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Kurzfassung / Abstract

Kurzfassung

Die Mixed-Signal (MS) Systeme stellen die Kombination von analogen und digita-
len Komponenten dar und werden oft in aktuellen Schaltungen eingesetzt, da viele
integrierte Funktionen weiterhin analog realisiert werden, bzw. eine gemischt digital
analoge Regelung darstellen (z.B. einige A/D-Wandler). Auch in mobilen Anwendun-
gen werden oft MS Systeme eingesetzt. Der Entwurf dieser Systeme stellt aufgrund
der zwei Domänen jedoch eine Herausforderung dar. Analytische Beschreibungsfor-
men basieren daher oft auf Annahmen und a priori Linearisierungen, wodurch eine
präzise Charakterisierung des schaltenden Verhaltens nur sehr bedingt möglich ist.
Der Phasenregelkreis (PLL) zur Frequenzsynthese stellt ein solches System dar und
weist darüber hinaus nichtlineare und nicht-ideale Eigenschaften auf. Die typischen
Modelle zur Beschreibung und Analyse dessen dynamischen Verhaltens führen zu
langen Simulationszeiten. Eine rigorose Charakterisierung der schaltenden, nicht-
linearen, nicht-idealen und teils chaotischen MS Systeme (wie die PLL) ist somit
nur mit hohem Zeit-, Kosten- und Ressourcenaufwand möglich. Diese ist für einen
robusten Systementwurf jedoch von großer Bedeutung.

Diese Arbeit beschäftigt sich daher mit effizienten Modellierungs- und Charakte-
risierungsansätzen für MS Systeme. Der Fokus liegt dabei auf der MS PLL zur
Frequenzsynthese, wobei die Ergebnisse auch für weitere PLL Anwendungsgebiete,
wie zum Beispiel die Takt- und Datenrückgewinnung, gezeigt werden. Des Weiteren
lassen sich die diskutierten Ergebnisse auch auf andere MS Systeme übertragen.
Hier werden sowohl die gängigen linearen Modelle als auch die Verhaltensbeschrei-
bungen der idealen PLL hinsichtlich ihrer Genauigkeit und Effizienz analysiert.
Darüber hinaus wird ein komplett ereignisgesteuertes (ED) Modell vorgestellt, mit
dessen Hilfe autonome Differenzengleichungen abgeleitet werden und schließlich eine
neue Stabilitätsbedingung der Ruhelage hergeleitet wird. Diese erlaubt die Konver-
genzbeurteilung der PLL für Anfangsbedingungen entfernt der Ruhelage, sodass
eine robustere Verhaltensvorhersage der schaltenden und chaotischen PLL möglich
ist.
Zusätzlich zum idealen Verhalten werden typische nichtlineare und nicht-ideale Ei-
genschaften der realen PLL betrachtet und entsprechende Modellierungsmethoden
diskutiert. Für die Beschreibung der PLL und deren nichtlinearen und nicht-idealen
Effekte wird ein intuitives, modulares und hocheffizientes erweitertes ED Modell ein-
geführt. Dessen Berechnung ist über 10.000-mal schneller als eine Transistor-Level
(TL) Simulation und weist eine relative Differenz von lediglich 0,1% auf. Beim Ver-
gleich mit einer Evaluationsschaltung beträgt die Abweichung zwischen den Mes-
sungen und den Ergebnissen des eingeführten Modells in etwa 1%. Das ED Modell
vereint somit die hocheffiziente Simulation mit einer hohen Genauigkeit.
Der erweiterte und schnelle ED Ansatz wird im Folgenden für die umfassende Cha-
rakterisierung der nichtlinearen, nicht-idealen und chaotischen PLL verwendet. Die
Erkenntnisse der rigorosen Analyse werden für die Einführung eines robusteren und
analytischen Systementwurfs der MS PLL zugrunde gelegt.
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Kurzfassung / Abstract

Abstract

Mixed-Signal (MS) systems combine analog and digital components and are often
used in modern circuits, since some functions are realized in the analog domain and
are digitally controlled, like e.g. some A/D converters. MS Systems are often used
in mobile applications. Nevertheless, the design of such circuits is challenging due
to a mixture of the two domains. Analytical descriptions are therefore mostly based
on assumptions and a priori linearizations whereby a precise characterization of the
switching nature and the dynamic behavior of MS systems becomes difficult.
A phase-locked loop (PLL) used e.g. for frequency synthesis is a typical example for
such MS systems and exhibits additional nonlinear and non-ideal properties. The
classical models used to predict its behavior can result in long simulation durations.
Thus, a rigorous characterization of the switching, nonlinear, non-ideal and chaotic
MS system, like the PLL, is only feasible with considerable simulation efforts resul-
ting in high design costs. Nevertheless, these investigations are necessary in order
to obtain a robust system design.

Therefore, this work deals with efficient modeling and characterization approaches
for MS systems. For this, this thesis focuses on the MS PLL architecture used for
frequency synthesis, whereas it will be shown that the obtained modeling approach
and results are also applicable for other MS PLL applications such as clock and
data recovery. Furthermore, the discussed results can be extrapolated to other MS
systems.
Here both the common linear models and the behavior descriptions of the ideal
PLL are analyzed in terms of accuracy and efficiency. Then, a fully event-driven
(ED) model is presented, allowing the derivation of autonomous difference equati-
ons which are finally used to derive a new, simple and accurate stability condition
for the rest position. Utilizing this boundary, the convergence of the PLL can be
assessed even for initial conditions far from the steady state, enabling a more robust
convergence prediction of the switching and chaotic PLL.
In addition to the ideal behavior of the PLL, also the typical non-ideal features of
the real system are considered in this work and appropriate modeling methods are
discussed. For the description of the PLL and its non-ideal effects an intuitive, mo-
dular and highly efficient advanced ED model is introduced. Its calculation is about
10,000 times faster than a transistor-level (TL) simulation. The relative difference
between the ED and the TL results is only 0.1% and the relative deviation between
the ED simulation and measurement results of an evaluation board is approxima-
tely 1%, showing that the exhaustive modeling, presented in this thesis, combines
strongly reduced simulation resources with high accuracy results.
The extended and fast ED approach is then used for a comprehensive characterizati-
on of the nonlinear, non-ideal and chaotic PLL behavior. The results of this rigorous
analysis are utilized to introduce a more robust and analytical system design of the
MS PLL.
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Verwendete Symbole und Abkürzungen

Typographische Kennzeichnungen

Vektoren Kleinbuchstaben in Fettschrift z. B. x

Matrizen Großbuchstaben in Fettschrift z. B. A

Laufindex tiefgestelltes kursives Symbol z. B. Ni

Differenz zweier Größen vorangestelltes ∆ z. B. ∆t

Mittelwert einer Größe hochgestelltes N z. B. N

Zeitliche Ableitung hochgestelltes ˙ z. B. ẋ

Wichtigste Symbole

Lateinisches Alphabet

Symbol Bedeutung

A Systemmatrix

B Eingangsmatrix

B(ϕset/ϕ̂e) nichtlineare statische Beschreibungsfunktion

CT Ausgangsmatrix

C1 Erste Kapazität des Schleifenfilters

C2 Zweite Kapazität des Schleifenfilters
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Verwendete Symbole und Abkürzungen

C−1,0 Zusätzlicher Zustand des PFD zur Modellierung der endlichen
Steigung des Stroms

C0,1 Zusätzlicher Zustand des PFD zur Modellierung der endlichen
Steigung des Stroms

C0,−1 Zusätzlicher Zustand des PFD zur Modellierung der endlichen
Steigung des Stroms

C1,0 Zusätzlicher Zustand des PFD zur Modellierung der endlichen
Steigung des Stroms

D Durchgriffsmatrix

D(s) Nennerpolynom einer Übertragungsfunktion im s-Bereich

D(z) Nennerpolynom einer Übertragungsfunktion im z-Bereich

D−1,0 Zusätzlicher Zustand des PFD zur Modellierung der Totzone

D0,1 Zusätzlicher Zustand des PFD zur Modellierung der Totzone

D0,−1 Zusätzlicher Zustand des PFD zur Modellierung der Totzone

D1,0 Zusätzlicher Zustand des PFD zur Modellierung der Totzone

D−c,c Zusätzlicher Zustand des PFD zur Modellierung der Kombina-
tion aus Totzone und endlicher Steigung des Stroms

Dc,−c Zusätzlicher Zustand des PFD zur Modellierung der Kombina-
tion aus Totzone und endlicher Steigung des Stroms

E Einheitsmatrix

E(tn) Aufgetretenes Ereignis zum Zeitpunkt tn

fref Frequenz des Referenzsignals

fvco Frequenz des Oszillatorsignals

fdiv Frequenz des Dividierersignals

fvco,0 Ruhefrequenz des Oszillators

ffrac Frequenz des Ausgangssignals des Σ∆-Modulators

fe,0 Initialer Frequenzfehler der Regelung

fe Frequenzfehler der Regelung

ft Zielfrequenz innerhalb der Regelung

G0(s) Übertragungsfunktion des offenen Regelkreises

Hvco(s) Übertragungsfunktion des Oszillators (lineares Modell)

Hpd(s) Übertragungsfunktion des PFD und der Ladungspumpe (lineares
Modell)
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Verwendete Symbole und Abkürzungen

HDIV(s) Übertragungsfunktion des Dividierers (lineares Modell)

HLF(s) Übertragungsfunktion des Schleifenfilters

ip(t) Zeitabhängiger Strom der Ladungspumpe

±Ip Stromamplitude der Ladungspumpe

Ig Stromüberschwinger der Ladungspumpe

IL Leckstrom der Ladungspumpe

J(·) Jacobi-Matrix

Ji,j(·) Einträge der Jacobi-Matrix

Kv,ω Steigung der linearen Oszillatorkennlinie im Bezug auf die
Kreisfrequenz

Kv Steigung der linearen Oszillatorkennlinie im Bezug auf die
Frequenz

Kϕ Proportionalglied des PFD und der Ladungspumpe (lineares
Modell)

K Substitutionsvariable

N(t) Zeitabhängiges Teilerverhältnis

Ni Ganzzahliger Anteil des Teilerverhältnisses

Nf Rationaler Anteil des Teilerverhältnisses

N Konstantes Teilerverhältnis

q1,n Internes Signal des Σ∆-Modulators mit MASH-Architektur

q2,n Internes Signal des Σ∆-Modulators mit MASH-Architektur

Q Elektrische Ladung

R1 Widerstand des Schleifenfilters

rn Zustandsvektor des ereignisgesteuerten Modells des n-ten
Iterationsschritts

rFi
n Zustandsvektor des ereignisgesteuerten Modells des n-ten Itera-

tionsschritts für den Fall i

S−1 Erster Zustand des PFD

S0 Zweiter Zustand des PFD

S+1 Dritter Zustand des PFD

S(tn) Zustand des PFD zum Zeitpunkt tn

Sτdiv
−1 Zusätzlicher Zustand des PFD zur Modellierung der Verzöge-

rungszeiten des Multi-Modulus-Teilers
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Verwendete Symbole und Abkürzungen

Sτdiv
0 Zusätzlicher Zustand des PFD zur Modellierung der Verzöge-

rungszeiten des Multi-Modulus-Teilers

Sτdiv
+1 Zusätzlicher Zustand des PFD zur Modellierung der Verzöge-

rungszeiten des Multi-Modulus-Teilers

S−0 Zusätzlicher Zustand des PFD zur Modellierung der Verzöge-
rungszeiten des Multi-Modulus-Teilers

S+0 Zusätzlicher Zustand des PFD zur Modellierung der Verzöge-
rungszeiten des Multi-Modulus-Teilers

Sx(·) Leistungsdichtespektrum

SFDR nebentonfreier Dynamikbereich (engl. Spur Free Dynamic Ran-
ge)

t Zeit

t0 Anfangszeitpunkt

T (s) Übertragungsfunktion des geschlossenen Regelkreises

Te(s) Fehlerübertragungsfunktion des geschlossenen Regelkreises

tn Zeitpunkt der steigenden Flanke des n-ten Iterationsschritts

tr Anstiegszeit der Regelung

tMp Zeitpunkt der Überschwinger des linearen Modells des
Phasenregelkreises

ts Ausregelzeit des Phasenregelkreises

tpn Zeitpunkt des Phasenfehlernulldurchgangs des Phasenregelkrei-
ses

trefn+1 Zeitpunkt der steigenden Flanke des Referenzsignals des n + 1-
ten Iterationsschritts

tdivn+1 Zeitpunkt der steigenden Flanke des Dividierersignals des n+ 1-
ten Iterationsschritts

Tref Periodendauer des Referenzsignals

∆t Differenz der Zeitpunkte der steigenden Flanken des Dividierer-
und Referenzsignals

∆t1 Differenz zwischen dem Zeitpunkt der steigenden Flanke des
Referenzsignals und dem vorherigen Zeitpunkt

∆t2 Differenz zwischen dem Zeitpunkt der steigenden Flanke des Di-
vidierersignals und dem vorherigen Zeitpunkt

∆tn+1 Differenz zwischen dem aktuellen und dem vorherigen Zeitpunkt
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Verwendete Symbole und Abkürzungen

∆tS Verweildauer des endlichen Automaten im vorherigen Zustand

uup(t) Erstes Ausgangssignal des PFD

udn(t) Zweites Ausgangssignal des PFD

uctl(t) Steuerspannung des Oszillators

uc1(t) Spannung über der ersten Kapazität des Filters

udiv(t) Ausgangssignal des Dividierers

uvco(t) Ausgangssignal des Oszillators

uref(t) Referenzsignal

u↑ref Steigende Flanke des Referenzsignals

u↑div Steigende Flanke des Dividierersignals

uctl,n Steuerspannung des Oszillators des n-ten Iterationsschritts

uc1,n Spannung über der ersten Kapazität des Filters des n-ten
Iterationsschritts

ut Zielspannung der Steuerspannung des VCO innerhalb der
Regelung

vctl,n Normierte Steuerspannung des Oszillators des n-ten
Iterationsschritts

vc1,n Normierte Spannung über der ersten Kapazität des Filters des
n-ten Iterationsschritts

vFictl,n Normierte Steuerspannung des Oszillators des n-ten Iterations-
schritts für den Fall i

vFic1,n Normierte Spannung über der ersten Kapazität des Filters des
n-ten Iterationsschritts für den Fall i

y1,n Internes Signal des Σ∆-Modulators mit MASH-Architektur

y2,n Internes Signal des Σ∆-Modulators mit MASH-Architektur

y3,n Internes Signal des Σ∆-Modulators mit MASH-Architektur

Griechisches Alphabet

Symbol Bedeutung

αFi
n Substitutionsvariable im Fall i

βFi
n Substitutionsvariable im Fall i

γ Übergangsfunktion der Zustände des PFD
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Verwendete Symbole und Abkürzungen

γdelay Übergangsfunktion der Zustände des PFD mit eingebrachten
Laufzeiten des Multi-Modulus-Teilers

γset Endliche Steigung des Ladungspumpenstroms für den
Aktivierungsfall

γrst Endliche Steigung des Ladungspumpenstroms für den
Deaktivierungsfall

γDZ Übergangsfunktion der Zustände des PFD mit Totzone

Γ(·) Funktion für die Differenzengleichung des Σ∆-Modulators (z.B.
sgn(·) oder round(·))

δ Tastverhältnis von PWM-Signalen

δFin Substitutionsvariable im Fall i

ζref(t) Normierte Phase des Referenzsignals

ζdiv(t) Normierte Phase des Oszillatorsignals

ζe(t) Normierter Phasenfehler

ζFiref,n Normierte Phase des Referenzsignals des n-ten Iterationsschritts
für den Fall i

ζFidiv,n Normierte Phase des Oszillatorsignals des n-ten Iterations-
schritts für den Fall i

ζFie,n Normierter Phasenfehler des n-ten Iterationsschritts für den Fall
i

ζ Dämpfungsbeiwert des Phasenregelkreises

ϑn Ausgangssignal des digitalen Integrierers im Σ∆-Modulator

κn Ausgangssignal des Σ∆-Modulators

ξn Substitutionsvariable

σFi
n Substitutionsvariable im Fall i

τi Zeitkonstanten

τset Breite der Totzone bei der Aktivierung der Signale

τrst Breite der Totzone bei der Deaktivierung der Signale

ϕref(t) Phase des Referenzsignals

ϕvco(t) Phase des Oszillatorsignals

ϕdiv(t) Phase des Dividierersignals

ϕe(t) Phasenfehler zwischen dem Referenz- und Dividierersignal

ϕe0 Initialer Phasenfehler der Regelung
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Verwendete Symbole und Abkürzungen

ϕe,s Mittlerer statischer Phasenfehler

ϕPM(t) Phasenreserve der offenen Regelschleife

ϕn,i(t) Phasenrauschen im Zeitbereich

ϕref
n (t) Phasenrauschen des Referenzsignals im Zeitbereich

ϕdiv
n (t) Phasenrauschen des Dividierersignals im Zeitbereich

Φvco(s) Phase des Oszillators im s-Bereich

Φref(s) Phase des Referenzsignals im s-Bereich

Φdiv(s) Phase des Dividierersignals im s-Bereich

Φe(s) Phasenfehler im s-Bereich

Φ(t− t0) Transitionsmatrix

ψ Ausgangsfunktion des PFD

ψdelay Ausgangsfunktion des PFD mit eingebrachten Laufzeiten des
Multi-Modulus-Teilers

ψDZ Ausgangsfunktion des PFD mit eingebrachten Laufzeiten des
Multi-Modulus-Teilers

ωref Kreisfrequenz des Referenzsignals

ωn Natürliche Eigenkreisfrequenz des Phasenregelkreises

ωD Durchtrittskreisfrequenz des Phasenregelkreises

∆ωPO Ausrastbereich (engl. Pull-Out) des Phasenregelkreises

Wichtigste Abkürzungen

Abkürzung Bedeutung

ADS Schaltungssimulator Advanced Design System

AMS Gemischt digital analog mit dem Fokus auf dem analo-
gen Teil (engl. Analog Mixed Signal)

CDR Takt- und Datenrückgewinnung (engl. Clock and Data
Recovery)

CL Geschlossener Regelkreis (engl. Closed Loop)

CO-CP-PLL Stromgesteuerte CP-PLL (engl. Current Operated CP-
PLL)

CP Ladungspumpe (engl. Charge Pump)

DIV Dividierer
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Verwendete Symbole und Abkürzungen

DZ Totzone (engl. Dead Zone)

ED Ereignisgesteuert (engl. Event Driven)

IC Integrierte Schaltung (engl. Integrated Circuit)

LF Schleifenfilter (engl. Loop Filter)

MS Gemischt digital analog (engl. Mixed-Signal)

OL Offener Regelkreis (engl. Open Loop)

PD Phasendetektor

PFD Phasen- und Frequenzdetektor

PFD & CP Kombination aus Phasen- und Frequenzdetektor und
Ladungspumpe

PLL Phasenregelkreis (engl. Phase-Locked Loop)

PSD Leistungsdichtespektrum (engl. Power Spectral Density)

PVT Prozess, Spannung und Temperatur (engl. Process, Vol-
tage and Temperature)

PWM Pulsweitenmodulation

RMS Quadratisches Mittel (engl. Root Mean Square)

SFDR nebentonfeier Dynamikbereich (engl. Spur Free Dyna-
mic Range)

Σ∆-Mod. Σ∆-Modulator

Sim Simulation

TL Transistor-Level

VCO Spannungsgesteuerter Oszillator (engl. Voltage Control-
led Oscillator)

VO-CP-PLL Spannungsgesteuerte CP-PLL (engl. Voltage Operated
CP-PLL)

XOR exklusives Oder (engl. exclusive Or)
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KAPITEL 1

Einleitung

”
Success is the progressive realization of a worthy ideal.“

Earl Nightingale

1.1. Motivation und Stand der Forschung

In den letzten Jahren nimmt die Bedeutung mobiler Kommunikation und ande-
rer mobiler Anwendungsbereiche stetig zu. Aufgrund dieser Einsatzgebiete werden
technische Komponenten energieeffizient, miniaturisiert und integriert realisiert. Ein
Beispiel hierfür ist die Familie der gemischt digital analogen Systeme, die sich zudem
durch die kombinierte Verwendung von digitalen und analogen Baugruppen auszeich-
net. Exemplarisch seien hier der Digital-Analog-Konverter, der DC-DC-Konverter
und die Phasenregelkreise genannt. Da die Charakterisierung und der Entwurf dieser
Schaltungen durch die Vermischung beider Domänen Herausforderungen darstellen,
ist eine präzise und effiziente Beschreibung der gemischt digital analogen Systeme
von großer Bedeutung. Aus diesem Grund untersucht diese Arbeit Ansätze zur effizi-
enten Modellierung und Charakterisierung und den robusten Entwurf von gemischt
digital analogen Systemen, wobei exemplarisch die Phasenregelkreise zugrunde ge-
legt werden. Da sich die Ergebnisse der Modellierung auch auf andere gemischt
digital analoge Anwendungen extrapolieren lassen, stellt diese Auswahl jedoch kei-
ne Einschränkung dar.

Phasenregelkreise werden unter anderem zur Frequenzsynthese, Taktsynchronisati-
on oder für die Takt- und Datenrückgewinnung (engl. Clock- and Data-Recovery,
kurz: CDR) in elektronischen Baugruppen verwendet [1]. Weitere Anwendungsge-
biete sind beispielsweise die Modulation und Demodulation von Signalen und die
Auswertung von Sensoren [2]. Ein großer Vorteil des Phasenregelkreises (engl. Phase-
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Locked Loop, kurz: PLL) besteht in der Frequenzreinheit des Ausgangssignals, wo-
durch er speziell für die Anwendung in der Frequenzsynthese weit verbreitet ist.
Innerhalb der PLL zur Frequenzsynthese wird meist ein digitaler Phasen- und Fre-
quenzdetektor verwendet, dem eine Ladungspumpe (engl. Charge-Pump, kurz: CP)
und ein digitaler Frequenzteiler im Rückkopplungspfad folgen. Durch die Kombina-
tion mit einem analogen Schleifenfilter mit Tiefpasscharakter und einem analogen
spannungsgesteuerten Oszillator (engl. Voltage Controlled Oscillator, kurz: VCO)
ergibt sich die gemischt digital analoge Architektur der CP-PLL, die auch Mixed-
Signal CP-PLL genannt wird. Im Fall der CP-PLL resultiert aus dieser Architektur
ein nichtlineares, schaltendes und pulsweitenmoduliertes System [3]. Darüber hinaus
weist der reale Phasenregelkreis eine Vielzahl von nichtlinearen und nicht-idealen
Effekten auf. So sind beispielsweise der spannungsgesteuerte Oszillator durch eine
nichtlineare Kennlinie definiert, der Phasendetektor durch eine Totzone beeinflusst
und die Ladungspumpe mit einem Leckstrom überlagert.

Aufgrund dieser gemischt digitalen und analogen Eigenschaften sind die allgemei-
nen Ansätze der Systemtheorie zur Beschreibung des Systemverhaltens und zum
Entwurf des Regelkreises nur bedingt anwendbar [4, 5]. Zudem werden die nicht-
idealen Effekte meist nicht berücksichtigt, obwohl diese das dynamische Verhalten
beeinflussen. In [3,6,7] werden zwar lineare zeitkontinuierliche und zeitdiskrete Mo-
delle eingeführt, jedoch basieren diese Ansätze auf einer frühen Linearisierung und
weisen einen kleinen Gültigkeitsbereich auf. Darüber hinaus ist eine Charakteri-
sierung des nichtlinearen, schaltenden und nicht-idealen Verhaltens basierend auf
diesen linearen Modellen nur bedingt möglich [8]. Zwar lassen sich einige nichtli-
neare und nicht-ideale Effekte in der Praxis durch schaltungstechnischen Aufwand,
wie in [9, 10] für eine Totzone gezeigt wird, reduzieren, jedoch ist es essentiell, den
Einfluss dieser Effekte für eine genaue Systembeschreibung und einen robusten Ent-
wurf zu charakterisieren. Hinsichtlich der Totzone konnte beispielsweise beobachtet
werden, dass ihre Breite in etwa dem Peak-to-Peak-Jitter1 entspricht [10, 11]. Das
bedeutet, dass das Erfassen und/oder Vermeiden der Totzone gerade in rauschop-
timierten Anwendungen und bei der Jitter-Vorhersage von größter Bedeutung ist.
Die Totzone und weitere nicht-ideale Effekte stellen somit eine Herausforderung
bezüglich des Entwurfs von gemischt digital analogen Systemen dar [5, 12].
Zur Vereinfachung der Systemcharakterisierung und des Entwurfs unter Berück-
sichtigung nicht-idealer Effekte werden daher in der Regel Simulatoren verwendet.
Die Simulationen basieren auf Transistorlevel- (z.B. Spice oder Cadence) oder Ver-
haltensmodellen (z.B. Verilog-AMS oder Simulink). Je nach Modellierungsaufwand
ermöglichen diese Modelle eine sehr genaue Charakterisierung des Mixed-Signal Sys-
tems. Deutliche Nachteile dieser Methoden sind jedoch die lange Simulationszeit (ins-
besondere bei Phasenregelkreisen mit einem Nieder- und Hochfrequenzteil) [12–15],
die Menge der generierten Daten und die Auslastung der Computerressourcen. Typi-

1Der Peak-to-Peak-Jitter beschreibt die maximale Differenz zwischen der kürzesten und längsten
Periodendauer eines Jitter-behafteten periodischen Signals.
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sche Simulationszeiten liegen bei mehreren Stunden, Tagen oder Wochen [13,16–18].
Des Weiteren gestaltet sich die Analyse der Simulationsdaten schwierig, da ver-
schiedene nichtlineare und nicht-ideale Effekte nur in Kombination simuliert wer-
den [4, 19]. Da das Verhalten eines gemischt digital analogen Phasenregelkreises
zusätzlich stark von den Anfangsbedingungen abhängt, führen minimale Abweichun-
gen dieser Initialwerte zu unterschiedlichen dynamischen Verhaltensweisen, die sich
im Beispiel (siehe Abb. 1.1) durch verschiedene Überschwinger und Ausregelzeiten
äußern und darüber hinaus ebenfalls die Konvergenz des Gesamtsystems beeinflus-
sen [20].
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Abb. 1.1.: Dynamisches Verhalten des Phasenregelkreises bei unterschiedlichen Anfangsfrequen-
zen zur Verdeutlichung der Bifurkation

Aufgrund dieser Abhängigkeiten ist eine Vielzahl von Simulationen mit Parameter-
variationen notwendig, um das dynamische Verhalten vollständig charakterisieren
zu können. Diese Simulationen führen jedoch im präzisen Entwurfsprozess zu ho-
hem Zeit-, Ressourcen- und Kostenaufwand. Des Weiteren fehlen meist die Modelle
auf der Transistorebene, um das Gesamtsystem exakt simulieren zu können.

Für die Vereinfachung des Entwurfs des Phasenregelkreises wurde von Analog Devi-
ces das Simulationswerkzeug ADIsimPLLTM entwickelt. Es ermöglicht den Entwurf
von PLL-Systemen mit IC-Komponenten2 von Analog Devices. Bei diesem Simulati-
onsansatz wird jedoch der ungünstigste Fall angenommen (Worst-Case-Annahme).
Hier kann der Fall eintreten, dass die Anforderungen an Schaltungen für hoch präzi-
se Anwendungen nicht erfüllt werden, obgleich eine technische Umsetzung durch

2IC bezeichnet hier eine integrierte Schaltung (engl. Integrated Circuit, kurz: IC).
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optimierte Entwurfsverfahren realisiert werden könnte. Zudem beschränkt sich der
Entwurf auf einzelne Architekturen der Frequenzsynthese, wodurch beispielsweise
verschiedene Schleifenfilter sowie CDR-Anwendungen unberücksichtigt bleiben.
Entwurfswerkzeuge für gemischt digital analoge Systeme basierend auf SystemC [21]
kombinieren zwar die System- mit der Schaltungsebene und beinhalten das nicht-
lineare und nicht-ideale Verhalten, beruhen jedoch auf dem Abtasttheorem und
können, wie die Transistorlevel-Simulationen, zu langen Simulationszeiten führen.
Zur Optimierung des Systementwurfs ist daher die schnelle Simulationsplattform
CppSimulator von M.H. Perrott eingeführt worden [22,23]. Diese Plattform basiert
auf einer C++ Implementierung, wobei die Abtastzeit die Simulationszeit, speziell
bei Hoch- und Niederfrequenzteilen der Schaltung, stark beeinflusst.
Ein ereignisgesteuerter Modellierungsansatz, der die Problematik der Abtastzeit
nicht aufweist, wird in [24] vorgestellt. Das Konzept der ereignisgesteuerten Mo-
dellierung liefert die Möglichkeit, das nichtlineare, schaltende und pulsweitenmo-
dulierte Verhalten des Systems äußerst effizient und mit hoher Genauigkeit zu si-
mulieren. Gleichzeitig erlaubt das ereignisgesteuerte Modell eine sehr präzise Cha-
rakterisierung des Mixed-Signal Systems [4, 19, 24–29], wodurch sich im Vergleich
zu Simulationen auf Transistor- und Verhaltensebene ein signifikanter Geschwindig-
keitsgewinn ergibt. Das Prinzip der ereignisgesteuerten Modellierung liegt in der
Diskretisierung des Differentialgleichungssystems (DGLS) zu den Zeitpunkten, an
denen der Phasen- und Frequenzdetektor (PFD) schaltet und somit ein Ereignis
aufgetreten ist [4, 19, 24, 25, 30, 31]. Dieses Prinzip ist auch in SystemC AMS mit
dem dynamic Timed-Data-Flow umgesetzt worden [32]. Die Arbeiten von [4,24–26]
beschränken sich dabei jedoch auf die Frequenzsynthese mit PFD und einem ganz-
zahligen Frequenzteiler. Des Weiteren betrachten diese Arbeiten lediglich die idealen
Systeme, d.h. keine nichtlinearen und nicht-idealen Effekte wie die Totzone und die
Signalüberschwinger, obwohl diese die Leistungsfähigkeit des Gesamtsystems und
die Konvergenz beeinflussen.
Da zudem der Filter das dynamische Verhalten des Systems maßgeblich festlegt,
bestimmt gerade die Ordnung des Schleifenfilters die Komplexität des zu lösenden
Differentialgleichungssystems. Für eine PLL zweiter Ordnung können Gleichungen
mit analytischer Lösung bestimmt werden [24, 25]. Für Regelkreise höherer Ord-
nung ergibt sich im Allgemeinen eine nicht-bijektive Abbildung bezüglich der Pha-
seninformation und der Zeit, wodurch das Lösen der Differenzengleichungen durch
nichtlineare Näherungsverfahren notwendig ist. In [19] wurde ein ereignisgesteuertes
Modell einer PLL dritter Ordnung mit Ladungspumpe analysiert, wobei die Pha-
sengleichung mit Hilfe eines Newton-Verfahrens gelöst wird. Simulationsmodelle für
Filter beliebiger Ordnung innerhalb dieser Beschreibung sind ausgeblieben.
Für eine analytische Bestimmung der Systemgleichungen für Filter höherer Ordnung
wurde das Konzept der Ladungsapproximation in [33–35] eingeführt. Die Intention
des Verfahrens der Ladungsapproximation beruht dabei auf einer Reduktion der
Modellgleichungen durch die Anwendung der Newton-Cotes-Formel. Im Folgenden
lieferte die Einführung der Ladungsapproximation eine Näherungsmethode zur Be-
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stimmung der Stabilitätsgrenzen des Phasenregelkreises [36, 37], wobei nichtlineare
und nicht-ideale Effekte unberücksichtigt blieben.
Für die Berücksichtigung nicht-idealer Effekte wurden in [19, 38] Ansätze zur er-
eignisgesteuerten Modellierung der Totzone, sowie zur nichtlinearen ereignisgesteu-
erten Beschreibung der VCO-Charakteristik vorgestellt. In [39] wurde die Totzone
im Phasenregelkreis zweiter Ordnung genauer betrachtet und in [39, 40] wurden
Modellierungsansätze für weitere nicht-ideale Effekte vorgestellt. Genauere Unter-
suchungen der Einflüsse der nicht-idealen Effekte auf das Rauschverhalten und die
dynamischen Kenngrößen des Regelkreises sowie die Betrachtung des Phasenregel-
kreises dritter Ordnung sind nicht durchgeführt worden.

Eine wichtige Kenngröße von Regelkreisen ist die Stabilität. Bezüglich der Stabilität
des Phasenregelkreises konnte Acco in [30] das Stabilitätskriterium im Vergleich zum
linearen Modell von Gardner [3] signifikant erweitern, da die Linearisierung nicht
a priori vorgenommen wurde, sondern erst als das nichtlineare Modell von Pae-
mel [25] in ein autonomes, normiertes, in den Ursprung verschobenes, nichtlineares
und schaltendes Differenzengleichungssystem überführt wurde. Dadurch konnte mit-
tels der indirekten Methode von Lyapunov die Stabilität des Equilibriums für eine
CP-PLL zweiter Ordnung mit PFD untersucht werden. In [39] wurden diese Stabi-
litätsbetrachtungen für den Phasenregelkreis zweiter Ordnung durch die Berücksich-
tigung des nicht-idealen Effekts der Totzone erweitert. Dabei wurden die Fractional-
N Frequenzsynthesizer, die CDR-Architekturen und weitere nicht-ideale Effekte bis-
lang nicht mit Hilfe der ereignisgesteuerten Modellierung nach Hedayat [19,24] oder
nach Paemel [25] im Hinblick auf Stabilität betrachtet. Zwar existieren Verfahren,
die das lineare Modell mit der a priori-Linearisierung charakterisieren [41–44], je-
doch gehen das Schalten des Teilers und das digitale Verhalten des PFD nicht in
die Betrachtung mit ein. Zudem wurde die Konvergenz in Abhängigkeit von den
Anfangsbedingungen für Filter höherer Ordnungen nicht analysiert.

Neben den deterministischen, nicht-idealen Effekten ist das Phasenrauschverhalten
der PLL speziell für die Frequenzsynthese und die Takt- und Datenrückgewinnung
von großer Bedeutung. Darüber hinaus ist es essentiell, die Wechselwirkungen zwi-
schen den deterministischen, nicht-idealen Effekten und dem Phasenrauschen zu
charakterisieren und innerhalb des Systementwurfs zu berücksichtigen. Zwar wird
in [22, 23, 45] im Vergleich zum Transistorlevel Simulator eine effizientere Simula-
tionstechnik zur Vorhersage von Phasenrauschverhalten eingeführt, jedoch bleiben
die deterministischen, nicht-idealen Effekte unberücksichtigt. Das ereignisgesteuer-
te Modell nach Hedayat realisiert eine weitere Simulationsbeschleunigung und stellt
somit eine weitere Optimierung dar, wobei das Phasenrauschverhalten und weite-
re nicht-ideale Effekte (ausgenommen der Totzone) jedoch nicht modelliert worden
sind.

Der Entwurfsprozess der CP-PLL wird durch den Entwurf konstanter Stromquellen
der Ladungspumpe weiter erschwert. Einige Kommerzielle IC-Bausteine beinhalten

5



1. Einleitung

daher eine spannungsgesteuerte Ladungspumpe, da die Auslegung von konstanten
Spannungsquellen in der Regel weniger aufwändig ist. In [46,47] wird diese Familie
der Phasenregelkreise beschrieben. Eine exakte und zugleich effiziente Modellierung
des Phasenregelkreises zur Optimierung des Charakterisierungsprozesses und des
Entwurfs blieb jedoch aus.
Neben den Phasenregelkreisen für die Frequenzsynthese existieren weitere Anwen-
dungen, die auf unterschiedliche Phasendetektoren zurückgreifen und die innerhalb
des ereignisgesteuerten Modellierungskonzepts nicht umgesetzt wurden. Das bedeu-
tet, dass sich die Ergebnisse, die insbesondere von Daniels, Van Paemel und Acco
berichtet werden, auf das ideale digitale Verhalten eines Phasenregelkreises mit Tri-
State-PFD beschränken. Zwar konnten verschiedene Modellierungsansätze für die
Klasse der Bang-Bang-Phasendetektoren angegeben werden [48–53], jedoch basie-
ren diese Ansätze zum einen auf einer Linearisierung [49, 51] und zum anderen auf
einer Quantisierungsvorschrift [50,53,54]. Eine exakte und zugleich effiziente Model-
lierung wird jedoch nicht vorgestellt.

Aufgrund der ungeklärten Fragestellungen und Herausforderungen bezüglich der
hocheffizienten Modellierung, der Charakterisierung, der Analyse und des Entwurfs
von gemischt digital analogen Systemen unter Berücksichtigung deterministischer,
nicht-idealer und nichtlinearer Effekte und des Phasenrauschens, werden in dieser
Arbeit exemplarisch für den Phasenregelkreis verschiedene Modellierungs- und Cha-
rakterisierungsansätze analysiert und neue Verfahren eingeführt. Die eingeführten
Modellierungsansätze lassen sich dabei auf weitere gemischt digital analoge Syste-
me anwenden. Die erzielten Ergebnisse werden im Anschluss für einen optimierten,
robusteren und analytischen Systementwurf des Mixed-Signal Phasenregelkreises
unter Berücksichtigung der nichtlinearen und nicht-idealen Effekte und des Phasen-
rauschens herangezogen.
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1.2. Übersicht der Kapitel

Diese Arbeit ist in sieben weitere Kapitel unterteilt, die im Folgenden kurz dargelegt
werden.

Kapitel 2: Architektur und Funktionsweise von Phasenregelkreisen

In diesem Kapitel werden der generelle Aufbau des Phasenregelkreises und
dessen Kategorien vorgestellt. Da der Phasenregelkreis für die Frequenzsyn-
these sehr verbreitet ist, wird die detaillierte Architektur der sogenannten
Integer-N und der Fractional-N PLL dargelegt. Dabei wird auf die einzelnen
Funktionsblöcke der PLL eingegangen. Neben dem Phasenregelkreis zur Fre-
quenzsynthese werden die Funktionsweisen der PLL mit spannungsgesteuer-
ter Ladungspumpe und der Regelschleife zur Takt- und Datenrückgewinnung
erläutert.

Kapitel 3: Grundlegende Modellierungsansätze der CP-PLL

Für die Charakterisierung des Phasenregelkreises werden in diesem Kapitel
verschiedene Modellierungsansätze betrachtet. Im ersten Schritt wird das li-
neare Modell für den zeitkontinuierlichen und den zeitdiskreten Fall eingeführt.
Anhand dieser Modelle werden einige dynamische Kenngrößen des Regelkrei-
ses definiert. Für die Modellierung des schaltenden und nichtlinearen Verhal-
tens und die spätere Berücksichtigung nicht-idealer Effekte werden im An-
schluss exemplarisch drei Verhaltensmodellierungen vorgestellt. Darüber hin-
aus wird das ereignisgesteuerte Modell nach Hedayat für die effiziente Model-
lierung erläutert, um im Anschluss die Vor- und Nachteil der betrachteten
Modelle aufzuzeigen.

Kapitel 4: Stabilität der modellierten idealen CP-PLL

Zur Beurteilung der Stabilität werden meist lineare Modelle und empirische
Grenzen verwendet. Dieses Kapitel führt die gängigen Methoden der Stabi-
litätsbetrachtung ein. Dies beinhaltet sowohl die linearen zeitkontinuierlichen
und zeitdiskreten Modelle als auch die empirische Grenze basierend auf dem
Verhältnis der Referenzfrequenz und der Eigenfrequenz des Systems. Im weite-
ren Verlauf des Kapitels wird das effiziente ereignisgesteuerte Modell zur Her-
leitung autonomer Differenzengleichungen der PLL dritter Ordnung verwen-
det. Diese ermöglichen eine Analyse der Stabilität der Ruhelage und deren Ein-
zugsgebiet, die keine frühe Linearisierung zu Grunde legt. Im Anschluss wer-
den die verschiedenen Methoden verglichen und die Stärken und Schwächen
der Ansätze betrachtet.

Kapitel 5: Modellierung der CP-PLL inkl. nicht-idealer Effekte

Dieses Kapitel diskutiert die Modellierung des Phasenregelkreises unter
Berücksichtigung nicht-idealer Effekte. Anfangs werden die Arten der
Transistor-Level-basierten nicht-idealen Effekte vorgestellt. Hier werden
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1. Einleitung

Transistor-Level Simulationen verwendet. Für die Analyse des Phasenrausch-
verhaltens wird zunächst das lineare zeitkontinuierliche Modell verwendet. Für
die effiziente Modellierung der Transistor-Level-basierten nicht-idealen Effek-
te und des Phasenrauschens wird das ereignisgesteuerte Modell nach Hedayat
entsprechend erweitert und verallgemeinert, um im Anschluss diese drei Mo-
dellierungsarten gegenüberzustellen und somit das ereignisgesteuerte Modell
durch Simulationen zu validieren. Darüber hinaus wird das ereignisgesteuerte
Modell mit dem Transistor-Level Modell hinsichtlich Simulationsdauer und
Genauigkeit verglichen.

Kapitel 6: Validierung mittels Hardware-Realisierung

Hier erfolgt die Validierung des erweiterten und verallgemeinerten ereignisge-
steuerten Modells durch Messungen an einer Evaluierungsschaltung. Die ein-
zelnen Komponenten der Schaltungen werden zunächst separat charakterisiert
und deren Eigenschaften mittels der eingeführten Modellierungen in das ereig-
nisgesteuerte Modell eingebracht. Anschließend werden die Messungen und
die ereignisgesteuerte Simulation sowohl im Zeit- als auch im Frequenzbereich
beurteilt.

Kapitel 7: Charakterisierung und Analyse der CP-PLL inkl. nicht-idea-

ler Effekte

Nach der Validierung des erweiterten ereignisgesteuerten Modells wird dieses
Simulationswerkzeug für eine umfassende Charakterisierung des nichtlinearen,
nicht-idealen und schaltenden Systems verwendet. Hierbei werden die Wech-
selwirkungen der nicht-idealen Effekte und des Phasenrauschens aufgezeigt.
Des Weiteren wird der Einfluss einer Totzone auf das dynamische Verhalten
des Regelkreises analysiert und eine Beschreibung dieser Effekte eingeführt.
Diese wird im Anschluss für einen optimierten und robusteren Systementwurf
des Phasenregelkreises unter Berücksichtigung der Totzone zugrunde gelegt,
wobei sich dieser Ansatz auch für die Berücksichtigung weiterer nicht-idealer
Effekte eignet.

Kapitel 8: Zusammenfassung und Ausblick

Es erfolgen die Zusammenfassung der Arbeit und ein Ausblick auf weitere
Forschungsarbeiten.
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KAPITEL 2

Architektur und Funktionsweise von
Phasenregelkreisen

Für mobile Anwendungsgebiete sind die Frequenzsynthese, die Takt- und Datenrück-
gewinnung, die Rauschunterdrückung, die Taktsynchronisierung und die Modulation
und Demodulation von Signalen von großer Bedeutung. Der Phasenregelkreis (PLL)
lässt sich für diese Bereiche verwenden und stellt ein hochpräzises und robustes Sys-
tem dar, wobei verschiedene Klassen von PLLs Verwendung finden. Bei Phasenregel-
kreisen für die Frequenzsynthese und zur Takt- und Datenrückgewinnung handelt
es sich im Allgemeinen um gemischt digital analoge Systeme, was für den Entwurf
dieser Systeme eine Herausforderung darstellt. Für den Systementwurf werden da-
her meist Modelle und Simulationen verwendet. Im Folgenden wird das allgemeine
Konzept der Phasenregelkreise vorgestellt, um im Anschluss die Funktionsweise der
Frequenzsynthese und der Takt- und Datenrückgewinnung genauer zu beleuchten
(basierend auf [6,7,55,56]). Die gewonnenen Erkenntnisse lassen sich später für die
Modellbildung, die Analyse und den Entwurf dieser Regelkreise heranziehen.

2.1. Allgemeiner Aufbau von Phasenregelkreisen

Das Prinzip des Phasenregelkreises besteht in der Angleichung der Frequenz- und
Phaseninformation eines internen steuerbaren Oszillators an ein gegebenes Referenz-
bzw. Eingangssignal. Da diese Regelschleife den Frequenz- und Phasenänderungen
des Eingangssignals folgt und hierfür das Steuersignal des internen Oszillators an-
passt, lässt sich dieses Signal für die Demodulation der Frequenzinformationen des
Eingangssignals verwenden. Für die Takt- und Datenrückgewinnung wird das Aus-
gangssignal des internen Oszillators als neuer Takt zugrunde gelegt, der sowohl für
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2. Architektur und Funktionsweise von Phasenregelkreisen

die neue Abtastung der empfangenen Daten als auch für die Taktung der nachfol-
genden Schaltung herangezogen wird. Bei der Frequenzsynthese ist die Frequenz des
Referenzsignals in der Regel konstant. Mittels Frequenzteiler im Rückkopplungspfad
lässt sich dann die N -fache Referenzfrequenz am Ausgang des internen Oszillators
generieren.
Der allgemeine Aufbau des Phasenregelkreises dieser Anwendungen ist in Abb. 2.1
dargestellt. Zur Minimierung der Phasendifferenz zwischen dem Referenz- und dem

uref(t)

uvco(t)

ip(t) uctl(t)
PD Filter

VCO

Abb. 2.1.: Allgemeiner Aufbau eines Phasenregelkreises

Rückkopplungssignal wird ein Phasendetektor (PD) zur Detektion des Fehlers zwi-
schen diesen Signalen in den Phasenregelkreis eingebracht. Das Ausgangssignal
des Phasendetektors beinhaltet einen Nieder- und einen Hochfrequenzanteil, sodass
nachfolgend ein Schleifenfilter zur Dämpfung der hochfrequenten Signalanteile ver-
wendet wird. Der interne Oszillator lässt sich mit Hilfe dieses gefilterten Signals
steuern, wobei das sich ergebende periodische Signal auf den Phasendetektor rück-
gekoppelt wird. In Abb. 2.1 ist dieser allgemeine Aufbau des Phasenregelkreises
dargestellt. Hierbei wird exemplarisch ein spannungsgesteuerter Oszillator (VCO)
zur Generierung des periodischen Rückkopplungssignals benutzt.
Die verschiedenen Phasenregelkreise lassen sich dabei in folgende Klassen untertei-
len

LPLL Die lineare PLL, oder präziser die analoge PLL, ist ein Phasenregelkreis, der
sowohl digitale als auch analoge Komponenten aufweisen kann. Der Name
der analogen bzw. linearen PLL bezieht sich dabei auf die Verwendung eines
analogen Phasendetektors, zum Beispiel einen Multiplizierer. Dieser Phasen-
detektor weist für sehr kleine Phasenfehler zwischen dem Referenz- und dem
Oszillatorsignal in erster Näherung ein lineares Verhalten auf.

DPLL Die digitale PLL zeichnet sich durch einen digitalen Phasendetektor aus,
wobei die weiteren Komponenten dieses Regelkreises digital und analog sein
können. Die PLL mit digitalem Phasendetektor weist ein schaltendes Verhal-
ten auf, was eine Herausforderung für den Entwurf darstellt.

ADPLL Im Gegensatz zu den beiden vorherigen Varianten des Phasenregelkreises
beinhaltet die komplett-digitale Phasenregelschleife (engl. All Digital PLL,
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2.2. Frequenzsynthese

kurz: ADPLL) lediglich digitale Bauteile.

SPLL Eine weitere Variante ist die Software PLL, deren Verhalten in Gänze durch
Software definiert wird.

In Abb. 2.2 ist die Unterteilung der Phasenregelkreisklassen grafisch dargestellt, wo-
bei zu erkennen ist, dass die beiden ersten Klassen der Phasenregelschleife (LPLL
und DPLL) als gemischt digital analoge Systeme (engl. Mixed-Signal Systems, kurz
MS-Systeme) bezeichnet werden. Die Analyse, die Simulation und der Entwurf sol-

Abb. 2.2.: Darstellung der verschiedenen Klassen des Phasenregelkreises

cher Systeme stellen aufgrund des sowohl digitalen als auch analogen Verhaltens
eine Herausforderung dar. Welche Herausforderungen sich für die gemischt digital
analogen Phasenregelkreise ergeben und welche Methoden zur Beschreibung und
zum Entwurf verwendet werden können, wird im weiteren Verlauf diskutiert. Zum
grundlegenden Verständnis der Funktionsweise dieser Phasenregelkreise werden in
den folgenden Unterkapiteln zwei wichtige Anwendungsgebiete genauer beleuchtet.

2.2. Frequenzsynthese

Die Frequenzsynthese stellt ein wichtiges Anwendungsgebiet für Phasenregelkreise
dar und wird für die Übertragung von Daten in verschiedenen Frequenzbändern
benötigt. Das Signal eines Referenzoszillators wird hierzu mit Hilfe der PLL in ein
Ausgangssignal überführt, dessen Frequenz ein Vielfaches der Referenzfrequenz ist.
Das Grundprinzip dieses Phasenregelkreises besteht ebenfalls in der Minimierung
der Frequenz- und Phasendifferenz zwischen dem Referenz- und dem Rückkopp-
lungssignal. Innerhalb der Frequenzsynthese wird meist eine DPLL eingesetzt, für
die verschiedene Phasendetektoren existieren. Beispiele hierfür sind das exklusiv
Oder (engl. exclusive Or, kurz: XOR), das JK-Flip-Flop und der Phasen- und Fre-
quenzdetektor (PFD) [6], der auch Tri-State PFD genannt wird. Das XOR und
der JK-Flip-Flop haben, gegenüber dem Tri-State PFD, den Vorteil eines einfa-
cheren und kleineren Aufbaus. Nichtsdestotrotz wird der Tri-State PFD meist für
die Frequenzsynthese verwendet, da dessen Charakteristik neben der Detektion des
Phasenfehlers auch sensitiv für den Frequenzfehler zwischen dem Referenz- und
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2. Architektur und Funktionsweise von Phasenregelkreisen

dem Rückkopplungssignal ist. Das Ausgangssignal dieser digitalen Phasendetekto-
ren wird anschließend Tiefpass-gefiltert und für die Steuerung des VCO verwendet.
Bei der Frequenzsynthese wird das periodische Ausgangssignal des VCO über einen
Frequenzteiler/Dividierer, der ein Proportionalglied bezüglich der Phase darstellt,
auf den Phasendetektor rückgekoppelt. In Abb. 2.3 ist dieser Phasenregelkreis sche-
matisch dargestellt. Für ein Teilerverhältnis verschieden von Eins lassen sich mit

uref(t) uvco(t)ip(t) uctl(t)

udiv(t)

PD Filter VCO

Teiler

Abb. 2.3.: Schematische Darstellung eines Frequenzsynthezisers als Phasenregelkreis

diesem Phasenregelkreis Frequenzen am Ausgang des Oszillators generieren, die ein
Vielfaches der Referenzfrequenz darstellen. Die etablierten Architekturen zur Fre-
quenzsynthese sind die Integer-N PLL und die Fractional-N PLL. Diese beiden
Phasenregelkreise werden hier kurz vorgestellt.

2.2.1. Integer-N CP-PLL

Die Integer-N PLL generiert ein periodisches Ausgangssignal des Oszillators, dessen
Frequenz ein ganzzahliges Vielfaches der Referenzfrequenz ist. Zu diesem Zweck
wird der Dividierer im Phasenregelkreis mit einem ganzzahligen Teilerverhältnis
realisiert. Bei gegebenem periodischen Referenzsignal uref(t) mit der Phase

ϕref(t) = ϕref,0 + 2π

∫ t

t0

fref(τ) dτ (2.1)

generiert die Integer-N PLL ein periodisches Ausgangssignal uvco(t) mit der Phase

ϕvco(t) = ϕvco,0 + 2π

∫ t

t0

f(uctl(τ)) dτ. (2.2)

ϕref,0 und ϕvco,0 beschreiben die Anfangsphase der Signale zum Zeitpunkt t0 und
fref(t) ist die Frequenz des Referenzsignals. f(·) symbolisiert die Abhängigkeit der
Ausgangsfrequenz des Oszillators von der Steuerspannung uctl(t). Die Frequenz
fref(t) ist im Fall der Frequenzsynthese konstant und für die Phase des Referenzsig-
nals gilt

ϕref(t) = ϕref,0 + 2πfref (t− t0). (2.3)
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2.2. Frequenzsynthese

Da der Phasenregelkreis den Phasenfehler

ϕe(t) = ϕref(t)− ϕdiv(t) (2.4)

zu Null regelt und

ϕdiv(t) =
1

N
ϕvco(t) (2.5)

gilt, stellt sich für den ausgeregelten Zustand die Ausgangsfrequenz

fvco = N · fref (2.6)

ein, wobei N das ganzzahlige Teilerverhältnis ist und fvco die Frequenz des Oszilla-
tors beschreibt. Die Integer-N PLL wird dabei mit zwei digitalen und drei analogen
Elementen realisiert. In Abb 2.4 ist der schematische Aufbau der Integer-N PLL zu
sehen.

ip(t) uctl(t)
uref(t)

uup(t)

udn(t)

uvco(t)
PFD CP LF VCO

1

N

udiv(t)

digital

analog

Abb. 2.4.: Blockschaltbild einer Integer-N Charge-Pump PLL

Hier ist zu erkennen, dass die Integer-N PLL einen flankengesteuerten Phasen- und
Frequenzdetektor verwendet, dessen zwei Ausgangssignale uup(t) und udn(t) mittels
einer Ladungspumpe (engl. Charge-Pump, kurz: CP) in einen entsprechenden Strom
ip(t) umgesetzt werden. Für die Charakterisierung des Phasen- und Frequenzdetek-
tors wird die Kennlinie mittels des Tastgrades

δ =
tpulse
Tref

(2.7)

des Ausgangssignals ud = uup − udn und der Zeitdifferenz ∆t zwischen den stei-
genden bzw. fallenden Flanken des Referenz- und Rückkopplungssignals definiert,
wobei tpulse die Zeitspanne des angeschalteten Signals beschreibt und Tref die Re-
ferenzperiode ist. Die Zeitdifferenz zwischen den Flanken der Eingangssignale des
Phasendetektors korrespondiert zum Phasenfehler dieser Signale. Da der PFD zwei
Ausgangssignale bereitstellt und uup für positive und udn für negative Phasenfehler
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2. Architektur und Funktionsweise von Phasenregelkreisen

aktiv ist, wird das Tastverhältnis des UP-Signals (uup) als positiv und das Tast-
verhältnis des DN-Signals (udn) als negativ aufgefasst. In Abb. 2.5 ist die sich er-
gebende Kennlinie dargestellt. Da diese lediglich positive Steigungen aufweist und

Phasenfehler ϕe / rad

T
as
tv
er
h
äl
tn
is
δ

−4π −2π 0 2π 4π

-1

-0.5

0

0.5

1

Abb. 2.5.: Kennlinie des idealen Tri-State Phasen- und Frequenzdetektors

der PFD in der Lage ist zwischen positiven und negativen Phasenfehlern zu unter-
scheiden, ist dieser sensitiv gegenüber Frequenzfehlern. Darüber hinaus schließt der
Tri-State PFD, bei geeigneter Auslegung des Phasenregelkreises, eine Fehldetektion
der Frequenz (false locking) aus1 [15]. In Abb. 2.6 ist das Verhalten des PFD als end-
licher Automat zu erkennen, wobei u↑ref und u

↑
div eine steigende Flanke im Referenz-

beziehungsweise Dividierersignal beschreiben. Der dargestellte endliche Automat ist

S+1S−1 S0 u↑ref

u↑refu↑ref

u↑div

u↑div u↑div

Abb. 2.6.: Darstellung des Verhaltens des PFD als endlicher Zustandsautomat

ein Moore-Automat, dessen Ausgabe vom aktuellen Zustand abhängt. Somit lässt

1Eruiert der Phasendetektor eine subharmonische Frequenz der Referenzspannung, wird dies mit
false locking bezeichnet (siehe auch Kapitel B.3).
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2.2. Frequenzsynthese

sich der Moore-Automat mittels eines 6-Tupels

A = {S, I,O, γ, ψ,Si} (2.8)

definieren. Hierbei gilt

S = {S−1,S0,S+1} Menge von Zuständen, (2.9a)

I =
{
u↑ref , u

↑
div

}
Eingangsalphabet, (2.9b)

O = {uup(t), udn(t)} Ausgangsalphabet, (2.9c)

γ = Übergangsfunktion, (2.9d)

ψ = Ausgabefunktion, (2.9e)

Si ∈ S Anfangszustand. (2.9f)

Die Zustandsübergangsfunktion für den Automaten in Abb. 2.6 lässt sich durch

γ =





S−1 → S−1 falls u↑div

S−1 → S0 falls u↑ref

S0 → S−1 falls u↑div

S0 → S+1 falls u↑ref

S+1 → S0 falls u↑div

S+1 → S+1 falls u↑ref

(2.10)

beschreiben. Die Ausgabefunktion des PFD ist mit

ψ =





uup(t) = low, udn(t) = high falls S−1

uup(t) = low, udn(t) = low falls S0
uup(t) = high, udn(t) = low falls S+1

(2.11)

gegeben, wobei low den logisch inaktiven und high den logisch aktiven Zustand
definieren.
Innerhalb der Regelung wird der PFD dazu benutzt zwei pulsweitenmodulierte Si-
gnale uup(t) und udn(t) auf Basis der steigenden Flanken von uref(t) und udiv(t) zu
generieren. Ist beispielsweise der initiale Zustand des PFD Si = S0 und eine steigen-
de Flanke von uref(t) wird detektiert, wird die Frequenz des Dividierersignals udiv(t)
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2. Architektur und Funktionsweise von Phasenregelkreisen

als zu gering interpretiert und der Folgezustand S+1 angenommen. In diesem Zu-
stand gilt uup(t) = high und udn(t) = low, wodurch die nachfolgende Ladungspum-
pe einen positiven Strom liefert, den Schleifenfilter auflädt und die Steuerspannung
und somit die VCO-Frequenz anhebt. Bei erneuter Detektion einer steigenden Flan-
ke im Referenzsignal verbleibt der endliche Automat im Zustand S+1 und erhöht
die VCO-Frequenz weiter. Wird jedoch eine steigende Flanke von udiv(t) detektiert,
ist der Folgezustand S0 mit uup(t) = low und udn(t) = low und die VCO-Frequenz
bleibt näherungsweise konstant. Die Betrachtung für die Detektion einer steigenden
Flanke bei udiv(t) im initialen Zustand Si = S0 ist analog zur vorangegangenen
Betrachtung und ergibt den linken Zweig des endlichen Zustandsautomaten, indem
die VCO-Frequenz verringert wird.
Somit detektiert der PFD den Phasen- und Frequenzfehler, regelt diese Differenzen
innerhalb der Schleife zu Null und gewährleistet ein Rückkopplungssignal, das äqui-
valent zum Referenzsignal ist. Dies hat zur Folge, dass das Tastverhältnis δ geringer
wird und ebenfalls gegen Null strebt. Es resultiert ein punktsymmetrisches Verhal-
ten des PFD bezüglich des Phasenfehlers, das mit Hilfe der beiden Signale uup und
udn eine Detektion des Phasenfehlers im Bereich von −2π bis 2π ermöglicht.

Der zweite Block der Regelschleife ist die Ladungspumpe (CP), mit deren Hilfe die
beiden digitalen Signale uup(t) und udn(t) in einen Strom ip(t) (ip(t) ∈ {−Ip, 0,+Ip})
umgesetzt werden. In Abb. 2.7 sind drei Modelle der Ladungspumpe dargestellt [57].
Die beiden Stromquellen und Schalter werden mit den Signalen uup(t) und udn(t)

ip

UDD

ip

ip

uup

udn

(a) Grundprinzip der Ladungs-
pumpe

ip

UDD

M1 M2

M3 M4

ip

ip

uup

udn

(b) Single-ended Ladungspumpe

ip

UDD

ip

ip

uup

udn

+

−

uup,b

udn,b

(c) Single-ended Ladungspumpe
mit aktivem Verstärker

Abb. 2.7.: Abbildung der Charge-Pump, wobei aus Gründen der Übersicht auf die Anschlüsse
des Substrats verzichtet wurde. Die Substratanschlüsse der p-Kanal Transistoren sind
auf UDD gelegt und die der n-Kanal Transistoren auf Masse

angesteuert. Bei einem logisch positiven Steuersignal wird der jeweilige Schalter
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2.2. Frequenzsynthese

geschlossen. Das Ausgangssignal der Ladungspumpe ergibt sich somit zu

ip(t) =




−Ip falls S−1

0 falls S0
+Ip falls S+1

, (2.12)

wobei der positive Strom in Richtung des nachfolgenden Schleifenfilters fließt und
dessen Kapazitäten auflädt.

Bei der Umsetzung der PWM-Signale uup(t) und udn(t) in den Strom ip(t) entste-
hen ein Hoch- und ein Niederfrequenzanteil. Da der spannungsgesteuerte Oszillator
zur Frequenzsynthese eine niederfrequente Steuerspannung uctl(t) benötigt, ist es
notwendig, den Hochfrequenzanteil von ip(t) zu verringern. Hierzu stehen in der Li-
teratur verschiedene Schleifenfilter zur Verfügung. Als Beispiele sind die aktiven und
passiven PI-Filter und der Lead -Lag-Filter zu nennen [6]. Für die Frequenzsynthese
werden meist die passiven Filter verwendet, da diese im Vergleich zu aktiven Filtern
eine kleinere Rauschquelle darstellen und eine geringere Temperaturabhängigkeit
aufweisen. Die passiven PI-Filter und Lead -Lag-Filter sind in Abb. 2.8 dargestellt.
Ein analytischer Vergleich der passiven Filter ist in [58] durchgeführt worden. Zur

R1

C1

C2

R3

C3

ip(t)

uctl(t)
i1(t)

i2(t) i3(t)

1. Ordnung
2. Ordnung

3. Ordnung

Abb. 2.8.: Schaltung des Schleifenfilters

Realisierung von Schleifenfiltern höherer Ordnungen wird eine Serienschaltung aus
Kapazität und Widerstand kanonisch ergänzt. Eine mathematische Beschreibung
der Filter lässt sich mit Hilfe der Kombination aus Maschen- und Knotengleichun-
gen des Filters und der Bauteilgleichungen ableiten. Die sich ergebenden Differenzi-
algleichungen werden im Zustandsraummodell

ẋ(t) = Ax(t) + b ip(t)

uctl(t) = cTx(t) + d ip(t)
(2.13)

zusammengefasst, wobei x(t) die Kapazitätsspannungen des Filters beinhaltet. Für
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2. Architektur und Funktionsweise von Phasenregelkreisen

den Schleifenfilter erster Ordnung resultieren die Systemmatrizen

A1 = 0, b1 =
1

C1

, cT1 = 1 und d1 = R1. (2.14)

Es ist ersichtlich, dass dieser Schleifenfilter einen Durchgriff des Eingangssignals auf
das Ausgangssignal besitzt. Da der Strom ip(t) Sprünge aufweist, beinhaltet die
Steuerspannung uctl(t) ebenfalls Sprünge mit der Höhe ±R1Ip. Aus diesem Grund
ist es sinnvoll, Schleifenfilter höherer Ordnung einzuführen. Durch die weitere Ka-
pazität im Schleifenfilter ergibt sich ein Zustandsraummodell mit zwei Dimensionen
und ein weiterer Pol in der Übertragungsfunktion, der zu einem stärkeren Betrags-
abfall im Frequenzbereich führt (siehe Abb. 2.9). Mit diesem höheren Betragsabfall
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Abb. 2.9.: Bode-Diagramme der verschiedenen Schleifenfilter

werden die hochfrequenten Anteile des Stroms stärker gedämpft. Für die Zustands-
raummatrizen des Schleifenfilters zweiter Ordnung gilt

A2 =

[ − 1
R1C2

1
R1C2

1
R1C1

− 1
R1C1

]
, b2 =

[
1
C2

0

]
, cT2 =

[
1 0

]
und d2 = 0. (2.15)

Offensichtlich weist der Schleifenfilter zweiter Ordnung keinen Durchgriff und somit
keinen Sprung in der Steuerspannung uctl(t) auf. Für eine weitere Glättung der Steu-
erspannung wird der Schleifenfilter dritter Ordnung mit den Zustandsraummatrizen
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2.2. Frequenzsynthese

A3 =




− 1
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1
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+ 1
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)


 , (2.16)

bT3 =
[
0 0 1

C2

]
, (2.17)

cT3 =
[
1 0 0

]
, (2.18)

und d3 = 0 verwendet. Die Übertragungsfunktionen der Schleifenfilter lassen sich
dabei mit

HLF(s) = cT (sE −A)−1
b+ d (2.19)

bestimmen, wobei E die Einheitsmatrix bezeichnet und s die komplexe Frequenz
ist.

Der vierte Block innerhalb des Phasenregelkreises ist der VCO, dessen Ausgangs-
frequenz von der Ausgangsspannung des Schleifenfilters uctl(t) gesteuert wird. Die

fvco

uctl

fvco,0

f lin
vco,0

0

Kv

linear
stückweise linear
nichtlinear

Abb. 2.10.: Exemplarische lineare und nichtlineare Kennlinien des spannungsgesteuerten
Oszillators

generierte periodische Ausgangsspannung des VCO besitzt eine Frequenz, die in
erster Näherung proportional zur Steuerspannung ist. Somit ergibt sich

d

dt
ϕvco(t) = ωvco(t) = 2π

[
f lin
vco,0 +Kvuctl(t)

]
, (2.20)

wobei f lin
vco,0 die Grundschwingung des VCO darstellt und Kv die Gewichtung der

Eingangsspannung beschreibt. Für eine nichtlineare Beziehung zwischen der Steuer-
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spannung und der Ausgangsfrequenz lässt sich die Phase des spannungsgesteuerten
Oszillators allgemein durch

ϕvco(t) = ϕvco,0 + 2π

∫ t

t0

f(uctl(τ)) dτ (2.21)

beschreiben, wobei f(·) den funktionalen Zusammenhang zwischen der VCO-
Frequenz und der Steuerspannung definiert. Beispielhafte Kennlinien des VCO sind
in Abb. 2.10 dargestellt.

Der im Rückkopplungszweig der PLL eingebrachte Dividierer 1/N stellt für die Pha-
se ein Proportionalglied dar und teilt die Frequenz des VCO durch den Faktor N .
Somit stellt der Teiler ein periodisches Signal zur Verfügung, dessen Phase, im ausge-
regelten Zustand des Phasenregelkreises, äquivalent zu der Referenzphase ist. Durch
den Dividierer besteht demnach die Möglichkeit, die Frequenz der Ausgangsspan-
nung des VCO als ein Vielfaches der Eingangsfrequenz einzustellen. Ein Beispiel
für einen solchen Dividierer ist ein Flankenzähler, der bei jeder N -ten steigenden
Eingangsflanke eine steigende Ausgangsflanke generiert.

Der geschlossene Regelkreis regelt die Steuerspannung des VCO in der Art, dass
im idealen Fall der Frequenz- und Phasenfehler zwischen dem Referenz- und dem
Dividierersignal gleich Null sind. Exemplarische Verläufe der Schleifensignale sind
in Abb. 2.11 zu sehen. Hier wird deutlich, dass sich die Regelung in drei Bereiche
unterteilen lässt. Zu Beginn der Regelung, auch Ziehbereich genannt, ist der Fre-
quenzfehler zwischen dem Referenz- und dem Rückkopplungssignal so groß, dass
der Phasenfehler mehrfach den Bereich von ±2π verlässt. Da die Kennlinie des
Phasen- und Frequenzdetektors keine Unterscheidung zwischen Phasenfehlern inner-
halb und außerhalb des ±2π-Bereichs zulässt, werden Phasenfehler mit |ϕe| > 2π
wie Differenzen mit −2π < ϕe < 2π interpretiert. Somit weist die PLL in diesem
Bereich ein hochgradig nichtlineares Verhalten auf. Die Zeitpunkte, an denen der
±2π-Bereich verlassen wird, die PLL ausrastet und dem Referenzsignal vorerst nicht
folgen kann, werden mit Out Of Lock bezeichnet. Sobald der Phasenfehler im Be-
reich ±2π verbleibt, ist die PLL eingerastet und wird mit Locked betitelt. Je nach
Auslegung der Regelschleife treten in diesem Bereich Phasenfehlernulldurchgänge
auf, die zu einem Vorzeichenwechsel im Strom der Ladungspumpe führen. Zwischen
diesen Nulldurchgängen weist die Steuerspannung lokale Extrema auf, die auch als
Überschwinger beschrieben werden können. Zur schaltungstechnischen Detektion
der Ausrastzeitpunkte und der Überschwinger wird eine sogenannte Lock-Detection
verwendet (siehe Anhang C). Da diese lediglich die Nulldurchgänge des Phasenfeh-
lers detektiert, diese als Überschwinger interpretiert und daraus auf den eingeraste-
ten Zustand der Schleife schließt, werden die Nulldurchgänge auch als Überschwin-
ger des nichtlinearen Modells bezeichnet. Der dritte Bereich der Regelung ist nahe
der Ruhelage des Systems. Hier ist der Regelkreis nahezu ausgeregelt und wird mit
Settled beschrieben.
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Abb. 2.11.: Exemplarische Signalverläufe des Integer-N Phasenregelkreises

2.2.2. Fractional-N CP-PLL

Die Fractional-N PLL liefert die Möglichkeit, die Phase und somit auch die Frequenz
eines Referenzsignals mittels eines rationalen Teilerverhältnisses zu vervielfachen.
Der Vorteil dieses Verfahrens zeigt sich in der technischen Anwendung. Für die
drahtlose Übertragung von Informationen, zum Beispiel via Bluetooth, werden die
Übertragungskanäle durch das Schalten des Teilers gewechselt (fvco, 1 → fvco, 2).
Ist die Kanalbreite schmalbandig, ergibt sich nach der Beziehung im ausgeregelten
Zustand

fvco = N · fref (2.22)

eine niedrige Referenzfrequenz fref und ein hohes Teilerverhältnis N . Das hohe Tei-
lerverhältnis führt zu einer Verstärkung der im Eingangssignal vorhandenen Störun-
gen (vgl. [59] und Kapitel 5). Ein rationales Teilerverhältnis löst das Problem der
niedrigen Referenzfrequenz und reduziert somit die Verstärkung der eingangsseiti-
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2. Architektur und Funktionsweise von Phasenregelkreisen

gen Störungen.
Das Konzept einer Fractional-N PLL unterscheidet sich vom Prinzip der Integer-N
PLL lediglich durch den Dividierer im Rückkopplungszweig [6,7,60]. Um ein rationa-
les Teilerverhältnis zu gewährleisten, wird in der Fractional-N PLL zum Beispiel ein
Multi-Modulus-Teiler verwendet. Dieser Dividierer schaltet zwischen unterschiedli-
chen ganzzahligen Teilerverhältnissen und stellt somit ein digitales Bauelement dar.
Zur Realisierung des rationalen Teilerverhältnisses ergibt sich die Bedingung

N = lim
P→∞

1

P

P∑

i=1

N(ti) (2.23)

für die Schaltsequenz des Multi-Modulus-Teilers. Hierbei beschreibt N(ti) die ganz-
zahligen Teilerverhältnisse zu den Zeitpunkten ti und N ist das gewünschte mittle-
re Teilerverhältnis. Die Auslegung der Schaltsequenz beeinflusst dabei maßgeblich
die Reinheit des Ausgangsspektrums des Phasenregelkreises. Bei einer periodischen
Ansteuerung mit einer Frequenz ffrac ergeben sich Nebentöne im Spektrum, die
Fractional-Spurs genannt werden [61] und ffrac von der Trägerfrequenz entfernt sind.
Zur Minimierung der im Leistungsdichtespektrum unerwünschten Nebentöne ist ei-
ne geeignete Schaltung des Multi-Modulus-Teilers erforderlich. Eine entsprechende
Ansteuerungsmethode ist der Σ∆-Modulator [62]. In Abb. 2.12 ist das Blockschalt-
bild einer Fractional-N PLL mit Σ∆-Modulator abgebildet (vgl. [7]). Hier wird der

ip(t) uctl(t)
uref(t)

uup(t)

udn(t)

uvco(t)
PFD CP LF VCO

1

N(n)

N(n)

Ni

κ(n)Nf

Σ∆-Mod.

udiv(t)

digital

analog

Abb. 2.12.: Blockschaltbild einer Σ∆-Fractional-N Charge-Pump PLL

Σ∆-Modulator durch das Referenzsignal getaktet. Eine weitere Möglichkeit besteht
darin, den Σ∆-Modulator mit dem Ausgangssignal des Dividierers zu takten. Das
Eingangswort des Σ∆-Modulators wird mit dem rationalen Teil Nf des Teilerverhält-
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2.2. Frequenzsynthese

nisses beschaltet und gegebenenfalls mit mittelwertfreiem Rauschen überlagert. An-
hand des Eingangsworts generiert der Σ∆-Modulator eine ganzzahlige Zahlenfolge
κ(n), deren Mittelwert Nf entspricht:

Nf = κ(n) = lim
P→∞

1

P

P∑

n=1

κ(n). (2.24)

Die ganzzahlige Zahlenfolge κ(n) am Ausgang des Σ∆-Modulators wird additiv mit
dem ganzzahligen Anteil des gewünschten Teilerverhältnisses Ni überlagert:

N(n) = Ni + κ(n). (2.25)

Für den Σ∆-Modulator existieren sowohl verschiedene Ordnungen als auch unter-
schiedliche Zusammenschaltungen. Die MASH-Architektur2 ist beispielsweise eine
Zusammenschaltung aus Σ∆-Modulatoren erster Ordnung und ist somit stets stabil,
falls sich die generierten Teilerverhältnisse über den Wertebereich des Quantisierers
abbilden lassen. In Abb. 2.13 ist die MASH-1-1-1 Architektur mit einer Zusammen-
schaltung aus drei Σ∆-Modulatoren dargestellt [63]. Ein weiterer Vorteil dieser Rea-

(z − 1)−1

(z − 1)−1

(z − 1)−1

z−1

z−1

z−1

z−2

κ(n)

−q1(n)

−q2(n)

y1(n)

y2(n)

y3(n)

e1(n)

e2(n)

e3(n)

ϑ1(n)

ϑ2(n)

ϑ3(n)

Nf

Abb. 2.13.: Blockschaltbild des Σ∆-Modulators mit MASH-1-1-1 Architektur

lisierung ist das deutliche Hochpassverhalten dieses Σ∆-Modulators, wodurch das
resultierende Rauschen des schaltenden Teilerverhältnisses bei geeignetem Entwurf
des Phasenregelkreises außerhalb der Schleifenbandbreite liegt und sich ein präzises
Trägersignal generieren lässt. Für die mathematische Beschreibung lassen sich die

2Die Abkürzung MASH bedeutet multi-stage noise shaping.
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Differenzengleichungen

ϑi(n+ 1) = ei(n) + ϑi(n) i ∈ (1,2,3) (2.26a)

yi(n) = Γ (ϑi(n)) i ∈ (1,2,3) (2.26b)

qi(n) = yi(n)− ϑi(n) i ∈ (1,2,3) (2.26c)

wi(n) =

{
Nf i = 1
−qi−1(n) i ∈ (2,3)

(2.26d)

ei(n) = wi(n)− yi(n) i ∈ (1,2,3) (2.26e)

angeben [63]. Die Ausgangsgröße κ(n) ergibt sich zu

κ(n) = y1(n− 2)+ y2(n− 1)− y2(n− 2)+ y3(n)− 2y3(n− 1)+ y3(n− 2). (2.27)

Der geschlossene Regelkreis der Fractional-N PLL verhält sich analog zum Integer-N
Phasenregelkreis mit Ausnahme des schaltenden Teilerverhältnisses. In Abb. 2.14
sind exemplarisch die Signale der Regelung für eine Fractional-N PLL mit kon-
stantem Eingangswort des MASH-1-1-1 Σ∆-Modulators dargestellt. Hierbei wird
deutlich, dass das Schalten des Teilerverhältnisses einen Einfluss auf die Regelung
speziell nahe der Ruhelage aufweist. Sowohl in der Steuerspannung/VCO-Frequenz
als auch im Phasenfehler sind periodische Variationen mit der Periodendauer 1/ffrac
zu erkennen, da der Σ∆-Modulator für ein konstantes Eingangswort eine periodische
Schaltsequenz generiert. Für die Reduzierung dieser Einflüsse und der Periodizität,
wird in der Praxis das Eingangswort des Σ∆-Modulators mit leichtem Rauschen
überlagert. Darüber hinaus wird der Phasenregelkreis mit Σ∆-Modulator so aus-
gelegt, dass das schaltende Teilerverhältnis nur zu geringen Variationen der VCO
Frequenz führt. Für den Vergleich beider Varianten im Frequenzbereich lässt sich
das Leistungsdichtespektrum

Sx(jω) =

∫ ∞

−∞
Rxx(τ)e

−jωτ dτ (2.28)

heranziehen, wobei

Rxx(τ) = lim
Tw→∞

1

Tw

∫ Tw/2

−Tw/2

x(t) · x(t+ τ) dt (2.29)

die Autokorrelationsfunktion beschreibt und x in diesem Fall mit udiv korrespon-
diert. Des Weiteren ist Tw das betrachtete Zeitfenster. Abb. 2.15 zeigt das Leis-
tungsdichtespektrum der Fractional-N PLL sowohl für ein verrauschtes als auch ein
konstantes Eingangswort des Σ∆-Modulators. Die in diesem Spektrum sichtbaren
Nebentöne, deren Abstände zur Trägerfrequenz ein Vielfaches von ffrac betragen,
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Abb. 2.14.: Exemplarische Signalverläufe des Fractional-N Phasenregelkreises mit konstantem
Eingangswort des Σ∆-Modulators der MASH-1-1-1 Architektur

lassen sich durch ein verrauschtes Eingangssignal des Σ∆-Modulators verringern.
Für ein verrauschtes Eingangssignal des Σ∆-Modulators ist das Hochpassverhalten
der MASH-Architektur deutlich zu erkennen. Dieses Hochpassverhalten ermöglicht
die Frequenzreinheit der Trägerfrequenz.
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Abb. 2.15.: Exemplarische Darstellung des Leistungsdichtespektrums des Ausgangssignal des
Dividierers einer Fractional-N PLL mit sowohl konstantem als auch verrauschtem
(Varianz σ = 10−6) Eingangswort des Σ∆-Modulators der MASH-1-1-1 Architektur

2.3. Weitere PLL Architekturen

Neben der bereits vorgestellten stromgesteuerten CP-PLL zur Frequenzsynthe-
se existieren noch andere Architekturen des Mixed-Signal Phasenregelkreises. In
diesem Kapitel werden zwei weitere und weit verbreitete Varianten vorgestellt.
Zunächst wird eine Abwandlung des Regelkreises für die Frequenzsynthese darge-
stellt, der anstelle der konstanten Stromquellen in der Ladungspumpe konstante
Spannungsquellen verwendet. Dies bietet den Vorteil einer einfacheren Implemen-
tierung, beschränkt jedoch das dynamische Verhalten. Des Weiteren wird die Ver-
wendung des Phasenregelkreises für die Takt- und Datenrückgewinnung beleuchtet,
da dieses Anwendungsgebiet neben der Frequenzsynthese eine wichtige Rolle in der
drahtlosen Kommunikation spielt.

2.3.1. Spannungsgesteuerte CP-PLL zur Frequenzsynthese

In einigen kommerziell erhältlichen Phasenregelkreisen wird anstatt der stromge-
steuerten (siehe Abb. 2.7(a)) eine spannungsgesteuerte Ladungspumpe verwendet
(z.B. die 4046 PLL Familie). Diese Ladungspumpe weist keine Stromquellen auf,
sondern verbindet jeweils eins der zwei Spannungsversorgungspotentiale über zwei
Schalter mit dem nachgeschalteten Schleifenfilter. Diese Variante der CP-PLL hat
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den Vorteil, dass der Entwurf von konstanten Spannungsquellen weniger aufwändig
ist als die Auslegung von konstanten Stromquellen [46,56]. Somit lassen sich die Kos-
ten innerhalb der Entwurfsphase reduzieren. Lediglich ein weiterer Widerstand wird
für den Schleifenfilter erforderlich, um das Potential der Ausgangsspannung ud(t)
der Ladungspumpe vom Eingang des spannungsgesteuerten Oszillators zu trennen.
Der Schleifenfilter aus [6] ist in Abb. 2.16(a) zu sehen, wobei R0 die Trennung
der Potentiale realisiert. Eine weitere Variante basiert auf den Schleifenfiltern der
stromgesteuerten CP-PLL und ist in Abb. 2.16(b) dargestellt. Hier wird ebenfalls
R0 für die Trennung der Potentiale verwendet. Beide Varianten weisen bei gleichen
Bauteilparametern lediglich kleine Unterschiede in der Durchtrittsfrequenz des ge-
schlossenen Regelkreises auf. Die konstanten Spannungsquellen der Ladungspumpe

R1

C1

C2

R0

ip(t)

uctl(t)ud(t) i1(t)

i2(t)

1. Ordnung
2. Ordnung

(a) Variante 1 aus [6]

R1

C1

C2

R0

ip(t)

uctl(t)ud(t) i1(t)

i2(t)

1. Ordnung
2. Ordnung

(b) Variante 2 basierend auf den Filtern der CO-
CP-PLL

Abb. 2.16.: Elektrische Ersatzschaltbilder der verwendeten Schleifenfilter für die spannungsge-
steuerte CP-PLL

generieren einen variierenden Strom ip(t), dessen Amplitude von den Ladungen auf
den Kapazitäten des Schleifenfilters abhängt. Dies kann dazu führen, dass der re-
sultierende Strom zu Beginn der Regelung größer als der Strom der konventionellen
stromgesteuerten CP-PLL (engl. Current Operated CP-PLL, kurz; CO-CP-PLL) ist.
Im weiteren Verlauf nimmt der Strom der spannungsgesteuerten CP-PLL (engl. Vol-
tage Operated CP-PLL, kurz: VO-CP-PLL) mit steigenden Kapazitätsspannungen
ab. Die somit variierende Schleifenverstärkung beeinflusst das dynamische Verhalten
des Regelkreises und führt zu einem asymmetrischen Verhalten, falls die Zielspan-
nung ungleich der halben Versorgungsspannung ist. In Abb. 2.17 ist exemplarisch
eine Frequenzsynthese mit Referenzfrequenzsprüngen und -rampen dargestellt. Der
Vergleich der strom- und spannungsgesteuerten Phasenregelkreise zeigt, dass die
spannungsgesteuerte PLL nur bedingt in der Lage ist, den Frequenzrampen zu fol-
gen. Da der Phasenfehler während der Frequenzrampe stetig größer wird, rastet der
Phasenregelkreis aus (siehe Abb. 2.17) [64]. Dies schließt die VO-CP-PLL beispiels-
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Abb. 2.17.: Vergleich der Dynamik des strom- und spannungsgesteuerten Phasenregelkreises zur
Frequenzsynthese

weise für Radaranwendungen aus. Eine weitere nichtlineare Eigenschaft der VO-
CP-PLL stellt das asymmetrische Verhalten der Regelung für eine Zielspannung
ungleich der halben Versorgungsspannung dar. Die somit enthaltenen verschiede-
nen Schleifenverstärkungen führen zu unterschiedlichen Voraussetzungen bei der
Stabilitätsbetrachtung und der Phasenrauschanalyse und zu verschiedenen natürli-
chen Eigenfrequenzen des Systems innerhalb des Auflade- und Entladeprozesses des
Schleifenfilters [65]. Die weiteren dynamischen Betrachtungen dieses Systems sind
sehr ähnlich zur Charakterisierung und Analyse des Phasenregelkreises mit stromge-
steuerter Ladungspumpe und stehen daher nicht im Fokus dieser Arbeit. Detaillierte
Erläuterungen der Architektur und Funktionsweise der spannungsgesteuerten CP-
PLL sind in [6, 46, 47] zu finden.

2.3.2. Takt- und Datenrückgewinnung

In der Kommunikationstechnik wird der Phasenregelkreis auch für die Takt- und
Datenrückgewinnung eingesetzt. Die verrauschten Takt- und Datensignale lassen
sich somit im Empfänger wieder herstellen und im weiteren Verlauf bereinigt ver-
wenden [55]. Das empfangene Datensignal wird bei diesen Phasenregelkreisen als
Referenzsignal zugrunde gelegt. Aus diesen Daten, die zum Teil mit Jitter über-
lagert sind, extrahiert die PLL den Takt. Dieses bereinigte Taktsignal weist eine
konstante Frequenz auf und lässt sich für die neue Abtastung der empfangenen
Daten benutzen, sodass das aufgefrischte Datensignal synchron zum extrahierten
Takt ist. Dieser Regelkreis ist bis auf den Phasendetektor analog zur CP-PLL der
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Abb. 2.18.: Blockschaltbild eines Phasenregelkreises zur Takt- und Datenrückgewinnung

Frequenzsynthese aufgebaut. Die Abb. 2.18 zeigt den schematischen Aufbau die-
ses Phasenregelkreises [55]. Die mit Jitter behafteten empfangenen Daten ũdata(t)
werden im speziellen Phasendetektor zur Takt- und Datenrückgewinnung mit dem
Taktsignal der Regelschleife uclk(t) abgeglichen. Die detektierte Differenz wird ana-
log zur CP-PLL für die Frequenzsynthese in zwei entsprechende Ausgangssignale
zur Steuerung der Ladungspumpe überführt. Die Frequenz des VCO-Signals wird
schließlich in der Art geregelt, dass dieser erzeugte Takt zum Eingangsdatensignal
korrespondiert. Das zeitlich neu abgetastete Datensignal udata(t) und der entspre-
chende Takt uclk(t) werden als Ausgangssignale des Phasenregelkreises an die nach-
folgenden Schaltungen weitergegeben.
Für den Phasendetektor zur Takt- und Datenrückgewinnung eignet sich speziell der
Hogge-Phasendetektor [55,66], der in Abb. 2.19 dargestellt ist. Dieser Phasendetek-

ũdata(t)

udata(t)

uup(t)

udn(t)

uclk(t)

DD QQ
= 1

= 1

Abb. 2.19.: Blockschaltbild des Hogge-Phasendetektors für den Phasenregelkreis zur Takt- und
Datenrückgewinnung

tor ist, wie auch der Phasen- und Frequenzdetektor, flankengesteuert. In Abb. 2.20
sind exemplarische Signalverläufe dieses Phasenregelkreises gezeigt. Das zugrunde
liegende Datensignal ist in der oberen Achse in schwarz dargestellt, wobei das mit
Jitter behaftete Referenzdatensignal des Phasenregelkreises rot ist. Der Phasenregel-
kreis ist in der Lage, den Takt aus dem Jitter behafteten Datensignal zu extrahieren
und ein zeitlich aufbereitetes Datensignal entsprechend dem rekonstruierten Takt
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zur Verfügung zu stellen (siehe die unteren beiden Achsen), wobei die D-Flip-Flops
in diesem Beispiel durch fallende Flanken der Signale getriggert werden. Lediglich
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Abb. 2.20.: Exemplarische Darstellung der Signalverläufe der Phasenregelschleife zur Takt- und
Datenrückgewinnung

die zeitliche Verzögerung des rekonstruierten Datensignals fällt auf, wobei dieser
Zeitversatz im Vergleich zum Jitter eine untergeordnete Rolle in der Kommunika-
tionstechnik spielt. Über dieses Beispiel hinaus ist der Phasenregelkreis mit dem
Hogge-Phasendetektor in der Lage, beliebige Bitfolgen zu verarbeiten.
Zwar ist das Anwendungsgebiet dieses Phasenregelkreises von der Frequenzsynthese
verschieden, dennoch sind die Charakterisierungs- und Analyseansätze aufgrund der
Ähnlichkeit der Phasendetektoren vergleichbar zur CP-PLL.
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KAPITEL 3

Grundlegende Modellierungsansätze der
CP-PLL

”
Models Simplify the World.“

Für die Charakterisierung und Analyse der Mixed-Signal Phasenregelkreise lassen
sich analytische oder numerische Modellierungsansätze verwenden. Den analyti-
schen linearen Modellen liegt eine a priori Linearisierung zugrunde, sodass sich eine
mathematische Darstellung des mittleren Verhaltens ergibt. Diese eignet sich für ei-
ne schnelle Beurteilung des Systemverhaltens nahe der Ruhelage, jedoch lassen sich
der schaltende Charakter und das nichtlineare und nicht-ideale Verhalten des Mixed-
Signal Systems durch die Linearisierung kaum abbilden. Aus diesem Grund werden
oft Verhaltensmodelle für die Beschreibung verwendet, die durch numerische Simula-
tionsverfahren gelöst werden. Diese Ansätze ermöglichen eine Berücksichtigung von
nichtlinearen und nicht-idealen Effekten, weisen jedoch einen abtastzeitbezogenen
Lösungsansatz auf, der unter Umständen zu langen Simulationszeiten führt. Für
eine zeit- und ressourceneffiziente Modellierung des Mixed-Signal Phasenregelkrei-
ses bietet sich ein ereignisgesteuertes Modell an, das lediglich die Zeitpunkte der
steigenden oder fallenden Flanken des Referenz- bzw. Rückkopplungssignals berech-
net. Dieses Verfahren stellt somit einen Lösungsansatz mit variierenden Abtastzeit-
punkten dar, wobei diese Zeitpunkte direkt durch das Verhalten des Mixed-Signal
Systems vorgegeben werden.
Im Folgenden werden diese drei verschiedenen Modellierungsansätze des Mixed-
Signal Phasenregelkreises vorgestellt. Darüber hinaus werden deren Genauigkeiten
und Simulationszeiten miteinander verglichen und beurteilt. Diese Untersuchungen
werden exemplarisch für die stromgesteuerte CP-PLL zur Frequenzsynthese gezeigt,
wobei sich die Ergebnisse leicht auf die Anwendungen der spannungsgesteuerten
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3. Grundlegende Modellierungsansätze der CP-PLL

CP-PLL, der Takt- und Datenrückgewinnung und der PLL mit weiteren Phasende-
tektoren übertragen lassen (vgl. Anhang B).

3.1. Lineares Modell

Zur Herleitung des linearen Modells wird der Phasenregelkreis in einem Arbeits-
punkt nahe der Ruhelage betrachtet, sodass der Phasenfehler innerhalb der Rege-
lung im Schlauch ±2π verbleibt. In diesem Fall lassen sich die einzelnen Funktions-
blöcke bezüglich der Phaseninformation der Signale linearisieren [6]. Die Darstel-
lung der periodischen Signale mittels deren Phaseninformationen ist sinnvoll, da
der Phasenregelkreis lediglich für die Phaseninformationen sensitiv ist und die Am-
plitudengrößen eine untergeordnete Rolle spielen.
Die Kennlinie des Phasen- und Frequenzdetektors ist für Phasenfehler zwischen ±2π
linear (siehe Abb. 2.5). Für diesen Bereich lässt sich die Kombination aus PFD und
Ladungspumpe (kurz: PFD & CP Block) wie folgt linearisieren [3]. Wird der re-
sultierende Strom der Ladungspumpe jeweils über eine Periode des Referenzsignals
Tref integriert und diese Ladung auf die gesamte Periode gleich verteilt, lässt sich
im Mittel die Beziehung zwischen Phasenfehler und Strom durch

ip(t) =
Ip
2π
ϕe(t) (3.1)

beschreiben. Die Kombination aus PFD und Ladungspumpe stellt somit ein Pro-
portionalglied

Kϕ =
Ip
2π

(3.2)

bezüglich der Phase sowohl im Zeit- als auch im Frequenzbereich dar.
Das lineare Modell des spannungsgesteuerten Oszillators ergibt sich aus dessen Pha-
senbeschreibung

ϕvco(t) = ωvco,0 t+ 2πKv

∫ t

0

uctl(τ) dτ + ϕvco, 0, (3.3)

wobei ein proportionaler Zusammenhang zwischen der Steuerspannung und der
VCO-Frequenz zugrunde gelegt wird. Für die Linearisierung wird sowohl die Grund-
kreisfrequenz ωvco,0 als auch die Anfangsphase ϕvco, 0 als Null angenommen. Somit
stellt der VCO bezüglich der Phase einen reinen Integrierer mit der Verstärkung
2πKv dar. Die Übertragungsfunktion im Frequenzbereich ergibt sich zu

Hvco(s) =
Kv,ω

s
=

2πKv

s
, (3.4)
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3.1. Lineares Modell

wobei s die komplexe Frequenz ist.
Der Frequenzteiler im Rückkopplungspfad ist ebenfalls ein reines Proportionalglied
bezüglich der Phaseninformation und die Übertragungsfunktion ist durch

HDIV(s) =
1

N
(3.5)

gegeben. Mit der Übertragungsfunktion des Schleifenfilters (siehe Gleichung (2.19))
sind alle Blöcke in ein lineares Modell überführt und es ergibt sich die Übertragungs-
funktion des offenen Regelkreises

G0(s) =
Kv,ωKϕ

N s
HLF,i(s). (3.6)

Der geschlossene Regelkreis ist in Abb. 3.1 zu erkennen, wobei sich die Übertra-
gungsfunktion zu

T (s) =
G0(s)

1 +G0(s)
=

Φdiv(s)

Φref(s)
(3.7)

und schließlich zu

T (s) =
Kv,ωKϕHLF,i(s)

Ns+Kv,ωKϕHLF,i(s)
(3.8)

ergibt. Hierbei sind Φdiv(s) und Φref(s) die Laplace-Transformierten der Zeitsignale
ϕdiv(t) und ϕref(t). Wird der geschlossene Regelkreis mit einem Schleifenfilter erster

Φref(s) Φvco(s)Uctl(s)Φe(s)

Φdiv(s)

Ip(s)
PFD und CP

Kϕ HLF,i(s)
Kv,ω

s

1

N

Abb. 3.1.: Blockschaltbild des linearen Modells des Phasenregelkreises

Ordnung betrachtet, lässt sich die Normalform des linearen Modells des Phasenre-
gelkreises wie folgt definieren [6]

T (s) =
2ζωns+ ω2

n

s2 + 2ζωns+ ω2
n

. (3.9)

Hierbei stellt

ζ =
1

2
ωnτ1 (3.10)
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3. Grundlegende Modellierungsansätze der CP-PLL

den Dämpfungsbeiwert des Systems dar und

ωn =

√
Kv,ωKϕ

NC1

(3.11)

ist die natürliche Eigenkreisfrequenz des Regelkreises. Des Weiteren ist τ1 = R1C1

die Zeitkonstante des Schleifenfilters erster Ordnung. Die Übertragungsfunktion
des geschlossenen Phasenregelkreises lässt sich sowohl für die Phaseninformationen
Φref(s) und Φdiv(s) als auch für die Frequenzsignale Ωref(s) und Ωdiv(s) im Frequenz-
bereich verwenden

T (s) =
Φdiv(s)

Φref(s)
=

1
s
Ωdiv(s)

1
s
Ωref(s)

=
Ωdiv(s)

Ωref(s)
. (3.12)

Ωdiv(s) und Ωref(s) beschreiben die Kreisfrequenzen ωdiv(t) und ωref(t) im Frequenz-
bereich. In Abb. 3.2 sind exemplarisch vier Kreisfrequenzsprungantworten für einen
Sprung der Höhe ∆ω = 1 rad/s für verschiedene ζ dargestellt. In dieser Abbildung
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Abb. 3.2.: Verlauf der Sprungantworten des linearen Modells des Phasenregelkreises in
Abhängigkeit von ζ

ist für ζ = 0,3 sowohl der exponentielle Abfall der Schwingung als auch der Über-
schwinger ωu deutlich zu erkennen. Mit zunehmendem ζ vergrößert sich die Dämp-
fung, sodass die Schwingung schneller abklingt und das Überschwingen geringer
wird. Nach Transformation der Normalform im Frequenzbereich (Gleichung (3.9))
in den Zeitbereich ist dies auch im mathematischen Ausdruck für die Sprungantwor-
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3.1. Lineares Modell

ten zu erkennen

ωdiv(t) = L−1

{
∆ω

s
· T (s)

}
= ∆ω +∆ω e−ζωnt

(
− cosh

(
ωn

√
ζ2 − 1 t

)
+

ζ√
ζ2

)

(
+

ζ√
ζ2 − 1

sinh
(
ωn

√
ζ2 − 1 t

))
,

(3.13)

mit ζ > 1 und

ωdiv(t) = L−1

{
∆ω

s
· T (s)

}
= ∆ω +∆ω e−ωn ζt

(
− cos

(
ωn

√
1− ζ2 t

)
+

ζ√
ζ2

)

(
+

ζ√
1− ζ2

sin
(
ωn

√
1− ζ2 t

))
,

(3.14)

mit ζ < 1. Für ζ = 1 wird der aperiodische Grenzfall erreicht und es ergibt sich die
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Abb. 3.3.: Verlauf der Sprungantwort des linearen Modells des Phasenregelkreises für ζ = 0 zur
Veranschaulichung der natürlichen Eigenkreisfrequenz des Modells

Sprungantwort

ωdiv(t) = L−1

{
∆ω

s
· T (s)

}
= ∆ω +∆ω (ωn t− 1) e−ωn t. (3.15)
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3. Grundlegende Modellierungsansätze der CP-PLL

Wird der Spezialfall ζ = 0 betrachtet, so ist die Eigenkreisfrequenz ωn in der Sprung-
antwort zu erkennen (siehe Abb. 3.3), da die Dynamik des Systems ungedämpft ist.
In der Regel wird der Phasenregelkreis jedoch mit einem Dämpfungsbeiwert kleiner
eins realisiert, da dies einen guten Kompromiss zwischen einem kleinen maximalen
Überschwinger, einer kurzen Ausregelzeit und der Rauschbandbreite darstellt.
Basierend auf dem linearen Modell lässt sich das mittlere dynamische Verhalten
des Phasenregelkreises für kleine Phasenfehler darstellen. Wird ein Kreisfrequenz-
sprung am Eingang des linearen Modells mit ζ < 1 angenommen, ergibt sich eine
Sprungantwort wie in Abb. 3.4. Hier lassen sich die dynamischen Parameter der An-
stiegszeit, der Überschwinger und der Ausregelzeit definieren, die für die praktische
Anwendung der Phasenregelkreise eine große Bedeutung haben. Die Anstiegszeit

Zeit

ω
d
iv

tMp

ωdiv

ωt

tr

exp(·)

ts

Abb. 3.4.: Signalverlauf von ωdiv(t) bei einem Kreisfrequenzsprung zur Definition der charakte-
ristischen Parameter im Zeitbereich des linearen Modells

tr wird mit Hilfe des Schnittpunkts der Kreisfrequenz ωdiv(t), mit der Zielkreis-
frequenz ωt und der Anfangskreisfrequenz ωdiv(t0) bestimmt. Bei der analytischen
Berechnung der Anstiegszeit wird ωdiv(tr) = ∆ω für einen Kreisfrequenzsprung
∆ω = ωt − ωdiv(t0) am Eingang des linearen Modells der PLL nach tr umgestellt.
Eine weitere Möglichkeit besteht darin, die Ableitung des Phasenfehlers ϕe(t) gleich
Null zu setzen und nach tr umzustellen, da sich das lineare Modell in etwa wie ein
Pendel verhält und das Maximum des Phasenfehlers beim Nulldurchgang des Fre-
quenzfehlers erreicht wird. Die Anstiegszeit und somit der erste Schnittpunkt von
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3.1. Lineares Modell

ωdiv(t) mit ωt ergibt sich schließlich zu

tr =





arctan

(√
1−ζ2

ζ

)

ωn

√
1− ζ2

∀ 0 < ζ < 1

1

ωn

für ζ = 1

arctanh

(√
ζ2−1

ζ

)

ωn

√
ζ2 − 1

∀ ζ > 1

. (3.16)

Für die nachfolgenden Schaltungen des Phasenregelkreises ist oft eine stabile Fre-
quenz des VCO-Signals notwendig. Aus diesem Grund ist die Ausregelzeit der Regel-
schleife eine wichtige Kenngröße. Die Ausregelzeit ts ist die Zeitspanne, in der die lo-
kalen Maxima kleiner einer vorgegebenen Grenze werden. Dies lässt sich mittels der
Einhüllenden exp (−ζωnt) der abklingenden Schwingung in den Gleichungen (3.13)
bis (3.15) beschreiben:

exp (−ζωnt) ≤
ns

100
für t ≥ ts (3.17a)

⇒ ts =

ln

(
100

ns

)

ζωn

, (3.17b)

wobei ns eine prozentuale Größe der noch vorhandenen abklingenden Schwingung
ist und die vorgegebene Grenze darstellt.
Zur Berechnung der lokalen Maxima und deren Zeitpunkte tMp lässt sich die Ablei-
tung von ωdiv(t) gleich Null setzen. Es resultiert

tMp =





arctan

(
2ζ
√

1−ζ2

2ζ2−1

)
+ g · π

ωn

√
1− ζ2

∀ 0 < ζ < 1

2

ωn

für ζ = 1

arctanh

(
2ζ
√

ζ2−1

2ζ2−1

)

ωn

√
ζ2 − 1

∀ ζ > 1

, (3.18)

wobei der Faktor g die π-Periodizität des tan(·) verdeutlicht und eine Bestimmung
der verschiedenen lokalen Maxima ermöglicht. Dies ist ebenfalls wichtig wenn das
Argument von arctan(·) negativ wird, da sich somit tMp < 0 ergeben würde. Da je-
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3. Grundlegende Modellierungsansätze der CP-PLL

doch innerhalb der Betrachtung des linearen Modells der Frequenzsprung bei t = 0
angenommen wird und die Überschwinger für tMp > 0 zu berechnen sind, muss der
Faktor g entsprechend definiert werden. Das erste lokale Maximum für tMp > 0 und
2ζ2 < 1 ist mit g = 1 gegeben. Für 2ζ2 > 1 und somit positiven Argumenten von
arctan(·) resultiert g = 0 für das erste lokale Maximum nach dem Sprung.
Für die weitere Betrachtung sind jedoch die Phasenfehlernulldurchgänge relevant,
da diese eine Änderung der Regeldynamik beschreiben. Der erste Phasenfehlernull-
durchgang ist für 0 < ζ < 1 durch

tpn =
π

ωn

√
1− ζ2

(3.19)

gegeben. Für sehr kleine Dämpfungsbeiwerte ζ ist dieser Zeitpunkt eine gute
Abschätzung der Gleichung (3.18), da sich in diesem Fall der Phasenregelkreis wie
ein ideales Pendel verhält und der Phasenfehlernulldurchgang näherungsweise zum
gleichen Zeitpunkt des lokalen Maximums von ωdiv auftritt. Der Kreisfrequenzfehler
bei tpn bezogen auf den Kreisfrequenzsprung am Eingang

ωpn =
ωdiv(tpn)− ωref

∆ω
(3.20)

ist für ωref = ∆ω und 0 < ζ < 1 durch

ωpn = e

−ζπ√
1− ζ2 (3.21)

gegeben.
Die Gültigkeit des linearen Modells für einen Kreisfrequenzsprung am Eingang des
Regelkreises wird durch den linearen Bereich des Phasendetektors bestimmt. Für
die CP-PLL zur Frequenzsynthese ist dieser Bereich durch −2π ≤ ϕe ≤ 2π definiert.
Die Fähigkeit des Phasenregelkreises auf Frequenzänderungen am Eingang derart
zu reagieren, dass der Phasenfehler in dem genannten Bereich verbleibt, lässt sich
ebenfalls mittels des linearen Modells abschätzen. Der sogenannte Ausrastbereich
(engl. Pull-Out region) ∆ωPO ist der Kreisfrequenzbereich, bei dem ein Kreisfre-
quenzsprung den Phasenregelkreis gerade zum Ausrasten bringt und der Phasenfeh-
ler den Bereich ±2π verlässt. Wird das Maximum des Phasenfehlers bestimmt, mit
2π gleichgesetzt und nach dem Kreisfrequenzsprung aufgelöst, ergibt sich

∆ωPO =





2πωne
ζ√

1−ζ2
arctan

(

1−ζ2

ζ

)

∀ 0 < ζ < 1

2πωne
1 für ζ = 1

2πωne
ζ√

ζ2−1
arctanh

(

ζ2−1
ζ

)

∀ ζ > 1

. (3.22)
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3.2. Verhaltensbeschreibung

Es hat sich jedoch die Approximation

∆ωPO ≈ 11,55ωn (0,5 + ζ) (3.23)

etabliert, die eine gute erste Näherung darstellt [6].
Es bleibt zu bemerken, dass dieses Modell lediglich das mittlere Verhalten des Pha-
senregelkreises abbildet, solange der Phasenfehler zwischen ±2π verbleibt.

3.2. Verhaltensbeschreibung

Da das lineare Modell auf einer Mittelung des Stromsignals und auf einer Linea-
risierung bezüglich der Phasen basiert, wird das nichtlineare und schaltende Ver-
halten des realen Regelkreises vernachlässigt auch wenn dieses die Leistungsfähig-
keit des Phasenregelkreises beeinflusst. Daher wird für eine genauere Modellierung
und Charakterisierung dieses Verhaltens oft eine Verhaltensbeschreibung des Sys-
tems verwendet. Eine Verhaltensmodellierung des Phasenregelkreises wird in [67]
dargestellt. Dieser Ansatz verwendet die sogenannte Periodic Steady State Metho-
de, in der der Schaltkreis im eingeschwungenen Zustand und für eine definierte
Grundfrequenz betrachtet wird. Hierbei lassen sich jedoch die Signale im Zeitbe-
reich für den Ziehbereich des Regelkreises nicht abbilden. Plattformen für Modellie-
rungsansätze im Zeitbereich sind beispielsweise Verilog-AMS, SystemC-AMS und
Matlab-Simulink [68]. Die Abkürzung AMS verdeutlicht die gemischt analog digi-
talen Modellierungsmöglichkeiten. Weitere Methoden der PLL-Beschreibung, wie
zum Beispiel VHDL-AMS (Very High Speed Integrated Circuit Hardware Descripti-
on Language) [68] oder die nichtlineare Makromodellierung in [69], verfolgen einen
ähnlichen Ansatz und werden daher hier nicht genauer beschrieben. Die genannten
Verhaltensmodellierungen berücksichtigen zunächst das ideale Verhalten des Sys-
tems und repräsentieren dieses durch Zustandsautomaten, mathematische Beschrei-
bungen und benutzerdefinierte Algorithmen. Generell lassen sich bei der Verhal-
tensmodellierung sowohl ideale als auch nicht-ideale Effekte beschreiben. An dieser
Stelle wird eine Auswahl an verhaltensbasierten Modellierungsansätzen verglichen,
wobei zunächst das ideale Verhalten der Bauelemente angenommen wird.

3.2.1. Simulink

Für die Modellierung von Regelkreisen ist Simulink weit verbreitet. Es handelt sich
hierbei um einen Teil von Matlab, der die Kombination von mathematischen Be-
schreibungen, endlichen Zustandsautomaten, elektrischen Baugruppen und benut-
zerspezifischen Algorithmen ermöglicht. Diese Form der Modellierung basiert auf
dem Abtasttheorem und verwendet in erster Näherung eine konstante Abtastzeit.
Für die Modellierung des Phasenregelkreises wird das Verhalten der Komponenten
aus Kapitel 2.2 umgesetzt. In Abb. 3.5 ist dieses Prinzip dargestellt. Der Phasen-
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3. Grundlegende Modellierungsansätze der CP-PLL

uref

udiv

u↑ref u↑ref

u↑ref

u↑div
u↑div

u↑div

uup = 0
udn = 1

uup = 1
udn = 0
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udn = 0

uup

udn

ip

uctl

ẋ = Ax+ bip
uctl = cTx+ dip

Ip

udiv = sin

(∫ t

t0

(
Kv,ω

N(τ)
uctl(τ) + ωvco,0

)
dτ + ϕvco,0

)

Phasendetektor
Schleifenfilter

Ladungspumpe

VCO und Frequenzteiler

Abb. 3.5.: Prinzipdarstellung der verhaltensbasierten Modellierung

und Frequenzdetektor wird mittels des endlichen Zustandsautomaten (Simulink
stellt den Stateflow (chart) zur Verfügung) realisiert. Die Ausgangssignale uup und
udn sind ideale pulsweitenmodulierte Signale und weisen eine Anstiegs- und Abfall-
zeit auf, die der Abtastzeit der Simulation entsprechen. Der Strom der nachfolgen-
den Ladungspumpe wird durch die Differenz der Ausgangssignale des PFD und eine
Gewichtung mit Ip berechnet. Der Strom weist somit auch sehr kleine Anstiegs- und
Abfallzeiten auf. Sowohl der Schleifenfilter als auch der spannungsgesteuerte Oszilla-
tor und der Frequenzteiler werden durch analytische Gleichungen beschrieben. Der
Vorteil der kombinierten Modellierung des VCO und des Dividierers besteht in der
Vermeidung eines Hoch- und Niederfrequenzteils der Simulation, da das periodische
VCO-Signal lediglich implizit berechnet wird. Wird der Frequenzteiler beispielswei-
se mit Hilfe eines Flankenzählers separat modelliert und das VCO-Signal explizit
bestimmt, würde sich die Abtastzeit aufgrund des Nyquist-Kriteriums deutlich ver-
kleinern und sich somit die Simulationszeit und die erzeugte Datenmenge drastisch
vergrößern [13, 14]. Wird die kombinierte Modellierung verwendet, lässt sich das
hochfrequente Ausgangssignal des einzelnen VCO in der Nachbearbeitung der Si-
mulation mathematisch erzeugen.
Bei der Simulation ist darauf zu achten, dass die Integration innerhalb der VCO-
Modellierung diskreter Natur ist und sich für relativ große Abtastzeiten eine ent-
sprechende Ungenauigkeit der Simulation einstellt. Die Simulationsgenauigkeit und
-dauer werden somit direkt von der Abtastzeit beeinflusst.

3.2.2. Verilog-AMS

Für die Verhaltensmodellierung und spätere Verifikation des Gesamtsystems wird
oft Verilog-AMS verwendet. AMS steht für Analog-Mixed-Signal und beschreibt die
Möglichkeit, sowohl die analogen als auch die digitalen Komponenten einer Schal-
tung modellieren zu können. Dieser Ansatz wird von vielen Simulationsplattformen,
wie zum Beispiel Cadence und dem CppSim Simulator von Perrott [23, 70], un-
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3.2. Verhaltensbeschreibung

terstützt.
Da die Modellierung vergleichbar mit der Realisierung in Kapitel 3.2.1 ist und sich
nur durch die Syntax unterscheidet, wird hier lediglich das Lösungsverfahren näher
betrachtet. Die digitalen Teile des zu simulierenden Systems werden dabei lediglich
beim Über- oder Unterschreiten vordefinierter Schwellwerte ausgewertet. Dieses Ver-
halten wird in der Literatur als ereignisgesteuert bezeichnet, obwohl die Simulation
des Gesamtsystems durch den analogen Teil der Schaltung nicht in Gänze ereignisge-
steuert ist. Der Analogteil wird mittels einer näherungsweise konstanten Abtastzeit
abgetastet und ausgewertet [71]. Zu jedem dieser Zeitpunkte wird auch das digitale
Modul abgefragt und bei Über- oder Unterschreiten der Schwellwerte ausgewertet.
Somit stellt der Kern von Verilog-AMS einen Abtastzeit-basierten Lösungsansatz
dar, wobei die digitalen Module nur zu bestimmten Zeiten ausgewertet werden. Ein
Beispiel einer Verilog-AMS Modellierung sei hier gezeigt.

1 [ . . . ]
2 @ ( c r o s s (V( Ref ) −0.5 ,1)) begin
3 i f ( s t a t e==1 | | s t a t e==0)
4 s t a t e =1;
5 e l s e s t a t e =0;
6 end
7 [ . . . ]
8 analog begin
9 pha s e l i n = wc ∗ $abstime ;

10 num cycles = pha s e l i n / ‘M TWO PI ;
11 pha s e l i n = pha s e l i n − num cycles ∗ ‘M TWO PI ;
12 phase non l in = ‘M TWO PI∗ vco ga in ∗ idtmod (V( v c t l ) , 0 , 1 0 0 0 . 0 , 0 . 0 ) ;
13 V( v vco ) <+ vco amp∗ s i n ( pha s e l i n+phase non l in+pha s e i n i t ) ;
14 i n s t f r e q = vco c f + vco ga in ∗ V( v c t l ) ;
15 $bound step (1/( vco ppc ∗ i n s t f r e q ) ) ;
16 end
17 [ . . . ]

Bei diesem Ausschnitt ist zu erkennen, dass die ersten Zeilen lediglich ausgeführt
werden, falls die Schwellwerte erreicht werden. Die unteren Zeilen zeigen einen ana-
logen Teil des Systems, der mit einer begrenzten Abtastzeit (siehe Zeile 15) ausge-
wertet wird. Die ausführlichen Verilog-AMS Modelle eines Phasenregelkreises sind
im Anhang F zu sehen.
Für die spätere Verifikation von gemischt digital analogen Systemen bietet Cadence
für Verilog-AMS eine Vielzahl von Möglichkeiten an. Hierbei ist es jedoch erforder-
lich, dass die digitalen und analogen Module des Systems mittels sogenannter Ad-
apter verknüpft werden, damit die Verifikationsregeln sowohl aus dem digitalen als
auch aus dem analogen Bereich angewendet werden können [71]. Wegen dieser Ad-
apter und des abtastbasierten Lösungsverfahrens ist die Simulationszeit gerade für
Systeme mit einem Hoch- und einem Niederfrequenzteil nicht sehr effizient [13, 14].
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3. Grundlegende Modellierungsansätze der CP-PLL

3.2.3. SystemC-AMS

SystemC-AMS stellt ein Simulationswerkzeug für heterogene gemischt digital ana-
loge Systeme zur Verfügung, mit dessen Hilfe zunächst das dynamische Verhalten
repräsentiert wird [72–75]. Hierbei ist der Simulationsansatz, ähnlich wie bei Verilog-
AMS, zweigeteilt. Der digitale Teil der Schaltung wird lediglich beim Erreichen von
vordefinierten Schwellwerten der Eingangssignale ausgewertet, wobei der analoge
Teil des Systems basierend auf einer Abtastzeit berechnet wird [56]. Die Erweiterun-
gen von SystemC-AMS stellen eine Umgebung für die Modellierung, die Validierung
und den virtuellen Prototypenentwurf von gemischt digital analogen Systemen be-
reit [73]. Hierbei lassen sich die drei verschiedene Lösungsverfahren Timed Data
Flow (TDF), Linear Signal Flow (LSF) und Electrical Linear Networks (ELN) un-
terscheiden [21,68]. TDF verwendet eine näherungsweise konstante Abtastzeit und
tastet die Signale und Daten entsprechend ab. LSF verwendet hingegen zeitkonti-
nuierliche Module und beschreibt das Eingangs-Ausgangsverhalten mittels mathe-
matischer Funktionen. Für die Realisierung von elektrischen Baugruppen lässt sich
ELN verwenden. Hier werden einfache elektrische Quellen und lineare konzentrierte
Senken zugrunde gelegt und miteinander verbunden.
Obwohl Teile dieses Modellierungsansatzes ereignisgesteuert sind, bleibt der analoge
Teil Abtastzeit-basiert und unterliegt dem Nyquist-Kriterium. Gerade für pulswei-
tenmodulierte Systeme und Regelkreise mit einem Hoch- und Niederfrequenzteil
weist SystemC-AMS eine lange Simulationszeit auf [74] und begrenzt somit die
Möglichkeit einen schnellen Einblick in das Systemverhalten zu erhalten und einen
effizienten und robusten Entwurf zu gewährleisten [5].
Zu diesem Zweck wurde in [32] die Erweiterung SystemC-AMS dynamic TDF
(DTDF) eingeführt. Diese ermöglicht eine dynamische Anpassung der Abtastzeit
bezüglich des Systemverhaltens. Gerade für pulsweitenmodulierte Systeme bringt
diese Erweiterung eine deutliche Beschleunigung der Simulation mit sich. Dieser An-
satz ist vergleichbar mit dem ereignisgesteuerten Modell aus [19], dass in Kapitel 3.3
genauer beschrieben wird und in Kapitel 5.3 für nichtlineare und nicht-ideal Ef-
fekte erweitert wird. In [32] wird beispielhaft ein pulsweitenmodelliertes Modul in
SystemC-AMS DTDF modelliert, wobei dessen Eingangssignal zwischen den Zeit-
punkten der Ereignisse undefiniert bzw. als näherungsweise konstant angenommen
wird1. Das ereignisgesteuerte Modell nach [19] verwendet hingegen keine Näherung.

1Ein persönliches Gespräch mit Herrn Dr. Torsten Maehne, einem der Autoren von [32], ergab am
20.05.2016, dass SystemC-AMS dynamic TDF die Änderungen des Eingangssignals zwischen
den Ereignissen des PWM-Moduls als hinreichend klein annimmt und als konstant interpretiert.
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3.3. Ereignisgesteuerte Modellierung

3.3. Ereignisgesteuerte Modellierung

Da die CP-PLL einen gemischt digital analogen Regelkreis darstellt und der schalten-
de Charakter des Phasen- und Frequenzdetektors die Dynamik des Systems lediglich
zu den steigenden oder fallenden Flanken des Referenz- bzw. des Dividierersignals
ändert, liegt es nahe, die Beschreibung der Dynamik basierend auf diesen Ereig-
nissen zu realisieren. Da die Signalverläufe der Steuerspannung, des Stroms und
der beiden Phasen zwischen den Ereignissen bekannt sind, ist es ausreichend, den
Phasenregelkreis zu den Zeitpunkten der Ereignisse zu beschreiben und somit die
Simulation deutlich zu beschleunigen.
In [24, 25, 34] werden effiziente Ansätze zur Modellierung von Phasenregelkreisen
eingeführt. [25] stellt dabei ein nichtlineares Modell mit einer gleichmäßigen Abtas-
tung zu den Flanken des Referenzsignals dar. Das Modell von [24] basiert auf einer
ungleichmäßigen Abtastung. Beide Modelle werden in [4] miteinander verglichen,
wobei sich herausstellt, dass der Ansatz in [24] sehr akkurat und effizient ist.
In [19, 24] wurde das Grundprinzip des ereignisgesteuerten Modells des Phasenre-
gelkreises zweiter und dritter Ordnung vorgestellt. Diese Grundidee des ereignisge-
steuerten Modells lässt sich in Abb. 3.6 erkennen. Die Ereignisse tn, tn+1, . . . werden

uref(t)

udiv(t)

uctl(t)

t

t

t

tn tn+1

tn+2

tn+3

tn+4

Abb. 3.6.: Verlauf der Steuerspannung eines Phasenregelkreises dritter Ordnung zur Verdeut-
lichung des Grundprinzips der ereignisgesteuerten Modellierung

durch die steigenden Flanken des Referenzsignals und des Dividierersignals defi-
niert. Das ereignisgesteuerte Modell eines Phasenregelkreises stellt ein iteratives
Verfahren dar, das basierend auf den Phasengleichungen der Eingangssignale des
Phasendetektors lediglich die Zeitpunkte dieser Ereignisse berechnet [19,24,38] und
somit zu einer deutlichen Beschleunigung der Simulation führt. Dieses Verfahren
wird hier kurz vorgestellt und auf die Fractional-N PLL mit beliebiger Ordnung des
Schleifenfilters erweitert.
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3. Grundlegende Modellierungsansätze der CP-PLL

Die Phase des Referenzsignals zwischen den beiden Ereignissen tn und tn+1 ergibt
sich aus der Frequenz und der Anfangsphase zu

ϕref(tn+1) = ϕref(tn) + 2π

∫ tn+1

tn

fref(τ) dτ. (3.24)

Da die Frequenz fref des Referenzsignals für die Frequenzsynthese konstant ist, re-
sultiert die Phasengleichung des Referenzsignals zu

ϕref(tn+1) = ϕref(tn) + 2πfref (tn+1 − tn). (3.25)

Für die Definition der Phase des Ausgangssignales des Dividierers wird zunächst
die Phase des Ausgangssignals des VCO

ϕvco(tn+1) = ϕvco(tn) + 2π

∫ tn+1

tn

f(uctl(τ))dτ (3.26)

angegeben, wobei f(·) eine Funktion mit f : R → R ist und ϕvco(tn) die Phase
zum Zeitpunkt tn beschreibt. Da der Dividierer ein Proportionalglied bezüglich der
Phase darstellt, ergibt sich die Phase am Ausgang des Dividierers zu

ϕdiv(tn+1) = ϕdiv(tn) + 2π

∫ tn+1

tn

1

N(τ)
f(uctl(τ))dτ. (3.27)

Der wesentliche Unterschied dieser Gleichung im Vergleich zur Darstellung in [24] be-
steht im zeitvarianten Teilerverhältnis N(τ). Mittels dieser Verallgemeinerung lässt
sich das ereignisgesteuerte Modell zusätzlich auf die Fractional-N PLL anwenden,
wobei N(τ) durch die Differenzengleichungen in Kapitel 2.2.2 definiert ist.
Mit den Gleichungen (3.25) und (3.27) lassen sich die Zeitpunkte der steigenden
Flanken des Referenz- und des Dividierersignals bestimmen. Für die steigende Flan-
ke im Referenzsignal wird Gleichung (3.25) mit 2π gleichgesetzt und nach tn+1 um-
gestellt. Es gilt

trefn+1 = tn +
1− ϕref(tn)

2π
fref

. (3.28)

Hierbei bezeichnet trefn+1 den Zeitpunkt der steigenden Flanke des Referenzsignals
und tn beschreibt den vorherigen Zeitpunkt des iterativen Algorithmus zur ereignis-
gesteuerten Modellierung. Für die Berechnung von tdivn+1 wird analog zum vorange-
gangenen Schritt die Gleichung (3.27) mit 2π gleichgesetzt. Es ergibt sich

2π = ϕdiv(tn) + 2π

∫ tdivn+1

tn

1

N(τ)
f(uctl(τ))dτ. (3.29)
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3.3. Ereignisgesteuerte Modellierung

Für die Berechnung des Ereignisses von udiv(t) ist die analytische Beschreibung der
Steuerspannung uctl(t) (siehe Gleichung (2.13)) notwendig. Für eine nichtlineare
Kennlinie des VCO oder eine nicht bijektive Steuerspannung zwischen tn und tn+1

ist die analytische Berechnung des Zeitpunktes tdivn+1 nicht möglich. In diesem Fall
müssen numerische Verfahren die Gleichung

ϕdiv(t
div
n+1)− 2π = 0 (3.30)

lösen. Das Regula-Falsi-Verfahren (auch Sekantenverfahren genannt) [76] löst dabei
die Gleichung g(c) = 0 mit der Vorschrift

cn+1 = cn −
cn − cm

g(cn)− g(cm)
g(cn) mit n = 1,2, . . . und m < n (3.31)

und c0 und c1 sind dabei als Startwerte gegeben. Dieses Verfahren konvergiert sicher,
wenn m jeweils so gewählt wird, dass g(cn) und g(cm) verschiedene Vorzeichen
aufweisen [76].
Mit den eingeführten Gleichungen lassen sich alle Zeitpunkte der steigenden Flanken
und deren zugehörige Phasen berechnen. Der Zeitpunkt des nächsten Ereignisses
ergibt sich aus dem Minimum der Zeiten trefn+1 und tdivn+1. Somit resultiert

tn+1 = min
{
trefn+1, t

div
n+1

}
. (3.32)

Auf Basis des Zeitpunktes tn+1 lassen sich die weiteren Signale des Phasenregelkrei-
ses bestimmen. Die Signale des Phasen- und Frequenzdetektors und der Ladungs-
pumpe sind in Kapitel 2.2.1 definiert. Die Steuerspannung ist durch das Zustands-
raummodell definiert und lässt sich durch

uctl(tn+1) = cTx(tn+1) + d ip(tn) (3.33)

beschreiben, wobei

x(tn+1) = Φ(tn+1 − tn)x(tn) +
∫ tn+1

tn

Φ(tn+1 − τ)bip(τ) dτ (3.34)

gilt. x(tn) definiert dabei den Vektor aus den Spannungen über den Kapazitäten des
Schleifenfilters und Φ(tn+1 − tn) ist die Transitionsmatrix. Der Phasenfehler ergibt
sich aus

ϕe(tn+1) = ϕref(tn+1)− ϕdiv(tn+1). (3.35)

Die periodischen Eingangssignale des PFD und das Ausgangssignal des VCO lassen
sich nach der Simulation mittels der Phasen rekonstruieren. Somit lassen sich alle
Zeitpunkte tn und die zugehörigen Signale iterativ berechnen.
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3. Grundlegende Modellierungsansätze der CP-PLL

Mit dieser Verallgemeinerung des ereignisgesteuerten Modells ist sowohl eine be-
liebige Ordnung des Schleifenfilters als auch eine nichtlineare Kennlinie des VCO
möglich (vgl. [40]). Für den Algorithmus lassen sich die relevanten Größen des Pha-
senregelkreises in einem Vektor

rn = [tn,S(tn), E(tn), N(tn), ϕref(tn), ϕdiv(tn),x(tn), ip(tn)]
T (3.36)

zusammenfassen. Hierbei beschreibt E(tn) das auftretende Ereignis zum Zeitpunkt
tn. Der sich ergebende Algorithmus 3.3.1 ist in Abb. 3.7 grafisch dargestellt.

Algorithmus 3.3.1 Iteratives Verfahren der ereignisgesteuerten Modellierung

1: Initialisierung von rk und i := 1
2: while tn ≤ StopZeit do
3: Berechnung der Zeiten trefn+1 und tdivn+1

4: tn+1 := min
{
trefn+1, t

div
n+1

}

5: Bestimmung des Zustands und des Stroms
6: Berechnung der Steuerspannung
7: Bestimmung der Phase des Referenz- und des Dividierersignals
8: Speichern der berechneten Parameter in rn+1

9: Neue Anfangsbedingung tn := tn+1

10: Neue Anfangsbedingungen rn := rn+1

11: Outi := rn+1

12: i++
13: end while

Der große Vorteil dieser Modellierung besteht im komplett ereignisgesteuerten und
akkuraten Lösungsverfahren, sodass sowohl die Simulationszeit als auch die gene-
rierten Daten deutlich reduziert werden können und die Genauigkeit des Modells
gewährleistet wird. Somit wird eine effiziente und umfassende Charakterisierung des
dynamischen Systemverhaltens ermöglicht.
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rn, i

rn := rn+1

Berechne rn+1

tn ≤ StopZeitEnde

ja

nein

Outi := rn+1

i++

Abb. 3.7.: Grafische Darstellung des ereignisgesteuerten Algorithmus

3.4. Vergleich der verschiedenen Modelle

Die vorgestellten Methoden der Modellierung lassen sich auf zwei Ebenen miteinan-
der vergleichen. Der erste und vielleicht wichtigste Vergleich ist die Gültigkeit und
die Genauigkeit der Modelle. Die zweite Ebene ist die Simulationsgeschwindigkeit
und der damit einhergehende effiziente Einblick und Entwurf des Systemverhaltens.
Zu diesem Zweck wird zunächst ein idealer Phasenregelkreis entfernt der Ruhelage
für die Verhaltensbeschreibung und für das ereignisgesteuerte Modell untersucht.
Dieser Phasenregelkreis ist für eine Bluetooth-Anwendung ausgelegt und weist die
folgenden Parameter auf: fref = 200 kHz, fvco = 2,4GHz, Ip = 30µA, R1 = 2kΩ,
C1 = 1nF, C2 = 0,1 nF und Kv = 2GHz/V. Die Simulationsergebnisse der Ver-
haltensbeschreibung (hier wurde Simulink verwendet) und der ereignisgesteuerten
Modellierung sind in Abb. 3.8 zu sehen. Zur besseren Vergleichbarkeit und zur Be-
rechnung der Differenz zwischen beiden Modellen wurde das ereignisgesteuerte Mo-
dell mit zusätzlichen Punkten zwischen tn und tn+1 simuliert. Es ist zu erkennen,
dass beide Modelle identische Ergebnisse liefern. Die Differenz bewegt sich in ei-
nem Bereich von ±0,04% der Zielspannung ut = 1,2V. Dieser Unterschied ist nicht
durch die verschiedenen Modellierungsansätze begründet, sondern ist auf die nume-
rischen Ungenauigkeiten der unterschiedlichen Lösungsmethoden zurückzuführen.
Trotz dieser großen Genauigkeit beträgt die Simulationszeit der Verhaltensbeschrei-
bung 16 s und die des ereignisgesteuerten Modells lediglich 1,2 s. Dies bedeutet,
dass das ereignisgesteuerte Modell bereits ca. 15-mal schneller ist, obwohl die Ver-

47



3. Grundlegende Modellierungsansätze der CP-PLL

u
ct
l
/
V

Verhaltensbeschreibung

Event-Driven
D
iff
er
en
z
/
m
V

Zeit / ms
0 0.4 0.8 1.2

0 0.4 0.8 1.2

-0.5

0

0.5

0

0.5

1

1.5

Abb. 3.8.: Vergleich der verhaltensbasierten Beschreibung mittels Simulink und des ereignisge-
steuerten Modells anhand einer Integer-N PLL

haltensbeschreibung keinen Hochfrequenzteil aufweist und das ereignisgesteuerte
Modell mit jeweils 100 zusätzlichen Punkten zwischen den eigentlichen Ereignis-
sen simuliert wurde. Diese 100 zusätzlichen Punkte wurden lediglich für die feinere
grafische Darstellung und die somit bessere Vergleichbarkeit der Simulationsergeb-
nisse verwendet; sie sind für die ereignisgesteuerte Simulation nicht notwendig. Eine
entsprechende ereignisgesteuerte Simulation ohne diese zusätzlichen Punkte dauert
0,14 s und ist somit über 100-mal schneller als die verhaltensbasierte Simulation.
Werden der Hochfrequenzteil im Verhaltensmodell mit berücksichtigt und die Ab-
tastzeit entsprechend angepasst, wird die Simulationszeit deutlich verlängert. Der
Geschwindigkeitsgewinn des ereignisgesteuerten Modells ist somit erheblich größer.
Wird der CppSim Simulator von M.H. Perrott aus [70] für die Simulation einer
idealen PLL zugrunde gelegt und die Ergebnisse mit deren des ereignisgesteuerten
Modells verglichen, zeigt sich, dass die ereignisgesteuerte Simulation fast 150-mal
schneller als die Simulation mit CppSim ist.
Werden das Teilerverhältnis und der Filterwiderstand des Phasenregelkreises zu
N = 12000,2 und R1 = 20 kΩ geändert, lässt sich eine Fractional-N PLL mit ei-
nem größeren Dämpfungsbeiwert betrachten. Die Ergebnisse der verhaltensbasier-
ten Simulation und des ereignisgesteuerten Modells sind in Abb. 3.9 dargestellt.
Auch für eine Fractional-N PLL sind die Ergebnisse beider Modellierungsansätze
nicht voneinander zu unterscheiden. Selbst nahe der Ruhelage ist das Schalten des
Σ∆-Modulators beider Modelle identisch und führt zu einer Periodizität der Steuer-
spannung. Die Periode 1/ffrac wird dabei durch den Σ∆-Modulator mit konstanter
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Abb. 3.9.: Ausschnitt der Simulationsergebnisse einer Fractional-N PLL basierend auf der Ver-
haltensbeschreibung und dem ereignisgesteuerten Modell

Eingangsgröße definiert. Wird dieser Phasenregelkreis für einen Betrachtungszeit-
raum von 5ms simuliert, ist das ereignisgesteuerte Modell für dieses Beispiel über
200-mal schneller als die Verhaltensbeschreibung.

Für den Vergleich des linearen Modells mit der ereignisgesteuerten Modellierung
wird die oben eingeführte Integer-N PLL nahe der Ruhelage betrachtet. Hierzu wer-
den die Kapazitäten des Schleifenfilters vorgeladen, sodass sich eine Spannung über
den Kapazitäten von 0,8V ergibt. Die Ergebnisse beider Modelle sind in Abb. 3.10
dargestellt.

Während das ereignisgesteuerte Modell innerhalb der Steuerspannung die Auf- und
Endladeeffekte des Schleifenfilters berücksichtigt, repräsentiert das lineare Modell
lediglich das mittlere Verhalten des Phasenregelkreises. Für kleine Phasenfehler ist
die Steuerspannung des linearen Modells nahe der unteren Werte der Aufladeeffek-
te und für Phasenfehler nahe 2π entspricht das lineare Modell den oberen Werten
der Aufladekurve. Werden die Phasenfehlernulldurchgänge betrachtet, ist ersicht-
lich, dass diese Zeitpunkte für das lineare und das ereignisgesteuerte Modell iden-
tisch sind. Zudem entsprechen diese Zeitpunkte den Wechseln zwischen Auf- und
Endladeeffekten des ereignisgesteuerten Modells (engl. Event-Driven Model, kurz:
ED-Modell). Dies ist durch die Mittelung des linearen Modells zu erklären. Da die
Phaseninformationen einer Integration der Steuerspannung entsprechen und somit
der Mittelung ähneln, sind die Phasenfehler des linearen und des ereignisgesteuer-
ten Modells identisch. Die lokalen Maxima der Steuerspannung des linearen Modells
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Abb. 3.10.: Vergleich des linearen Modells und der ereignisgesteuerten Modellierung anhand
einer Integer-N PLL

sind jedoch gegenüber dem ED-Modell zeitlich versetzt.
Aufgrund der Vergleichbarkeit der Phasenfehler des linearen und des ereignisgesteu-
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erten Modells lassen sich die dynamischen Kenngrößen im Zeitbereich des linearen
Modells (siehe Kapitel 3.1) für −2π ≤ ϕe ≤ 2π in erster Näherung auch für das
schaltende System verwenden. Lediglich die Bestimmung der lokalen Extrema wird
durch die Betrachtung der Phasenfehlernulldurchgänge ersetzt. Für Phasenfehler
außerhalb ±2π ergibt sich jedoch ein Ziehbereich in der Regelung, wie in Abb. 3.8
zu erkennen ist. Das lineare Modell ist nicht in der Lage, dieses Verhalten nachzu-
bilden, womit dessen Kenngrößen im Zeitbereich nicht mehr gültig sind.

Für eine Betrachtung des Phasenregelkreises nahe der Ruhelage bietet sich das li-
neare Modell aufgrund der einfachen Auswertung und Analyse an. Ist es jedoch
notwendig, das nichtlineare und schaltende Verhalten des Phasenregelkreises bei
der Charakterisierung zu berücksichtigen, ist entweder die Verhaltensbeschreibung
oder das ereignisgesteuerte Modell zu verwenden. In diesem Fall weist das ereignis-
gesteuerte Modell den Vorteil der hocheffizienten und akkuraten Simulation auf und
ermöglicht eine schnelle und umfassende Charakterisierung.
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KAPITEL 4

Stabilität der modellierten idealen
CP-PLL

Bei der Beurteilung der Performanz von Regelkreisen ist die Stabilität eine der wich-
tigsten Kenngrößen, da diese ein Maß für die Regelgüte sein kann. Beispielsweise
beeinflusst sie bei der Frequenzsynthese die Frequenzreinheit erheblich. Aufgrund
des nichtlinearen und schaltenden Verhaltens des Phasenregelkreises zur Frequenz-
synthese werden in der Literatur verschiedenste Approximationsansätze zur Beurtei-
lung der Stabilität verwendet. Basierend auf dem linearen Modell (siehe Kapitel 3.1)
lässt sich die Stabilität beispielsweise mittels des Hurwitzpolynoms überprüfen. Das
schaltende Verhalten des Systems wird hierbei jedoch nicht berücksichtigt. Daher
wurde 1980 von F.M. Gardner [3] ein lineares zeitdiskretes Modell verwendet, um
die Konvergenzeigenschaften des Systems zu beurteilen. Die zugrunde liegenden
Annahmen beschränken die Gültigkeit dieses Modell erheblich und stellen für den
Phasenregelkreis dritter Ordnung eine komplexe Bedingung dar. Aus diesem Grund
wird für den praktischen Entwurf meist eine empirische Richtlinie [7] verwendet.
Diese basiert auf dem Verhältnis der Referenzfrequenz zur Eigenfrequenz des un-
gedämpften linearen Modells. Da die vorangegangenen Bedingungen auf einer frühen
Linearisierung beruhen, ist der Geltungsbereich auf den Bereich nahe der Ruhela-
ge beschränkt. Daher wird im Verlauf dieses Kapitels die Stabilitätsbetrachtung
zusätzlich basierend auf dem ereignisgesteuerte Modell untersucht und mit den be-
kannten Kriterien verglichen. Die Beurteilung der verschiedenen Stabilitätskriterien
ermöglicht einen robusten Systementwurf des gemischt digital analogen Phasenre-
gelkreises. Teile dieser Untersuchungen wurden auch in [20] veröffentlicht.
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4. Stabilität der modellierten idealen CP-PLL

4.1. Stabilität des linearen zeitkontinuierlichen

Modells

Wird die Stabilität des linearen zeitkontinuierlichen Modells betrachtet, lässt sich
die Stabilität mit verschiedenen Methoden prüfen. Zwei Beispiele hierfür sind die
Hurwitz-Stabilität, die das Nennerpolynom des geschlossenen Regelkreises beurteilt,
und das Nyquist-Kriterium, das die offene Regelschleife für die Betrachtung verwen-
det [77].
Das Nyquist-Kriterium beruht auf der Phasenreserve ϕPM und der Durchtrittskreis-
frequenz ωD des offenen Regelkreises. Diese Parameter werden häufig auch für den
Entwurf der Schleife verwendet, da die Phasenreserve direkt mit dem Überschwin-
ger und die Durchtrittskreisfrequenz mit der Anstiegszeit des linearen Modells zu-
sammenhängen. Die Durchtrittskreisfrequenz ist die Kreisfrequenz, bei der der Be-
trag der Übertragungsfunktion der offenen Regelschleife gleich eins ist [78] (siehe
Abb. 4.1)

|G0(jωD)|2 = 1 (4.1)

Basierend auf der Durchtrittskreisfrequenz lässt sich die Phasenreserve zu

ϕPM = arg (G0(jωD)) + π (4.2)

definieren. Für einen BIBO-stabilen1 Regelkreis vom einfachen Typ muss eine posi-

Re{G0(jω)}

Im
{G

0
(j
ω
)}

ω

ωD

ϕPM

Ortskurve
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Abb. 4.1.: Ortskurve des linearen kontinuierlichen Systems
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tive Phasenreserve gewährleistet werden.

Für die Hurwitz-Stabilitätsbetrachtung wird die BIBO-Stabilität des geschlossenen
Regelkreises mit Hilfe der Übertragungsfunktion des linearen Modells herangezogen.
Das Nennerpolynom der Übertragungsfunktion lässt sich dabei in die Form

D(s) =
M∑

i=0

ri s
i = rM

M∏

j=1

(s− pj) (4.3)

bringen. Ein lineares dynamisches System mit dem Nennerpolynom der Übertra-
gungsfunktion aus Gleichung (4.3) erfüllt die BIBO-Stabilität, falls alle Nullstellen
pj des Nennerpolynoms in der linken offenen s-Halbebene liegen. Dies ist gegeben,
wenn die Nullstellen einen negativen Realteil aufweisen (Re{pj} < 0). Ein solches
Nennerpolynom wird Hurwitzpolynom genannt. Mit Hilfe des Routh-Schemas lässt
sich prüfen, ob ein Hurwitzpolynom vorliegt [78–80]. Für ein Nennerpolynom mit
reellen Koeffizienten und rM > 0, wobei M die Ordnung des Polynoms bezeichnet,
ergeben sich in Abhängigkeit von der Ordnung folgende notwendige und hinreichen-
de Bedingungen für ein Hurwitzpolynom:
Für M = 2 ergibt sich

ri > 0 für i = 0, . . . ,M = 2 (4.4)

mit M = 3 resultieren

ri > 0 für i = 0, . . . ,M = 3
r1r2 > r0r3

(4.5)

und für M = 4 sind

ri > 0 für i = 0, . . . ,M = 4
r2r3 > r1r4 und r1r2r3 > r0r

2
3 + r21r4

(4.6)

gegeben. Werden diese Bedingungen auf die Übertragungsfunktion des Phasenregel-
kreises zweiter Ordnung angewendet (siehe Gleichung (3.9)), ist ersichtlich, dass die
Regelschleife zweiter Ordnung für eine positive Schleifenverstärkung KvIp/(2πN)
und passive Elemente des Schleifenfilters immer BIBO-stabil ist.
Für eine positive Schleifenverstärkung und passive Schleifenfilterelemente ist die
notwendige Bedingung ri > 0 mit i = 0, . . . ,M = 3 für den Phasenregelkreis drit-
ter Ordnung ebenfalls erfüllt. Die Auswertung der hinreichenden Bedingungen aus
Gleichung (4.5) ergibt

C1 + C2 > C2 (4.7)

1BIBO-Stabilität (Bounded Input Bounded Output) beschreibt die Stabilität des Systems in Be-
zug auf das Eingangs-Ausgangs-Verhalten des Systems.
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4. Stabilität der modellierten idealen CP-PLL

und ist für einen typischen Schleifenfilter mit C1 > 0 erfüllt. Das Modell dieses Pha-
senregelkreises beschreibt somit für reale Bauteilparameter ebenfalls immer einen
BIBO-stabilen Regelkreis und es zeigt sich deutlich, dass eine Stabilitätsbetrach-
tung anhand des linearen zeitkontinuierlichen Modells bis zur dritten Ordnung des
Systems nicht aussagekräftig ist. Die Realität zeigt, dass die nichtlinearen und schal-
tende Phasenregelkreise durchaus instabiles Verhalten aufweisen können.

4.2. Stabilität des linearen zeitdiskreten Modells

Das zeitkontinuierliche lineare Modell des Phasenregelkreises aus Kapitel 3.1 eig-
net sich für die Stabilitätsbetrachtung nur bedingt, da dieses Modell für positive
Schleifenparameter, die für einen realen Phasenregelkreis gegeben sind, bis zur drit-
ten Ordnung des Systems immer BIBO-stabiles Verhalten vorhersagt. Daher wird
in [3] von F.M. Gardner das lineare zeitdiskrete Modell für die Stabilitätsuntersu-
chung verwendet, welches das diskrete Verhalten der Schleife berücksichtigt. Dazu
werden Differenzengleichungen der PLL im eingerasteten Bereich aufgestellt, wobei
die Annahmen und Vereinfachungen ϕref ≈ ϕdiv und Tref ≈ Tdiv getroffen werden.
Im Speziellen wird dabei eine Schaltsequenz des Phasen- und Frequenzdetektors
betrachtet, die aus einem Überschwinger der VCO-Frequenz resultiert. Basierend
auf dem PFD-Zustand lässt sich diese Schaltsequenz durch

S−1 → S0 → S+1 → S0 (4.8)

beschreiben. Zur weiteren Vereinfachung werden der Zeitpunkt für den Übergang
S+1 → S0, der durch die gesteuerte Flanke des VCO ausgelöst wird, und die Pha-
se des Oszillators approximiert. Mittels dieser Betrachtung lässt sich eine Über-
tragungsfunktion des linearen zeitdiskreten Modells im z-Bereich ableiten, dessen
Nennerpolynom für das Modell zweiter Ordnung wie folgt angegeben werden kann

D(z) = (z − 1)2 + (z − 1)
2πK ′

ωrefτ1

[
1 +

2π

ωrefτ1

]
+

4π2K ′

ω2
refτ

2
1

. (4.9)

Hierbei bezeichnet ωref die Eingangskreisfrequenz. Des Weiteren ergibt sich
K ′ = KϕKv,ωR1τ1/N und τ1 = R1C1 [3]. Für

K ′ <
4

(
1 + 2π

ωrefτ1

)2 (4.10)

verlaufen die Nullstellen pi auf einem Kreis innerhalb des Einheitskreises (siehe
Abb. 4.2 [39]) und das Modell des Phasenregelkreises ist BIBO-stabil. Wird der
Faktor K ′ größer, bewegt sich eine Nullstelle auf der reellen Achse Richtung −∞,
während die andere Nullstelle auf der reellen Achse den Mittelpunkt des Kreises
innerhalb des Einheitskreises anstrebt. Die Nullstellen pi des Nennerpolynoms ver-
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Re{z}

Im
{z
}

Stabilitäts-
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Abb. 4.2.: Wurzelortskurve des linearen Abtastsystems zweiter Ordnung [39]

lassen den Einheitskreis, wenn

K ′ ≥ 1

π
ωrefτ1

(
1 + π

ωrefτ1

) (4.11)

gilt. In diesem Fall ist das Modell der PLL instabil.

Wird die vorangegangene Betrachtung auf die PLL dritter Ordnung angewendet,
ergibt sich das Nennerpolynom zu

D3(z) = z3 + z2
[
−a− 2 + β

(
2π

ωrefτ1
+

(1− a)(b− 1)

b

)]

+z

[
2a+ 1− β

(
2πa

ωrefτ1
+

(1− a)(b− 1)

b

)]
− a,

(4.12)

wobei

β =
2πKτ1(b− 1)

bωrefτ1
(4.13)

57



4. Stabilität der modellierten idealen CP-PLL

gilt. Die daraus resultierende Stabilitätsbedingung ist durch

Kτ1 <
2 (1 + a) b ωrefτ1

π (b− 1)

(
2π (1 + a)

ωrefτ1
+

2 (1− a) (b− 1)

b

) (4.14)

gegeben [3]. Hierbei gelten die Zusammenhänge

b = 1 +
C1

C2

(4.15)

und

a = e
−

2πb

ωrefτ1 . (4.16)

Des Weiteren ist der Verstärkungsfaktor des geschlossenen Regelkreises mit

K =
KϕKv,ωR1

N
(4.17)

definiert und der Schleifenfilterparameter τ1 ergibt sich zu

τ1 = R1C1. (4.18)

Für den Grenzübergang des Phasenregelkreises dritter Ordnung zur Regelschleife
zweiter Ordnung tendiert die Kapazität C2 gegen Null und b somit gegen ∞. Der
Quotient b/(b − 1) lässt sich entsprechend mit eins approximieren und schließlich
geht die Stabilitätsbedingung für den Regelkreis dritter Ordnung in das Kriteri-
um der PLL zweiter Ordnung über. Der Vergleich der Grenzen für den Regelkreis
zweiter und dritter Ordnung ist in Abb. 4.3 dargestellt. Die Differenz zwischen den
Stabilitätsgrenzen des Phasenregelkreises zweiter und dritter Ordnung ist gerade
für große ωrefτ1 erkennbar, wobei der Ablösepunkt beider Grenzen durch b definiert
wird und für b→∞ gegen unendlich verschoben wird.
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Abb. 4.3.: Grafische Darstellung der Stabilitätsgrenze nach Gardner für den Phasenregelkreis
zweiter und dritter Ordnung mit variierendem b

4.3. Stabilität basierend auf dem

Abtastverhältnis

Die bisher vorgestellten Stabilitätsbedingungen sind entweder für die Auslegung der
Regelschleife nur bedingt verwendbar oder liefern komplexe Beziehungen, die sich
nur mit entsprechendem Aufwand auswerten lassen. Für den einfachen und schnel-
len Entwurf des Phasenregelkreises unter Berücksichtigung der Stabilität wird daher
oft eine

”
Daumenregel“ verwendet [7]. Da diese Regel in der Praxis bestätigt wer-

den konnte, lässt sie sich auch als empirische Stabilitätsbedingung bezeichnen. Diese
Grenze basiert auf dem Verhältnis der Eigenkreisfrequenz des ungedämpften Sys-
tems, die eine grobe Abschätzung der Schleifenbandbreite ist, und der Kreisfrequenz
des Referenzsignals:

ωref

ωn

> α. (4.19)

Diese Bedingung stellt eine Art Abtastverhältnis dieses Regelkreises dar, wobei typi-
scherweise α = 10 definiert wird. Ist die Referenzkreisfrequenz um mindestens eine
Größenordnung größer als die Eigenkreisfrequenz des Systems, sodass eine genügen-
de Abtastung des dynamischen Verhaltens gegeben ist, und der Phasenfehler ver-
bleibt innerhalb des Schlauchs ±2π, wird bei diesem Ansatz das schaltende Ver-
halten der PLL vernachlässigt und ein lineares und quasi-kontinuierliches Modell
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4. Stabilität der modellierten idealen CP-PLL

zugrunde gelegt. Dieses Modell ist für den Phasenregelkreis zweiter und dritter Ord-
nung BIBO-stabil, wie in Kapitel 4.1 gezeigt wird.
Für die bessere Vergleichbarkeit der empirischen Grenze mit der Bedingung von
Gardner, lässt sich diese wie folgt umformen. Die Eigenkreisfrequenz des Phasenre-
gelkreises zweiter Ordnung ist mit

ωn =

√
Kv,ωKϕ

NC1

(4.20)

definiert. Mit dieser Eigenkreisfrequenz und der Gleichung (4.19) lässt sich die
empirische Stabilitätsbedingung des Regelkreises zweiter Ordnung in die Gardner-
Darstellung (siehe Kapitel 4.2) umformen

Kτ1 <
1

α2
(ωrefτ1)

2 . (4.21)

Aufgrund des lediglich quadratischen Verlaufes mit ωrefτ1, ist diese Bedingung deut-
lich einfacher auszuwerten, als die Kriterien aus Kapitel 4.2.

Für den Phasenregelkreis dritter Ordnung lässt sich eine Approximation der Eigen-
kreisfrequenz

ωn =

√
Kv,ωKϕ

N(C1 + C2)
(4.22)

aus [1] (S.106 und S.42) verwenden. Wird Gleichung (4.22) in (4.19) eingesetzt, lässt
sich die empirische Stabilitätsbedingung in die Form der Gardner-Grenze bringen

Kτ1 <
b

α2(b− 1)
(ωrefτ1)

2 . (4.23)

Es ist ersichtlich, dass auch diese empirische Grenze eine lediglich quadratische
Abhängigkeit von ωrefτ1 aufweist und somit deutlich einfacher auszuwerten und zu
analysieren ist. Wird der Grenzübergang des Phasenregelkreises dritter Ordnung hin
zur zweiten Ordnung betrachtet, tendiert die Kapazität C2 gegen Null. Der Term b
wird dabei immer größer und der Quotient b/(b− 1) lässt sich mit eins approximie-
ren. Somit geht die Stabilitätsbedingung des Phasenregelkreis dritter Ordnung für
kleiner werdende Kapazitäten C2 in die Bedingung des Phasenregelkreises zweiter
Ordnung über.
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4.4. Analytische Stabilitätsbedingung basierend

auf dem ereignisgesteuerten Modell

Die vorgestellten Stabilitätsbedingungen basieren auf dem linearen Modell des Pha-
senregelkreises, welches durch eine frühe Approximation hergeleitet wird. In [30]
wird gezeigt, dass diese a priori Linearisierung der einzelnen Komponenten des Pha-
senregelkreises keine vollständige Analyse erlaubt. Daher wird das ereignisgesteuerte
Modell zur Herleitung einer neuen analytischen Stabilitätsbedingung herangezogen.
Dieser Ansatz, der eine deutlich spätere Linearisierung verwendet, ermöglicht eine
Berücksichtigung von nichtlinearen und nicht-idealen Effekten und vergrößert den
Gültigkeitsbereich der Stabilitätsbetrachtung. Eine entsprechende Stabilitätsbedin-
gung für den Phasenregelkreis zweiter Ordnung wird in [39] vorgestellt.
Im Folgenden wird die Stabilitätsbedingung für den Phasenregelkreis dritter Ord-
nung mittels der indirekten Lyapunov-Methode hergeleitet. Ist ein freies und zeit-
invariantes nichtlineares System

xn+1 = g(xn) (4.24)

mit der Ruhelage xR = 0 gegeben, ermöglicht die indirekte Lyapunov-Methode
einen Rückschluss auf die Stabilität der Ruhelage des nichtlinearen Systems anhand
der Stabilitätsanalyse des um die Ruhelage linearisierten Systems (vgl. [81]). Ist die
Ruhelage xR nicht Null, lässt sich dies durch eine Koordinatentransformation errei-
chen. Für die Linearisierung lässt sich die Taylorreihenentwicklung um die Ruhelage
nach dem ersten Glied abbrechen. Es gilt

xn+1 = g(xn) = g(0) +Axn + r(xn), (4.25)

wobei r(xn) die Restglieder der Taylorreihe beschreibt und xR = 0 gilt. Die Rest-
glieder der Taylorreihe konvergieren für xn → 0 schneller gegen Null als die Norm
des Zustandsvektors

lim
||xn||→0

r(xn)

||xn||
= 0 (4.26)

und das nichtlineare System lässt sich in der Form

xn+1 ≈ Axn (4.27)

darstellen. Die Stabilitätsprüfung der Ruhelage basiert nunmehr auf der Analyse
des charakteristischen Polynoms der Matrix A mittels des Jury-Kriteriums für
lineare zeitdiskrete Systeme [82]. Liegen alle Nullstellen dieses Polynoms innerhalb
des Einheitskreises, ist das linearisierte System asymptotisch stabil und mittels der
indirekte Lyapunov-Methode ist somit die Ruhelage xR des nichtlinearen Systems
ebenfalls asymptotisch stabil [81].
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Da sich das ereignisgesteuerte Modell des Phasenregelkreis jedoch als zeitvariantes,
nichtlineares und gesteuertes Gleichungssystem

xn+1 = g(xn, ϕref,n, tn) (4.28)

mit xn = [uctl,n,uc1,n,ϕe,n]
T darstellt (siehe folgendes Kapitel und vgl. Kapitel 3.3),

wird im Folgenden ein freies und zeitinvariantes Gleichungssystem hergeleitet, dass
sich auch als ein autonomes Differenzengleichungssystem bezeichnen lässt. Hierzu
werden die Gleichungen der Schleifenfilterspannungen uctl(t), uc1(t) und des Pha-
senfehlers ϕe(t) zugrunde gelegt. Die CP-PLL stellt ein schaltendes System dar,
sodass das Gleichungssystem jeweils zwischen den Schaltzeitpunkten ausgewertet
wird. Da diese Schaltzeitpunkte wiederum von den Schleifenfilterspannungen be-
einflusst werden, ist das Gleichungssystem nichtlinear. Dieses wird hier zunächst
linearisiert. Anschließend werden die resultierenden Gleichungen in ein Differenzen-
gleichungssystem überführt, dass nicht explizit von der Zeit und der Eingangsgröße
abhängt. Solche Differenzengleichungen werden autonom genannt [83]. Mittels des
Jury-Kriteriums für lineare Differenzengleichungen lässt sich dann das lineare, zei-
tinvariante und zeitdiskrete Modell auf Stabilität prüfen. Die indirekte Lyapunov-
Methode erlaubt schließlich einen Rückschluss auf die Stabilität der Ruhelage des
nichtlinearen Phasenregelkreises. Es wird gezeigt, dass sich trotz der späteren Li-
nearisierung Stabilitätsbedingungen mit lediglich quadratischer Abhängigkeit von
ωrefτ1 ergeben.

4.4.1. Herleitung autonomer Differenzengleichungen

Da für die Herleitung der Stabilitätsbedingungen des Phasenregelkreises dritter Ord-
nung keine a priori Linearisierung verwendet wird, werden die exakten Gleichungen
der Schleifenfilterspannungen

uc1(t) =
C2

(
1− exp

{
− (C2+C1)(t−t0)

R1C1C2

})
uctl(t0)

C2 + C1

+

(
C2 exp

{
− (C2+C1)(t−t0)

R1C1C2

}
+ C1

)
uc1(t0)

C2 + C1

+
ip(t0) (C1 + C2) (t− t0)

(C2 + C1)
2

+
ip(t0)R1C1C2

(
exp

{
− (C2+C1)(t−t0)

R1C1C2

}
− 1
)

(C2 + C1)
2

(4.29)
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und

uctl(t) =

(
C1 exp

{
− (C2+C1)(t−t0)

R1C1C2

}
+ C2

)
uctl(t0)

C2 + C1

+
C1

(
1− exp

{
− (C2+C1)(t−t0)

R1C1C2

})
uc1(t0)

C2 + C1

+
ip(t0) (C1 + C2) (t− t0)

(C2 + C1)
2

+
ip(t0)R1C

2
1

(
1− exp

{
− (C2+C1)(t−t0)

R1C1C2

})

(C2 + C1)
2

(4.30)

verwendet. Diese resultieren aus der Zustandsraumdarstellung des Schleifenfilters in
Abb. 2.8 (siehe auch Kap. 2.2.1) und der Lösung des Zustandsvektors

xLF(t) =

[
uctl(t)
uc1(t)

]
= Φ(t− t0)xLF(t0) +

∫ t

t0

Φ(t− τ)b2 ip(τ) dτ, (4.31)

wobei Φ(t− t0) die Transitionsmatrix

Φ(t− t0) = eA2(t−t0) =
∞∑

k=0

Ak
2

(t− t0)k
k!

(4.32)

ist. Für die schaltende CP-PLL wird dieses Gleichungssystem zwischen den Schalt-
zeitpunkten tn und tn+1 ausgewertet. tn+1 wird dabei wiederum durch die Schleifen-
filterspannungen uctl und uc1 zum Zeitpunkt tn beeinflusst (siehe Kap. 3.3), sodass
sich die explizit von der Zeit abhängigen und nichtlinearen Gleichungen der Span-
nungen

uc1,n+1 =
C2

(
1− exp

{
− (C2+C1)(tn+1−tn)

R1C1C2

})
uctl,n

C2 + C1

+

(
C2 exp

{
− (C2+C1)(tn+1−tn)

R1C1C2

}
+ C1

)
uc1,n

C2 + C1

+
ip,n (C1 + C2) (tn+1 − tn)

(C2 + C1)
2

+
ip,nR1C1C2

(
exp

{
− (C2+C1)(tn+1−tn)

R1C1C2

}
− 1
)

(C2 + C1)
2 ,

(4.33)
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uctl,n+1 =

(
C1 exp

{
− (C2+C1)(tn+1−tn)

R1C1C2

}
+ C2

)
uctl,n

C2 + C1

+
C1

(
1− exp

{
− (C2+C1)(tn+1−tn)

R1C1C2

})
uc1,n

C2 + C1

+
ip,n (C1 + C2) (tn+1 − tn)

(C2 + C1)
2

+
ip,nR1C

2
1

(
1− exp

{
− (C2+C1)(tn+1−tn)

R1C1C2

})

(C2 + C1)
2

(4.34)

und des Phasenfehlers

ϕe,n+1 = ϕref,n+1(ϕref,n,fref ,tn+1−tn)−ϕdiv,n+1(ϕdiv,n, uctl,n,uc1,n,ip,n,tn+1−tn) (4.35)

ergeben. Hierbei stellt der tiefgestellte Index n den Zeitpunkt tn dar (uctl,n =
uctl(tn)). Der Index n + 1 beschreibt entsprechend den Zeitpunkt tn+1. Aufgrund
der Übersichtlichkeit wird diese Notation im weiteren Verlauf dieses Kapitels ver-
wendet. Für die spätere Stabilitätsbetrachtung werden an dieser Stelle die explizit
von der Zeit abhängigen und nichtlinearen Gleichungen linearisiert und in autono-
me Differenzengleichungen überführt. Da dies keine a priori Linearisierung darstellt,
lassen sich in den nichtlinearen Gleichungen die nicht-idealen Effekte berücksichti-
gen, sodass deren Eigenschaften mit in die linearisierte Darstellung einfließen. Im
Folgenden werden die Linearisierung und die Überführung in autonome Differenzen-
gleichungen vorgestellt.

Für die Linearisierung der Gleichungen (4.33) und (4.34) hinsichtlich tn+1 wird im
ersten Schritt die Taylorreihe der Spannungen um den Zeitpunkt tn entwickelt
und nach dem ersten Glied abgebrochen. Es resultieren

ulinc1,n+1 = ulinc1,n +
1

R1C1

(
ulinctl,n − ulinc1,n

)
(tn+1 − tn) (4.36)

und

ulinctl,n+1 = ulinctl,n +

(
1

R1C2

(
ulinc1,n − ulinctl,n

)
+
ip,n
C2

)
(tn+1 − tn) , (4.37)

wobei ulinctl,n und ulinc1,n den linearen Zusammenhang der Spannungen mit der Zeit im
Punkt tn beschreiben. Der sich ergebende Approximationsfehler (siehe Abb. 4.4)
ist maßgeblich von den Regelschleifenparametern abhängig, zum Beispiel den Zeit-
konstanten des Schleifenfilters, dem Strom der Ladungspumpe und dem aktuellen
Zustand der Regelung (z.B. Zeitdifferenz tn+1− tn zwischen zwei aufeinander folgen-
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den Ereignissen und den Kapazitätsspannungen). Da der Schleifenfilter maßgeblich

Spannung

Zeit

Abweichung

Steuer-
spannung

1. Glied der
Taylorreihe

tn tn+1

Abb. 4.4.: Darstellung der Taylor-Approximation erster Ordnung der Spannungen

die Dynamik des Regelkreises bestimmt, werden für die Beurteilung des Approxi-
mationsfehlers die Taylor-Restglieder

χ1 = uctl,n+1 − ulinctl,n+1 (4.38)

und

χ2 = uc1,n+1 − ulinc1,n+1 (4.39)

für verschiedene Grenzwerte der Kapazitäten und Widerstände des passiven Schlei-
fenfilters betrachtet. Die Grenzwerte der Kapazitätsspannungen werden dabei nicht
betrachtet, da diese durch die Versorgungsspannung beschränkt sind und deren Ein-
fluss auf die Taylor-Restglieder somit begrenzt ist. Bei der Auswertung von χ1 und
χ2 wird angenommen, dass die Kapazitätsspannungen der Bedingung

uc1,n = au · uctl,n = ulinc1,n = au · ulinctl,n (4.40)

genügen und positiv sind. Der Faktor au bleibt für eine typische CP-PLL nahe eins,
da die Spannungsdifferenzen beider Kapazitäten durch Umladeprozesse im Zustand
S0 des PFD (siehe Abb. 2.6) ausgeglichen werden. Die weitere Annahme, dass die
linearen Spannungen im Zeitpunkt tn gleich den nichtlinearen Spannungen sind,
ist durch die Linearisierung in tn gegeben. Darüber hinaus werden C1, C2, R1 und
tn+1−tn sowohl positiv als auch rein reell vorausgesetzt. ip und au sind ebenfalls rein
reell. Die Auswertung der Restglieder χ1 und χ2 ist in Tab. 4.1 dargestellt. Es ist er-
sichtlich, dass sich für steigende Schleifenfilterparameter die Spannungsgleichungen
besser mittels der linearen Approximation abbilden lassen. Hierbei ist zu bemerken,
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Tab. 4.1.: Grenzwerte der Taylor-Restglieder für die Anfangsbedingungen uc1,n = a · uctl,n =
ulin
c1,n = au · ulin

ctl,n

χ1 χ2

lim
C1→+0

g1(uctl,n,au,(tn+1 − tn),R1,C2) ∞ · sgn(au − 1)

lim
C2→+0

−∞ · sgn(uctl,n(au − 1) + ip,nR1) g2(uctl,n,au,(tn+1 − tn),ip,n,R1,C1)

lim
R1→+0

−∞ · sgn(uctl,n(au − 1)) ∞ · sgn(uctl,n(au − 1))

lim
C1→∞

g3(uctl,n,au,(tn+1 − tn),ip,n,R1,C2) +0

lim
C2→∞

+0 g4(uctl,n,au,(tn+1 − tn),R1,C1)

lim
R1→∞

+0 +0

dass der Betrag der Funktionen g1(·) bis g4(·) für typische CP-PLLs sehr viel kleiner
als eins ist. Speziell für kleine Zeitdifferenzen (tn+1 − tn) → 0 verschwinden auch
die Funktionen g1(·) bis g4(·).
In Hardware-Realisierungen wird der Schleifenfilter oft vorgeladen bevor die Re-
gelung frei gegeben wird (vgl. Kapitel 6), wodurch die Spannungen über den Ka-
pazitäten bei Beginn der Regelung identisch sind und sich die Bedingung au = 1
ergibt. Dies hat den Vorteil, dass die Regelung immer von einem definierten Zu-
stand startet. Für diesen speziellen Fall ergibt sich die Grenzwertbetrachtung der
Taylor-Restglieder aus Tab. 4.2. In dieser Tabelle ist zu erkennen, dass die lineare

Tab. 4.2.: Grenzwerte der Taylor-Restglieder für die Anfangsbedingungen uc1,n = uctl,n =
ulin
c1,n = ulin

ctl,n (au = 1)

χ1 χ2

lim
C1→+0

+0 ip,n
C2

(tn+1 − tn)

lim
C2→+0

−∞ · sgn(ip,n) ip,n
C1

(tn+1 − tn)

lim
R1→+0

− ip,nC1

C2(C1+C2)
(tn+1 − tn) ip,n

C1+C2
(tn+1 − tn)

lim
C1→∞

ip,n
C2

[
R1C2

(
1− e

− (tn+1−tn)

R1C2

)
− (tn+1 − tn)

]
+0

lim
C2→∞

+0 +0

lim
R1→∞

+0 +0

Approximation der Spannungsgleichungen für große Schleifenfilterparameter besser
wird. Für (tn+1 − tn)→ 0 konvergiert auch χ1 für C1 →∞ gegen Null.
Da die hier approximierten Spannungen eine größere Steigung als die nichtlinea-
ren Spannungen aufweisen, ist die Schleifendynamik der Approximation größer als
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4.4. Analytische Stabilitätsbedingung basierend auf dem
ereignisgesteuerten Modell

die des nichtlinearen Systems. Für abnehmende Zeitkonstanten des Schleifenfilters
nimmt der Unterschied der Schleifendynamik der Approximation und des nichtli-
nearen Systems weiter zu. Diese Schleifendynamik lässt sich, analog zum linearen
Modell in Kapitel 3.1, als Schleifenverstärkung interpretieren. Basierend auf den Re-
sultaten aus Kapitel 4.2 und 4.3 ist ein System mit größerer Schleifenverstärkung
jedoch weniger stabil. Daher stellt die hier eingeführte Approximation eine konserva-
tivere Abschätzung bezüglich der Stabilität dar als das zugrunde liegende nichtlinea-
re und nicht approximierte ereignisgesteuerte Modell. Es ist daher zu erwarten, dass
die Stabilitätsbedingungen basierend auf dem ereignisgesteuerten Modell und dieser
Linearisierung zu konservativen Kriterien führen. Für die Herleitung der Stabilitäts-
bedingungen sind die Restglieder der Taylorreihen somit nur bedingt relevant, da sie
lediglich die Güte der Approximation und den Grad des Konservatismus darstellen.
Für die Beurteilung der sich ergebenden Stabilitätsbedingungen, basierend auf dem
ereignisgesteuerten Modell, lässt sich die Auswertung der Taylor-Restglieder jedoch
heranziehen. Dies wird im weiteren Verlauf dieses Kapitels erläutert.
Zur Berechnung der Ereignisse tn+1 basierend auf der Approximation werden die
Spannungsgleichungen (4.36) und (4.37) geeignet normiert und zusammengefasst.
Schließlich ergeben sich die Spannungen zu

vc1,n+1 = vc1,n +

(
vctl,n − vc1,n

a1

)
∆tn+1

Tref
(4.41)

und

vctl,n+1 = vctl,n +

(
vc1,n − vctl,n

a2
+ b1,n

)
∆tn+1

Tref
, (4.42)

wobei

a1 =
R1C1

Tref
, (4.43)

a2 =
R1C2

Tref
, (4.44)

b1,n =
ip,nKvT

2
ref

C2

, (4.45)

vctl, c1(t) = KvTref u
lin
ctl, c1(t) (4.46)

und

∆tn+1 = tn+1 − tn (4.47)
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gilt. Des Weiteren ist Tref die Periodendauer des Referenzsignals. Aus den Span-
nungen und der allgemeinen Phasengleichung des Dividierers ergibt sich die Berech-
nungsvorschrift der Phase des Dividierersignals zu

ζdiv,n+1 = ζdiv,n +
1

Nn

[
1

2

(
vc1,n − vctl,n

a2
+ b1,n

)
∆t2n+1

T 2
ref

+ vctl,n
∆tn+1

Tref

]
. (4.48)

Hierbei beschreibt ζdiv die Normierung der Phase auf

ζdiv(t) =
ϕdiv(t)

2π
. (4.49)

Für die Berechnung des Ereignisses des Dividierersignals wird die normierte Phase
ζdiv,n+1 gleich eins gesetzt und ausgewertet. Es resultiert die Gleichung

∆t2
Tref

=

−vctl,n +
√
(vctl,n)

2 + 2

(
vc1,n − vctl,n

a2
+ b1,n

)
Nn (1− ζdiv,n)

(
vc1,n − vctl,n

a2
+ b1,n

) . (4.50)

∆t2 stellt dabei die Differenz von tdivn+1 und tn dar. Für den Fall

vc1,n − vctl,n
a2

+ b1,n = 0 (4.51)

wird die beschriebene Herleitung des Dividiererereignisses etwas einfacher und es
ergibt sich schließlich die Berechnungsvorschrift

∆t2
Tref

=
(1− ζdiv,n)Nn

vctl,n
. (4.52)

Die Gleichungen für die Phase und den Zeitpunkt des Ereignisses des Referenzsignals
ergeben sich analog zum bisherigen Vorgehen zu

∆t1
Tref

= 1− ζref,n (4.53)

und

ζref,n+1 = ζref,n +
∆tn+1

Tref
, (4.54)

wobei ∆t1 die Differenz von trefn+1 und tn definiert. Der Zeitpunkt des neuen Ereig-
nisses lässt sich schließlich mittels

∆tn+1 = min {∆t1,∆t2} (4.55)
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bestimmen und der normierte Phasenfehler ist durch

ζe,n = ζref,n − ζdiv,n (4.56)

gegeben.

uref(t)

udiv(t)

uctl(t)

t

t

t

tn tn+1

tn+2

tn+3

tn+4

Abb. 4.5.: Verlauf der Steuerspannung einer PLL dritter Ordnung zur Verdeutlichung des
Grundprinzips des erweiterten ereignisgesteuerten Modells

Da diese Gleichungen noch explizit von der Zeit und der Eingangsgröße abhängen,
werden diese im weiteren Verlauf in autonome Differenzengleichungen überführt.
Hierzu wird im zweiten Schritt der Ansatz des ereignisgesteuerten Modells er-
weitert. Diese Erweiterung betrachtet lediglich die Ereignisse, in denen der Folge-
zustand des Phasendetektors S0 ist, wodurch die Abhängigkeit der Gleichungen
von der Zeit und der Eingangsgröße nur noch implizit gegeben ist. In Abb. 4.5 ist
dieses Prinzip veranschaulicht. Für die Berechnung dieser Differenzengleichungen
werden die Zustände des Phasenregelkreises (vc1, vctl und ζe) zum Zeitpunkt tn+2 in
Abhängigkeit von den Zuständen zum Zeitpunkt tn+1 bestimmt, wobei diese wieder-
um durch die Zustände in tn definiert werden. Es ergibt sich somit ein Doppelschritt
der Berechnungsvorschrift von tn direkt zu tn+2 und die Berechnungen bei tn+1 sind
nur noch implizit enthalten. Hierzu werden die Gleichungen (4.41), (4.42) und (4.56)
zum Zeitpunkt tn+1 in die Gleichungen (4.41), (4.42) und (4.56) zum Zeitpunkt tn+2

eingesetzt. Da die Gleichung des Phasenfehlers vom Zustand des Phasendetektors
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abhängt (zu jedem Ereignis ist entweder die Phase des Referenzsignals oder die
Phase des Dividierersignals gleich Null), ergeben sich für den eingerasteten Bereich
vier Fälle für die Herleitung der autonomen Differenzengleichungen. Die vier Fall-
unterscheidungen sind den Abb. 4.6(a) bis 4.6(d) zu entnehmen.

uctl(t)

tn

tk

tn+1

tk+1

tn+2

t

u↑ref u↑ref
u↑div u↑div

(a) Bereich 1: ϕe,n ≥ 0 ∧ trefn+1 ≤ tdivn+1

uctl(t)

tn
tk

tn+1

tk+1

tn+2

t

u↑refu↑ref
u↑divu↑div

(b) Bereich 2: ϕe,n ≤ 0 ∧ trefn+1 ≤ tdivn+1

uctl(t)

tn

tk

tn+1

tk+1

tn+2

t

u↑ref u↑ref
u↑div u↑div

(c) Bereich 3: ϕe,n ≥ 0 ∧ trefn+1 ≥ tdivn+1

uctl(t)

tn

tk

tn+1

tk+1

tn+2

t

u↑ref u↑ref
u↑div u↑div

(d) Bereich 4: ϕe,n ≤ 0 ∧ trefn+1 ≥ tdivn+1

Abb. 4.6.: Darstellung der Steuerspannung zur Verdeutlichung der Fallunterscheidung für die
Herleitung der Differenzengleichungen

Der Zustandsraum des Phasenregelkreises lässt sich in die vier Bereiche

Bereich 1: ϕe,n ≥ 0 ∧ trefn+1 ≤ tdivn+1 ,

Bereich 2: ϕe,n ≤ 0 ∧ trefn+1 ≤ tdivn+1 ,

Bereich 3: ϕe,n ≥ 0 ∧ trefn+1 ≥ tdivn+1 und

Bereich 4: ϕe,n ≤ 0 ∧ trefn+1 ≥ tdivn+1 .

unterteilen. Diese vier Bereiche bilden sowohl den positiven und den negativen Be-
schleunigungsbereich als auch den Über- und Unterschwinger der Ausgangsfrequenz
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des VCO-Signals ab. Für die Darstellung der vier Bereiche im Zustandsraum des
Phasenregelkreises, auch Phasenplan genannt, werden die Grenzen zwischen den
einzelnen Bereichen berechnet und dreidimensional veranschaulicht. Die Grenze zwi-
schen den Bereichen 1 und 3 wird durch die Zeitpunkte der Ereignisse von Referenz-
und Dividierersignal bestimmt. Werden die Zeitpunkte trefn+1 und tdivn+1 gleichgesetzt,
lässt sich die Grenze ζe,g,1,n für die gegebenen Spannungen vctl,n und vc1,n berechnen

ζe,g,1,n = −
−a2vctl,n + a2

√
v2ctl,na2 + 2Nnvc1,n − 2Nnvctl,n+1

a2
+ vc1,n + vctl,n

vc1,n − vctl,n
.

(4.57)

Für den Fall gleicher Spannungen (vc1,n − vctl,n = 0) ergibt sich die Grenzfläche zu

ζe,g,2,n = −Nn − vctl,n
vctl,n

. (4.58)

Die Betrachtung für die Bereiche 2 und 4 ist analog und für die Grenzfläche gilt

ζe,g,3,n =
−vc1,n + 2Nna2 + vctl,n − 2a2vctl,n

2Nna2
. (4.59)

Des Weiteren existiert eine Grenzfläche für den Phasenfehler ζe,n = 0, die sowohl
die Bereiche 1 und 2 als auch die Bereiche 3 und 4 voneinander trennt. Mit diesen
Gleichungen ergibt sich die Unterteilung des Zustandsraums der PLL in Abb. 4.7.
Hierbei bezeichnet vt die normierten Zielspannungen der Kapazitäten des Schleifen-
filters für den ausgeregelten Zustand des Phasenregelkreises. Es ist zu erkennen, dass
die Grenzfläche zwischen den Bereichen 2 und 4 linear ist, wobei die Grenzfläche für
die Bereiche 1 und 3 eine Polstelle für steigende ζe,n aufweist. Diese Unterteilung
zeigt, dass die Ruhelage des Phasenregelkreises im Schnittpunkt der vier Bereiche
liegt. Daher ist es notwendig, dass alle vier Bereiche für das Simulationsmodell
mittels der autonomen Differenzengleichungen berücksichtigt werden. Die Berech-
nungsvorschriften für dieses Modell des Phasenregelkreises werden im Folgenden
angegeben. Aus Gründen der Übersichtlichkeit wird für die Definition des Differen-
zengleichungssystem der neue Zeitindex k eingeführt. Hierbei geht tn+2 in tk+1 über
und tn wird zu tk. Die entsprechende Definition ist in Abb. 4.6 veranschaulicht. Für
die kürzere Notation gilt im weiteren Verlauf vc1,k = vc1(tk).
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Abb. 4.7.: Aufteilung des Zustandsraums der PLL

Für Bereich 1 werden die Differenzengleichungen durch

vF1c1,k+1 = vc1,k +
(vctl,k − vc1,k) (1− ζe,k)

a1
− βF1

k

a1

(
βF1
k

a2
+ b1

)

·
(
−αF1

k +

√
(
αF1
k

)2
+ 2

(
βF1
k

a2
+ b1

)
ξks

F1
k

)
,

(4.60)

vF1ctl,k+1 =

√
(αF1

k )
2
+ 2

(
βF1
k

a2
+ b1

)
ξksF1k (4.61)

und

ζF1e,k+1 =
1

βF1
k

a2
+ b1

(
−αF1

k +

√
(
αF1
k

)2
+ 2

(
βF1
k

a2
+ b1

)
ξks

F1
k

)
(4.62)

72
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definiert, wobei

αF1
k = vctl,k −

(vctl,k − vc1,k) (1− ζe,k)
a2

, (4.63)

βF1
k = (vctl,k − vc1,k)

(
1− ζe,k
a1

+
1− ζe,k
a2

− 1

)
, (4.64)

ξk = Ni + Γ (ϑk +Nf − κk) , (4.65)

sF1k =

(
1− (1− ζe,k)

(
αF1
k + vctl,k

)

2 (Ni + κk)

)
(4.66)

und

b1 =
IpKvT

2
ref

C2

(4.67)

gilt. ϑk und κk werden durch die Differenzengleichungen des Σ∆-Modulators aus
Gleichung (2.26) definiert.
Die Gleichungen für Bereich 2 lauten

vF2c1,k+1 = vc1,k +
(vctl,k − vc1,k)

a1
− βF2

k

a1

(
βF2
k

a2
+ b1

)

·
(
−αF2

k +

√
(
αF2
k

)2
+ 2

(
βF2
k

a2
+ b1

)
ξks

F2
k

)
,

(4.68)

vF2ctl,k+1 =

√
(αF2

k )
2
+ 2

(
βF2
k

a2
+ b1

)
ξksF2k (4.69)

und

ζF2e,k+1 =
1

βF2
k

a2
+ b1

(
−αF2

k +

√
(
αF2
k

)2
+ 2

(
βF2
k

a2
+ b1

)
ξks

F2
k

)
, (4.70)

wobei

αF2
k = vctl,k −

(vctl,k − vc1,k)
a2

, (4.71)
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βF2
k = (vctl,k − vc1,k)

(
1

a1
+

1

a2
− 1

)
(4.72)

und

sF2k =

(
1 + ζe,k −

(
αF2
k + vctl,k

)

2 (Ni + κk)

)
(4.73)

gilt.
Im Bereich 3 ergeben sich die Differenzengleichungen

vF3c1,k+1 = vc1,k −
a2
a1
σF3
k +

1

a1

(
δF3k − vc1,k +

a2
a1
σF3
k

)

·
(
1− ζe,k +

a2
vctl,k − vc1,k

σF3
k

)
,

(4.74)

vF3ctl,k+1 = δF3k +



vc1,k −

a2
a1
σF3
k − δF3k

a2
+ b2



(
1− ζe,k +

a2σ
F3
k

vctl,k − vc1,k

)
(4.75)

und

ζF3e,k+1 = − 1

Ni + κk






vc1,k −

a2
a1
σF3
k − δF3k

2a2
+
b2
2









1

1
1
·
(
1− ζe,k +

a2σ
F3
k

vctl,k − vc1,k

)2

+ δF3k

(
1− ζe,k +

a2σ
F3
k

vctl,k − vc1,k

)

 ,

(4.76)

wobei

δF3k =

√
v2ctl,k −

2 (vctl,k − vc1,k) (Ni + κk)

a2
, (4.77)

σF3
k = δF3k − vctl,k (4.78)

und

b2 =
−IpKvT

2
ref

C2

(4.79)

gilt. Sind die Spannungen zum Zeitpunkt tk gleich und es gilt vctl,k−vc1,k = 0, lassen
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sich die Differenzengleichungen durch

vF3Sc1,k+1 = vctl,k, (4.80)

vF3Sctl,k+1 = vctl,k + b2

(
1− ζe,k −

Ni + κk
vctl,k

)
(4.81)

und

ζF3Se,k+1 = −

b2
2

(
1− ζe,k −

Ni + κk
vctl,k

)2

+ vctl,k

(
1− ζe,k −

Ni + κk
vctl,k

)

Ni + κk
(4.82)

beschreiben.
Für Bereich 4 ergeben sich die folgenden Gleichungen

vF4c1,k+1 = vc1,k−
a2
a1
σF4
k +

1

a1

(
δF4k − vc1,k +

a2
a1
σF4
k

)(
1 +

a2
vctl,k − vc1,k

σF4
k

)
, (4.83)

vF4ctl,k+1 = δF4k +



vc1,k −

a2
a1
σF4
k − δF4k

a2
+ b2



(
1 +

a2σ
F4
k

vctl,k − vc1,k

)
(4.84)

und

ζF4e,k+1 = − 1

Ni + κk






vc1,k −

a2
a1
σF4
k − δF4k

2a2
+
b2
2



(
1 +

a2σ
F4
k

vctl,k − vc1,k

)2






1

1
1
+ δF4k

(
1 +

a2σ
F4
k

vctl,k − vc1,k

)

 ,

(4.85)

wobei

δF4k =

√
v2ctl,k −

2 (vctl,k − vc1,k) (Ni + κk) (1 + ζe,k)

a2
(4.86)

und

σF4
k = δF4k − vctl,k (4.87)
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gilt. Für den Fall vctl,k − vc1,k = 0 lassen sich die Differenzengleichungen durch

vF4Sc1,k+1 = vctl,k, (4.88)

vF4Sctl,k+1 = vctl,k + b2

(
1− (1 + ζe,k)(Ni + κk)

vctl,k

)
(4.89)

und

ζF4Se,k+1 =

b2
2

(
1− (1 + ζe,k)(Ni + κk)

vctl,k

)2

+ vctl,k

(
1− (1 + ζe,k)(Ni + κk)

vctl,k

)

Ni + κk
(4.90)

beschreiben.
Die gezeigten Gleichungen für die vier Bereiche lassen sich in den Vektoren

rFi
k =

[
tk, ζ

Fi
e,k, v

Fi
ctl,k, v

Fi
c1,k, Nk

]T
(4.91)

zusammenfassen und für ein Simulationsmodell basierend auf den autonomen Diffe-
renzengleichungen heranziehen. Dieses Simulationsmodell ist im Algorithmus 4.4.1
verdeutlicht. Zur Visualisierung ist der Ablauf des Simulationsmodells in Abb. 4.8

Algorithmus 4.4.1 Verfahren der ereignisgesteuerten Modellierung basierend auf
den autonomen Differenzengleichungen

1: Initialisierung von rk und i := 1
2: while tk ≤ StopZeit do
3: if ζe,k ≥ 0 ∧ trefn+1 ≤ tdivn+1 then
4: Berechne rF1

k+1

5: else if ζe,k ≤ 0 ∧ trefn+1 ≤ tdivn+1 then
6: Berechne rF2

k+1

7: else if ζe,k ≥ 0 ∧ trefn+1 ≥ tdivn+1 then
8: Berechne rF3

k+1

9: else if ζe,k ≤ 0 ∧ trefn+1 ≥ tdivn+1 then
10: Berechne rF4

k+1

11: end if
12: Neue Anfangsbedingungen rk := rFi

k+1

13: Outi := rk+1

14: i++
15: end while

grafisch dargestellt.
Der Simulationsablauf unterscheidet sich von dem des ereignisgesteuerten Modells
nur marginal. Lediglich die Erweiterung der Fallunterscheidung der vier Bereiche
ist notwendig (vgl. Abb. 3.7). Die Simulationsbeschleunigung ist hingegen deutlich
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rk, i

rk := rFi
k+1

trefn+1 ≤ tdivn+1 trefn+1 ≥ tdivn+1

ζe,k ≥ 0

Berechne rF1
k+1 Berechne rF2

k+1Berechne rF3
k+1 Berechne rF4

k+1

tk ≤ StopZeitEnde

jaja

ja

ja

nein

nein

nein

nein

Outi := rk+1

i++

Fallunterscheidung

Abb. 4.8.: Graphische Darstellung des ereignisgesteuerten Modells basierend auf den autonomen
Differenzengleichungen

zu messen und benötigt im Schnitt 25% der Simulationszeit des ereignisgesteuerten
Modells aus Kapitel 3.3. Die Beschleunigung ist zum einen darauf zurückzuführen,
dass lediglich jedes zweite Ereignis explizit berechnet werden muss. Zum anderen
ergibt sie sich aus den analytischen Gleichungen, die für die Berechnung verwendet
werden.
Zur Verifikation der autonomen Differenzengleichungen wird die Simulation dieses
Modells mit der Simulation des Modells mit linearisierter Lösung des Schleifenfilters
(Gleichung (4.36) und (4.37)) verglichen.
In Abb. 4.9 ist dieser Vergleich dargestellt. Es ist zu erkennen, dass beide Modelle
identische Ergebnisse liefern und alle vier Bereiche des Phasenplans durchlaufen.
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ζe,nvctl,n

v c
1
,n

linearisierte Lösung des LF

autonome Differenzengleichungen
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0
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25.02

25.04

24.96

24.97

24.98

24.99

Abb. 4.9.: Vergleich des Modells mit autonomen Differenzengleichungen und des Modells mit
linearisierter Lösung des Schleifenfilters

4.4.2. Herleitung der Stabilitätsgrenze

Die hergeleiteten autonomen Differenzengleichungen können über die Simulation
des Phasenregelkreises hinaus für die Stabilitätsuntersuchung herangezogen werden.
Die erste Wahl bei der Untersuchung der Stabilität nichtlinearer Systeme ist die Li-
nearisierung um die Ruhelage mit anschließender Stabilitätsanalyse, da mittels der
indirekten Lyapunov-Methode auf die Stabilität der Ruhelage des nichtlinearen
Systems zurückgeschlossen werden kann [81]. Aus diesem Grund werden die vor-
gestellten nichtlinearen, autonomen Differenzengleichungen linearisiert. Dazu sollen
die Differenzengleichungen mit Hilfe einer Taylorreihe um die Ruhelage approximiert
werden. In Kapitel 4.4.1 ist beschrieben, dass die Bereiche 3 und 4 eine Singularität
in der Ruhelage aufweisen. Die Linearisierung mittels Taylor wird daher lediglich in
den Bereichen 1 und 2 durchgeführt. Diese beiden Bereiche zeichnen sich dadurch
aus, dass aufgrund der Kombination aus Kapazitätsspannungen und Phasenfehler
die Frequenz des VCO-Signals erhöht wird. Der Vorteil besteht darin, dass das impli-
zit gegebene Ereignis des autonomen Differenzengleichungssystems bei tn+1 durch
eine Flanke im Referenzsignal ausgelöst wird. Dieses Ereignis unterliegt nicht der
Regelung der PLL und wird nicht, wie die Flanke des Dividierersignals, durch die
variierende Steuerspannung während der Umladeprozesse im Schleifenfilter verscho-
ben.
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In der Praxis wird der Σ∆-Modulator oft durch das Dividierersignal getriggert, so-
dass das Teilerverhältnis in den Bereichen 1 und 2 konstant bleibt. Da sich darüber
hinaus die schaltende und nichtlineare Differenzengleichung des Σ∆-Modulators auf
Grund der Vorzeichenfunktion sgn(·) nicht ohne Weiteres in eine Taylorreihe ent-
wickeln lässt, werden hier die autonomen Differenzengleichungen für ein konstantes
Teilerverhältnis betrachtet. Dies entspricht einer Eingangsgröße des Σ∆-Modulators
von Nf = 0. Die Differenzengleichungen des Σ∆-Modulators brauchen daher hier
nicht berücksichtigt werden. Für die Stabilitätsuntersuchung wird später das kleins-
te auftretende Teilerverhältnis der Fractional-N PLL verwendet, da somit die maxi-
male Schleifenverstärkung berücksichtigt wird und eine konservative Abschätzung
der Stabilität möglich ist.
Für die Herleitung der Stabilitätsbedingungen wird das Differenzengleichungssys-
tem, bestehend aus den Gleichungen (4.68) bis (4.70), in der Vektorschreibweise

xk+1 = f(xk) (4.92)

dargestellt. Die nichtlineare Funktion f(xk) wird durch

f(xk) =




f1(xk)

f2(xk)

f3(xk)


 =




vF2c1,k+1(xk)

vF2ctl,k+1(xk)

ζF2e,k+1(xk)


 (4.93)

definiert. Der Vektor xk beschreibt die Zustände der PLL

xk =




x1
x2
x3


 =




vc1,k
vctl,k
ζe,k


 . (4.94)

Zur Linearisierung des nichtlinearen Differenzengleichungssystems wird die Jacobi-
Matrix mit den Einträgen

Ji,j(xR) =
∂fi(xk)

∂xj

∣∣∣∣
xR

(4.95)

berechnet und in der Ruhelage des normierten Modells

xR =




N
N
0


 (4.96)
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ausgewertet. Der Index i bezeichnet die i-te Zeile und der Index j beschreibt die
j-te Spalte der Jacobi-Matrix. Für die Jacobi-Matrix an der Stelle xR ergibt sich

J(xR) =




a1 − 1

a1

1

a1
0

2N − b1
2Na2

2N(a2 − 1)− b1(2a2 − 1)

2Na2
b1

− 1

2Na2
−2a2 − 1

2Na2
1




. (4.97)

Das lineare Differenzengleichungssystem lässt sich schließlich mit

xk+1 ≈ J(xR) (xk − xR) + f(xR) = J(xR)xk + f(xR)− J(xR)xR (4.98)

beschreiben. Wird an dieser Stelle eine Koordinatentransformation in der Art vor-
genommen, dass xR = 0 gilt, lässt sich mittels der Stabilitätsanalyse der linearen
Beschreibung auf die Stabilität der Ruhelage des nichtlinearen Modells schließen.
Da die Jacobi-Matrix in Gleichung (4.98) äquivalent zur Systemmatrix des linea-
ren Differenzengleichungssystems ist, lässt sich die Stabilität mit Hilfe des charak-
teristischen Polynoms der Jacobi-Matrix

P (λ) = det (Eλ− J(xR)) (4.99)

untersuchen, wobei E die Einheitsmatrix ist. Es resultiert das charakteristische
Polynom

P (λ) = p3λ
3 + p2λ

2 + p1λ+ p0 (4.100)

mit den Koeffizienten

p3 = 1 (4.101a)

p2 = −3 +
b1
N

+
1

a2
− b1

2Na2
+

1

a1
(4.101b)

p1 = 3− b1
N
− 2

a2
+

b1
2Na2

− 2

a1
+

b1
Na1

(4.101c)

p0 =
1

a1
+

1

a2
− 1. (4.101d)

Das lineare Differenzengleichungssystem in Gleichung (4.98) ist asymptotisch stabil,
wenn die Nullstellen des charakteristischen Polynoms innerhalb des Einheitskreises
liegen. Mit Hilfe des Jury-Stabilitätskriteriums zeitdiskreter Systeme lassen sich Be-
dingungen an die Koeffizienten des charakteristischen Polynoms stellen, sodass das
lineare Differenzengleichungssystem asymptotisch stabil ist [78, 82, 84, 85]. Hierbei
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werden in [82] verschiedene Methoden und Vereinfachungen vorgestellt. Exempla-
risch werden an dieser Stelle die Ergebnisse der Determinantenmethode, die auch
in [84] verwendet wird, und der Tabellenform kurz gezeigt. Die Bedingungen der
Tabellenform [78, 82, 85] für ein charakteristisches Polynom dritter Ordnung mit
reellen Koeffizienten ergeben sich zu

p3 > 0 (4.102a)

P (λ = 1) > 0 (4.102b)

P (λ = −1) < 0 (4.102c)

|p0| < p3 (4.102d)∣∣p20 − p23
∣∣ > |p0p2 − p1p3| , (4.102e)

wobei die Bedingungen der ebenfalls oft verwendete Determinantenmethode den
obigen Grenzen sehr ähnlich sind. Die Ergebnisse der Determinantenmethode lassen
sich mit

p3 > 0 (4.103a)

P (λ = 1) > 0 (4.103b)

P (λ = −1) < 0 (4.103c)

|p0| < p3 (4.103d)

p20 − p23 < p0p2 − p1p3 (4.103e)

angeben [82,84]. Die Ergebnisse beider Methoden unterscheiden sich lediglich durch
die Betragsstriche in den jeweils letzten Ungleichungen, wobei Jury in [82,86] zeigt,
dass sich die Tabellenform in die Determinantenmethode überführen lässt. Ein kur-
zer Einblick in diese Überführung ist im Anhang G zu finden.

Für das hier betrachtete charakteristische Polynom resultiert die folgende Auswer-
tung. Die Ungleichung (4.102a) ist bedingungslos erfüllt, da p3 = 1 gilt.
Aus den Ungleichungen (4.102b) und (4.102c) resultieren die Bedingungen

b1 > 0 (4.104a)

b1 < 4N, (4.104b)

wobei Ungleichung (4.104a) mit b1 = IpKvT
2
ref/C2 für positive Schleifenverstärkun-

gen und Schleifenfilterparameter immer erfüllt ist.
Die Stabilitätsgrenze (4.104b) lässt sich für die Vergleichbarkeit mit der Bedingung
von Gardner, die auf dem normalisierten Verstärkungsfaktor Kτ1 und der normali-
sierten Referenzkreisfrequenz ωrefτ1 basiert, umformen:

Kτ1 <
τ2
π2τ1

ω2
refτ

2
1 . (4.105)
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Wird der Parameter

b = 1 +
C1

C2

(4.106)

eingeführt, ergibt sich

Kτ1 <
1

π2(b− 1)
ω2
refτ

2
1 . (4.107)

Beim Vergleich dieser Ungleichung mit der Ungleichung (4.14) ist ersichtlich, dass
beide Stabilitätsbedingungen eine ähnliche Parametrisierung aufweisen, das hier
hergeleitete Kriterium jedoch einen lediglich quadratischen Verlauf in ωrefτ1 aufweist.
Wird Ungleichung (4.107) in die Form der Ungleichung (4.19) umgestellt, resultiert
die einfache Bedingung

ωref

ωn

> π
√
b, (4.108)

wobei ωn durch Gleichung (4.22) definiert ist. Es ist ersichtlich, dass sich die
Ungleichungen (4.108) und (4.19) sehr ähneln und für typische Entwürfe des Pha-
senregelkreises mit b = 11 und α = 10 nahezu identische Ergebnisse liefern.
Eine Bedingung an die Parameter des Schleifenfilters ergibt sich aus der
Ungleichung (4.102d) zu

0 <
1

a1
+

1

a2
< 2 ⇒ 0 <

Tref
R1C1

+
Tref
R1C2

< 2 (4.109)

und ist in Abb. 4.10 grafisch dargestellt. Da für typische Auslegungen des Phasen-
regelkreises die Summe der Quotienten positiv ist, ist der linke Teil der Unglei-
chung erfüllt. Der rechte Teil der Ungleichung beschränkt die Schleifenfilterparame-
ter bezüglich der Referenzfrequenz. Für kleine Zeitkonstanten des Filters gegenüber
der Referenzperiode ist die Stabilität des linearisierten Modells nicht gegeben. In
Abb. 4.11 wird eine schematische Darstellung der Stabilitätsgrenzen und des Stabi-
litätsverhaltens der verschiedenen Modelle gezeigt. Die Ungleichungen (4.109) und
(4.107) sind erforderliche Stabilitätsgrenzen für das linearisierte Modell. Lediglich
im hellgrauen Bereich ist das linearisierte Modell asymptotisch stabil. Die Konver-
genz des nichtlinearen Modells in die Ruhelage (asymptotische Stabilität) ist jedoch
weit über diese Bedingung an die Schleifenfilterparameter hinaus gegeben (dunkel-
und hellgrauer Bereich), da die nichtlinearen Eigenschaften des realen Phasenregel-
kreises die Schleifendynamik reduzieren. Wie in Kapitel 4.4.1 beschrieben, weist das
linearisierte Modell für kleine Widerstände und Kapazitäten des Filters eine deut-
lich höhere Schleifenverstärkung als das nichtlineare Modell auf und stellt somit ein
weniger stabiles Regelsystem dar. Dies spiegelt sich auch in den Taylor-Restgliedern
wider. So lässt sich beispielsweise zeigen, dass bestimmte Auslegungen der PLL zu
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2

2

0 1/a1

1/a2

Abb. 4.10.: Grafische Darstellung der Stabilitätsbedingung (4.109) im Bereich 2

asympt. stabil

instabil

asympt. stabil

instabil Gl. (4.107)

asympt. stabil

instabil

Gl. (4.109)

Stabilität der Ruhelage des
nichtlinearen Modells

Stabilität des
linearisierten und des
nichtlinearen Modells

Abb. 4.11.: Schematische Mengendarstellung der Stabilität der linearisierten Beschreibung und
der Ruhelage des nichtlinearen Modells sowie der zwei Stabilitätsbedingungen basie-
rend auf dem ereignisgesteuerten Modell

instabilem Verhalten der linearen Approximation führen, obgleich der nichtlineare
Regelkreis in die Ruhelage konvergiert. Wird hingegen ein nichtlinearer Phasenregel-
kreis mit einem stabilen Grenzzyklus (keine Konvergenz in die Ruhelage) betrachtet,
zeigt dessen lineare Approximation eine Divergenz. Die Ruhelage ist somit instabil.
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Ist die Approximation jedoch asymptotisch stabil, so ist die Ruhelage des nichtli-
nearen Phasenregelkreis ebenfalls asymptotisch stabil.
An dieser Stelle sei angemerkt, dass ein Phasenregelkreis, der einen Grenzzyklus mit
nicht vernachlässigbarem Radius δ aufweist, für die Frequenzsynthese in der Praxis
nicht verwendet wird, da δ und somit die Dauerschwingungen die Frequenzreinheit
des VCO-Signals beeinflussen (vgl. Kapitel 2.2.2). Da ein solcher Phasenregelkreis
nicht in die Ruhelage konvergiert und unerwünscht ist, wird dieser hier im übertra-
genen Sinn als instabil bezeichnet.
Die verwendete Linearisierung ist daher bezüglich der Stabilität eine konserva-
tive Approximation, deren Konservatismus mit kleiner werdenden Zeitkonstan-
ten des Schleifenfilters zunimmt. Daher liegt die Vermutung nahe, dass die
Bedingung (4.109) eine Abschätzung der Approximationsgüte und des Grads des
Konservatismus ist und für die Stabilitätsuntersuchung des nichtlinearen und nicht
approximierten Modells eine untergeordnete Rolle spielt.
Die Auswertung der Ungleichungen (4.103e) aus der Determinantenmethode ergibt

1

a1
+

1

a2
< 2. (4.110)

Diese Grenze stellt keine zusätzliche Bedingung dar, da diese durch
Ungleichung (4.109) bereits abgedeckt ist. Wird die Ungleichungen (4.102e)
der Tabellenform verwendet, ergibt die Auswertung die Stabilitätsbedingung

Kτ1 <
b

π2(b− 1)2
ω2
refτ

2
1 . (4.111)

Diese Ungleichung ist weniger streng als Ungleichung (4.107), da

b

(b− 1)2
>

1

b− 1
⇔ b > b− 1 (4.112)

gilt. Somit ist Ungleichung (4.111) immer erfüllt, wenn Ungleichung (4.107) einge-
halten wird und stellt somit ebenfalls keine weitere Einschränkung bezüglich der
Stabilität dar.
Da die Linearisierung um die Ruhelage der nichtlinearen Differenzengleichungen im
Bereich 1 identisch zu der Linearisierung im Bereich 2 ist, ergeben sich keine neuen
Stabilitätsbedingungen. Die vorgestellten Stabilitätsbedingungen

Kτ1 <
1

π2(b− 1)
ω2
refτ

2
1 ⇔ ωref

ωn

> π
√
b (4.113)

lassen sich somit für den Entwurf des Phasenregelkreises verwenden. Hierbei ist zu
erkennen, dass diese Stabilitätsbedingungen, anders als die Gardner-Grenze, nicht
für C2 → 0 gegen die Bedingung des Phasenregelkreises zweiter Ordnung tendieren.
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Aus C2 → 0 folgt b→∞ und die Schleifenverstärkung müsste für ein stabiles linea-
res Modell des Phasenregelkreises null sein. Dass die Ungleichung (4.113) für den
Phasenregelkreis dritter Ordnung nicht gegen die Grenze für die PLL zweiter Ord-
nung konvergiert, ist durch die Approximation und die Grenzwertuntersuchungen
der Taylor-Restglieder in Tab. 4.1 und 4.2 zu erklären. Mit sehr kleinen Kapazitäten
C2 nimmt der Approximationsfehler zu.
Durch die spätere Linearisierung innerhalb der Stabilitätsbetrachtung als beim li-
nearen zeitdiskreten Modell, weist die hier hergeleitete Bedingung einen größeren
Gültigkeitsbereich auf und erlaubt die Abschätzung von Konvergenzeigenschaften
auch für Anfangsbedingungen entfernt der Ruhelage des Systems. Dies wird im
folgenden Kapitel genauer erläutert. Darüber hinaus lassen sich nicht-ideale Effek-
te in den zugrunde liegenden Gleichungen berücksichtigen. Ein weiterer positiver
Aspekt des hergeleiteten Kriteriums ist die lediglich quadratische Abhängigkeit der
Ungleichung von ωrefτ1.
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4.5. Vergleich der Stabilitätsbedingungen

In diesem Kapitel werden die verschiedenen vorgestellten Stabilitätsbedingungen
miteinander verglichen und deren Verwendbarkeit diskutiert. Hierzu wird zunächst
eine analytische Untersuchung der Grenzen durchgeführt. Im Anschluss werden die
Stabilitätsbedingungen und deren Konvergenzprognosen für das nichtlineare ereig-
nisgesteuerte Modell des Systems unter Berücksichtigung von verschiedenen Regel-
kreisentwürfen und Anfangsbedingungen analysiert.

Für die Stabilitätsbetrachtung des nichtlinearen Phasenregelkreises wird die Stabi-
lität dessen Ruhelagen untersucht. Da der in diesem Kapitel verwendete Phasenre-
gelkreis lediglich die Ruhelage für ϕe = 0 und fe = fref − fvco = 0 aufweist, ist diese
die einzige Ruhelage. Zur Vereinfachung der folgenden Ausführungen wird daher
nicht mehr explizit auf die Stabilitätsanalyse der Ruhelage des Systems hingewie-
sen, sondern lediglich von der Stabilitätsuntersuchung des Regelkreises gesprochen.
Hierbei können sowohl eine instabile oder stabile Ruhelage als auch Grenzzyklen
mit einhergehenden Dauerschwingungen auftreten. Dabei können sich Grenzzyklen
für den untersuchten Phasenregelkreis einstellen, falls die Ruhelage instabil ist, oder
das Einzugsgebiet der stabilen Ruhelage verlassen wird. Diese Dauerschwingungen
führen jedoch zu Nebentönen im Leistungsdichtespektrum des VCO-Signals und
sind somit für die Frequenzsynthese und Taktgenerierung unerwünscht. Aus diesem
Grund wird im weiteren Verlauf ein Simulationsergebnis das einen Grenzzyklus auf-
weist und somit nicht in den Punkt der Ruhelage konvergiert ebenfalls im übertrage-
nen Sinn als instabil bezeichnet. Die genauen Kriterien werden bei der simulativen
Konvergenzanalyse beschrieben.

Die vorgestellten Stabilitätsbedingungen des Phasenregelkreises dritter Ordnung
sind für die Übersichtlichkeit hier noch einmal zusammengestellt:

Gardner:

Kτ1 <
2 (1 + a) b ωrefτ1

π (b− 1)

(
2π (1 + a)

ωrefτ1
+

2 (1− a) (b− 1)

b

) mit a = e
−

2πb

ωrefτ1

Empirische Bedingung:

Kτ1 <
b

α2(b− 1)
ω2
refτ

2
1 ⇔ ωref

ωn

> α

Basierend auf dem ereignisgesteuerten Modell:

Kτ1 <
1

π2(b− 1)
ω2
refτ

2
1 ⇔ ωref

ωn

> π
√
b
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Werden die Stabilitätsbedingungen miteinander verglichen, ist erkennbar, dass die
Stabilitätsgrenze von Gardner deutlich komplexer und aufwändiger auszuwerten ist
als bei den verbleibenden zwei Ansätzen. Des Weiteren ist zu erkennen, dass die em-
pirische Grenze und die hergeleitete Bedingung eine unterschiedliche Abhängigkeit
von b aufweisen.
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(b) Relative Abweichung zwischen den Stabilitätsbe-
dingungen für verschiedene Verhältnisse der Filter-
kapazitäten b = 1 + C1/C2

Abb. 4.12.: Vergleich der Stabilitätsgrenze aus [3] und der Stabilitätsgrenze aus
Ungleichung (4.113)

Im späteren Verlauf dieses Kapitels wird gezeigt, dass die empirische Grenze und
die Bedingung des ereignisgesteuerten Modells in einer doppelt-logarithmischen
Darstellung parallel zueinander verlaufen. Im speziellen Fall für α = 10 und
b = 1 + C1/C2 = 11 sind die beiden Grenzen nahezu identisch. Später wird gezeigt,
dass die empirische Grenze jedoch für größere b keine verlässlichen Stabilitätsvor-
hersagen trifft.
In Abb. 4.12(a) ist die grafische Darstellung der Stabilitätsbedingung aus [3] (siehe
Ungleichung (4.14)) und der Stabilitätsgrenze (4.113) zu erkennen. Es ist ersicht-
lich, dass die Stabilitätsgrenze basierend auf dem ereignisgesteuerten Modell eine
konservativere Bedingung als die Stabilitätsgrenze aus [3] liefert. Dies ist durch
die konservative Approximation des nichtlinearen ereignisgesteuerten Modells aus
Kapitel 4.4.1 zu erklären. Für konstante Schleifenfilterparameter und kleine Refe-
renzkreisfrequenzen ωref ist der Unterschied beider Grenzen ausgeprägter, da die
längeren Referenzperioden und somit der größer werdende Abstand der Ereignisse
den Grad des Konservatismus steigern. Wird die relative Differenz zwischen beiden
Bedingungen betrachtet (siehe Abb. 4.12(b)), ist deutlich zu erkennen, dass die hier
eingeführte Stabilitätsbedingung für den gesamten Geltungsbereich und für verschie-
dene Verhältnisse der Filterkapazitäten konservativer ist.
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4. Stabilität der modellierten idealen CP-PLL

Da in der Praxis verschiedene Anfangsbedingungen des Phasenregelkreises auftre-
ten, ist es sinnvoll, das Einzugsgebiet der Ruhelage zu untersuchen. Mit Anfangs-
bedingungen innerhalb des Einzugsgebietes einer asymptotisch stabilen Ruhelage
konvergiert der Regelkreis in die Ruhelage, wobei diese Konvergenz für Anfangsbe-
dingungen außerhalb dieses Einzugsgebietes nicht gegeben ist. Für die Beurteilung
der Güte der verschiedenen Ansätze zur Konvergenzvorhersage wird das exakte
nichtlineare ereignisgesteuerte Modell verwendet und mit unterschiedlichen Anfangs-
bedingungen die Attraktivität des Fixpunktes untersucht. Am Beispiel der CP-PLL
mit den Parametern

R1 ≈ 2 kΩ N = 3
C1 = 10 pF C2 = 1pF
Kv ≈ 233MHz/V

wird der Regelkreis mit verschiedenen Stromstärken Ip von 0,1µA bis 10mA (ent-
spricht einem Faktor zwischen kleinster und größter Stromamplitude von 10.000)
und variierenden Referenzfrequenzen im Bereich der Stabilitätsgrenze simuliert. Zur
Beurteilung der Stabilitätsgrenze aus Kapitel 4.2 werden die Anfangsbedingungen
der PLL zunächst so gewählt, dass sich der Regelkreis nahe der Ruhelage befindet
und somit die Annahmen von [3] (fref ≈ fdiv und ϕe ≈ 0) erfüllt sind. Anhand der
Simulationsergebnisse im Zeitbereich und des Verhaltens der Überschwinger wird
das System auf Konvergenz überprüft.
Für die Darstellung der Ergebnisse werden hier die folgenden Kriterien verwendet2:

Stabil: Die Dynamik der PLL wird als stabil bezeichnet, wenn die Steuerspannung
zu 40 aufeinander folgenden Zeitpunkten der Phasenfehlernulldurchgänge (Dy-
namikwechsel) streng monoton fallend ist, 40 Dynamikwechsel in Folge in
einem definiert kleinen Schlauch (±0,01%) um die Zielspannung verbleiben
oder wenn 200 Steuerspannungswerte in Folge in diesem kleinen Schlauch lie-
gen (vgl. Abb. 4.13(a)). ⇒ Konvergenz in die Ruhelage (asymptotisch
stabile Ruhelage)

Instabil: Falls 40 Dynamikwechsel der Steuerspannung in Folge streng monoton
wachsend sind, wird die Dynamik als instabil gewertet, auch wenn sich viel-
leicht ein Grenzzyklus außerhalb des Schlauches ±0,01% um die Zielspannung
einstellt (vgl. Abb. 4.13(b)). ⇒ instabile Ruhelage und/oder Grenzzy-
klus außerhalb des ±0,01% Schlauches

Nicht aussagekräftig: Wird keine der oben genannten Konditionen erfüllt und das
Ende der Simulation erreicht, wird keine Aussage über die Konvergenz getrof-
fen.

2Untersuchungen mit strengeren Bedingungen führen zu vergleichbaren Ergebnissen, verlängern
jedoch direkt die Simulationszeit.
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Abb. 4.13.: Dreidimensionale Darstellung des Phasenplans für Phasenregelkreise mit unter-
schiedlichen Konvergenzeigenschaften

Für die automatisierte Verkürzung der Simulationszeiten werden die Einrastdetekto-
ren aus Anhang C verwendet. Werden keine Dynamikwechsel identifiziert, obwohl
der Phasenregelkreis eingerastet ist, wird die Simulation abgebrochen. Die Simu-
lationsergebnisse sind in Abb. 4.14(a) abgebildet. Es ist zu erkennen, dass die Si-
mulationsergebnisse die Stabilitätsgrenze von Gardner bestätigen. Es befinden sich
lediglich instabile Simulationsergebnisse im instabilen Bereich der Gardner-Grenze
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4. Stabilität der modellierten idealen CP-PLL

und der hier hergeleiteten Stabilitätsbedingung. Das bedeutet, dass die hier verwen-
deten Anfangsbedingungen innerhalb des Einzugsgebietes der Ruhelage liegen und
sich nur ein Grenzzyklus einstellt, wenn die Ruhelage instabil ist. Für eine stabile
Ruhelage stellt sich hingegen eine Konvergenz ein. Diese Ergebnisse konnten mit
verschiedenen Auslegungen des Phasenregelkreises reproduziert werden.
In der praktischen Anwendung ist es nicht gegeben, dass die initialen Konditionen
des Phasenregelkreises sehr nahe dem Fixpunkt liegen und daher eventuell außer-
halb des Einzugsgebietes der Ruhelage fallen. Aus diesem Grund ist es sinnvoll,
das vorangegangene Experiment mit Anfangskonditionen, die nicht nahe dem Fix-
punkt sind, zu wiederholen. Die Ergebnisse dieses Experiments sind in Abb. 4.14(b)
dargestellt. Die verwendeten Anfangsbedingungen führen zu einem System, dass zu
Beginn der Simulation ausgerastet ist. Das bedeutet, dass der initiale Kreisfrequenz-
fehler größer als ∆ωPO ist. Es ist ersichtlich, dass einige Simulationsergebnisse im
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(a) Eine Anfangskondition nahe des Fixpunktes
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(b) Eine Anfangsbedingung entfernt der Ruhelage

Abb. 4.14.: Simulativer Test der diskutierten Stabilitätsgrenzen (Konvergenzvorhersagen) für
zwei unterschiedliche Anfangsbedingungen

Bereich zwischen beiden Stabilitätsgrenzen nicht in die Ruhelage konvergieren. Die-
se Ergebnisse weisen einen Grenzzyklus mit einhergehenden Dauerschwingungen
auf. Zur Veranschaulichung ist in Abb. 4.15(a) die Steuerspannung für einen sol-
chen Phasenregelkreis mit Dauerschwingung dargestellt. ut bezeichnet dabei die
Zielspannung der Regelung und die negativen Steuerspannungen werden durch eine
stückweise lineare Kennlinie des VCO in eine Frequenz gleich null überführt. D.h.
für uctl > 0 ist die Kennlinie durch die Steigung Kv definiert und für uctl ≤ 0 wird
fvco = 0 gesetzt. Das Ergebnis zeigt, dass die Stabilitätsgrenze von Gardner für
Anfangsbedingungen entfernt vom Fixpunkt und somit außerhalb des Einzugsgebie-
tes nicht hinreichend konservativ für die Konvergenzvorhersage in die Ruhelage ist.
Dieses Ergebnis konnte auch in [87] durch numerische Iterationen einer Ladungsap-
proximation des Schleifenfilters gezeigt werden.
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(Ip ≈ 0,1µA, ωref ≈ 1,395MHz) und Anfangsbe-
dingungen entfernt der Ruhelage

Abb. 4.15.: Simulation eines Phasenregelkreises mit Grenzzyklus (zwischen den Stabilitätsbedin-
gungen) und eines Regelkreises mit stabiler Ruhelage (auf der hergeleiteten Stabi-
litätsbedingung)

Die auf dem ereignisgesteuerten Modell basierende Stabilitätsbedingung ist in der
Lage, die Konvergenz des nichtlinearen Regelkreises in die Ruhelage korrekt vorher-
zusagen. Abb. 4.15(b) stellt eine Simulation auf der hergeleiteten Stabilitätsgrenze
dar. Es ist zu erkennen, dass dieser Phasenregelkreis eine klare Konvergenz in die
Ruhelage aufweist.
Die Beobachtung bezüglich der beiden Beispiele legt die Vermutung nahe, dass die
Konvergenz in die Ruhelage des Phasenregelkreises zwischen der Grenze von Gard-
ner und der hergeleiteten Bedingung von den Anfangsbedingungen und dem Einzugs-
gebiet der Ruhelage abhängt. Wird diese Konvergenz eines Phasenregelkreises für
verschiedene Anfangsbedingungen untersucht, lässt sich die Attraktivität der Ruhe-
lage (engl. Basin Of Attraction) also das Einzugsgebiet darstellen. Für den Beispiel-
phasenregelkreis in Abb. 4.15(a) ist die Attraktivität der Ruhelage in Abhängigkeit
von den Anfangsbedingungen in Abb. 4.16 dargestellt. Hierbei beschreibt ft die
Zielfrequenz des VCO-Signals. Diese Untersuchung verdeutlicht die Abhängigkeit
der Konvergenz in die Ruhelage von den Anfangsbedingungen, falls ein Entwurf
des Phasenregelkreises zwischen den Stabilitätsbedingungen von Gardner und der
Ungleichung (4.113) gewählt wird. Wird ein Entwurf korrespondierend zu einem
Punkt auf der rechten Seite der Stabilitätsgrenze (4.113) verwendet, ist die Kon-
vergenz unabhängig von den Anfangsbedingungen gegeben (das Einzugsgebiet der
Ruhelage schließt alle untersuchten Anfangsbedingungen ein). Dies zeigt die Kom-
bination der vorangegangenen Untersuchungen, die im Folgenden erläutert wird.
Wird für jeden einzelnen Punkt der Stabilitätsbetrachtung in Abb. 4.14 die Attrak-
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4. Stabilität der modellierten idealen CP-PLL
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Abb. 4.16.: Darstellung der Attraktivität der Ruhelage für verschiedene Anfangsbedingungen
des Phasenregelkreises und einen Systementwurf zwischen den Stabilitätsgrenzen
von Gardner und Ungleichung (4.113)

tivität der Ruhelage untersucht (vgl. Abb. 4.16), lässt sich die Konvergenz für die
Kombination der Anfangsbedingungen des Phasenfehlers ϕe0 = −2π . . . 2π und des
Frequenzfehlers fe0 = −ft . . . ft und verschiedener Schleifenverstärkungen und Re-
ferenzkreisfrequenzen zeigen. Hierbei wird ein System, entsprechend der Definition
auf Seite 88, als instabil bezeichnet, sobald eine einzige Kombination der Anfangsbe-
dingungen fe0 und ϕe0 zu einer Dynamik führt, die nicht in die Ruhelage konvergiert.
Lediglich wenn alle Anfangsbedingungen in die Ruhelage führen, wird das System
als stabil bewertet. Hier sei darauf hingewiesen, dass lediglich die Anfangsbedingun-
gen von fe0 = −ft . . . ft und ϕe0 = −2π . . . 2π untersucht wurden. Da sich allerdings
ein Phasenfehler |ϕe| > 2π nicht von einer Differenz |ϕe| < 2π unterscheiden lässt,
stellt der untersuchte Phasenfehlerbereich keine Einschränkung dar. Der begrenzte
Bereich des initialen Frequenzfehlers ist sinnvoll, da sonst die Arbeitsbereiche der
Ladungspumpe und des VCO verlassen werden könnten. Das Ergebnis aus bis zu
3.840.000 Simulationen (40 × 40 Anfangsbedingung für jeweils 40 × 60 Referenz-
frequenzen und Schleifenverstärkungen) ist in Abb. 4.17 zu sehen. Der verwendete
Phasenregelkreis weist eine stückweise lineare Kennlinie des VCO auf, die für negati-
ve Steuerspannungen eine VCO-Frequenz identisch mit Null generiert. In Kapitel 6
wird sich zeigen, dass sowohl der Digital- und Analogteil der PLL als auch die
Ladungspumpe einen unterschiedlichen Masse-Bezugspunkt aufweisen können und
somit negative Spannungen über den Filterkapazitäten möglich sind. Die weiteren
Systemparameter sind R1 ≈ 1,4 kΩ, C1 ≈ 51 nF, C2 ≈ 2,6 nF, Kv = 1,8GHz/V und
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Abb. 4.17.: Simulativer Test der diskutierten Stabilitätsbedingungen unter Berücksichtigung der
Anfangsbedingungen im Bereich ϕe0 = −2π . . . 2π und fe0 = −ft . . . ft

N = 12000. Hierbei ist der Phasenregelkreis für eine Stromstärke von Ip = 313µA
ausgelegt. Es ist zu erkennen, dass für realistische Stromstärken der Ladungspumpe
alle Simulationen rechtsseitig der hergeleiteten Stabilitätsgrenze ein in die Ruhelage
konvergierendes Modell des Phasenregelkreises beschreiben und somit alle Anfangs-
bedingungen innerhalb des Einzugsgebietes der Ruhelage liegen. Lediglich für große
Schleifenverstärkungen mit Ip > 15mA konvergiert die Regelung nicht in den Fix-
punkt. In diesem Bereich wird der Phasenregelkreis durch die hohe Stromstärke
überlastest, indem die Korrekturhübe der Steuerspannung größer als die Zielspan-
nung sind. Diese Überlastgrenze wird in Kapitel 4.6 genauer erläutert. Des Weiteren
ist der Strom der Ladungspumpe in diesem Bereich circa 50-fach größer als bei der
nominalen Auslegung berücksichtigt und stellt somit einen ungeeigneten Entwurf
dar. Zwischen der Stabilitätsgrenze nach Gardner und der hier eingeführten Sta-
bilitätsgrenze sind Simulationsergebnisse zu erkennen, die nicht in die Ruhelage
konvergieren (es stellt sich ein Grenzzyklus ein), da die Gardner-Grenze für An-
fangsbedingungen entfernt der Ruhelage nicht hinreichend konservativ für die Kon-
vergenzprognose ist.
Eine analoge Untersuchung lässt sich für einen Entwurf des Phasenregelkreises
durchführen, bei dem das Verhältnis der Filterkapazitäten deutlich größer ist
(b = 1 + C1/C2). Die Ergebnisse der Simulationen sind in Abb. 4.18 zu sehen.
Das gewählte Verhältnis der Filterkapazitäten resultiert in b = 51. Der Vergleich
der Stabilitätsgrenzen von Gardner und der empirischen Bedingung mit der Grenze
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eingeführte Grenze
Empirische Grenze: α = 10

problematische
Stab.-vorhersage der
empirischen Grenze

10−2 100 102
10−4

10−2

100

102

104

Abb. 4.18.: Simulativer Test der diskutierten Stabilitätsgrenzen für eine Anfangsbedingung ent-
fernt der Ruhelage und b = 51

basierend auf dem ereignisgesteuerten Modell zeigt die Nachteile der ersten beiden
Ansätze. Auch für größere b ist die Bedingung von Gardner nicht konservativ genug.
Bei der Betrachtung der empirischen Grenze ist ersichtlich, dass die Konvergenzvor-
hersage für große b und α = 10 im Bereich von hohen Referenzkreisfrequenzen nicht
zuverlässig ist. Für eine robuste Abschätzung müsste α eine Abhängigkeit von b
aufweisen. Diese ist bei der Stabilitätsbedingung basierend auf dem ereignisgesteu-
erten Modell gegeben und ermöglicht eine verlässlichere Analyse der Konvergenzei-
genschaften.
Bezüglich der durchgeführten Simulationen liegt es nahe, dass die hergeleitete Stabi-
litätsgrenze zu einem robusteren Entwurf von Phasenregelkreisen dritter Ordnung
führt, obwohl nur zwei Bereiche in der Phasenebene und keine Transitionen zwi-
schen den Bereichen betrachtet wurden. Diese Stabilitätsgrenze lässt sich auch dann
verwenden, wenn die Anfangsbedingungen des Phasenregelkreises entfernt von der
Ruhelage sind, d.h. das die hier hergeleitete Bedingung auch eine Abschätzung des
Einzugsgebietes der Ruhelage ermöglicht. Des Weiteren lässt sich das Vorgehen zur
Herleitung der Stabilitätsgrenze auf beliebige Ordnungen des Phasenregelkreises
erweitern.
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Ordnung

4.6. Überlastgrenze des Phasenregelkreises

zweiter und dritter Ordnung

Ein weiterer limitierender Faktor neben der Stabilität ist die Überlastgrenze des
Phasenregelkreises. Die Überlastgrenze wird in [3] für den Phasenregelkreis zweiter
Ordnung basierend auf dem Spannungssprung über dem Widerstand R1 bei schal-
tendem Strom der Ladungspumpe definiert. Überschreitet dieser Spannungssprung
den Abstimmbereich des spannungsgesteuerten Oszillators, ist dieser nicht länger in
der Lage der Spannung zu folgen oder wird beschädigt. Im theoretischen Extremfall
ist es möglich, dass das Modell des VCO mit linearer Charakteristik negative Aus-
gangsfrequenzen des VCO generiert. Da dies physikalisch nicht möglich ist, wird der
Phasenregelkreis in diesem Fall als überlastet bezeichnet. Die Überlastgrenze ergibt
sich zu

Kτ1 <
ωrefτ1
2π

. (4.114)

Analog zum Phasenregelkreis zweiter Ordnung wird die Überlastgrenze für das Sys-
tem dritter Ordnung über das Modell des VCO mit linearer Charakteristik defi-
niert [88]. Hierfür wird die Gleichung der Steuerspannung betrachtet und der Grenz-
wert für den exponentiellen Teil der Gleichung für die Ladezeit tp → ∞ gebildet.
Übersteigt dieser Grenzwert die zur Referenzfrequenz korrespondierende Steuerspan-
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Abb. 4.19.: Grafische Darstellung der Überlastgrenze des Phasenregelkreises dritter Ordnung im
Vergleich mit den Stabilitätsgrenzen (b = 51)
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nung, ist der Phasenregelkreis überlastet und das Modell des VCO generiert negative
Ausgangsfrequenzen. Die mathematische Bedingung ist [88]

Kτ1 <
(C1 + C2)

2

C2
1

ωrefτ1 =

(
1 +

1

b− 1

)2

ωrefτ1. (4.115)

Der Vergleich der Überlastgrenze des Phasenregelkreises dritter Ordnung mit den
Stabilitätsgrenzen ist in Abb. 4.19 zu sehen.
Im vorangegangenen Kapitel wurden die Stabilitätsbedingungen des Phasenregel-
kreises anhand des exakten nichtlinearen ereignisgesteuerten Modells für verschiede-
ne Schleifenparameter verifiziert. Dabei blieb der Strom auf den Bereich von 0,1µA
bis 10mA begrenzt. Diese Beschränkung basierte zum einen auf der Plausibilität
der Stromwerte und zum anderen auf der Überlastgrenze des Phasenregelkreises
dritter Ordnung, die die Schleifenverstärkung und die Referenzkreisfrequenz für die
gezeigten Untersuchungen limitiert.
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KAPITEL 5

Modellierung der CP-PLL inkl.
nicht-idealer Effekte

Die bisher betrachteten Modellierungen und Charakterisierungen beziehen sich auf
einen idealen Phasenregelkreis ohne parasitäre und nicht-ideale Effekte, wie zum
Beispiel endliche Steigungen der Signalflanken, Totzonen und Phasenrauschen. Für
die Berücksichtigung dieser Effekte lassen sich Modelle basierend auf dem elektri-
schen Verhalten der Schaltung verwenden. Diese Modelle binden zudem das analoge
Transistorverhalten mit ein und lassen sich daher als Transistor-Level (TL) Modell
bezeichnen. Es wird sich zeigen, dass dieses TL Modell eine sehr hohe Genauigkeit
aufweist, jedoch eine sehr lange Simulationszeit und eine hohe Datenmenge mit sich
bringt. Aufgrund der herausfordernden Auswertung der großen Datenmenge und der
zeitaufwändigen TL Simulation werden hier die bereits eingeführten Modelle (linea-
res Modell und ereignisgesteuertes Modell) um die nichtlinearen und nicht-idealen
Effekte erweitert, sodass sich diese Effekte effizient analysieren lassen.
Zunächst werden das Transistor-Level Modell und die inhärenten parasitären und
nicht-idealen Effekte vorgestellt. Im weiteren Verlauf werden diese nicht-idealen Ef-
fekte in das lineare und das ereignisgesteuerte Modell überführt, um eine effiziente
Simulation zu gewährleisten. Abschließend werden die Genauigkeit und die Simula-
tionszeiten der Modelle miteinander verglichen.
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5. Modellierung der CP-PLL inkl. nicht-idealer Effekte

5.1. Typen der Transistor-Level-basierten

nicht-idealen Effekte

Zur Berücksichtigung der nichtlinearen, nicht-idealen und parasitären Effekte lässt
sich der Phasenregelkreis zur Frequenzsynthese mittels Transistorschaltungen rea-
lisieren. Diese Modellierung kommt der physikalischen Realität sehr nahe und ist
daher ein weit verbreitetes Werkzeug für die Verifikation von Systemen. Für die fol-
gende Transistor-Level Modellierung wird das BSIM4 Modell der Transistoren [89]
verwendet. Dieses Modell zeichnet sich durch eine Vielzahl von Parametern aus,
die das analoge Verhalten der Transistoren beschreiben. Im Folgenden werden die
einzelnen Modellierungen der Komponenten des Phasenregelkreises mit ihrem je-
weiligen Verhalten beschrieben (basierend auf [7, 67]), um deren nichtlinearen und
nicht-idealen Charakteristika herauszuarbeiten.

Die drei Zustände des endlichen Zustandsautomaten des Phasen- und Frequenz-
detektors lassen sich mittels zweier D-Flip-Flops realisieren. In Abb. 5.1 ist diese
Schaltung abgebildet (vgl. [6]). Werden für t = 0 die Ausgangssignale der Flip-Flops
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udiv
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D
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Q
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&

&

Tri-State PFD Vergleichslogik

Abb. 5.1.: Darstellung des PFD mit integrierter Vergleichslogik zur Unterdrückung des Falls
udn = 1V & uup = 1V

mit uup = udn = 0V angenommen und eine steigende Flanke im Referenzsignal tritt
auf, wird das obere Flip-Flop auf logisch high gesetzt.
In der weiteren Betrachtung wird die Versorgungsspannung Udd mit 1V angenom-
men und ein logisch high im oberen Flip-Flop wird zu uup = 1V. Ein logisch low wird
durch uup = 0V repräsentiert. Diese Wahl der Versorgungsspannung dient lediglich
der Übersichtlichkeit und der Veranschaulichung, da die Modellierungsansätze un-
abhängig von der absoluten Versorgungsspannung sind.
Wird anschließend eine steigende Flanke im Dividierersignal detektiert, wird im un-
teren Flip-Flop ein logisch high gespeichert. Anschließend werden beide Flip-Flops
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5.1. Typen der Transistor-Level-basierten nicht-idealen Effekte

über das NAND zurückgesetzt, sodass beide im Zustand logisch low sind. In diesem
Fall sind uup = 0V und udn = 0V. Da die Signale innerhalb der Transistor-Level
Modellierung Laufzeiten aufweisen und diese Laufzeiten das Verhalten des PFD be-
einflussen, ist in dieser Arbeit eine Vergleichslogik nachgeschaltet, die den virtuellen
Zustand uup = 1V ∧ udn = 1V nach außen unterdrückt. Dieser virtuelle Zustand
würde ansonsten beide Stromquellen der Ladungspumpe aktivieren und zu einer
höheren Verlustleistung der Schaltung führen.
Aufgrund der endlichen Flankensteilheit der Signale uup und udn besteht die Möglich-
keit, dass die Signale uup und udn die Schwellspannungen der nachfolgenden Ladungs-
pumpe nicht überschreiten, falls sehr kleine Phasenfehler und somit sehr kleine Zeit-
differenzen zwischen den steigenden Flanken von uref und udiv vorliegen. Wird die
Schwellspannung der Ladungspumpe nicht überschritten, ist der Phasenregelkreis
nicht in der Lage, diesen kleinen Phasenfehler in einen entsprechenden Strom zu
überführen. Dieser Effekt ist in Abb. 5.2 visualisiert.
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Abb. 5.2.: Signalverlauf des Transistor-Level Modells des PFD zur Verdeutlichung der Signal-
laufzeiten und der Totzone

Hier sind die Signallaufzeit und die endliche Flankensteilheit von uup zu erkennen.
Verbleibt uup unterhalb der Schwellspannung der Ladungspumpe, ist diese nicht in
der Lage, die Informationen über den Phasenfehler weiterzuleiten. Somit reagiert
der Phasenregelkreis nicht auf kleine Zeitdifferenzen und weist eine Totzone τset
auf [67]. Diese Totzone beeinflusst den Regelkreis speziell nahe der Ruhelage und
stellt somit einen kritischen Parameter für den Entwurf der PLL dar. Der Einfluss
dieser Totzone lässt sich zwar mittels des sogenannten Anti-Backlash Pulses, der
durch eine zusätzliche Verzögerungszeit im Rückkopplungspfad des PFD realisiert
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5. Modellierung der CP-PLL inkl. nicht-idealer Effekte

wird, teilweise beziehungsweise komplett kompensieren [67], dennoch ist die Charak-
terisierung des Einflusses der Totzone auf den Phasenregelkreis notwendig. Da die
Realisierung des Anti-Backlash Pulses zusätzlichen schaltungstechnischen Aufwand
benötigt und sich die Totzone durch eine zu geringe Verzögerungszeit im Rückkopp-
lungspfad des PFD nicht kompensieren lässt, bleibt die Totzone eine Eigenschaft,
die für den optimalen Entwurf der Phasenregelkreise berücksichtigt werden muss.
Des Weiteren bedarf es bei der Verwendung des Anti-Backlash Pulses einer präzi-
sen Auslegung der Ladungspumpe, da sich sonst die Auf- und Entladeströme nicht
ausgleichen, die Regelung der CP-PLL beeinträchtigt wird und Nebentöne im Aus-
gangsspektrum entstehen [7]. Darüber hinaus reduziert der Anti-Backlash Puls den
linearen Bereich des PFD [90] und verringert somit ∆ωPO, also den Bereich in dem
der Phasenregelkreis nicht ausrastet.

In dieser Arbeit wird für die Realisierung der Ladungspumpe eine einfache Struk-

uup

udn

ip

UDD

ip

ip

M1 M1

M2M2

M2

M2

Abb. 5.3.: Abbildung der in dieser Arbeit verwendeten Ladungspumpe, wobei aus Gründen der
Übersicht auf die Anschlüsse des Substrats verzichtet wurde. Die Substratanschlüsse
der p-Transistoren sind auf UDD gelegt und die der n-Transistoren auf Masse

tur gewählt, da anhand der sich ergebenden nichtlinearen und nicht-idealen Ef-
fekte die Ansätze der späteren Modellierung deutlich werden. Der Aufbau der
hier verwendeten Ladungspumpe ist ähnlich zu Abb. 2.7(b). Lediglich die idealen
Schalter und Stromquellen werden durch entsprechende Transistorschaltungen er-
setzt (siehe Abb. 5.3). Für die Kanallänge Ln,p = 120 nm und die Kanalweiten
Wp = 1500 nm und Wn = 4000 nm ergibt sich im völlig entladenen bzw. aufge-
ladenen Zustand der Schleifenfilterkapazitäten die Amplitude des Ladungspumpen-
stroms zu±Ip = ±300µA (siehe Abb. 5.4(a)). Wird das Verhalten der Ladungspum-
pe für verschiedene Kapazitätsspannungen betrachtet, ergibt sich das Kennlinien-
feld in Abb. 5.4(b). Die auf den Schleifenfilter aufgebrachte elektrische Ladung zeigt
eine deutliche Abhängigkeit von den initialen Spannungen Uinit über den Filterkapa-
zitäten. Das bedeutet, dass auch der maximale Ladungspumpenstrom Ip(uctl) von
den Spannungen des Schleifenfilters abhängt. Für Schleifenfilterspannungen nahe
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Abb. 5.4.: Eigenschaften der Ladungspumpe basierend auf der Transistor-Level Modellierung

der Versorgungsspannung der Ladungspumpe ist der generierte Aufladestrom gering,
wobei der Entladestrom maximal ist. Diese Veränderung der Schleifenverstärkung
beeinflusst die Dynamik des Regelkreises und somit die Kenngrößen aus Kapitel 3.1
und 4. Darüber hinaus weist die Ladungspumpe einen Leckstrom IL und Signalüber-

0

ip(t)
Iupp (uctl)

IL
Ig

u↑ref u↑refu↑div t

∆t→ Phasenfehler

τset

γset

−γrst

Idealer Strom

Transistor-Level

Abb. 5.5.: Schematische Darstellung des Ladungspumpenstroms zur Veranschaulichung der
nicht-idealen Effekte des PFD und der Ladungspumpe basierend auf dem Transistor-
Level Modell

schwinger Ig auf. Aufgrund der Kompensation dieser beiden Effekte innerhalb der
Regelung der PLL ergibt sich im Ausgangssignal des VCO und des Frequenzteilers
ein periodischer Jitter und somit entstehen Nebentöne im Leistungsdichtespektrum.
Des Weiteren beeinflussen die endlichen Flankensteilheiten γset und γrst des Stroms
der Ladungspumpe die Fähigkeit des Phasenregelkreises, kleine Phasenfehler auszu-
regeln. Eine schematische Darstellung des Stroms zur Verdeutlichung der genannten

101



5. Modellierung der CP-PLL inkl. nicht-idealer Effekte

nicht-idealen Effekte des PFD und der Ladungspumpe ist in Abb. 5.5 dargestellt.

Für die Filterung des Stroms wird die elektrische Schaltung des Schleifenfilters aus
Kapitel 2.2.1 aufgebaut. Bis auf Rauschen und Prozessvariationen verhalten sich
diese diskreten Bauelemente zunächst ideal. Weitere parasitäre Effekte, zum Bei-
spiel die Spannungsabhängigkeit integrierter Kapazitäten, werden in dieser Arbeit
nicht betrachtet.

Der darauf folgende spannungsgesteuerte Oszillator lässt sich beispielsweise als LC-
Oszillator oder als Ringoszillator realisieren. Der hier exemplarisch verwendete Ring-
oszillator stellt einen Single-Ended Ringoszillator dar, dessen Frequenz durch span-
nungsgesteuerte Stromquellen im Versorgungszweig der Inverterstufen kontrolliert
wird. Für die Aufbereitung des Ausgangssignals des VCO werden zwei weitere Inver-
terstufen nachgeschaltet. Das entsprechende elektrische Schaltbild ist in Abb. 5.6

UDD

uvco

M1M1M1M1

M2 M3 M4 M5M5

M6 M7 M8 M9M9

M10 M10M10M10

uctl

Strombegrenzung

Strombegrenzung

Signalauffrischung

Inverterstufen

Abb. 5.6.: Abbildung eines single-ended current starved Ringoszillators mit Signalauffrischung,
wobei aus Gründen der Übersicht auf die Anschlüsse des Substrats verzichtet wurde.
Die Substratanschlüsse der p-Kanal Transistoren sind auf UDD gelegt und die der
n-Kanal Transistoren auf Masse

zu sehen [91], wobei die Auslegung der Transistoren in Tab. 5.1 zusammengefasst
ist. Die Transistoren M1 und M10 stellen die spannungsgesteuerten Stromquellen
zur Regelung der VCO-Frequenz dar. Die Abhängigkeit der VCO-Frequenz von der
Steuerspannung und den Kanalweiten von M1 und M10 ist in Abb. 5.7(a) zu sehen,
wobei die Kanallänge 0,1µm beträgt. Das nichtlineare Verhalten des spannungsge-
steuerten Oszillators ist speziell in der Darstellung seiner Steigung zu erkennen. Oft
wird die Kennlinie eines Oszillators um die Mittenfrequenz linearisiert, obwohl in
Abb. 5.7(b) deutlich wird, dass die Steigung der Kennlinie auch in diesem Bereich
keineswegs konstant ist.
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Tab. 5.1.: Dimensionierung der Transistoren des Ringoszillators

Transistor Weite / µm Länge / µm

M1 abhängig von der Steigung Kv

M2 1,76 0,1

M3 M2 || M2

M4 M2 || M2 || M2

M5 0,88 0,1

M6 1,02 0,1

M7 M6 || M6

M8 M6 || M6 || M6

M9 0,51 0,1

M10 abhängig von der Steigung Kv

Die Trägheit des hier verwendeten Ringoszillators gegenüber Sprüngen der Steuer-
spannung stellt sich nach dessen Untersuchungen mittels Transistor-Level Simula-
tionen als vernachlässigbar klein heraus. Selbst für eine Variation der Steuerspan-
nung von 100mV (1/3 der nominalen Steuerspannung) über eine Zeitspanne von
etwa 100 fs (0,00145‰ der nominalen Periodendauer) ist der Frequenzwechsel inner-
halb der Simulation erkennbar. Die sich ergebende Verringerung der Periodendauer
entspricht dem zu erwartenden theoretischen Wert dieses Beispiels von etwa 1,7 ps
(0,02‰ der nominalen Periodendauer). Daher wird die Trägheit des VCO hier nicht
weiter betrachtet. Sollte diese bei einem anderen Entwurf des VCO relevant werden
und die Regelung des VCO selbst Überschwinger aufweisen, lässt sich dieses Verhal-
ten charakterisieren und beispielsweise mit zusätzlichen Polen und Verzögerungszei-
ten in der Übertragungsfunktion des zeitkontinuierlichen Modells berücksichtigen.

Zur Frequenzsynthese wird im Rückkopplungszweig des Phasenregelkreises ein Fre-
quenzteiler integriert. Ein Beispiel für einen einfachen Frequenzteiler ist eine Anein-
anderreihung von D-Flip-Flops, die die Frequenz des Eingangssignals jeweils durch
zwei teilen. Eine weitere Möglichkeit ist ein Flankenzähler mit Vergleichslogik, der
bei jeder N -ten steigenden Eingangsflanke eine steigende Ausgangsflanke generiert.
Diese Vergleichslogik lässt sich für die Realisierung einer Fractional-N PLL unter
anderem von einem Σ∆-Modulator steuern. Jedes Teilerverhältnis kann eine unter-
schiedliche Verzögerungszeit zwischen der Flanke im Eingangssignal und der Flanke
im Ausgangssignal aufweisen. Diese sogenannten Propagation-Delays führen zu ei-
nem systematischen Phasenversatz zwischen dem Referenz- und dem VCO-Signal.
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Abb. 5.7.: Eigenschaften des Ringoszillators basierend auf der Transistor-Level Modellierung
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5.2. Phasenrauschverhalten anhand des linearen

Modells

Neben den Transistor-Level-basierten nichtlinearen und nicht-idealen Effekten ist
das Phasenrauschen eine essentielle Kenngröße des Phasenregelkreises. Für die Mo-
dellierung des Phasenrauschens bietet sich beispielsweise die Plattform SpectreRF
an. Sie ist eine Erweiterung des Simulators Spectre von Cadence um die Methoden
Periodic Steady State und Periodic Small-Signal Analyses und kombiniert somit die
Schaltungssimulation mit Kleinsignal-Betrachtungen. Eine Verhaltensmodellierung
des Phasenrauschens in Phasenregelkreisen wird darüber hinaus in [67] diskutiert.
Speziell für die Kleinsignal-Betrachtung des Phasenregelkreises bietet sich jedoch
auch das lineare Modell aus Kapitel 3.1 an [7, 92], dass analytische Betrachtungen
ermöglicht.
Das Phasenrauschen im Phasenregelkreis resultiert beispielsweise aus dem thermi-
schen Rauschen der Bauteile und des Rauschens der Versorgungsspannungen und
führt zu ungewollten stochastischen Verschiebungen der steigenden und fallenden
Flanken der Signale. Diese zeitlichen Verschiebungen der Flanken werden als Jit-
ter bezeichnet und korrespondieren zum Phasenrauschen der periodischen Signa-
le. Die wesentlichen Phasenrauschquellen in der PLL sind in Abb. 5.8 schematisch
dargestellt [7, 14, 45, 92–96]. Die Phasenrauschquellen sind hier aufgrund der Über-
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Abb. 5.8.: Schematische Darstellung des Phasenregelkreises mit den wesentlichen Phasenrausch-
quellen, wobei die hellgrauen Blöcke akkumulierendes und die dunkelgrauen Blöcke
synchrones Phasenrauschen aufweisen

sichtlichkeit als additive Größen dargestellt, obwohl dieses Rauschen die Phasen der
periodischen Signale beeinflusst.
Das periodische Ausgangssignal des spannungsgesteuerten Oszillators entspricht un-
ter Berücksichtigung des Phasenrauschens

uvco(t) = Avco sin

(
2π

∫ t

t0

f(uctl(τ)) dτ + ϕvco,0 + ϕn,4(t)

)
, (5.1)
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wobei Avco die konstante Amplitude des VCO ist. Wird das Leistungsdichtespek-
trum des Referenz- und des spannungsgesteuerten Oszillators S(uref) und S(uvco)
betrachtet, resultiert das Phasenrauschen in einer Aufweitung des Spektrums um
die Zielfrequenz ft (siehe Abb. 5.9(a)). Sehr nahe der Zielfrequenz fällt diese Aufwei-
tung im Mittel mit 1/f 3 ab. Für größere Abweichung zur Trägerfrequenz beträgt
der Abfall in etwa 1/f 2 und geht schließlich für noch größere Abstände in 1/f
über [14, 92]. Wird das Leistungsdichtespektrum rechtsseitig der Zielfrequenz über
die Abweichung zur Zielfrequenz ∆f = f−ff doppelt-logarithmisch aufgetragen, er-
geben sich lineare Abschnitte mit den Steigungen −30dB/Dekade, −20dB/Dekade
und −10dB/Dekade für die genannten drei Bereiche (vgl. Abb. 5.9(b)). Diese Fre-
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(b) Darstellung des Leistungsdichtespektrums
rechtsseitig der Zielfrequenz

Abb. 5.9.: Verschiedene Darstellungen des Leistungsdichtespektrums freilaufender Oszillatoren
zur Verdeutlichung deren Phasenrauschverhaltens

quenzabhängigkeit des Phasenrauschens von freilaufenden Oszillatoren ergibt sich
aus der Akkumulation des Phasenrauschens über die Zeit. Eine Störung der Phase
von freilaufenden Oszillatoren führt zu einer permanenten Abweichung der Phase
und zukünftiges Phasenrauschen wird entsprechend akkumuliert [92].
Das Phasenrauschverhalten der getriggerten Komponenten des Phasenregelkreises
überlagert sich jeweils mit der steigenden bzw. fallenden Flanke des Eingangssi-
gnals und resultiert somit in keiner bleibenden Abweichung der Phasenlage. Dieses
synchrone Phasenrauschen zeigt sich in einem frequenzunabhängigen Leistungsdich-
tespektrum des Phasenrauschens von der Kombination aus PFD und Ladungspum-
pe (PFD & CP) [14]. Wird der Dividierer als Kette aus D-Flip-Flops aufgebaut,
zählt auch dieser zu den getriggerten Bauteilen. Für eine Fractional-N PLL mit
Σ∆-Modulator ist das Leistungsdichtespektrum des Phasenrauschens vom Dividie-
rer frequenzabhängig und wird maßgeblich von der Architektur des Modulators
bestimmt.

Da die Phasenrauschbetrachtung nahe der Ruhelage des Regelkreises durchgeführt
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wird und somit das Kleinsignalverhalten beurteilt wird, lässt sich das Verhalten der
Bauteile der PLL mitteln und das lineare Modell aus Kapitel 3.1 herleiten. Dieses
lineare Modell im Frequenzbereich ist in Abb. 5.10 inklusive der additiven Phasen-
rauschquellen dargestellt.
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Abb. 5.10.: Darstellung des linearen Modells der CP-PLL im Frequenzbereich mit den wesent-
lichen Phasenrauschquellen

Wird das Phasenrauschverhalten des Regelkreises mit Hilfe des linearen Modells be-
schrieben, resultiert das Leistungsdichtespektrum des Phasenrauschens am Ausgang
der PLL:

Svco
Φ (∆f) = (Sn2

Φ (∆f) + Sn3
Φ + Sn5

Φ ) |N T (j2π∆f)|2

+Sn4
Φ (∆f) |1− T (j2π∆f)|2 .

(5.2)

Das Phasenrauschverhalten am Ausgang des Dividierers lässt sich mittels

Sdiv
Φ (∆f) =

1

N2
Svco
Φ (∆f) (5.3)

bestimmen [7]. Sni
Φ bezeichnen dabei die Leistungsdichtespektren des Phasenrau-

schens Φni mit i = 2, . . . ,5. Abb. 5.11 zeigt die Phasenrauschanteile der einzelnen
Komponenten der PLL separat - sowohl für den freilaufenden Fall (engl. Open Loop,
kurz: OL) als auch innerhalb der Regelung (engl. Closed Loop, kurz: CL). Bei
Betrachtung des Phasenrauschverhaltens für den offenen Regelkreis ist zu erken-
nen, dass das Phasenrauschen der Oszillatoren eine Steigung von −20dB/Dekade
zeigt und die getriggerten Komponenten der PLL ein frequenzunabhängiges Pha-
senrauschverhalten aufweisen. Innerhalb des geschlossenen Regelkreises wird das
Phasenrauschen des spannungsgesteuerten Oszillators durch die Fehlerübertragungs-
funktion Te(s) = 1 − T (s) Hochpass-gefiltert, wobei das Phasenrauschen des Refe-
renzoszillators und des PFD & CP Blocks mittels der Übertragungsfunktion des
geschlossenen Regelkreises Tiefpass-gefiltert wird.
Diese analytische Betrachtung des Phasenrauschens ermöglicht einen schnellen Ein-
blick in das Systemverhalten, berücksichtigt jedoch keine weiteren nichtlinearen und
nicht-idealen Effekte.
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Abb. 5.11.: Separate Darstellung des Phasenrauschens der PLL-Komponenten für den offenen
(OL) und geschlossenen Regelkreis (CL)

5.3. Ereignisgesteuerte Modellierung

nicht-idealer Effekte

Die Kombination der eingeführten nichtlinearen und nicht-idealen Effekte der CP-
PLL beeinflussen das dynamische Verhalten des Regelkreises nicht nur nahe der
Ruhelage, sondern auch während der nichtlinearen Ziehphase. Aus diesem Grund
ist das lineare Modell nicht ohne Weiteres verwendbar. Darüber hinaus werden
auch die Konvergenzeigenschaften der Regelschleife beeinträchtigt. Für einen robus-
ten und verlässlichen Entwurf des gemischt digital analogen Systems ist es daher
unabdingbar, die Kombination dieser Effekte zu berücksichtigen. Da eine Transistor-
Level oder verhaltensbasierte Simulation zu sehr langen Simulationszeiten führen
kann [12] und eine große Datenmenge erzeugt wird, deren Interpretation eine Her-
ausforderung darstellt [4, 19], liegt die ereignisgesteuerte Modellierung nahe.
Zur Berücksichtigung der nichtlinearen und nicht-idealen Effekte wird in dieser Ar-
beit das ereignisgesteuerte Modell nach [19,24] erweitert, um sowohl die Transistor-
Level-basierten Effekte als auch das Phasenrauschen und deren Kombination zu
berücksichtigen. Diese Ansätze wurden auch in [97–100] veröffentlicht.
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5.3.1. Modellierung der nicht-idealen Effekte des PFD &
CP Blocks

Die Totzone des Phasenregelkreises resultiert aus der endlichen Steigung der Aus-
gangssignale des Phasen- und Frequenzdetektors und der Schwellspannung der nach-
folgenden Transistoren der Ladungspumpe. Für kleine Phasenfehler ist die Zeitdif-
ferenz zwischen den steigenden Flanken des Referenz- und des Dividierersignals
so gering, dass das steigende Ausgangssignal des PFD die Schwellspannung der
Ladungspumpe nicht erreicht und die Ladungspumpe nicht in der Lage ist, die In-
formation des Phasenfehlers an den Schleifenfilter weiterzugeben. Für diese kleinen
Zeitdifferenzen verhält sich der Phasenregelkreis gewissermaßen wie ein offener Re-
gelkreis und weist somit eine Totzone auf.
Zur Berücksichtigung dieser Totzone (engl. dead-zone, kurz: DZ) des Phasenregel-
kreises wurden in [19] erste Vorarbeiten veröffentlicht. Diese Vorarbeiten wurden
in [38] genauer betrachtet. Zur ereignisgesteuerten Modellierung der Totzone wird
das analoge Verhalten der Ausgangssignale des PFD erneut als digital interpretiert
und der endliche Zustandsautomat aus Kapitel 2.2.1 durch vier virtuelle Zustände
erweitert (siehe Abb. 5.12 [38]).

S+1S−1 S0

D−1,0 D0,1

D1,0D0,−1

u↑ref

u↑ref

u↑ref

u↑ref

u↑ref

u↑div

u↑div

u↑div

u↑div

u↑div

∆tin ≥ τset

∆tin ≥ τset

∆tin ≥ τrst

∆tin ≥ τrst

Abb. 5.12.: Erweiterung des PFD zur Beschreibung der Totzone

Diese vier zusätzlichen Zustände Di,j beschreiben den Phasenfehlerbereich, in dem
der Phasendetektor nicht reagiert. Ist der Phasenfehler sehr klein, dass heißt die
Zeitdifferenz zwischen u↑ref und u

↑
div ist geringer als τset, befindet sich der Phasenre-

gelkreis in der Totzone (die Zustandsfolge ist zum Beispiel durch S0 → D0,1 → S0
gegeben) und die Ausgänge des PFD bleiben unverändert. Mathematisch lässt sich
der endliche Automat unter Berücksichtigung der Totzone wie folgt definieren.

ADZ = {SDZ, I,O, TDZ, γDZ, ψDZ,Si} , (5.4)
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wobei

SDZ = {S−1,S+1,S0,D−1,0,D0,1,D0,−1,D1,0} Zustände, (5.5a)

I =
{
u↑ref , u

↑
div

}
Eingangsalphabet, (5.5b)

O = {uup(t), udn(t)} Ausgangsalphabet, (5.5c)

TDZ =
{
t, trefn+1, t

div
n+1, τset, τrst

}
Menge der Zeiten, (5.5d)

γDZ = Übergangsfunktion, (5.5e)

ψDZ = Ausgabefunktion, (5.5f)

Si ∈ SDZ Anfangszustand (5.5g)

gilt.

Für die Zustandsübergangsfunktion gilt

γDZ =





S−1 → D−1,0 falls u↑ref

S−1 → S−1 falls u↑div

S0 → D0,1 falls u↑ref

S0 → D0,−1 falls u↑div

S+1 → S+1 falls u↑ref

S+1 → D1,0 falls u↑div

D−1,0 → S0 falls ∆tin ≥ τrst

D−1,0 → S−1 falls u↑div

D0,1 → S+1 falls ∆tin ≥ τset

D0,1 → S0 falls u↑div

D0,−1 → S−1 falls ∆tin ≥ τset

D0,−1 → S0 falls u↑ref

D1,0 → S0 falls ∆tin ≥ τrst

D1,0 → S+1 falls u↑ref

(5.6)

Hierbei ist ∆tin die Zeitdifferenz zwischen der Simulationszeit tn und dem Eintritt
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tin in einen der Zustände Di,j :

∆tin = tn − tin. (5.7)

Die Ausgabefunktion dieses erweiterten Phasendetektors ist mit

ψDZ =





uup(t) = low, udn(t) = high falls S−1 ∨ D−1,0

uup(t) = low, udn(t) = low falls S0 ∨ D0,−1 ∨ D0,1

uup(t) = high, udn(t) = low falls S+1 ∨ D1,0

(5.8)

gegeben.
Wird die Charakteristik der Baugruppe bestehend aus PFD und Ladungspumpe
(kurz: PFD & CP Block) betrachtet, ergibt sich der Verlauf in Abb. 5.13, wobei die
Verschiebung der elektrischen Ladung durch

Q =

∫ tn+Tref

tn

ip(t) dt (5.9)

definiert ist und Qmax die maximale Ladungsverschiebung bei ϕe = 2π und idealer
PLL beschreibt.
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Abb. 5.13.: Charakteristische Kennlinie des PFD & CP Blocks mit Totzone, wobei τrst = 0 und
τset 6= 0 gilt

Es ist zu erkennen, dass die Kombination von PFD und Ladungspumpe für kleine
Phasenfehler nicht in der Lage ist, den Schleifenfilter zu laden oder zu entladen.
Der Phasenregelkreis ist in diesem Bereich quasi aufgetrennt. Da dieser Effekt
gerade bei kleinen Phasenfehlern auftritt, beeinflusst die Totzone die Stabilität des
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Phasenregelkreises [39] und das Phasenrauschverhalten.

Endliche Steigungen des Ladungspumpenstroms
Zusätzlich zur Totzone ist die endliche Steigung des Ladungspumpenstroms ein
nicht-idealer Effekt. In Abb. 5.14 ist ein exemplarischer Verlauf eines Stromimpul-
ses der Ladungspumpe dargestellt (vgl. [19]). Es ist ersichtlich, dass der Stromver-

ip(t)

t

Ip

tn tn+1

τset τrst

∆Qset,1

∆Qrst,1∆Qset,2

∆Qrst,2

u↑ref u↑div

Abb. 5.14.: Modellierung der endlichen Flankensteilheit des Ladungspumpenstroms mittels
Verzögerungszeiten (durchgezogene schwarze Kurve: realer Impuls – gestrichelte
Kurve: idealer Impuls)

lauf mit endlicher Flankensteilheit in erster Näherung mit einem verzögerten recht-
eckförmigen Verlauf approximiert werden kann. Dabei werden die Zeiten τset und
τrst zur Modellierung verwendet. Die Flächen zwischen beiden Verläufen entsprechen
der Ladungsdifferenz, die die Ladungspumpe auf den Schleifenfilter aufbringt. Für
den Fall ∆Qset,1 ≈ ∆Qset,2 und ∆Qrst,1 ≈ ∆Qrst,2 lässt sich die endliche Steigung
im Mittel ebenfalls mit dem PFD in Abb. 5.12 abbilden.
Für die Stabilitätsanalyse des Phasenregelkreises ist der Bereich nahe dem Fix-
punkt von großer Bedeutung. Da die erste Näherung der endlichen Steigung die
Dynamik nahe dem Fixpunkt jedoch nicht hinreichend gut abbilden kann, ist es
notwendig, den Funktionsblock bestehend aus PFD und Ladungspumpe um eine
endlichen Steigung des Stroms zu erweitern. Für diese Modellierung wird hier ei-
ne Geradengleichung mit konstanter Steigung angenommen (siehe Abb. 5.15). Die
sich ergebende Erweiterung des PFD ist in Abb. 5.16 zu sehen. In den Zuständen
Ci,j entspricht der Ausgangsstrom der Ladungspumpe einer Rampe mit vorgegebe-
ner konstanter Steigung, die in den Zuständen C0,1 und C−1,0 positiv und in den
Zuständen C0,−1 und C1,0 negativ ist. Die Zustände Ci,j können durch das Erreichen
des Stroms ip(t) = −Ip, ip(t) = 0, ip(t) = +Ip oder durch eine steigende Flanke des
Signals, das den vorherigen Zustandswechsel nicht verursacht hat, verlassen werden.
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ip(t)

t

Ip

tn tn+1

S0S0 S+1C0,1 C1,0

γset γrst

u↑ref u↑div

Abb. 5.15.: Strompuls der Ladungspumpe mit linearer Näherung der endlichen Flankensteilheit

S+1S−1 S0

C−1,0 C0,1

C1,0C0,−1

u↑ref

u↑ref

u↑ref

u↑ref

u↑ref

u↑div

u↑div

u↑div

u↑div u↑div
ip = −Ip

ip = +Ip

ip = 0

ip = 0

Abb. 5.16.: Erweiterung des PFD zur Beschreibung der endlichen Steigung des Stroms

Dieser endliche Automat lässt sich wie folgt mathematisch beschreiben:

ACS = {SCS, I,O, TCS, γCS, ψCS,Si} , (5.10)
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wobei

SCS = {S−1,S+1,S0, C−1,0, C0,1, C0,−1, C1,0} Zustände, (5.11a)

I =
{
u↑ref , u

↑
div

}
Eingangsalphabet, (5.11b)

O = {uup(t), udn(t)} Ausgangsalphabet, (5.11c)

TCS = {−Ip, 0,+Ip} Menge der Ströme, (5.11d)

γCS = Übergangsfunktion, (5.11e)

ψCS = Ausgabefunktion, (5.11f)

Si ∈ SCS Anfangszustand (5.11g)

gilt. Für die Zustandsübergangsfunktion gilt

γCS =





S−1 → C−1,0 falls u↑ref

S−1 → S−1 falls u↑div

S0 → C0,1 falls u↑ref

S0 → C0,−1 falls u↑div

S+1 → S+1 falls u↑ref

S+1 → C1,0 falls u↑div

C−1,0 → S0 falls ip = 0

C−1,0 → C0,−1 falls u↑div

C0,1 → S+1 falls ip = +Ip

C0,1 → C1,0 falls u↑div

C0,−1 → S−1 falls ip = −Ip
C0,−1 → C−1,0 falls u↑ref

C1,0 → S0 falls ip = 0

C1,0 → C0,1 falls u↑ref

. (5.12)
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Die Ausgabefunktion dieses erweiterten Phasendetektors ist mit

ψCS =





uup(t) = low, udn(t) = high falls S−1 ∨ C0,−1

uup(t) = low, udn(t) = low falls S0 ∨ C−1,0 ∨ C1,0
uup(t) = high, udn(t) = low falls S+1 ∨ C1,0

(5.13)

gegeben.
Die Verallgemeinerung des ereignisgesteuerten Modells auf beliebige Ordnungen
des Phasenregelkreises (siehe Kapitel 3.3) ist an dieser Stelle von großem Vorteil,
da der Strom der Ladungspumpe nicht mehr als stückweise konstant angenommen
werden kann und die Rampe des Stroms in der Berechnung des Schleifenfilters
berücksichtigt werden muss. Die Charakteristik der Zusammenschaltung des
PFD und der Ladungspumpe mit endlicher Steigung des Stroms ist in Abb. 5.17
dargestellt. Es ist zu erkennen, dass sie einen quadratischen Verlauf für kleine
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Abb. 5.17.: Charakteristische Kennlinie des PFD & CP-Blocks mit endlicher Steigung des
Stroms (|γset| = |γrst|)

Phasenfehler aufweist. Für größere Phasenfehler ist die Charakteristik analog zum
idealen Verlauf, falls der Betrag der positiven und negativen Steigung gleich ist
(|γset| = |γrst|). Der quadratische Verlauf ergibt sich aus der folgenden Untersu-
chung. Der trapezförmige Verlauf des Stroms (siehe Abb. 5.15) resultiert in einer
Charakteristik, die analog zum idealen PFD ist, da der Flächeninhalt des Trapez
gleich dem des idealen Rechteck ist. Wird der Phasenfehler kleiner, ist der Verlauf
des Stroms dreieckförmig und die Fläche unter dem Strom hängt quadratisch vom
Phasenfehler ab (siehe Dreiecksgrenze in Abb. 5.17).
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Die endliche Flankensteilheit des Stroms führt somit zu einer weiteren Glättung der
Steuerspannung im Bereich der Schaltzeitpunkte tn. Darüber hinaus beeinträchtigt
die endliche Steigung des Stroms die Konvergenzeigenschaften des Regelkreises, da
die Schleifenverstärkung für kleine Phasenfehler abnimmt.

Kombination der Totzone und der endlichen Steigung des Stroms
Für eine Modellierung, die nahe den physikalischen Gegebenheiten ist, werden die
Totzone und die endliche Steigung des Stroms kombiniert. In Abb. 5.20 ist ein realis-
tischerer Strompuls (gestrichelt) dargestellt. Zusätzlich ist der im ereignisgesteuer-

ip(t)

t

Ip

tn tn+1

τset τrst

∆ip,1 ∆ip,2

u↑ref u↑div

S0S0 S+1D0,1 C0,1 D1,0 C1,0

Abb. 5.18.: Strompuls der Ladungspumpe mit Totzone und endlicher Steigung (durchgezogene
schwarze Kurve: modellierter Impuls – gestrichelte Kurve: realer Impuls)

ten Modell implementierte Strompuls zu sehen. Durch die Kombination der Totzone
(D0,1 und D1,0) und der endlichen Flankensteilheit (C0,1 und C1,0) ist eine Modellie-
rung des Stroms nahe des realen Verlaufs möglich. Hierbei ist darauf zu achten, dass
während einer Rampe des Ladungspumpenstroms eine zurücksetzende Flanke in den
Eingangssignalen des PFD auftreten kann. Da der Einfluss der steigenden Flanke
im Eingangssignal durch die Laufzeiten der Totzone (τset oder τrst) verzögert wird,
ist zu berücksichtigen, dass sowohl das Erreichen des maximalen Stroms als auch
die Verzögerungszeit selber zu einem weiteren Zustandswechsel des PFD führen. In
Abb. 5.19 ist ein beispielhaftes Szenario dargestellt. Der Anfangszustand wird in
diesem Beispiel durch eine steigende Flanke im Referenzsignal verlassen. Nach der
Verzögerungszeit τset der Totzone wird der Zustand C0,1 angenommen. Dieser wird
durch eine steigende Flanke im Dividierersignal verlassen. Durch die Verzögerungs-
zeit τrst der Totzone bleibt die Dynamik des Stroms zunächst erhalten. In diesem
Beispiel wird der maximale Strom +Ip erreicht, bevor die Verzögerungszeit erreicht
ist. Der folgende Zustand S1,a ist eine Kopie des Zustandes S+1, wobei S1,a nach der
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ip(t)

t

Ip

tn tn+1

τset τrst

τ2

u↑ref u↑div

S0S0 S1,aD0,1 C0,1 Dc,−c C1,0

Abb. 5.19.: Spezialfall des Ladungspumpenstroms mit Totzone und endlicher Steigung

Zeit

τ2 = τrst −∆tS (5.14)

verlassen wird. ∆tS beschreibt die Zeitspanne des Verweilens im vorherigen Zustand
(in diesem Fall der Zustand Dc,−c). Die anschließende negative Rampe des Stroms
wird durch das Erreichen des Stroms ip(t) = 0 beendet.
Mit Hilfe dieser Betrachtung lässt sich der erweiterte endliche Automat des PFD
herleiten. Das Resultat ist in Abb. 5.20 dargestellt. Hierbei beschreiben Di,j die
Totzone und Cg,h entsprechen der endlichen Steigung des Stroms. Die zusätzlichen
Zustände D−c,c und Dc,−c der Totzone resultieren aus dem obigen Beispiel. Diese
Zustände werden durch die Überschreitung der Verzögerungszeit τset beziehungs-
weise τrst oder durch das Erreichen des Sollstroms verlassen. Sp,a stellen Kopien
der Zustände Sp dar, wobei p = −1,0, + 1 gilt. Die weiteren Zeiten, die in diesem
endlichen Automat verwendet werden, sind wie folgt definiert:

τS = τset −∆tS (5.15)

und

∆tin = tn − tin, (5.16)

wobei tin den Eintrittszeitpunkt in einen Zustand definiert.
Bei dieser Modellierung ist darauf zu achten, dass die Summe der Verzögerungs-
zeiten τset, τrst und der Anstiegszeit des Stroms geringer als die Periodendauer des
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Abb. 5.20.: Erweiterung des PFD zur Beschreibung der Totzone und der endlichen Steigung
des Stroms

Referenz- und des Dividierersignals ist. Diese Annahme wird in der Regel erfüllt,
da die verwendeten Komponenten sonst den Ansprüchen der Applikation nicht
genügen. Die PFD & CP Charakteristik mit der Kombination der Totzone und der
endlichen Steigung des Stromanstiegs ist in Abb. 5.21 zu sehen. Es ist ersichtlich,
dass sowohl der quadratische Verlauf als auch die Totzone in der Charakteristik
auftreten. Die Addition beider Bereiche beeinflusst das Phasenrauschverhalten und
reduziert die Konvergenzeigenschaften des Phasenregelkreises und ist daher für den
Systementwurf zu berücksichtigen.

Leckstrom, Stromüberschwinger und Spannungsabhängigkeit der Strom-
amplitude
Die vorgestellten Erweiterungen des Phasendetektors zur Berücksichtigung der
nicht-idealen Effekte weisen in den Zuständen S0, S0,a, D0,1 und D0,−1 einen Strom
ip = 0 auf. Wird dieser Strom neu definiert, können alle Modelle für die Modellie-
rung des Leckstroms herangezogen werden:

ip(t) = ±IL ∀ S ∈ [S0, S0,a, D0,1, D0,−1] . (5.17)

Diese Definition führt zu einer Verschiebung der Kennlinie der elektrischen Ladung
des PFD & CP Blocks. Die Verschiebung in y-Richtung entspricht ±IL · Tref , wobei
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Abb. 5.21.: Charakteristische Kennlinie des PFD & CP-Blocks mit Totzone (τrst = 0 und τset 6=
0) und endlicher Steigung des Stroms (|γset| = |γrst|)

Tref die Periodendauer des Referenzsignals ist. Das Resultat dieser Eigenschaft ist
ein mittlerer statischer Phasenfehler in der Regelung, da sich nur so der Leckstrom
ausgleichen lässt (siehe Kapitel 7.2).

Analog zur Einführung des Leckstroms lässt sich ein Stromüberschwinger modellie-
ren. Hierfür wird der Ladungspumpenstrom in den Zuständen D0,1, D1,0, S0,a, S1,a,
D0,−1, D−1,0 und S−1,a neu definiert:

ip(t) = IL − Ig ∀ S ∈ [D0,1, D1,0, S0,a, S1,a, D0,−1, D−1,0, S−1,a] . (5.18)

Somit sind die vorangegangenen Modellierungen in der Lage, einen Stromüber-
schwinger zu berücksichtigen. Dieser Überschwinger des Stromsignals resultiert in
einer negativen Steigung −Ig der Ladungskennlinie des PFD & CP Blocks nahe
ϕe = 0 und beeinträchtigt den statischen Phasenfehler und die Konvergenzeigen-
schaften des Phasenregelkreises (zwei stabile Ruhelagen möglich) und die Frequenz-
reinheit des VCO-Signals. Abb. 5.22(b) zeigt die resultierende Kennlinie des PFD
& CP Blocks mit Totzone, Leckstrom, Stromüberschwinger (engl. Glitch) und end-
lichen Flankensteilheiten des Stroms.

Des Weiteren lässt sich die maximale Amplitude des Stroms Ip variabel definie-
ren. Für das ereignisgesteuerte Modell der CP-PLL wird diese maximale Amplitude
zwischen den Ereignissen tn als konstant approximiert, wobei sich diese jedoch zu
jedem Ereignis neu definieren lässt. Für den spannungsabhängigen Ausgangsstrom
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(b) Charakteristische Kennlinie des PFD &
CP-Blocks mit Totzone (τrst = 0 und
τset 6= 0), endlicher Steigung des Stroms
(|γset| = |γrst|), Leckstrom und Stromüber-
schwinger

Abb. 5.22.: Charakteristiken des PFD mit Totzone, Leckstrom, endlicher Steigung und Über-
schwinger des Ladungspumpenstroms

der Ladungspumpe bietet sich folgende Definition an

ip(t) = ±Ip(uctl(tn)) ∀ S ∈ [S−1, S+1, S1,a, S−1,a]. (5.19)

Basierend auf dieser Modellierung lassen sich die eingeführten endlichen Zustandsau-
tomaten dazu verwenden, eine variable aber stückweise konstante Stromamplitude
Ip(·) zu realisieren. Dieser nicht-ideale Effekt führt zu einer variablen Schleifen-
verstärkung und beeinflusst somit das dynamische Verhalten, wie zum Beispiel die
Anstiegs- und die Ausregelzeit.

Die ereignisgesteuerte Modellierung eines exemplarischen Strompulses der Ladungs-
pumpe ist in Abb. 5.22(a) zu erkennen. Hier ist ersichtlich, dass sich der Strompuls
mit dem eingeführten ereignisgesteuerten Modell gut abbilden lässt.
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5.3.2. Dividiererlaufzeiten

Der Frequenzteiler innerhalb des Rückkopplungspfades des Phasenregelkreises weist
für verschiedene Teilerverhältnisse unterschiedliche Signallaufzeiten auf.
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∆t

t
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u↑refu↑div

S0S0 Sτdiv
0 S+

0
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(b) ∆t < 0 ∧ τdiv < |∆t| ∧ S = S0
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(c) ∆t > 0 ∧ τdiv > |∆t| ∧ S = S0
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(d) ∆t < 0 ∧ τdiv > |∆t| ∧ S = S+1

Abb. 5.23.: Darstellung der wesentlichen Effekte der Dividiererlaufzeiten auf den Phasenregel-
kreis anhand des Ladungspumpenstroms

Diese Verzögerungen resultieren in einer Zeitdifferenz der einfallenden Flanken und
der generierten Ausgangsflanken. Der so generierte Phasenfehler beeinflusst das dy-
namische Verhalten des Phasenregelkreises. Speziell für die Fractional-N PLL, bei
der zwischen verschiedenen Teilerverhältnissen geschaltet wird, ergeben sich unter-
schiedliche Verzögerungszeiten.
Für die Modellierung dieser Dividiererlaufzeiten lässt sich ebenfalls der endliche
Zustandsautomat des Phasen- und Frequenzdetektors erweitern. Dies hat den Vor-
teil, dass sich der Einfluss der Laufzeiten auf das dynamische Verhalten der Regel-
schleife detailliert und modular beschreiben lässt und zu einem besseren Verständ-
nis dieses nicht-idealen Effektes beiträgt. Der Einfluss der Dividiererlaufzeiten auf
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5. Modellierung der CP-PLL inkl. nicht-idealer Effekte

die Regelschleife ist in Abb. 5.23 dargestellt. Der erste Fall ist in Abb. 5.23(a) zu
sehen, wobei der initiale Zustand des PFD als S0 angenommen wird. Des Weite-
ren ist hier die Zeitdifferenz zwischen der idealen steigenden Dividiererflanke u↑div
und der des Referenzsignals u↑ref kleiner als die Verzögerungszeit des Dividierers
|∆t| =

∣∣trefn+1 − tdivn+1

∣∣ < τdiv. Für diesen Fall wird die Reaktion auf die steigende

Flanke u↑div hinter die Referenzflanke verschoben und die elektrische Ladung des
idealen Dividierers Qideal wird zu Qdelay. Es ist offensichtlich, dass sich das Vorzei-
chen der elektrischen Ladung ändert und die VCO-Frequenz erhöht wird, obwohl
diese bereits höher als die Zielfrequenz ist. Wird |∆t| > τdiv betrachtet, wird die idea-
le elektrische Ladung der Ladungspumpe um Ipτdiv reduziert (siehe Abb. 5.23(b)).
Das bedeutet, dass die Reduzierung der VCO-Frequenz und somit das Regelverhal-
ten der PLL verlangsamt wird.
Tritt die Referenzflanke zuerst auf, tritt der dritte Fall aus Abb. 5.23(c) ein. Hier
vergrößert die Laufzeit den Strompuls um Ipτdiv, wodurch die VCO-Frequenz stärker
erhöht wird als durch die Zeitdifferenz ∆t vorgegeben und das Regelverhalten wird
beschleunigt. Der vierte kritische Fall nimmt den initialen PFD-Zustand als S+1 an
(vgl. Abb. 5.23(d)). Tritt die Dividiererflanke u↑div zuerst auf, würde die ideale Divi-

diererflanke die Beschleunigung des VCO-Signals beenden bis u↑ref detektiert wird.
Durch die Laufzeit des Dividierers wird für |∆t| < τdiv die Beschleunigungsphase
hingegen erst nach der Referenzflanke beendet und somit die elektrische Ladung
erhöht. Des Weiteren weist diese Referenzflanke keinen Einfluss mehr auf die Rege-
lung auf.
Diese vier kritischen Fälle lassen sich für die Erweiterung der Beschreibung des
PFD als endlicher Zustandsautomat verwenden. Der resultierende Automat ist in
Abb. 5.24 zu sehen. Dieser Automat lässt sich mit Hilfe des 7-Tupels

Adelay = {S, I,O, T , γdelay, ψdelay,Si} (5.20)

mathematisch beschreiben, wobei

S =
{
S−1,S−0,S0,S+0,S+1,Sτdiv

−1 ,Sτdiv
0 ,Sτdiv

+1

}
Zustände, (5.21a)

I =
{
u↑ref , u

↑
div

}
Eingangsalphabet, (5.21b)

O = {uup(t), udn(t)} Ausgangsalphabet, (5.21c)

T =
{
t, trefn+1, t

div
n+1, τdiv

}
Menge der Zeiten, (5.21d)

γdelay = Übergangsfunktion, (5.21e)

ψdelay = Ausgabefunktion (5.21f)
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5.3. Ereignisgesteuerte Modellierung nicht-idealer Effekte

und

Si ∈ S Anfangszustand (5.22)

gilt. Die Ausgabefunktion des erweiterten Phasendetektors ist mit

ψdelay =





uup(t) = low, udn(t) = high falls S−1 ∨ Sτdiv
−1

uup(t) = low, udn(t) = low falls S0 ∨ S−0 ∨ Sτdiv
0

uup(t) = high, udn(t) = low falls S+1 ∨ S+0 ∨ Sτdiv
+1





(5.23)

gegeben. Für die Zustandsübergangsfunktion gilt

γdelay =





S−1 → Sτdiv
−1 falls u↑div

S−1 → S0 falls u↑ref

S0 → S+1 falls u↑ref

S0 → Sτdiv
0 falls u↑div

S−0 → S−1 falls t > τdiv −∆t

S+0 → S0 falls t > τdiv −∆t

S+1 → S+1 falls u↑ref

S+1 → Sτdiv
+1 falls u↑div

Sτdiv
−1 → S−0 falls u↑ref

Sτdiv
−1 → S−1 falls t > τdiv

Sτdiv
0 → S+0 falls u↑ref

Sτdiv
0 → S−1 falls t > τdiv

Sτdiv
+1 → S0 falls t > τdiv

Sτdiv
+1 → S+0 falls u↑ref





(5.24)

Hierbei ist ∆t die zeitliche Differenz der steigenden Flanken der Eingangssignale
des Phasendetektors (uref(t) und udiv(t)):

∆t = tdivn+1 − trefn+1. (5.25)

Durch die Laufzeiten des Dividierers wird die elektrische Ladungskennlinie des PFD
& CP Blocks in negative x-Richtung verschoben, wodurch sich bei der CP-PLL ein
mittlerer statischer Phasenfehler ergibt. Für unterschiedliche Dividiererlaufzeiten
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S+1S−1 S0S−0
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−1 Sτdiv

0 Sτdiv
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Abb. 5.24.: Erweiterung des PFD zur Beschreibung der Laufzeiten des Dividierers

der Fractional-N PLL ergibt sich ein mittlerer statischer Phasenfehler, der sich aus
der Häufigkeit der auftretenden Laufzeiten und dessen Größe ergibt.

5.3.3. Phasenrauschen

Ein weiterer nicht-idealer Effekt ist das Rauschen in Phasenregelkreisen. Da die In-
formationen der Signale des Phasenregelkreises zur Frequenzsynthese innerhalb der
Phase gespeichert sind und die Amplituden eine weniger wichtige Rolle spielen, ist
die Betrachtung des Phasenrauschens für den Systementwurf essentiell. Trotz ver-
schiedener Methoden zur Reduzierung des Phasenrauschens (beispielsweise in Os-
zillatoren [101]), bleibt das Phasenrauschen Bestandteil des Regelkreises und muss
entsprechend modelliert, charakterisiert und analysiert werden. Zwar lässt sich das
Phasenrauschen mittels des linearen Modells beschreiben (siehe Kapitel 5.2), jedoch
eignet sich dieses Modell nicht für die Untersuchung des Ziehbereichs und der Kom-
bination des Phasenrauschens mit weiteren nichtlinearen und nicht-idealen Effekten.
Für die Charakterisierung des Einflusses der nicht-idealen Effekte auf das Phasen-
rauschverhalten der PLL wird daher das ereignisgesteuerte Modell hinsichtlich des
Phasenrauschens erweitert. Da das ereignisgesteuerte Modell die CP-PLL anhand
der Phasengleichungen des Referenz- und des Dividierersignals im Zeitbereich re-
präsentiert, werden die Rauschquellen aus Abb. 5.8 in die Referenz- bzw. Dividie-
rerphase überführt, sodass sich

ϕref
n (tn+1) = ϕn2(tn+1) + ϕn3(tn+1)− ϕn3(tn) (5.26a)

ϕdiv
n (tn+1) =

√
Nϕn4(tn+1) + ϕn5(tn+1)− ϕn5(tn) (5.26b)

ergibt. Da das Phasenrauschen des Referenz- und des spannungsgesteuerten Os-
zillators akkumulierend ist (ϕn2 und ϕn4), werden diese Komponenten in jedem
Iterationsschritt des ereignisgesteuerten Modells (engl. Event-Driven Modell, kurz:
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5.3. Ereignisgesteuerte Modellierung nicht-idealer Effekte

ED-Modell) aufsummiert. Das synchrone Phasenrauschen des Dividierers und des
PFD & CP Blocks (ϕn5 und ϕn3) wird durch die Subtraktion des vorangegange-
nen Phasenrauschterms im ED-Modell realisiert. Die Phasen des Referenz- und des
Dividierersignals ergeben sich mit dem Phasenrauschen zu

ϕref(tn+1) = ϕref(tn) +

∫ tn+1

tn

ωref(t) dt+ ϕref
n (tn) (5.27a)

ϕdiv(tn+1) = ϕdiv(tn) +

∫ tn+1

tn

ωvco(t)

N(t)
dt+ ϕdiv

n (tn). (5.27b)

Das Phasenrauschverhalten für freilaufende Oszillatoren wird oft durch die Rausch-
leistung in dBc/Hz (Leistung pro Hz bezogen auf die Leistung der Trägerfrequenz)
bei einem definierten Abstand zur Trägerfrequenz angegeben. Eine exemplarische
Angabe in Datenblättern könnte wie folgt aussehen:

|SΦ(f1)|dB = 10 log10 (|SΦ(f1)|) = −110 dBc/Hz, (5.28)

wobei beispielsweise f1 = 10MHz den Abstand zur Oszillatorfrequenz definiert. Da
die ereignisgesteuerte Modellierung das dynamische Verhalten jedoch im Zeitbereich
beschreibt, lässt sich die Standardabweichung der Jitter-behafteten Periodendauern
von der idealen Periodendauer durch

std(ϕn2) =

√
Sn2
Φ (f1)

f 2
1

f 3
ref

· 2πfref (5.29)

bestimmen (vgl. [92] S. 32 und folgende). Der rechte Multiplikator 2πfref überführt
den Jitter der Periodendauern in einen Phasen-Jitter und somit in das Phasenrau-
schen. Mit dieser Gleichung lässt sich sowohl das Phasenrauschen des Referenz- als
auch des spannungsgesteuerten Oszillators bestimmen.
Für die freilaufenden synchronen Komponenten der Regelschleife (PFD, Ladungs-
pumpe oder Dividierer) wird das Phasenrauschen meist in der Form |SΦ|dB =
−130 dBc/Hz angegeben1. Die Standardabweichung des Phasenrauschens und so-
mit der Phasen-Jitter lassen sich mit

std(ϕn3) =

√
Sn3
Φ

1

4π2fref
· 2πfref (5.30)

bestimmen (vgl. [7] S. 205 und 232). Bei beiden Betrachtungen wird weißes Rau-
schen angenommen, da die Breite des betrachteten Frequenzbands 0 bis fref ne-
ben der Oszillatorfrequenz meist geringer als die Bandbreite des Rauschens ist und
sich somit als näherungsweise konstant annehmen lässt [7]. Die eingeführten Stan-
dardabweichungen des Phasenrauschens im Zeitbereich lassen sich innerhalb der

1Der nummerische Wert stellt lediglich ein Beispiel dar.
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Gleichung (5.26) des iterativen ereignisgesteuerten Modells durch

ϕni = std(ϕni) · randn (5.31)

berücksichtigen. Das i im Index bezeichnet dabei die verschiedenen Phasenrausch-
größen ϕn2 bis ϕn5. Die Funktion randn stellt eine normalverteilte Rauschgröße dar,
wobei auch andere Verteilungen im ereignisgesteuerten Modell verwendet werden
können.
Das resultierende Phasenrauschen der geschlossenen Regelung SΦ(·) lässt sich all-
gemein anhand des Leistungsdichtespektrums der periodischen Signale bestimmen.
Die Wurzel des mittleren quadratischen (engl. Root-Mean-Square, kurz: RMS) Pha-
senrauschens im Zeitbereich ergibt sich schließlich zu

ϕrms
n =

√∫ ∞

0

2SΦ(∆f) d∆f (5.32)

(siehe [1] Seite 99 und folgende, [59] und [102]). Für die doppelt-logarithmische
Darstellung aus Abb. 5.9(b) lässt sich das Integral in Gleichung (5.32) durch

Aint = SΦ(f1) f
−m

10
1 ·





1
m
10

+ 1

(
f

m
10

+1

2 − f
m
10

+1

1

)
∀ m 6= −10

ln (f2)− ln (f1) ∀ m = −10
(5.33)

vereinfacht darstellen, wobei f1 und f2 die Grenzen und m die Steigung der linearen
Abschnitte sind.
Nach der Erweiterung des ereignisgesteuerten Modells durch die Transistor-Level-
basierten nicht-idealen Effekte und das Phasenrauschen lassen sich diese Effekte
und deren Wechselbeziehungen effizient charakterisieren und der Systementwurf des
Phasenregelkreises optimieren. Dies wird in Kapitel 7 genauer betrachtet.

5.4. Vergleich der Modellierungsansätze

Zur Beurteilung der Erweiterung des ereignisgesteuerten (ED) Modells durch die
Transistor-Level-basierten nicht-idealen Effekte wird dieses mit der Transistor-Level
(TL) Simulation verglichen. Hierzu lässt sich der Phasenregelkreis mit den Kompo-
nenten aus Kapitel 5.1 in Cadence / Spectre oder Advanced Design System (ADS)
aufbauen. Exemplarisch sei hier ADS verwendet. Für die Beschreibung des Verhal-
tens der Transistoren wird das BSIM4 Modell [89] eingesetzt. Die Ergebnisse dieser
Validierung wurden auch in [100] veröffentlicht. Für den Vergleich des ED Modells
mit der TL Simulation werden im ersten Schritt die Komponenten des Phasenregel-
kreises auf Transistor-Level separat charakterisiert und mittels der makroskopischen
Parameter aus Kapitel 5.3 in das ereignisgesteuerte Modell eingebracht.
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Für die Charakterisierung der VCO-Kennlinie wird der spannungsgesteuerte Oszil-
lator mit einer konstanten Steuerspannung beschaltet und die Frequenz des Aus-
gangssignals bestimmt. Wird die Frequenz über verschiedene konstante Steuerspan-
nungen aufgetragen, ergibt sich die Kennlinie des verwendeten Ringoszillators in
Abb. 5.25(a). Im ereignisgesteuerten Modell lässt sich diese Charakteristik mit ei-
nem Polynom oder einer stückweise linearen Approximation realisieren, wobei beide
Methoden zum gleichen Ergebnis führen. An dieser Stelle wird die VCO-Kennlinie
mit 100 Stützstellen stückweise linear approximiert.
Die Spannungsabhängigkeit der Stromamplitude der verwendeten Ladungspumpe
wird während eines Aufladeprozesses der Filterkapazitäten aufgenommen. Zu diesem
Zweck werden die zwei Eingangssignale der Ladungspumpe in der Art vorgegeben,
dass der entladene Schleifenfilter durch die Ladungspumpe bis auf die Versorgungs-
spannung aufgeladen wird. Wird der Strom über die Spannung der zweiten Kapa-
zität C2 und somit der Steuerspannung aufgetragen, resultiert der Zusammenhang
in Abb. 5.25(b). Es ist zu erkennen, dass der Abfall der Amplitude bis zur Ziel-
spannung (Ruhelage des Phasenregelkreises) näherungsweise linear ist. Oberhalb
der Zielspannung wird der Abfall größer und die Amplitude des Stroms läuft gegen
Null für Kapazitätsspannungen nahe der Versorgungsspannung. Im späteren Ver-
lauf dieses Kapitels wird sich zeigen, dass der Überschwinger des implementierten
Phasenregelkreises nicht deutlich größer als die Zielspannung ist und somit eine
lineare Approximation der Stromamplitude für ein akkurates ereignisgesteuertes
Modell ausreicht. Generell ist das ereignisgesteuerte Modell in der Lage, einen be-
liebigen Zusammenhang zu berücksichtigen, wobei dieser für jede Referenzperiode
als stückweise konstant angenommen wird.
Zur Aufnahme der Ladungskennlinie des PFD & CP Blocks wird die Kombination
des PFD, der Ladungspumpe und des Schleifenfilters als elektrische Last betrach-
tet. Die Eingangssignale des Phasen- und Frequenzdetektors werden durch zwei
periodische Signale mit leicht unterschiedlichen Frequenzen vorgegeben, sodass
der Phasenfehler zwischen beiden Signalen stetig größer oder kleiner wird. Wird
der Ladungspumpenstrom aufgenommen und die resultierende Ladung einer
Referenzperiode über den Phasenfehler aufgetragen, ergibt sich die Kennlinie in
Abb. 5.25(c). Da hier lediglich die Totzone, der Leckstrom und die Einflüsse der
endlichen Flankensteilheit des Stroms und der Stromüberschwinger interessant
sind, ist es ausreichend, lediglich kleine Phasenfehler zu untersuchen und die
Spannungsabhängigkeit des Stroms auf Grund der nur kleinen Änderungen der
Filterspannungen bei dieser Betrachtung zu vernachlässigen. Werden die makro-
skopischen Parameter im ereignisgesteuerten Modell eingebracht, ergibt sich der
Strompuls aus Abb. 5.25(d), der zu der PFD & CP Kennlinie in Abb. 5.25(c) führt.
Die kleinen Unterschiede nahe des Effektes der Totzone entstehen durch weitere
parasitäre Effekte in der Transistor-Level Simulation und sind nur bei starker
Vergrößerung erkennbar. Es wird sich zeigen, dass die kleinen Differenzen zwischen
der Kennlinie des ereignisgesteuerten Modells und der Transistor-Level Simulation
nur geringe Auswirkungen auf das Verhalten des Phasenregelkreises aufweisen.
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Abb. 5.25.: Charakterisierung der Transistor-Level-basierten PLL Komponenten und deren Mo-
dellierung im ereignisgesteuerten Modell

Unter Berücksichtigung dieser Transistor-Level-basierten nicht-idealen Effekte las-
sen sich das ereignisgesteuerte Modell und die Transistor-Level Simulation mitein-
ander vergleichen. Für die komfortable Bedienung des ereignisgesteuerten Modells
lässt sich die implementierte grafische Benutzeroberfläche aus Anhang D verwenden.
Die makroskopischen Parameter des getesteten Phasenregelkreises sind in Tab. 5.2
zusammengefasst. Des Weiteren wird das ereignisgesteuerte Modell mit je 10 zusätz-
lichen Punkten pro Ereignis simuliert, die lediglich für eine optisch ansprechendere
und feinere Darstellung verwendet werden. Die Steuerspannung beider Simulationen
ist in Abb. 5.26 dargestellt. Beim Vergleich des ereignisgesteuerten Modells mit der
Transistor-Level Simulation als Referenz ist zu erkennen, dass die Übereinstimmung
beider Ergebnisse sehr gut ist. In Abb. 5.26(a) sind der gesamte Ziehbereich, der ein-
gerastete Fall und der ausgeregelte Zustand anhand der Steuerspannung innerhalb
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5.4. Vergleich der Modellierungsansätze

Tab. 5.2.: Parameter für den Vergleich des ereignisgesteuerten Modells und der Transistor-Level
Simulation

Parameter Wert Einheit

fref 1,6 MHz

N 512

τset 60 ps

τrst 0 ps

Iupp Ĩupp (uctl) µA

Idnp −333 µA

IL −24 nA

Ig 0,2 µA

γset 5,1 MA/s

γrst γset MA/s

Kv stückweise definiert (Abb. 5.25(a)) Hz/V

R1 224,3 Ω

C1 22,8 nF

C2 4,7 nF

der PLL zu sehen. Darüber hinaus ist die Differenz zwischen der Steuerspannung
vom ED-Modell und der TL Simulation abgebildet. Der RMS-Fehler über die gesam-
te Regelzeit beträgt nur 0,593mV und entspricht lediglich 0,1% der Zielspannung.
Wird ein Zoom-Bereich der Steuerspannung dargestellt, ergibt sich der Verlauf
in Abb. 5.26(b). Erst im sehr kleinen Bereich von 90µV um die Zielspannung
wird ein kleiner Unterschied zwischen den Ergebnissen des ereignisgesteuerten Mo-
dells und denen der TL Simulation erkennbar. Nichtsdestotrotz ist der Einfluss
der nicht-idealen Effekte (Totzone, endliche Steigung der Stromflanken, Leckstrom
und Stromüberschwinger) auf das dynamische Verhalten des Phasenregelkreises in
beiden Steuerspannungen sichtbar, wobei beide Modelle vergleichbare Tendenzen
liefern.
Neben der Genauigkeit des ereignisgesteuerten Modells beträgt die Simulationszeit
lediglich 0,48 s inkl. der erwähnten 10 zusätzlichen Punkte je Ereignis, die aus-
schließlich für die feinere grafische Darstellung verwendet werden. Diese Simula-
tionszeit lässt sich mit der C++ Implementierung des ereignisgesteuerten Modells
aus Anhang E erreichen.
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5. Modellierung der CP-PLL inkl. nicht-idealer Effekte
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Abb. 5.26.: Verifikation des verallgemeinerten und erweiterten ereignisgesteuerten Modells
durch eine Transistor-Level-Simulation

Die Transistor-Level Simulation benötigt hingegen 4919 s. Das hoch effiziente und
akkurate ereignisgesteuerte Modell ist somit in der Lage, ca. 10.000 Simulationen
in der gleichen Zeit einer einzigen Transistor-Level Simulation durchzuführen2. Dies

2Verwendeter PC: Intel Core i7-3770 @ 3,4GHz // 12GB RAM // 64Bit Windows 7 Pro //
NVIDIA NVS 310 mit 512MB
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5.4. Vergleich der Modellierungsansätze

Tab. 5.3.: Vergleich des ereignisgesteuerten Modells und der Transistor-Level Simulation hin-
sichtlich Genauigkeit und Geschwindigkeit

Transistor- Event-
Level Driven

Simulationszeit 4919 s 0,48 s

relativer RMS-Fehler − 0,1%

Geschwindigkeitsgewinn − ≈ 10250

ermöglicht eine effiziente und umfassende Charakterisierung des gemischt digital
analogen Phasenregelkreises sowohl für den Bereich nahe der Ruhelage als auch
für beliebige Anfangsbedingungen. Die Genauigkeit und die Geschwindigkeiten der
Simulationen sind in Tab. 5.3 zusammengefasst.

Für den Vergleich des Phasenrauschverhaltens des geschlossenen Phasenregelkreises
innerhalb des ereignisgesteuerten Modells und der linearen Beschreibung wird ein
exemplarischer Phasenregelkreis sowohl mit Referenz-, VCO- als auch PFD & CP
Phasenrauschen betrachtet. Die verwendeten Rauschgrößen der freilaufenden PLL-
Komponenten sind in Tab. 5.4 zu finden.

Tab. 5.4.: Rauschgrößen der freilaufenden PLL-Komponenten für den Vergleich des ereignisge-
steuerten Modells und der linearen Beschreibung

Parameter Wert Einheit

Sref
Φ −100 dBc/Hz @ 1MHz

Spfd
Φ −97 dBc/Hz

Sdiv
Φ −110 dBc/Hz @ 10MHz

Das resultierende Phasenrauschverhalten innerhalb der geschlossenen Regelschleife
ist in Abb. 5.27 dargestellt. Für dieses Beispiel dominiert das Phasenrauschen des
Referenzsignals nahe der Trägerfrequenz, wobei für große Abweichungen zur Träger-
frequenz das Phasenrauschen des spannungsgesteuerten Oszillators dominiert. Im
Übergang zwischen diesen beiden Rauschgrößen trägt das Phasenrauschen des PFD
& CP Blocks wesentlich zum gesamten Rauschverhalten bei. Es ist zu erkennen, dass
die Ergebnisse des ereignisgesteuerten Modells gut mit der linearen Beschreibung
des Phasenrauschens übereinstimmen. Das lineare Modell lässt sich zwar analytisch
auswerten und beschreibt das Phasenrauschen anhand einer geschlossenen mathe-
matischen Theorie, das ereignisgesteuerte Modell ermöglicht jedoch die Kombinati-
on von Phasenrauscheffekten und Transistor-Level-basierten nicht-idealen Effekten.
Darüber hinaus ist das ereignisgesteuerte Modell effizienter als verhaltensbasierte
Modellierungen (siehe Kapitel 3) und stellt somit einen wirkungsvollen und vielsei-
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5. Modellierung der CP-PLL inkl. nicht-idealer Effekte
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Abb. 5.27.: Vergleich des Phasenrauschverhaltens des geschlossenen Regelkreises innerhalb
des ereignisgesteuerten Modells (dicke schwarze Kurve) und des linearen Modells
(dünne Kurven)

tigen Modellierungsansatz zur Charakterisierung und Analyse von gemischt digital
analogen Phasenregelkreisen dar.
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KAPITEL 6

Validierung mittels
Hardware-Realisierung

Ein wichtiger Bestandteil der Validierung von Modellierungsansätzen ist die Mes-
sung der realen Schaltungen, die das Modell abbildet. Zu diesem Zweck wird das
ereignisgesteuerte Modell mit den enthaltenen Nichtlinearitäten und nicht-idealen
Effekten anhand einer Testschaltung auf seine Genauigkeit überprüft. Hier werden
die einzelnen Hardware-Komponenten der Schaltung messtechnisch charakterisiert
und in den eingeführten ereignisgesteuerten Modellierungsansatz überführt. Der Ver-
gleich der Messung des Gesamtsystems mit den Ergebnissen des ereignisgesteuerten
Modells wird sowohl im Zeitbereich als auch im Frequenzbereich durchgeführt.

6.1. Aufbau der Testschaltung

Für die Validierung des ereignisgesteuerten Modells und speziell der Modellierung
der nichtlinearen und nicht-idealen Effekte ist eine Schaltung notwendig, die ver-
schiedene Arbeitspunkte des Phasenregelkreises mit unterschiedlich ausgeprägten
nicht-idealen Effekte ermöglicht.
In vielen Hardware-Realisierungen von Phasenregelkreisen wird eine Verzögerung
innerhalb des Reset-Pfads des Phasendetektors dazu verwendet, die Totzone zu
reduzieren oder komplett zu kompensieren. Diese Verzögerung beeinflusst die Kenn-
linie des Phasendetektors für kleine Phasenfehler und reduziert den Einfluss der
Totzone. Der Nachteil dieses Pulses liegt in der Beeinflussung der Kennlinie für
Phasenfehler nahe ±2π. Für die Validierung des ereignisgesteuerten Modells ist es
daher sinnvoll, die Breite des Anti-Backlash Pulses variieren zu können.
Neben der einstellbaren Verzögerung im Phasendetektor sind Einstellmöglichkei-
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6. Validierung mittels Hardware-Realisierung

ten bezüglich der Schleifendynamik notwendig. Die Kombination von verschiedenen
Schleifenverstärkungen und Schleifenfiltern ermöglicht beispielsweise die Charakte-
risierung einzelner Bauteile der Schaltung als auch die Abdeckung eines breiten
Spektrums des Arbeitsbereiches des Phasenregelkreises.
Die Testschaltung EVAL-ADF4360-xEBZ1 (Rev. E) von Analog Devices bietet die-
se Möglichkeiten und ist in Abb. 6.1(a) dargestellt.

(a) Draufsicht

(b) Detaildarstellung des zu Testzwecken entworfenen
Schleifenfilters

Abb. 6.1.: Darstellung der Testschaltung von Analog Devices inkl. des zu Testzwecken entwor-
fenen Schleifenfilters

Diese Schaltung enthält neben dem eigentlichen Phasenregelkreis eine USB-
Schnittstelle für die Kommunikation mit einem PC, zwei verschiedene Spannungs-
versorgungen, einen Referenzoszillator und einen Eingang für ein externes Referenz-
signal.
Der verwendete Phasenregelkreis ADF4360 stellt eine Integer-N PLL mit integrier-
tem VCO dar, der für den Frequenzbereich um 2,4GHz ausgelegt ist. Die verschie-
denen Massepotentiale der analogen und digitalen Baugruppen sowie der Ladungs-
pumpe sind in dieser Schaltung auf ein gemeinsames Potential gelegt. Die Kennlinie
des VCO ist in acht verschiedene Frequenzbänder aufgeteilt, um über den gesam-
ten Frequenzbereich eine möglichst geringe Steigung der Kennlinie zu gewährleisten.
Dies hat den Vorteil, dass der VCO weniger anfällig für Störungen der Steuerspan-
nung ist und somit das Phasenrauschen am Ausgang des VCO möglichst wenig
durch diese Störungen beeinflusst wird. Sowohl der Strom als auch die Breite des
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6.1. Aufbau der Testschaltung

Anti-Backlash Pulses und das Teilerverhältnis des Frequenzteilers lassen sich über
interne Register einstellen, die mit Hilfe der Benutzeroberfläche von Analog De-
vices beschrieben werden. Das elektrische Schaltbild des Phasenregelkreises ist in
Abb. 6.2 abgebildet, wobei als Grundlage das Schaltbild des Datenblattes [103] von
Analog Devices1 dient. Teile der externen Beschaltung wurden für die Darstellung
der Regelschleife in dieser Arbeit hinzugefügt.

LOOP
FILTER

OSC
10MHz Ref

Divider

Data
Register

Pre-Scaler
P/P+1

Divider
M

Integrated
VCO

Output
Stage

Multiplexer

Integer
Register

Lock
Detect

ip

uctl

uvco

udiv

uref

N = P·M

Abb. 6.2.: Elektrisches Schaltbild des Phasenregelkreises der Testschaltung EVAL-ADF4360-
xEBZ1 Rev. E (Quelle: Basierend auf dem Datenblatt von Analog Devices)

Zur Realisierung verschiedener Schleifenfilter wird aus Platzgründen eine zusätzli-
che Platine verwendet, die vertikal auf der Testschaltung fixiert und kontaktiert
wird (Abb. 6.1(b)). Diese Platine ersetzt den bereits vorhanden Schleifenfilter und
ermöglicht einen schnellen Austausch der Filterkomponenten. So lassen sich bei-
spielsweise der Einfluss einer potentiellen Totzone auf den ungedämpften Regelkreis
und verschiedene Ordnungen und Auslegungen des Phasenregelkreises untersuchen.
Das Schaltbild des verwendeten Schleifenfilters ist in Abb. 6.3 dargestellt.

Hierbei stellt Rs einen Messwiderstand dar, wobei sich der Strom der Ladungspumpe
durch den Spannungsabfall messen lässt.
Die verwendeten passiven Messspitzen zur Messung von uR1, uc2 und uctl weisen eine
Eingangsimpedanz von 10MΩ und 9,5 pF auf und beeinflussen den Schleifenfilter
nur für niedrige Frequenzen. Der Einfluss auf das lineare Modell des geschlossenen
Regelkreises ist nur marginal (siehe Abb. 6.4).

1www.analog.com
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Abb. 6.3.: Elektrisches Schaltbild des für die Messung verwendeten Schleifenfilters
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Abb. 6.4.: Darstellung des Einflusses der Messspitzen auf das Frequenzverhalten des Schleifen-
filters und des linearen Modells der geschlossenen Regelschleife

6.2. Charakterisierung der einzelnen

Bauelemente

Basierend auf den Einstellmöglichkeiten der verwendeten Schaltung lassen sich
die einzelnen Eigenschaften der Phasenregelkreiskomponenten charakterisieren. Die
Charakterisierung der einzelnen Bauteile erfolgt für die präzise Berücksichtigung
der nichtlinearen und nicht-idealen Effekte und die Validierung des Modells. Für die
spätere Verwendung des ereignisgesteuerten Modells lassen sich die signifikanten ma-
kroskopischen Parameter der PLL dem Datenblatt entnehmen. Die hier gemessenen
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6.2. Charakterisierung der einzelnen Bauelemente

Ergebnisse werden später ins ereignisgesteuerte Modell eingebracht. Anschließend
erfolgt ein Vergleich der Messung des Gesamtsystems mit den Ergebnissen der er-
eignisgesteuerten Simulation.

Zur Aufnahme der VCO-Kennlinie wird der Regelkreis zwischen dem Schleifenfil-
ter und dem spannungsgesteuerten Oszillator aufgetrennt und die Steuerspannung
des VCO durch eine externe Spannungsquelle vorgegeben. Die Kennlinie des VCO
ist in acht verschiedene Frequenzbänder aufgeteilt, wobei die Auswahl des entspre-
chenden Bandes bei Veränderung des Teilerverhältnisses im Referenz- bzw. Rück-
kopplungspfad durch die Schaltung selbst vorgenommen wird. Eine Umschaltung
während der Regelung ist nicht vorgesehen. Deshalb wird bei der Charakterisie-
rung der VCO-Kennlinie zunächst das entsprechende Frequenzband mit Hilfe der
Teilerverhältnisse gewählt und anschließend die Steuerspannung variiert. Wird die
mit einem Spektrumanalysator gemessene Ausgangsfrequenz des VCO über diese
Spannung aufgetragen, ergeben sich die Kennlinien-Bänder aus Abb. 6.5. Es ist zu
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Abb. 6.5.: Vergleich der VCO-Kennlinien des Datenblattes und der Messung der Testplatine

erkennen, dass sich die gemessenen Bänder zwar von den Daten des Datenblattes
unterscheiden, diese Differenz aber lediglich eine Verschiebung in ±x-Richtung dar-
stellt. Eine weitere Deformation ist nicht zu erkennen. Beide Kennlinien-Bänder
verlaufen weitestgehend

”
parallel“ zueinander. Der spätere Vergleich der Messung

des Gesamtsystems und der Ergebnisse der ereignisgesteuerten Simulation, die die
gemessenen Kennlinien des VCO verwendet, legt nahe, dass die durchgeführte mess-
technische Charakterisierung das tatsächliche Verhalten des VCO abbildet und das
Datenblatt die erwähnte Verschiebung in ±x-Richtung aufweist. Die unterschiedli-
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6. Validierung mittels Hardware-Realisierung

chen Geltungsbereiche in y-Richtung sind auf die integrierte Schaltung zur Auswahl
des VCO-Bands zurückzuführen, da während der Regelung der Schaltung die Steu-
erspannung auf den Bereich um 2V beschränkt bleibt.
Für die Verwendung dieser Charakteristik im ereignisgesteuerten Modell wird die
Kennlinie des relevanten Bandes aus Abb. 6.5 mit 16 Stützstellen stückweise linear
approximiert und bei der numerischen Auswertung der VCO-Phase berücksichtigt.
Eine weitere relevante Eigenschaft des VCO ist dessen Phasenrauschverhalten. Das
Phasenrauschen ist äquivalent zum Jitter und beschreibt die Schwankungen der
steigenden beziehungsweise der fallenden Flanken des periodischen Signals um den
theoretisch erwarteten Zeitpunkt dieser Flanke. Im Frequenzbereich bewirkt der Jit-
ter eine Aufweitung des Spektrums um die Trägerfrequenz. Der VCO des ADF4360
weist ein Phasenrauschen von −90 dBc/Hz bei einem Abstand von 100 kHz zur
Trägerfrequenz auf. Bezogen auf das Dividierersignal bedeutet das ein Phasenrau-
schen von ca. −170 dBc/Hz bei 100 kHz Abstand zum Träger. Für das Referenz-
signal lässt sich das Phasenrauschen zu −120 dBc/Hz bei 100 kHz Abstand zum
Träger bestimmen. Dieses Rauschen resultiert sowohl aus dem verwendeten Refe-
renzoszillator als auch aus dem Referenz-Frequenzteiler.

Zur Charakterisierung des Schleifenfilters werden die Bauteile mit einem Impedanz-
analysator außerhalb der Schaltung vermessen. Die resultierenden Bauteilparameter
sind in Tab. 6.1 aufgeführt. Die gemessenen Abweichungen genügen den im Daten-

Tab. 6.1.: Abweichung der Schleifenfilterparameter bei einer Frequenz von 200 kHz

Bauteil Nennwert gemessener Wert Abweichung

R1 4,7 kΩ 4,705 kΩ +0,11%
C1 10 nF 9,94 nF −0,6%
C2 820 pF 824,9 pF +0,6%
R3 8,2 kΩ 8,184 kΩ −0,2%
C3 390 pF 389,2 pF −0,21%

blatt genannten maximalen Bauteiltoleranzen. Es hat sich gezeigt, dass diese Abwei-
chungen keinen signifikanten Einfluss auf die Eigenschaften des Regelkreises haben.

Die Kombination aus Phasendetektor und Ladungspumpe lässt sich auf zwei ver-
schiedene Weisen charakterisieren. Die erste Variante beurteilt den gemessenen
Strom innerhalb einer Regelung. Die zweite Methode charakterisiert die Kombi-
nation aus Phasendetektor und Ladungspumpe außerhalb der Schleife und nimmt
die Kennlinie, wie in Kapitel 5.4 erläutert wurde, auf. Bei der zweiten Variante hat
sich gezeigt, dass interne Schaltungen des PLL-Chips ein unvorhergesehenes und
undokumentiertes Verhalten hervorrufen und die Aufnahme der Kennlinie deutlich
erschweren. Diese Ergebnisse sind im Anhang A erläutert.
Bei der Methode innerhalb der Regelung lässt sich ein Histogramm des Stromsignals
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6.2. Charakterisierung der einzelnen Bauelemente

aufnehmen und die Häufigkeit der vorkommenden Amplituden analysieren. Im Hi-
stogramm lassen sich zwei prägnante Regionen identifizieren, wobei die Erste um
−0.5µA und die Zweite um −1,7mA liegt. Der erste Bereich gibt den Leckstrom
der Schaltung an und der zweite definiert die maximale Amplitude des Stroms. Der
Ausschnitt des Histogramms um −1,7mA ist in Abb. 6.6(a) abgebildet.
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Abb. 6.6.: Charakterisierung des gemessenen Stromsignals innerhalb der Regelung

Trotz eines eingestellten Stroms von ±2,5mA ist die mittlere Amplitude des Stroms
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6. Validierung mittels Hardware-Realisierung

lediglich −1,735mA und die häufigste Amplitude −1,727mA. Bei der Analyse des
Histogramms der Stromsteigungen (siehe Abb. 6.6(b)) sind die häufigsten Werte
der negativen und der positiven Steigung zu erkennen.
Eine potenzielle Totzone der Kombination aus Phasendetektor und Ladungspumpe
lässt sich über die Untersuchung des ungedämpften Regelkreises extrahieren. Sind
die Widerstände des Schleifenfilters entfernt worden, stellt sich eine Schwingung
des Systems ein. Im Falle einer Totzone divergiert sowohl die Einhüllende der Steu-
erspannung als auch die des Phasenfehlers, wobei beide Einhüllenden sprunghaft
kleiner werden, sobald der Phasenfehler ±2π erreicht (vgl. Kapitel 7.3). Bei der
Charakterisierung des ADF4360 stellt sich eine Schwingung mit konstanter Ampli-
tude ein. Somit weist der Regelkreis keine Totzone auf, was begründet durch den
Anti-Backlash Puls auch zu erwarten war.
Das Phasenrauschverhalten des Phasendetektors lässt sich mit −163 dBc/Hz bei
einer Eingangsfrequenz des PFD von 200 kHz angeben. Verglichen mit dem Phasen-
rauschen des VCO und des Referenzoszillators ist dieser Anteil sehr gering und in
den Mess- und Simulationsergebnissen nicht zu erkennen, wie im Folgenden gezeigt
wird.

6.3. Validierung der ereignisgesteuerten

Modellierung

Nach der messtechnischen Charakterisierung der einzelnen Baugruppen des Phasen-
regelkreises lassen sich die Ergebnisse mittels makroskopischer Parameter ins ereig-
nisgesteuerte Modell einbringen. Die verwendeten Parameter der ereignisgesteuerten
Simulation sind in Tab. 6.1 und 6.2 aufgeführt. Für den Vergleich der Messung und
der ereignisgesteuerten Simulation im Zeitbereich lassen sich die Spannungen des
Schleifenfilters untersuchen. Sie sind in Abb. 6.7 dargestellt. Es ist zu erkennen, dass
das ereignisgesteuerte Modell in der Lage ist, die Messung des Entwicklerkits sehr
gut abzubilden. Der RMS-Fehler der Spannungen liegt lediglich zwischen 10mV und
20mV bei einer Zielspannung von etwa 1,54V. Diese Zielspannung bestätigt die auf-
genommene VCO-Kennlinie in Abb. 6.5, da der Arbeitspunkt genau auf der gemes-
senen Kennlinie liegt. Wird der RMS-Fehler auf die Zielspannung bezogen, ergeben
sich relative Fehler von 1%. Die kleinen Unterschiede resultieren aus den Approxima-
tionen der nicht-idealen und nichtlinearen Effekte. Parasitäre Effekte der Leitungen
und Eingangsimpedanzen der Bauteile sind in der Modellierung nicht berücksichtigt
worden. Trotz dieser kleinen Abweichungen ist das dynamische Verhalten der Ergeb-
nisse der Simulation identisch mit denen der Hardware und bestätigt die Ansätze
der Modellierung der nicht-idealen und nichtlinearen Effekte.

Für den Vergleich der Ergebnisse des ereignisgesteuerten Modells und der Messung
im Frequenzbereich wird das Phasenrauschverhalten des Regelkreises genauer be-
trachtet. Für die Vergleichbarkeit des Rauschens des Entwicklerkits und der Simu-
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6.3. Validierung der ereignisgesteuerten Modellierung

Tab. 6.2.: Parameter für den Vergleich des ereignisgesteuerten Modells und der Messung des
Entwicklerkits

Parameter Wert Einheit

fosc 10 MHz

R 50

fref 200 kHz

Sref
Φ −120 dBc/Hz @ 100 kHz

N 12000

Sdiv
Φ −170 dBc/Hz @ 100 kHz

Spfd
Φ −163 dBc/Hz

Iupp 1,727 mA

Idnp −1,727 mA

IL −0,5 µA

γset 42,1 kA/s

γrst −35,8 kA/s

Kv Band 7 (Abb. 6.5) Hz/V

lation wird die gemessene Steuerspannung für die Berechnung der Dividiererphase
herangezogen und anschließend ein sinusförmiges Signal generiert. Der Vergleich
des Phasenrauschens für den geschlossenen Phasenregelkreis wird in Abb. 6.8 ge-
zeigt, wobei sowohl die Ergebnisse der Messung und der Simulation als auch die
theoretischen Verläufe des Phasenrauschens dargestellt sind. Für geringe Frequenz-
differenzen zum Trägersignal dominiert das Rauschen des Referenzsignals, wobei
das Rauschen des VCO bei höheren Differenzen maßgeblich das gesamte Rauschen
bestimmt. Das Rauschverhalten des ereignisgesteuerten Modells ist vergleichbar mit
dem Verhalten der Hardware. Der kleine Unterschied für niedrige Frequenzen lässt
sich durch die Breite des Peaks bei der Trägerfrequenz im Spektrum begründen.
Da die Amplitude bei der Trägerfrequenz in der Messung etwas geringer ist, wird
die entsprechende Energie um die Trägerfrequenz verteilt und führt im Phasenrau-
schen zu einer Erhöhung nahe der Trägerfrequenz. Da die theoretischen Verläufe
des Phasenrauschens auf dem linearen Modell basieren, ergeben sich hier kleine
Unterschiede zur Simulation und Messung. Für die Abschätzung des Beitrages der
einzelnen Bauteile zum gesamten Phasenrauschen lässt sich das lineare Modell gut
verwenden. Hierbei wird deutlich, dass das Phasenrauschen des Phasendetektors im
Entwicklerkit eine untergeordnete Rolle spielt.
Die Übereinstimmung des Phasenrauschens lässt sich auch im Leistungsdichtespek-
trum des Dividierersignals erkennen. In Abb. 6.9 sind das Leistungsdichtespektrum
der Messung und des ereignisgesteuerten Modells dargestellt. Beide Verläufe sind
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Abb. 6.7.: Vergleich der gemessenen Spannungen mit den Ergebnissen des ereignisgesteuerten
Modells (der relative RMS-Fehler ist auf die Zielspannung (1,536V) der Regelung
bezogen)

deckungsgleich. Das ereignisgesteuerte Modell ist in der Lage die durch das Pha-
senrauschen verursachte Aufweitung des Leistungsdichtespektrums abzubilden und
somit das Verhalten der Messung vorherzusagen. Die Betrachtung im Zeit- und Fre-
quenzbereich zeigt die Güte des ereignisgesteuerten Modells und der Modellierung
der nicht-idealen und nichtlinearen Effekte. Das realitätsnahe Modell lässt sich so-
mit für die Charakterisierung von Regelkreisen und deren Abhängigkeiten von den
nicht-idealen Effekten verwenden, um den Entwurf von Mixed-Signal Systemen zu
optimieren.
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6.3. Validierung der ereignisgesteuerten Modellierung

Phasenrauschen SΦ bei 200 kHz

Differenz zur Trägerfrequenz / Hz
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nung und den Ergebnissen der ereignisgesteuerten Simulation
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KAPITEL 7

Charakterisierung und Analyse der
CP-PLL inkl. nicht-idealer Effekte

Die betrachteten nichtlinearen und nicht-idealen Effekte des Phasenregelkreises be-
einflussen zum einen die Kennlinie des Phasen- und Frequenzdetektors und somit
die Konvergenzeigenschaften der Regelschleife und zum anderen die bleibende Re-
gelabweichung. Darüber hinaus treten diese nicht-idealen Effekte in Kombination
mit Phasenrauschquellen auf, wodurch sich eine gegenseitige Beeinflussung ergibt.
Für einen robusten Systementwurf ist es daher von großer Bedeutung, diese Wech-
selwirkungen zu charakterisieren und in den Systementwurf mit einfließen zu lassen.
Da die Transistor-Level Simulationen sehr zeitaufwändig sind und das bekannte li-
neare Modell der PLL lediglich das Phasenrauschen berücksichtigt, wird hier das
eingeführte hocheffiziente ereignisgesteuerte Modell zur Charakterisierung und Ana-
lyse des dynamischen Verhaltens des Phasenregelkreises verwendet. Die gewonnenen
Erkenntnisse werden in Kapitel 7.6 für einen optimierten und robusteren System-
entwurf verwendet. Somit lässt sich ein Entwurf des Phasenregelkreises erzielen,
der vergleichsweise stabil gegenüber verschiedener nicht-idealer Effekte und deren
Wechselwirkungen ist.

7.1. Phasenrauschverhalten

Da das Phasenrauschverhalten ein wichtiger Aspekt bei der Auslegung von Phasen-
regelkreisen ist, ist es sinnvoll, dieses Verhalten unter Berücksichtigung Transistor-
Level-basierter nicht-idealer Effekte zu betrachten. Für diese Untersuchung lässt
sich das eingeführte ereignisgesteuerte Modell inklusive der nicht-idealen Effekte
verwenden. Anhand einer Vielzahl von Simulationen wird das Phasenrauschen des
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7. Charakterisierung und Analyse der CP-PLL inkl. nicht-idealer
Effekte

Regelkreises für verschieden stark ausgeprägte nicht-ideale Effekte aufgenommen.
Ein Teil dieser Ergebnisse wurde auch in [98,99] veröffentlicht.
Zunächst wird ein Phasenregelkreis mit Phasenrauschen des spannungsgesteuerten
Oszillators und einer Totzone des Phasen- und Frequenzdetektors untersucht. Inner-
halb des ereignisgesteuerten Modells wird die Standardabweichung des zeitlichen
Phasenrauschens des VCO vorgegeben und die Breite der Totzone variiert. Wird
für jede einzelne Breite das Leistungsdichtespektrum des Phasenrauschens des Divi-
dierersignals bestimmt und über die entsprechende Totzone aufgetragen, so ergibt
sich die dreidimensionale Darstellung des Leistungsdichtespektrums über die Fre-
quenz und die Breite der Totzone in Abb. 7.1. Es ist ersichtlich, dass für sehr klei-
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Abb. 7.1.: Ereignisgesteuerte Simulationsergebnisse zur Verdeutlichung des Einflusses der Tot-
zone auf das Phasenrauschen bei verrauschtem VCO

ne Breiten der Totzone das Phasenrauschverhalten des geschlossenen Regelkreises
dem des idealen Phasenregelkreises entspricht und eine deutliche Hochpasscharak-
teristik aufweist. Für Frequenzen oberhalb der natürlichen Eigenfrequenz weist das
Leistungsdichtespektrum des Phasenrauschens eine Steigung von −20 dB/Dekade
auf. Da die sehr kleine Totzone den Phasenregelkreis kaum beeinflusst, war dieses
Ergebnis zu erwarten. Für steigende Breiten der Totzonen zeigt sich, dass das Leis-
tungsdichtespektrum nahe der Trägerfrequenz (unterhalb der natürlichen Eigenfre-
quenz) ansteigt und sich der Steigung von −20 dB/Dekade annähert bis schließlich
keine Hochpasscharakteristik mehr zu erkennen ist. Zudem ist die Verringerung der
Durchtrittsfrequenz der Regelschleife durch die zunehmende Totzone ersichtlich. Die
Durchtrittskreisfrequenz ωD beschreibt die Kreisfrequenz, bei der der Betrag der
Übertragungsfunktion von der Verstärkung (|T (jω)|ω<ωD

> 1) in die Dämpfung
(|T (jω)|ω>ωD

< 1) übergeht; sie ist ein wichtiger Parameter für die Auslegung eines
Regelkreises. Die Variation der Durchtrittsfrequenz ist auch in Abb. 7.3 zu sehen.
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7.1. Phasenrauschverhalten

Dieses Verhalten ist zu erwarten, da der Phasenregelkreis mit zunehmender Breite
der Totzone nicht mehr in der Lage ist das Phasenrauschen des VCO zu detektieren
und auszuregeln. Im extremen Fall ist die Totzone so breit, dass sich bezüglich des
Phasenrauschens des VCO ein quasi offener Regelkreis ergibt und sich der VCO
als freilaufend bezeichnen lässt. Dieser Fall tritt in der Praxis bei entsprechender
Auslegung der Komponenten jedoch nicht auf.
Da sich die Betrachtung des Phasenrauschens auf einen Bereich sehr nahe der Ru-
helage bezieht, liegt es nahe die analytische Beschreibung des Zusammenhangs von
Phasenrauschen und Totzone mit Hilfe eines linearen Modells herzuleiten. Hierzu
wird das lineare Modell hinsichtlich einer Totzone erweitert. Angelehnt an die Har-
monische Balance und die Betrachtung des Frequenzganges eines Systems lässt sich
die Kennlinie des PFD mit nichtlinearen und nicht-idealen Effekten durch eine sta-
tische nichtlineare Beschreibungsfunktion berücksichtigen [77], wie im Folgenden
erläutert wird. Das sich so ergebende Modell des Phasenregelkreises mit Totzone und
Phasenrauschen ist in Abb. 7.2(a) dargestellt. Hier sind die einzelnen Komponenten
des Phasenrauschens bereits in die Referenz- und die Dividiererphase überführt (vgl.
Kap. 5.3.3). Da sich das Phasenrauschen mit der Referenz- und der Dividiererphase
additiv überlagert, lässt sich die Ruhelage dieses Modells in den Nullpunkt verschie-
ben. Dies hat den Vorteil, dass lediglich das Phasenrauschen als Eingangsgröße des
Modells zu betrachten ist. Wird darüber hinaus das Abtastverhalten des nichtlinea-
ren Phasenregelkreises berücksichtigt, ist eine weitere Vereinfachung möglich. Das
Phasenrauschen beeinflusst die Regelung aufgrund der Abtastung ausschließlich zu
diesen Abtastzeitpunkten und stellt somit selbst ein abgetastetes Signal dar, zum
Beispiel mittels des Abtast-Halte-Glieds. Demnach ist es möglich das Rauschsignal
in endlich viele Intervalle, in denen die Funktion stetig und monoton ist, zu zer-
legen. Existieren an jeder Unstetigkeitsstelle die beidseitigen Grenzwerte, ist die
Dirichlet-Bedingung erfüllt und das Phasenrauschen lässt sich in eine Fourierreihe
entwickeln [76]. Somit ist eine Betrachtung des Phasenrauschens im Frequenzbereich
möglich und das Modell mit der nichtlinearen statischen Beschreibungsfunktion (sie-
he Abb. 7.2(a)) ist zielführend.
Mit dieser Betrachtung wird die nichtlineare Kennlinie des PFD mit Totzone durch
die nichtlineare statische Beschreibungsfunktion B(ϕset/ϕ̂e) beschrieben. Es ergibt
sich ein lineares Modell in Abhängigkeit von der zu erwartenden Amplitude des
Phasenfehlers ϕ̂e und der Breite der Totzone

ϕset = 2πfref · τset. (7.1)

Obwohl die Totzone τset hier in die äquivalente Breite bezüglich der Phase ϕset

überführt wurde, wird weiterhin der Name Totzone verwendet. Die Beschreibungs-
funktion resultiert aus der Fourierreihe erster Ordnung ϕe(ωt) des Eingangs und der
Fourierreihe erster Ordnung γe(ωt) des Ausgangs der nichtlinearen Kennlinie (siehe
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Abb. 7.2.: Statische Beschreibungsfunktion der Totzone für die Betrachtung bzgl. des
Phasenrauschens

Abb. 7.2(b)) und lässt sich für die Totzone mit

B(ϕset/ϕ̂e) =
γe(ωt)

ϕe(ωt)
= 1− 2

π
(x+ sin(x) cos(x)) (7.2)

angeben [77]. Hierbei gilt

x = arcsin

(
ϕset

ϕ̂e

)
. (7.3)
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7.1. Phasenrauschverhalten

Die Übertragungsfunktion des geschlossenen Regelkreises unter Berücksichtigung
der Totzone ergibt sich schließlich zu

H̃(s) =
B(ϕset/ϕ̂e)KϕKvωHLF(s)

sN + B(ϕset/ϕ̂e)KϕKvωHLF(s)
. (7.4)

Die Amplitude des Phasenrauschens des spannungsgesteuerten Oszillators und so-
mit die Amplitude des Phasenfehlers lassen sich dabei mit dem mittleren qua-
dratischen Phasenrauschen im Zeitbereich (ϕ̂e = ϕrms

vco ) annehmen, das sich aus
Gleichung (5.32) und dem Leistungsdichtespektrum des freilaufenden VCOs ergibt.
Für den speziellen Fall, dass die Breite der Totzone größer ist als die Amplitude des
Phasenrauschens, ergibt sich eine rein imaginäre Beschreibungsfunktion, die keine
Relevanz für die Untersuchung der PLL aufweist. Aus diesem Grund wird lediglich
der Realteil der statischen nichtlinearen Beschreibungsfunktion verwendet. In der
Praxis stellt dies jedoch keine Einschränkung dar, da in der Regel die Totzone im
Vergleich zum Phasenrauschen gering ist und somit die Betrachtung der imaginären
Beschreibungsfunktion vernachlässigbar ist.
Wird das Phasenrauschverhalten des durch die Totzone angereicherten linearen Mo-
dells für verschiedene Breiten der Totzone ausgewertet, ergeben sich die Verläufe in
Abb. 7.3. Es ist ersichtlich, dass das angereicherte lineare Modell und die ereignisge-
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Abb. 7.3.: Vergleich des Phasenrauschens der ereignisgesteuerten Simulation und der hergeleite-
ten Übertragungsfunktion mit statischer Beschreibungsfunktion für unterschiedliche
Weiten der Totzone und Phasenrauschen des VCOs (ϕ̂e = ϕrms

vco = 1,8% · 2π)

steuerten Simulationen vergleichbare Ergebnisse liefern und somit das angereicherte
lineare Modell in der Lage ist, das Phasenrauschverhalten der Regelschleife unter
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Berücksichtigung der Totzone und des rauschenden VCOs abzubilden.

Die vorgestellte Betrachtung der statischen nichtlinearen Beschreibungsfunktion
lässt sich analog auf das Phasenrauschverhalten der PLL unter Berücksichtigung
eines rauschenden Referenzoszillators anwenden. Da sich hier die Amplitude des
Phasenfehlers jedoch durch das Phasenrauschen des Referenzoszillators und der
rückgekoppelten Rauschgröße ergibt, stellt die Abschätzung von ϕ̂e zunächst eine
Herausforderung dar. Eine vergleichbare Herausforderung stellt die Näherung der
Amplitude des Phasenfehlers bei rauschender Ladungspumpe dar, da diese Rausch-
größe in die Phase des Referenzsignals der Regelschleife überführt wird. Auf Basis
der ereignisgesteuerten Modellierung der PLL lässt sich beispielsweise eine Simulati-
on dazu verwenden, die Amplitude des Phasenfehlers unter Berücksichtigung eines
rauschenden Referenzoszillators oder einer rauschenden Ladungspumpe zu approxi-
mieren. Eine sehr konservative Abschätzung (Worst-Case) ergibt sich jedoch auch
aus den freilaufenden Rauschgrößen.
Wird die erste Approximationsmöglichkeit von ϕ̂e angewendet, lässt sich das Phasen-
rauschverhalten der geschlossenen Regelschleife mittels des angereicherten linearen
Modells für einen rauschenden Referenzoszillator und eine rauschende Ladungspum-
pe beschreiben. Trotz der Näherung der Amplitude des Phasenfehlers basierend auf
einer Simulation sind die Ergebnisse des angereicherten linearen Modells vergleich-
bar mit den Resultaten der ereignisgesteuerten Modellierung. Dieser Vergleich ist
in Abb. 7.4 und 7.5 zu sehen.
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teten Übertragungsfunktion mit statischer Beschreibungsfunktion der Totzone und
Phasenrauschen des PFD & CP Blocks (ϕ̂e = max (ϕe(t)) = 0,64% · 2π)
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7.1. Phasenrauschverhalten

Leistungsdichtespektrum des Phasenrauschens bei 1,6MHz
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Abb. 7.5.: Vergleich des Phasenrauschens der ereignisgesteuerten Simulation und der hergelei-
teten Übertragungsfunktion mit statischer Beschreibungsfunktion der Totzone und
Phasenrauschen des Referenzoszillators (ϕ̂e = max (ϕe(t)) = 1,76% · 2π)

Darüber hinaus stellt das angereicherte lineare Modell eine Vereinfachung der Cha-
rakterisierung des Einflusses der Totzone auf das Phasenrauschverhalten der PLL
dar und ermöglicht somit einen robusten und analytischen Systementwurf unter
Berücksichtigung von Phasenrauschen und der Totzone des Phasen- und Frequenz-
detektors. Dieser robustere Entwurf wird in Kapitel 7.6 genauer diskutiert.

Die vorangegangene Untersuchung zeigt, dass das ereignisgesteuerte Modell in der
Lage ist, die Kombination aus nicht-idealen Effekten und deren Einfluss auf das
Phasenrauschverhalten des Phasenregelkreises zu charakterisieren. Neben dem Ein-
fluss der nicht-idealen Effekte auf das Phasenrauschverhalten ist es zudem notwen-
dig, die Wechselwirkungen der verschiedenen nicht-idealen Effekte zu charakteri-
sieren. Wird beispielsweise eine Fractional-N CP-PLL mit einem Σ∆-Modulator
betrachtet, ergeben sich für ein konstantes Eingangssignal des Σ∆-Modulators Ne-
bentöne im Spektrum. Da diese periodischen Störungen im Spektrum unerwünscht
sind, wird in der Praxis meist die niedrigstwertige Bitposition des Eingangssignals
des Σ∆-Modulators verrauscht. Ist dieses Eingangssignal etwas verrauscht, bleibt
durch das Hochpassverhalten die Reinheit der Trägerfrequenz nahezu erhalten und
die Nebentöne werden reduziert (vgl. Kapitel 2.2.2). Im Fall einer Totzone inner-
halb der Fractional-N CP-PLL wird das Phasenrauschen, resultierend aus dem Σ∆-
Modulator und dessen Eingangssignal, nahe der Trägerfrequenz jedoch angehoben.
In Abb. 7.6 sind diese Fälle dargestellt, wobei zu bemerken ist, dass dieses Verhalten
vergleichbar mit dem Phasenrauschverhalten der PLL mit rauschendem VCO und
Totzone ist. Neben dem Einfluss der Totzone auf das Phasenrauschverhalten lässt
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Abb. 7.6.: Vergleich des Phasenrauschens der ereignisgesteuerten Simulation für die Fractional-
N CP-PLL mit Totzone, Leckstrom und schwankendem und konstantem Eingangssig-
nal des Σ∆-Modulators

sich mittels des ereignisgesteuerten Modells zeigen, dass ein Leckstrom die negativen
Einflüsse der Totzone auf das Phasenrauschverhalten kompensiert (siehe Abb. 7.6).
Dieses Verhalten ist auf die Verschiebung der PFD & CP Kennlinie in negative y-
Richtung und den Typ-II Regelkreis zurückzuführen. Weist der Typ-II Phasenregel-
kreis einen Leckstrom auf, wird dieser durch einen im Mittel statischen Phasenfehler
ausgeregelt (siehe auch Kapitel 7.2). Somit liegt die Ruhelage der Regelschleife au-
ßerhalb der Totzone und der Einfluss der Totzone auf das Phasenrauschverhalten
wird reduziert. Dieser Zusammenhang lässt sich beispielsweise durch eine weitere
statische nichtlineare Beschreibungsfunktion modellieren und für einen robusteren
Systementwurf verwenden.
Mit Hilfe der bekannten Wechselwirkung der Totzone und des Leckstroms und
deren Einfluss auf das Phasenrauschverhalten lässt sich, bei gegebener Ladungs-
pumpe mit inhärentem Leckstrom, der schaltungstechnische Aufwand der Totzonen-
Reduzierung zur Optimierung des Phasenrauschverhaltens verringern.

7.2. Statischer Phasenfehler

Ein wichtiger Aspekt der Phasengenauigkeit ist neben dem Phasenrauschen der
statische Phasenfehler, der die bleibende Regelabweichung des Phasenregelkreises
darstellt. Die vorgestellte CP-PLL stellt einen Regelkreis des Typ-II dar und weist
somit einen integrierenden Charakter auf, sodass die Fehlergröße zu Null gesteuert
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wird [77]. Im Fall der CP-PLL bedeutet das, dass der Strom der Ladungspumpe
und somit die Änderung der elektrischen Ladung des Schleifenfilters zu Null gere-
gelt wird. Basierend auf den Kennlinien des PFD & CP Blocks aus Kapitel 5 und
der CP-PLL als Typ-II Regelkreis ist ersichtlich, dass sich beispielsweise für einen
Leckstrom ein mittlerer statischer Phasenfehler einstellt. Dieser gewährleistet die
Kompensation des Leckstroms und realisiert im Mittel eine Ladungsänderung des
Schleifenfilters von null. Die sich somit ergebende bleibende Regelabweichung ist
bezüglich des Leckstroms in [57, 104, 105] beschrieben. Der mittlere statische Pha-
senfehler lässt sich für den Leckstrom durch

ϕe,s = 2π
IL
Isump

(7.5)

berechnen. In dieser Darstellung wird der Ladungspumpenstrom als eine additi-
ve Überlagerung des gewünschten Stroms und des konstanten Leckstroms Isump =
Ip− IL aufgefasst. Dieser Zusammenhang bedeutet, dass für wachsende Leckströme
die bleibende Regelabweichung zunimmt. Ist der Leckstrom gleich dem gewünschten
Strom Ip, lässt sich die bleibende Regelabweichung mittels dieser additiven Model-
lierung nicht mehr bestimmen, da der Phasenregelkreis für Isump = 0 quasi offen ist
und keine Regelung stattfindet.
Weist der Phasen- und Frequenzdetektor innerhalb seines Rückkopplungspfads zum
Zurücksetzen der D-Flip-Flops eine Verzögerungszeit auf, sind im Falle einer fehlen-
den Unterdrückung dieses Zustandes beide Ausgangssignale uup und udn für diese
Zeitspanne ton gemeinsam eingeschaltet und aktivieren sowohl den Aufladestrom
Iupp als auch den Entladestrom Idnp . Ist die Ladungspumpe nicht symmetrisch ausge-
legt, sodass sich Auflade- und Entladestrom unterscheiden, ergibt sich die bleibende
Regelabweichung aus [57, 105]

ϕe,s = 2π
ton
Tref

Iupp − Idnp
Ip

. (7.6)

Ip definiert hier den mittleren Strom, der während einer gesamten Referenzperiode
in den Schleifenfilter eingespeist wird und ton wird als positiv definiert. Auch hier
ist zu erkennen, dass für eine unzureichende Auslegung der Ladungspumpe die blei-
bende Regelabweichung des Phasenregelkreises zunimmt.

Die bisher betrachteten mittleren statischen Phasenfehler beziehen sich lediglich
auf jeweils einen nicht-idealen Effekt innerhalb der Regelschleife. Da die Phasenre-
gelschleife eine Vielzahl von nicht-idealen Effekten aufweist, ist es notwendig, die
Betrachtung der bleibenden Regelabweichung auf die bereits vorgestellten Effekte
zu erweitern. Hierzu bietet sich die Beschreibung des Strompulses des ereignisge-
steuerten Modells an (siehe Abb. 5.22). Zur Berechnung des statischen Phasenfeh-
lers werden vier Fälle unterschieden. Die ersten beiden Fälle werden durch einen
statischen Phasenfehler definiert, der zu einem positiven oder einem negativen tra-
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pezförmigen Strompuls führt. Ist der statische Phasenfehler kleiner, ergibt sich ein
positiver oder negativer dreieckförmiger Strompuls am Ausgang der Ladungspum-
pe. Im Folgenden werden diese Fälle für die Herleitung der allgemeinen mittleren
bleibenden Regelabweichung analytisch beschrieben.
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Iupp

IL

Ig

tref tref + Ttdiv

t

∆t

τset

γset

−γrst
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M2

M3

M4

M5

Abb. 7.7.: Positiver trapezförmiger Strompuls der Ladungspumpe zur Verdeutlichung der Berech-
nung des statischen Phasenfehlers unter Berücksichtigung deterministischer nicht-
idealer Effekte

Wird der positive trapezförmige Strompuls aus Abb. 7.7 zugrunde gelegt, ergibt sich
die Ladung, die auf den Schleifenfilter geladen wird, zu

Qup
trapz(∆t) = (Iupp − IL)(∆t− τset)︸ ︷︷ ︸

M1

− Igτset︸ ︷︷ ︸
M2

+ ILT︸︷︷︸
M3

−
(Iupp − IL)2

2γset︸ ︷︷ ︸
M5

+
(Iupp − IL)2

2γrst︸ ︷︷ ︸
M4

.

(7.7)

Da die CP-PLL die mittlere Ladungsänderung zu Null regelt, lässt sich der mittlere
statische Phasenfehler und somit die mittlere statische Zeitdifferenz zwischen den
steigenden Flanken am Eingang des PFD mit Qup

trapz(∆t
up
trapz,s) = 0 bestimmen. Es

ergibt sich

∆tuptrapz,s =
−ILT + Igτset
Iupp − IL

−
(

1

2γrst
− 1

2γset

)
(Iupp − IL) + τset. (7.8)

Für den negativen trapezförmigen Strompuls (siehe Abb. 7.8) lässt sich die Ladung
analog zum vorher beschriebenen Vorgehen durch

Qdn
trapz(∆t) = (Idnp −IL)(−∆t−τset)+Igτset+ILT+

(Idnp − IL)2
2γset

−
(Idnp − IL)2

2γrst
(7.9)
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Abb. 7.8.: Negativer trapezförmiger Strompuls der Ladungspumpe zur Verdeutlichung der Be-
rechnung des statischen Phasenfehlers unter Berücksichtigung deterministischer
nicht-idealer Effekte

beschreiben. Die entsprechende statische Zeitdifferenz resultiert zu

∆tdntrapz,s =
ILT + Igτset
Idnp − IL

−
(

1

2γrst
− 1

2γset

)
(Idnp − IL)− τset. (7.10)

Wird die statische Phasendifferenz bzw. Zeitdifferenz kleiner als die Addition aus der
Totzone und der Anstiegszeit des Strompulses, wird der Strompuls dreieckförmig. In
Abb. 7.9 ist dieser Puls dargestellt. Die Ladung, die auf den Schleifenfilter geladen
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Abb. 7.9.: Positiver dreieckförmiger Strompuls der Ladungspumpe zur Verdeutlichung der Be-
rechnung des statischen Phasenfehlers unter Berücksichtigung deterministischer
nicht-idealer Effekte
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wird, ergibt sich analog zum trapezförmigen Puls zu

Qup
tria(∆t) = (I1 − IL)(∆t− τset)︸ ︷︷ ︸

A1

− Igτset︸ ︷︷ ︸
A2

+ ILT︸︷︷︸
A3

− (I1 − IL)2
2γset︸ ︷︷ ︸
A5

+
(I1 − IL)2

2γrst︸ ︷︷ ︸
A4

. (7.11)

Da der maximale Strom Iupp für γset 6=∞ nicht erreicht wird, lässt sich der maximal
erreichte Strom mit

I1 = γset(∆t− τset) + IL (7.12)

berechnen. Somit resultiert die Ladung für den dreieckförmigen Strompuls zu

Qup
tria(∆t) = (∆t− τset)2γset

(
γset
2γrst

+
1

2

)
− Igτset + ILT. (7.13)

Die statische Zeitdifferenz ergibt sich schließlich zu

∆tuptria,s =

√√√√ −ILT + Igτset

γset

(
γset
2γrst

+ 1
2

) + τset. (7.14)

Im Falle des negativen dreieckförmigen Strompulses (siehe Abb. 7.10) ergibt sich
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Abb. 7.10.: Negativer dreieckförmiger Strompuls der Ladungspumpe zur Verdeutlichung der Be-
rechnung des statischen Phasenfehlers unter Berücksichtigung deterministischer
nicht-idealer Effekte

die Ladung zu

Qdn
tria(∆t) = (I2− IL)(−∆t− τset)+ Igτset+ ILT +

(I2 − IL)2
2γset

− (I2 − IL)2
2γrst

(7.15)
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und mit Hilfe der Stromgeraden

I2 = −γset(−∆t− τset) + IL (7.16)

schließlich zu

Qdn
tria(∆t) = −(−∆t− τset)2γset

(
γset
2γrst

+
1

2

)
+ Igτset + ILT. (7.17)

Die statische Zeitdifferenz lässt sich wie folgt berechnen:

∆tdntria,s = −
√√√√ ILT + Igτset

γset

(
γset
2γrst

+ 1
2

) − τset. (7.18)

Der Übergang zwischen dem trapezförmigen und dem dreieckförmigen Strompuls
wird mit der Gleichung (7.12) berechnet. Gilt I1 ≥ Iupp für ∆t = ∆tuptrapz,s, ist der
positive Strompuls trapezförmig. Die sich ergebende Grenze ist

1

γrst
+

1

γset
≤ 2
−ILT + Igτset
(Iupp − IL)2

→ pos. trapezförmig. (7.19)

Für den Entladestrompuls ergibt sich analog die Grenze zu

1

γrst
+

1

γset
≤ 2

+ILT + Igτset
(Idnp − IL)2

→ neg. trapezförmig. (7.20)

Bei dieser Betrachtung wird deutlich, dass der Stromüberschwinger sowohl in positi-
ve als auch in negative Richtung erfolgen kann. Falls die Ladung, die der Stromüber-
schwinger erzeugt (A2, B2, M2, L2), größer ist als die Ladung, die der Leckstrom
generiert (A3, B3, M3, L3), lässt sich die Ladungsdifferenz aus beiden sowohl
durch einen Auflade- (positiver Strompuls, daher kurz: Up) als auch durch einen
Entlade- (negativer Strompuls, daher kurz: Dn) -Impuls kompensieren. Anschaulich
lässt sich dieser Effekt mit der Kennlinie des PFD & CP-Blockes erläutern. Wenn
Igτset > |IL|T gilt, weist die Kennlinie drei Nullstellen auf. Zwischen den beiden
äußeren Nullstellen ist die Schleifenverstärkung des Phasenregelkreises negativ und
die PLL operiert in einer Mitkopplung, wodurch dieser Bereich instabil ist und die
mittlere Nullstelle keine stabile Ruhelage darstellt. Daher ergeben sich lediglich zwei
mögliche mittlere statische Phasenfehler.
Die bleibende Regelabweichung der PLL ist somit unter Berücksichtigung der vor-
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gestellten nicht-idealen Effekten wie folgt definiert

∆ts =





∆tuptrapz,s ∀ {(IL < 0) ∨ Igτset > |IL|T} ∧Gl. (7.19) wahr

∆tdntrapz,s ∀ {(IL > 0) ∨ Igτset > |IL|T} ∧Gl. (7.20) wahr

∆tuptria,s ∀ {(IL < 0) ∨ Igτset > |IL|T} ∧Gl. (7.19) falsch

∆tdntria,s ∀ {(IL > 0) ∨ Igτset > |IL|T} ∧Gl. (7.20) falsch

. (7.21)

Es ergeben sich zwei mögliche bleibende Regelabweichungen falls

Igτset > |IL|T (7.22)

gilt. Für die Berechnung des statischen Phasenfehlers wird die statische Zeitdifferenz
mit der Signalperiode in Relation gebracht:

ϕe,s = 2π
∆ts
T
. (7.23)

Exemplarisch ist in Abb. 7.11 eine Simulation eines Phasenregelkreises mit zwei
möglichen statischen Phasenfehlern zu erkennen. Hierbei werden zur Veranschau-
lichung die Parameter der PLL so gewählt, dass sich ein relativ großer mittlerer
statischer Phasenfehler ergibt. Diese Darstellungen zeigen sowohl im Zeitbereich als
auch in der Phasenebene des Phasenregelkreises, wie der Regelkreis zunächst ge-
gen beide Fixpunkte konvergiert und schließlich den Trennungspunkt erreicht. Ab
diesem Trennungspunkt konvergiert die Regelschleife gegen einen der beiden Fix-
punkte. Die Attraktivität beider Fixpunkte ist vergleichbar, wobei der Fixpunkt,
der schlussendlich erreicht wird, sowohl von den Anfangsbedingungen des Phasen-
regelkreises und der Distanz zwischen den Ruhelagen als auch vom Dämpfungsbei-
wert des Regelkreises abhängt. Liegen beide Fixpunkte sehr eng zusammen und die
Größenordnung des Phasenrauschens der PLL ist vergleichbar mit der Distanz bei-
der Ruhelagen, besteht zudem die Möglichkeit, dass der Regelkreis zwischen beiden
Fixpunkten wechselt.
Werden die hergeleiteten analytischen Beziehungen des mittleren statische Phasen-
fehlers für die Spezialfälle der eingangs genannten Definitionen aus Gleichung (7.5)
und (7.6) ausgewertet, ist ersichtlich, dass die Ergebnisse vergleichbar sind. Wird
beispielsweise lediglich ein negativer Leckstrom berücksichtigt, ergibt sich aus
Gleichung (7.8) und mit τset = 0 und γset = γrst →∞ die Beziehung

ϕe,s =
2π

T

−ILT
Iupp − IL

. (7.24)

Da in diesem Fall Iupp = Ip gilt, sind die hier vorgestellte allgemeine Betrachtung
und die Darstellung von Gardner [104] identisch.
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Abb. 7.11.: Darstellung der Phasenebene sowie der Steuerspannung und des Phasenfehlers zur
Verdeutlichung des Trennungspunktes zwischen zwei stabilen Zuständen

Der statische Phasenfehler aus der Überlagerung von Iupp und Idnp aus
Gleichung (7.6) resultiert in einem Effekt, der analog zu dem des Stromüberschwin-
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gers des ereignisgesteuerten Modells ist. Hierbei entspricht der Stromüberschwinger
der Stromungleichheit (Ig ↔ Iup − Idn) und die betrachtete Zeitspanne τset ist ver-
gleichbar mit ton. Für ein positives Iup − Idn sind die Gleichungen (7.10) und (7.6)
vergleichbar, da T für kleine Phasenfehler der Referenzperiode Tref entspricht.

Die allgemeine Beschreibung des mittleren statischen Phasenfehlers unter Berück-
sichtigung der Transistor-Level-basierten nicht-idealen Effekte ermöglicht die
Abschätzung der bleibenden Regelabweichung und somit eine Optimierung des Sys-
tementwurfs. Speziell für Anwendungen mit hohen Anforderungen an die Phasenge-
nauigkeit ist diese Abschätzung essentiell.

7.3. Dynamisches Verhalten

Neben den Variationen der Phasen nahe der Ruhelage und der bleibenden Regelab-
weichung resultieren die nicht-idealen Effekte gerade bei Frequenzwechseln während
der Frequenzsynthese in einer Veränderung des dynamischen Verhaltens des Phasen-
regelkreises. Für die präzise Vorhersage des Verhaltens zwischen den Ruhelagen ist
es sinnvoll, diese dynamischen Eigenschaften des Regelkreises unter Berücksichti-
gung der nichtlinearen und nicht-idealen Effekten zu charakterisieren. Mit Hilfe der
gewonnenen Erkenntnisse lässt sich der Systementwurf optimieren. Wie im späte-
ren Verlauf gezeigt wird, ist die Berücksichtigung dieser Effekte für den robusteren
Systementwurf von großer Bedeutung.

7.3.1. Totzone

Neben dem Phasenrauschen beeinflusst die Totzone des Phasen- und Frequenzde-
tektors auch das Konvergenzverhalten des Phasenregelkreises nahe der Ruhelage.
Speziell bei einem ungedämpften Phasenregelkreis lässt sich dieser Effekt deutlich
beobachten (siehe Abb. 7.12). Es ist zu erkennen, dass sich die PLL im ausgeras-
teten Bereich nahezu unverändert verhält und im Bereich kleiner Phasenfehler ein
abschnittweise divergierendes Verhalten aufzeigt. Die Steuerspannung der Regelung
divergiert bis zu einem Phasenfehler von |ϕe| = 2π. Zu diesem Zeitpunkt rastet der
Phasenregelkreis aus und rastet direkt wieder ein, wobei die Amplitude der schwin-
genden Steuerspannung sprunghaft kleiner wird. Nach dem Einrasten beginnt die
Steuerspannung erneut zu divergieren. Wird dieses Verhalten nahe der Ruhelage
betrachtet, ergibt sich die Steuerspannung aus Abb. 7.13. Die abschnittsweise Di-
vergenz ist hier deutlich erkennbar. Während die Amplitude der Steuerspannung
uctl,max divergiert, wird die Periodendauer Tn der Schwingung geringer und kon-
vergiert gegen den Wert Tn,0. Tn,0 beschreibt dabei die Periodendauer des idealen
Phasenregelkreises mit einem Dämpfungsbeiwert von Null (ζ = 0) und korrespon-
diert zu der natürlichen Eigenkreisfrequenz ωn = 2π/Tn,0 des Phasenregelkreises.
Wird die momentane Amplitude über die momentane Periodendauer aufgetragen,
ist ein hyperbolischer Zusammenhang beider Größen zu erkennen (siehe Abb. 7.14).
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Abb. 7.12.: Verlauf der Steuerspannung unter Berücksichtigung der Totzone und einer Dämp-
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Abb. 7.13.: Verlauf der Steuerspannung unter Berücksichtigung der Totzone und einer Dämp-
fung nahe null (Startbedingungen liegen nahe dem Fixpunkt)

Dieser Zusammenhang lässt sich mit der hyperbolischen Funktion

Tn = Tn,0 +
a

uctl,max − x0
(7.25)
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Abb. 7.14.: Darstellung der momentanen Periodendauer aufgetragen über die momentane Am-
plitude der Steuerspannung

approximieren. Bei der Berechnung der Variablen a und x0 zeigt sich, dass die Ver-
schiebung in x-Richtung durch die Zielspannung ut der Steuerspannung gegeben ist
(x0 = ut) und a einen Gewichtungsfaktor darstellt. Diese Beobachtung lässt sich
durch einen harmonischen Oszillator erklären. Da sich der ungedämpfte Phasenre-
gelkreis analog zu diesem verhält, korrelieren die Maxima der Steuerspannungen mit
den Minima des Phasenfehlers (ϕe = 0). Streben die Maxima der Steuerspannung
gegen die Zielspannung, konvergiert der Frequenzfehler gegen Null. Da für die Ma-
xima der Steuerspannung der Phasenfehler ebenfalls Null ist (⇒ fe ≈ 0, ϕe ≈ 0),
existiert keine Schwingung in der Steuerspannung des Phasenregelkreises und die
Periodendauer Tn strebt gegen unendlich. Wird die Amplitude der Steuerspannung
hingegen größer, divergiert auch der Frequenzfehler. In diesem Fall ist die Perioden-
dauer der Schwingung nahe der des idealen und ungedämpften Phasenregelkreises.
Diese Divergenz der Schwingung lässt sich dabei durch die Totzone begründen. Da
die Totzone bei jedem Regelungsimpuls einen kleinen Teil der Information des Pha-
senfehlers unterdrückt, fällt der Regelungsimpuls immer ein wenig zu gering aus.
Somit wird der Frequenzfehler bei jeder Schwingung ein wenig größer und resultiert
in der Divergenz.
Da sich eine Totzone einer PLL nur mit hohem messtechnischem Aufwand nachwei-
sen lässt, eignet sich dieses Experiment zum Nachweis einer Totzone innerhalb einer
Hardware-Realisierung. Diese Untersuchung wurde in Kapitel 6 angewendet.
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7.3.2. Leckstrom und Stromüberschwinger

Neben der Totzone weisen auch der Leckstrom und der Stromüberschwinger einen
Einfluss auf das dynamische Verhalten des Phasenregelkreises auf, wie in Abb. 5.26
zu erkennen ist. Im Gegensatz zur Totzone resultieren der Leckstrom und der
Stromüberschwinger in periodischen Störungen der Steuerspannung und somit des
VCO- und Dividierersignals, da die Korrektur dieser Störungen jeweils mit einem
Strompuls realisiert wird. Die Auswirkung dieser nicht-idealen Effekte lässt sich
auch im Leistungsdichtespektrum des VCO- und Dividierersignals beobachten. In
Abb. 7.15 ist ein solches Leistungsdichtespektrum des VCO-Signals exemplarisch
dargestellt. Teile dieser Ergebnisse sind auch in [40] veröffentlicht. Es wird deut-
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Abb. 7.15.: Darstellung des Leistungsdichtespektrums des VCO-Signals einer idealen PLL und
einer PLL mit Leckstrom und Stromüberschwinger zur Veranschaulichung der
SFDR

lich, dass die periodischen Korrekturen dieser nicht-idealen Effekte zu Nebentönen
im Leistungsdichtespektrum führen. Deren Abstand zur Trägerfrequenz ist für den
Leckstrom und den Stromüberschwinger durch die Frequenz des Referenzsignals ge-
geben. Die Höhe der Nebentöne ist von den Amplituden des Leckstroms und des
Stromüberschwingers abhängig, wobei die Differenz der Höhen bei der Trägerfre-
quenz und der Frequenz des Nebentons als nebentonfreier Dynamikbereich (engl.
Spur Free Dynamic Range, kurz: SFDR) bezeichnet wird. Für einen Phasenregel-
kreis mit lediglich einem Stromüberschwinger lässt sich dieser Dynamikbereich mit
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SFDRIg = 20 log10

(
KvIgτ

2
set

C2N

)
(7.26)

approximieren [7]. Wird SFDRIg über die Pulsbreite des Stromüberschwingers τset
aufgetragen, ergibt sich Abb. 7.16. Es ist zu erkennen, dass die Eigenschaften des
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Abb. 7.16.: Darstellung des nebetonfreien Dynamikbereichs zur Verdeutlichung des Einflusses
der Stromüberschwinger

Stromüberschwingers der Approximation mit der ereignisgesteuerten Modellierung
übereinstimmen. Die kleine Abweichung beider Darstellungen ist durch die Appro-
ximation der oben angegebenen Gleichungen begründet, wobei der tendenzielle Ver-
lauf genau abgebildet wird.
Für einen Phasenregelkreis mit lediglich einem Leckstrom ist der nebentonfreie Dy-
namikbereich mit

SFDRIL = 20 log10

(
KvILT

2
ref

2πC2N

)
(7.27)

definiert [7]. Da der Leckstrom über die gesamte Periodendauer des Referenz- bzw.
Dividierersignals auftritt, ist SFDRIL direkt von der Referenzfrequenz abhängig.
Treten beide nicht-idealen Effekte auf, werden beide Gleichungen in der linearen
Darstellung addiert. Somit ergibt sich

SFDR = 20 log10

(
Kv

C2N

(
Igτ

2
set +

ILT
2
ref

2π

))
. (7.28)
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Für ein reines Ausgangsspektrum des Phasenregelkreises liegt es daher nahe, eine Re-
gelschleife sowohl mit einem geringen Leckstrom als auch einem kleinen Stromüber-
schwinger zu realisieren.
Die endlichen Steigungen des Ladungspumpenstroms sind an dieser Stelle zu ver-
nachlässigen, da der Einfluss der entstehenden Ladungsunterschiede für γset 6= γrst
im Vergleich zum Leckstrom und den Stromüberschwingern gering ist. Generell
lassen sich jedoch auch ungleiche endliche Steigungen im Ladungspumpenstrom
mit Hilfe dieser Betrachtung berücksichtigen. Dabei lässt sich beispielsweise der
Ladungsunterschied, resultierend aus den ungleichen Steigungen, durch eine Strom-
differenz mitteln und sich ein ähnlicher Zusammenhang wie in Gleichung (7.26)
herleiten. Ein idealer Regelkreisentwurf bezüglich des SFDR ergibt sich somit für
identische Steigungen der fallenden und steigenden Flanken des Ladungspumpen-
stroms.

7.3.3. Ausrastbereich

Die nicht-idealen Effekte beeinflussen den eingerasteten Bereich der PLL, wie in
den vorherigen Kapiteln beschrieben wird, und den Ausrastbereich ∆ωPO des Pha-
senregelkreises und somit den Geltungsbereich des linearen Modells. Für die Unter-
suchung des Ausrastverhaltens wird der Kreisfrequenzsprung ∆ωPO charakterisiert,
bei dem die PLL gerade ausrastet (siehe Gleichung (3.22) und (3.23)).
Wird ein Phasenregelkreis unter Berücksichtigung einer Totzone mit Hilfe des ereig-
nisgesteuerten Modells simuliert, lässt sich der initiale Frequenzfehler so variieren,
dass sich die Ausrastgrenze bestimmen lässt. Für verschiedene Breiten der Totzo-
ne und unterschiedliche Dämpfungsbeiwerte des Phasenregelkreises ergeben sich
schließlich die entsprechenden Ausrastbereiche ∆ωPO in Abb. 7.17(a). Offensicht-
lich wird der Ausrastbereich des Regelkreises mit zunehmender Breite der Totzone
kleiner und die PLL rastet somit bei Frequenzsprüngen am Eingang schneller aus.
Für ζ > 1 ergibt sich beispielsweise eine signifikante Änderung des Ausrastbereiches
∆ωPO von etwa 10%, falls die Variation der Totzone von Null auf τset/Tref = 0,1
betrachtet wird.
Da der Ausrastbereich eine wichtige Kenngröße der PLL ist, ist es sinnvoll, die-
sen Zusammenhang genauer zu betrachten. Abb. 7.17(b) zeigt den Ausrastbereich
∆ωPO über die Breite der Totzone aufgetragen. In dieser Darstellung ist zu erken-
nen, dass der Ausrastbereich mit steigender Breite der Totzone geringer wird. Dieser
Zusammenhang lässt sich durch die nicht-ideale Kennlinie des PFD & CP Blocks
begründen. Für kleine Phasenfehler arbeitet der Regelkreis innerhalb der Totzone,
womit die Änderung der elektrischen Ladung des Schleifenfilters nahezu Null ist. Au-
ßerhalb der Totzone verläuft die Kennlinie des PFD & CP Blocks parallel zur idealen
Kennlinie. Die Totzone führt somit zu einer geringeren maximalen elektrischen La-
dungsänderung für den Fall eines Phasenfehlers von 2π. Wird diese Reduzierung bei
der Herleitung des linearen Modells der Ladungspumpe berücksichtigt, wird deut-
lich, dass die Übertragungsfunktion des linearen Modells der Ladungspumpe mit
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Abb. 7.17.: Darstellung des Ausrastbereichs des Phasenregelkreises zweiter Ordnung für ver-
schiedene Breiten der Totzone und Dämpfungsbeiwerte anhand der ereignisgesteu-
erten Simulation der nicht-idealen PLL und der eingeführten Approximation
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der nichtlinearen statischen Beschreibungsfunktion B(ϕset/ϕ̂e) aus Gleichung (7.2)
gewichtet wird. Da der Phasenregelkreis für einen Phasenfehler ϕe = ±2π ausras-
tet, wird dabei die Amplitude ϕ̂e des Eingangs der Beschreibungsfunktion mit 2π
approximiert. Mit Hilfe der natürlichen Kreisfrequenz ωn des ungedämpften linea-
ren Modells zweiter Ordnung, der Approximation von ∆ωPO aus Gleichung (3.23)
und dem Zusammenhang ϕset/2π = τset/Tref ergibt sich der Ausrastbereich der PLL
zweiter Ordnung in Abhängigkeit von der Totzone zu

∆ωPO(τset/Tref) ≈ 11,55ωn(τset/Tref) · (0,5 + ζ(τset/Tref)), (7.29)

wobei

ωn(τset/Tref) ≈
√
Kv,ωKϕ ·B(τset/Tref)

NC1

(7.30)

und

ζ(τset/Tref) ≈
1

2
τ1 ωn(τset/Tref) (7.31)

gilt. Die Differenz dieser Beziehung zu den Ergebnissen der ereignisgesteuerten Simu-
lation der nichtlinearen und nicht-idealen PLL ist in Abb. 7.17(b) zu erkennen. Die
eingeführte Approximation bildet die Simulationsergebnisse des ereignisgesteuerten
Modells anhand der nichtlinearen statischen Beschreibungsfunktion gut ab und lässt
sich somit für die Auslegung des Phasenregelkreises hinsichtlich des Ausrastbereichs
und unter Berücksichtigung einer Totzone verwenden.
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7.3.4. Durchtrittsfrequenz

Wie in Kapitel 4.1 dargelegt, stellen die Phasenreserve und die entsprechende Durch-
trittsfrequenz einen zusätzlichen wichtigen Bestandteil des Systementwurfs dar. Da
schon bei der Betrachtung des Phasenrauschens deutlich wird, dass sich die Durch-
trittsfrequenz in Abhängigkeit von der Totzone ändert, wird dieser Zusammenhang
genauer untersucht.
Wird der Phasenregelkreis zweiter Ordnung betrachtet, lässt sich die Durchtritts-
kreisfrequenz ωD mit Hilfe der Normalform der Übertragungsfunktion definieren
(siehe Kapitel 4.1). Durch die Erweiterung des linearen Modells mittels der nichtli-
nearen statischen Beschreibungsfunktion lässt sich die Durchtrittskreisfrequenz un-
ter Berücksichtigung der Totzone herleiten (vgl. Kapitel 7.3.3) und es ergibt sich

ωD(ϕset/ϕ̂e) ≈
√
2(ζ(ϕset/ϕ̂e))2 +

√
4(ζ(ϕset/ϕ̂e))4 + 1 · ωn(ϕset/ϕ̂e). (7.32)

Die natürliche Eigenkreisfrequenz und der Dämpfungsbeiwert werden dabei ana-
log zur vorherigen Betrachtung definiert, wobei die Abhängigkeit an dieser Stelle
durch das Verhältnis der Breite der Totzone ϕset zur Amplitude des Phasenfehlers
ϕ̂e gegeben ist. Die Amplitude des rauschenden Phasenfehlers lässt sich dabei durch
eine statistische Charakterisierung des Phasenfehlers bestimmen. Hierzu wird die
kumulative Verteilungsfunktion des simulierten Phasenfehlers ausgewertet und die
Amplitude durch den Bereich, in dem beispielsweise 95% der Phasenfehlerwerte
auftreten, definiert. Der Gleichung (7.32) ist zu entnehmen, dass für steigende Brei-
ten der Totzone die Durchtrittskreisfrequenz sinkt und gegen Null tendiert (siehe
Abb. 7.18).
Für die simulative Bestimmung der Durchtrittsfrequenz des nicht-idealen und nicht-
linearen Phasenregelkreises lässt sich das ereignisgesteuerte Modell verwenden. Hier-
zu wird für unterschiedliche Breiten der Totzone jeweils eine Simulation mit rau-
schendem Referenzoszillator und eine Simulation mit rauschendem VCO durch-
geführt. Das Hochpass-gefilterte Phasenrauschen des VCO, das zur Fehlerübert-
ragungsfunktion Te(s) = 1 − T (s) korrespondiert, und das Tiefpass-gefilterte Pha-
senrauschen des Referenzoszillators, das analog zur Übertragungsfunktion T (s) ist,
dienen als Werkzeuge zur Bestimmung des Frequenzverhaltens der PLL. Die Durch-
trittsfrequenz lässt sich dabei durch den Schnittpunkt der Beträge der Übertra-
gungsfunktion T (s) und der Fehlerübertragungsfunktion Te(s) bestimmen, da das
Betragsquadrat der Übertragungsfunktion G0(s) des offenen Regelkreises an dieser
Stelle gleich eins ist (vgl. Kapitel 4.1). Für diese Untersuchung, die mittels Rausch-
größen durchgeführt wird, wird die gleiche Phasenrauschgröße für den Referenzos-
zillator und den VCO verwendet und separat simuliert. Wird der Einfluss der frei-
laufenden Phasenrauscheinflüsse im Leistungsdichtespektrum des Dividierersignals
kompensiert, ergeben sich die Betragsverläufe der Übertragungsfunktion und der
Fehlerübertragungsfunktion. Der Schnittpunkt beider Verläufe definiert die Durch-
trittsfrequenz des nichtlinearen und nicht-idealen Modells.
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Abb. 7.18.: Darstellung der Durchtrittskreisfrequenz des Phasenregelkreises zweiter Ordnung
für verschiedene Breiten der Totzone und Dämpfungsbeiwerte anhand der ereig-
nisgesteuerten Simulation der nicht-idealen PLL (durchgezogene Kurven) und der
Approximation aus Gleichung (7.32) (gestrichelte Kurven)

In Abb. 7.18 ist die resultierende Durchtrittskreisfrequenz für verschiedene Brei-
ten der Totzone und Dämpfungsbeiwerte des Phasenregelkreises zweiter Ordnung
dargestellt. Es ist ersichtlich, dass sich das Verhalten des nichtlinearen und nicht-
idealen Modells mit der Approximation aus Gleichung (7.32) nachbilden lässt. Da
die simulativ charakterisierte Durchtrittsfrequenz auf Basis von Rauschgrößen be-
stimmt wurde, ergeben sich naturgemäß Ungenauigkeiten. Diese resultieren in einer
Differenz zwischen der Approximation und den Simulationsergebnissen auch für
den idealen Phasenregelkreis. Da für jede Rauschuntersuchung der gleiche Phasen-
rauschvektor verwendet wurde, weist die Differenz zwischen den Simulationen und
der analytischen Approximation für jeden Dämpfungsbeiwert und jede Breite der
Totzone die gleiche Tendenz auf. Trotz dieser Abweichungen stellt die Approximati-
on eine gute Näherung des simulierten Verhaltens dar und lässt sich somit für den
Systementwurf verwenden.
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7.4. Stabilität des Phasenregelkreises mit Totzone

Da die Stabilität eine wichtige Eigenschaft von Regelkreisen ist, ist eine Analyse
der Stabilität des Phasenregelkreises unter Berücksichtigung von nicht-idealen Ef-
fekten von großer Bedeutung. Da gerade die Totzone das dynamische Verhalten der
Schleife nahe der Ruhelage beeinflusst, wird der Einfluss der Totzone auf eine PLL
zweiter Ordnung in [39] untersucht. Dabei wird anhand des ereignisgesteuerten Mo-
dells eine Beschreibung des Regelkreises mit Totzone abgeleitet und mit Hilfe der
Lyapunov-Theorie auf die Stabilität geprüft.
Für den Phasenregelkreis dritter Ordnung stellt dieses Vorgehen eine Herausforde-
rung dar, da sich die Beschreibungsfunktionen nicht effizient auswerten lassen. Aus
diesem Grund wird an dieser Stelle das ereignisgesteuerte Modell dazu verwendet,
die Konvergenzeigenschaften eines exemplarischen Phasenregelkreises dritter Ord-
nung unter Berücksichtigung einer Totzone simulativ zu charakterisieren. Der hier
untersuchte Phasenregelkreis weist die Schleifenparameter

R1 = 1,4 kΩ N = 12000
C1 = 51 nF C2 = 2,6 nF
Kv = 1,8GHz/V τset = 50 ns

auf. Für die Analyse wird der Ladungspumpenstrom von 0,1µA bis 10mA vari-
iert, wobei die größere Stromamplitude zu einem Phasenregelkreis rechtsseitig der
Stabilitätsbedingung und nahe der Überlastgrenze korrespondiert. Für die automa-
tisierte Beurteilung der Konvergenz des Regelkreises werden, analog zu Kapitel 4.5,
die folgenden Kriterien verwendet:

Stabil: Die Dynamik der PLL wird als stabil bezeichnet, wenn die Steuerspannung
zu 20 aufeinander folgenden Zeitpunkten der Phasenfehlernulldurchgänge (Dy-
namikwechsel) streng monoton fallend ist, 40 Dynamikwechsel in Folge in
einem definiert kleinen Schlauch (±0,01%) um die Zielspannung verbleiben
oder wenn 200 Steuerspannungswerte in Folge in diesem kleinen Schlauch lie-
gen (vgl. Abb. 4.13(a)). ⇒ Konvergenz in die Ruhelage (asymptotisch
stabile Ruhelage)

Instabil: Falls 20 Dynamikwechsel der Steuerspannung in Folge streng monoton
wachsend sind, wird die Dynamik als instabil gewertet, auch wenn sich viel-
leicht ein Grenzzyklus außerhalb des Schlauches ±0,01% um die Zielspannung
einstellt (vgl. Abb. 4.13(b)). ⇒ instabile Ruhelage und/oder Grenzzy-
klus außerhalb des ±0,01% Schlauches

Nicht aussagekräftig: Wird keine der oben genannten Konditionen erfüllt und das
Ende der Simulation erreicht, wird keine Aussage über die Konvergenz getrof-
fen.

170



7.4. Stabilität des Phasenregelkreises mit Totzone

Als Anfangsbedingungen werden der Phasenfehler ϕe0 = 0 und der initiale Fre-
quenzfehler fe0 = 0,999 ft angenommen, d.h. das die initiale Abweichung der VCO-
Frequenz von der Zielfrequenz knapp 100% beträgt. Diese Untersuchung lässt sich
zwar für beliebige Anfangsbedingungen auch nahe der Ruhelage durchführen, jedoch
weist der Totzonen-behaftete Phasenregelkreis nahe der Ruhelage (die PLL befin-
det sich überwiegend innerhalb der Totzone) nur geringe dynamische Eigenschaften
auf, sodass eine aussagekräftige automatisierte Konvergenzbeurteilung anhand der
Simulationsergebnisse nur mit hohem Aufwand möglich ist. Des Weiteren müssen
für die automatisierte Analyse des Totzonen-behafteten Phasenregelkreis nahe der
Ruhelage neue Auswertekriterien definiert werden, da in diesem Bereich nur wenig
Dynamikwechsel auftreten und der Regelkreis lediglich bedingt geschlossen ist.
Das Ergebnis der Konvergenzanalyse entfernt der Ruhelage (ϕe0 = 0 und fe0 =
0,999 ft) ist in Abb. 7.19 dargestellt. Es wird deutlich, dass eine größere Anzahl von
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Abb. 7.19.: Simulativer Test der diskutierten Stabilitätsgrenzen unter Berücksichtigung eines
Phasenregelkreises mit Totzone und einer Anfangsbedingung entfernt der Ruhelage

Simulationen zu keiner aussagekräftigen Beurteilung der Konvergenz führt. Wie
oben beschrieben, ist dies auf die reduzierte Dynamik des Regelkreises, die geringe-
re Anzahl der Dynamikwechsel und die oben definierten Auswertekriterien zurück-
zuführen. Nichtsdestotrotz zeigt Abb. 7.19, dass ein robuster Systementwurf des
Totzonen-behafteten Phasenregelkreises mit der auf dem ereignisgesteuerten Modell
basierenden Stabilitätsbedingung (4.113) zielführend ist. Rechtsseitig der in dieser
Arbeit eingeführten Stabilitätsgrenze weist die PLL lediglich in die Ruhelage kon-
vergierendes Verhalten auf. Die Grenze aus [3] ist jedoch für Anfangsbedingungen
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entfernt der Ruhelage nicht konservativ genug, da sich die Anfangsbedingungen au-
ßerhalb des Einzugsgebietes befinden und der Phasenregelkreis mit einem Entwurf
zwischen der Gardner-Grenze und der Bedingung (4.113) nicht in die Ruhelage kon-
vergiert.
Die auf dem ereignisgesteuerten Modell basierende Stabilitätsbedingung lässt sich
somit im ersten Schritt für den Entwurf von Phasenregelkreisen verwenden, auch
wenn diese mit einer Totzone behaftet sind.

7.5. Statistische Betrachtung der CP-PLL

Die CP-PLL ist ein hochgradig nichtlineares, nicht-ideales und teils chaotisches
System, das stark von dessen Anfangsbedingungen und Schleifenparametern
abhängig ist [19, 106] (siehe auch Abb. 1.1). Da sowohl Temperaturschwankun-
gen während des Betriebs als auch Prozessvariationen bei der Herstellung der
Schaltungen auftreten, stellt es eine Herausforderung dar, die Eigenschaften des
Phasenregelkreises für alle Betriebszustände analytisch zu beschreiben. Für die
Charakterisierung und Analyse der Regelschleife lassen sich daher statistische
Untersuchungen durchführen, die die Parameter-, Temperatur- und Prozessvariatio-
nen und verschiedene Anfangsbedingungen berücksichtigen. Das ereignisgesteuerte
Modell eignet sich besonders für eine hocheffiziente statistische Analyse der
PLL. Ein Beispiel ist die PVT-Charakterisierung (Prozess-Spannung-Temperatur-
Charakterisierung, engl. Process-Voltage-Temperature-Characterization) der PLL,
die für die spannungsgesteuerte CP-PLL in [107] veröffentlicht ist. In diesem
Kapitel seien exemplarisch die Dynamikwechsel (Phasenfehlernulldurchgänge),
die Überschwinger und die Attraktivität zweier statischer Phasenfehler für die
stromgesteuerte CP-PLL betrachtet, da die Dynamikwechsel und die Überschwin-
ger eine Aussage über die maximale Steuerspannung und somit die maximale
VCO-Frequenz ermöglichen und die Attraktivität der Ruhelage eine wichtige
Kenngröße eines Regelkreises darstellt.

7.5.1. Dynamikwechsel in Abhängigkeit von den
Anfangsbedingungen

Der Dynamikwechsel des Phasenregelkreises entspricht dem Phasenfehlernulldurch-
gang und somit dem Wechsel des Stromvorzeichens. Für den schaltenden nichtli-
nearen Phasenregelkreis zweiter Ordnung beschreiben die Dynamikwechsel die loka-
len Extrema der Kapazitätsspannung des Schleifenfilters uc1 und lassen sich somit
als Überschwinger des Regelkreises zweiter Ordnung verstehen. Die Betrachtung
der Kapazitätsspannung ermöglicht die Beurteilung der Überschwinger ohne eine
Fehlinterpretation der Spannungssprünge in der Steuerspannung uctl, die durch die
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Abb. 7.20.: Relative Häufigkeit und kumulative Verteilungsfunktion der Höhe der Dynamikwech-
sel des ereignisgesteuerten Modells bei Variation der Anfangsbedingungen ϕe =
0 . . . 2π und fe = 0 . . . 0,99ft des Phasenregelkreises zweiter Ordnung

Spannung uR1 = R1ip hervorgerufen werden. Die Phasenfehlernulldurchgänge des
Phasenregelkreises dritter Ordnung korrespondieren in etwa mit den lokalen Ex-
trema der Spannung über der Kapazität C1. Werden diese Überschwinger für den
Bereich der Anfangsbedingungen ϕe = 0 . . . 2π und fe = 0 . . . 0,99ft charakterisiert,
ergibt sich das Histogramm in Abb. 7.20(a). Die Größe der Stichprobe beträgt ins-
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gesamt 10.000 Simulationen. Es ist erkennbar, dass Spannungswerte zum Zeitpunkt
des Phasenfehlernulldurchgangs tpn im Bereich von 100% bis 115% der Zielspan-
nung ut auftreten, wobei eine Häufung von Überschwingern in vier lokalen Maxima
des Histogramms zwischen 105% und 110% zu beobachten ist. Die Häufigkeit dieser
vier Dynamikwechsel ergibt sich aus dem Einrastpunkt des Phasenregelkreises, der
wiederum durch die Anfangsbedingungen definiert wird. Hier wird klar, dass die Vor-
hersage von Überschwingern anhand des linearen Modells nicht zielführend ist, da
die verschiedenen Anfangsbedingungen, die beispielsweise zu einem initial ausgeras-
teten System führen, im linearen Modell nicht berücksichtigt werden können. Die
kumulative Verteilungsdichte der analysierten Überschwinger ist in Abb. 7.20(b)
dargestellt. Diese Charakterisierung zeigt, dass die auftretenden Überschwinger bei
Variation der Anfangsbedingungen mit einer Wahrscheinlichkeit von 50% unterhalb
von 109% der Zielspannung liegen. Diese Art der effizienten Charakterisierung an-
hand des ereignisgesteuerten Modells bietet dem Entwickler die Möglichkeit, den
Entwurf der gemischt digital analogen Schaltung für eine Vielzahl von Anfangsbe-
dingungen zu testen und gegebenenfalls die Auslegung der Regelschleife zu optimie-
ren.

7.5.2. Überschwinger in Abhängigkeit vom
Schleifenfilterwiderstand

Neben den Anfangsbedingungen weisen unter anderem auch die Schleifenparame-
ter einen Einfluss auf den maximalen Überschwinger auf. Wird beispielsweise eine
Variation des Widerstandes R1 des Schleifenfilters betrachtet, zeigt sich ebenfalls ei-
ne Abhängigkeit der maximalen Steuerspannung von der Parametervariation. Wird
exemplarisch der Phasenregelkreis dritter Ordnung betrachtet, lassen sich die Über-
schwinger der Steuerspannung analysieren, da für diesen keine Sprünge in der Steu-
erspannung auftreten. Wird der Widerstand R1 des Schleifenfilters einer PLL dritter
Ordnung mit 10.000 Schritten im Bereich von 10% bis 1000% des ursprünglichen
Entwurfs variiert, ergibt sich die relative Häufigkeit der Überschwinger von uctl
in Abb. 7.21(a). Für die variierenden Widerstandswerte ergeben sich Bereiche, in
denen keine Überschwinger auftreten und Bereiche, in denen nur sehr wenige vor-
kommen. Die in dieser Untersuchung identifizierten Überschwinger konzentrieren
sich auf vier Bereiche, wobei die häufigsten Überschwinger nahe 1,2ut auftreten
(typischer Überschwinger). Der maximale Überschwinger der Steuerspannung ist
jedoch über 32% größer als die Zielspannung. Exemplarisch sind die Steuerspan-
nungen für den maximalen und den typischen Überschwinger in Abb. 7.21(b) zu
sehen. Zwischen diesem typischen und diesem maximalen Überschwinger sind kaum
weitere Überschwinger des Systems möglich. Diese Charakterisierung verdeutlicht,
dass die Vorhersage der Überschwinger eine große Herausforderung darstellt und
hocheffiziente Simulationen notwendig sind, um den Phasenregelkreis zu charakte-
risieren. Speziell für eine nachfolgende Schaltung ist die Kenntnis der maximalen
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Überschwinger: max(uctl) / ut
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Abb. 7.21.: Darstellung der Häufigkeit und der Höhe der Überschwinger des ereignisgesteuerten
Modells für einen variierenden Schleifenfilterwiderstand R̃1 = 0,1R1 . . . 10R1 des
Phasenregelkreises dritter Ordnung

Überschwinger von Bedeutung. Da die Überschwinger der Steuerspannung mit einer
Überhöhung der VCO-Frequenz korrespondieren und diese zu hohen Frequenzen ei-
ne nachfolgende Schaltung wie zum Beispiel einen Speicherchip überlasten können,
ist es sinnvoll, den maximalen und den typischen Überschwinger des Phasenregel-
kreises in Abhängigkeit von den Schleifenparametern zu bestimmen.
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7.5.3. PVT-Charakterisierung

Die physikalische Umsetzung des Phasenregelkreises unterliegt Prozessschwankun-
gen und Spannungs- und Temperaturvariationen (engl. Process, Voltage and Tem-
perature, kurz: PVT) während des Betriebs. Mit Hilfe der sogenannten PVT-
Charakterisierungen lässt sich das Verhalten der Schaltung in verschiedenen Be-
triebszuständen analysieren. Das ereignisgesteuerte Modell ist in der Lage, die Va-
riationen aller berücksichtigten Bauteilgrößen und nicht-idealer Effekte zu simulie-
ren. Typische Abweichungen diskreter Bauelemente liegen im Bereich von wenigen
Prozent des Nennwertes, wobei eine Kombination aus verschiedenen Schwankungen
einen großen Einfluss auf die hochgradig nichtlineare und schaltende Phasenregel-
schleife aufweisen kann. Zur Analyse dieses Verhaltens lassen sich Monte-Carlo Si-
mulationen durchführen. Diese Zufallsexperimente erlauben einen Rückschluss auf

Überschwinger: max(uctl) / ut
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Abb. 7.22.: Relative Häufigkeit der Höhe der Überschwinger des ereignisgesteuerten Modells der
PLL dritter Ordnung für eine Monte-Carlo-Simulation der Parameter R1, C1, C2,
Ip und Kv mit einer Standardabweichung von 10% des Nominalwerts

das Systemverhalten und ermöglichen somit eine Beurteilung der Güte des Sys-
tementwurfs. Bei der hier durchgeführten Charakterisierung werden die Prozess-
und Temperaturvariationen der Schleifenfilterparameter R1, C1, C2, die Spannungs-
abhängigkeit des Ladungspumpenstroms Ip und die Steigung des spannungsgesteu-
erten Oszillators Kv berücksichtigt. Generell ist das ereignisgesteuerte Modell dazu
geeignet, diese Untersuchung mit einer beliebigen Verteilung und unterschiedlichen
Varianzen durchzuführen. Exemplarisch seien die Schwankungen dieser Parameter
jedoch mit einem normalverteilten Zufallsprozess und mit einer Standardabweichung
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von 10% um den Nennwert der Bauteile angenommen. Werden 10.000 Simulationen
bei gleichzeitiger Berücksichtigung aller normalverteilten und unabhängigen Streu-
ungen der Parameter durchgeführt, ergibt sich die relative Häufigkeit der Über-
schwinger dieser Monte-Carlo Simulation in Abb. 7.22. In dieser Abbildung ist
zusätzlich der Überschwinger einer einzelnen Simulation ohne Parameterstreuun-
gen des ereignisgesteuerten Modells, die zum ursprünglichen nominalen Entwurf
korrespondiert, dargestellt. Es ist erkennbar, das die Überschwinger in fünf Be-
reichen konzentriert auftreten, wobei die größte relative Häufigkeit unterhalb des
Überschwingers des ursprünglichen Entwurfs auftritt. Zwischen diesen fünf Berei-
chen treten verhältnismäßig wenige Überschwinger auf. Ein Teil der durchgeführten
Monte-Carlo-Simulationen weist sogar, ähnlich wie bei der Untersuchung der Über-
schwinger bezüglich des Widerstandes R1, Bereiche auf, in denen keine Überschwin-
ger auftreten. Anhand der gezeigten Ergebnisse für endlich große Stichproben lässt
sich der Phasenregelkreis charakterisieren und der Systementwurf hinsichtlich der
Güte und Zuverlässigkeit bezüglich des Überschwingers untersuchen.

7.5.4. Attraktivität zweier möglicher Ruhelagen

Da der Phasenregelkreis unter anderem für die Frequenzsynthese verwendet wird, ist
die bleibende Regelabweichung ein wichtiges Merkmal für die Güte der Regelschleife.
Wie in Kapitel 7.2 gezeigt, wird der statische Phasenfehler durch die nicht-idealen
Effekte der PLL beeinflusst. Gilt Igτset > |IL|T , ergeben sich zwei mögliche mittle-
re statische Phasenfehler und dementsprechend zwei Attraktoren des dynamischen
Systems. Zur Charakterisierung der Attraktivität dieser Ruhelagen lassen sich mit-
tels des ereignisgesteuerten Modells eine Vielzahl von Simulationen durchführen.
Es lässt sich zeigen, dass bei Variation der Anfangsbedingungen im Bereich von
ϕe = −2π . . . 2π und fe = −ft . . . ft beide Ruhelagen vergleichbar attraktiv sind.
Wird jedoch eine konstante Anfangsbedingung angenommen und ein Parameter des
Phasenregelkreises verändert, ist die Attraktivität der beiden Ruhelagen verschie-
den. Exemplarisch sei ein initialer Phasenfehler von null und eine Dividiererfrequenz
unterhalb der Referenzfrequenz angenommen. Die Dividiererfrequenz wird folglich
erhöht und sowohl die Steuerspannung als auch der Phasenfehler weisen zunächst
eine positive Steigung auf. Für diese Startbedingungen ergeben sich die mittleren
statischen Phasenfehler der Regelung für eine Variation des Widerstandes R1 und
somit des Dämpfungsbeiwertes gemäß Abb. 7.23(a). Es ist ersichtlich, dass der mitt-
lere statische Phasenfehler zwischen den zwei Ruhelagen springt, wobei die Intervalle
Rw mit steigendem Widerstand R1 breiter werden. Wird die Breite dieser Interval-
le über den Widerstand aufgetragen, ergibt sich Abb. 7.23(b). Mit zunehmendem
Widerstand R1 und somit steigendem Dämpfungsbeiwert ist der positive mittlere
statische Phasenfehler attraktiver, da die Steigung der Steuerspannung und des
Phasenfehlers zunächst positiv ist und die Regelung des stark gedämpften Phasen-
regelkreises nicht in der Lage ist, die negative Steigung der PFD & CP Kennlinie
nahe ϕe = 0 zu überwinden (siehe Abb. 5.22(b)). Ist die initiale Dividiererfrequenz

177



7. Charakterisierung und Analyse der CP-PLL inkl. nicht-idealer
Effekte

Widerstand R1 / Ω

m
it
tl
er
er

st
at
is
ch
er

P
h
as
en
fe
h
le
r
/
ra
d

Rw

0 1 2 3 4 5 6
×104

-0.2

-0.1

0

0.1

0.2

(a) Mittlerer statischer Phasenfehler in Abhängigkeit von R1

Widerstand R1 / kΩ

In
te
rv
al
lb
re
it
e
R

w
/
k
Ω

2 6 10 14
0

1

2

3

4

5

6

(b) Breite der Intervalle des Abhängigkeit des mittleren statischen
Phasenfehlers von R1

Abb. 7.23.: Attraktivität der Ruhelagen des Phasenregelkreises mit zwei möglichen mittleren
statischen Phasenfehlern für eine Variation des Widerstandes R1

größer als die Referenzfrequenz, ist der negative mittlere statische Phasenfehler für
große Dämpfungsbeiwerte der Schleife attraktiver.
Eine vergleichbare Untersuchung lässt sich für den Strom der Ladungspumpe
durchführen. Der mittlere statische Phasenfehler springt ebenfalls zwischen den
verschiedenen Ruhelagen. Da sich der mittlere statische Phasenfehler mit der
Stromstärke der Ladungspumpe ändert, variieren auch die zwei möglichen stabilen
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Ruhelagen. Mit zunehmendem Strom nimmt jedoch die Schwingungstendenz der
Regelung ab und der positive mittlere statische Phasenfehler ist analog zur vorange-
gangenen Charakterisierung attraktiver. Die Attraktivität des mittleren statischen
Phasenfehlers lässt sich somit anhand der Anfangsbedingungen und der Tendenz
der Regelung zu schwingen anhand von Simulationen abschätzen.

7.6. Robuster Systementwurf basierend auf den

Charakterisierungen

Der Systementwurf von Regelkreisen basiert meist auf der Stabilität, der Durchtritts-
frequenz des offenen Regelkreises (korrespondiert mit der Anstiegszeit des Regelkrei-
ses) und dem Frequenzverhalten des linearen Modells. In Kapitel 4 konnten einige
Methoden für die Beurteilung und den Entwurf des Phasenregelkreises bezüglich
der Stabilität gezeigt werden. Die ereignisgesteuerte Betrachtung stellt dabei einen
effizienten und robusten Ansatz für die Beurteilung der Konvergenzeigenschaften
der schaltenden CP-PLL und somit dessen Entwurf dar.
Das vorangegangene Kapitel zeigt darüber hinaus, dass die chaotischen, nichtlinea-
ren und nicht-idealen Eigenschaften einen wesentlichen Einfluss auf das System-
verhalten aufweisen. Da die bekannten Entwurfsmethoden oft auf einem idealen
Phasenregelkreis beruhen und den Einfluss der nicht-idealen Effekte nicht berück-
sichtigen, ist es notwendig, den Systementwurf hinsichtlich dieser Effekte zu erwei-
tern. In diesem Kapitel werden die Erkenntnisse über die Einflüsse der nicht-idealen
Effekte auf das Systemverhalten beim Entwurf bezüglich der Durchtrittsfrequenz,
der natürlichen Eigenfrequenz, des Phasenrauschens, des Dämpfungsbeiwertes und
der Ausregelzeit berücksichtigt. Anhand eines Beispielentwurfs für eine Bluetooth-
Anwendung wird deutlich, dass die Berücksichtigung der nicht-idealen Effekte es-
sentiell für einen robusteren Systementwurf ist.

7.6.1. Entwurf anhand der Durchtrittsfrequenz und der
Phasenreserve

Der Entwurf des Schleifenfilters aus Abb. 2.8 lässt sich mit Hilfe der Durchtritts-
frequenz und der Phasenreserve der Übertragungsfunktion des offenen Phasenregel-
kreises durchführen. Dieses Verfahren wird für den Phasenregelkreis bis zur vier-
ten Ordnung in [108] vorgestellt. Das Betragsquadrat der Übertragungsfunktion
des offenen Regelkreises |G0(jωD)|2 wird gleich eins gesetzt und für eine gewünsch-
te Durchtrittskreisfrequenz ωD nach den Schleifenfilterparametern umgestellt. Die
zweite Gleichung zur Bestimmung der Filterparameter resultiert aus der Phasenlage
der Übertragungsfunktion des offenen Regelkreises bei ωD und dessen Reserve zu
−180°. Wird die gewünschte Phasenreserve ϕPM bei ωD vorgegeben, lässt sich der
Schleifenfilter entsprechend auslegen. In [108] bleiben nicht-ideale Effekte jedoch
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unberücksichtigt.

In Kapitel 7.3.4 konnte gezeigt werden, dass beispielsweise die Totzone die Durch-
trittsfrequenz der Regelschleife beeinflusst. Wie in den vorangegangenen Kapiteln
lässt sich der Ladungspumpenstrom mit einer nichtlinearen statischen Beschrei-
bungsfunktion gewichten, um den Einfluss der Totzone zu berücksichtigen und zu
approximieren. Ist die Amplitude des Phasenfehlers ϕ̂e am Eingang der Beschrei-
bungsfunktion bekannt oder abschätzbar, ergeben sich die Entwurfskriterien für
den Schleifenfilter erster Ordnung (Phasenregelkreis zweiter Ordnung)

HLF1(s) =
sR1C1 + 1

sC1

(7.33)

zu

ξ1 =
1

ω̃D

tan (ϕ̃PM) (7.34a)

C1 = Kv,ωKϕB(ϕset/ϕ̂e)

√
1 + ξ21ω̃D

2

N2ω̃D
4 (7.34b)

R1 =
ξ1
C1

, (7.34c)

wobei die Übertragungsfunktion aus Gleichung (7.4) verwendet wird. ω̃D und ϕ̃PM

bezeichnen die vorgegebenen Größen an die Durchtrittskreisfrequenz und die Pha-
senreserve. Bei diesem Entwurf des Schleifenfilters zeigt sich, dass die Zeitkonstante
des Filters ξ1 = R1C1 lediglich durch die gewünschte Durchtrittsfrequenz und die
korrespondierende Phasenreserve definiert wird und unabhängig von der Totzone
ist. Die Kapazität C1 und der Widerstand R1 hängen jedoch von der nichtlinearen
statischen Beschreibungsfunktion ab. Die Abhängigkeit der Bauteilparameter von
der Amplitude des Phasenfehlers stellt an dieser Stelle keine Einschränkung dar, da
in realen Systemen immer Phasenrauschen auftritt und sich somit die Amplitude
ϕ̂e bestimmen lässt.
Für den Schleifenfilter zweiter Ordnung (korrespondiert zu einer PLL dritter Ord-
nung)

HLF2(s) =
sR1C1 + 1

s2R1C1C2 + s (C1 + C2)
(7.35)
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resultieren die folgenden Entwurfskriterien unter Berücksichtigung der nichtlinearen
statischen Beschreibungsfunktion:

ξ2 =
Kv,ωKϕB(ϕset/ϕ̂e)

Nω̃D
2

(
tan (ϕ̃PM) +

1

cos (ϕ̃PM)

)
(7.36a)

ξ3 =
tan (ϕ̃PM) cos (ϕ̃PM) + 1

cos (ϕ̃PM) ω̃D

(7.36b)

ξ4 =
cos (ϕ̃PM)

ω̃D (tan (ϕ̃PM) cos (ϕ̃PM) + 1)
(7.36c)

und schließlich

C2 =
ξ4
ξ3
ξ2 (7.37a)

C1 = ξ2 − C2 (7.37b)

R1 =
ξ3
C1

. (7.37c)

Da dieser Entwurf auf der Approximation des nicht-idealen Verhaltens mittels der
nichtlinearen statischen Beschreibungsfunktion basiert, lassen sich mit dieser Metho-
de weitere nicht-ideale Effekte wie beispielsweise der Leckstrom und die endlichen
Steigungen der Stromflanken für den Entwurf berücksichtigen.

7.6.2. Entwurf anhand der natürlichen Eigenfrequenz

Analog zum Entwurf basierend auf der Durchtrittsfrequenz lässt sich die natürliche
Eigenfrequenz des Systems für die Auslegung des Phasenregelkreises verwenden. Die
empirische Stabilitätsbedingung

ωref

ωn

> α (7.38)

aus Kapitel 4.3, die ein Abtastverhältnis darstellt, wird in der Praxis oft für den Ent-
wurf des Systems herangezogen. Ein typischer Wert für den konstanten Wert α ist
zehn. Da die natürlich Eigenkreisfrequenz durch den nicht-idealen Effekt der Totzo-
ne beeinflusst wird, ergibt sich die angereicherte Bedingung unter Berücksichtigung
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der nichtlinearen statischen Beschreibungsfunktion zu

ωref

ωn(ϕset/ϕ̂e)
> α. (7.39)

Für den Phasenregelkreis zweiter Ordnung ergibt sich daraus eine Bedingung an die
Schleifenfilterkapazität:

C1 >
α2Kv,ωKϕB(ϕset/ϕ̂e)

ω2
refN

. (7.40)

Der Widerstand R1 lässt sich anhand des vorgegebenen Dämpfungsbeiwertes ζ̃
durch

R1 =
2ζ̃

C1 ωn(ϕset/ϕ̂e)
(7.41)

definieren, wobei ωn(ϕset/ϕ̂e) durch Gleichung (4.20) und der Gewichtung von Kϕ

mit B(ϕset/ϕ̂e) gegeben ist.
Für den Phasenregelkreis dritter Ordnung konnte mit Hilfe des ereignisgesteuerten
Modells eine robustere Stabilitätsbedingung basierend auf dem Abtastverhältnis
hergeleitet werden (siehe Kapitel 4.4.2). Unter Berücksichtigung der Totzone lässt
sich entsprechend

ωref

ωn(ϕset/ϕ̂e)
> π
√
b (7.42)

herleiten. Mit der Approximation aus Gleichung (4.22) und der statischen nichtli-
nearen Beschreibungsfunktion ergibt sich das Kriterium

C2 >
π2Kv,ωKϕB(ϕset/ϕ̂e)

ω2
refN

. (7.43)

Der Zusammenhang zwischen den beiden Filterkapazitäten ist durch b = 1+C1/C2

gegeben und wird in der Praxis oft als elf definiert. Somit ist die weitere Kapazität
durch

C1 = (b− 1)C2 (7.44)

gegeben und der Widerstand ist durch Gleichung (7.41) bestimmt.
Auch bei diesem Entwurfsverfahren ist festzustellen, dass die Kapazitäten des Schlei-
fenfilters proportional zur nichtlinearen statischen Beschreibungsfunktion sind, wo-
bei der Widerstand einen antiproportionalen Zusammenhang mit der Beschreibungs-
funktion aufweist.
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7.6.3. Entwurf anhand des Phasenrauschens, der
Ausregelzeit und des Dämpfungsbeiwertes

In Kapitel 7.6.1 und 7.6.2 wird der Entwurf bezüglich der Durchtritts- und der
natürlichen Eigenfrequenz vorgestellt. Da diese Methoden das Phasenrauschverhal-
ten des Regelkreises nicht betrachten, werden oft Simulationen für die iterative
Anpassung der Parameter verwendet, um das gewünschte Phasenrauschverhalten
zu erzielen [109]. Trotz der hocheffizienten Simulationen des ereignisgesteuerten Mo-
dells ist es sinnvoll, analytische Kriterien für den effizienten Entwurf zu nutzen.
In [109] wird ein entsprechender analytischer Entwurf unter Berücksichtigung der
Ausregelzeit, des Dämpfungsbeiwertes und des Phasenrauschverhaltens vorgestellt,
der hier kurz gezeigt wird. Dieses Verfahren lässt sich für den Entwurf des Pha-
senregelkreises zweiter und dritter Ordnung heranziehen, wobei für die PLL dritter
Ordnung C1 = 10C2 angenommen und der Schleifenfilter zweiter Ordnung durch
einen Filter erster Ordnung angenähert wird. Somit ergibt sich die Normalform der
Übertragungsfunktion aus Gleichung (3.9):

T (s) =
2ζωns+ ω2

n

s2 + 2ζωns+ ω2
n

. (7.45)

Damit lassen sich die Größen der Ausregelzeit, des Dämpfungsbeiwertes und die
natürliche Eigenkreisfrequenz ableiten (siehe Kapitel 3.1). Für die Ausregelzeit wird
meist ein Schlauch von 2% um die Zielspannung definiert (vgl. Gleichung (3.17)),
sodass sich die Anforderung

ts =
4

ζωn

≤ t̃s (7.46)

an die Ausregelzeit des eingerasteten Systems bzw. linearen Modells ergibt, wo-
bei t̃s die gewünschte Größe der Ausregelzeit darstellt. Der Bereich des Dämp-
fungsbeiwerts der Regelschleife ergibt sich aus einem Kompromiss zwischen einem
adäquaten Rauschverhalten, einem geringen Überschwinger und der Ausregelzeit zu
0,45 ≤ ζ ≤ 1,5. Aus diesen beiden Bedingungen lassen sich

R1 ≥
8N

IpKv t̃s
(7.47)

und

0,9

√
N√
IpKv

≤ R1

√
C1 ≤ 3

√
N√
IpKv

(7.48)

ableiten.
Die Übertragungsfunktion des geschlossenen Regelkreises weist für die natürliche
Eigenkreisfrequenz ωn eine Überhöhung des Betragsverlaufs auf. Aus diesem Grund
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wird das Entwurfskriterium bezüglich des Phasenrauschens sowohl für die natürli-
che Eigenfrequenz fn = ωn/(2π) als auch für einen zusätzlichen exemplarischen Fre-
quenzpunkt fM definiert. Dieser lässt sich beispielsweise mit fM = 1MHz annehmen.
Das Phasenrauschen des Dividierersignals wird schließlich für die zwei Frequenzen
fM und fn durch die Grenzen

Sdiv
Φ (fn) ≤ Sfn (7.49a)

Sdiv
Φ (fM) ≤ SfM (7.49b)

vorgegeben. Sfn und SfM beschreiben die gewünschten Vorgaben an das Phasen-
rauschverhalten. Anhand von Gleichung (5.2) und (5.3) ergibt sich das Leistungs-
dichtespektrum des Dividiererphasenrauschens zu

Sdiv
Φ (∆f) = (Sn2

Φ (∆f) + Sn3
Φ ) |T (j2π∆f)|2

+Sn4
Φ (∆f)

1

N2
|1− T (j2π∆f)|2 .

(7.50)

Hierbei sind die Phasenrauschgrößen für i = 2 und i = 4 durch

Sni
Φ (f) =

ai
f 2

(7.51)

gegeben, da dieser Verlauf maßgeblich aus dem Phasenrauschen resultiert. Aus die-
ser Beziehung und den Entwurfskriterien des Phasenrauschens ergeben sich die Be-
dingungen

R1 ≥ ±Re
{
√
N

√
−(g − SfnIpKv)(g + 4π2a4NC1)√

C1IpKv(g − SfnIpKv)

}
(7.52a)

g = 4π2a2NC1 + Sn3
Φ IpKv (7.52b)

und

R1 ≤ ±Re



−

√
−p [I2pK2

v r + C2
1ω

4
MN

2(SfMω
2
M − 4π2a4)]

p ωMIpKvC1



 (7.53a)

p = −4π2a2 − Sn3
Φ ω

2
M + SfMω

2
M (7.53b)

r = −4π2a2 − Sn3
Φ ω

2
M + SfMω

2
M − 2SfMω

4
MNC1

1

IpKv

, (7.53c)

wobei ωM = 2πfM gilt. Diese fünf Entwurfskriterien definieren einen Bereich des
Widerstandes R1 in Abhängigkeit der Kapazität C1, in dem die Vorgaben an das
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Phasenrauschverhalten, die Ausregelzeit und den Dämpfungsbeiwert erfüllt werden.
Hier wird der Realteiloperator verwendet, da der Widerstand R1 des Schleifenfilters
als Wirkwiderstand und somit als rein reell angenommen wird.
Da diese Bedingungen stark von den gewählten Schleifenparametern abhängen, wird
die Auswertung dieser Kriterien anhand eines Anwendungsbeispiels durchgeführt.
Ein Phasenregelkreis zur Frequenzsynthese im Bluetooth-Anwendungsbereich weist
die Frequenzen fref = 1MHz und fvco = 2,4GHz auf. Wird darüber hinaus der
Strom und die Steigung des VCO mit Ip = 30µA und Kv = 2GHz/V vorgege-
ben, lässt sich mittels des vorgestellten Verfahrens der Schleifenfilter bestimmen.
Exemplarisch sei an dieser Stelle das Phasenrauschen der PLL-Komponenten mit
Sref
Φ = −120 dBc/Hz bei ∆f = 1MHz, Sdiv

Φ = −112 dBc/Hz bei ∆f = 1MHz
und Spdf

Φ = −110 dBc/Hz angenommen. Die Entwurfsziele lassen sich mit SfM =
−111 dBc/Hz bei fM = 0,9MHz, Sfn = −85 dBc/Hz bei fn und t̃s = 20µs vorgeben.
Der resultierende zulässige Bereich der Schleifenfilterparameter ist in Abb. 7.24 dar-
gestellt. Die grau hinterlegte Fläche beschreibt den Bereich der Parameter R1 und
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Abb. 7.24.: Exemplarische Darstellung des Schleifenfilterentwurfs anhand des Phasenrauschver-
haltens, der Ausregelzeit und des Dämpfungsbeiwertes der PLL

C1, in dem die Vorgaben erfüllt werden. Für den Entwurf der Filterparameter lässt
sich beispielsweise der geometrische Schwerpunkt bestimmen, um den Widerstand
und die Kapazität entsprechend zu wählen. Ein robuster Systementwurf ergibt sich
jedoch auch, indem die Parameter so gewählt werden, dass die Bauteiltoleranzen von
R1 und C1 nicht zu einer Verletzung der Entwurfsrichtlinien führen. Werden die Pa-
rameter R1 = 20 kΩ und C1 = 0,5 nF gewählt, entspricht der Phasenregelkreis den
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Anforderungen und etwaige Bauteiltoleranzen im Bereich von ±10% verursachen
kein Verlassen der grau hinterlegten Fläche. Das bedeutet, dass die Entwurfskri-
terien des Phasenregelkreises auch unter Berücksichtigung von Toleranzen erfüllt
werden.

Da bei diesem Verfahren keine Transistor-Level-basierten nicht-idealen Effekte
berücksichtigt werden, diese jedoch speziell die natürliche Eigenkreisfrequenz und
die Durchtrittsfrequenz des Systems beeinflussen, ist es sinnvoll, diese Einflüsse
mit in den Entwurf einfließen zu lassen. Diese Erweiterung wird im Folgenden ein-
geführt. Wird die vorgestellte Entwurfsmethode mit den Definitionen der Durch-
trittsfrequenz und der natürlichen Eigenkreisfrequenz aus Kapitel 7.3, die durch die
statische nichtlineare Beschreibungsfunktion angereicherten wurden, erweitert, er-
geben sich die Entwurfsbedingungen in Abhängigkeit der nichtlinearen statischen
Beschreibungsfunktion. Für die Ausregelzeit resultiert

R1 ≥
8N

B(ϕset/ϕ̂e,2π)IpKv t̃s
. (7.54)

Da die Ausregelzeit des Phasenregelkreises von den Anfangsbedingungen ϕe,0 und
fe,0 abhängt, ist für den Entwurf der ungünstigste Fall der Anfangsbedingungen
zu betrachten. Die vorgestellte analytische Ausregelzeit bezieht sich auf das linea-
re Modell, wodurch sich die ungünstigsten Anfangsbedingungen zu ϕe,0 = 0 und
fe,0 = ∆ωPO/(2π) ergeben. Diese Konditionen beschreiben genau die Ausrastgren-
ze des Phasenregelkreises und somit die Gültigkeitsgrenze des linearen Modells der
PLL. Aus diesem Grund ergibt sich die Amplitude des Phasenfehlers ϕ̂e,2π = 2π am
Eingang der statischen nichtlinearen Beschreibungsfunktion. Für kleine Totzonen,
verglichen mit der Periodendauer des Referenzsignals, ist die Beschreibungsfunktion
näherungsweise eins, womit kleine Totzonen die Ausregelzeit nur minimal beeinflus-
sen.
Der Dämpfungsbeiwert der Regelschleife ist unabhängig von den Anfangsbedingun-
gen und es resultiert

0,9

√
N√

B(ϕset/ϕ̂e)IpKv

≤ R1

√
C1 ≤ 3

√
N√

B(ϕset/ϕ̂e)IpKv

. (7.55)

Speziell die Phasenrauschbetrachtung bezieht sich auf einen Arbeitspunkt sehr nahe
der Ruhelage, sodass sich die Bedingungen

R1 ≥ ±Re
{
√
N

√
−(g − SfnB(ϕset/ϕ̂e)IpKv)(g + 4π2a4NC1)√
C1B(ϕset/ϕ̂e)IpKv(g − SfnB(ϕset/ϕ̂e)IpKv)

}
(7.56a)

g = 4π2a2NC1 + Sn3
Φ B(ϕset/ϕ̂e)IpKv (7.56b)

186



7.6. Robuster Systementwurf basierend auf den
Charakterisierungen

und

R1 ≤ ±Re
{
−
√
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1

B(ϕset/ϕ̂e)IpKv

(7.57c)

ergeben, die unabhängig von den Anfangsbedingungen sind.
Werden diese Kriterien für den vorausgesetzten Phasenregelkreis mit einer Totzo-
ne, dessen Breite 0,4% der Referenzperiode beträgt, ausgewertet, ergibt sich ein
Verhältnis der Breite der Totzone zur Amplitude des Phasenfehlers an der stati-
schen nichtlinearen Beschreibungsfunktion von ϕset/ϕ̂e = 0,028. In Abb. 7.25 ist zu
sehen, dass sich die Entwurfskriterien bedingt durch die Totzone verschieben.
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Abb. 7.25.: Exemplarische Darstellung des Schleifenfilterentwurfs anhand des Phasenrauschver-
haltens, der Ausregelzeit und des Dämpfungsbeiwertes der PLL mit und ohne Totzo-
ne – Blau: Gl. (7.48) rechts // Grün: Gl. (7.48) links // Lila: Gl. (7.52) // Rot: Gl.
(7.47) // Schwarz: Gl. (7.53) – Gestrichelt: mit Totzone // Durchgezogen: ohne
Totzone

Wird das Phasenrauschverhalten des Phasenregelkreises mit den Schleifenfilterpa-
rametern R1 = 20 kΩ und C1 = 0,5 nF betrachtet, wird deutlich, dass der ideale
Phasenregelkreis die Entwurfskriterien erfüllt (siehe schwarze Kurven in Abb. 7.26).
Unter Berücksichtigung der Totzone verschiebt sich jedoch die natürliche Eigenfre-
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quenz des Regelkreises und die Vorgabe von −85 dBc/Hz bei fn wird nicht erfüllt
(siehe rote Kurven in Abb. 7.26). Werden die hergeleiteten Entwurfskriterien unter
Berücksichtigung der Totzone verwendet, ergeben sich die Schleifenfilterparameter
beispielsweise zu R1 = 60 kΩ und C1 = 0,2 nF. Der Phasenregelkreis mit diesen Pa-
rametern liegt innerhalb des gewünschten Phasenrauschverhaltens, wie in Abb. 7.26
zu erkennen ist (blaue Kurven in Abb. 7.26). In diesem Entwurfsbeispiel liegt die

Abweichung zur Trägerfrequenz / Hz

S
d
iv

Φ
/
(d
B
c/
H
z)

Leistungsdichtespektrum bei 1MHz

Sfn

fn ideale PLL

fn neue PLL
mit Totzone

fn PLL mit Totzone

Sim.: ideale PLL

lin. Mod.: ideale PLL

Sim.: PLL mit Totzone

lin. Mod.: PLL mit Totzone

lin. Mod.: neue PLL mit Totzone

Sim.: neue PLL mit Totzone

104 105
-105

-95

-85

-75

Abb. 7.26.: Vergleich des Phasenrauschverhaltens der idealen PLL, der PLL mit Totzone und
der neu entworfenen PLL unter Berücksichtigung der Totzone

gewählte Auslegung der Regelschleife auch für Parametertoleranzen von ±10% in-
nerhalb der Entwurfsrichtlinien.
Die Ausregelzeit beider Entwürfe ändert sich nur marginal, da die Totzone ledig-
lich nahe der Ruhelage einen wesentlichen Einfluss auf das dynamische Verhalten
aufweist und in diesem Beispiel der Bereich der Totzone deutlich geringer als der
2%-Schlauch um die Zielspannung ist.
Dieser Ansatz eignet sich nicht nur für einen robusteren Systementwurf, sondern
ebenfalls für die Bewertung des Entwurfs unter Berücksichtigung von Bauteilabwei-
chungen, wie in Kapitel 7.5 beschrieben. Sind die Bauteiltoleranzen beispielsweise
im Bereich von 10% um den Nominalwert R1 = 60 kΩ und C1 = 0,2 nF, lässt sich
aus Abb. 7.25 schließen, dass die Bauteiltoleranzen keinen signifikanten Einfluss auf
die Güte des Entwurfs aufweisen.
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KAPITEL 8

Zusammenfassung und Ausblick

Zusammenfassung

Aufgrund der Herausforderungen beim Entwurf von gemischt digital analogen Schal-
tungen beschäftigt sich diese Arbeit mit effizienten Modellierungs-, Simulations- und
Charakterisierungsansätzen, die als Ziel eine schnelle und vollständige Beschreibung
dieser Mixed-Signal Systeme haben. Der Fokus dieser Dissertation liegt dabei auf
dem gemischt digital analogen Phasenregelkreis mit Ladungspumpe (engl. Charge-
Pump PLL, kurz: CP-PLL) zur Frequenzsynthese, wobei die Ergebnisse auch für
weitere Anwendungsgebiete der PLL, zum Beispiel die Takt- und Datenrückgewin-
nung, und andere Mixed-Signal Systeme verwendet werden können.

Zunächst werden der generelle Aufbau und das Prinzip allgemeiner Phasenregelkrei-
se (PLL) vorgestellt, um im weiteren Verlauf die einzelnen Komponenten und die
Funktionsweise der Integer-N PLL für die ganzzahlige Vervielfachung der Referenz-
frequenz und der Fractional-N PLL für rationale Vielfache der Referenzfrequenz, zu
beleuchten. Besonderes Augenmerk wird zunächst auf die ideale Regelschleife gelegt.
Es wird gezeigt, dass der Phasenregelkreis trotz der Annahme idealer Komponen-
ten hochgradig nichtlineare Eigenschaften aufweist und die schaltenden Effekte der
digitalen Bauteile das Regelverhalten beeinflussen.
Neben der Frequenzsynthese wird der Phasenregelkreis zur Takt- und Datenrückge-
winnung vorgestellt, der sich von der Frequenzsynthese lediglich durch den Phasen-
detektor unterscheidet. Die Ergebnisse lassen sich auch auf weitere Mixed-Signal Sys-
teme übertragen, sodass der Fokus dieser Arbeit keine wesentliche Einschränkung
darstellt.

Da der gemischt digital analoge (engl. Mixed-Signal, kurz: MS) Phasenregelkreis
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ein hochgradig nichtlineares, schaltendes und teils chaotisches Verhalten aufweist,
ist eine umfassende Charakterisierung und Beschreibung der PLL notwendig. Diese
ist jedoch durch eine einzige Simulation nur schwer möglich. Für die effiziente Be-
schreibung der MS PLL werden daher im Anschluss verschiedene Modellierungen
hinsichtlich ihrer Genauigkeit und ihrer Effizienz analysiert. Im ersten Schritt wird
das oft verwendete lineare Modell der CP-PLL vorgestellt. Mit Hilfe dieses Modells
werden typische dynamische Kenngrößen der idealen PLL definiert.
Da das lineare Modell auf einer a priori Linearisierung beruht, weist dieser Ansatz
einen kleinen Geltungsbereich nahe der Ruhelage auf. Somit lässt sich das schaltende
und nichtlineare Verhalten der PLL nicht ohne Weiteres abbilden. Daher werden im
Anschluss verschiedene Methoden der Verhaltensbeschreibung diskutiert. Hier wer-
den exemplarisch Simulink, Verilog-AMS und SystemC-AMS betrachtet, die sich
durch ein Abtastzeit-basiertes Lösungsverfahren auszeichnen. Es wird gezeigt, dass
dieses Verfahren zu langen Simulationszeiten führen kann und somit eine effiziente
Charakterisierung von MS Systemen nur bedingt möglich ist.
Das völlig ereignisgesteuerte (engl. Event-Driven, kurz: ED) Modell nach Heda-
yat wird im Anschluss genauer betrachtet, da diese Methode die Problematik der
Abtastzeit-basierten Lösungsverfahren nicht aufweist. Das ED Modell beruht dabei
auf den Flanken des Referenz- beziehungsweise Rückkopplungssignals und wertet
den Phasenregelkreis lediglich zu diesen Zeitpunkten/Ereignissen aus. Die damit
einhergehende Reduzierung der Berechnungsschritte resultiert in einer deutlichen
Beschleunigung der Simulation und somit in einer hocheffizienten Modellierung des
MS Phasenregelkreises. Zudem bildet diese Beschreibungsform das dynamische Ver-
halten der PLL exakt ab und verwendet keine Approximationen.
Der Vergleich der verschiedenen Modellierungen zeigt, dass die Ergebnisse des er-
eignisgesteuerten Modells und die der Verhaltensbeschreibung äquivalent sind. Die
Differenz beider Ergebnisse beträgt für das gezeigte Beispiel der Integer-N PLL
lediglich ±0,04% der Zielspannung, wobei die Berechnung des ED Modells über
100-mal schneller als die der Verhaltensbeschreibung ist. Für eine exemplarische
Fractional-N PLL beträgt die Simulationsbeschleunigung des ED Modells bereits
über 200.
Da das lineare Modell analytischer Natur ist, ist die Berechnung des dynamischen
Verhaltens zwar deutlich schneller, jedoch wird lediglich das mittlere Verhalten des
bereits eingerasteten Regelkreises repräsentiert und sowohl das schaltende und nicht-
lineare Verhalten als auch die ausgerastete PLL bleiben unberücksichtigt.

Für die Stabilitätsbetrachtung wird in der Praxis meist das lineare Modell verwen-
det. Diese Betrachtung wird anhand des zeitkontinuierlichen Modells genauer be-
schrieben. Dabei werden sowohl die Durchtrittsfrequenz und die Phasenreserve als
auch die Analyse von Hurwitz diskutiert. Es wird jedoch gezeigt, dass das lineare Mo-
dell für eine CP-PLL mit passivem Schleifenfilter und positiver Schleifenverstärkung
bis zur dritten Ordnung immer stabiles Verhalten vorhersagt und sich das zeitkon-
tinuierliche Modell daher nur bedingt für die Stabilitätsuntersuchung eignet.
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Bei der Betrachtung des zeitdiskreten linearen Modells wird ersichtlich, dass das
schaltende Verhalten der PLL deren Stabilität beeinträchtigt. Es ergeben sich Sta-
bilitätsbedingungen für den Phasenregelkreis zweiter und dritter Ordnung, die sich
auf eine Regelschleife sehr nahe der Ruhelage beziehen.
Da speziell die Bedingung für den Phasenregelkreis dritter Ordnung eine komplexe
Ungleichung darstellt, wird in der Praxis meist eine empirische Stabilitätsgrenze ver-
wendet. Diese Bedingung basiert auf dem zeitkontinuierlichen linearen Modell und
dem Verhältnis der Referenzfrequenz und der Eigenfrequenz des Phasenregelkreises
und lässt sich für die PLL zweiter und dritter Ordnung gleichermaßen effizient aus-
werten.
Für die Konvergenzbetrachtung entfernt der Ruhelage wird das ED Modell in ein
autonomes Differenzengleichungssystem überführt und im Anschluss mit der indi-
rekten Lyapunov-Methode die Stabilität der Ruhelage des Phasenregelkreises dritter
Ordnung analysiert. Dieser Ansatz bietet die Möglichkeit, die Konvergenzeigenschaf-
ten für verschiedene Anfangsbedingungen entfernt der Ruhelage zu beleuchten, da
keine a priori Linearisierung verwendet wird. Die hergeleiteten Bedingungen stellen
eine konservativere Stabilitätsabschätzung dar und sind trotz der späteren Lineari-
sierung weniger komplex als die Grenze des zeitdiskreten linearen Modells. Darüber
hinaus erweitert dieses Kriterium des ED Modells die empirische Grenze um die
Berücksichtigung der Kapazitätsverhältnisse des Schleifenfilters.
Beim Vergleich der Stabilitätsbedingungen wird deutlich, dass die Stabilitätsbedin-
gung des zeitdiskreten linearen Modells für Anfangsbedingungen sehr nahe der Ru-
helage zutreffend ist, obgleich die Auswertung der Grenze für die PLL dritter Ord-
nung aufwändig ist. Für Anfangsbedingungen entfernt der Ruhelage und außerhalb
deren Einzugsgebietes sind die Stabilitätskriterien sowohl des zeitdiskreten Modells
als auch der empirischen Betrachtung nicht konservativ genug und sagen eine Kon-
vergenz in die Ruhelage voraus, obwohl der Phasenregelkreis einen Grenzzyklus
entfernt der Ruhelage aufweist. Die hergeleitete und auf dem ED Modell basieren-
de Stabilitätsbedingung berücksichtigt Initialwerte des Phasenregelkreises entfernt
des Fixpunktes und ermöglicht eine robustere Abschätzung der Konvergenz in die
Ruhelage. Diese Betrachtung zeigt deutlich, dass das Einzugsgebiet der Ruhelage
des hochgradig nichtlinearen und schaltenden Phasenregelkreises gerade für die Fre-
quenzsynthese berücksichtigt werden sollte und eine ausführliche Charakterisierung
der MS PLL von großer Bedeutung ist. Das eingeführte ED Modell und die herge-
leiteten Stabilitätsbedingungen ermöglichen diese Analyse.

Zusätzlich zum nichtlinearen, schaltenden und teils chaotischen Verhalten des idea-
len Phasenregelkreises weist die PLL in der Realität nicht-ideale und weitere nichtli-
neare Effekte auf. Zunächst werden die Transistor-Level-basierten nicht-idealen und
nichtlinearen Effekte erläutert. Die erste Charakterisierung dieser Effekte wird an
dieser Stelle mittels Transistor-Level (TL) Simulationen durchgeführt. Im Anschluss
wird der endliche Zustandsautomat des Phasen- und Frequenzdetektors im ED Mo-
dell in der Art modifiziert, dass nicht-ideale Effekte separat und in Kombination
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modular und intuitiv berücksichtigt werden können.
Des Weiteren wird das Phasenrauschen innerhalb der PLL zunächst mittels des zeit-
kontinuierlichen linearen Modells beschrieben, da dieses eine schnelle Abschätzung
des Rauschverhaltens ermöglicht. Da sich in diesem Modell die nicht-idealen und
nichtlinearen Effekte nicht ohne Weiteres berücksichtigen lassen, wird das erweiter-
te ED Modell mit der Modellierung des Phasenrauschens angereichert. Somit lässt
sich der Einfluss der nicht-idealen Effekte auf das Phasenrauschverhalten charakte-
risieren.
Für die Validierung des erweiterten ED Modells werden dessen Simulationsergebnis-
se mit einer TL Simulation verglichen. Für eine exemplarische Interger-N PLL wird
gezeigt, dass sich die mittlere quadratische Differenz beider Simulationsergebnisse
im Bereich von 0,1% der Zielspannung bewegt. Bei einer Zielspannung von knapp
0,6V wird die Differenz erst in einem Bereich von ±45µV um die Zielspannung er-
kennbar. Trotz dieser hohen Genauigkeit des ED Modells ist dessen Simulationszeit
deutlich geringer verglichen mit der TL Simulation. Während die TL Simulation
knapp 5.000 Sekunden benötigt, ist die erweiterte ED Simulation nach 0,48 Sekun-
den abgeschlossen. Das entspricht einem Beschleunigungsfaktor von mehr als 10.000.
Mittels des linearen Modells wird im Anschluss die ED Modellierung des Phasen-
rauschens validiert. Es wird gezeigt, dass die ED Modellierung die Phasenrausch-
beschreibung des linearen Modells akkurat abbildet und somit mit der Theorie der
Literatur übereinstimmt.

Zusätzlich wird die erweiterte EDModellierung mit realen Messungen validiert. Hier-
zu wird die Evaluierungsschaltung von Analog Devices verwendet, die eine Integer-N
PLL beinhaltet. Für den Vergleich mit dem ED Modell werden die Komponenten
der Schaltung zunächst messtechnisch charakterisiert und anschließend das erweiter-
te ED Modell entsprechend konfiguriert. Der Vergleich der Messergebnisse mit den
Simulationsergebnissen des ED Modells zeigt eine gute Übereinstimmung sowohl
im Frequenz- als auch im Zeitbereich. Die mittlere quadratische Differenz der Filter-
spannungen im Zeitbereich beträgt lediglich 1% der Ruhelage der Steuerspannung.
Dabei werden die dynamischen Effekte durch das erweiterte ED Modell akkurat
abgebildet. Im Frequenzbereich ist ebenfalls eine gute Entsprechung zu erkennen,
wobei sowohl die Eigenschaften des Phasenrauschens als auch die der nicht-idealen
Effekte zu erkennen sind.

Anschließend wird das hocheffiziente erweiterte ED Modell zur umfassenden Cha-
rakterisierung der nichtlinearen und nicht-idealen MS PLL verwendet.
Bei der Kombination einer Totzone und des Phasenrauschens wird deutlich, dass
die Totzone das Phasenrauschverhalten deutlich beeinflusst. Eine Vielzahl effizien-
ter Simulationen wird zur Charakterisierung dieses Zusammenhangs verwendet und
die Ergebnisse für die Einführung einer analytischen Beschreibung herangezogen. Es
wird gezeigt, dass die hier verwendete nichtlineare statische Beschreibungsfunktion
der Totzone eine gute Abschätzung des Phasenrauschens unter Berücksichtigung
einer Totzone erlaubt.
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Des Weiteren wird erläutert, dass die nicht-idealen Effekte zu einer bleibenden Regel-
abweichung führen können. Da dieser statische Fehler das Regelungsergebnis beein-
flusst, wird der im erweiterten ED Modell modulierte Strompuls für die Vorhersage
des mittleren statischen Phasenfehlers zugrunde gelegt. Es wird gezeigt, dass sich
bei der Kombination der nicht-idealen Effekte zwei unterschiedliche stabile Ruhela-
gen ergeben können, die sich mittels der analytischen Beschreibung des Strompulses
bestimmen lassen.
Im Anschluss wird das ED Modell dazu verwendet, die Einflüsse der Totzone, des
Leckstroms und der Stromüberschwinger auf das dynamische Verhalten zu analysie-
ren. Hierbei liegt der Fokus auf den dynamischen Kenngrößen des Ausrastbereichs,
der Durchtrittsfrequenz und der spektralen Reinheit. Es wird ersichtlich, dass die
nicht-idealen Effekte das Regelverhalten beeinflussen und daher dessen Berücksich-
tigung für einen robusteren Systementwurf essentiell ist.
Zusätzlich zu diesen Effekten sind Variationen der Schleifenparameter zu betrachten,
die sich durch Prozess- und Temperaturschwankungen ergeben. Hier wird das erwei-
terte ED Modell dazu verwendet, eine Vielzahl von Parametervariationen durch-
zuführen und deren Einfluss auf das Regelverhalten zu untersuchen. Neben suk-
zessiven Durchläufen wird eine Monte-Carlo-Simulation zur Charakterisierung der
Überschwinger vorgestellt. Es wird deutlich, dass eine rigorose Charakterisierung
der MS PLL unter Berücksichtigung verschiedener Anfangsbedingungen, Bauteilto-
leranzen und Prozessvariationen unabdingbar für einen robusten Systementwurf ist.
Basierend auf den Ergebnissen dieser Charakterisierungen und den daraus folgenden
analytischen Beschreibungen mittels statischer nichtlinearer Beschreibungsfunktion
wird anschließend ein robusterer und analytischer Systementwurf unter Berücksich-
tigung der Totzone eingeführt. Dabei wird der Entwurf sowohl mittels Durchtritts-
frequenz und Phasenreserve als auch mit Hilfe der Erweiterung der empirischen
Stabilitätsbedingung untersucht. Darüber hinaus wird ein weiterer analytischer Sys-
tementwurf unter Berücksichtigung der Totzone und den Entwurfskriterien der Aus-
regelzeit, des Dämpfungsbeiwertes der PLL und des Phasenrauschens hergeleitet.
An einem Beispiel für Bluetooth-Spezifikationen wird deutlich, dass die Berücksich-
tigung der Totzone für den robusteren Systementwurf der PLL notwendig ist.

Diese Arbeit zeigt, dass die ereignisgesteuerte Modellierung zu einem besseren
Verständnis des dynamischen Verhaltens von Mixed-Signal Systemen beiträgt und
eine rigorose Charakterisierung deren komplexer Eigenschaften ermöglicht. Darüber
hinaus zeigen die durchgeführten Analysen die wesentlichen Effekte auf, die die Leis-
tungsfähigkeit von Phasenregelkreisen als ein exemplarisches Mixed-Signal System
beeinflussen. Mit Hilfe dieses intuitiven und benutzerfreundlichen Ansatzes wird ein
robusterer Systementwurf des Phasenregelkreises realisiert.
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8. Zusammenfassung und Ausblick

Ausblick

In dieser Arbeit werden die Phasenrauschgrößen des Referenz- und spannungsge-
steuerten Oszillators sowie des Phasen- und Frequenzdetektors (PFD) betrachtet.
Weitere Arbeiten können das Rauschverhalten der Versorgungsspannung, der Schlei-
fenfilterspannungen und des Frequenzteilers untersuchen. Das Phasenrauschen des
Frequenzteilers lässt sich dabei analog zum Phasenrauschen des PFD als synchrone
Rauschgröße verstehen und direkt mit im Phasensignal des Dividierers berücksich-
tigen. Das Amplitudenrauschen der Versorgungsspannung beeinflusst hingegen das
Verhalten aller Komponenten der PLL. Speziell die Kennlinie des spannungsgesteu-
erten Oszillators (VCO) wird über das Rauschen des Versorgungssignals variiert
und resultiert in einer weiteren Phasenrauschgröße im VCO-Signal. Die logischen
Gatter der digitalen Bauteile weisen je nach Versorgungsspannung unterschiedli-
che Flankensteilheiten auf und beeinflussen somit die Regelschleife mit zusätzlichen
Verzögerungszeiten. Mit Hilfe entsprechender Modellierungsansätze lassen sich die
Wechselwirkungen dieser Rauschgrößen mit den nicht-idealen Effekten charakteri-
sieren und in den Entwurf einbeziehen.

Des Weiteren ist es sinnvoll, weitere analytische Beschreibungen der Zusam-
menhänge zwischen nicht-idealen Effekten und Phasenrauschen abzuleiten. Bei-
spielsweise lassen sich für die vorgestellten nicht-idealen Effekte zusätzliche stati-
sche nichtlineare Beschreibungsfunktionen angeben. Diese Ansätze lassen sich im
Anschluss hinsichtlich ihrer Vorhersagegüte des Phasenrauschverhaltens und der
dynamische Kenngrößen der PLL untersuchen und gegebenenfalls mit in den robus-
ten Systementwurf integrieren. Zudem ist es denkbar, neue analytische Ansätze zur
Beschreibung der Wechselwirkungen zwischen den nicht-idealen Effekten und dem
Phasenrauschen herzuleiten.

Die analytische Stabilitätsanalyse in dieser Arbeit bezieht sich auf die ideale PLL
dritter Ordnung. Neben der durchgeführten simulativen Untersuchung der Konver-
genzeigenschaften unter Berücksichtigung der Totzone ist es sinnvoll, die analytische
Betrachtung mit der Totzone der PLL zu erweitern. Hierzu müssten die Differenzen-
gleichungen der PLL dritter Ordnung durch die Verzögerungszeit der Totzone ange-
reichert und anschließend in ein autonomes Differenzengleichungssystem überführt
werden. Dieses Gleichungssystem lässt sich mit der indirekten Lyapunov Methode
hinsichtlich der Stabilität der Ruhelage der PLL auswerten. Ein weiterer Ansatz ist
die Anwendung der allgemeinen Lyapunov Theorie zur generellen Beurteilung der
Stabilität. Die Berücksichtigung weiterer nicht-idealer Effekte ist ebenfalls denkbar.
Darüber hinaus lässt sich die Stabilität der Ruhelage des Phasenregelkreises für
höhere Ordnungen und unter Berücksichtigung der nicht-idealen Effekte untersu-
chen. Analog zur vorherigen Betrachtung lassen sich diese Eigenschaften in die
Differenzengleichungen überführen und die Konvergenz analysieren. Eine weitere
Möglichkeit ist die Erweiterung der Ladungsapproximation zur Stabilitätscharakte-
risierung von Daniels [87] durch die Beschreibung der nicht-idealen Effekte.

194



Die eingeführten Entwurfsverfahren berücksichtigen zwar die Totzone und das Pha-
senrauschen der PLL, beschränken sich jedoch auf den Phasenregelkreis mit La-
dungspumpe und passivem Schleifenfilter für die Frequenzsynthese. Weiterführende
Betrachtungen des Entwurfs können daher einen aktiven Schleifenfilter berücksich-
tigen oder auf eine andere Architektur des Phasenregelkreises abzielen. Auf Grund
des modularen ereignisgesteuerten Modells lässt sich dieses für die Beschreibung
weiterer Anwendungen und der Charakterisierung der entsprechenden nicht-idealen
Effekte verwenden. Anhand der Ergebnisse lässt sich, analog zum Vorgehen in dieser
Arbeit, ein robusterer Systementwurf ableiten.

Das hier eingeführte erweiterte ereignisgesteuerte Modell ist zwar modular aufge-
baut, ist jedoch nicht direkt auf beliebige gemischt digital analoge Systeme an-
wendbar. Hierfür ist es notwendig die Idee der ereignisgesteuerten Auswertung des
dynamischen Verhaltens in eine generische Modellierungsarchitektur zu überführen.
Dieses wäre in der Lage, beliebige gemischt digital analoge Systeme zu repräsen-
tieren und eine effiziente Simulation und Charakterisierung zu gewährleisten. Hier-
zu bietet sich zudem eine Schnittstelle zwischen mehreren Simulationsplattformen
an, um beispielsweise die nicht-idealen Effekte automatisiert auf Transistorebene
zu charakterisieren und als makroskopische Parameter in das generische ereignisge-
steuerte Modell überführen zu lassen. Dies würde dem Systementwickler ein noch
leistungsfähigeres Werkzeug für den Entwurf zur Verfügung stellen.

Für die weitere Betrachtung des chaotischen Verhaltens des Phasenregelkreises unter
Berücksichtigung der nichtlinearen und nicht-idealen Eigenschaften lässt sich das er-
eignisgesteuerte Modell verwenden, um die Bifurkationsrouten (vgl. auch [110–113])
in Abhängigkeit dieser Effekte aufzuzeigen und zu analysieren.
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ANHANG A

Messtechnische Aufnahme der
PFD-Kennlinie

”
Experience is what you get when you

didn’t get what you wanted.“
Randy Pausch

Bei der messtechnischen Aufnahme der PFD-Kennlinie wird der Regelkreis zwischen
dem Schleifenfilter und dem VCO aufgetrennt und eine externe Spannungsquelle zur
Steuerung des VCO verwendet. Diese ist so eingestellt, dass sich ein kleiner Frequenz-
fehler zwischen dem Referenzsignal und dem Ausgangssignal des Dividierers ergibt
und der Phasenfehler kontinuierlich steigt oder sinkt. Damit der Ausgangsstrom
der Ladungspumpe nicht von der elektrischen Ladung auf den Schleifenfilterkapa-
zitäten abhängt, sind die Kapazitäten entfernt worden. Der resultierende Strom der
Ladungspumpe lässt sich anschließend jeweils über eine Periode des Referenzsignals
integrieren und über die Zeitdifferenz zwischen den Flanken des Referenzsignals
und des Dividierersignals auftragen. In Abb. A.1(a) ist das Ergebnis dieser Varian-
te dargestellt. Für größere Zeitdifferenzen flacht die Kurve der elektrischen Ladung
deutlich ab. Diese Eigenschaft ist auch in den zeitlichen Verläufen des Stroms er-
sichtlich (siehe Abb. A.1(b)). Trotz eines gewählten Stroms von 2,5mA beträgt der
Ist-Strom lediglich 1mA. Des Weiteren lässt sich ein Frequenzwechsel im Stromsi-
gnal erkennen. Die steigenden Flanken des Stroms werden durch das Referenzsignal
ausgelöst. In der zweiten Stromperiode ist die Periodenzeit jedoch um die Periode
des Oszillatorsignals reduziert. Es liegt die Vermutung nahe, dass die interne Lo-
gikschaltung des ADF4360 eine zusätzliche Regelung des Ladungspumpenstroms
vornimmt, obwohl diese nicht dokumentiert ist.
Wird diese messtechnische Methode mit der Kennlinie des ereignisgesteuerten Mo-
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A. Messtechnische Aufnahme der PFD-Kennlinie
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Abb. A.1.: Messung der PFD-Kennlinie und Vergleich mit der verwendeten Kennlinie im ereig-
nisgesteuerten Modell

dells verglichen, die auf der Auswertung der Histogramme des Ladungspumpen-
stroms und dessen Steigungen basiert, ergeben sich die Verläufe in Abb. A.1(a). Der
Zoom-Bereich zeigt die Kennlinie für sehr kleine Phasenfehler und veranschaulicht
den Einfluss der endlichen Steigung des Stroms. Offensichtlich spiegelt die messtech-
nische Aufnahme der PFD-Kennlinie nicht das Verhalten des Phasen- und Frequenz-
detektors im geschlossenen Regelkreis wider, da die modellierte PFD-Charakteristik
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in der geschlossenen Phasenregelschleife zu einer sehr guten Übereinstimmung des
dynamischen Verhaltens der ereignisgesteuerten Simulation und der Messung führt.
Aus diesem Grund wird bei der Validierung des ereignisgesteuerten Modells mit-
tels Messungen die Kennlinie des PFD mit Hilfe der Auswertung der Histogramme
bestimmt.
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ANHANG B

Ereignisgesteuerte Modellierungen
weiterer Phasenregelkreise

Die in dieser Arbeit vorgestellte ereignisgesteuerte Modellierung stellt einen modula-
ren und effizienten Ansatz zur Beschreibung von gemischt digital-analogen Systemen
dar. Speziell für den Phasenregelkreis der Frequenzsynthese sind Beschleunigungs-
faktoren von 100.000 möglich.
In diesem Kapitel wird dieses ereignisgesteuerte Modell auf zwei weitere Phasenre-
gelkreise angewendet. Im ersten Schritt wird die spannungsgesteuerte CP-PLL be-
trachtet. Hier wird die stromgesteuerte Ladungspumpe durch die spannungsgesteu-
erte ersetzt und für die Modellierung des hochohmigen Zustandes dieser Ladungs-
pumpe zwischen zwei mathematischen Filtern hin und her geschaltet. Im zweiten
Schritt wird der Phasenregelkreis zur Daten- und Taktrückgewinnung betrachtet.
Da der Unterschied zur CP-PLL lediglich im Phasendetektor liegt, wird der Hogge-
Phasendetektor für das ereignisgesteuerte Modell beschrieben.

B.1. Spannungsgesteuerte CP-PLL

Die spannungsgesteuerte CP-PLL weist eine Ladungspumpe mit konstanten Span-
nungsquellen auf, die entsprechend des Phasenfehlers auf den folgenden Schleifenfil-
ter geschaltet werden [56]. Für die Trennung dieser Quellen vom spannungsgesteu-
erten Oszillator wird im Schleifenfilter ein weiterer Widerstand verwendet (siehe
Kapitel 2.3.1).
Als Schaltzustände der spannungsgesteuerten Ladungspumpe sind Udd als Versor-
gungsspannung im Beschleunigungsfall des VCO, GND als Masse für die Redu-
zierung der VCO-Frequenz und ein hochohmiger Zustand für das Halten der VCO-
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B. Ereignisgesteuerte Modellierungen weiterer Phasenregelkreise

Frequenz möglich. Innerhalb des ereignisgesteuerten Modells wird der Schleifenfilter
aus Abb. 2.16 mit der Zustandsraumbeschreibung

ẋ =



−R1 +R0

R1R0C2

− 1

R0C2

− 1

R0C1

− 1

R0C1


x+




1

R0C2

1

R0C1


 ud (B.1a)

uctl = [1 1]x+ 0 (B.1b)

verwendet. Da die Eingangsgröße ud der mathematischen Zustandsraumbeschreibun-
gen für den hochohmigen Zustand der Ladungspumpe nicht definiert ist, wird im
ereignisgesteuerten Modell ein zusätzlicher

”
Spezialfilter“ eingeführt. Dieser stellt

das Verhalten des eigentlichen Filters im hochohmigen Zustand mittels eines Fil-
ters mit einem Eingangssignal von Null dar. Für den hochohmigen Zustand der
Ladungspumpe ergibt sich ein Strom mit ip = 0. Daraus folgt, dass die Eingangs-
spannung der Zustandsraumbeschreibung gleich der Steuerspannung ist. Wird dies
bei der Herleitung der Zustandsraumbeschreibung berücksichtigt, ergibt sich die
Zustandsraumbeschreibung des Spezialfilters zu

ẋ =


 −

1

R1C2

0

0 0


x+ 0 (B.2a)

uctl = [1 1]x+ 0. (B.2b)
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ẋ = Ax+ bud
uctl = cTx+ dud
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PFD

VCODIV

Ladungspumpe Standardfilter

Spezialfilter

Abb. B.1.: Darstellung der ereignisgesteuerten Modellierung der spannungsgesteuerten CP-PLL

Hier ist ersichtlich, dass das Eingangssignal des Spezialfilters für den hochohmigen

202



B.1. Spannungsgesteuerte CP-PLL

Zustand der Ladungspumpe mit Null definiert ist und die Umladeprozesse zwischen
den Filterkapazitäten beschreibt.
Im ereignisgesteuerten Modell werden die Spannungsquellen der Ladungspumpe mit-
tels des Phasen- und Frequenzdetektors geschaltet. Basierend auf dem Zustand der
Ladungspumpe (Beschleunigung, Reduzierung oder hochohmig) wird zwischen der
Modellierung des eigentlichen Filters und des Spezialfilters gewechselt, wobei die
Eingangsgröße des Spezialfilters mit Null definiert wird. Das entsprechende Block-
schaltbild ist in Abb. B.1 dargestellt. Diese Modellierung beinhaltet keine Appro-
ximation und stellt somit ein exaktes Modell dar. Wird dieses ereignisgesteuerte
Modell mit der Verhaltensbeschreibung der spannungsgesteuerten CP-PLL vergli-
chen, zeigt sich eine sehr gute Übereinstimmung beider Beschreibungsformen (siehe
Abb. B.2). Der hochohmige Zustand der Ladungspumpe wurde in der Verhaltens-
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Abb. B.2.: Validierung des ereignisgesteuerten Modells der spannungsgesteuerten CP-PLL mit-
tels Simulink Simulation

beschreibung mittels einer direkten Rückkopplung der Steuerspannung auf den Ein-
gang des Schleifenfilters realisiert. Der Geschwindigkeitsgewinn der ereignisgesteu-
erten Modellierung dieses Phasenregelkreises liegt in der gleichen Größenordnung
wie bei der stromgesteuerten CP-PLL.
Die Charakterisierungen und Analysen der spannungsgesteuerten CP-PLL sind
in [56, 64, 65, 107,114–117] veröffentlicht. Diese Veröffentlichungen schließen die Re-
gelschleife zweiter und dritter Ordnung, den Vergleich mit der stromgesteuerten
CP-PLL, die Stabilitätsbetrachtung des schaltenden nichtlinearen Systems und Pro-
zessvariationen mit ein.
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B. Ereignisgesteuerte Modellierungen weiterer Phasenregelkreise

Da sich die ereignisgesteuerte Modellierung der spannungsgesteuerten CP-PLL von
der der stromgesteuerten CP-PLL lediglich in der Ladungspumpe und der Reali-
sierung des Schleifenfilters unterscheidet, lassen sich die bereits eingeführten nicht-
idealen Effekte des Phasenregelkreises ohne Weiteres berücksichtigen. Lediglich für
den Leckstrom ist eine gesonderte Beschreibung notwendig. Diese lässt sich beispiels-
weise bei der Herleitung des Spezialfilters umsetzen.

B.2. Phasenregelkreis zur Takt- und

Datenrückgewinnung

Der Phasenregelkreis zur Takt- und Datenrückgewinnung (engl. Clock and Data Re-
covery, kurz: CDR) aus Kapitel 2.3.2 extrahiert die Daten und den entsprechenden
Takt aus beispielsweise verrauschten Empfangsdaten. Die Architektur dieser PLL
unterscheidet sich lediglich im verwendeten Phasendetektor und dem fehlenden Fre-
quenzteiler von der CP-PLL zur Frequenzsynthese [55]. Für den Phasendetektor der
CDR-PLL werden der Alexander- oder der Hogge-Phasendetektor verwendet. An
dieser Stelle wird exemplarisch die ereignisgesteuerte Modellierung des Hogge-PD
vorgestellt (vgl. Abb. 2.19). Der gezeigte Ansatz lässt sich jedoch auch auf andere
Phasendetektoren anwenden.
Da der Hogge-PD analog zum Phasen- und Frequenzdetektor flankengesteuert ist,
lässt sich für die Modellierung ebenfalls ein endlicher Zustandsautomat verwenden.
Da die internen Zustände Q1 und Q2 nicht direkt den Ausgangssignalen entspre-
chen, müssen diese im endlichen Zustandsautomat separat berücksichtigt werden.
Der resultierende Automat ist in Abb. B.3 dargestellt. Die Zustandswechsel werden
durch die steigenden und fallengen Flanken der Eingangssignale uclk und ũdata des
Hogge-PD ausgelöst. Die Zustände S−1, S0, S+1 und S11 repräsentieren die Up- und
Dn-Signale uup bzw. udn und entsprechen einer Beschleunigung bzw. einer Reduzie-
rung der VCO-Frequenz:

ψ =





uup(t) = 0V, udn(t) = 1V falls S−1

uup(t) = 0V, udn(t) = 0V falls S0
uup(t) = 1V, udn(t) = 0V falls S+1

uup(t) = 1V, udn(t) = 1V falls S11

. (B.3)

Die Änderung der internen Zustände Q1 und Q2 des Hogge-PD sind bei dieser
Darstellung direkt an den Zustandsübergängen vermerkt, wobei Q2 den neu abge-
tasteten Daten udata entspricht. Hier wird deutlich, dass sich einige Zustandswechsel
sowohl durch steigende als auch durch fallende Flanken in uclk und ũdata ergeben.
Die Änderung der internen Zustände ist jedoch von der Art der Flanke abhängig.
Für die Validierung dieser Modellierung wird der Phasenregelkreis zur Takt- und
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B.2. Phasenregelkreis zur Takt- und Datenrückgewinnung
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ũ↓ da
ta
,Q

1
=
1,
Q

2
=
1

ũ
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da
ta
=
1,
Q

1
=
0,
Q

2
=
1
∨

u↓ cl
k,ũ
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,ũ

↓ d
a
ta
,Q

1
=

1,
Q

2
=

1

u
↑ cl
k
,ũ
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Abb. B.3.: Darstellung des Hogge-Phasendetektors als endlicher Zustandsautomat

Datenrückgewinnung mittels einer Verhaltensbeschreibung realisiert. Die Implemen-
tierung des Phasendetektors basiert dabei auf der Verhaltensbeschreibung der D-
Flip-Flops aus Abb. 2.19 und nicht auf einem Zustandsautomaten. Der Vergleich
beider Modelle (siehe Abb. B.4) zeigt eine gute Übereinstimmung der Ergebnisse.

Innerhalb dieser Modellierung lassen sich die nicht-idealen Effekte des Phasenrau-
schens, des Leckstroms, der spannungsabhängigen Stromamplitude und der nicht-
linearen Kennlinie des VCO berücksichtigen. Für die Beschreibung einer Totzone,
der Stromüberschwinger und der endlichen Steigung des Stroms ist der endliche
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B. Ereignisgesteuerte Modellierungen weiterer Phasenregelkreise
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Abb. B.4.: Validierung des ereignisgesteuerten Modells der CDR-PLL mittels Simulink
Simulation

Zustandsautomat entsprechend anzupassen.

B.3. CP-PLL mit 5-State PFD

Für ein beschleunigtes Anstiegsverhalten des Phasenregelkreises zur Frequenzsyn-
these lässt sich der Standard Tri-State PFD durch einen 5-State PFD ersetzen.
Dieser Phasen- und Frequenzdetektor weist fünf Zustände auf und ist in Abb. B.5
zu sehen [118].

S+1 S++S−1S−− S0

u↑refu↑ref u↑ref

u↑ref

u↑ref

u↑div u↑div

u↑div

u↑div u↑div

Abb. B.5.: Darstellung des 5-State-PFD als endlicher Zustandsautomat für ein beschleunigtes
Anstiegsverhalten des Phasenregelkreises

Die drei Zustände S−1, S0 und S+1 unterscheiden sich dabei nicht vom Tri-State
PFD. Lediglich in S−− und S++ lassen sich beispielsweise die Ladungspumpen-
ströme gewichten, um ein beschleunigtes Anstiegsverhalten des Phasenregelkreises
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B.3. CP-PLL mit 5-State PFD

zu ermöglichen:

ip(t) =





−Ip · β falls S−−
−Ip falls S−1

0 falls S0
+Ip falls S+1

+Ip · β falls S++

. (B.4)

β stellt eine Gewichtung des Stroms in den zusätzlichen zwei Zuständen des PFD
dar.
Ein weiterer Vorteil des 5-State PFD stellt das Einrastverhalten bei unzureichen-
den Auslegungen des Phasenregelkreises dar. Während der Phasenregelkreis mit
Tri-State PFD bei unzureichender Auslegung Sub-Harmonische der Zielfrequenz de-
tektiert, ist die Regelschleife mit 5-State PFD in der Lage, die Zielfrequenz ohne
Fehldetektion zu synthetisieren. Dieses Verhalten ist in Abb. B.6 zu erkennen, wobei
der 5-State PFD mit β = 1 angenommen wurde.
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Abb. B.6.: Vergleich des Phasenregelkreises mit Tri-State PFD und mit 5-State PFD (β =
1) zur Veranschaulichung des Einrastverhaltens bei unzureichender Auslegung der
Regelschleife

Wird der Phasenregelkreis für verschiedene Gewichtungen β des Stroms untersucht,
ergeben sich die Anstiegszeiten der Regelschleife aus Abb. B.7. Hier wird deutlich,
dass sich die Anstiegszeit mit β > 1 verkürzen lässt. Da der 5-State PFD jedoch bei
einfach auftretender Flanke im VCO-Signal die VCO-Frequenz weiter anhebt, ist
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Abb. B.7.: Vergleich des Phasenregelkreises mit 5-State PFD und verschiedenen Gewichtungen
des Ladungspumpenstroms

der Überschwinger mit diesem Phasen- und Frequenzdetektor größer als beim Tri-
State PFD. Zwar hängt die Höhe des Überschwingers vom Zeitpunkt des Einrastens
ab, jedoch nimmt die Wahrscheinlichkeit für höhere Überschwinger mit dem 5-State
PFD zu, wie in Abb. B.8 zu sehen ist.

Selbst für β = 1 ist die Wahrscheinlichkeit höherer Überschwinger größer als beim
Standard Tri-State PFD. Somit ist ein Kompromiss zwischen der Anstiegszeit und
dem maximal tolerierbaren Überschwinger zu finden.
Ein Vorteil des 5-State PFD ist der größer werdende Ausrastbereich der Regelschlei-
fe. Zur Charakterisierung des Ausrastbereichs des Phasenregelkreises mit 5-State
PFD wird eine konstante Referenzkreisfrequenz ωref definiert und mittels der Ru-
hekreisfrequenz des VCO der Frequenzsprung bestimmt, der die PLL gerade zum
ausrasten bringt. Als ausgerastet gilt die PLL mit 5-State PFD, falls eine Referenz-
flanke im PFD Zustand S++ oder eine Dividiererflanke in S−− detektiert wird. In
Abb. B.9 ist dieser Ausrastbereich für verschiedene Dämpfungsbeiwerte der PLL
und verschiedene β aufgetragen.

Offensichtlich wird der Ausrastbereich der Regelung mit steigenden β größer und die
PLL rastet erst für größere Frequenzsprünge aus. Der maximale Wert des Ausrast-
bereichs wird in dieser Untersuchung durch die Referenzkreisfrequenz ωref bestimmt,
da diese Frequenz als konstant definiert wurde und die Ruhefrequenz des VCO für
Werte kleiner Null nicht definiert ist. D.h., der Frequenzsprung beträgt hier maxi-
mal den Wert der Referenzfrequenz.
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Abb. B.8.: Histogramm des maximalen Überschwingers des Phasenregelkreises mit Tri-State
und 5-State PFD für die Variation des initialen Phasenfehlers und der Frequenz-
differenz von Referenz- und Dividierersignal
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Abb. B.9.: Darstellung des Ausrastbereichs für verschiedene Dämpfungsbeiwerte anhand der er-
eignisgesteuerten Simulation der PLL zweiter Ordnung mit Tri-State PFD und 5-
State PFD und der eingeführten Approximation
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B. Ereignisgesteuerte Modellierungen weiterer Phasenregelkreise

Des Weiteren ist die wachsende Steigung des Zusammenhangs von ∆ωPO und ζ
deutlich zu erkennen. Dies ist auf die Gewichtung des Ladungspumpenstroms mit
dem Faktor β zurückzuführen, da dieser die natürliche Eigenkreisfrequenz der PLL
beeinflusst (siehe Gleichung (3.23)).
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ANHANG C

Digitale Schaltung zur Einrastdetektion

Für die Weiterverarbeitung der Ausgangssignale der Phasenregelkreise ist es oft sinn-
voll, den Zeitpunkt des Einrastens zu detektieren und für die folgende Schaltung die
Ausgangssignale als valide zu deklarieren. Speziell für die Stabilitätsuntersuchungen
in Kapitel 4.5 ist es notwendig, sowohl den Einrastzeitpunkt als auch die Phasenfeh-
lernulldurchgänge zu detektieren, um die Simulationsdauer der zahlreichen Simula-
tionen durch zusätzliche Informationen automatisiert verkürzen zu können. Für die
Einrastdetektion werden eine Vielzahl von Methoden vorgestellt, die jedoch meist
den ausgeregelten Zustand der Regelschleife detektierten [119]. Der Einrastzeitpunkt
(der Phasenfehler verbleibt im Bereich ±2π) und die Phasenfehlernulldurchgänge
werden nicht identifiziert [39]. Für den Fall, dass die Einrastdetektion zur Modi-
fikation eines Schleifenparameters der PLL verwendet wird, ist die Identifizierung
des ausgeregelten Bereichs oft zu spät. Beispielsweise lässt sich der Ladungspum-
penstrom des Phasenregelkreises für den ausgerasteten Bereich erhöhen, um ein
schnelles Einrasten zu gewährleisten. Nachdem der Regelkreis eingerastet ist, wird
der Strom reduziert, um ein besseres Rauschverhalten zu ermöglichen. In diesem
Kapitel wird die digitale Schaltung zur Einrastdetektion von C. Wiegand [39, 120]
vorgestellt, um im weiteren Verlauf eine für die Stabilitätsuntersuchungen optimier-
te Schaltung einzuführen.

C.1. Einrastdetektion nach Wiegand

Die Schaltung zur Einrastdetektion nach Wiegand verwendet den Phasendetektor
der Regelschleife und identifiziert mittels einer Kombination aus zwei D-Flip-Flops
die Zeitpunkte eines Ausrastens. Diese Zeitpunkte sind durch das Auftreten einer
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Referenzflanke im Zustand S+1 des PFD oder einer Dividiererflanke im Zustand
S−1 des PFD definiert (im engl. Cycle-Slip genannt). Der zweite Teil der Schaltung
verwendet einen zusätzlichen PFD zur Detektion der Phasenfehlernulldurchgänge
anhand der Ausgangssignale des PFDs innerhalb des Phasenregelkreises. Die Pha-
senfehlernulldurchgänge zeichnen sich durch den Zustandswechsel S−1 → S0 → S+1

oder S+1 → S0 → S−1 des PFD aus. Der dritte Teil der Schaltung wertet die bei-
den vorangegangenen Stufen aus. Wird ein Phasenfehlernulldurchgang identifiziert
und es liegt kein Cycle-Slip vor, wird der Phasenregelkreis als eingerastet betrach-
tet. Diese Schaltung ist in Abb. C.1 zu sehen und wurde auch in [2, 38, 39, 120]
veröffentlicht.

uref

udiv

udd

udd

udd

uddudd

udd

udd

udd

D

D

DDD

D

D

D

Q

Q

QQQQ

Q

Q

Q

!Q

!Q

!Q!Q!Q!Q

!Q

!Q

!Q

!CLR

!CLR

!CLR!CLR!CLR

!CLR

!CLR

!CLR

R

S

&

&

&

&

≥ 1

≥ 1

= 1

uOvUn

uOOL

uLD

Modifizierter Tri-State PFD

Detektion der
Phasenfehlernulldurchgänge

Cycle-Slip Detektion

Cycle-Slip Detektion

Auswerteschaltung

Abb. C.1.: Digitale Schaltung zur Detektion des Einrastzeitpunktes (basierend auf C. Wiegand)

Da diese Schaltung auf der Detektion der Phasenfehlernulldurchgänge beruht, ist die
Identifizierung eines eingerasteten Phasenregelkreises mit einem hohen Dämpfungs-
beiwert ζ (siehe Kapitel 3.1) problematisch. In diesem Fall treten keine Phasenfeh-
lernulldurchgänge auf und somit lässt sich der Einrastzeitpunkt dieser Regelschleife
nicht detektierten. Ein Ansatz zur Verwendung dieser Schaltung auch bei Phasenre-
gelkreisen mit großen Dämpfungsbeiwerten wäre das Schalten zwischen zwei Dämp-
fungsbeiwerten. So könnte der Dämpfungsbeiwert des Phasenregelkreises zu Beginn
der Regelung nahe Null sein und nach dem ersten Phasenfehlernulldurchgang auf
den gewünschten Wert umgeschaltet werden. Dieses Verfahren resultierte jedoch in
größeren Überschwingern, die für die nachfolgenden Schaltungen des Regelkreises
kritisch sein können.
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C.2. Neue Ansätze zur Einrastdetektion

Aus den genannten Gründen ist es sinnvoll, die Einrastdetektion durch weitere
Ansätze zu optimieren, da auch der Einrastzeitpunkt von Phasenregelkreisen mit
höheren Dämpfungsbeiwerten identifiziert werden sollte, ohne den Überschwinger
und die Dynamik des Systems zu beeinflussen.

C.2.1. π-Durchgang des Phasenfehlers

Eine Erweiterung der Detektion des Phasenfehlernulldurchganges stellt die Identi-
fizierung des π-Durchgangs dar. Dies ermöglicht eine frühere Detektion und somit
eine schnellere Reaktion auf den eingerasteten Zustand. Wird beispielsweise der
Ladungspumpenstrom etwas früher wieder reduziert, ist der Unterschwinger des
Systems kleiner und das Ausregelverhalten des Phasenregelkreises entspricht dem
Systementwurf. Eine digitale Schaltung zur Detektion des π-Durchgangs ist in [39]
vorgestellt worden. Da dieser Ansatz lediglich ganzzahlige Vielfache von π detektiert
und somit auch positive Durchgänge durch +π identifiziert, ist eine Fehlinterpreta-
tion möglich.
Für die Detektion des π-Durchganges des absoluten Phasenfehlers |ϕe(t)| mit ne-
gativer Steigung, dass heißt für einen Phasenfehler der in den ±π-Schlauch um
0Radiant läuft, lässt sich die in dieser Arbeit optimierte Schaltung aus Abb. C.2 ver-
wenden. Diese digitale Schaltung ist ähnlich zu der Einrastdetektion nach Wiegand
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C. Digitale Schaltung zur Einrastdetektion

und verwendet den PFD des Phasenregelkreises und die Detektion des Cycle Slips.
Darüber hinaus werden zwei D-Flip-Flops für die Identifizierung des π-Durchgangs
in Richtung 0 rad eingesetzt. Eine abgewandelte Auswerteschaltung ermöglicht die
Detektion des Einrastzeitpunktes des Phasenregelkreises. Der Vorteil dieser Schal-
tung liegt darin, dass sich ein eingerasteter Regelkreis direkt beim

”
Eintauchen“ des

Phasenfehlers in den ±π-Schlauch detektieren lässt. Ist der Phasenregelkreis ausge-
rastet, steigt der Betrag des Phasenfehlers. Erst im eingerasteten Bereich sinkt der
Betrag des Phasenfehlers und läuft durch ±π in Richtung 0 rad.
Ähnlich zur Einrastdetektion nach Wiegand setzt der vorgestellte π-Detektor einen
Phasenregelkreis voraus, der zu einem Zeitpunkt der Regelung einen Phasenfehler
mit |ϕe(t)| > π aufweist. Ist dies nicht gegeben, lässt sich der Einrastzeitpunkt nicht
identifizieren.

C.2.2. Lokales Maximum des Phasenfehlers

Da die eingeführten Schaltungen zur Einrastdetektion jeweils eine Bedingung an
den Phasenregelkreis bzw. die Regelung stellen, liegt ein Ansatz zur Identifizierung
des lokalen Maximums des Phasenfehlers nahe. Dies ermöglicht eine noch frühe-
re Detektion des eingerasteten Zustandes und stellt keine besondere Bedingungen
an den Verlauf des Phasenfehlers. Für die Identifizierung des lokalen Maximums
des Phasenfehlers lässt sich die Schaltung aus Abb. C.3 verwenden. Diese digita-
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le Schaltung verwendet ebenfalls den PFD des Phasenregelkreises und beinhaltet
einen rückgekoppelten RS-Flip-Flop mit dem Verzögerungsglied τp im Rückkopp-
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lungszweig. Diese Kombination generiert ein periodisches Signal mit der Frequenz
1/τp. Die Flanken dieses Signals, die innerhalb eines Up- bzw. Dn-Pulses des PFD
liegen, werden mittels des Flankenzählers Counter gezählt. Über die Vergleichslogik
und das Datenregister lassen sich die gezählten Flanken für zwei aufeinander fol-
gende Pulse des Up- bzw. Dn-Signals vergleichen. Sinkt die Anzahl der gezählten
Flanken und liegt kein Cycle Slip vor, ist das lokale Maximum des Phasenfehlers
erreicht und der Phasenregelkreis kann als eingerastet betrachtet werden.
Diese Schaltung ist in der Lage, den Zeitpunkt des lokalen Maximums des Phasen-
fehlers zu identifizieren und schließt somit verlässlich auf einen eingerasteten Phasen-
regelkreis. Die Nachteile dieser Schaltung liegen im höheren schaltungstechnischen
Aufwand und im rückgekoppelten RS-Flip-Flop. Für große Referenzfrequenzen des
Phasenregelkreises ist es notwendig, die Verzögerungszeit τp entsprechend klein zu
wählen, um mehrere Flanken des generierten periodischen Signals innerhalb der Up-
bzw. Dn-Signale zu gewährleisten. Für sehr kleine τp und somit hohe Frequenzen
des generierten periodischen Signals stößt jedoch das RS-Flip-Flop an seine Grenzen.
Des Weiteren ist diese Schaltung anfällig für Phasenrauschen, da es durch Phasen-
rauschen zu Fehlinterpretationen der gezählten Flanken kommen kann.
Aus den genannten Gründen bietet sich eine Kombination aus dem eingeführten
π-Detektor und der Detektion des maximalen Phasenfehlers an. Die eingeführten
Einrastdetektoren lassen sich im ereignisgesteuerten Modell sowohl separat als auch
kombiniert verwenden.
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ANHANG D

Grafische Benutzeroberfläche

Für die einfache und intuitive Benutzung des ereignisgesteuerten Modells ist im Zu-
ge dieser Arbeit eine grafische Benutzeroberfläche erstellt worden. Mit Hilfe dieser
Oberfläche ist der Nutzer in der Lage, die Simulation zu konfigurieren, die Ergebnis-
se zu untersuchen, die verschiedenen Einflüsse der nichtlinearen und nicht-idealen
Effekte zu charakterisieren, sowohl die Ergebnisse als auch die Konfiguration zu spei-
chern und zu laden und den Schleifenfilter zu entwerfen. Diese grafische Oberfläche
ist in Abb. D.1 dargestellt.
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D. Grafische Benutzeroberfläche

Abb. D.1.: Grafische Benutzeroberfläche des ereignisgesteuerten Modells
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ANHANG E

Einblick in die C++ Implementierung
des ereignisgesteuerten Modells

Die Algorithmen des ereignisgesteuerten Modells sind sowohl in Matlab als auch in
C++ implementiert. Das ereignisgesteuerte Modell basierend auf Matlab dient zur
schnellen Umsetzung und zum Test neuer Methoden und Modellierungen. Zur benut-
zerfreundlichen Handhabung der Modelle wird die in Matlab umgesetzte grafische
Benutzeroberfläche verwendet (siehe Anhang D). Für eine weitere Beschleunigung
der Simulation wird eine C++ Implementierung der ereignisgesteuerten Modellie-
rung in dieser grafischen Nutzeroberfläche integriert. Im Folgenden wird ein kurzer
Überblick der C++ Umsetzung des ereignisgesteuerten Modells gegeben.

E.1. Simulationsaufruf

Die Eingabe der makroskopischen Parameter des Phasenregelkreises erfolgt über
die grafische Benutzeroberfläche (engl. Graphical User Interface, kurz: GUI). Diese
Oberfläche weist eine Schaltfläche zum Aufruf der C++ Simulation auf und startet
die folgenden Schritte, die automatisiert ablaufen.
Nach dem Aufruf der Methode zur C++ Simulation werden die eingegebenen Pa-
rameter aus der GUI ausgelesen und mittels Matlab eine XML-Datei (Extensible
Markup Language) mit den entsprechenden Parametern generiert. Beim anschlie-
ßenden Ausführen der exe-Datei der C++ Implementierung wird diese XML-Datei
eingelesen, der Inhalt deserialisiert und ein Objekt der Klasse Sim erzeugt. Anschlie-
ßend wird der ereignisgesteuerte Algorithmus (siehe Kapitel 3.3 und 5) ausgeführt.
Die Simulationsergebnisse lassen sich entweder in einer csv-Datei (Comma separa-
ted values) abspeichern und anschließend mit Matlab wieder einlesen, oder mit Hilfe
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Modells

des Matlab/C-Interfaces direkt in den Arbeitsbereich (engl. Workspace) von Mat-
lab schreiben. Das Interface legt in C++ Matlab-Objekte an, um Variablen direkt
in den Arbeitsbereich von Matlab zu speichern. Das hat den Vorteil, dass keine
langsamen Dateizugriffe für das Schreiben und Lesen der csv-Datei notwendig sind.
Speziell bei langen Simulationen stellt das Matlab-C++ Interface eine deutliche Be-
schleunigung gegenüber der csv-Datei dar. Lediglich für sehr kurze Simulationen ist
das Schreiben und anschließende Lesen der csv-Datei schneller, da das Matlab-C++
Interface immer mindestens 1 Sekunde benötigt.
Stehen die Simulationsergebnisse in Matlab bereit, lassen sich beliebige Methoden
zur Aufbereitung, Analyse und Charakterisierung verwenden.

E.2. Programmablauf in C++

Der Einstiegspunkt des ereignisgesteuerten Algorithmus innerhalb der C++ Imple-
mentierung befindet sich in der Exec PLL EventDriven.cpp Datei. Wird der Metho-
de int main (int argc, char **argv) kein Dateipfad zu der generierten XML-Datei
übergeben, öffnet sich ein Fenster zur Benutzereingabe des entsprechenden Pfades.
Diese Datei wird anschließend eingelesen und deserialisiert. Mit diesen Simulations-
daten wird zunächst eine grobe Abschätzung der zu erwartenden Anzahl der Ereig-
nisse getroffen, um den benötigten Speicher für die Objekte Out und Store zu reser-
vieren. Stellt sich heraus, dass diese Abschätzung nicht ausreicht, wird der reservier-
te Speicher entsprechend erweitert. In diesem Fall wird die C++ Simulation etwas
langsamer. Die Simulationsergebnisse werden in diese Objekte gespeichert. Im nächs-
ten Schritt wir ein PLL-Objekt mit den zugehörigen Komponenten (PFD, CP, LF,
VCO, Divider und SystemState) initialisiert. Nach Initialisierung aller notwendigen
Objekte wird einer der beiden Simulationsmethoden PLL::EventDrivenSimLoop(...)
oder PLL::EventDrivenSimLoop monitored(...) aufgerufen und der Phasenregelkreis
simuliert. Die erste Methode entspricht der ereignisgesteuerten Simulation. Der zwei-
te Aufruf ist eine überwachte ereignisgesteuerte Simulation, in der sich zum Beispiel
die Phasenfehlernulldurchgänge auswerten und die Simulation bei Erreichen eines
Kriteriums vor der angegebenen Simulationszeit beenden lassen. Dieser Ansatz wur-
de bei der Stabilitätsuntersuchung in Kapitel 4.5 verwendet. Die Simulationsergeb-
nisse werden anschließend entweder in eine csv-Datei geschrieben oder mittels der
Matlab-C++ Objekte direkt in den Arbeitsbereich von Matlab geschrieben.

E.3. Konfigurationsdatei

Als Beispiel der XML-Datei zur Konfiguration der C++ Simulation sei an dieser
Stelle ein Auszug dieser Datei gezeigt. Diese XML-Datei konfiguriert die ereignis-
gesteuerte Simulation des Phasenregelkreises mit Transistor-Level-basierten nicht-
idealen Effekten (vgl. Abb. 5.26).
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E.3. Konfigurationsdatei

1 <?xml ve r s i on=” 1 .0 ” encoding=”utf−8” ?>
2 < !−−Simulator−−>
3 <S im Se r i a l i z e>
4 < !−−Simulator s e t t i n g s−−>
5 < !−−Reference s i g n a l−−>
6 <Fre f>
7 <value>1.6000000000000000E+06</ value>
8 </Fre f>
9 <Fr e f t>

10 <value>0.0000000000000000E+00</ value>
11 </ F r e f t>
12 <StartTime>0.0000000000000000E+00</StartTime>
13 <StopTime>1.3999999999999999E−04</StopTime>
14 <Phi Noi se Ref>0</Phi Noi se Ref>
15 <Phi No i se Re f Va lues>
16 <value>0.0000000000000000E+00</ value>
17 </Phi No i se Re f Va lues>

19 < !−− I n i t i a l c ond i t i on s−−>
20 <Ph i r e f>6.1768235463145862E+00</ Ph i r e f>
21 <Phi vco>0.0000000000000000E+00</Phi vco>
22 <PFDState>0</PFDState>
23 <VLF>
24 <value>0.0000000000000000E+00</ value>
25 <value>0.0000000000000000E+00</ value>
26 </VLF>

28 < !−−Secant method−−>
29 <MaxIter>360</MaxIter>
30 <EPS>1.0000000000000001E−15</EPS>
31 <Store>1</ Store>
32 <NrAddPts>10</NrAddPts>

34 < !−−PFD s e t t i n g s−−>

36 < !−−ABL − Anti−backlash pu l s e−−>
37 < !−− 0 − o f f−−>
38 < !−− 1 − on−−>
39 <ABL>0</ABL>
40 <ABL Delay>0.0000000000000000E+00</ABL Delay>

42 < !−−DZ − Deadzone−−>
43 < !−− 0 − o f f−−>
44 < !−− 1 − on−−>
45 <DZ>1</DZ>
46 <DZTauSet>6.0000000000000000E−11</DZTauSet>
47 <DZTauRst>0.0000000000000000E+00</DZTauRst>
48 <CurrentGl i tchSet>2.0000000000000002E−05</CurrentGl i tchSet>
49 <CurrentGl itchRst>0.0000000000000000E+00</CurrentGl itchRst>

51 < !−−Charge pump s e t t i n g s−−>
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53 < !−−CP−Mode−−>
54 < !−− 0 − CO−−>
55 < !−− 1 − VO−−>
56 <Mode>0</Mode>
57 <I up>
58 <value>3.5000000000000000E−04</ value>
59 <value>−1.5570291346358409E−04</ value>
60 </ I up>
61 <I dn>
62 <value>−3.3300000000000002E−04</ value>
63 </ I dn>
64 <I 0>−2.4000000000000000E−08</ I 0>
65 <Phi Noise PFD CP>0</Phi Noise PFD CP>
66 <Phi Noise PFD CP Values>
67 <value>0.0000000000000000E+00</ value>
68 </Phi Noise PFD CP Values>

70 < !−−CS − Current Slope−−>
71 < !−− 0 − o f f−−>
72 < !−− 1 − on−−>
73 <CS>1</CS>
74 <CSlopeSet>5.1317153253621142E+06</CSlopeSet>
75 <CSlopeRst>5.1317153253621142E+06</CSlopeRst>

77 < !−−Loop f i l t e r s e t t i n g s−−>
78 <R0>0</R0>
79 <C1>2.2837999999999999E−08</C1>
80 <R1>2.2432130000000001E+02</R1>
81 <C2>4.7300000000000000E−09</C2>
82 <R3>0</R3>
83 <C3>0</C3>

85 < !−−VCO s e t t i n g s−−>
86 <VCO Mode>1</VCO Mode>
87 <Gain>0.0000000000000000E+00</Gain>
88 <QuiescentFrequency>0.0000000000000000E+00</QuiescentFrequency>
89 <BoundariesU>
90 <value>0.0000000000000000E+00</ value>
91 <value>1.4141000000000001E−01</ value>
92 [ . . . ]
93 <value>1.0000000000000000E+00</ value>
94 </BoundariesU>
95 <BoundariesF>
96 <value>0.0000000000000000E+00</ value>
97 <value>0.0000000000000000E+00</ value>
98 [ . . . ]
99 <value>1.6457401237326219E+09</ value>

100 </BoundariesF>
101 <Phi Noise VCO>0</Phi Noise VCO>
102 <Phi Noise VCO Values>
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103 <value>0.0000000000000000E+00</ value>
104 </Phi Noise VCO Values>

106 < !−−Div ider s e t t i n g s−−>
107 <DivRatio>5.1200000000000000E+02</DivRatio>
108 <DivDelay1>0.0000000000000000E+00</DivDelay1>
109 <DivDelay2>0.0000000000000000E+00</DivDelay2>
110 <SDMOrder>1</SDMOrder>
111 <SDMIn>0</SDMIn>
112 <Dither ing>0</Dither ing>

114 <Monitored>0</Monitored>

116 </ S im S e r i a l i z e>
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ANHANG F

Verilog-AMS Verhaltensmodelle der
Fractional-N PLL

Zur Simulation der Fractional-N PLL auf Verhaltensebene unter Cadence /
Spectre werden die Bauteile mittels Verilog-AMS modelliert. In diesem Kapitel
werden die Verilog-AMS-Modelle des Phasendetektors, der Ladungspumpe, des
spannungsgesteuerten Oszillators, des Teilers und des Σ∆-Modulators kurz gezeigt.

Für den Phasendetektor wird der PFD verwendet. Das Verilog-AMS-Modell
sieht dabei wie folgt aus:

1 ‘ i n c l u d e ” d i s c i p l i n e . h”
2 ‘ i n c l u d e ” cons tant s . h”
3 module PFD ideal (Dn, Ref , Up, Div ) ;
4 input Ref ;
5 input Div ;
6 output Up;
7 output Dn;
8 e l e c t r i c a l Ref , Div , Up, Dn;
9 parameter r e a l Udd = 1 . 0 ;

10 parameter r e a l Delay = 0 . 0 ;
11 parameter r e a l TransTime = 0 . 0 ;
12 i n t e g e r s t a t e ;

14 analog begin

16 @ ( i n i t i a l s t e p ) begin
17 s t a t e = 0 ;
18 end
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20 @ ( c r o s s (V( Ref ) −0.5 ,1)) begin
21 i f ( s t a t e==1 | | s t a t e==0)
22 s t a t e =1;
23 e l s e s t a t e =0;
24 end
25 @ ( c r o s s (V(Div ) −0.5 ,1)) begin
26 i f ( s t a t e==−1 | | s t a t e==0)
27 s t a t e=−1;
28 e l s e s t a t e =0;
29 end

31 V(Up) <+ ( s t a t e==1) ? Udd : 0 ;
32 V(Dn) <+ ( s t a t e==−1) ? Udd : 0 ;

34 end
35 endmodule

Die Ladungspumpe lässt sich mit dem Verilog-AMS-Modell

1 ‘ i n c l u d e ” d i s c i p l i n e . h”
2 ‘ i n c l u d e ” cons tant s . h”
3 module CP ideal (Up, Dn, Iout ) ;
4 input Up;
5 input Dn;
6 output Iout ;
7 e l e c t r i c a l Up, Dn, Iout ;
8 parameter r e a l Ip = 30 .0 e−6;
9 parameter r e a l Delay = 0 . 0 ;

10 parameter r e a l TransTime = 1 .0 e−14;
11 i n t e g e r s t a t e ;

13 analog begin

15 @ ( i n i t i a l s t e p ) begin
16 s t a t e = 0 ;
17 end

19 @ ( c r o s s (V(Up) −0.5 ,1)) begin
20 i f ( s t a t e==1 | | s t a t e==0)
21 s t a t e =1;
22 e l s e s t a t e =0;
23 end
24 @ ( c r o s s (V(Dn) −0.5 ,1)) begin
25 i f ( s t a t e==−1 | | s t a t e==0)
26 s t a t e=−1;
27 e l s e s t a t e =0;
28 end
29 @ ( c r o s s (V(Up)−0.5 ,−1)) begin
30 i f ( s t a t e==1 | | s t a t e==0)
31 s t a t e =0;
32 end
33 @ ( c r o s s (V(Dn)−0.5 ,−1)) begin
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34 i f ( s t a t e==−1 | | s t a t e==0)
35 s t a t e =0;
36 end

38 I ( Iout ) <+ t r a n s i t i o n (−Ip∗ s ta te , Delay , TransTime ) ;

40 end
41 endmodule

realisieren. Wird für den Oszillator eine lineare Kennlinie angenommen, ergibt sich
das folgende Verilog-AMS-Modell:

1 ‘ i n c l u d e ” d i s c i p l i n e . h”
2 ‘ i n c l u d e ” cons tant s . h”
3 module vco ( v c t l , v vco ) ;
4 input v c t l ;
5 output v vco ;
6 e l e c t r i c a l v c t l , v vco ;
7 parameter r e a l vco amp = 1 . 0 ;
8 parameter r e a l p h a s e i n i t = 0 ;
9 parameter r e a l vco ga in = 3.96899 e+9 exc lude 0 . 0 ;

10 parameter i n t e g e r vco ppc = 4 .0 e1 from [ 4 : i n f ) ;

12 i n t e g e r N;
13 r e a l v c o c f ;
14 r e a l wc ; // cente r f r e q in rad/ s
15 r e a l pha s e l i n ; // wc∗ time component o f phase
16 r e a l phase non l in ; // the i d t ( k∗ f ( t ) ) o f phase
17 i n t e g e r num cycles ; // number o f c y c l e s in l i n e a r phase component
18 r e a l i n s t f r e q ; // in s t an t eou s f requency

20 analog begin
21 pha s e l i n = wc ∗ $abstime ;
22 num cycles = pha s e l i n / ‘M TWO PI ;
23 pha s e l i n = pha s e l i n − num cycles ∗ ‘M TWO PI ;
24 i f (V( v c t l ) < 0) begin
25 phase non l in =‘M TWO PI∗ vco ga in ∗ idtmod ( 0 , 0 , 1 0 0 0 . 0 , 0 . 0 ) ;
26 end
27 e l s e begin
28 phase non l in =‘M TWO PI∗ vco ga in ∗ idtmod (V( v c t l ) , 0 , 1 0 0 0 . 0 , 0 . 0 ) ;
29 end
30 V( v vco ) <+ vco amp∗ s i n ( pha s e l i n+phase non l in+pha s e i n i t ) ;
31 i n s t f r e q = vco c f + vco ga in ∗ V( v c t l ) ;
32 $bound step (1/( vco ppc ∗ i n s t f r e q ) ) ;
33 end
34 endmodule
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Da der Dividierer als Flankenzähler implementiert wird, lässt sich das folgende
Verilog-AMS-Modell verwenden:

1 ‘ i n c l u d e ” d i s c i p l i n e . h”
2 ‘ i n c l u d e ” cons tant s . h”
3 module D i v i d e r i d e a l ( v vco , v div , Div Ratio ) ;
4 input v vco ;
5 input Div Ratio ;
6 output v d iv ;
7 e l e c t r i c a l v vco , v div , Div Ratio ;
8 parameter r e a l Delay1 = 4 .1 e−11;
9 parameter r e a l Delay2 = 2 .1 e−11;

10 parameter r e a l TransTime = 1 .0 e−014;
11 i n t e g e r s t a t e ;
12 i n t e g e r N;
13 i n t e g e r M;
14 r e a l Delay ;

16 analog begin

18 @ ( i n i t i a l s t e p ) begin
19 s t a t e = 0 ;
20 N = 0 ;
21 M = 0;
22 end

24 @ ( c r o s s (V( v vco ) −0.5 ,1)) begin
25 N = N + 1 ;
26 M = M + 1;
27 i f (N >= V( Div Ratio ) ) begin
28 N = 0 ;
29 M = 0;
30 s t a t e = 1 ;
31 end
32 e l s e begin
33 i f (M>=V( Div Ratio )/2) begin
34 M = 0;
35 s t a t e = 0 ;
36 end
37 end
38 end
39 i f (V( Div Ratio )==24)
40 Delay = Delay1 ;
41 e l s e begin
42 i f (V( Div Ratio )==25) begin
43 Delay = Delay2 ;
44 end ;
45 end ;
46 V( v d iv ) <+ t r a n s i t i o n ( s ta te , Delay , TransTime ) ;
47 end
48 endmodule
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Für den Σ∆-Modulator werden die Differenzengleichungen im Verilog-AMS-Modell
umgesetzt

1 ‘ i n c l u d e ” d i s c i p l i n e . h”
2 ‘ i n c l u d e ” cons tant s . h”
3 module SDM FirstOrder (Ref , Out ) ;
4 input Ref ;
5 output Out ;
6 e l e c t r i c a l Ref , Out ;
7 i n t e g e r y2 ;
8 parameter i n t e g e r N=24;
9 r e a l x2 ;

10 r e a l u1 ;
11 r e a l u2 ;
12 r e a l v1 ;
13 r e a l v2 ;

15 analog begin

17 @ ( i n i t i a l s t e p ) begin
18 x2 = 0 . 1 ;
19 u1 = 0 ;
20 v1 = 0 ;
21 v2 = u1+v1 ;
22 y2 = v2 ;
23 end

25 @ ( c r o s s (V( Ref ) −0.5 ,1)) begin
26 x2 = 0 . 1 ;
27 v2 = u1+v1 ;
28 y2 = v2 ;
29 u2 = x2−y2 ;

31 u1 = u2 ;
32 v1 = v2 ;

34 end
35 V(Out) <+ y2+N;
36 end
37 endmodule
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ANHANG G

Beziehung der Determinantenmethode
und der Tabellenform von Jury

Für die Stabilitätsprüfung von linearen zeitdiskreten Regelkreisen lässt sich das
Nennerpolynom der Übertragungsfunktion überprüfen. Liegen alle Nullstellen des
Nennerpolynoms innerhalb des Einheitskreises, ist der Regelkreis asymptotisch sta-
bil [77]. Das Jury-Kriterium beurteilt mittels der Koeffizienten des Polynoms die
Lage der Nullstellen, wobei Jury in [82] mehrere Methoden und Vereinfachungen
vorstellt. Im Folgenden werden Teile der Herleitung und der Vereinfachungen der
Determinantenmethode und der Tabellenform kurz gezeigt.
Gegeben sei das Polynom

F (z) = anz
n + an−1z

n−1 + an−2z
n−2 + . . . a1z

1 + a0 (G.1)

mit komplexen Koeffizienten. Die ursprünglichen Schur-Cohn Bedingungen [82] für
Nullstellen innerhalb des Einheitskreises lauten

|∆k| < 0 für ungerade k
|∆k| > 0 für gerade k,

(G.2)
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wobei die Matrix

∆k =




a0 0 0 . . . 0 an an−1 . . . an−k+1

a1 a0 0 . . . 0 0 an . . . an−k+2
...

...
...

...
...

...
...

...
...

ak−1 ak−2 ak−3 . . . a0 0 0 . . . an
a∗n 0 0 . . . 0 a∗0 a∗1 . . . a∗k−1

a∗n−1 a∗n 0 . . . 0 0 a∗0 . . . a∗k−2
...

...
...

...
...

...
...

...
...

a∗n−k+1 a∗n−k+2 a∗n−k+3 . . . a∗n 0 0 . . . a∗0




(G.3)

und k = 1 . . . n gegeben sind. Darüber hinaus bezeichnet a∗k die komplexe Konjuga-
tion des Koeffizienten ak.

Im Fall des Phasenregelkreises sind die Koeffizienten des Polynoms rein reell, sodass
sich die Matrix ∆k mittels der Transformation

∆k = |Xk + Y k| |Xk − Y k| (G.4)

vereinfachen lässt [121]. Hierbei sind

Xk =




a0 a1 a2 . . . ak−1

0 a0 a1 . . . ak−2
...

...
...

...
...

0 0 0 . . . a0


 (G.5)

und

Y k =




an−k+1 . . . an−1 an
an−k+2 . . . an 0

...
...

...
...

an . . . 0 0


 (G.6)

definiert. Diese Betrachtung lässt sich weiter vereinfachen:

1. Eigenschaft:
Für die Vereinfachung lassen sich die Determinanten |Xk ± Y k| wie folgt darstellen

|Xk + Y k| = Ak + Bk

|Xk − Y k| = Ak −Bk.
(G.7)

Ak bezeichnet die Summe der Summanden bei denen sich das Vorzeichen nicht
ändert, wenn Y k durch −Y k in |Xk + Y k| ersetzt wird. Bk vereint die Summanden,
bei denen sich entsprechend das Vorzeichen ändert. Somit ergeben sich auf Basis
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von den Ungleichungen (G.2) und

|∆k| = (Ak + Bk)(Ak − Bk) = A2
k − B2

k (G.8)

die Stabilitätsbedingungen zu

|Ak| < |Bk| für ungerade k
|Ak| > |Bk| für gerade k

(G.9)

mit k = 1 . . . n.

2. Eigenschaft:
Jury konnte darüber hinaus zeigen, dass

An = (a0 + a2 + a4 + . . .)(An−1 −Bn−1) (G.10a)

Bn = (a1 + a3 + a5 + . . .)(An−1 −Bn−1) (G.10b)

mit n ≥ 2 gilt. Somit lässt sich für die letzte Bedingung (k = n)

A2
n −B2

n = F (1)F (−1)(An−1 −Bn−1)
2 (G.11)

zeigen. Da (An−1 −Bn−1)
2 > 0 ist, muss

F (1)F (−1) < 0 für ungerade n
F (1)F (−1) > 0 für gerade n

(G.12)

gelten. Für an > 0 ergibt sich schließlich

F (1) > 0
F (−1) < 0 für ungerade n
F (−1) > 0 für gerade n.

(G.13)

3. Eigenschaft:
Der nächste Schritt der Vereinfachung verwendet die Gleichheit

A2
k − B2

k = Ak−1Ak+1 −Bk−1Bk+1 (G.14)

und leitet die Bedingungen

A2
k ⋚ B2

k ⇔ Ak−1Ak+1 ⋚ Bk−1Bk+1 (G.15)

ab, mit k = 1 . . . n− 1.
Diese Herleitung wird als Determinantenmethode bezeichnet, da die Determinanten
von Xk +Y k und Xk−Y k ausgewertet werden. Für ein Polynom dritter Ordnung
(n = 3) ergeben sich nach Auswertung von den Beziehungen (G.2), (G.4) und (G.13)
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die Bedingungen zu

F (1) > 0
F (−1) < 0

a3 > |a0|
a23 − a20 > a1a3 − a0a2,

(G.16)

wobei rein reelle Koeffizienten und a3 > 0 angenommen wird.

In [82] leitet Jury ebenfalls eine vereinfachte Methode zur Prüfung auf ein Hurwitz-
polynom her. Diese eignet sich speziell für die numerische Auswertung des Polynoms
als auch für Entwurfskonzepte. Ein großer Vorteil ist, dass lediglich Determinanten
zweiter Ordnung ausgewertet werden müssen. Die Bedingungen dieser Tabellenform
sind wie folgt

F (1) > 0
F (−1) < 0 für ungerade n
F (−1) > 0 für gerade n

an > |a0|
|b0| > |bn−1|
|c0| > |cn−2|
|d0| > |dn−3|

...
|r0| > |r2|

(G.17)

mit reellen Koeffizienten und an > 0. Des Weiteren gilt

bk =

∣∣∣∣
a0 an−k

an ak

∣∣∣∣ , (G.18)

ck =

∣∣∣∣
b0 bn−1−k

bn−1 bk

∣∣∣∣ (G.19)

und

dk =

∣∣∣∣
c0 cn−2−k

cn−2 ck

∣∣∣∣ . (G.20)

Diese Berechnungsvorschrift wird entsprechend weiter geführt. Zusätzlich sind noch

r0 =

∣∣∣∣
s0 s3
s3 s0

∣∣∣∣ (G.21)
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und

r2 =

∣∣∣∣
s0 s1
s3 s2

∣∣∣∣ (G.22)

gegeben.
Für ein Polynom dritter Ordnung ergeben sich die Bedingungen zu

F (1) > 0
F (−1) < 0

a3 > |a0|
|a23 − a20| > |a1a3 − a0a2| .

(G.23)

An dieser Stelle wird deutlich, dass sich die Determinantenmethode und die Ta-
bellenform für n = 3 lediglich durch die Betragsstriche unterscheiden. Das beide
Formen ineinander übergehen, zeigt der folgende Versuch mit n = 3, reellen Koeffi-
zienten und an > 0. Basierend auf der Determinantenmethode ergibt sich

|A1| < |B1| ∨ |a0| < |a3| (G.24a)

|A2| < |B2| ∨
∣∣a23 − a20

∣∣ > |a1a3 − a0a2| (G.24b)

|A3| < |B3| ∨ F (1) > 0 ∧ F (−1) < 0. (G.24c)

Mit der 3. Eigenschaft ergibt sich in diesem Fall

A2
2 > B2

2 ⇔ A1A3 > B1B3. (G.25)

Da B1 = a3 > 0 ist, ergibt sich

A1

B1

A3 > B3. (G.26)

Mit der Beziehung (G.24a), (G.24c) und (G.26) ergeben sich die neuen Bedingungen
zu

|a0| < a3 ∨ a0 − a3 < 0 ∧ a0 + a3 > 0 (G.27a)

B3 < 0 (G.27b)

F (1) > 0 ∧ F (−1) < 0. (G.27c)

Hierbei ist B3 = (a1 + a3)(A2 − B2) durch Gleichung (G.10) gegeben, wobei

A2 = a20 − a23 (G.28a)

B2 = a0a2 − a1a3 (G.28b)

definiert sind. Da a1+a3 = F (1)−F (−1) > 0 aus den Bedingungen (G.27c) gilt, ist
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B3 nur dann negativ wenn A2 −B2 < 0 gilt. Die vereinfachten Bedingungen lauten
schließlich

|a0| < a3 (G.29a)

a23 − a20 > a1a3 − a0a2 (G.29b)

F (1) > 0 ∧ F (−1) < 0. (G.29c)

Somit sind die Determinantenmethode und die Tabellenform für n = 3 vergleichbar.
In [82] wird der Zusammenhang für beliebige n gezeigt.
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4.11. Schematische Mengendarstellung der Stabilität der linearisierten Be-
schreibung und der Ruhelage des nichtlinearen Modells sowie der zwei
Stabilitätsbedingungen basierend auf dem ereignisgesteuerten Modell 83
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einer Dämpfung nahe null (Startbedingungen liegen nahe dem Fix-
punkt) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

7.14. Darstellung der momentanen Periodendauer aufgetragen über die mo-
mentane Amplitude der Steuerspannung . . . . . . . . . . . . . . . 162

7.15. Darstellung des Leistungsdichtespektrums des VCO-Signals einer
idealen PLL und einer PLL mit Leckstrom und Stromüberschwinger
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tes der PLL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

7.25. Exemplarische Darstellung des Schleifenfilterentwurfs anhand des
Phasenrauschverhaltens, der Ausregelzeit und des Dämpfungsbeiwer-
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