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Abstract

Many artifacts that we use, for example, washing machines, TVs, mobile phones, and
cars, run software. Software has a high impact on our daily life. Thus, it should be error
free. The �rst version of a software is almost never free of errors. To eliminate errors,
companies spent an enormous time on the validation of their software. For example,
formal veri�cation is used to �nd errors and to �nally show that safety critical software
does not contain errors with respect to the speci�cation. Software originating from a
company which runs an extensive validation phase during software development can be
installed on our systems without any further checks.

In the past, users often installed software from large companies. Typically, they had
installed di�erent software from that company before and experienced its quality. Due to
the long-term business relationship, users could estimate the quality of software produced
by these companies. However, the software usage behavior changed. For instance, users
regularly download applications on their mobile phones from software markets like Google
Play. Applications are no longer only written by large companies but often by unknown
software producers, which may be a private person or new in the market and from whom
one never purchased a software product before. There is no reason why one should trust
that these producers build error free software products. We need other approaches to
determine whether a software product received from such producers is free of errors.

In this thesis, we develop techniques that eliminate the trust in the software pro-
ducer and still convince a consumer that a bought software product is free of errors.
Our techniques are based on formal veri�cation, are fully automatic, and are con�gurable
to the property of interest as well the veri�cation technique. The underlying idea of
our techniques is that the producer performs the expensive veri�cation and uses the proof
information obtained by the veri�cation to simplify and speed up the consumer's reinspec-
tion. We present techniques from two research directions. First, we present con�gurable
program certi�cation approaches which follow the classical idea of certi�cation. The pro-
ducer attaches some witness information, for example, some parts of the proof, to the
program. The consumer solely needs to validate the certi�cate. This means, he needs to
check that it is a proper witness. Second, we suggest the Programs from Proofs approach.
This approach uses the proof information to restructure the program such that the veri-
�cation of the restructured program is simpler. After restructuring, for example, removal
of infeasible paths or splitting of syntactical paths, the consumer can run a simple and
e�cient data�ow analysis. Finally, we discuss the integration of Programs from Proofs
with con�gurable program certi�cation. For all our approaches, we show that they are
adequate. A successful reinspection implies that the program adheres to the checked prop-
erty and the reinspection succeeds when the producer does not try to cheat. Furthermore,
we implemented prototypes for our approaches and used them in an extensive, practical
evaluation.
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Zusammenfassung

Viele Gegenstände des täglichen Gebrauchs führen Software aus. Software hat einen
starken Ein�uss auf unser tägliches Leben und sollte daher fehlerfrei sein. Anfänglich ist
Software aber selten fehlerfrei. Firmen betreiben einen hohen Validierungsaufwand, um
Fehler in der Software zu eliminieren. Zum Beispiel wird formale Veri�kation eingesetzt,
um Fehler zu �nden und schlussendlich zu zeigen, dass sicherheitskritische Software den
Anforderungen genügt. Software, die aus dem Hause einer Firma stammt, in der eine
aufwändige Validierungsphase Teil des Entwicklungsprozesses ist, kann bedenkenlos auf
unseren Systemen installiert werden.

Früher haben Verbraucher vorwiegend Software aus groÿen Softwarehäusern instal-
liert, von denen sie bereits Software benutzt und die Qualität dieser Software erfahren
haben. Aufgrund der langzeitigen Geschäftsbeziehung konnten Verbraucher die Software-
qualität dieser Hersteller abschätzen, aber die Softwarenutzung hat sich verändert. Heute
installieren Verbraucher zum Beispiel regelmäÿig Anwendungen auf ihren Handys, die sie
auf Plattformen wie Google Play �nden. Zusätzlich werden solche Anwendungen nicht
mehr ausschlieÿlich von groÿen Firmen geschrieben, sondern immer häu�ger auch von
unbekannten Entwicklern, Privatpersonen oder Marktneulingen, sodass nicht unbedingt
zuvor Software von diesen Herstellern bezogen wurde. Daher kann nicht erwartet werden,
dass der Verbraucher auf die Fehlerfreiheit der Software vertraut, und es werden andere
Verfahren benötigt, um den Verbraucher davon zu überzeugen, dass gekaufte Software
fehlerfrei ist.

In dieser Arbeit entwickeln wir Techniken, die ohne Vertrauen in den Softwarehersteller
auskommen und dennoch den Verbraucher davon überzeugen, dass sein gekauftes Soft-
wareprodukt fehlerfrei ist. Unsere Techniken basieren auf formaler Veri�kation, sind au-
tomatisch und können an die einzuhaltende Spezi�kation und die zu verwendende Veri�-
kationstechnik angepasst werden. Die Idee unserer Techniken ist wie folgt. Der Produzent
beginnt mit einer aufwändigen Veri�kation und nutzt die Informationen aus der Veri�ka-
tion, um die Nachprüfung des Konsumenten zu vereinfachen und zu beschleunigen. Wir
verfolgen zwei unterschiedliche Forschungsansätze. Das Konzept der kon�gurierbaren Pro-
grammzerti�zierung nutzt die Idee klassischer Zerti�zierung. Der Produzent liefert das
Programm mit einem Zerti�kat aus. Das Zerti�kat enthält Informationen, zum Beispiel
Teile seines Veri�kationsbeweises, die bezeugen, dass der Produzent die Veri�kation erfolg-
reich durchgeführt hat. Somit muss der Verbraucher nur prüfen, ob das Zerti�kat gültig
ist, also tatsächlich bezeugt, dass die gewünschte Veri�kation erfolgreich absolviert wurde.
Das Konzept Programs from Proofs nutzt dagegen die Informationen aus der Veri�kation,
um ein einfacher zu beweisendes Programm zu erzeugen. Zum Beispiel werden nicht aus-
führbare Pfade entfernt oder Pfade voneinander separiert. Somit muss der Verbraucher in
seiner Nachprüfung lediglich eine einfache Daten�ussanalyse durchführen. Des Weiteren
betrachten wir auch eine Integration der beiden Ansätze. Auÿerdem beweisen wir für
alle Techniken, dass sie nutzbar sind. Das heiÿt, eine erfolgreiche Nachprüfung des Ver-
brauchers bedingt, dass das Softwareprodukt die geprüfte Eigenschaft erfüllt. Weiterhin
ist garantiert, dass die Nachprüfung erfolgreich ist, wenn sich der Produzent an die Regeln
hält. Neben diesen theoretischen Eigenschaften haben wir die Techniken mittels eines Pro-
totypens intensiv evaluiert.
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1 Introduction

1.1 Software Markets Easily Accessible to Everybody . . . . . . 2

1.2 Assuring Correctness Properties in Global OTF Markets . 4

1.3 Thesis Contribution . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Software plays an important role in our daily life. Still, software runs in classical en-
vironments, e.g., on computers. More importantly, the number of non-classical devices
executing software grows enormously. Today, many of our household appliances, e.g., our
washing machines, are controlled by software. Our TVs are connected with the internet.
Mobile phones can be extended with software applications. Furthermore, the number of
assistant systems in cars, typically written in software, rises. Considering current trends
like e.g. smart homes or smart meters, our dependence on software will even further in-
crease in future. Due to the broad application area and the high impact on our daily lives,
more than ever software must work as intended. It should be error free.

The �rst version of a software program is almost never error free. Since the beginning
of software development, people proposed and used software validation techniques, which
try to �nd software errors. Nowadays, developers can select from a broad set of vali-
dation techniques like e.g. software model checking [JM09b], program analysis [NNH05],
symbolic execution [Kin76], or testing [SL12]. Nevertheless, software validation still takes
a signi�cant proportion of the software development time. In principle, the time spent
on validation depends on the characteristics of the software projects. For larger, safety
critical projects, validation can take up to 80% of the development time [SL12, pp. 16 f].
Thus, software validation is a major cost factor in the software development process.

While the software quality problem remains � software programs still contain errors �,
software development changed over the years. In the early stages, monolithic software
is developed in companies. Ideas like e.g. component-based design [HC01] and service
oriented architectures [Erl05] caused software and its development to become modular.
Existing components can be reused in di�erent software projects and some functionality of
a software can even be realized by a call to an external service, e.g., a web service developed
in a di�erent company. Simultaneously, modularity also eases the development of open
source software, which is often built by a community. In some open source projects, users
may become part of the community and actively contribute to the open source software.
Recently, customization of software becomes more and more important. Using the concept
of software product lines [PBvdL05], companies do not longer develop a single software
solution, but develop variations for di�erent functionality which can be con�gured to a
customized software solution. Furthermore, accompanied by the increasing popularity of

1



CHAPTER 1. INTRODUCTION

smartphones and tablets, more and more people extend the vendor de�ned functionality of
their devices. To �t their needs, they search for suitable software (applications) on market
platforms like e.g. Google Play and install software, which possibly cooperates with already
installed software. Since such market platforms are mostly open to everyone, users run
software from di�erent vendors, which are not necessarily companies but possibly also
private persons.

As throughout the years, software users still do not and also in future will not like to
experience (too many) software errors. To avoid the experience of errors, users aim at
selecting software with high quality. Often, software that is thoroughly validated against
certain correctness properties comes with such a high quality. Hence, users try to esti-
mate whether a supplied software is thoroughly validated. Since the number of software
applications run by today's users increases, in total more time must be spent for the
estimation. Additionally, we claim that judging thoroughly validation in today's global
software markets, which are accessible to suppliers all over the world, is more di�cult.
We explain this claim in the next section in more detail.

1.1 Software Markets Easily Accessible to Everybody

In this section, we discuss two examples for global software markets, which are easily
accessible to suppliers, private persons as well as companies, spread all over the world.
We start with an already existing class of markets, the smartphone application markets.
Thereafter, we present our future vision of these global software markets. Based on the
insights obtained from these markets, especially our vision of the future market, we then
explain why estimating software quality in global software markets is di�cult.

1.1.1 Smartphone Application Markets

Google Play1 and Apple's AppStore2 are two popular market platforms for smartphone ap-
plications. Customers can search, buy, and download applications for their smartphones.
Application developers can o�er their applications on these platforms. In contrast to
Google Play, applications are only published in the AppStore after they passed a review
process. Thus, both platforms already realize software markets that are open to nearly
anyone. Nevertheless, they are limited. In principle, applications can cooperate. For ex-
ample, Android apps o�ered in Google Play use (implicit) intents to call the functionality
of other apps. To obtain a larger functionality, applications can be composed. However,
the customer must build the composition on his own, e.g., search for components or check
whether components can cooperate with each other. The customers can only search for
existing applications. On-the-�y computing tries to overcome these drawbacks.

1.1.2 The Vision of On-The-Fly Computing

App stores are real world examples for markets in which software solutions from all over
the world can be o�ered by nearly anyone. To participate as a producer, one must only
be able to create an app. However, these markets lack an important trend, namely
customization. Still, customers can only select existing solutions.

1https://play.google.com/
2https://www.apple.com/appstore
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1.1. SOFTWARE MARKETS EASILY ACCESSIBLE TO EVERYBODY

During our research within the CRC 901 �On-The-Fly Computing�3, we already con-
sidered future markets, so called on-the-�y markets (OTF markets), which o�er solutions
for the individual customer needs. We assume that these future markets are highly dy-
namic. Participants may enter or leave the market at any time, change, e.g., extend,
their o�erings or prices. Furthermore, participants, except for maybe customers, act en-
trepreneurial and strategically. Our CRC's vision is that based on a customer request an
individual, high quality solution, software plus execution (environment), for the customer
is automatically built on demand (�on-the-�y�). The software solution is composed of
existing software services which are freely traded on global software markets. While the
composition process is under control by the one who builds the software solution, he relies
on the quality of the composed, single services received from the market. Probably, a high
quality of the composed software solution can only be achieved when each single software
service in the composition is of high quality. Next, we discuss why reliably estimating
the quality of these single services is especially di�cult or even impossible in on-the-�y
markets.

1.1.3 The Quality Problem in On-The-Fly Software Markets

Two characteristics of on-the-�y markets intensify the quality problem on software services
in these markets. Due to its dynamics, participants, e.g., producers of software services,
may have entered the market recently and may also stay only for a short period of time.
Furthermore, its liberal accessibility results in a large and heterogeneous set of producers.
Software services constructed by di�erent producers vary in their quality. One producer
may be less experienced than another producer. Furthermore, producers also plan their
software service quality strategically. For example, if a producer wants to earn a lot of
money in a short period of time and afterward leaves the market, he will strategically
decide not to invest in validation and to o�er services with low quality. In contrast,
producers which aim at long-term business relationships may validate more thoroughly
to produce high quality services. At worst, a producer is malicious. His goal is to harm
consumers. Thus, he provides a faulty software intentionally.

For a consumer, the one who builds the composition, it is di�cult to estimate the
quality of a software service produced by a particular producer. Since in on-the-�y markets
many producers o�er software services, often a consumer purchases a software for the
�rst time from that particular producer and he only purchases once from that producer.
Consumers cannot use their past experience to estimate the quality and to establish a
trust relation. Additionally, when a producer entered the market recently, the consumer
likely cannot pro�t from experiences of other consumers. In such a case, no consumer or
only a few consumers rated the producer's quality so far. No reliable reputation for the
producer and his quality exists.

To convince the consumer of the quality of a software service, trust and reputation do
not work. We require additional mechanisms and techniques. In the following, we discuss
existing mechanisms and techniques that try to convince the consumer of the software
quality, i.e., that try to convince him that a software service adheres to certain correctness
properties. Furthermore, we propose our general approach to convince a consumer that
a software service adheres to certain correctness properties, introduce requirements on
concrete instantiations, and sketch the three concrete instances dealt with in this thesis.

3http://sfb901.uni-paderborn.de/
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1.2 Assuring Correctness Properties in the Context of

Global On-The-Fly Markets

A very simple way to convince the consumer is to implement the software in a safe pro-
gramming language. The idea of a safe programming language is that programs that do
not adhere to certain correctness properties cannot be expressed in the language. For
example, type and memory safe programming languages like Java ensure that no type
violations or memory access violations may occur during program execution. We think
that such an approach works well for low-level correctness properties. However, it is at
least di�cult to use it for arbitrary safety properties like e.g. the result of the function
call gcd returns the greatest common divisor of the two input parameters.

A di�erent class of approaches looks at the concrete execution paths of a software pro-
gram. Techniques like sandboxing [CDK05, p. 2070], which e.g. limits a program's access
to certain resources whenever it is executed, or the execution in a virtual machine ensure
that a software program does not harm the system or other programs. However, they do
not assure functional correctness properties. Other techniques like result checking [WB97]
and certifying algorithms [MMNS11] validate that the program's output is compliant with
the intention of the program. Runtime veri�cation [LS09] proves that a single execution
of a software program adheres to a correctness property (speci�cation). A monitor, which
is generated from the property of interest, inspects the run and decides adherence. In
online monitoring, the monitor observes the current execution of a program. All these
techniques have in common that they detect a violation of a correctness property, but
only late at runtime. When no mechanism is applied to recover from a violation, errors
will still be observed indirectly by abortion of the program. Furthermore, applying these
techniques often results in a runtime overhead. These techniques can be used to protect
against harmful software programs, but they are poorly suitable to convince a consumer
of the correctness of a software program.

Of course, the consumer could validate the software program himself using e.g. one of
the techniques [JM09b, NNH05, Kin76] mentioned earlier. We would prefer automatic,
formal veri�cation [DKW08] because these techniques often guarantee that a program
adheres to the correctness property of interest. Additionally, they can be used by the con-
sumer, typically a non-expert. Nevertheless, we think that this solution is inappropriate.
First, validation is the task of the software producer. For example, a consumer cannot �x
a found error. Furthermore, the producer likely uses validation when he wants to build
high quality software. Thus, every consumer would repeat the validation process the pro-
ducer already performed. Second, we already mentioned that validation can be quite time
consuming. Such a consumer validation is particularly infeasible in on-the-�y markets, in
which a software program is composed with others on demand. Typically, the composed
software should be executed almost immediately after the composition. We conclude that
the producer and the consumer must cooperate. The producer must convince the con-
sumer that he did the validation and that his validation con�rms the correctness of the
program. Next, we consider protocols which might be used to convince the consumer.

Digital certi�cates [DH76] can be used to certify the originator of the software or its
integrity. For example, the software producer signs the software with his private key to
prove that he is the originator. The consumer can check the origin with the help of the
producer's public key. However, digital certi�cates do not assure that the software adheres
to certain correctness properties. The consumer still needs to trust the provider. Thus,
digital certi�cates are not suitable for our context.
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The amanat protocol [CSV07, CSV13] is a cryptographic protocol to convince the
consumer that the producer's software program adheres to certain correctness properties.
The idea is that a third party, an amanat which is controlled by the consumer, validates the
software program, builds the executable and signs the executable as well as the validation
verdict with a private key only known by the consumer and the amanat. Before the
signed executable and validation verdict are sent to the consumer, the producer checks
them and only forwards them to the consumer when the amanat does not reveal the source
code to the consumer. We think this protocol is di�cult to realize in on-the-�y markets.
A consumer does not purchase from every producer in the market. Only on demand,
he might be interested in a software product of a producer. It does not make sense to
establish the amanat protocol among any producer consumer pair separately. This could
even be impossible due to the large set of market participants. In contrast, having one
amanat for all consumers is likely insecure. The private key must be shared. Thus, getting
the private key would become much easier for the producer. Additionally, validation is
still performed by the consumer. Hence, we decided against the amanat protocol.

Proof-Carrying Code (PCC) [NL96, Nec97] is a protocol to ensure that a program
from an untrusted producer is correct w.r.t. certain correctness properties. In its basic
form, the producer performs a formal veri�cation and sends the consumer the software
program together with the proof. Then, the consumer checks whether the received proof
shows that the received program ful�lls the correctness property of interest. We think
that this idea is well-suited to assure correctness properties in global on-the-�y markets.
The producer does the di�cult veri�cation, while the consumer only performs a fast
inspection of the proof. The PCC idea is already used in various approaches (see e.g.
[NL96, Nec97, App01, WNKN04, MWCG99, CW00, SYY03, Cha06a, Ros03, APH05b,
AAPH06, BJP06, HNJ+02, CMZ15, BDDH16, ACAE08]). Nevertheless, the usage of
these approaches in on-the-�y markets is limited.

First, some approaches, e.g., PCC [NL96], foundational PCC [App01], and veri�ed
PCC [WNKN04], use semi-automatic veri�cation procedures like theorem provers. Ver-
i�cation must be performed by an expert. Reconsidering the heterogeneous class of de-
velopers, we cannot expect that all of them are experts. We believe that the producer
veri�cation and the consumer validation must be automatic.

Second, PCC approaches are sometimes restricted to certain properties. For example,
in the original PCC approach [NL96] the safety property is hard-coded in the veri�cation
condition generator, a component of the veri�cation and validation process. In founda-
tional PCC [App01], the safety property is encoded in the program semantics. Similarly,
in typed assembly language [MWCG99] the property is incorporated into the type sys-
tem. We assume that in on-the-�y markets consumer are interested in di�erent correctness
properties. We think that providing the infrastructure for all approaches which might be
used to assure a property is cumbersome. It is better to have one single approach for all
properties.

Third, the veri�cation is often restricted to a certain analysis or analysis type. For
example, Henzinger et al. [HNJ+02] use predicate model checking. Rose [Ros03] considers
data�ow analyses and Albert et al. [APH05b, AAPH06], Besson et al. [BJP06], or Seo
et al. [SYY03] rely on abstract interpretation. However, we suppose that no analysis
(type) is always suitable to verify a certain class of properties. The analysis should be
interchangeable.

For on-the-�y markets, we require automatic and �exible PCC alike approaches, which
cannot only be con�gured to the property of interest, but must be adaptable to the
veri�cation technique most suitable to prove the validity of the property. Our principle
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Figure 1.1: Con�gurable, abstract protocol to convince a consumer that an untrusted
program is safe

for asserting correctness properties in on-the-�y markets, which is described in the next
section, takes all these aspects into account.

1.2.1 Our Principle

In this section, we describe our high level solution to convince the consumer that a received,
untrusted program is safe. We think it is unacceptable that the consumer carries the
burden to validate a program that a producer wants to sell or distribute. Hence, like e.g.
Proof-Carrying Code [NL96, Nec97] our solution is a protocol between two parties, the
producer and the consumer, in which the major workload for program validation is shifted
to the producer. From our point of view, such a workload shift is acceptable because the
producer directly pro�ts from the salary of the service. Additionally, the producer should
validate his program anyway. Furthermore, the producer's validation is not really under
time pressure. It can be done o�ine and needs not be done on demand. In contrast
to existing approaches, which are semi-automatic or restricted to certain properties or
analyses, we envision a solution which is automatic and broadly applicable. Instead of
realizing di�erent protocols for various properties, we have one solution for all properties,
which can also be used by a non-expert. To achieve the broad applicability and the
automation, we suggest to build our solution on existing, con�gurable and automatic
software analyses [Kil73, CC77, BHT07, BHT08]. Figure 1.1 shows the course of our
proposed protocol for the case that the producer veri�cation is successful. So far, this
protocol is generic. To instantiate the protocol, the three rectangles with the black borders
must be replaced by concrete approaches.

First, the producer and the consumer agree on the correctness property or the pro-
ducer simply �xes a property. Additionally, the producer must choose a con�guration CA

suitable for the analysis of the determined property. Based on the con�guration CA, the
producer starts a resource consuming analysis of the program w.r.t. the property. In prin-
ciple, a protocol instance may use any con�gurable approach for the resource consuming
analysis of the producer that runs automatically and does not simply output true (prop-
erty satis�ed) or false, but also provides some kind of proof for its answer. We do not
restrict proofs to be mathematical proofs. Instead, we allow any kind of formal reasoning,
e.g., a �xpoint [APH05b], an inductive invariant [MP95, p. 87 f], the precision of the �nal
abstract model [BLN+13], a description or guide for the proof search [NR01, TA10], or a
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model of the explored state space [HJMS03]. The only restriction is that the information
must be usable to simplify the validation procedure on the consumer side.

Note that the protocol �nishes when the producer analysis fails to show correctness of
the program w.r.t. the property. In this case, either the program is faulty and must be
corrected before the process can be restarted or the con�guration is improper to show the
validity of the property. The process must be restarted with a more suitable con�guration.
Figure 1.1 shows the course of the protocol when the producer analysis succeeds. Then,
the producer uses a program expansion component which enhances the program, i.e., it
adds some information of the proof, which should simplify the program validation. A
very common approach of a program expansion is to attach additional information to
the program. For example, Proof-Carrying Code [NL96, Nec97] attaches a mathematical
proof. Other approaches annotate the program with additional information. For example,
one could use JML annotations [LBR99] or construct proof outlines [OG76]. We also allow
unorthodox program expansions. In this thesis, we consider a protocol instance which uses
the proof to restructure the program and thus implicitly encodes the proof information in
the restructured program. The result of the program expansion is the enhanced program,
e.g., the program plus attachment, the annotated program, or the restructured program.
This enhanced program is shipped to the consumer.

We require that our protocol (instances) can deal with corruption. Corruption may
be caused by a malicious attacker or simply by a failure during transportation of the
enhanced program. After the consumer receives a possibly corrupted enhanced program,
he �rst derives a con�guration CV for his validation, which �ts to the producer's analy-
sis con�guration CA. Then, the consumer uses a simple validation that is con�gured by
the con�guration CV, the enhanced program received by the consumer, and the property
the producer and consumer agreed on. Again, di�erent approaches can be used for the
validation. Typically, they depend on the type of the enhanced program. Examples are
type checking of the proof [NL96, Nec97], (partial) reveri�cation [BLN+13], and checking
that the attached proof object ful�lls certain properties [HJMS03]. In all cases, the sim-
ple consumer validation must run automatically and must have two possible outcomes:
succeeded or failed. Note that the outcome failed can have several reasons, e.g., the vali-
dation is not able to check the property, the validation takes too long and is aborted due
to a timeout, or the validation exceeded its memory. Based on the validation outcome,
the consumer decides how to treat the program received by the producer. A successful
validation implies that the program is accepted by the consumer, i.e., it is installed or
run. In contrast, a program is discarded whenever its validation failed.

Next, we discuss the requirements that each protocol realization should ful�ll to be-
come practically usable.

1.2.2 Requirements

In the following, we introduce �ve important properties each realization of the protocol,
the principal discussed in the previous section, should provide. Additionally, we discuss
the relevance of the properties. Next, we describe the �ve properties in alphabetic order.
Their ordering does not rank the importance of each individual requirement.

Automation After the property and the analysis con�guration are determined, both, the
producer process (analysis plus program expansion) and the consumer validation,
run fully automatic.
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E�ciency The simple, consumer validation is more e�cient than the resource consuming
analysis of the producer, i.e., the consumer validation consumes less resources than
the producer veri�cation. We are especially interested in the resources execution
time and memory.

Generality Each protocol instance should be usable to assure various properties. Hence,
the instance's process must be con�gurable to an analysis type and domain which
is appropriate to prove the validity of the property.

Relative completeness When the producer's resource consuming analysis generates a
valid proof, i.e., a proof that shows that the input program adheres to the given
property, then the simple, consumer validation must accept the enhanced program
constructed by the producer's expansion step.

Soundness If the simple, consumer validation succeeds, the program that the consumer
received will be correct w.r.t. the property that was checked during validation. In
Proof-Carrying Code this property is often known as being tamper-proof.

Soundness and relative completeness protect the consumer's and producer's interests.
The consumer wants that the received program does not violate the safety property. The
soundness property guarantees that accepted programs ful�ll this property. In contrast,
the producer is interested in selling his programs, i.e., the consumer should accept the
producer's programs. Especially, if the producer is reliable and does not cheat, i.e., he
developed a program that adheres to the property of interest and even proved the pro-
gram w.r.t. that property, the consumer should accept the producer's program. Relative
completeness ensures that well-behaving producers are not discriminated. Thus, these two
properties form the basis for the participation of consumers and producers in the process.
Additionally, they can be seen as a contract between the consumer and the producer, in
which the consumer a�rms that he buys the producer's program when the producer adds
evidence that the program adheres to the desired property. Hence, they establish trust
between consumer and producer.

E�ciency ensures that applying the protocol (instance) is pro�table for the consumer.
Each approach which realizes the protocol and in which the consumer validation is less
or equally e�cient than the producer veri�cation becomes unnecessary. In these cases, it
is simpler for the consumer to verify the program himself. Moreover, we plan to design
approaches for the application in the on-the-�y scenario. In this application scenario, often
a software solution is composed on demand. Validating the correctness of the individual
components in the composition must be fast and should not take hours or days.

We think that it is common understanding that the consumer, e.g., an end-user, is
not an expert in formal methods like veri�cation. Furthermore, we observed that more
and more software is developed by individuals or smaller companies instead of large,
global players. It cannot be assumed that every producer has expert knowledge in formal
methods. To keep an market open to these developers, the protocol instance should be
applicable to producers and consumers who are non-experts in formal methods. Automa-
tion and generality aim at making an instance applicable to non-experts. On the one
hand, we cannot expect from a non-expert that he guides the analysis or validation. To
be applicable for non-experts, analysis and validation must be automatic. On the other
hand, non-experts likely lack an overview on existing approaches or the knowledge which
approach works best for a speci�c property and program. For non-experts, it is much
easier to use a single approach for all properties. At best, they also should not be both-
ered with a correct con�guration of that approach. Consumers do not need to con�gure
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their validation. The validation con�guration is derived from the producer's con�gura-
tion. For producers, we imagine that they can select the con�guration required to analyze
a property from an existing set of con�gurations that �t to that particular property.

1.2.3 Discussed Instantiations

The protocol displayed in Fig. 1.1 allows various design options. For example, di�erent
approaches for the resource consuming analysis, the program expansion, and the simple
validation can be chosen. However, the selected approaches must be compatible. The
proof produced by the resource consuming analysis must �t to the proof format expected
by the program expansion instance. Moreover, the output of the program expansion must
match the enhanced program format required by the simple validation approach. In this
thesis, we propose two instantiations of the protocol, the principle shown in Fig. 1.1:
con�gurable program certi�cation and Programs from Proofs. Furthermore, we discuss
how to integrate these two instantiations into a third instantiation.

All three instantiations use the same resource consuming analysis for the producer.
This analysis computes an overapproximation of the reachable program states on an ab-
stract level and produces a model of this overapproximation, named abstract reachability
graph (ARG). The precision of the overapproximation can be con�gured by the choice of
the abstract domain and the type of the analysis.

Con�gurable program certi�cation uses the ARG in its program expansion to build a
certi�cate, a witness for program correctness. The certi�cate contains parts of the proof,
the ARG, and is explicitly attached to the program. The combination of the program
and the certi�cate is the enhanced program. The simple consumer validation checks
whether the certi�cate is a valid witness for program correctness w.r.t. the property and
the received program.

In contrast, in the Programs from Proofs approach the information for a fast and
simple validation is implicitly encoded in the program. More concretely, the program
expansion uses the ARG to restructure the program s.t. the property can be veri�ed by
a simpler, less precise analysis. For example, it excludes infeasible paths or it re�nes the
syntactical partitioning of the program paths, i.e., it syntactically separates some paths.
This restructured program is the enhanced program in Fig. 1.1. Given the enhanced pro-
gram, the simple consumer validation applies the same analysis approach as the producer,
but he starts it with the enhanced, i.e., restructured, program and a less precise analysis.

The program expansion in the integration of the two previous instances is a mixture of
implicit information encoding and explicit information attachment. Like in the Programs
from Proofs approach, the program is restructured. Simultaneously, a certi�cate in the
style of the con�gurable program certi�cation approach is constructed, which witnesses
the correctness of the restructured program. Thus, this certi�cate and the restructured
program become the enhanced program. Now, the simple validation of the consumer
utilizes the certi�cate validation from con�gurable program certi�cation to validate the
attached certi�cate on the restructured program.

1.3 Thesis Contribution

In this thesis, we design techniques to assure that software programs o�ered in on-the-�y
markets meet their correctness properties. Based on the insights of the previous section,
our techniques must be automatic and �exible PCC alike approaches in which property
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and analysis (type) can be set. To achieve this goal, all our techniques apply the abstract
protocol (Fig. 1.1) proposed in the previous section. More concretely, we develop concrete
techniques for the three protocol instances, con�gurable program certi�cation, Programs
from Proofs, and the integration of con�gurable program certi�cation and Programs from
Proofs. All three instances have already been brie�y sketched in the former section.

For con�gurable program certi�cation we develop six variants. We begin with a direct
and basic approach. Starting from the basic approach, we consider two, orthogonal lines
of optimizations, which we later also combine. The �rst line of optimizations aims at the
reduction of the information attached to the program. We propose two instances, one is
generally applicable and the other has a higher reduction. However, the higher reduction
comes at the costs that it is only applicable to a smaller, although practically often used
class of analyses. In the second optimization, we partition the additional information in
such a way that parts can be validated independently of others. This second optimization
can be combined with both instances of the �rst optimization. In contrast to con�gurable
program certi�cation, we consider one e�cient technique which realizes the Programs from
Proofs approach. The integration of the two approaches is also con�gurable. Any variant
of the con�gurable program certi�cation can be used in the integration. Furthermore, two
di�erent approaches exist for the integration. Both approaches use the same technique
for the Programs from Proofs related part, but di�er in the construction of the certi�cate
for the restructured program. One transforms the proof generated by the analysis into a
proof for the restructured program and applies standard con�gurable program certi�cation
techniques. The other �rst generates the certi�cate for the original program and then
transforms the certi�cate into a certi�cate for the restructured program.

Next to the development of the various techniques, we study their properties. In
particular, we look at the �ve properties, automation, e�ciency, generality, relative com-
pleteness, and soundness, which every instance of the abstract protocol in Fig. 1.1 should
ful�ll.

For each of the techniques which we present, we prove that it is sound and relatively
complete. For the Programs from Proofs technique we must split the proof of relative
completeness into multiple proofs for various classes of analyses. However, relative com-
pleteness could only be shown for a large class of standard analyses. Based on the insights
of relative completeness and the technique's realization of the abstract protocol from
Fig. 1.1, we discuss if or when the technique is fully automatic. Our con�gurable program
certi�cation techniques are only fully automatic for a large class of standard analyses.

To show e�ciency and generality of our techniques, we performed an extensive eval-
uation. All our techniques were performed on a large set of programs mainly taken from
well-known software benchmarks. We considered �ve di�erent analysis types and at least
18 di�erent analyses per technique. During evaluation, we assured various properties. To
mention only a few, we checked that no uninitialized variables are used, no assertions
are violated, all array accesses are in the bounds, or a program calls external methods in
a particular order. Based on the evaluation results, we identi�ed the factors that make
our techniques e�cient. Furthermore, we used the evaluation to compare the techniques
among each other and to compare them with existing state-of-the-art techniques.

1.4 Thesis Outline

The rest of this thesis is structured as follows. In Chapter 2, we introduce the basic con-
cepts like program (model) and its semantics, formalization of properties and correctness of
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programs w.r.t. these properties. Moreover, we present the producer's resource consuming
analysis, which is built on a con�gurable, abstract interpretation alike analysis framework.
Subsequently, Chapters 3 and 4 describe the con�gurable program certi�cation instance.
We start with a very basic realization in Chapter 3 and discuss optimizations of the basic
approach in Chapter 4. Furthermore, we show either with the help of formal proofs or
via experimental evaluation that all con�gurable program certi�cation variants (partially)
ful�ll the �ve described properties. Additionally, we compare the con�gurable program
certi�cation instance with existing certi�cation approaches based on witness validation.
Thereafter, we present the second instance Programs from Proofs in Chapter 5. Like
for the �rst instantiation, we prove that or experimentally evaluate if and when the �ve
requirements are ful�lled by the Programs from Proofs instance. We also compare the
Programs from Proofs instantiation with other approaches including our previous instance
con�gurable program certi�cation. After we considered these two instantiations, in Chap-
ter 6 we explain how to integrate them into a third instance. As before, we use formal
proofs and experiments to evaluate the combined instance against the �ve requirements
from above. In the last chapter of our thesis, we conclude this thesis with a comparison
of the three instances and suggest future improvements and extensions of our protocol
instantiations.
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In our approaches, we want to check if a program is correct with respect to some property.
Before we can check if a program is correct with respect to some property, we need
to understand what this means. Understanding program correctness with respect to a
property incorporates at least the comprehension of the following three aspects:

1. the concept of a program, including its representation and semantics, (Section 2.1),

2. the notion of a property (Section 2.2.1), and

3. the meaning of correctness (Section 2.2.2).

As described in the previous chapter, in our approaches the producer and the consumer
check if a program is correct with respect to some property. We develop the consumer
checking in the subsequent chapters, but for the producer checking we build on existing
veri�cation techniques. To apply our approaches in a broad context, we need an adaptable
producer veri�cation. Our solution for adaptation lets the producer con�gure his veri�ca-
tion (see Section 2.3) � of course only within a certain design space. For producer checking,
the con�gured veri�cation is executed by a generic analysis (cf. Section 2.4), which also
constructs the proof, an abstract reachability graph (see e.g. [BHJM07]) required by the
subsequent step of our approaches.

2.1 Programs

Any written de�nition of a program, e.g., program code, is �rst of all a sequence of char-
acters. Statements, keywords, variables and operators are all subsequences of characters.
However, a sequence of characters is a rather impractical representation of programs. It
does not provide any additional information about the structure of a program nor about
the expected behavior of the program, which is important for veri�cation. To guarantee
more �exibility in the con�guration of the producer veri�cation, we use a program model
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to describe the structural aspect of a program. On top of the program model, we then
de�ne a program's behavior, the program semantics.

2.1.1 Program Model

Various representations for programs exist. All of them were developed for di�erent pur-
poses. To name only a few, abstract syntax trees (ASTs) (see e.g. [ALSU07]) are a
hierarchical representation of a program structure typically used in compilers. The AST
structure is mainly imposed by the grammar of a programming language. Program de-
pendence graphs [FOW84] provide the control and data dependencies between operations.
Control �ow graphs [All70] describe the syntactical paths of a program.

To verify program correctness with respect to some property, we want to apply some
sort of operational reasoning, a common procedure in veri�cation [KRA09, p. 12]. For
operational reasoning, we consider which operations are executed in which order. Hence,
we require a representation of the syntactical program paths, which also describes the
program �ow. Program �ows are often represented by graph like structures named e.g.
�owcharts [CC77], �ow graphs [KU77], control �ow graphs [All70], and control �ow au-
tomaton [BHT07]. Operations or operation sequences are associated with nodes or edges.
We decided to follow the notion of the veri�cation framework on which we build the
producer veri�cation [BHT07] and use control �ow automata to describe programs.

For a broad applicability of our approaches, we do not �x a concrete programming
language. In contrast, we want to allow that arbitrary programs1 can be described by
our program model. From now on, let Ops be the set of all program instructions, all
operations a program may use. Moreover, let L be the set of all program locations, e.g.,
all possible values of the program counter. We de�ne the set G of all control �ow edges
to be G := L × Ops × L. The set G speci�es all statements any program may execute.
To describe a program, a control �ow automaton provides the program's locations as
well as its statements, which also model the control �ow between the program's location.
Additionally, the beginning of a program is de�ned by a special program location.

De�nition 2.1 (Control Flow Automaton (CFA)). A control �ow automaton (CFA)
modeling program P = (L,GCFA, l0) consists of a set L ⊆ L of program locations, a
set GCFA ⊆ L×Ops× L of control �ow edges, and a program entry location l0 ∈ L.

Figure 2.1 shows our example program SubMinSumDiv in pseudocode plus its CFA. We use
program SubMinSumDiv throughout the thesis to demonstrate all our approaches. Thus,
the example program is rather arti�cial and it intermixes di�erent computations, which
will be separated by the Programs from Proofs approach. Depending on the values of
variables x and y, program SubMinSumDiv subtracts the minimum of x and y from 10
(x < 0), sums up the integer values from x to y (x ≥ 0∧ y ≥ 0), or when x ≥ 0∧ y < 0 it
computes the negated quotient of the euclidean division, which is increased by two if y is
not a divisor of x. The following equation shortly summarizes this behavior.

z =


−min(x, y) + 10 if x < 0
x∑

i=y

i if x ≥ 0 ∧ y ≥ 0

−x div y if x ≥ 0 ∧ y < 0 ∧ x
y = dxy e

(−x div y) + 2 else

1Note that when we think of a program, we have in mind a program that is written in some imperative
language.
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0 : z:=0;

1 : i f (x<0)
2 : i f y<x

3 : z:=-y;

e l se
4 : z:=-x;

5 : z:=z+10;

e l se
6 : i f y≥0
7 : s:=1;

e l se
8 : s:=-y;

9 : while x ≥ y ∧ x 6= 0

10 : i f y ≥ 0

11 : z:=z+x;

e l se
12 : z:=z+1;

13 : x:=x-s;

14 :

Figure 2.1: Example program SubMinSumDiv and its CFA

The CFA of example program SubMinSumDiv on the right of Fig. 2.1 provides for every
program counter value i � the numbers in front of the pseudocode statements � a control
�ow location li. For each assignment, an edge, which is labeled by that assignment, is
contained in SubMinSumDiv's CFA. Furthermore, for each if and while statement, two
assume edges are included in SubMinSumDiv's CFA, namely one edge for each evaluation
of the condition. The labels of those assume edges describe which evaluation of the
condition is true. Hence, one edge is labeled by the condition and the other edge is labeled
by the negated condition. Edges start in the control �ow location corresponding to the
statement's program counter value. They end in the control �ow location corresponding
to the program counter value of the next statement to be executed.

So far, we introduced the basic program model. For termination of our approaches, this
basic model is too general. The main problem � for the consumer checking as well as for
the presented producer's veri�cation � is that a program may have in�nitely many control
�ow edges, i.e., the CFA de�nition is in�nite. Typically, the set of program locations is
�nite when the set of control �ow edges is �nite2. Furthermore, we do not necessarily
need a �nite set of program locations. Hence, we de�ne a �nite CFA based on its set of
control �ow edges.

De�nition 2.2 (Finite CFA). A control �ow automaton P = (L,GCFA, l0) is �nite if its
set of control �ow edges is �nite, i.e., ∃n ∈ N : |GCFA| ≤ n.

Next to in�nite programs, our basic program model also allows nondeterministic CFAs.
For example, given a program location l and an operation op the successor for l and op in a
CFA may be ambiguous. Many well-known programming languages like C [ISO11] do not
support such nondeterministic speci�cations. To retranslate a CFA into a programming

2Commonly, program locations are the predecessors and successors of control �ow edges.
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language representation, e.g., like our Programs from Proofs approach does, we need to
assure that the CFA is deterministic when the programming language itself does not
support nondeterminism.

De�nition 2.3 (Deterministic CFA). A control �ow automaton P = (L,GCFA, l0) is
deterministic if ∀(l, op, l′), (l, op, l′′) ∈ GCFA : l′ = l′′.

Up to now, we only introduced the program representation, the program syntax. We
continue with a program's meaning, its semantics, which describes the behavior of the
program.

2.1.2 Program Semantics

The �rst approaches [McC63, Lan64, Flo67, Hoa69] that formally de�ned program seman-
tics appeared in the 1960s. Three di�erent types of semantics were proposed.

Denotational semantics was introduced by McCarthy [McC63]. It describes the mean-
ing of a program by a mathematical function that maps input states, the states on
which the program is started, to output states, the states after the execution of the
program.

Axiomatic semantics was used �rst by Floyd [Flo67] on �owcharts and two years later
it was described Hoare [Hoa69] for programs. It de�nes the program semantics by
pre- and postconditions. If a state s ful�lls the precondition before the execution
of program P , the state resulting from the execution of program P on state s will
ful�ll the postcondition. To derive pre- and postconditions, axioms and derivation
rules for the di�erent constructs are provided.

Operational semantics determines the meaning of a program by executing it on a
virtual machine. The executions' sequences of transition steps determine the pro-
gram semantics. As an early approach, Landin [Lan64] presented the mechanical,
stack-based evaluation of lambda expressions. Later, Plotkin [Plo81] introduced the
structural operational semantics for programs.

With our approaches, we want to assure a safe execution of a program, not only a correct
result. Denotational semantics is not well-suited for this purpose because it does not
provide any information about the program states during execution. Furthermore, in
axiomatic semantics many pairs of pre- and postcondition can describe the behavior of a
program and it is not clear which pair we should take as basis for our veri�cation. Thus,
we use a structural operational semantics for our programs, which de�nes the execution
steps for statements g ∈ G.

In the previous section, we did not �x the setOps of statements a program may execute.
Hence, we do not provide an exact semantics, but only present those requirements on the
semantics which our approaches assume.

Before we consider the semantics of concrete programs, we look at the semantics of
single execution steps in arbitrary programs. The semantics for execution steps de�nes
whether in a concrete (program) state a certain program statement, de�ned by a control
�ow edge, is enabled and if it is enabled what the resulting state after execution of that
program statement will be. We assume that the de�nition of the semantics for execution
steps is given by a labeled transition system T = (C,G,→) on a set C of concrete states
with transitions labeled by control �ow edges. The set of concrete states contains all
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states any program can be in. Furthermore, the transition relation is of the following form
→⊆ C×G×C. Note that we use c g→ c′ as abbreviation for (c, g, c) ∈→. These assumptions
on the program semantics are su�cient for our certi�cation approaches. However, for our
Programs from Proofs approach we require further assumptions on the representation of
concrete states and the execution of program statements de�ned by the transition relation.
These additional assumptions are presented in the following two paragraphs.

Assumptions on Concrete States: A concrete state can be split into two disjoint
parts, the control state and the data state. The control state contains all information
necessary to determine the control �ow edge considered next in a program's execution.
We assume that the value of the program counter � a location l ∈ L � is su�cient for this
task. This means, function calls are either inlined or handled as a single operation. In the
latter case, our analysis must determine the e�ect of a function, e.g., by using function
summaries �rst used by Hoare [Hoa71] or other techniques like block abstraction memo-
ization [WW12]. The data state provides all information about data that is manipulated
by the execution of an operation op ∈ Ops, e.g., the values of variables. We denote the
set of all data states by DS and demand that the set C of concrete states is C = L×DS.
For a concrete state (l, d) we de�ne cs((l, d)) = l and ds((l, d)) = d to access the state's
control and data state, respectively.

Assumptions on the Transition Relation: We require that the transition relation

respects the control �ow, i.e., c
(l,op,l′)−−−−−→ c′ only if cs(c) = l and cs(c′) = l′. Additionally,

a successor's data state is de�ned by the operation and the predecessor's data state only.
We demand that there exists a partial function3 succ : DS ×Ops→ DS that de�nes the
successor's data state. Furthermore, we assume that the transition relation is determined
by the control �ow edges and the partial function succ. These assumptions give us the
following transition relation:

→:= {(c, (l, op, l′), c′) ∈ C × G × C | cs(c) = l ∧ cs(c′) = l′ ∧ ds(c′) = succ(ds(c), op)} .

Note that these assumptions exclude nondeterministic program behavior, but they do
not exclude typical structural operational semantics for deterministic programs like the
semantics assumed for abstract interpretation [CC77] or semantics which are presented
in standard textbooks like [NNH05, pp. 54�], [KRA09, pp. 58�].4 We mainly provided
these assumptions to exclude exotic semantics in which statements can be executed al-
though they are not the next statement in the program description or the evaluation of
an expression depends not only on the data but also on the program location.

Next, we describe one semantics for our example program. The data states are all
mappings from the set of variables to integers Z. To evaluate boolean and arithmetic ex-
pressions expr in such a data state d, denoted by d(expr), �rst the variables are substituted
with their respective integer value in the data state and then the expression is evaluated
by standard mathematics (see [NNH05, p. 55]). For an assignment v := expr, the partial
function succ : DS ×Ops→ DS returns for a data state d, the data state d[v 7→ d(expr)]
obtained from d by replacing the value of v by value d(expr) (see [NNH05, p. 56]). Fur-
thermore, for an assume instruction bexpr the partial function succ : DS ×Ops→ DS is
de�ned only if d(bexpr) = true, and then succ(d, bexpr) = d.

3For example, the function may be unde�ned if the operation is a condition and the input data state
does not ful�ll the condition.

4Note that the representations for the control state vary throughout the presentations of structural
operational semantics.
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So far, the transitions c
g→ c′ of a transition system T de�ne the valid execution

steps, but often a program execution consists of multiple, sequential execution steps.
Nevertheless, not all sequences of transitions should be proper executions. For example,

consider a sequence c
g→ c′, c′′

g′→ c′′′ with c′ 6= c′′. Allowing such a sequence would impose
a weird semantics in which a state change may be triggered without actually executing any
program statement. We exclude such behavior and restrict the set of proper executions,
the set which describes all executions any program may take, to the set of all paths in the
transition system T .

De�nition 2.4. Let T = (C,G,→) be a transition system. Every concrete state c ∈ C is
a path of length 0 in transition system T . A sequence of transitions c0

g1→ c1 · · ·
gn→ cn is a

path of length n in transition system T if ∀1 ≤ i ≤ n : (ci−1, gi, ci) ∈→.

Typically, a program should not be able to execute every path in a transition system.
Otherwise, we do not need to de�ne programs at all. A program's control locations and
control �ow edges already provide a convenient way to restrict the paths a program can
execute. Hence, we de�ne the executable paths of a program P , its program paths, to be
all paths in the transition system T that start in a control location of P and that only
use the control �ow edges de�ned by P . Since a program usually starts its execution at
the program entry location rather than in the middle of the program, not all program
paths are of interest. In our approaches, we specify in which concrete states, the so called
initial states, a program execution may start. In the following, we are only interested in
program paths starting in one of the given initial states.

De�nition 2.5 (Program Paths). Let P = (L,GCFA, l0) be a program. A path c0
g1→

c1 · · ·
gn→ cn in transition system T is a program path in P if cs(c0) ∈ L and ∀1 ≤ i ≤ n :

gi ∈ GCFA. We extend this de�nition and de�ne the set pathsP (I) of program paths in P

starting in a set of states I ⊆ C to be the set of all program paths c0
g1→ c1 · · ·

gm→ cm in P
with c0 ∈ I.

After we comprehend the notion of a program, we continue with the speci�cation of
properties and the meaning of program correctness with respect to a speci�ed property.

2.2 Properties

To express program properties, di�erent formalisms are available. A very simple form is
the direct encoding of properties in the program, e.g., with assertions or speci�c error
labels. Pre- and postconditions proposed by Hoare [Hoa69] can be used to describe the
expected relation between the input and output (state) of a program. Temporal logics,
like e.g., linear temporal logic (LTL) or computation tree logic (CTL) (see e.g. [CGP02]),
specify the allowed temporal ordering of events in program executions. Events may be
program operations or atomic propositions on program states. Instead of a temporal logic,
also �nite state machine based approaches are used to specify (temporal) safety proper-
ties. Safety properties �state that something [bad] will not happen� [Lam77]. For example,
Schneider [Sch00] uses security automata to de�ne safety properties. The speci�cation lan-
guage for interface checking (SLIC) [BR02b] uses state machines to describe requirements
on the API usage like ordering of method calls. The BLAST query language [BCH+04]
provides observer automata to decide whether program executions adhere to certain safety
properties. Correctness witness automata [BDDH16] are observer automata for invariant
properties.
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For our Programs from Proofs approach, we must be able to apply the same prop-
erty speci�cation on the transformed program. A separation of program and property
speci�cation simpli�es this task. Furthermore, we already stated that we are interested
in program executions. Since the veri�cation of safety and liveness properties requires a
di�erent argumentation [AS87], we decided to focus on temporal safety properties. We
think that in our scenario it is more important that a program execution is not harmful.
Next, we discuss how we describe our safety properties. Then, we explain their semantics.

2.2.1 Property Speci�cation

The most general form to specify a safety property for programs is to describe all safe
transition sequences, or dually to de�ne all unsafe transition sequences. We believe that
an easily accessible format to specify the (un)safe transition sequences are automata like
speci�cations as supported by SLAM [BR02a] or BLAST [BHJM07]. Hence, we use an au-
tomaton based speci�cation which is inspired by the speci�cation language of the analysis
tool CPAchecker [BK11b], in which we integrated our approaches.

Our speci�cation should support protocol properties, which de�ne the ordering of
program instructions. Furthermore, we also want to express that certain program locations
cannot be reached. Similar to an assertion, we also want to assert that if a certain program
location is reached, the program state will ful�ll some condition. Moreover, our automaton
should be able to specify invariants [MP95] on program states. Thus, our speci�cation
must be able to monitor operations and program states. Since we are rarely interested
that at some point only a single program state can be reached, the input alphabet of our
speci�cation considers pairs of operations and sets of (concrete) program states.

In contrast to security automata [Sch00], which describe unsafe behavior by missing
transitions, we model unsafe behavior with a special error state. We think this is more
intuitive. Furthermore, we require that our transition relation is complete, i.e., it covers
the behavior of any execution step. Thus, we avoid that non-de�ned transitions are
misinterpreted, e.g., when our speci�cation is translated in the input language of a tool.5

To simplify our proposed veri�cation of programs, we also require that the transition
relation is deterministic. Like a nondeterministic �nite state machine is as powerful as a
deterministic �nite state machine [RS59], we believe that our property speci�cation does
not become more powerful when we allow nondeterminism. Nevertheless, we left the proof
of this claim for future work (see Section 7.2).

The previous considerations let us de�ne a property automaton, our formalism to spec-
ify properties.

De�nition 2.6 (Property Automaton). A property automaton A = (Q, δ, q0, qerr) consists
of a set Q of automaton states, a transition relation δ ⊆ Q × Ops × 2C × Q, the initial
state q0 ∈ Q, and the error state qerr ∈ Q. In addition, a property automaton must ful�ll
the following conditions:

• The transition relation is complete, i.e.,

∀q ∈ Q, c ∈ C, op ∈ Ops : ∃(q, op, Csub, ·) ∈ δ : c ∈ Csub .

• The transition relation is deterministic, i.e.,

∀(q, op, C1, q
′), (q, op, C2, q

′′) ∈ δ : C1 ∩ C2 = ∅ ∨ q′ = q′′ .

5In contrast to security automata, for the tool CPAchecker a missing transition means no state
change.
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Figure 2.2: Property automata describing properties pos@l5 and nonneg

Figure 2.2 shows two example property automata. The edges are labeled according to
the following schema op/Csub, where op is the observable operation and Csub is the set
of the accepted concrete states. For the sake of readability, we do not add edges for all
operations but use wildcards ∗ and −. Wildcard ∗ means any operation op, e.g., the edge

qerr
∗/C−−→ qerr represents all edges (qerr, op, C, qerr) with op ∈ Ops. Furthermore, we use

− to denote all operations which do not occur on an outgoing transition of a state. In

our example on the right of Fig. 2.2, (q0
−/C−−−→ q0) represent all edges (q0, op, C, q0) with

op ∈ Ops \ {z := 0} and qerr
−/C−−−→ qerr is equivalent to qerr

∗/C−−→ qerr. The left automaton
describes the property pos@l5 which states that if location l5 is reached, variable z will
have a positive value. The right automaton de�nes the property nonneg, which demands
that after proper initialization variable z always has a non-negative value.

2.2.2 Correctness Criterion

In the previous section, we introduced our formalism for property speci�cations. Next,
we de�ne its semantics, i.e., what it means that a program is correct with respect to those
property speci�cations. The idea is that the property automaton works like a monitor,
which is run in parallel with the program. Then, a program will be correct w.r.t. a
property automaton if all its executions never visit the error state qerr. Hence, we need
to describe how a program path triggers the transitions of the property automaton.

Each execution step c
(l,op,l′)−−−−−→ c′ triggers a single transition. We only need to decide

whether the property automaton considers c or c′. Since a user, as well as our analysis
technique, can control the properties of the input state, we decided that the property
automaton monitors successor states. Thus, desired properties can be ensured for all

states in a program execution. Now, an execution step c
(l,op,l′)−−−−−→ c′ triggers those outgoing

transitions (q, op′, Csub, q
′) of a state q with op = op′ and c′ ∈ Csub.

Based on these considerations, we de�ne a con�guration sequence, a link between the
program execution and the property automaton. Mainly, the pairs of program instruc-
tion op and successor state of the program execution de�ne the input word of the property
automaton. Then, a con�guration sequence is simply the product of a program execution
path and a run in the property automaton considering the input word determined by the
program execution.

De�nition 2.7 (Con�guration Sequence for Path). Let P be a program, p ∈ pathP (C)
a path, and A = (Q, δ, q0, qerr) a property automaton. A sequence (c0, q0) . . . (cn, qn) of
pairs (ci, qi) ∈ C ×Q is a con�guration sequence for p and A if p := c0

g1→ c1 · · ·
gn→ cn and

there exists a run r := q0
op1,C1−−−−→ q1 . . .

opn,Cn−−−−−→ qn s.t. ∀1 ≤ i ≤ n : gi = (·, opi, ·)∧ ci ∈ Ci.

In the end, we want to use con�guration sequences to de�ne when a program is correct

20



2.2. PROPERTIES

with respect to a property automaton. To ensure that our concept of program safety is
well-de�ned, we show that for each path at least one con�guration sequence exists.

Corollary 2.1. Let P be a program and A = (Q, δ, q0, qerr) a property automaton. For
every path p ∈ pathP (C), at least one con�guration sequence for p and A exists.

Proof. Show by induction that for every path of length i a con�guration sequence exists.

Basis Let c0 be an arbitrary path of length 0. By de�nition (c0, q0) is a con�guration
sequence.

Step Let c0
(l1,op1,l

′
1)−−−−−−→ c1 . . . ci−1

(li,opi,l
′
i)−−−−−−→ ci be an arbitrary path of length i. By in-

duction, there exists a con�guration sequence (c0, q0), (c1, q1), . . . , (ci−1, qi−1) for

subpath c0
(l1,op1,l

′
1)−−−−−−→ c1 . . . ci−1 and hence a run q0

op1,C
1sub−−−−−−→ c1 . . .

opi−1,C
i−1
sub−−−−−−−→ qi−1

s.t. ∀1 ≤ j < i : cj ∈ Cj
sub. Since property automaton A is complete, there ex-

ists (qi−1, opi, C
i
sub, qi) ∈ δ and ci ∈ Ci

sub. Hence, q0
op1,C

1sub−−−−−−→ q1 . . .
opi−1,C

i−1
sub−−−−−−−→

qi−1
opi,C

i
sub−−−−−→ qi is a run and by de�nition (c0, q0), (c1, q1), . . . , (ci−1, qi−1)(ci, qi) is

a con�guration sequence.

After we are sure that we can interlink any program path to the property automaton,
we now de�ne when a path does not violate the property speci�cation, i.e., when it is
safe. Like a nondeterministic automaton accepts an input sequence if a run for the input
sequence exists that ends in a �nal state, a program path is safe if a con�guration sequence
for that path exists that does not visit the error state.

De�nition 2.8 (Safe Program Path). Let P be a program and A be a property automa-
ton. A path p ∈ pathsP (C) is safe w.r.t. A if a con�guration sequence (c0, q0) . . . (cn, qn)
for p and A exists s.t. ∀0 ≤ i ≤ n : qi 6= qerr.

We understand when a single program path, a single program execution, is safe. Remem-
bering that a program's semantics is de�ned by its program paths, we naturally derive
program safety. Since we are only interested in program paths starting in certain initial
states, a program is safe with respect to a set of initial states if all program paths starting
in those initial states are safe. Considering the program entry location as conventional
start of a program, we further de�ne a program to be safe in general if all its executions
starting in the program entry location are safe.

De�nition 2.9 (Program Safety). Let P = (L,GCFA, l0) be a program and A a property
automaton. Program P is safe w.r.t. property automaton A and a set of initial states
I ⊆ C, denoted by P |=I A, if every path p ∈ pathsP (I) is safe w.r.t. A.
Program P is safe w.r.t. A, denoted by P |= A, if P |={c|c∈C∧cs(c)=l0} A.

Note that our example program SubMinSumDiv is safe w.r.t. properties pos@l5 and nonneg.
So far, we know what it means that a program is correct, safe, with respect to a

property automaton, but not how to actually prove this fact.We continue to explain how
a producer veri�es that a given program is correct w.r.t. a given property automaton.
Next, we present how the producer describes an appropriate analysis for this veri�cation
task.
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2.3 Analysis Con�guration

We already stated that we need an adaptable veri�cation for the producer. To achieve
adaptability, we suggested to con�gure the veri�cation. Another requirement is that our
approaches should be available also for producers which are less experienced in veri�ca-
tion. Thus, the producer veri�cation must be fully automatic and must not interact with
the producer after the veri�cation process is started. Note that we assume that less expe-
rienced producers choose from an existing pool of con�gurations rather than con�guring
the veri�cation on their own. In the following, we discuss existing con�gurable veri�cation
frameworks before we introduce our con�gurable framework of choice.

Model checking [JM09b] explores all execution paths of a program to check if a prop-
erty is satis�ed. In the early stages, model checking was de�ned by the program and
the property speci�cation only. For symbolic model checking [BCM+92], this is the same
except that the variable ordering considered by the binary decision diagrams can be con�g-
ured. First, the combination of (data) abstraction and model checking, see e.g. [CGL94],
enables adjustable model checking.

Data�ow analyses (DFAs) have their origins in compiler optimization. In contrast to
model checking, they are often path-insensitive and combine information for the same
program location. Hence, they compute a so called data�ow fact per program location.
Data�ow facts describe certain information about program states reachable at the re-
spective location. The �rst framework for DFAs was suggested by Kildall [Kil73] in 1973.
Further frameworks for DFA speci�cation are for example the monotone data�ow analysis
framework [KU77] and the IFDS/IDE framework [RHS95]. All these frameworks do not
incorporate a semantic meaning of the computed data�ow facts.

Abstract interpretation [CC77] �rst of all allows to specify an abstract semantics of a
program. An abstract semantics overapproximates the concrete semantics if certain condi-
tions are met. In their initial paper, Cousot and Cousot [CC77] use abstract interpretation
in a DFA fashion and compute one abstract context (abstract state) per program location.

Beyer et al. introduced a con�gurable program analysis framework [BHT07, BHT08],
in which analyses joining information at same program locations as well as model checking
based analyses can be speci�ed. Additionally, it allows to directly specify lots of analyses
whose precision is in between fully path-sensitive model checking and path-insensitve
analyses like DFAs. In principle, a con�gurable program analysis describes an abstract
interpreter plus operators that steer the state exploration.

As a consequence of the convergence between the static analysis and the model checking
community, it was shown that model checking, DFAs, and abstract interpretation are
equal [Ste91, CC95, Sch98]. Furthermore, techniques like trace partitioning [MR05, RM07]
and widening [CC77] allow to specify abstract interpretations or DFAs that behave like
the intermediate con�gurations in the con�gurable program analysis framework. Hence,
we think that from a theoretical perspective all frameworks are equal.

We decided to build our techniques on top of the con�gurable program analysis frame-
work [BHT07, BHT08]. Due to the built-in speci�cation for the direction of the state
space exploration, the speci�cation of analyses is less complex and more comfortable.
More importantly, this built-in speci�cation provides us a direct representation of the
paths explored during veri�cation. This representation is essential for our Programs from
Proofs approach. In the following, we start with the basic concept of a con�gurable
program analysis.
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2.3.1 Basic Analysis Con�guration

For our producer veri�cation, we utilize the concept of a con�gurable program analy-
sis [BHT07, BHT08]. A con�gurable program analysis speci�es a custom, abstract inter-
pretation based analysis. On the one hand, the customization allows us to describe the
abstraction. The abstraction is de�ned by an abstract domain and a transfer relation,
which describes the abstract semantics of any program. On the other hand, the analysis
type, e.g., data�ow analysis or model checking, is determined with the help of the merge
operator and the termination check. These two operators steer the state space explo-
ration, a reachability analysis. The merge operator decides if and how to combine an
explored state with the already explored states. Data�ow analyses typically merge states
with same locations and model checking never merges. The termination check tells the
reachability analysis when the exploration of a state can be stopped.

In contrast to the original model of a con�gurable program analysis [BHT07], a con-
�gurable program analysis with precision adjustment [BHT08] also considers precisions.
These precisions can be used to adapt the abstraction during program analysis. For this,
a precision adjustment operator is provided and all operators of a con�gurable program
analysis also have the precision as an additional input parameter. Nevertheless, Beyer
et al. [BHT08] state that theoretically a con�gurable program analysis with precision
adjustment is not more powerful.

For our approaches, we consider a mixture of the original con�gurable program analysis
and the con�gurable program analysis with precision adjustment. From now on, we refer
to this mixture when we use the term con�gurable program analysis (CPA). We use the
precisions from the con�gurable program analysis with precision adjustment, but the only
operator that considers precisions is the precision adjustment operator. Hence, we are
able to comfortably specify CPAs that are used in context of lazy re�nement [HJMS02].
However, we may keep our approaches simple, i.e., the consumer does not need to deal
with precisions. Note that our restrictions are not very restrictive in practice because the
analyses implemented in CPAchecker [BK11b], a software veri�cation tool based on
the con�gurable program analysis concept, typically ignore the precision in the transfer
relation and the merge operator and do not use the precision in the termination check.

In the following, we formally introduce the de�nition of a con�gurable program analy-
sis. Note that a CPA is de�ned for arbitrary programs and is tailored to concrete programs
during its execution. Formally, a CPA C is a six tuple C = (D,Π, , prec,merge, stop).
Its six elements are described in the following.

Abstract Domain The abstract domain D = (C, E , J·K) provides an abstraction for a
set C of concrete states. Subsets of concrete states are represented by single abstract
states.

The abstract representation is de�ned by a join-semilattice [DP90, p. 82] E =
(E,>,⊥,v,t) on the set E of abstract states with partial order v, least upper
bound or join t, a greatest element > ∈ E, i.e., ∀e ∈ E : e v >, and a smallest
element ⊥ ∈ E, i.e., ∀e ∈ E : ⊥ v e. The partial order v describes if an abstract
state is more abstract than another. We lift the partial order to set of abstract
states and write S v S′ if S, S′ ⊆ E and ∀e ∈ S : ∃e′ ∈ S′ : e v e′.
To complete the abstraction, the concretization function J·K : E → 2C describes for
every abstract state e ∈ E its concrete meaning, i.e., the concrete states it represents.

For our analysis, we need useful abstractions, which respect the subset relation of
concrete states. The bottom element must represent the smallest subset of concrete
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states, the empty set. The top element must cover the greatest subset, the set of all
concrete states. A more abstract state substitutes more concrete states. Abstract
domains that ful�ll the following equations adhere to these requirements.

J⊥K = ∅ (2.1a)

J>K = C (2.1b)

∀e, e′ ∈ E : e v e′ =⇒ JeK ⊆ Je′K (2.1c)

Set of Precisions The set Π of precisions is a non-empty set that de�nes various ab-
straction levels for the abstract domain. A single precision de�nes an abstraction
level and describes which abstract information is tracked.

Transfer Relation The transfer relation ⊆ E×G×E describes the abstract semantics
of our analysis. For any abstract state and any control �ow edge of any program, it
de�nes the abstract successors. If for an abstract state e and a control �ow edge g no
element (e, g, e′) exists in the transfer relation, no abstract successor will exist. This
can, e.g., be the case if a branch condition cannot be satis�ed or e does not consider
states with a control location de�ned by the predecessor of g. For soundness of our
analysis, this may not be the case if a concrete behavior is possible. We require
that the transfer relation overapproximates the concrete program behaviors with a
�nite number of abstract successors. If the semantics de�nes a concrete successor c′

for a concrete state c, which is considered by abstract state e, and edge g, then an
abstract successor e′ for e and g must exist that considers c′.

∀e ∈ E, g ∈ G : {c′ | c g→ c′ ∧ c ∈ JeK} ⊆
⋃

(e,g,e′)∈ 

Je′K (2.2)

∀e ∈ E, g ∈ G : ∃n ∈ N : |{e′ | (e, g, e′) ∈ }| = n (2.3)

Precision Adjustment The precision adjustment is a total function prec : E×Π×2E →
E × Π. It enforces the analysis precision and adapts the analysis precision to its
current needs. Hence, it widens an abstract state considering the current precision
and probably the set of already explored states. Moreover, it computes a new
precision, which may decrease or increase the analysis precision. If the analysis
precision changes during analysis, a non-uniform abstraction will be computed. In
our analysis, we use the precision adjustment to enforce the current precision on the
currently explored state e and to compute the precision for the next exploration step,
the exploration of the successors of e. For (relative) completeness of our approaches
we require that the currently explored state is indeed widened.

∀e, eprec ∈ E,S ⊆ E, π, πprec ∈ Π : prec(e, π, S) = (eprec, πprec)⇒ e v eprec (2.4)

Merge Operator The merge operator is a total function merge : E ×E → E. It de�nes
when and how to combine the information of two abstract states. It does not combine
information when the result of merge is the same as the second input parameter. A
combination always widens the second parameter, typically an already explored state
of our analysis, incorporating partial information of the �rst parameter or totally
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subsuming the �rst parameter. In our analysis, we use the merge operator to combine
the information of the currently explored state with already explored states. The
combination of two abstract states in an analysis often results in a less precise but
faster analysis. To ensure the widening property and that the combination does not
loose information already explored, we require that the result of the operator merge
is at least as abstract as its second parameter.

∀e, e′ ∈ E : e′ v merge(e, e′) (2.5)

Termination Check The termination check operator stop : E × 2E → B is a total
function that checks if an abstract state e ∈ E is covered by a set of abstract
states S ∈ 2E . We use this operator in our analysis to decide when to stop the
exploration of an abstract state e. Thus, typically S is the set of already explored
states. To guarantee soundness of the analysis, we require that the termination check
operator may only return true if the concrete states considered by abstract state e
are already taken into account for exploration. All concrete states represented by the
checked abstract state e are contained in the concretization of at least one abstract
state in the coverage set S.

∀e ∈ E,S ⊆ E : stop(e, S) =⇒ JeK ⊆
⋃
e′∈S

Je′K (2.6)

After we presented the concept of a con�gurable program analysis, we introduce three
CPAs, which we use during the explanation of our approaches. To simplify our examples,
none of these analyses changes its precision. For the speci�cation of a CPA that adjusts
its precision we refer to [BHT08].

The Location CPA L: A location CPA L = (DL,ΠL, L, precL,mergeL, stopL) is an
analysis that examines the syntactical reachability of program locations. The de�nition
of our location CPA is based on a de�nition of Beyer et al. [BHT08].

The abstract domain DL = (C, EL, J·KL) considers a �at lattice on the set L of all pro-
gram locations plus top >L and bottom state ⊥L.6 The concretization function J·KL
maps abstract states l ∈ L to all concrete states with control state l, i.e., JlKL :=
{c | c ∈ C ∧ cs(c) = l}, and the top and bottom state to C and the empty set.

The set of precisions contains a single precision πstatic de�ning the single abstraction
level that includes all program locations. The transfer relation mimics the syntactical
meaning of the control �ow edges G, i.e., (e, g, e′) ∈ L if g = (e, ·, e′) ∨ e = e′ = >L. A
location CPA never adjusts precisions, ∀e ∈ EL, S ⊆ ELπ ∈ ΠL : precL(e, π, S) = (e, π),
nor merges abstract states, ∀e, e′ ∈ EL : mergeL(e, e′) = e′. Moreover, it stops exploration
if the same or a more abstract state is already explored, stopL(e, S) := ∃e′ ∈ S : e vL e

′.

The Sign CPA S: A sign CPA S = (DS,ΠS, S, precS,mergeS, stopS) is an analysis
which explores the reachable data states on a coarse level. Following Cousot et al. [CC79],
it only investigates the signs of variable values. The lattice of sign values shown in Fig. 2.3
de�nes the di�erent values considered by the sign CPA. The bottom state ⊥ of the sign
lattice represents no concrete variable value. Abstract value +, abstract value −, and
abstract value 0 mean value greater than zero, less than zero, and zero, respectively.

6A �at lattice on a set S with a top > and bottom element ⊥ considers a �at ordering of its elements,
∀e, e′ ∈ S : e v e′ =⇒ (e = ⊥ ∨ e = e′ ∨ e′ = >).
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Figure 2.3: Lattice for sign abstract values

Abstract values +0,−0, and +− are combinations of the previous abstract values. Their
meaning is the union of the elements used for their combination. Finally, the top state >
represents any variable value.

To investigate the signs of variable values, an abstract state of the sign abstract domain
DS = (C, ES, J·KS) assigns to every variable v ∈ V in the set V of all variables an abstract
value from the lattice of sign values, i.e., ES = {⊥,+,−, 0,+0,−0,+−,>}|V |. The top
state >S assigns to every variable abstract sign value >. Similarly, in the bottom state ⊥S
every variable has abstract sign value ⊥. The partial order vS compares two abstract
states per variable, i.e., (s1 . . . s|V |) vS (s′1 . . . s

′
|V |) if ∀1 ≤ i ≤ |V | : si v s′i. The join

operator tS joins for every variable their abstract values of the two input states, i.e.,
(s1 . . . s|V |)tS (s′1 . . . s

′
|V |) := (s1ts′1 . . . s|V |ts′|V |). The concretization function J·KS maps

an abstract state (s1 . . . s|V |) to all concrete states whose variable values adhere to the
abstract sign values of the variables.

The set of precisions contains a single precision πstatic de�ning the single abstraction
level that includes all program variables. The transfer relation returns the smallest ab-
stract element that covers all concrete successors, (s, g, s′) ∈ S if {c′ | ∃c ∈ JsKS : c

g→ c′}
⊆ Js′KS and ∀s′′ vS s

′ : {c′ | ∃c ∈ JsKS : c
g→ c′} 6⊆ Js′′KS. A sign CPA never adjusts

precisions, ∀e ∈ ES, S ⊆ ES, π ∈ ΠS : precS(e, π, S) = (e, π).
The sign CPA merges abstract states computing the join, ∀e, e′ ∈ ES : mergeS(e, e′) =

e tS e′, and stops if the same or a more abstract state is already explored, stopS(e, S) :=
∃e′ ∈ S : e vS e

′.

The Predicate CPA P: A predicate CPA PP = (DP,ΠP, P, precP,mergeP, stopP) ex-
amines the reachable data states based on a set of predicates P. For demonstration, we
consider predicate abstraction as suggested by Graf and Saidi [GS97]. In our experiments,
we use predicate abstraction with adjustable block encoding [BKW10].

An abstract state of the predicate abstract domain DP = (C, EP, J·KP) is a subset of
all literals de�ned by the set P of predicates. For a set p ⊆ P of predicates, we de�ne
the set of all literals by lit(p) := {lit | lit ∈ p ∨ lit = ¬pred ∧ pred ∈ p}. The top state
>P := ∅ contains no literal. Similarly, the bottom state ⊥P := lit(P) contains every literal.
The partial order vP ensures that a less abstract state only adds more literals, p vP p

′

if p ⊇ p′. The join operator tP computes the literals common to both states, namely
the intersection of the two states, p tP p′ := p ∩ p′. The concretization function J·KP
maps an abstract state to all concrete states which satisfy all literals of the abstract state,
JpKP = {c | c ∈ C ∧ ∀lit ∈ p : c |= lit}.

The set of precisions contains a single element, the set of predicates P, ΠP = {P}.
The transfer relation only provides successors if concrete successors exist and deter-
mines the greatest set of literals enforced by the concrete successors, (p, g, p′) ∈ P if
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{c′ | ∃c ∈ JpK : c
g→ c′} 6= ∅, ∀c′ ∈ C : ∃c ∈ JpK : c

g→ c′ =⇒ ∀lit ∈ p′ : c′ |= lit and
¬∃lit′ ∈ lit(P) : lit′ /∈ p′ ∧ J{lit′}K ⊇ {c′ | ∃c ∈ JpK : c

g→ c′}. The precision ad-
justment operator of a predicate CPA never adjusts the precision of an abstrac state,
∀e ∈ EP, S ⊆ EP, π ∈ ΠP : precP(e, π, S) = (e, π).

The predicate CPA never merges abstract states, ∀e, e′ ∈ EP : mergeP(e, e′) = e′, and
stops the exploration of an abstract state if the same or a more abstract state is already
explored, stopP(e, S) := ∃e′ ∈ S : e vP e

′.

Considered separately, the presented CPAs are very coarse and are hardly suited for
producer veri�cation. In the subsequent section, we explain how to combine these analyses
to get more sophisticated analysis con�gurations, which may be used for the veri�cation
of a program's property.

2.3.2 Combination of Analysis Con�gurations

Combinations of analyses [CC79, LGC02, GT06] are proposed to obtain more precise in-
formation about a program compared to separate analyses. Both con�gurable program
analysis frameworks [BHT07, BHT08] support the combination of analysis con�gurations.
We require the combination of analysis con�gurations in the Programs from Proofs ap-
proach to build the producer analysis. Furthermore, a combination simpli�es the con-
struction of more sophisticated analyses. In the following, we explain how to compose
two analysis con�gurations. Our composition mainly follows the composition proposed
by Beyer et al. [BHT07, BHT08]. A composition of more than two con�gurations can be
obtained recursively.

The combination of two CPAs C2,C1 results in a composite CPA, a CPA C2 × C1=
(D×,Π×, ×, prec×,merge×, stop×). The composite abstract domain D× = (C, E×, J·K×)
is the product of the components' domains D2 = (C, (E2,>2,⊥2,v2,t2), J·K2) and D1 =
(C, (E1,>1,⊥1,v1,t1), J·K1). The join-semilattice E× = (E×,>×,⊥×,v×,t×) considers
the cartesian product of two sets of abstract states, E× = E2 × E1. Consequently, the
top and bottom state are >× = (>2,>1) and ⊥× = (⊥2,⊥1). The partial order and
the join operator are de�ned per-element basis, i.e., (e2, e1) v× (e′2, e

′
1) if e2 v2 e

′
2 and

e1 v1 e
′
1, and (e2, e1)t× (e′2, e

′
1) = (e2 t2 e

′
2, e1 t1 e

′
1). A combined abstract state (e2, e1)

represents the set of all concrete states on which its component states e2 and e1 agree,
i.e., ∀(e2, e1) ∈ E× : J(e2, e1)K× = Je2K2 ∩ Je1K1.

For our purpose, it is su�cient that a composite CPA simply adjusts its precision per
element7. Hence, the set Π× of composite precisions is the product of the components'
precisions, Π× = Π2×Π1, and the precision adjustment operator delegates its tasks to the
component CPAs C2 and C1, i.e., prec×((e2, e1), (π2, π1), S) = ((e2

prec, e
1
prec), (π2

prec, π
1
prec))

if prec2(e2, π2, {e | (e, ·) ∈ S}) = (e2
prec, π

2
prec) and prec1(e1, π1, {e | (·, e) ∈ S}) =

(e1
prec, π

1
prec).

To pro�t from the combination, i.e., to obtain more precise analyses, and to allow
�exible combinations, a composite CPA provides its own de�nition of the transfer relation
and the merge operator. The transfer relation may consider the pure product combination
or it uses a strengthening operator ↓E,E′ which can improve the result e ∈ E of a com-

7The software analysis tool CPAchecker sometimes uses information from the other component
element to compute the adjustment of the component state, e.g., the predicate analysis and the value
analysis adjust the state according to the program location. Note that in such a case you cannot use our
composition of analyses but you must specify the composed CPA directly � of course you may use all the
other composition concepts.
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ponent's transfer relation based on the result e′ ∈ E′ of the other component's transfer
relation. A strengthening operator ↓E,E′ : E × E′ → E must not weaken its �rst param-
eter, i.e., ∀e ∈ E, e′ ∈ E : ↓(e, e′) v e, and cannot be more precise than the composite
state, ∀e ∈ E, e′ ∈ E′ : J(e, e′)K ⊆ J↓(e, e′)K. To be able to con�gure the analysis technique
of the composite analysis, the merge operator merge× must be de�ned.

De�ning the termination check stop× also increases the �exibility of composite analy-
ses. More importantly, an incautious combination of the components' termination check
operators likely results in an unsound termination check. Consider the naïve combina-
tion of the two operators stopL and stopS that returns true if both operators return true,
stop×((e2, e1), S) = stopL(e2, {e | (e, ·) ∈ S}) ∧ stopS(e1, {e | (·, e) ∈ S}). This com-
bination is unsound. For example, stop×((>L,>S), {(⊥L,>S), (>L,⊥S)}) returns true,
although J>L,>SK× = C 6⊆ ∅ = J(⊥L,>S)K× ∪ J(>L,⊥S)K×. The reason is that the com-
posite concretization is more restrictive. The meaning of a component abstract state
can be restricted by the other component abstract state. The composite termination
check analysis must consider the composed abstract state as a whole. Thus, to get
a sound composite analysis, we need to de�ne the termination check stop×. In prac-
tice, we often use the following termination checks stop×(e, S) := ∃e′ ∈ S : e v e′ and
stop×((e2, e1), S) := ∃(e′2, e′1) ∈ S : stop2(e2, {e′2}) ∧ stop1(e1, {e′1}).

We demonstrate the combination of analysis con�gurations on two example combina-
tions, which we use during the presentation of our approaches.

The Sign Data�ow Analysis � A Combination of Location and Sign CPA: To
obtain a data�ow analysis, which computes sign data �ow facts per program location, we
need to con�gure the composite CPA L × S such that it joins abstract states at equal
locations and stops exploration if at each program location the data�ow fact cannot be
improved, i.e., a �xpoint is reached. This leads to the following de�nition of the composite
CPA L× S.

The composite CPA L× S = (DL×S,ΠL×S, L×S, precL×S,mergeL×S, stopL×S) uses the
product transfer relation, i.e., ((l, s), g, (l′, s′)) ∈ L×S if (l, g, l′) ∈ L and (s, g, s′) ∈ S.
Abstract states are combined if the location state is the same, mergeL×S((l, s), (l′, s′)) :=
(l, s tS s′) if l = l′ and mergeL×S((l, s), (l′, s′)) := (l′, s′) otherwise. The exploration
of an element is stopped, when the same or a more abstract state is already explored,
stopL×S(e, S) := ∃e′ ∈ S : e vL×S e

′.

The Predicated Sign DFA � A Combination of Predicate and Sign DFA CPA:
To increase the path-sensitivity of the sign DFA de�ned in the previous paragraph, we
apply the concept of a predicated DFA [JW15]. We combine the predicate CPA with the
sign DFA CPA such that information is only combined if program location and predicate
state are equal. Hence, the predicated sign DFA CPA PP × (L×S) is a composite CPA of
predicate CPA PP , considering a set of predicates P, and the sign DFA CPA L× S with
the following properties.

The composite CPA PP × (L×S) = (DPP×(L×S),ΠPP×(L×S), PP×(L×S), precPP×(L×S),
mergePP×(L×S), stopPP×(L×S)) uses the product transfer relation to compute successors,
i.e., ((p, (l, s)), g, (p′, (l′, s′))) ∈ PP×(L×S) if (p, g, p′) ∈ P and ((l, s), g, (l′, s′)) ∈ L×S.
Abstract states are combined if the predicate state and the location state are the same,
mergePP×(L×S)((p, (l, s)), (p

′, (l′, s′))) := (p,mergeL×S((l, s), (l′, s′))) if p = p′, and other-
wise mergePP×(L×S)((p, (l, s)), (p

′, (l′, s′))) := (p′, (l′, s′)). The predicated sign DFA stops
the exploration of an abstract state, if the same or a more abstract state has been explored
already, stopPP×(L×S)(e, S) := ∃e′ ∈ S : e vPP×(L×S) e

′.
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So far, our analysis con�guration only incorporates the abstract model of a program.
In the early stages of the CPA concept, this was su�cient because it was used to check
reachability properties, especially that certain error locations are not reached. Such a
property can easily be decided by an inspection of the abstract program model. Our
property speci�cation allows to specify more than simple reachability properties, e.g.,
protocol properties, which need to consider complete program traces. In the next section,
we discuss how to integrate property checking into the con�gurable analysis process.

2.3.3 Property Integration

The software model checker SLAM [BR02a] encodes a given property into the input pro-
gram and veri�es the instrumented program. Similarly, before BLAST is used to check
properties in the Blast Query Language the input program is instrumented [BCH+04]. In
these approaches, the consumer must either check that the instrumented program encodes
the desired property or he has to instrument the program himself, but in the same way
as the producer. Due to these disadvantages, we decided to use a concept similar to an
o�-line monitor in runtime veri�cation [HG08]. The idea is to run the property automaton
in parallel to the analysis8 and let it monitor the explored program paths.

To integrate the monitoring in an analysis con�guration C, we extend the abstract
domain of C with automaton states, i.e., we consider the product of the abstract domain
and the �at lattice of automaton states Q including the automaton states Q plus an addi-
tional top q> and bottom state q⊥. Furthermore, we integrate the property automaton's
transitions into the transfer relation. We start to explain the most precise integration,
which we call the most precise enhancement of an analysis con�guration C with a property
automaton A.

De�nition 2.10 (Most Precise Enhancement). The most precise enhancement of a CPA
C = ((C, E , J·K),Π, , prec,merge, stop) with a property automaton A = (Q, δ, q0, qerr) is
a new CPA CAmp = (DA,Π, Amp, prec

A
mp,mergeAmp, stop

A) with

• abstract domain DA = (C, E × Q, J·KA), where Q is the �at lattice of automaton
states Q and additional top state q> and bottom state q⊥, and the automaton states
do not in�uence the meaning of an abstract state, i.e., ∀(e, q) ∈ E×Q>⊥ : J(e, q)KA =
JeK,

• transfer relation Amp⊆ (E×Q>⊥)×G×(E×Q>⊥) with ((e, q), (l, op, l′), (e′, q′)) ∈ Amp

implies that (e, (l, op, l′), e′) ∈ and either q′ ∈ Q and ∃(q, op, Csub, q
′) ∈ δ : Je′K ⊆

Csub or q′ = q> and ¬∃(q, op, Csub, q
′) ∈ δ : Je′K ⊆ Csub,

• precision adjustment precAmp((e, q), π, S) = ((eprec, q), πprec) with (eprec, πprec) =
prec(e, π, {e′ | (e′, ·) ∈ S}),

• merge operator mergeAmp((e, q), (e′, q′)) = (e′, q′), and

• termination check stopA((e, q), S) = stop(e, {e′ | (e′, q′) ∈ S ∧ q v q′}).

The most precise enhancement interferes with our idea of a �exible and general analysis
con�guration framework. It is too strict. For example, it prohibits data�ow analyses be-
cause abstract states are never merged. Additionally, the transfer relation is very precise.
On the one hand, this may be expensive to compute. On the other hand, it demands

8Note that the tool CPAchecker allows to run the property speci�cation as part of the analysis.
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that the automaton state is determined by the complete abstract state eC. However, for
our Programs from Proofs approach we require that only one component determines the
automaton state. Hence, we use the most precise enhancement as a standard for a correct
property integration and accept any enhancement that overapproximates the behavior of
the most precise enhancement. Those enhancements can be derived from the most precise
enhancement by untightening of the automaton state computation in the transfer relation
or relaxing the precision adjustment operator or the merge operator.

De�nition 2.11 (Enhancement). Let CAmp = (DA,Π, Amp, prec
A
mp,mergeAmp, stop

A) be
the most precise enhancement of CPA C and property automaton A. A CPA CA =
(DA,Π, A, precA,mergeA, stopA) is an enhancement of CPA C if

• the transfer relation is less property precise: ((e, q), (l, op, l′), (e′, q′)) ∈ A implies
that there exists ((e, q), (l, op, l′), (e′, q′′)) ∈ Amp with q′′ v q′,

• the precision adjustment may return a more abstract state: ∀e ∈ EA, π ∈ Π,
S ⊆ EA : precAmp(e, π, S) = (eprec

mp , π
prec
mp ) ∧ precA(e, π, S) = (eprec, πprec) =⇒ eprec

mp v
eprec ∧ πprec

mp = πprec,

• the merge operator is more abstract: ∀e, e′ ∈ EA : mergeAmp(e, e′) v mergeA(e, e′).

After we understand how to con�gure the analysis of the producer, we proceed with the
execution of a con�gured analysis.

2.4 Execution of Con�gured Analyses

To execute arbitrary con�gurable program analyses, we require a meta algorithm which
is steered by the input CPA. From now on, we call this meta algorithm CPA algorithm.
Since we want to use the CPA algorithm to check that a particular program is safe, we
only allow enhanced CPAs CA to be input CPAs. The task of the CPA algorithm is
to determine for a given input program P , a set of initial states described by an initial
abstract state e0, an initial precision, and an enhanced CPA CA whether program P is safe
with respect to initial states Je0K, and property automaton A, P |=Je0K A. Additionally,
the CPA algorithm should construct a witness for each veri�cation result produced. We
start to describe the part of the CPA algorithm which does the actual veri�cation.

2.4.1 Examination of Program Safety

Like we adapted the existing concept of a con�gurable program analysis, we also adapt the
corresponding meta reachability algorithm [BHT08] to execute CPAs. Of course, we adapt
the algorithm to �t to our de�nition of a con�gurable program analysis. Furthermore,
we add a test for program safety. Note that we follow the implementation of the CPA
algorithm in the tool CPAchecker and adjust a successor's precision directly after we
explored the successor.

Algorithm 1 shows the part of the CPA algorithm which is responsible for program
veri�cation. The line numbers correspond to the line numbers in the complete CPA algo-
rithm (Algorithm 2). In principal, Algorithm 1 describes a reachability analysis steered by
the input CPA. The reachability analysis is similar to the abstract reachability analysis
in software model checking [JM09b] and the worklist algorithm [Kil73] for the �xpoint
computation in data�ow analyses. It maintains a waitlist, comparable to the worklist in

30



2.4. EXECUTION OF CONFIGURED ANALYSES

Algorithm 1: Extract of the CPA algorithm, a modi�ed version of the reacha-
bility algorithm for con�gurable program analyses with dynamic precision adjust-
ment [BHT08]

1 waitlist:={(e0, π0)}; reached:={e0};
3 while waitlist 6= ∅ do
4 pop (e, π) from waitlist;
5 for each g ∈ GCFA do
6 for each e′ with (e, g, e′) ∈ do
7 (eprec, πprec) := prec(e′, π, reached);
8 for each e′′ ∈ reached do
9 enew := merge(eprec, e

′′);
10 if enew 6= e′′ then
11 waitlist := (waitlist ∪ {(enew, πprec)}) \ {(e′′, π) | π ∈ Π};
12 . . . reached := (reached ∪ {enew}) \ {e′′};
18 if ¬stop(eprec, reached) then
19 . . .waitlist := waitlist ∪ {(eprec, πprec)};

reached := reached ∪ {eprec};
29 return (¬∃(·, q) ∈ reached : q = qerr ∨ q = q>, . . . )

software model checking [JM09b] or data�ow analyses [Kil73], which stores the states that
must be explored together with their precision. Additionally, the set reached describes the
already explored states and, �nally, overapproximates the reachable states of the input
program [BHT07, BHT08]. In line 1, the reachability analysis is started in the initial
abstract state e0 with initial precision π0. For each unexplored state e, Algorithm 1 com-
putes the abstract successors e′ respecting the input program. To compute the abstract
successors, the CPA's transfer relation  A is used. Line 5 is required to restrict the
transfer relation to the input program. Then, the precision of the abstract successor is
adjusted. Afterwards, in line 9 the reachability analysis uses the CPA's merge operator
and tries to combine the adjusted successor eprec with an already explored state e′′. If
the merge operator widens the already explored state e′′ � this is typically the case when
information from di�erent branches is joined �, the state e′′ will be replaced by the result
enew of the merge. Next, in line 18 it is tested if the adjusted successor is covered by the
explored states.9 Successors which are not covered become part of the explored states
and are registered for exploration. Finally, in line 29 it is checked whether the program is
proven safe, i.e., the return value becomes (true, . . . ). Note that a return value (false, . . . )
only means that the given CPA failed to prove program safety, either because the program
is unsafe or the CPA is not mature enough.

Originally, CPAs did not incorporate a mechanism for property speci�cation and are
used to verify that error locations are unreachable [Thé10]. Thus, Beyer et al. [BHT08]
only proved that the set reached of explored states overapproximates the concrete states
reachable in the program. However, the producer only wants to build certi�cates for safe
programs. More importantly, in the Programs from Proofs approach also the consumer
uses the CPA algorithm to check if a program is safe. Due to the theorem of Rice [Ric53],
we know that the CPA algorithm cannot always correctly decide whether a program is
safe. The CPA algorithm does not even terminate for any input CPA. Furthermore,

9Note that the test will typically return true, if in line 9 the result of di�erent branches is integrated.
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the CPA algorithm can only check program safety properly if the initial abstract state
considers the initial state of the property automaton. Nevertheless, we require that if the
CPA algorithm returns true and the initial abstract state is set up properly, the program
will be indeed safe. Hence, the CPA algorithm must be sound.

In the following, we prove soundness of the complete CPA algorithm (Algorithm 2).
Note that the complete CPA algorithm is an extension of Algorithm 1, which adds addi-
tional constructs to record the explored state space. The extension does not change the
behavior of the presented veri�cation procedure. To prove soundness of the CPA algo-
rithm, we start to show that when the CPA algorithm returns true, then for every path
a con�guration sequence exists that does not consider the error state qerr. The idea of
the proof is that for every pair of concrete state and automaton state in the con�guration
sequence, an explored abstract state exists that considers the same automaton state and
covers the concrete state.

Lemma 2.2. If Algorithm 2 started with CPA CA enhanced with property automa-
ton A = (Q, δ, q0, qerr), program P , initial abstract state e0 = (e, q0) ∈ ECA , and arbitrary
precision π0 ∈ ΠCA returns (true, . . . ), then for every path p ∈ pathsP (Je0K) there exists
a con�guration sequence (c0, q0) . . . , (cn, qn) for p and A s.t. ∀0 ≤ j ≤ n : qj 6= qerr.

Proof. See Appendix pp. 249 f.

Due to the previous lemma, we can now easily apply the de�nitions for safe program paths
and program safety. Thus, we infer that the CPA algorithm succeeds only when the input
program is safe with respect to the property automaton considered by the input CPA and
the states represented by the initial abstract state, i.e., the CPA algorithm is sound.

Theorem 2.3 (Soundness of CPA Algorithm). If Algorithm 2 started with CPA CA en-
hanced with property automaton A = (Q, δ, q0, qerr), program P , initial abstract state e0 =
(e, q0) ∈ ECA , and arbitrary precision π0 ∈ ΠCA returns (true,. . . ), then P |=Je0K A.

Proof. From the previous lemma, we can conclude that for every path p ∈ pathsP (Je0K)
there exists a con�guration sequence (c0, q0) . . . , (cn, qn) for p and A s.t. ∀0 ≤ j ≤ n :
qj 6= qerr. By de�nition, every path p ∈ pathsP (Je0K) is safe. By de�nition of program
safety, it follows that P |=Je0K A.

As a direct consequence of the above theorem, we conclude that if the initial abstract
state considers all concrete states referring to the program entry location and the CPA
algorithm succeeds, then the input program P will be safe with respect to the property
automaton A considered by the input enhanced CPA.

Corollary 2.4. Let CA be an enhancement of CPA C with property automaton A =
(Q, δ, q0, qerr). If Algorithm 2 started with CA, program P , initial abstract state e0 =
(e, q0) ∈ ECA , and any precision π0 ∈ ΠCA returns (true,. . . ) and {c | c ∈ C ∧ cs(c) = l0}
⊆ Je0K, then program P |= A.

Proof. We assume that Algorithm 2 returns true and I = {c | c ∈ C ∧ cs(c) = l0} ⊆ Je0K.
From Theorem 2.3, we know that P |=Je0K A. By de�nition of paths, we know that
pathsP (I) ⊆ pathsP (Je0K). Hence, the de�nition of safety lets us conclude that P |=I A.
With the de�nition of I, we infer that P |= A.

Until now, we only looked at the pure veri�cation aspect of the CPA algorithm. In the
following, we continue with the part of the CPA algorithm that generates the witness for
a successful veri�cation. We call the generated witness abstract reachability graph.
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2.4.2 Abstract Reachability Graphs and Their Properties

Often, veri�cation tools provide an error witness, an unsafe program path, when they fail
to prove program safety. Beyer et al. [BDD+15] propose a veri�er independent format to
describe such error witnesses. In contrast, our approaches require a witness for program
safety to construct certi�cates or generate a new program. Witnesses for program safety
do not only represent a single program execution, but must consider the complete state
space of the program, i.e., every possible program path.

The set reached is not su�cient to witness program safety. It does not provide any
information about the paths explored during veri�cation. Explicit model checking (see
e.g. [JM09b]) inspects and constructs the concrete state space. Furthermore, symbolic
model checking [BCM+92] encodes the concrete state space with binary decision dia-
grams, a representation of boolean functions. However, our veri�cation procedure uses
abstraction. Correctness witnesses [BDDH16], a special type of automata, are a veri�er
independent format to describe the (abstract) state space of a program. To model the
program paths, the automaton edges are labeled with statements, and boolean expressions
on states restrict the possible program states. Instead of boolean expressions, our state
space representation should use a representation of states that is closer to the veri�cation
procedure. Thus, we want to represent states with the help of abstract states. Data�ow
analyses [Kil73] and abstract interpretation [CC77] typically map data�ow facts or ab-
stract states to the program locations. The program model plus the mapping describes the
explored, abstract state space. Also, abstract model checking inspects and constructs the
abstract state space, e.g., veri�cation tools like CPAchecker [Ker11] or Blast [BHJM07]
provide abstract reachability graphs or trees to describe the explored paths. Nodes are
abstract states and edges represent possible program execution steps. We decided to use
the concept of an abstract reachability graph (ARG), which is also used by the veri�cation
tool [BK11b] in which we integrate our approaches, as a witness for program safety.

In our setting, the set reached de�nes the nodes of the ARG. Edges between two nodes
exist if the nodes are linked by the transfer relation, possibly indirectly due to a merge in
line 9 or a successful termination check in line 18. To relate edges to program statements,
we label them by CFA edges. Moreover, we explicitly track those ARG nodes which cover
abstract successors, e.g., in case of a successful termination check, but we also incorporate
those nodes which have more than one incoming edge. From a structural point of view,
an ARG can be described as follows.

De�nition 2.12 (Abstract Reachability Graph). An abstract reachability graph (ARG)
RP

CA = (N,GARG, root,Ncov) for a program P and an enhancement CA of CPA C consists
of a �nite set N ⊆ ECA of nodes, a set GARG of edges between nodes labeled by control
�ow edges, GARG ⊆ N × GCFA × N , a root node root ∈ N , and a subset of covering
nodes Ncov ⊆ N .

The complete CPA algorithm as presented in Algorithm 2 (see p. 39) shows one possible
extension of Algorithm 1 that incorporates the construction of ARGs. To construct ARGs,
Algorithm 2 manages two helper variables coverSet and contained plus three additional
data structures, a �eld root for the ARG's root node, a set GARG maintaining the ARG
edges, and a setNcov collecting the ARG's covering nodes. The ARG nodes are represented
by the already existing set reached. In the beginning, the root node is the initial abstract
state and GARG and Ncov are empty. Whenever the current root node is replaced in the
set of nodes in line 12, the root node is adapted in line 15. The same holds for nodes in the
set Ncov. The adaption of the ARG edges is more di�cult. To adapt a successor of an edge
due to widening is uncomplicated. A more abstract state covers at least the same parts of
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Figure 2.4: ARG constructed by Algorithm 2 when started with CPA L × S enhanced
with property pos@l5, initial abstract state ((l0,>S), q0), and program SubMinSumDiv

the abstract successor. In contrast, if Algorithm 2 replaces the predecessor e′′ by enew, it
cannot ensure that the set of ARG edges starting in enew covers the abstract successors of
enew, even if previously the set of ARG edges starting in e′′ covered the abstract successors
of e′′. Also, such edges do not witness the exploration of enew. Since the abstract state
enew is explored anyway, it is added to waitlist, Algorithm 2 deletes all edges for which it
might adapt the predecessor. In general, Algorithm 2 deletes edges (e, ·, ·) when abstract
state e is added to waitlist, i.e., it is registered for re-exploration. Algorithm 2 adds a new
ARG edge (e, g, es) if an adjusted abstract successor eprec of e and g is explored, e is still
in the set of explored states, e is not registered for re-exploration, es = eprec and eprec is
not covered by the explored states or the termination check considers es when detecting
coverage of eprec. Nodes that are involved in the covering of an adjusted abstract successor
eprec are also added to the set Ncov of covering nodes. Moreover, we think that adding a
state to reached that is already contained is similar to covering caused by the termination
check, in both cases more than one predecessor for this state may exists. Thus, we add
those nodes to Ncov in lines 17 and 2310.

Note that the realization of ARGs and their construction in CPAchecker deviates
from Algorithm 2. CPAchecker uses a wrapper CPA to construct the ARG [Ker11] and
does not extend the CPA algorithm. Furthermore, it uses a di�erent concept of covering.
A covered node still becomes an abstract successor and additional unlabeled edges are
added that map the covered node to the covering nodes. We chose our model of an abstract
reachability graph because it represents the approximated, executable program paths in a
more unique way and it does not contain nodes that are not part of reached. Nevertheless,
we believe that the ARG constructed by CPAchecker can easily be transformed into
our model of an ARG. For our implementation we managed the transformation.

Figures 2.4 and 2.5 show the abstract reachability graphs constructed by the CPA

10Note that we did not require that the termination check returns true if the state is contained in its
second input parameter.
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Figure 2.5: ARG constructed by Algorithm 2 when started with CPA L × S enhanced
with property nonneg, initial abstract state ((l0,>S), q0), and program SubMinSumDiv

algorithm during analysis of program SubMinSumDiv with CPA L × S enhanced with
property automata pos@l5 and nonneg, respectively, when started in the initial abstract
state ((l0,>S), q0). The enhanced CPA merges states for same locations and uses the
most precise operators for precision adjustment and transfer relation. For the sake of
readability, we labeled the edges by program instructions and not by the complete CFA
edge. In both cases, the root node is the initial abstract state. ARG nodes contained in
the set Ncov are highlighted in gray. We observe that property pos@l5 could be proven
(all abstract automaton states are q0), but the proof of property nonneg failed (abstract
automaton states q> exists).

Before we discuss the properties of ARGs, which our approaches rely on, we �rst ensure
that the structure returned by the CPA algorithm is indeed an abstract reachability graph.

Lemma 2.5. If Algorithm 2 started with CPA CA enhanced with property automaton
A, program P , initial abstract state e0 ∈ ECA , and arbitrary precision π0 ∈ ΠCA returns
(·, ·, RP

CA), then R
P
CA is an abstract reachability graph for P and CA.

Proof. Proof see Appendix pp. 250 f.

Although we proved that the CPA algorithm returns an ARG, this does not mean that
the ARG properly describes the state space exploration. Our de�nition of an ARG only
describes the syntactical appearance. Consider the ARG shown in Fig. 2.6, which is an
ARG for our example program SubMinSumDiv and CPA L × S enhanced with property
automaton pos@l5, but it does not track the state space exploration of that analysis on
program SubMinSumDiv started in the initial abstract state ((l0, s : > x : > y : > z : >), q0).
First, it does not consider the initial abstract state ((l0, s : > x : > y : > z : >), q0).
Second, it misses abstract successors. For example, ((l9, s : + x : > y : > z : >), q0), an
abstract successor of ((l13, s : + x : −+ y : > z : >), q0) along edge (l13, x := x−s, l9), is not
taken into account. Third, the only edge does not describe a part of the state space. The
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Figure 2.6: ARG for our example program SubMinSumDiv and CPA L× S enhanced with
property automaton pos@l5 which is not compliant to the state space exploration

location states do not match the predecessor and successor of the edge. However, during
state space exploration only abstract successors are computed that adhere to the control
�ow. To describe that an ARG properly recorded a state space exploration, we introduce
the properties rootedness, completeness, and well-constructedness. Furthermore, we use
a safety property to describe that the ARG is constructed during a successful veri�cation.
The remaining properties provide further structural details needed by our approaches.
For example, determinism and soundness are properties required by our Programs from
Proofs approach only.

De�nition 2.13 (Properties of Abstract Reachability Graphs). Let P = (L,GCFA, l0)
be a program, CA be an enhancement of CPA C, e0 ∈ ECA an initial abstract state,
and RP

CA = (N,GARG, root,Ncov) be an ARG for a program P and enhancement CA.
Following, we de�ne properties an ARG RP

CA may ful�ll.

Rootedness The initial state is covered by the root, e0 v root.

Completeness All abstract successors of a node are either covered by a more abstract
state or by a subset of the explored states, ∀n ∈ N, g ∈ GCFA : (n, g, e) ∈ CA =⇒
∃n′ ∈ ECA : e v n′ ∧ ((n, g, n′) ∈ GARG ∨ ∃S v {n′′ ∈ Ncov | (n, g, n′′) ∈ GARG} :
stopCA(n′, S)).11

Well-Coveredness All abstract successors e that are not covered by Ncov are cov-
ered by a unique non-covering node, formally de�ned as follows. Let STCNC :=
{(n, g, e) ∈ CA | n ∈ N, g ∈ GCFA ∧ ¬∃n′ ∈ ECA : e v n′ ∧ ((n, g, n′) ∈ GARG∧
n′ ∈ Ncov ∨ ∃S v {n′′ ∈ Ncov | (n, g, n′′) ∈ GARG} : stopCA(n′, S))} be the set of ab-
stract successor computations which are covered by non-covering nodes. There ex-
ists a total, injective function cov : STCNC → N \ Ncov with ∀(n, g, e) ∈ STCNC :
e v cov((n, g, e)) ∧ (n, g, cov((n, g, e))) ∈ GARG.

Soundness ARG successors are more abstract than abstract successors computed by the
transfer relation, ∀(n, g, n′) ∈ GARG : (n, g, n′′) ∈ CA =⇒ n′′ vCA n

′.

Safety All nodes are safe. They do not reference the error state qerr or q>: ∀(e, q) ∈ N :
q 6= qerr ∧ q 6= q>.

Well-Constructedness An ARG edge only exists if an abstract successor is present,
∀(n, g, n′) ∈ GARG : g ∈ GCFA ∧ ∃(n, g, n′′) ∈ CA .

Determinism No two edges exist that have the same predecessor and the same label:
∀(n, g, n′), (n, g, n′′) ∈ GARG : n′ = n′′.

11Due to the overapproximation of the transfer relation, an ARG edge exists as soon as at least a

concrete transition exists, i.e., ∃c ∈ JnK : c
g→ c′.
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ARGs constructed by the CPA algorithm do not always ful�ll all these properties. For
example, for an unsafe program the properties safety, soundness, and rootedness cannot
be ful�lled at the same time. Some properties of the constructed ARG depend on the
input of the CPA algorithm and others do not. We start to show that the properties
rootedness, completeness, well-coveredness, and well-constructedness are input insensitive,
i.e., the CPA algorithm (Algorithm 2) always returns ARGs that are rooted, complete,
well-covered, and well-constructed.

Lemma 2.6. If Algorithm 2 started with CPA CA enhanced with property automaton A,
program P , initial abstract state e0 ∈ ECA , and arbitrary precision π0 ∈ ΠCA returns
(·, ·, RP

CA), then RP
CA is an ARG for P and CA which is rooted, complete, well-covered,

and well-constructed.

Proof. See Appendix pp. 251 �.

For our approaches, the properties rootedness, completeness, well-coveredness, and well-
constructedness, which are ensured for any ARG constructed by the CPA algorithm,
are mandatory but not enough. They only ensure that all program paths starting in a
state represented by the initial abstract state are covered by the ARG, but they do not
necessarily witness program safety. Hence, our approaches require ARGs that are safe,
too. We call ARGs that ful�ll all these �ve properties well-formed.

De�nition 2.14 (Well-formedness Criteria for ARG). Let P be a program, CA an en-
hancement of CPA C, and e0 ∈ ECA an initial abstract state. An abstract reachability
graph RP

CA for P and CA is well-formed for e0 if RP
CA is rooted, complete, well-covered,

safe, and well-constructed.

Well-formed ARGs provide a nice property that turns them into a witness for program
safety. For every path p starting in a state represented by the initial abstract state, an
ARG path exists with the following two properties. First, the ARG path covers p. Second,
assuming a proper initial abstract state is used, i.e., the initial abstract state considers
the initial automaton state q0, the pairwise combination of p's concrete states and the
abstract automaton states of the ARG path yield a con�guration sequence for p that does
not consider the error state qerr, i.e., the ARG path is a witness for the safety of program
path p. In the following, we consider a weaker concept of a witness, which is used by our
certi�cation approaches. Instead of an ARG path, we only require a sequence of ARG
nodes whose abstract automaton states can be combined with p's concrete states to form
a con�guration sequence for p that does not consider the error state qerr. Nevertheless, we
use the ARG paths to prove that well-formed ARGs ful�ll the requirement of the weaker
concept of a witness. The following lemma only shows that for every path p starting in a
state represented by the initial abstract state, a con�guration sequence for p exists that
is covered by a sequence of ARG nodes. We can easily conclude the remaining part of the
witness requirement from the safety property.

Lemma 2.7. Let RP
CA = (N,GARG, root,Ncov) be an abstract reachability graph for pro-

gram P and enhancement CA of CPA C with property automaton A = (Q, δ, q0, qerr) s.t.

RP
CA is well-formed for e0 = (e, q0) ∈ ECA . Then, for all paths p := c0

g1→ c1 · · ·
gn→ cn ∈

pathsP (JrootK) there exists a con�guration sequence (c0, q0), . . . , (cn, qn) for p and A with
∀0 ≤ i ≤ n : ∃(e, q) ∈ N : ci ∈ JeK ∧ qi v q.

Proof. See Appendix pp. 255 f.
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The safety property of a well-formed ARG and the previous lemma guarantee us that a
well-formed ARG witnesses program safety. Our approaches rely on a witness for pro-
gram safety in form of a well-formed ARG. We propose that the CPA algorithm indeed
constructs well-formed ARGs whenever program veri�cation succeeds. From Lemma 2.6,
we already know that every ARG constructed by the CPA algorithm is rooted, complete,
well-covered, and well-constructed. To prove our claim, we only need to show the safety
property.

Proposition 2.8. If Algorithm 2 started with enhancement CA of CPA C with prop-
erty automaton A, program P , initial abstract state e0 ∈ ECA , and arbitrary preci-
sion π0 ∈ ΠCA returns (true, reached, RP

CA), then RP
CA is an ARG for P and CA which

is well-formed for e0.

Proof. From Lemma 2.6, we know that RP
CA is an ARG for P and CA which is rooted,

complete, well-covered, and well-constructed. Let RP
CA = (N ′, G′ARG, root

′, N ′cov). We
only need to show safety. Since in line 29 N ′ = reached and Algorithm 2 returns true
(¬∃(·, q) ∈ reached : q = qerr ∨ q = q>), the ARG RP

CA is safe.

For our certi�cation approaches, well-formed ARGs are su�cient. However, our Programs
from Proofs approach demands two further properties. To ensure that no new behavior is
introduced in the generated program, the ARG must be sound. Furthermore, to retrans-
late the CFA representation of the generated program into a program written in the same
programming language as the original program, we require that the constructed ARG is
deterministic. The CPA algorithm ensures these two additional properties in case of a
successful veri�cation if the analysis is of a particular shape. The transfer relation must
be a function, i.e., per abstract state and statement at most one abstract successor may
exists. Additionally, state exploration may only be stopped if the state is covered by
a more abstract state. The analyses considered by our Programs from Proofs approach
meet these requirements. The following proposition states that an ARG constructed by
the CPA algorithm ful�lls the two additional properties when the input CPA's transfer
relation and termination check meet the previous two requirements.

Proposition 2.9. Let CPA CA be an enhancement of CPA C with property automaton A
s.t. ∀e ∈ ECA , S ⊆ ECA : stopCA(e, S) =⇒ ∃e′ ∈ S : e vCA e′ and  CA is a function.
If Algorithm 2 started with CPA CA, program P , initial abstract state e0 ∈ ECA , and
arbitrary precision π0 ∈ ΠCA returns (·, ·, RP

CA), then RP
CA is an ARG for P and CA

which is sound and deterministic.

Proof. See Appendix pp. 256 f.

After we introduced all fundamentals required to understand our approaches, we continue
with the description of the �rst approach, the basic con�gurable certi�cation approach.
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Algorithm 2: CPA algorithm, a modi�ed version of the reachability algorithm for
con�gurable program analysis with dynamic precision adjustment[BHT08]

Input: A property enhanced CPA
CA = ((C, (E,>,⊥,v,t), J·K),Π, , prec,merge, stop), initial abstract state
e0 ∈ E, initial precision π0 ∈ Π, program P = (L,GCFA, l0)

Output: A boolean value indicating if no unsafe automaton state is reached, a set
of reachable abstract states and an abstract reachability graph for P and
CA

Data: A set reached of elements of E, a set waitlist of elements of E ×Π, a root

node from E, a set of edges GARG of elements of E ×GCFA × E, a set Ncov

of elements of E, a set coverSet of elements of E, boolean variable contained

1 waitlist:={(e0, π0)}; reached:={e0};
2 root := e0; GARG := ∅; Ncov := ∅;
3 while waitlist 6= ∅ do
4 pop (e, π) from waitlist;
5 for each g ∈ GCFA do
6 for each e′ with (e, g, e′) ∈ do
7 (eprec, πprec) := prec(e′, π, reached);
8 for each e′′ ∈ reached do
9 enew := merge(eprec, e

′′);
10 if enew 6= e′′ then
11 waitlist := (waitlist ∪ {(enew, πprec)}) \ {(e′′, π) | π ∈ Π};
12 contained:=enew ∈ reached;reached := (reached∪{enew})\{e′′};
13 GARG := (GARG ∪ {(ep, g, enew) | (ep, g, e

′′) ∈ GARG})\
{(ep, g, es) | (ep, g, es) ∈ (GARG ∪ {(ep, g, enew) |

(ep, g, e
′′) ∈ GARG})∧(ep = e′′∨es = e′′∨ep = enew)};

14 if e′′ = root then
15 root := enew;
16 if e′′ ∈ Ncov ∨ contained then
17 Ncov := (Ncov ∪ {enew}) \ {e′′};
18 if ¬stop(eprec, reached) then
19 contained:= eprec ∈ reached;waitlist := waitlist ∪ {(eprec, πprec)};

reached := reached ∪ {eprec};
20 GARG := GARG \ {(eprec, ·, ·) ∈ GARG};
21 if e ∈ reached ∧ ¬∃(e, )̇ ∈ waitlist then
22 if contained then
23 Ncov := Ncov ∪ {eprec};
24 GARG := GARG ∪ {(e, g, eprec)};

else
25 if e ∈ reached ∧ ¬∃(e, ·) ∈ waitlist then
26 coveringSet:= min{S ⊆ reached | stop(eprec, S)};
27 Ncov := Ncov ∪ {coveringSet};
28 GARG := GARG ∪ {(e, g, er) | er ∈ coveringSet};
29 return

(¬∃(·, q) ∈ reached : q = qerr ∨ q = q>, reached, (reached, GARG, root,Ncov))
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Generally, all our approaches aim to reduce the validation costs of the consumer. To
achieve this goal, our �rst approach, the con�gurable program certi�cation approach,
builds on a phenomenon that is well-known for NP complete problems. For NP complete
problems L, when given a suitable witness w one can utilize w to check in polynomial time
whether an input word x is an element of L [Hro11, pp. 232-238]. However, assuming P 6=
NP constructing a witness or equivalently inspecting whether x ∈ L1 is non-polynomial,
i.e., ine�cient in practice. A similar observation applies to program veri�cation, which
is in general undecidable [Ric53], and thus much harder than NP problems. Verifying
program correctness w.r.t. a property, i.e., �nding a proof that shows that a program is
correct w.r.t. a property, is di�cult. Yet, checking whether a proof shows that a program
is correct w.r.t. a property is much simpler.

In 1996, Necula and Lee introduced the Proof-Carrying Code (PCC) framework [NL96]
which uses the above observation to ensure that code from untrusted providers does not
violate the consumer's safety policy. The provider attaches a proof in logic that the code
does not violate the given safety policy and the consumer only checks the proof. At
the beginning, proofs were constructed semi-automatically with theorem provers [NL96,
Nec97, AF00]. PCC research focused on proof sizes, see e.g. [NL98a, NR01, WAS03], and
a small trusted computing base [AF00, App01, WAS03].

Later, also automatic veri�cation tools are used to construct proofs. For example,
Henzinger et al. [HJMS02] use model checking with predicate abstraction to show that an
error location is unreachable. The proof for the veri�cation condition is constructed from
the abstract reachability tree built during model checking. As another example, Seo et
al. [SYY03] execute an abstract interpreter and use its result to construct a Hoare proof.

With the use of automatic veri�cation tools, the proposed PCC techniques deviate
from the strict concept of a mathematical proof, too. To mention only a few, Kupferman

1Any inspection which shows that x ∈ L or x /∈ L is a witness.
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and Vardi [KV04] use a ranking function to certify that a system ful�lls a LTL formula.
The model checker SLAB [DKFW10] describes its veri�cation diagram in SMT code.
Many approaches, e.g. [Ros03, HJMS03, APH05b, BJP06], utilize (parts of) the explored
state space as proofs. Beyer et al. [BDDH16] suggest a correctness witness automaton
whose edges are labeled with statements and its states are labeled with C expressions
representing local invariants.

To construct a logic proof from the analysis result, an ARG, of an arbitrary con-
�gurable program analysis, the abstract states must be transformed into an equivalent
logical representation. Of course, one could use the concretization of the abstract state.
However, in this case one would loose the advantage of the abstraction. Furthermore,
abstract states like the sign or predicate abstract state, which only restrict the numerical
values of variables could be easily represented by logic formulae and are understood by
logic theories. Finding a logic theory that is able to express that a variable is initialized
or points to a valid memory address is more di�cult. Thus, we think that it is di�cult to
provide a generic approach that constructs a logical proof from the analysis result of an
arbitrary con�gurable program analysis. The same holds true for a speci�c proof format
like SMT. Hence, we follow a typical certi�cate format and use parts of the state space,
represented by the ARG, as certi�cate in our con�gurable program certi�cation approach.

PCC approaches put di�erent emphasize on the trusted computing base. The trusted
computing base of an approach contains all those elements the consumer must trust if he
trusts the outcome of his validation procedure. Approaches like foundational PCC [AF00,
App01], veri�ed PCC [WNKN04, WN05] or the approach by Besson et al. [BJP06] try to
reduce the trusted computing base to a minimum. For example, they restrict the number
of axioms that can be used in the proof or they verify or certify components used in
the consumer validation. In other approaches, e.g., [Ros03, HJMS03, APH05b], there is
almost no di�erence between the trusted computing base for veri�cation and consumer
validation. In favor of generality and e�ciency, we decided not to focus on a small trusted
computing base. In our approaches, the consumer's trusted computing base is only a little
bit smaller than the producer's trusted computing base.

Next, we describe the details of our con�gurable program certi�cation approach. We
start with a general overview of con�gurable program certi�cation.

3.1 Overview of Con�gurable Program Certi�cation

Con�gurable program certi�cation (CPC) was �rst proposed by us [JW14] and later also
optimized by us [Jak15]. In the following two chapters, we present an improvement of
the original con�gurable program certi�cation and its optimizations. This improvement
supports a broader class of program analyses and safety properties.

Figure 3.1 shows the general process of our con�gurable program certi�cation ap-
proach. It is an instance of our generic solution presented in the introduction. The
producer starts to verify programs as presented in the previous chapter. He uses the
concept of a con�gurable program analysis enhanced with a property (automaton) to con-
�gure his veri�cation. The veri�cation is executed with the CPA algorithm, the resource
consuming analysis. After a successful veri�cation (result true), the producer generates
a certi�cate from the abstract reachability graph, the proof. The certi�cate generation
(the program expansion) as well as the certi�cate, which is used to enhance the program,
di�er across the basic and optimized instances of the con�gurable program certi�cation
approach. In all cases, the certi�cate is a witness for program safety, which uses ARG
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Figure 3.1: Overview of con�gurable program certi�cation

nodes to provide some information about the state space explored during veri�cation.
Finally, the producer transfers the program plus the certi�cate to the consumer.

The consumer receives a program and a certi�cate from the producer. We assume
that both can be corrupted during the transfer. To get a con�guration that �ts to the
certi�cate, the consumer derives his con�guration from the producer. Putting it simple,
the con�gurable certi�cate validator adopts a subset of the CPA con�guration. Finally,
the consumer uses the certi�cate validation, his simple validation procedure, to check
whether the received certi�cate witnesses safety of the received program. If the validation
succeeds, the program can be executed. Otherwise the received program will be discarded.
We want that the validation only succeeds when the program is safe w.r.t. the provided
property. Additionally, validation must discard a program if the validation procedure
fails to validate the certi�cate, e.g., when the program or the certi�cate are corrupted, no
matter whether the program is safe or not.

Note that for the sake of comprehensibility, we left out the initial abstract state and the
initial precision in our overview. As known from the previous chapter, the CPA algorithm
requires these two elements as additional inputs. The certi�cate validation expects only
an initial abstract state. Furthermore, two additional constraints must be considered. As
known from veri�cation, the initial abstract states must represent the initial automaton
state. Additionally, the consumer must not consider more behavior, i.e., his initial abstract
state must be less than or equal to the producer's initial abstract state. A consumer must
derive his initial abstract state from the producer's initial abstract state. Of course, the
initial abstract state could be part of the negotiations between the producer and the
consumer.

In the remaining part of this chapter, we present the basic, non-optimized version
of our con�gurable program certi�cation approach. Following the con�gurable program
certi�cation procedure, we start to explain the producer's task.

3.2 Producer Veri�cation and Certi�cate Construction

The overview of the con�gure program certi�cation process revealed that the producer
uses the CPA algorithm and an appropriate enhanced CPA to verify program safety. We
already discussed this kind of program veri�cation in the previous chapter. Thus, in this
section we focus on the certi�cate construction.
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The producer constructs certi�cates after a successful veri�cation, i.e., when the CPA
algorithm returned true. From the previous chapter, we remember that the CPA al-
gorithm reports true/false based on its state space exploration. A straightforward so-
lution is to use the explored state space as a certi�cate. A (partial) representation
of the explored state space is a regularly used type of certi�cate for safety properties,
see e.g. [HJMS03, Ros03, APH05b]. To validate a certi�cate, the consumer must check
two aspects. First, the certi�cate must describe a correctly explored state space, e.g.,
Abstraction-Carrying Code[APH05b] checks whether it is a �xpoint and the approach by
Henzinger et al. [HJMS03] inspects if all successors of a state are considered. Second, the
state space must imply program safety.

Recall that the CPA algorithm records its state space exploration in the abstract
reachability graph. In contrast to e.g. Henzinger et al. [HJMS03], who use the complete
ARG as certi�cate, we decided that we do not want to store how the state space is
constructed. In our basic version of the con�gurable program certi�cation, we only store
the explored states, the nodes of the ARG. The advantage is that our certi�cates become
smaller, but probably at the cost of an increase in validation costs. During validation we
cannot utilize the local successor relation and always need to consider all ARG nodes.

From a syntactical point of view, our certi�cates are sets of abstract states. To our
mind, a syntactical criterion is a proper choice to de�ne certi�cates. Parsers easily deter-
mine whether an input �le/stream adheres to a syntactical format. Moreover, like veri�ers
do not check syntactically incorrect programs, we do not want to validate certi�cates which
are syntactically incorrect, i.e., do not describe a set of abstract states. Furthermore, we
cannot assume that we get a certi�cate that could have been constructed by a process
conformant producer. A constructed certi�cate may be corrupted while it is transferred to
the consumer. Additionally, the producer may be malicious and does not follow our pro-
posed certi�cate construction. Finally, checking only certi�cates for which their de�nition
already states that they witnesses program safety is wasted e�ort. Hence, from now on
we only consider syntactically correct certi�cates and assume that before validation the
consumer refuses programs that are not enhanced with syntactically correct certi�cates.

The producer considers only a single CPA and, thus, a single abstract domain during
veri�cation. Hence, his certi�cates consider only abstract states of a single abstract do-
main. To exclude sets of abstract states that mix abstract states from di�erent domains,
we reuse the de�nition of a certi�cate in our previous paper [JW14] and de�ne a certi�cate
w.r.t. an abstract domain. The abstract domain is given by an enhanced CPA. Now, a
certi�cate is any subset of the set of abstract states considered by that enhanced CPA.

De�nition 3.1 (Certi�cate). Let CA be an enhancement of CPA C with property au-
tomaton A considering the set of abstract states ECA . A certi�cate CCA is a set of abstract
states, CCA ⊆ ECA .

A syntactically correct certi�cate does not automatically witness program safety. For
example, look at the following set of abstract states:

{((l0, s : > x : > z : >), q0), ((l1, s : > x : > z : 0), qerr)} .

This set is a certi�cate for the sign data�ow analysis enhanced with the property au-
tomaton for pos@l5, one of our example analyses. However, it does not witness safety of
program SubMinSumDiv w.r.t. property pos@l5 and the initial states considering the initial
program location. First, the behavior of the property automaton is not considered com-

pletely. Look at a path c0
(l0,z:=0;,l1)−−−−−−−−→ c1 of program SubMinSumDiv that starts in the initial

44



3.2. PRODUCER VERIFICATION AND CERTIFICATE CONSTRUCTION

(
c0

q0

)

(e0, q
′
0)

(
c1

q1

)

(e1, q
′
1)

. . .

. . .

(
cn−1

qn−1

)

(en−1, q
′
n−1)

(
cn

qn

)

(en, q
′
n)

(l0, op1, l1)

(op1, c1)

g0

(ln−1, opn, ln)

(opn, cn)

gn

J·K v

J·K v

J·K v

J·K v

Figure 3.2: Correspondence between ARG path and con�guration sequence

program location, cs(c0) = l0. From our example semantics for program SubMinSumDiv,
we infer that such a path exists and that cs(c1) = l1. The property automaton pos@l5 al-

ways starts in q0 and the transition triggered in q0 by c0
(l0,z:=0;,l1)−−−−−−−−→ c1 ends in q0. State c1

is related to automaton state q0, but the only abstract state ((l1, s : > x : > z : 0), qerr)
that covers c1 contains automaton state qerr 6= q0. Second, it misses program behavior.

For example, consider a path c0
(l0,z:=0;,l1)−−−−−−−−→ c1

(l1,x<0,l2)−−−−−−−→ c2 of program SubMinSumDiv

that starts in the initial program location, cs(c0) = l0. From our example semantics for
program SubMinSumDiv, we infer that such a path exists. The certi�cate's abstract states
cover c0 and c1. In contrast, c2 is not covered because none of the abstract states con-
siders location l2, which is the control state of c2 (program semantics). Third, the state
((l1, s : > x : > z : 0), qerr) considers the error state of the property automaton, i.e., the
certi�cate is not safe. Note that after a successful veri�cation the set of explored states
does not ful�ll any of the three properties. After we presented reasons why a certi�cate
is not a witness, we continue to discuss the properties a certi�cate should ful�ll to be a
witness.

Looking at the de�nition of program safety (De�nition 2.9), we observe that a program
is unsafe i� a program path exists such that all corresponding property automaton runs
end in the error state. Hence, a witness must convince the consumer that for every
program path a con�guration sequence exists that does not contain the error state.

Reconsider that an enhanced CPA de�nes how to explore the program paths while
concurrently monitoring the explored paths, i.e., it runs the associated property automa-
ton in parallel. Assuming that the CPA algorithm is started with a proper initial abstract
state, after termination of the CPA algorithm the ARG paths do not only overapprox-
imate the program paths but also the corresponding automaton runs. The ARG paths
cover the con�guration sequences of the program paths. Figure 3.2 visualizes this cov-

erage. For any explored program path c0
(l0,op1,l1)−−−−−−→ c1 . . . cn−1

(ln−1,opn,ln)−−−−−−−−→ cn and any
corresponding con�guration sequence (c0, q0)(c1, q1) . . . (cn−1, qn−1)(cn, qn) an ARG path
of length n exists s.t. for all pairs (ci, qi) in the con�guration sequence the ith ARG node
(ei, q

′
i) covers (ci, qi), i.e., ci ∈ J(ei, q′i)K, equivalently ci ∈ JeiK, and qi v q′i.

Since we never used the ARG edges, we conclude that a sequence of ARG nodes that
covers a con�guration sequence is su�cient to convince the consumer that this con�gu-
ration sequence was considered during veri�cation. With this insight, we claim that the
abstract states in a valid certi�cate must cover at least one con�guration sequence per
path to convince the consumer that for every program path a corresponding con�guration
sequence is considered during veri�cation. To ensure that the inspected con�guration
sequences for all paths do not contain the error state, we require that no certi�cate state
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includes the error state qerr, i.e., the certi�cate is safe.
We call a certi�cate that ful�lls these requirements a valid certi�cate. In the following,

we de�ne certi�cate validity w.r.t. a set of initial states because we already restrict program
safety to a set of initial states.

De�nition 3.2 (Valid Certi�cate). A certi�cate CCA is valid for a program P , property
automaton A, and a set of initial states I ⊆ C if

• it covers one con�guration sequence per path, ∀p := c0 . . . cn ∈ pathsP (I) : ∃ con-
�guration sequence (c0, q0), . . . , (cn, qn) for p and A : ∀0 ≤ i ≤ n : ∃(e, q) ∈ CCA :
ci ∈ JeK ∧ qi v q, and

• the certi�cate is safe, i.e., ∀(e, q) ∈ CCA : q 6= qerr ∧ q 6= q>.

After we de�ned when a certi�cate becomes a valid witness for program safety w.r.t. a
certain property and a given set of initial states, we need to prove that our de�nition
of valid certi�cates indeed ensures the witness property. If the certi�cate is valid for a
program P , property automaton A, and a set of initial states I ⊆ C, the program P must
be safe w.r.t. A and I. This is stated by the following lemma.

Lemma 3.1. If certi�cate CCA is valid for program P , property automaton A, and a set
of initial states I ⊆ C, then P |=I A.

Proof. Let p ∈ pathsP (I) be an arbitrary path. We need to show that p is safe w.r.t. A.
Since certi�cate CCA is valid, there exists a con�guration sequence (c0, q0) . . . (cn, qn) for
p and A s.t. ∀0 ≤ i ≤ n : ∃(·, q) ∈ CCA : qi v q, qerr 6= q and q> 6= q. We can conclude
that qi 6= qerr. It follows that P |=I A.

The previous two de�nitions establish the frame conditions for the certi�cate constructed
by the producer. With these frame conditions in mind, we explain how the producer
builds his certi�cate from the result of the CPA algorithm. The CPA algorithm returns
three components which are already certi�cates: the set reached, the set of ARG nodes,
and the set of covering nodes. From the CPA algorithm and the de�nition of an ARG, we
know that the set reached and the set of ARG nodes are identical and the set of covering
nodes is a subset of those two. Consider the ARG in Fig. 3.4. We know this ARG, which
is generated by one of our example analyses, from the previous section.

We notice that its set of covering nodes shown in Fig. 3.3 (the gray nodes in Fig. 3.4)
do not cover a con�guration sequence for each path of program SubMinSumDiv starting in
the initial program location, although this ARG results from a successful veri�cation of
program SubMinSumDiv w.r.t. property pos@l5. For example, consider arbitrary path c of
length 0 with c ∈ C and cs(c) = l0. This path is a path of program SubMinSumDiv starting
in the initial program location. By de�nition, the only valid con�guration sequence is
(c, q0). Since all covering nodes refer to a concrete location that is di�erent from l0, none
of them covers c. Thus, no con�guration sequence for path c is covered.

{
((l5, s : > x : − y : > z : + ), q0), ((l9, s : + x : > y : > z : > ), q0),
((l13, s : + x : −+ y : > z : > ), q0), ((l14, s : > x : > y : > z : > ), q0)

}

Figure 3.3: The set of covering nodes of the ARG shown in Fig. 3.4
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Figure 3.4: ARG constructed by the CPA algorithm during the analysis of program Sub-

MinSumDiv with CPA L × S enhanced with property automata pos@l5 when started in
initial abstract state ((l0,>S), q0)

In contrast, we know that if the producer veri�cation succeeds, the ARG will be well-
formed (Proposition 2.8). Thus, the set of ARG nodes, which is equivalent to reached, will
cover one con�guration sequence for each program path that starts in a state represented
by the root node (Lemma 2.7). Moreover, in a well-formed ARG the initial abstract state
is less abstract than the root. Hence, we infer from the de�nition of paths that the set of
ARG nodes of a well-formed ARG also covers one con�guration sequence for each program
path that starts in a state represented by the initial abstract state. Furthermore, in a
well-formed ARG the set of ARG nodes is safe. Thus, if the producer uses the set reached,
equivalently the set of ARG nodes, as certi�cate, he will generate proper certi�cates. To
be consistent with the following approaches, the producer constructs his certi�cate from
the ARG and not from the set reached. Now, the certi�cate construction is quite simple.
After a successful veri�cation, the producer adds all nodes of the abstract reachability
graph to the certi�cate.

De�nition 3.3 (Certi�cate from ARG). Let RP
CA = (N,GARG, root,Ncov) be an abstract

reachability graph. The certi�cate from ARG RP
CA is cert(RP

CA) = N .

For the ARG shown in Fig. 3.4 the producer constructs the following certi�cate. As we will
explain, the certi�cate is valid because it is constructed from an ARG generated during a
successful veri�cation, i.e., a well-formed ARG.



((l0, s : > x : > y : > z : >), q0), ((l1, s : > x : > y : > z : 0), q0),
((l2, s : > x : − y : > z : 0), q0), ((l3, s : > x : − y : − z : 0), q0),
((l4, s : > x : − y : > z : 0), q0), ((l5, s : > x : − y : > z : +), q0),
((l6, s : > x : 0 + y : > z : 0), q0), ((l7, s : > x : 0 + y : 0 + z : 0), q0),
((l8, s : > x : 0 + y : − z : 0), q0), ((l9, s : + x : > y : > z : >), q0),
((l10, s : + x : −+ y : > z : >), q0), ((l11, s : + x : −+ y : 0 + z : >), q0),
((l12, s : + x : −+ y : − z : >), q0), ((l13, s : + x : −+ y : > z : >), q0),
((l14, s : > x : > y : > z : >), q0)
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In general, from the de�nition of an abstract reachability graph (De�nition 2.12) it only
follows that the producer constructs syntactically correct certi�cates. However, we already
demonstrated, not all syntactically correct certi�cates are valid. As we will see, also not
all certi�cates constructed from an arbitrary ARG are always valid.

Reconsider the ARG, which is not compliant with the state space exploration (see
Fig. 2.6). The certi�cate constructed from that ARG is not valid for program SubMinSum-

Div, property automaton nonneg, and initial states I = {c ∈ C | cs(c) = l0}. For example,
for all program paths c0 ∈ pathsP (I) it does not cover the con�guration sequence (c0, q0),
the only con�guration sequence for c0. Moreover, the certi�cate constructed from the
ARG constructed by the CPA algorithm during the analysis of program SubMinSumDiv

with CPA L× S enhanced with property automata nonneg (ARG in Fig. 2.5) is not safe,
it contains abstract states considering automaton abstract state q>.

To apply con�gurable program certi�cation in arbitrary settings, we need to guarantee
that a producer generates valid certi�cates in case he sticks to our process for con�gurable
program certi�cation (cf. Fig. 3.1). In the process of con�gurable program certi�cation,
the producer only generates a certi�cate when the CPA algorithm successfully veri�ed
program P with CPA CA. After a successful veri�cation, the producer uses the ARG
generated by the CPA algorithm to construct the certi�cate. Due to Proposition 2.8,
we know that the ARG used by the producer for certi�cate construction has a special
form, namely it is well-formed. Hence, to show that the producer part of our con�gurable
program certi�cation approach is thought through, we prove that certi�cates generated
from well-formed ARGs are valid.

Proposition 3.2. Let ARG RP
CA for program P and enhancement CA of CPA C with

property automaton A = (Q, δ, q0, qerr) be well-formed for e0 = (e, q0) ∈ ECA . The certi�-
cate cert(RP

CA) is valid for program P , property automaton A, and initial states Je0K.

Proof. Let RP
CA = (N,GARG, root,Ncov). By de�nition of cert(RP

CA), we know that
cert(RP

CA) = N . Since RP
CA is rooted (well-formed), we know that e0 v root. By meaning

of v, we know that Je0K ⊆ JrootK. By de�nition of paths, pathsP (Je0K) ⊆ pathsP (JrootK).
From Lemma 2.7, cert(RP

CA) = N , and pathsP (Je0K) ⊆ pathsP (JrootK), we know that cer-
ti�cate cert(RP

CA) covers at least one con�guration sequence for each path p ∈ pathsP (Je0K)
and A. Since RP

CA is well-formed implies that RP
CA is safe, by de�nition of cert(RP

CA) and
de�nition of safety of RP

CA , it follows that cert(RP
CA) is safe. Hence, cert(RP

CA) is valid for
P , A, and Je0K.

So far, we presented the details of the producer part of the con�gurable program certi�-
cation approach. In the next section, we continue with the certi�cate validation, which is
performed by the consumer.

3.3 Consumer Certi�cate Validation

In our approach, the consumer inspects the certi�cate generated by the producer to decide
whether a program is safe w.r.t. a property automaton and a set of initial states. We know
that valid certi�cates guarantee program safety. Hence, the consumer tries to �nd out
whether a given certi�cate ful�lls the two properties of a valid certi�cate.

Recapture the proof of Lemma 2.7 (see Appendix pp. 255 f), which proved that the
nodes of a well-formed ARG cover a con�guration sequence per path. We remember that
the inductive proof relies on the following two properties: all initial states are considered
by the ARG nodes and the ARG nodes are closed under abstract successor computation.
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We conclude that if the certi�cate covers the initial abstract state and if the certi�cate
is closed under (abstract) successor computation, we can use the induction principle to
show that a certi�cate covers a con�guration sequence per path. Thus, to check the
�rst property, the consumer examines the two presented conditions. Note that from the
producer's point of view, the consumer checks the following. The producer explored the
program behavior determined by the initial states and the producer properly stopped the
exploration of states, i.e., the producer performed a legal state space exploration (our
proposed consumer check). Therefore, the major part of the validation still matches our
previous certi�cate validation [JW14] for a more restrictive concept of a CPA . To ensure
the second property of a valid certi�cate, the consumer simply needs to inspect the states
in the certi�cate, which is the same as the inspection of the set reached on producer side.

Like the producer, the consumer should examine program safety on the basis of ab-
straction. We think this will be cheaper. In contrast to the producer, the abstraction
level of each validation is dictated by the certi�cate. For the validation, the consumer
requires a validation con�guration that provides the necessary operators, abstract suc-
cessor computation and coverage check, for the certi�cate's abstraction and an algorithm
that executes the di�erent steps of our proposed certi�cate validation with the help of a
suitable validation con�guration.

3.3.1 Validation Con�guration

From the previous considerations, we know that a validation con�guration must pro-
vide three elements: a description of the abstraction in terms of an abstract domain, an
operator for abstract successor computation, and a coverage check. We start with the
de�nition and discussion of the coverage check, which inspects whether an abstract state
is represented by the certi�cate.

De�nition 3.4 (Coverage Check). LetDA be an abstract domain enhanced with property
automaton A = (Q, δ, q0, qerr). A function coverA : EA × 2E

A → B is a coverage check if
∀(e, q) ∈ EA, S ⊆ EA : coverA((e, q), S) =⇒ J(e, q)KA ⊆

⋃
(e′,q′)∈S∧qvq′

J(e′, q′)KA.

Next, we consider how a consumer can automatically derive such a coverage check from
the veri�cation con�guration, an enhanced CPA. Every CPA enhanced with a property
automaton A already provides an operator, the termination check operator, that looks
similar to a coverage check. The termination check's task is to check when the exploration
of a state may be stopped. Like a coverage check, it examines if a state is covered by a
given set of states. The termination check seems to be a suitable coverage check. The
following corollary con�rms our observation and proves that a termination check of an
enhanced CPA is also a coverage check.

Corollary 3.3. Let CA = (DA, ·, ·, ·, ·, stop) be a CPA enhanced with property automa-
ton A. Then, the termination check stop is a coverage check.

Proof. Let (e, q) ∈ ECA be an arbitrary abstract state and S ⊆ ECA be an arbitrary set
of abstract states. Assume stop((e, q), S) = true. By de�nition of an enhancement CA
of a CPA C, we know that stop((e, q), S) = stopC(e, {e′ | (e′, q′) ∈ S ∧ q v q′}) = true.
Soundness of the termination check plus the de�nition of the concretization function let
us infer that J(e, q)K = JeK ⊆

⋃
(e′,q′)∈S∧qvq′

Je′K =
⋃

(e′,q′)∈S∧qvq′
J(e′, q′)K. The termination

check is a coverage check.
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The previous corollary tells us that it is sound to use the termination check. This does
not mean that any termination check is is appropriate for certi�cate validation. Already
in our previous work [JW14], we observed that in theory not all termination checks are
mature enough.

For example, let us look at a variant L̂× S of the sign data�ow analysis L × S.
Its precision adjustment uses the original, static precision adjustment precL̂×S(e, π, S) =

precL×S(e, π, S) except for one abstract state, precL̂×S((l5, s : > x : − y : − z : +), π, S) =

((l5, s : > x : − y : > z : +), π). Furthermore, the termination check only returns true
when the abstract state plus the set S of abstract states are of a particular shape and
the abstract state is covered by a more abstract state, stopL̂×S((l, s), S) := s(y) 6= −∧
(l 6= l5 ∨ |S| ≤ 6) ∧ stopL×S(e, S)2.

Assume the producer enhances L̂× S with the property automaton pos@l5 instead of
L× S. Then, an exploration order of waitlist exists such that the CPA algorithm started
with that variant of the enhanced CPA and initial abstract state ((l0,>S), q0) successfully
veri�es program SubMinSumDiv and generates the ARG shown in Fig. 3.4. Hence, the
certi�cate from the ARG shown in Fig. 3.4 is still a valid certi�cate for the CPA variant.
Nevertheless, the stricter termination check cannot be used to detect that this (producer)
certi�cate is valid. The reason is that the stricter termination check is not mature enough
to detect that the certi�cate is closed under abstract successor computation. It fails to
discover that all abstract successors are covered by the certi�cate. Next, we explain the
reasons why the termination check fails to detect coverage.

First, the termination check stopL̂×S is not consistent with the partial order. For
example, consider the abstract state associated with location l8. The termination check
stopL̂×S does not detect that the transfer relation successor ((l9, s : + x : 0+ y : − z : 0), q0)

of state ((l8, s : > x : 0 + y : − z : 0), q0) and CFA edge (l8, s := −y; , l9) is covered by
the set of ARG nodes, the certi�cate, i.e., stopL̂×S returns false, although a more abstract
state ((l9, s : + x : > y : > z : >), q0) in the set of ARG nodes exists.

Second, the termination check is not monotonic. For example, consider the abstract
state associated with location l3. The termination check does not return true when
considering the transfer relation successor ((l5, s : > x : − y : − z : +), q0) of state
((l3, s : > x : − y : − z : 0), q0) and CFA edge (l3, z := −y; , l5)) plus the set of ARG
nodes, the certi�cate. However, during veri�cation the termination check stopL̂×S re-
turned true for the abstract state ((l5, s : > x : − y : > z : +), q0) obtained by precision
adjustment of that abstract successor and the set S that contains the states of the certi�-
cate that are associated with locations l0, l1, l2, l3, l4, l5. On the one hand, the termination
check fails because the certi�cate contains more states, i.e., the certi�cate is more abstract
than S. The termination check does not support the increase of the abstract state space
during veri�cation, which is re�ected by the set reached, the set which �nally de�nes the
set of ARG nodes. On the other hand, the termination check even does not return true
for the abstract successor ((l9, s : + x : 0 + y : − z : 0), q0) and the set S that is su�cient
to accept the more abstract state obtained after precision adjustment of that abstract
successor. The more concrete abstract sign value − for variable y prohibits the termina-
tion check operator from returning true. This termination check operator is vulnerable to
precision adjustment e�ects.

We conclude that termination checks which are used for certi�cate validation should
ful�ll the two properties, consistency with partial order and monotonicity. In general, we
call coverage checks which meet the above criteria well-behaving.

2We use s(y) to denote the abstract sign value of variable y in sign abstract state s
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De�nition 3.5. Let coverA : EA×2E
A → B be a coverage check for abstract domain DA

enhanced with property automaton A. The coverage check coverA is well-behaving if it is

• consistent with the partial order, i.e., ∀e ∈ EA, S ⊆ EA : ∃e′ ∈ S : e v e′ =⇒
cover(e, S), and

• monotonic, i.e., ∀e, e′ ∈ EA, S, S′ ⊆ EA : e v e′ ∧ S v S′ ∧ cover(e′, S) =⇒
cover(e, S′).

Requiring a well-behaving coverage check is �rst of all a limitation of the generality of
our approach. Validation con�gurations can only be derived automatically when the
termination check is well-behaving, too. To support termination checks that are not
well-behaving, we support a semi-automatic derivation of the validation con�guration.
In this semi-automatic derivation, the consumer must provide a coverage check, which
extends the termination check such that it becomes well-behaving. However, such an
extension may be less e�cient. It may drop the performance of the validation procedure.
Nevertheless, we claim that the well-behaving requirement is a minor restriction for the
practical applicability of our con�gurable program certi�cation approach.

For standard termination checks that are not well-behaving, we imagine that extensions
for the termination checks are provided, which make them well-behaving. We even think
that these standard termination checks can be replaced automatically with their extended
version. Furthermore, we argue that termination checks that are not well-behaving are not
very common in practice. To the best of our knowledge, only a few termination checks in
the tool CPAchecker exist which are not well-behaving. We list them in the following
paragraphs.

Some abstract domains may be used together with a termination check that always
returns false. A proper extension of this termination check is the following coverage check
cover(e, S) := ∃e′ ∈ S : e v e′, which is identical to the most common termination check
and for which we show that it is well-behaving.

The termination check of the ARGCPA does not ful�ll the well-behaving property in
case the isTarget property of an abstract state is not consistent with the partial order.
For example, there exists abstract states e, e′ with e v e′ but only for e the isTarget

property is true. Our implementation of the con�gurable program certi�cation framework
in CPAchecker only use the ARGCPA on the producer side to construct the ARG. For the
validation con�guration, the well-behaving property of the ARGCPA's termination check is
not important.

Also the termination checks of the AssumptionStorageCPA and the MonitorCPA are
not well-behaving. In the �rst case, the abstract domain does not support a partial
order. In the second case, the termination check is nondeterministic. It depends on
the exploration order used for the second parameter S. Both CPAs do not adhere to
our formal de�nition of a CPA and are currently not used by our con�gurable program
certi�cation approach.

In practice, the most commonly used termination check operator checks if an abstract
state is covered by a more abstract state, i.e., stop(e, S) := ∃e′ ∈ S : e v e′. The following
corollary states that this standard termination check meets our well-behaving conditions.

Corollary 3.4. Let DA be an abstract domain enhanced with property automaton A =

(Q, δ, q0, qerr). The function coverA : EA × 2E
A → B with cover(e, S) := ∃e′ ∈ S : e v e′

is a well-behaving coverage check.

Proof. Let (ê, q) ∈ EA be an arbitrary abstract state and S′′ ⊆ EA be an arbitrary set
of abstract states. Assume cover((ê, q), S′′) = true. From cover((ê, q), S′′) = true, it
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follows that there exists (ê′, q′) ∈ S with (ê, q) v (ê′, q′). It follows that q v q′ and due
to the meaning of v it holds that J(ê, q)K ⊆ J(ê′, q′)K ⊆

⋃
(e∗,q∗)∈S∧qvq∗

J(e∗, q∗)K. Hence,

cover is a coverage check. By de�nition of cover the function cover is consistent with
the partial order. Assume e′′ v e and cover(e, S) = true. From cover(e, S) = true, it
follows that there exists e′ ∈ S with e v e′. Using transitivity of partial order v, we get
e′′ v e′. Hence, we conclude cover(e′′, S) = true (de�nition of cover). Assume S v S′

and cover(e, S) = true. From cover(e, S) = true, it follows that there exists e′ ∈ S with
e v e′. From S v S′, we conclude that there exists e′′′ ∈ S′ with e′ v e′′′. Thus, we get
cover(e, S′) = true (de�nition of cover). Operator cover is monotonic.

Theoretically, the most commonly used termination check operator is well-behaving, but
we observed two implementational issue. We noticed the �rst issue for the default con-
�guration of the CallstackCPA. Due to performance reasons, in the Java implementation
of the CallstackCPA two abstract states are only equal in case they are the same object
and not when they represent the same data, i.e., the implementation uses the equals()

method inherited from its superclass Object. In general, the problem occurs whenever a
CPA uses a �at lattice and does not override the equals() method in the implementation
of the abstract state. One problem is that the initial abstract state of the producer and
the consumer can be di�erent although they want to use the same state. The reason is
that the initial abstract state contained in the certi�cate is read from disk and the initial
abstract state provided to the validation algorithm is constructed independently. Another
problem is that if the transfer relation computes the abstract successors of an abstract
state and a CFA edge twice, the results may be di�erent. The termination check already
fails to detect that an abstract successor has already been computed, a property that
must be recognized during certi�cate validation. To overcome the previous problem in
the CallstackCPA, we allow the consumer to con�gure the abstract domain with a �at
lattice that considers the data of an object to decide equality.

A second related issue concerns the PredicateCPA. Again, due to performance � cf.
comments in the implementation � the implementation of the partial order of the abstract
domain sometimes uses a fast check to decide whether a state is less abstract than another.
This fast check is su�cient for veri�cation, but neither trustworthy for the consumer nor
does it consider all relations in the partial order. For the consumer, we implemented a
coverage check that behaves as it was intended for the termination check.

Up to now, we discussed the problems regarding a reuse of the termination check. In
contrast, a reuse of the transfer relation con�guration for abstract successor computation
is uncomplicated. Furthermore, we think that producers and consumers should at least
agree on the abstract domain. The certi�cate �xes the abstract states anyway. Moreover,
standard abstract domains like e.g. the domain for constant propagation [NNH05, p.
72], interval analysis [CC77], or predicate abstraction [GS97] have a widely accepted
meaning. It would be inconvenient if the producer or the consumer interpret these abstract
states di�erently. Generally, we assume that the producer and the consumer agree on the
di�erent meaning of the abstract states. We have everything at hand to describe how
to derive the validation con�guration. Nevertheless, before we explain how to derive
the validation con�guration from the veri�cation con�guration, namely from a CPA, we
generally describe the structure of and the requirements on a validation con�guration.

A validation con�guration is related to a set of abstract states and can only inspect
certi�cates that are consistent with those abstract states. It is given by a con�gurable
certi�cate validator (CCV). As mentioned earlier a CCV must provide three elements:
an enhanced abstract domain, which also considers the property automaton states, a
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transfer relation, and a coverage check. For the enhanced abstract domain, we require the
same constraints as for an enhanced abstract domain used by the producer. Furthermore,
the transfer relation must overapproximate the semantics of the execution steps and the
behavior of the property automaton.

De�nition 3.6 (Con�gurable Certi�cate Validator). A con�gurable certi�cate validator

(CCV) VDA = (DA, A, coverA) for an abstract domain DA enhanced with property
automaton A = (Q, δ, q0, qerr) consists of

• an enhanced abstract domain DA = (C, E × Q, J·KA) ensuring Eq. 2.1,

• a transfer relation  A⊆ EA × G × EA for abstract successor computation which

ensures that ∀(e, q) ∈ EA, (l, op, l′) ∈ G : ∀c ∈ J(e, q)KA : c
(l,op,l′)−−−−−→ c′ =⇒

∃((e, q), (l, op, l′), (e′, q′)) ∈ A: c′ ∈ J(e′, q′)KA ∧ (∃Csub ⊆ C : (q, op, Csub, q
′) ∈ δ

∧c′ ∈ Csub ∨ q′ = q>), and

• a coverage check coverA : EA × 2E
A → B.

Our de�nition of a CCV allows the consumer to specify his validation con�guration in-
dependently of the producer. Though we think that it is ine�cient, the consumer should
successfully validate producer certi�cates when he uses the most precise transfer relation
and coverage check. We suggest a di�erent strategy to adjust the validation con�gura-
tion to the certi�cate generated by the producer. As in our previous work [JW14], we
(semi-)automatically derive the validation con�guration from the producer's CPA. Semi-
automation takes into account that the termination check is not always mature enough for
certi�cate validation. Note that a derivation does not mean that the consumer must trust
parts of the producer's implementation. The consumer may use his own or any trusted
implementation of the relevant concepts for which he believes that they are compliant
with the requirements of a CCV or CPA. Additionally, a consumer might even verify that
a CCV or CPA implementation adheres to the requirements, which we imposed on them.
A further option is presented by Besson et al. [BJP06]. Besson et al. propose to use the
PCC idea for the validation of the consumer's certi�cate checker � the CCV in our case.

In the previous paragraphs, we already sketched the semi-automatic derivation, which
results in a so called con�gurable certi�cate validator for a CPA. Given a CPA and a
coverage check, the derived CCV consists of the CPA's abstract domain and transfer
relation plus the provided coverage check. In a fully automatic derivation, which is used
when the termination check is already well-behaving, the termination check is used as
coverage check.

De�nition 3.7 (Con�gurable Certi�cate Validator for CPA). Let CA = (DCA ,ΠCA , CA
, precCA ,mergeCA , stopCA) be an enhancement of CPA C and cover : ECA × 2ECA → B be
a coverage check which is as least as precise as the termination check, i.e., ∀e ∈ ECA , S ⊆
ECA : stop(e, S) =⇒ cover(e, S). The con�gurable certi�cate validator for CA and cover

is VCA(cover) = (DCA , CA , cover).

The previous de�nition describes how to (semi-)automatically build the validation con-
�guration from the producer's veri�cation con�guration, his CPA. In the following, we
ensure that our derivation of the validation con�guration from a CPA constructs a proper
validation con�guration. We show that a con�gurable certi�cate validator for a CPA is
indeed a CCV.
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Algorithm 3: Validation algorithm for certi�cates

Input: A CCV VDCA = ((C, (E,>,⊥,v,t), J·K), , cover), initial abstract state
e0 ∈ E, certi�cate CCA ⊆ E, program P = (L,GCFA, l0)

Output: Boolean indicator, if certi�cate CCA is valid

1 if ¬cover(e0, CCA) then
2 return false
3 for each e ∈ CCA do
4 for each g ∈ GCFA do
5 for each (e, g, e′) ∈ do
6 if ¬cover(e′, CCA) then
7 return false
8 return ¬∃(·, q) ∈ CCA : q = qerr ∨ q = q>

Corollary 3.5. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA en-
hanced with property automaton A and cover be a coverage check for abstract domain DCA .

VCA(cover) is a con�gurable certi�cate validator for abstract domain DCA .

Proof. By de�nition of CCV VCA(cover), the abstract domain of the CCV is the abstract
domain DCA of CPA CA. By de�nition of a CPA, DCA ful�lls Eq. 2.1. The CCV's transfer
relation is the CPA's transfer relation. Let (e, q) ∈ EA be an arbitrary abstract state,
(l, op, l′) ∈ G be an arbitrary edge, and c ∈ J(e, q)K be an abstract state. Assume that there

exists a transition c
(l,op,l′)−−−−−→ c′. By overapproximation of the transfer relation (Eq. 2.2),

there exists ((e, q), (l, op, l′), (e′, q′)) ∈ with c′ ∈ J(e′, q′)K. By de�nition of enhancement,
either q′ = q> or (q, op, Csub, q

′) ∈ δ and c′ ∈ J(e′, q′)K = Je′K ⊆ Csub. Hence, VCA(cover)
is a con�gurable certi�cate validator for abstract domain DCA .

We continue to describe how the consumer uses a CCV to check that a certi�cate is valid,
i.e., it witnesses program safety.

3.3.2 Validation Algorithm

Like we require a meta algorithm to execute arbitrary con�gurable program analyses, we
need a meta algorithm, the so called validation algorithm, to inspect arbitrary certi�cates.
Our validation algorithm, which is a variant of our previous validation algorithm [JW14],
is shown in Algorithm 3. The task of the validation algorithm is to determine for a given
input program P , a certi�cate CCA , an initial abstract state e0, and a CCV VDCA whether
certi�cate CCA is valid for program P , property automaton A, and the set of initial states
Je0K.

Hence, two aspects must be checked by our validation algorithm. Lines 1-7 check
the �rst property: for each program path a con�guration exists that is covered by the
certi�cate. We already discussed that for this inspection two aspects must be examined:
coverage of the initial states and closure under successor computation. The �rst two lines
inspect if the initial states are considered by the certi�cate. In lines 3-7 the validation
algorithm checks if the certi�cate is closed under successor computation. Since we only
examine if a certi�cate is a witness for the input program, it is su�cient that the successor
computation is closed for all successors of the input program. Hence, in line 4 we restrict
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the transfer relation to the control �ow edges of the input program. Finally, line 8 inspects
whether the certi�cate is safe, the second property of a valid certi�cate.

Technically, we presented all details to get our con�gurable program certi�cation ready
to use. Yet, we have not convinced consumers that their validation process is tamper-proof
(sound), i.e., it will only accept programs if they are indeed safe. Furthermore, producers
only participate in the con�gurable program certi�cation process when it ensures that if his
process works out as intended, the consumer will accept the program, i.e., our con�gurable
program certi�cation is relatively complete. Next, we inspect these properties.

3.4 Properties of the Consumer Certi�cate Validation

We already stated in the introduction that our approaches must be sound and relatively
complete. Soundness can only be established on the consumer side and, thus, by the val-
idation algorithm. To ensure relative completeness, we already proved that a cooperative
producer constructs valid certi�cates. It remains to be shown that if the consumer consid-
ers the same certi�cate and program as the producer, a cooperative consumer will accept
the producer's certi�cate. More concretely, the validation algorithm, which performs the
certi�cate validation, must accept the producer's certi�cate, i.e., it must be relatively
complete. Next, we discuss when our approach guarantees these two properties.

First, we discuss soundness. Like the producer needs to consider a proper initial ab-
stract state for veri�cation, namely a state which consider the initial automaton state q0,
we require that the consumer also provides such a proper initial abstract state to the
validation algorithm. Based on this assumption, we designed our validation algorithm s.t.
it should accept valid certi�cates only. Due to Lemma 3.1, we know that a valid certi�-
cate witnesses program safety. Hence, to ensure soundness, we prove that the validation
algorithm accepts only valid certi�cates. It only returns true when the certi�cate is valid
for input program P , property automaton A considered by the abstract domain of the
CCV, and initial states Je0K, the states represented by the initial abstract state e0.

A valid certi�cate ful�lls two properties: it covers one con�guration sequence per path
and it is safe. The following lemma states the �rst property: if Algorithm 3 returns true
and it is started with a proper initial abstract state that considers the initial automaton
state q0, for each path at least one con�guration sequence will be covered.

Lemma 3.6 (Con�guration Sequence Coverage). If Algorithm 3 started with CCV VDCA

for abstract domain DCA enhanced with property automaton A = (Q, δ, q0, qerr), pro-
gram P , initial abstract state e0 = (e, q0) ∈ ECA , and certi�cate CCA returns true, then
certi�cate CCA covers at least one con�guration sequence per path.

Proof. See Appendix pp. 257 f.

Line 8 of the validation algorithm (Algorithm 3) checks safety of the input certi�cate.
With the previous lemma, we now easily infer that if a proper initial abstract state is
provided, the validation algorithm will accept only valid certi�cates.

Theorem 3.7. If Algorithm 3 started with CCV VDCA for abstract domain DCA en-
hanced with property automaton A = (Q, δ, q0, qerr), program P , initial abstract state
e0 = (e, q0) ∈ ECA , and certi�cate CCA returns true, then CCA is valid for P , A, and Je0K.

Proof. Due to Lemma 3.6, certi�cate CCA covers at least one con�guration sequence per
path. Since Algorithm 3 returns true and it may only return true in line 8, safety of
certi�cate CCA follows. By de�nition, certi�cate CCA is valid for P , A, and Je0K.
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Due to Lemma 3.1, we already know that a valid certi�cate is a witness for program safety.
Thus, from the previous theorem we simply conclude that the certi�cate validation on the
consumer side is sound.

Corollary 3.8 (Soundness). If Algorithm 3 started with CCV VDCA for abstract domain
DCA enhanced with property automaton A = (Q, δ, q0, qerr), program P , initial abstract
state e0 = (e, q0) ∈ ECA , and certi�cate CCA returns true, then P |=Je0KCA A.

Proof. From the previous theorem, we get that CCA is a valid certi�cate for P , A, and
Je0K. From Lemma 3.1, it follows that P |=Je0K A.

Soundness of the validation algorithm is mandatory to get a reliable con�gurable program
certi�cation. However, to ensure applicability, the validation algorithm must accept the
certi�cates generated by a producer who sticks to the con�gurable program certi�cation
process. Propositions 2.8 and 3.2 guarantee us that certi�cates constructed by a process
conformant producer are valid. It is riskless to accept these certi�cates as long as the pro-
ducer and the consumer consider the same program. Hence, a sound validation algorithm
may accept these certi�cates. In the following, we show that the validation algorithm ac-
cepts those producer certi�cates in case the consumer con�gures the validation algorithm
as proposed by the con�gurable program certi�cation approach.

First, we ensure that the certi�cate validation algorithm terminates. We assume that
the transfer relation always terminates for any input and the coverage check terminates
when the elements in the certi�cate CCA are �nite. Then, the validation algorithm will
terminate if all loops are bounded and the certi�cate CCA is �nite. The producer uses
the ARG nodes as certi�cate. Since the set of ARG nodes is �nite by De�nition 2.12,
the certi�cate CCA is �nite. Hence, the coverage check terminates and the number of
iterations of the outermost loop are bounded. Furthermore, the innermost loop terminates
because the transfer relation of any CPA provides only �nitely many elements (e, g, ·) for
any abstract state e and control �ow edge g. The loop in the middle is only bounded
when the number of control �ow edges of input program P is �nite, i.e., program P
is �nite. Note that the CPA algorithm (Algorithm 2) only terminates when the input
program P is �nite. Thus, in the con�gurable program certi�cation approach the producer
constructs certi�cates for �nite programs only. Assuming that input program P is �nite
does not restrict the approach. With these arguments at hand, we show that the validation
algorithm terminates for �nite programs and certi�cates.

Lemma 3.9 (Termination). Let VCA(cover) be a con�gurable certi�cate validator for
CPA CA and coverage check cover and program P = (L,GCFA, l0) be �nite. Then, Al-

gorithm 3 started with VCA(cover), P , initial abstract state e0 ∈ ECA , and �nite certi�-
cate CCA terminates.

Proof. Algorithm 3 terminates when the certi�cate CCA is �nite, the number of pro-
gram edges is �nite, and for each pair (e, g) ∈ CCA × GCFA only �nitely many elements
(e, g, e′) ∈ exists.3 By assumption, the certi�cate and the number of program edges
are �nite (�nite certi�cate and de�nition of �nite program). Since the transfer relation
is a transfer relation of a CPA (de�nition of VCA(cover)), it follows from Eq. 2.3 that
∀(e, g) ∈ CCA ×GCFA : ∃n ∈ N : |{(e, g, e′) ∈ }| ≤ n. Algorithm 3 terminates.

3We assume that the result of each CPA operator can be computed within a �xed time bound when
its result is a single element or a �nite set.
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The previous lemma ensures that the validation algorithm terminates. Now, we need
to show that the validation algorithm indeed accepts the certi�cate constructed by a
cooperative producer. Of course, the consumer must not use any con�gurable certi�cate
validator that �ts to the certi�cate's domain. For example, a CCV is allowed to use a
transfer relation that maps any pair of abstract predecessor and control �ow edge to the
top state. Yet, such a transfer relation is not helpful for validation. This can easily be
observed when considering the certi�cate constructed from the ARG in Fig. 3.4. Similarly,
a coverage check that always returns false is valid, but not valuable. To ensure that the
CCV is mature enough for certi�cate validation, we proposed to derive the CCV from
the CPA used by the producer during veri�cation. Nevertheless, we already discussed in
Section 3.3.1 that in some cases we need to extend the producer's termination check to
get an appropriate coverage check, namely a well-behaving coverage check, for validation.
Furthermore, a certi�cate cannot cover more program behavior than considered by its
construction. Hence, validation will likely fail if the consumer uses an initial abstract
state that is more abstract than the one used by the producer, but the consumer may
always use a more concrete one. In the following, we ensure that in case the consumer
adheres to the previous restrictions plus the producer and the consumer consider the
same program, then the validation algorithm will accept the certi�cate produced by a
cooperative producer. The validation algorithm is relatively complete.

Theorem 3.10 (Relative Completeness). Let VCA(cover) be a con�gurable certi�cate
validator for CPA CA and coverage check cover which is well-behaving, RP

CA be an ARG
for �nite program P and enhancement CA of CPA C, and RP

CA be well-formed for e ∈ ECA .

Algorithm 3 started with CCV VCA(cover), program P , initial abstract state e0 v e, and
certi�cate cert(RP

CA) returns true.

Proof. See Appendix p. 258.

Until now, we only considered the semi-automatic validation. The consumer must provide
a coverage check, which extends the producer's termination check to include the well-
behaving properties. We already proved that every termination check operator is also
a coverage check operator. Hence, if the termination check operator is well-behaving,
e.g., like the frequently used termination check stop(e, S) := ∃e′ ∈ S : e v e′, we can
automatically derive the complete validation con�guration from the producer's veri�cation
con�guration. In this case, the automatically derived con�guration is su�cient for a
successful consumer validation in our con�gurable program certi�cation approach.

Corollary 3.11. Let CA be a CPA, VCA(stopCA) be a con�gurable certi�cate validator for
CA and stopCA which is well-behaving, P be a program, and e0 ∈ ECA be an initial abstract
state. If Algorithm 2 started with CPA CA, initial abstract state e0, initial precision
π0 ∈ ΠCA , and program P returns (true, ·, RP

CA), then Algorithm 3 started with CCV

VCA(stopCA), initial abstract state e0, certi�cate cert(RP
CA), and program P returns true.

Proof. From Corollary 3.3, we know that stopCA is a coverage check. Hence, VCA(stopCA)
is a CCV. From Proposition 2.8, we know that RP

CA is an ARG for P and CA which
is well-formed for e0. Since Algorithm 2 terminates, we conclude that P is �nite. The
corollary follows from the previous theorem.

Summing up, if the producer successfully checks a program P with CPA CA that uses
a well-behaving termination check and a proper initial abstract state e0, then the con-
sumer can automatically derive the CCV from the producer's CPA, his validation of the
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producer's certi�cate for program P considering e0 succeeds and guarantees safety of pro-
gram P w.r.t. A and Je0K. Our proposed con�gurable program certi�cation approach
meets the automation, soundness, and relative completeness requirement from the intro-
duction.

Note that these results can easily be transferred to program safety. Simply add another
restriction to the initial abstract state that ensures that the initial abstract state represents
all concrete states whose control state is the initial program location. Next, we study the
e�ectiveness of our con�gurable program certi�cation approach.

3.5 Evaluation

In the previous section, we proved soundness and relative completeness. These two prop-
erties are mandatory for the application of con�gurable program certi�cation, but they do
not reveal whether a consumer pro�ts from certi�cate validation. To pro�t from con�g-
urable program certi�cation, certi�cate validation must be e�cient w.r.t. execution time
and memory consumption. However, it is di�cult to determine this property theoreti-
cally. On the one hand, when the merge operator never combines an abstract state during
combination, the size of the certi�cate corresponds with the outermost loop in the veri�-
cation algorithm (Algorithm 2) and certi�cate validation becomes similar to veri�cation.
Thus, we think that the worst case bounds for validation and veri�cation might be iden-
tical or at least very similar. On the other hand, we think that reading the certi�cate
is an important aspect of validation in practice. Since the speed of storage devices and
processing units di�er in order of magnitudes, we think it is di�cult to derive a reliable,
theoretical statement about e�ciency. That is why we decided to compare validation with
veri�cation in a practical experiment.

In the following, we study if and when is certi�cate validation e�cient, i.e., it (signi�-
cantly) outperforms veri�cation w.r.t. execution and memory consumption. Furthermore,
we try to predict the performance of certi�cate validation upon our insights from veri�-
cation. To apply con�gurable program certi�cation in practice, two further aspects must
be considered. First, certi�cates should not be much larger than the program. The size of
a certi�cate is important because it must be stored together with the program. Second,
consumers observe the execution times of the tool they run instead of the time for the
veri�cation algorithm and the validation algorithm plus certi�cate reading. Thus, our
con�gurable program certi�cation approach should still perform well when the complete
tool execution times of veri�cation and validation are compared. Hence, we also study
these two further aspects. Finally, we examine whether parallelization can be used to
improve certi�cate validation. Moreover, we identify which operations of the certi�cate
validation should be improved. Before we present our evaluation results, we introduce the
evaluation setting.

3.5.1 Evaluation Setting

In this section, we present the veri�cation tasks, describe the infrastructure used for eval-
uation, and brie�y mention how we generated the certi�cates for the veri�cation tasks and
how we derived the validation con�guration from a veri�cation task. We start with the
presentation of the veri�cation tasks. Each veri�cation task consists of an analysis con�g-
uration, a program, and a property. Note that we do not con�gure initial abstract states
because this is currently not supported by the tool CPAchecker. In CPAchecker the
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analysis con�guration determines the initial abstract state, typically our con�gurations
provide the most abstract state exclusively considering the initial program location.

Con�gurations Since con�gurable program certi�cation is a general approach applica-
ble to various con�gurations (CPAs), we want to evaluate our basic CPC approach with
di�erent abstract domains and analysis types. For our con�gurations, we can select from
the following seven basic abstract domains:

• an interval domain I [CC77] abstracting a variable's value by a lower and an upper
bound on the possible concrete values,

• an octagon domain O which is for example used by the industrial analyzer Astrée �
we use a realization based on the Apron library [JM09a] �,

• a predicate domain P, an abstract domain used by several participants of the soft-
ware veri�cation competition, we use predicate abstraction with adjustable block
encoding [BKW10] and utilize the SMT solver SMTInterpol [CHN12] version 2.1-
238-g1f06d6a-comp for abstraction computation and interpolation,

• a reaching de�nition domain R [NNH05, p. 42], well-known from compiler optimiza-
tion, which remembers for each variable the possible de�nition points of the most
recent de�nition,

• the sign domain S already known from Chapter 2,

• an uninitialized variable domain U tracking which variables have not been initialized,
and

• a value abstract domain V used in constant propagation [NNH05, p. 72] or explicit
model checking [DKW08, BL13], which tracks a concrete value per variable.

To study combined abstract domains and to more easily con�gure intermediate analyses
with precisions between data�ow analysis and model checking, we also looked at two com-
bined abstract domains SI and VR, standard product combinations of two of the above
domains. Note that the main purpose of these combined domains is to allow an easy
con�guration of intermediate analyses. We are not claiming that the domains are nec-
essarily useful. As soon as we con�gure �ow-sensitive analyses, e.g., data�ow analyses,
intermediate analyses, or model checking based analyses, we always combine the men-
tioned abstract domains with the location domain L (see p. 25) and a callstack domain.
On a very abstract level the callstack domain remembers for all active subroutines (called
functions) where to continue after the subroutine is �nished.

Next to the di�erent domains, we consider �ve di�erent classes of analyses. Our
coarsest analysis is �ow-insensitive. This analysis computes a single abstract state. Hence,
its merge operator always computes the join of two abstract states and the termination
check operator returns true if the abstract state is covered by a more abstract state. Due
to the restrictions imposed by the implementations of the abstract domains, we could only
use the reaching de�nition domain to build a �ow-insensitive analysis.

We use the concept of a data�ow analysis to con�gure analyses that are only �ow-
sensitive. Now, the merge operator only merges abstract states when they agree on
their location and callstack states. The termination check remains the same as for �ow-
insensitive analyses. In our experiments we consider data�ow analyses for all abstract
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domains except for the predicate and octagon domain. The latter domains are solely used
to experiment with non-static precision adjustment.

We use a special form of trace partitioning [MR05, RM07] to con�gure intermediate
analyses, which are more precise than the previous data�ow analyses, but which are not
fully path-sensitive. As already mentioned, we use the two combined abstract domains SI
and VR to build these intermediate analyses. To get the intermediate analysis, we only
need to adapt the merge operator of the data�ow analysis. Now, abstract states are only
combined, i.e., joined, if additionally the �rst elements, either the sign abstract states or
the value abstract states, are identical.

The most precise analysis type is fully path-sensitive and never merges di�erent ab-
stract states. We consider two types of fully path-sensitive analyses: model checking and
CEGAR model checking. Both never combine abstract states and stop when an element
is covered by a more abstract state. The di�erence between these two types is that the
model checking analyses like all previous analyses never adjust precisions. In contrast,
in CEGAR model checking the precision adjustment operator often weakens its input
abstract state. Additionally, a technical di�erence exists. The CEGAR model checking
analyses use multi-edges, i.e., the program model already groups sequences of edges. To
properly examine properties beyond non-reachability of error locations or assertion failure,
model checking and less precise analyses use the concept of dynamic multi-edges.

Again, we exclude the predicate and the octagon domain from model checking. For
each of the remaining domains we used its model checking con�guration for evaluation.
CEGAR model checking is only available for predicate, octagon, and value analysis.
The reason is that for simplicity we utilize counterexample guided abstraction re�ne-
ment [CGJ+00] with lazy re�nement [HJMS02] to determine the behavior of the precision
adjustment and such a re�nement is only implemented for these three domains. Although
re�nement does not directly �t into our framework, we are con�dent that we could have
modeled an analysis in our framework that produced the same result as the respective
analysis with re�nement.

For the predicate domain, the re�nement determines the set of predicates considered
to compute the predicate abstraction at loop heads. Re�nement for the value domain V
and the octagon domain O identi�es the variables whose values must be tracked. Further-
more, for these two domain we apply re�nement selection [BLW15b] and path pre�x slicing
[BLW15c]. For the predicate analysis we do not use path pre�x slicing, and thus re�ne-
ment selection, because it is not compatible with adjustable block encoding. To properly
con�gure the re�nement selection, we performed a pre-evaluation which runs each analy-
sis with a set of promising selection strategies. We considered the following, promising
re�nement selection strategies: default, none, domain_min, length_min, length_max,
and the con�guration used in the SV-COMP. Based on the pre-evaluation, for the explicit
value analysis we select the strategy domain_min, which performed best w.r.t. speed and
the number of analysis tasks that could be veri�ed. For the octagon analysis, we choose
length_max which is the best compromise w.r.t. number of solved tasks and speed.

In total, we evaluate with 20 CPA con�gurations.

Programs and Properties To evaluate our con�gurable program certi�cation ap-
proach, we select a subset of the programs from the well-established software veri�cation
competition (SV-COMP) benchmark, which can be handled by all of the selected CPAs4.
In detail, we chose the categories ControlFlow, ECA5, ProductLines, and the subcate-

4Some CPAs are less mature than others and e.g. cannot deal with pointers.
5Event-Condition-Action Systems
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Table 3.1: Number of Veri�cation Tasks per CPA
Flow-Insensitive Analysis

R 1078
Data�ow Analysis

I 1073 R 990 S 1138 U 1028 V 1151 SI 1072 VR 1042
Intermediate

SI 964 VR 536
Model Checking

I 789 R 287 S 853 U 1087 V 634 SI 746 VR 476
CEGAR Model Checking

O 645 P 503 V 588

gory loops from category Loops as considered in the 2016th SV-COMP6 [Bey16]. Since
certi�cation requires that the program is proven to be correct w.r.t. a property, we only
select those programs for which the encoded property is known to be true. Furthermore,
we use our example program SubMinSumDiv. In theory, we may evaluate each of the 20
con�gurations on all of the 1151 programs. In practice, we excluded for each con�gura-
tions those programs that cannot be veri�ed in 15 minutes. Additionally, we excluded the
Problem05* programs from model checking with the abstract domain SI since certi�cate
construction failed after 20 minutes, a timeout one third longer than the o�cial timeout.
Furthermore, we do not consider the Problem03* programs in the predicate analysis be-
cause the certi�cates become too large (several 100MB). Table 3.1 gives an overview of
the number of programs considered per con�guration.

Next, we describe the properties checked on the selected programs. For our example
program and the sign analysis, we check the property pos@l5. Analyses based on the
uninitialized variables domain U check that only initialized variables occur in expressions.
For the analyses applying CEGAR model checking, we considered the SV-COMP prop-
erty Error Function Unreachability, i.e., all calls to __VERIFIER_error(int) are not
reachable. The analyses for the combined domains simply check the combination of the
properties for the single properties. For the remaining analyses, it was di�cult to get re-
alistic properties, thus, we check more or less arti�cial properties. The reaching de�nition
based analyses inspect that a certain variable is initialized at most once. Similarly, other
analyses ensure that at a certain location the abstract value of a certain variable is upper
bounded by a given abstract value.

Execution Set Up Our con�gurable program certi�cation approach is integrated into
the software analysis tool CPAchecker. For evaluation, we used the CPAchecker
revision 23042 available in the runtime_veri�cation branch7. All experiments are executed
on machines with Intel Xeon E5-2650 v2 CPUs at 2.6GHz and with 135GB of RAM. The
Java version was Java HotSpot(TM) 64-Bit Server VM 1.8.0_101. Each veri�cation and
validation task is restricted to only use 2 CPU cores and 15GB of RAM. The time limit
was set to 15 minutes of CPU time. We used the benchmarking evaluation framework
BenchExec [BLW15a] to enforce these restrictions.

All certi�cates were constructed once before the evaluation. Certi�cate generation was
simple, we just had to write the reached set (the ARG node set) to disk. This took never

6https://github.com/sosy-lab/sv-benchmarks/tree/svcomp16
7https://svn.sosy-lab.org/software/cpachecker/branches/runtime_verification/

61

https://github.com/sosy-lab/sv-benchmarks/tree/svcomp16
https://svn.sosy-lab.org/software/cpachecker/branches/runtime_verification/


CHAPTER 3. CONFIGURABLE PROGRAM CERTIFICATION

Table 3.2: Extract of the e�ciency examination of the certi�cate validation w.r.t.
veri�cation which looks at the best and total improvement of execution times and
memory consumption

CPA VP VC
VP

VC
MP MC

MC

MP

R 342.95 2.16 159.05 3706 1311.7 0.35
13384.58 480.65 27.85 494847.8 321089.4 0.65

I 308.01 0.15 2071.32 3496.8 212.6 0.06
18626.48 18510.39 1.01 879860.9 811305.6 0.92

SI 403.09 0.17 2392.25 3498 206.2 0.06
32917.31 30960.39 3.21 1097817.7 1057072.2 0.96

SI 1.74 0.14 11.98 2163 583.6 0.27
19488.76 37146.18 0.52 1225311.2 1325337.7 1.08

VR 336.23 63.26 5.32 3202 344.9 0.11
9332.39 24637.32 0.38 564549.8 703871.4 1.25

O 63.10 3.80 16.61 3939.8 1135.5 0.29
36293.32 63677.21 0.57 795084.3 684812.4 0.86

V 484.96 0.95 510.59 4304.9 270.8 0.06
23505.46 7655.15 3.07 686101.9 448909.4 0.65

more than 190 s. For comparison, the slowest veri�cation required about 735 s.
The consumer's validation con�guration are almost automatically derived from the

veri�cation con�guration. Only for the callstack CPA and the predicate CPA more precise
coverage check components must be con�gured. Note that the producer veri�cation only
constructs abstract reachability graphs when considering one of the three CEGAR based
model checking analyses. For the remaining con�gurations, the abstract reachability graph
is not necessary for veri�cation and we use a more e�cient variant of the CPA algorithm
(cf. Algorithm 1), which does not generate the ARG.8 In the following, we examine the
average of 10 experimental executions.

3.5.2 RQ 1: How Does the Basic CPC Certi�cate Validation Per-

form Compared to Veri�cation?

One requirement stated in the introduction was e�ciency. Certi�cate validation should
be (signi�cantly) faster than the veri�cation and should require less memory. In the
following, we study if and when validation is e�cient. We compare the validation time,
certi�cate reading plus the time for the execution of the validation algorithm, with the
veri�cation time, the time for the execution of the CPA algorithm. Since a consumer
typically observes the execution time of the analysis tool, the total time, we also compare
these total times. Additionally, we compare the memory consumption, i.e., the heap
and non-heap memory used by the software analysis tool when verifying the program or
validating the certi�cate.

We start to study the best improvement each analysis can achieve as well as the
overall improvement. Table 3.2 shows the veri�cation time VP , the certi�cate validation

8Since the ARG nodes are identical with the �nal reached set of the CPA algorithm and the certi�cate
from ARG becomes the set of ARG nodes, Algorithm 1 is su�cient.
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time VC , their speed-up
VP

VC
, the memory MP used in veri�cation, the memory usage MC

of certi�cate validation, and the memory decrease MC

MP
. Times are given in seconds and

memory usage is given in MB. For each analysis in which certi�cate validation can be
at least 5-times faster than veri�cation, Tab. 3.2 compares the fastest validation time
achieved for the analysis with the respective veri�cation time and the smallest amount of
memory consumed by certi�cate validation of that analysis with the memory consumption
of the respective veri�cation. Additionally, it shows the sums of the times and memory
for each of these analyses. Double lines are used to separate the analysis types. Analysis
types are presented in the same order as in Tab. 3.1. The complete table, which display
these numbers for all analyses, can be found in the appendix (see Tab. B.1).

Looking at Tab. 3.2, we observe that tasks for all analyses types except for model
checking exist that achieve signi�cant speed-ups and a signi�cant memory decrease. How-
ever, not all analyses and domains contain tasks for which validation is signi�cantly more
e�cient. The extreme cases are the two analyses considering the uninitialized variables
domain U. For these analyses, the certi�cate validation is never faster than veri�cation.
Furthermore, when considering the sums overall tasks of each analysis, the results rarely
indicate that certi�cate validation improves signi�cantly on veri�cation. Sometimes veri-
�cation even becomes better than validation.

In Tab. 3.2, we experienced a big di�erence between what is possible and what is
achieved in sum. In principle, a few extremes could have caused this big di�erence. Thus,
we look at the results per task in more detail.

First, we look at the validation and veri�cation times in more detail. Figure 3.5 shows
the comparison of the veri�cation and validation times for the �ow-insensitive tasks, the
data�ow analysis tasks, the model checking tasks, and the CEGAR model checking tasks.
We left out the diagram for the intermediate tasks, which can be found on the left of
Fig. B.1, because it is similar to the diagram of the data�ow analysis tasks. All times
are given in seconds. The black line is the identity function and the dashed line marks a
speed-up of 10, i.e., it is the function VC = 0.1 · VP .

Looking at Fig. 3.5, many data points are close to the solid line or are above the line.
In these cases, certi�cate validation is not much faster or even slower than veri�cation.
Solely, in the diagrams for the �ow-insensitive analysis and CEGAR model checking tasks
many data points are signi�cantly below the solid line and sometimes even close to or
below the dashed line, the marker for a speed-up of 10. For �ow-insensitive and CEGAR
model checking tasks, validation is regularly much faster. This is supported by a detailed
inspection of the results. Only 60 tasks are 10-times or more times faster than veri�cation,
i.e., achieve a signi�cant speed-up. Most of the tasks (36) belong to the �ow-insensitive
reaching de�nition analysis and another 18 tasks use CEGAR model checking.

Unfortunately, certi�cate validation is not always faster than veri�cation. Thus, we
like to know when is validation faster and how to predict this from the veri�cation. Let us
start with the �ow-insensitive analysis tasks. Inspecting our results, we observe that the
speed-up correlates with the number of merges as well as with the time the analysis spent
on merging. The computed correlation factors are 0.987 and 0.998, respectively. Often,
we get a good underapproximation of the speed-up when dividing the ratio of analysis
time to merge time by 10.

For the data�ow analyses, we observed a correlation between speed-up and the ratio
of the number of computed transfer successors to the size of the reached set, the number
of ARG nodes. We computed a correlation factor of 0.977. Dividing the ratio of the
number of computed transfer successors to the number of ARG nodes by a factor of 3.1
gives in most of the tasks a good underapproximation of the observed speed-up. We think
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Figure 3.5: Comparison of the producer veri�cation time with the consumer time for
validation of the certi�cate from the producer's ARG

that the reason why the mentioned ratio is appropriate is that it captures the additional
computations performed by the analysis. On the one hand, it includes the number of
merges. After a merge, transfer successors are recomputed. On the other hand, it also
tracks how many recomputations are caused by a merge.

The same ratio also correlates with CEGAR model checking except for the predicate
analysis, in which we have to use an expensive extension of the termination check operator.
For the set of octagon and value CEGAR model checking tasks, the correlation factor is
0.945. In case of CEGAR model checking, the ratio estimates the additional load caused
due to lazy re�nement, i.e., the part of the explored state space that is deleted during
re�nement. Dividing the ratio by 30 often worked for our CEGAR model checking tasks
to underapproximate the real speed-up.

When recapturing the execution of the validation and the veri�cation algorithm for
model checking, which never adjusts precisions and never merges, we recognize that more
or less these algorithms perform the same tasks. Their execution is nearly identical. Since
validation must also read certi�cates, it is obvious that validation is likely slower than
veri�cation. Thus, we decided not to further investigate on a predictor for the validation
behavior w.r.t. model checking tasks.

Unfortunately, we did not �nd a relation between veri�cation and validation for the
intermediate tasks. We think that a prediction depends on whether the intermediate task
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Figure 3.6: Comparing the total execution time of the veri�cation with the total execution
time of the respective certi�cate validation

acts similar to a data�ow analysis or similar to model checking. This seems to be di�cult
to predict from the veri�cation itself and may depend on the program and the analysis.

Next, we consider the total times. Figure 3.6 compares for all tasks the total execution
time of the software analysis tool CPAchecker for the veri�cation run with that time
of the certi�cate validation run. As always, times are given in seconds.

Like in the comparison of the veri�cation and validation times, we see that the data
points are widely spread in the diagram in Fig. 3.6. Some points are far above or below
the line and others are close to the line. Since some points are signi�cantly below the line,
signi�cant speed-ups can still be achieved. Additionally, we notice that the diagram starts
with 1 s instead of 0.01 s or even 0.001 s. We conclude that setting up the infrastructure
for analysis or validation, e.g., parsing the program, takes at least about 1 s. When the
validation or veri�cation takes less or similarly long as the set up, a potential speed-up
is likely destroyed by the additional set up time. In general, the speed-ups for the total
times are lower.

Finally, we study the relation of the memory consumption. Figure 3.7 depicts the
comparison of the memory consumption of the veri�cation and the certi�cate validation
for the �ow-insensitive tasks, the data�ow analysis tasks, the model checking tasks, and
the CEGAR model checking tasks. Again, the diagram for the intermediate tasks can be
found on the right of Fig. B.1. It is similar to the diagram of the data�ow analysis tasks.

Considering the top left diagram in Fig. 3.7, all data points are close to the line
or signi�cantly below. For �ow-insensitive analyses memory consumption is typically
reduced by certi�cate validation, sometimes even extremely. Getting to the data�ow
analysis tasks (top right diagram), we see that the data points are often either closely
below the line or above the line. Signi�cant improvements do not occur that often and
sometimes the memory usage is even worse for certi�cate validation. A similar observation
can be made for the intermediate analysis tasks. For the model checking tasks, memory
consumption is rarely decreased by certi�cate validation. Most of the data points in the
bottom left diagram of Fig. 3.7 are above the line. The picture for CEGAR model checking
is more diverse. A data point can be extremely above or below the solid line. Hence,
memory consumption for CEGAR model checking tasks is sometimes e�ciently reduced
by certi�cate validation, but need not be. In general, we observe that improvements of
the execution time and memory usage are related. Often, either both are decreased or
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Figure 3.7: Comparison of the memory consumption of the producer veri�cation with the
memory consumption of the validation of the certi�cate from the producer's ARG

Figure 3.8: Comparing the validation times of sequential certi�cate validation and par-
allel validation with three threads. The left diagram shows the results for the reaching
de�nition data�ow analysis tasks and the right one those for the reaching de�nition model
checking tasks.
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none of them.
All in all, the consumer part, the certi�cate validation, can be extremely e�cient in

the basic con�gurable program certi�cation approach. Especially, �ow-insensitive analysis
tasks and CEGAR model checking tasks seem to pro�t most from certi�cate validation.
However, certi�cate validation is not very e�cient in general.

3.5.3 RQ 2: Does Parallelization Help?

Many of today's devices provide more than one processor unit. To e�ciently utilize the
available compute power, sequential execution is no longer su�cient. Algorithms must
become ready for parallel execution. In this section, we want to examine whether we can
pro�t from parallel certi�cate validation.

Reconsidering the certi�cate validation algorithm (Algorithm 3), we observe that its
three loops are excellent candidates for parallelization. So far, we only provide an imple-
mentation which parallelizes the outermost for loop of the certi�cate validation algorithm.
Unfortunately, many implementations of the di�erent analysis con�gurations do not sup-
port parallel validation. In most of the con�gurations, the implemented transfer relation
is a subclass of the ForwardingTransferRelation. This ForwardingTransferRelation
stores common information required by various subroutines of the transfer successor com-
putation in object variables instead of passing it via parameters. Additionally, the transfer
relation computing the successor automaton state uses timers not designed for parallel
access. Furthermore, the SMT solver used e.g. in the transfer relation of the predicate
analysis does not cope well with parallel access. These are more or less practical issues
that restrict our evaluation to the reaching de�nition data�ow analysis and to reaching
de�nition model checking, the only two analysis con�gurations that support a parallel
certi�cate validation in practice.

For our experiments, we restricted the CPU time and not the wall time. Paralleliza-
tion distributes the CPU time among multiple CPU (cores), but does not reduce the
complete CPU time, the sum of the CPU times overall used CPU (cores) remains the
same. Validation tasks that timed out for the sequential validation likely time out for
the parallel validation. Thus, in the following we only consider tasks for which neither
sequential nor parallel validation times out. Furthermore, due to the very limited task set
we experimented less thoroughly and compare only the results of a single experimental
execution run on an Intel Core i5-2400 at 3.10GHz. As before, the sequential validation
was restricted to 2 CPU cores. For the parallel validation, we utilized 4 CPU cores, three
threads were dedicated to the validation algorithm only.

Figure 3.8 compares the sequential validation time with the parallel validation time.
Both times are given in seconds and represent the wall times for the complete valida-
tion process starting with certi�cate reading and ending with the complete execution of
the validation algorithm. The left diagram shows the results for the reaching de�nition
data�ow analysis tasks and the right diagram presents the results for reaching de�nition
model checking.

We observe that in the left diagram most of the data points are between the upper
solid line and the dashed line. For the reaching de�nition data�ow analysis tasks, the
speed-up of parallelization is often at most two. In contrast, in the right diagram most
of the data points are close to the lower solid line. In case of reaching de�nition model
checking, parallelization often comes close to the theoretical optimum of three9. Hence,

9Note that we assume that an improvement beyond the theoretical bound of three (lower solid line) is
caused by deviations in the experimental executions.
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Figure 3.9: Proportion of total validation time spent on certi�cate reading, transfer rela-
tion, and coverage check on per analysis basis

parallelization of the larger model checking related tasks seems to be better. We think
that the reason is that the fraction of certi�cate reading, the non-parallelizable part, to the
complete validation time is lower. Despite the better improvement of the model checking
related tasks, for them we rarely observed an additional improvement over the veri�cation.
We noticed only three additional cases. In contrast, after parallelization the validation of
the data�ow analysis tasks beat veri�cation in additional 501 cases.

Parallelization improves certi�cate validation well. However, for the model checking
tasks, we would require a large amount of CPU cores, theoretically sometimes already
more than 40, to let certi�cate validation beat veri�cation. Hence, we still need to improve
certi�cate validation.

3.5.4 RQ 3: Where Does Validation Spent Its Major Time?

In the previous sections, we found out that for some analysis tasks and types certi�cate
validation does not perform well compared to veri�cation and parallelization is rarely an
option in practice. To overcome the performance problem, we want to improve certi�cate
validation in the next chapter. For a signi�cant improvement, we need to know �rst which
operations are worth to improve. Principally, certi�cate validation performs four types
of operations: certi�cate reading, computation of transfer successors, coverage check, and
inspection of the safety property. Looking at our results, we noticed that the time spent
for the inspection of the safety property is negligible. In the following, we examine the
time spent on certi�cate reading, the time required to compute transfer successors, and
the time spent with coverage checking. Figure 3.9 shows for all analysis con�gurations the
sum of all these times in relation to the sum of the total time for certi�cate validation,
the time for certi�cate reading plus the execution time of the validation algorithm. All
sums are normalized w.r.t. the sum of the respective total time.

The validation of the coarsest analysis (1) su�ers most from certi�cate reading. The
behavior of the data�ow analysis tasks (2 � 10) is diverse. In one case, the coverage check
is the largest cost factor. For some analysis con�gurations, the major cost is certi�cate
reading. For others, the transfer relation requires the major time and sometimes two or
more operators require similar costs. Looking at the intermediate, model checking, and
CEGAR model checking tasks (9 � 20), we observe that certi�cate validation for these
tasks is mainly dominated by the time spent on the coverage check. The only exceptions
are sign model checking (13) and uninitialized variables model checking (14), for which
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Figure 3.10: Relation of the certi�cate size (number of abstract states) to the number of
program locations for data�ow analysis tasks (left) and (semi-)path-sensitive tasks (right)

the time spent on successor computation or certi�cate reading is the main issue.
Based on these insights, we come to the conclusion that we should de�nitely improve

the coverage check operator. As we will see, our certi�cates become quite large. Thus,
it would also be bene�cial to reduce the certi�cate size and, hence, improve certi�cate
reading. In contrast, we decided no to optimize the transfer relation because we expect
that a generic improvement is di�cult. The transfer relation is applied rather locally and
it is the component one de�nitely needs to construct the abstract state space.

3.5.5 RQ 4: How Big Are Certi�cates?

The size of a certi�cate plays an important role in the practical application of con�gurable
program certi�cation. On the one hand, it in�uences the performance of the validation.
Reading larger certi�cates is more costly and certi�cate reading, which does not appear
in the veri�cation process, is an extra cost factor. Additionally, the size of the certi�cate
in�uences the memory consumption. Currently, our validation algorithm must keep the
complete certi�cate in main memory to check the safety property. On the other hand, the
certi�cate must be transferred to and stored by the user. Thus, optimally its size should
be at most in the order of magnitude of the program size. In the following, we consider
two metrics to study the certi�cate size: the number of stored abstract states and its �le
size.

We start with the more abstract and less physical metric, the number of abstract states
in the certi�cate. To get a better feeling for the meaning of these sizes, we relate them
to the number of program locations, which we think is an adequate, abstract measure for
the program size.

Our coarsest analysis is �ow-insensitive. During a �ow-insensitive analysis, the reached
set (the set of ARG nodes) always contains at most a single element. In the current metric,
all certi�cates for �ow-insensitive tasks have size one. We conclude that the certi�cate
size is smaller than the program size.

Figure 3.10 shows the comparison of the number of stored abstract states (certi�cate
size) and the number of program locations for the remaining tasks. The left diagram
describes the results for the data�ow analyses, the �ow-sensitive only analyses. On the
right of Fig. 3.10, we see the values for all tasks which are (semi-)path-sensitive, i.e.,
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the tasks related to intermediate, model checking, and CEGAR model checking analysis
con�gurations.

Looking at Fig. 3.10, we see that in both diagrams the data points are often above the
solid line. This means the certi�cate contains more abstract states than the corresponding
program locations. For �ow-sensitive or more precise analyses, the certi�cates become
likely much larger than the program. For the data�ow analysis tasks, more than one state
per location exists only because methods are inlined. The more precise analyses in the
right diagram often separate di�erent abstract states per program location. Thus, it is no
surprise that the data points in the right diagram are often farther away from the solid
line. We conclude that the more precise an analysis the larger its certi�cate.

The relation of the number of stored abstract states to the number of program locations
might give us a �rst impression of the physical storage size of the certi�cate compared to
the program size. However, all our certi�cates are automatically ZIP-compressed during
generation while programs are uncompressed. Furthermore, program locations do not
re�ect the physical storage size of a program properly, e.g., they do not consider program
statements. Similarly, we have no idea how large a representation of an abstract state
might become. Potentially, certi�cate compression, abstract state or statement size may
reverse our previous observation on certi�cate sizes.

Studying our results (see Fig. B.2 in the appendix), we notice that the trend observed
for the previous metric continues for the �le size metric. Passing the threshold of one
kilobyte, certi�cates generated for �ow-insensitive analysis tasks have smaller �le sizes
than programs. More precise analyses often generate certi�cates that are larger than the
program. Again, certi�cates generated by the less precise data�ow analysis tasks seem to
be smaller than those generated by the more precise, (semi-)path-sensitive analyses. For
the details we refer the reader to Fig. B.2 in the appendix.

In a nutshell, the more precise the analysis the larger its certi�cate and the likelier it
is that its certi�cate is orders of magnitudes larger than the program. Thus, for most of
our tasks the certi�cate is (much) larger than the program.

3.5.6 Summary

Certi�cate validation can signi�cantly outperform veri�cation. In practice, certi�cate
validation rarely signi�cantly outperforms veri�cation and veri�cation is often still more
e�cient than validation, especially for particular analyses or analysis types like e.g. model
checking. Thus, we described how to estimate the performance of the validation based
on the veri�cation results. Furthermore, we observed that parallelization can speed up
certi�cate validation well, but it is not su�cient to e�ectively outperform veri�cation.
For further improvements of the validation, we identi�ed that certi�cate reading and the
coverage check are good candidates. Additionally, the certi�cate size should be improved.
It is often much larger than the program itself.

3.6 Discussion

Our basic con�gurable program certi�cation approach is a general framework. In our
evaluation, we tested it with seven di�erent domains and even 20 di�erent CPAs. From a
theoretical point of view, it performs well. We proved the desired theoretical properties
soundness and relative completeness. Furthermore, the consumer's trusted computing
base does not contain the merge operator of the analysis. Likely, the consumer's trusted
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computing base is smaller. Moreover, the trusted computing base can be further reduced
by the con�gurable certi�cate validator when one uses a certi�ed CPA. For example,
similar to the approach [BJP06] suggested by Besson et al., one could extend our approach
with a preceeding PCC phase in which the producer sends the consumer its CPA and a
correctness proof.

The only theoretical drawback is that validation cannot be guaranteed to be automatic.
Except for the coverage check, all components of the con�gurable certi�cate validator can
always be derived from the analysis con�guration. To ensure relative completeness, we
require a well-behaving coverage check. While some termination checks are well-behaving,
others must be adapted by the consumer to become well-behaving. Thus, full automation
is restricted to analysis con�gurations with a well-behaving termination check. Since
we proved that a standard termination check is well-behaving, in practice automation is
rarely a big issue. Often, we only had to deal with a technical problem w.r.t. equivalence of
callstack states. For validation, we need to exchange standard, syntactical equivalence by
semantical equivalence. All con�gurations using the callstack CPA require this change,
which practically means just to change a con�guration parameter in CPAchecker.
Principally, the change of the con�guration parameter can always be automatically added.

Our evaluation with a large set of programs and analysis con�gurations demonstrates
the practical feasibility of our framework. Nevertheless, we would like to mention that the
programs are often simpli�ed, and thus not realistic. Due to the immaturity of some of
the analysis domains, many of our programs do not consider certain language features like
pointers. We also want to remark that the evaluation is rather sensitive to the di�erent
speeds of persistent storage access and CPU.

Considering the certi�cates, we perceived that the certi�cate generation is simple,
but certi�cates are typically too large. Often, they are much larger than the program.
Note that a similar observation was made for the original PCC approach by Necula (see
e.g. [NL98a, NR01]).

Additionally, we noticed that often the performance of the validation is not signi�-
cantly better than veri�cation. Sometimes it is even worse. However, except for model
checking, validation signi�cantly outperforms veri�cation on all other analysis types with
varying domains for at least some programs. Furthermore, we explained how to predict
the performance, especially the validation time, from the knowledge gained during the
veri�cation. We also tried to overcome the performance issue with parallelization. Paral-
lelization worked well, but it is not enough to overcome the performance problem and the
implementations were rarely prepared for parallelization. Moreover, we found out that an
improvement of the certi�cate reading time and especially the coverage check can help to
overcome the performance problem.

In short, the basic con�gurable program certi�cation approach works well in theory, but
our evaluation revealed that it often lacks practical applicability. Certi�cates are too large
and validation is only seldom much better than veri�cation. Thus, we should de�nitely
improve our basic con�gurable program certi�cation approach. In the next chapter, we
propose two techniques to improve the basic con�gurable program certi�cation approach.
Both techniques try to improve the observed time spent on certi�cate reading and the
coverage check.
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The basic con�gurable program certi�cation approach presented in the previous chapter
ful�lls both theoretical requirements we had on approaches aiming at a fast validation
at the consumer side. It is sound and it is relatively complete. However, its evaluation
revealed that its validation is not always e�cient and that the approach would bene�t
much from an improvement of the coverage check. Additionally, certi�cates are often much
larger than the program itself. In this chapter, we want to tackle these two drawbacks,
but with the main emphasize on improving the coverage check.

To develop an idea how to improve the coverage check, we �rst need to take a closer
look at how it works. In theory, the coverage check is a function. However, we think that
it is unlikely that one has the complete function table, especially because the number of
abstract states can be in�nite. The coverage check is more of a computational check than
a constant look up. For example, it could compute the set of concrete states represented
by the set of abstract states (the second parameter) or an abstract underapproximation
of it and check whether it covers the input abstract state (�rst parameter). Another
possibility is to subsequently test if a subset of the covering candidates, possibly consisting
of a single abstract state, covers the input abstract state. In all cases, we assume that
the computational check becomes more expensive the larger the set of covering candidates
becomes. In practice, all of our coverage checks work similar. They iterate over the set of
states, the second parameter, which is already restricted to states with the same location
as considered by the �rst parameter, and check whether the state considered in the current
iteration covers the �rst parameter. The iteration stops when all states are considered or
one covers the �rst parameter. We conclude that on average the coverage check should
become much faster when it has to consider less abstract states. The main goal should be
to reduce the number of abstract states provided to the coverage check.

A straightforward idea, which can easily be integrated into the existing validation, is
to reduce the number of stored states in the certi�cate. The simplest solution would be
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that the second parameter of the coverage check may only consider abstract states from
such a smaller certi�cate. While we would get the smallest certi�cate when we never
store an abstract state, in general certi�cate validation would end up in a re-execution
of the veri�cation. Hence, the smallest certi�cate cannot be used to restrict the number
of abstract states considered by the coverage check and we again need to merge during
validation, i.e., we must include the merge operator into the trusted computing base.
Thus, a smaller certi�cate must store some, but not all states of the basic certi�cate.

Another idea is to include the knowledge about the ARG successors, the nodes that
cover a particular transfer successor, in the certi�cate. This idea likely restricts the cov-
erage check to the smallest number of abstract states required for a successful validation.
However, much more information must be stored. The chance that the increased time
for certi�cate reading counterbalances the improvement on the coverage check is high.
That it is why we decided to mimic the e�ect of storing the successor relation. Basically,
we want to partition the certi�cate's abstract states s.t. when inspecting one partition
element the coverage check may only consider abstract states from the same partition ele-
ment and unrelated abstract states with same locations likely belong to di�erent partition
elements. Moreover, in this partitioning approach we plan to structure the certi�cate in
such a way that single partition elements can be checked independently. Parallel reading
and validation of a certi�cate becomes feasible.

In the following, we propose optimizations based on certi�cate reduction and parti-
tioning. We start to explain the reduction of the certi�cate size. Then, we introduce our
partitioning approach and the combination of our two optimizations. Thereafter, we ex-
amine the practical performance of the proposed optimizations. Subsequently, we discuss
the results of con�gurable program certi�cation. Finally, we present related work.

4.1 Reduction of the Certi�cate Size

In principle, two orthogonal opportunities exist to reduce the certi�cate size. First, some
approaches aim at reducing the size of the representation of a single abstract state. Gia-
cobazzi et al. [GR10, GR14] propose to exchange the abstract domain by a simpler one,
which shows the same approximate behavior on the input program. The idea is that the
simpler abstract domain considers less abstract values and can be encoded more e�ciently.
In contrast, Besson et al. [BJT07] and Seo et al. [SYYH07] use the observation that the rep-
resentation of a more abstract state is often smaller than a more precise one. Based on this
observation, they suggest to remove information that is not relevant to prove a property
and, thus, replace single abstract states by suitable, but more abstract ones. Furthermore,
Besson et al. [BJT07] additionally applies the second approach to reduce the certi�cate size
and stores only a subset of the explored states plus a reconstruction strategy for the com-
plete certi�cate. Also other approaches, e.g., [Ros03, AAPH06, BJP06, BJT07, AMA07],
only partially store the explored state space, i.e., a subset of the explored states. However,
not all of those approaches need a reconstruction strategy.

We believe that in practice a consumer will have certi�cate validators for standard
con�gurable program analyses, but it is unlikely that he will support certi�cation for
all slight variants. Moreover, we think that without further information it is di�cult to
generally decide for an arbitrary abstraction, an arbitrary set of abstract states, which
information are not needed to prove the property and can be removed safely. The �rst
approach is not well-suited for our general con�gurable program certi�cation framework.
Hence, we also would like to apply the second idea and only store parts of our basic
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certi�cate, which represents the explored state space.
Existing approaches [Ros03, APH05b, BJP06, BJT07, AMA07] typically look at anal-

yses that compute one abstract state per program location. Often, they use the program
structure to de�ne which states must be stored. In contrast, our approach must work
on the abstract reachability graph and a more general class of program analyses. Addi-
tionally, our certi�cate reduction must not rely on a reconstruction strategy and parallel
validation should still be possible. We continue to discuss why we nevertheless think that it
is feasible and bene�cial for certi�cate validation in our con�gurable program certi�cation
framework when only a subset of the basic certi�cate is given to the consumer.

4.1.1 Foundation For Abstract State Deletion

The major part of the certi�cate validation consists of the computation of transfer suc-
cessors and checking their coverage. If a transfer successor is contained in the certi�cate,
then certi�cate validation should reproduce that abstract state anyway. The storage and
the coverage check of such an abstract state would be redundant. Hence, to successfully
apply the second reduction technique and to only store a subset of the basic certi�cate,
we require that some abstract states are transfer successors of others.

Since the CPA algorithm does not directly deal with transfer successors, but uses the
abstract state eprec obtained after precision adjustment of the transfer successor, we �rst
need to be sure that sometimes the precision adjustment does not weaken the transfer
successor. Looking at precision adjustment operators in practice, we make the following
observations:

• Some analyses like the sign data�ow analysis never adjust precisions.

• Even if an analysis adjusts precisions, it will not necessarily adjust precisions all
the time. For example, consider the implementation of predicate abstraction with
adjustable block encoding [BKW10]. In case a block end is reached, the new ab-
straction formula ψ is not computed in the transfer relation, but in the precision
adjustment. However, typical block ends are loop heads or the beginning or end of
a function. Precisions are adjusted rarely.

• Moreover, an analysis may use the form of the reached set to adjust precisions.
Based on the number of di�erent values for a particular variable observable in the
reached set, the analysis may decide to no longer track the concrete values for that
variable.

• Furthermore, a precision adjustment may not lead to a more abstract state in gen-
eral. If the predecessor of a transfer successor is already coarse enough, the computed
transfer successor will already meet the desired precision, e.g., it does not consider
concrete values for variables that are not supposed to be tracked by the current
precision.

In these cases, the abstract state resulting from the precision adjustment is the same as
the transfer successor. Often, the transfer successor and the abstract state obtained after
precision adjustment are identical.

It remains to be shown that such transfer successors are added to the reached set and
are never merged after they are inserted into the reached set. Flow-sensitive analyses,
a widely-used analysis type in practice, merge at most when the control-�ow joins, i.e.,
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the CFA node has more than one incoming edge, or the transfer relation is not a func-
tion. Many �ow-sensitive analyses use transfer functions. In sequential code parts, those
analyses may only merge with abstract states explored in previous iterations. Since the
certi�cate will be computed from the �nal �xpoint, the transfer successor will be the last
successor being explored. We only need to argue that these transfer successors may be
added. When we merge the transfer successor with an abstract state explored in a previ-
ous iteration, it is likely that the abstract state from the previous iteration is subsumed by
the current successor. Transfer relations are often monotonic and abstract states are only
reexplored in case they are more abstract. Furthermore, we think that it is common that
the merged state is identical with the subsuming state, e.g., when the analysis computes
a join. The transfer successor will be added to the reached set. Moreover, the transfer
successor will be added to the reached set when it is not covered by the current reached
set. In �ow-sensitive analyses, abstract states are covered by abstract states referring to
the same location information. The �nal reached set will contain at least one abstract
state for most of the program locations and � as discussed above � for some of them it is
likely that they are transfer successors of other states in the reached set.

Hence, it will be likely that at least some abstract states are transfer successors of
others. We believe that our con�gurable program certi�cation framework may bene�t
from abstract state deletion. In the following, we discuss how the producer constructs
certi�cates that contain only a subset of the �nal reached set, what must be considered
during certi�cate construction to meet our requirements, and how the consumer checks
such certi�cates. Additionally, we prove that the optimization presented in the following
remains sound and relative complete.

4.1.2 Construction of Reduced Certi�cates

The producer veri�cation is the same as in the basic con�gurable program certi�cation
approach. Thus, we directly start to explain how the producer generates a smaller witness,
a reduced certi�cate, after a successful veri�cation. To get a smaller witness, we follow a
common idea, see e.g. [Ros03, BJP06, AAPH06, BJT07, AMA07, Jak15], and store only
a subset of the explored state space, i.e., a subset of the states of the original certi�cate.

We �rst discuss the syntactical appearance of a reduced certi�cate, which again allows
us to reject programs enhanced with an improper syntactical format. The original cer-
ti�cate contains abstract states of a single abstract domain given by an enhanced CPA.
Hence, a reduced certi�cate must at least contain a set of abstract states. We follow our
previous de�nition of a reduced certi�cate [Jak15] and also add the size of the basic certi�-
cate. The provided size allows us to eventually stop recomputation of the basic certi�cate
in case of a malicious reduced certi�cate. Still, the termination of our validation algo-
rithm only depends on the input program and the validation con�guration. Syntactically,
a reduced certi�cate is a pair of abstract states and a natural number, typically the size
of the basic certi�cate.

De�nition 4.1 (Reduced Certi�cate). Let CA be an enhancement of CPA C with prop-
erty automaton A considering the set of abstract states ECA . A reduced certi�cate RCCA
is a pair of a set of abstract states and a natural number, RCCA ∈ 2ECA × N. A reduced
certi�cate RCCA is �nite if the set of abstract states is �nite.

Similar to a syntactically correct certi�cate, a syntactically correct reduced certi�cate does
not automatically witness program safety. Consider for example the following syntacti-
cally correct reduced certi�cates (∅, 0) and (>CA , 1). The reduced certi�cate (∅, 0) claims
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that considering zero abstract states, i.e., the empty set, is su�cient to show program
safety. However, for our example program SubMinSumDiv the empty set is not su�cient
to show correctness w.r.t. property pos@l5. The empty set does not overapproximate
SubMinSumDiv's state space. In contrast, the reduced certi�cate (>CA , 1) overapproxi-
mates any program's state space but the overapproximation does not guarantee safety. In
both cases, we cannot reconstruct a valid certi�cate with the provided size.

According to our conception, a reduced certi�cate should store a subset of the basic
certi�cate and the size of the basic certi�cate. With this idea in mind, we say that a reduced
certi�cate RCCA = (Csub

CA , n) is valid if the set Csub
CA is a subset of a valid certi�cate CCA

and this certi�cate CCA has size n.

De�nition 4.2 (Valid Reduced Certi�cate). A reduced certi�cate RCCA = (Csub
CA , n) is

valid for a program P , property automaton A, and a set of initial states I ⊆ C if the set
of states Csub

CA can be extended to a certi�cate CCA s.t.

• Csub
CA ⊆ CCA ⊆ ECA ,

• |CCA | ≤ n and

• CCA is valid for P , A, and I.

From our de�nition of a valid reduced certi�cate, it easily follows that a valid reduced
certi�cate witnesses program safety w.r.t. a certain property and a given set of initial
states. The third property together with the witness property of a valid certi�cate CCA ,
which we showed in the previous chapter, is su�cient to show the witness property of a
valid reduced certi�cate.

Corollary 4.1. If reduced certi�cate RCCA is valid for program P , property automa-
ton A, and a set of initial states I ⊆ C, then P |=I A.

Proof. By de�nition, there exists a certi�cate CCA which is valid for P , A, and I. Now,
Lemma 3.1 lets us infer that P |=I A.

Next, we discuss how the producer builds his reduced certi�cate from the generated ARG.
The de�nition of a valid reduced certi�cate tells us that any subset of a valid certi�cate
together with the size of that certi�cate is a proper reduced certi�cate. From the previous
chapter, we know that after a successful veri�cation the set N of ARG nodes is a valid
certi�cate. Hence, any certi�cate (Ns, |N |) with Ns ⊆ N could be a reasonable choice.

When we use reduced certi�cate (N, |N |), we mainly get our basic con�gurable pro-
gram certi�cation scenario. We do not improve the basic con�gurable program certi�ca-
tion presented in the previous chapter. Furthermore, if we provide the reduced certi�cate
(∅, |N |) to the consumer, the consumer must redo the complete veri�cation. In this case,
the consumer does not bene�t from the con�gurable program certi�cation approach. He
has the same e�ort as the producer. Additionally, the e�ort is the same as without the
con�gurable program certi�cation approach. From these two extreme cases, we conclude
that at best the reduced certi�cate generated by the producer should contain less ab-
stract states than the basic certi�cate. Simultaneously, the validation e�ort of a reduced
certi�cate should not be higher than for the basic certi�cate.

The previous two requirements on a reduced certi�cate ensure that our certi�cate
reduction indeed improves the basic con�gurable program certi�cation approach. Next
to these requirements, we demand two further properties, which are not considered by
other certi�cate reduction approaches. First, we want to reuse the con�gurable certi�cate
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validator for the validation con�guration. Contrary to, e.g., lightweight bytecode veri�-
cation [Ros03] or reduced certi�cates in Abstraction-Carrying Code [AAPH06], we will
not combine abstract states during validation. This requirement ensures that the trusted
computing base remains the same for the consumer. Second, the inspection of an abstract
state in the reduced certi�cate should not require an abstract state recomputed during the
inspection of another state in the reduced certi�cate. In contrast to, e.g., lightweight byte-
code veri�cation [Ros03], reduced certi�cates in Abstraction-Carrying Code [AAPH06], or
the approaches by Besson et al. [BJP06, BJT07] and Amme et al. [AMA07], the validation
of a reduced certi�cate should be independent of the course of the veri�cation, the struc-
ture of the program or the ARG. The last property allows us a validation implementation
that can use any inspection order on the abstract states. Especially, a parallelization of
the validation does not need to consider dependencies between the inspection of certi�cate
states. Parallelization stays as simple and e�cient as in the basic approach.

Remember that our overall goal is the reduction of the time required for the coverage
check and reading the certi�cate. Additionally, the coverage check will only consider states
stored in the certi�cate to detect coverage. Hence, we want to delete as many elements
from the basic certi�cate as possible. Based on the four presented requirements, we must
answer the question: Which states do we need to keep of the basic certi�cate, i.e., which
ARG nodes do we need to add to the reduced certi�cate?

First, we observe that it is problematic when we delete the root node. On the one
hand, we will add the initial abstract state e0 to the recomputed certi�cate if e0 is not
covered by the reduced certi�cate. A problem occurs when the consumer uses a more
precise initial abstract state, a scenario supported by the basic approach, and the transfer
relation is not monotonic. The successors computed for e0 could be less precise than
those computed for the root node and the validation of the certi�cate may fail, although
it succeeds in the basic approach. On the other hand, if we only delete the root node
when we can recompute it, we always need to check coverage of the root node on the
recomputed certi�cate. However, restricting the coverage check of the root node to the
states in the reduced certi�cate is faster. We decided to always keep the root node. Thus,
we pro�t from a faster coverage check and avoid the problems of the �rst variant.

Second, we examine which abstract states, ARG nodes, are recomputed during vali-
dation and whether they can be deleted. The basic validation uses the transfer relation
to compute for every abstract state (ARG node) in the certi�cate its transfer successors.
Since the producer uses complete (well-formed) ARGs to construct the certi�cate, the
transfer successor is either covered by ARG successors contained in Ncov or by an ARG
successor which is at least as abstract as the transfer successor. In the following, we dis-
cuss for which of these ARG successors it is okay to use the transfer relation to recompute
them. Next to ARG successors in Ncov, we distinguish between ARG successors which
are more abstract and those which are equal to the transfer successor.

ARG successors in Ncov We know that in a well-formed ARG, which the producer
uses for reduced certi�cate construction, nodes in Ncov may partially cover transfer
successors. Especially, the number of transfer successors covered by a particular
Ncov is likely greater one. To get an order independent validation, we need to keep
any node from Ncov, even if it could be recomputed.

ARG successor more abstract than transfer successors In the previous item, we
already discussed ARG nodes in Ncov. Therefore, we restrict our considerations to
ARG successors that are not part of Ncov and cover more precise transfer successors.
Since the producer uses a well-formed ARG to construct the certi�cate, we can assign
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to each transfer successor that is only covered by an ARG node from N \ Ncov a
unique ARG successor from N \Ncov. Hence, deleting such a unique ARG successor
of a transfer successor does not a�ect the examination of other transfer successors. If
we want to delete ARG successors that cover more precise transfer successors, during
validation it must be acceptable to add a more precise abstract state instead of the
deleted state. Let us have a look at the case that we add a more precise abstract
state emp instead of the deleted state ed. If the transfer relation is not monotonic,
two problems may occur. First, a more precise abstract state emp may provide more
transfer successors. If we also deleted (some of) the successors of ed, then we could
add more successors for emp than we had for ed. The reconstructed certi�cate can
become too large and is no longer valid. Second, the computed transfer successors
may become more abstract and are no longer covered by the successors of ed. Then,
the reconstructed certi�cate either may not be closed under successor computation
or it may become too large. In both cases, the reconstructed certi�cate is not valid.
Even with monotonic transfer relations a deletion can be improper. For example,
the computation of the transfer successors of a less precise abstract state may be
more costly. If these additional costs are not compensated by the saved reading
costs, the validation costs may be higher than for the original certi�cate. We violate
the performance requirement. In summary, deleting these kinds of ARG successors
should be an alternative for CPAs with monotonic transfer relations.

ARG successors identical with transfer successors Similar to the second item, we
only consider ARG successors that are not contained in Ncov. In contrast to the
previous item, we consider ARG successors that solely cover transfer successors that
are identical with them. These ARG nodes will be recomputed during inspection of
any of its ARG predecessors since during inspection of an abstract state its transfer
successors are computed. The order of the inspection and, thus, the validation
order does not matter. We only have to look at the special cases of self-loops.
If the ARG node has a predecessor that is di�erent from itself, the inspection of
this predecessor will recompute the ARG node. In the other case, we cannot reach
the ARG node from the root node or the ARG node is the root node. From the
proof of Theorem 3.101 (see p. 258), we remember that only ARG nodes that can
be reached from the root node are important to ensure the validity of the basic
producer certi�cate. We do not need to keep ARG nodes with self-loops which do
not have further predecessors and are not the root node. Since we store the root
node anyway, we do not need to bother any further about an ARG node with a self-
loop. Summing up, ARG successors that are identical with all respective transfer
successors may be deleted.

So far, we considered ARG nodes that cover transfer successors of other ARG nodes and
the root node. At last, we must decide how to handle ARG nodes that are neither the
root node nor cover transfer successors. From the proof of Theorem 3.102 (see p. 258), we
remember that only the root node and ARG nodes that are either in Ncov or that cover
a transfer successor are important to ensure the validity of the basic producer certi�cate.
Hence, ARG nodes that are neither the root node nor cover transfer successors can be
safely removed even if they cannot be recomputed.

From the previous considerations, we infer that the reduced certi�cate should contain
the root node and all nodes from Ncov. ARG nodes that are either ARG and transfer

1Proof of relative completeness of the basic con�gurable program certi�cation approach
2Proof of relative completeness of the basic con�gurable program certi�cation approach
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successors of other ARG nodes only or do not have an ARG predecessor do not need
to become part of the reduced certi�cate. Deletion of further ARG nodes, namely ARG
nodes that cover more precise transfer successors, can become problematic for arbitrary
CPAs. With this in mind, we de�ne the reduced node set, the subset of ARG nodes stored
in a reduced certi�cate when no information about the veri�cation con�guration, a CPA,
is known.

De�nition 4.3. Let RP
CA = (N,GARG, root,Ncov) be an abstract reachability graph for

enhanced CPA CA. The reduced node set of ARG RP
CA is NR(RP

CA) = {n ∈ N | n = root ∨
n ∈ Ncov ∨ (∃(n′, g, n) ∈ GARG : ∃(n′, g, e) ∈ CA ∧ e @ n)}.

The following set describes the reduced node set for our example ARG shown in Fig. 2.4.
We observe that the set consists of the root node plus the gray nodes, i.e., all nodes
contained in Ncov. In our example, the remaining nodes are transfer successors of ARG
nodes and can be deleted safely. ((l0, s : > x : > y : > z : >), q0), ((l5, s : > x : − y : > z : +), q0),

((l9, s : + x : > y : > z : >), q0), ((l13, s : + x : −+ y : > z : >), q0),
((l14, s : > x : > y : > z : >), q0)


A reduced node set is the basis for a reduced certi�cate built for an arbitrary con�gurable
program analysis. However, we observed that in practice the transfer relations of many
CPAs are monotonic. One exception is the implementation of the predicate analysis with
adjustable block encoding [BKW10] in CPAchecker. Due to the incomplete imple-
mentation of the partial order, some cases, e.g., whether a non-abstraction state covers an
abstraction state, are not checked. Hence, monotonicity cannot be detected properly. Fur-
thermore, although in theory the abstract states (l, false, l′, true) and (l, x > 0, l′′, x = 0)
are equivalent, the transfer relation does not provide a successor in the �rst case while it
could in the second.

The following de�nition describes our formal idea of a monotonic transfer relation. It
states that a transfer relation is monotonic if whenever a predecessor e′ is more abstract
than another predecessor e, then for every program statement g ∈ G we can uniquely map
the transfer successors of e and g to more abstract successors of e′ and g.

De�nition 4.4 (Monotonic Transfer Relation). Let C = (D,Π, , prec,merge, stop) be
a CPA. The transfer relation  is monotonic if ∀e, e′ ∈ E, g ∈ G : e v e′ =⇒
∃ total, injective function f : {(e, g, ·) ∈ } → {(e′, g, ·) ∈ },∀(e, g, es) ∈ : f((e, g, es))
= (e′, g, e′s) =⇒ es v e′s.

We already discussed that ARG nodes that are not in Ncov and are more abstract than
the transfer successor can be deleted when the transfer relation is monotonic. Hence,
we decided to o�er an alternative to the reduced node set, the highly reduced set, which
can be used whenever a CPA's transfer relation is monotonic. The highly reduced set
is a subset of the reduced node set. It removes all states that can be removed from
the original certi�cate while meeting the four presented requirements. Additionally, it is
easier to compute for the producer than the reduced node set. The producer only needs
to consider the syntactical structure of the ARG. Formally, the highly reduced node set
is de�ned as follows.

De�nition 4.5. Let RP
CA = (N,GARG, root,Ncov) be an abstract reachability graph for

enhanced CPA CA. The highly reduced node set of RP
CA is NhR(RP

CA) = {root} ∪Ncov.
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Coincidentally, for our example ARG, the ARG shown in Fig. 2.4, the highly reduced
node set is identical with the reduced node set shown above. Note that this is not always
the case for ARGs generated for any con�guration. However, it is likely the case when the
precision adjustment operator never changes the explored transfer successors, the transfer
relation is a function, and transfer successors are only merged into at most one element.

The construction of a proper subset of the ARG nodes, either the reduced or highly
reduced node set, is the major part of the reduced certi�cate generation. Afterwards,
the reduced certi�cate generation becomes simple. To built the reduced certi�cate, the
producer only needs to combine one of the two node sets with the size of the set of the
ARG nodes. Depending on which node set he chooses, he either builds a reduced certi�cate
or a highly reduced certi�cate from a given ARG.

De�nition 4.6 ((Highly) Reduced Certi�cate from ARG). Let CA be an enhanced CPA
and RP

CA = (N,GARG, root,Ncov) be an abstract reachability graph for CA. The reduced
certi�cate from ARG RP

CA is certR(RP
CA) = (CR

CA , |N |) s.t. CR
CA = NR(RP

CA). The highly

reduced certi�cate from ARG RP
CA is certhR(RP

CA) = (ChR
CA , |N |) s.t. C

hR
CA = NhR(RP

CA).

We already saw that for our example, the ARG shown in Fig. 2.4, the highly reduced
and the reduced node set are the same. Thus, also the highly reduced certi�cate and the
reduced certi�cate are the same. Below we can see the highly reduced certi�cate and the
reduced certi�cate for our example. ((l0, s : > x : > y : > z : >), q0), ((l5, s : > x : − y : > z : +), q0),

((l9, s : + x : > y : > z : >), q0), ((l13, s : + x : −+ y : > z : >), q0),
((l14, s : > x : > y : > z : >), q0)

 , 15


Compared to the basic certi�cate generated for our example, the certi�cate generated from
the ARG shown in Fig. 2.4, the (highly) reduced certi�cate generated for that example
only contains 5 out of 15 abstract states. With our certi�cate reduction, we were able to
reduce the size of the certi�cate by 2

3 .
Up to now, we only indicated that the producer will generate valid reduced certi�cates

if he sticks to the process of con�gurable program certi�cation. Following the con�gurable
program certi�cation approach, the producer only constructs a reduced certi�cate after a
successful veri�cation. After a successful veri�cation, we know that the generated ARG
is well-formed and the set of ARG nodes is a certi�cate. From the de�nition of a valid
reduced certi�cate we conclude that any subset of the set of ARG nodes, like the (highly)
reduced node set, together with the size of the set of ARG nodes is a valid reduced
certi�cate. As stated by the following corollary, we conclude that the (highly) reduced
certi�cate from the generated, well-formed ARG is a valid reduced certi�cate.

Corollary 4.2. Let RP
CA be an abstract reachability graph for program P and enhanced

CPA CA which is well-formed for e0 = (e, q0) ∈ ECA . Then, certi�cates certR(RP
CA)

and certhR(RP
CA) are valid reduced certi�cates for program P , property automaton A =

(Q, δ, q0, qerr), and initial states Je0K.

Proof. Let RP
CA = (N,GARG, root,Ncov). By de�nition, cert(RP

CA) = N . From Proposi-
tion 3.2, we know that cert(RP

CA) is valid for P , A, and Je0K. By de�nition of an ARG,
NR(RP

CA), and NhR(RP
CA), we get NhR(RP

CA) ⊆ NR(RP
CA) ⊆ N . From the de�nition of

a reduced and highly reduced certi�cate from ARG, we conclude that certR(RP
CA) and

certhR(RP
CA) are valid reduced certi�cates for P , A, and Je0K.
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Algorithm 4: Validation algorithm for reduced certi�cates

Input: A CCV VDCA = ((C, (E,>,⊥,v,t), J·K), , cover), initial abstract state
e0 ∈ E, reduced certi�cate RCCA = (Csub

CA , n) ∈ 2E × N, program
P = (L,GCFA, l0)

Output: Boolean indicator, if reduced certi�cate RCCA is valid
Data: A set reached of elements of E, a set waitlist of elements of E

1 if ¬cover(e0, Csub
CA ) then

2 return false
3 reached := Csub

CA ;waitlist := Csub
CA ;

4 while waitlist 6= ∅ ∧ |reached| ≤ n do
5 pop e from waitlist;
6 for each g ∈ GCFA do
7 for each (e, g, e′) ∈ do
8 if ¬cover(e′, Csub

CA ) ∧ e′ /∈ reached then
9 reached := reached ∪ {e′};waitlist := waitlist ∪ {e′};
10 return |reached| ≤ n ∧ (¬∃(·, q) ∈ reached : q = qerr ∨ q = q>)

So far, we introduced the concept of a reduced certi�cate and explained how the producer
generates these reduced certi�cates. Next, we continue with the validation of a reduced
certi�cate and the properties of that validation.

4.1.3 Validation of Reduced Certi�cates

The consumer validates reduced certi�cates to check whether a program is safe w.r.t. a
property automaton and a set of initial states. Since valid reduced certi�cates ensure
program safety, the consumer only needs to prove whether a reduced certi�cate is valid.
To validate arbitrary reduced certi�cates, we require a validation con�guration that �ts
to the reduced certi�cate, especially to its abstract domain, and a meta algorithm that is
steered by the validation con�guration to check the validity of a reduced certi�cate. We
already mentioned that we want to reuse the validation con�guration from the basic ap-
proach, a con�gurable certi�cate validator, to inspect a reduced certi�cate. It remains to
be explained how the meta validation algorithm employs the CCV to investigate whether
an input reduced certi�cate is valid w.r.t. the input program, the property automaton A
included in the CCV, and a set of initial states given by the input abstract state e0. From
the de�nition of a valid reduced certi�cate, we infer that the meta validation algorithm
must be able to reconstruct a valid certi�cate. Algorithm 4 shows this meta validation
algorithm, an adaption of a previous version of a validation algorithm for reduced certi�-
cates [Jak15]. Its basic idea is to try to restore the original certi�cate and simultaneously
examine the validity of the restored certi�cate.

In principle, Algorithm 4 is a variant of the validation algorithm for certi�cates (Algo-
rithm 3). Like the basic validation algorithm, Algorithm 4 checks if the restored certi�cate
covers the initial state and is closed under successor computation. In the beginning, Al-
gorithm 4 uses the abstract states provided by the reduced certi�cate as a �rst version of
the restored certi�cate. If the currently restored certi�cate does not cover a successor, it
will simply be added to the restored certi�cate. However, whenever the currently restored
certi�cate becomes too large, the validation stops.
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To store the restored certi�cate, Algorithm 4 maintains an additional data structure
reached. Furthermore, it utilizes a waitlist to track the states of the currently restored
certi�cate for which successors must still be checked and, thus, enables an incremental
inspection of the restored certi�cate even when this grows.

In the �rst two lines, Algorithm 4 checks if the initial abstract state is covered by the
restored certi�cate. In contrast to the basic valdiation algorithm, it may consider only a
subset of the restored certi�cate. However, we generate our reduced certi�cates such that
they contain the initial abstract state that is considered during the construction. Line 3
sets up the initial restored certi�cate and registers its states for successor computation.
As long as the currently restored certi�cate reached is not too large (|reached| ≤ n), lines
4-9 check if the restored certi�cate is closed under successor computation, enlarge the
currently restored certi�cate where required, and register the newly added states for suc-
cessor computation. In each iteration, a state e from the restored certi�cate for which
the transfer successors have not been inspected is chosen from the waitlist. Then, for each
program edge the transfer successors are computed, and it is checked if they are covered
by the currently restored certi�cate. Since we demand that the validation is order inde-
pendent, it should be su�cient to consider the set Csub

CA , a subset of the restored certi�cate,
to detect coverage. Due to performance reasons, we decided to only consider Csub

CA to de-
tect coverage. In case of coverage, the validation proceeds as in the basic case. When a
transfer successor is not covered, we assume that the element(s) that covered that transfer
successor in the original certi�cate was (were) deleted. To restore the original certi�cate,
Algorithm 4 adds the transfer successor to the currently restored certi�cate reached.3

Since Algorithm 4 added the transfer successor to the restored certi�cate, the restored
certi�cate de�nitely covers the transfer successor. Note that Algorithm 4 checks that it
does not add states to reached that are already contained. By this, it avoids that states
for which successors are already computed are not re-added to waitlist and enables its ter-
mination. Finally, line 10 checks if the certi�cate is fully reconstructed from the reduced
certi�cate (|reached| ≤ n) and if the reconstructed certi�cate is safe.

To use the presented validation procedure in the con�gurable program certi�cation
setting, it must ful�ll two properties: soundness and relative completeness. After having
understood how reduced certi�cates are validated, we continue to discuss when our reduced
variant of the con�gurable program certi�cation approach ful�lls these properties.

4.1.4 Properties of Reduced Certi�cate Validation

Like the basic con�gurable program certi�cation approach, the reduced variant must pro-
vide certain properties to guarantee practical applicability. First, the validation procedure
may only return true if the reduced certi�cate witnesses program safety, i.e., it must be
tamper-proof (sound). Second, the validation procedure should accept reduced certi�cates
from a process conformant producer, i.e., it will return true if the producer constructs a
(highly) reduced certi�cate from the ARG constructed during a successful veri�cation.
Hence, it must be relatively complete. We start with soundness.

Again, we will ensure soundness only in case the consumer uses a proper initial ab-
stract state, which includes the initial automaton state q0. For this case, we show that
Algorithm 4, which performs the validation of a reduced certi�cate RCCA , will only return
true, i.e., it accepts the input reduced certi�cate RCCA , if input program P is safe w.r.t.
the property automaton A considered by the input CCV and initial states I given by

3Note that in case of a highly reduced certi�cate, the validation algorithm may reconstruct a more
precise certi�cate, but it still reconstructs a valid certi�cate.
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initial abstract state e0. Recall that we designed Algorithm 4 in such a way that it should
solely accept valid reduced certi�cates. Furthermore, Corollary 4.1 guarantees us that if
a reduced certi�cate is valid w.r.t. a program P , a property automaton A, and a set of
initial states I, then program P will be safe w.r.t. A and I. Hence, to show soundness,
we prove that if Algorithm 4 returns true, then the input reduced certi�cate will be valid
w.r.t. input program P , property automaton A considered by the input CCV, and the set
of initial states I provided by the initial abstract state e0.

Remember that a reduced certi�cate will be valid if it can be extended to a valid
certi�cate of a speci�c size. After termination of Algorithm 4, the set reached will contain
the extension of the reduced certi�cate. By construction of reached, we know that the
abstract states in the reduced certi�cate become part of reached, and reached only contains
abstract states of the same domain as the certi�cate4. Moreover, Algorithm 4 may only
return true in line 10. Line 10 checks that the extension has the required size and it is
safe. The only property that remains to be shown for a valid reduced certi�cate is that
the extension reached covers one con�guration sequence per path. The following lemma
ensures this remaining property.

Lemma 4.3. If Algorithm 4 started with CCV VDCA for abstract domain DCA en-
hanced with property automaton A = (Q, δ, q0, qerr), program P , initial abstract state e0 =
(e, q0) ∈ ECA , and reduced certi�cate RCCA returns true, then the reached set at the state
of termination of Algorithm 4 covers at least one con�guration sequence per path.

Proof. See Appendix pp. 258 f.

With the previous lemma at hand, we can conclude that the validation algorithm for
reduced certi�cates (Algorithm 4) started with a proper initial abstract state only will
return true if the given reduced certi�cate is valid.

Theorem 4.4. If Algorithm 4 started with CCV VDCA for abstract domain DCA en-
hanced with property automaton A = (Q, δ, q0, qerr), program P , initial abstract state e0 =
(e, q0) ∈ ECA , and reduced certi�cate RCCA returns true, then the reduced certi�cate RCCA
is valid for P , A, and Je0K.

Proof. Let reached′ denote the reached set at the state when Algorithm 4 terminates.
From the previous lemma, we get that reached′ covers at least one con�guration sequence
per path. Since Algorithm 4 returns true, we know that reached′ is safe. It follows that
reached′ is a valid certi�cate for P , A, and Je0K. Since Csub

CA ⊆ reached′ (construction of
reached′) and |reached′| ≤ n (Algorithm 4 returns true), we conclude that RCCA is valid
for P , A, and Je0K (de�nition of valid reduced certi�cate).

Corollary 4.1 already proved that every valid reduced certi�cate is a witness for program
safety. The previous theorem and Corollary 4.1 let us easily conclude the desired soundness
property of our reduced con�gurable program certi�cation approach.

Corollary 4.5 (Soundness). If Algorithm 4 started with CCV VDCA for abstract do-
main DCA enhanced with property automaton A = (Q, δ, q0, qerr), program P , initial ab-
stract state e0 = (e, q0) ∈ ECA , and reduced certi�cate RCCA returns true, then P |=Je0K A.

Proof. From the previous theorem, we get that RCCA is valid for P , A, and Je0K. Now,
Corollary 4.1 lets us conclude that P |=Je0K A.

4In the validation algorithm, we assume that the reduced certi�cate considers the same abstract domain
as the CCV. Note that this assumption can easily be checked syntactically and if it is not met the validation
would fail similar to the case of a syntactically incorrect certi�cate.
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So far, we showed that also our �rst optimization, the certi�cate reduction approach, is
reliable. We continue with the second property, relative completeness. This property
guarantees practical applicability of our certi�cate reduction approach. We need to show
that if the producer and the consumer stick to the reduced con�gurable program certi�ca-
tion approach and the producer and the consumer consider the same program and initial
abstract state, then the consumer validation will accept the reduced certi�cate generated
by the producer.

A process conformant consumer derives his con�gurable certi�cate validator from the
producer's CPA and may provide his own, well-behaving coverage check. Thus, his valida-
tion con�guration �ts to the generated reduced certi�cate. Moreover, a process conformant
producer executes the CPA algorithm with an appropriate analysis con�guration (CPA).
After a successful veri�cation, he uses the ARG constructed during veri�cation to build
a reduced certi�cate. Depending on the properties of the CPA, the producer constructs
a reduced certi�cate from the ARG or chooses between two alternatives, the reduced cer-
ti�cate or the highly reduced certi�cate. Due to Corollary 4.2, any certi�cate provided
by a process conformant producer is a valid reduced certi�cate. Our sound validation
procedure may accept them. In the following, we show that the validation algorithm in-
deed accepts those certi�cates when the producer and the consumer adhere to the reduced
con�gurable program certi�cation process.

Again, we begin our proof steps with the termination aspect of the validation algo-
rithm. Like in the basic approach, we assume that the operators of the CCV terminate
for any �nite input. Since the node set considered by a reduced certi�cate constructed
by a process conformant producer is �nite (the set of ARG nodes is always �nite and
the respective node set is a subset of the ARG nodes), all CCV operators always ter-
minate. For termination, we only need to guarantee that all loops terminate, i.e., they
are bounded. To ensure termination of the loops, we additionally require that the CFA
edges are �nite, i.e., the input program P is �nite. This assumption is valid, because the
producer's analysis only terminates for �nite programs. Assuming �nite programs, we can
now state termination of the validation algorithm.

Lemma 4.6 (Termination). Let VCA(cover) be a con�gurable certi�cate validator for
CPA CA and coverage check cover, and let program P = (L,GCFA, l0) be �nite. Then,

Algorithm 4 started with VCA(cover), P , initial abstract state e0 ∈ ECA , and �nite reduced
certi�cate RCCA = (Csub

CA , n) terminates.

Proof. See Appendix pp. 259 f.

After we proved that the validation algorithm terminates for a (highly) reduced certi�cate
constructed by a process conformant producer, we continue to show that it really accepts
a producer's (highly) reduced certi�cate. Next, we show relative completeness for the
general case in which the producer generates the reduced certi�cate based on the reduced
node set. More concretely, we show that the validation algorithm accepts any reduced
certi�cate that contains at least the reduced node set, but no abstract states that are no
ARG nodes. This allows us to reuse the relative completeness result, when we combine
our certi�cation approaches with our second technique Programs from Proofs.

First, we prove that when the validation algorithm executes line 10, the only line which
may return true, the extension reached of the reduced certi�cate is of a particular form.
We claim that our validation algorithm produces an extension reached of the reduced
certi�cate that is a subset of the ARG nodes. Note that we cannot guarantee a complete
reconstruction of the original certi�cate. As discussed earlier, we also delete ARG nodes
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without predecessors, although we may not be able to reconstruct them. Hence, the
validation algorithm may reconstruct a smaller subset of the original certi�cate.

Lemma 4.7. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and cov-
erage check cover which is well-behaving, RP

CA = (N,GARG, root,Ncov) be an ARG for
�nite program P and enhancement CA of CPA C, and RP

CA be well-formed for e ∈ ECA .

If Algorithm 4 starts with CCV VCA(cover), program P , initial abstract state e0 v e,
and reduced certi�cate RCCA = (Csub

CA , |N |) s.t. NR(RP
CA) ⊆ Csub

CA ⊆ N , then at line 10
reached ⊆ N .

Proof. See Appendix p. 260.

From the previous lemma, we know that if Algorithm 4 reaches line 10 in a process
conformant course of our reduced certi�cation approach, then reached will be a subset of
the ARG nodes. Since the second element of a reduced certi�cate constructed from an
ARG is the size of the set N of ARG nodes, the size of reached is smaller or equal to the
second element of the reduced certi�cate. Furthermore, a process conformant producer
constructs his certi�cate from a well-formed ARG. The set of ARG nodes and, thus,
reached is safe (safety property of well-formed ARGs). If Algorithm 4 reaches line 10, it
will return true. It remains to be shown that the validation algorithm reaches line 10.

Having in mind that (1) the reduced node set contains the root node, (2) the root
node is at least as abstract as the initial abstract state e considered by the producer, (3)
the consumer uses an initial abstract state e0 which is at least as precise as e, (4) the
partial order is transitive, and (5) a well-behaving coverage check is consistent with the
partial order, we know that the check in line 1 succeeds. Due to proven termination of
Algorithm 4, we get that Algorithm 4 reaches line 10. With this observations in mind, we
propose the subsequent lemma. Given a well-formed ARG and a reduced certi�cate that
contains at least the reduced node set, but no abstract states that are not ARG nodes, e.g.,
a reduced certi�cate that a process conformant producer constructs, then the validation
algorithm started by a process conformant consumer will accept this certi�cate. Hence, the
lemma states relative completeness of the general reduced certi�cation approach applicable
with any analysis con�guration.

Lemma 4.8. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and cov-
erage check cover which is well-behaving, RP

CA = (N,GARG, root,Ncov) be an ARG for
�nite program P and enhancement CA of CPA C, and RP

CA be well-formed for e ∈ ECA .

Algorithm 4 started with CCV VCA(cover), program P , initial abstract state e0 v e, and
reduced certi�cate RCCA = (Csub

CA , |N |) s.t. NR(RP
CA) ⊆ Csub

CA ⊆ N returns true.

Proof. See Appendix pp. 260 f.

Until now, we only discussed relative completeness for the general case. However, for
CPAs with monotonic transfer relations we introduced an alternative, the highly reduced
certi�cate. We proceed to show that when for CPAs with monotonic transfer relations
the highly reduced certi�cate is used, the reduced certi�cation approach is still relatively
complete. Similarly to the general case, we �rst prove that at line 10 of the validation
algorithm the set reached is of a speci�c form. Since in a highly reduced certi�cate
additionally abstract states, for which only a less abstract state can be recomputed, are
deleted, the extension reached of the certi�cate is no longer a subset but a set that is
at least as abstract as the set of ARG nodes. Hence, we claim that at line 10, the set
reached contains at most as many elements as the set N of ARG nodes, and it is at most
as abstract as the ARG nodes.
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Lemma 4.9. Let VCA(cover) = (DCA , , cover) be a con�gurable certi�cate validator
for CPA CA and coverage check cover which is well-behaving,  be monotonic, RP

CA =
(N,GARG, root,Ncov) be an ARG for �nite program P and enhancement CA of CPA C,
and RP

CA be well-formed for e ∈ ECA . If Algorithm 4 starts with CCV VCA(cover),
program P , initial abstract state e0 v e, and certi�cate certhR(RP

CA), then at line 10
reached v N and |reached| ≤ |N |.

Proof. See Appendix pp. 261 f.

From the previous lemma, we know that in a process conformant course of our reduced
certi�cation approach in line 10 of the validation algorithm, reached is smaller than or
equal to and at most as abstract as the set of ARG nodes. The construction of a highly
reduced certi�cate lets us conclude that the size of reached is smaller than or equal to
the second element of the highly reduced certi�cate. Furthermore, a process conformant
producer constructs his certi�cate from a well-formed ARG. The set of ARG nodes and,
thus, reached is safe (safety property of well-formed ARGs). If Algorithm 4 reaches line 10,
it will return true. Following an argumentation similar to the general case, we can show
that the check in line 1 succeeds. Hence, the validation algorithm indeed reaches line 10.
These observations let us formulate the following lemma. In principle, the lemma states
relative completeness for the special case of CPAs with monotonic transfer relations.

Lemma 4.10. Let VCA(cover) = (DCA , , cover) be a con�gurable certi�cate validator
for CPA CA and coverage check cover which is well-behaving,  be monotonic, RP

CA be
an ARG for �nite program P and enhancement CA of CPA C, and RP

CA be well-formed

for e ∈ ECA . Algorithm 4 started with CCV VCA(cover), program P , initial abstract
state e0 v e, and certi�cate certhR(RP

CA) returns true.

Proof. See Appendix pp. 262 f.

The previous lemmas assure that the presented approach is relatively complete in case
the producer constructs reduced certi�cates from the ARG or he generates highly reduced
certi�cates and the transfer relation is monotonic. We unite these insights into a single
theorem, which states that our reduced con�gurable program certi�cation approach is
relatively complete.

Theorem 4.11 (Relative completeness). Let VCA(cover) be a con�gurable certi�cate val-
idator for CPA CA and coverage check cover which is well-behaving, RP

CA be an ARG for
�nite program P and enhancement CA of CPA C, and RP

CA be well-formed for e ∈ ECA .

1. Algorithm 4 started with CCV VCA(cover), program P , initial abstract state e0 v e,
and certi�cate certR(RP

CA) returns true.

2. If the transfer relation  CA of CPA CA is monotonic, then Algorithm 4 started

with CCV VCA(cover), program P , initial abstract state e0 v e, and certi�cate
certhR(RP

CA) returns true.

Proof. The theorem follows from Lemma 4.8, de�nition of certR(RP
CA), and Lemma 4.10.

Our previous considerations included semi-automatic validation of reduced certi�cates.
The consumer may provide his own well-behaving coverage check. Finally, we consider
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when the certi�cate reduction approach becomes fully automatic. Like in the basic ap-
proach, the producer's veri�cation con�guration must already use a well-behaving termi-
nation check. Additionally, we do not allow more precise initial abstract states for the
consumer. The following corollary states that if these conditions are met, the certi�cate
reduction approach will be fully automatic, too.

Corollary 4.12. Let CA be a CPA, VCA(stopCA) be a con�gurable certi�cate validator
for CPA CA and stopCA which is well-behaving, P be a program, and e0 ∈ ECA . If
Algorithm 2 started with CPA CA, initial abstract state e0, initial precision π0 ∈ ΠCA ,
and program P returns (true, ·, RP

CA),

1. then Algorithm 4 started with VCA(cover), program P , initial abstract state e0, and
certi�cate certR(RP

CA) returns true.

2. and CA is monotonic, then Algorithm 4 started with VCA(cover), program P , initial
abstract state e0, and certi�cate certR(RP

CA) returns true.

Proof. From Corollary 3.3, we know that stopCA is a coverage check. Hence, VCA(stopCA)
is a CCV. From Proposition 2.8, we know that RP

CA is an ARG for P and CA which is
well-formed for e0. Since Algorithm 2 terminates, we conclude that P is �nite. Now, the
corollary follows from the previous theorem.

Summing up, also the �rst optimization of the basic approach meets our theoretical re-
quirements presented in the introduction. Whenever the producer successfully checks a
program P using a CPA CA, and a proper initial abstract state5 e0, then the consumer
validation using the producer's reduced certi�cate, e0, and the CCV automatically derived
from CPA CA succeeds and guarantees program safety. Additionally, we can use the same
restriction of the initial abstract state as in the basic approach to transfer these results to
program safety. The next section continues with the second, orthogonal optimization of
our con�gurable program certi�cation.

4.2 Certi�cate Partitioning

In the previous section, we reduced the number of states stored in a certi�cate to improve
certi�cate validation. Now, we want to consider a recent trend in computer hardware
development: processor speed is no longer increased, but the number of cores in com-
puting devices increases. Hence, to make a program faster today, one should e�ciently
use parallelism. The goal of our certi�cate partitioning optimization is to make the com-
plete certi�cate validation process ready for parallelism. While our previous certi�cate
validation algorithms are already well-suited for parallelization, the loops can easily be
parallelized, certi�cate reading is not considered. For the approaches to work out, the cer-
ti�cate must be read sequentially in advance. Our certi�cate partitioning approach will
eliminate this downside, providing a way to read and validate the certi�cate in parallel.
The general idea is to partition the certi�cate into several pieces such that a piece can
be validated immediately after it has been read. This has the advantage that the wall
time for certi�cate validation decreases and at best it is close to the time required by the
validation algorithm.

5An initial abstract state which considers the initial automaton state.
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So far, parallelization is considered rarely in PCC approaches and proof checking in
general. Search-Carrying Code [TA10] allows the consumer to partition the search script
of an explicit model checking run, the certi�cate, and to check each partition element
of the search script in parallel. Computation certi�cation [KH13] is a technique based
on checkpoints that supports the veri�cation of the integrity of a computation result in
parallel. In principle, all recomputations starting in a checkpoint i and inspecting whether
checkpoint i + 1 can be reached may be executed in parallel. Karsten Klohs discusses
incremental validation [Klo09] to check a �xpoint of a interprocedural data�ow analysis
in his PhD thesis. The idea is that a method can be checked as soon as the �xpoint
information for all called methods is available. Similarly, incremental checking [Stu09], a
technique for SMT proof checking, parses and checks the proof in an interleaved way.

Before we come to the details of our certi�cate partitioning approach, we �rst discuss
why parts of a certi�cate can be validated although the complete certi�cate is not yet
available.

4.2.1 Foundation for Partitioning

Reading parts of the certi�cate while parallely checking already read parts, the idea behind
certi�cate partitioning, is only feasible when certi�cate validation does not always fully
rely on the complete certi�cate. In the following, we discuss which parts of the certi�cate
validation are local and to which extend.

First, let us look at the coverage of the initial abstract state. We know that the
producer uses a well-formed ARG to construct his certi�cate and the ARG's root node is
always contained in the producer's certi�cate. Due to the rootedness property, the initial
abstract state is more abstract than the root node. A well-behaving coverage check should
be able to detect coverage of the initial abstract state by any set of abstract states that
contains the root node. If we divide the certi�cate's abstract states into several subsets,
we may locally check whether the initial abstract state is covered by the current subset.
For producer certi�cates, we know that the check returns true for one of the subsets and
coverage of the initial abstract state is surely detected.

Second, we consider the major part of the certi�cate validation, the computation of
transfer successors and checking their coverage. To compute a transfer successor, we only
require the single abstract state for which we want to compute the transfer successor.
Transfer successor computation is completely local. Next, let us come to the coverage
check of the transfer successor. For the basic, non optimized certi�cate, we know that all
abstract states are ARG nodes of a well-formed ARG. The validation recomputes transfer
successors of ARG nodes only. We conclude from the completeness property (well-formed
ARG) that for each transfer successor of an ARG node we can detect coverage of that
transfer successor when we consider any subset of the ARG nodes that includes at least
all successors of that node in the ARG. The coverage check of transfer successors of
ARG nodes is local to the ARG node's successors. The properties of a well-behaving
coverage check guarantees us that the validation may detect coverage locally. Hence,
the computation of transfer successors and their coverage check can be performed locally
for the basic certi�cate. In case the producer constructs a reduced certi�cate, transfer
successors may or may not be covered. Whenever they are covered, the same observations
as for the basic certi�cate apply. When they are not covered, we assume that they
are removed from the certi�cate and we just re-add them. Since we may only re-add
�nitely many abstract states, after a �nite sequence of transfer successor applications,
we either reach an abstract state without a transfer successor or the transfer successor is
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covered and for this transfer successor the observations from before remain valid. Thus,
the computation of transfer successors and their coverage check remain local for reduced
certi�cates.

Finally, to inspect safety, for each abstract state that is saved in the certi�cate or that
is recomputed, the validation checks that it does not consider the automaton's error state.
This check is purely local and can also be done when an abstract state is explored.

At �rst sight, it seems that certi�cate validation is completely local and we never
require the complete set of abstract states at once. However, we will later see that we
require the complete set of abstract states for integrity checks on the partitioned certi�cate,
e.g., to ensure that the complete state space of the program is considered by the certi�cate.
Nevertheless, the major part, the computation of transfer successors and checking their
coverage, can be checked independently part by part. Since we require the complete set of
abstract states anyway, we decided to simplify validation of a partitioned certi�cate and
check coverage of the initial abstract state only once with the complete set of abstract
states. Furthermore, we do not inspect safety individually per state because practically
we implemented some safety policies that require the complete set of states.

Next, we continue with a brief discussion of the basic partitioning approach that looks
at the partitioning of the basic, non-optimized certi�cate only.

4.2.2 Overview of the Partitioning Approach

Partitioning the basic certi�cate is a special case of partitioning a reduced certi�cate.
Hence, we directly incorporate the combination with the reduction approach, when we
discuss the details of the partitioning approach. However, we think that the ideas behind
the partitioning approach will be much easier to understand if we leave out the reduction
aspect. Next, we discuss these ideas.

The process of the partitioning approach is the same as in the basic approach, but
like in the reduction approach the certi�cate generation and validation di�ers. Following
the process, we �rst discuss the certi�cate generation. To read and check a certi�cate in
parallel, we require that the certi�cate is constructed in a way that when a part is checked,
all information required to check that part has already been read. From the previous
considerations, we know that the inspection of a part only depends on the abstract states
in the part and their successors in the ARG. A �rst naïve idea is to organize the abstract
states in the certi�cate s.t. ARG successors are read and checked before their predecessors.
Remember that our example ARG shown in Fig. 2.4 contains a loop. For this example,
we cannot �nd such an ordering of the ARG nodes, the abstract states of the certi�cate.
Thus, for at least some parts we need to attach additional information, i.e., namely certain
successors of the abstract states, which have not been read and checked before. To be able
to check multiple parts in parallel, we decided to add all information required to check a
part independently from the remaining parts. A part does not only contain the abstract
states checked in that part, but additionally those successors that are not checked in the
part.

After we got an idea of the partitioned certi�cate, we continue with the second open
question: its validation. Essentially, we keep the validation procedure as is and mainly
adapt the meta validation algorithm. The adapted algorithm checks coverage of the initial
abstract states after it checked that the certi�cate is closed under successor computation.
Thus, the coverage check is done after all states are read. For checking closure under suc-
cessor computation, the validation algorithm inspects each part individually. As soon as a
part is read, the validation algorithm may start with its inspection. During inspection of
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a single part, we assume that for those successors that are solely added to the part to en-
sure that it can be checked independently no successors exists. Based on this assumption,
the validation algorithm checks that each part is closed under successor computation. Of
course, these successor states may have transfer successors. Thus, after the inspection of
all parts, we need an integrity check that examines if the exploration of these successors
is considered in a di�erent part. At the end, the validation algorithm performs the same
safety test as the basic validation algorithm.

Summing up, the advantage of the partition approach, i.e., reading and checking in
parallel, comes at the cost of larger certi�cates and additional integrity checks. Next, we
come to the details of the partitioning approach.

4.3 Combination of Reduction and Partitioning

First, we describe the details of our complete optimization, the combination of certi�cate
reduction and partitioning. Thereafter, we investigate whether con�gurable program cer-
ti�cation also ful�lls the necessary properties stated in the introduction section when it
applies all proposed optimizations. Like in the certi�cate reduction approach, the pro-
ducer veri�cation remains the same as in the basic con�gurable program certi�cation
approach. Thus, we can directly move on to describe how the producer constructs the
certi�cate when he uses certi�cate partitioning possibly combined with the previous ap-
proach of certi�cate reduction. Since the construction, but already the de�nition, of those
certi�cates is more complicated than in the previous approaches, we split the de�nition
of those certi�cates from their construction. We start to explain what the producer must
construct.

4.3.1 Reduced, Partitioned Certi�cates: Structure and Validity

The key idea of certi�cate partitioning is that parts of the certi�cate are read and at the
same time other parts, which were already read, are checked. We already observed that
due to circular dependencies it is impossible to always order the elements in a certi�cate
s.t. the following property holds: Whenever we inspect element i, then the �rst i elements
are su�cient to guarantee a successful inspection. Hence, if the consumer de�nes the
parts, e.g., after reading k elements he decides that one part ends and the next part
starts, during inspection of a part the consumer cannot distinguish whether a missing
element must be re-added or it has just not been read. To decide this, the consumer must
always wait until the complete certi�cate is read. The advantage of reading and checking
in parallel is gone. During certi�cate construction, the producer must already take care
that a part can be checked independently of the remaining parts. Thus, the partitioned
certi�cate must make the division into parts explicit and should group certi�cate elements,
which are supposed to be read and inspected altogether.

The producer partitions the basic certi�cate or the (highly) reduced certi�cate in case
he combines the approaches. A part contains at least a subset of the states stored in
such a certi�cate, the so called set of partition nodes. Syntactically, basic certi�cates and
(highly) reduced certi�cates are subsets of abstract states. From a syntactical point of
view, a set of partition nodes is a subset of abstract states. To ensure that a part can
be checked independently from the others, the set of partition nodes is not su�cient.
Often, all elements in the certi�cate are interconnected. Note that the edges in the ARG
that is used to construct the certi�cates represent this interconnection. Remember that
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for example during inspection of the original certi�cate, we use the ARG successors of
a certi�cate element to check that all its transfer successors are considered. For each
part, we do not only need to store the partition nodes, but also further elements of the
certi�cate, the so called boundary nodes. Boundary nodes are not inspected in the part,
another part is responsible for their inspection, but they contain all those nodes that
might be read later, i.e., they are in another part, and are required to successfully inspect
the part. Due to the boundary nodes, the consumer can easily distinguish if a missing
element must be re-added or it has just not been read.

Summing up, a part must be represented by a pair of a set of partition nodes and a
set of boundary nodes. From now on, we call such a pair a partition element. A partition
element is �nite if both sets are �nite.

De�nition 4.7 (Partition Element). Let CA be an enhancement of CPA C with property
automaton A considering the set ECA of abstract states. A partition element partCA =
(pn, bn) is a pair of a set pn ⊆ ECA of partition nodes and a set bn ⊆ ECA of boundary
nodes. A partition element is �nite if the set of partition nodes and the set of boundary
nodes are �nite.

After having de�ned the syntax of a single partition element, we use the concept of a
partition element to describe the syntax of a partitioned certi�cate. When a partitioned
certi�cate considers only a single partition element, the validation �rst reads, than checks
the single partition element, and thereafter �nishes. Validation would be sequential. To
read and check a partitioned certi�cate in parallel, we require multiple partition elements.
A partitioned certi�cate must contain a set of partition elements. Furthermore, we do
not only want to construct partitioned variants of the basic certi�cate, but also of the
(highly) reduced certi�cates. Similar to a reduced certi�cate, we also add the size of the
basic, unpartitioned certi�cate. Thus, we are able to eventually stop validation of parti-
tioned certi�cates even if the partitioned certi�cate got corrupted or is not constructed
appropriately. From a syntactical point of view, a partitioned certi�cate consists of a set
of partition elements and a natural number. The natural number typically represents the
size of the basic certi�cate and, thus, restricts the number of abstract states that may be
re-added during validation. A partitioned certi�cate is �nite if it contains a �nite set of
�nite partition elements.

De�nition 4.8 (Partitioned Certi�cate). Let CA be an enhancement of CPA C with
property automaton A considering the set ECA of abstract states. A partitioned cer-
ti�cate PCCA is a pair of a set partsCA of partition elements and a natural number,
PCCA ∈ 22

ECA×2
ECA ×N. A partitioned certi�cate is �nite if the set of partition elements

is �nite and every partition element in that set is �nite.

As before, a syntactically correct partitioned certi�cate is not automatically a witness for
program safety. In previous work [Jak15], we used a similar concept of a partitioned cer-
ti�cate and were satis�ed when sequential validation of the partitioned certi�cates would
be feasible., i.e., the set of all partition nodes could be extended to a valid certi�cate.
Hence, for the de�nition of a valid partitioned certi�cate, we totally ignored the boundary
nodes. Since parallel reading and checking is the standard validation of a partitioned cer-
ti�cate, for this thesis we decided to include this aspect of parallelity into the de�nition of
a valid partitioned certi�cate. To infer the requirements on a valid partitioned certi�cate,
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let us look at the following partitioned certi�cate PC(L×S)A =( {((l14, s : > x : > y : > z : >), q>)} , ∅ ),({
((l9, s : + x : > y : > z : >), q0),
((l13, s : + x : −+ y : > z : >), q0)

}
, {((l5, s : > x : − y : > z : +), q0)}

)  , 6

 .

Let us assume the partitioned certi�cate should witness program safety for our exam-
ple program SubMinSumDiv, property pos@l5, and all initial states considering the initial
program location l0. We observe that for the �rst partition element we can successfully
check that all successors are considered by the partitioned certi�cate. No CFA edge leaves
location l14 and, thus, no successors exist. However, the �rst partition element contains
an abstract state that considers abstract automaton state q>. The partitioned certi�-
cate does not witness program safety. Now, let us take a look at the second partition
element. During inspection of the second partition element, we explore abstract succes-
sors ((l10, s : + x : − + y : > z : >), q0), ((l11, s : + x : − + y : 0 + z : >), q0),
((l12, s : + x : −+ y : − z : >), q0), and ((l14, s : + x : > y : > z : >), q0). The last
successor is covered by a partition node of the �rst partition element, but this partition
node is not contained in the boundary nodes of the second element. We cannot inde-
pendently check the second partition element. The other three successors were removed
during certi�cate construction. Since the partitioned certi�cate, more concretely the set
of all partition nodes, contains only three nodes of the basic certi�cate and the certi�cate
claims that the basic certi�cate has size 6, we can securely re-add these successors. For
program safety, we need to ensure that all program paths that should be considered for
program safety are safe. In our case, we e.g. need to witness program safety for paths
consisting of a single concrete state c with control state cs(c) = l0. None of the existing
partition nodes considers those concrete states. Furthermore, after we checked the second
partition element, we reached the upper limit of states we are allowed to add. No new
states should be added. Hence, the partitioned certi�cate does not guarantee that all
program paths necessary for ensuring program safety are considered. Once again, the
partitioned certi�cate cannot be a proper witness.

Some of the above insights are speci�c for partitioned certi�cates and others also apply
to the previous certi�cation approaches. In the following, we formalize the requirements a
partitioned certi�cate must ful�ll to be a proper witness, i.e., it is valid. Like for reduced
certi�cates, we infer validity for the combination of reduction and partitioning from simple
partitioning of the basic certi�cate. For simple partitioning of the basic certi�cate, we
know that no states were removed, the partitioned certi�cate must be su�cient to witness
program safety. The set of partition elements of a partitioned certi�cate is the component
that witnesses program safety. Following the de�nition of program safety, the set of
partition elements must witness that for every relevant program path a con�guration
sequence exists that does not consider the property automaton's error state.

Next, we de�ne the concept of a safe overapproximation. The requirements of a safe
overapproximation on a set of partition elements should guarantee the witness property
discussed above. To ensure that for every relevant program path a con�guration sequence
exists, we must �nd a sequence of partition nodes that covers the con�guration sequence.
We use the observation that program paths and corresponding con�guration sequences
are inductively de�ned. If we extend a path, we can always extend a corresponding
con�guration sequence to get a proper con�guration sequence for the extended path.

Our �rst requirement ensures that always a con�guration sequence for the smallest
paths ps exists, namely those that only consider a state from the set of initial states I,
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ps := c0 and c0 ∈ I. The only possible con�guration sequence is (c0, q0). Hence, each
such (c0, q0) must be considered by at least one partition node.

The second and third requirement guarantee that if we may extend a program path, we
can also extend a covered con�guration sequence s.t. the extended con�guration sequence
is con�guration sequence for the extended path and is covered by the partition nodes. In
the second requirement, we assume that if we consider boundary nodes for the coverage
of the extended con�guration sequence, then the coverage of the extended con�guration
sequence will continue in another partition element. Let us consider an arbitrary, relevant
program path and a corresponding con�guration sequence that is covered by the partition
elements. Furthermore, let us assume that the last element (c, q) of that con�guration
sequence is covered by a partition node of partition element pe. We know that c is the
last state of the path we want to extend and any extension by one step adds something

of the form c
(l,op,l′)−−−−−→ c′. Since the transition relations of all property automata are

deterministic and complete, a unique automaton state q′ exists, which must be used to
extend the con�guration sequence to a con�guration sequence of the extended path. To
guarantee that the extended con�guration sequence is covered, it is su�cient that the
state c′ is covered by a partition node that respects the automaton state q′. However,
we want to have independently checkable parts. Coverage must be detectable within the
partition element. Based on our assumption, it is adequate to require that the state c′

must be covered by a partition or boundary node that respects the automaton state q′

and belongs to the same partition. To assure that our assumption that a con�guration
sequence is continued in another partition element is indeed true, our third requirement
demands that each boundary node must be covered by the set of all partition nodes that
respect the boundary node's automaton state.

So far, we only guarantee that for each relevant program path a con�guration sequence
exists. To witness program safety, we also need to know that the covered con�guration
sequences do not contain the error state qerr. Our last requirement demands that all
partition nodes are safe, i.e., they do not contain the abstract automaton states qerr or q>.
Hence, the partition nodes can only cover con�guration sequences which do not contain
the error state qerr. The following de�nition of a safe overapproximation summarize the
discussed requirements.

De�nition 4.9. A set partsCA of partition elements is a safe overapproximation for
program P = (L,GCFA, l0), property automaton A = (Q, δ, q0, qerr), and a set of initial
states I ⊆ C if

• the initial states are covered by partition nodes considering the initial automaton
state, I ⊆

⋃
(e,q0)∈pn∧(pn,·)∈partsCA

J(e, q0)KCA ,

• concrete successor con�gurations (c′, q′) of a partition node are considered by the
same partition element as the partition node, ∀(pn, bn) ∈ partsCA : ∀(e, q) ∈ pn :

∀c ∈ J(e, q)KCA , (l, op, l′) ∈ GCFA : c
(l,op,l)−−−−→ c′ =⇒ (q′ = q> ∨ q′ ∈ Q ∧ ∃Csub ⊆ C :

c′ ∈ Csub ∧ (q, op, Csub, q
′) ∈ δ) ∧ ∃(e′, q′′) ∈ (pn ∪ bn) : q′ v q′′ ∧ c′ ∈ J(e′, q′′)KCA ,

• boundary nodes are covered by partition nodes considering the same or a more
abstract automaton abstract state, ∀(pn, bn) ∈ partsCA : ∀(e, q) ∈ bn : J(e, q)KCA ⊆
{J(e′, q′)KCA | q v q′ ∧ ∃(pn, ·) ∈ partsCA : (e′, q′) ∈ pn}, and

• the partition nodes are safe, ∀(e, q) ∈ EA, (pn, bn) ∈ partsCA : (e, q) ∈ pn =⇒ q 6=
qerr ∧ q 6= q>.
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We claimed that a safe overapproximation guarantees that for every program path starting
in an initial state c0 ∈ I a con�guration sequence exists that witnesses safety of that path.
Next, we show that these conditions on a safe overapproximation for program P , property
automaton A, and a set of initial states I ⊆ C are indeed su�cient to guarantee that
every path p ∈ pathsP (I) is safe w.r.t. A.

Lemma 4.13. Let partsCA be a set of partition elements which is a safe overapproxima-
tion for program P = (L,GCFA, l0), property automaton A = (Q, δ, q0, qerr), and a set of
initial states I ⊆ C. Then, every path p ∈ pathsP (I) is safe w.r.t. A.

Proof. See Appendix p. 263.

Due to the previous lemma, we know that to guarantee program safety it would be suf-
�cient that the set of partition elements in the partitioned certi�cate can be extended
to a safe overapproximation. However, we already mentioned that a valid partitioned
certi�cate should also support parallel validation. When more than one partition element
is contained in the partitioned certi�cate, during validation partition elements are read
and at the same time other partition elements, which were already read, are checked. We
think that it is unintuitive that during validation more parts (partition elements) must be
checked than are actually read. Hence, we require that the extension of the set of partition
elements only extends the partition elements in the set, but does not add new partition
elements. Nevertheless, the extension of two di�erent partition elements may result in
the same extension. Furthermore, we added the size of the basic certi�cate, which we
want to use to abort certi�cate validation when the recomputed certi�cate becomes larger
than the basic certi�cate, i.e., certi�cate reconstruction failed. Hence, an extension of the
set of partition elements must exist that respects this upper bound. Since the set of all
partition nodes in the extension re�ects the recomputed certi�cate, this set must not be
larger than the saved size of the basic certi�cate. These considerations lead us to the
subsequent de�nition of a valid partitioned certi�cate.

De�nition 4.10 (Valid Partitioned Certi�cate). Let PCCA = (partssub, n) be a parti-
tioned certi�cate. Partitioned certi�cate PCCA is valid for a program P , property au-
tomaton A, and a set of initial states I ⊆ C if the set partssub of partition elements can
be extended to a set partsCA of partition elements s.t.

• partsCA is a safe overapproximation for P , A, and I,

• the extension is restricted to the extension of partition elements, ∃ total surjective
function m : partssub → partsCA : ∀(pn, bn) ∈ partssub : m((pn, bn)) = (pn′, bn′)
=⇒ pn ⊆ pn′ ∧ bn ⊆ bn′, and

• the number of extended partition nodes is bounded by n, |
⋃

(pn,·)∈partsCA
pn| ≤ n.

After having de�ned when a partitioned certi�cate is valid, we want to ensure that this
de�nition guarantees us that a valid partitioned certi�cate is a proper witness for program
safety. We need to prove that if a partitioned certi�cate is valid for program P , property
automaton A, and initial states I, then P will be safe w.r.t. A and I. Due to the
de�nition of a valid partitioned certi�cate and Lemma 4.13, we already know that all
paths of program P starting in the set I of initial states are safe. Based on the de�nition
of program safety, we can simply infer the desired witness property: valid partitioned
certi�cates witness program safety.
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Proposition 4.14. If a partitioned certi�cate PCCA is valid for a program P , property
automaton A, and a set of initial states I ⊆ C, then P |=I A.

Proof. We need to show that all paths p ∈ pathsP (I) are safe w.r.t. A. Let p ∈ pathsP (I)
be an arbitrary path. Since PCCA is valid for P , A, and I, there exists a set partsCA
of partition elements which is a safe overapproximation for program P , A, and I. From
Lemma 4.13, we conclude that p is safe w.r.t. A. Hence, P |=I A.

In the following, we will show that the certi�cates constructed by a process conformant
producer are valid w.r.t. the states represented by the root node of the producer's ARG,
which was constructed during successful producer veri�cation. However, the consumer is
typically interested in validity w.r.t. the states represented by the initial abstract state
with which the producer analysis is started. Generally, the ARG's root node and the
initial abstract state of the producer's analysis may not be identical. We only know that
the set of concrete states represented by the initial abstract state is a subset of the concrete
states represented by the root node. Thus, we need to be sure that a valid partitioned
certi�cate remains valid after we shortened the set of initial states.

Corollary 4.15. Let PCCA = (partssub, n) be a partitioned certi�cate which is valid for
a program P , property automaton A, and a set of initial states I ⊆ C and let Isub ⊆ I be
a subset of the initial states. Then, PCCA is also valid for P , A, and Isub.

Proof. See Appendix pp. 263 f.

Until now, we know that valid partitioned certi�cates are proper witnesses for program
safety. Hence, the producer should construct valid partitioned certi�cates. Next, we
proceed to explain how the producer builds valid partitioned certi�cates.

4.3.2 Construction of Reduced, Partitioned Certi�cates

Remember that the goal of the partitioning approach is to divide the original certi�cate
or the (highly) reduced certi�cate and read and check the certi�cate in parallel. We also
discussed that the certi�cate must explicitly describe the split of the certi�cate, i.e., the
division of the abstract states in the certi�cate. In a �rst step, the producer needs to
decide how to divide the abstract states occurring in such a certi�cate. On the one hand,
the consumer should not inspect abstract states multiple times and on the other hand,
each element must be inspected. Hence, we require a partition [CLRC07, p. 1073] of the
abstract states in the certi�cate. The following de�nition generally introduces the concept
of a partition of a set of elements.

De�nition 4.11 (Partition). Let S be a non-empty set. A partition of S is a set
partition(S) = {p1, . . . , pk} of non-empty, disjoint subsets pi of S s.t. each element of
S is contained in one of the subsets, formally, ∀1 ≤ i ≤ k : pi 6= ∅∧∀1 ≤ j ≤ k : i 6= j =⇒
pi ∩ pj = ∅ and

⋃
1≤i≤k

pi = S.

Reconsider the highly reduced node set that we used to construct an example for a highly
reduced certi�cate. This highly reduced node set was computed from the ARG shown
in the top of Fig. 4.1, the ARG, which we obtained after the veri�cation of our example
program SubMinSumDiv with the sign data�ow analysis and property pos@l5. Next, we
see a partition of that highly reduced node set. The partition consists of two subsets. The
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Figure 4.1: Top: ARG constructed by the CPA algorithm during the analysis of program
SubMinSumDiv with CPA L× S enhanced with property automata pos@l5 started in the
initial abstract state ((l0,>S), q0)
Bottom: Vertex contraction of the above ARG to its highly reduced node set
Shaded areas represent our example partition of the respective node set.

�rst subset contains the covering nodes associated with the while loop and the second one
consists of the root node and the remaining covering nodes.

{
((l9, s : + x : > y : > z : >), q0),
((l13, s : + x : −+ y : > z : >), q0)

}
,

 ((l0, s : > x : > y : > z : >), q0),
((l5, s : > x : − y : > z : +), q0),
((l14, s : > x : > y : > z : >), q0)




Throughout this subsection, we assume that the producer already computed a partition
of the abstract states, which should become part of the certi�cate. In the next subsection
(Sec. 4.3.3), we discuss how to compute a good partition.

When the producer has computed a proper partition, he uses the subsets in the par-
tition to construct his certi�cate. Each subset in the partition de�nes one part of the
constructed partitioned certi�cate. The subsets in the partition become the sets of parti-
tion nodes. However, we already discussed that the sets of partition nodes alone are not
su�cient. Each set of partition nodes must be extended to a partition element, which
stores additional information that allows the independent inspection of the part.
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For the moment, let us assume that we have a directed graph [KKB05, p. 121] whose
edges encode the interconnections between the abstract states in the certi�cate. Then,
each edge in the graph represents the fact that for the independent inspection of the
predecessor we require knowledge about the successor of that edge. The directed graph
in the bottom of Fig. 4.1 encodes the dependencies among the highly reduced node set
considered in the above example partition. The shaded areas describe the partition of the
highly reduced node set presented above. We later explain how to generally construct a
directed graph like the one in Fig. 4.1, which encodes the dependencies.

Since the dependencies among the abstract states are encoded in the directed graph,
we only have to look at the graph to compute the additional information, the set of
boundary nodes, necessary to independently check a part. Remember we want to inspect
each partition element, i.e., each set of partition nodes, independently. To independently
check a single abstract state in a set of partition nodes, we must know all its successor
nodes in the directed graph. Hence, all its successors must be available in the partition
element. If a successor node is part of the same set of partition nodes, it will be available
during inspection. In the other case, we need to make it available, i.e., we must add
the successor to the set of boundary nodes of the respective partition element. Generally
speaking, for a directed graph modeling the dependencies among certain abstract states
and a subset of these abstract states, the boundary nodes of that subset in the directed
graph are all successors external to the subset.

De�nition 4.12. Let DG = (V,GV ) be a directed graph and Vsub ⊆ V a subset of
nodes. The boundary nodes bound(Vsub, DG) of Vsub in DG are all successor nodes of
nodes in Vsub which are not contained in Vsub, bound(Vsub, DG) = {vbn | (v, vbn) ∈ GV ∧
v ∈ Vsub ∧ vbn /∈ Vsub}.

Let us look at the �rst subset of the presented partition and the directed graph shown in
the bottom of Fig. 4.1. The �rst subset is the set of all nodes in the right shaded area of
that graph. We observe that only one edge leaves the right shaded area. The successor
node of that edge is the only boundary node for that subset in that directed graph. Hence,
the subsequent equation displays the boundary nodes of the �rst subset of our example
partition and the directed graph shown in the bottom of Fig. 4.1.

{((l14, s : > x : > y : > z : >), q0)}

If we want to use the previous de�nition to construct the sets of boundary nodes for
the producer's certi�cate, we cannot use any arbitrary directed graph. To construct
syntactically correct certi�cates, we require that the nodes are abstract states of the
same abstract domain as the states in the certi�cate. Like we construct certi�cates for
an enhanced con�gurable program analysis, we want to use directed graphs for the same
enhanced CPA during their construction. The subsequent de�nition states when a directed
graph is a directed graph for an enhanced CPA. In principle, the nodes must be abstract
states considered by the enhanced CPA.

De�nition 4.13. Let CA be an enhancement of CPA C with property automaton A
considering the set ECA of abstract states. A directed graph DGCA = (V,GV ) for CA
consists of a set of nodes V ⊆ ECA and a set of edges GV ⊆ V × V .

Given a directed graph DGCA for an enhanced CPA whose edges encode the dependencies
among the certi�cate states and a subset pi from the partition of certi�cate states, we
can use the de�nition of boundary nodes of pi in DGCA to construct a partition element.
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As already stated, the subset from the partition becomes the set of partition nodes of
the partition element. The set of boundary nodes is computed according to the previous
de�nition of boundary nodes of pi in DGCA . We call such a partition element a partition
element for DGCA and pi.

De�nition 4.14. Let DGCA = (V,GV ) be a directed graph for enhanced CPA CA and
Vsub ⊆ V a subset of the nodes. A partition element part(Vsub, DGCA) for Vsub and DGCA
consists of partition nodes Vsub and boundary nodes bound(Vsub, DGCA).

Revisit the �rst subset in the partition, for which we already computed the set of boundary
nodes according to the directed graph shown in the bottom of Fig. 4.1. Below, we present
the partition element for this set and that directed graph. We observe that the set of
partition nodes corresponds to the �rst subset in the partition and the set of boundary
nodes is the same as before.( {

((l9, s : + x : > y : > z : >), q0),
((l13, s : + x : −+ y : > z : >), q0)

}
, {((l14, s : > x : > y : > z : >), q0)}

)
Now that we know how to construct a single partition element, the construction of the
set of partition elements is straightforward. The partition describes how to divide the
abstract states in the certi�cate. Furthermore, we want to inspect each abstract state
in the certi�cate exactly once. Thus, we use the de�nition from above to construct the
partition element for each subset in the partition. The set of the constructed partition
elements is the desired set of partition elements. The following de�nition formally de�nes
this set of partition elements for a partition and a directed graph for an enhanced CPA.

De�nition 4.15. Let DGCA = (V,GV ) be a directed graph for enhanced CPA CA and let
partition(V ) = {p1, . . . , pk} be a partition of the nodes V . The set of partition elements for
partition(V ) and directed graph DGCA is parts(partition(V ), DGCA) = {part(pi, DGCA) |
pi ∈ partition(V )}.

For our example partition and the directed graph shown in the bottom of Fig. 4.1, we get
the following set of partition elements. The set contains two partition elements. The �rst
partition element is the one from above. The second one is the partition element for the
second set in the example partition. Looking at the directed graph, we observe that only
one edge in the graph starting in one of the nodes of the second set of the partition does
not end in this set. The set of boundary nodes of the second partition element consists of
the successor of that edge.

({
((l9, s : + x : > y : > z : >), q0),
((l13, s : + x : −+ y : > z : >), q0)

}
, {((l14, s : > x : > y : > z : >), q0)}

)
 ((l0, s : > x : > y : > z : >), q0),

((l5, s : > x : − y : > z : +), q0),
((l14, s : > x : > y : > z : >), q0)

 , {((l9, s : + x : > y : > z : >), q0)}




Given a partition of the states in that certi�cate that one wants to partition and a directed
graph that properly encodes the dependencies between these states, we just explained how
to construct the main part of the partitioned certi�cate, the set of partition elements. We
continue to describe how to build a directed graph that encodes the dependencies between
the states.

To be able to describe all dependencies, the nodes of the directed graph must be the
set of all abstract states in that certi�cate that one wants to partition, i.e., the set of
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all partition nodes or equivalently all nodes occurring in the partition. To model the
dependencies, i.e., build the edges, we need to know when the inspection of an abstract
state depends on another abstract state. Like in the previous approaches, the producer
wants to use the ARG obtained after successful veri�cation to generate the partitioned
certi�cate and a subset of the ARG nodes becomes the set of all abstract states considered
in the certi�cate. Hence, we must be able to infer the dependencies from the ARG.

Remember that we observed that checking of a single abstract state in the ARG
is local to its successors. Since the producer's certi�cate does not always consider all
abstract states, during inspection of an abstract state the validation will recompute deleted
descendants and should stop as soon as we come to a descendant that is contained in the
certi�cate. Thus, when we inspect an abstract state we may not always depend on its
successors in the ARG, but on particular descendants. However, if we do not delete any
nodes , i.e., we do not combine the two optimizations and use the complete set of ARG
nodes, the structure of the ARG will already describe the required dependencies. To model
the dependencies in general, for each abstract state considered by the certi�cate one needs
to identify all descendants in the ARG that are also considered by the certi�cate and that
can be reached on a path without other certi�cate states in between. Additionally, one
needs to add an edge from those abstract state to each of their identi�ed descendants.
In principle, one can compare the described construction with a vertex contraction that
contracts each abstract state in the certi�cate with all descendants that are recomputed
during the inspection of that abstract state. That is why, we call the directed graph
obtained in the described way a vertex contraction of the ARG. Next, we formally describe
the graph construction discussed above.

De�nition 4.16. Let RP
CA = (N,GARG, root,Ncov) be an ARG for program P and en-

hanced CPA CA and Nsub ⊆ N a subset of nodes. The vertex contraction of RP
CA to

vertex set Nsub is a directed graph V CG(Nsub, R
P
CA) = (Nsub, GNsub

) for CA with edges
GNsub

= {(n, n′) ∈ Nsub × Nsub | ∃n = n1, n2, . . . , nm = n′ : m > 1 ∧ ∀2 ≤ i ≤ m − 1 :
ni /∈ Nsub ∧ ∀1 ≤ i ≤ m− 1 : ∃(ni, ·, ni+1) ∈ GARG}.

Based on the previous de�nition, we no longer need to believe, but can now see that the
directed graph shown in the bottom of Fig. 4.1 properly models the dependencies among
the nodes in the highly reduced node set. We only have to check that an edge between two
nodes exists i� in the ARG displayed above a path from the predecessor to the successor
exists s.t. all intermediate nodes on the path do not belong to the highly reduced node
set.

With the de�nition of a vertex contraction, we have everything at hand to build a
producer's partitioned certi�cate. Before we come to the producer's partitioned certi�-
cates, we generally describe how to construct a partitioned certi�cate from an ARG and
a partition of a subset of the ARG nodes. The set of partition elements becomes the set
of partition elements derived from the vertex contraction of the ARG to a subset of the
ARG nodes and the partition of that subset. For the upper bound on partition nodes,
the maximal number of partition nodes that are stored or recomputed, we use the same
number as in the reduced certi�cate and add the size of the set of ARG nodes. This leads
us to the de�nition of a partitioned certi�cate from a partition and an ARG.

De�nition 4.17. Let RP
CA = (N,GARG, root,Ncov) be an ARG for program P and en-

hanced CPA CA and partition(Nsub) = {p1, . . . , pk} a partition of Nsub ⊆ N . The
partitioned certi�cate from partition(Nsub) and RP

CA is certPC(partition(Nsub), RP
CA) =

(parts(partition(Nsub), V CG(Nsub, R
P
CA)), |N |).
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Next, we present the partitioned certi�cate from the example partition and the ARG
shown in the bottom of Fig. 4.1. We observe that it contains the set of partition elements
seen before plus the number 15, the number of nodes in that ARG.


({
((l9, s : + x : > y : > z : >), q0),
((l13, s : + x : −+ y : > z : >), q0)

}
, {((l14, s : > x : > y : > z : >), q0)}

)
 ((l0, s : > x : > y : > z : >), q0),

((l5, s : > x : − y : > z : +), q0),
((l14, s : > x : > y : > z : >), q0)

 , {((l9, s : + x : > y : > z : >), q0)}


, 15


Essentially, the producer will not consider arbitrary subsets of the ARG nodes. Since we
aim at the partitioning of basic or (highly) reduced certi�cates, the producer may select
one out of the following three subsets: (1) the complete set of ARG nodes, (2) the reduced
node set, or (3) the highly reduced node set. The producer must select the complete set
if he does not combine the two optimizations. Whenever the producer wants to combine
the two optimizations, the producer's choice depends on the capabilities of the analysis. If
the transfer relation is monotonic, he may either choose the reduced or the highly reduced
node set. In the other case, he must always use the reduced node set. To easily refer
to one of the producer's options, the subsequent de�nition �xes the names for the three
types of certi�cates a producer can construct.

De�nition 4.18. Let RP
CA = (N,GARG, root,Ncov) be an ARG for program P and en-

hanced CPA CA and partition(Nsub) a partition of Nsub ⊆ N . The partitioned certi�cate
certPC(partition(Nsub), RP

CA) is

• a full, partitioned certi�cate from ARG RP
CA if Nsub = N ,

• a reduced, partitioned certi�cate from ARG RP
CA if Nsub = NR(RP

CA), and

• a highly reduced, partitioned certi�cate from ARG RP
CA if Nsub = NhR(RP

CA).

Previously, we displayed a partitioned certi�cate constructed from a partition of the highly
reduced node set of the ARG shown in the top of Fig. 4.1. According to our de�nition,
the presented certi�cate is a highly reduced, partitioned certi�cate. Remember that for
our example (the ARG shown in Fig. 4.1), the reduced and the highly reduced node set
are identical. The presented certi�cate is also a reduced, partitioned certi�cate. Next, we
show a full, partitioned certi�cate from the same ARG. The full, partitioned certi�cate is
constructed from the partition of the ARG nodes indicated by the shaded areas in Fig. 4.1.






((l0, s : > x : > y : > z : >), q0),
((l1, s : > x : > y : > z : 0), q0),
((l6, s : > x : 0 + y : > z : 0), q0),
((l7, s : > x : 0 + y : 0 + z : 0), q0),
((l8, s : > x : 0 + y : − z : 0), q0)

 ,
{

((l9, s : + x : > y : > z : >), q0),
((l2, s : > x : − y : > z : 0), q0)

}


((l2, s : > x : − y : > z : 0), q0),
((l3, s : > x : − y : − z : 0), q0),
((l4, s : > x : − y : > z : 0), q0),
((l5, s : > x : − y : > z : +), q0),
((l14, s : > x : > y : > z : >), q0)

 , ∅




((l9, s : + x : > y : > z : >), q0),
((l10, s : + x : −+ y : > z : >), q0),
((l11, s : + x : −+ y : 0 + z : >), q0),
((l12, s : + x : −+ y : − z : >), q0),
((l13, s : + x : −+ y : > z : >), q0)

 , {((l14, s : > x : > y : > z : >), q0)}





, 15
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Until now, we focused on how the producer generates partitioned certi�cates. Of course,
we aimed at the construction of valid partitioned certi�cates. Nonetheless, we need to
guarantee that within the certi�cate partitioning approach the producer constructs valid
partitioned certi�cates. Like in the basic con�gurable program certi�cation process, we
assume that the producer generates certi�cates after a successful veri�cation. Thus, the
producer constructs partitioned certi�cates from well-formed ARGs. To show that the
producer generates valid partitioned certi�cates, we prove that full, partitioned, reduced,
partitioned, and highly reduced, partitioned certi�cates built from well-formed ARGs are
valid.

To prove validity of these producer's certi�cates, we �rst of all need a proper extension
of the respective set of partition elements. Due to the construction of the producer's
certi�cates, an extension {(N,N)}, which only considers the single pair of ARG nodes,
would be proper if it was a safe overapproximation. The next lemma guarantee us that
such a set of partition elements is a safe overapproximation whenever the ARG is well-
formed.

Lemma 4.16. Let RP
CA = (N,GARG, root,Ncov) be an ARG for program P and enhanced

CPA CA which is well-formed for e0 = (e, q0) ∈ ECA . The set partsCA := {(N,N)} of
partition elements is a safe overapproximation for P , A = (Q, δ, q0, qerr), and JrootK.

Proof. See Appendix p. 264.

Since the producer uses a well-formed ARG during certi�cate construction, we con-
clude from the previous lemma that the set of partition elements {(N,N)} is a proper
extension. To prove validity, it remains to be shown that the extension {(N,N)} is
su�cient to prove the remaining properties of a valid certi�cate. Instead of showing
these properties for each kind of producer certi�cate individually, we look at a broader
class of certi�cates, which includes the producer's certi�cates, namely at all partitioned
certi�cates certPC(partition(Nsub), RP

CA) from a well-formed ARG RP
CA and a partition

partition(Nsub) of a subset Nsub of the ARG nodes. Based on the construction of those
certi�cates certPC(partition(Nsub), RP

CA), we easily infer the remaining properties of a
valid certi�cate and conclude that those certi�cates are valid. This leads us to the subse-
quent lemma.

Lemma 4.17. Let RP
CA = (N,GARG, root,Ncov) be an ARG for program P and en-

hanced CPA CA which is well-formed for e0 = (e, q0) ∈ ECA , and partition(Nsub) a
partition of Nsub ⊆ N . Then, the partitioned certi�cate certPC(partition(Nsub), RP

CA)
from partition(Nsub) and RP

CA is valid for P , A = (Q, δ, q0, qerr), and JrootK.

Proof. From the de�nition of certPC(partition(Nsub), RP
CA), we conclude that partitioned

certi�cate certPC(partition(Nsub), RP
CA) = (partssub, |N |). Let partsCA := {(N,N)}.

From the previous lemma, we know that partsCA is a safe overapproximation for P , A, and
JrootK. Let m : partssub → partsCA be a total function with m((pn, bn)) = (N,N) for all
(pn, bn) ∈ partssub. By de�nition of partition, partssub, and m, m is surjective. By de�ni-
tion of certPC(partition(Nsub), RP

CA), we get that ∀(pn, bn) ∈ partssub : pn ⊆ N ∧bn ⊆ N .
Thus, ∀(pn, bn) ∈ partssub : m((pn, bn)) = (N,N) =⇒ pn ⊆ N ∧ bn ⊆ N . We compute
that |

⋃
(pn,·)∈partsCA

| = |N |. Hence, certPC(partition(Nsub), RP
CA) is valid for P , A, and

JrootK.

We know that the producer constructs full, partitioned, reduced, partitioned, and highly
reduced, partitioned certi�cates from the well-formed ARG obtained after successful veri-
�cation. Based on the de�nition of these partitioned certi�cates and the previous lemma,
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we simply conclude the desired property: the producer constructs valid partitioned cer-
ti�cates.

Proposition 4.18. Let RP
CA = (N,GARG, root) be an ARG for program P and enhanced

CPA CA which is well-formed for e0 = (e, q0) ∈ ECA . Every full, partitioned certi�cate
from ARG RP

CA , every reduced, partitioned certi�cate from ARG RP
CA , and every highly

reduced, partitioned certi�cate from ARG RP
CA is valid for P , A = (Q, δ, q0, qerr), and

JrootK.

Proof. From de�nitions, we get NhR(RP
CA) ⊆ NR(RP

CA) ⊆ N . Hence, from the de�nition
of full, reduced and highly reduced certi�cates, we know that for every full, partitioned
certi�cate, every reduced, partitioned certi�cate, and every highly reduced certi�cate a set
Nsub ⊆ N and a partition partition(Nsub) of that set exist s.t. the partitioned certi�cate
from partition(Nsub) and RP

CA is the full, partitioned certi�cate, the reduced, partitioned
certi�cate, and the highly reduced certi�cate, respectively. Thus, the previous lemma
lets us conclude that every full, partitioned certi�cate from ARG RP

CA , every reduced,
partitioned certi�cate from ARG RP

CA , and every highly reduced, partitioned certi�cate
from ARG RP

CA is valid for P , A, and JrootK.

The previous theorem stated that the producer generated partitioned certi�cates are valid
w.r.t. the states represented by the root node of the well-formed ARG used in certi�cate
construction. We believe that the consumer is typically interested in validity w.r.t. the
initial abstract state used during producer veri�cation, i.e., the abstract e0 the producer's
ARG is well-formed for. The following corollary claims that the producer certi�cates are
also valid w.r.t. the concrete states represented by the initial abstract state.

Corollary 4.19. Let RP
CA be an ARG for program P and enhanced CPA CA which is

well-formed for e0 = (e, q0) ∈ ECA . Every full, partitioned certi�cate from ARG RP
CA ,

every reduced, partitioned certi�cate from ARG RP
CA , and every highly reduced, partitioned

certi�cate from ARG RP
CA is valid for P , A = (Q, δ, q0, qerr), and Je0K.

Proof. Let RP
CA = (N,GARG, root). From the previous proposition, we know that every

full, partitioned certi�cate from ARG RP
CA , every reduced, partitioned certi�cate from

ARG RP
CA , and every highly reduced, partitioned certi�cate from ARG RP

CA is valid for
P , A, and JrootK. Since RP

CA is well-formed, we get e0 v root. Due to the requirements on
a CPA's abstract domain, we have Je0K ⊆ JrootK. From Corollary 4.15, we conclude that
every full, partitioned certi�cate from ARG RP

CA , every reduced, partitioned certi�cate
from ARG RP

CA , and every highly reduced, partitioned certi�cate from ARG RP
CA is valid

for P , Ab and Je0K.

So far, we know that the producer may use any partition to construct his ((highly) reduced)
partitioned certi�cates. However, some partitions are more appropriate than others. For
example, the partition determines the number of boundary nodes, the additional over-
head in the certi�cate. Of course, a partition that consists of a single element provides
the smallest overhead, but reading and checking of the certi�cate cannot be parallelized
anymore. Furthermore, in case the partition is unbalanced or the partition elements are
too large, during validation we waste more processing time than necessary waiting that a
partition element is read and thus becomes ready for inspection. We continue to discuss
in detail what the producer should consider to determine an appropriate partition and
how the producer can construct an appropriate partition.

103



CHAPTER 4. OPTIMIZATION OF CONFIGURABLE PROGRAM CERTIFICATION

4.3.3 Finding a Good Partition of the Set of Partition Nodes

Reconsidering the construction of the producer's certi�cate, we observe that the partition
of the set of all partition nodes, i.e., the partition of the nodes obtained by the vertex
contraction of the ARG, determines the shape of that certi�cate and its size. In turn, the
shape of the certi�cate in�uences the performance of the certi�cate validation.

For example,the certi�cate validation must read the �rst partition element before it
can start the certi�cate inspection. The size of the �rst partition element compared
to the size of the complete certi�cate in�uences the sequential proportion of certi�cate
validation. Thus, its size should be small. To fully exploit parallel reading and checking
of the certi�cate, reading the next partition element should never outlast the ongoing
parallel inspection of already read partition elements.

Taking into account that more than one pair of two threads, namely one thread for
reading and one for inspecting partition elements, may be used, we no longer know how
partition elements are spread among the threads. To equally distribute the workload
among the threads, we require that the inspection of the partition elements is balanced,
i.e., the time required for the inspection of each partition element is roughly the same.
Since we no longer know when and where a partition element is read, the time required for
reading each partition element should be similar. Hence, the size of the partition elements
must be equal. Furthermore, each partition element could be the �rst partition element
read by a thread. All partition elements should be small.

So far, we discussed the objectives w.r.t. certi�cate validation, but we also want to
optimize the size of the certi�cate. The overhead for certi�cate partitioning should be
as small as possible, i.e., we want to store few boundary nodes. A minimal overhead
can always be achieved with a partition that consists of a single set. However, in such a
partition the partition elements are not small. The optimization criteria on the partition
are con�icting. Thus, we need to �nd a good compromise among the criteria.

Of course, we could try to �nd a good compromise while considering the real numbers
for the storage size, the reading time, and the inspection time for each node in the vertex
contraction of the ARG. While the storage size can be determined exactly, the reading
and inspection time cannot be that easily determined. Likely, these two times must be
measured experimentally, but then they depend on the underlying hardware. Another
opportunity is to estimate the times. The inspection time of a node could be estimated
based on the number of ARG descendants of that node that are reached from that node
before another node in the vertex contraction of the ARG is reached. Since the reading
time is mainly prescribed by the storage size of the partition and boundary nodes in a
partition element, one could try to estimate the reading time based on the storage size.
However, we still have to consider lots of data to compute a good partition. Thus, we
decided to use a less precise, but also simple and less laborious estimation. We use the
number of abstract states to approximate the storage size, the reading time, and the
inspection time.

With this approximation in mind, we can reformulate our optimization goal from
above. To achieve an equal workload distribution for the inspection of the partition
elements, the sets of partition nodes must have equal sizes. The partition should be
balanced. Furthermore, we want to minimize the total number of boundary nodes to
reduce the storage overhead. We think that often the minimization indirectly balances
the reading time. On the one hand, a partition element hopefully contains signi�cantly
more partition nodes than boundary nodes. On the other hand, we can imagine that the
number of boundary nodes may be almost equally spread among the partition elements.
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To get a small reading time for the partition elements, the partition must divide all
partition nodes into many, small sets � in our experiments, we �xed the size of these sets.
These considerations lead us to the following optimization problem.

De�nition 4.19. Let V CG(NsubR
CA
P ) = (Nsub, G) be a vertex contraction of ARG RCA

P

to vertex set Nsub and k ∈ N+. A k-partition p = {p1, . . . , pk} of Nsub is optimal if it

is balanced, ∀1 ≤ i ≤ k : |pi| ≤
⌈
|Nsub|

k

⌉
, and its partitioned certi�cate has the smallest

overhead,

k∑
i=1

|bound(pi, V CG(NsubR
CA
P ))| =

k∑
i=1

|{v | (v′, v) ∈ G ∧ v′ ∈ pi ∧ v /∈ pi}|

= min
{p′1,...,p′k}

k∑
i=1

|bound(p′i, V CG(NsubR
CA
P ))|

= min
{p′1,...,p′k}

k∑
i=1

|{v | (v′, v) ∈ G ∧ v′ ∈ p′i ∧ v /∈ p′i}|

with {p′1, . . . , p′k} partition of Nsub and ∀1 ≤ i ≤ k : |p′i| ≤
⌈
|Nsub|

k

⌉
.

In this thesis, we neither discuss the complexity of this optimization problem nor present
an algorithm that computes the optimal solution. For our purposes, the construction of
a certi�cate for an e�cient consumer validation, it is su�cient that in practice we can
compute good, nearly balanced partitions with few overhead. At �rst [Jak15], we used a
random partition computation. Later, we observed that our optimization problem is re-
lated to graph partitioning [GJ79, p. 209], especially balanced graph partitioning [AR04],
for which we know that it is NP-complete [AR04, GJ79, p. 209] and that an approx-
imate solution bounded by a constant factor cannot be computed in polynomial time
unless P = NP [AR04]. Based on this insight, Henrik Bröcher [Brö16] implemented,
adapted, and evaluated existing heuristics known for graph partitioning. In his bachelor
thesis [Brö16], he considered the following heuristics: (1) greedy graph growing [KK98], a
global, greedy approach, which consecutively builds the partition creating the sets pi one
after another always adding the vertex with the best gain until the current pi is full, (2) a
local optimization of an existing partition with the help of the Fiduccia und Mattheyses
approach [FM82], and (3) multi-level partitioning [KK98]. Di�erent variants can be con-
�gured in all three cases. For example, in greedy graph growing the selection criterion,
i.e., the de�nition of the gain, can be exchanged. The initial partition and the optimiza-
tion goal can be con�gured in the optimization approach. Similarly, the partitioning and
the optimization strategy can be selected for the multi-level partitioning. Thus, in our
experiments we can select from various heuristics and we experimentally tried out which
seems to be best for a certain set of veri�cation tasks.

Computing a good partition of all partition nodes was the last aspect in the construc-
tion of a partitioned certi�cate. Next, we continue with the inspection of partitioned
certi�cates.

4.3.4 Validation of Partitioned Certi�cates

The consumer validates partitioned certi�cates to determine whether a program is safe
w.r.t. a property automaton and a set of initial states. Following the previous approaches,
we use a meta validation algorithm that can be con�gured by a CCV that �ts to the
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Algorithm 5: Validation algorithm for partitioned certi�cates

Input: A CCV VDCA = ((C, (E,>,⊥,v,t), J·K), , cover), initial abstract state
e0 ∈ E, partitioned certi�cate PCCA = (partssub, n) ∈ 22E×2E ×N, program
P = (L,GCFA, l0)

Output: Boolean indicator, if partitioned certi�cate PCCA is valid
Data: A set reached of elements of E, a set waitlist of elements of E

1 reached := ∅;waitlist := ∅;
2 for each (pn, bn) ∈ partssub do
3 reached := reached ∪ pn;waitlist := pn;
4 while waitlist 6= ∅ ∧ |reached| ≤ n do
5 pop e from waitlist;
6 for each g ∈ GCFA do
7 for each (e, g, e′) ∈ do
8 if ¬cover(e′, pn ∪ bn) ∧ e′ /∈ reached then
9 reached := reached ∪ {e′};waitlist := waitlist ∪ {e′};
10 if ¬cover(e0,

⋃
(pn,·)∈partssub

pn) then

11 return false
12 return |reached| ≤ n ∧ ¬∃(·, q) ∈ reached : (q = qerr ∨ q = q>)

∧
⋃

(·,bn)∈partssub

bn ⊆
⋃

(pn,·)∈partssub
pn

partitioned certi�cate being inspected. Algorithm 5, an adaption of the second validation
algorithm presented in our previous paper [Jak15], displays our meta validation algorithm
for partitioned certi�cates. Next to the partitioned certi�cate and the CCV, the validation
algorithm also requires an abstract state, describing the concrete set of initial states for
which program safety should be examined, and the program itself.

Note that Algorithm 5 only describes how to validate a partitioned certi�cate, but not
how to read and check it in parallel. Since Algorithm 5 �rst inspects all partition elements
in the for loop and in each iteration of the for loop it only refers to information saved in the
inspected partition element or to information already explored by the validation algorithm,
achieving parallel reading and checking is straightforward. One uses two threads, one reads
the partitioned certi�cate and the other executes the validation algorithm. Of course, the
maximal number n of partition nodes must be read before any partition element and must
be given to the validation algorithm before it actually starts the validation. Furthermore,
one either needs to tell the validation algorithm in advance how many partition elements
exist or that all partition elements are read. Moreover, one could use a synchronized
data structure in which a partition element is put directly after it is read and from which
the validation algorithm takes the next partition element for checking. Additionally, one
needs to assure that when not all partition elements have been read and the validation
algorithm has checked all available partition elements, the validation algorithm waits, e.g.,
blocks, until the next partition element is read and put into the shared data structure.
In the following, we explain how Algorithm 5 uses a partitioned certi�cate to determine
program safety.

From previous considerations, we know that a valid partitioned certi�cate guarantees
program safety and that a well-acting producer generates valid partitioned certi�cates.
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Furthermore, it is totally �ne for our certi�cation approach that the consumer validation
only accepts certi�cates of well-acting producers. Based on these insights, we designed a
validation algorithm that checks that the input certi�cate is a valid partitioned certi�cate
a well-acting producer could have constructed.

To examine validity, the validation algorithm requires an extension of the certi�cate's
set of partition elements partssub. The validation algorithm uses the following extension
which it never stores and only implicitly refers to. Each abstract state that is added to
reached and waitlist in line 9 while the validation algorithm considers partition element
(pn, bn) belongs to the extension of pn. Furthermore, we add e′ to the set of boundary
nodes bn when the branch condition in line 8 evaluates to false because e′ ∈ reached. The
extension does not add new partition elements. Note that this is su�cient because the
producer constructs his certi�cate such that at most partition nodes are removed and we
added the extension for boundary nodes and the check e′ /∈ reached solely to guarantee the
termination of the validation algorithm. Based on the described extension, the validation
algorithm decides whether the given partitioned certi�cate is valid.

Due to the construction of the extension, we already now that the extension is restricted
to partition elements. Looking at Algorithm 5, we further observe that little by little all
partition nodes of the extension are added to reached and at line 12 the data structure
reached contains all partition nodes of the extension. Thus, Algorithm 5 either returns
false or in line 12 the size of the reached set, i.e., the number of partition nodes, is less or
equal than n.

It remains to be explained how the validation algorithm examines if the extension is a
safe overapproximation. In line 10, the validation algorithm checks if the partition nodes
cover the initial abstract state. We assume that the initial abstract state describes all
initial states for which program safety should be determined and also contains the initial
state of the property automaton. Due to the requirements on the coverage check, we know
that if that check does not fail, the initial states considered for program safety will be
covered by appropriate partition nodes. Note that it is su�cient to look at the partition
nodes in the partitioned certi�cate instead of all partition nodes occurring in the extension
because the producer puts the ARG root node, which covers the initial abstract state, into
one of the constructed sets of partition nodes.

Looking at the for loop in the validation algorithm, we observe the following. In each
iteration, all partition nodes that belong to the extended partition element obtained by
the extension of the partition element inspected in the current iteration are added to the
data structure waitlist. We abort the inspection of the partition nodes, when |reached| > n,
i.e., the partitioned certi�cate cannot be valid. Note that abortion is needed to guarantee
that our validation algorithm terminates on any certi�cate, no matter if it is valid or
not. Furthermore, for each abstract state in the waitlist, we either compute its abstract
transfer successors in the program or the number of partition nodes is already too high for
a valid certi�cate (|reached| > n). In lines 8 and 9, we ensure that each explored abstract
successor is covered by the set of partition and boundary nodes, it is already contained
in reached, i.e., it is covered by the extended set of boundary nodes, or we will add the
abstract successor to reached in line 9, and, thus, to the set of extended partition nodes.
Due to the requirements on the transfer relation, the requirements on the coverage check,
and the construction of the extension of the set of partition elements, we conclude the
following. Every concrete successor con�guration of a partition node that is considered
in the current iteration of the for loop is considered by the same partition element as
the partition node or the validation algorithm already failed to prove the validity of the
partitioned certi�cate, i.e., |reached| > n. We do not add new partition elements to the
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extension. Abstract states belonging to the extension are explored and inspected in the
same iteration in which we examine the partition nodes of the partition element that these
abstract states extend or the inspection of the partitioned certi�cate is aborted because
we already failed to prove its validity. Hence, the validation algorithm determines that
concrete successor con�gurations of a partition node are considered by the same partition
element as the partition node or validation will fail. To check that the boundary nodes
are covered by partition nodes, the validation algorithm simply examines whether the set
of all boundary nodes is a subset of the set of all partition nodes. This simpli�cation is
su�cient because the producer only uses boundary nodes that are also partition nodes
and we only add additional boundary nodes for which we already know that they are
partition nodes. Finally, the validation algorithm either returns false or at line 12 the
validation algorithm recognizes that the reached set, the set of all partition nodes in the
extension, is safe. The validation algorithm returns false or all four conditions on a safe
overapproximation are examined successfully.

Summing up, we designed the validation algorithm in such a way that it inspects
the validity of a partitioned certi�cate and should successfully inspect the producer's
partitioned certi�cates. If we were careful enough with our design, the consumer analysis
should ful�ll the two important properties, soundness and relative completeness, which
we require to safely and successfully apply our certi�cate partitioning approach. Next, we
study whether we really achieved these goals.

4.3.5 Properties of Reduced, Partitioned Certi�cate Validation

Like the approaches before, our partitioning approach must ensure the two properties,
soundness and relative completeness, mentioned in the introduction. We start to discuss
soundness. Remember that soundness means that the validation algorithm for partitioned
certi�cates (Algorithm 5) may only return true if the partitioned certi�cate witnesses pro-
gram safety. To provide partitioned certi�cates that witness program safety, the producer
generates valid partitioned certi�cates, for which we know that they are proper witnesses.
Furthermore, we designed our validation algorithm in such a way that it accepts the
producer's certi�cates. Similar to the previous approaches, we show that the validation
algorithm will only return true if the input partitioned certi�cate is valid.

In its main part, the validation algorithm implicitly constructs an extended set of par-
tition elements and simultaneously checks whether that set is a safe overapproximation.
Note that the validation algorithm should fail if that set is not a safe overapproximation.
However, the validation algorithm never explicitly stores the extended set of partition
elements we had in mind when we designed the validation algorithm. Thus, we use the
observation that if we have a safe overapproximation, we can unite all partition and
boundary nodes in a single set S and the resulting set of partition elements {(S, S)} is
again a safe overapproximation. Since the validation algorithm checks that the set of all
boundary nodes is a subset of the set of all partition nodes, we know that if the validation
algorithm returns true, at the end of the validation algorithm reached will be the union
of all partition and boundary nodes contained in the extended set of partition elements
the algorithm implicitly considered. To ensure that the validation algorithm constructs a
safe overapproximation during validation, we simply prove that the set of partition ele-
ments {(reached′, reached′)}, reached′ denoting the �nal version of the set reached, is a safe
overapproximation whenever the validation algorithm returns true.. The following lemma
claims that the set of partition elements {(reached′, reached′)} is a safe overapproximation
if the validation algorithm returns true.
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Lemma 4.20. Let reached′ denote the reached set at the state of termination of Algo-

rithm 5. If Algorithm 5 started with con�gurable certi�cate validator VCA for abstract
domain DCA enhanced with property automaton A = (Q, δ, q0, qerr), program P , initial
abstract state e0 = (e, q0) ∈ ECA , and partitioned certi�cate PCCA returns true, then the
set partsCA := {(reached′, reached′)} of partition elements is a safe overapproximation for
P , A, and Je0K.

Proof. See Appendix p. 265.

To prove soundness, the previous lemma is su�cient. Similar to the previous two con-
�gurable program certi�cation instances, we are not only interested in soundness. Addi-
tionally, the validation algorithm should accept valid partitioned certi�cates only. In the
proof, we again avoid to use the implicitly constructed extension of the set of partition
elements. Once more, we use the set of partition elements {(reached′, reached′)} instead.
Note that this is possible because when the validation algorithm returns true, it ensures
that the set of all boundary and partition nodes is equivalent with the set of partition
nodes. Now, we prove validity analogous to how we proved that a certi�cate constructed
from a well-formed ARG and a partition of a subset of the ARG nodes is valid. Based
on the previous lemma and the construction of reached′, we show that the partitioned
certi�cate can be extended to the safe overapproximation {(reached′, reached′)} s.t. the
extension ful�lls the other constraints required for a valid certi�cate.

Theorem 4.21. If Algorithm 5 started with con�gurable certi�cate validator VCA for
abstract domain DCA enhanced with property automaton A = (Q, δ, q0, qerr), program P ,
initial abstract state e0 = (e, q0) ∈ ECA , and partitioned certi�cate PCCA returns true,
then PCCA is valid for P , A, and Je0K.

Proof. Let reached′ be the reached set at the state of termination of Algorithm 5 and
PCCA = (partssub, n). Let partsCA := ∅ if partssub = ∅, partsCA := {(reached′, reached′)}
otherwise. From Lemma 4.20, {(reached′, reached′)} is a safe overapproximation for P ,
A, and Je0K. Due to Algorithm 5, partssub = ∅ implies reached′ = ∅. By de�nition, if
(∅, ∅) is a safe overapproximation for P , A, and Je0K, so is ∅. Thus, partsCA is a safe
overapproximation for P , A, and Je0K. Furthermore, if partssub = ∅, let m : partssub →
partsCA be arbitrary. If partssub 6= ∅, let m : partssub → partsCA be a total function
with m((pn, bn)) = (reached′, reached′) for all (pn, bn) ∈ partssub. By de�nition, m is
surjective. Since Algorithm 5 explores all partition elements (pn, bn) ∈ partssub, added
pn to reached in line 3 for each (pn, bn), and never removes a state from reached, we get
that ∀(pn, bn) ∈ partssub : pn ⊆ reached′. Due to line 12 and Algorithm 5 returning true,
∀(pn, bn) ∈ partssub : bn ⊆

⋃
(pn′,·)∈partssub

pn′ ⊆ reached′. Thus, ∀(pn, bn) ∈ partssub :

m((pn, bn)) = (pn′, bn′) =⇒ pn ⊆ pn′ ∧ bn ⊆ bn′. Since Algorithm 5 returns true,
reached′ =

⋃
(pn,·)∈partsCA

pn ≤ n. Hence, PCCA is valid for P , A, and Je0K.

Since valid partitioned certi�cates witness program safety, we easily conclude soundness.

Corollary 4.22 (Soundness). If Algorithm 5 started with con�gurable certi�cate valida-

tor VCA for abstract domain DCA enhanced with property automaton A = (Q, δ, q0, qerr),
program P , initial abstract state e0 = (e, q0) ∈ ECA , and partitioned certi�cate PCCA
returns true, then P |=Je0KCA A.

Proof. From the previous theorem, we know that PCCA is valid for P , A, and Je0K. Now,
Proposition 4.14 lets us conclude that P |=Je0KCA A.
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Now that we have shown the soundness property, we continue with the second property,
relative completeness. Relative completeness of the partitioning approach means that the
validation algorithm for partitioned certi�cates must return true if the producer sticks
to the certi�cate partitioning approach and the validation algorithm inspects the pro-
ducer's certi�cate � either a full, partitioned, a reduced, partitioned or a highly reduced,
partitioned certi�cate �, and the same program and the same set of initial states as the
producer. We examine relative completeness in two major steps. First, we prove ter-
mination of the validation algorithm. Second, we show that if the validation algorithm
terminates, it will return true.

The producer analysis, i.e., the CPA algorithm, may only terminate if the input pro-
gram is �nite. Since for any ARG its set of ARG nodes is �nite, we conclude from
the certi�cate construction process applied by a process conformant producer that the
constructed partitioned certi�cate is �nite. We only need to prove termination of the
validation algorithm when its input program and partitioned certi�cate are �nite. The
following lemma shows termination of the validation algorithm in this case.

Lemma 4.23 (Termination). Let VCA(cover) be a con�gurable certi�cate validator for
CPA CA and coverage check cover and program P = (L,GCFA, l0) be �nite. Then, Algo-

rithm 5 started with VCA(cover), P , initial abstract state e0 ∈ ECA , and �nite partitioned
certi�cate PCCA terminates.

Proof. See Appendix pp. 265 f.

Termination of the validation algorithm is guaranteed. Next, we examine whether the
validation algorithm indeed returns true. Four reasons exist why the validation algorithm
might not return true.

1. The initial abstract state is not covered by the partition nodes. Some relevant
program paths might be missed.

2. The size of reached is greater than n. The validation algorithm stopped before it
explored all relevant program paths.

3. Some abstract states in reached consider the automaton's error state. The program
may be unsafe.

4. The set of all boundary nodes is not a subset of the set of all partition nodes. Some
boundary nodes are not explored in other partitions. The state space exploration
could be incomplete.

Due to the construction of the producer's certi�cate, we know that the root node of the
producer's ARG is contained in one set of partition nodes and all boundary nodes occur in
a set of partition nodes. Thus, the fourth case can never become true. Furthermore, the
producer uses a well-formed ARG to construct its certi�cate. The rootedness property of
a well-formed ARG, the requirements on v, and the root node being part of the partition
nodes let us conclude that the partition nodes cover the initial abstract state used by
the producer. The consumer either uses the same or a less abstract initial abstract state.
The set of partition nodes also covers the consumer's initial abstract state. As already
discussed in the basic con�gurable program certi�cation approach, the consumer must
not use an arbitrary con�gurable certi�cate validator, but one that is derived from the
producer's con�guration and that uses a well-behaving coverage check. Since the coverage
check is well-behaving, the coverage check will detect that the consumer's initial abstract
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state is covered by the partition nodes. The �rst cause cannot occur. We only need to
examine the second and third cause. Similar to the certi�cate reduction approach, we
separately discuss the case of a highly reduced, partitioned certi�cate afterwards.

Since the producer uses a well-formed ARG RP
CA to construct his certi�cate, the set N

of ARG nodes is safe. Furthermore, the size of the set N of ARG nodes becomes the value
of n in the producer's certi�cate, |N | ≤ n. For the set N , the second and third cause do
not apply. We already discussed for our reduced certi�cation approach that we might not
be able to fully reconstruct the set of ARG nodes. Every reduced certi�cate certR(RP

CA) =
(CR

CA , |N |) can be transformed into a reduced, partitioned certi�cate ({(CR
CA , ∅)}, |N |) that

will be constructed by the producer if he considers the partition partition(CR
CA) = {CR

CA}.
If we combine reduction with partitioning, we also cannot always reconstruct the complete
set of ARG nodes. Reconsidering the second and third reason, we observe that they also
do not apply for any subset of N . When we can show that at line 12 the computed set
reached is a subset of N , we are almost done. To include the full, partitioned certi�cate,
the reduced, partitioned certi�cate, but also any certi�cate we obtain when we combine
our certi�cation approach with the Programs from Proofs approach, we want to prove
that reached is a subset of N for any partitioned certi�cate that is constructed from a
well-formed ARG and a partition of a subset of the ARG nodes that includes at least the
reduced node set. We claim that at line 12 reached will be a subset of the ARG nodes,
if the validation algorithm for partitioned certi�cates is started with such a certi�cate
plus a validation con�guration, initial abstract state, and �nite program that �ts to the
well-formed ARG used for certi�cate construction. Note that these condition are always
met when the producer and the consumer stick to the partitioning process and they check
the same program. The following lemma supports our claim about reached.

Lemma 4.24. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and
coverage check cover which is well-behaving, RP

CA = (N,GARG, root,Ncov) be an ARG
for �nite program P and CA, and RP

CA be well-formed for e ∈ ECA . Furthermore, let
NR(RP

CA) ⊆ Nsub ⊆ N and partition(Nsub) a partition of Nsub. If Algorithm 5 started

with CCV VCA(cover), program P , initial abstract state e0 v e, and partitioned certi�cate
certPC(partition(Nsub), RP

CA) from partition(Nsub) and RP
CA , then at line 12 reached ⊆ N .

Proof. See Appendix pp. 266 f.

Based on the previous lemma and our previous observations, we simply conclude that
the validation algorithm returns true whenever the validation algorithm for partitioned
certi�cates is started with a partitioned certi�cate from a well-formed ARG that considers
at least the reduced node set and with a validation con�guration, initial abstract state,
and �nite program that �ts to the well-formed ARG used for certi�cate construction.

Lemma 4.25. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and
coverage check cover which is well-behaving, RP

CA = (N,GARG, root,Ncov) be an ARG
for �nite program P and CA, and RP

CA be well-formed for e ∈ ECA . Furthermore, let
NR(RP

CA) ⊆ Nsub ⊆ N and partition(Nsub) a partition of Nsub. Algorithm 5 started

with CCV VCA(cover), program P , initial abstract state e0 v e, and partitioned certi�cate
certPC(partition(Nsub), RP

CA) from partition(Nsub) and RP
CA returns true.

Proof. See Appendix p. 267.

In principle, we showed relative completeness except for the special case of a highly re-
duced, partitioned certi�cate. We proposed highly reduced, partitioned certi�cates as a
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likely more compact alternative, which may only be used if the CPA's transfer relation
is monotonic. As discussed in the reduction approach, we must delete abstract states for
which only less abstract states can be recomputed if we want an alternative certi�cate
that contains less abstract states. Hence, we cannot ensure that we recompute a subset
of the ARG nodes. To exclude the second and third failure cause, we once again want to
show that the validation algorithm recomputes a set reached that is less abstract than the
set of ARG nodes and that is not larger than the set of ARG nodes. Thus, we explicitly
show that the second cause cannot become true. Based on the de�nition of v and the
fact that the set of ARG nodes in a well-formed ARG is safe, we can conclude that a set
that is less abstract than the set of ARG nodes is also safe. In case, we can show that
reached ful�lls the above requirements, the third cause does not apply, too. The next
lemma states that the validation algorithm guarantees the above requirements when the
validation algorithm is started with a highly reduced, partitioned certi�cate from a well-
formed ARG considering a CPA with a monotonic transfer relation, and with a validation
con�guration, initial abstract state, and �nite program that �ts to the well-formed ARG
used for certi�cate construction.

Lemma 4.26. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and cov-
erage check cover which is well-behaving, let transfer relation  CA be monotonic, RP

CA =
(N,GARG, root,Ncov) be an ARG for �nite program P and CA, and RP

CA be well-formed

for e ∈ ECA . If Algorithm 5 started with CCV VCA(cover), program P , initial abstract
state e0 v e, and highly reduced, partitioned certi�cate certPC(partition(NhR(RP

CA)), RP
CA)

from partition(NhR(RP
CA)) and RP

CA , then at line 12 reached v N and |reached| ≤ |N |.

Proof. See Appendix pp. 268 f.

Due to the previous lemma and our previous observations, we easily infer that the valida-
tion algorithm (Algorithm 5) returns true when the validation algorithm is started with
a highly reduced, partitioned certi�cate from a well-formed ARG for a CPA considering
a monotonic transfer relation and with a validation con�guration, initial abstract state,
and �nite program that �ts to the well-formed ARG used for certi�cate construction.

Lemma 4.27. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and cov-
erage check cover which is well-behaving, let transfer relation  CA be monotonic, RP

CA =
(N,GARG, root,Ncov) be an ARG for �nite program P and CA, and RP

CA be well-formed

for e ∈ ECA . Algorithm 5 started with CCV VCA(cover), program P , initial abstract
state e0 v e, and highly reduced, partitioned certi�cate certPC(partition(NhR(RP

CA)), RP
CA)

from partition(NhR(RP
CA)) and RP

CA returns true.

Proof. See Appendix p. 270.

The previous lemmas state that the partitioning approach is relatively complete whenever
the producer constructs full, partitioned or reduced, partitioned certi�cates, or highly
reduced, partitioned certi�cates and the transfer relation considered by the producer's
CPA is monotonic. We integrate the results of the lemmas in a single theorem, which
states relative completeness of our certi�cate partitioning approach.

Theorem 4.28 (Relative Completeness). Let VCA(cover) be a con�gurable certi�cate
validator for CPA CA and coverage check cover which is well-behaving. Furthermore,
let RP

CA = (N,GARG, root,Ncov) be an ARG for �nite program P and CA, and RP
CA be

well-formed for e ∈ ECA .
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1. Algorithm 5 started with CCV VCA(cover), program P , initial abstract state e0 v e,
and full, partitioned certPC(partition(N), RP

CA) or reduced, partitioned certi�cate
certPC(partition(NR(RP

CA)), RP
CA) returns true.

2. If the transfer relation  CA of CPA CA is monotonic, then Algorithm 5 started

with CCV VCA(cover), program P , initial abstract state e0 v e, and highly reduced,
partitioned certi�cate certPC(partition(NhR(RP

CA)), RP
CA) returns true.

Proof. The theorem directly follows from Lemma 4.25, the de�nition of full, partitioned
and reduced, partitioned certi�cates, and Lemma 4.27.

Our theorem of relative completeness still considers semi-automatic con�gurations for the
consumer analysis. The coverage check is not automatically derived and the consumer's
initial abstract state is not �xed. As before, the previous theorem reveals us when the
approach becomes fully automatic. Namely, the termination check operator used in the
producer con�guration must be a proper coverage check, i.e., it must be well-behaving,
and the consumer must reuse the producer's initial abstract state. The following corollary
states that these conditions are su�cient to get a fully automatic partitioning approach.

Corollary 4.29. Let CA be a CPA, VCA(stopCA) be a con�gurable certi�cate validator for
CPA CA and coverage check stopCA which is well-behaving, P be a program, and e0 ∈ ECA .
If Algorithm 2 started with CPA CA, initial abstract state e0, initial precision π0 ∈ ΠCA ,
and program P returns (true, ·, RP

CA),

1. then Algorithm 5 started with con�gurable certi�cate validator VCA(cover), pro-
gram P , initial abstract state e0, and full, partitioned certPC(partition(N), RP

CA)
or reduced, partitioned certi�cate certPC(partition(NR(RP

CA)), RP
CA) returns true.

2. and  CA is monotonic, then Algorithm 5 started with con�gurable certi�cate valida-

tor VCA(cover), program P , initial abstract state e0, and highly reduced, partitioned
certi�cate certPC(partition(NhR(RP

CA)), RP
CA) returns true.

Proof. From Corollary 3.3, we know that stopCA is a coverage check. Hence, VCA(stopCA)
is a CCV. From Proposition 2.8, we know that RP

CA is an ARG for P and CA which is
well-formed for e0. Since Algorithm 2 terminates, we conclude that P is �nite. Now, the
corollary follows from the previous theorem.

We assume that the producer constructs a highly reduced, partitioned certi�cate only
when the transfer relation used during veri�cation is monotonic. Thus, whenever the
producer successfully checks a program P using a CPA CA and a proper initial abstract
state e0, he can construct any of the three certi�cates which is appropriate and the con-
sumer validation started with one of these certi�cates, e0, and the CCV automatically
derived from CPA CA �nishes with outcome program is safe and can be executed. Again,
all results can easily be transferred to program safety. As before, we only need to ensure
that the producer and the consumer consider a proper initial abstract state that includes
all concrete states with a control state that refers to the initial program location. In
summary, no matter whether we solely use the second optimization or combine our two
optimizations the partitioning approach always ful�lls the requirements stated in the in-
troduction. The next section describes our experimental evaluation of our two, orthogonal
optimizations.

113



CHAPTER 4. OPTIMIZATION OF CONFIGURABLE PROGRAM CERTIFICATION

4.4 Evaluation

Up to now, we described the basic con�gurable certi�cation approach and several variants,
which should improve the basic approach. However, only the basic con�gurable certi�ca-
tion approach has already been evaluated. In this section, we carry on with our evaluation
of the con�gurable program certi�cation approach. We want to compare the di�erent vari-
ants of our con�gurable program certi�cation approach to �nd out which variant is best.
Furthermore, we would like to show that the variants discussed in this chapter improve on
the basic con�gurable program certi�cation. Additionally, we continue to study when our
con�gurable program certi�cation outperforms veri�cation (signi�cantly), especially con-
sidering the certi�cation techniques presented in this chapter. Finally, we want to check
our con�gurable program certi�cation approach against existing certi�cation approaches.
Before we examine these aspects, we �rst describe the evaluation setting.

4.4.1 Evaluation Setting

To examine our research questions, we reuse the veri�cation tasks and con�gurations
already known from the evaluation of the basic approach. Furthermore, for our validation
approaches we also reuse the validation con�gurations. In the following, we describe the
remaining components for our experiments: the certi�cates, the validation competitors,
and the experimental set up.

Certi�cate Generation For our evaluation, we generated for each tasks all �ve certi�-
cates considered in this chapter, namely a reduced certi�cate, a highly reduced certi�cate,
a full, partitioned certi�cate, a reduced, partitioned certi�cate, and a highly reduced,
partitioned certi�cate. In contrast to veri�cation (except for CEGAR model checking)
and the construction of the basic certi�cate, we require the ARG for the construction
of these �ve certi�cates. For each pair of veri�cation task and certi�cate type, we run
the veri�cation including ARG construction once and generate the respective certi�cate
afterwards.

As already mentioned, the implemented ARG (structure) deviates from our formaliza-
tion. Whenever certi�cate generation utilizes the covered node set Ncov, our implementa-
tion uses all ARG nodes with more than one incoming edge. For standard analyses, which
we use in our experiments, the two sets are identical.

To construct the three types of partitioned certi�cates, we must determine a partition
of the set of partition nodes �rst. Previously, we discussed how one can compute such a
partition. To get a good partition, we did a pre-evaluation based on the four di�erent parti-
tion element sizes 10, 100, 1000, and 10,000, and the three strategies greedy graph growing
(BEST_FIRST), Fiduccia und Mattheyses optimization (FM K-WAY), and multi level
partitioning considered in Henrik Bröcher's bachelor thesis [Brö16]. For pre-evaluation
the complete CPC process of a single tasks, i.e., veri�cation, proof generation, and proof
validation, is executed in one run of CPAchecker. Then, for each analysis con�guration
and certi�cate type we considered all pre-evaluation results of all programs for which all
combinations of partition element size and strategy �nished validation. Based on the val-
idation times, for each analysis con�guration and partitioned certi�cate type we selected
that combination that performed best w.r.t. the number of times the combination outper-
formed the others and the sum of all validation times. The results of this pre-evaluation
can be found in the appendix (see Tables B.2, B.3, B.4). When we failed to construct
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a certi�cate in 25 minutes with that combination, we generated the certi�cate with the
same partition element size but the random strategy.

Generally considering the time for certi�cate generation, we observed that the con-
struction of the full, partitioned certi�cate is most expensive and can take much longer
than veri�cation. At longest, its generation took about 1891 s which is maybe a bit too
much for the producer. We think the main reason is the computation of the partitioning.
On the one hand, the graphs for partitioning can become quite large. On the other hand,
the partitioning implementation has not been tuned for performance. In contrast, the
construction of the highly reduced certi�cate is with at most 162 s de�nitely feasible. Its
largest generation time is even lower than that of the basic approach. The construction
of reduced certi�cates and certi�cates for the combination of the two optimization ap-
proaches takes at most about 455 s. This worst time is signi�cantly higher than the one
for the highly reduced certi�cate. In case of the reduced certi�cate, the construction does
not only rely on structural information, but must also compute the transfer successors
and compare them with the ARG successors. In case of the (highly) reduced, partitioned
certi�cate, the partitioning is one factor. We already observed that partitioning can be
very costly. Additionally, like during the construction of the reduced certi�cate, during
the construction of the reduced, partitioned certi�cate also transfer successors must be
computed. However, generating a reduced certi�cate or a certi�cate for the combined
approach can still be expected of the producer.

Validation Competitors To �nd out whether our con�gurable program certi�cation
approach is also a practical alternative to existing con�gurable PCC approaches, we want
to compare it with existing techniques. Di�erent underlying veri�cation principles make
a comparison challenging. It is hard to detect if a performance di�erence is already
caused by the di�erence in veri�cation. Thus, we decided to restrict our comparison to
approaches that can deal with our veri�cation technique. Additionally, for some of our ab-
stract domains we are unaware of a straightforward translation to e.g. logic. A validation
competitor must store information as produced by our veri�cation. Based on these condi-
tions, we could compete with Abstraction-Carrying Code [APH05b], approaches storing a
subset of a �xpoint, a subset of abstract states, plus optionally some additional informa-
tion [Ros03, BJP06, BJT07, AMA07, AAPH06], an approach checking the conformance
of an ARG [HJMS03], and precision reuse [BLN+13].

We excluded Abstraction-Carrying Code [APH05b] because when transferred into our
framework it would be identical to our basic approach. Among the approaches storing
at least a subset of abstract states, we chose to compete with the idea presented in
lightweight bytecode veri�cation [Ros03]. This approach, we call it backwards strategy, is
easy to integrate. We do not need to guide the exploration during validation and we only
need to store a set of abstract states. In our implementation, we extended lightweight
bytecode veri�cation [Ros03] to arbitrary analyses types. Extending the idea to arbitrary
analyses types, we store all ARG nodes which can be reached via backward edges in the
ARG. For validation, we use a modi�ed version of the lightweight veri�cation algorithm,
Algorithm 1, which does not construct an ARG. Our modi�cation is restricted to the
�rst line in which we also add the certi�cate states to the reached set and the waitlist.
Technically, we also need to change the organization of the reached set from PARTITIONED

to LOCATIONMAPPED. Thus, we ensure that the termination check properly detects coverage
even when a state is covered by abstract states stored in the certi�cate.

We adapted the ARG validation suggested by Henzinger et al. [HJMS03] to deal with
arbitrary analyses, not only predicate model checking. Based on the idea of temporal

115



CHAPTER 4. OPTIMIZATION OF CONFIGURABLE PROGRAM CERTIFICATION

safety proofs [HNJ+02], we check that the root node covers the initial state. For each
ARG node, we compute the transfer successors and check if each such successor is covered
by the ARG successors that are reachable from the ARG node along edges labeled with
the same control-�ow edge used to compute the transfer successor. Finally, we check that
each ARG node is safe.

For the CEGAR model checking approaches we additionally compete with precision
reuse [BLN+13]. Precision reuse stores the abstraction level. Instead of iteratively com-
puting a suitable abstraction level, the veri�cation is started with the stored abstraction
level. Thus, precision reuse saves the iterative re�nement of the abstraction.

Experimental Set Up The execution set up also remains the same as in the evaluation
of the basic con�gurable program certi�cation technique. All experiments are executed
with Java HotSpot(TM) 64-Bit Server VM 1.8.0_101. Whenever our analyses rely on a
SMT solver, we use SMTInterpol [CHN12] version 2.1-238-g1f06d6a-comp. Our experi-
ments are performed with the benchmarking evaluation framework BenchExec [BLW15a]
on machines with Intel Xeon E5-2650 v2 CPUs at 2.6GHz and 135GB of RAM. We use
BenchExec to restrict each veri�cation task to 15GB of RAM and 15 minutes of CPU
time. Furthermore, for the competitive PCC approach based on ARG validation we in-
creased the stack size of the Java virtual machine from 1024 kB to 51200 kB to enable
ARG reading. As before, we use the software analysis tool CPAchecker in the version
available in the runtime_veri�cation branch6 revision 23042 and repeat each experiment
10 times. In the following, we study the average of these 10 repetitions.

After we know the evaluation setting, we continue to systematically study the results of
our experiments. First, we investigate which con�gurable program certi�cation technique
performs best. Then, we compare the best technique with veri�cation. Finally, we examine
if our best technique is competitive with the validation competitors presented above.

4.4.2 RQ 1: Which Reduced Certi�cate Should One Use?

During the presentation of the certi�cate reduction technique, we proposed an improve-
ment of the generated reduced certi�cate, the highly reduced certi�cate. Each analysis
with a monotonic transfer relation can make use of this improvement. Except for the
predicate analysis, all our analysis con�gurations ful�ll the requirement for the applica-
tion of the improvement. In the following, we want to use our analyses con�gurations to
study if the suggested improvement is really an improvement.

Remember that the improvement is to store a subset of the abstract states in the
reduced certi�cate. Obviously, the size of a highly reduced certi�cate is smaller than or
equal to the size of the reduced certi�cate. In practice, the highly reduced certi�cate is
typically smaller. For details, we refer the reader to Fig. B.3 in the appendix. This �gure
compares the number of abstract states7 stored in both types of certi�cates. Next, we
focus on less obvious results. We study the performance, validation time and memory
consumption, of both certi�cate validations.

Figure 4.2 contrasts the validation of the reduced certi�cate with the validation of
the highly reduced certi�cate. The left diagram sets the validation time of the reduced
certi�cate against the validation time of the highly reduced certi�cate. As always, the
validation times are given in seconds and describe the sum of the execution time of the

6https://svn.sosy-lab.org/software/cpachecker/branches/runtime_verification/
7The only elements that can cause the highly reduced certi�cate to be smaller than the reduced

certi�cate.
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Figure 4.2: Comparison of validation times and memory consumption measured for the
validation of reduced and highly reduced certi�cates

validation algorithm and the time for certi�cate reading. The right diagram depicts the
comparison of the memory consumption, the sum of used heap and non-heap in MB.

Looking at the left diagram of Fig. 4.2, which compares the validation times, we notice
that most of the data points are below the line. Hence, the validation of the highly reduced
certi�cate is often faster than the validation of the reduced certi�cate. Indeed, for 64%
of the validation tasks the validation of the highly reduced certi�cate took less time.
In total, the validation of the highly reduced certi�cate was about 14% faster than the
validation of the reduced certi�cate. At a �rst glance, reading those abstract states that
are more abstract than the transfer successor and that are not contained in Ncov is more
expensive than recomputing (sequences of) more precise abstract states. Reconsidering
our analysis con�gurations, we come to the conclusion that in most of the analyses the
reduced certi�cate contains more states because we failed to detect that the transfer
successor is identical with the ARG successor. The reason is that in our implementation
we use the termination check operator to detect identity, but remember that we must
adapt the termination check to properly deal with the abstract states of the callstack
CPA. Only in case of CEGAR model checking, abstract states are deleted that are more
abstract than the transfer successor. For these analyses, we observed that validation of
a highly reduced certi�cate is better in 84% of the validation tasks, but the complete
validation for those tasks was only 3% faster. The observation that reading additional
abstract states is more costly than recomputing more precise successors remains true.
However, the di�erence between the two variants is smaller.

Similar to the left diagram, most of the data points in the right diagram are below
the line, i.e., the validation of the highly reduced certi�cate often needs less memory
than the validation of the corresponding reduced certi�cate. We think that better perfor-
mance w.r.t. memory consumption is a direct implication of smaller certi�cates and faster
validation.

Due to certi�cate construction, the highly reduced certi�cate is always smaller. More-
over, the validation of the highly reduced certi�cate is never signi�cantly slower or con-
sumes much more memory than the validation of the corresponding reduced certi�cate.
In contrast, the validation of the highly reduced certi�cate often performs slightly better.
Whenever the highly reduced certi�cate validation is applicable (the transfer relation is
monotonic), the highly reduced certi�cate should be preferred to the reduced certi�cate.
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Figure 4.3: Comparison of validation times and memory consumption of the validation of
full, partitioned certi�cates and best certi�cates generated by the reduction approach

4.4.3 RQ 2: Which Optimization Approach is Better?

In this chapter, we discussed two orthogonal optimizations for the basic certi�cation ap-
proach, a reduction and a partitioning approach. Now, we would like to �nd out which of
these two approaches performs better. Since the SMT solver used in the predicate analysis
does not cope well with concurrent parsing and creation of new formulae, we use all our
previous tasks except for those relying on the predicate analysis to answer the previous
question. In more detail, for each task we compare the validation of the full, partitioned
certi�cate8 with that certi�cate variant of the reduction approach whose validation was
faster.

Recapturing the construction of both types of certi�cates, we know that the reduction
approaches store a subset of the ARG nodes plus a number and the partitioning approach
stores all ARG nodes, some even multiple times, plus a number. From a theoretical point
of view the reduction approach should generate the smaller certi�cates. Figure B.4 in the
appendix, which compares the number of states stored in the two types of certi�cates,
supports this theoretical observation. As in the previous section, we continue to compare
the performance.

Figure 4.3 presents two diagrams. The left diagram contrasts the validation times,
the time spans starting with certi�cate reading and ending after the validation algorithm
�nished, of the two optimization approaches. The right diagram relates the memory, heap
plus non-heap memory in MB, consumed during certi�cate validation.

First, let us inspect the left diagram, which compares the validation times. We observe
that some data points are below and others are above the line. Especially, the data
points far below the line are remarkable. In general, none of the approaches is always
better. However, for some tasks the partitioning approach signi�cantly outperforms the
reduction approach. Having a detailed look at our experimental results, we recognized that
a signi�cantly better performance of the partitioning approach can mainly be observed for
tasks related to reaching de�nition model checking. For these tasks, we determined that
the reduction approach still stores a lot more states than program locations exist, typically
at least 50-times as many and even up to 500-times as many. In contrast, the partitioning
approach stores 100 states per set of partition nodes. Due to the partition construction

8This is the certi�cate generated by the pure partitioning approach.
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strategy, we used the Fiduccia und Mattheyses approach to improve an initial partition
computed with greedy graph growing, it is unlikely that a partition element contains
many di�erent abstract states per program location. Often, the number of abstract states
considered in a call to the coverage check should be much smaller in the partitioning
approach. We think that this is the reason why the partitioning approach performs clearly
better. Studying our experimental results, we also tried to �nd out when which validation
approach is faster. We observed that for the di�erent analysis types between 52% to 61%
of the validation tasks were solved faster by the reduction approach. For example, the
reduction approach solved 61% of the model checking as well as of the CEGAR model
checking tasks faster. Since for the di�erent analysis types both approaches perform
almost equally well, we next investigate their behavior per analysis con�guration and
program class. Sometimes we could observe that one approach is more suitable for some
program classes or analysis con�gurations. For example, the partitioning approach seems
to be well-suited for sign model checking and Problem15 tasks of the ECA category. In
contrast, the reduction approach performs well with the uninitialized variables domain
and the elevator tasks from the ProductLine category. Generally, the performance of the
approaches depends on the analysis con�guration and the program.

Next, we study the di�erence in memory consumption depicted in the right diagram.
Like in the left diagram, there is no clear tendency for memory consumption. Sometimes,
the data points are below the line, i.e., the partitioning approach requires less memory.
Similar to the validation times, sometimes it requires much less memory. This is the case
when validation with the partitioning approach is much faster. We think that the more
expensive coverage check, which has to consider a lot more abstract states per call in the
reduction approach, is responsible for the larger memory consumption of the reduction
approach. However, much more often the data points are above the line. The reduction
approach is faster. Studying the concrete numbers, we found out that in about 80% of
the tasks the reduction approach requires less memory.

Summing up, the reduction approach generates smaller certi�cates and often requires
less memory for validation. However, we observed that certi�cate validation bene�ts
signi�cantly from the partitioning approach whenever the reduction approach fails to
store only a handful of abstract states per program location. This is the only case in
which one should use the partitioning approach. In all other cases, the performance of
the reduction approach is better or almost equally good. Thus, one should prefer the
reduction approach.

4.4.4 RQ 3: Do We Pro�t from a Combination?

Next to the two optimization approaches examined in the previous sections, we also sug-
gested to combine these two, orthogonal approaches. In this section, we want to �nd out
whether the combined approach improves on both optimization approaches. To investi-
gate this question, we use the same tasks as in the previous section and the following
certi�cates. For the pure optimization approaches, we selected for each task that certi�-
cate among the reduced, the highly reduced, and the full, partitioned certi�cate whose
validation was fastest. During construction of the certi�cate for the combined approach,
we used the highly reduced node set for all tasks of an analysis whenever for the tasks of
that analysis the validation of the highly reduced certi�cate was more often faster than
the validation of the corresponding reduced certi�cate. Otherwise, we constructed a re-
duced, partitioned certi�cate. In the following, we use these certi�cates to evaluate if the
validation of the combined certi�cate performs better, i.e., is faster and consumes less
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Figure 4.4: Comparing the validation time of the fastest, optimized con�gurable program
certi�cate approach with the combination of the two optimization approaches (left), as
well as the size of the validated certi�cates (right)

memory than the validation of the corresponding certi�cate that was selected to represent
the pure optimization approaches. Additionally, we compare their sizes in terms of stored
abstract states.

Figure 4.4 presents two diagrams. The left diagram relates the certi�cate validation
time. The validation times are given in seconds. Certi�cate sizes are compared in the
right diagram.

Starting with the left diagram of Fig. 4.4, we observe that many data points are closely
below the line. It seems that the validation of the combined certi�cate slightly improves
on the validation of the best optimization approach. Indeed, we counted that per analysis
type the combined certi�cate validation is faster in 77% to 91% of the tasks. Furthermore,
over the sum of all validation tasks the combined certi�cate validation was about 9%
faster. While for the sum of all intermediate analysis tasks we nearly do not observe
any improvement, for the complete set of CEGAR model checking tasks we calculated
an improvement of about 27%. Next, we continue with the memory consumed during
certi�cate validation.

The diagram for the memory consumption (see Fig. B.5 in the appendix) looks quite
similar to the diagram for the validation times. It indicates that often the combination of
the approaches consumes less memory, i.e., it uses fewer heap or non-heap memory during
certi�cate validation. However, a more detailed inspection revealed that only in about
48% of the tasks the memory consumptions of the combined approach is smaller or equal.
Typically, memory consumption is smaller when the combined approach competes with
the pure partitioning approach.

In contrast to memory consumption, the results for the certi�cate size in terms of the
number of stored abstract states already look more diverse. On the one hand, there is a
large number of tasks in the right diagram of Fig. 4.4 for which the combined approach
stores more abstract states. These are those tasks in which we check the combined ap-
proach against the reduction approach. Hence, the certi�cate of the combined approach
stores the abstract states of the reduced certi�cate plus additional boundary nodes. In
case the combined approach uses a partition of size one, this can be the case when the set
of partition nodes is rather small, the certi�cate sizes are identical. On the other hand,
we also observe a large set of data points that are below the line. The certi�cate of the
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Figure 4.5: Comparison of the validation time and memory consumption of the optimized
certi�cate for which validation is fastest with the validation time and memory consumption
of the basic certi�cate validation

combined approach contains less abstract states, it is smaller. Typically, these are all
tasks in which the combined certi�cate is compared with the full, partitioned certi�cate.

In a nutshell, the combined certi�cate is always bigger than the certi�cate of the reduc-
tion approach, but smaller than the certi�cate of the partitioning approach. Furthermore,
memory consumption is mainly smaller when we compare the combined approach with
the partitioning approach. In contrast, the combined optimization speeds up validation in
many cases. Hence, one should de�nitely use the combined approach whenever one would
prefer the partitioning approach over the reduction approach. For all remaining cases, the
combined approach is worth a try when the main goal is a fast validation.

4.4.5 RQ 4: Do Our Optimizations Outperform the Basic Ap-

proach?

The goal of this chapter was to develop variants of the basic con�gurable program cer-
ti�cation approach that perform better, i.e., validate faster, require less memory during
validation, and generate smaller certi�cates. In this section, we want to check whether
we have achieved this goal. Since we are mainly interested in a fast validation, for each
task we compare the basic certi�cate validation with that optimized certi�cate validation
that was fastest for that speci�c task. Note that for the predicate analysis we always use
the validation of the reduced certi�cate, the only optimized validation that works with
the predicate analysis. In the following, we use the three criteria validation time, mem-
ory consumption during validation, and certi�cate size for performance comparison. As
always, validation time describes the time duration from the start of certi�cate reading
until the end of the validation algorithm and the memory consumption is the sum of used
heap and non-heap memory. To relate the certi�cate sizes, we use the number of abstract
states stored in the certi�cates because the abstract states are the main ingredients of
each certi�cate and in contrast to the �le size this metric is not a�ected by compression.

Figure 4.5 contains two diagrams. The left diagram contrasts the validation time of
the basic validation with the fastest, optimized validation. Both validation times are given
in seconds. The second performance measure, memory consumption in MB, is compared
in the right diagram.
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First, let us look at the comparison of the validation times. We observe that may data
points in the left diagram are below the line. Indeed, in 95% (14851 tasks) the optimization
is faster. Except for the predicate analysis, which uses an expensively extended coverage
check, the optimization approach never times out. Apparently, the predicate analysis is
also responsible for the new timeouts, the data points at the right of the left diagram
in Fig. 4.5. Moreover, we found out that the optimization becomes more e�cient when
the underlying analysis type is more precise. For example, the optimization seems to
improve worst for the data�ow analysis tasks. In contrast, many of the data points that
are signi�cantly below the line belong to (CEGAR) model checking tasks. For (CEGAR)
model checking, for more than 94% of the tasks the validation with the optimized approach
is at least 10% faster than the validation performed by the basic approach. Additionally,
in 9% of the model checking tasks we detected that the validation of the best optimization
approach is at least 10-times faster than the validation of the basic approach. The reason
for the better performance is that for the coarsest analyses we mostly pro�t from the
reduction of the time solely spent with reading the certi�cate. In contrast, for more
precise analysis our optimizations also improve on the coverage check, because it restricts
the number of covering candidates. However, for the data�ow analyses we always have
at most one candidate per program location. The more precise an analysis is typically
the higher the number of explored abstract states and often also the lower the number of
explored states that cover more than one abstract successor, i.e., the smaller the size of
Ncov, are. Thus, more precise analyses seem to have more optimization potential.

Next, we continue with the memory consumption. Inspecting the top right diagram in
Fig. 4.5, we see that often the data points are below the line. In numbers, in 72% or 11185
of the tasks memory consumption of the optimized approach is lower. Furthermore, the
memory consumption is almost never much larger than in the basic approach; in 15480
cases (99%) it is less than 10% larger. Rarely, when the best optimization uses the full,
partitioned certi�cate, we observe a signi�cant increase. In these cases, a fast validation
comes at the price of more memory usage. We found out that the reduction approaches
would have used less memory. However, remembering that the reduction and partitioning
approach performs almost equally well, we conclude that these are exceptions and the
combined optimization performs well, too.

At last, we study the development of the certi�cate size. Figure 4.6 relates the number
of abstract states stored in the basic certi�cate to the number of abstract states stored in
that optimized certi�cate whose validation is fastest.

The diagram in Fig. 4.6 indicates that the optimized certi�cate is often smaller than
the basic certi�cate. We found out that in 14727 cases (94%) the optimized certi�cate
requires less abstract states. Typically, the optimized certi�cate contains at most 30% of
the states of the basic certi�cate, i.e., the data points are below the dashed line. In 856 of
the cases (about 5%), the optimized certi�cate stores more states, but it stores at most
1.5 times as many abstract states as the basic certi�cate. Likely, the 856 cases are those
in which the full, partitioned certi�cate is validated fastest. However, since the reduction
and partitioning approach perform equally well, more than 856 tasks must be validated
by the partitioning approach. We conclude that most likely for the other tasks validated
by the partitioning technique the combination of the reduction and partitioning approach
is used. Thus, the certi�cate sizes of the combined approach are also much better.

For most of the analysis tasks, we achieved our goal. Faster validation and a reduction
of the certi�cate size are easier to achieve than a reduction of the memory consumption.
Sometimes, a faster validation comes at the cost of larger certi�cates or higher memory
consumption.
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Figure 4.6: Comparing the number of abstract states stored in the basic certi�cate and
in that optimized certi�cate whose validation is fastest

4.4.6 RQ 5: Do Our Optimizations Lead to a Success Story of

Con�gurable Program Certi�cation?

An improvement over the basic approach does not automatically guarantee that the op-
timizations perform better than veri�cation. Remember that we observed that the val-
idation of the basic certi�cate is often more costly than veri�cation. However, one im-
portant aspect for the success of our con�gurable certi�cation approach is that certi�cate
validation signi�cantly outperforms veri�cation. For practical applicability, it is further-
more important that certi�cate validation still signi�cantly outperforms veri�cation when
considering the total times including set up or program parsing times. Additionally, cer-
ti�cates should not become too large. Ideally, their size is in the order of magnitude of
the program size or below.

First, let us compare the performance of the veri�cation with the validation performed
by the optimized approaches. For each task, we compare the veri�cation with that op-
timization approach whose certi�cate was validated fastest for that particular task. We
are most interested in execution time. Table 4.1 shows the best speed-up, i.e., the largest
value for veri�cation time divided by validation time, achieved for every analysis con�gu-
ration (CPA). For comparison, the second line depicts the best speed-up achieved for the
basic approach.

First, we observe that now for every CPA the certi�cate validation can be faster than
veri�cation. Furthermore, more CPAs achieved a signi�cant speed-up (≥ 10). Instead of
22 tasks, with optimizations 104 tasks achieved a speed-up of at least 10.9 By far, the
largest increase of such tasks can be observed for CEGAR model checking. Generally,
we recognized that the number of tasks that achieved such a signi�cant speed after opti-
mization is larger for more precise analyses. This �ts to the observation that the largest
speed-up of most of the non-data�ow analyses is larger than 10. Next, we take a deeper
look at all tasks.

Figure 4.7 relates the execution times of veri�cation and validation. The left diagram
compares the veri�cation time, the time required for the CPA algorithm, with the vali-
dation time, the duration from the beginning of certi�cate reading until the end of the

9Note that for these number we only considered tasks whose veri�cation con�guration was at least
�ow-sensitive. These are the tasks that our optimization approaches aim to improve.
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Table 4.1: Per analysis con�guration best speed-up, verification time
validation time , achieved by the

optimization approaches and the basic approach

Data�ow Analysis
I R S U V SI VR

2419.53 2.73 2.20 1.31 2.72 2653.68 2.27
2071.32 1.56 1.38 0.98 1.41 2392.25 1.46

Intermediate
SI VR

26.54 416.59
11.98 5.32

Model Checking
I R S U V SI VR

18.09 38.46 68.82 1.14 211.28 36.76 213.17
1.22 1.27 1.18 0.86 2.62 1.41 2.57

CEGAR Model Checking
O P V

25.62 2.68 978.93
16.61 2.62 510.59

respective validation algorithm. In contrast, the right diagram considers the total times,
the time it takes to run the analysis tool either in veri�cation or validation mode. Thus,
total times also include set up times like program parsing or analysis set up. In both
diagrams, times are given in seconds.

Looking at the left diagram in Fig. 4.7, many data points are below the line. For these
data points, validation outperforms veri�cation. It seems that validation outperforms
veri�cation much more often than it did in the basic approach. From a detailed inspection
of our results, we know that for 78% of the tasks validation is faster than veri�cation.
When looking at the sum of all times of one analysis, except for the predicate analysis and
the two analyses considering the uninitialized variables domain, the sums of the validation
times are smaller than the sums of veri�cation times.

Still, validation is not always faster and especially not signi�cantly faster. Thus, we
discuss how one could predict the validation speed-up based on the observations during
veri�cation. Unfortunately, for the intermediate tasks we failed to detect a predictor.

Like in the basic approach, for data�ow analyses we computed a correlation of 0.999
with the relation of number of transfer successors computed during veri�cation to the
�nal size of the set of ARG nodes. Multiplying the fraction with a factor of 0.45 is good
underapproximation of the speed-up. Thus, the most important factors for data�ow anal-
yses are the number of merges and how many recomputations they cause. Additionally,
the veri�cation should take at least 0.1s to achieve a speed-up of at least one.

For model checking tasks, we observed a correlation of 0.961 with the relation of
analysis (veri�cation) time to the time for transfer successor computation. Multiplying the
analysis time with 0.33 and dividing it by the time for the transfer successor computation
is a reliable underapproximation of the speed-up for our evaluation results. Moreover,
we observed that for a speed-up of at least 1 the veri�cation must take more than 0.25 s.
Note that when a veri�cation task is faster than 0.25 s, it is su�cient for the prediction
to multiply the analysis time with the factor 0.5.
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Figure 4.7: Per task comparing the execution times of the fastest certi�cate validation
with veri�cation: concept/algorithm (left) and total tool times (right)

Finally, we discuss the predictor for CEGAR model checking tasks. We were not
able to �nd a predictor for the predicate analysis. The predictor applicable to the other
two analyses does not �t. Once more, we think the reason is that we must adapt the
termination check not only for the callstack CPA, but also for the predicate component.
For the octagon and the value analysis, we noticed that a speed-up above 1 can only
be achieved when the veri�cation took at least 0.13 s. Furthermore, we recognized a
correlation of 0.939 to the following expression #transfer successors

|N | + analysis time
transfer successor time .

To get a reliable underapproximation of the speed-up, one should multiply the previous
expression with 0.05. Note that in contrast to the basic approach, the speed-up does not
only depend on the costs caused by re�nement, but also on how much one can bene�t from
an improvement of the coverage check. The last aspect is the main reason why validation
for model checking improved well.

In reality, users do not only observe validation and veri�cation times, respectively.
Normally, they notice the total time for running the tool including program parsing or
setting up of the analysis. Now, we want to examine whether users will recognize a di�er-
ence between our optimized validation and veri�cation. Looking at the right diagram in
Fig. 4.7, we observe that many data points are below the line. Even when we consider the
complete running time of the software analysis tool CPAchecker, certi�cate validation
regularly outperforms veri�cation. Comparing the right diagram in Fig. 4.7 with the left
diagram, we see that the total times are larger than 1 s, while veri�cation and validation
times can be signi�cantly below 1 s. Thus, it is no surprise that in the lower left corner
of the right diagram validation is no longer signi�cantly faster than veri�cation. For the
tasks in the lower left corner of the left diagram, the set up time becomes the larger part
and nearly destroys the advantage that validation is faster than veri�cation. Furthermore,
as the two diagrams indicate, when total veri�cation took at least 1 s, the total validation
time remains faster than the total veri�cation time for all cases in which the validation
time already outperformed the veri�cation time.

Next, we look at the memory consumption of the optimized certi�cate validation and
veri�cation. Figure 4.8 depicts the comparison of the memory consumption of the fastest,
optimized validation with veri�cation. Memory consumption represents the sum of heap
and non-heap memory used during validation and veri�cation, respectively, and is given
in MB.
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Figure 4.8: Comparison of the memory consumption, used heap plus non-heap memory,
of veri�cation and validation of that optimized certi�cate whose validation is fastest

Figure 4.9: Comparing the number of states stored in the optimized certi�cate whose
validation is fasted with the number of program locations (left) and relating the �le size
of that certi�cate (zip compressed) to the �le size of the uncompressed program (right)

Looking at the diagram in Fig. 4.8 we see that most of the data points are below
the line. Often, the memory consumption of our optimized validation is lower than the
memory consumption of veri�cation. Inspecting our results in detail, we observe that
compared to the basic approach especially for the intermediate and model checking tasks
the memory consumption of the validation is much more often smaller than the mem-
ory consumption of the veri�cation. Furthermore, we notice that the complete memory
consumption for all tasks is now lower than the corresponding memory consumption for
veri�cation. However, mostly the memory consumption of the validation is smaller when
validation is faster than veri�cation, but it is not always smaller when validation is faster.

Now, we come to the certi�cate size. As before, we consider two metrics: number of
elements and �le size. Figure 4.9 shows the the comparison of the certi�cate size and the
program size based on these two metrics. The left diagram relates the number of abstract
states stored in that optimized certi�cate whose validation was fastest to the respective
number of program locations. Furthermore, the right diagram compares the �le size of
that certi�cate with the �le size of the program.

126



4.4. EVALUATION

Despite our optimization, we observe that many data points are still signi�cantly above
the line, i.e., the certi�cate is much larger than the program. However, compared to the
basic approach we notice an improvement. The decrease in the number of stored abstract
states, which we often observed when comparing the basic and optimized certi�cates, is
the reason why the number of abstract states stored in the optimized certi�cate is much
more often smaller than the number of program locations.

In sum, certi�cate sizes are still an issue for many tasks. Furthermore, we seldomly
observed a signi�cant performance improvement. However, signi�cant performance im-
provements are achieved for many di�erent CPAs � a proof that our framework is general.
Moreover, often our optimized validation is at least a little better than veri�cation. Ad-
ditionally, we described how to use the veri�cation to predict the validation performance.

4.4.7 RQ 6: Does Parallelization Help To Further Improve Vali-

dation?

Despite optimization, the performance of the best optimization approach is not always
better, e.g., faster than veri�cation. We already studied parallelization of certi�cate vali-
dation for the basic approach and found out that it improved validation time well. Now,
we would like to know if we can experience a similar e�ect for our optimized approaches.
Looking at the two validation algorithms for the optimized approaches, we observe that
the loops are again good candidates for parallelization. Similar to the basic approach, we
parallelize the outermost loop, the while loop, of Algorithm 4, the validation algorithm
for reduced certi�cates. Since we require that also multiple partition elements can be read
in parallel when we successfully want to parallelize the outermost loop in the validation
algorithm for partitioned certi�cates, we decided to parallelize the inspection of a single
partition element. Thus, our implementation parallelizes the while loop of Algorithm 5.

Like in the evaluation of the basic approach, we considered only tasks related to the
reaching de�nition data�ow analysis and reaching de�nition model checking. Again, we
run our experiments on an Intel Core i5-2400 CPU at 3.10GHz utilizing 2 CPU cores
for sequential validation and 4 CPU cores for parallel validation, while three threads are
exclusively used for the parallelization of the validation algorithm. Note that we had to
�x a bug in the parallel validation of partitioned certi�cates. Thus, for this evaluation
we used revision 23749 of the runtime_veri�cation branch of CPAchecker. In the
following, we compare the results of a single experimental execution for each of the four
optimization approaches excluding tasks for which the sequential validation already timed
out.

Figure 4.10 compares the sequential validation time and the parallel validation time
for all optimization approaches. The top diagrams compare the validation times for the
reduced (left) and the highly reduced certi�cate (right). At the bottom, the left diagram
considers the full, partitioned certi�cates and the right diagram considers the certi�cates
generated for the combination of the two optimization approaches. In all four diagrams,
the validation times are given in seconds.

Looking at Fig. 4.10, we observe that in all four diagrams the data points are never
above the upper line and mostly below that line. Parallelization likely improves the
validation time. Additionally, we see that the two partitioning approaches, considered
in the bottom diagrams, perform worse than the reduction approach, especially when
validation takes longer (validation times become larger). We think the reason is that
the number of partition elements in the corresponding certi�cates is high, often several
thousands, and the partition elements are small. Each set of partition nodes was restricted
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Figure 4.10: Comparing the validation times of sequential validation and parallel valida-
tion with three threads for all four optimizations. The top left diagram shows the results
for the reduced certi�cates, the top right for the highly reduced certi�cates, the bottom
left for the full, partitioned certi�cate, and the bottom right for the combination of the
two optimization approaches.

to contain no more than 100 states. Thus, when validation is parallelized, a partition
element might be checked faster, but the validation must possibly wait until the next
partition element is read. Looking at the details, we observed that for all four optimization
approaches parallelization again increased the number of tasks for which validation is faster
than veri�cation. For the data�ow analysis between 245 and 445 additional tasks and for
model checking between 24 and 92 additional tasks are faster.

Parallelization improves validation, but moderate parallelization is not enough for
many tasks to signi�cantly outperform veri�cation. Furthermore, depending on the degree
of parallelization di�erent partitions should be used to build partitioned certi�cates.

4.4.8 RQ 7: Is Our Certi�cation Approach Competitive?

So far, we compared our con�gurable certi�cation approaches among each other. In this
section, we want to �nd out if our con�gurable certi�cation approach can compete with
existing certi�cation approaches. To this end, we check our CPC approach against the
three competitors, precision reuse, backwards strategy, and ARG validation, introduced
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Figure 4.11: Comparing the validation time and the certi�cate size of the fastest, optimized
CPC validation with regression veri�cation.

in the experimental set up part. For each veri�cation task (combination of program and
analysis con�guration), we compare the performance of all suitable competitors with the
performance of the optimized CPC approach with the fastest validation time for that
task. As before, we use the three criteria validation time, memory consumption during
validation, and certi�cate size for performance comparison. Still, validation time is the
sum of the execution time of the validation algorithm and the time for certi�cate reading
and the memory consumption is the sum of used heap and non-heap memory.

The �rst competitor we look at is regression veri�cation (RV) [BLN+13]. Remember
that regression veri�cation is targeted on analyses that adjust their precision during ver-
i�cation. Most of our analysis con�gurations do not adjust precisions. In these cases,
a comparison with regression veri�cation is identical to a comparison with the analysis
itself, thus useless. That is why we restrict our comparison to the three CEGAR model
checking analysis octagon O, predicate P, and value analysis V � the only analyses that
adjust precisions. Figure 4.11 shows the comparison of the validation time and the certi�-
cate size. The comparison of the memory consumption can be found in the appendix (see
Fig. B.6). The diagram on the left of Fig. 4.11 displays the comparison of the validation
time in seconds. Triangles represent the results for predicate analysis tasks and the crosses
refer to value or octagon analysis tasks. On the right of Fig. 4.11, the comparison of the
�le sizes in kB is depicted.

Let us �rst look at the validation times (left diagram). We observe that almost all
triangles are below the line. This means that for predicate analysis tasks regression
veri�cation is faster than our suggested con�gurable program certi�cation. The reason
is that regression veri�cation uses the standard termination check operator while our
approach must use a well-behaving extension. In comparison to the standard operator,
the extension is more expensive, e.g., it calls the SMT solver much more often. Looking
at the crosses, which represent the results for the other two analyses octagon O and
value analysis V that do not require a costly well-behaving extension, we observe that
regression veri�cation is only faster when validation is fast (simple). If validation takes
more than 0.3 s, our CPC approach will already sometimes become better, and with more
than 2 s, it will almost always be better. Note that a similar observation can be made for
the comparison of the memory consumption (see Fig. B.6 in the appendix). Regression
veri�cation beats our approach for predicate analysis and is equally good or worse for the
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other two analyses.
Next, we study the last criterion certi�cate size. Since the structure and the infor-

mation stored in the certi�cates is incomparable, regression veri�cation stores a precision
and CPC stores abstract states, we decided to compare the �le sizes of the certi�cates.
Note that such a comparison is disadvantageous for the regression veri�cation because
in contrast to the implemented regression veri�cation we compress our certi�cates. Still,
we observe that on the right diagram of Fig. 4.11, almost all crosses are below the line.
Certi�cates for regression veri�cation are smaller.

Summing up, although our implementation compresses all CPC certi�cates, the cer-
ti�cates obtained by regression veri�cation are much smaller. Furthermore, for predicate
analysis regression veri�cation performs better in terms of time and memory. However,
in all cases in which the validation con�guration can be derived automatically, i.e., no
well-behaving extensions are required, con�gurable program certi�cation is often faster or
uses less memory. Additionally, any CPC validation approach requires only a subset of
the analysis' operators, while regression veri�cation uses all of them. Hence, the trusted
computing base is larger for regression veri�cation.

Next, we compare our con�gurable certi�cation with a certi�cation strategy [Ros03],
the backwards strategy, typically applied in the certi�cation of data�ow analyses. Orig-
inally, such certi�cation approaches stored all abstract states associated with program
locations reachable via backward edges. We migrated this idea to arbitrary analyses and
store all nodes in the ARG that are reachable via backwards edges. Note that we exclude
the predicate analysis from the subsequent comparison because the backwards strategy
neither stores precisions nor all states for which a predicate abstraction is computed.
Hence, a recomputed predicate abstraction is likely too coarse and lets the backwards
strategy fail. Figure 4.12 shows the diagrams for the comparison of validation time and
memory consumption, given in seconds and MB, respectively. On the left of Fig. 4.12 we
see the results for all data�ow analysis tasks. The results for the remaining results are
shown on the right. The comparison of the certi�cate size10 can be found in the appendix
(see Fig. B.7).

First, let us consider the diagrams on the left of Fig. 4.12, which depict the compar-
ison of the data�ow analysis tasks. Inspecting the upper diagram, which compares the
validation times, we notice that the validation times are quite similar. Sometimes, our
approach is faster and more often the backwards strategy is faster, but mostly less than
3-times faster. Similarly, the memory consumption of the backwards strategy is most of
the time lower. We think that the reasons are as follows. In the implementation, we
restrict the termination check to states with equal locations. Like in the data�ow analy-
sis, during validation there is at most one abstract state per program location. In each
call, the termination check considers at most one abstract state, which is simple and fast.
Hence, it is di�cult and sometimes even impossible for our certi�cation approaches to
improve the termination check. Furthermore, no matter what optimization approach we
use, certi�cate construction together with ARG construction ensure that the certi�cates
will always contain all abstract states stored by the backwards strategy. Additionally,
our certi�cates also store all states on join locations. Thus, our certi�cates are typically
larger. Since reading is slower than computation, it is faster to compute the merge on
join locations than reading the merged state.

Now, we come to the remaining, non-data�ow analyses. These results are depicted on
the right of Fig. 4.12. We observe that many of the data points in the upper right �gure

10Since both approaches mainly store abstract states, we decided to compare the number of stored
states, counting states multiple times if stored multiple times.
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Figure 4.12: Comparing the time and memory consumption of the fastest, optimized
CPC validation with the validation of backwards certi�cates. Comparison is split into the
validation of certi�cates resulting from data�ow analyses (left) and certi�cates resulting
from the remaining analyses (right).

are above the line, i.e., our con�gurable program certi�cation often performs better than
the backwards strategy. In many cases, it performs even much better. For the memory
consumption, we can make a similar observation. To our mind, the main reason is that in
those more precise analyses multiple abstract states per program location exist. Tens and
even several hundreds of states per location are not uncommon. Our approaches restrict
the number of states considered by the coverage check. Many of them are not stored
or do not occur in the same partition. In contrast, the backwards strategy must always
consider all states of a location during the termination check, no matter if they are stored
or recomputed.

As already explained, our optimized certi�cates always store at least all states also
stored in the backwards strategy. Thus, it should be obvious that the certi�cate size of
the backwards strategy is smaller or equal than the size of our optimized certi�cate. In
reality, they are always smaller. For more details we refer to Fig. B.7 in the appendix.

All in all, storing only those ARG nodes that are successors of a backward edge in
the ARG, as the backwards strategy does, results in smaller certi�cates. Moreover, the
backwards strategy seems to be well-suited for the certi�cation of data�ow analysis results,
its original purpose. Often, it is a little faster and uses less memory than our best,
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Figure 4.13: Comparison of the fastest, optimized CPC validation time with the validation
time for the abstract reachability graph.

optimized CPC approach. In contrast, for more precise analyses than data�ow analyses
the backwards strategy is typically outperformed by our optimized CPC approach. Finally,
we like to mention that the backwards strategy has the same drawback w.r.t. the trusted
computing base as regression veri�cation, the competitor considered before the backwards
strategy.

We �nish with a comparison of our approach and ARG validation. Following the idea
of Henzinger et al. [HNJ+02, HJMS03], ARG validation is similar to checking that the
ARG is well-formed. ARG validation is the only competitor that can also construct and
validate certi�cates for all analysis con�gurations. Figure 4.13 shows the comparison of
the validation times in seconds. The omparison of memory consumption and certi�cate
size can be found in the appendix (see Fig. B.8). Due to the structural di�erence of the
ARG and our certi�cates, we again compare the �le sizes of the certi�cates. However, this
time both the ARG and our certi�cates are compressed.

Looking at Fig. 4.13, we observe that the crosses are mostly above the line, i.e., our
optimized certi�cate validation is typically faster. One reason is that the computation of
transfer successors is more costly since it must also bypass those components responsible
for ARG construction11. Another reason is that ARG reading takes longer than reading
one of our certi�cates, which store only a part of the ARG. Thus, it should be of no
surprise that the results of the memory comparison and the certi�cate size comparison
with the ARG size are similar to the time comparison. First, we already mentioned in the
description of the experimental set up that for ARG validation, especially reading ARGs,
we had to increase the stack size of the JVM. Second, for ARG validation we keep the
complete ARG in main memory and not only its nodes. Third, to store the ARG, we
do not only need to store its nodes, but also its edges. Hence, for ARG validation more
information than in the basic CPC approach must be saved and we already know that
the certi�cate of the basic CPC approach is often bigger than the certi�cate of the best,
optimized CPC approach. In summary, our optimized CPC approach outperforms ARG
validation in all categories.

11In the software analysis tool CPAchecker, ARG construction is realized with an ARG CPA.

132



4.5. DISCUSSION

4.4.9 Summary

In practice, the highly reduced certi�cate is better than the reduced certi�cate w.r.t. val-
idation performance and certi�cate size. Similarly, the combination of both approaches
is typically better than the full, partitioned certi�cate. While the highly reduced certi�-
cates are smallest, the validation in the combined approach is often faster. Especially,
when the highly reduced node set still contains much more abstract states than program
locations exist, the combined approach, but also pure partitioning, clearly outperforms
highly reduced certi�cate validation. Although parallelization improves validation, it is
not a break-through to achieve signi�cant improvements. Furthermore, parallelization of
the reduction approaches is more e�ective. Nevertheless, our optimization approaches
improved the basic approach. This improvement is also observable when comparing the
optimization approaches with veri�cation. For example, signi�cant improvements occur
more often, but not frequently. At least, we are able to predict the performance of the
validation based on the veri�cation. Unfortunately, despite our optimizations certi�cates
are still large. Finally, certi�cates of two competitors are smaller and sometimes the val-
idation of the competitors is better for speci�c instances. Generally, CPC competes well
with the competitors and seems to be more appropriate when considering the complete
set of tasks.

4.5 Discussion

Our optimization approaches are generic, too, but they are tailored to ARGs with more
than one node. Applying them to �ow-insensitive analyses makes not much sense. Any-
way, the trusted computing base remains similar to the basic CPC. Only the validation
algorithms, especially the validation algorithm for partitioned certi�cates, are more com-
plex. Moreover, we also proved soundness and relative completeness. Relative complete-
ness w.r.t. the validation of highly reduced and highly reduced, partitioned certi�cates is
limited to validation (veri�cation) con�guration with monotonic transfer relations. The
analyses that we use in practice typically provide monotonic transfer relations. Mono-
tonic transfer relations are more or less a theoretical restriction. Finally, automation
still requires a well-behaving termination check. From a theoretical point of view, the
optimization approaches are a little bit more restrictive.

Next, we discuss our practical experience. We evaluated our optimization approaches
on a large set of programs and analysis con�gurations. Thus, we demonstrated their
practical feasibility. Nevertheless, the case of the predicate analysis already revealed that
not all optimization variants are always feasible.

Continuing with the certi�cate generation, we �rst of all notice that the construction
of one of the three partitioned certi�cates is challenging. The hard part is to select a
good con�guration for the partition computation. For our experiments, we relied on
pre-evaluations to determine such good con�gurations. Furthermore, the generation of
a full, partitioned certi�cate can become extremely expensive. The computation of a
reduced or (highly) reduced, partitioned certi�cate is acceptable. The generation of highly
reduced certi�cates is even better than the generation of certi�cates in our basic approach.
Nevertheless, we think it is too much to ask from a producer to try out every CPC variant
and pick the one that �ts the objectives best.

Unfortunately, none of our optimization approach is always best. The highly reduced
certi�cates are the smallest and full, partitioned certi�cates are the largest. Typically, the
validation of the highly reduced certi�cate is better than that of the reduced certi�cate.
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In contrast, the validation of the full, partitioned certi�cate is faster for some cases and
the validation of a combined certi�cate is often faster than the validation of the highly
reduced certi�cate. Normally, the combined approach performs better than the validation
of the full, partitioned certi�cate and its certi�cates are also smaller. The producer does
not need to consider the full, partitioned certi�cate. In practice, the producer can exclude
the reduced certi�cate and the full, partitioned certi�cate from his considerations. Since
we also observed that our optimization approaches mainly exceed the basic approach, the
producer can focus on the highly reduced certi�cate and the combined certi�cate, most
likely the highly reduced, partitioned certi�cate.

Our optimizations also achieved an improvement of the validation w.r.t. veri�cation.
More often, the validation outperforms veri�cation. Nevertheless, signi�cant improve-
ments in order of magnitudes are still uncommon. Similarly, certi�cates often remain
much larger than the program, but our improvements achieved that at least for some
tasks the certi�cates are smaller than the program. We also studied parallelization of
all con�gurable program certi�cation variants to further improve validation. Once more,
parallelization is restricted to the reaching de�nition domain in practice. Furthermore,
parallelization of the partitioning approach, which already reads and checks in parallel, is
less e�ective.

Reconsidering the competition with other certi�cation approaches, con�gurable pro-
gram certi�cation mostly performed at least equally well. Only the regression veri�cation
technique precision reuse is better on the predicate analysis tasks, for which our validation
con�gurations had to adapt the termination check. Moreover, the backwards strategy is
slightly better for data�ow analyses, its original application scenario. Additionally, these
two competitors also generate smaller certi�cates.

In summary, for most of the tasks our optimizations improve the basic approach.
Despite the optimizations, certi�cates often remain much larger than the program. Fur-
thermore, for a large set of the tasks the performance improvement over the veri�cation
is small, less than an order of magnitude, although we improved the con�gurable pro-
gram certi�cation approach. Not all programs (and property combinations) are suitable
for certi�cation, in particular con�gurable program certi�cation. This observation is sup-
ported by the fact that con�gurable program certi�cation often competes well with other
certi�cation techniques.

If we had to vote for one of the con�gurable program certi�cation approaches, we
would choose the one considering the highly reduced certi�cate. Despite its theoretical
restrictions, which are less relevant in practice, it seems to provide the best compromise
between validation performance, certi�cate size, and certi�cate generation. However, if
one is mainly interested in validation performance, especially validation time, the com-
bined technique will be the better option.

4.6 Related Work

Our con�gurable program certi�cation approaches enrich a program with partial veri-
�cation results to ease, e.g., speed up, a subsequent inspection of program safety. As
already mentioned in the introduction, the con�gurable program certi�cation approaches
are the only instances of the abstract protocol from Fig. 1.1 that solely attach additional
information to the program and are presented in this thesis. The instances presented
in the subsequent chapters either integrate the additional information implicitly into the
program or combine the next instance with con�gurable program certi�cation. Thus, we
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decided to already discuss work related to con�gurable program certi�cation at the end
of this chapter.

In the following, we look at approaches that also attach additional information to
assure safety or security of software programs. We tried to arrange their presentation
according to the producer's veri�cation technique. After the presentation of the related
software approaches, we give a short overview on related approaches for con�gurable
hardware. For both kinds, we will see that existing approaches are typically restricted to
a particular property or type of analysis.

Theorem Proving Proof-Carrying Code (PCC) [NL96, Nec97, NL98c] ensures safety
of a program w.r.t. a consumer provided safety policy, namely a veri�cation condition
generator, a set of axioms, and a precondition. The veri�cation condition generator is a
Floyd style generator that computes a pre- and postcondition for each statement. The
precondition ensures that the execution of the statement is safe and the postcondition
of a statement is or implies the precondition of the next statement. The producer runs
the veri�cation condition generator to get the safety predicate and then proves that the
precondition implies the safety predicate. The proof is attached to the program. The
consumer reruns the veri�cation condition generator and checks if the attached proof is a
valid proof that the precondition implies his generated safety predicate. To deal with loops
and functions, the program must be manually annotated, e.g., with loop invariants and
pre- and postconditions for functions. Annotations are included in the safety predicate,
but need not be trusted. Although it is a general framework, Necula et al. used the
framework to mainly assure memory safety and type safety of assembly programs.

Foundational Proof-Carrying Code [AF00, App01] is one approach to remove the large
veri�cation condition generator from the trusted computing base. The idea is to encode
the machine semantics as partial step semantics in logic and exclude transitions for illegal
or unsafe statements. To prove safety, one needs to show that the program never gets
stuck, always a successor state exists. If one wants to use inference systems in the proof,
one must prove their soundness.

A di�erent approach, which removes the veri�cation condition generator from the
trusted computing base, is presentded by Wildmoser et al. [WNKN04, WN05] and Wild-
moser [Wil06]. The authors present a generic variant of Necula's PCC approach in which
the veri�cation condition generator is parameterized w.r.t. the programming language,
the safety policy and the logic. They describe their requirements on the parameters and
proved in Isabelle that the veri�cation condition generator is sound when the parameters
adhere to the requirements. The generic framework is instantiated to assure type safety
and no arithmetic over�ow of assembly programs or bytecode.

Another problem of the PCC approach are large proofs. The �rst solution [NL98a]
suggests to use a derivation, called LFi, of the Edinburgh logic framework. In the logic
framework LFi some proof objects can be implicitly represented by placeholders and are
reconstructed during proof checking. LF proofs can be transformed into LFi proofs by
erasure of certain redundant information.

Chaudhuri [Cha12] discuss how to reduce the size of linear logic proofs. The idea is
to replace some of the derivation subtrees in the derivation tree by a search bound, called
contraction bound. A search bound is used to restrict the search during the recomputation
of the deleted subtree.

Another technique to reduce proof sizes is oracle-based checking [NR01]. Oracle-based
proof checking can be applied when non-deterministic theorem provers are used for the
proof search. An oracle string encodes the choices taken by the theorem prover to build
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a valid proof. The proof checker uses the oracle string to guide its proof search with the
non-deterministic theorem prover, i.e., the oracle string makes the search deterministic
and prohibits backtracking.

Interactive Proof-Carrying Code [Tsu00] is based on the idea of interactive proof sys-
tems and also tackles the problem of large proofs. The producer still constructs a proof
for the desired property. The consumer only receives the program and communicates
with the producer to convince himself with overwhelming probability that a proof for the
program w.r.t. the property of interest exists. In 2005, Tsukada presents an interactive
proof system for memory safety [Tsu05].

Extended Proof-Carrying Code [PD08a, PD08b, PDHL10] is a variation of PCC in
which a program that can generate the proof string is attached to the program instead of
the proof itself. After the producer veri�ed the program, he uses the proof to generate a
program that constructs the proof string. The consumer runs the attached program in a
virtual machine, thus it is ensured that the untrusted, proof generating program is safely
executed, and then checks the proof regenerated by the program.

Amtoft et al. [ADZ+12] certify conditional information �ow of SPARK programs.
When their tool checks that the user annotated precondition of a procedure implies the
user annotated postcondition, it also generates a Coq proof. The Coq proof shows that the
precondition derived from the user annotated postcondition is indeed a valid precondition
and that the user de�ned precondition implies the derived precondition.

Proof-Carrying Authentication [AF99] is a PCC variant for access control. The idea
is that a client must provide a proof, a derivation tree in an authentication logic, to the
server that his (the client's) access is consistent with the server's access policy. Instead of
checking access rights, the server simply checks the proof.

Proof-carrying apps [HNTS16] is a generalization of PCC that ensures that a plug-
in never violates API contracts, i.e., for all methods in the plug-in it yields that when
they are called in a state satisfying their precondition, then during execution they always
guarantee that the precondition of other API method are always ful�lled when these
methods are called and at the end of the method the postcondition is true. The producer
veri�es this behavior and generates a proof artifact which is checked by the consumer.
The authors consider di�erent veri�cation techniques for their framework, but so far only
the realization with the prover KeY, which produces a certi�cate in form of a proof script,
worked out.

Our approaches do not use theorem provers or mathematical proof objects. In con-
trast to interactive and extended proof-carrying code [Tsu00, PD08a], our certi�cates are
still some form of proof artifact. Furthermore, con�gurable program certi�cation is not
restricted to a certain property like proof-carrying authentication [AF99] or the approach
by Amtoft et al. [ADZ+12]. However, con�gurable program certi�cation cannot assure se-
curity properties like Amtoft et al. [ADZ+12]. During the development of our approaches,
we did not focus on the trusted computation base. Our approaches are not foundational
like the approaches by Appel et al. [App01] or Wildmoser et al. [WNKN04]. Moreover,
only the approach by Wildmoser et al. [WNKN04] is directly con�gurable. Similarly to
Chaudhuri [Cha12], in our optimization approaches we often remove some information
from our basic certi�cate and use a search bound to restrict the number of recomputed
abstract states. Finally, we like to mention that our reduction approach follows the idea
of Necula [NL98a] and stores only those information which cannot be recomputed.

Type Inference The typed assembly language (TAL) [MWCG99] type system ensures
that well-typed programs stick to the abstraction of their corresponding source program.
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For example, an integer variable is not dereferenced. A compiler is used to transform
a correctly typed source program into a well-typed TAL program. Based on the type
information and the TAL type system, the consumer type checks the TAL program to
validate that it is well-typed.

Certi�ed assembly programming (CAP) [YHS03, YHS04] is an assembly language that
allows to annotate assertions to instructions. These assertions represent the preconditions
of these instructions and are considered during type analysis. Type analysis based on the
rules presented by Yu et al. [YHS03, YHS04] aims at showing that the safety policy is
not violated, the program never gets stuck, and when the program executes a instruction
with an assertion, this assertions is true before execution of the instruction. Therefore, it
is su�cient that the analysis proves that the program is well-typed.

Crary and Weirich [CW00] discuss resource bound certi�cation. Their main emphasize
is on the certi�cation of computation time. More concretely, they introduce the type
system LXres which incorporates a virtual clock in its types. The virtual clock bounds
the execution time. Like in TAL, a type checker can be used to check the LXres typing
of a program and thus con�rm the resource bound.

Vanderwart and Crary [VC05] suggest a typed assembly language for responsiveness.
Well-typed assembly programs ensure responsiveness properties, i.e., after at most X
statements the program executes a yield statement. They use a compiler to add the yield
statements and to provide a proper type annotation, the certi�cate, which can be used to
show that the compiled program is well-typed.

Themobile resource guarantees framework [AGH+05] is a framework to certify resource
bounds. The producer performs a type analysis of the high level Camelot program. Based
on the analysis result, he produces a logic proof for the low level Grail program. The
underlying idea is to derive logic assertions from the typing judgments s.t. the assertions
describe the semantics of the typing judgment. Finally, the consumer checks the logic
proof.

Cassandra [LMS+14] is an app store enhanced with a PCC mechanism to assure
information �ow policies. Based on an information �ow type system, a server proves that
the app adheres to the policy. The server sends the type annotations for �elds, return
values and method parameters, which he derived during the analysis, to the consumer.
The consumer uses the type annotations to replay the analysis.

Harren and Necula [HN05] present a generic certi�cation framework based on a pa-
rameterized type system. The parameters, which de�ne the safety policy, are the type
constructors, subtyping rules, and descriptions how to derive the types of expressions.
Given the typing judgment for all basic blocks and the safety policy, the consumer vali-
dates the program via type checking.

Hamid et al. [HST+03] present a foundational PCC approach. The producer starts
with a type analysis. When this analysis shows that the assembly program is well-formed,
the assembly program is compiled into a machine code program in form of an initial
machine state. Additionally, the typing judgments are used to construct a proof for the
initial machine state, which states that for any machine state reachable from this state a
corresponding well-typed assembly program exists.

Wu et al. [WAS03] present a solution how to use a proof scheme, e.g., a type system,
in a foundational certi�cation approach. They propose that the producer sends the proof
scheme together with a soundness proof. Then, the producer can use the proof scheme to
prove program safety. Afterwards, he can send hints like typing annotations or type
derivations. When the consumer successfully validated the proof scheme's soundness
proof, he can use the hints together with the proof scheme to check whether the program
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is indeed safe.
We do not consider type systems in our approaches. Furthermore, our approaches are

still not foundational like the approaches by Hamid et al. [HST+03] or Wu et al. [WAS03].
In contrast to TAL [MWCG99], resource bound certi�cation [CW00], the approach by
Vanderwart and Crary [VC05], the mobile resource guarantees framework [AGH+05], and
Cassandra [LMS+14], our approaches do not consider a speci�c type of property, but a
large class of safety properties. However, our approach only considers safety properties
and cannot assure information �ow properties like Cassandra [LMS+14]. Since certi�ed
assembly programming [YHS03] also considers the validity of assertions, it is already
�exible in the property proven, but the type system is �xed. Typically, the type systems
used by the approaches are �xed. Only, the approaches of Hamid et al. [HST+03] and
Wu et al. [WAS03] are con�gurable like our approaches. Hamid et al. [HST+03] use a
parameterized type system and Wu et al. [WAS03] suggest to send the used proof scheme
with its soundness proof.

Abstract Interpretation and Data�ow Analyses Some approaches use the �xpoint
information of an abstract interpretation to derive certi�cates, which are more or less
mathematical proofs. Most of the certi�cation approaches for abstract interpretation or
data�ow analysis store (a part of) the �xpoint computed by the abstract interpreter and
the data�ow analysis, respectively.

Seo et al. [SYY03] propose a technique to compute a Hoare logic proof, a derivation
tree, from a �xpoint of an abstract interpretation. Abstract states are translated into �rst
order logic formulae and are used as pre-, postconditions, or loop invariants of the pro-
gram statements. Based on those pre-, postconditions, loop invariants, and the program
structure an algorithm builds a proper Hoare logic derivation tree, the certi�cate. The
consumer checks that the derivation tree is valid.

Proof-producing program analysis [Cha06a] also grasps the abstract states as pre- and
postconditions. To ensure that the abstract states are indeed valid pre- and postcondi-
tions, for each statement (edge) in the program a proof is constructed that shows that
the concretization of the abstract state that describes the precondition of the statement
implies the weakest precondition computed from the statement and the concretization of
the abstract state that is used as postcondition of that statement.

Besson et al. [BCJ14] and Cornilleau [Cor13] use a similar approach to proof-producing
program analysis. However, the proof obligations (veri�cation conditions) di�er slightly.
For each program point p, it is proven that if a concrete state s satis�es the program
point's precondition, then for each transition s → s′ the successor state s′ will ful�ll the
postcondition of the program point. Additionally, for any successor program point p′ it is
shown that the postcondition of p implies the precondition of p′.

Lightweight bytecode veri�cation [Ros03] is a PCC technique for constraint based
data�ow analyses. The goal of lightweight bytecode veri�cation is to obtain a solution
(�xpoint) to a data�ow analysis problem for a downloaded program without a complete
�xpoint computation. The idea is to store all data�ow facts that are associated with
program locations that are backward targets, e.g., loop heads. Rose [Ros03] proved that
the �xpoint can be recomputed from the constructed certi�cate in a single pass over the
program when the nodes are visited in ascending order.

Klohs et al. [KK05] improve the memory consumption of lightweight bytecode veri�-
cation. Data�ow facts, recomputed or stored in the certi�cate, are kept in memory only
as long as they are needed for validation. Additionally, the authors suggest to use the
exploration order that reduces the maximal number of required data�ow facts that must

138



4.6. RELATED WORK

be availabe for a validation step most.
In his PhD thesis, Klohs [Klo09] presents an extension of lightweight bytecode veri-

�cation to interprocedural data�ow analyses. The validation procedure is quite similar,
but instead of data�ow values he uses data�ow functions as data�ow facts. Data�ow
functions describe how an input data�ow value changes. They are used to describe how
the data�ow value for the current program location is derived from the input value of the
corresponding procedure.

Amme et al. [AMA07] also suggest a framework for the safe transport of data�ow
facts. They suggest to keep data�ow facts at so called annotation points. Contrary to
lightweight bytecode veri�cation, an annotation point is not a backward target, but a
program location that has an outgoing edge leading to a backward target. Nevertheless,
certi�cate validation remains similar. The consumer must use a single pass over the
program in reverse post order to either reconstruct the complete �xpoint or detect that
some of the provided data�ow facts are incorrect.

Abstraction-Carrying Code (ACC) [APH05a, APH05b, APH08] is used to ensure that
a constraint logic program adheres to a safety policy, which is described by assertions,
e.g., pre- and postconditions. The producer applies an abstract interpretation on the
constraint logic program, uses the �xpoint (abstraction) and the safety policy to generate a
veri�cation condition, and proves the condition. When the condition is true, the program
is correct w.r.t. the safety policy, the �xpoint becomes the certi�cate. The consumer
checks whether the certi�cate is indeed a �xpoint, uses the �xpoint and the safety policy
to generate the veri�cation condition, and proves the generated condition. In a later
improvement of ACC [AAPH06, AAH12], only a subset of the �xpoint is stored in the
certi�cate. The idea is to keep the entries of the �xpoint that are relevant, i.e., if not stored
at least one update to that entry during validation causes a successor to be computed
although a successor for that entry has already been computed during validation for a
previous version of that entry. To recompute the �xpoint in a single pass, the consumer
must use the same exploration order as the producer.

Besson et al. [BJP06] proposes a PCC technique for certi�ed abstract interpretation.
A certi�cate is a partial �xpoint together with a reconstruction strategy, which describes
how to reconstruct the complete �xpoint in a single pass. The reconstruction strategy
may also describe when an abstract state can be dropped, i.e., is no longer needed for val-
idation. During validation, the consumer uses the reconstruction strategy and a certi�ed
abstract interpreter12 to reconstruct the �xpoint while subsequently checking program
safety and that the reconstruction strategy is valid, i.e., all locations are considered, no
location is considered twice, a �xpoint is recomputed. Later Besson et al. [BJT07] relax
their certi�cation approach. On the one hand, they discuss how to weaken a �xpoint
computed by an abstract interpretation s.t. it still ensures the safety property. On the
other hand, they no longer require that the �xpoint can be recomputed in a single pass.
Thus, a certi�cate is no longer a partial �xpoint plus a reconstruction strategy, but a
partial �xpoint plus a sequence of program locations. The sequence of program locations
determines the exploration order for the recomputation of the �xpoint.

A previous version [JW14] of our basic con�gurable program certi�cation does not sup-
port precision adjustment and uses a safety check, an additional CPA and CCV operator.
The safety check examines whether none of the unsafe concrete states, described by a set
of abstract states, can be reached. Similarly, previous versions of the two optimization
approaches [Jak15] are proposed. These previous versions also rely on the safety check, do
not support precision adjustment, and are restricted to transfer functions. Moreover, the

12This means the soundness of the abstract interpreter is proven, e.g., with the help of a PCC approach.
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de�nition of a valid, partitioned certi�cate and a (well-formed) ARG deviates from ours.
Especially the last deviation is responsible for the di�erent construction of the certi�cates.
The previous versions of the two optimization approaches [Jak15] rely on the indegree of
ARG nodes while in this thesis we use the covered node set. Practically, the constructed
certi�cates are rarely di�erent. Remember that in our evaluation we still use the previous
technique [Jak15] to construct the certi�cates.

EviCheck [SA15] is an approach to certify Android app conformance to a security
policy, a set of rules on allowed permission usage. The producer performs a backward
reachability analysis on the call graph to compute a mapping from methods to permissions
s.t. a method is mapped to a permission only if a respective permission usage can be
reached from the call of that method. The map is used as certi�cate. The consumer
checks if the map is valid and if the map implies that the app adheres to the security
policy.

Goal-directed weakening [SYYH07] is a generic framework to weaken a �xpoint com-
puted by an abstract interpreter, a potential certi�cate, s.t. the resulting �xpoint can
still prove the property of interest. To instantiate the framework, one needs to de�ne an
abstract value slicer describing an extractor domain and a backtracer.

Example-guided abstraction simpli�cation [GR10, GR14] is a technique to simplify an
abstract model. The underlying idea is to replace the abstract domain with a simpler
one that keeps the same abstract semantics of the model, i.e., it does not introduce new
spurious counterexamples. The authors introduce the concept of correctness kernels to
compute the simpler abstract domain.

In contrast to proof-producing program analysis [Cha06a] and the approaches by Seo
et al. [SYY03], Besson et al. [BCJ14], and Cornilleau [Cor13], our con�gurable pro-
gram certi�cation does not generate a formal proof from the �xpoint. Like our ba-
sic approach, Abstraction-Carrying Code [APH05b] stores the complete �xpoint, but
Abstraction-Carrying Code is applied to constraint logic programs instead of imperative
programs and considers a di�erent concept for expressing program safety. Similar to our
optimization approaches, especially the reduction approach, lightweight bytecode veri�ca-
tion [Ros03] and its optimizations [KK05, Klo09], Abstraction-Carrying Code [APH05b,
AAPH06] and the approaches by Besson et al. [BJP06, BJT07] also store parts of the
�xpoint and validate or reconstruct the �xpoint. However, we are not restricted to analy-
ses that compute one abstract state per location and our validation is order independent.
Moreover, we often store a larger part of the �xpoint to get rid of the merge opera-
tor during validation and become order independent. Except for Besson et al. [BJP06]
who use a certi�ed abstract interpreter, our trusted computing base is smaller. Addi-
tionally, certi�cation techniques based on data�ow analyses typically only validate the
�xpoint and do not inspect program properties, e.g., safety properties. Currently, our
con�gurable certi�cation approach does not weaken or simplify the abstraction computed
during veri�cation.

Model Checking Certi�cation approaches for model checking di�er in the type of
property they assure, temporal logic or a restriction to pure safety properties, and the
type of certi�cates.

Peled and Zuck [PZ01] consider certi�cation of automaton-based LTL model checking.
They present an algorithm that can be used after successful model checking of program P
w.r.t. property φ to construct a deductive proof showing that P satis�es φ. Similarly,
Peled et al. [PPZ01] discuss how to generate a deductive proof from the veri�cation of a
just discrete system w.r.t. a LTL property.
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Kupferman and Vardi [KV04, KV05] use a bounded, odd ranking function to certify
that the language ofM×¬φ is empty, i.e., the modelM satis�es the LTL property φ. The
consumer checks that the provided function is indeed a bounded, odd ranking function
for M × ¬φ.

Chaki [Cha06b] describes a technique to certify predicate model checking of C programs
w.r.t. LTL properties. Their technique is based on a ranking function, which ensures that
the language of the product of program and negated property is empty. The certi�cate
consists of a witness, an encoding of the ranking, and the refutation proofs for a set of
veri�cation conditions. The veri�cation conditions check that the witness is indeed a
proper encoding.

Evidence-based model checking [TC02] describes the model checking problem by a
boolean equation system and uses support sets as certi�cates. A support set explains the
value of a variable in a particular solution of the equation system.

Namjoshi presents the idea of a certifying model checker [Nam01], which certi�es µ-
calculus properties. Certi�cation is based on the correspondence between µ-calculus model
checking and memoryless winning strategies in the corresponding parity game. The cer-
ti�cate, an invariant and a ranking function, is extracted from the winning strategy. To
validate the certi�cate, three local conditions of the invariant and the ranking function
must be checked.

Hofmann et al. [HNR16] also use the correspondence between µ-calculus model check-
ing and winning strategies in the corresponding parity game. They extend their µ-calculus
model checker to produce a memoryless winning strategy, the certi�cate, in the corre-
sponding parity game and discuss how to check that the strategy is indeed a winning
strategy.

Henzinger et al. propose temporal-safety proofs [HNJ+02] to certify the result of
predicate abstract model checking w.r.t. a temporal safety property. After successful
predicate abstract model checking, the generated abstract reachability tree is used to
construct the certi�cate. Basically, the set of ARG nodes, locations plus predicate states, is
used as program invariant. To show that this set of ARG nodes is a program invariant, the
approach relies on a standard safety (invariant) rule [MP95]. However, the ARG structure
is used to simplify the LF proofs of the premise. For example, to show preservation of
the invariant for each ARG node it is proved that the strongest postcondition along a
syntactical edge is covered by the respective ARG successor node or those nodes that
cover that ARG successor.

Dräger et al. [DKFW10] describe certi�cation with the model checker SLAB, which is
used to prove unreachability of error conditions in in�nite state systems. For certi�cation,
the �nal abstraction is transformed into an inductive veri�cation diagram, a directed
graph whose nodes are labeled with predicate states and its edges are labeled with sets
of transition relations. Validity of such a veri�cation diagram is checked with a standard
invariant (safety) rule [MP95].

Conchon et al. [CMZ15] present the certi�cation approach applied by the model checker
Cubicle, a model checker proving safety properties (non-reachability of error states) of
parameterized systems. The approach uses the complement of the overapproximation of
the set of states from which an error state is reachable as inductive invariant. To show
that it is indeed an inductive invariant, Cubicle generates proof obligations for initiality,
preservation, and safety. The proof obligations are checked by a SMT solver.

Extreme model checking [HJMS03] is a regression veri�cation technique for predicate
abstract model checking of temporal safety properties, which can be used for certi�cation
as well. After a successful veri�cation the abstract reachability tree (ART), an abstract
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representation of the state space, is stored. Henzinger et al. [HJMS03] present an algorithm
that checks if an ART conforms to a program. In principal, conformance checking is similar
to checking well-formedness of our ARGs. If the algorithm succeeds, the program is safe;
otherwise model checking must continue at those points where the conformance checks
failed.

Xia and Hook [XH04] present a technique to certify temporal logic properties of C pro-
grams. The producer starts with a predicate analysis. Based on the predicate abstraction,
especially the predicates, he computes a boolean program, an abstraction of the original
program. Afterwards, he compiles the original program s.t. the boolean program remains
a valid abstraction for the compiled program and transfers compiled program, boolean
program, and the set of predicates to the consumer. The consumer checks with the help
of the set of predicates that the obtained boolean program is a valid abstraction of the
compiled program.

Search-Carrying Code [TA10] is a PCC alike technique for explicit state model check-
ing. Instead of a proof, it uses a search script as certi�cate. The search script describes
how the state space exploration was performed. A consumer uses the search script to
replay the search while being able to detect whether it is incomplete or incorrect. Based
on additional subgraph information, the consumer can partition the search script and
perform the replay in parallel.

Precision reuse [BLN+13] is originally intended for regression veri�cation, but can also
be used in a certi�cation context. The idea is to store the abstraction precision, which
speci�es the abstraction level of the analysis after veri�cation, and start the reveri�cation
with the precision stored from the last veri�cation.

Correctness witnesses [BDDH16] are proposed as a �exible, exchangeable format for
correctness results. The idea is that a di�erent veri�er can validate the correctness witness.
Technically, a correctness witness is an automaton whose states are labeled with invariants
encoded as boolean C expressions and its edges are labeled with statements. To validate
the correctness witness, a veri�er must run it as an observer automaton and check if the
provided invariants are indeed true. Since the witness generating veri�er decides which
of its local invariants it wants to include in the automaton, a di�erent veri�er may fail to
validate the correctness witness.

In contrast to the approaches by Chaki [Cha06b], Peled et al. [PZ01, PPZ01], Kupfer-
mann et al. [KV04, KV05], and Hofmann et al. [HNR16], certifying model checkers
[Nam01], and evidence-based model checking [TC02] our approach cannot deal with ar-
bitrary temporal logic. It is restricted to safety properties. Like temporal safety proofs
[HNJ+02], SLAB [DKFW10], and Cubicle [CMZ15], we also use the safety rule [MP95]
to check validity of our certi�cates. Especially, our basic approach directly checks the
premise of the safety rule. Our optimizations are a mixture of invariant recomputation
and checking. While existing approaches tend to use an encoding based on logic, we use
abstract states to encode the invariant. Furthermore, often the abstraction domain is
�xed in the existing approaches. Also, extreme model checking [HJMS03], the approach
of Xia and Hood [XH04], and Search-Carrying Code [TA10] are restricted to a particular
domain. All of these three use a di�erent kind of certi�cate. With Search-Carrying Code,
we share the idea of certi�cate partitioning. We apply partitioning at the producer side
and Search-Carrying Code partitions at the consumer. Precision reuse [BLN+13] and
correctness witnesses [BDDH16] are more �exible w.r.t. the abstract domain, although
their certi�cates are totally di�erent from ours. However, precision reuse is less general
than our approach because it is tailored to domains whose abstraction level can be set.
Moreover, we think that our approaches cannot be simply replaced by the concept of
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correctness witnesses. It remains unclear how to represent certain abstract states with
boolean C expressions, e.g., we lack the intuition how to encode the (un)initialization of
a variable. Additionally, relative completeness is not considered for correctness witnesses.

Rewrite Systems Alba-Castro et al. [ACAE08] suggest a PCC technique to certify
safety properties of Java programs, which is based on rewrite logic. The producer uses
an abstract rewrite system derived from the concrete rewrite system representing the
concrete Java semantics and a consumer provided annotation of variables. The annotation
de�nes for each variable which abstract domain to use. When the producer succeeds to
prove the safety property in the abstract rewrite system, he either provides the set of
rewrite sequences or the sequences of applied rewrite steps. The consumer checks that all
rewrite steps are correct, that no alternatives are forgotten, and that the safety property
is never violated. Later, the approach is extended to certify information �ow properties
[ACAE09, ACAE10]. For this, the concrete rewriting semantics is extended to consider
security classes for each object and context. The abstract rewrite system does not rely on
consumer annotations, but only tracks the security classes of objects.

Proof-Carrying Hardware The PCC principle is not only applied to software pro-
grams, but also to recon�gurable hardware. Two main approaches exists: Proof-Carrying
Hardware and Proof-Carrying Hardware intellectual property.

Proof-Carrying Hardware (PCH) [DKP09, DKP10] was proposed by Drzevitzky et al.
in 2009. PCH ensures properties of the bitstream used for recon�guration. The �rst in-
stance of PCH considers combinatorial circuits and ensures functional equivalence of the
implementation, the logic encoded in the bitstream, and the speci�cation. The producer
builds the miter from the bitstream and the speci�cation and proves that the miter is
unsatis�able. The consumer gets the bitstream with a resolution proof for the miter, re-
builds the miter, and checks if the resolution proof is valid for the miter. Later approaches
are extended to sequential circuits, mainly based on unrolling, and to ensure correctness
of memory access monitors [WDP14] or worst-case completion time of hardware mod-
ules [WP16].

Proof-Carrying Hardware Intellectual Property (PCHIP) [LJM11, LJM12] is an ap-
proach to ensure security properties of a hardware module given in a subset of Verilog, a
hardware description language. The approach is based on a formal de�nition of Verilog
and its semantics in Coq. Both, producer and consumer, translate the hardware module
into the Coq representation. Then, the producer generates the correctness proof in Coq
and the consumer checks that proof. Later, the approach is extended to data secrecy and
information �ow properties [JM12, JYM13].

The two approaches PCH and PCHIP have nothing in common with our con�gurable
program certi�cation. They do not consider software programs. Furthermore, they use
di�erent proof techniques, SAT solvers and theorem provers, and can also be applied to
certain non-safety properties.
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In this chapter, we present an alternative, general framework to enable a fast program
validation for the program executor, the consumer. Similar to the previous con�gurable
program certi�cation approaches, the alternative Programs from Proofs (PfP) approach
also intends to decrease the validation costs of the consumer. To achieve this goal, we
keep the underlying principle of Proof-Carrying Code: shift the major validation e�ort
from the consumer into the producer. However, our Programs from Proofs approach does
not provide additional information to speed up the consumer validation, but it changes
the structure of the program itself.

Like compilers use program transformations based on constant propagation [NNH05,
p. 72], available expressions [NNH05, pp. 39�], and so forth to accelerate the execution
of a program, our Programs from Proofs approach brings the program into an e�ciently
provable form. Looking at our example program SubMinSumDiv (Fig. 2.1), it would be
much simpler to show our desired property nonneg (after initialization z := 0, variable
z never holds a negative value), if the computations of the sum and the division were
separated. In general, the producer should restructure his program s.t. that the consumer
can check the restructured program with an easy analysis, namely a fast and only �ow-
sensitive data�ow analysis.

Due to their imprecision, data�ow analyses often fail to prove a property on the original
program. Remember that our sign data�ow analysis failed to show that our example
program SubMinSumDiv is safe w.r.t. property nonneg. In many cases, more precise and,
thus, less e�cient analyses, which incorporate (some) path-sensitivity � possibly tuned
via re�nement �, succeed to show the desired property. We utilize this observation in our
Programs from Proofs approach. In principle, we let the producer run a more precise,
but also less e�cient analysis to prove program safety. After a successful veri�cation, the
proof, the ARG, records where path-sensitivity is needed, i.e., where the information of
di�erent paths must not be integrated. The producer uses this information to restructure
the program s.t. it is veri�able with a simple data�ow analysis.
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Program transformations have already been used for a while to simplify veri�cation.
Well-known compiler optimizations like constant propagation [NNH05, p. 72] or dead
code elimination [ALSU07, p. 535], [Ken78] are applied in the front ends of veri�cation
tools like CPAchecker [BK11b] or Astrée [CCF+07] to make subsequent veri�cation
easier. Compiler optimizations are one example for a heuristic change. After optimization,
it cannot be assured that veri�cation of the optimized program is easier.

Many approaches, e.g., [GJK09, BSIG09, SDDA11], aim at loop restructuring. Gul-
wani et al. [GJK09] use an invariant generator to re�ne the structure of a multi-path loop.
The goal is to make the path interleavings explicit. Balakrishnan et al. [BSIG09] re�ne
the possible execution through a loop, too. First, they heuristically group the syntactical
paths that represent a single, syntactical loop iteration. With the help of abstract inter-
pretation, they detect which sequences of the groups up to a bound k do not describe
proper loop iterations and exclude those sequences from the control �ow. To simplify
veri�cation in which loop invariants must be generated, Sharma et al. [SDDA11] com-
pute phase splitter predicates to decompose multi-phase loops into a sequence of single
phase-loops.

Leroy [Ler02] transforms correct Java bytecode into a behavioral equivalent form that
meets the requirements his bytecode veri�cation algorithm requires for acceptance. To
ease worst case execution time analysis, Puschner [Pus02] describes how to transform a
program for which the worst case execution time can be analyzed into a single execution
path, i.e., a program that is purely sequential and that realizes branches with the help
of a single machine instructions that can conditionally set a value of variable to a (vari-
able) value. Hunt et al. [HS06] use the result of a type based, �ow-sensitive information
�ow analysis to derive an equivalent program that can be analyzed with a �ow-insensitive
type analysis. Static language re�nement [BSI+08] applies path-insensitive forward and
backward abstract interpretation to remove infeasible paths that do not reach the er-
ror state. Especially during reverse synthesis [YKNW08], the Echo framework [SYK05]
uses a heuristic approach called veri�cation refactoring [YKNW08, YKW09], to simplify
the program and to reduce the complexity of veri�cation. Amongst others, veri�cation
refactoring tries to undo code optimizations. Veri�cation refactoring is stopped when the
transformed program meets some metrics. Furthermore, it requires manual e�ort. Often,
veri�cation refactoring must be guided by a user who decides which transformation to
apply next. If an applied transformation has not been available before, it must be proven
that it is semantics-preserving.

None of the existing approaches guarantees all the properties for our Programs from
Proofs approach mentioned above. Our Programs from Proofs approach is speci�cally tai-
lored to the desired property and the simple analysis used by the consumer, but not limited
to one speci�c analysis. The obtained restructured program can always be proven with
the simple consumer analysis. By construction, the restructured program is behaviorally
equivalent to the original program. Restructuring is fully automatic, may restructure
the complete program, and should not be limited to infeasible paths. Next, we describe
the details of our Programs from Proofs approach. As before, we start with a general
overview.

5.1 Overview of Programs from Proofs

The idea for Programs from Proofs was introduced by Wonisch et al. [WW12]. As a proof
of concept, they used predicate abstraction and a control �ow analysis to prove protocol
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Figure 5.1: Overview of Programs from Proofs

properties. Further Programs from Proofs instances [JW15] use arbitrary (predicated)
data�ow analyses to ensure invariants. Recently, we integrated the previous instances
into a common setting [JW17]. Thereby, we enlarge the set of considered safety proper-
ties and relax restrictions on the supported con�gurable program analysis instances. In
this chapter, we slightly generalize the Programs from Proofs approach [JW17], which
integrated the instances in a common setting. Now, the approach also supports precision
adjustment. The class of properties will be the same as in the integration [JW17], but
we use our common speci�cation of properties, which di�ers a little from the property
automata considered in the integration [JW17].

Figure 5.1 gives an overview of the Programs from Proofs procedure, which is another
instantiation of the general principle described in the introduction. First, the producer
analyzes whether a program is correct w.r.t. a given property. Essentially, he applies the
basic veri�cation principle presented in the background chapter (Sections 2.3 and 2.4). He
uses a re�ned property checking analysis to steer the CPA algorithm, which performs the
analysis. The re�ned property checking analysis is a composite analysis enhanced with the
property (automaton). The composite analysis consists of two parts: a property checking
analysis C1, a simple analysis that will check the property, and a more powerful enabler
analysis C2. The idea of the composite analysis is that the enabler analysis should exclude
spurious counterexamples found by the simpler property checking analysis. For example,
the enabler analysis excludes infeasible paths and separates paths where needed. Note
that we assume that the enabler analysis is the factor that makes the producer analysis
costly. First, it is more powerful than the property checking analysis. Second, we often
use counterexample guided abstraction re�nement (CEGAR) [CGJ+00] to determine the
required precision of the enabler analysis. After a successful veri�cation (result true),
the producer generates a behaviorally equivalent program from the abstract reachability
graph, the proof. The clue of the program generation is the following:

P |=X(C2×C1)A A =⇒ Ptrans |=XDFA(CA1 ) A .

Program generation restructures the original program in such a way that the property
checking analysis alone is su�cient to prove the property. Finally, the producer delivers
the transformed program to the consumer.

The consumer receives the transformed program from the producer. We assume that
the transformed program might be �awed during delivery. To analyze the transformed
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program, the consumer only needs the simpler and less expensive property checking an-
alysis of the producer's analysis. Independent of the analysis technique con�gured by the
property checking analysis, the consumer recon�gures the property checking analysis such
that it becomes a more e�cient but less precise data�ow analysis. Then, the consumer
also uses the CPA algorithm to analyze whether the received, transformed program is
correct w.r.t. the property inspected by the producer. However, the CPA algorithm is
now con�gured with the data�ow version of the property checking analysis � of course
enhanced with the property (automaton). If the veri�cation succeeds, the transformed
program can be executed. Otherwise the transformed program is discarded.

The consumer's veri�cation procedure already ensures that the veri�cation will only
succeed if the program is correct w.r.t. the analyzed property. Unsafe programs, e.g.,
�awed programs, are discarded. Hence, for the Programs from Proofs approach we are
more interested in relative completeness, i.e., whether the consumer can always verify the
transformed program generated by the producer after a successful veri�cation.

Furthermore, note that for the sake of comprehensibility, in our overview we left out the
initial abstract state and the initial precision, two additional inputs of the CPA algorithm.
The initial abstract states need to ful�ll some constraints. For the producer, we require
that his initial abstract state is compatible with the Programs from Proofs approach.
For example, the initial abstract state uses the initial automaton state and the enabler
state does not restrict the property checking state. We discuss compatibility in full detail
when all details are known. The initial abstract state of the consumer must be derived
from the producer's initial state. In principle, we reuse the property checking state and
the automaton state of the producer's initial abstract state, but we need to replace the
location information in the property checking state with the initial program location of
the transformed program. In contrast, the choice of the initial precision is unrestricted.

We continue with the trusted computing base of our Programs from Proofs approach.
Remember that the trusted computing base contains all entities that the consumer must
trust when he relies on the outcome of his validation. In our Programs from Proofs ap-
proach, the consumer must trust the de�nition of the property checking data�ow analysis
enhanced with the property automaton as well as its implementation and the implementa-
tion of the CPA algorithm. Of course, the consumer is free to use his own implementations
and does not need to rely on the implementations used by the producer. Nevertheless,
the consumer derives his analysis con�guration, the enhanced property checking data�ow
analysis, from the producer's property checking analysis. In many aspects, he must trust
the de�nition of the producer's property checking analysis. Compared to the veri�cation
of the producer, which the consumer might do without the Programs from Proofs ap-
proach, the consumer does not need to trust the de�nition of the powerful, often more
complex enabler analysis and its implementation. Due to the higher complexity, the im-
plementation of the enabler analysis is likely more error-prone. To further decrease the
size of the trusted computing base, the consumer may leave out the ARG construction
during his analysis. The ARG is not needed on the consumer side. Hence, he may only
execute the CPA algorithm version described in Algorithm 1. Furthermore, the consumer
may verify the proper realization of the CPA algorithm implementation. The consumer
could also prove the de�nition of the enhanced property checking data�ow analysis and
either directly extracts an implementation for the enhanced property checking data�ow
analysis from the proof or shows that his implementation is a correct re�nement of the
de�nition.

With the last paragraph, we �nished the high level discussion of the PfP approach.
However, before we come to the details of the Programs from Proofs approach, we need
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0 : z:=0;

1 : i f (x<0)
2 : i f y<x

3 : z:=-y;

e l se
4 : z:=-x;

5 : z:=z+10;

...

0 : z:=0;

1 : i f (x<0)
2 : i f y<x

3 : z:=-y;

4 : z:=z+10;

e l se
5 : z:=-x;

6 : z:=z+10;

...

Figure 5.2: Beginning of program SubMinSumDiv and a sketch of a possible, behaviorally
equivalent transformation

to reconsider our property speci�cation. Some property automata are improper for the
Programs from Proofs approach. Our property automaton pos@l5 (left of Fig. 2.2), which
speci�es that at location l5 the value of variable z must be greater zero, is an example
for such an improper property automaton. The problem is that due to the program
transformation the program locations may change. Thus, the property automaton may
check di�erent behavior on the original and the transformed program. For illustration,
assume that in our example program SubMinSumDiv we moved the assignment z := z+10;
into the branches (see Fig. 5.2). In the transformed program (right of Fig. 5.2), the
property automaton pos@l5 misses to check the behavior of the upper branch (x < 0).
To inspect the same behavior for the upper branch as in the original program, it must
be checked that at location l4 (line 4) variable z has a value greater zero. Furthermore,
in the lower branch (¬x < 0) the value of variable z is inspected to early. Hence, the
transformed program does not ful�ll the speci�cation. At location l5 (line 5) of the
transformed program, variable z has value zero. To check the same behavior as in the
original program, the value of variable z must be inspected at location l6 (line 6).

We just discussed that the property automaton pos@l5 is improper because it is af-
fected by the program locations represented in the control state of a concrete state. In
general, property automata are unsuitable for the Programs from Proofs approach when-
ever they contain at least one transition that refers to the control state. More concretely, a
transition refers to the control state whenever there exist concrete states c ∈ C and c′ ∈ C
with the same data state ds(c) = ds(c′) but only c is considered by the transition. Hence,
the property automata considered by the Programs from Proofs approach must be inde-
pendent of the control state. We say they must be control state unaware. All transitions
that consider a concrete state c ∈ C in their set Csub must also consider all concrete states
c′ ∈ C with the same data state ds(c) = ds(c′). Our property automaton nonneg (right
of Fig. 2.2) ful�lls this condition. It is an example for a control state unaware property
automaton. We will use property automaton nonneg throughout this chapter to explain
our Programs from Proofs approach. In the following, we formally de�ne when a property
automaton belongs to the restricted class of control state unaware property automata.

De�nition 5.1 (Control State Unaware Property Automaton). A property automaton
A = (Q, δ, q0, qerr) is control state unaware if ∀(q, op, Csub, q

′) ∈ δ : Csub = {c ∈ C | c′ ∈
Csub ∧ ds(c) = ds(c′)}.

With the de�nition of a control state unaware property automaton, we �nished the
preparatory considerations. In the remainder of this chapter, we now discuss the de-
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tails of the Programs from Proofs approach. We maintain the course of the Programs
from Proofs procedure and start with the presentation of the producer veri�cation.

5.2 Producer Veri�cation of the Original Program

The overview of the Programs from Proofs procedure states that the producer uses the
CPA algorithm to prove program safety. We are already familiar with the CPA algo-
rithm. Thus, we focus on the appropriate con�guration of the CPA algorithm for our
Programs from Proofs approach. Furthermore, we discuss additional properties of the
ARG generated by the producer veri�cation. These additional properties are special to
the con�guration used by the producer and are required later. Moreover, we explain how
to automatically get a suitable precision for the enabler analysis.

We begin with the major part of the con�guration, the input CPA. As already men-
tioned, the CPA used by the producer, a re�ned property checking analysis, consists of
two parts: the property checking analysis and the enabler analysis. Before we come to
the details of a re�ned property checking, we describe the requirements on the property
checking analysis. These requirements are much more restrictive than those on the enabler
analysis.

5.2.1 Property Checking Analysis

As already mentioned, the main task of a property checking analysis is to inspect program
safety on the producer and the consumer side. To examine program safety, the analysis
must know the safety speci�cation, which is given in form of a control state unaware
property automaton. Throughout this thesis, we use enhanced CPAs to integrate property
speci�cations into the analysis. Hence, a property checking analysis is always a CPA
enhanced with a control state unaware property automaton.

However, not every enhanced CPA is a property checking analysis. We require a certain
structure of the CPA that is enhanced. To generate a behaviorally equivalent program, the
ARG constructed during the producer veri�cation may only represent syntactical program
paths. The producer analysis requires a location CPA to consider syntactical program
paths only. Syntactical paths in a program, e.g., in the generated program, are always
encoded with program locations and control �ow edges. Since the consumer should not
consider paths that the producer did not, the consumer analysis of the generated program
also needs the location CPA. In many cases, a location CPA alone is not appropriate to
inspect a given property speci�cation. Especially, if the control state unaware property
automaton does not uniquely handle all concrete states, the location CPA will not be
su�cient. In this case, the property automaton distinguishes between some data states.
Hence, we require an additional CPA C, e.g., a sign CPA S, which can distinguish between
the classes of data states that are treated di�erently in the property speci�cation. Thus,
the CPA enhanced in a property checking analysis is a location CPA optionally combined
with another CPA.

As already mentioned, the location state plays an important role in the property
checking analysis. In the reminder of the chapter, we often need to refer to the location
state of an abstract state explored by the property checking analysis. It is very tedious
to always distinguish between the structure of the CPA C1 being enhanced in a property
checking analysis (either L or L × C). Similar to the control state of a concrete state,
we de�ne a function to access the control state information, the so called abstract control
state, of the CPA C1.
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De�nition 5.2. Let e1 ∈ EC1 be an abstract state. Its abstract control state acs(e1) is
acs(e1) = e1 if C1 = L and acs(e1) = l if C1 = L× C and e1 = (l, ·).

After the digression on an abstract control state, we resume the discussion of the require-
ments on a property checking analysis. The structural restriction alone is not yet su�cient
to generate behaviorally equivalent programs or to enable the veri�cation of the generated
program. We need further restrictions on the analysis' operators, especially the transfer
relation. To retranslate the generated program into deterministic programming languages
like C, we must generate deterministic programs. Thereto, we require that the producer's
transfer relation is a function. During program generation, we keep the operations (state-
ments) of the original program. To enable the veri�cation of the generated program, we
also need a transfer function in the consumer analysis. The transfer relation of the prop-
erty checking analysis must be a function. For the veri�cation of the generated program,
an arbitrary transfer function is not su�cient. Due to di�erent exploration orders, the
consumer might explore a less abstract property checking state than the producer. To
still ensure that the successors explored by the consumer are considered in the producer's
analysis, we require a monotonic transfer function. Moreover, we must be able to transfer
the property checking analysis' exploration on the producer side to the consumer. We
only restructure the original program, i.e., the program locations of the CFA edges are
adapted, but never the operation. Of course, the location state is a�ected by the structure
change. In contrast, the remaining parts of the abstract state should not see the di�erent
structure of the original and generated program. Thus, we require that locations mainly
in�uence the location state. Especially, in the transfer function, which is the same for the
producer and the consumer, a renaming of program locations must be feasible.

Finally, we come back to the need for syntactical paths. The location CPA is a
necessary requisite. However, we also must ensure that every explored abstract state
considers only a single program location. To achieve this requirement, we need to take
special care on the operators of the property checking analysis. The merge operator and
the termination check of the property checking analysis are not relevant. The producer
uses a composition of an enabler and a property checking analysis for which those operators
are rede�ned. Hence, we add the requirements on the merge and termination check later
when de�ning the requirements on the re�ned property checking analysis, the composition
of enabler and property checking analysis. Furthermore, the consumer analysis uses his
own, possibly di�erent merge and termination check operators, which will consider this
requirement. Thus, we only require that the transfer function and the precision adjustment
never compute abstract states with location state >L or ⊥L. For the precision adjustment,
we explicitly forbid this behavior. For the transfer function, only the composite CPA L×C
could introduce such behavior if it strengthened the location state. Thus, we exclude
strengthening of the location state. Now, we formally summarize the previously discussed
requirements on a property checking analysis.

De�nition 5.3. Let CA1 be an enhancement of a CPA C1 with a control state unaware
property automaton A. Then, CA1 is a property checking analysis if it adheres to the
following requirements:

• CPA C1 is the location CPA L or a composite CPA L×C, combining location CPA L
and another CPA C.

• The transfer relation  CA1 is a monotonic function.1

1For the domain we use the product ordering of v and the �at order on G and for the codomain v.
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• If CPA C1 is the location CPA, C1 = L, the transfer relation ignores the loca-
tion state to compute the abstract automaton state, ∀(lp, op, ls), (l′p, op, l′s) ∈ G :
((lp, q), (lp, op, ls), (ls, q

′)) ∈ CA1 =⇒ ((l′p, q), (l
′
p, op, l

′
s), (l

′
s, q
′)) ∈ CA1 .

• If CPA C1 is a composite CPA L×C, then the transfer relation does not strengthen
the location state, ∀((lp, e), g, (ls, e′)) ∈ C1 =⇒ (lp, g, ls) ∈ L, and ignores the
locations of the control �ow edge to compute the non-locations elements of a suc-
cessor, ∀(lp, op, ls), (l′p, op, l′s) ∈ G : (((lp, e), q), (lp, op, ls), ((ls, e

′), q′)) ∈ CA1 =⇒
(((l′p, e), q), (l

′
p, op, l

′
s), ((l

′
s, e
′), q′)) ∈ CA1 .

• the precision adjustment does not widen the location state, ∀e ∈ ECA1 , π ∈ ΠCA1 , S ⊆
ECA1 : prec(e, π, S) = (e′, π′) =⇒ acs(e) = acs(e′).

Many of the above restrictions exclude theoretically possible con�gurations, which are
unlikely in practice. For example, a most precise enhancement of the location CPA L
with an arbitrary control state unaware property automaton always meets the above
requirements. Furthermore, we think that in case that the property checking analysis
enhances a composite CPA L × C, the major restrictions in practice are the following.
The transfer function  C is monotonic and CPA C must be control state independent.
Given such a CPA C, one can simply compose L and C using the product transfer relation2

plus any sound merge and termination check. To get a property checking analysis out of
the composition, one only needs to apply the most precise enhancement. We obtained
the property checking analysis for our example, the enhanced sign data�ow analysis,
similarly. However, we relaxed the merge operator s.t. it merges states with same locations.
Generally, a less property precise transfer function, which remains monotonic and still
ignores the location state to compute the non-location states, and a relaxed merge operator
can be used. The resulting CPA is still a property checking analysis.

In our Programs from Proofs approach, we assume that for the producer the property
checking analysis alone is not su�cient to prove program safety. Remember that our sign
data�ow analysis failed to prove safety of program SubMinSumDiv w.r.t. property nonneg

(see Fig. 2.5). To still prove program safety, the producer extends the property checking
analysis with an enabler analysis. Next, we describe what the producer must take into
account when he extends the property checking analysis.

5.2.2 Re�ned Property Checking Analysis

In principle, a re�ned property checking analysis is an extension of a property checking
analysis with an appropriate enabler analysis. Remember that the sole purpose of the
enabler analysis is to make a veri�cation with the property checking analysis feasible.
The enabler analysis only excludes infeasible paths or separates paths whenever needed.
However, it never interferes with the property checking analysis. In principle, the property
checking analysis is unaware of the enabler analysis.

In theory, almost any CPA can be used as enabler analysis. For our Programs from
Proofs approach, it is more important that we appropriately extend the property checking
analysis with the enabler analysis. Nevertheless, we have one requirement w.r.t. the
enabler analysis, which we need to generate deterministic program. Like in the property
checking analysis, its transfer relation must be a function. This leads us to the following
de�nition of an enabler analysis.

2We think the product transfer relation is a rather natural combination if one analysis considers the
control state and the other the data state.
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De�nition 5.4. A CPA C2 is an enabler analysis if its transfer relation is a function.

To workout in practice, the enabler analysis should be more powerful than the prop-
erty checking analysis. At least, it should be able to separate some concrete states that
cannot be separated by the abstract states of the property checking analysis. For our
example, we use the predicate analysis P to extend the sign data�ow analysis. Similar
to the predicate analysis in our example, we often use enabler analyses for which we can
set the precision. As discussed later, we apply counterexample guided abstraction re�ne-
ment (CEGAR) [CGJ+00] to automatically detect a precision for those enabler analyses.
Preferably, the computed precision should be coarse but precise enough for successful
veri�cation.

So far, we know all restrictions on the two components of a re�ned property checking
analysis. Now, we look at their composition. Since the CPA algorithm must be started
with an enhanced CPA, technically we cannot simply compose the enabler analysis with
the property checking analysis to get the re�ned property checking analysis. Technically,
we �rst compose the enabler analysis C2 with the CPA C1 that is enhanced in the property
checking analysis and then enhance the composite CPA C1 × C2. However, this is more
or less a technical issue. For the abstract domain, there is only a structural di�erence.
In case of the transfer relation, only in the standard composition of the enabler and
property checking analysis, the enabler analysis could strengthen the automaton state.
Since the enabler analysis must not in�uence the property checking analysis, this kind of
strengthening would be forbidden anyway. Again, solely in the standard composition we
may consider the automaton state to strengthen the enabler state. In theory, the standard
composition is indeed more �exible. However, we believe that in practice the enabler state
is strengthened based on the set of concrete states represented by the other component's
abstract state. The automaton state does not in�uence the meaning of an abstract state.
Practically, there should not be a di�erence w.r.t. strengthening. Next, we need to ensure
that the property checking analysis' transfer relation determines the property checking
state including the automaton state. The transfer relation of an enhanced CPA C1 uses
the transfer relation of the CPA C1 to determine the component eC1

of the successor.
Thus, it only remains to be shown that in the technically motivated composition the
transfer relation could generate the same successor automaton states as the standard
composition. We know that every property automaton is deterministic. Hence, if we
consider the composition of C2 and C1 before the enhancement, the computed automaton
state in the most precise enhancement may only be more precise. We conclude that an
enhancement exists that replaces the automaton state of the most precise enhancement
by a more abstract one depending on the abstract state of component C1 (the abstract
state considered to determine the automaton state in the property checking analysis).
Practically, the technical motivated composition does not impose any restrictions on the
transfer relation. Now, let us consider the precision adjustment. When the property
checking analysis selects the precision adjustment of the most precise enhancement, the
precision adjustment is the same in both composition orders. In all other cases, �rst
composing C2 and C1 is more general. The set of possible precision adjustments subsumes
the set of con�gurable precision adjustments in the composition of the enabler analysis C2

and the property checking analysis CA1 . Since the merge operator can be freely con�gured
in both cases, there is no di�erence for the merge operator. The termination check in
the standard composition can be con�gured almost arbitrarily, of course we need some
restrictions that the behavior of the property automaton is respected. In contrast, we
force the termination check in the enhancement of the composite analysis C2 × C1 to
always consider all states that �t to the automaton state. In a successful veri�cation, the
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analysis only explores abstract states whose automaton states are states in the property
automaton. We do not see a practical need that the termination check operator considers
the automaton state to decide coverage.

In the last paragraph, we recognized that the non-standard composition of the enabler
and property checking analysis is no restriction. We continue to present what must be
taken into account when the enabler analysis and the property checking analysis are com-
bined. The underlying idea of our Programs from Proofs approach is that the property
checking analysis alone can prove safety of the generated program. For this, we require
that already in the producer analysis the property checking analysis alone checks safety.
The enabler analysis only separates program paths or excludes infeasible paths. This
means that the transfer relation of the re�ned property checking analysis uses the prop-
erty checking analysis to determine the second element of the composite CPA C2 × C1

and the automaton state. Like the transfer relations of enabler and property checking
analyses, the transfer relation of a re�ned property checking analysis must be a func-
tion. Furthermore, also the re�ned property checking analysis must take care that no
new program behavior is introduced during program transformation. Like in the property
checking analysis, a re�ned property checking analysis must not change the location state.
In a standard composition, the requirement on the property checking analysis would be
su�cient. However, in our technically motivated composition of the enabler and prop-
erty checking analysis we need the restriction on the property checking analysis' precision
adjustment to ensure that any property checking analysis can be enhanced. Addition-
ally, we must repeat the requirement for the re�ned property checking analysis to really
guarantee that no new program behavior will be introduced. Furthermore, to eliminate
new program behavior in the generated program, the merge operator must not widen the
location state. Since during program generation we never change program statements, the
consumer veri�cation cannot detect that during producer veri�cation a transfer successor
is covered by a number of abstract states. At last, we require that the termination check
only returns true in case an abstract state is covered by a single state. The following
de�nition formally reconsiders the previously discussed restrictions on a re�ned property
checking analysis.

De�nition 5.5. Let (C2 × C1)A be a composite CPA C2 × C1 enhanced with a con-
trol state unaware property automaton and CA1 be a property checking analysis. Then,
CPA (C2 × C1)A is a re�ned property checking analysis of property checking analysis CA1
if

• the transfer relation  (C2×C1)A is a function that may only strengthen the ab-
stract state of the enabler analysis and determines the automaton state with the
property checking analysis only: ∀((e2, e1), q), ((e′2, e

′
1), q′) ∈ E(C2×C1)A , g ∈ G :

(((e2, e1), q), g, ((e′2, e
′
1), q′)) ∈ (C2×C1)A =⇒ ((e1, q), g, (e

′
1, q
′)) ∈ CA1 ,

• the precision adjustment never changes the location state, ∀((e2, e1), q) ∈ E(C2×C1)A ,
π ∈ Π, S ⊆ E(C2×C1)A : prec(((e2, e1), q), π, S) = (((e′2, e

′
1), q′), π′) =⇒ acs(e1) =

acs(e′1),

• the merge operator keeps the location state of its second parameter, ∀((e2, e1), q),
((e′2, e

′
1), q′) ∈ E(C2×C1)A : merge(((e2, e1), q), ((e′2, e

′
1), q′)) = ((em2 , e

m
1 ), qm) =⇒

acs(em1 ) = acs(e′1), and

• if the termination check returns true, then an abstract state has already been ex-
plored that covers the checked abstract state, ∀e ∈ E(C2×C1)A , S ⊆ E(C2×C1)A :
stop(C2×C1)A(e, S) =⇒ ∃e′ ∈ S : e v(C2×C1)A e

′.
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Note that the above restrictions always allow to re�ne any property checking. For the
transfer relation and the precision adjustment, one could always use the product combi-
nation. We discussed earlier that this is feasible despite the non-standard composition
in which we �rst compose CPAs C2 and C1 and then enhance the composition. Hence,
the restrictions on the transfer relation and the precision adjustment only limit the power
of the composition. However, the limitation is needed to enable the successful consumer
veri�cation on the transformed program. Furthermore, the requirements on the merge
operator are standard for all �ow-sensitive analyses. Also, termination check operators
that check that an abstract state is covered by a more abstract state are often used in
practice. Possibly, the producer must explore more abstract states than he originally in-
tended. Nevertheless, for our Programs from Proofs approach it is always acceptable to
impose a higher workload on the producer. The only impact of the requirements on the
merge and the termination check operator is that the producer probably must con�gure
a more precise analysis.

For our example, we extend the sign data�ow analysis, which alone failed to prove
program SubMinSumDiv w.r.t. property nonneg, with a predicate analysis PP .3 To build
the re�ned property checking analysis (PP×(L×S))A for our example, we use the product
combination of the predicate and the sign data�ow analysis for the transfer relation and the
precision adjustment. The merge operator joins abstract states whenever the predicate
and the location state are the same, merge(PP×(L×S))A(((p, (l, s)), q), ((p′, (l′, s′)), q′)) =
((p, (l, s tS s′)), q tQ q′) if p = p′ and l = l′. In all other cases, the merge opera-
tor does not combine information, i.e., merge(PP×(L×S))A(((p, (l, s)), q), ((p′, (l′, s′)), q′)) =
((p′, (l′, s′)), q′). Furthermore, the termination check returns true when an abstract state
is covered by a more abstract state.

Before we come to the execution of a re�ned property checking analysis, like e.g. our
example (PP × (L× S))A, we want to introduce the concept of location updated property
checking extraction. We often employ this concept to convert an abstract state of the
producer into the context of the consumer. Since the consumer does not know about
the enabler state, we remove this information. Note that the enabler state can safely be
removed because its information never a�ects property checking directly. Additionally, we
need to consider that due to the program transformation the location changed. A re�ned
property checking analysis can be started with an arbitrary program. It is unaware of
the program transformation. Thus, we must explicitly provide the location state in the
new program. Given a location state l and an abstract re�ned property checking analysis
state ((e2, e1), q), the location updated property checking extraction takes the property
checking analysis state (e1, q) included in the re�ned property checking analysis state and
replaces the location information in abstract state e1 with l.

De�nition 5.6. Let (C2×C1)A be a re�ned property checking analysis. For any location
state l′ ∈ L and any abstract state e = ((e2, e1), q) ∈ E(C2×C1)A we de�ne the location
updated property checking extraction e[l′] to be e[l′] := (l′, q) if C1 = L and e[l′] :=
((l′, eC), q) if C1 = L× C and e1 = (·, eC).

With the last de�nition, we �nished the discussion of a re�ned property checking analysis.
Next, we continue with the execution (result) of a re�ned property checking analysis.

3Note that in case of our example we could also prove the property with sign model checking. How-
ever, the state space explored by sign model checking is larger (contains more abstract states) for program
SubMinSumDiv than using the re�ned property checking analysis, our extension of the sign data�ow an-
alysis, presented next.
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5.2.3 Execution of Re�ned Property Checking Analyses

So far, we explained which enhanced CPAs can be used as re�ned property checking
analyses in our Programs from Proofs approach. To start the veri�cation, we need two
additional inputs: an initial abstract state and an initial precision. We already mentioned
in the overview, that no restrictions on the initial precision exist. However, the re�ned
property checking analysis must be started in an initial abstract state appropriate for the
Programs from Proofs approach.

As always, the veri�cation must start in the initial automaton state to inspect program
safety. Moreover, we already mentioned before that if the analysis explores an abstract
state with location state >L, new program behavior will be introduced. Since we want
to inspect at least some program behavior, we must not use ⊥L, which represents no
concrete state. The only location states that remain are concrete locations. Thus, we
require that the location state in the initial abstract state is described by a concrete
location. Furthermore, remember that the consumer derives his initial abstract state
from the producer's initial abstract state. The consumer must be able to express the
restrictions of the producer's initial abstract state with a property checking state only.
Often, enabler states can be more precise than any property checking state. For some
enabler states, no equivalent property checking state exists. Hence, we assume that the
property checking analysis state alone determines which program behavior is inspected.
The enabler state must not restrict the analyzed program behavior. The top state >C2 ,
which represents all concrete states, never restricts the property checking state and is
often a su�ciently good choice. All abstract states of a re�ned property checking analysis
that meet the previously discussed requirements are appropriate initial abstract states.
We say that these abstract states are compatible, initial abstract states.

De�nition 5.7. Let (C2 × C1)A be a re�ned property checking analysis considering
control state unaware property automaton A = (Q, δ, q0, qerr), and e0 = ((eC2 , eC1), q) ∈
E(C2×C1)A be an abstract state. Abstract state e0 is a compatible, initial abstract state if

• it uses the initial automaton state, q = q0,

• it considers exactly one program location, acs(eC1) ∈ L, and

• the enabler state does not restrict the property checking state, JeC2KC2 ⊇ JeC1KC1 .

Until now, we have discussed the con�guration of all input parameters in the producer
veri�cation. Next, we take a look at the veri�cation of our example program SubMin-

SumDiv w.r.t. property nonneg. As we already observed, the veri�cation with the simple
sign DFA, a property checking analysis, failed (see e.g. Fig. 2.5). To show safety of pro-
gram SubMinSumDiv, we extended the sign DFA with a predicate CPA, the enabler analysis
in our example. We detected that the set of predicates P = {y ≥ 0} is su�cient to prove
program safety. Later in this chapter, we explain how to automatically determine an ap-
propriate precision of the enabler analysis. Since we want to show program safety for all
program executions starting in the initial program location, we use e0 = ((>P, (l0,>S)), q0)
as compatible initial abstract state.

Figure 5.3 shows the ARG generated by the producer for our example program Sub-

MinSumDiv and the previously discussed con�guration. Note that in the ARG we represent
>P by true. We observe that all automaton states in the ARG are q0 or q1. The producer
succeeds to show safety of program SubMinSumDiv w.r.t. property nonneg. Furthermore,
we observe that in the ARG all three cases, the computation of the minimum, the sum,
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Figure 5.3: Abstract reachability graph constructed during successful veri�cation of pro-
gram SubMinSumDiv with a re�ned property checking analysis. The re�ned property check-
ing analysis used is the predicated sign DFA enhanced with property automaton nonneg.
The considered set of predicates is P = {y ≥ 0}. The veri�cation started with initial
abstract state e0 = ((>P, (l0,>S)), q0) and initial precision π0 = (P, πstatic) (the only
precision available).

and the division, are separated. This separation, especially splitting the computation of
the sum and the division, is the key to prove safety. To uncouple the computation of the
sum and the division, the while loop is duplicated. Additionally, in each while loop the
infeasible branch belonging to the other computation is excluded. Due to these infeasible
paths, the property checking analysis alone failed to prove safety. Finally, we want to note
that a sign model checking, which never combines abstract states, would also be possible
in this special case. Compared to the re�ned property checking analysis, the sign model
checking requires two additional loop unrollings, one for the sum and one for the division
computation.

After a successful veri�cation, like the one of our example program SubMinSumDiv

considered in the previous paragraph, the standard guarantee on the generated ARG is
well-formedness. For our Programs from Proofs approach, a well-formed ARG is not
su�cient. We require stronger guarantees, which include well-formedness plus some ad-
ditional requirements. To ensure that the producer generates a behaviorally equivalent
program, we also require that all ARG nodes consider concrete locations. Additionally,
we also need a sound and deterministic ARG (see De�nition 2.12). For the generation of
deterministic programs, which we need to translate the generated program into a deter-
ministic programming language like C, the ARG must be deterministic. Moreover, our
program generation only restructures the original program, e.g., it unrolls loops, splits
paths, moves statements into branches, or removes syntactical but infeasible paths. Since
the statements are never modi�ed, neither program execution nor consumer veri�cation
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can detect that the producer veri�cation assumed that some parts of a transfer successor
are covered by ARG node n while others are covered by a di�erent ARG node n′. Program
execution and consumer veri�cation would always assume that all successors allowed by
the respective statement are valid. Thus, we need the ARG to meet this assumption. Each
transfer successor is completely covered by a single ARG successor, the typical soundness
property of an ARG. We unite all these requirements under a common term and call a
well-formed ARG that also ful�lls the extra requirements strongly well-formed.

De�nition 5.8. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A and e0 ∈ E(C2×C1)A be an abstract state. RP
(C2×C1)A is

strongly well-formed for e0 if RP
(C2×C1)A is well-formed for e0, is sound, deterministic and

all nodes consider concrete locations, ∀((e2, e1), q) ∈ N : acs(e1) ∈ L.

It remains to be shown that the producer's veri�cation indeed generates strongly well-
formed ARGs during a successful veri�cation. Since the re�ned property checking an-
alysis is an enhanced CPA, Proposition 2.8 guarantees us the well-formedness property.
Furthermore, the transfer relations of re�ned property checking analyses are functions.
Moreover, the termination check operators of re�ned property checking analyses only re-
turn true when the input abstract state e is covered by a single abstract state in the input
set S of abstract states. All preconditions for Proposition 2.9 are ful�lled. Hence, Propo-
sition 2.9 ensures soundness and determinism. It remains to be shown that all ARG nodes
only consider concrete locations. The following lemma gives us this remaining property
for all ARGs constructed during a successful producer veri�cation, which of course starts
with a compatible, initial abstract state.

Lemma 5.1. If Algorithm 2 started with re�ned property checking analysis (C2 × C1)A,
compatible, initial abstract state e0 ∈ E(C2×C1)A , any initial precision π0 ∈ Π(C2×C1)A , and
program P returns (true, ·, (N,GARG, root,Ncov)), then ∀((·, e1), ·) ∈ N : acs(e1) ∈ L.

Proof. See Appendix pp. 270 f.

With the previous lemma, we proved that our producer veri�cation also ensures the last
property of a strongly well-formed ARG. Now, we simply combine the partial results and
state that in the Programs from Proofs approach the ARGs generated during successful
producer veri�cation are strongly well-formed.

Proposition 5.2. If the CPA algorithm (Algorithm 2) started with re�ned property check-
ing analysis (C2×C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , arbitrary initial

precision π0 ∈ Π(C2×C1)A , and program P returns (true, ·, RP
(C2×C1)A), then RP

(C2×C1)A is

an ARG for P and (C2 × C1)A which is strongly well-formed for e0.

Proof. Let RP
(C2×C1)A = (N,GARG, root,Ncov). From Proposition 2.8, we know that

RP
(C2×C1)A is an ARG for P and (C2 × C1)A which is well-formed for e0. From Propo-

sition 2.9, we conclude that RP
(C2×C1)A is sound and deterministic. From the previous

lemma, we infer that ∀((e2, e1), q) ∈ N : acs(e1) ∈ L. By de�nition of strongly well-
formedness, we conclude that RP

(C2×C1)A is strongly well-formed for e0.

Up to now, we presented all restrictions that we need to ensure that the veri�cation of
a correctly transformed program does not fail on the consumer side. For many con�gu-
rations and programs these restrictions are su�cient. In some cases, we explicitly need
to ensure that the consumer veri�cation terminates. The next subsection discusses when
termination needs to be considered and which further restriction are needed in this case.
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5.2.4 Incorporation of Termination of the Consumer Veri�cation

Termination of the consumer analysis is not always a separate issue. Depending on the
structure of the (generated) program and the structure of the re�ned property checking
analysis, the previously discussed restrictions may be enough. In the following, we list the
cases for which we know and proved that the restrictions discussed so far are su�cient.

1. The generated program is loop-free.

2. The join-semilattice considered in the abstract domain of the property checking
analysis has a �nite height.

3. The re�ned property checking analysis applies model checking without adjusting the
property checking analysis part, i.e., the precision adjustment changes at most the
enabler state, the analysis never combines abstract states, merge(C2×C1)A(e, e′) := e′,
and the termination check always detects coverage by same states.

A re�ned property checking analysis never merges abstract states with di�erent program
locations. Thus, the generated program is always loop-free when the original program
is loop-free. Furthermore, many re�ned property checking analyses already ful�ll one of
the above requirements and do not need to care for termination. Every re�ned property
checking analysis that extends a property checking analysis that is an enhancement of
the location CPA or of a composition of a location CPA and a CPA C with �nite join-
semilattice height guarantees the second requirement. Since the lattice considered in the
sign CPA S has a �nite height, for our example analysis, the predicated sign data�ow
analysis (PP × (L× S))A, we also do not need to take termination into account.

While the three cases from above already cover a large class of re�ned property checking
analyses, they do not fully cover one class of re�ned property checking analyses that we
frequently use in practice. In practice, our re�ned property checking analyses often use
the product transfer function of the enabler and property checking analysis, never adjust
precisions4, merge states with same locations and enabler states only, and stop exploration
of an abstract state when it is covered by a more abstract state with same enabler and
location state. For this class, we also want to guarantee termination even if the join-
semilattice height is in�nite. However, we do not show termination for re�ned property
checking analyses of this class only. In contrast, we provide some additional requirements
on the re�ned property checking analysis to guarantee termination. The re�ned property
checking analyses just described automatically ful�ll the additional requirements.

The termination proof for the last case utilizes that we know that the producer analysis
terminated. Hence, if the consumer analysis can mimic the property checking analysis
part of the producer's analysis, termination of the consumer analysis should follow from
termination of the producer analysis. To show that the consumer analysis mimics the
property checking analysis part of the producer's analysis, we must relate the abstract
states considered in the consumer analysis to those states considered in the producer
analysis. As we already know, the program locations of the original and generated program
may di�er. Additionally, program locations of the original program can be duplicated.
We cannot just relate program locations. However, since the consumer analysis performs

4Assuming that we do not perform lazy re�nement, practically, our enabler analyses compute the
strongest transfer successor and statically relax them in the precision adjustment. Thus, the relaxation
could be easily moved into the transfer relation and no changes in precision adjustment are necessary.
Since we cannot distinguish between these two analyses externally, we may think of the implemented
analysis as if it was the second one.
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a data�ow variant of the property checking analysis, which only computes one abstract
state per location, it is su�cient to properly relate the producer's abstract states to the
program locations of the consumer's program. Since we do not know when an abstract
state should be related to location l and when to a di�erent location l′, a producer's
abstract state must be mapped to a single location. In the following, we consider an
equivalence relation ∼: E(C2×C1)A × E(C2×C1)A on the abstract states to describe the
relation between the producer's abstract states and the consumer's program locations. The
idea is that each location in the generated CFA is associated with exactly one equivalence
class. Furthermore, the equivalence relation itself describes which parts of the producer's
abstract states are responsible for the generated locations. Note that not all abstract
states of an abstract domain are explored. Non-explored states do not need to be related
to a location. For some equivalence classes no associated location might exist. However,
if a location l is associated with an equivalence class, then all abstract states in that
equivalence class will be related to the location l. Furthermore, due to the requirements
on a re�ned property checking analysis, especially di�erent location states must not be
intermixed. Only abstract states with the same location state may be equivalent. For the
frequently used class of re�ned property checking analyses from above, the equivalence
relation relates all abstract states with the same enabler and location state. In case of
model checking, the equivalence relation becomes the identity relation.

The equivalence relation alone is not yet su�cient. The problem is that the producer
analysis may show behavior that the consumer analysis cannot reproduce. For example,
the producer combines abstract states of di�erent equivalence classes. This means that
the consumer analysis, a data�ow analysis, might combine states considering di�erent
locations, which no data�ow analysis ever does. To be able to mimic the producer's
behavior, we need to exclude that the producer can do something the consumer analysis
cannot do. Therefore, we require that the producer analysis must treat the abstract
states of a single equivalence class like the consumer analysis treats locations. For states
with same locations, the transfer function of the property checking analysis cannot vary
the location information computed along one edge. Additionally, the property checking
analysis cannot only use the same location information to sometimes exclude a successor
for an edge and sometimes not. This behavior is only possible when all component states
of the abstract state are considered. Thus, for a given CFA edge the successors computed
by the re�ned property checking analysis for abstract states of the same equivalence class
always belong to the same equivalence class. Moreover, for a given CFA edge the re�ned
property checking analysis either provides no successor for all states within the same
equivalence class or successors are only excluded due to the property checking analysis
state. Since the consumer analysis never adjusts precisions, the precision adjustment of
the re�ned property checking analysis must keep the property checking state. It may only
change the enabler state. Moreover, the resulting abstract state must belong to the same
equivalence class as the abstract state that is adjusted. Furthermore, data�ow analyses
join abstract states for same locations. The re�ned property checking must join abstract
states of same equivalence classes. Finally, a data�ow analysis stops exploration i� an
abstract state is covered by a more abstract state with the same location. Hence, the
re�ned property checking analysis must stop exploration i� an abstract state is covered
by a more abstract state of the same equivalence class.

We start the consumer analysis with an initial abstract state that mimics the pro-
ducer's initial abstract state. Furthermore, the requirements from above ensure that the
property checking analysis part of the producer analysis behaves like a data�ow analysis
on the generated program (of course the location names do not match). Additionally, the
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requirements on the transfer function of the property checking analysis and the re�ned
property checking analysis guarantee us that we can transfer the property checking related
successor computation to the consumer analysis. Thus, the consumer analysis should be
able to mimic the producer analysis w.r.t. property checking analysis.

To guarantee that a re�ned property checking analysis ensures termination of the
consumer analysis, we only need to �nd an equivalence relation on the abstract states s.t.
the re�ned property checking analysis in combination with the equivalence relation ful�lls
the requirements discussed above. In case such an equivalence relation exists for a re�ned
property checking analysis, we say that the analysis is equivalence relation consistent. The
following de�nition formally states equivalence relation consistency.

De�nition 5.9 (Equivalence Relation Consistency). A re�ned property checking analy-
sis (C2 × C1)A is equivalence relation consistent if there exists an equivalence relation
∼: E(C2×C1)A × E(C2×C1)A on the abstract states s.t.

• if two abstract states of the same equivalence class both have a successor for CFA
edge g, then the successors belong to the same equivalence class, ∀e, e′, e′′, e′′′ ∈
E(C2×C1)A , g ∈ G : e ∼ e′ ∧ (e, g, e′′) ∈ (C2×C1)A ∧(e′, g, e′′′) ∈ (C2×C1)A =⇒
e′′ ∼ e′′′,

• if for some abstract state a transfer successor for CFA edge g exists, then for all
other abstract states of the same equivalence class either the property checking
analysis excludes any transfer successor or a transfer successor exists for that CFA
edge, ∀e, ((e2, e1), q) ∈ E(C2×C1)A , g ∈ G : e ∼ ((e2, e1), q) ∧ ∃(e, g, ·) ∈ (C2×C1)A

∧∃((e1, q), g, ·) ∈ CA1 =⇒ ∃(((e2, e1), q), g, ·) ∈ (C2×C1)A ,

• the precision adjustment neither changes the property checking state, the automa-
ton state, nor the equivalence class, ∀(((e2, e1), q), (((e′2, e

′
1), q′) ∈ E(C2×C1)A , π, π

′ ∈
Π(C2×C1)A , S ⊆ E(C2×C1)A : prec((((e2, e1), q), π, S) = ((((e′2, e

′
1), q′), π′) =⇒

(e1, q) = (e′1, q
′) ∧ (((e2, e1), q) ∼ (((e′2, e

′
1), q′),

• the merge operator joins states i� they are of the same equivalence class and re-
turns the same equivalence class as the second parameter, ∀e′, e′′ ∈ E(C2×C1)A :
merge(e′, e′′) ∼ e′′ and e′ ∼ e′′ implies merge(e′, e′′) = e′ t e′′ and e′ 6∼ e′′ implies
merge(e′, e′′) = e′′,

• the termination check operator returns true i� an abstract states is covered by an
element of the same equivalence class, ∀e ∈ E(C2×C1)A , S ⊆ E(C2×C1)A : stop(e, S) =
∃e′ ∈ S : e ∼ e′ ∧ e v e′.

Reconsider the equivalence relation that relates all abstract states with the same enabler
and location state. Using this equivalence relation, we easily see that a re�ned property
checking analysis that uses the product transfer function of the enabler and property
checking analysis, never adjusts precisions, merges states with same locations and enabler
states only, and stops exploration of an abstract state when it is covered by a more abstract
state with the same enabler and location state is equivalence relation consistent.

From the producer's point of view, all re�ned property checking analyses that are
typically relevant in practice guarantee termination of the consumer's analysis. Of course,
we need to prove this claim when we look at the consumer analysis. In the remaining cases,
the producer could always check after program generation whether the consumer analysis
terminates. He solely needs to start the consumer analysis and to abort it whenever it
takes longer than his own analysis. Alternatively, he can use his ARG and transform it
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into a proof for the generated program. We discuss this alternative in the next chapter.
In the following, we continue with the last open question of the producer analysis: how
to automatically get a proper abstraction level for the enabler analysis?

5.2.5 Determination of the Enabler Analysis' Abstraction Level

Although it is not a mandatory requirement, we typically use enabler analyses C2 with
an adjustable abstraction level. For example, the set of predicates P determines the
abstraction level of the predicate CPA PP introduced in Section 2.3.1. Enabler analyses
with adjustable abstraction level provide the advantage that the producer can start with a
very coarse abstraction level. Then, he successively tries out �ner abstraction levels until
the property can be proven. The producer analysis does not need to become unnecessarily
precise and complex. Thus, the constructed ARG becomes only as precise as necessary
to prove the desired property with the property checking analysis. However, practically
the producer only pro�ts from an adjustable abstraction when a suitable (and coarse)
abstraction level can be determined automatically.

Currently, we support two approaches to automatically determine a suitable abstrac-
tion level for the enabler analysis: the classical counterexample guided abstraction re�ne-
ment (CEGAR) scheme [CGJ+00], in which a uniform abstraction model, the ARG, is
computed, and lazy re�nement [HJMS02], which allows to change the abstraction level
during the constructing of the ARG. In the following, we brie�y describe how these ap-
proaches work.

Uniform Abstraction

Counterexample guided abstraction re�nement (CEGAR) [CGJ+00] was proposed by
Clarke et al. in 2000 in the context of branching-time-symbolic model checking. The idea
behind the CEGAR approach is as follows. If the veri�cation fails due to a too coarse
abstraction, a �ner abstraction will be computed based on a spurious counterexample
and the veri�cation will be restarted with the �ner abstraction. Note that in contrast to
the predicate CPA from Section 2.3.1, in practice we use the (initial) precision to �x the
abstraction. Next, we brie�y outline how the classical CEGAR approach automatically
determines a suitable abstraction level.

1. Start with the coarsest abstraction level, e.g., for our predicate analysis this would
be the empty set of predicates, the representation of the boolean formula true.

2. Run the producer analysis with the current abstraction level.

3. If the producer analysis succeeds, i.e., the current abstraction level was su�cient to
prove the program correct, you are done.

4. If the producer analysis fails, try to re�ne the abstraction, i.e., make it more precise.

(a) Extract a counterexample and check if it is spurious.

(b) In case the counterexample is real, the program violates the correctness prop-
erty, return program unsafe.

(c) In case the counterexample is spurious, make the abstraction level more precise
s.t. the spurious counterexample is excluded. Like for our predicate abstract
domain, for some abstract domains an automatic re�nement of the abstraction
based on interpolation [HJMM04, BL13] can be used.
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5. Replace the current abstraction level with the re�ned abstraction level and go to
step 2.

We continue with the second approach which uses a non-uniform abstraction.

Non-Uniform Abstraction

In 2002, Henzinger et al. [HJMS02] introduced lazy re�nement for predicate abstraction.
Later, this principle is also applied on other abstractions, e.g., in combination with explicit
model checking [BL13]. The basic idea of lazy re�nement is that in case of a spurious
error, those parts of the abstract model, the ARG, are kept that do not relate to the
error and only the abstraction for those parts that in�uence the error is adapted. In the
following, we brie�y sketch the lazy re�nement process.

1. Register the pair of initial abstract state and coarsest abstraction level for explo-
ration.

2. Proceed to explore all states registered for exploration with the abstraction level
stored with them until all states registered for exploration are explored or an unsafe
state is reached.

3. If the producer analysis succeeds, i.e., all states are explored, you are done.

4. If the producer analysis fails, try to re�ne the abstraction, i.e., make it more precise.

(a) Extract a counterexample and check if it is spurious.

(b) In case the counterexample is real, the program violates the correctness prop-
erty, return program unsafe.

(c) In case the counterexample is spurious, make the abstraction level more precise
s.t. the spurious counterexample is excluded. Like for our predicate abstract
domain, for some abstract domains an automatic re�nement of the abstraction
based on interpolation [HJMM04, BL13] can be used.

5. Determine the pivot node, the �rst node from the root node that must become
more precise, remove the pivot node and all its descendants from the computed
abstraction, the ARG, and unregister them from exploration, register the pivot
node's parents with the re�ned abstraction level for exploration and go to step 2.

Looking at the sketched process, we observe that the ARG produced in such a process is
no longer the result of a CPA algorithm execution. However, we are con�dent that the
behavior of the lazy re�nement process can be imitated with a proper de�nition of the
producer analysis' precision adjustment operator s.t. it also adheres to the requirements
on the precision adjustment operator in a re�ned property checking analysis. As we will
see, the details of the producer's precision adjustment operator are irrelevant. Although
in practice it is realized di�erently, we can still assume that the producer runs the CPA
algorithm with a re�ned property checking analysis.

Next, we want to discuss how we realized the abstraction level re�nement in practice.
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Our Realization of the Abstraction Level Re�nement

The software analysis tool CPAchecker is already capable to execute the producer
analysis as long as the precision of the enabler analysis is given. To get a complete
prototype implementation for the producer analysis in the PfP approach, we must realize
the abstraction level re�nement for the enabler analysis in a re�ned property checking
analysis. Our goal for the realization is to easily get a prototype for our evaluation and
not a mature abstraction level re�nement. It is acceptable that sometimes the re�nement
fails.

The analysis tool CPAchecker already provides mature CEGAR solutions for pred-
icate abstraction and the value analysis, which also support lazy re�nement. However,
they are tailored to model checking, typically investigating the reachability of error loca-
tions, and are designed to exclude infeasible paths. We like to build upon these existing
solutions. First, we noticed that it would be laborious to extend the detection of spurious
counterexamples or the interpolation based abstraction re�nement. Thus, we decided not
to speci�cally handle counterexamples that are caused due to a merge of two safe results
as it is done for example by Fischer et al. [FJM05]. Nevertheless, often not only the
operation but also the data states are responsible that the transfer relation computes an
unsafe automaton successor. To make this information explicit to the existing re�nement
process, we apply a little trick. We temporarily include the failed data state check as an
assume edge into the program s.t. this assume edge is an outgoing edge of the program
location for which an unsafe state was detected. Then, we extend the ARG. We add a suc-
cessor to the unsafe state that is reachable via an edge labeled by the temporarily added
assume edge. The enabler state and the location state of this successor are computed via
the transfer relation, the remaining state parts are copied. Thereafter, the extended ARG
is forwarded to the standard CEGAR implementation.

In an automatic re�nement process, we need to know the data state check for the
assumption. Since it is di�cult to infer the check from the check applied by the property
checking analysis, we use a special concept of the automaton speci�cation language in
CPAchecker, the concept of an assumption speci�cation. Hence, we encode these
checks as assumptions on all transitions that lead to an error location5.

Abstraction re�nement was the last aspect of the producer's �rst task, the analysis.
We continue with the subsequent task, the generation of a behaviorally equivalent, but
more easily veri�able program.

5.3 Program Generation

In the last section, we explained how the producer proves safety of the original program.
In this section, we continue with the next step of the producer. First, we explain how
to generate an more easily veri�able program from the veri�cation proof, the strongly
well-formed ARG constructed during a successful producer veri�cation. Afterwards, we
discuss the properties of the generated program.

Remember that in our Programs from Proofs approach the producer's task is to re-
structure the original program such that the simpler property checking analysis can prove

5Note that in CPAchecker the automaton speci�cation always triggers the analysis check. The
automaton speci�cation is a mixture of our property automaton and the part of the enhanced CPA
computing the automaton state behavior. Furthermore, CPAchecker does not have the concept of q>
� we always use the error state instead � and transitions to the error location must be encoded explicitly.
Ambiguity can be handled by the order of the speci�cation of transitions.
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the restructured program on its own. We know that in a re�ned property checking analysis
the property checking analysis alone checks safety. The only tasks of the enabler analy-
sis are to exclude infeasible paths, which the property checking analysis did not detect
and (help the property checking analysis) to separate program paths where necessary to
prove safety. Additionally, the e�orts of the enabler analysis are directly re�ected in the
structure of the ARG constructed during veri�cation. Based on these insights, we directly
construct the generated program from that ARG.

We reuse a simple idea already applied in previous PfP instances [WSW13, JW15,
JW17]. The ARG structure de�nes the structure of the generated program. ARG nodes
become program locations, the root node de�nes the initial program location, and ARG
edges are transformed into program edges. To get CFA edges from the ARG edges, we
only need to transform the ARG labels. In contrast to CFA edges, which are only labeled
with the operation, ARG edges are labeled with a complete CFA edge. Thus, the CFA
edge label can be derived from the ARG label by only keeping the operation information
and removing information about predecessor and successor. This leads us to the de�nition
of a program from an ARG, our de�nition of a generated program, which is equivalent to
the de�nition in previous PfP instances [JW15, JW17].

De�nition 5.10 (Program from ARG). Let RP
CA = (N,GARG, root,Ncov) be an abstract

reachability graph. The generated program from ARG RP
CA is control �ow automaton

prog(RP
CA) = (L′, G′CFA, l

′
0) with L′ = N , G′CFA = {(l′, op, l′′) | (l′, (·, op, ·), l′′) ∈ GARG}

and l′0 = root.

Figure 5.4 shows the program code and the CFA for the program generated from the ARG
shown in Fig. 5.3, the ARG built during the producer veri�cation with the predicated sign
data�ow analysis PP × (L × S)A, the re�ned property checking analysis, of our example
program SubMinSumDiv w.r.t. property nonneg.

As it was intended, the CFA of the generated program has exactly the same structure
as the ARG in Fig. 5.3. Compared with the original program SubMinSumDiv, we observe
that the uppermost if branch remains the same while in the corresponding else branch the
cases y ≥ 0 and ¬y ≥ 0 are completely split. The while loop has been doubled and the
part of the loop required in each case is moved into the respective branch. Note that the
case separation is the reason why the simple sign data�ow analysis is able to prove safety
of the generated program w.r.t. property automaton nonneg.

Before we continue with the properties of the generated program, we �nally discuss
how to translate the CFA into a programming language representation. In our example,
we manually translated the CFA into a human readable form with proper loops. Since
the consumer processes the generated program automatically, we do not need a human
readable presentation. In practice, we use C programs and, thus, are able to encode loops
and branches simply with goto statements. Only one problem remains. In our generated
CFA, we have multiple �nal locations, namely l17, l18, and l19, which we were not able to
represent in the program code. In the program code, we only have a single �nal location
l17. This di�erence between program model and program language representation could
become a problem in the veri�cation of the generated program. Assume di�erent au-
tomaton states are associated with each �nal location. In practice, only one �nal location
exists. The di�erent automaton states would be merged into q> and the veri�cation of the
generated program fails. We suggest two solutions to deal with this practical problem.
First, one could use a special operation nop which does not change the program state
nor occurs in the program. Then, one introduces a new, single �nal location and adds a
CFA edge from every �nal location to the new one with operation nop. In the property
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0 : z:=0;

1 : i f (x<0)
2 : i f y<x

3 : z:=-y;

e l se
4 : z:=-x;

5 : z:=z+10;

e l se
6 : i f y≥0
7 : s:=1;

8 : while x ≥ y ∧ x 6= 0

9 : i f y≥0
10 : z:=z+x;

11 : x:=x-s;

e l se
12 : s:=-y;

13 : while x ≥ y ∧ x 6= 0

14 : i f ¬y≥0
15 : z:=z+1;

16 : x:=x-s;

17 :

Figure 5.4: Example of a generated program and its CFA. The generated program was
constructed from the strongly well-formed ARG in Fig. 5.3 obtained during veri�cation
of program SubMinSumDiv with predicated data�ow analysis PP × (L× S) enhanced with
property automaton nonneg and initial abstract state e0 = ((>P, (l0,>S)), q0).

automaton, an occurrence of operation nop always leads to one speci�c automaton state
that is unequal to the error state. Second, one could use a slightly di�erent consumer
analysis that still separates automaton states. This is what we do in practice.

Up to now, we described how to generate the program checked by the consumer. In
the following, we discuss important properties of the generated program. These properties
facilitate the applicability of our Programs from Proofs approach in scenarios described
in the introduction. We start with the most essential property: program and generated
program are behaviorally equivalent.

Consider our example, due to the unfolding of the CFA the size of the generated
program, e.g., the lines of code, increased. Furthermore, the unfolding of the CFA revealed
that some syntactical paths of the program cannot be executed. Namely, we detected
that in the else branch of the �rst if statement depending on the value of y only one
path through the loop is possible. Nevertheless, the program operations and the feasible
syntactical paths are the same. Thus, the program execution paths remain the same.

Based on this observation, behavioral equivalence is de�ned by some sort of trace
equivalence (see e.g. [vG90]). In general, two systems are trace equivalent when their
sets of traces, the sequences of actions that can be observed during system execution, are
identical. We continue to discuss what are the traces of a program.

A nearby solution would use the program paths as traces. However, this is a too strict
concept of a trace for our setting. On the one hand, locations may be renamed even if the
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syntactical structure from the initial location l0 stays the same. An example for renaming
is location l12 in Fig. 5.4, which was named l8 in the original program (see Fig. 2.1).
On the other hand, some paths are newly separated syntactically. In our example, the
generated program syntactically separates paths with y ≥ 0 from paths with ¬y ≥ 0. If
paths are separated and do no longer share same locations, one of the location names
must become di�erently, although the path itself does not really change.

For the observable behavior of a program the concrete location names are unimpor-
tant. Furthermore, in our Programs from Proofs approach we only consider properties
described by control state unaware property automata. That is why we exclude the lo-
cation information from the traces. Now, a trace is simply a program path without its
location information. Syntactically, a trace is a sequence of alternating data states and op-
erations. This idea of a trace leads us to our de�nition of behavioral equivalence, namely
non-location equivalence, which we already used in our previous Programs from Proofs
framework [JW17]. We de�ne non-location equivalence based on program paths because
program paths naturally de�ne the program traces. Two paths p and p′ are non-location
equivalent if they have the same length and agree on operations and data states. With
the concept of trace equivalence in mind, we naturally lift non-location equivalence to sets
of program paths.

De�nition 5.11 (Non-location Equivalent). Two paths p := c0
g1→ c1 · · ·

gn→ cn and

p′ := c′0
g′1→ c′1 · · ·

g′m→ c′m in transition system T are non-location equivalent, p =nl p
′, if

m = n and ∀0 ≤ i ≤ n : ds(ci) = ds(c′i)∧ (i = 0∨∃op ∈ Ops : gi = (·, op, ·)∧g′i = (·, op, ·)).
We extend this notation to arbitrary sets Sp, S

′
p of paths and write Sp =nl S

′
p if for

every path p ∈ Sp there exists a path p′ ∈ S′p with p =nl p
′ and for every path p′ ∈ S′p

there exists a path p ∈ Sp with p′ =nl p.

Based on the previous de�nition of equivalence, we next show that the original program
and the generated program are behaviorally equivalent. During producer veri�cation, only
those program paths are considered that start in an initial state considered by the initial
abstract state of the veri�cation. Hence, original and generated program may di�er in
their behavior in paths not considered by the veri�cation. That is okay because we assume
that either the producer and the consumer agreed on the input states, the initial abstract
state, of the program or the valid input states, described by the initial abstract state, are
part of the producer's o�er.

The initial abstract state considered during the producer veri�cation is not suitable
to determine those paths in the generated program which are non-location equivalent to
the paths the producer explored during his veri�cation. We already demonstrated that
program locations in the original and generated program are di�erent. Hence, we need
to transform the set of initial states considered by the producer � those states described
by the initial abstract state � into a non-location equivalent behavior preserving set.
This means, for each initial state we need to keep the data state and must change the
control state to the correct program location in the generated program. We know that the
generated program directly re�ects the paths of the ARG. Moreover, in the (strongly) well-
formed ARG constructed by the producer during successful veri�cation, the syntactical
paths starting at the root node overapproximate the paths considered during veri�cation.
Consequently, the program location representing the root node is the correct choice for
the control state.

With these insights, we formulate our behavioral equivalence theorem. This theorem
is an adaption of our previous equivalence theorems [JW15, JW17] to the broader class of
re�ned property checking analyses. In the Programs from Proofs approach, the producer
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only generates programs after the veri�cation of the original programs with a re�ned prop-
erty analysis succeeded. Thus, for program generation a strongly well-formed ARG is used
and the root node of that ARG subsumes the initial abstract state used for veri�cation.
This leads us to the following theorem, which states that all paths in the original program
that start in a concrete state contained in the root node are non-location equivalent with
those paths of the generated program that start in the initial program location of the
generated program (the ARG's root node) with a data state considered by the root node.

Theorem 5.3 (Behavioral Equivalence). Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an

ARG for program P and re�ned property checking analysis (C2 × C1)A which is strongly
well-formed for e0 ∈ E(C2×C1)A . Then, pathsP (JrootK) =nl pathsprog(RP

(C2×C1)A
)(I) with

I = {c | c ∈ C ∧ cs(c) = root ∧ ∃c′ ∈ JrootK : ds(c′) = ds(c)}.

Proof. See Appendix pp. 271 �.

Knowing that the original and generated program are behaviorally equivalent, it seems
likely that our program generation also preserves program safety. This is indeed true for
control state unaware property automata, but not for arbitrary property automata. In the
following, we focus on program safety w.r.t. the control state unaware property automaton
considered during the producer veri�cation. Later, we come back to the preservation of
program safety with respect to arbitrary property automata.

In the following, we will prove that after a successful producer veri�cation, the gen-
erated program is safe. First, we show that control state unaware property automata
cannot distinguish between non-location equivalent paths. This means, if two program
paths are non-location equivalent and one of them is safe w.r.t. control state unaware
property automaton A, so will the other one. The following lemma states this property.

Lemma 5.4. Let A be a control state unaware property automaton, P , P ′ be two pro-
grams, and p ∈ pathsP (C) and p′ ∈ pathsP ′(C). If p is safe w.r.t. A and p =nl p

′, then
p′ is safe w.r.t. A.

Proof. Since p is safe w.r.t. A, a con�guration sequence (c0, q0) . . . (cn, qn) for p and A
exists s.t. ∀0 ≤ i ≤ n : qi 6= qerr and p ≡ c0

g1→ · · · gn→ cn. From p =nl p
′, we get

p′ ≡ c′0
g′1→ · · · g′n→ c′n and ∀0 ≤ i ≤ n : ds(ci) = ds(c′i) ∧ (i = 0 ∨ ∃op ∈ Ops : gi =

(·, op, ·)∧g′i = (·, op, ·)). Let q0
op0,C

0
sub−−−−−→ q1 . . .

opn,C
n
sub−−−−−−→ qn be a run in A with ∀1 ≤ i ≤ n :

ci ∈ Ci
sub ∧ gi = (·, opi, ·). Such a run exists because (c0, q0) . . . (cn, qn) is a con�guration

sequence for p and A. Show that ∀1 ≤ i ≤ n : c′i ∈ Ci
sub ∧ g′i = (·, opi, ·). Select arbitrary

i ∈ {1, . . . , n}. From gi = (·, opi, ·) and gi = (·, op, ·) ⇔ g′i = (·, op, ·), we know that
g′i = (·, opi, ·). From c′i ∈ C, ds(ci) = ds(c′i), and A being control state unaware, we infer
that c′i ∈ Ci

sub. Hence, (c′0, q0), . . . (c′n, qn) is a con�guration sequence for path p′ and A.
Knowing that ∀0 ≤ i ≤ n : qi 6= qerr, path p′ is safe w.r.t. A.

With the previous lemma, we have everything at hand to prove safety of the generated
program. We mainly need to combine the previous lemma with the theorem of behavioral
equivalence and our knowledge about a (strongly) well-formed ARG, the type of ARG
that we use for program generation.

Like we can show behavioral equivalence only for those paths that the producer con-
sidered during his veri�cation, we also guarantee program safety only for these paths.
We know from behavioral equivalence that in the generated program these are all pro-
gram paths starting in the initial location root with a data state considered by the initial
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abstract state of the producer veri�cation. Additionally, we require that the producer in-
deed proved program safety. The producer must have used a proper initial abstract state,
one that considers the initial automaton state. Taking these restrictions into account as
well as that the producer generates programs only after a successful veri�cation, which
produced a strongly well-formed ARG, we get our proposition of safety for the generated
program. This proposition is similar to the safety result in our previous Programs from
Proofs framework [JW17].

Proposition 5.5 (Safety). Let A = (Q, δ, q0, qerr) be a control state unaware property
automaton and RP

(C2×C1)A = (N,GARG, root,Ncov) be an abstract reachability graph for

program P and re�ned property checking analysis (C2×C1)A which is strongly well-formed
for (e, q0) ∈ E(C2×C1)A . Then, prog(RP

(C2×C1)A) |=I A with I = {c | c ∈ C ∧ cs(c) =

root ∧ ∃c′ ∈ JrootK : ds(c′) = ds(c)}.

Proof. To show prog(RP
(C2×C1)A) |=I A, every path p′ ∈ pathsprog(RP

(C2×C1)A
)(I) must be

safe. Let p′ ∈ pathsprog(RP
(C2×C1)A

)(I) be arbitrary. From Theorem 5.3, we know that there

exists p ∈ pathsP (JrootK) with p =nl p
′. Since RP

(C2×C1)A is (strongly) well-formed, we get
from Lemma 2.7 that a con�guration sequence (c0, q0), . . . , (cn, qn) exists for path p and
A with ∀0 ≤ i ≤ n : ∃(e, q) ∈ N : ci ∈ JeK∧ qi v q. From RP

(C2×C1)A being safe ((strongly)
well-formed), we infer that ∀0 ≤ i ≤ n : qi 6= qerr. Hence, path p is safe w.r.t. A. From
Lemma 5.4, we conclude that p′ is safe w.r.t.A. It follows that prog(RP

(C2×C1)A) |=I A.

Like in the former CPC approaches, the previous result can be transferred to program
safety. If the initial abstract state (e, q0) of the producer covers all data states, i.e.,
∀d ∈ DS : ∃c ∈ J(e, q0)K : ds(c) = d, then the generated program Pgen will be safe w.r.t.
the property automaton A considered by the producer veri�cation (Pgen |= A). Note that
this includes that if the producer proves that the original program P is safe w.r.t. A6,
P |= A, then the program Pgen generated by the producer will also be safe w.r.t. A.

Keeping program safety throughout program generation only enables the consumer to
successfully verify the generated program. To guarantee a successful veri�cation, we also
need to ensure termination of the CPA algorithm (Algorithm 1). Due to the for loop in
line 5 of the CPA algorithm, which iterates over all CFA edges, the generated program
must be �nite. Furthermore, one of our termination proofs of the consumer veri�cation
relies on the fact that the generated program contains only a �nite number of program
locations. To show the desired properties, we claim that all programs generated from an
ARG for a �nite program ful�ll these two properties.

Proposition 5.6. Let RP
CA be an abstract reachability graph for �nite program P . Then,

program prog(RP
CA) is �nite and its set of locations is �nite.

Proof. Let ARG RP
CA = (N,GARG, root,Ncov), program P = (L,GCFA, l0), and generated

program prog(RP
CA) = (L′, G′CFA, l

′
0). From de�nition of the generated program, we know

that L′ = N . Since N is �nite (requirement on ARG), we get that L′ is �nite. From P
being �nite, we know that ∃n ∈ N : |GCFA| = n. By de�nition GCFA ⊆ L × Ops × L.
We infer that |{op | (lp, op, ls) ∈ GCFA}| ≤ n, and, thus, �nite. From de�nition of the
generated program, we know that G′CFA ⊆ L′ × {op | (lp, op, ls) ∈ GCFA} × L′. We
compute that |G′CFA| ≤ (|L′|2 · n). Since L′ is �nite, we conclude that G′CFA is �nite.
Hence, prog(RP

CA) is �nite.

6The producer may only prove program P safe, if {c ∈ C | cs(c) = l0} ⊆ J(e, q0)K.
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The producer veri�cation also uses the CPA algorithm. Thus, the producer veri�cation
may only succeed if the original program is �nite. We conclude that the generated pro-
grams in the PfP approach are �nite and have a �nite number of program locations.

From a theoretical point of view, we covered all properties of the program generation
that we require to apply our Programs from Proofs approach. In practice, we also need
to translate the generated program, a CFA, into a program notation. While de�ning a
program's representation, we already recognized that some programming languages do
not support nondeterminism. All their programs are represented by deterministic CFAs.
To be able to translate the generated program into these programming languages, the
generated program must be deterministic. We assume that the producer wants to write
the generated program in the same programming language as the original program. If
the programming language in which the original program is written does not support
nondeterminism, then the CFA of the original program will be deterministic. For this case,
we show that the generated program remains deterministic. Note that in our previous
Programs from Proofs framework [JW17] we presented a similar result for a subclass of
re�ned property checking analyses.

Proposition 5.7 (Determinism). Let RP
(C2×C1)A be an ARG for deterministic program P

and re�ned property checking analysis (C2 × C1)A s.t. RP
(C2×C1)A is strongly well-formed

for e0 ∈ E(C2×C1)A . Then, R
P
(C2×C1)A is deterministic.

Proof. Let prog(RP
(C2×C1)A) = (L′, G′CFA, l

′
0) and RP

CA = (N,GARG, root,Ncov). Let
(l, op, l′), (l, op, l′′) ∈ G′CFA. We need to show that l′ = l′′. The de�nition of program gen-
eration lets us conclude that there exists ARG edges (((e2, e1), q), (l1, op, l2), ((e′2, e

′
1), q′)),

(((e2, e1), q), (l3, op, l4), ((e′′2 , e
′′
1), q′′)) ∈ GARG with l = ((e2, e1), q), l′ = ((e′2, e

′
1), q′)

and l′′ = ((e′′2 , e
′′
1), q′′). Since RP

(C2×C1)A is strongly well-formed, we further infer that
acs(e1), acs(e′1), acs(e′′1) ∈ L. From de�nition of the transfer relation of a re�ned property
checking analysis and  L, we get that acs(e1) = l1 = l3, acs(e′1) = l2 and acs(e′′1) = l4.
From P being deterministic, we infer that l2 = l4 and, thus, (l1, op, l2) = (l3, op, l4).
From RP

(C2×C1)A being deterministic (strongly well-formed), we get that ((e′2, e
′
1), q′) =

((e′′2 , e
′′
1), q′′). Hence, l′ = l′′.

After we discussed all properties directly related to the applicability of the Programs from
Proofs approach, we resume the discussion of program safety w.r.t. arbitrary property
automata. We already mentioned that program safety is only preserved for control state
unaware property automata. To �rm that claim, consider the property automaton neg@l8

shown in the bottom of Fig. 5.5. This property automaton checks that at location l8
variable y is negative. Since its transitions treat concrete states with control state l8
di�erently compared to states with other control states, it is not control state unaware.

Our program SubMinSumDiv (program text shown on the left of Fig. 5.5) is safe w.r.t.
property automaton neg@l8. For every program path that starts in the initial program
location and reaches location l8 variable y has a negative value (property of else branch).
Now, consider the program shown on the right of Fig. 5.5. This program is the generated
program, which the producer generated after a successful veri�cation of program Sub-

MinSumDiv with the predicated sign DFA analysis PP × (L× S) enhanced with property
automaton nonneg and initial abstract state ((>P, (l0,>S)), q0). All program paths start-
ing in the initial location of this generated program are non-location equivalent with
a program path starting in the initial location of the original program SubMinSumDiv

(cf. Theorem 5.3). Furthermore, we already stated that the original program is safe w.r.t.
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0 : z:=0;

1 : i f (x<0)
2 : i f y<x

3 : z:=-y;

e l se
4 : z:=-x;

5 : z:=z+10;

e l se
6 : i f y≥0
7 : s:=1;

e l se
8 : s:=-y;

9 : while x ≥ y ∧ x 6= 0

10 : i f y ≥ 0

11 : z:=z+x;

e l se
12 : z:=z+1;

13 : x:=x-s;

14 :

0 : z:=0;

1 : i f (x<0)
2 : i f y<x

3 : z:=-y;

e l se
4 : z:=-x;

5 : z:=z+10;

e l se
6 : i f y≥0
7 : s:=1;

8 : while x ≥ y ∧ x 6= 0

9 : i f y≥0
10 : z:=z+x;

11 : x:=x-s;

e l se
12 : s:=-y;

13 : while x ≥ y ∧ x 6= 0

14 : i f ¬y≥0
15 : z:=z+1;

16 : x:=x-s;

17 :

Figure 5.5: Program SubMinSumDiv, generated program from Fig. 5.4, and property au-
tomaton neg@l8

neg@l8. However, the generated program is not safe w.r.t. property automaton neg@l8.
Since variable y is never changed in the generated program, we know from the condition in
line 6 that for every program path that starts in the initial location 0 and reaches location
8 variable y is greater zero at location 8.

We showed that program generation does not maintain arbitrary safety properties, at
least as long as the class of control state unaware property automata is only a subclass
of the class of all property automata. Next, we show that program generation at least
keeps all properties expressible by control state unaware property automata. All kinds
of properties that we consider in our Programs from Proofs approach remain. Note that
this is a necessary condition to transitively apply our Programs from Proofs approach. As
before, we show property preservation only for program paths that we considered during
a successful veri�cation. This leads us to the following proposition.

Proposition 5.8. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for program P

and re�ned property checking analysis (C2 × C1)A which is strongly well-formed for e0 ∈
E(C2×C1)A . Furthermore, let A′ be a control state unaware property automaton. If

P |=JrootK A′, then prog(RP
(C2×C1)A) |=I A′ with I = {c | c ∈ C ∧ cs(c) = root ∧ ∃c′ ∈

JrootK : ds(c′) = ds(c)}.
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Proof. We need to show that all paths p ∈ pathsprog(RP
(C2×C1)A

)(I) are safe w.r.t. A′. Let
p ∈ pathsprog(RP

(C2×C1)A
)(I) be an arbitrary path. From Theorem 5.3, we know that there

exists p′ ∈ pathsP (JrootK) with p =nl p
′. Since P |=JrootK A′, path p′ is safe w.r.t.A′. From

Lemma 5.4, we infer that p is safe w.r.t. A′. We conclude that prog(RP
(C2×C1)A) |=I A′.

As before, the previous result can be carried over to program safety if the initial abstract
state (e, q0) of the producer covers all data states, e.g., when the producer veri�es program
safety.

With the end of the program generation section, we completed the presentation of
the producer's task in our Programs from Proofs approach. Next, we continue with the
presentation of the consumer part.

5.4 Consumer Veri�cation of the Generated Program

In our Programs from Proofs approach, the consumer veri�es the behaviorally equivalent
program generated by the producer. The idea behind program generation was to get a
structurally simpler program, which can be veri�ed without the enabler analysis, i.e., just
with the property checking analysis. In our framework, the consumer uses an even more
e�cient analysis con�guration than the property checking analysis. While the consumer
reuses the abstract domain and the transfer function of the property checking analysis,
he adapts the other con�guration operators to obtain a faster data�ow analysis. The
consumer's analysis never adjusts precisions, merges abstract states with same locations,
and stops the exploration of an abstract state when it is covered by a more abstract one.
These considerations lead us to the following de�nition of a data�ow analysis derived from
a property checking analysis.

De�nition 5.12 (Data�ow Analysis of Property Checking Analysis). Let CA1 = (D,Π, 
, prec,merge, stop) be a property checking analysis. The data�ow analysis of property
checking analysis CA1 is DFA(CA1 ) = (D,Π, , precDFA,mergeDFA, stopDFA) with static
precision adjustment, precDFA(e, π, S) = (e, π), merge operator mergeDFA((e, q), (e′, q′)) =
((e, q) t (e′, q′)) if acs(e) = acs(e′) and mergeDFA((e, q), (e′, q′)) = (e′, q′) otherwise, and
termination check stopDFA(e, S) = ∃e′ ∈ S : e v e′.

The previous de�nition changes the con�guration of a property checking analysis, a special
form of an enhanced CPA, such that it becomes a data�ow analysis. Up to now, it is
unclear whether a data�ow analysis of a property checking analysis is still an enhanced
CPA, the type of analysis con�guration the CPA algorithm requires. To use a data�ow
analysis constructed from a property checking analysis within the CPA algorithm, the
derived data�ow analysis must be an enhanced CPA. The following proposition states
that it is safe to use the derived data�ow analysis con�guration.

Proposition 5.9. Let CA1 be a property checking analysis and DFA(CA1 ) be the data�ow
analysis of CA1 . Then, a CPA C exists such that DFA(CA1 ) is an enhancement of CPA C
and control state unaware property automaton A.

Proof. See Appendix p. 273.

After we know that we can use the data�ow analysis derived from the property checking
analysis, we now show that we con�gured indeed a data�ow analysis. One important
property of a data�ow analysis, which we require later, is that it computes only one
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abstract state per location. The following lemma claims that this property will be true
during the computation of the CPA algorithm if the data�ow analysis is started at a
concrete location.

Lemma 5.10. Let CA1 be a property checking analysis, and P = (L,GCFA, l0) be a
program. If Algorithm 2 started with DFA(CA1 ), initial abstract state (e, q) ∈ ECA1 with

acs(e) ∈ L, initial precision π0 ∈ ΠCA1 , and P , then after line 1 always ∀(e′, q′) ∈ reached :

acs(e′) ∈ L ∧¬∃(e′′, q′′) ∈ reached : (e′′, q′′) 6= (e′, q′) ∧ acs(e′′) = acs(e′).

Proof. See Appendix pp. 273 f.

Since the consumer analysis will always start his analysis in the initial program location,
we know that the previous lemma applies during computation. The subsequent corollary
ensures us that in the �nal reached set also only one abstract state per location exists.

Corollary 5.11. Let CA1 be a property checking analysis and P = (L,GCFA, l0) be a
program. If Algorithm 2 started with DFA(CA1 ), initial abstract state (e, q) ∈ ECA1 with

acs(e) ∈ L, initial precision π0 ∈ ΠCA1 , and P returns (·, reached, ·), then ∀(e′, q′) ∈
reached : acs(e′) ∈ L ∧ ¬∃(e′′, q′′) ∈ reached : (e′′, q′′) 6= (e′, q′) ∧ acs(e′′) = acs(e′).

Proof. We know that reached is the reached set in line 29. From Lemma 5.10, we conclude
the claim.

Having �nished the discussion of the consumer analysis con�guration, we proceed with
the two properties each of our approaches must guarantee: soundness and relative com-
pleteness. For soundness, we must guarantee that the consumer analysis will only return
true, if the generated program is indeed safe. The consumer analysis uses the CPA al-
gorithm7 to check safety of the generated program. We already proved soundness of the
CPA algorithm in Chapter 2 (cf. Theorem 2.3). Hence, we get soundness of the consumer
analysis for free.

It remains to show relative completeness. We need to ensure that after the producer
successfully veri�ed the original program P , the consumer can successfully verify the
generated program Pgen, formally P |=X(C2×C1)A A =⇒ Pgen |=XDFA(CA1 )

A . As before,
we consider two aspects: termination of the CPA algorithm and successful veri�cation
of the generated program, i.e., the CPA algorithm returns true. Since the termination
aspect is more complicated than in the previous approaches, we start with the second part
assuming termination.

5.4.1 Successful Consumer Veri�cation on Termination

In this section, we assume that the consumer analysis terminates. Based on this assump-
tion, we want to show that whenever the producer showed safety of the original program,
the consumer shows safety of the generated program. More concretely, we are going to
show that whenever the CPA algorithm returns true when started with the re�ned prop-
erty checking analysis and the original program (P |=X(C2×C1)A A), then the CPA algorithm
started with the data�ow analysis derived from the property checking analysis and the
generated program returns true (Pgen |=XDFA(CA1 )

A).
The CPA algorithm (Algorithm 2) returns true when no state in the reached set

considers the error state qerr or the automaton top state q>. To show this, we use the

7Since we require no ARG at consumer side, the consumer may use the CPA algorithm without ARG
construction (Algorithm 1).
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idea behind program generation: the property checking analysis can prove safety on the
generated program. From a highlevel point of view, we want the property checking to redo
the exploration but now on the generated program. Thus, the abstract states explored by
the consumer should be related to the states explored by the producer, the ARG nodes.

We cannot directly compare the ARG nodes with the states explored by the consumer.
The states belong to di�erent abstract domains. However, an ARG node only contains an
additional enabler state and may consider a di�erent location. If we ignore this informa-
tion, we can compare ARG nodes and consumer states. Our goal is to compare the two
states based on the partial order of the property checking analysis. Having in mind that
the states explored by the consumer should be at most as precise as the ARG nodes, we
use the location updated property checking extraction to remove the enabler state and to
replace the location information by the most general location description >L (any loca-
tion). Now, we say that an abstract state epca of a property checking analysis is at least as
non-location property checking precise as an abstract state erpca of a corresponding re�ned
property checking analysis if epca is at most as abstract as erpca[>L]. Thereby, erpca[>L] is
the property checking analysis state obtained from erpca by removing the enabler state and
setting the location state to any location >L. The following de�nition formally describes
the relation and also lifts it to sets of abstract states.

De�nition 5.13. Let (C2 × C1)A be a re�ned property checking analysis of property
checking analysis CA1 . An abstract state epca ∈ ECA1 is at least as non-location property

checking precise as erpca ∈ E(C2×C1)A , epca vnpc erpca, if epca vCA1 erpca[>L].
We extend this notation to sets Spca ⊆ ECA1 , Srpca ⊆ E(C2×C1)A of states and write

Spca vnpc Srpca if ∀e ∈ Spca : ∃e′ ∈ Srpca : e vnpc e
′.

Based on the previous de�nition, we now show that the states explored by the consumer
are at least as non-location property precise as the states explored by the producer, the
ARG nodes. Knowing that the producer states neither consider qerr nor q>, otherwise the
producer did not prove safety, we can infer successful consumer veri�cation.

To prove that the consumer states are at least as non-location property precise as the
producer states, we use that the property checking analysis (part) of the producer and the
consumer should behave similar. Furthermore, we know that the ARG nodes are used as
locations in the generated program and the consumer's data�ow analysis computes one
abstract state per location only. With these insights, we prove that a consumer state is at
least as property precise as the ARG node that was used to generate the program location
considered by that state. More concretely, we compare the abstract state with that
location updated property checking extraction of the ARG node that considers the same
location as the abstract state. Note that we consider only programs that are generated
from strongly well-formed ARGs, e.g., programs generated by the producer.

We start to show that if an abstract state is at least as property precise as the ARG
node de�ning its location state, then for each transfer successor es of that state, a node n′

in the ARG will exist s.t. es is at least as property precise as n′.

Lemma 5.12. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A which is strongly well-formed for e0 ∈ E(C2×C1). Further-
more, let prog(RP

(C2×C1)A) = (L,GCFA, l0) be the generated program, (e1, q) ∈ ECA1 , n ∈ N ,

and g ∈ GCFA. If ((e1, q), g, (e
′
1, q
′)) ∈ CA1 , acs(e1) = n, and (e1, q) v n[n], then there

exists n′ ∈ N with acs(e′1) = n′ and (e′1, q
′) v n′[n′].

Proof. See Appendix p. 274.
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We use the previous lemma to show that all abstract states in the �nal reached set are
at least as property precise as the ARG nodes that were used to generate the program
locations considered by the respective states. Similar to behavioral equivalence or program
safety considered in the program generation section, the consumer may not introduce new
program behavior. Our claim is only valid when the consumer uses an initial abstract state
e′0 that is at least as precise as the location updated property checking extraction e0[l0].
This state e0[l0] describes the initial state considered by the property checking analysis
part of the producer's initial abstract state e0 but transferred to the changed program
structure. Under these restrictions, the subsequent lemma states that after termination
reached is at least as property precise as the ARG nodes.

Lemma 5.13. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A which is strongly well-formed for e0 ∈ E(C2×C1). Further-
more, let prog(RP

(C2×C1)A) = (L,GCFA, l0) the generated program. If Algorithm 2 started

with DFA(CA1 ), initial abstract state e′0 v e0[l0], arbitrary initial precision π0 ∈ ΠCA1 , and

prog(RP
(C2×C1)A) terminates, then it returns (·, reached, ·) with ∀e ∈ reached : ∃n ∈ N :

e v n[n].

Proof. See Appendix pp. 275 f.

With the previous lemma and n[n] v n[>L] (cf. de�nition of location updated property
checking extraction), it becomes simple to show that the states explored by the consumer
are at least as property precise as the ARG nodes.

Theorem 5.14. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned prop-

erty checking analysis (C2 × C1)A which is strongly well-formed for e0 ∈ E(C2×C1) and
prog(RP

(C2×C1)A) = (L,GCFA, l0). If Algorithm 2 started with DFA(CA1 ), initial abstract

state e′0 v e0[l0], arbitrary initial precision π0 ∈ ΠCA1 , and prog(RP
(C2×C1)A) terminates,

then it returns (·, reached, ·) with reached vnpc N .

Proof. From the previous lemma, we know that ∀e ∈ reached : ∃n ∈ N : e v n[n]. Let
e ∈ reached be arbitrary. We know that ∃n ∈ N : e v n[n]. Since n ∈ L, n vL >L. From
de�nition of n[n], n[>L], and v, we get n[n] v n[>L]. Since partial order v is transitive,
we know that e v n[>L]. We infer that e vnpc n. We conclude that reached vnpc N .

A successful producer veri�cation always uses a re�ned property checking analysis and
generates a strongly well-formed ARG. Furthermore, all ARG nodes in a strongly well-
formed ARG neither consider qerr nor q>. Thus, we can easily infer the desired property:
after the producer successfully veri�ed the original program, the consumer can success-
fully verify the generated program if it terminates. Since the CPA algorithm is sound,
a compatible, initial abstract state and, thus, the initial abstract state e0[l0] of the con-
sumer contains the initial automaton state q0, we additionally infer that the generated
program is safe. The following corollary formulates these claims under the restriction that
the consumer does not, as we assume, want to verify new program behavior.

Corollary 5.15. Let (C2 × C1)A be a re�ned property checking analysis. If Algorithm 2
started with (C2 × C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , initial pre-

cision π0 ∈ Π(C2×C1)A , and program P returns (true, ·, RP
(C2×C1)A), then if Algorithm 2

started with DFA(CA1 ), initial abstract state e′0 v e0[l0], e′0 6= (·, q⊥), initial precision π′0 ∈
ΠCA1 , and prog(RP

(C2×C1)A) = (L,GCFA, l0) terminates, it returns (true, reached, ·) and

prog(RP
(C2×C1)A) |=Je′0K A.
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Proof. From Proposition 5.2, we know that RP
(C2×C1)A = (N,GARG, root,Ncov) is an ARG

for P and (C2 × C1)A which is strongly well-formed for e0. From previous theorem, we
know that reached vnpc N . We get that ∀e ∈ reached : ∃e′ ∈ N : e vnpc e

′. Let e = (e1, q)
and e′ = ((e′2, e

′
1), q′). From the de�nition of vnpc, we know that q vQ q′. From RP

(C2×C1)A

being safe ((strongly) well-formed), we know that q′ 6= qerr ∧ q′ 6= q>. Since Q is a �at
lattice and q vQ q′, we infer that q 6= qerr ∧ q 6= q>. Hence, Algorithm 2 returns true.
From e0 = ((·, ·), q0) (compatible, initial abstract state) and de�nition of e0[l0], we know
that e0[l0] = (·, q0). Since e′0 v e0[l0] and e′0 6= (·, q⊥), we know that e′0 = (·, q0). From
Theorem 2.3, we conclude that prog(RP

(C2×C1)A) |=Je′0K A.

As before, the previous result can easily be transferred to program safety. The compatible,
initial abstract state e0 only needs to consider all those concrete states that have a control
state equivalent to the initial program location of the original program.

So far, we showed that the consumer analysis will succeed to prove safety of the
generated program if his analysis terminates. In the following, we carry on with the
examination of termination.

5.4.2 Termination of the Consumer Veri�cation

The consumer analysis uses the CPA algorithm (Algorithm 2) to analyze the generated
program. Termination of the CPA algorithm cannot be guaranteed in general. The main
problem for the consumer analysis is that no reached set will be computed which is closed
under successor computation. In contrast, regularly the set of concrete states represented
by the reached set increases. Hence, in a sound analysis like the CPA algorithm new
abstract states must be explored. To trigger the exploration, these new states are added
to waitlist. The waitlist never becomes empty, the while loop never terminates and, thus,
also the CPA algorithm does not terminate.

During the presentation of the producer analysis, we already discussed how the pro-
ducer could ensure that the consumer analysis terminates. While our discussion is far
from complete � it does not cover all theoretical cases in which termination is possible �,
we think that we cover the con�gurations relevant in practice. Remember that in our
discussion we identi�ed the following four cases in which a termination of the consumer
is possible.

1. The generated program is loop-free.

2. The join-semilattice of the abstract states considered by the property checking an-
alysis, which is used to construct the producer and consumer analysis, has a �nite
height.

3. The producer analysis applies model checking without adjusting the property check-
ing analysis part, i.e., prec(((e2, e1), q), π, S) = ((·, e1), q), ·), merge(e, e′) := e′, and
∀e ∈ E(C2×C1)A , S ⊆ E(C2×C1)A : e ∈ S =⇒ stop(e, S).

4. The producer analysis is equivalence relation consistent.

In this section, we show that in each of the four cases termination of the consumer analysis
is possible. However, not in all cases termination may be guaranteed for any execution
order. We start with some general considerations w.r.t. termination of the consumer
analysis. To show termination of the consumer analysis in general, we need to ensure
that all loops in the CPA algorithm (Algorithm 2) always terminate. Since the producer
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analysis terminated, we know that the original program is �nite. Proposition 5.6 ensures
us that the generated program analyzed by the consumer is �nite. Thus, the for loop in
line 5 terminates (�nite programs have a �nite set of CFA edges). Due to the requirements
on the property checking analysis and the construction of the consumer analysis, we know
that the consumer analysis uses a transfer function. Hence, the for loop in line 6 always
terminates after at most a single iteration. The consumer always starts the analysis
of the generated program with an initial abstract state considering the initial program
location only. Lemma 5.10 guarantees that the size of the reached set is restricted by
the number of program locations. Furthermore, Proposition 5.6 also ensures us that the
generated program analyzed by the consumer considers a �nite set of program locations.
We conclude that the for loop in line 8 always terminates. The for loops in lines 5, 6, and
8 always terminate.

In the following, it remains to be shown that the remaining loop, the while loop in
line 3, always terminates. The while loop terminates when the waitlist is empty. Since in
each iteration of the while loop at least one element is removed from waitlist and the CPA
algorithm inserts at most a single element whenever it changes the waitlist, we only need
to show that the number of insertions is restricted. First, we examine termination of the
consumer analysis in case the program is loop-free.

Termination for Loop-free Programs In a loop-free program, the number of syn-
tactic paths is bounded. Furthermore, in a data�ow analysis any syntactic program path
only contributes once to the analysis solution. Thus, the idea of the termination proof is
to show that the number of paths to a program location l restricts the number of times
an abstract state considering that program location l is added to waitlist. Since in a loop-
free program, the number of program paths is �nite, we know from Lemma 5.10 that the
consumer analysis only explores abstract states that consider a single program location,
and we already recognized that the number of program locations is �nite, we conclude
that only �nitely many times an element is added to waitlist. As discussed before, the
termination of the consumer analysis automatically follows for loop-free programs.

First, we show that if the CPA algorithm adds an element to waitlist in the while loop
that considers location lw, then lw will be reachable from the location linit considered by
the initial abstract state (always the initial program location in the consumer analysis),
i.e., the analyzed program indeed contains a syntactical path from linit to lw.

Lemma 5.16. Let P = (L,GCFA, l0) be a program. Furthermore, let DFA(CA1 ) be the
data�ow analysis of property checking analysis CA1 and (e, q) ∈ ECA1 s.t. acs(e) ∈ L. If Al-
gorithm 2 started with DFA(CA1 ), initial abstract state (e, q) ∈ ECA1 , arbitrary initial preci-

sion π0 ∈ ΠCA1 , and program P , then for every element ((e′, q′), π′) added to waitlist during

iteration of the while loop a non-empty sequence g1 . . . gn exists with g1 = (acs(e), ·, ·) ∧
∀1 ≤ i ≤ n : gi ∈ GCFA ∧ (i = n ∧ gn = (·, ·, acs(e′)) ∨ gi = (·, ·, l′) ∧ gi+1 = (l′, ·, ·)).

Proof. See Appendix pp. 275 f.

So far, we know that insertions to waitlist are related to program paths. We need to exclude
that in�nitely many elements per program path are added. In loop-free programs, the
number of program paths to a location l can be de�ned inductively with the help of the
program paths to l's predecessors and the number of edges from each predecessors to l.
We reuse this de�nition to show that for each location l we only add one abstract state per
program path to l. For this, we need to ensure that during the exploration of an abstract
state considering location l′ the CPA algorithm adds at most as many abstract states to
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waitlist that consider location l as control �ow edges (l′, ·, l) in the analyzed program exist.
The following lemma states this claim.

Lemma 5.17. Let P = (L,GCFA, l0) be a program. Furthermore, let DFA(CA1 ) be the
data�ow analysis of property checking analysis CA1 and (e, q) ∈ ECA1 s.t. acs(e) ∈ L. If

Algorithm 2 started with DFA(CA1 ), initial abstract state (e, q), arbitrary initial preci-
sion π0 ∈ ΠCA1 , and program P and ((e′, q′), π′) is popped in an iteration of the while loop,

then for each l′ ∈ L at most |{(acs(e′), ·, l′) ∈ G}| elements ((e′′, q′′), π′′) with acs(e′′) = l′

are added to waitlist in the same iteration.

Proof. See Appendix p. 276.

We know that insertions to waitlist are related to program paths and in each while loop
iteration the number of insertions is restricted by the outgoing control-�ow edges of the
location considered by the explored state. Now, we have everything at hand to inductively
show that the number of paths to a program location l restricts the number of times
an abstract state considering that program location l is added to waitlist. As already
discussed, the number of program paths is �nite and the number of elements added to
waitlist is restricted. Thus, the consumer analysis terminates for loop-free programs. The
following proposition records the �nal result of these insights.

Proposition 5.18. Let DFA(CA1 ) be the data�ow analysis of property checking analy-
sis CA1 and (e, q) ∈ ECA1 s.t. acs(e) ∈ L. If program P = (L,GCFA, l0) is �nite and does

not contain loops, and L is �nite, then Algorithm 2 started with DFA(CA1 ), initial abstract
state (e, q), arbitrary initial precision π0 ∈ ΠCA1 , and program P terminates.

Proof. See Appendix pp. 276 f.

Remember that the generated program is always �nite and considers a �nite set of program
locations. The previous proposition includes termination of the consumer analysis when
the generated program is loop-free. Next, we continue to discuss termination for property
checking analyses considering a join-semilattice with �nite height.

Termination When Analysis' Join-Semilattice has Finite Height We need to
show that the consumer analysis will always terminate if it uses an abstract domain whose
join-semilattice has a �nite height. Remember that a join-semilattice E = (E,>,⊥,v,t))
has a �nite height if a n ∈ N exists s.t. all chains e0 @ e1 @ · · · @ em with ∀0 ≤ i ≤ n :
ei ∈ E ∧ (i = 0 ∨ ei−1 @ ei) are bounded by n (m ≤ n) [Muc97, p. 226].

We already discussed that only the termination of the while loop in Algorithm 2 is
an issue. To show termination of the while loop in the second case, we use a variant of
a well-known principle in termination analysis [Tur49, MP74, CPR11], [KRA09, p. 71].
The underlying idea is that one shows program progress, typically progress of loops, and
that the progress that can be made is limited. In the basic form, one needs to show
that a quantity (a bound), typically a termination function or ranking function, is always
decreased and cannot get below a certain threshold. In contrast, we show that every
change of the reached set enlarges the reached set and that there exists an upper bound
on the number of times for such an enlargement. Then, we utilize that elements are only
added to waitlist when the reached set is changed and each iteration of the while loop
removes one element from waitlist.

Before we come to the details of the sketched proof, we must �x the meaning of an
enlargement. The following de�nition formally states when a set of abstract states is
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an enlargement of another set of abstract states. Originally, an enlargement of a set
of abstract states should describe that the set of covered concrete states is increased.
However, this cannot even be guaranteed for data�ow analyses. Theoretically, a more
abstract state may represent the same set of concrete states. Thus, we use a di�erent
de�nition, which is related to the procedure of the CPA algorithm. In the style of the
CPA algorithm, a set of abstract states is enlarged whenever a state that is not contained
in the set is added or a state is exchanged by a more abstract one.

De�nition 5.14. Let DFA(CA1 ) be the data�ow analysis of property checking analysis CA1
and S1, S2 ⊆ ECA1 two sets of abstract states. Set S2 is an enlargement of set S1, S1@̂S2,
if S1 v S2 and |S1| < |S2| ∨ ∃e ∈ S1, e

′ ∈ S2 : e @ e′ ∧ S2 = (S1 \ e) ∪ e′.

To show that every change of the reached set enlarges the reached set, we use the previous
de�nition and compare the reached set directly before a change with the reached set
obtained by that change. The following lemma now states the �rst part of our termination
proof: every change of the reached set enlarges the reached set and the number of times
the reached set can be enlarged via adding an abstract state is �xed.

Lemma 5.19. Let DFA(CA1 ) be the data�ow analysis of property checking analysis CA1 .
Let reachedB denote the reached set in Algorithm 2 before a change and reachedA that
reached set after a change. If Algorithm 2 is started with DFA(CA1 ), arbitrary initial
abstract state e0 ∈ ECA1 and precision π0 ∈ ΠCA1 , and program P = (L,GCFA, l0),
then after initialization of reached in line 1 for each change of reached it holds that
reachedB@̂reachedA and |reachedB | ≤ |reachedA| ≤ |L+ 1|.

Proof. See Appendix pp. 277 f.

An analysis that uses a join-semilattice with �nite height can only �nitely many times
replace an abstract state by a more abstract state. Together with the previous lemma,
we conclude that for consumer analyses based on join-semilattices with �nite height the
reached set is always enlarged and can only be enlarged �nitely many times. Thus, the
reached set can only be changed �nitely often. We utilize this insight to show that any
consumer analysis that considers a join-semilattice with �nite height and a �nite program
with a �nite set of locations terminates.

Proposition 5.20. Let DFA(CA1 ) be the data�ow analysis of property checking analy-
sis CA1 , P = (L,GCFA, l0) a �nite program, and L being �nite. If the join-semilattice ECA1
has �nite height, Algorithm 2 started with DFA(CA1 ), arbitrary initial abstract state e0 ∈
ECA1 , arbitrary initial precision π0 ∈ ΠCA1 , and program P terminates.

Proof. See Appendix pp. 278 f.

In the beginning of this section, we already recognized that all our generated programs
are �nite and use a �nite set of locations L. Hence, in our Programs from Proofs approach
the consumer analysis will always terminate if the join-semilattice used by the property
checking analysis has �nite height. After we showed termination for the second case, we
continue to show termination for the third case, namely, when the producer applies model
checking.
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Termination When Producer Applies Model Checking So far, the organization
of the waitlist, i.e., in which order the elements are removed from waitlist, did not matter
to prove termination of the consumer analysis. For the third case, the producer analysis
uses model checking, we guarantee termination of the consumer analysis whenever it uses
a special organization of the waitlist. Additionally, we also provide an upper bound on the
execution time of the consumer analysis. We show that with the special organization of the
waitlist the program can be analyzed in a single pass, i.e., at most one transfer successor
per CFA edge is explored. Assuming that all data structures used in the CPA algorithm
can be manipulated in constant time and each execution of a single CPA operation, like
e.g.  , prec,merge, stop, also only takes constant time, the worst case execution time of
the consumer analysis is O(|G| × |L|) and thus polynomial within the input program.

The basis of the following proof is the subsequent observation: all non-enabler parts
of abstract states explored by the producer can be generated from the initial abstract
state when transitively applying the transfer relation with proper CFA edges. This is
possible because the producer analysis never merges and at most adjusts the enabler states.
Furthermore, this relation between the initial abstract state and the explored abstract
states is recorded in the ARG constructed during the producer analysis. For every node
in the ARG, a loop-free path from the root8 to that node exists in the ARG s.t. for all non-
enabler components of the nodes the ith edge in the path matches the ith application of the
transfer relation. Due to program generation, we know that a corresponding loop-free path
exists in the generated program analyzed by the consumer. From the requirements on the
(re�ned) property checking analysis and the de�nition of the consumer analysis, we infer
that the consumer analysis can replay the producer's property checking analysis behavior
on the corresponding loop-free path. Additionally, the consumer analysis cannot change
an abstract state once it agrees with the property checking state of the corresponding
producer's state (cf. proof of successful consumer veri�cation). In case, we guarantee that
for each location we compute the abstract state that agrees with the property checking
state of the corresponding producer's state and we explore an abstract state only after
the abstract state agrees with the corresponding producer's property checking state, we
make sure that the consumer analyzes the generated program in a single pass.

To ensure this intended behavior of the consumer analysis, in line 4 the elements must
be popped o� from waitlist in a proper order. An abstract state may only be popped o�
from waitlist when it agrees with the corresponding producer state in the �nal ARG. The
consumer cannot directly recognize when this is the case. However, we mentioned that for
each property checking state that must be recomputed a loop-free path from the initial
location to the state's location exists that can construct the property checking state. To
ensure that an abstract state considering location l is only popped o� when it agrees
with the corresponding producer state, we need to ensure that the loop-free path that
constructs that agreeing state for location l has already been explored by the analysis.

We use the corresponding loop-free paths in the ARG to de�ne an ordering on the
consumer's abstract states. The idea of the ordering is as follows. We consider a subgraph
of the ARG, which is restricted to the loop-free paths mentioned above. As we will see,
this subgraph is a tree and can be obtained when restricting the ARG edges to the edges
added at line 24. Since the CPA algorithm always fully explores all successors of an
abstract state before it explores the next state, a proper ordering of the ARG nodes (the
program locations of the generated program) is su�cient. This ordering must ensure that
predecessors in the subgraph have a lower ordinal than their successors. In principal, we
require a topological ordering [CLRC07, p. 549] of the subgraph. To get a proper ordering

8Since we do not merge, the root node is the initial abstract state.
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for the consumer, we �nally transfer the ordering of the subgraph to the locations of the
generated program. Next, we show the formal de�nition of a topological ordering of a
restriction of an ARG to a subset of its edges.

De�nition 5.15. Let RP
CA = (N,GARG, root,Ncov) be an ARG and G′ARG ⊆ GARG a

subset of ARG edges s.t. n ∈ N is reachable from root via edges from G′ARG. A topological
ordering for RP

CA and G′ARG, if it exists, is a total, injective function to : N → {1, . . . , |N |}
s.t. for every n, n′ ∈ N if a path root = n0

g1−→ . . . nm−1
gm−−→ nm = n′ s.t. ∀1 ≤ i ≤ m : gi ∈

G′ARG ∧ gi = (ni−1, ·, ni) and a j ∈ {0, . . . ,m− 1} s.t. nj = n exist, then to(n) < to(n′).

We want to use such a topological ordering of an ARG to derive an ordering for the location
of the generated program. Since ARG nodes and locations are identical, we directly want
to reuse the topological ordering for locations. The following corollary states that any
topological ordering is also an ordering for the locations of the generated program.

Corollary 5.21. Let RP
CA = (N,GARG, root,Ncov) be an ARG, G′ARG ⊆ GARG a subset

of ARG edges, prog(RP
CA) = (L,GCFA, l0) be the generated program, and to be a topological

ordering for RP
CA and G′ARG. Then, to is a total, injective function L→ {1, . . . , |L|}.

Proof. Due to program generation, N = L. Thus, |N | = |L| and any total, injective
function to : N → {1, . . . , |N |} is also a total, injective function from L to {1, . . . , |L|}.

We know that when a topological ordering of an ARG exists, we can use this ordering to
order the locations of the generated program. It remains to be shown that we can �nd a
topological ordering. Remember that for our proof, we want to use a topological ordering
of the subgraph of the producer's ARG that one obtains when restricting the ARG edges
to those ARG edges added in line 24 of the CPA algorithm. If this subgraph is indeed
a tree, we know that a topological ordering exists. To show that the subgraph is a tree,
we show that every ARG node can be reached via ARG edges added in line 24 only and
no two ARG edges added in line 24 end in the same ARG node. Additionally, to prove
termination we require that for every node in the producer's ARG, a loop-free path from
the root to that node exists in the ARG s.t. for all non-enabler components of the nodes
on the path the ith edge in the path matches the ith application of the transfer relation
and all edges considered by that path are added in line 24 of the CPA algorithm. The
following lemma states the third, and, thus, the �rst aspect.

Lemma 5.22. Let (C2 × C1)A be a re�ned property checking analysis s.t. operators
merge(C2×C1)A(e, e′) = e′, prec(C2×C1)A(((e2, e1), q), π, S) = ((·, e1), q), ·), and furthermore
∀e ∈ E(C2×C1)A , S ⊆ E(C2×C1)A : e ∈ S =⇒ stopC1

(e, π, S). If Algorithm 2 started with

(C2×C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , a precision π0 ∈ Π(C2×C1)A ,

and program P returns (true, ·, RP
(C2×C1)A), RP

(C2×C1)A = (N,GARG, root, ·), and Gl24
ARG ⊆

GARG is the subset of ARG edges added in line 24 of the CPA algorithm, then for every
n ∈ N a sequence root, ((e1

2, e
1
1), q1), . . . , ((em2 , e

m
1 ), qm) = n exists s.t. ∀1 ≤ i ≤ m : ∃gi ∈

GCFA : (((ei−1
2 , ei−1

1 ), qi−1), gi, ((e
i
2, e

i
1), qi)) ∈ Gl24

ARG ∧ ((ei−1
1 , qi−1), gi, (e

i
1, q

i)) ∈ CA1
∧¬∃0 ≤ j ≤ m : i 6= j ∧ ((ei2, e

i
1), qi) = ((ej2, e

j
1), qj).

Proof. See Appendix pp. 279 f.

So far, we know that for every node in the ARG, a loop-free path from the root to that
node exists in the ARG s.t. for all non-enabler components of the nodes on the path the
ith edge in the path matches the ith application of the transfer relation and all edges of
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these path are added in line 24 of the CPA algorithm. It remains to be shown that these
paths form a tree rooted in the ARG's root node. Since all those paths already start in
the root node, we only need to show that every node has at most one predecessor.

Lemma 5.23. Let (C2 × C1)A be a re�ned property checking analysis s.t. operators
merge(C2×C1)A(e, e′) = e′, prec(C2×C1)A(((e2, e1), q), π, S) = ((·, e1), q), ·), and furthermore
∀e ∈ E(C2×C1)A , S ⊆ E(C2×C1)A : e ∈ S =⇒ stopC1

(e, π, S). If Algorithm 2 started

with (C2 × C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , arbitrary precision

π0 ∈ Π(C2×C1)A , and program P returns (true, ·, RP
(C2×C1)A), RP

(C2×C1)A = (N,GARG, ·, ·),
and Gl24

ARG ⊆ GARG is the subset of ARG edges added in line 24 of the CPA algo-

rithm, then for every n ∈ N it holds true that (n′, g′, n), (n′′, g′′, n) ∈ Gl24
ARG implies

(n′, g′, n) = (n′′, g′′, n).

Proof. Prove by contradiction. Assume that there exists (n′, g′, n), (n′′, g′′, n) ∈ Gl24
ARG

and (n′, g′, n) 6= (n′′, g′′, n). Algorithm 2 adds edges in line 24 only when a transfer
successor (n′′′, g′′′, ·) ∈ (C2×C1)A exists. Furthermore, if it inspects a transfer successor,
Algorithm 2 will add at most one edge in line 24. Hence, one of the edges must be added
�rst and n is added to reached and is never removed (cf. CPA algorithm in combination
with property of merge operator). With out loss of generality, assume (n′, g′, n) was added
�rst. Now, assume later (n′′, g′′, n) to GARG is added in line 24. The edge (n′′, g′′, n) is
only added when stop(C2×C1)A(n, reached) = false. Since Algorithm 2 already added
n to reached when it added the �rst edge and never removed n from reached, we get
stop(C2×C1)A(n, reached) = true. Contradiction to the assumption.

Due to the previous two lemmas, we infer that a tree, a restriction of the ARG to edges
Gl24

ARG added in line 24, exists that contains a loop-free path for every ARG node from
the root node to that ARG node and the ith edge in the path matches the ith application
of the transfer relation except for the enabler states. Thus, a topological ordering for the
ARG and the ARG edges Gl24

ARG exist. Given such an arbitrary topological ordering, and,
thus, the de�nition of an ordering of the generated program's locations, the organization
of the waitlistmust ensure that it pops o� abstract states with a lower ordinal number �rst.
In case, the CPA algorithm sticks to the previous organization of the waitlist considering
an arbitrary topological ordering of that tree, we say it uses a tree ordering.

After we know that the basis of our proof idea is true, we come to the proof of
termination within a single pass. The basic idea of the proof is to show that per program
location the CPA algorithm explores only one abstract state, i.e., it only pops one abstract
state per program location in line 4. Thus, we guarantee termination of the while loop in
line 3. Since the transfer function only explores those successors that �t to the program's
control �ow, all abstract states consider concrete program locations, and we use a transfer
function, we explore at most one transfer successor per CFA edge, i.e., we analyze the
program in a single pass. Let to denote the ordering of the locations of the generated
program. To prove that the CPA algorithm explores only one abstract state per program
location, we show that before each iteration i of the while loop the following holds true.

1. The �nal abstract states for locations with ordinal numbers lower or equal to i
have been computed, i.e., ∀l ∈ L : to(l) > i ∨ ∃(e1, q) ∈ reached : acs(e1) = l and
∀(e1, q) ∈ reached : to(acs(e1)) ≤ i =⇒ acs(e1)[acs(e1)] = (e1, q).

2. Only successors for explored abstract states considering locations with ordinal num-
bers greater or equal to imust still be explored, i.e., ∀(e1, q) ∈ reached : to(acs(e1)) ≥
i⇔ ∃((e1, q), π) ∈ waitlist.
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3. There exists at most one abstract state per location in the waitlist, i.e., ∀((e1, q), π),
((e′1, q

′), π′) ∈ waitlist : ((e1, q), π) = ((e′1, q
′), π′) ∨ acs(e1) 6= acs(e′1).

The �rst and second invariant ensure that in iteration i an abstract state considering
the location with ordinal number i is explored and that the abstract state agrees with
the corresponding producer state. The third invariant states together with the previous
insight that no state is explored twice. To prove these invariants, we use an additional
helper invariant. It states that all abstract successors of states that are explored, i.e., they
are contained in reached but not in waitlist, are covered by an element in waitlist when the
location associated with the successor must still be explored. Based on these invariants,
we can prove termination of the consumer analysis in a single pass. Now, the following
theorem claims termination of the consumer analysis in a single pass when the consumer
analysis uses a tree ordering and the producer uses model checking.

Theorem 5.24. Let (C2 × C1)A be a re�ned property checking analysis s.t. operators
merge(C2×C1)A(e, e′) = e′, ∀e ∈ E(C2×C1)A , S ⊆ E(C2×C1)A : e ∈ S =⇒ stopC1

(e, π, S),
and prec(C2×C1)A(((e2, e1), q), π, S) = (((·, e1), q), ·). If Algorithm 2 started with re�ned

property checking analysis (C2 × C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , a

precision π ∈ Π(C2×C1)A , and program P returns (true, ·, RP
(C2×C1)A) and prog(RP

(C2×C1)A)

= (L,GCFA, l0), then Algorithm 2 started with DFA(CA1 ), e0[l0], a precision π′ ∈ ΠCA1 ,

and prog(RP
(C2×C1)A) and using a tree ordering for waitlist terminates in a single pass.

Proof. See Appendix pp. 280 �.

The previous theorem stated consumer analysis termination in a single pass in case the
consumer uses a proper organization of the waitlist and the producer applied model check-
ing. Now, only one case remains in which we want to guarantee termination, namely when
the producer uses a equivalence relation consistent analysis.

Termination When Producer Analysis is Equivalence Relation Consistent Re-
member that the idea of an equivalence relation consistent re�ned property checking analy-
sis is the following. It groups abstract states into equivalence classes s.t. each equivalence
class is a potential program location in the generated program. Furthermore, during an-
alysis abstract states of the same equivalence class are treated similarly to locations in
data�ow analyses. With this idea in mind, we basically prove that the consumer analy-
sis mimics the behavior of the producer analysis. From the termination of the producer
analysis, we then conclude the termination of the consumer analysis.

To show that the consumer analysis mimics the property checking analysis part of the
producer analysis, we need to relate the abstract states explored by the producer and
consumer analysis. Since the consumer analysis considers at most one abstract state per
program location it is su�cient to use the location information of a consumer's state to
identify the corresponding producer state. Due to program generation, a program location
in the generated program is an abstract state in the producer's analysis con�guration.
Since one idea of equivalence relation consistency was to group together producer states
responsible for the same program location, we use the equivalence relation ∼ and the
location information of the consumer state to relate a consumer's abstract state to a
producer's abstract state. In each imitation step, we want to uniquely relate the consumer
and producer states. First, we show that in each step di�erent producer states are never
related to the same location state. We utilize that in an equivalence relation two elements
e1 and e2 can only be equivalent with e3 when they are both equivalent. The following
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lemma states that at any point in time no two di�erent producer states with the same
equivalence class exist simultaneously in the reached set.

Lemma 5.25. Let (C2 × C1)A be an equivalence relation consistent, re�ned property
checking analysis and ∼ an equivalence relation which shows that (C2×C1)A is equivalence
relation consistent. If Algorithm 2 started with (C2 × C1)A, compatible, initial abstract
state e0 ∈ E(C2×C1)A , arbitrary precision π0 ∈ Π(C2×C1)A , and program P , then after
line 1 it always holds true that ∀e, e′ ∈ reached : e = e′ ∨ e 6∼ e′.

Proof. See Appendix pp. 286 f.

We ensured that we can map producer states to program locations of the generated pro-
gram. From the previous lemma, we now easily conclude the opposite direction. The
following corollary states that di�erent nodes in the �nal ARG generated by the producer
� hence di�erent program location of the generated program � are not equivalent.

Corollary 5.26. Let (C2 × C1)A be an equivalent consistent, re�ned property checking
analysis and ∼ an equivalence relation which shows that (C2 × C1)A is equivalence re-
lation consistent. If Algorithm 2 started with (C2 × C1)A, compatible, initial abstract
state e0 ∈ E(C2×C1)A , a precision π0 ∈ Π(C2×C1)A , and program P returns (·, ·, RP

(C2×C1)A)

and RP
(C2×C1)A = (N,GARG, root,Ncov), then ∀n, n′ ∈ N : n = n′ ∨ n 6∼ n.

Proof. We know that if Algorithm 2 reaches line 29, then N = reached. From Lemma 5.25
and N = reached, it follows that ∀n, n′ ∈ N : n = n′ ∨ n 6∼ n.

Due to the previous corollary, di�erent program locations cannot be mapped to the same
producer state. Now, we know that we can uniquely map program locations and producer
states.

Another aspect, which we require when we want to mimic the producer's property
checking analysis behavior, is that if we relate a producer to a consumer state, we can
also relate their respective transfer successors. Remember that we use the equivalence re-
lation ∼ to relate producer and consumer states. Additionally, a producer state will only
be related to a consumer state if the consumer's location information is equivalent with
the producer state. In the consumer's successor, the location information is determined
by the end point of the CFA edge considered during the consumer's transfer successor
computation. Furthermore, we know that the location information of the transfer prede-
cessor is determined by the start point of that CFA edge. Due to program generation, the
CFA edge corresponds to an ARG edge. So far, we know that the producer state ps is
equivalent to the predecessor p of the ARG edge (the start point of the CFA edge) and ps'
transfer successor is equivalent to the transfer successor of p. Since the transfer successor
of p may be di�erent from the end point of the ARG edge (the location information of the
consumer's transfer successor), we need to show that the transfer successor is equivalent
to the end point of the ARG edge. The following lemma claims this equivalence.

Lemma 5.27. Let (C2 × C1)A be an equivalent consistent, re�ned property checking
analysis and ∼ an equivalence relation which shows that (C2×C1)A is equivalence relation
consistent. If Algorithm 2 started with (C2 ×C1)A, compatible, initial abstract state e0 ∈
E(C2×C1)A , a precision π ∈ Π(C2×C1)A , and program P returns (·, ·, (N,GARG, root,Ncov)),
then ∀(n, g, n′) ∈ GARG : ∀(n, g, e′) ∈ (C2×C1)A : e′ ∼ n′.

Proof. See Appendix pp. 287 f.

184



5.4. CONSUMER VERIFICATION OF THE GENERATED PROGRAM

Due to the previous lemma, we now know that if we relate a producer to a consumer state,
we can also relate their respective transfer successors.

A relation of producer and consumer states is not enough. We additionally require
that the consumer state ec = (e1, q1) is non-location equivalent with the property checking
analysis part of the producer state ep, i.e., ec = ep[acs(e1)]. Furthermore, we need to
ensure that if the producer explores a transfer successor, a corresponding edge in the
generated program will exist. To guarantee the last property, it is su�cient that the
producer's property checking analysis state is at most as abstract as the property checking
analysis state considered by the ARG that is responsible for the location information
considered in the consumer state. When all these conditions are met by producer state
ep and consumer state ec, we say that state ep is mimicked by state ec. In the following,
we formally de�ne this imitation relation.

De�nition 5.16. Let ∼ be an equivalence relation which shows that re�ned property
checking analysis (C2×C1)A is equivalence relation consistent, RP

(C2×C1)A be an ARG for

(C2 ×C1)A and program P , and prog(RP
(C2×C1)A) = (L,GCFA, l0) the program generated

from that ARG. Then, an abstract state ep = ((ep2, e
p
1), qp) ∈ E(C2×C1)A is mimicked

by ec = (e1, q) ∈ ECA1 , denoted by ep =∼ ec, if acs(e1) = ((el2, e
l
1), ql) ∈ E(C2×C1)A

9,

ep ∼ acs(e1), (ep1, q
p) v (el1, q

l), and ep[acs(e1)] = ec.

Based on the previous de�nition, we now prove that the consumer analysis can mimic the
producer analysis. In principle, we inductively show that before each iteration of the while
loop in line 3 of the CPA algorithm, the reached set of the producer is mimicked by the
reached set of the consumer and an organization of the consumer's waitlist exists s.t. it is
an imitation of the producer's waitlist. Prior to the sketched termination proof, we want
to show the following aspect, which is helpful to prove termination. If a consumer state
mimics a producer state, then the consumer can mimic all successors explored for that
producer state and no successors of the consumer state exist that cannot be mimicked by a
producer successor. Hence, the consumer can imitate the producer's successor exploration.
The subsequent lemma claims that the desired property is indeed true.

Lemma 5.28. Let (C2 × C1)A be an equivalence relation consistent, re�ned property
checking analysis, DFA(CA1 ) be a data�ow analysis for property checking analysis CA1 ,
ep = ((ep2, e

p
1), qp) ∈ E(C2×C1)A , and ec = (ec1, q

c) ∈ ECA1 . Furthermore, assume that Algo-

rithm 2 started with (C2×C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , arbitrary

precision π0 ∈ Π(C2×C1)A , and program P = (Lp, Gp
CFA, l

p
0) returns (true, ·, RP

(C2×C1)A).

Now, let ARG RP
(C2×C1)A = (N,GARG, root,Ncov) and prog(RP

(C2×C1)A) = (L,GCFA, l0) be

the generated program. If acs(ec1) ∈ L, acs(ep1) 6= ⊥L, and ep =∼ ec, then there exists a bi-
jective function bt : {(ep, g, e′p) ∈ (C2×C1)A | g ∈ Gp

CFA} → {(ec, g′, e′c) ∈ CA1 | g
′ ∈ GCFA}

with bt((ep, g, e
′
p)) = (ec, g

′, e′c) =⇒ e′p =∼ e
′
c.

Proof. See Appendix pp. 288 f.

The previous lemma ensures that the consumer can mimic the transfer successor explo-
ration. To mimic the complete producer analysis, the consumer's initial abstract state
must mimic the producer's initial abstract state. Furthermore, the consumer must mimic
the producer's precision adjustment, merge, and termination check behavior. If the con-
sumer can mimic also these operations, we can inductively show that before each iteration

9Due to program construction this is always the case if acs(e1) ∈ L
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of the while in line 3 of the CPA algorithm, the reached set of the producer is mimicked
by the reached set of the consumer and an organization of the consumer's waitlist exists
s.t. it is an imitation of the producer's waitlist. In this case, we can conclude termination
of the consumer analysis if it mimics the producer analysis because we already know that
the producer analysis terminates. We claim that such an imitation is possible and we will
use it in the proof of the following theorem, which states termination for our fourth and
last case. The next theorem says that an exploration order for the control �ow edges and
an appropriate management of the waitlist exist such that the consumer analysis termi-
nates when the producer analysis uses an equivalence relation consistent, re�ned property
checking analysis.

Theorem 5.29. Let (C2 × C1)A be an equivalence relation consistent, re�ned property
checking analysis. Assume Algorithm 2 started with (C2 × C1)A, compatible, initial ab-
stract state e0 ∈ E(C2×C1)A , any precision π0 ∈ Π(C2×C1)A , and program P returns

(true, ·, RP
(C2×C1)A). Now, let prog(RP

(C2×C1)A) = (L,GCFA, l0). Then, exploration orders

of GCFA for each while loop iteration of Algorithm 2 and a management of waitlist exist s.t.
Algorithm 2 started with DFA(CA1 ), e0[l0], any precision π′0 ∈ ΠCA1 , and prog(RP

(C2×C1)A)
terminates.

Proof. See Appendix pp. 289 �.

The previous theorem completed our considerations w.r.t. termination of the consumer
analysis. We proved termination of the consumer analysis for all four cases, which we
identi�ed to be typically relevant in practice. Furthermore, we already discussed how to
deal with the remaining cases, either the producer tries out whether the consumer analysis
terminates on the generated program or he transfers his proof to the generated program.
Moreover, termination was the last aspect of the consumer analysis we had to discuss.
Thus, we are done with the presentation of the consumer part of the Programs from Proofs
approach. In the following section, we want to study if and when the possibility to verify
arbitrary program properties is kept along program transformation.

5.5 Reveri�cation of the Generated Program

So far, we showed that in the PfP setting producer veri�ability of a property on the
original program implies consumer veri�ability of the same property on the generated
program. However, the safety property considered in the Programs from Proofs instance
may not be the only one the consumer is interested in. To convince the consumer that
the generated program also ful�lls the other properties of interest, the consumer must be
able to prove them with an appropriate analysis con�guration. Of course, the producer
could combine all properties of interest into a single property automaton and could try
to �nd an analysis con�guration that shows safety w.r.t. the combined property. On the
one hand, the producer reveri�es properties he already proved. For example, a di�erent
consumer was already interested in that property or the producer iteratively applies the
PfP approach to ensure all properties of interest. On the other hand, the producer might
combine all analyses that he would use to prove one of the properties of interest. In this
case, the resulting combined analysis is a lot more complex, probably slower. Also, it
might be less reliable. De�ning and implementing the composition is an additional source
for errors. Thus, verifying the properties one by one could be more bene�cial. Hence, the
program generation on the producer side should not only enable the veri�cation of the
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Figure 5.6: Control state unaware property automaton for property: after execution of
statement z:=z+10; variable z has a value greater than or equal to ten

same property with a simpler analysis. Moreover, it should also preserve veri�ability of
all other properties of interest. At best, we would be able to prove a property A on the
generated program with the same analysis with which we proved that property A on the
original program.

We already showed that only properties that can be speci�ed with a control state
unaware property automaton are guaranteed to remain valid on the generated program
(see Proposition 5.8). In principle, a control state unaware property might be success-
fully proven for the generated program if it had been successfully proven for the original
program. However, that properties remain valid is only the necessary condition. Still,
the restructuring of the original program during program generation could prohibit veri-
�cation of the generated program. The analysis of the generated program could now fail
for any ordering of waitlist, e.g., it may no longer terminate. For example, consider our
program SubMinSumDiv and its transformation (both shown in Fig. 5.5). We can use an
interval analysis [CC77], an analysis that approximates the possible values of a variable by
an interval, to prove that program SubMinSumDiv ful�lls the control state unaware prop-
erty shown in Fig. 5.6, which states that after execution of statement z:=z+10; variable
z has a value greater than or equal to ten. For the original program SubMinSumDiv, the
interval analysis terminates when the paths in the while loop are explored in an inter-
leaved way or the else branch of the while loop is explored after the if branch. In contrast,
the interval analysis never terminates on the generated program because in the generated
program the two execution possibilities of the while loop are explicitly split. Assuming
unbounded integers and an interval analysis that combines abstract states solely with the
join operator, the interval analysis never �nishes the exploration of the while loop in line
13. In each iteration, the right bound of the interval for variable z is increased by one.

Identifying all cases in which we can assure that veri�ability is transferred along pro-
gram generation is di�cult. Similar to our example, we assume that in general not only
the analysis is important but also how the program is restructured. Thus, in this thesis
we only consider one class of analyses, those analyses the consumer already uses in the
Programs from Proofs approach. Having in mind that one goal of the Programs from
Proofs approach is to enable program veri�cation with a simple analysis, we think that
the consumer preferably wants to apply such simple analyses. Since the interval analy-
sis, which belongs to the simple analyses the consumer may use, failed to terminate on
the generated program, we also exclude the termination aspect. In the previous section,
we proved that arbitrary data�ow analyses terminate when they are applied on loop-free
programs or if they have a �nite lattice height. In these cases, termination is guaranteed.
For the remaining cases, we think that termination depends on the restructuring of the
original program. Nevertheless, we believe that already for the original program termina-
tion is not assured for any exploration order.10 The consumer could already fail to prove

10We did not prove this claim.
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the original program. Thus, it should be okay that he fails on the generated program.
The following proposition now states maintenance of the veri�ability for data�ow variants
of property checking analyses in case the program generation uses a strongly well-formed
ARG, as the producer does in our Programs from Proofs approach. Note that we assume
that the transfer of the veri�ability will only be guaranteed if the analysis whose behavior
should be transferred and the producer's re�ned property checking analysis start in the
same program location. We think that this is naturally the case since a consumer wants
to guarantee properties for all program executions he executes and typically program
executions will start in the initial program location.

Proposition 5.30. Let DFA(CA1 ) be the data�ow analysis of property checking analy-
sis CA1 , RP

(C2×C′1)A′
be an ARG for program P and re�ned property checking analysis

(C2×C′1)A
′
, RP

(C2×C′1)A′
is strongly well-formed for ((e2, e1), q) ∈ E(C2×C′1)A′ , acs(e1) ∈ L,

and prog(RP
(C2×C′1)A′

) = (L′, G′CFA, l
′
0). If Algorithm 2 started with DFA(CA1 ), initial ab-

stract state e0 = (e, q) ∈ ECA1 with acs(e) = acs(e1), arbitrary initial precision π0 ∈ ΠCA1 ,

and program P returns (true, ·, RP
CA1

), then if Algorithm 2 started with DFA(CA1 ), initial

abstract state e′0 s.t. e′0 = (l′0, q) if e ∈ EL and e′0 = ((l′0, c), q)) if e0 = (·, c), arbitrary ini-
tial precision π′0 ∈ ΠCA1 , and program prog(RP

(C2×C′1)A′
) terminates, it returns (true, ·, ·).

Proof. See Appendix pp. 294 f.

The previous proposition tells us that all properties that can be described by a control
state unaware property automaton and that can be proven with a data�ow analysis on the
original program can be proven with the same data�ow analysis on the generated program
assuming termination of the CPA algorithm. Thus, the Programs from Proofs approach
is transitive and the producer may iteratively apply the Programs from Proofs approach
to assure various properties. With this insight, we �nish our theoretical discussion of the
Programs from Proofs approach and continue to practically evaluate our Programs from
Proofs framework.

5.6 Evaluation

So far, we proved that the consumer can verify the generated program with a simpler
analysis, which is often also coarser than the producer analysis. Although the consumer
uses a simpler and often coarser analysis than the producer, we cannot theoretically prove
that the consumer validation is more e�cient. The problem is that the generated program
can be larger. Hence, one goal of our evaluation is to examine if the veri�cation is indeed
simpler in terms of veri�cation time and memory consumption. Second, we want to study
the generated programs, especially their sizes in comparison to the original programs.
Our third goal is to compare our PfP approach with existing, alternative approaches,
which aim at a fast consumer validation. Typically, these are approaches applying the
Proof-Carrying Code principle. One such alternative is the general con�gurable program
certi�cation framework presented in the previous two chapters.

First, we introduce our evaluation set-up, i.e., the considered programs and properties,
the analysis con�gurations, the alternative PCC approaches with which we compare our
PfP approach, and the set up of the execution environment. Thereafter, we discuss the
results of our evaluation.
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5.6.1 Evaluation Setting

In the following paragraphs, we introduce the veri�cation tasks, the competitors for the
consumer validation, and provide details on the infrastructure we used for our evaluation.
We start with the introduction of the veri�cation tasks. A veri�cation task consists of an
analysis con�guration, a program, and a correctness property. Note that our veri�cation
tasks never only di�er in the correctness property. Thus, we use the acronym of the re�ned
property checking analysis and the program name to refer to a veri�cation task of the
producer or the corresponding validation tasks of the consumer. Further note that we reuse
and extend the veri�cation tasks from previous PfP presentations [WSW13, JW15, JW17].
Next to new programs, we also consider new analysis con�gurations. For example, we
consider property checking analyses with non-static precision adjustment and property
checking analyses whose precision is in between data�ow analyses and model checking.

Con�gurations In theory, our PfP approach is a general framework. For example, it
can be instantiated with various re�ned property checking analyses, each described by an
analysis con�guration. To build a re�ned property checking analysis, we could select from
three enabler analysis C2:

• a predicate analysis P with adjustable block encoding [BKW10], which uses the SMT
solver MathSAT5 [CGSS13] version 5.3.10, depending on the analysis type of the
property checking analysis the predicate analysis either abstracts at functions and
loop heads or at every join node in the CFA,

• an octagon analysis O based on the Apron library [JM09a],

• and explicit-state model checking V [BL13] with re�nement selection [BLW15b] and
path pre�x slicing [BLW15c], which tracks variable values similar to constant prop-
agation [NNH05, p. 72].

For the construction of the property checking analysis CA1 , we selected one of the following
abstract domains:

• an interval domain I [CC77], which tracks per location and variable an interval of
possible values of that variable,

• the location abstract domain L introduced in the background chapter,

• the combination L×S of sign and location abstract domain introduced in Chapter 2 �
in the following we use S to refer to this domain �,

• a product combination SI of the sign DFA domain S and the interval I abstract
domain,

• an abstract domain U which tracks the uninitialized variables per location, and

• a value abstract domain V, the same domain that is used in the third enabler analy-
sis. We write Ṽ if we combine the value abstract domain with precision adjustment.

For each abstract domain, the transfer relation is �xed. However, we need to con�gure
the precision adjustment operator, the merge operator, and the termination check. All
property checking analyses except for those that are based on the abstract domain Ṽ use a
static precision adjustment, which does not change the abstract state. Property checking
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analyses based on Ṽ should only track variable values for a prede�ned set of variables.
Hence, their precision adjustment replaces concrete variable values of non-tracked variables
by any value.

To con�gure the analysis type, we need to de�ne the merge operator and the termina-
tion check. All analysis use the most common termination check stop(e, S) := ∃e′ ∈ S :
e v e′. To con�gure data�ow analyses, we con�gured the merge operator to join abstract
states when the location element and the property automaton state is the same. For all
abstract domains except for the location domain L, we built one data�ow analysis. We
exclude the location domain because it considers location elements only. A merge operator
for location states that joins location states when they are the same is identical to a merge
operator for location states that never merges abstract states. Never merging abstract
states is the standard con�guration of the merge operator to get a model checking analy-
sis. Again, we built one model checking analysis for almost each of the abstract domains.
We left out the interval abstract domain I and the combined abstract domain SI because
their behaviors are similar to the value abstract domain. Furthermore, we constructed
one additional property checking analysis for the combined abstract domain. This analy-
sis merges abstract states when the location, the sign state, and the property automaton
state are the same. We yield an analysis whose precision lies in between data�ow analysis
and model checking. In total, we got 12 di�erent property checking analyses.

To cover a broad spectrum of con�gurations, we tried to combine all property checking
analyses with all enabler analyses. We left out the combination of the value analysis
enabler with property checking analyses considering the interval I, the combined SI, or
the value abstract domain V, Ṽ. In these cases, the property checking analysis' abstract
domain is the same or more precise A combination with the value analysis enabler is of
no value. Thus, we got 29 di�erent re�ned property checking analysis con�gurations in
total. All re�ned property checking analyses use the product combination of the precision
adjustment and the transfer relation. Note that we do not consider improvements of
the transfer relation based on dynamic multi-edges or multi-edges because either the
program generation or the property automaton evaluation cannot be performed properly.
Like the property checking analyses, the re�ned property checking analyses use the most
common termination check. Furthermore, the merge operator never combines abstract
states with di�erent enabler states and otherwise produces an abstract state with the
same enabler state as the two input states and a property checking analysis state that
is computed by the merge operator of the property checking analysis. The predicate
enabler P abstracts at functions and loop heads only if the property checking analysis
applies model checking and otherwise it abstracts at every join node in the CFA. For
the enabler analyses O and V, we used the best re�nement strategy of the following,
promising heuristics: NONE, LENGHT_MIN, LENGTH_MAX, DOMAIN_MIN, and
DOMAIN_MIN+LENGTH_MIN (the default con�guration). Moreover, we always used
a CEGAR [CGJ+00] approach to determine the precision for the enabler analysis C2.
We tried out both types of re�nements, either starting from scratch after re�nement or
applying lazy re�nement [HJMS02].

Programs and Properties To examine the general applicability of our approach, we
also need to examine the PfP approach with di�erent types of programs and safety prop-
erties. We selected our programs from three di�erent veri�cation benchmarks [KHCL07,
SI13, Bey16], other research papers [DLS02, BSI+08, WSW13, JW15, JW17], some self-
written programs, and our example program SubMinSumDiv. The following listing gives
an overview of the set of programs.
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Bu�er over�ow benchmark [KHCL07] interproc, NetBSD, nosprintf,

sendmail, SpamAssassin

NECLA static-small [SI13] inf1, inf4, inf6, inf8

Software veri�cation competition benchmark [Bey16] cdaudio, diskperf,

invertstring, kbfiltr1, kbfiltr2, kundu, lockfree3.0, lockfree3.1,

memslave1, memslave2, pipeline, pipeline2, relax, s3srvr, testlocks5,

testlocks5d, testlocks6, testlocks7, testlocks8, testlocks12,

testlocks12d, tokenring02, tokenring03, tokenring04, transmitter01,

transmitter02

Research papers condsum [JW15], ESP, ESPa, ESPb, ESPc [DLS02],
facnegsum [JW17], locks [WSW13], SLR, SLRb [BSI+08]

Self-written programs addIteration, div, fibonacci, fraction,

harmonicMean, invertarray, invertsorted, liststatistics, palindrom,

PfP, PfPb, PfPc, powerapprox propertyInFlag

For the programs from the bu�er over�ow benchmark [KHCL07], we checked that no
bu�erover�ow occurs, a typical invariant property. When the property checking analysis
considered the abstract domain U, which tracks uninitialized variables, we proved that no
uninitialized variables are used. We veri�ed that no null pointers are dereferenced in the
programs lockfree3.0, addIteration, and lockfree3.1. In case the property checking
analysis only tracks locations (L), our veri�cation examines whether the programs ful�ll
pure protocol properties, i.e., they respect a certain ordering on some of the program
statements. We reuse protocols considered by Wonisch et al. [WSW13] and us [JW17] in
previous papers. For the programs we wrote ourselves, we used standard properties like
no null pointer dereference, no division by zero, no bu�er over�ow plus some properties
that are speci�cally tailored to the structure of the program. In the remaining cases, we
mainly looked at (subaspects of the) properties provided by the programs, i.e., properties
encoded by error labels or assertions. Since labels may be di�erent for the original and
the generated program, we typically translated the encoded properties into a property
automaton that checks the property instead of checking only the reachability of the error
location. To properly capture the encoded property, the translated property automa-
ton often monitors certain program operations and the value of some program variables.
Sometimes, we also had to instrument the program to enable checking of the property.

Validation Competitors To study if our Programs from Proofs approach is also a
practical alternative for an e�cient consumer validation, our goal is to compare the PfP
approach with di�erent PCC techniques. We use our basic con�gurable program certi�ca-
tion approach, denoted by CPC, as the baseline. Furthermore, we select the combination
of reduction and partitioning (CPCRP), the optimized con�gurable certi�cation approach
whose validation was typically fastest, as one instance for a technique that stores a sub-
set of the reachable, abstract states. For certi�cates constructed for a re�ned property
checking analysis using the predicate analysis as enabler analysis, we used the reduced
node set during certi�cate construction. In all other cases, the certi�cate is constructed
from the highly reduced node set. As partitioning strategy we tried the BEST_FIRST

strategy. Certi�cates are easy to construct with this strategy and certi�cate validation
performs similar to the validation of certi�cates constructed by other strategies available
in CPAchecker (see Henrik Bröcher's bachelor thesis [Brö16]). Only when we failed
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to construct a certi�cate with this strategy, e.g., due to a timeout, we went on with a
random partition. To get partitions of size more than one even when the ARG is small,
we restricted the size of each set of partition nodes to ten. Note that we think that
one instance for a technique storing a subset of the reachable abstract state is su�cient.
Thus, we choose the one considered in our previous comparison of PCC approaches that
especially performs best when the producer analysis, like our re�ned property checking
analyses, is more precise than a data�ow analysis. Hence, we excluded the approach stor-
ing only abstract states that are reachable via backward edges in the ARG. Additionally,
we consider one approach (ARG) that stores the abstract reachability graph and checks
that the ARG is constructed properly, i.e., it ful�lls similar properties like a well-formed
ARG. This approach works similarly to the approaches of Jhala et al. and Henzinger et
al. [HNJ+02, HJMS03], but its implementation is a lot more general and allows to certify
the analysis of arbitrary CPAs. Since the precision of all enabler analyses is determined
via counterexample guided abstraction re�nement, we also compare with a technique for
regression veri�cation (RV) [BLN+13] which stores the determined enabler precision. In
total, we compare our PfP approach with four di�erent PCC techniques.

Execution Set Up As before, we run the experiments with the benchmarking evalua-
tion framework BenchExec [BLW15a]. Every veri�cation and validation task is executed
on a machine with an Intel Xeon E5-2650 v2 CPU at 2.6GHz and with 135GB of RAM.
Furthermore, each task must be completed within 15 minutes of CPU time and must use
no more than 15GB of RAM. For the PCC approach that checks the abstract reachabil-
ity tree, we additionally had to increase the stack size of the Java virtual machine from
1024 kB to 51200 kB. Once again, we performed our experiments with the CPAchecker
revision 23042 available in the runtime_veri�cation branch11 and Java HotSpot(TM) 64-
Bit Server VM 1.8.0_101.

The generated programs and the certi�cates were constructed once before the evalua-
tion. For each of the 127 veri�cation tasks, we required the enabler analysis to successfully
verify the original program. Furthermore, the consumer uses the more e�cient variant
of the CPA algorithm, which does not compute an abstract reachability graph (cf. Algo-
rithm 1), while the producer must use the standard algorithm to perform the re�nement of
the enabler analysis. Similarly, we disabled the loop structure detection for the generated
programs, which is only needed for the re�ned property checking analysis and is di�cult
to detect on the generated program.

In the following, we examine the average of 10 experimental executions. The results for
all 127 tasks can be found in Tab. B.3 in the appendix. Note that in the appendix for each
of the 127 tasks we either include the results based on a re�ned property checking analysis
with lazy re�nement or one without. We present the version in which the consumer
analysis of the generated program performs better. When the consumer analysis of the
program generated from the re�ned property checking analysis with lazy re�nement is
faster, we marked the program name with an asterisk. Analyses using the octagon enabler
often timed out when using lazy re�nement. In contrast, for the predicate enabler the
variant with lazy re�nement seems to provide the better results.

We start with the question whether the consumer veri�cation of the generated program
is more e�cient than the producer veri�cation.

11https://svn.sosy-lab.org/software/cpachecker/branches/runtime_verification/
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Table 5.1: Extract of the comparison of the producer and consumer veri�cation showing
all tasks in which the producer's veri�cation was better in time or memory

CP program #r VP VC
VP

VC
MP MC

MC

MP

OU pipeline2 11 8.81 260.19 0.03 577.60 3971.20 6.88
VU cdaudio 1 2.75 2.89 0.95 365.60 344.80 0.94

VL tokenring04 22 14.15 43.05 0.33 1056.00 537.30 0.51
PS transmitter02 6 8.63 5.47 1.58 494.70 553.10 1.12
OS powerapprox 1 9.86 10.73 0.92 1036.40 996.80 0.96
OU pipeline2 11 8.51 258.16 0.03 579.30 3903.00 6.74
VU cdaudio 1 3.00 3.63 0.83 388.80 380.00 0.98

5.6.2 RQ 1: Does the Consumer Veri�cation Outperform the Pro-

ducer Veri�cation?

In this section, we want to study whether the consumer veri�cation of the generated
program is easier than the producer veri�cation. In our context, easier means the consumer
veri�cation is faster and requires less memory.

Looking at the results for the complete set of veri�cation tasks, which can be found in
Tab. B.5 in the appendix, we observe that the consumer veri�cation is indeed often easier.
The consumer can verify the complete set of tasks in 647.13 s requiring 38,043.1MB while
the producer requires more than twice as long, 1,401.52 s, and 30% more memory, namely
49,526.3MB. Only in 6% of the veri�cation tasks, the consumer veri�cation was slower or
used more memory. Table 5.1 shows these 7 veri�cation tasks.

Next to the acronym for the re�ned property checking analysis and the program name,
Tab. 5.1 presents the number of re�nements performed by the re�ned property checking
analysis, the veri�cation time VP of the producer, the veri�cation time VC of the consumer,
the speed-up of the consumer veri�cation, the memory used by the producer and consumer
analysis, and their relation. The veri�cation time of the producer consists of the time spent
in the CPA algorithm plus the time required for re�nement. Moreover, the veri�cation
time of the consumer is the time of the CPA algorithm plus the additional parsing costs
for the consumer, the di�erence of the parsing costs of the generated and the original
program. All times are given in seconds and memory consumption, used heap plus used
non-heap, is represented in MB.

Looking at Tab. 5.1, we observe that only in one case, the task considering program
transmitter02, the memory usage of the consumer is higher, although the analysis is
faster. We think that the reason is the high number of merges, more than 18,000 merges.
In contrast, the re�ned property checking analysis uses model checking and never merges.
Another reason could be the larger size of the generated program. Also in the two tasks
for program pipeline2 the slow down and the higher memory usage is caused by the high
number of merges, more than 993,000. Note that in two of the three cases, we observed
a high number of merges, although the producer uses a model checking analysis and we
showed that the consumer can use a tree ordering to verify its program in a single pass. On
the one hand, a tree ordering does not exclude merging. Although an exploration ordering
without merges exists, a tree ordering does not ensure that this exploration order is used.
On the other hand, a correct tree ordering is di�cult to compute. When we only consider
the generated program, we have the structure of the ARG but no longer its abstract states.
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Thus, we never compute a tree ordering, but rely on heuristics for the exploration order.
In the remaining four veri�cation tasks depicted in Tab. 5.1, only a slow down of the

consumer's veri�cation time exists. This slow down is caused by the additional parsing
costs, especially the construction of the CFA. In these cases, the consumer execution
of the CPA algorithm is always more than 1 s faster than the producer's execution and
the additional time for parsing the program without CFA construction is always smaller
than 0.9 s. Thus, constructing the CFA from a goto program seems to be more complex.
We have already observed this phenomena for loop detection, which we disabled for the
consumer veri�cation.

The presented results remain valid when we compare the consumer veri�cation with
the best veri�cation times and memory usages for the producer veri�cation, i.e., the more
e�cient re�ned property checking analysis of the two variants with and without lazy
re�nement. However, in 28 cases the producer veri�cation becomes signi�cantly faster.
Thus, the sum of all producer times is decreased from 1,401.52 s to 1,277.8 s.

The results are also stable, when looking at the total time for veri�cation. However, the
di�erence between producer and consumer veri�cation can become signi�cantly smaller.
Furthermore, we observe a relation between the fraction of the veri�cation time on the
total time and the di�erence between the total time of producer and consumer veri�cation.

So far, we recognized that the consumer veri�cation is often more e�cient. The sum
overall tasks is twice as fast. Now, we want to study if and when we can achieve signi�cant
improvements of the consumer veri�cation. Since we observed that a signi�cant memory
usage decrease is typically coupled with an important speed-up of the veri�cation time,
we focus on veri�cation times only.

Table 5.2 shows all veri�cation tasks in which the consumer veri�cation achieved a
signi�cant speed-up, i.e., a speed-up of at least six. The structure of the table is the same
as for the previous table. Furthermore, note that due to nondeterministic re�nement in
some cases the re�nements varied among the 10 veri�cation runs. In these cases, the
number of re�nements is a �oating point number rather than a natural one.

Inspecting Tab. 5.2, we observe that in approximately 35% of the veri�cation tasks,
44 of 127, the consumer veri�cation experiences high speed-ups. Considering the re�ned
property checking analysis con�guration, 65% of the con�guration, i.e., 19 of 29 re�ned
property checking analysis con�gurations, achieved high speed-ups. We notice that high
speed-ups are achieved for all property checking analyses except for the model checking
analysis applying a value analysis Ṽ with precision adjustment. Moreover, high speed-ups
are possible with all three enabler analysis. This supports the general applicability of our
Programs from Proofs framework.

Nevertheless, not all re�ned property checking analysis con�gurations behave the same.
When looking at the enabler analysis, we see that whenever a combination of enabler and
property checking analysis is missing, typically the combination with the octagon enabler
analysis is missing. The predicate analysis is the enabler for which often the highest speed-
ups and more often signi�cant speed-ups are achieved. We think that the reasons are the
di�erence between the number of re�nements and how the re�nement is performed. For
example, we see that the predicate analysis required more re�nements and the octagon
analysis performs only very few re�nements. From our point of view, the di�erence in
re�nements is also related to the power of the enabler analysis.

Next to the enabler analysis, also the number of re�nements seems to play an important
role for high speed-ups. Often, a larger number of re�nements is performed when large
speed-ups are achieved. However, this is not always the case. A high speed is achieved for
the veri�cation task considering model checking analysis OV and program testlocks12d,
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Table 5.2: Extract of the comparison of the producer and consumer veri�cation showing
all tasks in which the consumer's veri�cation was at least 6 times faster than the
producer's veri�cation

CP program #r VP VC
VP

VC
MP MC

MC

MP

PI

nosprintf* 3 0.59 0.07 8.47 243.90 210.20 0.86
interproc* 2 0.32 0.05 6.07 241.00 210.00 0.87
NetBSD* 4 0.68 0.08 8.39 245.20 214.90 0.88
PfPb* 2 0.18 0.02 7.91 235.10 205.90 0.88
PfPc* 2 0.22 0.03 6.97 229.70 202.60 0.88

OI SpamAssassin 1 0.93 0.16 6.02 244.00 214.30 0.88

PS
PfPb* 2 0.17 0.03 6.37 232.90 196.20 0.84
fraction 4 0.52 0.07 7.26 242.30 201.40 0.83
lockfree3.0* 14 1.97 0.12 16.70 288.40 202.30 0.70

VS

inf6* 4 0.28 0.03 8.23 230.50 201.50 0.87
kundu* 10 3.00 0.36 8.41 346.00 214.90 0.62
memslave1* 22 7.52 0.91 8.31 564.00 273.20 0.48
PfPc 2 0.26 0.04 6.74 222.70 199.70 0.90

PSI
invertsorted* 21 9.92 0.67 14.76 565.70 233.80 0.41
div 20 5.37 0.30 17.72 441.60 215.20 0.49
�bonacci* 3.7 0.50 0.06 7.81 242.90 205.40 0.85

PU pipeline2* 230 227.81 0.23 985.32 1792.80 211.50 0.12
VU pipeline2* 13 2.93 0.32 9.13 367.70 221.50 0.60

PV

testlocks5* 30.2 2.64 0.30 8.93 304.60 214.60 0.70
testlocks5d* 8.2 0.90 0.12 7.33 257.50 215.50 0.84
testlocks12 18 329.79 8.23 40.05 1713.20 591.80 0.35
testlocks12d 12 5.71 0.27 21.37 540.90 219.00 0.40

OV memslave1 7.1 4.39 0.35 12.51 368.00 226.80 0.62

PṼ
memslave1 35 17.63 0.47 37.20 780.60 233.70 0.30
memslave2 35 18.31 0.63 28.87 766.00 241.20 0.31
testlocks6* 161 25.70 0.54 47.50 771.10 229.80 0.30

PSI
�bonacci* 3 0.45 0.06 7.42 243.20 206.40 0.85
palindrom* 18 6.02 0.48 12.65 475.70 221.20 0.46
invertarray* 18 17.90 0.32 55.38 523.60 217.90 0.42

PL
locks* 2 0.15 0.01 10.85 232.80 199.70 0.86
tokenring03 59 198.41 2.84 69.79 1733.20 299.20 0.17
memslave1* 271 155.63 4.16 37.43 1793.00 368.80 0.21

OL s3srvr 1.4 1.06 0.15 7.07 260.00 237.10 0.91
VL tokenring02 16 5.99 0.22 27.74 549.50 213.50 0.39

PS kundu* 20 15.15 0.60 25.06 594.00 228.50 0.38
transmitter01* 5 1.66 0.18 9.31 278.70 206.10 0.74

VS
inf6* 4 0.31 0.03 9.24 228.50 204.10 0.89
kundu* 10 6.61 0.14 47.92 481.10 202.60 0.42
transmitter02* 5 5.07 0.21 23.98 438.10 206.20 0.47

PU pipeline* 15 6.25 0.22 28.65 474.90 215.70 0.45

VU s3srvr* 6 3.81 0.61 6.23 385.60 231.90 0.60
pipeline2* 14 3.05 0.31 9.82 370.90 220.20 0.59

OV testlocks5* 5 2.73 0.35 7.90 330.90 224.00 0.68
testlocks12d* 1 135.46 0.26 520.62 1771.80 217.80 0.12
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although only one re�nement is required. Moreover, a high number of re�nements is not
a guarantee for a high speed-up. For example, the data�ow analysis PU on program
cdaudio needs 32 re�nements, but the achieved speed-up is below four.

All in all, the number of re�nements, in�uenced by the power of the enabler analysis,
is a factor for high speed-ups. Next to this factor, other factors must exist. The di�erence
of the program sizes of the original and generated program might be a another factor. We
study this hypothesis in the next section.

5.6.3 RQ2: How Much Larger Are The Generated Programs?

Often, we must separate control �ow paths and unroll loops to obtain a more easily
veri�able program. Thus, we expect that the generated program is larger. In this section,
we want to study how much larger programs can become. We consider two metrics, the
number of program locations and the program's �le size in bytes.

Comparing the original and the generated program sizes, we observe that in 85 of 127
cases the generated program has a higher number of program locations and in 77 of 127
cases the �le size of the generated program is larger. The number of program location can
become 377 times larger and the �le size is increased up to 406 times. Note that despite
the large increase in program size, we think that the program generation is practically
feasible. The times for program generation, we measured once during program generation,
were always below 40% of the producer's analysis time and took on average around 4%
of the producer's analysis time.

Surprisingly, the generated program sometimes also becomes smaller. In 40 cases the
number of program locations in the generated program and in 50 cases the �le size of
the generated program is smaller. At best, the size of the generated program becomes
about 30% of the original program size. The reason for the decrease is that the re�ned
property checking analyses detect some of the infeasible, syntactical program paths. These
paths are excluded from the ARG and, thus, from the generated program. Looking at
the complete set of veri�cation tasks, in total the generated programs contain about 5.8
times more program locations and their �les are 4.13 times larger. Finally, we recognize
that the trend, increase or decrease, is often the same in both metrics. In approximately
85% (107 of 127) of the cases the trend is the same. For the detailed numbers, we refer
to Table B.6 in the appendix.

Next, we shortly want to discuss whether we obtain smaller programs when we selected
the re�nement strategy for which the producer veri�cation is faster. Indeed, the faster
analysis often generates smaller programs. In 118 of 127 cases the number of program
locations and in 108 cases the �le size is smaller. For the remaining cases, the faster
producer veri�cation variant generates at most 21% larger programs. For our examples
this means not more than 101 additional location and 1856 extra bytes. On average the
increase is below 0.5%, i.e., less than 1 location and 16 bytes. Hence, the veri�cation time
is a good criterion to generate the smaller program variant.

In the previous section, we found out that the number of re�nements needed by the
re�ned property checking analysis to verify the program in�uences the consumer perfor-
mance. Now, we want to examine the in�uence of the program size increase. Since we
added the di�erence in the parsing time of the generated and original program to the
consumer veri�cation time, we think that a large increase in program size is an obstacle
for high performance improvements on the consumer side. To study the relation between
a large performance gain for the producer and the increase of the program size, Table 5.3
shows the program sizes for all veri�cation tasks also considered in Tab. 5.2, namely
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those in which the speed-up for the consumer veri�cation was at least 6. We use #locP
and #locC to refer to the number of program location in the original and the generated
program and #bytesP and #bytesC to refer to the respective �le sizes in bytes.

Looking at Tab. 5.3, we see that in 42.5% (17 of 40) of the depicted cases, the generated
program requires less program locations. In 67.5% (27 of 40) of the cases the number of
program locations is increased by a factor of at most 1.5. Often, a high speed-up is
achieved when the generated program is of similar size. The complete set of veri�cation
tasks supports our observation that a small increase in program size is an indicator for
a faster consumer veri�cation. In 86 of our veri�cation tasks, the number of program
locations is increased by at most two and in 84 of these 86 veri�cation tasks, the consumer
experiences a speed-up of more than two. In 74 of the 86 tasks the consumer even achieves
a speed-up above three.

However, a decrease or small increase in program size is not a necessary condition.
Consider the veri�cation task for program testlocks12 in Tab. 5.3. For this veri�cation
task, the generated program is increased by a factor of more than 140. We believe that
the program increase is compensated by a higher number of re�nements. Generally, we
noticed that for all veri�cation tasks depicted in Tab. 5.3 in which the number of program
locations is increased by a factor of at least 4 the re�ned property checking analysis
required at least 18 re�nements.

Furthermore, we recognize that for large speed-ups beyond 20 often the program size
of the generated program is increased by at most 2 or lots of re�nements are needed.
For the best speed-up, we have both, a decrease in program size and a high number of
re�nements. Moreover, if we look at veri�cation tasks in which the producer analysis
required more than �ve re�nements and the generated program is increased by at most
two, then we will observe that the consumer veri�cation is at least 5 times faster than the
producer veri�cation. Thus, we think that the combination of the number of re�nements
during producer veri�cation and the relation of the program sizes is a good indicator to
estimate the performance of the consumer. We continue to examine how our PfP approach
competes with the four alternative PCC approaches.

5.6.4 RQ3: Does the PfP Approach Compete With PCC Ap-

proaches?

After we found out that often the consumer bene�ts from the program transformation,
we now examine if the Programs from Proofs framework is an alternative to existing
frameworks To study this question, we compare the performance of the Programs from
Proofs approach with the performance of the four competitors introduced in the evalua-
tion setting. In detail, we compare the validation times and the memory usage. As before,
the validation time of the consumer in the PfP approach is the time for the CPA algo-
rithm plus the additional parsing costs. Since all competitors are Proof-Carrying Code
approaches, their validation time consists of the total time required for certi�cate checking
and certi�cate reading. In all cases, the memory usage is the required heap and non-heap
memory.

First, let us compare the validation times. The complete comparison can be found in
Tab. B.7 in the appendix. Table 5.4 shows all veri�cation tasks in which the validation
time of at least one competitor was better, i.e., faster. Next to the acronym of the re�ned
property checking analysis and the program name, the validation time VPfP in the PfP
approach followed by the validation times of the PCC approaches are given. All validation
times are in seconds. The last column shows the speed-up of the PfP approach with regard
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Table 5.3: Evaluating the impact of the relation of the original and generated program
size on veri�cation tasks with consumer speed-up of more than 6.

CP program #locP #locC
#locC
#locP

bytesP bytesC
bytesC
bytesP

PI

nosprintf* 70 71 1.01 2108 1644 0.78
interproc* 53 49 0.92 1541 953 0.62
NetBSD* 68 102 1.50 2087 2014 0.97
PfPb* 16 14 0.88 150 139 0.93
PfPc* 23 24 1.04 223 245 1.10

OI SpamAssassin 130 120 0.92 3121 2247 0.72

PS
PfPb* 16 14 0.88 150 139 0.93
fraction 44 62 1.41 1205 1372 1.14
lockfree3.0* 119 67 0.56 2069 1637 0.79

VS

inf6* 41 24 0.59 360 244 0.68
kundu* 402 302 0.75 7841 6046 0.77
memslave1* 1080 967 0.90 28163 52921 1.88
PfPc 23 25 1.09 223 257 1.15

PSI
invertsorted* 34 430 12.65 369 8601 23.31
div 24 161 6.71 313 2803 8.96
�bonacci* 29.7 47 1.58 301 689 2.29

PU pipeline2* 637 421 0.66 13473 9509 0.71
VU pipeline2* 637 677 1.06 13473 16070 1.19

PV

testlocks5* 81 227 2.80 1762 3374 1.91
testlocks5d* 73 78 1.07 1530 1019 0.67
testlocks12 172 24646 143.29 3922 381105 97.17
testlocks12d 150 246 1.64 3202 2964 0.93

OV memslave1 1080 432 0.40 28163 7891 0.28

PṼ
memslave1 1080 580 0.54 28163 18043 0.64
memslave2 1087 585 0.54 28252 18186 0.64
testlocks6* 103 606 5.88 2386 10644 4.46

PSI
�bonacci* 29 47 1.62 301 689 2.29
palindrom* 26 306 11.77 244 5447 22.32
invertarray* 26 243 9.35 219 3630 16.58

PL
locks* 23 23 1.00 280 294 1.05
tokenring03 498 7195 14.45 8917 137888 15.46
memslave1* 1080 12252 11.34 28163 285883 10.15

OL s3srvr 571.6 821 1.44 43877 19715 0.45
VL tokenring02 406 736 1.81 7254 14199 1.96

PS kundu* 402 626 1.56 7841 15487 1.98
transmitter01* 322 205 0.64 5702 3793 0.67

VS
inf6* 41 23 0.56 360 225 0.63
kundu* 402 137 0.34 7841 5343 0.68
transmitter02* 420 235 0.56 7398 4314 0.58

PU pipeline* 619 521 0.84 13000 12369 0.95

VU s3srvr* 518 1204 2.32 43877 28425 0.65
pipeline2* 637 645 1.01 13473 15318 1.14

OV testlocks5* 81 292 3.60 1762 3930 2.23
testlocks12d* 150 232 1.55 3202 2769 0.86

198



5.6. EVALUATION

Table 5.4: Comparison of the consumer validation times in PfP and PCC approaches
for all veri�cation tasks in which at least one PCC approach has a smaller consumer
validation time than the PfP approach. Validation times are given in seconds.

CP program VPfP VRV VARG VCPC VCPCRP
minVPCC

VPfP

OS testlocks7 1.15 1.26 1.46 1.32 0.98 0.85
inf4* 0.32 0.28 0.57 0.53 0.27 0.84

VS memslave1* 0.91 0.99 1.42 1.33 0.77 0.85
OSI palindrom 0.48 0.49 0.73 0.78 0.42 0.87
OU pipeline2 260.19 7.13 8.81 7.88 6.76 0.03
VU cdaudio 2.89 2.38 3.73 3.24 2.63 0.82

OSI invertsorted 0.81 0.73 1.17 0.96 F 0.90

VL tokenring04 43.05 4.40 4.59 5.65 3.12 0.07
PS transmitter02 5.47 2.22 2.83 3.27 2.88 0.41
OS powerapprox 10.73 9.14 4.56 4.77 F 0.42
PU diskperf 3.64 3.14 5.83 5.02 5.12 0.86

OU pipeline 1.18 1.14 2.27 2.13 1.74 0.97
pipeline2 258.16 5.63 8.65 8.17 6.61 0.02

VU cdaudio 3.63 3.31 3.96 3.47 2.77 0.76

OṼ relax* 0.47 0.40 0.94 0.74 0.53 0.84

to the best, the fastest, PCC approach. Note that some PCC approaches sometimes failed
to validate the certi�cate either due to a bug in the implementation of the CPA or because
validation took more than 15 minutes. These cases are marked with a F (failure) or TO
(timeout) in the tables.

Looking at Tab. 5.4, we observe that the PfP approach is rarely worse than the PCC
approaches. Only in about 12% (15 of 127) of the veri�cation tasks, the consumer val-
idation in the PfP approach is worse. In about half of the cases, 8 of the 15 cases, the
di�erence is rather small, namely at most 0.4 s. In the remaining 7 of the 15 cases, the
producer veri�cation already outperformed the PfP consumer veri�cation. The 7 cases
are also the reason why the PfP approach is outperformed by almost all PCC approaches
when looking at the sum of all validation times. However, if we exclude all tasks in which
the PfP consumer performed worse than the producer, the sum of the PfP consumer's
validation time will be the smallest with less than 70 s. The closest PCC approach is our
optimized variant, which already requires around 180 s, more than twice as long. From
the point of validation time, our PfP approach is de�nitely an alternative. Note that
this remains true even when we consider the validation times for both certi�cate variants,
certi�cates from analyses with or without lazy re�nement, and always select the faster
validation time for each veri�cation task. The trend, validation time is faster or lower than
the PfP approach, is the same. However, the speed-up of the PfP approach decreases.

Considering the total times, we recognize that the total time is dominated by the set
up and parsing time. The di�erences between the times become smaller, but the trend
slow down or speed-up remains. Moreover, the trend is relatively stable even when we
select the best total time for each PCC approach instead of the time required for validation
of the certi�cate constructed from the faster re�ned property checking analysis. Only in
10 additional cases, the PfP approach is outperformed by the best PCC approaches.
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Table 5.5: Comparison of the consumer's memory consumption in PfP and PCC
approaches for all veri�cation tasks in which at least one PCC approach has a lower
memory usage than the PfP approach. Memory consumption, used heap plus used
non-heap, is displayed in MB.

CP program MPfP MRV MARG MCPC MCPCRP
MPfP

minMPCC

OS testlocks7 265.0 281.9 241.9 234.3 248.9 1.13
VS memslave1* 273.2 268.0 266.2 264.7 260.8 1.05
OU pipeline2 3971.2 552.8 622.9 575.2 557.8 7.18

OSI invertsorted 237.7 241.2 234.7 228.6 F 1.04

VL tokenring04 537.3 545.5 546.4 572.1 426.1 1.26
PS transmitter02 553.1 304.2 314.7 300.3 293.8 1.88
OS powerapprox 996.8 1077.9 360.0 552.6 F 2.77
OU pipeline2 3903.0 536.9 616.0 570.2 553.6 7.27
VU cdaudio 380.0 377.0 420.2 394.6 361.2 1.05

Furthermore, we observe that sometimes the validation time of the PfP approach is
signi�cantly better, i.e., at a total di�erence of at least 1 s it is more than twice as fast,
than the PCC approach based on regression veri�cation [BLN+13] � the approach that
stores the precision. In case, the producer does not apply lazy re�nement � this are all
veri�cation tasks in which the program name is not marked by an asterix �, the validation
time of the PCC approach based on regression veri�cation re�ects the time required for
the last iteration of the re�ned property checking analysis. In eight cases, we observed
that the PfP approach performed better than this PCC approach and the re�ned property
checking analysis did not use lazy re�nement. Since all three enabler analyses occurred
in these 8 cases, this supports our beliefs that the enabler analysis is more complex than
the property checking analysis. In case, the re�ned property checking analysis uses lazy
re�nement and we observe such a signi�cant di�erence, this is at least an indicator for an
enabler analysis that is more complex than the property checking analysis.

Next, we want to examine if the PfP approach is also an alternative when considering
memory usage. Again, the complete comparison can be found in Tab. B.8 in the appendix.
Table 5.5 shows all veri�cation tasks in which the memory consumption of at least one
competitor was better, i.e., lower. Next to the acronym of the re�ned property checking
analysis and the program name, the memory MPfP used in the PfP approach followed by
the memory usage of the PCC approaches are presented. Memory usage is always given
in MB. The last column shows the improvement of the PfP approach with regard to the
best, the lowest, PCC approach. Note that some PCC approaches sometimes failed to
validate the certi�cate either due to a bug in the implementation of the CPA or because
validation took more than 15 minutes. These cases are marked with a F (failure) or TO
(timeout) in the tables.

We observe that only in 9 of 127 tasks our PfP approach uses more memory than the
best PCC approach. For all nine cases, the validation costs of the PfP approach are already
higher and typically the memory usage of the faster PCC approach is lower. Furthermore
in 6 of the 9 tasks, the producer performed better than the PfP consumer. Like for the
validation times, we notice that these 6 tasks caused that the sum of the memory usage
overall veri�cation tasks is the highest for the consumer of the PfP approach. Excluding
the tasks in which the PfP consumer is worse than the producer, we again get the lowest
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sum for the PfP consumer. Note that these results remain stable, although the numbers
might change, when selecting for each task and each PCC approach the PCC certi�cate
whose validation required less memory.

Finally, we want to brie�y compare the storage overhead. For the PfP approach this is
the di�erence between the �le size of the generated and the original program. Of course,
the storage overhead of the PfP approach is better when the generated program is smaller.
However, we observed that the storage overhead is often, namely in 62 of 127 cases, worse
than the regression veri�cation based PCC approach, which reuses the precision [BLN+13].
For our veri�cation tasks, that PCC approach required only 0.2MB additional disk stor-
age, in contrast to the PfP approach which required 3.6MB. In extreme, the PfP approach
required 10,000 times more disk storage for a veri�cation task. Compared to the remain-
ing PCC approaches, the PfP approach performs better. It is worse in only 27 cases and
at most 60 times worse. In total, it is even better than the remaining PCC approaches,
which require between 9.6 and 14.9MB additional disk storage.

All in all, our PfP framework is a real alternative to achieve an e�cient validation on
consumer side.

5.6.5 Summary

Our experiments demonstrated that the consumer veri�cation is typically easier, i.e.,
more e�cient, than the re�ned property checking analysis and can compete with existing
PCC approaches. Compared to the producer veri�cation, in more than one third of our
veri�cation tasks we achieved a signi�cant improvement in veri�cation time. Memory
usage can be decreased signi�cantly, too. However, the reduction is coupled with a faster
veri�cation and is less often signi�cant. Often, the program size is increased moderately.
Sometimes, it is even decreased, but also tasks with an enormous program size increase
exist.

We observed that the number of re�nements, the enabler analysis, and the increase
in program size play an important role to get a signi�cantly more e�cient consumer
veri�cation. Simultaneously, high speed-ups are achieved for various re�ned property
checking analyses.

Summing up, our experiments support our claim that the PfP approach is a general
alternative to get an e�cient validation for the consumer.

5.7 Discussion

Like our con�gurable program certi�cation framework, Programs from Proofs is a gen-
eral framework, which enables a fast consumer validation. However, its requirements on
the producer's analysis con�guration are more strict. For example, it requires location
information, the transfer relation must be a (monotonic) function, and a subpart of the
analysis must be able to check the property. Hence, it does not support such a broad class
of analyses like the CPC approach. Furthermore, the Programs from Proofs approach can
only be used to ensure control state unaware property automata speci�cations. Syntac-
tically, these speci�cations are a real subset of the possible property automata. From a
semantics point of view, it is currently an open problem whether the language of property
automata and the language of control state unaware property automata cover the same
class of safety properties, e.g., every property automaton can be transformed into a con-
trol state unaware property automaton s.t. the set of programs considered to be safe by
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the respective automaton is the same. In contrast to the CPC approach, the consumer's
con�guration can always be derived automatically. The PfP approach is fully automatic.

Due to program generation, the Programs from Proofs approach must deal with a
problem that does not exist in the CPC setting: the behaviorally equivalent original and
generated program are not necessarily safe w.r.t. the same property automata. Program
safety can di�er for property automata that are not control state unaware. Since program
generation is under control of the producer, who o�ers the program, the producer can
decide if he wants to sell a program that lacks a certain property. Furthermore, we
assume that the producer applies the Programs from Proofs technique when he generally
wants to support a simple, data�ow based veri�cation of his programs's properties and
these properties are expressed by control state unaware property automata. Thus, for
the o�ered program all properties of interest should be provable with a simple data�ow
analysis. We showed that if a simple data�ow analysis can prove a control state unaware
property on the original program, the same analysis, when terminating, is able to prove the
same property on the generated program. Simultaneously, this means that our Programs
from Proofs approach is transitive.

The fact that the consumer validation fails to terminate after a successful producer
veri�cation is also a new aspect. We believe that the termination problem is rather a
theoretical than a practical problem. To our mind, we proved that the consumer analy-
sis terminates for all practically relevant analyses. Furthermore, we discuss in the next
chapter how to eliminate the termination problem. Additionally, we think that the incor-
poration of widening and precision adjustment into the consumer analysis could solve the
termination problem � at least in some cases. Note that in case of a proper incorporation,
a proof similar to the termination proof in case of an equivalence relation consistent re-
�ned property checking analysis can be used to show that the consumer analysis succeeds.
Nevertheless, the theoretical termination problem is the reason why not all PfP instances
can be guaranteed to be relatively complete. Following the above argumentation, all
practically relevant instances are indeed relatively complete.

Despite the drawbacks, a successful application of the Programs from Proofs approach
guarantees a sound, simple and fast data�ow analysis based validation for the consumer.
At best, only a single pass over the program is needed. For a re�ned property checking
analysis based on model checking, we theoretically proved this limit. Also, our evalua-
tion with a variety of con�gurations, properties, and programs � however no industrial
size programs �, supports the idea of a fast validation. Often, the PfP validation was
(slightly) better than the PCC competitors. The PfP approach is a theoretical and prac-
tical alternativ

5.8 Related Work

The Programs from Proofs framework is based on the idea of a work shift from the
consumer to the producer. The same idea has already been applied by many di�erent
Proof-Carrying Code approaches. Proof-Carrying Code approaches have already been
extensively discussed in the previous chapter and will not be considered here.

However, Proof-Carrying Code approaches are not the only approaches in literature
that apply the idea of a work shift. First of all, previous instances [WSW13, JW15, JW17]
of the Programs from Proofs framework can be found.

Wonisch et al. [WSW13] present a single instance to verify protocol properties, a
subclass of the properties expressable in the property automaton. The producer uses a
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predicate enabler analysis plus a location analysis for the property checking analysis and
con�gures the re�ned property checking analysis to model checking. Note that Wonish et
al. [WSW13] use a slightly di�erent notion of an abstract reachability graph and, thus,
the program generation di�ers slightly. Furthermore, the consumer does not use the CPA
framework, but its own algorithm. Hence, the consumer analysis terminates in a single
pass independently of the exploration order, which we additionally require.

Jakobs et al. [JW15] describe a set of instances, which uses a predicated data�ow
analysis, a combination of predicate analysis with an arbitrary data�ow analysis, for the
re�ned property checking analysis. All instances prove invariants. The program generation
is the same as described in this thesis and also the theoretical results are comparable.
In principle, the instances are a subset of the instances we cover with our framework.
Basically, the subset contains all instances of our framework that consider invariants, use
a predicate enabler analysis, do not adjust precisions, join if location and predicate state
are the same, and stop if the state is covered by a more abstract one.

A previous, general Programs from Proofs framework [JW17] is quite similar to our
current framework and achieves similar theoretical results. The major di�erences are that
it does not support precision adjustment and restricts the property checking analysis'
transfer relation to the most precise transfer relation.

Hunt and Sands [HS06] sketch a framework similar to the Programs from Proofs idea,
but for a totally di�erent class of analyses and properties. Their goal is to simplify type
based veri�cation of information �ow security. They start with a �ow-sensitive security
type analysis. Then, they transform the program based on the �ow-sensitive typing.
Basically, the generated program uses a set of variables for each variable in the program,
namely one per security type, and replaces each variable by the variable associated with
the currently valid security type. Program generation is realized as an extension to the
existing type inference rules. The resulting program is typeable with a more e�cient
�ow-insensitive analysis and keeps the input-output behavior of the original program.

We are not aware of further frameworks with the same idea. Thus, we continue to
discuss work related to some aspects of the Programs from Proofs framework. The Pro-
grams from Proofs framework is built on various components: an enhancement of the
property checking analysis s.t. it becomes more precise and a program generation that
excludes infeasible paths, is tailored to the property of interest, and relies on the proof,
the ARG, constructed by the producer. In the following, we discuss related work for all
those components. We conclude with a short glimpse at the role of the program structure
when one wants to assure program properties or detect violations.

5.8.1 Making Analyses More Precise

We apply our Programs from Proofs approach, when a simple property checking analysis
fails to prove a program's property. In this case, our Programs from Proofs approach
starts to construct a more precise re�ned property checking analysis from the simple
property checking analysis. To get a more precise analysis, we combine an enabler analysis
with the property checking analysis, con�gure how and when to combine abstract states,
and automatically compute a proper abstraction level for the enabler analysis. Next,
we discuss techniques that are related to those techniques that we apply in the re�ned
property checking analysis to get a more precise variant of the analysis the consumer
performs.
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Speci�c Analysis Combinations In this section, we study concrete combinations of
analyses mainly focusing on combinations that want to make one analysis more precise.
Two widespread trends for concrete combinations exist in literature: the addition of predi-
cate abstraction and the combination of numerical and heap analysis. We start with those
combinations adding predicate abstraction, continue with heap analysis extensions, and
�nally look at combinations that utilize the execution history.

A predicated array data�ow analysis [MHM98] combines predicates with array data�ow
values. The data�ow values are valid when the associated predicates evaluate to true. A
predicate embedding operation is used to get a more precise data�ow value and predicate
extraction is needed to derive a predicate from the data�ow value.

A predicated lattice [FJM05] is a combination of predicate analysis and an arbitrary
data�ow analysis. The idea is that a set of predicates separates the state space and, thus,
re�nes the data�ow analysis. Hence, an abstract state is a map from a set of predicates
to data�ow facts. During a merge, data�ow facts with the same predicate are joined.
Furthermore, the set of predicates is automatically computed with a CEGAR scheme.

Gur�nkel and Chaki present the interface NumPredDom [GC10], which allows to
de�ne combinations of predicate and numerical abstract domains. Next to the standard
operations on an abstract domain like join, meet, widen, abstract postcondition, etc.,
further methods like the projection to predicate or numerical abstract state and a reduce
operator must be implemented for the interface NumPredDom.

Winter et al. present a predicative backward data�ow analysis [WZH+13] which com-
bines path predicates with data�ow facts to analyze an instrumented program. In their
setting data�ow facts are the assertions in the instrumented program and are encoded
by predicates, too. Furthermore, the transfer relation is based on the weakest precondi-
tion. To scale the analysis, conjunctions of path predicates are simpli�ed or abstracted as
unknown.

Mihaila and Simon [MS14] combine a predicate with a numerical abstract domain.
Predicates temporarily capture information lost during a join of two numerical states and
are later used to reestablish lost information, i.e., make the numerical state more precise.
Typically after assume statements, a reestablishment of lost information is tried out.

Blazy et al. [BBY14, BBY16] propose a predicated analysis, which is based on a pred-
icated domain. A predicated domain is a combination of a predicate and another abstract
domain. Abstract states consist of two parts: a mapping from predicates to abstract
values and a context describing which predicates are valid. If the context determines that
a predicate in the mapping is true, the corresponding abstract value will be valid, too.

Transition relation strengthening [JIG+06] is a technique to compute stronger postcon-
ditions in predicate abstraction. The idea is to use a subset of the invariants, the �xpoint,
computed by a previous static analysis. More concretely, the conjunction of predecessor
state and the corresponding invariant is built. Then, this conjunction is used to compute
a stronger postcondition.

Beyer et al. [BHTZ10] combine an explicit heap analysis with shape abstraction. For
all pointers that are tracked, the analysis starts with the explicit heap. After a �nite
number of steps the analysis utilizes the explicit heap information to determine the initial
shape class for that pointer. From now on, shape abstractions are used for that pointer.

Magill et al. [MBCC07] combine separation logic with arithmetic abstraction to prove
memory safety. If a property cannot be proven with separation logic, an arithmetic pro-
gram will be derived from the abstract transition system of the separation logic analysis.
The derived program is structurally equivalent to the abstract transition system, but pro-
gram statements are modi�ed s.t. they do not reference to the heap. Then, an arithmetic
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analysis is run on the derived program and the resulting invariants are combined with the
separation logic invariants to get a more precise abstract transition system.

Ferrara et al. [FFJ12, Fer14, Fer16] discuss the combination of heap and numerical
analysis. The numerical analysis tracks information about variables and heap identi�ers
while the heap analysis is responsible for the abstract representation of the heap state. If
the heap analysis changes the heap identi�ers, it must inform the numerical analysis. The
numerical analysis uses the information how heap identi�ers changed to adapt its state
accordingly.

Ferrara et al. [FMN15] also present a di�erent combination of heap and value analysis.
They propose an abstract interpretation for a heap analysis that is parametrized by a
value analysis. The heap is presented by a graph with incorporated value information.
Based on edge-local identi�ers, graph edges are annotated with value information about
source or target �eld values and their relation.

Handjieva and Tzolovski [HT98] propose a partitioned analysis of program paths, i.e.,
the analysis separately analyzes paths with di�erent (abstract) control �ow. The idea
is to combine an abstraction for sets of control �ow paths with an arbitrary abstract
domain. Sets of control �ow parts are described by a regular expression on branch node
or loop head outcomes. A test approximation parameter can be used to control the regular
expressions � and thus the partitioning � created during analysis.

Trace partitioning [MR05, RM07] is a framework to partition execution traces based
on their history of memory or control �ow states. The partitioning may even be adapted
during analysis. An abstract state represents one element, a set of traces, in a particular
partition. The partitioning abstract domain [RM07] de�nes how to combine a static trace
abstraction, which at least separate traces based on their last control �ow state, with
an arbitrary abstract domain. In principle, the partitioning abstract domain separates
abstract states with di�erent trace abstractions.

So far, we have not considered heap analysis instances for our Programs from Proofs
framework. Although, we have not used the concept of transition relation strengthen-
ing [JIG+06], our framework allows a similar re�nement of the predicate successor state.
In principle, one may use a strengthening operator to re�ne the predicate successor state
based on the property checking successor state.

Many of our re�ned property checking analyses used during evaluation are combi-
nations of a predicate enabler analysis and a property checking analysis. Furthermore,
earlier instance of the PfP framework [WSW13, JW15] were restricted to a predicate en-
abler analysis. However, it is essentially for our framework that the predicate analysis
cannot re�ne the remaining abstract values as suggested for predicated array data�ow an-
alysis [MHM98] or by Mihaila and Simon [MS14]. In contrast to Winter et al. [WZH+13],
our property checking states are not encoded by predicates. Additionally, we do not con-
sider mappings from predicates to abstract states as done in predicated lattices [FJM05]
and predicated domains [BBY14, BBY16], but we explicitly separate states with di�erent
predicate states. This separation is the key to generate a more easily veri�able program.

Finally, some of our re�ned property checking analysis instances apply some kind of
trace partitioning. They separate abstract states with di�erent enabler states, i.e., we
separate certain memory valuations, but we never apply a partitioning as described by
Handjieva and Tzolovski [HT98].

Frameworks for Combination of Analyses So far, we looked at speci�c analysis
combinations, which aim at re�ning a particular analysis. We continue to examine general
frameworks for combinations whose purpose is to de�ne more precise analyses.
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Cousot and Cousot [CC79] propose two techniques, reduced product and reduced car-
dinal product, for a combination of two analyses that is more precise than the product
combination and the cardinal power12, respectively. Both techniques remove duplicates
from the combined domain, i.e., for all abstract states that abstract the same set of con-
crete states only one representative is kept. All operators are adapted to use the reduced
version of the combined domain.

Another proposed combination is the open product [CLCVH94, CCH00] for the analysis
of logic programs, which re�nes the transfer relation. The idea is to use test queries on
both abstract states to determine which transfer relation to use for each component. Test
queries may also be used to re�ne transfer successors.

Lerner et al. [LGC02] use the concept of an integrated analysis to combine two analyses.
The transfer relation of an integrated analysis either computes an abstract successor or a
replacement graph. A replacement graph describes a behaviorally equivalent replacement
of the analyzed program part and often corresponds to the transformation a compiler
optimizer would do. If a replacement graph is returned, the transfer relation must be
applied again, but now on the replacement graph instead of the program part analyzed
previously. In a combined analysis, all components must reapply the transfer relation
whenever one component returns a replacement graph. Thus, the analysis information of
a single component is propagated to other components via the replacement graph.

Gulwani and Tiware introduce the concept of a logical product [GT06] of lattices to
combine two abstract interpretations. Both domains must be given in form of a logical
lattice over a theory. The theory de�nes the abstract states, namely all logical conjunctions
of atomic facts in the theory. The logical product of two logical lattices combines the two
theories s.t. the abstract states in the composed domain are all conjunctions of sets of
atomic facts belonging to one of the theories and it de�nes a proper partial order.

The Astrée static analyzer [CCF+07] builds a hierarchy of abstract domains using
unary and product functors to combine domains. The hierarchy de�nes which information
from other domains a domain can use to re�ne its own results. Each analysis provides
extract and re�ne operators to provide information to other domains and improve its
results based on information obtained from other domains. Information between domains
are exchanged in an abstract message domain.

A composite program analysis [BHT07] allows to �exibly compose two con�gurable
program analyses. The abstract domain is the product domain, but the transfer relation
may strengthen each abstract successor element based on the other abstract successor
element. Additionally, merge and termination check can be con�gured, e.g., sharpened.
Instances discussed by the authors cover e.g. the product combination, a predicated lattice
instance, and a combination of a predicate and a shape analysis in which the transfer
relation strengthens the shape analysis state.

A composite CPA+ [BKW10] composes two con�gurable program analyses with pre-
cision adjustment in a �exible way. Like in the composite program analysis, the abstract
domain is the product domain, the transfer relation may use strengthening, and also merge
and termination check operator can be con�gured. Furthermore, the precision adjustment
operator can be con�gured, too. Instances discussed by the authors use the precision ad-
justment operator to switch from an explicit to a symbolic analysis of values or the heap
after a certain threshold is reached.

McCloskey et al. [MRS10] present a combination of basic domains that share facts
with the help of user de�ned predicates. A predicate is associated with one domain, but

12For example, the predicated lattice is one form of a cardinal power.
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predicates may refer to predicates of other domains. Additionally, shared information is
considered by the operations of each component domain.

Typically, the discussed frameworks are more �exible than the composition of enabler
and property checking analysis in the Programs from Proofs framework. They allow that
all components of the abstract states may be re�ned based on the information provided
by other analyses [CLCVH94, CCH00, CCF+07, BHT07, BKW10, MRS10] or do not use
a product abstract domain [CC79, GT06]. For our Programs from Proofs approach, it is
important that a product abstract domain is used and that the enabler state cannot re�ne
the property checking state. Finally, we would like to mention that a re�ned property
checking analysis belongs to a strict subclass of a composite CPA+.

Techniques for a More Precise Combination of States In case of abstract do-
mains with in�nite height, the most precise combination of abstract states, the join,
cannot guarantee termination of the analysis. A less strict operator, typically a widening
operator [CC77], for the combination of abstract states must be used. Often, widening
operators are too relaxed and result in a large set of false alarms. All approaches discussed
next try to de�ne a combination of abstract states that is more strict than a standard
widening operator.

Bagnara et al. [BHRZ05] present a theoretical framework to derive a more precise
widening operator from an existing one based on a limited growth ordering of the abstract
states. They consider a framework instantiation for the domain of convex polyhedra.

Lookahead widening [GR06a] is a technique to improve the analysis result. The idea
is to widen di�erent loop phases separately. To achieve this goal, the analysis considers a
pair of abstract states � both belonging to the same domain. The �rst, the main value,
determines the control �ow to consider in the current loop phase and is never widened
during a loop phase. The second, the pilot value, tries to establish a stable state for the
current loop phase. When the pilot value gets stable, it replaces the main value and the
next loop phase is analyzed.

Simon and King describe widening with landmarks. The idea is that a landmark
describes a behavior that is not possible so far and an estimate how many iterations are
needed to enable that behavior. Based on these landmarks, widening is bound to an
overapproximation of the join, which enables that behavior with the fewest number of
iterations.

Laviron and Logozzo suggest hints [LL09], a theoretical concept for a re�nement of an
operator like join or widen. They present a set of examples for such re�nements based on
syntactical or semantic program information.

Localized widening [AS13] improves widening at loop heads. Instead of joining the
abstract state entering a loop with the abstract state obtained from the analysis of the
loop body and then apply widening, widening is restricted to the abstract state resulting
from the analysis of the loop body and thereafter the information entering the loop is
joined.

Apinis et al. [ASV13, ASS+16] introduce a combined widening and narrowing operator,
which allows to interleave widening and narrowing. Widening is applied if the abstract
state that should be integrated with the existing state is larger. Similarly, narrowing is
used when that state is smaller.

Gulavani and Rajamani [GR06b] propose to compute precise joins whenever necessary
to prove a property. They use a hint set that saves in which iteration a precise join instead
of widening must be used. The hint set is determined with a CEGAR scheme. Initially,
the hint set is empty. Whenever a counterexample is found by the analysis, it is tried to
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�nd an iteration in which widening is responsible for the counterexample. When such an
iteration is found, the iteration is added to the hint set, otherwise the analysis failed.

Gupta et al. present extrapolation with care sets [WYGI07], a generalized widening
operator that does not guarantee termination of the analysis and tries to avoid to gen-
erate abstract states of a particular form. The care set describes which states should be
avoided. More concretely, extrapolation with care sets guarantees that the result of the
extrapolation does not contain any state described by the care set if its input states do
not contain such a state. Furthermore, Gupta et al. discuss how to use counterexamples
to iteratively compute a proper care set for a polyhedra analysis.

Gulavani et al. introduce interpolated widening [GCNR08] to limit the upper bound
computed by the widening operator. Interpolated widening ensures that if both input
states are more precise than an interpolant considered by the interpolated widening oper-
ator, its result will not be larger than that interpolant. The set of interpolants considered
by the interpolated widening results from the analysis of spurious counterexamples found
so far during analysis.

Not all presented improvements for widening are applicable in our framework. Com-
bined widening and narrowing [ASV13, ASS+16] is not possible because we require that
the result of a merge is always as precise as the already explored state (second argument).
Furthermore, we cannot realize localized widening [AS13] because we typically cannot dis-
tinguish along which edge an abstract state is computed. Moreover, we excluded widening
in the PfP consumer analysis. The combination of abstract states is always a join. In
contrast, the merge behavior of the re�ned property checking analysis can be adjusted to
some form of widening. However, we think that widening of the property checking state
does not make much sense because the consumer analysis uses a variant of the property
checking analysis with precise joins. Additionally, we excluded widening for some program
and re�ned property checking analysis combinations in case we want to ensure termina-
tion of the consumer analysis. Furthermore, we do not always want to combine abstract
states. In practice, we do not use widening. We either join or do not combine two abstract
states. Hence, we selectively merge. Techniques for selective merge are discussed next.

Selective Merge In this paragraph, we consider approaches in which the analysis only
sometimes merge states with same locations.

Property simulation [DLS02] is used to verify temporal safety properties encoded by
a �nite state machine. An abstract state consists of an execution state and a property
state, a state of the �nite state machine. In property simulation mode, the analysis merges
abstract states if the property state is the same, i.e., only the execution states must be
merged. In a �rst realization of property simulation [DLS02], constant propagation is used
for the execution state. Later [HYD05], a symbolic execution state is used. To further
improve property simulation, Das et al. [DDY06] suggest to extend the abstract states
with additional predicates and only merge if the predicate evaluation and the property
state are the same. Predicates are detected with a heuristic CEGAR scheme. Another
adaption of property simulation, called value �ow simulation [DADY04], uses value �ow
facts, may and must value alias sets, instead of a property state.

Gupta et al. [SISG06] propose the concept of an elaboration, a structural unfolding of
the control �ow graph, and suggest to compute the �xpoint for the elaboration. Instead
of constructing the elaboration, they use a merge heuristic during �xpoint computation
to decide whether an abstract successor should be merged or replicated.

Next to interpolated widening, Gulavani et al. [GCNR08, GCNR10] also suggest to do
not join the results of di�erent branches of an if statement when a join has been responsible
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for a spurious counterexample.
The technique proposed by Handjieva and Tzolovski [HT98], which does not join paths

with di�erent (abstract) control �ow, and trace partitioning [MR05, RM07], which does
not combine abstract states with di�erent trace abstractions, can also be seen as one form
of a selective merge.

In our PfP framework, we can con�gure when and how to merge in the re�ned property
checking analysis. While we can con�gure the merge operator s.t. it always combines
abstract states for same location or it never combines abstract states, we only considered
the latter case in our experiments. More often, we use a selective merge, which merges in
case the enabler state, the location state, and the property automaton state are identical.
For some con�gurations, we also required that parts of the property checking state are
the same. Thus, we often use a combination of trace partitioning [RM07] and property
simulation [DLS02] for our selective merging.

Re�ning the Abstraction Level Now, we consider automatic approaches to re�ne
the abstraction level of an analysis.

Counterexample-guided abstraction re�nement (CEGAR) [CGJ+00, CGJ+03] was pro-
posed for automatic, iterative abstraction re�nement of labeled Kripke structures in the
context of temporal ACTL* veri�cation. The process starts with an initial abstraction.
When veri�cation fails, it is �rst checked whether the counterexample can be replayed in
the original Kripke structure. If the counterexample cannot be replayed, i.e., it is spurious,
the predecessor of the spurious transition will be considered and a re�ned abstraction will
be built, which separates those states that can reach that predecessor from the remaining
states.

Di�erent variants and optimizations of the basic CEGAR scheme exists. Lazy ab-
straction [HJMS02] computes a non-unique abstraction. If an error is detected during
construction of the abstract state space and it is not real, a pivot node, a node for which
the concretization of the counterexample fails, will be searched. The subtree of the ab-
stract state space beneath the pivot node is deleted and the abstraction from the pivot
node and its descendants is re�ned s.t. the spurious counterexample is excluded. Gupta
and Clarke [GC05] generate a set of broken traces for a counterexample. A broken trace
is a sequence of pairs of concrete states s.t. the states in each pair belong to the same
abstraction state and the second element of pair i can reach the �rst element of pair i+ 1.
When all of the generated broken traces break, i.e., a pair exists in which the two states
are not identical, the broken traces are added to the set of all generated broken traces
and a new abstraction is built based on that set. Beyer et al. [BHMR07] suggest to use a
path program, a restriction of the original program to locations and transitions occurring
in the counterexample, instead of the counterexample, a single path. Furthermore, the
re�nement procedure should consider an invariant of the path program, the so called path
invariant. Gupta et al. [GPR10] propose a non-monotonic re�nement scheme. The idea is
to consider all spurious counterexamples detected so far and to compute any abstraction
that excludes all those spurious counterexample. Beyer et al. [BLW15c] utilize sliced pre-
�xes of infeasible counterexamples. Sliced pre�xes ignore some assume statements in the
counterexample, i.e. some assume statements are replaced by true, but only sliced pre�x
are considered that remain infeasible. Each such sliced pre�x is used to get a re�nement
candidate and the analysis then chooses the best candidate.

Some re�nement techniques are directly tailored to abstract interpretation alike anal-
yses. Cousot et al. [CGR07] describe an iterative re�nement of an abstract domain based
on the results of a forward least �xpoint and a backward greatest �xpoint. Manevich et
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al. [MFH+07] present a theoretical setting for a localized, re�nement of abstract interpre-
tations. An abstraction associates one abstract domain with each program location and
a re�nement is another mapping from locations to abstract domains s.t. for each location
the new abstract domain is as least as precise as the previous and the abstract seman-
tics excludes the counterexample. Zhang et al. [ZNY13] try to �nd the coarsest abstract
transfer relation in a class of transfer relations that can be used within a data�ow analysis
to prove the desired property. The techniques iteratively restricts the available transfer
relations. In each iteration it runs the data�ow analysis with the coarsest transfer relation
available. If the analysis fails, the counterexample will be analyzed to exclude all transfer
relations that produce the same counterexample.

The approaches presented so far are mainly general. In our Programs from Proofs
frameworks we want to use existing re�nements for concrete enabler analysis. In the
following, we discuss some re�nement techniques for concrete abstract domains.

Henzinger et al. [HJMM04] discusses an approach to automatically and locally re�ne
predicate abstraction in a CEGAR style. The idea is to encode a counterexample as a
trace formula, which conjoins the constraint of each statement on the counterexample.
When the formula is infeasible, the idea is to split the trace formula at each location in
the counterexample and use craig interpolation to determine the additional predicates for
that location. Leroux et al. [LRS16] discuss interpolation abstraction, a technique to guide
the computation of interpolants. Chao et al. [WYGI07] heuristically re�ne an abstraction
based on variable hiding and predicate abstraction. The heuristic may suggest to track
additional variables or to add new predicates.

Beyer and Löwe [BL13] introduce an interpolation based CEGAR scheme for an explicit
value analysis. The abstraction level is determined by the set of variables that are precisely
tracked.

Loginov et al. [LRS05] use inductive learning to re�ne shape abstractions with new
instrumentation relations. At an information loss point, they increase the set of examples
of the learner by a temporary structure built by the abstract transformer before creating
the canonical abstraction.

Beyer et al. [BHT06] discuss lazy re�nement for a combination of predicate and shape
abstraction. The re�nement procedure re�nes the predicate abstraction in a standard
way when the trace formula is infeasible. If the trace formula is infeasible, an extended
trace formula will be constructed, which also includes shape information. Based on the
extended trace formula it is tried to re�ne the shape abstraction. Re�nement of the shape
abstraction �rst tries to add more pointers and thereafter re�nes shape classes.

We have not developed our own re�nement technique for enabler analyses. In our
Programs from Proofs approach, we want to use existing techniques to re�ne our enabler
analysis. So far, we utilize predicate abstraction re�nement similar to the approach of
Henzinger et al. [HJMM04] but in combination with adjustable block encoding [BKW10].
Furthermore, we used the CEGAR scheme for an explicit value analysis [BL13] in combi-
nation with sliced pre�xes [BLW15c] and a variant of that scheme to re�ne the octagon
domain.

5.8.2 Program Transformation

Program transformations are used in various contexts. For instance, Dershowitz and
Manna [DM77] use program transformations to derive a program from an existing one.
They suggest to de�ne the transformation based on an analogy between the speci�cation
of the existing program and the speci�cation of the program, which should be derived.
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Slicing (see e.g. [Tip95]) extracts a subprogram or a set of program statements that
in�uence a slicing criterion, e.g., a set of variables at a certain location. Typical appli-
cations for slicing are debugging, program analysis, software maintenance, and testing.
For example, Harman et al. [HFH+99] use amorphous slicing to simplify a test program
for a hypothesis on program behavior. Ja�ar et al. [JMNS12, JM14] present a technique
that improves backward slicing. First, they construct a symbolic execution tree anno-
tated with variable dependency information. Whenever the symbolic execution analysis
backtracks, their approach computes dependency information, determines witnesses for
the dependency information, and extracts interpolants for infeasible paths. Furthermore,
the analysis stops the exploration of a node n whenever a node n′ considering the same
program location exists, n excludes at least all infeasible paths of n′ and at n at least
one witness for each dependency information is valid. Originally [JMNS12], they used
the dependency information from that symbolic execution tree to slice the original pro-
gram. Later [JM14], they directly transform that annotated symbolic execution tree into
a path-sensitively sliced control �ow graph, the program slice.

During refactoring [MT04] programs are transformed into programs with same external
behavior, e.g., same input output semantics, but with improved internal or external quality
attributes like maintainability, extensibility, or complexity.

Compiler optimizations (see e.g. [Sch73]) try to transform a program into a behav-
iorally equivalent but more e�ciently executable program. Kirner and Haas [KH14] pro-
pose a technique to reuse existing test sets of the original program for the optimized
program while still obtaining the same coverage metric results. Basically, they use cov-
erage pro�les to describe which compiler optimizations preserve the coverage metric of
a test set during compilation and restrict the compiler optimizations to those that keep
the metrics. We continue with program transformations that are bene�cial for program
validation and analysis.

Program Transformations Removing Infeasible Paths In this paragraph, we con-
sider program transformation approaches that remove infeasible paths from a program.

Control re�nement [GJK09] is a semantics and bound preserving transformation of
multi-phase loops. First, the loop body is �attened into a set of loop paths s.t. all paths
only contain assumes, assignments, or loops, but no choices. With the help of invariants,
it is found out how the loop paths may be combined.

Balakrishnan et al. [BSIG09] propose a re�nement of loops based on a partitioning of
the loop into fragments. They start with a presentation of the loop in which all fragments
can be interleaved arbitrarily. Then, they use abstract interpretation to determine and
exclude infeasible sequences of the fragments.

Brauer et al. [BKKN10] also re�nes the control structure of a loop. For each syntactical
path through the loop body, they compute a pre- and a postcondition transformer. Then,
they subsequently build the new loop structure as follows. Start with a node for the initial
condition. If the intersection of the loop path's precondition and a node's condition is not
empty, i.e., the loop path is feasible, compute the postcondition of the loop path for that
intersection, add a node for that postcondition if none exists and add an edge between
the two nodes.

Sharma et al. [SDDA11] present an approach to transform a multi-phase loop into a
behaviorally equivalent sequence of single phase loops. The approach is based on phase
splitter predicates. The phase splitter predicate is used to transform a loop into two loops
s.t. the loop condition of the �rst is conjoined with the negated phase splitter predicate and
the condition of the second loop is conjoined with the phase splitter predicate. Thereby,
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the phase splitter predicate ensures that the semantics are presereved and that one if
statement exists whose branch evaluation is �xed in each of the two loops but the branch
evaluation di�ers in both loops. This if statement can be simpli�ed after splitting the
loop. Candidates for phase splitter predicates are the weakest preconditions of each branch
condition.

An early approach, which removes infeasible paths from programs, is dead code elimi-
nation [Ken78]. Dead code elimination is applied during the compiler optimization phase
to remove unreachable code.

Bodík et al. [BGS97] improve a de�nition-use analysis based on detected, infeasible
paths. First, branch correlations are used to detect infeasible paths, but instead of trans-
forming the program the infeasible paths are marked in the control �ow graph. The
subsequent de�nition-use analysis uses the information in the marked control �ow graph
to ignore detected infeasible paths.

Static language re�nement [BSI+08] uses forward and backward abstract interpretation
to detect and exclude infeasible paths. In their �rst approach, they use backward abstract
interpretation to compute for each node in the control �ow graph an overapproximation
of the set of states that can reach that node from the initial location. Based on these
sets, they use SAT techniques to identify sets of nodes that cannot be on a feasible path
together because they require con�icting sets of initial states. All paths that consider
such a complete set of nodes is excluded from the original program. In their second
approach, they integrate a simpli�ed version into a forward analysis procedure. Iteratively,
it performs a two step algorithm. First, it computes a forward and backward �xpoint of
the current program. Second, it detects all nodes for which the forward and backward
�xpoint result contradicts and removes all nodes that are control dependent on that node.
The procedure stops when the property is proven or no further nodes can be deleted.

Heizmann et al. [HHP09] start with an intersection of the control �ow automaton
and the complement of the property automaton. Whenever a spurious counterexample
is found, they construct a canonical interpolant automaton, which is derived from the
sequence of interpolants on the counterexample. Then, they intersect the interpolant
automaton with the automaton under veri�cation to exclude infeasible paths including
the spurious counterexample. This intersection is considered for veri�cation in the next
step.

Fehnker et al. [FHS09, FHS10] apply a similar approach. They start with an interval
automaton, an abstraction of the program. Whenever a counterexample is found, they
set up an interval equation system for the counterexample to detect whether it is feasible.
In case the counterexample is infeasible, they build an observer that excludes some infea-
sible paths including the spurious counterexample and that is combined with the current
abstraction.

Also Junker et al. [JHFK12] stick to this principle. They start with an annotated
control �ow graph. Whenever a counterexample is found, they compute the weakest
precondition of the counterexample to detect whether it is feasible. For infeasible coun-
terexamples, they also build an observer to exclude all paths with the same infeasible
subpath as the counterexample and combine the observer with the current abstraction.

Our program generation in the PfP approach may also remove infeasible paths when
such paths are detected during program veri�cation, i.e., an infeasible path does not occur
in the abstract reachability graph. Furthermore, in the PfP approach removal of infeasible
paths is not restricted to loops. Removing infeasible paths can be seen as one heuristic
approach to simplify program veri�cation, the main aim of our program transformation.
However, removal of some infeasible paths is simply a byproduct of our transformation
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for simpli�cation. In the following, we study approaches that directly apply program
transformation to simplify program validation.

Program Transformations Simplifying Validation In this paragraph, we mainly
cover approaches that transform a program to facilitate or ease program validation.

Cook et al. [CKV11] encode a veri�cation task, namely if a program P satis�es a
temporal logic formula, into a program Pe. If the program Pe encoding the search always
returns true, program P will satisfy the temporal logic formula. Cook et al. suggest to
use a program analysis to check that program Pe never returns false.

Fioravanti et al. [FPP05, DFPP13a, DFPP13b, AFPP14, DFNP14] encode veri�cation
problems as constraint logic programs. Then, they iteratively use transformation rules
like folding, unfolding, goal replacement de�nition, etc. to transform the constraint logic
program into another equisatis�able constraint logic program until the veri�cation result
can be determined. A �rst instance [FPP05] encodes the validity of a CTL formula
on a Kripke structure. Later instances [DFPP13a, DFPP13b, AFPP14, DFNP14] focus
on safety veri�cation of imperative programs. To this end, the imperative program, its
semantics, and the reachability of an error property is encoded. The �rst transformations
remove the interpreter part. Thereafter, the initial and error conditions are propagated.
Iterated specialization [AFPP14] suggests an alternating propagation of initial and error
conditions. To further improve the veri�cation, iterated specialization can be combined
with interpolation [DFNP14].

Testability transformation [HHH+04, MBH05, HHF05, LF11] aims at simplifying test
set generation. The idea is to transform the program and possibly the test criterion,
e.g. statement coverage, s.t. a test set that ful�lls the test criterion on the transformed
program will also ful�ll the test criterion on the original program. However, the trans-
formed program need not be semantics preserving. Proposed instances replace boolean
variables (�ags) in conditions by integer variable expressions [HHH+04, LF11], trans-
form unstructured programs into semantics preserving, structured programs without exit
statements [HHF05], or remove nested if statements [MBH05].

Korel et al. [KHC+05] use a variant of testability transformation. They use a data
dependence analysis to identify all statements that are considered by an automatic test
tool during test data search for a target statement. Only those identi�ed statements are
added to the transformed program. Then, the transformed program is used to guide the
test case search for the original program.

Jiang and Su [JS08] present an approach similar to testability transformation. They
use statistical data on error paths which were observed during the execution of a system.
This data is used to detect which branches are likely taken in a failure case. Based on this
information, they remove unlikely branches to get a failure, but not semantics preserving
program for which testing and analysis is easier.

Ball et al. [BMMR01] propose a method to transform a C program into a boolean
program that is structurally equivalent to the C program and represents a predicate
abstraction of the C program. The boolean program is then checked with Bebob [BR01].

O�-card code transformation [Ler02] of Java byte code transforms Java bytecode into
equivalent Java bytecode which ful�lls the assumptions of Leroy's e�cient bytecode ver-
i�er. The transformation of valid standard Java byte code becomes necessary whenever
the e�cient bytecode veri�er should be used to validate the bytecode.

Veri�cation refactoring [YKNW08, YKW09] is used in the Echo framework [SYK05],
more concretely, during reverse synthesis [YKNW08], to facilitate or simplify subsequent
veri�cation. During veri�cation refactoring, a set of transformations, which provably pre-

213



CHAPTER 5. PROGRAMS FROM PROOFS

serve the semantics, is applied to reduce the program complexity. The transformations
are selected from a given set by a user or heuristics and often undo optimizations. Com-
plexity metrics are used to detect whether the program complexity is reduced su�ciently
or further transformations must be applied. However, a speci�c complexity value does
not automatically guarantee easy veri�cation.

Further approaches use program transformation to simplify worst case execution time
analyses. Negi et al. [NRM04] sketch two ideas for such code transformations, which e.g.
try to remove infeasible paths. Puschner [Pus02] transforms a program for which the worst
case execution time can be computed into a semantics preserving single path program.
Single path programs have only a single execution path and no data dependent branches.
Thus, their worst case execution time is simpler to compute. The transformation converts
loops into counting loops and for if statements both branches are executed and afterwards
conditional move statements are used to establish the correct state. Chen et al. [CML13]
transform a regular expression of a program's paths into a set of regular expressions
without choice and * operator. The resulting set of regular expressions describes the
same set of executable program paths as the original one. However, some infeasible paths
may be excluded by the resulting regular expression.

Travkin and Wehrheim [WT15] transform parallely composed programs to use veri�ca-
tion techniques assuming sequential consistency for the veri�cation of the original program
under total store order semantics. They separately transform each sequential component
of the composition. More concretely, they compute a store bu�er graph, an abstraction
of the store bu�er behavior for that component, and generate the new component from
the store bu�er graph.

While some of the presented transformations are not behavior preserving, our pro-
gram generated from the original program is provably trace equivalent to the original
program. In contrast to veri�cation refactoring [YKNW08, YKW09], the transformation
is fully automatic. Furthermore, we provably achieve a simpler veri�cation, a property
that approaches like veri�cation refactoring [YKNW08, YKW09] and testability transfor-
mation [HHH+04] do not guarantee. Many of the approaches rely on �xed transformation
rules, but in our PfP framework a previous veri�cation determines how the program is
restructured, i.e., our transformation highly depends on the program property and the
analysis con�guration.

Program Transformations Increasing the Analysis Precision In this section, we
consider program transformations that are applied to get a better analysis result and are
not discussed in one of the previous two sections.

Holley and Rosen [HR81] present two approaches that use a set of quali�ers to im-
prove data�ow analyses. Data �ow tracing transforms a control �ow graph into one that
explicitly contains the quali�ed paths. The new nodes are pairs of control location and
quali�er. An edge is introduced when both parts agree on the transition. Context tupling
is similar to Fischer's predicated lattices and uses maps from quali�ers to data �ow facts
as abstract states.

Ammons and Larus [AL98] pro�le a program to build a hot path graph to achieve
better optimizations of paths often executed in a program. The idea of the hot path
graph is to separate hot program paths, which are often executed. Then, they analyze
the hot path graph and combine nodes that refer to the same program location and either
both nodes are not hot or no data �ow fact of a hot node is reduced.

Thakdur and Govindarajan [TG08] transform a program to get a program on which
a given data�ow analysis is more precise. Their approach is built on the concept of
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destructive merges, nodes with a precision loss due to a merge. The idea is to split such
nodes and the following descendants as long as the analysis may gain precision from the
split.

Similarly, property-oriented expansion [Ste96] is a technique to get better optimized
programs. The idea is to expand the program model and duplicate a location node
when two di�erent data�ow facts must be merged. Thus, the expanded program model
corresponds to an abstract transition system obtained when model checking the original
program model with the data�ow analysis domain. Finally, the optimization is applied to
the expanded program model.

Control node splitting [MMM12] is an approach to get a behaviorally equivalent trans-
former automaton, a model of the program (behavior), from an existing transformer au-
tomaton. The approach uses a partition of the set of all values to split a node into a set
of nodes, one for each set of values in the partition. Partitions of values are determined
heuristically.

We de�nitely do not consider pro�ling data during our transformation. Furthermore,
we do not explicitly determine if we lose precision during merge, but we rely on the
re�nement to incorporate enough information into the enabler analysis state to separate
two property states whenever a combination would result in a information loss signi�cant
for property veri�cation. Depending on our con�guration, especially the con�guration
of the merge operator, one might argue that the re�ned property checking analysis does
some kind of quali�ed data�ow analysis [HR81] and control node splitting [MMM12]. For
example, the pair of enabler and property automaton state correspond to a quali�er or
de�ne a partition of the set of concrete states.

5.8.3 Proofs and Program Extraction

The proofs as programs paradigm (see e.g. [BC85]) relies on Howard's observation [How80]
of the correspondence between mathematical proofs and programs, namely the similarities
between the rules of inference in mathematical proofs and the rules for term construction
in the lambda calculus. Many theorem provers build on the proofs as programs paradigm
to o�er a program extraction mechanism. Paulin-Mohring and Werner [PMW93] de�ne an
extraction of ML programs from Coq proofs. A revised program extraction [Let03] in Coq
allows to extract programs in ML, Hasekell, or OCaml. Berghofer and Nipkow [BN02]
introduce a functional (ML) program extraction for a subset of Isabelle/HOL. Later,
Berghofer [Ber03] describes the general framework for program extraction in Isabelle and
Constable and Moczydªowski [CM06] presented an alternative extraction for constructive
Isabelle/HOL. Benl et al. [BBS+98] discuss program extraction in the interactive theorem
prover MINLOG. Basin [Bas91] applies the proofs as programs principle to hardware
circuits and synthesize circuits from constructive proofs in Nurpl.

In code-carrying theories [JSS07] the program and its correctness proofs are formulated
in a theorem prover. Thereafter, the real program is extracted from the de�nitions in the
theorem prover. Code-carrying theory [VM08], an alternative for Proof-Carrying Code,
makes use of this principle. The consumer receives the de�nitions and proofs and extracts
the executable program itself.

Lensink et al. [LSvE12] present a technique to extract Java code annotated with JML
from a PVS speci�cation.

All discussed program extraction methods get a mathematical description of the pro-
gram, either a proof or a de�nition. In contrast, the Programs from Proofs approach
extracts its program from an abstract reachability graph, a model of the abstract state
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space of a program.

5.8.4 Program Structure and Program Properties

The program structure plays an important role when one wants to assure program prop-
erties or detect violations. For languages like SPARK [Bar12], which forbid the use of
pointers and exceptions and only allow side-e�ect free functions program, veri�cation is
much simpler. Often, the program structure in�uences the state space of a program. This
is for example observed by Groote et al. [GKO12], which present speci�cation guidelines to
build models with small state spaces. Furthermore, program properties are often related
to certain programming patterns.

Bug patterns [FNU03, HP04, ZZ07, HK13] describe code patterns that do not adhere to
common coding practice and are likely an error. In the literature, one can �nd descriptions
of concurrency bug patterns [FNU03, HK13], bug patterns for Java [HP04] or for aspect
oriented programming like AspectJ [ZZ07]. Tools like FindBugs [HP04] and COBET
[HK13] use these bug patterns to e�ciently detect likely errors.

Patterns are not only used to detect errors. Code patterns can be used to detect
infeasible branches [DZB14]. Tools like Checkstyle [Bf15] use patterns to detect whether
a program violates a given coding style. Coding styles are used to improve readability
and understandability of code, an important aspect for the maintainability property of
a software. Moreover, design patterns [JGVH95] describe approved solutions for well-
known programming problems and help to develop software solutions with better quality
properties � not necessarily functional properties. In contrast, antipatterns [BMMIM98]
describe programming solutions that are known to lead to problematic programs with
poor quality.

Our Programs from Proofs approach does not use patterns. However, it restructures
a program s.t. veri�cation becomes simpler.
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In the previous chapters, we looked at two alternative, con�gurable frameworks. Both
aim to lower the validation costs of the consumer. To further improve the consumer
validation, we want to combine the two frameworks and, thus, bene�t from the best
characteristics of the two alternative frameworks. Amongst others, we want to pro�t from
the guaranteed success, including termination, of the consumer validation in con�gurable
program certi�cation. Simultaneously, we would like to use an even simpler, less complex
con�guration for the consumer like in the Programs from Proofs approach.

Our idea is to let the producer perform the re�ned property checking analysis known
from the Programs from Proofs approach. Like in the Programs from Proofs approach, the
consumer still receives and validates the program generated from the producer's proof.
However, the consumer does not verify the generated program. Instead, the consumer
applies the validation approach known from the con�gurable program certi�cation ap-
proaches. He validates the generated program with the help of a certi�cate, which is
additionally constructed by the producer.

Many parts of the producer and consumer tasks in the sketched combined approach can
be adopted from the previous Programs from Proofs and con�gurable program certi�cation
approach. Only, the certi�cate generation must be redesigned. As we will see, the naïve
combination in which the producer veri�es the generated program, too, and uses existing
certi�cate construction techniques is inappropriate. Hence, given a proof, an ARG, for
the original program, the producer must construct a certi�cate for the generated program.

Existing approaches that are tailored to certi�cate generation for generated programs
cannot directly be reused for the certi�cate generation. Some consider di�erent types
of proofs, e.g. Hoare logic proofs [MN07, Hur09]. In other cases, one needs to specify a
translation function [Riv03, BGKR06]. Translation validation [PSS98] focuses on trans-
lation correctness instead of a safety property. In another class of approaches [NL98b,
RD99, WSF02, GKD+07], a certi�cate is constructed during program generation without
taking a proof of the original program into account. In our context, this means that the
generated program must be veri�ed. We see later that this is not the best option.
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Before we come to the details of the combination, especially focusing on the certi�cate
construction, and the evaluation of our combination, we �rst give detailed reasons for a
combination of our two alternative frameworks.

6.1 Motivation

Several reasons exist why one might pro�t from combining the Programs from Proofs
approach with the con�gurable program certi�cation approach. One major reason is that
for some con�gurations the consumer veri�cation in the Programs from Proofs approach
may no longer terminate. With the combination, we want to overcome the termination
problem of the consumer. The idea is that the certi�cate provides enough information s.t.
in the consumer validation at most a single abstract state per program location must be
explored. The consumer validation of the generated program terminates.

Another aspect tackles the performance of the consumer validation. Recapturing our
validation algorithms, the consumer does not need to merge nor adjust precisions. Note
that in some of our Programs from Proofs examples, the consumer performs a high number
of merges (more than 1000). More importantly, certi�cate validation explores each element
in the certi�cate once. It does not need to reexplore abstract states after a merge nor
to bother about states deleted by a merge anyway. Remember that we observed that
certi�cate validation especially bene�ts from these factors, i.e., is faster, when the ratio
of the number of explored successors to the number of ARG nodes is high. Some of the
consumer tasks in our Programs from Proofs evaluation achieved high ratios. Another
reason depends on the precision adjustment of the property checking analysis. In case,
the property checking analysis widens abstract states during precision adjustment, we
instantly bene�t from certi�cate validation. Since in our setting a data�ow analysis never
widens in the precision adjustment, it may require multiple merges to compute the widened
state or only explores a more precise state, which we think is more expensive to explore.
In contrast, the certi�cate may contain the widened state. Certi�cate validation does not
need to merge to compute the widened state nor to explore a more precise state.

Additionally, the parallelization of all our certi�cate validation algorithms is simple
and straightforward. A parallelization of the CPA algorithm, the veri�cation, is not so
obvious. If we use the combination, the consumer validation can easily be adapted and
pro�t from the current hardware trend of a growing number of processing units.

At last, the trusted computing base of the consumer is decreased even further. Espe-
cially, the consumer no longer needs to rely on the merge, and thus the join operator of
the abstract domain. Now that we know why a combination of our approaches might be
bene�cial, we continue to describe how to combine the approaches.

6.2 The Naïve Combination

The �rst idea one typically would come up with is to sequentially combine the Programs
from Proofs approach with the con�gurable program certi�cation approach. Figure 6.1
shows the process of this combination. The �rst part of the producer analysis is identical
with the producer analysis in the Programs from Proofs approach. Instead of stopping
after program generation, the producer continues with the consumer analysis of the Pro-
grams from Proofs approach. Notice that the producer part beginning at the veri�cation
of the generated program is typical for a producer in the con�gurable program certi�ca-
tion approach. After the veri�cation of the generated program �nished successfully, the
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Figure 6.1: Naïve combination of the Programs from Proofs and the con�gurable program
certi�cation approach

producer applies one of the certi�cate construction techniques presented for con�gurable
program certi�cation. In contrast to the producer, the consumer follows the standard cer-
ti�cate validation procedure known from the con�gurable program certi�cation approach.
The Programs from Proofs approach and, thus, the combination of the approaches are
completely transparent to the consumer.

The described combination of the approaches is simple to realize. One simply needs
to reuse the existing approaches and their implementations in a proper order. Soundness
and relative completeness of the combination directly follows from soundness and relative
completeness of the con�gurable program certi�cation approach.

However, the combination has some major drawbacks. When the re�ned property
checking analysis widens the property checking part of an abstract state, the widening
result is not transferred to the consumer. More importantly, the producer can only con-
struct a certi�cate if the veri�cation of the original and the generated program succeeds.
Remember that the veri�cation of the generated program may not terminate, although
the veri�cation of the original was successful. The consumer no longer directly observes
the termination problem of the Programs from Proofs approach, but the presented com-
bination also does not overcome that problem. Additionally, the approach is ine�cient
for the producer. To construct the certi�cate, the producer has to redo the veri�cation on
the generated program. In principle, he does the veri�cation twice. Thus, we think that
such a combination is to naïve. We continue to discuss more sophisticated combinations,
which overcome the mentioned drawbacks of the naïve combination.

6.3 Certi�cates for the Generated Program from the

Producer's Proof

In this section, we propose a combination of the Programs from Proofs and the con�g-
urable program certi�cation approach that is more sophisticated than a pure sequential
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Figure 6.2: Proposed combination of the Programs from Proofs and the con�gurable
program certi�cation approach

composition, the naïve combination. Our goal is to combine the approaches in such a way
that the additional e�ort for the producer is low. The producer analysis should remain
close to the producer analysis in the Programs from Proofs approach. At most, we want
to add an extra certi�cate generation task. Moreover, like in the naïve combination the
consumer validation should follow the standard validation procedure of the con�gurable
program certi�cation approach.

Figure 6.2 depicts the general overview of our solution for such a combination. As
required, the producer's tasks are mainly identical with the producer's tasks in the Pro-
grams from Proofs approach, except for one step. After successful veri�cation of the
original program with a re�ned property checking analysis, the producer does not only
use his proof, an ARG, to generate a program which can be veri�ed with the simpler
property checking analysis alone. Additionally, the producer uses the constructed ARG
to build a certi�cate for the generated program. Note that this certi�cate is constructed
w.r.t. the abstract domain considered by the property checking analysis � the analysis
that is su�cient to verify the generated program. Furthermore, the consumer's process
is rather identical to the consumer's tasks in the con�gurable program certi�cation ap-
proach. The only di�erence is the derivation of the consumer's validation con�guration.
The producer's veri�cation con�guration, a re�ned property checking analysis, is tailored
to the veri�cation of the original program and not to the veri�cation of the generated
program, which the consumer inspects. Hence, the consumer should not derive his valida-
tion con�guration from the complete producer analysis. In contrast, the consumer should
restrict his derivation to those parts of the re�ned property checking that are relevant
for the veri�cation of the generated program, i.e., the data�ow analysis variant of the
property checking analysis part. Hence, the consumer derives his validation con�guration
from the data�ow analysis variant of the property checking analysis part. Due to the
special form of the termination check operator of that data�ow analysis, we know that
the termination check is well-behaving. The validation con�guration of the consumer can
be derived fully automatically.

Critically inspecting the overview, we observe that once more we left out the initial
abstract state and the initial precision from our overview. To complete the input of the
producer analysis, we require an initial abstract state and an initial precision. Like in the
Programs from Proofs approach, the initial abstract state must be compatible with the
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re�ned property checking analysis. The consumer requires only one additional input, an
initial abstract state. We use the same initial abstract state for the consumer as in the
Programs from Proofs approach.

Next, we re�ect the trusted computing base of our combination. Recap that the
trusted computing base incorporates all elements that the consumer must rely on if he
trusts the outcome of his validation. Looking at the consumer's validation, we recognize
that the consumer must trust two elements: his validation con�guration, the con�gurable
certi�cate validator from the data�ow analysis variant of the property checking analysis,
and the certi�cate validation algorithm. For both elements, the trusted computing base
contains the de�nition and the respective implementation used by the consumer. Com-
pared to the producer, we think that the certi�cate validation algorithms are similarly
complex than the CPA algorithm. Moreover, the validation con�guration is much simpler
than the producer's con�guration. The validation con�guration gets rid of the often more
complex enabler analysis C2 as well as the merge and precision adjustment operator of the
property checking analysis. Also, the termination check operator becomes quite standard.
Compared to the Programs from Proofs approach, the merge and precision adjustment
operator of the property checking analysis are excluded from the trusted computing base.
We also observe that the trusted computing base is smaller than in the con�gurable pro-
gram certi�cation approaches, since we exclude parts of producer's abstract domain.

After we discussed the high level aspects of our combination, we come to its realization.
Recapturing the overview of the proposed combination, we remember that many steps of
the producer are already known from the Programs from Proofs approach (cf. Chapter 5).
Only the certi�cate generation is new. Furthermore, the consumer validation remains the
same as in con�gurable program certi�cation (cf. Chapters 3 and 4). In the following,
we discuss the only unknown task in the proposed combination, the construction of a
certi�cate for the generated program on the basis of the producer's ARG.

We present two alternative approaches how to construct a certi�cate for the generated
program from the ARG built by the producer for the original program. Both alternatives
can construct any certi�cate type proposed in the con�gurable program certi�cation.
The �rst approach converts the producer ARG into an ARG for the generated program
and then applies one of the certi�cate construction techniques known from con�gurable
program certi�cation. The second approach transforms a certi�cate constructed from the
producer's ARG for the original program into a certi�cate for the generated program.
While the �rst approach is more memory consuming � it additionally nearly copies the
producer's ARG �, we will show that for some certi�cate types the size of its generated
certi�cates could be smaller than the size of the certi�cates from the second approach.
Furthermore, we prove relative completeness for both combination variants. Note that
we do not need to prove soundness. The consumer uses the validation algorithms from
the con�gurable program certi�cation for which we already proved soundness in case the
initial abstract state considers the initial automaton state. Due to the requirements on the
initial abstract state of the consumer, we know that the automaton state considered by the
consumer's initial abstract state is the initial automaton state. Hence, our combination
is sound by default.

Before we come to the details of the two approaches, we �rst describe a common
transformation operation. Often, (some of) the producer's ARG nodes must be trans-
ferred to abstract states of the property checking analysis, which consider location of the
generated program. In the Programs from Proofs, we already transfer a single abstract
state of the re�ned property checking analysis into a single abstract state of the property
checking analysis. For example, we transfer the producer's initial abstract state into a
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proper initial abstract state for the consumer. To prove successful consumer veri�cation,
we regularly transfer abstract states of the re�ned property checking analysis into abstract
states of the property checking analysis. For all transformations, we applied the de�nition
of location updated property checking extraction (De�nition 5.6). Next, we reuse location
updated property extraction to transform (sets of) sets of ARG nodes. Like in some of
the handwritten proofs for the PfP approach, we do not want to update the location with
an arbitrary location, but with the location associated with the ARG node that we trans-
form. Following the notation in the Programs from Proofs approach, for any ARG node n
we use n to refer to the abstract state as well as to the location associated with the ARG
node. The meaning should be clear from the context. When we use the location updated
property checking extraction, the abstract state is always notated in front followed by the
location surrounded in square brackets. To transform a set of ARG nodes, one principally
applies the location updated property checking extraction for each ARG node in the set
using the location associated with the ARG node. For the transformation of sets of sets
of ARG nodes the transformation of a set of ARG node is used on each set of ARG nodes.

De�nition 6.1. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2×C1)A. For a subset Nsub ⊆ N , we de�ne Nsub[prog(RP
(C2×C1)A)] :=

{n[n] | n ∈ Nsub}. We extend this notation to sets N ∈ 22N

of subsets of ARG nodes and
de�ne N [prog(RP

(C2×C1)A)] := {Nsub[prog(RP
(C2×C1)A)] | Nsub ∈ N}.

In the following, we typically use the transformation of a set of sets of ARG nodes to
transform a partition of a subset of ARG nodes. Such a partition of a subset of ARG
nodes is required to construct one of our proposed partitioned certi�cates. When we
transform (sets of) sets of ARG nodes in general, we might translate two di�erent elements
to the same element. Thus, some of the properties of a partition might not be ful�lled
after transformation. The following lemma ensures that for our special transformation a
transformation of a partition results in a partition.

Lemma 6.1. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2×C1)A. Let Nsub ⊆ N be a subset of nodes and partition(Nsub) be a
partition of Nsub. Then, the transformation partition(Nsub)[prog(RP

(C2×C1)A)] of partition

partition(Nsub) is a partition of Nsub[prog(RP
(C2×C1)A)].

Proof. See Appendix pp. 295 f.

With the de�nition of the transformation of partitions and sets of ARG nodes, we have
everything at hand to describe our two combinations. We proceed with the �rst approach,
which transforms the ARG and then constructs the certi�cate from the transformed ARG.

6.3.1 Certi�cates from the Transformed Provider's Proof

In this section, we describe the �rst of our two proposed combinations. Remember that
the �rst combination transforms the ARG constructed by the producer analysis into a
proper ARG for the generated program. Thereafter, it uses the standard techniques of
our con�gurable program certi�cation to construct a certi�cate for the generated program.

The following de�nition describes how to transform the ARG. The idea is simple. We
use the transformation of a subset of ARG nodes as de�ned above for the set of ARG and
covering nodes. With the help of the location updated property extraction, we transform
the root node in the same way as a single node in the set of ARG nodes. Finally, for
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Figure 6.3: Transformation of the ARG from Fig. 5.3 which was constructed during
successful veri�cation of our example re�ned property checking analysis on program Sub-

MinSumDiv

every ARG edge in the original ARG g we add an ARG edge g′ from the transformed
predecessor to the transformed successor of edge g. Additionally, we label the edge g′ by
the CFA edge in the generated program, which originates form the ARG edge g.

De�nition 6.2. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A and program P . The transformation of ARG RP
(C2×C1)A

for DFA(CA1 ) and generated program prog(RP
(C2×C1)A) is RP

(C2×C1)A [prog(RP
(C2×C1)A)] =

(N ′, G′ARG, root
′, N ′cov) with N ′ = N [prog(RP

(C2×C1)A)], G′ARG = {(p[p], (p, op, s), s[s]) |
(p, (·, op, ·), s) ∈ GARG}, root′ = root[root] and N ′cov = Ncov[prog(RP

(C2×C1)A)].

Figure 6.3 shows the transformation of the ARG constructed for our example producer
analysis in the Programs from Proofs approach. Note that we directly use the location
names associated with the abstract state. More concretely, we use the location names of
the program that is shown in Fig. 5.4 and is generated from the ARG in Fig. 5.3. Further-
more, as before we label edges only by program instructions and not by the complete CFA
edge. Comparing the transformed ARG with the original one (see Fig. 5.3), we observe
that the structure is the same. Only the enabler state, the predicate state, is removed
and the location names are adapted.

So far, we only described how to transform an ARG. To apply the con�gurable program
certi�cation program approach, we need to ensure that the transformed ARG is a well-
formed ARG for the generated program and the data�ow analysis variant DFA(CA1 ) of
the property checking analysis CA1 . First, we show that after transformation we get an
ARG for the generated program and DFA(CA1 ).
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Lemma 6.2. Let RP
(C2×C1)A be an abstract reachability graph for program P and re�ned

property checking analysis (C2 ×C1)A. Then, RP
(C2×C1)A [prog(RP

(C2×C1)A)] is an abstract

reachability graph for program prog(RP
(C2×C1)A) and DFA(CA1 ).

Proof. See Appendix p. 296.

Due to the previous lemma, we know that we can transform any ARG for the original
program and a re�ned property checking analysis into an ARG for the generated program.
Next, we show that when we apply the transformation in our combination of the PfP and
the CPC approach, then the transformed ARG will be well-formed. We know that we
transform the ARG only when the veri�cation of the original program with the re�ned
property checking analysis was successful. From the Programs from Proofs approach,
we remember that the ARG constructed during veri�cation is strongly well-formed (cf.
Proposition 5.2). Based on this inside, we show that if the initial ARG, the ARG con-
structed during veri�cation, is strongly well-formed, then the transformed ARG will ful�ll
the required property for the con�gurable program approach, i.e., the transformed ARG
is well-formed.

Proposition 6.3. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A. If RP
(C2×C1)A is strongly well-formed for e0 ∈ E(C2×C1)A ,

then RP
(C2×C1)A [prog(RP

(C2×C1)A)] is an ARG for prog(RP
(C2×C1)A) and DFA(CA1 ) which is

well-formed for e0[root].

Proof. See Appendix pp. 296 �.

In our CPC approach, well-formed ARGs are the basis to construct valid certi�cates.
Certi�cates that are generated from well-formed ARGs by a CPC technique are accepted
by the validation algorithm when a suitable con�gurable certi�cate validator with a well-
behaving coverage check is used. Due to the previous proposition, we know that in our
�rst combination each of the con�gurable program certi�cation approaches constructs such
valid certi�cates. Furthermore, we know that we must derive the consumer's con�gurable
certi�cate validator from the data�ow analysis DFA(CA1 ). Our de�nition of a data�ow
analysis' termination check operator and Corollary 3.4 let us conclude that the termination
check is also a well-behaving coverage check. If the consumer uses this coverage check in
his validation con�guration, the producer will act as depicted in the overview (Fig. 6.2),
and the consumer receives the generated program and the certi�cate constructed by the
producer, relative completeness of our certi�cation approaches will guarantee us that the
consumer will accept the generated program. This is stated by the following theorem.

Theorem 6.4. Let (C2 × C1)A be a re�ned property checking analysis. Furthermore, let

VDFA(CA1 )(stopDFA(CA1 )) be the con�gurable certi�cate validator for DFA(CA1 ) and cover-

age check stopDFA(CA1 ). If Algorithm 2 started with CPA (C2 × C1)A, compatible, initial
abstract state e0 ∈ E(C2×C1)A , initial precision π0 ∈ Π(C2×C1)A , and program P returns

(true, ·, RP
(C2×C1)A) and RP

(C2×C1)A = (N,GARG, root,Ncov), then

• the validation algorithm for certi�cates (Algorithm 3, p. 54) started with con�gurable

certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), initial abstract state e0[root], certi�cate

cert(RP
(C2×C1)A [prog(RP

(C2×C1)A)]), and program prog(RP
(C2×C1)A) returns true.
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• the validation algorithm for reduced certi�cates (Algorithm 4, p. 82) started with con-

�gurable certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), initial abstract state e0[root],

reduced certi�cate certR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]) or highly reduced certi�cate

certhR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]), and program prog(RP
(C2×C1)A) returns true.

• the validation algorithm for partitioned certi�cates (Algorithm 5, p. 106) started with

con�gurable certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), the abstract state e0[root],

a partitioned certi�cate certPC(partition(Nsub), RP
CA [prog(RP

(C2×C1)A)]), which is a

full, partitioned, reduced, partitioned, or highly reduced, partitioned certi�cate, and
program prog(RP

(C2×C1)A) returns true.

Proof. From de�nition of stopDFA(CA1 ) and Corollary 3.4, we know that stopDFA(CA1 ) is a

well-behaving coverage check. Hence, VDFA(CA1 )(stopDFA(CA1 )) is a CCV. From (C2×C1)A

being a re�ned property checking analysis and de�nition of DFA(CA1 ), we infer that  CA1
is monotonic. From Proposition 5.2, we infer that RP

(C2×C1)A is an ARG for program P

and (C2 × C1)A that is strongly well-formed for e0. From Proposition 6.3, we conclude
that RP

(C2×C1)A [prog(RP
(C2×C1)A)] is an ARG for program prog(RP

(C2×C1)A) and DFA(CA1 )

that is well-formed for e0[root]. Since Algorithm 2 terminates, when started with P , we
know that P is �nite. From Proposition 5.6 and P being �nite, we infer that program
prog(RP

(C2×C1)A) is �nite. Now, e0[root] v e0[root] (re�exivity of partial order v) and
Theorems 3.10, 4.11, and 4.28 let us conclude the claim of this theorem.

We already discussed that our combinations are sound. The previous theorem ensured
us that our �rst combination is relative complete and that the consumer con�guration
can be derived fully automatically. Our �rst combination guarantees the three properties
automation, soundness, and relative completeness all our approaches must provide. No
further theoretical aspects need to be discussed. Next, we continue with our second
combination, which �rst constructs the certi�cate and then transforms it.

6.3.2 Transformation of Original Program Certi�cates

In this section, we present the details of our second, proposed combination. The idea of the
second combination is to apply our standard techniques for certi�cate construction �rst,
i.e., generate a certi�cate from the ARG that was built during the producer's veri�cation.
Then, this approach transforms that certi�cate into a proper certi�cate for the generated
program. Next, we describe how to transform a certi�cate built from the producer's ARG.

The transformation of a certi�cate constructed for the original program by one of our
con�gurable program certi�cation approaches is straightforward. No matter which kind
of certi�cate we transform, we always keep the certi�cate's structure and the size of the
original certi�cate when stored. Hence, we only need to transform the set(s) of ARG
nodes stored in the certi�cate for the original program. To transform these sets, we again
use the transformation of a set of ARG nodes, which is based on location updated prop-
erty checking extraction. The following de�nition formally describes the transformation
of certi�cates. Since the transformation of the three types of partitioned certi�cates is
technically the same, we decided to generally de�ne the transformation of an arbitrary
partitioned certi�cate.
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De�nition 6.3. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A.

• The transformation of a certi�cate cert(RP
(C2×C1)A) = N from ARG RP

(C2×C1)A for

DFA(CA1 ) and generated program prog(RP
(C2×C1)A) is

cert(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] := N [prog(RP
(C2×C1)A)] .

• The transformation of a reduced certi�cate certR(RP
(C2×C1)A) = (NR, n) from ARG

RP
(C2×C1)A for DFA(CA1 ) and generated program prog(RP

(C2×C1)A) is

certR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] := (NR[prog(RP
(C2×C1)A)], n) .

• The transformation of a highly reduced certi�cate certhR(RP
(C2×C1)A) = (NhR, n

′)

from ARG RP
(C2×C1)A for DFA(CA1 ) and generated program prog(RP

(C2×C1)A) is

certhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] := (NhR[prog(RP
(C2×C1)A)], n′) .

• The transformation of partitioned certi�cate certPC(partition(Nsub), RP
(C2×C1)A) =

(parts, n) from ARG and partition(Nsub) of a subset of ARG nodes Nsub ⊆ N for
DFA(CA1 ) and generated program prog(RP

(C2×C1)A) is

certPC(partition(Nsub), RP
(C2×C1)A)[prog(RP

(C2×C1)A)]

:= ({(pn[prog(RP
(C2×C1)A)], bn[prog(RP

(C2×C1)A)]) | (pn, bn) ∈ parts}, n) .

In the following, we provide an example of a certi�cate transformation. Below, we show
the (highly) reduced certi�cate1 from the ARG in Fig. 5.3, which was generated by our
example producer analysis in the Programs from Proofs approach. Beneath the (highly)
reduced certi�cate we depict its transformation. Again, we directly use the location
names associated with the ARG nodes, namely those of the generated program shown in
Fig. 5.4. As intended, the transformation only removes the predicate state, the enabler
state, and adjusts the program locations. The number of abstract states remains the same.
Furthermore, in both certi�cates the number of abstract states that can be recomputed
during validation is limited to 20.


((true, (l0, s : > x : > y : > z : >)), q0),
((true, (l5, s : > x : − y : > z : +)), q1),
((¬y ≥ 0, (l9, s : + x : > y : − z : 0+)), q1),
((y ≥ 0, (l9, s : + x : > y : 0 + z : 0+)), q1)

 , 20





((l0, s : > x : > y : > z : >), q0),
((l5, s : > x : − y : > z : +), q1),
((l13, s : + x : > y : − z : 0+), q1),
((l8, s : + x : > y : 0 + z : 0+), q1)

 , 20


Up to now, we described how to transform certi�cates. Next, we show that the transformed
certi�cates are proper witnesses, which can be used by the consumer to successfully check

1The highly reduced and the reduced node set are the same for the ARG considered during certi�cate
construction.
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correctness of the generated program. From the results of the �rst combination, we already
know that the certi�cates generated in the �rst combination are such proper witnesses. If
we are able to show that we could have constructed the transformed certi�cate with the
�rst combination, our transformed certi�cates will be proper witnesses.

As we will prove, the transformed certi�cate, the transformed highly reduced certi�-
cate, the transformed full, partitioned certi�cate, and the transformed highly reduced,
partitioned certi�cate are identical with their counterparts generated in the �rst combi-
nation. However, this is not necessarily true for the transformation of reduced or reduced,
partitioned certi�cates. The problem is that the reduced node set of the original ARG
can become larger than the reduced node set of the transformed ARG. Due to a precision
adjustment or a merge, which only a�ects the enabler state, an ARG successor in the
original ARG may not be a transfer successor of the re�ned property checking analysis,
solely because its enabler state is not a successor of the enabler analysis' transfer rela-
tion. The other parts of the state agree with those of the transfer successor. Thus, the
corresponding ARG node in the transformed ARG is a transfer successor of the property
checking analysis. For example, consider an ARG that is identical with the ARG shown
in Fig. 5.3 except for the ARG node ((¬y ≥ 0, (l14, s : + x : > y : − z : +0)), q1) which is
replaced by ((true, (l14, s : + x : > y : − z : 0+)), q1). An analysis might have constructed
such an ARG because the predicate analysis adjusts its precision for location l14 when y
is negative. In this case, the reduced node set from the ARG contains all abstract states
in the reduced certi�cate from above plus ((true, (l14, s : + x : > y : − z : 0+)), q1). In
contrast, the reduced node set of the transformed ARG is the same as the set of abstract
states in the transformed certi�cate from the previous example. Hence, for the transfor-
mation of certi�cates based on the reduced node set we need to separately show that we
get proper witnesses.

First, let us look at identity for all certi�cates whose construction does not use the
reduced node set. The basic that stores the set of ARG nodes. Due to the de�nition
of certi�cate transformation and the transformation of the ARG, the transformed basic
certi�cate and the basic certi�cate from the transformed ARG are identical.

All other certi�cates store the size of the original certi�cate. Since during transforma-
tion we do not change the stored size, we �rst prove that the stored sizes are identical.
A transformed certi�cate stores the size of the set of ARG nodes in the original ARG.
A certi�cate from the transformed ARG stores the size of the set of ARG nodes in the
transformed ARG. The following lemma states that these sizes, the size of the set of ARG
nodes in the original and the transformed ARG are identical.

Lemma 6.5. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2×C1)A and RP
(C2×C1)A [prog(RP

(C2×C1)A)] = (N ′, G′ARG, root
′, N ′cov).

Then, |N | = |N ′|.

Proof. By de�nition, N ′ = N [prog(RP
(C2×C1)A)] and N ′ contains at most |N | elements.

We need to show that ¬∃n, n′ ∈ N : n 6= n′ ∧ n[n] = n′[n′]. Let n[n] = (e1, q) and
n′[n′] = (e′1, q

′). If n[n] = n′[n′], then e1 = e′1 and q = q′. From e1 = e′1 and de�nition
of n[n] = n′[n′], we get acs(e1) = acs(e′1) and, thus, acs(e1) = n = acs(e′1) = n′. We
conclude that |N ′| = |N |.

Due to the previous lemma, we know that the stored sizes are identical. To show that the
highly reduced certi�cates are identical, it remains to be shown that the highly reduced
node sets are identical. Furthermore, we also need that identity when looking at the
identity of the highly reduced, partitioned certi�cate. The following lemma claims the

227



CHAPTER 6. INTEGRATION OF PFP AND CPC

desired identity of the transformed highly reduced node set from the original ARG and
the highly reduced node set of the transformed ARG.

Lemma 6.6. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for program P and

re�ned property checking analysis (C2×C1)A.Then, NhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] =

NhR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]).

Proof. Let RP
(C2×C1)A [prog(RP

(C2×C1)A)] = (N ′, G′ARG, root
′, N ′cov). By de�nition we get

NhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)]

= ({root} ∪Ncov)[prog(RP
(C2×C1)A)]

= {root[prog(RP
(C2×C1)A)]} ∪Ncov[prog(RP

(C2×C1)A)]

= {root′} ∪N ′cov

= NhR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]) .

Due to the previous lemmas, the de�nition of a highly reduced certi�cate and its transfor-
mation, we can now prove identity of the highly reduced certi�cates. Next, we consider
identity for the full, partitioned and the highly reduced, partitioned certi�cate. For this,
it remains to be shown that their sets of partition elements are identical.

Basically, for each partition element an identical partition element must exist. First, let
us ignore the boundary nodes of a partition element. Then, identity of partition elements
is restricted to identity of partition nodes and constructing a partitioned certi�cate from
the transformed ARG s.t. the partition elements are identical is simple. We already showed
that the sets of ARG nodes and the highly reduced node sets are identical. Hence, the set
of all partition nodes is the same. Recapturing our construction of a partitioned certi�cate,
we only require a partition that is identical to the set of all sets of partition nodes in the
transformed certi�cate. The partition that one obtains when transforming the partition
used to construct the certi�cate from the original ARG ful�lls this requirement.

In reality, partition elements are only identical when the set of partition nodes and the
set of boundary nodes are identical. It is left over to be shown that the transformation
of the set of boundary nodes is proper, i.e., it matches the construction of the set of
boundary nodes in the partitioned certi�cate construction from the transformed ARG.
Our partitioning approach builds the set of boundary nodes from a vertex contraction of
an ARG to a subset of ARG nodes (all nodes occurring in the partition), and a subset (a
set of partition nodes) of the former subset . Thus, we show that transforming a set of
boundary nodes obtained from a vertex contraction of the original ARG to a subset Nsub

of its ARG nodes and a subset N ′sub of Nsub is identical to the result of a transformation
of the ARG and the subsets plus a subsequent construction of the set of boundary nodes.
The subsequent construction builds the set of boundary nodes from a vertex contraction
of the transformed ARG to the transformation of Nsub and the subset of subset of ARG
nodes resulting from the transformation of N ′sub. The following lemma claims this identity.

Lemma 6.7. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for program P and re-

�ned property checking analysis (C2 × C1)A. Furthermore, let N ′sub ⊆ Nsub ⊆ N . Then,
bound(N ′sub[prog(RP

(C2×C1)A)], V CG(Nsub[prog(RP
(C2×C1)A)], RP

(C2×C1)A [prog(RP
(C2×C1)A)]))

= bound(N ′sub, V CG(Nsub, R
P
(C2×C1)A))[prog(RP

(C2×C1)A)].

Proof. See Appendix pp. 298 f.

228



6.3. CERTIFICATES FOR GENERATED PROGRAM FROM PRODUCER PROOF

As explained before, a proper transformation of the set of boundary nodes was the missing
piece to show that the transformation of a partition element yields a proper partition
element and, thus, the identity of the transformed certi�cate and the certi�cate from
the transformed ARG in case of the full, partitioned and the highly reduced, partitioned
certi�cate. Before we consider the identity of the transformed certi�cate and the certi�cate
from transformed ARG for these two certi�cate types, we generally want to prove that
when we transform a partitioned certi�cate from a partition and the producer ARG, we get
the partitioned certi�cate from the transformed partition and the transformed ARG. This
correspondence between a transformed partitioned certi�cate and a partitioned certi�cate
from the transformed ARG does not only allow us to prove identity in case of the full,
partitioned and the highly reduced, partitioned certi�cate, but also lets us easily prove
relative completeness in case our second combination transforms a reduced, partitioned
certi�cate. The following lemma asserts this correspondence.

Lemma 6.8. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for program P and

re�ned property checking analysis (C2 × C1)A and partition(Nsub) = {p1, . . . , pn} be a
partition of Nsub ⊆ N . Then, certPC(partition(Nsub), RP

(C2×C1)A)[prog(RP
(C2×C1)A)] =

certPC(partition(Nsub)[prog(RP
(C2×C1)A)], RP

(C2×C1)A [prog(RP
(C2×C1)A)]).

Proof. See Appendix pp. 299 f.

With the last lemma, we have everything at hand to show that the transformation of
a certi�cate, a highly reduced certi�cate, a full, partitioned certi�cate, or a highly re-
duced, partitioned certi�cate results in a certi�cate that is identical with a certi�cate, a
highly reduced certi�cate, a full, partitioned certi�cate, or a highly reduced, partitioned
certi�cate constructed from the transformed ARG. In case of the partitioned certi�cates,
the transformed certi�cates are only identical when the partitions used to construct the
partitioned certi�cates are related, i.e., to construct the partitioned certi�cate from the
transformed ARG also the transformed partition must be used. The following proposition
states the identity between the certi�cates.

Proposition 6.9. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for a re�ned prop-

erty checking analysis (C2 × C1)A. Then,

• cert(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] = cert(RP
(C2×C1)A [prog(RP

(C2×C1)A)]),

• certhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] = certhR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]),

• if partition(N [prog(RP
(C2×C1)A)]) = partition(N)[prog(RP

(C2×C1)A)],

certPC(partition(N), RP
(C2×C1)A)[prog(RP

(C2×C1)A)]

= certPC(partition(N [prog(RP
(C2×C1)A)]), RP

(C2×C1)A [prog(RP
(C2×C1)A)])

, and

• if
partition(NhR(RP

(C2×C1)A [prog(RP
(C2×C1)A)]))

= partition(NhR(RP
(C2×C1)A))[prog(RP

(C2×C1)A)]

certPC(partition(NhR(RP
(C2×C1)A)), RP

(C2×C1)A)[prog(RP
(C2×C1)A)]

= certPC(partition(NhR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]), RP
(C2×C1)A [prog(RP

(C2×C1)A)]) .

Proof. See Appendix pp. 300 f.
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Based on the previous proposition, we can easily show relative completeness of the second
approach when it transforms a certi�cate, a highly reduced certi�cate, a full, partitioned
certi�cate, or a highly reduced, partitioned certi�cate. Remember that we already showed
for the �rst combination that the consumer validation succeeds whenever the consumer
considers the generated program and a certi�cate constructed from the transformed ARG
by a process conformant producer. Since a transformed certi�cate, a transformed highly
reduced certi�cate, a transformed full, partitioned certi�cate, and a transformed highly
reduced, partitioned certi�cate are identical with their counterparts generated from the
transformed ARG, the consumer cannot distinguish between the �rst and second approach.
His validation automatically succeeds.

It remains to show relative completeness when the reduced node set is considered dur-
ing certi�cate generation. Remember that while proving relative completeness of our con-
�gurable program certi�cation approaches, we already considered that during certi�cate
construction a larger subset of the ARG nodes than the reduced node set is used for cer-
ti�cate construction. Relative completeness should be of no problem, if these transformed
certi�cates are identical with a certi�cate that is constructed from the transformed ARG
and that considers at least all nodes of the reduced node set. Due to the de�nition of a
reduced certi�cate and our previous result that a transformed partitioned certi�cate from
a partition and the producer ARG is identical with the partitioned certi�cate from the
transformed partition and the transformed ARG, we only need to show that the reduced
node set of the transformed ARG is a subset of the transformed reduced node set and
the transformed reduced node set is a subset of the set of ARG nodes of the transformed
ARG. Note that we require the �rst relation to apply our relative completeness results
from our con�gurable program approaches and the second requirement to ensure that
such a certi�cate can be constructed from the transformed ARG. The following lemma
establishes the required subset relations.

Lemma 6.10. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for program P and

re�ned property checking analysis (C2 × C1)A. If RP
(C2×C1)A = (N,GARG, root,Ncov)

is strongly well-formed for e0 ∈ E(C2 × C1)A, then NR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]) ⊆
NR(RP

(C2×C1)A)[prog(RP
(C2×C1)A)] ⊆ N [prog(RP

(C2×C1)A)].

Proof. See Appendix p. 301.

With the last lemma, we have all pieces together to prove that our second combination
also comes with the relative completeness property. The following theorem claims that if
the producer sticks to his process shown in Fig. 6.2, the consumer validation will succeed
for the generated program, any certi�cate constructed by that process conformant pro-
ducer, and the validation con�guration derived from the data�ow analysis variant of the
property checking analysis when reusing the termination check as coverage check. Since
the described consumer validation is the one that we use in our proposed combination
of the PfP and the CPC approach, the subsequent theorem automatically states relative
completeness.

Theorem 6.11. Let (C2 × C1)A be a re�ned property checking analysis. Furthermore,

let VDFA(CA1 )(stopDFA(CA1 )) be the con�gurable certi�cate validator for DFA(CA1 ) and cov-

erage check stopDFA(CA1 ). If Algorithm 2 started with CPA (C2×C1)A, compatible, initial
abstract state e0 ∈ E(C2×C1)A , initial precision π0 ∈ Π(C2×C1)A , and program P returns

(true, ·, RP
(C2×C1)A) and RP

(C2×C1)A = (N,GARG, root,Ncov), then
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• the validation algorithm for certi�cates (Algorithm 3, p. 54) started with con�gurable

certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), initial abstract state e0[root], certi�cate

cert(RP
(C2×C1)A)[prog(RP

(C2×C1)A)], and program prog(RP
(C2×C1)A) returns true.

• the validation algorithm for reduced certi�cates (Algorithm 4, p. 82) started with con-

�gurable certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), initial abstract state e0[root],

certR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] or certhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)], as well

as program prog(RP
(C2×C1)A) returns true.

• the validation algorithm for partitioned certi�cates (Algorithm 5, p. 106) started

with con�gurable certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), initial abstract state

e0[root], partitioned certi�cate certPC(partition(Nsub), RP
CA)[prog(RP

(C2×C1)A)] which

is constructed from a full, partitioned, reduced, partitioned or highly reduced, par-
titioned certi�cate certPC(partition(Nsub), RP

CA), and program prog(RP
(C2×C1)A) re-

turns true.

Proof. See Appendix pp. 302 f.

From the previous theorem, we conclude that our second combination is relative complete
and that a consumer can derive his validation con�guration fully automatically. Moreover,
we already discussed that our combinations are sound. Also, our second combination
provides the important properties automation, soundness, and relative completeness all
our approaches must have. From a theoretical point of view, we know that both proposed
combinations of the Programs from Proofs and the con�gurable program certi�cation
approach work out. Next, we examine the practical impact of the combination of PfP and
CPC.

6.4 Evaluation

In the evaluation, we want to study the value of the combination of the Programs from
Proofs approach with the con�gurable program certi�cation in cases in which we do not
need the combination to solve the termination problem of the Programs from Proofs ap-
proach. Especially, we want to know if and when the combination improves the consumer's
validation of the generated program.

To examine this question, we apply our con�gurable program certi�cation approach to
all of the 127 consumer veri�cation tasks examined during the evaluation of the Programs
from Proofs approach. Since the transfer relations of all property checking analyses used
in the PfP evaluation are monotonic, we use the certi�cation variant whose validation
typically performed best w.r.t. execution time. Thus, we construct highly reduced, par-
titioned certi�cates, which were constructed once before evaluation, and read and check
partition elements in parallel. For construction of these certi�cates, we use the partition-
ing strategy BEST_FIRST, which allows an e�cient certi�cate generation and certi�cate
validation performs similarly to the other partitioning strategies [Brö16]. Furthermore,
we restricted the size of each set of partition nodes to 10. Hence, we are able to partition
the certi�cate even when the generated programs are small.

Note that the proposed combination variants are not implemented in CPAchecker.
In practice, the CFA constructed from the generated C program might be di�erent from
the CFA one would obtain from the ARG, especially because optimizations are performed
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during CFA construction. Furthermore, we are lacking insight in how the CFA nodes are
labeled. However, we need to know the node label names to properly transform the proof.
Therefore, we used the naïve combination to construct the certi�cates. To still simulate
the proof transformation, during certi�cate construction we run the consumer analysis
with the same precision adjustment that the producer used for the property checking
analysis part.

For evaluation, we use the same execution set up as in the evaluation of the Programs
from Proofs approach. Again, we run the experiments with the benchmark evaluation
framework BenchExec [BLW15a] to restrict each task to 15GB of RAM and two cores of
an Intel Xeon E5-2650 v2 CPU at 2.6GHz. The time limit was set to 15 minutes of CPU
time. All experiments were performed with the CPAchecker version available in the
runtime_verification branch2 in revision 23042 and Java HotSpot(TM) 64-Bit Server
VM 1.8.0_101. We repeated all experiments 10 times and study the average of these 10
runs. The results for all 127 tasks can be found in the appendix in Tab. B.9.

In the following, we investigate the gain of the proposed combination on our examples.
Note that we do not present the total times because the observations would be similar.
The time added to the time for actual validation is the same for veri�cation and certi�cate
validation of the generated program. Thus, only the improvement might be smaller. We
start with the question if the consumer validation can be improved when it is already
worse than the producer.

6.4.1 RQ 1: Does Certi�cation HelpWhen the Consumer is Worse

Than the Producer?

To study if the combination may help to overcome the problem that in the PfP approach
some consumer veri�cations were slower than the corresponding producer veri�cation, we
provide the results of our combination for all 7 tasks in which the consumer performed
worse. Like in the PfP evaluation, we use the acronym of the re�ned property checking
analysis and the program name to identify the veri�cation task. Next to the veri�cation
times, VP and VC, and memory usage, MP and MC, known from the PfP evaluation,
Tab. 6.1 also provides the time for certi�cate validation VV, the time for certi�cate check-
ing and reading plus the additional parsing costs for the generated program, the memory
used by the certi�cate validation, the relation of the times and memory usages for veri�-
cation and certi�cate validation on the generated program, and the number of merges #t
performed during veri�cation of the generated program. We continue to display times in
seconds and memory usage in MB.

Looking at Tab. 6.1, we observe that if the bad consumer performance was mainly
caused by the additional parsing costs � these are all cases in which the number of merges
#t is below 200 � the performance of the consumer cannot be improved signi�cantly if at
all. For program transmitter02 and powerapprox, the consumer's performance becomes
much better and now beats the producer analysis in time and memory. The reason is that
certi�cate validation circumvents the merging costs, which are an important performance
factor in these cases. We would expect a similar improvement for the two tasks related to
the pipeline2 programs. Unfortunately, we failed to construct the certi�cates for these
tasks. A construction within the time limit of 15 minutes failed. Even after we set the time
limit far beyond 15 minutes, certi�cate construction failed, now due to memory problems.
The problem is that we fail to verify the program when we also want to construct the
ARG, which we need for certi�cate construction.

2https://svn.sosy-lab.org/software/cpachecker/branches/runtime_verification/
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Table 6.1: Comparison of the producer veri�cation of the original program with
veri�cation and highly reduced, partitioned certi�cate validation on the generated
program. Next to the validation times and the memory consumption, for the veri�cation
of the generated program also the number of merges is provided. All times are given
in seconds and memory consumption, used heap plus used non-heap, is represented in MB.

CP program #t VP VC VV
VC
VV

MP MC MV
MV
MC

OU pipeline2 993k Proof Construction Failed
VU cdaudio 190 2.75 2.89 2.90 1.00 365.6 344.8 351.9 1.02

VL tokenring04 0 14.15 43.05 42.27 1.02 1056.0 537.3 547.5 1.02
PS transmitter02 18465 8.63 5.47 1.36 4.02 494.7 553.1 253.7 0.46
OS powerapprox 1022 9.86 10.73 7.39 1.45 996.8 1036.4 553.7 0.56
OU pipeline2 993k Proof Construction Failed
VU cdaudio 188 3.00 3.63 3.69 0.98 388.8 380.0 381.7 1.00

For the special case in which consumer veri�cation in the PfP approach already per-
formed worse than producer veri�cation, the combination of PfP and CPC sometimes
improves the consumer validation such that it becomes better than the producer veri�ca-
tion. Next, we want to know in general if the combination of the PfP and CPC approach
likely improves the validation of the consumer.

6.4.2 RQ 2: Does Certi�cation Improve the Consumer's Perfor-

mance?

During the examination of the previous research question, we already observed that the
consumer does not always bene�t from the combination of the PfP and CPC approach.
This observation remains valid when looking at all evaluation tasks. The consumer pro�ts
from the combination only in about 15% (20 of 127) of the cases.

The following Tab. 6.2 shows the results for those programs for which an improvement
was achieved. As before, we use the acronym of the re�ned property checking analysis
and the program name to identify the veri�cation task. The next two columns present
the number of merges #t performed and the ratio of transfer successors computed during
veri�cation to the size of the set of ARG nodes. For data�ow analyses, which the PfP
consumer performs, we used this ratio to predict the speed-up of certi�cate validation.
Thereafter, the times for the consumer veri�cation and certi�cate validation of the gener-
ated program as well as the speed-up of the certi�cate validation are shown. The last three
columns display memory usage of the consumer in the PfP and the combined approach
as well as their relation. Again, times are given in seconds and memory usage is given in
MB.

First of all, we observe that the consumer may bene�t from the combination indepen-
dently of the analysis type of the re�ned property checking analysis or the used enabler
analysis. Compared to previous improvements, e.g., in the PfP approach, the improvement
is less signi�cant. This is okay because an improvement on the consumer side becomes
a multiplicative factor in the improvement w.r.t. the producer. Once again, the memory
consumption is mostly improved when the validation time is improved, too. The �rst task
is the only exception for this rule. However, memory consumption is improved less often.
Moreover, larger improvements seem to be linked to a high number of merges. Despite
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Table 6.2: Extract of the comparison of veri�cation and highly reduced, partitioned
certi�cate validation on the generated program, which contains all tasks for which the
time or the memory usage of the combination is better. Next to the validation times and
the memory consumption, for the veri�cation also the number of merges and the ratio
of computed transfer successors to the size of the set of ARG nodes are provided. All
times are given in seconds and memory consumption, used heap plus used non-heap, is
represented in MB.

CP program #t #suc
|N | VC VV

VC
VV

MC MV
MV
MC

OS testlocks7 134 0.36 1.15 1.32 0.87 265.0 259.4 0.98
testlocks8 0 0.19 2.07 1.99 1.04 283.1 297 1.05

VS memslave1* 1744 0.51 0.91 0.58 1.56 273.2 241.1 0.88
memslave2 2261 0.19 1.26 0.78 1.62 296.1 243.8 0.82

PV kb�ltr2* 32 0.42 0.77 0.70 1.10 244.2 260.1 1.07
testlocks12 1 0.26 8.23 8.16 1.01 591.8 557.8 0.94

OV

memslave1 19 0.20 0.35 0.32 1.09 226.8 238.6 1.05
memslave2 255 0.16 0.59 0.29 2.03 229.6 233.2 1.02
kb�ltr1 13 0.36 0.56 0.54 1.03 234.3 244.4 1.04
kb�ltr2 32 0.40 0.96 0.92 1.04 251.6 266.3 1.06

PṼ
memslave1 114 0.09 0.47 0.34 1.39 233.7 241.7 1.03
memslave2 256 0.22 0.63 0.34 1.88 241.2 243.5 1.01
kb�ltr2* 34 0.43 0.84 0.71 1.19 250.6 257.9 1.03

OṼ kb�ltr1 14 0.33 0.55 0.52 1.05 236.9 247.4 1.04

OSI invertsorted 40 0.50 0.81 0.80 1.02 237.7 242.8 1.02

PL s3srvr 0 0.50 3.09 3.06 1.01 340.1 351.6 1.03
VL tokenring04 0 0.10 43.05 42.27 1.02 537.3 547.5 1.02
PS transmitter02 18465 2.37 5.47 1.36 4.02 553.1 253.7 0.46

OS transmitter02 120 0.25 0.31 0.30 1.03 214.4 220.6 1.03
powerapprox 1022 0.51 10.73 7.39 1.45 996.8 553.7 0.56

of a high number of merges, in two cases, the testlocks7 and the second occurrence of
the transmitter02 program, we do not gain a high speed-up. Considering the ratio of
computed transfer successors to the number of ARG nodes, we would not have expected a
high speed-up for these cases. Furthermore, the veri�cation time is small and we assume
that start reading from disk, which takes a �xed amount of time, might be another reason
for the decrease and the low speed-up, respectively. From the opposite point of view,
the memslave examples let us conclude that small veri�cation times do not automatically
prohibit good improvements.

We observed that the consumer rarely bene�ts from the combination. At last, we want
to study the indicators for the performance improvement.

6.4.3 RQ 3: When does Certi�cation Improve the Consumer's

Performance?

To study the indicators for the performance improvement, we �rst need some candidate
indicators. We obtain our �rst candidate indicator from the observation that the precision
adjustment in a property checking analysis part of the producer analysis may widen ab-
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Table 6.3: Extract of the comparison of veri�cation and highly reduced, partitioned
certi�cate validation on the generated program, which contains all tasks for which
the PfP producer analysis uses a non-static precision adjustment in the property
checking analysis part. Next to the validation times and the memory consumption,
for the veri�cation also the number of merges and and the ratio of computed trans-
fer successors to the size of the set of ARG nodes are provided. All times are given
in seconds and memory consumption, used heap plus used non-heap, is represented in MB.

CP program #t #suc
|N | VC VV

VC
VV

MC MV
MV
MC

PṼ

memslave1 114 0.09 0.47 0.34 1.39 233.7 241.7 1.03
memslave2 256 0.15 0.63 0.34 1.88 241.2 243.5 1.01
kb�ltr2* 34 0.43 0.84 0.71 1.19 250.6 257.9 1.03
testlocks6* 64 0.22 0.54 0.60 0.91 229.8 247.5 1.08

OṼ
kb�ltr1 14 0.33 0.55 0.52 1.05 236.9 247.4 1.04
testlocks5* 0 0.22 0.33 0.42 0.78 221.1 238.4 1.08
testlocks5d* 0 0.15 0.12 0.21 0.55 214.1 227.5 1.06

PṼ
testlocks5* 0 0.36 0.65 0.67 0.97 230.8 243.9 1.06
interproc* 0 0.27 0.11 0.22 0.47 213.2 229.8 1.08
nosprintf* 0 0.33 0.15 0.28 0.51 216.3 231.0 1.07

OṼ
testlocks5d* 0 0.21 0.11 0.21 0.52 217.5 224.4 1.03
relax* 3 0.37 0.47 0.55 0.87 230.4 241.4 1.05
nosprintf 0 0.34 0.14 0.26 0.54 216.8 226.3 1.04

stract states while the consumer analysis uses a static precision adjustment operator. For
some locations, the abstract states in the transformed proof may be more abstract than
any abstract state computed by the consumer analysis for the same location. Since we
assume that transfer successor computation of more abstract state is simpler and faster,
certi�cate validation might be faster. Furthermore, the consumer analysis may need sev-
eral iterations to obtain the same abstract state by merging. Hence, our �rst hypothesis
is that the use of a non-static precision adjustment in the property checking analysis may
be an indicator for performance improvements.

To get further indicators, we recapture the CPA algorithm (Algorithm 1) and the
certi�cate validation algorithm (Algorithm 5). The main di�erences are that the CPA
algorithm always considers all abstract states in the termination check and that the CPA
algorithm merges abstract states. Next to the costs for merging, for some program lo-
cations transfer successors must be computed multiple times. Since in CPAchecker

the termination check typically considers only abstract states with same locations, the
�rst di�erence becomes unimportant. Our observations lead us to our second hypothesis,
the merge behavior is one indicator for performance improvements. Next, we continue to
check our hypotheses.

To attest our �rst hypothesis, we investigate the performance of the combination on
all tasks in which the producer used a non-static precision adjustment in the property
checking analysis. Table 6.3 shows all veri�cation tasks in which the precision adjustment
operator is di�erent for the property checking analysis and its DFA version. The meaning
of the displayed columns agrees with those in the previous table.

Looking at Tab. 6.3, we observe that only the validation time is improved. Further-
more, we see that a di�erence in the precision adjustment alone is not su�cient for an
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improvement. Additionally, some merge operations must be performed during the veri�-
cation of the generated program. Whenever the number of merges is below 100, we only
sometimes observe an improvement by the combination. Above this threshold we always
observed an improvement. The dependence on the merge behavior leads us to the inves-
tigation of our second hypothesis: the merge behavior is an indicator for improvement.

To attest our second hypothesis, we investigate the performance of the combination on
all tasks with a su�ciently large number of merges. Table 6.4 (p. 242) shows our results
for all veri�cation tasks for which the PfP consumer performs at least 30 merges. The
presented columns are the same as in the previous table.

Looking at Tab. 6.4, we see that the number of merges is a bad indicator. The reason
is that a high number does not automatically imply large merging costs. Although more
than 100 merges are performed, for many tasks checking that no uninitialized variables
are used the merging costs are less than 10% of the veri�cation costs. Furthermore, the
number of merges does not capture how many abstract states must be reexplored due to
a merge. Thus, we think it is better to use the predictor known from the evaluation of
the con�gurable program certi�cation approach and look at the ratio of the number of
computed abstract successors to the number of ARG nodes. In Tab. 6.4, we highlighted
all tasks in bold face for which the ratio is greater or equal than 0.14. In these cases,
we observe that often the certi�cate validation is at least 40% faster than the veri�cation
of the generated program. Furthermore, note that if the PfP producer uses a non-static
precision adjustment in the property checking analysis, a smaller ratio may be su�cient
for an improvement. For some tasks related to the re�ned property checking analysis PṼ,
the consumer analysis bene�ts from the combination although the ratio is 0.09.

6.4.4 Summary and Final Remarks

Summing up, from a performance point of view the combination is only bene�cial when
merging and reexploration caused by merging is a signi�cant factor for the veri�cation
of the generated program. In these cases, the combination even improves the consumer
validation in such a way that it becomes better than the producer analysis of the original
program. However, we rarely observe signi�cant ratios of the number of explored abstract
states to the number of ARG nodes, the predictor for the costs caused by merging. One
reason may be that in program generation syntactical paths are separated to enable the
veri�cation with the simpler analysis.

Another drawback of the combination of the approaches is that we always need addi-
tional disk storage for the certi�cate. Furthermore, we observed that in 18 cases certi�cate
validation with the generated program is worse than the producer veri�cation of the orig-
inal program. In three cases, the veri�cation of the generated programs is already worse.
In one case, model checking of diskperf with domain PU, the speed-up of the consumer
was only 8%. In all remaining cases, the veri�cation time of the original program was
already below 0.2 s and we assume that the set up time for reading from disk caused the
slowdown.

Although we do not present the numbers, we brie�y want to discuss if selecting the
best results for certi�cation of both generated programs, the one with and without lazy
re�nement, instead of those belonging to the generated program makes any di�erence.
For the memory usage, we observe that the best values performs slightly better in 34
cases. The relation of memory usage of certi�cate validation and generated program
veri�cation can be improved by at most 0.05 percentage points. The validation times can
be improved in 13 cases. Validation times can become at most 0.3 s faster, but the sum of
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all improvements is bounded by 1 s. Hence, we think looking at the best numbers is not
relevant.

6.5 Discussion

Compared to the previous two frameworks, the combination is more storage intensive.
The consumer receives an often bigger generated program or needs to store an additional
certi�cate. This is a price one has to pay to decrease the trusted computing base and to
exclude the termination problem of the Programs from Proofs approach.

Unfortunately, the combination lacks practical applicability. So far, we only realized
and evaluated the naïve combination. However, we think that it is not generally impossible
to implement the two proposed, more sophisticated combinations. One only needs to
further investigate on the CFA construction process to get a deeper insight how the CFA
of the generated program will look like.

Also the e�ciency of the combination is disappointing, we rarely observed a per-
formance improvement. While we tried to cover a large variety of con�gurations and
properties and, thus, showed generality of our approach, our set of 127 veri�cation tasks
is comparatively small. To con�rm the performance observations, the evaluation should
be repeated on a larger set of benchmarks including larger and more practically relevant
programs. Furthermore, we can imagine that our combination bene�ts from additional
parallelization in the consumer analysis, e.g., inspecting a partition element in parallel or
checking multiple partition elements in parallel. Note that such a parallelization is simple
to realize. However, in this thesis we focused on the feasibility of a combination and the
theoretical properties of such a combination. We did not consider further improvements
of the combination. The e�ect of an additional consumer analysis parallelization should
de�nitely be evaluated in future.

From a theoretical point of view, both proposed combinations are satisfactory. Both
approaches are well-founded, i.e., they are sound and relatively complete. Furthermore,
the consumer analysis can be performed fully automatic. Our integration of the PfP and
CPC approach guarantees the automation property stated in the introduction.

Looking at the two alternatives to generate the certi�cate in the combination, we
showed that the constructed certi�cates are the same when a certi�cate, a highly reduced
certi�cate, a full, partitioned certi�cate, or a highly reduced, partitioned certi�cate for the
generated program should be created. For these certi�cates, the certi�cate construction
depends on the structure of the ARG only. Since the original and the transformed ARG
have the same structure, the certi�cate construction is principally the same. We do not see
any reason to apply the �rst combination, the certi�cate generation from the transformed
producer's proof, which is more memory consumptive due to the ARG transformation,
when the producer wants to construct a certi�cate, a highly reduced certi�cate, a full, par-
titioned certi�cate or a highly reduced, partitioned certi�cate for the generated program.
When the producer would like to built a reduced certi�cate or a reduced, partitioned cer-
ti�cate, the choice of the combination technique depends on the producer's preferences,
less memory consumptive generation or a smaller certi�cate, and the producer's veri�ca-
tion con�guration. Remember that for some of our examples the reduced and the highly
reduced node set are the same. The equivalence is often caused by the properties of the
veri�cation con�guration, e.g., no widening in the precision adjustment, an abstract state
is merged with at most one explored abstract state, and a merge always guarantees that
the termination check returns true. In these cases, the second combination, the transfor-
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mation of certi�cates, should be preferred. In all other cases, the producer's preferences
dictate which combination to use.

6.6 Related Work

The combination of the Programs from Proofs and the con�gurable program certi�cation
approach reused many components of these two approaches. The only new component
is the certi�cate construction for the generated program. Since related work for the
reused tasks has already been studied in the previous chapters, we focus on related work
that deals with certi�cate construction for generated programs. As done in the naïve
combination, one opportunity to produce a certi�cate for the generated program is to
apply an existing approach for program certi�cation on the generated program. Such
approaches for program certi�cation have already been considered in Section 4.6. In the
following, we only discuss approaches that produce certi�cates for the generated program
while being aware of the program generation.

Proof Producing Generators We start to study approaches in which the entity that
produces the generated program helps to or even entirely constructs the proof.

A certifying compiler [NL98b, RD99, PHG05, GKD+07] compiles a source program
into a target program and additionally constructs a certi�cate witnessing certain proper-
ties of the target program. The �rst certifying compiler, the Touchstone compiler [NL98b],
certi�es properties related to type and memory safety. Later, also I/O equivalence of the
source and target program [RD99, PHG05] and semantic equivalence of the output traces
of the source and target program [GKD+07] are considered.

Compilers are not the only generators that construct certi�cates witnessing correctness
properties during program generation. Fischer et al. [WSF02] present a certi�cation ex-
tension of a template based source code synthesizer. In their approach, the template used
for code synthesis must carry template annotations related to the property of interest.
With the help of the template annotations, the synthesizer adds the concrete annotations,
preconditions, postconditions, and loop invarinats to the generated program. Afterwards,
a theorem prover utilizes the annotations of the generated program to prove the correct-
ness of the program w.r.t. the property of interest. Myreen et al. [MO14] describe how
to translate a program written in higher order logic into a ML program, simultaneously
constructing a proof that the transformation is semantics preserving.

In the described approaches, the generator that generates the program also constructs a
proof based on the knowledge obtained during generation. In contrast to these approaches,
we start in a di�erent situation. We do not start from scratch to get a proof for the
generated program, but we already have a proof for the program which we transform and
which we use to construct the proof for the generated program. Furthermore, certi�cate
construction must not proceed simultaneously with the program generation.

Translation Validation In 1998, Pnueli, Siegel, and Singerman introduced the concept
of translation validation [PSS98]. The idea of translation validation is that after transla-
tion, an external analyzer gets the original and translated program and constructs a proof
that the translation was correct. Di�erent variants of proof and correct translation exist
in the literature, some are discussed below. Originally [PSS98], the translation validator
inductively proved that the translated program is a re�nement of the original one. A simi-
lar induction principle is used by Ryabtsev and Strichmann [RS09] to prove correctness of
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a Simulink to C translation. Necula [Nec00] describes how an optimizing compiler ensures
after each optimization step that the original and the optimized code are equivalent in the
sense that the sequence of call and return statements are the same. In the approach by
van Engelen et al. [vEWY04], the translation validator proves that the order of function
calls and the memory output remains the same. In contrast to typical translation vali-
dation approaches, not the complete program, but only those parts that are a�ected by
the transformation are considered in the proof. Myreen et al. [MSG09] present a transla-
tion validator proving I/O equivalence. Their translation validator uses proof producing
decompilation to extract the function of the translated program and then uses a theorem
prover to show equivalence of the original function with the extracted function.

In contrast to translation validation, we do not want to certify a correct transforma-
tion but we want to modify an existing proof, certi�cate s.t. it can be applied on the
generated program. Furthermore, the consumer may be unaware of the program gener-
ation step at the producer. The generated program is the good traded by the producer.
Theoretically, we already showed that the generated program is semantically equivalent.
Thus, the producer should ensure that the implemented generation is correct. Although
it is currently not integrated into the program generation task, the producer might use
the concept of translation validation to ensure that the implemented program generation
worked as intended.

Proof Transformation In this paragraph, we examine approaches that adapt existing
proofs into a valid proof for the generated program.

The simplest form of adaption is to reuse the existing proof for the original program
for the transformed program. Barthe et al. [BRS06] show that for their �xed compilation
of their imperative language into their assembly language, the proof obligations obtained
by their weakest precondition semantics for the imperative program, the source program,
and the compiled assembly program are syntactically equivalent. Proof obligations are
preserved along the compilation, a simple translation without any optimizations. Thus,
the proof, the certi�cate, for the source program can be reused for the compiled pro-
gram. Similar results are obtained for their compilation of a Java fragment into Java
bytecode [BGP08]. Saabas et al. [MUSU06] show that in their compilation from lan-
guage WHILE to SGOTO and SGOTO to WHILE the derivable Hoare logic triples are
preserved.

Rival [Riv03, Riv04] proposes a technique called invariant translation to transfer the
result of an abstract interpretation from a source program to its compiled program. The
translation is based on two mappings, a mapping between some of the original and the
compiled program locations and a mapping between some variables of the original and
the compiled program. The idea is that the mappings relate the original program and
the compiled program s.t. after a correct compilation the observational semantics de�ned
by the mappings is the same. To translate an invariant, a mapping of program locations
to abstract states, a projection function restricts the invariant to locations and variables
occurring in the mapping. Then, an invariant translation function translates the restricted
invariant into the restricted abstract domain considered by the compiled program.

Certi�cate translation [BGKR06, BGKR09, BK08, BK11a] is an approach to trans-
form a certi�cate for a program along a single program optimization to get a certi�cate for
the optimized program. A certi�cate consists of a set of proofs for the proof obligations
obtained from the speci�cation, the program annotation, and the program semantics.
The underlying idea of certi�cate translation is to integrate the information used for op-
timization into the certi�cate. For example, a certifying analyzer is used to compute the
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data�ow facts that are needed for the optimization and to create a certi�cate for the
correctness of the data�ow facts. These data�ow facts are integrated into the annota-
tions of the optimized program where needed. Then, the certi�cate translator builds a
certi�cate from the original certi�cate, the certi�cate for the data�ow facts, and possibly
a justi�cation for the optimization changes. A justi�cation shows that the annotations
of the original program in combination with the data�ow facts imply the annotation of
the optimized program. Generally, Barthe et al. show the existence of certi�cate transla-
tors for standard compiler optimizations and present example instances. In early stages
[BGKR06, BGKR09], Barthe et al. studied certi�cate translation in the context of register
transfer language programs and proof obligations computed via the weakest precondition
calculus for the register transfer language. In subsequent work [BK08, BK11a], Barthe
et al. generalized certi�cate translation. Optimizations of arbitrary programs that can
be represented by control �ow graphs are considered. Furthermore, program annotations
are relaxed to abstract states and proof obligations are derived with the help of abstract
interpreters matching the annotation.

A proof-transforming compiler [MN07, NMM08, NCM14] translates a source code
proof into a bytecode proof. The proof-transforming compiler transforms a proof, e.g.,
a derivation tree, given in a special Hoare logic. The transformation is based on trans-
formation functions for statements and expressions. Nordio et al. [NCM14] additionally
require transformation functions for methods and classes.

Saabas et al. suggest a technique called proof optimization [JOS+09] to transform a
Hoare logic proof on the original program into a Hoare logic proof for the optimized
program. In proof optimization, the data�ow analysis result, which is described by a type
derivation and which was used to optimize the program, is utilized to guide the proof
transformation. Saabas et al. [JOS+09] demonstrate the concept of proof optimization for
a partial redundancy elimination optimization.

Hurlin [Hur09] describes an approach that rewrites a separation logic proof, a Hoare
triple based derivation tree, for a sequential program into a valid derivation tree for a
parallel program. Based on the inference rules, the basic idea underlying the rewriting
is to transform sequential executions that consider di�erent parts of the heap to run in
parallel. Thus, rewriting does not only adapt the proof, but simultaneously generates the
parallel version of the original program.

Our proof construction uses the same underlying idea as all the approaches presented
in this paragraph: transform an existing proof for the original proof into a proof for
the generated program. However, the presented approaches consider transformation sce-
narios in which the program is translated into a low-level language or the program is
optimized. We use program transformation to simplify program validation. Furthermore,
in our combination the consumer validation is based on a simpler abstract domain than
the producer's proof. We cannot reuse the producer's proof. In comparison with proof-
transforming compilers [MN07, NMM08, NCM14], proof optimization [JOS+09], and the
approach by Hurlin [Hur09] one major di�erence is that we use proofs, certi�cates, based
on abstract states instead of Hoare logic. Similar to us, Rival [Riv03, Riv04] translates in-
variants obtained from abstract interpretation. Though, the approach requires a mapping
of the original and generated program, an abstract domain for the generated program, and
an invariant translation function. At the cost of �exibility, in our approach the abstract
domain of the producer's proof dictates the abstract domain for the certi�cate of the
generated program. Moreover, the transformation procedure is automatically de�ned by
the producer's proof. Similar to invariant translation [Riv04], the certi�cate translation
approach [BGKR06] only provides example instances of certi�cate translators and focuses
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on the existence of certi�cate translators. Additionally, certi�cate translation focuses on
proofs written in a proof algebra. Finally, none of the approaches transform abstract
reachability graphs.

241



CHAPTER 6. INTEGRATION OF PFP AND CPC

Table 6.4: Extract of the comparison of veri�cation and highly reduced, partitioned
certi�cate validation on the generated program which contains all tasks for which the
PfP consumer veri�cation merged at least 30-times. Next to the validation times and the
memory consumption, for the veri�cation also the number of merges and and the ratio
of computed transfer successors to the size of the set of ARG nodes are provided. All
times are given in seconds and memory consumption, used heap plus used non-heap, is
represented in MB.

CP program #t Tt VC VV
VC
VV

MC MV
MV
MC

PI NetBSD* 64 0.02 0.08 0.15 0.53 214.9 225.1 1.05

OI sendmail 71 0.04 0.24 0.32 0.76 218.1 230.7 1.06
invertstring 42 0.02 0.20 0.31 0.63 215.7 227.7 1.06

PS harmonicMean* 50 0.03 0.14 0.18 0.76 207.1 217 1.05
lockfree3.0* 49 0.02 0.12 0.17 0.67 202.3 214.2 1.06

OS testlocks7 134 0.26 1.15 1.32 0.87 265 259.4 0.98

VS

kundu* 60 0.08 0.36 0.41 0.87 214.9 229.3 1.07
memslave1* 1744 0.31 0.91 0.58 1.56 273.2 241.1 0.88
memslave2 2261 0.43 1.26 0.78 1.62 296.1 243.8 0.82
lockfree3.1* 38 0.02 0.12 0.17 0.69 204 210.3 1.03

PSI invertsorted* 41 0.07 0.67 0.71 0.95 233.8 238.1 1.02

PU cdaudio 149 0.04 2.70 2.79 0.97 345.7 354.2 1.02
pipeline2* 96 0.02 0.23 0.32 0.73 211.5 226 1.07

OU pipeline 320 0.05 1.15 1.32 0.87 256.1 264.7 1.03
pipeline2 993k 91.63 Proof Construction Failed

VU cdaudio 190 0.06 2.89 2.90 1.00 344.8 351.9 1.02
pipeline2* 163 0.03 0.32 0.42 0.76 221.5 231.7 1.05

PV kb�ltr2* 32 0.05 0.77 0.70 1.10 244.2 260.1 1.07

OV
memslave2 255 0.14 0.59 0.29 2.03 229.6 233.2 1.02
testlocks6 63 0.03 0.36 0.45 0.80 226.4 239.4 1.06
kb�ltr2 32 0.04 0.96 0.92 1.04 251.6 266.3 1.06

PṼ

memslave1 114 0.09 0.47 0.34 1.39 233.7 241.7 1.03
memslave2 256 0.16 0.63 0.34 1.88 241.2 243.5 1.01
kb�ltr2* 34 0.05 0.84 0.71 1.19 250.6 257.9 1.03
testlocks6* 64 0.04 0.54 0.60 0.91 229.8 247.5 1.08

OSI invertsorted 40 0.08 0.81 0.80 1.02 237.7 242.8 1.02

PS
kundu* 85 0.09 0.60 0.76 0.80 228.5 241.3 1.06
transmitter01* 106 0.08 0.18 0.21 0.86 206.1 218.3 1.06
transmitter02 18465 2.85 5.47 1.36 4.02 553.1 253.7 0.46

OS
transmitter01 88 0.08 0.18 0.23 0.78 205.2 216.2 1.05
transmitter02 120 0.14 0.31 0.30 1.03 214.4 220.6 1.03
powerapprox 1022 3.48 10.73 7.39 1.45 996.8 553.7 0.56

VS transmitter02* 114 0.10 0.21 0.34 0.63 206.2 218.6 1.06

PU cdaudio 203 0.06 4.69 5.07 0.93 449.8 456.8 1.02
diskperf 53 0.05 3.64 4.00 0.91 359.1 372.4 1.04

OU pipeline 461 0.07 1.18 1.32 0.89 260.2 260.3 1.00
pipeline2 993k 95.84 Proof Construction Failed

VU cdaudio 188 0.07 3.63 3.69 0.98 380 381.7 1.00
pipeline2* 155 0.03 0.31 0.39 0.79 220.2 231.4 1.05
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In this thesis, we presented and evaluated various solutions to disclose the quality of soft-
ware programs in global on-the-�y markets. All solutions follow the two-party protocol de-
scribed in the introduction (see Fig. 1.1). The goal of this protocol is an e�cient consumer
validation that a purchased program adheres to a certain correctness property. Thereto,
the software producer enriches that program with additional information obtained dur-
ing his veri�cation. To guarantee a broad applicability, the correctness property and the
veri�cation can be con�gured.

We proposed solutions from two lines of research, con�gurable program certi�cation
and Programs from Proofs, and discussed their integration. Always, the producer starts
with an enhanced con�gurable program analysis. The enhanced con�gurable program
analysis uses the concept of a con�gurable program analysis [BHT07, BHT08] to set the
analysis abstraction and its type. Additionally, an enhanced con�gurable program analysis
integrates the inspection of a safety property, which is speci�ed by a property automaton,
into the analysis. When the analysis succeeds to verify the con�gured property, it returns
a proof, an abstract reachability graph of a particular shape. Depending on the analysis
con�guration, the ARG is well-formed or strongly well-formed. Next, the producer uses
the ARG to enrich the program with additional information. This is di�erent for the two
lines of research.

The con�gurable program certi�cation approaches construct a certi�cate. In the basic
form, the certi�cate contains the ARG nodes. The certi�cate of the �rst optimization, the
reduction approach, mainly stores a subset of the ARG nodes. This subset contains all
ARG nodes that cannot be easily recomputed. To get a smaller trusted computing base
and to avoid a �xed exploration order during validation, which is especially important for
parallel validation, we decided to store more nodes than many related approaches. Our
second optimization partitions the certi�cate, either the basic or the reduced variant, into
a set of elements that can be checked independently. Thus, certi�cate reading and the
certi�cate validation algorithm can be executed in parallel. Given a certi�cate and the
program, the consumer derives his validation con�guration from the producer's analysis
con�guration and then checks that the certi�cate represents or is extendable to a safe
overapproximation of the program's reachable state space.

The Programs from Proofs approach integrates the information, which simpli�es the
consumer validation, into the program itself. It restructures the program s.t. the restruc-
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tured program can be veri�ed with a simple property checking data�ow analysis instead
of a re�ned property checking analysis. Basically, the ARG becomes the restructured
program. Thus, the approach deletes infeasible paths detected by the producer analysis
or separates syntactical paths that are separated in the ARG. To validate the restructured
program, the consumer also executes an enhanced con�gurable program analysis, but he
only uses the property checking analysis part of the producer analysis and recon�gures it
to a data�ow analysis.

The proposed combination of the two approaches builds a certi�cate for the restruc-
tured program. Like in the Programs from Proofs approach, the producer starts with a
re�ned property checking analysis and then computes the restructured program. Addition-
ally, one of the certi�cates known from con�gurable program certi�cation is constructed
for the restructured program. The certi�cate can be validated with a validator derived
from the consumer analysis in the PfP approach, the property checking analysis part of
the producer analysis, which is recon�gured to perform a data�ow analysis. To derive
the certi�cate, either the ARG is transformed into an ARG for the restructured program
and standard certi�cate construction is used or a certi�cate is constructed for the origi-
nal program that is translated into a certi�cate for the restructured program. Given the
restructured program and the certi�cate, the consumer performs the standard certi�cate
validation proposed by the respective CPC instance.

To ensure the applicability of these solutions, we examined the �ve properties put on
them as realizations of the two-party protocol depicted in Fig. 1.1. We always proved
soundness and relative completeness. Additionally, we identi�ed the constraints that
ensure that our solutions run automatically. Practically relevant con�gurations meet these
constraints. E�ciency is studied experimentally. All approaches are implemented in the
software analysis tool CPAchecker [BK11b]. For the certi�cate validation algorithms,
we even implemented a sequential and a parallel version. We evaluated all our approaches
with di�erent analyses, programs, and properties. Our experiments revealed that not
only in theory, but also in practice our approaches are generally applicable. For all of the
approaches, we observed that for some tasks the consumer validation is e�cient, much
better than the producer analysis w.r.t. execution time and memory usage. Furthermore,
e�ciency is not restricted to particular properties or analyses. For practical usability,
we also analyzed when the approaches are e�cient. Next, we compare the strengths and
weaknesses of our approaches.

7.1 Discussion

First, let us look at the trusted computing base of the approaches. In the CPC approaches,
the consumer must trust the validation con�guration, typically the abstract domain, the
transfer relation, and the termination check operator of the veri�cation con�guration,
plus the respective validation algorithm. In contrast, the consumer validation in the PfP
approach relies only on the CPA algorithm and the property checking analysis. The
combined approach neither requires a merge and precision adjustment operator nor the
enabler analysis. Thus, the combination of the PfP and the CPC approach has the smallest
trusted computing base. However, it is di�cult to compare the trusted computing base
of the PfP approach with the one of the CPC approach. We think that the complexity
of the CPA algorithm and the validation algorithms are similar. It should not matter
much which algorithm is in the trusted computing base. The main problem are the
con�gurations. The validation con�guration can get rid of the merge and the precision
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adjustment operator. The analysis con�guration of the consumer in the PfP approach
does not require the enabler analysis. Although it is di�cult to compare these elements,
we believe that the enabler analysis is more complex. The trusted computing base of the
PfP approach seems to be smaller than the one of the CPC approach.

Next, we compare the approaches based on our �ve requirements. All approaches are
proven sound. In contrast to the CPC approach and the combination, the PfP approach is
not always relatively complete. For some producer analysis con�gurations, we fail to prove
termination of the consumer analysis. These con�gurations are uncommon in practice.
Also, the CPC approach has a theoretical limitation. While the PfP approach and the
combination always run fully automatic, the CPC validation requires manual intervention
when the termination check is not well-behaving. However, practically relevant termina-
tion checks are well-behaving. Once again, the combination performs best with respect to
automation, soundness, and relative completeness. The CPC and the PfP approach su�er
from di�erent weaknesses, which are less important in practice.

Now, we discuss the generality of the approaches. Some of the CPC approaches require
monotonic transfer relations and all of them require well-behaving coverage checks to
ensure relative completeness. One can always choose a variant that does not rely on
monotonic transfer relations. Additionally, in theory one could always select the well-
behaving coverage check cover(e, S) := JeK ⊆

⋃
e′∈S

Je′K. However, its implementation might

be complicated. Theoretically, the CPC approach works with every con�guration. In
contrast, the PfP approach, and thus the combination, is not applicable to such a broad
class of analyses. First, the producer analysis must be at least �ow-sensitive � remember
we required the location CPA. Furthermore, the transfer relation must be a function and
the producer analysis requires a re�ned property checking analysis, a restrictive form of
a combined CPA. This combined CPA links an enabler analysis with a property checking
analysis s.t. the enabler analysis does not directly in�uence the property checking analysis
and only the property checking analysis inspects the property. Moreover, the PfP approach
and the combination can only be used to assure properties expressible in control state
unaware property automata.

The last requirement is e�ciency. First, we like to mention that validation in both
approaches often performs equally well or better than competing validation approaches.
Furthermore, the best CPC approach and the PfP approach outperform the veri�cation
for many tasks. Considering the best CPC approach, we observe that the CPC approach
achieves higher speed-ups and more severely decreases the memory usage. The CPC
approach also achieves signi�cant speed-ups for more tasks, but relating the number of
tasks with high speed-ups to the number of tasks the PfP approach is better. Of course,
such a comparison is not really meaningful. Since we used a much larger set of tasks in
the CPC evaluation and we picked our PfP tasks manually, we could have selected our
PfP tasks luckily. However, we also compared the PfP and the CPC approach on the
PfP tasks and often the PfP validation is slightly faster. This supports the impression
that the PfP approach is more e�cient than the CPC approach. In cases, in which the
combination can improve the PfP approach considerably, the combination can be better
than the CPC approach, but need not be.

Besides e�ciency, we also studied the storage overhead of our approaches. The CPC
approach additionally needs to store a certi�cate and in the PfP approach the program can
become signi�cantly larger. Restructured programs are not always larger. Furthermore,
during evaluation of the PfP approach we observed that the CPC certi�cates are often
larger than the increase of the restructured program. The storage overhead of the CPC
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approach seems to be larger than the one of the PfP approach. Since the combination
stores the restructured program plus a certi�cate, its storage overhead is the largest.

Finally, we would like to remark that certi�cate generation, particularly in the par-
titioning approach, can be more challenging than the construction of the restructured
program. On the one hand, the construction of a (full,) partitioned certi�cate is some-
times really time consuming. On the other hand, the con�guration of a proper partition
is already di�cult due to the large degree of opportunities.

Based on these insights, we suggest to use the CPC approach whenever the PfP ap-
proach is not applicable. Since at �rst glance the PfP approach seems to be slightly more
e�cient, has less storage overhead, and likely a smaller trusted computing base, we would
prefer the PfP approach over the CPC approach. Nevertheless, when the consumer vali-
dation in the PfP approach does not terminate or is ine�cient, i.e., the number of transfer
successors computed during validation is much larger than the number of program loca-
tions, we suggest to use the combination of the approaches. We think that whenever the
producer would like to use the PfP approach, it can be expected that he tries out the
consumer validation, too. If the validation reveals, that it will not terminate or takes too
long, the producer should switch to the combined approach.

7.2 Future Work

For all our approaches, we have one improvement in mind, which aims at an extension
of the producer analysis. Sometimes, a single analysis is not su�cient to prove that a
program ful�lls a certain property. In such a case, multiple analyses can be used, each
considering a part of the program. Techniques like conditional model checking [BHKW12]
can be used to realize such a cooperation of analyses. When all analyses are successful,
each analysis produced an incomplete, but safe ARG. Furthermore, the set of ARGs
constructed by all analyses form a valid proof. To support veri�cation with multiple
analyses in our approaches, we suggest to transform the set of ARGs into a single ARG.
We assume that the root node of all ARGs considers the same set of locations. The idea
for the combination is to use some kind of product construction. The combination starts
with the combination of the root nodes. Given a combined state, we determine the ARG
successors in the combined ARG. For each CFA edge appearing on a label of an ARG
edge which leaves one of the ARG nodes considered in the combined node, we check if
transfer successors for this edge exist for all states considered in the combined state. If
no successor exists for at least one of these states, no ARG edge for this CFA edge will
be introduced in the combined ARG. Otherwise, we compute for each combined state the
ARG successors reachable via that CFA edge. If no ARG successors exists for a state,
i.e., the corresponding partial veri�cation does not consider that part of the program
state space, we will use the top state as only successor. Then, the cartesian product of
these successors become those ARG successors that are reachable by that CFA edge from
the combined state. We are con�dent that we can use the combined ARG to construct
certi�cates that can be validated with a con�gurable certi�cate validator derived from the
product combination of the analyses. Furthermore, we think that the combined ARG can
be used in the PfP approach or the combination of the PfP and the CPC approach when
the analyses consider the same property checking analyses. Nevertheless, termination of
the PfP consumer veri�cation may still be an issue. However, we are not sure whether
our idea to support veri�cation by multiple analyses also works if not only the enabler
analysis but also the property checking analysis is di�erent. Moreover, we still do not
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know which safety properties are covered by the PfP approach. This question leads us to
future work w.r.t. our property speci�cation.

Property Speci�cation First of all, we are interested in the expressiveness of our
property speci�cation language, the property automata. We would like to know if property
automata cover all safety properties or if property automata can only describe a subclass
of the safety properties. In the latter case, we want to investigate which class(es) of safety
properties can and cannot be expressed by a property automaton.

On purpose, we restricted property automata to deterministic transition relations.
Our intuition was that the property automata do not become more expressive with non-
deterministic transition relations. To prove this intuition, we suggest to use a powerset
construction similar to the one that is used to prove the equivalence of deterministic and
nondeterministic �nite automata [RS59]. However, we must take the concrete states into
account. First, the transitions must be split s.t. after splitting the resulting property
automaton is equivalent to the original property automaton, but for any two transitions
(q, op1, C1, q1), (q, op2, C2, q2) either op1 6= op2, C1 = C2, or C1 ∩ C2 = ∅. Afterwards,
standard powerset construction can be used.

For the Programs from Proofs approach, we need control state unaware property au-
tomata. Syntactically, control state unaware property automata are a subclass of the
property automata. However, we are unsure if this is also a semantic restriction, i.e.,
the PfP approach can assure fewer properties. At best, we could transform an arbitrary
property automaton A into a control state unaware property automaton A′ s.t. the two
property automata agree on program safety, i.e., ∀I ⊆ C,P : P |=I A ⇐⇒ P |=I A′.
For the Programs from Proofs approach, it would be su�cient to show a weaker property.
The two property automata, the property automaton A and the transformed, control state
unaware property automaton A′, must only agree on the safety of the original program P ,
i.e., ∀I ⊆ C : P |=I A ⇐⇒ P |=I A′. We could imagine that for deterministic programs
it is possible to �nd a transformation that ensures at least P |= A ⇐⇒ P |= A′. Instead
of referring to the corresponding location directly, our idea is to encode the paths from
the initial location to the corresponding location in the control state unaware property
automaton. Typically, the producer and the consumer are interested in program safety
w.r.t. the states considering the initial program location. From a practical point of view, a
transformation that ensures at least P |= A ⇐⇒ P |= A′ often eliminates the restriction
to control state unaware property automata. Still, there are open research questions w.r.t.
the proposed approaches. Next, we consider open questions for the CPC approach.

Con�gurable Program Certi�cation We have two ideas for future improvements of
the con�gurable program certi�cation approaches.

To reduce the memory consumption, we can imagine to follow the idea of Klohs et al.
[Klo09] and keep abstract states in memory as long as they are required for certi�cate
checking. Property checking must be performed per abstract state and must be moved
to the loop that explores the transfer successors of an abstract state. A simple solution
for the validation of reduced certi�cates, which does not need any bookkeeping, forgets
all explored states that are not part of the reduced certi�cate, after the state's successors
are explored. However, it must use a counter for the explored states instead of using the
reached set size. For the other validation algorithms, we may require some bookkeeping,
which tells the respective algorithm when to forget an abstract state.

Software programs are often updated, errors are corrected or new features are inte-
grated. So far, each time the complete certi�cation process must be performed after each
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update. Following the idea of Albert et al. [AAP06], we do not want to perform the com-
plete CPC approach, especially not the complete consumer validation. Instead, we would
like to send to the consumer the information how to update the program and how to adapt
the certi�cate and then let the consumer revalidate those parts that are a�ected by the
update or the changed certi�cate. The next paragraph presents open research questions
w.r.t. the Programs from Proofs approach.

Programs from Proofs Program restructuring is the factor of success for the PfP
approach, but restructuring also invalidates certain properties of the program. We know
that only properties expressible by control state unaware property automata remain valid
after program restructuring. Moreover, validity is not su�cient. To convince someone
of the validity of a property, it must be provable. We already showed that provability,
except for termination, is kept when the property can be proven with a data�ow analysis.
However, many di�erent analysis types may be used to prove a property. Thus, we should
investigate under which conditions which other analyses can prove a property on the
restructured program, when they already successfully proved the property on the original
program. Similarly, the next paragraph proposes to extend the integration of the PfP and
the CPC approach to show the validity of a property on the generated program with the
help of a translated certi�cate.

Integration of PfP and CPC To further integrate the two approaches, we are specif-
ically interested in certi�cate translation. The question is whether it is possible to trans-
form a valid certi�cate for the original program into a valid certi�cate for the generated
program. This has several advantages. First, we do not need to re-execute the producer
part of the CPC approach after the application of the PfP approach. The PfP and the
CPC approach can be used together to ensure di�erent properties without considering the
order of their application. Second, also our proposed integration of the PfP and the CPC
approach becomes transitive.

Similar to program provability, we think that certi�cate translation may be infeasible
if the property is not expressed by a control state unaware property automaton. If the
abstract states do not consider concrete locations, we can imagine to reuse the existing
certi�cates. Given that abstract states store concrete locations, a �rst idea for the trans-
lation of the basic certi�cate copies for each location l′ = (l, . . . ) in the generated program
all abstract states e referring to location l and replaces the location information in e by l′.
We are not sure if a similar transformation can be applied to the other types of certi�cates.
However, we believe that the idea can be re�ned to transform at least a well-formed ARG
into a well-formed ARG for the generated program. This ARG can be used to construct
the other certi�cates.

7.3 Resume

We proposed three instances of the abstract protocol (cf. Fig. 1.1), a generic solution to
disclose the quality of a software program in global on-the-�y markets. All three of them
are competitive with state of the art and more or less meet the �ve requirements put on
all instances of the abstract protocol. Moreover, the choice for one of the three instances
mainly depends on the property of interest and the producer veri�cation. Future research
directions provide us an even deeper understanding of the frameworks' limits and, more
importantly, enlarge the application scenario of the frameworks presented in this thesis.
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A.1 Outstanding Proofs for Chapter 2

Programs and Their Veri�cation

Lemma 2.2. If Algorithm 2 started with CPA CA enhanced with property automaton A =
(Q, δ, q0, qerr), program P , initial abstract state e0 = (e, q0) ∈ ECA , and arbitrary preci-
sion π0 ∈ ΠCA returns (true, . . . ), then for every path p ∈ pathsP (Je0K) there exists a
con�guration sequence (c0, q0) . . . , (cn, qn) for p and A s.t. ∀0 ≤ j ≤ n : qj 6= qerr.

Proof. Let reached′ be the reached set considered in line 29. We show by induction over
the length of paths p ∈ pathsP (Je0KCA) that a con�guration sequence (c0, q0) . . . , (cn, qn)
for p and A exists s.t. ∀0 ≤ j ≤ n : ∃ej ∈ reached′ : cj ∈ JejKCA ∧ ej = (·, qj) ∧ qj 6= qerr.

Basis Let c0 ∈ pathsP (Je0KCA) be a path of length 0. From the de�nition of paths, we
know that c0 ∈ Je0KCA . By de�nition (c0, q0) is a con�guration sequence for path
c0 and A. Since Algorithm 2 added e0 to reached in line 1, it replaces elements
e′′ in reached only in line 12 and only by more abstract states enew, e′′ vCA enew

(de�nition of enew and Eq. 2.5), and partial order vCA is transitive, there exists
e′0 = (e′, q′) ∈ reached′ with e0 vCA e

′
0. By requirements on vCA and c0 ∈ Je0KCA ,

we get c0 ∈ Je′0KCA . By de�nition of vCA , we can conclude that q0 v q′. Since Q
is a �at lattice, either q′ = q0 or q′ = q>. We know that q′ = q0 6= qerr because
Algorithm 2 returned (true, ·, ·).

Step Let p := c0
g1→ c1 . . . ci−1

gi→ ci ∈ pathsP (Je0KCA) be a path of length i. By de�nition
of paths, p′ := c0

g1→ c1 . . . ci−1 ∈ pathsP (Je0KCA) and p′ has length i − 1. From
induction, we know that a con�guration sequence (c0, q0) . . . , (ci−1, qi−1) for p′ and
A exists s.t. ∀0 ≤ j ≤ i − 1 : ∃ej ∈ reached′ : cj ∈ JejKCA ∧ ej = (·, qj) ∧ qj 6= qerr.
Algorithm 2 always adds a pair of abstract state e and a precision π to waitlist if
it adds e to reached, it removes an element (e′, ·) from waitlist only in line 4 or
if it removes e′ from reached. Since ei−1 ∈ reached′, we know that there exists
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at least one pair (ei−1, πi−1) which was removed from waitlist in line 4. Hence,
Algorithm 2 computed ei−1's abstract successors in line 6. From ci−1 ∈ Jei−1KCA
and ci−1

gi→ ci, we can conclude that an abstract transition(ei−1, gi, es) ∈ CA exists
with ci ∈ JesKCA (overapproximation of transfer relation Eq. 2.2). From de�nition
of  CA , especially transfer relation of most precise enhancement and enhancement,
and qi−1 ∈ Q (follows from con�guration sequence for p′), we can conclude that
es = (·, qs) and either (qi−1, op, Csub, qs) ∈ δ with ci ∈ Csub and gi = (·, opi, ·),
or qs = q>. Either Algorithm 2 added es into reached or the termination check
returned true in line 18 while checking es. In the �rst case, let er = es. In the
second case, we know from soundness of the termination check, that there exists
ec ∈ reached with ci ∈ JecKCA . By the de�nition of most precise enhancement and
enhancement, we know that ec = (·, qc) and qs v qc. Since Q is a �at lattice, either
qc = qs or qc = q>. In the second case, now let er = ec. Since er was an element
of reached, Algorithm 2 replaces elements e′′ in reached only in line 12 and only by
more abstract states enew, e′′ vCA enew (de�nition of enew and Eq. 2.5), and partial
order vCA is transitive, there exists e′r = (e∗, q∗) ∈ reached′ with er vCA e′r. By
requirements on vCA and ci ∈ JerKCA , we get ci ∈ Je′rKCA . By de�nition of vCA and
transitivity of vCA , we can conclude that qs v q∗. Since Q is a �at lattice, either
qs = q∗ or q∗ = q>. We know that q∗ 6= q> and q∗ 6= qerr because Algorithm 2
returned (true, ·, ·). From this, we conclude that qs ∈ Q and qs 6= qerr. We �nally get
from the de�nition of a con�guration sequence that (c0, q0) . . . , (ci−1, qi−1)(ci, qs) is
a con�guration sequence for p and A. The induction hypothesis follows.

Lemma 2.5. If Algorithm 2 started with CPA CA enhanced with property automaton A,
program P , initial abstract state e0 ∈ ECA , and arbitrary precision π0 ∈ ΠCA returns
(·, ·, RP

CA), then R
P
CA is an abstract reachability graph for P and CA.

Proof. Let RP
CA = (N ′, G′ARG, root

′, N ′cov).
Algorithm 2 only adds abstract states of the input domain DCA to reached. It follows

that reached ⊆ ECA . Since Algorithm 2 adds at most one element to reached when it
changes reached and it terminates, it can change reached only �nitely many times. Hence,
reached is �nite. In line 29, N ′ = reached. Thus, N ′ ⊆ ECA and N ′ is �nite.

In line 2, root becomes e0 and in line 1 reached := {e0}. Obviously, e0 ∈ reached.
If Algorithm 2 removes root from reached which is only possible in line 12 (root = e′′),
then in line 15 it updates root by enew ∈ reached which was added to reached in line 12
(e′′ 6= enew). We can conclude from line 29 that root′ = root, N ′ = reached and from
root ∈ reached we get root′ ∈ N ′.

Algorithm 2 starts with the empty set of edges which obviously ful�lls GARG = ∅ ⊆
reached × GCFA × reached. Removal of edges from GARG never violates the property
GARG ⊆ reached × GCFA × reached, but the removal of states from reached may do.
Algorithm 2 only removes elements e′′ from reached in line 12. We show that after line 13
it holds thatGARG ⊆ reached×GCFA×reached if it was true before. If Algorithm 2 removes
e′′ and the property was true before, all edges (e, g, e′) ∈ GARG with e = e′′ ∨ e′ = e′′

violate the property. Before Algorithm 2 removes all these edges in line 13, it adds edges
to GARG. It adds edges (ep, g, enew) if (ep, g, e

′′) is contained in the set of edges. Since
enew was added to reached in line 12 (enew 6= e′′), (ep, g, e

′′) was contained before line
12 and the property is assumed to be true before the execution of line 12, we know that
g ∈ GCFA and ep ∈ reached or ep = e′′. If (ep, g, enew) is added, this edge either will not
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violate the property or it will be removed again in the same line. Thus, after line 13 the
property is reestablished if it was true before line 12. In lines 24 and 28, Algorithm 2 only
adds an edge (e, g, e′) if e ∈ reached (condition of if), e′ ∈ reached (added in line 19 and
de�nition of coveringSet, respectively), and g ∈ GCFA (loop body of for in line 5). Thus, if
GARG ⊆ reached×GCFA×reached holds before line 24 or 28, it holds after their execution.
The set of ARG edges adheres to the condition GARG ⊆ reached×GCFA × reached in the
beginning, if this property holds and it is violated by an execution step (only possible
in line 12), the next execution step reestablishes the property, we can conclude that
the property is always true outside the loop body of the most inner for loop. Since in
line 29 N ′ = reached, G′ARG = GARG, and Algorithm 2 never violates the condition
GARG ⊆ reached × GCFA × reached outside the loop body of the most inner for loop, we
can conclude that G′ARG ⊆ N ′ ×GCFA ×N ′.

In line 2, Ncov becomes the empty set which is obviously a subset of any reached set.
If Algorithm 2 removes a node e′′ from reached which is only possible in line 12, then in
line 17 it removes the same node from Ncov. If it adds node enew in line 17 or node eprec

in line 23, we know that enew was added to reached in line 12 and eprec in line 19. If
Algorithm 2 adds the set coveringSet to Ncov, we know from the de�nition of coveringSet
in line 26 that only elements from reached are added. We can conclude that in line 29
Ncov ⊆ reached. Furthermore, we know that in line 29 N ′cov = Ncov and N ′ = reached.
Hence, N ′cov ⊆ N ′.

From the de�nition, we conclude that RP
CA is an ARG for P and CA.

Lemma 2.6. If Algorithm 2 started with CPA CA enhanced with property automaton A,
program P , initial abstract state e0 ∈ ECA , and arbitrary precision π0 ∈ ΠCA returns
(·, ·, RP

CA), then RP
CA is an ARG for P and CA which is rooted, complete, well-covered,

and well-constructed.

Proof. Let RP
CA = (N ′, G′ARG, root

′, N ′cov). From Lemma 2.5, we know that RP
CA is an

ARG for P and CA.

Rootedness In line 2, root becomes e0. In this case, e0 v root (re�exivity of partial
order v). Thereafter, Algorithm 2 replaces root in line 15 by enew if root = e′′.
We know that enew is the result of a merge with second parameter e′′. Hence, from
Eq:. 2.5 it follows that root = e′′ v enew. From e0 v root and root v enew we
get e0 v enew (transitivity of partial order v). We can conclude from line 29 that
e0 v root′.

Completeness Show that before each iteration of the while loop ∀n ∈ reached, g ∈
GCFA : ∃(n, ·) ∈ waitlist ∨ (n, g, e) ∈ CA =⇒ ∃n′ ∈ ECA : e v n′ ∧ ((n, g, n′) ∈
GARG ∨ ∃S v {n′′ ∈ Ncov | (n, g, n′′) ∈ GARG} : stopCA(n′, S)).

Before the �rst execution of the while loop, Algorithm 2 adds e0 to reached and
(e0, π0) to waitlist the claim holds.

Consider arbitrary while loop iteration i. For every element e, which Algorithm 2
adds to reached in lines 4-28, it adds an element (e, ·) to waitlist. Furthermore, in
lines 5-28 an element (e, ·) is removed from waitlist only if e is removed from reached.
For states added to reached or removed from waitlist after line 5 nothing must be
shown. Additionally, deleting a node from reached does not a�ect completeness.

In iteration i, (e, π) is popped from waitlist. If (e, ·) is (re)added to waitlist or e
is removed from reached in the same iteration nothing needs to be shown. As-
sume no element (e, ·) will be added to waitlist and e is not removed. For each
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CFA edge g ∈ GCFA, Algorithm 2 explores each (e, g, e′) ∈ CA . Due to e ∈
reached and ¬∃(e, ·) ∈ waitlist (assumption), it either adds (e, g, eprec) to GARG

(stop(eprec, reached) = false) or for all er ∈ coveringSet it adds edges (e, g, er) to
GARG. We get by de�nition of eprec in line 7 and from prec that e′ v eprec. In the �rst
case, there exists eprec with e′ v eprec and (e, g, eprec) ∈ GARG. In the second case,
we know that coveringSet ⊆ Ncov (due to line 27), and stop(eprec, coveringSet). It
follows that coveringSet ⊆ {n′′ ∈ Ncov | (e, g, n′′) ∈ GARG} and, thus, coveringSet v
{n′′ ∈ Ncov | (e, g, n′′) ∈ GARG}. Hence, there exist eprec with e′ v eprec and
S v {n′′ ∈ Ncov | (n, g, n′′) ∈ GARG} : stopCA(eprec, S).

After execution of iteration i the property would hold, if Algorithm 2 never removed
edges from GARG nor deleted nodes from Ncov, since it only removes (e, ·) from
waitlist in lines 5-28 if it removes e from reached. It remains to be shown that the
removal of edges from GARG nor the removal of nodes from Ncov to the set GARG of
edges, never violates the property, i.e., if n ∈ reached, g ∈ GCFA, (n, g, e) ∈ CA and
there exists n′ ∈ ECA : e v n′ ∧ ((n, g, n′) ∈ GARG ∨ ∃S v {n′′ ∈ Ncov | (n, g, n′′) ∈
GARG} : stopCA(n′, S)), then after the removal of edges from GARG or nodes from
Ncov this is still true or there exists (n, ·) ∈ waitlist. Algorithm 2 removes edges
in line 13 and 20. In line 13, Algorithm 2 removes edges (e′′, ·, ·), (enew, ·, ·), and
(ep, g, e

′′). Since it removed e′′ from reached (e′′ 6= enew), removing edges (e′′, ·, ·)
does not violate the property. Since e′′ 6= enew, in line 11 it adds (enew, ·) to waitlist.
Removing edges (enew, ·, ·) does not violate the property. Consider edges (ep, g, e

′′)
with ep 6= e′′ and ep 6= enew (the remaining cases). Let (ep, g, ê) ∈ CA be arbitrary
and there exists n′ ∈ ECA : ê v n′ ∧ ((ep, g, n

′) ∈ GARG ∨ ∃S v {n′′ ∈ Ncov |
(ep, g, n

′′) ∈ GARG} : stopCA(n′, S)) If ∃(ep, ·) ∈ waitlist nothing must be shown.
Assume ¬∃(ep, ·) ∈ waitlist. If (ep, g, n

′) ∈ GARG, we only need to consider the case
that (ep, g, n

′) = (ep, g, e
′′) (removal of edge). Algorithm 2 adds an edge (ep, g, enew)

to the set of ARG edges which is not removed (enew 6= e′′, e′′ 6= ep 6= enew). Due to
the de�nition of enew in line 9, we get e′′ v enew (property of merge). Since partial
order v is transitive, we get ê v enew. The property is not violated. If ∃S v {n′′ ∈
Ncov | (ep, g, n

′′) ∈ GARG} : stopCA(n′, S), we only need to consider the case that
e′′ ∈ {n′′ ∈ Ncov | (ep, g, n

′′) ∈ GARG} due to an edge (ep, g, n
′′) = (ep, g, e

′′) with
n′′ = e′′ ∈ Ncov (removal of edge). Algorithm 2 adds an edge (ep, g, enew) to the
set of ARG edges which is not removed (enew 6= e′′, e′′ 6= ep 6= enew). Due to the
de�nition of enew in line 9, we get e′′ v enew (property of merge). Furthermore, in
line 17 Algorithm 2 adds enew to Ncov. We infer that S v {n′′ ∈ Ncov | (ep, g, n′′) ∈
GARG} v ({n′′ ∈ Ncov | (ep, g, n

′′) ∈ GARG} \ {e′′}) ∪ {enew}. We have at most
one element (ep, g, e

′′) which is replaced by (ep, g, enew). After line 17, the property
is reestablished. In line 20, Algorithm 2 removes edges (eprec, ·, ·). Due to line 19,
we know that (eprec, πprec) ∈ waitlist. Removing these edges does not violate the
property.

Algorithm 2 only removes nodes from Ncov in line 17. Removing a node e′′ from
Ncov may only violate the property if an edge (·, ·, e′′) exists. Due to line 13, we
know that no such edge exists.

Thus, after iteration i and before iteration i+ 1 the hypothesis holds.

At line 29, N = reached and waitlist = ∅. We conclude that RP
CA is complete.

Well-Coveredness Show that before each iteration of the while loop a total, injec-
tive function cov : S′TCNC → reached \ Ncov exists with ∀(n, g, e) ∈ S′TCNC : e v
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cov((n, g, e)) ∧ (n, g, cov((n, g, e))) ∈ GARG and S′TCNC := {(n, g, e) ∈ CA | n ∈
reached \ {e | (e, π) ∈ waitlist} ∧ g ∈ GCFA ∧ ¬∃n′ ∈ ECA : e v n′ ∧ ((n, g, n′) ∈
GARG ∧ n′ ∈ Ncov ∨ ∃S v {n′′ ∈ Ncov | (n, g, n′′) ∈ GARG} : stopCA(n′, S)} .

Before the �rst execution of the while loop, Algorithm 2 adds e0 to reached and
(e0, π0) to waitlist the claim holds.

Consider arbitrary while loop iteration i. For every element e, which Algorithm 2
adds to reached in lines 4-28, it adds an element (e, ·) to waitlist. Furthermore, in
lines 5-28 an element (e, ·) is removed from waitlist only if e is removed from reached.
For states added to reached or removed from waitlist after line 5 nothing further must
be shown.

First show that adding an element ê to Ncov does not violate the property. We
need to show that if ∃(n, g, e) ∈ S′TCNC : cov((n, g, e)) = ê before execution of
the respective line, then (n, g, e) /∈ S′′TCNC (S′′TCNC denotes the respective set after
execution of the respective line). We know that (n, g, cov((n, g, e))) = (n, g, ê) ∈
GARG and e v cov((n, g, e)) = ê. After adding ê to Ncov, we get that (n, g, ê) ∈
GARG, e v ê, and ê ∈ Ncov. Hence, (n, g, e) /∈ S′′TCNC. Thus, the function cov′ :
S′′TCNC → reached \ Ncov with cov′((n′, g′, e′)) = cov((n′, g′, e′)) ful�lls the desired
properties (no new elements can be added, because reached was not changed).

In iteration i, (e, π) is popped from waitlist. If (e, ·) is added to waitlist or re-
moved from reached in the same iteration nothing needs to be shown. Assume
no element (e, ·) will be added to waitlist and e is not removed from reached. For
each CFA edge g ∈ GCFA, Algorithm 2 explores each (e, g, e′) ∈ CA . Due to
e ∈ reached and ¬∃(e, ·) ∈ waitlist (assumption), it either adds (e, g, eprec) to GARG

(stop(eprec, reached) = false) or for all er ∈ coveringSet it adds edges (e, g, er)
to GARG. We get by de�nition of eprec in line 7 and from prec that e′ v eprec.
First, consider stopCA(eprec, reached) = false. If eprec is added to Ncov, we know
that (e, g, e′) /∈ S′TCNC. Since adding a state to Ncov does not violate the prop-
erty, we know that the desired property is ful�lled. If eprec is not an element of
Ncov, we know that eprec /∈ reached before execution of line 19. Hence, not exists
cov((ê, ĝ, ê′)) = eprec. Thus, if (e, g, e′) ∈ S′TCNC, we can safely map (e, g, e′) to eprec.
Second, consider stopCA(eprec, reached) = true. We know that coveringSet ⊆ Ncov

(due to line 27), and stop(eprec, coveringSet). It follows that coveringSet ⊆ {n′′ ∈
Ncov | (e, g, n′′) ∈ GARG} and, thus, coveringSet v {n′′ ∈ Ncov | (e, g, n′′) ∈ GARG}.
We conclude that (e, g, e′) /∈ S′TCNC. Since adding a state to Ncov does not violate
the property, we know that the desired property is ful�lled.

After execution of iteration i the property would hold, if no edges from GARG and
no elements from Ncov or reached are removed. It remains to be shown that neither
removal of edges from the set GARG nor the removal of elements from Ncov or
reached, violate the property. Algorithm 2 removes edges in line 13 and 20. In
line 13, Algorithm 2 removes edges (e′′, ·, ·), (enew, ·, ·), and (ep, g, e

′′). Since it
removed e′′ from reached (e′′ 6= enew), removing edges (e′′, ·, ·) does not violate the
property. Since e′′ 6= enew, in line 11 it adds (enew, ·) to waitlist. Removing edges
(enew, ·, ·) does not violate the property. Consider edges (ep, g, e

′′) with ep 6= e′′ and
ep 6= enew (the remaining cases). Let (ep, g, ê) ∈ CA be arbitrary. If ∃(ep, ·) ∈
waitlist or ep /∈ reached nothing must be shown. Assume ¬∃(ep, ·) ∈ waitlist and
ep ∈ reached. Consider two cases. First, show that if (ep, g, ê) /∈ S′TCNC, then this
property remains. From (ep, g, ê) /∈ S′TCNC, we conclude that ∃n′ ∈ ECA : ê v
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n′ ∧ ((ep, g, n
′) ∈ GARG ∧ n′ ∈ Ncov ∨ ∃S v {n′′ ∈ Ncov | (ep, g, n

′′) ∈ GARG} :
stopCA(n′, S)) or ep = e and (e, g, ê) will be or is currently explored. We only need
to consider the cases in which an edge is the reason why (ep, g, ê) /∈ S′TCNC. If
(ep, g, n

′) ∈ GARG ∧ n′ ∈ Ncov, we only need to consider the case that (ep, g, n
′) =

(ep, g, e
′′) (removal of edge). An edge (ep, g, enew) is added to the set of ARG edges

which is not removed (enew 6= e′′, e′′ 6= ep 6= enew). Due to the de�nition of
enew in line 9, we get e′′ v enew (property of merge). Since partial order v is
transitive, we get ê v enew. Furthermore, enew is added to Ncov in line 17 (e′′ =
n′ ∈ Ncov). It still holds that (ep, g, ê) /∈ S′TCNC. The property is not violated. If
∃S v {n′′ ∈ Ncov | (ep, g, n

′′) ∈ GARG} : stopCA(n′, S), we only need to consider
the case that e′′ ∈ {n′′ ∈ Ncov | (ep, g, n

′′) ∈ GARG} (removal of edge). Aan edge
(ep, g, enew) is added to the set of ARG edges which is not removed (enew 6= e′′,
e′′ 6= ep 6= enew). Due to the de�nition of enew in line 9, we get e′′ v enew (property
of merge). Furthermore, in line 17 enew is added to Ncov. We infer that S v {n′′ ∈
Ncov | (ep, g, n

′′) ∈ GARG} v ({n′′ ∈ Ncov | (ep, g, n
′′) ∈ GARG} \ {e′′}) ∪ {enew}.

Since (ep, g, e
′′) is replaced by (ep, g, enew) and enew is added to Ncov if e′′ was

contained in Ncov, it still holds that (ep, g, ê) /∈ S′TCNC. The property is not violated.
Second, consider (ep, g, ê) ∈ S′TCNC. If (ep, g, ê) /∈ S′′TCNC or cov((ep, g, ê)) 6= e′′,
after execution of line 13 nothing must be shown. From (ep, g, ê) ∈ S′TCNC and
cov((ep, g, ê)) = e′′, we conclude that ê v e′′ and (ep, g, e

′′) ∈ GARG. After execution
of line 13, we have (ep, g, enew) ∈ GARG (e′′ 6= ep 6= enew) and ê v enew (transitivity
of v, de�nition of enew in line 9, and property of merge). If there exists cov(·) = enew,
we know that enew was already contained in reached before line 12. Hence, in line
17 enew is added to Ncov and after line 17 (ep, g, ê) /∈ S′′TCNC. Nothing further must
be shown. If not exists cov(·) = enew, we can safely map (ep, g, ê) to enew. Since at
most one mapping cov(·) = e′′ exists, after line 17 the property is reestablished.

In line 20, Algorithm 2 removes edges (eprec, ·, ·). Since in line 19, it adds (eprec, πprec)
to waitlist, we know that not exists (eprec, ·, ·) ∈ S′′TCNC , S′′TCNC denotes the set after
removal of edges. It is safe to remove the edges (eprec, ·, ·). The property still holds.

Algorithm 2 only removes an element from Ncov in line 17. Since it removes an
element e′′ from Ncov only if it removes all edges (·, ·, e′′), we already proved that
the property still holds.

Algorithm 2 only removes an element from reached in line 12. Since it removes an
element e′′ from reached only if it removes all edges (·, ·, e′′), we already proved that
we no more elements are added to S′TCNC. Assume cov((n, g′, n′)) = e′′ exists. We
know that (n, g′, e′′) ∈ GARG and n′ v e′′. Since (n, g, n′) only remains in S′TCNC

if e′′ 6= n 6= enew, we need to consider only this case. An edge (n, g′, enew) is added
to the set of ARG edges which is not removed (enew 6= e′′, e′′ 6= n 6= enew). Due to
the de�nition of enew in line 9, we get e′′ v enew (property of merge). Since partial
order v is transitive, we get n′ v enew. Since enew is added to Ncov if enew was
contained in reached before execution of line 12, we infer that (n, g′, n′) is no longer
an element from S′TCNC or not exists cov(·) = enew. The property is not violated.

Thus, after iteration i and before iteration i+ 1 the hypothesis holds.

At line 29, N = reached and waitlist = ∅, we conclude that RP
CA is well-covered.

Well-Constructedness Algorithm 2 starts with the empty set of edges which obviously
ful�lls the well-constructedness property. In line 13 it adds edges (ep, g, enew) for
which we know that (ep, g, e

′′) is already an ARG edge. Thus, if the ARG edges ful�ll
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the well-constructed properties before execution of line 13, there exists (ep, g, ·) ∈ .
In this case, adding edges (ep, g, enew) does not violate the well-constructedness
property. If an edge (e, g, ·) is added in line 24 or line 28, we know that g ∈ GCFA (line
5) exists and (e, g, e′) ∈ (loop body of for each in line 6). The set of ARG edges
adheres to the well-constructedness property if it did before the insertion. Since the
set of ARG edges adheres to the well-constructedness property in the beginning,
this property is never violated by an insertion if it was ful�lled before, deletion of
ARG edges does not violate well-constructedness, and in line 29 GARG = G′ARG, we
can conclude that RP

CA is well-constructed.

Lemma 2.7. Let RP
CA = (N,GARG, root,Ncov) be an abstract reachability graph for pro-

gram P and enhancement CA of CPA C with property automaton A = (Q, δ, q0, qerr) s.t.

RP
CA is well-formed for e0 = (e, q0) ∈ ECA . Then, for all paths p := c0

g1→ c1 · · ·
gn→ cn ∈

pathsP (JrootK) there exists a con�guration sequence (c0, q0), . . . , (cn, qn) for p and A with
∀0 ≤ i ≤ n : ∃(e, q) ∈ N : ci ∈ JeK ∧ qi v q.

Proof. We show by induction over the path length that for every path p := c0
g1→ c1 · · ·

gn→
cn ∈ pathsP (JrootK), a con�guration sequence (c0, q0), . . . , (cn, qn) for p and A with ∀0 ≤
i ≤ n : ∃(e, q) ∈ N : ci ∈ JeK ∧ qi v q exists,

Basis Let c0 ∈ pathsP (JrootK) be a path of length 0. By de�nition of paths c0 ∈ JrootK.
Since RP

CA is an well-formed ARG, root = (er, qr) ∈ N and it is rooted, i.e., e0 v
root = (er, qr). From e0 = (e, q0) and de�nition of v, we conclude that q0 v qr.
By de�nition (c0, q0) is a con�guration sequence for path c0 and A. The induction
hypothesis holds.

Step Let p := c0
g1→ c1 . . . ci−1

gi→ ci ∈ pathsP (JrootK) be a path of length i. By de�nition
of paths, p′ := c0

g1→ c1 . . . ci−1 ∈ pathsP (JrootK) is a path of length i − 1. From
induction, we know that a con�guration sequence (c0, q0) . . . , (ci−1, qi−1) for p′ andA
exists s.t. ∀0 ≤ j ≤ i−1 : ∃(ej , q′j) ∈ N : cj ∈ J(ej , q′j)K∧qj v q′j . Let gi = (li, opi, l

′
i).

Since δ is complete, there exists at least one transition (qi−1, opi, C
i
sub, qi) ∈ δ with

ci ∈ Ci
sub. By de�nition (c0, q0) . . . , (ci−1, qi−1)(ci, qi) is a con�guration sequence

for p and A. We need to show that (ei, q
′
i) ∈ N exists with ci ∈ J(ei, q′i)K and

qi v q′i. From ci−1 ∈ J(ei−1, q
′
i−1)K and ci−1

gi→ ci, we can conclude that an abstract
transition ((ei−1, q

′
i−1), gi, (es, qs)) ∈ exists with ci ∈ J(es, qs)K (overapproximation

of transfer relation Eq. 2.2). From de�nition of , especially transfer relation of most
precise enhancement and enhancement, q′i−1 = qi−1 ∈ Q ∨ q′i−1 = q> (follows from
con�guration sequence for p′, qi−1 v q′i−1), (qi−1, opi, C

i
sub, qi) ∈ δ with ci ∈ Ci

sub,
and due to determinism of property automaton not exists (qi−1, opi, C

i
sub, q̂) ∈ δ

with ci ∈ Ci
sub and qi 6= q̂, we can conclude that es = (·, qs) with either qs = qi

or qs = q>. Hence, qi v qs. From completeness of RP
CA (part of well-formedness),

we know there exist ((ei−1, q
′
i−1), g, (ei, q

′
i)) ∈ GARG, (ei, q

′
i) ∈ N , and (es, qs) v

(ei, q
′
i) or there exists (e∗, q∗) ∈ ECA with (es, qs) v (e∗, q∗) and S v {n′′ ∈ Ncov |

((ei−1, q
′
i−1), g, n′′) ∈ GARG} ⊆ N with stopCA((e∗, q∗), S). In the �rst case, we

conclude that ci ∈ J(ei, q′i)K (meaning of v) and qi v q′i (transitivity of partial order
v). The induction hypothesis follows for the �rst case. In the second case, we get
from the de�nition of the enhancement of the termination check that stopC(e∗, S′) =
true with S′ = {e | (e, q) ∈ S∧q∗ v q}. By meaning of J·K, soundness of termination
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check, meaning of v, (es, qs) v (e∗, q∗) and ci ∈ J(es, qs)K, a state (e′s, q
′
s) ∈ S exists

with ci ∈ J(e′s, q′s)K and qs v q∗ v q′s. Since S v {n′′ ∈ Ncov | ((ei−1, q
′
i−1), g, n′′) ∈

GARG} ⊆ N , it follows from de�nition that (ei, q
′
i) ∈ N exists with (e′s, q

′
s) v (ei, q

′
i).

By meaning of v, it follows that ci ∈ J(ei, q′i)K. By transitivity of partial order v,
qi v qs, qs v q∗ v q′s, q′s v q′i (de�nition of v and (e′s, q

′
s) v (ei, q

′
i)), we get qi v q′i.

The induction hypothesis follows.

Proposition 2.9. Let CPA CA be an enhancement of CPA C with property automaton A
s.t. ∀e ∈ ECA , S ⊆ ECA : stopCA(e, S) =⇒ ∃e′ ∈ S : e vCA e′ and  CA is a function.
If Algorithm 2 started with CPA CA, program P , initial abstract state e0 ∈ ECA , and
arbitrary precision π0 ∈ ΠCA returns (·, ·, RP

CA), then RP
CA is an ARG for P and CA

which is sound and deterministic.

Proof. Let RP
CA = (N ′, G′ARG, root

′, N ′cov). From Lemma 2.5, we know that RP
CA is an

ARG for P and CA.

Soundness Algorithm 2 starts with the empty set of ARG edges which is obviously
sound. In line 13, it adds edges (ep, g, enew) for which we know that (ep, g, e

′′) is
already an ARG edge and if GARG is sound before execution of line 13, we also
know that for all (ep, g, e

′) ∈ it holds that e′ v e′′. Since e′′ v enew (de�nition of
enew and Eq. 2.5), and partial order v is transitive, we get e′ v enew. Adding an
edge in line 13 does not violate the soundness property. If Algorithm 2 adds an edge
(e, g, eprec) in line 24, we know there exists (e, g, e′) ∈ (loop body of for in line 6)
and e′ v eprec (de�nition of eprec in line 7 and property of precision adjustment).
Since  is a function, the set of ARG edges is sound after execution of line 24 if it
was sound before its execution. If Algorithm 2 adds an edge (e, g, er) in line 28, we
know that coveringSet = {er} and eprec v er (de�nition of coveringSet, sets with less
elements are smaller, and a single element must exist which is at least as abstract
as eprec (de�nition of termination check)). Since we know there exists (e, g, e′) ∈ 
(loop body of for in line 6), e′ v eprec (de�nition of eprec in line 7 and property of
precision adjustment), and partial order v is transitive, we get e′ v er. Since  is
a function, the set of ARG edges is sound after execution of line 28 if it was sound
before its execution. Since the set GARG of ARG edges is sound at the beginning,
removing edges never violates soundness, adding edges cannot violate the property,
and in line 29 GARG = G′ARG, the ARG RP

CA is sound.

Determinism Algorithm 2 starts with the empty set of ARG edges which is de�nitely
deterministic. In line 13, it adds edge (ep, g, enew) only if an edge (ep, g, e

′′) exists
and it deletes (ep, g, e

′′). Thus, if the set of edges was deterministic before execu-
tion of line 13 it is deterministic after the execution of line 13. In lines 24 and
28, Algorithm 2 adds only a single edge (coveringSet = {er}, same reason as for
soundness). Since the transfer relation  is a function, at most one edge (e, g, ·)
is added in either line 24 or 28 during each execution of for in line 5. Hence, the
set of ARG edges remains deterministic after each execution of for in line 5, if no
ARG edges (e, ·, ·) exists before execution of that for loop. We need to show that
if (e, ·) is removed from waitlist in line 4, no such edges exist. We show before the
execution of line 4 for each element (e, ·) ∈ waitlist no edge (e, ·, ·) exists in the set
of ARG edges. Before the �rst execution, we know that GARG = ∅. If (e, ·) is added
to waitlist in line 11 or line 19, all edges (e, ·, ·) are removed from GARG. If before
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execution of line 11 or 19 for each element (e, ·) ∈ waitlist no edge (e, ·, ·) exists in
the set of ARG edges, then after the execution of line 13 and 20, respectively, for
each element (e, ·) ∈ waitlist no edge (e, ·, ·) exists in the set of ARG edges. We
know that ∀(ew, ·) ∈ waitlist : ew ∈ reached and before execution of line 19 it yields
that stop(eprec, reached) = false. Since GARG ⊆ reached × GCFA × reached, at line
19 no edge (eprec, ·, ·) exists. In lines 24 and 28, edges (e, ·, ·) are added only if
¬∃(e, ·) ∈ waitlist. This does not violate the property. We conclude that if before
execution i of line 4 for each element (e, ·) ∈ waitlist no edge (e, ·, ·) exists in the set
of ARG edges, then before execution i+ 1 of line 4 for each element (e, ·) ∈ waitlist
no edge (e, ·, ·) exists in the set of ARG edges. Hence, before execution of line 4 for
each element (e, ·) ∈ waitlist no edge (e, ·, ·) exists in the set of ARG edges. Since the
set of ARG edges is deterministic in the beginning, this property is never violated,
and in line 29 GARG = G′ARG, the ARG RP

CA is deterministic.

A.2 Outstanding Proofs for Chapter 3

Con�gurable Program Certi�cation

Lemma 3.6 (Con�guration Sequence Coverage). If Algorithm 3 started with CCV VDCA

for abstract domain DCA enhanced with property automaton A = (Q, δ, q0, qerr), pro-
gram P , initial abstract state e0 = (e, q0) ∈ ECA , and certi�cate CCA returns true, then
certi�cate CCA covers at least one con�guration sequence per path.

Proof. We show by induction over the path length that for each path p := c0
g1→ c1 · · ·

gn→
cn ∈ pathsP (Je0K) a con�guration sequence (c0, q0), . . . , (cn, qn) for p and A exists with
∀0 ≤ i ≤ n : ∃(e, q) ∈ CCA : ci ∈ JeK ∧ qi v q.

Basis Let c0 ∈ pathsP (Je0K) be a path of length 0. By de�nition of paths, c0 ∈ Je0K.
Since Algorithm 3 returns true, cover(e0, CCA) = true. By de�nition of coverage
check cover, we know that there exists (e, q) ∈ CCA with c0 ∈ J(e, q)K and q0 v q.
By de�nition, (c0, q0) is a con�guration sequence for path c0 and A. The induction
hypothesis holds.

Step Let p := c0
g1→ c1 . . . ci−1

gi→ ci ∈ pathsP (Je0K) be a path of length i. By de�nition
of paths, p′ := c0

g1→ c1 . . . ci−1 ∈ pathsP (Je0K) is a path of length i − 1. From
induction, we know that a con�guration sequence (c0, q0) . . . , (ci−1, qi−1) for p′ and
A exists s.t. ∀0 ≤ j ≤ i − 1 : ∃(ej , q′j) ∈ CCA : cj ∈ J(ej , q′j)K ∧ qj v q′j . Let

gi = (li, opi, l
′
i). From ci−1 ∈ J(ei−1, q

′
i−1)K and ci−1

gi→ ci, we conclude that an
entry((ei−1, q

′
i−1), gi, (es, qs)) ∈ exists with ci ∈ J(es, qs)K and qs = q> or qs ∈

Q ∧ (q′i−1, opi, C
i
sub, qs) ∈ δ ∧ ci ∈ Ci

sub (requirement on transfer relation of CCV).
If qs = q>, set qi to any q ∈ Q with (qi−1, op, C

i
sub, qs) ∈ δ ∧ ci ∈ Ci

sub. Due
to completion of δ, at least one exists. If qs ∈ Q, set qi = qs. We know from
(q′i−1, opi, C

i
sub, qs) ∈ δ, qi−1 v q′i−1 and Q being a �at lattice that qi−1 = q′i−1.

For both cases, we conclude that (c0, q0) . . . , (ci−1, qi−1)(ci, qi) is a con�guration
sequence for p and A and qi v qs. From (ei−1, q

′
i−1) ∈ CCA ,gi ∈ GCFA (de�nition of

paths) and Algorithm 3 returning true, we know that cover((es, qs), CCA) is checked
in line 6 and cover((es, qs), CCA) = true. From the requirements on a coverage check
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and ci ∈ J(es, qs)K, it follows that there exists (ei, q
′
i) ∈ CCA with ci ∈ J(ei, q′i)K and

qs v q′i. From transitivity of v, we get qi v q′i. The induction hypothesis follows.

Theorem 3.10 (Relative Completeness). Let VCA(cover) be a con�gurable certi�cate val-
idator for CPA CA and coverage check cover which is well-behaving, RP

CA be an ARG for
�nite program P and enhancement CA of CPA C, and RP

CA be well-formed for e ∈ ECA .

Algorithm 3 started with CCV VCA(cover), program P , initial abstract state e0 v e, and
certi�cate cert(RP

CA) returns true.

Proof. Let ARG RP
CA = (N,GARG, root,Ncov) and program P = (L,GCFA, l0). By de�ni-

tion cert(RP
CA) = N and N is �nite. Since certi�cate and program are �nite, we infer that

Algorithm 3 terminates (Lemma 3.9). Prove by contradiction that Algorithm 3 returns
true. Assume Algorithm 3 returns false. Algorithm 3 may return false in line 2, 7, or 8.

Assume Algorithm 3 returns false in line 2. Since RP
CA is well-formed, e v root ∈ N .

By transitivity of partial order v, we get e0 v root. If Algorithm 3 returns false in line 2,
cover(e0, cert(RP

CA)) = cover(e0, N) = false. Since cover is well-behaving (consistent with
partial order) and e0 v root ∈ N , cover(e0, N) = true. Contradiction to assumption,
Algorithm 3 does not return false in line 2.

Next, assume Algorithm 3 returns false in line 7. If Algorithm 3 returns false in
line 7, an abstract state e ∈ cert(RP

CA) = N exists s.t. (e, g, e′) ∈ , g ∈ GCFA and
cover(e′, cert(RP

CA)) = cover(e′, N) = false. From RP
CA being well-formed, we know that

e′′ ∈ N = cert(RP
CA) exists with e′ v e′′, or e′′′ ∈ ECA with e′ v e′′′ and S v {n′′ ∈

Ncov | (e, g, n′′) ∈ GARG} with stop(e′′′, S) = true exist. In the �rst case, we know that
cover(e′, N) = cover(e′, cert(RP

CA)) = true (cover consistent with partial order). In the
second case, we know that cover(e′′′, S) = true (stop(e′′′, S) =⇒ cover(e′′′, S), de�nition
of CCV VCA(cover)). Since e′ v e′′′, S v {n′′ ∈ Ncov | (e, g, n′′) ∈ GARG} v N (de�nition
of v and {n′′ ∈ Ncov | (e, g, n′′) ∈ GARG} ⊆ Ncov ⊆ N), and cover is monotonic (well-
behaving), we conclude that cover(e′, N) = cover(e′, cert(RP

CA)) = true. Contradiction to
assumption in both cases, Algorithm 3 does not return false in line 7.

Finally, assume Algorithm 3 returns false in line 8. If Algorithm 3 returns false in line
8, then an abstract state (e, q) ∈ cert(RP

CA) = N exists with q = q> ∨ q = qerr. We know
that no such state exists in N (RP

CA well-formed, thus safe). Contradiction to assumption,
Algorithm 3 does not return false in line 8. Hence, Algorithm 3 returns true.

A.3 Outstanding Proofs for Chapter 4

Optimization of CPC

A.3.1 Outstanding Proofs for Reduced Certi�cates

Lemma 4.3. If Algorithm 4 started with CCV VDCA for abstract domain DCA enhanced
with property automaton A = (Q, δ, q0, qerr), program P , initial abstract state e0 = (e, q0) ∈
ECA , and reduced certi�cate RCCA returns true, then the reached set at the state of ter-
mination of Algorithm 4 covers at least one con�guration sequence per path.

Proof. Let reached′ denote the reached set at the state of termination of Algorithm 4.
We show by induction over the length of paths p := c0

g1→ c1 · · ·
gn→ cn ∈ pathsP (Je0K)

that for each path p a con�guration sequence (c0, q0), . . . , (cn, qn) for p and A exists with
∀0 ≤ i ≤ n : ∃(e, q) ∈ reached′ : ci ∈ JeK ∧ qi v q.
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Basis Let c0 ∈ pathsP (Je0K) be a path of length 0. By de�nition of paths c0 ∈ Je0K.
Since Algorithm 4 returns true, cover(e0, Csub

CA ) = true. By de�nition of coverage
check cover, we know that (e, q) ∈ Csub

CA exists with c0 ∈ J(e, q)K and q0 v q. Since
Algorithm 4 only adds states to reached and it added Csub

CA to reached in line 3, we
get (e, q) ∈ reached′. By de�nition (c0, q0) is a con�guration sequence for path c0
and A. The induction hypothesis holds.

Step Let p := c0
g1→ c1 . . . ci−1

gi→ ci ∈ pathsP (Je0K) be a path of length i. By de�nition,
p′ := c0

g1→ c1 . . . ci−1 ∈ pathsP (Je0K) is a path of length i − 1. From induction,
we know that a con�guration sequence (c0, q0) . . . , (ci−1, qi−1) for p′ and A exists
s.t. ∀0 ≤ j ≤ i − 1 : ∃(ej , q′j) ∈ reached′ : cj ∈ J(ej , q′j)K ∧ qj v q′j . Let gi =

(li, opi, l
′
i). From ci−1 ∈ J(ei−1, q

′
i−1)K and ci−1

gi→ ci, we can conclude that there
exists an abstract transition ((ei−1, q

′
i−1), gi, (es, qs)) ∈ with ci ∈ J(es, qs)K and

qs = q> or qs ∈ Q ∧ (q′i−1, opi, C
i
sub, qs) ∈ δ ∧ ci ∈ Ci

sub (requirement on transfer
relation of CCV). If qs = q>, set qi to any q ∈ Q with (qi−1, op, C

i
sub, qs) ∈ δ ∧ ci ∈

Ci
sub. Due to completion of δ, at least one exists. If qs ∈ Q, set qi = qs. We

know from (q′i−1, opi, C
i
sub, qs) ∈ δ, qi−1 v q′i−1, and Q being a �at lattice that

qi−1 = q′i−1. For both cases, we conclude that (c0, q0) . . . , (ci−1, qi−1)(ci, qi) is a
con�guration sequence for p and A and qi v qs. From Algorithm 4 returning true,
we know that waitlist = ∅. Since every state in reached was also added to waitlist
and waitlist = ∅, every state in reached was popped at least once from waitlist in
line 5. From (ei−1, q

′
i−1) ∈ reached′, gi ∈ GCFA (de�nition of paths), we know that

((ei−1, q
′
i−1), gi, (es, qs)) ∈ was explored in line 7, and either cover((es, qs), Csub

CA ) =
true or (es, qs) was added to reached. In the �rst case, from the requirements on
a coverage check and ci ∈ J(es, qs)K, it follows that an abstract state (ei, q

′
i) ∈ Csub

CA
exists with ci ∈ J(ei, q′i)K and qs v q′i. From transitivity of v, we get qi v q′i. Since
Algorithm 4 only adds states to reached and it added Csub

CA to reached in line 3, we
get (ei, q

′
i) ∈ reached′. The induction hypothesis follows for the �rst case. In the

second case, (es, qs) is added to reached and thus (ei, q
′
i) = (es, qs) ∈ reached′. The

induction hypothesis follows.

Lemma 4.6 (Termination). Let VCA(cover) be a con�gurable certi�cate validator for
CPA CA and coverage check cover, and let program P = (L,GCFA, l0) be �nite. Then,

Algorithm 4 started with VCA(cover), P , initial abstract state e0 ∈ ECA , and �nite reduced
certi�cate RCCA = (Csub

CA , n) terminates.

Proof. Algorithm 4 terminates if the number of program edges is �nite, for each pair
(e, g) ∈ ECA ×GCFA only �nitely many elements (e, g, e′) ∈ exists, and the while loop
terminates. The number of program edges are �nite (�nite program). Since the transfer
relation is a transfer relation of a CPA (de�nition of VCA(cover)), it follows from Eq. 2.3
that ∀(e, g) ∈ CCA ×GCFA : ∃n ∈ N : |{(e, g, e′) ∈ }| ≤ n. Algorithm 4 only adds states
to waitlist which are also added to reached. Due to the condition of the while loop and
Algorithm 4 never removing states from reached, Algorithm 4 can only add �nitely many
di�erent states to reached and thus to waitlist or terminates. Since Algorithm 4 pops an
element from waitlist in each while loop iteration and Algorithm 4 terminates if waitlist
becomes empty, Algorithm 4 terminates if an abstract state is added at most once to
waitlist. Since it never removes a state from reached and waitlist ⊆ reached, it only adds
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states to waitlist which have not been added to reached and thus to waitlist. Algorithm 4
terminates.

Lemma 4.7. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and cov-
erage check cover which is well-behaving, RP

CA = (N,GARG, root,Ncov) be an ARG for
�nite program P and enhancement CA of CPA C, and RP

CA be well-formed for e ∈ ECA .

If Algorithm 4 starts with CCV VCA(cover), program P , initial abstract state e0 v e,
and reduced certi�cate RCCA = (Csub

CA , |N |) s.t. NR(RP
CA) ⊆ Csub

CA ⊆ N , then at line 10
reached ⊆ N .

Proof. Let P = (L,GCFA, l0). Prove by induction over the changes of reached that
reached ⊆ N .

Basis The set reached is initialized in line 3 with Csub
CA ⊆ N . The induction hypothesis

follows.

Step After the initialization states e′ are only added to reached in line 9. Since Algo-
rithm 4 only adds states to waitlist which are also added to reached and it never
removes states from reached, we know that in line 9 it holds that ∃e ∈ reached ⊆ N ,
g ∈ GCFA, (e, g, e′) ∈ CA (de�nition of VCA(cover)) and ¬cover(e′, Csub

CA ). From
RP

CA being complete (well-formed), we deduce that ∃n′ ∈ ECA : e′ v n′∧((e, g, n′) ∈
GARG ∨ ∃S v {n′′ ∈ Ncov | (e, g, n′′) ∈ GARG} : stopCA(n′, S)). In the �rst case,
we know that if e′ 6= n′, then n′ ∈ NR(RP

CA) ⊆ Csub
CA . Since cover is consistent with

partial order (well-behaving), we know that if e′ 6= n′, then cover(e′, Csub
CA ) = true.

We know that in line 9 e′ = n′. From (e, g, e′) ∈ GARG, we conclude that e′ ∈ N .
In the second case, the fact that cover is monotonic (well-behaving), stop(e, S) =⇒
cover(e, S) (de�nition of VCA(cover)), and {n′′ ∈ Ncov | (e, g, n′′) ∈ GARG} v Ncov v
NR(RP

CA) v Csub
CA (de�nition of NR(RP

CA) and v), gives us cover(e′, Csub
CA ) = true. We

conclude that in line 9 e′ ∈ N . The induction hypothesis follows.

Lemma 4.8. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and cov-
erage check cover which is well-behaving, RP

CA = (N,GARG, root,Ncov) be an ARG for
�nite program P and enhancement CA of CPA C and RP

CA be well-formed for e ∈ ECA .

Algorithm 4 started with CCV VCA(cover), program P , initial abstract state e0 v e, and
reduced certi�cate RCCA = (Csub

CA , |N |) s.t. NR(RP
CA) ⊆ Csub

CA ⊆ N returns true.

Proof. From the de�nition of an ARG, we know that RCCA is �nite (Csub
CA ⊆ N and N

�nite). From Lemma 4.6, we deduce that Algorithm 4 terminates. Prove by contradiction
that Algorithm 4 returns true. Assume that Algorithm 4 returns false. Algorithm 4 may
return false in line 2 or 10.

Assume that Algorithm 4 returns false in line 2. Since RP
CA is well-formed e v root ∈

N . Due to transitivity of partial order v, we get e0 v root. From de�nition of NR(RP
CA)

and NR(RP
CA) ⊆ Csub

CA , we know that root ∈ Csub
CA . If Algorithm 4 returns false in line 2,

cover(e0, Csub
CA ) = false. Since cover is well-behaving (consistent with partial order) and

e0 v root ∈ Csub
CA , cover(e0, Csub

CA ) = true. Contradiction to assumption, Algorithm 4 does
not return false in line 2.

Assume that Algorithm 4 returns false in line 10. If Algorithm 4 returns false in
line 10, |reached| > |N | or ∃(·, q) ∈ reached : q = q> ∨ q = qerr. The previous lemma gives
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us that at line 10 reached ⊆ N . We infer that |reached| ≤ |N |. Since RP
CA is safe (well-

formed), ¬∃(·, q) ∈ N : q = q> ∨ q = qerr. Hence, ¬∃(·, q) ∈ reached : q = q> ∨ q = qerr.
Contradiction to assumption, Algorithm 4 does not return false in line 10.

Thus, Algorithm 4 returns true.

Lemma 4.9. Let VCA(cover) = (DCA , , cover) be a con�gurable certi�cate validator
for CPA CA and coverage check cover which is well-behaving,  be monotonic, RP

CA =
(N,GARG, root,Ncov) be an ARG for �nite program P and enhancement CA of CPA C,
and RP

CA be well-formed for e ∈ ECA . If Algorithm 4 starts with CCV VCA(cover),
program P , initial abstract state e0 v e, and certi�cate certhR(RP

CA), then at line 10
reached v N and |reached| ≤ |N |.

Proof. Let P = (L,GCFA, l0). Let STCNC := {(n, g, e) ∈ CA | n ∈ N, g ∈ GCFA ∧ ¬∃n′ ∈
ECA : e v n′ ∧ ((n, g, n′) ∈ GARG ∧ n′ ∈ Ncov ∨ ∃S v {n′′ ∈ Ncov | (n, g, n′′) ∈ GARG} :
stopCA(n′, S)} be the set of abstract successor computations of abstract successors which
are covered by non-covering nodes. Let cov : STCNC → N \ Ncov be a total, injective
function with ∀(n, g, e) ∈ STCNC : e v cov(e) ∧ (n, g, cov(e)) ∈ GARG. (such a function
exists because RP

CA is well-covered (well-formed)). For any e, e′ ∈ ECA s.t. e v e′ and
any g ∈ G let fe,e′,g : {(e, g, ·) ∈ } → {(e′, g, ·) ∈ } be a total, injective function with
∀(e, g, es) ∈ : f((e, g, es)) = (e′, g, e′s) =⇒ es v e′s (such functions exists because  is
monotonic). Prove by induction over the changes of reached that a total, injective function
h : reached → N exists with ∀e ∈ reached : e v h(e), ∀e ∈ reached : (e ∈ Nhr(R

P
CA) =⇒

h(e) = e)∧ (h(e) ∈ Nhr(R
P
CA) =⇒ h(e) = e), ∀e′ ∈ reached : h(e′) /∈ Nhr(R

P
CA) =⇒ ∃e ∈

reached, g ∈ GCFA : ((e, g, e′) ∈ ∧fe,h(e),g((e, g, e′)) ∈ STCNC ∧ cov(fe,h(e),g((e, g, e′))) =
h(e′)).

Basis The set reached is initialized in line 3 with Nhr(R
P
CA) (de�nition of highly reduced

certi�cate). Show that the identity function id : reached → reached, id(e) = e,
is a function with the desired properties. From the de�nition of Nhr(R

P
CA), we

know that Nhr(R
P
CA) ⊆ N . With reached = Nhr(R

P
CA), we get id : reached → N .

The identity function is de�nitely total and injective, and additionally ful�lls that
∀e ∈ reached : (e ∈ Nhr(R

P
CA) =⇒ h(e) = e) ∧ (h(e) ∈ Nhr(R

P
CA) =⇒ h(e) = e).

Since partial order v is re�exive, we have ∀e ∈ reached : e v id(e). Since the range
of id is Nhr(R

P
CA), the induction hypothesis follows.

Step After the initialization, states e′ are only added to reached in line 9. From the
induction hypothesis, we conclude that before execution of line 9 a total, injective
function h : reached → N exists with ∀e ∈ reached : e v h(e), ∀e ∈ reached : (e ∈
Nhr(R

P
CA) =⇒ h(e) = e) ∧ (h(e) ∈ Nhr(R

P
CA) =⇒ h(e) = e), ∀e′ ∈ reached :

h(e′) /∈ Nhr(R
P
CA) =⇒ ∃e ∈ reached, g ∈ GCFA : ((e, g, e′) ∈ ∧fe,h(e),g((e, g, e′)) ∈

STCNC ∧ cov(fe,h(e),g((e, g, e′))) = h(e′)). Since Algorithm 4 only adds states to
waitlist which are also added to reached and it never removes states from reached,
we know that in line 9 it holds that ∃e ∈ reached, g ∈ GCFA, (e, g, e′) ∈ CA

(de�nition of VCA(cover)) and ¬cover(e′, Nhr(R
P
CA)) and e′ /∈ reached. Since e ∈

reached, e v h(e). With g ∈ GCFA ⊆ G, we know that we �xed a function fe,h(e),g.
From the de�nition of that function we get fe,h(e),g((e, g, e′)) = (h(e), g, e′s) with
(h(e), g, e′s) ∈ CA and e′ v e′s. From cover being consistent with partial order
(well-behaving) and Csub

CA = Nhr(R
P
CA) (de�nition of highly reduced certi�cate), we

know that ¬∃e′′ ∈ Nhr(R
P
CA) : e′ v e′′. Due to transitivity of v and de�nition

of Nhr(R
P
CA), we get that ¬∃e′′ ∈ Ncov : e′s v e′′. From cover being monotonic
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(well-behaving), stop(e, S) =⇒ cover(e, S) (de�nition of VCA(cover)), e′ v e′s,
Ncov v Nhr(R

P
CA), and ¬cover(e′, Nhr(R

P
CA)), we conclude that ¬∃n′ ∈ ECA : e′s v

n′ ∧ ∃S v {n′′ ∈ Ncov | (h(e), g, n′′) ∈ GARG} : stopCA(n′, S). Thus, we get
(h(e), g, e′s) ∈ STCNC (de�nition). De�ne function h′ : reached → N with h :=
h ∪ {e′ 7→ cov((h(e), g, e′s))}. We need to show that h′ ful�lls the requirements of
our induction hypothesis after the execution of line 9. Since before execution of
line 9 state e′ /∈ reached, h′ is a total function. Due to transitivity of v, e′ v
e′s, and e′s v cov((h(e), g, e′s)), we get e′ v h(e′). Since ¬cover(e′, Nhr(R

P
CA)) and

cover consistent with partial order, we know that e′ /∈ Nhr(R
P
CA). Furthermore,

we already know that e ∈ reached, g ∈ GCFA : (e, g, e′) ∈ CA ∧fe,h′(e),g((e, g, e′)) ∈
STCNC and h′(e′) = cov(fe,h′(e),g((e, g, e′))). From e′ v h(e′), cover(e′, Nhr(R

P
CA)) =

false, and cover consistent with partial order (well-behaving), we know that h(e′) /∈
Nhr(R

P
CA). We only need to show that h′ is injective. By induction h is injective.

Thus, to show that h′ is injective, we need to show that ¬∃ê′ ∈ reached : h′(ê′) =

h′(e′). Assume that there exists ê′ ∈ reached with h′(ê′) = h′(e′). If ê′ = e′

nothing needs to be shown. Let ê′ 6= e′. From h′(e′) /∈ Nhr(R
P
CA), we conclude that

there exists ê ∈ reached, ĝ ∈ GCFA : ∧((ê, ĝ, ê′) ∈ ∧fê,h(ê),ĝ((ê, ĝ, ê′)) ∈ STCNC ∧
cov(fê,h(ê),ĝ((ê, ĝ, ê′))) = h(ê′)). Since cov is injective, we get fê,h(ê),ĝ((ê, ĝ, ê′)) =

fe,h(e),g((e, g, e′)) = h′(e′). The de�nition of the functions f give us (h(ê), ĝ, ê′s) =

(h(e), g, e′s). We get h(ê) = h(e), ĝ = g, ê′s = e′s. Since h is injective, we know
that ê = e. Since fe,h(e),g is injective and fê,h(ê),ĝ((ê, ĝ, ê′)) = fe,h(e),g((e, g, ê′)) =

fe,h(e),g((e, g, e′)) = h′(e′), we conclude that ê′ = e′. The induction hypothesis
follows.

From induction, we know that at line 10 such a function h exists. From function h
and de�nition of v, we conclude that in line 10 reached v N and |reached| ≤ |N | (h
injective).

Lemma 4.10. Let VCA(cover) = (DCA , , cover) be a con�gurable certi�cate validator
for CPA CA and coverage check cover which is well-behaving,  be monotonic, RP

CA be
an ARG for �nite program P and enhancement CA of CPA C, and RP

CA be well-formed

for e ∈ ECA . Algorithm 4 started with CCV VCA(cover), program P , initial abstract
state e0 v e, and certi�cate certhR(RP

CA) returns true.

Proof. Let RP
CA = (N,GARG, root,Ncov). We know that certhR(RP

CA) = (NhR(RP
CA), |N |)

(de�nition). From the de�nition of ARG and NhR(RP
CA), we know that certhR(RP

CA) is
�nite. From Lemma 4.6, we deduce that Algorithm 4 terminates. Prove by contradiction
that Algorithm 4 returns true. Assume that Algorithm 4 returns false. Algorithm 4 may
return false in line 2 or 10.

Assume that Algorithm 4 returns false in line 2. Since RP
CA is well-formed e v

root ∈ N . Due to transitivity of partial order v, we get e0 v root. From de�nition
of NhR(RP

CA), we know that root ∈ NhR(RP
CA). If Algorithm 4 returns false in line 2,

cover(e0, NhR(RP
CA)) = false. Since cover is well-behaving (consistent with partial order)

and e0 v root ∈ NhR(RP
CA), cover(e0, NhR(RP

CA)) = true. Contradiction to assumption,
Algorithm 4 does not return false in line 2.

Assume that Algorithm 4 returns false in line 10. If Algorithm 4 returns false in line 10,
|reached| > |N | or ∃(·, q) ∈ reached : q = q> ∨ q = qerr. The previous lemma gives us that
at line 10 reached v N and |reached| ≤ |N |. We infer that the second condition must be
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violated. Since RP
CA is safe (well-formed), ¬∃(·, q) ∈ N : q = q> ∨ q = qerr. By de�nition

of reached v N , for every (e, q) ∈ reached∃(e′, q′) ∈ N : (e, q) v (e′, q′). By de�nition of v
and Q being a �at lattice, we deduce that ∀(e, q) ∈ reached : q = q⊥ ∨ (q ∈ Q ∧ q 6= qerr).
Hence, ¬∃(·, q) ∈ reached : q = q> ∨ q = qerr. Contradiction to assumption, Algorithm 4
does not return false in line 10.

Thus, Algorithm 4 returns true.

A.3.2 Outstanding Proofs for Partitioned Certi�cates

Lemma 4.13. Let partsCA be a set of partition elements which is a safe overapproxima-
tion for program P = (L,GCFA, l0), property automaton A = (Q, δ, q0, qerr), and a set of
initial states I ⊆ C. Then, every path p ∈ pathsP (I) is safe w.r.t. A.

Proof. Show by induction over the path length that for every path p := c0
g1→ c1 · · ·

gn→
cn ∈ pathsP (I) a con�guration sequence (c0, q0) . . . (cn, qn) for p and A exists s.t. ∀0 ≤
i ≤ n : ∃(pn, bn) ∈ partsCA : ∃(ei, q′i) ∈ pn : qi v q′i ∧ ci ∈ J(ei, q′i)KCA .

Basis Let c0 ∈ pathsP (I) be a path of length 0. By de�nition of paths, c0 ∈ I. By
de�nition, (c0, q0) is a con�guration sequence for path c0 and A. Since the initial
states are covered (safe overapproximation), we know that ∃(pn, bn) ∈ partsCA :
∃(e′, q0) ∈ pn : c0 ∈ J(e′, q0)KCA . Since v is re�exive, q0 v q0. The induction
hypothesis follows.

Step Let p := c0
g1→ c1 . . . ci−1

gi→ ci ∈ pathsP (I) be a path of length i. By de�nition
of paths, psub := c0

g1→ c1 . . . ci−1 ∈ pathsP (I) be a path of length i − 1 and gi ∈
GCFA. By induction, a con�guration sequence (c0, q0) . . . (ci−1, qi−1) for p and A
exists s.t. ∀0 ≤ j ≤ i − 1 : ∃(pn, bn) ∈ partsCA : ∃(ej , q′j) ∈ pn : qj v q′j ∧ cj ∈
J(ej , q′j)KCA . Let (pn, bn) ∈ partsCA be a partition element with (ei−1, q

′
i−1) ∈ pn,

ci−1 ∈ J(ei−1, q
′
i−1)K and qi−1 v q′i−1. From partsCA being a safe overapproximation,

ci−1 ∈ J(ei−1, q
′
i−1)K, ci−1

gi→ ci, and gi ∈ GCFA, we get that an abstract state
(ê, q̂) ∈ pn∪bn exists with q̂ = q> or ∃Csub ⊆ C : (ci ∈ Csub∧(q′i−1, op, Csub, q̂) ∈ δ),
and ci ∈ J(ê, q̂)K. If (ê, q̂) ∈ pn, set (ei, q

′
i) = (ê, q̂). If (ê, q̂) /∈ pn, we know that

(ê, q̂) ∈ bn. Since partsCA being a safe overapproximation, we can conclude that
∃(pn, bn) ∈ partsCA : ∃(ei, q′i) ∈ pn : ci ∈ J(ei, q′i)KCA ∧ q̂ v q′i. We �x such an (ei, q

′
i)

for the second case. If q′i = q>, set qi to any q ∈ Q with (qi−1, op, Csub, q) ∈ δ and
ci ∈ Csub. Due to completion of δ, at least one exists. If q′i ∈ Q, we set qi = q′i and
we know that q′i = q̂ (in the latter case from Q being a �att lattice and q̂ v q′i). For
both cases, we conclude that (c0, q0) . . . (ci−1, qi−1)(ci, qi) is a con�guration sequence
for p and A and qi v q′i. The induction hypothesis follows.

Let p := c0
g1→ c1 · · ·

gn→ cn ∈ pathsP (I) be an arbitrary path. From induction, we
know that a con�guration sequence (c0, q0) . . . (cn, qn) for p and A exists with ∀0 ≤ i ≤ n :
∃(pn, bn) ∈ partsCA : ∃(ei, q′i) ∈ pn : qi v q′i. Since partsCA is a safe overapproximation,
we know that ∀0 ≤ i ≤ n : qi 6= qerr. Hence, p is safe w.r.t. A.

Corollary 4.15. Let PCCA = (partssub, n) be a partitioned certi�cate which is valid for
a program P , property automaton A, and a set of initial states I ⊆ C and let Isub ⊆ I be
a subset of the initial states. Then, PCCA is also valid for P , A, and Isub.
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Proof. Since PCCA = (partssub, n) is valid for P , A, and I, we know that partssub can
be extended to a set partsCA s.t. partsCA is a safe overapproximation for P , A, and I,
there exists total surjective function m : partssub → partsCA : ∀(pn, bn) ∈ partssub :
m((pn, bn)) = (pn′, bn′) =⇒ pn ⊆ pn′ ∧ bn ⊆ bn′ and |

⋃
(pn,·)∈partsCA

pn| ≤ n. We

reuse the same extension to show that PCCA is valid for P , A, and Isub. Hence, it
remains to be shown that partsCA is a safe overapproximation for P , A, and Isub. From
partsCA being a safe overapproximation for P , A, and I, we conclude that Isub ⊆ I ⊆⋃
(e,q0)∈pn∧(pn,·)∈partsCA

J(e, q0)KCA , ∀(pn, bn) ∈ partsCA : ∀(e, q) ∈ pn : ∀c ∈ J(e, q)KCA ,

(l, op, l′) ∈ GCFA : c
(l,op,l)−−−−→ c′ =⇒ (q′ = q> ∨ q′ ∈ Q ∧ ∃Csub ⊆ C : c′ ∈ Csub ∧

(q, op, Csub, q
′) ∈ δ)∧∃(e′, q′′) ∈ (pn∪bn) : q′ v q′′∧c′ ∈ J(e′, q′′)KCA , ∀(pn, bn) ∈ partsCA :

∀(e, q) ∈ bn : J(e, q)KCA ⊆ {J(e′, q′)KCA | q v q′ ∧ ∃(pn, ·) ∈ partsCA : (e′, q′) ∈ pn}, and
∀(e, q) ∈ EA, (pn, bn) ∈ partsCA : (e, q) ∈ pn =⇒ q 6= qerr ∧ q 6= q>. We conclude that
PCCA is valid for P , A, and Isub.

Lemma 4.16. Let RP
CA = (N,GARG, root,Ncov) be an ARG for program P and enhanced

CPA CA which is well-formed for e0 = (e, q0) ∈ ECA . The set partsCA := {(N,N)} of
partition elements is a safe overapproximation for P , A = (Q, δ, q0, qerr), and JrootK.

Proof. Let P = (L,GCFA, l0). Since ARG RP
CA is safe (well-formed), we know that

root = (·, qr) and qr 6= q>. From RP
CA being rooted (well-formed), we get that e0 v

root. The de�nition of v and Q being a �at lattice, gives us qr = q0. Furthermore,
root ∈ N (de�nition of ARG) lets us conclude that root ∈ {(ẽ, q0) ∈ N} and JrootK ⊆⋃
(ẽ,q0)∈pn∧(pn,·)∈partsCA

J(ẽ, q0)K.

Let (pn, bn) be an arbitrary partition element in partsCA . By de�nition, we know that
(pn, bn) = (N,N). Let (ê, q) ∈ pn = N be an arbitrary abstract state and c ∈ J(ê, q)K,

(l, op, l′) ∈ GCFA. Since RP
CA is safe (well-formed), we know that q 6= q>. Let c

(l,op,l′)−−−−−→ c′

be a transition in →. Due to c ∈ J(ê, q)K and c
(l,op,l′)−−−−−→ c′, we know that there exists

((ê, q), (l, op, l′), (e′, q′)) ∈ CA and c′ ∈ J(e′, q′)K (overapproximation). Due to de�nition
of  CA , we infer that q′ = q> or ∃(q, op, Csub, q

′) ∈ δ with c′ ∈ Csub. From RP
CA being

complete (well-formed) and ((ê, q), g, (e′, q′)) ∈ CA , we know that ∃(e′′, q′′) ∈ ECA :
(e′, q′) v (e′′, q′′) ∧ (((ê, q), g, (e′′, q′′)) ∈ GARG ∨ ∃S v {n′′ ∈ Ncov | ((ê, q), g, n′′) ∈
GARG} : stopCA((e′′, q′′), S)). By meaning of v, de�nition of v, soundness of termination
check, and {n′′ ∈ Ncov | ((ê, q), g, n′′) ∈ GARG} ⊆ N , we get that an abstract state
(en, qn) ∈ N = bn = pn ∪ bn exists with c′ ∈ J(en, qn)K and q′ v qn. Thus, concrete
successor con�gurations (c′, q′) of a partition node are considered by the same partition
element as the partition node.

Since the set of partition nodes and the set of boundary nodes are both N , for each
boundary node the same node exists in the set of partition nodes. Every boundary node
is covered by a partition node considering the same automaton abstract state. Hence, we
get that boundary nodes are covered by partition nodes considering the same or a more
abstract automaton abstract state.

From RP
CA being safe (well-formed), we conclude that ∀(ê, q) ∈ N : q 6= qerr ∧ q 6= q>.

Since the the set of partition nodes is N , the partition nodes are safe.
Finally, partsCA is a safe overapproximation for P , A and Je0K.
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Lemma 4.20. Let reached′ denote the reached set at the state of termination of Algo-

rithm 5. If Algorithm 5 started with con�gurable certi�cate validator VCA for abstract
domain DCA enhanced with property automaton A = (Q, δ, q0, qerr), program P , initial
abstract state e0 = (e, q0) ∈ ECA , and partitioned certi�cate PCCA returns true, then the
set partsCA := {(reached′, reached′)} of partition elements is a safe overapproximation for
P , A, and Je0K.

Proof. Let P = (L,GCFA, l0) and PCCA = (partssub, n). De�ne PN :=
⋃

(pn,·)∈partssub
pn.

Since Algorithm 5 returns true, we know that cover(e0, PN) = true. The de�nition of
a coverage check cover lets us infer that Je0K = J(e, q0)K ⊆

⋃
(e′,q′)∈PN∧q0vq′

J(e′, q′)K. From

Algorithm 5 returning true, we infer that PN ⊆ reached′ and for all (e, q) ∈ reached′ : q 6=
qerr ∧ q 6= q>. Thus, Je0K ⊆

⋃
(e′,q′)∈reached′∧q′=q0

J(e′, q′)K.

Let (pn, bn) be an arbitrary partition element in partsCA . By de�nition, we know
that (pn, bn) = (reached′, reached′). Let (ê, q) ∈ pn = reached′ be an arbitrary abstract

state and c ∈ J(ê, q)K, (l, op, l′) ∈ GCFA. Let c
(l,op,l′)−−−−−→ c′ be a transition in →. Due to

c ∈ J(ê, q)K and c
(l,op,l′)−−−−−→ c′, we know that there exists ((ê, q), (l, op, l′), (e′, q′)) ∈ CA and

c′ ∈ J(e′, q′)K (overapproximation). Due to de�nition of  CA , we infer that q′ = q> or
∃(q, op, Csub, q

′) ∈ δ with c′ ∈ Csub. Since every state in reached is also put in waitlist and
(ê, q) ∈ reached′, we know that (ê, q) was put to waitlist. States are only removed from
waitlist in line 5 or in line 3. If Algorithm 5 returns true, the while loop in line 4 only
terminates if waitlist is empty, no states are removed from waitlist in line 3. Furthermore,
waitlist is empty if Algorithm 5 terminates. We infer that (ê, q) was removed from waitlist
in line 5, and, hence ((ê, q), (l, op, l′), (e′, q′)) ∈ CA was explored in lines 7 to 9 considering
a partition (pn′, bn′) ∈ partssub. If (e′, q′) was added in line 9, (e′, q′) ∈ reached′, nothing
remains to show. If (e′, q′) /∈ reached′, we know that cover((e′, q′), pn′ ∪ bn′) = true.
By de�nition of coverage check, we get that J(e′, q′)K ⊆

⋃
(e′′,q′′)∈(pn′∪bn′)∧q′vq′′J(e

′′, q′′)K.
Hence, there exists a state (en, qn) ∈ pn′ ∪ bn′ with c′ ∈ J(en, qn)K and q′ v qn. Since
Algorithm 2 explores all partition elements (pn, bn) ∈ partssub, added pn to reached in
line 3 for each (pn, bn), and never removes a state from reached, we get that ∀(pn, bn) ∈
partssub : pn ⊆ reached′. Since Algorithm 5 returns true, we conclude from line 12
that ∀(pn, bn) ∈ partssub : bn ⊆

⋃
(pn′,·)∈partssub

⊆ reached′. We conclude that a state

(en, qn) ∈ reached′ exists with c′ ∈ J(en, qn)K and q′ v qn. Thus, concrete successor
con�gurations (c′, q′) of a partition node are considered by the node's partition element.

Since the set of partition nodes and boundary nodes are both reached′, each boundary
node exists in the set of partition nodes. Every boundary node is covered by a partition
node considering the same automaton abstract state. Boundary nodes are covered by
partition nodes considering the same or a more abstract automaton abstract state.

We know that reached in line 12 equals reached′. Since Algorithm 5 returns true, which
is only possible at line 12, we get from the check in line 12 that ∀(ê, q) ∈ reached′ : q 6=
qerr ∧ q 6= q>. Since the set of partition nodes is reached′, the partition nodes are safe.

Finally, partsCA is a safe overapproximation for P , A, and Je0K.

Lemma 4.23 (Termination). Let VCA(cover) be a con�gurable certi�cate validator for
CPA CA and coverage check cover and program P = (L,GCFA, l0) be �nite. Then, Algo-

rithm 5 started with VCA(cover), P , initial abstract state e0 ∈ ECA , and �nite partitioned
certi�cate PCCA terminates.
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Proof. Algorithm 5 terminates if the number of partition elements in the partitioned
certi�cate are �nite, the number of program edges are �nite, for each pair (e, g) ∈ ECA ×
GCFA only �nitely many elements (e, g, e′) ∈ CA exists and in each iteration of the for
loop in line 2 the while loop terminates. Due to the de�nition of a �nite partitioned
certi�cate, the partitioned certi�cate contains only �nitely many partition elements. The
number of program edges are �nite (�nite program). Since the transfer relation is a
transfer relation of a CPA (de�nition of VCA(cover)), it follows from Eq. 2.3 that ∀(e, g) ∈
CCA × GCFA : ∃n ∈ N : |{(e, g, e′) ∈ }| ≤ n. Algorithm 4 only adds states to waitlist
which are also added to reached. Due to the condition of the while loop and Algorithm 5
never removing states from reached, Algorithm 5 can only add �nitely many, di�erent
states to reached and, thus, to waitlist, or terminates. Since Algorithm 5 pops an element
from waitlist in each while loop iteration and Algorithm 5 terminates if waitlist becomes
empty in each iteration of the for loop in line 2, Algorithm 5 terminates if an abstract
state is added at most once to waitlist in each iteration of the for loop in line 2. Elements
are only added in lines 3 and 9. In line 3, Algorithm 5 adds a subset of reached to waitlist.
Since no state is ever removed from reached and waitlist ⊆ reached, in line 9 we only add
states to waitlist which have not been added to reached and thus to waitlist. Hence, in
each iteration of the for loop in line 2, we add each element from reached at most once to
waitlist. Algorithm 5 terminates.

Lemma 4.24. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and
coverage check cover which is well-behaving, RP

CA = (N,GARG, root,Ncov) be an ARG
for �nite program P and CA, and RP

CA be well-formed for e ∈ ECA . Furthermore, let
NR(RP

CA) ⊆ Nsub ⊆ N and partition(Nsub) a partition of Nsub. If Algorithm 5 started

with CCV VCA(cover), program P , initial abstract state e0 v e, and partitioned certi�cate
certPC(partition(Nsub), RP

CA) from partition(Nsub) and RP
CA , then at line 12 reached ⊆ N .

Proof. Let P = (L,GCFA, l0) and certPC(partition(Nsub), RP
CA) = (partssub, n). Algo-

rithm 5 initializes reached with the empty set, obviously ∅ ⊆ N , and only adds states
to reached in line 3 and 9 (within iteration of for loop in line 2). Consider arbitrary
iteration of for loop in line 2, assume that this iteration considers partition element
(pn, bn) and show by induction over the changes to waitlist that for every element e′

added to waitlist in this iteration a sequence e1, . . . , en = e′ exists s.t. e1 ∈ pn and
∀2 ≤ j ≤ n : ej /∈ Nsub ∧ ∃(ej−1, ·, ej) ∈ GARG.

Basis Algorithm 5 initializes waitlist in line 3 with pn. For every e1 ∈ waitlist there exists
a sequence e1 with the desired property. The induction hypothesis follows.

Step After initialization in line 3, Algorithm 5 only adds states e′ in line 9. We know
that in line 5 Algorithm 5 popped element ep from waitlist. Furthermore, we infer
that there exists (ep, g, e

′) ∈ CA and g ∈ GCFA. Since in each iteration of for
loop in line 2, Algorithm 5 only pops elements from waitlist which it added in the
same iteration, by induction we know that e1, . . . , en = ep exists s.t. e1 ∈ pn and
∀2 ≤ j ≤ n : ej /∈ Nsub ∧ ∃(ej−1, ·, ej) ∈ GARG. We infer that ep ∈ N (exists
(·, ·, ep) ∈ GARG). Since Algorithm 5 added all elements of pn to reached in line 3,
we know from condition in line 8 that e′ /∈ pn. We need to show that e′ /∈ Nsub

and an ARG edge (e, ·, e′) ∈ GARG exists. From completeness (well-formedness) of
ARG RP

CA , we get that ∃n′ ∈ ECA : e′ v n′ ∧ ((ep, g, n
′) ∈ GARG ∨ ∃S v {n′′ ∈

Ncov | (ep, g, n
′′) ∈ GARG} : stopCA(n′, S)). If n′ 6= e′, we know that n′ ∈ Nsub

or {n′′ ∈ Ncov | (ep, g, n
′′) ∈ GARG} ⊆ Nsub (de�nition of Nsub and NR(RP

CA)). In
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both cases, we know there exists a path e0, . . . , en, n
′ and e0, . . . , en, n

′′ in ARG RP
CA .

From e0, n
′, n′′ ∈ Nsub, we get that (e0, n

′), (e0, n
′′) are edges in GNsub

(construction
of vertex contracted graph). We conclude that n′ and n′′, respectively, are contained
in bn. Since cover adheres to stopCA , is consistent with partial order, and monotonic
(well-behaving), we get cover(e′, pn∪bn) = true if n′ 6= e′. We conclude that n′ = e′

and (ep, g, e
′) ∈ ARG. If e′ ∈ Nsub, we conclude that e′ ∈ bn (similar reasons as

before). Since cover consistent with partial order, e′ v e′ and cover(e′, pn ∪ bn) =
false, we infer that e′ /∈ Nsub. For sequence e1, . . . , en, e

′ we get e1 ∈ pn and
∀2 ≤ j ≤ n : ej /∈ Nsub ∧ ∃(ej−1, ·, ej) ∈ GARG. The induction hypothesis follows.

By de�nition of partitioned certi�cate we know that pn ⊆ Nsub ⊆ N . Furthermore,
(ej , ·, ej+1) ∈ GARG implies ej , ej+1 ∈ N . By induction on arbitrary iteration, we conclude
that for every element e′ added to waitlist that e′ ∈ N . Since Algorithm 5 adds every state
to waitlist which it adds to reached, we conclude by induction that it only adds states from
N to reached. It follows that at line 12 reached ⊆ N .

Lemma 4.25. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and
coverage check cover which is well-behaving, RP

CA = (N,GARG, root,Ncov) be an ARG
for �nite program P and CA, and RP

CA be well-formed for e ∈ ECA . Furthermore, let
NR(RP

CA) ⊆ Nsub ⊆ N and partition(Nsub) a partition of Nsub. Algorithm 5 started

with CCV VCA(cover), program P , initial abstract state e0 v e, and partitioned certi�cate
certPC(partition(Nsub), RP

CA) from partition(Nsub) and RP
CA returns true.

Proof. Let certPC(partition(Nsub), RP
CA) = (partssub, n). From Nsub ⊆ N and N being

�nite, we conclude that Nsub is �nite. The de�nition of a partition of Nsub lets us con-
clude that ∃k ∈ N : |partition(Nsub)| = k. By de�nition of certPC(partition(Nsub), RP

CA),
partssub contains exactly k (�nitely many) partition elements (pn, bn). Due to con-
struction of certPC(partition(Nsub), RP

CA), we know for each (pn, bn) ∈ partssub that
pn ⊆ Nsub ⊆ N and bn ⊆ Nsub ⊆ N . Hence, certPC(partition(Nsub), RP

CA) is �nite.
From Lemma 4.23 we conclude that Algorithm 5 terminates.

It remains to show that Algorithm 5 returns true. Assume that Algorithm 5 returns
false which is only possible in line 11 or 12.

If Algorithm 5 returns false in line 11, then cover(e0,
⋃

(pn,·)∈partssub
pn) = false. By

de�nition of certPC(partition(Nsub), RP
CA), partition(Nsub) being a partition of Nsub, we

get
⋃

(pn,·)∈partssub

pn = Nsub. From de�nition of NR(RP
CA) and NR(RP

CA) ⊆ Nsub, we

get that root ∈ Nsub. Since RP
CA is rooted (well-formed), we know that e v root. By

transitivity of partial order v and e0 v e, we get e0 v root. From cover being consistent
with partial order (well-behaving), we conclude that cover(e0,

⋃
(pn,·)∈partssub

pn) = true

which is a contradiction. Thus, Algorithm 5 does not return false in line 11.
If Algorithm 5 returns false in line 12, then |reached| ≤ n, ∃(e, q) ∈ reached : q =

q> ∨ q = qerr or
⋃

(·,bn)∈partssub

bn 6⊆
⋃

(pn,·)∈partssub
pn. From the previous lemma, we know

that at line 12 reached ⊆ N . From de�nition of certPC(partition(Nsub), RP
CA), we know

that n = |N |. We get that |reached| ≤ |N | = n. Since RP
CA is safe (well-formed), we know

that ¬∃(e, q) ∈ N : q = q> ∨ q = qerr. Hence, ¬∃(e, q) ∈ reached : q = q> ∨ q = qerr. From
de�nition of certPC(partition(Nsub), RP

CA), we conclude that ∀(·, bn) ∈ partssub : bn ⊆
Nsub. Thus,

⋃
(·,bn)∈partssub

bn ⊆ Nsub =
⋃

(pn,·)∈partssub
pn. Contradiction to Algorithm 5

returning false in line 12. Finally, we conclude that Algorithm 5 returns true.
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Lemma 4.26. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and cov-
erage check cover which is well-behaving, let transfer relation  CA be monotonic, RP

CA =
(N,GARG, root,Ncov) be an ARG for �nite program P and CA, and RP

CA be well-formed

for e ∈ ECA . If Algorithm 5 started with CCV VCA(cover), program P , initial abstract
state e0 v e, and highly reduced, partitioned certi�cate certPC(partition(NhR(RP

CA)), RP
CA)

from partition(NhR(RP
CA)) and RP

CA , then at line 12 reached v N and |reached| ≤ |N |.

Proof. Let P = (L,GCFA, l0) and certPC(partition(NhR(RP
CA)), RP

CA) = (partssub, n). Let
STCNC := {(n, g, e) ∈ CA | n ∈ N, g ∈ GCFA ∧¬∃n′ ∈ ECA : e v n′ ∧ ((n, g, n′) ∈ GARG ∧
n′ ∈ Ncov ∨ ∃S v {n′′ ∈ Ncov | (n, g, n′′) ∈ GARG} : stopCA(n′, S)} be the set of abstract
successor computations of abstract successors which are covered by non-covering nodes.
Let cov : STCNC → N \Ncov be a total, injective function with ∀(n, g, e) ∈ STCNC : e v
cov(e)∧ (n, g, cov(e)) ∈ GARG. (such a function exists because RP

CA is well-covered (well-
formed)). For e, e′ ∈ ECA s.t. e v e′ and g ∈ G let fe,e′,g : {(e, g, ·) ∈ } → {(e′, g, ·) ∈ }
be a total, injective function with ∀(e, g, es) ∈ : f((e, g, es)) = (e′, g, e′s) =⇒ es v e′s
(such functions exists because  is monotonic).

Show by induction over the changes of reached and waitlist, that partial, surjective
function h : N → reached and partial function g : N → {pn | (pn, ·) ∈ partssub} exist s.t.
for every n ∈ N , h(n) is de�ned i� g(n) is de�ned, ∀n ∈ N : h(n) defined =⇒ (h(n) v
n ∧ ∃e0, g1, e1, . . . , gj , ej : e0 ∈ g(n) ∧ ej = n ∧ ∀1 ≤ i ≤ j : (ei−1, gi, ei) ∈ GARG ∧ ei /∈
NhR(RP

CA) ∧ (n ∈ NhR(RP
CA) =⇒ h(n) = n ∧ n ∈ g(n)) ∧ (n /∈ NhR(RP

CA) =⇒
∃n′ ∈ N, g ∈ GCFA : h(n′) defined ∧ (h(n′), g, h(n)) ∈ CA ∧fh(n′),n′,g((h(n′), g, h(n))) ∈
STCNC ∧ (n′, g, n) ∈ GARG ∧ cov(fh(n′),n′,g((h(n′), g, h(n)))) = n)) and if e is added to
waitlist during exploration of partition element (pn, bn), then ∃n̂ ∈ h−1(e) : g(n̂) = pn.

Basis Algorithm 5 initializes reached and waitlist with the empty set in line 1. Since
reached = ∅, no state need to be mapped. Since waitlist = ∅, no state is added to
waitlist. No property need to be assured. The induction hypothesis follows.

Step After the initialization, states are added to reached and waitlist in line 3 or line
9. By induction, partial, surjective function h : N → reached and partial function
g : N → {pn | (pn, ·) ∈ partssub} exist s.t. for every n ∈ N , h(n) is de�ned i�
g(n) is de�ned, ∀n ∈ N : h(n) defined =⇒ (h(n) v n ∧ ∃e0, g1, e1, . . . , gj , ej :
e0 ∈ g(n) ∧ ej = n ∧ ∀1 ≤ i ≤ j : (ei−1, gi, ei) ∈ GARG ∧ ei /∈ NhR(RP

CA) ∧
(n ∈ NhR(RP

CA) =⇒ h(n) = n ∧ n ∈ g(n)) ∧ (n /∈ NhR(RP
CA) =⇒ ∃n′ ∈

N, g ∈ GCFA : h(n′) defined ∧ (h(n′), g, h(n)) ∈ CA ∧fh(n′),n′,g((h(n′), g, h(n))) ∈
STCNC∧ (n′, g, n) ∈ GARG∧ cov(fh(n′),n′,g((h(n′), g, h(n)))) = n))) and if e is added
to waitlist during exploration of partition element (pn, bn), then ∃n̂ ∈ h−1(e) : g(n̂) =
pn.

If Algorithm 5 adds states pn to reached and waitlist in line 3, we know ∃(pn, ·) ∈
partssub. By construction of a highly reduced, partitioned certi�cate, we know that
pn ⊆ Nhr(R

P
CA) ⊆ N . De�ne h′ : h ∪ {ehR 7→ ehR | ehR ∈ pn} and g′ : g ∪ {ehR 7→

pn | ehR ∈ pn}. Obviously, h′ is de�ned i� g′ is de�ned and ∀ehR ∈ pn : ehR v ehR

(re�exivity of partial order). Since we de�ned a projection for every element which
is added to reached, h′ is surjective. For each element ehR ∈ pn, sequence e0 = ehR

ful�lls the necessary requirements e0 ∈ g(ehR) and e0 = ehR. All further properties
are ful�lled by construction, we only need to show for any ehR ∈ pn that if h(ehR)
and, thus, g(ehR) are de�ned, then h(ehR) = ehR and g(ehR) = pn. By induction
and ehR ∈ Nhr(R

P
CA), we get h(ehR) = ehR and ehR ∈ g(ehR). The de�nition

of the highly reduced, partitioned certi�cate, gives us that g(ehR) is an element
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from partition(NhR(RP
CA)). Since the elements from partition(NhR(RP

CA)), which
are sets, are disjoint, there exists only one element pn with ehR ∈ pn. The induction
hypothesis follows.

If Algorithm 5 adds state e′ in line 9, we know that (e, g, e′) ∈ CA , g ∈ GCFA and
cover(e′, pn ∪ bn) = false. Since Algorithm 5 only adds elements from reached to
waitlist, we know e ∈ reached. Furthermore, in each iteration of the for loop in line 2,
Algorithm 5 pops only elements from waitlist which it added in the same iteration of
that for loop. Assume that e is added in the iteration considering partition element
(pn, bn). By induction, ∃n ∈ h−1(e) : g(n) = pn, h(n) de�ned, and e = h(n) v n.
Let fh(n),n,g((h(n), g, e′)) = (n1, g

′, es). The de�nition gives us n1 = n, g = g′,
and e′ v es. Since RP

CA is complete and n ∈ N , we know that ∃n′ ∈ ECA : es v
n′ ∧ ((n, g, n′) ∈ GARG ∨∃S v {n′′ ∈ Ncov | (n, g, n′′) ∈ GARG} : stopCA(n′, S)). As-
sume n′ ∈ NhR(RP

CA) or ∃S v {n′′ ∈ Ncov | (ej , g, n
′′) ∈ GARG} : stopCA(n′, S).

By induction, we get that there exists e0, g1, e1, . . . , gj , ej : e0 ∈ g(n) ∧ ej =
n ∧ ∀1 ≤ i ≤ j : (ei−1, gi, ei) ∈ GARG ∧ ei /∈ NhR(RP

CA). We conclude that
e0, g1, e1, . . . , gn, en, g, n

′ and e0, g1, e1, . . . , gn, en, g, n
′′ would be paths in each case

and ∀1 ≤ i ≤ j : ei /∈ NhR(RP
CA), e0 ∈ pn ⊆ NhR(RP

CA) and n′, n′′ ∈ NhR(RP
CA).

Hence, an edge (e0, n
′), (e0, n

′′) would exist in GNhR(RP
CA

). By certi�cate con-

struction, we get n′′, n′ ∈ pn ∪ bn. Since e′ v es v n′ and cover is consis-
tent with the partial order, cover(e′, pn ∪ bn) = true in the �rst case. Since
stopCA =⇒ cover, e′ v n′, S v {n′′ ∈ Ncov | (ej , g, n

′′) ∈ GARG} v pn ∪ bn,
and cover is monotonic, we get cover(e′, pn ∪ bn) = true in the latter case. The
assumption was wrong, we get for all (n, g, n′) ∈ GARG with es v n′ that n′ ∈
N \ NhR(RP

CA) ⊆ N \ Ncov. We get that (n, g, es) = fh(n),n,g((h(n), g, e′)) ∈
STCNC. We conclude that (n, g, cov((n, g, es))) ∈ GARG and es v cov((n, g, es)).
From e′ v es and es v cov((n, g, es)), we get e′ v cov((n, g, es)). The sequence
e0, g1, e1, . . . , gj , ej , gj+1, ej+1 with gj+1 = g and ej+1 = cov((n, g, es)) ful�lls e0 ∈
pn ∧ ej+1 = cov((n, g, es)) ∧ ∀1 ≤ i ≤ j : (ei−1, gi, ei) ∈ GARG ∧ ei /∈ NhR(RP

CA).
De�ne h′ : h ∪ {cov((n, g, es)) 7→ e′} and g′ : g ∪ {cov((n, g, es)) 7→ pn}. It remains
to be shown that h(cov((n, g, es))) is not de�ned, and thus g(cov((n, g, es))) is not
de�ned. Assume that h(cov((n, g, es))) is de�ned. Let n∗ = cov((n, g, es)). Since
n∗ = cov((n, g, es)) /∈ NhR(RP

CA), there exists n̂ ∈ N, ĝ ∈ GCFA : h(n̂) defined and
cov(fh(n̂),n̂,ĝ((h(ê), ĝ, h(n∗)))) = n∗. We get n∗ = cov(fh(n̂),n̂,ĝ((h(ê), ĝ, h(n∗))))
= cov(fh(n),n,g((h(n), g, e′))) = cov((n, g, es)). Since function cov is injective, we
get fh(n̂),n̂,ĝ((h(n̂, ĝ, h(n∗)))) = fh(n),n,g((h(n), g, e′)) = (n, g, es). We infer that
fh(n̂),n̂,ĝ((h(n̂), ĝ, h(n∗)))) = (n̂, ĝ, es) = fh(n),n,g((h(n), g, e′)) = (n, g, es). It fol-
lows that n = n̂, g = ĝ, and thus h(n̂) = h(n). Since fh(e),n,g is injective, we
conclude that (h(n̂), ĝ, h(n∗)) = (h(n), g, h(n∗)) = (h(n), g, e′). We get h(n∗) = e′.
Since e′ /∈ reached (condition in line 8), we get that h(cov((n, g, es))) is not de�ned.
The induction hypothesis follows.

By induction, at line 12 a partial, surjective function h : N → reached with ∀ê ∈ N :
h(ê) defined =⇒ h(ê) v ê exists. From h being surjective, we conclude that reached v N
(de�nition of v) and |reached| ≤ |N |.
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Lemma 4.27. Let VCA(cover) be a con�gurable certi�cate validator for CPA CA and cov-
erage check cover which is well-behaving, let transfer relation  CA be monotonic, RP

CA =
(N,GARG, root,Ncov) be an ARG for �nite program P and CA, and RP

CA be well-formed

for e ∈ ECA . Algorithm 5 started with CCV VCA(cover), program P , initial abstract
state e0 v e, and highly reduced, partitioned certi�cate certPC(partition(NhR(RP

CA)), RP
CA)

from partition(NhR(RP
CA)) and RP

CA returns true.

Proof. Let highly reduced, partitioned certi�cate be certPC(partition(NhR(RP
CA)), RP

CA) =
(partssub, n). By de�nition of NhR(RP

CA), we get NhR(RP
CA) ⊆ N . We conclude that

NhR(RP
CA) is �nite (N �nite by de�nition of ARG). The de�nition of a partition of

NhR(RP
CA) lets us conclude that ∃k ∈ N : |partition(NhR(RP

CA))| = k. By de�nition
of certPC(partition(NhR(RP

CA)), RP
CA), partssub contains exactly k (�nitely many) parti-

tion elements (pn, bn). Due to the construction of certPC(partition(NhR(RP
CA)), RP

CA), we
know for each (pn, bn) ∈ partssub that pn ⊆ NhR(RP

CA) and bn ⊆ NhR(RP
CA). Hence,

certPC(partition(Nsub), RP
CA) is �nite. From Lemma 4.23 we conclude that Algorithm 5

terminates.
It remains to be shown that Algorithm 5 returns true. Assume that Algorithm 5

returns false, which is only possible in line 11 or 12.
If Algorithm 5 returns false in line 11, then cover(e0,

⋃
(pn,·)∈partssub

pn) = false. By

de�nition of certPC(partition(NhR(RP
CA)), RP

CA), partition(NhR(RP
CA) being a partition of

NhR(RP
CA), we get

⋃
(pn,·)∈partssub

pn = NhR(RP
CA). From de�nition of NhR(RP

CA), we get

that root ∈ NhR(RP
CA). Since RP

CA is rooted (well-formed), we know that e v root. By
transitivity of partial order v and e0 v e, we get e0 v root. From cover being consistent
with partial order (well-behaving), we conclude that cover(e0, (

⋃
(pn,·)∈partssub

pn) = true

which is a contradiction. Thus, Algorithm 5 does not return false in line 11.
If Algorithm 5 returns false in line 12, then |reached| ≤ n, ∃(e, q) ∈ reached : q =

q> ∨ q = qerr or
⋃

(·,bn)∈partssub

bn 6⊆
⋃

(pn,·)∈partssub
pn. From the previous lemma, we know

that at line 12 it yields that reached v N and |reached| ≤ |N |. Furthermore, from
de�nition of certPC(partition(NhR(RP

CA)), RP
CA), we know that n = |N |. We get that

|reached| ≤ |N | = n. Since RP
CA is safe (well-formed), we know that ¬∃(e, q) ∈ N : q =

q> ∨ q = qerr. From reached v N and Q being a �at lattice, it follows that ¬∃(e, q) ∈
reached : q = q> ∨ q = qerr. From de�nition of certPC(partition(NhR(RP

CA)), RP
CA), we

conclude that ∀(·, bn) ∈ partssub : bn ⊆ NhR(RP
CA). Thus,

⋃
(·,bn)∈partssub

bn ⊆ NhR(RP
CA) =⋃

(pn,·)∈partssub

pn. Contradiction to Algorithm 5 returning false in line 12.

Finally, we conclude that Algorithm 5 returns true.

A.4 Outstanding Proofs for Chapter 5

Programs from Proofs

Lemma 5.1. If Algorithm 2 started with re�ned property checking analysis (C2 × C1)A,
compatible, initial abstract state e0 ∈ E(C2×C1)A , any initial precision π0 ∈ Π(C2×C1)A , and
program P returns (true, ·, (N,GARG, root,Ncov)), then ∀((·, e1), ·) ∈ N : acs(e1) ∈ L.
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Proof. Show by induction over the changes of reached that ∀((e2, e1), q) ∈ reached :
acs(e1) ∈ L.

Basis Algorithm 2 initializes reached in line 1 with e0 = ((e0
2, e

0
1), q0). Since e0 is a

compatible, initial abstract, we know that acs(e0
1) ∈ L. The induction hypothesis

follows.

Step Algorithm 2 changes reached in line 12 or line 19.

If it changes reached in line 12, it will add enew = ((en2 , e
n
1 ), qn). By de�nition

of enew in line 9, enew is the result of a merge of eprec and e′′ = ((e′′2 , e
′′
1), q′′).

The requirements on merge in a re�ned property checking analysis give us that
acs(en1 ) = acs(e′′1). Since e′′ ∈ reached, by induction we get acs(en1 ) = acs(e′′1) ∈ L.
If Algorithm 2 changes reached in line 19, it adds eprec = ((ep2, e

p
1), qp). By de�nition

of eprec in line 7, it is the result of precision adjustment for e′. The de�nition of the
precision adjustment operator and the requirements on the precision adjustment op-
erator in a re�ned property analysis, let us conclude that acs(ep1) = acs(e′1). Due to
line 6, we know that ∃(e, g, e′) ∈ and (e, ·) was popped from waitlist in line 4. Since
all abstract states in waitlist are also contained in reached, we get from induction and
e = ((e2, e1), q) ∈ reached that acs(e1) ∈ L. From the de�nition of the transfer rela-
tion of a re�ned property checking analysis, we know that (acs(e1), g, acs(e′1)) ∈ L.
From acs(e1) ∈ L and the de�nition of  L, it follows that acs(e′1) ∈ L. Thus,
acs(ep1) ∈ L.
The induction hypothesis follows.

By induction, we know that at line 29 ∀((e2, e1), q) ∈ reached : acs(e1) ∈ L is true. In
line 29, N = reached. It follows that ∀((e2, e1), q) ∈ N : acs(e1) ∈ L

Theorem 5.3 (Behavioral Equivalence). Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an

ARG for program P and re�ned property checking analysis (C2 × C1)A which is strongly
well-formed for e0 ∈ E(C2×C1)A . Then, pathsP (JrootK) =nl pathsprog(RP

(C2×C1)A
)(I) with

I = {c | c ∈ C ∧ cs(c) = root ∧ ∃c′ ∈ JrootK : ds(c′) = ds(c)}.

Proof. Let prog(RP
(C2×C1)A) = (L′, G′CFA, l

′
0) and P = (L,GCFA, l0). Note that program

locations l′ ∈ L′ of program RP
(C2×C1)A are ARG nodes (construction of program). We

need to show that for every path p ∈ pathsP (JrootK) a path p′ ∈ pathsprog(RP
(C2×C1)A

)(I)

exists with p =nl p
′ (case ⊆) and for every path p′ ∈ pathsprog(RP

(C2×C1)A
)(I) a path

p ∈ pathsP (JrootK) with p′ =nl p exists (case ⊇).

⊆ Show by induction over the path length that for all paths p := c0
g1→ c1 · · ·

gn→ cn ∈
pathsP (JrootK) a path p′ := c′0

g′1→ c′1 · · ·
g′n→ c′n ∈ pathsprog(RP

(C2×C1)A
)(I) exists with

∀0 ≤ i ≤ n : ci ∈ Jcs(c′i)K and p =nl p
′.

Basis Let c0 ∈ pathsP (JrootK) a path of length 0. From de�nition of paths, c0 ∈
JrootK. By program construction, root = l′0. De�ne c

′
0 = (root,ds(c0)). Since

c0 ∈ C, the assumptions on concrete states give us c′0 ∈ C. By de�nition,
c′0 ∈ I. Hence, by de�nition c′0 ∈ pathsprog(RP

(C2×C1)A
)(I) and c0 =nl c

′
0. The

induction hypothesis follows
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Step Let p := c0
g1→ c1 . . . ci−1

gi→ ci ∈ pathsP (JrootK) be a path of length i. By
de�nition, psub := c0

g1→ c1 . . . ci−1 ∈ pathsP (JrootK) is a path of length i − 1.

By induction, a path p′sub := c′0
g′1→ c′1 . . . c

′
i−1 ∈ pathsprog(RP

(C2×C1)A
)(I) ex-

ists with ∀0 ≤ j ≤ i − 1 : cj ∈ Jcs(c′j)K and psub =nl p
′
sub. Since ci−1

gi→ ci,
ci−1 ∈ Jcs(c′i−1)K, there exists (cs(c′i−1), gi, e) ∈ (C2×C1)A and ci ∈ JeK (overap-
proximation of transfer relation). From RP

(C2×C1)A being complete ((strongly)
well-formed), cs(c′i−1) ∈ N , gi ∈ GCFA, and (cs(c′i−1), gi, e) ∈ (C2×C1)A , we
know that there exists (cs(c′i−1), gi, n

′) ∈ GARG s.t. ci ∈ Jn′K. Let gi = (·, opi, ·).
By program construction, (cs(c′i−1), opi, n

′) ∈ G′CFA. De�ne c′i = (n′,ds(ci)).
The assumptions on concrete states and ci ∈ C, give us c′i ∈ C. From
the assumptions on transition relation →, ci−1

gi→ ci, cs(c′i) = n′, we get

c′i−1

(cs(c′i−1),op,n′)
−−−−−−−−−−→ c′i. We conclude that p′ := c′0

g′1→ c′1 . . . c
′
i−1

(cs(c′i−1),op,n′)
−−−−−−−−−−→

c′i ∈ pathsprog(RP
(C2×C1)A

(I) and p =nl p
′. The induction hypothesis follows.

⊇ Show by induction over the path length that for all paths p′ := c′0
g′1→ c′1 · · ·

g′n→ c′n ∈
pathsprog(RP

(C2×C1)A
)(I) a path p := c0

g1→ c1 · · ·
gn→ cn ∈ pathsP (JrootK) exists with

∀0 ≤ i ≤ n : ci ∈ Jcs(c′i)K.

Basis Let c′0 ∈ pathsprog(RP
(C2×C1)A

)(I) a path of length 0. From de�nition of paths,

c′0 ∈ I. The de�nition of I gives us cs(c′0) = root and ∃c0 ∈ JrootK : ds(c0) =
ds(c′0). By de�nition, c0 ∈ pathsP (JrootK) and c0 =nl c

′
0. The induction

hypothesis follows.

Step Let p′ := c′0
g′1→ c′1 . . . c

′
i−1

g′i→ c′i ∈ pathsprog(RP
(C2×C1)A

)(I) be a path of length

i. By de�nition, p′sub := c′0
g′1→ c′1 . . . c

′
i−1 ∈ pathsprog(RP

(C2×C1)A
)(I) is a path of

length i − 1. By induction, a path psub := c0
g1→ c1 . . . ci−1 ∈ pathsP (JrootK)

exists with ∀0 ≤ j ≤ i−1 : cj ∈ Jcs(c′j)K and p′sub =nl psub. Since c′i−1

g′i→ c′i, we
infer from the requirements on the transition relation → that ∃op ∈ Ops :
g′i = (cs(c′i−1), op, cs(c′i)). From the construction of the transformed pro-
gram, we know there exists (cs(c′i−1), (lp, op, ls), cs(c′i)) ∈ GARG, (lp, op, ls) ∈
GCFA. Since RP

(C2×C1)A) is strongly well-formed, we know that cs(c′i−1) =

((·, ei−1
1 ), ·) with acs(ei−1

1 ) ∈ L and cs(c′i) = ((·, ei1), ·) with acs(ei1) ∈ L. From
RP

(C2×C1)A being well-constructed ((strongly) well-formed), we know that there
exists (cs(c′i−1), (lp, op, ls), et) ∈ (C2×C1)A . Due to soundness ((strong) well-
formedness) of RP

(C2×C1)A , we get et v cs(c′i). Let et = ((et2, e
t
1), qt). From the

de�nition of the transfer relations  (C2×C1)A and  L and acs(e1
i−1) ∈ L, we

infer that acs(ei−1
1 ) = lp and acs(et1) = ls. From the de�nition of v, et v cs(c′i)

and acs(ei1) ∈ L, we know that acs(ei1) = ls. From the de�nition of con-
cretization, acs(ei−1

1 ) = lp, and ci−1 ∈ cs(c′i−1), we get cs(ci−1) = lp. De�ne
ci = (ls,ds(c′i)). The assumptions on concrete states and c′i ∈ C, give us ci ∈ C.

From the assumptions on transition relation →, c′i−1

g′i→ c′i, p
′
sub =nl psub,

ds(c′i−1) = ds(ci−1), cs(ci) = ls and cs(ci−1) = lp, we get ci−1
(lp,op,ls)−−−−−−→ ci.

From ci−1 ∈ cs(c′i−1) and ci−1
(ls,op,lp)−−−−−−→ ci, we get ci ∈ JetK (overapproximation
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of transfer relation and transfer relation of re�ned property checking analysis
being a function). The meaning of v and et v cs(c′i), let us conclude that ci ∈
Jcs(c′i)K. We conclude that p := c0

g1→ c1 . . . ci−1
(lp,op,ls)−−−−−−→ ci ∈ pathsP (JrootK)

and p′ =nl p. The induction hypothesis follows.

Proposition 5.9. Let CA1 be a property checking analysis and DFA(CA1 ) be the data�ow
analysis of CA1 . Then, a CPA C exists such that DFA(CA1 ) is an enhancement of CPA C
and control state unaware property automaton A.

Proof. Assume CA1 = (DA,Π, A, precA,mergeA, stopA). Then, C1 = (D,Π, C1
, ·, ·, ·).

De�ne C = (D,Π, C1 , precC,mergeC, stopC) with precC(e, π, S) := (e, π), mergeC(e, e′) :=
e′, and stopC(e, S) := ∃e′ ∈ S : e v e′.

First, show that C is a CPA. We know that C1 is a CPA. By de�nition of C, nothing
remains to be shown for abstract domain D, set of initial precisions Π, or the transfer
relation. Since e v e, the requirements on the precision adjustment operator and the
merge operator are ful�lled. It remains to be shown that the termination check operator
is sound. We get stopC(e, S) = true implies ∃e′ ∈ S : e v e′. Let e′ ∈ S with e v e′

be arbitrary. The requirements on the abstract domain let us conclude that JeK ⊆ Je′K.
Hence, JeK ⊆ Je′K ⊆

⋃
e′′∈S

Je′′K. Thus, C is a CPA.

Second, show that DFA(CA1 ) = (DA,Π, A, precDFA,mergeDFA, stopDFA) is an en-
hancement of CPA C and property automaton A. By de�nition of C, DFA(CA1 ), and CA1
being an enhancement of CPA C1 with A, the requirements for the abstract domain, the
set of precisions, and the transfer relation are met. By de�nition, precDFA((e, q), π, S) =
((e, q), π) = precAC,mp((e, q), π, S). Moreover, we have mergeDFA((e, q), (e′, q′)) = ((e, q) t
(e′, q′)) w (e′, q′) = mergeAC,mp((e, q), (e′, q′)) if acs(e) = acs(e′) and otherwise we have
mergeDFA((e, q), (e′, q′)) = (e′, q′) = mergeAC,mp((e, q), (e′, q′)). We further infer that
stopAC,mp((e, q), S) = stopC(e, {e′ | (e′, q′) ∈ S ∧ q v q′}) = ∃e′′ ∈ {e′ | (e′, q′) ∈ S ∧ q v
q′} : e v e′′ = ∃(e′′, q′) ∈ S : (e, q) v (e′′, q′). Hence, DFA(CA1 ) is an enhancement of
CPA C and property automaton A.

Lemma 5.10. Let CA1 be a property checking analysis, and P = (L,GCFA, l0) be a
program. If Algorithm 2 started with DFA(CA1 ), initial abstract state (e, q) ∈ ECA1 with

acs(e) ∈ L, initial precision π0 ∈ ΠCA1 , and P , then after line 1 always ∀(e′, q′) ∈ reached :

acs(e′) ∈ L ∧¬∃(e′′, q′′) ∈ reached : (e′′, q′′) 6= (e′, q′) ∧ acs(e′′) = acs(e′).

Proof. Show by induction over the changes of reached that after line 1 always ∀(e′, q′) ∈
reached : acs(e′) ∈ L ∧ ¬∃(e′′, q′′) ∈ reached : (e′′, q′′) 6= (e′, q′) ∧ acs(e′′) = acs(e′).

Basis Algorithm 2 initializes reached in line 1 with a single element (e, q) and acs(e) ∈ L.
The induction hypothesis follows.

Step Algorithm 2 changes reached only in line 12 and line 19.

If it change reached in line 12, it adds enew. Let e′′ = (e′′1 , q
′′) and enew = (en1 , q

n).
From the de�nition of enew in line 12 and the de�nition of mergeDFA, we know that
acs(en1 ) = acs(e′′1). By induction and e′′ ∈ reached, we get acs(en1 ) ∈ L and e′′ is the
only element in reached with location state acs(e′′1). Since Algorithm 2 replaces e′′,
the only element in reached with location state acs(e′′1), with enew, only one element
exists in reached considering location acs(e′′1) = acs(en1 ) after execution of line 12.

273



APPENDIX A. PROOFS

If Algorithm 2 changes reached in line 19, it adds eprec. From de�nition of precDFA,
we know that eprec = e′. Let e′ = (e′1, q

′). We know (e, g, e′) ∈ CA1 and g ∈
L × Ops × L. Let e = (e1, q∗). Since Algorithm 2 only adds (ê, ·) to waitlist if it
adds ê in reached and it removes all (ê, ·) in waitlist if it removes ê from reached,
we know that in line 4 e ∈ reached. By induction, we get acs(e1) ∈ L. From
de�nition of transfer relation  CA1 , g ∈ L × Ops × L, and acs(e1) ∈ L, we infer
that acs(e′1) ∈ L. We need to show that no element (e′′′1 , q

′′′) ∈ reached exists with
acs(e′1) = acs(e′′′1 ) before execution of line 19. Assume that such an element exists.
Since in line 12 a state is replaced with a more abstract state which considers
the same location, we infer that in line 7 a state (e′′1 , q

′′) ∈ reached exists with
acs(e′1) = acs(e′′1). By de�nition ofmergeDFA, e

′ is combined with a state e′′ in line 12
and e′ v merge(e′, e′′) (de�nition of merge). Due to the requirements on mergeDFA

(Eq. 2.5) and transitivity of partial order v, we know that before execution of line 19
∃ê′ ∈ reached : e′ v ê′. Furthermore, at line 19 stopDFA(e′, reached) = false. Hence,
¬∃ê′ ∈ reached : e′ v ê′ (de�nition of stopDFA). Contradiction to ∃ê′ ∈ reached :

e′ v ê′. We conclude that no such state exists.

The induction hypothesis follows.

Lemma 5.12. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A which is strongly well-formed for e0 ∈ E(C2×C1). Further-
more, let prog(RP

(C2×C1)A) = (L,GCFA, l0) be the generated program, (e1, q) ∈ ECA1 , n ∈ N ,

and g ∈ GCFA. If ((e1, q), g, (e
′
1, q
′)) ∈ CA1 , acs(e1) = n, and (e1, q) v n[n], then there

exists n′ ∈ N with acs(e′1) = n′ and (e′1, q
′) v n′[n′].

Proof. Assume ((e1, q), g, (e
′
1, q
′)) ∈ CA1 , acs(e1) = n and (e1, q) v n[n]. By de�nition

of the transfer relations  CA1 and  L, and acs(e1) = n ∈ L (program construction
and n ∈ N), we know that g = (acs(e1), op, acs(e′1)). From program construction, we get
(acs(e1), (lp, op, ls), acs(e′1)) ∈ GARG and acs(e′1) ∈ N . Since RP

(C2×C1)A is well-constructed
and sound ((strongly) well-formed), we infer that ∃(acs(e1), (lp, op, ls), ê) ∈ (C2×C1)A : ê v
acs(e′1). Let acs(e1) = ((en2 , e

n
1 ), qn) and ê = ((ê2, ê1), q̂). From de�nition of (C2×C1)A , we

get ((en1 , q
n), (lp, op, ls), (ê1, q̂)) ∈ CA1 . Since R

P
(C2×C1)A is strongly well-formed, we know

that acs(en1 ), acs(ê1) ∈ L. The de�nition of CA1 and L let us conclude that acs(en1 ) = lp
and acs(ê1) = ls. From de�nition of  CA1 , n[n] = acs(e1)[acs(e1)], and ê[acs(e′1)], we get
(n[n], g, ê[acs(e′1)]) ∈ CA1 . From  CA1 being a monotonic function and (e1, q) v n[n], we
infer that (e′1, q

′) v ê[acs(e′1)]. From de�nition of ê[acs(e′1)], acs(e′1)[acs(e′1)], ê v acs(e′1),
and de�nition of v, we conclude that ê[acs(e′1)] v acs(e′1)[acs(e′1)]. Since partial order v is
transitive, we get (e′1, q

′) v acs(e′1)[acs(e′1)]. Set n′ = acs(e′1). We conclude that a n′ ∈ N
exists with acs(e′1) = n′ and (e′1, q

′) v n′[n′].

Lemma 5.13. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A which is strongly well-formed for e0 ∈ E(C2×C1). Further-
more, let prog(RP

(C2×C1)A) = (L,GCFA, l0) the generated program. If Algorithm 2 started

with DFA(CA1 ), initial abstract state e′0 v e0[l0], arbitrary initial precision π0 ∈ ΠCA1 , and

prog(RP
(C2×C1)A) terminates, then it returns (·, reached, ·) with ∀e ∈ reached : ∃n ∈ N :

e v n[n].
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Proof. Prove by induction over the changes of reached that ∀(e1, q) ∈ reached : ∃n ∈ N :
acs(e1) = n ∧ e v n[n].

Basis Algorithm 2 initializes reached with e′0 in line 2. From program construction, we
know that l0 = root and root ∈ N (de�nition of ARG). Since RP

(C2×C1)A is rooted
((strongly) well-formed), we know that e0 v root. By de�nition of v, e0[l0], root[l0]
and e0 v root, we infer e0[l0] v root[l0]. Since e′0 v e0[l0] and e0[l0] v root[l0], we
get e′0 v root[l0] = root[root] The induction hypothesis follows.

Step After initialization Algorithm 2 changes reached in line 12 or line 19. Now, let
(e, g, e′) ∈ CA1 be the transfer relation transition which is explored in the iteration
of the for loop of line 6 in which reached is changed in line 12 and 19, respectively.
Since Algorithm 2 only adds (e, ·) to waitlist when it adds e in reached and it removes
all (e, ·) in waitlist when it removes e from reached, we know that in line 4 e = (e1, q) ∈
reached. Let e = (e1, q) and e′ = (e′1, q

′). Hence, by induction ∃n ∈ N : acs(e1) =
n ∧ e v n[n]. From previous lemma, we conclude that ∃n′ ∈ N : acs(e′1) = n′ ∧ e′ v
n′[n′]. From de�nition of precDFA, we conclude that eprec = e′.

If Algorithm 2 changes reached in line 12, it replaces e′′ = (e′′1 , q
′′) ∈ reached by

enew = (en1 , q
n). By induction, we know that ∃n′′ ∈ N : acs(e′′1) = n′′ ∧ e′′ v n′′[n′′].

Since in line 12 e′′ 6= enew, we know that enew = eprec t e′′ and acs(e′1) = acs(e′′1)
(de�nition of mergeDFA and eprec = e′). Hence, n′ = n′′. From ECA1 being a join-
semilattice, we conclude that enew = eprec t e′′ v n′[n′]. From de�nition of t and
acs(e′1) = acs(e′′1), we get acs(en1 ) = acs(e′1) = n′. The induction hypothesis follows.

If Algorithm 2 changes reached in line 19, it adds eprec. Since eprec = e′, the induction
hypothesis follows.

Lemma 5.16. Let P = (L,GCFA, l0) be a program. Furthermore, let DFA(CA1 ) be the
data�ow analysis of property checking analysis CA1 and (e, q) ∈ ECA1 s.t. acs(e) ∈ L. If Al-
gorithm 2 started with DFA(CA1 ), initial abstract state (e, q) ∈ ECA1 , arbitrary initial preci-

sion π0 ∈ ΠCA1 , and program P , then for every element ((e′, q′), π′) added to waitlist during

iteration of the while loop a non-empty sequence g1 . . . gn exists with g1 = (acs(e), ·, ·) ∧
∀1 ≤ i ≤ n : gi ∈ GCFA ∧ (i = n ∧ gn = (·, ·, acs(e′)) ∨ gi = (·, ·, l′) ∧ gi+1 = (l′, ·, ·)).

Proof. Prove by induction over the iterations i of the while loop that for every insertion
of ((e′, q′), π′) in waitlist in iteration i a non-empty sequence g1 . . . gn exists with g1 =
(acs(e), ·, ·) ∧ ∀1 ≤ i ≤ n : gi ∈ GCFA ∧ (i = n ∧ gn = (·, ·, acs(e′)) ∨ gi = (·, ·, l′) ∧ gi+1 =
(l′, ·, ·).

Basis Let ((e′, q′), π′) be an element added in an arbitrary insertion of the �rst iteration
of the while loop. Insertion is only possible in line 11 or line 19. We know that Al-
gorithm 2 pops initial abstract state ((e, q), ·) in line 4. We get that eprec = (et, qt)
with ((e, q), (l, op, l′), (et, qt)) ∈ CA1 (de�nition of operators of data�ow analysis).
From the requirements on the property checking analysis and acs(e) ∈ L, we con-
clude that acs(e) = l and acs(et) = l′. If ((e′, q′), π′) is added in line 11, we conclude
that (e′, q′) = enew 6= e′′. Thus, enew = eprec t e′′ = (et, qt) t e′′. The de�nition of
the merge operator gives us that acs(e′) = acs(et) = l′. If ((e′, q′), π′) is added in
line 19, we get that (e′, q′) = eprec = (et, qt). In both cases, the sequence (l, op, l′)
ful�lls the requirements. The induction hypothesis follows.
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Step Let ((e′, q′), π′) be an element added in an arbitrary insertion of the ith iteration
of the while loop and i > 1. Insertion is only possible in line 11 or line 19. Assume
Algorithm 2 pops abstract state ((ep, qp), ·) in line 4. We infer that ((ep, qp), ·) must
be added in iteration j < i. We conclude that a non-empty sequence g1 . . . gn exists
with g1 = (acs(e), ·, ·) ∧ ∀1 ≤ i ≤ n : gi ∈ GCFA ∧ (i = n ∧ gn = (·, ·, acs(ep)) ∨ gi =
(·, ·, l′) ∧ gi+1 = (l′, ·, ·). Hence, acs(ep) ∈ L. We get that eprec = (et, qt) with
((ep, qp), (l, op, l′), (et, qt)) ∈ CA1 (de�nition of operators of data�ow analysis). From
the requirements on the property checking analysis and acs(ep) ∈ L, we conclude
that acs(ep) = l and acs(et) = l′. If ((e′, q′), π′) is added in line 11, we conclude that
(e′, q′) = enew 6= e′′. Thus, enew = eprec t e′′ = (et, qt) t e′′. The de�nition of the
merge operator gives us that acs(e′) = acs(et) = l′. If ((e′, q′), π′) is added in line 19,
we get that (e′, q′) = eprec = (et, qt). In both cases, the sequence g1 . . . gn(l, op, l′)
ful�lls the requirements. The induction hypothesis follows.

Lemma 5.17. Let P = (L,GCFA, l0) be a program. Furthermore, let DFA(CA1 ) be the
data�ow analysis of property checking analysis CA1 and (e, q) ∈ ECA1 s.t. acs(e) ∈ L. If

Algorithm 2 started with DFA(CA1 ), initial abstract state (e, q), arbitrary initial preci-
sion π0 ∈ ΠCA1 , and program P and ((e′, q′), π′) is popped in an iteration of the while loop,

then for each l′ ∈ L at most |{(acs(e′), ·, l′) ∈ G}| elements ((e′′, q′′), π′′) with acs(e′′) = l′

are added to waitlist in the same iteration.

Proof. Consider an arbitrary iteration of the while loop. Assume this iteration popped ab-
stract state ((e′, q′), π′) from waitlist. Since waitlist only contains ((e′, q′), π′) when reached
contains (e′, q′), from Lemma 5.10 we know that acs(e′) ∈ L. By de�nition of a data�ow
analysis and the transfer relation  CA1 , we know that ((e′, q′), (l′, op, l′′), (e′′, q′′)) ∈ CA1
only if acs(e′) = l′ and acs(e′′) = l′′. From  CA1 being a function, it follows that per edge
at most one abstract successor exists. It remains to be shown that in each iteration of
the for loop in line 6, which explores transition ((e′, q′), (l′, op, l′′), (e′′, q′′)) ∈ CA1 , only
one element ((e′′′, q′′′), π′′′) with acs(e′′′) = l′′ is added. For these iterations, we know
that Algorithm 2 adds elements ((e′′′, q′′′), π′′′) in line 11 or line 19. Due to the de�ni-
tion of the merge and precision adjustment operator, we know that acs(e′′′) = l′′. From
Lemma 5.10 and the de�nition of the merge operator, at most one element is added in
line 11. Furthermore, we know that if an element ((e′′′, q′′′), π′′′) is added in line 11, then
(e′′, q′′) v (e′′′, q′′′) (de�nition of merge) and at line 18 (e′′′, q′′′) ∈ reached. Hence, if an
element (e′′′, q′′′) is added in line 11, stopDFA((e′′, q′′), reached) = true. We conclude that
Algorithm 2 either adds an element in line 11 or in line 19.

Proposition 5.18. Let DFA(CA1 ) be the data�ow analysis of property checking analy-
sis CA1 and (e, q) ∈ ECA1 s.t. acs(e) ∈ L. If program P = (L,GCFA, l0) is �nite and does

not contain loops, and L is �nite, then Algorithm 2 started with DFA(CA1 ), initial abstract
state (e, q), arbitrary initial precision π0 ∈ ΠCA1 , and program P terminates.

Proof. If acs(e) /∈ L, we know that not exists ((e, q), g, (e′, q′)) ∈ CA1 s.t. g ∈ G (de�nition
of DFA(CA1 ), requirements on property checking analysis and acs(e) ∈ L). The while
loop terminates after one iteration because the number of control �ow edges is bounded
(program P is �nite) and no transfer successor exists for any edge.

Assume that acs(e) ∈ L. From Lemma 5.10 we infer that the size of the reached set
is always restricted by |L|. The for each loop in line 8 always terminates. Since  CA1 is a
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function (de�nition of DFA and property checking analysis), we infer that the for loop in
line 6 always terminates. Now, we conclude that the for loop in line 5 always terminates
(number of control �ow edges bounded, because program �nite). It remains to be shown
that the while loop terminates.

De�ne s : L → N with s(l) = |{g1 . . . gn | g1 = (acs(e), ·, ·) ∧ ∀1 ≤ i ≤ n : gi ∈
GCFA∧ (i = n∧ gn = (·, ·, l)∨ gi = (·, ·, l′)∧ gi+1 = (l′, ·, ·)}|. Since P is loop-free, function
s is well-de�ned, s(acs(e)) = 0 and (l, ·, l′) ∈ GCFA implies s(l) ≤ s(l′).

For every l ∈ L, we prove by induction over the value of s(l) and the size of the longest
path from acs(e) to l that after line 1 Algorithm 2 adds for each l ∈ L at most s(l) many
times an element ((e′, q′), π′) with acs(e′) = l to waitlist.

Basis Let l ∈ L be an arbitrary location with s(l) = 0. From Lemma 5.16 and s(l) = 0,
we conclude that during iteration of the while loop no element ((e′, q′), π′) with
acs(e′) = l is added to waitlist. Hence, after line 1 no element ((e′, q′), π′) with
acs(e′) = l is added to waitlist. The induction hypothesis follows.

Step Let l ∈ L be an arbitrary location with s(l) = i, i > 0 and size of longest path j.
Since s(l) > 0, we get j > 0. From Lemma 5.17, we know that Algorithm 2 only
adds an element ((e′′, q′′), ·) to waitlist in iteration i considering element ((e′, q′), ·) if
an edge (acs(e′), ·, acs(e′′)) ∈ G exists. By de�nition of s, we know that for all l′ ∈ L
s.t. an edge (l′, ·, l) ∈ G exists that s(l′) ≤ i and the longest path from acs(e) to l′ is
smaller than j (exists a path s(l) > 0 and program loop-free). By induction, we get
that at most s(l′) many times an element ((e′′, q′′), π′′) with acs(e′′) = l′ is added to
waitlist. Per addition to waitlist, an element can only be removed once. Hence, from
Lemma 5.17 we get that for each such l′ at most s(l′) · |{(acs(e′), ·, l) ∈ G}| many
elements ((e′′, q′′), ·) with acs(e′′) = l are added to waitlist. We conclude that at
most

∑
(l′,·,l)∈G

s(l′) · |{(acs(e′), ·, l) ∈ G}| many elements ((e′′, q′′), ·) with acs(e′′) = l

are added to waitlist. By de�nition of s, we have
∑

(l′,·,l)∈G
s(l′)·|{(acs(e′), ·, l) ∈ G}| =

s(l). The induction hypothesis follows.

From Lemma 5.10, we know that never an element (e′, q′) with acs(e′) /∈ L is added
to reached. Thus, no element ((e′, q′), π′) with acs(e′) /∈ L is added to waitlist. From
induction and the insertion (e0, π0) in line 1, we know that at most sL := 1 +

∑
l∈L

s(l)

many times an element is added to waitlist. Since L is �nite and each s(l) ∈ N, we get
sL ∈ N. Only �nitely many often, elements are added to waitlist. The while loop removes
one element in each iteration and terminates if the waitlist is empty. Hence, the while loop
terminates.

Lemma 5.19. Let DFA(CA1 ) be the data�ow analysis of property checking analysis CA1 .
Let reachedB denote the reached set in Algorithm 2 before a change and reachedA that
reached set after a change. If Algorithm 2 is started with DFA(CA1 ), arbitrary initial
abstract state e0 ∈ ECA1 and precision π0 ∈ ΠCA1 , and program P = (L,GCFA, l0),
then after initialization of reached in line 1 for each change of reached it holds that
reachedB@̂reachedA and |reachedB | ≤ |reachedA| ≤ |L+ 1|.

Proof. Let initial abstract be e0 = (e0
1, q

0). If acs(e0
1) /∈ L and acs(e0

1) 6= >L, we know that
¬∃((e0

1, q
0), g, ·) ∈ CA1 ∧g ∈ GCFA. Algorithm 2 only adds (e0

1, q
0) to reached in line 1.

Now, consider acs(e0
1) ∈ L or acs(e0

1) = >L. Algorithm 2 initializes reached with e0 and
we get |reached| = 1 = |{l | (ê, q) ∈ reached ∧ acs(ê) = l}|. After initialization, reached is
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changed only in line 12 or 19. For each change, we need to show that reachedB@̂reachedA,
|reachedB | ≤ |reachedA|, and moreover |reachedB | = |{l | (ê, q) ∈ reachedB ∧ acs(ê) = l}|
= |{l | (ê, q) ∈ reachedB ∧ acs(ê) = l ∈ L ∪ {>L}}| also implies that |reachedA| =
|{l | (ê, q) ∈ reachedA ∧ acs(ê) = l}| = |{l | (ê, q) ∈ reachedA ∧ acs(ê) = l ∈ L ∪ {>L}}|.

If Algorithm 2 changes reached in line 12, it adds enew. Let e′′ = (e′′1 , q
′′) and enew =

(en1 , q
n). From the de�nition of enew in line 12 and the de�nition ofmergeDFA, we know that

acs(en1 ) = acs(e′′1) and e′′ v enew. Since Algorithm 2 replaces e′′ with enew (e′′ 6= enew), we
get e′′ @ enew and reachedB@̂(reachedB \ {e′′}) ∪ {enew} = (reachedB ∪ {enew}) \ {e′′} =
reachedA. Since it only replaces one element considering location acs(en1 ) with an element
with acs(en1 ), we get |reachedB | = |reachedA| and |reachedB | = |{l | (ê, q) ∈ reachedB ∧
acs(ê) = l}| = |{l | (ê, q) ∈ reachedB ∧ acs(ê) = l ∈ L ∪ >{L}}| implies that |reachedA| =
|{l | (ê, q) ∈ reachedA ∧ acs(ê) = l}| = |{l | (ê, q) ∈ reachedA ∧ acs(ê) = l ∈ L ∪ {>L}}|.

If Algorithm 2 changes reached in line 19, it adds eprec. From de�nition of precDFA,
we know that eprec = e′. Let e′ = (e′1, q

′). We know (e, g, e′) ∈ CA1 and g ∈ GCFA. Let
e = (e1, q). Due to the de�nition of the transfer relation, we get acs(e′1) ∈ L ∪ {>L}.
Since Algorithm 2 only adds (ẽ, ·) to waitlist if it adds ẽ in reached and it removes all (ẽ, ·)
in waitlist if it removes ẽ from reached, we know that in line 4 e ∈ reached. We need to
show that no element (e′′′1 , q

′′′) ∈ reached exists with acs(e′1) = acs(e′′′1 ) before execution of
line 19. Assume that such an element exists. Since in line 12 a state is replaced with a more
abstract considering the same location, we infer that a state (e′′1 , q

′′) ∈ reached exists with
acs(e′1) = acs(e′′1) in line 7. By de�nition of mergeDFA, e

′ is combined with a state e′′ in
line 12 and e′ v merge(e′, e′′) (de�nition of merge). Due to the requirements on mergeDFA

(Eq. 2.5) and transitivity of partial order v, we know that before execution of line 19 ∃ê′ ∈
reachedB : e′ v ê′. Furthermore, at line 19 stopDFA(e′, reachedB) = false. Hence, ¬∃ê′ ∈
reachedB : e′ v ê′ (de�nition of stopDFA). Contradiction to ∃ê′ ∈ reachedB : e′ v ê′. We
conclude that no such state exists. Algorithm 2 added an element. Thus, |reachedB | ≤
|reachedA|. Since not existed state with same location and location in L ∪ {>L}, we get
{l | (ê, q) ∈ reachedA ∧ acs(ê) = l} \ {l | (ê, q) ∈ reachedB ∧ acs(ê) = l} = {acs(e′1)} and
|reachedB | < |reachedB ∪ {e′}| = |reachedA|. Algorithm 2 added only one state. Hence,
we conclude that if |reachedB | = |{l | (ê, q) ∈ reachedB ∧ acs(ê) = l}| = |{l | (ê, q) ∈
reachedB ∧ acs(ê) = l ∈ L ∪ {>L}}|, then |reachedA| = |{l | (ê, q) ∈ reachedA ∧ acs(ê) =
l}| = |{l | (ê, q) ∈ reachedA ∧ acs(ê) = l ∈ L ∪ {>L}}|. Since reachedB v reachedB , we get
reachedB v reachedB ∪ {e′} = reachedA It follows that reachedB@̂reachedA.

Since at the beginning we know that |reached| = 1 = |{l | (e, q) ∈ reached∧acs(e) = l}|
and line 12 and line 19 never violate this property, we get |reachedB | = |{l | (e, q) ∈
reachedB∧acs(e) = l}| = |{l | (e, q) ∈ reachedB∧acs(e) = l ∈ L∪{>L}}| and |reachedA| =
|{l | (e, q) ∈ reachedA ∧ acs(e) = l}| = |{l | (e, q) ∈ reachedA ∧ acs(e) = l ∈ L ∪ {>L}}|.
We get that |reachedB | ≤ |L|+ 1 and |reachedA| ≤ |L|+ 1.

Proposition 5.20. Let DFA(CA1 ) be the data�ow analysis of property checking analy-
sis CA1 , P = (L,GCFA, l0) a �nite program, and L being �nite. If the join-semilattice ECA1
has �nite height, Algorithm 2 started with DFA(CA1 ), arbitrary initial abstract state e0 ∈
ECA1 , arbitrary initial precision π0 ∈ ΠCA1 , and program P terminates.

Proof. From Lemma 5.19, we infer that the size of the reached set is always restricted
by |L + 1|. The for each loop in line 8 always terminates. Since  CA1 is a function
(de�nition of DFA and property checking analysis), we infer that the for loop in line 6
always terminates. Now, we conclude that the for loop in line 5 always terminates (number
of control �ow edges bounded, because program �nite). It remains to show that the while
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loop terminates. Algorithm 2 pops one element from waitlist in each while loop iteration
and only adds (e, ·) to waitlist if it adds e to reached. Since the number of states in reached
is bounded, whenever reached is updated, it becomes more abstract, and every state can
become more abstract only �nitely many times (Lemma 5.19 plus �nite lattice height),
reached is updated �nally many times only. Due to the fact that Algorithm 2 only adds
a single element to waitlist each time and only �nitely many insertions exist, waitlist will
become empty after �nitely many iterations. Algorithm 2 terminates.

Lemma 5.22. Let (C2 × C1)A be a re�ned property checking analysis s.t. operators
merge(C2×C1)A(e, e′) = e′, prec(C2×C1)A(((e2, e1), q), π, S) = ((·, e1), q), ·), and furthermore
∀e ∈ E(C2×C1)A , S ⊆ E(C2×C1)A : e ∈ S =⇒ stopC1

(e, π, S). If Algorithm 2 started with

(C2×C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , a precision π0 ∈ Π(C2×C1)A ,

and program P returns (true, ·, RP
(C2×C1)A), RP

(C2×C1)A = (N,GARG, root, ·), and Gl24
ARG ⊆

GARG is the subset of ARG edges added in line 24 of the CPA algorithm, then for every
n ∈ N a sequence root, ((e1

2, e
1
1), q1), . . . , ((em2 , e

m
1 ), qm) = n exists s.t. ∀1 ≤ i ≤ m : ∃gi ∈

GCFA : (((ei−1
2 , ei−1

1 ), qi−1), gi, ((e
i
2, e

i
1), qi)) ∈ Gl24

ARG ∧ ((ei−1
1 , qi−1), gi, (e

i
1, q

i)) ∈ CA1
∧¬∃0 ≤ j ≤ m : i 6= j ∧ ((ei2, e

i
1), qi) = ((ej2, e

j
1), qj).

Proof. Due to de�nition of merge(C2×C1)A , Algorithm 2 never executes lines 10-17. Hence,
no states are removed from reached. The requirements on the termination check operator
let us conclude that an abstract state is added at most once to reached. Show by induction
over the number of insertions to reached that for every n ∈ reached there exists a sequence
of abstract states e0, ((e

1
2, e

1
1), q1), . . . , ((em2 , e

m
1 ), qm) = n s.t. ∀1 ≤ i ≤ m : ∃gi ∈ GCFA :

(((ei−1
2 , ei−1

1 ), qi−1), gi, ((e
i
2, e

i
1), qi)) ∈ Gl24

ARG ∧ ((ei−1
1 , qi−1), gi, (e

i
1, q

i)) ∈ CA1 ∧∀0 ≤ j ≤
m : i ≤ j =⇒ ((ei2, e

i
1), qi) was added to reached before ((ej2, e

j
1), qj).

Basis The �rst state which is inserted to reached is e0. The induction hypothesis follows.

Step Let eprec be the ith state added to reached and i > 1. We know that eprec is
added in line 19. Since lines 10-17 are never executed, the requirements on the
termination check let us infer that an abstract state is added at most once to
reached, and, thus to waitlist. We know that (e, ·) is popped from waitlist in line
4. Thus, we conclude that no element (e, ·) exists in waitlist. Furthermore, an
element is only contained in waitlist if it is contained in reached. Together with
never executing lines 10-17, we conclude that e ∈ reached. Let e = ((e2, e1), q)
and eprec = ((eprec

2 , eprec
1 ), qprec). We conclude from Algorithm 2, the de�nition of

the precision adjustment operator, and the de�nition of the transfer relation that
((e1, q), g, (e

prec
1 , qprec)) ∈ CA1 and e ∈ reached before eprec is added. By induc-

tion, a sequence of abstract states e0, ((e
1
2, e

1
1), q1), . . . , ((em2 , e

m
1 ), qm) = e exists

s.t. ∀1 ≤ i ≤ m : ∃gi ∈ GCFA : (((ei−1
2 , ei−1

1 ), qi−1), gi, ((e
i
2, e

i
1), qi)) ∈ Gl24

ARG ∧
((ei−1

1 , qi−1), gi, (e
i
1, q

i)) ∈ CA1 ∧∀0 ≤ j ≤ m : i ≤ j =⇒ ((ei2, e
i
1), qi) was added

to reached before ((ej2, e
j
1), qj). Hence, if (e, g, eprec) is never removed from GARG,

then there exists e0, ((e
1
2, e

1
1), q1), . . . , ((em2 , e

m
1 ), qm), ((em+1

2 , em+1
1 ), qm+1) = eprec

s.t. ∀1 ≤ i ≤ m + 1 : ∃gi ∈ GCFA : (((ei−1
2 , ei−1

1 ), qi−1), gi, ((e
i
2, e

i
1), qi)) ∈ Gl24

ARG ∧
((ei−1

1 , qi−1), gi, (e
i
1, q

i)) ∈ CA1 ∧∀0 ≤ j ≤ m+1 : i ≤ j =⇒ ((ei2, e
i
1), qi) was added

to reached before ((ej2, e
j
1), qj). It remains to be shown that Algorithm 2 never re-

moves (e, g, eprec) from GARG. Algorithm 2 may only remove (e, g, eprec) in line 20
(lines 10-17 are not executed) if stop(C2×C1)A(e, reached) = false. Since e ∈ reached
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if the edge is added, e is not removed from reached and stop(C2×C1)A(e, reached) =
true after (e, g, eprec)is added, that edge is never removed.

Due to ARG construction in Algorithm 2 and the de�nition of a re�ned property
checking analysis, we know that root = e0 and at line 29 it holds true that reached = N .
Furthermore, each abstract state is added at most once to reached. It follows that or every
n ∈ N there exists a sequence of abstract states root, ((e1

2, e
1
1), q1), . . . , ((em2 , e

m
1 ), qm) =

n s.t. ∀1 ≤ i ≤ m : ∃gi ∈ GCFA : (((ei−1
2 , ei−1

1 ), qi−1), gi, ((e
i
2, e

i
1), qi)) ∈ Gl24

ARG ∧
((ei−1

1 , qi−1), gi, (e
i
1, q

i)) ∈ CA1 ∧¬∃0 ≤ j ≤ m : i 6= j ∧ ((ei2, e
i
1), qi) = ((ej2, e

j
1), qj).

Theorem 5.24. Let (C2 × C1)A be a re�ned property checking analysis s.t. operators
merge(C2×C1)A(e, e′) = e′, ∀e ∈ E(C2×C1)A , S ⊆ E(C2×C1)A : e ∈ S =⇒ stopC1

(e, π, S),
and prec(C2×C1)A(((e2, e1), q), π, S) = (((·, e1), q), ·). If Algorithm 2 started with re�ned

property checking analysis (C2 × C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , a

precision π ∈ Π(C2×C1)A , and program P returns (true, ·, RP
(C2×C1)A) and prog(RP

(C2×C1)A)

= (L,GCFA, l0), then Algorithm 2 started with DFA(CA1 ), e0[l0], a precision π′ ∈ ΠCA1 ,

and prog(RP
(C2×C1)A) and using a tree ordering for waitlist terminates in a single pass.

Proof. Let RP
(C2×C1)A = (N,GARG, root,Ncov) and to the ordering of the locations used

by Algorithm 2 while checking the generated program.
Show by induction over the iterations of the while loop in line 3 of Algorithm 2 that

before each iteration i of that while loop that

1. ∀l ∈ L : to(l) > i ∨ ∃(e1, q) ∈ reached : acs(e1) = l,

2. ∀(e1, q) ∈ reached : (to(acs(e1)) > i ∨ (e1, q) = acs(e1)[acs(e1)]) ∧ (to(acs(e1)) ≥ i⇔
∃((e1, q), ·) ∈ waitlist),

3. ∀((e1, q), π), ((e′1, q
′), π′) ∈ waitlist : ((e1, q), π) = ((e′1, q

′), π′) ∨ acs(e1) 6= acs(e′1),
and

4. ∀g = (l, op, l′) ∈ GCFA : to(l) < i ∧ to(l′) > i =⇒ ∀(l[l], g, e′) ∈ CA1 ∃(e
′′, ·) ∈

waitlist : e′ v e′′.

Basis Before the �rst iteration, e0[l0] is added to reached and (e0[l0], π0) to waitlist. Due to
ARG construction in Algorithm 2, de�nition of re�ned property checking analysis
and program generation, we know that e0 = root = l0. From Lemma 5.22, we
know that every n ∈ N can be reached from root. The program generation lets
us conclude that every location l ∈ L is reachable from l0. Hence, by de�nition of
ordering to(l0) = 1. The induction hypothesis follows.

Step Consider arbitrary iteration i > 0. By induction, we know that before iteration i
that ∀(e1, q) ∈ reached : (to(acs(e1)) > i∨ (e1, q) = acs(e1)[acs(e1)])∧ (to(acs(e1)) ≥
i ⇔ ∃((e1, q), ·) ∈ waitlist). Since ((e1, q), ·) only in waitlist if (e1, q) ∈ reached and
at the beginning of each iteration i we know that waitlist 6= ∅, we infer that i ≤ |L|.
Next, show the four parts of the induction hypothesis.

By induction, we know that before execution of line 4 ∀l ∈ L : to(l) > i∨∃(e1, q) ∈
reached : acs(e1) = l. Algorithm 2 only removes abstract states from reached in
line 12. In this case, it replaces (e′1, q

′) = e′′ ∈ reached by enew = (en1 , q
n) 6= e′′

and enew = eprec t (e′1, q
′). By de�nition of the merge operator, acs(e′1) =
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acs(en1 ). Hence, before iteration i+1 it holds that ∀l ∈ L : to(l) > i∨∃(e1, q) ∈
reached : acs(e1) = l.

If i ≥ |L|, for every location l ∈ L we have to(l) ≤ i. In this case, we already
know that ∀l ∈ L : to(l) > i+ 1 ∨ ∃(e1, q) ∈ reached : acs(e1) = l.

Assume i < |L| and let li+1 be the location with to(li+1) = i + 1 (exactly one
exists because to bijective). Consider two cases.

In the �rst case, there exists an edge (l′, op, li+1) ∈ GCFA with to(l′) < i.
Due to program generation, an ARG edge (l′, (lp, op, ls), li+1) ∈ GARG exists.
Assume l′ = ((ep2, e

p
1), qp). From Proposition 5.2, we know that an abstract

transition (l′, (lp, op, ls), ((e
t
2, e

t
1), qt)) ∈ (C2×C1)A exists (well-constructedness)

and acs(ep1) ∈ L. From the de�nition of the transfer relation, we conclude
that ((ep1, q

p), (lp, op, ls), (e
t
1, q

t)) ∈ CA1 , acs(ep1) = lp, and acs(et1) = ls. Fur-
thermore, the requirements on the transfer relation let us also conclude that
(l′[l′], (l′, op, li+1), ((et2, e

t
1), qt)[li+1]) ∈ CA1 By induction, ((e′1, q

′), ·) ∈ waitlist

exists with ((et2, e
t
1), qt)[li+1] v (e′1, q

′). We infer that (e′1, q
′) ∈ reached and

with the help of Lemma 5.10 we get acs(e′1) = li+1.

In the second case, not exists an edge (l′, op, li+1) ∈ GCFA with to(l′) < i. From
Lemma 5.22, we know that every n ∈ N can be reached from root via edges
added in line 24 of the CPA algorithm. The program generation lets us conclude
that every location l ∈ L is reachable from l0. From to(li+1) = i + 1 > 1 and
de�nition of ordering to, we know that to(l0) = 1 and li+1 6= l0. Since li+1 is
reachable from l0, an edge (l′, op, li+1) ∈ GCFA exists with l′ 6= li+1 and to(l′) <
to(li+1). Now, we get that not to(l′) < i and to(l′) < i + 1. Hence, to(l′) = i.
By induction, we know that before line 4, an element (ei1, q

i) ∈ reached exists
with to(acs(ei1)) = i and acs(ei1) = l′ (to bijective). Furthermore, ((ei1, q

i), πi) ∈
waitlist exists and it is the only element for location acs(ei1) in waitlist. Addition-
ally, not exists ((e′1, q

′), π′) ∈ waitlist with to(acs(e′1)) < i. Since Algorithm 2
uses a tree ordering and the ordering to is injective, we conclude in line 4
element ((ei1, q

i), πi) is removed and to(acs(ei1)) = i. By induction, we get
(ei1, q

i) = acs(ei1)[acs(ei1)] = l′[l′]. Due to program generation, an ARG edge
(l′, (lp, op, ls), li+1) ∈ GARG exists. Assume l′ = ((ep2, e

p
1), qp). From Propo-

sition 5.2, we know that there exists (l′, (lp, op, ls), ((e
t
2, e

t
1), qt)) ∈ (C2×C1)A

(well-constructedness) and acs(ep1) ∈ L. From the de�nition of the transfer re-
lation, we conclude that ((ep1, q

p), (lp, op, ls), (e
t
1, q

t)) ∈ CA1 , acs(ep1) = lp, and
acs(et1) = ls. Due to the requirements on the transfer relation and l′[l′] =
(ei1, q

i), we get that ((ei1, q
i), (l′, op, li+1), ((et2, e

t
1), qt)[li+1]) ∈ CA1 Consider

the iteration of the for loop in line 6 which considers this transfer relation
element. Due to the de�nition of the precision adjustment, either (ei1, q

i) is
added to reached in line 19 or stop((ei1, q

i), reached) = true. In the �rst case,
(e′1, q

′) = ((et2, e
t
1), qt)[li+1] ∈ reached exists with acs(e′1) = li+1. In the second

case, we know that (e′1, q
′) ∈ reached exists with ((et2, e

t
1), qt)[li+1] v (e′1, q

′).
Due to partial order and Lemma 5.10, we conclude that acs(e′1) = li+1.

Show that if there exists a point in time during the execution of the ith iteration
of the while loop s.t. (e′1, q

′) ∈ reached with acs(e′1) = li+1, then this property
is never violated by the remaining execution of iteration i. An element (e′1, q

′)
can only be removed from reached in line 12. In this case, Algorithm 2 replaces
(e′1, q

′) = e′′ ∈ reached by enew = (en1 , q
n) 6= e′′ and enew = eprec t (e′1, q

′). By
de�nition of the merge operator, acs(e′1) = acs(en1 ). Thus, before execution of
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iteration i+ 1 we know that ∀l ∈ L : to(l) > i∨∃(e1, q) ∈ reached : acs(e1) = l.

We conclude that before iteration i + 1 we have that ∀l ∈ L : to(l) > i + 1 ∨
∃(e1, q) ∈ reached : acs(e1) = l.

By induction, we know that before execution of line 4 that ∀(e1, q) ∈ reached :
(to(acs(e1)) > i ∨ (e1, q) = acs(e1)[acs(e1)]) ∧ (to(acs(e1)) ≥ i ⇔ ∃((e1, q), ·) ∈
waitlist). Consider the removal in line 4. By induction, we know that before
line 4, an element (ei1, q

i) ∈ reached exists with to(acs(ei1)) = i (to bijective,
i ≤ |L|). Furthermore, ((ei1, q

i), πi) ∈ waitlist exists and it is the only element
for location acs(ei1) in waitlist. Additionally, not exists ((e′1, q

′), π′) ∈ waitlist
with to(acs(e′1)) < i nor to(acs(e′1)) = i and acs(e′1) 6= acs(ei1). Hence, in
line 4 of iteration i of the while loop Algorithm 2 pops an element ((ep1, q

p), πp)
from waitlist with acs(ep1) = i. After execution of line 4, we get ∀(e1, q) ∈
reached : (to(acs(e1)) > i ∨ (e1, q) = acs(e1)[acs(e1)]) ∧ (to(acs(e1)) ≥ i + 1 ⇔
∃((e1, q), ·) ∈ waitlist).

First, show that the property ∀(e1, q) ∈ reached : (to(acs(e1)) > i ∨ (e1, q) =
acs(e1)[acs(e1)]) is never violated. A state (e1, q) can only be removed from
reached in line 12. Proof by contradiction that if (e1, q) is removed from
reached in line 12, then acs(e1) > i or (e1, q) 6= acs(e1)[acs(e1)]. Assume
Algorithm 2 removes a state (e1, q) = e′′ in line 12 with acs(e1) ≤ i and
(e1, q) = acs(e1)[acs(e1)] . Then, it adds a state (en1 , q

n) with (e1, q) @ (en1 , q
n).

Let reachedf be the reached set returned by Algorithm 2 after checking the
generated program. Due to transitivity of partial order v, we know that
(ef1 , q

f ) exists with (e1, q) @ (en1 , q
n) v (ef1 , q

f ). Let (ef1 , q
f ) ∈ reachedf

with (en1 , q
n) v (ef1 , q

f ) be arbitrary. Furthermore, from Proposition 5.2 and
Lemma 5.13, we know that n ∈ N exists with (ef1 , q

f ) v n[n]. Let n ∈ N

with (ef1 , q
f ) v n[n] be arbitrary. From transitivity of partial order v, we

infer (e1, q) @ n[n]. From de�nition of v, we conclude that n = acs(e1) and
(e1, q) 6= n[n] = acs(e1)[acs(e1)]. Due to a contradiction, we get that (e1, q) is
removed from reached in line 12 only if acs(e1) > i or (e1, q) 6= acs(e1)[acs(e1)].
By induction, we know that for all l ∈ L with to(l) ≤ i there exists (e1, q) =
acs(e1)[acs(e1)] = l[l] in reached. We showed that these states are not deleted.
During iteration i, it always holds that for all l ∈ L with to(l) ≤ i there ex-
ists (e1, q) = acs(e1)[acs(e1)] = l[l] in reached. With the help of Lemma 5.10,
we conclude that no state (e′1, q

′) with acs(e′1) /∈ L or to(acs(e′1)) ≤ i and
(e′1, q

′) 6= acs(e′1)[acs(e′1)] can be added to reached. The property is never vio-
lated.

Second, show that ∀(e1, q) ∈ reached : (to(acs(e1)) ≥ i + 1 ⇔ ∃((e1, q), ·) ∈
waitlist) is never violated. After execution of line 4 in iteration i elements
((e′1, q

′), π′) are only removed from waitlist if (e′1, q
′) is removed from reached

and (e′1, q
′) is added to reached only if an element ((e′1, q

′), ·) is added to waitlist.
It remains to be shown that if a state (e1, q) is added to reached in iteration i,
then to(acs(e1)) ≥ i+ 1.

Consider insertion in line 19. With the help of Lemma 5.10, we conclude that
elements (e1, q) are only added if acs(e1) ∈ L and either not exists (e′1, q

′) ∈
reached with acs(e1) = acs(e′1) or ∀(e′1, q′) ∈ reached : acs(e′1) = acs(e1) =⇒
(e1, q) = (e′1, q). We already showed that during iteration i always for all l ∈ L
with to(l) ≤ i there exists (e1, q) = acs(e1)[acs(e1)] = l[l] in reached. If not
exists (e′1, q

′) ∈ reached with acs(e1) = acs(e′1), we get to(acs(e1)) ≥ i + 1.
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Consider case ∀(e′1, q′) ∈ reached : acs(e′1) = acs(e1) =⇒ (e1, q) = (e′1, q). Due
to the de�nition of the termination check, we get stop((e1, q), reached) = true.
We conclude that (e1, q) is not added in line 19.

Now consider insertions of elements (e1, q) in line 12. If to(acs(e1)) ≥ i + 1,
nothing must be shown. Assume to(acs(e1)) < i+ 1 or acs(e1) /∈ L. We know
that (e1, q) = enew 6= e′′ and at line 9 e′′ ∈ reached. Let e′′ = (e′′1 , q

′′). Due
to the de�nition of the merge operator and Lemma 5.10, we have acs(e1) =
acs(e′′1) ∈ L and to(acs(e1)) < i + 1. We already proved that during iter-
ation i it always holds that for all l ∈ L with to(l) < i + 1 there exists
(e1, q) = acs(e1)[acs(e1)] = l[l] in reached With the help of Lemma 5.10, we
know that e′′ = acs(e′′1)[acs(e′′1)] = acs(e1)[acs(e1)] = (e1, q). Contradiction to
e′′ 6= (e1, q). In line 12, (e1, q) is not added if to(acs(e1)) < i+1 or acs(e1) /∈ L.
The property is never violated.

Before iteration i + 1 of the while loop, it yields that ∀(e1, q) ∈ reached :
(to(acs(e1)) > i∨(e1, q) = acs(e1)[acs(e1)])∧(to(acs(e1)) ≥ i+1⇐⇒ ∃((e1, q), ·)
∈ waitlist). It remains to be shown that before iteration i + 1 of the while
loop it is true that ∀(e1, q) ∈ reached : to(acs(e1)) = i + 1 =⇒ (e1, q) =
acs(e1)[acs(e1)].

If i + 1 > |L| nothing must be shown. Consider case i + 1 ≤ |L|. Since to is
bijective, li+1 ∈ L exists with to(li+1) = i+ 1.

Due to program construction, we know that li+1 ∈ N . From Lemma 5.22, we
know that every n ∈ N can be reached from root via ARG edges added in
line 24. The program generation lets us conclude that every location l ∈ L is
reachable from l0. From to(li+1) = i + 1 > 1 and de�nition of ordering to, we
know that to(l0) = 1 and li+1 6= l0 = root. From Lemma 5.22, we know that a
sequence root = ((e0

2, e
0
1), q0), ((e1

2, e
1
1), q1), . . . , ((em2 , e

m
1 ), qm) = li+1 exists s.t.

∀1 ≤ i ≤ m : ∃gi = (lip, opi, l
i
s) ∈ GCFA : (((ei−1

2 , ei−1
1 ), qi−1), gi, ((e

i
2, e

i
1), qi)) ∈

Gl24
ARG ∧ ((ei−1

1 , qi−1), gi, (e
i
1, q

i)) ∈ CA1 ∧¬∃0 ≤ j ≤ m : i 6= j ∧ ((ei2, e
i
1), qi) =

((ej2, e
j
1), qj) and m > 0. Fix such a sequence root = ((e0

2, e
0
1), q0), ((e1

2, e
1
1), q1),

. . . , ((em2 , e
m
1 ), qm) = li+1 and corresponding edges gi. Due to program con-

struction, we know that (((em−1
2 , em−1

1 ), qm−1), opm, li+1) ∈ GCFA, element
((em−1

2 , em−1
1 ), qm−1) ∈ L, to(((em−1

2 , em−1
1 ), qm−1)) < to(li+1). Furthermore,

((em−1
1 , qm−1), gm, (e

m
1 , q

m)) ∈ CA1 . Let l′ := ((em−1
2 , em−1

1 ), qm). Since the

ARG RP
(C2×C1)A is strongly well-formed (Proposition 5.2), acs(em−i1 ) ∈ L. Due

to the requirements on the property checking analysis, especially on  CA1 ,

we conclude that acs(em−i1 ) = lmp and acs(em1 ) = lms . Moreover, we infer
that (l′[l′], (l′, opm, li+1), li+1[li+1]) = (((em−1

2 , em−1
1 ), qm−1)[l′], (l′, opm, li+1),

((em2 , e
m
1 ), qm)[li+1]) ∈ CA1 .

First, show that a point in time during execution i exists in which li+1[li+1]
is contained in reached. If to(l′) < i, by induction before the execution of
line 4, we know that ((e′′1 , q

′′), ·) ∈ waitlist exists with li+1[li+1] v (e′′1 , q
′′). We

infer that (e′′1 , q
′′) ∈ reached. Since Algorithm 2 only deletes abstract states

if it replaces them by more abstract states, we infer from Lemma 5.13 that a
n ∈ N exists with li+1[li+1] v (e′′1 , q

′′) v n[n]. From the de�nition of n[n] and
v, we conclude that acs(e′′1) = n. Since n ∈ L, from the de�nition of v we
get that acs(e′′1) = li+1. Hence, li+1[li+1] v (e′′1 , q

′′) v n[n] = li+1[li+1] and
(e′′1 , q

′′) = li+1[li+1]. If to(l′) = i, we already showed that in line 4 of itera-
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tion i Algorithm 2 pops an element ((ep1, q
p), πp) from waitlist with acs(ep1) = i.

From ((ep1, q
p), πp) ∈ waitlist, we know that (ep1, q

p) ∈ reached. By induction
and to being injective, we know that (ep1, q

p) = acs(ep1)[acs(ep1)] = l′[l′]. Hence,
during iteration i Algorithm 2 explores (l′[l′], (l′, opm, li+1), li+1[li+1]) in some
iteration of the for loop in line 6 (e = l′[l′]). Due to the de�nition of the
precision adjustment eprec = li+1[li+1]. Consider two cases. In the �rst case,
stop(li+1[li+1], reached) = false. Then, li+1[li+1] is added to reached. In the
second case, stop(li+1[li+1], reached) = true. By de�nition of the termination
check, a state (et1, q

t) ∈ reached exists with li+1[li+1] v (et1, q
t). Since Algo-

rithm 2 only deletes abstract states if it replaces them by more abstract states,
we infer from Lemma 5.13 that a n ∈ N exists with li+1[li+1] v (et1, q

t) v
n[n]. From the de�nition of n[n] and v, we conclude that acs(et1) = n.
Since n ∈ L, from the de�nition of v we get that acs(et1) = li+1. Hence,
li+1[li+1] v (et1, q

t) v n[n] = li+1[li+1] and (et1, q
t) = li+1[li+1].

Second, show that if li+1[li+1] is contained in reached, it will never be removed.
Algorithm 2 may only remove li+1[li+1] from reached, if it replaces it by a more
abstract state (en1 , q

n) A li+1[li+1]. Since Algorithm 2 only deletes abstract
states if it replaces them by more abstract states, we infer from Lemma 5.13
that a n′ ∈ N exists with li+1[li+1] @ (en1 , q

n) v n′[n′]. From the de�nition of
n′[n′] and v, we conclude that acs(en1 ) = n′. Since n′ ∈ L, from the de�nition
of v we get that acs(en1 ) = li+1. Hence, li+1[li+1] @ (en1 , q

n) v n[n] = li+1[li+1]
and (en1 , q

n) = li+1[li+1]. We conclude that li+1[li+1] is never replaced by a
more abstract state. If li+1[li+1] is contained in reached during iteration i, it
will never be removed.
From Lemma 5.10, we know that before iteration i + 1 at most one element
(e1, q) ∈ reached exists with acs(e1) = li+1. We proved that exactly one element
(e1, q) ∈ reached exists with acs(e1) = li+1 and (e1, q) = li+1[li+1] ∈ reached.
Since to injective, we conclude that ∀(e1, q) ∈ reached : to(acs(e1)) = i+ 1 =⇒
(e1, q) = acs(e1)[acs(e1)].
Before iteration i + 1 of the while loop, we know that ∀(e1, q) ∈ reached :
(to(acs(e1)) > i + 1 ∨ (e1, q) = acs(e1)[acs(e1)]) ∧ (to(acs(e1)) ≥ i + 1 ⇔
∃((e1, q), ·) ∈ waitlist).

By induction, we know that before execution of line 4 of the CPA algorithm it
is valid that ∀((e1, q), π), ((e′1, q

′), π′) ∈ waitlist : ((e1, q), π) = ((e′1, q
′), π′) ∨

acs(e1) 6= acs(e′1). Show that this property is never violated when waitlist is
changed during execution of iteration i. During iteration i of the while loop,
Algorithm 2 changes waitlist in line 4, 11, and 19. The removal of an element in
line 4 does not violate the property. Assume before execution of line 11 it is true
that ∀((e1, q), π), ((e′1, q

′), π′) ∈ waitlist : ((e1, q), π) = ((e′1, q
′), π′) ∨ acs(e1) 6=

acs(e′1). Due to the de�nition of the merge operator and e′′ 6= enew, we know
that enew = eprecte′′. We conclude that enew = (en1 , q

n) with acs(en1 ) = acs(e′′1)
(de�nition of merge operator). From Lemma 5.10, we know that e′′ = (e′′1 , q

′′)
and acs(e′′1) ∈ L and e′′ is the only element in reached considering that location.
Hence, at most one element (e′′, ·) ∈ waitlist exists which refers to location
acs(e′′1) (waitlist contains (e, ·) only if e ∈ reached due to algorithm execution).
Since elements (e′′, ·) are removed from waitlist, the property is not violated
after the execution of line 11. Assume before execution of line 19, it is true
that ∀((e1, q), π), ((e′1, q

′), π′) ∈ waitlist : ((e1, q), π) = ((e′1, q
′), π′) ∨ acs(e1) 6=

acs(e′1). From Lemma 5.10, we know that at most one element per location is
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contained in reached and all states consider concrete program locations. Hence,
in line 19, ((eprec

1 , qprec), πprec) is only added if not exists (e′1, q
′) ∈ reached

with acs(e′1) = acs(eprec
1 ) and, thus, not exists ((e′1, q

′), π′) ∈ waitlist with
acs(e′1) = acs(eprec

1 ), or (eprec
1 , qprec) ∈ reached before execution of line 18.

The property is not violated. It follows that before execution of iteration i+ 1
of the while it holds that ∀((e1, q), π), ((e′1, q

′), π′) ∈ waitlist : ((e1, q), π) =
((e′1, q

′), π′) ∨ acs(e1) 6= acs(e′1).

By induction, we know that before execution of line 4 it yields that ∀g = (l, op, l′) ∈
GCFA : to(l) < i ∧ to(l′) > i =⇒ ∀(l[l], g, e′) ∈ CA1 ∃(e

′′, ·) ∈ waitlist : e′ v
e′′. Hence, also ∀g = (l, op, l′) ∈ GCFA : to(l) < i ∧ to(l′) > i + 1 =⇒
∀(l[l], g, e′) ∈ CA1 ∃(e

′′, ·) ∈ waitlist : e′ v e′′. This property can only be
violated if an element is removed from waitlist, possible only in lines 4 or 11.
Consider the removal in line 4. By induction, we know that before line 4,
an element (ei1, q

i) ∈ reached exists with to(acs(ei1)) = i (to bijective, i ≤
|L|). Furthermore, ((ei1, q

1), πi) ∈ waitlist exists and it is the only element for
location acs(ei1) in waitlist. Additionally, not exists ((e′1, q

′), π′) ∈ waitlist with
to(acs(e′1)) < i. Hence, in line 4 of iteration i of the while loop Algorithm 2
pops an element ((ep1, q

p), πp) from waitlist with acs(ep1) = i. After line 4, it still
holds that ∀(l, op, l′) ∈ GCFA : to(l) < i ∧ to(l′) > i+ 1 =⇒ ∀(l[l], g, e′) ∈ CA1
∃(e′′, ·) ∈ waitlist : e′ v e′′.
If (e′′, π) is removed from waitlist in line 11, (enew, πprec) is added (e′′ 6= enew).
From the requirements on the merge operator, we conclude that e′′ v enew. Due
to transitivity of partial order v and addition of add (enew, πprec) to waitlist,
deleting a state from waitlist in line 11 does not violate the property. It follows
that before execution of iteration i+1 of the while it holds that ∀g = (l, op, l′) ∈
GCFA : to(l) < i∧ to(l′) > i+ 1 =⇒ ∀(l[l], g, e′) ∈ CA1 ∃(e

′′, ·) ∈ waitlist : e′ v
e′′.
It remains to be shown that before execution of iteration i + 1 it yields that
∀g = (l, op, l′) ∈ GCFA : to(l) = i ∧ to(l′) > i + 1 =⇒ ∀(l[l], g, e′) ∈ CA1
∃(e′′, ·) ∈ waitlist : e′ v e′′

We already showed that in line 4, Algorithm 2 pops ((ep1, q
p), πp) from waitlist

with to(acs(ep1)) = i. By induction and Lemma 5.10, we know that (ep1, q
p) =

acs(ep1)[acs(ep1)]. Since to is injective, not exists l ∈ L with l 6= acs(ep1) and
to(l) = i. We need to show that ∀g = (acs(ep1), op, l′) ∈ GCFA : to(l′) > i +
1 =⇒ ∀((ep1, qp), g, e′) ∈ CA1 ∃(e

′′, ·) ∈ waitlist : e′ v e′′. During iteration i, a
state (e′1, q

′) with to(acs(e′1)) > i+1 is removed from waitlist if it is replaced by a
more abstract state enew = (en1 , q

n) A (e′1, q
′) (requirements on merge operator)

and acs(en1 ) = acs(e′1) (de�nition of merge), hence some element (enew, ·) is
added to waitlist. Since reached, and thus waitlist, only contain elements which
only consider concrete locations (Lemma 5.10 and (e, ·) ∈ waitlist only if e ∈
reached) and partial order v is transitive, we only need to show that for all g =
(acs(ep1), op, l′) ∈ GCFA with to(l′) > i + 1 if ((ep1, q

p), g, e′) ∈ CA1 exists, then
either already exists an element (e′′, ·) ∈ waitlist with e′ v e′′ before iteration i
or an element (e′′, ·) with e′ v e′′ is added to waitlist. Let g = (acs(ep1), op, l′) ∈
GCFA with to(l′) > i + 1 and ((ep1, q

p), g, e′) ∈ CA1 be arbitrary. Assume
e′ = (e′1, q

′). Due to the de�nition of the transfer relation and acs(ep1) ∈ L, we
infer that acs(e′1) = l′. An iteration of the for loop in line 6 exists in which
Algorithm 2 explores ((ep1, q

p), g, e′) (e = (ep1, q
p)). By de�nition of the precision
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adjustment, we know that eprec = e′. Consider two cases. In the �rst case,
stop(eprec, reached) = false. Algorithm 2 adds (eprec, πprec) to waitlist. Due
to re�exivity of partial order v, we know eprec = e′ v e′. In the second case,
stop(eprec, reached) = stop(e′, reached) = true. By de�nition of the termination
check, there exists e′′ ∈ reached with e′ v e′′. If e′′ is added to reached in
iteration i, possible only in lines 12 or 19, then there exists (e′′, ·) ∈ waitlist
(after line 4 (e′′, ·) only removed from waitlist if e′′ removed from reached).
Now, consider that e′′ = (e′′1 , q

′′) is added to reached only before iteration i.
From Lemma 5.10, we know that acs(e′′1) ∈ L. From (e′1, q

′) = e′ v e′′ and
acs(e′1) = l′, we conclude that acs(e′′1) = l′. By induction and to(l′) > i + 1,
we know that before iteration i there exists (e′′, ·) ∈ waitlist. We already
proved that as long as e′′ is not removed from reached during iteration i we can
guarantee that (e′′, ·) ∈ waitlist..
It follows that before execution of iteration i + 1 of the while it holds that
∀g = (l, op, l′) ∈ GCFA : to(l) < i + 1 ∧ to(l′) > i + 1 =⇒ ∀(l[l], g, e′) ∈ CA1
∃(e′′, ·) ∈ waitlist : e′ v e′′.

The induction hypothesis is valid before the i+ 1 execution of the while loop.

From Lemma 5.19, we infer that the size of the reached set is always restricted by |L+1|.
The for each loop in line 8 always terminates. Since  CA1 is a function (de�nition of DFA
and property checking analysis), we infer that the for loop in line 6 always terminates.
From Proposition 5.6, we know that prog(RP

(C2×C1)A) is �nite. Now, we conclude that
the for loop in line 5 always terminates (number of control �ow edges bounded, because
program is �nite). From the induction hypothesis, (e, π) ∈ waitlist only if e ∈ reached, and
the de�nition of the ordering to, we know that ((e, q), π) ∈ waitlist implies (e, q) ∈ reached,
acs(e) ∈ L and to(acs(e)) ≤ |L|. The program generation and N being �nite due to ARG
property, let us conclude that L is �nite. The induction hypothesis gives us that after |L|
iterations the waitlist must be empty. We conclude that the loop body of the while loop
in line 3 can be executed at most |L| (�nitely many) times. Algorithm 2 terminates.

From the induction hypothesis, we know that before the execution of line 4 in itera-
tion i, 1 ≤ i ≤ |L|, there exists (e1, q) ∈ reached with to(acs(e1) = i. From the induction
hypothesis, it then follows that ∃((e1, q), ·) ∈ waitlist. Since not exists ((e′1, q

′), ·) ∈ waitlist
with to(e′1) < i, in iteration i, 1 ≤ i ≤ |L|, Algorithm 2 pops an element ((ei1, q

i), ·) from
waitlist with to(acs(ei1)) = i. Due to at most |L| while loop iterations, one abstract state
per program location and no abstract states which do not consider concrete program lo-
cations are inspected. The transfer relation is a function and adheres to the control �ow
of the program, i.e., if an abstract state with concrete location l is explored, only transfer
successors for CFA edges (l, ·, ·) exist and for each of those edges at most one transfer
successor exists. Since for any location l at most one abstract state which considers that
location l and no abstract states considering location information >L is explored, one
transfer successor per CFA edge is explored. Algorithm 2 terminates in a single pass.

Lemma 5.25. Let (C2 × C1)A be an equivalence relation consistent, re�ned property
checking analysis and ∼ an equivalence relation which shows that (C2×C1)A is equivalence
relation consistent. If Algorithm 2 started with (C2 × C1)A, compatible, initial abstract
state e0 ∈ E(C2×C1)A , arbitrary precision π0 ∈ Π(C2×C1)A , and program P , then after
line 1 it always holds true that ∀e, e′ ∈ reached : e = e′ ∨ e 6∼ e′.

Proof. Show by induction over the changes of reached that ∀e, e′ ∈ reached : e = e′∨e 6∼ e′.
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Basis In line 1, reached is initialized with a single abstract state e0. The induction
hypothesis follows.

Step After initialization of reached in line 1, reached is changed in line 12 or line 19.

If reached is changed in line 12, we know that enew 6= e′′, e′′ ∈ reached before
execution of line 12, e′′ is removed from reached, enew is added to reached and
enew = merge(e′, e′′). The requirements on the merge operator give us, e′′ ∼ enew.
By induction, we know that e′′ was the only element in reached from equivalence
class [enew]∼. Since the only element from equivalence class [enew]∼ in reached is
deleted, after adding enew, the induction hypothesis follows.

If reached is changed in line 19, then stop(eprec, reached) = false and Algorithm 2
adds eprec to reached. We need to show that before line 19, not exists er ∈ reached
with er ∼ eprec. Prove by contradiction. Assume there exists er ∈ reached with
er ∼ eprec. From stop(eprec, reached) = false, we conclude that eprec 6v er. Since
in line 12 abstract states enew are only added, if a state e′′ in reached exists which
is in the same equivalence class, before the execution of the for loop in line 6 an
element et with et ∼ eprec existed in reached. During the execution of that for
loop, et may only be replaced by more abstract states of the same equivalence class
(de�nition of merge). Hence, we know that a state e′′ exists with e′′ ∼ eprec and
enew = eprec t e′′. We get that eprec v enew and eprec ∼ enew (de�nition of merge).
Furthermore, before execution of line 18, there exists e′r ∈ reached with eprec ∼ e′r
and eprec v e′r. Thus, stop(eprec, reached) = true (contradiction). The induction
hypothesis follows.

Lemma 5.27. Let (C2 × C1)A be an equivalent consistent, re�ned property checking an-
alysis and ∼ an equivalence relation which shows that (C2 × C1)A is equivalence relation
consistent. If Algorithm 2 started with (C2 ×C1)A, compatible, initial abstract state e0 ∈
E(C2×C1)A , a precision π ∈ Π(C2×C1)A , and program P returns (·, ·, (N,GARG, root,Ncov)),
then ∀(n, g, n′) ∈ GARG : ∀(n, g, e′) ∈ (C2×C1)A : e′ ∼ n′.

Proof. Show by induction over the changes to GARG that for every (n, g, n′) ∈ GARG there
exists (n, g, e′) ∈ (C2×C1)A with n ∼ e′.

Basis The set GARG is initialized in line 2 with the empty set. The induction hypothesis
follows.

Step After initialization, the set GARG is changed in lines 13, 20, 24, and 28.

Assume the set GARG is changed in line 13. Deletion of edges does not violate the
property. Consider addition of edge (ep, g, enew). We know that an edge (ep, g, e

′′) ∈
GARG exists before the execution of line 13. By induction hypothesis, we know an
abstract transition (ep, g, e

′) ∈ (C2×C1)A exists with e′ ∼ e′′. Due to the de�nition
of the merge operator, we know that enew ∼ e′′. From enew ∼ e′′ and e′ ∼ e′′, we
get enew ∼ e′. The induction hypothesis follows.

Assume the set GARG changed in line 20. Deletion of edges does not violate the
property. After deletion of edges in line 20, the induction hypothesis follows.

Assume the set GARG is changed in line 24. From the de�nition of eprec in line 7
and the requirements on the precision adjustment, we know e′ = eprec. Hence, if
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(e, g, eprec) is added in line 24, an abstract transition (e, g, e′) ∈ (C2×C1)A exists
with e′ ∼ eprec. The induction hypothesis follows.

Assume the set GARG is changed in line 28. Due to the de�nition of coveringSet
in line 26 and the de�nition of the termination check, we have er ∈ coveringSet
implies eprec ∼ er. From the de�nition of eprec in line 7 and the requirements on
the precision adjustment, we know e′ = eprec and thus e′ ∼ er. Hence, if (e, g, er)
is added in line 28, an abstract transition (e, g, e′) ∈ (C2×C1)A exists with e′ ∼ er.
The induction hypothesis follows.

Since the transfer relation  (C2×C1)A is a function, and in line 29 the set GARG is
equivalent with the returned set, we get that ∀(n, g, n′) ∈ GARG : ∀(n, g, e′) ∈ (C2×C1)A :
e′ ∼ n′.

Lemma 5.28. Let (C2 × C1)A be an equivalence relation consistent, re�ned property
checking analysis, DFA(CA1 ) be a data�ow analysis for property checking analysis CA1 ,
ep = ((ep2, e

p
1), qp) ∈ E(C2×C1)A , and ec = (ec1, q

c) ∈ ECA1 . Furthermore, assume that Algo-

rithm 2 started with (C2×C1)A, compatible, initial abstract state e0 ∈ E(C2×C1)A , arbitrary

precision π0 ∈ Π(C2×C1)A , and program P = (Lp, Gp
CFA, l

p
0) returns (true, ·, RP

(C2×C1)A).

Now, let ARG RP
(C2×C1)A = (N,GARG, root,Ncov) and prog(RP

(C2×C1)A) = (L,GCFA, l0) be

the generated program. If acs(ec1) ∈ L, acs(ep1) 6= ⊥L, and ep =∼ ec, then there exists a bi-
jective function bt : {(ep, g, e′p) ∈ (C2×C1)A | g ∈ Gp

CFA} → {(ec, g′, e′c) ∈ CA1 | g
′ ∈ GCFA}

with bt((ep, g, e
′
p)) = (ec, g

′, e′c) =⇒ e′p =∼ e
′
c.

Proof. Let acs(ec1) = ((el2, e
l
1), ql). From ep =∼ ec and acs(ec1) ∈ L, we conclude that

(ep1, q
p) vCA1 (el1, q

l) and due to program construction acs(ec1) ∈ N . Proposition 5.2,

acs(ec1) ∈ N , acs(ep1) 6= ⊥L, and (ep1, q
p) vCA1 (el1, q

l) let us infer that acs(ep1) ∈ L.
First, we show that if (ep, (lp, op, ls), e

′
p) ∈ (C2×C1)A and (lp, op, ls) ∈ Gp

CFA, there
exists (ec, (l

′
p, op, l

′
s), e

′
c) ∈ CA1 with (l′p, op, l

′
s) ∈ GCFA and e′p =∼ e′c, and not exists

(ep, (l
′′
p , op, l

′′
s ), e′′p) ∈ (C2×C1)A with e′′p =∼ e

′
c, (l′′p , op, l

′′
s ) ∈ Gp

CFA, and (ep, (lp, op, ls), e
′
p)

6= (ep, (l
′′
p , op, l

′′
s ), e′′p).

Let (ep, (lp, op, ls), e
′
p) ∈ (C2×C1)A , (lp, op, ls) ∈ Gp

CFA, and e′p = ((e
′p
2 , e

′p
1 ), q

′p).
Due to monotonicity of transfer relation  CA1 , (ep1, q

p) vCA1 (el1, q
l), equivalence rela-

tion consistency of (C2 × C1)A, and ep ∼ acs(ec1) (ep =∼ ec), an abstract transition
(acs(ec1), (lp, op, ls), e

p
r) ∈ (C2×C1)A , e

′
p v epr exists, and e′p ∼ epr . Furthermore, let

epr = ((ep2,r, e
p
1,r), qpr ). Then, also (e

′p
1 , q

′p) vCA1 (ep1,r, q
p
r ). Since acs(ec1) ∈ N and

RP
(C2×C1)A is complete and sound (strongly well-formed due to Proposition 5.2), there

exists (acs(ec1), (lp, op, ls), e
p
t ) ∈ GARG with epr v ept . Due to Lemma 5.27 also ept ∼ epr ∼

e′p. Due to program construction, (acs(ec1), op, ept ) ∈ GCFA. The requirements on the

transfer relation and acs(ep1) ∈ L, let us deduce that acs(ep1) = lp, acs(e
′p
1 ) = ls, and

((ep1, q
p), (lp, op, ls)(e

′p
1 , q

′p)) ∈ CA1 . Thus, (ep[acs(ec1)], (acs(ec1), op, ept ), e′p[ept ]) ∈ CA1 .
We conclude that e′p =∼ e′p[ept ]. De�ne e′c = e′p[ept ]. Now, (ec, (l

′
p, op, l

′
s), e

′
c) ∈ CA1

with (l′p, op, l
′
s) = (acs(ec1), op, ept ) ∈ GCFA and e′p =∼ e

′
c.

Let (ep, (l
′′
p , op, l

′′
s ), e′′p) ∈ (C2×C1)A with e′′p =∼ e′c. Let e′′p = ((e

′′p
2 , e

′′p
1 ), q

′′p), e′c =

((e
′c
2 , e

′c
1 ), q

′c). Since acs(ep1) ∈ Lp, the requirements on the transfer relation give us

that acs(ep1) = l′′p = lp and acs(e
′′p
1 ) = l′′s . Due to construction of e′c, we know that

acs(e
′c
1 ) = ept and acs(e

′c
1 ) = ept ∈ N . Let ept = ((ep2,t, e

p
1,t), q

p
t ). From e′′p =∼ e′c, we get
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(e
′′p
1 , q

′′p) v (ep1,t, q
p
t ). Due to Proposition 5.2, acs(e

′c
1 ) = ept ∈ N , (e

′′p
1 , q

′′p) v (ep1,t, q
p
t ),

acs(e
′′p
1 ) = l′′s , (e

′p
1 , q

′p) v (ep1,t, q
p
t ), and acs(e

′p
1 ) = ls, we get that acs(e1,t) ∈ L and, thus,

l′′s = ls. Since the transfer relation is a function, (ep, (lp, op, ls), e
′
p) = (ep, (l

′′
p , op, l

′′
s ), e′′p).

Second, we show that if (ec, (lp, op, ls), e
′
c) ∈ CA1 and (lp, op, ls) ∈ GCFA, there exists

(ep, (l
′
p, op, l

′
s), e

′
p) ∈ (C2×C1)A with e′p =∼ e′c and (l′p, op, l

′
s) ∈ Gp

CFA, and not exists
(ec, (l

′′
p , op, l

′′
s ), e′′c ) ∈ CA1 with e′p =∼ e′′c , (l′′p , op, l

′′
s ) ∈ GCFA, and (ec, (lp, op, ls), ec) 6=

(ec, (l
′′
p , op, l

′′
s ), e′′c ).

Let (ec, (lp, op, ls), e
′
c) ∈ CA1 , (lp, op, ls) ∈ GCFA, and e′c = (e

′c
1 , q

′c). Due to the re-

quirements on the transfer relation and acs(ec1) ∈ L, we get acs(ec1) = lp and acs(e
′c
1 ) = ls.

From program construction, we know that an ARG edge (lp, (l
′
p, op, l

′
s), ls) ∈ GARG ex-

ist, lp, ls ∈ N , and (l′p, op, l
′
s) ∈ Gp

CFA. From Proposition 5.2, we conclude that there
exists (lp, (l

′
p, op, l

′
s), l

r
s) ∈ (C2×C1)A , l

r
s v ls. Additionally, from Lemma 5.27 we get

lrs ∼ ls. Let ls = ((en2 , e
n
1 ), qn). From Proposition 5.2 and lp = acs(ec1) = ((el2, e

l
1), ql),

we know that acs(en1 ), acs(el1) ∈ L. Since (lp, (l
′
p, op, l

′
s), l

r
s) ∈ (C2×C1)A , l

r
s v ls, and

acs(en1 ), acs(el1) ∈ L, we conclude from the requirements on the transfer relation that
acs(en1 ) = l′s, acs(el1) = l′p. Since (l′p, op, l

′
s) ∈ Gp

CFA, l
′
p, l
′
s ∈ Lp. Since (ep1, q

p) v
(el1, q

l) and acs(ep1) ∈ L, we get acs(ep1) = l′p. Since ep[acs(ec1)] = ec (ep =∼ ec),

(ec, (lp, op, ls), e
′
c) ∈ CA1 , we know that there exists ((ep1, q

p), (l′p, op, l
′
s), (e

′p
1 , q

′p)) ∈ CA1 ,

acs(e
′p
1 ) = l′s, and ((>C2

, e
′p
1 ), q

′p)[acs(en1 )] = e′c. Due to monotonicity of  CA1 , def-

inition of  (C2×C1)A , (lp, (l
′
p, op, l

′
s), l

r
s) ∈ (C2×C1)A , l

r
s v ls, and (ep1, q

p) v (el1, q
l),

we know that (e
′p
1 , q

′p) v (en1 , q
n). With ep ∼ lp (ep =∼ ec and acs(ec1) = lp) and

(lp, (l
′
p, op, l

′
s), l

r
s) ∈ (C2×C1)A , we conclude from equivalence relation consistency (re-

quirement on transfer relations) that there exists (ep, (l
′
p, op, l

′
s), e

′
p) ∈ (C2×C1)A with

e′p = ((·, e
′p
1 ), q

′p) and e′p ∼ lrs ∼ ls. Thus, e′p[acs(e
′c
1 )] = e′c. We conclude that e′p =∼ e

′
c.

Let (ec, (l
′′
p , op, l

′′
s ), e′′c ) ∈ CA1 with e′p =∼ e

′′
c . Let e

′′
c = (e

′′c
1 , q

′′c). Due to acs(ec1) ∈ L
and the requirements on the transfer relation, we get lp = acs(ec1) = l′′p and acs(e

′′c
1 ) =

l′′s . Due to program construction, l′′s ∈ N and (lp, (l
∗
p, op, l

∗
s), l′′s ) ∈ GARG. Let l′′s =

((en
′′

2 , en
′′

1 ), qn
′′
). From Proposition 5.2, we get acs(en

′′

1 ) ∈ Lp and there exists an abstract
transition(lp, (l

∗
p, op, l

∗
s), lr

′

s ) ∈ (C2×C1)A and lr
′

s v l′′s . Additionally, the de�nition of

the transfer relation lets us conclude that l′p = acs(ep1) = l∗p and acs(en
′′

1 ) = l∗s . From

(e
′p
1 , q

′p) v (en
′′

1 , qn
′′
) (e′p =∼ e

′′
c ) and acs(e

′p
1 ) = l′s, we get l

′
s = l∗s From Proposition 5.2

(determinism), we infer that ls = l′′s . Since the transfer relation is a function, we get
(ec, (l

′′
p , op, l

′′
s ), e′′c ) = (ec, (lp, op, ls), e

′′
c ) = (ec, (lp, op, ls), e

′
c).

We conclude that a bijective function bt : {(ep, g, e′p) ∈ (C2×C1)A | g ∈ Gp
CFA} →

{(ec, g′, e′c) ∈ CA1 | g
′ ∈ GCFA} exists with bt((ep, g, e′p)) = (ec, g

′, e′c) =⇒ e′c =∼ e
′
p.

Theorem 5.29. Let (C2 × C1)A be an equivalence relation consistent, re�ned property
checking analysis. Assume Algorithm 2 started with (C2 × C1)A, compatible initial ab-
stract state e0 ∈ E(C2×C1)A , any precision π0 ∈ Π(C2×C1)A , and program P returns

(true, ·, RP
(C2×C1)A). Now, let prog(RP

(C2×C1)A) = (L,GCFA, l0). Then, exploration orders

of GCFA for each while loop iteration of Algorithm 2 and a management of waitlist exist s.t.
Algorithm 2 started with DFA(CA1 ), e0[l0], any precision π′0 ∈ ΠCA1 , and prog(RP

(C2×C1)A)
terminates.

Proof. Let RP
(C2×C1)A = (N,GARG, root,Ncov) and P = (Lp, Gp

CFA, l
p
0). In the following

we denote the execution of Algorithm 2 started with (C2×C1)A as the producer analysis
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and the execution of Algorithm 2 started with CA1 as the consumer analysis.
Let reachediP ,waitlist

i
P the reached set and waitlist used by the producer before itera-

tion i of the while loop and reachediC ,waitlist
i
C those of the consumer. Without the indices

we refer to the respective variables reached set, waitlist used by producer and consumer
in Algorithm 2.

Show by induction that there exist exploration orders of GCFA for the �rst i− 1 while
loop iterations of Algorithm 2 and a management of waitlistC s.t. before each iteration i of
the producer's while loop, there exists a bijective function b : reachediP → reachediC with
∀e ∈ reachedP : e =∼ b(e), |waitlistiP | = |waitlist

i
C |, and ∀1 ≤ j ≤ |waitlist

i
P | : waitlist

i
P (j) =

(ejp, ·) =⇒ waitlistiC(j) = (b(ejp), ·).

Basis Before the �rst iteration, we have reachediP = {e0}, waitlistiP = {(e0, π0)}, reachediC
= {e0[l0]}, and waitlistiP = {(e0[l0], π′0)}. Due to program construction, we know
that l0 = root ∈ N ⊆ E(C2×C1)A . Since R

P
(C2×C1)A is strongly well-formed (Proposi-

tion 5.2), we get e0 v root = l0 (rootedness). Let e0[l0] = (e1, q). Due to de�nition,
acs(e1) = l0. From construction of root and requirements on merge, we know that
e0 ∼ root. We conclude that e0 =∼ e0[l0]. The induction hypothesis follows.

Step Consider iteration i > 0 of the producer analysis. We know that the execution of
iteration i of the while loop is only possible if ∀j ≤ i : waitlistiP 6= ∅. By induction,
we know that ∀j ≤ i : waitlistiC 6= ∅. The consumer analysis executes the while loop
at least i-times. Thus, the consumer analysis also has an iteration i of the while
loop.

By induction, there exist exploration orders of GCFA for the �rst i − 1 while loop
iterations of Algorithm 2 and a management of waitlistC s.t. before each iteration k of
the producer's while loop, there exists a bijective function b : reachedkP → reachedkC
with ∀e ∈ reachedP : e =∼ b(e), |waitlistkP | = |waitlistkC |, and ∀1 ≤ j ≤ |waitlistiP | :
waitlistkP (j) = (ejp, ·) =⇒ waitlistkC(j) = (b(ejp), ·). Assume the producer pops the
jth element of his waitlistP in line 4. Let the consumer pop his jth element of the
waitlistC in line 4 (exists due to same size). After execution of line 4 in producer
and consumer analysis, we know that the producer analysis popped (ep, πp), the
consumer analysis popped (ec, πc), and ep =∼ ec, and there exists a bijective function
b : reachedP → reachedC with ∀e ∈ reachedP : e =∼ b(e), |waitlistP | = |waitlistC |,
and ∀1 ≤ j ≤ |waitlistP | : waitlistP (j) = (ej , ·) =⇒ waitlistC(j) = (b(ej), ·),
assuming that the consumer reordered its elements in the same way as the producer.
Note this is possible in general.

Next, we need to de�ne an exploration order for the edges in GCFA for iteration i. To
de�ne an exploration order, we �rst map the explored transfer relation elements in an
appropriate way. We want to de�ne a bijective function bt : {(ep, g, e′p) ∈ (C2×C1)A |
g ∈ Gp

CFA} → {(ec, g′, e′c) ∈ CA1 | g
′ ∈ GCFA} with bt((ep, g, e′p)) = (ec, g

′, e′c) =⇒
e′p =∼ e′c. Due to Lemma 5.10 and the proof of Lemma 5.1, we know that the
location information considered by the producer state is a program location and the
location information considered by the consumer state is a program location of the
generated program. From the previous lemma, we now know that such a bijective
function exists. Now, let Gp := {g | (ep, g, e

′
p) ∈ (C2×C1)A | g ∈ GP

CFA} and Gc :=
{g′ | (ec, g

′, e′c) ∈ CA1 | g
′ ∈ GCFA}. Since the transfer relations  (C2×C1)A and

 CA1 are functions, for ep, ec and each explored edge by the producer and consumer
analysis, respectively, at most one abstract successor exists. Hence, |Gp| = |Gc|
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and from function bt we can easily de�ne a bijective function bg : Gp → Gc with
∀g ∈ Gp : ∀(ep, g, e′p) ∈ (C2×C1)A : bt((ep, g, e

′
p)) = (ec, bg(g), ·).

Let bijective function o : Gp
CFA → {1, . . . , |G

p
CFA|} describe the exploration order

of the producer in iteration i (o(g) = x means exploration of g in iteration x).
With out loss of generality assume that ∀g, g′ ∈ Gp

CFA : ¬∃(ep, g, ·) ∈ (C2×C1)A

∧∃(ep, g′, ·) ∈ (C2×C1)A =⇒ o(g) > o(g′). Let o′ : GCFA → {1, . . . , |GCFA|} be a
bijective function with ∀g ∈ GCFA : g ∈ Gc =⇒ o′(g) = o(bg−1(g)). Such a func-
tion o′ can easily be generated as follows. If g ∈ Gc ⊆ GCFA, then o′(g) = o(bg−1(g))
and otherwise assign a value from {|Gc|+ 1, |GCFA|) which was not assigned before.

We know that before the execution of the for loop in line 5 there exists a bijective
function b : reachedP → reachedC with ∀ep ∈ reachedP : ep =∼ b(ep), |waitlistP | =
|waitlistC |, and ∀1 ≤ j ≤ |waitlistP | : waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) =

(b(ejp), ·). Show that after each of the �rst |Gp| iterations of the for loop in line 5 in
the producer and consumer analysis the property holds if the property held before
that iteration and proper management of waitlistC and orders o and o′ are used.

Consider arbitrary iteration j ≤ |Gp| = |Gc| ≤ min(|Gp
CFA|, |GCFA|). Such an

iteration exists in both, producer and consumer, analyses. Assume that at the
beginning of iteration j a bijective function b : reachedP → reachedC exists with
∀ep ∈ reachedP : ep =∼ b(ep), |waitlistP | = |waitlistC |, and ∀1 ≤ j ≤ |waitlistP | :
waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·) Due to the meaning of the order
functions o, o′, we know that the producer explores the only edge gp ∈ Gp

CFA with
o(gp) = j and the the consumer explores the unique edge gc ∈ GCFA with o′(gc) = j.
Due to the assumptions on o and the construction of o′, we get gp ∈ Gp and gc =
bg(gp) ∈ Gc. We know that transfer successors for ep and gp, and for ec and gc exist
(de�nition of Gp and Gc). Since the transfer relations are functions, exactly one
element (ep, gp, e

′
p) ∈ (C2×C1)A and (ec, gc, e

′
c) ∈ CA1 exist. Now, the requirements

on bg give us bt((ep, g, e′p)) = (ec, gc, e
′
c). We infer that e′p =∼ e

′
c. Let e

′
c = (e

′c
1 , q

′c)

and e′p = ((e
′p
2 , e

′p
1 ), q′p). Due to the requirements on the precision adjustments, we

get epprec = ((·, e
′p
1 ), q′p), e′p ∼ epprec, and e

c
prec = e′c. From e′p =∼ e

′
c, it follows that

epprec =∼ e
′
c.

First, show that before the execution of the for loop in line 6 the following holds
true: ∃e′′p ∈ reachedP : e′′p ∼ epprec ⇔ ∃(e

′′c
1 , q

′′c) ∈ reachedC : acs(e
′c
1 ) = acs(e

′′c
1 ).

Assume a state e′′p ∈ reachedP exists with e′′p ∼ epprec. Then, there exists b(e′′p) =
(ẽ1, q̃) ∈ reachedC and e′′p =∼ b(e′′p). With epprec =∼ e′c and e′′p =∼ b(e′′p), we

get acs(e
′c
1 ) ∼ epprec ∼ e′′p ∼ acs(ẽ1), acs(e

′c
1 ), acs(ẽ1) ∈ E(C2×C1)A , and, thus,

acs(e
′c
1 ), acs(ẽ1) ∈ L. Due to program construction, acs(e

′c
1 ), acs(ẽ1) ∈ N . From

Corollary 5.26, we get acs(e
′c
1 ) = acs(ẽ1).

Assume a state (e
′′c
1 , q

′′c) ∈ reachedC exists with acs(e
′c
2 ) = acs(e

′′c
1 ). Then, a

state b−1((e
′′c
1 , q

′′c)) ∈ reachedP exists and b−1((e
′′c
1 , q

′′c)) =∼ (e
′′c
1 , q

′′c). Hence,
with e′p =∼ e′c and b−1((e

′′c
1 , q

′′c)) =∼ (e
′′c
1 , q

′′c) we get b−1(e
′′c
1 , q

′′c) ∼ acs(e
′′c
1 ) ∼

acs(e
′c
1 ) ∼ epprec.

If not exists e′′p ∈ reachedP with e′′p ∼ epprec, not exists (e
′′c
1 , q

′′c) ∈ reachedC with

acs(e
′c
2 ) = acs(e

′′c
1 ). Lines 11 and 12 are not executed by both analyses. Before

execution of line 18 there exists a bijective function b : reachedP → reachedC with
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∀ep ∈ reachedP : ep =∼ b(ep), |waitlistP | = |waitlistC |, and ∀1 ≤ j ≤ |waitlistP | :
waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·).

If e′′p = ((e
′′p
2 , e

′′p
1 ), q

′′p) ∈ reachedP exists with e′′p ∼ epprec, there exists (e
′′c
1 , q

′′c) ∈
reachedC with acs(e

′c
1 ) = acs(e

′′c
1 ). From Lemma 5.25, Lemma 5.10, and the require-

ments on the merge operators, we conclude that during the iteration of the for loop
in line 6, lines 11 and 12 are executed at most once in both, producer and consumer
analyses, and the removed elements e′′p and (e

′′c
1 , q

′′c) are contained in the respective
reached set before the execution of the for loop in line 6.

First, we show that (e
′′c
1 , q

′′c) = b(e′′p). Let b(e′′p) = ((ẽ′1), q̃′). With e′′p =∼ b(e
′′
p) and

epprec =∼ e′c, we get acs(e
′c
1 ) ∼ epprec ∼ e′′p ∼ acs(ẽ′1), acs(e

′c
1 ), acs(ẽ′1) ∈ E(C2×C1)A ,

and, thus acs(e
′c
1 ), acs(ẽ′1) ∈ L. Due to program construction, acs(e

′c
1 ), acs(ẽ1) ∈ N .

From Corollary 5.26, we get acs(e
′c
1 ) = acs(ẽ1). Lemma 5.10 lets us conclude that

(e
′′c
1 , q

′′c) = b(e′′p).

Next, prove that epprec t e′′p =∼ e′c t b(e′′p). Let e′c t b(e′′p) = (em1 , q
m). Due to the

de�nition of merge, acs(em1 ) = acs(e
′c
1 ) = acs(ẽ1). From e′′p ∼ acs(ẽ1) (e′′p =∼ b(e

′′
p))

and the de�nition of merge, we have epprecte′′p ∼ acs(em1 ). Let acs(ẽ1) = ((ẽl2, ẽ
l
1), q̃l).

From (e
′′p
1 , q

′′p) v (ẽl1, q̃
l) (e′′p =∼ b(e

′′
p)), (e

′p
1 , q

′p) v (ẽl1, q̃
l) (epprec =∼ e

′
c, acs(ẽ1) =

acs(e
′c
1 ), epprec = ((·, e

′p
1 ), q

′p)), and the de�nition of merge, we have epprec t e′′p =

((·, e
′p
1 t e

′′p
1 ), q

′p t q′′p) and (e
′p
1 t e

′′p
1 , q

′p t q′′p) v (ẽl1, q̃
l). From e′′p [acs(ẽ′1)] =

b(e′′p) (e′′p =∼ b(e′′p)), epprec[acs(e
′c
1 )] = e′c (e′p =∼ e′c), we get (epprec t e′′p)[acs(em1 )] =

epprec[acs(e
′c
1 )]te′′p [acs(ẽ′1)] = e′ctb(e′′p). We conclude that epprecte′′p =∼ e

′
ctb(e′′p). Let

b′ : (reachedP \{e′′p})∪{epprecte′′p} → (reachedC \{b(e′′p)})∪{e′ctb(e′′p)} with b′ := (b\
{(e′′p , b(e′′p)})∪{(epprecte′′p , e′ctb(e′′p))}. Due to Lemma 5.10, Lemma 5.25, e′ctb(e′′p) 6=
e′′c , and e

p
precte′′p 6= e′′p , we know that e′ctb(e′′p) /∈ reachedC and epprecte′′p /∈ reachedP .

We infer that b′ is a bijective function with ∀e ∈ (reachedP \ {e′′p}) ∪ {epprec t e′′p} :
e =∼ b′(e). From |waitlistP | = |waitlistC |, and ∀1 ≤ j ≤ |waitlistP | : waitlistP (j) =
(ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·), we know that the producer analysis only deletes
element j if the consumer analysis deletes element j and the producer and consumer
analysis delete all elements (e′′p , ·) and (b(e′′p), ·). Furthermore, due to Lemma 5.10,
Lemma 5.25, and the fact that any waitlist only contains (e, ·) if e ∈ reached, we
know that not exists (e′c t b(e′′p), ·) ∈ waitlistC nor (epprec t e′′p , ·) ∈ waitlistP . If
the consumer analysis adds (e′c t b(e′′p), πc

prec) to the same position as the producer
analysis added (epprecte′′p , πp

prec) and the consumer reordered the non-added elements
in the same way as the producer which is possible in general, after the execution
of line 11, there exists a bijective function b′ : (reachedP \ {e′′p}) ∪ {epprec t e′′p} →
(reachedC \ {b(e′′p)})∪ {e′c t b(e′′p)} with ∀e ∈ (reachedP \ {e′′p})∪ {epprec t e′′p} : e =∼
b′(e), |waitlistP | = |waitlistC |, and ∀1 ≤ j ≤ |waitlistP | : waitlistP (j) = (ejp, ·) =⇒
waitlistC(j) = (b′(ejp), ·). Since in line 12 {e′′p} and {b(e′′p)} are deleted from and
{epprec t e′′p} and {e′c t b(e′′p)} are added to reachedP and reachedC , respectively, after
the execution of line 12, there exists a bijective function b : reachedP → reachedC
with ∀e ∈ reachedP : e =∼ b(e), |waitlistP | = |waitlistC |, and ∀1 ≤ j ≤ |waitlistP | :
waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·).
After the execution of the for loop in line 6, there exists a bijective function b :
reachedP → reachedC with ∀e ∈ reachedP : e =∼ b(e), |waitlistP | = |waitlistC |, and
∀1 ≤ j ≤ |waitlistP | : waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·).
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Next, show that at line 18 it is valid that stop(epprec, reached
p)⇔ stop(ecprec, reached

c).

If stop(epprec, reached
P ) = true, then ∃êp ∈ reachedP : epprec v êp ∧ epprec ∼ êp. Con-

sider êc := b(êp). Let êc = (ê′1, q̂
′) We know that êp =∼ êc, epprec =∼ e

′c, ecprec = e
′c.

Hence, epprec =∼ ecprec, acs(e
′c
1 ) ∼ epprec ∼ êp ∼ acs(ê′1), acs(e

′c
1 ), acs(ê′1) ∈ EA(C2×C1)

and, thus, acs(e
′c
1 ), acs(ê′1) ∈ L. Due to program construction, acs(e

′c
1 ), acs(ê′1) ∈

N . From Corollary 5.26, we get acs(e
′c
1 ) = acs(ê′1). With the requirements on

the merge operator, we can conclude that e′′c = (ê′′1 , q̂
′′) ∈ reachedC exists with

acs(ê′′1) = acs(e
′c
1 ) before the execution of the for loop in line 6 and thus e

′c
prec v êc.

The de�nition of the termination check gives us stop(e
′c
prec, reachedC) = true.

If stop(ecprec, reached
C) = stop(e′c, reached

C) = true, then ∃êc = (ê1, q̂) ∈ reachedC :

e′c v êc ∧ acs(ê1) = acs(e
′c
1 ). Consider êp := b−1(êc). We know that êp =∼ êc,

epprec =∼ ecprec, and e
c
prec = e

′c. Hence, êp ∼ acs(ê1) ∼ acs(ê
′c
1 ) ∼ epprec. From the

requirements on the merge operator, we can conclude that e′′p ∈ reachedP exists with
e′′p ∼ epprec before the execution of the for loop in line 6 and thus epprec v êp. The
de�nition of the termination check gives us stop(epprec, reachedP ) = true.

If stop(epprec, reachedP ) = true, we know stop(ecprec, reachedC) = true. Both analyses
do not execute line 19. There exists a bijective function b : reachedP → reachedC
with ∀e ∈ reachedP : e =∼ b(e), |waitlistP | = |waitlistC |, and ∀1 ≤ j ≤ |waitlistP | :
waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·).
If stop(epprec, reachedP ) = false, we know stop(ecprec, reachedC) = false. Hence,
epprec /∈ reachedP , ecprec /∈ reachedC , not exists (epprec, ·) ∈ waitlistP , and not ex-
ists (ecprec, ·) ∈ waitlistC . Let b′ : reachedP ∪ {epprec} → reachedC ∪ {ecprec} with
b′ := b ∪ {(epprec, e

c
prec). We conclude that b′ is a bijective function which ensures

that ∀e ∈ reachedP ∪ {epprec} : e =∼ b′(e). Furthermore, we know that epprec is
added to reachedP , ecprec is added to reachedC , (epprec, π

p
prec) is added to waitlistP ,

and (ecprec, π
C
prec) is added to waitlistC . If the consumer analysis adds (ecprec, π

c
prec)

to the same position as the producer analysis added (epprec, π
p
prec) and that the con-

sumer reordered the non-added elements in the same way as the producer which is
possible in general, after the execution of line 19, there exists a bijective function
b : reachedP → reachedC with ∀e ∈ reachedP : e =∼ b(e), |waitlistP | = |waitlistC |,
and ∀1 ≤ j ≤ |waitlistP | : waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·).
Due to de�nition of Gp, Gc, and o′, and the assumption on o, we know that in any
iteration i > |Gp| = |Gc| of the for loop in line 5 neither the producer analysis nor
the consumer analysis executes the loop body of the for loop in line 6. We know
that before execution |Gp|+ 1 of the for loop in line 5 there exists bijective function
b : reachedP → reachedC with ∀e ∈ reachedP : e =∼ b(e), |waitlistP | = |waitlistC |,
and ∀1 ≤ j ≤ |waitlistP | : waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·), we
get after the execution of the for loop in line 5 there exists a bijective function
b : reachedP → reachedC with ∀e ∈ reachedP : e =∼ b(e), |waitlistP | = |waitlistC |,
and ∀1 ≤ j ≤ |waitlistP | : waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·).
Since iterations i > |Gp| = |Gc| do not modify the waitlist or the reached set,
we get after execution of the for loop in line 5 there exists a bijective function
b : reachedP → reachedC with ∀e ∈ reachedP : e =∼ b(e), |waitlistP | = |waitlistC |,
and ∀1 ≤ j ≤ |waitlistP | : waitlistP (j) = (ejp, ·) =⇒ waitlistC(j) = (b(ejp), ·).
The induction hypothesis follows.
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We know that Algorithm 2 started with (C2 × C1)A, e0, initial precision π0, and
program P terminates. The producer analysis terminates. Thus, after m iterations of the
producer's while loop we have waitlistm+1

P = ∅ and before each iteration i < m + 1 we
know waitlistiP 6= ∅.

From induction, we know that there exist exploration orders of GCFA for the �rst m
while loop iterations of Algorithm 2 and an exploration order of waitlist s.t. before each
iteration i ≤ m + 1 of the consumer's while loop, |waitlistiP | = |waitlistiC |. We infer that
waitlistm+1

C = ∅ and before each iteration i < m + 1 we know waitlistiC 6= ∅. There exist
exploration orders of GCFA for each while loop iteration of Algorithm 2 and a management
of waitlist s.t. the consumer analysis, Algorithm 2 started with DFA(CA1 ), e0[l0], initial
precision π′0, and prog(RP

(C2×C1)A), terminates.

Proposition 5.30. Let DFA(CA1 ) be the data�ow analysis of property checking analy-
sis CA1 , RP

(C2×C′1)A′
be an ARG for program P and re�ned property checking analysis

(C2×C′1)A
′
, RP

(C2×C′1)A′
is strongly well-formed for ((e2, e1), q) ∈ E(C2×C′1)A′ , acs(e1) ∈ L,

and prog(RP
(C2×C′1)A′

) = (L′, G′CFA, l
′
0). If Algorithm 2 started with DFA(CA1 ), initial ab-

stract state e0 = (e, q) ∈ ECA1 with acs(e) = acs(e1), arbitrary initial precision π0 ∈ ΠCA1 ,

and program P returns (true, ·, RP
CA1

), then if Algorithm 2 started with DFA(CA1 ), initial

abstract state e′0 s.t. e′0 = (l′0, q) if e ∈ EL and e′0 = ((l′0, c), q)) if e0 = (·, c), arbitrary ini-
tial precision π′0 ∈ ΠCA1 , and program prog(RP

(C2×C′1)A′
) terminates, it returns (true, ·, ·).

Proof. Let (e1, q), (e
′
1, q
′) ∈ ECA1 be two abstract states. We write (e1, q) vnl (e′1, q

′) if
q v q′ and C1 = L or C1 is a composite CPA, e1 = (l, c), e′1 = (l′, c′), q v q′ and c v c′.

Let RP
(C2×C′1)A′

= (N ′, G′ARG, root
′, n′cov).

Since Algorithm 2 returned (true, ·, RP
CA1

), from Proposition 2.8 we conclude that

RP
CA1

= (N,GARG, root,Ncov) is an ARG for P = (L,GCFA, l0) and CA1 which is well-

formed for e0. From Proposition 2.9, we get that RP
CA1

is deterministic and sound. Prove
by induction over the changes of reached during the execution of Algorithm 2 started with
DFA(CA1 ) on generated program prog(RP

(C2×C′1)A′
) that ∀(e1, q) ∈ reached : ∃(e′1, q′) ∈ N :

(e1, q) vnl (e′1, q
′) ∧ acs(e1) 6= >L ∧ (acs(e1) = ((ê2, ê1), q̂) =⇒ acs(ê1) = acs(e′1)).

Basis At line 1, reached is initialized with e′0. Since RP
CA1

is rooted (well-formed), we

know that e0 = (e, q) v root ∈ N . By de�nition of vnl, v, and de�nition of
e′0, we infer that e′0 vnl e0. Let root′ = ((er2, e

r
1), qr). From RP

(C2×C′1)A′
being

strongly well-formed, we get acs(er1) ∈ L and ((e2, e1), q) v root′. We infer that
acs(er1) = acs(e1) = acs(e). By de�nition of e′0 and l′0 = root′, the induction
hypothesis follows.

Step After initialization, abstract states are added to reached in line 12 and line 19.
Let (ep, g, es) ∈ CA1 be the transfer relation transition explored in line 12 and 19,
respectively. We know that g = (lp, op, ls) ∈ G′CFA. Since Algorithm 2 only adds
(ê, ·) to waitlist when it adds ê in reached and it removes all (ê, ·) in waitlist when it
removes ê from reached, we know that in line 4 predecessor ep = (ep1, q

p) ∈ reached.
Hence, by induction ∃(en, qn) ∈ N : ep vnl (en, qn) ∧ acs(ep1) 6= >L ∧ (acs(ep1) =
((ê2, ê1), q̂) =⇒ acs(ê1) = acs(en)). By construction of prog(RP

(C2×C′1)A′
) and

g = (lp, op, ls) ∈ G′CFA, an ARG edge (lp, (l
′
p, op, l

′
s), ls) ∈ G′ARG exists. Hence,
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(l′p, op, l
′
s) ∈ GCFA. Since RP

(C2×C′1)A′
is strongly well-formed and (C2 × C′1)A

′
is a

re�ned property checking analysis, we get lp = ((·, l1p), ·), acs(l1p) = l′p, ls = ((·, l1s), ·),
and acs(l1s) = l′s. Let es = (es1, q

s). Since acs(ep1) 6= >L, (ep, g, es) ∈ CA1 , and
CA1 is property checking analysis, we get acs(ep1) = lp = ((·, l1p), ·) and acs(es1) =
ls = ((·, l1s), ·) 6= >L. We infer that acs(en) = acs(l1p) = l′p. Due to monotonicity
and location transparency of  CA , ep vnl (en, qn), and acs(en) = l′p ∈ L, we
conclude that ((en, qn), (l′p, op, l

′
s), (en′ , qn′)) ∈ CA , acs(en′) = l′s = acs(l1s). Since

 CA is a monotonic function and ep vnl (en, qn), we get that es = (es1, q
s) vnl

(en′ , qn′) ∧ acs(es1) 6= >L ∧ acs(es1) = ((·, l1s), ·) ∧ acs(l1s) = l′s = acs(en′). Due to
soundness of RP

CA1
, we know that there exists (e′n, q

′
n) ∈ N : (en′ , qn′) v (e′n, q

′
n).

From Corollary 5.11 and de�nition of N , we know that acs(e′n) ∈ L, and, thus
acs(e′n) = acs(en′) = l′s. From (en′ , qn′) v (e′n, q

′
n) and es = (es1, q

s) vnl (en′ , qn′), it
follows that es = (es1, q

s) vnl (e′n, q
′
n).

If enew = (enew
1 , qnew) is added, we know that enew = e′′ t es, e′′ = (e′′1 , q

′′) is
an element from reached and acs(e′′1) = acs(es1) = acs(enew

1 ) (de�nition of enew,
e′′ 6= enew and de�nition of mergeDFA). By induction ∃(e′′n, q′′n) ∈ N : e′′ vnl

(e′′n, q
′′
n) ∧ acs(e′′1) 6= >L ∧ acs(e′′1) = ((ê2, ê1), q̂) =⇒ acs(ê1) = acs(e′′n). From

acs(e′′1) = acs(es1), we conclude that acs(e′′1) = ls = ((·, l1s), ·) and acs(e′′n) = acs(l1s) =
l′s. From Corollary 5.11 and de�nition of N , we infer that (e′′n, q

′′
n) = (e′n, q

′
n). Now,

es = (es1, q
s) vnl (e′n, q

′
n) and e′′ vnl (e′n, q

′
n), give us enew = e′′ t es vnl (e′′n, q

′′
n).

The induction hypothesis follows.

If eprec is added in line 19, we know that eprec = es (de�nition of precDFA and
de�nition of eprec in line 7). The induction hypothesis follows.

Since RP
CA1

is safe (well-formed), we conclude that ¬∃(e′1, q′) ∈ N : q = q> ∨ q = qerr.

If Algorithm 2 terminates with prog(RP
(C2×C′1)A′

), then by induction, at line 29 we know

∀(e1, q) ∈ reached : ∃(e′1, q′) ∈ N : (e1, q) vnl (e′1, q
′). Due to de�nition of vnl, we infer

that ∀(e1, q) ∈ reached : q 6= q> ∧ q 6= qerr. Hence, Algorithm 2 returns true.

A.5 Outstanding Proofs for Chapter 6

Integration of PfP and CPC

Lemma 6.1. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2×C1)A. Let Nsub ⊆ N be a subset of nodes and partition(Nsub) be a
partition of Nsub. Then, the transformation partition(Nsub)[prog(RP

(C2×C1)A)] of partition

partition(Nsub) is a partition of Nsub[prog(RP
(C2×C1)A)].

Proof. Let partition(Nsub) = {p1, . . . , pk} be an arbitrary partition of Nsub. By de�nition
partition(Nsub)[prog(RP

(C2×C1)A)] = {p1[prog(RP
(C2×C1)A)], . . . , pk[prog(RP

(C2×C1)A)]}. Let

pi[prog(RP
(C2×C1)A)] be an arbitrary partition element.

By de�nition of the transformation and pi 6= ∅ (partition(Nsub) being a partition), we
get that pi[prog(RP

(C2×C1)A)] 6= ∅.
Let e ∈ pi[prog(RP

(C2×C1)A)] be arbitrary. By de�nition ∃n ∈ pi : e = n[n]. Since pi ⊆
Nsub, we get by de�nition of Nsub[prog(RP

(C2×C1)A)] that e ∈ Nsub[prog(RP
(C2×C1)A)]. Let

e′ ∈ Nsub[prog(RP
(C2×C1)A)]. By de�nition ∃n′ ∈ Nsub : e′ = n′[n′]. Since partition(Nsub)
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of Nsub, there exists a subset pj ∈ partition(Nsub) with n′ ∈ pj . By de�nition of
pj [prog(RP

(C2×C1)A)], we get e′ ∈ pj [prog(RP
(C2×C1)A)]. Thus,

⋃
1≤i≤k

pi[prog(RP
(C2×C1)A)] =

Nsub[prog(RP
(C2×C1)A)].

Let pk[prog(RP
(C2×C1)A)] be an arbitrary partition element with i 6= k. Let e′′ ∈

pk[prog(RP
(C2×C1)A)] be arbitrary. By de�nition, an element n′′ ∈ pk exists with e′′ =

n′′[n′′]. Since partition(Nsub) is a partition, n′′ /∈ pi (partition elements are disjoint). We
infer that e′′ /∈ pi[prog(RP

(C2×C1)A)]. Hence, the sets in partition(Nsub)[prog(RP
(C2×C1)A)]

are disjoint.
We get that partition(Nsub)[prog(RP

(C2×C1)A)] is a partition of Nsub[prog(RP
(C2×C1)A)].

Lemma 6.2. Let RP
(C2×C1)A be an abstract reachability graph for program P and re�ned

property checking analysis (C2 ×C1)A. Then, RP
(C2×C1)A [prog(RP

(C2×C1)A)] is an abstract

reachability graph for program prog(RP
(C2×C1)A) and DFA(CA1 ).

Proof. Let P = (L,GCFA, l0), RP
(C2×C1)A = (N,GCFA, root,Ncov), prog(RP

(C2×C1)A) =

(L′, G′CFA, l
′
0), and RP

(C2×C1)A [prog(RP
(C2×C1)A)] = (N ′, G′ARG, root

′, N ′cov). We need to
show that N ′ ⊆ ECA1 , N

′ is �nite, G′ARG ⊆ N ′ ×G′CFA ×N ′, root′ ∈ N ′, N ′cov ⊆ N ′.
Let n′ ∈ N ′ be arbitrary. By de�nition of N ′, there exists n ∈ N with n′ = n[n].

By de�nition of prog(RP
(C2×C1)A), we get that N = L′ ⊆ L. We get that n ∈ L. The

de�nition of n[n] lets us conclude that n′ = n[n] ∈ ECA1 . Thus, N ′ ⊆ ECA1 . Due to the
de�nition of N ′ and N being �nite (property of ARG), we conclude that N ′ is �nite.

Let (n′p, g
′, n′s) ∈ G′ARG be arbitrary. By de�nition of G′ARG, there exists an ARG

edge (np, (lp, op, ls), ns) ∈ GARG s.t. np[np] = n′p, ns[ns] = n′s, and g′ = (np, op, ns).
Since RP

(C2×C1)A is an ARG, we conclude that np, ns ∈ N , (lp, op, ls) ∈ GCFA and, hence,

op ∈ Ops. By de�nition of prog(RP
(C2×C1)A), we get that g′ ∈ G′CFA. By de�nition of N ′

and np, ns ∈ N , we conclude that n′p, n
′
s ∈ N ′. We infer that G′ARG ⊆ N ′ ×G′CFA ×N ′.

By de�nition of root′, root′ = root[root]. Since RP
(C2×C1)A is an ARG, root ∈ N . By

de�nition of N ′ and root ∈ N , we get root′ ∈ N ′.
Let n′c ∈ N ′cov be arbitrary. By de�nition of N ′cov and RP

(C2×C1)A being an ARG
(Ncov ⊆ N), there exists nc ∈ Ncov ⊆ N with n′c = nc[nc]. By de�nition of N ′ and
nc ∈ N , we get n′c ∈ N ′. Hence, N ′cov ⊆ N ′.

We conclude that RP
(C2×C1)A [prog(RP

(C2×C1)A)] is an ARG for program prog(RP
(C2×C1)A)

and DFA(CA1 ).

Proposition 6.3. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for re�ned property

checking analysis (C2 × C1)A. If RP
(C2×C1)A is strongly well-formed for e0 ∈ E(C2×C1)A ,

then RP
(C2×C1)A [prog(RP

(C2×C1)A)] is an ARG for prog(RP
(C2×C1)A) and DFA(CA1 ) which is

well-formed for e0[root].

Proof. Let transformed ARG RP
(C2×C1)A [prog(RP

(C2×C1)A)] = (N ′, G′ARG, root
′, N ′cov) and

generated program prog(RP
(C2×C1)A) = (L′, G′CFA, l

′
0). From Lemma 6.2 we know that

RP
(C2×C1)A [prog(RP

(C2×C1)A)] is an ARG for prog(RP
(C2×C1)A) and DFA(CA1 ). We need

to show the following properties: rootednes, completeness, well-coveredness, safety and
well-constructedness.

296



A.5. OUTSTANDING PROOFS FOR CHAPTER 6

Rootedness By de�nition, root′ = root[root]. From the de�nition of e0[root], root′ =
root[root], the de�nition of v and e0 v root (prog(RP

(C2×C1)A) strongly well-formed),

we get e0[root] v root′. ARG RP
(C2×C1)A [prog(RP

(C2×C1)A)] is rooted.

Completeness Let ((e1, q), (l
′
p, op, l

′
s), (e

′
1, q
′)) ∈ CA1 be a transition in the transition

relation  CA1 of DFA(CA1 ) s.t. (e1, q) ∈ N ′, (l′p, op, l
′
s) ∈ G′CFA. Due to construction

of N ′, we know that acs(e1) ∈ L. From de�nition of  CA1 , we get acs(e1) = l′p and
acs(e′1) = l′s. From de�nition of N ′, acs(e1) = l′p, and (e1, q) ∈ N ′, we infer that
(e1, q) = l′p[l′p]. Due to program construction and (l′p, op, l

′
s) ∈ G′CFA, we conclude

that (l′p, (lp, op, ls), l
′
s) ∈ GARG exists. Since RP

(C2×C1)A is sound (strongly well-

formed), for all (l′p, (lp, op, ls), ((e
t
2, e

t
1), qt)) ∈ (C2×C1)A , ((et2, e

t
1), qt) v l′s. Since

 (C2×C1)A is a function, at most one such transfer successor ((et2, e
t
1), qt) exists.

From ARG RP
(C2×C1)A being well-constructed (strongly well-formed), exactly one

such transfer successor exists. Let l′p = ((ep2, e
p
1), qp). From l′p[l′p] = (e1, q), we get

qp = q. Since RP
(C2×C1)A is strongly well-formed, we know that acs(ep1) ∈ L. The

de�nition of re�ned property checking transfer relation, give us acs(ep1) = lp, and,
thus acs(et1) = ls. Furthermore, we get ((ep1, q

p), (lp, op, ls), (e
t
1, q

t)) ∈ CA1 . The
requirements on CA1 and the de�nitions of l′p[l′p] and ((et2, e

t
1), qt)[l′s], let us conclude

that (l′p[l′p], (l′p, op, l
′
s), ((e

t
2, e

t
1), qt)[l′s]) ∈ CA1 . Since (e1, q) = l′p[l′p] and  CA1 is a

function, we get (e′1, q
′) = ((et2, e

t
1), qt)[l′s]. From the de�nition of ((et2, e

t
1), qt)[l′s],

l′s[l
′
s], de�nition of v, and ((et2, e

t
1), qt) v l′s, we infer that (e′1, q

′) = ((et2, e
t
1), qt)[l′s] v

l′s[l
′
s]. By de�nition of G

′
ARG and (C2×C1)A, we know that (l′p[l′p], (l′p, op, l

′
s), l
′
s[l
′
s]) ∈

G′ARG. ARG RP
(C2×C1)A [prog(RP

(C2×C1)A)] is complete.

Well-Coveredness Let (n, g, e) ∈ S′TCNC. From the de�nition of S′TCNC, we know that
n ∈ N ′, g = (lp, op, ls) ∈ G′CFA, and (n, g, e) ∈ CA1 . Due to the program genera-
tion, (lp, (l

′
p, op, l

′
s), ls) ∈ GARG. Now, the ARG transformation and (n, g, e) ∈ CA1

let us conclude that n = lp[lp]. Let n = (en1 , q
n) and e = (e1, q). We know that

acs(en1 ) = lp and lp = ((ep2, e
p
1), qn). The de�nition of  CA1 give us acs(e1) = ls.

Since RP
(C2×C1)A is strongly well-formed, there exists (lp, (l

′
p, op, l

′
s), e

′) ∈ (C2×C1)A

(well-constructed) and acs(ep1) ∈ L. Due to soundness (strongly well-formedness)
of RP

(C2×C1)A , we infer that e′ v ls. Let e′ = ((e′2, e
′
1), q′). From the de�nition

of  (C2×C1)A , we know that ((ep1, q
n), (l′p, op, l

′
s), (e

′
1, q
′)) ∈ CA1 , acs(ep1) = l′p, and

acs(e′1) = l′s. We conclude that (lp[lp], g, e′[ls]) ∈ CA1 . Since lp[lp] = n and  CA1
is a function, we get e = e′[ls] Assume that (lp, (l

′
p, op, l

′
s), e

′) /∈ STCNC. Since
RP

(C2×C1)A is deterministic (strongly well-formed), not exists (lp, (l
′
p, op, l

′
s), e

′′) ∈
GARG and e′′ 6= l′s. We conclude that l′s ∈ Ncov. Hence, l′s[l

′
s] ∈ N ′cov and

(n, g, l′s[l
′
s]) ∈ G′ARG (de�nition of transformation). From the de�nition of e′[l′s],

l′s[l
′
s], de�nition of v, and e′ v l′s, we infer that e = e′[ls] v l′s[l

′
s]. It follows that

(n, g, e) /∈ S′TCNC. Our assumption was wrong, we get (lp, (l
′
p, op, l

′
s), e

′) ∈ STCNC.
We get that for every (n, g, e) ∈ S′TCNC there exists (lp, g

′, e′) ∈ STCNC with
n = lp[lp], g = (lp, op, ls), g

′ = (·, op, ·), and (lp, g
′, ls) ∈ GARG s.t. e = e′[ls]. Let

m : S′TCNC → STCNC with ∀(n, g, e) ∈ S′TCNC : m((n, g, e)) = (lp, g
′, e′) implies n =

lp[lp], g = (lp, op, ls), g
′ = (·, op, ·), and (lp, g

′, ls) ∈ GARG exists s.t. e = e′[ls]. Fix
total, injective function cov : STCNC → N \Ncov with ∀(no, go, eo) ∈ STCNC : eo v
cov((no, go, eo))∧(no, go, cov((no, go, eo))) ∈ GARG. De�ne cov′ : S′TCNC → N ′\N ′cov

as follows: cov′((n, g, e)) = cov(m((n, g, e)))[cov(m((n, g, e)))]. From de�nitions, we
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infer cov(m((n, g, e)))[cov(m((n, g, e)))] ∈ N ′ \ N ′cov Let m((n, g, e)) = (lp, g
′, e′).

We know n = lp[lp], there exists (lp, g
′, ls) ∈ GARG s.t. e = e′[ls], g = (lp, op, ls),

and g′ = (·, op, ·), and (lp, g
′, cov((lp, g

′, e′))) ∈ GARG and e′ v cov((lp, g
′, e′)). Since

RP
(C2×C1)A is deterministic (strongly well-formed), ls = cov((lp, g

′, e′)). We already
know that e = e′[ls] v ls[ls] = cov(m((n, g, e)))[cov(m((n, g, e)))] = cov′((n, g, e)).
From n = lp[lp], g = (lp, op, ls), g′ = (·, op, ·), and (lp, g

′, ls) ∈ GARG, we in-
fer that (n, g, ls[ls]) = (n, g, cov′((n, g, e))) ∈ GARG. We need to show that cov′

is injective. Let cov′((n, g, e)) = cov′((n̂, ĝ, ê)). From the de�nition of cov′ we
infer that cov(m((n, g, e)))[cov(m((n, g, e)))] = cov(m((n̂, ĝ, ê)))[cov(m((n̂, ĝ, ê)))].
We get cov(m((n, g, e))) = cov(m((n̂, ĝ, ê))). Since cov is injective m((n, g, e)) =
m((n̂, ĝ, ê)). Let m((n, g, e)) = (lp, g

′, e′). We know that n = lp[lp] = n̂ and
g = (lp, op, ls), g

′ = (·, op, ·), ĝ = (lp, op, l̂s), there exists (lp, g
′, ls) ∈ GARG s.t.

e = e′[ls] and there exists (lp, g
′, l̂s) ∈ GARG s.t. ê = e′[l̂s]. Since RP

(C2×C1)A is de-

terministic (strongly well-formed), ls = l̂s. We get that g = ĝ. Since n = n̂, g = ĝ,
(n, g, e), (n̂, ĝ, ê) ∈ C1A ((n, g, e), (n̂, ĝ, ê) ∈ S′TCNC), it follows that e = e′[ls] =

e′[l̂s] = ê. Function cov′ is injective. The transformed ARG is well-covered.

Safety By de�nition of N ′, we conclude that if (e1, q) ∈ N ′, then a node ((e2, e
′
1), q) ∈

N exists with (e1, q) = ((e2, e
′
1), q)[((e2, e

′
1), q)]. Since N is safe ((strongly) well-

formed), we know that q 6= q> and q 6= qerr. Hence, ∀(e′, q′) ∈ N ′ : q′ 6= q>∧q′ 6= qerr.
ARG RP

(C2×C1)A [prog(RP
(C2×C1)A)] is safe.

Well-Constructedness Let ((e1, q), (l
′
p, op, l

′
s), (e

′
1, q
′)) ∈ G′ARG be arbitrary. By de�-

nition, there exists (l′p, (lp, op, ls), l
′
s) ∈ GARG, acs(e1) = l′p, acs(e′1) = l′s, (e1, q) =

l′p[l′p], and (e′1, q
′) = l′s[l

′
s]. Let l′p = ((ê2, ê1), q̂) and l′s = ((ê′2, ê

′
1), q̂′). We know

that q = q̂ and q̂′ = q′ (de�nition of l′p[l′p], l′s[l
′
s], and (e1, q) = l′p[l′p], and (e′1, q

′) =

l′s[l
′
s]). Since RP

(C2×C1)A is well-constructed ((strongly) well-formed), there exists

(l′p, (lp, op, ls), ((e
t
2, e

t
1), qt)) ∈ (C2×C1)A . The de�nition of a transfer relation of a re-

�ned property checking analysis lets us conclude ((ê1, q̂), (lp, op, ls), (e
t
1, q

t)) ∈ CA1 .
Since RP

(C2×C1)A is strongly well-formed, we get acs(ê1), acs(et1) ∈ L. From the de�ni-

tion of a property checking analysis, we conclude that acs(ê1) = lp and acs(et1) = ls.
By de�nition of l′p[l′p], ((et2, e

t
1), qt)[l′s] and the requirements on a transfer relation

of a property checking analysis, we get (l′p[l′p], (l′p, op, l
′
s), ((e

t
2, e

t
1), qt)[l′s]) ∈ CA1

From the de�nition of DFA(CA1 ) and (e1, q) = l′p[l′p], we �nally infer that ARG
RP

(C2×C1)A [prog(RP
(C2×C1)A)] is well-constructed.

Lemma 6.7. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for program P and re-

�ned property checking analysis (C2 × C1)A. Furthermore, let N ′sub ⊆ Nsub ⊆ N . Then,
bound(N ′sub[prog(RP

(C2×C1)A)], V CG(Nsub[prog(RP
(C2×C1)A)], RP

(C2×C1)A [prog(RP
(C2×C1)A)]))

= bound(N ′sub, V CG(Nsub, R
P
(C2×C1)A))[prog(RP

(C2×C1)A)].

Proof. Let transformed ARG RP
(C2×C1)A [prog(RP

(C2×C1)A)] = (N ′, G′ARG, root
′, N ′cov).

Case �⊆�: Let state eb ∈ bound(N ′sub[prog(RP
(C2×C1)A)], V CG(Nsub[prog(RP

(C2×C1)A)],

RP
(C2×C1)A [prog(RP

(C2×C1)A)])) be arbitrary. From the de�nition of boundary nodes, we

conclude that eb ∈ Nsub[prog(RP
(C2×C1)A)], eb /∈ N ′sub[prog(RP

(C2×C1)A)], and there exists
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ep ∈ N ′sub[prog(RP
(C2×C1)A)] s.t. (ep, eb) ∈ GNsub[prog(RP

(C2×C1)A
)]. By de�nition of vertex

contraction, a sequence ep = e1, . . . , en = eb of ARG nodes exists s.t. n ≥ 2 and ∀2 ≤ i ≤
n : (ei−1, (li−1, op, li), ei) ∈ G′ARG and ∀2 ≤ i < n : ei /∈ Nsub[prog(RP

(C2×C1)A)]. Due to
ARG transformation, we get ei−1 = li−1[li−1], ei = li[li], and (li−1, (·, op, ·), li) ∈ GARG.
From the de�nition of Nsub[prog(RP

(C2×C1)A)] and N ′sub[prog(RP
(C2×C1)A)], we infer that

l1 ∈ N ′sub (ep = l1[l1]), ∀2 ≤ i < n : li /∈ Nsub, ln /∈ N ′sub, and ln ∈ Nsub. We conclude
that (l1, ln) ∈ GNsub

. Hence, ln ∈ bound(N ′sub, V CG(Nsub, R
P
(C2×C1)A)). Finally, we get

that eb = ln[ln] ∈ bound(N ′sub, V CG(Nsub, R
P
(C2×C1)A))[prog(RP

(C2×C1)A)].

Case �⊇�: Let eb ∈ bound(N ′sub, V CG(Nsub, R
P
(C2×C1)A))[prog(RP

(C2×C1)A)] be arbi-

trary. Then, ∃ln ∈ bound(N ′sub, V CG(Nsub, R
P
(C2×C1)A)) : eb = ln[ln]. By de�nition

of boundary nodes, there exists l0 ∈ N ′sub, (l0, ln) ∈ GNsub
, ln ∈ Nsub and ln /∈ N ′sub.

Furthermore, there exists l0 = e1, . . . , em = ln with ∀2 ≤ i ≤ m : (ei−1, (·, op, ·), ei) ∈
GARG and ∀2 ≤ i < m : ei /∈ Nsub. By program construction and ARG transfor-
mation, (ei−1[ei−1], (ei−1, op, ei), ei[ei]) ∈ G′ARG. Additionally, ∀2 ≤ i < m : ei[ei] /∈
Nsub[prog(RP

(C2×C1)A)], e1[e1] ∈ N ′sub[prog(RP
(C2×C1)A)], em[em] ∈ Nsub[prog(RP

(C2×C1)A)],

and em[em] /∈ N ′sub[prog(RP
(C2×C1)A)]. Hence, (e1[e1], em[em]) ∈ GNsub[prog(RP

(C2×C1)A
)]

and eb = ln[ln] = em[em] ∈ bound(N ′sub[prog(RP
(C2×C1)A)], V CG(Nsub[prog(RP

(C2×C1)A)],

RP
(C2×C1)A [prog(RP

(C2×C1)A)])).

Lemma 6.8. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for program P and

re�ned property checking analysis (C2 × C1)A and partition(Nsub) = {p1, . . . , pn} be a
partition of Nsub ⊆ N . Then, certPC(partition(Nsub), RP

(C2×C1)A)[prog(RP
(C2×C1)A)] =

certPC(partition(Nsub)[prog(RP
(C2×C1)A)], RP

(C2×C1)A [prog(RP
(C2×C1)A)]).

Proof. Let RP
(C2×C1)A [prog(RP

(C2×C1)A)] = (N ′, G′ARG, root
′, N ′cov) be the transformed

ARG. Let certPC(partition(Nsub), RP
(C2×C1)A) = (parts, n′′), let transformed partitioned

certi�cate certPC(partition(Nsub), RP
(C2×C1)A)[prog(RP

(C2×C1)A)] = (partssub, n), and let

certPC(partition(Nsub)[prog(RP
(C2×C1)A)], RP

(C2×C1)A [prog(RP
(C2×C1)A)]) = (parts′sub, n

′).
From the de�nition of the transformation of a partitioned certi�cate, we know that n′′ = n.
Furthermore, the construction of a partitioned certi�cate gives us n = n′′ = |N | and
n′ = |N ′|. From Lemma 6.5, we infer that n = n′. Next, show that partssub = parts′sub.
By de�nition of partition transformation, we get partition(Nsub)[prog(RP

(C2×C1)A)] =

{p1[prog(RP
(C2×C1)A)], . . . , pn[prog(RP

(C2×C1)A)]}.
Case �⊆�: Let (pn, bn) ∈ partssub be arbitrary. By de�nition there exists (p̂n, b̂n) ∈

parts and pn = p̂n[prog(RP
(C2×C1)A)] and bn = b̂n[prog(RP

(C2×C1)A)]. The de�nition of
a partitioned certi�cate lets us conclude that p̂n ∈ partition(Nsub), thus, p̂n ⊆ Nsub,
and bn = bound(p̂n, V CG(Nsub, R

P
(C2×C1)A)). From Lemma 6.7, we further conclude

that bn = b̂n[prog(RP
(C2×C1)A)] = bound(p̂n, V CG(Nsub, R

P
(C2×C1)A))[prog(RP

(C2×C1)A)] =

bound(p̂n[prog(RP
(C2×C1)A)], V CG(Nsub[prog(RP

(C2×C1)A)], RP
(C2×C1)A [prog(RP

(C2×C1)A)]))

= bound(pn, V CG(Nsub[prog(RP
(C2×C1)A)], RP

(C2×C1)A [prog(RP
(C2×C1)A)])). Knowing that

p̂n ∈ partition(Nsub), we infer that pn ∈ partition(Nsub)[prog(RP
(C2×C1)A)]. The de�nition

of a partitioned certi�cate, partition(Nsub)[prog(RP
(C2×C1)A)] being a partition of the set

Nsub[prog(RP
(C2×C1)A)] (Lemma 6.1), and Nsub[prog(RP

(C2×C1)A)] ⊆ N [prog(RP
(C2×C1)A)] =

N ′ (de�nition of N ′, Nsub ⊆ N), gives us (pn, bn) ∈ parts′sub.
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Case �⊇�: Let (pn′, bn′) ∈ parts′sub be arbitrary. Lemma 6.1 lets us infer that the trans-
formed set partition(Nsub)[prog(RP

(C2×C1)A)] is a partition of Nsub[prog(RP
(C2×C1)A)] ⊆

N [prog(RP
(C2×C1)A)] = N ′. The de�nition of a partitioned certi�cate, lets us conclude

that the partition nodes pn′ ∈ partition(Nsub)[prog(RP
(C2×C1)A)] and boundary nodes

bn′ = bound(pn′, V CG(Nsub[prog(RP
(C2×C1)A)], RP

(C2×C1)A [prog(RP
(C2×C1)A)])). Due to the

de�nition of partition(Nsub)[prog(RP
(C2×C1)A)], we know there exists p̂n′ ∈ partition(Nsub)

with pn′ = p̂n′[prog(RP
(C2×C1)A)] and p̂n′ ⊆ Nsub. Furthermore, let us de�ne b̂n′ :=

bound(p̂n′, V CG(Nsub, R
P
(C2×C1)A)). From the de�nition of a partitioned certi�cate, we

conclude that (pn′, bn′) ∈ parts. Moreover, Lemma 6.7 lets us infer the following equiv-
alence: b̂n′[prog(RP

(C2×C1)A)] = bound(p̂n′, V CG(Nsub, R
P
(C2×C1)A))[prog(RP

(C2×C1)A)] =

bound(p̂n′[prog(RP
(C2×C1)A)], V CG(Nsub[prog(RP

(C2×C1)A)], RP
(C2×C1)A [prog(RP

(C2×C1)A)]))

= bound(pn′, V CG(Nsub[prog(RP
(C2×C1)A)], RP

(C2×C1)A [prog(RP
(C2×C1)A)])) = bn′. We get

that (pn′, bn′) ∈ partssub.

Proposition 6.9. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for a re�ned prop-

erty checking analysis (C2 × C1)A. Then,

• cert(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] = cert(RP
(C2×C1)A [prog(RP

(C2×C1)A)]),

• certhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] = certhR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]),

• if partition(N [prog(RP
(C2×C1)A)]) = partition(N)[prog(RP

(C2×C1)A)],

certPC(partition(N), RP
(C2×C1)A)[prog(RP

(C2×C1)A)]

= certPC(partition(N [prog(RP
(C2×C1)A)]), RP

(C2×C1)A [prog(RP
(C2×C1)A)])

, and

• if
partition(NhR(RP

(C2×C1)A [prog(RP
(C2×C1)A)]))

= partition(NhR(RP
(C2×C1)A))[prog(RP

(C2×C1)A)]

certPC(partition(NhR(RP
(C2×C1)A)), RP

(C2×C1)A)[prog(RP
(C2×C1)A)]

= certPC(partition(NhR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]), RP
(C2×C1)A [prog(RP

(C2×C1)A)]) .

Proof. Let RP
(C2×C1)A [prog(RP

(C2×C1)A)] = (N ′, G′ARG, root
′, N ′cov).

• From de�nition we get

cert(RP
(C2×C1)A)[prog(RP

(C2×C1)A)]

= N [prog(RP
(C2×C1)A)]

= N ′

= cert(RP
(C2×C1)A [prog(RP

(C2×C1)A)]) .

• From de�nitions, Lemma 6.6 and Lemma 6.5, we conclude that

certhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)]

= (NhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)], |N |)
= (NhR(RP

(C2×C1)A [prog(RP
(C2×C1)A)]), |N |)

= (NhR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]), |N ′|)
= certhR(RP

(C2×C1)A [prog(RP
(C2×C1)A)]) .
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• Directly follows from Lemma 6.8, Nsub := N and partition(N) being a partition of
N (de�nition of partitioned certi�cate).

• Directly follows from Lemma 6.8, Nsub := NhR(RP
(C2×C1)A), NhR(RP

(C2×C1)A) ⊆
N (de�nition of highly reduced node set in combination with property of ARG),
and partition(NhR(RP

(C2×C1)A)) being a partition of NhR(RP
(C2×C1)A) (de�nition of

partitioned certi�cate).

Lemma 6.10. Let RP
(C2×C1)A = (N,GARG, root,Ncov) be an ARG for program P and

re�ned property checking analysis (C2 × C1)A. If RP
(C2×C1)A = (N,GARG, root,Ncov)

is strongly well-formed for e0 ∈ E(C2 × C1)A, then NR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]) ⊆
NR(RP

(C2×C1)A)[prog(RP
(C2×C1)A)] ⊆ N [prog(RP

(C2×C1)A)].

Proof. Let RP
(C2×C1)A [prog(RP

(C2×C1)A)] = (N ′, G′ARG, root
′, N ′cov).

Let n′ ∈ NR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]). Since RP
(C2×C1)A [prog(RP

(C2×C1)A)] is an

ARG for DFA(CA1 ). By de�nition of reduced node set and de�nition of DFA(CA1 ), we
know that n′ = root′ ∨ n′ ∈ N ′cov ∨ ∃n′′ ∈ N ′ : (n′′, g, n′) ∈ G′ARG ∧ (n′′, g, n′) /∈ CA1 .
If n′ = root′, we know that n′ = root[root] and root ∈ NR(RP

(C2×C1)A). By de�ni-

tion, n′ = root[root] ∈ NR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)]. If n′ ∈ N ′cov, we know that

∃nc ∈ Ncov : n′ = nc[nc] and nc ∈ NR(RP
(C2×C1)A). By de�nition, n′ = nc[nc] ∈

NR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)]. If ∃n′′ ∈ N ′ : (n′′, g, n′) ∈ G′ARG∧ (n′′, g, n′) /∈ CA1 , by
de�nition of G′ARG there exists (np, (lp, op, ls), ns) ∈ GARG s.t. np = ((ep2, e

p
1), qp), ns =

((es2, e
s
1), qs) ∈ N , np[np] = n′′, ns[ns] = n′, and g′ = (np, op, ns). Let us assume that

(np, (lp, op, ls), ns) ∈ (C2×C1)A . By de�nition ((ep1, q
p), (lp, op, ls), (e

s
1, q

s)) ∈ CA1 . From
the de�nition of  CA1 , we get that either acs(ep1) = lp and acs(es1) = ls or acs(ep1) =

acs(es1) = >L. Since np, ns ∈ N and RP
(C2×C1)A is strongly well-formed, we know that

acs(ep1) = lp and acs(es1) = ls. From de�nition of np[np], ns[ns] and np, ns ∈ L, we
get that (np[np], (np, op, ns), ns[ns]) ∈ CA1 (requirements on property checking analy-
sis). Contradiction to (n′′, g, n′) /∈ CA1 . Hence, (np, (lp, op, ls), ns) /∈ (C2×C1)A and
ns ∈ NR(RP

(C2×C1)A). Thus, n′ = ns[ns] ∈ NR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)].

From NR(RP
(C2×C1)A) ⊆ N (de�nition of reduced node set) and de�nition of transfor-

mation of NR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)], and transformation of N [prog(RP
(C2×C1)A)],

we infer that N [prog(RP
(C2×C1)A)] ⊇ NR(RP

(C2×C1)A)[prog(RP
(C2×C1)A)].

Theorem 6.11. Let (C2×C1)A be a re�ned property checking analysis. Furthermore, let

VDFA(CA1 )(stopDFA(CA1 )) be the con�gurable certi�cate validator for DFA(CA1 ) and cover-

age check stopDFA(CA1 ). If Algorithm 2 started with CPA (C2 × C1)A, compatible, initial
abstract state e0 ∈ E(C2×C1)A , initial precision π0 ∈ Π(C2×C1)A , and program P returns

(true, ·, RP
(C2×C1)A) and RP

(C2×C1)A) = (N,GARG, root,Ncov), then

• the validation algorithm for certi�cates (Algorithm 3, p. 54) started with con�gurable

certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), initial abstract state e0[root], certi�cate

cert(RP
(C2×C1)A)[prog(RP

(C2×C1)A)], and program prog(RP
(C2×C1)A) returns true.
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• the validation algorithm for reduced certi�cates (Algorithm 4, p. 82) started with con-

�gurable certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), initial abstract state e0[root],

certR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] or certhR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)], as well

as program prog(RP
(C2×C1)A) returns true.

• the validation algorithm for partitioned certi�cates (Algorithm 5, p. 106) started

with con�gurable certi�cate validator VDFA(CA1 )(stopDFA(CA1 )), initial abstract state

e0[root], partitioned certi�cate certPC(partition(Nsub), RP
CA)[prog(RP

(C2×C1)A)] which

is constructed from a full, partitioned, reduced, partitioned or highly reduced, par-
titioned certi�cate certPC(partition(Nsub), RP

CA), and program prog(RP
(C2×C1)A) re-

turns true.

Proof. For the transformation of a certi�cate, a highly reduced certi�cate, a full par-
titioned certi�cate, and a highly reduced, partitioned certi�cate, this theorem directly
follows from Proposition 6.9 and Theorem 6.4.

From de�nition of stopDFA(CA1 ) and Corollary 3.4, we know that stopDFA(CA1 ) is a well-

behaving coverage check. Hence, VDFA(CA1 )(stopDFA(CA1 )) is a CCV. From Proposition 5.2,

we infer that RP
(C2×C1)A is an ARG for program P and (C2×C1)A which is strongly well-

formed for e0. From Proposition 6.3, we conclude that RP
(C2×C1)A [prog(RP

(C2×C1)A)] =

(N ′, G′ARG, root
′, N ′cov) is an ARG for program prog(RP

(C2×C1)A) and DFA(CA1 ) which
is well-formed for e0[root]. Since Algorithm 2 terminates, when started with P , we
know that P is �nite. From Proposition 5.6 and P being �nite, we infer that program
prog(RP

(C2×C1)A) is �nite. Furthermore, e0[root] v e0[root] (re�exity of partial order v).
Now consider the transformation of a reduced certi�cate and a reduced, partitioned cer-

ti�cate. From Lemma 6.10 and Lemma 6.5, we infer certR(RP
(C2×C1)A)[prog(RP

(C2×C1)A)] =

(Csub, n) with NR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]) ⊆ Csub ⊆ N [prog(RP
(C2×C1)A)] = N ′. Fi-

nally, Lemma 4.8 lets us conclude the claim of this theorem for the transformation of a
reduced certi�cate.

From Lemma 6.10, we furthermore infer that NR(RP
(C2×C1)A [prog(RP

(C2×C1)A)]) ⊆
NR(RP

(C2×C1)A)[prog(RP
(C2×C1)A)] ⊆ N [prog(RP

(C2×C1)A)] = N ′. Now, from Lemma 6.8
we get that the transformation of a reduced, partitioned certi�cate from an arbitrary
partition(NR(RP

(C2×C1)A)) and ARG RP
(C2×C1)A is a partitioned certi�cate from partition

partition(NR(RP
(C2×C1)A))[prog(RP

(C2×C1)A)] and ARG RP
(C2×C1)A [prog(RP

(C2×C1)A)]. From
Lemma 4.25, we conclude the statement for the transformation of a reduced, partitioned
certi�cate.

The claim of this theorem follows.
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B.1 Results Basic Con�gurable Program Certi�cation

Table B.1: E�ciency examination of certi�cate validation w.r.t. veri�cation which looks
at the best and total improvement of the execution time and memory consumption

CPA VP VC
VP

VC
MP MC

MC

MP

R 342.95 2.16 159.05 3706.0 1311.7 0.35
13384.58 480.65 27.85 494847.8 321089.4 0.65

I 308.01 0.15 2071.32 3496.8 212.6 0.06
18626.48 18510.39 1.01 879860.9 811305.6 0.92

R 4.02 2.58 1.56 557.9 415.8 0.75
2676.39 3914.84 0.68 324870.3 337489.9 1.04

S 35.52 25.71 1.38 1138.1 888.3 0.78
12465.84 12223.93 1.02 885247.4 882955.6 1.00

U 5.78 5.89 0.98 4360.4 4059.0 0.93
9068.62 12411.37 0.73 711295.6 731277.4 1.03

V 8.23 5.86 1.41 1127.7 619.8 0.55
10688.58 10078.60 1.06 878929.1 820267.0 0.93

SI 403.09 0.17 2392.25 3498 206.2 0.06
32917.31 30960.39 3.21 1097817.7 1057072.2 0.96

VR 8.47 5.81 1.46 1963.9 1218.7 0.62
5593.83 6193.96 0.90 565405.9 522515.5 0.92

SI 1.74 0.14 11.98 2163.0 583.6 0.27
19488.76 37146.18 0.52 1225311.2 1325337.7 1.08

VR 336.23 63.26 5.32 3202.0 344.9 0.11
9332.39 24637.32 0.38 564549.8 703871.4 1.25

I 2.42 1.98 1.22 402.7 383.4 0.95
32517.21 206369.95 0.16 995938.4 1383406.4 1.39
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CPA VP VC
VP

VC
MP MC

MC

MP

R 4.13 3.25 1.27 2112.6 1055.3 0.50
4213.74 90155.45 0.05 210037.9 562500.9 2.68

S 462.69 390.49 1.18 1096.2 990.7 0.90
5991.17 6816.55 0.88 481160.7 536692.9 1.12

U 4.98 5.77 0.86 4303.8 4048.4 0.94
8698.32 12833.531 0.68 734606.1 755635.5 1.03

V 168.87 64.50 2.62 2163.0 648.8 0.25
25953.79 117885.82 0.22 758460.3 916245.9 1.21

SI 31.07 22.15 1.41 3369.4 2425.1 0.72
48296.36 208682.16 0.23 1380627.9 1529124.2 1.11

VR 164.05 63.73 2.57 3201.6 975.4 0.31
5712.04 15826.28 0.36 378929.6 621766.8 1.64

O 63.10 3.80 16.61 3939.8 1135.5 0.29
36293.32 63677.21 0.57 795084.3 684812.4 0.86

P 14.78 5.64 2.62 600.3 3007.3 0.51
22092.34 226677.71 0.01 408060.8 818166.4 2.01

V 484.96 0.95 510.59 4304.9 270.8 0.06
23505.46 7655.15 3.07 686101.9 448909.4 0.65

Figure B.1: Comparison of producer veri�cation times of intermediate analysis tasks with
consumer times for validation of the certi�cate from the producer's ARG (left) and com-
parison of memory consumption of the producer veri�cation with memory consumption
of the consumer for validation of the certi�cate from the producer's ARG (right)
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B.2. RESULTS OPTIMIZED CONFIGURABLE PROGRAM CERTIFICATION

Figure B.2: Relation of the certi�cate �le size (zip compressed) to the �le size of the
program (uncompressed) for �ow-insensitive tasks (top left), data�ow analysis tasks (top
right), and (semi-)path-sensitive tasks (bottom)

B.2 Results Optimized CPC

Table B.2: For each analysis, the choice of the partition strategy and the size of the
partition element for the computation of full, partitioned certi�cates

BEST_ FM MULTI-
10 100 1000 10000 FIRST K-WAY LEVEL

D
FA

I X X
R X X
S X X
U X X
V X X
SI X X
VR X X

In
te
r. SI X X

VR X X

M
C

I X X
R X X
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BEST_ FM MULTI-
10 100 1000 10000 FIRST K-WAY LEVEL

S X X

M
C

U X X
V X X
SI X X
VR X X

C
E
G
A
R O X X

V X X

Table B.3: For each analysis, the choice of the partition strategy and the size of the
partition element for the computation of reduced, partitioned certi�cates

BEST_ FM MULTI-
10 100 1000 10000 FIRST K-WAY LEVEL

D
FA

I X X
R X X
S X X
U X X
V X X
SI X X
VR X X

In
te
r. SI X X

VR X X

M
C

I X X
R X X
S X X
U X X
V X X
SI X X
VR X X

C
E
G
A
R O X X

V X X

Table B.4: For each analysis, the choice of the partition strategy and the size of the
partition element for the computation of highly reduced, partitioned certi�cates

BEST_ FM MULTI-
10 100 1000 10000 FIRST K-WAY LEVEL

D
FA

I X X
R X X
S X X
U X X
V X X
SI X X
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BEST_ FM MULTI-
10 100 1000 10000 FIRST K-WAY LEVEL

VR X X

In
te
r. SI X X

VR X X
M
C

I X X
R X X
S X X
U X X
V X X
SI X X
VR X X

C
E
G
A
R O X X

V X X

Figure B.3: Comparison of the number of abstract states stored in the reduced and highly
reduced certi�cate

Figure B.4: Comparison of the number of abstract states stored in the best reduced
certi�cate with those stored in the full, partitioned certi�cate
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Figure B.5: Comparing the memory consumption of the fastest, optimized con�gurable
program certi�cate approach with the combination of the two optimization approaches

Figure B.6: Comparing the memory consumption of the fastest, optimized CPC validation
with regression veri�cation.

Figure B.7: Comparing the number of abstract states, the main part of the certi�cates,
stored in that certi�cate whose validation was fastest among all CPC techniques for the
task and the backwards certi�cate.
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B.3. RESULTS PROGRAMS FROM PROOFS APPROACH

Figure B.8: Comparison of the memory consumption of the fastest, optimized CPC ap-
proach with the memory consumption of ARG validation (left) and comparison of the
certi�cate size of the fastest, optimized CPC approach with the ARG size (right)

B.3 Results Programs from Proofs Approach

Table B.5: Comparison of the producer and consumer veri�cation in the Programs from
Proofs approach. Veri�cation times of the producer VP and consumer VC are given in
seconds and memory consumption, used heap plus used non-heap, is given in MB.

CP program #r VP VC
VP

VC
MP MC

MC

MP

Data�ow Analysis

PI

nosprintf* 3 0.59 0.07 8.47 243.90 210.20 0.86
interproc* 2 0.32 0.05 6.07 241.00 210.00 0.87
NetBSD* 4 0.68 0.08 8.39 245.20 214.90 0.88
PfPb* 2 0.18 0.02 7.91 235.10 205.90 0.88
PfPc* 2 0.22 0.03 6.97 229.70 202.60 0.88
SLRb* 1 0.13 0.02 5.25 232.00 204.90 0.88

OI

interproc 1 0.32 0.05 5.91 233.00 210.30 0.90
SpamAssassin 1 0.93 0.16 6.02 244.00 214.30 0.88
sendmail 1 0.64 0.24 2.66 241.10 218.10 0.90
invertstring 1 0.56 0.20 2.84 231.80 215.70 0.93
�bonacci* 1 0.23 0.05 5.08 222.50 200.10 0.90
relax 1 0.42 0.19 2.29 234.00 214.90 0.92

PS

condsum* 2 0.22 0.05 4.42 237.10 201.30 0.85
propertyInFlag* 2 0.17 0.05 3.70 232.50 199.30 0.86
PfP* 2 0.19 0.03 5.74 234.30 199.60 0.85
PfPb* 2 0.17 0.03 6.37 232.90 196.20 0.84
PfPc* 2 0.21 0.04 5.61 231.90 197.60 0.85
liststatistics* 8 0.63 0.11 5.67 253.90 205.90 0.81
harmonicMean* 2 0.43 0.14 3.08 241.70 207.10 0.86
fraction 4 0.52 0.07 7.26 242.30 201.40 0.83
SLR* 1 0.12 0.02 4.96 230.60 198.60 0.86
facnegsum* 2 0.19 0.06 3.42 233.80 202.40 0.87
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CP program #r VP VC
VP

VC
MP MC

MC

MP

PS SubMinSumDiv* 2 0.25 0.09 2.93 237.60 203.80 0.86
lockfree3.0* 14 1.97 0.12 16.70 288.40 202.30 0.70

OS

testlocks7 7 2.30 1.15 2.01 330.20 265.00 0.80
testlocks8 8 9.30 2.07 4.50 566.00 283.10 0.50
inf4* 2 0.45 0.32 1.41 225.90 216.70 0.96
inf8 3 0.42 0.08 5.09 226.60 201.40 0.89
propertyInFlag 1 0.14 0.05 2.69 215.30 202.20 0.94
SLRb 1 0.11 0.03 3.98 217.30 198.30 0.91
SubMinSumDiv* 1 0.15 0.08 1.82 215.10 201.50 0.94
ESP 1 0.14 0.04 3.02 214.40 205.20 0.96
ESPa 1 0.11 0.03 3.67 215.30 201.00 0.93
ESPb 1 0.12 0.03 3.73 212.20 201.40 0.95
ESPc 1 0.11 0.03 3.56 214.30 203.20 0.95
addIteration* 1 0.09 0.03 2.97 212.60 202.00 0.95

VS

SLRb* 2 0.10 0.03 4.04 217.80 197.40 0.91
SLR* 1 0.08 0.02 3.41 217.30 200.60 0.92
inf6* 4 0.28 0.03 8.23 230.50 201.50 0.87
inf8* 3 0.37 0.07 5.43 228.20 202.50 0.89
kundu* 10 3.00 0.36 8.41 346.00 214.90 0.62
memslave1* 22 7.52 0.91 8.31 564.00 273.20 0.48
memslave2 8 6.86 1.26 5.46 562.30 296.10 0.53
PfPb* 2 0.14 0.03 5.57 222.00 199.20 0.90
PfPc 2 0.26 0.04 6.74 222.70 199.70 0.90
ESP 1 0.16 0.05 3.41 225.60 202.10 0.90
ESPb* 1 0.11 0.03 3.33 217.70 202.10 0.93
lockfree3.1* 3 0.44 0.12 3.73 230.80 204.00 0.88

PSI
invertsorted* 21 9.92 0.67 14.76 565.70 233.80 0.41
div 20 5.37 0.30 17.72 441.60 215.20 0.49
�bonacci* 3.7 0.50 0.06 7.81 242.90 205.40 0.85

OSI
�bonacci* 1.3 0.31 0.06 4.87 226.50 206.50 0.91
palindrom 1 0.91 0.48 1.90 242.00 221.00 0.91
invertarray 1 0.82 0.35 2.35 240.60 218.00 0.91

PU
cdaudio 32 10.20 2.70 3.78 597.70 345.70 0.58
pipeline2* 230 227.81 0.23 985.32 1792.80 211.50 0.12
diskperf 2 2.00 1.37 1.47 314.60 269.90 0.86

OU
pipeline 11 4.21 1.15 3.65 412.60 256.10 0.62
s3srvr 1 0.95 0.27 3.56 257.10 215.30 0.84
pipeline2 11 8.81 260.19 0.03 577.60 3971.20 6.88

VU
s3srvr 2.8 2.76 0.62 4.43 339.30 236.50 0.70
cdaudio 1 2.75 2.89 0.95 365.60 344.80 0.94
pipeline2* 13 2.93 0.32 9.13 367.70 221.50 0.60

PV

testlocks5* 30.2 2.64 0.30 8.93 304.60 214.60 0.70
kb�ltr1* 2 0.90 0.41 2.17 268.40 230.50 0.86
kb�ltr2* 2 1.29 0.77 1.68 281.90 244.20 0.87
testlocks5d* 8.2 0.90 0.12 7.33 257.50 215.50 0.84
testlocks12 18 329.79 8.23 40.05 1713.20 591.80 0.35
testlocks12d 12 5.71 0.27 21.37 540.90 219.00 0.40
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CP program #r VP VC
VP

VC
MP MC

MC

MP

memslave1 7.1 4.39 0.35 12.51 368.00 226.80 0.62

OV

memslave2 4 2.96 0.59 5.03 410.30 229.60 0.56
testlocks6 6 1.45 0.36 3.99 280.50 226.40 0.81
kb�ltr1 3.1 2.01 0.56 3.59 311.20 234.30 0.75
kb�ltr2 2.9 2.91 0.96 3.04 354.10 251.60 0.71
inf8 3 0.45 0.11 3.95 230.20 214.70 0.93

PṼ

memslave1 35 17.63 0.47 37.20 780.60 233.70 0.30
memslave2 35 18.31 0.63 28.87 766.00 241.20 0.31
kb�ltr2* 4 2.07 0.84 2.46 302.10 250.60 0.83
testlocks6* 161 25.70 0.54 47.50 771.10 229.80 0.30

OṼ
kb�ltr1 4 2.53 0.55 4.59 328.50 236.90 0.72
testlocks5* 5 1.53 0.33 4.69 272.70 221.10 0.81
testlocks5d* 1 0.33 0.12 2.83 229.40 214.10 0.93

Intermediate (Sep-Join)

PSI
�bonacci* 3 0.45 0.06 7.42 243.20 206.40 0.85
palindrom* 18 6.02 0.48 12.65 475.70 221.20 0.46
invertarray* 18 17.90 0.32 55.38 523.60 217.90 0.42

OSI
invertsorted 1 1.27 0.81 1.57 261.70 237.70 0.91
div 1 0.63 0.33 1.94 236.70 214.70 0.91
palindrom 1 0.95 0.46 2.08 241.20 217.10 0.90

Model Checking

PL

locks* 2 0.15 0.01 10.85 232.80 199.70 0.86
tokenring03 59 198.41 2.84 69.79 1733.20 299.20 0.17
memslave1* 271 155.63 4.16 37.43 1793.00 368.80 0.21
s3srvr 7 10.52 3.09 3.40 544.80 340.10 0.62

OL
s3srvr 1.4 1.06 0.15 7.07 260.00 237.10 0.91
transmitter01* 1 0.36 0.11 3.19 228.30 207.50 0.91
transmitter02* 1 0.46 0.18 2.50 233.50 214.50 0.92

VL
tokenring02 16 5.99 0.22 27.74 549.50 213.50 0.39
tokenring04 22 14.15 43.05 0.33 1056.00 537.30 0.51
transmitter03 1 0.59 0.23 2.55 241.30 215.00 0.89

PS
kundu* 20 15.15 0.60 25.06 594.00 228.50 0.38
transmitter01* 5 1.66 0.18 9.31 278.70 206.10 0.74
transmitter02 6 8.63 5.47 1.58 494.70 553.10 1.12

OS
transmitter01 1 0.89 0.18 5.05 251.90 205.20 0.81
transmitter02 1 1.46 0.31 4.70 272.10 214.40 0.79
powerapprox 1 9.86 10.73 0.92 1036.40 996.80 0.96

VS
inf6* 4 0.31 0.03 9.24 228.50 204.10 0.89
kundu* 10 6.61 0.14 47.92 481.10 202.60 0.42
transmitter02* 5 5.07 0.21 23.98 438.10 206.20 0.47

PU
pipeline* 15 6.25 0.22 28.65 474.90 215.70 0.45
cdaudio 20.8 10.84 4.69 2.31 855.50 449.80 0.53
diskperf 2 3.95 3.64 1.08 396.70 359.10 0.91

OU
pipeline 11 3.90 1.18 3.30 419.00 260.20 0.62
pipeline2 11 8.51 258.16 0.03 579.30 3903.00 6.74
s3srvr 1 0.88 0.28 3.19 250.90 218.30 0.87

VU s3srvr* 6 3.81 0.61 6.23 385.60 231.90 0.60
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CP program #r VP VC
VP

VC
MP MC

MC

MP

VU cdaudio 1 3.00 3.63 0.83 388.80 380.00 0.98
pipeline2* 14 3.05 0.31 9.82 370.90 220.20 0.59

PV testlocks5d* 0.9 2.22 0.60 3.70 308.10 231.90 0.75
inf1* 1 0.20 0.07 2.72 238.70 214.90 0.90

OV
testlocks5* 5 2.73 0.35 7.90 330.90 224.00 0.68
testlocks12d* 1 135.46 0.26 520.62 1771.80 217.80 0.12
testlocks5d* 1 0.66 0.11 5.78 240.30 216.10 0.90

PṼ
testlocks5* 0 2.26 0.65 3.48 318.80 230.80 0.72
interproc* 1 0.34 0.11 3.28 245.90 213.20 0.87
nosprintf* 1 0.50 0.15 3.44 251.20 216.30 0.86

OṼ
testlocks5d* 1 0.63 0.11 5.78 239.70 217.50 0.91
relax* 1 0.88 0.47 1.87 255.00 230.40 0.90
nosprintf 1 0.46 0.14 3.26 238.40 216.80 0.91

Sum 1401.52 647.13 49526.30 38043.10

Table B.6: Comparison of the original #locP ,bytesP and generated program
#locC ,bytesC sizes based on the number of locations #loc and the program �le size
bytes in bytes

CP program #locP #locC
#locC
#locP

bytesP bytesC
bytesC
bytesP

Dat�ow Analysis

PI

nosprintf* 70 71 1.01 2108 1644 0.78
interproc* 53 49 0.92 1541 953 0.62
NetBSD* 68 102 1.50 2087 2014 0.97
PfPb* 16 14 0.88 150 139 0.93
PfPc* 23 24 1.04 223 245 1.10
SLRb* 18 15 0.83 156 142 0.91

OI

interproc 66 49 0.74 1541 953 0.62
SpamAssassin 130 120 0.92 3121 2247 0.72
sendmail 100 163 1.63 2184 4003 1.83
invertstring 60 151 2.52 646 2493 3.86
�bonacci* 36 48 1.33 301 706 2.35
relax 49 146 2.98 1466 2647 1.81

PS

condsum* 23 34 1.48 278 446 1.60
propertyInFlag* 27 28 1.04 258 335 1.30
PfP* 20 21 1.05 191 229 1.20
PfPb* 16 14 0.88 150 139 0.93
PfPc* 23 24 1.04 223 245 1.10
liststatistics* 138 73 0.53 4049 1550 0.38
harmonicMean* 77 78 1.01 2266 1640 0.72
fraction 44 62 1.41 1205 1372 1.14
SLR* 16 14 0.88 141 135 0.96
facnegsum* 22 34 1.55 206 422 2.05
SubMinSumDiv* 34 49 1.44 311 649 2.09
lockfree3.0* 119 67 0.56 2069 1637 0.79

OS testlocks7 117 1320 11.28 2723 22854 8.39
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CP program #locP #locC
#locC
#locP

bytesP bytesC
bytesC
bytesP

OS

testlocks8 121 2868 23.70 2779 36225 13.04
inf4* 46 231 5.02 614 4982 8.11
inf8 64 71 1.11 762 1135 1.49
propertyInFlag 27 27 1.00 258 318 1.23
SLRb 18 14 0.78 156 125 0.80
SubMinSumDiv* 34 48 1.41 311 617 1.98
ESP 25 31 1.24 289 545 1.89
ESPa 23 19 0.83 269 257 0.96
ESPb 23 19 0.83 266 257 0.97
ESPc 21 19 0.90 241 257 1.07
addIteration* 32 26 0.81 445 489 1.10

VS

SLRb* 18 15 0.83 156 142 0.91
SLR* 16 14 0.88 141 135 0.96
inf6* 41 24 0.59 360 244 0.68
inf8* 64 61 0.95 762 1029 1.35
kundu* 402 302 0.75 7841 6046 0.77
memslave1* 1080 967 0.90 28163 52921 1.88
memslave2 1087 1225 1.13 28252 58872 2.08
PfPb* 16 12 0.75 150 121 0.81
PfPc 23 25 1.09 223 257 1.15
ESP 25 33 1.32 289 577 2.00
ESPb* 23 21 0.91 266 289 1.09
lockfree3.1* 132 87 0.66 2212 1741 0.79

PSI
invertsorted* 34 430 12.65 369 8601 23.31
div 24 161 6.71 313 2803 8.96
�bonacci* 29.7 47 1.58 301 689 2.29

OSI
�bonacci* 35.3 48 1.36 301 706 2.35
palindrom 33 310 9.39 244 5165 21.17
invertarray 34 248 7.29 219 3651 16.67

PU
cdaudio 1637 5822 3.56 64510 143506 2.22
pipeline2* 637 421 0.66 13473 9509 0.71
diskperf 864 2782 3.22 25267 79713 3.15

OU
pipeline 619 1932 3.12 13000 44884 3.45
s3srvr 518 641 1.24 43877 14887 0.34
pipeline2 637 35207 55.27 13473 841659 62.47

VU
s3srvr 518 1362 2.63 43877 28696 0.65
cdaudio 1637 5798 3.54 64510 141393 2.19
pipeline2* 637 677 1.06 13473 16070 1.19

PV

testlocks5* 81 227 2.80 1762 3374 1.91
kb�ltr1* 400 368 0.92 19088 9553 0.50
kb�ltr2* 683 808 1.18 32845 22374 0.68
testlocks5d* 73 78 1.07 1530 1019 0.67
testlocks12 172 24646 143.29 3922 381105 97.17
testlocks12d 150 246 1.64 3202 2964 0.93

OV
memslave1 1080 432 0.40 28163 7891 0.28
memslave2 1087 358 0.33 28252 8923 0.32
testlocks6 103 360 3.50 2386 5589 2.34
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CP program #locP #locC
#locC
#locP

bytesP bytesC
bytesC
bytesP

OV
kb�ltr1 400 468 1.17 19088 11322 0.59
kb�ltr2 683 941 1.38 32845 24951 0.76
inf8 64 67 1.05 762 1108 1.45
memslave1 1080 580 0.54 28163 18043 0.64

PṼ
memslave2 1087 585 0.54 28252 18186 0.64
kb�ltr2* 683 842 1.23 32845 22780 0.69
testlocks6* 103 606 5.88 2386 10644 4.46

OṼ
kb�ltr1 400 468 1.17 19088 11955 0.63
testlocks5* 81 292 3.60 1762 3930 2.23
testlocks5d* 73 71 0.97 1530 908 0.59

Intermediate (Sep-Join)

PSI
�bonacci* 29 47 1.62 301 689 2.29
palindrom* 26 306 11.77 244 5447 22.32
invertarray* 26 243 9.35 219 3630 16.58

OSI
invertsorted 42 491 11.69 369 8981 24.34
div 29 163 5.62 313 2620 8.37
palindrom 33 310 9.39 244 5166 21.17

Model Checking

PL

locks* 23 23 1.00 280 294 1.05
tokenring03 498 7195 14.45 8917 137888 15.46
memslave1* 1080 12252 11.34 28163 285883 10.15
s3srvr 518 9106 17.58 43877 221027 5.04

OL
s3srvr 571.6 821 1.44 43877 19715 0.45
transmitter01* 344 458 1.33 5702 8238 1.44
transmitter02 * 446 744 1.67 7398 13524 1.83

VL
tokenring02 406 736 1.81 7254 14199 1.96
tokenring04 586 9233 15.76 10505 399662 38.04
transmitter03 472 784 1.66 8602 14333 1.67

PS
kundu* 402 626 1.56 7841 15487 1.98
transmitter01* 322 205 0.64 5702 3793 0.67
transmitter02 420 1761 4.19 7398 37652 5.09

OS
transmitter01 322 216 0.67 5702 4478 0.79
transmitter02 420 354 0.84 7398 7946 1.07
powerapprox 19 7179 377.84 269 109438 406.83

VS
inf6* 41 23 0.56 360 225 0.63
kundu* 402 137 0.34 7841 5343 0.68
transmitter02* 420 235 0.56 7398 4314 0.58

PU
pipeline* 619 521 0.84 13000 12369 0.95
cdaudio 1637 10526 6.43 64510 255961 3.97
diskperf 864 6420 7.43 25267 168372 6.66

OU
pipeline 619 1932 3.12 13000 44884 3.45
pipeline2 637 35207 55.27 13473 841659 62.47
s3srvr 518 653 1.26 43877 15709 0.36

VU
s3srvr* 518 1204 2.32 43877 28425 0.65
cdaudio 1637 6938 4.24 64510 166070 2.57
pipeline2* 637 645 1.01 13473 15318 1.14

PV testlocks5d* 73 519 7.11 1530 7869 5.14
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CP program #locP #locC
#locC
#locP

bytesP bytesC
bytesC
bytesP

PV inf1* 37 36 0.97 433 592 1.37

OV
testlocks5* 81 292 3.60 1762 3930 2.23
testlocks12d* 150 232 1.55 3202 2769 0.86
testlocks5d* 73 71 0.97 1530 915 0.60

PṼ
testlocks5* 81 532 6.57 1762 8264 4.69
interproc* 53 63 1.19 1541 1278 0.83
nosprintf* 70 113 1.61 2108 2422 1.15

OṼ
testlocks5d* 73 71 0.97 1530 915 0.60
relax* 40 283 7.08 1466 5683 3.88
nosprintf 70 101 1.44 2108 2186 1.04

Sum 37488 217265 1220010 5041533

Table B.7: Comparison of the Consumer Validation Times in the PfP and PCC ap-
proaches. Validation times are given in seconds.

CP program VPfP VRV VARG VCPC VCPCRP
minVPCC

VPfP

Data�ow Analysis

PI

nosprintf* 0.07 0.25 F F 0.38 3.61
interproc* 0.05 0.17 0.39 0.39 0.28 3.18
NetBSD* 0.08 0.19 F F 0.35 2.32
PfPb* 0.02 0.12 0.30 0.26 0.23 5.08
PfPc* 0.03 0.15 0.33 0.30 0.27 4.64
SLRb* 0.02 0.10 0.28 0.24 0.23 4.04

OI

interproc 0.05 0.15 0.31 0.29 0.22 2.81
SpamAssassin 0.16 0.31 0.60 0.52 0.40 1.98
sendmail 0.24 0.30 0.60 0.51 0.38 1.26
invertstring 0.20 0.30 0.57 0.43 0.35 1.51
�bonacci* 0.05 0.13 0.26 0.24 0.16 2.79
relax 0.19 0.31 0.62 0.47 0.38 1.66

PS

condsum* 0.05 0.15 0.33 0.33 0.30 2.96
propertyInFlag* 0.05 0.12 0.32 0.30 0.27 2.57
PfP* 0.03 0.13 0.32 0.29 0.26 3.93
PfPb* 0.03 0.12 0.30 0.27 0.25 4.66
PfPc* 0.04 0.15 0.34 0.33 0.28 4.09
liststatistics* 0.11 0.27 F F F 2.46
harmonicMean* 0.14 0.29 F F F 2.12
fraction 0.07 0.24 0.45 0.45 0.44 3.33
SLR* 0.02 0.09 0.27 0.23 0.23 3.65
facnegsum* 0.06 0.15 0.32 0.30 0.28 2.58
SubMinSumDiv* 0.09 0.15 0.33 0.32 0.30 1.78
lockfree3.0* 0.12 0.46 0.80 0.70 0.50 3.90

OS

testlocks7 1.15 1.26 1.46 1.32 0.98 0.85
testlocks8 2.07 7.15 5.31 6.01 3.82 1.85
inf4* 0.32 0.28 0.57 0.53 0.27 0.84
inf8 0.08 0.16 0.38 0.33 0.25 1.91
propertyInFlag 0.05 0.06 0.24 0.21 0.19 1.25
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CP program VPfP VRV VARG VCPC VCPCRP
minVPCC

VPfP

OS

SLRb 0.03 0.04 0.21 0.20 0.16 1.47
SubMinSumDiv* 0.08 0.09 0.25 0.22 0.20 1.04
ESP 0.04 0.06 0.24 0.23 0.18 1.41
ESPa 0.03 0.05 0.22 0.20 0.15 1.63
ESPb 0.03 0.05 0.22 0.20 0.15 1.60
ESPc 0.03 0.04 0.21 0.19 0.15 1.42
addIteration* 0.03 0.04 0.19 0.18 0.16 1.21

VS

SLRb* 0.03 0.04 0.19 0.19 0.15 1.79
SLR* 0.02 0.05 0.20 0.19 0.15 1.95
inf6* 0.03 0.08 0.23 0.23 0.18 2.27
inf8* 0.07 0.19 0.32 0.29 0.25 2.72
kundu* 0.36 0.58 1.17 0.97 0.62 1.63
memslave1* 0.91 0.99 1.42 1.33 0.77 0.85
memslave2 1.26 2.50 2.99 2.63 1.60 1.27
PfPb* 0.03 0.04 0.20 0.20 0.17 1.64
PfPc 0.04 0.11 0.27 0.24 0.23 2.81
ESP 0.05 0.10 0.25 0.24 0.20 2.04
ESPb* 0.03 0.06 0.21 0.20 0.17 1.82
lockfree3.1* 0.12 0.22 0.38 0.32 0.31 1.85

PSI
invertsorted* 0.67 1.53 F F 1.63 2.27
div 0.30 0.82 1.10 1.76 1.09 2.70
�bonacci* 0.06 0.19 0.40 0.42 0.28 2.97

OSI
�bonacci* 0.06 0.15 0.27 0.26 0.20 2.41
palindrom 0.48 0.49 0.73 0.78 0.42 0.87
invertarray 0.35 0.45 0.71 F 0.39 1.14

PU
cdaudio 2.70 2.68 4.28 3.99 3.82 1.00
pipeline2* 0.23 2.30 2.97 2.52 1.68 7.27
diskperf 1.37 1.45 2.50 2.36 2.61 1.06

OU
pipeline 1.15 1.25 2.34 2.18 1.79 1.08
s3srvr 0.27 0.71 1.65 1.53 0.74 2.67
pipeline2 260.19 7.13 8.81 7.88 6.76 0.03

VU
s3srvr 0.62 1.12 1.91 1.79 1.28 1.79
cdaudio 2.89 2.38 3.73 3.24 2.63 0.82
pipeline2* 0.32 0.72 1.43 1.24 0.64 2.00

PV

testlocks5* 0.30 1.25 1.44 2.18 1.32 4.22
kb�ltr1* 0.41 0.79 1.26 1.19 0.84 1.90
kb�ltr2* 0.77 1.23 1.82 1.78 1.32 1.60
testlocks5d* 0.12 0.48 0.80 1.12 0.53 3.90
testlocks12 8.23 156.46 51.51 TO 54.90 6.26
testlocks12d 0.27 1.78 2.12 2.27 2.05 6.66

OV

memslave1 0.35 0.84 1.12 1.09 0.64 1.83
memslave2 0.59 0.91 1.33 1.30 0.82 1.39
testlocks6 0.36 0.76 1.10 0.95 0.58 1.61
kb�ltr1 0.56 0.76 1.24 1.15 0.75 1.33
kb�ltr2 0.96 1.12 1.63 1.61 1.22 1.17
inf8 0.11 0.22 0.40 0.36 0.33 1.94

PṼ memslave1 0.47 2.43 3.07 3.64 2.70 5.12
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CP program VPfP VRV VARG VCPC VCPCRP
minVPCC

VPfP

PṼ
memslave2 0.63 2.36 3.11 3.67 2.79 3.72
kb�ltr2* 0.84 1.26 1.83 1.68 1.34 1.49
testlocks6* 0.54 2.85 2.70 10.68 2.44 4.50

OṼ
kb�ltr1 0.55 0.83 1.26 1.10 0.89 1.51
testlocks5* 0.33 0.72 1.36 1.10 0.73 2.20
testlocks5d* 0.12 0.48 0.83 0.89 0.32 2.79

Intermediate (Sep-Join)

PSI
�bonacci* 0.06 0.19 0.38 0.42 0.27 3.16
palindrom* 0.48 1.02 1.44 1.99 0.73 1.54
invertarray* 0.32 2.30 F F 1.36 4.20

OSI
invertsorted 0.81 0.73 1.17 0.96 F 0.90
div 0.33 0.35 0.74 0.58 0.33 1.02
palindrom 0.46 0.53 0.77 0.76 0.51 1.11

Model Checking

PL

locks* 0.01 0.11 0.27 0.26 0.22 7.72
tokenring03 2.84 10.44 11.29 17.14 10.61 3.67
memslave1* 4.16 9.04 14.43 17.77 F 2.17
s3srvr 3.09 8.97 15.94 26.38 13.70 2.90

OL
s3srvr 0.15 0.52 0.94 0.88 0.50 3.34
transmitter01* 0.11 0.17 0.56 0.38 0.27 1.51
transmitter02* 0.18 0.23 0.72 0.56 0.35 1.25

VL
tokenring02 0.22 0.66 1.07 1.03 0.45 2.08
tokenring04 43.05 4.40 4.59 5.65 3.12 0.07
transmitter03 0.23 0.42 1.01 0.74 0.40 1.73

PS
kundu* 0.60 1.74 2.27 2.84 F 2.87
transmitter01* 0.18 0.39 0.97 F 0.51 2.20
transmitter02 5.47 2.22 2.83 3.27 2.88 0.41

OS
transmitter01 0.18 0.23 0.69 0.61 0.30 1.27
transmitter02 0.31 0.50 0.99 0.88 0.41 1.32
powerapprox 10.73 9.14 4.56 4.77 F 0.42

VS
inf6* 0.03 0.08 0.23 0.23 0.18 2.37
kundu* 0.14 0.66 1.21 0.92 0.56 4.08
transmitter02* 0.21 0.30 0.66 0.57 0.42 1.42

PU
pipeline* 0.22 0.67 1.87 1.67 F 3.07
cdaudio 4.69 5.09 9.38 8.92 9.49 1.08
diskperf 3.64 3.14 5.83 5.02 5.12 0.86

OU
pipeline 1.18 1.14 2.27 2.13 1.74 0.97
pipeline2 258.16 5.63 8.65 8.17 6.61 0.02
s3srvr 0.28 0.56 1.65 1.59 0.72 2.02

VU
s3srvr* 0.61 1.22 2.02 1.84 1.07 1.75
cdaudio 3.63 3.31 3.96 3.47 2.77 0.76
pipeline2* 0.31 0.70 1.40 1.26 0.67 2.15

PV testlocks5d* 0.60 2.17 2.04 5.10 0.93 1.54
inf1* 0.07 0.19 0.38 0.39 0.31 2.54

OV testlocks5* 0.35 0.77 1.34 1.49 0.73 2.11
testlocks12d* 0.26 0.79 1.29 1.13 0.66 2.52
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CP program VPfP VRV VARG VCPC VCPCRP
minVPCC

VPfP

OV testlocks5d* 0.11 0.28 0.53 0.42 0.41 2.46

PṼ
testlocks5* 0.65 2.19 2.08 5.04 1.37 2.11
interproc* 0.11 0.20 0.45 0.45 0.35 1.88
nosprintf* 0.15 0.29 F F 0.48 1.98

OṼ
testlocks5d* 0.11 0.27 0.67 0.42 0.33 2.43
relax* 0.47 0.40 0.94 0.74 0.53 0.84
nosprintf 0.14 0.44 0.42 0.39 0.35 2.50

Sum 647.13 304.71 259.05 1124.01 208.48
68.47 272.70 224.74 1090.84 183.51

Table B.8: Comparison of consumer's memory consumption in PfP and PCC approaches.
Memory consumption, used heap plus used non-heap, is displayed in MB.

CP program MPfP MRV MARG MCPC MCPCRP
MPfP

minMPCC

Data�ow Analysis

PI

nosprintf* 210.2 242.4 F F 234.7 0.90
interproc* 210 235.9 F F 231.1 0.91
NetBSD* 214.9 240.5 243.2 229.6 242.2 0.94
PfPb* 205.9 232.1 231.1 231.2 227.6 0.90
PfPc* 202.6 232.6 232.6 233.6 229.8 0.88
SLRb* 204.9 233.8 237.2 229.1 231.1 0.89

OI

interproc 210.3 217.3 220.3 219.4 228.9 0.97
SpamAssassin 214.3 227.7 228.8 224.4 233.5 0.95
sendmail 218.1 230.3 226.1 218.6 230.1 1.00
invertstring 215.7 228.7 229.8 221.0 228.0 0.98
�bonacci* 200.1 216.1 219.7 218.5 226.0 0.93
relax 214.9 229.8 231.8 223.0 231.7 0.96

PS

condsum* 201.3 233.3 236.4 232.5 233.5 0.87
propertyInFlag* 199.3 234.4 232.3 230.8 229.6 0.87
PfP* 199.6 235.4 234.6 229.7 231.7 0.87
PfPb* 196.2 231.0 233.5 230.0 230.7 0.85
PfPc* 197.6 234.1 233.2 232.8 232.6 0.85
liststatistics* 205.9 243.5 F F F 0.85
harmonicMean* 207.1 238.7 F F F 0.87
fraction 201.4 238.7 239.4 234.7 235.2 0.86
SLR* 198.6 229.3 232.5 232.0 227.7 0.87
facnegsum* 202.4 234.3 231.6 232.5 230.4 0.88
SubMinSumDiv* 203.8 234.2 235.4 234.0 232.9 0.88
lockfree3.0* 202.3 241.5 242.5 242.2 242.2 0.84

OS

testlocks7 265.0 281.9 241.9 234.3 248.9 1.13
testlocks8 283.1 557.0 388.9 555.7 367.9 0.77
inf4* 216.7 218.3 217.5 218.4 224.5 1.00
inf8 201.4 217.4 217.6 214.7 221.6 0.94
propertyInFlag 202.2 214.0 215.0 211.7 217.8 0.96
SLRb 198.3 208.8 212.9 206.5 215.0 0.96
SubMinSumDiv* 201.5 213.8 218.3 210.7 217.5 0.96
ESP 205.2 209.3 216.3 206.4 214.4 0.99
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CP program MPfP MRV MARG MCPC MCPCRP
MPfP

minMPCC

OS

ESPa 201.0 213.8 209.6 208.4 212.3 0.96
ESPb 201.4 207.1 213.1 206.1 212.0 0.98
ESPc 203.2 207.9 208.7 205.8 214.3 0.99
addIteration* 202.0 213.6 214.1 204.0 212.7 0.99

VS

SLRb* 197.4 214.7 216.7 214.0 220.4 0.92
SLR* 200.6 215.8 216.6 216.7 222.0 0.93
inf6* 201.5 215.7 214.9 215.5 222.9 0.94
inf8* 202.5 226.7 227.4 216.3 226.8 0.94
kundu* 214.9 236.0 248.0 245.8 246.4 0.91
memslave1* 273.2 268.0 266.2 264.7 260.8 1.05
memslave2 296.1 341.9 325.5 366.0 297.2 1.00
PfPb* 199.2 216.0 217.5 217.4 225.3 0.92
PfPc 199.7 214.8 218.0 218.9 232.4 0.93
ESP 202.1 214.1 218.3 218.5 228.3 0.94
ESPb* 202.1 217.1 223.3 213.6 224.5 0.95
lockfree3.1* 204.0 228.3 234.9 224.2 235.4 0.91

PSI
invertsorted* 233.8 271.6 F F 252.3 0.93
div 215.2 244.6 248.0 265.0 248.3 0.88
�bonacci* 205.4 237.1 239.2 236.5 231.9 0.89

OSI
�bonacci* 206.5 223.8 220.7 219.0 225.3 0.94
palindrom 221.0 230.1 226.6 228.3 235.3 0.98
invertarray 218.0 229.4 232.9 F 236.9 0.95

PU
cdaudio 345.7 382.4 432.5 399.3 402.9 0.90
pipeline2* 211.5 344.8 309.3 296.6 277.4 0.76
diskperf 269.9 294.8 320.2 330.5 319.6 0.92

OU
pipeline 256.1 272.9 276.7 267.7 266.9 0.96
s3srvr 215.3 246.8 244.8 235.8 244.4 0.91
pipeline2 3971.2 552.8 622.9 575.2 557.8 7.18

VU
s3srvr 236.5 280.2 265.3 262.0 263.9 0.90
cdaudio 344.8 378.8 400.5 393.0 344.4 1.00
pipeline2* 221.5 244.8 254.8 242.6 251.6 0.91

PV

testlocks5* 214.6 261.3 263.1 270.5 257.3 0.83
kb�ltr1* 230.5 259.3 271.7 261 257.1 0.90
kb�ltr2* 244.2 281.6 295.5 280.5 274.2 0.89
testlocks5d* 215.5 247.6 249.6 244.3 240.4 0.90
testlocks12 591.8 1548.0 1602.6 TO1243.1 1537.9 0.48
testlocks12d 219.0 297.9 275.4 288.0 272.0 0.81

OV

memslave1 226.8 256.5 255.6 257.5 266.5 0.89
memslave2 229.6 259.5 272.1 275.1 256.7 0.89
testlocks6 226.4 240.3 236.4 233.8 245.2 0.97
kb�ltr1 234.3 247.2 253.8 247.8 257.6 0.95
kb�ltr2 251.6 265.4 279.6 264.2 274.9 0.95
inf8 214.7 223.4 229.2 222.2 232.1 0.97

PṼ

memslave1 233.7 325.7 304.6 333.1 310.4 0.77
memslave2 241.2 337.3 306.3 332.7 313.7 0.79
kb�ltr2* 250.6 281.7 294.8 284.0 274.8 0.91
testlocks6* 229.8 307.2 289.8 544.4 292.7 0.79
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CP program MPfP MRV MARG MCPC MCPCRP
MPfP

minMPCC

OṼ
kb�ltr1 236.9 249.2 251.4 248.8 261 0.95
testlocks5* 221.1 251.5 242.1 243.9 251.6 0.91
testlocks5d* 214.1 229.7 237.3 230.0 236.2 0.93

Intermediate (Sep-Join)

PSI �bonacci* 206.4 237.8 237.6 233.3 232.6 0.89
palindrom* 221.2 251.4 253.4 278.5 243.0 0.91
invertarray* 217.9 259.0 F F 240.4 0.91

OSI
invertsorted 237.7 241.2 234.7 228.6 F 1.04
div 214.7 228.8 230.0 226.5 230.4 0.95
palindrom 217.1 227.2 230.4 230.6 237 0.96

Model Checking

PL

locks* 199.7 230.3 230.1 230.5 230.1 0.87
tokenring03 299.2 565.0 538.5 563.9 516.0 0.58
memslave1* 368.8 564.9 565.9 547.5 F 0.67
s3srvr 340.1 499.0 565.0 563.1 564.5 0.68

OL
s3srvr 237.1 253.8 257.3 251.5 260.6 0.94
transmitter01* 207.5 224.9 221.6 222.4 227.0 0.94
transmitter02* 214.5 225.6 225.5 219.1 225.6 0.98

VL
tokenring02 213.5 244.3 236.6 234.1 240.5 0.91
tokenring04 537.3 545.5 546.4 572.1 426.1 1.26
transmitter03 215 235.9 238.1 233.4 239.3 0.92

PS
kundu* 228.5 284.6 290.2 286.1 F 0.80
transmitter01* 206.1 242.9 248.8 F 245.6 0.85
transmitter02 553.1 304.2 314.7 300.3 293.8 1.88

OS
transmitter01 205.2 219.7 225.8 221.4 230.1 0.93
transmitter02 214.4 230.7 230.8 233.2 233.7 0.93
powerapprox 996.8 1077.9 360.0 552.6 F 2.77

VS
inf6* 204.1 215.3 221.2 218.8 227.9 0.95
kundu* 202.6 240.5 247.8 236.2 250.0 0.86
transmitter02* 206.2 235.1 232.5 230.8 239.4 0.89

PU
pipeline* 215.7 259.1 301.8 302.1 F 0.83
cdaudio 449.8 483.7 568.1 566.7 565.4 0.93
diskperf 359.1 378.4 455.6 401.2 421.8 0.95

OU
pipeline 260.2 267.6 277.3 264.5 271.3 0.98
pipeline2 3903.0 536.9 616.0 570.2 553.6 7.27
s3srvr 218.3 271.5 247.3 240.4 251.1 0.91

VU
s3srvr* 231.9 272.4 275.1 274.9 270.0 0.86
cdaudio 380.0 377.0 420.2 394.6 361.2 1.05
pipeline2* 220.2 241.3 251.4 241.6 249.7 0.91

PV testlocks5d* 231.9 313.9 276.5 299.8 248.7 0.93
inf1* 214.9 238.9 240.9 236.2 237.2 0.91

OV
testlocks5* 224 242.8 241.2 244.5 247.5 0.93
testlocks12d* 217.8 249.5 244 241.5 251.6 0.90
testlocks5d* 216.1 225.7 230.5 226.8 237 0.96

PṼ
testlocks5* 230.8 312.8 287.4 310.3 260.5 0.89
interproc* 213.2 237.8 245.6 240.7 237.7 0.90
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CP program MPfP MRV MARG MCPC MCPCRP
MPfP

minMPCC

PṼ nosprintf* 216.3 F F 240.2 245.1 0.90

OṼ
testlocks5d* 217.5 225.6 228.7 231.1 238.7 0.96
relax* 230.4 232.4 242.0 242.9 244.4 0.99
nosprintf 216.8 230.7 233.0 231.9 238.3 0.94

Sum 38043.1 36097.2 35728.1 35590.5 34857.9
27910 32628.3 32762.1 32532.8 32270.1

B.4 Results Integration of PfP and CPC

Table B.9: Comparison of the veri�cation and highly reduced, partitioned certi�cate vali-
dation on the program generated by the producer in the Programs from Proofs approach.
Next to the validation times and the memory consumption, for the veri�cation also the
number of merges and the ratio of computed transfer successors to the size of the reached
set are provided. All times are given in seconds and memory consumption, used heap plus
used non-heap, is represented in MB.

CP program #t #suc
|N | VC VV

VC
VV

MC MV
MV
MC

Data�ow Analysis

PI

nosprintf* 0 0.36 0.07 0.15 0.46 210.2 227.1 1.08
interproc* 0 0.30 0.05 0.14 0.36 210.0 218.0 1.04
NetBSD* 64 1.11 0.08 0.15 0.53 214.9 225.1 1.05
PfPb* 0 0.27 0.02 0.13 0.18 205.9 215.0 1.04
PfPc* 1 0.29 0.03 0.14 0.23 202.6 221.7 1.09
SLRb* 1 0.40 0.02 0.13 0.19 204.9 221.8 1.08

OI

interproc 0 0.25 0.05 0.15 0.36 210.3 219.3 1.04
SpamAssassin 1 0.30 0.16 0.26 0.61 214.3 226.6 1.06
sendmail 71 0.52 0.24 0.32 0.76 218.1 230.7 1.06
invertstring 42 0.46 0.20 0.31 0.63 215.7 227.7 1.06
�bonacci* 0 0.35 0.05 0.13 0.35 200.1 221.8 1.11
relax* 7 0.37 0.19 0.35 0.53 214.9 228.6 1.06

PS

condsum* 4 0.46 0.05 0.15 0.33 201.3 215.9 1.07
propertyInFlag* 2 0.44 0.05 0.15 0.31 199.3 211.3 1.06
PfP* 0 0.34 0.03 0.14 0.23 199.6 206.7 1.04
PfPb* 0 0.26 0.03 0.13 0.21 196.2 211.0 1.08
PfPc* 1 0.28 0.04 0.14 0.27 197.6 212.5 1.08
liststatistics* 27 0.47 0.11 0.18 0.63 205.9 215.7 1.05
harmonicMean* 50 0.47 0.14 0.18 0.76 207.1 217.0 1.05
fraction 1 0.37 0.07 0.18 0.39 201.4 214.3 1.06
SLR* 1 0.37 0.02 0.13 0.19 198.6 204.4 1.03
facnegsum* 14 0.72 0.06 0.14 0.40 202.4 210.6 1.04
SubMinSumDiv* 21 0.83 0.09 0.16 0.53 203.8 214.0 1.05
lockfree3.0* 49 0.27 0.12 0.17 0.67 202.3 214.2 1.06

OS

testlocks7 134 0.36 1.15 1.32 0.87 265.0 259.4 0.98
testlocks8 0 0.19 2.07 1.99 1.04 283.1 297.0 1.05
inf4* 27 0.31 0.32 0.35 0.91 216.7 221.3 1.02
inf8 4 0.32 0.08 0.19 0.44 201.4 215.4 1.07
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CP program #t #suc
|N | VC VV

VC
VV

MC MV
MV
MC

OS

propertyInFlag 2 0.41 0.05 0.16 0.31 202.2 212.5 1.05
SLRb 1 0.33 0.03 0.14 0.20 198.3 208.8 1.05
SubMinSumDiv* 22 0.73 0.08 0.17 0.50 201.5 217.2 1.08
ESP 3 0.43 0.04 0.16 0.29 205.2 209.3 1.02
ESPa 1 0.32 0.03 0.14 0.22 201.0 209.2 1.04
ESPb 1 0.32 0.03 0.14 0.22 201.4 205.7 1.02
ESPc 1 0.36 0.03 0.14 0.23 203.2 205.0 1.01
addIteration* 1 0.49 0.03 0.14 0.23 202.0 211.5 1.05
SLRb* 1 0.38 0.03 0.13 0.19 197.4 212.0 1.07

VS

SLR* 1 0.35 0.02 0.13 0.18 200.6 205.4 1.02
inf6* 1 0.25 0.03 0.13 0.26 201.5 211.1 1.05
inf8* 4 0.33 0.07 0.16 0.42 202.5 213.9 1.06
kundu* 60 0.29 0.36 0.41 0.87 214.9 229.3 1.07
memslave1* 1744 0.51 0.91 0.58 1.56 273.2 241.1 0.88
memslave2 2261 0.19 1.26 0.78 1.62 296.1 243.8 0.82
PfPb* 0 0.28 0.03 0.13 0.19 199.2 208.8 1.05
PfPc 0 0.29 0.04 0.15 0.25 199.7 213.3 1.07
ESP 3 0.45 0.05 0.19 0.25 202.1 208.1 1.03
ESPb* 1 0.36 0.03 0.14 0.25 202.1 206.9 1.02
lockfree3.1* 38 0.53 0.12 0.17 0.69 204.0 210.3 1.03

PSI
invertsorted* 41 0.52 0.67 0.71 0.95 233.8 238.1 1.02
div 21 0.52 0.30 0.39 0.77 215.2 226.5 1.05
�bonacci* 0 0.38 0.06 0.15 0.43 205.4 223.0 1.09

OSI
�bonacci* 0 0.35 0.06 0.15 0.42 206.5 224.2 1.09
palindrom 21 0.45 0.48 0.58 0.82 221.0 235.7 1.07
invertarray 0 0.37 0.35 0.43 0.82 218.0 228.4 1.05

PU
cdaudio 149 0.53 2.70 2.79 0.97 345.7 354.2 1.02
pipeline2* 96 0.31 0.23 0.32 0.73 211.5 226.0 1.07
diskperf 22 0.53 1.37 1.55 0.88 269.9 283.4 1.05

OU
pipeline 320 0.50 1.15 1.32 0.87 256.1 264.7 1.03
s3srvr 6 0.34 0.27 0.36 0.75 215.3 229.3 1.07
pipeline2 993k 13.60 Proof Construction Failed

VU
s3srvr 9 0.47 0.62 0.72 0.87 236.5 248.6 1.05
cdaudio 190 0.51 2.89 2.90 1.00 344.8 351.9 1.02
pipeline2* 163 0.55 0.32 0.42 0.76 221.5 231.7 1.05

PV

testlocks5* 1 0.29 0.29 0.39 0.76 214.6 235.8 1.10
kb�ltr1* 13 0.37 0.41 0.44 0.95 230.5 241.7 1.05
kb�ltr2* 32 0.42 0.77 0.70 1.10 244.2 260.1 1.07
testlocks5d* 1 0.16 0.12 0.23 0.54 215.5 228.1 1.06
testlocks12 1 0.26 8.23 8.16 1.01 591.8 557.8 0.94
testlocks12d 1 0.15 0.27 0.37 0.72 219.0 235.5 1.08

OV

memslave1 19 0.20 0.35 0.32 1.09 226.8 238.6 1.05
memslave2 255 0.16 0.59 0.29 2.03 229.6 233.2 1.02
testlocks6 63 0.28 0.36 0.45 0.80 226.4 239.4 1.06
kb�ltr1 13 0.36 0.56 0.54 1.03 234.3 244.4 1.04
kb�ltr2 32 0.40 0.96 0.92 1.04 251.6 266.3 1.06
inf8 4 0.33 0.11 0.22 0.51 214.7 228.9 1.07
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CP program #t #suc
|N | VC VV

VC
VV

MC MV
MV
MC

PṼ

memslave1 114 0.09 0.47 0.34 1.39 233.7 241.7 1.03
memslave2 256 0.15 0.63 0.34 1.88 241.2 243.5 1.01
kb�ltr2* 34 0.43 0.84 0.71 1.19 250.6 257.9 1.03
testlocks6* 64 0.22 0.54 0.60 0.91 229.8 247.5 1.08

OṼ
kb�ltr1 14 0.33 0.55 0.52 1.05 236.9 247.4 1.04
testlocks5* 0 0.22 0.33 0.42 0.78 221.1 238.4 1.08
testlocks5d* 0 0.15 0.12 0.21 0.55 214.1 227.5 1.06

Intermediate (Sep-Join)
�bonacci* 0 0.38 0.06 0.15 0.40 206.4 224.0 1.09

PSI palindrom* 21 0.48 0.48 0.57 0.83 221.2 238.0 1.08
invertarray* 0 0.37 0.32 0.39 0.82 217.9 230.4 1.06

OSI
invertsorted 40 0.50 0.81 0.80 1.02 237.7 242.8 1.02
div 21 0.45 0.33 0.40 0.82 214.7 230.5 1.07
palindrom 21 0.45 0.46 0.56 0.82 217.1 232.2 1.07

Model Checking

PL

locks* 0 0.35 0.01 0.11 0.13 199.7 209.8 1.05
tokenring03 0 0.38 2.84 3.01 0.95 299.2 302.4 1.01
memslave1* 0 0.36 4.16 4.24 0.98 368.8 367.3 1.00
s3srvr 0 0.50 3.09 3.06 1.01 340.1 351.6 1.03

OL
s3srvr 0 0.31 0.15 0.22 0.69 237.1 250.3 1.06
transmitter01* 0 0.45 0.11 0.19 0.58 207.5 223.4 1.08
transmitter02* 0 0.51 0.18 0.28 0.66 214.5 224.8 1.05

VL
tokenring02 0 0.21 0.22 0.29 0.74 213.5 224.5 1.05
tokenring04 0 0.10 43.05 42.27 1.02 537.3 547.5 1.02
transmitter03 0 0.43 0.23 0.33 0.69 215.0 236.4 1.10

PS
kundu* 85 1.09 0.60 0.76 0.80 228.5 241.3 1.06
transmitter01* 106 0.30 0.18 0.21 0.86 206.1 218.3 1.06
transmitter02 18465 2.37 5.47 1.36 4.02 553.1 253.7 0.46

OS
transmitter01 88 0.29 0.18 0.23 0.78 205.2 216.2 1.05
transmitter02 120 0.25 0.31 0.30 1.03 214.4 220.6 1.03
powerapprox 1022 0.51 10.73 7.39 1.45 996.8 553.7 0.56

VS
inf6* 1 0.24 0.03 0.16 0.22 204.1 210.8 1.03
kundu* 7 0.10 0.14 0.26 0.53 202.6 221.1 1.09
transmitter02* 114 0.39 0.21 0.34 0.63 206.2 218.6 1.06

PU
pipeline* 1 0.50 0.22 0.34 0.65 215.7 223.8 1.04
cdaudio 203 0.48 4.69 5.07 0.93 449.8 456.8 1.02
diskperf 53 0.48 3.64 4.00 0.91 359.1 372.4 1.04

OU
pipeline 461 0.56 1.18 1.32 0.89 260.2 260.3 1.00
pipeline2 993k 12.26 Proof Construction Failed
s3srvr 7 0.31 0.28 0.38 0.73 218.3 233.1 1.07

VU
s3srvr* 16 0.34 0.61 0.70 0.87 231.9 245.9 1.06
cdaudio 188 0.56 3.63 3.69 0.98 380.0 381.7 1.00
pipeline2* 155 0.46 0.31 0.39 0.79 220.2 231.4 1.05

PV testlocks5d* 0 0.34 0.60 0.68 0.88 231.9 244.8 1.06
inf1* 3 0.27 0.07 0.18 0.42 214.9 228.9 1.07

OV testlocks5* 0 0.29 0.35 0.42 0.82 224.0 237.9 1.06
testlocks12d* 0 0.25 0.26 0.34 0.76 217.8 229.9 1.06
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CP program #t #suc
|N | VC VV

VC
VV

MC MV
MV
MC

OV testlocks5d* 0 0.21 0.11 0.21 0.54 216.1 225.6 1.04

PṼ
testlocks5* 0 0.36 0.65 0.67 0.97 230.8 243.9 1.06
interproc* 0 0.27 0.11 0.22 0.47 213.2 229.8 1.08
nosprintf* 0 0.33 0.15 0.28 0.51 216.3 231.0 1.07

OṼ
testlocks5d* 0 0.21 0.11 0.21 0.52 217.5 224.4 1.03
relax* 3 0.37 0.47 0.55 0.87 230.4 241.4 1.05
nosprintf 0 0.34 0.14 0.26 0.54 216.8 226.3 1.04

Sum 128.78 129.08 30168.9 30646.2
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