
Dynamic Reliability Management

Dissertation

A thesis submitted to the
Faculty of Electrical Engineering, Computer Science and Mathematics

of the
Paderborn University

in partial fulfillment of the requirements for the
degree of Dr. Ing.

by

Jahanzeb Anwer

Paderborn, Germany
July 2017

Supervisor:
Prof. Dr. Marco Platzner

Reviewers:
Prof. Dr. Marco Platzner
Prof. Dr. Sybille Hellebrand

Additional members of the oral examination committee:
Prof. Dr. Franz Rammig
Prof. Dr. Christian Plessl
Prof. Dr. Christoph Scheytt

Date of submission:
April 3, 2017

Date of public examination:
July 20, 2017

ii

Acknowledgements

First of all, I would like to thank my advisor Prof. Dr. Marco Platzner for supervising,
motivating and helping me to solve each of my research problems.
Furthermore, I would like to thank:

• Prof. Dr. Sybille Hellebrand for serving as a reviewer for my dissertation.

• Prof. Dr. Franz Rammig, Prof. Dr. Christian Plessl and Prof. Dr. Christoph Scheytt
for serving on my oral examination committee.

• My office-mate Sebestian Meisner for having fruitful discussions with me during
numerous phases of my research.

• My colleagues Andreas Agne, Stefan Biedemann, Alexander Boschmann, Stepha-
nie Drzevitzky, Heinrich Giebler, Heiner Giefers, Tobias Graf, Tobias Beisel, Markus
Happe, Nam Ho, Server Kasap, Paul Kaufmann, Tobias Kenter, Achim Lösch, Anto-
niou Paraskewi, Lars Schäfers, Gavin Vaz, Tobias Wiersema and Prof. Dr. Christian
Plessl for valuable discussions and making my working environment a pleasant place
to conduct research.

• The Paderborn Center for Parallel Computing for providing the compute resources
to run my time-consuming simulations.

• The International Graduate School of Dynamic Intelligent Systems (IGS-DIS) for
providing funds to conduct this research.

Finally, I would like to thank my family. In particular, I would like to thank my parents
for their continuous support and my wife Rija for her encouragement and patience.

iii

Abstract

Radiation-tolerant computing for FPGAs has become an important field of research due
to the increased usage of FPGAs in space missions. Various device and design hardening
techniques have been used in the past to mitigate errors, particularly single event upsets,
that appear due to ionizing radiation particles in aerospace missions. Redundancy is the
most commonly used technique to counter such errors. However, the traditional hardware
design approaches use statically redundant structures and incur a fixed overhead in per-
formance factors of area consumption, latency and power dissipation. These structures
are designed to handle the worst case radiation scenarios. However, it has been shown by
experiments, depicting radiation patterns of space, that the radiation strength varies a lot
during the operation time span of satellite missions. Therefore, incurring a fixed overhead
of static redundant structures for FPGA hardware, results in the wastage of resources
as well as performance loss since lower levels of redundancy provide sufficient level of
reliability in relatively calm regions of space radiation.
Since high orders of redundancy cost large overheads in performance factors, the best ap-
proach of maintaining the reliability-performance tradeoff is to dynamically reconfigure the
FPGAs to required reliability levels, based on the radiation strength of the environment.
Fortunately, FPGAs provide this level of flexibility since they are run-time reconfigu-
rable. This concept of run-time reconfiguration for reliability has been named Dynamic
Reliability Management (DRM) in this research. DRM is a hardware/software co-design
approach consisting of design-time and run-time parts. At design-time, several redundant
implementations of a hardware design are generated and rated by the performance fac-
tors of area, latency, power and achieved reliability. A Pareto-optimization method has
been implemented in MATLAB that filters the non-dominated optimal implementations
on the basis of three performance factors described above and the reliability magnitude.
The run-time tool flow makes use of the filtered non-dominated optimal implementations
while storing them as partial bitstreams in its implementation database. During the ope-
ration time span of the mission, each of these implementations can be configured on the
basis of system constraints and reliability requirements. The decision when to reconfigure
the selected implementation can be made on the basis of external, time, cooperative or
radiation/error rate based decision mechanisms.
The construction of design-time and run-time tool flows involved using, extending and de-
veloping various tools. In particular, the redundancy-insertion tool, i.e., BANL TMR tool

v

has been extended to generate three more redundancy configurations which was limited
to only triplicated voter structure in the past. The reliability computation tool has been
developed based on the Boolean difference error calculus model. This model, though taken
from the literature, is extended to cover the redundant structures and sequential circuit
analysis before automating it as a MATLAB tool. The system-on-chip platform, develo-
ped to validate the DRM run-time tool flow consists of standard Xilinx as well as our
custom IP cores. However, the DRM applications have been introduced with the concept
of parallel computation engines. The parallelism of hardware applications on FPGA made
us implement the DRM with an area-bounded FPGA partition while still benefiting from
performance improvement in low reliability requirements.
The design-time and run-time parts of DRM have been validated with a number of bench-
marks. ISCAS benchmarks having different combinational/sequential circuit architectures
have been used to validate design-time tool flow. The variation of performance factors have
been observed during this experimentation and various conclusions are drawn on the pat-
terns by which the performance factors vary. To validate the run-time design tool flow, we
have developed a system-on chip platform utilizing Xilinx ML605 evaluation board with
Virtex 6 FPGA and embedded ReconOS operating system to run benchmark applications.
The run-time applications consist of data sorting and matrix multiplication algorithms.
These applications are run under a sample radiation profile and the their performance is
measured under a run-time reconfigurable platform of ReconOS. Our experiments have
shown that the DRM and dynamic run-time reconfiguration concept is up to seven and a
half times performance efficient as compared to statically utilized redundant structures.

vi

Zusammenfassung

Strahlungs-tolerantes Rechnen auf FPGAs ist ein wichtiges Forschungsfeld geworden,
da die Nutzung von FPGAs in Weltraummissionen stark angestiegen ist. Verschiedene
Härtetechniken gegen Strahlung auf Transistor- und Entwurfsebene wurden in der Ver-
gangenheit genutzt um Fehler, insbesondere Single-Event-Upsets welche durch ionisierende
Strahlung während Weltraummissionen entstehen, abzuschwächen. Redundanz ist hierbei
die am meisten benutzte Technik um solchen Fehlern entgegen zu wirken. Der traditionelle
Hardwareentwurfsansatz benutzt statische Strukturen und nimmt somit zusätzliche Kos-
ten in Form von größerer Chipfläche, Latenz und Leistungsaufnahme in Kauf. Diese Struk-
turen wurden entworfen um auch die ungünstigsten Strahlungsbedingungen zu überstehen.
Jedoch haben Experimente zur Intensität der Strahlung im Weltraum ergeben, dass die
Strahlungsintensität während einer Satellitenmission starken Schwankungen unterworfen
ist. Daher resultiert die Benutzung von statisch allokierten redundanten Strukturen in ei-
ner Verschwendung von Ressourcen und Rechenleistung, da während Zeiten mit niedriger
Strahlungsintensität geringere Ansprüche an die Fehlertoleranz gestellt werden können.
Da mehrfach redundant ausgelegte Systeme hohe Kosten verursachen, ist der beste An-
satz um den Kompromiss aus Zuverlässigkeit und Leistungsfähigkeit zu erhalten der, den
FPGA dynamisch, abhängig von der Strahlungsintensität, auf die benötigte Redundanz
zu rekonfigurieren. Glücklicherweise erlauben FPGAs diese Art von Flexibilität durch
ihre Fähigkeit zur Laufzeit neu konfiguriert zu werden. Dieses Konzept zur Laufzeit-
Rekonfiguration von FPGAs zur Steuerung der Zuverlässigkeit wird in dieser Arbeit ”Dy-
namic Reliability Management”(DRM) genannt. DRM ist ein Hardware/Software Co-
Entwurfs Ansatz der aus Entwurfszeit- und Laufzeitteilen besteht. Zur Entwurfszeit wer-
den mehrere redundante Implementierungen eines Hardwareentwurfes generiert und nach
ihren Kosten in Fläche, Latenz, Leistungsaufnahme und erreichter Zuverlässigkeit bewer-
tet. Eine Methode basierend auf Pareto-Optimierung wurde in MATLAB entworfen. Die-
se Methode filtert die nicht-dominierten, optimalen Implementierungen auf Basis der drei
oben erwähnten Kostenfaktoren und der Zuverlässigkeit. Die Laufzeitumgebung nutzt nun
diese gefilterten, optimalen Implementierungen, in sie sie als partielle Bitströme in der Im-
plementierungsdatebank speichert. Während er Missionslaufzeit kann nun, entsprechend
der verfügbaren Systemressourcen und der benötigten Zuverlässigkeit, jede Implementie-
rung in den FPGA geladen werden. Die Entscheidung, welche Implmentierung geladen
werden soll, kann auf der Grundlage von externer, zeitbasierter, cooperativer oder strah-

vii

lungsbasierter Mechanismen getroffen werden.
Die Konstruktion der Entwurfs- und Laufzeitwerkzeuge beinhaltete die Benutzung, Erwei-
terung und Entwicklung verschiedener Werkzeuge. Im besonderen wurde das Werkzeug
”BANL TMRtool”, welches Redundanz in Schaltungen einfügt, erweitert um noch drei
zusätzliche Redundanzkonfigurationen zu erstellen. Zuvor unterstützte es nur triplizierte
Voter-Strukturen. Das Werkzeug zur Berechnung der Zuverlässigkeit wurde auf Basis des
”Boolean difference error calculus”Models entwickelt. Dieses aus der Referenzliteratur ent-
nommene Model, wurde in MATLAB implementiert und erweitert, und unterstützt nun
redundante Strukturen in Schaltungen sowie die Analyse sequentieller Schaltungen. Die
System-on-Chip Plattform, welche zur Validierung der DRM Laufzeitumgebung entwickelt
wurde, besteht aus standard IP-Cores von Xilinx als auch aus selbst entwickelten IP-Cores.
Die DRM Anwendungen wurden für Unterstützung von parallelen Recheneinheiten ent-
worfen und entwickelt. Dank dieser Unterstützung von parallelen Recheneinheiten kann
DRM trotz der statischen Größe von FPGA-Partitionen den Durchsatz der Anwendungen
in Zeiten niedriger Zuverlässigkeitanforderungen erhöhen.
Die Entwurfszeitwerkzeuge und die Laufzeitumgebung wurden mit einer Reihe von Bench-
marks validiert. Die ISCAS Benchmarks implementieren verschiedene kombinatorische wie
auch sequentielle Architekturen und wureden benutzt um die Entwurfszeitwerkzeuge zu
validieren. Die Veränderung der Kostenfaktoren wurde während der Experimente beob-
achtet und verschiedene Schlüsse auf die Änderungsmuster wurden gezogen. Um die Lauf-
zeitumgebung zu validieren, wurde eine System-on-Chip Plattform entwickelt, welche das
”Xilinx ML605 Evaluation Board”, den darauf befindlichen Virtex6 FPGA, sowie das
ReconOS Betriebssystem benutzt, um Benchmark Anwendungen ausführen zu lassen. Die
Benchmark Anwendungen bestehen aus Sortier- und Matrix-Multiplikations-Algorithmen.
Diese Anwendungen werden unter einem beispielhaften Strahlungsprofil ausgeführt und
ihre Leistung wird auf der dank ReconOS zur Laufzeit rekonfigurierbaren Plattform aus-
geführt. Unsere Experimente haben gezeigt, das DRM und das Konzept der dynamische
Laufzeit-Rekonfiguration um einen bis zu siebeneinhalbmal besseren Durchsatz erlauben
als statisch allozierte redundante Strukturen.

viii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions of the Thesis . 2
1.3 Thesis Outline . 4

2 Background and Related Work 5
2.1 Space Radiation Environment . 5

2.1.1 Earth’s Magnetosphere . 5
2.1.2 Ionizing Space Radiation . 6

Van Allen Radiation Belts . 6
Cosmic Rays . 7
Solar Particle Events . 7

2.2 Effects of Radiation on Electronic Devices 7
2.2.1 Cumulative Effects . 7

Total Ionizing Dose . 7
Displacement Damage . 7

2.2.2 Single Event Effects (SEE) . 8
Non-destuctive SEEs . 8
Destructive SEEs . 9

2.3 Radiation-induced-error Mitigation Techniques 9
2.3.1 Radiation Hardened by Device . 9
2.3.2 Radiation Hardened by Design . 10

Redundancy . 10
Variation in Voting Structures of TMR and Cascaded TMR 11

2.4 Field-programmable Gate Arrays in Space Computing 12
2.4.1 Radiation-tolerance in FPGAs . 13

Triple Modular Redundancy in FPGAs 15
2.5 The Need for Adaptive Fault-tolerance in FPGAs 17

2.5.1 Correlating Apative Fault-tolerance with Varying-radiation Envi-
ronments . 17
Borealis Flight . 18

ix

Contents

Low-Earth-Orbit Case Study . 19
Highly-Elliptical Orbit Case Study 19
Anticipated Error-Rate for Different Solar Conditions 20

2.6 Reliability Evaluation of FPGA Designs for Space Computing 21
2.6.1 CREME96 based Reliability Computation 21

Device Characterization . 21
Path/Orbit Specification . 22
SEU Rate Prediction . 22

2.6.2 Probabilistic Computational Reliability Models 22
2.6.3 Fault-injection and Testing-based Reliability Models 24

2.7 Major Research Works in Adaptive Fault-tolerance 25
2.7.1 Reconfiguration for Reliability (R4R) 25
2.7.2 Reconfigurable Fault-tolerance (RFT) 25
2.7.3 Reconfiguration via Spare Resources Method 26
2.7.4 BRAM Fault-Detection based Adaptive Reconfiguration 27

2.8 Chapter Conclusion . 27

3 Reliability Computation of Redundant Structures 31
3.1 Boolean Difference Error Calculator . 32

3.1.1 Limitations of the BDEC Model . 34
BDEC v/s TMR Model of Voter . 34
Reliability Computation of Sequential Circuits 35
Reliability Evaluation Tool . 35

3.1.2 Extensions to the BDEC Model . 36
Interpretation of Redundant Behaviour 36
Supporting Sequential Behaviour of Circuits 38

3.2 Automation of the BDEC Model . 38
3.2.1 Inputs to the BDEC Tool . 38

FPGA Component Netlist . 39
Input Error and Signal Probabilities 39

3.2.2 Programming Mathematical Model of BDEC 39
3.2.3 BDEC Reliability Computation Algorithm 41

3.3 Parameter Variability Analysis . 43
3.3.1 Variation of Gate-Error Probability εg 43
3.3.2 Variation of Input Error-Probability εi 44
3.3.3 Variation of Signal Probability pi . 45
3.3.4 Variation of Voter Error-Probability εvoter 45
3.3.5 Joint Variation of Input and Gate Error-Probabilities 46

3.4 Chapter Conclusion . 47

x

Contents

4 Dynamic Reliability Management 49
4.1 DRM Design-Time Circuit Analysis . 49

4.1.1 BYU-LANL TMR Tool . 50
JEdifBuild . 50
JEdifAnalyze . 51
JEdifNMRSelection . 51
JEdifVoterSelection . 51
JEdifNMR . 51
JEdifMoreFrequentVoting (Optional) 51
JEdifDetectionSelection (Optional) 51
JEdifPersistenceDetection (Optional) 51

4.1.2 DRM Design-time Tool Flow . 52
Xilinx ISE Synthesis . 52
Replication via the BANL TMR Tool 52
Performing Replication . 54
Xilinx ISE Mapping, Placement/Routing and Power Analysis 54
Reliability Evaluation . 54
Pareto Filtering of Implementation Points via MATLAB 54

4.2 DRM Run-Time Circuit Analysis . 55
4.2.1 ReconOS . 55
4.2.2 Decision Mechanisms for Changing Reliability Levels 57

External . 57
Time . 57
Cooperative . 57
Radiation/Error . 58

4.2.3 DRM Run-time Tool Flow . 58
4.3 Chapter Conclusion . 59

5 Validating Dynamic Reliability Management Tool Flow 61
5.1 Validating Design-time Tool Flow . 61

5.1.1 Experimental Setup . 61
5.1.2 c17 and c3540 (ISCAS’85) . 62
5.1.3 s713 and s838 (ISCAS’89) . 63
5.1.4 b8 and b12 (ISCAS’99) . 65

5.2 Validating Runtime Tool Flow . 67
5.2.1 Data Sorter . 67
5.2.2 Matrix Multiplier . 71

5.3 Variation of Pareto-optimal Implementations of DRM Tool Flow 73
5.3.1 Using Relative versus Exact Reliability Values 73
5.3.2 Using Different Error Probability Values 73

5.4 Conclusion . 76

xi

Contents

6 Summary and Conclusions 79
6.1 Summary . 79
6.2 Conclusions and Lessons Learned . 81
6.3 Future Directions . 82

Acronyms 86

A Formulation of Error Probability Equations 89
A.1 2-Input OR Gate . 89
A.2 2-Input XOR Gate . 90
A.3 3-Input LUT . 91

List of Figures 93

List of Tables 95

Bibliography 97

xii

CHAPTER 1

Introduction

1.1 Motivation

The integration density of transistors on a single system-on-chip has tremendously in-
creased in the last couple of years [1]. The packing of more transistors on a chip has been
made possible due to shrinking of device dimensions and modern fabrication techniques
in semiconductor technologies. However, the critical charge required to flip a logic bit, in
the advent of an error, has decreased for the newer scaled technologies thereby increasing
the probability of transient errors in logic devices. Therefore, the signal integrity of the
electronic devices, has to be maintained nowadays, under low signal to noise ratios and
power supply voltages.
There are various types of errors encountered in electronic devices, which can be mitigated
using semiconductor fabrication techniques or circuit design approaches at the software or
hardware level. The major sources of noise or errors are dealt with at the transistor/ana-
log design layer, e.g., charge sharing/leakage, power supply noise or aging mechanisms
like negative temperature bias instability (NBTI) or hot carrier injection (HCI), etc. An-
other specific category of errors is radiation-induced errors which are encountered in high
radiation particularly space environments. The common error-mitigation technique for
radiation-induced errors is redundancy. Redundancy, as the name implies, computes the
functional output via redundant blocks and compares them before providing a reliable
voted output. In this way, a possible error in either of the replicas can be mitigated. How-
ever, redundancy in a circuit can be implemented using different granularity levels and
voter-insertion algorithms. However, each of the redundant implementation differs in per-
formance factors of area consumption, latency, power dissipation and achieved reliability
level.
The space computing, nowadays, is largely dominated by the field-programmable gate
arrays (FPGA). FPGAs can perform various tasks during different phases of a mission
without the need for holding dedicated resources for each task. This, in turn, reduces the

1

Chapter 1.2 Contributions of the Thesis

carry-on hardware and weight of the satellite payload, while providing the feasibility to
shut-down circuit modules which are not in use to prevent excessive power dissipation.
Moreover, increase in on-board processing requirements on space missions, for various
image processing applications, go well with the highly parallel architecture of FPGAs [2].
Most importantly, FPGAs allow spacecraft designers to upload new configuration data
(or modify the hardware) after launch in case the mission requirements change or an
error is found in application/task design [3]. However, when FPGAs are exposed to space
environment consisting of high solar and cosmic radiation, involving high energy electrons,
alpha particles and heavy ions, errors in the form of logic reversals appear in the digital
circuit elements. These errors, which mainly consist of single event upsets (SEU), could be
as disastrous as causing a system level failure or as moderate as internally masked errors.
In general, high levels of redundancy, with big replication factors, cost large overheads
in performance factors. The traditional way of implementing redundancy in a hardware
design is to utilize a fixed redundant structure and bear a constant overhead in circuit
and system performance. However, the benefit of using FPGAs is that we can modify the
redundant structures at run-time due to the reconfigurability of FPGAs. Hence, a suitable
trade-off between reliability level and system performance can be maintained while the
system is in operation. The idea of the run-time modification of redundant structures
goes well with the FPGAs used in space computing since the radiation environment varies
during the orbital time span of the space mission. In a particular case study of radiation
pattern of a highly elliptical orbit, it has been shown that the redundancy requirement is
high only for a very small duration of circuit operation when the satellite passes the Van
Allen radiation belts [2]. Therefore, during lower levels of radiation, smaller redundancy
levels could be used and vice versa so that a suitable trade off between reliability and
performance can be maintained during mission time span.
The mechanism of adaptive reconfiguration of reliability has been proposed in various
research works in literature, however, the scope of these research works differ. In this
thesis, we propose our technique, named Dynamic Reliability Management (DRM). DRM
employs a decision mechanism which tells the system when to reconfigure for higher or
lower reliability levels. DRM is composed of two parts. At the design-time, several redun-
dant implementations of a circuit are analyzed for performance factors of area, latency,
power and achieved reliability. At run-time, ReconOS, which is an operating system for
reconfigurable logic cores, is utilized to switch among various redundant implementations
at run-time. The circuit design has the liberty to utilize any decision mechanism for
reconfiguration with ReconOS, i.e., external, time, cooperative or radiation/error rate
measurements.

1.2 Contributions of the Thesis

This thesis contributes by presenting a novel concept of Dynamic Reliability Management
(DRM). In order to realize this concept on both hardware and software, we have utilized,
extended and developed various tools. The resulting tools are organized as design-time
and run-time tool flows. We explain each of the contributions involving these tools as

2

follows.

• In order to generate various redundant implementations of a digital circuit design,
we have utilized BYU-LANL TMR tool. The tool, by default, supports only triple
modular redundancy (TMR) as the basic redundant implementation. However, we
require more configurations involving higher levels of redundancy and different voter
structures, to construct a larger design space for analyzing performance parameters
of redundant circuits. Therefore, we have modified this tool to generate three more
configurations, i.e., one-alternate-voter, two-alternate-voters and cascaded TMR,
extending the design space to 32 implementations based on overall four redundancy
configurations and eight voter-insertion algorithms.

• While the performance factors of area, latency and power could be evaluated by
standard FPGA softwares, there exists no standard tool for calculating magnitude
of reliability. Following the need for a generic tool based on FPGA based circuits,
we have developed a MATLAB based tool that takes input and error probabilities
of FPGA components and provides us the reliability of circuit outputs. Though the
original non-automated reliability model exists in literature, we have extended it in
two directions. Our tool not only helps us in evaluating redundant implementations
for reliability, it makes us analyze the impact of different orders of redundancy on the
circuit reliability. The most important contribution of this analysis is the definition
of a threshold point. The threshold point refers to the magnitude of component error-
probability after which redundancy serves no improvement in circuit reliability, in
fact, it degrades it.

• After extending the BYU tool and developing MATLAB reliability tool, we have
additionally used Xilinx synthesis, mapping, placement and routing and power an-
alyzer tools to generate DRM design-time tool flow. The tool flow takes FPGA
structural netlist as input and generates non-dominated redundant implementations
of a circuit based on performance parameters of area, latency, power and reliability.

• The run-time tool flow of DRM has been constructed using ReconOS operating sys-
tem involving a system-on chip platform on Xilinx ML605 evaluation board equipped
with Virtex 6 FPGA. The system-on-chip (SoC) platform supports DRM by utilizing
the non-dominated redundant implementations (stored in the external DRAM) and
developing decision mechanism in software or hardware.

• The partial reconfiguration feature of FPGAs has been extended with the paral-
lelism concept of hardware threads. This extended feature is required so that the
maximum size of the hardware partition, which needs to be fixed to a maximum im-
plementation size in order to exercise partial reconfiguration, can also be utilized by
parallel versions of the smaller implementation sizes. In this way, we can avoid the
non- or partial-utilization of large reconfigurable hardware partitions when utilized
by comparatively smaller hardware threads. Additionally, the parallelism strategy
provides us higher performance of hardware threads.

3

Chapter 1.3 Thesis Outline

• Both of the design-time and run-time tool flows have been verified by a number of
benchmark circuits. The experimentation in design-time tool flow makes us observe
the pattern by which the performance factors of the redundant circuit vary in the
placed and routed design. The run-time tool flow, while being verified by sorting
and matrix multiplication case studies shows that our proposed DRM technique can
provide up to seven and a half times higher performance when compared with static
reliability management techniques with fixed redundant structures.

• This research has so far resulted in four published international conference pub-
lications [4, 5, 6, 7], one published journal publication [8] while another journal
publication is under peer-review process of a respective journal.

1.3 Thesis Outline

The thesis is structured as follows:

Chapter 2 provides the background of fault-tolerance in FPGA based hardware designs
used in space computing. It starts by explaining the space environment and different
radiation scenarios. The radiation based errors are categorized in different types along
with their impacts. Afterwards, it provides the literature on approaches used in radiation
tolerant computing for FPGAs. Furthermore, a short overview of adaptive reliability
techniques are presented which work on the broad research line of FPGA based fault-
tolerance though differing from DRM in scope and implementation.

Chapter 3 explains the development of our reliability evaluation tool, i.e., Boolean Dif-
ference Error Calculator (BDEC) on the MATLAB software. Firstly, the conventional
BDEC model is explained. Afterwards, we explain the limitations of this model and the
extensions made to it in order to perform our simulations. The extended model is af-
terwards automated in MATLAB. This chapter presents the first experimentation of this
tool, i.e., parameter variation analysis of control parameters of the BDEC model.

Chapter 4 presents the tool flow of the design-time and run-time parts of DRM. This
chapter discusses the tools that we have utilized, extended and developed for the realization
of DRM on software and hardware platforms.

Chapter 5 provides the experiments that we have conducted on various benchmarks to
validate our DRM tool flow. The design-time tool flow is validated by analyzing area,
latency, power and reliability of six ISCAS benchmarks of different circuit architectures.
The run-time tool flow, on the other hand, has been validated by two practical case studies
on system-on-chip platform for DRM, which is implemented on Xilinx ML605 evaluation
board.

Chapter 6 concludes our research as well as explains our future research directions.

4

CHAPTER 2

Background and Related Work

The signal integrity of electronic devices, reaching nanometer dimensions, has become a
serious concern due to numerous device architecture issues, e.g., ground bounce, cross-
coupling, charge sharing/leakage, capacitive/inductive coupling, process variations, aging
mechanisms, etc [9, 10]. Additionally, ICs operating in space environment suffers from
radiation induced errors, being permanent or transient in nature. The understanding of
radiation environment is essential in designing reliable space electronic systems.

2.1 Space Radiation Environment

The radiation environment of the earth is composed of various kinds of radiation parti-
cles, with different ionizing strengths, and can lead to different effects in electronic devices.
They majorly include protons, electrons, heavy ions and electromagnetic radiation (pho-
tons). It is important to understand the radiation environment of the space or orbit in
which the electronic system is designed to operate, in order to take the reliability measures,
e.g., shielding or device-based fault-tolerance methods.

2.1.1 Earth’s Magnetosphere

The magnetic field surrounding the Earth is called as magnetosphere, depicted in Fig-
ure 2.1 [11]. The magnetic field of the earth would have been a dipole if it were not
affected by the solar wind coming from the sun. The influence of solar wind shapes the
Earth’s magnetic field with compressed magnetosheath (the part closer to the sun) and
lengthened magnetotail (the part furthest from the sun) [12]. The path of the satellite de-
termines which types of radiation the comprising electronic components could encounter.
The orbits closer to earth might experience only few low-energy particles since the magne-
tosphere blocks or attenuates most of the radiation particles. The higher orbits could not
only experience radiation particles from solar wind but also from deep space. Furthermore,

5

Chapter 2.1 Space Radiation Environment

Figure 2.1: Earth’s Magnetosphere [11]

the time and duration of the space mission should be considered too since the shape of
the Earth’s magnetosphere changes due to varying solar wind and radiation patterns.

2.1.2 Ionizing Space Radiation

The ionizing space radiation refers to the radiation particles having sufficient energy to
remove electrons from the orbits of atoms thus resulting in charged particles. They can
be classified into three domains.

Van Allen Radiation Belts

The earth is encircled by two radiation belts called as inner and outer Van Allen radiation
belts. These belts consist of trapped radiation particles; inner belt contains mainly protons
(10-100 MeV) while outer belt contains mainly electrons (up to 7 MeV) [13]. These
particles are trapped due to magnetospheric force but they keep on entering or ejecting this
force due to varying solar activity. In particular, the South Atlantic Anomaly (SAA) [12]
is the area where the Van Allen radiation belts penetrate closer to the earth than other
regions, hence poses more danger to the on-board electronics as well as a compromise on
the reliability of transferred data.

6

Cosmic Rays

These are the radiation particles which originate from the sun but exists outside our solar
system (Galactic). Though these particles have low flux and are much sparser than the
Van Allen belt particles, they have very high energy and are difficult to be shielded. They
mainly consists of protons and heavy ions.

Solar Particle Events

The sun has an 11 year cycle during which the solar activity greatly varies. During this
period, the sun ejects protons, electrons, heavy ions, etc. The strength and number of
these particles depends on the solar conditions, e.g., massive amounts of radiation during
solar maximum period or relatively very quiet during solar minimum period.

2.2 Effects of Radiation on Electronic Devices

The radiation particles affect the functionality of electronic devices including FPGAs.
Among the radiation particles encountered in space computing, protons (85% of the galac-
tic radiation) and heavy ions (highly energetic particles, up to GeV) are the major sources
of errors [12, 13]. In contrast, alpha particles (less penetrative) and gamma rays (lightly
ionizing) are no longer a big concern in reliable space computing. Generally, the effects of
radiation can be classified into two domains, cumulative and single event effects.

2.2.1 Cumulative Effects

The cumulative effects are the long-term destructive effects on a device and can be further
divided into two types.

Total Ionizing Dose

The amount of radiation that a device can absorb before its transistors begin to degrade
is called Total Ionizing Dose (TID) [14]. TID refers to the accumulation of charge in
transistor’s oxide region which causes an increase in current leakage and power dissipation
as well as changes in threshold voltage and timing performance of the device. TID is
measured in units of rad (radiation absorbed dose) where 1 rad is equal to 10nJ of energy
deposited per gram of material, typically Silicon. The radiation hardened FPGAs, are
rated by the total ionizing dose to show their immunity to radiation for space missions,
e.g., 1 Mrad for Xilinx space grade Virtex-5QV FPGA [15].

Displacement Damage

This phenomenon refers to the damage done to the device when incoming radiation par-
ticles displace atoms from their original lattice positions [12]. It often leads to a chain
displacement reaction, when one atom, when displaced, further displaces the neighboring

7

Chapter 2.2 Effects of Radiation on Electronic Devices

atoms unless not enough energy is left to cause further displacement. However, this is an
insignificant effect in SRAM based FPGAs.

2.2.2 Single Event Effects (SEE)

The single event effects (SEE) are the electrical disturbances caused by the ionization of
the Silicon lattice by the incident charged particle [16]. The minimum amount of charge
that a particle must deposit to change the state of a logic element is called as critical
charge, Qcrit, defined by Equation 2.1.

Qcrit = Cnode ∗ Vnode (2.1)

where Cnode is the capacitance between transistor nodes and Vnode is the transistor op-
erating voltage. With every new transistor technology, the operating transistor voltage
decreases as well as node capacitance due to its smaller size, thus decreasing the critical
charge needed to cause a functional error in a logic device [17]. SEEs are instantaneous
effects and classified into non-destructive and destructive types [9, 12, 13, 18].

Non-destuctive SEEs

These include single event upsets (SEU), single event transients (SET), single event func-
tional interrupts (SEFI) and multiple bit upsets (MBU).

• Single Event Upsets (SEU): These errors appear when a radiation particle hits
a storage element, e.g, a latch and deposits sufficient charge, i.e., critical charge,
to change the output state from 0 to 1 or vice versa. This is the most frequent
source of errors in digital circuits, hence our further work, including error-mitigation
techniques, will mainly focus on SEUs.

• Single Event Transients (SET): These are temporary logic level glitches in com-
binational elements of the circuit. They are typically non-effective unless the short
surge of the transient latches with the following memory element, where it behaves
like an SEU. With increasing clock speed of the logic circuits nowadays, the proba-
bility of latching up SETs is increasing too [12].

• Single Event Functional Interrupts (SEFI): These are errors appearing in cir-
cuit’s control logic, e.g., power-on/reset circuitry. Typically, when these critical bits
get upset, the FPGA must be re-configured via pulsing the PROG pin or cycling
power, thus causing the outage of FPGA operation for tens or hundreds of mil-
liseconds [19]. Typical SEFIs named during radiation testing of Xilinx Virtex-5QV
FPGA include power-on-reset (POR), SelectMAP (SMAP), frame address register
(FAR) and global signal SEFIs [19].

• Multiple Bit Upsets (MBU): A single particle can cause multiple bit SEUs
when the incident path is non-orthogonal to the device. A similar scenario happens
when an SET is latched into multiple registers, e.g., via select pin of a multiplexer.

8

Radiation testing of Xilinx FPGAs shows that each successive Virtex FPGA family
is more susceptible to MBUs than previous models [20, 21].

Destructive SEEs

These SEEs cause a permanent failure to the device in contrast to the temporary errors
in non-destructive category. They are divided into following three types.

• Single Event Latchup (SEL): This condition occurs when a radiation particle
causes a low-impedance path between power rails of the MOSFET, where the par-
asitic NPN/PNP transistors are put into positive feedback condition (PNPN). The
resulting runaway current damages the device.

• Single Event Burnout (SEB): Primarily caused by heavy ions, SEB occurs when
an ion passing through the device in its off state generates a plasma filament of
electron-hole pairs in its path. The runaway current generated in this path can
trigger a secondary breakdown in the parasitic transistor in the MOSFET.

• Single Event Gate Rupture (SEGR): This effect occurs when the path of the
heavy ion breaks down the gate oxide. This happens as the electrons in the gen-
erated electron-hole pairs diffuse faster than holes, whereby the accumulated holes
create a transient field which exceeds the breakdown voltage of the gate oxide. This
phenomenon is more probable with thin gate oxides.

2.3 Radiation-induced-error Mitigation Techniques

The conventional radiation/error-tolerant technique is shielding, usually of Aluminum
sheet/coating, that is good for absorbing low energy particles, up to 30 MeV. Though the
heavy ions were unstoppable in previous times too, the high transistor dimensions were
less vulnerable to radiation effects. Due to the shrinking of device dimensions and scaling
of power supply and threshold voltages, fault-tolerance measures in addition to shielding
is the requirement of time. The two major approaches to make digital circuits radiation
tolerant are via device and design.

2.3.1 Radiation Hardened by Device

The digital circuits can be made radiation hardened by using different fabrication/process
techniques for their transistors. This includes the prominent silicon-on-insulator (SOI)
technology [9]. Following Figure 2.2, we can see that the conventional CMOS technology
when used with silicon-on-insulator technique, i.e., an insulator on bulk silicon, the number
of generated electron-hole pairs and the ion trail length reduces. Hence, the runaway
current (or opposing electric fields causing dielectric breakdown) can be reduced. These
techniques can particularly increase the TID and lowers SEL effects though they are
expensive techniques especially for low-volume IC production. Therefore, while utilizing

9

Chapter 2.3 Radiation-induced-error Mitigation Techniques

Figure 2.2: Silicon-on-insulator technology [9]

the conventional fabrication process but utilizing architecture-based mitigation techniques
makes radiation hardening by design an alternative.

2.3.2 Radiation Hardened by Design

The architecture based fault-tolerance detects and corrects single event effects, whether
implemented in the software or hardware design. The conventional and popular techniques
that fall into this category are redundancy and error detection and correction (EDAC).
Though EDAC is mainly used for memory protection against SEEs; in this thesis, we will
focus on redundancy and its various implementations in hardware design.

Redundancy

As the name implies, redundancy refers to performing a computing task more than once
and compare the outputs of the redundant modules. The most popular form of redundancy
is triple modular redundancy (TMR) [22, 23, 24]. In principle, TMR instantiates three
copies of an identical circuit and places a voter module at the end to take a majority
decision for each output. This concept is illustrated in Fig 2.3(a). The TMR equation
for a single voter module is represented as Equation 2.2 where R1, R2 and R3 refer to
reliability of the three redundant modules respectively and Rvoter represents the reliability
of the voter itself.

Rout = Rvoter[R1R2 +R1R3 +R2R3 − 2R1R2R3] (2.2)

The problem with this architecture is the single point of failure, i.e., an error occurring
in the voter renders the TMR technique useless. To avoid the single point of failure,
the voter can also be triplicated in addition to the triplicated logic modules, as shown in
Figure 2.3(b), and the three outputs for each module are run in parallel unless the output
has to be merged, to communicate as a single output, via converging voters.
The optimal length of each branch after which a voter can be placed depends of the required
granularity level of redundancy. A coarse grained redundancy simply requires triplication
of whole circuit and places a single or triplicated voter at the end. A rather fine-grained

10

2.3.2. Radiation Hardened by Design

Redundant

Logica 1

Sample

Logica

Redundant

Logica 2

Sample

Logicb

Redundant

Logicb 1

Redundant

Logicb 2

Sample

Logicc

Redundant

Logicc 1

Redundant

Logicc 2

Voter Voter Voter Output

Redundant

Logica 1

Sample

Logica

Redundant

Logica 2

Sample

Logicb

Redundant

Logicb 1

Redundant

Logicb 2

Sample

Logicc

Redundant

Logicc 1

Redundant

Logicc 2

Voter Output 1

Voter

Voter

Output 2

Output 3

Voter

Voter

Voter

(a)

(b)

Voter

Voter

Voter

Figure 2.3: Triple modular redundancy with a) single voter b) triplicated voter

redundancy implies triplication of individual logic gates or blocks, e.g., adders or multipli-
ers. The trade-off of TMR reliability is the degradation of circuit’s performance factors,
i.e., area consumption, latency and power dissipation. The scaling factor of these perfor-
mance factors depend of the placement and routing of individual circuit elements/blocks
in a system design.

Variation in Voting Structures of TMR and Cascaded TMR

Besides the conventional single and triplicated voter configurations, there are configu-
rations proposed in [25] with single/double voters in the alternate stages as shown in
Figure 2.4. In contrast to the triplicated voter structure, it takes up to maximum two
and one extra voter stages to correct an error for one-alternate and two-alternate voter
configurations respectively. Using Monte Carlo simulations, the authors proved that these
alternate configurations are slightly less reliable than triplicated voter configuration though
they save the overhead of increased number of voters. Hence, in situations where the ra-
diation environment is not very strong and area consumption is an important issue, the
alternate configurations are highly useful. Additionally, there is a concept of Cascaded
TMR which results in more reliable configurations than TMR, though consuming more
area [26]. As an example, we illustrate level-1 CTMR as shown in Figure 2.5. It can be
noted that the CTMR configuration has a single point of failure as it is the extension of
TMR with a single voter. While CTMR can also be improved by using the triplicated voter
strategy, we assume that CTMR is always superior to TMR for the time being. Similarly,
the usage of NMR techniques or high levels of CTMR are possible though multiplying the

11

Chapter 2.4 Field-programmable Gate Arrays in Space Computing

Redundant

Logica 1

Sample

Logica

Redundant

Logica 2

Sample

Logicb

Redundant

Logicb 1

Redundant

Logicb 2

Sample

Logicc

Redundant

Logicc 1

Redundant

Logicc 2

Voter Output 1

Voter

Voter

Output 2

Output 3

Redundant

Logica 1

Sample

Logica

Redundant

Logica 2

Sample

Logicb

Redundant

Logicb 1

Redundant

Logicb 2

Sample

Logicc

Redundant

Logicc 1

Redundant

Logicc 2

Voter Output 1

Voter

Voter

Output 2

Output 3

Voter

Voter

Voter

(a)

(b)

Figure 2.4: Triple modular redundancy with a) one alternate voter b) two alternate voters

cost on the performance factors of area, latency and power. Overall and based on the
results presented in [24, 25, 26], we rate the reliability of the discussed configurations in
the following ascending order:

• SV: Single Voter ([24])

• OAV: One alternate voter ([25])

• TAV: Two alternate voters ([25])

• TV: Triplicated voter ([24])

• CTMR: Cascaded TMR- Level 1 ([26])

In this thesis, we will use these five redundancy configurations for experimentation and
comparison. However, there is no limit to the number of higher redundant configurations
when one uses N-modular redundancy or higher cascaded levels of CTMR.

2.4 Field-programmable Gate Arrays in Space Computing

Field-programmable Gate Arrays (FPGAs) are integrated circuits, whose logic blocks and
interconnects are configurable in contrast to the Application Specific Integrated Circuits
(ASICs) whose functionality is fixed to a particular task. FPGAs consist of a very large
number of configurable logic blocks (CLBs) containing a number of basic programmable

12

2.4.1. Radiation-tolerance in FPGAs

Redundant

Logic 1

Sample

Logic

Voter

Output

Redundant

Logic 2

Redundant

Logic 5
Redundant

Logic 3

Redundant

Logic 4

Redundant

Logic 8

Redundant

Logic 7
Redundant

Logic 6

VoterVoter

Voter

Figure 2.5: Cascaded triple modular redundancy- Level 1

components: flip-flops (FFs) and look-up tables (LUTs). These basic elements are con-
nected by a programmable interconnect network, which allows to configure a routing net-
work on a grid-layout and provides large flexibility in functional design modification on the
FPGA. The hardware design on FPGAs is done by hardware description languages, i.e.,
Verilog or VHDL. Today’s FPGA market is largely dominated by manufacturers Xilinx
and Altera.
Due to the run-time reconfigurable design feature of the FPGA, it is increasingly in de-
mand for spacecraft electronics. FPGAs can perform various tasks during different phases
of a mission without the need for holding dedicated hardware for each task. This, in turn,
reduces the carry-on hardware and weight of the satellite payload, while providing the
feasibility to shut-down circuit modules which are not in use to prevent excessive power
dissipation. Moreover, increase in on-board processing requirements on space missions for
various image processing applications go well with the highly parallel architecture of FP-
GAs [2]. Most importantly, FPGAs allow spacecraft designers to upload new configuration
data (or modify the hardware) after launch in case the mission requirements change or
an error is found in application/task design [3]. As examples, SRAM FPGAs have been
utilized in both earth orbits [27, 28, 29] as well as towards Mars [30].

2.4.1 Radiation-tolerance in FPGAs

Since the FPGAs are manufactured by the similar state-of-the-art fabrication technologies
as used in all electronics and ASICs, they are equally susceptible to radiation-induced
errors. Being in demand in space-computing, their radiation-tolerant design is important
as their operating environment is composed of highly energetic radiation particles. In
particular, these particles could appear as errors in different resources of an FPGA, e.g.,
SEUs in sequential logic (registers, memory blocks, DSPs) and configuration memory and
SETs in combinatorial logic (LUTs) and clock and global routing [18]. The configuration
memory is the most critical part of an FPGA which stores the bitstream representing the
functionality of an FPGA including LUT contents as well as routing network, and therefore
needs higher protection against radiation particles than other hardware blocks. It has been

13

Chapter 2.4 Field-programmable Gate Arrays in Space Computing

validated in radiation-tolerance studies for FPGA, for example in Rosetta experiment [31],
that the FPGAs are susceptible to radiation-induced errors, particularly at high altitudes.
Therefore, the FPGAs manufacturers, provide radiation-hardened solutions for FPGAs by
device as well as by design.
The commonly used FPGAs are SRAM-based. Although the high performance and re-
configuration flexibility are achievable only through SRAM based FPGAs, they are highly
susceptible to SEUs. Therefore, the FPGA manufacturers offer space-grade FPGAs with
different device technologies on the cost of lower performance compared to SRAM alter-
natives. They include the foremost Actel (currently known as Microsemi) RTAX Antifuse
FPGAs [32]. These devices are one-time programmable and the development of perma-
nent interconnections after configuration make them immune to SEUs. However, being
non-reprogrammable, they lose their charm for utilization in multiple design modification
scenarios. The second popular category consists of Flash-based FPGAs [33] which offer
full reconfiguration though lacks in partial reconfiguration [2]. Moreover, these devices
have typically lower TID rating than SRAM or Antifuse FPGAs [34]. Therefore, utilizing
the performance of SRAM FPGAs while having built-in radiation-tolerance features leads
to space-grade SRAM FPGAs, e.g., Xilinx Virtex 5QV [15], however, not all resources in
these FPGAs are radiation hardened, e.g., BRAM and DSP modules [35].
In contrast to inherent radiation-tolerance capabilities of FPGAs, fault-tolerant compu-
tation approaches in hardware and software are utilized as well. TMR [9, 24] and scrub-
bing [36, 37] are two most popular techniques for tolerating SEUs and avoiding their
accumulation in FPGA designs. TMR and its different voter implementations were dis-
cussed in Section 2.3.2. Scrubbing, on the other hand, involves refreshing the configuration
memory contents by reading its golden copy at regular time intervals, to prevent accumu-
lation of errors. Whether external or internal, scrubbing typically compares the calculated
cyclic redundancy check (CRC) value of each of the configuration bitstream frames to the
known CRC value of that frame [38] or rely on Hamming codes for single-error-correction-
double-error-detection (SECDED) error mitigation [39]. Its worth noting that the con-
figuration memory scrubbing do not account for errors in the user memory, i.e., BRAM,
which can be made error-resilient by separate BRAM scrubbing, error-correcting codes
(ECC) implementation or simply applying triple modular redundancy for each BRAM
block. The combination of redundancy and scrubbing is considered a widespread optimal
fault-tolerant solution in hardware. Additional approaches in literature include duplica-
tion with comparison (DWC) [40], error checking and correcting codes (ECAC) [41] and
algorithm-based fault-tolerance (ABFT) [42], as examples. However, in this paper, we
focus solely on redundancy and its different variations in hardware.
Hardware redundancy techniques for FPGAs are more involved than basic TMR with re-
spect to partitioning a circuit into submodules, deciding on how many voters to insert, and
where to place the voters in the FPGA design. Tools for automating redundancy-insertion
in FPGA designs are available, including the TMR tool of Xilinx [43], Precision Hi-Rel
software [44], and the BYU-LANL TMR tool [45]. Fault-tolerance mechanisms, particu-
larly modular redundancy, comes with an overhead in terms of excessive area consumption
as well as latency and power dissipation. Therefore, while providing fault-tolerance, the

14

2.4.1. Radiation-tolerance in FPGAs

 FPGA

Redundant

Logica 1

Input

Sample

Logica

T
rip

lic
a

te
d

 V
o

te
r

Redundant

Logica 2

Sample

Logicb

Redundant

Logicb 1

Redundant

Logicb 1

Sample

Logicc

Redundant

Logicc 1

Redundant

Logicc 2

T
rip

lic
a

te
d

 V
o

te
r

T
rip

lic
a

te
d

 V
o

te
r

Output

Figure 2.6: TMR implementation in FPGA

design of a mission critical system also has to limit these overheads to given constraints.
Generally, space-grade SRAM FPGAs have been used with redundancy and scrubbing fea-
tures to obtain a combination of radiation-hardening by device as well as by design [35, 46].

Triple Modular Redundancy in FPGAs

The TMR technique can be used in an FPGA by simply triplicating the inputs, outputs
and logic modules, inserting buffers and connecting the outputs of logic modules to the
triplicated voter [24]. There are some practical considerations due to which this straight-
forward implementation is not suitable. Firstly, TMR is able to counter one error among
the three redundant branches, and a larger length of each branch increases its probability
of being erroneous more than once. To deal with this issue, there is a need to break the
logic of the branch at regular intervals and place the triplicated voters in intermediate
stages of the circuit as shown in Figure 2.6. Thus, an error occurring in one partition of
the logic will not be forwarded to the next partition due to the error-mitigation effect of the
triplicated voter. However, the minimum size of the logic partition, or granularity level,
could be limited to a single component on an FPGA, e.g., a look-up table or a multiplexer.
In addition, there are certain locations on an FPGA called illegal-cut locations which
should not be triplicated due to the FPGA architecture, e.g., dedicated route connections
in a slice [47]. Moreover, voters should not be placed on high-speed carry chains in
order to not deteriorate the timing performance of the design. Most importantly, voters
should always be added in the feedback paths to avoid data corruption at the outputs
of sequential elements being forwarded into the feedback paths [24, 47]. These voters
are commonly denoted as synchronization voters. Figure 2.7 shows a fine-grained TMR
implementation than Figure 2.6 including combinational (inverter) and sequential (D-type
flip-flop) elements as well as depicting a triplicated synchronization voter. Part(a) of this
figure represents a state-machine of a simple 1-bit counter which is triplicated, in part(b),
and the voters are inserted before the feedback path to follow the synchronization voter
concept.
The process of automatic TMR insertion into a circuit design can be done by the automated
redundancy-insertion tools, as mentioned previously. However, in this research, we use

15

Chapter 2.4 Field-programmable Gate Arrays in Space Computing

Voter Output 1

Output 2

Output 3

Voter

(b)

Voter

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Clock

Output

Q

Q
SET

CLR

D

Clock

(a)

Figure 2.7: TMR implementation of one-bit counter [24]

BYU-LANL (BANL) tool for generation of redundant circuit netlists, as it is the only
open-source and modifiable tool compared to other commercial ones. The BANL tool is
able to triplicate the design, insert voters and use built-in algorithms to take care of the
constraints explained above. It is up to the discretion of the circuit designer to request the
desired redundancy configuration, e.g., TMR with only single voters or with a mixture of
single and triplicated voters. Moreover, there is a choice of eight algorithms that decide the
placement of voters in the triplicated design. These algorithms are termed voter-insertion
algorithms. Depending on the type of an algorithm, the sets of nets are determined
where the voters should be inserted, e.g., using feedback edge set (FES) algorithms or
decomposition of strongly connected components (SCCs) in the circuit graph [47]. The
details of the these algorithms can be found in [48]. The algorithms used in the BANL
tool and used in our experimentation are abbreviated as follows:

• CC: Connectivity cutset

• AFC: After flipflop cutset

• BFC: Before flipflop cutset

• BD: Basic decomposition

• HFC: Highest fanout cutset

• HFFC: Highest flipflop fanout cutset

• HFFIC: Highest flipflop fanin input cutset

16

• HFFOC: Highest flipflop fanin output cutset

Originally, the BANL tool supported only SV and TV configurations while we extended
the tool to support the rest of the three configurations, i.e., OAV, TAV and CTMR,
as explained in Section 2.3.2. It has to be noted that all configurations have to resort
to single voters for illegal-cut locations. This happens as the three redundant branches
have to converge to one where the single voter provides the required convergence at the
redundancy-forbidden locations. Therefore, the configuration TV which is the default
configuration of the BANL tool as well as OAV, TAV and CTMR combines their re-
spective configurations with single voter structures. However, we are not using sole SV
configuration for experimentation due to its single point of failure limitation.

2.5 The Need for Adaptive Fault-tolerance in FPGAs

Following different redundancy structures in Section 2.3.2, we learned that by going to-
wards higher levels of redundancy, the hardware usage increases. This in turn increases
the area consumption, latency and power dissipation. Moreover, as briefly discussed in
Section 2.1, the radiation strength of the space environment is fluctuating, and depends
on the path of the space mission. Therefore, there is a need to develop an adaptive sys-
tem that monitors the radiation strength and varies the redundancy levels accordingly at
run-time thereby optimizing the trade-off between reliability and performance in a best
possible way. An extended design approach to this idea is to vary the reliability/redun-
dancy levels of individual hardware modules in a system according to their criticality or
available resources on the FPGA. This concept is illustrated in Figure 2.8, where each
of the n hardware modules have m possible redundancy configurations rated by different
performance factors.

2.5.1 Correlating Apative Fault-tolerance with Varying-radiation
Environments

In this section, based on the literature, we provide 4 distinct radiation scenarios to explain
how the radiation strength varies along the path of a space mission, and hence discuss how

m- possible redundancy
configurations

M
odule 1

M
odule 2

M
odule 3

M
odule 4

………………

M
odule
N

-1

M
odule N

Figure 2.8: The Concept of Adaptive Redundancy

17

Chapter 2.5 The Need for Adaptive Fault-tolerance in FPGAs

0

100

200

300

400

500

600

700

800

900

0 20,000 40,000 60,000 80,000 100,000

G
ei

ge
r C

ou
nt

s P
er

 M
in

ut
e

Altitude (ft)

Geiger Counter Data (Borealis Flight- 7/23/2013)

Figure 2.9: Borealis radiation strike-rate profile

varying reliability/redundancy levels fit into such radiation patterns. The first scenario is
referenced with height, second and third with respect to time and fourth with solar condi-
tions. The radiation strikes per minute and the soft error-rate are considered proportional
measures of radiation strength, however, not all the radiation particles appear as errors in
the hardware due to the their low ionizing energy or masking effects.

Borealis Flight

In a hot air balloon testing conducted at University of Montana [49], a custom radiation
sensor was built and sent to a high altitude of around 100,000 feet with the time duration
of 103 minutes (one-way). The experiment was aimed at observing the total number of
particles hitting the sensor in a high energy flux environment, up to 10 MeV. The sensor
logged the radiation strikes per minute, detected by a Geiger counter that captures most
of the low and high energy particles. Figure 2.9 shows the variation of the recorded radi-
ation strike rate with altitude. This figure reports on an extended experimentation of [49]
called as Borealis flight1. It is evident from this experiment that the radiation strikes
increase sharply with altitude. To implement adaptive fault-tolerance in this scenario, one
can divide the radiation data into number of regions equal to the redundancy levels/con-
figurations at hand while utilizing higher redundant structures for high radiation regions.
In this case, the more redundancy levels we have at hand, the better a system would be
able to exploit the trade-off between reliability and performance. It is also worth noting
that the sensor captured two radiation data points at approximately 30,000 feet which are
uncorrelated to the trend. This emphasizes the need for a system which is able to adapt
the reliability level in order to respond to unexpected deviations from an observed trend.

1The data has been obtained via private communication with the authors in [49].

18

2.5.1. Correlating Apative Fault-tolerance with Varying-radiation Environments

Figure 2.10: Expected fault-rate of LEO [2]

Low-Earth-Orbit Case Study

In the research work presented in [2], a fault-rate model is presented and used to simulate
the expected error-rate for a path in low-earth orbit (LEO) with the two-line element
(TLE) of EO-1 satellite. This orbit is typically used for Earth-observing science applica-
tions. The error-rate is presented in the unit of faults per device day which is useful to
represent the cumulative error-rate when a number of devices/FPGAs are monitored in
parallel. The orbital track of LEO case study has a mean travel time of 98 minutes due
to which we see the repetition of fault pattern, in Figure 2.10, with maximum fault-rates
estimated at the Earth’s magnetic poles. The fault rate in this orbit is not excessive as the
orbit has an altitude of 700 km which is below the Van Allen radiation belts and completely
within the Earth’s magnetosphere. It can be observed from the figure that there are ap-
proximately three discrete radiation/fault-rate levels, hence three reconfigurable reliability
levels would be sufficient.

Highly-Elliptical Orbit Case Study

Referring to the research work in [2], an additional case study for expected fault-rate was
conducted for an elliptical orbit of perigee 1100 km and apogee 39000 km with a mean
travel time of 12 hours. The path is called Molniya orbit and used for the communication
satellites in particular. Compared to the LEO case study, the fault-rate is very high
especially when the satellite passes the Van Allen radiation belts. As can be seen in the
radiation plot of Figure 2.11, the fault rate gets high at the end of the time period when it
passes the Van Allen radiation belts. Most of the orbit duration has negligible fault-rate
as compared to a short duration of excessive fault-rate at the end of the time period. For
such a fault-rate profile, we can expect two reliability levels to be sufficient where the
higher reliability level is required only for a very short duration.

19

Chapter 2.5 The Need for Adaptive Fault-tolerance in FPGAs

Figure 2.11: Expected fault-rate of HEO [2]

Anticipated Error-Rate for Different Solar Conditions

In the research work conducted in [28], an expected error-rate for another LEO was an-
ticipated for seven different solar conditions as shown in Figure 2.12. While the names of
the solar conditions are replaced with numeric numbers in the figure for simplicity; their
details can be found in [28]. The graph shows the minimum fault-rate of 0.5 SEUs per
device day in solar condition No. 2 and maximum fault-rate of 26 SEUs per device day for
solar condition No. 3. The graph can be divided into two regions according to SEU-rate.
The first region (solar conditions No. 1, 2, 5, 6 and 7) can be used with low redundancy
while second region (solar conditions No. 3 and 4) can be used with high redundancy
structures.

Solar Conditions

SE
U
s
pe
rd
ev
ic
e-
da
y

1.00E-01

1.00E+00

1.00E+01

1.00E+02

1 2 3 4 5 6 7

Figure 2.12: Expected fault-rate of LEO orbit under different solar conditions [28]

20

2.6 Reliability Evaluation of FPGA Designs for Space Computing

The reliability of the FPGA based hardware designs for space applications can be com-
puted by developing methods following the knowledge of space environment and device
vulnerability. The different resources of an FPGA, e.g., configuration memory, BRAM,
DSP components, etc should be modeled for reliability separately since each of theses
resources respond differently to radiation. Additionally, the redundant structures can be
evaluated for reliability-enhancement by developing fault-rate models. The traditional way
of modeling reliability of electronic systems is to describe the time until the system fails
by a random variable. Using an exponential distribution for the time between failures,
assuming independent failures, and a constant fault-rate λ we can determine a system’s
time-dependent reliability R(t) as defined by Equation 2.3.

R(t) = e−λt (2.3)

Assuming a constant fault-rate is reasonable if we exclude the burn-in and wear-out phases
of systems. Thus, based on an estimated or measured fault-rate, R(t) can be calculated
and expresses the probability that a system survives, i.e., is without fault, from its start
at time 0 until time t. The reciprocal of λ is denoted as mean-time to failure (MTTF)
or mean-time between failures (MTBF) in case of systems that can be repaired. MTTF
and MTBF are widely used as reliability metrics. Though many research works follow this
generic reliability equation, they differ in how they determine the fault-rate λ. In literature,
two methods of reliability/fault-rate computation for FPGAs are used in addition to error-
injection based simulations and radiation testing methods.

2.6.1 CREME96 based Reliability Computation

Vaderbilt University’s online tool CREME96 [50] is specifically used to compute fault-
rate of devices used in aerospace missions. The tool takes as input parameters defining
a space orbit, weather conditions and fault cross-section of a device and hence computes
the fault-rate/SEU-rate of the device in units faults per device-day [12].

Device Characterization

The initial step is to characterize the device that is to be used in space orbit. For this
purpose, the device’s upset rate is calculated via experimental testing in particle acceler-
ator. Afterwards, the FPGA’s static cross-section is determined by calculating the upsets
caused in the device for a given fluence of radiation, as shown in Equation 2.4.

σ =
Number of errors

fluence (particles/cm2)
(2.4)

The static cross-section refers to the FPGA’s vulnerable area to radiation particles at a
specific energy. Therefore, the experimental testing is repeated for a range of energy levels
including both proton and heavy ions to compute the overall static SEU cross-section.

21

Chapter 2.6 Reliability Evaluation of FPGA Designs for Space Computing

Path/Orbit Specification

CREME96 uses data from previous satellite orbits to predict an average flux of particles in
certain orbits under different solar conditions. Therefore, while choosing orbit conditions
and parameters, the specific solar condition has to be selected as well. Solar Minimum
and Solar Maximum refers to the lowest and highest averaged flux during the solar activity
of 11 year solar cycle, respectively. The worst week, worst day and worst 5 minute peak
solar conditions refers to the specific solar event of October 1989, and used for worst case
estimates. Additionally, peak trapped proton solar condition refers to the worst proton flux
for all proton energies for both solar minimum and maximum portions of solar cycle.

SEU Rate Prediction

Therefore, utilizing the device SEU cross-section, choosing a solar condition and by pro-
viding specific parameters of space orbit, the SEU rate due to heavy ions and protons are
computed separately and hence averaged. The basic fault-rate model of this tool whether
used in its original form or modified for specific system designs can be found in research
works of [2, 3, 46]. However, the impact of redundancy can be modeled by Markov fault
model [2] or classical TMR equation [46].

2.6.2 Probabilistic Computational Reliability Models

Another category of reliability computation is via probabilistic computational models that
take as input error probabilities of individual components and compute the output error
probability εout of the overall system by propagating error probabilities from inputs to
outputs. A number of publications relate the output error probability to the system’s
reliability according to R = (1 − εout), the most popular works being [51, 52, 53, 54].
It is important to note that this notion of reliability and the underlying notion of a
system’s output error probability are instantaneous and hence timeless. The related work,
however, does not detail how to determine the exact component error probabilities and
uses arbitrarily set values. Hence, the probabilistic computational models are in contrast
to the time-dependent reliability measure of Equation 2.3, and the fault-rate method in
CREME96 that simulates real device and orbit features and targets mainly radiation
induced errors. A brief overview of the major probabilistic computational models along
with their complexity is provided as follows.
An accurate and powerful model in error probability calculation is the probabilistic transfer
matrices model (PTM) [51], though it is an extremely complex and time-intensive method
when used for large circuits. For large circuits, the number and size of matrices become
huge which needs a lot of storage memory and computation time for calculating regular
and tensor matrix products. The major concern is the modelling of a wire swap as a
single PTM stage. In FPGAs where wire swaps are based on the placed and routed design
by FPGA design softwares, e.g., Xilinx ISE, the reliability differs from one routed design
to another. Moreover, the numerous wire swaps in large circuits drastically increase the
number of matrix calculations, which is why this approach is unfeasible for modelling large

22

2.6.2. Probabilistic Computational Reliability Models

circuits. Algebraic decision diagrams (ADD) have been used to improve the storage and
timing performance of PTM method though it is still a non-promising solution for large
circuits. An error-analysis for sequential circuits based on PTM is proposed in [55] though
the application is considered for a simple adder only.
A major research work in error-modelling has been proposed with the probabilistic gate
model (PGM) [52] and the Bayesian networks error modelling [53]. The basic algorithm
of PGM is easy to model though the accurate model has a high complexity particularly to
evaluate reliability of large circuits. Therefore, a midway solution called modular approach
is proposed for large circuits though no details of a toolbox implementation or assumptions
considered are presented. Moreover, sequential circuits are not supported. Similarly,
Bayesian networks are used efficiently for analyzing small circuits; however approximate
techniques are proposed for large circuits due to complexity of the model. Additionally,
the results of Bayesian model are highly incomparable to PTM and other popular error
probabilistic schemes [56].
Probabilistic decision diagrams (PDD) [57] provide a model scalable for analysis of large
circuits by decomposing the circuit based node graph and thus achieving timing efficiency.
However, its worst-case complexity is still exponential in the number of inputs of the cir-
cuit. Probabilistic model checking [58] is another approach measuring circuit reliability
but on the cost of excessive memory requirement and timing complexity. The memory
requirement problem was addressed successfully in [26] though high runtimes are still a
problem. A hybrid approach combining exact and probabilistic models to evaluate relia-
bility is proposed in [59]. This scheme lowers the complexity of the analysis, however the
timing results are not reported. The analysis is performed on small circuits excluding se-
quential elements though it is a good approach to harden error-sensitive gates in the circuit
by upsizing them. Observability-based and single-pass reliability analysis [60] claims to
be an extremely fast and scalable approach particularly compared to PTM and Bayesian
techniques though the work lacks detailed results and comparisons. A strong focus is given
on using observability analysis to improve reliability by manipulating reconvergent fanout
while avoiding redundancy-insertion.
A simple and fast approach known as Boolean difference error calculator (BDEC) is pro-
posed in [54, 61]. This technique is independent of the wire swapping, involves simple
Boolean calculus and is perfectly analytic which makes it accurate for calculating relia-
bilities for circuits of any size. Moreover, its complexity is linear in the number of inputs
of the circuit. Since the model is applicable to any logic element represented in a form
of Boolean equation, it is perfect to use with FPGA based netlists. The authenticity of
this approach has been proved by the comparison of results of this scheme with Monte
Carlo simulations performed in [54]. A close insight into BDEC can be found in the next
chapter where we utilized and modified this technique to calculate reliability values of
non-redundant and redundant versions of utilized benchmarks.
The drawback of using these probabilistic methods is that they do not take into account
the impact of redundancy. While redundant configurations of a circuit are known to
be more reliable than non-redundant version, these methods provide us even lesser re-
liability of redundant circuits since they take each component as erroneous and bigger

23

Chapter 2.6 Reliability Evaluation of FPGA Designs for Space Computing

size of a redundant circuit automatically means lower output reliability. The premier
solution for this interpretation problem will be provided in Section 3.1.2 where the prob-
abilistic theory is merged with the conventional TMR theory [22, 23] to distinguish the
reliability-enhancement component in the circuit, i.e., voter from the rest of error-prone
components [6].

2.6.3 Fault-injection and Testing-based Reliability Models

A typical way of experimentally checking FPGA reliability is via fault injection into the
FPGA bitstream [62]. Since the SEUs can be modeled as bit flips in storage elements, we
can revert the bit at the register output and see its effect on the behavior or functionality of
the circuit. The bitstream formats of FPGAs are proprietary, which turns the identification
of the exact bit locations in the bitstream that need to be flipped to execute a specific
fault in the desired circuit element, into a tedious re-engineering job. Therefore, random
fault injection is normally exercised using Monte Carlo techniques [25]. Since an FPGA
bitstream contains only a small fraction of critical bits, i.e., the bits that cause an error
when affected by an SEU, most of the SEUs do not affect the circuit’s functionality.
Together with the restricted time for simulation this leads to a limited coverage.
The FPGA manufacturers, e.g., Xilinx and Altera, have their custom testing methods
and models that provide reliability measures. They typically report reliability in the FIT
(failures-in-time) metric, which defines the number of errors in one billion operation hours
of a device [63]. The failure rate can be determined for Xilinx devices by Equation 2.5.

Failure Rate =
x2109

2(D)(H)(A)
(2.5)

where D, H and A refer to number of devices, number of hours and acceleration factor
respectively. x2 refers to the Chi-squared value at desired confidence level and (2f +2)
degrees of freedom, where f is the number of failures. The acceleration factor is calculated
using Equation 2.6.

Acceleration Factor = exp (
Ea
k
.(

1

TJ1
− 1

TJ2
)) (2.6)

where Ea is the thermal activation energy, k is the Boltzman’s constant and TJ1 and TJ2

are the use junction and stress junction temperatures respectively. The Xilinx results show
the calculated failure rates for various process technology nodes [63, 64, 65]. Addition-
ally, the radiation affects are modeled by the SEU device rates measured by accelerated
beam testing and real-time atmospheric testing, particularly for configuration memory
and BRAM. Moreover, various other failure-rate measurements are conducted by Xilinx
and reported in their device reliability reports, though not only radiation induced errors
but also high temperature, humidity and stress tests.

24

2.7 Major Research Works in Adaptive Fault-tolerance

In this section, we briefly discuss related projects, presented in literature, that follow the
concept of adaptive fault-tolerance. All have in common a concept for a self-adaptive
reconfiguration mechanism for reliability using FPGAs, with focus on radiation-induced
errors. Though the adaptive reconfiguration can be used for avoiding hot-spots on FPGA
during multicore computation too [66], it is out of scope for this thesis. Additionally, re-
search works [67, 68, 69, 70, 71, 72] focus on the SEE mitigation techniques for FPGAs too
but are not discussed in this section since they do not follow the adaptive reconfiguration
narrative.

2.7.1 Reconfiguration for Reliability (R4R)

The authors in [73] present a very detailed approach for an adaptive system denoted
as reconfiguration for reliability (R4R). The R4R framework proposes an initial circuit
analysis to estimate the cost of different versions of a circuit implementation including the
default design and more reliable, i.e., hardened, solutions. In the next step, design space
exploration is performed including floorplanning to optimize the placement of hardened
solutions on the FPGA. The hardened solutions are based on TMR at the system and
component levels including the design obtained by the commercial Xilinx TMR tool. The
solutions are then Pareto-optimized on the basis of area utilization and reconfiguration
time. It is also stressed that different portions of the circuit design can be treated for
varying levels of fault-tolerance depending on their criticality.
While this research work describes the initial analysis and design space exploration steps
in detail, it stays abstract due to following reasons. R4R is seen as a broad framework for
having an intelligent system, exploring different redundant hardware designs, though no
implementation of such a system is proposed with run-time support. Moreover, the cost
parameters do not consider other important factors, e.g., maximum clock frequency of the
circuit and power dissipation of different hardened designs. Additionally, the authors do
not discuss concepts for decision mechanisms for the online reconfiguration. Overall, this
paper provides the basic knowledge and motivation for adaptive fault-tolerance with short
case studies and can be taken as a foundation for further research in this field.

2.7.2 Reconfigurable Fault-tolerance (RFT)

The concept of reconfigurable fault tolerance (RFT) is provided in [2]. This work tar-
gets space applications and simulates processing components’ availability based on DWC,
TMR, ABFT and high-performance (HP) fault-tolerance mechanisms. The switching
among different fault-tolerance approaches is supported by architecture-level changes through
varying partially-reconfigurable fault-tolerance regions. The RFT hardware architecture,
as a system-on-chip design with RFT controller is shown in Figure 2.13. The number
of partially reconfigurable regions (PRR) utilized depends on the selected fault-tolerance
approach, i.e., 3 PRRs for TMR, 2 PRRs for DWC and single PRR for HP, ABFT or in-
ternal TMR. The main architectural components consist of a microprocessor (Microblaze),

25

Chapter 2.7 Major Research Works in Adaptive Fault-tolerance

Figure 2.13: System-on-chip design with RFT controller [2]

processor local bus (PLB), memory controller, I/O ports and RFT controller (responsible
for routing signals from PLB to PRRs). All architectural components are protected by
TMR since their reliability dictates the system reliability.
Using this SoC approach, the authors use two case studies about low and high earth orbits
to represent the radiation strength variation in atmosphere, which is useful for taking
appropriate reconfiguration decisions. The fault-rate models in this research utilized the
existing orbital fault models characterizing the space orbits using CREME96 tool. It has
been successfully concluded from the experiments that different fault-tolerance approaches
can be useful in different radiation environments, as shown in varying radiation example
plots in Figures 2.10 and 2.11. Moreover, it has been clarified how high scrubbing rates can
improve system performance. However, the authors neither compare the overheads due
to area, latency and power for different fault-tolerance approaches, nor do they consider a
design space exploration of different redundant designs. Additionally, RFT focuses on the
classical, system-level TMR approach while more efficient component-based redundancy
approaches are available.

2.7.3 Reconfiguration via Spare Resources Method

A custom radiation sensor measuring radiation strikes has been built and proposed for
adaptive fault-tolerance in [3]. This research employs a radiation sensor whose measured
radiation strikes are considered proportional to the errors appearing in the system. The
basic principle of detecting a particle-hit is to detect the short surge of current that

26

2.7.4. BRAM Fault-Detection based Adaptive Reconfiguration

is generated by the collection of induced holes and electrons, by the incident radiation
particle, on two sides of the sensor. This system is also able to figure out the particular
error-hit area and uses partial reconfiguration to mitigate this error. The specialized GUI
used for this system consequently shows the particle-hit area and whether it has been
affected by an SEU or SEFI.
In addition to TMR and scrubbing, this system even utilizes spare redundant blocks in
the event of error-detection. The idea is inspired by the fact that handing over compu-
tation to a spare computation block is less time-intensive than reconfiguring the partially
reconfigurable area to higher redundancy or scrubbing it. When all the spare computation
blocks are exhausted, the computation starts from the initial block while reconfiguring all
the blocks. The authors verify their approach and show that the combination of redun-
dancy plus scrubbing plus spare resources technique improves the MTBF. However, this
technique comes with the increased cost of holding extra resources for a single computa-
tion task. In satellite missions where cost is dominated by weight, latency and power of
resources, such a system is indeed fault-tolerant but probably not cost-effective.

2.7.4 BRAM Fault-Detection based Adaptive Reconfiguration

The authors in [46] utilize the integrated block RAMs on the FPGA to monitor the error-
rate, which is considered proportional to the radiation strength to which an FPGA is
exposed at run-time. Figure 2.14 shows the FPGA based system consisting of BRAM
sensor and adaptive subsystems. By checking the parity bits of the BRAM scrubber,
the number of BRAM upsets are recorded in the fault memory and accessed by the fault
management unit (FMU) to direct the reconfiguration control unit (RCU). The RCU then
controls the adaptive subsystem by loading the partial bitstreams via ICAP from the
external memory to implement one of three operation modes, i.e., no redundancy, DMR
(dual modular redundancy) and TMR. The no-redundancy mode utilizes all the three
partially reconfigurable regions to run the system at the maximum throughput.
The integrated BRAM Fault Detectors (BFD), in this system, implement radiation sensors
at virtually no cost because the memory is still available for applications. However, the
paper does not consider that the BRAM radiation sensor might not only detect SEEs due
to radiation, but also faults introduced by other effects like supply voltage instabilities
and aging/permanent faults. Additionally, the error counter registers are not protected.
If an SEU hits an error counter, this might lead to a wrong error count. The reliability of
the voter is not considered as well.

2.8 Chapter Conclusion

This chapter provides a background on the fault-tolerant computing for FPGAs used in
high radiation space environments. As a starting point, we have described the radiation
particles in space environment that appear as errors in FPGA based hardware designs.
These errors, range from temporary effects, e.g., single event upsets and transients to
permanent ones, e.g., total ionizing doze. Afterwards, we have explained two approaches

27

Chapter 2.8 Chapter Conclusion

Figure 2.14: An FPGA-based SEU mitigation system with BRAM sensor and adaptive
subsystems [46]

to harden the FPGA devices to these errors, i.e., by using device-based or design-based
fault-tolerance. The device approach is expensive in terms of developing a separate semi-
conductor fabrication process. On the other hand, design-based hardening uses the same
device fabrication processes though utilizing the circuit design hardening techniques, the
most popular being redundancy. By referring to different redundancy configurations,
voter-insertion algorithms and replication factors, we have shown how redundancy can be
implemented in FPGA devices resulting in a number of possible structures. Additionally,
we have pointed out that the trade-off of the increased reliability comes in the form of de-
graded circuit performance factors, i.e., area consumption, latency and power dissipation.
Therefore, we have highlighted the need for realizing and maintaining a suitable trade-off
between reliability and performance that fulfills the system design constraints.
By presenting various radiation pattern case studies, we have concluded that the strength
of radiation greatly varies during the time span of a space mission or satellite. There-
fore, there is a need to optimize the reliability-performance trade-off at run-time on the
basis of predicted/calculated radiation/error rate data. We have summarized this mecha-

28

nism as adaptive fault-tolerance in this chapter. Afterwards, we have provided the three
broad categories of fault-tolerance in FPGA hardware, from the literature, i.e., CREME96
tool based reliability computation, probabilistic models and error-injection/testing based
mechanisms. Moreover, we have discussed four research works in literature that focus the
broad concept of adaptive fault-tolerance and show how the implementation and scope of
each of these techniques differs from each other.

29

CHAPTER 3

Reliability Computation of Redundant Structures

This chapter focuses on computing and contrasting reliability of different redundant im-
plementations of a hardware design. In Section 2.6, we have seen that three common
reliability computation methods exist which, whether used in original form or with mod-
ification of their default fault-models, provide us the magnitude of circuit’s reliability.
However, before using each of these methods, we need to analyze them for their particular
application domain. Prior to this analysis, we summarize the applicability of each of the
three reliability computation methods as follows.

• CREME96 tool is the standard software that computes the circuit’s reliability for
aerospace applications with reference to a particular orbit and weather conditions.
The fault model for computing reliability of redundant structures, using CREME96,
was proposed in [2, 46]. The reliability, as measured by this software is typically in
the form of single-event-upset (SEU) rate.

• The probabilistic computation schemes work on the static input error probabilities
that must be provided to the simulation setup if one wants to utilize this approach.
Therefore, these schemes can be utilized for comparing different circuit structures
without having the exact knowledge of real-time component error probabilities, i.e.,
by using arbitrary or closely estimated values. Since the output reliability of a circuit
depend on the flow of error-probability from primary inputs towards outputs, it can
comprehend the exact difference in reliability among different redundant structures
as every component in the circuit will have an impact on the overall computed relia-
bility. This technique is particularly useful for comparing redundant configurations
of a circuit which vary in small number of components, e.g., single, triplicated or al-
ternate voters, as shown in Section 2.3.2. However, to make these models work with
redundant structures, they need to be extended so that the redundancy effect can
be comprehended differently than the error-prone effect of individual logic modules
of the circuit.

31

Chapter 3.1 Boolean Difference Error Calculator

• The third reliability computation method is fault-injection and hardware testing.
The fault-injection whether done by injecting errors into bitstream or during hard-
ware design, is extremely time-consuming since the number of fault combinations are
huge and simulating each of the error scenarios is usually impractical. The hardware
testing, on the other hand, works by implementing various redundant configurations
on FPGA and check the accuracy of outputs under a radiation environment, e.g.,
in a particle accelerator. The testing technique is, in particular, hard to use for
comparing redundant structures which vary in slightly different structures, e.g., al-
ternate voter configurations. The reliability of this method could be measured as an
SEU rate or as a percentage of time for an error-free computation.

The choice of a specific reliability model depends on the need of the circuit/system de-
signer. For a practical aerospace application, the CREME96 software should be employed
to gain realistic reliability values. Testing and simulation-based methods are mostly use-
ful to provide a level of confidence in commercial products. The probabilistic techniques,
whether used with actual or arbitrary input error probability values, excel at comparing
different redundant circuit configurations. We have decided to base our work on proba-
bilistic computational reliability schemes due to the following reasons:

• The mathematical models of these schemes are mature and have been thoroughly
analyzed in literature [6].

• The probabilistic schemes are able to comprehend very small differences in reliability
among slightly different redundant structures.

Among the probabilistic computation schemes, we decided to use the Boolean difference
error calculator (BDEC) method based on the analysis and merits/de-merits of various
computation schemes explained in Section 2.6.2. The basic BDEC model was not ready
to use with redundant circuits’ reliability computation due to certain limitations and non-
availability of an automated tool based on this method. In the following section, we will
describe in detail, the theory of BDEC model, its limitations and our extensions to this
model.

3.1 Boolean Difference Error Calculator

The Boolean difference error propagation model when applied to a logic element, repre-
sented in the form of Boolean equation, takes signal and error probabilities of inputs along
with the error probability of the logic element, i.e., n-input logic gate, and computes the
error probability of the output. This concept is illustrated in Figure 3.1 by a BDEC model
of a faulty logic element with Boolean equation f . The signal probability, i.e., pn, refers
to the probability of a signal being at logic 1. εn and εg refers to input and gate error
probabilities respectively. The details of this model can be found in [54, 61], however to
highlight the fundamental concept, we provide the mathematical implementation of this
model by using a 2-input AND gate as an example. The generic equation for the output

32

f, ԑg

p1, ԑ1

p2, ԑ2

pn, ԑn

 ԑz

Figure 3.1: BDEC model of faulty logic element [54]

error probability, i.e., εz, of an n-input logic gate is represented in Equation 3.1:

εz = εg + (1− 2εg)εin (3.1)

For a 2-input logic gate, the total input error εin is computed via Equation 3.2:

εin = ε1(1− ε2)Pr{ ∂f
∂x1
}+ ε2(1− ε1)Pr{ ∂f

∂x2
}+ ε1ε2Pr{

∆f

∆(x1x2)
} (3.2)

where xi represents the corresponding input of the logic gate. The first and the second
terms of the equation model the error in the first and the second inputs respectively,
while the final term represents the simultaneous error in the two inputs. ∂f

∂xi
and ∆f

∆(x1x2)
represent partial and full Boolean derivatives of the logic function respectively. The signal
probability function Pr{.} returns the probability of its Boolean argument to be ‘1’. As
an example, the computation of signal probability functions containing partial and full
derivatives for a 2-input AND gate (f = x1x2) is shown in Equations 3.3, 3.4 and 3.5
though the details on computation of partial and full derivatives is found in [54].

Pr{ ∂f
∂x1
} = Pr{x2} = p2 (3.3)

Pr{ ∂f
∂x2
} = Pr{x1} = p1 (3.4)

Pr{ ∆f

∆(x1x2)
} = Pr{x1 x2 + x1x2}

= (1− p1)(1− p2) + p1p2

= 1− (p1 + p2) + 2p1p2

(3.5)

By combining Equations 3.3, 3.4 and 3.5 with 3.1 and 3.2, we obtain the total input error
and output error probability of 2-input AND gate in Equations 3.6 and 3.7 respectively.

εin = ε1(1− ε2)p2 + ε2(1− ε1)p1 + ε1ε2(1− (p1 + p2) + 2p1p2) (3.6)

εAND2 = εg + (1− 2εg)(ε1p2 + ε2p1 + ε1ε2(1− 2(p1 + p2) + 2p1p2)) (3.7)

33

Chapter 3.1 Boolean Difference Error Calculator

Therefore, starting from a Boolean equation and while using Boolean difference calculus,
we obtain an algebraic equation of output error probability of an n-input logic gate. Like-
wise, we can calculate the generic equations of all n-input gates used and utilize them for
different logic functions; which accounts for the simplicity of BDEC implementation. Since
not all the errors which appear in a circuit propagate to the final outputs; this masking
effect of errors is identified in the model by the pn values used in conjunction with the
Boolean equation of the logic element.

3.1.1 Limitations of the BDEC Model

The BDEC model has the following limitations due to which its default version cannot be
used to compute reliability of redundant circuits.

BDEC v/s TMR Model of Voter

The BDEC model treats every circuit component as erroneous and accumulates the error
effect of each component in the output reliability as the error probability flows from inputs
to outputs. Redundancy adds extra components to the default circuit where these extra
components will be treated as erroneous by the BDEC theory as well. Hence, a redundant
circuit, when evaluated for reliability by BDEC provides even lower output reliability as
the non-redundant one. It can be noted that BDEC model is timeless and accounts for
the reliability computation at an instantaneous time value.
On the other hand, the reliability of redundant systems is traditionally evaluated by classic
TMR model [22, 23]. Equation 3.8 describes the reliability of a TMR system with a single
voter module, based on the binomial theorem. Using this equation we compute the output
reliability Rout of a voter as a function of the modules’ reliabilities R1, R2 and R3 and the
voter reliability Rvoter. Contrasting the input parameters with BDEC, TMR model does
not take pn values into account. Moreoever, the TMR model does not discuss or support
the notion of error-probability (ε). The reliabilities in this model are time-dependent,
however, we present here an instantaneous time snapshot of this model to align with
BDEC model. Figure 3.2 shows the difference between the the BDEC and TMR models
of the voter element.

Rout = Rvoter[R1R2 +R1R3 +R2R3 − 2R1R2R3] (3.8)

The reliability evaluation by these two theories differ for the voter component only which
serve as the basis for redundant systems. The TMR model, which holds a non-linear rela-
tionship of output with input reliabilities, has the capability of improving output reliability
provided that the input and voter reliabilities stay lower than certain bounds, which will
be proved in Subsection 3.3.4. The BDEC model, in contrast to TMR model, treats input
reliabilities as mutually independent, and does not have the capability to interpret the re-
dundant behaviour. Additionally, redundant systems have not been evaluated by BDEC
or any other probabilistic reliability evaluation scheme in the literature. The difference
between BDEC and TMR reliabilities for five input reliability combinations are shown in

34

3.1.1. Limitations of the BDEC Model

BDEC Voter

ƐVoter
Ɛ3 , p3

Ɛ2 , p2

Ɛ1 , p1

Ɛout

Rn =1-Ɛn

TMR Voter

Rvoter
R3

R2

R1

Rout

(a) (b)

Figure 3.2: BDEC v/s TMR model of voter

Rvoter R1 R2 R3 Rout- BDEC Rout- TMR

99% 95% 95% 95% 92.0% 98.3%

99% 99% 98% 97% 96.1% 98.9%

99% 99% 90% 70% 80.5% 95.7%

99% 95% 90% 85% 85.6% 96.4%

95% 95% 95% 95% 88.6% 94.3%

Table 3.1: BDEC v/s TMR Reliability of Voter

Table 3.1. It can be seen that BDEC model, due to its non-interpretation of redundant
behaviour always result in lower reliability than the TMR model. However, the TMR
model is highly dependent on the voter reliability and the output reliability falls rapidly
with the decreasing input reliabilities.

Reliability Computation of Sequential Circuits

The BDEC theory as well as other probabilistic computation techniques are limited to
analysis of combinational circuits only. It has been claimed in the related research works
that these techniques, including BDEC, can be used for sequential components by com-
puting error probability for multiple iterations. However, to the best of our knowledge,
the literature does not provide any results.

Reliability Evaluation Tool

The literature on BDEC model provides the analysis of only combinational circuits which
are small and limited in size. Without the automation of the mathematical model, the
BDEC model cannot be used for the analysis of large circuits which comprise of both
combinational and sequential elements. Therefore, an automation of the BDEC model is
required in the form of a tool to make the analysis of large circuits possible.

35

Chapter 3.1 Boolean Difference Error Calculator

3.1.2 Extensions to the BDEC Model

To address the limitations in BDEC model, as explained in the previous section, we ex-
tended its conventional model in two ways followed by the automation of the revised
BDEC model. Firstly, our revised model is able to treat redundant portions of the circuit
according to classical TMR theory instead of faulty BDEC elements. Secondly, the model
supports sequential circuit analysis by iteratively calculating reliability of sequential ele-
ments in feedback. Finally, the revised model is automated so the circuits of any size can
be evaluated for reliability by only providing the circuit netlist as input to the automated
BDEC tool.

Interpretation of Redundant Behaviour

The default BDEC model, as shown in the previous section, is not capable of evaluating
reliability of redundant circuits. In other words, the reliability of voter elements, calculated
by the BDEC model, are not correct. Therefore, we need to use TMR model to calculate
reliability of voters. Hence a merger of BDEC and TMR model is exercised to interpret
the redudant behaviour of circits. Based on the naming conventions of components in the
circuit netlist we can easily distinguish the voters from other components and evaluate
them for reliability via the classical TMR theory; all other components are evaluated by
the BDEC model. Figure 3.3 illustrates this concept on a TMR subsystem. The three
redundant circuit modules are evaluated in the BDEC domain, which results in reliabilities
R1 = 1 − ε1, R2 = 1 − ε2, and R3 = 1 − ε3. The voter elements, on the other hand, are
evaluated by the TMR equation 3.8. The swapping between the two domains continues

Combinational/

Sequential Logic

Combinational/

Sequential Logic

Combinational/

Sequential Logic

Voter

Voter

Voter

BDEC Domain
Classical TMR

Domain

(1 - Ɛ1) = R1 (1 - Rout) = Ɛout

(1 - Ɛ2) = R2

(1 - Ɛ3) = R3 (1 - Rout) = Ɛout

(1 - Rout) = Ɛout

Figure 3.3: Error probabilistic domains of BDEC and TMR

36

3.1.2. Extensions to the BDEC Model

Voter

ƐVoter

Voter

ƐVoter

Voter

ƐVoter

BDEC Domain
Classical TMR

Domain

Ɛint , Rint Rout

Ɛint , Rint

Ɛint , Rint

3-Input AND

ƐANDƐ3 , p3

Ɛ2 , p2

Ɛ1 , p1

3-Input AND

ƐANDƐ3 , p3

Ɛ2 , p2

Ɛ1 , p1

3-Input AND

ƐANDƐ3 , p3

Ɛ2 , p2

Ɛ1 , p1

Rout

Rout

Figure 3.4: A redundant 3-input AND gate

unless the final output stage is reached.
The merger of the BDEC and instantaneous-time TMR model results in a combined
timeless model with no notion of failure rate. Therefore, one must not use Rout to com-
pute the probability of the system being error-free after a certain time period. In the
combined model, the overall error propagation behaviour of the circuit is now differ-
ent from the conventional BDEC in that the cumulative error does not always increase
as we move forward from inputs to outputs. Instead, there exist voter elements which
improve the reliability of the circuit at various stages inside the circuit structure. To
illustrate this concept, we present an example of a 3-input AND gate as the combina-
tional logic and calculate the reliability of its voted output, according to BDEC-only
model and the combined BDEC-TMR model. The example circuit is shown in Figure 3.4
where εint and Rint represent the intermediate values of gate error probability and reli-
ability respectively. This 3-input AND gate, for reference, is realized as a 3-input LUT
in this example. The input error-probabilites of three inputs of the AND gate are as-
sumed to be 1%, i.e., ε1 = ε2 = ε3 = 0.01. The pn values are assumed to be 50%, i.e.,
p1 = p2 = p3 = 0.5 whereas the gate error probabilities of AND gate and voter are taken
1%, i.e., εAND = εV oter = 0.01. The BDEC domain calculation results in εint = 0.0173
and Rint = 98.3%. Finally, the BDEC-only model results in output reliability (Rout) of
96.5% whereas the BDEC-TMR model results in 98.9%. Compared to the intermediate re-
liability value, we can see that the combined model, in contrast to the BDEC-only model,
is able to comprehend the voter concept by improving the output reliability. Therefore,
it can also be concluded that the existence of more voters and redundant stages improve
the overall circuit reliability.

37

Chapter 3.2 Automation of the BDEC Model

Supporting Sequential Behaviour of Circuits

The original BDEC model supports only combinational circuits. We have extended BDEC
to cover also sequential circuits in this work. To calculate the reliability of a sequential
circuit, we have applied the loop-breaking and time-frame expansion technique for feedback
paths as used in analysis of sequential circuits in [74, 75, 76]. The basic idea behind
the time-frame expansion of a sequential circuit is to the represent it as time-referenced
combinational portions connected in series mode. Loop breaking refers to breaking the
feedback path in a sequential circuit and treating it as primary input in the first portion
of series circuit. For the succeeding portions of the circuit, the output from the previous
portion serves as input. To implement this concept in the error computation algorithm of
BDEC, we initialize the error of the feedback paths with the same error probability values
as we use for primary inputs of the circuit. Afterwards, we let the algorithm update the
error of the feedback paths by propagating it through the circuit elements in feedback.
The obvious inference from the BDEC model is that the error will keep on increasing
with each iteration, giving us the impression that the feedback path error will eventually
approach to 1, i.e., 100%. However, it has been shown in [75] that for some components,
the error converges to a high output reliability value after many clock cycles whereas it
drops to dangerously low reliability values at other nodes in the circuit. In contrast, our
revised BDEC model improves the reliability when the signal is passed through redundant
portions in a circuit. Therefore, even at the nodes where the reliability drops at the
outputs of sequential elements, we can use redundancy at the feedback paths to make the
reliability converge to high values or make it oscillate between bounds. For this reason, it
is always suggested to insert the voters in the feedback paths to avoid the propagation of
errors in the feedback. In this thesis, we update the feedback error once. In future work,
we intend to observe the behaviour of updating the feedback error by propagating the
error for multiple iterations and check whether it converges to any fixed value or oscillates
between bounds, and try to include results from current research in modeling reliability
of sequential elements [77].

3.2 Automation of the BDEC Model

The default model of BDEC is extended with redundant circuits and sequential behaviour
analysis as explained in the last section. For simplicity, we will continue to call the revised
model as BDEC. Afterwards, the model will be automated in a form of MATLAB tool that
can calculate reliability of a circuit of any size on the provision of input error probabilities.
Note that since we have used the Xilinx FPGAs, we will refer to the softwares and netlist
formats of Xilinx FPGAs only.

3.2.1 Inputs to the BDEC Tool

The BDEC tool has to be provided with the FPGA component netlist as well as control
parameters, i.e., input and signal probabilities of BDEC model. In FPGA based circuits,

38

3.2.2. Programming Mathematical Model of BDEC

a component (or gate) refers to all resources of an FPGA, e.g., lookup table (LUT),
multiplexers (MUX), random access memory (RAM) blocks, etc.

FPGA Component Netlist

The BDEC model works by flow of probability from inputs to outputs of circuits repre-
sented in the form of logic components. However, the FPGA circuits are designed using
behavioral HDL coding, i.e., via Verilog or VHDL. The synthesis software of the FPGA
translates the behavioral description to the specific resources of the FPGA utilized to
develop the hardware. The resource description file is called as .ngc netlist which is the
Xilinx propriety netlist format. The .ngc netlist is converted to .edf format and later to
structural Verilog format using Xilinx ngc2edif and netgen tools respectively. The struc-
tural netlist describes each of the component via names of its instance, inputs, outputs and
instantiation string (if the component is a LUT). Hence, each component in this netlist
could be analyzed separately.

Input Error and Signal Probabilities

The input error probabilities (εi) of only primary components are provided to the tool since
input error probabilities of following components are equal to the output error probabilities
of their preceding components. The gate or component error probability (εg) is transistor
technology-dependent parameter and is common to all the components. The voter error
probability (εvoter) is taken equal to the gate error probability assuming similar device
characteristics of voters compared to other components. The signal probability (pi) of
each component refers to the percentage of time (clock cycles) in which its output stays
at logic 1. pi has to be provided for each component in the netlist.

3.2.2 Programming Mathematical Model of BDEC

The BDEC tool calculates reliability of a single logic component in five stages programmed
into MATLAB.

1. Formulate the Boolean equation: The Boolean equations of generic FPGA
resources are known in advance, e.g., 2x1 multiplexer, and can be provided as hard
inputs to the tool. The flipflops are treated as buffers. The remaining category of
LUTs need more computation. The Boolean equations of LUTs can be generated by
reading their instantiation strings and formulating their Boolean equations as sum
of minterms. The bigger, custom and composite blocks in FPGA, e.g., DSP blocks
are out of scope in this research.

2. Compute the Partial and Full Derivatives: The partial and full derivatives are
computed according to the equations defined by Boolean difference calculus in [54].
The generic equations of each type of resource has to be hard-coded in the tool. As
the number of inputs of the component increases, the number of derivatives that need
to be evaluated increases, e.g., a 6-input LUT has 6 partial and 57 full derivatives.

39

Chapter 3.2 Automation of the BDEC Model

Therefore, a library of all derivatives of each type of component has be developed
for rapid calculation of component reliabilities.

3. Compute the Signal Probability Functions: The signal probability functions
convert the Boolean variable equations into corresponding equations dependent on
signal probabilities. Therefore, the signal derivatives formulated in the previous step
are evaluated by substitution of the the Boolean equation and signal probability
values (pi) of each input of the component.

4. Calculate Total Input Error: The total input error, as demonstrated in Equa-
tion 3.6 is computed by utilizing the derivatives evaluated in the previous step and
the input error probabilities.

5. Calculate Total Output Error Probability: The total output error probabil-
ity of each component is evaluated by Equation 3.1 and the overall output error
probability is calculated by averaging the error probabilities of all outputs of the
circuit.

These programming steps can be enumerated by using the 2-input AND gate example,
reproduced from the beginning of Section 3.1.

Step 1:
f = x1x2 (3.9)

Step 2:
∂f

∂x1
= x2 (3.10)

∂f

∂x2
= x1 (3.11)

∆f

∆(x1x2)
= x1 x2 + x1x2 (3.12)

Step 3:

Pr{ ∂f
∂x1
} = p2 (3.13)

Pr{ ∂f
∂x2
} = p1 (3.14)

Pr{ ∆f

∆(x1x2)
} = (1− p1)(1− p2) + p1p2 = 1− (p1 + p2) + 2p1p2 (3.15)

Step 4:

εin = ε1(1− ε2)Pr{ ∂f
∂x1
}+ ε2(1− ε1)Pr{ ∂f

∂x2
}+ ε1ε2Pr{

∆f

∆(x1x2)
} (3.16)

εin = ε1(1− ε2)p2 + ε2(1− ε1)p1 + ε1ε2(1− (p1 + p2) + 2p1p2) (3.17)

40

3.2.3. BDEC Reliability Computation Algorithm

Step 5:
εAND2 = εg + (1− 2εg)εin (3.18)

εAND2 = εg + (1− 2εg)(ε1p2 + ε2p1 + ε1ε2(1− 2(p1 + p2) + 2p1p2)) (3.19)

The formulation of error probability equation has been further explained by three more
examples in Appendix A.

3.2.3 BDEC Reliability Computation Algorithm

In this section, we describe the tool flow of the revised BDEC model implemented in
MATLAB and represented as a flow diagram in Figure 3.5. The error propagation in this
model is sequential, i.e., the error propagates from the primary inputs and passes through
each element in the circuit unless it reaches the final outputs of the design. The input of
the tool, i.e., Verilog structural netlist is interpreted in MATLAB as a simple text file. For
analyzing this netlist, we use basic text-reading functions of MATLAB and use arrays and
cells to store information about each of the component. The algorithm starts by splitting
the used FPGA components into arrays according to different resource types, e.g., LUT3,
RAM16x1, etc. Afterwards, we initialize the input and gate error probabilities. If the
circuit contains any sequential elements, we treat the feedback paths as primary inputs
and initialize their error probabilities in the same way as inputs. The inputs of all the
components which are not connected by primary inputs are treated as wires. A general
wire array holds the error and signal probabilities of each wire in the circuit design.
The algorithm is composed of multiple nested loops. The outermost loop checks if all the
wires have their error probability values calculated or not. If it finds an unprocessed wire,
i.e., an unprocessed component, it sequentially picks up a resource type array and parse
it unless it finds a component whose output error probability has not been evaluated.
In order to calculate the reliability of any circuit component, all of its input error and
signal probabilities should be available which can be checked by the wire entry in wire
array. If one or more of the input error or signal probabilities of this component are not
available, then the component is left pending to be processed later. Upon availability of
all the input requirements for error computation, the Boolean equation of this component
is formulated. The Boolean equation is later used to calculate partial and full derivatives
for this component and finally the output error probability, as explained by the steps in
Section 3.2.2. This output error is updated in wire array and this component will not be
processed again unless the resource-type is a flipflop whose output error probability will
be updated once more. When the array for each resource type is wholly parsed, the next
resource-type array is parsed similarly.
Once all the resource type arrays are parsed, the algorithm checks whether all the wires
in the wire array have their error probabilities updated or not. Otherwise, the algorithm
keeps running. This phenomenon is due to sequential error-propagation of this model
where one component in a resource-type could be attached to the primary inputs while
another element of the same resource-type could be connected to the circuit outputs.

41

Chapter 3.2 Automation of the BDEC Model

Circuit HDL

Netlist

Segragation

of FPGA

Resources

All the Wire

Error-Probabilites

Calculated?

Compute Error-

Probabilities of

Output Buffers

Pick one FPGA Resource

Type Sequentially

Generate its Boolean

Function, Partial and Full

Derivatives and Compute its

Output Error Probability

Update its Error

Probability in the

Wire Array

All the FPGA

Resource Type Arrays

Processed?

 Conpute the Average

Output Error Probability

and Reliability

Initialize Primary Inputs‘ and Gate Error

Probabilities

Initialize Feedback Path-Error Probabilities

Yes

Locate the Component in this

Resource Type Array whose

Output Error Probability is yet to

be Determined

All the

Components in this

Resource Type Array

Processed?

Yes

No

No

Yes

No

Are all the Input

Error and Signal Prob-

abilities Available?

Yes

No

Figure 3.5: BDEC reliability computation algorithm

42

Finally, we calculate the output error probabilities of output buffers whose inputs are
wires as well. Hence, the error probability of each output is computed and the result is
averaged. The reliability is calculated by subtracting the average output error probability
from unity.
The timing analysis of this algorithm shows that the time taken by the condition-check
loops, e.g., whether a specific wire has its error probability updated or not is extremely
fast in MATLAB. The time taken by the BDEC model is the real concern which highly
increases with the number of large input components, e.g., 5- and 6-input LUTs. The
total computation time of the algorithm varies from few seconds to few days depending on
the circuit size though complexity of BDEC algorithm is still lower than major reliability
evaluation techniques discussed in Section 2.6.2.

3.3 Parameter Variability Analysis

The output reliability of circuits with their default and redundant versions can be com-
puted with the MATLAB tool we developed in this research. Before utilizing this tool, we
perform a variability analysis of the control parameters of the BDEC model, i.e., gate er-
ror probability (εg), input error probability (εi), voter error probability (εvoter) and signal
probability (pi) to observe the variation in output reliability. This analysis is absent in the
literature due to unavailability of an automated tool. However, since each control parame-
ter experiment requires computing reliability of a circuit for its multiple values, the overall
experiment is extremely time-consuming when performed for large circuits. Therefore, we
have chosen a basic combinational circuit, i.e., c17 from ISCAS85 benchmarks suite.
For each parameter variation experiment, we fix the other three variables. Unless oth-
erwise stated, the default values of εg, εi and εvoter used are 5%, i.e., 0.05 and pi at
50%, i.e., 0.5. Following the single parameter analysis, we observe the joint affect of εg
and εi on the output reliability. To check the variation of output reliability with redun-
dancy insertion, we have used three circuit implementations, i.e., no-redundancy (NR),
triple modular redundancy (TMR) and cascaded TMR (CTMR). The redundant imple-
mentations of benchmarks are generated from the BYU-LANL TMR tool [45]. Note that
the BYU-LANL tool supports conversion of target HDL design to TMR equivalent only
though we enhanced its capability to generate a cascaded TMR (CTMR) version of the
circuit as well. The details of the enhanced BYU-LANL TMR toolflow can be found in
Section 4.1.1. Note that in a practical radiation-based scenario, the error probabilities of
gate, input and voter lie in a very small region, typically less than 1%, but in our analysis
we vary these probabilities to 100% to see the possible effects of extreme error-rate on
the output reliability. Moreover, high variations of error probability helps us to find the
threshold point after which the redundancy offers no benefit on reliability.

3.3.1 Variation of Gate-Error Probability εg

Figure 3.6 shows the variation of output reliability with gate error probability variation
from 0-100% keeping other parameters at default setting. The general observation is that

43

Chapter 3.3 Parameter Variability Analysis

the reliability decreases sharply with the gate error increasing from 0 to 20%. From 20-
80% the decrease in reliability is almost only 15% while it again starts a sharp decrease
afterwards. To check the redundancy affect, it is clear that CTMR remains most reliable
up to gate error probability of 80% after which high redundancy has a reverse affect. This
gate error probability value is named as threshold point, with respect to εg. The maxi-
mum difference in reliability from non-redundant to maximum redundancy, i.e., CTMR,
is found to be around 10%. From 20-80% variation of εg, the reliability-difference among
non-redundant and redundant implementations decreases though it increases in the reverse
direction after 80% which proves that redundancy has an adverse affect in extreme radi-
ation environments. Note that difference in reliability among redundant implementations
is highly dependent on the circuit structure and the number of nodes in a circuit which
are made redundant. In our case, we use the default redundancy decisions taken by the
BYU-LANL tool though this variation can be increased by forced redundancy insertion
and usage of different voter-insertion algorithms [47].

3.3.2 Variation of Input Error-Probability εi

Variation in output reliability by changing input error probability is shown in Figure 3.7.
Compared to the εg plot, the decrease in output reliability is less sharp though the thresh-
old point after which redundancy has an adverse affect on reliability approaches earlier.
The maximum positive affect due to redundancy is again around 10%. Moreover, after
the threshold point, the negative effect of redundant configurations is high which calls

O
u

tp
u

t
R

e
li

a
b

il
it

y
 (

R
o

u
t)

Gate Error Probability (εg)

Figure 3.6: Variation of output reliability of c17 benchmark with gate error probability
(εg)

44

3.3.3. Variation of Signal Probability pi

for having as low input error as possible. Hence, a high input error is more severe to be
handled by redundancy as compared to the case when individual circuit components are
erroneous or have high εg.

3.3.3 Variation of Signal Probability pi

Following Figure 3.8, this is the least vulnerable parameter affecting the circuit output
reliability as the total variation of reliability for a single circuit implementation is less
than 1%. The maximum reliability, however is obtained for pi to be at 60%, i.e., for
probability of each wire being at logic 1 at 60%. Note that though we have assumed a
50% signal probability values for all nodes, as practiced in previous research works [54, 61],
this strategy does not wholly represent a real simulation scenario. In reality, the signal
probability of every node/wire in a circuit can only be recorded by simulating the circuit
with a testbench. Due to numerous nodes in large circuits, the signal probability of each
node can be measured only via developing another automated tool that interprets the
testbench simulation file, i.e., value change dump (VCD), which is an ASCII propriety
format of Xilinx. The development of this additional MATLAB module is subject to our
future work due to complexity and time needed for its formation.

3.3.4 Variation of Voter Error-Probability εvoter

Voter error probability is the most vulnerable parameter of the variability analysis. As
can be seen from Figure 3.9, the reliability of the circuit drops sharply with voter error

O
u

tp
u

t
R

e
li

a
b

il
it

y
 (

R
o

u
t)

Input Error Probability (εi)

Figure 3.7: Variation of output reliability of c17 benchmark with input error probability
(εi)

45

Chapter 3.3 Parameter Variability Analysis

O
u

tp
u

t
R

e
li

a
b

il
it

y
 (

R
o

u
t)

Signal Probability (pi)

Figure 3.8: Variation of output reliability of c17 benchmark with signal probability (pi)

probability exceeding 10%. The redundancy plays an opposite role with higher orders
of redundancy being more disastrous as they have multiple stages of voters. Therefore,
its highly recommended to have more reliable voters than other circuit components in
particular. Using the concept of differential reliability, we can selectively use higher power
supply and threshold voltages for voters which is more tricky to be done on FPGAs than
ASICs.

3.3.5 Joint Variation of Input and Gate Error-Probabilities

Figure 3.10 shows the joint effect of gate error and input error on the output reliability.
The variation is observed for NR, TMR and CTMR implementations of the c17 benchmark
separately. It can be observed that the graphs are symmetric, i.e., the output reliability
tends to increase when εg and εi simultaneously approach either 0% or 100%. This is due
to the masking effect of gate error on input error and vice versa. Comparing the three
implementations, reliability of 80% or higher is achieved for joint variation of εg and εi
in approximately 0-10% or 90-100% intervals where these intervals increase in span for
higher orders of redundancy. Similarly, the output reliability variation of 60-80% lasts for
a longer duration for high redundancy levels. Therefore, the mid-level output reliability
range of 40-60% decreases with increase in redundancy. On the contrary, the reliability
decreases when one of the parameters approaches 0% error and the other towards 100%
where the masking effect of these parameters on each other is minimal. Moreover, the low
reliability region, i.e., 20-40%, also increases for higher redundancy levels.

46

O
u

tp
u

t
R

e
li

a
b

il
it

y
 (

R
o

u
t)

Voter Error Probability (εvoter)

Figure 3.9: Variation of output reliability of c17 benchmark with voter error probability,
εvoter

3.4 Chapter Conclusion

In this chapter, we have analyzed different reliability computation methods according
to their application domain. Based on the analysis, we have chosen Boolean difference
error calculation method (BDEC) to analyze, evaluate and compare different redundant
structures implemented on the FPGA. However, we have found that the default BDEC
model lacks in two domains, i.e., interpreting the redundant circuit behavior and analysis
of sequential circuits. Therefore, we have extended this model in these two directions. The
revised BDEC model is then automated in the form of a MATLAB tool that is able to
compute reliability of any FPGA based circuit available in the form of structural netlist.
Using this tool, we have performed a variability analysis of output reliability based on
the error probabilities of logic components, inputs and voters in addition to the signal
probabilities of the wires and inputs. We have learned from this analysis that the voter
error-probability is the most vulnerable parameter that could affect the output reliability.
We have also concluded that the benefit of redundancy could be achieved up to only a
certain limit of error probability, after which the higher redundancy levels result in decrease
in circuit’s reliability. The transition point of this redundancy-impact behavior is termed
as threshold point in this research. Though the variability analysis in this chapter has
been limited to a single benchmark circuit, in Section 5.3, we compare the threshold point
variation for a complex sequential circuit as well.

47

Chapter 3.4 Chapter Conclusion

Gate Error

Probability (εg) Input Error

Probability (εi)

Output Reliability

(Rout)

0.8 – 1.0

0.6 – 0.8

0.4 – 0.6

0.2 – 0.4

0.8 – 1.0

0.6 – 0.8

0.4 – 0.6

0.2 – 0.4

0.8 – 1.0

0.6 – 0.8

0.4 – 0.6

0.2 – 0.4

(a)

(b)

(c)

Output Reliability

(Rout)

Output Reliability

(Rout)

Gate Error

Probability (εg)

Gate Error

Probability (εg)

Input Error

Probability (εi)

Input Error

Probability (εi)

Figure 3.10: Variation of output reliability of c17 benchmark with input and gate error
probabilities for (a) NR (b) TMR and (c) CTMR circuit implementations

48

CHAPTER 4

Dynamic Reliability Management

In this chapter, we present our novel technique of Dynamic Reliability Management
(DRM). DRM is based on the adaptive fault-tolerance concept explained in Section 2.5.
Revisiting this concept, adaptive fault-tolerance refers to the reconfiguration of FPGA
hardware based on the reliability requirements and thus optimizing the trade-off between
performance and reliability of an application at run-time. The major research works fol-
lowing the concept of adaptive fault-tolerance are discussed in Section 2.7. In contrast to
other adaptive fault-tolerance schemes, DRM considers more performance parameters and
is completely a self-adaptive approach. The structure of DRM is composed of two parts,
i.e., design-time and run-time.

4.1 DRM Design-Time Circuit Analysis

We have learned in Section 2.3.2 that there are multiple variations of redundant archi-
tecture of a hardware design, where each implementation differs in performance factors
of area, latency and power as well as the achieved reliability. Since the reliability of an
implementation increases on the cost of additional area, latency and power consumption,
this trade-off needs to be analyzed before utilizing a specific redundant implementation.
The design-time tool flow of DRM focuses on analyzing this trade-off for four redundancy
configurations (discussed in Section 2.5.1) and additionally the default non-redundant
hardware design, as abbreviated below.

• NR: No redundancy

• OAV: One alternate voter

• TAV: Two alternate voters

• TV: Triplicated voter

49

Chapter 4.1 DRM Design-Time Circuit Analysis

• CTMR: Cascaded TMR- Level 1

Furthermore, we have discussed eight voter-insertion algorithms in Section 2.4.1 that we
are going to utilize in the design-time analysis of DRM. They are abbreviated as follows.

• CC: Connectivity cutset

• AFC: After flipflop cutset

• BFC: Before flipflop cutset

• BD: Basic decomposition

• HFC: Highest fanout cutset

• HFFC: Highest flipflop fanout cutset

• HFFIC: Highest flipflop fanin input cutset

• HFFOC: Highest flipflop fanin output cutset

Hence, our design-time analysis consist of 32 redundant implementations of a hardware
design based on four redundancy configurations and eight voter-insertion algorithms. Each
of the implementation is rated by the area (slice usage), latency (max. clock frequency),
dynamic power consumption and reliability. The resulting design space is Pareto-optimized
on the basis of four factors described above. Before presenting our merged tool flow,
we give a brief overview on the BANL TMR tool which is used to generate redundant
implementations of the target HDL design.

4.1.1 BYU-LANL TMR Tool

The BYU-LANL (BANL) TMR tool converts a hardware design, in an EDIF format, to
two redundant implementations, i.e., duplication with comparison (DWC) [40] and triple
modular redundancy (TMR) [9]. There are multiple options with this tool that gives the
freedom to user for implementing error detectors, make individual components redundant
or use partial redundancy [78]. We briefly describe the functionality of BANL tool flow
including the optional sub-tools for additional functionalities mentioned above.

JEdifBuild

JEdifBuild creates merged netlists in a .jedif file format from multiple .edf files. This
tool, by default, also flattens the design, performs shift-register LUT (SRL) replacement
and half-latch removal. The .jedif file format is an intermediate file format used by the
following replication tools.

50

4.1.1. BYU-LANL TMR Tool

JEdifAnalyze

JEdifAnalyze performs basic circuit analysis necessary for subsequent executables. In
particular, it performs feedback and IOB analysis. The results of JEdifAnalyze are saved
in a circuit description file (.cdesc) required by the following tools.

JEdifNMRSelection

JEdifNMRSelection determines which parts of a design will be replicated. This executable
can be run in multiple passes to select different parts of a design for different kinds of
replication. Each run of JEdifNMRSelectionn can select portions of a design for a sin-
gle replication type, i.e., duplication or triplication. Design portions can be selected for
replication based on available space or specific cell types, instances, ports, and clock do-
mains specified by the user. The results of JEdifNMRSelection are saved in a replication
description (.rdesc) file.

JEdifVoterSelection

JEdifVoterSelection determines the locations where voters will be inserted into a triplicated
design. Voter locations are determined using a choice of eight voter-insertion algorithms.
The results are added into the replication description (.rdesc) file.

JEdifNMR

JEdifNMR performs the replication selected by previously run tools. Information about
what to replicate and where to insert voters/detectors is obtained from the replication
description (.rdesc) file created by the previous steps.

JEdifMoreFrequentVoting (Optional)

JEdifMoreFrequentVoting inserts extra voters for more frequent voting within a design
based on a logic levels threshold or a total number of desired partitions.

JEdifDetectionSelection (Optional)

JEdifDetectionSelection determines error detector locations for both triplicated and du-
plicated design portions using user-specified options. Results are saved in the replication
description file (.rdesc).

JEdifPersistenceDetection (Optional)

JEdifPersistenceDetection determines additional error detector locations necessary for
classifying persistent/nonpersistent errors detected in a design. Results are saved in the
replication description (.rdesc) file.

51

Chapter 4.1 DRM Design-Time Circuit Analysis

4.1.2 DRM Design-time Tool Flow

Our design-time tool flow of DRM is illustrated in Figure 4.1. In summary, it converts a
benchmark HDL design into a set of 4-dimensional Pareto-filtered implementations rated
by the reliability magnitude, area consumption, latency and dynamic power consumption.
This overall tool flow is constructed by utilizing, extending and creating various tools as
described below.

• Tools Utilized: Xilinx ISE (Mapping, Placement and Routing, Power Analyzer),
MATLAB Pareto filter

• Tool Extended: BANL TMR Tool

• Tool Created: MATLAB BDEC Tool

The extended sub-tools of BYU-LANL TMR tool, i.e., JEdifNMRSelection and JEdifVot-
erSelection and the newly created tool, i.e., Revised BDEC tool are marked as dark shaded
blocks in Figure 4.1 to highlight our contribution areas in the tool chain. The steps used
in tool flow are discussed as follows.

Xilinx ISE Synthesis

In the first stage, we synthesize the benchmark HDL design, whether behavioural or
structural, with Xilinx ISE. The synthesis generates an EDIF netlist file containing the
specific FPGA components needed to realize the HDL description of the application. The
EDIF netlist is passed to the BANL TMR tool.

Replication via the BANL TMR Tool

The original BANL TMR tool (based on the Java programming language) was extended
to support additional features which we explain as follows.

Original BANL Tool Flow The default version of the tool performs logic replication
which we categorize in four major stages:

1. The first stage comprising JEdifBuild and JEdifAnalyze performs the technical steps
of design flattening, circuit and IOB analysis, etc., and saves the information in
intermediate files to be used by the following tools.

2. The second stage comprising JEdifNMRSelection and JEdifVoterSelection deter-
mines the type of configuration and replication to be used, replicates the instances,
determines the voter-insertion locations by the specific algorithm used and makes
the necessary wire connections.

3. The third stage can be run if more voters and error-detectors are desired. For our
research, we are excluding this stage as an optional one.

52

4.1.2. DRM Design-time Tool Flow

M
A

T
L
A

B

P
a
re

to
 F

ilt
e

ri
n
g

B
Y

U
-L

A
N

L
 T

M
R

 T
o
o
l

O
ri
g
in

a
l

E
D

IF
 N

e
tl
is

t

J
E

d
ifB

u
ild

,
J
E

d
ifA

n
a
ly

ze

(N
e
tl
is

t
C

o
n
v
e
rs

io
n

,

M
e

rg
in

g
,
C

ir
c
u
it
 A

n
a
ly

s
is

)

J
E

d
ifN

M
R

S
e
le

ct
io

n
,

J
E

d
ifV

o
te

rS
e

le
c
tio

n

(S
le

ct
 p

a
rt

it
io

n
s

fo
r

re
p

lic
a
ti
o
n
 a

n
d

 v
o

te
r

lo
ca

tio
n

s
)

J
E

d
ifM

o
re

F
re

q
u

e
n
tV

o
tin

g
,

J
E

d
ifD

e
te

c
tio

n
S

e
le

ct
io

n
,

J
E

d
ifP

e
rs

is
ta

n
ce

D
e
te

c
tio

n

(S
e
le

c
t
e
x
tr

a
-v

o
te

r,
 d

e
te

c
to

r

a
n

d
 e

xt
ra

-d
e

te
c
to

r

lo
ca

tio
n

s
)

J
E

d
ifN

M
R

(P
e
rf

o
rm

 r
e
p
lic

a
tio

n
)

R
e
p

lic
a
te

d

E
D

IF
 N

e
tli

s
t

X
ili

n
x
 I
S

E

S
y
n
th

e
si

s

X
il
in

x
 I
S

E

M
a

p
p

in
g

k
32

B
e
n

ch
m

a
rk

 H
D

L

D
e
s
ig

n
X

il
in

x
 I
S

E

P
la

ce
m

e
n

t
&

R
o
u

ti
n
g

X
il
in

x
 I
S

E

X
p
o

w
e
r

A
n
a

ly
z
e
r

R
e
d

u
n
d

a
n
c
y

C
o
n

fi
g
u

ra
ti
o
n
s

V
o
te

r-
In

se
rt

io
n

A
lg

o
ri
th

m
s

k
 P

a
re

to
-F

ilt
e
re

d

C
o
n

fig
u

ra
ti
o
n
s

32
k

32

8 4

R
e
v
is

e
d

B
D

E
C

 T
o
o

l

32

32

32

F
ig

u
re

4
.1

:
D

R
M

d
ei

sg
n

-t
im

e
to

ol
fl

ow

53

Chapter 4.1 DRM Design-Time Circuit Analysis

4. The final stage does the actual replication by reading the intermediate file formats
written by the previous tools and generating the replicated netlist.

Extension of BANL Tool We have made two extensions to the original BANL tool in
order to support the additional redundancy configurations. By default, the tool supported
only TMR configuration which we extended to three more configurations namely one alter-
nate voter (OAV), two alternate voters (TAV) and cascaded-TMR (CTMR). Additionally,
we have changed the command-line interface of the JEdifNMRSelection tool from repli-
cation type to configuration type because there is more than one configuration that uses
triplication. As a result, we now can decide on a configuration instead of a replication
type. Note that the duplication with comparison (DWC) configuration is out of scope for
this research.

Performing Replication

After running the first stage of the tool, we need to choose one of the four redundancy con-
figurations via the JEdifNMRSelection tool and one of the eight voter-insertion algorithms
via the JEdifVoterSelection tool. The final stage of JEdifNMR reads the intermediate file
formats of previously run tools and writes the final replicated EDIF netlist. Overall, we run
the extended-BANL TMR tool for 32 possible combinations of redundancy configurations
and voter-insertion algorithms, which sums up the design implementation set.

Xilinx ISE Mapping, Placement/Routing and Power Analysis

All of the 32 generated implementations of the design are passed through Xilinx ISE
mapping, placement/routing and XPower analyzer tools to obtain slice utilization (for
area consumption), pad-pad delay/max. clock frequency (for latency) and dynamic power
consumption, respectively. We resort to the dynamic power consumption since the static
power almost remains the same throughout the analysis of a single benchmark.

Reliability Evaluation

For reliability evaluation, we utilized the automated version of BDEC tool developed in this
research work, and explained in Chapter 3. All the 32 redundant implementations of the
HDL design are evaluated for reliability based on the input error probabilities of inputs
and voters with signal probabilities of wires. The details of the BDEC, our extensions
to the BDEC mathematical model and an automated reliability tool development using
BDEC can be found in chapter 3.

Pareto Filtering of Implementation Points via MATLAB

Using the Pareto Front function of MATLAB [79], we reduce the set of implementation
points to non-dominated ones to make the selection of trade-off points easier. Each imple-
mentation is characterized on the basis of area, latency, power and measured reliability.

54

The resulting non-dominated implementation points can be utilized by the system designer
on the basis of one or more constraint requirements of area, latency, power and reliability.

4.2 DRM Run-Time Circuit Analysis

The final outcome of the design-time tool flow is the set of non-dominated redundant
configurations in addition to the original hardware design of the application module. The
run-time system, on the other hand, stores and utilizes these configurations for balancing
the reliability-performance trade-off using an operating system support. Another compo-
nent of the run-time system is the decision module which can be implemented in software
or hardware. Before explaining our composite run-time tool flow, we give an insight into
the operating system, ReconOS, used for the DRM implementation.

4.2.1 ReconOS

The operating system used for DRM on a platform FPGA is ReconOS [80, 81, 82, 83].
ReconOS is an operating system for reconfigurable system-on-chip that extends the multi-
threaded programming model from software to reconfigurable logic cores. Its programming
model and system architecture offers unified operating system services for functions execut-
ing in software and hardware and a standardized interface for integrating custom hardware
accelerators. ReconOS leverages the well-established multi-threading programming model
and extends a host operating system with support for hardware threads. These extensions
allow the hardware threads to interact with software threads using the same, standardized
operating system mechanisms, for example, semaphores, mutexes, condition variables, and
message queues. From the perspective of an application it is thus completely transparent
whether a thread is executing in software or hardware.
The ReconOS run-time system architecture provides the structural foundation to support
the multi-threading programming model and its execution on CPU/FPGA platforms.
Figure 4.2 shows a conceptual view of a typical system that is decomposed into appli-
cation software, OS kernel and hardware architecture. The application software threads
are usually executed on the main CPU alongside the host OS kernel that encapsulates
APIs, libraries, and all programming model objects as well as lower level functions such
as memory management and device drivers. The ReconOS run-time environment con-
sists of hardware components that provide interfaces, communication channels, and other
functionality such as memory access and address translation to the hardware threads.
Additionally, the runtime system comprises software components in the form of libraries
and kernel modules that offer an interface to the hardware, the operating system, and the
application software threads.
A key component for multi-threading across the hardware/software boundary is the dele-
gate thread, which is a light-weight software thread that interfaces between the hardware
thread and the operating system. When a hardware thread needs to execute an operating
system function, it relays this request through the operating system interface (OSIF) to
the delegate thread using platform-specific (but application-independent) communication

55

Chapter 4.2 DRM Run-Time Circuit Analysis

Figure 4.2: Conceptual overview of ReconOS system architecture [83]

interfaces. The delegate thread then executes the desired operating system functions on
behalf of its associated hardware thread. Hence, from the OS kernel point of view, only
software threads exist and interact, while the hardware threads are completely hidden
behind their respective delegate threads. From the application programmer point of view,
however, the delegate threads are hidden by the ReconOS runtime environment and only
the application hardware and software threads exist. This delegate mechanism together
with the unified thread interfaces gives ReconOS exceptional transparency regarding the
execution mode of a thread, i.e., whether it runs in software or hardware.
Hardware threads reside in reconfigurable slots, which are predefined areas of reconfig-
urable logic equipped with the necessary communication interfaces. Besides communicat-
ing with the OS kernel on the host CPU, hardware threads residing in reconfigurable slots
can also access the system memory. To that end, a hardware thread uses its memory
interface (MEMIF) to connect to the ReconOS memory subsystem. The memory sub-
system arbitrate and aligns the hardware threads memory requests and can handle single
word as well as burst accesses. Hardware threads use FIFOs to communicate with the
memory subsystem; one outgoing and one incoming FIFO per hardware thread. Requests
for memory transactions are encoded and written to the outgoing FIFO followed by data
in the case of a write request. In the case of a read request, data become available on the
incoming FIFO upon completion of the memory transfer. A library of VHDL procedures
is developed to conveniently handle memory operations. These procedures encode the
requests, synchronize with the memory FIFOs, and automatically transfer data from/to

56

4.2.2. Decision Mechanisms for Changing Reliability Levels

local memory elements within the hardware thread. Since ReconOS supports partial re-
configuration, both hardware and software threads can be instantiated, loaded and started
at run-time.

4.2.2 Decision Mechanisms for Changing Reliability Levels

In this section, we discuss the possible criterion on the basis of which the adaptive system
could switch among different redundancy/reliability levels. We envision four possible deci-
sion mechanisms. The mechanisms are denoted as i) external, ii) time, iii) cooperative and
iv) radiation/error-rate based mechanisms. Table 4.1 lists the four decision mechanisms
and shows whether the system, e.g., the satellite, needs a radiation sensor and a so-called
decision module that decides on changing the required level of reliability.

External

With an external decision mechanism, a remote user has the control over reconfiguring
the reliability configurations. For example, a ground control center transmits a signal to
reconfigure the reliability levels of the satellite application, based on available information
about space weather. In this way, the radiation data is recorded by a source external to the
satellite and the decision is made by the control station. Hence, both of the components
of the decision mechanism are external to the satellite.

Time

The decision mechanism based on time can be used for missions where the radiation
pattern is already known. For example, in Figures 2.10 and 2.11, the pattern of radiation
can be used to plan the reliability reconfiguration after fixed time intervals, calculated on
the basis of the travel time of the satellite. With this mechanism, the time-based decision
module stays within the application system though there is no sensor involved.

Cooperative

Since the decision module is the most critical part of decision mechanism, either we could
protect it by excessive hardening or decide to keep it out of the application system. In
this way, the decision is taken out of the system but the radiation data or proportional
information, e.g., online error-rate measurement, is taken from the system which can be

Decision Mechanism Sensor Decision Module

External No No

Time No Yes

Cooperative Yes No

Radiation/Error Yes Yes

Table 4.1: Decision Mechanisms

57

Chapter 4.2 DRM Run-Time Circuit Analysis

cross-verified before taking the decision for a reconfiguration. Hence the term cooperative
refers to the cooperation between the application system and the control station.

Radiation/Error

With this technique, the sensor and the decision module both lie within the application
system. Moreover, this is the only self-adaptive decision mechanism which is responsi-
ble for collecting radiation data, its interpretation and the reliability reconfiguration. In
comparison to a time-based reconfiguration, that would be sufficient in cases when the
radiation plot is known in advance, the radiation/error-based approach can also handle
unexpected situations or uncertainty of the radiation plot as, for example, shown in the
radiation sensor data plotted in Figure 2.9. If one wants to maximize system reliabil-
ity, a self-adaptive decision mechanism is to be adopted even if the probability of such
unexpected radiation changes is very low.

4.2.3 DRM Run-time Tool Flow

The DRM concept requires two additional components over a standard ReconOS system,
the decision module running as a software thread on the main processor and the database
containing all the implementation variants for the hardware designs. Figure 4.3 depicts the
exemplary ReconOS architecture with the additional DRM components as dark shaded
blocks. The implementation of decision module in hardware and alternate storage possibil-
ities of redundant configurations apart from DRAM are also possible though investigating
the difference in performance due to these alternate strategies correspond to our future
work. Since we focus on hardware redundancy only in this work, we will implement our

Hardware Slot

OS Kernel

Memory Controller

Decision Module

 External

......DRAM

OSIF

MEMIF

OSIF

Hardware Slot

Hardware

Thread

Peripherals K-Pareto Filtered

Configurations

Main

Threads

Delegate

Threads

Hardware

Thread
...

Figure 4.3: Exemplary ReconOS architecture

58

Decision

Module

selects thread

variant

ReconOS

asks for

thread variant

Application

creates a

thread

ReconOS

loads thread

variant into

hardware slot

k Pareto-Filtered

Configurations

1) User command
2) Timed command
3) Environmental data
4) Error rate

Figure 4.4: ReconOS runtime flow with DRM

target applications as only hardware threads. We use the ReconOS version 3.0 in this
work with supports the Xilkernel/Linux platform for the Microblaze processor.
The decision mechanisms for reliability can be used with ReconOS as shown in Figure 4.4.
When an application starts and instantiates a hardware design, it creates the correspond-
ing hardware thread and requests ReconOS to load the hardware thread into one of the
hardware slots. Subsequently, ReconOS calls the DRM decision module to decide for an
actual implementation variant for that thread. Depending on the used approach, the de-
cision module is driven by user commands, time events, or measurements of the radiation
level or actual error rates, as explained in the previous subsection. Afterwards, ReconOS
retrieves the selected implementation variant from the database, i.e., external DRAM in
our case, and configures it into a hardware slot. Any time during operation, the decision
module may request ReconOS to reconfigure a hardware thread with an alternative imple-
mentation variant. In this research, we focus on reliability of hardware designs which are
mapped to ReconOS hardware threads. Eventually, the reliability of the overall ReconOS
system will have to be considered including the main CPU, the threads’ operating system
and memory interfaces (OSIF and MEMIF), buses, and memory controllers. The simplest
way is to configure the ReconOS system to highest reliability implementation to ensure
reliable operation of the switching mechanism, which adds a fixed cost of redundancy of
the base system. The database of implementation variants is stored in external DRAM to
allow for a fast reconfiguration. Reliability for external DRAM can be provided through
error correction codes.

4.3 Chapter Conclusion

In this chapter, we have described the tool flow for our adaptive fault-tolerance technique,
i.e., Dynamic Reliability Management (DRM). The design time and run-time portions

59

Chapter 4.3 Chapter Conclusion

of the DRM tool flow are described along with details of the tools utilized, extended
and developed. It has been shown in this chapter how to use the design-time DRM
tool flow to generate a Pareto-optimized set of non-dominant redundant circuit imple-
mentations, on the basis of performance factors of area, latency, power and reliability.
The run-time tool flow, utilizes these Pareto implementations, by reconfiguring them into
reconfigurable hardware slots. The decision on which redundant implementation to con-
figure, and when to configure it, is taken by a decision module. The implementation of a
sensor or radiation/error-rate data calculation is out of scope for this work, however, we
will utilize a radiation profile from literature to take the respective decisions, as presented
in the next chapter.

60

CHAPTER 5

Validating Dynamic Reliability Management Tool Flow

To validate the conceptual model of DRM and its tool flow, we conduct experiments on
various benchmarks in this chapter to validate the design-time and run-time tool flows
of our technique. For design-time part, we use six ISCAS benchmarks, with different
architectures, with a 32-point implementation set to observe how the performance factors
scale with the circuit size and architecture. In contrast, the run-time part is verified with
two practical case studies with a 3-point implementation set to make the reconfiguration
process easy for the reader to comprehend.

5.1 Validating Design-time Tool Flow

In order to analyze the variation in performance factors, i.e., area consumption, latency,
dynamic power consumption and reliability with respect to changes in the redundancy
configuration and voter-insertion algorithm, we report on and analyze six benchmark HDL
designs from three classes of benchmarks with different circuit architectures [84]: c17 and
c3540 from ISCAS’85, s713 and s838 from ISCAS’89, and b8 and b12 from ISCAS’99
benchmark suites.

5.1.1 Experimental Setup

We have experimented with overall four redundancy configurations including OAV (one
alternate voter), TAV (two alternate voters), TV (triplicated voters), and CTMR (cas-
caded TMR level 1) from Subsection 2.3.2, as well as NR, a non-redundant design for
comparison. The target device used is a Virtex 5 FPGA, XCVTX150T, with package
FF1156. We have set the optimization method for design mapping to balanced to ensure
the best combination of area and speed efficiency. For latency comparison, we use the
maximum pad-pad delay and maximum clock frequency for combinational and sequential
circuits, respectively. To determine dynamic power consumption, we have applied random

61

Chapter 5.1 Validating Design-time Tool Flow

testbench signals to each benchmark while trying to maximize the signal activity among
the circuit intermediate nodes. Due to lack of standard testbenches available for these
benchmarks, our randomly applied testbenches do not necessarily account for the maxi-
mum possible power consumption. However, for the sake of comparison among redundant
configurations, they serve the purpose.
The reliability results in this experimentation are interpreted as the average reliability of
the outputs of the circuit. The output reliabilities are based on the error-probabilites of
input, component (LUT, MUX, RAM, etc) and voter taken as 1%. The overall output
error-probability is an indicative of each component and input to be probabilistically
affected by an error at a rate of 1%. In reality, this is an extremely high over-estimate of
component uncertainty which can be verified from device reliability reports having error-
rates in the range of 1-10 errors in one billion hours [46, 63]. Using such low error-rates,
the reliability is normally represented in MTBF units in conventional reliability theories.
In contrast, the representation of reliability in probabilistic methods is the probability of
error-free computation at a certain snapshot of time during the operation time span of the
circuit. However, when such low error-probabilities are used in BDEC model, the reliability
results gets complicated to understand by the user, i.e., the reliabilities among different
implementations vary at smaller decimal places. Therefore, we resort to a component error
of 1% to make the results comprehensible by the reader. Its worth mentioning here that
the size of the benchmarks chosen are moderate in this experimentation (max. 800 slices)
since the current version of our BDEC-reliability tool is very time-intensive due to the
sequential flow of probability in this model. While we are making efforts to improve the
performance of this tool by parallel programming and multi-core processing in the future;
the reader can still observe the analysis on performance parameters (excluding reliability)
for large benchmarks in our previous work [5].

5.1.2 c17 and c3540 (ISCAS’85)

These benchmark designs are purely combinational circuits and, by default, the BANL
TMR tool inserts only single voters for combinational circuits. Without sequential ele-
ments the configurations OAV, TAV and TV produce the same results since no triplicated
or alternate-triplicated voters are used. Also, the choice of voter-insertion algorithm does
not matter because voter insertion also varies only with sequential elements. However, the
default decisions taken by the tool can be overridden by forced redundancy insertion by
the user though we resort to default decisions taken by BANL tool in this research.
Table 5.1 presents the results for the two ISCAS’85 benchmark designs. The reliability
configurations OAV, TAV and TV have identical performance factors. The slice usage scale
by a factor of 3 and 5 for c3540 for triplicated (TMR) and nine-plicated (CTMR) versions
instead of theoretical scale of 3 and 9 respectively. The variations in latency, i.e., maximum
pad-to-pad delay, is less pronounced for c17 than for c3540, which is a much larger design.
For c17, there is even a slight decrease in latency with increasing reliability configurations.
This decrease in latency as well as lower area scale factor for CTMR versions is due
to automatic placement and routing which finds more optimization potential in larger

62

5.1.3. s713 and s838 (ISCAS’89)

Slices Max Pad-Pad Delay (ns) Dynamic PD (W) Reliability

c17
NR 2 5.461 0.165 0.9521

OAV/TAV/TMR 3 5.337 0.176 0.9760

CTMR 6 5.171 0.176 0.9796

c3540
NR 90 15.137 2.499 0.8796

OAV/TAV/TMR 253 17.283 3.115 0.9323

CTMR 447 22.135 3.415 0.9582

Table 5.1: Design space exploration results for the benchmarks c17 and c3540 from the
ISCAS’85 benchmark suite

designs. The difference in dynamic power consumption is also less pronounced for the small
benchmark. The reliability of these circuits improved moderately from non-redundant to
redundant versions though for higher redundancy scales, even beyond CTMR, the increase
in reliability gets lower due to saturation effect close to maximum reliability of 100%. Note
that the Pareto filtering is not required for these benchmarks as Table 5.1 already lists
the minimum set of non-dominated points.

5.1.3 s713 and s838 (ISCAS’89)

This series of HDL benchmark designs consists of combinational as well as sequential
elements due to which the voter placement algorithms result in large variation of the per-
formance factors. Table 5.2 lists the results for the two benchmarks and highlights the
non-dominated, i.e., Pareto-optimal, implementations of the HDL design. Those imple-
mentation points having similar parameter values are highlighted only once. The benefit
of Pareto-filtering is obvious as the 32-point set is reduced to 12 and 7 points for s713
and s838, respectively. The NR version is not compared since it will always be a Pareto-
optimal point. It can be observed from the table that the span of parameters for OAV,
TAV and TV is not high since they only differ in number of voters as compared to NR and
CTMR which vary in number of modules as well. Moreover, we can observe that different
voter-insertion algorithms can greatly vary the trade-off points.
While one would assume that the area utilization always increases in ascending order
from NR to CTMR, the experiments prove this assumption wrong. As can be observed
for the HFC algorithm and the s713 benchmark, the configuration TV consumes less
slices than the configuration TAV, albeit the number of voters for TV is higher than for
TAV. The explanation for such anomalies lies again in the automatic mapping, placement
and routing tools. Sometimes, resources such as flip-flops remain unused in slices to
balance the timing constraints and, more generally, the optimization possibilities vary from
one design to another. Furthermore, the choice of voter-insertion algorithm within each
configuration has a high impact on the area consumption, e.g., for the s838 benchmark
the slice utilization varies from 113 to 124 (9.7% variation) for OAV configurations in
contrast to 133 to 276 slices (107.5% variation) for CTMR configurations. Similarly,
due to different optimization possibilities, the maximum clock frequency also does not
always decrease with configurations using higher degrees of replication. For example, the

63

Chapter 5.1 Validating Design-time Tool Flow

CC AFC BFC BD HFC HFFC HFFIC HFFOC

Slices 42

Max Freq (MHz) 336

Dynamic PD (W) 1.476NR

Reliability 0.9568

Slices 93 78 86 93 81 85 85 85

Max Freq (MHz) 233 262 249 233 263 273 255 273

Dynamic PD (W) 1.997 1.988 1.986 1.997 1.993 1.993 1.988 1.993OAV

Reliability 0.9767 0.9763 0.9763 0.9767 0.9765 0.9763 0.9763 0.9763

Slices 101 97 97 101 98 106 93 106

Max Freq (MHz) 205 265 218 205 220 231 246 231

Dynamic PD (W) 1.993 1.993 2.006 1.993 1.990 1.999 1.986 1.999TAV

Reliability 0.9772 0.9767 0.9767 0.9772 0.9769 0.9767 0.9766 0.9767

Slices 102 117 94 102 86 117 92 117

Max Freq (MHz) 227 207 222 227 240 207 233 207

Dynamic PD (W) 2.002 1.996 2.001 2.002 1.988 1.996 1.998 1.996TV

Reliability 0.9774 0.9769 0.9767 0.9774 0.9771 0.9769 0.9766 0.9769

Slices 211 214 223 211 173 214 223 214

Max Freq (MHz) 219 232 228 219 219 232 228 232

Dynamic PD (W) 2.083 2.073 2.079 2.083 2.050 2.073 2.079 2.073

s713

CTMR

Reliability 0.9790 0.9789 0.9789 0.9790 0.9789 0.9789 0.9789 0.9789

Slices 33

Max Freq (MHz) 260

Dynamic PD (W) 0.287NR

Reliability 0.9384

Slices 113 117 124 113 117 117 124 117

Max Freq (MHz) 222 205 228 214 205 205 228 205

Dynamic PD (W) 0.317 0.305 0.316 0.317 0.305 0.305 0.316 0.305OAV

Reliability 0.9735 0.9736 0.9732 0.9735 0.9736 0.9735 0.9732 0.9736

Slices 147 131 133 147 131 131 133 131

Max Freq (MHz) 217 212 205 217 212 212 205 212

Dynamic PD (W) 0.317 0.320 0.322 0.317 0.320 0.320 0.322 0.320TAV

Reliability 0.9746 0.9746 0.9740 0.9746 0.9746 0.9746 0.9740 0.9746

Slices 166 173 140 166 173 173 140 173

Max Freq (MHz) 203 227 208 203 227 227 208 227

Dynamic PD (W) 0.328 0.327 0.325 0.328 0.327 0.327 0.325 0.327TV

Reliability 0.9752 0.9752 0.9745 0.9752 0.9752 0.9752 0.9745 0.9752

Slices 276 133 212 276 133 133 212 133

Max Freq (MHz) 203 219 203 203 219 219 203 219

Dynamic PD (W) 0.336 0.306 0.321 0.336 0.306 0.306 0.321 0.306

s838

CTMR

Reliability 0.9793 0.9793 0.9793 0.9793 0.9793 0.9793 0.9793 0.9793

Table 5.2: Design space exploration results for the benchmarks s713 and s838 from the
ISCAS’89 benchmark suite

64

5.1.4. b8 and b12 (ISCAS’99)

maximum clock frequency increased for the s713 benchmark design, for CC algorithm,
when going from TAV to TV. However, switching from the non-redundant to redundant
configurations drastically impacts the maximum clock frequency. For example, when going
from NR to CTMR we observe a 45% decrease for s713. The maximum clock frequency
also varies considerably with variation of voter-insertion algorithm, e.g., 29% variation for
s713 and the TAV configuration. The dynamic power consumption varies minimally for
these benchmarks, with a maximum variation of 9.8% observed for s838 and the CTMR
configuration. Generally, the reliability always increase from NR to CTMR for a single
voter-insertion algorithm though when comparison is made among different algorithms,
it can be easily observed that lower redundancy configuration of one algorithm may be
more reliable than higher redundancy version of another algorithm. For example, for
s713 benchmark, the TV configuration with BFC algorithm achieves less reliability than
TAV configuration with BD algorithm. The reliability of CTMR versions is always higher
than other configurations even when using different voter-insertion algorithms. However
their variation is very minimal using different algorithms. A very noticeable advantage
we gained from this design space exploration is the implementation point obtained with
CTMR and HFFOC algorithm for s838 benchmark where the performance parameters are
very comparable to the triplicated configuration though having higher reliability. Hence,
the placement and routing of the design based on different voter-insertion algorithms can
make highly redundant designs cost-effective.

5.1.4 b8 and b12 (ISCAS’99)

This series of HDL benchmarks contains complex state machine designs with immense
feedback loops. Table 5.3 shows a high variation in all the performance factors com-
pared to the last two benchmark categories. The slice utilization varies by only 4.5 and
2.3 times for b8 and b12 benchmarks respectively from NR to CTMR. The difference in
slice utilization from OAV to TV is however very small. Interestingly, for the b12 bench-
mark, the minimum number of slices consumed for TV is almost equal to OAV. Looking
at the importance of the voter-insertion algorithm for this benchmark category, we ob-
serve a variation of the maximum clock frequency from 204.1 MHz to 280.3 MHz (37%)
for b8 with OAV configuration. The dynamic power consumption for b8 does not have
any unexpected variations due to the small size of this benchmark, however, it varies by
35% for b12 from NR to CTMR. Moreover, varying the voter-insertion algorithm for the
CTMR configuration of b12 can vary the power dissipation by 62% as well. The reliabil-
ity varies approximately by 6% and 8% from NR to CTMR for b8 and b12 respectively.
Pareto-filtering reduces the number of reasonable designs from 32 to 10 and 11 for b8 and
b12, respectively, which covers nearly all the available voter-insertion algorithms in one
or more redundancy configurations. As seen for the previous benchmarks, this category
shows again how the optimization of resources increase from small to large circuit designs.
Additionally, for the b12 benchmark, we observed that none of the implementations gen-
erated by any voter-insertion algorithm was repeated by another algorithm in contrast to
our experience with previous benchmarks. This is due to the architecture of the circuits

65

Chapter 5.1 Validating Design-time Tool Flow

CC AFC BFC BD HFC HFFC HFFIC HFFOC

Slices 7

Max Freq (MHz) 290

Dynamic PD (W) 0.006NR

Reliability 0.9131

Slices 35 32 35 35 32 32 35 32

Max Freq (MHz) 204 280 252 204 280 280 252 280

Dynamic PD (W) 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008OAV

Reliability 0.9647 0.9607 0.9649 0.9647 0.9607 0.9607 0.9649 0.9607

Slices 38 30 35 38 30 30 35 30

Max Freq (MHz) 230 231 215 230 231 231 215 231

Dynamic PD (W) 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008TAV

Reliability 0.9665 0.9615 0.9676 0.9673 0.9615 0.9615 0.9676 0.9615

Slices 35 37 38 35 37 37 38 37

Max Freq (MHz) 221 253 232 221 253 253 232 253

Dynamic PD (W) 0.009 0.009 0.009 0.009 0.009 0.009 0.009 0.009TV

Reliability 0.9688 0.9629 0.9689 0.9688 0.9629 0.9629 0.9689 0.9629

Slices 75 32 88 75 32 32 88 32

Max Freq (MHz) 220 209 208 220 209 209 208 209

Dynamic PD (W) 0.011 0.008 0.014 0.011 0.008 0.008 0.014 0.008

b8

CTMR

Reliability 0.9702 0.9629 0.9702 0.9702 0.9629 0.9629 0.9702 0.9629

Slices 173

Max Freq (MHz) 230

Dynamic PD (W) 0.058NR

Reliability 0.8840

Slices 512 535 596 532 531 454 505 514

Max Freq (MHz) 204 204 208 203 204 214 201 205

Dynamic PD (W) 0.152 0.137 0.156 0.148 0.149 0.133 0.140 0.149OAV

Reliability 0.9620 0.9574 0.9615 0.9606 0.9487 0.9497 0.9604 0.9590

Slices 602 439 492 547 551 565 545 490

Max Freq (MHz) 204 208 204 201 205 207 207 206

Dynamic PD (W) 0.163 0.123 0.141 0.152 0.144 0.142 0.156 0.132TAV

Reliability 0.9685 0.9669 0.9733 0.9671 0.9526 0.9532 0.9725 0.9689

Slices 681 517 477 453 568 526 546 497

Max Freq (MHz) 188 202 210 203 201 203 203 205

Dynamic PD (W) 0.172 0.132 0.150 0.149 0.155 0.140 0.163 0.135TV

Reliability 0.9748 0.9752 0.9782 0.9738 0.9562 0.9752 0.9777 0.9751

Slices 736 730 786 564 592 632 690 578

Max Freq (MHz) 174 184 164 170 200 169 166 193

Dynamic PD (W) 0.229 0.196 0.272 0.222 0.180 0.189 0.292 0.189

b12

CTMR

Reliability 0.9752 0.9752 0.9798 0.9752 0.9752 0.9752 0.9798 0.9752

Table 5.3: Design space exploration results for the benchmarks b8 and b12 from the IS-
CAS’99 benchmark suite

66

which respond differently to the replication and voter-insertion decisions of the algorithms.

5.2 Validating Runtime Tool Flow

The Pareto-filtered implementations generated from the design-time tool flow need to
be utilized and reconfigured at run-time using the run-time tool flow discussed in Sec-
tion 4.2.3. For experimentation, instead of a 32 point implementation set, we use only
3-point set using configurations NR, TMR and CTMR while using voter algorithm CC.
The reason for using this small set is to analyze and demonstrate the reconfiguration
process effectively instead of presenting numerous reconfigurations required in a larger
implementation set. Moreover, the process of reconfiguration holds similar for all sizes
of implementation sets. Therefore, to analyze the trade-off between reliability and per-
formance given by different implementation variants of a design, we use two case studies
of hardware designs namely data sorter and matrix multiplier. Though the design-time
analysis of these hardware designs would be similar to benchmarks used in the previous
section; it is skipped here since we use only 3 implementation points for demonstration
purposes instead of using a fully pareto-optimized implementation set.
The DRM implementation on a reconfigurable SoC platform is faced with the challenge
of area efficiency. The problem we observed before implementing the DRM concept was
that the area of a reconfigurable slot has to be limited to a fixed size, which refers to
the maximum area of a redundant implementation we use in the reconfigurable partition,
i.e., CTMR. Hence, when the reconfigurable partition is utilized with relatively smaller
redundant structures like TMR, we do not obtain an area efficiency since the unused por-
tion of the partition can not be utilized for other logic. Therefore, we use the concept of
parallelism to fully utilize the reconfigurable partition for each of the redundant imple-
mentations smaller than CTMR, i.e., the NR and TMR structures will be implemented
as parallelized versions. Hence, the reconfigurable slot is fully utilized while providing a
higher throughput due to parallel application engines.

5.2.1 Data Sorter

The data sorting hardware thread uses bubble sorting algorithm to sort data in an as-
cending order. The sorting thread operates on 8KB blocks of 32 bit integer data and its
performance is measured by the sorting rate, in blocks/minute. The sorting application
has been chosen due to its block-based processing usage which is considered typical for
signal/multi-media processing, data compression and encryption tasks [85, 86].
In our experiments, we allocate a certain hardware area for implementing the sorting func-
tion. The area is chosen such to fit the sorter implementation with the highest level of
reliability, i.e., CTMR. The same area can also be used for an internally parallel instance
of the hardware sorter in the TMR version, and for a sorter in the NR version that employs
eight parallel sorting engines. We have developed these parallel versions of a data sorter
for TMR and NR, as well as the CTMR version as ReconOS hardware threads that are
designed to operate at 100 MHz. We denote the resulting reliability versions as CTMR,

67

Chapter 5.2 Validating Runtime Tool Flow

Application Configuration Hardware Slot #1 Hardware Slot #2 Hardware Slot #3

Static-Maximum-Reliability CTMR CTMR CTMR

Static-Varying-Reliability CTMR TMR*2 NR*8

Reconfigurable CTMR | TMR*2 | NR*8 CTMR | TMR*2 | NR*8 CTMR | TMR*2 | NR*8

Table 5.4: Hardware slot combinations

TMR*2 and NR*8. Since we keep the hardware area constant for all sorter implemen-
tations, a change in the reliability requirement and the subsequent reconfiguration will
result in a change of the sorting performance.
We experiment with a ReconOS system as shown in Figure 4.3 employing three hardware
slots and compare three different configurations for the data sorter application, respec-
tively, for utilizing them. The configurations are denoted as static-maximum-reliability,
static-varying-reliability and reconfigurable. In the static-maximum-reliability configura-
tion, we strive for maximum reliability and employ the CTMR sorter in each of the three
slots in a static way, i.e., without partial reconfiguration. The so-called static-varying-
reliability configuration is also static but uses all three redundancy versions of the sorter,
i.e., NR*8, TMR*2 and CTMR at the same time, each one in separate hardware slot.
During runtime, we can switch the hardware threads on and off based on the reliability re-
quirements. Finally, in the reconfigurable configuration, we utilize partial reconfiguration
to reconfigure the hardware slots with sorter threads matching the reliability requirements.
That is, at a particular instant all the three threads are configured either NR*8 or TMR*2
or CTMR. The organization of these configurations is illustrated in Table 5.4.
The entire ReconOS base system was designed using Xilinx EDK. The run-time reconfigu-
ration and performance measurements were performed via software developed with Xilinx
SDK and downloaded to a Microblaze processor implemented on FPGA. The partial bit-
streams for the dynamically reconfigurable regions, i.e., the hardware slots, are generated
by the Xilinx Partial Reconfiguration toolflow [87]. There are total of nine partial bit-
streams representing NR*8, TMR*2 and CTMR versions for each of the three hardware
slots. The full bitstream is always generated with the NR versions of the hardware threads.
The decision mechanism we envision for our experiments is radiation-based, utilizing the
radiation profile obtained from the Borealis flight (duration 103 minutes) shown in Sec-
tion 2.5.11. Since we have three reliability versions for the data sorter, i.e., NR, TMR
and CTMR, we divide the radiation levels into the following three ranges corresponding
to three reliability levels.

• Reliability level 1: 0-300 counts/min

• Reliability level 2: 300-600 counts/min

• Reliability level 3: 600-900 counts/min

1Though the radiation strike-rate in Figure 2.9 is shown with respect to altitude, the time-dependent
variation, as used in this experimentation, has a similar trend.

68

5.2.1. Data Sorter

The radiation data is stored on the Microblaze and each radiation sample is read and
interpreted after a time interval of one minute, according to the data frequency of the
Borealis flight. The NR*8, TMR*2 and CTMR implementations, as partial bitstreams,
are loaded into the SDRAM associated with the Microblaze and used for reconfiguration
via the ICAP interface of the FPGA. The evaluation platform used is Xilinx ML605
Board, which is equipped with a Virtex 6 XC6VLX240T FPGA. The data to be sorted
is continuously provided to the hardware threads until the completion of experiment or
Borealis flight duration while each block of data is comprised of 2048 32-bit words.
The sorting performance for the three configurations can be compared in Figure 5.1. For
reliability level 1, i.e., 0-44 minutes, we can observe that the sorting rate of reconfigurable
configuration is more than double and around 8 times higher than static-varying-reliability
and static-maximum-reliability configurations respectively. From 44-46 minutes, the sud-
den increase in radiation rate, as recorded by the sensor, makes the three threads re-
configure to TMR*2 equivalents in the reconfigurable configuration. Similarly, for the
static-varying-reliability configuration, the NR*8 thread is switched off while dropping
the sorting rate by 3.7 times since the total sorting units decreased by the same magni-
tude as well. The similar transition occur for 46-50 min range corresponding to reliability
level 1. For 50-60 min range, the reliability level shifts to the second category. In this
region, the total working units for the reconfigurable configuration are 6 compared to 3
units for each of static-varying-reliability and static-maximum-reliability configurations.
However, the sorting rate of static-varying-reliability configuration is slightly lower than
static-maximum-reliability configuration due to extra complexity of software code used for
continuous radiation monitoring in static-varying-reliability case. Similarly, for the last
reliability level, with range 60-103 min, has 3 sorting units working in reconfigurable and
static-maximum-reliability configurations while only a single unit is utilized for the static-
varying-reliability case. The slight difference for the sorting rate for reconfigurable case
compared to static-maximum-reliability one is due to the same code-complexity reason
described above. However, the static-varying-reliability configuration is ineffective even
compared to static-maximum-reliability configuration in highest reliability requirement.
Overall, the reconfigurable configuration, upon which the DRM technique is based, outper-
forms both of the other configurations. In lowest reliability requirements, the performance
is double and seven and a half times higher compared to static-varying-reliability and
static-maximum-reliability configurations respectively. For highest reliability requirement,
reconfigurable configuration has comparable performance to static-maximum-reliability
and 2.8 times higher than static-varying-reliability configuration. The static-varying-
reliability configuration, on the other hand, is 3.6 times faster and 3 times slower than
the static-maximum-reliability configuration in highest and lowest reliability requirements
respectively. The data throughput of the 3 configurations can also be compared by the
total data sorted at the end of the experiment, i.e., 7.43e5, 3.40e5 and 1.76e5 blocks for
reconfigurable, static-varying-reliability and static-maximum-reliability configurations re-
spectively. The time spent during each reconfiguration stage is 228ms (76ms for each
thread). Since our radiation sampling rate is one minute, the reconfiguration time is
negligible and hence, not suitable to be represented on the graph, having time scale in

69

Chapter 5.2 Validating Runtime Tool Flow

0

2
00

0

4
00

0

6
00

0

8
00

0

1
00

0
0

1
20

0
0

1
40

0
0

0
2
0

4
0

6
0

8
0

1
00

Blocks / min

T
im

e
 (m

in
s

)

S
ta

tic
-M

a
x
im

u
m

-R
e

lia
b
ility

S
ta

tic
-V

a
ry

in
g
-R

e
lia

b
ility

R
e

c
o
n
fig

u
ra

b
le

1
7

1
0

6
1

6
8

1
3

1
8

8

5
7

0

3
3

1
8

1
6

5
6

1
6

3
2

F
ig

u
re

5
.1

:
P

erfo
rm

a
n

ce
resu

lts
fo

r
sta

tic-m
ax

im
u

m
-reliab

ility,
static-vary

in
g-reliab

ility
an

d
recon

fi
gu

rab
le

con
fi

gu
ration

s
o
f

d
ata

so
rter

70

5.2.2. Matrix Multiplier

minutes. Moreover, the reconfiguration time can be further decreased by using different
FPGA architectures [88] or utilizing processor-independent partial reconfiguration [89].

5.2.2 Matrix Multiplier

Matrix multiplication is a heart of many image processing algorithms [90, 91]. The matrix
multiplication application we use as our case study multiplies integer matrices of 128
columns and 128 rows. It works by reading in Matrix B completely and Matrix A row-
wise, thereby performing a row-wise multiplication and then writing back the result row-
wise until the whole matrix multpilication is completed. The hardware thread is part of
an application that uses the Strassen algorithm [92] to split the multiplication of a 512
columns by 512 rows matrix into 49 multiplications of smaller (128 x 128) matrices. This
way, the matrix multiplication is parallelizable and the workload can be distributed among
many hardware threads.
The experimentation platform for this application, including hardware generation and
experimental duration is the same as for the data sorter. However, due to different size
of this hardware application, the parallelization is different, i.e., the CTMR version of
matrix multiplier accommodates two instances of TMR and five instances of NR, denoted
as CTMR, TMR*2 and NR*5 respectively, in contrast to eight NR versions for the data
sorter application. Moreover, the reconfiguration time for each slot is double compared to
data sorter due to double the size of hardware utilized, i.e., two clock regions compared
to one for data sorter.
The performance results of the matrix multiplier are shown in Figure 5.2. For reliability
level 1, i.e., 0-44 minutes, we can observe that the multiplication rate of reconfigurable con-
figuration is 1.7 and 3.7 times higher than static-varying-reliability and static-maximum-
reliability configurations respectively whereas the number of working units are higher by
a factor of almost double and five times respectively. The performance does not exactly
scale with the number of working units and depends on the architecture and how efficiently
a hardware design is parallelized. Overall, the reconfigurable configuration again outper-
forms both of the other configurations. In lowest reliability requirements, as mentioned
before, the performance is 1.7 and 3.7 times higher compared to static-varying-reliability
and static-maximum-reliability configurations. For highest reliability requirement, recon-
figurable configuration has comparable performance to static-maximum-reliability and 2.86
times higher than static-varying-reliability configuration. The static-varying-reliability
configuration, on the other hand, is 2.2 times faster and 2.86 times slower than the static-
maximum-reliability configuration in lowest and highest reliability requirements respec-
tively. The data throughput of the 3 configurations can also be compared by the total
matrices multiplied at the end of the experiment, i.e., 3.85e5, 2.11e5 and 1.64e5 matrices
for reconfigurable, static-varying-reliability and static-maximum-reliability configurations
respectively.

71

Chapter 5.2 Validating Runtime Tool Flow

0

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

0
2
0

4
0

6
0

8
0

1
0
0

Matrices Multiplied / min

T
im

e
 (m

in
s

)

S
ta

tic
-M

a
x
im

u
m

-R
e

lia
b
ility

S
ta

tic
-V

a
ry

in
g
-R

e
lia

b
ility

R
e

c
o
n
fig

u
ra

b
le

5
8

8
0

3
5

0
0

1
5

8
9

2
8

8
2

1
5

5
6

5
5

5

F
ig

u
re

5
.2

:
P

erfo
rm

a
n

ce
resu

lts
fo

r
sta

tic-m
ax

im
u

m
-reliab

ility,
static-vary

in
g-reliab

ility
an

d
recon

fi
gu

rab
le

con
fi

gu
ration

s
o
f

m
atrix

m
u

ltip
lier

72

5.3 Variation of Pareto-optimal Implementations of DRM Tool
Flow

In this section, we investigate how the DRM Pareto-optimal implementations differ with
the exact reliability values as well as with different error-probability values.

5.3.1 Using Relative versus Exact Reliability Values

In chapter 3, we introduced our BDEC reliability evaluation tool that could provide exact
reliability magnitudes of redundant implementations based on the input error probability
values. However, before the availability of this tool, the Pareto-optimization was performed
with relative reliability values in our previous work [5]. In this section, we compare the
Pareto-optimal points based on the exact and relative reliability analysis. Therefore, we
have used the benchmark s713 to check how the Pareto-optimal points differ in the two
scenarios. The results of the design space exploration of s713 benchmark are shown in
Table 5.5. The highlighted points in the table refer to non-dominated, i.e., Pareto-optimal,
redundant implementations of the circuit. The benefit of using the automated BDEC tool
is evident that our exact reliability values filtered 12 Pareto-optimal implementations in
contrast to 10 relative points (excluding NR version which is always a Pareto-optimal
point). Hence, the error due to relative reliability assumption is removed which assumes
that the reliability is independent of the voter insertion algorithm. Based on this exper-
imentation, we can conclude that the relative reliability assumption should not be used
since it can result in arbitrarily different number of Pareto-optimization results.

5.3.2 Using Different Error Probability Values

To investigate the variation of Pareto-optimal implementations with respect to error-
probability, we used eight different values for error-probability of gate/component, input
and voter consecutively for the s713 benchmark. The lower range of the error probability
has been taken up to 1e-9 keeping in mind the practical failure rates which have small
magnitudes particularly for space applications [2, 3, 46, 63]. However, for the low error
probability magnitudes, the output reliability needs to be computed up to large number
of decimal places to find the correct Pareto optimal implementations. The results are
shown in Table 5.6. The results of area, latency and power are removed in this table to
avoid repetition of similar data. The trend of resulting Pareto optimal points can be split
into four ranges of error probability with respect to the threshold point. Remind that the
threshold point refers to the value of error-probability after which the higher redundancy
results in decrease in output reliability (see Section 3.3). The first range corresponds to
the error-probability less than minus 1% error around the threshold point. The two mid-
dle ranges of error-probability approximately lie for plus and minus 1% error around the
threshold point respectively. Finally, the fourth region corresponds to more than plus 1%
error above the threshold point. The threshold point, in this example, lies between 10%
and 11% error probability and appears earlier compared to parameter variability results

73

Chapter 5.3 Variation of Pareto-optimal Implementations of DRM Tool Flow

Error Probability Redundancy Configurations Performance Parameters CC AFC BFC BD HFC HFFC HFFIC HFFOC

Slices 42

Max Freq (MHz) 336

Dynamic PD (W) 1.476NR

Reliability 1

Slices 93 78 86 93 81 85 85 85

Max Freq (MHz) 233 262 249 233 263 273 255 273

Dynamic PD (W) 1.997 1.988 1.986 1.997 1.993 1.993 1.988 1.993OAV

Reliability 2 2 2 2 2 2 2 2

Slices 101 97 97 101 98 106 93 106

Max Freq (MHz) 205 265 218 205 220 231 246 231

Dynamic PD (W) 1.993 1.993 2.006 1.993 1.990 1.999 1.986 1.999TAV

Reliability 3 3 3 3 3 3 3 3

Slices 102 117 94 102 86 117 92 117

Max Freq (MHz) 227 207 222 227 240 207 233 207

Dynamic PD (W) 2.002 1.996 2.001 2.002 1.988 1.996 1.998 1.996TV

Reliability 4 4 4 4 4 4 4 4

Slices 211 214 223 211 173 214 223 214

Max Freq (MHz) 219 232 228 219 219 232 228 232

Dynamic PD (W) 2.083 2.073 2.079 2.083 2.050 2.073 2.079 2.073

relative

CTMR

Reliability 5 5 5 5 5 5 5 5

Slices 42

Max Freq (MHz) 336

Dynamic PD (W) 1.476NR

Reliability 0.95691

Slices 93 78 86 93 81 85 85 85

Max Freq (MHz) 233 262 249 233 263 273 255 273

Dynamic PD (W) 1.997 1.988 1.986 1.997 1.993 1.993 1.988 1.993OAV

Reliability 0.97661 0.97629 0.97617 0.97661 0.97637 0.97625 0.97615 0.97625

Slices 101 97 97 101 98 106 93 106

Max Freq (MHz) 205 265 218 205 220 231 246 231

Dynamic PD (W) 1.993 1.993 2.006 1.993 1.990 1.999 1.986 1.999TAV

Reliability 0.97712 0.97664 0.97643 0.97712 0.97676 0.97657 0.97639 0.97657

Slices 102 117 94 102 86 117 92 117

Max Freq (MHz) 227 207 222 227 240 207 233 207

Dynamic PD (W) 2.002 1.996 2.001 2.002 1.988 1.996 1.998 1.996TV

Reliability 0.97744 0.97692 0.97666 0.97744 0.97710 0.97684 0.97660 0.97684

Slices 211 214 223 211 173 214 223 214

Max Freq (MHz) 219 232 228 219 219 232 228 232

Dynamic PD (W) 2.083 2.073 2.079 2.083 2.050 2.073 2.079 2.073

0.01

CTMR

Reliability 0.97895 0.97890 0.97889 0.97895 0.97892 0.97890 0.97889 0.97890

Table 5.5: Pareto Optimization of s713 Benchmark with respect to relative and exact
error probabilities

in Section 3.3 because error probability of gates, components and voters are increasing si-
multaneously. The error-probability regions along with their respective reliability relations
are shown in Table 5.7.
As can be seen from Table 5.6, the Pareto-optimal points stay the same for error probability
scaling less than 1% from the threshold point. Reliability relation number 1 holds in
this case with respect to any particular voter-insertion algorithm. R refers to respective
reliability of each of the redundant configurations. For the region of up to minus 1% error

74

5.3.2. Using Different Error Probability Values
E

rr
or

P
ro

b
ab

il
it

y
R

ed
u
n
d
an

cy
C

on
fi
gu

ra
ti

on
s

C
C

A
F

C
B

F
C

B
D

H
F

C
H

F
F

C
H

F
F

IC
H

F
F

O
C

N
R

0.
99

99
99

9
95

40
30

0
32

47
8

O
A

V
0.

99
99

99
99

79
13

04
34

75
2

0.
99

99
99

99
79

13
04

34
70

5
0.

99
99

99
99

79
13

04
34

68
8

0.
99

99
99

99
79

13
04

34
75

2
0.

99
9
99

99
9
79

13
04

34
71

6
0.

99
99

9
99

97
91

3
04

34
6
9
9

0
.9

9
9
9
9
9
9
9
7
9
1
3
0
4
3
4
6
8
5

0
.9

9
9
9
9
9
9
9
7
9
1
3
0
4
3
4
6
9
9

T
A

V
0.

99
99

99
99

79
13

04
34

82
2

0.
99

99
99

99
79

13
04

34
75

8
0.

99
99

99
99

79
13

04
34

72
8

0.
99

99
99

99
79

13
04

34
82

2
0.

99
9
99

99
9
79

13
04

34
77

4
0.

99
99

9
99

97
91

3
04

34
7
4
8

0
.9

9
9
9
9
9
9
9
7
9
1
3
0
4
3
4
7
2
2

0
.9

9
9
9
9
9
9
9
7
9
1
3
0
4
3
4
7
4
8

T
V

0.
99

99
99

99
79

13
04

34
86

2
0.

99
99

99
99

79
13

04
34

80
1

0.
99

99
99

99
79

13
04

34
76

4
0.

99
99

99
99

79
13

04
34

86
2

0.
99

9
99

99
9
79

13
04

34
81

9
0.

99
99

9
99

97
91

3
04

34
8
0
0

0
.9

9
9
9
9
9
9
9
7
9
1
3
0
4
3
4
7
5
5

0
.9

9
9
9
9
9
9
9
7
9
1
3
0
4
3
4
8
0
0

1e
-9

C
T

M
R

0.
99

99
99

99
79

13
04

35
03

7
0.

99
99

99
99

79
13

04
35

03
7

0.
99

99
99

99
79

13
04

35
03

7
0.

99
99

99
99

79
13

04
35

03
7

0.
99

9
99

99
9
79

13
04

35
03

7
0.

99
99

9
99

97
91

3
04

35
0
3
7

0
.9

9
9
9
9
9
9
9
7
9
1
3
0
4
3
5
0
3
7

0
.9

9
9
9
9
9
9
9
7
9
1
3
0
4
3
5
0
3
7

N
R

0.
99

99
95

40
3
30

34

O
A

V
0.

99
99

97
91

30
14

6
0.

99
99

97
91

30
09

9
0.

99
99

97
91

30
08

2
0.

99
99

97
91

30
14

6
0.

99
99

9
79

13
01

1
0

0.
99

9
99

79
13

0
09

3
0
.9

9
9
9
9
7
9
1
3
0
0
7
9

0
.9

9
9
9
9
7
9
1
3
0
0
9
3

T
A

V
0.

99
99

97
91

30
21

6
0.

99
99

97
91

30
15

2
0.

99
99

97
91

30
12

2
0.

99
99

97
91

30
21

6
0.

99
99

9
79

13
01

6
8

0.
99

9
99

79
13

0
14

2
0
.9

9
9
9
9
7
9
1
3
0
1
1
6

0
.9

9
9
9
9
7
9
1
3
0
1
4
2

T
V

0.
99

99
97

91
30

25
6

0.
99

99
97

91
30

19
5

0.
99

99
97

91
30

15
8

0.
99

99
97

91
30

25
6

0.
99

99
9
79

13
02

1
3

0.
99

9
99

79
13

0
18

4
0
.9

9
9
9
9
7
9
1
3
0
1
4
9

0
.9

9
9
9
9
7
9
1
3
0
1
8
4

1e
-6

C
T

M
R

0.
99

99
97

91
30

43
1

0.
99

99
97

91
30

43
1

0.
99

99
97

91
30

43
1

0.
99

99
97

91
30

43
1

0.
99

99
9
79

13
04

3
1

0.
99

9
99

79
13

0
43

1
0
.9

9
9
9
9
7
9
1
3
0
4
3
1

0
.9

9
9
9
9
7
9
1
3
0
4
3
1

N
R

0.
99

95
40

60
87

58
93

2

O
A

V
0.

99
97

91
01

61
0.

99
97

90
96

92
0.

99
97

90
95

23
0.

99
97

91
01

61
0.

99
97

90
98

03
0.

99
97

9
09

62
9

0
.9

9
9
7
9
0
9
4
9
3

0
.9

9
9
7
9
0
9
6
2
9

T
A

V
0.

99
97

91
08

62
0.

99
97

91
02

17
0.

99
97

90
99

21
0.

99
97

91
08

62
0.

99
97

91
03

76
0.

99
97

9
10

11
9

0
.9

9
9
7
9
0
9
8
6
2

0
.9

9
9
7
9
1
0
1
1
9

T
V

0.
99

97
91

12
61

0.
99

97
91

06
50

0.
99

97
91

02
74

0.
99

97
91

12
61

0.
99

97
91

08
32

0.
99

97
9
10

53
5

0
.9

9
9
7
9
1
0
1
9
0

0
.9

9
9
7
9
1
0
5
3
5

1e
-4

C
T

M
R

0.
99

97
91

30
03

0.
99

97
91

30
02

0.
99

97
91

30
02

0.
99

97
91

30
03

0.
99

97
91

30
03

0.
99

97
9
13

00
2

0
.9

9
9
7
9
1
3
0
0
2

0
.9

9
9
7
9
1
3
0
0
2

N
R

0.
9
56

91

O
A

V
0.

97
66

1
0.

97
62

9
0.

97
61

7
0.

97
66

1
0.

97
63

7
0
.9

76
25

0
.9

7
6
1
5

0
.9

7
6
2
5

T
A

V
0.

97
71

2
0.

97
66

4
0.

97
64

3
0.

97
71

2
0.

97
67

6
0
.9

76
57

0
.9

7
6
3
9

0
.9

7
6
5
7

T
V

0.
97

74
4

0.
97

69
2

0.
97

66
6

0.
97

74
4

0.
97

71
0

0
.9

76
84

0
.9

7
6
6
0

0
.9

7
6
8
4

0.
01

C
T

M
R

0.
97

89
5

0.
97

89
0

0.
97

88
9

0.
97

89
5

0.
97

89
2

0
.9

78
90

0
.9

7
8
8
9

0
.9

7
8
9
0

N
R

0.
82

7
3

O
A

V
0.

86
04

0.
85

89
0.

85
81

0.
86

04
0.

85
92

0.
85

87
0
.8

5
8
0

0
.8

5
8
7

T
A

V
0.

86
32

0.
86

06
0.

85
91

0.
86

32
0.

86
13

0.
86

00
0
.8

5
8
9

0
.8

6
0
0

T
V

0.
86

52
0.

86
12

0.
86

00
0.

86
52

0.
86

31
0.

86
08

0
.8

5
9
8

0
.8

6
0
8

0.
05

C
T

M
R

0.
88

10
0.

87
88

0.
87

82
0.

88
10

0.
87

95
0.

87
88

0
.8

7
8
2

0
.8

7
8
8

N
R

0.
72

2
6

O
A

V
0.

72
59

0.
72

56
0.

72
50

0.
72

59
0.

72
56

0.
72

54
0
.7

2
5
0

0
.7

2
5
4

T
A

V
0.

72
65

0.
72

62
0.

72
51

0.
72

65
0.

72
64

0.
72

57
0
.7

2
5
1

0
.7

2
5
7

T
V

0.
72

62
0.

72
52

0.
72

52
0.

72
62

0.
72

70
0.

72
51

0
.7

2
5
2

0
.7

2
5
4

0.
1

C
T

M
R

0.
73

18
0.

73
10

0.
72

98
0.

73
18

0.
73

12
0.

73
10

0
.7

2
9
8

0
.7

3
1
0

N
R

0.
70

6
4

O
A

V
0.

70
31

0.
70

32
0.

70
26

0.
70

31
0.

70
31

0.
70

30
0
.7

0
2
6

0
.7

0
3
0

T
A

V
0.

70
33

0.
70

35
0.

70
26

0.
70

33
0.

70
36

0.
70

30
0
.7

0
2
6

0
.7

0
3
0

T
V

0.
70

25
0.

70
22

0.
70

26
0.

70
25

0.
70

39
0.

70
23

0
.7

0
2
5

0
.7

0
2
3

0.
11

C
T

M
R

0.
70

27
0.

70
28

0.
70

17
0.

70
27

0.
70

28
0.

70
28

0
.7

0
1
7

0
.7

0
2
8

N
R

0.
60

2
6

O
A

V
0.

55
66

0.
55

76
0.

55
77

0.
55

66
0.

55
74

0.
55

76
0
.5

5
7
8

0
.5

5
7
6

T
A

V
0.

55
49

0.
55

70
0.

55
73

0.
55

49
0.

55
67

0.
55

70
0
.5

5
7
4

0
.5

5
7
0

T
V

0.
55

28
0.

55
57

0.
55

69
0.

55
28

0.
55

59
0.

55
60

0
.5

5
7
1

0
.5

5
6
0

0.
2

C
T

M
R

0.
50

78
0.

51
14

0.
51

14
0.

50
78

0.
51

05
0.

51
14

0
.5

1
1
4

0
.5

1
1
4

T
a

b
le

5
.6

:
P

ar
et

o
o
p
ti

m
a
l

im
p

le
m

en
ta

ti
on

s
of

s7
13

b
en

ch
m

ar
k

w
it

h
va

ry
in

g
er

ro
r

p
ro

b
ab

il
it

ie
s

75

Chapter 5.4 Conclusion

Error Probability Region Reliability Relations Reliability Relation Number

<Threshold point -1% RNR < ROAV < RTAV < RTV < RCTMR 1
Threshold point -1% - Threshold Point RNR < ROAV ||TAV ||TV < RCTMR 2

Threshold Point - Threshold point +1% RNR > ROAV ||TAV > RCTMR 3

>Threshold point +1% RNR > ROAV > RTAV > RTV > RCTMR 4

Table 5.7: Error probability regions with their corresponding equations for s713
benchmark

probability from threshold point, the reliability and hence Pareto optimal points for OAV,
TAV and TV vary arbitrarily, not following the expected relation (ROAV < RTAV < RTV),
however still holding reliability relation number 2. For error probability up to 1% above
threshold point, the Pareto optimal point is only one, i.e., NR version being superior in
reliability than any of the redundant versions. The expected relation (ROAV > RTAV >
RTV) does not hold in this case, however, it is represented by reliability relation number
3. Finally, for error probability 1% above threshold point, non-redundant version, NR,
remains to be the only Pareto optimal point where the expected reliability relation number
4 holds.
It can be concluded for this benchmark that beyond the small transition region around the
threshold point, the Pareto optimal implementation points do not differ with variation of
error probability. However, to provide a firm statement on whether this trend holds for any
test circuit, we have to perform this analysis for various benchmarks which corresponds
to our future work, due to extensive time required for analysis of a single benchmark.

5.4 Conclusion

This chapter verifies the tool flow of the DRM technique presented in the previous chap-
ter. The design-time and run-time tool flows of DRM have been verified with standard
ISCAS benchmarks which leads us to certain conclusions. The design-time tool flow in
particular, shows that the performance factors of a redundant design, i.e., area, latency
and power depend strongly on the placement and routing decisions taken by the FPGA
synthesis tool. While focusing on speed and/or area efficiency, the routed FPGA design
leads to different performance parameters as the expected results. In particular, we have
seen that the optimization potential is high for large HDL designs thereby routing the big
circuits more efficiently on FPGAs. For example, a slight increase in area consumption
might lead to dramatic decrease in power consumption and/or latency. Similarly, an in-
crease in the reliability level could even improve the performance factors. Moreover, our
experimental observation shows that the trend in variation of performance factors strongly
depends on the circuit benchmark suite. The run time tool flow, though presented with a
smaller implementation set than used for the design time, proves that the reconfigurable
redundancy configuration, upon which our DRM tool flow is based, outperforms the static
reliability schemes based on static-maximum-reliability and static-varying-reliability re-
dundancy configurations. For our test sorting and matrix multiplication applications, we

76

found DRM to be 7.5 and 3.7 times performance-efficient respectively, compared to static
reliability management schemes.

77

CHAPTER 6

Summary and Conclusions

This chapter summarizes the contributions of this thesis and draws conclusions. It further
discusses future research directions.

6.1 Summary

Radiation induced errors in FPGA hardware act as a bottleneck for reliable computing in
aerospace missions. Conventionally, hardware redundancy is used as a standard method
to mitigate these errors. However, the cost of this reliability approach is a fixed overhead
in the performance factors of area consumption, latency and power dissipation. The
fixed overhead corresponds to the worst case radiation scenario. Based on the radiation
pattern studies of space orbits in literature, we observed a big variation in the radiation
strength during the mission time span. The motivation behind this research is to utilize
various redundant levels of a hardware design according to the reliability requirements,
i.e., lower redundancy levels for low radiation environments and vice versa. As a result, the
performance of a hardware design can be improved in low reliability requirements. This
concept of adapting reliability levels to radiation strength is named Dynamic Reliability
Management (DRM) in our research.
DRM is a system level concept that has to be recognized on a system-on-chip platform at
both the hardware and software layers. It consists of a design-time and a run-time part.
The design-time part involves a tool flow that takes as input a target application design
written in a hardware description language like Verilog or VHDL. The tool flow generates
several redundant implementations of this hardware design using BANL TMR tool. The
original BANL tool was capable of generating only TMR configuration which we extended
in this research to three more redundant configurations, and hence extended the design
space to 32 redundant implementations of a hardware design. Due to the varying opti-
mization potential of these hardware designs on an FPGA platform, we have to conduct
the analysis of the performance factors, for each of the redundant implementations, using

79

Chapter 6.1 Summary

standard Xilinx tools. However, the computation of reliability for each of these implemen-
tations offered a new challenge. The reliability computation approaches exist in literature
with different application domains. However, we chose Boolean difference error calculus
(BDEC) approach from literature that fulfills our reliability computation requirements.
The original BDEC model is not straightforwardly usable for computing reliability of the
redundant structures. Therefore, we have first extended this model in two ways, i.e., in-
terpreting redundant structures as well as sequential circuits. The revised BDEC model is
afterwards automated in MATLAB which made reliability calculations easier for a circuit
of any size. The overall design-time tool flow, now being able to compute area, latency,
power and achieved reliability, automatically analyzes the 32-point implementation set.
The final step is the Pareto-filtration of the redundant implementations on the basis of
three performance factors and exact reliability of each redundant design.
The second part of DRM, i.e., run-time tool flow is responsible for utilizing the Pareto-
filtered implementations according to the reliability requirements. The decisions on when
and which implementation to configure at a particular instant, is taken by the decision
module. The decision module is the central unit, implemented in software or hardware,
that is responsible for taking decisions when to reconfigure the application thread to higher
or lower reliability levels based on the external, time, cooperative or radiation/error based
data. The run-time tool flow is implemented on a system-on-chip platform using the em-
bedded operating system ReconOS on a Xilinx ML605 evaluation board. ReconOS, which
is an operating system for reconfigurable logic cores switches among various redundant im-
plementations of the hardware design based on the decisions taken by the decision module.
The tool flow consists of standard IP cores of Xilinx like Microblaze processor and DDR3
SDRAM, debugger modules and peripherals, etc. Our target application is implemented
as a hardware thread on a reconfigurable partition. The challenge arises when we had
to fix the partition size to the maximum size of redundant implementation in the Pareto
optimal set. This problem was resolved by implementing the parallelized versions of the
hardware threads with reliability levels lower than the maximum reliable configuration.
In this way, the reconfigurable partition is fully utilized at all times while the parallelized
hardware threads offers the performance benefit as well.
Each of the DRM parts have been validated separately on various benchmarks. The
design-time tool flow has been validated for a set of six ISCAS benchmarks from three
categories of combinational and sequential circuit architectures. The results, while pre-
senting the area, latency, power and reliability magnitudes, also focus on the filtration
of non-dominated Pareto-optimal circuit implementations. The run-time part has been
validated by practical data sorting and matrix multiplication case studies. The run-time
benchmarks are evaluated for performance benefits on a system-on-chip platform utilizing
our DRM approach in contrast to static reliability techniques observing fixed overheads.
The results show that our DRM technique, which is based on dynamic partial reconfigura-
tion outperforms all the static reliability management techniques and helps us to maintain
a suitable reliability-performance trade off at all times.

80

6.2 Conclusions and Lessons Learned

Dynamic Reliability Management is the technique for adaptive optimization of application
reliability with the performance during its operation time span. While implementing this
concept for FPGA based hardware designs, we have developed tool flows and performed
thorough experimentation which leads us to the following conclusions.

• Our motivation behind proposing the concept of DRM is to avoid the usage of static
redundant structures in reliability-required scenarios. Therefore, while performing
research on the space missions, we have observed that the logic of utilizing fixed
redundant structures in FPGAs results in performance loss when the system does
not operate under worst radiation scenario. The reason is the varying nature of
radiation patterns for different satellite orbits as observed from the radiation stud-
ies in literature. Therefore, utilizing the benefit of reconfigurability of FPGAs, we
have concluded that dynamically varying the redundant structures on FPGAs cor-
responding to the radiation levels could be highly useful in maintaining a suitable
trade-off between reliability and system performance at all times.

• The probabilistic computational reliability models, presented in the literature, have
been found to be not taking into account the effect of redundancy. It has been ob-
served that the redundant structures, when evaluated by these schemes provides us
even lower reliability of redundant circuits while they are supposed to be superior
in reliability compared to a non-redundant circuit. However, in this research, we
utilized redundancy theory and merged it with one of the error probabilistic models
to comprehend the redundancy effects in circuits. Therefore, the cumulative reliabil-
ity of redundant circuits does not always decrease from primary inputs to outputs.
Instead, there exist voter elements that are capable of improving circuit reliability
at intermediate stages of the circuit.

• The probabilistic computational models including BDEC have been found to not
report the results on sequential circuit analysis. In this research, we have merged
our utilized model, i.e., BDEC with the loop breaking and time frame expansion
technique to simulate the sequential circuits. Hence, the reliability analysis which
was limited to only combinational circuits has been extended to sequential elements
in this research.

• The development of reliability evaluation tool using BDEC leads us to a concept
of a threshold point. Generally, it has been considered that the higher levels of
redundancy always improve circuit reliability. However, our analysis tells us that
this assumption is true up to a certain threshold values of component, input and
voter error probabilities as well as the signal probability. Going beyond the threshold
point renders the redundancy concept useless where higher orders of redundancy
result in even lesser circuit reliability. Such magnitudes of input, voter, component
and signal probabilities are termed as threshold points with respect to each of these
control parameters. Furthermore, we have concluded that the voter error probability

81

Chapter 6.3 Future Directions

is the most critical control parameter since the threshold point arrives earliest with
increase in voter error probability.

• The experimentation conducted using DRM design-time tool flow has made us con-
clude that the redundant circuit configurations can highly vary among the perfor-
mance factors like area, latency, power and reliability level, depending on the used
granularity level and voter-insertion scheme. The high variation is influenced by the
mapping and placement and routing decisions taken by the FPGA design softwares.
While one would expect all the performance factors to be scaled linearly with higher
orders of redundancy, the experiments have proved this assumption wrong. The
conclusion we have drawn from the experiments is that the optimization potential
of the redundant circuits increase with the higher orders of redundancy. Similarly,
the placed and routed design can vary the critical path length thus varying latency.
Finally, the organization of the FPGA components can greatly vary the expected
power dissipation. Hence, a complete experimentation of all the redundant configu-
rations should be exercised to obtain the realistic data on performance parameters
which could make higher orders of redundancy cost-effective as was observed in our
experiments.

• While implementing the DRM concept for run-time tool flow, we observed that
DRM cannot be implemented straightforwardly on the FPGA platform. The reason
is the constraint that the reconfigurable partition has to be fixed to a certain area
as required by practical run-time systems such as ReconOS. This constrained area
should correspond to the area required by the biggest redundant structure utilized.
Constraining the reconfigurable partition does not serve the area efficiency with the
DRM since the unused area cannot be utilized for other logic when lower levels
of redundancy are used. Therefore, we introduced the concept of parallelism in
the hardware threads. For lower levels of redundancy, the hardware threads are
configured with the parallelized versions of application engines so that the area
can be utilized fully and the performance can be improved as well. In contrast,
dynamically allocating reconfigurable areas is possible by low-level FPGA bitstream
manipulation though this direction is out of scope for our research work.

6.3 Future Directions

The research work in this thesis can be extended by making the BDEC reliability tool
more efficient as well as by extending the DRM experimentation platform.

1. Analysis using BDEC tool: In future, we plan to extend the BDEC tool in five
ways.

• The signal probability values in BDEC model have been arbitrarily taken as
50% in this research as well as in the literature. However, in the future, we will
develop an automated signal probability module that accurately calculates the

82

wire probability being at logic 1 during the observation period of the circuit.
This module will be built on the analysis of value change dump file, i.e. .vcd of
the Xilinx testbench analysis.

• Afterwards, we will perform the sequential circuit analysis for multiple itera-
tions to observe whether the reliability at the outputs of sequential elements
drops to a certain threshold or oscillate between bounds due to voter elements
inserted after the sequential elements.

• The third improvement to this model will be to observe the effect of re-convergent
fanout on the output reliability.

• Another extension will be providing a fault model that will identify the effect
of individual wires on the output reliability and how to harden the sensitive
ones using redundancy.

• The timing-efficiency of this tool will be improved by parallelizing the code and
using multiple computing engines to run the BDEC algorithm.

• Lastly, we want to open a new research direction for modelling the gate er-
ror probability which has been used arbitrarily in the past by all the related
research works. This fundamental research requires huge effort to model the
major sources of errors at the device layer nowadays, e.g., NBTI (Negative-Bais
Temperature Instability, HCI (Hot Carrier Injection) and threshold voltage vari-
ation.

2. DRM Experimentation Platform: During the course of validation of DRM, we
developed an experimentation platform that could be extended in multiple ways. It is
practically hard to enlarge the scope of our experimentation to cover all the possible
aspects of system improvements in our experimentation. However, our future work
will address some or all of these improvements as discussed in the following points.

• We have, so far, focussed on studying the reliability-performance trade off for
the application module only. However, the overall operating system and its
interface should be accounted for similar reliability requirements. The simplest
approach of ensuring the reliability of the base system is to implement it to the
highest reliability/redundancy level, as also proposed in [2, 46], thereby adding
a constant overhead in the performance of the system including application
modules. Our future work will involve making the base system redundant
including the processor Microblaze and then observe the performance benefit
of DRM.

• The performance of the system has been studied only while utilizing redundancy
in this work whereas the reliable systems employ scrubbing as an additional
reliability-enhancement technique. In the presence of scrubbing, the reliability
of the system will be computed according to a more complex mathematical
model [93]. Moreover, since scrubbing is performed via ICAP interface of the
FPGA and so is the partial reconfiguration for our DRM approach, it may

83

Chapter 6.3 Future Directions

cause performance degradation while the reconfiguration process is blocked by
the scrubbing cycle. This effect will be investigated in our future work.

• The implementation of decision mechanism in DRM can be studied for different
approaches based on error-rate or radiation level measurements. In our work,
we have utilized a basic approach of dividing radiation data into different do-
mains and taking the reconfiguration decision based on crossing the domain
thresholds. However, the decision mechanisms can be made more accurate by
real-time error-rate measurements while taking the reconfiguration decisions
with more accuracy, using, for example a BRAM sensor [46]. Moreover, the
performance of a decision mechanism can be improved by implementing it in
hardware in contrast to the software approach. It is also worth mentioning that
utilizing a non-redundant (NR) implementation for lowest reliability require-
ment is just for the sake of understanding the reconfiguration concept; it does
not guarantee that the system will be reliable being non-redundant.

• The storage mechanism of partial bitstreams has to ensure the integrity of
bitstream since we cannot afford the corruption of these bitstreams representing
the whole functionality of hardware design. In our work, we stored them in
DRAM while proposing ECC to protect them against corruption. The storage
mechanism can be made more robust by additional reliability techniques which
corresponds to our future work.

• In our work, the reliability of different redundant implementations were cal-
culated offline using a known analytic reliability model. This approach can
be made more compact by characterizing reliability at runtime using mathe-
matical approaches. The decision algorithm can be made more compact which
takes into account the parameters based on the hardware design, environmental
conditions and system constraints.

• The real space applications involve extensive simulations considering space
weather and solar conditions. In this work, we demonstrated the approach in a
broader picture without stressing that our approximate reliability computation
method is comparable to the real-time simulations for space environments. In
our future work, we will utilize real aerospace environment and use CREME96
tool to observe the difference in performance of a DRM based application.

84

85

Chapter 6.3 Future Directions

Acronyms

DRM Dynamic Reliability Management
TMR Triple Modular Redundancy
NR No Redundancy
OAV One Alternate Voter
TAV Two Alternate Voters
TV Triplicated Voter
CTMR Cascaded Triple Modular Redundancy
ABFT Algorithm based Fault Tolerance
DWC Duplication With Comparison
ECC Error Checking and Correcting Codes
LUT Lookup Table
FPGA Field Programmable Gate Array
ASIC Application-specific Integrated Circuit
MUX Multiplexer
RAM Random Access Memory
CC Connectivity Cutset
AFC After Flipflop Cutset
BFC Before Flipflop Cutset
BD Basic Decomposition
HFC Highest Fanout Cutset
HFFC Highest Flipflop Fanout Cutset
HFFIC Highest Flipflop Fanin Input Cutset
HFFOC Highest Flipflop Fanin Output Cutset
HDL Hardware Description Language
BDEC Boolean Difference Error Calculator
PGM Probabilistic Gate Model
PTM Probabilistic Transfer Matrices Model
ADD Algebraic Decision Diagram
PDD Probabilistic Decision Diagram
BYU Brigham Young University
LANL Los Alamos National Laboratory
SoC System-on-Chip
SAA South Atlantic Anomaly
TID Total Ionizing Dose

86

SEU Single Event Upset
SET Single Event Transient
SEFI Single Event Functional Interrupt
MBU Multiple Bit Upset
SEL Single Event Latchup
SEB Single Event Burnout
SEGR Single Event Gate Rupture
CMOS Complementary Metal Oxide Semiconductor
SOI Silicon on Insulator
CLB Configurable Logic Block
SRAM Static Random Access Memory
DRAM Dynamic Random Access Memory
BRAM Block Random Access Memory
DSP Digital Signal Processor
CRC Cyclic Redundancy Check
SECDED Single Error Correction Double Error Detection
FES Feedback Edge Set
SCC Strongly Connected Component
LEO Low Earth Orbit
HEO Highly Elliptical Orbit
TLE Two-line Element
MTBF Mean Time Between Failures
MTTF Mean Time to Failure
FIT Failure-in Time
R4R Reconfiguration for Reliability
RFT Reconfigurable Fault Tolerance
PRR Partially Reconfigurable Region
HP High Performance
PLB Processor Local Bus
GUI Graphical User Interface
FMU Fault Management Unit
RCU Reconfiguration Control Unit
BFD BRAM Fault Detector
ReconOS Reconfigurable Operating System
OSIF Operating System Interface
MEMIF Memory Interface
FIFO First In First Out
NBTI Negative Bias Temperature Instability
HCI Hot Carrier Injection

87

APPENDIX A

Formulation of Error Probability Equations

In this appendix, we will show how to compute the error probability equations of 2-input
OR and XOR gates as well as 3-input lookup table (LUT) with a reference initialization
string. This formulation is based on the five step process described in Section 3.2.2.

A.1 2-Input OR Gate

Step 1:
f = x1 + x2 (A.1)

Step 2:
∂f

∂x1
= x2 (A.2)

∂f

∂x2
= x1 (A.3)

∆f

∆(x1x2)
= x1 x2 + x1x2 (A.4)

Step 3:

Pr{ ∂f
∂x1
} = 1− p2 (A.5)

Pr{ ∂f
∂x2
} = 1− p1 (A.6)

Pr{ ∆f

∆(x1x2)
} = (1− p1)(1− p2) + p1p2 = 1− (p1 + p2) + 2p1p2 (A.7)

Step 4:

εin = ε1(1− ε2)Pr{ ∂f
∂x1
}+ ε2(1− ε1)Pr{ ∂f

∂x2
}+ ε1ε2Pr{

∆f

∆(x1x2)
} (A.8)

89

Chapter A.2 2-Input XOR Gate

εin = ε1(1− ε2)(1− p2) + ε2(1− ε1)(1− p1) + ε1ε2(1− (p1 + p2) + 2p1p2) (A.9)

Step 5:
εAND2 = εg + (1− 2εg)εin (A.10)

εOR2 = εg + (1− 2εg)(ε1(1− p2) + ε2(1− p1) + ε1ε2(1− 2(p1 + p2) + 2p1p2)) (A.11)

A.2 2-Input XOR Gate

Step 1:
f = x1x2 + x1x2 (A.12)

Step 2:
∂f

∂x1
= 1 (A.13)

∂f

∂x2
= 1 (A.14)

∆f

∆(x1x2)
= 0 (A.15)

Step 3:

Pr{ ∂f
∂x1
} = 1 (A.16)

Pr{ ∂f
∂x2
} = 1 (A.17)

Pr{ ∆f

∆(x1x2)
} = 0 (A.18)

Step 4:

εin = ε1(1− ε2)Pr{ ∂f
∂x1
}+ ε2(1− ε1)Pr{ ∂f

∂x2
}+ ε1ε2Pr{

∆f

∆(x1x2)
} (A.19)

εin = ε1(1− ε2) + ε2(1− ε1) (A.20)

Step 5:
εXOR2 = εg + (1− 2εg)εin (A.21)

εXOR2 = εg + (1− 2εg)(ε1 + ε2 − 2ε1ε2) (A.22)

90

A.3 3-Input LUT

Reference initiation string: 00100000

Step 1:

The initialization string of LUTs are decoded based on the truth table analysis, where the
least significant bit corresponds to x1x2x3 and most significant x1 x2 x3.

f = x1x2x3 (A.23)

Step 2:
∂f

∂x1
= x2x3 (A.24)

∂f

∂x2
= x1x3 (A.25)

∂f

∂x3
= x1x2 (A.26)

∆f

∆(x1x2)
= x3(x1x2 + x1x2) (A.27)

∆f

∆(x1x3)
= x2(x1x3 + x1x3) (A.28)

∆f

∆(x2x3)
= x1(x2x3 + x2x3) (A.29)

∆f

∆(x1x2x3)
= x1x2 + x1x3 + x1x2x3 (A.30)

Step 3:

Pr{ ∂f
∂x1
} = p3(1− p2) (A.31)

Pr{ ∂f
∂x2
} = p1p3 (A.32)

Pr{ ∂f
∂x3
} = p1(1− p2) (A.33)

Pr{ ∆f

∆(x1x2)
} = p3(p1 + p2 − 2p1p2) (A.34)

Pr{ ∆f

∆(x1x3)
} = 1− p1 − p3 − 2p1p3(1− p2) + p2(p1 + p3) (A.35)

Pr{ ∆f

∆(x2x3)
} = p1(p2 + p3 − 2p2p3) (A.36)

91

Chapter A.3 3-Input LUT

Pr{ ∆f

∆(x1x2x3)
} = p2p3 + p1(1− p2 + p3 + p2p3) (A.37)

Step 4:

εin =ε1(1− ε2)(1− ε3)Pr{ ∂f
∂x1
}+ ε2(1− ε1)(1− ε3)Pr{ ∂f

∂x2
}+

ε3(1− ε1)(1− ε2)Pr{ ∂f
∂x3
}+ ε1ε2(1− ε3)Pr{ ∆f

∆(x1x2)
}+

ε1ε3(1− ε2)Pr{ ∆f

∆(x1x3)
}+ ε2ε3(1− ε1)Pr{ ∆f

∆(x2x3)
}+

ε1ε2ε3Pr{
∆f

∆(x1x2x3)
}

(A.38)

εin =ε1(1− ε2)(1− ε3)(p3(1− p2))+

ε2(1− ε1)(1− ε3)(p1p3)+

ε3(1− ε1)(1− ε2)(p1(1− p2))+

ε1ε2(1− ε3)(p3(p1 + p2 − 2p1p2))+

ε1ε3(1− ε2)(1− p1 − p3 − 2p1p3(1− p2) + p2(p1 + p3))+

ε2ε3(1− ε1)(p1(p2 + p3 − 2p2p3))+

ε1ε2ε3(p2p3 + p1(1− p2 + p3 + p2p3))

(A.39)

Step 5:
εLUT3 = εg + (1− 2εg)εin (A.40)

εLUT3 =εg + (1− 2εg)({ε1(1− ε2)(1− ε3)(p3(1− p2))+

ε2(1− ε1)(1− ε3)(p1p3)+

ε3(1− ε1)(1− ε2)(p1(1− p2))+

ε1ε2(1− ε3)(p3(p1 + p2 − 2p1p2))+

ε1ε3(1− ε2)(1− p1 − p3 − 2p1p3(1− p2) + p2(p1 + p3))+

ε2ε3(1− ε1)(p1(p2 + p3 − 2p2p3))+

ε1ε2ε3(p2p3 + p1(1− p2 + p3 + p2p3))})

(A.41)

92

List of Figures

2.1 Earth’s Magnetosphere [11] . 6
2.2 Silicon-on-insulator technology [9] . 10
2.3 Triple modular redundancy with a) single voter b) triplicated voter 11
2.4 Triple modular redundancy with a) one alternate voter b) two alternate voters 12
2.5 Cascaded triple modular redundancy- Level 1 13
2.6 TMR implementation in FPGA . 15
2.7 TMR implementation of one-bit counter [24] 16
2.8 The Concept of Adaptive Redundancy . 17
2.9 Borealis radiation strike-rate profile . 18
2.10 Expected fault-rate of LEO [2] . 19
2.11 Expected fault-rate of HEO [2] . 20
2.12 Expected fault-rate of LEO orbit under different solar conditions [28] 20
2.13 System-on-chip design with RFT controller [2] 26
2.14 An FPGA-based SEU mitigation system with BRAM sensor and adaptive

subsystems [46] . 28

3.1 BDEC model of faulty logic element [54] . 33
3.2 BDEC v/s TMR model of voter . 35
3.3 Error probabilistic domains of BDEC and TMR 36
3.4 A redundant 3-input AND gate . 37
3.5 BDEC reliability computation algorithm . 42
3.6 Variation of output reliability of c17 benchmark with gate error probability

(εg) . 44
3.7 Variation of output reliability of c17 benchmark with input error probability

(εi) . 45
3.8 Variation of output reliability of c17 benchmark with signal probability (pi) 46
3.9 Variation of output reliability of c17 benchmark with voter error probability,

εvoter . 47
3.10 Variation of output reliability of c17 benchmark with input and gate error

probabilities for (a) NR (b) TMR and (c) CTMR circuit implementations . 48

4.1 DRM deisgn-time tool flow . 53

93

List of Figures

4.2 Conceptual overview of ReconOS system architecture [83] 56
4.3 Exemplary ReconOS architecture . 58
4.4 ReconOS runtime flow with DRM . 59

5.1 Performance results for static-maximum-reliability, static-varying-reliability
and reconfigurable configurations of data sorter 70

5.2 Performance results for static-maximum-reliability, static-varying-reliability
and reconfigurable configurations of matrix multiplier 72

94

List of Tables

3.1 BDEC v/s TMR Reliability of Voter . 35

4.1 Decision Mechanisms . 57

5.1 Design space exploration results for the benchmarks c17 and c3540 from
the ISCAS’85 benchmark suite . 63

5.2 Design space exploration results for the benchmarks s713 and s838 from the
ISCAS’89 benchmark suite . 64

5.3 Design space exploration results for the benchmarks b8 and b12 from the
ISCAS’99 benchmark suite . 66

5.4 Hardware slot combinations . 68
5.5 Pareto Optimization of s713 Benchmark with respect to relative and exact

error probabilities . 74
5.6 Pareto optimal implementations of s713 benchmark with varying error prob-

abilities . 75
5.7 Error probability regions with their corresponding equations for s713 bench-

mark . 76

95

Bibliography

[1] NASA, “Today’s Tiny Transistors,” The Next Wave Journal, Vol. 20, No. 3, 2014.

[2] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, and H. Lam, “Recon-
figurable Fault Tolerance: A Comprehensive Framework for Reliable and Adaptive
FPGA-Based Space Computing,” ACM Transactions on Reconfigurable Technology
and Systems, vol. 5, no. 4, pp. 21:1–21:30, 2012.

[3] J. S. Hane, B. J. LaMeres, T. Kaiser, R. Weber, and T. Buerkle, “Increasing Radi-
ation Tolerance of Field-Programmable-Gate-Array-Based Computers Through Re-
dundancy and Environmental Awareness,” Journal of Aerospace Information Sys-
tems, vol. 11, no. 2, pp. 68–81, 2014.

[4] J. Anwer, S. Meisner, and M. Platzner, “Dynamic Reliability Management: Recon-
figuring Reliability-Levels of Hardware Designs at Runtime,” in International Con-
ference on Reconfigurable Computing and FPGAs (ReConFig), 2013, pp. 1–6.

[5] J. Anwer, M. Platzner, and S. Meisner, “FPGA Redundancy Configurations: An Au-
tomated Design Space Exploration,” in 2014 IEEE International Parallel Distributed
Processing Symposium Workshops (IPDPSW), 2014, pp. 275–280.

[6] J. Anwer and M. Platzner, “Analytic reliability evaluation for fault-tolerant circuit
structures on FPGAs,” in 2014 IEEE International Symposium on Defect and Fault
Tolerance in VLSI and Nanotechnology Systems (DFT), 2014, pp. 177–184.

[7] ——, “Boolean Difference Based Reliability Evaluation of Fault-Tolerant Circuit
Structures on FPGAs,” in 2016 Euromicro Conference on Digital System Design
(DSD), Aug 2016, pp. 1–8.

[8] ——, “Evaluating Fault-Tolerance of Redundant FPGA Structures Using Boolean
Difference Calculus,” Microprocessors and Microsystems, vol. 52, pp. 160 – 172, 2017.

[9] F. L. Kastensmidt, L. Carro, and R. Reis, Fault-Tolerance Techniques for SRAM-
Based FPGAs (Frontiers in Electronic Testing). Springer-Verlag New York, Inc.,
2006.

97

Bibliography

[10] J. M. Rabaey, A. Chandrakasan, and B. Nikolic, Digital Integrated Circuits (2nd
Edition). Prentice Hall, 2003.

[11] M. Goldstein, “Magnetospheric Physics - Turbulence On a Small Scale,” NATURE,
vol. 436, no. 7052, pp. 782–783, 2005.

[12] J. D. Engel, K. S. Morgan, M. J. Wirthlin, and P. S. Graham, “Predicting On-Orbit
Static Single Event Upset Rates in Xilinx Virtex FPGAs,” Brigham Young University,
Tech. Rep.

[13] B. J. LaMeres, “FPGA-Based Radiation Tolerant Computing.” Research Presenta-
tion - Montana State University, 2014.

[14] H. Quinn, D. Roussel-Dupre, M. Caffrey, P. Graham, M. Wirthlin, K. Morgan,
A. Salazar, T. Nelson, W. Howes, E. Johnson, J. Johnson, B. Pratt, N. Rollins,
and J. Krone, “The cibola flight experiment,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 8, no. 1, pp. 3:1–3:22, 2015.

[15] Space-grade Xilinx Virtex 5QV. [Online]. Available: http://www.xilinx.com/
products/silicon-devices/fpga/virtex-5qv.html

[16] B. Bridgford, C. Carmichael, and C. W. Tseng, “Single-Event Upset Mitigation Se-
lection Guide,” Xilinx Technical Report, XAPP987 v1.0, 2008.

[17] M. M. McCormack, “Trade Study and Application of Symbiotic Software and Hard-
ware Fault-tolerance on a Microcontroller-based Avionics System,” Ph.D. disserta-
tion, Department of Aeronautical and Astronautical Engineering, Massachusetts In-
stitute of Technology, 2011.

[18] R. Do, “Automated Triple Modular Redundancy,” Web-seminar, Mentor Graphics,
2011. [Online]. Available: http://www.mentor.com/products/fpga/multimedia/
automated-triple-modular-redundancy-how-and-when-to-use-it

[19] G. Swift and G. Allen, “Virtex-5QV Static SEU Characterization Summary,” Tech-
nical report, Xilinx Radiation Test Consortium, 2012.

[20] H. Quinn, K. Morgan, P. Graham, J. Krone, and M. Caffrey, “Eight Years of MBU
Data: What Does It All Mean?” Presentation- Single Event Effects Symposium
(SEE), 2007.

[21] H. Quinn, K. Morgan, P. Graham, J. Krone, M. Caffrey, and K. Lundgreen, “Domain
crossing errors: Limitations on single device triple-modular redundancy circuits in
xilinx fpgas,” IEEE Transactions on Nuclear Science, vol. 54, no. 6, pp. 2037–2043,
Dec 2007.

[22] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular Redundancy to Improve
Computer Reliability,” IBM Journal of Research and Development, vol. 6, no. 2, pp.
200–209, 1962.

98

Bibliography

[23] M. L. Shooman, “N-modular redundancy,” in Reliability of Computer Systems and
Networks: Fault Tolerance, Analysis and Design. Wiley, 2002, pp. 145–201.

[24] C. Carmichael, “Triple Module Redundancy Design Techniques for Virtex FPGAs,”
Xilinx Application Note, XAPP197 (v1.0.1), 2006.

[25] S. Lee, J. Jung, and I. Lee, “Voting Structures for Cascaded Triple Modular Redun-
dant Modules,” IEICE Electronics Express, vol. 4, no. 21, pp. 657–664, 2007.

[26] D. Bhaduri and S. K. Shukla, “NANOPRISM: A Tool for Evaluating Granularity vs.
Reliability Trade-offs in Nano Architectures,” in Proceedings of the 14th ACM Great
Lakes symposium on VLSI, 2004, pp. 109–112.

[27] P. Bergsman, “Xilinx FPGA Blasted into Orbit,” Xilinx Xcell Journal,, vol. 46, pp.
86–88, 2003.

[28] M. Caffrey, K. Morgan, D. Roussel-Dupre, S. Robinson, A. Nelson, A. Salazar,
M. Wirthlin, W. Howes, and D. Richins, “On-Orbit Flight Results from the Reconfig-
urable Cibola Flight Experiment Satellite (CFESat),” in 17th IEEE Symposium on
Field Programmable Custom Computing Machines (FCCM), 2009, pp. 3–10.

[29] H. Quinn, P. Graham, K. Morgan, Z. Baker, M. Caffrey, D. Smith, and R. Bell,
“On-Orbit Results for the Xilinx Virtex-4 FPGA,” in IEEE Radiation Effects Data
Workshop (REDW), July 2012, pp. 1–8.

[30] D. Ratter, “FPGAs on Mars,” Xilinx Xcell Journal,, vol. 50, pp. 8–11, 2004.

[31] A. Lesea, S. Drimer, J. J. Fabula, C. Carmichael, and P. Alfke, “The Rosetta Exper-
iment: Atmospheric Soft Error Rate Testing in Differing Technology FPGAs,” IEEE
Transactions on Device and Materials Reliability, vol. 5, no. 3, pp. 317–328, 2005.

[32] Actel RTAX-S/SL FPGAs. [Online]. Available: http://www.microsemi.com/
products/fpga-soc/radtolerant-fpgas/rtax-s-sl

[33] Actel RT ProASIC3 FPGA. [Online]. Available: http://www.microsemi.com/
products/fpga-soc/radtolerant-fpgas/rt-proasic3

[34] H. Quinn, “An Introduction to Mission Risk and Risk Mitigation for Xilinx SRAM
FPGAs.” Presentation- Los Alamos National Laboratory, 2009.

[35] F. H. Schmidt, “Fault Tolerant Design Implementation on Radiation Hardened By
Design SRAM-Based FPGAs,” Master’s thesis, Department of Aeronautics and As-
tronautics, Massachusetts Institute of Technology, 2013.

[36] I. Herrera-Alzu and M. López-Vallejo, “Self-Reference Scrubber for TMR Systems
Based on Xilinx Virtex FPGAs,” in Integrated Circuit and System Design. Power
and Timing Modeling, Optimization, and Simulation, ser. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2011, vol. 6951, pp. 133–142.

99

Bibliography

[37] G. Miller, C. Carmichael, and G. Swift, “Single-Event Upset Mitigation for Xilinx
FPGA Block Memories,” Xilinx Technical Report, XAPP962 (v1.1), 2008.

[38] N. H. Rollins, “Hardware and Software Fault-Tolerance of Softcore Processors Imple-
mented in SRAM-Based FPGAs,” Ph.D. dissertation, Department of Electrical and
Computer Engineering, Brigham Young University, 2012.

[39] C. Carmichael and C. W. Tseng, “Correcting Single-Event Upsets in Virtex-4 FPGA
Configuration Memory,” Xilinx Technical Report, XAPP1088 v1.0, 2009.

[40] J. Johnson, W. Howes, M. Wirthlin, D. McMurtrey, M. Caffrey, P. Graham, and
K. Morgan, “Using Duplication with Compare for On-line Error Detection in FPGA-
based Designs,” in IEEE Aerospace Conference, 2008, pp. 1–11.

[41] D. L. Foster, Area Constrained Partial Fault Tolerance. ProQuest, UMI Dissertation
Publishing, 2011.

[42] G. Bosilca, R. Delmas, J. Dongarra, and J. Langou, “Algorithm-based Fault Toler-
ance Applied to High Performance Computing,” Journal of Parallel and Distributed
Computing, vol. 69, no. 4, pp. 410–416, 2009.

[43] TMR Tool, http://www.xilinx.com/ise/optional prod/tmrtoolḣtm, 2012.

[44] Precision Hi-Rel Synthesis Software, http://www.mentor.com/products/fpga/synthesis,
2012.

[45] BYU EDIF Tools Homepage, http://reliability.ee.byu.edu/edif, 2012.

[46] R. Glein, B. Schmidt, F. Rittner, J. Teich, and D. Ziener, “A Self-Adaptive SEU
Mitigation System for FPGAs with an Internal Block RAM Radiation Particle Sen-
sor,” in IEEE 22nd Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), 2014, pp. 251–258.

[47] J. M. Johnson and M. J. Wirthlin, “Voter Insertion Algorithms for FPGA Designs
Using Triple Modular Redundancy,” in Proceedings of the 18th annual ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA), 2010, pp.
249–258.

[48] J. M. Johnson, “Synchronization Voter Insertion Algorithms for FPGA Designs Using
Triple Modular Redundancy,” Master’s thesis, Department of Electrical and Com-
puter Engineering, Brigham Young University, 2010.

[49] T. Buerkle, B. J. LaMeres, T. Kaiser, E. Gowens, L. Smoot, T. Heetderks, K. Schipf,
L. Clem, S. Schielke, and R. Luhr, “Ionizing Radiation Detector for Environmental
Awareness in FPGA-Based Flight Computers,” IEEE Sensors Journal, vol. 12, no. 6,
pp. 2229–2236, 2012.

[50] CREME96 Tool Website, https://creme.isde.vanderbilt.edu.

100

Bibliography

[51] S. Krishnaswamy, G. F. Viamontes, I. L. Markov, and J. P. Hayes, “Probabilistic
Transfer Matrices in Symbolic Reliability Analysis of Logic Circuits,” ACM Trans-
actions on Design Automation of Electronic Systems, vol. 13, no. 1, pp. 8:1–8:35,
2008.

[52] J. Han, H. Chen, E. Boykin, and J. Fortes, “Reliability Evaluation of Logic Circuits
Using Probabilistic Gate Models ,” Microelectronics Reliability, vol. 51, no. 2, pp.
468–476, 2011.

[53] T. Rejimon, K. Lingasubramanian, and S. Bhanja, “Probabilistic Error Modeling for
Nano-domain Logic Circuits,” IEEE Transactions on Very Large Scale Integration
Systems, vol. 17, no. 1, pp. 55–65, 2009.

[54] N. Mohyuddin, E. Pakbaznia, and M. Pedram, “Probabilistic Error Propagation in
a Logic Circuit Using the Boolean Difference Calculus,” in Advanced Techniques in
Logic Synthesis, Optimizations and Applications, K. Gulati, Ed. Springer New York,
2011, pp. 359–381.

[55] J. Liang, J. Han, and F. Lombardi, “New Metrics for the Reliability of Approximate
and Probabilistic Adders,” IEEE Transactions on Computers, vol. 62, no. 9, pp.
1760–1771, 2013.

[56] U. Khalid, J. Anwer, N. Singh, N. Hamid, and V. Asirvadam, “Reliability-Evaluation
of Digital Circuits Using Probabilistic Computation Schemes,” in IEEE National
Postgraduate Conference (NPC), 2011, pp. 1–4.

[57] A. Abdollahi, “Probabilistic Decision Diagrams for Exact Probabilistic Analysis,” in
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), 2007,
pp. 266–272.

[58] D. Bhaduri, S. Shukla, P. Graham, and M. Gokhale, “Reliability Analysis of Large
Circuits Using Scalable Techniques and Tools,” IEEE Transactions on Circuits and
Systems I, vol. 54, no. 11, pp. 2447–2460, 2007.

[59] S. Sivaswamy, K. Bazargan, and M. Riedel, “Estimation and Optimization of Relia-
bility of Noisy Digital Circuits,” in Quality of Electronic Design (ISQED), 2009, pp.
213–219.

[60] M. R. Choudhury and K. Mohanram, “Accurate and Scalable Reliability Analysis of
Logic Circuits,” in Proceedings of the Conference on Design, Automation and Test in
Europe (DATE), 2007, pp. 1454–1459.

[61] N. Mohyuddin, E. Pakbaznia, and M. Pedram, “Probabilistic Error Propagation in
Logic Circuits Using the Boolean Difference Calculus,” in IEEE International Con-
ference on Computer Design (ICCD), 2008, pp. 7–13.

101

Bibliography

[62] E. Johnson, M. J. Wirthlin, and M. Caffrey, “Single-Event Upset Simulation on an
FPGA,” in Proceedings of the International Conference on Engineering of Reconfig-
urable Systems and Algorithms (ERSA), T. P. Plaks and P. M. Athanas, Eds. CSREA
Press, Jun. 2002, pp. 68–73.

[63] Xilinx. (2015) Device Reliability Report UG116(v10.2.1). [Online]. Available:
http://www.xilinx.com/support/documentation/user guides/ug116.pdf

[64] J. Hussein and G. Swift. (2015) Mitigating Single-Event Upsets, Xilinx
White Paper(WP395) (v1.1). [Online]. Available: http://www.xilinx.com/support/
documentation/white papers/wp395-Mitigating-SEUs.pdf

[65] M. Berg, “Field Programmable Gate Array (FPGA) Single Event Effect (SEE)
Radiation Testing,” 2012, NASA Electronic Parts and Packaging Report. [Online].
Available: https://nepp.nasa.gov/files/23779/FPGA Radiation Test Guidelines
2012.pdf

[66] K. Siozios, D. Soudris, and M. Hübner, “A Framework for Supporting Adaptive Fault-
Tolerant Solutions,” ACM Transactions on Embedded Computing Systems, vol. 13,
no. 5s, pp. 169:1–169:22, 2014.

[67] A. M. Keller and M. J. Wirthlin, “Benefits of Complementary SEU Mitigation for
the LEON3 Soft Processor on SRAM-Based FPGAs,” IEEE Transactions on Nuclear
Science, vol. 64, no. 1, pp. 519–528, Jan 2017.

[68] K. Siozios, I. Savidis, and D. Soudris, “A Framework for Exploring Alternative Fault-
Tolerant Schemes Targeting 3-D Reconfigurable Architectures,” in 2016 International
Conference on Embedded Computer Systems: Architectures, Modeling and Simulation
(SAMOS), July 2016, pp. 336–341.

[69] E. Grade, A. Hayek, and J. Borcsok, “Implementation of a Fault-Tolerant System
Using Safety-Related Xilinx Tools Conforming to the Standard IEC 61508,” in 2016
International Conference on System Reliability and Science (ICSRS), Nov 2016, pp.
78–83.

[70] M. Vavouras and C. S. Bouganis, “Area-Driven Partial Reconfiguration for SEU Mit-
igation on SRAM-Based FPGAs,” in 2016 International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), Nov 2016, pp. 1–6.

[71] M. Brusati, A. Camplani, M. Cannon, H. Chen, M. Citterio, M. Lazzaroni, H. Takai,
and M. Wirthlin, “Mitigated FPGA Design of Multi-Gigabit Transceivers for
Application in High Radiation Environments of High Energy Physics Experiments,”
Journal of Measurement (Elsevier), 2017. [Online]. Available: acceptedforpublication

[72] F. Rittner, R. Glein, and A. Heuberger, “Detection and Isolation of Permanent Faults
in FPGAs with Remote Access,” in 2016 International Conference on ReConFigurable
Computing and FPGAs (ReConFig), Nov 2016, pp. 1–4.

102

Bibliography

[73] C. Bolchini, A. Miele, and C. Sandionigi, “A Novel Design Methodology for Imple-
menting Reliability-Aware Systems on SRAM-Based FPGAs,” IEEE Transactions on
Computers, vol. 60, no. 12, pp. 1744–1758, 2011.

[74] F. Wang and V. D. Agrawal, “Soft Error Rate Determination for Nanoscale Sequential
Logic,” in International Symposium on Quality Electronic Design (ISQED), 2010, pp.
225–230.

[75] C. Yu and C. Zhuo, “Soft Errors Verification for Sequential Circuits,” 2015, project
Report: Department of EECS, University of Michigan, Ann Arbor, Accessed April
2015.

[76] K. Mohammadi, H. Jahanirad, and P. Attarsharghi, “Fast Reliability Analysis
Method for Sequential Logic Circuits,” in International Conference on Systems En-
gineering (ICSEng), 2011, pp. 352–356.

[77] H. Jahanirad and K. Mohammadi, “Sequential Logic Circuits Reliability Analysis,”
Journal of Circuits, Systems and Computers, vol. 21, no. 05, p. 1250040, 2012.

[78] BYU-LANL Triple Modular Redundancy, Usage Guide. Version 0.5.2. Brigham
Young University, Configurable Computing Lab, 2009. [Online]. Available:
http://reliability.ee.byu.edu/edif/

[79] Y. Cao, “Pareto Front,” http://www.mathworks.de/matlabcentral/fileexchange/17251-
pareto-front, 2007.

[80] E. Lübbers and M. Platzner, “ReconOS: An RTOS Supporting Hard-and Software
Threads,” in International Conference on Field Programmable Logic and Applications
(FPL), 2007, pp. 441–446.

[81] ——, “Cooperative Multithreading in Dynamically Reconfigurable Systems,” in IEEE
International Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2009, pp. 1–4.

[82] ——, “ReconOS: Multithreaded Programming for Reconfigurable Computers,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 9, no. 1, 2009.

[83] A. Agne, M. Happe, A. Keller, E. Lubbers, B. Plattner, M. Platzner, and C. Plessl,
“ReconOS: An Operating System Approach for Reconfigurable Computing,” IEEE
Micro, vol. 34, no. 1, pp. 60–71, 2014.

[84] Benchmarks homepage, http://www.pld.ttu.ee/ maksim/ benchmarks, 2007.

[85] S. Dong, X. Wang, and X. Wang, “A Novel High-Speed Parallel Scheme for Data
Sorting Algorithm Based on FPGA,” in 2nd International Congress on Image and
Signal Processing (CISP), 2009, pp. 1–4.

103

Bibliography

[86] D. Mihhailov, V. Sklyarov, I. Skliarova, and A. Sudnitson, “Optimization of FPGA-
based Circuits for Recursive Data Sorting,” in 2010 12th Biennial Baltic Electronics
Conference (BEC), 2010, pp. 129–132.

[87] Partial Reconfiguration User Guide, 2012. [Online]. Available: http:
//www.xilinx.com/support/documentation/sw\ manuals/xilinx14 5/ug702.pdf

[88] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of Partial Reconfiguration
in FPGA Systems: A Survey and a Cost Model,” ACM Transactions on Reconfig-
urable Technology and Systems, vol. 4, no. 4, pp. 36:1–36:24, Dec. 2011.

[89] K. Vipin and S. Fahmy, “ZyCAP: Efficient Partial Reconfiguration Management on
the Xilinx Zynq,” IEEE Embedded Systems Letters, vol. 6, no. 3, pp. 41–44, 2014.

[90] S. Belkacemi, K. Benkrid, D. Crookes, and A. Benkrid, “Design and Implementation
of a High Performance Matrix Multiplier Core for Xilinx Virtex FPGAs,” in 2003
IEEE International Workshop on Computer Architectures for Machine Perception,
2003, pp. 4 pp.–159.

[91] S. Aslan, C. Desmouliers, E. Oruklu, and J. Saniie, “An Efficient Hardware Design
Tool for Scalable Matrix Multiplication,” in 2010 53rd IEEE International Midwest
Symposium on Circuits and Systems (MWSCAS), pp. 1262–1265.

[92] V. Strassen, “Gaussian elimination is not optimal,” Numerische Mathematik, vol. 13,
no. 4, pp. 354–356, 1969. [Online]. Available: http://dx.doi.org/10.1007/BF02165411

[93] D. McMurtrey, K. S. Morgan, B. Pratt, and M. J. Wirthlin, “Estimating TMR Reli-
ability on FPGAs Using Markov Models,” Brigham Young University, Tech. Rep.

104

