
UNIVERSITÄT PADERBORN

Fakultät für Elektrotechnik, Informatik und Mathematik

Dissertation

Covers and Cores of r-graphs

by Ligang Jin

Adviser: Prof. Dr. Eckhard Steffen

in partial fulfillment of the requirements for the degree of

doctor rerum naturalium (Dr. rer. nat.)

Paderborn 2017



ii



Abstract

There are many hard problems in graph theory which can be solved in the

general case if they are solvable for cubic graphs. Possible minimal counterex-

amples for most of the problems are asked to be cyclically 4-edge-connected

cubic class 2 graphs with girth at least 5. Such graphs were called snarks by

Gardner. One major difficulty in proving theorems for snarks is to find appro-

priate structural parameters for a proof. An approach is to study invariants

that “measure” how far a cubic graph is from being 3-edge-colorable. These

invariants are called measures of edge-uncolorability in the literature.

Recently, Steffen introduced the core of a cubic graph as a structural pa-

rameter, and define a measure µ3 by cores. By the study on cores and µ3,

he proved a couple of new or further results to some hard problems such as

Berge-Fulkerson conjecture, Fan-Raspaud conjecture and problems on cycle-

cover.

In this thesis, we first develop the theory of cores of cubic graphs and prove

further results to Fan-Raspaud conjecture. Surprising to us, Fan-Raspaud con-

jecture is shown equivalent to a seemly weaker conjecture that every bridgeless

cubic graph has a bipartite core. Moreover, we verify Fan-Raspaud conjecture

for cubic graphs with relatively small value of µ3, which improves a former re-

sult of Steffen. It is known that the Petersen coloring conjecture implies both

Berge-Fulkerson conjecture and the cycle double cover conjecture. We prove

a result to the Petersen coloring conjecture formulated by µ3. This improves

some earlier results of B́ılková.

We relate µ3 to some other measures, in particular, to the oddness ω. We

prove that ω(G) ≤ 2
3µ3(G) for every bridgeless cubic graph G. Moreover, we

introduce two more measures γ2 and rf , which are defined by 1-factors and

by 4-flows, respectively. Relations among all these measures are given.

Secondly, we extend the theory of cores to weak cores, for cubic graphs.

This allows to furnish the 5-line Fano-flow conjecture with several statements

by weak cores, and also to define another new measure µ′3. Analogously, 2
3µ
′
3

is an upper bound for the weak oddness ω′.
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Thirdly, we extend the theory of cores for cubic graph to r-graphs. One

benefit is to pose the generalized Fan-Raspaud conjecture: every r-graph has

an Eulerian core. This conjecture can be interpreted in the form of empty

intersection of 1-factors, the same as Fan-Raspaud conjecture. It is a reason-

able generalization of Fan-Raspaud conjecture because of its natural reflection

to cores and of being implied by the generalized Berge-Fulkerson conjecture.

Another benefit is to define a measure µr3 of edge-uncolorability for r-graphs.

It is the first measure particularly for r-graphs, so far as we know.

As an approach to the solution to the generalized Berge-Fulkerson con-

jecture, we consider the union of 1-factors and for every integers k ≥ 1 and

r ≥ 3, we prove a constant lower bound for the fraction of edges covered by k

1-factors in an r-graph. For the particular case r = 3, we obtain the result of

Kaiser, Král and Norine, and of Mazzuoccolo.

Besides r-graphs, planar graphs are under discussion as well. We intro-

duce two parameters “average face degree” and “local average face degree”

for planar graphs and use them to characterize planar critical graphs G with

∆(G) ≤ 6. In particular, our result offers a characterization on the structure

of possible minimal counterexamples to Vizing’s planar graph conjecture.

Zusammenfassung

Viele schwere Probleme in der Graphentheorie können auf kubische

Graphen reduziert werden. Für die meisten Probleme sind mögliche minimale

Gegenbeispiele zyklisch 4-fach kantenzusammenhängende kubische Klasse 2

Graphen mit Taillenweite von mindestens 5. Diese Graphen wurden von Gard-

ner als Snarks bezeichnet. Eine hauptsächliche Schwierigkeit bei den Beweisen

von Theoremen für Snarks ist das Finden von geeigneten Strukturparametern

für den Beweis. Eine Herangehensweise ist es Invarianten zu studieren, die

,,messen” wie weit ein kubischer Graph davon entfernt ist 3-kantenfärbbar zu

sein; solche Invarianten werden auch Unfärbbarkeitsparameter genannt.

Kürzlich führte Steffen den Kern von kubischen Graphen als einen Struk-

turparameter ein und definierte den Parameter µ3 durch Kerne. Durch das
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Studium von Kernen und von µ3 bewies er einige neue oder weitere Ergeb-

nisse zu einigen schwierigen Problemen, wie der Berge-Fulkerson Vermutung,

der Fan-Raspaud Vermutung und Problemen über Kreisüberdeckungen.

In dieser Arbeit entwickeln wir als erstes die Theorie von Kernen von ku-

bischen Graphen weiter und beweisen weitere Ergebnisse zu der Fan-Raspaud

Vermutung. Es ist überraschend, dass die Fan-Raspaud Vermutung äquivalent

zu der scheinbar schwächeren Vermutung ist, dass jeder brückenlose kubische

Graph einen bipartiten Kern hat. Außerdem verifizieren wir die Fan-Raspaud

Vermutung für kubische Graphen mit µ3 ≤ 9, was ein früheres Ergebnis von

Steffen verbessert. Es ist bekannt, dass die Petersen-Färbungs Vermutung die

Berge-Fulkerson Vermutung und die doppelte Kreisüberdeckungsvermutung

impliziert. Wir studieren partielle Petersen-Färbungen, um das Problem zu

approximieren.

Wir vergleichen µ3 mit einigen anderen Parametern, welche die ,,Un-

färbbarkeit” kubischer Graphen messen, z. B. die Ungeradheit ω. Wir

beweisen ω(G) ≤ 2
3µ3(G) für jeden brückenlosen kubischen Graphen G. Zu-

dem führen wir zwei weitere Maße γ2 und rf ein und setzen sie in Beziehung

zu anderen Parametern.

Zweitens erweiterten wir die Theorie von Kernen zu schwachen Kernen von

kubischen Graphen. Dies erlaubt eine äquivalente Formulierung der 5-Linien

Fano-Fluss Vermutung durch schwache Kerne, und außerdem die Definition

von einem weiteren neuen Maß µ′3. Analog ist 2
3µ
′
3 eine obere Grenze für die

schwache Ungeradheit ω′.

Drittens erweitern wir die Theorie von Kernen für kubische Graphen zu r-

Graphen, was eine kanonische Verallgemeinerung der Fan-Raspaud Vermutung

ermöglicht: Jeder r-Graph hat einen Eulerschen Kern. Diese Vermutung kann

in Form von leeren Schnittmengen von 1-Faktoren interpretiert werden, eben-

so wie die Fan-Raspaud Vermutung. Es ist eine sinnvolle Verallgemeinerung

der Fan-Raspaud Vermutung durch ihren natürlichen Bezug zu Kernen und

dadurch, dass sie durch die Verallgemeinerung der Berge-Fulkerson Vermu-

tung impliziert ist. Ein weiterer Nutzen ist es, ein Maß µr3 von Kanten-
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Unfärbbarkeit für r-Graphen zu definieren. Soweit es uns bekannt ist, ist

es das erste Maß speziell für r-Graphen.

Als Lösungsansatz zu der verallgemeinerten Berge-Fulkerson Vermutung

betrachten wir die Vereinigung von 1-Faktoren; und wir beweisen für alle ganz-

zahligen k ≥ 1 und r ≥ 3 eine konstante untere Schranke für den Anteil von

Kanten, die von k 1-Faktoren in einem r-Graphen überdeckt werden. Für den

speziellen Fall r = 3 erhalten wir die Ergebnisse von Kaiser, Král und Norine

und von Mazzuoccolo.

Neben r-Graphen werden Kantenfärbung von planaren Graphen unter-

sucht. Wir führen zwei Parameter, ,,durchschnittlicher Grad einer Fläche”

und ,,lokaler durchschnittlicher Grad einer Fläche”, für planare Graphen ein

und benutzen diese zur Charakterisierung planarer kritischer Graphen G mit

∆(G) ≤ 6. Im Speziellen ermöglicht unser Ergebnis eine Charakterisierung

der Struktur von möglichen minimalen Gegenbeispielen für Vizing’s Vermu-

tung über planare Graphen.
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Chapter 1

Introduction

1.1 Graphs: notations and terminologies

For the notations and terminologies not mentioned in the thesis, we follow the

ones used in [75]. A graph G consists of a vertex set V (G) and an edge set

E(G), where each edge joins two vertices, which are not necessarily distinct.

Denote by |S| the cardinality of a set S. The values |V (G)| and |E(G)| are

called the order and the size of G, respectively. Denote by xy an edge between

two vertices x and y, which are called the two ends of xy. A loop is an edge

whose ends are the same vertex. Two or more edges having the same two ends

are called multiple edges. A graph is simple if it contains no loops or multiple

edges. A multigraph is a graph that has no loops but may have multiple edges.

In this thesis, we consider finite multigraphs.

Let G be a graph. Two vertices are adjacent if there exists an edge between

them. Two edges are adjacent if they share a common end. A vertex and an

edge are incident if the vertex is an end of the edge. If two vertices are

adjacent, then one is called a neighbor of the other. For a vertex u of G, let

N(u) be the set of neighbors of u; and for S ⊆ V (G), let N(S) =
⋃
v∈S N(v).

We write N(x, y) short for N({x, y}). Denote by E(v) the set of edges incident

with v. The value |E(v)| is called the degree of v, denoted by dG(v), except

that each loop in E(v) counts twice. The maximum degree ∆(G) of a graph G

1



2 Chapter 1 Introduction

is defined as ∆(G) = max{dG(v) : v ∈ V (G)}. If it is clear from the context,

then d(v) and ∆ are frequently used.

A circuit is a close walk with no repetition of vertices and edges. A circuit

of vertices u1, u2, . . . , uk located in cyclic order is written as [u1u2 . . . uk]. The

union of pairwise disjoint circuits is called a cycle.

Let G be a graph. If either S ⊆ V (G) or S ⊆ E(G), then G[S] denotes

the subgraph of G induced by S. For T ⊆ V (G), the set of edges of G with

precisely one end in T is denoted by ∂T. Let H be a subgraph of G. We write

∂(H) short for ∂V (H). The complement H of H is a subgraph of G induced

by the edges not in H, that is, H = G[E(G) \ E(H)].

Let G be a graph that may be unconnected. An odd component of G is

a component of G containing odd number of vertices. Denote by c(G) the

number of components of G, and by o(G) the number of odd components of

G.

1.2 Background, contribution and structure of the

thesis

In mathematics, one of the most well-known problems is the four color prob-

lem, which states that given any separation of a plane into contiguous regions,

four colors are enough to color all the regions so that no two adjacent regions

receive the same color. This problem was first proposed by Guthrie in 1852,

and was solved by Appel and Haken in 1976 with assistance of computer. So

now it is a theorem. In the language of graph theory, the Four Color Theo-

rem (briefly, the 4CT) simply states that every loopless planar graph admits

a 4-vertex-coloring.

The early attempts at proving the 4CT, though all failed, bring many

significant results and useful techniques to graph theory. The following equiv-

alence is due to Tait in 1880.

Theorem 1.1 ([67]). The 4CT is equivalent to the statement that every bridge-

less cubic planar graph admits a 3-edge-coloring.
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This theorem initiates the study on several aspects of graph theory, such

as edge-colorings, snarks, factors, flows, and so on. The thesis contributes to

most of these aspects.

Compared with vertex coloring, the theory of edge coloring has received

less attention until relatively recently. However, edge coloring has strong

connections to many other research fields, such as matching theory, factor-

ization theory, Latin squares and scheduling theory. The chromatic index

χ′(G) of a graph G is the minimum integer k such that G has a k-edge-

coloring. A fundamental result on edge coloring is Vizing’s bound for the

chromatic index of a graph. By Vizing’s theorems [69, 70], if G is a sim-

ple graph, then χ′(G) ∈ {∆(G),∆(G) + 1}; and if G is a multigraph, then

χ′(G) ≤ ∆(G) + µ(G), where µ(G) is the maximum multiplicity of an edge of

G. Due to these results, a graph G is class 1 if χ′(G) = ∆(G), and is class 2

otherwise.

1.2.1 Planar graphs

For planar graphs, Vizing [69] showed for each k ∈ {2, 3, 4, 5} that there is

a planar class 2 graph G with ∆(G) = k. Hence, for these values of k, a

k-critical graph does exist. Moreover, he proved that every planar graph G

with ∆(G) ≥ 8 is class 1, and conjectured that every planar graph G with

∆(G) ∈ {6, 7} is class 1. This conjecture is called Vizing’s planar graph

conjecture. The case ∆ = 7 has been confirmed true [17, 58, 79], but the case

∆ = 6 is still open.

In Chapter 2, we introduce new parameters “local average face-degree”

and “average face-degree” of a plane graph, where the former depends on

the embedding of the planar graph but the latter does not. By these two

parameters, we define “local average face-degree bound b∗k” and “average face-

degree bound bk” for a k-critical planar graph. We prove both upper bound

and lower bound for each of bk and b∗k, and propose the question asking for

the precise values of bk and b∗k. Beyond face-degree, 3-faces are also used to

characterize planar critical graphs. We give short proofs to the following two
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statements: (1) every 5-critical plane graph has a 3-face adjacent to a 3-face or

to a 4-face; (2) every 6-critical plane graph, if exists, has a vertex incident to

at least four 3-faces. A significant longer proof of the statement (2) is given in

[73], where the statement is formulated for all plane graphs. However, we point

out that their proof works for critical graphs only. In particular, our results

offer structural properties for possible minimal counterexamples to Vizing’s

planar graph conjecture.

1.2.2 Cubic graphs

Many hard problems in graph theory can be solved in general case if they

are solvable for cubic graphs. Examples of such problems are the 4-color-

problem and problems on cycle-covers, matching-covers and flows of graphs.

We consider cubic graphs in Chapters 3, 4, 5 and 6.

For a cubic graph G that admits a 3-edge-coloring, each color class induces

a 1-factor. So the edge set E(G) can be covered by three 1-factors, and we

say that G is 1-factorable. The study on factors and factorization starts from

Petersen in 19th century, who proved two important theorems: (1) every even

regular graph is 2-factorable; (2) every 2-connected 3-regular graph has a 1-

factor. Later on König’s theorem follows: every bipartite regular graph is

1-factorable. In Chapters 3, we review on 1-factors and on some long-standing

conjectures concerning 1-factor covers. We obtain some new results on graphs

having 1-factors with certain property.

A snark is a bridgeless cubic graph that is not 3-edge-colorable. To avoid

trivial cases, a snark is often restricted to be cyclically 4-edge-connected and

to have girth at least 5. By Tait’s theorem, the 4CT asserts that there are

no planar snarks. However, non-planar snarks do exist. The first known

example is the Petersen graph, discovered in 1898. It is also the smallest

snark. “The hunting of the snark”, a name borrowed from a poem by Carroll,

starts since then, regarding the essential role of snarks as possible minimal

counterexamples to many hard problems in graph theory.
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Throughout Chapters 4 and 5, snarks with specific properties are con-

structed to deal with problems mainly related to two well-known conjectures:

(1) Berge-Fulkerson conjecture [13]: every bridgeless cubic graph G has six

1-factors such that each edge of G is contained in precisely two of them; (2)

Fan-Raspaud conjecture [10]: every bridgeless cubic graph has three 1-factors

M1,M2,M3 such that M1 ∩M2 ∩M3 = ∅.

In Chapter 4, we follow the very recent introduction by Steffen [64] of the

concept “cores of cubic graph”, which provides a different but very promising

approach to treat on these two conjectures, as well as some other hard conjec-

tures. A core can be defined as follows. Let S3 be a list of three 1-factors of a

cubic graph G. For 0 ≤ i ≤ 3, let Ei be the set of edges that are contained in

precisely i elements of S3. The core of G with respect to S3 is the subgraph

Gc of G induced by E0 ∪ E2 ∪ E3. A k-core is a core with |E0| = k.

We develop the theory of cores and furnish for Fan-Raspaud conjecture (e-

quivalently, for the 4-line Fano-flow conjecture) several equivalent statements

by cores. It is straightforward to restate Fan-Raspaud conjecture as: every

bridgeless cubic graph has a cyclic core. Surprising to us, Fan-Raspaud conjec-

ture is shown equivalent to a seemly weaker conjecture that every bridgeless

cubic graph has a bipartite core. Moreover, we extend the theory of cores

to weak cores, for cubic graphs. This allows to analogously furnish the 5-

line Fano-flow conjecture with several equivalent statements by weak cores.

Finally, we disprove a conjecture of Mazzuoccolo [49] that is stronger than

Fan-Raspaud conjecture, and we reformulate this conjecture under a stronger

connectivity assumption.

Invariants that could measure how far a cubic graph is from being class 1

is called measures of edge-uncolorability in the literature. Measures are used

to prove partial results to some hard conjectures. In Chapter 5, we first review

some well known measures such as oddness, resistance and so on. We mainly

study the measure µ3, which is defined by cores. We relate µ3 to some other

measures, in particular, to the oddness ω. We prove that ω(G) ≤ 2
3µ3(G)

for every bridgeless cubic graph G. The bound is achieved by a family of
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snarks. For the equality case, every core has a specific structure and is called

a Petersen core. However, the difference between them can be arbitrarily big,

even if we additionally fix the oddness. Moreover, we introduce two more

measures γ2 and rf , which is defined by the intersection of two 1-factors and

by the support of 4-flows. Relations among all these measures and some other

known measures are given. It turns out that µ3 bounds all other measures

mentioned. Finally, we verify Fan-Raspaud conjecture for 3-edge-connected

cubic graphs G having no nontrivial 3-edge-cuts such that µ3(G) ≤ 9. This

improves a result of Steffen [64], where G is asked to satisfy µ3(G) ≤ 6 instead.

Chapter 6 focuses on Jaeger’s Petersen coloring conjecture [29], which s-

tates that every bridgeless cubic graph has a Petersen coloring. This conjec-

ture is stronger than Berge-Fulkerson conjecture, and also implies some other

conjectures, such as cycle double cover conjecture. There are several equiva-

lent statements to the Petersen coloring conjecture, one of them is that every

bridgeless cubic graph has a normal 5-edge-coloring. However, only few results

on this conjecture is known. Here, we follow Šámal’s new approach [71] that

might leads to a solution to this conjecture. For a given bridgeless cubic graph,

we look for a 5-edge-coloring yielding normal edges as much as possible. In

other words, we color the graph “as normal as possible” while the conjecture

asserts that we can color the graph completely normal. The result of B́ılková

[1] targets some classes of cubic graphs and shows that, we can color a gener-

alized prism so that 2
3 of the edges are normal, and we can color a cubic graph

of large girth so that almost 1
2 of the edges are normal. Our result shows that

every bridgeless cubic graph G has a proper 5-edge-coloring such that at least

|E(G)| − µ3(G) edges are normal, which improves these former results.

1.2.3 r-graphs

In Chapter 7, we discuss on r-graphs, in which field there are not much results

either. An r-regular multigraph G is an r-graph if |∂(X)| ≥ r for each odd X ⊆

V (G). The class of r-graphs is a special class of r-regular graphs maintaining

certain property of those that are r-edge-colorable. Moreover, the concept of
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r-graph is an generalization of bridgeless cubic graph. Both the facts gain

interest on r-graphs.

In 1979, Seymour [61] presented some basic results and proposed several

conjectures on r-graphs. Vizing’s bound for the chromatic index of simple

graphs is conjectured to be true for all r-graphs. That is, ifG is an r-graph then

χ′(G) ≤ r+1. This conjecture, namely the r-graph conjecture, is proposed by

Seymour. It is one of the central conjectures in the theory of edge coloring,

and is true for r ≤ 15. Furthermore, Seymour proposed a generalization of

Berge-Fulkerson conjecture for r-graphs: every r-graph has 2r 1-factors such

that each edge is contained in precisely two of them. He proved partial results

to it. Deep results on r-graphs were obtained by Rizzi in 1999 [57], where he

constructed r-graphs with specific properties in terms of 1-factors to disprove

some conjectures of Seymour.

Here, we consider the union of 1-factors of r-graphs, targeting the gener-

alized Berge-Fulkerson conjecture. Analogous to the cubic case, Mazzuoccolo

[50] proved that the generalized Berge-Fulkerson conjecture is equivalent to

the generalized Berge conjecture, which states that every r-graph has 2r − 1

1-factors such that each edge is contained in at least one of them. We prove

a constant lower bound for the maximum proportion of covered edges by k

1-factors for all r-graphs. This lower bound depends on k and r only. In

particular, we obtain partial result to the generalized Berge conjecture, which

asserts that the maximum proportion is one hundred percent. For the partic-

ular case r = 3, we obtain the result of Kaiser, Král and Norine [36] and of

Mazzuoccolo [48].

Furthermore, we extend the theory of cores for cubic graphs to r-graphs,

which provides a new perspective to deal with the problems on r-graphs. It is

known that Fan-Raspaud conjecture can be easily restated as: every bridge-

less cubic graph has a cyclic core. From this point of view, we propose the

generalized Fan-Raspaud conjecture in the language of cores as well: every r-

graph has an Eulerian core. We further interpret this conjecture in the normal

form: every r-graph has r 1-factors M1,M2, . . . ,Mr such that any b r2co + 2
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of them have empty intersection. By taking r = 3, this conjecture reduces

to Fan-Raspaud conjecture. It is a reasonable generalization of Fan-Raspaud

conjecture because of its natural reflection to cores and of being implied by

generalized Berge-Fulkerson conjecture.

Moreover, we define a measure µr3 of edge-uncolorability for r-graphs which,

as far as we know, is the first measure particularly for r-graphs. The basic

question on r-graphs is to determine which r-graph is r-edge-colorable. Re-

garding the difficulty on answering this question directly, it is important to

study measures for r-graphs, which determine how far an r-graph is from being

r-edge-colorable.

Some parts of our results in the thesis have been published already. The

results of

• Sections 2.2 and 2.5 are published in

[32] L. Jin, Y. Kang and E. Steffen. Face-degree bounds for planar

critical graphs. Electron. J. Combin. 23(3) (2016) #P3.21.

• Section 2.4 are published in

[33] L. Jin, Y. Kang and E. Steffen. Remarks on planar edge-chromatic

critical graphs. Discrete Applied Math. 200 (2016) 200-202.

• Chapter 4 and Section 5.6 are published in

[34] L. Jin, G. Mazzuoccolo and E. Steffen. Cores, joins and the

Fano-Flow conjectures. To appear in Discuss. Math. Graph. arX-

iv:1601.05762 (2016).

• Sections 5.2–5.4 are published in

[35] L. Jin and E. Steffen. Petersen cores and the oddness of cubic

graphs. J. Graph Theory 84 (2017) 109-120.

• Section 7.2 are published in

[31] L. Jin. Unions of 1-factors in r-graphs. arXiv:1509.01823 (2015).



Chapter 2

Matchings and edge-colorings

2.1 Preliminary

Let k be a positive integer. A k-edge-coloring of a graph G is a mapping

φ : E(G)→ {1, 2, · · · , k} such that φ(e1) 6= φ(e2) for any two adjacent edges

e1 and e2. In other words, a k-edge-coloring assigns each edge a color from

{1, 2, · · · , k} so that no two adjacent edges receive the same color. The edge-

chromatic number or chromatic index χ′(G) of a graph G is the minimum k

such that G admits a k-edge-coloring.

For a k-edge-coloring of a graph G, a set of all the edges receiving one

same color is called a color class. A matching of a graph G is a set of pairwise

nonadjacent edges of G. Clearly, every color class is a matching. Hence, there

is a one-to-one correspondence between a k-edge-coloring and a partition of

the edge set into k pairwise disjoint matchings. A fundamental result on edge

coloring is due to Vizing [69].

Theorem 2.1 ([69]). If G is a simple graph, then χ′(G) ∈ {∆(G),∆(G) + 1}.

By this theorem, we can divide simple graphs into two classes. The graph

G is class 1 if χ′(G) = ∆(G), and class 2 if χ′(G) = ∆(G) + 1. For more

informations on edge coloring, we refer the readers to [65].

We conclude this part with further notations and terminologies needed for

the rest of this chapter.

9
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Let G be a graph. A vertex u of G is a k-vertex or a k+-vertex or a k−-

vertex if dG(u) = k or dG(u) ≥ k or dG(u) ≤ k, respectively. If v is a neighbor

of u, then we further call u a k-neighbor or a k+-neighbor or a k−-neighbor of

v, respectively.

A graph is planar if it is embeddable into the Euclidean plane. A plane

graph (G,Σ) is a planar graph G together with an embedding Σ of G into the

Euclidean plane. Let (G,Σ) be a plane graph. Denote by F ((G,Σ)) the face

set of (G,Σ). The degree d(G,Σ)(f) of a face f is the length of its facial circuit.

If there is no harm of confusion, we also write dG(f) or d(f) for short. Let k

be a positive integer. A k-face or a k+-face or a k−-face is a face of degree k

or at least k or at most k, respectively. A vertex or an edge is incident with

a face if it is contained in the facial circuit.

2.1.1 Critical graphs

Let k be a positive integer. A k-critical graph is a class 2 graph G with

∆(G) = k and χ′(H) < χ′(G) for each proper subgraph H of G. We will collect

necessary facts on critical graphs for the proof of our results demonstrated in

Sections 2.4 and 2.5.

Lemma 2.2. Let G be a critical graph and e ∈ E(G). If e = xy, then

dG(x) ≥ 2, and dG(x) + dG(y) ≥ ∆(G) + 2.

Lemma 2.3 (Vizing’s Adjacency Lemma [69]). Let G be a critical graph. If

e = xy ∈ E(G), then at least ∆(G) − dG(y) + 1 vertices in N(x) \ {y} have

degree ∆(G).

Lemma 2.4 ([79]). Let G be a critical graph and xy ∈ E(G). If d(x)+d(y) =

∆(G) + 2, then the following three statements hold true.

(1) Every vertex of N(x, y) \ {x, y} is a ∆(G)-vertex.

(2) Every vertex in N(N(x, y))\{x, y} has degree at least ∆(G)− 1.

(3) If d(x) < ∆(G) and d(y) < ∆(G), then every vertex in N(N(x, y))\{x, y}

has degree ∆(G).
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Lemma 2.5 ([58]). No critical graph has pairwise distinct vertices x, y, z, such

that x is adjacent to y and z, d(z) < 2∆(G)− d(x)− d(y) + 2, and xz is in at

least d(x) + d(y)−∆(G)− 2 triangles not containing y.

Theorem 2.6 ([30]). If G is a 3-critical graph, then |E(G)| ≥ 4
3 |V (G)|.

Theorem 2.7 ([76]). Let G be a k-critical graph. If k = 4, then |E(G)| ≥
12
7 |V (G)|; and if k = 5, then |E(G)| ≥ 15

7 |V (G)|.

Theorem 2.8 ([43]). If G is a 6-critical graph, then |E(G)| ≥ 1
2(5|V (G)|+3).

2.2 (Local) average face-degree

The results of this section have already been published in [32]. In this section,

we introduce two new parameters of a planar graph: average face-degree and

local average face-degree. Both parameters are defined in terms of faces. The

former one is related to the parameter average degree, which is defined to be∑
v∈V (G) dG(v)

|V (G)| for a graph G. It gives globe information on the structure of a

planar graph, while the latter one carries information around each vertex for a

plane graph. These two parameters will be used to characterize the structure

of a planar critical graph G with ∆(G) ≤ 6.

Let (G,Σ) be a 2-connected plane graph and F (G) be the set of faces of

(G,Σ). The average face-degree F (G) of G is defined as

F (G) =
1

|F (G)|
∑

f∈F (G)

d(G,Σ)(f).

By applying Euler’s formula |V (G)| − |E(G)|+ |F (G)| = 2 together with the

fact
∑

f∈F (G) d(G,Σ)(f) = 2|E(G)|, we can deduce that F (G) = 2|E(G)|
|E(G)|−|V (G)|+2 ,

which is independent on the embedding Σ. Hence, it is reasonable to say the

average face-degree for a planar graph. For convenience of using, we repeat

the following fact.

Proposition 2.9. If G is a planar graph, then F (G) = 2|E(G)|
|E(G)|−|V (G)|+2 .
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Let u be a vertex of a plane graph (G,Σ) of degree k. Thus, u is incident

to k pairwise distinct faces, say f1, . . . , fk. Let F(G,Σ)(u) = 1
k (d(G,Σ)(f1)+· · ·+

d(G,Σ)(fk)) and F ((G,Σ)) = min{F(G,Σ)(v) : v ∈ V (G)}. Clearly, F ((G,Σ)) ≥

3 since every face is of degree at least 3. As Figure 2.1 shows, F ((G,Σ))

depends on the embedding Σ. The local average face-degree of a 2-connected

planar graph G is defined as

F ∗(G) = max{F ((G,Σ)): (G,Σ) is a plane graph}.

This parameter is independent from the embeddings of G, and F ∗(G) ≥ 3 for

all planar graphs.

v

3)),(( GF

v

5

2
3))',(( GF

Figure 2.1: Graph G has two embeddings Σ, Σ′ such that F ((G,Σ)) 6=
F ((G,Σ′)).

2.3 Vizing’s planar graph conjecture

Vizing [69] showed for each k ∈ {2, 3, 4, 5} that there is a planar class 2 graph

G with ∆(G) = k. He proved that every planar graph with ∆ ≥ 8 is a class 1

graph, and proposed the following conjecture.

Conjecture 2.10 (Vizing’s planar graph conjecture [69]). Every planar graph

G with ∆(G) ∈ {6, 7} is a class 1 graph.
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Vizing’s conjecture is proved for planar graphs with ∆ = 7 by Grünewald

[17], by Sanders and Zhao [58], and by Zhang [79] independently. However,

the case ∆ = 6 is still open.

Zhou [80] proved for each k ∈ {3, 4, 5} that if G is a planar graph with

∆(G) = 6 and G does not contain a circuit of length k, then G is a class 1

graph. Vizing’s conjecture is confirmed also for some other classes of planar

graphs where some specific circuits are forbidden [3, 72, 73].

The next two sections devote to build structural properties for critical

planar graphs of maximum degree at most 6. The main technique applied for

the proofs is the Discharging Method, whose most famous application is the

proof of 4CT. For a guide to this technique, we refer the readers to [6].

2.4 Characterization by 3-faces

The results of this section have already been published in [33]. This section

provides short proofs for the following two theorems.

Theorem 2.11. There is no 6-critical plane graph (G,Σ), such that every

vertex of G is incident to at most three 3-faces.

Proof. Suppose to the contrary that there is a counterexample to the state-

ment. Then there is a 6-critical graph G which has an embedding Σ such

that every vertex of G is incident to at most three 3-faces. By Euler’s for-

mula and Lemma 2.8 we deduce that
∑

f∈F (G)(dG(f) − 4) = 2|E(G)| −

4|F (G)| = 2|E(G)| − 4(|E(G)| + 2 − |V (G)|) ≤ −|V (G)| − 11. Therefore,

|V (G)|+
∑

f∈F (G)(dG(f)− 4) ≤ −11.

Give initial charge 1 to each v ∈ V (G) and charge dG(f) − 4 to each

f ∈ F (G). Discharge the elements of V (G) ∪ F (G) according to the following

rules:

R1 : Every vertex sends 1
3 to its incident 3-faces.

The rule only moves the charge around and does not affect the sum. Fur-

thermore, the finial charge of every vertex and face is at least 0. Therefore,
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0 ≤
∑

v∈V (G) 1 +
∑

f∈F (G)(dG(f)− 4) = |V (G)|+
∑

f∈F (G)(dG(f)− 4) ≤ −11,

a contradiction.

If Vizing’s conjecture is not true, then every 6-critical graph has the fol-

lowing property as a direct consequence of Theorem 2.11.

Corollary 2.12. Let (G,Σ) be a plane graph. If G is 6-critical, then there is

a vertex of G which is incident to at least four 3-faces.

Theorem 2.13. Let (G,Σ) be a plane graph. If G is 5-critical, then (G,Σ)

has a 3-face which is adjacent to a 3-face or to a 4-face.

Proof. Suppose to the contrary that there is a counterexample to the statemen-

t. Then there is a 5-critical graph G which has an embedding Σ such that every

3-face is adjacent to 5+-faces only. Hence, every vertex of G is incident to at

most two 3-faces, and every vertex which is incident to a 3-face is also incident

to a 5+-face. By Lemma 2.7, we have
∑

f∈F (G)(dG(f) − 4) ≤ −2
7 |V (G)| − 8.

Therefore, 2
7 |V (G)|+

∑
f∈F (G)(dG(f)− 4) ≤ −8.

Give initial charge of 2
7 to each vertex and dG(f) − 4 to each face of G.

Discharge the elements of V (G) ∪ F (G) according to the following rules:

R1 : Every vertex sends 1
3 to its incident 3-faces.

R2 : Every 5+-face sends dG(f)−4
dG(f) to its incident vertices.

Denote the finial charge by ch∗. Rules R1 and R2 imply that ch∗(f) ≥ 0 for

every f ∈ F (G). Let n ≤ 2 and v be a vertex which is incident to n 3-faces. If

n = 0, then ch∗(v) ≥ 2
7 > 0. If n = 1, then v is incident to at least one 5+-face,

and therefore, ch∗(v) ≥ 2
7 + 1

5−
1
3 > 0 by rule R2. If n = 2, then v is incident to

at least two 5+-faces, and therefore ch∗(v) ≥ 2
7 +2× 1

5−2× 1
3 = 2

105 > 0, by rule

R2. Hence, 0 ≤
∑

v∈V (G)
2
7 +

∑
f∈F (G)(dG(f)− 4) ≤ −8, a contradiction.

A significant longer proof of Theorem 2.11 is given in [73], but the state-

ment is formulated for plane graphs. However, the proof works for critical

graphs only. The assumption that a minimal counterexample is critical is

wrong. It might be that a subgraph of this minimal counterexample G does

not fulfill the pre-condition of the statement. For example, if G has a triangle
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[vxyv] and a bivalent vertex u such that u is the unique vertex inside [vxyv]

and u is adjacent to x and y, then the removal of u increases the number of

3-faces containing v (see Figure 2.2).

v

u

x

y

Figure 2.2: An example

2.5 Characterization by average face degree

The results of this section have already been published in [32].

Let k be a positive integer. Let bk = sup{F (G) : G is a k-critical planar graph}

and b∗k = sup{F ∗(G) : G is a k-critical planar graph}. We call bk the average

face-degree bound, and b∗k the local average face-degree bound for k-critical

planar graphs. If k = 1 or k ≥ 7, then every planar graph with ∆ = k is a class

1 graph and therefore, {F (G) : G is a k-critical planar graph} = {F ∗(G) : G

is a k-critical planar graph} = ∅. Hence, bk and b∗k do not exist in these cases.

Therefore, we focus on these two parameters with index k ∈ {2, 3, 4, 5, 6}.

2.5.1 Lower bounds for F (G) and F ∗(G)

Lemma 2.14. Let t be a positive integer and ε > 0.

1. For k ∈ {2, 3, 4} there is a k-critical planar graph G and F ∗(G) > t.

2. There is a 2-critical planar graph G with F (G) > t.

3. There is a 3-critical planar graph G such that 6− ε < F (G) < 6.

4. There is a 4-critical planar graph G such that 4− ε < F (G) < 4.
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5. There is a 5-critical planar graph G such that 3 + 1
3 − ε < F (G) < 3 + 1

3

and F ∗(G) ≥ 3 + 1
5 .

Proof. The odd circuits are the only 2-critical graphs. Hence, the second

statement and the first statement for k = 2 are proved. Let X and Y be two

circuits of length n ≥ 3, with V (X) = {xi : 0 ≤ i ≤ n− 1}, V (Y ) = {yi : 0 ≤

i ≤ n − 1} and edges xixi+1 and yiyi+1, where the indices are added modulo

n. Consider an embedding, where Y is inside X. Add edges xiyi to obtain

a planar cubic graph G with F ∗(G) = 1
3(n + 8). Add edges xiyi+1 in G to

obtain a 4-regular planar graph H with F ∗(H) = 1
4(n + 9). Subdividing one

edge in G and one in H yields a critical planar graph Gn with ∆(Gn) = 3,

and a critical planar graph Hn with ∆(Hn) = 4. If n ≥ 4t, then F ∗(Gn) > t

and F ∗(Hn) > t. The proof that Gn and Hn are critical will be given in the

last paragraph.

Since |F (Gn)| = n + 2, and
∑

f∈F (Gn) dGn(f) = 6n + 2, it follows

that F (Gn) = 6 − 10
n+2 . Analogously, we have |F (Hn)| = 2n + 2 and∑

f∈F (Hn) dHn(f) = 8n + 2 and therefore, F (Hn) = 4 − 3
n+1 . Now, the

statements for 3-critical and 4-critical graphs follow. Examples of these

graphs are given in Figure 2.3.

3k4k 2k

Figure 2.3: Examples for k ∈ {2, 3, 4}

Let m ≥ 4 be an integer. Let Ci = [ci,1ci,2 · · · ci,4] be a circuit of length 4 for

i ∈ {1,m}, and Ci = [ci,1ci,2 · · · ci,8] be a circuit of length 8 for i ∈ {2, . . . ,m−

1}. Consider an embedding, where Ci is inside Ci+1 for i ∈ {1, . . . ,m − 1}.

Add edges c1,jc2,2j−1, c1,jc2,2j , c1,jc2,2j+1 for j ∈ {1, . . . , 4}, edges ci,jci+1,j for

i ∈ {2, . . . ,m− 2} and j ∈ {1, . . . , 8}, edges ci,jci+1,j+1 for i ∈ {2, . . . ,m− 2}
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and j ∈ {2, 4, 6, 8}, and edges cm−1,2j−2cm,j , cm−1,2j−1cm,j and cm−1,2jcm,j

for j ∈ {1, . . . , 4} to obtain a 5-regular planar graph T (the indices are added

modulo 8). Subdividing the edge cm,1cm,2 in T yields a critical planar graph

Tm with ∆(Tm) = 5 (Figure 2.4 illustrates T6).

Figure 2.4: The plane graph (T6,Σ6)

Since |F (Tm)| = 12m − 10 and
∑

f∈F (Tm) dTm(f) = 40m − 38, it follows

that F (Tm) = 10
3 −

7
18m−15 . Furthermore, for the embedding Σm of Tm as

indicated in Figure 2.4 (for m = 6) we calculate that F ((Tm,Σm)) = 3 + 1
5

and therefore, F ∗(Tm) ≥ 3 + 1
5 .

It remains to prove that Gn, Hn and Tm are critical. For Gn and Hn

we proceed by induction on n. It is easy to verify the truth for 3 ≤ n ≤ 6.

We proceed to induction step. We argue first on Gn. Let u be the vertex

of degree 2. Since n ≥ 7, for any edge e of Gn, there exists some k such

that no vertex of the circuit C is incident with e or adjacent to u, where

C = [xk+1yk+1yk+2xk+2]. Reduce Gn to Gn−2 by removing the edges xk+1yk+1

and xk+2yk+2 and suppressing their ends. Let G′ be the resulting graph and

e′ be the resulting edge from e. By the induction hypothesis, G′ is critical.

Hence, G′ − e′ has a 3-edge-coloring, say φ. Assign φ(xkxk+3) to xkxk+1 and

xk+2xk+3, and φ(ykyk+3) to ykyk+1 and yk+2yk+3, and consequently, the edges

of C can be properly colored. Now a 3-edge-coloring of Gn − e is completed

and so, Gn − e is class 1. Moreover, since Gn is overfull, this graph is class 2.

Therefore, Gn is critical. The argument on Hn is analogous.
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For any Tm, recall that T is the graph obtained from Tm by suppressing

the bivalent vertex. Consider T . Since each circuit Ci has even length, their

edges can be decomposed into two perfect matchings M1 and M2, so that M1

contains ci,1ci,2 for i ∈ {1,m} and ci,2ci,3 for 2 ≤ i ≤ m − 1. Let M3 =

{c1,jc2,2j+1 : 1 ≤ j ≤ 4} ∪ {ci,2jci+1,2j+1 : 2 ≤ i ≤ m − 2, 1 ≤ j ≤ 4} ∪

{cm−1,2j−2cm,j : 1 ≤ j ≤ 4}. Clearly, M3 is a perfect matching disjoint with

M1 and M2. We can see that E(G)\ (M1∪M2∪M3) induces even circuits and

hence, their edges can be decomposed into two perfect matchings M4 and M5,

so that M4 contains c1,jc2,2j for 1 ≤ j ≤ 4. Clearly, M1, . . . ,M5 constitute a

decomposition of E(T ).

Let ei = cm,icm,i+1 for 1 ≤ i ≤ 4. Let M ′2 = M2∪{e1, e3}\{e2, e4}. Define

A1 = M1 ∪M3, A2 = M ′2 ∪M4, A3 = M ′2 ∪M5.

Let hm be an edge of Tm. Since Tm is overfull, to prove that Tm is critical,

it suffices to show that Tm − hm is a 5-edge-colorable.

Let h be the edge of T that corresponds to hm. We can see that A1 ∪

A2 ∪ A3 = E(T ) \ {e2, e4} and e1 ∈ A1 ∩ A2 ∩ A3. Hence, if h /∈ {e2, e4} then

there exists A ∈ {A1, A2, A3} such that e1, h ∈ A. Note that e1 is the edge

subdivided to get Tm from T , and that A induces a circuit of T . It follows

that this circuit corresponds to a path P of Tm − hm. Moreover, note that

the edges of T −A can be decomposed into 3 perfect matchings, and thus the

same to the edges of Tm−hm−E(P ). Therefore, Tm−hm is 5-edge-colorable.

If h ∈ {e2, e4} then Cm corresponds to a path of Tm − hm. Note that

E(Cm) ⊆M1 ∪M2 and that M1, . . . ,M5 constitute a decomposition of E(T ).

Similarly, we can argue that Tm − hm is 5-edge-colorable in this case.

2.5.2 Upper bounds for F (G) and F ∗(G)

Proposition 2.15. Let G be a k-critical planar graph.

1. If k = 3, then F (G) < 8.

2. If k = 4, then F (G) < 4 + 4
5 .

3. If k = 5, then F (G) < 3 + 3
4 .
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4. If k = 6, then F (G) < 3 + 1
3 .

Proof. Let k = 3 and suppose to the contrary that F (G) ≥ 8. With Lem-

ma 2.9 and Theorem 2.6 we deduce 4
3 |V (G)| ≤ |E(G)| ≤ 4

3(|V (G)| − 2), a

contradiction.

The other statements follow analogously from Proposition 2.9 and Theorem

2.7 (k ∈ {4, 5}) and Theorem 2.8 (k = 6).

Theorem 2.16. If G is a planar 5-critical graph, then F ∗(G) ≤ 7 + 1
2 .

Proof. Suppose to the contrary that F ∗(G) = r > 7 + 1
2 . Let Σ be an em-

bedding of G into the Euclidean plane such that F ∗(G) = F ((G,Σ)). Let

V = V (G), E = E(G), and F = F ((G,Σ)). We proceed by a discharging ar-

gument in G and eventually deduce a contradiction. Define the initial charge

ch in G as ch(x) = dG(x)−4 for x ∈ V ∪F . Euler’s formula |V |−|E|+ |F | = 2

can be rewritten as:

∑
x∈V ∪F

ch(x) =
∑

x∈V ∪F
(dG(x)− 4) = −8.

We define suitable discharging rules to change the initial charge function

ch to the final charge function ch∗ on V ∪ F such that
∑

x∈V ∪F
ch∗(x) ≥ 0 for

all x ∈ V ∪ F . Thus,

−8 =
∑

x∈V ∪F
ch(x) =

∑
x∈V ∪F

ch∗(x) ≥ 0,

which is the desired contradiction.

Note that if a face f sends charge −1
3 to a vertex y, then this can also be

considered as f receives charge 1
3 from y. The discharging rules are defined as

follows.

R1: Every 3+-face f sends dG(f)−4
dG(f) to each incident vertex.

R2: Let y be a 5-vertex of G.

R2.1: If z is a 2-neighbor of y, then y sends 2
3 + 2

d2re−3 to z.

R2.2: If z is a 3-neighbor of y, then y sends charge to z as follows:

R2.2.1: if z has a 4-neighbor, then y sends 1
3 + 2

d3re−6 to z;
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R2.2.2: if z has no 4-neighbor, then y sends 2
9 + 4

3(d3re−6) to z.

R2.3: If z is a 4-neighbor of y and z is adjacent to n 5-vertices (2 ≤ n ≤ 4),

then y sends 4
n(d4re−9) to z.

R2.4: If y is adjacent to five 4+-vertices, then y sends 1
3( 4
d5re−12 + 2

d2re−3)

to each 5-neighbor which is adjacent to a 2-vertex.

Claim 2.16.1. If u is a k-vertex, then u receives at least 4−k
3 −

4
drke−3k+3 in

total from its incident faces by R1. In particular, if u is incident with at most

two triangles, then u receives at least 1
3 −

4
drke−4k+6 in total from its incident

faces.

Proof. Note that if a and b are integers and 2 ≤ a ≤ b, then

1

a− 1
+

1

b+ 1
≥ 1

a
+

1

b
. (2.1)

Let u be a k-vertex which is incident with faces f1, f2, · · · , fk. According to

rule R1, u totally receives charge S =
∑k

i=1
dG(fi)−4
dG(fi)

= k − 4
∑k

i=1
1

dG(fi)
from

its incident faces. The supposition r ≥ 15
2 implies that not all of f1, . . . , fk

are triangles. It follows by formula 2.1 that
∑k

i=1
1

dG(fi)
reaches its maximum

when all of f1, . . . , fk are triangles except one. Since
∑k

i=1 dG(fi) ≥ drke, we

have S ≥ k − 4(1
3(k − 1) + 1

drke−3(k−1)) = 4−k
3 −

4
drke−3k+3 . In particular, if u

is incident with at most two triangles, then we have S ≥ k− 4(2
3 + 1

4(k− 3) +

1
drke−6−4(k−3)) = 1

3 −
4

drke−4k+6 .

Claim 2.16.2. The charge that a 5-vertex sends to a 4-neighbor by R2.3 is

smaller than or equal to the charge that a 5-vertex sends to a 5-neighbor which

is adjacent to a 2-vertex by R2.4, that is, 4
n(d4re−9) ≤

1
3( 4
d5re−12 + 2

d2re−3).

Proof. Since 4
n(d4re−9) ≤

2
d4re−9 ≤

2
4r−9 and 1

3( 4
5r+1−12 + 2

2r+1−3) ≤ 1
3( 4
d5re−12 +

2
d2re−3), we only need to prove that 2

4r−9 ≤
1
3( 4

5r+1−12 + 2
2r+1−3), which is

equivalent to 2r2 − 15r + 23 ≥ 0 by simplification. Clearly, this inequality is

true for every r ≥ 5 + 2
5 .

It remains to check the final charge for all x ∈ V ∪ F .
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Let f ∈ F , then ch∗(f) ≥ dG(f)− 4− dG(f)dG(f)−4
dG(f) = 0 by R1.

Let v ∈ V . If dG(v) = 2, then v receives at least 2
3 −

4
d2re−3 in total from

its incident faces by Claim 2.16.1. By Lemma 2.2, v has two 5-neighbors.

Thus, v receives 2
3 + 2

d2re−3 from each of them by R2.1. So we have ch∗(v) ≥

dG(v)− 4 + (2
3 −

4
d2re−3) + 2(2

3 + 2
d2re−3) = 0.

If dG(v) = 3, then v receives at least 1
3 −

4
d3re−6 in total from its incident

faces by Claim 2.16.1. By Lemmas 2.2 and 2.3, v has three 4+-neighbors, and

two of them have degree 5. If v has a 4-neighbor, then by R2.2.1, ch∗(v) ≥

dG(v)− 4 + (1
3 −

4
d3re−6) + 2(1

3 + 2
d3re−6) = 0. Otherwise, by R2.2.2, ch∗(v) ≥

dG(v)− 4 + (1
3 −

4
d3re−6) + 3(2

9 + 4
3(d3re−6)) = 0.

If dG(v) = 4, then v receives at least − 4
d4re−9 in total from its incident

faces by Claim 2.16.1. Say v has precisely n 5-neighbors. By Lemma 2.2,

we have 2 ≤ n ≤ 4. By R2.3, each of these 5-neighbors send 4
n(d4re−9) to v.

Therefore, ch∗(v) ≥ dG(v)− 4− 4
d4re−9 + n 4

n(d4re−9) = 0.

If dG(v) = 5, then v receives at least −1
3−

4
d5re−12 in total from its incident

faces by Claim 2.16.1. First assume v has a 2-neighbor, then by Lemma 2.4, v

has four 5-neighbors and at least three of them are adjacent to no 3−-vertex.

Hence, by R2.1 and R2.4, ch∗(v) ≥ dG(v)− 4− (1
3 + 4

d5re−12)− (2
3 + 2

d2re−3) +

3(1
3( 4
d5re−12 + 2

d2re−3)) = 0.

Next assume that v has a 3-neighbor u, then by Lemma 2.3, v has at least

three 5-neighbors. In this case, v sends nothing to each 5-neighbor. Let w be

the remaining neighbor of v. Then dG(w) ∈ {3, 4, 5}.

If dG(w) = 3, then uw /∈ E(G) by Lemma 2.2. Furthermore, Lemma

2.5 implies that neither vw nor uv is contained in a triangle. It follows that

v is incident with at most two triangles. Thus, by Claim 2.16.1, v receives

a charge of at least 1
3 −

4
d5re−14 in total from its incident faces. Moreover,

both u and w have no 4−-neighbors. Suppose to the contrary that t is a

4−-neighbor of u (analogously of w). By Lemma 2.2, we have dG(t) = 4.

By applying Lemma 2.4 to ut, we have dG(w) ≥ 4, a contradiction. Hence,

v sends 2
9 + 4

3(d3re−6) to each of u and w by rule R2.2.2, yielding ch∗(v) ≥

dG(v)− 4 + (1
3 −

4
d5re−14)− 2(2

9 + 4
3(d3re−6)) = 8

9 −
4

d5re−14 −
8

3(d3re−6) .
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If dG(w) = 4, and if u is adjacent to w, then by Lemma 2.4, w has three

5-neighbors. Hence, by R2.2 and R2.3, ch∗(v) ≥ dG(v) − 4 − (1
3 + 4

d5re−12) −

(1
3 + 2

d3re−6)− 4
3(d4re−9) = 1

3−
2

d3re−6−
4

3(d4re−9)−
4

d5re−12 . If u is not adjacent to

w, then for any neighbor t of u, we have dG(t) ≥ 4 by Lemma 2.2. If dG(t) = 4,

then by applying Lemma 2.4 to ut we have dG(w) = 5, a contradiction. Hence,

dG(t) = 5. This means all neighbors of u are of degree 5. By R2.2.2, ch∗(v) ≥

dG(v)−4−(1
3+ 4
d5re−12)−(2

9+ 4
3(d3re−6))− 2

d4re−9 = 4
9−

4
3(d3re−6)−

2
d4re−9−

4
d5re−12 .

If dG(w) = 5, then v sends charge only to u. Hence, ch∗(v) ≥ dG(v)− 4−

(1
3 + 4

d5re−12)− (1
3 + 2

d3re−6) = 1
3 −

2
d3re−6 −

4
d5re−12 .

It remains to consider the case when v has five 4+-neighbors. In this case it

follows with Claim 2.16.2 that ch∗(v) ≥ dG(v)−4−(1
3 + 4
d5re−12)−5(1

3( 4
d5re−12 +

2
d2re−3)) = 2

3 −
32

3(d5re−12) −
10

3(d2re−3) .

Since r > 7 + 1
2 it follows that ch∗(x) ≥ 0 for all x ∈ V ∪ F .

Theorem 2.17. If G is a planar 6-critical graph, then F ∗(G) ≤ 3 + 2
5 .

Proof. Suppose to the contrary that F ∗(G) > 3 + 2
5 . Let Σ be an embedding

of G into the Euclidean plane and F ∗(G) = F ((G,Σ)). We have

∑
f∈F (G)

(2dG(f)− 6) = 4|E(G)| − 6|F (G)|

= 4|E(G)| − 6(|E(G)|+ 2− |V (G)|) (by Euler’s formula)

= 6|V (G)| − 2|E(G)| − 12

≤ |V (G)| − 15 (by Theorem 2.8)

and therefore,

−|V (G)|+
∑

f∈F (G)

(2dG(f)− 6) ≤ −15. (2.2)

Define the initial charge ch(x) for each x ∈ V (G)∪F (G) as follows: ch(v) =

−1 for every v ∈ V (G) and ch(f) = 2dG(f)− 6 for every f ∈ F (G). It follows

from inequality 2.2 that
∑

x∈V (G)∪F (G) ch(x) ≤ −15.
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A vertex v is called heavy if dG(v) ∈ {5, 6} and v is incident with a face of

length 4 or 5. A vertex v is called light if 2 ≤ dG(v) ≤ 4 and v is incident with

no 6+-face and with at most one 4+-face. We say a light vertex v is bad-light

if v has a neighbor u such that dG(u) + dG(v) = 8, and good-light otherwise.

Discharge the elements of V (G) ∪ F (G) according to following rules.

R1: every 4+-face f sends 2dG(f)−6
dG(f) to each incident vertex.

R2: every heavy vertex sends 3
10 to each bad-light neighbor, and 1

10 to each

good-light neighbor.

Let ch∗(x) denote the final charge of each x ∈ V (G)∪F (G) after discharg-

ing. On one hand, the sum of charge over all elements of V (G) ∪ F (G) is

unchanged. Hence, we have
∑

x∈V (G)∪F (G) ch
∗(x) ≤ −15. On the other hand,

we show that ch∗(x) ≥ 0 for every x ∈ V (G) ∪ F (G) and hence, this obvious

contradiction completes the proof.

It remains to show that ch∗(x) ≥ 0 for every x ∈ V (G) ∪ F (G).

Let f ∈ F (G). If dG(f) = 3, then no rule is applied for f . Thus, ch∗(f) =

ch(f) = 0.

If dG(f) ≥ 4, then by R1 we have ch∗(f) = ch(f)− dG(f)2dG(f)−6
dG(f) = 0.

Let v ∈ V (G). Firstly, we consider the case when v is heavy. On one hand,

since F ((G,Σ)) > 3 + 2
5 , it follows that either v is incident with a 5+-face and

another 4+-face or v is incident with at least three 4-faces. In both cases, v

receives at least 13
10 in total from its incident faces by R1. On the other hand,

we claim that v sends at most 3
10 out in total. If v is adjacent to a bad-light

vertex u, then all other neighbors of v have degree at least 5 by Lemma 2.4.

Hence, v sends 3
10 to u by R2 and nothing else to its other neighbors. If v is

adjacent to no bad-light vertex, then v has at most three good-light neighbors

by Lemma 2.3. Hence, v sends 1
10 to each good-light neighbor by R2 and

nothing else to its other neighbors. Therefore, ch∗(v) ≥ ch(v) + 13
10 −

3
10 = 0.

Secondly, we consider the case when v is not heavy. In this case, v sends

no charge out. If v is incident with a 6+-face, then v receives at least 1 from

this 6+-face by R1. This gives ch∗(v) = ch(v) + 1 = 0. If v is incident with at

least two 4+-faces, then v receives at least 1
2 from each of them by R1. This
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gives ch∗(v) = ch(v) + 1
2 + 1

2 = 0. We are done in both cases above. Hence, we

may assume that v is incident with no 6+-face and with at most one 4+-face.

From F ((G,Σ)) > 3 + 2
5 it follows that v is incident to a face fv such that

dG(fv) ∈ {4, 5}. Since v is not heavy, 2 ≤ d(v) ≤ 4. Hence, v is light by

definition. We distinguish two cases by the length of fv.

If dG(fv) = 4, then by the fact F ∗(G) ≥ 3 + 2
5 , we have dG(v) = 2.

By Lemma 2.2, both neighbors of v are heavy and v is bad-light. Thus, v

receives 1
2 from fv by R1 and 3

10 from each neighbor by R2, yielding ch∗(v) =

ch(v) + 1
2 + 3

10 + 3
10 > 0.

If dG(fv) = 5, then v receives 4
5 from fv. If v is not a bad-light 4-vertex,

then Lemma 2.2 implies that each neighbor of v has degree 5 or 6. Hence,

both of the two neighbors of v contained in fv are heavy. By R2, each of them

sends charge at least 1
10 to v, and therefore, ch∗(v) ≥ ch(v) + 4

5 + 1
10 + 1

10 = 0.

If v is a bad-light 4-vertex, then Lemma 2.3 implies that at least one of the

two neighbors of v contained in fv is heavy. Thus, this heavy neighbor sends

charge 3
10 to v, and therefore, ch∗(v) ≥ ch(v) + 4

5 + 3
10 > 0.

2.5.3 Bounds for bk and b∗k

The main results in this chapter are the following two theorems.

Theorem 2.18. Let k ≥ 2 be an integer.

• If k = 2, then bk =∞.

• If k = 3, then 6 ≤ bk ≤ 8.

• If k = 4, then 4 ≤ bk ≤ 4 + 4
5

• If k = 5, then 3 + 1
3 ≤ bk ≤ 3 + 3

4 .

• If k = 6 and bk exists, then bk ≤ 3 + 1
3 .

Proof. The statement for k = 2 and the lower bounds for bk if k ∈ {3, 4, 5}

follow from Lemma 2.14. The other statements of Theorem 2.18 are implied

by Proposition 2.15.
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Theorem 2.19. Let k ≥ 2 be an integer.

• If k ∈ {2, 3, 4}, then b∗k =∞.

• If k = 5, then 3 + 1
5 ≤ b

∗
k ≤ 7 + 1

2 .

• If k = 6 and b∗k exists, then b∗k ≤ 3 + 2
5 .

Proof. The statement for k ∈ {2, 3, 4} and the lower bound for b∗k follow from

Lemma 2.14. The results for b∗5 and for b∗6 are implied by Theorem 2.16 and

2.17, respectively.

Vizing [70] proved that a class 2 graph contains k-critical subgraph for

each k ∈ {2, . . . ,∆}. Hence a smallest counterexample to Vizing’s conjec-

ture is critical and thus, our results for k = 6 partially characterize smallest

counterexamples to this conjecture. For k ≤ 5, they provide insight into the

structure of planar critical graphs.

A graph G is overfull if G is of odd order and |E(G)| ≥ ∆(G)b |V (G)|
2 c+ 1.

Seymour’s exact conjecture [65] says that every critical planar graph is overfull.

If this conjecture is true for k ∈ {3, 4, 5}, then bk is equal to the lower bound

given in Theorem 2.18. It is not clear whether bk and b∗k are related to each

other, or F (G) and F ∗(G) are. Furthermore, the precise values of bk and b∗k

are also unknown.

Problem 2.20. What are the precise values of bk and b∗k?

2.5.4 Concluding remarks

Recently, Cranston and Rabern [5] improved Jakobsen’s result (Theorem 2.6)

on the lower bound on the number of edges in a 3-critical graph. They gave a

computer-aided proof of the following statement.

Theorem 2.21 ([5]). Every 3-critical graph G, other than the Petersen graph

with a vertex deleted, has |E(G)| ≥ 50
37 |V (G)|.

Hence, |E(G)| ≥ 50
37 |V (G)| for every planar 3-critical graph. By a similar

argument as in the proof of Proposition 2.15, this result improves the bound

of b3 from 6 ≤ b3 < 8 to 6 ≤ b3 < 100
13 .
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By Proposition 2.15, F (G) has an upper bound for every critical planar

graph G. However, this is not always true for class 2 planar graphs. Similarly,

Theorems 2.16 and 2.17 can not be generalized to class 2 planar graphs.
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1-factors and 1-factor covers

3.1 1-factor covers and cycle covers

Let k be a positive integer. A k-regular graph is a graph where each vertex

has degree k. Let G be a graph. A subgraph of G is spanning if it has the

same vertex set as G. A k-factor of G is a spanning k-regular subgraph of G.

Thus, every perfect matching induces a 1-factor. A 1-factor cover of G is a

list of 1-factors whose union is E(G), and a 1-factorization of G is a partition

of E(G) into disjoint 1-factors. Thus, every 1-factorization is a particular 1-

factor cover. If a graph has a 1-factorization, then it must be a regular graph.

However, not all regular graphs have a 1-factorization. A k-regular graph has

a 1-factorization if and only if it is k-edge-colorable.

Since the complement of a 1-factor of a 3-regular graph is a 2-factor, covers

by 1-factors are closely related to covers by cycles. A cycle cover of a graph

is a list C of cycles such that every edge of G is contained in at least one of

them. It is a cycle double cover if each edge is contained in precisely two

cycles, and is a k-cycle double cover if C consists of at most k cycles. Celmins

and Preissmann independently formulated the 5-cycle double cover conjecture

(briefly, 5CDCC) which is a stronger version of the cycle double conjecture

(briefly, CDCC) of Seymour and Szekeres. An exhaustive survey on cycle

(double) covers of graphs and related topics is given by Zhang [78].

27
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Conjecture 3.1 (5-cycle double cover conjecture, see [77]). Every bridgeless

graph has a 5-cycle double cover.

In this thesis, we focus on 1-factor covers other than cycle covers.

A join of a graph G is a parity subgraph of G, that is, a subgraph H

where each vertex has the same parity of its degree in H and in G. Hence, in

a 3-regular graph, every 1-factor is a join, and the complement of a join is a

cycle.

3.2 Cubic graphs and snarks

A 3-regular graph is also called a cubic graph. There are many hard problems

in graph theory for which it suffices to solve it for cubic graphs. Examples

of such problems are the four color problem (now a theorem), problems con-

cerning cycle covers or 1-factor covers, flow problems, and so on. For a cubic

multigraph, remove two multiple edges, identify their two ends, and suppress

the resulting bivalent vertex. Repeat this operation until we obtain a new cu-

bic graph that is simple. Usually, if these problems can be solved for the new

simple graph, then they are solvable for the original graph as well. Therefore,

in the rest of the thesis, if not particularly indicated, cubic graphs are always

assumed to be simple.

By Vizing’s theorem, a cubic graph has chromatic index either 3 or 4, so

it is class 1 or class 2, repectively. A snark is a class 2 cubic graph that

is cyclically 4-edge-connected and of girth at least 5. Sometime, snarks are

defined to be more relaxed in the literature: class 2 cubic graphs. Throughout

the thesis, we follow the former definition, to avoid some trivial cases. Snarks

were so named by Gardner [14] in 1976. Most of the problems on cubic graphs

can be easily solved for class 1 cubic graphs. For class 2 cubic graphs that are

not snarks, they easily reduce to smaller ones, see c.f. [4, 14, 16, 26, 54, 62].

Thus, possible minimal counterexamples to those problems are snarks.

The Petersen graph is the first known snark, discovered in 1898. It is also

the smallest snark and serves as a useful example or counterexample for many
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problems in graph theory. Tutte conjectured that every snark has the Petersen

graph as a minor, that is, every snark can be obtained from the Petersen graph

by deleting edges and vertices and by contracting edges. As we notice, for lots

of conjectures and theorems in graph theory, if there is a bound, then it can

be achieved by the Petersen graph. All these make the Petersen graph play a

very important role in graph theory.

There were only four snarks known until Isaacs [26] constructed infinite

families of snarks in 1975. Later on, stronger criteria of non-triviality, reduc-

tion and constructions of snarks are considered. We next collect some well

known snarks necessary for the thesis.

(1) Petersen graph. Given any 5-element set. Take 2-element subsets as

vertices and put an edge between two vertices if and only if their corresponding

sets are disjoint. We thereby obtain a graph with 10 vertices and 15 edges,

which is called Petersen graph (see Figure 3.1) .

Figure 3.1: Petersen graph

(2) Flower snarks. Let n be an odd integer with n ≥ 5. The flower snark Jn

(see Figure 3.2) can be constructed in such a way: take n copies of K1,3 where

the vertex u is connected to three other vertices x, y, z; construct the circuits

[x1x2 . . . xn] and [y1 . . . ynz1 . . . zn]. A flower snark Jn has girth 5 if n = 5, and

girth 6 otherwise.

(3) Goldberg snarks. Let k be an odd integer with k ≥ 5. The Goldberg snark

Gk is formed from k copies B1, . . . , Bk of the graph B (see Figure 3.3) and

the edges of {aiai+1, cibi+1, eidi+1} for all i ∈ {1, . . . , k}, where the indices are

added modulo k.
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Figure 3.2: The Flower snarks J5 (left) and J7 (right)

Figure 3.3: The graph B for constructing Goldberg snarks

3.3 Berge-Fulkerson conjecture and Berge conjec-

ture

The following celebrated conjecture, often referred to as Berge-Fulkerson con-

jecture, is due to Fulkerson and appears first in [13]:

Conjecture 3.2 (Berge-Fulkerson conjecture [13]). Every bridgeless cubic

graph G has six 1-factors such that each edge of G is contained in precise-

ly two of them.

A set of such six 1-factors in the conjecture is called a Fulkerson cover

of G. This conjecture trivially holds true for 3-edge-colorable cubic graphs.

Thus a possible minimum counterexample to the conjecture is a snark. The

conjecture has been verified for some families of snarks, see e.g. [22, 38, 44].
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It is straightforward that Berge-Fulkerson conjecture implies the existence

of five 1-factors whose union is the edge-set of the graph G. This naturally

raises a seemly weaker conjecture, attributed to Berge (unpublished, see e.g.

[77]).

Conjecture 3.3 (Berge conjecture). Every bridgeless cubic graph G has five

1-factors such that each edge of G is contained in at least one of them.

A set of such five 1-factors in the conjecture is called a Berge cover of

G. Recently, Mazzuoccolo [47] proved that the previous two conjectures are

equivalent. Note that this equivalence is referred to the class of bridgeless cubic

graphs. However, it is still unclear whether the equivalence holds for every

bridgeless cubic graph, that is, does a graph having a Berge cover always have

a Fulkerson cover?

3.4 Fan-Raspaud conjecture and Fano flows

In 1994, the following statement was conjectured to be true by Fan and Ras-

paud [10].

Conjecture 3.4 (Fan-Raspaud conjecture [10]). Every bridgeless cubic graph

has three 1-factors M1,M2,M3 such that M1 ∩M2 ∩M3 = ∅.

We remark that this conjecture is implied by Berge-Fulkerson conjecture.

However, with regards to the structure of a possible minimal counterexample,

this conjecture seems to be more difficult to treat on than Berge-Fulkerson

conjecture. So far it is known that a possible minimal counterexample to Fan-

Raspaud conjecture has girth at least 5 [45], but there are no constraints on

the cyclic connectivity known.

The study of Fan-Raspaud conjecture leads to a deep analysis of Fano-

flows on graphs. Consider the Fano plane F7 that has 7 points and 7 lines,

where each point lies in 3 lines and each line touches 3 points, see Figure 3.4.

A Fano-coloring of a cubic graph G is a mapping from E(G) to the points
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of F7 such that any three edges of G around a vertex are mapped to three

vertices of F7 that lie in a line.

As we can see in Figure 3.4, the points of the Fano plane can be labelled

with the non-zero elements of Z3
2 so that the values of the points in a line

sum up to zero. Inversely, for any three non-zero values from Z3
2 summing

(0,1,1)

(1,0,1)(1,0,0)

(0,0,1)(1,1,1) (1,1,0)

(0,1,0)

Figure 3.4: Fano plane F7

up to zero, they lie in a line of Fano plane. Hence, there is a one-to-one

correspondence between a Fano-coloring and a nowhere-zero Z3
2-flow for a cubic

graph. By this reason, a Fano-coloring is also called a Fano-flow.

By Jaeger’s 8-flow Theorem [27], every bridgeless cubic graph has a

nowhere-zero Z3
2-flow and hence a Fano-flow. However, it is possible that not

all combinations of three non-zero elements of Z3
2 appear at a vertex of G,

that is, not all the 7 lines are necessarily needed in a Fano-flow. For k ≤ 7, a

k-line Fano-flow of a cubic graph G is a Fano-flow of G where at most k lines

of F7 appear as flow values at the vertices of G. Clearly, a cubic graph that is

class 1 has a 1-line Fano-flow. Máčajová and Škoviera [45] proved that every

Fano-flow of a bridgeless cubic class 2 graph needs all 7 points and at least 4

lines of the Fano plane. Furthermore, they proved that every bridgeless cubic

graph has a 6-line Fano-flow, and conjectured that 4 lines are sufficient.

Conjecture 3.5 (4-line Fano-flow conjecture [45]). Every bridgeless cubic

graph has a 4-line Fano-flow.

A natural relaxation of this conjecture is the following statement, namely

the 5-line Fano-flow conjecture, still unsolved so far.
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Conjecture 3.6 (5-line Fano-flow conjecture [45]). Every bridgeless cubic

graph has a 5-line Fano-flow.

Conjectures 3.5 and 3.6 have surprisingly counterparts in terms of 1-factors.

Máčajová and Škoviera [45] proved the equivalence between Fan-Raspaud con-

jecture and the 4-line Fano-flow conjecture. Some other equivalences were

revealed in [40]. In particular, it was proved there that the 5-line Fano-flow

conjecture is equivalent to Conjecture 3.7, and the 6-line Fano-flow theorem

is equivalent to the statement that every bridgeless cubic graph has a 1-factor

and two joins with empty intersection.

Conjecture 3.7. Every bridgeless cubic graph has two 1-factors M1,M2 and

a join J such that M1 ∩M2 ∩ J = ∅.

3.5 The existence of 1-factors

One of the earliest results in graph theory, Petersen’s Theorem [55] from 1891,

states that every bridgeless cubic graph has a 1-factor.

Theorem 3.8 (Petersen’s Theorem [55]). Every bridgeless cubic graph has a

1-factor.

The first criterion for a graph to have a 1-factor was obtained by Tutte

[68] in 1947. It is one of the most important results in factor theory, called

the 1-Factor Theorem.

Theorem 3.9 (Tutte’s 1-Factor Theorem [68]). A graph G has a 1-factor if

and only if

o(G− S) ≤ |S|, for every S ⊆ V (G).

In modern textbooks, Petersen’s theorem is covered as an application of

Tutte’s 1-Factor theorem. A generalization of Petersen’s theorem appears in

the same article of Petersen.

Theorem 3.10 ([55]). Let G be a cubic graph. If there exists a path containing

all the bridges of G, then G has a 1-factor.
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It is trivial that this theorem implies Petersen’s Theorem. Here, we further

extend this theorem from cubic graphs to k-regular graphs for every k ≥ 3.

Theorem 3.11. Let G be a k-regular graph of even order. If there exists a

path containing an odd number of edges from each edge-cut of cardinality at

most k − 2, then G has a 1-factor.

Proof. Take any S ⊆ V (G). Denote by H1, . . . ,Ht all the odd components of

G − S. Let P be the path mentioned in the condition of the theorem. Since

P is a path, without loss of generality, we may assume that P intersects with

each ∂(Hi) on odd number of edges for i ∈ {1, 2}, and intersects with each

∂(Hi) on even number of edges for i ∈ {3, . . . , t}. So

|E(P ) ∩ ∂(H1)|+ |E(P ) ∩ ∂(H2)| ≥ 2. (3.1)

For each j ∈ {3, . . . , t}, it follows from the assumption on P that

|E(P ) ∩ ∂(Hj)| ≥ k − 1. (3.2)

Since the graph G is k-regular and the component Hi is odd, |∂(Hj)| has the

same parity as k and thus, so does |E(P ) ∩ ∂(Hj)|. It follows from formula

3.2 that

|E(P ) ∩ ∂(Hj)| ≥ k. (3.3)

Now we calculate that

|∂(S)| ≥
t∑
i=1

|E(P ) ∩ ∂(Hi)|

≥ k(t− 2) + 2. (by formulas 3.1 and 3.3) (3.4)

Moreover, since G is k-regular,

|∂(S)| ≤ k|S|. (3.5)
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Notice that o(G− S) = t. Combining formula 3.4 and 3.5 gives

o(G− S) ≤ |S|+ 2− 2

r
. (3.6)

Since G is of even order, o(G − S) and |S| have the same parity. Hence, we

have from formula 3.6 that

o(G− S) ≤ |S|. (3.7)

By Tutte’s 1-Factor Theorem, G has a 1-factor.

3.5.1 1-factors containing certain edges

Petersen’s Theorem can be strengthened so that the 1-factor contains an ar-

bitrarily given edge. It is a result due to Schönberger [59].

Proposition 3.12 ([59]). If e is an edge of a bridgeless cubic graph G, then

G has a 1-factor containing e.

Hence, it is of self-interest to explore sufficient conditions for a cubic graph

to have a 1-factor such that the 1-factor contains more than one given edge.

Following this direction, we present two results, one is due to Steffen [64] and

the other is new.

Proposition 3.13 ([64]). Let G be a bridgeless cubic graph having no non-

trivial 3-edge-cut. Let M be a 1-factor of G and P be a path of length 3. If

M and P have no common edge, then there is a 1-factor M ′ of G containing

the two end-edges of P .

We remark that this proposition was used to prove partial result to Berge

conjecture in [64].

Theorem 3.14. Let G be a bridgeless cubic bipartite graph. If e and f are

two edges of G which are not contained in any 3-edge-cut of G, then G has a

1-factor containing both e and f .
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Proof. Since G is a bipartite cubic graph, the vertex set V (G) can be divided

into two independent sets A and B of the same order. Since e and f are

not contained in any 3-edge-cut of G, they are disjoint. Assume that e =

a1b1 and f = a2b2 with {a1, a2} ⊆ A and {b1, b2} ⊆ B. Let G′ be a graph

obtained from G by removing e and f and adding a1a2 and b1b2, that is,

G′ = G−e−f+a1a2+b1b2. Clearly, G′ is cubic. Since G is bridgeless and since

e and f are not contained in any 3-edge-cut ofG, it follows thatG′ is bridgeless.

Hence, by Proposition 3.12, the graph G′ has a 1-factor M ′ containing a1a2.

Notice that all the edges of G′, except a1a2 and b1b2, connect vertices of A to

vertices of B. It follows that M ′ contains b1b2 as well. Define M to be the

1-factor of G corresponding to M ′, that is, M = (M ′ \ {a1a2, b1b2}) ∪ {e, f}.

Hence, M is the 1-factor desired, we are done with the proof.

3.5.2 1-factors avoiding certain edges

Now we consider the question about the existence of 1-factors avoiding certain

edges for a cubic graph. Indeed, Proposition 3.12 can be reformulated as: if

e and f are two adjacent edges of a bridgeless cubic graph G, then G has a

1-factor containing neither e nor f . Actually, the constrain “adjacent” is not

necessary. Such an improvement holds true and has even been extended to

k-regular graphs, due to Plesnik [56].

Theorem 3.15 ([56]). Let G be a (k − 1)-edge-connected k-regular graph of

even order. For any k − 1 many edges, G has a 1-factor containing none of

them.

We will discuss a variation of this theorem in Chapter 7. For the particular

case k = 3, we have the following proposition.

Proposition 3.16. Let G be a bridgeless cubic graph. For any two edges e

and f of G, there exists a 1-factor of G containing neither e nor f .

We are going to establish an analogous result but involving four edges. For

doing this, we need a graph operation, namely “pushing”.
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Let G be a cubic graph, and let e1 and e2 be two disjoint edges of G with

ei = uivi for i ∈ {1, 2}. An operation that we delete e1 and e2 and then add

two new vertex u, v and five new edges uv, uu1, uu2, vv1, vv2 is called pushing

{e1, e2} into {u, v}.

The proof for the following statement is straightforward.

Observation 3.17. Let e and f be two disjoint edges of a graph G. Denote

by G′ the graph obtained from G by pushing {e, f} into {u, v}. The following

two statements hold true.

(1) If F is a 1-factor of G′ containing uv, then F \ {uv} is a 1-factor of G

containing neither e nor f .

(2) If C is an edge-cut of G′ containing uv, then (F \ {uv}) ∪ {e, f} is an

edge-cut of G.

Theorem 3.18. Let G be a bridgeless cubic bipartite graph. If e, f, g, h are

four edges of G such that there exists no 5-edge-cut of G containing all of

them, then G has a 1-factor containing none of e, f, g, h.

Proof. If there exist two edges in {e, f, g, h} that are adjacent, without loss

of generality, say e and f , then the edge shares the same end with e and f

together with e, f, g, h forms a 5-edge-cut of G, a contradiction. Hence, the

edges e, f, g, h are pairwise disjoint. By pushing {e, f} into {u, v} and {g, h}

into {x, y}, we obtain from G a new graph G′. Observation 3.17 (2) implies

that G′ has no 3-edge-cut containing both uv and xy, Hence, G′ has a 1-factor

F containing both uv and xy by Theorem 3.14. It follows from Observation

3.17 (1) that F \{uv, xy} is a 1-factor of the original graph G containing none

of {e, f, g, h}.
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Chapter 4

Cores of cubic graphs

The results of this chapter have already been published in [34].

4.1 Definition and basic properties of cores

Cores were introduced by Steffen [64] very recently and were used to prove

partial results on some hard conjectures which are related to 1-factors of cubic

graphs, such as Berge conjecture, Fan-Raspaud conjecture, and conjectures on

cycle cover and on cycle double cover.

Let G be a cubic graph and S3 be a list of three 1-factors M1,M2,M3 of

G. For 0 ≤ i ≤ 3, let Ei be the set of edges that are contained in precisely i

elements of S3. The edges of E0 are called uncovered edges. LetM = E2∪E3,

U = E0 and |U| = k. The k-core of G with respect to S3 (or to M1,M2,M3)

is the subgraph Gc of G which is induced byM∪U ; that is, Gc = G[M∪U ].

If the value of k is irrelevant, then we say that Gc is a core of G. A core Gc is

proper if Gc 6= G. Hence, Gc is not proper if and only if M1 = M2 = M3. If Gc

is a cycle, i.e., the union of pairwise disjoint circuits, then we call Gc a cyclic

core. A minimal core of G is a k-core of G with minimum k. In other words,

a minimal core has the least uncovered edges. Note that a cubic graph may

have more than one minimal core. In [64] it is shown that every bridgeless

cubic graph has a proper core and therefore, every minimal core is proper.

39
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Some basic properties on the structure of a core and particularly of a

minimal core were proposed in [64]. Here, we would like to mention two of

them.

Lemma 4.1 ([64]). Let k be a positive integer. If Gc is a k-core of a cubic

graph G, then k = |E2|+ 2|E3|.

Lemma 4.2 ([64]). Let Gc be a minimal core of a cubic graph G. If C is a

circuit of Gc whose edges belong to E2 ∪ E3 and to E0 alternately along C,

then for each i ∈ {1, 2, 3}, the circuit C has an edge e ∈ E2 \Mi.

The proof of Lemma 4.1 is due to the adjacency between the edges from

E0 and fromM. Both of the lemmas will be used later for further exploration

on the structure of cores.

4.2 Equivalent statements to Fan-Raspaud conjec-

ture

As already mentioned in Section 3.4, Fan-Raspaud conjecture is equivalent

to the 4-line Fano-flow conjecture. In this section, we restate Fan-Raspaud

conjecture in the language of cores, and furnish for it more equivalent formu-

lations. This offers insight into the structure of possible counterexamples to

Fan-Ranspaud conjecture and inversely, into the structure of cores of bridgeless

cubic graphs.

It is straightforward to reformulate Fan-Raspaud conjecture in terms of

cyclic core. This equivalent conjecture was first addressed in [64].

Conjecture 4.3 ([64]). Every bridgeless cubic graph has a cyclic core.

Since every circuit in a cyclic core has even length, it follows that ev-

ery cyclic core is bipartite. Steffen proposed the following seemingly weaker

conjecture:

Conjecture 4.4 ([64]). Every bridgeless cubic graph has a bipartite core.
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However, the inverse implication is not straightforward. There are many

bipartite cores that are not cyclic, for example, a core consisting of one circuit

[u0u1 . . . u9] and two edges u0u5 and u1u4 from E3. Here, we show that the

inverse implication is also true and therefore, Conjectures 4.3 and 4.4 are

equivalent. Besides, the following two conjectures are proposed and proved

equivalent to Fan-Raspaud conjecture as well.

Conjecture 4.5. Every bridgeless cubic graph has a triangle-free core.

Conjecture 4.6. Every bridgeless cubic graph has three 1-factors such that

the complement of their union is an acyclic graph.

Conjecture 4.6 can also be restated in language of core as: every bridgeless

cubic graph has a core where the uncovered edges induce a forest. Moreover,

the number “three” in this conjecture can not be lowered to “two”, which will

be proved in the last section of this chapter.

Let G1 and G2 be two bridgeless graphs, e1 and e2 be two edges such that

e1 = u1v1 ∈ E(G1) and e2 = u2v2 ∈ E(G2). The 2-cut connection on {e1, e2}

is a graph operation that consists of deleting edges e1 and e2 and adding two

new edges u1u2 and v1v2. Clearly, the graph obtained from G1 and G2 by

applying 2-cut connection is also bridgeless.

Now we are going to prove all these equivalences, as concluded in the

following theorem.

Theorem 4.7. The following four statements are equivalent:

(1) (Conjecture 3.4) Every bridgeless cubic graph has three 1-factors

M1,M2,M3 such that M1 ∩M2 ∩M3 = ∅.

(2) (Conjecture 4.4) Every bridgeless cubic graph has a bipartite core.

(3) (Conjecture 4.5) Every bridgeless cubic graph has a triangle-free core.

(4) (Conjecture 4.6) Every bridgeless cubic graph has three 1-factors such that

the complement of their union is an acyclic graph.
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Proof. If statement (1) holds, then the core Gc of a bridgeless cubic graph

G with respect to M1,M2,M3 is cyclic. More precisely, each circuit in Gc

contains edges from E0 and E2 alternate in cyclic order. Hence, the core

Gc is bipartite and triangle-free, and G[E0] is an acyclic graph. Therefore,

statement (1) implies all of the statements (2), (3) and (4).

Let G be a bridgeless cubic graph with edge set {e1, . . . , em}. Take m

copies T1, . . . , Tm of the complete graph K4. For each i ∈ {1, . . . ,m}, apply

2-cut connection on ei and an edge of Ti, and let e′i and e′′i be the two added

new edges. Let G′ be the resulting graph, which is bridgeless and cubic. Let H

be a core of G′ with respect to three 1-factors M1,M2,M3. For every 1-factor

F of G′, since F contains either both of e′i and e′′i or none of them for each

i ∈ {1, . . . ,m}, we can let con(F ) = {e : e = ei ∈ E(G), and e′i, e
′′
i ∈ F}.

Clearly, con(F ) is a 1-factor of G. We claim that if H is either bipartite

or triangle-free or if the complement of the union of M1,M2,M3 is acyclic,

then con(M1), con(M2) and con(M3) have empty intersection. This claim

completes the proof. Suppose to the contrary that G has an edge e1 such that

e1 ∈ con(M1) ∩ con(M2) ∩ con(M3). It follows that e′1, e
′′
1 ∈ M1 ∩M2 ∩M3.

Hence, in the copy T1, the core H contains triangles and G[E0] contains a

circuit of length 4, a contradiction with the supposition of our claim.

To be concluded, it is worth mentioning one more conjecture, which is

weaker than Conjecture 4.3 but still open.

Conjecture 4.8 ([64]). Every bridgeless cubic graph has a bridgeless core.

As proved in [64], every bipartite core is bridgeless. Hence, this conjecture

is even weaker than Conjecture 4.4.

4.3 Weak cores

In this section, we are going to generalize the concept of cores to weak cores

in a natural way that is involved with three joins instead of three 1-factors.
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The aim of doing this is to deal with the k-line Fano-flow problems for other

values of k.

Let J be a join of a cubic graph G. Clearly, every vertex has degree either

1 or 3 in J . A J-vertex is a vertex of degree 3 in J . Let n(J) denote the

number of J-vertices.

Let S be a set of three joins J1, J2, J3 of a cubic graph G. For each

i ∈ {0, . . . , 3}, let Ei(S) (briefly, Ei) be the set of edges that are contained in

precisely i elements of S. The weak core of G with respect to S (or to J1, J2

and J3) is a subgraph Gc induced by the union of the sets E0, E2 and E3, that

is, Gc = G[E0 ∪ E2 ∪ E3]. Let l be the precise number of elements of S that

are not 1-factors and let k = |E0|+ 3
2

∑3
i=1 n(Ji). The weak core Gc is further

called a l-weak k-core. Our particular choice for the value of k will be more

clear in the proof of Theorem 5.25. We can see that, the name of core is short

for 0-weak core.

A join J is simple if the graph induced by all the J-vertices contains no

circuit. Clearly, every 1-factor of G is a simple join, and every join of G

contains a simple join as a subgraph. When we ask for empty intersection

of three joins, it suffices to restrict the joins to being simple. Thus, we will

focus on simple joins. A simple weak core is a weak core with respect to three

simple joins. A weak core is cyclic if it is a cycle.

Analogously, Conjecture 3.7 can be directly formulated as a statement on

cyclic 1-weak cores and will be proved equivalent to a statement on triangular-

free simple 1-weak cores. Both statements are shown as conjectures below.

Conjecture 4.9. Every bridgeless cubic graph has a cyclic 1-weak core.

Conjecture 4.10. Every bridgeless cubic graph has a triangle-free simple 1-

weak core.

Fano-flows can be related to cyclic weak cores in general sense. As a

substitution of the k-line Fano-flow problem, we ask the following question:

Problem 4.11. What is the minimum k such that every bridgeless cubic graph

has a cyclic k-weak core?
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So far we known that k ≤ 2. Conjectures 4.9 and 4.3 assert that k ≤ 1

and k = 0, respectively.

Now we classify the vertices of a cubic graph G. This will benefit the proof

of the next two propositions, which gives us some basic informations on weak

cores. Let J1, J2 and J3 be three joins of a cubic graph G. We say that a vertex

v of G has type (x, y, z) if the three edges incident to v are covered x, y and

z times by {J1, J2, J3}, respectively. We denote by a, b, c, d, e, f, g the number

of vertices of type (3, 3, 3), (3, 2, 2), (3, 1, 1), (2, 2, 1), (1, 1, 1), (2, 1, 0), (3, 0, 0),

respectively (see also Figure 4.1). Clearly, every vertex has precisely one type.

Note that vertices of type (3, 3, 3), (3, 2, 2), (3, 1, 1) and (2, 2, 1) are Ji-vertices

for some i.

1 1

e
0 1

f

0 0

g

1 2 3

3 3

a
2 2

b

3 3

1 1

c
2 2

d

3 1

Figure 4.1: Vertex types

Proposition 4.12. Let G be a cubic graph, and J1, J2, J3 be three joins of G.

We have

|E0|+
3∑
i=1

n(Ji) = |E2|+ 2|E3|.

Proof. By type definitions, we have
∑

i n(Ji) = 3a+ 2b+ c+ d, |E0| = f
2 + g,

|E2| = b + d + f
2 and |E3| = 3a

2 + b
2 + c

2 + g
2 . Hence,

∑
i n(Ji) + |E0| =

3a+ 2b+ c+ d+ f
2 + g = |E2|+ 2|E3| holds.

Proposition 4.13. If Gc is a weak core of a cubic graph G, then G[E0 ∪E2]

is either an empty graph or a cycle.

Proof. By type definitions, it is easy to see that every vertex is incident with

either none or precisely two edges of E0 ∪E2. Therefore, G[E0 ∪E2] is either

an empty graph or a cycle.
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Now we are ready to prove the main result on weak core.

Theorem 4.14. The following four statements are equivalent:

(1) (Conjecture 3.6) Every bridgeless cubic graph has a 5-line Fano-flow.

(2) (Conjecture 3.7) Every bridgeless cubic graph has a join J and two 1-

factors M1 and M2 such that J ∩M1 ∩M2 = ∅.

(3) (Conjecture 4.9) Every bridgeless cubic graph has a cyclic 1-weak core.

(4) (Conjecture 4.10) Every bridgeless cubic graph has a triangle-free simple

1-weak core.

Proof. As already mentioned, the equivalence of statements (1) and (2) is

proved in [40] (Theorem 3.1).

(2) → (3): By Proposition 4.13, the 1-weak core with respect to M1,M2

and J is cyclic. Therefore, statement (2) implies statement (3).

(3) → (4): Suppose to the contrary that there is a bridgeless cubic graph

G that has no triangle-free simple 1-weak core. Let Gc be a cyclic 1-weak core

of G with respect to two 1-factors M1,M2 and a join J such that E(Gc) is

minimum. We claim that Gc is simple. Otherwise, J is not simple, that is,

G contains a circuit C such that each vertex of C is a J-vertex. Recall that

Gc is cyclic, by type definitions according to M1,M2 and J , every vertex of C

has type (2, 2, 1). Let J1 be the new join obtained from join J by removing

all the edges of C. Thus J1 is also a join of G. The 1-weak core with respect

to M1,M2 and J1 is cyclic and has fewer edges than Gc, a contradiction. This

completes the proof of the claim.

By our supposition and the previous claim, Gc has a triangle [xyz]. It

follows that two of vertices x, y and z have type (2, 1, 0) and the last one has

type (2, 2, 1), which is the only possible case. Without loss of generality we

assume that z is of type (2, 2, 1). Set J2 = J ∪ {xy} \ {xz, yz}. Clearly, J2 is

a join of G. Now the 1-weak core with respect to M1,M2 and J2 is cyclic and

has fewer edges than Gc, a contradiction. Therefore, statement (3) implies

statement (4).
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(4) → (2): Let G be a bridgeless cubic graph with edge set {e1, . . . , em}.

Take m copies T1, . . . , Tm of the complete graph K4. For each i ∈ {1, . . . ,m},

apply the 2-cut connection on ei and an edge of Ti, and let e′i and e′′i be the

two added new edges. The resulting graph G′ is bridgeless and cubic. By

(3), G′ has a triangle-free simple 1-weak core H. Let H be with respect to

two 1-factors M1,M2 and a simple join J . For every join F of G′, since F

contains either both of e′i and e′′i or none of them for each i ∈ {1, . . . ,m}, let

con(F ) = {e : e = ei ∈ E(G), and e′i, e
′′
i ∈ F}. Clearly, con(F ) is a join of G

and in particular, con(F ) is a 1-factor of G if F is a 1-factor of G′. We claim

that con(M1)∩con(M2)∩con(J) = ∅ and hence, statement (1) holds. Suppose

to the contrary that G has an edge e1 contained in all of con(M1), con(M2) and

con(J). It follows that e′1, e
′′
1 ∈M1 ∩M2 ∩ J , and hence one can easily deduce

that in copy T1, the 1-weak core H contains either a triangle or a circuit of

length 4 whose vertices are J-vertices, a contradiction. Therefore, statement

(3) implies statement (1).

4.4 Counterexample to a conjecture

If Fan-Raspaud Conjecture is true, then every bridgeless cubic graph has t-

wo 1-factors, say M1 and M2, with no odd edge-cut in their intersection; in

particular, the complement of M1 ∪M2 is a bipartite graph which is union of

paths and even circuits. One could ask if even circuits could be forbidden in

such a bipartite graph. It is verified to be true for all snarks of order at most

34 and proposed as a conjecture in [49].

Conjecture 4.15 ([49]). Every bridgeless cubic graph has two 1-factors such

that the complement of their union is an acyclic graph.

Note that this conjecture is formulated in the same way as Conjecture 4.6

but stronger than the latter. Here, we disprove Conjecture 4.15 by using the

same technique already applied in the proof of Theorem 4.14.

Let P be the Petersen graph and let {e1, . . . , e15} be its edge-set. Take 15

copies T1, . . . , T15 of the complete graph K4. For each i ∈ {1, . . . , 15}, apply
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a 2-cut connection on ei and an arbitrary edge of Ti. Denote by G the graph

obtained. Let M1 and M2 be two 1-factors of G, and let con(M1) and con(M2)

be the two corresponding 1-factors of P , respectively. Since every pair of 1-

factors of P has exactly an edge in common, without loss of generality we can

assume {e1} = con(M1) ∩ con(M2). Hence, T1 has an edge covered twice and

a circuit of length four uncovered, that is, the complement of M1 ∪M2 is not

acyclic. The disproof of Conjecture 4.15 is completed.

Even the previous conjecture is false in that general form, we would like to

stress that the counterexample constructed above has a lot of 2-edge-cuts. So,

we believe that the conjecture could be still true under stronger connectivity

assumptions. In particular, we recall that it was verified true for all snarks,

hence cyclically 4-edge-connected cubic graphs, of order at most 34 (see [49]).

More precisely, we wonder if every 3-connected (cyclically 4-edge-

connected) cubic graph has two 1-factors such that the complement of

their union is an acyclic graph.

4.5 Concluding remarks

We summarize in Figure 4.2 all the implications announced in this chapter.
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Figure 4.2: Conjectures related to Fan-Raspaud Conjecture



Chapter 5

Measures of

edge-uncolorability

One major difficulty in proving theorems for snarks is to find/define appro-

priate structural parameters for a proof. Intuitively, a snark which is not

reducible to a class 1 cubic graph seems to be more complicated than a s-

nark which does. Another approach to define some structural property of

class 2 cubic graph is to study invariants that “measure” how far the graph is

from being class 1. Isaacs called cubic graphs uncolorable if they are class 2.

Hence, these invariants are also called measures of edge-uncolorability in the

literature.

5.1 Introduction to measures

5.1.1 Oddness ω

One major parameter measuring the complexity of a cubic graph G is its

oddness, which is the minimum number of odd circuits in a 2-factor of G. It

is denoted by ω(G). A cubic graph G is class 1 if and only if ω(G) = 0. Cubic

graphs with big oddness can be considered as more complicated than those

with small oddness. Since every cubic graph has even order, its oddness must

even. For instance, the Petersen graph has oddness 2. Snarks of oddness at

49
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least 4 were constructed in the literature with effort to minimize the order of

the snark. So far, the best known result was given in [41], a snark of girth 5

with oddness 4 on 44 vertices (see Figure 5.1). For the construction of snarks

with any larger oddness, see [20, 62].

Figure 5.1: A snark with oddness 4

Indeed, many hard conjectures have been proved for cubic graphs with very

small oddness. Máčajová and Škoviera [46] verified Fan-Raspaud conjecture

for cubic graphs with oddness 2. This implies the truth of Conjecture 3.7 for

these graphs as well. A proof of this particular result was given by Kaiser and

Raspaud in [37]. Moreover, the 5-flow conjecture (every bridgeless graph has

a nowhere-zero 5-flow) was verified for bridgeless cubic graphs with oddness

at most 4 by Mazzuoccolo and Steffen [52] very recently.

The discussion on oddness will be continued later in this chapter. Besides

the oddness, many other measures have been proposed and studied in the

literature.

5.1.2 Resistance r

We follow the definition of the two measures r3 and r2 given in [63]. For

k ∈ {2, 3}, let ck(G) be the maximum size of a k-colorable subgraph of a cubic

graph G. Define r3(G) = |E(G)| − c3(G) and r2(G) = 2
3 |E(G)| − c2(G), and

call r3 the resistance of G. In other words, r3(G) is the minimum number
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of edges not covered by three matchings of G. In what follows, we take the

notation of resistance in [53], written as r.

It is equivalent to say that: (1) G is class 1; (2) r(G) = 0; (3) r2(G) = 0.

For any 2-factor F of G, the subgraph obtained from G by removing an edge

from each odd circuit of F is 3-edge-colorable and has size |E(G)| − ω(G).

Hence, r(G) ≤ ω(G). Moreover, since c2(G) ≥ 2
3c3(G), it follows that r2(G) ≤

r(G), where the equality holds if and only if G is class 1. Therefore, if G

is a class 2 cubic graph, then 1 ≤ r2(G) < r(G) ≤ ω(G). This implies that

r(G) ≥ 2 for any cubic class 2 graph G. A tighter relation was given in [62]:

1
2r(G) ≤ r2(G) ≤ min{2

3r(G), 1
2ω(G)} holds true for every bridgeless class 2

cubic graph G and the bounds are attained. The following proposition is well

known.

Proposition 5.1 (c.f. [62]). If G is a bridgeless class 2 cubic graph, then

r2(G) = 1⇔ r(G) = 2⇔ ω(G) = 2.

However, the analogous proposition holds not true for larger values. The

difference between r2 and r can be arbitrarily big and the difference between

r and ω either. For the construction of the graphs with these property and

for more informations on the measures r2 and r, we refer the readers to [63].

5.1.3 rv(G) of a graph G

We can restate the resistance r for general graphs: r(G) is the minimum

number of edges of a graph G that have to be removed from G to obtain a

∆(G)-edge-colorable graph. An analogous measure r′v(G) is defined as the

minimum number of vertices of a graph G that have to be removed from G to

obtain a ∆(G)-edge-colorable graph. A modification of r′v(G) is rv(G), which

is the minimum number of vertices of a graph G that have to be removed

from G to obtain a class 1 graph. These measures were introduced in [39, 53].

Clearly, r′v(G) ≤ rv(G) ≤ r(G) for a graph G. While r′v and rv are different

in the general case, they are of the same value for cubic graphs. In [62],

it even shows that rv and r are same for cubic graphs. Among these three
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equivalent parameters for cubic graphs, we will use only r. For a general graph

G, r(G) can be bounded by a function of r′v(G). It was proved in [53] that

r(G) ≤ b∆(G)
2 cr

′
v(G), and the bound is best possible.

5.1.4 Weak oddness ω′

The weak oddness was introduced by Huck and Kochol in [25]. Recently,

the question whether the oddness is always the same as weak oddness gains

much attention. Let G be a bridgeless cubic graph. Recall that the oddness

ω(G) of G is the minimum number of odd circuits of the complement of a 1-

factor. Analogously, the weak oddness ω′(G) of G is defined to be the minimum

number of odd components of the complement of a join.

The 5-CDCC was verified for bridgeless cubic graphs with oddness 2 by

Huck and Kochol [25], and for bridgeless cubic graphs with oddness 4 by Huck

[24] and independently by Häggkvist and McGuinness [19].

Let G be a bridgeless cubic graph. Same as the oddness, ω′(G) must be

even. Let J be a join of G. Clearly, each component of the complement J is

either an isolated vertex or a circuit. By removing from G a vertex of each

odd component of J , we obtain a subgraph of G which is 3-edge-colorable.

Hence, r(G) ≤ ω′(G). It is known that, for every bridgeless cubic graph G, if

r(G) = 2 then ω′(G) = 2. Furthermore, it was proved in [11] that, for every

bridgeless cubic graph G, if r(G) = 3 then ω′(G) = 4; and that, there exists a

bridgeless cubic graph H such that r(H) = 4 and ω′(H) ≥ 6.

Since every 1-factor is a join, ω′(G) ≤ ω(G) by definition. The follow-

ing known statement tells us that the equality always holds for G such that

ω′(G) = 2.

Proposition 5.2. ω′(G) = 2 if and only if ω(G) = 2, for every bridgeless

cubic graph G.

Proof. It suffices to prove the direction “only if”. Since ω′(G) = 2, let J be

a join whose complement has precisely two odd components, say H1 and H2.

Since G is cubic, each odd component is either an isolated vertex or an odd
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circuit, and each even component is an even circuit. If both H1 and H2 are

odd circuits, we have nothing to prove. Hence, we may assume that H1 is an

isolated vertex.

Case 1: assume that H2 is an isolated vertex as well. Give the colors 1

and 2 to each even circuit of J alternately along the circuit, and the color 3

to the join J . Let K denote the subgraph of G induced by the edges of color

1 or 3. We can see that K is a subcubic graph having the vertices H1 and

H2 of degree 3 and all the remaining vertices of degree 2. It follows that K

has a path between H1 and H3. Swap the colors 1 and 3 on this path and

consequently, the edges of color 1 induce a 1-factor of G, whose complement

contains precisely two odd circuits. Therefore, ω(G) = 2.

Case 2: assume that H2 is an odd circuit. Give the colors 1 and 2 to each

even circuit alternately along the circuit, and similarly to each Hi except one

edge. Give the color 3 to the join J . Let K denote the subgraph of G induced

by the edges of color 1 or 3. We can see that K is a subcubic graph having

the vertice H1 of degree 3, H2 of degree 1 and all the remaining vertices of

degree 2. It follows that K has a path between H1 and H3. Again, swap the

colors 1 and 3 on this path and consequently, the edges of color 1 induce a 1-

factor of G, whose complement contains precisely two odd circuits. Therefore,

ω(G) = 2.

There was a long-standing discussion on the question whether ω(G) =

ω′(G) for all bridgeless cubic graphs G. However, recently, Lukot’ka and

Mazák [42] gave a negative answer to this question by constructing a bridgeless

cubic graph having ω′(G) = 12 and ω(G) = 14. This construction can be easily

modified to obtain a bridgeless cubic graph with k = ω′(G) < ω(G) for every

even k ≥ 14. Later on, for each k ∈ {6, 8, 10}, bridgeless cubic graphs with

k = ω′(G) < ω(G) are proposed [51]. Therefore, the case ω′(G) = 4 is the

only one unclear.

Problem 5.3. Is it true that: ω′(G) = 4 if and only if ω(G) = 4, for every

bridgeless cubic graph G?
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Concerning this problem, the proof of Proposition 5.2 might give a hint on

the structure of a bridgeless cubic graph G with ω′(G) = 4.

5.2 Further measures γ2 and µ3

The results of this section have already been published in [35]. In this section,

we discuss on two further measures γ2 and µ3 of cubic graphs in terms of

1-factors, where µ3 was first introduced in [64]. Let G be a cubic graph.

Define that γ2(G) = min{|M1 ∩ M2| : M1 and M2 are 1-factors of G}. A

cubic graph G is class 1 if and only if γ2(G) = 0. The Petersen graph has

γ2 equal to 1 since any two distinct 1-factors intersect on precisely one edge.

Therefore, a class 2 cubic graph has no two disjoint 1-factors. The class of

r-graphs is a generalization of bridgeless cubic graphs. Rizzi [57] constructed

r-graphs having no two disjoint 1-factors for every r ≥ 3, and call them poorly

matchable r-graphs. Therefore, it is reasonable and of interest to define an

analogous of γ2 as a measure for r-graphs. We will study r-graphs in Chapter

7.

We relate γ2 to ω and r2. Let G be a cubic graph and let F1 and F2 be

two 1-factors of G having precisely γ2(G) many common edges. We can easily

see that the complement of F1 contains at most 2γ2(G) odd circuits. Hence,

ω(G) ≤ 2γ2(G). Moreover, F1∪F2 induces a 2-edge-colorable subgraph. Since

|F1 ∩ F2| + |F1 ∪ F2| = 2
3 |E(G)|, we can deduce that r2(G) ≤ γ2(G). On one

hand, we can see here that γ2 bounds both 1
2ω and r2, and the bounds can

be achieved by the Petersen graph P , where γ2(P ) = 1
2ω(P ) = r2(P ) = 1.

On the other hand, for a cubic graph G with ω(G) = 2γ2(G), it follows that

r2(G) ≤ 1
2ω(G), a bound much better than the general bound r2(G) < r(G) ≤

ω(G) mentioned in Section 5.1.2.

Let us proceed with the introduction of µk, a family of parameters

which includes the measure µ3 as a member. Let G be a cubic graph,

k ≥ 1, and Sk be a list of k 1-factors of G. By a list we mean a

collection with possible repetition. For i ∈ {0, . . . , k}, let Ei(Sk) be
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the set of edges which are in precisely i elements of Sk. We define

µk(G) = min{|E0(Sk)| : Sk is a list of k 1-factors of G}. In other words,

µk(G) is the minimum number of uncovered edges of G by k 1-factors.

Proposition 3.12 implies that, for a bridgeless cubic graph G and for any

positive integer k, µk+1(G) ≤ µk(G)− 1.

Berge conjecture asserts that µ5(G) = 0 for every bridgeless cubic graph

G.

If µ4(G) = 0, then the edges of G can be covered by four 1-factors. Esperet

and Mazzuoccolo [9] showed that the problem whether µ4(G) = 0 for a given

bridgeless cubic graph G is NP-complete. Snarks whose edges can be covered

by four 1-factors are of particular interests. Some informations on this class

were given in [12]. Moreover, it was proved by Hou, Lai and Zhang [23] and

independently by Steffen [64] that every cubic graph G with µ4(G) = 0 has

a 5-cycle double cover. In [64], it was even proved that those graphs have

an even 4-cycle cover of length 4
3 |E(G)|, and that every cubic graph G with

µ4(G) ≤ 3 has a 4-cycle cover of length 4
3 |E(G)|+4µ4(G). The Petersen graph

has one uncovered edge by any 4 pairwise distinct 1-factors. Hence, it has a

non-zero value of µ4. Besides the Petersen graph, infinite families of snarks

with non-zero value of µ4 were constructed, see [9, 20].

µ2 is strongly related to γ2. By definition, we have µ2(G) = γ2(G) +

1
3 |E(G)|.

The measure µ3 was first introduced by Steffen in [64]. By definition, a

µ3(G)-core and a minimal core have the same meaning for a cubic graph G.

The following statement trivially holds true.

Proposition 5.4. A cubic graph G is class 1 if and only if µ3(G) = 0.

Thus, µ3 can be taken as a measure of edge-uncolorability of cubic graphs,

and a cubic graph with smaller value of µ3 is regarded closer to being class 1.

Proposition 5.5 ([64]). Let G be a loopless cubic graph. If µ3(G) 6= 0, then

µ3(G) ≥ 3.
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The lower bound 3 is sharp. It is easy to check that the Petersen graph

P has three uncovered edges by any three given 1-factors. Thus, µ3(P ) = 3,

reaching the lower bound. Besides the Petersen graph, there are infinitely

many snarks with this property, such as Goldberg snarks [16] and Isaacs flower

snarks [26], which are two well-known families of snarks. The proof of the

following proposition is not hard.

Proposition 5.6. If G is a flower snark or a Goldberg snark, then µ3(G) = 3

and ω(G) = 2.

The following theorem tells us that µ3 can serve as an upper bound for γ2.

Theorem 5.7. Let G be a bridgeless cubic graph. If G is not 3-edge-colorable,

then 2γ2(G) ≤ µ3(G) − 1. Furthermore, if G has a cyclic µ3(G)-core, then

γ2(G) ≤ 1
3µ3(G).

Proof. Let Gc be a µ3(G)-core of G. By the minimality of γ2(G), we have

3γ2(G) ≤ |E2| + 3|E3|. Combining this inequality with µ3(G) = |E2| + 2|E3|

(Lemma 4.1) yields

2γ2(G) ≤ µ3(G)− 1

3
|E2|. (5.1)

Hence, the first statement is trivial if µ3(G) is odd. If µ3(G) is even, then

it follows from the fact that |E2| 6= 0, since Gc is a proper core of G.

Furthermore, if Gc is cyclic, then the inequality 5.1 implies that γ2(G) ≤
1
3µ3(G).

Clearly, the bound of this theorem is attained by every snark G with

µ3(G) = 3. We will see that there are infinitely many snarks with this property.

Theorem 5.7 yields that µ3(G) ≥ 2γ2(G) + 1 ≥ 3, which also proves the truth

of Proposition 5.5. Moreover, For every bridgeless cubic class 2 graph G,

since ω(G) ≤ 2γ2(G), Theorem 5.7 provides an upper bound of the oddness

in terms of µ3: ω(G) ≤ µ3(G) − 1. If G additionally has a cyclic minimal

core then ω(G) ≤ 2
3µ3(G). In the next section, we will show that this bound

ω(G) ≤ 2
3µ3(G) actually holds true for all bridgeless cubic graphs.
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5.3 µ3 and ω

The results of this section have already been published in [35].

5.3.1 Bounds

A girth of a graph G is denoted by girth(G). The following proposition is

trivial but surprising to us, as proposed in [64].

Proposition 5.8 ([64]). If G is a cubic graph, then girth(G) ≤ 2µ3(G).

Hence, the girth of a snark G can be bounded by µ3(G). We show that

the oddness of G can be bounded by µ3(G) as well. More precisely, we prove

that ω(G) ≤ 2
3µ3(G) for every bridgeless cubic graph G.

Before the proof of this result, we give a necessary definition. Let G be

a bridgeless cubic graph and Gc a core of G with respect to three 1-factors

M1,M2,M3. The core Gc is called a Petersen core if the following two condi-

tions hold:

(1) Gc is cyclic;

(2) if P is a path of length 5 in Gc, then there exists no pair of edges e1, e2

of P and two integers i, j such that e1, e2 ∈Mi ∩Mj and 1 ≤ i < j ≤ 3.

1 3

23

12 12

23

13

12

23

13

Figure 5.2: An example of Petersen core, where an edge labelled with ij
belongs to Mi ∩Mj

Theorem 5.9. Let G be a bridgeless cubic graph. If Gc is a k-core of G

with respect to three 1-factors M1,M2,M3, then o(M1) +o(M2) +o(M3) ≤ 2k.
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Moreover, if Gc is a k-core such that the equality holds, then Gc is a Petersen

core.

Figure 5.3: The left figure gives a 3-core (in bold line) of the Petersen graph
where the equality holds, and the right figure gives M1 (in dotted line) and

Ĥ1 (in dashed line)

Proof. Let H be a subgraph of Gc which is induced by E0 ∪ E2. Clearly, H

consists of pairwise disjoint circuits. Let E(i) = E1 ∩Mi for i ∈ {1, 2, 3}, and

E(i,j) = E2 \Ml for {i, j, l} = {1, 2, 3}. We classify the components of H as

follows: let D be a component of H. If D contains edges only from E0, then

D is of group 0. If D is not of group 0 and it contains no edge from Mi, then

D is of group i, for i ∈ {1, 2, 3}. If D is not of group i for all i ∈ {0, 1, 2, 3},

then D is of group 4.

For j ∈ {0, 1, 2, 3, 4} let Yj be the graph consisting of components of H

which are of group j.

Let i ∈ {1, 2, 3}. Let C be an odd circuit of Mi. Then C has at least

one uncovered edge, say e. Let Hi be a subgraph of H induced by E(H) \

Mi. Clearly, e ∈ Hi. Let Pe be the component of Hi containing e. Since

C is a component of Mi and since Hi is a subgraph of Mi, C contains Pe.

Furthermore, Pe is either a path or an odd circuit. Let Ĥi be the subgraph of

Hi consisting of all the components of Hi each of which is either a path or an

odd circuit. It follows that o(Mi) ≤ c(Ĥi). Hence,

3∑
i=1

o(Mi) ≤
3∑
i=1

c(Ĥi). (5.2)
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Let D be a component of H. If E(D) ∩Mi = ∅, then D is a component

also of Hi; otherwise, the graph induced by E(D)\Mi consists of |E(D)∩Mi|

many disjoint paths and each of these paths is a component of Hi. It follows

that c(Ĥi) = o(Y0) + o(Yi) + |E(H)∩Mi| = o(Y0) + o(Yi) + |E2 ∩Mi|. Hence,

3∑
i=1

c(Ĥi) = 3o(Y0) +
3∑
i=1

o(Yi) +
3∑
i=1

|E2 ∩Mi|. (5.3)

A vertex v of G is called a bad vertex if v is incident with two uncovered

edges. Clearly, G has precisely 2|E3| many bad vertices. Since every vertex

of Y0 is a bad vertex, Y0 has at least 3o(Y0) bad vertices. Let T be any odd

component of Y1. Since T is an odd circuit and every edge of T is either

uncovered or from E(2,3), it follows that T has at least one pair of adjacent

uncovered edges. Hence, T has at least one bad vertex. Thus, Y1 has at least

o(Y1) bad vertices. Similarly, for each j ∈ {2, 3}, Yj has at least o(Yj) bad

vertices. Since Y0, Y1, Y2, Y3 are pairwise disjoint subgraph of G, it follows that

Y0, Y1, Y2, Y3 have at most 2|E3| bad vertices in total. Thus,

3o(Y0) +

3∑
i=1

o(Yi) ≤ 2|E3|. (5.4)

By combining inequalities 5.2–5.4 and the equality
∑3

i=1 |E2∩Mi| = 2|E2|,

we conclude that
∑3

i=1 o(Mi) ≤ 2|E2| + 2|E3|. By Lemma 4.1 we have k =

|E2|+ 2|E3| and therefore,

3∑
i=1

o(Mi) ≤ 2k − 2|E3| ≤ 2k. (5.5)

This completes the first part of the proof.

Now let Gc be a core such that
3∑
i=1

o(Mi) = 2k. By inequality 5.5, we have

|E3| = 0. Thus, Gc is a cyclic core. Furthermore, since |E3| = 0, we deduce

from (in-)equalities 5.2–5.4 that 2k =
∑3

i=1 o(Mi) ≤
∑3

i=1 c(Ĥi) = 2|E2| and

from Lemma 4.1 that k = |E2|. Therefore,
∑3

i=1 o(Mi) =
∑3

i=1 c(Ĥi), that is,

the inequality 5.2 becomes an equality.
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A path P is bad if it is of odd length, and (a) there is i ∈ {1, 2, 3} such

that Mi ∩ E(P ) = ∅, and (b) the end-vertices of P are incident to an edge of

E(i,j), for a j ∈ {1, 2, 3} \ {i}.

By definition, every bad path of G contains an uncovered edge.

We claim that Gc has no bad path. Suppose to the contrary that P is

a bad path of Gc. Without loss of generality, suppose that E(P ) ∩ M1 =

∅ and both end-vertices of P are incident with an edge from E(1,2). Thus

P is a component of Ĥ1. Let C be the circuit of M1 containing P . Since∑3
i=1 o(Mi) =

∑3
i=1 c(Ĥi), it follows that C is of odd length and contains no

other component of Ĥ1. This implies that C − E(P ) is a path of even length

with edges from E(2) and from E(3) alternately. But then P has an end-vertex

incident with an edge from E(2) and with an edge from E(1,2), a contradiction.

This completes the proof of the claim.

It remains to show that Gc is a Petersen core. Suppose to the contrary that

Gc is not a Petersen core. Then Gc violates the second part of the definition of

a Petersen core. Without loss of generality, we may assume that Q = uvwxyz

is a path of length 5 in Gc and e1, e2 are two edges of Q such that e1, e2 ∈ E(1,2).

It suffices to consider the following two cases.

Case 1: e1 = uv and e2 = wx. Then vw is a bad path ofGc, a contradiction.

Case 2: e1 = uv, e2 = yz, and wx 6∈ E(1,2). Then vwxy is a bad path of

Gc, a contradiction.

This completes the proof.

Theorem 5.10. If G is a bridgeless cubic graph, then ω(G) ≤ 2
3µ3(G). More-

over, if ω(G) = 2
3µ3(G), then ω(G) = 2γ2(G) and every µ3(G)-core is a Pe-

tersen core.

Proof. Let Gc be a µ3(G)-core of G with respect to three 1-factors M1,M2,M3.

By Theorem 5.9, we have o(M1) + o(M2) + o(M3) ≤ 2µ3(G). It follows that

ω(G) ≤ 2
3µ3(G) by the minimality of ω(G).
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If ω(G) = 2
3µ3(G), then o(M1) + o(M2) + o(M3) = 2µ3(G). Again by The-

orem 5.9, Gc is a Petersen core. By Theorem 5.7, γ2(G) ≤ 1
3µ3(G). Therefore,

ω(G) ≤ 2γ2(G) ≤ 2
3µ3(G) = ω(G). Hence, ω(G) = 2γ2(G).

Theorem 5.10 implies that if a cubic graph G has a non-cyclic µ3(G)-core,

then ω(G) < 2
3µ3(G).

5.3.2 The equality case: Petersen core

We will construct an infinite family of snarks G with ω(G) = 2
3µ3(G). Hence,

the upper bound 2
3µ3(G) for ω(G) is best possible.

A network is an ordered pair (G,U) consisting of a graph G and a subset

U ⊆ V (G) whose elements are called terminals. A network with k terminals

is a k-pole. We consider networks (G,U) with dG(v) = 1 if v is a terminal

and dG(v) = 3 otherwise. A terminal edge is an edge which is incident to a

terminal.

For i ∈ {1, 2} let Ti be a network and ui be a terminal of Ti. The junction

of T1 and T2 on (u1, u2) is the network obtained from T1 and T2 by identifying

u1 and u2 and suppressing the resulting bivalent vertex.

Theorem 5.11. For every positive integer k, there is a cyclically 4-edge-

connected cubic graph Gk of order 26k and ω(Gk) = r(Gk) = 2γ2(Gk) =

2
3µ3(Gk) = 2k.

Proof. We will construct graphs with these properties. Let B be a 4-pole

with terminals a, b, c, d as shown in Figure 5.4. Take k copies B0, . . . , Bk−1

of B. Let Gk be the junction of B0, . . . , Bk−1 on (ci, ai+1) and (di, bi+1) for

i ∈ {0, . . . , k−1}, where the indices are added modulo k (Figure 5.5 illustrates

G2 and a µ3(G2)-core in bold line).

It is easy to check that r(B) = 2. Hence, we have r(Gk) ≥ 2k. Further-

more, let M ′i ,M
′′
i ,M

′′′
i be three matchings of Bi as shown in Figure 5.6 labeled

with numbers 1, 2, 3, respectively. Consider these matchings as matchings in

Gk, where the edges with the suppressed bivalent vertices belong to M ′1. Let

M ′ =
⋃k−1
i=0 M

′
i , M

′′ =
⋃k−1
i=0 M

′′
i , M ′′′ =

⋃k−1
i=0 M

′′′
i . Then M ′,M ′′,M ′′′ are
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a

b

c

d

Figure 5.4: 4-pole B

Figure 5.5: G2 and a µ3(G2)-core in bold line

three 1-factors of Gk, and Gk has precisely 3k edges contained in none of

M ′,M ′′ and M ′′′. Hence, we have µ3(Gk) ≤ 3k. Since ω(Gk) ≤ 2
3µ3(Gk) by

Theorem 5.10, it follows that 2k ≤ r(Gk) ≤ ω(Gk) ≤ 2
3µ3(Gk) ≤ 2k. There-

fore, we have ω(Gk) = r(Gk) = 2
3µ3(Gk) = 2k = 2γ2(Gk), where the last

equality follows by Theorem 5.10.
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Figure 5.6: Three matchings of Bi
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5.3.3 Difference

For i ∈ {1, 2}, let Hi be a cubic graph and ui be a vertex of Hi of neighbors

xi, yi, zi. The 3-cut connection on {u1, u2} is a graph operation that consists

of deleting vertices u1 and u2, and adding new edges x1x2, y1y2 and z1z2. We

say that {x1x2, y1y2, z1z2} is the connection-cut with respect to H1 and H2.

This subsection devotes to construct cubic graphs G with arbitrarily big

difference between its oddness and 2
3µ3(G). We will use the following theorem

which is a simple consequence of a result of Weiss.

Theorem 5.12 ([74]). For every positive integer c there is a connected bipar-

tite cubic graph H with girth(H) ≥ c.

Theorem 5.13. For any positive integers k and c, there exists a bridgeless

cubic graph G with ω(G) = 2k and µ3(G) ≥ c.

Proof. By Theorem 5.11 there is a cyclically 4-edge-connected cubic graph H

with ω(H) = 2k = 2
3µ3(G). Hence, we are done for c ≤ 3k.

Let V (H) = {v1, . . . , vn}. By Theorem 5.12, there is a connected bipartite

cubic graph T with girth(T ) ≥ 2c. Since every bipartite cubic graph has no

bridge, T is bridgeless. Take n copies T1, . . . , Tn of T , and let ui be a vertex of

Ti. Let H0 = H and for i ∈ {1, . . . , n} let Hi be a graph obtained from Hi−1

and Ti by applying 3-cut connection on (vi, ui), and let G = Hn.

We claim that ω(Hi) = ω(Hi−1). Let M be a 1-factor of Hi−1 such that

M has ω(Hi−1) odd circuits. Precisely one edge of M is incident to vi. Since

Ti is bridgeless cubic and bipartite, it follows that M can be extended to a

2-factor of Hi that has ω(Hi−1) many odd circuits. Hence, ω(Hi) ≤ ω(Hi−1).

Let F be a 1-factor of Hi such that F has ω(Hi) many odd circuits. Let

J be the connection-cut of Hi with respect to Hi−1 and Ti. If F contains all

edges of J , then every circuit of F lies either in Hi − vi−1 or in Ti − ui. Since

the order of Hi[V (Ti) \ {ui}] is odd, it follows that Hi[V (Ti) \ {ui}] contains

a circuit of odd length, contradicting the fact that Ti is bipartite. Hence, F

contains precisely one edge of J . Then F can be transformed to a 1-factor

of Hi−1 by contracting Ti to a vertex. Since the complement of this 1-factor
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has at most ω(Hi) odd circuits, it follows that ω(Hi−1) ≤ ω(Hi). Therefore,

ω(G) = ω(H).

By construction we have girth(G) ≥ 2c, and therefore, µ3(G) ≥ c by

Proposition 5.8.

Since highly cyclically edge-connected snarks are of general interests, we

prove the following statement, which tells as well that the difference between

ω and µ3 can be arbitrarily big, even we additionally fix the value of ω.

Theorem 5.14. For every positive integer k, there is a cyclically 5-edge-

connected cubic graph Gk with µ3(Gk) = 2ω(Gk) = 4k.

Proof. We will construct graphs with these properties.

Let D be a 5-pole with terminals u, v, w, x, y as shown in Figure 5.7. Let

k be a positive integer. Take 2k copies D1, . . . , D2k of D, and denote by Gk

the junction of D1, . . . , D2k on (xi, ui+1) and (yi, vi+1) for i ∈ {1, . . . , 2k} and

on (wi, wi+k) for i ∈ {1, . . . , k} (Figure 5.8 illustrates G2).

u

v

w

x

y

Figure 5.7: The 5-pole D and a 2-regular subgraph S of D in dotted line

We claim that Gk is a cyclically 5-edge-connected cubic graph such that

ω(Gk) = 2k and µ3(Gk) = 4k.

Since D is not 3-edge-colorable, every cover by three matchings leaves at

least one edge uncovered. Thus, r(Gk) ≥ 2k and ω(Gk) ≥ 2k.

Let Si be a set of edges of Di as shown in Figure 5.7 and let F =
⋃2k
i=1 Si.

It is easy to see that F is a 2-factor of Gk that contains precisely 2k odd

circuits. Thus, ω(Gk) ≤ 2k and therefore, ω(Gk) = 2k.
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Figure 5.8: G2 and a µ3(G2)-core of G2 in bold line

Let D̃i be the junction of D2i−1 and D2i on (x2i−1, u2i) and (y2i−1, v2i)

(i ∈ {1, 2, . . . , k}), and M ′i ,M
′′
i ,M

′′′
i be three matchings of D̃i as shown in

Figure 5.9 labeled with numbers 1, 2, 3, respectively. Let M ′ =
⋃k
i=1M

′
i ,

M ′′ =
⋃k
i=1M

′′
i , M ′′′ =

⋃k
i=1M

′′′
i . The three 1-factors M ′,M ′′,M ′′′ cover all

but 4k edges of Gk. Hence, µ3(Gk) ≤ 4k. On the other hand, let Gc be a
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Figure 5.9: The 6-pole D̃i and three matchings M ′i ,M
′′
i ,M

′′′
i of D̃i labeled

with numbers 1,2,3, respectively.

µ3(Gk)-core of Gk. Since each Di is not 3-edge-colorable, it has at least one

uncovered edge of Gc, say ei. Let C be any circuit of Gc containing precisely

t members of {e1, . . . , e2k}. First suppose that t = 1. Since the girth of Gk

is at least 5, it follows that |E(C)| ≥ 5. Next suppose that t ≥ 2. Clearly,

each path of Di joining any two terminals of Di is of length at least 3. Since

C goes through t members of {D1, . . . , D2k}, |E(C)| ≥ 4t. In both cases we

have |E(C)| ≥ 4t and thus, C contains at least 2t uncovered edges. Since each
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ei lies on precisely one circuit of Gc, it follows that Gc contains at least 4k

uncovered edges. Thus, µ3(Gk) ≥ 4k, and therefore, µ3(Gk) = 4k.

5.3.4 Concluding remarks

We summarize the relations among the measures for edge-uncolorability

of cubic graphs mentioned in this chapter as follows: for a bridgeless cu-

bic class 2 graph G, 1 ≤ r2(G) < r(G) ≤ ω′(G) ≤ ω(G) ≤ 2
3µ3(G) and

max{r2(G), 1
2ω(G)} ≤ γ2(G) ≤ 1

2(µ3(G) − 1). Theorem 5.7 tells us that if G

has a cyclic minimal core, then we further have γ2(G) ≤ 1
3µ3(G). We wonder

whether γ2(G) ≤ 1
3µ3(G) holds true for all bridgeless cubic graphs G? If yes,

then it implies the fact that ω(G) ≤ 2
3µ3(G) for all bridgeless cubic graphs G.

Let G be a cubic graph. Recall that it is equivalent to say: (1) r2(G) = 1;

(2) r(G) = 2; (3) ω′(G) = 2; (4) ω(G) = 2. However, they are not equivalent

to the statement µ3(G) = 3, one of such examples is the first member G1 of the

family of graphs in Theorem 5.14 (also see Figure 5.10), for which ω(G1) = 2

and µ3(G1) = 4.

Figure 5.10: The graph G1

The support supp(φ) of a flow φ of a graph G is defined as supp(φ) = {e ∈

E(G) : φ(e) 6= 0}. It is well known that a cubic graph G has a nowhere-zero

4-flow if and only if G is 3-edge-colorable. Hence, we introduce here a new

measure rf of edge uncolorability of a cubic graph G in terms of the support



5.4 The range of the value µ3 67

of 4-flows of G. The definition of rf is as follows. Let G be a cubic graph.

Define rf (G) = min{|E(G)−supp(φ)| : φ is a 4-flow of G}. Clearly, G is class

1 if and only if rf (G) = 0.

Theorem 5.15. If G is a cubic graph, then rf (G) ≤ γ2(G).

Proof. Let F1 and F2 be two 1-factors of G such that |F1∩F2| = γ2(G). Notice

that each of F1 (the complement of F1) and 4(F1, F2) (the difference between

F1 and F2) induces a cycle. For each circuit C of F1, fix a direction for C

(either clockwise or anticlockwise) and assign each edge with flow value 1 and

with direction same as C. Do the same to each circuit of4(F1, F2) except that

we put flow value 2 instead of 1. We thereby obtain a 4-flow of G with support

|E(G)| − γ2(G). By the minimality of rf (G), we have rf (G) ≤ γ2(G).

Recall that max{r2(G), 1
2ω(G)} ≤ γ2(G). It is of interests to relate rf to

r2 or 1
2ω.

For the information on some other measures of edge-uncolorability for cubic

graphs, we refer the readers to a recent survey paper [11].

5.4 The range of the value µ3

The results of this section have already been published in [35]. Proposition

5.5 tells us that the integers 1 and 2 are unavailable to be the value µ3(G) for

some cubic graph G. One may raise such a natural question: are there more

integers unavailable to be the value µ3(G) for some cubic graph G? We give

a negative answer to this question.

Theorems 5.11 and 5.14 already imply that for every positive integer k

with k ≡ 0 (mod 3) there exists a cyclically 4-edge-connected cubic graph G

with µ3(G) = k, and for every positive integer k with k ≡ 0 (mod 4) there

exists a cyclically 5-edge-connected cubic graph G with µ3(G) = k. We will

prove that for every k ≥ 3 there is a bridgeless cubic graph G with µ3(G) = k.

To construct such a graph, we need a graph operation, namely 2-junction.
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Let G′ and G′′ be two bridgeless cubic graphs that are class 2. Let e′ =

xy and e′′ = uv be an uncovered edge of a minimal core of G′ and of G′′,

respectively. A 2-junction of G′ and G′′ is the graph G with V (G) = V (G′) ∪

V (G′′) and E(G) = E(G′) ∪ E(G′′) ∪ {ux, vy} \ {e′, e′′}. The set {ux, vy} is

called a 2-junction-cut of G (with respect to G′ and G′′).

Lemma 5.16. Let G′ and G′′ be two bridgeless cubic graphs that are not 3-

edge-colorable. If G is a 2-junction of G′ and G′′, then µ3(G) = µ3(G′) +

µ3(G′′).

Proof. By construction, G has a k-core with k ≤ µ3(G′) + µ3(G′′). Hence,

µ3(G) ≤ µ3(G′) + µ3(G′′).

Suppose to the contrary that µ3(G) < µ3(G′) + µ3(G′′). Let ux, vy be

the 2-junction-cut of G with respect to G′ and G′′, and u, v ∈ V (G′) and

x, y ∈ V (G′′). Let Gc be a µ3(G)-core of G with respect to three 1-factors

M1,M2,M3. Then each Mi contains either none of ux and vy or both of them.

Furthermore, Mi induces 1-factors F ′i and F ′′i in G′ and G′′, respectively. It

follows that there is a k-core either in G′ with k < µ3(G′) or in G′′ with

k < µ3(G′′), a contradiction.

Theorem 5.17. For every integer k ≥ 3, there exists a bridgeless cubic graph

G such that µ3(G) = k.

Proof. Let us first consider the case k 6= 5. Then there exist two non-negative

integers k′ and k′′ such that k = 3k′ + 4k′′. By Theorems 5.11 and 5.14,

there is a cyclically 4-edge-connected cubic graph H ′ with µ3(H ′) = 3k′ and

a cyclically 5-edge-connected cubic graph H ′′ with µ3(H ′′) = 4k. If k′ = 0,

then take G = H ′′ as desired. If k′′ = 0, then take G = H ′ as desired. Hence,

we may next assume that k′, k′′ > 0. Let G be a 2-junction of H ′ and H ′′. By

Lemma 5.16, µ3(G) = µ3(H ′) + µ3(H ′′) = k, we are done.

It remains to consider the case k = 5. Consider the flower snark J7. Let

Jc be a µ3(J7)-core of J7. Note that Jc is a circuit of length 6. Let u be a

vertex of Jc and v, w, x be its three neighbors in J7. Take two copies J ′, J ′′ of

J7. Apply 3-cut connection on {u, u′′}, we obtain a graph G from J ′ and J ′′.
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Let {v′v′′, w′w′′, x′x′′} be the connection-cut. This operation yields a core Gc

of G that is a circuit of length 10. Hence, µ3(G) ≤ 5.

On the other hand, let T be any µ3(G)-core of G. By the structure of T

as a core, if {v′v′′, w′w′′, x′x′′} ∩ (E0 ∪ E2) = ∅, then both J ′ and J ′′ contain

a circuit of T . Since the girth of J7 is 6, it follows that T has at least six

uncovered edges, a contradiction. Hence, we may assume that v′v′′ ∈ E0∪E2.

Let C be the circuit of T containing v′v′′. Clearly, C goes through both J ′ and

J ′′. Since again the girth of J is 6, C is of length at least 10. It follows that T

has at least five uncovered edges and thus, µ3(G) ≥ 5. Therefore, µ3(G) = 5

and every µ3(G)-core of G is a circuit of length 10.

5.5 Cubic graphs with small µ3 or γ2: towards con-

jectures

Some hard conjectures have been confirmed for snarks of small value of µ3 in

[64]. This gives us an insight into the structure of these snarks.

Theorem 5.18 ([64]). Let G be a bridgeless cubic graph that has no nontrivial

3-edge-cut. If µ3(G) ≤ 4, then G has a Berge-cover.

Hence, Berge conjecture is true for snarks with µ3 no larger than 4. More-

over, Fan-Raspaud conjecture is verified for snarks with µ3 no larger than

6.

Theorem 5.19 ([64]). Let G be a simple bridgeless cubic graph. If µ3(G) ≤ 6,

then G has a cyclic core. In particular, if G is triangle-free and µ3(G) ≤ 5,

then every µ3(G)-core is cyclic.

The proof for this theorem given in [64] shows that if µ3(G) ≤ 6 then

ω(G) ≤ 2, and the proof is completed by using the result of E. Máčajová

and M. Škoviera [46] that every bridgeless cubic graph with oddness 2 has a

cyclic core. We will verify Fan-Raspaud conjecture for cubic graph G with

µ3(G) ≤ 9. Note that if µ3(G) ≤ 9, then ω(G) ≤ 6 and in particular, both
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ω(G) = 6 and ω(G) = 4 can be attained by some snarks. The proof given

here avoids using the result of E. Máčajová and M. Škoviera and instead, we

establish a lemma that plays a crucial role in the proof.

Lemma 5.20. Let G be a 3-edge-connected cubic graph having no nontrivial

3-edge-cuts. For any two edges e and f of G, if G has a 1-factor F such that

e ∈ F and f /∈ F , then G has another 1-factor M such that e /∈M and f ∈M ;

Proof. By Proposition 3.12, the lemma is true for the case that e and f are

adjacent. Hence, we may assume that e and f are nonadjacent.

Replace e and f by two paths of length 3, say u1u2u3u4 and v1v2v3v4,

respectively. Add two new edges u2v2 and u3v3. We thereby obtain a new

graph G′ from G. Since G is 3-edge-connected and has no nontrivial 3-edge-

cuts, this graph operation yields the same for G′. Let F ′ = (F \ {e}) ∪

{u1u2, u3u4, v2v3}. We can see that F ′ is a 1-factor of G′ containing no edge

of the path v1v2u2u3. By Proposition 3.13, G′ has a 1-factor M ′ containing

both v1v2 and u2u3. This yields that v3v4 ∈M ′. Now we obtain a 1-factor M

of G from M ′ by removing u2u3 and replacing v1v2, v3v4 by f . Clearly, e /∈M

and f ∈M , we are done with the proof of the lemma.

Theorem 5.21. Let G be a 3-edge-connected cubic graph having no nontrivial

3-edge-cuts. If µ3(G) ≤ 9, then G has three 1-factors with empty intersection,

i.e., G has a cyclic core.

Proof. Let Gc be a µ3(G)-core of G with respect to three 1-factors M1,M2,M3.

By the proof of Steffen in [64], if µ3(G) ≤ 6, then either Gc is already a cycle

or for Gc we have |E3| = 1 and |E2| ≤ 4. For the latter case, there exist p ∈

{1, 2, 3} and e ∈ E0 such that e is adjacent to all edges in
⋂
p 6=i∈{1,2,3}Mi. Take

a 1-factor M4 of G containing e by Proposition 3.12 and therefore, {Mi : 1 ≤

i ≤ 4} \Mp is a list of three 1-factors with empty intersection, we are done.

Hence we may assume that µ3(G) ∈ {7, 8, 9}. By Lemma 4.1, |E2| + 2|E3| =

µ3(G). It follows that |E3| ≤ 4. If |E3| = 0, then Gc is a cycle, we are done.

Hence, we may assume that |E3| ≥ 1. We distinguish four cases.
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Case 1: assume that |E3| = 4. Thus |E2| ≤ 1. Since every minimal core is

proper, |E2| ≥ 1. Hence, |E2| = 1. This implies that all the vertices of Gc has

degree 3, except two of them which have degree 2. Hence, G has a 2-edge-cut

whose removal leaves Gc as a component, contradicting the assumption that

G is 3-edge-connected. Hence, this case is impossible.

Case 2: assume that |E3| = 3. Thus |E2| ∈ {1, 2, 3}. In this case, if C is a

circuit of Gc having only edges from E0, then ∂(C) ⊆ E3, which implies that

∂(C) is a bridge or a 2-edge-cut or a nontrivial 3-edge-cut of G, a contradiction.

Hence, each circuit of E0 ∪E2 contains an edge from E2. Let E0 ∪E2 consist

of circuits C1, . . . , Ck. Since |E2| ≤ 3, we have k ≤ 3.

Subcase 2.1: assume that k = 1. For writing convenience, we give some

definitions. Give label a to both ends of an edge of E3 and call this edge

an (a, a)-edge. Analogously, we give labels b and c to ends of the remaining

two edges of E3 and call them (b, b)- and (c, c)-edges. The pattern of C1 is a

sequence of all labels on C1 taken in clockwise order, regardless the starter.

Let x and y be two labels (not necessary distinct) such that y is next to x in

the pattern. A list of such sequences xy is called a segment of the pattern. The

path of C1 between x and y containing no other labels is called the (x, y)-path

or the (y, x)-path.

v

b

a a

c
b

c

Figure 5.11: A pattern aabcbc of C1, where the (a, a)-path is the path in bold
line.

If the pattern of C1 has segment {aa}, then the (a, a)-path contains an

edge from E2 \Mi for each i ∈ {1, 2, 3} by applying Lemma 4.2 to the circuit

formed by the (a, a)-path and the (a, a)-edge, which implies that the (a, a)-
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path has at least 3 edges from E2. Similarly, if the pattern of C1 has segment

{ab, ab}, then the two (a, b)-paths have at least 3 edges from E2 in total by

applying Lemma 4.2 to the circuit formed by the two (a, b)-paths, the (a, a)-

edge and the (b, b)-edge. The same result holds for the case that the pattern

of C1 has segment {ab, ba}. Since |E2| ≤ 3, at most one of the three segments

above occurs and if it occurs, it does precisely one time. Hence, we can deduce

that C1 is of pattern abcacb, regardless the permutation of a, b, c. As already

argued, the (b, c)-path and the (c, b)-path have precisely 3 edges from E2 in

total. Without loss of generality, say the (c, b)-path has an edge from E2. We

can apply Lemma 4.2 to the circuit formed by the three edges of E3 and all

the (x, y)-paths, where (x, y) ∈ {(b, a), (b, c), (a, c)}, yielding that the (b, a)-

path, the (b, c)-path and the (a, c)-path have at least 3 edges from E2 in total.

Now we can conclude that C1 has at least 4 edges from |E2|, a contradiction.

Hence, this subcase is impossible.

Subcase 2.2: assume that k = 2. Without loss of generality, let C1 have

chords in Gc no less than C2 has. From the argument for Subcase 2.1, C1

does not have three chords in Gc. If C1 has two chords in Gc, whose ends

divide C1 into four paths, then at least three of the paths contain no end of

the third edge of E3. Hence, we can always apply Lemma 4.2 to some circuit

formed by these three paths and the chords of C1, yielding that C1 has 3

edges from E2, a contradiction. If C1 has one chord in Gc, whose ends divide

C1 into two paths, then Lemma 4.2 implies that both paths contain an end

of another edge of E3. Let E3 = {u1u2, v1v2, w1w2} and let C1 contain the

vertices u1, v1, u2, w1. Now we can always apply Lemma 4.2 to at least two

among the circuits formed by all the edges of E3, one of the paths between

v2 and w2 on C2, and one of P (u1, v1) ∪ P (u2, w1) and P (u1, w1) ∪ P (u2, v1),

where P (x, y) denotes the path between x and y on C1 that does not contain

both u1 and u2, for x, y ∈ {u1, v1, u2, w1}. A contradiction follows. Hence, we

can conclude that both C1 and C2 have no chord in Gc. The ends of the edges

in E3 divide Ci into 3 paths P 1
i , P

2
i , P

3
i for each i ∈ {1, 2}. We may take the

notation so that for each x ∈ {1, 2, 3}, the paths P x1 and P x2 have end-vertices
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from two same edges of E3, all of them together form a circuit, say Cx. We

can always apply Lemma 4.2 to at least two of C1, C2, C3, yielding that Gc

contains more than 3 edges from E2, a contradiction. Hence, this subcase is

impossible.

Subcase 2.3: assume that k = 3. For each i ∈ {1, 2, 3}, since E2 ≤ 3, the

circuit Ci contains precisely one edge from E2. It follows that Ci intersects

with E3, i.e., |V (Ci) ∩ V (E3)| ≥ 1. Since G has no nontrivial 3-edge-cut, in

particular, G has no triangles, we further have |V (Ci) ∩ V (E3)| ≥ 2. Since

|E3| = 3, we can deduce that |V (Ci)∩V (E3)| = 2. Now the core Gc is specific

and shown in Figure 5.12, from where we can see that Gc has a circuit of

length 6 having edges from E0 and E3 alternately, contradicting with Lemma

4.2. Hence, this subcase is impossible.

Figure 5.12: A core for Subcase 2.3, where dashed lines represent E3

Now we conclude that Case 2 is impossible.

Case 3: assume that |E3| = 2, say E3 = {e1, e2}. Thus |E2| ∈ {3, 4, 5}. For

convenience, we give some definitions. Let x and y be two edges of E2 ∪ E3

and z be an edge of E0. x and y are U -connected at z if both of them are

adjacent to z. Clearly, x, y, z induce a path rather than a star.

We claim that e1 and e2 are U -connected. Suppose to the contrary that

they are not U -connected. For each i ∈ {1, 2}, ei is U -connected to precisely

four distinct edges of E2 since otherwise, there is an edge of E2 that is U -

connected to ei at two edges yielding either a triangle of Gc or a circuit of

length 4 which we can apply Lemma 4.2 to. Since |E2| ≤ 5, there are at

least three edges of E2 that are U -connected to both e1 and e2. Among them
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there always exist two, say h′ and h′′, such that for each i ∈ {1, 2}, h′i and

h′′i are not adjacent, where h′i (resp. h′′i ) is the edge which ei and h′ (resp.

h′′) are U -connected at. Now Gc has a circuit of length 8 having edges from

{e1, e2, h
′, h′′} and from E0 alternately. We apply Lemma 4.2 to this circuit,

obtaining a contradiction.

Since e1 and e2 are U -connected, let us say they are U -connected at e. Since

|E2| ≤ 5, there exists k ∈ {1, 2, 3} such that |E2\Mk| ≤ 1. By Proposition 3.8,

G has a 1-factor containing e. If |E2\Mk| = 0, then let M4 be this 1-factor and

it follows that {Mi : 1 ≤ i ≤ 4}\Mk is a list of three 1-factors that has empty

intersection, we are done. Hence, we may next assume that |E2 \Mk| = 1, say

E2 \Mk = {f}. Since any one of {Mi : 1 ≤ i ≤ 3} \Mk contains f but not

e, by applying Lemma 5.20 to e and f , G has a 1-factor containing e but not

f . Let M4 be this 1-factor and again, {Mi : 1 ≤ i ≤ 4} \Mk is a list of three

1-factors that have empty intersection, we are done.

Case 4: assume that |E3| = 1. Thus |E2| ∈ {5, 6, 7}. Let E3 = {e}.

Without loss of generality, let |E2 \ M1| ≤ |E2 \ M2| ≤ |E2 \ M3|. Since

|E2| ≤ 7, we have |E2 \M1| ≤ 2. If |E2 \M1| = 0, then take a 1-factor of G not

containing e, which together with M2 and M3 forms a list of three 1-factors

with empty intersection, we are done. If |E2\M1| = 1, say E2\M1 = {f}, then

we can apply Proposition 3.16 to e and f , obtaining a 1-factor of G containing

neither e nor f . Again this 1-factor together with M2 and M3 forms a list of

three 1-factors with empty intersection, we are done. It remains to assume

that |E2 \M1| = 2. Thus |E2 \M2| = 2 and |E2 \M3| = 3. As argued in

Case 3, e is U -connected to precisely four distinct edges of E2. Let g be one

of these four edges such that g /∈ E2 \M3. Without loss of generality, say

g ∈ E2 \M1. Denote by g′ the other edge of E2 \M1 and h the edge that e

and g′ are U -connected at. We can apply Lemma 5.20 to h and g′, obtaining

a 1-factor M4 of G containing h but not g′. It follows that e, g /∈ M4. Now

M2,M3,M4 are three 1-factors with empty intersection, we are done.

We verify Fan-Raspaud conjecture also for cubic graphs with γ2 ≤ 2. The

following theorem is a direct consequence of Proposition 3.16.
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Theorem 5.22. Let G be a bridgeless cubic graph. If γ2(G) ≤ 2, then G has

three 1-factors with empty intersection, i.e., G has a cyclic core.

5.5.1 Hypohamiltonian snarks

A graph G is hypohamiltonian if it is not hamiltonian but G−v is hamiltonian

for every vertex v of G. Since hamiltonian cubic graphs are 3-edge-colorable,

hypohamiltonian snarks could be considered closest to being 3-edge-colorable.

Trivially, hypohamiltonian snarks are of weak oddness 2. Thus, by Proposi-

tion 5.2, they are of oddness 2 as well. Though not all snarks G with ω(G) = 2

satisfy µ3(G) = 3, it was conjectured in [64] that the truth holds for this class

of snarks.

Conjecture 5.23. If G is a hypohamiltonian snark, then µ3(G) = 3.

As already mentioned in the beginning of this section, the Petersen graph

and the flower snarks are hypohamiltonian and have µ3 equal to 3. Indeed,

with the assistance of computer, Goedgebeur [15] verified this conjecture for

hypohamiltonian snarks of relatively small order.

Observation 5.24 ([15]). There are no counterexamples to Conjecture 5.23

among the hypohamiltonian snarks on at most 36 vertices, and also among the

hypohamiltonian snarks on at most 44 vertices which are a dot product of two

hypohamiltonian snarks.

It is easy to see that if a cubic graph G has a vertex v such that G− v is

hamiltonian, then G has two 1-factors with one common edge. By Proposition

3.12, there is a third 1-factor avoiding this edge. Therefore, hypohamiltonian

snarks satisfy Fan-Raspaud conjecture. Moreover, Sun [66] announced that

Berge conjecture also holds true for hypohamiltonian snarks. Hence, it would

be interesting to know whether Berge-Fulkerson conjecture holds true for hy-

pohamiltonian snarks, as suggested by Häggkvist [18].

If Conjecture 5.23 is true, it would imply that every hypohamiltonian snark

has a Berge cover by Theorem 5.18. Hence, the result of Sun gives a support

for the truth of Conjecture 5.23.
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5.6 A generalization of µ3

The results of this section have already been published in [34].

Recall that a weak k-core with respect to three joins J1, J2, J3 yields k =

|E0|+ 3
2

∑3
i=1 n(Ji), as defined in Section 4.3. We define µ′3(G) = min{k : G

has a weak k-core}. Clearly, µ′3(G) ≤ µ3(G) for a given cubic graph G. It is

easy to see that a bridgeless cubic graph G is class 1 if and only if µ′3(G) = 0.

Hence, µ′3 is also a measure of edge-uncolorability for cubic graphs.

We next relate µ′3 to the weak oddness ω′ and show that the weak oddness

of a bridgeless cubic graph can be bounded in terms of its weak cores.

Theorem 5.25. Let G be a bridgeless cubic graph and Gc be a weak k-core

with respect to three joins J1, J2 and J3. Then
∑3

i=1 o(Ji) ≤ 2k.

Proof. Each component of the complement of Ji is either an isolated vertex or

a circuit. Any odd circuit of Ji contains either one edge from E0 or a Jk-vertex

with k 6= i. We call an odd circuit of Ji bad if it has no Jk-vertex for k 6= i. In

what follows we distinguish elements of E0 according to their behavior with

respect to bad circuits. We define that, for i ∈ {1, 2, 3},

Xi = {e : e is the unique edge in C ∩ E0, and C is a bad circuit of Ji},

Yi = {e : e ∈ E0 \Xi, and e ∈ C ∩ E0, and C is a bad circuit of Ji}.

Set x = |X1| + |X2| + |X3| and y = |Y1| + |Y2| + |Y3|. Since Xi ∩ Yi = ∅, it

follows that

x+ y ≤ 3|E0|. (5.6)

Moreover, if e ∈ Xi, then e 6∈ Xj , and e 6∈ Xk for j, k 6= i, that is

x ≤ |E0|. (5.7)

Combining equations 5.6 and 5.7 implies

x+
y

2
≤ 2|E0|. (5.8)
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Now, we are in position to prove our assertion. Since in an odd circuit of

Ji there is either a Jk-vertex (k 6= i) or an edge of Xi or two edges of Yi, the

following relation holds:

o(Ji) ≤ |Xi|+
|Yi|
2

+
3∑
i=1

n(Ji).

Therefore, by summing up for all three joins we deduce:

3∑
i=1

o(Ji) ≤ x+
y

2
+ 3

3∑
i=1

n(Ji) ≤ 2|E0|+ 3
3∑
i=1

n(Ji) = 2k,

where the last inequality directly follows from the inequality (5.8).

This result contains Theorem 5.9 as a particular case. Thus, the definition

of weak k-core is the right generalization of k-core.

Theorem 5.26. If G is a bridgeless cubic graph, then ω′(G) ≤ 2
3µ
′
3(G).

Proof. Let Gc be a weak µ′3(G)-core of G with respect to three joins J1, J2

and J3. By Theorem 5.25, we have o(J1) + o(J2) + o(J3) ≤ 2µ′3(G). By the

minimality of the weak oddness ω′(G), it follows that ω′(G) ≤ 2
3µ
′
3(G) .
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Chapter 6

Partially-normal

5-edge-colorings

6.1 Petersen coloring conjecture

Given graphs G and H, a mapping φ : E(G) → E(H) is an H-coloring of

G if any three mutually adjacent edges of G are mapped to three mutually

adjacent edges of H. The mapping φ is called a Petersen-coloring if H is the

Petersen graph.

Jaeger [29] posed the following conjecture which would imply both Berge-

Fulkerson conjecture and the 5-CDCC.

Conjecture 6.1 (The Petersen coloring conjecture [29]). Every bridgeless

cubic graph has a Petersen-coloring.

This section devotes to alternative formulations of the Petersen coloring

conjecture.

Let G be a graph. A set of edges C is a binary cycle if C induces a subgraph

of G where every vertex has even degree. DeVos, Nešetřil and Raspaud [7]

defined that, given graphs G and H, a mapping φ : E(G) → E(H) is cycle-

continuous if the pre-image of each binary cycle of H is a binary cycle of G.

When G and H are cubic and additionally H is cyclically 4-edge-connected, G

79
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has a cycle-continuous mapping to H if and only if G has an H-coloring. This

leads to the first alternate formulation of the Petersen coloring conjecture.

Theorem 6.2 (e.g. [1]). A cubic graph has a Petersen-coloring if and only if

it has a cycle-continuous mapping to the Petersen graph.

However, the studies on cycle-continuous mapping make no progress on

solving the Petersen coloring conjecture so far.

As already mentioned in Section 3.4, Fan-Raspaud conjecture is equivalent

to the 4-line Fano-coloring conjecture. Surprisingly, all the three conjectures

(the Petersen coloring conjecture, Berge-Fulkerson conjecture and 5-CDCC)

can be reformulated in the form similar as Fano-coloring, proved in [40].

Consider Cremona-Richmond configuration Gcr, which has 15 points and

15 lines, as drawn in Figure 6.1. A CR-coloring of a graph G is a mapping

from E(G) to the points of Gcr such that any three mutually adjacent edges

of G are mapped to three vertices of Gcr that lie in a line.

{1,2}

{1,3}

{1,4}

{1,5}

{1,6}

{4,6}

{2,5}

{3,6}

{2,4}

{3,5}

{2,6}

{2,3}

{3,4}
{4,5}

{5,6}

Figure 6.1: Cremona-Richmond configuration with {i, j} labelling

Theorem 6.3 ([40]). A cubic graph has a Berge-Fulkerson cover if and only

if it has a CR-coloring.



6.1 Petersen coloring conjecture 81

The truth of this theorem easily follows from a labelling of Cremona-

Richmond configuration by {i, j} with 1 ≤ i < j ≤ 6, as shown in Figure 6.1.

Here, we give another labelling of Cremona-Richmond configuration which

yields that every CR-coloring is a CR-flow, that is, the flow values around

a vertex sum up to zero. Such a labelling takes 15 non-zero elements of Z4
2,

depicted in Figure 6.2.

0001

1111

1000

1010

1100

0100

1011

0011

1001

0101

1101

1110

0111
0010

0110

Figure 6.2: Cremona-Richmond configuration with Z4
2-labelling and with Lcr

in dotted line

Let Lcr be a set of 10 lines obtained from the lines of Gcr by removing 5

pairwise disjoint lines. The dotted lines in Figure 6.2 indicate an example of

Lcr.

Theorem 6.4 ([40]). A cubic graph has a Petersen-coloring if and only if it

has a CR-coloring using lines from Lcr.

From the previous two theorems, it is easy to see again that the Petersen

coloring conjecture implies Berge-Fulkerson conjecture.

A Desargues-coloring is defined in the same way as we define a CR-coloring

except that Desargues configuration (see Figure 6.3) substitutes for Cremona-

Richmond configuration.
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{2,3}

{1,2}

{1,3}

{1,4}

{2,4}

{2,5}

{1,5}

{4,5}

{3,5}

{3,4}

Figure 6.3: Desargues configuration

Theorem 6.5 ([40]). A cubic graph has a 5-cycle double cover if and only if

it has a Desargues-coloring.

Unfortunately, the studies on CR-colorings make no progress on solving the

Petersen coloring conjecture either. Here, we focus on the third alternative

formulation of the Petersen coloring conjecture, in terms of normal 5-edge-

coloring.

6.2 Normal 5-edge-coloring

Let G be a cubic graph and φ : E(G) → {1, 2, . . . , 5} be a proper 5-edge-

coloring. An edge e is poor (or rich) if e together with its four adjacent edges

uses precisely 3 (or 5) colors in total. An edge is normal if it is either rich

or poor, and is abnormal otherwise. A normal 5-edge-coloring is a proper

5-edge-coloring such that each edge is normal. Jaeger showed the equivalence

between Petersen-colorings and normal 5-edge-colorings of a cubic graph.

Theorem 6.6 ([28]). A cubic graph has a Petersen-coloring if and only if it

has a normal 5-edge-coloring.

A possible minimal counterexample to the Petersen coloring conjecture is

characterized in the literature. Jaeger [29] proved that it must be a cyclically

4-edge-connected snark. By learning normal 5-edge-coloring of cubic graphs,

Hägglund and Steffen [21] showed that the minimal counterexample does not

contain K∗3,3 as a subgraph (see Figure 6.4 for K∗3,3).
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Figure 6.4: The graph K∗3,3

A few classes of cubic graphs have been confirmed to have a normal 5-

edge-coloring and thus a Petersen-coloring as well. In [21] it also showed that

a cubic graph G has a normal 5-edge-coloring if G is a flower snark or a

Goldberg snark or a generalized Blanuša snark of type 1 or 2. With the aid

of computer, Brinkmann et al. [2] tested the Petersen coloring conjecture on

cubic graphs of small order, and showed that every cubic graph of order no

more than 36 has a normal 5-edge-coloring. However, no further results were

obtained as far as we know.

6.3 Partially-normal 5-edge-coloring

Considering that a normal 5-edge-coloring requires each edge to be normal,

Šámal [71] presented a weaker problem approximate to the Petersen coloring

conjecture, that is, to search for a proper 5-edge-coloring such that the normal

edges are as much as possible. Here, such a coloring is called a partially-normal

5-edge-coloring. Later on, B́ılková proved that a generalized prism has a prop-

er 5-edge-coloring with two third of the edges normal ([1], Theorem 2.3) and

a cubic graph of large girth has a proper 5-edge-coloring with approximately

half of the edges normal ([1], Theorem 3.6). In the rest of this section, we show

that for every bridgeless cubic graph, there exists a proper 5-edge-coloring such

that almost all the edges are normal. More precisely, we prove the following

theorem.
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Theorem 6.7. Every bridgeless cubic graph G has a proper 5-edge-coloring

such that at least |E(G)| − µ3(G) many edges are normal.

The proof of this theorem will be done by constructing such a proper 5-

edge-coloring with the help of the structural properties on cores. First of all,

we need some definitions and lemmas.

6.3.1 Useful definitions and lemmas

Let G be a cubic graph. If C is a circuit of G, then 〈C〉 denotes the set of

edges not on C but having at least one end on C. Analogously, if P is a path

of G with ends x and y, then 〈P 〉 denotes the set of edges not on P but having

at least one end on P − x− y. If H is a set of vertex-disjoint circuits or paths

of G, then define that 〈H〉 =
⋃
h∈H〈h〉.

Let G be a cubic graph and X ⊆ E(G). Let ψ : X → {1, . . . , 5} be a

proper edge-coloring of G[X]. A circuit C of G is ψ-extendable if the following

three items hold: (i) E(C) ∩X = ∅; (ii) ψ(e) ∈ {1, 2, 3} for e ∈ 〈C〉 ∩X; (iii)

we can assign E(C) ∪ 〈C〉 \X with colors from {1, 2, 3} so that the resulting

coloring remains proper. Applying the third item is called ψ-extending C as

well. We define a path P to be ψ-extendable and define ψ-extending P in

exactly the same way (only with C replaced by P ).

Let G be a cubic graph and X ⊆ E(G). Let ψ : X → {1, . . . , 5} be a proper

edge-coloring of G[X]. Let v be an end of an edge e. Let Y = {ψ(h) : h ∈

X ∩ E(v)}, i.e., Y is the set of colors around v. The edge e is ψ-good on v if

either Y = {1, 2, 3} or Y = {4, 5} and e /∈ X. Let H be a subgraph of G of

minimum degree 2. Define Eψ(H) to be the set of vertices v of H such that

dH(v) = 2 and the unique edge in E(v) \ E(H) is not ψ-good on v. If ψ is

clear from the context, we write E(H) for short.

Let Gc be a core of a cubic graph G with respect to three 1-factors

M1,M2,M3. The major-coloring of G with respect to M1,M2,M3 (or to

Gc) is a mapping φ : E(G) \ E(Gc) → {1, 2, 3} defined as φ(e) = i for each

e ∈ (E(G) \ E(Gc)) ∩Mi. A string P of Gc is a subgraph of Gc consisting

of distinct odd circuits C0, C1, . . . , Ck of G[E0 ∪ E2] and edges e1, . . . , ek of
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E3 such that each ei connects a vertex ui of Ci−1 to a vertex vi of Ci. Such

a string is denoted by C0e1C1 . . . ekCk or C0(u1v1)C1 . . . (ukvk)Ck. The two

circuits C0 and Ck are called end-circuits of P , and the remaining circuits are

called middle-circuits of P .

Let Gc be a core of a cubic graph G and φm be the major-coloring of

G with respect to Gc. Let P 1, . . . , P s be pairwise disjoint strings of Gc by

notation P j = Cj0(uj1v
j
1)Cj1 . . . (u

j
tj
vjtj )C

j
tj

. Denote by H3 the union of all the

odd circuits of G[E0 ∪ E2] not contained in any of these strings. For each

end-circuit Cji , denote by pji the longest φm-extendable path of Cji with an

end-vertex of notation either uj1 or vjtj . The union of the strings P 1, . . . , P s is

a wave if the following two items hold:

(1) Each middle-circuit Cji contains a φm-extendable path pji between vji and

uji+1.

(2) Let p consist of all the paths of notation pji from each circuit of the strings,

and let H ′3 consist of H3 and p. For any two distinct components q1, q2 of

H ′3, we have 〈q1〉 ∩ 〈q2〉 ∩ E3 = ∅.

Such a wave is denoted by P 1 + . . .+ P s.

Lemma 6.8. Let Gc be a core of a bridgeless cubic graph G. If Gc has a

string, then it has a wave.

Proof. We construct such a wave W by an algorithm.

Let φm be the major-coloring of G with respect to Gc, and let H = G[E0∪

E2]. Since Gc has a string, say s. Take any two consecutive circuits Cu and

Cv of s. Denote by e an edge of the string that connects a vertex u of Cu to a

vertex v of Cv. Initialize W to be a graph consisting of Cu, Cv and e. Let P

be a set which will collect φm-extendable paths. Initialize P to be an empty

set.

If there exists u 6= w ∈ V (Cu) such that Cu has a φm-extendable path p

between u and w, and that H has an odd circuit Cx not contained in W and a

vertex x of Cx with wx ∈ E3, then take such a vertex w so that the length of p
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is minimum, let W include x and Cx, add p into P , and repeat the argument

with x and Cx instead of u and Cu respectively until no such w exists any

more.

Repeat the argument above with v and Cv instead of u and Cu, respectively.

Now the first string of W is completed.

If Gc has a string disjoint with W , then by applying the same argument

on this string as on s, we get the second string of W . Repeat this until Gc has

no strings disjoint with W .

Now the construction of W is completed. Clearly, W consists of pairwise

disjoint strings. From the algorithm itself, we can see that Property (1) of the

wave definition holds for W . By the minimality of the length of each element

of P , Property (2) holds for W as well. Therefore, W is a wave.

Let Gc be a core of a cubic graph G. Let D be a circuit of G[E0 ∪ E2].

Define σ(D) to be the number of vertices of D incident with an edge from E3.

Note that σ(D) ≥ |〈D〉∩E3|. Define Ω(Gc) = {C : C is a circuit of G[E0∪E2]

such that σ(C) = 1 and |E(C)| ≤ 5}. Let C1, C2 ∈ Ω(Gc). Clearly, C1 and

C2 are vertex-disjoint. Let X ⊆ E(G) and ψ : X → {1, . . . , 5} be a proper

edge-coloring of G[X]. C1 and C2 are ψ-connected if G has a path uvwx such

that ψ(uv), ψ(vw), ψ(wx) ∈ {4, 5} and that v and w are incident with the edge

of 〈C1〉∩E3 and the edge of 〈C2〉∩E3, respectively. C1 and C2 are ψ-adjacent

if there is an edge from E1 connecting a vertex of C1 to a vertex of C2.

Let X be a set of edges of a cubic graph G, and let ψ : X → {1, . . . , 5}

be a 5-edge-coloring of G[X]. An edge e of G is ψ-inner if e together with its

adjacent edges belongs to X; otherwise, e is called ψ-outer. Let Gc be a core

of G. Define θGc,ψ as a function on E(G) given by

for each ψ-inner edge e, θGc,ψ(e) =


1 if e ∈ E0 and e is normal,

−1 if e /∈ E0 and e is abnormal,

0 otherwise;
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and for each ψ-outer edge e, θGc,ψ(e) =


0 if e ∈ E0,

−1 if e /∈ E0.

If Gc and ψ are clear from the context, we write θ for short. Moreover, for

X ⊆ E(G), define θ(X) =
∑

x∈X θ(x). We write θ(H) short for θ(E(H)) for

a subgraph H of G.

A direct consequence of the function θ is the following lemma.

Lemma 6.9. Let Gc is a k-core of a cubic graph G. If ψ : E(G)→ {1, . . . , 5}

is a 5-edge-coloring of G, then G has k − θ(G) abnormal edges.

6.3.2 Proof of Theorem 6.7

Trivially, the theorem holds true for 3-edge-colorable cubic graphs. We may

assume that G is not 3-edge-colorable. Let Gc be a µ3(G)-core of G with

respect to three 1-factors M1,M2,M3, and let φm be the major-coloring of

G with respect to Gc. Let H = G[E0 ∪ E2] and denote by H1 the graph

consisting of all the even circuits of H. If Gc has a string, then it has a wave

W by Lemma 6.8, denote by H2 the graph consisting of all the odd circuits

of H that are contained in W ; otherwise, to be convenient, we say that W

and H2 are empty graphs. Let H3 = H −H1 −H2. We will extend φm to a

proper 5-edge-coloring φ′m of G by coloring H1, H2, H3 in order (meanwhile,

some edges in E3 may receive colors) and finally coloring all the uncolored

edges in E3. By Lemma 6.9, to show that the final coloring φ′m yields at most

µ3(G) edges abnormal, it suffices to prove θGc,φ′m(G) ≥ 0. In what follows,

since Gc is fixed and we always consider the current coloring extended from

φm, we write θ and E , briefly. Let K be a set with initial value an empty

set. We will use K to collect subgraphs of G which receive colors during the

extension of φm.

For each circuit C of H1, assign E(C) with colors 4 and 5 alternately

along C. For each e ∈ E(C), by the definition of the function θ, if e ∈ E0 then

θ(e) ≥ 0. If e ∈ E2, then e is adjacent to two edges of the same color from
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{1, 2, 3}, so e is poor yielding θ(e) = 0. Therefore, θ(C) ≥ 0 = |E(C)|. Add C

into the set K.

To describe the structure of the wave W , we use the same notations as

in the definition of a wave. By Property (1) in the definition of a wave, each

component of p is φm-extendable; and by Property (2), there is no uncolored

edge with ends in two distinct components of p. Moreover, since no two edges

from E3 are adjacent, there is no uncolored path of length 2 with ends in two

distinct components of p. Therefore, we can φm-extend the components of p

one by one. The remaining part of W are disjoint paths. We can properly

color their edges with the colors 4 and 5 alternately along each path. Add

each string of W into K.

Claim 6.9.1. For each string P j of W , we have θ(P j) ≥ 2 = |E(P j)|.

Proof. Let tj = d. Clearly, the paths pj0, . . . , p
j
d together with the edges

uj1v
j
1, . . . , u

j
dv
j
d form a path, say Q′. Denote by a, b, c, a′, b′, c′ the edges incident

with an end of Q′ such that a, a′ ∈ E(Q′) and b, b′ /∈ E(P j) and a, b, c ∈ E(Cj0).

From the coloring of P j , we can easily see that E(P j) = {b, b′}.

Let Q = P j − E(Q′) − c − c′. For each q ∈ E(Q), we have q ∈ E0 ∪ E2.

Again, by the definition of the function θ, if q ∈ E0 then θ(q) ≥ 0; and if

q ∈ E2 then q is adjacent to two edges of the same color from {1, 2, 3}, so q is

poor yielding θ(q) = 0. Therefore, θ(Q) ≥ 0.

We will prove that, if d ≥ 1 then θ(pji )+θ(ujiv
j
i ) ≥ 1 for each i ∈ {1, . . . , d−

1}. Since each edge of pji is either rich or poor, θ(pji ) = |E(pji ) ∩ E0|. Since

θ(ujiv
j
i ) ≥ −1, the conclusion holds true, provided that |E(pji ) ∩ E0| ≥ 2.

Hence, we may next assume that |E(pji ) ∩ E0| ≤ 1. By the existence of ujiv
j
i

and uji+1v
j
i+1, the path pji is just an edge from E0. So we could choose the

φm-extension of pji so that ujiv
j
i is poor. The conclusion holds as well.

We next show that θ(c) + θ(pj0) ≥ 1, while the equality holds only if Cj0 is

a triangle. To do so, we distinguish two cases.

Case 1: assume that c is not incident with uj1. By the length maximality

of pj0 given in the definition of a wave, all the colors 1, 2, 3 appear on the
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adjacent edges of c, yielding that c is rich and c ∈ E0. Thus, θ(c) = 1.

Moreover, since each edge of pj0 is either rich or poor except the edge a, we

have θ(pj0) = |E(pj0) ∩ E0| − 1. Therefore, θ(c) + θ(pj0) = |E(pj0) ∩ E0|. By

again the length maximality of pj0, we can deduce that 〈pj0 ∪ c〉 uses at least

two kinds of colors. It follows that |E(pj0) ∩ E0| ≥ 2 and so, θ(c) + θ(pj0) ≥ 2.

Case 2: assume that c is incident with uj1. Now c and pj0 together form

the circuit Cj0 . Notice that both a and c might be neither rich nor poor. We

have θ(c) + θ(pj0) ≥ |E(Cj0) ∩ E0| − 2. Hence, the conclusion holds, provided

that |E(Cj0)∩E0| ≥ 4. We may next assume that |E(Cj0)∩E0| ≤ 3. It follows

that Cj0 is of length either 5 or 3. If Cj0 is of length 5, then |E(Cj0) ∩E0| = 3.

Without loss of generality, see Figure 6.5 for the coloring of Cj0 ∪ 〈C
j
0〉, which

yields θ(c) + θ(pj0) = 2, we are done. We may assume that Cj0 is of length 3,

Figure 6.5: A coloring of 〈Cj0〉 ∪ E(Cj0) in two cases. Case 1 (left): 〈pj0〉 uses

one color; case 2 (right): 〈pj0〉 uses at least two colors.

i.e., it is a triangle. If |E(Cj0) ∩ E0| = 3, then θ(c) + θ(pj0) ≥ 1, we are done.

Hence, we may assume that |E(Cj0) ∩E0| = 2. Without loss of generality, see

Figure 6.6 for the coloring of Cj0 ∪ 〈C
j
0〉, which yields θ(c) + θ(pj0) = 1, we are

done as well.

Similarly, we can prove that θ(c′)+θ(pjd) ≥ 1, while the equality holds only

if Cjd is a triangle.

Now we are ready to calculate θ(P j), given by θ(P j) = θ(Q)+
∑d−1

i=1 (θ(pji )+

θ(ujiv
j
i ))+(θ(c)+θ(pj0))+(θ(c′)+θ(pjd))+θ(u

j
dv
j
d) ≥ 0+(d−1)+1+1−1 = d ≥ 1,

while the equality holds only if d = 1 and both Cj0 and Cjd are triangles. Hence,

to prove θ(P j) ≥ 2, it suffices to consider the equality case. Without loss of
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Figure 6.6: A coloring of Cj0 .

generality, see the coloring of Cj0 and Cjd in Figure 6.7, from which we can

calculate that θ(P j) ≥ 2. We are done with the proof of the claim.

Figure 6.7: A coloring of P j in equality case.

The circuits of H3 can be divided into two parts H ′3 and H ′′3 so that Ω(Gc)

contains all the circuits of H ′′3 but none of H ′3. We will color H ′3 and H ′′3 in

order.

For each circuit C of H ′3, we add C into K, and we will color E(C) so that

θ(C) ≥ |E(C)|. Property (2) in the wave definition implies that all the edges

of 〈C〉 ∩E3 are still uncolored. Thus, 〈C〉 uses only colors from {1, 2, 3}. If C

is φm-extendable, then φm-extend C and consequently, θ(C) = |E(C)∩E0| ≥

0 = |E(C)|. Let us next assume that C is not φm-extendable. Since C is of

odd length, σ(C) is odd. Take the longest φm-extendable path q on C such

that E3 ∩ 〈q〉 6= ∅. Denote by e1 and e2 the two end-edges of q and by e′i

the edge of E(C) \ E(q) that is adjacent to ei for i ∈ {1, 2}. Since C is not

φm-extendable, |E(C) \ E(q)| ≥ 1. We distinguish three cases.

Case 1: assume that |E(C) \ E(q)| > 1. We φm-extend q and assign

E(C) \ E(q) with colors 4 and 5 alternately. By the choice of q, all of the

colors 1, 2, 3 appear on the adjacent edges of e′1, yielding that e′1 is rich and

belongs to E0. Thus θ(e′1) = 1. Similarly, we can deduce that θ(e′2) = 1.
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Moreover, since E3 ∩ 〈q〉 6= ∅, it follows that |E(q) ∩ E0| ≥ 2. Hence, θ(C) ≥

|E(q) ∩ E0|+ θ(e′1) + θ(e′2) + θ(e1) + θ(e2) ≥ 2 = |E(C)|.

Case 2: assume that |E(C) \E(q)| = 1 and |E(C) ∩E0| ≥ 5. In this case,

e′1 and e′2 are the same edge. We φm-extend q and assign e′1 with the color 4.

So, θ(C) ≥ |E(C) ∩ E0| − 3 ≥ 2 = |E(C)|.

Case 3: assume that |E(C) \ E(q)| = 1 and |E(C) ∩ E0| ≤ 4. It follows

that σ(C) ∈ {1, 3}. If σ(C) = 3, then C is of length either 3 or 5, in both cases

C is φm-extendable, a contradiction. Hence, σ(C) = 1. Let E3 ∩ 〈C〉 = {f}.

Recall that f is uncolored. Since C /∈ Ω(Gc), we have |E(C)| ≥ 7. Recall that

|E(C)|
2 ≤ |E(C) ∩ E0| ≤ 4 and that C is of odd length, thus |E(C)| = 7. We

proceed in two subcases according to the colors 〈C〉 receives.

Subcase 3.1: assume that 〈C〉 uses at most two kinds of colors from

{1, 2, 3}, say the colors 1 and 2. Assign f with the color 3 and its two adja-

cent edges on C with the colors 4 and 5. The remaining edges of C can be

properly assigned with colors from {1, 2, 3}. One can directly calculate from

the coloring that θ(C) ≥ 2 = |E(C)|.

Subcase 3.2: assume that 〈C〉 uses all the colors 1, 2, 3. Without loss of

generality, see the left of Figure 6.8 for the coloring of 〈C〉. We extend the

coloring to E(C) and f as depicted in the right of Figure 6.8. By direct

calculation, θ(C) ≥ 2 = |E(C)|.

Figure 6.8: A coloring of the circuit C for subcase 3.2

To complete the coloring of H, it remains to color the edges of H ′′3 . Let

φ2 be the current coloring extended from φm. We will do it by coloring first

all pairs of uncolored φ2-connected circuits and then all pairs of uncolored

φ2-adjacent circuits and finally the remaining uncolored circuits of H ′′3 .
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Let C ′ and C ′′ be a pair of uncolored φ2-connected circuits of H ′′3 . Say

that C ′ = [u′1 . . . u
′
k′ ] and C ′′ = [u′′1 . . . u

′′
k′′ ] with u′1x

′, u′′1x
′′ ∈ E3. Clearly,

k′, k′′ ∈ {3, 5}. Let y′ and y′′ be the third neighbors of u′2 and u′′2, respectively.

By Property (2) of the wave definition, u′1x
′ and u′′1x

′′ are uncolored. Assign

them with the color of x′x′′. Choose α ∈ {1, 2, 3} \ {φm(u′2y
′), φm(u′′2y

′′)},

and with the color α we assign u′1u
′
2 and u′′1u

′′
2 and reassign x′x′′. Let φ1 be

the resulting coloring. Next, φ1-extend the longest φ1-extendable path on C ′

starting from u′2 and do the same to C ′′. Finally, properly assign the remaining

edges of C ′ and of C ′′ with colors from {4, 5}.

If x′x′′ ∈ E(W ), then let Cx be the string of W containing x′x′′; otherwise,

x′x′′ is contained in a circuit of H1 ∪H ′3, and let Cx be this circuit. Let C be

the graph consisting of Cx, the circuits C ′ and C ′′, and the edges u′1x
′ and

u′′1x
′′. We substitute Cx for C in the set K and will show that θ(C) ≥ |E(C)|.

We first prove that θ(C ′), θ(C ′′) ≥ 1. Recall that k′ ∈ {3, 5}. If k′ = 3,

then without loss of generality, see Figure 6.9 for the coloring, which yields

θ(C ′) ≥ 1. If k′ = 5, then 〈C ′〉 uses either one or two kinds of colors from

{1, 2, 3}. Without loss of generality, see Figure 6.10 for the coloring in three

cases. In each case, we can calculate that θ(C ′) ≥ 1. Similarly, we can prove

θ(C ′′) ≥ 1.

Figure 6.9: A coloring of C ′ of length 3

Denote by a and b the values of θ(Cx) and |E(Cx)| before C ′ ∪C ′′ receives

colors, respectively. We already have the conclusion that a ≥ b. Note that

x′u′1 and x′′u′′1 are uncolored edges before C ′ ∪ C ′′ receives colors. By the

definition of the function θ, the coloring of C ′∪C ′′ does not decrease the value

θ of x′x′′ and of its two adjacent edges locating on Cx, and does make x′u′1
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Figure 6.10: A coloring of C ′ of length 5

and x′′u′′1 poor. It follows that θ(Cx) ≥ a and θ(x′u′1) = θ(x′′u′′1) = 0. Thus,

θ(C) = θ(Cx) + θ(C ′) + θ(C ′′) + θ(x′u′1) + θ(x′′u′′1) ≥ a + 2. Moreover, E(C)

contains two more edges than E(Cx), one in 〈C ′〉 and the other in 〈C ′′〉. Hence,

|E(C)| = b+ 2. Now we can see that θ(C) ≥ |E(C)|.

Let C ′ and C ′′ be a pair of uncolored φ2-adjacent circuits of H3. Choose

an edge e ∈ 〈C ′〉 ∩ 〈C ′′〉 ∩ E1. Let C be the graph consisting of C ′, C ′′ and

e. Add C into K. If there exists β ∈ {1, 2, 3} such that β has not been used

by 〈C ′〉 ∩ 〈C ′′〉, then reassign e with color β and consequently, C ′ and C ′′ are

φ2-extendable. So we φ2-extend them, giving θ(C) = |E(C)∩E0| ≥ 0 = |E(C)|.

If such β does not exist, then we can deduce that both C ′ and C ′′ are of length

5. Reassign e with the color 4 and consequently, C ′ and C ′′ are φ2-extendable.

So we φ2-extend them, giving θ(C) ≥ |E(C) ∩ E0| − 5 = 1 > |E(C)|.
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Let T be the remaining uncolored circuit of H ′′3 . To complete the coloring

φ′m of the whole graph G, we will first color all the uncolored edges in E3 \〈T 〉,

and then color T and E3 ∩ 〈T 〉.

For each uncolored edge e of E3\〈T 〉, all the edges adjacent to e are already

colored. We assign e with a color different from the colors of its adjacent edges.

Let T ′ = T + 〈T 〉 and let T ′ be the complement of T ′ in G. We will show

that θ(T ′) ≥ 0. We already get the conclusion that θ(k) ≥ |E(k)| for each

element k of K. Let K be the graph formed by the union of all the elements of

K. Since the elements of K are pairwise disjoint, θ(K) =
∑

k∈K θ(k). However,

for k1, k2 ∈ K, the sets E(k1) and E(k2) may have common elements. Hence,

|E(K)| ≤
∑

k∈K |E(k)|. Therefore, θ(K) ≥ |E(K)|. Since the value θ of an

edge is at least -1, it follows that θ(K) + θ(E(K)) ≥ 0.

Let e be an edge of T ′ − E(K) − E(K). Let φ3 be the current coloring

extended from φm. Note that all the edges of color 4 or 5 locate on K. Since

e /∈ E(K) ∪ E(K), the edge e is φ3-good on both ends, yielding θ(e) ≥ 0.

Hence, θ(T ′ − E(K)− E(K)) ≥ 0. Now we can get that θ(T ′) ≥ 0.

It remains to color T and E3 ∩ 〈T 〉. For each circuit C of T , we will color

C so that θ(T ′) + θ(C) + θ(〈C〉) ≥ 0. Let φ4 be the current coloring extended

from φm. Say that C is of length k and of vertices u1, . . . , uk in cyclic order.

For 1 ≤ i ≤ k, denote by vi the neighbor of ui not on C. Since C ∈ Ω(Gc),

k ∈ {3, 5} and the set 〈C〉 ∩ E3 contains exactly one edge, say e = u1v1.

Let e1 and e2 be the other two edges incident with v1. By Property (2) of

the wave definition, u1v1 is uncolored, and e1 and e2 are of colors 4 and 5.

If e1 is adjacent to an uncolored edge e′ rather than e, then e′ ∈ E3 ∪ 〈C ′〉

for some C ′ ∈ T , yielding that C and C ′ are φ2-connected circuits of T , a

contradiction. Hence, e is the only uncolored edge adjacent to e1 or e2. Let

γi be the color making ei either rich or poor if e receives it. Such γi always

exists and γi ∈ {1, 2, 3}. Recall that k ∈ {3, 5}. We distinguish three cases.

Case 1: k = 3. Clearly, 〈C〉 uses one same color, say color 1.

Subcase 1.1: assume that at least one of γ1 and γ2 is not color 1, say

γ1 = 2. Assign the edges e, u1u2, u2u3, u3u1 with colors 2, 4, 3, 5, respectively.
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Since the coloring of e makes e1 from a φ4-outer edge to a rich edge, it increases

the value θ(e1) (and thus, the value θ(T ′)) by 1. Moreover, we can calculate

that θ(C) + θ(〈C〉) ≥ −1. Therefore, θ(T ′) + θ(C) + θ(〈C〉) ≥ 0.

Subcase 1.2: assume that γ1 = γ2 = 1.

Subcase 1.2.1: assume that not both v2 and v3 are incident with edges

of color 2 and of color 3. Without loss of generality, let v2 be incident with

no edges of color 2. Reassign u2v2 with color 2 and consequently, we can φ4-

extend C. We can calculate that θ(C)+θ(〈C〉) = 2. Let h1 and h2 be the edges

other than u2v2 that are incident with v2. Since T contains no φ2-connected

circuits, h1, h2 ∈ T ′. Hence, reassigning u2v2 decreases the value θ(h1)+θ(h2)

(and thus, the value θ(T ′)) by at most 2. Therefore, θ(T ′)+θ(C)+θ(〈C〉) ≥ 0.

Subcase 1.2.2: assume that both v2 and v3 are incident with edges of color

2 and of color 3. Reassign v2u2 and v3u3 with color 4 and color 5, and assign

u1u2, u2u3, u1u3, e with colors 5, 1, 4, 1, respectively. We decrease by at most

1 the value θ of each of the other four edges adjacent to u2v2 or to u3v3, and

increase by 1 the value θ of both e1 and e2. Moreover, θ(C) + θ(〈C〉) = 2.

Therefore, θ(T ′) + θ(C) + θ(〈C〉) ≥ 0.

Case 2: k = 5 and 〈C〉 uses one same color, say color 1.

Subcase 2.1: assume at least one of γ1 and γ2 is not color 1, say γ1 =

2. Assign e, u1u2, u2u3, u3u4, u4u5, u5u1 with 2, 4, 3, 2, 3, 5, respectively. By

similar argument as subcase 1.1, we have θ(T ′) + θ(C) + θ(〈C〉) ≥ 0.

Subcase 2.2: assume that γ1 = γ2 = 1.

Subcase 2.2.1: assume that not both u2v2 and u5v5 have colors 2 and 3

on its adjacent edges, say u2v2 does not have color 2 on its adjacent edges.

Reassign u2v2 with color 2 and consequently, we can φ4-extend C. By similar

argument as subcase 1.2.1, we have θ(T ′) + θ(C) + θ(〈C〉) ≥ 0.

Subcase 2.2.2: assume that both u2v2 and u5v5 have colors 2 and 3 on its

adjacent edges. Reassign u2v2 with color 4 and u1u2 with color 5 and conse-

quently, we can φ4-extend C so that e receives color 1. By similar argument

as subcase 1.2.2, we have θ(T ′) + θ(C) + θ(〈C〉) ≥ 0.
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Case 3: k = 5 and 〈C〉 uses two kinds of colors, say colors 1 and 2. Without

loss of generality, let u2v2 be of color 1. Assign e, u1u2, u2u3, u3u4, u4u5, u5u1

with colors 1, 4, 5, 4, 3, 5, respectively. From the coloring, we can calculate that

θ(C) + θ(〈C〉) ≥ 0. Therefore, θ(T ′) + θ(C) + θ(〈C〉) ≥ 0.

Now we complete the coloring φ′m of G so that θφ′m(G) ≥ 0. We are done

with the proof of the theorem.



Chapter 7

r-graphs

7.1 1-factors and conjectures on r-graphs

Throughout this chapter, we consider r-regular multigraphs. The early study

on r-graphs was proceeded by Seymour [61] in 1979. Let r be an integer with

r ≥ 3. It is defined that G is an r-graph if (1) G is an r-regular graph and,

(2) |∂(X)| ≥ r for each odd X ⊆ V (G).

If an r-regular graph G is r-edge-colorable, then E(G) can be divided into

r pairwise disjoint 1-factors, in this case the structure of G is quite clear.

However, it is a notoriously difficult problem to determine which r-regular

graph is r-edge-colorable. By the definition of r-graphs, we can see that every

r-edge-colorable r-regular graph is an r-graph. This raises interests on the

study of r-graphs. Seymour [61] asked the inverse question that which r-

graph is r-edge-colorable, and proposed several conjectures on it earlier or

later. Here, we mention three of them.

Conjecture 7.1 ([60]). Every planar r-graph is r-edge-colorable.

Conjecture 7.2 (r-graph conjecture [61]). If G is an r-graph, then χ′(G) ≤

r + 1.

Conjecture 7.3 (Generalized Berge-Fulkerson conjecture [61]). Every r-graph

has 2r 1-factors such that each edge is contained in precisely two of them.

97
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Conjecture 7.1 is verified for r ≤ 8. By taking r = 3, this conjecture is

exactly the Four Color Theorem, by Tait’s result on the equivalence between

4-vertex-colorability and 3-edge-colorability for planar cubic graphs.

By Vizing’s theorem, if G is a simple r-graph, then it has chromatic index

at most r + 1. Conjecture 7.2 asserts that the truth holds even for all r-

graphs. This conjecture is one of the central conjectures in the theory of

edge colorings and closely related to other fundamental conjectures on edge-

colorings of multigraphs. This fact motivates the research on the structure

of r-graphs. The conjecture has been verified for r ≤ 15, stepwise by several

authors.

It is easy to see that a cubic graph is bridgeless if and only if it is a

3-graph. Conjecture 7.3 extends Berge-Fulkerson conjecture from 3-graph to

r-graphs for all r ≥ 3, and is called the generalized Berge-Fulkerson conjecture.

Analogous to the cubic case, Mazzuoccolo [50] proved that this conjecture is

equivalent to the following statement, namely generalized Berge conjecture

here.

Conjecture 7.4 (Generalized Berge conjecture [50]). Every r-graph has 2r−1

1-factors such that each edge is contained in at least one of them.

The number “2r − 1” in the conjecture can not be lower, since otherwise

there exists a counterexample, constructed in [50].

So far there are not many results on the structure of r-graphs. By the defi-

nition, an r-graph must have even order. Some basic properties were observed

in [61].

Proposition 7.5 ([61]). Every r-graph has a 1-factor.

Theorem 7.6 ([8],[61]). For any r-graph G, there is a positive integer p such

that G has rp 1-factors and each edge is contained in precisely p of them.

This theorem is a corollary of Edmonds’ matching polytope theorem, and

trivially implies the following proposition.

Proposition 7.7. Let G be an r-graph. For any edge e of G, the graph G has

a 1-factor containing e.
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This proposition implies Proposition 7.5. We show that they can be further

strengthened. Proposition 7.7 can be easily reformulated as: if G is an r-graph

and S is a list of r−1 edges of G that has a common end, then G has a 1-factor

containing none of S. We show in the following theorem that the condition

“that has a common end” is not necessary.

Theorem 7.8. If G is an r-graph and S is a list of r − 1 edges of G, then G

has a 1-factor containing none of S.

We remark that this theorem is an improvement of Theorem 3.15, and the

proof for the former follows from the latter. For the sake of completeness, we

give the proof as follows.

Proof of Theorem 7.8. Suppose to the contrary that every 1-factor of G

intersects with S. Thus, G−S has no 1-factor. Let G′ = G−S. By Theorem

3.9, there exists T ∈ V (G′) such that o(G′ − T ) > |T |. Since every r-graph

has even order, in particular for G, it follows that o(G′ − T ) and |T | have the

same parity. Hence,

o(G′ − T ) ≥ |T |+ 2. (7.1)

Let O1, . . . , Ok be the odd components and Ok+1, . . . , Ok+s be the even

components of G′−T . For each i ∈ {1, . . . , k+s}, let ai and bi be the number

of edges of S joining Oi respectively to T and to some other component Oj

and let mi be the number of edges of G′ joining Oi to T .

The total number of edges going out of Oi is ai + bi + mi. Since G is an

r-graph, for i ∈ {1, . . . , k}, we have ai + bi +mi ≥ r. Hence,

k∑
i=1

ai +
k∑
i=1

bi +
k∑
i=1

mi ≥ kr. (7.2)

Moreover, since S is of size r − 1, we have

2

k+s∑
i=1

ai +

k+s∑
i=1

bi ≤ 2(r − 1). (7.3)
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Since the total number of edges going out of T must be at most
∑

v∈T dG(v),

we have
k+s∑
i=1

ai +

k+s∑
i=1

mi ≤
∑
v∈T

dG(v) = r|T |. (7.4)

Add the inequalities 7.3 and 7.4, we thereby obtain

3
k+s∑
i=1

ai +
k+s∑
i=1

bi +
k+s∑
i=1

mi ≤ r(|T |+ 2)− 2. (7.5)

Since the left of 7.2 is less than the left of 7.5, we have kr < r(|T |+ 2)− 2 <

r(|T |+ 2). This gives k < |T |+ 2, contradicting the inequality 7.1. �

Further results on r-graphs were obtained by Rizzi [57], who construct-

ed r-graphs with specific properties in terms of 1-factors to disprove some

conjectures of Seymour.

An approach to the solution to the generalized Berge conjecture (hence, to

the generalized Berge-Fulkerson conjecture) is to look for the minimum con-

stant c such that every r-graph has c 1-factors whose union is E(G). However,

it is even open whether such c exists.

Here, we follow another approach by asking such a question: at least how

many edges we can cover by 2r − 1 1-factors for every r-graph, and more

general by k 1-factors for every k? This question will be treated on in the

next section.

7.2 Union of 1-factors in r-graphs

The results of this section have already been published in [31].

Given an r-graph G, let F be the set of 1-factors in G. Fix a positive

integer k. Define

m(r, k,G) = max
M1,...,Mk∈F

|
⋃k
i=1Mi|
|E(G)|

,

and

m(r, k) = inf
G
m(r, k,G),
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where the infimum is taken over all r-graphs. The parameter m(r, k,G) is

the maximum fraction of the edges covered by k 1-factors in an r-graph G.

Clearly, m(r, k) ≤ m(r, k + 1) ≤ 1. Conjecture 7.4 can be reformulated as

follows:

Conjecture 7.9. m(r, 2r − 1) = 1 for every integer r with r ≥ 3.

By Theorem 7.6, the following lower bound for m(r, k) can be easily ob-

tained.

Theorem 7.10. m(r, k) ≥ 1− ( r−1
r )k for every positive integers r and k with

r ≥ 3.

Proof. The proof is by induction on k. Since every r-graph has a 1-factor,

which covers fraction 1
r of the edges, the proof is trivial for k = 1. We proceed

to the induction step. Let G be an r-graph and E = E(G). By the induction

hypothesis, G has k − 1 many 1-factors M1, . . . ,Mk−1 such that

|
⋃k−1
i=1 Mi|
|E|

≥ 1− (
r − 1

r
)k−1. (7.6)

Moreover, by Theorem 7.6, there exist a positive integer p such that G has

rp 1-factors F1, . . . , Frp and each edge is contained in precisely p of them. It

follows that for every X ⊆ E, graph G has a 1-factor F among F1, . . . , Frp

such that |F ∩ X| ≥ |X|
r . In particular, let X = E \

⋃k−1
i=1 Mi and Mk = F .

Thus,

|Mk ∩ (E \
k−1⋃
i=1

Mi)| ≥
|E \

⋃k−1
i=1 Mi|
r

. (7.7)

Since the left side equals to |
⋃k
i=1Mi|− |

⋃k−1
i=1 Mi|, dividing the inequality by

|E| yields

|
⋃k
i=1Mi| − |

⋃k−1
i=1 Mi|

|E|
≥ 1

r
(1−

|
⋃k−1
i=1 Mi|
|E|

) ≥ 1

r
(
r − 1

r
)k−1, (7.8)
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where the last inequality follows from inequality 7.6. Therefore, by summing

up formulas 7.6 and 7.8, we obtain

|
⋃k
i=1Mi|
|E|

≥ 1− (
r − 1

r
)k,

and so m(r, k) ≥ 1− ( r−1
r )k by the choice of G.

By a similar argument as for this theorem, one can deduce the following

observation.

Observation 7.11. If the generalized Berge-Fulkerson conjecture is true, then

for every integers r and k with r ≥ 3 and 1 ≤ k ≤ 2r − 1,

m(r, k) ≥ 1−
k∏
i=1

2r − 1− i
2r + 1− i

.

Now we are going to improve the lower bound of m(r, k) given in Theorem

7.10. The following theorem is the main result in this chapter.

Theorem 7.12. Let r and k be two positive integers with r ≥ 3. The following

two statements hold true:

(1) if r is even, then

m(r, k) ≥ 1−
k∏
i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)
;

(2) if r is odd, then

m(r, k) ≥ 1−
k∏
i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)
.

For the particular case r = 3, we obtain the result of Kaiser, Král and

Norine [36] and of Mazzuoccolo [48].

The following table partly lists the data calculated according to the for-

mulas in Theorem 7.12 for instance of r and k.



7.2 Union of 1-factors in r-graphs 103

r = 3 r = 4 r = 5

m(r, 2) ≥ 3
5 = 0.6 9

20 = 0.45 13
35 ≈ 0.3714

m(r, 3) ≥ 27
35 ≈ 0.7714 3

5 = 0.6 409
805 ≈ 0.5081

m(r, 4) ≥ 55
63 ≈ 0.873 103

145 ≈ 0.7103 793
1288 ≈ 0.6157

m(r, 5) ≥ 215
231 ≈ 0.9307 344

435 ≈ 0.7908 4621
6601 ≈ 0.7

m(r, 6) ≥ 413
429 ≈ 0.9627 15884

18705 ≈ 0.8492 25283
33005 ≈ 0.766

m(r, 7) ≥ 6307
6435 ≈ 0.9801 138949

155875 ≈ 0.8914 69221
84665 ≈ 0.8176

m(r, 8) ≥ 12027
12155 ≈ 0.9895 2730303

2961625 ≈ 0.9219 1234672
1439305 ≈ 0.8578

m(r, 9) ≥ 45933
46189 ≈ 0.9945 44725797

47386000 ≈ 0.9439 1791791
2015027 ≈ 0.8892

...
...

...
...

Table 7.1: A lower bound for the parameter m(r, k)

7.2.1 The perfect matching polytope

Let G be a graph and w be a vector of RE(G). The entry of w corresponding

to an edge e is denoted by w(e), and for A ⊆ E, we define w(A) =
∑

e∈Aw(e).

The vector w is a fractional 1-factor if it satisfies

(i) 0 ≤ w(e) ≤ 1 for every e ∈ E(G),

(ii) w(∂{v}) = 1 for every v ∈ V (G), and

(iii) w(∂S) ≥ 1 for every S ⊆ V (G) with odd cardinality.

Let F(G) denote the set of all fractional 1-factors of a graph G. If M is a 1-

factor, then its characteristic vector χM is contained in F(G). Furthermore, if

w1, . . . , wn ∈ F(G), then any convex combination
∑n

i=1 αiwi (where α1, . . . , αn

are nonnegative real numbers summing up to 1) also belongs to F(G). It

follows that F(G) contains the convex hull of all the vectors χM where M

is a 1-factor of G. The Perfect Matching Polytope Theorem asserts that the

converse inclusion also holds:

Theorem 7.13 ([8]). For any graph G, the set F(G) coincides with the convex

hull of the characteristic vectors of all 1-factors of G.
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Besides this theorem, the following property on fractional 1-factors is also

needed for the proof of Theorem 7.12.

Lemma 7.14 ([36]). Let w be a fractional 1-factor of a graph G and c ∈ RE(G).

Then G has a 1-factor M such that c · χM ≥ c · w, where · denotes the scalar

product, and |M ∩ C| = 1 for each edge-cut C with odd cardinality and with

w(C) = 1.

7.2.2 Proof of Theorem 7.12

Instead of Theorem 7.12, we prove the following stronger one.

Theorem 7.15. Let G be an r-graph with V = V (G) and E = E(G).

(a) If r is even and r ≥ 4, then for any positive integer k, graph G has k

1-factors M1, . . . ,Mk such that

|
⋃k
i=1Mi|
|E|

≥ 1−
k∏
i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)

and
∑k

i=1 χ
Mi(C) ≤ (r − 1)k + 2 for each (r + 1)-edge-cut C.

(b) If r is odd and r ≥ 3, then for any positive integer k, graph G has k

1-factors M1, . . . ,Mk such that

|
⋃k
i=1Mi|
|E|

≥ 1−
k∏
i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)
,

∑k
i=1 χ

Mi(C) = k for each r-edge-cut C and
∑k

i=1 χ
Mi(D) ≤ rk + 2 for

each (r + 2)-edge-cut D.

Proof. (The proof is by induction on k).

Statement (a). The statement holds for k = 1, since the required M1 can

be an arbitrary 1-factor of G. Assume that k ≥ 2. By the induction hypothesis,

G has k − 1 many 1-factors M1, . . . ,Mk−1 such that

|
⋃k−1
i=1 Mi|
|E|

≥ 1−
k−1∏
i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)
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and
k−1∑
i=1

χMi(C) ≤ (r − 1)(k − 1) + 2 (7.9)

for each (r + 1)-edge-cut C.

For e ∈ E, let n(e) denote the number of 1-factors among M1, . . . ,Mk−1

that contains e, and define

wk(e) =
(r − 2)k − (r − 4)− n(e)

(r2 − 2r − 1)k − (r2 − 4r − 1)
.

We claim that wk is a fractional 1-factor of G, that is, wk ∈ F(G). Since

k ≥ 2, r ≥ 4 and 0 ≤ n(e) ≤ k − 1, we can deduce that 1
r+3 < wk(e) < 1.

Moreover, note that for every X ⊆ E, the equality
∑

e∈X n(e) =
∑k−1

i=1 χ
Mi(X)

always holds and so

wk(X) =
∑
e∈X

wk(e) =
((r − 2)k − (r − 4))|X| −

∑k−1
i=1 χ

Mi(X)

(r2 − 2r − 1)k − (r2 − 4r − 1)
. (7.10)

Thus for v ∈ V , since
∑k−1

i=1 χ
Mi(∂{v}) = k − 1, we have wk(∂{v}) =

((r−2)k−(r−4))r−(k−1)
(r2−2r−1)k−(r2−4r−1)

= 1. Finally, let S ⊆ V with odd cardinality. Since G

is an r-graph, we have |∂S| ≥ r. Recall that wk(e) >
1
r+3 for each edge e.

So, wk(∂S) > 1, provided that |∂S| ≥ r + 3. Hence, we may next assume

that |∂S| ∈ {r + 1, r + 2}. By parity, |∂S| = r + 1. Formula 7.9 implies∑k−1
i=1 χ

Mi(∂S) ≤ (r− 1)(k− 1) + 2. With the help of formula 7.10, we deduce

that wk(∂S) ≥ ((r−2)k−(r−4))(r+1)−((r−1)(k−1)+2)
(r2−2r−1)k−(r2−4r−1)

= 1. This completes the

proof of the claim.

By Lemma 7.14, graph G has a 1-factor Mk such that

(1− χ
⋃k−1

i=1 Mi) · χMk ≥ (1− χ
⋃k−1

i=1 Mi) · wk.
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Since the left side is just |
⋃k
i=1Mi| − |

⋃k−1
i=1 Mi| and the right side equals to

(r−2)k−(r−4)
(r2−2r−1)k−(r2−4r−1)

(|E| − |
⋃k−1
i=1 Mi|), it follows that

|
k⋃
i=1

Mi| ≥
(r2 − 3r + 1)k − (r2 − 5r + 3)

(r2 − 2r − 1)k − (r2 − 4r − 1)
|
k−1⋃
i=1

Mi|+

(r − 2)k − (r − 4)

(r2 − 2r − 1)k − (r2 − 4r − 1)
|E|,

which leads to

|
⋃k
i=1Mi|
|E|

≥ 1−
k∏
i=1

(r2 − 3r + 1)i− (r2 − 5r + 3)

(r2 − 2r − 1)i− (r2 − 4r − 1)
,

as desired.

Moreover, let C be an edge cut with cardinality r + 1. Clearly, χMk(C) ≤

r+1. Thus, if
∑k−1

i=1 χ
Mi(C) ≤ (r−1)(k−1) then

∑k
i=1 χ

Mi(C) ≤ (r−1)k+2, as

desired. Hence, we may assume that
∑k

i=1 χ
Mi(C) > (r−1)(k−1). By formula

7.9 and by parity, we have
∑k−1

i=1 χ
Mi(C) = (r − 1)(k − 1) + 2. We calculate

from formula 7.10 that wk(C) = 1. By Lemma 7.14, we have χMk(C) = 1,

which yields
∑k

i=1 χ
Mi(C) = (r − 1)k − r + 4 < (r − 1)k + 2, as desired. This

completes the proof of statement (a).

Statement (b). Let w1 be a vector of RE defined by w1(e) = 1
r for e ∈

E. Clearly, w1 ∈ F(G). By Lemma 7.14, G has a 1-factor M1 such that

χM1(C) = 1 for each edge cut C with odd cardinality and with w1(C) = 1,

that is, for each r-edge-cut C. Therefore, the statement is true for k = 1.

Assume k ≥ 2. By the induction hypothesis, G has k − 1 many 1-factors

M1, . . . ,Mk−1 such that

|
⋃k−1
i=1 Mi|
|E|

≥ 1−
k−1∏
i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)
,

and for each r-edge-cut C

k−1∑
i=1

χMi(C) = k − 1, (7.11)
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and for each (r + 2)-edge-cut D

k−1∑
i=1

χMi(D) ≤ r(k − 1) + 2. (7.12)

For e ∈ E, let n(e) denote the number of 1-factors among M1, . . . ,Mk−1

that contains e, and define

wk(e) =
(r − 1)k − (r − 3)− 2n(e)

(r2 − r − 2)k − (r2 − 3r − 2)
.

We claim that wk ∈ F(G). Since k ≥ 2, r ≥ 3 and 0 ≤ n(e) ≤ k − 1, we

can deduce that 0 < 1
r+4 < wk(e) < 1. Moreover, note that for every X ⊆ E,

the equality
∑

e∈X n(e) =
∑k−1

i=1 χ
Mi(X) always holds and so

wk(X) =
((r − 1)k − (r − 3))|X| − 2

∑k−1
i=1 χ

Mi(X)

(r2 − r − 2)k − (r2 − 3r − 2)
. (7.13)

Thus for v ∈ V , since
∑k−1

i=1 χ
Mi(∂{v}) = k − 1, we have wk(∂{v}) =

((r−1)k−(r−3))r−2(k−1)
(r2−r−2)k−(r2−3r−2)

= 1. Finally, let S ⊆ V with odd cardinality. Since G

is an r-graph, |∂S| ≥ r. On the other hand, by recalling that wk(e) >
1
r+4

for each edge e, we have wk(∂S) > 1, provided that |∂S| ≥ r + 4. Hence,

we may next assume that r ≤ |∂S| ≤ r + 3. By parity, either |∂S| = r or

|∂S| = r+ 2. In the former case, formula 7.11 implies
∑k−1

i=1 χ
Mi(∂S) = k− 1,

and thus we can calculate from formula 7.13 that wk(∂S) = 1. In the latter

case, formula 7.12 implies
∑k−1

i=1 χ
Mi(∂S) ≤ r(k− 1) + 2 and similarly, we get

wk(∂S) ≥ ((r−1)k−(r−3))(r+2)−2(r(k−1)+2)
(r2−r−2)k−(r2−3r−2)

= 1. This proves the claim.

By Lemma 7.14, graph G has a 1-factor Mk such that

(1− χ
⋃k−1

i=1 Mi) · χMk ≥ (1− χ
⋃k−1

i=1 Mi) · wk.
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Since the left side is just |
⋃k
i=1Mi| − |

⋃k−1
i=1 Mi| and the right side equals to

(r−1)k−(r−3)
(r2−r−2)k−(r2−3r−2)

(|E| − |
⋃k−1
i=1 Mi|), it follows that

|
k⋃
i=1

Mi| ≥
(r − 1)k − (r − 3)

(r2 − r − 2)k − (r2 − 3r − 2)
|E|+

(r2 − 2r − 1)k − (r2 − 4r + 1)

(r2 − r − 2)k − (r2 − 3r − 2)
|
k−1⋃
i=1

Mi|,

which leads to

|
⋃k
i=1Mi|
|E|

≥ 1−
k∏
i=1

(r2 − 2r − 1)i− (r2 − 4r + 1)

(r2 − r − 2)i− (r2 − 3r − 2)
,

as desired.

Moreover, let C be an edge cut of cardinality r. Formula 7.11 implies∑k−1
i=1 χ

Mi(C) = k − 1. On the other hand, We can calculate from formula

7.13 that wk(C) = 1, and thus χMk(C) = 1 by Lemma 7.14. Therefore,∑k
i=1 χ

Mi(C) = k, as desired.

We next let D be an edge cut of cardinality r+2. Clearly, χMk(D) ≤ r+2.

Thus if
∑k−1

i=1 χ
Mi(D) ≤ r(k − 1), then

∑k
i=1 χ

Mi(D) ≤ rk + 2, as desired.

By formula 7.12 and by parity, we may next assume that
∑k−1

i=1 χ
Mi(D) =

r(k − 1) + 2. By calculation we can get wk(D) = 1, and thus χMk(D) = 1

by Lemma 7.14, which also yields
∑k

i=1 χ
Mi(D) ≤ rk+ 2. This completes the

proof of the theorem.

7.3 Cores and measures of r-graphs

Recall that the basic question on r-graphs is to determine which r-graph is

r-edge-colorable. Regarding the difficulty on answering this question directly,

we consider the question in a more general sense—to determine how far an

r-graph is from being r-edge-colorable?

We will extend the concept of cores of cubic graphs to r-graphs. Analogous

to the cubic case, we define in terms of cores a parameter µr3 which measures
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how far an r-graph is from being r-edge-colorable. Such a parameter is also

called a measure of edge-uncolorability (for r-graphs). As we can see from

Chapter 5, many measures for cubic graphs are proposed in the literature,

and cubic graphs with small value of measures are shown satisfy some hard

conjectures. However, so far no such measures for all r-graphs are known. The

study for r-graphs on cores and on µr3 gives us an insight into the structure of

r-graphs, on which there are not many knowledges so far.

Throughout this chapter, we take the following definitions and notations.

For a real number p, let bpco (resp., bpce) denote the odd (resp., even) number

of {bpc, bpc − 1}. An Eulerian graph is a graph where each vertex has even

degree.

LetG be an r-graph and Sr be a list of r 1-factorsM1,M2, . . . ,Mr ofG. For

0 ≤ i ≤ r, let Ei be the set of edges that are contained in precisely i elements

of Sr. Let k = |E0|. The k-core of G with respect to Sr (or to M1,M2, . . . ,Mr)

is the subgraph Gc of G which is induced by E(G) \ (E1 ∪ E3 ∪ · · · ∪ Eb r
2
co).

If the value of k is irrelevant, then we say that Gc is a core of G. If Gc is an

Eulerian graph, then we call Gc an Eulerian core.

Proposition 7.16. If Gc is a k-core of an r-graph G, then E(Gc) can be

divided into two parts Eodd and Eeven, where Eeven = E0 ∪ E2 · · · ∪ Ebrce and

Eodd = Eb r
2
co+2 ∪ Eb r

2
co+4 ∪ · · · ∪ Ebrco, and the following statements hold:

(1) G[Eeven] is an Eulerian graph,

(2) Eodd is either an empty set or a matching of G,

(3) k = |E2|+ 2|E3|+ · · ·+ (r − 1)|Er|.

Proof. Let v ∈ V (G). Denote that E(v) = {e ∈ E(G) : e is incident with v},

Eo(v) = {e ∈ E(v) : e ∈ Ei and i is odd}, and Ee(v) = E(v) \ Eo(v). Since

every 1-factor touches v precisely once, we can deduce that |Eo(v)| has the

same parity as r. Since v has degree r, that is, |Ee(v)|+ |Eo(v)| = r, it follows

that |Ee(v)| is an even number. Therefore, statement (1) holds true.

For statement (2), suppose to the contrary that there are two edges f

and h of Eb r
2
co+2 ∪ Eb r

2
co+4 ∪ · · · ∪ Ebrco sharing precisely one common end
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v. Thus the r 1-factors with respect to Gc touch v at least 2(b r2co + 2) times,

contradicting with the fact that they touch v precise r times.

By counting the edges of the r 1-factors with respect to Gc with repetition

in two different ways, we can get
∑r

i=0 i|Ei| = r |V |2 = |E|, where the last

equality follows from the fact the G is r-regular. Thus, |E0| =
∑r

i=2(i−1)|Ei|,

we are done with the proof.

We propose the generalized Fan-Raspaud conjecture in terms of empty

intersection of 1-factors, and then reformulate it in the language of cores of

r-graphs.

Conjecture 7.17 (The generalized Fan-Raspaud conjecture). Every r-graph

has r 1-factors M1,M2, . . . ,Mr such that any b r2co + 2 of them have empty

intersection.

By taking r = 3, this conjecture reduces to Fan-Raspaud conjecture. More-

over, any r 1-factors from a Berge-Fulkerson cover of an r-graph cover each

edge at most twice and hence, they satisfy the property in Conjecture 7.17.

This shows that the generalized Berge-Fulkerson conjecture implies the gen-

eralized Fan-Raspaud conjecture. The following conjecture is a reformulation

of the generalized Fan-Raspaud conjecture in terms of cores.

Conjecture 7.18. Every r-graph has an Eulerian core.

Proposition 7.19. The Conjectures 7.17 and 7.18 are equivalent.

Proof. Let Gc be a core of an r-graph G with respect to r 1-factors

M1,M2, . . . ,Mr. Denote by H1 the subgraph of G induced by E0 ∪ E2 · · · ∪

Ebrce , and by H2 the subgraph of G induced by Eb r
2
co+2∪Eb r

2
co+4∪· · ·∪Ebrco .

Since H1 is an Eulerian graph by Proposition 7.16 statement (1), it follows

that Gc is an Eulerian core if and only if H2 is an Eulerian graph. Since H2 is

a matching of G by Proposition 7.16 statement (2), the latter one is equivalent

to that H2 is an empty graph, that is, equivalent to that any b r2co + 2 of

M1,M2, . . . ,Mr has empty intersection.
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Now we are ready to introduce a measure µr3 of edge-uncolorability of r-

graphs. Let G be an r-graph. Define µr3(G) = min{k : G has a k-core}, that

is, µr3(G) is the minimum number of edges of G uncovered by r 1-factors.

Clearly, an r-graph is r-edge-colorable if and only if it has zero value of µr3.

An r-graph with small value of µr3 is regarded close to being r-edge-colorable.
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[7] M. DeVos, J. Nešetřil, and A. Raspaud. On edge-maps whose inverse pre-
serves flows and tensions. Graph Theory in Paris: Proc. of a Conference
in Memory of C. Berge, Trends in Mathematics, Birkhäuser, pp. 109–138,
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[45] E. Máčajová and M. Škoviera. Fano colourings of cubic graphs and the
Fulkerson Conjecture. Theoret. Comput. Sci., 349:112–120, 2005.
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