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Abstract

There are many hard problems in graph theory which can be solved in the
general case if they are solvable for cubic graphs. Possible minimal counterex-
amples for most of the problems are asked to be cyclically 4-edge-connected
cubic class 2 graphs with girth at least 5. Such graphs were called snarks by
Gardner. One major difficulty in proving theorems for snarks is to find appro-
priate structural parameters for a proof. An approach is to study invariants
that “measure” how far a cubic graph is from being 3-edge-colorable. These
invariants are called measures of edge-uncolorability in the literature.

Recently, Steffen introduced the core of a cubic graph as a structural pa-
rameter, and define a measure pus by cores. By the study on cores and us,
he proved a couple of new or further results to some hard problems such as
Berge-Fulkerson conjecture, Fan-Raspaud conjecture and problems on cycle-
cover.

In this thesis, we first develop the theory of cores of cubic graphs and prove
further results to Fan-Raspaud conjecture. Surprising to us, Fan-Raspaud con-
jecture is shown equivalent to a seemly weaker conjecture that every bridgeless
cubic graph has a bipartite core. Moreover, we verify Fan-Raspaud conjecture
for cubic graphs with relatively small value of us, which improves a former re-
sult of Steffen. It is known that the Petersen coloring conjecture implies both
Berge-Fulkerson conjecture and the cycle double cover conjecture. We prove
a result to the Petersen coloring conjecture formulated by ps. This improves
some earlier results of Bilkova.

We relate us to some other measures, in particular, to the oddness w. We
prove that w(G) < %,u,g(G) for every bridgeless cubic graph G. Moreover, we
introduce two more measures 2 and ry, which are defined by 1-factors and
by 4-flows, respectively. Relations among all these measures are given.

Secondly, we extend the theory of cores to weak cores, for cubic graphs.
This allows to furnish the 5-line Fano-flow conjecture with several statements
by weak cores, and also to define another new measure y5. Analogously, % Jus

is an upper bound for the weak oddness w'.
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Thirdly, we extend the theory of cores for cubic graph to r-graphs. One
benefit is to pose the generalized Fan-Raspaud conjecture: every r-graph has
an Eulerian core. This conjecture can be interpreted in the form of empty
intersection of 1-factors, the same as Fan-Raspaud conjecture. It is a reason-
able generalization of Fan-Raspaud conjecture because of its natural reflection
to cores and of being implied by the generalized Berge-Fulkerson conjecture.
Another benefit is to define a measure ;5 of edge-uncolorability for r-graphs.
It is the first measure particularly for r-graphs, so far as we know.

As an approach to the solution to the generalized Berge-Fulkerson con-
jecture, we consider the union of 1-factors and for every integers k£ > 1 and
r > 3, we prove a constant lower bound for the fraction of edges covered by k
1-factors in an r-graph. For the particular case r = 3, we obtain the result of
Kaiser, Kral and Norine, and of Mazzuoccolo.

Besides r-graphs, planar graphs are under discussion as well. We intro-
duce two parameters “average face degree” and “local average face degree”
for planar graphs and use them to characterize planar critical graphs G with
A(G) < 6. In particular, our result offers a characterization on the structure

of possible minimal counterexamples to Vizing’s planar graph conjecture.

Zusammenfassung

Viele schwere Probleme in der Graphentheorie konnen auf kubische
Graphen reduziert werden. Fiir die meisten Probleme sind mogliche minimale
Gegenbeispiele zyklisch 4-fach kantenzusammenhéngende kubische Klasse 2
Graphen mit Taillenweite von mindestens 5. Diese Graphen wurden von Gard-
ner als Snarks bezeichnet. Eine hauptsachliche Schwierigkeit bei den Beweisen
von Theoremen fiir Snarks ist das Finden von geeigneten Strukturparametern
flir den Beweis. Eine Herangehensweise ist es Invarianten zu studieren, die
,,messen” wie weit ein kubischer Graph davon entfernt ist 3-kantenfarbbar zu
sein; solche Invarianten werden auch Unfarbbarkeitsparameter genannt.

Kiirzlich fiihrte Steffen den Kern von kubischen Graphen als einen Struk-

turparameter ein und definierte den Parameter ps durch Kerne. Durch das
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Studium von Kernen und von ps bewies er einige neue oder weitere Ergeb-
nisse zu einigen schwierigen Problemen, wie der Berge-Fulkerson Vermutung,

der Fan-Raspaud Vermutung und Problemen iiber Kreisiiberdeckungen.

In dieser Arbeit entwickeln wir als erstes die Theorie von Kernen von ku-
bischen Graphen weiter und beweisen weitere Ergebnisse zu der Fan-Raspaud
Vermutung. Es ist tiberraschend, dass die Fan-Raspaud Vermutung aquivalent
zu der scheinbar schwécheren Vermutung ist, dass jeder briickenlose kubische
Graph einen bipartiten Kern hat. Auflerdem verifizieren wir die Fan-Raspaud
Vermutung fiir kubische Graphen mit p3 < 9, was ein fritheres Ergebnis von
Steffen verbessert. Es ist bekannt, dass die Petersen-Farbungs Vermutung die
Berge-Fulkerson Vermutung und die doppelte Kreisiiberdeckungsvermutung
impliziert. Wir studieren partielle Petersen-Farbungen, um das Problem zu

approximieren.

Wir vergleichen ps mit einigen anderen Parametern, welche die ,,Un-
farbbarkeit” kubischer Graphen messen, z. B. die Ungeradheit w. Wir
beweisen w(G) < %ug(G) fiir jeden briickenlosen kubischen Graphen G. Zu-
dem fithren wir zwei weitere Mafle 2 und r; ein und setzen sie in Beziehung

zu anderen Parametern.

Zweitens erweiterten wir die Theorie von Kernen zu schwachen Kernen von
kubischen Graphen. Dies erlaubt eine dquivalente Formulierung der 5-Linien
Fano-Fluss Vermutung durch schwache Kerne, und auflerdem die Definition
von einem weiteren neuen Mafl p5. Analog ist % whs eine obere Grenze fiir die

schwache Ungeradheit w'.

Drittens erweitern wir die Theorie von Kernen fiir kubische Graphen zu -
Graphen, was eine kanonische Verallgemeinerung der Fan-Raspaud Vermutung
ermoglicht: Jeder r-Graph hat einen Eulerschen Kern. Diese Vermutung kann
in Form von leeren Schnittmengen von 1-Faktoren interpretiert werden, eben-
so wie die Fan-Raspaud Vermutung. Es ist eine sinnvolle Verallgemeinerung
der Fan-Raspaud Vermutung durch ihren natiirlichen Bezug zu Kernen und
dadurch, dass sie durch die Verallgemeinerung der Berge-Fulkerson Vermu-

tung impliziert ist. Ein weiterer Nutzen ist es, ein Mafl 5 von Kanten-
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Unfarbbarkeit fiir r-Graphen zu definieren. Soweit es uns bekannt ist, ist
es das erste Maf} speziell fiir r-Graphen.

Als Losungsansatz zu der verallgemeinerten Berge-Fulkerson Vermutung
betrachten wir die Vereinigung von 1-Faktoren; und wir beweisen fiir alle ganz-
zahligen k£ > 1 und r > 3 eine konstante untere Schranke fiir den Anteil von
Kanten, die von k 1-Faktoren in einem r-Graphen tiberdeckt werden. Fiir den
speziellen Fall » = 3 erhalten wir die Ergebnisse von Kaiser, Kral und Norine
und von Mazzuoccolo.

Neben r-Graphen werden Kantenfarbung von planaren Graphen unter-
sucht. Wir fihren zwei Parameter, ,,durchschnittlicher Grad einer Flache”
und ,,lokaler durchschnittlicher Grad einer Fliache”, fiir planare Graphen ein
und benutzen diese zur Charakterisierung planarer kritischer Graphen G mit
A(G) < 6. Im Speziellen erméglicht unser Ergebnis eine Charakterisierung
der Struktur von moglichen minimalen Gegenbeispielen fiir Vizing’s Vermu-

tung iiber planare Graphen.
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Chapter 1

Introduction

1.1 Graphs: notations and terminologies

For the notations and terminologies not mentioned in the thesis, we follow the
ones used in [75]. A graph G consists of a vertex set V(G) and an edge set
E(G), where each edge joins two vertices, which are not necessarily distinct.
Denote by |S| the cardinality of a set S. The values |V (G)| and |E(G)| are
called the order and the size of G, respectively. Denote by zy an edge between
two vertices x and y, which are called the two ends of xy. A loop is an edge
whose ends are the same vertex. Two or more edges having the same two ends
are called multiple edges. A graph is simple if it contains no loops or multiple
edges. A multigraph is a graph that has no loops but may have multiple edges.

In this thesis, we consider finite multigraphs.

Let G be a graph. Two vertices are adjacent if there exists an edge between
them. Two edges are adjacent if they share a common end. A vertex and an
edge are incident if the vertex is an end of the edge. If two vertices are
adjacent, then one is called a neighbor of the other. For a vertex w of G, let
N (u) be the set of neighbors of u; and for S C V(G), let N(S) = [, cg N(v).
We write N (x,y) short for N({z,y}). Denote by E(v) the set of edges incident
with v. The value |E(v)| is called the degree of v, denoted by dg(v), except

that each loop in F(v) counts twice. The mazimum degree A(G) of a graph G
1



2 Chapter 1 Introduction

is defined as A(G) = max{dg(v): v € V(G)}. If it is clear from the context,
then d(v) and A are frequently used.

A circuit is a close walk with no repetition of vertices and edges. A circuit
of vertices uy,ug, ..., ux located in cyclic order is written as [ujusg . .. ug]. The
union of pairwise disjoint circuits is called a cycle.

Let G be a graph. If either S C V(G) or S C E(G), then G[S] denotes
the subgraph of G induced by S. For T' C V(G), the set of edges of G with
precisely one end in T is denoted by OT. Let H be a subgraph of G. We write
O(H) short for OV (H). The complement H of H is a subgraph of G induced
by the edges not in H, that is, H = G[E(G) \ E(H)].

Let G be a graph that may be unconnected. An odd component of G is
a component of G containing odd number of vertices. Denote by ¢(G) the
number of components of G, and by o(G) the number of odd components of

G.

1.2 Background, contribution and structure of the

thesis

In mathematics, one of the most well-known problems is the four color prob-
lem, which states that given any separation of a plane into contiguous regions,
four colors are enough to color all the regions so that no two adjacent regions
receive the same color. This problem was first proposed by Guthrie in 1852,
and was solved by Appel and Haken in 1976 with assistance of computer. So
now it is a theorem. In the language of graph theory, the Four Color Theo-
rem (briefly, the 4CT) simply states that every loopless planar graph admits
a 4-vertex-coloring.

The early attempts at proving the 4CT, though all failed, bring many
significant results and useful techniques to graph theory. The following equiv-

alence is due to Tait in 1880.

Theorem 1.1 ([67]). The 4CT is equivalent to the statement that every bridge-

less cubic planar graph admits a 3-edge-coloring.



1.2 Background, contribution and structure of the thesis 3

This theorem initiates the study on several aspects of graph theory, such
as edge-colorings, snarks, factors, flows, and so on. The thesis contributes to
most of these aspects.

Compared with vertex coloring, the theory of edge coloring has received
less attention until relatively recently. However, edge coloring has strong
connections to many other research fields, such as matching theory, factor-
ization theory, Latin squares and scheduling theory. The chromatic index
X'(G) of a graph G is the minimum integer k such that G has a k-edge-
coloring. A fundamental result on edge coloring is Vizing’s bound for the
chromatic index of a graph. By Vizing’s theorems [69, 70], if G is a sim-
ple graph, then x'(G) € {A(G),A(G) + 1}; and if G is a multigraph, then
X' (G) < A(G) + u(G), where pu(G) is the maximum multiplicity of an edge of
G. Due to these results, a graph G is class 1 if x'(G) = A(G), and is class 2

otherwise.

1.2.1 Planar graphs

For planar graphs, Vizing [69] showed for each k € {2,3,4,5} that there is
a planar class 2 graph G with A(G) = k. Hence, for these values of k, a
k-critical graph does exist. Moreover, he proved that every planar graph G
with A(G) > 8 is class 1, and conjectured that every planar graph G with
A(G) € {6,7} is class 1. This conjecture is called Vizing’s planar graph
conjecture. The case A = 7 has been confirmed true [17, 58, 79], but the case
A = 6 is still open.

In Chapter 2, we introduce new parameters “local average face-degree”
and “average face-degree” of a plane graph, where the former depends on
the embedding of the planar graph but the latter does not. By these two
parameters, we define “local average face-degree bound b;” and “average face-
degree bound b,” for a k-critical planar graph. We prove both upper bound
and lower bound for each of b and b;, and propose the question asking for

the precise values of b;, and bi. Beyond face-degree, 3-faces are also used to

characterize planar critical graphs. We give short proofs to the following two
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statements: (1) every 5-critical plane graph has a 3-face adjacent to a 3-face or
to a 4-face; (2) every 6-critical plane graph, if exists, has a vertex incident to
at least four 3-faces. A significant longer proof of the statement (2) is given in
[73], where the statement is formulated for all plane graphs. However, we point
out that their proof works for critical graphs only. In particular, our results
offer structural properties for possible minimal counterexamples to Vizing’s

planar graph conjecture.

1.2.2 Cubic graphs

Many hard problems in graph theory can be solved in general case if they
are solvable for cubic graphs. Examples of such problems are the 4-color-
problem and problems on cycle-covers, matching-covers and flows of graphs.

We consider cubic graphs in Chapters 3, 4, 5 and 6.

For a cubic graph G that admits a 3-edge-coloring, each color class induces
a l-factor. So the edge set F(G) can be covered by three 1-factors, and we
say that G is 1-factorable. The study on factors and factorization starts from
Petersen in 19th century, who proved two important theorems: (1) every even
regular graph is 2-factorable; (2) every 2-connected 3-regular graph has a 1-
factor. Later on Konig’s theorem follows: every bipartite regular graph is
1-factorable. In Chapters 3, we review on 1-factors and on some long-standing
conjectures concerning 1-factor covers. We obtain some new results on graphs

having 1-factors with certain property.

A snark is a bridgeless cubic graph that is not 3-edge-colorable. To avoid
trivial cases, a snark is often restricted to be cyclically 4-edge-connected and
to have girth at least 5. By Tait’s theorem, the 4CT asserts that there are
no planar snarks. However, non-planar snarks do exist. The first known
example is the Petersen graph, discovered in 1898. It is also the smallest
snark. “The hunting of the snark”, a name borrowed from a poem by Carroll,
starts since then, regarding the essential role of snarks as possible minimal

counterexamples to many hard problems in graph theory.
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Throughout Chapters 4 and 5, snarks with specific properties are con-
structed to deal with problems mainly related to two well-known conjectures:
(1) Berge-Fulkerson conjecture [13]: every bridgeless cubic graph G has six
1-factors such that each edge of G is contained in precisely two of them; (2)
Fan-Raspaud conjecture [10]: every bridgeless cubic graph has three 1-factors

My, My, M5 such that My N My N Mg = Q.

In Chapter 4, we follow the very recent introduction by Steffen [64] of the
concept “cores of cubic graph”, which provides a different but very promising
approach to treat on these two conjectures, as well as some other hard conjec-
tures. A core can be defined as follows. Let S3 be a list of three 1-factors of a
cubic graph G. For 0 < ¢ < 3, let F; be the set of edges that are contained in
precisely ¢ elements of S3. The core of G with respect to S3 is the subgraph
G. of G induced by EyU FEy U E3. A k-core is a core with |Ey| = k.

We develop the theory of cores and furnish for Fan-Raspaud conjecture (e-
quivalently, for the 4-line Fano-flow conjecture) several equivalent statements
by cores. It is straightforward to restate Fan-Raspaud conjecture as: every
bridgeless cubic graph has a cyclic core. Surprising to us, Fan-Raspaud conjec-
ture is shown equivalent to a seemly weaker conjecture that every bridgeless
cubic graph has a bipartite core. Moreover, we extend the theory of cores
to weak cores, for cubic graphs. This allows to analogously furnish the 5-
line Fano-flow conjecture with several equivalent statements by weak cores.
Finally, we disprove a conjecture of Mazzuoccolo [49] that is stronger than
Fan-Raspaud conjecture, and we reformulate this conjecture under a stronger

connectivity assumption.

Invariants that could measure how far a cubic graph is from being class 1
is called measures of edge-uncolorability in the literature. Measures are used
to prove partial results to some hard conjectures. In Chapter 5, we first review
some well known measures such as oddness, resistance and so on. We mainly
study the measure pg, which is defined by cores. We relate us to some other
measures, in particular, to the oddness w. We prove that w(G) < 2u3(G)

for every bridgeless cubic graph G. The bound is achieved by a family of
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snarks. For the equality case, every core has a specific structure and is called
a Petersen core. However, the difference between them can be arbitrarily big,
even if we additionally fix the oddness. Moreover, we introduce two more
measures 2 and r¢, which is defined by the intersection of two 1-factors and
by the support of 4-flows. Relations among all these measures and some other
known measures are given. It turns out that ps bounds all other measures
mentioned. Finally, we verify Fan-Raspaud conjecture for 3-edge-connected
cubic graphs G having no nontrivial 3-edge-cuts such that ps3(G) < 9. This
improves a result of Steffen [64], where G is asked to satisfy u3(G) < 6 instead.

Chapter 6 focuses on Jaeger’s Petersen coloring conjecture [29], which s-
tates that every bridgeless cubic graph has a Petersen coloring. This conjec-
ture is stronger than Berge-Fulkerson conjecture, and also implies some other
conjectures, such as cycle double cover conjecture. There are several equiva-
lent statements to the Petersen coloring conjecture, one of them is that every
bridgeless cubic graph has a normal 5-edge-coloring. However, only few results
on this conjecture is known. Here, we follow Sdmal’s new approach [71] that
might leads to a solution to this conjecture. For a given bridgeless cubic graph,
we look for a b-edge-coloring yielding normal edges as much as possible. In
other words, we color the graph “as normal as possible” while the conjecture
asserts that we can color the graph completely normal. The result of Bilkova
[1] targets some classes of cubic graphs and shows that, we can color a gener-
alized prism so that % of the edges are normal, and we can color a cubic graph
of large girth so that almost % of the edges are normal. Our result shows that
every bridgeless cubic graph G has a proper 5-edge-coloring such that at least

|E(G)| — pus(G) edges are normal, which improves these former results.

1.2.3 r-graphs

In Chapter 7, we discuss on r-graphs, in which field there are not much results
either. An r-regular multigraph G is an r-graph if |0(X)| > r for each odd X C
V(G). The class of r-graphs is a special class of r-regular graphs maintaining

certain property of those that are r-edge-colorable. Moreover, the concept of
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r-graph is an generalization of bridgeless cubic graph. Both the facts gain

interest on r-graphs.

In 1979, Seymour [61] presented some basic results and proposed several
conjectures on r-graphs. Vizing’s bound for the chromatic index of simple
graphs is conjectured to be true for all r-graphs. That is, if G is an r-graph then
X'(G) < r+1. This conjecture, namely the r-graph conjecture, is proposed by
Seymour. It is one of the central conjectures in the theory of edge coloring,
and is true for » < 15. Furthermore, Seymour proposed a generalization of
Berge-Fulkerson conjecture for r-graphs: every r-graph has 2r 1-factors such
that each edge is contained in precisely two of them. He proved partial results
to it. Deep results on r-graphs were obtained by Rizzi in 1999 [57], where he
constructed r-graphs with specific properties in terms of 1-factors to disprove

some conjectures of Seymour.

Here, we consider the union of 1-factors of r-graphs, targeting the gener-
alized Berge-Fulkerson conjecture. Analogous to the cubic case, Mazzuoccolo
[50] proved that the generalized Berge-Fulkerson conjecture is equivalent to
the generalized Berge conjecture, which states that every r-graph has 2r — 1
1-factors such that each edge is contained in at least one of them. We prove
a constant lower bound for the maximum proportion of covered edges by k
1-factors for all r-graphs. This lower bound depends on k£ and r only. In
particular, we obtain partial result to the generalized Berge conjecture, which
asserts that the maximum proportion is one hundred percent. For the partic-
ular case r = 3, we obtain the result of Kaiser, Kral and Norine [36] and of

Mazzuoccolo [48].

Furthermore, we extend the theory of cores for cubic graphs to r-graphs,
which provides a new perspective to deal with the problems on r-graphs. It is
known that Fan-Raspaud conjecture can be easily restated as: every bridge-
less cubic graph has a cyclic core. From this point of view, we propose the
generalized Fan-Raspaud conjecture in the language of cores as well: every r-
graph has an Eulerian core. We further interpret this conjecture in the normal

form: every r-graph has r 1-factors My, Ma, ..., M, such that any |5, + 2
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of them have empty intersection. By taking r = 3, this conjecture reduces
to Fan-Raspaud conjecture. It is a reasonable generalization of Fan-Raspaud
conjecture because of its natural reflection to cores and of being implied by
generalized Berge-Fulkerson conjecture.

Moreover, we define a measure ;5 of edge-uncolorability for r-graphs which,
as far as we know, is the first measure particularly for r-graphs. The basic
question on r-graphs is to determine which r-graph is r-edge-colorable. Re-
garding the difficulty on answering this question directly, it is important to
study measures for r-graphs, which determine how far an r-graph is from being
r-edge-colorable.

Some parts of our results in the thesis have been published already. The

results of

e Sections 2.2 and 2.5 are published in
[32] L. Jin, Y. Kang and E. Steffen. Face-degree bounds for planar
critical graphs. Electron. J. Combin. 23(3) (2016) #P3.21.

e Section 2.4 are published in
[33] L. Jin, Y. Kang and E. Steffen. Remarks on planar edge-chromatic
critical graphs. Discrete Applied Math. 200 (2016) 200-202.

e Chapter 4 and Section 5.6 are published in
[34] L. Jin, G. Mazzuoccolo and E. Steffen. Cores, joins and the
Fano-Flow conjectures. To appear in Discuss. Math. Graph. arX-

iv:1601.05762 (2016).

e Sections 5.2-5.4 are published in
[35] L. Jin and E. Steffen. Petersen cores and the oddness of cubic
graphs. J. Graph Theory 84 (2017) 109-120.

e Section 7.2 are published in

[31] L. Jin. Unions of 1-factors in r-graphs. arXiv:1509.01823 (2015).



Chapter 2

Matchings and edge-colorings

2.1 Preliminary

Let k be a positive integer. A k-edge-coloring of a graph G is a mapping
¢: E(G) — {1,2,--- ,k} such that ¢(e1) # ¢(e2) for any two adjacent edges
e1 and es. In other words, a k-edge-coloring assigns each edge a color from
{1,2,--- ,k} so that no two adjacent edges receive the same color. The edge-
chromatic number or chromatic index x'(G) of a graph G is the minimum k
such that G admits a k-edge-coloring.

For a k-edge-coloring of a graph G, a set of all the edges receiving one
same color is called a color class. A matching of a graph G is a set of pairwise
nonadjacent edges of G. Clearly, every color class is a matching. Hence, there
is a one-to-one correspondence between a k-edge-coloring and a partition of
the edge set into k pairwise disjoint matchings. A fundamental result on edge

coloring is due to Vizing [69].
Theorem 2.1 ([69]). If G is a simple graph, then X' (G) € {A(G), A(G)+1}.

By this theorem, we can divide simple graphs into two classes. The graph
G is class 1 if X'(G) = A(G), and class 2 if x'(G) = A(G) + 1. For more
informations on edge coloring, we refer the readers to [65].

We conclude this part with further notations and terminologies needed for

the rest of this chapter.
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Let G be a graph. A vertex u of G is a k-vertex or a k™ -vertex or a k-
vertex if dg(u) = k or dg(u) > k or dg(u) < k, respectively. If v is a neighbor
of u, then we further call u a k-neighbor or a k™ -neighbor or a k™~ -neighbor of
v, respectively.

A graph is planar if it is embeddable into the Euclidean plane. A plane
graph (G,Y) is a planar graph G together with an embedding ¥ of G into the
Euclidean plane. Let (G, ) be a plane graph. Denote by F((G, X)) the face
set of (G,X). The degree d(g s (f) of a face f is the length of its facial circuit.
If there is no harm of confusion, we also write dg(f) or d(f) for short. Let k
be a positive integer. A k-face or a k*-face or a k™ -face is a face of degree k
or at least k or at most k, respectively. A vertex or an edge is incident with

a face if it is contained in the facial circuit.

2.1.1 Critical graphs

Let k& be a positive integer. A k-critical graph is a class 2 graph G with
A(G) = kand X'(H) < x/(G) for each proper subgraph H of G. We will collect
necessary facts on critical graphs for the proof of our results demonstrated in

Sections 2.4 and 2.5.

Lemma 2.2. Let G be a critical graph and e € E(G). If e = xy, then
da(z) 2 2, and dg(x) +da(y) = A(G) + 2.

Lemma 2.3 (Vizing’s Adjacency Lemma [69]). Let G be a critical graph. If
e =xy € E(G), then at least A(G) — dg(y) + 1 vertices in N(x) \ {y} have
degree A(G).

Lemma 2.4 ([79]). Let G be a critical graph and xy € E(G). If d(z)+d(y) =
A(G) + 2, then the following three statements hold true.

(1) Every vertex of N(x,y) \ {z,y} is a A(G)-vertex.
(2) Every vertex in N(N(z,y))\{z,y} has degree at least A(G) — 1.

(3) If d(x) < A(G) and d(y) < A(G), then every vertex in N(N(z,y))\{z,y}
has degree A(G).
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Lemma 2.5 ([58]). No critical graph has pairwise distinct vertices x,y, z, such
that x is adjacent to y and z, d(z) < 2A(G) — d(z) — d(y) + 2, and zz is in at
least d(z) + d(y) — A(G) — 2 triangles not containing y.

Theorem 2.6 ([30]). If G is a 3-critical graph, then |E(G)| > 3|V(G)|.

Theorem 2.7 ([76]). Let G be a k-critical graph. If k = 4, then |E(G)| >
Z2IV(G)|; and if k =5, then |E(G)| > 2|V(G)|.

Theorem 2.8 ([43]). If G is a 6-critical graph, then |E(G)| > $(5|V(G)|+3).

2.2 (Local) average face-degree

The results of this section have already been published in [32]. In this section,
we introduce two new parameters of a planar graph: average face-degree and
local average face-degree. Both parameters are defined in terms of faces. The

former one is related to the parameter average degree, which is defined to be

Loev(a) de)

el for a graph G. It gives globe information on the structure of a

planar graph, while the latter one carries information around each vertex for a
plane graph. These two parameters will be used to characterize the structure
of a planar critical graph G with A(G) < 6.

Let (G,%) be a 2-connected plane graph and F(G) be the set of faces of
(G,Y). The average face-degree F(G) of G is defined as

1
|F(G)]

F(G) = > dis ()

fer(@)

By applying Euler’s formula |V (G)| — |E(G)| + |F(G)| = 2 together with the
= 2|E(G

fact 3 repa) dia.n)(f) = 2|E(G)], we can deduce that F(G) = m,

which is independent on the embedding 3. Hence, it is reasonable to say the

average face-degree for a planar graph. For convenience of using, we repeat

the following fact.

2|E(G)]

Proposition 2.9. If G is a planar graph, then F(G) = BV (G2
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Let u be a vertex of a plane graph (G, X)) of degree k. Thus, u is incident
to k pairwise distinct faces, say f1,..., fr. Let Figx)(u) = %(d(g,g)(ﬁ) +- 4
dia,s)(fx)) and F((G, %)) = min{F(g x)(v): v € V(G)}. Clearly, F((G,X)) >
3 since every face is of degree at least 3. As Figure 2.1 shows, F((G, X))
depends on the embedding ¥. The local average face-degree of a 2-connected

planar graph G is defined as
F*(G) =max{F((G,X)): (G,X) is a plane graph}.

This parameter is independent from the embeddings of G, and F*(G) > 3 for
all planar graphs.

\'

\/

F(G.5) =3 F((G,Z')):3+§

Figure 2.1: Graph G has two embeddings ¥, ¥/ such that F((G,X)) #
F((G,X)).

2.3 Vizing’s planar graph conjecture

Vizing [69] showed for each k € {2,3,4,5} that there is a planar class 2 graph
G with A(G) = k. He proved that every planar graph with A > 8 is a class 1

graph, and proposed the following conjecture.

Conjecture 2.10 (Vizing’s planar graph conjecture [69]). Every planar graph
G with A(G) € {6,7} is a class 1 graph.
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Vizing’s conjecture is proved for planar graphs with A = 7 by Griinewald
[17], by Sanders and Zhao [58], and by Zhang [79] independently. However,
the case A = 6 is still open.

Zhou [80] proved for each k € {3,4,5} that if G is a planar graph with
A(G) = 6 and G does not contain a circuit of length k, then G is a class 1
graph. Vizing’s conjecture is confirmed also for some other classes of planar
graphs where some specific circuits are forbidden [3, 72, 73].

The next two sections devote to build structural properties for critical
planar graphs of maximum degree at most 6. The main technique applied for
the proofs is the Discharging Method, whose most famous application is the

proof of 4CT. For a guide to this technique, we refer the readers to [6].

2.4 Characterization by 3-faces

The results of this section have already been published in [33]. This section

provides short proofs for the following two theorems.

Theorem 2.11. There is no 6-critical plane graph (G,%), such that every

vertex of G is incident to at most three 3-faces.

Proof. Suppose to the contrary that there is a counterexample to the state-
ment. Then there is a 6-critical graph G which has an embedding > such
that every vertex of G is incident to at most three 3-faces. By Euler’s for-
mula and Lemma 2.8 we deduce that }_rcp(da(f) — 4) = 2[E(G)| -
4 F(G)] = 2|E(G)| —4(|E(G)|+ 2 — |V(G)]) < —|V(G)| — 11. Therefore,
V(G| + X e [delf) — 4) < —11.

Give initial charge 1 to each v € V(G) and charge dg(f) — 4 to each
f € F(G). Discharge the elements of V(G) U F(G) according to the following
rules:
R1: Every vertex sends % to its incident 3-faces.

The rule only moves the charge around and does not affect the sum. Fur-

thermore, the finial charge of every vertex and face is at least 0. Therefore,
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0<ZU€V(G)1+Zf€F (dG(f) 4):| ( )|+ZfeF (dG(f) 4)§—117

a contradiction. O

If Vizing’s conjecture is not true, then every 6-critical graph has the fol-

lowing property as a direct consequence of Theorem 2.11.

Corollary 2.12. Let (G,X) be a plane graph. If G is 6-critical, then there is

a vertex of G which is incident to at least four 3-faces.

Theorem 2.13. Let (G,X) be a plane graph. If G is 5-critical, then (G,X)

has a 3-face which is adjacent to a 3-face or to a 4-face.

Proof. Suppose to the contrary that there is a counterexample to the statemen-
t. Then there is a 5-critical graph G which has an embedding > such that every
3-face is adjacent to 5T-faces only. Hence, every vertex of GG is incident to at
most two 3-faces, and every vertex which is incident to a 3-face is also incident
to a 5-face. By Lemma 2.7, we have - e p(q)(da(f) —4) < -2|V(G)| - 8.
Therefore, 2|V (G)| + > rere)(da(f) —4) < 8.

Give initial charge of 2 to each vertex and dg(f) — 4 to each face of G.
Discharge the elements of V(G) U F(G) according to the following rules:

R1: Every vertex sends % to its incident 3-faces.

R2: Every 5'-face sends dggz)ff to its incident vertices.

Denote the finial charge by ch*. Rules R1 and R2 imply that ch*(f) > 0 for
every f € F(G). Let n <2 and v be a vertex which is incident to n 3-faces. If
n = 0, then ch*(v) > 2 > 0. If n = 1, then v is incident to at least one 5'-face,
and therefore, ch*(v) > 2+%—1 > 0 by rule R2. If n = 2, then v is incident to
at least two 5T -faces, and therefore ch*(v) > 24+2x1—2x1 = 2= > 0, by rule

R2. Hence, 0 <} ey () 24 > rer(e)(da(f) —4) < =8, a contradiction. [

A significant longer proof of Theorem 2.11 is given in [73], but the state-
ment is formulated for plane graphs. However, the proof works for critical
graphs only. The assumption that a minimal counterexample is critical is
wrong. It might be that a subgraph of this minimal counterexample G does

not fulfill the pre-condition of the statement. For example, if G has a triangle
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[vzyv] and a bivalent vertex u such that w is the unique vertex inside [vayv]
and u is adjacent to x and y, then the removal of u increases the number of

3-faces containing v (see Figure 2.2).

y

Figure 2.2: An example

2.5 Characterization by average face degree

The results of this section have already been published in [32].

Let k be a positive integer. Let by, = sup{F(G): G is a k-critical planar graph}
and by = sup{F*(G): G is a k-critical planar graph}. We call by, the average
face-degree bound, and bj, the local average face-degree bound for k-critical
planar graphs. If k = 1 or k > 7, then every planar graph with A = k is a class
1 graph and therefore, {F(G): G is a k-critical planar graph} = {F*(G): G
is a k-critical planar graph} = (). Hence, by and by, do not exist in these cases.

Therefore, we focus on these two parameters with index k € {2,3,4,5,6}.

2.5.1 Lower bounds for F(G) and F*(G)

Lemma 2.14. Let t be a positive integer and € > 0.
1. For k € {2,3,4} there is a k-critical planar graph G and F*(G) > t.
2. There is a 2-critical planar graph G with F(G) > t.
3. There is a 3-critical planar graph G such that 6 — e < F(G) < 6.

4. There is a j4-critical planar graph G such that 4 — e < F(G) < 4.
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5. There is a 5-critical planar graph G such that 3 + % —e<F(G)<3+ %
and F*(G) > 3+ é

Proof. The odd circuits are the only 2-critical graphs. Hence, the second
statement and the first statement for £k = 2 are proved. Let X and Y be two
circuits of length n > 3, with V(X) = {z;: 0<i<n—1} V(Y)={y: 0<
i <n—1} and edges x;x;i+1 and y;y;11, where the indices are added modulo
n. Consider an embedding, where Y is inside X. Add edges z;y; to obtain
a planar cubic graph G with F*(G) = 3(n + 8). Add edges z;5i+1 in G to
obtain a 4-regular planar graph H with F*(H) = 1(n +9). Subdividing one
edge in G and one in H yields a critical planar graph G, with A(G,,) = 3,
and a critical planar graph H, with A(H,) = 4. If n > 4t, then F*(G,) >t
and F*(H,) > t. The proof that G,, and H,, are critical will be given in the
last paragraph.

Since |F(Gn)| = n + 2, and } scp,)da,(f) = 6n + 2, it follows

that F(G,) = 6 — nl—&. Analogously, we have |F(H,)| = 2n + 2 and
> fer(m,) @u,(f) = 8n + 2 and therefore, F(H,) = 4 — niﬂ Now, the

statements for 3-critical and 4-critical graphs follow. Examples of these

graphs are given in Figure 2.3.

k=4 k=3 k=2

Figure 2.3: Examples for k € {2, 3,4}

Let m > 4 be an integer. Let C; = [¢;1¢i2 - - - ¢;.4] be a circuit of length 4 for
i€ {l,m}, and C; = [ci1¢i2 - - - ¢ 8] be a circuit of length 8 for i € {2,...,m—
1}. Consider an embedding, where C; is inside Cjy; for i € {1,...,m — 1}.
Add edges c1 jc2.25-1, €1,jC2.2j, €1,jC2,2541 for j € {1,...,4}, edges ¢; jciq1,; for

ie€{2,...,m—2}and je{l,...,8}, edges ¢; jcit1,j41 fori € {2,...,m — 2}
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and j € {2,4,6,8}, and edges ¢m—1.2j—2Cm.j, Cm—1,2j—1Cm,j and Cm—12jCm.j
for j € {1,...,4} to obtain a 5-regular planar graph 7' (the indices are added
modulo 8). Subdividing the edge ¢, 1¢m,2 in T yields a critical planar graph
T,, with A(T,,) =5 (Figure 2.4 illustrates T§).

Figure 2.4: The plane graph (Tg, X¢)

Since |F(Tm)| = 12m — 10 and 3 ¢ p7,, .y dr,, (f) = 40m — 38, it follows
that F(T,,) = % — ﬁ. Furthermore, for the embedding X,, of T, as
indicated in Figure 2.4 (for m = 6) we calculate that F((Tjn, Sm)) = 3 + &
and therefore, F*(T},) > 3 + 1.

It remains to prove that G,, H, and T,, are critical. For G,, and H,
we proceed by induction on n. It is easy to verify the truth for 3 < n < 6.
We proceed to induction step. We argue first on G,,. Let u be the vertex
of degree 2. Since n > 7, for any edge e of G,,, there exists some k such
that no vertex of the circuit C is incident with e or adjacent to u, where
C = [Tk4+1Yk+1Yk+2Tk+2]. Reduce G, to G,—2 by removing the edges zx1yx+1
and x oykio and suppressing their ends. Let G’ be the resulting graph and
¢ be the resulting edge from e. By the induction hypothesis, G’ is critical.
Hence, G' — ¢’ has a 3-edge-coloring, say ¢. Assign ¢(xpzks3) to xprrs and
Th42Tk43, and O(YxYr+3) t0 Yryr+1 and yry2yk+3, and consequently, the edges
of C can be properly colored. Now a 3-edge-coloring of G,, — e is completed
and so, G, — e is class 1. Moreover, since GG, is overfull, this graph is class 2.

Therefore, GG, is critical. The argument on H,, is analogous.
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For any T,,, recall that T" is the graph obtained from 7;, by suppressing
the bivalent vertex. Consider T'. Since each circuit C; has even length, their
edges can be decomposed into two perfect matchings M; and Mo, so that My
contains ¢;1¢;2 for i € {1,m} and ¢;oc;i3 for 2 < i < m — 1. Let Mz =
{erjeagjri: 1 < j <4y U{eigicivigir: 2 <i<m—21< 5 < 43U
{em—12j—2cmj: 1 < j <4}, Clearly, Mz is a perfect matching disjoint with
M; and Ms. We can see that E(G)\ (M1 UMaUM3) induces even circuits and
hence, their edges can be decomposed into two perfect matchings My and Ms;,
so that M, contains c¢; jcoo; for 1 < j < 4. Clearly, M, ..., M5 constitute a
decomposition of E(T).

Let €; = ¢ iCm,it1 for 1 <i < 4. Let M} = MaU{eq,es3}\{e2, es}. Define
Ay = My UMs, Ag = M} U My, As = M5 U Ms.

Let h,, be an edge of T;,,. Since T}, is overfull, to prove that T, is critical,
it suffices to show that 7T,, — h,, is a 5-edge-colorable.

Let h be the edge of T that corresponds to h,,. We can see that A; U
Ay U Az = E(T)\ {e2,e4} and e; € A1 N A2 N As. Hence, if h ¢ {es,e4} then
there exists A € {41, Ag, A3} such that e;,h € A. Note that e; is the edge
subdivided to get T}, from T, and that A induces a circuit of 7. It follows
that this circuit corresponds to a path P of T, — h,,. Moreover, note that
the edges of T'— A can be decomposed into 3 perfect matchings, and thus the
same to the edges of T,;, — hy,, — E(P). Therefore, T,,, — hy, is 5-edge-colorable.

If h € {e9,e4} then C,, corresponds to a path of T;, — hy,. Note that
E(Cy,) € M; UM, and that My,..., M5 constitute a decomposition of E(T).

Similarly, we can argue that T, — h,, is 5-edge-colorable in this case. O

2.5.2 Upper bounds for F(G) and F*(G)
Proposition 2.15. Let G be a k-critical planar graph.
1. If k = 3, then F(G) < 8.
2. If k=4, then F(G) < 4+ %.

8. If k=5, then F(G) <3+ 3.
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4. If k=6, then F(G) <3+ 1.

Proof. Let k = 3 and suppose to the contrary that F(G) > 8. With Lem-
ma 2.9 and Theorem 2.6 we deduce 3|V (G)| < |[E(G)| < 3([V(G)] —2), a
contradiction.

The other statements follow analogously from Proposition 2.9 and Theorem

2.7 (k € {4,5}) and Theorem 2.8 (k = 6). O

Theorem 2.16. If G is a planar 5-critical graph, then F*(G) <7+

[N

Proof. Suppose to the contrary that F*(G) = r > 7+ 3. Let ¥ be an em-
bedding of G into the Euclidean plane such that F*(G) = F((G,X)). Let
V =V(G), E=E(G), and F = F((G,X)). We proceed by a discharging ar-
gument in G and eventually deduce a contradiction. Define the initial charge
chin G as ch(z) = dg(z)—4 for x € VUF. Euler’s formula |V|—|E|+|F| = 2

can be rewritten as:

Y oehx)= Y (dglx)—4) = -8.

zeVUF zeVUF

We define suitable discharging rules to change the initial charge function
ch to the final charge function ch* on V U F such that >  ch*(z) > 0 for
zeVUF
all z € VUF. Thus,

—8= > ch(z)= > ch*(xz)>0,

zeVUF zeVUF
which is the desired contradiction.

Note that if a face f sends charge —% to a vertex y, then this can also be
considered as f receives charge % from y. The discharging rules are defined as
follows.

R1: Every 3%-face f sends da(H)=4 4 each incident vertex.

da(f)
R2: Let y be a 5-vertex of G.

R2.1: If z is a 2-neighbor of y, then y sends % + ﬁ to z.
R2.2: If z is a 3-neighbor of y, then y sends charge to z as follows:
R2.2.1: if z has a 4-neighbor, then y sends % =+ ﬁ to z;
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R2.2.2: if z has no 4-neighbor, then y sends 2 5+ 3([374} 5 to z.
R2.3: If z is a 4-neighbor of y and z is adjacent to n 5-vertices (2 < n < 4),

then y sends m to z.

R2.4: If y is adjacent to five 4™-vertices, then y sends %( [57614_12 + [27,%_3)

to each 5-neighbor which is adjacent to a 2-vertex.

Claim 2.16.1. If u is a k-vertex, then u receives at least % — m m
total from its incident faces by R1. In particular, if u is incident with at most
two triangles, then u receives at least % — m in total from its incident

faces.

Proof. Note that if @ and b are integers and 2 < a < b, then

1 n 1 S 1 + 1 (2.1)

a—1 b+1"a b )
Let u be a k-vertex which is incident with faces fq, fo, -+, fx. According to
rule R1, u totally receives charge § = S2% dGGf(’; )4 S P ) from
its incident faces. The supposition r > % implies that not all of fl, vy fr

are triangles. It follows by formula 2.1 that Zle m reaches its maximum
when all of fi,..., fi are triangles except one. Since Zle da(fi) > [rk], we

have S > k — 4(3(k — 1) Ak

1 _ 4 . .
+ m) =73 T k313 In particular, if «

is incident with at most two triangles, then we have S >k —4(3 4+ (k —3) +

4
[rk]—6£4(k—3)) = % = Trk]—4k+6" N

Claim 2.16.2. The charge that a 5-vertex sends to a 4-neighbor by R2.3 is

smaller than or equal to the charge that a 5-vertex sends to a 5-neighbor which

s adjacent to a 2-vertex by R2.4, that is, n(f4;11*9) < %( (57«}4712 + (27%73).

~ 4 2 2 1 4 2 14
Proof. Since =5y < 1577=9 < 779 and HE s n 3) < 3((57«}712"‘

ﬁ) we only need to prove that 4r g < §(5T+‘11 = + 2T+1 3) which is
equivalent to 2r? — 15r 4+ 23 > 0 by simplification. Clearly, this inequality is

true for every r > 5+ % O

It remains to check the final charge for all x € V U F.
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Let f € F, then ch*(f) > da(f) — 4 — dg (f)dc<{>)4_0b R1.

Let v € V. If dg(v) = 2, then v receives at least 2 —

W in total from

its incident faces by Claim 2.16.1. By Lemma 2.2, v has two 5-neighbors.

Thus, v receives 2 + Tzr1—3 from each of them by R2.1. So we have ch*(v) >

27"] -3
dG(U)—4+( {27,1 3)+2< +W):O

If de;(v) = 3, then v receives at least & — in total from its incident

Qe
faces by Claim 2.16.1. By Lemmas 2.2 and 2.3, v has three 4"-neighbors, and
two of them have degree 5. If v has a 4-neighbor, then by R2.2.1, ch*(v) >
de(v) — 4+ (3 — W m7=6) +2(3 + 5975) = 0. Otherwise, by R2.2.2, ch*(v) >
da(v) =4+ (3 — rg1=5) + 3G + sqmy=s) = 0.

If dg(v) = 4, then v receives at least

—ﬁ in total from its incident

faces by Claim 2.16.1. Say v has precisely n 5-neighbors. By Lemma 2.2,
we have 2 < n < 4. By R2.3, each of these 5-neighbors send m to v.

Therefore, ch*(v) > dg(v) —4 — [474%79 + nn(Mng) =0.

If dg(v) = 5, then v receives at least — in total from its incident

Rl e
faces by Claim 2.16.1. First assume v has a 2-neighbor, then by Lemma 2.4, v
has four 5-neighbors and at least three of them are adjacent to no 3~ -vertex.
Hence, by R2.1 and R2.4, ch*(v) > da(v) —4— (3 + ﬁ) - (34 ﬁ) +
3%([5@4—12 + [21“%—3)) =0.

Next assume that v has a 3-neighbor u, then by Lemma 2.3, v has at least

three 5-neighbors. In this case, v sends nothing to each 5-neighbor. Let w be
the remaining neighbor of v. Then dg(w) € {3,4,5}.

If dg(w) = 3, then vw ¢ E(G) by Lemma 2.2. Furthermore, Lemma
2.5 implies that neither vw nor wwv is contained in a triangle. It follows that
v is incident with at most two triangles. Thus, by Claim 2.16.1, v receives

a charge of at least % — in total from its incident faces. Moreover,

4
[5r]—14
both v and w have no 4~ -neighbors. Suppose to the contrary that t is a
4~ -neighbor of u (analogously of w). By Lemma 2.2, we have dg(t) = 4.
By applying Lemma 2.4 to ut, we have dg(w) > 4, a contradiction. Hence,

v sends %—F (

m to each of u and w by rule R2.2.2, yielding ch*(v) >

da(v) —4+ (5 - 7{5@44) —2(3 + 73([31%176)) =5- [51“]4714 - 3((37?]76)'
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If dg(w) = 4, and if u is adjacent to w, then by Lemma 2.4, w has three
5-neighbors. Hence, by R2.2 and R2.3, ch*(v) > dg(v) —4 — (3 + ﬁ) -

1 2 4 _ 1 2 4 4 : :
(3+ ]'37‘-\—6) — B9 = 3 36~ 3(HT9) ~ [5-12- If u is not adjacent to
w, then for any neighbor ¢ of u, we have dg(t) > 4 by Lemma 2.2. If dg(t) = 4,
then by applying Lemma 2.4 to ut we have dg(w) = 5, a contradiction. Hence,

dg(t) = 5. This means all neighbors of u are of degree 5. By R2.2.2, ch*(v) >

de(v)—4— (%+ [5r]4—12 )— (%+ 3((3;11 —6) )— [473—9 = %* 3([3:}1 —6) [473—9 - (5ﬂ4—12 :

If dg(w) = 5, then v sends charge only to u. Hence, ch*(v) > dg(v) — 4 —

1 4 1 2 _1 2 4
(5 + [5r]—12) o (§ + [3r1—6) — 3 T3r]-6  T[5r]-12°
It remains to consider the case when v has five 4™-neighbors. In this case it

follows with Claim 2.16.2 that ch*(v) > da(v) =4 — (3 +57=5) —5 (G (mm +
2

_ 2 32 10
[m—s)) — 3 3([5r]-12) ~ 3([2r]-3)"

Since r > 7 + 3 it follows that ch*(z) > 0 for all z € VU F. O

Theorem 2.17. If G is a planar 6-critical graph, then F*(G) < 3+

[SA11\)

Proof. Suppose to the contrary that F*(G) > 3 + % Let ¥ be an embedding
of G into the Euclidean plane and F*(G) = F((G,X)). We have

Y (2dc(f) = 6) = 4|E(G)| - 6|F(G)]

feF(G)
=4|E(G)| - 6(|E(G)|+2—|V(G)]) (by Euler’s formula)
=6|V(G)| - 2|E(G)| — 12

< |V(G)| =15  (by Theorem 2.8)

and therefore,

—V(@)|+ Y (2da(f) —6) < —15. (2.2)

JEF(G)

Define the initial charge ch(z) for each x € V(G)UF(G) as follows: ch(v) =
—1 for every v € V(G) and ch(f) = 2dg(f) — 6 for every f € F(G). It follows

from inequality 2.2 that 3 v (q)up(q) ch(z) < —15.
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A vertex v is called heavy if dg(v) € {5,6} and v is incident with a face of
length 4 or 5. A vertex v is called light if 2 < dg(v) < 4 and v is incident with
no 6*-face and with at most one 4*-face. We say a light vertex v is bad-light
if v has a neighbor u such that dg(u) + dg(v) = 8, and good-light otherwise.

Discharge the elements of V(G) U F(G) according to following rules.

R1: every 4"-face f sends % to each incident vertex.
R2: every heavy vertex sends 13—0 to each bad-light neighbor, and 1—10 to each
good-light neighbor.

Let ch*(z) denote the final charge of each x € V(G)U F(G) after discharg-
ing. On one hand, the sum of charge over all elements of V(G) U F(G) is
unchanged. Hence, we have > v ()ur(q) ch(z) < —15. On the other hand,
we show that ch*(z) > 0 for every x € V(G) U F(G) and hence, this obvious
contradiction completes the proof.

It remains to show that ch*(x) > 0 for every x € V(G) U F(G).

Let f € F(G). If dg(f) = 3, then no rule is applied for f. Thus, ch*(f) =
ch(f)=0.

If di(f) > 4, then by R1 we have ch*(f) = ch(f) — ddf)% =0.

Let v € V(G). Firstly, we consider the case when v is heavy. On one hand,
since F'((G, X)) > 3+ 2, it follows that either v is incident with a 57-face and
another 4*-face or v is incident with at least three 4-faces. In both cases, v
receives at least % in total from its incident faces by R1. On the other hand,
we claim that v sends at most % out in total. If v is adjacent to a bad-light
vertex u, then all other neighbors of v have degree at least 5 by Lemma 2.4.
Hence, v sends 1% to v by R2 and nothing else to its other neighbors. If v is
adjacent to no bad-light vertex, then v has at most three good-light neighbors
by Lemma 2.3. Hence, v sends % to each good-light neighbor by R2 and
nothing else to its other neighbors. Therefore, ch*(v) > ch(v) + 12 — 5 = 0.

Secondly, we consider the case when v is not heavy. In this case, v sends
no charge out. If v is incident with a 6™-face, then v receives at least 1 from
this 6*-face by R1. This gives ch*(v) = ch(v) + 1 = 0. If v is incident with at

least two 4T-faces, then v receives at least % from each of them by R1. This
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gives ch*(v) = ch(v) + 3 + 3 = 0. We are done in both cases above. Hence, we
may assume that v is incident with no 6"-face and with at most one 4™-face.
From F((G,X)) > 3+ 2 it follows that v is incident to a face f, such that
da(fy) € {4,5}. Since v is not heavy, 2 < d(v) < 4. Hence, v is light by
definition. We distinguish two cases by the length of f,.

If da(fy) = 4, then by the fact F*(G) > 3 + %, we have dg(v) = 2.
By Lemma 2.2, both neighbors of v are heavy and v is bad-light. Thus, v
receives % from f, by R1 and % from each neighbor by R2, yielding ch*(v) =
ch(v)+ 3+ &+ 3 > 0.

If dg(f,) = 5, then v receives % from f,. If v is not a bad-light 4-vertex,
then Lemma 2.2 implies that each neighbor of v has degree 5 or 6. Hence,
both of the two neighbors of v contained in f, are heavy. By R2, each of them
sends charge at least & to v, and therefore, ch*(v) > ch(v) + 2+ & + & = 0.
If v is a bad-light 4-vertex, then Lemma 2.3 implies that at least one of the

two neighbors of v contained in f, is heavy. Thus, this heavy neighbor sends

charge - to v, and therefore, ch*(v) > ch(v) + 2 + 2 > 0. O

2.5.3 Bounds for b, and b}

The main results in this chapter are the following two theorems.
Theorem 2.18. Let k > 2 be an integer.
o If k=2, then b, = co.

If k=3, then 6 < b, < 8.

Ifk=4, then 4 <b, <442

If k=5, then 3+ § < b, <3+ 3.

If k =6 and by, exists, then by, < 3 + %

Proof. The statement for k = 2 and the lower bounds for by if k € {3,4,5}
follow from Lemma 2.14. The other statements of Theorem 2.18 are implied

by Proposition 2.15. O
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Theorem 2.19. Let k > 2 be an integer.
o If k<€ {2,3,4}, then b} = oo.
o Ifk=5,then3+$ <b; <7+ 3.
o If k=06 and b}, exists, then by < 3+ %

Proof. The statement for k € {2,3,4} and the lower bound for b; follow from
Lemma 2.14. The results for b and for b§ are implied by Theorem 2.16 and
2.17, respectively. O

Vizing [70] proved that a class 2 graph contains k-critical subgraph for
each k € {2,...,A}. Hence a smallest counterexample to Vizing’s conjec-
ture is critical and thus, our results for £ = 6 partially characterize smallest
counterexamples to this conjecture. For k < 5, they provide insight into the
structure of planar critical graphs.

A graph G is overfull if G is of odd order and |E(G)| > A(G) L@J +1.
Seymour’s exact conjecture [65] says that every critical planar graph is overfull.
If this conjecture is true for k € {3, 4,5}, then by is equal to the lower bound
given in Theorem 2.18. It is not clear whether b, and by, are related to each
other, or F(G) and F*(G) are. Furthermore, the precise values of by and b}

are also unknown.

Problem 2.20. What are the precise values of b and b} ?

2.5.4 Concluding remarks

Recently, Cranston and Rabern [5] improved Jakobsen’s result (Theorem 2.6)
on the lower bound on the number of edges in a 3-critical graph. They gave a

computer-aided proof of the following statement.

Theorem 2.21 ([5]). Every 3-critical graph G, other than the Petersen graph
with a vertex deleted, has |E(G)| > 22|V (G)|.

Hence, |E(G)| > 22|V (G)| for every planar 3-critical graph. By a similar
argument as in the proof of Proposition 2.15, this result improves the bound

ofggfrom6§53<8t06§53<11—0§.
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By Proposition 2.15, F(G) has an upper bound for every critical planar
graph G. However, this is not always true for class 2 planar graphs. Similarly,

Theorems 2.16 and 2.17 can not be generalized to class 2 planar graphs.



Chapter 3

1-factors and 1-factor covers

3.1 1-factor covers and cycle covers

Let k be a positive integer. A k-reqular graph is a graph where each vertex
has degree k. Let GG be a graph. A subgraph of G is spanning if it has the
same vertex set as G. A k-factor of GG is a spanning k-regular subgraph of G.
Thus, every perfect matching induces a 1-factor. A I-factor cover of G is a
list of 1-factors whose union is E(G), and a I-factorization of G is a partition
of E(G) into disjoint 1-factors. Thus, every 1-factorization is a particular 1-
factor cover. If a graph has a 1-factorization, then it must be a regular graph.
However, not all regular graphs have a 1-factorization. A k-regular graph has

a 1-factorization if and only if it is k-edge-colorable.

Since the complement of a 1-factor of a 3-regular graph is a 2-factor, covers
by 1-factors are closely related to covers by cycles. A cycle cover of a graph
is a list C of cycles such that every edge of G is contained in at least one of
them. It is a cycle double cover if each edge is contained in precisely two
cycles, and is a k-cycle double cover if C consists of at most & cycles. Celmins
and Preissmann independently formulated the 5-cycle double cover conjecture
(briefly, 5CDCC) which is a stronger version of the cycle double conjecture
(briefly, CDCC) of Seymour and Szekeres. An exhaustive survey on cycle

(double) covers of graphs and related topics is given by Zhang [78].
27
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Conjecture 3.1 (5-cycle double cover conjecture, see [77]). Every bridgeless

graph has a 5-cycle double cover.

In this thesis, we focus on 1-factor covers other than cycle covers.

A join of a graph G is a parity subgraph of G, that is, a subgraph H
where each vertex has the same parity of its degree in H and in GG. Hence, in
a 3-regular graph, every 1-factor is a join, and the complement of a join is a

cycle.

3.2 Cubic graphs and snarks

A 3-regular graph is also called a cubic graph. There are many hard problems
in graph theory for which it suffices to solve it for cubic graphs. Examples
of such problems are the four color problem (now a theorem), problems con-
cerning cycle covers or 1-factor covers, flow problems, and so on. For a cubic
multigraph, remove two multiple edges, identify their two ends, and suppress
the resulting bivalent vertex. Repeat this operation until we obtain a new cu-
bic graph that is simple. Usually, if these problems can be solved for the new
simple graph, then they are solvable for the original graph as well. Therefore,
in the rest of the thesis, if not particularly indicated, cubic graphs are always
assumed to be simple.

By Vizing’s theorem, a cubic graph has chromatic index either 3 or 4, so
it is class 1 or class 2, repectively. A smark is a class 2 cubic graph that
is cyclically 4-edge-connected and of girth at least 5. Sometime, snarks are
defined to be more relaxed in the literature: class 2 cubic graphs. Throughout
the thesis, we follow the former definition, to avoid some trivial cases. Snarks
were so named by Gardner [14] in 1976. Most of the problems on cubic graphs
can be easily solved for class 1 cubic graphs. For class 2 cubic graphs that are
not snarks, they easily reduce to smaller ones, see c.f. [4, 14, 16, 26, 54, 62].
Thus, possible minimal counterexamples to those problems are snarks.

The Petersen graph is the first known snark, discovered in 1898. It is also

the smallest snark and serves as a useful example or counterexample for many
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problems in graph theory. Tutte conjectured that every snark has the Petersen
graph as a minor, that is, every snark can be obtained from the Petersen graph
by deleting edges and vertices and by contracting edges. As we notice, for lots
of conjectures and theorems in graph theory, if there is a bound, then it can
be achieved by the Petersen graph. All these make the Petersen graph play a
very important role in graph theory.

There were only four snarks known until Isaacs [26] constructed infinite

families of snarks in 1975. Later on, stronger criteria of non-triviality, reduc-
tion and constructions of snarks are considered. We next collect some well
known snarks necessary for the thesis.
(1) Petersen graph. Given any 5-element set. Take 2-element subsets as
vertices and put an edge between two vertices if and only if their corresponding
sets are disjoint. We thereby obtain a graph with 10 vertices and 15 edges,
which is called Petersen graph (see Figure 3.1) .

Figure 3.1: Petersen graph

(2) Flower snarks. Let n be an odd integer with n > 5. The flower snark .J,,
(see Figure 3.2) can be constructed in such a way: take n copies of K 3 where
the vertex u is connected to three other vertices x,y, z; construct the circuits
[x122...2,] and [y1 ... Yn21 ... 2,]. A flower snark J,, has girth 5 if n = 5, and
girth 6 otherwise.

(3) Goldberg snarks. Let k be an odd integer with k > 5. The Goldberg snark
Gy, is formed from k copies Bji,..., By of the graph B (see Figure 3.3) and
the edges of {a;a;t1,¢ibit1,e;d;i41} for all i € {1,...,k}, where the indices are

added modulo k.
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Figure 3.2: The Flower snarks J; (left) and J; (right)

Figure 3.3: The graph B for constructing Goldberg snarks

3.3 Berge-Fulkerson conjecture and Berge conjec-

ture

The following celebrated conjecture, often referred to as Berge-Fulkerson con-

jecture, is due to Fulkerson and appears first in [13]:

Conjecture 3.2 (Berge-Fulkerson conjecture [13]). Ewvery bridgeless cubic
graph G has siz 1-factors such that each edge of G is contained in precise-

ly two of them.

A set of such six 1-factors in the conjecture is called a Fulkerson cover
of G. This conjecture trivially holds true for 3-edge-colorable cubic graphs.
Thus a possible minimum counterexample to the conjecture is a snark. The

conjecture has been verified for some families of snarks, see e.g. [22, 38, 44].
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It is straightforward that Berge-Fulkerson conjecture implies the existence
of five 1-factors whose union is the edge-set of the graph G. This naturally
raises a seemly weaker conjecture, attributed to Berge (unpublished, see e.g.

[77)).

Conjecture 3.3 (Berge conjecture). Every bridgeless cubic graph G has five

1-factors such that each edge of G is contained in at least one of them.

A set of such five 1-factors in the conjecture is called a Berge cover of
G. Recently, Mazzuoccolo [47] proved that the previous two conjectures are
equivalent. Note that this equivalence is referred to the class of bridgeless cubic
graphs. However, it is still unclear whether the equivalence holds for every
bridgeless cubic graph, that is, does a graph having a Berge cover always have

a Fulkerson cover?

3.4 Fan-Raspaud conjecture and Fano flows

In 1994, the following statement was conjectured to be true by Fan and Ras-

paud [10].

Conjecture 3.4 (Fan-Raspaud conjecture [10]). Every bridgeless cubic graph
has three 1-factors My, Mo, M3 such that My N My N Mz = ().

We remark that this conjecture is implied by Berge-Fulkerson conjecture.
However, with regards to the structure of a possible minimal counterexample,
this conjecture seems to be more difficult to treat on than Berge-Fulkerson
conjecture. So far it is known that a possible minimal counterexample to Fan-
Raspaud conjecture has girth at least 5 [45], but there are no constraints on
the cyclic connectivity known.

The study of Fan-Raspaud conjecture leads to a deep analysis of Fano-
flows on graphs. Consider the Fano plane F7 that has 7 points and 7 lines,
where each point lies in 3 lines and each line touches 3 points, see Figure 3.4.

A Fano-coloring of a cubic graph G is a mapping from F(G) to the points
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of F7 such that any three edges of G around a vertex are mapped to three
vertices of F7 that lie in a line.

As we can see in Figure 3.4, the points of the Fano plane can be labelled
with the non-zero elements of Z3 so that the values of the points in a line

sum up to zero. Inversely, for any three non-zero values from Z3 summing

0.11)

111 (0,0,1) (1,1,0)

Figure 3.4: Fano plane F7

up to zero, they lie in a line of Fano plane. Hence, there is a one-to-one
correspondence between a Fano-coloring and a nowhere-zero Z3-flow for a cubic
graph. By this reason, a Fano-coloring is also called a Fano-flow.

By Jaeger’s 8-flow Theorem [27], every bridgeless cubic graph has a
nowhere-zero Z3-flow and hence a Fano-flow. However, it is possible that not
all combinations of three non-zero elements of Z3 appear at a vertex of G,
that is, not all the 7 lines are necessarily needed in a Fano-flow. For £ < 7, a
k-line Fano-flow of a cubic graph G is a Fano-flow of G where at most k lines
of F7 appear as flow values at the vertices of G. Clearly, a cubic graph that is
class 1 has a 1-line Fano-flow. Macajova and Skoviera [45] proved that every
Fano-flow of a bridgeless cubic class 2 graph needs all 7 points and at least 4
lines of the Fano plane. Furthermore, they proved that every bridgeless cubic

graph has a 6-line Fano-flow, and conjectured that 4 lines are sufficient.

Conjecture 3.5 (4-line Fano-flow conjecture [45]). Every bridgeless cubic

graph has a 4-line Fano-flow.

A natural relaxation of this conjecture is the following statement, namely

the 5-line Fano-flow conjecture, still unsolved so far.
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Conjecture 3.6 (5-line Fano-flow conjecture [45]). Every bridgeless cubic

graph has a 5-line Fano-flow.

Conjectures 3.5 and 3.6 have surprisingly counterparts in terms of 1-factors.
Mécajova and Skoviera [45] proved the equivalence between Fan-Raspaud con-
jecture and the 4-line Fano-flow conjecture. Some other equivalences were
revealed in [40]. In particular, it was proved there that the 5-line Fano-flow
conjecture is equivalent to Conjecture 3.7, and the 6-line Fano-flow theorem
is equivalent to the statement that every bridgeless cubic graph has a 1-factor

and two joins with empty intersection.

Conjecture 3.7. Fvery bridgeless cubic graph has two 1-factors My, Ms and
a join J such that My N My J = 0.

3.5 The existence of 1-factors

One of the earliest results in graph theory, Petersen’s Theorem [55] from 1891,

states that every bridgeless cubic graph has a 1-factor.

Theorem 3.8 (Petersen’s Theorem [55]). Every bridgeless cubic graph has a
1-factor.

The first criterion for a graph to have a 1-factor was obtained by Tutte
[68] in 1947. It is one of the most important results in factor theory, called

the 1-Factor Theorem.

Theorem 3.9 (Tutte’s 1-Factor Theorem [68]). A graph G has a 1-factor if
and only if
o(G—95) <|S|, for every S C V(G).

In modern textbooks, Petersen’s theorem is covered as an application of
Tutte’s 1-Factor theorem. A generalization of Petersen’s theorem appears in

the same article of Petersen.

Theorem 3.10 ([55]). Let G be a cubic graph. If there exists a path containing
all the bridges of G, then G has a 1-factor.
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It is trivial that this theorem implies Petersen’s Theorem. Here, we further

extend this theorem from cubic graphs to k-regular graphs for every k > 3.

Theorem 3.11. Let G be a k-regular graph of even order. If there exists a
path containing an odd number of edges from each edge-cut of cardinality at

most k — 2, then G has a 1-factor.

Proof. Take any S C V(G). Denote by Hy, ..., H; all the odd components of
G — S. Let P be the path mentioned in the condition of the theorem. Since
P is a path, without loss of generality, we may assume that P intersects with
each 0(H;) on odd number of edges for i € {1,2}, and intersects with each

0(H;) on even number of edges for i € {3,...,t}. So

|E(P)NO(Hy)| + |E(P)No(Hy)| > 2. (3.1)

For each j € {3,...,t}, it follows from the assumption on P that

\E(P)NO(H;)| >k — 1. (3.2)

Since the graph G is k-regular and the component H; is odd, |0(H;)| has the
same parity as k and thus, so does |E(P) N 0(Hj)|. It follows from formula
3.2 that

|E(P)NO(Hj)| > k. (3.3)

Now we calculate that

0(S)| = Y |E(P) N O(H,)|
i=1
> k(t —2) + 2. (by formulas 3.1 and 3.3) (3.4)

Moreover, since G is k-regular,

10(S)| < kIS]|. (3.5)
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Notice that o(G — S) = t. Combining formula 3.4 and 3.5 gives
2
o(G—-295) < ]S|+2—;. (3.6)

Since G is of even order, o(G — S) and |S| have the same parity. Hence, we

have from formula 3.6 that
o(G—-8)<|S|. (3.7)
By Tutte’s 1-Factor Theorem, G has a 1-factor. O

3.5.1 1-factors containing certain edges

Petersen’s Theorem can be strengthened so that the 1-factor contains an ar-

bitrarily given edge. It is a result due to Schonberger [59].

Proposition 3.12 ([59]). If e is an edge of a bridgeless cubic graph G, then

G has a 1-factor containing e.

Hence, it is of self-interest to explore sufficient conditions for a cubic graph
to have a 1-factor such that the 1-factor contains more than one given edge.
Following this direction, we present two results, one is due to Steffen [64] and

the other is new.

Proposition 3.13 ([64]). Let G be a bridgeless cubic graph having no non-
trivial 3-edge-cut. Let M be a 1-factor of G and P be a path of length 3. If
M and P have no common edge, then there is a 1-factor M’ of G containing

the two end-edges of P.

We remark that this proposition was used to prove partial result to Berge

conjecture in [64].

Theorem 3.14. Let G be a bridgeless cubic bipartite graph. If e and f are
two edges of G which are not contained in any 3-edge-cut of G, then G has a

1-factor containing both e and f.
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Proof. Since G is a bipartite cubic graph, the vertex set V(G) can be divided
into two independent sets A and B of the same order. Since e and f are
not contained in any 3-edge-cut of G, they are disjoint. Assume that e =
a1by and f = agby with {a1,a2} C A and {b1,b2} C B. Let G’ be a graph
obtained from G by removing e and f and adding ajas and b1be, that is,
G' = G—e— f+ajas+biby. Clearly, G’ is cubic. Since G is bridgeless and since
e and f are not contained in any 3-edge-cut of G, it follows that G’ is bridgeless.
Hence, by Proposition 3.12, the graph G’ has a 1-factor M’ containing ajas.
Notice that all the edges of G’, except ajas and bibs, connect vertices of A to
vertices of B. It follows that M’ contains b;by as well. Define M to be the
1-factor of G corresponding to M’, that is, M = (M’ \ {a1a2,b1b2}) U {e, f}.

Hence, M is the 1-factor desired, we are done with the proof. ]

3.5.2 1-factors avoiding certain edges

Now we consider the question about the existence of 1-factors avoiding certain
edges for a cubic graph. Indeed, Proposition 3.12 can be reformulated as: if
e and f are two adjacent edges of a bridgeless cubic graph G, then G has a
1-factor containing neither e nor f. Actually, the constrain “adjacent” is not
necessary. Such an improvement holds true and has even been extended to

k-regular graphs, due to Plesnik [56].

Theorem 3.15 ([56]). Let G be a (k — 1)-edge-connected k-reqular graph of
even order. For any k — 1 many edges, G has a 1-factor containing none of

them.

We will discuss a variation of this theorem in Chapter 7. For the particular

case k = 3, we have the following proposition.

Proposition 3.16. Let G be a bridgeless cubic graph. For any two edges e

and f of G, there exists a 1-factor of G containing neither e nor f.

We are going to establish an analogous result but involving four edges. For

doing this, we need a graph operation, namely “pushing”.
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Let G be a cubic graph, and let e; and es be two disjoint edges of G with
e; = wv; for © € {1,2}. An operation that we delete e; and es and then add
two new vertex u,v and five new edges uv, uuy, uuo, vv1, vve is called pushing
{e1,ea} into {u,v}.

The proof for the following statement is straightforward.

Observation 3.17. Let e and [ be two disjoint edges of a graph G. Denote
by G’ the graph obtained from G by pushing {e, f} into {u,v}. The following
two statements hold true.

(1) If F is a I-factor of G' containing uv, then F \ {uv} is a I-factor of G
containing neither e nor f.

(2) If C is an edge-cut of G' containing uv, then (F \ {uv}) U {e, f} is an
edge-cut of G.

Theorem 3.18. Let G be a bridgeless cubic bipartite graph. If e, f,g,h are
four edges of G such that there exists no 5-edge-cut of G containing all of

them, then G has a 1-factor containing none of e, f, g, h.

Proof. If there exist two edges in {e, f, g, h} that are adjacent, without loss
of generality, say e and f, then the edge shares the same end with e and f
together with e, f, g, h forms a 5-edge-cut of (G, a contradiction. Hence, the
edges e, f, g, h are pairwise disjoint. By pushing {e, f} into {u,v} and {g, h}
into {z,y}, we obtain from G a new graph G’. Observation 3.17 (2) implies
that G’ has no 3-edge-cut containing both uv and zy, Hence, G’ has a 1-factor
F' containing both uv and zy by Theorem 3.14. It follows from Observation
3.17 (1) that F'\ {uv, zy} is a 1-factor of the original graph G containing none

of {e, f,g,h}. O



38

Chapter 3 1-factors and 1-factor covers



Chapter 4

Cores of cubic graphs

The results of this chapter have already been published in [34].

4.1 Definition and basic properties of cores

Cores were introduced by Steffen [64] very recently and were used to prove
partial results on some hard conjectures which are related to 1-factors of cubic
graphs, such as Berge conjecture, Fan-Raspaud conjecture, and conjectures on
cycle cover and on cycle double cover.

Let G be a cubic graph and S3 be a list of three 1-factors My, Ms, M3 of
G. For 0 <1 < 3, let E; be the set of edges that are contained in precisely @
elements of S3. The edges of Ey are called uncovered edges. Let M = EoU Es3,
U = Ey and |[U| = k. The k-core of G with respect to S3 (or to My, Ma, Ms)
is the subgraph G. of G which is induced by M UU; that is, G, = GIM UU].
If the value of k is irrelevant, then we say that G. is a core of G. A core G, is
proper if G, # G. Hence, G, is not proper if and only if M7 = My = Mj3. If G,
is a cycle, i.e., the union of pairwise disjoint circuits, then we call G, a cyclic
core. A minimal core of G is a k-core of G with minimum k. In other words,
a minimal core has the least uncovered edges. Note that a cubic graph may
have more than one minimal core. In [64] it is shown that every bridgeless

cubic graph has a proper core and therefore, every minimal core is proper.
39
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Some basic properties on the structure of a core and particularly of a
minimal core were proposed in [64]. Here, we would like to mention two of

them.

Lemma 4.1 ([64]). Let k be a positive integer. If G. is a k-core of a cubic
graph G, then k = |Es| + 2|Es)|.

Lemma 4.2 ([64]). Let G. be a minimal core of a cubic graph G. If C is a
circuit of G. whose edges belong to E2 U E3 and to Eg alternately along C,
then for each i € {1,2,3}, the circuit C' has an edge e € Eq \ M.

The proof of Lemma 4.1 is due to the adjacency between the edges from
Ey and from M. Both of the lemmas will be used later for further exploration

on the structure of cores.

4.2 Equivalent statements to Fan-Raspaud conjec-

ture

As already mentioned in Section 3.4, Fan-Raspaud conjecture is equivalent
to the 4-line Fano-flow conjecture. In this section, we restate Fan-Raspaud
conjecture in the language of cores, and furnish for it more equivalent formu-
lations. This offers insight into the structure of possible counterexamples to
Fan-Ranspaud conjecture and inversely, into the structure of cores of bridgeless
cubic graphs.

It is straightforward to reformulate Fan-Raspaud conjecture in terms of

cyclic core. This equivalent conjecture was first addressed in [64].
Conjecture 4.3 ([64]). Fvery bridgeless cubic graph has a cyclic core.

Since every circuit in a cyclic core has even length, it follows that ev-
ery cyclic core is bipartite. Steffen proposed the following seemingly weaker

conjecture:

Conjecture 4.4 ([64]). Every bridgeless cubic graph has a bipartite core.
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However, the inverse implication is not straightforward. There are many
bipartite cores that are not cyclic, for example, a core consisting of one circuit
[ugui ... ug] and two edges upus and ujug from FEs. Here, we show that the
inverse implication is also true and therefore, Conjectures 4.3 and 4.4 are
equivalent. Besides, the following two conjectures are proposed and proved

equivalent to Fan-Raspaud conjecture as well.
Conjecture 4.5. Every bridgeless cubic graph has a triangle-free core.

Conjecture 4.6. Every bridgeless cubic graph has three 1-factors such that

the complement of their union is an acyclic graph.

Conjecture 4.6 can also be restated in language of core as: every bridgeless
cubic graph has a core where the uncovered edges induce a forest. Moreover,
the number “three” in this conjecture can not be lowered to “two”, which will
be proved in the last section of this chapter.

Let G1 and G2 be two bridgeless graphs, e; and es be two edges such that
e1 =uv1 € E(Gy) and eg = ugue € E(G2). The 2-cut connection on {ey, ez}
is a graph operation that consists of deleting edges e; and e; and adding two
new edges ujus and vivs. Clearly, the graph obtained from G; and Gy by
applying 2-cut connection is also bridgeless.

Now we are going to prove all these equivalences, as concluded in the

following theorem.
Theorem 4.7. The following four statements are equivalent:

(1) (Conjecture 3.4) Ewvery bridgeless cubic graph has three 1-factors
My, Mo, M3 such that My N Ms N Mg = (.

(2) (Conjecture 4.4) Every bridgeless cubic graph has a bipartite core.
(3) (Conjecture 4.5) Every bridgeless cubic graph has a triangle-free core.

(4) (Conjecture 4.6) Every bridgeless cubic graph has three 1-factors such that

the complement of their union is an acyclic graph.
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Proof. If statement (1) holds, then the core G. of a bridgeless cubic graph
G with respect to My, Mo, M3 is cyclic. More precisely, each circuit in G,
contains edges from FEy and Fsy alternate in cyclic order. Hence, the core
G. is bipartite and triangle-free, and G[Ey| is an acyclic graph. Therefore,
statement (1) implies all of the statements (2), (3) and (4).

Let G be a bridgeless cubic graph with edge set {ej,...,e,}. Take m
copies T1,...,T,, of the complete graph K. For each i € {1,...,m}, apply
2-cut connection on e; and an edge of T;, and let e} and e/ be the two added
new edges. Let G’ be the resulting graph, which is bridgeless and cubic. Let H
be a core of G’ with respect to three 1-factors Mj, My, M3. For every 1-factor
F of G', since F' contains either both of ¢; and e or none of them for each
i€ {1,...,m}, we can let con(F) = {e: e = ¢; € E(G), and €},€/ € F}.
Clearly, con(F') is a 1-factor of G. We claim that if H is either bipartite
or triangle-free or if the complement of the union of Mj, My, M3 is acyclic,
then con(Mji),con(Ms) and con(Ms) have empty intersection. This claim
completes the proof. Suppose to the contrary that G has an edge e; such that
e1 € con(My) N con(Ma) N con(Ms). Tt follows that e}, ef € My N My N Ms.
Hence, in the copy 71, the core H contains triangles and G[Fy| contains a

circuit of length 4, a contradiction with the supposition of our claim. ]

To be concluded, it is worth mentioning one more conjecture, which is

weaker than Conjecture 4.3 but still open.
Conjecture 4.8 ([64]). Every bridgeless cubic graph has a bridgeless core.

As proved in [64], every bipartite core is bridgeless. Hence, this conjecture

is even weaker than Conjecture 4.4.

4.3 Weak cores

In this section, we are going to generalize the concept of cores to weak cores

in a natural way that is involved with three joins instead of three 1-factors.
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The aim of doing this is to deal with the k-line Fano-flow problems for other
values of k.

Let J be a join of a cubic graph G. Clearly, every vertex has degree either
lor3in J. A J-verter is a vertex of degree 3 in J. Let n(J) denote the
number of J-vertices.

Let S be a set of three joins Ji,Js,Js of a cubic graph G. For each
i€{0,...,3}, let E;(S) (briefly, E;) be the set of edges that are contained in
precisely ¢ elements of S. The weak core of G with respect to S (or to Ji, Ja
and J3) is a subgraph G. induced by the union of the sets Fy, Es and F3, that
is, G. = G[Ey U E3 U E3]. Let | be the precise number of elements of S that
are not 1-factors and let k = |Eo| + 3 Z‘?:l n(J;). The weak core G, is further
called a l-weak k-core. Our particular choice for the value of k£ will be more
clear in the proof of Theorem 5.25. We can see that, the name of core is short
for O-weak core.

A join J is simple if the graph induced by all the J-vertices contains no
circuit. Clearly, every 1-factor of G is a simple join, and every join of G
contains a simple join as a subgraph. When we ask for empty intersection
of three joins, it suffices to restrict the joins to being simple. Thus, we will
focus on simple joins. A simple weak core is a weak core with respect to three
simple joins. A weak core is cyclic if it is a cycle.

Analogously, Conjecture 3.7 can be directly formulated as a statement on
cyclic 1-weak cores and will be proved equivalent to a statement on triangular-

free simple 1-weak cores. Both statements are shown as conjectures below.
Conjecture 4.9. Every bridgeless cubic graph has a cyclic 1-weak core.

Conjecture 4.10. Fvery bridgeless cubic graph has a triangle-free simple 1-

weak core.

Fano-flows can be related to cyclic weak cores in general sense. As a

substitution of the k-line Fano-flow problem, we ask the following question:

Problem 4.11. What is the minimum k such that every bridgeless cubic graph

has a cyclic k-weak core?
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So far we known that k£ < 2. Conjectures 4.9 and 4.3 assert that £ < 1
and k = 0, respectively.

Now we classify the vertices of a cubic graph G. This will benefit the proof
of the next two propositions, which gives us some basic informations on weak
cores. Let Ji, Jo and J3 be three joins of a cubic graph G. We say that a vertex
v of G has type (x,y, z) if the three edges incident to v are covered z,y and
z times by {J1, Ja, J3}, respectively. We denote by a, b, c,d, e, f, g the number
of vertices of type (3,3,3),(3,2,2), (3,1,1),(2,2,1), (1,1,1),(2,1,0),(3,0,0),
respectively (see also Figure 4.1). Clearly, every vertex has precisely one type.

Note that vertices of type (3,3,3), (3,2,2), (3,1,1) and (2,2, 1) are J;-vertices

Ao AL
A

Figure 4.1: Vertex types

for some 1.

Proposition 4.12. Let G be a cubic graph, and Ji, Jo, J3 be three joins of G.
We have 5
[Eo| + Y n(Ji) = |Ea| + 2| Es.

Proof. By type definitions, we have ), n(J;) = 3a +2b+c+d, |Eg| = § I 4g,
|Bs] = b+d+ 4 and |Es| = 3 + 5+ ¢+ 9 Hence, >,n(J;) + |Eo| =
3a+2b+c+d+ L+ g =|Ey| +2|E; holds. O

Proposition 4.13. If G. is a weak core of a cubic graph G, then G[EyU Es]

s either an empty graph or a cycle.

Proof. By type definitions, it is easy to see that every vertex is incident with
either none or precisely two edges of FyU Esy. Therefore, G[Ey U Es] is either

an empty graph or a cycle. ]
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Now we are ready to prove the main result on weak core.
Theorem 4.14. The following four statements are equivalent:
(1) (Conjecture 3.6) Every bridgeless cubic graph has a 5-line Fano-flow.

(2) (Conjecture 3.7) Every bridgeless cubic graph has a join J and two 1-
factors My and My such that J N My N My = (.

(8) (Conjecture 4.9) Every bridgeless cubic graph has a cyclic 1-weak core.

(4) (Conjecture 4.10) Every bridgeless cubic graph has a triangle-free simple

1-weak core.

Proof. As already mentioned, the equivalence of statements (1) and (2) is
proved in [40] (Theorem 3.1).

(2) — (3): By Proposition 4.13, the 1-weak core with respect to M, Mo
and J is cyclic. Therefore, statement (2) implies statement (3).

(3) — (4): Suppose to the contrary that there is a bridgeless cubic graph
G that has no triangle-free simple 1-weak core. Let G, be a cyclic 1-weak core
of G with respect to two 1-factors My, My and a join J such that E(G.) is
minimum. We claim that G, is simple. Otherwise, J is not simple, that is,
G contains a circuit C' such that each vertex of C' is a J-vertex. Recall that
G, is cyclic, by type definitions according to My, Ms and J, every vertex of C
has type (2,2,1). Let J; be the new join obtained from join J by removing
all the edges of C. Thus .J; is also a join of G. The 1-weak core with respect
to My, Ms and Jp is cyclic and has fewer edges than G, a contradiction. This
completes the proof of the claim.

By our supposition and the previous claim, G, has a triangle [zyz]. It
follows that two of vertices x,y and z have type (2,1,0) and the last one has
type (2,2,1), which is the only possible case. Without loss of generality we
assume that z is of type (2,2,1). Set Jo = J U {zy} \ {xz,yz}. Clearly, Js is
a join of G. Now the 1-weak core with respect to M7, My and J, is cyclic and
has fewer edges than G, a contradiction. Therefore, statement (3) implies

statement (4).
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(4) = (2): Let G be a bridgeless cubic graph with edge set {e1,...,em}.
Take m copies T1, ..., T, of the complete graph K,. For each i € {1,...,m},
apply the 2-cut connection on e; and an edge of T;, and let €] and e/ be the
two added new edges. The resulting graph G’ is bridgeless and cubic. By
(3), G’ has a triangle-free simple 1-weak core H. Let H be with respect to
two 1-factors My, Ms and a simple join J. For every join F of G’, since F
contains either both of €/ and e/ or none of them for each i € {1,...,m}, let
con(F) ={e: e=e; € E(G), and €}, ¢! € F}. Clearly, con(F) is a join of G
and in particular, con(F) is a 1-factor of G if F is a 1-factor of G’. We claim
that con(Mi)Necon(Ma)Neon(J) = 0 and hence, statement (1) holds. Suppose
to the contrary that G has an edge e; contained in all of con(M; ), con(Ms) and
con(J). Tt follows that €/, €] € My N My N J, and hence one can easily deduce
that in copy 71, the 1-weak core H contains either a triangle or a circuit of
length 4 whose vertices are J-vertices, a contradiction. Therefore, statement

(3) implies statement (1). O

4.4 Counterexample to a conjecture

If Fan-Raspaud Conjecture is true, then every bridgeless cubic graph has t-
wo 1-factors, say M; and Ms, with no odd edge-cut in their intersection; in
particular, the complement of M; U M> is a bipartite graph which is union of
paths and even circuits. One could ask if even circuits could be forbidden in
such a bipartite graph. It is verified to be true for all snarks of order at most

34 and proposed as a conjecture in [49].

Conjecture 4.15 ([49]). Every bridgeless cubic graph has two 1-factors such

that the complement of their union is an acyclic graph.

Note that this conjecture is formulated in the same way as Conjecture 4.6
but stronger than the latter. Here, we disprove Conjecture 4.15 by using the
same technique already applied in the proof of Theorem 4.14.

Let P be the Petersen graph and let {ei,...,e15} be its edge-set. Take 15

copies T1,...,T15 of the complete graph Ky. For each ¢ € {1,...,15}, apply
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a 2-cut connection on e; and an arbitrary edge of T;. Denote by G the graph
obtained. Let M; and Mj be two 1-factors of G, and let con(M;) and con(Ms)
be the two corresponding 1-factors of P, respectively. Since every pair of 1-
factors of P has exactly an edge in common, without loss of generality we can
assume {e;} = con(My) N con(Ms). Hence, T has an edge covered twice and
a circuit of length four uncovered, that is, the complement of M; U M> is not
acyclic. The disproof of Conjecture 4.15 is completed.

Even the previous conjecture is false in that general form, we would like to
stress that the counterexample constructed above has a lot of 2-edge-cuts. So,
we believe that the conjecture could be still true under stronger connectivity
assumptions. In particular, we recall that it was verified true for all snarks,
hence cyclically 4-edge-connected cubic graphs, of order at most 34 (see [49]).

More precisely, we wonder if every 3-connected (cyclically 4-edge-
connected) cubic graph has two 1-factors such that the complement of

their union is an acyclic graph.

4.5 Concluding remarks

We summarize in Figure 4.2 all the implications announced in this chapter.
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Measures of

edge-uncolorability

One major difficulty in proving theorems for snarks is to find/define appro-
priate structural parameters for a proof. Intuitively, a snark which is not
reducible to a class 1 cubic graph seems to be more complicated than a s-
nark which does. Another approach to define some structural property of
class 2 cubic graph is to study invariants that “measure” how far the graph is
from being class 1. Isaacs called cubic graphs uncolorable if they are class 2.
Hence, these invariants are also called measures of edge-uncolorability in the

literature.

5.1 Introduction to measures

5.1.1 Oddness w

One major parameter measuring the complexity of a cubic graph G is its
oddness, which is the minimum number of odd circuits in a 2-factor of G. It
is denoted by w(G). A cubic graph G is class 1 if and only if w(G) = 0. Cubic
graphs with big oddness can be considered as more complicated than those
with small oddness. Since every cubic graph has even order, its oddness must

even. For instance, the Petersen graph has oddness 2. Snarks of oddness at
49
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least 4 were constructed in the literature with effort to minimize the order of
the snark. So far, the best known result was given in [41], a snark of girth 5
with oddness 4 on 44 vertices (see Figure 5.1). For the construction of snarks

with any larger oddness, see [20, 62].

Figure 5.1: A snark with oddness 4

Indeed, many hard conjectures have been proved for cubic graphs with very
small oddness. Mécajova and Skoviera [46] verified Fan-Raspaud conjecture
for cubic graphs with oddness 2. This implies the truth of Conjecture 3.7 for
these graphs as well. A proof of this particular result was given by Kaiser and
Raspaud in [37]. Moreover, the 5-flow conjecture (every bridgeless graph has
a nowhere-zero 5-flow) was verified for bridgeless cubic graphs with oddness
at most 4 by Mazzuoccolo and Steffen [52] very recently.

The discussion on oddness will be continued later in this chapter. Besides
the oddness, many other measures have been proposed and studied in the

literature.

5.1.2 Resistance r

We follow the definition of the two measures 3 and 7y given in [63]. For
k € {2,3}, let ¢x(G) be the maximum size of a k-colorable subgraph of a cubic
graph G. Define r3(G) = |E(G)| — ¢3(G) and r3(G) = 2|E(G)| — c2(G), and

call r3 the resistance of G. In other words, r3(G) is the minimum number
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of edges not covered by three matchings of G. In what follows, we take the
notation of resistance in [53], written as r.

It is equivalent to say that: (1) G is class 1; (2) r(G) = 0; (3) r2(G) = 0.
For any 2-factor F' of GG, the subgraph obtained from G by removing an edge
from each odd circuit of F' is 3-edge-colorable and has size |E(G)| — w(G).
Hence, 7(G) < w(G). Moreover, since c3(G) > 2¢3(G), it follows that r2(G) <
r(G), where the equality holds if and only if G is class 1. Therefore, if G
is a class 2 cubic graph, then 1 < r9(G) < r(G) < w(G). This implies that
r(G) > 2 for any cubic class 2 graph G. A tighter relation was given in [62]:
37(G) < r2(G) < min{2r(G), fw(G)} holds true for every bridgeless class 2
cubic graph G and the bounds are attained. The following proposition is well

known.

Proposition 5.1 (c.f. [62]). If G is a bridgeless class 2 cubic graph, then
r(G)=1<7(G) =2 w(G) =2.

However, the analogous proposition holds not true for larger values. The
difference between ro and r can be arbitrarily big and the difference between
r and w either. For the construction of the graphs with these property and

for more informations on the measures ro and r, we refer the readers to [63].

5.1.3 r,(G) of a graph G

We can restate the resistance r for general graphs: r(G) is the minimum
number of edges of a graph G that have to be removed from G to obtain a
A(G)-edge-colorable graph. An analogous measure 7, (G) is defined as the
minimum number of vertices of a graph G that have to be removed from G to
obtain a A(G)-edge-colorable graph. A modification of 7, (G) is r,(G), which
is the minimum number of vertices of a graph G that have to be removed
from G to obtain a class 1 graph. These measures were introduced in [39, 53].
Clearly, 7, (G) < r,(G) < r(G) for a graph G. While 7/ and r, are different
in the general case, they are of the same value for cubic graphs. In [62],

it even shows that r, and r are same for cubic graphs. Among these three
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equivalent parameters for cubic graphs, we will use only r. For a general graph
G, r(G) can be bounded by a function of r (G). It was proved in [53] that
r(G) < L%JT;(G), and the bound is best possible.

5.1.4 Weak oddness w’

The weak oddness was introduced by Huck and Kochol in [25]. Recently,
the question whether the oddness is always the same as weak oddness gains
much attention. Let G be a bridgeless cubic graph. Recall that the oddness
w(@) of G is the minimum number of odd circuits of the complement of a 1-
factor. Analogously, the weak oddness w'(G) of G is defined to be the minimum
number of odd components of the complement of a join.

The 5-CDCC was verified for bridgeless cubic graphs with oddness 2 by
Huck and Kochol [25], and for bridgeless cubic graphs with oddness 4 by Huck
[24] and independently by Haggkvist and McGuinness [19].

Let G be a bridgeless cubic graph. Same as the oddness, w'(G) must be
even. Let J be a join of G. Clearly, each component of the complement J is
either an isolated vertex or a circuit. By removing from G a vertex of each
odd component of J, we obtain a subgraph of G which is 3-edge-colorable.
Hence, r(G) < &'(G). Tt is known that, for every bridgeless cubic graph G, if
r(G) = 2 then w'(G) = 2. Furthermore, it was proved in [11] that, for every
bridgeless cubic graph G, if #(G) = 3 then w'(G) = 4; and that, there exists a
bridgeless cubic graph H such that r(H) = 4 and w'(H) > 6.

Since every l-factor is a join, w'(G) < w(G) by definition. The follow-
ing known statement tells us that the equality always holds for G such that
W(G) = 2.

Proposition 5.2. w'(G) = 2 if and only if w(G) = 2, for every bridgeless
cubic graph G.

Proof. Tt suffices to prove the direction “only if”. Since w'(G) = 2, let J be
a join whose complement has precisely two odd components, say H; and Ho.

Since G is cubic, each odd component is either an isolated vertex or an odd
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circuit, and each even component is an even circuit. If both H; and Hy are
odd circuits, we have nothing to prove. Hence, we may assume that H; is an
isolated vertex.

Case 1: assume that Hs is an isolated vertex as well. Give the colors 1
and 2 to each even circuit of .J alternately along the circuit, and the color 3
to the join J. Let K denote the subgraph of GG induced by the edges of color
1 or 3. We can see that K is a subcubic graph having the vertices H; and
Hy of degree 3 and all the remaining vertices of degree 2. It follows that K
has a path between H; and Hs. Swap the colors 1 and 3 on this path and
consequently, the edges of color 1 induce a 1-factor of G, whose complement
contains precisely two odd circuits. Therefore, w(G) = 2.

Case 2: assume that Hs is an odd circuit. Give the colors 1 and 2 to each
even circuit alternately along the circuit, and similarly to each H; except one
edge. Give the color 3 to the join J. Let K denote the subgraph of G induced
by the edges of color 1 or 3. We can see that K is a subcubic graph having
the vertice Hy of degree 3, Hy of degree 1 and all the remaining vertices of
degree 2. It follows that K has a path between H; and Hs. Again, swap the
colors 1 and 3 on this path and consequently, the edges of color 1 induce a 1-
factor of GG, whose complement contains precisely two odd circuits. Therefore,

w(G) = 2. O

There was a long-standing discussion on the question whether w(G) =
W'(G) for all bridgeless cubic graphs G. However, recently, Lukot’ka and
Mazék [42] gave a negative answer to this question by constructing a bridgeless
cubic graph having w/(G) = 12 and w(G) = 14. This construction can be easily
modified to obtain a bridgeless cubic graph with k£ = w/'(G) < w(G) for every
even k > 14. Later on, for each k € {6,8,10}, bridgeless cubic graphs with
k = W'(G) < w(G) are proposed [51]. Therefore, the case w'(G) = 4 is the

only one unclear.

Problem 5.3. Is it true that: w'(G) = 4 if and only if w(G) = 4, for every

bridgeless cubic graph G ¢
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Concerning this problem, the proof of Proposition 5.2 might give a hint on

the structure of a bridgeless cubic graph G with w'(G) = 4.

5.2 Further measures v, and pu3

The results of this section have already been published in [35]. In this section,
we discuss on two further measures «9 and psg of cubic graphs in terms of
1-factors, where ps was first introduced in [64]. Let G be a cubic graph.
Define that v2(G) = min{|M; N Ma|: M; and My are 1-factors of G}. A
cubic graph G is class 1 if and only if 72(G) = 0. The Petersen graph has
Y2 equal to 1 since any two distinct 1-factors intersect on precisely one edge.
Therefore, a class 2 cubic graph has no two disjoint 1-factors. The class of
r-graphs is a generalization of bridgeless cubic graphs. Rizzi [57] constructed
r-graphs having no two disjoint 1-factors for every r > 3, and call them poorly
matchable r-graphs. Therefore, it is reasonable and of interest to define an
analogous of o as a measure for r-graphs. We will study r-graphs in Chapter
7.

We relate v to w and 5. Let G be a cubic graph and let F} and F5 be
two 1-factors of G having precisely v2(G) many common edges. We can easily
see that the complement of F contains at most 2v2(G) odd circuits. Hence,
w(G) < 2v2(G). Moreover, F; U Fy induces a 2-edge-colorable subgraph. Since
|Fy N Fy| + |Fy U Fy| = 2|E(G)|, we can deduce that r2(G) < 72(G). On one
hand, we can see here that 9 bounds both %w and 7o, and the bounds can
be achieved by the Petersen graph P, where 1o(P) = fw(P) = ro(P) = 1.
On the other hand, for a cubic graph G with w(G) = 272(G), it follows that
r2(G) < $w(G), a bound much better than the general bound r2(G) < r(G) <
w(G) mentioned in Section 5.1.2.

Let us proceed with the introduction of ug, a family of parameters
which includes the measure ps3 as a member. Let G be a cubic graph,
k > 1, and S be a list of k& 1-factors of G. By a list we mean a

collection with possible repetition. For i € {0,...,k}, let E;(Sk) be
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the set of edges which are in precisely ¢ elements of S;. We define
pr(G) = min{|Ey(Sk)|: Sk is a list of k 1-factors of G}. In other words,
pr(G) is the minimum number of uncovered edges of G by k 1-factors.
Proposition 3.12 implies that, for a bridgeless cubic graph G and for any
positive integer k, pr11(G) < pup(G) — 1.

Berge conjecture asserts that us(G) = 0 for every bridgeless cubic graph
G.

If pa(G) = 0, then the edges of G can be covered by four 1-factors. Esperet
and Mazzuoccolo [9] showed that the problem whether p4(G) = 0 for a given
bridgeless cubic graph G is NP-complete. Snarks whose edges can be covered
by four 1-factors are of particular interests. Some informations on this class
were given in [12]. Moreover, it was proved by Hou, Lai and Zhang [23] and
independently by Steffen [64] that every cubic graph G with ps(G) = 0 has
a 5-cycle double cover. In [64], it was even proved that those graphs have
an even 4-cycle cover of length %\E(G)L and that every cubic graph G with
114(G) < 3 has a 4-cycle cover of length 3|E(G)|+4u4(G). The Petersen graph
has one uncovered edge by any 4 pairwise distinct 1-factors. Hence, it has a
non-zero value of uy4. Besides the Petersen graph, infinite families of snarks
with non-zero value of p4 were constructed, see [9, 20].

uo is strongly related to 2. By definition, we have us(G) = 72(G) +
LE(G)).

The measure pg was first introduced by Steffen in [64]. By definition, a
u3(G)-core and a minimal core have the same meaning for a cubic graph G.

The following statement trivially holds true.
Proposition 5.4. A cubic graph G is class 1 if and only if us(G) = 0.

Thus, ps can be taken as a measure of edge-uncolorability of cubic graphs,

and a cubic graph with smaller value of uj3 is regarded closer to being class 1.

Proposition 5.5 ([64]). Let G be a loopless cubic graph. If us(G) # 0, then
n3(G) = 3.
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The lower bound 3 is sharp. It is easy to check that the Petersen graph
P has three uncovered edges by any three given 1-factors. Thus, us(P) = 3,
reaching the lower bound. Besides the Petersen graph, there are infinitely
many snarks with this property, such as Goldberg snarks [16] and Isaacs flower
snarks [26], which are two well-known families of snarks. The proof of the

following proposition is not hard.

Proposition 5.6. If G is a flower snark or a Goldberg snark, then us(G) =3
and w(G) = 2.

The following theorem tells us that s can serve as an upper bound for ~s.

Theorem 5.7. Let G be a bridgeless cubic graph. If G is not 3-edge-colorable,
then 2v9(G) < us(G) — 1. Furthermore, if G has a cyclic us(G)-core, then
72(G) < 3u3(G).

Proof. Let G, be a ug(G)-core of G. By the minimality of v2(G), we have
372(G) < |E3| + 3|E3|. Combining this inequality with us(G) = |Ea| + 2| Es|
(Lemma 4.1) yields

272(G) < p5(G) — 5| Eal. (5.1)

Hence, the first statement is trivial if u3(G) is odd. If p3(G) is even, then
it follows from the fact that |Es| # 0, since G, is a proper core of G.

Furthermore, if G, is cyclic, then the inequality 5.1 implies that 12(G) <
s13(G). O

Clearly, the bound of this theorem is attained by every snark G with
u3(G) = 3. We will see that there are infinitely many snarks with this property.
Theorem 5.7 yields that pu3(G) > 2v2(G) + 1 > 3, which also proves the truth
of Proposition 5.5. Moreover, For every bridgeless cubic class 2 graph G,
since w(G) < 27v2(G), Theorem 5.7 provides an upper bound of the oddness
in terms of pu3: w(G) < w3(G) — 1. If G additionally has a cyclic minimal
core then w(G) < 243(G). In the next section, we will show that this bound

w(G) < % u3(G) actually holds true for all bridgeless cubic graphs.
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5.3 p3 and w

The results of this section have already been published in [35].

5.3.1 Bounds

A girth of a graph G is denoted by girth(G). The following proposition is

trivial but surprising to us, as proposed in [64].
Proposition 5.8 ([64]). If G is a cubic graph, then girth(G) < 2us(G).

Hence, the girth of a snark G can be bounded by u3(G). We show that
the oddness of G' can be bounded by p3(G) as well. More precisely, we prove
that w(G) < %Mg(G) for every bridgeless cubic graph G.

Before the proof of this result, we give a necessary definition. Let G be
a bridgeless cubic graph and G, a core of G with respect to three 1-factors
My, Ms, M3. The core G, is called a Petersen core if the following two condi-
tions hold:

(1) G. is cyclic;

(2) if P is a path of length 5 in G, then there exists no pair of edges e, 2

of P and two integers 4, j such that e;,ep € M; N M; and 1 <¢ < j < 3.

13

Figure 5.2: An example of Petersen core, where an edge labelled with ij
belongs to M; N M;

Theorem 5.9. Let G be a bridgeless cubic graph. If G. is a k-core of G
with respect to three 1-factors My, Mo, M3, then o(My) +o(Msz) +o(Ms) < 2k.
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Moreover, if G. is a k-core such that the equality holds, then G. is a Petersen

core.

23

N

Figure 5.3: The left figure gives a 3-core (in bold line) of the Petersen graph
where the equality holds, and the right figure gives M; (in dotted line) and
H; (in dashed line)

Proof. Let H be a subgraph of G, which is induced by EgU FEs. Clearly, H
consists of pairwise disjoint circuits. Let E;) = Ey N M; for i € {1,2,3}, and
Eqjy = Ex \ M; for {i,7,1} = {1,2,3}. We classify the components of H as
follows: let D be a component of H. If D contains edges only from Ejy, then
D is of group 0. If D is not of group 0 and it contains no edge from M;, then
D is of group i, for i € {1,2,3}. If D is not of group ¢ for all ¢ € {0,1,2, 3},
then D is of group 4.

For j € {0,1,2,3,4} let Y; be the graph consisting of components of H
which are of group j.

Let i € {1,2,3}. Let C be an odd circuit of M;. Then C has at least
one uncovered edge, say e. Let H; be a subgraph of H induced by E(H) \
M;. Clearly, e € H;. Let P. be the component of H; containing e. Since
C' is a component of M; and since H; is a subgraph of M;, C contains P..
Furthermore, P, is either a path or an odd circuit. Let E be the subgraph of
H; consisting of all the components of H; each of which is either a path or an

odd circuit. It follows that o(M;) < c(f{\z) Hence,

3

S o(0L) < 3 e(Hy). (5.2)

=1 =1
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Let D be a component of H. If E(D) N M; = (), then D is a component
also of H;; otherwise, the graph induced by E(D)\ M; consists of |E(D) N M|
many disjoint paths and each of these paths is a component of H;. It follows
that ¢(F;) = o(¥o) + o(Yi) + |[E(H) 0 Mi| = o(Yp) + o(Y;) + | B 1 My Hence,

3 3

3
S e(H;) =30(Yo) + Y _o(Yi) + Y [Ea N M. (5.3)

i=1 i=1 i=1
A vertex v of G is called a bad vertex if v is incident with two uncovered
edges. Clearly, G has precisely 2|F3| many bad vertices. Since every vertex
of Yy is a bad vertex, Yy has at least 30(Yp) bad vertices. Let T' be any odd
component of Y;. Since T is an odd circuit and every edge of T is either
uncovered or from E(j 3), it follows that 7" has at least one pair of adjacent
uncovered edges. Hence, T has at least one bad vertex. Thus, Y7 has at least
o(Y7) bad vertices. Similarly, for each j € {2,3}, Y; has at least o(Y;) bad
vertices. Since Yy, Y1, Ys, Y3 are pairwise disjoint subgraph of G, it follows that

Yo, Y1, Y, Y3 have at most 2| E3| bad vertices in total. Thus,

3
30(Yp) + Y o(Y;) < 2|Ej|. (5.4)
i=1
By combining inequalities 5.2-5.4 and the equality Z?:l |EoNM;| = 2| Es],
we conclude that Z?:1 o(M;) < 2|Es| + 2|E3|. By Lemma 4.1 we have k =
|E2| + 2| E5| and therefore,

> o(M;) < 2k — 2| Es| < 2k. (5.5)
=1

This completes the first part of the proof.

3.
Now let G, be a core such that > o(M;) = 2k. By inequality 5.5, we have
i=1

|E5| = 0. Thus, G, is a cyclic core. Furthermore, since |E3| = 0, we deduce
from (in-)equalities 5.2-5.4 that 2k = > o(M;) < 323 ¢(H;) = 2|Ba| and

from Lemma 4.1 that k = |Es|. Therefore, 322 o(M;) = S22, ¢(H;), that is,

the inequality 5.2 becomes an equality.
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A path P is bad if it is of odd length, and (a) there is i € {1,2,3} such
that M; N E(P) = (), and (b) the end-vertices of P are incident to an edge of
E jy, fora j € {1,2,3}\ {i}.

By definition, every bad path of G contains an uncovered edge.

We claim that G, has no bad path. Suppose to the contrary that P is
a bad path of G.. Without loss of generality, suppose that E(P) N M; =
() and both end-vertices of P are incident with an edge from E(1,2). Thus
P is a component of P/I\l Let C be the circuit of M; containing P. Since
21'3:1 o(M;) = E?:l c(f{\i), it follows that C' is of odd length and contains no
other component of fI\l This implies that C' — E(P) is a path of even length
with edges from E;) and from E3) alternately. But then P has an end-vertex
incident with an edge from F,) and with an edge from E|; 5), a contradiction.

This completes the proof of the claim.

It remains to show that G, is a Petersen core. Suppose to the contrary that
G is not a Petersen core. Then GG, violates the second part of the definition of
a Petersen core. Without loss of generality, we may assume that ) = uvwzyz
is a path of length 5 in G and ey, e are two edges of @ such that e1, e2 € Eq ).

It suffices to consider the following two cases.
Case 1: e; = uv and eo = wz. Then vw is a bad path of G, a contradiction.

Case 2: e1 = uv, e2 = yz, and wx &€ E(1 ). Then vwzy is a bad path of

G, a contradiction.

This completes the proof. O

Theorem 5.10. If G is a bridgeless cubic graph, then w(G) < 2u3(G). More-
over, if w(G) = %,ug(G), then w(G) = 2v2(G) and every us(G)-core is a Pe-

tersen core.

Proof. Let G be a u3(G)-core of G with respect to three 1-factors My, My, Ms.
By Theorem 5.9, we have o(M) + o(Mz) + o(M3) < 2u3(G). It follows that
w(G) < %,ug(G) by the minimality of w(G).
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If w(G) = 213(G), then o(M) + o(Ms) + o(Ms) = 2u3(G). Again by The-
orem 5.9, G is a Petersen core. By Theorem 5.7, 72(G) < $u3(G). Therefore,
w(G) < 27(G) < 2u3(G) = w(G). Hence, w(G) = 272(G). O

Theorem 5.10 implies that if a cubic graph G has a non-cyclic u3(G)-core,
then w(G) < 2p3(G).

5.3.2 The equality case: Petersen core

We will construct an infinite family of snarks G with w(G) = 2u3(G). Hence,
the upper bound 243(G) for w(G) is best possible.

A network is an ordered pair (G, U) consisting of a graph G and a subset
U C V(G) whose elements are called terminals. A network with k terminals
is a k-pole. We consider networks (G,U) with dg(v) = 1 if v is a terminal
and dg(v) = 3 otherwise. A terminal edge is an edge which is incident to a
terminal.

For i € {1,2} let T; be a network and u; be a terminal of T;. The junction
of Th and T, on (u1, u2) is the network obtained from 77 and 75 by identifying

u1 and ug and suppressing the resulting bivalent vertex.

Theorem 5.11. For every positive integer k, there is a cyclically 4-edge-
connected cubic graph Gy of order 26k and w(Gy) = r(Gg) = 272(Gg) =
Fu3(Gr) = 2k.

Proof. We will construct graphs with these properties. Let B be a 4-pole
with terminals a,b,c,d as shown in Figure 5.4. Take k copies By,...,Br_1
of B. Let Gy be the junction of By,...,Bg_1 on (¢;,a;+1) and (d;, b;y1) for
i € {0,...,k—1}, where the indices are added modulo k (Figure 5.5 illustrates
G2 and a p3(G2)-core in bold line).

It is easy to check that r(B) = 2. Hence, we have r(Gj) > 2k. Further-
more, let M/, M/, M!" be three matchings of B; as shown in Figure 5.6 labeled
with numbers 1,2, 3, respectively. Consider these matchings as matchings in
Gk, where the edges with the suppressed bivalent vertices belong to Mj. Let

= Ut My, M= Ui My, M = ) M. Then MY, M", M™ are
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Figure 5.4: 4-pole B

Figure 5.5: G5 and a p3(G2)-core in bold line

three 1-factors of G, and Gy has precisely 3k edges contained in none of
M’,M" and M". Hence, we have u3(Gy) < 3k. Since w(Gy) < 2u3(Gy) by
Theorem 5.10, it follows that 2k < r(Gy) < w(Gg) < %ug(Gk) < 2k. There-
fore, we have w(Gy) = r(Gy) = 2u3(Gy) = 2k = 272(Gy,), where the last

equality follows by Theorem 5.10. O

Figure 5.6: Three matchings of B;
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5.3.3 Difference

For i € {1,2}, let H; be a cubic graph and wu; be a vertex of H; of neighbors
Ti, Yi, zi- The 3-cut connection on {u1,us} is a graph operation that consists
of deleting vertices u; and us, and adding new edges z1x2,y1y2 and z122. We
say that {122, y1y2, 2122} is the connection-cut with respect to Hy and Ho.
This subsection devotes to construct cubic graphs G with arbitrarily big
difference between its oddness and % u3(G). We will use the following theorem

which is a simple consequence of a result of Weiss.

Theorem 5.12 ([74]). For every positive integer ¢ there is a connected bipar-

tite cubic graph H with girth(H) > c.

Theorem 5.13. For any positive integers k and c, there exists a bridgeless

cubic graph G with w(G) = 2k and us3(G) > c.

Proof. By Theorem 5.11 there is a cyclically 4-edge-connected cubic graph H
with w(H) = 2k = %ug(G). Hence, we are done for ¢ < 3k.

Let V(H) ={v1,...,vn}. By Theorem 5.12, there is a connected bipartite
cubic graph T with girth(T') > 2c. Since every bipartite cubic graph has no
bridge, T' is bridgeless. Take n copies 11, ...,T, of T', and let u; be a vertex of
T;. Let Hy = H and for i € {1,...,n} let H; be a graph obtained from H;_;
and T; by applying 3-cut connection on (v;,w;), and let G = H,,.

We claim that w(H;) = w(H;—1). Let M be a 1-factor of H;_; such that
M has w(H;_1) odd circuits. Precisely one edge of M is incident to v;. Since
T; is bridgeless cubic and bipartite, it follows that M can be extended to a
2-factor of H; that has w(H;—1) many odd circuits. Hence, w(H;) < w(H;_1).

Let F be a 1-factor of H; such that F' has w(H;) many odd circuits. Let
J be the connection-cut of H; with respect to H;_1 and T;. If F contains all
edges of J, then every circuit of F lies either in H; — v;_q or in T; — u;. Since
the order of H;[V(T;) \ {ui}] is odd, it follows that H;[V(T;) \ {u;}] contains
a circuit of odd length, contradicting the fact that 7; is bipartite. Hence, F'
contains precisely one edge of J. Then F can be transformed to a 1-factor

of H;_1 by contracting T; to a vertex. Since the complement of this 1-factor
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has at most w(H;) odd circuits, it follows that w(H;—1) < w(H;). Therefore,
w(G) = w(H).

By construction we have girth(G) > 2¢, and therefore, usz(G) > ¢ by
Proposition 5.8. ]

Since highly cyclically edge-connected snarks are of general interests, we
prove the following statement, which tells as well that the difference between

w and ps3 can be arbitrarily big, even we additionally fix the value of w.

Theorem 5.14. For every positive integer k, there is a cyclically 5-edge-

connected cubic graph G* with uz(G*) = 2w(GF) = 4k.

Proof. We will construct graphs with these properties.

Let D be a 5-pole with terminals u, v, w,x,y as shown in Figure 5.7. Let
k be a positive integer. Take 2k copies D1, ..., Dy of D, and denote by G*
the junction of Dy,..., Doy on (z;,u;y1) and (y;, vi41) for i € {1,...,2k} and

on (w;, wiyy) for i € {1,...,k} (Figure 5.8 illustrates G2).

Figure 5.7: The 5-pole D and a 2-regular subgraph S of D in dotted line

We claim that G* is a cyclically 5-edge-connected cubic graph such that
w(G*) = 2k and p3(G*) = 4k.

Since D is not 3-edge-colorable, every cover by three matchings leaves at
least one edge uncovered. Thus, r(G¥) > 2k and w(G*) > 2k.

Let S; be a set of edges of D; as shown in Figure 5.7 and let F' = U?il Si.
It is easy to see that F is a 2-factor of G* that contains precisely 2k odd
circuits. Thus, w(G*) < 2k and therefore, w(G*) = 2k.
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Figure 5.8: G? and a p3(G?)-core of G? in bold line

Let E be the junction of Dg;—1 and Dg; on (z9;—1,u9;) and (y2—1,v2;)
(i € {1,2,...,k}), and M/, M/, M!" be three matchings of D; as shown in
Figure 5.9 labeled with numbers 1,2, 3, respectively. Let M’ = Ule M/,
M" =, M, M =¥, M/". The three 1-factors M’, M", M"" cover all
but 4k edges of G¥. Hence, u3(G¥) < 4k. On the other hand, let G. be a

Figure 5.9: The 6-pole D; and three matchings M, M/, M]" of D; labeled
with numbers 1,2,3, respectively.

p3(G*)-core of G*. Since each D; is not 3-edge-colorable, it has at least one
uncovered edge of G, say e;. Let C be any circuit of G containing precisely
t members of {ey,...,eq}. First suppose that ¢ = 1. Since the girth of G*
is at least 5, it follows that |E(C)| > 5. Next suppose that ¢ > 2. Clearly,
each path of D; joining any two terminals of D; is of length at least 3. Since
C' goes through ¢t members of {D,..., Dy}, |[E(C)| > 4t. In both cases we

have |E(C)| > 4t and thus, C contains at least 2t uncovered edges. Since each
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e; lies on precisely one circuit of G, it follows that G. contains at least 4k

uncovered edges. Thus, u3(G*) > 4k, and therefore, uz(G*) = 4k. O

5.3.4 Concluding remarks

We summarize the relations among the measures for edge-uncolorability
of cubic graphs mentioned in this chapter as follows: for a bridgeless cu-
bic class 2 graph G, 1 < 12(G) < 7(G) < W' (G) < w(G) < 2p3(G) and
max{ry(G), 3w(G)} < 12(G) < 1(u3(G) — 1). Theorem 5.7 tells us that if G
has a cyclic minimal core, then we further have 72(G) < $u3(G). We wonder
whether 72(G) < 3u3(G) holds true for all bridgeless cubic graphs G? If yes,
then it implies the fact that w(G) < Zu3(G) for all bridgeless cubic graphs G.

Let G be a cubic graph. Recall that it is equivalent to say: (1) r2(G) = 1;
(2) r(G) =2; (3) W'(G) = 2; (4) w(G) = 2. However, they are not equivalent
to the statement u3(G) = 3, one of such examples is the first member G of the

family of graphs in Theorem 5.14 (also see Figure 5.10), for which w(G!) = 2
and p3(Gl) = 4.

Figure 5.10: The graph G

The support supp(¢) of a flow ¢ of a graph G is defined as supp(¢) = {e €
E(G): ¢(e) # 0}. It is well known that a cubic graph G has a nowhere-zero
4-flow if and only if G is 3-edge-colorable. Hence, we introduce here a new

measure ¢ of edge uncolorability of a cubic graph G in terms of the support
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of 4-flows of G. The definition of 7y is as follows. Let G be a cubic graph.
Define 7¢(G) = min{|E(G) — supp(¢)|: ¢ is a 4-flow of G}. Clearly, G is class
1 if and only if 7¢(G) = 0.

Theorem 5.15. If G is a cubic graph, then r¢(G) < 72(G).

Proof. Let Fy and F3 be two 1-factors of G such that |Fy N Fy| = v2(G). Notice
that each of I} (the complement of Fy) and A(F, F») (the difference between
Fy and F») induces a cycle. For each circuit C' of Fy, fix a direction for C
(either clockwise or anticlockwise) and assign each edge with flow value 1 and
with direction same as C'. Do the same to each circuit of A(Fy, Fy) except that
we put flow value 2 instead of 1. We thereby obtain a 4-flow of G with support
|E(G)| — 72(G). By the minimality of r¢(G), we have r(G) < 72(G). O

Recall that max{rs(G), 2w(G)} < 72(G). It is of interests to relate rs to
r9 or %w.
For the information on some other measures of edge-uncolorability for cubic

graphs, we refer the readers to a recent survey paper [11].

5.4 The range of the value us

The results of this section have already been published in [35]. Proposition
5.5 tells us that the integers 1 and 2 are unavailable to be the value p3(G) for
some cubic graph G. One may raise such a natural question: are there more
integers unavailable to be the value pu3(G) for some cubic graph G? We give
a negative answer to this question.

Theorems 5.11 and 5.14 already imply that for every positive integer k
with & = 0 (mod 3) there exists a cyclically 4-edge-connected cubic graph G
with p3(G) = k, and for every positive integer k with k = 0 (mod 4) there
exists a cyclically 5-edge-connected cubic graph G with pus(G) = k. We will
prove that for every k > 3 there is a bridgeless cubic graph G with us(G) = k.

To construct such a graph, we need a graph operation, namely 2-junction.
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Let G’ and G” be two bridgeless cubic graphs that are class 2. Let ¢ =
xzy and €’ = wv be an uncovered edge of a minimal core of G’ and of G”,
respectively. A 2-junction of G’ and G” is the graph G with V(G) = V(G')U
V(G") and E(G) = E(G') U E(G") U {ux,vy} \ {¢,e"}. The set {ux,vy} is
called a 2-junction-cut of G (with respect to G’ and G”).

Lemma 5.16. Let G' and G” be two bridgeless cubic graphs that are not 3-
edge-colorable. If G is a 2-junction of G' and G”, then u3(G) = u3(G’) +
p3(G").

Proof. By construction, G has a k-core with k < u3(G’) + p3(G”). Hence,
13(G) < ps(G') + ps(G").

Suppose to the contrary that ps(G) < us(G') + us(G"). Let ux,vy be
the 2-junction-cut of G with respect to G’ and G”, and w,v € V(G’) and
z,y € V(G"). Let G, be a pu3(G)-core of G with respect to three 1-factors
My, Ms, M3. Then each M; contains either none of ux and vy or both of them.
Furthermore, M; induces 1-factors F] and F" in G’ and G”, respectively. It
follows that there is a k-core either in G’ with k£ < p3(G’) or in G” with

k < us(G"), a contradiction. O

Theorem 5.17. For every integer k > 3, there exists a bridgeless cubic graph
G such that us(G) = k.

Proof. Let us first consider the case k # 5. Then there exist two non-negative
integers k' and k” such that k = 3k’ + 4k”. By Theorems 5.11 and 5.14,
there is a cyclically 4-edge-connected cubic graph H' with us(H') = 3k’ and
a cyclically 5-edge-connected cubic graph H” with ps(H”) = 4k. If ¥’ = 0,
then take G = H" as desired. If k" = 0, then take G = H' as desired. Hence,
we may next assume that k', k” > 0. Let G be a 2-junction of H' and H”. By
Lemma 5.16, u3(G) = us(H') + us(H") = k, we are done.

It remains to consider the case k = 5. Consider the flower snark J7. Let
Je be a ug(J7)-core of J;. Note that J. is a circuit of length 6. Let u be a
vertex of J. and v, w, x be its three neighbors in .J;. Take two copies J’, J” of

J7. Apply 3-cut connection on {u,u”}, we obtain a graph G from J’ and J".
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Let {v'v", w'w”, 2’2"} be the connection-cut. This operation yields a core G,
of G that is a circuit of length 10. Hence, u3(G) < 5.

On the other hand, let 7" be any us3(G)-core of G. By the structure of T
as a core, if {vv", ww" 2'2"} N (Ey U Ey) = ), then both J" and J” contain
a circuit of T. Since the girth of J; is 6, it follows that T has at least six
uncovered edges, a contradiction. Hence, we may assume that v'v” € EgU Es.
Let C be the circuit of T' containing v'v”. Clearly, C' goes through both .J' and
J”. Since again the girth of J is 6, C is of length at least 10. It follows that T
has at least five uncovered edges and thus, p3(G) > 5. Therefore, usz(G) =5
and every us(G)-core of G is a circuit of length 10. O

5.5 Cubic graphs with small u3 or v: towards con-

jectures

Some hard conjectures have been confirmed for snarks of small value of 3 in

[64]. This gives us an insight into the structure of these snarks.

Theorem 5.18 ([64]). Let G be a bridgeless cubic graph that has no nontrivial
3-edge-cut. If us(G) < 4, then G has a Berge-cover.

Hence, Berge conjecture is true for snarks with p3 no larger than 4. More-
over, Fan-Raspaud conjecture is verified for snarks with pus no larger than

6.

Theorem 5.19 ([64]). Let G be a simple bridgeless cubic graph. If u3(G) < 6,
then G has a cyclic core. In particular, if G is triangle-free and pus(G) < 5,

then every ps(G)-core is cyclic.

The proof for this theorem given in [64] shows that if u3(G) < 6 then
w(G) < 2, and the proof is completed by using the result of E. Macajova
and M. Skoviera [46] that every bridgeless cubic graph with oddness 2 has a
cyclic core. We will verify Fan-Raspaud conjecture for cubic graph G with

us3(G) < 9. Note that if pu3(G) < 9, then w(G) < 6 and in particular, both
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w(G) = 6 and w(G) = 4 can be attained by some snarks. The proof given
here avoids using the result of E. Mac¢ajova and M. Skoviera and instead, we

establish a lemma that plays a crucial role in the proof.

Lemma 5.20. Let G be a 3-edge-connected cubic graph having no nontrivial
3-edge-cuts. For any two edges e and f of G, if G has a 1-factor F' such that
e€ Fand f ¢ F, then G has another 1-factor M such that e ¢ M and f € M;

Proof. By Proposition 3.12, the lemma is true for the case that e and f are
adjacent. Hence, we may assume that e and f are nonadjacent.

Replace e and f by two paths of length 3, say ujuousus and vivevsvy,
respectively. Add two new edges usvs and ugvs. We thereby obtain a new
graph G’ from G. Since G is 3-edge-connected and has no nontrivial 3-edge-
cuts, this graph operation yields the same for G'. Let F' = (F \ {e}) U
{urug, usug, vovs}. We can see that F’ is a 1-factor of G’ containing no edge
of the path vivousus. By Proposition 3.13, G’ has a 1-factor M’ containing
both v1vy and ugug. This yields that vsvs € M’. Now we obtain a 1-factor M
of G from M’ by removing usus and replacing vivy, vsvg by f. Clearly, e ¢ M

and f € M, we are done with the proof of the lemma. O

Theorem 5.21. Let G be a 3-edge-connected cubic graph having no nontrivial
3-edge-cuts. If us(G) <9, then G has three 1-factors with empty intersection,

i.e., G has a cyclic core.

Proof. Let G, be a uz(G)-core of G with respect to three 1-factors My, Ma, Ms.
By the proof of Steffen in [64], if u3(G) < 6, then either G, is already a cycle
or for G, we have |E3| = 1 and |E»| < 4. For the latter case, there exist p €
{1,2,3} and e € Ep such that e is adjacent to all edges in (), 4;c(1,0 3y Mi- Take
a 1-factor My of G containing e by Proposition 3.12 and therefore, {M;: 1 <
i <4} \ M, is a list of three 1-factors with empty intersection, we are done.
Hence we may assume that p3(G) € {7,8,9}. By Lemma 4.1, |Es| + 2|E3| =
us(@). It follows that |E3| < 4. If |E3| = 0, then G, is a cycle, we are done.

Hence, we may assume that |Fs3| > 1. We distinguish four cases.



5.5 Cubic graphs with small ps or vo: towards conjectures 71

Case 1: assume that |E3| = 4. Thus |E»| < 1. Since every minimal core is
proper, |Ea| > 1. Hence, |E2| = 1. This implies that all the vertices of G has
degree 3, except two of them which have degree 2. Hence, G has a 2-edge-cut
whose removal leaves G, as a component, contradicting the assumption that
G is 3-edge-connected. Hence, this case is impossible.

Case 2: assume that |Es| = 3. Thus |Es| € {1,2,3}. In this case, if C is a
circuit of G, having only edges from Fj, then 9(C') C E3, which implies that
0(C) is a bridge or a 2-edge-cut or a nontrivial 3-edge-cut of G, a contradiction.
Hence, each circuit of Fy U E5 contains an edge from Es. Let Ey U Ey consist
of circuits C1, . .., Cg. Since |E3| < 3, we have k < 3.

Subcase 2.1: assume that £ = 1. For writing convenience, we give some
definitions. Give label a to both ends of an edge of E3 and call this edge
an (a,a)-edge. Analogously, we give labels b and ¢ to ends of the remaining
two edges of F3 and call them (b, b)- and (c, ¢)-edges. The pattern of Cy is a
sequence of all labels on C; taken in clockwise order, regardless the starter.
Let x and y be two labels (not necessary distinct) such that y is next to z in
the pattern. A list of such sequences zy is called a segment of the pattern. The
path of C between x and y containing no other labels is called the (z,y)-path

or the (y, z)-path.

Figure 5.11: A pattern aabcbe of Cy, where the (a, a)-path is the path in bold
line.

If the pattern of C; has segment {aa}, then the (a,a)-path contains an
edge from Ey \ M; for each i € {1,2,3} by applying Lemma 4.2 to the circuit
formed by the (a,a)-path and the (a,a)-edge, which implies that the (a,a)-
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path has at least 3 edges from FEs. Similarly, if the pattern of C] has segment
{ab,ab}, then the two (a,b)-paths have at least 3 edges from Es in total by
applying Lemma 4.2 to the circuit formed by the two (a, b)-paths, the (a,a)-
edge and the (b, b)-edge. The same result holds for the case that the pattern
of C has segment {ab,ba}. Since |Ez| < 3, at most one of the three segments
above occurs and if it occurs, it does precisely one time. Hence, we can deduce
that C4 is of pattern abcach, regardless the permutation of a,b,c. As already
argued, the (b, c)-path and the (c,b)-path have precisely 3 edges from Es in
total. Without loss of generality, say the (¢, b)-path has an edge from Es. We
can apply Lemma 4.2 to the circuit formed by the three edges of F3 and all
the (z,y)-paths, where (z,y) € {(b,a), (b,c), (a,c)}, yielding that the (b,a)-
path, the (b, c)-path and the (a, ¢)-path have at least 3 edges from FEjs in total.
Now we can conclude that Cj has at least 4 edges from |Es|, a contradiction.

Hence, this subcase is impossible.

Subcase 2.2: assume that & = 2. Without loss of generality, let C; have
chords in G, no less than C5 has. From the argument for Subcase 2.1, C4
does not have three chords in G.. If Cq has two chords in G., whose ends
divide C7 into four paths, then at least three of the paths contain no end of
the third edge of E3. Hence, we can always apply Lemma 4.2 to some circuit
formed by these three paths and the chords of Cj, yielding that C; has 3
edges from Fs, a contradiction. If Cj has one chord in G., whose ends divide
(1 into two paths, then Lemma 4.2 implies that both paths contain an end
of another edge of F3. Let F3 = {ujug,vive, wiwa} and let C; contain the
vertices ui1,v1,us,w;. Now we can always apply Lemma 4.2 to at least two
among the circuits formed by all the edges of E3, one of the paths between
vy and wy on Cy, and one of P(u1,v1) U P(ug,w;) and P(ui,w;) U P(ug,v1),
where P(x,y) denotes the path between x and y on C; that does not contain
both uy and ug, for z,y € {uy, vy, us, w1}. A contradiction follows. Hence, we
can conclude that both C; and C5 have no chord in GG.. The ends of the edges
in E3 divide C; into 3 paths P!, P2, P? for each i € {1,2}. We may take the

notation so that for each z € {1, 2,3}, the paths P and Py have end-vertices
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from two same edges of Ej3, all of them together form a circuit, say C*. We
can always apply Lemma 4.2 to at least two of C!,C?, C3, yielding that G.
contains more than 3 edges from F», a contradiction. Hence, this subcase is
impossible.

Subcase 2.3: assume that k = 3. For each i € {1,2,3}, since Fy < 3, the
circuit C; contains precisely one edge from FEs. It follows that C; intersects
with Es, i.e., |V(C;) N V(E3)| > 1. Since G has no nontrivial 3-edge-cut, in
particular, G has no triangles, we further have |V (C;) N V(E3)| > 2. Since
|Es| = 3, we can deduce that |V (C;) NV (E3)| = 2. Now the core G. is specific
and shown in Figure 5.12, from where we can see that G, has a circuit of
length 6 having edges from Ejy and E3 alternately, contradicting with Lemma,

4.2. Hence, this subcase is impossible.

Figure 5.12: A core for Subcase 2.3, where dashed lines represent Fj

Now we conclude that Case 2 is impossible.

Case 3: assume that |E3| = 2, say E3 = {e1,ea}. Thus |Es| € {3,4,5}. For
convenience, we give some definitions. Let x and y be two edges of Fo U Ej3
and z be an edge of Ey. z and y are U-connected at z if both of them are
adjacent to z. Clearly, x,y, z induce a path rather than a star.

We claim that e; and ey are U-connected. Suppose to the contrary that
they are not U-connected. For each i € {1,2}, e; is U-connected to precisely
four distinct edges of Fs since otherwise, there is an edge of Ey that is U-
connected to e; at two edges yielding either a triangle of G, or a circuit of
length 4 which we can apply Lemma 4.2 to. Since |Es| < 5, there are at

least three edges of Es that are U-connected to both e; and eo. Among them
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there always exist two, say h’ and h”, such that for each i € {1,2}, h] and
h! are not adjacent, where h. (resp. hY) is the edge which e; and A’ (resp.
h") are U-connected at. Now G, has a circuit of length 8 having edges from
{e1,e2,h',h"} and from Ej alternately. We apply Lemma 4.2 to this circuit,
obtaining a contradiction.

Since e1 and e are U-connected, let us say they are U-connected at e. Since
|Eo| <5, there exists k € {1, 2,3} such that |Ey\ My| < 1. By Proposition 3.8,
G has a 1-factor containing e. If |Ea\ M| = 0, then let My be this 1-factor and
it follows that {M;: 1 <i < 4}\ M is a list of three 1-factors that has empty
intersection, we are done. Hence, we may next assume that |Fy\ My| = 1, say
E>\ My = {f}. Since any one of {M;: 1 <i < 3}\ M} contains f but not
e, by applying Lemma 5.20 to e and f, G has a 1-factor containing e but not
f. Let My be this 1-factor and again, {M;: 1 <i <4} \ My is a list of three
1-factors that have empty intersection, we are done.

Case 4: assume that |E3| = 1. Thus |Es| € {5,6,7}. Let E3 = {e}.
Without loss of generality, let |Ey \ M| < |Ey \ Ma| < |Ey \ Mjs|. Since
|Ea| <7, we have |Ey\ M| < 2.If |[E3\ M| = 0, then take a 1-factor of G not
containing e, which together with Ms and M3 forms a list of three 1-factors
with empty intersection, we are done. If [E9\ My| = 1, say Es\ My = {f}, then
we can apply Proposition 3.16 to e and f, obtaining a 1-factor of G containing
neither e nor f. Again this 1-factor together with My and M3 forms a list of
three 1-factors with empty intersection, we are done. It remains to assume
that |Ey \ Mi| = 2. Thus |Es \ Ma| = 2 and |Ez \ M3| = 3. As argued in
Case 3, e is U-connected to precisely four distinct edges of Eo. Let g be one
of these four edges such that g ¢ Fs \ Ms. Without loss of generality, say
g € E3\ M. Denote by ¢’ the other edge of Es \ M; and h the edge that e
and ¢’ are U-connected at. We can apply Lemma 5.20 to h and ¢, obtaining
a l-factor My of G containing h but not ¢’. It follows that e,g ¢ My. Now

My, M3, My are three 1-factors with empty intersection, we are done. O

We verify Fan-Raspaud conjecture also for cubic graphs with 7o < 2. The

following theorem is a direct consequence of Proposition 3.16.
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Theorem 5.22. Let G be a bridgeless cubic graph. If v2(G) < 2, then G has

three 1-factors with empty intersection, i.e., G has a cyclic core.

5.5.1 Hypohamiltonian snarks

A graph G is hypohamiltonian if it is not hamiltonian but G — v is hamiltonian
for every vertex v of (G. Since hamiltonian cubic graphs are 3-edge-colorable,
hypohamiltonian snarks could be considered closest to being 3-edge-colorable.

Trivially, hypohamiltonian snarks are of weak oddness 2. Thus, by Proposi-
tion 5.2, they are of oddness 2 as well. Though not all snarks G with w(G) = 2
satisfy us3(G) = 3, it was conjectured in [64] that the truth holds for this class

of snarks.
Conjecture 5.23. If G is a hypohamiltonian snark, then us(G) = 3.

As already mentioned in the beginning of this section, the Petersen graph
and the flower snarks are hypohamiltonian and have ps equal to 3. Indeed,
with the assistance of computer, Goedgebeur [15] verified this conjecture for

hypohamiltonian snarks of relatively small order.

Observation 5.24 ([15]). There are no counterexamples to Conjecture 5.23
among the hypohamiltonian snarks on at most 36 vertices, and also among the
hypohamiltonian snarks on at most 44 vertices which are a dot product of two

hypohamiltonian snarks.

It is easy to see that if a cubic graph G has a vertex v such that G — v is
hamiltonian, then G has two 1-factors with one common edge. By Proposition
3.12, there is a third 1-factor avoiding this edge. Therefore, hypohamiltonian
snarks satisfy Fan-Raspaud conjecture. Moreover, Sun [66] announced that
Berge conjecture also holds true for hypohamiltonian snarks. Hence, it would
be interesting to know whether Berge-Fulkerson conjecture holds true for hy-
pohamiltonian snarks, as suggested by Héaggkvist [18].

If Conjecture 5.23 is true, it would imply that every hypohamiltonian snark
has a Berge cover by Theorem 5.18. Hence, the result of Sun gives a support

for the truth of Conjecture 5.23.
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5.6 A generalization of u;

The results of this section have already been published in [34].

Recall that a weak k-core with respect to three joins Ji, Jo, J3 yields k =
|Eo| + %Z?Zl n(J;), as defined in Section 4.3. We define p5(G) = min{k: G
has a weak k-core}. Clearly, u5(G) < ps(G) for a given cubic graph G. It is
easy to see that a bridgeless cubic graph G is class 1 if and only if u5(G) = 0.
Hence, £ is also a measure of edge-uncolorability for cubic graphs.

We next relate p to the weak oddness w’ and show that the weak oddness

of a bridgeless cubic graph can be bounded in terms of its weak cores.

Theorem 5.25. Let G be a bridgeless cubic graph and G. be a weak k-core
with respect to three joins Jy, Jo and J3. Then Z?:l o(J;) < 2k.

Proof. Each component of the complement of .J; is either an isolated vertex or
a circuit. Any odd circuit of J; contains either one edge from Ej or a Jj-vertex
with k # i. We call an odd circuit of J; bad if it has no Jy-vertex for k # i. In
what follows we distinguish elements of Fy according to their behavior with

respect to bad circuits. We define that, for i € {1, 2, 3},

X; ={e: e is the unique edge in C N Ey, and C' is a bad circuit of .J;},

Y; ={e: e€ Ey\ X;, and e € CN Ey, and C is a bad circuit of .J;}.
Set x = | X1| + | Xo| + | X3| and y = |Y1| + [Y2| 4+ |Y3]. Since X; NY; = 0, it

follows that
x4y < 3|Ep|. (5.6)

Moreover, if e € X;, then e € X, and e ¢ X}, for j, k # i, that is
z < |Ep|. (5.7)
Combining equations 5.6 and 5.7 implies

+ % < 92|Ey. (5.8)
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Now, we are in position to prove our assertion. Since in an odd circuit of
J; there is either a Ji-vertex (k # i) or an edge of X; or two edges of Y;, the
following relation holds:

3
Y|

=1

o(J;) < |X;| +

Therefore, by summing up for all three joins we deduce:

3 3 3
ZO(I) <z+ % + 3Zn(JZ) < 2|Eg| + 3Zn(Jl) = 2k,
=1 =1 =1
where the last inequality directly follows from the inequality (5.8). O

This result contains Theorem 5.9 as a particular case. Thus, the definition

of weak k-core is the right generalization of k-core.

Theorem 5.26. If G is a bridgeless cubic graph, then w'(G) < £u5(G).

Wl

Proof. Let G, be a weak pf5(G)-core of G with respect to three joins Ji, Jo
and J3. By Theorem 5.25, we have o(.J1) + o(J2) + o(J3) < 2u4(G). By the
minimality of the weak oddness w'(G), it follows that w'(G) < 2u4(G) . O
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Chapter 6

Partially-normal

5-edge-colorings

6.1 Petersen coloring conjecture

Given graphs G and H, a mapping ¢: FE(G) — E(H) is an H-coloring of
G if any three mutually adjacent edges of G are mapped to three mutually
adjacent edges of H. The mapping ¢ is called a Petersen-coloring if H is the
Petersen graph.

Jaeger [29] posed the following conjecture which would imply both Berge-
Fulkerson conjecture and the 5-CDCC.

Conjecture 6.1 (The Petersen coloring conjecture [29]). Fuvery bridgeless

cubic graph has a Petersen-coloring.

This section devotes to alternative formulations of the Petersen coloring
conjecture.

Let G be a graph. A set of edges C'is a binary cycle if C induces a subgraph
of G where every vertex has even degree. DeVos, Nesetiil and Raspaud [7]
defined that, given graphs G' and H, a mapping ¢: E(G) — E(H) is cycle-
continuous if the pre-image of each binary cycle of H is a binary cycle of G.

When G and H are cubic and additionally H is cyclically 4-edge-connected, G
79
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has a cycle-continuous mapping to H if and only if G has an H-coloring. This

leads to the first alternate formulation of the Petersen coloring conjecture.

Theorem 6.2 (e.g. [1]). A cubic graph has a Petersen-coloring if and only if

it has a cycle-continuous mapping to the Petersen graph.

However, the studies on cycle-continuous mapping make no progress on
solving the Petersen coloring conjecture so far.

As already mentioned in Section 3.4, Fan-Raspaud conjecture is equivalent
to the 4-line Fano-coloring conjecture. Surprisingly, all the three conjectures
(the Petersen coloring conjecture, Berge-Fulkerson conjecture and 5-CDCC)
can be reformulated in the form similar as Fano-coloring, proved in [40].

Consider Cremona-Richmond configuration G, which has 15 points and
15 lines, as drawn in Figure 6.1. A CR-coloring of a graph G is a mapping
from FE(G) to the points of G, such that any three mutually adjacent edges

of G are mapped to three vertices of G, that lie in a line.

{13}

{12} {35}

Figure 6.1: Cremona-Richmond configuration with {i, 5} labelling

Theorem 6.3 ([40]). A cubic graph has a Berge-Fulkerson cover if and only
if it has a CR-coloring.
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The truth of this theorem easily follows from a labelling of Cremona-
Richmond configuration by {7, j} with 1 <i < j <6, as shown in Figure 6.1.
Here, we give another labelling of Cremona-Richmond configuration which
yields that every CR-coloring is a CR-flow, that is, the flow values around
a vertex sum up to zero. Such a labelling takes 15 non-zero elements of Z%,

depicted in Figure 6.2.

0001 0101 /

Figure 6.2: Cremona-Richmond configuration with Z3-labelling and with L.,
in dotted line

Let L., be a set of 10 lines obtained from the lines of G, by removing 5
pairwise disjoint lines. The dotted lines in Figure 6.2 indicate an example of

L.

Theorem 6.4 ([40]). A cubic graph has a Petersen-coloring if and only if it

has a CR-coloring using lines from L.,.

From the previous two theorems, it is easy to see again that the Petersen
coloring conjecture implies Berge-Fulkerson conjecture.

A Desargues-coloring is defined in the same way as we define a CR-coloring
except that Desargues configuration (see Figure 6.3) substitutes for Cremona-

Richmond configuration.
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Figure 6.3: Desargues configuration

Theorem 6.5 ([40]). A cubic graph has a 5-cycle double cover if and only if

it has a Desargues-coloring.

Unfortunately, the studies on CR-colorings make no progress on solving the
Petersen coloring conjecture either. Here, we focus on the third alternative
formulation of the Petersen coloring conjecture, in terms of normal 5-edge-

coloring.

6.2 Normal 5-edge-coloring

Let G be a cubic graph and ¢: E(G) — {1,2,...,5} be a proper 5-edge-
coloring. An edge e is poor (or rich) if e together with its four adjacent edges
uses precisely 3 (or 5) colors in total. An edge is normal if it is either rich
or poor, and is abnormal otherwise. A mormal 5-edge-coloring is a proper
5-edge-coloring such that each edge is normal. Jaeger showed the equivalence

between Petersen-colorings and normal 5-edge-colorings of a cubic graph.

Theorem 6.6 ([28]). A cubic graph has a Petersen-coloring if and only if it

has a normal 5-edge-coloring.

A possible minimal counterexample to the Petersen coloring conjecture is
characterized in the literature. Jaeger [29] proved that it must be a cyclically
4-edge-connected snark. By learning normal 5-edge-coloring of cubic graphs,
Hégglund and Steffen [21] showed that the minimal counterexample does not

contain K35 as a subgraph (see Figure 6.4 for K3 ).



6.3 Partially-normal 5-edge-coloring 83

Figure 6.4: The graph Kj 3

A few classes of cubic graphs have been confirmed to have a normal 5-
edge-coloring and thus a Petersen-coloring as well. In [21] it also showed that
a cubic graph G has a normal 5-edge-coloring if G is a flower snark or a
Goldberg snark or a generalized BlanuSa snark of type 1 or 2. With the aid
of computer, Brinkmann et al. [2] tested the Petersen coloring conjecture on
cubic graphs of small order, and showed that every cubic graph of order no
more than 36 has a normal 5-edge-coloring. However, no further results were

obtained as far as we know.

6.3 Partially-normal 5-edge-coloring

Considering that a normal 5-edge-coloring requires each edge to be normal,
Samal [71] presented a weaker problem approximate to the Petersen coloring
conjecture, that is, to search for a proper 5-edge-coloring such that the normal
edges are as much as possible. Here, such a coloring is called a partially-normal
5-edge-coloring. Later on, Bilkova proved that a generalized prism has a prop-
er 5-edge-coloring with two third of the edges normal ([1], Theorem 2.3) and
a cubic graph of large girth has a proper 5-edge-coloring with approximately
half of the edges normal ([1], Theorem 3.6). In the rest of this section, we show
that for every bridgeless cubic graph, there exists a proper 5-edge-coloring such
that almost all the edges are normal. More precisely, we prove the following

theorem.
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Theorem 6.7. Every bridgeless cubic graph G has a proper 5-edge-coloring
such that at least |E(G)| — us(G) many edges are normal.

The proof of this theorem will be done by constructing such a proper 5-
edge-coloring with the help of the structural properties on cores. First of all,

we need some definitions and lemmas.

6.3.1 Useful definitions and lemmas

Let G be a cubic graph. If C is a circuit of G, then (C) denotes the set of
edges not on C' but having at least one end on C. Analogously, if P is a path
of G with ends x and y, then (P) denotes the set of edges not on P but having
at least one end on P —x —y. If H is a set of vertex-disjoint circuits or paths
of G, then define that (H) = J,cp(R).

Let G be a cubic graph and X C E(G). Let v: X — {1,...,5} be a
proper edge-coloring of G[X]. A circuit C of G is ¥-extendable if the following
three items hold: (i) E(C)NX = 0; (ii) ¥(e) € {1,2,3} for e € (C) N X; (iii)
we can assign E(C) U (C) \ X with colors from {1, 2,3} so that the resulting
coloring remains proper. Applying the third item is called ¢ -extending C as
well. We define a path P to be i-extendable and define -extending P in
exactly the same way (only with C replaced by P).

Let G be a cubic graph and X C E(G). Let ¢: X — {1,...,5} be a proper
edge-coloring of G[X]. Let v be an end of an edge e. Let Y = {¢(h): h €
X NE(v)}, ie., Y is the set of colors around v. The edge e is 1-good on v if
either Y = {1,2,3} or Y = {4,5} and e ¢ X. Let H be a subgraph of G of
minimum degree 2. Define £y (H) to be the set of vertices v of H such that
dy(v) = 2 and the unique edge in E(v) \ E(H) is not ¥-good on v. If 9 is
clear from the context, we write £(H) for short.

Let G. be a core of a cubic graph G with respect to three 1-factors
My, My, Ms. The major-coloring of G with respect to My, Ma, M3 (or to
G.) is a mapping ¢: E(G) \ E(G.) — {1,2,3} defined as ¢(e) = ¢ for each
e € (E(G) \ E(G.)) N M;. A string P of G, is a subgraph of G. consisting
of distinct odd circuits Cy, Cy,...,Cy of G[Ey U Es] and edges ey, ..., e of
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FE3 such that each e; connects a vertex u; of C;_1 to a vertex v; of C;. Such
a string is denoted by Cpe1C] ...exCy or Co(uiv1)Ch ... (ugvg)Ck. The two
circuits Cy and C}, are called end-circuits of P, and the remaining circuits are
called middle-circuits of P.

Let G, be a core of a cubic graph G and ¢,, be the major-coloring of
G with respect to G.. Let Pl,..., P® be pairwise disjoint strings of G. by
notation P = CJ (wjv])Cd ... (ugij])CtJJ Denote by Hj the union of all the
odd circuits of G[Ep U Es] not contained in any of these strings. For each
end-circuit C’Z-j , denote by pg the longest ¢,,-extendable path of C’ij with an
end-vertex of notation either uj1 or vgj. The union of the strings P!, ..., P® is

a wave if the following two items hold:

1) Each middle-circuit Y contains a m-extendable path pj between v/ and
(] (2 K3
J
Wiyt

(2) Let p consist of all the paths of notation pg from each circuit of the strings,
and let Hj consist of Hs and p. For any two distinct components g1, g2 of

Hy, we have (q1) N (g2) N E3 = 0.
Such a wave is denoted by P! + ...+ P,

Lemma 6.8. Let G. be a core of a bridgeless cubic graph G. If G. has a

string, then it has a wave.

Proof. We construct such a wave W by an algorithm.

Let ¢, be the major-coloring of G with respect to G., and let H = G[EyU
Es]. Since G. has a string, say s. Take any two consecutive circuits C,, and
C, of s. Denote by e an edge of the string that connects a vertex u of Cy, to a
vertex v of C,. Initialize W to be a graph consisting of C,,C, and e. Let P
be a set which will collect ¢,,-extendable paths. Initialize P to be an empty
set.

If there exists u # w € V(Cy) such that C, has a ¢,,-extendable path p
between u and w, and that H has an odd circuit C,, not contained in W and a

vertex x of C, with wx € Fs3, then take such a vertex w so that the length of p
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is minimum, let W include z and C}, add p into P, and repeat the argument
with x and C, instead of u and C, respectively until no such w exists any

more.

Repeat the argument above with v and C,, instead of v and C,,, respectively.

Now the first string of W is completed.

If G, has a string disjoint with W, then by applying the same argument
on this string as on s, we get the second string of W. Repeat this until G, has
no strings disjoint with W.

Now the construction of W is completed. Clearly, W consists of pairwise
disjoint strings. From the algorithm itself, we can see that Property (1) of the
wave definition holds for W. By the minimality of the length of each element
of P, Property (2) holds for W as well. Therefore, W is a wave. O

Let G, be a core of a cubic graph G. Let D be a circuit of G[Ey U Es].
Define o (D) to be the number of vertices of D incident with an edge from Fs.
Note that o(D) > |(D)N E3|. Define Q(G.) = {C: C is a circuit of G[EyU E3]
such that o(C) = 1 and |E(C)| < 5}. Let C1,Cy € Q(G.). Clearly, C; and
Cy are vertex-disjoint. Let X C E(G) and ¢: X — {1,...,5} be a proper
edge-coloring of G[X]. C1 and Cy are ¥-connected if G has a path vvwz such
that ¥ (uv), ¥ (vw), Y(wx) € {4,5} and that v and w are incident with the edge
of (C1) N E5 and the edge of (Co) N E3, respectively. Cy and Cy are ¥-adjacent
if there is an edge from E; connecting a vertex of C to a vertex of (.

Let X be a set of edges of a cubic graph G, and let ¢: X — {1,...,5}
be a 5-edge-coloring of G[X]. An edge e of G is -inner if e together with its
adjacent edges belongs to X; otherwise, e is called ¥-outer. Let G, be a core

of G. Define 6, as a function on E(G) given by

1 if e € Ey and e is normal,

for each t-inner edge e, O, y(€) =4 —1 ife ¢ Ey and e is abnormal,

0 otherwise;
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0 if e € Ey,
and for each i-outer edge e, . 4 (€) =

—1 ife ¢ Eo.

If G. and v are clear from the context, we write 6 for short. Moreover, for
X C E(G), define 0(X) = > .y 0(x). We write 0(H) short for O(E(H)) for
a subgraph H of G.

A direct consequence of the function 6 is the following lemma.

Lemma 6.9. Let G. is a k-core of a cubic graph G. Ifv: E(G) — {1,...,5}

is a 5-edge-coloring of G, then G has k — 0(G) abnormal edges.

6.3.2 Proof of Theorem 6.7

Trivially, the theorem holds true for 3-edge-colorable cubic graphs. We may
assume that G is not 3-edge-colorable. Let G. be a u3(G)-core of G with
respect to three 1-factors My, Mo, M3, and let ¢,, be the major-coloring of
G with respect to G.. Let H = G[Ey U Es| and denote by H; the graph
consisting of all the even circuits of H. If G, has a string, then it has a wave
W by Lemma 6.8, denote by Hs the graph consisting of all the odd circuits
of H that are contained in W; otherwise, to be convenient, we say that W
and Hs are empty graphs. Let H3 = H — Hy — Hs. We will extend ¢,, to a
proper 5-edge-coloring ¢!, of G by coloring Hy, Hy, H3 in order (meanwhile,
some edges in E3 may receive colors) and finally coloring all the uncolored
edges in E3. By Lemma 6.9, to show that the final coloring ¢/ yields at most
p3(G) edges abnormal, it suffices to prove 0, ¢ (G) > 0. In what follows,
since G, is fixed and we always consider the current coloring extended from
Om, we write 6 and &, briefly. Let K be a set with initial value an empty
set. We will use K to collect subgraphs of G which receive colors during the
extension of ¢p,.

For each circuit C' of Hj, assign E(C) with colors 4 and 5 alternately
along C. For each e € F(C), by the definition of the function 0, if e € Ey then

f(e) > 0. If e € Es, then e is adjacent to two edges of the same color from
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{1,2,3}, so e is poor yielding 6(e) = 0. Therefore, 6(C') > 0 = |E(C)|. Add C
into the set K.

To describe the structure of the wave W, we use the same notations as
in the definition of a wave. By Property (1) in the definition of a wave, each
component of p is ¢,,-extendable; and by Property (2), there is no uncolored
edge with ends in two distinct components of p. Moreover, since no two edges
from E3 are adjacent, there is no uncolored path of length 2 with ends in two
distinct components of p. Therefore, we can ¢,,-extend the components of p
one by one. The remaining part of W are disjoint paths. We can properly
color their edges with the colors 4 and 5 alternately along each path. Add
each string of W into .

Claim 6.9.1. For each string P/ of W, we have (P7) > 2 = |E(P7)|.

Proof. Let t; = d. Clearly, the paths p%,...,pg together with the edges

u]lv{, .. ,uflvg form a path, say Q’. Denote by a, b, c,d’,V, ¢’ the edges incident

with an end of Q' such that a,a’ € E(Q’) and b,b' ¢ E(P7) and a,b,c € E(Cg).
From the coloring of P?, we can easily see that £(P7) = {b,b'}.

Let Q = PY — E(Q') — c— . For each q € E(Q), we have q € FEy U Ex.
Again, by the definition of the function 0, if ¢ € Ey then 0(q) > 0; and if
q € E5 then ¢ is adjacent to two edges of the same color from {1,2,3}, so ¢ is
poor yielding 6(q) = 0. Therefore, 0(Q) > 0.

We will prove that, if d > 1 then 9(p{)+0(ugvf) > 1foreachi e {1,...,d—
1}. Since each edge of pj is either rich or poor, H(pZ) = |E(pf) N Ep|. Since
G(ufvg ) > —1, the conclusion holds true, provided that ]E(p{ ) N Ey| > 2.
Hence, we may next assume that |E (pz) N Ey| < 1. By the existence of uf vf
and uZ HUf 41, the path pg is just an edge from Ey. So we could choose the
¢m-extension of p{ so that u‘Z vg is poor. The conclusion holds as well.

We next show that 6(c) + H(pg) > 1, while the equality holds only if C’g is
a triangle. To do so, we distinguish two cases.

Case 1: assume that ¢ is not incident with u{ By the length maximality

of p% given in the definition of a wave, all the colors 1,2,3 appear on the
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adjacent edges of ¢, yielding that ¢ is rich and ¢ € Ey. Thus, 0(c) =
Moreover, since each edge of pé is either rich or poor except the edge a, we
have 6(p)) = |E(p}) N Eo| — 1. Therefore, 8(c) + 6(p})) = |E(p)) N Eo|. By
again the length maximality of pg, we can deduce that (pé U c) uses at least
two kinds of colors. It follows that \E(pf)) N Ep| > 2 and so, O(c) + G(pé) > 2.
Case 2: assume that c is incident with u{ Now ¢ and p% together form
the circuit C’g. Notice that both a and ¢ might be neither rich nor poor. We
have 6(c) + H(pé) > |E (Cg ) N Ep| — 2. Hence, the conclusion holds, provided
that |E(C(j)) N Ep| > 4. We may next assume that ]E(C(j)) N Ey| < 3. It follows
that CJ is of length either 5 or 3. If CJ is of length 5, then |E(CJ) N Ey| = 3.
Without loss of generality, see Figure 6.5 for the coloring of C’g U <Cé ), which
yields 6(c) + G(pé) = 2, we are done. We may assume that Cg is of length 3,

i X
~
pusg

Figure 6.5: A coloring of <C(j)> U E(C’é) in two cases. Case 1 (left): <p%> uses
one color; case 2 (right): <p6> uses at least two colors.

A
7H/ }1
puug

ie., it is a triangle. If ]E(C(J)) N Ep| = 3, then 6(c) + G(pé) > 1, we are done.
Hence, we may assume that |E (Cg) N Ep| = 2. Without loss of generality, see
Figure 6.6 for the coloring of C’g U (Cé>, which yields 6(c) + G(p%) =1, we are
done as well.

Similarly, we can prove that 0(c’)+6(p ) > 1, while the equality holds only
if Cg is a triangle.

Now we are ready to calculate §(P7), given by 0(P7) = O(Q)—I—Zf:_ll (9(pf)+
0(u]v])+(0(c)+0(p))+(0(c)+0(p))) +0(ui}) = 0+(d—1)+1+1-1=d > 1,
while the equality holds only if d = 1 and both Cg and Ci are triangles. Hence,

to prove §(P7) > 2, it suffices to consider the equality case. Without loss of
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—1L3&1—
Figure 6.6: A coloring of Cg.

generality, see the coloring of Cg and C’é in Figure 6.7, from which we can

calculate that §(P7) > 2. We are done with the proof of the claim. O
| | ! l
SN R S
3 P
T T I T

Figure 6.7: A coloring of P7 in equality case.

The circuits of H3 can be divided into two parts H and HY so that Q(G.)
contains all the circuits of Hf but none of H;. We will color Hf and Hf in
order.

For each circuit C of Hj, we add C into I, and we will color E(C') so that
0(C) > |E(C)|. Property (2) in the wave definition implies that all the edges
of (C') N E3 are still uncolored. Thus, (C) uses only colors from {1,2,3}. If C
is ¢m-extendable, then ¢,,-extend C and consequently, 0(C) = |E(C) N Ey| >
0 = |£(C)|. Let us next assume that C is not ¢,-extendable. Since C' is of
odd length, o(C) is odd. Take the longest ¢,,-extendable path ¢ on C' such
that E3 N (g) # 0. Denote by e; and ey the two end-edges of ¢ and by ¢/
the edge of E(C) \ E(q) that is adjacent to e; for i € {1,2}. Since C is not
dm-extendable, |[E(C) \ E(q)| > 1. We distinguish three cases.

Case 1: assume that |E(C) \ E(q)] > 1. We ¢n-extend g and assign
E(C) \ E(q) with colors 4 and 5 alternately. By the choice of ¢, all of the
colors 1,2, 3 appear on the adjacent edges of €], yielding that €] is rich and

belongs to Fy. Thus 6(¢}) = 1. Similarly, we can deduce that 6(e}) = 1.
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Moreover, since E3 N (q) # 0, it follows that |E(q) N Ey| > 2. Hence, 6(C) >
|E(q) N Eo| + 6(e}) + 0(eh) + 0(e1) + 0(e2) > 2 =1|E(C)|.

Case 2: assume that |[E(C) \ E(q)| =1 and |E(C) N Ey| > 5. In this case,
e} and €} are the same edge. We ¢p,-extend ¢ and assign €} with the color 4.
So, 0(C) > |E(C) N Ey| —3>2=1|E(C)|.

Case 3: assume that |E(C) \ E(q)] = 1 and |E(C) N Ep| < 4. It follows
that o(C) € {1,3}. If 0(C) = 3, then C is of length either 3 or 5, in both cases
C is ¢p-extendable, a contradiction. Hence, o(C) = 1. Let E3 N (C) = {f}.
Recall that f is uncolored. Since C' ¢ Q(G.), we have |[E(C)| > 7. Recall that
BN < |E(C) N Ey| < 4 and that C is of odd length, thus |E(C)| = 7. We
proceed in two subcases according to the colors (C) receives.

Subcase 3.1: assume that (C') uses at most two kinds of colors from
{1,2,3}, say the colors 1 and 2. Assign f with the color 3 and its two adja-
cent edges on C with the colors 4 and 5. The remaining edges of C' can be
properly assigned with colors from {1,2,3}. One can directly calculate from
the coloring that 6(C) > 2 = |E(C)].

Subcase 3.2: assume that (C) uses all the colors 1,2,3. Without loss of
generality, see the left of Figure 6.8 for the coloring of (C'). We extend the
coloring to F(C) and f as depicted in the right of Figure 6.8. By direct
calculation, 6(C) > 2 = |E(C)|.

I
N\, N M c_,*{ ¥
T
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J>Hg %\
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Figure 6.8: A coloring of the circuit C' for subcase 3.2

To complete the coloring of H, it remains to color the edges of Hj. Let
@2 be the current coloring extended from ¢,,. We will do it by coloring first
all pairs of uncolored ¢o-connected circuits and then all pairs of uncolored

po-adjacent circuits and finally the remaining uncolored circuits of Hj.
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Let C" and C” be a pair of uncolored ¢s-connected circuits of H5. Say
that ¢/ = [u}...u},] and C" = [uf...u},| with wja’,ufz" € Es. Clearly,
K k" € {3,5}. Let ¥ and y” be the third neighbors of u}, and u}, respectively.
By Property (2) of the wave definition, v}z’ and ujz” are uncolored. Assign
them with the color of 2/z”. Choose o € {1,2,3} \ {¢m (uhy), dm(uyy”)},
and with the color a we assign wju}, and u{u} and reassign z'z”. Let ¢ be
the resulting coloring. Next, ¢1-extend the longest ¢i-extendable path on C’
starting from uf, and do the same to C”. Finally, properly assign the remaining
edges of C’ and of C” with colors from {4,5}.

If 2’2" € E(W), then let C, be the string of W containing z/z”; otherwise,
«’z" is contained in a circuit of Hy U Hy, and let C, be this circuit. Let C be
the graph consisting of Cy, the circuits ¢’ and C”, and the edges u}jz’ and
ujx”. We substitute C, for C in the set K and will show that 6(C) > |E(C)|.

We first prove that 0(C’),0(C"”) > 1. Recall that k¥’ € {3,5}. If ¥’ = 3,
then without loss of generality, see Figure 6.9 for the coloring, which yields
6(C’") > 1. If ¥ = 5, then (C’) uses either one or two kinds of colors from
{1,2,3}. Without loss of generality, see Figure 6.10 for the coloring in three
cases. In each case, we can calculate that (C’) > 1. Similarly, we can prove

0(C") > 1.

A

Figure 6.9: A coloring of C” of length 3

Denote by a and b the values of 6(C) and |E(C,)| before C" U C” receives
colors, respectively. We already have the conclusion that a > b. Note that
z'u}y and z”uf are uncolored edges before C’ U C" receives colors. By the

definition of the function 6, the coloring of C'UC” does not decrease the value

0 of 2'z"” and of its two adjacent edges locating on C,, and does make z'u]
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Figure 6.10: A coloring of C” of length 5

and 2”uf poor. It follows that 6(C,) > a and 0(z'u}) = 0(z"u]) = 0. Thus,
0(C) = 0(Cy) +0(C") +0(C") + 6(2'ufy) + 0(x"uf) > a + 2. Moreover, £(C)
contains two more edges than £(Cy), one in (C’) and the other in (C”). Hence,
|E(C)] = b+ 2. Now we can see that §(C) > |E(C)|.

Let C’ and C” be a pair of uncolored ¢s-adjacent circuits of Hz. Choose
an edge e € (C') N (C") N E;. Let C be the graph consisting of C’,C" and
e. Add C into K. If there exists § € {1,2,3} such that 8 has not been used
by (C") N (C"), then reassign e with color § and consequently, C' and C” are
¢po-extendable. So we ¢o-extend them, giving 6(C) = |E(C)NEy| > 0= |E(C)|.
If such 3 does not exist, then we can deduce that both C’ and C” are of length
5. Reassign e with the color 4 and consequently, C’ and C” are ¢o-extendable.

So we ¢o-extend them, giving §(C) > |E(C)N Ep| —5=1> |E(C)|.



94 Chapter 6 Partially-normal 5-edge-colorings

Let T be the remaining uncolored circuit of HY. To complete the coloring
¢!, of the whole graph G, we will first color all the uncolored edges in E3\ (T,
and then color T" and E3 N (T).

For each uncolored edge e of F3\ (T'), all the edges adjacent to e are already
colored. We assign e with a color different from the colors of its adjacent edges.

Let T" = T + (T) and let T’ be the complement of 7" in G. We will show
that 6(T’) > 0. We already get the conclusion that (k) > |£(k)| for each
element k of IC. Let K be the graph formed by the union of all the elements of
IC. Since the elements of K are pairwise disjoint, (K) = >, 0(k). However,
for ki, ke € K, the sets £(k1) and E(k2) may have common elements. Hence,
IE(K)| < > ek |E(K)]. Therefore, §(K) > |E(K)|. Since the value 6 of an
edge is at least -1, it follows that 0(K) + 0(E(K)) > 0.

Let e be an edge of T/ — E(K) — £(K). Let ¢3 be the current coloring
extended from ¢,,. Note that all the edges of color 4 or 5 locate on K. Since
e ¢ E(K)UE&(K), the edge e is ¢3-good on both ends, yielding 6(e) > 0.
Hence, §(T' — E(K) — £(K)) > 0. Now we can get that 6(T7) > 0.

It remains to color T and E3 N (T"). For each circuit C' of T', we will color
C so that 0(T") + 60(C) + 6({C)) > 0. Let ¢4 be the current coloring extended
from ¢,,. Say that C is of length k& and of vertices u1,...,u in cyclic order.
For 1 < i < k, denote by v; the neighbor of u; not on C. Since C' € Q(G,),
k € {3,5} and the set (C') N E3 contains exactly one edge, say e = ujv;.
Let e; and ez be the other two edges incident with v1. By Property (2) of
the wave definition, ujv; is uncolored, and e; and e are of colors 4 and 5.
If e; is adjacent to an uncolored edge €’ rather than e, then ¢’ € E3 U (C")
for some C’ € T, yielding that C' and C’ are ¢o-connected circuits of T, a
contradiction. Hence, e is the only uncolored edge adjacent to e; or es. Let
v; be the color making e; either rich or poor if e receives it. Such ~; always
exists and v; € {1,2,3}. Recall that k € {3,5}. We distinguish three cases.

Case 1: k = 3. Clearly, (C) uses one same color, say color 1.

Subcase 1.1: assume that at least one of «; and =9 is not color 1, say

v1 = 2. Assign the edges e, ujuo, usus, uguy with colors 2,4, 3, 5, respectively.
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Since the coloring of e makes e from a ¢4-outer edge to a rich edge, it increases
the value 6(e1) (and thus, the value §(T7)) by 1. Moreover, we can calculate

that 6(C) + 0((C)) > —1. Therefore, 0(T") + 6(C) + 6({C)) > 0.
Subcase 1.2: assume that y; = 72 = 1.

Subcase 1.2.1: assume that not both ve and w3 are incident with edges
of color 2 and of color 3. Without loss of generality, let vy be incident with
no edges of color 2. Reassign uove with color 2 and consequently, we can ¢4-
extend C'. We can calculate that §(C)+6((C)) = 2. Let hy and hs be the edges
other than usvy that are incident with vo. Since T' contains no ¢o-connected
circuits, h1, ho € T'. Hence, reassigning usvy decreases the value 0(hy) + 60(hs)

(and thus, the value 6(7”)) by at most 2. Therefore, (T7)+6(C)+6({C)) > 0.

Subcase 1.2.2: assume that both vo and vs are incident with edges of color
2 and of color 3. Reassign vous and vsus with color 4 and color 5, and assign
U9, UgUsz, U1ug, € with colors 5, 1,4, 1, respectively. We decrease by at most
1 the value 0 of each of the other four edges adjacent to usve or to usvs, and
increase by 1 the value 6 of both e; and ey. Moreover, 0(C) + 6((C)) = 2.
Therefore, 0(T") + 6(C) + 6((C)) > 0.

Case 2: k=5 and (C) uses one same color, say color 1.

Subcase 2.1: assume at least one of v; and 7o is not color 1, say v; =
2. Assign e, ujug, ugus, uslg, uqls, usu, with 2,4,3,2,3,5, respectively. By

similar argument as subcase 1.1, we have §(T") + 0(C) + 0((C)) > 0.
Subcase 2.2: assume that v; = o = 1.

Subcase 2.2.1: assume that not both usve and usvs have colors 2 and 3
on its adjacent edges, say uove does not have color 2 on its adjacent edges.
Reassign usve with color 2 and consequently, we can ¢4-extend C'. By similar

argument as subcase 1.2.1, we have 0(T") + 6(C) + 6({C)) > 0.

Subcase 2.2.2: assume that both usvy and usvs have colors 2 and 3 on its
adjacent edges. Reassign uove with color 4 and wjuo with color 5 and conse-
quently, we can ¢4-extend C so that e receives color 1. By similar argument

as subcase 1.2.2, we have 0(T") + 6(C) + 6({C)) > 0.
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Case 3: k = 5 and (C) uses two kinds of colors, say colors 1 and 2. Without
loss of generality, let usve be of color 1. Assign e, ujus, usts, usiq, Usts, UsUi
with colors 1,4, 5,4, 3, 5, respectively. From the coloring, we can calculate that
9(C) + 6({C)) > 0. Therefore, §(T") + 0(C) + 0((C)) > 0.

Now we complete the coloring ¢}, of G so that 64 (G) > 0. We are done
with the proof of the theorem.



Chapter 7

r-graphs

7.1 1-factors and conjectures on r-graphs

Throughout this chapter, we consider r-regular multigraphs. The early study
on r-graphs was proceeded by Seymour [61] in 1979. Let r be an integer with
r > 3. It is defined that G is an r-graph if (1) G is an r-regular graph and,
(2) |0(X)| > r for each odd X C V(G).

If an r-regular graph G is r-edge-colorable, then F(G) can be divided into
r pairwise disjoint 1-factors, in this case the structure of G is quite clear.
However, it is a notoriously difficult problem to determine which r-regular
graph is r-edge-colorable. By the definition of r-graphs, we can see that every
r-edge-colorable r-regular graph is an r-graph. This raises interests on the
study of r-graphs. Seymour [61] asked the inverse question that which 7-
graph is r-edge-colorable, and proposed several conjectures on it earlier or

later. Here, we mention three of them.
Conjecture 7.1 ([60]). Every planar r-graph is r-edge-colorable.

Conjecture 7.2 (r-graph conjecture [61]). If G is an r-graph, then x'(G) <
r+ 1.

Conjecture 7.3 (Generalized Berge-Fulkerson conjecture [61]). Every r-graph

has 2r 1-factors such that each edge is contained in precisely two of them.
97
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Conjecture 7.1 is verified for » < 8. By taking r = 3, this conjecture is
exactly the Four Color Theorem, by Tait’s result on the equivalence between
4-vertex-colorability and 3-edge-colorability for planar cubic graphs.

By Vizing’s theorem, if G is a simple r-graph, then it has chromatic index
at most r + 1. Conjecture 7.2 asserts that the truth holds even for all -
graphs. This conjecture is one of the central conjectures in the theory of
edge colorings and closely related to other fundamental conjectures on edge-
colorings of multigraphs. This fact motivates the research on the structure
of r-graphs. The conjecture has been verified for < 15, stepwise by several
authors.

It is easy to see that a cubic graph is bridgeless if and only if it is a
3-graph. Conjecture 7.3 extends Berge-Fulkerson conjecture from 3-graph to
r-graphs for all r > 3, and is called the generalized Berge-Fulkerson conjecture.
Analogous to the cubic case, Mazzuoccolo [50] proved that this conjecture is
equivalent to the following statement, namely generalized Berge conjecture

here.

Conjecture 7.4 (Generalized Berge conjecture [50]). Every r-graph has 2r—1

1-factors such that each edge is contained in at least one of them.

The number “2r — 1”7 in the conjecture can not be lower, since otherwise
there exists a counterexample, constructed in [50].

So far there are not many results on the structure of r-graphs. By the defi-
nition, an r-graph must have even order. Some basic properties were observed

in [61].
Proposition 7.5 ([61]). Every r-graph has a 1-factor.

Theorem 7.6 ([8],[61]). For any r-graph G, there is a positive integer p such
that G has rp 1-factors and each edge is contained in precisely p of them.

This theorem is a corollary of Edmonds’ matching polytope theorem, and

trivially implies the following proposition.

Proposition 7.7. Let G be an r-graph. For any edge e of G, the graph G has

a 1-factor containing e.
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This proposition implies Proposition 7.5. We show that they can be further
strengthened. Proposition 7.7 can be easily reformulated as: if G is an r-graph
and S is a list of r—1 edges of G that has a common end, then G has a 1-factor
containing none of S. We show in the following theorem that the condition

“that has a common end” is not necessary.

Theorem 7.8. If G is an r-graph and S is a list of r — 1 edges of G, then G

has a 1-factor containing none of S.

We remark that this theorem is an improvement of Theorem 3.15, and the
proof for the former follows from the latter. For the sake of completeness, we

give the proof as follows.

Proof of Theorem 7.8. Suppose to the contrary that every l-factor of G
intersects with S. Thus, G — S has no 1-factor. Let G’ = G — S. By Theorem
3.9, there exists T' € V(G') such that o(G' — T) > |T|. Since every r-graph
has even order, in particular for G, it follows that o(G’ — T') and |T'| have the
same parity. Hence,

o(G' —=T)>|T| +2. (7.1)

Let Oq,...,0f be the odd components and Og41,...,0Okts be the even
components of G'—T. For each i € {1,...,k+ s}, let a; and b; be the number
of edges of S joining O; respectively to T" and to some other component O;
and let m; be the number of edges of G’ joining O; to T.

The total number of edges going out of O; is a; + b; + m;. Since G is an

r-graph, for ¢ € {1,...,k}, we have a; + b; + m; > r. Hence,

k k k
=1 i=1 =1

Moreover, since S is of size r — 1, we have

k+s k+s

23 ai+ Y b <2(r—1). (7.3)
=1 i=1
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Since the total number of edges going out of 7" must be at most ) . da(v),

we have
k+s k+s
Zai + ZmZ < Z dg(v) = r|T|. (7.4)
i=1 i=1 veT

Add the inequalities 7.3 and 7.4, we thereby obtain

k+s k+s k+s

3Y ai+ > bi+> m <r(|IT]+2) -2 (7.5)
=1 =1 =1

Since the left of 7.2 is less than the left of 7.5, we have kr < r(|T| +2) —2 <
r(|T'| 4+ 2). This gives k < |T| + 2, contradicting the inequality 7.1. O

Further results on r-graphs were obtained by Rizzi [57], who construct-
ed r-graphs with specific properties in terms of 1-factors to disprove some
conjectures of Seymour.

An approach to the solution to the generalized Berge conjecture (hence, to
the generalized Berge-Fulkerson conjecture) is to look for the minimum con-
stant ¢ such that every r-graph has ¢ 1-factors whose union is F(G). However,
it is even open whether such c exists.

Here, we follow another approach by asking such a question: at least how
many edges we can cover by 2r — 1 1-factors for every r-graph, and more
general by k 1-factors for every k7 This question will be treated on in the

next section.

7.2 Union of 1-factors in r-graphs

The results of this section have already been published in [31].
Given an r-graph G, let F be the set of 1-factors in G. Fix a positive
integer k. Define
k
Y M
m(r,k,G) = Uiz, M

max

M;y,..., MreF ‘E(G”

and

m(r,k) = iIcl;f m(r, k,G),
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where the infimum is taken over all r-graphs. The parameter m(r, k,G) is
the maximum fraction of the edges covered by k 1-factors in an r-graph G.
Clearly, m(r,k) < m(r,k + 1) < 1. Conjecture 7.4 can be reformulated as

follows:
Conjecture 7.9. m(r,2r — 1) =1 for every integer r with r > 3.

By Theorem 7.6, the following lower bound for m(r, k) can be easily ob-

tained.

Theorem 7.10. m(r, k) > 1 — (“=2)* for every positive integers r and k with

r>3.

Proof. The proof is by induction on k. Since every r-graph has a 1-factor,
which covers fraction % of the edges, the proof is trivial for £ = 1. We proceed
to the induction step. Let G be an r-graph and E = E(G). By the induction
hypothesis, G has k — 1 many 1-factors M,..., Mj_1 such that
k—1
|Ui=i Ml r— 1)1@71

Ji=1 77l 5
R

(7.6)

Moreover, by Theorem 7.6, there exist a positive integer p such that G has
rp 1-factors F1i, ..., F,, and each edge is contained in precisely p of them. It
follows that for every X C FE, graph G has a 1-factor F' among F1,..., Fy,
such that [FF'NX| > pr(—‘ In particular, let X = E\ =} M; and M, = F.

Thus,
k—1 k—1
BAUS! My
a0 (8 | o) > EAV=L ML &
=1

Since the left side equals to | Ule M;| — | Ufz_ll M;|, dividing the inequality by
|E| yields

k k—1 k-1
|Ui:1 M| — | Uz’:l M| > 1(1 _ ‘ i=1 M;|

1 r—1

r



102 Chapter 7 r-graphs

where the last inequality follows from inequality 7.6. Therefore, by summing

up formulas 7.6 and 7.8, we obtain

k
’Ui:IMi’ N T—l)k
£l ro0

and so m(r, k) > 1 — (“=1)¥ by the choice of G. O

By a similar argument as for this theorem, one can deduce the following

observation.

Observation 7.11. If the generalized Berge-Fulkerson conjecture is true, then

for every integers r and k with r > 3 and 1 < k < 2r —1,

k

m(r, k) Zl—H

=1

2r—1—1
2r+1—1

Now we are going to improve the lower bound of m(r, k) given in Theorem

7.10. The following theorem is the main result in this chapter.

Theorem 7.12. Letr and k be two positive integers with r > 3. The following
two statements hold true:

(1) if r is even, then

b (r2 = 3r + 1)i— (r2 — 57 + 3
m(r’k)Z1_H§7~2_2r4—_1;i—57‘2—47“i—1§;

=1

(2) if v is odd, then

o2 — o —1)i— (12 —dr + 1
m(“k)21_H((rz_r_z))i—<(r2—3r—+2>)'

=1

For the particular case r = 3, we obtain the result of Kaiser, Kral and
Norine [36] and of Mazzuoccolo [48].
The following table partly lists the data calculated according to the for-

mulas in Theorem 7.12 for instance of r and k.
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r=3 r=4 r=2>5
m(r,2) > | 2=06 o =045 3 ~0.3714
m(r,3) > | 2 ~0.7714 | 2=06 209 ~ 0.5081
m(r,4) > | 22 ~0.873 198 ~0.7103 95 ~0.6157
m(r,5) > | 222 ~ 0.9507 | 233 ~0.7908 09 ~ 0.7
m(r,6) > | 33 ~ 09627 | 13550 ~0.8492 | 2328 ~ 0.766
m(r,7) > | 807 ~0.9801 | 2890 ~ 0.8914 | 89221 ~ 0.8176
m(r,8) > | B2 ~ 0.9805 | 2139303 ~ 0.9219 | 1233672 ~ 0.8578
m(r,9) > | 42933 ~ 0.9945 | 4TI ~ 0.9439 | L1 ~ ).8892

Table 7.1: A lower bound for the parameter m(r, k)

7.2.1 The perfect matching polytope

(@), The entry of w corresponding

Let G be a graph and w be a vector of R¥
to an edge e is denoted by w(e), and for A C E, we define w(A) = " . 4, w(e).

The vector w is a fractional 1-factor if it satisfies
(i) 0 <w(e) <1 for every e € E(G),
(i1) w(9{v}) =1 for every v € V(G), and
(iii) w(0S) > 1 for every S C V(G) with odd cardinality.

Let F(G) denote the set of all fractional 1-factors of a graph G. If M is a 1-
factor, then its characteristic vector x™ is contained in F(G). Furthermore, if
wi, ..., w, € F(G), then any convex combination » " ;| a;w; (where avq, ..., ap
are nonnegative real numbers summing up to 1) also belongs to F(G). It
follows that F(G) contains the convex hull of all the vectors x™ where M
is a 1-factor of G. The Perfect Matching Polytope Theorem asserts that the

converse inclusion also holds:

Theorem 7.13 ([8]). For any graph G, the set F(G) coincides with the convex
hull of the characteristic vectors of all 1-factors of G.
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Besides this theorem, the following property on fractional 1-factors is also

needed for the proof of Theorem 7.12.

Lemma 7.14 ([36]). Letw be a fractional 1-factor of a graph G and c € RF(@),
Then G has a 1-factor M such that ¢ - xM > ¢ - w, where - denotes the scalar
product, and |M N C| =1 for each edge-cut C with odd cardinality and with
w(C) = 1.

7.2.2 Proof of Theorem 7.12
Instead of Theorem 7.12, we prove the following stronger one.

Theorem 7.15. Let G be an r-graph with V =V (G) and E = E(G).

(a) If v is even and r > 4, then for any positive integer k, graph G has k
1-factors Mq, ..., My such that

U, M; ﬁr —3r+1)i— (r* = 5r +3)

|E| o ( 2—2r—1)i—(r2—4r—1)

and Zle XMi(C) < (r — 1)k +2 for each (r + 1)-edge-cut C.

(b) If r is odd and r > 3, then for any positive integer k, graph G has k
1-factors My, ..., My such that

U, M| >1_ﬁ(r22r1)i(r24r+1)
|E| - (r2—r—2)yi—(r2-3r—2)’

=1

I-C: YMi(C) = k for each r-edge-cut C and I-C: Mi(D) < rk+ 2 for
i=1 i=1
each (r + 2)-edge-cut D.

Proof. (The proof is by induction on k).

Statement (a). The statement holds for k£ = 1, since the required M; can
be an arbitrary 1-factor of G. Assume that & > 2. By the induction hypothesis,
G has k — 1 many 1-factors M,..., Mj_1 such that

|US) M) ﬁ(r2—3r+1)i—(r2—5r—l—3)

>1-
]E| pabet (r2—2r—1)i— (r2 —4r —1)
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and

ZXMi(C’) <(r—1)(k—1)+2 (7.9)

for each (r + 1)-edge-cut C.

For e € E, let n(e) denote the number of 1-factors among My, ..., M;_1

that contains e, and define

(r—2)k—(r—4) —n(e)
(r2—2r—1)k—(r2—4r—-1)

wg(e) =

We claim that wy is a fractional 1-factor of G, that is, wy € F(G). Since
k>2r>4and 0 < n(e) < k—1, we can deduce that % < wg(e) < 1.
Moreover, note that for every X C E, the equality ) .y n(e) = Efz_ll YMi(X)

always holds and so

r—2)k = (r—4)|X| = X M(X)
(7«2_2r_1)k—(r2—4r—1)

wi(X) = Zwk(e) = («

eeX

(7.10)

Thus for v € V, since Zf:_ll YMi(0{v}) = k — 1, we have wi(0{v}) =

(r=2)k—(r—4))r—(k=1) _
(r2—2r—1)k—(r2—4r—1)

1. Finally, let S C V with odd cardinality. Since G
is an r-graph, we have |0S| > r. Recall that wi(e) > TJ%?) for each edge e.
So, w(0S) > 1, provided that |0S| > r + 3. Hence, we may next assume
that |0S| € {r + 1,r + 2}. By parity, |0S| = r + 1. Formula 7.9 implies

Zi-:ll XMi(8S) < (r—1)(k—1)+2. With the help of formula 7.10, we deduce

that w,(05) > (CRCEEIEHEECIEE < .

This completes the

proof of the claim.

By Lemma 7.14, graph G has a 1-factor M}, such that

k—1

k=15, )
(1 — XY=t Moy xMe > (1 — xUimt Moy gy
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Since the left side is just ]Uf 1 M| — \Uf;ll M;| and the right side equals to

o R 5] = [UiZ! M), it follows that

k k—1
(r? = 3r+1)k— (r* —5r+3)
M; M;
|Z:LJ1 |_(r2—2r—1)k—(r2—4 1)|12LJ1 I+
(r—2)k—(r—4) B
(r2—2r—1)k—(r2—4r—1)""
which leads to
\Ule\>1 ﬁr—3r+lz—(r —5r+3)
o) —2r—1) —4r—1)’
z:1

as desired.

Moreover, let C' be an edge cut with cardinality r + 1. Clearly, xM*(C) <
r4+1. Thus, if ¥\ Mi(C) < (r—1)(k—1) then 38 xMi(C) < (r—1)k+2, as
desired. Hence, we may assume that Zf xXMi(C) > (r—1)(k—1). By formula
7.9 and by parity, we have Zl LXMi(C) = (r —1)(k — 1) + 2. We calculate
from formula 7.10 that w;(C) = 1. By Lemma 7.14, we have Y+ (C) = 1,
which yields 2% x™i(C) = (r — 1)k —r +4 < (r — 1)k + 2, as desired. This
completes the proof of statement (a).

Statement (b). Let w; be a vector of R¥ defined by wi(e) = 1 for e €
E. Clearly, w; € F(G). By Lemma 7.14, G has a 1-factor M; such that
XM (C) =1 for each edge cut C' with odd cardinality and with w(C) = 1,

that is, for each r-edge-cut C. Therefore, the statement is true for k = 1.

Assume k > 2. By the induction hypothesis, G has k — 1 many 1-factors
My, ..., Mj_q such that

]U 1:[ —2r —1)i— (r® —4r +1)
(r2

|E| - et —r—=2)i—(r2=3r—-2)’

and for each r-edge-cut C

ZXMi(C) =k—1, (7.11)
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and for each (r + 2)-edge-cut D

Z YMi(D) < r(k—1)+2. (7.12)

For e € E, let n(e) denote the number of 1-factors among My, ..., M4

that contains e, and define

(r—1)k—(r—3)—2n(e)
(r2—r—2)k—(r2=3r—2)

wg(e) =

We claim that wy € F(G). Since k > 2,r > 3 and 0 < n(e) < k — 1, we
can deduce that 0 < - 4 < wg(e) < 1. Moreover, note that for every X C E,

the equality > .y n(e) = Zi:l xMi(X) always holds and so

(ir = Dl = (¢ = 3)1X| 210 06).

wr(X) = (2 —r—2)k— (12— 3r —2)

(7.13)

Thus for v € V, since Ef:ll Mi(0{v}) = k — 1, we have wi(0{v}) =

((r—1D)k—(r—=3))r—2(k—1) __
(r2—r—2)k—(r?—3r—2)

is an r-graph, |0S| > r. On the other hand, by recalling that wy(e) >

= 1. Finally, let S C V with odd cardinality. Since G

1
r+4

for each edge e, we have wi(0S) > 1, provided that [0S| > r + 4. Hence,
we may next assume that r < |0S| < r + 3. By parity, either [0S| = r or
0S| = 7+ 2. In the former case, formula 7.11 implies S5~ x™i(9S) = k — 1,
and thus we can calculate from formula 7.13 that wy(9S) = 1. In the latter

case, formula 7.12 implies ZZ L XMi(8S) < r(k—1) + 2 and similarly, we get

r—Dk—(r—3))(r+2)—2(r(k—1)+2
w(98) > =R 20 ()

= 1. This proves the claim.

By Lemma 7.14, graph G has a 1-factor M}, such that

(1—x it Miy 3\ Me > (1 -y vy Miy -y,



108 Chapter 7 r-graphs

Since the left side is just ]Ule M;| — | Uf;ll M;| and the right side equals to

=y (1Bl = [UIZ! My)), it follows that

F r—1k—(r—3
'UMZ"Z(ﬂ—i—z))k—(<7a2—3)r—2)|E|+

(r2—2r—1)k—(r2—4r+1)|’UM"
(r2—r—2)k—(r2—3r—2) = B

which leads to

U, Ml {2 =2 = 1)i— (2 = 4r 4+ 1)

as desired.

Moreover, let C be an edge cut of cardinality . Formula 7.11 implies
Zi-:ll XMi(C) = k — 1. On the other hand, We can calculate from formula
7.13 that wi(C) = 1, and thus x™*(C) = 1 by Lemma 7.14. Therefore,
Zle XMi(C) = k, as desired.

We next let D be an edge cut of cardinality 7 +2. Clearly, x*(D) < r+2.
Thus if 25:_11 Mi(D) < r(k — 1), then Zle XMi(D) < rk + 2, as desired.
By formula 7.12 and by parity, we may next assume that Zf;ll XMi(D) =
r(k — 1) + 2. By calculation we can get wg(D) = 1, and thus xM*(D) = 1
by Lemma 7.14, which also yields Zle xMi(D) < rk + 2. This completes the

proof of the theorem. O

7.3 Cores and measures of r-graphs

Recall that the basic question on r-graphs is to determine which r-graph is
r-edge-colorable. Regarding the difficulty on answering this question directly,
we consider the question in a more general sense—to determine how far an
r-graph is from being r-edge-colorable?

We will extend the concept of cores of cubic graphs to r-graphs. Analogous

to the cubic case, we define in terms of cores a parameter p; which measures
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how far an r-graph is from being r-edge-colorable. Such a parameter is also
called a measure of edge-uncolorability (for r-graphs). As we can see from
Chapter 5, many measures for cubic graphs are proposed in the literature,
and cubic graphs with small value of measures are shown satisfy some hard
conjectures. However, so far no such measures for all r-graphs are known. The
study for r-graphs on cores and on p% gives us an insight into the structure of
r-graphs, on which there are not many knowledges so far.

Throughout this chapter, we take the following definitions and notations.
For a real number p, let |p|, (resp., |p|e) denote the odd (resp., even) number
of {|p],|p| — 1}. An Eulerian graph is a graph where each vertex has even
degree.

Let G be an r-graph and S, be a list of r 1-factors M, Ms, ..., M, of G. For
0 <i<r,let E; be the set of edges that are contained in precisely ¢ elements
of S,. Let k = |Ey|. The k-core of G with respect to S, (or to My, My, ..., M,)
is the subgraph G. of G’ which is induced by E(G) \ (Ey U E3U---UE|¢| ).
If the value of k is irrelevant, then we say that G, is a core of G. If G, is an

Eulerian graph, then we call G. an Fulerian core.

Proposition 7.16. If G. is a k-core of an r-graph G, then E(G.) can be
divided into two parts FEyqq and Eeyen, where Eeyen, = EgU Eoy -+ U Ewe and
Eoqq = EL%JO+2 U EL5J0+4 U---UE|,, and the following statements hold:
(1) G[Eecven] is an Eulerian graph,

(2) Eoqq is either an empty set or a matching of G,

(3) k = |Ea| + 2[Es| +--- + (r — 1)|E, .

Proof. Let v € V(G). Denote that E(v) = {e € E(G): e is incident with v},
E°(v) ={e € E(v): e € E;and iis odd}, and E(v) = E(v) \ E°(v). Since
every 1-factor touches v precisely once, we can deduce that |E°(v)| has the
same parity as r. Since v has degree 7, that is, |E¢(v)| + |E°(v)| = r, it follows
that |[E(v)| is an even number. Therefore, statement (1) holds true.

For statement (2), suppose to the contrary that there are two edges f

and h of EL%JO+2 U EL§j0+4 U---U E|,, sharing precisely one common end
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v. Thus the r 1-factors with respect to G. touch v at least 2(| 5], + 2) times,
contradicting with the fact that they touch v precise r times.

By counting the edges of the r 1-factors with respect to G, with repetition
in two different ways, we can get > .. i|E;| = r% = |E|, where the last
equality follows from the fact the G is r-regular. Thus, |Ep| = >\ ,(i—1)|E4,

we are done with the proof. O

We propose the generalized Fan-Raspaud conjecture in terms of empty
intersection of 1-factors, and then reformulate it in the language of cores of

r-graphs.

Conjecture 7.17 (The generalized Fan-Raspaud conjecture). Every r-graph
has r 1-factors My, Ma, ..., M, such that any |5]o + 2 of them have empty

intersection.

By taking r = 3, this conjecture reduces to Fan-Raspaud conjecture. More-
over, any r 1-factors from a Berge-Fulkerson cover of an r-graph cover each
edge at most twice and hence, they satisfy the property in Conjecture 7.17.
This shows that the generalized Berge-Fulkerson conjecture implies the gen-
eralized Fan-Raspaud conjecture. The following conjecture is a reformulation

of the generalized Fan-Raspaud conjecture in terms of cores.
Conjecture 7.18. FEvery r-graph has an FEulerian core.
Proposition 7.19. The Conjectures 7.17 and 7.18 are equivalent.

Proof. Let G. be a core of an r-graph G with respect to r 1-factors
My, Mo, ..., M,. Denote by H; the subgraph of G induced by FyU Es---U
E|,|., and by Hj the subgraph of G induced by EL%JOHUEL%JOHU' ~UE|,-
Since H; is an Eulerian graph by Proposition 7.16 statement (1), it follows
that G, is an Eulerian core if and only if H» is an Eulerian graph. Since Hs is
a matching of G by Proposition 7.16 statement (2), the latter one is equivalent
to that Hy is an empty graph, that is, equivalent to that any [5], + 2 of
My, Ms, ..., M, has empty intersection. O
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Now we are ready to introduce a measure p5 of edge-uncolorability of r-
graphs. Let G be an r-graph. Define p4(G) = min{k: G has a k-core}, that
is, p5(G) is the minimum number of edges of G uncovered by r 1-factors.
Clearly, an r-graph is r-edge-colorable if and only if it has zero value of pfj.

An r-graph with small value of ;5 is regarded close to being r-edge-colorable.
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