INTERFACING DETECTORS AND
COLLECTING DATA FOR
LARGE-SCALE EXPERIMENTS IN
HIGH ENERGY PHYSICS

USING COTS TECHNOLOGY

Jorn Schumacher






'L(‘ PADERBORN UNIVERSITY

The University for the Information Society

Dissertation

Department of Computer Science
Paderborn University

INTERFACING DETECTORS AND
COLLECTING DATA FOR LARGE-SCALE
EXPERIMENTS IN HIGH ENERGY
PHYSICS USING COTS TECHNOLOGY

Jorn Schumacher
Author

Prof. Dr. Christian Plessl

Academic Supervisor






Contents

Contents

1 Introduction

1.1 Motivation . . . ... ... ...
1.2 High Energy Physics and Accelerator Experiments . . . . . . .
1.3 Trigger and Data Acquisition Systems . . . .. ... ... ...
14 Contribution . . . . ... ... .. L o o
15 Outline . . .. ... ... ... ...

From Custom to COTS Components: Evolution of the ATLAS
Data-Acquisition System

21 LHCUpgrade Program. . . ... ... ... ...........
22 LHCRun1(2009-2013) . . ... ... ..
23 Runl1PerformanceData . . .. ... ... ... .........
24 LHCRun2(2015-2018) . . ... ... ... ... ........
25 LHCRun3andbeyond ......................
2.6 Centralized Data Distribution with FELIX . . . . ... ... ..
27 RelatedWork . ... ... .. . . ...

Architecture of a COTS-based Read-Out Switch

31 Overview . . . . . . . ..
3.2 Detector Connectivity . . ... ............... ...
3.3 The Detector Link InterfaceCard . . . ... ... ... .....
34 The FELIX SoftwareStack . .. ... ...............
35 RelatedWork . .. ... ... ... ... ... ...

Efficient Decoding of Detector Link Data Streams

41 Overview . . .. ... ... ...
42 ThePCle Packet Format . ... ..................
43 The Packet Decoding Algorithm . . .. ... ... .......
44 Profiling . ... ... . ...
45 Optimizations . . ... ... .. ... ... ... . ... ...
46 BenchmarkResults . ... .....................
4.7 Memory Bandwidth Analysis . . . ... ... ..........

i

O N O N =

11
11
12
18
20
24
25
27

29
29
29
31
34
39



ii

4.8
49

Conclusion . . . . . . . o v v i e
Related Work . . . . ... ... ... .. .....

5 Fast Networking for DAQ Systems

51
52
53
54
55
5.6
57
5.8
59

Overview . . . . . . . . . i e
Networking in FELIX . . . . ... ... ... ...
The NetlO Message Service . . . ... ... ...
User-level sockets . . . . . ... ... .......
Low-Level Sockets . . ... ............
The POSIX Back-end . ... ... .........
The FI/Verbs Back-end . . ... .. ... ....
The Intel OmniPath Back-end . . . ... ... ..
Benchmarks and Tests with NetlO . . . ... ..
5.10 Related Work

6 System Evaluation of a COTS-based Read-Out

6.1
6.2
6.3
6.4
6.5

Methodology . . ... ...............
Case Study: The New Small Wheel . . . . . . ..
Case Study: FullMode . . . . ... ..... ...
Scalability . .. ............ ... ...
CPUScaling . . ...................

7 Conclusion

7.1
7.2
73
7.4
7.5

Summary . . ... ... .. oL

COTS-based Readout for HEP experiments

FELIX . . . . .
Outlook . . . . . . . . .. . .o
FinalWords . . . .. ... ... ... .. .....

Publications of the Author

Bibliography

List of Figures

List of Tables

Acronyms

CONTENTS

91
97
99

101



Abstract

Data-acquisition systems for high-energy physics experiments like
the ATLAS experiment at the European particle-physics research insti-
tute CERN are used to record experimental physics data and are es-
sential for the effective operation of an experiment. Located in under-
ground facilities with limited space, power, cooling, and exposed to
ionizing radiation and strong magnetic fields, data-acquisition systems
have unique requirements and are challenging to design and build.

Traditionally, these systems have been composed of custom-
designed electronic components to be able to cope with the large data
volumes that high-energy physics experiments generate and at the same
time meet technological and environmental requirements. Custom-
designed electronics is costly to develop, effortful to maintain and typi-
cally not very flexible.

This thesis explores an alternative architecture for data-acquisition
systems based on commercial off-the-shelf (COTS) components. A
COTS-based data distribution device called FELIX that will be inte-
grated in ATLAS is presented. The hardware and software implemen-
tation of this device is discussed, with a specific focus on performance,
heterogenity of systems and traffic patterns. The COTS-based readout
approach is evaluated in the context of the future requirements of the
ATLAS experiment.

The main contributions of the thesis are an analysis of the ATLAS
data-acquisition system with a focus on the readout system, a software
architecture for the main application on FELIX hosts, a performance
analysis and tuning based on computer science methods for central FE-
LIX software components with respect to the requirements of the AT-
LAS experiment, a network communication library with a high-level
software interface to utilize high-performance computing network tech-
nology for the purpose of data-acquisition systems, and an evaluation
and discussion of ATLAS data-acquisition using FELIX systems as a
case study for COTS-based data-acquisition in high-energy physics.

ii






Zusammenfassung

Datenerfassungssysteme fiir Experimente in der Hochenergiephy-
sik wie das ATLAS Experiment am europdischen Forschungsinstitut fiir
Teilchenphysik CERN werden eingesetzt, um experimentalphysikalis-
che Daten aufzuzeichnen und sind essenziell fiir den effektiven Betrieb
eines Experiments. Solche Systeme sind oft in unterirdischen Einrich-
tungen untergebracht und haben begrenzten Zugang zu Strom, weniger
Moglichkeiten zur Kithlung und sind zudem ionisierender Strahlung
sowie magnetischen Feldern ausgesetzt. An ihre Entwicklung werden
einzigartige Anforderungen gestellt und stellen eine Herausforderung
dar.

Um mit den hohen Datenmengen, die ein Hochenergiephysikex-
periment erzeugt, umgehen zu konnen und gleichzeitig den techno-
logischen und umweltbedingten Anforderungen zu geniigen bestehen
diese Systeme traditionell aus individuell gefertigten elektronischen
Komponenten. Solche eigenentwickelten Komponenten sind allerdings
teuer zu entwickeln, schwer zu warten und in der Regel nicht sehr flex-
ibel.

Diese Arbeit untersucht eine alternative Architektur fiir Datener-
fassungssysteme die auf kommerziellen Standardkomponenten (com-
mercial off-the-shelf, COTS) basiert. Eine in das ATLAS Experiment
zu integrierende COTS-basierte Datenverteilungskomponente "FELIX"
wird vorgestellt. Die Hardware- und Software-Implementierung dieses
Gerits wird diskutiert, mit einem Schwerpunkt auf Leistungsfahigkeit,
Heterogenitidt der Systeme und Kommunikationsmuster. Der COTS-
basierte Ansatz wird im Rahmen der zukiinftigen Anforderungen des
ATLAS-Experiments bewertet.

Die Hauptbeitrdge dieser Dissertation sind eine Analyse des AT-
LAS Datenerfassungssystems mit Schwerpunkt auf dem Datenausle-
sesystem, eine Software Architektur fiir die Hauptsoftwarekomponente
von FELIX Systemen, eine Performanzanalyse und Geschwindigkeits-
verbesserungen von zentralen FELIX Softwarekomponenten basierend
auf Prinzipien und Methoden der Informatik unter Beachtung der An-
forderungen des ATLAS Experiments, eine Softwarebibliothek fiir Net-
zwerkkommunikation die es erlaubt Netzwerktechnologie aus dem Be-
reich des Hochleistungsrechnen fiir die Zwecke von Datenerfassungs-
systemen zu nutzen, und letztlich eine Evaluation des neuen ATLAS
Datenerfassungssystems mit FELIX als Fallstudie fiir COTS-basierte
Datenerfassungssysteme in der Hochenergiephysik.






Acknowledgements

This dissertation is the product of more than three years of research.
During this time, many people contributed with advice and support in
one way or the other. I would like to express my sincere gratitude to all
the individuals who helped me along the way. Without their help this
dissertation would not have been possible.

First and foremost, I thank my academic advisor Professor Christian
Plessl and my CERN supervisor Dr Wainer Vandelli. During my place-
ment at CERN both of them provided me with guidance and advice as
much as freedom to explore new ideas.

A large portion of the research presented in this thesis is based on
the ATLAS FELIX project. I thank the FELIX development team for the
productive and fun collaboration. It has always been a great joy to work
as a member of this team.

I thank Emily, Noel, Sean, Tobias, and Will for their time and effort
that they put into proofreading this dissertation, and Volker for his ad-
vice on graphics. Their comments were a tremendous help in improving
my writing.

Finally, I thank my family, my wife Natalia and our daughter Stella,
my parents Anton and Maria-Luise, and my brothers Volker and To-
bias, for their endless support during the past years. They have been an
enormous source of motivation.

vii






Chapter 1

Introduction

1.1 Motivation

Data acquisition (DAQ) systems for high energy physics experiments are
often implemented as complex distributed applications. The DAQ system
of the ATLAS experiment [1] at the Large Hadron Collider [2] at CERN in
Geneva, Switzerland consists of tens of thousands of applications running
on thousands of nodes, in addition to a large amount of custom-designed
electronic components. The DAQ system has to interface the ATLAS detector
front-end electronics via dedicated custom optical links. The cost of building
and maintaining an experiment like ATLAS is high, and thus a DAQ system
needs to operate efficiently and record data at a high rate and high quality.

The high data rates in DAQ systems pose a challenge for computing and
networking components, so traditionally many custom-designed electronic
components, FPGAs, DSPs and so forth have been used to build early com-
ponents of a DAQ chain close to the detectors. In the past years a trend has
emerged in the high energy physics community to push the use of commer-
cial off-the-shelf (COTS) components ever closer to the detectors and reduce
the amount of custom electronics. The motivation this approach is the reduc-
tion of development time and cost as well as facilitating maintenance and
operation of DAQ systems.

The ATLAS experiment is following this trend as well, and in this thesis
I present the approach that the experiment is taking. The ATLAS approach
is based on FELIX, a new central data distribution system that sits between
the ATLAS detectors and data filters and processors and forwards data in
both directions. A project like FELIX has to meet the various computational
requirements of DAQ systems, e.g., to handle a high data throughput, low
or fixed latencies for low-level data communication, high availability and so
forth. The thesis shows the specifications of the FELIX system and explores
how such a system can be implemented to meet the aforementioned require-
ments.



2 CHAPTER 1. INTRODUCTION

1.2 High Energy Physics and Accelerator Experiments

High energy physics (HEP), or particle physics, is the study of elementary
particles [3]. Particle colliders are an important tool in HEP. A particle col-
lider works by accelerating two beams of charged particles by the means of
electromagnetic fields. The two beams cross in defined interaction points,
where particles from the two crossing beams collide at high energies. The
outcome of these collisions can be new particles which can be detected and
analyzed by instruments in the interaction points. Particle colliders can be
used to observe rare physics phenomena or unstable particles that decay
quickly.

CERN

CERN (for Conseil Européen pour la Recherche Nucléaire, or European Coun-
cil for Nuclear Research) is a European High Energy Physics research facility
founded in 1964. The organization is located in the French/Swiss border re-
gion near Geneva, Switzerland. Currently CERN has 21 member states and
more international collaborators.

The research at CERN concentrates on subatomic particles and includes
topics such as testing predictions of the Standard Model of particle physics,
supersymmetry, dark matter and others.

CERN is the home of many different experiments in High Energy Physics,
many of which are based on various particle colliders. There are several lin-
ear accelerators (LINAC2, LINAC3, LINAC4), an antiproton decelerator to
study antimatter, LEIR (Low Energy Ion Ring), the Proton Synchrotron and
others. Most well known is the Large Hadron Collider (LHC), the world’s
biggest particle collider.

The Large Hadron Collider

The Large Hadron Collider (LHC) is a circular collider with a circumference of
27km. It was constructed in the tunnel of the Large Electron-Positron Col-
lider (LEP), an older collider that was the predecessor of the LHC. The tun-
nel is below ground, at an average depth of ca.100m. Two particle beams
consisting of protons or lead ions are circulated in opposite directions in
two vacuum tubes. The beams are bent using strong superconducting mag-
nets. The LHC consists of 1232 dipole magnets, each 15m in length, and 392
quadrupole magnets, each 5-7 m in length. To achieve superconductivity, the
magents are cooled down to -273.1 °C using liquid helium. The beams cross
at four points along the LHC circumference. The four LHC experiments AL-
ICE, ATLAS, CMS, and LHCb are the collision points, where beam particles
collide at high energies. The experiments use various detector technologies
to measure the outcome of these collisions.



1.2. HIGH ENERGY PHYSICS AND ACCELERATOR EXPERIMENTS 3

LHC

LHCDb

PSS

v neutrinos
— ATLAS CNC/Z‘\‘
TT Gran Sasso
]
AD

East Area

PS

X 1959 (628 m)
LINAC 2 { —
L C e
~ Leir
CINAC S 2005 (78 m)
lons
» ion » n ns  » P (antiproton) —— /antiproton conversion  » neutrinos  » electron

LHC Large Hadron Collider SPS  Super Proton Synchrotron PSS Proton Synchrotron

AD Antiproton Decelerator CNCGS Cern Neutrinos to Gran Sasso  1SOLDE
LEIR LowEnergylon Ring ULINAC LINear ACcelerator n-ToF Neutrons Time Of Fligh

Figure 1.1: The accelerator complex at CERN. Particle beams pass through
several accelerators before entering the LHC ring where they are accelerated
to their final velocity. The LHC experiments ALICE, ATLAS, CMS, and LHCb
are situated at four collision points along the circumference of the LHC. Im-
age source: CERN.

Particles are accelerated to velocities close to the speed of light in several
smaller accelerators before entering the LHC ring, see Figure 1.1. In the final
beam, particles circulate the vacuum tubes in bunches of 1.15 x 10! parti-
cles. An interaction of bunches in the counter-rotating beams in the collision
points is called a bunch crossing. An important metric is the bunch crossing rate
(BCR), the amount of bunch crossings in each collision point per unit of time.
The LHC operates at a bunch crossing rate of 40 MHz. Although the number
of particles in a bunch is high, only around 20 particles will collide in a bunch
crossing at the nominal mode of operation as of 2016.

The LHC and the four experiments are upgraded at irregular intervals,
typically around every 3 years. The first upgrade took place in the so-called
Long Shutdown 1 from 2013 to 2015; the next upgrade phase (Long Shut-
down 2) is a planned 18-month period beginning in 2018. The upgrade
projects aim to improve performance and reliability.



4 CHAPTER 1. INTRODUCTION

Tile calorimeters

LAr hadronic end-cap and
forward calorimeters
Pixel detector

LAr eleciromagnetic calorimeters

Toroid magnets
Muon chambers Solenoid magnet | Transition radiation tracker

Semiconductor fracker

Figure 1.2: The ATLAS experiment. The two magnet systems are used to
bend the trajectories of charged particles. The other systems are detectors
that measure various properties of passing particles. Image source: ATLAS
experiment.

The ATLAS Experiment

ATLAS [1] is, together with CMS, one of the two general-purpose particle
physics experiments at the LHC. ATLAS is an international collaboration
of more than 5000 scientists from institutions all around the world. As a
general-purpose experiment, ATLAS has the goal to explore a wide range of
particle physics phenomena. Specific goals include the test of predictions of
the Standard Model of particle physics, the exploration of matter /antimatter
asymmetry, or the exploration theories beyond the Standard Model.

The ATLAS experiment has a cylindrical design, see Figure 1.2. It is 44m
long, 25m in diameter and weighs about 7000t. The experiment is situated
in a cavern approximately 100 m below ground. Next to the experiment cav-
ern is a service cavern used for cooling systems, detector control and readout
or maintenance purposes. An above-surface datacenter processes data gen-
erated by the experiment. A schematic of the experiment layout is shown in
Figure 1.3. There are many environmental factors posing a challenge for data
taking. Electronics in the detector and service cavern are exposed to radiation
and magnetic fields and space is limited.

Different detectors measure properties of the particles that are created by
the collision in the center of ATLAS. The properties that are measured are



1.3. TRIGGER AND DATA ACQUISITION SYSTEMS 5

Figure 1.3: The ATLAS experiment cavern is situated approximately 100 m
below ground level. A neighboring service cavern (USA15) contains detector
readout components and parts of the ATLAS data-acquisition system, but
also systems for cooling and machine control. The rest of the data acquisition
system is situated in a datacenter above surface (SDX). Image source: [4].

the particle’s trajectory, momentum, and total energy. A magnet system gen-
erates two overlapping magnetic fields that bend the trajectory of charged
particles. Energy is measured by different Calorimeter systems. Charge and
mass of the particles can be reconstructed from the other properties. Muons,
which barely interact with matter, are detected by a special Muon spectrom-
eter.

1.3 Trigger and Data Acquisition Systems

An experiment like ATLAS generates a large amount of data. In each bunch
crossing, particles from the counter-rotating beams interact and might pro-
duce new particles or radiation as outcome of the collisions. The sum of all
interactions in a bunch crossing and their outcomes is referred to as an event.

Definition 1.1 (Event). The sum of all outcomes of all interactions between parti-
cles in a bunch crossing as measured and recorded by detector electronics is called an
event.



6 CHAPTER 1. INTRODUCTION

In ATLAS, an event typically contains an average of 1.5-2MB of data
from all detectors. At a bunch crossing rate of 40 MHz the ATLAS experi-
ment therefore generates more than 60 TB of data each second, a data rate
that is challenging to record with modern storage systems. The vast major-
ity of events represent well-known physical processes, so by filtering only
interesting events the data rate can be reduced significantly. Such an event
filtering system is called trigger.

Definition 1.2 (Trigger). A system that receives a stream of events as input and
generates an ACCEPT or REJECT decision for each event is called a trigger.

Triggers can be implemented in hardware, software, or a mixture of both.
Multiple levels of triggers can be used with different implementations or
strategies. A trigger can accept or reject an event based on the number of
particles, type of particles, energy or momentum of particles, or other char-
acteristics of an event.

The system that receives data from the detector sources and records an
event stream on permanent storage is called data acquisition system.

Definition 1.3 (Data Acquisition System). A data acquisition system (DAQ)
collects event data from detectors, receives trigger decisions from a trigger, and
records accepted events on permanent storage.

The systems in the detectors that interface with the DAQ are called de-
tector front-ends. The main task of a DAQ system is to collect and relate data
from different sources to events and finally write the event stream to a perma-
nent storage. Often DAQ system also include entities to monitor the quality
of measured data, data compression, or other relevant tasks.

Computer Engineering Challenges of DAQ systems

DAQ systems need to meet the requirements of the respective experiment.
These can include, among others, the following:

High Data Rates In order to maximize the efficiency of the experiment and
the number of recorded events, events are generated at a high rate. The front-
end electronics, trigger, and DAQ system need to be able to handle an event
stream at a high rate. The trigger is used to reduce the output event rate to a
managable value.

High Availability Due to the cost of operation and maintenance, many ex-
periments are run for long periods of time without a pause in data-taking.
Stops in data-taking due to faulty components in a DAQ system can be costly,
and maintenance can be complicated due to environmental factors like high
radiation in the vicinity of the experiment. DAQ systems have to be designed
for high availability.



1.4. CONTRIBUTION 7

High Throughput High resolution readout of experiments at a large event
rate requires the DAQ system to handle a large data throughput. This can
pose a challenge to communication links and interconnects that require a
high bandwidth.

Low Latency or Fixed Latency A new event in the ATLAS experiment is
generated every 25ns. Low-level readout electronics in a DAQ system need
to operate at a low or even fixed latency in order to process information at this
rate. Cable lengths and processing times of components need to considered,
and part of the components will typically need to have real-time capabilities.

Heterogenity of Systems, Workloads and Requirements A DAQ system
involves many different components with different purposes and character-
istics. Some detectors might generate more data than others so that work
is unevenly distributed. A calibration run will have different requirements
than a data-taking run. Some systems like detector control are critical for op-
eration while other systems are redundant or can be deactivated temporarily.

Radiation and Magnetic Fields The environment has a big impact on the
design of a DAQ system. Experiments like ATLAS produce radiation and
strong magnetic fields and are cooled down to extreme temperatures. Elec-
tronics placed directly in the experimental cavern need to be designed to
withstand these conditions.

Underground Access The placement below ground level complicates main-
tenance and restricts space, cooling, and power. This is challenging for any
substantial installation of computing hardware.

Long Distances In ATLAS, cables connecting the service cavern that con-
tains most of the readout components and the surface-level datacenter have
to be about 150 m long. This distance is longer than typical distances in data-
centers. Links that connect the various computing elements need to be able
to cover such long distances.

Storage The filtered event stream has to be recorded and archived to a per-
manent storage for later analysis. The storage subsystem has to support a
write speed to handle the incoming event stream and provide large enough
space to store experiment data.

1.4 Contribution

Traditional DAQ systems are often built using many custom electronic com-
ponents. The development and production of custom electronics requires



8 CHAPTER 1. INTRODUCTION

careful planning and takes great cost and effort, but the challenges like high
data-rates and throughput and latency requirements could render custom
electronics the only viable option for the early stages of a DAQ system.

The unique challenges of DAQ systems for high energy physics exper-
iments and the workloads, data access patterns, and performance require-
ments that differ in many aspects from classical high-performance comput-
ing scenarios, present an interesting area of study for computer science. In
this thesis I explore the use of COTS components and computer science meth-
ods and principles for DAQ systems. Specifically, I contribute the following
developments:

e Ananalysis of the current ATLAS DAQ system and outline points where
anew DAQ system based on COTS components can improve data tak-

mg.

o As part of the ATLAS/TDAQ FELIX developer team I introduce a new
DAQ system for the ATLAS experiment based on the FELIX project
that maximizes the use of PC components and software over custom
electronics. The new system in the DAQ chain based on computer en-
gineering principles enables a more scalable, fault-tolerant and uniform
system design. My personal contribution to the project is the develop-
ment of many software components of the FELIX project.

o I show computer science methods and techniques to develop software
components that meet the performance requirements of a DAQ system
like ATLAS.

o I present NetlO, a general purpose network communication service
that provides users with implementations for high-level communica-
tion patterns on top of high-performance fabrics. NetlO supports dif-
ferent HPC interconnects like Infiniband natively. It is used in FELIX
and tuned for the foreseen workloads of the project, but the library is
designed to be of general purpose and can be used outside the scope of
ATLAS.

e Using a prototype of the FELIX system I evaluate and discuss the fu-
ture ATLAS DAQ system with respect to the computational challenges
presented in Section 1.3.

The FELIX project is a joint development effort that involves tens of devel-
opers from various institutes. I contributed the initial software stack for the
FELIX project. Among other things I implemented the low-level tools to op-
erate the FELIX PCle I/O card, the main FELIX data processing application,
code for processing data packets at a high rate with minimal latency and the
FELIX network I/0O stack (the NetIO library). Furthermore I contributed to



1.4. CONTRIBUTION 9

the hardware selection of the FELIX PC platform. The FELIX project also de-
livers a custom PCle board to connect to the ATLAS detector electronics and
firmware for the FPGA on this board that manages low-level communication
with detectors and the host PC. I did not participate in the development of
the PCle card and its firmware.

I published several results of my research as scientific papers and also
contributed as co-author to other papers in the context of the ATLAS DAQ
system:

e Jorn Schumacher et al.,, “FELIX: a High-Throughput Network Approach
for Interfacing to Front End Electronics for ATLAS Upgrades” [Schumacher
et al., 2015a]. Presented in April 2015 at the 21st International Confer-
ence for Computing in High-Energy Physics (CHEP 2015) in Okinawa,
Japan.

e Jorn Schumacher et al., “Improving packet processing performance in the
ATLAS FELIX project” [Schumacher et al., 2015b]. Presented in June
2015 at the 9th ACM International Conference on Distributed Event-
Based Systems (DEBS 2015) in Oslo, Norway.

e Jorn Schumacher et al., “High-Throughput Network Communication with
NetlO” [Schumacher et al., 2016]. Presented in October 2016 at the
22nd International Conference for Computing in High-Energy Physics
(CHEP 2016) in San Francisco, USA.

e Andrea Borga et al., “Evolution of the ReadOut System of the ATLAS ex-
periment” [Borga et al., 2014]. Presented in June 2014 at the 3rd In-
ternational Conference on Technology and Instrumentation in Particle
Physics (TIPP 2014) in Amsterdam, The Netherlands.

e Andrea Borga et al., “A new approach to front-end electronics interfacing
in the ATLAS experiment” [Borga et al., 2016]. Presented in Septem-
ber 2015 at the Topical Workshop for Electronics in Particle Physics
(TWEPP 2015) in Lisbon, Portugal.

e Julia Narevicius et al., “FELIX: The New Approach for Interfacing to Front-
end Electronics for the ATLAS Experiment” [Narevicius et al., 2016]. Pre-
sented in June 2016 at the 20th Real Time Conference (RT 2016) in Lis-
bon, Portugal.

e Kai Chen et al., “FELIX: a PCle based high-throughput approach for inter-
facing front-end and trigger electronics in the ATLAS Upgrade framework”
[Chen et al., 2016]. Presented in September 2016 at the Topical Work-
shop for Electronics in Particle Physics (TWEPP 2015) in Karlsruhe,
Germany.



10 CHAPTER 1. INTRODUCTION

1.5 Outline

The rest of this thesis is organized as follows. Chapter 2 gives an overview of
the evolution of the ATLAS DAQ system and introduces a new DAQ archi-
tecture based on the FELIX project for the upcoming ATLAS upgrades. The
implementation of the FELIX system and its hardware, firmware and soft-
ware components is discussed in Chapter 3. Chapter 4 describes how data
in FELIX are encoded and transmitted over the PCle bus and how the data
can be efficiently decoded software. In Chapter 5 the network communica-
tion service NetlO is introduced and its implementation is discussed. Com-
parative performance measurements are given. Chapter 6 presents system
benchmarks of a FELIX prototype in realistic scenarios. Concluding remarks
are given in Chapter 7.



Chapter 2

From Custom to COTS
Components: Evolution of the
ATLAS Data-Acquisition
System

2.1 LHC Upgrade Program

The LHC and its experiments consist of many different subsystems that are
constantly maintained and upgraded. The upgrades have the aim of im-
proving the LHC performance, for example collision energy and intensity.
As a consequence, experiments have to be upgraded to cope with the new
conditions. This includes not only the detectors themselves, but also the
data acquisition systems, which are presented with an increased and more
challenging workload in terms both of event processing rate and complexity.
Upgrades are therefore computer engineering challenges with new require-
ments for computing, networking and storage. The upgrade periods also
present an opportunity for redesigning DAQ architectures or deploying new
components, and can be seen as a convenient break from data taking for re-
search and development of computing and processing infrastructures.

The LHC is planned to be operated for decades and thus the upgrades are
planned a long time in advance. 3- to 4-year run phases are typically followed
by 1- to 2-year shutdown phases during which systems can be upgraded or
replaced.

The LHC schedule is shown in Figure 2.1. LHC Run 2 is scheduled to
continue until the end of 2018, followed by a second long shutdown phase
(LS2) of two years. In 2021 the LHC is scheduled to restart and run contin-
uously until 2023. The period from 2015 to 2023 (Run 2 and 3) are referred
to as LHC Phase I. With these upgrades the LHC is planned to exceed its
peak design luminosity, an operational parameter indicating the intensity of

11



12 CHAPTER 2. EVOLUTION OF THE ATLAS DAQ SYSTEM

‘ Phase | > ‘ Phase Il (HL-LHC) >

2008 2010 2012 2014 2016 2018 2020 2022 2024 2026 2028 2030

\ Run 1 ‘LSl‘RunZ‘LSZ‘ Run 3 ‘LS3‘ Run 4 ‘LS4‘ >
Start of the Installation of New
LHC Small Wheel
(NSW) and Fast
Tracker (FTK)

Figure 2.1: A timeline for operation and maintenance periods of the LHC.
The beginning of Phase II marks a major upgrade to the collider.

the collisions, in Run 3. ATLAS will be upgraded during the long shutdown
phases. Major upgrades in LS2 are the installation of a new muon detector,
the New Small Wheel (NSW) [5], and a new low-level trigger component, the
Fast Tracker (FTK) [6].

Phase I is followed by a third long shutdown phase (LS3) which marks
the beginning of Phase II. The LHC will be subject of a major overhaul with
the goal of increasing its design luminosity by a factor of 10. LHC Run 4 is
scheduled from 2026 to 2030, followed by a one-year long shutdown phase
(LS4) in 2031. Run 5 is planned to start in 2032.

2.2 LHC Run 1 (2009 - 2013)

In this section I present an overview of the ATLAS trigger and data-acquisi-
tion system during the first LHC run from 2009 to 2013. The descriptions are
based on the publication [7]. The ATLAS trigger and data-acquisition sys-
tem consisted and still consists of many individual hardware and software
components which are operated full-time during data taking. A schematic
overview of the system is depicted in Figure 2.2. The peak collision energy
reached during run 1 was 8 TeV.

The overall architecture of the system invovles three layers of triggers:
the L1 trigger, the L2 trigger and the event filter. While the L1 trigger is
built purely from custom-desigend electronic components, the L2 trigger and
event filter are based on server PCs. Data fragments of events accepted by
the L1 trigger are buffered in a layer of server PCs called the Read-Out Sys-
tem (ROS) until the L2 trigger and event filter decisions are made. Finally,
accepted events are sent to a set of storage servers where they are recorded
on disk. The individual components will be discussed in more detail in the
sections below.



2.2. LHC RUN 1 (2009 - 2013) 13

Trigger DAQ

| Muon || Calo || Track |

Level 1 Trigger 65kHz
<2.5us
Custom Hardware l»'-_--.,. I I I B
----------------------- Lre [ /e | FE]
L1 Accept ~TTTTTTTmeeeeeail o
L1 Results, [ RoD | [ RoD | [ ROD |
ROI Information
~100GB/s
Level 2 Trigger ~7500 | ~75ms
cores
ul Processing Unit ' ROl fragments
g ___________ N .. Data Collection [f
L2 Accept Network q Readout System |
~150 nodes
~10GB/s
Event Filter 7500 g n Event Builder |
cores ~100 nodes
ul Processing Unit ' Full events
T g J Back-End
Accepted events Network
I
—-H Data Logger
8

~1500MB/s

CERN Permanent Storage

Figure 2.2: The ATLAS TDAQ system during LHC Run 1. The trigger part is
on the left, data acquistion on the right.

Detector Readout

The first layer of the ATLAS data acquisition system consisted of the Read-
Out Drivers (RODs). These are detector-specific systems receiving data from
the various ATLAS detectors. They performed data manipulation tasks like
compression, reformatting as well as data aggregation. The ATLAS front-
end electronics and RODs communicated over custom, non-uniform and
detector-specific optical links. The RODs were typically implemented as
rack-mounted VMEbus [8] modules. VMEbus is a widespread bus used in
high energy physics.

The RODs also received ACCEPT signals for accepted events from the
first ATLAS trigger level via the TTC system (see below for descriptions of the
trigger and TTC). Accepted events were forwarded to the 151 ROS PCs. The
ROS system buffered event fragments and forwarded them on request to the
higher-level data processors. RODs and ROS PCs were connected via optical
point-to-point links running the S-Link [10] protocol, the so-called ReadOut
Links (ROL). Each ROL was operated at a data rate of either 160 or 200 MB/s.



14 CHAPTER 2. EVOLUTION OF THE ATLAS DAQ SYSTEM

mmw-ﬁiwﬁ

Figure 2.3: The ROBIN card. Image source: [9]

The ROS PCs were equipped with custom PCI cards called Read-Out Buffer
Input (ROBIN) [11] to interface with the ROLs (Figure 2.3). Each ROBIN
connected to up to three ROLs. The majority of the ROS PCs housed four
ROBIN cards and thus connected up to 12 ROLs. An onboard chip for simple
data processing tasks was also mounted on the ROBIN. The ROS PCs were
mapped to the detectors and subdetectors of the ATLAS experiment. A ROS
PC for example might have received event fragments from a few neighboring
cells of the Liquid Argon calorimeter. The mapping was organized in a way
that particles traversing through neighboring cells in a detector would lead
to event fragments being sent to the same ROS. This minimized the number
of ROS PCs storing information and therefore the number of messages being
sent in the DAQ system.

TTC

The Timing, Trigger and Control (TTC) [12] system fulfilled multiple func-
tions. First, the system delivered an accurate clock signal synchronous to the
LHC bunch crossing rate to the readout electronics of the ATLAS DAQ sys-
tem (timing). Second, the system delivered the ACCEPT information of the
L1 trigger to the RODs, which forwarded accepted events to the ROS sys-
tem (trigger). Third, control information, like a BUSY signal that temporarily
pauses the trigger, was forwarded to all trigger components using the TTC
system (control).

The TTC system was implemented with optical fibres, custom electronics,



2.2. LHC RUN 1 (2009 - 2013) 15

and a simple protocol where small data packets were transmitted at a 40 MHz
clock rate. The TTC system had a required timing accurary in the order of
nanoseconds.

Event Building and Data Flow

An event building system collected the event fragments from the ROS PCs
and assembled the full event data structure. The application that built the
full events is called SubFarm Input (SFI). The DataFlow Manager (DFM) ap-
plication orchestrated the assignments to the SFIs and acted as a load bal-
ancer. The DFM also communicated clear commands from the High Level
Trigger (see below) to the ROS system, which in turn could free old event
data fragments.

Trigger

Three trigger levels were used for ATLAS in LHC Run 1. The Level-1 trig-
ger (L1) was a low-level trigger that had events at the bunch crossing rate of
20MHz as input. During operation the accept rate could reach 65kHz (but
the DAQ system was designed for an L1 accept rate of up to 75kHz). Due
to limited buffering capabilities in the front-end electronics a trigger decision
had to be made within a few microseconds to decide whether the acquired
event needs to be preserved or discarded. The ATLAS L1 trigger had a maxi-
mum latency of 2.5 s, including the delay introduced by signal transit times
in cables. The system was implemented in dedicated electronic components
that were situated in the service cavern close to the ATLAS experiment to
minimize latency. Trigger decisions were made using information from the
calorimeters and muon detectors. Track reconstruction was not possible at
this stage due to the strong latency requirements. Upon an L1 accept signal
data were pushed from the front-ends to the ROS systems and were buffered
there.

A second low-level system, the Region-of-Interest-Builder (RoIB), computed
region-of-interest information, i.e., location information about interesting fea-
tures of detected signals. Together with the L1 accept signal this information
was distributed to the Level-2 trigger (L2).

L2 trigger decisions were based on partial event data. The L2 trigger re-
ceived the information from the RolB and requested data from the ROS PCs
corresponding to the geographical information in the region-of-interest. The
L2 trigger was composed of three different types of nodes: L2 supervisor
nodes (L25V), L2 processing units (L2PU) and L2 result handlers (L2RH).
The L2 supervisor nodes were equipped with PCI cards called FILAR [13] to
receive the RolB data. Events were assigned by the L2SV nodes to one of the
L2PU nodes, which ran algorithms to decide on the acceptance of the event.
The L2 trigger in LHC Run 1 was operated at a maximum accept rate of circa



16 CHAPTER 2. EVOLUTION OF THE ATLAS DAQ SYSTEM

6 kHz. The L2 decision was sent to the L2SV nodes. The L2 trigger consisted
of 768 servers in the end of 2011. Events that were accepted by the L2 trigger
were then built and passed to the event filter (EF).

The event filter was the last trigger level in ATLAS. Its algorithms were
based on full event data. The accept rate of the event filter was up to 300 Hz.
The event filter consisted of two types of applications. The event filter data-
flow components (EFD) buffered the full event data. The event filter process-
ing units (EFPU) ran the actual trigger algorithms on the event data. Each
event filter node ran one EFD and multiple EFPUs. EFD and EFPUs commu-
nicated via shared memory. In total the event filter consisted of 630 servers
in 2011 by the end of LHC Run 1.

Networks

In the ATLAS TDAQ system there were three separate networks: a control
network, a data collection network, and a back-end network. The main pur-
pose of the control network was run control and monitoring while the data
collection and back-end networks were used for high-volume event data traf-
fic. The networks are shown in Figure 2.4.

The control network was, for redundancy reasons, backed by two core
routers. Each server was connected to both routers via 1 GbE links, either
directly or via concentrator switches. All servers in the ATLAS DAQ system
were connected to the control network.

The data collection network connected the ROS PCs with the L2 trigger
and event builder. It had a similar topology as the control network and was
backed by two core routers. The aggregated bandwidth was however much
higher. ROS PCs and L2 trigger nodes were connected to each core router via
aggregator switches. Event builder nodes and L25V nodes were connected
to each core router via direct 1 GbE links. The two core routers were inter-
connected via four 10 GbE links.

The back-end network was also built using two core routers to distribute
data between the event builder, event filter and storage nodes. Event builder
nodes were connected using 1 GbE links to each router. Storage servers and
event filter processing nodes used aggration switches and 1 GbE links to each
core router.

Storage

Accepted events were written to hard disk drives in a data logging farm con-
sisting of six nodes. The application that received data from the event filter
and wrote it to disk was called SubFarm Output (SFO). One SFO was running
per data logging node. The event streams were only temporarily stored in the
SFO nodes. A script moved the recorded data to CASTOR [14], a centralized



2.2. LHC RUN 1 (2009 - 2013) 17

ROS x150
1 Gbps 1 Gbps
Patch panel 10 Gbps 10 Gbps
ATLAS
cavern
Patch panel 150 m
Surface

Data collection network

4 x 10 Gbps

L2
Trigger

L2
Trigger

1 Gbps 1 Gbps

Back-end network

10 Gbps 10 Gbps

Event
Filter 1 Gbps
x40
1 Gbps 1 Gbps
CERN
SFO (St
Permanent X8 (Storage)

Storage

Figure 2.4: The ATLAS DAQ networks in Run 1. Not shown is the control
network that each server is connected to.



18 CHAPTER 2. EVOLUTION OF THE ATLAS DAQ SYSTEM

| onfigurs l | onnect: l | ur l

— INITIAL CONFIGURED CONNECTED RUNNING

|t |t |

disconnect- stop

unconfigure

Figure 2.5: The run control state machine.

storage facility at CERN that was designed for archiving large amounts of
data.

Run Control

The complete ATLAS online computing system including data acquisition,
trigger, detector control, monitoring, calibration etc. consisted of many ap-
plications operating on thousands of nodes. Together they formed a large
distributed computing system that needed to be operated, configured and
monitored. To manage the state of each single component, each application
implemented a state machine interface. Each application could be in one of
the states INITIAL, CONFIGURED, CONNECTED, or RUNNING (plus sev-
eral sub-states), see Figure 2.5. Similar applications were grouped together,
and each group was assigned to a controller application, which itself imple-
mented the state machine interface. A state transition in the controller was
passed to the applications that were managed by the controller. Controllers
themselves could be grouped and managed by other controllers, and so a
hierarchy of state machines could be formed. On the top of this hierarchy
was a single controller, the root controller. By bringing the root controller to
the state RUNNING the entire distributed system was brought to data tak-
ing mode. Figure 2.6 shows a screenshot of the graphical user interface that
is used to operate the state of all run control applications.

To communicate state changes and other information among the appli-
cations, an interprocess communication framework was needed. In ATLAS,
CORBA [15] was used for this purpose. Services and frameworks for logging,
error reporting and configuration were provided to the applications and al-
low centralized control of the computing farm to the operator in the control
room.

2.3 Run 1 Performance Data

During the operation of the ATLAS experiment in the first LHC run from
2009 to 2013 many operational data were gathered. These give an insight



2.3. RUN 1 PERFORMANCE DATA 19

ATLAS TDAQ SOFTWARE - Partition ATLAS (on pc-atlas-cr-30.cern.ch) - o x

File Commands Access Control Settings Logging Level Help

Commit & Reload | |9 Load Panels -

Total dead-time €5 | 178

\ EE R

RUN CONTROL STATE

Run Caontrol r Segments & Resources r Dataset Tags |

[ Run Control Commands [ — 1
¥ BOoEeonrioiiey 3 RootController
SHUTDOWN INITIALIZE i * Qnline.Scoment
i i o & Infrastructure o [ CHIP-ATLAS i
¢ _ TDAQ o 00 Calorimeters
‘ UNCONFIG ‘ ‘ CONFIG ‘ o 25 nfraswrucwre || = ¥ coralServeraTLAS
[ABSERT  Appoks2Coral @l noc
‘ sToP ‘ ‘ START ‘ [E0ETTT  ddcdtATLAS_ATLGCSDDC |- or =
o _ LiCentralTrigger ||| = " DFConfig
‘ HOLD TRG ‘ ‘ RESUME TRG ‘ i3 _ a
L1cCalo o 1 DQMConfig
« [ERORNINGTH]  Triggerconia o= ]
= = i DOQMSegment
Eeam Stable @  Ready for Physics @ o _ TRP_Segment 3 Qe
N | == " ForwardDetectors
~Run Information & Senings- o [[RUNNING ] EeamSpotCanuroller 1 am o
Run number 313878 & _ alc2hiLan o GlobalMonitoringSegment
i i
o [[URUNNINGY| TDAQ_Monitoring ¢~ 8 Histogramming
i il o S Hi ing- i
Lumi Block 35 o _ GlobalMonitoringSegment il Histogramming- Global-iss
o [[URUNNING | InnerDetectors || = ¥ 1sRepository
Number Rate e _ Calorimeters |l = 9 InnerDetectors
o _ MuonDetectors o= 7 L1TriggerRates
Level 1 4506335 1168 kHz o [[IRUNNING | ForwardDetectors Al o o s
- [RONRIRGT]  pomseament || > ¥ monitoring
HLT 3631 17.80 Hz || > ¥ MuonDetectors -
E Il I Ll
Recorded 5208 20.00 Hz TestResults l Advanced
| [information | Counters | Settings | fWopne: [0 | ® © [ [Machcase [¥] Repeats ‘
ax
| @‘ Subscription criteria  [¥] WARNING ERROR FATAL [ ]INFORMATION [ |Expression ‘ Subscribe ‘
TME | SEWERITY |  APPLICATION | NAME MESSAGE ]
114451 WARNING RPC-BC-RODRX-.. RPCMessage FXSL Killed 524 FIFO CHANMELS & =]
T =
| Clear H| Message format @ i Visible rows 100 Current ERS subscription sev=ERROR or sev=WARNING or sev=FATAL

Figure 2.6: The graphical user interface that is used by operators in the AT-
LAS control room.

into the performance characteristics of the trigger and data acquisition sys-
tem. Of particular interest here is a dataset that describes the load on the
different ROS PCs generated by the L2 trigger. The distribution of requests
in one specific time-interval! is shown in Figure 2.7.2 Clearly the load on the
ROS PCs was distributed unevenly. The reason for this becomes clear when
looking at the request rate per L2 trigger algorithm. The L2 trigger system
made accept or reject decision based on a few tens of algorithms. These al-
gorithms were based on different properties of the recorded data. Figure 2.8
shows the number of requests on the ROS PCs for two L2 algorithms. The
algorithm in Figure 2.8a was based on particle trajectory reconstruction and
thus requested data from the Pixel, SCT and TRT ROS PCs. The algorithm in
Figure 2.8b, however, was based on information from the calorimeters and

!The time-interval in which the operating conditions of a particle collider are constant is
called Iumi-block, because the collider delivers a constant luminosity in this time-interval.
?Data were recorded during run number 0209025 and lumiblock 176.



20 CHAPTER 2. EVOLUTION OF THE ATLAS DAQ SYSTEM

Total L2 Request Distribution
Requests

|CSC IMDT |PIX |RPC
4000 |jLAR I 1ISCT
| ITDQ
U cle
hTH:TRT

4500

3500::
3000 |1

|

|

|

2500 ' :
I |

2000 11
1500:

1000 |

: |
| |

% 20 40 60 80 100 120 140

ROS

500

Figure 2.7: Distribution of L2 requests on the 151 ROS PCs. Data were
recorded under typical run conditions.

therefore requested data from the respective calorimeter ROS PCs. Which
algorithms were used and how much weight was given to their output were
configuration parameters of the ATLAS trigger system.

The ROS request distribution shows not only significant differences be-
tween ROS PCs of different detectors, but also between ROS PCs of a sin-
gle detector (e.g. Liquid Argon (LAr)). As a consequence the assignment of
ROLs to ROS PCs had to be balanced when the operational parameters of the
LHC changed and more data were transmitted on the ROLs. Since the ROS
PCs were connected to the RODs via point-to-point S-Links, the Run 1 archi-
tecture did not allow dynamic load balancing. The only possibility to balance
the system load was to statically reassign ROLs to ROS PCs. This required a
physical intervention on the ROS PCs. This had to be done during Run 1 for
example for the Pixel detector. On the other hand systems with a low load
had spare resources that are not used, which decreased the efficiency of the
system. It is thus desirable to strive for an even load distribution.

24 LHC Run 2 (2015 -2018)

During the long shutdown phase in 2013/14 (Long Shutdown 1, LS1) the
LHC was halted for maintenance operations. The bunch crossing rate was
increased to the nominal LHC rate of 40 MHz.

Due to various factors also the average size of an event increased. This in-



2.4. LHC RUN 2 (2015 -2018) 21

L2 Request Distribution of Algorithm TrigL2SiTrackFinder_MuonA
0 Requests

[cscC IMDT  {PIX |RPC
600 I ILAR I ISCT

I Il 17DQ
500 I e

1 Pl Rt
400 1] I 11

I 1]

|

|

|

|

| |

| |
300 ! | 1 |

| |

| |

|

|

|

1

70

200 ! 1]
11 1

100 !! 1
I 1
0 11 | | I I | 11 1
0 20 40 60 80 100 120 140

ROS

(a) TrigL2SiTrackFinder MuonA

L2 Request Distribution of Algorithm T2CaloJet_Jet_noise
0 Requests

ICSC IMDT |PIX |RPC
160 |jLAR ISCT

140 !
I

18

"TGC

1200 L1l RT
100! 1

T

80 I1

60”
I

I
I

I I

NI

NI

NI

NN

40 | I I

| I I

I I

1 1

i i
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
I I I
20 I I I
1 1 1

1 h
0 20 40 60 80 100 120 140

0

(b) T2Calo]Jet Jet noise

Figure 2.8: Distribution of L2 requests per L2 algorithm. Shown are the re-
quest patterns of two different L2 algorithms. The algorithm in (a) uses infor-
mation from the trackers, the algorithm in (b) is based on information from
the calorimeters.



22

Trigger

Level 1 Trigger

Custom Hardware

100kHz
<2.5us

]

L1 Results,

ROI Information

High-Level Trigger ~20000

cores

ROI fragments

w Processing Unit |

[

Full events

~160GB/s

Data Collection

CHAPTER 2. EVOLUTION OF THE ATLAS DAQ SYSTEM

DAQ

| Muon || Calo || Track |

[T T T
[ rE |[FE]F

m

[ Rop | [ ROD | [ ROD |

lu Readout System

~100 nodes

Network

o

Data Logger

~1500MB/s

CERN Permanent Storage

Figure 2.9: The ATLAS TDAQ system during LHC Run 2. L2 trigger and
event filter have been merged to a single high-level trigger.

evitably increases the performance requirements on the ATLAS DAQ system,
which makes an update necessary.

At the same time also the operational requirements of the DAQ were ad-
justed: the L1 target rate was increased from 75kHz to 100 kHz, the target
output rate/disk storage was increased to 1 kHz. Due to installation of new
detector and trigger systems the number of Read-Out Links was increased
from 1600 to 1800.

Three major components of the ATLAS DAQ system were upgraded in
preparation for Run 2: the ROS PCs, the L2 trigger and event filter which
were merged to a single high-level trigger, and the data collection network
(Figure 2.9). Minor upgrades included a replacement of the RolB and the
SFOs. The upgrades described in this section are based on [16].



2.4. LHC RUN 2 (2015 -2018) 23

Detector Readout

Because of new performance requirements due to the increased incoming
data rate as well as concerns for hardware obsolescene,® the ROS system ex-
perienced a major upgrade during LS1. A new S-Link interface, the RobinNP
[16], was developed. The RobinNP is a PCle Gen-1 x8 card. Via three QSFP
modules it interfaces with up to 12 S-Links. The firmware of the card was
redesigned and rewritten. Major processing tasks are now performed on the
host system’s CPU as opposed to the onboard chip on the ROBIN. This de-
cision was taken with the future possibilty of future CPU upgrades in mind,
which would allow a cheap and easy way of increasing ROS performance
should the need arise. Up to two RobinNP cards are mounted in upgraded
server PCs. The new servers have a 2U height profile, as opposed to 4U in
the old ROS, allowing for a much denser system.

Trigger

One of the most significant changes in the LS1 upgrade was the redesign of
the high-level trigger. In the first LHC run the high-level trigger was split
into the L2 trigger and the event filter, with the event builder in between.
In run 2 the L2 trigger and event filter are merged into a single high-level
trigger. The new, unified trigger is executed on a single computer farm. The
new design is much simpler, and also more efficient due to the removal of
the communication step between the two trigger levels.

At the same time the HLT farm’s compute capabilities were also expanded
by the installation of new hardware. The number of available cores was in-
creased from about 15,000 to more than 20,000 in Run 2.*

Another trigger-specific upgrade was the already mentioned increase of
the L1 rate from 75 kHz to 100 kHz.

Networks

During LS1 the links connecting the ROS with the core routers of the data col-
lection network were updated to from 1 GbE links to 10 GbE links. The over-
all architecture with two interconnected core routers as network backbone
persisted. However, the routers were changed to operate in a bonding mode
to form a router cluster for increased reliability and capacity. If one router
fails data acquisition can continue at the same rate. Each ROS is equipped
with four 10 GbE links and connected to both core routers. Each HLT rack
is connected via two bonded 10 GbE links, while individual HLT servers are
connected via 1 GbE links (see Figure 2.10).

3The ROBIN card was based on the PCI standard (predecessor to PCle), which at the same
time was slowly phased out of commercially available server hardware.

4During the course of Run 2 the farm size was further increased to a total number of 37,000
cores in 2017.



24 CHAPTER 2. EVOLUTION OF THE ATLAS DAQ SYSTEM

2 x 10 Gbps 2 x 10 Gbps
Patch panel
ATLAS
cavern
Patch panel 10 Gbps 10 Gbps 150 m
Surface

Router cluster
8 x 10 Gbps
10 Gbps
10 Gbps
<._.> SFO (Storage)
x8
HLT 1 Gbps 2x 10 Gbps
CERN
Permanent
x40 8 x 10 Gbps Storage
x50

Figure 2.10: The ATLAS data collection network in Run 2. Two redundant
core routers are the back-end of the network.

The back-end network became obsolete due to the merge of L2 trigger
and event filter and was removed.

2.5 LHC Run 3 and beyond

The analysis of operational data presented in Section 2.3 made clear that the
system architecture of Run 1 and Run 2 inherently leads to an unbalanced
load distribution on the ROS PCs due to the static mapping of ROS PCs to de-
tectors and sub-detectors. Moreover, a system based on static point-to-point
links does not scale well. To reduce the load on a specific ROS machine and
rebalance the load to a new node the ReadOut Links have to be reassigned. In
case of a system failure of ROS or ROD the corresponding ReadOut Links be-
come unavailable for recording. RODs and ROSs are therefore single points



2.6. CENTRALIZED DATA DISTRIBUTION WITH FELIX 25

of failure.

Quality-of-service control where one traffic type is prioritized over an-
other can be important. For example, a detector control data stream like a
critical temperature sensor has a high priority since it is essential for a safe
operation of the experiment. With the point-to-point S-Links of Run 1 and
Run 2, a quality-of-service control is only possible on a per-link basis. A net-
work with multi-path switching is more flexible in this regard and can also
tolerate link failure to some extent.

Many of the low-level DAQ components from the Run 1 and Run 2 ar-
chitecture like the RODs are custom, purpose-built electronic devices. De-
velopment and maintenance of these components are significant cost factors
in the operation of the ATLAS experiment. Shifting requirements due to the
LHC upgrade programs create the need for an ongoing development effort.
Since the LHC experiments are planned to be operated for many decades, the
continued supply of spare parts can also pose a problem for maintenance of
these systems. Software, on the other hand, is relatively cheap and easy to
develop and maintain. Computer technology has thus far undergone a con-
stant, steady evolution, as can be seen by the continued validity of Moore’s
Law.

In this thesis I explore the potential of DAQ systems that make use of
commercial off-the-shelf (COTS) components and computers early in the
DAQ chain for ATLAS and similar HEP experiments from a computer sci-
ence point of view. From the above mentioned points one could derive the
following key ideas for such DAQ systems, and the ATLAS DAQ system in
particular:

1. Scalability, load-balancing, failure-tolerance and quality-of-service can
be improved by using dynamic switched networks over static point-to-
point links early in the DAQ chain

2. Development and maintenance cost and effort can be reduced by push-
ing the usage of COTS technology and computer engineering method-
ologies closer to the detector.

3. Software solutions are preferred over hardware solutions where rea-
sonably possible.

These key concepts enable the application of insights, techniques and
knowledge from computer science to aid the development of DAQ systems
for high-energy physics applications.

2.6 Centralized Data Distribution with FELIX

FELIX, for FrontEnd LInk eXchange, is an ATLAS project that incorporates
the above points with the aim to provide a central, commodity data distri-



26 CHAPTER 2. EVOLUTION OF THE ATLAS DAQ SYSTEM

Trigger DAQ
Level 1 Trigger 100kHz
<2.5us
Custom Hardware r_ »»»»»»»»»»»» Il FIE l| II FIE l| I FE |
LLACCEpE == o
i FeLX 1 [ ROD | [ ROD
L1 Results, 1
ROI Information
High-Level Trigger
u Readout System
! I TFELIX !
. | | ROI fragments | Readout :
Processing Unit | Data Collection ~ _ [ 77~~~
[ Network
Full events
I
—-H Data Logger

CERN Permanent Storage

Figure 2.11: The architecture of the ATLAS trigger and data-acquisition sys-
tem as planned for LHC Run 3. The FELIX Readout components implement
the functionality of both the ROD and ROS in the old system.

bution layer early in the DAQ chain. FELIX consists of PC-based nodes that
sit between the ATLAS detector front-end electronics and the network peers
implementing, most likely in software, functions previously performed in
detector-specific RODs. The new FELIX-based ATLAS trigger and DAQ sys-
tem is shown in Figure 2.11. The project is a joint development effort of sev-
eral institutes.?

The front-ends are connected to FELIX nodes via radiation-hardened op-
tical links (called the Versatile Link [17]), on top of which the GigaBit Trans-
ceiver (GBT) [18,19] protocol is employed. The Versatile Link and the GBT
protocol are CERN projects providing a uniform, reliable, radiation-hardened
link for high-energy physics experiments. The ATLAS experiment as well as
other LHC experiments are phasing out custom link protocols in favour of

®At the time of this writing the FELIX development team consists of members from Ar-
gonne National Laboratory (USA), Brookhaven National Laboratory (USA), CERN (Switzer-
land), NIKHEF (Netherlands), Paderborn University (Germany), Radboud University Ni-
jmegen (Netherlands), Royal Holloway University of London (UK), University of California,
Irvine (USA), and the Weizmann Institute of Science (Israel).



2.7. RELATED WORK 27

the Versatile Link and GBT. In the following the combination of the Versatile
Link and the GBT protocol will be simply referred to as GBT link.

On the back-end side, FELIX nodes connect via a switched high-perfor-
mance network to the ATLAS DAQ system, detector control system, as well
as detector specific calibration and monitoring systems. All these systems are
implemented as software application running on servers connected to the FE-
LIX network. The RODs, which where previously implemented as dedicated
electronic components, can be implemented in software and the functionality
can be merged into the ROS functionality. With all traffic flowing via FELIX
systems there is now one single way for DAQ and auxiliary systems to com-
municate with detector front-end electronics.

FELIX will also interface with the existing TTC system as described ear-
lier. FELIX receives TTC streams and can distribute the information down-
stream to detector front-end electronics, as well as upstream to the DAQ and
other systems. TTC data that are sent downstream via the GBT links are for-
warded with a fixed, low-latency delay to ensure accurate timing.

2.7 Related Work

The original ATLAS trigger and data acquisition system that was in use dur-
ing the first LHC run from 2009 until 2013 is described in [7], its evolution
to the system that is currently used in the second LHC run (from 2015 un-
til 2018) is described in [20]. The Data Collection software framework used
in ATLAS TDAQ is presented in [21], which is one of the first examples of
common communication and message passing frameworks in ATLAS.

The LHCb project currently uses a combination of a low-level trigger and
a high level trigger, similar to the ATLAS DAQ architecture in Run 2. The
plan for the 2018 upgrade is to completely remove the low-level trigger and
therefore read out the detector at the bunch crossing rate of 40 MHz. The
foreseen detector readout system is based on GBT links and custom electronic
component using the ATCA standard. As an alternative, a proposal for PCle-
based readout is also being investigated [22,23]. The system uses the PCle40,
an FPGA PCle board developed by the LHCb collaboration. In this scenario
the PCle40 boards would be housed directly in the event builder PCs.

ALICE plans to deploy GBT links in their detectors and is developing a
common interface between detector electronics, trigger and DAQ), called the
CRU (Central Readout Unit) [24]. The implementation of the CRU is based
on PCle and the PCle40 board from LHCb.

The CMS experiment upgraded their DAQ system for the current LHC
Run 2. In the CMS architecture, low-level custom electronics connect to the
PC-based DAQ system using a subset of the TCP/IP protocol over Ethernet
links that is implemented in FPGAs [25,26].






Chapter 3

Architecture of a COTS-based
Read-Out Switch

3.1 Overview

One of the core concepts that form the basis of the work presented in this
thesis is the use of commercially available components for the purpose of
detector readout. The FELIX project applies this principle at least in two
distinct aspects.

First, the FELIX devices, based on commercial PC technology, minimize
the need for custom components. Some custom hardware is unavoidable, for
example detector links and TTC connections are very specific to high-energy
physics and require custom developed hardware and firmware components.
In FELIX connections to detectors and TTC system are implemented on a
PCle card with an on-board FPGA.

Second, FELIX functions like a switch that connects multiple endpoints
(detectors and DAQ systems) and routes data between them (Figure 3.1).
This characteristic of FELIX makes it easy to implement DAQ functions in
software running on COTS servers as opposed to dedicated electronics, be-
cause the connection to detector front-ends that might require custom devices
is already handled by FELIX. An example are the the RODs, which were typ-
ically implemented as VME modules in LHC run 1 and 2. With FELIX, the
ROD functionality in Run 3 can be provided by software components run-
ning on server PC.

3.2 Detector Connectivity

The Versatile Link [17] is an optical link technology developed at CERN tar-
geted at high-energy physics experiments. The nature of these experiments
requires the link and electronics to be radiation-resistant. The Versatile Link
is a full duplex link.

29



30 CHAPTER 3. COTS READ-OUT SWITCH ARCHITECTURE

] [ ] [rec | [0 [ [
|
Network Switch
|
[ | |
FELIX FELIX FELIX

T
sEd0En  oEGOEn  eEGOuD

Figure 3.1: FELIX devices connect to multiple DAQ system endpoints.

The Gigabit Transceiver (GBT) protocol [18,19] is used on top of the Versa-
tile Link. A widely available chip, the GBTX, allows the serialization of data
streams according to the GBT protocol. The GBT protocol supports a stan-
dard mode which includes forward error correction using a Reed-Solomon
code, and a wide mode with increased bandwidth but without forward error
correction. The protocol uses virtual lanes, so-called e-links, to handle mul-
tiple parallel streams on a single, physical link. At the bunch crossing rate
of 40 MHz the GBT protocol transmits packets called GBT frames of 120 bits,
of which 80 bits (standard mode) or 112 bits (wide mode) are usable for user
data. An e-link can be 2, 4, 8, or 16 bit wide, meaning that 2, 4, 8, or 16 bits
of a GBT frame are utilized. A single GBT link can contain between 5 and 40
e-links in standard mode, or between 7 and 56 e-links in wide mode. In ad-
dition two special 2bit e-links are part of the GBT frame headers. These are
used as channels for the detector control system and for configuration of the
GBTx chip itself. E-links have a net bandwidth of 80, 160, 320, or 640 Mbps.
An illustration of the GBT protocol is shown in Figure 3.2.

The FELIX project decided to make two additions to the pure GBT pro-
tocol. The first addition is the definition of a packet encoding protocol on
top of the standard e-link information. E-links are stream-based as opposed
to packet-oriented protocols and therefore packet boundaries would be lost
without an additional encoding. FELIX supports an 8B/10B encoding as well
as an High-Level Data Link Control (HDLC) encoding. Packet boundaries
are transmitted as out-of-band characters in the respective encodings.

The second addition is a third operation mode next to the standard and
wide GBT modes. The third mode does not support e-links, but instead uses
an 8B/10B encoding to carry a single packet stream on the link. This mode
provides more bandwidth and is thus more efficient than the other modes,
but sacrifices forward error correction and e-links. This third mode is refered
to as full mode, and is intended for applications not requiring radiation-hard



3.3. THE DETECTOR LINK INTERFACE CARD 31

GBT Frame (normal mode):

H 16 8 8 (4[4 16 16 8 FEC

GBT Frame (wide mode):

H (4]|4] 8 16 8 16 16 4[4 16 16

8 112

H | =Header (including two special E-links)

Figure 3.2: Illustration of the GBT Frames in normal and wide mode. The
80bit or 112 bit payload field is divided in 2, 4, 8, or 16 bit E-links.

links. An example of this would be trigger electronics that are hosted in the
ATLAS service cavern, and thus not in a radiation area.

3.3 The Detector Link Interface Card: Hardware,
Firmware and Low-Level Software Tools

The PCle card in the FELIX PC that connects to the detector links is simply

called the FLX card. It is currently available in three versions (also see Ta-
ble 3.1):

FLX-709 This card is based on the Xilinx VC-709 [27] development kit. The
card hosts a Xilinx Virtex-7 VX690T FPGA and has four cages for SFP+
transceivers. It connects the host PC via a PCle Gen-3 x8 interface. The
FLX-709 only supports up to four GBT links, but the hardware is com-
mercially available and relatively inexpensive, which makes it a good
board for development and test setups.

FLX-710 The FLX-710is based on the HiTech Global HTG-710 [28] PCle board
with the Xilinx Virtex-7 X690T FPGA. The card has two CXP sockets to
connect two 12-channel full-duplex CXP transceivers. It can therefore
support up to 24 GBT links. The board also has a PCle Gen-3 x8 inter-
face. The FLX-710 was the initial development board used by the FELIX
project.



32 CHAPTER 3. COTS READ-OUT SWITCH ARCHITECTURE

FLX-709 FLX-710 FLX-711

Board Xilinx VC-709 HiTech Global Custom
HTG-710

FPGA Xilinx Xilinx Xilinx

Virtex-7 XV690T Virtex-7 X690T Ultrascale XCKU115
PCle Interface  Gen-3 x8 Gen-3 x8 Gen-3 x16
Links 4 24 48
TTC via TTCfx FMC via TTCfx FMC onboard connector

Table 3.1: Specifications of the three generations of FLX cards.

Figure 3.3: Hardware prototype of the FLX-711 card.

FLX-711 The FLX-711 (Figure 3.3) is based on a custom PCle board that was
originally designed for use in the LAr detector community.! The FLX-
711 has a Xilinx Kintex Ultrascale XCKU115 FPGA, a PCle Gen-3 x16
interface and supports up to 48 optical links in full-duplex. The FLX-
711 is a candidate for the final card that will be used in the Run 3 FELIX
installation.

Multiple FLX cards can be installed in a FELIX PC to increase link density.
The firmware in the FLX card’s FPGA contains the logic to interface between
detector links and the host PC. The firmware can be divided into six ma-
jor components (see Figure 3.4): a) the GBT interface, b) the Central Router,
which handles data forwarding from and to e-links, ¢) a DMA engine and
interface to the PCle bus called Wupper, d) configuration and register map, e)
TTC interface and f) a housekeeping module to configure and control clock
resources and other peripherals on the FLX card.

!The original use of the card is for testing the Liquid Argon Trigger Digitizer Board (LTDB)
which is a sub-system of the ATLAS L1 trigger.



3.3. THE DETECTOR LINK INTERFACE CARD 33

- Sync stage

T7C Clock Housekeeping
’ Synthesis ‘
’ Distribution ‘

Data Emulator

]

GBT Wrapper Central Router Wupper

’ E-link H FIFO ‘ DMA Read/Write
processors
[Forewe ] .
ore E-link — PCle

’ processors H FIFO ‘ DMA Control

Register Map

Figure 3.4: Block diagram of the FLX card firmware.

The GBT Interface

The GBT interface is a wrapper around an HDL softcore provided from the
CERN GBT team. It manages the encoding and decoding of GBT frames
(in the case of standard and wide mode) and the operation of the optical
transceivers.

The Central Router

The Central Router encodes and decodes the packet stream on top of the GBT
streams, and encodes and decodes blocks that are transmitted over the PCle
bus (see chapter 4 for a description of the encoding format). Per e-link two
FIFOs are maintained for transmission of data in both directions, from the
GBT links and to the GBT links. For performance reasons the Central Router
will encode the variable-length packets coming from the detector links into
one or multiple fixed-size 1kB blocks. These blocks are then transferred via
the PCle bus. The Central Router also forwards TTC information to the GBT
links.

DMA Engine and Interface to the PCle Bus

As part of the development of the FLX card firmware a DMA engine called
Wupper [29] for the PCle Gen-3 hard block of the Xilinx Virtex-7 FPGA was
developed. Wupper allows eight DMA transfers in parallel and a maximum
transfer rate of 64 Gb/s. MSI-X is supported for the handling of interrupts.
Wupper supports two modes of operation: a single-transfer mode, and
a continuous-transfer mode. In single-transfer mode a software application



34 CHAPTER 3. COTS READ-OUT SWITCH ARCHITECTURE

will request the DMA engine to perform a single transfer of data into a buffer
in the host system memory. Once the transfer is complete, the DMA engine
channel is free to be programmed with further DMA operations.

In the continuous mode on the other hand the Wupper engine treats the
destination memory region of the transfer as a circular buffer and maintains
a read- and write-pointer. Data can be fed continuously to the DMA engine
by the FPGA logic. Wupper will write the incoming data to the destina-
tion buffer and update the write-pointer. User software can read the data
from the buffer and will subsequently update the read-pointer. When the
write-pointer reaches the read-pointer, Wupper will pause the transfer un-
til the read-pointer is advanced. When the end of the buffer is reached, a
wrap-around occurs and reading or writing continues at the beginning of the
buffer. The continuous mode is useful to continuously transfer data to the
host system without the need of reprogramming the DMA engine for every
block of data, thus making the usage of the PCle bus more efficient.

Configuration and Register Map

The FLX card parameters are controlled via a central register map. The reg-
ister map has to be synchronized with software tools. To ease development
a Python script is used to generate a VHDL register map as well as C source-
code from a central register description file.

The TTC System: Trigger, Timing and Control

A connection to the TTC system is physically established via a FPGA mezza-
nine card (FLX-709, FLX-710) or via a dedicated on-board optical connector
(FLX-711). The 40 MHz TTC clock is cleaned and extracted in the FPGA and
is used to operate the optical transceivers for the detector links at a synchro-
nized clock. Furthermore the TTC information is forwarded to the detector
front-ends and host system via the Central Router.

3.4 The FELIX Software Stack

The FELIX software stack (Figure 3.5) runs on top of a RedHat-based Linux
operating system (Scientific Linux). The software reads and writes data from
and to the detector links, manages network connections to DAQ nodes, and
encodes and decodes data packets. The software stack consists of a main
server component to route data traffic between detectors and DAQ, various
support libraries, and command-line tools for operation, monitoring and di-
agnostics. FELIX connects to a high performance network via a standard
PCle network interface card on the same host PC.



3.4. THE FELIX SOFTWARE STACK 35

FELIX Core Application FLX Card Tools Development Tools
NetlO et FLX Card API
Decoding
FLX CMEM RCC
Driver Driver

Figure 3.5: The FELIX software stack.

Drivers

Two kernel device driver modules are used to operate an FLX card. The
first driver, which is simply called flx, maps memory regions assigned by the
Linux kernel to the FLX card to the user address space. The memory regions
are PCle memory spaces that contain the FLX card’s register map. Via ioctl
operations a user application can request the driver to map the configuration
register space of the FLX card to its own address space. Via direct manipu-
lation of the mapped memory region the user application can configure and
operate the card, start or stop DMA operations, or read status information.
Furthermore, slow data transfer operations between the host system and the
FLX card can be implemented by software writing to specific memory ad-
dresses which are read out by the FPGA firmware on the card. Giving user
space applications direct access to the PCle address space of the FLX card is
more light-weight than encapsulating the accesses in the driver. The direct
access method avoids context switches each time a register of the FLX card
is accessed. However, this approach is only suitable for slow data transfers.
Use cases requiring a higher throughput should use DMA transfers instead.

The flx driver is also responsible for handling MSI-X interrupts issued by
the FLX card. Interrupts can be used to signal DMA transfer completions, full
or empty FIFOs or other important events such as error conditions. The flx
driver manages the handling of interrupts and notifies user space programs
of the events. For debugging and diagnostic purposes the flx driver outputs
basic operational data to the /proc/flx file in the proc file system.

The second driver in the FELIX software is cmem_rcc, which stands for
contiguous memory (the appendix rcc is for historic reasons). To use the con-
tinuous mode of the Wupper DMA engine efficiently it is necessary to pro-
vide a large, contiguous block of system memory as a destination. On mod-
ern PC architectures memory is virtualized for user space applications, but
devices on the PCle bus typically operate with physical memory addresses.?

There are architectures which use a IOMMU (input-output memory management unit)
to provide virtual addresse also for peripherial devices. An example is Intel VI-d. However,
not all modern CPUs include an IOMMU, and in order to maximize freedom in the choice of
hardware for FELIX it is beneficial to opt for contiguous physical memory allocations over an
IOMMU.



36 CHAPTER 3. COTS READ-OUT SWITCH ARCHITECTURE

Thus, the normal memory allocation functionalities provided by the Linux
kernel are not sufficient. The cmem driver closes this gap and allows the
allocation of large regions of contiguous physical memory via ioctl system
calls.?

Low-Level Tools

Several low-level tools with a command-line interface are available to config-
ure and operate the FLX cards. The tools are listed in Table 3.2. The toolset is
used by developers, testers and end users to test and debug the FLX card. The
functionality of the tools is mostly implemented in a shared library libflxcard,
which is also used by the FELIX core application (see below).

Core Application

The FELIX core application is the central process of a FELIX system. The
application has the following functions:

1. Packet forwarding from the front-ends to the DAQ system: read and
decode data packets from the FLX card and forward the packets to net-
work endpoints based on dynamic routing rules.

2. Packet forwarding from the DAQ system to the front-ends: receive
messages from network endpoints and write the contained packets to
the e-links that are supplied in the message header.

3. Configure the FLX card, e-link configuration and operational parame-
ters based on input from a configuration file.

4. Recover from a network endpoint failure. This could mean that data
are temporarily routed to another endpoint, or that data transfers are
resumed seamlessly after recovery of the network endpoint.

5. Gather statistics and performance metrics.

6. Report operational status information like the status of the detector
links and warn in case of a hardware failure.

Figure 3.6 shows a diagram of the architecture of the FELIX core applica-
tion. In the case of a system with multiple FLX cards, one application is run
per card.

3In Linux kernel v3.5 the Contiguous Memory Allocator (CMA) was added, which pro-
vides similar functionality as the cmem driver. Since the Linux distribution Scientific Linux 6,
which is very commonly used in high-energy physics, is still based on kernel series 2.6, the
FELIX project uses cmem over CMA.



3.4. THE FELIX SOFTWARE STACK 37

Name

Description

FlxCard_scope
flx-config

flx-dma-stat
flx-dma-test
flx—dump-blocks

flx—-i2c

flx—info

flx—-init

flx-irg-test
flx-reset
flx-spi

flx-throughput

fdag

fupload

An interactive debugging tool.

Access to configuration options of the FLX card
and the raw register map.

Displays the status of the Wupper DMA engine.
Tests the functionality of the Wupper DMA engine.
Reads raw data from the card via DMA transfers

and dumps the data into a file. Data come from
GBT links or the internal FLX data generator.

Reads from or writes to I?C-connected devices on
the FLX board.

Displays generic information about the FLX cards,
connected transceivers, link status or connected
Sensors.

Initial configuration and clock setup. This pro-
gram has to be executed once before data can be
read from the card.

Tests the functionality of the MSI-X interrupts.

Resets the card or specific parts of the firmware to
the initial state.

Similar to flx-i2¢, this tool is used to communicate
with devices connected via the SPI bus.

A throughput benchmark to measure the transfer
speed of the Wupper DMA engine.

Read and decode GBT data from an FLX card and
record the decoded data stream to a file. This ap-
plication can be used as a standalone DAQ system
for tests.

Transmit user-supplied data via GBT links.

Table 3.2: The low-level command line tools for the FLX card.

Front-End to DAQ Path

A single thread is responsible for reading data from the FLX card. As men-
tioned before, data that are transferred from the FLX card are encoded in
tixed-size 1kB blocks. The thread reading from the FLX card assigns these
blocks in a round-robin fashion to one of multiple block queues. For each
block queue a worker thread is started which reads the blocks from the as-
signed block queue and processes the blocks. Within the worker thread the



38

CHAPTER 3. COTS READ-OUT SWITCH ARCHITECTURE

blocks will run through a pipeline with the following steps:

1.

The block is copied from the queue into a 1kB buffer. The buffer is
pre-allocated in the worker thread and retrieved from a queue. At this
point the memory in the cmem buffer can be made available for further
data transfers by advancing the read pointer.

. The next step is to decode the block into variable-length packets, called

chunks. This step is crucial for overall system performance. The prob-
lem of decoding blocks into chunks efficiently is therefore discussed in
more detail in chapter 4.

The third step in the pipeline is to gather stastics. This pipeline module
counts every chunk that is processed in a central data structure that is
shared among all worker threads. Thread synchronization is ensured
by using atomic variables as counters.

. In this step meta information is extracted from the chunks. This infor-

mation can be used for routing of data packets in the next step. At the
time of this writing only the e-link number is stored. In the future this
could be extended to extract an event identifier or other information.

The meta information from the previous step is used to assign one or
more network endpoints as destinations for the chunk.

. The last step of the pipeline is to send the chunk to the network end-

points assigned in the previous step.

The implementation of steps 4 and 5 is discussed in chapter 5. The FLX card
transfers blocks via a DMA transfer into a cmem-allocated buffer. Pointers to
the blocks in the cmem buffer and later pointers to the chunks in the blocks
are passed through the pipelines. In the last step the chunk data are copied
for each destination endpoint into a large output buffer.

FLX Card Card Reader T Network
(PCle) Thread Worker Thread Interface
NetlO (PCle)

| Block Queue

i ‘ 1
FLX Card PCle Packet |“ NetlO Event Loop Thread ‘

API | Decoder
Buffer
'{ PCle Packet Encoder - u—{ NetlO Event Loop Thread I

‘ Statistics and Monitoring Thread ‘

Figure 3.6: The architecture of the FELIX core application.



3.5. RELATED WORK 39

DAQ to Front-End Path

Traffic that is sent from the DAQ endpoints to GBT links is not performance
critical and only requires a low throughput. Therefore a single thread is suf-
ficient to receive incoming messages from network endpoints. Upon the ar-
rival of a message, the message header is decoded and the message is writ-
ten to the respective e-link. The software has to encode the data in 32byte
packets including a 2byte header specifying the destination e-link prior to
transferring the data to the card for proper handling by the FPGA.

3.5 Related Work

The PCle40 board of the LHCb experiment is powered by an Altera Arria
10 FPGA and supports up to 48 GBT detector links and has a PCle Gen-3
x16 [30]. The PCIe40 software stack uses a driver that exposes a bytestream
interface. The driver uses I/O mapping of PCle memory spaces in user space
similar to the FELIX driver. Three streams are available: the main data stream
including data from detector frontends, a metadata stream including size in-
formation about the data in the main stream, and an optional stream for TTC-
like information. A key difference to FELIX is that the PCle40 firmware will
not transparently expose the GBT links, but instead combine data from differ-
ent fibres that belong to the same event and output a single data stream. Fur-
thermore the PCle40 envisages a mechanism for detector specific data pro-
cessing functionality like compression or data formatting within the PCle40
FPGA, so PCle40 devices are equipped with different firmware, depending
on the connected detector. In the FELIX archicture these functions are imple-
mented outside of FELIX in software FELIX clients, and thus all FLX cards
have the same firmware.

The GBT-Based Expandable Front-End (GEFE) board is an FPGA-based
GBT interface that is used in the CERN beam instrumentation group [24].






Chapter 4

Efficient Decoding of Detector
Link Data Streams

41 Overview

Communicating efficiently with peripherial devices such as a network card
or the FLX card is crucial for COTS-based DAQ systems like FELIX, as this
will have a direct impact on overall system performance. This chapter fo-
cuses on the specific part of the FELIX software that handles the decoding of
data packets transmitted over the PCle bus by the FLX card. This piece of
software plays an essential role in the overall performance of the FELIX ap-
plication. First, I introduce the data encoding for the PCle transfers and the
software decoding algorithm. The performance optimizations and results of
such a packet processing algorithm are then discussed. Finally, further anal-
ysis of the software will demonstrate that memory bandwidth is the primary
bottleneck limiting the algorithm speed.

4.2 The PCle Packet Format

As defined in the previous chapter, data coming over GBT links are organized
as a stream of packets. Packets have variable length; their content is not
standardized and depends on the source. Packet boundaries are defined by
an 8B/10B encoding using 10B control symbols to mark the start and end of
a packet, or an HDLC encoding. It is the task of the FLX card firmware to
decode the packet stream and transmit packets, which are called chunks in
FELIX terminology, over the PCle bus into the host system’s memory.

For technical reasons relating to the FPGA hardware and firmware as
well as to ensure a high throughput, chunks are packed into fixed-size blocks
of 1kB in order to move them from the FLX card to the host system mem-
ory. Each block has a 4byte header (see Table 4.1a) which contains a 2byte
start-of-block word, a 5 bit sequence number, and an 11 bit data stream iden-

41



42 CHAPTER 4. EFFICIENT DECODING OF DATA STREAMS

Bit range Description

0-10 Stream ID
11-15 Sequence Number
16-31 Start-of-Block Symbol (OxABCD)

(a) Block Header (4 byte)

Bit range Description

0-9 Length in Byte
10 Reserved for length field extension
11 Chunk error bit
12 Truncation bit
13-15 Type field

(b) Subchunk Trailer (2 byte)

Table 4.1: The meta-data in block headers and subchunk trailers included in
the packets transmitted over PCle.

tifier. A single large chunk can span multiple blocks, or a single block can
contain multiple small chunks. To fit into the fixed-size blocks, the variable-
length chunks are split into so-called subchunks. Every subchunk ends with
a 2byte trailer, which contains the length encoded as 10bit integer, a trun-
cation bit, an error bit, and a 3 bit field indicating the type of this subchunk
(Table 4.1b). The truncation bit is set when the FLX card receives a chunk
that is longer than a configurable maximum size and indicates an error con-
dition. The subchunk type can either be first, last, or middle, indicating this
subchunk starts a new chunk, ends a chunk, or is in the middle of a chunk;
both, indicating that this subchunk represents a full chunk that has not been
split up; null, indicating that this subchunk does not carry data and is only
used as padding to fill up the block; or out-of-band, indicating that the rest of
the trailer is to be interpreted as an out-of-band signal. The block format is
illustrated in Figure 4.1.

4.3 The Packet Decoding Algorithm

It is the task of the FELIX core application to decode the block stream and re-
construct the original chunks. The algorithm starts processing the subchunks
at the end of a block. The subchunk trailer is read and a pointer to the data
part of this subchunk is stored in a stack data structure. When a full chunk



4.4. PROFILING 43

block block block

%(_JL —~ e — J

chunk chunk chunk

Figure 4.1: The block data format used to transmit data over the PCle bus.
The numbers indicate subchunks and their containing chunks, e.g., chunk 2
consists of two subchunks 2.1 and 2.2. Subchunk 1.1 is of type both, 2.1 is
of type first and 2.2 is of type last. Each block starts with a 4 byte header
(left-most rectangle in each block), each subchunk ends with a 2 byte trailer
(slanted shape at the end of each subchunk).

has been read, the pointers on the stack are read in reverse order and stored
in a data structure. Note that only pointers to the actual data are stored.
Using scattered read and write routines (readv, writev on POSIX), the data
can be copied into a consecutive memory region or, for example, passed on
to a network card, enabling a zero-copy application design.

4.4 Profiling

For the performance measurements, I generated test data with mixed-size
chunks and processed with the packet processing algorithm isolated and in-
memory.

I used the Intel VTune Performance Analyzer utility [31] to perform an
initial profiling of the algorithm execution. Several issues were revealed by
the profile and could be fixed; details are disussed in Section 4.5.

As a next step, I used VTune to measure memory transactions while the
benchmark was running. The results suggested a high CPI (clocks per in-
struction) of more than 2.5 in parts of the code as well as a large number of
LLC (last-level cache) misses. The high number of LLC misses was expected
since the benchmark was designed to read block data from main memory, as
in a real-world scenario where data is copied to main memory via PCle. The
high CPI rate suggests that instructions are stalling and ILP (instruction-level
parallelism) cannot be used effectively. This is an indication that the memory
bandwidth of the test system is the performance bottleneck.

4.5 Optimizations

After the profiling gave some insight into the bottlenecks of the application,
I iteratively optimized the code and re-evalued the performance with bench-



44

CHAPTER 4. EFFICIENT DECODING OF DATA STREAMS

marks after each optimization step. The first optimizations were guided by
results of the VTune profile. The usage of STL containers could be improved
by several modifications:

e By reserving memory upfront unnecessary memory allocations can be

avoided. The vector data structure in C++ reserves memory dynami-
cally as elements are added. When the maximum number of elements
per vector is reached, the vector allocates a larger contiguous memory
region and copies data from the old memory region to the newly allo-
cated one. This is an expensive operation. Allocating a larger amount
of memory upfront can reduce the number of memory allocations and
copies.

The C++11 standard emplace_. .. () methods were added to many
data structures. With these calls objects can be directly allocated in-
place in the data structures. This avoids the need for an additional

copy.

The algorithm uses a stack data structure to intermediately store sub-
chunks (see Section 4.2). The stack data structure in the C++ standard li-
brary allows to use different container formats as back-end. I compared
std: :vector and std::deque, of which std: :deque showed a
higher performance.

Other optimizations involved the tuning of compiler options, the usage of
NUMA-aware memory allocations and core-pinning to ensure that memory
accesses are always local, and data prefetching using SSE intrinsics. These
optimizations are represented by the “optimized” line in Figure 4.2.

Compiler option tuning In the optimized implementation I used the the
following GCC compiler options:

-03 This option enables full optimization. This option
was already used in the benchmarks of the unopti-
mized algorithm implementation.

-opt-prefetch The compiler will more aggressively try to prefetch

memory before it is being accessed. This reduces
the average time that an instruction needs to wait
for data.

—unroll-aggressive The compiler will more aggressively try to unroll

loops.

—-march=native The compiler will generate code for the native CPU

of the host system. This allows the compiler to use



4.5. OPTIMIZATIONS 45

all features of the current CPU. Generated code is
not backward-compatible, i.e., it will not run on
older CPUs. This is acceptable given that FELIX
systems will have a well-defined hardware platform.

NUMA-aware memory allocations Ona NUMA system with multiple pro-
cessors a memory access of a thread to remote memory, i.e. memory that is
not attached to the local CPU of the thread, can be costly. Using the library
libnuma function void numa_set_localalloc () it can be ensured that
all memory allocations using functions like malloc occur on local memory.
Thus the cost of a remote memory access can be avoided.

Core pinning The task scheduler of the Linux operating system has the
ability to move threads to any CPU core with free resources. This ensures a
good resource utilization and avoids the oversaturation of individual CPU
cores. However, the scheduler might decide to move a thread to a different
NUMA node, which renders the previously described NUMA-aware local
memory allocations ineffective. By pinning threads to a specific CPU these
scheduler effects can be avoided. Again a libnuma function can be used:
int numa_run_on_node (int node).

Data prefetching When data is accessed by a CPU instruction it is possible
that the instruction pipeline is stalled until the data is retrieved. Caches are
used in CPUs to decrease the performance penalty of memory accesses. By
explicitly fetching data into the caches before they are accessed, the number
of cache misses can be reduced and the efficiency of an algorithm can thus be
increased. Explicit prefetch instructions can ge generated by using intrinsic
instructions of the compiler in the sourcecode. The GCC intrinsic instruction
for thisis _ builtin_prefetch. Note that always a whole 64 byte cache-
line is prefetched. Whenever a subchunk trailer is read in the optimized algo-
rithm implementation, the cachelines that likely include the next subchunk
trailer are prefetched. Since a block is read from back to front, the eight cache-
lines preceding the current trailer’s cacheline are prefetched. It is likely that
the next subchunk trailer is found within these cachelines.

Short chunks The runtime profile revealed that the usage of the stack data
structure (see Section 4.3) is relatively expensive. In the case of subchunks of
type both, which represent a whole complete chunk, the stack can be avoided
entirely. Changing the implementation to omit the stack data structure in
this case could improve the runtime significantly. The optimized algorithm
directly yields a subchunk of type both to the caller without intermittently
storing the data in the stack.



46 CHAPTER 4. EFFICIENT DECODING OF DATA STREAMS

The packet processing benchmark results show that it takes much longer
to process a block containing many small chunks than a block containing
few but larger chunks (see Figure 4.2, “baseline”). This is expected since the
amount of processing and data acesses increases when more trailers have to
be parsed. On the other hand, the chance that a short chunk has to be split up
in several subchunks is much smaller than for a large chunk. For example,
15 chunks with a size of 64 bytes fit into the 1020 bytes payload of a block
without being split up into subchunks. As a result, only a single data pointer
has to be stored for each of the 15 chunks. The situation with a data stream
containing mostly small chunks is common enough to have a dedicated spe-
cialized implementation for this case. I introduced a new data type for short
chunks that only contains a single data pointer. Construction of this object
is significantly faster compared to a variable-length lists of pointers. As a
result, the processing speed for blocks with short chunks is reduced signifi-
cantly (see Figure 4.2, “optimized, new data type”).

4.6 Benchmark Results

Benchmarks were performed on two different test systems, which are shown
in Table 4.2. System 1 is a single-socket system with 4 cores and a modern
CPU. System 2 is a dual-socket system with more cores than System 1, but
slower memory.

To be able to handle the full load of an FLX card with 24 input links the
packet processing software needs to be able to handle about 9.375 Mblocks/s,
which is the maximum block rate for 24 links at a signalling rate of 3.2 Gb/s.

The optimizations discussed in the previous sections reduce the process-
ing time per block significantly. The speedup is larger for small chunk sizes,
an indication that the introduction of the new data type was successful. But
also for larger chunk sizes the processing time could be reduced. Speedups
of above 10x are achieved on both test systems.

Figure 4.2 shows a plot of the average processing time per fixed-size
block. In the benchmark I assume that only chunks of equal size are stored in
blocks. For each data point I generated 100 MB of chunk data and encoded
in the fixed-size block encoding described earlier. Note that the average pro-
cessing time for System 1 is in all cases better than for System 2. As will be
discussed in the next section this can be attributed to the different memory
speeds of the systems.

In a second experiment the influence of multithreading on the perfor-
mance was analyzed. The FELIX core application uses multiple threads to
decode the e-link block streams. In the experiment I emulated this scenario
by starting multiple threads, each working on an independent buffer of test
data. Similar to the previous experiment, each thread is given 100 MB of
block data to process. Results for System 2 are shown in Figure 4.3. The



4.6. BENCHMARK RESULTS 47

Block processing performance (system 1)

16 Average Processing Time per Block [ps]

14
12

10

Baseline Optimized,

new data type

Optimized

0= — A ° —

24 25 26 27 28 29 210 211 212
Chunk size [byte]

(a) System 1

Block processing performance (system 2)
6 Average Processing Time per Block [us]

1
14
12 Baseline
10
8
6
4 Optimized
Optimized,
new data type
\l —
0! 0 | T * ——
24 25 26 27 28 29 210 211 212

Chunk size [byte]
(b) System 2

Figure 4.2: Average runtime per processed block for two different test sys-
tems and for different stages of the optimization process. Note that System 1
has faster memory modules.



48 CHAPTER 4. EFFICIENT DECODING OF DATA STREAMS

System 1 System 2
CPU Type Intel Core i7-3770  Intel Xeon E5645
Architecture Ivy Bridge Westmere EP
CPU Clock Speed 3.40 GHz 2.40 GHz
Instruction Set Extensions SSE4.1/4.2, AVX  SSE4.2
Nr of cores (real) 4 12
Nr of cores (Hyper-Threading) 4 24
Nr of CPUs 1 2
Memory 8 GB DDR3 24 GB DDR3
Memory Speed 1600 MHz 1333 MHz
Nr of Memory Modules 2 6 (3 per CPU)

Table 4.2: Specifications of the systems used for benchmarks. Note that the
Core i7-3770 does support Hyper-Threading, but it was disabled during the
benchmarks.

speedup is almost linear in the number of threads used, until the number
of threads matches the number of real cores in the system. Using additional
cores with HyperThreading does not present a significant advantage. With
System 2 it is possible to process more than 10 Mblocks per second, which is
roughly the minimum throughput threshold of 9.375Mblocks/s for 24 links
at 3.2 Gbps each, i.e., the amount of links foreseen to be connected per FLX
card.

4.7 Memory Bandwidth Analysis

In this section I present a more in-depth analysis of the memory-access as-
pects of the implementation. First, I characterize the memory access pattern
of the decoding algorithm and compare it to a memory benchmark with a
similar access pattern. Second, a Roofline model analysis is performed to
determine the bottleneck of the algorithm by theoretical means.

Memory Access Throughput

I used the PMBW [32] benchmark collection to characterize the test systems
for different memory access patterns and test scenarios. PMBW allocates
buffers of different sizes and processes these buffers using different routines
with different memory access patterns. The benchmarks include several se-
quential scanning and random access routines. The results for System 1 can
be seen in Figure 4.4. System 2 behaves similar but is slightly slower. For



4.7. MEMORY BANDWIDTH ANALYSIS 49

Parallel scaling of the block decoding algorithm
Total Throughput [MBlocks/s]

10
8 = = = = m = = e e = S\ e = = = = = = -
Target throughput

6

4

2

4 8 12 16 20 24
Threads

Figure 4.3: Overall block processing throughput for System 2 for different
numbers of threads. The speedup is linear in the number of threads as long
as HyperThreading is not used; the throughput saturates for more than 12
threads.

single-threaded scans from main memory 5-10 GiB/s were measured on Sys-
tem 2, compared to 10-20 GiB/s for the same scenarios on System 1.

The effects of caching are visible in the PMBW benchmarks: test scenar-
ios with small buffer sizes benefit from the differently sized CPU caches.
Caching can be ignored in FELIX though, since data are copied via PCle to
main memory. Therefore scenarios with large buffers that are fully stored in
main memory will be used for the following discussion.

The memory access pattern in the packet processing algorithm consists
of many short reads of 2 bytes for the subchunk trailers and fewer reads
of 4 bytes for the chunk headers. Chunks are read sequentially. But, since
only trailers and headers are processed, large parts of the data are skipped.
This particular access pattern is similar to the Scan/Read scenarios with short
data lengths in PMBW. The Scan/Read scenarios involve reads ("scans") of
spatially sequential memory. These are depicted in Figure 4.4c.

One can see that better memory performance would be possible with a
different memory access pattern, for example with reads of more than 16 bit,
implying changing the data format of the block encoding. On the other hand,



50 CHAPTER 4. EFFICIENT DECODING OF DATA STREAMS

the current algorithm is significantly faster than scenarios with a completely
“random” memory access.

The measured read bandwidth during the packet processing benchmark
on System 1 was between 8 and 9 GB/s in the optimized version. This is
slightly less than the peak bandwidth of ca. 11GB/s obtained by PMBW,
single-threaded Scan/Read /32Bit/SimpleLoop for this access pattern. Band-
width measurements were performed with Intel VTune.

The memory access pattern results in a large number of cache misses. In
a typical scenario with relatively short chunks, the majority of reads will be
16 bit reads for subchunk trailers. In most modern x86-based CPU architec-
tures memory is always read in 64byte cachelines. As a result, to process
one chunk, a whole cacheline always has to be read even though only 2 bytes
(the subchunk trailer) are used. The memory read efficiency is therefore only
about 1/32 (assuming subchunks of at least 64 byte).

Roofline Model Analysis

The Roofline model, as described in [33], is a modelling method used to de-
scribe the performance of an algorithm implementation in the context of lim-
ited memory bandwidth and computing speed. It is useful to identify bot-
tlenecks and can give directions for optimization. In our case it is useful to
support our hypothesis that the implementation of the packet decoding in
FELIX is memory-bounded.

For the Roofline model, the performance P of an algorithm implementa-
tion is measured and related to its operational intensity /. The operational in-
tensity is a property of the implementation and measures the average amount
of instructions that are issued per byte read from memory. The measured
performance P is then compared to two performance ceilings, the memory
ceiling and the compute ceiling. Implementations with a low operational in-
tensity are limited by the memory ceiling, whereas implementations with a
high operational intensity are limited by the compute ceiling.

In the case of the packet processing algorithm I approximated the oper-
ational intensity by counting the number of operations that are needed to
process one subchunk trailer, and dividing this number by the amount of
memory that has to be read for the computation. The subchunk trailer is
2byte long, but as indicated before a whole 64 byte cacheline must be read in
order to process the 2bytes. The operation count is estimated to be 6 opera-
tions per trailer, thus I = 6 Ops/64byte = 0.09375 Ops/byte. The memory
ceiling is measured by the PMBW benchmarks and the performance ceiling is
estimated as 2 Ops/Cycle per thread. This assumes pipelined integer opera-
tions with a 2-fold instruction-level parallelism. The Roofline model analysis
of the packet processing algorithm for chunk of 64 bytes is depicted in Fig-
ure 4.5.



4.7. MEMORY BANDWIDTH ANALYSIS 51

Bandwidth [GiB/s]

500

400

300

200

100

RAM

> 2

210 212 914 216 18 Q20 222 24 26 2;8 2.:,0 2;2

Array Size [Byte]

(a) All memory layers, 4 threads

30 Bandwidth [GiB/s] 30 Bandwidth [GiB/s]
25 scanning (16 bit - 128 bit reads 25
20 20 scanning é32 bit - 128 bit reads;
15 15 _____scanning (16 bit reads) _ |
10 10

5 5

0 random access 0 random access

226 227 228 229 230 231 932 226 227 228 229 230 231 232

Array Size [Byte] Array Size [Byte]
(b) Main memory transfers, (c) Main memory transfers,
4 threads 1 thread

Figure 4.4: An evaluation of test System 1’s memory performance using
PMBW. In (a) the effects of the different cache levels are clearly visible. The
packet processing algorithm access data from main memory, which is shown
in (b) and (c). Memory speed does not multiply with the number of threads
used.



52 CHAPTER 4. EFFICIENT DECODING OF DATA STREAMS

Roofline Analysis of Block Processing Algorithm)

12 Performance [Ops/Cycle] Bandwidth Ceiling,
l : 12 Threads
210 estimated operational intensity - BandW|dth Ceilin
28 |<_ operational intensity ¥ iffull cacheline was used _ 1 Thread &
: - -
26 | _ - - _ - =
[ | ISR - Performance Ceiling,
24 | " - ‘12 Threads
- c -
2 i | - ‘_,_’_’1 ___________ _ Performance Ceiling,
20 _ : ~ 1Thread
- i 5
22 - -
-
24 r =
26
28
2-10 1 1 1 1 1 1 1 : 1 1 1 1 1 1 |

25 24 23 22 921 20 921 22 23 924 25 26 971 28
Operational Intensity | [Ops/Byte]

Figure 4.5: A Roofline model analysis of the packet processing algorithm on
System 2 for 64 bytes long chunks. Due to the low read efficiency (only 2 of
64 bytes read are actually used for processing) the benchmark is limited by
the memory speed.

According to the roofline model, the algorithm is clearly bounded by
memory. This is expected since the algorithm is computationally not very
demanding but has many memory accesses and cannot benefit from caches,
and thus has a low operational intensity. An increased operational intensity
would therefore increase the measured performance. This could, for exam-
ple, be achieved by an improved data layout. If the FLX card would store
subchunk trailers not interleaved with data but in a separate meta-data table,
multiple subchunk trailers could be read at once when accessing a cacheline.
This hypothetical scenario is indicated in Figure 4.5 by the dotted red line.
According to the model, this optimization would shift the algorithm nearly
into the compute-bound region. However, implementing this optimization
would require support in the firmware of the FLX card. It is also not clear
that the speedup would be as indicated by the model, since it would also
require changes to the algorithm and, therefore, to the number of operations
needed.

4.8 Conclusion

The implementation of packet processing algorithm compatible with the FE-
LIX requirements requires several levels of optimizations. Advanced profil-
ing tools were fundamental in achieving the necessary throughput perfor-



4.9. RELATED WORK 53

mance. Furthermore, I demonstrated that the resulting algorithm is limited
by the test system’s memory bandwidth.

In order to independently validate this result, I performed a Roofline
model analysis. This confirmed that the FELIX packet processing algorithm
is memory-bounded. This analysis also provided additional insights on the
Roofline model. While it is certainly useful, the Roofline model can only be
seen as a first-order approximation, especially effective in classifying an im-
plementation as memory-bound or compute-bound. Quantities like the op-
erational intensity are hard to obtain, whether by measurement or just plain
code analysis. Moreover, as today’s CPUs get more and more complex and
include features like ILP, pipeline architectures, or micro-ops, it is difficult to
provide a good estimate of a CPU’s peak performance.

4.9 Related Work

This chapter was originally published as part of the conference proceedings
for the International Conference on Distributed and Event-Based Systems
(DEBS) [Schumacher et al., 2015b].






Chapter 5

Fast Networking for DAQ
Systems

5.1 Overview

Fast networking is crucial for COTS-based DAQ systems which compose of
thousands of individual processes that need to communicate with each other.
The definition of “fast” can vary for different use cases within a DAQ system:
some subsystems might require high throughput and efficient link utiliza-
tion, while others require low latencies to reduce communication delays as
much as possible. Networking technologies including high performance fab-
rics, network topologies, software stacks and APIs are well researched topics
in fields like high-performance computing (HPC).

Network infrastructures in online DAQ systems for high-energy physics
(HEP) experiments however have fundamentally different requirements and
require different methodologies and paradigms. The typical HPC use case
for high-performance fabrics is large-scale computing with a single-program-
multiple-data (SPMD) approach. The communication layer is often imple-
mented with software layers like MPI [34], PGAS [35], or similar message
passing or distributed shared memory schemes. Networking aspects as hard-
ware like fabrics and switches, network topologies, and low-level protocols
are similar in DAQ systems and HPC installations.

DAQ systems, however, are distributed systems with many different ap-
plications (see Chapter 2) and thus do not match the single-program-multiple-
data (SPMD) paradigm well. Different networking software stacks compared
to HPC are required for DAQ systems.

Also different requirements might impose implications on DAQ networks.
A DAQ system, for example, has to be maintainable for decades due to the
longevity of HEP experiments, which has an impact on the choice of hard-
ware technology. Furthermore, DAQ system network infrastructures have to
span relatively long distances of several hundred metres. For example, the

55



56 CHAPTER 5. FAST NETWORKING FOR DAQ SYSTEMS

ATLAS read-out system is located underground, in a service cavern next to
the experiment. The trigger farm is instead housed in a surface data-center.
To connect systems in the two locations, distances of up to 150 m have to be
bridged. Commonalities and differences between HPC and DAQ systems are
listed in Table 5.1.

5.2 Networking in FELIX

FELIX has three principal network communication domains:

1. High-throughput communication from FELIX to DAQ network end-
points. Mainly this includes collision event data that are sent to the ROS
and High-Level Trigger PCs. In this domain latency is not an issue, but
the bandwidth requirements are relatively high. A single FELIX system
might forward data at a rate in the order 100 Gb/s.

2. Low-latency communication from FELIX to DAQ endpoints. This in-
cludes operational data from detectors and sensors that are sent to the
Detector Control System (DCS) system, detector calibration systems, or
monitoring systems. The applications in this domain have small band-
width requirements compared to the first domain, but latency can be
critical for some applications. For the DCS for example it is critical that
sensor information arrive within a fixed time frame to ensure that the
system can react appropriately to unexpected events and ensure safety
for the experiment. A typical latency requirement is a maximum la-
tency in the order of a few hundred microseconds.

3. Low-latency communication from DAQ endpoints to FELIX. This do-
main mostly concerns configuration and calibration systems for detec-
tors. Again bandwidth requirements are relatively low compared to

HPC DAQ

Performance Low-latency Low-latency,
high-throughput
Communication Model Message Passing, Shared Distributed System,

Memory Message Queue
Parallelism Model SPMD MPMD,
Distributed System
Common Topologies Mesh, Torus Leaf-Spine
Longevity Less than 10 years 20-30 years with periodic
upgrades

Table 5.1: A comparison of networking in HPC and DAQ.



5.2. NETWORKING IN FELIX 57

subscribe

Subscriber

t— ublish
publisher Subscription P Subscriber

Table

\ 4

-1 Subscriber

>

Figure 5.1: The publish/subscribe communication pattern. Publishers have
no prior knowledge of subscribers. Subscribers are dynamically added to the
subscription table by issuing subscribe requests.

the first domain. Configuration or calibration cycles however might re-
quire many iterations and therefore a short round-trip time. Again a
latency in the order of a few hundred microseconds is desirable.

Especially considering the high throughput demands for the collision
event data streams the FELIX project aims to operate the network links at a
high efficiency, i.e. to utilize a large fraction of the available link bandwidth.
High link utilization enables a dense system (in terms of connected detector
links per FELIX), which has a direct impact on the cost of the data acquisition
system.

FELIX devices are decoupled from the DAQ system. While the DAQ ap-
plications are started and stopped using the run control state machine (see
section 2.2), FELIX devices are always active. Control systems like the DCS
need to receive data from the detectors and monitor their status at all times.
In this sense a FELIX device has a purpose similar to network switches: pro-
viding transparent connectivity between multiple endpoints. But unlike in
a network switch, FELIX has to translate between the GBT protocol and the
network links. It not only forwards data packets, but actively has to maintain
connections (e.g. TCP connections) to the DAQ nodes. This creates several
requirements for the to-DAQ communication of FELIX systems:

1. A FELIX device needs to know which e-links are relevant for which
nodes in the DAQ network and to forward data accordingly.

2. A FELIX device should forward data only to DAQ system applications
if the receiving application is in the running state.

3. DAQ application crashes or hardware failures need to be handled. The
connection between FELIX and the DAQ node needs to be re-estab-
lished once the crashed application is restarted. If a DAQ server crashes,
a spare server needs to be able to take over the input traffic of the
crashed server.



58 CHAPTER 5. FAST NETWORKING FOR DAQ SYSTEMS

In FELIX these requirements are met by using a publish/subscribe sys-
tem for the to-DAQ communication. A publish/subscribe system, as illus-
trated in Figure 5.1, has two types of actors: subscribers, which receive data,
and publishers, which publish data. The publisher does not have any prior
knowledge of the subscribers. Instead, subscribers send a subscription re-
quest to the publishers. Publishers receive the subscription request and add
the subscriber to a subscription table. When publishing a message, a pub-
lisher looks up the subscription in the subscription table and sends the mes-
sage to all subscribers. A subscriber can specify in the subscription request a
mask to filter the messages that it will receive.

Subscribers need to know to which application they need to subscribe.
The publishers periodically broadcast information about their state and con-
figuration, for example which GBT links are handled by this particular ap-
plication. Subscribers receive these broadcast messages and can select the
publisher with relevant data based on the received information.

In the FELIX system, FELIX devices are publishers that publish chunks
from e-links. DAQ, DCS, configuration, calibration and other systems are
subscribers. These subscribers can subscribe to the e-links they are inter-
ested in. The publish/subscribe communication meets the three require-
ments: 1) subscribers know which e-link are relevant and will only subscribe
to relevant e-links, 2) subscribers are aware of their state and will only sub-
scribe when they are in running state, and unsubscribe when they leave the
running state, and 3) if a DAQ application fails, it will resubscribe after it has
restarted, and if an application is started on a spare host, it will issue a new
subscription request from there.

The frontend-facing direction in FELIX uses simple point-to-point com-
munication. Applications send a message to a FELIX system, a header in the
message includes the target e-link. FELIX will then send the data part of the
received message on the specified e-link.

5.3 The NetlO Message Service

The FELIX network stack is provided by a separate library called NetlO.
I designed and implemented NetlO as a generic message-based network-
ing library that is tuned for typical use cases in DAQ systems. It supports
four different communication patterns: low-latency point-to-point commu-
nication, high-throughput point-to-point communication, low-latency pub-
lish/subscribe communication, and high-throughput publish /subscribe com-
munication. Therefore it covers every FELIX use case.

NetIO has a back-end system to support different network technologies
and APIs. At the time of this writing two different back-ends exist. The first
back-end uses POSIX sockets to establish reliable connections to endpoints.
Typically this back-end is used to use TCP/IP connections in Ethernet net-



5.3. THE NETIO MESSAGE SERVICE 59

HT HT 4 \
User-Level API LL Send LL Receive . Publish Subscribe
Send Receive
s
Low-Level Sockets [ Send } Listen } E Receive } Event Loop
N

Libfabric Backend POSIX Backend

./
Verbs API Linux POSIX API
Infiniband Ethernet

Figure 5.2: The NetlO architecture.

works. The second back-end uses libfabric [36] for communication. It is used
for Infiniband and similar network technologies. Libfabric is a network API
that is provided by the OpenFabrics Working Group.

The NetlO architecture is illustrated in Figure 5.2. There are two software
layers within NetlO. The upper level contains user-level sockets. These are
the sockets that application code interacts with. The different socket types
are listed in Table 5.2.

The lower architecture level provides a common interface to the under-
lying network API. The common interface consists of three low-level socket
types (a send socket, a listen socket and a receive socket), which are imple-
mented by each back-end. The low-level sockets provide basic connection
handling and simple transmission of messages between two endpoints. All
higher level functionality like buffering, notification of user code via call-
backs, or the publish/subscribe system are implemented in the user-level
sockets. This maximizes code sharing among the back-ends, as only code
that is specific to the underlying network technology is implemented in the
low-level sockets.

Both architecture levels use a central event loop to handle I/O events like
connection requests, transmission completions, error conditions, or timeouts.
The event loop is executed in a separate thread. Its implementation is based
on the epoll framework in the Linux kernel.

IP address and port are used for addressing network endpoints, even for
back-ends that do not natively support this form of addressing. For the Infini-
band back-end the librdma compatibility layer is used to enable addressing
by IP and port.



60 CHAPTER 5. FAST NETWORKING FOR DAQ SYSTEMS

5.4 User-level sockets

There are six different user-level sockets, of which four are point-to-point
sockets (one send socket and one receive socket, each in a high-throughput
and a low-latency version), and two publish/subscribe sockets (one publish
and one subscribe socket). The publish/subscribe sockets internally use the
point-to-point sockets for data communication.

A high-throughput send socket does not send out messages immediately
but maintains a buffer in which messages are copied. Due to the buffering
less, but bigger packets are sent on the network link. This approach is more
efficient and yields a higher throughput. The average transmission latency
of any specific message however is increased due to the buffering. A typical
buffer size is 1 MB. Once a bulffer is filled the whole buffer is sent out to the
receiving end. Additionally a timer (driven by the central event loop) flushes
the buffer at regular intervals to avoid starvation and infinite latencies on
connections with a low message rate. A typical timeout interval is 2s. A
message is split if it does not fit into a single buffer. The original message is
reconstructed on the receiving side.

A high-throughput receive socket receives buffers that contain one or
more messages or partial messages. The messages are encoded by simply
prepending an 8 byte length field to the messages. The high-throughput re-
ceive socket maintains two queues: a buffer queue, which contains unpro-
cessed buffers that have been received from a remote, and a message queue,
in which messages are stored that are extracted from buffers when they are
processed. The high-throughput receive socket enqueues received buffers in
the receive buffer queue. When user code calls recv () on a high-throughput
receive socket, it will return the next message from the message queue. If the
message queue is empty, the next buffer from the receive buffer queue is pro-
cessed and the contained messages are stored in the message queue. When
processing a receive buffer the contained messages are copied.

A low-latency send socket does not buffer messages. Messages are imme-
diately sent to the remote process. Unlike for high-throughput send sockets
there is also no additional copy: the message buffer is directly passed to the
underlying low-level socket. These design decisions minimize the added la-
tency of a message send operation.

Alow-latency receive socket handles incoming messages by passing them
to the application code via a user-provided callback routine, instead of en-
queuing the messages in a message queue. This approach allows incoming
messages to be processed immediately. In contrast to high-throughput re-
ceive sockets also no data copy is taking place, the receive buffer memory
is passed to the user level code. After execution of the callback routine the
receive buffer will be freed and accessing the memory by user-level code is
an illegal operation. If necessary, a user can decide to copy the buffer in the
the callback routine.



5.4. USER-LEVEL SOCKETS 61

User Thread Event Loop Thread

Epoll: Data-received event

Read data into page

Page Queue

Enqueue page

callback

Dequeue page

Process page

Deserialize messages

Message Queue

callback

User code

Figure 5.3: Processing of incoming messages in NetlO low-latency sockets.
Note that all processing, including the execution of user code, is performed
in the event loop thread.

High-throughput and low-latency receive sockets also differ in the way
threading is involved in processing incoming messages. In both cases a buffer
receive notification from a low-level receive socket is handled in the event
loop thread. In high-throughput receive sockets the buffer is immediately
pushed into the receive buffer queue, after which the event handler returns
and the event loop thread is free to process further events. Parsing the buffer,
extracting the messages and processing them with user code is done in the
user thread. In low-latency sockets the event handler routine executed by the
event loop thread will call the user-provided callback. Thus, all user code is
executed by the event loop thread. The event handler will only return after
the user callback is processed. This might block the event loop from process-
ing further events for any amount of time. Users have to take care to imple-
ment sensible callback routines that do not block the event loop too long, or
otherwise performance might degrade. The benefit of executing user code
in the event loop thread is however that no latency is added by queuing of
messages. Message processing in high-throughput and low-latency sockets
is illustrated in Figures 5.3 and 5.4.



62 CHAPTER 5. FAST NETWORKING FOR DAQ SYSTEMS

User Thread Event Loop Thread

User: recv()

Epoll: Data-received event

Message queue empty?
Read data into page

no yes Page Queue

Enqueue page

Wait for page

Dequeue page

Process page

Deserialize m

5

Message Queue

Return message from
L
message queue

User code

Figure 5.4: Processing of incoming messages in NetIO high-throughput sock-
ets. After the data is received in the event loop thread, all processing is done
in the user level thread. The event loop thread is freed up to process further
incoming data.

5.5 Low-Level Sockets

The interface to the NetlO back-ends is provided to the user-level sockets
by three types of low-level sockets: back-end send sockets, back-end listen
sockets, and back-end receive sockets. Back-end listen and receive sockets
are used on the receiving side of a connection. Back-end listen sockets open a
port and listen for incoming connections by back-end send sockets. A back-
end receive socket is created when a connection request arrives at a back-end
listen socket. A back-end receive socket represents a single connection. A
back-end send socket is used on the sending side of a connection. A back-
end send socket can connect to a port opened by a back-end listen socket and
send messages when the connection is established.

The back-end sockets provide callback entry points for user-level sockets
that are called when a connection has been successfully established, a remote
has disconnected, or data has arrived.

The low-level API also provides an interface for back-end buffers. These
are buffers that are used by the back-end sockets and can be transmitted



5.6. THE POSIX BACK-END 63

Socket Type Description

Low-Latency

Send A message that is posted is immediately sent to
the remote endpoint without any delay.

Receive A message that is received is immediately
passed to the user code via a callback.

High-Throughput

Send Messages are copied into a large connection
buffer instead of being sent immediately. The
buffer is transmitted when it is full or after a
timeout occurs.

Receive When a message buffer is received the con-
tained messages are copied into separate mes-
sage datastructures and enqueued in a message
queue. User code can read the received mes-
sages by calling recv () on the receive socket.

Publish/Subscribe

Publish When a message is published under a given
tag, it matches the tag against a subscription ta-
ble and send the message to all subscribed re-
mote endpoints via either low-latency or high-
throughput send sockets.

Subscribe Sends subscriptions requests to publish sockets

via low-latency send sockets and then receives
messages via either a low-latency or a high-
throughput receive sockets.

Table 5.2: The different types of user-level sockets in NetlO. An important
teature in NetlO is the distinction between low-latency and high-throughput
communication.

over the network. Back-ends might have special requirements on buffers.
Libfabric for example requires that all buffer are previously registered in a
central registry.

5.6 The POSIX Back-end

The POSIX back-end is straight-forward and uses the socket API that
is defined in the POSIX standard. The back-end uses sockets of the
SOCK_STREAM type, ie., TCP/IP connections. The socket option
TCP_NODELAY is set, which disables Nagle’s algorithm. Nagle’s algorithm
can temporarily delay packet sends to reduce the number of TCP packets on
the wire. The buffering capabilities of the user-level sockets however allow



64 CHAPTER 5. FAST NETWORKING FOR DAQ SYSTEMS

a more fine-grained control over packet delay, so Nagle’s algorithm can be
deactivated.

The POSIX socket API uses file descriptors to represent the sockets. These
file descriptors are registered in the central event loop. Thus, when a con-
nection request or a new message arrives, the corresponding sockets are in-
formed and handler routines are executed. The POSIX sockets are configured
to asynchronous, non-blocking mode, i.e., the O_NONBLOCK is set.

5.7 The FI/Verbs Back-end

Libfabric provides several communication modes to the user, for example
reliable datagram (RDM) communication, reliable connection communica-
tion (which works like RDM but additionally provides message ordering),
or RDMA. Libfabric be can used on top of several network stacks. For In-
finiband the library utilizes librdma and libibverbs, for Intel OmniPath the
native PSM2 interface can be used.

The NetlO FI/Verbs back-end uses the reliable connection communica-
tion model from libfabric. Libfabric also provides reliable datagram commu-
nication, but the reliable connection model preservers message order. Preser-
vation of message order is important since a message can span multiple Ne-
tIO buffers (see section 5.4 on high-throughput sockets).

Libfabric provides so-called active and passive endpoints to manage con-
nections. Passive endpoints listen to incoming connections, while active end-
points are the equivalents of sockets and are used to send and receive mes-
sages. The libfabric API is fully asynchronous, and connection management
notifications are presented to the user as events that need to be handled. Each
endpoint has an event queue in which connection events are stored. Libfabric
allows to register a file descriptor with an event queue. When a new event
arrives, the file descriptor becomes readable. The NetlO FI/Verbs back-end
uses these event queue file descriptors and registers them in the central event
loop.

POSIX sockets have internal buffers. When a message is sent on a POSIX
socket, the data is copied into the internal buffer, from which the data is then
sent to the remote process. The user-supplied buffer is usable again imme-
diately after the send call. Similarly, a receiving POSIX receives data in an
internal buffer, and a receive call will copy the data out of the internal buffer.
The user does not need to supply a buffer in which data from the network
can be received.

The FI/Verbs back-end is asynchronous and allows to send and receive
messages without data copies; libfabric endpoints do not have internal buffers.
When a message is sent, the user-supplied message buffer is used and no data
is copied. To receive messages, a user needs to provide receive buffers. To
manage the send and receive buffers, each active endpoint has a queue for



5.8. THE INTEL OMNIPATH BACK-END 65

completion events. Completions notify the user-space application of the re-
sult of the send or receive operation. After a send completion arrives, the
corresponding send buffer can be reused for new send operations. After a
receive completion arrives, the corresponding receive buffer is filled with a
message from a remote host and can be processed. Like the connection man-
agement events the completion events can trigger a file descriptor. NetlO
uses such completion file descriptors and registers them in the central event
loop.

Libfabric requires send and receive buffers to be registered with the call
fi_mr_req. The NetlO FI/Verbs back-end provides a data buffer interface
that performs this registration step.

5.8 The Intel OmniPath Back-end

Intel OmniPath [37] is a recent fabric technology that is based on the TrueScale
technology by the former QLogic company. On the software side OmniPath
has a Verbs interface and is thus directly supported by NetIO via libfabric.
OmniPath additionally provides a native API called PSM, which is also sup-
ported by libfabric. The libfabric PSM provider however currently does not
support the reliable connection mode, which is needed for NetIO. NetlO on
OmniPath therefore currently only works using the Verbs interface.

At the time of this writing the NetIO on OmniPath is still a work in
progress and requires further investigation and development.

5.9 Benchmarks and Tests with NetIO

To evaluate the performance of NetlO I performed several experiments. As a
reference point I use the ZeroMQ [38] library to compare NetlO against. Ze-
roMQ is a library that gained popularity in the HEP community and is used
in several projects in the LHC and the LHC experiments. ZeroMQ provides
point-to-point communication as well as a publish/subscribe system. Bench-
marks are performed between two nodes connected via a single switch. The
benchmark system configuration is described in Table 5.3. The systems are
equipped with Mellanox ConnectX-3 VPI network interface cards, which can
be operated 40G Ethernet mode or 56G Infiniband FDR mode.

The first benchmark scenario consists of point-to-point communi-
cation between the two systems using NetlO high-throughput sockets
and a single connection. The sending side uses the NetlO test tool
netio_throughput to send messages to the receiving node, which uses the
program netio_recv to receive the messages. The throughput achieved for
various message sizes is shown in Figure 5.5.

NetIO on Ethernet and ZeroMQ on Ethernet have a very similar peak
performance of around 30 Gb/s. NetlO however reaches higher throughput



66 CHAPTER 5. FAST NETWORKING FOR DAQ SYSTEMS

System 1 System 2
CPU Type Intel Xeon E5-2630 v3 Intel Xeon E5-2660 v3
CPU Clock Speed 2.40GHz 2.60 GHz
Nr of cores
real 8 per CPU 10 per CPU
hardware threading 16 per CPU 20 per CPU
Nr of CPUs 2 2
Memory 64 GB 64 GB

Table 5.3: Systems used for NetIO benchmarks.

Performance comparison of NetlO and ZeroMQ
. Throughput [Gb/s]

40 PO s
35 NetlO/Infiniband ===p

30

NetlO/Ethernet e=p /J

25

20

15

10

Message size [Byte]

Figure 5.5: Throughput measured with NetlO and ZeroMQ on 40G Ethernet
and NetlO on Infiniband FDR for various message sizes. Note that only a
single connection is used between the two systems, hence the link is not fully
utilized.



5.9. BENCHMARKS AND TESTS WITH NETIO 67

Performance of NetlO (publish/subscribe)
s Throughput [Gb/s]

40
NetlO/Infiniband

35 \ )

30 T NA N

25 ) .’/ 1’ S

20 y * NetlO/Ethernet S—e—tg—s

15 i

10 f/

5 ,/l

N .
Yo P N S q<;§°® N

Message Size [Byte]

Figure 5.6: Throughput performance of NetlO publish/subscribe sockets on
40G Ethernet and Infiniband FDR. The peak performance of NetlO with the
Infiniband back-end is more than 30% faster than NetIO with the Ethernet
back-end.

values for small and large message sizes. For message sizes less than 1kB
NetlIO an up to two-fold better throughput is measured than with ZeroMQ.
NetIO on Infiniband outperforms both NetlO and ZeroMQ on Ethernet. The
peak performance is around 40 Gb/s.

An experiment with NetlO high-throughput publish/subscribe sockets is
shown in Figure 5.6. Similar to the previous benchmark NetIO on Infiniband
outperforms NetIO on Ethernet. The achieved peak performance in each case
is comparable to the point-to-point benchmarks.

A third benchmark analyzes the performance of NetIO low-latency sock-
ets. We measure the round-trip time (RTT) between two systems in Table 5.3.
In both cases, Ethernet and Infiniband, there is one switch in the middle. The
results of the measurements can be seen in Figure 5.7.

NetIO on Ethernet, NetlO on Infiniband, and ZeroMQ show all very sim-
ilar RTT values. The average RTT is in the case of Ethernet around 40us, for
Infiniband it is just slightly higher. The difference for Infiniband indicates
that the NetlO Infiniband back-end is slightly less efficient.



68 CHAPTER 5. FAST NETWORKING FOR DAQ SYSTEMS

Round-Trip Time (RTT) Comparison

0.12
normalized B ZeroMQ

0.10 I NetlO/Ethernet

. B NetlO/Infiniband

0.08

0.06

0.04

0.02

0.00 ! I N | L. . , .
0 20 40 60 80 100 120

round-trip time [us]

Figure 5.7: Round-trip time comparison between NetIlO on Ethernet, NetlO
on Infiniband, and ZeroMQ. All three implementations have a similar av-
erage value. NetlO on Infiniband has a slightly higher round-trip time than
NetIO on Ethernet which can likely be explained by the different NetIO back-
end implementation.

5.10 Related Work

This chapter was originally published as part of the conference proceed-
ings for the International Conference on Computing in High-Energy Physics
(CHEP) [Schumacher et al., 2016]. The benchmarks presented there were
based on older versions of NetlO, network software stack, and network in-
terface firmware.

The development teams at the other LHC experiments ALICE, CMS and
LHCb are preparing upgrades for their respective DAQ systems as well. An
import topic is the choice of DAQ network technologies. An overview of
different 100 Gbps interconnect techologies with a focus on future DAQ ap-
plications is given in [39], which compares 100G Ethernet, Intel OmniPath
and EDR Infiniband.

LHCb also investigates the potential use of Infiniband as network tech-
nology for their event builder network [40,41].

On the network side ALICE has been using a mixture of Ethernet and
Infiniband in the past, and is investigating future network technologies [42].



5.10. RELATED WORK 69

The CMS experiment currently uses a mixture of Ethernet and Infiniband
networks for their DAQ system [25,43].

ZeroMQ [38] is a message queue implementation that has gained increas-
ing popularity in high energy physics applications. The CERN Middleware
Project is building a common middleware framework based on ZeroMQ [44,
45] that replaces old CORBA-based middleware. ALICE also considers to use
ZeroMQ as a networking software framework.

A project similar to ZeroMQ is nanomsg [46]. A project in the ALICE
experiment is evaluating the use of nanomsg and developing a OFI (Open-
Fabrics Interface) transport for nanomsg that allows to run nanomsg on In-
finiband, OmniPath and other high performance interconnects [47].






Chapter 6

System Evaluation of a
COTS-based Read-Out

6.1 Methodology

In the previous chapters I discussed and developed different aspects of a
COTS-based read-out of high-energy physics experiments. This chapter pro-
vides an analysis of the results of the previous chapters and answers the
question, “Is the COTS-based approach viable in realistic applications?” Eval-
uation is based on case studies of the FELIX system that were used as an ex-
ample throughout the thesis. In the ATLAS Phase 1 upgrade in 2018 a first
installation of FELIX systems will be deployed to be used for data-taking in
LHC run 3. The case studies evaluate FELIX with respect to the requirements
of this installation.

In run 3 FELIX PCs will connect to detector front-ends electronics of the
New Small Wheel (NSW) muon detector [48], the LAr detector [49], Level-1
Calorimeter Trigger (L1Calo) systems, and the Tile detector. The NSW front-
ends are divided into two distinct categories: small-strip Thin Gap Cham-
bers (sTGCs) and Micromegas detectors (MMs) detectors. Both NSW front-
end types use the GBT protocol in normal mode with forward error correc-
tion. All other systems use full-mode detector links (see Section 3.2 for an
overview of the different detector link operation modes). Table 6.1 shows
an overview of the anticipated installation size of 2019 including expected
data volumes. The L1 trigger rate of ATLAS will be 100kHz and thus the
front-end electronics will transmit data packets at this rate to the FELIX sys-
tems. Additionally, a few FELIX systems connecting to special Liquid Argon
trigger electronics will be deployed. Since these FELIX systems will be exclu-
sively used for TTC and DCS traffic and do not carry event data streams they
are not relevant for this evaluation.

The traffic patterns of the NSW detector and the full mode detectors are
very different. The NSW data packets are typically less than 50 byte and very

71



72 CHAPTER 6. SYSTEM EVALUATION OF A COTS-BASED READ-OUT

)
4 — 5

= 2
5 s 2
- ) =
g N W E’.
" am XN <
g < Y X F %

A= =

£ 3 = - g S
= = e g =
R s £ u 5
s & s o LoP
zZ & A & & <
NSW sTGC 512 GBT (normal) 3 100 38 114
NSW MM 512 GBT (normal) 8 100 22 18
LAr 31 Full Mode 1 100 3900 390
L1Calo 40 Full Mode 1 100 4800 480
Tile 4 Full Mode 1 100 2500 250

Table 6.1: The different sub-systems connecting to FELIX PCs as expected for
the ATLAS Phase 1 upgrade in 2018.

small compared to full mode packets with multiple kilobyte. On the other
hand, the NSW uses the E-link feature of the GBT protocol and thus has more
virtual input channels per FLX card. A full mode FELIX with 24 input links
receives data packets at the 2.4 MHz rate. In the NSW MM case a FELIX with
the same number of input links and eight E-links per physical link would re-
ceive data packets at rate of 19.2 MHz. Large packet rates are CPU intensive
as more PCle packets have to be decoded (Chapter 4, also see Section 6.5).
Furthermore, network links operate less efficiently with smaller packets. Al-
though, the bandwidth requirements are relatively low. For the full mode the
situation is reversed, i.e., because of the lower packet rate there is less pres-
sure on the CPU, but since the packet sizes are much larger the network link
bandwidth becomes a bottleneck.

6.2 Case Study: The New Small Wheel

The NSW is a new detector to be used in LHC run 3 and onwards. It replaces
the current Small Wheel (SW), a muon detector located on the end-caps of the
ATLAS experiment. The NSW is designed for the more demanding require-
ments of LHC Phase 2 and is able to cope with higher background radiation
providing track reconstruction with higher resolution.

The NSW front-ends use the GBT protocol in normal mode to communi-
cate with FELIX devices. Per GBT link eight (MM) or three (sTGC) E-links



6.2. CASE STUDY: THE NEW SMALL WHEEL 73

are dedicated to carry event data traffic. More E-links are used for control
and monitoring traffic with chips on the NSW electronics.

To test the NSW use case, I used a FELIX prototype server with a FLX-
710 GBT interface card. The internal data generator of the FLX firmware
was used to generate test data according to the NSW specifications. At this
point the FLX-710 firmware only had support for up to four GBT links. How-
ever, by increasing the number of E-links per GBT link accordingly I was able
to compensate and emulate input from 24 GBT links. This compensation is
transparent to the FELIX software. Both cases, sTGC and MM were tested.
The generated data was read out by the FELIX application and sent over a
network to a second server. The second server ran a benchmark application
that receives data and measures the achieved throughput. Both servers are
connected via a 40G Ethernet network with a single switch. The benchmark
system specifications are defined in Chapter 5 in Table 5.3 (the FELIX appli-
cation is running on system 2).

The FELIX application used 10 worker threads to match the number of
cores per CPU. The application was limited to only run on the first of two
available CPUs. Both the FLX card as well as the network interface of the test
system are connected to the PCle controller in this CPU. When allowing the
scheduler of the operating system to use both CPUs, the NUMA architecture
of the system would lead to a severe performance degradation because mem-
ory would be transferred back and forth between the memory nodes. Simply
pinning the worker threads to CPU cores to prevent movement of threads
among NUMA nodes would not help. Memory still would need to be trans-
ferred as the FLX card and the network interface card are physically attached
to one of the NUMA nodes. In a production system a second FLX card and
network interface could be installed and connected to the PCle controller of
the second CPU. In this case a second FELIX application could be run on the
second CPU and thus double the overall link density of the FELIX server.

For technical reasons the data emulator on the FLX card operates at a
fixed bandwidth. Thus, the rate of generated chunks (Chapter 4) depends on
their size. The desired target rate of 100 kHz is reached with a chunksize of
approximately 72 byte and smaller chunksizes will yield a higher rate. This
needs to be considered when interpreting the benchmark results. In the case
of sTGC this effect can be ignored as the benchmark systems are able to han-
dle the additional load. However, for the more demanding MM use case the
rate per simulated E-link with 22byte chunk size is about 250 MHz and too
high for the FELIX application to handle. The benchmark needs to be slightly
adjusted to compenstate for the higher rate.

The results of the benchmarks are shown in Figure 6.1 and Table 6.2.
For the sTGC case in total 72 E-links which carry 38 byte chunks are emu-
lated. The average chunk rate is about 12 MHz, which translates to an aver-
age chunk rate of about 166 kHz per E-link, which is more than the required
100kHz. This confirms that the FELIX application can handle the specified



74 CHAPTER 6. SYSTEM EVALUATION OF A COTS-BASED READ-OUT

sTGC MM
Nominal number of E-links 72 192
Nominal chunk rate per E-link [kHz] 100 100
Nominal total chunk rate [MHz] 7.2 19.2
Emulated number of E-links 72 48
Emulated chunk rate per E-link [kHz] 166 250
Emulated total chunk rate [MHz] 12 16
Equivalent number of 100 kHz E-links 120 160

Table 6.2: Nominal operational parameters and emulated equivalents with
compensation for the high emulated chunk rate per E-link. In the sTGC case
120 E-linkes can be emulated and processed, exceeding the nominal number
of 72 E-links. In the MM case only 160 E-links can be emulated and processed,
slightly lower than the nominal number of 192.

24 input GBT links on a single CPU of the benchmark system.

In the MM scenario I lowered the number of emulated E-links to 48 (each
carrying 22 byte chunks) in order not to overload the FELIX application. The
total chunk rate that the system is processing is 16 MHz, approximately the
maximum that the benchmark system can handle on a single CPU. This trans-
lates to 250 MHz chunk rate per emulated E-Link. This number can be pro-
jected on to the equivalent scenario with 100 kHz E-links: the measured rate
of 16 MHz is equivalent to 160 of 100 kHz E-links or 20 GBT links with the
NSW MM workload (8 E-links per GBT link). This implies that the bench-
mark system in use performs sligthly below the specification. It is acceptable
to operate the NSW FELIX systems with only 20 GBT links per card instead
of 24. However, the CPUs of the benchmark PC are of the Intel Haswell gen-
eration from 2014. More recent and powerful CPUs are expected to be used
for the FELIX deployment in 2018 and it is likely that the full specification
of 24 links is supported on this hardware. The effect of the CPU on FELIX
performance is further discussed in Section 6.5.

6.3 Case Study: Full Mode

The front-ends of LAr, L1Calo, and the Tile calorimeter all use full-mode
detector links. Since full-mode links do not support E-links, naturally each
detector link transports only one channel. The expected data frame sizes for
event data traffic range between 2500 byte (Tile) and 4800 byte (L1Calo). Full-
mode FELIX systems cannot be operated with the theoretical maximum of 24
input detector links. For example, in the case of L1Calo, the bandwidth re-



6.3. CASE STUDY: FULL MODE 75

New Small Wheel: sTGC
20 Chunk Rate [MChunks/s]

15
5
0! | | | | |
0 1 2 3 4 5
Time [minutes]
New Small Wheel: Micromegas
20 Chunk Rate [MChunks/s]
s \/\/\/\-A/\/VWV\/V\/V\/"\/V\/V‘
10
5
0 | | | | |
0 1 2 3 4

Time [minutes]

Figure 6.1: Chunk rates for a FELIX system with emulated New Small Wheel
data.



76 CHAPTER 6. SYSTEM EVALUATION OF A COTS-BASED READ-OUT

quirements would sum up to more than 90 Gb/s. This exceeds the available
bandwidth of a PCle Gen-3 x8 device (around 60 Gb/s), and also both 40G
Ethernet and FDR Infiniband (56 Gb/s). In theory, a full-mode FELIX system
with 24 links would be possible with PCle Gen-4 x8 or PCle Gen-3 x16 and
100G Ethernet or EDR Infiniband (100 Gb/s). Although for cost and avail-
ability reasons it is more practical to reduce the link density and operate the
full-mode FELIX PCs with less than 24 detector links. This may be subject to
change due to evolution of PC hardware in the near future.

At the time of this writing no firmware for the FLX-709 or FLX-710 was
available that included an emulator for full-mode links and the FLX-711 was
not yet manufactured. To study the full-mode use case I instead opted to use
input from pre-generated files in the FELIX application. The hardware setup
of the two test systems is the same as in the NSW use case. The FLX-711 card
uses 16 PCle Gen-3 lanes, but instead of exposing a single x16 interface to the
operating system, the FLX-711 exposes two PCle Gen-3 x8 interfaces to the
operating system. This allows the software to read out the card in parallel
in two threads. In the benchmarks this is emulated by starting two separate
FELIX applications, each receiving half of the input. As in the NSW case
study the FELIX applications are both pinned to only one of the two CPUs.
Each of the two applications starts three worker threads apart from the card
reader thread and the NetlO event loop threads such that the 20 hardware
threads available on one CPU is not exceeded.

The data throughput on the network interface is shown Figure 6.2. In
each of the three scenarios a peak network throughput of around 32 Gb/s is
measured which corresponds to a 75 % link utilization. Based on this value,
the maximum amount of full-mode links that can be read out on a single CPU
is 16 (Tile), 10 (LAr), and 8 (L1Calo).

In the FELIX application only a single thread is reading out data from
the card by copying the blocks and assigning them to worker threads. In the
full mode scenarios the chunk sizes are much bigger and thus more data and
consequently more blocks are transferred over the PCle bus. As a result, the
single thread handling input from the card becomes the bottleneck of the ap-
plication. This is not an issue for the NSW use cases because much less blocks
are transferred over the PCle bus due to the much smaller chunk sizes. By ex-
posing two PCle interfaces this bottleneck is partially addressed by the FLX-
711. Introducing more parallelism can further increase the throughput of the
FELIX application. This however requires support from the FLX firmware
which is currently not implemented. A faster CPU in the final FELIX system
is also expected to increase the throughput further.



6.3. CASE STUDY: FULL MODE 77

Tile Calorimeter

40 Network Bandwidth [Gb/s]

35
D) e, S ey e I O et e S S S s S
25
20
15
10
5

0 1 2 3 4 5 6 7 8 9
Time [minutes]

Liquid Argon Calorimeter
40 Network Bandwidth [Gb/s]

35
() Sy T i s o A S 3 D i 3, 5 St
25
20
15
10

|
0 1 2 3 4 5 6 7 8 9
Time [minutes]

L1Calo Trigger
40 Network Bandwidth [Gb/s]

35 .

FO 0 g o i e S s SO, S 00 e
25

20

15

10

|
0 1 2 3 4 5 6 7 8 9
Time [minutes]

Figure 6.2: Bandwidth measurements of the three different full-mode appli-
cations. In each case the maximum network bandwidth that can be utilized
is about 32 Gb/s.



78 CHAPTER 6. SYSTEM EVALUATION OF A COTS-BASED READ-OUT

6.4 Scalability

The experiments mentioned above are all exclusively performed in a lab en-
vironment with two PC servers. It is important to ensure the scalability of
a COTS-based readout approach like FELIX given the large amounts of data
produced in high-energy physics experiments.

Therefore, I performed scalability experiments on a 16-node Infiniband
cluster.! Some of the nodes simulated FELIX servers and generated data and
some of the nodes simulated readout servers that received data from the FE-
LIX systems. I considered two scenarios: (i) a one-to-one mapping between
FELIX servers and readout servers where each readout server receives data
from exactly one FELIX system and (ii) a two-to-one mapping where each
readout server receives data from exactly two FELIX systems. Consequently
eight of the 16 nodes were used to simulate FELIX systems and either four or
eight server were used to simulate the readout servers (Figure 6.3). The clus-
ter nodes were connected via an Infiniband QDR network with a peak band-
width of 32Gb/s and a leaf-spine topology. There were two spine switches
and thus there were two redundant paths between each pair of nodes (ex-
cluding node pairs connected to the same leaf switch). Table 6.3 shows the
hardware configuration of the cluster nodes.

The nodes simulating FELIX servers generated traffic on multiple connec-
tions. Over each connection constant-size messages were transmitted at the
rate of 100 kHz. NetIO high-throughput sockets were used for communica-
tion. The receiving application processed the incoming data and measured

T would like to thank the University of Castilla-La Mancha in Albacete, Spain, for grant-
ing me access to their cluster to perform these measurements, and especially Pedro, Jestis and
Radl for the productive collaboration.

Infiniband Cluster Node Configuration

CPU Type Intel Xeon E5-2630L v3
Number of CPUs 1

CPU Frequency 1.80 GHz

CPU Cores (real) 8

CPU Cores (hardware threads) 16

Memory 32GB

Network Interface Mellanox ConnectX-3
Network Type QDR Infiniband

Table 6.3: Hardware configuration of the 16-node Infiniband cluster that was
used for the scalability tests.



6.4. SCALABILITY 79

Figure 6.3: Network topology of the 16-node Infiniband QDR cluster. Eight
of the nodes are used to simulate FELIX traffic, and four or eight nodes are
used as corresponding readout servers.

the throughput and rate of arriving messages. In this benchmark I assumed
only event data traffic as the low-throughput control and monitoring traffic
is negligible.

For the one-to-one test scenario the results are shown in Figure 6.4 and
the respective results for the two-to-one scenario are shown in Figure 6.5.
The results show that there are two main performance ceilings in the system
respectively for small and large fragments. Upon further analysis, it became
clear that for small message sizes up to 1 kB the maximum amount of E-links
that can be processed is limited by the CPU of the receiving side, the readout
server. The network bandwidth only becomes a bottleneck for larger message
sizes above 1-4 kB. In the one-to-one mapping scenario up to 32 E-links can
be simulated per FELIX server to be able to process the data at a 100 kHz rate
for most message sizes less than 1kB. In the two-to-one scenario only 16 E-
links can be simulated per FELIX server. This 2:1 ratio is expected since data
from twice as many FELIX servers are received on each readout server.



80 CHAPTER 6. SYSTEM EVALUATION OF A COTS-BASED READ-OUT

Average Message Rate
Message rate per channel [kHz]

100 X
48 E-Links/FELIX \ 8 E-Links/FELIX
80
60
32 E-Links/FELIX
16 E-Links/FELIX
40
20
O | | | | | | | |
3 > © -
IO N LN I R0 e

Message size [Byte]

Average Data Rate

40 Gb/s

35

30 . Measured peak bandwidth with ib_send_bw and 64kB messages

25 .
48 E-Links/FELIX e— /

20

32 E-Links/FELIX
15

10
<—— B8 E-Links/FELIX

| | | | | | |

32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k
Message size [Byte]

Figure 6.4: Measured data and message rates on the cluster with a one-to-one
mapping between the FELIX and readout servers.



6.4. SCALABILITY 81

Average Message Rate
Message rate per channel [kHz]

200 . - - - - "
8 E-Links/FELIX

32 E-Links/FELIX
150 —

\ T 16 E-Links/FELIX

48 E-Links/FELIX

100

50

O | . e e e e e e |
v co“@?’,ﬁob%\?\‘,*fﬁb*%*@*@*b&

Message size [Byte]

Average Data Rate

Gb/s
40 /
35
30 . Measured peak bandwidth with ib_send_bw and 64kB messages
25 /,
48 E-Links/FELIX > < 16 E-Links/FELIX
20

32 E-Links/FELIX €= 8 E-Links/FELIX

15

10

| | | | | | |

32 64 128 256 512 1k 2k 4k 8k 16k 32k 64k
Message size [Byte]

Figure 6.5: Measured data and message rates on the cluster with a two-to-one
mapping between the FELIX and readout servers.



82 CHAPTER 6. SYSTEM EVALUATION OF A COTS-BASED READ-OUT

CPU Scaling
Total Received Message Rate [kHz]

7000
6000
5000

4000

3000
2000
1000
0 | |

1.2 1.8
CPU Frequency [GHZz]

Figure 6.6: Scaling the CPU frequency of the cluster nodes. Shown is the total
message rate that is processed at a single readout server when simulating 48
E-links. The dashed line represents the nominal processing rate. Only at
1.8 GHz the readout server is able to process enough messages to handle the
input traffic.

The plots in Figures 6.4 and 6.5 show results of one of the readout servers,
but the measured data is representative. The full bandwidth of the links can
be used and the overall network performance does not degrade when scal-
ing to multiple FELIX servers. The chosen leaf-spine topology supports the
anticipated FELIX workload. As assumed earlier in this chapter, the results
suggest that the performance of full mode FELIX is limited by the available
network bandwidth while GBT-mode FELIX PCs are limited by the CPU.

6.5 CPU Scaling

To explore the effect of the CPU on the overall performance I experimented
with scaling of the CPU frequency in the cluster (Figure 6.6). In the measure-
ment I assume 32 Byte message size and the one-to-one mapping scenario.
The received total message rate on a single readout server with the default
CPU clock frequency of 1.8 GHz is 4.8 MHz when simulating 48 E-links per
FELIX. In other words, at 1.8 GHz the readout server is able to sustain the



6.5. CPUSCALING 83

100 kHz processing rate per E-link for 48 E-links. When scaling the CPU fre-
quency down to 1.2 GHz the rate at the readout server drops and the system
is not able to process the full input from 48 E-links anymore. The experiment
highlights that there is a clear dependence between the number of supported
E-links and the CPU frequency, although with only two data points it is not
possible to model the dependence.

In conclusion, a COTS-based detector readout approach with a system
like FELIX is able to scale to an installation with multiple FELIX servers and
data handler servers. Leaf-spine is a viable network topology. The choice of
CPU directly affects the link density of a COTS-based readout system.






Chapter 7

Conclusion

7.1 Summary

In this thesis I explored data-aquisition systems that are primarily based on
commercial-off-the-shelf components for large high-energy physics experi-
ments. DAQ systems traditionally used many custom designed electronic
components due to environmental factors like radiation or performance re-
quirements like high data rates and real-time constraints. While I specifically
analyzed the LHC ATLAS experiment at CERN, the results can be applied to
other HEP experiments as well.

In the first part of the thesis I described the current ATLAS DAQ system
and analyzed the load distribution on the readout system. Subsequently, I
introduced a new COTS-based DAQ architecture for ATLAS. The key com-
ponent in this architecture is FELIX, a new PC-based device that connects
ATLAS detector front-end electronics with the readout system, detector con-
trol system and detector-specific control and calibration systems. I discussed
the processing of PCle traffic packets which was optimized to meet the per-
formance requirements of FELIX and the network interface of FELIX which is
provided by the software library NetlO. Furthermore, I performed an evalua-
tion of the FELIX system and showed that the approach is viable to cope with
the requirements of the first deployment of FELIX systems in LHC run 3.

7.2 COTS-based Readout for HEP experiments

The main research question in this dissertation is whether a COTS-based
readout of HEP experiments is viable and if yes, how can it be implemented.
This question was answered. With the example of FELIX it was shown that
at a readout of the ATLAS detector as planned for LHC run 3 is possible.
The interest for FELIX in other experiments (see Section 7.4) and the fact that
other experiments implement similar techniques (see Section 3.5) shows that
the COTS approach has a broader applicability than just ATLAS.

85



86 CHAPTER 7. CONCLUSION

Of course, the ATLAS experiment will still include many custom elec-
tronic components in run 3 outside of the DAQ system (e.g. the detector
front-ends and the level-1 trigger system). For these systems the cost and
development effort would not justify the advantages of a COTS-based ap-
proach. Additionally, the environmental factors like radiation are a problem
for the front-end electronics. Since these systems handle the raw 40 MHz in-
put of the detectors the data processing volume would be too high. Further-
more, these systems have strong real-time constraints that is easier to achieve
with custom electronics.

Also, the FLX card in the FELIX system itself will be a custom design.
Commercial alternatives have been tested, but no card fullfilled all require-
ments. Specifically no commercial card was found that would allow imple-
menting the TTC interface. With a mezzanine card one could implement a
TTC interface externally as it has been done for internal development with
the FLX-709 and FLX-710 (Section 3.3). Such a design would exceed the phys-
ical dimensions specified by the PCle standard, thus the FELIX team opted
for the custom FLX-711 design instead.

Not all subsystems of the ATLAS experiment will initially use FELIX.
Only NSW, LAr, L1Calo and Tile will be used. The reason for this is prag-
matic. Since no major upgrades are done on the other subsystems there is no
reason to switch to a new readout model. The requirements of the other de-
tectors are not much different from the detectors for which the FELIX readout
was tested in Chapter 6.

7.3 FELIX

Several design decisions concerning FELIX have been proven to be effective.
The publish/subscribe system as interface to the DAQ network meets the
heterogeneous requirements of different data handlers and leads to a clean
separation of the different architecture layers. Also, differentiating between
different traffic patterns (high-throughput and low-latency) in a single, con-
sistent API is helpful to integrate different classes of systems. The support
for multiple network technologies allows delaying a technology decision to
later phases of the FELIX development. The decision can be based on factors
like cost, maintenance effort, performance, availability of suitable hardware
etc., without a technology or vendor lock-in. This is a clear advantage of the
COTS approach.

Some implementation aspects of FELIX can be improved in the future.
For example, FELIX does not perform any data coalescing. That means that
in some cases like the New Small Wheel data is sent out in very small data
packets of less than 100 Byte. Processing such small packets at a high rate is
much less efficient than processing bigger packets at a lower rate (see Chap-
ter 6). The FELIX system could be optimized by coalescing packets in the



7.4. OUTLOOK 87

FLX card, thus reducing the output rate of FELIX while increasing the aver-
age message size. The coalescing could be implemented by merging packets
from multiple E-links that are associated with the same collision event. This
type of coalescing is performed anyway later in the event building stage, but
doing so earlier in the DAQ chain would free up CPU resources in the rest of
the DAQ system.

Furthermore, Chapter 6 has shown that reading out the FLX card in only
a single thread per PCle interface is a performance bottleneck. By adjusting
the FLX firmware to allow readout on multiple DMA channels in parallel this
bottleneck could be removed.

7.4 Outlook

Next steps in the FELIX project are the finalization of the hardware plat-
form, including the procurement of server PCs, the manufacturing of the FLX
cards, the choice of network technology, and the completion of the software
and firmware development. In the Long Shutdown 2 (2019-2020) the FE-
LIX system will be deployed for part of the ATLAS subsystems. The Large
Hadron Collider (LHC) is scheduled to restart for run 3 in 2021, the first run
including FELIX systems.

The LHC Phase 2 is scheduled to start in 2026 with run 4 and has signifi-
cantly increased requirements on the experiments. The FELIX approach will
be used for all ATLAS subsystems. The FELIX platform will be upgraded to
cope with the new requirements: more input links, higher trigger rates, and
larger data volumes.

Furthermore, an effort has started to use FELIX outside of ATLAS. The
Deep Underground Neutrino Experiment (DUNE) is a large-scale neutrino
experiment at Fermilab in the USA. Development is currently in progress
and first beams are expected in 2026. A small-scale prototype of one of the
DUNE detectors is developed at CERN. The prototype is intended to be used
for research and development. Developing dedicated electronic components
for the readout of the prototype would be costly and is therefore not practi-
cable for the prototype. Instead, it is planned to base the readout system on
FELIX devices. This demonstrates the versatility of a COTS-based readout
approach: the use of standardized readout elements reduces significantly the
cost and time of building a DAQ system.

In Chapter 5 I discussed the usage in DAQ systems of network technolo-
gies like Infiniband that are traditionally only found in HPC applications. It
could be interesting to study the use of HPC technology in datacenter ap-
plications. The library NetlO that was presented in this dissertation could
be expanded and tailored to more applications than DAQ systems. NetlO
is planned to be released under an open source license later in 2017. The
differentiation of traffic types that was introduced in NetIO could also be in-



88 CHAPTER 7. CONCLUSION

teresting for other applications. One could imagine the backend of a video
streaming website, where user requests are answered from a database with a
low-latency connection, while video files are retrieved from a storage server
via a high-throughput connection.

7.5 Final Words

HEP has proven to be an interesting field of study from a computer science
point of view. DAQ systems are considerably different from other large-scale
computing systems like HPC clusters or commercial datacenters and have
unique requirements and challenges. HEP experiments on the other hand can
benefit from applying computer science principles not only to DAQ systems,
but also to other computing tasks like simulation or offline data processing.
Collaboration in this area is likely to be profitable for both sides.



Publications of the Author

[Borga et al., 2016] Borga, A., Anderson, J., Boterenbrood, H., Chen, H.,
Chen, K., Drake, G., Donszelmann, M., Francis, D., Gorini, B., Lanni, E,
Miotto, G. L., Levinson, L., Narevicius, J., Roich, a., Ryu, S., Schreuder, E,
Schumacher, J., Vandelli, W., Vermeulen, J.,, Wu, W., and Zhang, ]J. (2016).
A new approach to front-end electronics interfacing in the ATLAS experi-
ment. Journal of Instrumentation, 11(01):C01055-C01055.

[Borga et al., 2014] Borga, A., Crone, G.]., Green, B., Kugel, A., Joos, M., Pan-
duro Vazquez, J. G., Schumacher, J., Teixeira-Dias, P., Tremblet, L., Van-
delli, W., Vermeulen, J. C., Werner, P., and Wickens, F. J. (2014). Evolution
of the ReadOut System of the ATLAS experiment. Technology and Instru-
mentation in Particle Physics.

[Chen et al., 2016] Chen, K., Anderson, J., Bauer, K., Borga, A., Boterenbrood,
H., Chen, H., Drake, G., Donszelmann, M., Francis, D., Guest, D., Gorini,
B., Joos, M., Lanni, E,, Miotto, G. L., Levinson, L., Narevicius, J., Vazquez,
W. P, Roich, A., Ryu, S., Schreuder, F.,, Schumacher, J., Vandelli, W., Ver-
meulen, J.,, Whiteson, D., Wu, W,, and Zhang, J. (2016). Felix: a pcie based
high-throughput approach for interfacing front-end and trigger electronics
in the atlas upgrade framework. Journal of Instrumentation, 11(12):C12023.

[Narevicius et al., 2016] Narevicius, J., Anderson, J., Borga, A., Boteren-
brood, H., Chen, H., Chen, K., Drake, G., Donszelmann, M., Francis, D.,
Gorini, B., Guest, D., Lanni, F,, Miotto, G. L., Levinson, L., Roich, A., Ryu,
S., Schreuder, F., Schumacher, J., Vandelli, W., Vermeulen, J., Wu, W., and
Zhang, J. (2016). Felix: The new approach for interfacing to front-end elec-
tronics for the atlas experiment. In 2016 IEEE-NPSS Real Time Conference
(RT), pages 1-2.

[Schumacher et al., 2015a] Schumacher, ]., Anderson, ]J. T., Borga, A.,
Boterenbrood, H., Chen, H., Chen, K., Drake, G., Francis, D., Gorini, B.,
Lanni, F.,, Lehmann Miotto, G., Levinson, L., Narevicius, J., Plessl, C.,
Roich, A, Ryu, S., Schreuder, E. P, Vandelli, W., Vermeulen, J., and Zhang,
J. (2015a). FELIX: a High-Throughput Network Approach for Interfacing
to Front End Electronics for ATLAS Upgrades. Journal of Physics: Confer-
ence Series, 664(8):082050.

89



90 PUBLICATIONS OF THE AUTHOR

[Schumacher et al., 2015b] Schumacher, J., Anderson, J. T, Borga, A.,
Boterenbrood, H., Chen, K., Chen, H., Drake, G., Francis, D., Gorini, B.,
Lanni, F.,, Lehmann Miotto, G., Levinson, L., Narevicius, J., Roich, A., Ryu,
S., Schreuder, F. P,, Vandelli, W., Vermeulen, J., and Zhang, J. (2015b). Im-
proving packet processing performance in the ATLAS FELIX project. Pro-
ceedings of the 9th ACM International Conference on Distributed Event-Based
Systems - DEBS ’15, pages 174-180.

[Schumacher et al., 2016] Schumacher, J., Plessl, C., and Vandelli, W. (2016).
High-Throughput Network Communication with NetIO. submitted.



Bibliography

(1]

(6]

[7]

8]

[9]

[10]

ATLAS Collaboration, “The ATLAS Experiment at the CERN Large
Hadron Collider,” Journal of Instrumentation, vol. 3, no. 1-4, p. S08003,
2008.

L. Evans, “The Large Hadron Collider,” New Journal of Physics, vol. 9,
no. 9, p. 335, 2007.

D. H. Perkins, Introduction to high energy physics. Cambridge University
Press, 1972.

O. S. Briining, P. Collier et al., LHC Design Report. Geneva: CERN,
2004, vol. 2. [Online]. Available: https:/ /cds.cern.ch/record /815187

T. Kawamoto, S. Vlachos et al., “New Small Wheel Technical Design
Report,” CERN, Tech. Rep. CERN-LHCC-2013-006, June 2013. [Online].
Available: https://cds.cern.ch/record /1552862

M. Shochet, L. Tompkins et al., “Fast TracKer (FTK) Technical Design
Report,” CERN, Tech. Rep. CERN-LHCC-2013-007, June 2013. [Online].
Available: https:/ /cds.cern.ch/record /1552953

The ATLAS TDAQ Collaboration, “The ATLAS Data Acquisition and
Higher Level Trigger system,” Jinst, vol. 11, no. to be published, 2016.

W. D. Peterson, The VMEbus handbook; 4th ed. Scottsdale, AZ: VITA,
1997.

A. Kugel, “The ATLAS ROBIN - A High-Performance Data-Acquisition
Module,” Ph.D. dissertation, Mannheim University, Mannheim, 2009,
presented on 19 Aug 2009. [Online]. Available: http://cds.cern.ch/
record /1209243

H. C. van der Bij, R. A. McLaren et al., “S-LINK, a Data Link Interface
Specification for the LHC Era,” in Nuclear Science Symposium, 1996. Con-
ference Record., 1996 IEEE, 1996, pp. 465-469.

91


https://cds.cern.ch/record/815187
https://cds.cern.ch/record/1552862
https://cds.cern.ch/record/1552953
http://cds.cern.ch/record/1209243
http://cds.cern.ch/record/1209243

92 BIBLIOGRAPHY

[11] B. Gorini, M. Joos et al., “A RobIn Prototype for a PCI-Bus based At-
las Readout-System,” in Proceedings of the Nineth Workshop on Electronics
for LHC Experiments : Amsterdam, Netherlands, 29.09.2003, vol. 03-006.
Geneva: CERN, 2003, pp. 152-156.

[12] The RD-12 Collaboration. The TTC System. [Online]. Available:
http:/ /ttc.web.cern.ch/TTC/intro.html

[13] S. Haas, M. Joos, and W. Iwanski, “Design and Performance of a PCI
Interface with four 2 Gbit/s Serial Optical Links,” CERN, Tech. Rep.
CERN-ATL-COM-DAQ-2004-018, 2004.

[14] G. L. Presti, O. Barring et al., “Castor: A distributed storage resource
facility for high performance data processing at cern.” in MSST, vol. 7.
Citeseer, 2007, pp. 275-280.

[15] R. Jones, S. Kolos et al., “Applications of CORBA in the ATLAS proto-
type DAQ,” in Real Time Conference, 1999. Santa Fe 1999. 11th IEEE NPSS,
1999, pp. 469-474.

[16] W. P. Vazquez, “The ATLAS Data Acquisition System: from Run 1 to
Run 2,” Nuclear and Particle Physics Proceedings, vol. 273-275, pp. 939

- 944, 2016, 37th International Conference on High Energy Physics
(ICHEP).

[17] E Vasey, D. Hall et al., “The Versatile Link common project: feasibility
report,” Jinst, vol. 7, no. 01, p. C01075, 2012.

[18] P. Moreira, A. Marchioro, and K. Kloukinas, “The GBT: A proposed ar-
chitecture for multi-Gb/s data transmission in high energy physics,”
Published in Prague, 2007.

[19] P. Moreira, R. Ballabriga et al., “The GBT Project,” Topical Workshop on
Electronics for Particle Physics, pp. 342-346, 2009.

[20] S. Kama, “Evolution of the trigger and data acquisition system in the
ATLAS experiment,” IEEE Nuclear Science Symposium Conference Record,
vol. 396, no. 1, pp. 1787-1790, 2012.

[21] C. Haeberli, A. dos Anjos et al., “ATLAS TDAQ DataCollection soft-
ware,” leee Transactions on Nuclear Science, vol. 51, no. 3, pp. 585-590,
2004.

[22] M. Bellato, G. Collazuol et al., “ A PCle Gen3 based readout for the LHCb
upgrade,” Journal of Physics: Conference Series, vol. 513, no. 1, p. 012023,
2014.


http://ttc.web.cern.ch/TTC/intro.html

BIBLIOGRAPHY 93

[23] F. Réthoré, J. P. Cachemiche et al., “The PCle-based readout system
for the LHCb experiment,” in Topical Workshop on Electronics for Particle
Physics, 2015.

[24] M. B. Marin, A. Boccardi et al., “The Giga Bit Transceiver based Expand-
able Front-End (GEFE)—a new radiation tolerant acquisition system for

beam instrumentation,” Journal of Instrumentation, vol. 11, no. 02, pp.
C02062-C02 062, 2016.

[25] G. Bauer, T. Bawej et al., “The new CMS DAQ system for LHC opera-
tion after 2014 (DAQ2),” Journal of Physics: Conference Series, vol. 513, no.
TRACK 1, 2014.

[26] T. Bawej, U. Behrens et al., “The new CMS DAQ system for run-2 of the
LHC,” IEEE Transactions on Nuclear Science, vol. 62, no. 3, pp. 1099-1103,
2015.

[27] Xilinx, “Virtex-7  FPGA  VC709 Connectivity Kit” [On-
line]. Available: https://www.xilinx.com/products/boards-and-kits/
dk-v7-vc709-g.html

[28] HiTech Global, “HTG-710 PCle Development Board.” [Online].
Available: http:/ /www.hitechglobal.com/Boards /PCIE-CXP.htm

[29] A. Borga, F. P. Schreuder, and O. Kharraz. Wupper PCle DMA Engine.
[Online]. Available: http://opencores.org/project,virtex7{_}pcie{_}dma

[30] P. Durante, N. Neufeld et al., “100 Gbps PCI-Express Readout for the
LHCb Upgrade,” IEEE Transactions on Nuclear Science, vol. 62, no. 4, pp.
1752-1757, 2015.

[31] Intel. (2013) Intel VTune Amplifier XE. [Online]. Available: http:
/ / software.intel.com/en-us/intel-vtune-amplifier-xe

[32] T. Bingmann. Parallel Memory Bandwidth  Benchmark.
http:/ /panthema.net/2013/pmbw /.

[33] S. Williams, A. Waterman, and D. Patterson, “Roofline,” Communications
of the ACM, vol. 52, no. 4, p. 65, apr 2009.

[34] MPI: A Message-Passing Interface Standard, Message Passing Forum Std.,
1994.

[35] T. Stitt, An introduction to the Partitioned Global Address Space (PGAS) pro-
gramming model. Connexions, Rice University, 2009.

[36] OpenFabrics Working Group. Libfabric. [Online]. Available: https:
/ /ofiwg.github.io/libfabric/


https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
https://www.xilinx.com/products/boards-and-kits/dk-v7-vc709-g.html
http://www.hitechglobal.com/Boards/PCIE-CXP.htm
http://opencores.org/project,virtex7{_}pcie{_}dma
http://software.intel.com/en-us/intel-vtune-amplifier-xe
http://software.intel.com/en-us/intel-vtune-amplifier-xe
https://ofiwg.github.io/libfabric/
https://ofiwg.github.io/libfabric/

94 BIBLIOGRAPHY

[37] M. S. Birrittella, M. Debbage et al., “Intel Omni-path Architecture: En-
abling Scalable, High Performance Fabrics,” 2015 IEEE 23rd Annual Sym-
posium on High-Performance Interconnects, pp. 1-9, 2015.

[38] P. Hintjens, M. Sustrik, and Others. ZeroMQ. [Online]. Available:
http:/ /zeromq.org/

[39] A. Otto, D. H. C. Pérez et al., “A first look at 100 Gbps LAN technolo-
gies, with an emphasis on future DAQ applications.” Journal of Physics:
Conference Series, vol. 664, no. 5, p. 052030, 2015.

[40] E. Bonaccorsi, J. Manuel et al., “Infiniband Event-Builder Architecture
Test-beds for Full Rate Data Acquisition in LHCb,” in Energy, vol.
022008, 2010.

[41] D. Campora Perez, A. Falabella et al., “The 40MHz trigger-less DAQ for
the LHCb Upgrade,” Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
vol. 824, pp. 280-283, 2016.

[42] F. Carena, W. Carena et al., “Preparing the ALICE DAQ upgrade,” Jour-
nal of Physics: Conference Series, vol. 396, no. 1, p. 012050, 2012.

[43] T. Bawej, U. Behrens et al., “Boosting Event Building Performance Us-
ing Infiniband FDR for CMS Upgrade,” in Proceedings of Technology and
Instrumentation in Particle Physics 2014 (TIPP2014), Amsterdam, 2014.

[44] A. Dworak, M. Sobczak et al., “Middleware trends and market lead-
ers 2011,” in Conf. Proc., vol. 111010, no. CERN-ATS-2011-196, 2011, p.
FRBHMULTO5.

[45] A. Dworak, E. Ehm et al., “The new CERN Controls Middleware,” Jour-
nal of Physics: Conference Series, vol. 396, no. 1, p. 012017, 2012.

[46] M. Sustrik and Others. nanomsg. [Online]. Available: http://nanomsg.
org/

[47] Ioannis Charalampidis. (2016) A libfabric-based Transport for
nanomsg. [Online]. Available: https:/ /github.com /wavesoft/
nanomsg-transport-ofi

[48] T. Kawamoto, S. Vlachos et al., “New Small Wheel Technical Design
Report,” CERN, Tech. Rep. CERN-LHCC-2013-006. ATLAS-TDR-020,
Jun 2013, aTLAS New Small Wheel Technical Design Report. [Online].
Available: https:/ /cds.cern.ch/record /1552862


http://zeromq.org/
http://nanomsg.org/
http://nanomsg.org/
https://github.com/wavesoft/nanomsg-transport-ofi
https://github.com/wavesoft/nanomsg-transport-ofi
https://cds.cern.ch/record/1552862

BIBLIOGRAPHY 95

[49] M. C. Aleksa, W. P. Cleland et al., “ATLAS Liquid Argon Calorimeter
Phase-I Upgrade Technical Design Report,” CERN, Tech. Rep.
CERN-LHCC-2013-017. ATLAS-TDR-022, Sep 2013, final version
presented to December 2013 LHCC. [Online]. Available: https:
/ /cds.cern.ch/record /1602230


https://cds.cern.ch/record/1602230
https://cds.cern.ch/record/1602230




List of Figures

1.1
1.2
1.3

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
29
2.10
2.11

3.1
3.2
3.3
34
3.5
3.6

4.1
4.2
4.3
44
4.5

5.1
52
53
54

Accelerator complexat CERN . . . ... ...............
ATLASexperiment . . .. ... ....................
Schema of the ATLAS caverncomplex . . . ... ..........

LHC operation timeline . . . .. ...................
ATLAS TDAQ system in LHCRun1 . . . .. ... ... . ... ..
The ROBINcard . . . . ... ... ... .. . .. . . ...
ATLAS DAQnetworksinRunl1. . . ... ... ...........
Run control state machine . . . ... ... ..... ... .. ... ..
Graphical user interface for ATLAS control room operators . . . .
Distribution of L2 requests on ROSPCs . . . ... ... ... ...
Distribution of L2 requests per L2 algorithm . . . ... ... ...
ATLAS TDAQ system during LHCRun2 . . ... ... ... ...
ATLAS data collection networkinRun2 . . . ... ... ... ...
Architecture of the ATLAS trigger and data-acquisition system as
planned for LHCRun3. . ... ... .................

FELIX devices connect to multiple DAQ system endpoints . . . .
Mlustration of GBT Frames in normal and widemode . . . . . . .
Hardware prototype of the FLX-711card . .. ... .. ... ...
Block diagram of the FLX card firmware . . . . .. ... ... ...
FELIX softwarestack . . ... ... .. ................
Architecture of the FELIX core application . . . . . ... ... ...

Block data format used to transmit data over the PCle bus
Average runtime per processed block . . . ... .. ... ... ..
Overall block processing throughput . . . .. ... .. ... .. ..
Evaluation of a test system’s memory performance using PMBW
Roofline model analysis of the packet processing algorithm . . . .

Publish/subscribe communication pattern . . . . ... ... ...
NetlO architecture . . . ... ......... .. .. ........
Processing of incoming messages in NetlO low-latency sockets

26

30
31
32
33
35
38

43
47
49
51
52

57
59
61

Processing of incoming messages in NetIO high-throughput sockets 62

97



98

55

5.6
5.7

6.1

6.2

6.3
6.4

6.5

6.6

List of Figures

Throughput measured with NetlO and ZeroMQ on 40G Ethernet

and NetlO on Infiniband FDR . . . . ... ... ........... 66
Throughput performance of NetlO publish/subscribe sockets . . 67
Round-trip time comparison between NetlO on Ethernet, NetlO
on Infiniband, and ZeroMQ . . . . . . ... ... ... ... ... . 68
Chunk rates for a FELIX system with emulated New Small Wheel
data . . .. ... 75
Bandwidth measurements of the three different full-mode appli-
cations . . . . ... 77
Network topology of the 16-node Infiniband QDR cluster . . . . . 79
Measured data and message rates on the cluster with a one-to-one
mapping between the FELIX and readout servers . . .. ... .. 80
Measured data and message rates on the cluster with a two-to-one
mapping between the FELIX and readout servers . .. ... ... 81

Scaling the CPU frequency of benchmark cluster nodes . . . . . . 82



List of Tables

3.1
3.2

4.1
4.2

5.1
52
53

6.1
6.2

6.3

Specifications of the three generations of FLX cards . . . . .. .. 32
Low-level command line tools for the FLX card . . . . . . ... .. 37
Meta-data in block headers and subchunk trailers . . . ... ... 42
Specifications of the systems used for benchmarks . . . . ... .. 48
Comparison of networking in HPCand DAQ . . . . . . ... ... 56
Different types of user-level sockets in NetlO . . . . .. ... ... 63
Systems used for NetlO benchmarks . . . ... ..... ... ... 66
The different sub-systems connecting to FELIXPCs . . . . .. .. 72
Nominal operational parameters and emulated equivalents with

compensation for the high emulated chunk rate per E-link . ... 74
Hardware configuration of the 16-node Infiniband cluster . . . . . 78

99






Acronyms

COTS commercial off-the-shelf. 1, 8, 25, 29, 41, 71, 85

DAQ data acquisition. 1, 6-8, 10, 11, 14-16, 22, 25-27, 29, 34, 55, 57, 58, 86—-88
DCS Detector Control System. 56-58, 71

DUNE Deep Underground Neutrino Experiment. 87
FTK Fast Tracker. 12

GBT Gigabit Transceiver. 30, 39, 71
GEFE GBT-Based Expandable Front-End. 39

HDLC High-Level Data Link Control. 30, 41
HEP high-energy physics. 55, 65, 85, 88

HPC high-performance computing. 55, 87, 88

L1Calo Level-1 Calorimeter Trigger. 71, 74, 76, 86
LAr Liquid Argon. 20, 32,71, 74,76, 86
LHC Large Hadron Collider. 87

MM Micromegas detector. 71, 73, 74
NSW New Small Wheel. 71-74, 76, 86

ROBIN Read-Out Buffer Input. 14, 23
ROD Read-Out Driver. 13, 14, 20, 24, 25, 27, 29
ROS Read-Out System. 12-16, 19, 20, 22-24

SPMD single-program-multiple-data. 55

101



102 ACRONYMS

sTGC small-strip Thin Gap Chamber. 71, 73
SW Small Wheel. 72

TDAQ Trigger and Data-Acquisition. 8, 13, 16, 22, 27
TTC Timing, Trigger and Control. 13-15, 27, 71



	Contents
	Introduction
	Motivation
	High Energy Physics and Accelerator Experiments
	Trigger and Data Acquisition Systems
	Contribution
	Outline

	From Custom to COTS Components: Evolution of the ATLAS Data-Acquisition System
	LHC Upgrade Program
	LHC Run 1 (2009 – 2013)
	Run 1 Performance Data
	LHC Run 2 (2015 – 2018)
	LHC Run 3 and beyond
	Centralized Data Distribution with FELIX
	Related Work

	Architecture of a COTS-based Read-Out Switch
	Overview
	Detector Connectivity
	The Detector Link Interface Card
	The FELIX Software Stack
	Related Work

	Efficient Decoding of Detector Link Data Streams
	Overview
	The PCIe Packet Format
	The Packet Decoding Algorithm
	Profiling
	Optimizations
	Benchmark Results
	Memory Bandwidth Analysis
	Conclusion
	Related Work

	Fast Networking for DAQ Systems
	Overview
	Networking in FELIX
	The NetIO Message Service
	User-level sockets
	Low-Level Sockets
	The POSIX Back-end
	The FI/Verbs Back-end 
	The Intel OmniPath Back-end
	Benchmarks and Tests with NetIO
	Related Work

	System Evaluation of a COTS-based Read-Out
	Methodology
	Case Study: The New Small Wheel
	Case Study: Full Mode
	Scalability
	CPU Scaling

	Conclusion
	Summary
	COTS-based Readout for HEP experiments
	FELIX
	Outlook
	Final Words

	Publications of the Author
	Bibliography
	List of Figures
	List of Tables
	Acronyms

