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von Gregor Engels und Heike Wehrheim möchte ich für die zahlreichen Diskussionen, das
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in seiner Masterarbeit die ersten Grundlagen von SimuLizar implementiert hat.
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Abstract

Large information systems nowadays are required to perform on a Web-scale with mil-

lions of users. Especially in the business-to-business context, the required performance

is even contractually specified in the form of service level objectives (SLOs). Often, only

cloud computing platforms, which provide virtually unlimited resources and on-demand

resource leasing, make information systems that meet these SLOs possible. However,

the pay-per-use leasing models of the cloud computing platforms still enforce a trade-off

between the achievement of SLOs on the one hand and an economical operation on the

other hand. Self-adaptive systems can solve this trade-off by autonomously adapting

the amount of leased resources to the actual demand. Thus, these systems accomplish

an economical operation and still achieve the SLOs at the same time.

However, in current practice, self-adaptive systems are developed based on experience

of software engineers and rule-of-thumb. Conflicting SLOs or design deficiencies that

limit the achievement of the SLOs are often only discovered in late development phases,

i. e., in the testing phase or even in the operation phase. Thus, the development of self-

adaptive systems is slowed down or is even at risk to fail.

With SimuLizar, we provide a model-driven performance prediction method that sup-

ports software engineers in identifying design deficiencies that negatively effect the

achievement of service level objectives. For that purpose, we introduce the notion of

graded achievement of service level objectives, such that trade-offs between conflicting

service level objectives can be revealed and solved. With our method, the achievement

of services level objectives becomes predictable early at design-time. Thus, also de-

sign deficiencies can be revealed early in self-adaptive system development projects and

project failures and delays can be averted.
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Zusammenfassung

Von großen Informationssysteme wird zunehmend gefordert, dass diese “Web-scale”

sind, also auch für mehrere Millionen Nutzern performant sind. Gerade im Business-

to-Business Kontext werden Anforderungen an die Performanz der Informationssys-

teme vertraglich in Form von Service Level Objectives (SLOs) festgehalten. Oft er-

möglichen es nur Cloud Computing Plattformen, welche nahezu unbegrenzt viele Re-

sourcen auf Abruf anbieten, Informationssysteme zu realisieren, die diese SLOs einhal-

ten. Jedoch besteht durch die pay-per-use Kostenmodelle der Plattformen auch ein

Zielkonflikt zwischen dem wirtschaftlichen Betrieb der Informationssysteme und dem

Erreichen der SLOs. Selbst-adaptive Systeme können diesen Zielkonflikt lösen, indem

sie die Menge der gemieteten Ressourcen autonom dem Bedarf anpassen und somit

einen wirtschaftlichen Betrieb bei Erreichung der SLOs ermöglichen.

In der gängigen Praxis werden selbst-adaptive Systeme jedoch weitestgehend mithilfe

der Erfahrung und Faustregeln von Softwaretechnikern entwickelt. Konflikte zwischen

SLOs oder Entwurfsfehler, welche die Erreichung der SLOs verhindern, werden oft nur

spät im Entwicklungsprozess entdeckt, z.B. erst in der Testphase oder gar erst im Be-

trieb. Dadurch kommt es in Projekten zur Entwicklung selbst-adaptiver Systeme zu

Verzögerungen oder die Projekte drohen sogar zu scheitern.

Mit SimuLizar stellen wir eine modellgetriebene Methode vor, die es Softwaretech-

nikern ermöglicht Entwurfsfehler, welche die Erreichung von SLOs negativ beeinflussen,

frühzeitig zu erkennen. Zu diesem Zweck definieren wir eine graduelle Erreichung von

SLOs, so dass Zielkonflikte zwischen SLOs erkannt und gelöst werden können. Die

Erreichung von SLOs lässt sich durch die Methode ebenfalls bereits in der Entwurfs-

phase vorhersagen. Dadurch werden Verzögerungen und das Scheitern von Projekten

zur Entwicklung selbstadaptiver Systeme verhindert.
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“It is not the strongest of the species that survives,

nor the most intelligent that survives. It is the one

that is the most adaptable to change.”

Charles Darwin
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1. Introduction

Large information systems nowadays are required to perform on a Web-scale [Hai13]

with millions of users [Net16, Fac16, Sto16]. A fluent performance with low response

times of these systems is an important business success factor [SW03, JYJ13]. Achiev-

ing this fluent performance requires a vast amount of computing resources. Resource

demands are even increasing in the long term due to a growing user base, resulting in

a higher workload to be processed. In the shorter term, however, resource demands

are varying due to periodic usage fluctuation, e. g., weekend usage versus mid-week us-

age, and spontaneous usage bursts. These workload variations are challenging because

the usage context in which large information systems need to operate reliably becomes

uncertain for software engineers.

In the past, large information systems were deployed on expensive, energy-hungry in-

house computing centers. More recently, these computing centers have been replaced by

cloud computing environments, such as Infrastructure-as-a-Service (IaaS) or Platform-

as-a-Service (PaaS) environments [ACC+14]. These cloud computing environments

provide virtually unlimited computing resources and also provide technical mechanisms

to lease and release computing resources at any time during the operation of a infor-

mation system. Furthermore, in cloud computing environments, resources are typically

offered in a pay-per-use fashion [BAB12], i. e., customers of the cloud computing en-

vironments pay for only as many resources as they lease. Thus, high investments for

in-house computing centers are not required anymore. In conclusion, cloud computing

has the potential to reduce operating costs of information systems, on the one hand,

and on the other hand, provide high performance. Still both properties, costs and

performance, oppose each other in a trade-off.

The solution of this trade-off depends on the usage context of the information system.

In general, it is desirable to lease only the right amount of resources to keep costs low

while still maintaining a fluent performance. However, to always lease the right amount

of resources means that the information system must be able to autonomously adapt the

amount of resources to the changing usage context. For example, whenever the workload

is low the information system shall only lease few resources; when the workload is high,

the information system shall lease more resources. The two performance properties scal-

ability and elasticity characterize a system’s quality to autonomously adapt its resource

consumption its actual resource demand. Scalability is “the ability of the system to sus-

2



tain increasing workloads by making use of additional resources.” [BLB15] Elasticity is

“the degree to which a system is able to adapt to workload changes by provisioning

and deprovisioning resources in an autonomous manner, such that at each point in

time the available resources match the current demand as closely as possible.” [HKR13]

Scalability can hence be understood as a necessary prerequisite for elasticity according

to this definition. Furthermore, the adaptation to workload changes is required to be

autonomously triggered by the information system itself, i. e., the system has to be

self-adaptive.

Today, developing scalable and elastic information systems that are operated in cloud

computing environments is still challenging. On the one hand, information systems are

expected to be scalable and elastic. For that purpose, thresholds for individual quality

metrics, e. g., maximum operating costs or maximum resource utilization, are usually

contractually demanded in service level agreements (SLAs) [TBv04]. The information

system is then expected to autonomously lease and release cloud computing resources

in order to comply with the SLAs.

On the other hand, those SLAs typically do not reflect the fact that the context of the

software system is subject to change at operation time and thus neglect that trade-

offs between properties, like costs and performance, can be solved differently well by

alternative system designs. Hence, a self-adaptive information system can only be

assessed as SLA compliant or not compliant. Conclusions about the quality of the self-

adaptation cannot be drawn. Furthermore, no engineering method exists that supports

software engineers to assure the scalability and elasticity of information systems right

from design-time. Consequently, design flaws in the software architecture are often de-

tected late in the development process or even only at operation. Fixing scalability and

elasticity issues at this point is often only possible by revising the software architecture,

which results in a delay of the development process and increases the time-to-market

and development costs [SHK98].

In multiple research communities, there has been some effort to support software engi-

neers to develop scalable and elastic information systems. In particular, self-adaptation

is recognized as an individual engineering concern in most phases of the software life-

cycle.
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1. Introduction

In the requirements elicitation phase, the requirements language RELAX [WSB+10]

enables the specification of requirements for self-adaptive systems in uncertain contexts.

The formalization of RELAX requirements is based on fuzzy logic [Zad65]; thus taking

into account that not all requirements can be fully satisfied at once due to individual

trade-offs between requirements depending on the concrete context.

In the design phase, the Adapt Case Modeling Language (ACML) [Luc13] supports

software engineers designing high-level architectures of self-adaptive systems. ACML

supports functional analysis of self-adaptive behavior for high-level software architec-

tures based on model checking. Non-functional quality properties, however, cannot be

analyzed with ACML. Palladio [BKR09] is a model-driven software performance engi-

neering method, which can be used to assess the quality of software systems early in the

design phase. In contrast to ACML, however, Palladio is limited to static architectures,

i. e., non-adaptive systems.

In the implementation phase of self-adaptive systems, software engineers are sup-

ported by Rainbow [GCH+04], for example. Rainbow provides a Java-based frame-

work for implementing component-based self-adaptive systems. Another framework is

Descartes [HBK11]. It offers a run-time monitoring and self-adaptation framework that

is focused on performance-driven adaptation. Descartes provides a run-time model that

reflects the system state during operation and is used for planning self-adaptations of

the system itself, i. e., it introduces self-awareness to an information system.

In summary, while several engineering tasks for self-adaptive systems are supported by

different methods, the prediction of scalability and elasticity properties of self-adaptive

systems early in the design phase has mostly been neglected so far.

The goal of this thesis is to support software engineers designing scalable and elastic

information systems by providing a method to identify scalability and elasticity issues

early in the design phase. By identifying scalability and elasticity issues already at

design-time, expensive redesigns and the resulting project delays can be averted.

In this thesis, we contribute to this goal by proving SimuLizar, our model-driven per-

formance engineering method for self-adaptive systems. SimuLizar consists of three

parts. The first part is a performance modeling approach for self-adaptive systems that
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is based on the viewpoints initially presented in [Bec11]. The second part are model-

driven prediction methods that enable software engineers to assess the scalability and

elasticity properties of self-adaptive systems at design-time. This includes a formal-

ization and metrics that enable the evaluation of self-adaptive system architectures.

Finally, the third part is SimuLizar Bench, a tool that implements the performance

modeling approach as well as the scalability and elasticity prediction methods.

The Znn.com system, introduced in the next section, serves as a running example in this

thesis to illustrate our modeling approach, and the scalability and elasticity prediction

methods within SimuLizar.

1.1. The Znn.com System

The Znn.com system [CGS09] is a specimen system from the self-adaptive systems

research community. It represents a typical system in the class of web-based systems,

including a typical architecture and typical objectives for this class of systems.

The purpose of the Znn.com system is to provide a news website to its clients. Znn.com

presents its news websites either with multimedia content, like pictures and videos, or

as text-only websites. Which of either presentation forms will be used depends on the

workload the Znn.com system is facing. In any case, the news website shall be served

promptly to all clients.

Znn.com is implemented as a client-server system with an N-tier architecture. It is

deployed on an infrastructure-as-a-service (IaaS) platform, where computing resources,

i. e., virtual machines, can be leased and released at any time during operation. Client

requests are distributed to application servers by a load balancer.

There are three objectives defined for the Znn.com system: (O1) low response times,

(O2) low costs, and (O3) high content fidelity. The news should be served to the clients

within a reasonable response time, i. e., the content of a news article should be sent

from the Znn.com servers to a client within 3.0 seconds after the client has selected an

article. The operation costs of Znn.com should be kept low, e. g., server leasing costs
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should be capped to guarantee a profitable operation. Finally, the content fidelity of

the news article should be as high as possible to engage clients.

In the following sections, we formulate these objectives as concrete requirements for

the Znn.com system and provide a high-level architecture of the system. In Chapter 4,

we refine these requirements to service level objectives (SLOs) and we refine the high-

level architecture to a more fine-grained self-adaptive system architecture using our

performance modeling approach.

Requirements

From the system’s objectives O1 to O3, we derive the following set of requirements:

R1 The system shall serve articles requested by clients promptly. That is, the mean

response time for a user request shall be less than 3.0 seconds, where the mean

response time is calculated in 1 minute batches.

R2 The system’s computing resource leasing costs shall be less than USD 5.00 per

hour.

R3 The system shall serve news articles with highest possible content fidelity (“mul-

timedia”> “text-only”) without violating requirements R1 and R2.

R4 The system shall autonomously lease and release computing resources as required

to maintain the requirements R1, R2, and R3.

R5 The system shall autonomously select a content fidelity of the served news articles

to maintain the requirements R1, R2, and R3.

Requirements R1 to R3 define quantifiable thresholds for the operation of the Znn.com

system. That is, the mean response time is required to be less than 3.0 seconds, the

leasing costs shall be less than USD 5.00 per hour, and “multimedia” is the preferred

content fidelity. Requirements R4 and R5 define the degree of freedom for the self-

adaptation of the Znn.com system within these thresholds. That is, requirements R4

and R5 do not define performance constraints or thresholds but specify which parts of
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Presentation Tier Application Tier Data Tier

:WebServer:WebServer :MultimediaNewsApp:MultimediaNewsApp :Database:Database

Figure 1.1.: Znn.com components

the system may change, or adapt, in order to be able to satisfy the other requirements,

i. e., these requirements relate to the system’s scalability and elasticity.

High-Level Architecture

The Znn.com system is implemented as a three tier system, as illustrated in Figure 1.1

with the UML component diagram notation. The system consists of a presentation tier,

an application tier, and a data tier.

The presentation tier is deployed on a single virtual machine running a web server. The

web server serves hypertext via the HTTP protocol. The hypertext is rendered in a

browser on the client device, which is considered outside of the system borders.

The application tier consists of a news application that generates the Znn.com website.

The news application is implemented by two alternative, interchangeable components,

implementing the same interfaces but generating the website for two different content

fidelity levels. The MultimediaNewsApp component generates a rich multimedia website

with embedded pictures and videos. The TextualNewsApp generates a text-only website,

which requires minimal processing and bandwidth.

Both components, MultimediaNewsApp and TextualNewsApp, are stateless, i. e., the com-

ponents have no internal state and, if required, a request has to pass its own necessary

context. Each instance of these components runs in a dedicated virtual machine, which

can be autonomously replicated, started, and stopped during operation.
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The data tier consists of a database server component running on a dedicated storage

server. In the context of Znn.com, we assume that the database server is not the

bottleneck of the system and thus provides enough performance to handle any workload.

The self-adaptive behavior of Znn.com is controlled by rules that describe when virtual

machines should be replicated, started, or stopped. Finally, a load balancer (not shown

in Figure 1.1) distributes incoming customer requests over all running virtual machines

in the application tier.

1.2. Problem Statement

The software architecture of a rather simple system like Znn.com becomes complex due

to its self-adaptive behavior. That is, the number of components and their intercon-

nections is variable over time in a self-adaptive system, e. g., due to the leasing and

releasing of additional resources and the replication of instances in the application tier.

Each configuration of components and their interconnection represents a different soft-

ware architecture configuration. The transitions between two architecture configurations

are called reconfigurations. The sum of all architecture reconfigurations is forming a

software architecture reconfiguration space.

In consequence, the prediction of quality properties like performance for a self-adaptive

system becomes challenging: Quality properties have to be predicted for each individual

architecture configuration in the reconfiguration space as well as for the transition

between architecture configurations during a reconfiguration to assure a constant quality

at all times during operation. Existing quality metrics for non-adaptive systems do not

capture the quality of the self-adaptive layer in a meaningful way. Quality metrics that

capture or try to capture the quality of the self-adaptation layer are often not well

defined.

In this section, we outline three particular problems in the engineering process of self-

adaptive systems that have not been addressed or solved by other related approaches

yet. In general, these problems concern modeling and early performance prediction of

self-adaptive systems in the design phase of the software lifecycle.
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:WebServer :MultimediaNewsApp :Database

(a) Architecture configuration with single application tier.

:WebServer

:MultimediaNewsApp

:Database

:MultimediaNewsApp

(b) Architecture configuration with replicated application tier.

Figure 1.2.: Alternative system architecture configurations.

Self-Adaptive System Performance Modeling Performance and operating costs of

a software system are crucially impacted by the system’s architecture. For example,

consider two alternative architecture configurations for our Znn.com example system,

like illustrated in Figure 1.2.

In the first architecture configuration, illustrated in Figure 1.2a, one instance of the

MultimediaNews component is deployed on a single server node. In the second archi-

tecture configuration, illustrated in Figure 1.2b, the application tier consists of two

instances of the MultimediaNews component. Each instance is deployed on a dedicated

server node, which is a replica of the server node in the first architecture configuration.

In scenarios where the processing of requests in the application layer becomes the bot-

tleneck, the second architecture configuration can process more requests than the first

architecture configuration can process in the same time. However, the second architec-

ture configuration will also have higher operating costs since two instead of one server

nodes have to be operated in the application layer. There is no single architecture con-

figuration that is superior regarding both quality criteria, performance and operating

costs, in all scenarios.

Designing multiple or even all individual architecture configurations for each scenario

is not feasible either, since the costs to design, implement, and operate individual sys-
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tems for each scenario are not justifiable. Instead, it is desired to specify architecture

reconfigurations that are triggered and executed autonomously for each scenario, i. e.,

self-adaptations.

In order to autonomously trigger and execute architecture reconfigurations, the system

itself needs (1) self-awareness capabilities to detect situations when a reconfiguration is

necessary and (2) the ability to select and execute an appropriate reconfiguration for

the detected situation. These two properties can be considered as the self-adaptation

layer, which enables self-adaptive systems to operate autonomously within a range of

scenarios without requiring manual intervention for maintenance. Consequently, these

systems can potentially reduce operation costs and also reduce down-times.

The design of self-adaptive system architecture has partly been addressed in research.

However, existing modeling approaches, like ACML [Luc13], Palladio [BKR09], and

Brun et al. [BDG+09], do not address the specification of performance properties of

reconfigurations, such as set up times. Other approaches are focused on run-time

models, like Descartes [HBK11], without allowing early analysis of the architecture

at design-time. Incerto et al. [ITT15] focus merely on performance properties of self-

adaptive systems but do not support designing software system architectures. Fur-

ther specific aspects of self-adaptive system architectures, like monitoring, have so far

only been addressed by few run-time-focused and framework-focused research, such

as Descartes [HBK11] and Kieker [vWH12]. A modeling approach that supports all

aspects of modeling performance-relevant properties for self-adaptive system architec-

tures is still missing. Consequently, the early assessment of performance properties of

self-adaptive system architectures is not possible with current modeling approaches.

Metrics for Scalability and Elasticity To assess and compare the quality of self-

adaptive system architectures, specific metrics are required. Software metrics in general

provide an objective, reproducible, and quantitative measure to obtain the quality of a

software system.

In literature, numerous metrics to obtain the performance of software systems can be

found. For example, Bolch [BGTM98] defines response time, throughput, and utiliza-

tion as standard performance metrics. However, these metrics measure only the quality
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of non-adaptive software systems in non-variable operation contexts, i. e., software sys-

tems that only have a single software architecture configuration during operation. The

performance of the self-adaptation itself, including the transient phase of architecture

reconfiguration, cannot be measured with these metrics.

Consider Requirement R1, from Section 1.1, that specifies a performance requirement,

i. e., a mean response time of less than 3.0 seconds. A metric, to measure the quality of

the performance, is already included in the requirement specification, i. e., the response

time.

In contrast, in requirement R4 of the Znn.com example, which specifies a self-adaptive

behavior for autonomous resource leasing, a metric is missing. It can be implied that

the requirement means that the system shall be scalable and elastic. However, without

a concrete metric, the quality of the self-adaptation layer, i. e., the system’s autonomous

resource leasing quality, cannot be quantified and consequently the quality cannot be

assessed objectively. Consequently, software engineers have no means to verify their

design decisions or detect design flaws.

In research, there are some definitions of scalability and elasticity metrics that aim to

measure the quality of the self-adaptation layer. For example, Herbst et al. define

elasticity metrics [HKR13] to measure speed and precision of resource leasing with

respect to the resource demand. Folkers et al. [FAS+12] and Islam et al. [ILFL12]

provide elasticity metrics in terms of costs. Bondi provides scalability definitions for

structural scalability (“ability to expand in a chosen dimension without major mod-

ification”) and load scalability (“ability of a system to perform gracefully as the of-

fered traffic increases”) [Bon00]. However, Bondi does only provide concrete metrics

for structural scalability. Further scalability metrics as are defined by Jogalekar and

Woodside [JW00] for distributed systems in general. However, these metrics either are

defined as benchmark metrics for retrospective evaluation or mix the related metrics

scalability, elasticity, and efficiency.

In summary, precisely defined metrics need to be defined in order to quantify scalability

and elasticity as dedicated quality properties of self-adaptive systems and to enable early

detection of design-flaws in the self-adaptation layer.
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Prediction of Scalability and Elasticity The prediction of scalability and elasticity

properties at design-time requires a method to obtain the according metrics from a

model of the software system. When a software engineer designs a software system,

like the Znn.com system, she should apply methods to constructively assure the qual-

ity properties, early at design-time. Fixing quality defects of software systems late in

the development or even during operation has proven to be cumbersome and expen-

sive [Gla98].

Analytical as well as simulation-based methods to predict performance metrics based on

software architectures of non-adaptive systems have already been described and imple-

mented. For example, the Palladio approach [BKR09] provides a model-driven method

for prediction of performance metrics like response time, utilization, and waiting times

for non-adaptive software architectures. Palladio, however, does not provide a method

to predict scalability and elasticity properties yet. In D-KLAPER [GMR09], a model-

transformation chain from architecture models to analysis models for self-adaptive sys-

tems is described. A concrete method to assess scalability and elasticity metrics from

these analysis models is not provided. Another approach by Incerto [ITT15] provides

an analytical prediction method for self-adaptive systems, but is limited to the per-

formance metric response time, which is not sufficient to measure the quality of the

self-adaptation itself.

Consequently, a model-driven method and tool support is still required to assess scala-

bility and elasticity properties of self-adaptive systems at design-time.

1.3. Scientific Contribution

The contribution of this thesis is a model-driven performance engineering method,

SimuLizar, which supports software engineers to design self-adaptive information sys-

tems, annotate performance-relevant information, and predict these systems’ scalability

and elasticity properties.
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Moreover, we provide a formalization and concrete metrics for the scalability and elas-

ticity properties. We implement our model-driven method in a tool, SimuLizar Bench.

Figure 1.3 illustrates the key contributions of this thesis:

C1 Performance Modeling We provide three viewpoints for modeling self-adaptive

systems: A system type viewpoint, a run-time viewpoint, and a self-adaptation

viewpoint. The viewpoints and their respective view types are implemented as

meta models in the Eclipse Modeling Framework and build on the Palladio Com-

ponent Model [BKR09]. We specifically extend the Palladio Component Model

with three additional view types: a reconfiguration view type, which is used to

specify architecture reconfigurations; a monitoring view type, in which monitors

for self-awareness capabilities are specified; and a service level objective view type

in which service level objectives are specified which are major drivers for self-

adaptation.

C2 Metrics & Formalization We define metrics to quantify scalability and elastic-

ity properties of self-adaptive systems. In contrast to other related work, the use

case for these metrics is the assessment and comparison of self-adaptive system

designs early at design-time. For the assessment of the scalability and elastic-

ity of self-adaptive systems, we provide a formalization of service level objectives

(SLOs) based on fuzzy logic [Zad65]. This formalization introduces a notion of

graded SLO achievement and thus facilitates the decision-making between system

design alternatives [Pla16].

C3 Prediction Methods We provide methods to predict scalability properties and

elasticity properties of self-adaptive system designs at design-time. Both methods

are defined based on our formalization of service level objectives and are evaluated

regarding their applicability within a case study.

Based on the contributions listed above, we implemented SimuLizar Bench, a tool that

extends Palladio Bench with our viewpoints for self-adaptive system performance mod-

eling. We implemented scalability and elasticity prediction methods in the SimuLizar

Bench by building on Palladio Bench’s SimuCom simulation framework [BKR09].
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We present the first contribution, C1, our self-adaptive system performance modeling

approach in Chapter 4. Our scalability and elasticity metrics and prediction methods,

i. e., Contribution C2 and Contribution C3, are presented in Chapter 5. The evaluations

of each contribution can be found in their respective chapter. Finally, the implementa-

tion of our contributions in SimuLizar Bench are presented in Chapter 6.

1.4. Overview

The remainder of this thesis is structured as follows. In Chapter 2, we introduce basic

terminology in the context of self-adaptive systems. In Chapter 3, we introduce the

foundational concepts of software performance engineering, which builds the basis for

the prediction methods that are presented in this thesis. In particular, we outline the

characteristics of cloud computing and self-adaptive systems. Furthermore, we intro-

duce model-driven engineering and view-based modeling as a basis for our performance

modeling approach. Model-driven software performance engineering in general and the

Palladio approach in particular are introduced as foundations for our model-driven

scalability and elasticity prediction methods. We introduce our performance model-

ing approach for self-adaptive systems in Chapter 4. The approach is illustrated on

the Znn.com example system and the models serve as input for the analysis methods

that we present in the subsequent chapter. In Chapter 5, we present the elasticity and

scalability prediction methods including their formalization, implementation, and limi-

tations. Thereafter, in Chapter 6, we present SimuLizar Bench, as the implementation

of our modeling approach and scalability and elasticity prediction methods. Finally, in

Chapter 7 we conclude this thesis and point to directions for future work.
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2. Uncertainty, Imprecision, and Gradedness in Software Engineering

In this chapter, we introduce the first part of the foundations for this thesis. In the

context of self-adaptive system engineering, the three terms uncertainty, imprecision,

and gradedness play a major role. Hence, we provide definitions for all three terms and

provide examples in which areas of software engineering the terms are relevant. Fur-

thermore, we introduce related software engineering methods and concepts that specifi-

cally address uncertainty, imprecision, and gradedness in different software engineering

phases.

2.1. Definitions and Examples

Fuzzy sets [Zad65] and fuzzy logic [KY95] are commonly used to model uncertainty,

imprecision, and gradedness. In this section, we introduce the definitions of all three

terms and provide examples in the context of our Znn.com system that we introduced

in the previous chapter.

Definition 2.1 (Fuzzy Set) Let X be a space of points (objects), with a generic

element of X denoted by x. Thus, X = {x}.
A fuzzy set A in X is characterized by a membership function µA(x) which asso-

ciates with each point in X a real number in the interval [0, 1], with the value of

µA(x) at x representing the “grade of membership” of x in A. [Zad65]

A fuzzy set is a mathematical set that in contrast to naive sets [Hal60], or crisp sets,

defines a graded membership for all elements within the set. Definition 2.1 formally

defines fuzzy sets. According to this definition, a membership function µA(x) associates

for each element x within a domain X, e. g., x ∈ R+
0 , a real number in the interval [0; 1]

that represents the membership grade for x in fuzzy set A.

Figure 2.1 illustrates a membership function for a real number value domain, i. e.,

x ∈ R+
0 . In the example, the real number values between 1.0 and 2.0 have a membership

grade of 1.0. Values of x that are greater than 3.0 have a membership grade of 0.0, i. e.,

are no members of the fuzzy set A. Values of x in (0.0, 1.0) and (2.0, 3.0) have a graded

membership in A as defined by the function µA(x).
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µA

x0

1

1.0 2.0 3.0

Figure 2.1.: Example membership function for a fuzzy set.

The membership grade of a variable x in a fuzzy set A can be interpreted in different

ways. First, it can be interpreted in terms of uncertainty. That is, the membership

grade defines a possibility that the variable x is contained in A. Second, the membership

grade can be interpreted as a way to express imprecision. That is, the membership

grade states that A is not precisely defined, such that a precise mapping of x is not

possible. Finally, the membership grade can be interpreted as a gradedness. That is,

the membership grade of x exactly reflects the grade of which x is member of A.

While fuzzy sets are well suited to model the concepts uncertainty, imprecision, as well

as gradedness, they are interpreted differently as outlined above. All three concepts

and their interpretation are useful in different contexts of software engineering. In the

following, we give an overview of the three concepts and concrete applications in this

thesis and in related software engineering approaches.

2.1.1. Uncertainty

In our context, we can describe uncertainty as a property of an information. An un-

certain information is either imperfect or not (completely) known. We can distinguish

two types of uncertainty: (1) aleatoric (or aleatory) uncertainty and (2) epistemic un-

certainty.

“The word aleatory derives from the Latin alea, which means the rolling of dice. Thus,

an aleatoric uncertainty is one that is presumed to be the intrinsic randomness of

a phenomenon.” [DD09] For example, the request rate for our Znn.com example can

be considered as subject to aleatoric uncertainty because of the random behavior of
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humans that cannot be known upfront. “The word epistemic derives from the Greek

επιστηµη (episteme), which means knowledge. Thus, an epistemic uncertainty is one

that is presumed as being caused by lack of knowledge (or data).” [DD09] An example of

information that is subject to epistemic uncertainty is the usage context of the Znn.com

system. The concrete parameters of a request in our Znn.com example, e. g., which

news article is requested by a client, as well as the actual frequency of customer request

cannot be known at design-time. This information can only be assumed by the software

engineer.

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

x

P (x)

Figure 2.2.: Probability density function P (x) for a standard normal distribution.

Uncertain information can be modeled either in terms of probability or in terms of

possibility.

Probability is usually modeled via random variables. A random variable X is a function

that maps from a probability space, e. g., set of observable events, to a measurable space,

e. g., the set of real numbers R. That is X : Ω→ E, where Ω is a probability space and

E is a measurable space. For example, X may define the number of heads for a random

number of coin flips. The probability of a concrete event, e. g., “less than 3 heads”,

is then denoted with P (X ≤ 3). Continuous random variables can be defined with

probability density functions and discrete random variable can be defined probability

mass functions. The latter define a probability for each element in the set of (discrete)
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events, e. g., P (X = 3). A probability density function defines a probability that the

random variable falls within a range of values, e. g., P (0 ≤ X ≤ 3). Figure 2.2 illustrates

the probability density function of a Gaussian distributed random variable. The area

under the probability distribution function must be equal to 1.0, i. e.,
∫∞
−∞ P (x) = 1,

because of the normalization condition defined in probability theory. That is, the sum

of the probabilities of all values is 100%. [Sal07]

Possibility can be modeled with fuzzy numbers. A fuzzy number is characterized by a

convex, normalized fuzzy set. Similar to probability, a possibility distribution function

πX(x) defines the possibility that X = u, where X is a variable taking values in U and

u ∈ U . For example, πX(3) = 1.0 may be interpreted as: “It is completely possible

(plausible) that X is 3”. In this context, the possibility that X = u is equal to µ(u),

where µ(u) is the membership function that describes an event that is associated with

the variable X, e. g., the possibility that it will be sunny for the next X days. For the

membership function, a normalization condition is defined similar to the normalization

condition in probability theory [Sal07], i. e., the supremum of this function must be

equal to 1.0, i. e., sup(µ(x)) = 1.

2.1.2. Imprecision

Imprecision is the lack of precision, for example caused by human interaction and errors

or the ambiguity of language. In that sense, imprecise information is, like uncertain

information, imperfect information. For example, in our Znn.com system, requirements

could be imprecise. Typical examples of imprecise requirements would be “The system

shall be fast” or “The operating costs shall be low”. In general, imprecision often

stems from a discrete representation, e. g., “fast”, for a continuous variable, e. g., speed.

Thus, imprecision may be reduced by choosing a different representation. However, this

requires that a more precise representation exists and an exact value can be assessed.

Similar to uncertain information, the imprecision of information can be modeled with

fuzzy sets. As illustrated in Figure 2.3, a fuzzy set can be used to describe the term

“fast”. The membership function µA defines the membership grade of speed values s

in the fuzzy set Afast, where s ∈ R+
0 and the unit of s is km/h. Intuitively, with this
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µfast

s[km/h]
0

1

30.0 40.0 50.0

Figure 2.3.: Imprecise definition of “fast”, modeled with a fuzzy set.

definition, speeds above 40km/h are considered as “fast”, speeds between 30km/h and

40km/h are “more or less fast”. Speeds below 30km/h are considered as “not fast”.

2.1.3. Gradedness

Gradedness, in contrast to uncertainty and imprecision, describes no imperfect informa-

tion. On the contrary, gradedness is a concept to model potentially ambiguous informa-

tion in terms of a precisely defined mathematical object [Zad08]. For example, in this

thesis, we define service level objectives (SLOs) with a notion of graded achievement.

Thus, an SLO can be fully achieved or partly achieved to a certain grade. In contrast

to our notion, in the traditional notion of SLOs, an SLO is either “achieved” or “not

achieved”. Thus, our SLO notion potentially reflects the preferences and requirements

of the stakeholders more precisely.

Gradedness can be modeled with fuzzy sets as well. The membership grade of a value

x in a fuzzy set A is then simply interpreted as the grade of x in A. For example,

we can define a fuzzy set Amrt that reflects a service level objective for an (imprecise)

requirement “The mean response times shall be low” of our Znn.com system. The

membership function µA then precisely defines to which grade this service level objective

(and the requirement) is achieved at which mean response time values.

In Chapter 5, we introduce our formalization of graded SLO achievement and provide

examples for our Znn.com system.
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2.2. Applications in Software Engineering

In this section, we illustrate applications of uncertainty, imprecision, and gradedness in

software engineering that are related to the concepts and methods that are presented in

this thesis. The following subsections roughly follow the first three phases in software

lifecycle [Bal11]: requirements engineering, design, and implementation. For each of

the three phases, we highlight artifacts in which the concepts uncertainty, imprecision,

or gradedness, as introduced in the previous section, are applied.

2.2.1. Requirements Engineering

A requirement specification is the artifact that results from the requirement engineering

phase in the software lifecycle [Bal09]. The requirement specification specifies demanded

properties, i. e., requirements, of the software system to be implemented. Requirements

are typically elicited by requirements engineers from the software system’s stakeholders,

e. g., customers, marketing, management.

Requirements can be differentiated into functional and non-functional requirements.

Functional requirements specify functions or services of a software system [Bal09]. An

example functional requirement for our Znn.com system is: “The system shall be de-

liver news websites.” Non-functional requirements, also called quality of service, de-

scribe aspects that often concern multiple functional requirements [Bal09], e. g., perfor-

mance or operating costs. Often different non-functional requirements contradict each

other [Bal09]. For example, operating costs and performance contradict each other

when higher performance is only achievable with more (expensive) hardware resources.

Hence, there is a trade-off between low operation costs and high performance.

RELAX Requirements Language

In classical requirements engineering, trade-offs between contradicting requirements

have to be solved in the requirements specification, because requirements need to be
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consistent [Bal09]. For this purpose, many different methods exist to solve trade-offs of

contradicting requirements [vDL98].

However, the solution of a trade-off between contradicting non-functional requirements

may not be completely possible or not wanted in the requirements engineering phase.

For example, if contextual information of the software system, e. g., the number of cus-

tomers, is not known a priori. In this case, it may be helpful to explicitly address

this uncertainty in the requirements specification. Whittle et al. present with RE-

LAX [WSB+10] a requirements language, that can be used to express requirements

specification that consider uncertainty.

In contrast to traditional requirement specifications, in RELAX, a requirement engineer

can distinguish between invariant requirements that a system has to meet at all time

and non-invariant requirements that only need to be met in a best-effort fashion. The

latter requirements are also called RELAX-ed requirements.

“A RELAX-ed requirement consists of two parts. The first part is a RELAX expres-

sion. In the second optional part, uncertainty factors in the environmental context can

be specified in a declarative fashion. We formulate a RELAX-ed requirement for the

operation costs of our Znn.com system as shown below. The RELAX keywords are

denoted in capital letters. [BLB13]”

R3: The system SHALL keep the operation costs AS CLOSE AS POSSIBLE to 0.

ENV: number of customers; operation costs

MON: request rate; number of leased resources

REL: the more customer requests are delegated to leased resources, the higher are the

operation costs

In the original requirements, that we presented in Section 1.1, we required the Znn.com

system to maintain the operation costs below USD 5.00, see Requirement R2. This re-

quirement contradicts Requirement R1 in which a mean response time of 2.0 seconds is

specified. Relaxing Requirement R2, as shown above, enables the system to potentially

fulfill both requirements Requirement R1 and Requirement R2 at once. Furthermore,

the RELAX requirement describes uncertainty in the system’s context using the ENV
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keyword. In the RELAX requirement the number of customers and the actual operat-

ing costs may be unknown, i. e., uncertain. However, the MON and REL statements

describe how this context can be monitored indirectly. A MON statement describes

something that the system can monitor, e. g., in the example above the number of

leased resources and the request rate. The REL statement describes the relation be-

tween the uncertain context and what can be monitored by the system. In this example,

we can estimate the operating costs by monitoring the request rate and the number of

leased resources.

The semantics of RELAX requirements are defined in terms of fuzzy branching temporal

logic (FBTL) [MLL04]. FBTL is a temporal logic including concepts for uncertainty

in time and logical predicates using fuzzy logic concepts. That is, with FBTL one can

describe fuzzy states and fuzzy events. In fuzzy logic, variables have a gradual truth

value ranging from 0 to 1 in contrast to Boolean logic where truth values can only be

either false (0) or true (1). [BLB13] As introduced in Chapter 2, the basis for fuzzy

logic are fuzzy sets.

A RELAX requirement can be gradually fulfilled, i. e., it can be fulfilled no at all,

completely fulfilled, or fulfilled to any grade in between. In the example above, the

requirement would be completely fulfilled if the operation costs were USD 0.00. This

would only be the case if the system does not require (and lease) any resources at all.

In other cases, in which the operation costs exceed USD 0.00, the RELAX requirement

can only be gradually fulfilled.

In this thesis, we introduce the notion of a graded service level objective, achievement

similar to the concept of RELAX-ed requirements that is also based on FBTL. Similar

to RELAX-ed requirements, we do not address uncertainty with this notion but grad-

edness, such that we can precisely define when service level objectives are achieved and

to which grade.

2.2.2. Design

In the design phase of the software lifecycle, a solution to the specified requirements

is created. The creation of the solution, the design, includes the creation of a software

25



2. Uncertainty, Imprecision, and Gradedness in Software Engineering

architecture by a software architect. The software architecture specifies the structure

and behavior of a software system in the form of architecture elements, their behavior,

their interaction, and physical deployment [Bal11].

Software architectures are usually not created from scratch, but software architects reuse

well-established architecture styles or architecture patterns for known software system

classes [Bal11]. Architecture styles are more abstract, define a software system class

in terms of a common vocabulary, and constrain how elements in the architecture can

be combined [SG96]. In contrast, architecture patterns specify a software architecture

scheme that is applicable to general, recurring design problems [BHS07]. Architecture

patterns can be refined to concrete architectures. For example, the server-client style

is an architecture style and three tier is a well-established architecture pattern for the

class of web information systems, like our Znn.com system. The three tier architecture

pattern defines a software architecture with three tiers, i. e., a presentation tier, an

application tier, and a data tier. The division of the architecture into tiers allows the

physical deployment to different hardware nodes as well as a clear separation of the

task for each tier.

Self-Adaptive Systems

The class of self-adaptive systems describes software systems that autonomously adapt

their structure and behavior at run-time in response to changes in their context. Thus,

self-adaptive systems can operate in uncertain contexts. The Znn.com system, for ex-

ample, is a self-adaptive system that autonomously adapts to its usage contexts. The

usage context of the Znn.com system is uncertain, i. e., its workload is not known in the

design phase. Thus, a non-adaptive architecture may not completely satisfy the require-

ments in all possible usage contexts, e. g., when the system does not have sufficiently

enough resources to maintain the required mean response time for a high workload.

The MAPE-K architecture style specifies a high-level architecture style for the class of

self-adaptive systems [Mur04]. It is named after the four phases of a self-adaptation

feedback loop: monitor, analyze, plan, and execute. The “K” in MAPE-K stands for the

knowledge that is accessed during all four phases.
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Figure 2.4.: MAPE-K feedback loop [Mur04].

Figure 2.4 illustrates the MAPE-K architecture style for self-adaptive systems. A

self-adaptive system consists of two parts in the MAPE-K architecture style: a self-

adaptation feedback loop, i. e., MAPE-K, and a managed system. The managed element

is the actual software system that implements the business logic of the system, i. e., it

implements a solution to the functional requirements. The managed element is mon-

itored and adapted via sensors (S) and effectors (E). The MAPE-K feedback loop

monitors the sensors, analyzes the monitored data, plans actions, and executes these

actions via the effectors of the managed element.

In the context of software architecture, the actions that can be executed on the managed

element are called reconfigurations. A reconfiguration transforms a specific software ar-

chitecture instance, an architecture configuration, to another architecture configuration.

For example, in our Znn.com system, a reconfiguration is the replication of the applica-

tion tier, which includes the instantiation of a software component and its deployment to

a hardware node. The set of possible reconfigurations of a self-adaptive system, i. e., the

specification of the MAPE-K feedback loop, can be considered as an individual aspect

of the overall system architecture. This aspect is also referred to as the self-adaptation

layer of the system architecture.

The MAPE-K feedback loop adapts the system architecture autonomously in order to

fulfill the system’s requirements. Typically, requirements are reflected by service level
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objectives (SLOs) at run-time. An SLO defines thresholds for quantifiable properties

of a software system, e. g., maximum operating costs or minimum availability of the

software system. Thus SLOs also define the borders for the autonomous behavior of

a self-adaptive system. However, a self-adaptive system shall autonomously operate

within these borders and autonomously solve trade-offs between contradicting require-

ments depending on its actual context.

Typically, a software architecture is specified from different viewpoints, which describe

different aspects of the software architecture like structure in a static viewpoint, behav-

ior in a dynamic viewpoint [GBB12]. In Chapter 4, we introduce a modeling approach

that contains a dedicated self-adaptation viewpoint that addresses the specification of

the self-adaptation layer.

Quality Assurance

Different aspects of software architecture are typically also modeled with domain-specific

modeling languages (DSMLs). A DSML allows software architects to model a specific

aspect of a software architecture using the relevant concepts of the aspect the software

architect is interested in. For example, a software performance DSML, can be used

to specify performance-relevant aspects of a software architecture, such as available

resources and resource demands.

DSMLs are often used as the basis of quality assurance of software architectures. The

goal of quality assurance is to assess whether the implementation of the designed soft-

ware architecture will fulfill the specified non-functional requirements and thus to verify

design decisions. Hence, quality assurance of the software architecture should accom-

pany the whole design phase and should not be applied at the end of the design phase

only [Bal11]. Each quality aspect, e. g., performance, may require its own quality as-

surance method, such as performance prediction, and own DSMLs, like software perfor-

mance models.

Quality assurance methods have to consider uncertainty since not all necessary informa-

tion may be available at the time the method shall be applied. This especially applies

in the context of self-adaptive systems since these systems are designed to work in un-
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certain contexts. For example, the actual number of users and the resulting workload

may not be known early in the design phase. In addition, information of the system

itself may be uncertain in the design phase. For example, concrete resource demands

are unknown in the design phase when no implementation exists. In quality assurance

methods, like performance prediction, uncertain information is typically modeled using

probability. The actual workload, that is required to predict performance metrics like

response time, is then abstracted with a probability distribution that approximates the

expected actual values.

We illustrate how uncertainty is addressed in quality assurance methods in more detail

in Section 3.3 where we introduce the software performance engineering method.

2.2.3. Implementation

In the implementation phase of the software lifecycle, software engineers realize the

software design that has been created in the design phase [Bal11]. Similar like software

designs, the implementation is usually not created from scratch. Software engineers can

use existing platforms, software frameworks, and software components, to implement the

software system.

A platform provides basic resources and functionality to implement a software system.

Typically, platforms are divided into hardware platforms and software platforms. How-

ever, the borders between hardware platforms and software platforms are not clearly

defined. For example, the Amazon Web Services (AWS) is a platform that provides

hardware resources, e. g., Amazon Elastic Computing Cloud (EC2) and Amazon Sim-

ple Storage Solution (S3), but also the software interfaces to access and manage the

hardware resources. In contrast, the Eclipse platform is a hardware-independent soft-

ware platform that provides various software frameworks for the implementation of

software systems.

A software framework as well as a software component are reusable software artifacts

that implements a certain functionality. Usually a software framework is a collection of

software components that implements an architecture style or pattern. Both, a software

framework and a software component, typically have defined interfaces that are used
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to interact with other components of the software system [Bal11]. For example, the

Eclipse Modeling Framework (EMF) is a software framework, which provides interfaces

and components to implement domain-specific modeling languages.

Cloud Computing

The term cloud computing describes platforms that provide access to resources that

can rapidly be leased and released with minimal management effort [MG11]. Four key

characteristics of cloud computing platforms are (1) autonomous resource leasing, (2)

resource pooling, (3) elasticity, and (4) monitoring [MG11]. That is, cloud computing

platforms provide interfaces for software systems that support autonomous resource

leasing from a resource pool. Monitoring interfaces allow cloud computing-based soft-

ware systems to continuously monitor their resource consumption and thus provide the

necessary information to decide whether resources shall be leased or released.

Cloud computing platforms can be categorized according what kind of platform and

resources they offer. In general, we can distinguish three classes of cloud computing

platforms: Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastruc-

ture as a Service (IaaS) [MG11]. However, the borders between these three classes

are blurry. While SaaS platforms like Google AppEngine provide ready to use soft-

ware systems, IaaS platforms like Amazon EC2 mainly provide virtualized hardware

nodes, like virtual machines. Microsoft Azure, which provides virtual machines with

the Windows operating system and interfaces to databases can be categorized as a PaaS

platform [AFG+10].

In the context of this thesis, we consider cloud computing based software systems as

self-adaptive systems, as introduced in Section 2.2.2, because of their ability to au-

tonomously lease and release resources, e. g., virtual machines.
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3. Software Performance Engineering Foundations

In this chapter, we present the foundation for our model-driven method to predict

scalability and elasticity of self-adaptive systems at design-time. In Section 3.1, we out-

line the key characteristics of model-driven software engineering, in which models are

the central artifact in the software lifecycle. We show how view-based modeling sup-

ports model-driven engineering with the organization of software models into different

viewpoints. In Section 3.2, we introduce basic concepts for software quality assurance

at design-time, i. e., software metrics and predictions. In Section 3.3, we show how

these basic concepts are applied to predict the software quality property performance

at design-time using a model-driven prediction method. Finally, we introduce a con-

crete model-driven software performance engineering method, Palladio, which builds

the basis for our model-driven prediction method that we present in Chapter 5.

3.1. Model-Driven Software Engineering

Model-driven software engineering (MDSE) is a software engineering paradigm in which

the model is the central artifact of the complete software engineering process [Bec08].

The goals of MDSE are to increase development speed, improve software quality, and

make the inherent complexity of software systems more manageable through abstrac-

tion [SVC06]. These goals are mainly achieved by automatic model transformations

that are used to generate software engineering artifacts such as source code or analysis

models from a central software architecture model [SVC06].

By using automatic model transformations, repetitive and error-prone tasks performed

by the human actors are reduced and consequently less inconsistencies, mistakes, and

errors are introduced within the artifacts of the software engineering process.

In this section, we specifically detail two major aspects of MDSE. First, we describe

view-based modeling as a basic paradigm for the organization of models into viewpoints,

view types, and views. Second, we describe model transformations as the central concept

of model-driven software engineering.
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Figure 3.1.: Model that defines the taxonomy of view-based modeling [GBB12].

View-Based Modeling

With the term view-based modeling, Goldschmidt et al. [GBB12] describe a taxonomy

for the organization of models in the context of MDSE.

The taxonomy is illustrated in Figure 3.1. In this taxonomy, a single model of a soft-

ware system is represented by multiple views. A view is a projection of a model that

shows a subset of the models elements. The model is an abstract representation of a

system. The abstraction is specific for the model’s purpose, i. e., elements or aspects of

the system that do not contribute to the purpose of the model are omitted in the model.

However, there should exist a homomorphism between the model and the system with

respect to the model’s purpose, i. e., the phenomenon that are observable on the system

shall be observable on the model as well. The model is defined by a meta model. Since

a single system usually has multiple stakeholders, which are interested in different con-

cerns of the system, these concerns are reflected by different viewpoints. For example,

performance is a concern of a software system’s software engineer that is modeled in a

dedicated viewpoint. Since different concerns are relevant to different stakeholders, the
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concerns should be separated from each other. Each viewpoint defines multiple view

types that in turn define the elements of a view. For example, in a software performance

viewpoint, there may exist a view that models the resource demands of the methods in

a software component.

Model Transformations

Meta Meta 
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Transformation 
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Transformation 
Rule

Source
Meta Model

Target
Meta Model

Transformation 
Engine

Source Model Target Model

conforms to

conforms to

executes

from to
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conforms to conforms to

Figure 3.2.: Basic Concept of model transformation [DEP12].

Model transformations have a central role in MDSE. Model transformations are a

set of transformation rules that specify how a source model can be transformed to

a target model. As illustrated in Figure 3.2, the source model and the target model

have to conform to their respective meta model. That is, the source model is an in-

stance of the source meta model and the target model is an instance of the target

meta model. The transformation rules are specified with transformation languages like

the OMG Query/View/Transformation (QVT) [Obj16], Storydiagrams [FNTZ00], and

Henshin [ABJ+10]. The transformation language and the source and target meta model

conform to the same meta meta model, e. g., the OMG Meta Object Facility (MOF).

Commonly, model transformations are classified as either model-to-model (M2M) trans-

formations or model-to-text (M2T) transformations. M2M transformations can be fur-
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ther categorized as either inplace transformations or outplace transformations. In in-

place M2M transformations, a single model is manipulated, i. e., source and target is

the same model. In outplace M2M transformations, source and target are different

models and are potentially instances of different modeling languages. In this thesis, we

use inplace M2M transformations to model reconfigurations of a self-adaptive system,

as we will describe in more detail in Chapter 4. Outplace M2M transformations are, for

example, used in model-driven quality assessment methods to transform architecture

models to analysis models, as we illustrate in Section 3.3. With M2T transformations,

a source model is transformed into plain text. For example, the generation of source

code is often realized as a M2T transformation. In the context of this thesis, we used

a M2T transformation to generate code for a performance prototype for the evaluation

of our prediction methods that we present in Chapter 5.

3.2. Software Metrics and Predictions

As already motivated, an early assessment of the non-functional requirements is crucial

to prevent project budget overruns and to reduce time-to-market. The assessment of

non-functional requirements requires measuring the corresponding non-functional prop-

erties of the software system. That is, the property has to be captured in a quantitative

way.

Software metrics are used to quantify non-functional properties of software systems.

Software metrics also play an important role in software engineering to monitor and

control the quality of the software to be developed and to obtain the progress of the soft-

ware’s development. Requirements for non-functional properties, such as performance

or costs, are usually specified in the requirements engineering phase of the software

lifecycle.

In the context of software engineering, a metric can be defined as a precisely specified

method to measure a property of a system. For example, response time is a performance

metric for software systems. In this example, performance is the property of interest

and response time is a metric that captures that property quantitatively.
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Definition 3.1 (Metric) A metric M is a function that maps an element of an

(ordered) set V to a system S. [BF08]

M : S → V

In general, a metric is defined like in Definition 3.1. In the example above, the S is the

performance of a software system and V is the set of positive real numbers, i. e., R+
0

with base unit seconds (s). The set V can also be a discrete set, like bad, okay, good.

Thus, metrics can be used to classify, assess, and compare software systems [BF08].

Classification of Metrics

Metrics can be used for different purposes. With analytical metrics the properties of the

system of interest are measured using models of the system [BF08]. Hence, analytical

metrics are often used to predict properties of a system that is yet to be implemented.

With empirical metrics, the properties are measured by observing the real system of

interest [BF08]. This obviously requires that the system of interest is observable, i. e.,

the system has to be implemented and deployed.

Another dimension for the classification of metrics is defined by Reussner and

Firus [RF08]. They distinguish between basic metrics and dependent metrics. A basic

metric’s dependencies on other metrics (or variables) are either not made explicit or

no dependencies exist. For example, the software metric lines of code is a basic metric

with no dependency on other metrics. In contrast to basic metrics, dependencies are

explicitly defined for dependent metrics. The metrics we define in this thesis, scalability

and elasticity, are both dependent metrics. In this thesis for example, we consider these

metrics with respect to a system context metric, like the request rate. That is, the

dependent metric (scalability) depends on another metric (request rate).

In this thesis, we define analytical, dependent metrics to assess performance properties

of a self-adaptive systems, i. e., scalability and elasticity, in Chapter 5. We use a self-

adaptive system performance model, that we introduce in Chapter 4, to simulate the

system of interest and use our metrics to measure the scalability and elasticity proper-

ties. Thus, our metrics can be used to predict scalability and elasticity of a self-adaptive

system early at design-time when no implementation of the system is available. In the
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next section, we outline the model-driven software performance engineering that is used

to obtain basic performance metrics at design-time.

3.3. Model-Driven Software Performance Engineering

Model-driven software performance engineering is a complement method to model-

driven software engineering that introduces means to predict performance metrics early

in the software lifecycle. For that purpose, the model of the software, the central ar-

tifact in MDSD, is enriched with performance-relevant information, such as resource

demands, available resources, and the workload of the system. This enables to predict

performance metrics of the software with performance analysis tools.
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Figure 3.3.: Model-Driven Software Performance Engineering process.

Figure 3.3 illustrates a high-level process for model-driven software performance en-

gineering. In the first step of this process, a software engineer designs the software

system. The result of the design phase is a system model that includes the system’s

architecture with structural and behavioral aspects as well as performance-relevant in-

formation. In the second step, the model is transformed to an analysis artifact by a

performance analysis tool. The concrete output of the model transformation, i. e., the

type of analysis artifact, depends on the type of performance analysis tool. The analysis

tool uses the generated artifact to execute a performance analysis. The analysis results

of the execution are interpreted by the software engineer. If the metrics indicate that

the requirements are met, the software engineering process can continue. Otherwise,

the software engineer has to revise the software design, i. e., the system architecture,

and rerun the analysis.
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Figure 3.4.: Comparision of MDSPE analysis types.
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Figure 3.4 illustrates three types of performance analysis tools: solvers, simulations, or

prototypes. A performance solver predicts performance metrics via analytical solving of

analysis models like layered queuing networks (LQN) [FAOW+09] on the basis of queu-

ing theory [Mei58] and operational laws [DB78]. Performance simulation commonly

uses the same analytical models like performance solvers, but instead of mathematical

solving the models are simulated, i. e., the behavior of the system is symbolically exe-

cuted. Thus, performance metrics of more realistic and hence also more complex models

can be predicted [BKR09]. Finally, performance prototypes are software systems that

implement the behavior of the specified software system in terms of performance, i. e.,

resource demands, but not semantically.

All three alternative analysis tool types have individual advantages and disadvantages:

While solvers have the lowest execution time, they are restricted in the metrics and

the accuracy of the metrics that can be predicted. Simulations are potentially more

accurate than solvers but have higher execution times. Prototypes are most accurate

in comparison to the other types but have the longest execution time and have highest

hardware requirements and consequently highest costs [BKR09].

3.3.1. Palladio

Palladio is a model-driven software performance engineering method that provides a

dedicated performance modeling language, the Palladio Component Model (PCM), and

a tool suite, Palladio Bench, which integrates different types of performance analysis

tools.

Figure 3.5 provides an overview of the partial models in the Palladio Component Model,

the model transformations with their respective output analysis artifacts, and the anal-

ysis tools implemented in Palladio Bench. We briefly summarize the building blocks of

PCM and Palladio Bench in the following paragraphs.
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Palladio Component Model

As the name, Palladio Component Model, already implies, PCM is designed for

component-based software engineering (CBSE) [SBW99, Szy02]. A PCM model is di-

vided into five partial models that represent different views of a software system. The

division into partial models enables to divide the modeling process according to the

different roles in CBSE, i. e., component developers, system architects, system deployers,

and domain experts. In the following, we describe the partial models in PCM and the

roles involved in the performance modeling and analysis with Palladio.

Repository Model In the repository model, component developers specify component

types, components, and interfaces. A component type is specified via its provided

and required interfaces. In PCM, for components that conform to a component

type, also a specification of the behavior has to be provided. Behavior spec-

ifications are called service effect specifications (SEFF) in PCM. The behavior

specification is modeled as a flow of actions and can contain internal actions, ex-
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ternal calls, loops, and forks. An internal action can contain performance-relevant

information, i. e., resource demands. A SEFF that contains internal actions with

resource demands is called resource-demanding SEFF (RD-SEFF). A resource

demand is specified with stochastic expressions (StoEx). A stochastic expression

is a mathematical term that can include random variables, like introduced in

Section 2.1.

System Model Software architects compose a system from the components and inter-

faces, available in repository models. For this purpose, components that are spec-

ified in repository models, are instantiated and connected. Component instances

are represented by so called assembly contexts in PCM.

Allocation Model Software deployers specify the allocation of the components in-

stances within a system to hardware nodes.

Usage Model The usage model contains a specification of the user’s behavior. This

includes a specification user action flows, a characterization of the actual param-

eters, and a load characterization. The characterization of the actual parameters

and the load is specified with stochastic expressions, just like for the parametric

resource demand specifications in RD-SEFFs.

Resource Environment Model The resource environment model contains a specifica-

tion of the available hardware resources, i. e., resource containers and linking re-

sources. A resource container can represent either physical or virtual resources like

a server or virtual machine. Resource containers can also contain active resources,

like CPUs or hard disks. The capacity of an active resource is characterized by a

scheduling strategy, e. g., processor sharing or first-in-first-out, and a processing

rate. The processing rate is specified with stochastic expressions.

Palladio Bench

Palladio Bench integrates editors for the PCM with all three types of performance

analysis tools: LQN Solver and LINE solver as performance solvers, SimuCom as a
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performance simulation framework, and ProtoCom as a performance prototype frame-

work.

LQN Solver and LINE solver PCM models can be transformed to LQN models via an

automatic model transformation implemented in Palladio Bench. The resulting

LQN model can be analyzed either with the LQN Solver [FAOW+09] or the LINE

solver [PC13]. Both solvers are limited to the prediction of response times for open

workloads and hence provide less comprehensive analysis results compared to the

other two performance analysis tools in Palladio Bench.

SimuCom A performance simulation can be generated from PCM models via automatic

model transformation. The generated simulation code uses the SimuCom frame-

work, which is part of Palladio Bench. The SimuCom framework provides the

basic functionality for performance simulations, such as the simulation of user re-

quests, resource scheduling, and resource consumption. In Chapter 6, we present

the implementation of our prediction method, which is based on the SimuCom

framework.

ProtoCom Additional to performance simulations, performance prototypes can be gen-

erated with Palladio Bench as well. Similar to SimuCom, ProtoCom provides a

framework that provides basic functionality for performance prototypes. With

ProtoCom load can be generated and resources can be consumed on real hardware

nodes. For the resource consumption, ProtoCom is calibrated on the hardware

it is executed on in order to consume as much resources as specified in the PCM

model.
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Self-adaptive system architectures are more complex than non-adaptive system archi-

tectures due to the addition of a self-adaptation layer, as described in Section 2.2.2.

The additional complexity also means a challenge for modeling self-adaptive systems

for the purpose of performance analysis.

Research already addressed the specification of software architectures [Cle96, MT00]

with special-purpose modeling languages, so called architecture description languages

(ADLs). Software engineers use ADLs to model systems for the purpose of documen-

tation, but also for analysis. However, no ADL that enables performance analysis of

self-adaptive systems at design-time does exist yet.

On one hand, there exist some ADLs that also allow the specification of performance-

relevant information within the architecture model [BDIS04, Koz10]. However, these

ADLs focus on non-adaptive software architectures and thus do not provide means to

specify the self-adaptation layer as an independent concern [Luc13]. Consequently, these

modeling languages cannot serve as input for the prediction of relevant performance

properties of self-adaptive systems, such as scalability and elasticity.

On the other hand, the specification of self-adaptive software architectures has been

addressed by few approaches which either completely lack of means to specify per-

formance metrics or over-simplify performance properties to single values that do not

reflect performance properties in a reliable and reproducible way [BLB12].

Consequently, a modeling approach that enables the specification of self-adaptive system

architectures for the purpose of analyzing these systems’ performance properties, such

as scalability and elasticity, is still missing.

Based on two independent sets of requirements [Bec11, Luc13] for self-adaptive system

modeling approaches, we set up a comprehensive list of requirements for a modeling ap-

proach that also supports the specification of performance properties of a self-adaptive

system. Subsequently, we surveyed literature and evaluated modeling approaches with

our list of requirements. We identified the Palladio Component Model (PCM), as the

approach that fulfills most of the requirements in comparison to the other modeling

approaches. Hence, we extended PCM with the missing features that enable the speci-

fication of self-adaptive system architectures and the specification of performance prop-
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erties of the self-adaptation layer. The result is part of SimuLizar, our model-driven

approach for the prediction of scalability and elasticity that we present in this thesis.

SimuLizar’s performance modeling approach enables software engineers to model self-

adaptive system architectures annotated with performance-relevant information. The

resulting architecture models serve as input for the prediction of scalability and elasticity

properties early at design-time for systems that implement the modeled architecture.

In this chapter, we first outline our scientific contributions to performance modeling of

self-adaptive systems in Section 4.1. Second, we specify requirements for performance

modeling of self-adaptive systems in Section 4.2. Third, we discuss existing modeling

languages that address the specification of self-adaptive systems regarding these re-

quirements in Section 4.3. Fourth, in Section 4.4, we give a brief overview of our own

performance modeling approach for self-adaptive systems that is part of SimuLizar.

Next, we describe three viewpoints and their respective view types for our modeling

approach in Section 4.5, Section 4.6, and Section 4.7. Subsequently, we describe the

evaluation of our performance modeling approach with respect to our requirements in

Section 4.8. Finally, we draw conclusions for the approach presented in this chapter in

Section 4.9.

4.1. Scientific Contributions

The scientific contributions in this chapter can be summarized as follows:

• We provide requirements to model self-adaptive systems with the purpose to an-

alyze the system’s scalability and elasticity. We derive these requirements from

initial work by S. Becker [Bec11] and related work by Luckey [Luc13] and refine the

requirements from related work with more detail. The resulting requirements al-

low us to identify relevant modeling approaches to the first problem we formulated

in Section 1.2, i. e., missing performance modeling approaches for self-adaptive

systems.
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• We systematically review modeling approaches based on our self-adaptive system

performance modeling requirements to identify the most promising candidates to

base our model-driven performance engineering approach on.

• The performance modeling approach we introduce in this chapter fulfills all of our

requirements by extending the Palladio Component Model with self-adaptation

specific viewpoints. Thus, we provide all necessary means to model a self-adaptive

system for the purpose of analyzing its scalability and elasticity.

• In addition to the modeling approach, we introduce new roles and a modeling

process to illustrate the practical application of our approach. The process extends

Palladio’s performance engineering process with additional roles and use cases.

4.2. Modeling Requirements

As motivated above, a performance modeling approach that enables the specification

of self-adaptive system architectures and their performance properties is still missing.

Hence, we formulate requirements that specify what a performance modeling approach

needs to provide in order to enable modeling self-adaptive systems and assessing the

scalability and elasticity of these systems at design-time.

We base our set of requirements on two independent sets of requirements for self-

adaptive system modeling by S. Becker [Bec11] and Luckey [Luc13]. Both formulate

requirements for modeling approaches that support the analysis of self-adaptive systems.

S. Becker’s requirements are more focused on the scope that needs to be provided by

such a modeling approach. Luckey’s requirements are more general and specify desirable

properties of a modeling approach for self-adaptive systems. Consequently, we split our

requirements into two sets. Our first requirements set defines general requirements for

the implementation and application of modeling viewpoints for the purpose of analyzing

the scalability and elasticity of self-adaptive systems. Our second requirements set

defines the scope of the viewpoints.

We derive the first set, the general requirements for our viewpoints, from the require-

ments that are defined by Luckey [Luc13]. We derive the second set that defines the
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scope of our viewpoints from the requirements presented by S. Becker [Bec11]. S. Becker

specifies requirements for two viewpoints, a system type viewpoint and a run-time view-

point. However, our requirements refine S. Becker’s set of requirements. Specifically,

we added a third viewpoint, the self-adaptation viewpoint. Additionally, we added the

Requirement MR6 “System Resource Context” to address the specific role of resources

in self-adaptive systems. Furthermore, we added Requirement MR9 “Service Level Ob-

jectives”and Requirement MR10“Monitoring” in order to be able to specify service level

objectives, which are important drivers for self-adaptation, and the required monitoring

for self-awareness of the system. Finally, we also added the Requirement MR8 “System

Context” as change in a self-adaptive system’s context, e. g., increasing workload, is the

main cause for a required self-adaptation.

4.2.1. General Requirements

In this first set of general modeling requirements, we specify requirements for desirable

properties for a modeling approach that shall enable designing self-adaptive systems for

the purpose of assessing the scalability and elasticity of these systems.

MR1 Design-Time: A suitable modeling approach supports a software engineer to

model a self-adaptive system for the purpose to predict their scalability and elas-

ticity properties early in the software engineering process. Hence, the model must

support the specification of a self-adaptive system architecture and its relevant

performance properties at design-time. The modeling approach shall furthermore

allow the software engineers to successively refine the model to add further details,

like detailed control flows and resource consumptions, as the software engineers

determine these details.

MR2 Separation of Concerns: The modeling approach shall support software en-

gineers to separate self-adaptation from other concerns, like the application logic.

Concern-specific viewpoints and view types support this requirement. High-level

architecture styles, like MAPE-K, help to achieve a separation of concerns. A

suitable modeling approach provides at least the viewpoints for system type and

run-time, as proposed by S. Becker [Bec11]. Furthermore, a role concept is re-
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quired, that defines which roles in a software engineering process provide which

artifact.

MR3 Analyzability: The modeling approach shall support software engineers to

model all necessary aspects that are required to predict the scalability and elastic-

ity of a self-adaptive system. Hence, a suitable modeling approach shall provide

means to specify all information that is relevant to analyze the scalability and

elasticity of the modeled self-adaptive system architecture.

MR4 Integrated Tool Chain: The modeling approach shall be integrated into a

tool chain for modeling as well as the ability to assess scalability and elasticity

properties of the modeled self-adaptive system. A suitable modeling approach

provides editors that allow designing the system with all artifacts of the software

architecture, integrated in one tool or tool chain.

4.2.2. Scope of the Viewpoints

In this second set of requirements, we specify the scope of the viewpoints, i. e., which view

types shall be included in the viewpoints. Additional to the two viewpoints proposed by

S. Becker [Bec11], we add a reconfiguration viewpoint. For each of the three viewpoints,

we provide individual requirements to define their scope.

System Type Viewpoint The first viewpoint is the system type viewpoint. This view-

point includes all view types that are used to specify elements of the self-adaptive system

on type level, i. e., elements that are not specific to a single system but whose instances

can occur multiple times in one system and can be reused in multiple different systems.

MR5 System Architecture Types: A self-adaptive system model shall enable to

specify the system and its parts. Typically, in self-adaptive systems elements of

a certain type can be instantiated and occur in multiple instances in the system,

e. g., multiple instances of software components running on the application tier.

Hence, the system type viewpoint shall provide a system architecture types view

48



4.2. MODELING REQUIREMENTS

type to specify the system architecture at type level. Type level elements of the

system architecture are, for example, services or components and their interfaces.

MR5.1 The system architecture types view type shall enable the specification of

structural system architecture element types such as interfaces and compo-

nent types.

MR5.2 The system architecture types view shall enable the specification of

performance-relevant behavior on type level, such as parametric resource de-

mand specifications of methods, e. g., parametrized execution time on CPU,

required disk access time, execution delay, etc. The specification shall allow

specifying uncertain performance information as well.

MR6 System Resource Context: As already motivated in Section 2.2.3, self-

adaptive systems that are based on cloud computing offers, can potentially use an

unlimited set of resources, like virtual machines. These resources come in various

types, capacities, and capabilities. Scalability and elasticity rely on the leasing

and releasing of these resources. Hence, a self-adaptive system performance model

shall enable to specify resource types in a system resource context view type in

order to enable scalability and elasticity analysis.

MR6.1 The system resource context view type shall enable the specification of active

resource types like CPUs or hard disks, i. e., resource types that actively

process tasks.

MR6.2 The system resource context view type shall enable the specification of pas-

sive resource types like thread pools or connection pools, i. e., resource types

that are used to limit parallel execution of tasks in active resources.

MR6.3 The system resource context view type shall enable the specification of the

capacity and capabilities of resource types. This includes the specification of

CPU frequency, number of CPU cores, and access rates of hard disk drives,

for example.
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Run-time Viewpoint In the second viewpoint, the run-time viewpoint, all view types

are included that are used to specify elements of the self-adaptive system on instance

level, i. e., elements that are specific to a concrete system architecture configuration.

MR7 Initial System Architecture: A self-adaptive system requires an initial system

architecture configuration in which software components will be instantiated and

deployed when the system is started. The run-time viewpoint shall contain a

view type to specify this initial system architecture configuration. In this view

type, instances of the system element types are composed to a complete and valid

system architecture configuration and the deployment of this system architecture

to hardware resources is specified.

MR7.1 The initial system architecture view type shall enable the specification of

an initial system architecture configuration. A self-adaptive system archi-

tect must be able to instantiate system element types and to compose these

instances to an initial system architecture configuration.

MR7.2 The initial system architecture view type shall enable the specification of an

initial system deployment. A self-adaptive system architect must be able to

specify the deployment of elements in the initial system architecture config-

uration to hardware resources.

MR8 System Usage Context: The run-time viewpoint shall contain a view type

to specify usage contexts of the self-adaptive system, i. e., different usage scenar-

ios in which the system operates. The usage scenarios define the workload the

self-adaptive system has to process. As introduced in Section 3.3, workload is

composed from the properties work and load. Work describes the effort needed to

process a task. In our Znn.com example, work could be the effort of the Znn.com

system to process a user request, prepare a news website, and send the website

as a response. Load is the property that describes how frequent a specific work

is done. For example, in the Znn.com system, the load can be defined by the

number of requests sent to request a news website in one second.

MR8.1 The system usage context view type shall enable the specification of work,

which is processed by the self-adaptive system. The type of requests sent
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from users to the Znn.com system, for example, characterize the work. The

type of requests is defined by the method that is called and the concrete

parameter values that determine which data is processed. Since the concrete

parameter values might change at run-time, the work may vary.

MR8.2 The system usage context view type shall enable the specification of load,

e. g., the frequency of requests (with a certain work to be processed). Ad-

ditional to the specification of the frequency the system usage context view

shall enable to specify whether the workload is an open workload, i. e., inde-

pendent from prior workload, or closed workload, i. e., dependent from prior

workload. The load in our Znn.com system is an open workload, since the oc-

currence of a user request is independent from previous requests. However,

the frequency of user requests might vary for different scenarios, e. g., de-

pending on time, weather, political situation, or other factors that influence

the users’ interest in news.

MR8.3 The system usage context view type shall enable the specification of time-

dependent variation in the work and load of the system. That is, additionally

to the scenarios in which a fixed workload is defined, it shall be possible to

specify how the workload varies over time.

Self-Adaptation Viewpoint In the third viewpoint, the self-adaptation viewpoint, all

view types are included that are used to specify the self-adaptation of a system. This

viewpoint is orthogonal to the first two viewpoints and may reference elements on type

level as well as on instance level.

MR9 Service Level Objectives: The self-adaptation viewpoint shall contain a view

type to specify the service level objectives of the system. SLOs are important

drivers for self-adaptation, because they define quantitative thresholds in which a

self-adaptive system should operate. Self-adaptation is required whenever these

thresholds are exceeded or impend to exceed. Non-functional quality properties

of software systems are often in conflict with each other, e. g., response time

versus operating costs. Hence, it shall be possible to specify soft thresholds, i. e.,
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desired limits, and also hard threshold, i. e., required limits. These soft and hard

thresholds define the corridor for self-adaptation, as described in Section 2.2.2.

MR9.1 The service level objectives view type shall enable the specification of soft

thresholds for a previously defined monitoring specification, e. g., 2 seconds

mean response time. For example, a software engineer shall be able to specify,

that a mean response time of greater than 2 seconds is not desired but does

not violate the service level objectives. In this case, we call the 2 seconds

threshold a soft threshold.

MR9.2 The service level objectives view type shall enable the specification of hard

thresholds for a previously defined monitoring specification, e. g., 3 seconds

mean response time. For example, a software engineer shall be able to specify,

that a mean response time of greater than 3 seconds is not acceptable and

will violate the service level objectives. In this case, the 3 seconds are called

a hard threshold.

MR10 Monitoring Specification: Monitoring is a prerequisite for self-awareness and

self-adaptation, as described in Section 2.2.2. Hence, the self-adaptation view-

point shall contain a monitoring view type to specify which elements of the system

and its environment have to be monitored, what metric needs to be monitored,

how often it shall be monitored, and how the measured data shall be aggregated.

MR10.1 The monitoring view type shall enable the specification of the location type of

a system type element or the concrete location of an element instance in the

system to be monitored, i. e., the measuring point. For example, to monitor

the overall response time of our Znn.com system, a measuring point must be

located directly at the method that the user calls to retrieve the news site.

MR10.2 The monitoring view type shall enable the specification of the metric to be

monitored, e. g., response time or utilization.

MR10.3 The monitoring view type shall enable the specification of frequency for the

monitoring, e. g., every minute, every hour, etc.
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MR10.4 The monitoring view type shall enable the specification of the aggregation

method of the measurements, e. g., aggregation in fixed batches or sliding

windows. Furthermore, the specification of the aggregation function must be

supported, e. g., conjunctive aggregations like minimum, disjunctive aggrega-

tions like maximum, or averaging aggregations like arithmetic mean [TN07].

MR11 Architecture reconfigurations: The self-adaptation viewpoint shall contain

a view type to specify architecture reconfigurations. An architecture reconfigu-

ration describes the transition from one valid software architecture configuration

to another valid software architecture configuration. The execution of this re-

configuration shall only be triggered, if a reconfiguration is required, i. e., if all

preconditions for the reconfiguration hold.

MR11.1 The architecture reconfiguration view type shall enable the specification of

reconfiguration rules. For example, leasing additional resources like virtual

machines, reallocating components from one resource to another, or the sub-

stitution of one component type by another component type are possible ar-

chitecture reconfigurations in the Znn.com system. All these reconfigurations

describe a transition rule from a specific source architecture configuration to

a specific target architecture configuration.

MR11.2 The architecture reconfiguration view type shall enable the specification of

resource demands required for the execution of a reconfiguration rule, e. g.,

required execution time, execution delay, etc.

MR11.3 The architecture reconfiguration view type shall enable the specification of

system configuration and context preconditions for reconfiguration rules. For

example, in our Znn.com example, we like to specify a reconfiguration rule

that adds an additional virtual machine to the application tier only if the

precondition holds that the mean response time is greater than 3 seconds and

that the number of virtual machines in the application tier is less than 3.
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4.3. Related Work

Modeling approaches that are candidates to fulfill our modeling requirements can be

found in three research areas that are relevant for self-adaptive system performance

modeling. As illustrated in Figure 4.1, the research areas are self-adaptive systems

(SAS), model-driven software engineering (MDSE), and software performance engi-

neering (SPE). We applied the guidelines for systematic literature reviews by Kitchen-

ham [KDJ04, KC07] to find performance modeling approaches in the intersection of the

three research areas that fulfill our modeling requirements.

The survey question, which guided our systematic literature review was: Which of

the existing approaches fulfills the most of our modeling method requirements? We con-

ducted the literature survey in the time from October 2011 to April 2016 with the search

engine Google Scholar [Goo16]. We selected related work, according to Kitchenham’s

guideline in two steps. First, we included all papers that can be found on Google Scholar

by searching for a combination of our predefined keywords. The keywords were combi-

nations of the three research areas “model-driven (software) engineering”, “self-adaptive

systems”, and “(software) performance engineering”, with and without the word “soft-

ware” as indicated by the brackets. Second, we scanned the abstracts of all results

and filtered out all papers that did not match our acceptance criteria. We accepted

all papers that indicated that the paper presents a modeling approach for self-adaptive

systems with the purpose of analyzing the model regarding quality properties.

Based on the requirements MR1 to MR11 and our findings in our initial survey [BLB12],

we have created a feature model, see Figure 4.2, to specify required features for a self-

adaptive system performance modeling approach and to answer the survey questions of

our literature review. The feature model also helps to classify the surveyed approaches.

The mandatory features in our feature model are the features that occur as require-

ments for our self-adaptive system modeling approach in the previous section. All other

features that are not listed as requirements in the previous section, are optional. Thus,

any self-adaptive system modeling approach that completely fulfills our modeling re-

quirements is also a valid configuration for the presented feature model. We highlighted

the configuration of our own performance modeling approach, we present in this thesis,
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SAS

MDSE SPE

our approach

Legend
SAS = Self-Adaptive Systems; MDSE = Model-Driven Software Engineering;

SPE = Software Performance Engineering; � = Related Work

Figure 4.1.: Venn diagram of related work.

by coloring the selected features in gray in the feature model. We do not discuss related

approaches that are based on the modeling approach that we present in this thesis.

This follow-up work is discussed in Section 7.2.

Figure 4.2 shows that we classify self-adaptive system modeling approaches according

to the target system class, the applicability of the approach, and the approach’s modeling

paradigm, i. e., , whether the approach is model-driven or model-based. First, we briefly

summarize the targeted system classes and the applicability of the approaches. Second,

we analyze whether the approaches fulfill our requirements MR1 to MR11 in more detail.

We identify which features are already provided by existing modeling approaches and

which features we have to add in our approach in order to fulfill all requirements.

The self-adaptive system modeling approaches we surveyed target either one of

two different architectures: component-based architectures or service-oriented archi-

tectures (SOA). The majority of modeling approaches are targeted at component-

based systems. Only the Adapt Case Modeling Language (ACML) [Luc13] and D-

KLAPER [PPMMG10] target service-oriented architectures. Within the system class,

55



4. Self-Adaptive System Performance Modeling

S
elf-A

d
ap

tive

M
o
dels M

o
delin

g
 A

pp
ro

ach

A
p
p
lica

tion
 T

im
e

D
esig

n-T
im

e
R

un
-T

im
e

exclu
siv

e O
R

m
an

d
ato

ry featu
re

o
p
tion

a
l fea

tu
re

L
e
g
e
n
d

in
clu

siv
e O

R

A
rch

itectu
re

A
n
alysis

B
ridg

e

S
tyle

M
A

P
E
-K

L
ayer

S
trateg

y

R
eactive

P
ro

active
M

o
del-D

riven

T
o
ol S

u
p
po

rt

C
om

p
.-b

ased
S
O

A

Q
N

M
ark

ov

P
red

ictio
n
 M

eth
od

A
n
alysis

M
o
delin

g

V
alid

atio
nC

ase S
tu

dy
P
roo

f o
f C

on
cept

A
p
p
lica

bility

P
etri N

et

A
rch

itectu
re

S
ystem

 C
lass

S
ystem

 T
yp

e V
iew

p
oin

t
R
un

-T
im

e T
yp

e V
iew

p
o
in

t

M
o
nito

ring
In

itial C
on

fig
u
ratio

n
S
ervice L

evel O
b
jectives

S
ys. A

rch
itectu

re T
yp

es

M
o
del-B

ased

+

ch
ild

ren h
id

d
en

+

R
eco

nfig
u
ratio

n
M

R
10

M
R

1

M
R

3

M
R

5
M

R
9

M
R

2

M
R

4

S
ys. U

sag
e C

o
ntext

M
R

11

S
ys. R

eso
urce C

o
n
text M

R
6

M
R

7 M
o
delin

g
 P

arad
ig

m

S
elf-A

d
ap

tatio
n
 V

iew
p
oin

t

M
R

8

F
igu

re
4.2.:

F
eatu

re
d

iagram
for

classifi
cation

of
related

w
ork

.

56



4.3. RELATED WORK

we distinguish the self-adaptation style and strategy. The most common self-adaptation

style is MAPE-K, as introduced in Section 2.2.2. Hence, also the majority of the sur-

veyed approaches implement the MAPE-K style for modeling self-adaptation. However,

for four of the approaches [FS09, ZC06, BKR09, PPMMG10] a self-adaptation style

like MAPE-K does not apply because these approaches either do not oblige the software

engineer to use a certain self-adaptation style or not fully support the specification

of self-adaptation at all. The strategy when a self-adaptation is triggered can either

be proactive or reactive, i. e., self-adaptations are either before SLOs are potentially

missed or only after a SLO is violated. Except for the Descartes Modeling Language

(DML) [HWBK15], which targets proactive self-adaptations, all other modeling ap-

proaches target reactive self-adaptation.

Regarding the applicability of the approaches, we found that all of the approaches at

least provide proof-of-concept implementations. Only the Palladio Component Model

(PCM) [BKR09] and DML [HWBK15] document more mature case study validations,

in which they evaluate their modeling approaches. However, only the DML case study

is in the context of self-adaptive systems modeling. The tool support for the modeling

approaches is mixed. Only four of the approaches document modeling tools in publica-

tions. Two approaches mention the existence of tool support in the publications, but do

not provide more details. No tool support is mentioned for the rest of the approaches.

Table 4.1 provides an overview of the fulfillment of the surveyed self-adaptive system

modeling approaches regarding our requirements MR1 to MR11. From the table, we

can first observe that none of the surveyed approaches fully fulfills our set of general

modeling requirements nor our requirements specific for self-adaptation modeling view-

points. However, we identified the Palladio Component Model as the best candidate to

build our work on, because it fulfilled our requirements best since it already provides

a good modeling approach for non-adaptive systems. The PCM also is available as an

open source tool and is well documented. Thus, it provides a good basis for our own

self-adaptive system performance modeling approach.

The first requirement MR1 “Design-Time” is fulfilled at least partially by all approaches

with the exception of the DML [HWBK15]. This language is focused on run-time per-

57



4. Self-Adaptive System Performance Modeling

T
ab

le
4.1.:

F
eatu

re
C

on
fi
gu

ration
s

of
R

elated
M

o
d
elin

g
A

p
p
roach

es

G
en

era
l

S
y
stem

T
y
p

e
V

P
R

u
n

-tim
e

V
P

S
elf-A

d
ap

tation
V

P

A
p
p
ro

a
ch

M
R

1
M

R
2

M
R

3
M

R
4

M
R

5
M

R
6

M
R

7
M

R
8

M
R

9
M

R
1
0

M
R

1
1

A
C

M
L

[L
u

c13
]

X
X

◦
◦

◦
×

X
1

×
×

X
◦
1

C
L

s
[H

G
B

1
0
]

X
×

×
?

◦
1
,2

×
X

1
×

×
X

◦
D

-K
L

A
P

E
R

[P
P

M
M

G
1
0
]

X
X

X
×

X
X

X
◦

×
×

◦
D

M
L

[H
W

B
K

1
5
]

×
X

X
◦

X
X

◦
X

◦
X

◦
F

leu
rey

[F
S
0
9]

X
X

×
?

×
×

×
×

◦
×

◦
E

U
R

E
M

A
[V

G
1
4]

◦
X

×
×

◦
1
,2

×
×

×
×

×
X

M
U

M
L

[G
ie0

7
]

X
◦

◦
X

◦
◦

X
×

×
×

◦
P

C
M

[B
K

R
09

]
X

◦
X

X
X

X
X

◦
×

◦
×

S
titch

[C
G

12
]

X
X

×
×

×
×

×
×

×
×

X
Z

h
a
n

g
[Z

C
0
6
]

◦
×

×
×

×
×

×
×

×
×

X

X
=

req
u

irem
en

t
fu

llfi
lled

;×
=

req
u

irem
en

t
n
o
t

fu
lfi

lled
;◦

=
req

u
irem

en
t

p
a
rtly

fu
lfi

lled
;

?
=

u
n

k
n
ow

n
;

-
=

d
o
es

n
ot

ap
p
ly

;
1

u
sin

g
th

e
U

M
L

;
2

u
sin

g
th

e
M

A
R

T
E

p
ro

fi
le

58



4.3. RELATED WORK

formance prediction and hence on run-time models. However, support for self-adaptive

software architecture modeling at design-time is not provided by DML.

Requirement MR2 “Separation of Concerns” is fulfilled by the majority of the sur-

veyed modeling approaches. However, the Control Loops (CLs) approach [HGB10] and

Zhang’s approach [ZC06] do not provide means to separate the self-adaptation concerns

from the application logic in their modeling approaches. The PCM [BKR09] provides

different view types for the specification of different aspects of the software architecture.

However, view types to specify the self-adaptation concern are not provided. Hence,

the requirement MR2 is only fulfilled partially by PCM.

The “Analyzability” requirement MR3 is, at least partially, fulfilled by half of the

surveyed approaches. ACML [Luc13], D-KLAPER [PPMMG10], DML [HWBK15],

MUML [Gie07], and PCM [BKR09] provide means to annotate relevant information for

scalability and elasticity predictions within their models. However, the possible annota-

tions for ACML and MUML are of limited use for scalability and elasticity predictions,

since their resource demand annotations are either limited to either fixed scalar val-

ues or limited to worst-case execution times. The specification of uncertain resource

demands, e. g., with probability distribution functions, is not supported in ACML and

MUML.

Only two of the surveyed approaches provide an integrated tool for modeling analyz-

able self-adaptive system architectures, i. e., fulfill requirement MR4 “Integrated Tool

Chain”. MUML [Gie07] and PCM [BKR09] provide complete modeling tool suites that

also support analysis. However, both tools do not provide a scalability and elasticity

analysis. ACML [Luc13] and DML [HWBK15] provide modeling tools, but do not in-

tegrate analysis of non-functional properties like scalability and elasticity at all or not

at design-time.

There are three approaches that support the full system type viewpoint as defined by our

requirements, i. e., requirements MR5 “System Architecture Types” and MR6 “System

Resource Context”. DML [HWBK15], D-KLAPER [PPMMG10], and PCM [BKR09]

fulfill both requirements for this viewpoint. ACML [Luc13], CLs [HGB10], and

MUML [Gie07] provide partial support for at least one aspect of the system type view-

point requirements. Requirement MR5 “System Architecture Types” is supported by
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few of the approaches. In most of the approaches, (uncertain) performance information

cannot be annotated within system architecture types. D-KLAPER, DML [HWBK15],

and PCM [BKR09] are the exceptions here, as they allow performance information an-

notations like resource demands. These three approaches also provide means to model

resources, as specified by requirement MR6 “System Resource Context”.

The specification of the system’s context, i. e., MR8, is only possible with two of the sur-

veyed modeling approaches, i. e., DML and PCM. In D-KLAPER, the system’s context

is implicitly modeled within the resource consumption, i. e., the resource consumption

is not parametrized but is modeled for one specific system context.

The PCM [BKR09] is the only surveyed modeling approach that completely fulfills

the requirements for our run-time viewpoint defined by our requirements MR7 “Initial

System Architecture Configuration” and MR8 “System Usage Context”. The other

approaches either do not fully support modeling resources, e. g., ACML [Luc13], D-

KLAPER [PPMMG10], CLs [HGB10], and MUML [Gie07], or do not fully support

modeling an initial system architecture configuration.

The three requirements MR9 “Service Level Objectives”, MR10 “Monitoring Specifica-

tion”, and MR11 “Architecture Reconfigurations” that define our self-adaptation view-

point are not completely fulfilled by any of the surveyed approaches.

Modeling service level objectives, i. e., MR9, is even not completely supported by a

single approach of the surveyed approaches. The approaches that support modeling

SLOs do not provide support to model soft thresholds, which is, however, relevant to

distinguish a desired and required behavior of a self-adaptive system, as explained in

Section 2.2.2.

The requirement MR10 “Monitoring Specification”, is only fulfilled by ACML [Luc13],

CLs [HGB10], and DML [HWBK15]. All other modeling approaches do not allow the

specification of monitors for the self-adaptation concern.

Interestingly, the approaches that fully fulfill our requirement MR7 “Initial System Ar-

chitecture Configuration” do not completely fulfill our requirement MR11 “Architecture

Reconfigurations” and vice versa. We assume that this is the case because the modeling
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approaches are focused either on modeling analyzable software architectures or on mod-

eling self-adaptation – but not both at once. For example, D-KLAPER [PPMMG10],

MUML [Gie07], and PCM [BKR09] provide all very good support to specify an initial

(non-adaptive) software system architecture configuration but no full support to spec-

ify architecture reconfigurations as defined by our requirement MR11. On contrast,

EUREMA [VG12], Stitch [CG12], Zhang [ZC06] provide good support to model recon-

figuration rules and preconditions but do not provide any support to model an initial

software system architecture configuration.

In conclusion, we can summarize that none of the surveyed approaches completely ful-

fills our requirements. However, we identify the Palladio Component Model as the

best candidate to build our work on. First, PCM scores best with completely fulfilling

three of our general modeling requirements and fulfilling one of our general modeling

requirements at least partly. Second, PCM also fulfills 3 out of 7 viewpoints require-

ments completely and two of the viewpoints requirements partly. Finally, the PCM

meta model source is freely available, well-documented, and supported by an active

community [Kar16a]. The second best candidate is DML, which is originally based on

the concepts of PCM as well, but is focused on run-time performance predictions and

hence does not provide design-time focused modeling tools.

Consequently, we selected PCM as the basis for our own self-adaptive system perfor-

mance modeling approach. In order to completely fulfill our requirements for self-

adaptive system performance modeling approach, PCM requires to additionally fulfill

requirements MR9 “Service Level Objectives”, MR10 “Monitoring”, and MR11 “Archi-

tecture Reconfigurations”, i. e., the self-adaptation viewpoint, and the requirement MR8

“System Usage Context”. Hence, we extend PCM with a self-adaptation viewpoint and

integrated the system usage context models from DML to fully support the modeling

of variable system usage context. Additionally, MR2 “Separation of Concerns” is only

partly fulfilled by PCM, since PCM does not provide distinct viewpoint for the self-

adaptation concern yet. We provide an extended role concept and modeling process

that extends PCM’s role concept and modeling process to also fulfill this requirement.

Our extensions to PCM are part of SimuLizar, our model-driven engineering method

for self-adaptive systems. We present SimuLizar’s complete self-adaptive system per-
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(a) System Type Viewpoint and Run-Time Viewpoint
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Legend
Existing Work Contribution of this Thesis

Figure 4.3.: Viewpoints in SimuLizar’s self-adaptive sys. perf. modeling approach

formance modeling approach in detail in the remainder of this chapter. We also present

which parts we reused from PCM and detail our extensions to PCM.

4.4. Self-Adaptive System Performance Modeling Overview

As motivated in the previous section, we selected the Palladio Component Model (PCM)

as a basis for our self-adaptive system performance modeling approach in SimuLizar.

In this section, we provide an overview of the viewpoints and the respective view types

by explaining our extensions to the original Palladio Component Model. Additionally,

we discuss additional and modified roles in our self-adaptive system performance mod-

eling approach in comparison to Palladio’s modeling roles, as introduced in Section 3.3.

Finally, we describe how the roles are involved in the modeling process as part of the

software engineering process.
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4.4.1. Modeling Viewpoints

In Figure 4.3, our self-adaptive system performance modeling approach with its three

viewpoints, the system type viewpoint, the run-time viewpoint, and the self-adaptation

viewpoint, is illustrated. The white elements in the figure depict contributions of this

work, the crosshatched grey elements are reused from PCM.

The system type viewpoint consists of two view types, which are reused from PCM. We

reuse the PCM repository view type to specify system architecture types, i. e., component

types and interfaces, of the self-adaptive system. Like shown in Table 4.2, elements

that are specified in the system type viewpoint are on type level, e. g., components and

interfaces. These elements have to be instantiated for a concrete system architecture

configuration.

Our run-time viewpoint consists of another three view types. The PCM system view

type is used for the specification of the initial system architecture configuration. The

initial system deployment can be specified using the PCM allocation view type and the

system usage context can be specified using the PCM usage view type. The variation of

the workload in the system usage context can be modeled with Palladio’s usage evolu-

tion [BSL16] and the Descartes Load Intensity Model (DLIM) [KHK+17]. The run-time

viewpoint is a static viewpoint on an initial, concrete system architecture configuration.

In this viewpoint, elements of the system type viewpoint are instantiated, but no rules

for the reconfiguration of this system configuration are provided. Like shown in Ta-

ble 4.2 the view types in the system type viewpoint are used to model a concrete system

configuration including its allocation and concrete usage scenarios. Thus, the run-time

viewpoint reflects a static system architecture configuration, like in PCM.

Finally, the new self-adaptation viewpoint consists of three view types. First, it contains

a monitoring view type to specify monitors for the self-adaptive system. The monitoring

view type is an extension of the PCM measuring points view type. Second, the service

level objectives view type is used to specify service level objectives with hard thresholds

and soft thresholds. Finally, reconfigurations are specified in the Reconfigurations view

type. Like shown in Table 4.2, in the self-adaptation viewpoint elements from the system

type viewpoint and run-time viewpoint can be referenced. For example, monitors can
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SimuLizar.ReconfigurationRule

Palladio.PCM

MonitorRepository SimuLizar.RuntimeMeasurement

Palladio.EDP2

Palladio.MetricSpecification

ServiceLevelObjective

Legend Reused/Extended Package New Package, Contribution Package dependency

Figure 4.4.: Package diagram of SimuLizar’s modeling packages.

be defined for type-level elements, such as components, but also for run-time elements

such as concrete system configurations.

Figure 4.4 shows a package diagram illustrating the relationships between the modeling

packages in SimuLizar, Palladio/PCM, and DML. Again, the white elements in the dia-

gram are contributions of this work, the crosshatched gray elements are reused from Pal-

ladio/PCM or DML. The diagram shows that concepts of Palladio’s persistency model

EDP2 are used within SimuLizar’s MonitorRepository and it’s internal run-time measure-

ment model (SimuLizar.Run-timeMeasurement). SimuLizar’s reconfiguration view type

(SimuLizar.ReconfiguationRule) and ServiceLevelObjective view type build upon concepts

of the MonitorRepository.

In summary, the viewpoints in our self-adaptive system performance modeling ap-

proach build on top of Palladio’s modeling approach and the PCM. We added the

self-adaptation viewpoint for modeling the specifics of self-adaptive systems. We reuse

view types from PCM and DML in the context of our system type viewpoint and run-

time viewpoint. In the following paragraphs, we will discuss the various roles that use

these view types to model performance models of self-adaptive systems in order to assess

these system’s scalability and elasticity.
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(a) Modeling roles in SimuLizar.

«Component Developer»

«Domain Expert»

«System Deployer»

«System Architect»

 

Specify 
Components

 

Specify Usage

 

Specify Allocation

 

Specify Assembly

(b) Modeling roles in Palladio. [BKR09]

Figure 4.5.: Use case diagrams for comparison of modeling roles.

4.4.2. Modeling Roles

Figure 4.5 shows the roles that contribute artifacts to the performance models in

SimuLizar and Palladio. The left side shows a use case diagram with the roles in

SimuLizar that contribute to a self-adaptive system performance model. The right side

shows a use case diagram with the roles in Palladio that contribute to a non-adaptive

system performance model. The comparison of both sides shows that (1) there are more

roles in SimuLizar and the role names in SimuLizar differ from the roles in Palladio,

and (2) the use cases in SimuLizar are extended in comparison to Palladio’s use cases.

In SimuLizar, we defined a new role, the platform provider. The role of a platform provider

is to specify the resource context, i. e., the different element types that, for example, a

cloud platform provider offers to its customers. Resource context element types can

be (virtual) resources or platform interfaces and components. For example, a PaaS

provider will provide interface and component specifications for her provided platform.
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An IaaS provider will provide specifications of the virtual resources, such as virtual

machines, she provides.

Both, in SimuLizar as well as in Palladio, the component developer’s role is to provide

reusable specifications of system type elements, like interface specifications and compo-

nent specifications. In SimuLizar, however, we renamed the use case of the component

developer to specify system type elements in order to have a consistent naming with the

viewpoints, as presented above.

The domain expert exists in both modeling role concepts as well. However, whereas

the domain expert’s task is only to specify usage in Palladio, in SimuLizar the domain

expert’s task is also to specify service level objectives. Service level objectives are highly

domain-dependent, e. g., response times which might be acceptable for a news site on

the web might not be acceptable for games on a mobile device. Hence, the domain

expert has to specify service level objectives. Furthermore, the use case specify usage in

Palladio is extended and renamed to specify system usage context in SimuLizar. This

use case now additionally includes the specification of time-dependent variation of the

system usage context.

The platform expert role in SimuLizar is a specialization of the system deployer role in

Palladio. A platform expert has deep knowledge about an execution platform, like a

concrete server hardware, an operating system, an IaaS platform, or a PaaS platform.

Thus, the platform expert can specify an initial deployment as well as specify monitoring

for a self-adaptive system.

Finally, the self-adaptive system architect role in SimuLizar is a specialization of the

system architect role in Palladio. A self-adaptive system architect reuses system type

elements to specify an initial system architecture configuration, i. e., specifies an assembly

of system type element instances to a concrete system. Furthermore, the self-adaptive

system architect’s role is to specify reconfigurations, i. e., specify how the self-adaptive

system gets from one system configuration to another system architecture configuration.

In Palladio, the system architect only specifies a single assembly, since systems are

considered to be non-adaptive in Palladio.

67



4. Self-Adaptive System Performance Modeling

In conclusion, the roles in SimuLizar refine roles that can be found in Palladio as well.

With the platform provider, we added a new role to take the new paradigm of resource

leasing in cloud computing into account. We also added new use cases for existing roles,

like the specification of monitoring for the platform expert or the specification of service

level objectives for the domain expert. These additions reflect new activities for the

mentioned roles that come with the paradigm of self-adaptation.

4.4.3. Modeling Process
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Figure 4.6.: UML activity diagram of the modeling process in SimuLizar.

Figure 4.6 shows SimuLizar’s modeling process with the activities for each of the above

defined roles. The modeling process starts with concurrent activities of the requirements

engineer, component developer, and platform provider. The component developer and

platform provider can individually provide specifications for the provided system element

types, i. e., interfaces and components, or the provided system resource context, i. e.,
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virtual resources. Independent from these activities, the requirements engineer can elicit

requirements for the self-adaptive system. Note that the requirements engineer was not

introduced above, since this role is part of the requirements engineering phase and not

the design phase of the software lifecycle. However, the requirements engineer builds the

interface to the design phase since he contributes the input artifacts, i. e., requirements

specification, for the design phase.

The output of the elicit requirements activity, i. e., a requirements specification, is used by

(1) the self-adaptive system architect to specify an initial system architecture configuration,

by (2) the domain expert to specify the system usage context, and by (3) the requirements

engineer itself to relax the requirements and thus identify possible trade-offs and monitors.

Requirements are relaxed by reformulating requirements as RELAX requirements, as

introduced in Section 2.2.1. All of the three activities can happen independent from

each other in parallel. However, the output of the component developer’s specify system

element types activity is required by the self-adaptive system architect in the specify initial

system architecture configuration activity. This is reflected by the data flow in Figure 4.6.

After the requirements engineer finished the relax requirements activity, the domain

expert’s next activity is to specify service level objectives. Independent from this activity,

the platform expert can specify an initial system deployment. For this activity, she will

need the output from the platform provider’s specify system resource context activity.

Next, the platform expert will specify monitoring using the output of the domain expert’s

specify service level objectives activity.

Finally, when all other activities are completed, the self-adaptive system architect can

specify reconfigurations. After this last activity, the modeling process is finished and a

performance model of a self-adaptive system is completed.

In the following subsections, we describe and illustrate each of the above-mentioned view

types, the involved roles, and their activities in more detail. For each view type we (1)

describe the purpose of the view type, (2) illustrate the application of the view type on

our Znn.com example, (3) explain the view type specification, i. e., its meta model, and

(4) discuss the view type’s contribution to the fulfillment of our requirements concerned

with the scope of the viewpoints.
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4.5. System Type Viewpoint

In the system type viewpoint, elements of the self-adaptive system are modeled on type

level, i. e., elements are modeled that are not specific to a single system but whose in-

stances can occur within one or many systems at run-time. The system type viewpoint

includes two view types and involves two roles. The involved roles are the component

developer and the platform provider. The component developer provides specifications

of the system architecture types, i. e., interfaces and components, she provides. A spec-

ification of the system resource context, i. e., the specification of the platform and its

resources, is provided by the platform provider. In the following subsections, we detail

view types in the system type viewpoint and provide examples for their artifacts.

4.5.1. System Architecture Types

In SimuLizar, component developers model elements at design-time in the system ar-

chitecture types view. All system architecture types are on type level and can be

instantiated to configure a concrete system architecture configuration. System architec-

ture types are interfaces and component types including a parametric resource-demand

specification.

Figure 4.7 shows the system architecture types view for our Znn.com example system.

Remember that the Znn.com system has a three-tier architecture with a load balancer.

Hence, the view shows the three tiers: INewsFrontend defines the presentation tier,

INewsService defines the application tier, and IDatabase defines the data tier. As a

refinement of the high-level architecture presented in Section 1.1, the ILoadBalancer

interface defines the load balancing interface between the presentation tier and the

application tier. These four interfaces are shown in the upper part of the model view

depicted in Figure 4.7. Below the interface definitions, five component types are shown.

The component types MultimediaNews and TextNews provide the same application logic

interface INewsService for the application tier. The component types WebFrontend,

LoadBalancer, and Database provide individual interfaces, which can be associated with

the presentation tier, load-balancer, and data tier, respectively.
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Figure 4.7.: System architecture types for the Znn.com system.
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The lower part of the model shows two behavior specifications. The left behavior spec-

ification shows the behavior of the LoadBalancer’s getObject method, as specified in the

ILoadBalancer interface. The getObject method defines a probabilistic «BranchAction»
in which one of the two branches is being executed, each with a probability of 50%. In

the first branch, the getNews method of the first server is called, in the second branch

the getNews method of the second server is called. In this way, the workload is statisti-

cally equally distributed between the two servers because each request is delegated with

the same probability either to the first server or to the second server. The right behavior

specification shows the behavior of the method getNews of the TextNews component.

The first action in this behavior specification is an ExternalCallAction, i. e., an interface

method call. In this example, the action calls the getData method of the IDatabase

interface. The interface method getData is realized by the Database component, which

implements the IDatabase interface. After this action, two InternalAction follow sequen-

tially. Both actions include a ParametricResourceDemand specification. The Paramet-

ricResourceDemand specifies a parametric demand of an action for a certain resource

type, e. g., CPU time or hard disk access time. The actual resource demand depends

on the instance of the component with its actual resource demand parameters. In this

example, the first action has a resource demand of 300× 2, 7× 109 CPU time units and

the second action a resource demand of 100× 2, 7× 109 CPU time units.

Figure 4.8 shows an excerpt of the PCM meta model. In this excerpt, the classes

Interface and RepositoryComponent and their respective subclasses OperationInterface,

BasicComponent, and CompositeComponent, are defined.

A RepositoryComponent is a NamedElement, i. e., the software architect can assign a

human-readable name to it, via the name attribute. RepositoryComponent is abstract

and has two concrete subclasses, i. e., CompositeComponent and BasicComponent. A

CompositeComponent composes multiple RepositoryComponents (not shown in the ex-

cerpt). BasicComponent can include arbitrary many ServiceEffectSpecifications. Soft-

ware architects specify component behavior with these ServiceEffectSpecifications for

each Signature. The Signature class has a subclass OperationSignature, which repre-

sents the signature of a method like e. g., getNews(): Html in our Znn.com example.

The getNews(): Html method signature defines, the method getNews has no input pa-

rameters, i. e., no parameters are listed in the brackets, and the output parameter of
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Figure 4.8.: PCM repository meta model excerpt. [RBB+11]

type Html. In general, the characteristics of the parameters of a method can be used

within its behavior specification. The behavior of a component type is specified via the

ServiceEffectSpecification.

The concrete subclass of the Interface class, OperationInterface, can include multiple Op-

erationSignatures. An OperationSignature is a subclass of Signature, which is referenced

by a ServiceEffectSpecification.

ResourceDemandingSEFF (resource demanding service effect specification) is a subclass

of the behavior specifications, i. e., ServiceEffectSpecification, which additionally includes

the specification of resource demands. The resource demands are used in the analysis

in order to predict scalability and elasticity.

Please refer to [BKR09] for a more comprehensive description of the abstract and con-

crete syntax of the PCM repository model.
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Figure 4.9.: System resource context for the Znn.com system.

In our modeling requirements, we stated that it shall be possible for software architects

to specify system architecture types (MR5), specifically structural aspects (MR5.1) like

interfaces and components and behavioral aspects (MR5.2) like performance-relevant

behavior. All of these requirements are already fulfilled by the PCM’s repository model,

as outlined above.

4.5.2. System Resource Context

Platform providers, e. g., IaaS provider or PaaS provider, provide a specification of

their platform using the system resource view type. The specification of the platform,

in SimuLizar also referred to as the system resource context, includes the specification

of active resources, e. g., virtual machines or CPUs in an IaaS resource context, and

passive resources, e. g., thread pools or connection pools in a PaaS resource context.

Figure 4.9 illustrates the IaaS system resource context for our Znn.com example system.

The system resource context consists of a node WebServer, a LoadBalancer node, three

ApplicationServer nodes, and a DatabaseServer node. The nodes are connected accord-

ing to the three-tier architecture, i. e., the presentation tier (WebServer) is connected

to application tier (ApplicationServers) via a load balancer (LoadBalancer) and the ap-

plication tier is connected to the data tier (DatabaseServer). Exemplary, we added a

CPU node and a hard disk node to the (WebServer) and specified their capacity and

scheduling policy. Note that a platform expert also needs to specify the CPU nodes
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Figure 4.10.: PCM resource environment meta model excerpt. [RBB+11]

and other resources for all elements of the platform. In the example, the (WebServer)

has a CPU with a processing rate of 2.7× 109 and the CPU’s scheduling policy is proces-

sor sharing. That means, that the WebServer can process 2.7 × 109 CPU operations in

one time unit and concurrent operations are scheduled according to a processor sharing

policy. Analogously, the hard disk drive has a processing rate of 50, 000 and its schedul-

ing policy is first-come-first-serve. Hence, the WebServer can process 50, 000 hard disk

operations, i. e., write or read, within one time unit. Concurrent hard disk operations

are scheduled according to the first-come-first serve policy. This specification of the re-

source capacity is used later in the scalability and elasticity analysis together with the

resource demands of system architecture types. Furthermore, nodes that are defined in

the resource context view can be replicated via reconfigurations and are thus considered

as elements on type level.

The meta model in Figure 4.10 is an excerpt of the PCM meta model showing the Re-

sourceEnvironment view type. We use the ResourceEnvironment view type in SimuLizar
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to model active resources in the system resource context. In PCM, a ResourceEnviron-

ment contains arbitrary many ResourceContainers and LinkingResources. A Resource-

Container represents a physical or virtual resource, like a (virtual) server. A Link-

ingResource represents a physical or virtual link between ResourceContainers. This link

can be any type of network connection, wired or wireless and physical or virtual. Re-

sourceContainers contain so-called active resources. Active resources are represented by

ProcessingResourceSpecifications in PCM and SimuLizar. The ProcessingResourceSpec-

ification specifies the capacity of the active resource in terms of processed tasks per

time unit, i. e., a contained PCMRandomVariable, like introduced in Section 2.1, and the

number of identical replicas of the active resource, i. e., numberOfReplicas. For exam-

ple, if a platform provider wants to specify a server with a 2.4GHz dual core CPU,

she has to model one ResourceContainer “Server” for the server that contains one Pro-

cessingResourceSpecification for the CPU. The numberOfReplicas attribute of the CPU

ProcessingResourceSpecification has to be 2 and the processing rate can be modeled

with the PCMRandomVariable “2.4 ∗ 10E9”. Additional to the capacity specification,

platform providers have to specify the SchedulingPolicy for a ProcessingResourceSpec-

ification, i. e., the scheduling algorithm that is used to schedule concurrent tasks for

one active resource. PCM provides standard scheduling policies like processor sharing,

first-come-first-serve, or delay.

Passive resources are modeled in the PCM repository as elements of a component. On

the right side of Figure 4.10, the meta model excerpt of PCM is shown that specifies

PasssiveResources. A BasicComponent is a subclass of RespositoryComponent, as ex-

plained in the previous subsection. BasicComponents can include arbitrary many Pas-

siveResources. The capacity of a PassiveResource is specified via a PCMRandomVariable.

If, for example, a platform expert wants to specify a PaaS database component with

a limited connection pool of 50 connections, she needs to model one BasicComponent

“Database” that contains a PassiveResource “ConnectionPool” with a PCMRandomVari-

able “50”.

Requirement MR6 states that a suitable modeling approach requires means to specify

the resource context of a self-adaptive system. Furthermore, software engineers shall be

able to specify active resources (MR6.1), passive resources (MR6.2), and the capacity

of resources (MR6.3).
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The system resource context view type presented above completely fulfills MR6 and

its subordinated requirements. We reuse the PCM resource environment view type in

SimuLizar to model active resources of the system resource context. Passive resources

can be modeled using the PCM repository view. The PCM resource environment view

type already allows the specification of active resources, i. e., MR6.1. The PCM repos-

itory view allows the specification of passive resources as required by MR6.2. Finally,

the specification of resource capacity, i. e., MR6.3, is possible with PCMRandomVariables

for active resources as well as passive resources.

4.6. Run-Time Viewpoint

In the run-time viewpoint, elements of a concrete self-adaptive system on instance level

are specified. The run-time viewpoint includes three view types and involves three roles.

The involved roles are the domain expert, the platform expert, and the self-adaptive system

architect. The domain expert specifies the system usage context, i. e., different workload

scenarios according to the requirements and her knowledge about the domain. An

initial system architecture configuration is specified by the self-adaptive system architect

according to the requirements and using the system architecture types. Finally, the

platform expert specifies an initial system deployment for the initial system architecture

configuration. In the following subsections, we detail the view types in the run-time

viewpoint and provide examples for their artifacts.

4.6.1. Initial System Architecture Configuration

In the initial system architecture configuration, system architecture types will be in-

stantiated and their interfaces connected by a self-adaptive system architect. A valid

system configuration is a composed component with one provided interface, i. e., the

interface that provides the system level entry methods, but no required interfaces. The

provided interface of a system configuration must be delegated to an interface inside

the system configuration, since the system configuration has no own behavior.
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Figure 4.11.: Initial system architecture configuration for the Znn.com system.

The initial architecture configuration can be an arbitrary valid architecture configura-

tion, which will be instantiated at the beginning of the execution of the self-adaptive

system. Other architecture configurations may be reached by the specified reconfigura-

tions.

Figure 4.11 shows the initial system architecture configuration for our Znn.com ex-

ample. It contains four component instances, one from each of the component types

WebFrontend, LoadBalancer, MultimediaNews, and Database. The system interface is

delegated to the WebFrontend component.

The initial system architecture configuration is modeled using a PCM system model.

Figure 4.12 shows the excerpt of the PCM meta model showing the system model

classes. System is a subclass off ComposedProvidingRequiringEntity, which is a subclass

of ComposedStructure. That means, that a system is a composition of entities, which

may provide and require additional interfaces, i. e., component type with their respective

interfaces. A ComposedStructure has arbitrary many AssemblyContexts. An Assembly-

Context refers to a RepositoryComponent. Therefore, an AssemblyContext represents a

concrete instance of a component type within a system.

In our self-adaptation viewpoint requirements, we stated that our viewpoint shall con-

tain a view to configure an initial system architecture configuration (MR7). Further-

more, this initial system architecture configuration shall enable to compose system type

level elements to concrete instances (MR7.1) and specify an initial deployment these

instances to hardware nodes (MR7.2). We illustrated with our Znn.com example, that

we can fulfill these requirements by reusing the PCM system view type.
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Figure 4.12.: PCM System meta model. [RBB+11]
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Figure 4.13.: Initial deployment for the Znn.com system.

4.6.2. Initial System Deployment

In the initial system deployment, the deployment of system architecture instances to

hardware nodes is specified. Each instance of a system architecture type element that is

used in the initial system architecture configuration has to be allocated to exactly one

hardware node by the system architect. In a valid system deployment, multiple instances

of the same system architecture type element can be allocated to different hardware

nodes. However, each instance has to be allocated individually. Not every hardware

node needs to be used in the (initial) system deployment. Other system deployments

can be reached via reconfigurations. A valid system deployment assigns each instance

of a system architecture type element to a hardware node. Thus, hardware nodes not

used in the initial system deployment can be used within other system deployments

that are reached via reconfigurations.

Figure 4.13 shows the initial system deployment for our Znn.com example. Each com-

ponent instance is initially allocated on an individual hardware node. In the presented

initial system architecture configuration and this initial system deployment, the Load-

Balancer component forwards requests to the only MultimediaNews component, which

is deployed on the ApplicationServer node. Thus, the performance of each request to

the application tier is limited by the ApplicationServer1 node. However, if for example,

further MultimediaNews components are instantiated, these component instances can

be deployed on the other application server nodes ApplicationServer2 and Application-

Server3.
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Figure 4.14.: PCM Allocation meta model. [RBB+11]

The PCM allocation meta model is shown in Figure 4.12. We use the PCM allocation

view type in SimuLizar to model the initial system deployment. An Allocation refers

to a System and ResourceEnvironment and consists of arbitrary many AllocationCon-

texts. An AssemblyContext describes the mapping, or allocation, of AssemblyContexts

to ResourceContainers. Hence, each AllocationContext refers to a AssemblyContext, i. e.,

a concrete instance of a component type within a system, and ResourceContainer from

the Allocation’s ResourceEnvironment.

In our self-adaptation viewpoint requirements, we stated that our viewpoint shall con-

tain a view to configure an initial system architecture configuration. Furthermore, this

initial system architecture configuration shall enable to compose system type level ele-

ments to concrete instances (MR7.1) and specify an initial deployment of these instances

to hardware nodes (MR7.2). We illustrated with our Znn.com example, that we can

fulfill these requirements by reusing the PCM allocation view type.
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Figure 4.15.: Usage context with one usage scenario for the Znn.com system.

4.6.3. System Usage Context

A domain expert can model typical workload scenarios and the time-dependent variation

of the workload in these scenarios in the system usage context view. The scenarios are

used for the scalability and elasticity analyses later on. A typical workload scenario

consists of the specification of the work and load. The work is specified as a user

action flow, i. e., an order of system method calls, called by a certain user type, and a

characterization of the respective arguments (actual parameters). The load is specified

as a frequency of the method called by a user.

By specifying specific scenarios for various user action flows and situations, software

architects can assess the scalability and elasticity of their self-adaptive system designs

individually in each of these scenarios, e. g., at peak load or when workload from rou-

tine maintenance (other method calls) mix into the standard workload. Furthermore,

domain experts can specify time-dependent variations of the typical workload scenarios,

e. g., seasonal and periodical workload patterns, random workload bursts, and long-term

workload trends.

Figure 4.15 shows one usage scenario of the system usage context for our Znn.com

system. The illustrated system usage context specifies a peak-load scenario with a

simple work and load specification. The work is defined by the scenario behavior on

the left side of the illustration. The scenario behavior consists of a start action, a

SystemLevelEntryCall of the getNews method, which is provided to the users by the
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Znn.com system, and a stop action. The right side of the system usage context shows

the load specification. In this example, the scenario is an OpenWorkload, i. e., the

user request rate is independent from previous user requests. The request rate, in this

example, is exponentially distributed with λ = 3.9, i. e., the mean interarrival time of

user requests is 1/λ ≈ 0.25 time units.
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λ

Figure 4.16.: Time-dependent variation of the load in the Znn.com example.

Figure 4.16 shows a simple time-dependent variation of the system usage context for

the Znn.com system. The graph shows a periodic increase and decrease of the load

for the usage scenario illustrated in Figure 4.15. A periodic variation of the system

usage context like illustrated in the figure can be specified with the Seasonal element.

Additional to this periodic variation, other variations can be specified with different

Function elements, e. g., for long-term workload trends or random workload bursts.

Usage scenarios can be specified with PCM’s UsageModel, as illustrated in the meta

model excerpt in Figure 4.17. A UsageModel consists of arbitrary many Workloads.

Each UsageScenario consists of a ScenarioBehavior that characterizes the work and a

Workload that characterizes the load of the scenario. A ScenarioBehavior consists of

arbitrary many subclasses of AbstractUserActions, i. e., Start, Stop, Loop, Branch, Delay,

and SystemLevelEntryCall. Workload is abstract, hence a UsageScenario must contain

one of Workload’s subclasses, OpenWorkload or ClosedWorkload. In case of an Open-

Workload, the load is further specified with a interarrivalTime attribute of the type

PCMRandomVariable. In case of an ClosedWorkload, the attribute thinkTime, also of

type PCMRandomVariable, specifies the load.

Time-dependent variations of the workload in usage scenarios can be specified by a

UsageEvolution as shown in the meta model in Figure 4.18. A UsageEvolution contains
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Figure 4.17.: PCM Usage Model meta model [RBB+11]

84



4.6. RUN-TIME VIEWPOINT

Entity UsageEvolution

UsageUsageScenario

Variable
Characterization

WorkParameter
Evolution

+name : EString
+terminateAfterTime : EDouble
+terminateAfterLoops : EInt

Sequence

scenario

1

Variable
Characterization

1

usages1..*

workEvolutions0..*

loadEvolution

0..1

evolution
1

+name : EString
+duration : EDouble

TimeDependent
FunctionContainer

Function

+operator : Operator

Combinator

Noise Seasonal Burst Trend UniversalFunction

sequenceFunctionContainers1..*

function0..1

function

1

combine

0..*

function

1

- add
- mult

Operator

Figure 4.18.: Combination of the Usage Evolution meta model [BSL16] and the DLIM
meta model [KHK+17]

85



4. Self-Adaptive System Performance Modeling

arbitrary many Usage elements, which correspond to a UsageScenario, as described

above. A Usage element can contain a WorkParameterEvolution to specify the time-

dependent variations of a work parameter, for example file sizes that are uploaded to

a server. The WorkParameterEvolution then has to refer to the VariableCharacterization

that defines the corresponding work parameter. The variation of the work parameter

as well as the variation of the load for a Usage are specified in a Sequence element. The

Sequence element contains multiple TimeDependentFunctionContainers. Each of these

TimeDependentFunctionContainers can contain a concrete Function subclass element,

i. e., Noise, Seasonal, Burst, Trend, or UniversalFunction. These functions are used to

specify the variation of the work parameters and load for different time periods. The

time periods are defined via the duration attribute of the TimeDependentFunction and

the attributes terminateAfterTime and terminateAfterLoops of a Sequence.

Our modeling requirements include a requirement for a system usage context view

type, i. e., Requirement MR8 and the three sub-requirements Requirement MR8.1, Re-

quirement MR8.2, and Requirement MR8.3. All these requirements are fulfilled by

SimuLizar’s system usage context view type. The presented view type enables domain

experts to model multiple UsageScenarios, i. e., Requirement MR8. With AbstractUser-

Actions the work can be specified, i. e., Requirement MR8.1, and with OpenWorkload

and ClosedWorkload the load can be specified, i. e., MR8.2. Additionally, time-dependent

variations of the workload scenarios can be modeled with UsageEvolution elements. The

workload scenarios specified by a domain expert are used for the assessment of scal-

ability and elasticity of the modeled self-adaptive system within these system usage

contexts.

4.7. Self-Adaptation Viewpoint

In the self-adaptation viewpoint, the so far static system architecture is extended with

the necessary artifacts for autonomous self-adaptation. The self-adaptation viewpoint

includes three view types and involves three roles. The domain experts specifies service

level objectives (SLOs) which are the major drivers for self-adaptation, i. e., SLOs define

in which borders the self-adaptive system shall operate. When the SLOs are defined,
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a platform expert specifies monitors that give the self-awareness capabilities for the self-

adaptive systems. Finally, a self-adaptive system architect specifies reconfigurations that

define when the system needs to reconfigure its architecture in order to achieve the

SLOs. In the following subsections, we detail the view types in the self-adaptation

viewpoint and provide examples for their artifacts.

4.7.1. Service Level Objectives

Service level objectives (SLOs) define thresholds for quantifiable quality attributes of

software systems, like performance. In self-adaptive systems, SLOs are major drivers

for self-adaptation. That is, in case the current system architecture configuration of a

self-adaptive system is not able to satisfy an SLO, e. g., the target mean response time

of 2.0 seconds cannot be achieved, the system will detect this situation and may execute

a reconfiguration to switch to another system architecture configuration. In Section 1.1,

we defined the five requirements (R1 to R5) for our Znn.com example, which can be

refined to service level objectives as well.

Figure 4.19 illustrates the service level objectives SLOMRT and SLOCST that are de-

rived from the requirements of our Znn.com example. We derived SLOMRT from R1,

i. e., the requirement that the mean response time shall be less than 2.0 seconds. We

relaxed this requirement with our service level objective SLOMRT such that 2.0 seconds

is the upper soft threshold and 3.0 seconds is the upper hard threshold. That is, the

SLOMRT is completely achieved if the mean response time is below 2.0 seconds and is

not achieved if the response time is above 3.0 seconds. If, however, the response time is

between 2.0 seconds and 3.0 seconds, requirement SLOMRT is only achieved to a cer-

tain grade. SLOCST is analogously defined for requirement R2, i. e., the requirement

that the leasing cost shall not be higher than USD5.00 per hour. The interpretation

of gradual achievement of requirements is based on our formalization of SLOs that we

present in more detail in Chapter 5.

Figure 4.20 shows the meta model of the SLO specification model. The root element of

the SLO model is the ServiceLevelObjectiveRepository, which contains all ServiceLevel-

Objectives. A ServiceLevelObjective consists of at least one Threshold, which is ensured
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Figure 4.19.: Service level objectives for our Znn.com system.
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Figure 4.20.: Service level objective meta model.
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by the static semantics, specified in in the Object Constraint Language (OCL), of the

meta model. Thus, a ServiceLevelObjective can have one upper threshold, one lower

threshold, or both. Furthermore, a ServiceLevelObjective refers to a MeasurementSpeci-

fication, which specifies to which specific measurements of the self-adaptive system this

SLO refers, e. g., the response time SLO in our Znn.com example.

The class Threshold is abstract and has four concrete subclasses, i. e., VagueThresh-

old, TolerantThreshold, StrictThreshold, and ExactThreshold. The class ExactThresh-

old only has the hardLimit attribute, inherited from its superclass. The other classes

VagueThreshold, TolerantThreshold, and StrictThreshold inherit the attribute softLimit

from their superclass SoftLimitThreshold additionally to the hardLimit attribute from

the Threshold class. In our Znn.com example, there are only tolerant thresholds with

soft limits. For example, the SLOMRT specifies that the mean response time of the

Znn.com system shall be less than 2 seconds if possible (soft limit), but not worse than

3 seconds (hard limit).

We require a view type that enables to specify SLOs, as stated in Requirement MR9.

Furthermore, software architects shall be able to specify soft limits and hard limits for

thresholds, i. e., Requirement MR9.1 and Requirement MR9.2. These requirements are

fulfilled by the different threshold classes as illustrated in the Znn.com examples.

4.7.2. Monitor Repository

With the monitor repository view, monitors for a self-adaptive system can be specified

by a platform expert. A single monitor consists of two characteristics: (1) a measuring

point and (2) a measurement specification. The measuring point specifies the location

of the monitor within the system, e. g., a system architecture type like an interface

method. The measurement specification defines which metric shall be monitored at the

specified measuring point and how the metric values shall be aggregated over time. For

example, the metric response time can be aggregated as mean response time calculated

in fixed-size batches.

The monitor repository for our Znn.com example is illustrated in Figure 4.21. We de-

fined two monitors in this monitor repository. The first monitor is the System Response
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+ resourceEnvironment = IaaS

Number of System Resources:Monitor

Figure 4.21.: Monitor repository for the Znn.com system.

Time monitor. It monitors the overall mean response time of the Znn.com system,

i. e., the time required to process a user request to show the Znn.com website. Hence,

the monitor’s measuring point is the getNews method, which is System Level Entry Call,

i. e., the method a user calls. The measurement specification of this monitor specifies

response time as the metric. To calculate the mean response time, the statistical charac-

terization is set to aggregate response times in 10 second batches, i. e., batch(10s), with

the arithmetic mean aggregation function. The second monitor in the Znn.com example

is the Number of System Resources monitor. With this Monitor, the overall number of

resource containers, e. g., virtual machines, is monitored. The measurement specification

specifies the monitored metric, which is Number of Resource Containers here. Since we

are interested in the absolute number of resources at any time, the aggregation is set to

none in the statistical characterization.

Figure 4.21 shows the monitor repository meta model. The root element is the Mon-

itorRepository class. It can contain arbitrary many Monitors. Each Monitor refers to

exactly one MeasuringPoint, which specifies the location the measurements shall be col-

lected. The class MeasuringPoint is specified in a separate meta model. For Palladio and

SimuLizar, we defined specialized MeasuringPoints, like SystemOperationMeasuringPoint,

ResourceEnvironmentMeasuringPoint, and ReconfigurationTimeMeasuringPoint, which al-

low easy specification of a MeasuringPoint for common monitors in self-adaptive systems.

Additionally, a Monitor is composed of one to many MeasurementSpecifications. Each

MeasurementSpecification has a name (inherited from NamedElement), a statisticalChar-

acterization, refers to exactly one MetricDescription, and optionally one TemporalCharac-

terization. The MetricDescription class is specified in a separate package. In SimuLizar,
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Figure 4.22.: Monitor repository meta model
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many predefined MetricDescriptions are available, e. g., response time, reconfiguration

time, or generic metrics like unit-less number. The statisticalCharacterization can be

either none, median, arithmetic mean, geometric mean, or harmonic mean. The valid

values are defined in the enumeration StatisticalCharacterizationEnum. The class Tem-

poralCharacterization is abstract and has three concrete subclasses, which can be used

to further specify temporal characterizations of the MeasurementSpecification. These

three subclasses are Interval, DelayedInterval, and TimeFrame. Values are aggregated

in fixed-size, non-overlapping intervals using Interval as TemporalCharacterization. The

interval size is defined with the interval property in time units, i. e., as double value.

The DelayedInterval works the same way, but the interval calculation does not start at

time 0, but after a specified delay. This is helpful for cases where a warm-up phase

of a simulation shall not be taken into account. For example, if we want to consider

only mean response times after a warm-up time of 100 time units, we simply use a

DelayedInterval as a temporal characterization for the MeasurementSpecification and set

the delay property of the DelayedInterval to 100. The response time predictions in the

warm-up phase of a system are often not very accurate, since in practice caches and

memory are initially filled for the software. However, these effects cannot be simulated

with our simulation and thus leading to inaccurate predictions. The third subclass of

TemporalCharacterization is TimeFrame. This class can be used for single, fixed-size ag-

gregations, e. g., a single mean response time for the time frame starting after 5 time

units and ending after 205 time units. TimeFrame has two properties start and end

corresponding to the start and end of the time frame to be aggregated.

In our self-adaptation viewpoint requirements, we have the requirement MR10 con-

sisting out of four subrequirements. From the discussion of the meta model and the

provided example, we can see that all these requirements are fulfilled with our Monitor

Repository model. First, we can specify the monitor location, as required by MR10.1

using MeasuringPoints. Second, the MeasurementSpecification allows specifying the met-

ric and the aggregation of metric values as required by MR10.2 and MR10.4. Finally,

the specification of the frequency for taking monitor probes is specified within Tempo-

ralCharacterization of a MeasurementSpecification as required by MR10.3.
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Figure 4.23.: Reconfiguration rule model for the Znn.com system.

4.7.3. Reconfigurations

SimuLizar’s reconfiguration view type provides a way to specify self-adaptations in a

hierarchical style. Reconfigurations are divided into high-level strategies and mid-level

tactics, and low-level actions. For example, self-adaptive system architects can specify

multiple strategies to reach the same goal. If the goal is to keep response times low,

two alternative strategies can be (a) scaling the system resources, i. e., adding more

virtual machines, or (b) reducing the content fidelity, like the text-only mode in our

Znn.com example. A tactic is a concrete implementation specification of a strategy,

i. e., it aggregates all necessary actions and their preconditions to execute the strategy.

In SimuLizar, the preconditions and actions are model-transformations. These model-

transformations either check for a certain condition or modify the SimuLizar model with

an in-place transformation depending on whether the transformation is a precondition

or an action.
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Figure 4.23 shows an example reconfiguration view for our Znn.com example. The

shown reconfigurations view contains two alternative reconfiguration strategies: (1)

scaling resources and (2) adapting content fidelity. The first strategy takes advantage

of the cloud computing environment in which the Znn.com system is running in. The

second strategy, i. e., adapting the content fidelity, switches the content delivered to

customers between text-only and multimedia, e. g., including images and video.

The first strategy, scaling resources, includes four tactics, where the two rules scaleOut

and scaleIn are tactics with opposite effects. Analogously, the tactics scaleUp and scale-

Down are tactics with opposite effects. scaleOut and scaleIn replicate the application tier

of the Znn.com system, i. e., these tactics add/remove instances of the MultimediaNews

component to the system configuration and add these to the load balancing behavior

of the LoadBalancer component. The tactics scaleUp and scaleDown do not replicate

the tiers but increase/decrease the processing rate of the application tier’s resource

containers, i. e., the ApplicationServers.

Listing 4.1: Precondition “mrtGreater2s” for “scaleOut” Reconfiguration Tactic

1 property threshold : Real = 2.0;

2

3 main() {

4

5 assert fatal(run -timeMeasurement.rootObjects ()[Run -timeMeasurement

]->size() > 0)

6 with log ("No Measurements found!");

7

8 assert error (run -timeMeasurement.rootObjects ()[Run -timeMeasurement

]->checkCondition () = true)

9 with log ("No reconfiguration required");

10

11 }

12

13 helper Set(Run -timeMeasurement) :: checkCondition () : Boolean {

14 self ->forEach(measurement) {

15 log(’Measured value is ’ + measurement.measuringValue.toString ());

16 if (measurement.measuringValue > threshold) {

17 log(’Threshold is exceeded ’);

18 return true;

19 };

20 };

21 return false;

22 }
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Figure 4.24.: Action element of the “scale out” tactic for the Znn.com system.
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Figure 4.24 shows the action element of the scaleOut tactic using a Henshin model trans-

formation. The transformation adds an instance of the MultimediaNews component type

to the system configuration and allocates it to an ApplicationServer node. Note, that

Henshin model transformations and Henshin diagrams, like the one in Figure 4.24, use

the abstract syntax of the models and not a concrete syntax. In Henshin, elements that

are only matched without being modified are annotated with the «preserve» stereotype,

newly created elements are annotated with the «create» stereotype, and elements to be

deleted are annotated with the «delete» stereotype. The AssemblyContext that is cre-

ated as a child element of the System is an instance of the MultimediaNews component

type, i. e., in abstract syntax this is a BasicComponent with entityName “Multimedi-

aNews”. For this instance, an AllocationContext is created as well. This AllocationCon-

text describes the allocation of the component instance to a ResourceContainer, here the

ApplicationServer.

The precondition for this action is specified with a QVT model transformation and

is illustrated in Listing 4.1. Note that the listing shows only the relevant excerpt of

the QVT operational reconfiguration precondition. The declaration of modeltypes,

the definition of the transformation body with input and output parameters, and

additional checks are left out in the listing. In line 1 the variable threshold for the

maximum mean response time is declared and initialized to 2.0, i. e., a mean response

time threshold of 2.0 seconds. The main function (lines 3 to 11) of the QVT operational

rule includes two assertions: An assertion that the run-time measurement model is not

empty (lines 5 and 6), and an assertion that the checkCondition helper function returns

true. In case the first assertion fails, the rule will not be further executed. In case the

second assertion fails, the check returns an error to signal that the action transformation

of the reconfiguration rule must not be executed. The helper function checkCondition

(lines 14 to 22) returns true if there is any measured value over the threshold value in

the run-time measurement model, see Chapter 6. If there is no measured value over the

threshold value, the helper function will return false and the second assertion will fail.

The second strategy, adapting the content fidelity, includes the two tactics textMode

and multimediaMode. The tactic textMode degrades the content fidelity of the news

content delivered to customers in favor of performance, i. e., lower response times for

news requests. Figure 4.25 shows the action of the textMode tactic implemented as
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Figure 4.25.: Action element of the “textMode” tactic for the Znn.com system.

97



4. Self-Adaptive System Performance Modeling

+ name : EString

NamedElement

Strategy
+ priority : EInt = -1

Tactic

Reconfiguration

ModelTransformation

1..*conditions actions1..*

tactics

0..*

strategies

0..*

StoryDiagramTransformation HenshinTransformation QVToTransformation

BasicComponent

OperationSignature

ResourceDemand1

controller

1

calledOperation

0..1

action

Figure 4.26.: Reconfiguration rule meta model

a Story Diagram model transformation. The transformation exchanges all Multimedi-

aNews component instances for TextNews component instances. Note that the Story

Diagram transformation uses the abstract syntax instead of the concrete syntax of the

PCM or SimuLizar view types. Hence, component instances of type MultimediaNews

are represented by a AssemblyContext with a encapsulatedComponent AssemblyContext

relation to a BasicComponent with entityName “MultimediaNews”. The tactic multime-

diaMode is implemented analogously to the textMode tactic.

Figure 4.26 shows the meta model of the reconfigurations view type. A Reconfiguration

has arbitrary many Strategy objects. Each Strategy again, can have arbitrary many

Tactics. In our Znn.com example, there are two strategies: (1) resource scaling and (2)

content fidelity adaptation. Each tactic has one or more conditions and one or more

actions. The type of both, conditions and actions, is ModelTransformation. ModelTrans-

formation is a generic type, which has the three concrete subtypes QvtoTransformation,

StoryDiagramTransformation, and HenshinTransformation. Each of these concrete sub-

types represents transformation scripts from their respective transformation language

QVT operational, Story Diagrams, and Henshin. In that way, it is possible to mix

these different transformation languages for conditions and actions within one reconfig-

uration tactic. A ModelTransformation also contains a ResourceDemand which refers to
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a BasicComponent and an OperationSignature. The referenced BasicComponent repre-

sents the controller component for the reconfiguration, i. e., the component that executes

the reconfiguration. The OperationSignature represents an operation, i. e., specified as

ResourceDemandingSEFF, of that component. Hence, the resource demand of a recon-

figuration is modeled like a normal behavior in the system architecture type view type.

Our modeling requirements that address the specification of architecture reconfigu-

rations, i. e., Requirement MR11 and its sub-requirements, are fulfilled by the pre-

sented reconfigurations view type. As required by Requirement MR11.1 and Require-

ment MR11.3, architecture reconfigurations and preconditions can be specified with a

Tactics, that can include multiple conditions and actions. The resource demand of a

reconfiguration action, i. e., Requirement MR11.2, can be specified with a ResourceDe-

mand that refers to an OperationSignature of a BasicComponent. A self-adaptive sys-

tem architect can hence model architecture reconfigurations including preconditions,

reconfiguration actions, and resource demands with SimuLizar. These architecture re-

configurations are used for the prediction of scalability and elasticity properties of the

modeled self-adaptive system. The reconfiguration actions also allow an exploration of

the reconfiguration space, i. e., the exploration of all reachable architecture configura-

tions. This allows the prediction of scalability. Furthermore, the resource demands of

reconfiguration actions allow the prediction of elasticity properties since these resource

demands influence how quick a self-adaptive system can adapt in certain usage contexts.

4.8. Evaluation

In the previous sections, we introduced three viewpoints for our self-adaptive system

performance modeling approach. The goal of the presented modeling approach is to

enable the specification of self-adaptive system architectures for the purpose of analyz-

ing these system’s performance properties. In this section, we validate our approach

regarding the achievement of this goal.

Böhme and Reussner [BR08] describe three validation levels for prediction methods.

A Level I validation is concerned with the validation of the predicted metrics. For

this kind of validation, predictions are compared with measurements to validate the
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homomorphism of the predictions provided by the prediction method with respect to

the reality. A Level II validation is concerned with the applicability of the prediction

method. Hence, in this kind of validation it is evaluated whether the target group, i. e.,

software engineers, can reliably produce the input for the prediction method and mean-

ingfully interpret the output of the prediction method [BR08]. A Level III validation

is concerned with the benefits of the prediction method compared to other prediction

methods. This is kind of validation requires a controlled experiment [BF08] in which,

for example, two (or more) prediction methods are applied to the same software system.

A self-adaptive system performance model, like presented in this chapter, is the input for

our scalability and elasticity prediction that we present in the next chapter. We present

a Level II validation for our self-adaptive system performance model in this section. A

Level I validation for our prediction methods is presented with our prediction methods

in Chapter 5. Due to the limited time and resources, a Level III validation could not

be conducted in the scope of this thesis.

We applied the goal question metric (GQM) approach [vBCR02] to conduct a case

study for the Level II validation of our modeling approach. A computer science Master

student conducted the case study using the Znn.com system as the modeling case for the

validation. The student applied our modeling approach to model the Znn.com system

and collected limitations of the approach.

Table 4.3 formulates our evaluation goal within the case study using the GQM tem-

plate. Our goal is to analyze the presented self-adaptive system performance modeling

approach for the purpose of evaluating the applicability of the approach with respect to

our modeling requirements MR1 to MR11. The case study is conducted from the view-

point of software engineers. The context of the evaluation is academic, i. e., a computer

science Master student performed the evaluation.

Our case study showed that the presented performance modeling approach is applicable

for self-adaptive systems but still has some limitations. In the remainder of this section,

we describe our evaluation and results in more detail. In Section 4.8.1, we formulate the

evaluation questions. We explain the evaluation setup in Section 4.8.2. Subsequently,

we present the evaluation results in Section 4.8.3. In Section 4.8.4, we discuss the
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Table 4.3.: Evaluation Goal

Analyze SimuLizar’s self-adaptive system performance model-
ing approach

for the purpose of evaluating the applicability of the approach
with respect to our modeling requirements MR1 to MR11
from the viewpoint of software engineers
in the following context: A computer science Master student models the

Znn.com system for the purpose of assessing the sys-
tem’s scalability and elasticity.

evaluation results with respect to our modeling requirements MR1 to MR11. Finally,

we discuss the threats to validity in Section 4.8.5.

4.8.1. Questions

We evaluated the applicability of the presented performance modeling approach with re-

spect to our modeling requirements MR1 to MR11 within a case study for the Znn.com

example system. We formulated two evaluation questions for the validation of the appli-

cability as well as the identification of limitations of our approach. For each evaluation

question, we define a metric and a hypothesis.

Table 4.4.: Question 1: Applicability

Q(applicability) Is SimuLizar’s modeling approach applicable to
create a performance model of a self-adaptive
system?

M(model homomorphism) SimuLizar’s self-adaptive system performance modeling
approach

H(applicable) SimuLizar’s self-adaptive system performance modeling
approach is applicable to model the self-adaptive sys-
tem. Falsification: M(model homomorphism) show that
the model does not reflect the system implementation.

Table 4.4 shows the first evaluation question Q(appicability), the applied metric

M(model homomorphism), and our hypothesis H(applicable). Our first evaluation ques-
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tion is: Is SimuLizar’s modeling approach applicable to create a performance model of

a self-adaptive system? The metric to assess this question is the homomorphism of the

model and the system implementation with respect to the architecture, i. e., M(model

homomorphism). Our hypothesis, H(applicable), is that our performance modeling ap-

proach is applicable to model a self-adaptive system. The falsification of this hypothesis

is possible, i. e., if the model does not reflect the system implementation, the model is

not homomorph to the implementation.

Table 4.5.: Question 2: Limitations

Q(limitations) What are the limitations of SimuLizar’s self-
adaptive system performance modeling approach
with respect to our modeling requirements?

M(collection of issues) Whenever a feature is missing to model the performance
of the Znn.com system, this issue is collected. Issues
are rated either critical or non-critical depending on
whether the missing features is part of our modeling
requirements or not.

H(only non-critical issues) SimuLizar’s performance modeling approach has only
some non-critical issues. Falsification: M(collection of
issues) is empty or contains critical issues.

Table 4.5 shows our second evaluation question: What are the limitations of SimuLizar’s

self-adaptive system performance modeling approach?. This question is used to check

whether all of our modeling requirements are fulfilled, to detect open issues of our per-

formance modeling approach, and to identify directions for further improvements. The

metric to assess the applicability of our performance modeling approach is M(collection

of issues), i. e., a collection of missing modeling features, which are rated either critical

or non-critical. An issue is rated critical if the missing feature is required by our model-

ing requirements MR1 to MR11. Otherwise, the issue is rated as non-critical. The issues

are collected when applying our performance modeling approach to model the Znn.com

system. Our hypothesis is, that our approach will indeed have some non-critical issues

as stated in H(only non-critical issues). Again, this hypothesis is falsifiable, i. e., if

M(collection of issues) is empty or contains critical issues, the hypothesis is false.
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Figure 4.27.: Evaluation process.

4.8.2. Setup

In order to answer our evaluation questions, we set up a case study. In this case study,

a computer science Master student at the Paderborn University got the task to apply

our self-adaptive system modeling approach to model a self-adaptive system. The stu-

dent had profound knowledge in software architecture modeling and some experience in

software engineering. His task was to model the Znn.com system, which we introduced

in Section 1.1 and used as a running example in this chapter. We chose the Znn.com

system for our case study for three reasons: First, an implementation of the Znn.com

system is available online [CS16]. The availability of an implementation is a prerequisite

for our evaluation in order to be able to assess Metric M(model homomorphism). Sec-

ond, it already has been used for the evaluation of the modeling language Stitch [CG12]

and the evaluation of the Rainbow framework [CGS09]. Finally, the system is well

documented, as it has been used in research as an example for self-adaptive systems in

various publications already [CGS09, CG12, WSG+13, SAV+16].

Figure 4.27 shows the process of our case study mapped to the four phases of the GQM

approach [vBCR02]: planning, definition, data collection, and interpretation. In the

initial planning phase, we established the team for the evaluation and planned the case

study (Plan Case Study). The evaluation team consisted of the above mentioned com-

puter science Master student and three performance engineering experts of our research

group. In the definition phase, we defined the evaluation goal, questions, and metrics

(Define GQM) that we presented in this section. Next, in the data collection phase,

the student modeled the Znn.com system using our performance modeling approach

(Model System). During this process of modeling the system, the model was reviewed

during weekly meetings (Review Model). Finally, a complete version of the Znn.com

model was reviewed by the group of performance engineering experts in order to assess
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Metric M(model homomorphism), i. e., assess whether the model is homomorph to the

system implementation. Additional to this review, the student collected limitations of

our modeling approach, i. e., M(collection of issues), whenever a feature was not avail-

able that was required to correctly model the Znn.com system. The collection of the

issues was discussed and reviewed during the weekly meetings with at least one perfor-

mance engineering expert. In the final interpretation phase the results of the case study

were interpreted with respect to our evaluation goal (Interpret Results). We summarize

these results in the next subsection.

4.8.3. Results

The complete Znn.com model that is the result of the data collection phase can be found

in Appendix I. During the data collection phase, the performance engineering experts

accepted the Znn.com model as a homomorphic representation of the implementation

in terms of the architecture.

During the data collection phase of the case study, the participant also collected issues

of our modeling approach. The participant listed one non-critical issue and no critical

issues. The participant observed that the implementation of the Znn.com system drops

requests in case of an overload situation when all other reconfiguration strategies fail,

e. g., all available application servers are at maximum load. However, this cannot be

modeled with our modeling approach. The participant rated the issue that it was not

possible to model that the Znn.com system drops incoming requests as a non-critical

issue since it was not part of the modeling requirements.

4.8.4. Discussion

Our case study shows that both of our hypothesis, H(applicable) and H(only minor

issues), hold. This means, that our performance modeling approach is applicable for

performance modeling of self-adaptive system architectures but still has some minor lim-

itations. Overall, we successfully validated the applicability of the modeling approach

(Level II validation).
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Our first evaluation question, Q(applicability), was: Is SimuLizar’s modeling approach

applicable to create a performance model of a self-adaptive system? We can answer this

questions with “yes”. The evidence for the positive answer can be implied from the

analysis of the requirement fulfillment.

The reviewers accepted the model as a homomorphic model of the real implementation.

Thus, first, we can conclude that the presented view types fulfill the requirements MR5

to MR11 which describe the scope of the performance model. We can conclude that soft-

ware engineers can specify a complete self-adaptive system performance model. Second,

we can conclude from the case study that the self-adaptive system performance model

can be created at design-time (MR1) with the help of our implementation, SimuLizar

Bench (MR4), that we present in Chapter 6. Third, the presented modeling approach

supports the separation of concerns (MR2) by splitting the self-adaptive system perfor-

mance model into distinct viewpoints and views and distinct modeling responsibilities

of the roles. Finally, the specification of resource-demanding behavior also enables an

analysis of the modeled self-adaptive system architecture with respect to its scalability

and elasticity (MR3). The results of the scalability and elasticity prediction within the

case study are presented in discussed in Chapter 5.

Our second evaluation question, Q(limitations), was: What are the limitations of

SimuLizar’s self-adaptive system performance modeling approach with respect to our

modeling requirements? Our case study showed that there is only a non-critical issue

concerning the presented modeling approach.

The identified non-critical issue means, that our modeling approach lacks the capability

of expressing that incoming user requests are dismissed, i. e., the request queue is purged.

This issue stems from the limitation of Palladio’s underlying simulation engine, which

is based on a queuing network simulation. In queuing network simulations, it is not

intended to purge a queue. Hence, this capability is also not reflected within the Palladio

Component Model as well as our modeling approach. No critical issues were found in

the case study, which is further evidence that our modeling approach fulfills all of our

modeling requirements.
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4.8.5. Threats to Validity

In this section, we discuss the threats to the validity of the case study results and the

conclusions we have drawn from these results.

We can identify two types of threats to the validity of our case study results and con-

clusions. First, the dependency of the presented approach to the Palladio Component

Model poses a threat to the applicability of our modeling approach. Second, two deci-

sions within the case study design pose a threat to the validity of the case study results:

the selection of the modeling case and the selection of the participant.

Dependency on PCM

The reuse of the Palladio Component Model as a basis for our modeling approach poses a

threat to the validity of our case study result. First, the PCM could contain defects that

lead to incorrect conclusions from the case study results. For example, the semantics of

model elements like components and interfaces could have been implemented incorrectly

in PCM. However, the PCM and the Palladio approach were validated by S. Becker

in [BKR09]. Second, the PCM could have been applied incorrectly in our modeling

approach such that correctly implemented features in PCM are incorrectly used in our

modeling approach. However, we conducted several design reviews and code reviews

during the implementation of our modeling approach for various components. Hence,

we can assume that the incorrect application of PCM features would have been detected

in these reviews.

Selection of the Modeling Case

The second threat is about the selection of the modeling case, i. e., the Znn.com system.

The Znn.com system is a synthetic system from academia and no real system from in-

dustry. Thus, it could potentially be the case that self-adaptive systems in industry are

designed and implemented in an essentially different way from the design and imple-

mentation of the Znn.com system. However, we assessed the risk of this threat as low.

In general, it is possible that the answers to our evaluation questions would be different
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if the case study were applied to a different system. Due to the lack of well-documented

and available self-adaptive systems, the evaluation was limited to the Znn.com system.

Still, we see the need for more evaluations, especially in an industrial context. For this

purpose, our case study design can be reused also in industrial case studies.

Selection of the Participant

The third threat is about the selection of participant within the case study. According

to Prechelt computer science students in an advanced stage of the study, e. g., Master

students, are suitable participant group for case studies in the context of software

engineering. The skills of Master students are comparable to professional software

engineers, since their software engineering training is almost finished and hence are

classified as professionals soon. An advantage of students over professional software

engineers is also that professional software engineers are often highly specialized and

thus do not match the required profile of the case study to be performed. [Pre99]

Still, there was a risk that the student may have been biased towards a positive result

of the validation due to his involvement in our research group that contributed to the

modeling approach. Furthermore, the author of this thesis was one of the performance

engineering experts within the case study that decided whether the model is homo-

morphic to the real implementation. However, the two other performance engineering

experts could have outvoted the third performance engineering expert. Thus, unbiased

decisions of the expert group was ensured.

In summary, we see only a low risk for the invalidation of our case study. However, since

the case study was conducted in an academic context only, we recommend repeating

and extending the validation in an industrial context.

4.9. Conclusion

In this chapter, we presented modeling requirements that specify the scope and nec-

essary properties that a modeling approach to model performance properties of self-
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adaptive systems must implement. We discussed existing modeling approaches accord-

ing to these requirements and found that none of the discussed approaches fulfills all

requirements. However, we identified the Palladio Component Model as the best basis

for a new modeling approach that fulfills all of our requirements. Hence, we presented

SimuLizar’s self-adaptive system performance modeling approach, which is based on

PCM. SimuLizar closes PCM’s gaps and fulfills all of our modeling requirements. We

evaluated the applicability of the presented modeling approach within a case study.

The case study showed that our approach is applicable to self-adaptive systems like the

Znn.com system. However, further empirical studies have to be conducted in order to

show the applicability and efficiency of the approach in industrial software engineering

projects.
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A fluent performance with low response times is an important business success factor

for large-scale business information systems [SW03]. Still, many software engineering

projects fail since performance objectives are not achieved. The causes for these failures

often are wrong decisions in the early phases of the software engineering process [SW03].

“Fixing these [performance] problems is costly and causes schedule delays, cost overruns,

lost productivity, damaged customer relations, missed market windows, lost revenues,

and a host of other difficulties. In extreme cases, it may not be possible to fix perfor-

mance problems without extensive redesign and re-implementation. In those cases, the

project becomes either an infinite sink for time and money, or it is, mercifully, canceled.

Performance cannot be retrofitted; it must be designed into software from the begin-

ning” [SW03]. Hence, early assessment of performance properties in the design phase of

the software engineering process is crucial to avert project failures due to performance

issues.

There have been some approaches to predict performance properties early in the

software engineering process. The original approaches were based on analytical

models, such as queuing networks (QN) or stochastic Petri nets [Smi90, Jai91].

These approaches required software engineers to manually derive analytical mod-

els that reflect the software architecture. Only with more recent model-driven ap-

proaches [DN02, BDIS04, Koz10], the barriers for software engineers to integrate per-

formance predictions into the software engineering process are dismantled [BDIS04].

These model-driven approaches provide automatic transformations from software ar-

chitecture models to analytical models. Thus, these model-driven approaches facilitate

the assessment of performance properties early at design-time with manageable addi-

tional effort for software engineers.

However, also these model-driven approaches rely on the assumption that the system

context is not uncertain but completely known and that the software architectures are

non-adaptive [CdLG+09b]. Hence, for modern software system like cloud computing

systems, these approaches are not feasible anymore. Modern software architectures are

developed for uncertain contexts and are self-adaptive, i. e., the context of the system is

subject to change and the system’s architecture adapts during operation to the chang-

ing context. Consequently, software engineers need methods to assure the quality of

the software architectures in the presence of uncertainty and change [CdLG+09b]. Tra-
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ditional model-driven software performance approaches are not applicable to achieve

this goal since these approaches assume complete knowledge of the system’s context.

In these approaches, a single, static analytical model is generated by a one-time model

transformation of the software architecture [GMR09]. Context changes and reconfigu-

rations of the software architecture are not reflected.

Relevant performance properties for self-adaptive systems have been partly identified,

but are not well defined yet [JW00]. For example, scalability has been identified as “an

increasingly important aspect of today’s software systems” [SW03], but existing metrics

to quantify the scalability of a software architecture still neglect the key characteristics of

self-adaptive systems [JW00], i. e., the uncertainty of the context is neglected. However,

according to Reussner scalability is dependent on context variability [RF08] and thus

context variability and its consequent uncertainty at design-time must be explicitly

taken into account in the definition of concrete scalability metrics. The situation is

even worse for elasticity. An attempt for a comprehensible definition of elasticity has

only recently been made by Herbst et al. [HKR13]. Metrics and prediction methods to

obtain these metrics early at design-time, however, have not been defined yet.

Due to the lack of defined metrics and prediction methods for scalability and elasticity,

design-time prediction of scalability and elasticity is still not possible for self-adaptive

systems.

In this thesis, we provide formal metric definitions for scalability and elasticity that

both characterize the quality of the software architecture’s self-adaptive layer. The

definitions are based on our formalization for self-adaptive systems that we introduce

in this chapter as well. The self-adaptive system formalization defines the semantics

of our self-adaptive system performance model that we introduced in Chapter 4. The

self-adaptive system performance model serves as input for our analysis methods that

allow software engineers to assess the scalability and elasticity metrics at design-time.

The provided methods are part of SimuLizar and are implemented in SimuLizar Bench.

Thus, the provided methods are integrated into SimuLizar’s model-driven performance

engineering method.

We successfully evaluated our prediction methods on the Znn.com system. The evalua-

tion shows that our prediction methods are applicable to predict scalability and elastic-
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ity properties early in the software engineering process. Thus, our prediction methods

can help to avert project failure due to performance issues and to reduce development

time and costs.

In this chapter, we first give an overview of our scientific contributions in Section 5.1.

Second, in Section 5.2, we specify the requirements for the model-driven scalability and

elasticity prediction methods. We discuss existing performance prediction methods with

respect to these requirements in Section 5.3. The discussion of existing performance

prediction methods helps us to identify the best candidates to base our prediction

methods on and reveals which issues in related work are still open and need to be

addressed in our methods. Subsequently, we give an overview over our methods for the

prediction of scalability and the prediction of elasticity in Section 5.4. We provide a

formalization of self-adaptive systems in Section 5.5 and a formalization of service level

objectives in Section 5.6. The formalizations build the basis for our prediction methods

that we present in the subsequent sections in more detail. In Section 5.7 we present

our scalability prediction method and in Section 5.8 we present our elasticity prediction

method. For each of the two methods, we provide a formalization, metrics, and outline

their implementation as well as underlying assumptions and limitations. Additionally,

we discuss both prediction methods with respect to our requirements. Subsequently, we

describe the evaluation of our prediction methods in Section 5.9. Finally, in Section 5.10,

we draw conclusions for the presented prediction methods.

5.1. Scientific Contribution

The scientific contributions in this chapter can be summarized as follows:

• We provide two sets of requirements for design-time scalability and elasticity pre-

diction methods. The first set comprises general requirements to define mandatory

properties for prediction methods as defined by Balsamo et al. [BDIS04, BM04].

Additionally, we define specific requirements that address the prediction of scal-

ability and elasticity of self-adaptive systems. We base these specific require-

ments on the requirements for prediction methods for self-adaptive systems by

Böhme [BF08], Grassi [GMR09], and Reussner [RF08].
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• We systematically review existing model-driven performance prediction methods

based on our requirements for design-time scalability and elasticity prediction of

self-adaptive systems. An initial version of our systematic literature review has

been published in [BLB12]. The initial systematic literature review was focused

on complete engineering approaches. In contrast, the systematic literature review

that we present in this thesis is more narrowly focused on model-driven perfor-

mance engineering approaches for self-adaptive systems.

• We present a novel formalization of self-adaptive systems and the graded achieve-

ment of service level objectives in self-adaptive systems. The formalization is

based on fuzzy logic [KY95] and fuzzy sets [Zad65] and serves as the framework

for a sound definition of scalability and elasticity metrics and prediction methods.

• We define scalability and elasticity metrics for self-adaptive systems. The metrics

are based on our formalization of self-adaptive systems and enable the assessment

and comparison of self-adaptive system architectures.

• We provide methods to predict scalability and elasticity properties of self-adaptive

systems at design-time. A self-adaptive system performance model, as introduced

in the previous chapter, serves as input for both methods. Finally, we show that

our prediction methods completely fulfill our requirements.

5.2. Prediction Method Requirements

We motivated the need for model-driven prediction methods that enable the prediction

of scalability and elasticity properties of self-adaptive systems early at design-time in

the introduction of this chapter. In this section, we provide a set of requirements that

shall be fulfilled by these prediction methods.

Our prediction method requirements are split into two sets. The first set contains

general requirements for prediction methods that address the applicability of the meth-

ods by software engineers. The second set contains requirements that are specific for

scalability and elasticity prediction methods and self-adaptive systems.
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5.2.1. General Requirements

In this first set of general requirements, we specify requirements for mandatory prop-

erties for prediction methods that shall support software engineers to predict quality

properties of software systems at design-time. The requirements are based on the re-

quirements for performance evaluation tools by Balsamo et al. [BDIS04, BM04].

PR1 Design-Time: The prediction methods shall be applicable at design-time by a

software engineer, i. e., in the phase in which the software architecture is created

and performance-critical design decisions are made [SW03]. Consequently, the

applicability of the prediction methods at design-time is required.

PR2 Model-Driven: The prediction methods shall be model-driven, i. e., architec-

tural models of the self-adaptive system shall be the input of the analysis ap-

proach. It shall be avoided that the software architect has to manually create a

second model from scratch, e. g., an analytical model, just for the purpose of the

scalability and elasticity predictions. Thus, also inconsistencies between different

models due to manual translation are avoided [BDIS04].

PR3 Integrated Tool Chain: The prediction of scalability and elasticity of self-

adaptive systems shall be integrated in a modeling tool chain. Required model-

transformations for the prediction shall be executed with as few interaction of the

software engineer as possible, or even be fully automated [BM04, GMR09].

5.2.2. Requirements for Scalability and Elasticity Prediction

In the second set of requirements for scalability and elasticity prediction, we specify

specific requirements for the prediction of scalability and elasticity of self-adaptive sys-

tems. This second set of requirements is based on requirements by Böhme [BF08],

Grassi [GMR09], and Reussner [RF08].

PR4 Formally Defined Metrics: Prediction methods for the assessment of scala-

bility and elasticity properties shall rely on formally defined metrics. A formal
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definition of the metrics allows to assess the quality of the metrics, e. g., the va-

lidity and reliability [BF08].

PR5 Prediction Method: To assess scalability and elasticity properties of sel-

adaptive systems, methods for each property shall be provided. The methods

shall enable to obtain metrics that quantify the respective property of the sys-

tem [RF08].

PR6 System Configuration: The prediction methods shall take the self-adaptation

layer into account. That is, the prediction methods shall be applicable to the whole

system architecture configuration space and not only to single system architecture

configurations [GMR09].

PR7 System Context: In addition to the system architecture configuration space,

the prediction methods shall take the system context, e. g., workload scenarios,

into account [RF08]. The context change drives the self-adaptation and shall be

explicitly addressed in the prediction methods.

5.3. Related Work

Model-driven scalability and elasticity prediction for self-adaptive systems at design-

time is a research topic that is associated to three research areas, as illustrated in

Figure 5.1. First, it is associated to model-driven software engineering (MDSE). In

model-driven software engineering the model of the software to be built is the central

artifact for the engineering process and thus is the starting point for all other artifacts

and analyses [SVC06]. Second, model-driven scalability prediction and elasticity pre-

diction is associated with self-adaptive systems (SAS) engineering. Self-adaptation has

been identified as its own engineering concern and thus yielded its own engineering and

analysis approaches [CdLG+09b]. Third, it is associated with software performance

engineering (SPE). Scalability and elasticity are commonly considered as performance

properties of systems that rely on a variable amount of (virtual) resources, like in cloud

computing [BLB15].
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We applied the guideline for systematic literature reviews by Kitchenham [KDJ04,

KC07] to find prediction methods in the intersection of three research areas that fulfill

our requirements. However, since there is only few research that combines all three

research areas, we broadened the scope of our survey and also include work in the

intersections of only two research areas. Specifically, we include related work in the in-

tersection of self-adaptive systems and software performance engineering, as illustrated

in Figure 5.1. We decided to include this intersection, since we expect that we can

find candidates that can be extended to fulfill all of our requirements. The intersection

of self-adaptive systems and model-driven engineering and the intersection of model-

driven engineering and software performance engineering were already included in the

literature review of related work for our performance modeling approach in Section 4.3.

The survey question, which guided our systematic literature review was: Which of the

existing methods fulfills the most of our prediction method requirements? We conducted

the literature survey in the time from October 2011 to April 2016 with the search

engine Google Scholar. We selected related work, according to the guideline in two

steps. First, we included all papers that can be found on Google Scholar by searching

for a combination of our predefined keywords. The keywords were combinations of

the three research areas “model-driven (software) engineering”, “self-adaptive systems”,

and “(software) performance engineering”, with and without the word “software” as

indicated by the brackets. Second, we scanned the abstracts of all results and filtered

out all papers that did not match our acceptance criteria. We accepted all papers that

indicated that the paper presents a performance prediction approach for self-adaptive

systems.

Based on our prediction method requirements, presented in the previous section, and our

findings in our initial survey [BLB12], we have created a feature model, see Figure 5.2.

The feature model specifies required features for scalability and elasticity prediction

methods for self-adaptive systems and to answer the survey questions of our literature

review. Mandatory features in the feature diagram are features that we also identified

in our set of requirements PR1 to PR7. All other features are optional and help to

classify the surveyed approaches. Thus, any software performance engineering method

that fulfills all of our prediction requirements is also a valid configuration of our feature

model. Again, we highlighted the configuration of our own prediction methods that we
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SAS

MDSE SPE

our methods

Legend
SAS = Self-Adaptive Systems; MDSE = Model-Driven Software Engineering;

SPE = Software Performance Engineering; � = Related Work

Figure 5.1.: Venn diagram of related work.

present in this thesis in the feature model by coloring the selected features in gray. We

do not discuss related prediction methods that are based on the modeling approach we

present in this thesis. Instead, we discuss follow-up work in Section 7.2.

Figure 5.2 shows our classification for related prediction methods. We classify related

prediction methods according to the methods’ modeling paradigms, their application

time, and their applicability. This classification also reflects our first three general re-

quirements PR1 to PR3 for the prediction methods. We first give a brief overview over

the classification of the surveyed prediction methods. Second, we discuss for each of

the remaining requirements PR4 to PR7 whether the requirement is fulfilled by the

surveyed approaches. Finally, we summarize our findings and identify the prediction

method that fulfills the requirements best. We use the best prediction method (with

respect to our requirements) as a basis for our model-driven prediction method to en-

able the prediction of scalability and elasticity properties of self-adaptive systems at

design-time.

117



5. Scalability and Elasticity Prediction Methods

M
o
dels

P
red

ictio
n
 M

eth
od

A
p
p
lica

tion
 T

im
e

D
esig

n-T
im

e
R
un

-T
im

e

exclu
siv

e O
R

m
an

d
ato

ry featu
re

o
p
tion

a
l fea

tu
re

L
e
g
e
n
d

in
clu

siv
e O

R

M
o
del-D

riven
T

o
ol S

u
p
po

rt

P
red

ictio
n
 M

eth
od

A
n
alysis

M
o
delin

g

V
alid

atio
nC

ase S
tu

dy
P
roo

f o
f C

on
cept

A
p
p
lica

bility

M
o
del-B

ased

ch
ild

ren h
id

d
en

+

P
R

1
P
R

2

P
R

3

M
o
delin

g
 P

arad
ig

m

A
n
alysis

S
im

u
latio

n
P

rototyp
e

P
red

. P
op

erties

E
lasticity

S
calab

ility
P
erform

ance

+

M
etrics

F
orm

al D
efinition P

R
4

P
R

5

In
p
ut

S
ystem

 C
on

fig
ura

tion
S
ystem

 C
on

text
P
R

6
P
R

7

F
igu

re
5.2.:

F
eatu

re
d

iagram
for

classifi
cation

of
related

w
ork

.

118



5.3. RELATED WORK

Table 5.1.: Evaluation Results of Related Prediction Methods

General Prediction

Approach PR1 PR2 PR3 PR4 PR5 PR6 PR7

Descartes [HWBK15] × X X ◦ × ◦ ◦
Palladio [BKR09] X X X × × ◦ X
D-KLAPER [GMR09] X X ◦ × × X ×
Incerto et al. [ITT15] × × × × × ◦ ×
SLAstic.SIM [vMvH11] × X ◦ × × ◦ ◦
UML-Ψ [BM04] X X ◦ × × ◦ ×

X= requirement fulfilled; ×= requirement not fulfilled; ◦= requirement partly fulfilled;
? = unknown; - = does not apply;

Table 5.1 gives an overview of the surveyed prediction methods. From this table, it

can be observed that none of the surveyed methods fulfills all requirements. Our first

classification property is the application time of the prediction methods. Three of the

surveyed prediction methods, Descartes [HWBK15], Incerto et al. [ITT15], and SLAs-

tic.SIM [vMvH11], are targeted for run-time analysis., i. e., these approaches do not

fulfill requirement PR1. The remaining prediction methods, Palladio [BKR09], D-

KLAPER [GMR09], and UML-Ψ [BM04], are targeted for design-time predictions.

We further classify the prediction methods according to their modeling paradigm. Here

we distinguish, whether the models for the prediction have to be manually created,

i. e., model-based methods, or are automatically generated from higher-level architec-

ture models, i. e., model-driven methods, as required by requirement PR2. Only the

prediction method by Incerto et al. [ITT15] is model-based, as it relies on a queu-

ing network models as input rather than on a higher-level architecture model and no

automatic transformations from architectural models to these queuing network mod-

els are provided. All other prediction methods are model-driven and provide model-

transformations from high-level architecture models to queuing networks, or in case of

D-KLAPER, a model transformation from high-level architecture models to Petri nets.

The applicability of the prediction methods is more heterogeneous than the other clas-

sification properties. Only Descartes [HWBK15] and Palladio [BKR09] fully integrate

the prediction methods into a tool chain, as required by requirement PR3.
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The “Formal Defined Metrics” requirement PR4 is not completely fulfilled by any of the

surveyed prediction methods, i. e., none of these methods formally define scalability and

elasticity metrics with respect to our requirement. In Descartes only elasticity metrics

are defined that measure speed and precision of resource leasing [HKR13] with respect

to the resource demand. However, a scalability metric definition is not provided.

Requirement PR5, i. e., “Prediction Method”, is neither fulfilled by any of the surveyed

approaches. Rather than providing methods to predict scalability and elasticity, the

surveyed approaches focus on the prediction of traditional performance metrics, like

response time or utilization. All of the surveyed methods provide means to predict

these traditional performance metrics. For example, the Palladio approach [BKR09]

provides a model-driven method for prediction performance metrics like response time,

utilization, and waiting times for non-adaptive software architectures. Even though

D-KLAPER [GMR09] implements a model-transformation from architecture models to

analysis models for self-adaptive systems, a method to assess scalability and elasticity

metrics from these analysis models is not provided. The same is true for the approach by

Incerto et al. [ITT15]. They provide an analytical prediction method for self-adaptive

systems that is, however, limited to the performance metric response time, which is not

applicable to measure the quality of the self-adaptation layer itself.

The “System Configuration” requirement, PR6, is at least partly fulfilled by all of

the surveyed approaches. However, only D-KLAPER [GMR09] takes the whole sys-

tem architecture configuration space into account. All other approaches take only

a single architecture configuration into account. For the run-time targeted methods,

Descartes [HWBK15], Incerto et al. [ITT15] and SLAstic.SIM [vMvH11], this architec-

ture configuration reflects the current architecture configuration of the running system.

Palladio [BKR09] and UML-Ψ [BM04] consider only a single non-adaptive system ar-

chitecture configuration.

Finally, Requirement PR7,“System Context”, is partly fulfilled by Descartes [HWBK15]

and SLAstic.SIM [vMvH11]. The requirement is completely fulfilled by Palla-

dio [BKR09]. Descartes [HWBK15] and SLAstic.SIM [vMvH11] take the system context

for the predictions into account. In both approaches, the run-time system context is

continuously monitored and serves as input for run-time predictions. In Palladio mul-
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tiple system contexts can be defined in the form of usage scenarios. A prediction for

a system configuration can be made for each usage scenario or also a combination of

usage scenarios. All other prediction methods do not support the system context as a

dedicated input for the prediction but rather mix resource consumption of the system

configuration with workload of the system context.

In conclusion, we can summarize that none of the surveyed prediction methods com-

pletely fulfills all of our requirements PR1 to PR7. However, we identify Palladio as the

best basis for our own model-driven scalability and elasticity prediction methods. First,

Palladio completely fulfills four requirements and partly fulfills one requirement out of

seven requirements in total. Second, Palladio also integrates well with our modeling

approach that is based on the Palladio Component Model (PCM). Finally, just like

PCM the Palladio prediction methods are implemented as open source software and

are freely available, well documented, and supported by an active community [Kar16a].

The second best candidate is Descartes, which is also partly based on the Palladio

implementation, but is focused on run-time performance predictions.

Consequently, we selected Palladio as the basis for our model-driven scalability and

elasticity prediction methods. In order to fulfill all of our requirements, we provide

extensions to Palladio, as part of SimuLizar, which focus on requirements PR4 to PR6,

which are not completely fulfilled by Palladio. First, we provide a formalization and

define scalability and elasticity metrics to fulfill Requirement PR4“Formal Defined Met-

rics”. Second, we define and implement model-driven scalability and elasticity prediction

methods to fulfill Requirement PR5. Finally, we integrate these prediction methods into

our SimuLizar approach such that the complete system architecture configuration space

is taken into account. Thus, also Requirement PR6 “System Configuration” is fulfilled.

In the remainder of this chapter, we present SimuLizar’s formalization for self-adaptive

systems and the scalability and elasticity prediction methods in more detail.

5.4. Prediction Methods Overview

As illustrated in Figure 5.3, we provide formalizations for a self-adaptive system and

service level objectives. Based on these formalizations, we formally define the two
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performance properties scalability and elasticity using the fuzzy branching temporal

logic (FBTL) [MLL04]. For both properties, we define concrete dependent metrics, as

introduced in Section 3.2, which explicitly depend on the workload of the self-adaptive

system. We provide two distinct methods for the prediction of the scalability and

elasticity properties and their according metrics.

Our scalability prediction analyzes the states of a self-adaptive system individually, i. e.,

it is a steady state analysis. Our elasticity prediction also analyzes the transitions

between the states of a self-adaptive system, i. e., it is a transient analysis. The input

for both of these prediction methods is a self-adaptive system performance model like

described in Chapter 4. The output of both methods is a report about the graded SLO

achievement that allows software engineers to assess the overall SLO achievement grade

for the simulated scenario.
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Figure 5.3.: Overview of the prediction methods

With the help of our scalability prediction method, a software engineer can predict if

a software architecture she designed, is scalable in terms of increasing request rate in

a given context scenario. For this, our prediction method will analyze each software

architecture configuration that is reachable with the specified reconfigurations within
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the usage context. The system is scalable if a reachable architecture configuration

exists, that achieves all service level objectives.

Our elasticity prediction method helps software engineers to predict to which extent a

software architecture is elastic, i. e., the degree the system is able to adapt to changing

workloads. For this, our prediction method will analyze the performance of the mod-

eled self-adaptive system architecture within a specified workload context. In contrast

to the scalability prediction method, in this prediction method also the transitions be-

tween different architecture configurations, i. e., the reconfigurations, are analyzed. The

system is elastic if the report shows that all SLOs are achieved.

We will introduce the formalization of self-adaptive systems in Section 5.5 and graded

service level objective achievement in Section 5.6. Subsequently, we will describe the

scalability prediction method in Section 5.7 and the elasticity prediction method in

Section 5.8. For each of the two methods, we define a FBTL predicate based on our

formalizations for self-adaptive systems and graded SLO achievement. Furthermore,

we define for each property, i. e., scalability and elasticity, metrics and describe an

implementation of how to obtain these metrics. Finally, we discuss basic assumptions

and limitations of the prediction methods.

5.5. Self-Adaptive System Formalization

We described the characteristics of self-adaptive systems in Section 2.2.2 and presented a

performance modeling approach for self-adaptive systems in Chapter 4. In this section,

we present a formalization of a self-adaptive system that defines the semantics of our

performance model. The formalization is based on our initial formalization presented

in [BLB13]. Based on this formalization, we present an implementation of our scalability

prediction method in Section 5.7, and an implementation of our elasticity prediction

method in Section 5.8.

Our self-adaptive system formalization is split into three parts. First, we define the

structure and behavior of a self-adaptive system. Second, we define the state of a self-

adaptive system and a state transition function. Finally, we define the complete state
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space, i. e., the reconfiguration space, of a self-adaptive system. For our definitions, we

rely on a discrete time domain T ⊆ Q+
0 , i. e., we interpret time as discrete points in

time t = 0 . . .∞. We have choosen a discrete time domain for our formalization such

that time periods we analyze are restricted, i. e., at most countably infinite.

Structure In Definition 5.1, we define a self-adaptive system structure S as a tuple

that contains a set of system architecture configurations A, a set of monitored properties

P , and a set of context scenarios S.

Definition 5.1 (Self-Adaptive System Structure)

A self-adaptive system structure S is a tuple S = (A,P, S), in which

• A is the set of system architecture configurations, A = {a0, a1, a2, . . .};

• P is the set of monitored properties of the system, P = {p0, p1, p2, . . .};

• S is the set of context scenarios, S = {s0, s1, s2, . . .}.

The three sets in S —architecture configurations A, monitored properties P , and con-

text scenarios S— are represented by individual view types in our self-adaptive system

performance model that we described in Chapter 4. The set of context scenarios S

is defined via the system usage context view type and the set of monitored properties

P is defined via the monitor repository view type. All architecture configurations are

only implicitly defined via the initial system architecture configuration view type, the

initial system deployment view type, and reconfigurations view type. The specified

reconfigurations define the reconfiguration space, i. e., all reachable system architecture

configurations and system deployments.

Behavior The behavior of a self-adaptive system is determined by three functions.

First, the self-adaptive system monitors concrete values for the monitored properties

pi via monitoring, e. g., it measures the response time of requests. Second, the self-

adaptive system executes architecture reconfigurations whenever the measurements ex-

ceed defined thresholds. Third, the self-adaptive system may face a context scenario
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change depending on the time. These behavior functions are defined in Definition 5.2,

Definition 5.3, and Definition 5.4.

Definition 5.2 (Monitoring and Run-Time Measurements)

Monitoring within a self-adaptive system is a function ∆(pi, a, s, t) that maps a

property pi, a architecture configuration a, a context scenario s, and a point in time

t to a real number value. The real number value represents the quantification of the

property pi at time t in the given context scenario and architecture configuration,

i. e., it represents a run-time measurement. When no measurement is available,

e. g., in the initial state of a system, the value is undefined, i. e., ∆(pi, a0, s, t) =

undef .

The signature of ∆(pi, a, s, t) is P ×A× S × T → R ∪ {undef};

• We denote the run-time measurements of all elements pi ∈ P at time t with

∆P (a, s, t) = 〈∆(p0, a, s, t),∆(p1, a, s, t),∆(p2, a, s, t), . . .〉;

• M(a, s) is the set of all run-time measurements ∆P (a, s, t) for a given archi-

tecture configurations and context scenario,

M(a, s) = {∆P (a, s, 0),∆P (a, s, 1),∆P (a, s, 2), . . .}.

Definition 5.2 defines the monitoring behavior and run-time measurements of a self-

adaptive system. Monitoring of each property pi of a self-adaptive system is represented

by a function ∆(pi, a, s, t) that maps the property pi, an architecture configuration a,

and a context scenario s for a point in time t to a real number value. When no

measurement is available, the value of ∆(pi, a, s, t) is undef (undefined).

In our Znn.com example, the mean response time property pmrt can be monitored via

a function ∆(pmrt, a, s, t) that measures the mean response time (pmrt) at time t.

The monitored values, i. e., run-time measurements, for all elements pi ∈ P for a point in

time t are composed in vector ∆P (a, s, t) ∈M(a, s), where M(a, s) is the set of all run-

time measurements. As described in Chapter 6, the function ∆(pi, a, s, t) is implemented

as an extension to Palladio and the run-time measurement elements ∆P (a, s, t) are

implemented as a run-time measurement model in SimuLizar Bench.
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Definition 5.3 (Architecture Reconfiguration) An architecture reconfigura-

tion of a self-adaptive system is a function α(a, π(m)) ∈ A, where m ∈M(a, s) and

π is a real number variable constraint vector, see Definition II.6 in Appendix II.

The signature of alpha is A × Boolean → A, i. e., α maps a self-adaptive sys-

tem architecture configuration and a real number variable constraint vector (over a

run-time measurement) to a self-adaptive system architecture configuration.

Architecture reconfigurations are represented by a function α(a, π(m)), as defined in

Definition 5.3. The function α maps the combination of an architecture configuration

a ∈ A and a real number variable constraint vector π to an architecture configura-

tion a ∈ A. If at least one real number variable constraint in the vector evaluates to

true, an architecture reconfiguration, as described by the mapping, is executed. In our

Znn.com example, the function α may define a mapping from the architecture configu-

ration with a single replica of the application tier and real number variable constraint

vector π = 〈∆(pmrt, a, s, t) ≥ 2.0s〉 to an architecture configuration with a replicated

application tier. In this example, the reconfiguration is triggered if the real number

variable constraint ∆(pmrt, a, s, t) ≥ 2.0s evaluates to true. The architecture reconfig-

urations are implemented as model transformations in SimuLizar Bench, as described

in Chapter 6.

Definition 5.4 (Context Scenario Change) A context scenario change of a

self-adaptive system is a function σ(s, t) ∈ S. The signature of σ(t) is T → S,

i. e., σ maps a point in time to a context scenario.

Definition 5.4 defines the context scenario change function that represents the change

of the context scenario at run-time. The context change function maps a point in

time t ∈ T to a context scenario s ∈ S. This corresponds to a discretization of the

time-dependent variations of the system usage context, as described in Section 4.6. In

our Znn.com system, the context scenario may change from a low workload context

scenario to a high workload context scenario at time t = 600, for example. Accordingly,

time-dependent variations of a single usage model are mapped to discrete points in time.

Context scenarios are implemented by usage models and usage evolution in SimuLizar

Bench, as described in Chapter 6.
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State and State Transitions Definition 5.5 defines a state Σt ∈ Σ of a self-adaptive

system, where Σ is the set of all states of a self-adaptive system.

Definition 5.5 (Self-Adaptive System State)

A self-adaptive system state Σt is a tuple Σt = (a, s,m, t), in which

• a is an element of the set of system architecture configurations, a ∈ A;

• s is an element of the set of context scenarios, s ∈ S.

• m is an element of the set of run-time measurements, m ∈M(a, s);

• t is a point in time, t ∈ T .

A self-adaptive system state is, as defined in Definition 5.5, a tuple Σt consisting of

a system architecture configuration a, a context scenario s, a run-time measurement

element m, and a point in time t. The transitions between states are determined by

the self-adaptive system behavior, as defined in Definition 5.6.

Definition 5.6 (Self-Adaptive System State Transition)

Self-adaptive system behavior is a labeled transition function → with labels l:

(a, s,m, t)
l→ (α(a, π(m)),∆P (a, s, t), σ(t + 1), t + 1), where l ∈ P(L) and L =

{l∆, lα, lσ}, see Appendix II; The signature of → is Σ× P(L)→ Σ.

Self-adaptive system behavior is a labeled transition function → that applies the be-

havior functions α, ∆, and σ to the elements of a source self-adaptive system state

Σt = (a, s,m, t) and increases the point in time t. The resulting self-adaptive system

state is the target state of the transition. The transition is labeled with the labels l∆,

lα, and lσ, depending on which functions map to new elements in the state tuple, see

Definitions II.1, II.2, and II.3 in Appendix II.

Reconfiguration Space With the definitions of self-adaptive system states and state

transitions, we can define a self-adaptive system reconfiguration space as a labeled

transition system (LTS) as in Definition 5.7.
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Definition 5.7 (Self-Adaptive System Reconfiguration Space)

A self-adaptive system reconfiguration space is an LTS Γ = (Σ,→,Σ0), in which

• Σ is the set of self-adaptive system states;

• → is the labeled transition function, see Definition 5.6;

• Σ0 is the initial self-adaptive system state.

A self-adaptive system reconfiguration space is a labeled transition system in which Σ,

is the set of self-adaptive system states, → is the labeled transition function, and Σ0 is

the initial self-adaptive system state. The initial state Σ0 = (a0,m0, s0, 0) is defined via

the Initial System Architecture Configuration view type, the Initial System Deployment

view type, and an uninitialized run-time measurement element.

Figure 5.4 shows an example trace in a self-adaptive system reconfiguration space. The

transitions between the states in the figure are labeled with the functions that trigger

a state switch, see Appendix II. Initially, i. e., at time t = 0, the system is in state

(a0,m0, s0, 0). The initial architecture configuration of the system is a0 and is defined

by the self-adaptive system definition. Furthermore, at time t = 0 the self-adaptive

system’s context scenario is s0 and the measurement element m0 is an uninitialized

vector, i. e., all elements of vector mt are undefined since no measurement has been

taken at this time. Function σ may, for example, map to a context scenario s1 at time

t0 = 0. Hence, the self-adaptive system will be in state (a0, ?, s1, 1). The functions

∆(pi, a, s, t) that return a quantification of the monitored properties pi are updated

simultaneously as well. Vector m contains a quantification for all properties pi at time

t. Thus, the self-adaptive system gets to state (a0,m1, s1, 1). Finally, if the real number

variable constraint π of an architecture reconfiguration α evaluates to true in that new

state at time t1 = 1, e. g., (∆(mrt, a, s, t) > 3s) = true, the system architecture will be

reconfigured such that the self-adaptive system proceeds to state (a1,m1, s1, 2).

Definition 5.7 formally defines a self-adaptive system reconfiguration space. Within this

definitions, the sets A, P , and S represent the structure of the self-adaptive system.

The functions α, ∆, and σ define the behavior of the self-adaptive system and the

behavior of the system’s context. In the next section, we provide a formalization of
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a0,m0, s0, 0start a0,m1, s1, 1 a1,m1, s1, 2 · · ·
{∆, σ} {α}

T
t0 = 0 t1 = 1 t2 = 2

Figure 5.4.: Example trace of self-adaptive system states.

service level objectives that helps us to reason about quality properties, like scalability

and elasticity, of a self-adaptive system.

5.6. Service Level Objective Formalization

Requirements for self-adaptive systems are subject to imprecision and epistemic uncer-

tainty. The epistemic uncertainty in requirements for self-adaptive systems originates

from lack of knowledge about the run-time context of the system. The imprecision orig-

inates from the inherent imprecision of (natural) language, e. g., in requirements. The

uncertainty is explicitly addressed by the architecture reconfigurations in self-adaptive

systems.

The architecture reconfigurations define how a self-adaptive system reconfigures its

architecture to adapt at run-time in order to address its concrete contexts. Service

level objectives are the run-time artifacts that steer and define the borders for this

adaptation. Consequently, we provided a model for service level objectives in Chapter 4

that addresses the imprecision and allows to precisely define service level objectives with

hard thresholds and with soft thresholds. Hard thresholds define borders for the self-

adaptive system adaptation. Soft thresholds are used to steer the adaptation, i. e.,

trigger reconfigurations of the self-adaptive system.

In contrast to traditional approaches [CIL+07] that comprise a notion of binary SLO

achievement, we define a notion of graded SLO achievement. That is, an SLO can-

not only be fully achieved or not at all, but also to some grade. This graded SLO
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achievement reflects the interval between hard thresholds and soft thresholds in which

the SLOs are not fully achieved but also not fully missed.

The grade precisely reflects the solution of the trade-off between conflicting properties,

e. g., cost and performance. We formally define a self-adaptive system performance

model and the SLO achievement of a self-adaptive system based on fuzzy logic [KY95]

and fuzzy set theory [Zad65]. We use the formal SLOs at design-time to predict SLO

achievement via simulation of the modeled self-adaptive system.

Definition 5.8 (Self-Adaptive System Performance Model)

A self-adaptive system performance model is a tuple (Γ, Q), in which

• Γ is a self-adaptive system reconfiguration space;

• Q is the set of SLOs, Q = {Qp0 , Qp1 , Qp2 , . . .} where each Qpi includes a

threshold set φpi for the quantification of property pi;

• Qpi is an FBTL path formula over a threshold set φpi, see [MLL04];

• φpi is a threshold set defined as a fuzzy set with membership function µφi;

• µφi is a fuzzy set membership function µ : R → [0; 1] that represents the

achievement of service level objective Qpi;

In Definition 5.8 a self-adaptive system performance model is defined. The achievement

of performance SLOs of a self-adaptive system is predicted based on this definition.

We formally define a self-adaptive system performance model as a tuple (Γ, Q). In this

tuple, Γ is a self-adaptive system reconfiguration space, as defined in Definition 5.7.

Q is a set of service level objectives Qpi . Each SLO Qpi includes a fuzzy set φpi that

defines thresholds for a monitored property pi, i. e., all acceptable values for property

pi are elements of φpi .

The graded achievement of a service level objective Qpi is represented by the graded

membership of a concrete value ∆(pi, a, s, t) of a property pi ∈ P in the fuzzy set φpi .

That is, the SLO Qpi is achieved to the same grade to which the measurement

∆(pi, a, s, t) for the property pi is member of the SLO’s fuzzy set µφi . The graded

membership in a fuzzy set φpi is defined by its membership function µφi .
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Definition 5.9 (Graded SLO Achievement)

Let (Γ, Q) be a self-adaptive system performance model with a set of SLOs Q.

• The SLO Qpi ∈ Q is achieved in state Σt of the self-adaptive system at time

t ∈ T if and only if the quantification of property pi is an element of the fuzzy

set φpi, i. e., Σt |= Qpi iff ∆(pi, a, s, t) ∈ φpi.

• The membership grade of ∆(pi, a, s, t) in fuzzy set φpi defines the graded

achievement of the SLO Qpi.

Definition 5.9 formally defines whether a self-adaptive system achieves its SLOs in its

different states Σt at run-time. The achievement of an SLO Qpi by a self-adaptive

system in state Σt is modeled by the membership grade of ∆(pi, a, s, t) in the fuzzy

set φpi , i. e., Σt |= Qpi iff ∆(pi, a, s, t) ∈ φpi .

In the following subsections, we describe rules how to derive the formal SLOs Qpi from

requirements. The rules describe how to relax requirements and how to define thresh-

olds φpi with membership functions µφpi . Subsequently, we will use these rules and

our formal definition of a self-adaptive system to describe our scalability and elasticity

prediction methods.

5.6.1. Derivation of Service Level Objectives

In SimuLizar, we refine non-functional, performance-related requirements to service

level objectives. Similar as in RELAX requirements [WSB+10], we address trade-offs

between requirements by relaxing single requirements. Furthermore, we introduce a

graded achievement of SLOs to address the imprecision of requirements in self-adaptive

systems and allow a self-adaptive system to autonomously decide trade-offs between

contradicting SLOs, like costs and performance. Our graded achievement of SLOs, is

based on fuzzy branching temporal logic (FBTL) [MLL04] and uses fuzzy logic [KY95]

and fuzzy sets [Zad65] instead of Boolean logic.

The process to derive SLOs from requirements was briefly outlined in Section 4.4. In this

section, we describe the steps in this process in more detail. Requirements are relaxed

according to the two dimensions time and accuracy, as illustrated in Figure 5.5. First,
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RCi,p RCi,l RCi,s RCi,c

RCe,p RCe,l RCe,s RCe,c

invariant

eventual

vague tolerant strict exact

time

accuracy

Figure 5.5.: Accuracy and time range dimensions of requirement relaxation.

to relax a certain SLO, the requirements engineer has to elicit from the stakeholders of

the system in which time range a requirement has to hold. A requirement may need to

hold at all times, i. e., the requirement is invariant, or has to hold after a certain point

in time, i. e., it is an eventual requirement. Second, the requirements engineer has to

elicit the accuracy of the concrete values of a requirement. The concrete value, like a

threshold, in a requirement may only be met vaguely, tolerantly, strictly, or exactly. The

relaxed requirement is then translated to a formal SLO with its according membership

function.

5.6.2. Relaxation of Time

Figure 5.6 illustrates the two types in the time dimension for the relaxation of re-

quirements. Both sides of the figure show the state space of a self-adaptive system

with its initial state Σ0 and the corresponding initial architecture configuration a0.

The nodes in the figure represent different states of the self-adaptive system with dif-

ferent architecture configurations ai and the arrows in between the architecture con-

figurations represent architecture reconfigurations α, i. e., self-adaptations. Note that

only states are included in the figure with different architecture configurations, i. e.,

∀(Σx = (ax,mx, sx, tx),Σy = (ay,my, sy, ty)) : Σx 6= Σy ⇒ ax 6= ay, and not those that

only differ in their context scenarios si and measurement vector mt.

132



5.6. SERVICE LEVEL OBJECTIVE FORMALIZATION

Σ0

Σa

Σb

Σc

Σd

Σe

Σf

Σg

Σh

Σj

Σk

Σl

· · ·

· · ·

· · ·

(a) Invariant SLO that is always achieved.
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(b) SLO that is eventually achieved.
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SLO achievedSLO not achieved

Figure 5.6.: Excerpts of a self-adaptive system state space.

As defined in Definition 5.10, an invariant SLO is achieved in all states Σi of a self-

adaptive system Γ. In Figure 5.6, the invariant SLO is achieved in the initial state

Σ0 (with architecture configuration a0) and all states that can be reached from Σ0 via

architecture reconfigurations α.

Definition 5.10 (Invariant SLO) An invariant SLO Qpi shall be achieved in

all states of a self-adaptive system reconfiguration space Γ. The following FBTL

predicate defines an invariant SLO Qpi for the self-adaptive system reconfiguration

space Γ:

AG(∆(pi, a, s, t) ∈ φpi)

On the right side of the figure, i. e., Figure 5.6b, an SLO that is achieved eventually is

illustrated. In this example, the SLO is not achieved in the initial state. Furthermore,

the SLO is not achieved in all but only some of the subsequent states of Σ0. However,

the SLO is achieved in the states Σe and Σi and all of their subsequent states.
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Definition 5.11 (Eventual SLO) An eventual SLO Qp shall be achieved in all

states of a self-adaptive system reconfiguration space Γ after a defined duration d.

The following FBTL predicate defines an eventual SLO Qpi for the self-adaptive

system reconfiguration space Γ:

AX≥d(∆(pi, a, s, t) ∈ φpi), where d ⊆ T is a (fuzzy) set within the time domain T .

To illustrate the relaxation of the time range in requirements, we recapitulate two

requirements from our Znn.com example:

R1 The system shall serve articles requested by clients promptly. That is, the mean

response time for a user request shall be less than 2.0 seconds, where the mean

response time is calculated in 1 minute batches.

R2 The system’s infrastructure leasing costs shall be less than USD 5.00 per hour.

Requirements R1 and R2 define invariant borders for the operation of the Znn.com

system. That is, the mean response time mrt is required to be less than 2.0 seconds,

the leasing costs costs less than USD 5.00 per hour. Both requirements may contradict

each other, since in order to fulfill one requirement, the other requirement may not be

fulfillable anymore. For example, depending on the workload scenario, a mean response

time of less than 2.0 seconds may only be possible if high amounts of cloud resources

are leased. Thus, the maximum leasing costs of USD 5.00 may be exceeded.

The trade-off that results from this contradiction can be resolved by relaxing at least one

of the two requirements — depending on the preference of the stakeholders. For exam-

ple, if the stakeholders are willing to temporarily accept higher response times in order

to maintain the cost limit, Requirement R2 will not be changed and Requirement R1

can be relaxed as follows:

R1’ The system shall serve articles requested by clients promptly. That is, the mean

response time for a user request shall eventually be less than 2.0 seconds, where

the mean response time is calculated in 1 minute batches.
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Thus, the self-adaptive system may temporarily achieve mean response times greater

than 2.0 seconds to maintain Requirement R2 without necessarily violating the (even-

tual) Requirement R1’.

For the operation of the system, we want to more precisely define both requirements,

e. g., define an acceptable time constraint for the term temporary. Consequently, we

derive time constraints from both requirements and define SLOs with these constraints.

We use FBTL predicate, as introduced in Section 2.2.1, to define the time constraints

for the service level objectives Qmrt and Qcosts:

Qmrt : AX≥d(∆(mrt, a, s, t) ∈ φmrt) (5.1)

Qcosts : AG(∆(costs, a, s, t) ∈ φcosts) (5.2)

Formula 5.1 shows the time constraints for the formal SLO Qmrt that defines thresholds

for the mean response time. It uses the quantifier A to express that the SLO must be

achieved in all reconfiguration paths, i. e., in the complete reconfiguration space of the

system. The FBTL-specific temporal operator X≥d is used to express that the SLO

must hold eventually, i. e., after time d. Formula 5.2 shows the formal SLO Qcosts

that defines a cost limit. It uses the A quantifier as well and temporal operator G

to express that the SLO is invariant, i. e., must be achieved in all states of the self-

adaptive system. ∆(mrt, a, s, t) is the quantification of the propertymrt (mean response

time), ∆(costs, a, s, t) is the quantification of the property costs at time t. Functions

µ(φmrt) and µ(φcosts) are the membership functions of the (fuzzy) sets φmrt and φcosts,

that define the accepted mean response time and costs. More intuitively, the FBTL

predicate 5.1 means that, eventually, the latest after time d, e. g., 10 minutes, the self-

adaptive system must have reached a state (via reconfigurations) such that the leasing

mean response time must be in the range defined by set φmrt, e. g., φmrt = [0; 2].

Analogously, the set φcosts defines the cost range, e. g., φcosts = [0; 5]. The concrete

value for the point in time d and the sets φmrt and φcosts can be either defined as crisp

sets (or numbers), as in the examples above, or as fuzzy sets (or fuzzy numbers). In the

latter case, the accuracy of these concrete values is relaxed and a membership function,
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e. g., µφmrt , must be specified. The relaxation of accuracy is the second dimension in

SimuLizar in order to relax requirements.

5.6.3. Relaxation of Accuracy

In addition to the relaxation of the time range in which a requirement must hold, in

SimuLizar, the accuracy of non-functional, quantifiable requirements can be relaxed as

well. We distinguish between four levels of accuracy, as illustrated in Figure 5.5: vague,

tolerant, strict, and exact. Taking into account the inherent uncertainty of requirements,

these different levels of accuracy reflect how accurately a value defined in a requirement

shall be met.

Like presented in Chapter 4, in SimuLizar, a service level objective defines thresholds

for monitored properties. More precisely, an SLO can have soft thresholds and hard

thresholds. Each threshold can be either a lower threshold defining a lower boundary

or an upper threshold defining an upper boundary. Soft thresholds are meant to trigger

reconfigurations, i. e., if a soft threshold is exceeded at run-time, a reconfiguration of

the system should be triggered. Hard thresholds should not be exceeded at all in case

of invariant SLOs or only temporary for eventual SLOs.

The graded achievement of an SLO can be quantified by evaluating the according FBTL

predicate of the SLO. The accuracy dimension is taken into account by different mem-

bership functions µφpi for the threshold set φpi of an SLO for each level of accuracy.

Intuitively, at the lowest level of accuracy, i. e., vague, an SLO Qpi is still achieved

within a state Σt to a high grade even if the concrete measurement ∆(pi, a, s, t) exceeds

the soft thresholds extremely. At the highest level of accuracy, an SLO is not achieved

at all if the concrete measurement exceed the thresholds only even a bit.

We provide template membership functions and natural language template phrases for

each level of accuracy for the definition of threshold sets and their membership functions.

The natural language phrases can be used to document the SLOs, e. g., as part of service

level agreements. The template membership functions help domain experts to define

formal SLOs that can be evaluated during the operation of a self-adaptive system. The

template functions are exemplary formal definitions of the natural languages templates,
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but only serve as a reference for creating membership functions. The rationale for the

template functions is to capture typical natural language formulations (exact, strict,

tolerant, vague) as mathematical functions. However, domain experts can define own

membership functions for SLOs, if required.

For each accuracy level of an SLO, a membership function can be derived that takes into

account the defined soft thresholds and hard thresholds. For the rules and illustrations,

we use the following abbreviations for these thresholds:

• lthard is the hard lower threshold,

• ltsoft is the soft lower threshold,

• utsoft is the soft upper threshold, and

• uthard is the hard upper threshold.

For all levels of accuracy, we require the hard lower threshold to be less or equal to

the soft lower threshold, i. e., lthard ≤ ltsoft. Analogously, we require the soft upper

threshold to be less or equal to the hard upper threshold, i. e., utsoft ≤ uthard.

In the following, we define each level of accuracy with a template membership function,

illustrate the membership functions as a graph, and provide template SLO phrases

in natural language. The template membership function can be used either to define

thresholds for the quantification of a monitored property pi or to define the duration d

after which an eventual SLO must be achieved.

Exact Accuracy

Natural Language Template 5.1 (Exact Accuracy)

The system’s property shall be exactly in the range between lthard and

uthard; it shall be in no case outside of this range.

The Natural Language Template 5.1 shows our template for exact accuracy in natural

language. The template defines thresholds for a system property that shall not be

exceeded at all.
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µ

property
0

1

lthard uthard

Figure 5.7.: Membership function with for SLOs with exact accuracy (non-graded
achievement).

Figure 5.7 illustrates the fuzzy membership function φpi of an SLO with exact accuracy.

The membership function is rectangular, with value 1 for all arguments between the

hard lower threshold lthard and the hard upper threshold uthard. Soft thresholds do

not exist for exact accuracy or are expected to be equal to their corresponding hard

thresholds. This reflects the natural language template, which states that the provided

thresholds shall never be exceeded.

Function Template 5.1 (Exact Accuracy) The membership function µφp of

an SLO Qpi and threshold set φp with exact accuracy is defined as:

µφpi (x) =

1 if lthard ≤ x ≤ uthard, where lthard = ltsoft ∧ uthard = utsoft

0 else

The Function Template 5.1 defines the template membership function µφi of an SLO

Qpi with exact accuracy. Note, that the membership function defines a crisp set, i. e.,

non-fuzzy set. This reflects that there is no graded achievement in terms of accuracy,

i. e., if the run-time measurements ∆(pi, a, s, t) are within the range defined by the

thresholds, the SLO Qpi is achieved, otherwise the SLO Qpi is not achieved at all.

µφcosts(∆costs,a,s,t) =

1 if 0 ≤ ∆costs,a,s,t ≤ 5

0 else
(5.3)

The membership function µφcosts that defines the thesholds for our SLO Qcosts in the

Znn.com example is shown in Equation 5.3. If the quantification of the costs at time t,
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i. e., ∆(costs, a, s, t), are within the range of 0.00 to 5.00 [USD/hour], the SLO Qcosts is

achieved at time t. Together, with the formal definition of the time constraint for the

invariant SLO, i. e., Equation 5.2, the SLO Qcosts must be achieved, i. e., the costs are

exactly in the interval [0; 5], in all states of the self-adaptive system.

Strict Accuracy

Natural Language Template 5.2 (Strict Accuracy)

The system’s property shall be strictly in the range between ltsoft and

utsoft; it may be outside of this range but never outside the range

between lthard and uthard.

The Natural Language Template 5.2 defines a natural language phrase for the strict

accuracy level. In this accuracy level, the desired range for the system’s property is

strictly between ltsoft and utsoft. However, the values for the property may exceed this

range, but may never be lower than lthard or higher than uthard.

µ

property
0

1

lthard ltsoft utsoft uthard

Figure 5.8.: Membership function with for SLOs with strict accuracy (quadratic
achievement).

Figure 5.8 illustrates the fuzzy set membership function of an SLO with strict accuracy.

In contrast to exact accuracy, we use soft thresholds and hard thresholds at this accuracy

level.

In the illustrated membership function, the value is 1 for each argument in the interval

between the lower soft threshold ltsoft and the upper soft threshold utsoft. The values

increase quadratically for arguments in the interval between the lower hard threshold

lthard and the lower soft threshold ltsoft. Analogously, the values decrease quadratically

139



5. Scalability and Elasticity Prediction Methods

for arguments in the interval between the upper soft threshold utsoft and the upper hard

threshold uthard.

The shape of the curve reflects that the range between the soft thresholds is the de-

sired range. Since this desired range shall be strictly met, the SLO achievement grade

degrades quickly, i. e., quadratically, with increasing distance from the desired range.

Definition 5.12 The membership function µφp of an SLO Qpi and threshold

set φpi with strict accuracy is defined as:

µφpi (x) =



1
(ltsoft−lthard)2

(x− lthard)2 if lthard ≤ x < ltsoft

1 if ltsoft ≤ x ≤ utsoft
1

(uthard−utsoft)2
(x− uthard)2 if utsoft < x ≤ uthard

0 else

Definition 5.12 shows the template membership function µφpi of SLOs Qpi with strict ac-

curacy. This membership function reflects a quadratic degradation of the SLO achieve-

ment for run-time measurement values with increasing distance from the soft thresh-

olds. That is, the SLO achievement degrades quadratically from 1 to 0. For run-time

measurements ∆(pi, t) that are within the interval [ltsoft;utsoft], the SLO Qpi is fully

achieved. For run-time measurements ∆(pi, a, s, t) that are less than lthard or greater

than uthard, the SLO Qpi is not achieved at all. The SLO achievement increases for

run-time measurements in the interval [lthard; ltsoft] quadratically and decreases for

run-time measurements in the interval [utsoft;uthard] quadratically.

µd(t) =


1 if 0 ≤ t < 5

1
25(t− 10)2 if 5 ≤ t ≤ 10

0 else

(5.4)

For our Znn.com example, we can use the template membership function for strict

accuracy to define the duration d after which our SLO Qmrt shall be achieved, as

defined in Equation 5.1. With this definition the FBTL predicate is evaluated to 1,

i. e., fully achieved, if the SLO Qmrt is achieved after less than 5 minutes. The FBTL
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predicate is evaluated to 0, if the SLO Qpi is achieved after more than 10 minutes. If

the SLO Qmrt is achieved within the range of 5 to 10 minutes, the overall achievement

grade is calculated via 1
25(t− 10)2 where t is the time at which the SLO is achieved.

Tolerant Accuracy

Natural Language Template 5.3 (Tolerant Accuracy)

The system’s property shall be approximately in the range between

ltsoft and utsoft; it may be outside of this range but never outside

the range between lthard and uthard.

The Natural Language Template 5.3 defines a natural language phrase for the tolerant

accuracy level. In this template, the range for the system’s property is approximately

between ltsoft and utsoft. Since the range is given only approximately, the values for

the property may exceed this range. However, the values for the property may never

be outside the range between lthard and uthard.

µ

property
0

1

lthard ltsoft utsoft uthard

Figure 5.9.: Membership function with for SLOs with tolerant accuracy (linear
achievement).

Figure 5.9 illustrates the membership function for an SLO with tolerant accuracy.

Again, in this membership function we use soft thresholds and hard thresholds.

Like in the strict accuracy level, in this membership function the value is 1 for each

argument in the interval between the lower soft threshold ltsoft and the upper soft

threshold utsoft. For arguments in the intervals between the hard thresholds and the

soft thresholds, the values increase linearly or decrease linearly, respectively. The lin-
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ear degradation of the SLO achievement grade reflects that the desired range is only

approximately given, like defined in the natural language template.

Definition 5.13 The membership function µφp of an SLO Qpi and threshold set

φpi with tolerant accuracy is defined as:

µφpi (x) =



1
(ltsoft−lthard)(x− lthard) if lthard ≤ x < ltsoft

1 if ltsoft ≤ x ≤ utsoft

− 1
(uthard−utsoft)(x− uthard) if utsoft < x ≤ uthard

0 else

Definition 5.13 shows the template membership function of SLOs with tolerant accu-

racy. The achievement of an SLO Qpi with tolerant accuracy is defined to degrade

linearly from 1 to 0 with increasing distance from the soft thresholds in direction of

the hard thresholds. In the interval between the lower soft threshold ltsoft and the

upper soft threshold utsoft, the SLO achievement is 1, i. e., the SLO is fully achieved.

For arguments less than the lower hard threshold lthard or greater than the upper hard

threshold uthard the SLO achievement is 0, i. e., the SLO is not achieved at all.

µφmrt(∆mrt,a,s,t) =



1
0.5(∆mrt,a,s,t) if 0.0 ≤ ∆mrt,a,s,t < 0.5

1 if 0.5 ≤ ∆mrt,a,s,t ≤ 2.0

−(∆mrt,a,s,t − 3.0) if 2.0 < ∆mrt,a,s,t ≤ 3.0

0 else

(5.5)

The membership function for the SLO Qmrt of our Znn.com example can be defined as

noted in Equation 5.5. This membership function defines a lower hard threshold lthard

of 0.0 seconds and a lower soft threshold ltsoft of 0.5 seconds. The upper soft threshold

utsoft is defined as 2.0 seconds and the upper hard threshold uthard is defined as 3.0 sec-

onds. Thus, the SLO is achieved to a certain grade for mean response times between 0.0

and 3.0 seconds. The SLO is fully achieved for mean response times between 0.5 and

2.0 seconds. The SLO achievement is linearly degraded in the intervals [0.0; 0.5] and
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[2.0; 3.0] with run-time measurements ∆(pi, a, s, t) of increasing distance from the soft

thresholds in direction of the hard thresholds until it eventually becomes 0.

Vague Accuracy

Natural Language Template 5.4 (Vague Accuracy)

The system’s property shall be vaguely in the range between ltsoft and

utsoft; it may be outside of this range but never outside the range

between lthard and uthard.

The Natural Language Template 5.4 defines a natural language phrase for the vague

accuracy level. The range for the system’s property is vaguely defined as the range

between ltsoft and utsoft. The values for the property may exceed this range. However,

the values for the property may never be outside the range between lthard and uthard.

µ

property
0

1

lthard ltsoft utsoft uthard

Figure 5.10.: Membership function with for SLOs with vague accuracy (negative
quadratic achievement).

Finally, Figure 5.10 illustrates the membership function for an SLO with vague accuracy.

Like in the previously presented membership functions, the value is 1 for arguments in

the interval between the soft thresholds.

In this membership function, the value increases with a negative quadratic function for

arguments in the interval between the lower hard threshold lthard and the lower soft

threshold ltsoft. Analogously, the values decrease with a negative quadratic function

for arguments in the interval between the upper soft threshold utsoft and the upper

hard threshold uthard. The shape of the negative quadratic function reflects the natural
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language template, i. e., the SLO achievement degrades only slowly with increasing

distance from the desired range.

Definition 5.14 The membership function µφp of an SLO Qpi and threshold set

φpi with vague accuracy is defined as:

µφpi (x) =



1− 1
(ltsoft−lthard)2

(x− ltsoft)2 if lthard ≤ x < ltsoft

1 if ltsoft ≤ x ≤ utsoft

1− 1
(uthard−utsoft)2

(x− utsoft)2 if utsoft < x ≤ uthard

0 else

Definition 5.14 shows the template membership function for SLOs with vague accuracy.

In this equation, the value is 1, i. e., the SLO is fully achieved, if the argument is in

the interval between the lower soft threshold and the upper soft threshold. Like in

Equation 5.12 the values in the intervals between the soft thresholds and the hard

thresholds are calculated via a quadratic function, however, with inverse values, i. e., a

negative quadratic function. For arguments less than the lower hard threshold lthard

and arguments greater than the upper hard threshold uthard the values are 0, like in

the previous membership functions.

µφphcf (∆(phcf, a, s, t)) =


1− 1

802
(∆(phcf, a, s, t)− 80)2 if 0 ≤ ∆(phcf, a, s, t) < 80

1 if 80 ≤ ∆(phcf, a, s, t) ≤ 100

0 else

(5.6)

Equation 5.6 shows a final example for an SLO membership function of our Znn.com

example. In this equation ∆(phcf, a, s, t) is the percentage of requests served with

the highest content fidelity (phcf), i. e., multimedia, within one hour. The example

membership function has no soft upper threshold. For a percentage value above 80%

of the requests that are served with multimedia content fidelity, the SLO Qphcf is fully

achieved, as defined by this membership function µφphcf . For percentage values between
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0% and 80% the achievement of the SLO increases with a negative quadratic function

from 0 to 1.

The template membership functions, as presented above, can be used by domain experts

to derive concrete membership functions for SLOs. In the following sections, we define

the properties scalability and elasticity. Both properties characterize the quality of

the self-adaptation layer. We describe methods to use a self-adaptive system model to

predict scalability and elasticity of a system within a design-time simulation and discuss

the assumptions and limitations of these prediction methods.

5.7. Scalability Prediction

We formally define scalability such that we can evaluate scalability at design-time,

early in the software engineering process, using design-time architecture models, like

our model presented in Chapter 4. For that purpose, we first recap the definition of

scalability and then derive a formal definition. Subsequently, we describe a concrete

metric to quantify scalability and a prediction method to obtain this metric at design-

time. Finally, we discuss basic assumptions and limitations of the prediction method.

5.7.1. Formalization

Scalability was previously defined in the context of cloud computing based systems by

Lehrig as “the ability of a cloud layer to increase its capacity by expanding its quantity

of consumed lower-layer services.” [LEB15] In the definition, the term cloud layer is

used to refer to a software system that makes use of lower-level services, such as IaaS

for PaaS-based software systems or PaaS for SaaS-based software systems.

Lehrig’s definition states that a system is scalable if it is (potentially) able to expand its

capacity, i. e., sustain increasing workload. In order to sustain increasing workload, it

may make use of additional lower-level service quantities. For our purpose of formally

defining scalability, we refine the definition in four aspects. First, we refine term increase

capacity in this definition as the ability to sustain workload variations without missing
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defined service level objectives. Second, we add a temporal dimension by adding that

the system must be able to increase its capacity eventually. Third, we expand the term

scalability in terms of the direction of scaling. We define, that a system is scalable, if it is

able to increase its capacity but also to decrease its capacity. That is, a scalable system

can increase or decrease its capacity without missing its service level objectives. Finally,

we relax the definition by not restricting the means how to achieve the scalability.

Instead of restricting this to making use of additional lower-level services, we refine the

means to be any self-adaptive action. Thus, we can formulate our refined definition like

in Definition 5.15.

Definition 5.15 (Scalability) Scalability is the ability of a system to eventually

adapt its capacity to workload variations by self-adaptation, without missing defined

service level objectives.

We formally define scalability with the following FBTL predicate in which φpi is

the threshold set of Qpi:

∀Qpi ∈ Q : EF (∆(pi, a, s, t) ∈ φpi)

Intuitively, the FBTL predicate in Definition 5.15 means that there must exists at least

one path (starting from the initial state) in the reconfiguration space of a self-adaptive

system which finally leads to a state in which the service level objective Qpi is achieved.

The path leading to the state in which the SLO is achieved is determined by the self-

adaptation, i. e., architecture reconfigurations, of the self-adaptive system.

According to our formal definition of scalability, we can assess whether a self-adaptive

system is scalable by examining the reconfiguration space of the self-adaptive system.

If a path from the initial state to a state in which the SLO is achieved exists in the state

space, the self-adaptive system is scalable. The reconfiguration space of a self-adaptive

system, however, may be infinite because the context scenario st depends on time t,

like defined in Definition 5.5 and Definition 5.6. In our formalization, time is a positive

integer number, i. e., t ∈ N+
0 , and the set N+

0 is countable, but infinite. Thus, a complete

exploration of all states of a self-adaptive is not feasible. However, we can still asses

the scalability of a self-adaptive system within a fixed context scenario.
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Consequently, we can assess the scalability of a self-adaptive system within in a fixed

context scenario si by exploring the reconfiguration space of the self-adaptive system.

Note that, if we choose a fixed context scenario si, the reconfiguration space is spanned

by the reconfigurations, i. e., function α, and run-time monitoring, i. e., function ∆,

only. We can assume that this reconfiguration space is finite and hence the state space

can be fully explored such that a path can be found if it exists.

In order to be able to compare the scalability of two self-adaptive system architectures,

we need a means to put the scalability of each architecture on an ordinal (or better

interval) scale, as described in Section 3.2. For this purpose, we define two metrics

based on our formalization and describe methods to predict these metrics at design-

time in the following sections.

5.7.2. Metric Definition

We described an initial scalability metric, scalability range, in [BLB15]. Based on our

formalization, we derive two more precisely defined metrics from this initial scalability

metric. First, we define scalability load range (SLR), which is a system’s ability to

adapt its capacity to a certain load range while still achieving its SLOs. Second, we

define scalability work range (SWR), which is a system’s ability to adapt its capacity

to a certain work range while still achieving its SLOs.

Definition 5.16 (Scalability Load Range) Scalability load range is the metric

that reflects a system’s ability adapt its capacity to a certain load range, e. g., a

range of request rates for a fixed type of work, and still achieve its SLOs. That is,

for each request rate within this range, the system achieves its SLOs. The scalability

load range is defined as the maximum request rate within the load range. The base

unit of scalability load range is defined as the base unit of the request rate, i. e.,

requests per second ( req.s ).

Consider a defined open workload WL for our Znn.com system that comprises a single

SystemLevelEntryCall, like illustrated in Figure 4.15. For this workload WL, we can

specify the scalability load range SLRWL for our Znn.com system architecture, for
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example SLRWL = 50 req/min. That is, the Znn.com architecture is able to adapt its

capacity to load variations from 0 req.
min to 50 req.

min while still achieving its SLOs.

Work is the second parameter besides load that defines the workload of a system. While

load can be specified in terms of a rate, the quantification of work is more complex.

The work of a system is determined by its interaction with the user or other external

systems, i. e., the methods that are called, the method parameters, and the input data.

Still, work is often quantified by the amount of data to be processed for a given system

usage context [BSL16]. For example, the amount of data can be quantified per request,

i. e., in Bytes/request. Thus, we can also define another scalability metric, scalability

work range, which can be used to assess the scalability of a system in dependency to a

work range.

Definition 5.17 (Scalability Work Range) Scalability work range is the met-

ric that reflects a system’s ability adapt its capacity to a certain work range, e. g.,

a range of work quantification for a fixed load, and still achieve its SLOs. That

is, for each work quantification within this range, the system achieves its SLOs.

The scalability work range is defined as the maximum work quantification within

the work range. The base unit of scalability work range depends on the base unit of

the work quantification, e. g., Bytes/request.

For the same open workload WL of our Znn.com system that comprises a single

SystemLevelEntryCall, we can also specify the scalability work range SWRWL, e. g.,

SWRWL = 100 Byte/req.. That is, the Znn.com architecture is able to adapt its ca-

pacity to work variation from 0 Byte/req. to 100 Byte/req. while still achieving its

SLOs.

With the metrics SLR and SWR, a software engineer is able to compare different self-

adaptive system architectures and decide which architecture fits her needs best. We

describe how to implement a method to predict the scalability of a self-adaptive system

and obtain the metrics SLR and SWR in the next subsection.
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Listing 5.1: Scalability Prediction Method

1 function determine_scalability_load_range(Γ, Q, s, low , high , step):

2 // Set request rate to mean value of lower and upper request rates

3 s_range = (low + high) / 2

4 Γ.s.request_rate = s_range

5 // Check whether SLOs are achieved for mean request rate

6 scales := scalability_analysis(Γ, Q, Γ.Σ0)

7 // End recursion if distance between lower and upper

8 if (high - low) < step

9 return s_range

10 // Recursively search for max. request rate for which SLOs achieved

11 if scales = true

12 determine_scalability_load_range(Γ, Q, s, s_range + step , high)

13 else

14 determine_scalability_load_range(Γ, Q, s, low , s_range - step)

15

16 function scalability_analysis(Γ, Q, Σcurr):
17 if ( ∀Qi ∈ Q : Σcurr |= Qi ) then

18 // if all SLOs are achieved , the system scales up to this workload

19 return true

20 else

21 label state Σcurr as explored

22 // explore all states that are reachable via reconfigurations

23 for each architecture reconfiguration from Σcurr to Σnext in S do

24 if ( state Σnext is not labeled as explored ) then

25 return scalability_analysis(Γ, Q, Σnext)
26 return false

5.7.3. Metric Implementation

Listing 5.1 shows a pseudo code implementation of our scalability prediction method

that determines the scalability load range metric of a self-adaptive system performance

model (Γ, Q). The implementation of the scalability work range metric is analogue to

this implementation and is hence not listed here.

The implementation consists of the two functions determine_scalability_load_range

and scalability_analysis. The function determine_scalability_load_range has six

parameters and returns the scalability range (in req.
s ). The first three parameters are

a self-adaptive system reconfiguration space Γ, a set of service level objectives Q, and

a single context scenario s. The last three parameters are the lowest request rate in

the given context scenario, the highest request rate in the context scenario, and a step

width for the search algorithm.
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The function determine_scalability_load_range implements a binary search for the

highest request rate (at which the SLOs are still achieved) within the given load range,

i. e., between low and high. To check whether the SLOs are achieved, the scalabil-

ity of the self-adaptive system in a reconfiguration space Γ is analyzed, i. e., function

scalability_analysis is called (line 6).
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Figure 5.11.: Exploration of scalability

As outlined in Section 5.7.1, we can explore the reconfiguration space of a self-adaptive

system to assess whether the system is scalable within one fixed context scenario s.

This is implemented in function scalability_analysis. As illustrated in Figure 5.11, the

function implements a breadth-first search within the reconfiguration space Γ of the self-

adaptive system that is spanned by the architecture reconfigurations, i. e., function α.

The breadth-first algorithm (lines 10 to 20) has three input parameters and returns a

Boolean value. The input parameters are a self-adaptive system reconfiguration space Γ,
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a set of service level objectives Q, and a self-adaptive system state Σcurr. First, it is

checked for the actual parameter system state Σcurr whether the SLOs are achieved in

this state (line 11). The analysis whether SLOs are achieved in one single state can,

for example, be realized with a traditional model-driven software performance method

like Palladio. If the SLOs are achieved, the function returns true. Otherwise, the state

is labeled as explored (line 15) and the function is recursively called for all states Σnext

that are reachable from the current state Σcurr via architecture reconfigurations, i. e.,

function α.

Our prediction method, implemented as described in this subsection, only terminates

under some specific assumptions. We discuss these underlying assumptions and the

limitations in the next subsection.

5.7.4. Assumptions and Limitations

For the scalability prediction method we presented in this section, we have two basic

assumptions. First, we assume that architecture reconfigurations are cycle-free within

one context scenario. However, cycles may occur due to the context scenario vari-

ations, e. g., sequences like in usage evolutions. Second, we assume that monitoring

values converge for a given context scenario and architecture configuration. With

these two assumptions, we can conclude that there is only a limited number of ar-

chitecture reconfigurations that can be executed for a given context scenario. This is

the case, since an architecture reconfiguration is according to our definition, a func-

tion A × Boolean → A, i. e., architecture reconfigurations are triggered if the Boolean

truth value of a real number variable constraint vector (π(m)) is true for the current

architecture configuration a. The truth value of π(m) depends on the monitoring vec-

tor m = ∆P (a, s, t), where this vector contains values for all monitored properties, i. e.,

∆P (a, s, t) = 〈∆(p0, a, s, t),∆(p1, a, s, t),∆(p2, a, s, t), . . .〉. A measurement ∆(pi, a, s, t)

depends, for a fixed property pi and context scenario s, on time t and the architec-

ture configuration a, since ∆(pi, a, s, t) : P × A × S × T → R. If we assume, that the

monitoring values converge over time, there can only be a limited number of architec-

ture reconfigurations as well. If, furthermore, the reconfigurations are cycle-free, only

a limited number of architecture reconfigurations can be executed.

151



5. Scalability and Elasticity Prediction Methods

The analysis whether SLOs are achieved in a single state of the self-adaptive system, i. e.,

line 11 in Listing 5.1, can be realized with traditional model-driven software performance

analysis methods like Palladio. In order to get reliable results for this analysis, the

analysis has to run until a steady state is reached, i. e., the run-time measurements

∆(pi, a, s, t) converge.

5.8. Elasticity Prediction

Before we formally define the second quality property of self-adaptive systems, elas-

ticity, we recapitulate the definition of elasticity. We then derive a FBTL predicate

and define concrete elasticity metrics that can be obtained at design-time in order to

compare alternative self-adaptive system designs. Again, like for scalability, we present

an implementation of our elasticity prediction method. We conclude this section with

the discussion of assumptions and limitations for the presented prediction method.

5.8.1. Formalization

Elasticity is defined as “the degree to which a system is able to adapt to workload

changes by provisioning and deprovisioning resources in an autonomous manner, such

that at each point in time the available resources match the current demand as closely

as possible.” [HKR13] That is, a self-adaptive system has a degree, or grade, of elasticity.

The system’s grade of elasticity depends on its ability to adapt to changing workloads,

i. e., the system’s scalability. We refine the definition of elasticity in two aspects in

order to derive an FBTL predicate. First, instead of limiting the objective of elasticity

to matching the resource demand as closely as possible, we refine that the system must

achieve all defined service level objectives. Second, we refine the term “degree” in the

definition. We define that the elasticity degree depends on (1) the time it takes to

achieve all defined service level objectives and (2) the overall grade of achievement of

the service level objectives. Consequently, we formulate a refined definition of elasticity,

as in Definition 5.18.
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Definition 5.18 (Elasticity) Elasticity is the degree to which a system is able to

self-adapt to workload changes, such that it achieves all of its service level objectives

to a certain grade. The degree depends on the time it takes to achieve the SLOs

and on the overall grade of SLO achievement.

We formally define elasticity with the following FBTL predicate, in which φpi is

the threshold set of Qpi:

∀Qpi ∈ Q : AX≤d(∆(pi, a, s, t) ∈ φpi)

Intuitively, the FBTL predicate in Definition 5.18 means that for all path (starting

from the initial state) at latest after duration d, a state must be reached in which the

service level objective Qpi is achieved. The path leading to the state in which the SLO

is achieved is determined by the self-adaptation, i. e., architecture reconfigurations of

the self-adaptive system.

Our formal elasticity definition differs from our formal scalability definition in two major

aspects. The first aspect is the scope, the second aspect is the time. While we defined

for scalability that there must exist at least one path that leads to a state in which all

SLOs are achieved, for elasticity the SLOs must be achieved in all states in all path

after duration d. That is, the scope of elasticity comprises all path from the initial

state of the self-adaptive system, i. e., the complete state space. Furthermore, in the

elasticity definition, we specify a time constraint, i. e., duration d, after which the SLOs

must hold. In contrast to this, in the scalability definition, we only specified that the

SLOs must be achieved in some state of the self-adaptive system at some unspecified

point in time.

We can assess the elasticity of a self-adaptive system by examining its reconfiguration

space and checking whether the SLOQpi is achieved before duration d expired. However,

just like with scalability, it is not feasible to explore the complete state space due to

the potential infinite number of states of the self-adaptive system, which results from

the dependence on time t ∈ N+
0 . Similar to the scalability prediction, however, the

elasticity of a self-adaptive system can be predicted for a fixed context scenario as well.

153



5. Scalability and Elasticity Prediction Methods

In our scalability prediction method, all states in the reconfiguration space are explored

individually. Consequently, the time it takes until monitoring values ∆(pi, a, s, t) con-

verge and reconfigurations, i. e., function α, are triggered, is neglected.

In the elasticity prediction, however, we are interested in exactly this time. According

to our elasticity definition, the time until SLOs must be achieved in all states is lim-

ited by the duration d. Thus, the time until monitoring values δ(pi, t) converge and

reconfigurations are triggered are constrained by the duration d.

To quantify elasticity, e. g., in order to compare alternative self-adaptive system archi-

tectures, we need metrics that reflect the elasticity degree. Hence, in the following, we

define two elasticity metrics based on our formalization and describe a method how to

predict these elasticity metrics at design-time.

5.8.2. Metric Definitions

We described initial elasticity metrics, mean time to quality repair (MTTQR) and

number of SLO violations (NSLOV), in [BLB15]. Based on the formal definition of

elasticity in the previous subsection, we refine these metrics. We define time to SLO

achievment (TTSA) as a refinement of MTTQR and accumulated SLO achievement

grade (ASAG) as a refinement of NSLOV.

Definition 5.19 (Time To SLO Achievement) Time to SLO achievement is

the metric that reflects the duration a system requires to achieve its SLOs in a

certain workload scenario. The duration is calculated as the difference from the

point in time the system is in specified state, e. g., its initial state, until the point

in time the system is in a state in which its SLOs are achieved. The base unit of

the time to SLO achievement is defined as the base unit of time, i. e., seconds (s).
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Definition 5.20 (Accumulated SLO Achievement Grade) Accumulated

SLO achievement grade is the metric that reflects the normalized, accumulated

SLO achievement grade of a system in a certain workload scenario. The ASAG

value is calculated as the (normalized) integral of the SLO achievement of a

system over time from the point in time the system is in a specified state, e. g., its

initial state, until the point in time the system is in a state in which its SLOs are

achieved. The metric has no unit, but the values are normalized and are in the

interval between 0 and 1, i. e., interval [0; 1].

The metrics defined above enable software engineers to compare alternative architec-

tures of self-adaptive systems at design-time and select an architecture to implement

based on the requirements and priorities of the stakeholders. Consider a defined us-

age context scenario s, like the one defined for our Znn.com example in Figure 4.15.

For this usage context, we can obtain the metrics TTSA and ASAG for two alterna-

tive self-adaptive system reconfiguration spaces ΓA and ΓB, defined by two alternative

architectures.

Let us assume, the metric values for the architecture of ΓA are a mean TTSA of

TTSAΓA,s = 60s and a mean ASAG of ASAGΓA,s = 0.8. Furthermore, we as-

sume that the concrete metric values for the architecture of ΓB are a mean TTSA

of TTSAΓB ,s = 120s and a mean ASAG of ASAGΓB ,s = 0.9. With these metrics, we

can compare both architectures of ΓA and ΓB.

On one hand, the architecture of ΓA is able to achieve the SLOs in half of the time of

the architecture of ΓB for the given workload scenario s, i. e., TTSAΓA,s = 60s versus

TTSAΓB ,s = 120s. On the other hand, the mean accumulated SLO achievement grade

of architecture of ΓB is higher than for architecture of ΓA, i. e., ASAGΓB ,s = 0.9 versus

ASAGΓA,s = 0.8. Thus, depending on which metric we prioritize, we can identify a

superior architecture. However, there might not be a single optimal architecture, but

only Pareto-optimal architectures regarding the concrete metrics.
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Listing 5.2: Elasticity Prediction Method

1 function determine_time_to_SLO_achievement(Γ,Q,s,astart,duration):
2 for(ttsa := 0; ttsa < duration; ttsa ++)

3 // Increment time in Γ and check if SLOs are achieved

4 time := ttsa

5 if (calculate_total_slo_achievment(Γ,Q,Σcurr) > 0)

6 return ttsa

7 // SLOs have not been achieved within required duration , return ∞
8 return -1

9

10 function determine_accumulated_SLO_achievment(Γ,Q,s,astart,duration):
11 Γ := (A, {s}, P,M,∆, α, null, astart)
12 time := 0

13 for(ttsa := 0; ttsa < duration; ttsa ++)

14 // Increment time in Γ and check if SLOs are achieved

15 time := ttsa

16 asag := asag + calculate_total_slo_achievment(Γ,Q,Σcurr)
17 return asag / time

18

19 function calculate_total_slo_achievment(Γ,Q,Σcurr):
20 total_slo_achievement := 0

21 total_number_of_slos := Q.size

22 // Calculate the normalized total SLO achievement for state Σcurr
23 for (n := 0; n < total_number_of_slos; n++)

24 if (Qn.µφn(∆(pn, a, s, curr)) = 0)

25 return 0

26 else

27 total_slo_achievement := total_slo_achievement + Qn.µφn /

total_number_of_slos

28 return total_slo_achievement

5.8.3. Metric Implementation

Listing 5.2 shows a pseudo code implementation of our elasticity prediction method that

can be used to determine our elasticity metrics TTSA and ASAG for a self-adaptive sys-

tem performance model (Γ, Q). The implementation consists of the three functions de-

termine_time_to_SLO_achievement, determine_accumulated_SLO_achievement, and cal-

culate_total_SLO_achievement.

The first two functions determine the metrics TTSA and ASAG for a given self-adaptive

system performance model (Γ, Q) and in a given context scenario s. Both of these, the

self-adaptive performance model and the context scenario are input parameters of both

functions. Additionally, both functions require a start state astart and a duration dura-
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tion as input parameters. As defined in our elasticity FBTL predicate in Definition 5.18,

duration specifies the duration after which the SLOs must be achieved.

The first function, determine_time_to_SLO_achievement, checks for each point in time

(from 0 until duration) whether all SLOs Q are achieved by calling function calcu-

late_total_SLO_achievement (line 6). It returns the time after which all SLOs have

been achieved (line 7), i. e., the TTSA metric. If the SLOs have not been achieved

within the duration duration, the function returns -1 (line 9).

The second function, determine_accumulated_SLO_achievement, checks for each

point in time the total SLO achievement at that time by calling the func-

tion calculate_total_SLO_achievement (line 17). Finally, the function deter-

mine_accumulated_SLO_achievement returns the sum of the total SLO achievement

within the given duration divided by the duration (line 18), i. e., the ASAG metric. If the

SLOs have not been achieved within the duration duration, the function returns 0 (zero),

since the return value of function determine_accumulated_SLO_achievement will always

be 0 as well.

The third function, calculate_total_SLO_achievement, is called by both of the two

prior methods. It calculates the total SLO achievement for a self-adaptive system

performance model (Γ, Q) in state Σcurr. The function iterates over all SLOs Qn with

membership function µφn for the threshold set φn (lines 24 to 28). It sums up the SLO

achievement grade for each SLO (line 28). The achievement grade for a single SLO is

calculated via the membership function µφn of the SLO Qn with the current monitored

value of that SLO as actual parameter, i. e., ∆(pn, a, s, curr). The function returns the

sum of all SLO achievement grades divided by the number of SLOs (line 29).

The elasticity prediction method, implemented like described above, terminates only

under some assumptions. We will discuss these assumptions and the limitations of our

elasticity prediction method in the next subsection.
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5.8.4. Assumptions and Limitations

The elasticity prediction method, which we presented in this section, will terminate

under the assumption that the duration d, provided as an input, is finite. The methods

to determine the elasticity metrics TTSA and ASAG terminate after the duration d

has exceeded. However, to get statistically significant values, both methods should be

executed k times and the mean value of the returned predeicted metric values should

be calculated. The number of executions k of the methods depends on how much

repetitions are required such that the run-time measurements ∆(pi, a, s, t) — and con-

sequently also the metrics TTSA and ASAG — converge. Hence, a general k cannot be

determined, but is individual for all self-adaptive system performance models (Γ, G).

In contrast to the scalability prediction method, the analysis to which grade SLOs are

achieved at a certain point in time of a self-adaptive system in state Σcurr, i. e., line 25 in

Listing 5.2, cannot be realized with traditional model-driven software performance anal-

ysis methods like Palladio. For an implementation of the elasticity prediction method,

the self-adaptive system must be analyzed not only in a steady state but also in the

transitions between its states, i. e., the underlying analysis model must reflect the self-

adaptions. Hence, we implemented an interpreter for Palladio analysis models that

also supports architecture reconfigurations, like presented in Section 4.7.3, and thus

allows analyzing a self-adaptive system in all of its states and the transition between

the states. This interpreter is part of the SimuLizar tool and is described in more detail

in Chapter 6.

5.9. Evaluation

In the previous sections, we introduced scalability and elasticity prediction methods

for self-adaptive systems. The goal of the presented prediction methods is to enable

the assessment of self-adaptive system architectures at design-time. We formulated

requirements PR1 to PR7 that need to be met in order to achieve this goal. In this

section, we validate our prediction methods regarding whether the requirements are

met and the goal is achieved.
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As defined by Böhme and Reussner, there are three levels for the validation of a predic-

tion method. First, a Level I validation is concerned with the validation of the predicted

metrics. For this kind of validation, predictions are compared with measurements to

validate the homomorphism of the predictions provided by the prediction method with

respect to the reality. Second, a Level II validation is concerned with the applicability

of the prediction method. That is, in this kind of validation it is evaluated whether the

target group, i. e., software engineers, can reliably produce the input for the prediction

method and meaningfully interpret the output of the prediction method [BF08]. Finally,

a Level III validation is concerned with the benefits of the prediction method compared

to other prediction methods [BF08]. This is kind of validation requires a controlled

experiment in which, for example, two (or more) prediction methods are applied to the

same software system in order to evaluate the benefits of one method over the other

method.

Our self-adaptive system performance model that we presented in Chapter 4 is the

input for our scalability and elasticity prediction that we present in this chapter. A

Level II validation for our self-adaptive system performance modeling approach was

presented in Chapter 4. Consequently, we present a Level I validation for our prediction

methods in this chapter. Due to the limited time and resources, a Level III validation

could not be conducted in the scope of this thesis.

We applied the goal question metric approach [vBCR02] to conduct a case study for

the Level I validation of our prediction methods. A computer science Master student

conducted the case study using the Znn.com system as the case for our validation. The

student applied our prediction methods to predict the scalability and elasticity of a

Znn.com system implementation. For this purpose the model that was created during

the case study to validate the modeling approach (Level II validation) was reused for

the Level I validation.

Table 5.2 formulates our evaluation goal using the GQM template. Our goal is to

analyze the scalability and elasticity prediction methods, we presented in this chapter,

for the purpose of evaluating the applicability of the prediction methods with respect to

our prediction method requirements PR1 to PR7. The evaluation is conducted from the

viewpoint of software engineers. The context of the evaluation is academic, since we use

159



5. Scalability and Elasticity Prediction Methods

the same model and implementation we have used for our evaluation of the modeling

approach in Chapter 4.

Table 5.2.: Evaluation Goal

Analyze SimuLizar’s scalability and elasticity prediction methods
for the purpose of evaluating the applicability of the prediction methods
with respect to our prediction method requirements PR1 to PR7
from the viewpoint of software engineers
in the following context: The scalability and elasticity predictions methods are applied

to a Znn.com system model.

Our evaluation showed that the presented scalability and elasticity prediction methods

are applicable for the Znn.com system. In the remainder of this section, we describe

our evaluation and results in more detail. First, we present our evaluation question

in Section 5.9.1. In Section 5.9.2, we explain our evaluation setup. We present the

evaluation results in Section 5.9.3. In Section 5.9.4, we discuss the evaluation results

with respect to our prediction method requirements PR1 to PR7. Finally, we discuss

the threats to validity in Section 5.9.5.

5.9.1. Question

We evaluated the applicability of our scalability and elasticity prediction methods with

respect to our prediction method requirements PR1 to PR7 within a case study. For

the case study, we formulated an evaluation question, a metric that helps to answer the

question, and a hypothesis that we wanted to check. We then applied our prediction

methods to the Znn.com system and compared our predictions to measurements from

a performance prototype, as introduced in Section 3.3, of the Znn.com system. For this

purpose, we implemented the prediction methods within an integrated modeling and

analysis tool chain that we present in Chapter 6.

Table 5.3 shows our evaluation question Q(applicability), the applied metric

M(prediction error), and our hypothesis H(applicable). Our evaluation question is:

Are SimuLizar’s prediction methods applicable to predict the scalability and elastic-

ity of self-adaptive systems? The metric to assess the applicability of our scalability
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Table 5.3.: Question 1: Applicability

Q(applicability) Are SimuLizar’s prediction methods applicable to predict the
scalability and elasticity of self-adaptive systems?

M(prediction error) SimuLizar’s prediction error compared to the measured scalability and
elasticity metrics

H(applicable) SimuLizar’s prediction methods are applicable to predict the scalabil-
ity and elasticity of the Znn.com system. Falsification: M(Prediction
Accuracy) shows that the prediction error is over 30%.

and elasticity prediction methods is the prediction error with respect to measurements

from a Znn.com performance prototype, i. e., M(prediction error). Our hypothesis,

H(applicable), is that SimuLizar’s prediction methods are applicable. According to

Menasce, a prediction error of 30% concerning response time is sufficiently accurate

for capacity planning [MV00]. We apply the same prediction error threshold for the

acceptance of our hypothesis as well. Hence, we accept our hypothesis if the prediction

error for our scalability and elasticity metrics is less than 30%.

5.9.2. Setup

In order to evaluate the applicability of our scalability and elasticity prediction meth-

ods that are part of SimuLizar, we applied the methods to the Znn.com system and

compared the prediction results to measurements taken from a performance prototype

of the Znn.com system.

Our evaluation is twofold. First, we applied our prediction methods manually, i. e.,

we built a labeled transition system based on the measurements of the performance

prototype. Second, we used our implementation of the prediction methods, which we

describe in Chapter 6, and compared the prediction results of our implementation with

the performance prototype as well.

We generated the performance prototype from the Znn.com model that was created for

the evaluation of our modeling approach. The performance prototype was generated via

a model transformation with the ProtoCom add-on in the Palladio Bench, as introduced
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in Section 3.3. The performance prototype consumes as many real resources, e. g., CPU

time, as specified in the model.

The advantage of a performance prototype is that it can calibrated to a specific hard-

ware and thus provides reproducible measurements according to the specification of the

performance model. However, since ProtoCom cannot generate performance prototypes

for self-adaptive systems, we manually implemented the self-adaptation as specified in

the model.

For our evaluation, we specified a high workload context scenario, in the Znn.com

system this is a request rate of approximately 4 req./s (Poisson distributed). The work-

load was generated for the prototype with the same parameters as for the predictions.

We calibrated the performance prototype resource demands according to the Znn.com

model such that a user request had a mean CPU demand of 0.3 seconds. Subsequently,

we recorded 1.000 measurements and simulated 1.000 requests within SimuLizar Bench

for the Znn.com system.

We calculated the scalability and elasticity metrics manually according to our definitions

for both, the performance prototype as well as the prediction. For the calculation of the

TTSA metric, we assumed that the SLO for the mean response time has only a hard

upper threshold uthard = utsoft = 1.0s, where the mean response time is calculated in

20s batches.

5.9.3. Results

The complete Znn.com model that was used for the case study can be found in Ap-

pendix I. During the data collection phase of the case study, scalability and elasticity

metrics were predicted with our prediction methods and calculated with measurements

from the performance prototype.

Table 5.4 shows the scalability and elasticity metrics for the prediction and the per-

formance prototype. The metric values are similar for the prediction and for the mea-

surement. However, we could only calculate the prediction error for the ASAG metric,

since the precision for the SLR and TTSA metrics was not high enough to calculate
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Table 5.4.: Comparison of the Scalability and Elasticity Metrics

Metric SimuLizar Prediction Prototype Measurement Prediction Error

SLR approx. 6 req./s approx. 6 req./s -
TTSA 140s 140s -
ASAG 0,41 0,47 14%

a prediction error. The precision for the TTSA metrics can be improved by reducing

the batch size for the calculation of mean response time. The precision of the SLR is

limited due to the load generator for the performance prototype that cannot reliably

generate precise requests rates. The prediction error for the ASAG metric is 14% for

our Znn.com evaluation example.

Figure 5.12 shows a comparison of the two time series from our evaluation. The orange-

colored time series shows the predicted response time of our Znn.com performance model

for the high-load usage context (first 140 seconds). The red-colored, dashed time series

shows the response time measurements from our performance prototype in the same

high-load usage context. A dashed blue, horizontal line marks the hard upper threshold

uthard for our mean response time SLO.
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Figure 5.12.: Comparison of the predictions and measurements in a time series.

163



5. Scalability and Elasticity Prediction Methods

Σ0

Σ2 Σ4 Σ6 Σ8 Σ10

Σ1 Σ3 Σ5 Σ7 Σ9 Σ11 Σ12

α α α α α

∆

∆ ∆ ∆ ∆ ∆

∆

T
0 20 40 60 80 100 120 140

Figure 5.13.: State trace of the Znn.com system.

Table 5.5.: Values of the Znn.com state trace

Σ Σ0 Σ1 Σ2 Σ3 Σ4 Σ5 Σ6 Σ7 Σ8 Σ9 Σ10 Σ11 Σ12

a a0 a0 a1 a1 a2 a2 a3 a3 a4 a4 a5 a5 a5
m undef 2.9 2.9 7.0 7.0 7.9 7.9 2.6 2.6 1.0 1.0 0.7 0.8
s s0 s0 s0 s0 s0 s0 s0 s0 s0 s0 s0 s0 s0
t 0 20.0 20.1 40.0 40.1 60.0 60.1 80.0 80.1 100.0 100.1 120.0 140.0

The self-adaptive system trace in Figure 5.13 corresponds to the measurements from

the performance prototype in Figure 5.12. The trace shows each self-adaptive system

state and the state transitions of the performance prototype during its execution. The

state transitions are labeled with the function that triggered the state change. In the

figure, the states in the lower row are triggered by new measurements, i. e., new values

for the monitoring vector m from function ∆. The states in the upper row in the figure

are triggered by reconfigurations, i. e., new architecture configuration values a from

function α. The context scenario s does not change in the evaluated example.

The concrete values for the architecture configuration a, measurement vector m, and

context scenario s for each state of the performance prototype are listed in Table 5.5.

Note that we rounded the values for the mean response times in the measurement vector

m as well as in the time t to one digit after the decimal mark.

Figure 5.14 shows a box plot for our evaluation. Each box shows all response times

in 20 second batches for the predictions in orange boxes and the measurements in red

boxes. Thus, each box corresponds to one architecture configuration a in the upper row

of Figure 5.13.
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Figure 5.14.: Comparison of the predictions and measurements in a box plot.

5.9.4. Discussion

Our case study results show that our hypothesis H(applicable) holds and we can answer

our evaluation question Q(applicability) with “yes”.

According to Table 5.4, the prediction error for our ASAG metric is 14%. The prediction

error for the other metrics could not be calculated due to insufficient precision. However,

we estimate the metric for our case study i. e., M(prediction error) = 14%. Consequently,

we can assume that our hypothesis H(applicable) holds, since the prediction error is

likely to be less than 30%.

We can support the positive evaluation by inspecting the results of our evaluation in

some more detail. What we can observe in the time series in Figure 5.12 as well as in
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the box plot in Figure 5.14 is that the prediction accuracy for the steady states of the

self-adaptive system are not very accurate, e. g., in the time interval between 20 seconds

and 80 seconds. In this interval, the time series of the prediction and the measurements

share some common characteristics, such as local minima and local maxima, but the

distance of both curves points at a low prediction accuracy. The same can be observed

in the box plot, where the three box pairs for the intervals [20; 40), [40; 60), and [60; 80)

also show large deviations.

With respect to the properties elasticity and scalability, however, the time series as

well as the box plot indicate a sufficient prediction accuracy. First, our ASAG metric

shows that predicted accumulated SLO achievement grade is close to the measured

accumulated SLO achievement grade, with a prediction error of only 14%. This indicates

that the distance between the two curves is not that drastic in terms of the prediction

of the SLO achievement. Second, we can observe in the time series that the predicted

as well as the measured response times drop below the hard upper threshold at about

the same time. This is also reflected by our TTSA metric.

The results of our case study also indicate that our prediction methods fulfill our pre-

diction methods requirements PR1 to PR7. The implementation of both prediction

methods integrates model-driven software performance prediction tools for design-time

prediction. We used the same self-adaptive system performance model for our prediction

that we describe in the evaluation of our modeling approach in Chapter 4. Thus, the

general requirements PR1 (“Design-Time”), PR2 (“Model-Driven”) are fulfilled. Re-

quirement PR3 (“Integrated Tool Chain”) is fulfilled as well, since we integrated the

implementation of our prediction methods in the same tool as the modeling approach.

The implementation is described in detail in Chapter 6. As required by PR4 (“Formally

Defined Metrics”), we formally defined metrics for scalability and elasticity based on our

formalization with FBTL formula. Furthermore, we provided pseudo code implemen-

tations for both of our prediction methods, as required by PR5 (“Prediction Method”).

Finally, both prediction methods take the system configuration and system context of

a self-adaptive system into account, as both are part of the input for both prediction

methods. Thus, also the requirements PR6 (“System Configuration”) and PR7 (“System

Context”) are fulfilled.
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In summary, our evaluation indicates that our prediction methods are applicable in

order to predict the scalability and elasticity of self-adaptive systems. Furthermore, all

of our prediction method requirements are fulfilled. Thus, we can conclude that the

presented prediction methods achieve our goal to enable the prediction of scalability

and elasticity at design-time.

5.9.5. Threats to Validity

In this section, we discuss the threats to the validity of the case study results and the

conclusions that we have drawn from these results.

We can identify two threats to the validity of our case study and conclusions. First, the

selection of the case for the case study poses a threat to the validity of the conclusions

we have drawn from the results. Second, the case study setup poses a risk to the validity

of the results of the case study.

Selection of the Case

The self-adaptive system that we selected for our case study, the Znn.com system,

is a synthetic system from academia and no real system from industry. Thus, it

could potentially be the case that self-adaptive systems in industry are designed

and implemented essentially different from the Znn.com system. However, we as-

sessed the risk of this threat as low, since the Znn.com system has been used as a

benchmark system for the class of self-adaptive systems in various research evalua-

tions [GCH+04, CGS09, CG12, CdL12, AAIW16]. In general, it is possible that the

answers to our evaluation question would be different if the case study were applied

to a different system. Due to the lack of well-documented and available self-adaptive

systems the evaluation was limited to the Znn.com system. Still, we see the need for

more evaluations, especially in an industrial context. For this purpose, our case study

design can be reused also in industrial case studies.
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Case Study Setup

The evaluation was conducted based on a performance prototype. This approach has

the advantage that potential inaccuracies of the model do not threaten the complete

evaluation. However, since we had to manually adapt the performance prototype, there

is the threat that our implementation is incorrect or at least does not reflect the self-

adaptation model. To counter this threat, we conducted a code review of the implemen-

tation, in which no major implementation errors could be found. An alternative case

study setup would have been to take measurements from a real implementation of the

Znn.com system instead of the performance prototype. However, a threat to the valid-

ity in this alternative setup would have been that the self-adaptive system performance

model that was used to predict scalability and elasticity does not accurately reflect the

implementation. Thus, we decided in favor of the presented case study setup.

In summary, we see only few threats to the validity with low risks for our evaluation

results. However, since the case study was conducted in an academic context, we rec-

ommend repeating the evaluation with measurements from a real self-adaptive system

in an industrial context.

5.10. Conclusion

In this chapter, we presented prediction method requirements that specify the general

properties for model-driven prediction methods and specific properties for scalability

and elasticity prediction methods. We discussed existing model-driven performance

prediction methods according to these requirements and found that none of the dis-

cussed methods fulfills all requirements. We identified Palladio as the best basis for

our prediction methods. However, Palladio is still lacking formally defined metrics, a

scalability and elasticity prediction method, and means to analyze the complete re-

configuration space of a self-adaptive system. Hence, we presented a formalization of

self-adaptive systems and service level objectives to also formally define scalability and

elasticity metrics. Furthermore, we described prediction methods how to obtain our

scalability and elasticity metrics based on Palladio.
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5.10. CONCLUSION

The presented prediction methods enable the assessment of self-adaptive system archi-

tectures at design-time and scalability and elasticity properties. Thus, scalability and

elasticity can be assured early in the software engineering process and project failure

due to scalability and elasticity issues can be averted.

We evaluated the applicability of the presented prediction methods within a case study.

The case study showed that our prediction methods are applicable to the Znn.com

system. However, further empirical studies have to be conducted in order to show the

applicability of the prediction methods in industrial software engineering projects.
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“All architecture is design but not all design is ar-

chitecture. Architecture represents the significant

design decisions that shape a system, where signifi-

cant is measured by cost of change.”

Grady Booch
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6. Tool Support

In this chapter, we present SimuLizar Bench, the implementation of our model-driven

performance analysis method for self-adaptive systems. SimuLizar Bench implements

both, our modeling approach that we presented in Chapter 4 as well as our prediction

methods that we presented in Chapter 5.

The scalability and elasticity prediction methods that we presented in the previous

chapter are based on our formalization of self-adaptive systems and service level ob-

jectives. For both methods, we provided metrics and pseudo code implementations for

both properties. Our pseudo code implementations refer to two specific functions that

are required to obtain these metrics. First, the function ∆(pi, a, s, t) that determines

monitoring values for the monitored property pi at time t in a self-adaptive system.

Second, the function to determine the grade an SLO is achieved in a given state of a

self-adaptive system, i. e., Σa |= Qpi . The first function, ∆(pi, a, s, t) is implemented

by software performance analysis tools, like Palladio [BKR09] or LQNS [FAOW+09],

for non-adaptive systems. An implementation for self-adaptive systems, however, does

not exist yet. Since the second function, Σa |= Qpi , is based on the first function, an

implementation does not exist yet as well. However, in order to evaluate the prediction

methods and apply them in practice, an implementation of both functions is required.

With SimuLizar Bench, we provide a performance analysis tool that realizes the func-

tion ∆(pi, t) not only for non-adaptive but also for self-adaptive systems. Furthermore,

SimuLizar Bench implements the function Σa |= Qpi , to determine the grade an SLO

is achieved in a given state of a self-adaptive system. Additionally, SimuLizar Bench

provides broader tool support for modeling self-adaptive systems as described in Chap-

ter 4.

Thus, with SimuLizar Bench, software engineers have a tool to model and evaluate

self-adaptive system architectures. SimuLizar Bench supports the modeling process, we

presented in Section 4.4, and integrates our scalability and elasticity prediction methods.

In this chapter, we first give an overview of SimuLizar Bench’s software architecture in

Section 6.1. Second, in Section 6.2, we briefly introduce the user interface in SimuLizar

Bench. Third, the implementation of the modeling viewpoints, we presented in Chap-

ter 4, is described in Section 6.3. Fourth, we present our model-driven performance

analysis tool for self-adaptive systems in Section 6.4. Finally, in Section 6.5, we de-
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scribe how service level objectives are evaluated for self-adaptive system performance

models at design-time and how our scalability and elasticity metrics are obtained.

6.1. Architecture Overview

In this section, we provide an overview of the main components and dependencies

of SimuLizar Bench. An initial implementation of SimuLizar Bench is described by

Meyer [Mey11] in detail. In this chapter, we focus on the most relevant concepts and

implementation details.

6.1.1. Main Components
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Figure 6.1.: Component diagram showing the SimuLizar architecture.

Figure 6.1 depicts a UML component diagram showing a high-level architecture and

the most important components in SimuLizar Bench. The high-level architecture shows

three layers: a user interface layer, a performance analysis layer, and a model access layer.
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In the user interface layer, all user-facing functions such as the main user interface

perspective and configuration dialogs are realized. Furthermore, modeling viewpoints

with editors for SLOs, the monitor repository, and reconfigurations as well as the new

visualizations for performance analysis results are implemented as part of the user

interface layer. We briefly describe the implementation of the modeling viewpoints in

Section 6.3. The new visualizations are described together with our prediction methods.

The performance analysis layer implements a performance analysis and forms the basis

for our prediction methods that we describe in Section 6.4. We describe the imple-

mentations of the prediction methods in Section 6.5 where we also describe the new

performance analysis result visualizations.

Finally, the model access layer provides access to the complete self-adaptive system per-

formance model and a run-time measurements model that is used in the performance

simulation. The models are described in detail in Chapter 4. Apart from the implemen-

tation of the models, the model layer only contains a model access component, which

serves as access facade for the performance analysis layer components.

6.1.2. External Dependencies

SimuLizarSimuLizar

SimuLizar.ReconfigurationSimuLizar.Reconfiguration

Palladio.SimuCom
Framework

Palladio.SimuCom
Framework

ServiceLevelObjectivesServiceLevelObjectives

Palladio.WorkflowPalladio.Workflow

EDP2EDP2

Palladio.PCMPalladio.PCM

HenshinHenshin

StorydiagramStorydiagram

QVT operationalQVT operational

Legend Reused/Extended Package New Package, Contribution Package dependency

MonitorRepositoryMonitorRepository

Figure 6.2.: Overview of packages and dependencies.
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Figure 6.2 depicts a UML package diagram showing the SimuLizar package and its

dependencies to external software packages. SimuLizar depends on four different Pal-

ladio components like depicted on the left side of the diagram: the workflow engine,

the PCM, the SimuCom framework [Bec08], and the Experiment Data Persistence &

Presentation (EDP2). The first component, the workflow engine, is used to execute all

necessary steps for our prediction methods, such as reading the input models, running

performance analyses, and evaluating the SLO achievement. The PCM, the second

Palladio component, builds the basis for our self-adaptive system performance model.

Furthermore, the PCM editors are used to model single views of the model, as described

in Chapter 4. The third component, SimuCom, provides the basis for the performance

simulation. It is used to simulate requests, resource scheduling, and resource consump-

tion for a performance model. Finally, EDP2 is used to persist measurements that

are taken during the performance simulation. EDP2 also provides a framework for the

visualization of the persisted measurements.

With SimuLizar Bench, we provide two software packages that can be used indepen-

dently of SimuLizar’s prediction methods. First, our service level objectives provide

editors and wizards to create service level objectives, like described in Section 5.6. Sec-

ond, with the monitor repository, we provide an editor to model performance monitors

for SimuLizar models as well as PCM models, as described in Section 4.7.2.

Finally, SimuLizar provides a model editor to specify reconfigurations, as described in

Section 4.7.3. A reconfiguration model can include preconditions and actions that are

specified in three different model transformation languages: Storydiagram [FNTZ00],

QVT operational [Obj16], and Henshin [ABJ+10]. All of these model-transformation

languages are supported by our performance analysis for self-adaptive systems. How-

ever, while the elasticity prediction method in SimuLizar Bench supports all model-

transformation languages, the scalability prediction method currently supports Story-

diagram model transformations only.
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6.2. User Interface

SimuLizar Bench provides tool support for modeling self-adaptive system architectures

and predict these architecture’s scalability and elasticity properties. SimuLizar Bench

is implemented as an Eclipse [The16a] plug-in and is based on Palladio Bench [Kar16a].

The Palladio Bench provides modeling editors for the Palladio Component Model and

performance prediction tools for non-adaptive systems, i. e., an implementation of the

Palladio approach [Kar16b]. Palladio Bench also provides a workflow engine, frame-

works for performance simulation, measurement persistence, and measurement visual-

ization amongst others.

Figure 6.3.: Screenshot of SimuLizar Bench.

SimuLizar Bench reuses the PCM modeling editors from Palladio Bench and provides

new editors for monitor repositories, service level objectives, and reconfigurations. Fur-

thermore, SimuLizar Bench provides an interpreter-based performance analysis for self-

adaptive system performance models, which is based on Palladio’s SimuCom perfor-

mance simulation framework. The performance-analysis is used in the implementation

of our scalability and elasticity prediction methods. Finally, SimuLizar Bench also pro-
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vides additional visualizations in Palladio Bench’s result view for the inspection and

manual analysis of performance simulations.

Figure 6.3 shows a screenshot of SimuLizar Bench. The screenshot shows the SimuLizar

perspective with (1) the project browser on the left, an (2) initial system architecture

configuration editor, the (4) results view with the new SLO achievement visualization,

and (4) the console view with results from a performance analysis run.

In the following sections, we describe the architecture and implementation of SimuLizar

Bench in more detail. In Section 6.1, we provide an overview of the SimuLizar Bench

architecture and identify its main building blocks. Subsequently, we discuss the three

main building block in the remaining section of this chapter. First, the implementation

of our modeling viewpoints is presented in Section 6.3. Second, in Section 6.4, we present

our interpreter-based performance analysis that build the basis for our scalability and

elasticity prediction methods. Finally, we present the implementation of our prediction

methods in Section 6.5.

6.3. Modeling Viewpoints

In SimuLizar Bench we implement the system type viewpoint and run-time viewpoint as

proposed by Becker [Bec11] and added a third self-adaptation viewpoint. For all views

types in these three viewpoints, which we presented in Chapter 4, we provide modeling

editors, which are integrated in SimuLizar Bench. In order to support our modeling

process, as presented in Section 4.4, we split the self-adaptive system performance

model according to the view types. Thus, each view type is realized as a partial model,

i. e., it contributes to the complete self-adaptive system performance model, but within

dedicated model artifacts.

In the following sections, we briefly outline which model artifacts are part of the two

self-adaptive system performance model viewpoints.
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Figure 6.4.: System Type Viewpoint and its partial models in SimuLizar.

6.3.1. System Type Viewpoint

The system type viewpoint in SimuLizar Bench provides two modeling editors for the

two type-level artifacts in a self-adaptive system performance model. In Figure 6.4 these

two artifacts are illustrated. First, component developers model system architecture

types with the PCM repository model editor. Second, in parallel to modeling the system

architecture types, platform providers model the offered system resource contexts, i. e.,

cloud platforms like IaaS or PaaS environments.

6.3.2. Run-Time Viewpoint

The run-time viewpoint in SimuLizar Bench contains three modeling editors for the

three self-adaptive system performance model artifacts in this viewpoint. The three

artifacts are illustrated in Figure 6.5. First, the repository model files that are created

by component developers is used by a self-adaptive system architect to specify an initial

system architecture configuration with the PCM system model editor. Second, an initial

system deployment is specified by an platform expert with the PCM allocation model

editor. The PCM allocation model links to a resource environment model that was

created by a platform provider. Finally, a domain expert specifies the system usage

context with PCM’s usage model editor.
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Figure 6.5.: Run-Time Viewpoint and its partial models in SimuLizar.

6.3.3. Self-Adaptation Viewpoint

Finally, the self-adaptation viewpoint in SimuLizar Bench contains three modeling ed-

itors for the three model artifacts in that are concerned with self-adaptation. The

artifacts in this viewpoint are illustrated in Figure 6.6.

First, a domain expert models service level objectives with SimuLizar’s SLO model ed-

itor. Second, after an initial system architecture and deployment has been specified, a

platform expert models a monitor repository with SimuLizar’s monitor repository edi-

tor. The platform expert has to specify monitors for all relevant quality properties, such

that the SLOs can be achieved autonomously by the self-adaptive system. The monitor

repository serves as an input for a self-adaptive system architect to specify reconfigura-

tions in the run-time viewpoint. Finally, the third partial model is the reconfiguration

repository. This model is specified by a self-adaptive system architect with SimuLizar’s

reconfiguration repository model editor.
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Figure 6.6.: Self-Adaptation Viewpoint and its partial models in SimuLizar.

The self-adaptive performance system model is complete when all partial models, as

described above, have been specified. The complete model is used for the prediction of

scalability and elasticity with SimuLizar’s integrated self-adaptive system performance

analysis tool.

6.4. Performance Analysis Tool

In SimuLizar Bench, we implement an interpreter-based performance analysis tool in

contrast to generator-based performance analysis tools, which we introduced in Sec-

tion 3.3. As illustrated in Figure 6.7, an interpreter-based performance analysis tool

does not generate an analysis artifact, like simulation code, from an architecture model,

but directly interprets the architecture model. For this purpose, a performance model

interpreter continuously traverses the architecture model and calls a performance anal-

ysis tool, e. g., a performance simulation, whenever a model element with performance

annotations, such as PCM’s RD-SEFFS, is traversed.
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Figure 6.7.: Comparison between generator-based and interpreter-based model-driven
software performance engineering. [Mey11]

In general, both approaches, the generator-based approach and the interpreter-based

approach, are equivalent with respect to their applicability to non-adaptive software

system architectures. However, on the one hand, the generator-based approach may

have slightly better performance, since the architecture model is only read once and

native simulation code can be generated. On the other hand, the interpreter-based

approach allows to continuously traverse the architecture model during the simulation.

This approach has the advantage that we can adapt the architecture model while we

simulate it. [Mey11] In contrast, a generator-based approach would require pausing the

simulation, regenerating the simulation code, and then continuing the simulation. In

SimuLizar Bench, we implemented an interpreter-based performance simulation to sim-

ulate the performance of a self-adaptive system and to predict scalability and elasticity

properties.

As illustrated in Figure 6.8, our interpreter-based performance analysis tool in

SimuLizar Bench consists of three components: (1) a performance model interpreter,

(2) a performance simulation component, and (3) a reconfiguration manager. The

additional reconfiguration manager in our interpreter-based performance analysis tool

observes the analysis results, i. e., a run-time measurements model, and executes model-

transformations that transform the architecture model. The model transformations

executed by the reconfiguration manager are part of the reconfigurations in our self-

adaptive system performance model. Thus, SimuLizar Bench’s performance analysis
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Figure 6.8.: Self-Adaptive System Performance Analysis in SimuLizar Bench.

tool does not only simulate a static architecture configuration but a self-adaptive sys-

tem architecture with its architecture reconfigurations.

In the following subsections, we describe the three main components of our performance

analysis tool. First, we describe the performance model interpreter in Section 6.4.1. Sec-

ond, we describe the performance analysis tool in Section 6.4.2. Finally, in Section 6.4.3,

we describe the reconfiguration manager.

6.4.1. Performance Model Interpreter

In SimuLizar Bench, a self-adaptive system performance model is continuously traversed

for the interpretation and simulation. Like for other simulation-based performance anal-

ysis tools, like Palladio’s SimuCom, in SimuLizar Bench each user request is simulated

individually.

Figure 6.9 depicts a sequence diagram of an exemplary traversal of a self-adaptive

system performance model for one user request. As shown in the sequence diagram

the starting point of our self-adaptive system model interpreter is the usage context.

The usage context provides information about the load and work to be simulated, as

described in Section 4.6.3. The work specification in the usage context specifies how a
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caseSystemLevelEntryCall
(es:SysLvlEntryCall)

Figure 6.9.: Interpretation of a performance model. [Mey11]

single user behaves and sends requests, i. e., the user calls SystemLevelEntryCalls, to the

self-adaptive system. The load specification specifies at which rate the users execute

their work, i. e., it defines the request rate.

The behavior of users is interpreted by the UsageContext Interpreter, as depicted in

the sequence diagram. Whenever the UsageContext Interpreter traverses an SystemLeve-

lEntryCall element, it calls the PCMRepository Interpreter with the signature sig of the

SystemLevelEntryCall and the system’s provided role pr that provides the SystemLevelEn-

tryCall. The PCMRepository Interpreter is responsible to interpret system architecture el-

ements like interfaces, components and the roles of components. In the illustrated case,

the PCMRepository Interpreter calls the PCMSystemInterpreter to get the component

with the provided role pr. The PCMSystem Interpreter returns the basic component pdc.

The basic component pdc is then interpreted by the PCMRepositoryInterpreter again.

The PCMRepository Interpreter calls the rdSEFFInterpreter for the signature sig. Finally,

the rdSEFFInterpreter calls the performance analysis tool, to simulate the performance

behavior of the RD-SEFF, like described in Section 6.4.2.

A more detailed description and implementation details of the interpreter can be found

in [Mey11].
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«statistical characterization»
+ aggregation = arithmetic mean
+ time = batch(10s)

«measurement specification»
+ metric = Response Time

«system operation measuring point»
+ systemLevelEntryCall = getNews

System Response Time:Monitor

«statistical characterization»
+ aggregation = none

«measurement specification»
+ metric = Number of Resource Containers

«resource environment measuring point»
+ resourceEnvironment = IaaS

Number of System Resources:Monitor

Figure 6.10.: Monitor repository for the Znn.com system.

6.4.2. Performance Simulation

The interpreter as described in the previous section simulates the propagation of user

requests through the self-adaptive system. Whenever a resource demanding behavior,

i. e., a RD-SEFF, is reached, Palladio’s SimuCom framework is called to simulate the

performance behavior. That is, the SimuCom framework takes care of the simulation

of resource scheduling and the simulation of resource congestion, etc. A detailed de-

scription of the performance simulation with the SimuCom framework can be found

in [Bec08].

The monitoring repository model specifies at which elements of the system performance

measurements are taken and how these are aggregated. Measurements are then either

taken event-triggered when a certain system element is simulated or periodically, e. g.,

every 10 seconds.

Figure 6.10 shows the monitor repository from our Znn.com example with two monitor

specifications: System Response Time and Number of System Resources. The first moni-

tor specifies an event-triggered monitor for a SystemLeveLEntryCall named getNews. At

this measuring point, the metric Response Time shall be obtained and aggregated as

an arithmetic mean in 10-second batches. That is every time the interpreter passes by

the getNews model element, a measurement is taken. The second monitor specification,

Number of System Resources, is a periodically triggered monitor. That is, at every time

unit of the interpretation and simulation, a measurement is taken.
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The raw measurements, i. e., non-aggregated measurements, are stored via Palladio’s

EDP2 persistence and visualization framework. After the simulation, the self-adaptive

system architect can view the raw measurements in the result view, as shown in Fig-

ure 6.3. The result view supports different visualizations.

All measurements that are taken during the simulation of the self-adaptive system

are also aggregated according to the monitor specifications and stored in a run-time

measurement model. In the example above, all measurements for getNews that are

taken within one 10-second batch are aggregated to a single mean response time value.

Only this single, aggregated mean response time is then stored at the end of the 10

seconds (of the batch) in the run-time measurement model. The run-time measurement

model is used as an input for the reconfiguration manager, which we describe in the

following subsection.

6.4.3. Reconfiguration Manager

SimuLizar Bench implements a MAPE-K-like control loop in which a self-adaptive sys-

tem performance model is interpreted, simulated, and reconfigured. Figure 6.11 shows

a conceptual overview of our MAPE-K control loop implementation.

In SimuLizar Bench’s MAPE-K control loop, the managed element is the global self-

adaptive system performance model. This global model always reflects the current ar-

chitecture of the self-adaptive system. It is initially the same performance model as

designed with the modeling editors in SimuLizar Bench.

For each simulated user request, the global self-adaptive system performance model is

copied to a local self-adaptive system performance model. Thus, each user request is

simulated with a dedicated local copy. Consequently, reconfigurations do not interfere

with running simulations.

During the simulation, run-time measurements are taken as specified in the monitor

repository model. This reflects the monitor phase of the MAPE-K control loop. In

the analyze phase, the reconfiguration manager component checks the conditions for all

tactics in the reconfiguration model. In the plan phase, the reconfiguration manager
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Global
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Local
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Run-Time Model +
Run-Time Measurements

Monitor Execute

Analyze Plan

Figure 6.11.: MAPE-K feedback loop in SimuLizar.

selects the one tactic with fulfilled conditions and the highest priority. If multiple

tactics with the same priority and fulfilled conditions are available, the reconfiguration

manager selects the first of these tactics (according to the order in the model file). In

the execute phase, the action of the selected tactic is executed.

We use model transformations to simulate reconfigurations. That is, a copy of the global

self-adaptive system performance model is created and the model transformation of the

action element in the reconfiguration model is executed on this copy. The transformed

model then becomes the new global self-adaptive system performance model. Con-

sequently, user requests that are simulated after the reconfiguration use a local copy

of the transformed, i. e., reconfigured, global self-adaptive system performance model.

Each user request simulation is completely performed using a single local self-adaptive

system performance model, i. e., one architecture configuration.

6.5. Scalability and Elasticity Prediction

In this section, we describe our implementation of the scalability and elasticity pre-

diction methods. Both prediction methods rely on the simulation-based performance

analysis tool that we described in the previous section. With this tool, we can deter-

mine measurements for each monitored property at each point in time of the simulation,
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i. e., function ∆(pi, a, s, t). This function also allows us to predict the SLO achievement

of a self-adaptive system at each point in time of the simulation. Thus, we can also

predict the scalability and elasticity of the system, like described in Section 5.8.3 and

Section 5.7.3.

In the following subsections, we describe how scalability and elasticity are predicted

with SimuLizar Bench, how the prediction results are visualized, and how the results

can be interpreted.

6.5.1. Scalability Prediction

For the prediction of scalability, we implemented our scalability prediction method that

we described in Section 5.7.3. Specifically, our implementation uses a reachability anal-

ysis framework [Hei15] that provides convenient methods to explore the reconfiguration

space with all architecture configurations that are reachable via the reconfiguration

actions of the self-adaptive system performance model.

The scalability prediction is realized in two steps. In the first step, all reachable archi-

tecture configurations are created via the according model transformations. Initially, a

hash value for the initial system architecture configuration model calculated. Next, the

model transformations of each reconfiguration action are applied to the initial system

architecture configuration. Again, a hash value for each of the resulting architecture

configurations is calculated. Architecture configurations with equal hash values are

dismissed. For all other unique architecture configurations, the model transformations

of the reconfiguration actions are applied again. This process continues until no new,

unique architecture configurations can be found. In the second step, the context sce-

nario, specified in the run configuration, is simulated for each architecture configuration.

Reconfigurations are deactivated in the simulation. The achievement of each SLO is

calculated during the simulation. If an architecture configuration achieves all SLOs

during the whole simulation time, the scalability prediction is stopped in advance and

the user is notified that the simulated system scales up to the specified usage context.

If no architecture configuration achieves all SLOs during the whole simulation time, the
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scalability analysis notifies the user that the system does not scale up to the specified

usage context.

The scalability metrics scalability load range and scalability work range can be deter-

mined by increasing the load or work step-wise for the specified usage context until

the scalability prediction result is negative. This can be automated with Palladio’s

experiment automation.

6.5.2. Elasticity Prediction

The elasticity prediction in SimuLizar Bench implements our elasticity prediction

method that we presented in Section 5.8.3. Our implementation uses Palladio’s confi-

dence stop condition that stops a simulation after a specified confidence level has been

achieved. In Palladio usually a certain confidence level, e. g., a 95% confidence interval,

for the mean response time metric of a usage context scenario shall be reached. In

SimuLizar, however, we are not interested in the confidence level of the response time

metric, but the confidence level of the elasticity metrics, i. e., TTSA or ASAG.

The elasticity prediction in SimuLizar Bench simulates a self-adaptive system perfor-

mance model and obtains the elasticity metrics for the simulation run. SimuLizar Bench

repeats the simulation run of the same model and obtains the elasticity metrics until

the specified confidence level for the elasticity metrics is reached. For this purpose, the

confidence level is calculated at the end of each simulation run by taking into account

the elasticity metric values of all previous simulation runs. The result of the elasticity

prediction in SimuLizar Bench are mean values for our elasticity metrics.

6.5.3. Prediction Result Visualization

We implement two new prediction result visualizations in SimuLizar Bench. Both visu-

alizations help software engineers to identify whether the modeled self-adaptive system

architecture achieves the specified SLO in the modeled context scenario.
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Figure 6.12.: SLO thresholds visualization in SimuLizar.

Figure 6.12 shows the first new prediction result visualization. The visualization shows

a time series for the selected monitored element. The horizontal axis represents the

simulation time, the vertical axis represents the measurement values. For example,

if the user selects a response time monitor, each response time measurement in the

simulation is shown as a point in the time series. Additionally, the user can select and

SLO for which the soft thresholds and hard thresholds can be shown in a time series

graph as horizontal lines. Thus, the user can quickly identify whether measurements

were taken that exceeded the specified thresholds.

In the example, illustrated in Figure 6.12, the response time time series for a simulation

run of our Znn.com system is shown. The horizontal axis represents the simulation

time, the vertical axis represents the predicted response times for our Znn.com system

in an overload context scenario. The hard thresholds of our SLO Qmrt are shown as

thick horizontal lines in the time series. The soft thresholds are shown as thin horizontal

lines in the time series. In our example, we defined that the lower hard threshold and

the lower soft threshold are both zero seconds, i. e., ltsoft = lthard = 0.0. The upper

soft threshold is 2.0 seconds and the upper hard threshold is 3.0 seconds.

Figure 6.13 shows the SLO achievement grade visualization, i. e., our second prediction

result visualization. In this visualization, the grade of SLO achievement is shown for
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Figure 6.13.: SLO achievement visualization in SimuLizar.

each point in time. The horizontal axis represent the simulation time, the vertical axis

represents the SLO achievement grade. For example, if the user selects a response time

monitor and an according SLO, the graph shows the grade (between 0 and 1) to which

the selected SLO is achieved at each time of the simulation. Thus, the user can quickly

identify whether SLOs are fully achieved, partly achieved, or not achieved at all.

In the example, illustrated in Figure 6.13, a graph of the graded achievement of the SLO

Qmrt for our Znn.com example is shown. The horizontal axis represents the simulation

time, the vertical axis represents the predicted SLO achievement for SLO Qmrt in an

overload context scenario. The graph shows, the SLO Qmrt is completely achieved at

the beginning of the simulation, but degrades after simulation time 40.0 until the SLO

achievement reaches it lowest point at simulation time 80.0. After simulation time

100.0, the SLO achievement increases again until it reaches complete SLO achievement

at time 120.0.
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In this final chapter, we first summarize and conclude the results of this thesis. Second,

we provide a brief overview of follow-up work that is based on initial results of this

thesis. Finally, we point to directions for future research challenges that continue with

our research direction.

7.1. Results and Conclusions

In this thesis, we addressed the specification of self-adaptive systems and the assess-

ment of the quality properties scalability and elasticity at design-time. We introduced

SimuLizar, a model-driven performance engineering method that supports software en-

gineers to design scalable and elastic software systems. SimuLizar Bench implements

a tool chain for our performance engineering method. Thus, with SimuLizar Bench

we provide software engineers with a tool to model self-adaptive systems and identify

scalability and elasticity issues via simulation already at design-time.

The evaluation of our performance engineering method provides evidence that

SimuLizar helps to identify design flaws in the self-adaptation layer. Consequently,

project delays and project failures caused by unfulfilled scalability and elasticity re-

quirements can be averted.

In the following, we briefly summarize our conclusions that we draw with respect to the

problems in engineering self-adaptive systems and the solutions that we have presented

in this thesis.

Self-Adaptive System Performance Modeling In this thesis we introduced a perfor-

mance modeling approach for self-adaptive systems. For this modeling approach, we

described a modeling process that also specifies roles, modeling tasks, and modeling

artifacts.

The self-adaptive system performance model is organized into three viewpoints: a sys-

tem type viewpoint, a run-time viewpoint, and a self-adaptation viewpoint. The sys-

tem type viewpoint supports the specification of type elements like components and

interfaces. The type level elements are instantiated and an initial system architecture
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configuration and deployment is specified in the run-time viewpoint. Finally, in the

self-adaptation viewpoint service level objectives, monitors, and reconfigurations are

specified. Thus, the self-adaptation viewpoint reflects the self-adaptation layer.

We implemented our performance modeling approach in SimuLizar Bench and evalu-

ated the approach in a case study. The evaluation results showed that our performance

modeling approach is applicable to model self-adaptive systems. With our performance

modeling approach, we provide the necessary precondition for the assessment of perfor-

mance properties of self-adaptive systems at design-time.

Metrics for Scalability and Elasticity We formally defined self-adaptive systems and

their properties scalability and elasticity. The formalization is based on the Fuzzy

Branching Temporal Logic, which allowed us to define a notion of graded service level

objective achievement. Service level objectives can be precisely defined and thus the

level of imprecision that is inherent to requirements in natural language can be reduced.

Based on our formalization, we formally defined concrete metrics for scalability as well

as elasticity. These metrics capture the quality of the self-adaptation layer and thus

enable software engineers to compare alternative designs of this layer to each other.

Prediction of Scalability and Elasticity Based on our formalization and on our metric

definitions, we provided prediction methods for our scalability and elasticity metrics.

We implemented both prediction methods as part of SimuLizar Bench.

We evaluated our implementation of the prediction methods using the Znn.com system.

The evaluation showed that our scalability and elasticity predictions provide sufficient

prediction accuracy to compare alternative system designs and detect design flaws in

the self-adaptation layer early at design-time.

7.2. Follow-Up Work

Based on initial results in the context of this thesis two follow-up research projects

have been started. In both follow-up projects SimuLizar is used for predictions of
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non-functional properties in the context of cloud-based, self-adaptive systems. In the

following paragraphs, we briefly outline these projects and their use of SimuLizar.

CloudScale and Architectural Templates The CloudScale project [LB15] was an

project funded by the European Commission under the Seventh Framework Programme.

The project’s goal was to support software engineers to predict and resolve scalability

issues in cloud-based services. To achieve this goal, two methods were developed.

First, a re-engineering method was developed that helps to refactor legacy software

and migrate the software to cloud platforms. Second, with the Architectural Template

Method [Leh14], an engineering method for analyzing quality properties of software

architectures at design-time. For this purpose, architectural knowledge, e. g., architec-

ture styles and architecture patterns, is provided in form of reusable templates, called

Architectural Templates (AT). An AT also provides, besides structure and behavior

specifications, parametric performance annotations that can be used for performance

predictions.

Consequently, software engineers can easily apply ATs to model software systems and

predict performance properties. Thus, the effort for model-driven software performance

engineering is reduced. The AT method also supports the specification of self-adaptive

systems by providing some ATs that specify templates for self-adaptive systems. These

templates are based on the self-adaptive system performance model that we presented

in this thesis.

Cactos and CactoSIM The Cactos project [ÖGW+14] was an project funded by the

European Commission under the Seventh Framework Programme as well. The goal of

the Cactos project was to provide a full tool chain for monitoring, optimization, and

simulation of cloud-based software systems.

In the Cactos project, three components were developed that build the tool chain:

CactoScale as a monitoring solution, CactoOpt as an optimization solution for IaaS data

centers, and CactoSim as a simulation tool. CactoSim [SK16] is based on SimuLizar

and extends its modeling views with new annotations for energy consumption. Thus,
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CactoSim can be used to predict scalability, elasticity, and energy consumption of cloud-

based software systems.

7.3. Future Work

The follow-up work that is based on the results of this thesis shows some directions for

future work. Additional to these research directions, we want to point to some more

directions for future work in the context of this thesis.

Additional Metrics In this thesis, we provide formally defined metrics for scalability

and elasticity. Both metrics are properties of self-adaptive systems that characterize

the quality of the self-adaptation layer. However, other metrics can be defined that help

to further characterize the self-adaptation layer, e. g., competitiveness and robustness.

Competitiveness is a metric to measure how good an algorithm performs in comparison

to other algorithms. This metric could be used to compare the self-adaptation strategy

to a theoretical optimal strategy. This optimal strategy has to be defined according the

requirements.

Robustness is a desired property in control engineering. Self-adaptive systems, espe-

cially the MAPE-K control loop, works similar to a traditional control loop in control

theory. Therefore, robustness is a property to consider in the context of self-adaptive

systems as well.

A realization of more metrics would, first, require to formally define the metrics and,

second, to extend our prediction method as well as our modeling approach if the metrics

require more annotations within the model.

Reconfiguration Performance With our modeling approach it is currently only pos-

sible to model the resource demands of a complete reconfiguration rule, i. e., all four

phases in the MAPE-K control loop together.

For more advanced analyses of the self-adaptation layer, a more detailed model of the

resource demands for each phase, i. e., monitoring, analysis, planning, and execution,
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will provide useful insights. To realize this, it is required to extend our self-adaptive sys-

tem performance model such that tactics in our reconfiguration model contain elements

that represent each of the reconfiguration phases. Additionally, it must be enabled to

annotate a resource demand for each phase.

Uncertainty in Usage Contexts In Palladio as well as in SimuLizar, uncertainty in

the usage context is modeled with probabilities, e. g., random variables for request

rates. However, probability does only reflect aleatoric uncertainty, i. e., uncertainty

that originates from an intrinsic randomness, and that can be modeled with random

variables. In contrast, possibility reflects uncertainty that originates from the lack of

knowledge and is modeled with possibility distributions. Since, it is impossible to know

the future behavior of a human user, possibility distributions reflect the uncertainty in

usage context better than random variables.

Consequently, an interesting direction for future work is to model the usage context

in SimuLizar with possibility distributions instead of random variables. A realization

would require to not only adapting the usage context meta model but also the simulation

for the prediction methods to reflect the semantics of possibility distributions.

Design Space Exploration SimuLizar enables software engineers to assess the scala-

bility and elasticity of self-adaptive systems. Still, finding the best parameters for the

conditions and action of reconfigurations can be a time-consuming process. Hence, it

is desirable to speed up this process, e. g., by automatic design space exploration.

With a design space exploration, Pareto-optimal parameters for the reconfiguration

conditions and actions can be found automatically.

Evaluation We presented evaluations for our modeling approach as well as for our

prediction methods in this thesis. Both evaluations can be extended in the context of

an industrial field study. The applicability in an industrial context is a key factor of

success for software engineering methods. Furthermore, a field study may reveal more

insights in the current limitations the performance modeling approach, the prediction

methods, and their implementation in SimuLizar Bench.
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[CdLG+09a] Betty H. C. Cheng, Rogério de Lemos, Holger Giese, Paola Inverardi,

and Jeff Magee, editors. Software Engineering for Self-Adaptive Sys-

tems, volume 5525 of Programming and Software Engineering. Springer,

Berlin/Heidelberg, Germany, 2009.
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The CACTOS Vision of Context-Aware Cloud Topology Optimization

and Simulation. In Proceedings of the 6th International Conference on

Cloud Computing Technology and Science (CloudCom) [Clo14], pages 26–

31. doi:10.1109/CloudCom.2014.62.
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doi:10.1007/978-3-642-30412-5_1.

[SVC06] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-Driven

Software Development: Technology, Engineering, Management. John Wi-

ley & Sons, New York, NY, USA, 2006.

[SW03] Connie U. Smith and Lloyd G. Williams. Software Performance Engineer-

ing. In Lavagno et al. [LMS03], pages 343–365. URL: http://dx.doi.

org/10.1007/0-306-48738-1_16, doi:10.1007/0-306-48738-1_16.

[SYN13] Proceedings of the 15th International Symposium on Symbolic and Nu-

meric Algorithms for Scientific Computing (SYNASC), 2013.

[Szy02] Clemens Szyperski. Component Software: Beyond Object-Oriented Pro-

gramming. Addison-Wesley, Boston, MA, USA, 2nd edition, 2002.

[TBv04] Jos J.M. Trienekens, Jacques J. Bouman, and Mark van der Zwan. Spec-

ification of Service Level Agreements: Problems, Principles and Prac-

tices. Software Quality Journal, 12(1):43–57, 2004. URL: http://

dx.doi.org/10.1023/B:SQJO.0000013358.61395.96, doi:10.1023/B:

SQJO.0000013358.61395.96.

[TN07] Vicenç Torra and Yasuo Narukawa. Modeling Decisions: Information Fu-

sion and Aggregation Operators. Springer, Berlin/Heidelberg, Germany,

2007.

[TPC12] Proceedings of the 4th Technology Conference on Performance Evaluation

& Benchmarking (TPCTC), 2012.

[vBCR02] Rini van Solingen, Vic Basili, Gianluigi Caldiera, and H. Dieter Rombach.

Goal Question Metric (GQM) Approach. In Marciniak [Mar02]. doi:

10.1002/0471028959.sof142.

[vDL98] A. van Lamsweerde, R. Darimont, and E. Letier. Managing conflicts in

goal-driven requirements engineering. IEEE Transactions on Software

Engineering, 24(11):908–926, 1998. doi:10.1109/32.730542.

214

http://dx.doi.org/10.1007/978-3-642-30412-5_1
http://dx.doi.org/10.1007/0-306-48738-1_16
http://dx.doi.org/10.1007/0-306-48738-1_16
http://dx.doi.org/10.1007/0-306-48738-1_16
http://dx.doi.org/10.1023/B:SQJO.0000013358.61395.96
http://dx.doi.org/10.1023/B:SQJO.0000013358.61395.96
http://dx.doi.org/10.1023/B:SQJO.0000013358.61395.96
http://dx.doi.org/10.1023/B:SQJO.0000013358.61395.96
http://dx.doi.org/10.1002/0471028959.sof142
http://dx.doi.org/10.1002/0471028959.sof142
http://dx.doi.org/10.1109/32.730542


[VG12] Thomas Vogel and Holger Giese. A Language for Feedback Loops

in Self-adaptive Systems: Executable Runtime Megamodels. In Pro-

ceedings of the 7th International Symposium on Software Engineer-

ing for Adaptive and Self-Managing Systems [SEA12], pages 129–138.

URL: http://dl.acm.org/citation.cfm?id=2666795.2666816, doi:

10.1109/seams.2012.6224399.

[VG14] Thomas Vogel and Holger Giese. Model-Driven Engineering of Self-

Adaptive Software with EUREMA. ACM Transactions on Autonomous

and Adaptive Systems, 8(4):18:1, 2014. doi:10.1145/2555612.
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I. Complete Znn.com Example

I.1. System Element Type View

I.1.1. System Architecture Types
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Figure I.1.: Znn.com system type elements (1/2)
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Figure I.2.: Znn.com system type elements (2/2)
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I.2. INITIAL CONFIGURATION VIEW

I.1.2. System Resource Context

WebServerWebServer
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Figure I.3.: Znn.com system resource context

I.2. Initial Configuration View

I.2.1. Initial System Architecture Configuration

«System»«System»

:WebFrontend:WebFrontend :LoadBalancer:LoadBalancer :MultimediaNews:MultimediaNews :Database:Database

Figure I.4.: Znn.com initial system architecture configuration

I.2.2. Initial System Deployment

:WebFrontend:WebFrontend :LoadBalancer:LoadBalancer :MultimediaNews:MultimediaNews :Database:Database

:WebServer:WebServer :LoadBalancer:LoadBalancer :ApplicationServer1:ApplicationServer1 :DatabaseServer:DatabaseServer

Figure I.5.: Znn.com initial system deployment
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I.2.3. System Usage Context

Overload:UsageScenarioOverload:UsageScenario

«SystemLevelEntryCall»
INewsFrontend.getNews()

+interarrivalTime = Exp(3.9)
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Figure I.6.: Znn.com system usage context

I.3. Reconfiguration View

I.3.1. Service Level Objectives
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Figure I.7.: Znn.com service lvel objective SLOMRT
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I.3. RECONFIGURATION VIEW

I.3.2. Monitor Repository

«statistical characterization»
+ aggregation = arithmetic mean
+ time = batch(20s)

«measurement specification»
+ metric = Response Time

«system operation measuring point»
+ systemLevelEntryCall = getNews

System Response Time:Monitor

«statistical characterization»
+ aggregation = arithmetic mean
+ time = batch(20s)

«measurement specification»
+ metric = Response Time

«system operation measuring point»
+ systemLevelEntryCall = getNews

System Response Time:Monitor

Figure I.8.: Znn.com monitor repository

I.3.3. Reconfigurations

ScaleResources:StrategyScaleResources:Strategy

addApplicationServer:HenshinTransformation

mrtGreater2s:QVToTransformation

scaleOut:Tactic
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scaleIn:Tactic

Figure I.9.: Znn.com reconfigurations

Listing I.1: Znn.com Reconfiguration Precondition mrtGreater2s

1 property threshold : Real = 1.0;

2 main() {

3 assert fatal(run -timeMeasurement.rootObjects ()[Run -timeMeasurement

]->size() > 0)

4 with log ("No Measurements found!");

5

6 assert error (run -timeMeasurement.rootObjects ()[Run -timeMeasurement

]->checkCondition () = true)

7 with log ("No reconfiguration required");

8 }

9 helper Set(Run -timeMeasurement) :: checkCondition () : Boolean {

10 self ->forEach(measurement) {

231



I. Complete Znn.com Example

11 log(’Measured value is ’ + measurement.measuringValue.toString ());

12 if (measurement.measuringValue > threshold) {

13 log(’Threshold is exceeded ’);

14 return true;

15 };

16 };

17 return false;

18 }

Listing I.2: Znn.com Reconfiguration Precondition mrtLower2s

1 property threshold : Real = 0.0;

2 main() {

3 assert fatal(run -timeMeasurement.rootObjects ()[Run -timeMeasurement

]->size() > 0)

4 with log ("No Measurements found!");

5

6 assert error (run -timeMeasurement.rootObjects ()[Run -timeMeasurement

]->checkCondition () = true)

7 with log ("No reconfiguration required");

8 }

9 helper Set(Run -timeMeasurement) :: checkCondition () : Boolean {

10 self ->forEach(measurement) {

11 log(’Measured value is ’ + measurement.measuringValue.toString ());

12 if (measurement.measuringValue < threshold) {

13 log(’Threshold is exceeded ’);

14 return true;

15 };

16 };

17 return false;

18 }
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Figure I.10.: Znn.com reconfiguration action addApplicationServer

Rule removeApplicationServerRule removeApplicationServer
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Figure I.11.: Znn.com reconfiguration action removeApplicationServer
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II
Auxiliary Formalization

Definition II.1 (Monitoring Labels) A self-adaptive system state transition

(ax,mx, sx, tx) → (ay,my, sy, tt) is labeled with label l∆ if and only if mx 6= my.

The transition can then be written as Σx
∆→ Σy.

Definition II.2 (Reconfiguration Labels) A self-adaptive system state transi-

tion (ax,mx, sx, tx)→ (ay,my, sy, tt) is labeled with label l∆ if and only if ax 6= ay.

The transition can then be written as Σx
α→ Σy.

Definition II.3 (Context Change Labels) A self-adaptive system state transi-

tion (ax,mx, sx, tx)→ (ay,my, sy, tt) is labeled with label l∆ if and only if sx 6= sy.

The transition can then be written as Σx
σ→ Σy.

Definition II.4 (Real Number Expression) Let V be a set of real number

variables. We define Exp(V ) the set of real number expressions over V . Each

exp ∈ Exp(V ) is recursively defined by the rules:

exp := x|v|(exp)|exp ∼ exp

for x ∈ R, v ∈ V , and ∼∈ {+,−, ∗, /}. (cf. [HR04, p. 260])
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Definition II.5 (Real Number Variable Constraint)

Let V be a set of real number variables. A real number variable constraint ψ is a

conjunctive formula of atomic real number variable constraints of the form v ∼ exp
for v ∈ V , ∼∈ {<,≤,=,≥, >} and exp ∈ Exp(V ). We use Ψ(V ) to denote the set

of real number variable constraints. (cf. [BGK+96])

Definition II.6 (Real Number Variable Constraint Vector)

Let Ψ(V ) be a set of real number variable constraints. A real number variable

constraint vector π is a vector of atomic real number variable constraints of the

form π = 〈ψ0, ψ1, ψ2, . . . , ψn〉 for ψi ∈ Ψ(V ). We use Π(V ) to denote the set of

real number variable constraint vectors.

We define the Boolean truth value of a real number variable constraint vector π =

〈ψ0, ψ1, ψ2, . . . , ψn〉 as the Boolean truth value of ψ0 ∨ ψ1 ∨ ψ2 ∨ . . . ∨ ψn.
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