Die Amplitudenverstärkung des MNF ist abhängig von der Anregungsamplitude selbst.
Dennoch ist es interessant, das Verhalten des MNF bei konstanter Amplitude im Fre-
quenzbereich zu betrachten. Dazu wurden weitere Simulationen durchgeführt, in denen
die verschiedenen FHG bei gleichbleibender Amplitude jeweils einzeln und sinusförmig
mit den Frequenzen 5, 10, 20, . . . 100 Hz angeregt wurden. Auf diese Weise lassen sich für
jede betrachtete Frequenz Amplitudenverstärkung und Phasenverschiebung bestimmen
und im Bode-Diagramm auftragen. Bild 4-17 und Bild 4-18 zeigen die so entstandenen
Frequenzgänge für Amplituden von 0, 7 mm bzw. 0, 07◦ und 2 mm bzw. 0, 2◦. Die Marker
kennzeichnen dabei die jeweiligen durch die Simulation ermittelten Punkte, welche durch
Linien verbunden sind. Es sind jeweils die Ergebnisse für die drei translatorischen bzw.
rotatorischen FHG in einem Graphen aufgetragen, dabei sind die FHG nummeriert in
der Reihenfolge, wie sie im Positions- und Orientierungsvektor x auftreten: FHG1 = xN ,
FHG2 = yN . . . FHG6 = γN . Diese Art der Frequenzgangsermittlung und -darstellung
wird auch im weiteren Verlauf dieser Arbeit verwendet. Zum Vergleich sind jeweils die
Frequenzkennlinien des MZF (80 Hz) eingezeichnet.

Es ist zu erkennen, dass das MNF die unterschiedliche Aktuierung der FHG berücksich-
tigt: Bewegungen in xN und yN werden deutlich stärker gefiltert als die übrigen, was zu
einem früheren Amplituden- und Phasenabfall führt. Weiterhin werden die Anregungen
für die größeren Amplituden entsprechend der Intention schon bei niedrigeren Frequen-
zen reduziert. Die Kennlinien des MZF hingegen sind amplituden- und richtungsunab-
hängig.

In Simulationen des MNF mit komplexeren Streckenmodellen hat sich seine Überlegen-
heit gegenüber dem klassischen MZF bestätigt. Als Nebeneffekt hat sich gezeigt, dass das
MNF auch für die Einhaltung der begrenzten Aktorgeschwindigkeiten, die sich durch die
Ventilquerschnitte ergeben, sorgt.
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4.4 Simulationsbasierter Vergleich der Regelungen

Im Folgenden werden die Regelungsansätze auf der Basis von Simulationen miteinander
verglichen. Dies geschieht unabhängig von einer möglichen Lösung des DKP durch Zu-
standsschätzung und ohne die Integration einer Störgrößenaufschaltung, um zunächst die
reine Reglerleistungsfähigkeit beurteilen zu können.

Folgende Fragestellungen werden untersucht:

1. Welches Regelungskonzept bietet das beste Führungs- und Störverhalten?

2. Sind Vereinfachungen zur Verringerung des Rechenaufwands möglich?

3. Welchen Einfluss haben Modellabweichungen auf die Regelungsgüte?

4.4.1 Streckenmodell und Simulationsnomenklatur

Die Regler, Filter und das Streckenmodell wurden in Matlab/Simulink implementiert. Al-
le Simulationen wurden mit dem Euler-Integrationsverfahren bei einer Schrittweite von
h = 0, 2 ms durchgeführt. Für die verschiedenen Regler- und Filtervarianten wurden dazu
die in Abschnitt 4.1 und Abschnitt 4.3 aufgeführten Gleichungen verwendet. Das verwen-
dete Streckenmodell des Zielsystems besitzt eine bewegte Masse und nutzt die Gleichun-
gen aus Abschnitt 2.2.2, wobei die Aktoren nach den Gleichungen aus Abschnitt 2.2.3 als
hydraulische Aktoren mit allen Nichtlinearitäten und lokaler Differenzdruckregelung ge-
mäß Abschnitt 2.3.3 modelliert wurden. Zusätzlich wurden als Störgrößen die Reibkräfte
Fd und FR berücksichtigt, sodass für die resultierende Kraft eines Aktors

τq,i = ∆pi · Azyl − Fd,i − FR,i = ∆pi · Azyl − dzyl · q̇i − FR · sign(q̇i) (4-67)

gilt. Berücksichtigt sind außerdem Abweichungen der einzelnen Ventilverstärkungen im
Bereich von −10 . . . − 2 %. Diese Größenordnung wird auch bei realen Ventilen beob-
achtet, das gilt v. a. im Kleinsignalbereich bis 5 % Aussteuerung. Um die Stabilität der
Regelung zu gewährleisten ist es zweckmäßig, die in der Differenzdruckregelung berück-
sichtigte Ventilverstärkung stets so zu wählen, dass sie über der realen Verstärkung liegt,
denn so wird die Regelung tendenziell eher eine kleinere Stellgröße ausgeben. Dieser Tat-
sache wird durch die o. g. Variation der Servoventilverstärkungen Rechnung getragen.

Es wurden diverse Simulationskonfigurationen betrachtet. Diese umfassen die erwähn-
ten Filter- und Reglerkonfigurationen, bestimmte Vereinfachungen, die sich als sinnvoll
erwiesen haben, sowie die Berücksichtigung von Modellabweichungen. Für die im nach-
folgenden Abschnitt diskutierten Ergebnisse gilt die in Tabelle 4-2 spezifizierte Nomen-
klatur.

Kürzel Beschreibung
JS-ff Regelung im JS mit ff-Linearisierung
JS-fb Regelung im JS mit fb-Linearisierung
OS-fb Regelung im OS mit fb-Linearisierung

Tabelle 4-2: Nomenklatur für die simulationsbasierte Analyse der Regelungen
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Für alle Simulationen wurde eine sechsdimensionale Solltrajektorie für den TCP des End-
effektors als Sollsignal vorgegeben, spezifiziert durch den Vektor xTCP,w. Zur Anwendung
der Filter- und Reglerkonzepte wurde xTCP,w durch die Ausnutzung geometrischer Zusam-
menhänge in xW , die Solltrajektorie für den Schwerpunkt des Endeffektors, umgerechnet.
Die dokumentierten Ergebnisse beziehen sich jeweils auf die Position des TCP, xTCP, im
globalen Koordinatensystem N bzw. der Abweichung von einer bestimmten Ausgangs-
lage.

4.4.2 Simulationen und Analysen

Bei der Implementierung auf der Zielhardware stellte sich heraus, dass die Berechnung
der zeitlichen Ableitung der Jakobimatrix J̇(x, v), s. Abschnitt 4.1.2, die prinzipiell zur
Umsetzung der Regelungskonzepte im JS erforderlich ist, zu einem erheblichen Rechen-
aufwand führt. Bei optimierter Implementierung (d. h. keine mehrfache Berechnung glei-
cher Terme) konnten die in Tabelle 4-3 gelisteten Berechnungszeiten für die betrachteten
Regelungs- und Filterkonzepte ermittelt werden. Der Zusatz „ohne-Jp“ steht dabei für
die Vernachlässigung des J̇-Anteils bei Regelungen im JS. Weitere Optimierungen, wie
bspw. Konvertierungen auf verschiedene Datenformate, wurden nicht durchgeführt. Zur
Bearbeitung der ersten beiden Fragen wurden zunächst Simulationen mit sinusförmigen
Sollvorgaben bei einer Frequenz von 50 Hz für alle FHG durchgeführt, die das System an
seine Leistungsgrenze bringen. Um den Einfluss der Vernachlässigung des J̇-Anteils auch
am Rand des Arbeitsraums beurteilen zu können, erfolgte die Vorgabe als Abweichung
um den Punkt xTCP,R, der sich nahe an der Arbeitsraumgrenze befindet:

xTCPR = xTCP,0 +



−83, 2 mm
−145, 2 mm
−23, 1 mm

13, 9140 ◦

−5, 5081 ◦

7, 6948 ◦


. (4-68)

Bild 4-19 zeigt die Simulationsergebnisse. Die oberen sechs Graphen beinhalten die Er-
gebnisse für eine translatorische Sollanregung mit 50 Hz und 0, 7 mm Amplitude in xN-
Richtung. Die linken Graphen visualisieren dabei die Bewegungen in den translatorischen
FHG, die rechten die in den rotatorischen FHG. Die unteren sechs Graphen beinhalten die

JS-ff, ohne-Jp 17 µs
JS-ff 55 µs
JS-fb, ohne-Jp 13 µs
JS-fb 51 µs
OS-fb 13 µs
MNF 24 µs
MZF 6 µs

Tabelle 4-3: Rechenzeiten der Regelungs- und Filterkonzepte auf der Zielhardware
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Ergebnisse für eine rotatorische Sollanregung in αN-Richtung mit 50 Hz und 0, 07 ◦ Am-
plitude. Die Solltrajektorie für den TCP, xTCP,w, ist grau dargestellt, die mit MNF gefilterte
Solltrajektorie yTCP,re f schwarz gestrichelt und alle mit den in Tabelle 4-3 genannten Re-
gelungen simulierten Isttrajektorien xTCP,ist schwarz durchgezogen.

Es ist erkennbar, dass alle Regelkonzepte, auch die ohne J̇-Anteil, das gleiche Führungs-
verhalten bewirken. Die vorgegebene Bewegung wird mit leichter Amplitudenüberhö-
hung nachgefahren, alle Linien der Ist-Trajektorien liegen übereinander. Auch im Stör-
verhalten, d. h. unter der Betrachtung der Abweichungen in den übrigen FHG, lassen
sich keine Unterschiede feststellen, alle Abweichungen sind in ihren Größenordnungen
sehr klein. Als Fazit kann zunächst festgehalten werden, dass die Vernachlässigung des
J̇-Terms nicht zu einer Verschlechterung der Regelgüte führt, daher werden im Folgenden
ausschließlich Regelungen ohne J̇-Anteil betrachtet.

Die Zeitbereichsanalye der Simulationsdaten erlaubt nur einen kleinen Einblick in das
Übertragungsverhalten der Regelstrecke. Für die Analyse des Verhaltens im Frequenz-
bereich wurden für die Regelungen JS-ff und OS-fb mit der in Abschnitt 4.3.1 beschrie-
benen Methode Frequenzgänge um die Arbeitsraummittellage xTCP,0 ermittelt. Bild 4-20
und Bild 4-21 visualisieren die Ergebnisse. Für den Anwender ist primär das Verhalten
vom ungefilterten Sollsignal xTCP,w zum Streckenausgang xTCP,ist von Interesse, für den
Regelungstechniker jedoch auch das Verhalten vom gefilterten Sollsignal yTCP,re f , wel-
ches allerdings im Gegensatz zu ξre f nicht um die Aktordynamik GA(s) verzögert wurde,
zu xTCP,ist, denn dies repräsentiert das Übertragungsverhalten der Regelung mit Vorsteue-
rung. Daher zeigt Bild 4-20 ersteres, Bild 4-21 letzteres.

Aus den dargestellten Frequenzgängen lassen sich drei Schlußsfolgerungen ziehen: Zu-
nächst wird die für das Zielsystem gewünschte Bandbreite (-3 dB) von 50 Hz im Klein-
signalbereich für alle FHG deutlich erreicht. Das gilt für das gesamte System vom un-
gefilterten Sollsignal zum Systemausgang. Zweitens verhalten sich die Regelungen JS-ff
und OS-fb auch in der Frequenzbereichsdarstellung genau gleich (die Linien liegen über-
einander), was den Schluss zulässt, dass sich die Regelung JS-fb analog verhält. Zum
dritten sind auch in den Frequenzkennlinien vom gefilterten Sollsignal zum Streckenaus-
gang Unterschiede zwischen den einzelnen FHG zu erkennen. Das ist auf den ersten Blick
erstaunlich, da hier das direktionsabhängige Verhalten des MNF nicht enthalten ist.

Die Ursache für dieses richtungsabhängige Verhalten wird bei der Betrachtung des Ver-
haltens der Regelung im Fall eines idealen Streckenmodells, d. h. ohne die Nichtlinearitä-
ten und Begrenzungen durch die hydraulische Aktuierung, sondern mit idealisierter Ak-
tordynamik dritter Ordnung, offensichtlich. Die entsprechenden Frequenzkennlinien für
die Regelung OS-fb sind in Bild 4-22 dargestellt. Dort liegen die Linien für alle FHG ideal
übereinander, es gibt für den betrachteten Frequenzbereich keinen Amplitudenabfall und
auch der Phasenabfall ist deutlich kleiner als für das nichtideale Streckenmodell. Diese
Tatsache lässt den Schluss zu, dass das richtungsabhängige Verhalten in Bild 4-21 auf die
Berücksichtigung der detaillierten Aktormodelle zurückzuführen ist. Die Auswirkungen
der Abweichungen zwischen Modell und Strecke sind aufgrund der kinematischen Struk-
tur des Hexapoden für jeden FHG unterschiedlich und müssen hier durch die Regelung
kompensiert werden, was zu einer leichten Amplitudenerhöhung im Bereich zwischen 20
und 60 Hz und anschließendem Amplitudenabfall für die FHG 3 bis 6 führt. Die spätere
Amplitudenerhöhung ab 60 Hz für die FHG 1 und 2 ist auf die Tatsache zurückzuführen,
dass die Sollsignale für diese FHG aufgrund ihrer schlechteren Aktuierung vom MNF be-
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Bild 4-20: Frequenzgänge für das Verhalten des geregelten Systems inkl. Filter
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Bild 4-22: Regelung OS-fb bei idealem 6-FHG-Modell ohne Reibung und Stellgrößenbe-
grenzungen

reits reduziert werden. Bei der Betrachtung des Gesamtübertragungsverhaltens für diese
FHG in Bild 4-20 zeigt sich, dass sich die beiden Effekte kompensieren und insgesamt zu
einer hohen Amplitudentreue bis ca. 70 Hz führen.

Aussagen über die Leistungsfähigkeit der Regelungen im Vergleich können auf Basis der
bisher betrachteten Simulationsergebnisse nicht getroffen werden. Im nächsten Schritt soll
durch die Simulation sprungförmiger Sollvorgaben eine Antwort auf diese Frage gefun-
den werden. Dazu wurden die einzelnen FHG der Reihe nach mit Einheitssprüngen der
Höhe 1 mm bzw. 0, 1 ◦ aus der Ausgangslage xTCP,0 beaufschlagt. Da das Sprungverhalten
auch stark vom verwendeten Filterkonzept abhängt, wurden beide Filterkonzepte, MZF
und MNF, simuliert.

Bild 4-23 zeigt das Führungsverhalten für alle FHG bei mit MNF und MZF gefilterter
Sollvorgabe und der Regelung OS-fb. Im Führungsverhalten der ebenfalls simulierten
Konzepte JS-ff und JS-fb ist kein Unterschied erkennbar, daher ist deren Verhalten aus
Gründen der Übersichtlichkeit nicht dargestellt. Insofern resultieren demnach auch aus
diesen Simulationen keine neuen Erkenntnisse. Die Führungssprungverläufe lassen den-
noch einige Schlüsse zu: Die mit MZF (80 Hz) gefilterten Sprünge haben erwartungsge-
mäß generell die gleiche Form und werden vom Zielsystem gut nachgefahren. Anders die
mit MNF gefilterten Vorgaben: Sie berücksichtigen die unterschiedliche Aktuierung der
FHG, so werden die schlecht aktuierten FHG xN und yN deutlich stärker gefiltert, als die
übrigen FHG. An diesen wird auch ein Nachteil des MNF offensichtlich: Es filtert die
Sollvorgabe so, dass die Begrenzungen des Systems eingehalten werden. Das bedeutet
im Umkehrschluss auch, dass dem System in jedem Fall das maximal Mögliche abgefor-
dert wird. So resultieren im Kleinsignalbereich für die stark aktuierten FHG sehr schnelle
Vorgaben, die sogar kleine Überschwinger aufweisen. Das Systemverhalten bleibt jedoch
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Bild 4-23: Führungsverhalten für Sprungvorgaben in allen FHG
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stabil, daher ist dieser Effekt nicht kritisch. Dies hat vor allem vor dem Hintergrund, dass
für PKM zur Bewegungssimulation im Allgemeinen und den Betrieb des Zielsystems
im Speziellen keine ideal sprungförmigen Sollvorgaben zu erwarten sind, seine Berechti-
gung.

Im nächsten Schritt wird das Verhalten der verschiedenen Regelungskonzepte bei Mo-
dellabweichungen betrachtet. Dazu wurden wiederum Simulationen mit sinusförmigen
Sollvorgaben verschiedener Frequenzen um xTCP,0 durchgeführt, wobei die Endeffektor-
masse mE des Streckenmodells gegenüber dem in der Regelung berücksichtigten Parame-
ter um 20 % erhöht wurde. Eine solche Annahme ist unter dem Aspekt der Realitätsnähe
sinnvoll, denn in der Praxis wird man für die Reglerauslegung eher eine kleinere Masse
verwenden. Das lässt sich wie folgt begründen: Zum einen werden oftmals nur die Haupt-
körper betrachtet und kleinere Elemente (wie z. B. Gelenke), die ebenfalls zur Trägheit
des Systems beitragen, werden vernachlässigt. Auf der anderen Seite entspricht die An-
nahme einer kleineren Masse einer konservativen Reglerauslegung, die zu kleineren Reg-
lerverstärkungen führt und somit einen größerwerdenden Abstand zur Stabilitätsgrenze
bewirkt.

In Bild 4-24 sind die entsprechenden Frequenzgänge für die Regelungen JS-ff und OS-fb
aufgezeichnet, die Regelung JS-fb verhielt sich in den Simulationen analog, daher wird
ihre Reaktion aus Gründen der Übersichtlichkeit nicht dargestellt. Da sich am Verhal-
ten des MNF nichts ändert, ist lediglich das Verhalten vom gefilterten Sollsignal zum
Streckenausgang geplottet. Es ist zu sehen, dass sich abermals beide Regelungskonzepte
identisch verhalten, denn es ist kein Unterschied zwischen der ff-Linearisierung und der
fb-Linearisierung zu erkennen. Das mag daran liegen, dass sich die Konzepte lediglich
in den Positions- und Geschwindigkeitsvektoren zur Berechnung der Matrizen, die zu
Systembeschreibung erforderlich sind, unterscheiden. Der Einfluss der Konfigurationsab-
hängigkeit dieser Matrizen, wie bspw. M(x), CCC(x, v) und J(x), ist für den betrachteten
Fall vergleichsweise klein, sodass sich diese Unterschiede am Systemausgang nicht be-
merkbar machen. Entscheidend für das veränderte Verhalten der Regelungen im Fall einer
Modellabweichung ist vielmehr die Tatsache, dass die Matrizen mit falschen Parametern
besetzt sind und diese Abweichung durch die Regelung kompensiert werden muss. Da
sich die Regelungen im JS und OS bei der betrachteten Reglerkonfiguration ineinander
überführen lassen, verhalten sich beide Regelungen exakt identisch.

Die Abweichungen in der Masse führen zu einer Amplitudenüberhöhung in den trans-
latorischen FHG, die primär von dieser Modellabweichung betroffen sind. Weiterhin ist
die Bandbreite für die FHG 1 und 2 reduziert. Falls die Amplitudenerhöhungen für die
geplante Anwendung nicht akzeptabel sind, so können diese durch eine Reduktion der
Reglermatrix bekämpft werden. Dabei muss jedoch berücksichtigt werden, dass dies für
alle FHG zu einer Reduktion der Bandbreite führt. Falls durch den mechanischen Aufbau
der PKM ersichtlich wird, dass bspw. die Modellabweichungen in einem FHG besonders
gravierend sind, so können bei der Regelung im OS nur diejenigen Einträge der Reglerma-
trix reduziert werden, die für die Regelung des entsprechenden FHG verantwortlich sind.
Für die Regelungen im JS ist dies jedoch nicht möglich, hier müssten alle Verstärkungen
reduziert werden, um das Direktionalitätsproblem zu vermeiden.

In Bild 4-25 lässt sich das Potenzial einer solchen Maßnahme für die translatorischen
FHG erkennen: Hier wurden für die Regelung OS-fb bei gleicher Modellabweichung wie
in Bild 4-24 die Reglerparameter für die FHG 1 und 2 mit skalx = skaly = 0, 75 reduziert,
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Bild 4-24: Frequenzgänge für OS-fb und JS-ff bei 20 % Modellabweichung
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was zu einer Reduktion der Amplitudenerhöhung im Frequenzgang führt. Für die zN-
Richtung hat sich diese Maßnahme als kontraproduktiv erwiesen, da dieser FHG durch
die modellierte Massenabweichung doppelt betroffen ist, denn: Neben der „falschen“
Massenträgheitsmatrix muss die Regelung auch die nur unzureichend kompensierte Ge-
wichtskraft ausgleichen. Hier wäre eher eine Erhöhung der Reglerparameter oder verbes-
serte Systemidentifikation zweckmäßig. Dennoch verdeutlicht die letzte Untersuchung,
dass Regelungen im OS gegenüber ihrem Pendant im JS unter dem Aspekt der Reaktion
auf Modellunsicherheiten erheblich im Vorteil sind.
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Bild 4-25: Frequenzgänge für OS-fb bei 20 % Modellabweichung und richtungsabhängi-
ger Reglerskalierung

4.4.3 Ergebnisse

Es hat sich herausgestellt, dass sich eine Vernachlässigung des rechenintensiven J̇-Anteils
in den Regelungen im JS nicht zu einer Verschlechterung des Regelverhaltens führt. Wei-
terhin wurde offenkundig, dass sprunghafte Sollvorgaben im Kleinsignalbereich durch
das MNF sehr dynamisch gefiltert werden – dies sollte in der Praxis berücksichtigt wer-
den. Zur Regelgüte der verschiedenen Konzepte im Vergleich lässt sich unter der Berück-
sichtigung einer idealen Zustandsrückführung und guter Modellübereinstimmung keine
Aussage treffen. Im Fall von Modellunsicherheiten, die eine richtungsabhängige Ausprä-
gung haben, sind jedoch die Regelungen im OS deutlich im Vorteil, da sie eine Anpassung
der Reglerparameter für einzelne FHG erlauben, während für Regelungen im JS die Reg-
lermatrix in ihrer Gesamtheit angepasst bzw. reduziert werden muss.
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5 Zustands- und Störbeobachtung für PKM

Wie bereits in Abschnitt 3.2.3 erläutert wurde, stehen zur Zustandsbeobachtung von PKM
in vielen Fällen die Messungen der Gelenkkoordinaten q sowie der Aktorkräfte τq zu
Verfügung. Beobachter können, wie auch die modellbasierten Regelungen, mit Zustands-
gleichungen im OS und im JS entworfen werden. Nachstehend wird zunächst für diese
Fälle die Beobachtbarkeit des Systems betrachtet. Es folgt die Beschreibung des Ent-
wurfs eines nichtlinearen Kalman-Bucy-Filters und eines Sliding-Mode-Beobachters zur
Zustands- und Störbeobachtung jeweils im JS und OS sowie eine vergleichende Analyse
der Leistungsfähigkeit dieser Ansätze.

5.1 Beobachtbarkeit

Vor einem Beobachterentwurf ist die Beobachtbarkeit des Zielsystems für die verfügba-
ren Messsignale zu analysieren, [Ada09, S. 288]. Für lineare Systeme existieren bspw.
die Beobachtbarkeitskriterien nach Kalman oder Hautus, vgl. [Föl13, S. 295 f.], mit de-
nen die Beobachtbarkeit recht einfach mit Hilfe der Systemmatrizen bzw. einfacher Re-
chenoperationen überprüft werden kann. Für nichtlineare Systeme, zu denen PKM zäh-
len, wird zwischen der globalen und lokalen Beobachtbarkeit unterschieden. Die entspre-
chenden Definitionen und Kriterien, die im folgenden Abschnitt aufgeführt sind, wurden
aus [Ada09, S. 288 ff.] entnommen.

5.1.1 Definitionen und Kriterien

Die Definition für globale Beobachtbarkeit lautet:

Definition 1 (Globale Beobachtbarkeit)
Ein nichtlineares System

ż = f (z, u) mit z(t0) = z0,

y = g(z, u)

sei für z ∈ Rn und u ∈ Cn−1, wobei Cn−1 der Raum der n − 1-mal stetig differenzierbaren
Vektorfunktion ist, definiert und es sei y ∈ Rr. Sind dann alle Anfangsvektoren z0 ∈ R

n

aus der Kenntnis von u(t) und y(t) in einem Zeitintervall [t0, t1 < ∞] für alle u ∈ Cn−1

eindeutig bestimmbar, so heißt das System global beobachtbar.
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Für die globale Beobachtbarkeit gilt folgendes hinreichendes Kriterium:

Satz 1 (Globale Beobachtbarkeit nichtlinearer Systeme)
Ein nichtlineares System

ż = f (z, u)
y = g(z, u)

mit z ∈ Rn und u ∈ Cn−1, ist global beobachtbar, wenn die Abbildung

ζ =


y
ẏ
ÿ
...

y(n−1)


=


g(z, u)

h1(z, u, u̇)
h2(z, u, u̇, ü)

...
h(n−1)(z, u, u̇, ü, . . . , u(n−1))


= φ(z, u, u̇, ü, . . . , u(n−1))

eindeutig nach z auflösbar ist.

Allerdings ist laut [Ada09, S. 295] die Anwendung dieses Kriteriums in der Praxis oft
schwierig, da nur in einfachen Fällen die Umkehrfunktion

z = φ−1(ζ, u, u̇, ü, . . . , u(n−1))

bestimmbar ist. Daher wird in der Praxis häufig der Nachweis der lokalen Beobachtbarkeit
als genügend erachtet. Sie ist wie folgt definiert:

Definition 2 (Lokale Beobachtbarkeit nichtlinearer Systeme)
Ein nichtlineares System

ż = f (z, u) mit z(t0) = z0,

y = g(z, u)

sei für z ∈ Rn und u ∈ Cn−1, wobei Cn−1 der Raum der n − 1-mal stetig differenzierbaren
Vektorfunktion ist, definiert und es sei y ∈ Rr. Sind dann alle Anfangsvektoren z0 ∈ R

n in
einer Umgebung

U = {z0 ∈ R
n
∣∣∣ ∥∥∥z0 − zp

∥∥∥ ∣∣∣ < ρ}
eines Punktes zP ∈ R

n aus der Kenntnis von u(t) und y(t) in einem Zeitintervall [t0, t1 < ∞]
für alle u ∈ Cn−1 eindeutig bestimmbar, so heißt das System lokal beobachtbar, wenn dies
für alle zP ∈ R

n möglich ist.
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Für lokale Beobachtbarkeit gilt folgendes Kriterium:

Satz 2 (Lokale Beobachtbarkeit nichtlinearer Systeme)
Ein nichtlineares System

ż = f (z, u)
y = g(z, u)

mit z ∈ Rn und u ∈ Cn−1, ist lokal beobachtbar, wenn für alle z ∈ Rn und u ∈ C(n−1) die
Bedingung

rang
(
∂φ(z, u, u̇, ü, . . . , u(n−1))

∂z

)
= rang



∂g(z,u)
∂z

∂h1(z,u,u̇)
∂z

∂h2(z,u,u̇,ü)
∂z
...

∂h(n−1)(z,u,u̇,ü,...,u(n−1))
∂z


= n

erfüllt ist.

Das Kriterium zur lokalen Beobachtbarkeit kann einfach angewendet werden, indem der
Rang der Beobachtbarkeitsmatrix

QB(z, u, u̇, ü, . . . , un−1) =
∂φ(z, u, u̇, ü, . . . , u(n−1))

∂z
(5-1)

bestimmt wird.

5.1.2 Beobachtbarkeit von PKM für Beobachter im OS

Der Nachweis der globalen Beobachtbarkeit im OS für PKM ist im Allgemeinen auf-
grund der Komplexität der Zustandsgleichung (2-14) nicht einfach möglich. Allerdings
wird in [Olm13, S. 55 f.] gezeigt, wie für die Zustandsbeschreibung eines Hexapoden
im OS relativ einfach die lokale Beobachtbarkeit für verschiedene Arbeitspunkte nachge-
wiesen werden kann. Dieses Vorgehen lässt sich für PKM verallgemeinern und wird im
Folgenden erläutert.

Für einen Beobachter im OS kann die erste zeitliche Ableitung des Ausgangs y = q der
Zustandsgleichungen (2-14) und (2-15) direkt aus (2-5) in Abhängigkeit vom Zustand z
bestimmt werden:

q̇ = J−1(x) · v = q̇(x, v) = q̇(z). (5-2)

Zur Berechnung der Beobachtbarkeitsmatrix müssen lediglich der Ausgangsvektor q so-
wie seine erste zeitliche Ableitung q̇ betrachtet werden. Der Vektor ζ resultiert zu:

ζ =

[
y
ẏ

] [
q(x)

q̇(x, v)

]
= φ(z).
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Nach (5-1) und mit (2-7) und (2-13) ergibt sich die Beobachtbarkeitsmatrix für allgemeine
PKM im OS zu

QB =
∂φ(z)
∂z

=

[∂q(x)
∂z
∂q̇(z)
∂z

]
=

[∂q(x)
∂x

∂q(x)
∂v

∂q̇(z)
∂x

∂q̇(z)
∂v

]
=

J−1(x)H(x) 0
∂(J−1(x)v)

∂x J−1(x)

 . (5-3)

Für die Untersuchung der lokalen Beobachtbarkeit für eine bestimmte Position und Ori-
entierung x nach Satz 2 genügt die Berechnung der Matrizen J−1(x) und H(x). Weisen sie
vollen Rang auf, so hat auch QB den Höchstrang n und die lokale Beobachtbarkeit für die
Position x ist nachgewiesen.

In der Praxis kann davon ausgegangen werden, dass die Jakobimatrix J(x) sowie ihre In-
verse J−1(x) für den gesamten effektiven Arbeitsraum einer PKM keine Nullzeilen bzw.
-spalten aufweisen, denn dies käme einer Nichtübertragbarkeit von Kräften und damit
einer Singularität gleich. Gleiches gilt für die Matrix H(x): Unabhängig von der Wahl
der Drehreihenfolge kann ein Rangabfall dieser Matrix nur durch eine Drehung um 90◦

um eine Achse hervorgerufen werden. Auch diese Extremposition wird aufgrund der Be-
grenzungen der Aktorik nicht innerhalb des effektiven Arbeitsraums einer PKM liegen.
Dadurch, dass J(x) und H(x) dann für den gesamten effektiven Arbeitsraum regulär sind,
ist auch für den gesamten Arbeitsraum lokale Beobachtbarkeit gegeben.

5.1.3 Beobachtbarkeit von PKM für Beobachter im JS

Die Zustandsgleichungen einer PKM im JS sind durch (4-12) und (4-13) gegeben. Sie
sind nachfolgend für eine bessere Übersicht nochmals angegeben:

żq = faq(zq) + fbqu

y =
[
Iη×η 0

]
, mit

faq(zq) =

[
0 Iη×η
0 −M−1

q (x)CCC,q(x, v)

]
zq +

[
0

−M−1
q (x)JT (x)G

]
,

fbq =

[
0

M−1
q (x)

]
.

Zur Realisierung eines Beobachters im JS kann der Vektor x durch Anwendung eines ite-
rativen Verfahrens zur Lösung des DKP, beispielsweise mit Hilfe des Newton-Raphson-
Verfahrens (vgl. Abschnitt 3.2.1), berechnet und zur Ermittlung der nichtlinearen Matri-
zen in faq und fbq verwendet werden. Der ebenfalls erforderliche Vektor v kann durch
(2-5) mit Hilfe der Jakobimatrix aus ˙̂q, den geschätzten Geschwindigkeiten in Gelenk-
koordinaten, errechnet werden. Auf diese Weise wird das Problem eines verrauschten
Geschwindigkeitssignals, welches aufgrund der Differentiation des iterativ gelösten DKP
auftreten kann, vgl. Abschnitt 3.2.1 und [AHK08], umgangen.

Für die Abbildung ζ gilt im Falle einer Zustandsbeobachtung im JS

ζ =

[
y
ẏ

]
=

[
q
q̇

]
= I2η×2η · zq. (5-4)
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Sie entspricht dem Zustand zq, damit wäre bei einer analytischen Lösbarkeit des DKP für
die Beobachtung im JS die Bedingung für globale Beobachtbarkeit nach Satz 1 erfüllt.
Für die iterative Lösung des DPK kann sie in der Praxis zumindest angenommen werden.
Die Beobachtbarkeitsmatrix QBq ist eine Einheitsmatrix der Ordnung 2η × 2η.

5.2 Kalman-Bucy-Filter

Im Folgenden werden kurz die theoretischen Grundlagen für kontinuierliche Kalman-
Bucy-Filter dargelegt, gefolgt von der Beschreibung ihrer Anwendung zur Zustands- und
Störbeobachtung von PKM im JS und OS.

5.2.1 Grundlagen

Das Kalman-Bucy-Filter gehört zu den in dieser Arbeit als kontinuierlich arbeitend be-
zeichneten Zustandsschätzern, in Abgrenzung zu den diskontinuierlich arbeitenden Sli-
ding-Mode-Beobachtern. Die Bezeichnung kontinuierlich bezieht sich dabei auf die Be-
rechnung der Korrekturgröße k aus dem Produkt der Beobachtermatrix L mit dem Aus-
gangsfehler ey (vgl. Abschnitt 2.3.2).

Die Bezeichnung Kalman-Filter wird üblicherweise für ein zeitdiskretes Filter verwendet,
während für die zeitkontinuierliche Filtervariante die Bezeichnung Kalman-Bucy-Filter
geläufig ist, vgl. [Föl13, S. 360]. Im Folgenden wird jedoch die Bezeichnung Kalman-
Filter aus Gründen der Einfachheit stets für die zeitkontinuierliche Filtervariante ver-
wendet. Grundsätzlich existieren für lineare und nichtlineare Systeme unterschiedliche
Varianten des Kalman-Filters.

Das Kalman-Filter für lineare Systeme
Zur Beobachtung des linearen, zeitinvarianten Systems

ż = Az + Bu + nz(t) (5-5)
y = Cz + Du + ny(t),

mit dem Systemrauschen nz(t) und dem Messrauschen ny(t) entsprechen die Zustandsdif-
ferentialgleichungen des Kalman-Filters denen eines Luenberger-Beobachters, vgl. [Föl13,
S. 360]:

˙̂z = Aẑ + Bu + L(y −Cẑ). (5-6)

Der Unterschied zwischen Luenberger-Beobachter und Kalman-Filter liegt in der Berech-
nung der Beobachtermatrix L im Hinblick auf die Anwendung: Während der Luenberger-
Beobachter für „gelegentlich auftretende Anfangsstörungen“ verwendet und mittels Ei-
genwertvorgabe ausgelegt wird, steht beim Kalman-Filter der Ausgleich dauernder sto-
chastischer Störungen im Vordergrund, [Föl13, S. 361]. Das Kalman-Filter ist ein seit
vielen Jahren etablierter Ansatz zur Zustandsschätzung; seine Herleitung und die sto-
chastischen Zusammenhänge können bspw. in [BS94] nachgelesen werden. Im Folgen-
den werden lediglich die wichtigsten Gleichungen zur Berechnung von L aufgeführt, wie
sie in [Föl13, S. 360 f.] für das stationäre Kalman-Filter angegeben sind.
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Es sei angenommen, dass die Vektoren nz(t) und ny(t) in (5-5) Zufallsprozesse beschrei-
ben, die als weiß, stationär, mittelwertfrei, Gaußsch und unkorreliert charakterisiert wer-
den können, wobei diese Voraussetzungen in der Praxis kaum vollständig nachzuweisen
sind. Die Kovarianzmatrizen der Rauschprozesse sind durch

cov {nz(t1), nz(t2)} = E
{
nz(t1) · nT

z (t2)
}

= Qδ(t1 − t2)

cov
{
ny(t1), ny(t2)

}
= E

{
ny(t1) · nT

y (t2)
}

= S δ(t1 − t2)

gegeben. Dabei sind Q und S konstante, symmetrische und positiv definite Matrizen.

Der resultierende Schätzfehler ez,

ez = z − ẑ,

vgl. (2-46), ist unter anderem abhängig von der Wahl der Matrix L. Weitere Einflussfak-
toren sind z. B. Modell- oder Messungenauigkeiten. Aus der Minimierung eines Güte-
maßes, welches die Erwartungswerte des Schätzfehlers berücksichtigt, ergeben sich die
Gleichungen zur Dimensionierung von L. Zunächst ist die Matrix P als positiv definite
Lösung der Gleichung

PCT S −1CP − AP − PAT − Q = 0 (5-7)

zu bestimmen. L ergibt sich dann aus

L = PCT S −1. (5-8)

Aufgrund des Dualitätsprinzips, vgl. [Lud95, S. 11 f.], können für die Auslegung der Be-
obachtermatrix L auch die „klassischen“ Zustandsreglersyntheseverfahren wie der Pol-
vorgabeentwurf und der Riccati-Enwurf verwendet werden, vgl. [Föl13, S. 355]. Die An-
wendung des Riccati-Entwurfs führt ebenfalls zu den Beziehungen (5-7) und (5-8). Sie
resultieren dabei aus der Minimierung des quadratischen Gütemaßes

JG =
1
2

∫ ∞

0

(
zT

f Qz f + uT
f S u f

)
dt, (5-9)

wobei x f und u f durch die fiktive Fehlerdifferentialgleichung

ż f = AT z f + CT u f , u f = −LT z f , (5-10)

charakterisiert werden, vgl. [Föl13, S. 355 u. 361]. In (5-9) ist zu erkennen, dass die
Matrizen Q und S auch als Gewichtungsmatrizen interpretiert werden können, die das
Verhältnis der quadrierten Einträge von z f und u f zueinander definieren, während ih-
re ursprünglich stochastische Bedeutung bei dieser Herleitung der Gleichungen für das
Kalman-Filter verloren gegangen ist. Es wird jedoch deutlich, dass für die Dimensionie-
rung von Q und S als Diagonalmatrizen das relative Verhältnis der einzelnen Einträge
zueinander beachtet werden muss, während ihre Absolutwerte unerheblich sind. Die ei-
gentlichen Entwurfsparameter sind demnach die als positiv definit zu wählenden Matri-
zen S und Q, die jedoch in der Praxis in der Regel unbekannt sind. Laut [Ada09, S. 312
f.] werden sie oft als Diagonalmatrizen angenommen und durch iteratives Ausprobieren
optimiert, wozu jedoch Erfahrung erforderlich ist.
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Anwendungsbezogene Wahl der Gewichtungsmatrizen
Vor allem bei größeren Systemen mit vielen Zustands- und Eingangsgrößen ist die Wahl
der Matrizen S und Q, die als Ausgang für das iterative Anpassen verwendet werden,
schwierig. Einen Ansatz zur ersten Dimensionierung der einzelnen Einträge aus Q lie-
fert [Vie08, S. 49 ff.]. Hier wird für einen Zustand zν aus bekannten Modellungenauig-
keiten die Varianz σ2

zν aus dem maximalen Schätzfehler z f ,ν, der sich aus der bekannten
Ungenauigkeit bestimmen lässt, berechnet:

σ2
zν = z2

f ,ν. (5-11)

Dies liefert den ν-ten Eintrag von Q,

Q = diag(σ2
z1
, σ2

z2
, . . . , σ2

zn
). (5-12)

Die weiteren Einträge lassen sich dann unter Berücksichtigung der einzelnen Werteberei-
che, welche die Zustände xi, i = 1 . . . n, annehmen können, wie folgt berechnen:

σ2
zi

= σ2
zν ·

(
max(zi) −min(zi)
max(zν) −min(zν)

)2

i = 1 . . . n. (5-13)

Zur Berechnung der Varianzen in der Matrix S ,

S = diag(σ2
u1
, σ2

u2
, . . . , σ2

um
), (5-14)

können Herstellerangaben zur Sensorik, die zur Ermittlung von y genutzt wird, wie z. B.
zum maximalen relativen Fehler, herangezogen werden. Auch hier ist es wichtig, zunächst
eine Varianz σ2

uν absolut zu berechnen und die anderen Einträge über die Wertebereiche
mit

σ2
ui

= σ2
uν ·

(
max(ui) −min(ui)
max(uν) −min(uν)

)2

, i = 1 . . .m (5-15)

zu bestimmen. Nachdem die Startwerte für Q und S auf diese Weise ermittelt worden
sind, können die einzelnen Diagonaleinträge auf Basis von Simulationen und Eigenwert-
betrachtungen optimiert werden. Die Eigenwerte λB1 . . . λBn des Beobachters entsprechen
den Eigenwerten der Dynamikmatrix AB der fiktiven Fehlerdifferentialgleichung (5-10)
mit

AB = AT −CT LT bzw. AT
B = A − LC. (5-16)

Die Eigenwerte eines Kalman-Filters für lineare Systeme sind aufgrund der Minimie-
rung von (5-9) stets stabil. Falls der Beobachter innerhalb eines Regelkreises verwen-
det wird, sollten seine Eigenwerte möglichst links von den Eigenwerten des Regelkrei-
ses platziert werden, „da es darauf ankommt, das Verhalten des geschlossenen Kreises
möglichst schnell zu erfassen“, vgl. [Föl13, S. 355]. Aufgrund des Separationstheorems,
vgl. [Föl13, S. 363], beeinflussen sich die Eigenwerte von Beobachter und Regelung bei
der Annahme eines idealen Modells jedoch nicht gegenseitig. Die Beobachtermatrix L
und die Reglermatrix R können somit vollkommen unabhängig voneinander entworfen
werden. Die Eigenwerte des Beobachters dürfen jedoch nicht zu weit links platziert wer-
den, da dies zum einen dazu führen kann, dass der Beobachter in ein differenzierendes
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System übergeht, vgl. [Föl13, S. 355]. Zum anderen muss die Realisierung des Beobach-
ters berücksichtigt werden: Dies geschieht heutzutage in der Regel durch eine digitale
Regeleinrichtung, auf welcher die Beobachterdifferentialgleichungen mit Hilfe eines In-
tegrationsverfahrens mit fester Schrittweite h gelöst werden. Die Beobachtereigenwerte
dürfen nicht außerhalb des Stabilitätsgebiets des gewählten Verfahrens liegen.

Aus diesen Betrachtungen lässt sich ein Zielgebiet vorgeben, in dem die Eigenwerte des
Beobachters liegen sollen: Auf der rechten Seite begrenzt durch die Eigenwerte der Re-
gelung, auf der linken Seite und in vertikaler Richtung begrenzt durch die Stabilität des
gewählten Integrationsverfahrens bei vorgegebener Schrittweite. Die Matrizen Q und S
können dann manuell oder mit Hilfe eines Optimierungsverfahrens so angepasst werden,
dass die resultierenden Beobachtereigenwerte in dem Zielgebiet liegen. Als Variations-
parameter bieten sich dabei zunächst die Varianzen σxν und σuν an; für das Feintuning
können anschließend die Wertebereiche in (5-13) variiert werden.

Das Kalman-Filter für nichtlineare Systeme
Für das nichtlineare System

ż = f (z, u) + nz(t)
y = g(z) + ny(t)

kann formal die Zustandsdifferentialgleichung des linearen Kalman-Filters (5-6) auf die
nichtlineare Situation übertragen werden, vgl. [Ada09, S. 312]:

˙̂z = f (ẑ, u) + L(y − g(ẑ)). (5-17)

Der einfachste Weg zur Dimensierung von L ist die Linearisierung der nichtlinearen Zu-
standsgleichungen des Beobachters um einen Arbeitspunkt ẑ0 mit u = u0, die dann zu
den Systemmatrizen Alin und Clin des um ẑ0 linearisierten Systems führen, vgl. [Ada09, S.
302]. Zu ihrer Berechnung kann bspw. eine Taylorentwicklung verwendet werden. Dann
ergeben sich

Alin =
∂ f
∂ẑ

∣∣∣∣∣
ẑ=ẑ0,u=u0

und Clin =
∂g
∂ẑ

∣∣∣∣∣
ẑ=ẑ0

, (5-18)

vgl. [Ada09, S. 312]. Die Matrix L kann wie beim linearen Kalman-Filter unter Verwen-
dung von (5-7) und (5-8) mit A = Alin und C = Clin bestimmt werden. Für das nichtli-
neare System kann die Verwendung der so ermittelten konstanten Matrix L problematisch
sein, da der Beobachter nur in einer Umgebung um den Arbeitspunkt x0 gut funktio-
nieren wird, vgl. [Ada09, S. 312]. Bei stark nichtlinearen Systemen ist daher auch die
Verwendung einer zeitabhängigen Matrix L(t) möglich. Dazu muss die Matrix-Riccati-
Differentialgleichung

Ṗ(t) = Alin(t)P(t) + P(t)AT
lin(t) + Q − P(t)CT

lin(t)S −1(t)Clin(t)P(t) (5-19)

fortlaufend gelöst werden, während die Matrizen Alin(t) und Clin(t),

Alin(t) =
∂ f
∂ẑ

∣∣∣∣∣
ẑ=ẑ(t),u=u(t)

Clin(t) =
∂g
∂ẑ

∣∣∣∣∣
ẑ=ẑ(t)

,
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jeweils für den aktuellen Arbeitspunkt zu berechnen sind. Die zeitabhängige Beobachter-
matrix L(t) ergibt sich dann aus

L(t) = P(t)CT
lin(t)S −1. (5-20)

Diese Version des Kalman-Filters wird auch als Erweitertes Kalman-Filter (Extended
Kalman-Filter, EKF) bezeichnet. Die fortlaufende Lösung von (5-19) und die Berech-
nung von Alin(t) und Clin(t) sind dabei sehr rechenintensiv. In den folgenden Abschnitten
wird gezeigt, dass aufgrund des begrenzten Arbeitsraums von PKM auch die Verwen-
dung einer konstanten Matrix L möglich ist, daher wird das EKF in dieser Arbeit nicht
weiter betrachtet. Weitere Informationen auch zu seiner Realisierung finden sich z. B.
in [Ada09, S. 313 ff.].

5.2.2 Zustands- und Störbeobachtung von PKM im OS

Zur Beobachtung des Zustands ẑ bei PKM mittels Kalman-Filter gelten folgende Zu-
standsgleichungen:

˙̂z = f (ẑ, u) + L(y − ŷ) = fa(ẑ) + fb(ẑ)u + L(y − ŷ) (5-21)
ŷ = g(ẑ) = q(x̂).

Dabei korrespondieren der Eingangsvektor u mit den gemessenen Aktorkräften τq,mess und
der Ausgangsvektor y mit den gemessenen Gelenkkoordinaten qmess. Die Vektorfunktio-
nen fa(ẑ) und fb(ẑ) sind durch (2-19) und (2-20) gegeben. Die konstante Beobachterma-
trix L kann mit den gemäß (5-18) berechneten Matrizen ermittelt werden. Für PKM ist es
sinnvoll,

ẑ0 =
[

x̂T
0 0T

]T

zu wählen, wobei x̂0 mit Hilfe des Newton-Raphson-Verfahrens (vgl. Abschnitt 3.2.1) aus
q0 für die Mittelstellung der Aktoren mit

q0 =
1
2

(min(q) + max(q))

berechnet werden kann. Dies entspricht in etwa der Mitte des Arbeitsraums. Weiterhin ist
es sinnvoll, u0 genau so zu wählen, dass die Gewichtskraft der Endeffektorplattform für
x̂0 kompensiert wird, d. h.

u0 = JT (x̂0)G.

Die Gewichtungsmatrizen Q und S für die Berechnung von L mittels (5-7) und (5-8) kön-
nen durch iteratives Ausprobieren mit der im vorherigen Abschnitt beschriebenen Vor-
gehensweise anwendungsorientiert bestimmt werden. Bei der Auslegung eines Kalman-
Filters für PKM ist es dabei vorteilhaft, dass in der Regel alle Messgrößen qmess mit der
gleichen Sensorik ermittelt werden. Daher kann S als Einheitsmatrix gewählt und ihr Ver-
hältnis zu Q durch einen entsprechenden Vorfaktor variiert werden. Dieses Vorgehen ist
vor allem dann hilfreich, wenn das Rauschverhalten der Sensorik im Vorfeld nicht bekannt
ist.
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Wie in Abschnitt 5.2.1 bereits angedeutet wurde, eignet sich die so ausgelegte Matrix
L nur für die Anwendung in der Umgebung von ẑ0. Ein Konvergenznachweis ist nicht
trivial, stattdessen soll hier die Konvergenz durch die Betrachtung der Eigenwerte für
das linearisierte System plausibilisiert werden. Um die Konvergenz des Beobachters für
den gesamten Arbeitsraum der PKM zu untersuchen, können die Arbeitsraumrandpunkte
bestehend aus allen möglichen Kombinationen aus Aktorendlagen betrachtet werden. So
werden alle Extrempositionen berücksichtigt. Für eine PKM mit η Aktoren und η FHG
ergeben sich 2η Kombinationen, für welche entsprechende xi, i = 1 . . . 2η bspw. mit Hilfe
des Newton-Raphson-Verfahrens (vgl. Abschnitt 3.2.1) berechnet werden können. Liegen
die Eigenwerte λBi, i = 1 . . . 2η, der Matrizen

ABi =
∂ f
∂ẑ

∣∣∣∣∣
ẑ=ẑi,u=ui

− L
∂g
∂ẑ

∣∣∣∣∣
ẑ=ẑi

= Alin,xi − LCLin,xi , i = 1 . . . 2η,

mit ẑi =
[

x̂T
i 0

]T
und ui = JT (x̂i) ·G in der linken Hälfte der komplexen Ebene, so ist

Konvergenz im gesamten Arbeitsraum zumindest wahrscheinlich.

Zustands- und Störbeobachtung
Das im vorherigen Abschnitt beschriebene Kalman-Filter zur Zustandsbeobachtung kann
um weitere Zustände zur Störbeobachtung erweitert werden. Dazu wird zunächst die Dif-
ferentialgleichung für das Beobachtermodell um τ̂q,d, den Vektor der Störkräfte in Ge-
lenkkoordinaten, erweitert. Die Beobachterdifferentialgleichung lautet entsprechend mit
(2-4)

M(x̂)˙̂v + CCC(x̂, v̂)v̂ + G = J−T (x̂)(τq + τ̂q,d). (5-22)

Mit Hilfe der Massenmatrix kann τ̂q,d auch durch eine Beschleunigungsabweichung ∆ ˙̂v
ausgedrückt werden:

τ̂q,d = JT (x̂)M(x̂)∆ ˙̂v. (5-23)

Der Vektor der Beschleunigungsabweichungen ∆ ˙̂v kann als Abweichung der tatsächli-
chen Beschleunigung von der aus dem Modell berechneten Beschleunigung interpretiert
werden. Er ist im Schwerpunkt des Endeffektors definiert und fasst die Beschleunigungs-
abweichungen in den einzelnen translatorischen und rotatorischen FHG zusammen. Für
PKM mit sechs FHG gilt

∆ ˙̂v =
[
∆ ˙̂vx ∆ ˙̂vy ∆ ˙̂vz ∆ ˙̂ωx ∆ ˙̂ωy ∆ ˙̂ωz

]T
. (5-24)

Die Zustandsgleichungen für den um die Störschätzung erweiterten Beobachter lauten
entsprechend

˙̂zd = fa,d(ẑd) + fb,d(ẑd)u + L(y − ŷd) (5-25)
ŷd = g(ẑd).

Der Vektor ẑd ∈ R
n+η ist der erweiterte Zustandsvektor des Beobachters mit

ẑd =
[
x̂T v̂T ∆ ˙̂vT

]T
. (5-26)
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Ein Ansatz zur Beobachtung von Störgrößen ist, ihre Dynamik durch integrales Verhalten
mit der Differentialgleichung

∆ ¨̂v = 0 (5-27)

zu charakterisieren, vgl. [Föl13, S. 371]. Das entspricht der Annahme konstanter Störun-
gen. Dementsprechend können fa,d(ẑd) und fb,d(ẑd) durch eine Erweiterung von (2-14) und
(2-15) generiert werden:

fa,d(ẑd) =

0 H−1(x̂) 0
0 −M−1(x̂)C(x̂, v̂) Iη×η
0 0 0

 ẑd +

 0
−M−1(x̂)G

0

 , (5-28)

fb,d(ẑd) =

 0
M−1(x̂)J−T (x̂)

0

 , (5-29)

g(ẑd) =q(x̂) . (5-30)

Aus (5-28) wird deutlich, warum es zweckmäßig ist, zur Störschätzung den Vektor der
Beschleunigungsabweichungen zu wählen und nicht etwa, wie vielleicht auf den ersten
Blick naheliegend, direkt den Vektor der im Schwerpunkt angreifenden Störkräfte. Seine
Integration in die Zustandsgleichungen würde dazu führen, dass anstatt der Einheitsma-
trix Iη×η in (5-28) die inverse Massenmatrix M−1(x̂) stünde. Dies wäre ein zusätzlicher
nichtlinearer Term, der für die Beobachtersynthese linearisiert werden müsste.

Für die Beobachtbarkeitsmatrix QB,d des erweiterten Systems gilt mit (5-1) und

q̈ = q̈(x, v,∆v̇, u) = J̇−1(x, v)v + J−1(x)v̇(x, v,∆v̇, u) (5-31)

QB,d =


J−1(x)H(x) 0 0
∂(J−1(x)v)

∂x J−1(x) 0
∂q̈(zd ,u)
∂x

∂q̈(zd ,u)
∂v J−1(x)

 . (5-32)

Die Matrizen auf der Hauptdiagonalen sind für den Arbeitsraum des Zielsystems stets
regulär; damit hat QB,d vollen Rang und das System bleibt auch mit Störbeobachtung im
gesamten Arbeitsraum lokal beobachtbar.

Der Entwurf der Beobachtermatrix Ld für das Kalman-Filter mit Störbeobachtung im OS
kann wiederum mittels (5-7) und (5-8) auf Basis der Systemmatrizen des um x̂0 lineari-
sierten Systems erfolgen. Dabei gilt

Alin,d =
∂˙̂zd

∂ẑd

∣∣∣∣∣∣
ẑd,0,u0

Clin,d =
∂ŷd

∂ẑd

∣∣∣∣∣
ẑd,0

(5-33)

mit ẑd,0 = [ x̂T
0 0T 0T ]T und u0 = JT (x̂0)G.

Weiterhin muss die Gewichtungsmatrix QS ∈ R
n+η (Index „s“ zur Abgrenzung gegenüber

der zuvor zur reinen Zustandsbeobachtung verwendeten Matrix Q) gegenüber Q um η
Spalten und Zeilen erweitert werden, während S gleich bleiben kann. QS kann wie zuvor
durch gezielte Wahl der Anfangswerte sowie iteratives Ausprobieren ermittelt werden.
Für das Zielsystem erwies sich folgende Diagonalmatrix als geeignet:

QS =

QS 1 0 0
0 QS 2 0
0 0 QS 3


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mit

QS 1 = 106



4, 0 0 · · · 0
0 4, 0

1, 5 . . .
...

...
. . . 2, 0

2, 0 0
0 · · · 0 2, 0


,

QS 2 = 1012



4, 0 0 · · · 0
0 4, 0

2, 6 . . .
...

...
. . . 0, 4

0, 4 0
0 · · · 0 0, 4


,

QS 3 = 1017



3, 1 0 · · · 0
0 3, 1

2, 6 . . .
...

...
. . . 0, 2

0, 2 0
0 · · · 0 0, 2


.

Bild 5-1 zeigt die Lage der resultierenden Eigenwerte für die Arbeitsraummittelstellung
(λB0) und die Arbeitsraumrandpunkte (λBi).
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Bild 5-1: Eigenwerte für die Zustands- und Störbeobachtung im OS
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5.2.3 Zustands- und Störbeobachtung im JS

Die Gleichungen des Kalman-Filters zur Zustandsschätzung im JS lauten

˙̂zq = f (ẑq, u) + L(y − ŷ) = faq(ẑq) + fbqu + L(y − ŷ) (5-34)

ŷ =
[
Iη×η 0

]
ẑq.

Die Terme faq(ẑq) und fbq sind durch (4-15) und (4-16) gegeben. Da die Beobachter-
differentialgleichung linear im Zustand zq ist, können die Matrizen zur Berechnung der
Beobachtermatrix Lq mittels (5-7) und (5-8) direkt abgelesen werden:

Alin,q =

[
0 Iη×η
0 −M−1

q (x0)CCC,q(x0, v0)

]
=

[
0 Iη×η
0 0

]
, (5-35)

Clin,q =
[
Iη×η 0

]
. (5-36)

Für die Beobachtersynthese gemäß (5-7) und (5-8) ergibt sich also eine lineare System-
beschreibung, die abermals der eines sechsfachen doppelten Integrators entspricht, denn
es gilt CCC,q = 0, falls v0 = 0. Das linearisierte System verhält sich damit für alle Zu-
standsrichtungen gleich, sodass zur Beobachtersynthese nur zwei Werte festgelegt wer-
den müssen: Der Wert für die ersten η Einträge und der Wert für die zweiten η Einträge
der Gewichtungsmatrix Qq zur Beobachtung in Gelenkkoordinaten, da alle Gelenkkoor-
dinaten sinnvollerweise gleich gewichtet werden.

Aufgrund der entkoppelten Systembeschreibung könnte die Beobachtermatrix Lq auch
vergleichsweise einfach durch einen Polvorgabeentwurf synthetisiert werden. Hierbei ist
jedoch die explizite Vorgabe der Wunsch-Eigenwerte schwierig, da außerhalb des Wunsch-
gebiets keine weiteren Vorgaben existieren und die Dynamik des Beobachters aufgrund
des Separationstheorems zumindest unter der Annahme idealer Modellgüte keine Aus-
wirkung auf die Regelung hat. Der Entwurf mittels Riccati-Gleichung liefert aufgrund
der Minimierung von (5-9) stets stabile und sinnvolle Eigenwerte.

Zur Beurteilung der Konvergenzeigenschaften können nach erfolgter Synthese wieder-
um die Eigenwerte für die Arbeitsraumrandpunkte betrachtet werden. Allerdings sind die
Matrizen Alin,q und Clin,q für alle Punkte mit v0 = 0 gleich, sodass die resultierenden Eigen-
werte unabhängig von der Position x und somit für den gesamten Arbeitsraum konstant
sind.

Erweiterung um Störbeobachtung
Für die Erweiterung des Kalman-Filters im JS um eine Störbeobachtung wird die Beob-
achterdifferentialgleichung analog zum Beobachter im OS um ηweitere Zustände ergänzt.
Es gilt

˙̂zq,d = f (ẑq,d, u) + L(y − ŷ) = faq,d(ẑq,d) + fbq,du (5-37)

ŷ =
[
Iη×η 0 0

]
ẑq,d, (5-38)

mit dem um die Beschleunigungsabweichung in Gelenkkoordinaten ∆ ¨̂q erweiterten Zu-
standsvektor ẑq,d,

ẑq,d =
[
q̂T ˙̂qT ∆ ¨̂qT

]T
, (5-39)
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und

faq,d(ẑq,d) =

0 Iη×η 0
0 −M−1

q (x̂)CCC,q(x̂, v̂) Iη×η
0 0 0

 ẑq,d +

 0
−M−1

q (x̂)JT (x̂)G
0

 (5-40)

fbq,d =

 0
M−1

q (x)
0

 . (5-41)

Die gesuchte Störkraft τ̂q,d kann aus

τ̂q,d = Mq(x̂) · ∆ ¨̂q (5-42)

berechnet werden. Für die Abbildung ζ zur Beurteilung der Beobachtbarkeit gilt in Ana-
logie zu (5-4)

ζ =

yẏÿ
 =


q
q̇

M−1
q (x)

(
−CCC,q(x, v)q̇ − JT (x)G + u

)
+ ∆q̈

 = φ(zq,d). (5-43)

Die Umkehrfunktion zq,d = φ−1(ζ) lässt sich eindeutig angeben, damit ist das System
unter der Voraussetzung, dass das DKP zu jeder Zeit iterativ, bspw. durch das Newton-
Raphson-Verfahren, gelöst werden kann, nach Satz 1 (Abschnitt 5.1.1) im Arbeitsraum
sogar global beobachtbar. Die Matrizen zur Auslegung der Beobachtermatrix Lq,d mittels
(5-7) und (5-8) lauten

Alin,q,d =

0 Iη×η 0
0 −M−1

q (x0)CCC,q(x0, v0) Iη×η
0 0 0

 =

0 Iη×η 0
0 0 Iη×η
0 0 0

 (5-44)

Clin,q,d =
[
Iη×η 0 0

]
. (5-45)

Für die Auslegung von Lq,d für das Zielsystem haben sich die Matrizen

Qq,S =

2, 4 · 106 · I6×6 0 0
0 3, 8 · 1012 · I6×6 0
0 0 3, 7 · 1017 · I6×6

 und

S q,S = I6×6

als geeignet erwiesen. In den einzelnen Einträgen von Qq,S spiegeln sich erkennbar Ver-
hältnisse der Größenordnungen für die einzelnen Zustandsgrößen wider.

Durch die Wahl von ∆ ¨̂q als Störzustand bleibt Alin,q,d für den gesamten Arbeitsraum mit
Nullen und Einsen besetzt und damit positionsunabhängig. Damit bleiben auch die Ei-
genwerte unabängig von x und damit gleich für den gesamten Arbeitsraum. Bild 5-2 zeigt
die Lage der resultierenden Eigenwerte für die zentrale Position x0 und die Arbeitsraum-
randpunkte xi.



Zustands- und Störbeobachtung für PKM 101

Realteil

Im
ag

in
är

te
il

 

 

−2500 −2000 −1500 −1000 −500 0
−1500

−1000

−500

0

500

1000

1500

λ
Bi

λ
B0

Bild 5-2: Eigenwerte für die zur Zustands- und Störbeobachtung im JS

5.3 Sliding-Mode-Beobachter

Im Allgemeinen werden Sliding-Mode-Algorithmen hauptsächlich mit Sliding-Mode-
Regelungen assoziiert. Diese gehören zur Klasse der robusten Regelungen. Ihr größter
Nachteil ist das sog. Rattern (engl. chattering), das aufgrund der ständig wechselnden
Soll-Stellsignale eine große Belastung für die Aktorik darstellen kann, vgl. [Ada09, S.
251]. Sliding-Mode-Ansätze können jedoch auch zur Beobachtung eingesetzt werden –
hier tritt die Schaltproblematik für Aktoren nicht auf, denn die Schaltcharakteristik betrifft
nur die numerischen Berechnungen, vgl. [Spu08].

Die im Folgenden aufgeführten Grundlagen zu Sliding-Mode-Beobachtern (SMB) im
Allgemeinen sowie zum hierarchischen SMB im Speziellen und der anschließend be-
schriebene Ansatz zur Zustandsschätzung eines Hexapoden wurde bereits in [FOT14]
veröffentlicht. Sie wurden in [Olm13] erarbeitet.

5.3.1 Grundlagen

SMB wurden im Jahre 1984 von S. Drakunov für das lineare System

ż = Az + Bu
y = Cz

vorgestellt, vgl. [DR11]. Im Gegensatz zur kontinuierlichen Beobachterdifferentialglei-
chung eines Luenberger-Beobachters oder Kalman-Bucy-Filters (vgl. (5-6)) enthält die-
jenige des SMB,

˙̂z = Aẑ + Bu + Lsign(y −Cẑ),
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einen diskontinuierlichen Teil in Form einer Signum-Funktion, definiert als

sign(α) =

{
+1 falls α > 0
−1 falls α < 0

für Skalare bzw.

sign(z) =
[
sign(z1) . . . sign(zn)

]T

für Vektoren z ∈ Rn.

Bei passender Auslegung von L bildet sich ein Gleitzustand auf der Schaltlinie

y −Cẑ = 0 bzw. y = Cẑ

aus, vgl. [DR11]. Das bedeutet, dass die Signum-Funktion ein Schalten zwischen +1 und
−1 mit theoretisch unendlich hoher Frequenz hervorruft. In diesem sog. Gleitzustand wird
die Dynamik des Beobachters durch die Schaltfunktion bestimmt und die Systemordnung
der Beobachterdynamik ist reduziert.

Eine ausführliche und anschauliche Erläuterung der Zusammenhänge zwischen Schalt-
funktion und reduzierter Ordnung findet sich in [Ada09, S. 249 ff.] für Sliding-Mode-
Regelungen. Es sei an dieser Stelle lediglich angemerkt, dass diese Regler so ausge-
legt werden können, dass ihre Dynamik im Gleitzustand nur durch die Schaltfunktion
bestimmt wird, der Regler demnach „robust gegen Variationen der Regelstrecke“ ist,
„d. h. die Regelkreisdynamik ist immer dieselbe, auch wenn sich die Regelstrecke ändert“,
vgl. [Ada09, S. 252]. Diese Eigenschaft, die sich am Beispiel der Regelungen anschau-
licher erläutern lässt, kann prinzipiell auch auf SMB übertragen werden. Detaillierte Er-
läuterungen zu Sliding-Mode Algorithmen, bspw. zu ihrem Einsatz in der Regelung und
zur Auswirkung des Ratterns, können auch in [UGS99] nachgelesen werden.

In der Literatur finden sich verschiedene SMB für unterschiedliche Systemklassen und
Anwendungen, bspw. bietet [Spu08] einen guten Überblick über die unterschiedlichen
Formen und deren Haupteigenschaften. Als für die Zustandsbeobachtung von PKM be-
sonders relevant hat sich ein hierarchischer SMB nach [DR11] erwiesen, der im Folgen-
den vorgestellt wird.

Hierarchischer Sliding Mode Beobachter nach Drakunov
Der Ansatz gilt für nichtlineare eingangsaffine Systeme der Form

ż = fa(z) + fb(z)u
y = g(z) ∈ Rp

mit einem Ausgang (p ∈ R1). Zunächst wird die Vektorfunktion φ(z),

φ(z) = [ g1(z) . . . gn(z) ]T , (5-46)

definiert. Dabei ist g1,

g1(z) = g(z), (5-47)
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die Ausgangsgleichung und

gi(z) =
∂gi−1(z)
∂z

fa(z) = Li−1
fa g(z), i = 2, ..., n , (5-48)

sind die Lie-Derivierten von g(z) in Richtung von fa(z). Für Systeme, bei denen der rela-
tive Grad der Systemordnung n entspricht, gilt

gi(z) = ġi−1(z), i = 2, ..., n , (5-49)

vgl. [Ada09, S. 181]. Dann enspricht QB(z),

QB(z) =
∂φ(z)
∂z

, (5-50)

der Beobachtbarkeitsmatrix (5-1) und die Vektorfunktion φ(z) der bereits in Abschnitt
5.1.1 genannten, zur Beurteilung der Beobachtbarkeit verwendeten Abbildung φ(z). Der
in [DR11] vorgeschlagene Beobachter kann für Systeme angewandt werden, welche die
folgende Bedingung erfüllen:

∂

∂z
(QB(z) fb(z)) = 0 . (5-51)

So wird sichergestellt, dass Schätzfehler vom Eingang unabhängig sind. Der hierarchische
SMB für nichtlineare, eingangsaffine Syteme mit einfachem Ausgang nach [DR11] wird
durch folgende Beobachterdifferentialgleichung charakterisiert:

˙̂z = fa(ẑ) + fb(ẑ)u + Q−1
B (ẑ)ρ(ẑ)sign(V(t)) . (5-52)

Die Matrix ρ(ẑ) entspricht der Beobachterverstärkung und enthält nur positive Diagonal-
einträge:

ρ(ẑ) = diag (ρ1(ẑ) . . . ρn(ẑ)) . (5-53)

V(t) ist ein n-dimensionaler Vektor mit den Komponenten νi:

V(t) =
[
ν1 . . . νn

]T
. (5-54)

Normalerweise muss die Signum-Funktion zur Gewährleistung des gewünschten Gleitzu-
stands die entsprechende Schaltfunktion ν(t) enthalten, z. B. sign(ν(t)). Bei hierarchischen
Beobachtern tritt der Gleitzustand erstmals auf der Schaltlinie ν1(t) = 0 auf, die den Aus-
gangsfehler enthält (vgl. (2-45)):

ν1(t) = y(t) − g(ẑ) = ey. (5-55)

Die übrigen Einträge von V(t) sind:

νi+1(t) =
{
ρi(ẑ)sign(νi(t))

}
eq , i = 1, ..., n − 1 . (5-56)

Der Operator {. . .}eq ist der äquivalente Wert der diskontinuierlichen Funktion im Gleit-
zustand. Gemäß [UGS99, S. 27 f. u. 109] und [Spu08] kann dies wie folgt interpretiert
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werden: Nachdem die Trajektorie des Ausgangsfehlers, die der ersten Schaltfunktion ent-
spricht (vgl. (5-55)), den Gleitzustand erreicht hat, d. h. ν1(t) = 0, ändert die Signum-
Funktion mit theoretisch unendlicher Frequenz ihren Wert. Dies ist jedoch nur eine ideali-
sierte Annahme: In der Realität wird die Ausgangsfehlertrajektorie aufgrund von Rechen-
zeiten und anderen Verzögerungen innerhalb einer kleinen Region um die Schaltfunktion
bleiben, während die Schaltfunktion in der Beobachterrückführung mit begrenzter Fre-
quenz schaltet. Diese Rückführsignale enthalten Komponenten mit hohen und niedrigen
Frequenzen. Entscheidend für die Dynamik des Ausgangsfehlers sind die Anteile mit
vergleichsweise kleinen Frequenzen. Falls also die Anteile mit hohen Frequenzen aus
der Beobachterrückführung entfernt werden, z. B. durch die Anwendung eines passenden
Tiefpassfilters, kann ein kontinuierlicher äquivalenter Wert extrahiert werden. Im Bereich
der Sliding-Mode-Regelungen ist dieser Ansatz der Extraktion der äquivalenten Werte be-
kannt als equivalent control method, vgl. [UGS99, S. 24 ff.]. Für den Beobachter (5-52)
können die äquivalenten Werte dazu genutzt werden, Diskrepanzen zwischen Strecke und
Beobachtermodell zu identifizieren.

Hierarchische SMB wurden zuerst in [Dra92] vorgeschlagen. Sie erfordern die Verwen-
dung der äquivalenten Werte um einen Gleitzustand hervorzurufen. Der in [DR11] vorge-
stellte Ansatz erlaubt auch die Berücksichtigung von Systemeingängen und Störungen in
der Strecke. Der große Vorteil dieser Beobachter ist, dass das Design in den Originalzu-
ständen der Strecke erfolgen kann ohne die Notwendigkeit einer nichtlinearen Zustand-
stransformation (d. h. φ−1(z) muss nicht explizit angegeben werden können, vgl. [Ada09,
S. 21 ff.]). Die Bedingungen für die Anwendbarkeit einer nichtlinearen Zustandstransfor-
mation sind restriktiver als die Kriterien zur lokalen Beobachtbarkeit, welche zur Aus-
legung des hierarchischen SMB erfüllt sein müssen, vgl. [DR11]. Die Erforderlichkeit
einer nichtlinearen Zustandstransformation würde zumindest die Beobachtung im OS für
PKM unmöglich machen, da eine entsprechende Transformationsvorschrift aufgrund der
Nichtlösbarkeit des DKP nicht existiert.

Berechnung der äquivalenten Werte
Die äquivalenten Werte können bspw. durch Tiefpassfilterung ermittelt werden. In
[UGS99, S. 27 f.] wird beschrieben, wie die Eckfrequenz des Tiefpassfilters unter Be-
rücksichtigung der Systemdynamik ermittelt werden kann. Die Gewinnung der äquiva-
lenten Werte mittels Tiefpassfilterung führt jedoch zu einer zusätzlichen Verzögerung im
Beobachter, die unerwünscht ist.

In [TE03] wird eine Lösung für dieses Problem vorgestellt, die sich auch als zielführend
zur Zustandsbeobachtung von PKM erwiesen hat. Dort werden die äquivalenten Werte
wie folgt approximiert (z. B. für ν2 in (5-56)):

ν2 =
{
ρ1sign(ν1)

}
eq ≈ ρ1

ν1

|ν1| + δ
. (5-57)

Der Parameter δ bezeichntet hier eine kleine positive Konstante, welche die Genauig-
keit der äquivalenten Werte charakterisiert. Bild 5-3 visualisiert den Funktionsverlauf von
(5-57) für ρ1 = 1, δ = 0, 01 und δ = 0, 05 im Vergleich zur idealen Signum-Funktion.
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Bild 5-3: Äquivalente Werte gemäß (5-57) für verschiedene δ und ρ1 = 1

5.3.2 Zustands- und Störbeobachtung von PKM im OS

Zur Zustands- und Störbeobachtung von PKM können die Beobachtergleichungen des
hierarchischen SMB nach [DR11] so erweitert werden, dass das Konzept für Systeme mit
p > 1 Ausgängen genutzt werden kann und somit anwendbar für PKM ist. Diese Erweite-
rung auf den Mehrgößenfall zur Beobachtung von PKM wurde in [Olm13] erarbeitet und
beschrieben.

Reine Zustandsbeobachtung
Grundlage zur Zustandsbeobachtung ist die nichtlineare, eingangsaffine Zustandsbeschrei-
bung einer PKM gemäß (2-14) und (2-15),

ż = f (z, u) = fa(z) + fb(z)u
y = g(z).

Für den Beobachterentwurf sind zwei Aspekte zu berücksichtigen: Zunächst müssen die
Beobachtbarkeitsmatrix QB(z) ermittelt und die lokale Beobachtbarkeit nachgewiesen
werden. Dies wurde für PKM im Allgemeinen und das Zielsystem im Speziellen bereits in
Abschnitt 5.1.2 gezeigt. Im zweiten Schritt muss durch die Bedingung (5-51) die Einsetz-
barkeit des hierarchischen SMB überprüft werden. Allerdings wird für PKM Gleichung
(5-51) nicht erfüllt, da gemäß (5-3) und (2-20)

QB(z) · fb(z) =

[
J−1(x)H(x) 0
∂(J−1(x)v)

∂x J−1(x)

] [
0

M−1(x)J−T (x)

]
=

[
0

J−1(x)M−1(x)J−T (x)

]
(5-58)

von x abhängt. In der Praxis konvergiert ein hierarchischer SMB für PKM dennoch;
dies kann wie folgt begründet werden: Die ersten η Reihen von (5-58) sind null. Der
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Term J−1(x)M−1(x)J−T (x) entspricht der Inversen der Massenmatrix in Gelenkkoordina-
ten, M−1

q (x) vgl. (4-10). Mq(x) quantisiert gewissermaßen die Gewichtsverteilung der Er-
satzmasse auf die einzelnen Aktoren. Diese ändert sich zwar mit der Position x, innerhalb
des effektiven Arbeitsraums, jedoch nicht grundsätzlich. Dies gilt damit auch für die In-
verse M−1

q (x) und somit für die letzten sechs Zeilen des Produkts QB(z) · fb(z), dessen
partielle Ableitung nach dem Zustand z zur Erfüllung von (5-51) demnach nahezu eine
Nullmatrix ergibt.

Die Matrix der Beobachterverstärkungen, ρ(ẑ), kann wie folgt gewählt werden:

ρ(ẑ) = ρ =

[
ρ1 · Iη×η 0

0 ρ2 · Iη×η

]
. (5-59)

Da die einzelnen Einträge die Verstärkungen für Signum-Funktionen von ähnlichen Grö-
ßen sind (beim Hexapoden z. B. der einzelnen Aktorlängen), können die ersten und zwei-
ten η Einträge gleich gewählt werden. Weiterhin zeigt sich, dass zur Beobachtung des
Zielsystems konstante Werte zur Sicherstellung der Konvergenz ausreichen, ρ demnach
unabhängig von x gewählt werden kann.

Die Matrix V(t) besteht aus den zwei Vektoren ν1(t) ∈ Rη und ν2(t) ∈ Rη:

V(t) =

[
ν1(t)
ν2(t)

]
=

[
ey(t){

ρ1sign(ν1(t))
}
eq

]
. (5-60)

Somit hat der hierarchische SMB für PKM die gleiche Struktur wie der von [DR11] vor-
geschlagene Beobachter, kann jedoch auch für Systeme mit mehr als einer Ausgangsgröße
verwendet werden.

Die Realisierbarkeit dieses Ansatzes kann mit Hilfe des Konvergenzbeweises aus [Dra92]
untersucht werden. Dort wird gezeigt, dass die Konvergenz der geschätzten Ausgangsgrö-
ßen und ihrer Ableitungen der Konvergenz der beobachteten Zustände entspricht.

Gemäß [Dra92] ist zur Analyse der Konvergenz die zeitliche Ableitung der Differenz der
Abbildungen φ(z) und φ(ẑ), eφ = φ(z) − φ(ẑ), relevant. Betrachtet man zunächst nur eφ, so
ergibt sich mit (5-46) - (5-49)

eφ =

[
y − ŷ
ẏ − ˙̂y

]
=

[
ey

eẏ

]
.

Demnach gilt für die zeitliche Ableitung

ėφ =
[
ėT

y ėT
ẏ

]T
. (5-61)

Weiterhin gilt mit (5-50) und (5-52)

ėφ =
d
dt

(φ(z) − φ(ẑ))

= QB(z)ż − QB(ẑ)˙̂z (5-62)
= QB(z) ( fa(z) + fb(z)u) − QB(ẑ) ( fa(ẑ) + fb(ẑ)u) − ρ sign(V(t)) .

Für PKM ergibt sich damit unter Berücksichtigung von (2-19), (2-20) und (5-3) für die
ersten η Zeilen:

ėy = J−1(x)v − J−1(x̂)v̂ − ρ1sign(ey) = q̇(x, v) − q̇(x̂, v̂) − ρ1sign(ey). (5-63)
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Für ρ1 ≥ max |q̇(x, v) − q̇(x̂, v̂)| und ey → 0 oszilliert der Wert von ėy mit theoretisch
unendlicher Frequenz um null, es stellt sich demnach ein Gleitzustand ein, dessen äqui-
valenter Wert gleich null ist:

{ėy}eq = 0 = q̇(x, v) − q̇(x̂, v̂) − {ρ1sign(ey)}eq︸          ︷︷          ︸
ν2

. (5-64)

In (5-64) ist zu erkennen, dass für PKM der äquivalente Wert ν2 im Gleitzustand der
Differenz aus den Aktorgeschwindigkeiten eẏ entspricht:

ν2 =
{
ρ1sign(ey)

}
eq

= q̇(x, v) − q̇(x̂, v̂) = eẏ. (5-65)

Die Gleichungen des zweiten Teils von ėφ gemäß (5-62) sind umfangreich, daher wird an
dieser Stelle auf eine Formulierung verzichtet. Das Ergebnis kann wie folgt zusammen-
gefasst werden:

ėẏ = q̈(z, u) − q̈(ẑ, u) − ρ2sign(eẏ). (5-66)

Hier entsprechen q̈(z, u) und q̈(ẑ, u) den Aktorbeschleunigungen. Wie zuvor entsteht auch
hier ein Gleitzustand für eẏ → 0, falls ρ2 hinreichend groß, d. h. ρ2 ≥ max |q̈(z, u) − q̈(ẑ, u)|,
gewählt wird, und es gilt {ėẏ}eq = 0.

Somit wurde gezeigt, dass der Gleitzustand bei ausreichend großer Wahl von ρ1 und ρ2

sukzessiv in zwei Stufen auftritt. Für das Erreichen des letzten Gleitzustands gilt eφ = 0,
d. h. der Ausgangsfehler konvergiert. Gemäß [Dra92] ist damit aufgrund der bereits nach-
gewiesenen lokalen Beobachtbarkeit auch die Konvergenz des Schätzfehlers ez und damit
eine korrekte Zustandsbeobachtung gewährleistet. Für eine initiale Wahl der Beobach-
terverstärkungen ρ1 und ρ2 können beispielsweise Annahmen für Anfangsauslenkungen
getroffen werden. Anschließend sind die Verstärkungen mit Hilfe von Simulationen itera-
tiv anzupassen.

Bei der Implementierung des hierarchischen SMB hat es sich als zweckmäßig erwiesen,
auch die Signum-Funktionen durch äquivalente Werte zu ersetzen. Die Beobachterdiffe-
rentialgleichung lautet dann

˙̂z = fa(ẑ) + fb(ẑ)u + Q−1
B (ẑ)ρ{sign(V(t))}eq (5-67)

mit

ρ{sign(V(t))}eq =

[
ρ1{sign(ν1)}eq,δ1

ρ2{sign(ν2)}eq,δ2

]
(5-68)

=

 ρ1{sign(ey)}eq,δ1

ρ2

{
sign(ρ1{sign(ey)}eq,δ1)

}
eq,δ2

 ,
wobei der Index δi das jeweils verwendete δ zur Berechnung der äquivalenten Werte nach
(5-57) kennzeichnet.
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Störbeobachtung durch Nutzung der äquivalenten Werte
In [Spu08] wird gezeigt, wie durch Nutzung der äquivalenten Werte Zusatzinformationen
z. B. über Störungen oder Fehler generiert werden können. Dieser Ansatz lässt sich zur
Ermittlung der Störkraft bei der Regelung von PKM nutzen, vgl. [FOT14]. Dazu wird
zunächst angenommen, dass eine Störung sq(t), sq ∈ R

η, die als begrenzt angenommen
werden darf, in der Fehlergleichung (5-66) auftritt. Diese kann bspw. durch unbekannte
Kräfte oder Modellungenauigkeiten hervorgerufen werden. Es gilt dann

ėẏ = q̈(z, u) − q̈(ẑ, u) + sq(t) − ρ2sign(eẏ). (5-69)

Wie bereits gezeigt wurde, konvergiert der Beobachter unabhängig von sq, falls ρ2 hin-
reichend groß gewählt wird. Dann gilt z ≡ ẑ und somit q̈(z, u) = q̈(ẑ, u). Es ergibt
sich

{ėẏ}eq = 0 = sq(t) − {ρ2sign(ν2)}eq =⇒ sq(t) = {ρ2sign(ν2)}eq.

Die so bestimmte Störung kann als Beschleunigung in Gelenkkoordinaten interpretiert
und mit

τ̂q,d = JT (x̂)M(x̂)J(x̂)sq(t) (5-70)

in die gesuchte Kraft zur Störgrößenkompensation umgerechnet werden. Dieser Ansatz
eignet sich, wie in [FOT14] gezeigt wurde, zur Schätzung begrenzter Störkräfte wie z.
B. der Reibkräfte in den Aktoren. Er versagt allerdings bei Erreichen eines mechanischen
Anschlags, da dort die geschätzten Störkräfte prinzipiell beliebig groß werden können und
diese nicht in der Beobachterdifferentialgleichung enthalten sind. Damit haben sie keinen
keinen Einfluss auf die Zustandsgrößen x̂ und v̂, die weiterhin nur aus den gemessenen
Aktorkräften und -wegen geschätzt werden Das führt aufgrund der Höhe der Störkräfte
im Anschlag zu Fehlschätzungen.

Zustands- und Störbeobachtung durch Modellerweiterung
Der zuvor beschriebene Ansatz zur Zustandsbeobachtung kann, analog zum Kalman-
Filter, um weitere Zustände zur Störbeobachtung erweitert werden. Die Gleichungen des
erweiterten SMB für PKM lauten in diesem Fall

˙̂zd = fa,d(ẑd) + fb,d(ẑd)u + Q−1
B,d(ẑd)ρd{sign(Vd(t))}eq (5-71)

ŷ = gd(ẑq),

mit dem bereits beim Kalman-Filter verwendeten erweiterten Zustandsvektor ẑd,

ẑd =
[
x̂T v̂T ∆ ˙̂vT

]T
. (5-72)

Für fa,d(ẑd), fb,d(ẑd) und gd(ẑd) gelten (5-28)-(5-30). Die gesuchten Störkräfte in Gelenk-
koordinaten können mittels (5-23) aus ẑq,d berechnet werden. Die Beobachtbarkeitsmatrix
wurde ebenfalls bereits mit (5-32) angegeben. Formal ist die Bedingung (5-51) zur Ver-
wendbarkeit des SMB-Ansatzes abermals nicht erfüllt, da das Produkt

QB,d(zd) · fb,d(zd) =


0

J−1(x)M−1(x)J−T (x)
∂q̈(zd ,u)
∂v M−1(x)J−T (x)

 , (5-73)
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nicht unabhängig vom Zustand zd ist. In der Praxis konvergiert jedoch auch der um die
Störbeobachtung erweiterte SMB. Im vorangegangenen Abschnitt wurde bereits erläu-
tert, dass der Term J−1(x)M−1(x)J−T (x) der inversen Massenmatrix in Gelenkoordinaten
M−1

q (x) entspricht. Diese ändert sich im effektiven Arbeitsraum nicht grundsätzlich. Für
den Term ∂q̈(zd, u)/∂v gilt ähnliches. Er beschreibt prinzipiell die Änderung der Beschleu-
nigung in Gelenkkoordinaten mit der globalen Geschwindigkeit v. Diese Änderungsrate
ist zwar abhängig vom jeweiligen Arbeitspunkt, die globalen Zusammenhänge bleiben
aber durch die kinematische Struktur der PKM und den eingeschränkten Arbeitsraum
ähnlich, sodass diese Änderungsrate und damit die Einträge der letzten sechs Zeilen des
Produkts ∂

∂zd

(
QB,d(zd) · fb,d(zd)

)
als klein angenommen werden können.

Für die erweiterte Matrix der Beobachterverstärkungen gilt

ρd =

ρ1 · Iη×η 0 0
0 ρ2 · Iη×η 0
0 0 ρ3 · Iη×η

 . (5-74)

Analog zu (5-68) wird der um η Zeilen erweiterte Vektor der äquivalenten Werte der
Schaltfunktionen, {sign(Vd(t))}eq, in hierarchischer Form zu

ρd{sign(Vd(t))}eq =

ρ1{sign(ν1)}eq,δ1

ρ2{sign(ν2)}eq,δ2

ρ3{sign(ν3)}eq,δ3

 (5-75)

=


ρ1{sign(ey)}eq,δ1

ρ2

{
sign(ρ1{sign(ey)}eq,δ1)

}
eq,δ2

ρ3

{
sign(ρ2

{
sign(ρ1{sign(ey)}eq,δ1)

}
eq,δ2

)
}

eq,δ3

 ,
gewählt. Die zur Quantisierung der Verstärkungen ρ1 und ρ2 verwendeten Gleichungen
(5-63) und (5-66) behalten ihre Gültigkeit. Die Berechnungsvorschrift für den dritten
Gleitzustand kann als

ėÿ =
...q(zd, u) − ...q(ẑd, u) − ρ3sign(eÿ) (5-76)

zusammengefasst werden. Ein Gleitzustand in ėÿ = 0 ist demnach gesichert, falls ρ3 ≥

max|q̈max(zd, u) − ...q(ẑd, u)| gewählt wird.

Auslegung für das Zielsystem
Nach (5-63) soll stets ρ1 ≥= q̇(x, v)−q̇(x̂, v̂) sein. Dies entspricht im Extremfall dem zwei-
fachen der maximalen Absolutgeschwindigkeit in Gelenkkoordinaten q̇max, es ist demnach
naheliegend,

ρ1 = 2 · q̇max (5-77)

zu wählen. Für das Zielsystem ist die Aktorgeschwindigkeit durch den Ventilvolumen-
strom bzw. durch die Ventilquerschnitte und den maximalen Differenzdruck über eine
Steuerkante begrenzt. Mit (2-29) und unter Berücksichtigung der Tatsache, dass jeder Zy-
linder von zwei Servoventilen gesteuert wird, gilt

q̇max = Azyl · Qmax = 2 · Azyl · Qnenn,S V

√
∆pS ,max

∆pnenn
. (5-78)
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Die Verstärkung ρ2 wird in ähnlicher Weise durch Berücksichtigung der maximalen Ak-
torbeschleunigungen in der Ausgangslage x0 gewählt:

ρ2 = 2 · q̈max = 2 ·max(M−1
q (x0)τq,max) (5-79)

mit τq,max = ∆pmax · Azyl · 16×1.

Zur Bestimmung von ρ3 ist mit ...qmax die maximale Änderungsrate der Aktorbeschleuni-
gung maßgeblich. Sie ist proportional zur Änderungsrate der Aktorkraft und kann durch
die Simulation einer Sprungantwort von 0 auf q̈max mit der Dynamik von GAkt(s), vgl.
(2-58), ermittelt werden. Durch simulative Untersuchungen an einem Modell mit sechs
FHG und idealisierter Aktorik hat sich für das Zielsystem gezeigt, dass ρ3 < 2 · ...qmax

gewählt werden muss, da sonst der Effekt des Ratterns sehr groß ist. Ein Wert von

ρ3 = 0, 5 · ...qmax (5-80)

hat sich als geeignet erwiesen.

Die verbleibenden Entwurfsfreiheitsgrade liegen in der Wahl der δi zur Berechnung der
äquivalenten Werte in (5-68) und (5-75) nach (5-57). Die einzelnen δi repräsentieren dabei
die Genauigkeit der äquivalenten Werte. Zur Bestimmung von δ1 zur Berechnung von ν2

und δ2 zur Berechnung von ν3 kann die gewünschte Genauigkeit für die Geschwindigkeits-
und Beschleunigungsschätzung verwendet werden. Ein weiterer intuitiver Ansatz ist, das
Verhältnis von δ1, δ2 und δ3 zueinander etwa gleich dem Verhältnis von ρ1 ρ2 und ρ3 zu-
einander zu wählen. Ausgehend von diesen Anfangswerten können durch Simulationen
iterativ Anpassungen vorgenommen werden. Für das Zielsystem erwiesen sich folgende
Werte als geeignet:

ρ1 = 2 · q̇max = 6, 79 m/s

ρ2 = 2 · q̈max = 945, 25 m/s2

ρ3 = 0, 5 · ...qmax = 1, 3 · 105 m/s3

δ1 = 0, 001 m
δ2 = 0, 35 m/s

δ3 = 139 m/s2.

5.3.3 Zustands- und Störbeobachtung im JS

Die Differentialgleichung für den SMB zur reinen Zustandsbeobachtung im JS lautet

˙̂zq = faq(ẑq) + fbqu + Q−1
Bq(ẑq)ρ{sign(V(t))}eq. (5-81)

Für faq(ẑq) und fbq gelten (4-15) und (4-16). Da die zeitlichen Ableitungen des Systemaus-
gangs q den Zuständen entsprechen, ist die Beobachtbarkeitsmatrix eine Einheitsmatrix,
vgl. Abschnitt 5.1.1. Es gilt

QBq = I2η×2η.

Das Produkt

QBq · fbq =

[
0

M−1
q (x)

]
(5-82)
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ist damit über das DKP auch abhängig vom Zustand zq. Dennoch ist eine Konvergenz
des SMB nach (5-51) zu erwarten, da sich auch Mq(x) im gesamten Arbeitsraum nicht
grundlegend ändert.

Für den um die Störschätzung erweiterten SMB gilt

˙̂zq,d = faq,d + fbq,d(ẑq,d)u + Q−1
Bq,d(ẑq,d)ρd{sign(Vd(t))}eq, (5-83)

ŷ =
[
Iη×η 0 0

]
ẑq,d.

Für die Terme faq,d(zq,d) und fbq,d gelten (5-40) und (5-41). Die gesuchten Störkräfte in
Gelenkkoordinaten können mittels (5-42) aus ẑq,d berechnet werden. Für die erweiterte
Beobachtbarkeitsmatrix ergibt sich

QBq,d =

Iη×η 0 0
0 Iη×η 0
0 −M−1

q (x)CCC,q(x, v) Iη×η

 . (5-84)

Damit bleibt das Produkt QBq,d · fbq,d,

QBq,d · fbq,d =

 0
M−1

q (x)
−M−1

q (x)CCC,q(x, v)M−1
q (x)

 , (5-85)

über das DKP abhängig von Zustand zq,d. Dennoch ist Konvergenz zu erwarten, da aber-
mals (5-51) zumindest annähernd erfüllt wird. Da der Ausgang des SMB im JS dem des
SMB im OS entspricht, können die Entwurfsparameter ρi und δi, i = 1 . . . 3 entsprechend
übernommen werden.

5.4 Simulationsbasierter Vergleich der Beobachter

Mit Hilfe von Simulationen mit den unterschiedlichen Beobachterkonzepten kann gezeigt
werden, dass prinzipbedingt nur Beobachter mit Störschätzung für die Einbindung in die
Regelung von PKM mit Aktoren, die einen begrenzten Stellbereich aufweisen, sinnvoll
sind. Beim Zielsystem sind die Hübe der einzelnen Zylinder begrenzt – befindet sich ein
Zylinder im Anschlag, so liefern die Beobachter ohne Störanteil falsche Ergebnisse. Das
ist der Grund dafür, dass für die im Folgenden beschriebene simulationsbasierte Analy-
se nur Beobachter mit Störschätzung berücksichtigt werden, denn die Anschläge sind im
Beobachtermodell nicht enthalten. Ein weiterer Grund für die Verwendung des Störan-
teils ist das Reaktionsvermögen auf weitere Störungen im Betrieb, die möglicherweise
unvorhergesehen auftreten und daher nicht im Modell vorhanden sind.

Die Analyse der Beobachtergüte erfolgt mit Hilfe eines Streckenmodells, welches mit
einer fb-Regelung im OS geregelt wird. Dies geschieht unter der Annahme von idea-
lem Feedback, d. h. die zur Regelung erforderlichen Zustandsgrößen werden direkt dem
Streckenmodell entnommen, um einen Einfluss des betrachteten Beobachters auf die Re-
gelgüte auszuschließen.

Durch die simulationsbasierte Analyse der Beobachterkonzepte sollen folgende Fragen
beantwortet werden:
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1. Welches Beobachterkonzept liefert die beste Schätzgüte?

2. Sind Vereinfachungen zur Verringerung des Rechenaufwands möglich?

3. Welchen Einfluss haben verschiedene Auslegungen der einzelnen Beobachter auf
die Schätzgüte?

4. Wie wirken sich Modellungenauigkeiten aus?

5. Welchen Einfluss haben verrauschte und verzögerte Messsignale auf die Schätzgü-
te?

5.4.1 Setup, Beobachtervarianten und Nomenklatur

Für die Erzeugung der nachfolgend aufgeführten Simulationsergebnisse wurde das bereits
für die Analyse der Regelungskonzepte (vgl. Abschnitt 4.4) genutzte Streckenmodell ver-
wendet. Es besitzt eine Masse, sechs FHG und berücksichtigt die Nichtlinearitäten durch
die hydraulische Aktuierung. Weiterhin lassen sich optional die zur Beobachtung verwen-
deten Messdaten mit einem Rauschen überlagern und durch ein Totzeitglied verzögern,
um so eine realitätsnahe Simulation zu ermöglichen.

Zur Realisierung der Beobachter im JS wird die benötigte Endeffektorposition aus den
geschätzten Aktorlängen q̂ mit Hilfe des iterativen Newton-Raphson-Verfahrens (vgl. Ab-
schnitt 3.2.1) berechnet. Als Abbruchkriterium dient das Erreichen der geforderten Ge-
nauigkeit (qi − qi(x̂)) ≤ 1 · 10−5 m ∀ i = 1 . . . 6) bzw. der maximal zugelassenen Anzahl
von drei Iterationen. Die Begrenzung der zulässigen Iterationszahl dient dabei der Garan-
tie der Echtzeitfähigkeit. Es hat sich gezeigt, dass bei einer Berechnungsschrittweite von
h = 0, 2 ms für das Zielsystem in der Regel ein bis zwei Iterationen zum Erreichen der
vorgegebenen Genauigkeit genügen.

Zur Berechnung von x̂ für die Beobachter im JS werden nicht direkt die Messdaten qmess,
sondern die geschätzten Aktorlängen q̂ verwendet. Dies hat zwei Gründe: Zum einen
kann auf diese Weise der Einfluss von ggf. verrauschten Messsignalen minimiert werden,
zum anderen besteht, im Falle von Modellunsicherheiten oder Verzögerungen, sonst die
Gefahr, dass die geschätzten Größen x̂ und v̂ nicht phasenrichtig zusammen passen.

Im Zuge der Arbeiten am Simulationsmodell trat die Frage auf, wie schnell ein Beob-
achter für die optimale Umsetzung der betrachteten Regelungskonzepte sein muss. Diese
Frage lässt sich rein analytisch kaum beantworten. In [Föl13, S. 355] wird dazu lediglich
die Faustregel ausgegeben, dass die Eigenwerte eines Beobachters in der komplexen Ebe-
ne weiter links liegen sollten als die der Regelung, zu deren Realisierung er dient (vgl.
auch Abschnitt 5.2, S. 93). Daher wurden alle Beobachtervarianten mit verschiedenen
Parametrierungen implementiert, die unterschiedliche Dynamiken repräsentieren.

Bei den Sliding-Mode-Beobachtern lässt sich dies sehr einfach umsetzen – hier ist die
Dynamik abhängig von den Verstärkungen ρi und den zur Berechnung der äquivalenten
Werte verwendeten Parameter δ1, δ2 und δ3. Eine Erhöhung letzterer bewirkt eine Ver-
langsamung der Beobachtung. Es wird daher der Faktor kS MB definiert, mit dem die ur-
sprünglich bestimmten Werte (vgl. Abschnitt 5.3.2) multipliziert werden. Es gilt somit
δ1k = kS MB · δ1, δ2k = kS MB · δ2 und δ3k = kS MB · δ3.
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Bei den Kalman-Filtern ist die Berücksichtigung unterschiedlicher Auslegungen komple-
xer. Hier muss jeweils ein neuer Entwurf unter Betrachtung der resultierenden Eigenwerte
durchgeführt werden. Es ergeben sich unterschiedliche Beobachtermatrizen, für die Be-
obachtung im OS die vier Matrizen Ld,1, Ld,2, Ld,3, Ld,4, für die Beobachtung im JS LJS ,d,1,
LJS ,d,2, LJS ,d,3, LJS ,d,4. Die Matrizen mit dem Index 3 entsprechen dabei der ursprünglichen
Auslegung für das Zielsystem, die in Abschnitt 5.2 dokumentiert ist. Die Indizes 1 und 2
stehen für eine schnellere Auslegung, der Index 4 für eine langsamere. Bild 5-4 zeigt die
Eigenwerte der verschiedenen Beobachtervarianten, jeweils für das um die Arbeitsraum-
mittelstellung x0 und die Randpunkte xi linearisierte System. Auf der linken Seite finden
sich die Eigenwerte der Kalman-Filter im OS, auf der rechten Seite die der Filter im JS.
Bei letzteren liegen wiederum die Eigenwerte für alle xi übereinander, da die Matrizen
Alin,q,d (5-44) und Clin,q,d (5-45) für die um xi linearisierten Systeme für v = 0 unabhängig
von x sind.

Auf der Zielhardware sollen die Beobachter mit dem expliziten Euler-Verfahren (auch:
Rechteckvorwärtsintegration) bei einer Schrittweite von h = 0, 2 ms realisiert werden
können. Dieses Integrationsverfahren arbeitet gemäß [HW91, S. 17] stabil, wenn das Pro-
dukt aller Eigenwerte λi und der Schrittweite h innerhalb eines Kreises mit dem Radius
1 und dem Mittelpunkt [−1; 0] in der komplexen Ebene liegt. Etwas anschaulicher wird
dieses Kriterium durch eine Umformulierung: Das Verfahren arbeitet stabil, wenn alle Ei-
genwerte λi innerhalb eines Kreises mit dem Radius h−1 und dem Mittelpunkt [−h−1; 0]
liegen. Zur Abschätzung der Stabilität der Kalman-Filter ist ein solcher Kreis jeweils in
die einzelnen Diagramme in Bild 5-4 eingezeichnet. An der Lage der Eigenwerte ist zu
erkennen, dass die einzelnen Beobachterauslegungen nach unten hin zu langsameren Ei-
genwerten führen. Weiterhin liegen alle Eigenwerte innerhalb des Konvergenzbereichs.

Die Erfüllung des o. g. Stabilitätskriteriums ist jedoch kein endgültiger Beweis dafür,
dass die Beobachter auf der Zielhardware tatsächlich stabil arbeiten, da lediglich Lineari-
sierungen betrachtet werden und die eigentlich zu lösenden Differentialgleichungen auch
nichtlineare Anteile enthalten. Es liefert jedoch zumindest einen ersten Anhaltspunkt. Die
Konvergenz und auch die Genauigkeit der Beobachter muss simulativ untersucht wer-
den; daher wurden die nachfolgend diskutierten Simulationsergebnisse ebenfalls mit dem
Euler-Integrationsverfahren bei einer Schrittweite von h = 0, 2 ms erzeugt. Somit sind
unter diesem Aspekt die gleichen Voraussetzungen geschaffen, wie sie am Zielsystem
vorhanden sind.

Für die Bezeichnung der verschiedenen Beobachtervarianten wurde abermals eine No-
menklatur eingeführt. Sie ist in Tabelle 5-1 gelistet.

Kürzel Beschreibung
KF-JS-1 Kalman Filter im JS, Auslegung 1
SMB-JS-1 Sliding Mode Beobachter im JS; Auslegung mit kS MB = 1
KF-OS-1 Kalman Filter im JS, Auslegung 1
SMB-OS-1 Sliding Mode Beobachter im JS; Auslegung mit kS MB = 1

Tabelle 5-1: Nomenklatur für die simulationsbasierte Analyse der Beobachter
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5.4.2 Simulationen und Analysen

Zunächst geht es in Analogie zum Vorgehen bei der Regelungsanalyse um den Einfluss
der rechenintensiven Terme zur formal korrekten Realisierung der Beobachter. Das betrifft
zum einen den bei der Regelung ebenfalls vorhandenen J̇-Anteil in den Beobachtermo-
dellen im JS, zum anderen die zustandsabhängige Berechnung der inversen Beobachter-
matrizen Q−1

B,d(ẑ) bzw. Q−1
Bq,d(ẑ), die zur korrekten Implementierung der SMB erforderlich

sind. In Tabelle 5-2 sind alle relevanten Berechnungszeiten aufgeführt. Die Zeiten sind un-
abhängig von der Auslegung der einzelnen Beobachter, denn diese beeinflusst die Anzahl
der erforderlichen Rechenroutinen nicht. Es ist zu erkennen, dass durch eine Vernachläs-
sigung bzw. Konstantsetzung der rechenintensiven Terme erheblich Rechenzeit gespart
werden kann. Das gilt v. a. für den SMB im OS: Hier schlägt die kontinuierliche Be-
rechnung von Q−1

B,d(ẑ) mit 100 µs zu Buche, was innerhalb einer Abtastregelung, die mit
einer Schrittweite von h = 0, 2 ms = 200 µs arbeitet, bereits der Hälfte der verfügbaren
Rechenzeit entspricht.

KF-JS, ohne-Jp 16 µs
KF-JS 57 µs
SMB-JS, ohne-Jp, mit Q−1

Bq,d = I18×18 =const. 18 µs
SMB-JS, ohne-Jp, mit Q−1

Bq,d = Q−1
Bq,d(ẑ) 27 µs

SMB-JS 67 µs
KF-OS 20 µs
SMB-OS mit Q−1

B,d = Q−1
B,d(ẑ0) =const. 20 µs

SMB-OS 120 µs

Tabelle 5-2: Rechenzeiten der Regel- und Filterkonzepte auf der Zielhardware

Zustands- und Störschätzgüte bei idealer Modellübereinstimmung
In der Simulation wurde der Regelung abermals eine sinusförmige Bewegung mit der
Frequenz 50 Hz um den Punkt xTCPR , der am Rand des Arbeitsraums liegt (vgl. (4-68)),
vorgegeben. Es kann angenommen werden, dass der Fehler, der durch die Konstantset-
zung der inversen Beobachtermatrizen in den SMB hervorgerufen wird, hier am größten
ist. In Bild 5-5 sind die geschätzten Positionen und Orientierungen für alle Beobachter
der langsamsten Auslegungsstufe mit und ohne rechenintensive Terme dargestellt. Diese
Auslegungsstufe wurde gewählt, da in diesem Fall die Reaktion auf Modellabweichungen
am schlechtesten sein dürfte.

Die Zustände aller sieben betrachteten Beobachter sind in schwarz dargestellt, die Stre-
ckenzustände in grau. Es sind kaum Unterschiede zwischen den Linien erkennbar, weder
zwischen den Zuständen aus der Strecke und den beobachteten Zuständen, noch zwischen
den Zuständen der einzelnen Beobachter, ob mit oder ohne Vereinfachungen. Gleiches gilt
auch für alle anderen, schnelleren Auslegungen, deren Zustandsverläufe jedoch aus Grün-
den der Übersichtlichkeit nicht dargestellt sind. Demnach lässt sich festhalten, dass alle
Beobachter eine hohe Schätzgüte bezüglich der Zustandsgrößen aufweisen. Das gilt auch
für diejenigen, bei denen die rechenintensiven Terme vernachlässigt bzw. konstantgesetzt
sind. Daher werden im Folgenden nur noch letztere betrachtet.
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Bild 5-5: Simulationsergebnisse zur Zustandsbeobachtung bei sinusförmiger Anregung
mit 50 Hz in xN um xTCP,R

Die Güte der Störbeobachtung lässt sich modellbasiert gut analysieren. In der Simulation
ist der Störkraftverlauf bekannt und somit kann ein Soll-Ist-Vergleich durchgeführt wer-
den. Die Art der Störkraftmodellierung im verwendeten Streckenmodell eignet sich dabei
besonders gut: Die Störkräfte bestehen aus den Reibkräften, die in den einzelnen Aktoren
wirken und gemäß (4-67) modelliert sind. Der richtungsabhängige Anteil ermöglicht auf-
grund seines sprunghaften Verhaltens bei Richtungswechsel eine Analyse der Schätzdy-
namik, der Gesamtverlauf die Bewertung der Schätzgenauigkeit. Die Nichtlinearität des
Streckenmodells bzgl. der hydraulischen Aktorik stellt für den Beobachter keine Modell-
abweichung dar, da das Eingangssignal des Beobachters, die aus den Differenzdrücken
berechneten Aktorkräfte τq,i, direkt abgegriffen wird, wie es auch in der Realität der Fall
ist.

Im Gegensatz zur Zustandsbeobachtung weisen die verschiedenen Beobachter in ihren
unterschiedlichen Auslegungen durchaus Differenzen in der Störbeobachtung auf. Dies
demonstrieren die in Bild 5-6 gezeigten Störkraftverläufe, die mit dem gleichen Simula-
tionssetup wie Bild 5-5 erzeugt wurden. Es sind jeweils die Störkraftverläufe für Aktor
1 und Aktor 3 geplottet. Aktor 1 steht dabei exemplarisch für die am meisten belasteten
Aktoren, Aktor 3 für die am wenigsten belasteten. Aufgrund der systembedingten Sym-
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Bild 5-6: Simulationsergebnisse zur Störkraftschätzung mit verschiedenen Beobachtern
bei sinusförmiger Anregung mit 50 Hz in xN um xTCP,R
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metrie sind die Verläufe für die Aktoren 6 und 4 paarweise sehr ähnlich (befände sich der
Schwerpunkt der Endeffektorplattform genau in der Mitte, so wären sie identisch bzw.
vorzeichenvertauscht; da der Schwerpunkt im Zielsystem jedoch leicht außermittig liegt,
ist dies nicht exakt der Fall). In einem Diagramm sind jeweils die Verläufe für einen Be-
obachter unterschiedlicher Auslegung dargestellt. Die oberen zwei Graphen zeigen die
vom Kalman-Filter im JS beobachteten Störkraftverläufe. Deutlich zu sehen ist die un-
terschiedliche, mit der Auslegungsstufe korrelierende Schnelligkeit. Entsprechend ist der
Beobachter der Auslegung 1 deutlich schneller als derjenige der Auslegung 4.

Das dynamische Verhalten der SMB im JS in ihrer Gesamtheit ist besser. Abermals zu
erkennen ist die Korrelation zwischen Auslegungsstufe und Schnelligkeit. Aus Gründen
der Übersicht sind nur die Auslegungsstufen 1, 2, 3 und 5 geplottet, die mit kS MB = 4
beobachteten Verläufe befinden sich zwischen denen von kS MB = 3 und 5.

Das Verhalten der Kalman-Filter im OS unterscheidet sich kaum von denjenigen im JS.
Auch die SMB im OS weisen weitgehend das gleiche Verhalten auf, wie diejenigen im
JS. Allerdings ist bei der schnellsten Auslegung ein leicht verändertes Sprungverhalten zu
erkennen; dieses Phänomen ist auf Konstantsetzung von Q−1

B,d zurückzuführen. Wird diese
Matrix zustandsabhängig berechnet, so zeigen die SMB im OS genau das gleiche Verhal-
ten, wie derjenigen im JS. Dies lässt sich durch entsprechende Simulationen zeigen. Das
ist darauf zurückzuführen, dass der einzige zustandsabhängige Term in der Matrix QBq,d

das Produkt M−1
q (x) · CCC,q(x, v) ist. Die Matrix CCC,q(x, v) hat zum einen generell nur

Einträge , 0 für v , 0, zum anderen sind die Einträge für das Zielsystem stets klein, so-
dass die Nullsetzung des o. g. Produkts keine bemerkbare Auswirkung hat, während sich
die Einträge in QB,d für den Beobachter im OS durchaus ändern, wenn auch in geringem
Maße.

Einfluss von Modellungenauigkeiten
In diesem Abschnitt bleiben noch zwei zu untersuchende Effekte: Der Einfluss von Mo-
dellungenauigkeiten und Sensoreffekten auf die Beobachterzustände. Zur Untersuchung
des ersten Aspekts wurden nach der in Abschnitt 4.3.2 beschriebenen Methode simulativ
Frequenzkennlinien für Bewegungen um die Mittellage xTCP,0 erzeugt. In Bild 5-7 sind die
Ergebnisse für eine Abweichung der Masse des Streckenmodells um 20 % zu dem Wert,
der in der Regelung und Beobachtung berücksichtigt ist, dargestellt. Es enthält Schätzer-
gebnisse für den SMB im JS der Auslegungen kS MB = 1 und kS MB = 5, stellvertretend für
die schnellsten und langsamsten Beobachtervarianten. Zu erkennen ist, dass die Schätzgü-
te des schnellen Beobachters kaum von der Modellabweichung beeinflusst wird. Für die
langsamere Variante zeigen sich jedoch im höheren Frequenzbereich Abweichungen von
der Ideallinie, deren Auswirkungen im Zusammenspiel mit der Regelung zu analysieren
sind. Auffällig ist zudem die Phase von ca. 0, 5◦ bzw. 1◦ im niedrigen Frequenzbereich.
Diese ist auf die Genauigkeitsschranke des Newton-Raphson-Verfahres zurückzuführen,
die wie eine Abtastung wirkt. Vor allem bei Signalen mit kleinen Geschwindigkeiten und
Amplituden, wie es für diesen Bereich der Fall ist, ergibt sich somit das typische Verhal-
ten eines Abtast-Halteglieds, das im Frequenzbereich zu einer Phasenverschiebung führt.
Inwiefern sich dieser Effekt auf die Regelung auswirkt, wird in Abschnitt 6 untersucht.

Bei der Betrachtung von Zeitsignalen für eine Anregungsfrequenz von 50 Hz für Bewe-
gungen um die Arbeitsraumrandposition xTCP,R lassen sich für alle Beobachtervarianten
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nur marginale Unterschiede erkennen, und da die SMB im JS nach der obigen Analy-
se das beste Schätzverhalten aufweisen, wurden sie stellvertretend für die Erstellung der
Frequenzkennlinien ausgewählt. Eine Darstellung der geschätzten Störkräfte für diesen
Versuch bringt keine weiteren Erkenntnisse, da sich keine „Sollstörkraftverläufe“ ange-
ben lassen. Die geschätzten Störkräfte werden dominiert durch die Modellabweichung.
Ihr Einfluss auf die Regelgüte muss ebenfalls im Zusammenspiel mit einer möglichen
Regelung analysiert werden.

Einfluss von Sensoreffekten
Schließlich ist noch die Frage nach dem Einfluss von verrauschten und verzögerten Mess-
signalen offen. Dazu wurden abermals Simulationen, allerdings ohne Modellabweichun-
gen, für die konstante Einregelung des Arbeitsraumrandpunkts xTCP,R durchgeführt. Die
simulierten Sensor- und Verzögerungseffekte entsprechen den am Zielsystem auftreten-
den und wurden wie folgt in Matlab/Simulink modelliert:

• Verzögerung des Wegmesssignals (0, 25 ms verursacht durch das Messprinzip):
Block Transport Delay, Parameter Time delay 0, 25 ms

• Überlagerung des Wegmesssignals mit einem am Zielsystem gemessenen Rausch-
profil (Rauschamplituden ca. ±5 · 10−6 m)

• Überlagerung des Differenzdrucksignals mit einem am Zielsystem gemessenen
Rauschprofil (Rauschamplituden ca. ±0, 5 bar)

Eine Übersicht über den Einfluss der Sensoreffekte für den gesamten relevanten Frequenz-
bereich zeigen die in Bild 5-8 dargestellten Frequenzgänge, in denen die Frequenzkenn-
linien für den SMB im JS der Auslegungsstufen 1 und 5 gezeigt sind. Zu erkennen ist
die Phasenverschiebung, die für die schnelle Auslegung exakt das Verhalten eines Tot-
zeitgliedes, welches der Verzögerung durch die Wegmessung entspricht, widerspiegelt.
Diesem Effekt kann begegnet werden, indem diese Verzögerung als Totzeitglied entspre-
chend hinter den Ausgang des Beobachtermodells geschaltet wird – dann ergeben sich
die in Bild 5-9 dargestellten Frequenzkennlinien. Hier bleibt die Phase konstant bei null,
der negative Einfluss der Messverzögerung ist eliminiert. Da sich alle Frequenzkennlinien
nur marginal unterscheiden (in der Phase treten abermals die auf das Newton-Raphson-
Verfahren zurückzuführenden Effekte für niedrige Frequenzen auf, die bereits in Bild 5-7
gezeigt und diskutierten wurden), sind alle gemeinsam in einem Graphen dargestellt.

Diese Maßnahme kann prinzipiell für alle Beobachter ergriffen werden. Allerdings führt
sie bei den Kalman-Filtern im OS und JS der Auslegungen 1 und 2 dazu, dass die Si-
mulation nicht mehr stabil berechnet werden kann. Das ist dadurch zu begründen, dass
das zusätzliche Totzeitglied im Beobachter zu einer Verschiebung der Eigenwerte in den
instabilen Bereich des gewählten Integrationsverfahrens führt.

Der Einfluss der berücksichtigten Sensoreffekte auf die Beobachterzustände lässt sich
am besten bei der Einregelung einer konstanten Position beurteilen. Um auch eventuelle
Auswirkungen der Linearisierungen zu berücksichtigen, wurde dazu wiederum die Ar-
beitsraumrandlage xTCP,R gewählt. Über den Soll-Istwertvergleich wirken die beobachte-
ten Positionen und Geschwindigkeiten direkt auf die Stellgröße. Da die Positionen durch
Integration aus den Geschwindigkeiten errechnet und damit Rauscheffekte geglätten wer-
den, ist es zweckmäßig, die beobachteten Geschwindigkeiten zu betrachten. Bild 5-10
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Bild 5-8: Frequenzgänge zur Zustandsschätzung unter der Berücksichtigung von Sensor-
effekten
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Bild 5-9: Frequenzgänge zur Zustandsschätzung unter der Berücksichtigung von Sensor-
effekten mit zus. Totzeitgliedern im Beobachter

zeigt entsprechend die beobachteten Geschwindigkeiten in x-Richtung für verschiedene
Beobachter. Für die Kalman-Filter sind die Auslegungsstufen 3 und 4 dargestellt, da sich
1 und 2, wie bereits erläutert, nicht simulieren lassen. Für die SMB wurden die Ausle-
gungsstufen 2, 3 und 5 berücksichtigt.

Zu erkennen ist, dass die Beobachter der langsamsten Auslegungsstufen zu ähnlichen
Verläufen führen. Für die Auslegungsstufe 3 sind jedoch die Amplituden bei den Kalman-
Filtern größer als für die SMB. Bei den SMB der Auslegungsstufe 2 wiederum sind die
Amplituden für die Realisierung im OS so groß, dass sie außerhalb des Darstellungsbe-
reichs liegen, während diejenigen des SMB im JS weitgehend innerhalb desselben liegen.
Dieser Effekt ist abermals auf die konstante Verwendung von Q−1

B,d zurückzuführen, denn
in der Arbeitsraummittellage tritt der Effekt nicht auf und die SMB im OS und JS verhal-
ten sich identisch.

Die letzte Betrachtung hat gezeigt, dass eine Verwendung von Beobachterauslegungen
< 3 zur Regelung des Zielsystems für keinen der betrachteten Beobachter sinnvoll ist.
Schnellere Auslegungen führen dazu, dass die Beobachter mit zusätzlichen Totzeitglie-
dern zur Approximation des Sensorverhaltens, wie im Fall der Kalman-Filter, entweder
gar nicht realisierbar sind oder dass die Zustandsgrößen von erheblich größeren Rausch-
amplituden überlagert werden.
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Bild 5-10: Simulationsergebnisse zur Übertragung von Sensorrauschen auf die Beobach-
terzustände
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5.4.3 Ergebnisse

Generell muss zwischen der Schätzgüte und -dynamik bei der Beobachtung der Zustands-
größen und derjenigen bei der Störbeobachtung unterschieden werden. Hinsichtlich der
Zustandsgrößen weisen alle betrachteten Konzepte im gesamten Arbeitsraum eine sehr
gute Schätzgüte und -dynamik auf. Das gilt auch bei der Vernachlässigung oder Kon-
stantsetzung von rechnenintensiven Termen. Bei der Berücksichtigung von Modellabwei-
chungen konnten kleine Ungenauigkeiten der langsameren Beobachter im höheren Fre-
quenzbereich festgestellt werden.

Alle Konzepte lassen sich prinzipiell um eine Totzeit zur Berücksichtigung der Messzeit
des Wegmesssystems, welches im Zielsystem verbaut ist, erweitern. Das führt allerdings
dazu, dass die schnelleren Kalman-Filter nicht mehr konvergieren. Von Rauschen überla-
gerte Sensorsignale übertragen sich zudem auf die Beobachterzustände, wobei hier eine
größere Beobachterdynamik größere Rauschamplituden zur Folge hat. Es hat sich heraus-
gestellt, dass für das Zielsystem die Verwendung von Auslegungsstufen < 3 nicht sinnvoll
ist.

Hinsichtlich der Störkraftschätzung ergibt sich ein anderes Bild: Die unterschiedlichen
Auslegungen beeinflussen vorwiegend und sehr stark ihre Dynamik. Es ist festzustellen,
dass sich die Vernachlässigung des J̇-Anteils bei den Beobachtern im JS gar nicht be-
merkbar macht. Allerdings führt die Konstantsetzung des Terms Q−1

b,d beim SMB im OS
zu kleinen Verhaltensabweichungen am Arbeitsrand. Diese sind jedoch so gering, dass
sie den höheren Rechanaufwand nicht rechtfertigen. Bezüglich der Störschätzdynamik
und -genauigkeit ist festzustellen, dass alle betrachteten Konzepte prinzipiell in der Lage
sind, Störkräfte zu beobachten. Unter den betrachteten Beobachtern weisen jedoch die
SMB eine höhere Dynamik auf als die Kalman-Filter. Dies ist aber nicht prinzip- sondern
auslegungsbedingt, sodass sich hier keine allgemeingültige Aussage formulieren lässt.
Grundsätzlich könnten die Kalman-Filter ebenfalls schneller ausgelegt werden. Für ei-
ne Konvergenz auch unter der Berücksichtigung der Totzeit durch das Wegmesssystem
müsste jedoch das Beobachtermodell auch für die Auslegung um ein Padé-Glied und die
entsprechende Anzahl von Zuständen erweitert werden.

Unter Berücksichtigung der Tatsache, dass für das Zielsystem eine Beobachterschnellig-
keit < 3 nicht sinnvoll ist, sollte die Störkraftbeobachtung lediglich zur Verbesserung
der Schätzgüte und für das korrekte Verhalten im Anschlag, nicht jedoch zu Störgrö-
ßenaufschaltung verwendet werden. Das ist dadurch zu begründen, dass auch die in der
Störbeobachtung schnelleren SMB für die Stufe 3 lediglich eine Dynamik aufweisen, die
mit einem Verzögerungsglied zweiter Ordnung mit einer Eckfrequenz von 80 Hz angenä-
hert werden kann. Das ist aufgrund der Phasenverschiebung nicht schnell genug für die
Verwendung zur Störgrößenaufschaltung.

Als Fazit lässt sich sagen, dass prinzipiell Kalman-Filter und SMB sowohl im OS als
auch im JS zur Zustands- und Störschätzung von PKM geeignet sind. Allerdings sind die
Beobachter im JS unter einem Aspekt vorteilhaft: Sie verhalten sich auch bei der Ver-
nachlässigung bzw. Konstantsetzung rechenintensiver Terme im gesamten Arbeitsraum
gleich, während unter diesem Aspekt für die Beobachter im OS Unterschiede für die Ar-
beitsraummittellage und Arbeitsraumrandpunkte nachgewiesen werden konnten.

Bezüglich der Auslegung sind die SMB in einigen Punkten von Vorteil. Betrachtet man
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zunächst die Beobachter im OS, so verlangt die Synthese eines Kalman-Filters ein zeit-
aufwändiges, iteratives Tuning der Gewichtungsmatrizen unter Berücksichtigung der sich
ergebenden Beobachtereigenwerte, welches viel Systemverständnis und Geduld erfor-
dert. Des Weiteren ist es schwierig, die Auswirkungen einzelner Parametervariationen
abzuschätzen – im vorliegenden Fall wären auch viele andere Auslegungen möglich. Das
Design des beschriebenen SMB-Ansatzes hingegen ist sehr einfach und geradlinig. Der
erste Aspekt ist bei den Beobachtern im JS nicht sehr stark ausgeprägt – hier müssen zur
Auslegung des Kalman-Filters lediglich drei Parameter festgelegt werden. Allerdings ist
auch hier die Beobachtersynthese mit vielen Iterationsschleifen und Unsicherheiten be-
legt, sodass die Synthese des SMB im Vergleich einfacher und geradliniger bleibt. Auch
im Vergleich der Störschätzdynamik und unter dem Aspekt der Empfindlichkeit gegen-
über Sensoreffekten haben sich die SMB als vorteilhaft gegenüber den Kalman-Filtern
erwiesen.

Zusammenfassend ist festzustellen, dass sich für den SMB im JS zur Zustandsschätzung
von PKM starke Vorteile gegenüber den übrigen betrachteten Beobachtervarianten of-
fenbart haben. Für die Analyse der beobachterbasierten Regelungen im nachfolgenden
Kapitel 6 wird daher vorwiegend diese Variante betrachtet.
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6 Beobachterbasierte Regelung

Nach den Untersuchungen zur Realisierung von Regelungen und Beobachtern für PKM
und der simulationsbasierten Analyse ihres Verhaltens sollen nun die Ergebnisse und Er-
kenntnisse aus den vorangegangenen Kapiteln zusammengeführt werden. Die beobach-
terbasierte Regelung wird auf der Basis von Simulationen, aber auch mit Hilfe von realen
Testergebnissen analysiert. Die Untersuchung hat das Ziel, folgende Fragen zu beantwor-
ten:

1. Welchen Einfluss hat die Dynamik des Beobachters auf die Regelgüte?

2. Wie groß sind Auswirkungen von Modellabweichungen und Sensoreffekten?

3. Sind die Ergebnisse aus der simulationsbasierten Untersuchung auf die Realität
übertragbar?

Der Aspekt, welche Vereinfachungen zugunsten verkürzter Rechenzeiten vorgenommen
werden können, wurde in den Kapiteln 4 und 5 bereits detailliert analysiert und ist nicht
mehr Gegenstand der Untersuchung. Weiterhin wird vorwiegend die Kombination einer
Regelung im OS mit einem SMB im JS betrachtet, da sich diese Konzepte in den vorhe-
rigen Kapiteln als besonders geeignet erwiesen haben.

6.1 Simulationsbasierte Analyse

Die nachfolgend beschriebene simulationsbasierte Analyse erfolgt auf Basis des gleichen
Streckenmodells, welches bereits zur Analyse der Regler (in Abschnitt 4.4) und Beob-
achter (in Abschnitt 5.4) verwendet wurde. Zunächst wird das Verhalten der beobachter-
basierten Regelung in Abwesenheit von Modellabweichungen und Sensorik analysiert.
Diese Aspekte werden nachfolgend untersucht.

6.1.1 Ideales System ohne Modellabweichungen

Für die Erzeugung der in Bild 6-1 gezeigten Simulationsergebnisse wurden alle zuvor be-
trachteten Regler und Beobachter kombiniert. Es wurden jeweils die schnellsten und die
langsamsten Beobachter aus Kap. 5 und die drei Regelungsansätze aus Kap. 4, resultie-
rend in 24 Kombinationen, berücksichtigt. Bei der Analyse der Regelungen und Beobach-
ter im einzelnen (vgl. Bild 4-19 und Bild 5-5) traten für dieses Setup keine Differenzen
zwischen den verschiedenen Konzepten auf. Zu erwarten ist daher, dass sich die Systeme
auch bei einer Kombination nahezu identisch verhalten. Die entsprechenden Simulati-
onsergebnisse bestätigen dies. Es sind das Sollsignal, das mit MNF gefilterte Sollsignal
sowie alle 24 Antworten dargestellt und zwischen den Systemantworten ist kaum ein Un-
terschied auszumachen. Dabei sind jeweils die Zustände des Streckenmodells geplottet,
nicht diejenigen der einzelnen Beobachter, um Vergleichbarkeit zu gewährleisten. Darge-
stellt sind die Ergebnisse für eine Sollvorgabe in xN-Richtung. Die Erkenntnis, dass sich
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Bild 6-1: Simulationsergebnisse zur beobachterbasierten Regelung bei sinusförmiger An-
regung mit 50 Hz in xN um xTCP,R

alle Regler-Beobachter-Kombinationen nahezu identische verhalten, gilt jedoch auch für
alle anderen FHG.

Auch bei einer Betrachtung im Frequenzbereich lässt sich für das vorliegende Setup kein
Unterschied zur Regelung mit idealem Feedback (vgl. Bild 4-20) ausmachen. Bild 6-2
zeigt den Frequenzgang für die Kombination der Regelung im OS mit dem SMB im JS der
langsamen Auslegungsstufe 5. Die Frequenzkennlinien entsprechen exakt denen aus Bild
4-20, d. h. im Falle idealer Parameterübereinstimmung hat die Dynamik des Beobachters
keine Auswirkung auf das Regelergebnis. Gleiches gilt für die kleine Phasenverschiebung,
die für Beobachter im JS im kleinen Frequenzbereich charakteristisch ist. Auch sie hat
keinen erkennbaren Einfluss auf die Regelgüte in diesem Frequenzbereich.

Diese erste Untersuchung der beobachterbasierten Regelungen zeigt, dass sich grund-
sätzlich alle im Vorfeld betrachteten Regler- und Beobachtervarianten gut miteinander
kombinieren lassen. Aufgrund der genannten spezifischen Vorteile und auch, um dem be-
grenzten Umfang und der Übersichtlichkeit dieser Arbeit Rechnung zu tragen, werden im
Folgenden lediglich die Regelung im OS und der SMB im JS weiter betrachtet.
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Bild 6-2: Frequenzgang für die beobachterbasierte Regelung (OS-fb mit SMB-JS-5)

6.1.2 System mit Modellabweichungen

Nun wird das Verhalten der beobachterbasierten Regelung bei Modellabweichungen be-
trachtet. Dazu wurde für die Simulation abermals die Masse des Streckenmodells um
20 % erhöht. Die Analyse der Regelung bei idealem Feedback ergab für diesen Fall, dass
eine richtungsabhängige Skalierung der Reglerparameter zweckmäßig ist, vgl. Abschnitt
4.4.2. Daher wurden die Reglerparameter entsprechend der Angaben in Bild 4-25 ska-
liert.

Bei der Analyse des Verhaltens der beobachterbasierten Regelung steht die Frage nach
dem Einfluss der Dynamik des Beobachters auf die Regelgüte im Vordergrund. Dement-
sprechend wurden simulativ Frequenzgänge für die Einbindung von Sliding-Mode-Be-
obachtern im JS, jeweils mit der schnellsten und langsamsten Beobachterparametrierung
erzeugt. Bild 6-3 zeigt die entsprechenden Ergebnisse.

In den rotatorischen FHG, die von der Modellabweichung nicht betroffen sind, sind kaum
Unterschiede für die verschiedenen Beobachterauslegungen erkennbar. Die Frequenz-
kennlinien entsprechen denen des mit idealem Feedback geregelten Systems, vgl. Bild
4-25. Für die translatorischen FHG ergibt sich ein anderes Bild: Hier entsprechen nur
die Frequenzkennlinien des mit dem schnellen Beobachter geregelten Systems denen des
mit idealem Feedback geregelten Systems. Für den langsameren Beobachter zeigt sich
deutlich ein früherer Amplituden- und Phasenabfall bei gleichzeitig größerer Amplitu-
denüberhöhung. Dieser Effekt kann auf den Betragsabfall der Beobachtung für höhere
Frequenzen zurückgeführt werden, vgl. Bild 5-7.

Allgemein lässt sich feststellen, dass im Fall von Modellabweichungen die Dynamik des
Beobachters einen Einfluss auf die Regelgüte hat. Eine langsamere Beobachterauslegung
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führt zu einer schlechteren Regelgüte. Die obigen Betrachtungen lassen jedoch nur die-
se qualitative Aussage zu; eine quantitative Aussage über den Grad der Beeinflussung
der Regelung in Abhängigkeit der Beobachterdynamik lässt sich, v. a. bei in der Regel
unbekannten Modellunsicherheiten, nicht formulieren.

6.1.3 Einfluss von Sensor- und Verzögerungseffekten

Schließlich bleibt noch zu untersuchen, wie sich Sensor- und Datenverarbeitungseffekte,
die sich durch eine Überlagerung der Messsignale durch Rauschen sowie Verzögerungen
bemerkbar machen, auf die Regelgüte der beobachterbasierten Regelungen auswirken. In
Bild 5-8 wurde bereits gezeigt, dass die Dynamik des Beobachters für diesen Fall kaum
eine Auswirkung auf die Beobachtergüte im Frequenzbereich hat. Das gilt jedoch nicht
für den Zeitbereich, in dem sie wesentlich die Rauschamplituden für die beobachteten
Zustände bestimmt, welche sich im Falle der beobachterbasierten Regelung durch die
Rückführung auf die Stellgröße übertragen.

Für die Untersuchung wurde das Streckenmodell wiederum um die in Abschnitt 5.4 be-
schriebenen Rausch- und Verzögerungseffekte erweitert. Weitere Modellabweichungen
wurden nicht berücksichtigt. In Bild 5-10 wurde gezeigt, dass auch für den SMB im JS
Auslegungsstufen < 3 nicht sinnvoll sind, da sie zu deutlich vergrößerten Rauschampli-
tuden führen. Dementsprechend zeigt Bild 6-4 die simulativ erzeugten Frequenzgänge
für die Auslegungsstufen 3 und 5. Wie aufgrund der Erkenntnisse aus Abschnitt 5.4 zu
erwarten war, hat die Dynamik des Beobachters nur marginale Auswirkungen auf das
Regelergebnis.

Schließlich bleibt noch die Frage nach dem Einfluss der Beobachterauslegung auf die
Stellsignale (beim Zielsystem die Ventilansteuerungen) zu beantworten. Dazu zeigt Bild
6-5 beispielhaft die Ventilsteuerspannung uV für einen Zylinder für die betrachteten Beob-
achterauslegungen. Als Solltrajektorie wurde xTCP,0 = konst. vorgegeben. In den Sliding-
Mode-Beobachtern hängt die Schaltfrequenz im Gleitzustand von der Berechnungsschritt-
weite h ab. Um diesen Effekt auch beurteilen zu können, wurden die entsprechenden Si-
mulationen auch mit einer kleineren Abtastrate von h = 0, 125 ms durchgeführt. Dies
entspricht einer Berechnungsfrequenz von 8 kHz, die Ergebnisse sind ebenfalls in Bild
6-5 dargestellt.

Deutlich zu erkennen ist die Korrelation zwischen Rauschamplitude und Beobachteraus-
legung: Der schnellere Beobachter bewirkt deutlich größere Rauschamplituden im Stell-
signal. Der Einfluss der Abtastrate hingegen ist nicht so deutlich, allerdings ebenfalls er-
kennbar: Der langsame Beobachter bewirkt bei großer Schrittweite einzelne Peaks, die für
die kleinere Schrittweite nicht zu erkennen sind. Im Schnitt sind die Rauschamplituden
jedoch für beide Abtastraten vergleichbar.
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6.2 Validierung am Prüfstand

Zum Schluss dieser Arbeit steht noch die Validierung der Ergebnisse aus den simulations-
basierten Betrachtungen durch reale Messdaten aus. Dazu werden nicht alle Simulationen
exakt nachgefahren – Ziel ist es vielmehr zu zeigen, dass sich das reale System in guter
Näherung so verhält wie das Simulationsmodell, sodass die Erkenntnisse aus den simula-
tionsbasierten Analysen als valide betrachtet werden können.

Bei der Inbetriebnahme der Regelung am Prüfstand erwies sich die Möglichkeit der rich-
tungsabhängigen Skalierung der Reglerparameter für die Regelung im OS als sehr vor-
teilhaft. Wie bereits in Abschnitt 4.2.2 erläutert wurde, stellen die Einträge der Trägheits-
matrix in der Realität die größten Unsicherheitsfaktoren für die modellbasierte Regelung
dar. Die Kinematik kann auf Basis der Konstruktionsdaten sehr genau modelliert werden.
Das Zusammenfassen aller bewegten Massen zu einer Ersatzmasse kann jedoch nur eine
Approximation sein und ist prinzipbedingt mit Unsicherheiten behaftet. Es hat sich als
zweckmäßig erwiesen, neben der Skalierung der Reglerparameter auch die Trägheitswer-
te im Modell anzupassen, um so dem Einfluss von weiteren, ursprünglich nicht berück-
sichtigten Trägheiten, wie bspw. der Zylindergehäuse, Rechnung zu tragen und das dyna-
mische Verhalten der Regelung zu optimieren. Jede Parametererhöhung, sowohl bei der
Reglerskalierung als auch bei den Trägheitswerten, hat eine Erhöhung der Verstärkung im
Rückführzweig zur Folge, da hier die Regler- und Massenmatrix jeweils multiplikativ ein-
fließen. Eine Manipulation der Trägheitsterme wirkt sich zusätzlich auf die Vorsteuerung
aus. Für die Regelung des Zielsystems erwiesen sich die in Tabelle 6-1 gelisteten An-
passungsparameter als geeignet. Die vergleichsweise hohen Anpassungsfaktoren für die
Rotationsträgheiten sind auf die o. g., in der Modellierung nicht berücksichtigten Träg-
heiten der Zylindergehäuse zurückzuführen.

Tabelle 6-1: Parameter zur Anpassung der Regelung des Zielsystems
Skalierung der Reglerverstärkung in x skalx = 0, 50
Skalierung der Reglerverstärkung in y skaly = 0, 45
Skalierung der Reglerverstärkung in z skalz = 0, 60
Skalierung der Reglerverstärkung in α skalα = 0, 50
Skalierung der Reglerverstärkung in β skalβ = 0, 52
Skalierung der Reglerverstärkung in γ skalγ = 0, 40
Anpassung der Ersatzmasse +20 %
Anpassung der Rotationsträgheit um x +60 %
Anpassung der Rotationsträgheit um y +50 %
Anpassung der Rotationsträgheit um z +60 %

Alle o. g. Parameter haben über die Rückführung auch einen Einfluss auf die Verstärkung
des Rauschens, mit dem die beobachteten Zustände aufgrund des Messrauschens überla-
gert sind. Zusätzlich ließ sich am realen System ein erheblicher Einfluss der Abtastrate auf
die Oszillationen der Stellsignale beobachten, der in der Simulation in diesem Maß nicht
zu beobachten war (s. Bild 6-5). Bild 6-6 zeigt die gemessenen Ventilsteuerspannungen
für die Einregelung der Mittellage xTCP,0 am realen System für jeden Zylinder und jeweils
für eine Berechnungsfrequenz von 5 und 8 kHz bei der Verwendung eines SMB im JS mit
kS MB = 5. Es wird deutlich, dass die größere Abtastfrequenz eine deutliche Reduktion der
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Bild 6-6: Gemessene Stellsignale für verschiedene Abtastfrequenzen

Rauschamplituden zur Folge hat. Dazu sei allerdings angemerkt, dass die Rauschampli-
tuden im Betrieb variieren, abhängig bspw. vom Versorgungsdruck, der durch die Druck-
regelung der Versorgungspumpe nie exakt konstant gehalten wird. Die Auswertung ver-
schiedener Messungen ergab jedoch, dass bei der Verwendung der höheren Berechnungs-
frequenz im Schnitt eine deutliche Reduktion der Rauschamplituden beobachtet werden
kann. Dementsprechend wurden alle im Folgenden gezeigten Simulations- und Messer-
gebnisse mit 8 kHz erzeugt, zudem wurde weiterhin stets der SMB im JS der Auslegungs-
stufe 5 verwendet.

Eine klassische Vorgehensweise zur Beurteilung von Regelungen ist die Betrachtung von
Sprungantworten. Bild 6-7 zeigt gemessene und simulierte Sprungantworten für alle Be-
wegungsfreiheitsgrade, einmal für die Verwendung eines MZF mit der Eckfrequenz 80 Hz
(oben), einmal für die Verwendung des MNF (unten). Auch zur Erzeugung der Simulati-
onsdaten wurden Regler- und Streckenmodelle entsprechend Tabelle 6-1 parametriert.

Es wird deutlich, dass sich das Simulationsmodell und das reale System zu Beginn der
Bewegung in allen Fällen gleich verhalten. Anschließend sind deutliche Differenzen zu
beobachten - das reale System wird im Falle des MZF etwas abgebremst, im Falle des
MNF verhält es sich unruhiger. Die Ursachen dafür liegen in der Modellierungstiefe des
Simulationsmodells: Hier wurde nicht berücksichtigt, dass die Geschwindigkeit des Ven-
tilschiebers begrenzt ist und dass das Ventilverhalten vor allem im Kleinstsignalbereich
aufgrund von Fertigungstoleranzen erheblich abweichen kann. Im Falle der Filterung mit
dem MNF werden zudem durch den harten Sprung Eigenfrequenzen im System angeregt,
die ebenfalls im Systemmodell nicht enthalten sind. Dennoch: Unter der Berücksichti-
gung des dargestellten Zeitbereichs von lediglich 0, 06 s und der Sprungantwortzeiten
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weisen Simulationsmodell und reales System durchaus ein ähnliches Verhalten auf.

Das Zielsystem soll zur Prüfung von PKW-Achsen eingesetzt werden. Dabei ist das Ziel,
gegebene Belastungsprofile für die Achse möglichst präzise und schnell einzuregeln. Die
größte Herausforderung dabei ist das Nachfahren einer sog. Schlechtweganregung, wel-
che das Fahren über eine schlechte Wegstrecke nachbildet und für die zu testende Achse
eine hohe Belastung darstellt. Eine solche Schlechtweganregung ist gleichzeitig auch für
die Regelung des Prüfstands eine große Herausforderung, da sie Anregungen in einem
breiten Frequenzspektrum enthält. Aus diesem Grund wurde die Positionsregelung am
Zielsystem ebenfalls anhand einer solchen Schlechtweganregung getestet. Bild 6-8 und
6-9 zeigen jeweils einen kleinen Zeitausschnitt der Simulations- und Messergebnisse für
die Verwendung des MZF mit einer Eckfrequenz von 40 Hz und des MNF. Die Ergebnisse
zur Verwendung des MNF wurden bereits in [FKT15] veröffentlicht.

Zunächst ist zu erkennen, dass über große Bereiche die Linien des gefilterten Sollsignals
und der simulierten und in der Messung beobachteten Istpositionen übereinanderliegen.
Das spricht für eine sehr hohe Modell- und Regelgüte. Deutliche Abweichungen von der
gefilterten Solltrajektorie äußern sich zudem bei Simulation und Messung ähnlich. Das
zeigt, dass auch die Grenzen der Leistungsfähigkeit im Modell gut abgebildet sind.

Des Weiteren wird in dem gewählten Zeitabschnitt der Vorteil des MNF gegenüber einem
MZF besonders deutlich: Etwa bei t = 5, 75 s enthält das Sollsignal große Amplituden
in den translatorischen FHG, die das System an seine Leistungsgrenze bringen. Bei ei-
ner Filterung mit MZF tritt selbst bei der mit 40 Hz vergleichsweise niedrig gewählten
Filtereckfrequenz das Direktionalitätsproblem auf – deutlich zu erkennen an den rela-
tiv großen Abweichungen in yN , αN und βN . Zudem ist über den gesamten betrachteten
Bereich eine deutliche Phasenverschiebung des gefilterten Signals gegenüber dem Ur-
sprungssignal zu erkennen. Das gilt nicht für die Verwendung des MNF: Hier ist deutlich
die Amplitudenabhängigkeit der Filterung zu erkennen. Die großen Sollamplituden wer-
den so abgeschwächt, dass das Direktionalitätsproblem nicht auftritt, während für kleine
Amplituden kleinere Phasenverschiebungen zu erkennen sind. In βN sind auch für das
MNF Abweichungen erkennbar – diese sind jedoch unter Berücksichtigung der Größen-
ordnung vernachlässigbar, vor allem, da es sich bei der Anwendung in der Achsprüfung
um die Raddrehachse handelt.

Ein weiterer Aspekt hoher Modellgüte ist das Ein-/Ausgangsverhalten. Während bisher
lediglich die Ausgänge betrachtet wurden, zeigt Bild 6-10 die simulierten und gemessenen
Ventilansteuerungen für einen Ausschnitt des Schlechtwegsignals bei Filterung mit MNF.
Abermals sind die Linien fast deckungsgleich, damit können die vorangegangen, simu-
lationsbasierten Betrachtungen und die resultierenden Erkenntnisse als valide betrachtet
werden.

In Bild 6-8 und Bild 6-9 ist jeweils nur ein kleiner Ausschnitt der Schlechtweganregung
im Zeitbereich abgebildet, der die markanteste Stelle enthält. Für die Analyse der Regler-
leistungsfähigkeit ist jedoch auch eine Betrachtung des Amplitudenspektrums interessant,
daher zeigt Bild 6-11 die Amplitudenspektren der Schlechtweganregung und der beob-
achteten Isttrajektorie für jeden FHG. Dargestellt ist jeweils das Spektrum des Sollsignals
(schwarz), sowie das Spektrum der am realen System beobachteten Isttrajektorie (grau)
bei der Verwendung eines MNF. Für das betrachtete Frequenzspektrum sind nur kleine
Unterschiede erkennbar, so z. B. für die zN-Richtung für höhere Frequenzen. Hier liegen
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die Amplituden des geregelten Systems über denen der Ursprungsanregung. Unter der
Berücksichtigung der Größenordnung von ≤ 0, 02 mm ist dies jedoch zu vernachlässigen.
Wichtiger ist vielmehr die Erkenntnis, dass auch in diesem Frequenzbereich Anregungen
noch gut abgebildet werden.

Mit der gemäß Tabelle 6-1 parametrierten Regelung konnten am realen System die in Bild
6-12 dargestellten Frequenzgänge für das Übertragungsverhalten vom Referenzausgang
des MNF-Filters, yTCP,re f , zur beobachteten Position x̂TCP ermittelt werden, die bereits
in [KOF+16] veröffentlicht wurden. Zu ihrer Ermittlung wurde, analog zur Vorgehens-
weise in der Simulation, jeder FHG einzeln über mehrere Perioden sinusförmig mit ei-
ner bestimmten Frequenz angeregt. Die so bestimmten Werte für Amplitude und Phase
sind im Bode-Diagramm markiert, die einzelnen Punkte wurden verbunden. Leider war
am realen System keine Messung > 60 Hz möglich, da die Wegmesssysteme bei einer
kontinuierlichen Anregung mit 70 Hz nicht mehr zuverlässig arbeiten. Für die vertikale
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Bild 6-12: Frequenzgang zur Regelung des Zielsystems

zN-Richtung ergibt sich erwartungsgemäß das beste Verhalten – hier wird eine geregel-
te Bandbreite (-3dB) von 60 Hz erreicht. Das Verhalten für die anderen translatorischen
Richtungen xN und yN ist nur wenig schlechter – hier wird eine Bandbreite von ca. 50 Hz
erreicht. Das Verhalten in den Rotationsfreiheitsgraden hingegen ist deutlich schlechter.
Hier ergibt sich nur eine Bandbreite von 30−40 Hz. Die Ursache dafür liegt an den im Mo-
dell nicht berücksichtigten Massen der Zylinderkolbenstangen und Gehäuse, die zu einer
Veränderung der Rotationsträgheit beitragen. Weiterhin suggerieren die Frequenzkennli-
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nien für die rotatorischen FHG ein nicht stationär genaues Verhalten, denn sie weichen
auch im unteren Frequenzbereich deutlich von der 0 dB-Linie ab. Dieser Effekt ist jedoch,
zusätzlich zu den Modellabweichungen, mit der kleinen Anregungsamplitude und den da-
mit für diese Frequenzen kleinen Ventilansteuerungen zu begründen, da sich die Ventile
für sehr kleine Ansteuerungen durch die Fertigungstoleranzen sehr unterschiedlich ver-
halten können. Dass die Regelung jedoch für größere Amplituden nicht stationär ungenau
ist, beweisen die in Bild 6-7, Bild 6-8 und Bild 6-9 dargestellten Zeitsignale.

6.3 Ergebnisse

Die simulationsbasierte Analyse der beobachterbasierten Regelung hat zunächst ergeben,
dass die Beobachterdynamik in Abwesenheit von Modellungenauigkeiten für den be-
trachteten Bereich kaum einen Einfluss auf die Regelgüte hat. Unter der Annahme von
Modellunsicherheiten führt eine langsamere Beobachterdynamik jedoch tendenziell zu
einer schlechteren Regelgüte bzw. zu einer Reduktion der Bandbreite des geschlossenen
Regelkreises.

Die Beobachterdynamik hat eine recht große Auswirkung auf das Übertragen von Mess-
rauschen auf die Reglerausgangsgrößen – diesbezüglich ist eine geringere Beobachterdy-
namik vorteilhaft, da in diesem Fall das Rauschen besser gedämpft wird und sich somit
weniger stark über den Soll-Istwertvergleich auf die Stellgröße überträgt. Als weiterer
Einflussfaktor auf die Rauschamplitude des Stellsignals hat sich die verwendete Abtastra-
te herauskristallisiert – während sie sich in der Simulation nur wenig bemerkbar mach-
te, sind die Unterschiede am Prüfstand nicht unerheblich, sodass die Verwendung einer
möglichst hohen Abtastrate zu empfehlen ist. Zudem konnten bei der Betrachtung von
Sprungantworten Differenzen zwischen dem Verhalten des Simulationsmodells und dem
des realen Systems festgestellt werden, die vordergründig mit der Modellierungstiefe des
Servoventils zu begründen sind. Dieser Aspekt bildet jedoch die Grenze der Übertragbar-
keit der Simulationsergebnisse auf die Realität – hinsichtlich des Ein-Ausgangsverhaltens
für kontinuierliche Anregungssignale konnte durch einen Vergleich von Simulations- und
Messdaten eine hohe Modellgüte nachgewiesen werden, sodass die Ergebnisse aus den
vorangegangenen simulationsbasierten Analysen als valide betrachtet werden können.

Es hat sich gezeigt, dass mit dem Regelkonzept, welches sich im Zuge der Arbeit als am
besten geeignet herausgestellt hat – die Kombination einer Regelung im OS mit einem
SMB im JS – die ursprüngliche Forderung nach einer geregelten Bandbreite von min-
destens 50 Hz für das Zielsystem in den translatorischen FHG vollständig, in den rotatori-
schen FHG fast vollständig erfüllt werden kann. Eine gegebene Schlechtweganregung, die
als größte Herausforderung in der Achsprüfung zu betrachten ist, konnte mit sehr hoher
Güte in allen FHG nachgefahren werden. Dabei machte sich die reduzierte Bandbreite in
den rotatorischen FHG nicht bemerkbar. Als Optimierungspotenzial bleiben daher die bis-
her iterativ manuell angepassten Rotationsträgheiten sowie die Lage des Schwerpunkts,
die als zusammenfallend mit derjenigen der Endeffektorplattform angenommen wurde.
Für Solltrajektorien, die eine größere Dynamik in den Rotationsfreiheitsgraden fordern,
können diese Parameter durch den Einsatz von Optimierungsverfahren besser bestimmt
werden. Durch diese Optimierung der Modellgüte ist dann eine Erhöhung der Bandbreite
auch für die rotatorischen FHG zu erwarten.
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7 Zusammenfassung und Ausblick

In dieser Arbeit wurden flachheitsbasierte Regelungen und ihre Umsetzung zur Positi-
onsregelung von Parallelkinematiken untersucht. Dieser Regelungsansatz ist Stand der
Technik – seine Verwendung und Realisierung zur Regelung von hochdynamischen Pa-
rallelkinematiken mit einer Bandbreite im zweistelligen Hertz-Bereich jedoch nicht. Dazu
wurden unterschiedliche Formen der Reglerumsetzung betrachtet: Zum einen die flach-
heitsbasierte Folgeregelung mit exakter Zustandslinearisierung auf Basis der Istzustände,
zum anderen die Zwei-Freiheitsgrade-Regelung mit flachheitsbasierter Vorsteuerung und
exakter Zustandslinearisierung auf Basis der Sollzustände. Beide Konzepte können prin-
zipiell mit einem Soll-Istwertvergleich in lokalen Gelenkkoordinaten oder in den globalen
Koordinaten des Endeffektors realisiert werden. Es hat sich herausgestellt, dass mit allen
Varianten bei gleicher Reglerparametrierung die gleiche Regelgüte erreicht werden kann.
Die Regelung in globalen Koordinaten bietet jedoch den großen Vorteil, dass die Reg-
lerdynamik für jeden Bewegungsfreiheitsgrad einzeln spezifiziert werden kann, während
dies bei der Regelung in Gelenkkoordinaten nicht möglich ist. Da zu ihrer Realisierung
die Istzustände ohnehin bekannt sein müssen, wird sie in Kombination mit einer flach-
heitsbasierten Folgeregelung betrieben.

Die Anwendung der o. g. Regelungskonzepte für PKM erfordert kraftgeregelte Aktoren –
im Falle des Zielsystems, eines hydraulischen Hexapoden, demnach lokal kraft- bzw. dif-
ferenzdruckgeregelte Zylinder. Daher wurde ein Konzept zur lokalen Differenzdruckre-
gelung betrachtet und umgesetzt. Aus diesem konnten zudem Anforderungen zur Dimen-
sionierung des Zielsystems abgeleitet werden; dies betrifft im wesentlichen die Dynamik
der Servoventile und die Auslegung der Kolbenflächen und Volumina.

Parallelkinematiken unterliegen, wie alle realen technischen Systeme, Stellgrößenbegren-
zungen, die im Falle einer Regelung den sog. Windup-Effekt hervorufen können. Bei
Mehrgrößensystemen kommt das Direktionalitätsproblem hinzu. Zur Lösung dieser Pro-
blematik wurde auf Basis eines bestehenden Ansatzes für Eingrößensysteme ein nichtli-
neares modellgestütztes Führungsfilter für Parallelkinematiken entwickelt. Dieses Filter
verändert eine Solltrajektorie in Echtzeit so, dass sie von der Aktorik des realen Systems
stellbar bleibt und Stellgrößenbegrenzungen nicht erreicht werden. So wird der Windup-
Effekt vermieden.

Für die Realisierung der flachheitsbasierten Regelungskonzepte wurden Kalman-Bucy-
Filter und Sliding-Mode-Beobachter zur Zustands- und Störschätzung untersucht. Für
beide Beobachterformen wurde die Realisierung in globalen Koordinaten und in Ge-
lenkkoordinaten betrachtet. Unter der Berücksichtigung des Syntheseaufwands und der
Schätzgüte, auch bei dem Auftreten von realen Effekten wie bspw. Sensorrauschen, kris-
tallisierte sich der Sliding-Mode-Beobachter in Gelenkkoordinaten als besonders geeignet
heraus.

Schließlich wurde die beobachterbasierte Regelung mit dem besten Regler- und Beob-
achterkonzept betrachtet. In der simulationsbasierten Analyse bestätigte sich die hohe
Regelgüte auch für die Realisierung mittels Beobachter. Die Ergebnisse konnten durch
Versuche an einem hydraulischen Hexapoden, der zur Prüfung von PKW-Achsen ein-
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gesetzt werden soll, validiert werden. Das gewählte Regelkonzept hat sich als geeignet
erwiesen, eine gegebene Solltrajektorie mit hoher Dynamik und Genauigkeit nachzufah-
ren.

Bild 7-1 visualisiert das Ergebnis dieser Arbeit: Die resultierende Gesamtstruktur zur Re-
gelung des Zielsystems mit allen bereits genannten Teilkomponenten und Schnittstellen.
Diese Struktur kann prinzipiell als Basis für eine möglichst breitbandige Regelung allge-
meiner PKM mit sechs FHG dienen. Im Falle elektrischer Aktoren mit interner Kraftre-
gelung müssten dann bspw. die lokalen Differenzdruckregelungen entfallen.

Bild 7-1: Gesamtregelstruktur

Ziel der Arbeit war, einen Beitrag zur beobachterbasierten Regelung von PKM mit dem
Ziel einer möglichst hohen Bandbreite im zweistelligen Hertz-Bereich zu leisten. Das Er-
gebnis der Arbeit ist ein Regelungskonzept für einen hydraulischen Hexapoden, für das,
je nach FHG, eine Bandbreite (-3dB) von 30 − 60 Hz im Kleinsignalbereich nachgewie-
sen werden konnte. Vorgegebene Solltrajektorien können sofort, d. h. ohne zeitintensive
Schleifen für iterativ lernende oder adaptive Regelungsanteile, nachgefahren werden. So-
mit stellt das Ergebnis der Arbeit eine Erweiterung des Stands der Technik zur Regelung
von Parallelkinematiken dar, vor allem hinsichtlich der erzielten Dynamik.

Im Zuge der Arbeit traten einige Fragestellungen auf, die in weiteren Forschungsarbeiten
aufgegriffen werden können. Hier ist bspw. die Untersuchung von Higher-Order-Sliding-
Mode-Beobachtern zur Verbesserung der bereits erzielten Schätzgüte zu nennen, vgl. z.
B. [FSEY08]. Eine weitere Frage ist, wie und ob sich die betrachteten Beobachter zur
Parameteridentifikation für die Verbesserung der Modellgüte, online oder offline, nutzen
lassen. Erste Ansätze dazu wurden bereits in [Olm13] erarbeitet.

Zur Regelung des hydraulischen Hexapoden, der in der Zukunft zum Test von PKW-
Achsen eingesetzt werden soll, liefert die Arbeit wichtiges Grundlagenwissen. Auf dieser
Basis werden künftig Konzepte zur Kraftregelung und für die Kombination von Positions-
und Kraftregelung zur hybriden Regelung erarbeitet, welche die Einbindung des Hexapo-
den in eine HiL-Simulation für PKW-Achsen ermöglichen.
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