
Frederik Simon Bäumer

Indikatorbasierte Erkennung und Kom-
pensation von ungenauen und unvoll-
ständig beschriebenen Softwareanfor-
derungen

Indicator-based detection and compen-
sation of inaccurate and incompletely
described software requirements



Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbi-
bliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.ddb.de
abrufbar.

Band 372 der Verlagsschriftenreihe des Heinz Nixdorf Instituts

© Heinz Nixdorf Institut, Universität Paderborn – Paderborn – Juli 2017

ISSN (Print): 2195-5239
ISSN (Online): 2365-4422
ISBN: 978-3-942647-91-5

Das Werk einschließlich seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außer-
halb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung der Herausgeber
und des Verfassers unzulässig und strafbar. Das gilt insbesondere für Vervielfältigung, Über-
setzungen, Mikroverfilmungen, sowie die Einspeicherung und Verarbeitung in elektronischen
Systemen.

Als elektronische Version frei verfügbar über die Digitalen Sammlungen der Universitätsbi-
bliothek Paderborn.

Satz und Gestaltung: Frederik Simon Bäumer

Hersteller: readbox unipress in der readbox publishing GmbH
Münster

Printed in Germany



Geleitwort des Herausgebers

Bisher wurden kaum Versuche unternommen, den Variantenreichtum und die
Defizite natürlichsprachlicher Softwareanfoderungen, wie sie im Spezifikations-
/Konfigurationsprozess einer Wunschsoftware durch Endanwender (Laien) entstehen,
ohne vermehrte Rückfragen in den Griff zu bekommen. Der nachfolgende Beitrag
zeigt den Verantwortlichen im

”
Requirements Engineering“ auf, dass es möglich ist,

den fachfremden Anforderungssteller im Rahmen des Projektmanagements ohne
Beschränkung seiner Ausdrucksfähigkeit miteinzubinden und durch automatisiert
vereindeutigte Softwarespezifikation den Softwareentwickler zu unterstützen, der
von kleineren Rückfragen absehen, dadurch schneller zur Umsetzung kommen kann.
Während in der Praxis erst darüber nachgedacht wird, dass man die Anforderungs-
analyse automatisieren könnte, wurde das in der Wissenschaft bereits erfolgreich
umgesetzt. Nun widmet man sich bereits der maschinellen Erkennung der, dem
Sprachgebrauch geschuldeten, Ungenauigkeiten und Unvollständigkeiten in den An-
forderungsbeschreibungen, die immer noch zu viel Interpretationsspielraum bei einer
konkreten softwaretechnischen Umsetzung zulassen. Doch diese Arbeit setzt noch
einen weiteren Meilenstein, indem diese mehrdeutigen und partiell unvollständigen
Äußerungen der Anforderungssteller durch intelligente (bedarfsgerechte) Wissensab-
fragen datengetrieben kompensiert werden.
Die Arbeit von Herrn Bäumer ist in den Kontext des Sonderforschungsbereichs

901
”
On-The-Fly Computing“ eingebettet. Das Teilprojekt B1 beschäftigt sich in

seiner zweiten Förderphase unter anderem mit natürlichsprachlichen Anforderungs-
spezifikationen (Juli 2015 – Juni 2019). Dabei behandelt sie unterschiedliche Arten
von Servicespezifikationen, welche die erfolgreiche Suche, Komposition und Analyse
von Services ermöglichen. Hierfür werden zunächst unterspezifizierte Serviceanforde-
rungen des Endanwenders maschinell analysiert (d. h. identifiziert, extrahiert und
formalisiert), um Ambiguität, Vagheit und Unvollständigkeit in seinen Spezifikationen
zu kompensieren. Zu diesem Zweck entwickelte Herr Bäumer in der vorliegenden
Arbeit (situationsbezogene) Strategien zur Kompensation von Unterspezifiziertheit,
so dass in Abhängigkeit von gewissen sprachlichen Ungenauigkeiten (Mehrdeutig-
keit, Unvollständigkeit) für eine konkrete natürlichsprachliche Servicespezifikation,
der passende Algorithmus (oder Strategie) gewählt wird, um die ursprünglichen
Anforderungen des Endanwenders weitestgehend zu präzisieren. Ziel war es, ein para-
metrisiertes Modell (sog. Strategiekonfigurationen) zu entwickeln, dass automatisch
die richtige Strategie zur Kompensation menschlicher Unzulänglichkeiten bei der
Servicespezifikation wählt. In diesem Beitrag hat sich Frederik Bäumer der auto-
matisierten Erkennung und Kompensation von Ambiguität und Unvollständigkeit
in natürlichsprachlichen Anforderungsbeschreibungen unter Berücksichtigung der
Restriktionen (d. h. hohe Performanz, geringe Benutzerinterkation) des Anwendungs-
feldes

”
On-The-Fly Computing“ vollumfänglich gewidmet. Hierfür hat er einerseits

Strategien zur bedarfsgerechten und performanten Steuerung geeigneter Kompensati-
onsverfahren für ungenaue Endanwenderangaben entwickelt. Andererseits konnte er
zeigen, dass die Strategiekonfiguration selbst datengetrieben in Echtzeit situationsbe-



dingt durchgeführt werden und zu besseren Ergebnissen als vordefinierte Regelwerke
führen kann. Auch die nachgewiesenen Lerneffekte seines eigens für Testzwecke
entwickelten Prototyps

”
CORDULA“ (Compensation of Requirements Descriptions

Using Linguistic Analysis) durch das sog. Caching (Verankerung im Gedächtnis des
Systems) bei der (domänenspezifischen) lexikalischen Disambiguierung beweisen die
Weitsicht bei der Entwicklung praxisnaher Lösungen.

Paderborn, 12. Juli 2017 Jun.-Prof. Dr. Michaela Geierhos



Indikatorbasierte Erkennung und Kompensation
von ungenauen und unvollständig beschriebenen

Softwareanforderungen

Der Fakultät für Wirtschaftswissenschaften der

Universität Paderborn

zur Erlangung des akademischen Grades

Doktor der Wirtschaftswissenschaften

– Doctor rerum politicarum –

vorgelegte Dissertation

von

Frederik Simon Bäumer

geboren am 09. Februar 1988

in Aachen

Tag des Kolloquiums: 26. Juli 2017
Referentin: Jun.-Prof. Dr. Michaela Geierhos
Korreferent: Prof. Dr.-Ing. habil. Wilhelm Dangelmaier





Vorveröffentlichungen

Im Zusammenhang mit der vorliegenden Dissertation veröffentliche Beiträge:

• Michaela Geierhos & Frederik S. Bäumer: In Henning Christiansen, M.
Dolores Jiménez López, Roussanka Loukanov & Larry Moss (Hrsg.): Partiality
and Underspecication in Information, Languages, and Knowledge, S. 65–107.
Cambridge Scholars Publishing.

• Frederik S. Bäumer & Michaela Geierhos: Running Out of Words: How
Similar User Stories Can Help to Elaborate Individual Natural Language Re-
quirement Descriptions. In: Dregvaite, Giedre, Damasevicius, Robertas (Hrsg.):
Information and Software Technologies – 22nd International Conference, ICIST
2016, Druskininkai, Lithuania, October 13-15, 2016, Proceedings, CCIS 639, S.
549–558. Springer. ISBN 978-3-319-46253-0. doi:10.1007/978-3-319-46254-7.

• Michaela Geierhos & Frederik S. Bäumer: How to Complete Customer Requi-
rements Using Concept Expansion for Requirement Refinement. In: Proceedings
of the 21st International Conference on Applications of Natural Language to
Information Systems, NLDB 2016, Springer, LNAI 9612, 2016, Salford, UK,
Juni 2016, S. 37–47. ISBN 978-3-319-41753-0. doi:10.1007/978-3-319-41754-7 4.

• Lorijn van Rooijen, Frederik S. Bäumer, Marie Christin Platenius, Michaela
Geierhos, Heiko Hamann & Gregor Engels: From User Demand to Software
Service: Using Machine Learning to Automate the Requirements Specication
Process. In: Proceedings of the 4th International Workshop on Articial Intelli-
gence for Requirements Engineering (AIRE’17), 5. September 2017, Lissabon.
(im Druck)

• Frederik S. Bäumer, Markus Dollmann & Michaela Geierhos: Studying
Software Descriptions in SourceForge and App Stores for a better Understanding
of real-life Requirements. In: Proceedings of the 2nd International Workshop
on App Market Analytics (WAMA 2017), 5. September 2017, Paderborn. (im
Druck)

• Michaela Geierhos, Sabine Schulze & Frederik Bäumer: What did you mean?
Facing the Challenges of User-generated Software Requirements. In Procee-
dings of the 7th International Conference on Agents and Articial Intelligence
(ICAART), Lissabon, Januar 2015. S. 277–283. ISBN 978-989-758-073-4





Zusammenfassung

Die vorliegende Dissertation ist im Rahmen des Sonderforschungsbereichs 901:

On-The-Fly Computing (auch: OTF-Computing) entstanden. Die Vision des OTF-

Computings sieht vor, dass zukünftig der individuelle Softwarebedarf von Endanwen-

dern durch die automatische Komposition bestehender Softwareservices gedeckt wird.

Im Fokus stehen dabei natürlichsprachliche Softwareanforderungen, die Endanwender

formulieren und an OTF-Anbieter als Anforderungsbeschreibung übergeben. Sie

dienen an dieser Stelle als alleinige Kompositionsgrundlage, können allerdings unge-

nau und unvollständig sein. Dies sind Defizite, die bislang durch Softwareentwickler

im Rahmen eines bidirektionalen Konsolidierungsprozesses erkannt und behoben

wurden. Allerdings ist eine solche Qualitätssicherung im OTF-Computing nicht mehr

vorgesehen – der klassische Konsolidierungsprozess entfällt.

Hier setzt die Dissertation an, indem sie sich mit Ungenauigkeiten frei formulier-

ter Anforderungsbeschreibungen beim Softwareentwurf auseinandersetzt. Hierfür

wird mit CORDULA (Compensation of Requirements Descriptions Using Linguistic

Analysis) ein System entwickelt, dass sprachliche Unzulänglichkeiten (Ambiguität,

Vagheit sowie Unvollständigkeit) in den Formulierungen unerfahrener Endanwender

erkennt und kompensiert. CORDULA unterstützt dabei die Suche nach geeigneten

Softwareservices zur Komposition, indem Anforderungsbeschreibungen in kanonische

Kernfunktionalitäten überführt werden.

Die vorliegende Arbeit leistet somit methodisch gesehen einen Beitrag zur ganz-

heitlichen Erfassung und Verbesserung sprachlicher Unzulänglichkeiten in nutzer-

generierten Anforderungsbeschreibungen, indem erstmalig parallel und sequenziell

Ambiguität, Unvollständigkeit und Vagheit behandelt werden. Erst durch den Einsatz

linguistischer Indikatoren ist es möglich, datengetrieben und bedarfsorientiert die in-

dividuelle Textqualität zu optimieren, indem von der klassischen Textanalysepipeline

abgewichen wurde: Die ad hoc-Konfiguration der Kompensationspipeline, ausgelöst

durch die On-The-Fly festgestellten Defizite in den Anforderungsbeschreibungen der

Endanwender, ist ein Alleinstellungsmerkmal.





Abstract

This dissertation has been written within the scope of Collaborative Research Centre

901: On-The-Fly Computing (also known as OTF Computing). The vision of OTF

Computing is to have the software needs of end users in the future covered by

an automatic composition of existing software services. Here we focus on natural

language software requirements that end users formulate and submit to OTF providers

as requirement specifications. These requirements serve as the sole foundation for

the composition of software; but they can be inaccurate and incomplete. Up to

now, software developers have identified and corrected these deficits by using a

bidirectional consolidation process. However, this type of quality assurance is no

longer included in OTF Computing – the classic consolidation process is dropped.

This is where this work picks up, dealing with the inaccuracies of freely formulated

software design requirements. To do this, we developed the CORDULA (Compensa-

tion of Requirements Descriptions Using Linguistic Analysis) system that recognizes

and compensates for language deficiencies (e.g., ambiguity, vagueness and incomple-

teness) in requirements written by inexperienced end users. CORDULA supports

the search for suitable software services that can be combined in a composition by

transferring requirement specifications into canonical core functionalities.

This dissertation provides the first-ever method for holistically recording and

improving language deficiencies in user-generated requirement specifications by

dealing with ambiguity, incompleteness and vagueness in parallel and in sequence.

Using linguistic indicators makes it possible to optimize the individual text quality in

a data-driven and needs-oriented manner by deviating from the classical text analysis

pipeline: Its distinguishing feature is the ad hoc configuration of the compensating

pipeline, triggered by the deficiencies that On-The-Fly Computing detected in the

requirement specifications of end users.





Danksagung

An dieser Stelle möchte ich allen danken, die mich auf unterschiedlichste Weise bei

der Erstellung dieser Arbeit unterstützt haben.

Zuerst möchte ich Jun.-Prof. Dr. phil. habil. Michaela Geierhos danken, die meine

Dissertation betreut und mich dabei in einem beachtlichen Maße unterstützt hat.

Sie hat mich motiviert, mir Etappenziele sowie Herausforderungen aufgezeigt und

mir diese vor allem auch zugetraut. Für das in mich gesetzte Vertrauen, ihre Geduld

und ihre Diskussionsbereitschaft bedanke ich mich vielmals.

Ich bedanke mich darüber hinaus bei Prof. Dr.-Ing. habil. Wilhelm Dangelmaier für

die Übernahme des Zweitgutachtens sowie die konstruktiven Anmerkungen, mit denen

er meine Dissertation in unseren Gesprächen bedacht hat. Mein Dank richtet sich

auch an Prof. Dr. René Fahr und Prof. Dr.-Ing. Heiko Hamann für die Bereitschaft,

als Mitglieder in meiner Promotionskommission zu fungieren.

Besonders danken möchte ich meinen Kollegen am Heinz Nixdorf Institut, Stephan

Abke, Markus Dollmann, Nicolai Grote, Annette Steffens und Jens Weber, für all

die hilfreichen und konstruktiven Ratschläge. Danke für die gute Zusammenarbeit!

Unterstützt wurde ich während meiner Tätigkeit zusätzlich durch Edwin Friesen,

Marcel Grawe und Joschka Kersting, die durch vielfältige Unterstützung zum Gelingen

dieser Arbeit beigetragen haben. Weiterhin möchte ich mich bei Sven Heim bedanken,

der eine große Hilfe, Kritiker und guter Diskussionspartner war.

Mein Dank geht auch an meine Kollegen des Sonderforschungsbereichs 901. Hier

möchte ich mich insbesondere bei Dr. Marie Christin Platenius und Dr. Lorijn van

Rooijen für die gute Zusammenarbeit im Teilprojekt bedanken.

Zum Schluss möchte ich meiner Familie für das Lektorat danken. Mein großer

Dank geht an meine Eltern, die mich immer unterstützten und es auch bei dieser

Arbeit taten. Ich habe zwei tolle Schwestern, die ich nicht missen möchte und eine

wunderbare Freundin, die sich lange Monologe über indikatorbasierte Kompensation

angehört und mir den Rücken freigehalten hat. Allen bin ich sehr dankbar.

Paderborn, Juli 2017 Frederik Simon Bäumer





Inhaltsverzeichnis

Motivation, Herausforderungen und Ziele 1

I Grundlagen und Stand der Forschung 5

1 Anforderungserhebung und Dokumentation 7
1.1 Anforderungsquellen . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Anforderungen an Softwaresysteme . . . . . . . . . . . . . . . . . . . 9

1.2.1 Funktionale Anforderungen . . . . . . . . . . . . . . . . . . . 10
1.2.2 Nicht-funktionale Anforderungen . . . . . . . . . . . . . . . . 10
1.2.3 Rahmenbedingungen . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Anforderungsdokumentation . . . . . . . . . . . . . . . . . . . . . . . 11
1.3.1 Informale Anforderungsdokumentation . . . . . . . . . . . . . 15
1.3.2 Semi-formale Anforderungsdokumentation . . . . . . . . . . . 19
1.3.3 Formale Anforderungsdokumentation . . . . . . . . . . . . . . 22
1.3.4 Gegenüberstellung . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4 Anforderungsbeschreibungen . . . . . . . . . . . . . . . . . . . . . . . 26

2 Ungenauigkeit und Unvollständigkeit 29
2.1 Ambiguität . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.1 Lexikalische Ambiguität . . . . . . . . . . . . . . . . . . . . . 32
2.1.2 Syntaktische Ambiguität . . . . . . . . . . . . . . . . . . . . . 33
2.1.3 Referentielle Ambiguität . . . . . . . . . . . . . . . . . . . . . 35

2.2 Vagheit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.3 Unvollständigkeit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3 Stand der Wissenschaft und Technik 41
3.1 Maschinelle Textanalyse im Kontext dieser Arbeit . . . . . . . . . . . 41
3.2 Anforderungsextraktion im OTF-Computing . . . . . . . . . . . . . . 42
3.3 Umgang mit Ambiguität und Unvollständigkeit . . . . . . . . . . . . 44

3.3.1 Disambiguierung im Anforderungskontext . . . . . . . . . . . 44
3.3.2 Reduktion von Unvollständigkeit . . . . . . . . . . . . . . . . 63
3.3.3 Kombinierte Ansätze . . . . . . . . . . . . . . . . . . . . . . . 68

3.4 Diskussion und Zwischenfazit . . . . . . . . . . . . . . . . . . . . . . 71

i



ii Inhaltsverzeichnis

II Methodische Vorgehensweise 75

4 Zu leistende Arbeit 77
4.1 Konzeption eines strategiebasierten Anforderungskompensationssystems 77

4.1.1 Auswahl geeigneter Kompensationsverfahren . . . . . . . . . . 79
4.1.2 Entwicklung fortgeschrittener Kompensationsstrategien . . . . 80
4.1.3 Erstellung linguistischer Ressourcen . . . . . . . . . . . . . . . 80

4.2 Evaluation des Textanalysesystems . . . . . . . . . . . . . . . . . . . 82
4.2.1 Evaluation der Strategieanwendung . . . . . . . . . . . . . . . 83
4.2.2 Evaluation der Systemperformanz . . . . . . . . . . . . . . . . 83

5 Konzeptentwicklung 87
5.1 Ausgangssituation und Zielsetzung . . . . . . . . . . . . . . . . . . . 87
5.2 Strategiekonfiguration . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Light-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.2.2 Basic-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.3 Basic Plus-Strategie . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.4 Default-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.2.5 Complete-Strategie . . . . . . . . . . . . . . . . . . . . . . . . 99
5.2.6 Fallback-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3 Indikatoren der Strategieauswahl . . . . . . . . . . . . . . . . . . . . 101
5.3.1 Begriffsdefinition von Indikatoren . . . . . . . . . . . . . . . . 101
5.3.2 Bestimmung kontextsensitiver Indikatoren . . . . . . . . . . . 103

5.4 Strategieindex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.5 Geplantes Vorgehen und Methodik . . . . . . . . . . . . . . . . . . . 113

5.5.1 Design der Benutzerschnittstelle mit Eingabemaske . . . . . . 113
5.5.2 Textvorverarbeitung . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.3 Anforderungsextraktion . . . . . . . . . . . . . . . . . . . . . 116
5.5.4 Disambiguierung . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.5.5 Kompensation von Unvollständigkeit . . . . . . . . . . . . . . 124
5.5.6 Erkennung von Vagheit . . . . . . . . . . . . . . . . . . . . . . 126
5.5.7 Definition der Ausgabeformate . . . . . . . . . . . . . . . . . . 127
5.5.8 Analyse möglicher Verarbeitungsfehler . . . . . . . . . . . . . 131

5.6 Zwischenfazit und Ausblick . . . . . . . . . . . . . . . . . . . . . . . 133

III Implementierung und Evaluation 135

6 Ressourcen 137
6.1 Anforderungsbeschreibungskorpus . . . . . . . . . . . . . . . . . . . . 137

6.1.1 Datenbestand . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.1.2 Gegenüberstellung . . . . . . . . . . . . . . . . . . . . . . . . 139

6.2 Prädikat-Argument-Struktur-Korpus . . . . . . . . . . . . . . . . . . 142
6.2.1 Datenakquise und -vorverarbeitung . . . . . . . . . . . . . . . 142
6.2.2 Zusammensetzung . . . . . . . . . . . . . . . . . . . . . . . . 144
6.2.3 Umfang des PAS-Korpus . . . . . . . . . . . . . . . . . . . . . 146

6.3 Weitere Ressourcen . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



Inhaltsverzeichnis iii

7 Implementierung 149
7.1 Systemarchitektur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.2 Testumgebung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3 Programmiertechnische Umsetzung . . . . . . . . . . . . . . . . . . . 152

7.3.1 Präsentationsschicht . . . . . . . . . . . . . . . . . . . . . . . 153
7.3.2 Anwendungsschicht . . . . . . . . . . . . . . . . . . . . . . . . 155
7.3.3 Datenschicht . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

7.4 Anforderungen an die Systemqualität . . . . . . . . . . . . . . . . . . 170
7.4.1 Leistung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
7.4.2 Adaptierbarkeit . . . . . . . . . . . . . . . . . . . . . . . . . . 174
7.4.3 Wartbarkeit und Erweiterbarkeit . . . . . . . . . . . . . . . . 183

8 Evaluation 187
8.1 Evaluationskonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.2 Evaluation der Anwendbarkeit von Strategien . . . . . . . . . . . . . 187

8.2.1 Evaluationsprotokoll . . . . . . . . . . . . . . . . . . . . . . . 188
8.2.2 Evaluation der Strategieauswahl . . . . . . . . . . . . . . . . . 189
8.2.3 Evaluation der Indikatorzuverlässigkeit . . . . . . . . . . . . . 191
8.2.4 Evaluation möglicher Fehlertypen . . . . . . . . . . . . . . . . 194

8.3 Evaluation der Systemperformanz . . . . . . . . . . . . . . . . . . . . 204
8.3.1 Evaluationsprotokoll . . . . . . . . . . . . . . . . . . . . . . . 204
8.3.2 Laufzeitanalysen des Gesamtsystems . . . . . . . . . . . . . . 206
8.3.3 Laufzeitanalyse der Verarbeitungskomponenten . . . . . . . . 208
8.3.4 Entwicklung und Nutzen des WSD-Cachings . . . . . . . . . . 210
8.3.5 Laufzeitanalyse der Strategien . . . . . . . . . . . . . . . . . . 213

8.4 Evaluationsfazit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

IV Fazit und Ausblick 219

9 Zusammenfassung und Reflexion 221

10 Forschungsausblick 225
10.1 Vom Endanwender lernen . . . . . . . . . . . . . . . . . . . . . . . . 225
10.2 Extraktion und Erweiterung funktionaler Abläufe . . . . . . . . . . . 226

Literaturverzeichnis 229

V Anhang xvii

A Programmoberflächen xix

B Material zur Evaluation xxv

C Ergänzende Ausführungen xxvii





Abkürzungsverzeichnis

a Accuracy

ACE Automatic Content Extraction (Evaluation)

ADV Adverb

AIC Ambiguity Indicator Corpus

API Application Programming Interface

ASCII American Standard Code for Information Interchange

BART Beautiful Anaphora Resolution Toolkit

BLANC BiLateral Assessment of Noun-phrase Coreference

BNC British National Corpus

CAR Completeness Assistant for Requirements

CD Cardinal Number

CDC Conan Doyle Corpus

CEAF Constrained Entity Aligned F-measure

CoNLL Conference on Natural Language Learning

CORDULA Compensation of Req. Descriptions Using Linguistic Analysis

CSS Cascading Style Sheets

DELA Dictionnaires Electroniques du LADL

EL Entity Linking

FA Funktionale Anforderungen

FAQ Frequently Asked Questions

FN False negative

FP False positive

GUI Graphical User Interface

HOTCoref Higher Order Tree Coreference

v



vi Abkürzungsverzeichnis

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

HTML Hypertext Markup Language

IE Informationsextraktion

IMAP Internet Message Access Protocol

IR Information Retrieval

IT Informationstechnologie

IEEE Institute of Electrical and Electronics Engineers

JRE Java Runtime Environment

JSON JavaScript Object Notation

JSP JavaServer Pages

JWNL Java WordNet Library

ML Maschinelles Lernen

MUC Message Understanding Conference

NE Named Entities

NER Named Entity Recognition

NFA Nicht-funktionale Anforderungen

NLARE Natural Language Automatic Requirement Evaluator

NLTK Natural Language Toolkit

NLP Natural Language Processing

NL Natural Language

NN Nomen

NP Nominalphrase

NUC Next Unit of Computing

OCL Object Constraint Language

OTF On-The-Fly

p Precision

PAS Prädikat-Argument-Struktur



Abkürzungsverzeichnis vii

PDC Prague Dependency Treebank

PDF Portable Document Format

PGP Pretty Good Privacy

POS Part of Speech

PP Präpositionalphrase

PCFG Probabilistic Context-Free Grammars

QuARS Quality Analyzer for Requirement Specifications

r Recall

RAM Random-Access Memory

RASP Robust Accurate Statistical Parsing

RDF Resource Description Framework

RE Requirements Engineering

REaCT Requirements Extraction and Classification Tool

RegEx Regular Expressions

RESI Requirements Engineering Specification Improver

SBD Sentence Boundary Disambiguation

SBVR Semantic Business Vocabulary and Rules

SEI Software Engineering Institute

SPARQL SPARQL Protocol And RDF Query Language

SREE Systemized Requirements Engineering Environment

SRL Semantic Role Labeling

SRS Software Requirement Specification

SSL Service Specification Language

TLS Transport Layer Security

TN True negative

TP True positive

SVM Support Vector Machine

TüBa-D/Z Tübinger Baumbank des Deutschen / Zeitungskorpus



viii Abkürzungsverzeichnis

UGC User Generated Content

UML Unified Modeling Language

URL Uniform Resource Locator

V Verb

VP Verbalphrase

VPE Verbal Phrase Ellipsis

WSD Word Sense Disambiguation

WSI Word Sense Induction

WSJ Wall Street Journal

XML Extensible Markup Language

YAGO Yet Another Great Ontology



Abbildungsverzeichnis

1.1 Stakeholder map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2 Dokumentation vs. Spezifikation . . . . . . . . . . . . . . . . . . . . . 12
1.3 Dokumentationsmethoden und ihre Formalisierungsgrade . . . . . . . 13
1.4 Klassifikation der Dokumentationstechniken . . . . . . . . . . . . . . 14
1.5 Teilmengen natürlicher Sprache . . . . . . . . . . . . . . . . . . . . . 16
1.6 Syntaktisches Anforderungsmuster . . . . . . . . . . . . . . . . . . . . 18
1.7 Semi-formale Dokumentation mittels Klassendiagramm . . . . . . . . 21
1.8 Formale Spezifikation und Design . . . . . . . . . . . . . . . . . . . . 24

2.1 Requirements Iceberg . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Typologie von Anforderungsfehlern . . . . . . . . . . . . . . . . . . . 30
2.3 Der Begriff der Ungenauigkeit . . . . . . . . . . . . . . . . . . . . . . 31

3.1 NLP-Verarbeitungsschritte im Arbeitskontext . . . . . . . . . . . . . 41
3.2 BabelNet als semantisches Netz . . . . . . . . . . . . . . . . . . . . . 46
3.3 Ein beispielhafter Satz aus der TüBa-D/Z . . . . . . . . . . . . . . . 48
3.4 Zwischenverbindungen einzelner Annotationsebenen (OntoNotes) . . . 50
3.5 Disambiguierung und Entity Linking mittels Babelfy . . . . . . . . . 54
3.6 Gegenüberstellung verschiedenartiger Strukturbäume . . . . . . . . . 56
3.7 Completeness Assistant for Requirements . . . . . . . . . . . . . . . . 68
3.8 Natural Language Automatic Requirement Evaluator . . . . . . . . . . 70
3.9 Requirements Engineering Specification Improver . . . . . . . . . . . 71

4.1 Methodische Vorgehensweise in der Dissertation . . . . . . . . . . . . 77

5.1 Smartphone als Benutzerschnittstelle (Mockup) . . . . . . . . . . . . 87
5.2 Erweiterte Benutzerinteraktion (Mockup) . . . . . . . . . . . . . . . . 88
5.3 Logischer Aufbau von Strategien . . . . . . . . . . . . . . . . . . . . . 89
5.4 Selektion und Anwendung von Strategien auf Indikatorbasis . . . . . 90
5.5 Strategieeinbettung in den Verarbeitungskontext . . . . . . . . . . . . 91
5.6 Strategiekonfigurationen . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.7 Light-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.8 Basic-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.9 Ergebnis der syntaktischen Disambiguierung . . . . . . . . . . . . . . 95
5.10 Basic Plus-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.11 Default-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.12 Complete-Strategie . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.13 Einfluss semantischer Kategorien auf Indikatoren . . . . . . . . . . . 111
5.14 Informationsverarbeitung . . . . . . . . . . . . . . . . . . . . . . . . . 113

ix



x Abbildungsverzeichnis

5.15 Benutzerschnittstelle von CORDULA (Frontend) . . . . . . . . . . . 114
5.16 Ablauf des Preprocessings . . . . . . . . . . . . . . . . . . . . . . . . 116
5.17 Anforderungsidentifikation und -extraktion . . . . . . . . . . . . . . . 117
5.18 Template funktionaler Anforderungen . . . . . . . . . . . . . . . . . . 117
5.19 Funktionsweise der lexikalischen Disambiguierung . . . . . . . . . . . 118
5.20 Lexikalische Disambiguierung (Frontend) . . . . . . . . . . . . . . . . 119
5.21 Beispielhafter Dependenzbaum (Stanford CoreNLP) . . . . . . . . . . 120
5.22 Beispielhafter Parsebaum (Stanford CoreNLP) . . . . . . . . . . . . . 121
5.23 Fehlerhafter Parsebaum (Stanford CoreNLP) . . . . . . . . . . . . . . 121
5.24 Koordinationsambiguität im Dependenzbaum . . . . . . . . . . . . . 122
5.25 Parsebaum mit möglicher Satzvereinfachung . . . . . . . . . . . . . . 123
5.26 Auflösung von Koreferenzen . . . . . . . . . . . . . . . . . . . . . . . 123
5.27 Koreferenzketten und Kandidaten . . . . . . . . . . . . . . . . . . . . 124
5.28 Prädikatbasierte Kompensation . . . . . . . . . . . . . . . . . . . . . 125
5.29 Erkennung und Kompensation von Unvollständigkeit . . . . . . . . . 125
5.30 Erkennung von vagen Ausdrücken . . . . . . . . . . . . . . . . . . . . 127
5.31 Ergebnisausgabe (Frontend) . . . . . . . . . . . . . . . . . . . . . . . 128

6.1 Wortverteilung der semantischen Kategorie
”
Rolle“ je Korpus . . . . 140

6.2 Wortverteilung der semantischen Kategorie
”
Komponente“ je Korpus 140

7.1 Überblick über das Softwaresystem . . . . . . . . . . . . . . . . . . . 149
7.2 Serverseitige Systemperspektive . . . . . . . . . . . . . . . . . . . . . 150
7.3 Drei-Schichten-Architektur als Strukturierungsprinzip von Software . 152
7.4 Unterschiedliche Schichtenaufteilung von Fat und Thin Clients . . . . 153
7.5 Flache Systemnavigation als Grundlage niedriger Einstiegsbarrieren . 154
7.6 Datentragende Klassen (kompakte Darstellung) . . . . . . . . . . . . 156
7.7 Integration von Babelfy als Disambiguierungskomponente . . . . . . . 157
7.8 Integration von Stanford CoreNLP zur syntaktischen Disambiguierung158
7.9 Dependenz- und Konstituentenansicht . . . . . . . . . . . . . . . . . 159
7.10 Mittels Stanford CoreNLP erkannte Koreferenzen . . . . . . . . . . . 160
7.11 Komponenteninteraktion zur Kompensation von Unvollständigkeit . . 161
7.12 Preprocessing der Kontextinformationen in Apache Solr . . . . . . . . 163
7.13 Beispielhafte Ausgabe der Kompensationskomponente . . . . . . . . . 163
7.14 Vererbung von Struktur-/Verhaltensmerkmalen . . . . . . . . . . . . 166
7.15 Gegenüberstellung von Description-Objekten . . . . . . . . . . . . . . 169
7.16 Protokollarchiv der Verarbeitungszeiten und Ergebnisse . . . . . . . . 170
7.17 Programmablauf (GUI) . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.18 Fehlermeldung (GUI) . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
7.19 Softwaresystem mit responsivem Webdesign (GUI) . . . . . . . . . . 180
7.20 Möglichkeiten der Skalierbarkeit von Softwaresystemen . . . . . . . . 181

8.1 Auswahlhäufigkeit angewendeter Kompensationsstrategien . . . . . . 189
8.2 Aufteilung der Kompensationsstrategien nach Strategierevidierung . . 190
8.3 Indikatoren und ihre zugrundeliegenden Merkmalsquellen . . . . . . . 191
8.4 Fehler bei der tokenbasierten Indikatorbestimmung (WSD) . . . . . . 197
8.5 Fehlerhafte Kompensation: Argument wurde nicht zugeordnet . . . . 198



Abbildungsverzeichnis xi

8.6 Komponenten mit Einbezug der IE-Ergebnisse . . . . . . . . . . . . . 199
8.7 Fehlerhaftes Gesamtergebnis . . . . . . . . . . . . . . . . . . . . . . . 199
8.8 Fehlerhafte Ergebnisdarstellung in kontrollierter Sprache . . . . . . . 200
8.9 Fehlerhafte Kompensation: Argument nicht korrekt erkannt . . . . . . 201
8.10 Beispiel für eine fehlerhafte Koreferenzkette . . . . . . . . . . . . . . 202
8.11 Beispiel für fehlerhafte Satzvereinfachung und deren Folgefehler . . . 203
8.12 Beispiel für fehlerhafte Anforderungsklassifikation . . . . . . . . . . . 203
8.13 Generierung der Testdaten mittels Evaluator . . . . . . . . . . . . . . 206
8.14 Gesamtlaufzeit vordefinierter Strategien nach Beschreibungsumfang . 214

10.1 Gegenüberstellung generierter Funktionsabläufe . . . . . . . . . . . . 226
10.2 Gegenüberstellung generierter Funktionsabläufe . . . . . . . . . . . . 227

A.1 Erläuterungen zur Indikatoranwendung für Endanwender . . . . . . . xix
A.2 Erläuternde Darstellung der Korrektur mittels CoreNLP . . . . . . . xx
A.3 Ergebnis der lexikalischen Disambiguierung mittels Babelfy . . . . . . xx
A.4 Erläuternde Darstellung der POS-Korrektur mittels BabelNet . . . . xxi
A.5 Darstellung erkannter Koreferenzketten mittels CoreNLP . . . . . . . xxi
A.6 Ergebnis der Verarbeitung . . . . . . . . . . . . . . . . . . . . . . . . xxii
A.7 Verarbeitungs- und Kompensationsprotokoll . . . . . . . . . . . . . . xxii
A.8 Beispielsyntaxbaum des Stanford Parsers . . . . . . . . . . . . . . . .xxiii

B.1 Nach Geschwindigkeit klassifizierte Messtellen (RIPE NCC) . . . . . xxv
B.2 Messergebnisse nach Ländern (Auszug) . . . . . . . . . . . . . . . . . xxv
B.3 Ressourcenverteilung lex. Disambiguierungsanfragen . . . . . . . . . .xxvi





Tabellenverzeichnis

1.1 Diagrammtypen der UML 2 . . . . . . . . . . . . . . . . . . . . . . . 20
1.2 Vor- und Nachteile von Dokumentationstechniken . . . . . . . . . . . 25
1.3 Chancen und Risiken einzelner Dokumentationstechniken (Benutzersicht) 27

3.1 WordNet 3.0 Statistik (Verteilung der Einträge) . . . . . . . . . . . . 46
3.2 BabelNet 3.6 (Statistik) . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Annotierte Korpora zur Koreferenzauflösung (Auswahl) . . . . . . . . 49
3.4 Maße semantischer Nähe und deren Nutzung bei der Disambiguierung 53
3.5 Überblick über aktuelle Dependenzparser . . . . . . . . . . . . . . . . 57
3.6 Ansätze zur automatischen Koreferenzauflösung . . . . . . . . . . . . 61
3.7 Ansätze zur Koreferenzauflösung (F1-Maß) . . . . . . . . . . . . . . . 63
3.8 Kombinierte Kompensationsverfahren . . . . . . . . . . . . . . . . . . 69

5.1 Beispielhafte Ergebnisausgabe der IE (Light-Strategie) . . . . . . . . 93
5.2 Beispielhafte Ausgabe der IE, ergänzt um Disambiguierung . . . . . . 97
5.3 Ausgabe der IE mit fehlerhafter Aktionsangabe (Basic Plus) . . . . . 97
5.4 Potentielle Lesarten verbleibender Disambiguierungskandidaten . . . 104
5.5 Die häufigsten 15 Präpositionen der englischen Sprache . . . . . . . . 106
5.6 Die häufigsten 15 Pronomina der englischen Sprache . . . . . . . . . . 107
5.7 Gruppen semantischer Kategorien zum Ähnlichkeitsabgleich . . . . . 109
5.8 Initialer Strategieindex . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.1 Zusammensetzung des Datenbestands und Merkmalsgegenüberstellung139
6.2 Die 10 häufigsten Begriffe in den Korpora . . . . . . . . . . . . . . . 139
6.3 Anzahl annotierter Hauptinformationen nach Kategorie . . . . . . . . 141
6.4 Zusammensetzung der Stichprobe . . . . . . . . . . . . . . . . . . . . 145
6.5 Merkmale und ihre Ausprägungen in der Stichprobe . . . . . . . . . . 145
6.6 Merkmale und ihre Ausprägungen im PAS-Korpus . . . . . . . . . . . 146
6.7 Auszug aus dem WSD-Cache . . . . . . . . . . . . . . . . . . . . . . 148

7.1 Testumgebung (Server) . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7.2 Testumgebungen (Clients) . . . . . . . . . . . . . . . . . . . . . . . . 151
7.3 Durch Babelfy erweitertes Token-Objekt zu

”
application“ . . . . . . . 157

7.4 Attribute der Complete-Strategie . . . . . . . . . . . . . . . . . . . . 167
7.5 Performanz ausgewählter Verarbeitungskomponenten . . . . . . . . . 171
7.6 Domänenspezifische Portabilität einzelner Systemkomponenten . . . . 176
7.7 Unterstützte Verarbeitungssprachen einzelner Komponenten . . . . . 178
7.8 Geschätzter Portierungsaufwand neuer Verarbeitungssprachen . . . . 179
7.9 Nachhaltigkeit einzelner Komponenten nach Methoden . . . . . . . . 183

xiii



xiv Tabellenverzeichnis

7.10 Übersicht einzelner Systembestandteile . . . . . . . . . . . . . . . . . 185

8.1 Indikatorkombinationen und deren Häufigkeiten (Auszug) . . . . . . . 190
8.2 Häufigkeit der Ergebniskombinationen . . . . . . . . . . . . . . . . . 192
8.3 Ergebnisse der Indikatorevaluation . . . . . . . . . . . . . . . . . . . 193
8.4 Durchschnittliche Ausführungszeiten des Softwaresystems unter Last . 207
8.5 Durchschnittliche Ausführungszeiten . . . . . . . . . . . . . . . . . . 207
8.6 Durchschnittliche Laufzeiten der Komponenten . . . . . . . . . . . . 209
8.7 Stichproben zur Laufzeitevaluation der lex. Disambiguierung . . . . . 211
8.8 Durchschnittliche Abrufzeit vordefinierter Token über 10 Tage . . . . 212

C.1 Vergleich von Satzendeerkennungstools auf verschiedenen Korpora . .xxix



Formelverzeichnis

8.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
8.2 Recall . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.3 Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
8.4 Fβ-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.5 F1-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
8.6 F2-Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xv





Motivation, Herausforderungen und Ziele
Im Projektmanagement besteht eine der zentralen Herausforderungen darin, dass
Auftraggeber1 und Auftragnehmer ein gemeinsames Verständnis für die Bestandteile
des Projektauftrages entwickeln. Herausfordernd ist dabei insbesondere, dass Auf-
traggeber die Anforderungen überwiegend aus ihrer Perspektive beschreiben und
damit einen hohen Freiheitsgrad in der Projektumsetzung zulassen. Darüber hinaus
sind die Anforderungen natürlichsprachlich formuliert und daher oftmals mehrdeutig
(auch: ambig) sowie in Teilen unvollständig. Dieser Herausforderung wird im Pro-
jektmanagement durch einen wechselseitigen Konsolidierungsprozess begegnet, in
dem Rückfragen möglich sind und die Parteien sich auf ein gemeinsames Verständnis
der Anforderungen einigen. Übertragen auf Softwareprojekte bedeutet das, dass
Stakeholder (z. B. Endanwender) und Softwareentwickler sich hinsichtlich der An-
forderungen an ein geplantes Softwareprodukt einig werden und damit gemeinsam
die Gefahr einer nicht-deterministischen Entwicklung reduzieren. Dieser Konsolidie-
rungsprozess wird dabei auch als Übersetzungsschritt zwischen der Anwender- und
der Entwicklerperspektive bezeichnet und zielt insbesondere auf das Ausräumen von
Ungewissheiten auf Seite der Entwickler ab. Er gilt allerdings auch als langwierig
für Stakeholder, die sich Rückfragen gegenübersehen, von denen sie, zum Beispiel als
resultatorientierte Endanwender, im Arbeitsalltag nicht direkt betroffen sind und
deren Beantwortung sie leicht überfordern kann. Schlussendlich ist es aber aufgrund
der direkten Kommunikation zwischen den Parteien ein zielführendes Vorgehen, das
den Projekterfolg bereits in einem frühen Stadium sichern kann.
Es ist jedoch einschränkend zu sagen, dass ein solcher bidirektionaler Konsolidie-

rungsprozess in der Softwareentwicklung nicht immer vorgesehen ist. So beispielswei-
se beim On-The-Fly Computing (auch:OTF-Computing), bei dem der individuelle
Softwarebedarf von Endanwendern durch die automatische Komposition einzelner
Softwareservices gedeckt wird. Die klassische Entwicklerrolle fällt somit faktisch weg,
während die Notwendigkeit eines Konsolidierungsprozesses weiterhin besteht.

Im OTF-Computing werden Einzelservices von Softwareherstellern entwickelt und
auf Servicemärkten bereitgestellt. Ziel ist es, geeignete (d. h. bedarfsgerechte und
kompatible) Servicekompositionen für gegebene Softwareanforderungen zu generieren
und diese den Endanwendern zur Verfügung zu stellen. Im Fokus dieser Arbeit stehen
dabei natürlichsprachliche Softwareanforderungen, die von Endanwendern formuliert
und an OTF-Anbieter als Anforderungsbeschreibung übergeben werden.
Hier setzt diese Arbeit an, indem sie sich mit Ungenauigkeiten frei formulierter An-

forderungsbeschreibungen beim Softwareentwurf auseinandersetzt. Hierfür wird mit
CORDULA (Compensation of Requirements Descriptions Using Linguistic Analysis)
ein System entwickelt, dass sprachliche Unzulänglichkeiten in den Formulierungen
unerfahrener Endanwender erkennt und ohne Rückfragen optimiert. Es ist dabei nicht
das Ziel, aus Nutzereingaben direkt vollständige Softwarespezifikation abzuleiten,
wie sie Programmierer erwarten würden. Vielmehr wird die Suche nach geeigne-
ten Softwareservices zur Komposition unterstützt, indem CORDULA individuelle
Anforderungsbeschreibungen in ihre kanonischen Kernfunktionalitäten überführt.

1Aus Gründen der Lesbarkeit wird auf eine geschlechtsspezifische Differenzierung verzichtet.
Entsprechende Begriffe gelten im Sinne der Gleichbehandlung für beide Geschlechter.

1



2 Motivation, Herausforderungen und Ziele

Servicemarkt

Komposition

Service 3

Endanwender

Anforderungen

Software

Service 2

...
Service 1

Softwareservices

+

Vision des OTF-Computings. In Anlehnung an Jungmann (2016, S. 20)

Diese Anbieter verarbeiten die Anforderungsbeschreibung und antworten mit einer
Komposition von Softwareservices. Zwar existieren auch semi-formale und formale
Möglichkeiten der Anforderungsspezifikation, diese stehen Endanwendern aber nicht
zur Verfügung, da ihnen die Fachkenntnis fehlt um sie zu benutzen und sie demnach
an der Teilname gehindert würden. Im Vergleich zu (semi-)formalen Ansätzen sind
Ambiguitäten und Unvollständigkeit fester Bestandteil der natürlichen Sprache – sie
dienen der Sprachökonomie, begünstigen aber Missverständnisse. So auch in der
maschinellen Verarbeitung von Anforderungsbeschreibungen im OTF-Computing :
Ambiguitäten und Unvollständigkeit sind in der Vision einer automatisierten, hoch-
performanten Komposition hinderlich, da sie Ungewissheit erzeugen und damit den
Gesamtprozess verlangsamen, wenn nicht sogar schädigen. Mangels klassischem
Konsolidierungsprozess sind integrierte Vorgehensweisen erforderlich, die sich der
Kompensation dieser Ungewissheiten im OTF-Computing widmen.

Herausforderungen

Die von Endanwendern übermittelten Anforderungsbeschreibungen sind hinsichtlich
Informationsgehalt und -güte zu beurteilen. Zum einen ist bezüglich des Informati-
onsgehalts zu erwarten, dass (aus der Entwicklungsperspektive) notwendige Angaben
fehlen während nebensächliche Angaben vorliegen, welche es aber im Sinne einer
performanten Servicekomposition frühzeitig zu erkennen und zu filtern gilt:

Beispiel (Anforderungsbeschreibung)

”
Since I want to listen to music on the go, I need a software which can be only play
mp3 files on Android but the user not allow to copy or send with bluetooth“2

Zum anderen müssen vorhandene, notwendige Angaben wiederum hinsichtlich der
Informationsgüte bewertet werden, wobei der Fokus in dieser Arbeit auf ambigen
(
”
send“ hat acht Lesarten3) und unvollständigen Angaben (Was soll wohin nicht

2In Anlehnung an http://qr.ae/TbZ3yi (Stand: 19.05.2017).
3Siehe weiterführend: http://wordnetweb.princeton.edu/perl/webwn?s=send (Stand: 19.05.2017).



Motivation, Herausforderungen und Ziele 3

kopiert werden?) und deren Erkennung und Kompensation liegt. Bestehende Ansätze
zur Prävention, Erkennung und Kompensation konzentrieren sich dabei zumeist auf
einzelne Ausprägungen von Ambiguitäten bzw. Unvollständigkeit und sind oftmals
nicht als softwaregestützte Verfahren konzipiert, sondern existieren als Lesetechniken,
Checklisten oder Review -Prozesse. Softwaregestützte Verfahren setzten vielfach Ein-
schränkungen voraus, die den Umfang der natürlichen Sprache, beispielsweise den
Wortschatz, begrenzen oder zusätzliche Ressourcen, wie Korpora oder strukturierte
Anforderungsdokumente, benötigen, die jedoch nicht existieren. Für das Anwen-
dungsszenario des OTF-Computings sind diese bestehenden Ansätze ungeeignet, da
sie nicht ohne Benutzerinteraktion anzuwenden und nicht für die Anbindung an
Drittsysteme vorgesehen sind sowie oftmals nicht ohne weitere Einschränkungen auf
natürlicher Sprache arbeiten können. Auch erforderliche Zusatzinformationen wie
Klassendiagramme und umfangreiche domänenspezifische Korpora sind im OTF-
Szenario seitens der Endanwender nicht zu erwarten. Darüber hinaus ist die Per-
formanz bisheriger Ansätze zu hinterfragen, da keine der Methoden prüft, ob die
eigene Anwendung überhaupt notwendig ist. So könnte die Anwendung der Unvoll-
ständigkeitskompensation beispielsweise übersprungen werden, wenn keine Hinweise
auf Unvollständigkeit vorliegen. Darüber hinaus fehlt bisher eine Interaktion zwischen
den Erkennungs- und Kompensationsansätzen sowohl hinsichtlich Synergien als auch
schädlicher Auswirkungen der eigenen Aktivität auf die Anforderungsbeschreibung:
Hier fehlt es an definierten prozeduralen Abläufen, welche die Notwendigkeit der
Methodenausführung erkennen und diese so flexibel steuern, dass Informationen
untereinander geteilt werden können.

Zielsetzung

Ziel ist die automatische Erkennung und Kompensation von Ambiguität und Un-
vollständigkeit in natürlichsprachlichen Anforderungsbeschreibungen. Dies geschieht
unter Berücksichtigung der Anforderungen des OTF-Computings bezüglich hoher
Performanz, Flexibilität und niedriger Benutzerinteraktion. Diesbezüglich ist die Iden-
tifikation geeigneter Verfahren zur Erkennung und Kompensation lexikalischer, syntak-
tischer und referentieller Ambiguität sowie Unvollständigkeit in natürlichsprachlichen
Anforderungsbeschreibungen ein vorgelagerter Schritt (s. Kapitel 3). Auf diesen Schritt
folgt die Entwicklung von Strategien zur bedarfsgerechten und performanten Steue-
rung der geeigneten Erkennungs- und Kompensationsverfahren (s.Abschnitt 5.2).
Diese Strategien ermöglichen es, einzelne Verfahren bzw. deren Ausführung zu
überwachen, Ergebnisse abzugleichen und Synergieeffekte zu nutzen. Hierzu ist, im
Sinne einer hohen Performanz, die Entwicklung von kontextsensitiven Indikatoren zur
Ermittlung des Kompensationsbedarfs erforderlich, die einzelne Strategien aktivieren
können (s. Abschnitt 5.3). Die Besonderheit bei der Indikatorenentwicklung ist, dass
diese nicht auf die Ergebnisse der nachgelagerten Erkennungs- und Kompensations-
verfahren zurückgreifen können und daher überwiegend Textmerkmale heranziehen,
die ebenfalls erst im Rahmen dieser Arbeit zu identifizieren und zu systematisie-
ren sind. Dies wiederum setzt domänenspezifische Ressourcen voraus, die in Teilen
noch nicht existieren und daher erstellt (z. B. PAS-Korpus) bzw. zusammengetragen
(z. B.Anforderungsbeschreibungskorpus) werden müssen (s.Kapitel 6).



4 Motivation, Herausforderungen und Ziele

Die Anwendbarkeit der Verfahren, Indikatoren und Strategien gilt es darüber hinaus
anhand eines Prototyps zu evaluieren, wobei dies die Konzeption (s.Kapitel 5) und
Implementierung (s.Kapitel 7) eines strategiebasierten Anforderungskompensations-
systems (CORDULA) zur Aufnahme, Verarbeitung, Kompensation und Struktu-
rierung unstrukturierter Anforderungsbeschreibungen voraussetzt. Im Folgenden
werden diesbezüglich zunächst bestehende Definitionen und Ansätze diskutiert, um
die eigene Arbeit in den Kontext der existierenden Forschung einzubetten (s. Teil I).



Teil I

Grundlagen und
Stand der Forschung

5





Anforderungserhebung
und Dokumentation 1

In diesem Kapitel werden grundlegende Begrifflichkeiten wie Stakeholder
(s. Abschnitt 1.1) sowie

”
Anforderung“ erläutert (s. Abschnitt 1.2), wobei insbe-

sondere eine Unterteilung in funktionale und nicht-funktionale Anforderungen
vorzunehmen ist. Darauf folgt in Abschnitt 1.3 die Betrachtung von Methoden und
Techniken der Anforderungsdokumentation. Abschließend wird in Abschnitt 1.4 der
Begriff der

”
Anforderungsbeschreibung“ definiert, welcher für den weiteren Verlauf

der Arbeit als Sonderform der Anforderungsdokumentation von Bedeutung ist.

1.1 Anforderungsquellen

Im betriebswirtschaftlichen Kontext werden alle
”
internen und externen Personen-

gruppen, die von den unternehmerischen Tätigkeiten gegenwärtig oder in Zukunft
direkt oder indirekt betroffen sind“ (Springer Gabler, 2015) als Stakeholder bezeichnet.
Dieses Begriffsverständnis lässt sich auch auf Softwareentwicklungsprojekte anwenden,
da hier ebenfalls die direkten sowie indirekten Interessen und Bedürfnisse mehrerer
natürlicher und juristischer Personen(-gruppen) zu berücksichtigen sind4 (Balzert,
2009; Fahney et al., 2012). Somit sind Stakeholder wichtige Informationsquellen für
Anforderungen (sog. Anforderungsquellen) und definieren die Rahmenbedingungen
eines zu entwickelnden Systems (Pohl und Rupp, 2015, S. 21 ff.).
Die Interessen und damit auch die Anforderungen der jeweiligen Stakeholder sind

untereinander nicht immer zu vereinbaren (Pohl und Rupp, 2015, S. 22). Grechenig
(2010) weist daher darauf hin, dass es wichtig ist, Anforderungen zu priorisieren und
einzelne Stakeholder in Leitungspositionen mit einem Mandat zur Konfliktlösung zu
versehen. Dieser Aspekt des Rangs wird auch von Schwinn (2011, S. 170) aufgegriffen,
der die Rolle eines

”
Chef-Planers“ empfiehlt, welcher im Wesentlichen inhaltliche

und formelle Gesamtverantwortung5 für ein IT-Projekt übernimmt.
Darüber hinaus können sich Anforderungen verändern, wegfallen oder hinzukom-

men. Ebenso werden Stakeholder unter Umständen im Projektverlauf ausscheiden
bzw. erst später identifiziert werden. Das Übersehen von Stakeholdern hat hierbei

”
häufig zur Konsequenz, dass Anforderungen an das System lückenhaft sind“ (Pohl
und Rupp, 2015, S. 22) oder sogar gänzlich fehlen.

4Eine ähnliche Auffassung findet sich im Systems Engineering (Haberfellner et al., 1994, S. 186 f.).
5Das bedeutet nach Tiemeyer (2013, S. 246 f.) unter anderem, Verantwortung für das Erreichen der
formulierten Projektziele und das Einhalten definierter Zeit- und Kostenrahmen zu übernehmen.
Darüber hinaus gilt es, den effizienten Einsatz der Projektressourcen sowie die Einhaltung der
gesetzten Qualitätsanforderungen zu überwachen.

7



8 1 Anforderungserhebung und Dokumentation

Weiterhin ist zu beachten, dass jede Stakeholder -Gruppe eine eigene Sicht auf Funktio-
nen hat (Grechenig, 2010, S. 143 f.). Diese Sichtweise geht einher mit unterschiedlichen
Rollen, die innerhalb eines Softwareentwicklungsprojekts von Stakeholdern einge-
nommen werden (Robertson und Robertson, 2012, S. 44 ff.). Ebenso wird dieses
Rollenverständnis in der Begriffsdefinition von Pohl (2007, S. 65) bzw. Robertson
und Robertson (2006) deutlich, an der sich diese Arbeit orientiert:

Definition 1.1.1 (Stakeholder)
Ein Stakeholder ist eine Person oder eine Organisation, die ein potenzielles Interesse
an dem zukünftigen System hat und somit auch Anforderungen an das System stellt.
Eine Person kann dabei die Interessen von mehreren Personen oder Organisatio-
nen vertreten und somit gleichzeitig mehrere Rollen einnehmen (z. B.Kunde und
Endanwender).

Die verschiedenen Stakeholder und deren Wirkungsbereiche sind in Abbildung 1.1
dargestellt. Eine der bekannteren Rollen ist beispielsweise die des Endanwenders
(engl. user), der mit der Software arbeiten wird und an ihrer benutzerfreundlichen
Bedienung interessiert ist. Weniger offensichtlich ist die Rolle des betriebsinternen
Datenschutzbeauftragten, dessen Fokus auf der rechtskonformen Datenspeicherung
und -verarbeitung liegt (Robertson und Robertson, 2012, S. 44 ff.).

The operational work area
(sociotechnical)

The containing business
(sociotechnical)

The wider environment
(sociotechnical)

Political
beneficiary

User

Functional
beneficiary

Regulator

Financial
beneficiary

Sponsor

Internal
consultant

Operational
support

Maintenance
operator

Owner

Negative
stakeholder

External
consultant

Customer

Core Team Member

The intended product
(technical)

Abbildung 1.1: Stakeholder map.
In Anlehnung an Robertson und Robertson (2012, S. 45)

Im Zentrum von Abbildung 1.1 steht das Softwareprodukt, wobei die gewölbte
Umrandung verdeutlicht, dass sich die Form eines Produkts im Laufe des Projektzeit-
raums ändern kann bzw. zum Zeitpunkt der Projektinitiierung nicht abschließend zu
definieren ist. Um das Produkt herum befinden sich drei Wirkungsbereiche, wovon
der erste Bereich (

”
The operational work area“) alle Stakeholder enthält, die direkt

mit dem Produkt agieren. Der zweite Bereich (
”
The containing business“) enthält

Gruppen, die von dem Produkt in einer beliebigen Art profitieren und der dritte
Bereich (

”
The wider environment“) vereinigt Stakeholder, die darüber hinaus Einfluss

auf oder Interesse an dem Produkt haben (Robertson und Robertson, 2012, S. 45).



1.2 Anforderungen an Softwaresysteme 9

Die Tatsache, dass Stakeholder mehrere Rollen innehaben können6, wird in Ab-
bildung 1.1 deutlich: So werden Kunden (engl. customer) nach Fertigstellung der
Software zu Eigentümern (engl. owner) und darüber hinaus, sofern die Software
zur eigenen Benutzung angeschafft wird, auch zum Endanwender. Grechenig (2010,
S. 143) weist in diesem Zusammenhang darauf hin, dass viele Stakeholder nicht
zwangsläufig Techniker sind und somit weder den

”
typischen Techniker-lingo und

technische Systembeschreibungen“ (Grechenig, 2010, S. 143) verstehen, noch ihre
Anforderungen in dieser Form verschriftlichen können – im Gegensatz zum

”
Core

Team“ aus Abbildung 1.1, welches an den Entwicklungsarbeiten des Produkts betei-
ligt ist und deshalb dieselbe Fachsprache spricht. Aus diesem Grund werden oftmals
für die unterschiedlichen Stakeholder spezielle Anforderungsdokumentations- und
Erhebungstechniken genutzt (Grechenig, 2010, S. 143).
In dieser Arbeit wird, der Terminologie des Sonderforschungsbereichs 901 folgend,

der Begriff
”
Endanwender“ wie folgt verwendet:

Definition 1.1.2 (Endanwender)
Endanwender sind Stakeholder, die ein Anwendungsinteresse an Softwareprojekten
haben. Sie haben eine vage Vorstellung ihrer individuellen Softwareanforderungen,
können diese aber aufgrund fehlender Erfahrung und ohne Expertenhilfe nicht formal
dokumentieren.

Die Endanwender werden besonders hervorgehoben, da sie den Ausgangspunkt der
informalen Anforderungsdokumentation darstellen und damit auch im Fokus dieser
Arbeit stehen. Im weiteren Verlauf wird sowohl der Begriff der Stakeholder im Allge-
meinen, als auch der des Endanwenders im Speziellen genutzt – Letzterer insbesondere
im Zusammenhang mit den in Abschnitt 1.4 erläuterten Anforderungsbeschreibungen.

1.2 Anforderungen an Softwaresysteme

Für den Begriff der
”
Anforderung“ (engl. requirement) existieren im Informatikkontext

mehrere Definitionsansätze (z. B. Rupp, 2014; Sommerville, 2011; Balzert, 2009; Pohl,
2007). Nach Balzert (2009, S. 455) legen Anforderungen fest,

”
was man von einem

Softwaresystem als Eigenschaften erwartet“. Unter
”
man“ sind dabei alle Stakeholder

zu verstehen.
Als

”
Eigenschaften“ identifiziert Balzert (2009) neben den primären funktionalen

und nicht-funktionalen Anforderungen die Visionen und Ziele, die am Anfang einer
Produktspezifikation stehen und welche die Rahmenbedingungen für das System und
die Entwicklung definieren. Laut IEEE (1991) ist eine Anforderung7:

1.
”
Eine Eigenschaft oder Fähigkeit, die von einem Benutzer (Person oder System)
zur Lösung eines Problems oder zur Erreichung eines Ziels benötigt wird.

6Eine ähnliche Auffassung wird auch im Systems Engineering vertreten (Haberfellner et al., 1994,
S. 186 f., 311; Gausemeier et al., 2013, S. 29).

7Übersetzung entnommen aus Rupp (2014, S. 13 f.).



10 1 Anforderungserhebung und Dokumentation

2. Eine Eigenschaft oder Fähigkeit, die ein System oder Teilsystem erfüllen oder
besitzen muss, um einen Vertrag, eine Norm, eine Spezifikation oder andere,
formell vorgegebene Dokumente zu erfüllen.

3. Eine dokumentierte Repräsentation einer Eigenschaft oder Fähigkeit gemäß (1)
oder (2)“.

Diese Definition ergänzt die allgemeine Auffassung einer Anforderung von Bal-
zert (2009) um einen wesentlichen Aspekt: Die

”
dokumentierte Repräsentation“

(s.Abschnitt 1.3). Eine isolierte dokumentierte Anforderung – das
”
erreichte in-

haltliche Verständnis über eine Anforderung“ (Pohl, 2007, S. 47) – wird auch als
Anforderungsartefakt bezeichnet und zusammen mit anderen derartigen Artefakten
in Anforderungsdokumenten verwaltet (Pohl, 2007, S. 14).

1.2.1 Funktionale Anforderungen

Funktionale Anforderungen (FA) ergeben sich aus dem gewünschten Softwarenutzen
der jeweiligen Stakeholder. Demnach ist eine funktionale Anforderung das, was eine
Software im individuellen (Geschäfts-)Kontext nützlich macht (Rupp, 2014) bzw.
können muss (Schneider, 1998, S. 33) und somit auch das, was eine Software in der
Lage sein muss, an Funktionalität zu erbringen (Sommerville, 2011; Balzert, 2009;
Schienmann, 2002; IEEE, 1991).

Beispiel 1.2.1 (Funktionale Anforderung)

(a)
”
Alle Druckaufträge an das System werden vom Benutzer getätigt.“

(b)
”
Der Benutzer kann Druckaufträge erstellen und konfigurieren.“

(c)
”
Wird die

’
Drucken‘-Option gewählt, öffnet das System den

’
Drucken‘-Dialog

und fordert den Benutzer zur Eingabe der Seitenzahlen auf.“

Das Beispiel 1.2.1 zeigt drei frei formulierte FA, die sich hinsichtlich des Abstrakti-
onsgrades unterscheiden. Bray (2002, S. 15 ff.) weist darauf hin, dass Anforderungen
auf verschiedenen Abstraktionsebenen ausgedrückt werden können, die Wahl der
Ebene aber dem Verfasser obliegt. Eine Endanwenderanforderung kann zum Beispiel
sehr allgemein gehalten sein (Pohl, 2007, S. 15).

1.2.2 Nicht-funktionale Anforderungen

Anforderungen, die keine FA darstellen, werden in der Fachliteratur unterschiedlich
behandelt: Traditionell ist der Begriff

”
nicht-funktionale Anforderungen“ (NFA) in

der Literatur etabliert (Rupp, 2014; Sommerville, 2011; Balzert, 2009; Pohl, 2007).
Vereinfacht ausgedrückt sind NFA damit alle Anforderungen, die nicht funktional
sind (Rupp, 2014). So zählt IEEE (1991) beispielsweise

”
design requirement, inter-

face requirement“ und
”
performance requirement“ als kontrastierende Begriffe zu

funktionalen Anforderungen auf und macht sie damit zum Bestandteil der NFA.
Allerdings widersprechen beispielsweise Balzert (2009) und Sommerville (2011) dieser



1.3 Anforderungsdokumentation 11

strikten Definition, indem sie anführen, dass NFA auch die FA betreffen können
(beispielsweise Zuverlässigkeit, Sicherheit oder Internationalisierung). Denn oftmals
beziehen sich NFA auf das System als Ganzes (vgl. Beispiel 1.2.2).

Beispiel 1.2.2 (NFA)
”
Das System muss sicher und schnell sein.“

Pohl (2007) sieht ebenfalls in NFA Eigenschaften, die das Gesamtsystem betreffen
und widerspricht dennoch diesem Begriffsverständnis entschieden, indem er anführt,

”
dass es sich bei vielen [...][NFA] um unterspezifizierte Anforderungen handelt“8

(Pohl, 2007, S. 16). Demnach ist die Klasse der NFA in zwei Unterklassen aufzuteilen
(Pohl, 2007, S. 16):

1. Unterspezifizierte funktionale Anforderungen
Durch Spezifizierung lässt sich dieser Anforderungstyp in FA überführen.

2. Qualitätsanforderungen
Dieser Anforderungstyp bezieht sich auf qualitative Eigenschaften, die so-
wohl das Gesamtsystem, als auch einzelne Funktionen und Funktionsgruppen
betreffen können. Sie können in der Regel nicht durch FA spezifiziert werden.

Im weiteren Verlauf der Arbeit wird bei Qualitätsanforderungen dem Begriffs-
verständnis von Pohl (2007) gefolgt.

1.2.3 Rahmenbedingungen

Neben der inhaltlichen Betrachtung von Anforderungen ist beispielsweise die Per-
spektive der

”
Veränderbarkeit“ zu berücksichtigen: So können organisatorische oder

technologische Anforderungen (z. B. seitens des Gesetzgebers) existieren, die als Rah-
menbedingungen (engl. constraints) zu berücksichtigen sind, Einfluss auf die Funk-
tionen nehmen und dennoch nicht verändert werden können (Rupp, 2014; Balzert,
2009). Diesbezüglich kann nach Pohl (2007) generell zwischen Rahmenbedingungen,
die das zu entwickelnde System betreffen und jenen, die den Entwicklungsprozess
tangieren, unterschieden werden (vgl. Beispiel 1.2.3).

Beispiel 1.2.3 (Rahmenbedingung)

”
Die Entwicklung des Gesamtsystems darf einen maximalen Personalaufwand von
24 Monaten nicht überschreiten.“

1.3 Anforderungsdokumentation

Unter dem Begriff
”
Anforderungsdokumentation“ wird ein Dokument verstanden,

das als Teil der Vertragsgrundlage eines Softwareprojekts existiert und die Ergebnisse
der Anforderungsanalyse – unabhängig von den genutzten Methoden – kumuliert
(Grechenig, 2010, S. 175 ff.). Eine Anforderungsdokumentation stellt somit eine Zu-
sammenfassung aller identifizierten Anforderungen dar. In der Literatur existiert

8Der Begriff der Ungenauigkeit wird in Kapitel 2 definiert.



12 1 Anforderungserhebung und Dokumentation

keine einheitliche Begriffsverwendung, sodass auch
”
Spezifikation“,

”
Anforderungsana-

lysedokument“,
”
Software-Requirements-Specification (SRS)“ und

”
Lastenheft/Pflich-

tenheft“ sowohl in verschiedenen Kontexten als auch synonym verwendet werden
(Baumgartner et al., 2013; Grande, 2011; Grechenig, 2010). Im Rahmen dieser Arbeit
wird deshalb die Anforderungsdokumentation in Anlehnung an Pohl (2007, S. 43,
229 ff.) sowie Grechenig (2010, S. 175) wie folgt definiert:

Definition 1.3.1 (Anforderungsdokumentation)
Als Anforderungsdokumentation wird die Tätigkeit bezeichnet, informal vorliegende
Informationen (z. B. Interviewprotokolle, Notizen, Skizzen) mittels (vordefinierter)
Dokumentationstechniken festzuhalten (z. B. schriftlich). Die Art und Weise der
Übertragung, die Methode sowie die Qualitätskriterien ergeben sich aus vorgegebenen
Dokumentationsvorschriften, die wiederum aus Normen ableitbar sind oder von
leitenden Stakeholdern initial formuliert werden.

Der primäre Nutzen der Anforderungsdokumentation ist die systematische, struk-
turierte Verwaltung von Anforderungen, die aus verschiedenen Quellen und in un-
terschiedlicher Qualität gewonnen wurden. Sie werden somit strukturell und in-
haltlich aufgewertet und stehen als Informations- und Wissensbasis aber auch als
Konstruktions-, Verhandlungs- und Vertragsgrundlage zur Verfügung. Auch dann,
wenn einzelne Stakeholder gegebenenfalls nicht mehr greifbar sind.

Spezifizierte 
Anforderungen

Dokumentierte
Anforderungen

Dokumentierte 
Informationen

Abbildung 1.2: Dokumentation vs. Spezifikation. Laut Pohl (2007, S. 220)

Wie Abbildung 1.2 zeigt, stellen dokumentierte Informationen die Ausgangslage dar.
Sie wurden beispielsweise während Interviews mit Stakeholdern verschriftlicht.

Definition 1.3.2 (Dokumentierte Anforderung)
Dokumentierte Informationen, die den Dokumentationsvorschriften entsprechen,
stellen dokumentierte Anforderungen dar. Die Dokumentationsvorschriften ergeben
sich wiederum aus Normen oder werden von leitenden Stakeholdern initial formuliert.

Analog verhält es sich mit dokumentierten und spezifizierten Anforderungen. Anforde-
rungsdokumentationen sind demnach abzugrenzen von Anforderungsspezifikationen,
die sich aus Anforderungsdokumenten ergeben, wenn sie den vorgegebenen Spezifika-
tionsvorschriften entsprechen (Pohl, 2007, S. 44).

Definition 1.3.3 (Spezifizierte Anforderung)
Dokumentierte Anforderungen, die den Spezifikationsvorschriften entsprechen, stellen
spezifizierte Anforderungen dar. Die Spezifikationsvorschriften ergeben sich wiederum
aus Normen oder werden initial von leitenden Stakeholdern formuliert.



1.3 Anforderungsdokumentation 13

Zur Dokumentation bzw. Spezifikation von Anforderungen stehen Methoden zur
Verfügung, die sich unter anderem im Formalisierungsgrad stark unterscheiden
(Wiegers, 2005, S. 153). So können sowohl informale Methoden, wie die natürliche
Sprache, als auch semi-formale und formale Verfahren eingesetzt werden (Tiemeyer,
2013, S. 327 f.). Eine strikte Trennung zwischen den Ansätzen existiert nicht, sodass
in Anforderungsdokumentationen oftmals mindestens zwei Varianten zur Anwendung
kommen (Laplante, 2013, S. 83).

Produkt

Zeit

Formalitäts-
grad

Informale
Spezifikation

Formale
Spezifikation

Semi-formale
Spezifikation

Abbildung 1.3: Methoden und ihre Formalisierungsgrade.
In Anlehnung an Beneken (o. D.)

Wie Abbildung 1.3 illustriert, sind alle genannten Methoden – ausgehend von einer
Idee oder Problemstellung – für die angestrebte Produktentwicklung zielführend. Da-
bei wird ersichtlich, dass im Laufe der Zeit final ein einheitlicher Formalisierungsgrad
beim Endprodukt erreicht wird.
Trotz höherem Zeitaufwand ist es laut Brugger (2009, S. 237) wünschenswert und

der Kreativität zuträglich, dass zu Beginn eines Projekts informale Methoden einge-
setzt werden. Erst wenn konkrete Handlungspläne vorliegen, kann in Abhängigkeit der
Projektgröße zu formalen oder semi-formalen Methoden gewechselt werden (Brugger,
2009, S. 237). Wann genau dieser Paradigmenwechsel von der informalen Produktidee
bzw. Problemstellung zur formalen Spezifikation des Produkts vollzogen werden kann,
hängt von projektspezifischen Faktoren ab (z. B.Gesamtprojektkomplexität).
Am Beispiel der formalen Spezifikation kann aufgezeigt werden, dass ein hoher

Grad an Formalisierung schon zu einem sehr frühen Zeitpunkt erreicht wird. Dies ist
bei informalen Spezifikationen erst wesentlich später der Fall (vgl. Abbildung 1.3), da
beim Einsatz informaler Methoden kein komplettes Regelwerk bereitsteht (Tiemeyer,
2013, S. 328). Vielmehr werden die Ausdrucksmöglichkeiten der Stakeholder bewusst
kaum eingeschränkt. Beispiele für die informale Methode sind die natürliche Sprache
und Schaubilder wie sogenannte Box-and-Arrow -Diagramme (Tiemeyer, 2013, S. 328).
Im Gegensatz dazu unterliegen semi-formale Verfahren einer vordefinierten, eindeuti-
gen Syntax. Die Repräsentation kann eine

”
graphische Notation sein, mit präzisen

Regeln zur Erstellung der Diagramme oder eine textuelle Notation mit ähnlichen
Regeln“ (Tiemeyer, 2013, S. 328). Ein Beispiel für semi-formale Sprachen ist die



14 1 Anforderungserhebung und Dokumentation

Unified Modeling Language (UML), bei der
”
die Syntax [...] größtenteils formal, die

Semantik jedoch zum überwiegenden Teil natürlichsprachlich spezifiziert ist“ (Pohl,
2007, S. 290). Formale Verfahren übersteigen diesen Ansatz, indem Anforderungen
mittels formal spezifizierter Syntax und Semantik modelliert werden (Pohl, 2007,
S. 290). Nach Hußmann (1993, S. 5) sind solche Dokumentationstechniken kaum in-
tuitiv zu verstehen, bieten aber wesentliche Vorteile, insbesondere was ihre Präzision
und Verifizierbarkeit betrifft.

verbal

Petrinetze

ER-Diagramm

Syntax-
Diagramm

Kommunikations-
Diagramm

Klassen-
Diagramm

Aktivitäts-
Diagramm

Geschäftsprozess-Diagramm

Entsch.
bäume

Zustands-
automat

Struktogramm

UseCase-
Diagramm

Sequenz-
Diagramm

Zustands-
Matrix/Tabelle

Entscheidungs-
tabelle
Pseudocode

Regeln Constraints
Formale Logik

referenzierbarer
Text

Gliederungs-
schablone

Text

hcsi
pharg

lleutxet

informal semi-formal / formalisiert formal

UseCase-
Schablone

Textschablone
OCL

XML, DTD
& XML-

Schemata

Timing-
Diagramm

III
III IV

Abbildung 1.4: Klassifikation der Dokumentationstechniken.
In Anlehnung an Balzert (2009, S. 101)

Balzert (2009, S. 100 f.) klassifiziert verschiedene Dokumentationstechniken mittels
der konträren Kategorien

”
textuell – graphisch“ und

”
informal – formal“. Textuell

umfasst dabei die Darstellung durch natürlichsprachliche Texte – das heißt durch eine

”
schriftlich fixierte im Wortlaut festgelegte, inhaltlich zusammenhängende Folge von
Aussagen“ (Dudenredaktion, 2017c). Werden Informationen graphisch dargestellt,
geschieht dies durch Symbole, Linien und zusätzliche, textuelle Annotationen (Balzert,
2009, S. 109). Der Grad der Formalisierung gibt die Formalisierung mittels definierter
Strukturvorgaben an. Diese Vorgaben existieren sowohl für textuelle als auch für
graphische Dokumentationstechniken (Balzert, 2009, S. 109). Die sich durch die
Kategorien ergebenden vier Quadranten sind in Abbildung 1.4 dargestellt.
Die natürliche Sprache (

”
Text“) ist als textuelle, informale Technik im dritten Qua-

dranten abgebildet. Im Gegensatz dazu ist die formale Logik im vierten Quadranten
anzusiedeln. Sie weist einen hohen Formalisierungsgrad auf, basiert aber ebenfalls auf
einer textuellen Darstellung. Klassendiagramme und Petrinetze sind als Beispiele für



1.3 Anforderungsdokumentation 15

graphische Techniken im ersten Quadranten anzuführen, wobei Petrinetze wesentlich
formaler definiert sind.
In den folgenden Abschnitten werden ausgewählte Dokumentationstechniken unter

dem Aspekt ihres methodischen Formalisierungsgrades vorgestellt und ihre jeweiligen
Vor- und Nachteile diskutiert.

1.3.1 Informale Anforderungsdokumentation

Die Anforderungsdokumentation mittels natürlicher Sprache ist eine in der Pra-
xis weit verbreitete Technik (Rupp, 2014; Sommerville, 2011; Balzert, 2009; IEEE,
1998). Unter

”
natürlicher Sprache“ wird dabei die

”
Umgangssprache als Kommuni-

kationsmittel“ (Lewandowski, 1994, S. 740 f.) verstanden, die sowohl Hochsprache,
Alltagssprache sowie Dialekte und Sprachvarianten umfasst – eine

”
historisch ent-

wickelte, regionale und sozial geschichtete Sprache“ (Bußmann, 1983, S. 342), die
von künstlichen Sprachsystemen (Kunstsprachen, Weltsprachen) abzugrenzen ist.
Im Gegensatz zu Kunstsprachen ist die natürliche Sprache durch ihre historische
Wandelbarkeit und lexikalische sowie strukturelle Ambiguität geprägt (Bußmann,
1983, S. 279, 342 f.). Natürliche Sprache wird im weiteren Verlauf dieser Arbeit in
Anlehnung an Lewandowski (1994, S. 740) wie folgt definiert:

Definition 1.3.4 (Natürliche Sprache)
Natürliche Sprache als Kommunikationsmittel ist die Umgangssprache. Eine his-
torisch gewachsene Sprache, die mehr oder weniger standardisierte Varietäten wie
Hochsprache vs. Umgangssprache, Dialekte oder Regionalsprachen aufweist. Aus
logischer Sicht ist sie voll von historischen Zufälligkeiten, von Mehrdeutigkeiten und
Inkonsequenzen; sie ist plastisch und variabel, pragmatisch, offen und dynamisch.

Wie deutlich wird, besitzt die natürliche Sprache Eigenschaften, die insbesondere im
Kontext der Anforderungsdokumentation zu nennen sind. Natürliche Sprache ...

•
”
tritt in zeitlicher, regionaler und sozialer Variation auf;

• erfüllt eine Reihe von Funktionen und dient nicht nur der Repräsentation von
Sachverhalten;

• ist nicht explizit, sondern implizit in dem Sinne, [dass] beim Verstehen von
Äußerungen besonders beim Übergang von der wörtlichen Bedeutung zu einer
intendierten Bedeutung Präsuppositionen und Implikationen gelten [...];

• ist in ihrem Gebrauch abhängig von Kontexten aller Art, von räumlicher und
zeitlicher Deixis;

• ist [...] oft in der Weise mehrdeutig, [dass] Ausdrücke in verschiedenen Kontexten
Verschiedenes bedeuten;

• ist in ihren referierenden Ausdrücken bis zu einem gewissen Ausmaß vage [...];

• ist syntaktisch nicht immer wohlgeformt (Ellipsen usw.)“.
(Lewandowski, 1994, S. 740 f.)



16 1 Anforderungserhebung und Dokumentation

Wird die natürliche Sprache differenzierter betrachtet, kristallisieren sich Teilmen-
gen heraus, die sich zum Beispiel in der Entstehung, Verwendung und Verbreitung
voneinander unterscheiden (vgl. Abbildung 1.5).

Kontrollierte
Sprache

Standardsprache Natürliche
Sprache

Abbildung 1.5: Teilmengen natürlicher Sprache.
In Anlehnung an Schwitter (1998, S. 57)

Die größte Teilmenge der natürlichen Sprache stellt die zur öffentlichen Kommuni-
kation genutzte Standardsprache (auch:Gemeinsprache) dar. Hierbei handelt es
sich um eine

”
deskriptive Bezeichnung für die historisch legitimierte, überregionale,

mündliche und schriftliche Sprachform der sozialen Mittel- beziehungsweise Ober-
schicht“ (Bußmann, 1983, S. 502) und somit um eine

”
über den Mundarten, lokalen

Umgangssprachen und Gruppensprachen stehende, allgemein verbindliche Sprach-
form“ (Dudenredaktion, 2017b). Ihre Normierung wird durch das Bildungssystem,
Medien und Institutionen kontrolliert (Bußmann, 1983, S. 502)9.
Fachsprachen unterscheiden sich von der Standardsprache

”
vor allem durch einen

fachspezifischen differenzierten Wortschatz mit Tendenz zu fester bzw. normierter
Terminologie“ (Bußmann, 1983, S. 137). Allerdings weist Lehrndorfer (1996, S. 37)
darauf hin, dass die

”
langezeit populäre These, das Wesentliche einer Fachsprache

liege in den Fachworten und nicht in der Syntax, [...] inzwischen relativiert werden
[kann]“. Darüber hinaus ist die Fachsprache nicht disjunkt von der Standardsprache,
da sie sich zum einen der Wörter und Grammatik der Standardsprache bedient und
zum anderen ein Austausch mit ihr stattfindet,

”
da häufig Fachgebiete von gestern

zum Populärwissen von heute avancieren“ (Lehrndorfer, 1996, S. 25).
Hingegen ist kontrollierte Sprache (auch:Normsprache) der Versuch, Fachspra-

che einer
”
Kontrolle“ zu unterwerfen und sie damit der

”
Intuition, Situation und

Sprachregister“ (Lehrndorfer, 1996, S. 40) zu entziehen. Dabei sind
”
kontrollierte

Sprachen [...] keine Kunstsprachen, wie zum Beispiel das Esperanto, sondern der
Zuschnitt einer bestehenden Sprache auf eine bestimmte Anwendung und seine
Benutzer“ (Ferlein und Hartge, 2008, S. 40). Sie werden genutzt, um den Austausch
über komplexe Themen zu erleichtern, technische Dokumentationen verständlicher
zu gestalten oder Aussagen leichter überprüfen zu können.
Kontrollierte Sprachen stellen somit eine sehr kleine Teilmenge dar, die eine große

Schnittmenge mit Fachsprachen aufweist und einzelne Charakteristika der Stan-
dardsprache, insbesondere den normativen Charakter, besitzt (vgl. Abbildung 1.5).

9Der Begriff der Standardsprache ist in der Varietätenlinguistik umstritten und die angeführte
Definition nicht abschließend. Im Rahmen dieser Arbeit ist die Definition hinreichend, da sie
den normativen Charakter sowie ihre gesellschaftliche Relevanz aufzeigt.



1.3 Anforderungsdokumentation 17

Kontrollierte Sprache lässt sich in Anlehnung an Pohl (2008, S. 710) und Lehrndorfer
(1996, S. 40 ff.) wie folgt definieren:

Definition 1.3.5 (Kontrollierte Sprache)
Eine kontrollierte Sprache ist eine echte Teilmenge der natürlichen Sprache. Sie
besitzt eine in Bezug auf eine spezifische Domäne eingeschränkte Grammatik (Syntax)
und definiert eine Menge von Begriffen (Lexik), die zur Konstruktion von Aussagen
über die Domäne verwendet werden können. Ihr Ziel ist die Dokumentation komplexer
thematischer Zusammenhänge.

Kontrollierte Sprache eignet sich als Fachsprache zur vereinfachten Formulierung
von Aussagen über eine Domäne. Die begrenzte Ausdrucksmöglichkeit ist eine we-
sentliche Eigenschaft der kontrollierten Sprache und führt aufgrund der

”
Quasi-

Standardisierung“ und einem gemeinsamen Vokabular zu einer besseren Lesbarkeit
und einem höheren Verständnis bei den Stakeholdern. Damit eignen sich kontrollierte
Sprachen insbesondere für die Spezifikation von Anforderungen, da einerseits der
Interpretationsspielraum verkleinert wird und andererseits die Möglichkeit besteht,
Widersprüche schneller aufzuspüren (Pohl, 2007, S. 247).

Bei der Erhebung von Anforderungen sind kontrollierte Sprachen weniger geeignet,
da sie zum einen die Ausdrucksfähigkeit der Stakeholder einschränken und zum ande-
ren umfangreiche Leitfäden voraussetzen, in denen der Umgang mit der kontrollierten
Sprache erläutert wird. Indem nicht nur die Menge an zulässigen Wörtern und deren
Bedeutung definiert wird, sondern auch eine Einschränkung in der Grammatik der
jeweiligen Sprache erfolgt, ist sie wesentlich restriktiver als beispielsweise ein Glossar.

1.3.1.1 Glossare

Ein Glossar vermeidet durch die Identifikation sowie Definition wesentlicher fachlicher
und technischer Begriffe nicht nur Ambiguitäten, sondern bildet eine gemeinsame
Sprachgrundlage unter den Stakeholdern (Grechenig, 2010, S. 195). Möglich wird das
durch die strukturierte Auflistung aller Termini eines Fachgebiets (Terminologie) und
deren Definitionen (Balzert, 2009, S. 482). In dieser Arbeit wird ein Glossar nach
Pohl (2008, S. 707) wie folgt definiert:

Definition 1.3.6 (Glossar)
Ein Glossar legt die spezifische Bedeutung einer Menge von Fachbegriffen einer
Domäne (d. h. eine Fachterminologie) fest. Neben den Begriffsdefinitionen kann ein
Glossar Verweise zwischen verwandten Begriffen sowie Beispiele zur Erläuterung der
Begriffe beinhalten.

Ein Glossar verhindert somit, dass beispielsweise synonyme Begriffe in der Dokumen-
tation verwendet werden können. Auch, weil alle Stakeholder dazu aufgerufen sind,
sich bei ihrer Anforderungsformulierung auf die im Glossar befindlichen Termini
zu beschränken. Um ein gemeinsames Begriffsverständnis zu fördern, können unter
anderem Beispiele und Gegenbeispiele darin aufgeführt werden (Pohl, 2007, S. 244).
Syntaktische Strukturen für die Dokumentation von natürlichsprachlichen Anfor-

derungen werden von einem Glossar nicht vorgegeben, können aber durch ergänzende



18 1 Anforderungserhebung und Dokumentation

Vorgehensweisen, wie zum Beispiel syntaktischen Anforderungsmustern, vorgegeben
werden. Die hierbei eingeführten Limitationen syntaktischer Strukturen werden im
Folgenden diskutiert.

1.3.1.2 Syntaktisches Anforderungsmuster

Ein vorgegebener Lückentext in Form von syntaktischen Anforderungsmustern dient
der Vermeidung von häufig auftretenden Fehlern, wobei die Semantik dabei bewusst
nicht eingeschränkt wird. Rupp (2014, S. 217 f.) bezeichnet diese Muster als Baupläne
einzelner qualitativ hochwertiger Anforderungen, in denen aber durchaus Änderungen
und Variationen gestattet sind. Dabei existieren verschiedene Schablonen, die sowohl
für FA als auch für NFA eingesetzt werden. In Anlehnung an Rupp (2014, S. 218)
wird in dieser Arbeit das syntaktische Anforderungsmuster wie folgt definiert.

Definition 1.3.7 (Syntaktische Anforderungsmuster)
Syntaktische Anforderungsmuster (Anforderungsschablone) sind Sprachfragmente,
die sowohl Satzstellung als auch Wortwahl bei einzelnen Anforderungsformulierungen
festlegen.

Eine mögliche Schablone zur natürlichsprachlichen Dokumentation funktionaler
Anforderungen ist in Abbildung 1.6 dargestellt. Das Prozesswort beschreibt eine zu
erbringende Systemfunktion durch ein Verb (z. B.

”
anzeigen“,

”
exportieren“). Darüber

hinaus ist die Angabe von Bedingungen und Qualitätsanforderungen möglich, die an
das entsprechende Prozesswort gebunden sind. Als Prozesswort dient im Beispiel 1.3.1
das Verb

”
weiterleiten“, an das die Qualitätsanforderung

”
maximal zwei Versuche“

und die Bedingung
”
entgegengenommener Druckauftrag“ gekoppelt sind.

[Wann?] |
[Unter welcher Bedingung?]

MUSS

SOLL

WIRD

DAS 
SYSTEM

„                “
 

DIE MÖGLICHKEIT
BIETEN

 

FÄHIG SEIN

Objekt & 
Ergänzung

       

[Qualität]

[Prozesswort]

Abbildung 1.6: Syntaktisches Anforderungsmuster.
In Anlehnung an Pohl (2007, S. 220) bzw. Rupp (2014, S. 218 ff.)

Beispiel 1.3.1 (Ausgefülltes Anforderungsmuster)

”
Wird ein Druckauftrag entgegengenommen, soll das System fähig sein, den Auftrag
an den Drucker in maximal zwei Versuchen weiterleiten.“

Die Vorgabe konkreter, ausgewählter Grammatikregeln rückt die natürliche Sprache
mit ihrem ursprünglichen informalen Charakter als Modellierungssprache näher an
künstlich definierte, (semi-)formale Modellierungssprachen. Im Folgenden werden
deshalb sowohl textuelle als auch visuelle Modellierungssprachen im Sinne einer
Abgrenzung betrachtet.



1.3 Anforderungsdokumentation 19

1.3.2 Semi-formale Anforderungsdokumentation

Semi-formale Methoden stellen nach Brugger (2009, S. 234) einen
”
Kompromiss

zwischen Formalität und Verständlichkeit dar“. Grundsätzlich basieren sie auf einer
vorgegebenen Struktur bzw. einer präzise definierten Syntax und auf graphischer
Darstellung (Kurth, 1991, S. 47). Es ist möglich, Ergänzungen in natürlicher Sprache
vorzunehmen, die unter anderem als Träger der Semantik fungieren (Brugger, 2009,
S. 234). Brugger (2009, S. 234 f.) weist darüber hinaus darauf hin, dass nicht alle semi-
formalen Techniken den gleichen Formalisierungsgrad aufweisen. Der semi-formale
Charakter sorgt aber letztendlich dafür, dass nicht alle Stakeholder in der Lage
sind, ihre Softwareanforderungen modellbasiert zu dokumentieren. Dabei haben
semi-formale Methoden entschiedene Vorteile für Stakeholder, wie beispielsweise
die Strukturiertheit und Übersichtlichkeit durch verschiedene Sichten auf das zu
spezifizierende Problem.
Für jede Perspektive existiert eine geeignete Modellierungssprache, mit der die

betrachteten Informationen zweckmäßig dokumentiert werden können (Rupp, 2012,
S. 16 ff.). Traditionell stellen

”
Struktur“,

”
Funktion“ und

”
Verhalten“ nach Pohl

und Rupp (2015, S. 37, 75) die
”
komplementären Perspektiven zur Beschreibung

funktionaler Anforderungen“ dar (Pohl, 2007, S. 184 ff.):

• Strukturperspektive
Betrachtung statischer System- und Datenstrukturen unter Ausblendung dyna-
mischer Aspekte wie Zustandsänderungen (Rupp, 2012, S. 17).

• Funktionsperspektive
Der Fokus liegt auf bereitzustellenden Systemfunktionen, wobei auch die Ein-
und Ausgaben (Daten / Informationen) und deren Manipulation durch Sys-
temfunktionen betrachtet werden (Rupp, 2012, S. 17).

• Verhaltensperspektive
Betrachtet werden Zustände, Zustandswechsel und erzeugte Ausgaben, die
ein System bzw. einzelne Komponenten und Objekte einnehmen können. Es
besteht eine enge Verknüpfung mit der Funktionsperspektive (Rupp, 2012,
S. 17).

Pohl (2007, S. 186) weist auf zwei wichtige Eigenschaften dieser Techniken hin: Zum
einen sind die dargestellten Perspektiven nicht disjunkt. Dies führt dazu, dass eine
Integration der verschiedenen Perspektiven notwendig ist, was wiederum die wech-
selseitige Prüfung einzelner Modelle auf Konsistenz und Vollständigkeit ermöglicht
(Pohl und Rupp, 2015, S. 76). Zum anderen sind bislang keine Qualitätsanforderungen
berücksichtigt. Diese können durch textuelle Annotationen in den Modellen hinzu-
gefügt werden. Eine Integration der verschiedenen Perspektiven ist teilweise mittels
objektorientierten Modellierungsprachen möglich (Pohl, 2007, S. 186).
Objektorientierte Modellierungssprachen stellen nach Fettke (2012)

”
eine Alterna-

tive zur strukturierten Systemanalyse und zum strukturierten Systementwurf“ dar
und ermöglichen eine weitreichende Integration der genannten Perspektiven (Pohl,
2007, S. 200). Im Zentrum dieser Modellierungssprachen stehen Objekte bzw. Klas-
sen, die

”
durch eine Datenstruktur, Funktionen zur Manipulation der Daten sowie



20 1 Anforderungserhebung und Dokumentation

durch ein spezifisches Verhalten definiert werden“ (Pohl, 2007, S. 200). Mit diesen
Eigenschaften ermöglichen objektorientierte Modellierungssprachen nach Schwinn
(2011, S. 51) eine

”
durchgängigen Sichtweise in der Software-Entwicklung – von den

Systemanforderungen, dem Bauplan, bis zum Code“ (Schwinn, 2011, S. 51). Bereits
während der Erhebung und Dokumentation von Anforderungen können somit relevan-
te Systemeigenschaften bestimmt und hinsichtlich der oben genannten Perspektiven
präzise spezifiziert werden (Schwinn, 2011, S. 51).
Im Unterschied zu

”
traditionellen Ansätzen“ (Pohl, 2007, S. 200) ist durch die Inte-

gration dieser Perspektiven die Notwendigkeit und die Gefahr von Methodenbrüchen
wesentlich niedriger (Schwinn, 2011, S. 51). Zur objektorientierten Modellierung
eignet sich beispielsweise die UML, die mittlerweile als Standard der Softwaresystem-
Modellierung im Software Engineering gilt (Schwinn, 2011, S. 47) und sich in der
objektorientierten Architekturentwicklung etabliert hat (Tiemeyer, 2013, S. 327).

Diagrammtypen

Bei der UML handelt es sich um eine graphische Modellierungssprache, die nach
Rupp und Queins (2012, S. 4 f.) zur Modellierung, Visualisierung sowie Spezifikation
und Dokumentation komplexer Systeme eingesetzt wird (Schwinn, 2011, S. 48, 53).
Sie wird gemeinhin als eine semi-formale Methode verstanden, auch wenn sie sowohl
natürlichsprachliche als auch formale Elemente10 aufweist (Laplante, 2007, S. 58, 103;
Laplante, 2013, S. 83 f.).
Zu den Vorteilen der UML zählen ihre Standardisierung und Verbreitung: So

führt die Standardisierung zur eindeutigen Definition einzelner Diagramme (vgl.
Tabelle 1.1), die aufgrund der hohen Praxisrelevanz in vielen Unternehmen weit
verbreitet sind. Ihr Gebrauch führt erwartungsgemäß im Vergleich zu informalen
Dokumentationstechniken zu weniger Missverständnissen und Fehlinterpretationen.

UML-Diagramme

Struktur Verhalten Interaktion
Klassen-, Use-Case-, Sequenz-,
Objekt-, Aktivitäts-, Kommunikations-,
Kompositionsstruktur-, Zustandsdiagramm Interaktionsübersichts-,
Komponenten-, Timing-Diagramm
Verteilungs-,
Paket-,
Profil-Diagramm

Tabelle 1.1: Diagrammtypen der UML 2.
In Anlehnung an Rupp und Queins (2012, S. 7)

10Laplante (2007, S. 58) nennt explizit die Object Constraint Language, mit der Randbedingungen
in der Softwareentwicklung formal beschrieben werden (z. B.Preconditions / Postconditions).



1.3 Anforderungsdokumentation 21

Perspektiven

Die UML besitzt in der zweiten Version insgesamt 14 Diagrammtypen (vgl. Tabel-
le 1.1), von denen zwar nicht alle für Neuentwicklung eines Softwaresystems hilfreich
sind, die verschiedenen Perspektiven (Struktur-, Verhalten- und Funktionsperspekti-
ve) aber gut abdecken (Schwinn, 2011, S. 51). Nach Pohl und Rupp (2015) eignen sich
zur Modellierung der Strukturperspektive beispielsweise UML-Klassendiagramme,
die als

”
statische Basis der Anwendungssysteme“ gelten (Schwinn, 2011, S. 55). Sie

beschreiben die statische Struktur eines Systems und beantworten damit folgende
Frage:

”
Aus welchen Klassen besteht [das] System und wie stehen diese untereinander

in Beziehung?“ (Rupp und Queins, 2012, S. 11).
Abbidung 1.7 zeigt ein Modellierungsbeispiel, welches zwei Klassen (Person,

E-Mail-Konto) umfasst. Neben Namen, Merkmalen (Attributen) und Operationen,
die in den Klassen selbst untergebracht sind, ist auch eine Kante zur Darstellung
der Beziehung (Assoziation) abgebildet (vgl. Abbildung 1.7). Als optional gelten im
Klassendiagramm die Rollen (z. B.

”
Besitzer“) und die Multiplizitäten (z. B.

”
0..*“).

Letztere geben an,
”
wie viele Instanzen einer Klasse in Bezug auf die betrachteten

Assoziationen mit wie vielen Instanzen der assoziierten Klassen in Beziehung stehen
können“ (Pohl und Rupp, 2015, S. 80).

Person E-Mail-Konto

Name
Geburtsdatum
...

Zugriffsrechte
Letzter LogIn
...

Besitzer Besitz

1 0..*besitzt

Multiplizitäten

Rollen
<Operationen> <Operationen>

hat Zugriff

0..*0..*

Abbildung 1.7: Semi-formale Dokumentation mittels Klassendiagramm.
In Anlehnung an Pohl und Rupp (2015, S. 80)

Rupp (2007, S. 194 f.) weist im Kontext der Anforderungsdokumentation auf die
Möglichkeit hin, Klassendiagramme auch als Begriffsmodelle zu nutzen und damit –
ergänzend zu einem Glossar – Begriffe und deren Beziehungen zu beschreiben.
Anders als die statische Strukturperspektive ist die Verhaltensperspektive dy-

namisch (Pohl und Rupp, 2015, S. 89) und umfasst die Darstellung von Objekten, die

”
ihren Zustand als Reaktion auf Ereignisse und Zeitablauf ändern“ (Schmuller, 2003,
S. 120). Um dieses

”
reaktive Verhalten eines Systems“ (Pohl und Rupp, 2015, S. 91)

abzubilden, werden UML-Zustandsdiagramme genutzt. Sie ermöglichen es, Objekte,
Zustände und Übergänge zwischen Zuständen sowie die Start- und Endpunkte einer
Reihe von Zustandsänderungen darzustellen (Schmuller, 2003, S. 120).
Die Funktionalität eines Systems und die damit einhergehende Transformation von

Eingaben in definierte Ausgaben kann durch die Funktionsperspektive dargestellt
werden (Pohl und Rupp, 2015, S. 82). UML-Aktivitätsdiagramme werden einge-



22 1 Anforderungserhebung und Dokumentation

setzt, da sie sich
”
wie kaum eine andere Dokumentationstechnik [dazu eignen,][...]

Abläufe jeglicher Art und deren Regeln darzustellen“ (Rupp, 2007, S. 205 f.). Ein
Aktivitätsdiagramm stellt beispielsweise die Konstellation von Aktionen (kleinste
ausführbare Einheit innerhalb einer Aktivität) und deren Verbindungen (gerichtete
Kanten) mit Kontroll- und Datenflüssen dar, wobei das Kontrollflussmodell die
Reihenfolge von Aktionen spezifiziert und das Datenmodell die Daten angibt, die
zwischen den Aktionen ausgetauscht werden (Balzert, 2009, S. 236 ff.). Die zentra-
le Frage, die mit diesem Diagramm beantwortet werden kann, ist, wie bestimmte
flussorientierte Prozesse oder Algorithmen ablaufen (Rupp und Queins, 2012, S. 12).
Diese Sichtweise ermöglicht es, durch Systematisierung und Strukturierung der

Anforderungen, fehlende Aktionen oder Denkfehler zu erkennen, die in natürlicher
Sprache gegebenenfalls übersehen worden wären. Diese Überprüfbarkeit und das
mathematische Konkretisieren von Anforderungen (als Kalkül) wird in formalen Me-
thoden weitergeführt, indem die formale Syntax um eine semantische Interpretation
erweitert wird (Kurth, 1991, S. 48 f.).

1.3.3 Formale Anforderungsdokumentation

Anders als informale und semi-formale Dokumentationstechniken, haben formale
Sprachen eine eindeutig definierte Syntax und Semantik (Schneider, 1998, S. 809). Für
die Spezifikation von Softwaresystemen bedeutet das, dass

”
die ungenaue menschliche

Sprache durch die präzisen Mittel der Mathematik [...] ersetzt“ (VSEK Konsortium,
2007b) wird und fehlerhafte Spezifikationen zu einem möglichst frühen Zeitpunkt
vermieden werden.

”
Qualität wird [somit] in formal spezifizierte Systeme hineinkon-

struiert“ (VSEK Konsortium, 2007b).
Der formale Charakter ermöglicht einerseits die exakte Dokumentation sowie

(Teil-)Verifikation (Tiemeyer, 2013, S. 238), führt aber andererseits zum Ausschluss
vieler Stakeholder (Wiegers, 2005, S. 153) und geringerer Akzeptanz (Hood und
Wiebel, 2005, S. 38), da das zugrundeliegende logische Modell von mathematischer
Natur ist und damit Fachwissen zur Interpretation voraussetzt (Kurth, 1991, S. 48).
Nach Brugger (2009, S. 233) sind formale Sprachen damit

”
ungeeignet für die

Kommunikation auf breiter Basis“, was aber nicht bedeutet, dass formale Methoden
nicht zu erlernen sind oder dass das notwendige mathematische Grundverständnis
ihren Einsatz verhindert (Hall, 1990, S. 16 ff.).
Formale Methoden, wie beispielsweise die Prädikatenlogik (Stang, 2002, S. 120),

werden in vielen Softwarebereichen zur Spezifikation genutzt (Hall, 1990, S. 16).
Sie sind, unter anderem bei der Entwicklung sicherheitskritischer Systeme (z. B.
Hall und Chapman, 2002), insbesondere im Hinblick auf vermeidbare Widersprüche,
Inkonsistenzen und Fehler, oftmals unverzichtbar und der Dokumentation mittels
natürlicher Sprache, insbesondere wegen der Verifikationsmöglichkeiten, überlegen.
Beispielsweise befasst sich die Prädikatenlogik mit Aussagen, die, im Gegensatz
zu Fragen, Ausrufen usw., in der modelltheoretischen Semantik Wahrheitswerte
annehmen – sie können demnach wahr oder falsch hinsichtlich einer bestimmten
Variablenbelegung werden (Stang, 2002, S. 120).



1.3 Anforderungsdokumentation 23

Beispiel 1.3.2 (Prädikatenlogische Aussagen)
(a) ∃x, y(person(x) ∧ emailkonto(y) ∧ besitzen(x, y))
(b) ∀x(person(x) → ∃y(emailkonto(y) ∧ besitzen(x, y)))
(c) ∀y(emailkonto(y) → ∃x(person(x) ∧ besitzen(x, y)))

Beispiel 1.3.2 enthält drei prädikatenlogische Aussagen: (a) gibt an, dass mindestens
eine Person mindestens ein E-Mail-Konto besitzt. Nun ist in dieser Arbeit die
modelltheoretische Überprüfbarkeit der Aussagen von besonderem Interesse, welche
sich bei der Interpretation einer formalen Grammatik auf einem vorgegeben Modell
nachweisen lässt (Pohl, 2007, S. 247). So sagt zum Beispiel (b) aus, dass jede Person
ein E-Mail-Konto besitzt. Diese Aussage lässt sich falsifizieren, sobald mindestens
eine Person genannt wird, die kein E-Mail-Konto besitzt. Anders verhält es sich
bei (c), wo die Aussage getroffen wird, dass jedes E-Mail-Konto mindestens einen
Besitzer hat. Diese Aussage ließe sich nur dadurch falsifizieren, wenn mindestens ein
herrenloses E-Mail-Konto existieren würde.
Wie Beispiel 1.3.2 zeigt, können Anforderungen an ein Softwaresystem auch im

prädikatenlogischen Sinne interpretiert werden, was bedeutet, dass Anforderungsdo-
kumentationen

”
mit den gängigen Instrumenten von Aussagen- und Prädikatenlogik

bearbeitet werden [können]“ (Stang, 2002, S. 120). So können beispielsweise Anforde-
rungen, die nicht gleichzeitig in einem System realisiert werden können, durch die
logische Analyse ad absurdum geführt werden.
Hood und Wiebel (2005, S. 38) führen darüber hinaus an, dass formale Methoden

und Notationen in der Einführung mit kostenintensivem Mehraufwand einhergehen.
Allerdings lässt sich auch dahingehend argumentieren, dass eine hohe Qualität, das
heißt die frühzeitige Entdeckung von Fehlern, zur Vermeidung von kostenintensiven
Garantie- und Gewährleistungsfällen beiträgt (Hall und Chapman, 2002, S. 24).

1.3.4 Gegenüberstellung

Informale Anforderungsbeschreibungen der Stakeholder dienen oftmals als Grund-
lage für einen initialen Softwareentwurf, der in einer späteren Projektphase in eine
formalere Spezifikation überführt werden kann. In Abbildung 1.8 ist der reflektier-
te Charakter dieses Vorgehens zu erkennen, da in diesen Schritten explizit eine
Rückkopplung zum vorherigen Spezifikationsschritt vorgesehen ist. Dieser iterative
Evaluationsprozess zwischen Anforderungsbeschreibungen und Spezifikation trägt
wesentlich zur Qualitätssicherung bei.

Eine Prüfung der Anforderungen findet zum Beispiel bei der formalen Spezifikation
statt, wo Entwurfsfehler (z. B.Widersprüche) entdeckt und in den zugrundeliegenden
Spezifikationen behoben werden können. Je spezifischer die Spezifikation wird, desto
weniger Stakeholder werden noch miteinbezogen - außer den Softwareentwicklern, die
den gesamten Prozess aktiv mitgestalten müssen. Es ist aber auch herauszustellen,
dass formale und informale Vorgehensweisen als komplementär zu betrachten sind:
Die angeführten Methoden mit ihren jeweiligen technischen Ausprägungsformen
(z. B. kontrollierte Sprachen oder UML) haben unterschiedliche Anwendungsfälle,
Nutzer sowie Stärken und Schwächen. Sie können daher in der gemeinsamen Nutzung
Synergieeffekte erzielen.



24 1 Anforderungserhebung und Dokumentation

Zunehmender Einbezug von Entwicklern

Abnehmender Einbezug von anderen Stakeholdern

Spezifikation

Design

Anforderungs-
beschreibung

System-
anforderungs-
spezifikation

Architektur-
entwurf

Formale
Spezifikation

High-Level
Design

Abbildung 1.8: Formale Spezifikation und Design.
In Anlehnung an Sommerville (2009, S. 4)

Im Fokus der Bewertung dieser Methoden stehen oftmals die Begriffe Präzision
und Anwendbarkeit, die in der folgenden Gegenüberstellung unter den Aspekten
Formalitätsgrad sowie Benutzerakzeptanz aufgegriffen werden.

Formalitätsgrad

Als Stärke der semi-formalen und formalen Methoden wird oftmals ihre hohe
Präzision genannt (Rupp 2014, S. 214; Hood und Wiebel 2005, S. 37; Sommer-
ville 2009, S. 3). Diese ist auch bei komplexen Sachverhalten zu erreichen, die unter
Umständen in natürlicher Sprache nur schwer konsistent und strukturiert zu fassen
sind (Pohl, 2007, S. 298). Hierzu wird unter anderem auf die Darstellung von dis-
kreten Perspektiven, die den Ausdruck eines bestimmten Blickwinkels ermöglichen,
zurückgegriffen (Pohl, 2007, S. 298).
Bei der Verwendung natürlicher Sprache können Perspektiven (s. Abschnitt 1.3.2)

unbewusst vermischt werden und damit, durch eine geringe Strukturierung sowie
unklare Perspektivenzuteilung, die Qualität der Dokumentation mindern (Pohl und
Rupp, 2015, S. 38). Sehr genaue Anforderungensdokumentationen sind mit informalen
Methoden nur unter erheblichem Mehraufwand zu erreichen (Hsia et al., 1993).
Neben der Präzision ist noch die Eindeutigkeit ein wichtiges Kriterium. Denn

formale Dokumentationstechniken ermöglichen eindeutige Spezifikationen, da sie die
erneute Prüfung bestehender Anforderungen während der Formalisierung erfordern
(Sommerville 2009, S. 3 f.; Kurth 1991, S. 48 f.). Wichtig ist hierbei die Erkenntnis,
dass formale Methoden zwar die Möglichkeit einer fehlerfreien Spezifikation eröffnen,
Entwurfsfehler aber weiterhin möglich sind (Hall, 1990, S. 12). Prinzipiell kann jedoch
ein hoher Formalisierungsgrad und die Möglichkeiten der Verifikation und Validierung
die Identifikation von Fehlern unterstützen (Sommerville, 2009, S. 3 ff.).
Im Gegensatz dazu ermöglicht die informale Dokumentationstechnik eine ungenaue

Verwendung der natürlichen Sprache (Pohl 2007, S. 239 ff.; Balzert 2009, S. 481), unter
anderem dadurch, dass sie auf mehreren Ebenen hochgradig ambig ist (IEEE, 1998,
S. 4 f.) und schnell unstrukturiert wird, wodurch Redundanzen und Widersprüche
schwerer zu erkennen sind (Rupp, 2013, S. 79, 83). Die fehlende Präzision erschwert
die Kommunikation zwischen den Stakeholdern und ergibt sich insbesondere aus



1.3 Anforderungsdokumentation 25

den Phänomenen der Ungenauigkeit und Unvollständigkeit (Pohl 2007, 239 ff.; Rupp
2014, S. 214; Grechenig 2010, S. 153).
Hinsichtlich der universellen Anwendbarkeit sind formale Methoden oftmals

gegenüber der natürlichen Sprache unterlegen (Hood und Wiebel 2005, S. 37; Som-
merville 2009, S. 3; Pohl und Rupp 2015, S. 38). Es besteht eine Einschränkung bei den
abzubildenden Problembereichen (z. B. geringe Skalierbarkeit, daher Konzentration
auf kritische Systembestandteile) oder Systembestandteilen (z. B. schlechte Anwend-
barkeit auf Gestaltung von GUI), was ein deutlicher Nachteil ist. Die natürliche
Sprache hingegen ist universell anwendbar und flexibel im Grad der Detaillierung
sowie Abstrahierung (Pohl 2007, S. 239; Balzert 2009, S. 481; Kalenborn 2014, S. 73).

Benutzerakzeptanz

Die Benutzerakzeptanz einzelner Dokumentationstechniken wird oftmals hinsichtlich
ihrer Benutzerfreundlichkeit und möglicher Einstiegsbarrieren bewertet (vgl.
Tabelle 1.3), wobei dies im Falle der natürlichen Sprache vor allem den geringen
Schulungsaufwand und die damit vergleichsweise kurze Einarbeitungszeit umfasst
(Pohl 2007, S. 239; Rupp 2012, S. 16; Rupp 2013, S. 79 ff.; Kurth 1991, S. 47; Ka-

Vorteile Nachteile

In
fo
rm

a
l • Mehrere Abstraktionsebenen b • Ungenauigkeit a, b

• Flexibler Detailgrad b, c, a • Vermischung von Perspektiven d

• Universelle Anwendbarkeit b, e, a

S
e
m
i-
fo
rm

a
l • Hohe Präzision e • Nicht universell anwendbar d

• Komplexe Sachverhalte a • Ggf. Softwaretools notwendig e

• Strukturierte Darstellung f

• Kompakte Darstellung f

F
o
rm

a
l

• Vermeidung von Entwurfsfehlern g • Limitierte Skalierbarkeit g

• Sehr hohe Präzision h, i • Nicht universell anwendbar h, g

• Verifikation / Validierung h • Ggf. Softwaretools notwendig j

Tabelle 1.2: Vor- und Nachteile von Dokumentationstechniken

a vgl. Pohl (2007)
b vgl. Balzert (2009)
c vgl. Kalenborn (2014)
d vgl. Pohl und Rupp (2015)
e vgl. Rupp (2014)
f vgl. Rupp (2013)
g vgl. Sommerville (2009)
h vgl. Hood und Wiebel (2005)
i vgl. Sommerville (2011)
j vgl. Kurth (1991)



26 1 Anforderungserhebung und Dokumentation

lenborn 2014, S. 73). Im Vergleich zu semi-formalen und formalen Methoden ist
dies ein starkes Argument, da diese sich nicht nur dem ungerechtfertigten Vorwurf
unnötiger Schulungen zur Methodenkompetenz ausgesetzt sehen (Kurth 1991, S. 48 f.;
Sommerville 2009, S. 4), sondern auch Mehraufwand für die Stakeholder bei der
Erstellung der Modelle entsteht (Rupp 2014, S. 213; Kurth 1991, S. 48 f.; Hood und
Wiebel 2005, S. 37; Sommerville 2011, S. 336).

Dass zwangsläufig Mehrkosten bei der Verwendung formaler Methoden entstehen,
ist umstritten (z. B. Hall, 1990, S. 17 ff.). So können Schulungskosten beispielsweise
als einmalige Investition und nicht als projektspezifischer Mehraufwand gesehen
werden. Ferner gibt Hall (1990, S. 16 f.) zu bedenken, dass Unterweisungen auch
unabhängig von der gewählten Methode notwendig sind.
Trotzdem bleibt die limitierte Ausdrucksfähigkeit als Gegenargument für

formale Techniken bestehen. Hierbei besteht das Risiko, dass Stakeholder zwar Mo-
dellierungskenntnisse aufweisen, beispielsweise aber die eigenen Arbeitsschritte und
Softwareanforderungen nicht modellieren können, da sie in ihrer Ausdrucksfähigkeit
limitiert sind (Pohl, 2007, S. 298). Allerdings kann diese Restriktion auch als Chance
begriffen werden, sofern diese zu einer Verringerung der thematischen Komplexität
führt. So kann auch in der natürlichsprachlichen Anforderungsdokumentation die
Ausdrucksfähigkeit eingeschränkt werden. Beispielsweise schränken Glossare die
zulässige Terminologie ein und syntaktische Anforderungsmuster limitieren die Syn-
tax. Dies geschieht mit dem Ziel, das Risiko von Redundanzen, Widersprüchen und
Unübersichtlichkeit zu minimieren (Pohl, 2007, S. 239 ff.).
Zwar ist es weitestgehend möglich, Anforderungen frei von Ungenauigkeiten zu

verfassen, es stellt Stakeholder aber vor erhebliche Herausforderungen (Kamsties,
2005). Dies erscheint vor dem Hintergrund fehlender Restiktionen und Vorgaben
insbesondere dann unrealistisch, wenn viele Stakeholder an der Anforderungsdo-
kumentation beteiligt sind, was mit zunehmender Projektgröße der Regelfall ist
(Grechenig, 2010, S. 143). Der resultierende Interpretationsspielraum stellt ein
erhebliches Projektrisiko dar (Pohl, 2007, S. 239 ff.).
Schlussendlich weist Rupp (2013, S. 83) am Beispiel von Klassendiagrammen darauf

hin, dass selbst Stakeholder, die über die notwendigen Modellierungskenntnisse
verfügen und eine Anforderungsdokumentation prinzipiell gutheißen, die modellba-
sierte Dokumentation ablehnen können, wenn der notwendige Modellierungswille
fehlt, bzw. eine Methode, losgelöst vom jeweiligen Formalisierungsgrad, keine Akzep-
tanz unter den Stakeholdern findet (Hall 1990, 18 f.; Kurth 1991, S. 46; Hood und
Wiebel 2005, S. 38). Endanwender, die nicht über ausreichende Methodenkompetenz
verfügen, sind daran interessiert, ohne Einschränkungen in ihrer Ausdrucksfähigkeit
die individuellen Anforderungen an ein Softwareprojekt zu beschreiben. Gegenstand
dieser Arbeit sind daher informale Anforderungsbeschreibungen, mit allen Vor- und
Nachteilen der natürlichsprachlichen Anforderungsdokumentation.

1.4 Anforderungsbeschreibungen

Der Begriff der
”
Anforderungsbeschreibung“ steht in dieser Arbeit für eine Menge

informal formulierter Anforderungen an ein Softwareprodukt (Leistungsumfang). Die
individuellen Anforderungen werden von Endanwendern mit der Intention gestellt,



1.4 Anforderungsbeschreibungen 27

bei einer zukünftigen Softwareentwicklung berücksichtigt zu werden und damit den
gewünschten Funktionsumfang abzudecken. Die Art und Weise der softwareseitigen
Umsetzung ist dabei nicht zwangsläufig vorgegeben (vgl. Beispiel 1.4.1).
Zwar existiert keine eindeutige Definition von

”
Anforderungsbeschreibung“, al-

lerdings wird der Terminus bereits in der Literatur mit Bezug auf die Entwicklung
von Softwareprodukten verwendet. So nutzen beispielsweise Schneider und Vecellio
(2011, S. 106) den Begriff

”
Anforderungsbeschreibung“ im Kontext strukturierter

Dokumentation von Anforderungen und mit Hinweis auf IEEE 830 Standard zur
Spezifikation von Anforderungen (IEEE, 1998). Auch Gumm und Sommer (2012,
S. 837) sehen in Anforderungsbeschreibungen ein strukturiertes Dokument, welches
das Resultat einer Anforderungsanalyse ist und verweisen auf den IEEE 830 Standard.

”
Herzstück“ einer solchen Beschreibung ist nach Gumm und Sommer (2012, S. 837)
die

”
Beschreibung der funktionalen und nicht-funktionalen Anforderungen“.

Demgegenüber bezeichnet Schienmann (2002) nur den Teil einer strukturierten
Anforderung als

”
Anforderungsbeschreibung“, der eine Beschreibung der jeweiligen

Chancen Risiken

In
fo
rm

a
l

• Hohe Verständlichkeit a, b • Redundanzen a

• Volle Ausdrucksfähigkeit c • Widersprüche a

• Geringer Schulungsaufwand d, g • Unübersichtlichkeit a

• Kurze Einarbeitungszeit d, e • Interpretationsspielraum f, g, h

S
e
m
i-
fo
rm

a
l • Verringerung der Komplexität i, d • Limitierte Ausdrucksfähigkeit d

• Schnelle Memorisierung d • Mehraufwand g

• Komplizierung g

• Modellierungskenntnisse g

• Fehlender Modellierungswillen a

F
o
rm

a
l

• Eindeutige Spezifizierung j • Methodenkenntnisse b, j, k

• Hochgradig reflektiv j, b • Mehraufwand b, l

• Gefahr von Mehrkosten j, k

• Komplizierung b

• Fehlende Akzeptanz b, l, k

Tabelle 1.3: Chancen und Risiken einzelner Dokumentationstechniken (Benutzersicht)

a vgl. Rupp (2013)
b vgl. Kurth (1991)
c vgl. Rupp (2012)
d vgl. Pohl (2007)
e vgl. Kalenborn (2014)
f vgl. IEEE (1998)
g vgl. Rupp (2014)
h vgl. Grechenig (2010)
i vgl. Rupp und Queins (2012)
j vgl. Sommerville (2009)
k vgl. Hall (1990)
l vgl. Hood und Wiebel (2005)



28 1 Anforderungserhebung und Dokumentation

Anforderung enthält, die
”
möglichst kurz und prägnant in einigen Sätzen formuliert

werden [sollte]“ (Schienmann, 2002, S. 152). Die wesentlichen Aspekte
”
Umfang“ und

”
Prägnanz“ sind im Folgenden zu berücksichtigen:

Definition 1.4.1 (Anforderungsbeschreibung)
Bei Anforderungsbeschreibungen handelt es sich um informale Fließtexte in
natürlicher Sprache, die eine Menge von Anforderungen an ein Softwareprodukt
beinhalten. Sie sind in der Ausdrucksfähigkeit unbeschränkt und können sowohl in
der Länge als auch im Detailgrad und Abstraktionsniveau stark variieren.

Demnach wird Anforderungsbeschreibungen in dieser Arbeit kein hoher Grad an
Strukturierung und Formalisierung sowie Prägnanz zugesprochen. Vielmehr handelt
es sich um Freitexte (vgl. Beispiel 1.4.1), die oftmals

”
[...] schwammige, unvollständige,

widersprüchliche Anforderungen auf unterschiedlichem Abstraktionsniveau – von
Beispielen bis hin zu globalen Aussagen [beinhalten]“ (Balzert, 2009, S. 507).
Auch der Umfang der Anforderungsbeschreibungen schwankt stark. Dabei kann es

sich um einen einzigen, aber prägnanten Satz mit zentralen Softwareanforderungen
bis hin zu einem sehr umfangreichen Text mit vielen Details handeln, der aber mit
unwichtigen Angaben (Off-Topic) versetzt ist (vgl.

”
like my movies from my summer

holidays in ultra hd“ in Beispiel 1.4.1).

Beispiel 1.4.1 (Anforderungsbeschreibung)

I want an application with that i can write, read and mark my e-mails (as rea-
d/unread). Also, i0 want to mark important1 e-mails with stars. The application
must handle big2 attachements3, like my movies from my summer holidays in
ultra hd. Of course, the application must filter undesired emails. It would be
great, if e-mails could be marked as read or may also be deleted automatically
by defined rules. A nice and intuitive4 user interface to sort e-mails in folders5
would be desirable. Of course, the application must be able to format texts (bold,
italic, underline, ...). e-mails that I have not yet completed, should be stored in a
separate folder. It would be great, if i could specify a due date for these draft
e-mails, and also for incoming e-mails. Also reminders for e-mails, for example
location based, would be great thing.

Beispiel 1.4.1 enthält mehrere problematische Textstellen. Die Problematik bezieht
sich dabei sowohl auf das Textverständnis, als auch auf die Qualität der Anforderung.
So werden Angaben wie

”
important“ (1) und

”
big“ (2) genutzt, die als vage zu

bezeichnen sind. Darüber hinaus erschweren Rechtschreibfehler (
”
attachements“, (3)

bzw.
”
i“ (0)) sowie Ambiguitäten und Schreibvarianten (4) einzelner Wörter (

”
e-

mails“,
”
emails“) die maschinelle Textverarbeitung. Auch vermeintlich vollständige

Anforderungen sind vage (
”
stored in a separate folder“ (5) → Was für ein Ordner?).

Anforderungsbeschreibungen als vorläufiges Ergebnis der informalen Anforderungs-
dokumentation (s.Abschnitt 1.3.1) weisen, wie in Beispiel 1.4.1 ersichtlich, eine
Vielzahl an Defiziten auf und müssen vor einer (maschinellen) Weiterverarbeitung
überarbeitet werden. Phänomene wie Ungenauigkeit und Unvollständigkeit werden
daher im folgenden Kapitel 2 als Schwerpunkt dieser Arbeit gesondert diskutiert.



Ungenauigkeit
und Unvollständigkeit 2

Anforderungen sind
”
[...] naturgemäß zunächst vage, verschwommen, mehrdeutig, un-

zusammenhängend, unvollständig und gelegentlich sogar widersprüchlich“ (Partsch,
2010, S. 18). Unvollständigkeit und Ungenauigkeit sind dabei Phänomene, die ins-
besondere in der informalen Anforderungsbeschreibung auftreten und die Anforde-
rungsqualität erheblich mindern können (s.Abschnitt 1.3.4). Dabei kann die Ent-
stehungsursache variieren, wie Berry (2000) anhand eines

”
Anforderungseisbergs“

(engl. requirements iceberg) darstellt (vgl. Abbildung 2.1).

Endanwendersicht}Ungenauigkeit

Unvollständigkeit

Anforderungen

Abbildung 2.1: Requirements Iceberg. In Anlehnung an Berry (2000)

Ein Stakeholder, in diesem Fall ein Endanwender, kennt nur einen Teil der Anforde-
rungen, die an eine Softwareapplikation gestellt werden (Spitze des Eisbergs) und
kann demnach auch nur diese beschreiben. In diesen Anforderungsbeschreibungen
können Ambiguität und Vagheit als Formen von Ungenauigkeit auftreten. Darüber
hinaus gibt es Anforderungen, die dem Stakeholder (z. B. Endanwender, Entwickler)
nicht bekannt sind (Rumpf des Eisbergs) und daher auch nicht beschrieben wer-
den können (Unvollständigkeit). Sie können aber wesentlichen Charakter für die
Gesamtfunktionalität der Applikation haben (Pohl, 2008, S. 9).
Unvollständigkeit und Ungenauigkeit finden sich auch in der Fehlertypologie von

Avci (2008, S. 93) wieder. Als Anforderungsfehler bezeichnet Avci (2008, S. 93)
”
[...]

ein unzureichendes Merkmal oder ein erwartetes, jedoch fehlendes Merkmal eines Ar-
beitsergebnisses der Anforderungsanalyse, sofern es eine Änderung in diesem Ergebnis
notwendig macht“. Dabei werden zwei Arten von Fehlern unterschieden: Diejenigen,
die in einzelnen Anforderungen auftreten und jene, die in oder durch eine Beziehung
zwischen zwei oder mehreren Anforderungen entstehen (vgl. Abbildung 2.2).

29



30 2 Ungenauigkeit und Unvollständigkeit

Anforderungsfehler

Beziehung zwischen zwei 
oder mehreren Anforderungen

eine Anforderung

Inkonsistente Anforderungen

Redundante Anforderungen

fehlende Anforderung

ambige Anforderung

falsche Anforderung

unvollständige Anforderung

missverständliche Anforderung

Abbildung 2.2: Typologie von Anforderungsfehlern.
In Anlehnung an Avci (2008, S. 93)

In dieser Arbeit liegt der Fokus auf Unvollständigkeit und Ambiguität in der Be-
schreibung einzelner Anforderungen. Unvollständigkeit bezeichnet dabei das Fehlen
einer Ausprägung einer vorhandenen Anforderung. Es wird demnach von einer
unvollständigen Anforderung oder auch incomplete individual requirement nach Fi-
resmith (2005, S. 35 ff.) gesprochen. Demnach ist nicht das gänzliche Fehlen einer
obligatorischen Anforderung gemeint (fehlende Anforderung). Dies ist aufgrund der
Fokussierung auf natürlichsprachliche Anforderungen auch nicht umsetzbar, da – im
Gegensatz zu formalen Anforderungsspezifikationen – keine Konsistenzprüfung und
Validierung ermöglicht wird.

Die von Avci (2008, S. 93) als problematisch aufgeführte ambige Anforderung wird
im Folgenden besonders behandelt. Zum einen, weil bereits der Ambiguitätsbegriff,
der von Avci (2008) nicht definiert wird, umstritten ist und einer Erläuterung bedarf.
Zum anderen, weil für eine differenziertere Betrachtung zwischen mehreren Formen der
Ambiguität in natürlicher Sprache zu unterscheiden ist. Um dies zu strukturieren, wird
die Bezeichnung der

”
Ungenauigkeit“11 verwendet, die als Oberbegriff die verwandten

Phänomene Ambiguität und Vagheit12 zusammenführt (vgl. Abbildung 2.3). Dies
geschieht wohl wissend, dass es keine allgemeingültige Definition und Aufteilung des
Mehrdeutigkeitsphänomens gibt.
Anders als Abbildung 2.3 suggeriert, handelt es sich bei Ambiguität und Vagheit

nicht um isolierte Phänomene, sondern um Ausprägungen von Ungenauigkeit, die auch
gleichzeitig auftreten können. Beide eint, dass sie unvollständiges Wissen darstellen
und damit eine gewisse Unsicherheit bei der Interpretation erzeugen. Nichtsdestotrotz
gelten sie insofern als eigenständige Phänomene, als dass sie unterschiedlich zu
kompensieren sind.

11Siehe auch Dudenredaktion (2016, S. 1847).
12Das Phänomen der Vagheit ist nur begrenzt Gegenstand dieser Arbeit. Mehr Informationen zur

Vagheit im Anforderungskontext geben Geierhos und Bäumer (2017).



2.1 Ambiguität 31

Ungenauigkeit

Ambiguität

Lexikalische Ambiguität

Syntaktische Ambiguität

Koordinationsambiguität

Anbindungsambiguität

Vagheit

Homonymie 

Polysemie

Referentielle Ambiguität

Elliptische Ambiguität

Wird nicht weiter detailliert,
da Vagheit nicht Gegenstand 

dieser Arbeit ist

Abbildung 2.3: Der Begriff der Ungenauigkeit

Im Folgenden werden sowohl die Ausprägungen von Ambiguität als auch Un-
vollständigkeit im Kontext dieser Arbeit und im Hinblick auf Kompensati-
onsmöglichkeiten beschrieben.

2.1 Ambiguität

In der modernen Sprachwissenschaft steht der Begriff der Ambiguität für die Mehr-
deutigkeit sprachlicher Äußerungen (Pfeifer, o. D.), die bewusst oder unbewusst
verwendet werden kann (Berghuber, 2008). Nach Löbner (2003, S. 53 ff.) können
Wörter zum Beispiel mehrere Bedeutungen innehaben (lexikalische Ambiguität) und
auch Sätze mehrere Lesarten erlauben (syntaktische Ambiguität).

Definition 2.1.1 (Ambiguität)
Eigenschaft von Ausdrücken natürlicher Sprachen, denen mehrere Interpretationen
[(auch: Lesarten)] zugeordnet werden können, bzw. die unter lexikalischem, semanti-
schem, syntaktischem u. a. Aspekt in der linguistischen Beschreibung mehrfach zu
spezifizieren sind. (Bußmann, 1983, S. 26)

Beispiel 2.1.1 (Ambiguität)

”
Ein Rechtsklick mit der Maus1 schließt das Fenster.“

”
Die Maus2 knabbert an der Weihnachtsschokolade.“

Beispiel 2.1.1 zeigt exemplarisch einen Fall von lexikalischer Ambiguität. Das Wort

”
Maus“ kann je nach Lesart ein Peripheriegerät (Maus1) oder ein Tier (Maus2)



32 2 Ungenauigkeit und Unvollständigkeit

beschreiben. Aus dem Kontext
”
Rechtsklick“ wird für den menschlichen Leser die

korrekte Bedeutung von
”
Maus“ schnell ersichtlich und auch die meisten automa-

tischen Verfahren benötigen diese Kontext-Trigger zur Kompensation (Carstensen
et al., 2010, S. 383). Diese Auflösung von Ambiguitäten wird als Disambiguierung
bezeichnet und wird zumeist über den sprachlichen oder außersprachlichen Kontext
realisiert (Bußmann, 1983, S. 26):

Definition 2.1.2 (Disambiguierung)
Disambiguierung ist der Vorgang und das Ergebnis der Auflösung lexikalischer oder
struktureller Mehrdeutigkeit sprachlicher Ausdrücke durch den sprachlichen oder
außersprachlichen Kontext.

Die Disambiguierung ist dabei abhängig von der Form der Ambiguität. Daher wird
im Folgenden auf die Besonderheiten der lexikalischen, syntaktischen sowie der
referentiellen Ambiguität eingegangen, auf die sich in dieser Arbeit konzentriert wird.

2.1.1 Lexikalische Ambiguität

Lexikalische Ambiguität (engl. lexical ambiguity) bezieht sich auf die Mehrdeutigkeit
eines einzelnen Wortes (Lexem), also auf

”
Ausdrücke mit derselben Laut- und/oder

Schriftform und mehr als einer lexikalischen Bedeutung“ (Löbner, 2003, S. 58).
Dabei wird zwischen Homonymie (Gleichnamigkeit) und Polysemie (Vieldeutigkeit)
unterschieden (z. B. Berry et al., 2003, S. 10), wobei diese Unterscheidung umstritten
ist (Löbner 2003, S. 61; Lehmann 2013).
Von einem Homonym wird gesprochen, wenn ein Lexem den gleichen Wortkörper

(Laut- und/oder Schriftform) wie ein weiteres Lexem hat,
”
aber in der Bedeutung und

Herkunft verschieden ist“ (Dudenredaktion, 2016, S. 887). Dies wird in Beispiel 2.1.2
anhand des Wortes

”
Ton“ illustriert, das in der unterschiedlichen Verwendung des

Wortkörpers keine gemeinsame Bedeutungsfacette hat.

Beispiel 2.1.2 (Homonymie)

”
Ein Ton1 erklingt bei falschen Eingaben.“ (Klang)

”
Die Kinder formten Töpfe aus Ton2.“ (Bodenart)

Während
”
[...] Fälle von Homonymie sehr selten und zufallsbedingt sind“ (Löbner,

2003, S. 60), kommt Polysemie im Alltag oft vor. Dabei handelt es sich um Lexeme,
die gewollt

”
mehrere miteinander verbundene Bedeutungen“ (Löbner, 2003, S. 60)

haben.
”
Polysemie entsteht durch Schaffung abgeleiteter Bedeutungen auf der Basis

einer Grundbedeutung“ (Lehmann, 2013), was anhand des Beispiels 2.1.3 durch eine
kontextbasierte Disambiguierung des Wortes

”
Schreibtisch“ aufgezeigt wird.

Beispiel 2.1.3 (Polysemie)

”
Vor dem Start wird eine Verknüpfung auf dem Schreibtisch1 erzeugt.“ (Desktop)

”
Auf dem Schreibtisch2 stapelt sich Papier.“ (Möbelstück)

”
Schreibtisch“ kann sowohl für ein Möbelstück, als auch für eine graphische Be-
nutzeroberfläche stehen – in beiden Fällen dient das Wort zur Beschreibung einer



2.1 Ambiguität 33

Ablagemöglichkeit. Das Auftreten von Polysemie erklärt Löbner (2003) durch eine
natürliche ökonomische Tendenz von Sprache – verfügbare Ausdrücke mit ähnlicher
Bedeutung werden für neue Zwecke wiederverwendet. Dies bedeutet, dass jede dieser
Bedeutungen auch gelernt werden muss (Löbner, 2003, S. 60).
Demnach ist lexikalische Ambiguität in der Erkennung und Disambiguierung noch

insofern dankbar, als das die linguistische Reflexion einzelner Lexeme hinreichend ist,
insbesondere dann, wenn die Anzahl möglicher Lesarten hoch ist oder die einzelnen
Lesarten stark divergieren (Ceccato et al., 2004; Sennet, 2016). Hierbei wird auf beste-
hende linguistische Ressourcen zurückgegriffen (z. B.Rojas und Sliesarieva, 2010), um
die potentielle Ambiguität zu erkennen (z. B.Kipper-Schuler, 2005). Darüber hinaus
existieren Techniken wie das POS-Tagging , die Ambiguitäten erkennen können, die
aufgrund der Wortart entstehen (z. B.Nomen

”
Book“ und Verb

”
to book“).

Eine Besonderheit bei der lexikalischen Ambiguität ist, dass die Ambiguität das
Lexem als Ganzes betrifft. Vielfach wird daher in der Literatur auf Wortlisten
(auch:Ambiguitätslisten) zurückgegriffen, die eine Auswahl ambiger Begriffe enthalten
(z. B. Lami, 2005; Gleich et al., 2010; Nigam et al., 2012; Génova et al., 2013; Tjong
und Berry, 2013), statt Merkmale zu identifizieren. Allerdings können nicht nur
Lexeme ambig sein, sondern auch Satzgefüge (syntaktische Ambiguität).

2.1.2 Syntaktische Ambiguität

Syntaktische Ambiguität tritt nach Berry et al. (2003, S. 10 f.) auf, wenn eine Sequenz
von Wörtern zu mehr als einer grammatikalischen Struktur führen kann, von der
jede eine andere Bedeutung innehat (vgl. auch Ernst 2003, S. 87). Da es sich bei
syntaktischer Ambiguität um ein hochkomplexes Problem handelt, ist auch die
Effizienz möglicher Disambiguierungslösungen zu berücksichtigen (Carstensen et al.,
2010, S. 312), die sich nach der Art der syntaktischen Ambiguität richten. In dieser
Arbeit liegt der Fokus auf der Koordinations- und PP-Anbindungsambiguität.

Beispiel 2.1.4 (Koordinationsambiguität)

”
[[Die Anwendung] [erstellt [[ausführliche Berichte]1 und Dokus]]].“

”
[[Die Anwendung] [erstellt [ausführliche [Berichte und Dokus]]2]].“

Unter
”
Koordination“ werden in Anlehnung an Bußmann (1983, S. 276)

”
[...] syn-

taktische Struktur[en verstanden], die aus zwei oder mehr Konjunkten (= Wörter,
Satzglieder oder Sätze)“ bestehen, wobei die Elemente durch

”
koordinierende Kon-

junktionen (und, aber, denn) verknüpft sind“.
So ist in Beispiel 2.1.4 unklar, ob sich das Adjektiv

”
ausführliche“ nur auf das

erste Konjunkt
”
Berichte“ oder auf beide

”
Berichte“ und

”
Dokumentation“ bezieht.

Laut Berry et al. (2003, S. 11) liegen diese Ambiguitäten vor, wenn mehr als eine
Konjunktion in einem Satz genutzt oder eine Konjunktion zusammen mit einem
Modifikator genutzt wird (vgl. Beispiel 2.1.4).
Ebenfalls relevant ist die Anbindungsambiguität bezogen auf Präpositionalphrasen

(engl.PP-attachment ambiguity). Mehl et al. (1998) stellen diesbezüglich in einer

”
Untersuchung von 710 PP-Belegen [fest, dass][...] nicht weniger als 502 (=70,7%)
von ihrer syntaktischen Position her nicht eindeutig zuzuordnen [sind]“ (Mehl et al.,
1998, S. 1). Langer et al. (1997, S. 1) weisen darauf hin, dass auch fachsprachliche



34 2 Ungenauigkeit und Unvollständigkeit

Texte von Anbindungsambiguität geprägt sind. Dabei ist die
”
PP-Zuordnung [...] ein

typisch computerlinguistisches Problem, weil zu seiner Lösung komplexes semantisches
Wissen erforderlich ist, das in keinem sprachverarbeitenden System zur Verfügung
steht“ (Mehl et al., 1998, S. 2).

Beispiel 2.1.5 (PP-Anbindungsambiguität)

”
[[Die Software][verschickt[das Bild] [mit einem Knopfdruck]PP]1]“

”
[[Die Software][verschickt[das Bild [mit einem Knopfdruck]PP]2]]“

Am Beispiel 2.1.5 zeigt sich, dass die Ambiguität darin besteht, dass die
Präpositionalphrase

”
mit einem Knopfdruck“ das Instrument der Handlung (PP1)

innerhalb der Software sein kann (Verbalphrase) oder aber das Bild näher spezifiziert
(PP2), auf dem der Vorgang als solches illustriert wird. Hierbei ist PP2 die Konsti-
tuente einer Nominalphrase. Insgesamt ergeben sich somit zwei Lesarten durch die
unterschiedliche syntaktische Anbindung der PP.
Carstensen et al. (2010, S. 302) weisen darauf hin, dass die

”
Wahrscheinlichkeit

einer PP-Anbindung in den allermeisten Fällen nicht nur strukturell determiniert ist,
sondern auch stark vom lexikalischen Material abhängt“. Hindle und Rooth (1993)
verbessern beispielsweise die syntaktische Disambiguierung durch die

”
Lexikalisierung

einer Grammatik erheblich“ (Carstensen et al., 2010, S. 328). Dies bedeutet, dass
die Disambiguierung unter Zuhilfenahme des lexikalischen Kontexts innerhalb eines
automatisch geparsten Korpus geschieht (Hindle und Rooth, 1993).
Hingegen entsteht beispielsweise die elliptische Ambiguität nicht primär durch die

Struktur, sondern durch Auslassungen (auch:Aussparungen). Auslassungen bezeich-
nen dabei ein fehlendes, lexikalisch oder syntaktisch notwendiges Element. Ellipsen
sollten im Natural Language Processing (NLP) aufgelöst werden, da sie der automa-
tischen Verarbeitung Informationen vorenthalten, die für den menschlichen Leser
sichtbar sind (McShane und Babkin, 2016, S. 2; McShane und Babkin, 2015).
Normalerweise können diese fehlenden Elemente sehr wohl

”
aus dem sprachlichen

Kontext oder der Redesituation [rekonstruiert werden]“ (Bußmann, 1983, S. 117).
Ambig wird ein Satz erst dann, wenn dem Leser nicht eindeutig klar wird, ob ein
Element fehlt (Berry et al., 2003, S. 11) oder wie es im Kontext zu kompensieren ist.
Beispiel 2.1.6 (a) zeigt das Ergebnis einer Tilgungstransformation13. Es ist unklar,
ob

”
kennt“ ausgelassen wurde und es sich somit um eine Ellipse handelt.

Beispiel 2.1.6 (Elliptische Ambiguität)
(a)

”
Ich kenne einen besseren Programmierer als Jens [kennt]“

(b)
”
Alle Chatpartner benehmen sich [gut].“

Im Gegensatz zur lexikalischen Ambiguität kann die syntaktische Ambiguität nur
begrenzt auf Grundlage einzelner Wörter erkannt werden, da Beziehungen und
Abhängigkeiten zwischen Wörtern zu berücksichtigen sind. Gleichwohl nutzen Gleich
et al. (2010, S. 222) Signalwörter (z. B.

”
only“,

”
also“,

”
even“) als Merkmal, um

Lexeme zu erkennen, die häufig für syntaktische Ambiguität verantwortlich sind sowie
die Konjunktionen

”
and“ sowie

”
or“ in Kombination (Gleich et al., 2010, S. 222).

13Die eckigen Klammern stellen in diesem Beispiel fehlende Elemente dar.



2.1 Ambiguität 35

Auch Chantree et al. (2007) nutzen Signalwörter als Merkmale zur Erkennung
möglicher strukturell ambiger Sätze (Koordinationen).
Hingegen basiert die Arbeit von Agarwal und Boggess (1992) auf Strukturinforma-

tionen wie POS-Tags zur Erkennung von Konjunktionen. Diese können auch im Falle
referentieller Ambiguität genutzt werden. Gleich et al. (2010, S. 222) nutzen zur Erken-
nung potentieller referentieller Ambiguität als Merkmal den Abgleich von Pronomina
(z. B.

”
she“). Yang et al. (2010c) ergänzen die reinen POS-Tags durch sogenannte

”
Construction patterns“ wie

”
adj n1 c n2“ als Merkmale für Koordinationsambiguität

(Yang et al., 2010c, S. 54).
Auch im Falle von PP-Anbindungsambiguität weist beispielsweise die Struktur

V NP PP als Merkmal auf potentielle Ambiguität hin (Agirre et al., 2008, S. 318).
Es ist zunächst nicht zu erkennen, ob die PP zur Nominalphrase oder zum Verb
zugeordnet werden muss (s. Abschnitt 2.1.2).
Die Erkennung und das Auflösen von Ellipsen gilt als sehr herausfordernd (Bos und

Spenader, 2011; Hardt, 1997) und es ist unrealistisch, eine vollständige Auflösung aller
Ellipsen auf domänenübergreifenden Freitexten zu erwarten (McShane und Babkin,
2016, S. 2). Laut Pinkal (1985, S. 76 f.) lässt sich elliptische Ambiguität darüber hinaus
nicht als isoliertes syntaktisches Problem begreifen. Als Beispiel können mehrstellige
Prädikate dienen (Valenz), bei denen einzelne Argumentpositionen unbesetzt sind
(vgl.

”
gut“ als Argument des Prädikats benehmen). Das Fehlen bzw. das Auslassen

mindestens eines Arguments kann zu Ambiguität führen (s. Abschnitt 2.3).

2.1.3 Referentielle Ambiguität

Ein Grenzfall hinsichtlich der Charakterisierung von Ambiguität ist die referentielle
Ambiguität. Sie kann entweder der syntaktischen oder der semantischen Ambiguität
zugeordnet werden, je nachdem ob innerhalb eines Satzes referenziert wird oder über
den Satz hinaus.
Als Referenz wird die Beziehung zwischen einem Wort oder einem Satz und einer

Entität in der realen Welt, welche das Wort oder der Satz beschreibt, bezeichnet
(Berry et al., 2003, S. 12). Bußmann (1983, S. 428) spricht hierbei von der

”
Bezugnah-

me auf innersprachlichen und außersprachlichen Kontext durch sprachliche Mittel“.
In diesem Zusammenhang werden Anaphern als zurückverweisendes Element (Refe-
renzausdruck) bezeichnet, die als Referenz in Abhängigkeit einer zuvor genannten
Referenz eines anderen Elements stehen. Anaphern können daher nicht aufgelöst
werden, ohne den Kontext oder einen weiteren Referenzausdruck (engl.mention) her-
anzuziehen (Stede, 2012, S. 41). Das Auflösen von Anaphern wird Anaphernresolution
genannt (vgl. Definition 2.1.3).

Definition 2.1.3 (Anaphernresolution)

”
The task of finding an antecedent for each anaphora in a text. An anaphor is
characterized by the fact that its discourse referent can only be identified when its
antecedent is interpreted.

’
Anaphora‘ is an irreflexive, non-symmetrical relation“

(Stede, 2012, S. 41).

Verweisen mindestens zwei Referenzausdrücke innerhalb eines Textes auf eine iden-
tische Entität, wird von Koreferenz gesprochen (Mitkov, 2014, S. 5). Eine Sequenz



36 2 Ungenauigkeit und Unvollständigkeit

aller Referenzausdrücke, die einer spezifischen Entität zugeordnet werden können,
wird Koreferenzkette (engl. coreferential chain) genannt und ist Ergebnis der Korefe-
renzresolution (vgl. Definition 2.1.4).

Definition 2.1.4 (Koreferenzresolution)

”
The task of partitioning the set of mentions of discourse referents in a text into
classes (or

’
chains‘) corresponding to those referents. Since referents are identical,

’
coreference‘ is an equivalence relation (reflexive, symmetrical, transitive)“
(Stede, 2012, S. 41).

Die Wiederaufnahme einer zurückliegenden Textstelle (anaphorische Verbindung)
wird in Beispiel 2.1.7 anhand eines Personalpronomens aufgezeigt. Das Personalpro-
nomen (

”
Sie“) referiert auf das zuvor genannte Antezedens (

”
Dateien“). Referentielle

Ambiguität entsteht nun, wenn eine Anapher sich auf mehr als ein Antezedens
beziehen kann (Berry et al., 2003, S. 12).
Wie Beispiel 2.1.7 zeigt, könnte auch

”
E-Mails“ mit

”
Sie“ gemeint sein. Neben

Personalpronomina können auch andere Pronomina und Proformen als Stellvertreter
im Text fungieren.

Beispiel 2.1.7 (Anaphorische Ambiguität)

Die E-Mails enthalten mehrere Dateien. Sie sind groß.

Antezedens2
Antezedens1

Hier wird ersichtlich, dass die unterschiedlichen Ausprägungen von Ambiguität nicht
isoliert voneinander betrachtet werden können. Genauso verhält es sich mit dem
Phänomen der Ungenauigkeit als Ganzes: Vagheit und Ambiguität sind verwandte
Phänomene, die in Kombination auftreten können. Vagheit ist dabei weitaus mehr
als eine Unterform der Ambiguität (Dönninghaus, 2005, S. 64 f.): Sie wird in vielen
Anwendungen und Domänen als ein eigenständiges, komplexes, sprachliches Problem
diskutiert (z. B. Petermann 2014; Dönninghaus 2005; Fries 1980).
Als grobes Unterscheidungsmerkmal stellt Pinkal (1991, S. 264) fest:

”
Vage Aus-

drücke haben ein unbestimmtes Denotat; ambige Ausdrücke besitzen mehrere alter-
native Denotate“. Es kann darüber hinaus nach Pinkal (1991) keine unbestimmte
Lesart eines ambigen Ausdrucks geben:

”
Ambige Ausdrücke sind, im Gegensatz zu

vagen, desambiguierungs- bzw. präzisierungsbedürftig“ (Pinkal, 1991, S. 264). Um
eine Unterscheidung der beiden Phänomene zu erleichtern, wird die Vagheit im
Folgenden kurz beschrieben.

2.2 Vagheit

Die Komplexität des Vagheitsphänomens zeigt sich schon an den vielen Definitions-
versuchen, die zum Teil miteinander unvereinbar sind (Tye 1998; Dönninghaus 2005,
S. 159 ff.). Fries (1980, S. 4 ff.) sieht in der Vagheit eine Ausprägung von Mehrdeu-
tigkeit, wobei er Mehrdeutigkeit als einen Oberbegriff für jegliche Möglichkeit der



2.3 Unvollständigkeit 37

mehrfachen Interpretation von Morphemen, Lexemen etc. wählt, unter den auch
Ambiguität fällt. Bußmann (1983, S. 567) sieht in Vagheit ebenfalls einen

”
Teilaspekt

von sprachlicher Mehrdeutigkeit“ und betrachtet sie somit als einen
”
komplementären

Begriff zu Ambiguität“ (Bußmann, 1983, S. 567).

Definition 2.2.1 (Vagheit)

”
Ein sprachlicher Ausdruck (Prädikat) ist vage, wenn für bestimmte Objekte durch
die Bedeutung des Prädikats trotz Kenntnis der relevanten Tatsachen nicht eindeutig
bestimmbar ist, ob sie unter den ausgedrückten Begriff fallen oder nicht, das heißt,
wenn Grenzfälle existieren. Die Extension eines durch ein vages Prädikat ausge-
drückten Begriffs hat also unscharfe Grenzen.“
(Kluck 2014, S. 14; Grice 1991, S. 177)

Berry et al. (2003, S. 14) diskutieren sprachliche Vagheit im Kontext von NFA, die als
vage gelten, wenn nicht klar ist, wie sie zu messen sind. Sie nennen als Beispiel eine

”
schnelle Antwortzeit“ (engl. fast response time). Eine präzise Form der Beschrei-
bung und Messung ist nicht gegeben und führt zu willkürlicher Quantifizierung, die
wiederum offen lässt, ob der Kern der Anforderungen umgesetzt wurde (Berry et al.,
2003, S. 14): Was für einen Stakeholder schnell sein kann, kann für einen anderen
noch von moderater Geschwindigkeit sein.
Laut Löbner (2003, S. 62) ist Vagheit

”
bei allen Konzepten zu verzeichnen, die

Merkmale beinhalten, deren Wert auf einer kontinuierlichen Skala variieren kann“.
Ob etwas als groß, schnell oder schmackhaft bezeichnet wird, ist demnach

”
eine Frage

des Grades auf einer offenen Skala“ (Löbner, 2003, S. 63). Laut Löbner (2003, S. 63)
sind dabei

”
steigerbare Adjektive [...] generell vage“.

Beispiel 2.2.1 (Vagheit in einer Anforderung)

”
Es müssen E-Mails mit großen Anhängen verschickt werden können“.

Das Phänomen der Vagheit kann, wie auch die lexikalische Ambiguität, auf Basis von
Wortlisten erkannt werden. So nutzen beispielsweise Gleich et al. (2010) Vagheitslisten,
die zum Teil auf der Arbeit von Berry et al. (2003) basieren. Auch sind, wie bereits
angeführt,

”
steigerbare Adjektive [...] generell vage“ (Löbner, 2003, S. 63) – sie

können daher als Merkmal potentieller Vagheit herangezogen werden. Darüber
hinaus können nach Pinkal (1985, S. 223) nur relative Adjektive durch

”
sehr“ und

”
ziemlich“ modifiziert werden, was unter anderem in Geierhos und Bäumer (2017)
zur maschinellen Erkennung von Vagheit herangezogen wird.
Löbner (2003, S. 63) weist darauf hin, dass Vagheit nicht isoliert von Ambiguität

zu betrachten ist, sondern beides auch gemeinsam auftreten kann. So ist jede der
Bedeutungsvarianten von

”
schwer“ (

”
gewichtig“,

”
schwierig“,

”
gravierend“ usw.)

für sich genommen vage.
”
Die zugrunde liegenden Skalen sind klar verschieden

(Polysemie), aber wo genau im konkreten Fall die Grenze zwischen
’
schwer ‘ und

’
nicht schwer ‘ zu ziehen ist, ist eine Frage des Grades“ (Löbner, 2003, S. 63).

2.3 Unvollständigkeit

Unvollständigkeit ist in dieser Arbeit ebenfalls unter dem Aspekt der Softwarean-
forderungen zu definieren. Dabei ist, wie in Kapitel 2 bereits angeführt, nicht das



38 2 Ungenauigkeit und Unvollständigkeit

grundsätzliche Fehlen von Anforderungen unter Unvollständigkeit zu verstehen, son-
dern die lückenhafte Ausprägung einer benannten Anforderung (Auslassungen). Die
Relevanz zeigt sich in der Beschreibung von Massey et al. (2014, S. 86), die hier als
erster Definitionsversuch herangezogen wird (vgl. Definition 2.3.1).

Definition 2.3.1 (Unvollständigkeit)
Unvollständigkeit tritt auf, wenn eine Aussage nicht genügend Informationen beinhal-
tet, um eine einzige klare Auslegung zu ermöglichen.
(Massey et al., 2014, S. 86)

Diese Definition lässt allerdings offen, was unter
”
enough information“ zu verstehen

ist. Diesbezüglich können Alshazly et al. (2014, S. 518) herangezogen werden, die den
Fehlertyp der Auslassung (engl. omission) als

”
necessary information related to the

problem being solved by the software has been omitted from requirements document
or are not complete“ (Alshazly et al., 2014, S. 518) definieren.

Interessant an dieser Definition ist die Problemfokussiertheit, die das Spektrum
fehlender Informationen eingrenzt. Eine Anforderung ist demnach unvollständig,
wenn aufgrund von fehlender, zur Problemlösung notwendiger Informationen, keine
klare Interpretation der Anforderung möglich ist. Firesmith (2005, S. 35) geht weiter
und versteht unter

”
necessary information“ einen Informationsumfang, der eine

Implementierung und Verifikation ohne zusätzliche Beschreibung ermöglicht. Ähnlich
findet sich dies auch bei Wiegers (2005, S. 20):

”
Jede Anforderung muss die erwartete

Funktionalität vollständig beschreiben. Sie muss alle Informationen enthalten, die der
Entwickler benötigt, um diese Funktionalität zu entwerfen und zu implementieren“.
Fehlende Informationen, die aber keinen negativen Einfluss auf die beabsichtige

Aussage einer Anforderungsbeschreibung haben, sind nach Lopes Margarido et al.
(2011, S. 4) zu vernachlässigen.

Beispiel 2.3.1 (Prädikat-Argument-Struktur)

”
IchArg0 möchte E-MailsArg1 mit großen Anhängen sendenPräd..“

Beispiel 2.3.1 zeigt eine Anforderungsbeschreibung, die das Senden von E-Mails
als Gegenstand hat. Um diese Anforderung programmiertechnisch umsetzen zu
können, müssen seitens der Softwareentwickler zwangsläufig Annahmen getroffen
werden, da nicht angeführt wird, ob eine E-Mail beispielsweise formatiert oder an
wen eine ausgehende E-Mail adressiert wird (z. B. an eine Person oder an eine Gruppe
von Personen). Bei beiden Auslassungen handelt es sich demnach um notwendige
Angaben, deren Fehlen erkannt und kompensiert werden muss. Hierzu werden in
dieser Arbeit zwei Verfahren herangezogen: (1) Die Erkennung von Unvollständigkeit
durch Hinzunahme von morpho-syntaktischem Wissen und (2) die Kompensation
durch domänenspezifisches Wissen (s. Kapitel 5).
Die Erkennung von Unvollständigkeit durch Hinzunahme von morpho-

syntaktischem Wissen (1) basiert in dieser Arbeit auf der Eigenschaft von Prädikaten,

”
Leerstellen um sich zu eröffnen, die in bestimmter Zahl und Art obligatorisch zu
besetzen sind“ (Bußmann, 1983, S. 567). Dies wird auch als Valenz bezeichnet und
entsprechende Leerstellen werden durch Argumente bestückt.

”
Je nachdem, wie

viele [Argumente] ein Prädikat verlangt, bezeichnet man es als ein-, zwei- oder



2.3 Unvollständigkeit 39

dreistellig“ (Bußmann, 1983, S. 41). So hat beispielsweise das Prädikat
”
senden“ aus

Beispiel 2.3.1 laut der Propbank (2010) drei Leerstellen zu besetzen (Arg0, Arg1,
Arg2), wobei nur zwei davon tatsächlich durch vorliegende Informationen aus dem
Text instantiiert werden:

• (Arg0) sender ”
Ich“

• (Arg1) sent ”
E-Mails mit großen Anhängen“

• (Arg2) sent-to –

Auf morpho-syntaktischer Ebene ist damit eine freie Leerstelle (engl.non-
instantiation) identifiziert worden. Ungeklärt ist, ob es sich um eine obligatorische
Information im Sinne der Problemlösung und damit um eine kompensationswürdige
Argumentposition handelt.
Um dies zu klären, wird das domänenspezifische Wissen (2) herangezogen. Die

Kompensation setzt voraus, dass Ressourcen existieren (z. B.Korpora, Ontologien),
die für Anforderungen einer Domäne die obligatorischen Informationen (Problem-
fokussiertheit) enthalten. Wissensabfragen, welche Informationen zu einer spezifi-
schen Anforderung erwartet werden und damit obligatorisch sind, können Unvoll-
ständigkeit aufdecken und beispielsweise durch hinterlegte Standardwerte kompensie-
ren (s. Abschnitt 5.5.5).





Stand der Wissenschaft
und Technik 3

Im Folgenden werden sowohl Arbeiten der maschinellen Anforderungsextraktion als
auch der Erkennung und Kompensation von Ambiguität sowie Unvollständigkeit
dargestellt. Zu Beginn wird im Sinne der weiteren Kapitelgliederung ein bestehendes
NLP-Verarbeitungskonzept besprochen. Es folgen Arbeiten zur Anforderungsextrak-
tion sowie zum Dokumententyp der Anforderungsbeschreibung (s.Abschnitt 3.2).
Darauf aufbauend werden in Abschnitt 3.3.1 bestehende Disambiguierungsansätze
dargelegt, bevor Ansätze zur Kompensation von Unvollständigkeit thematisiert wer-
den (s.Abschnitt 3.3.2) und eine Betrachtung bestehender kombinierter Ansätze
erfolgt (s. Abschnitt 3.3.3). Das Kapitel schließt mit Diskussion und Fazit.

3.1 Maschinelle Textanalyse im Kontext dieser Arbeit

Für Anforderungsbeschreibungen stellt Abbildung 3.1 einen in Geierhos und Bäumer
(2017) beschriebenen sequenziellen Ablauf der maschinellen Textverarbeitung dar,
der insbesondere auf die Extraktion semantischer Hauptkomponenten und die Kom-
pensation von Ungenauigkeit sowie Unvollständigkeit abzielt.

Anforderungs-
beschreibung

Endanwender

M
as

ch
in

el
le

 T
ex

ta
na

ly
se

Anforderungs-
beschreibungen

Ontologien

Informationsfluss
Obligatorische Ressourcen
Zusätzliche Ressourcen

Anforderungs-
extraktion

Disambiguierung

Auflösung 
von Vagheit

Kompensation von 
Unvollständigkeit

Trainingskorpora

Ähnlichkeitssuche

Template
Textverarbeitung

Testkorpora

Fe
hl

en
de

 In
fo

rm
at

io
ne

n

Domänenspe-
zifische Lexika

(Abschnitt 3.2)

(Abschnitt 3.2)

(Abschnitt 3.3.1)

(Abschnitt 3.3.2)

Abbildung 3.1: NLP-Verarbeitungsschritte im Arbeitskontext.
In Anlehnung an Geierhos und Bäumer (2017, S. 81)

41



42 3 Stand der Wissenschaft und Technik

Wenngleich auch nicht alle der in Abbildung 3.1 dargestellten Verarbeitungskom-
ponenten Gegenstand dieser Arbeit sind (z. B.Auflösung von Vagheit), so eignet
sich die Abbildung dennoch für die weitere Gliederung dieses Kapitels. Es werden
zum einen Extraktions- und Kompensationskomponenten in einer beispielhaften
Ausführungsreihenfolge dargestellt. Zum anderen wird der entsprechende Bedarf an
natürlichsprachlichen Ressourcen ersichtlich.
Zwar wird in Abbildung 3.1 auf die Darstellung obligatorischer Preprocessing-

Schritte14 (z. B. Satzendeerkennung) verzichtet, nichtsdestotrotz ist deren Anwendung
angesichts der in Kapitel 1.4 beschriebenen qualitativen Schwankungen innerhalb der
Anforderungsbeschreibungen indiskutabel wichtig und wird auch in Geierhos und
Bäumer (2017, S. 78 f.) diesbezüglich als elementar bezeichnet.
Ersichtlich wird, wie das konzipierte System Anforderungsbeschreibungen von

Endanwendern entgegennimmt und daraufhin Anforderungen extrahiert, was unter
anderem das Filtern von nebensächlichen Angaben beinhaltet. Der hier verarbeitete
Dokumententyp der Anforderungsbeschreibung wird bereits in Kapitel 1.4 behandelt
und im folgenden Szenario des OTF-Computings weiter vertieft (s. Abschnitt 3.2).
Den identifizierten Herausforderungen der maschinellen Verarbeitung von Anforde-
rungsbeschreibungen begegnend, werden anschließend geeignete Ansätze der Anfor-
derungsextraktion und der einhergehende Ressourcenbedarf diskutiert.
In Abbildung 3.1 folgen auf die Anforderungsextraktion die Disambiguierung, die

Auflösung von Vagheit und die Kompensation von Unvollständigkeit als isolierte Ver-
arbeitungskomponenten. Diese Komponenten dienen der Anforderungsaufbereitung,
bevor eine Ergebnisausgabe in Form eines Templates geschieht. Bestehende Ansätze
der Disambiguierung werden in Abschnitt 3.3.1 behandelt und umfassen sowohl die
lexikalische, syntaktische als auch die referentielle Disambiguierung.
Neben Ungenauigkeit ist Unvollständigkeit ein zentrales Thema der vorliegenden

Arbeit, zu dem es bereits ebenfalls eine Vielzahl von Vorarbeiten gibt. Diese Arbeiten
werden in Abschnitt 3.3.2 behandelt und decken die Erkennung und Kompensation
von Unvollständigkeit ab.
Es existieren darüber hinaus Ansätze, die mehrere Erkennungs- sowie Kompen-

sationsschritte kombinieren. Diese kombinierten Ansätze werden in Abschnitt 3.3.3
gesondert betrachtet, da sie mögliche Synergieeffekte sowie Limitationen aufzei-
gen und aufgrund ihres integrativen Systemcharakters besonderen Einfluss auf die
abschließende Diskussion und das Fazit in diesem Kapitel haben (s. Abschnitt 3.4).

3.2 Anforderungsextraktion im OTF-Computing

Um die zentrale Rolle der Anforderungsextraktion in dieser Arbeit besser zu verste-
hen, ist ein Blick auf die zu verarbeitenden Dokumententypen notwendig. Wie in den
Abschnitten 1.3 und 1.4 dargestellt, handelt es sich bei Anforderungsbeschrei-
bungen um eine Unterform der Anforderungsdokumentation bzw. -spezifikation, die
insbesondere durch ihren informalen Charakter und explizit durch zu erwartende
Ungenauigkeit und Unvollständigkeit geprägt ist. Sie ist damit das Ergebnis individu-
eller Rahmenbedingungen (z. B.Vorwissen der Stakeholder). Als Beispiel für diesen

14Diese notwendigen Preprocessing-Schritte werden gesondert in Kapitel C.1 dargestellt.



3.2 Anforderungsextraktion im OTF-Computing 43

Dokumententyp können Anforderungsbeschreibungen der Open Source-Bewegung
dienen, denen Eigenschaften wie ein hoher Anteil nebensächlicher, erläuternder Kom-
munikation und ein hoher Anteil an Ambiguitäten zugeschrieben werden. Diese
Eigenschaften sind insbesondere auf die große Anzahl an (heterogenen) Stakehol-
dern, deren unterschiedlichen Erfahrungsständen und Fachwissen sowie ein fehlendes
oder minimales Regelwerk zurückzuführen (Gill et al., 2014; Vlas und Robinson,
2011; Laurent und Cleland-Huang, 2009). Anforderungsbeschreibungen rücken damit
näher an einen informalen Dokumententyp heran, der allgemein als User Generated
Content (UGC) bezeichnet wird (s. insb. Moens et al., 2014, S. 7).

Wird die Thematik der Anforderungsbeschreibung bzw. -spezifikation im Kontext
des OTF-Computings betrachtet, liegt der Fokus bestehender Arbeiten auf der
Anwendung und Entwicklung semi-formaler bzw. formaler Spezifikationssprachen
für Softwareservices15. In erster Linie umfasst das die Service Specification Language
(SSL), die explizit zur umfassenden Spezifikation von Services entwickelt wurde
und unter anderem FA sowie NFA abdeckt (Platenius et al., 2016, S. 5 ff.). Darüber
hinaus entwickeln Huma et al. (2012) eine UML-basierte Beschreibungssprache, deren
Vorteil es ist, dass Stakeholder sich der bereits etablierten und gut dokumentierten
UML bedienen können und somit der Einarbeitungsaufwand geringer ausfallen kann.
Wie allerdings in Abschnitt 1.3.4 und darüber hinaus von Geierhos et al. (2015,

S. 277) angemerkt wird, ist jede Form der semi-formalen bzw. formalen Spezifikation
für Endanwender ungeeignet. Endanwender verfügen nicht über die notwendigen
Fachkenntnisse, kennen darüber hinaus gewisse Angaben (z. B.Vor- und Nachbedin-
gungen eines Services) nicht (vollständig) und können diese daher erst recht nicht
formal spezifizieren (Ferrari et al., 2014). Im Vergleich dazu können Anforderungsbe-
schreibungen von Endanwendern verfasst werden (s. Abschnitt 1.4), sind aber auch
im OTF-Kontext unstrukturiert, oftmals fehlerhaft (im Sinne von Grammatik und
Rechtschreibung), unvollständig und mehrdeutig. Dies steht im Kontrast zu den beste-
henden (semi-)formalen Spezifikationsmöglichkeiten, die bisher im OTF-Computing
zur Verfügung stehen16.
Eine weitere Herausforderung im Umgang mit Anforderungsbeschreibungen sind

fehlende linguistische Ressourcen, die Qualität und Eigenschaften aufweisen, wie sie
bei Anforderungsbeschreibungen im OTF-Computing zu erwarten sind. Tichy et al.
(2015) beschreiben diese Situation zutreffend im Hinblick auf natürlichsprachliche
Anforderungen:

”
Textbooks contain few examples and they seem to be written by

the authors or copied from other textbooks. Many examples about NLP requirements
processing use an artificial, strongly restricted language“ (Tichy et al., 2015, S. 161).
Ein Problem dieser selbst kreierten Anforderungsbeschreibungen ist, dass sie oftmals
idealtypisch sind oder bewusst auf einen bestimmten Problemfall hin gestaltet wurden
– sie unterscheiden sich daher teils erheblich von

”
echten“ Anforderungen.

15

”
A service is a software component that is deployed and running on a service provider’s platform.
One example for a service is Google Maps“ (Platenius, 2016, S. 11).

16An dieser Stelle sei angemerkt, dass Unvollständigkeit und Ungenauigkeit auch bei (semi-)formalen
Methoden nicht vollständig auszuschließen sind. So ist Unvollständigkeit im OTF-Computing
sowohl auf der Anfrageseite (Benutzeranforderungen) als auch auf der Anbieterseite (Services-
pezifikationen) vorzufinden. Die Gründe sind heterogen und reichen von Unwissenheit auf der
Anfrageseite bis hin zu Auslassung von Informationen zur Wahrung von Geschäftsgeheimnissen
auf Anbieterseite (Platenius et al., 2015, S. 7; Platenius, 2013, S. 716 f.).



44 3 Stand der Wissenschaft und Technik

Die Anforderungsextraktion im OTF-Computing sieht sich daher dem Problem
gegenüber, dass Trainingsdaten fehlen, auf denen die Merkmale von Anforderungs-
beschreibungen gelernt oder regelbasierte Ansätze entwickelt werden können. Es
bedarf daher der Erstellung linguistischer Ressourcen (s.Kapitel 6), welche die Ei-
genschaften von Anforderungsbeschreibungen adäquat abbilden, um Ansätze der
Anforderungsextraktion entwickeln und evaluieren zu können.

Derzeit existieren nur wenige Arbeiten, die sich der Anforderungsextraktion aus
qualitativ stark schwankenden Texten widmen. So führen beispielsweise Vlas und
Robinson (2011) eine Untersuchung von unstrukturierten und informalen Anforde-
rungsbeschreibungen im Bereich der Open Source-Software durch, um mehr über frei
formulierte Anforderungstexte zu lernen. Darüber hinaus stellt Dollmann (2016) bzw.
Dollmann und Geierhos (2016) ein Tool namens REaCT zur Verfügung, welches
Verfahren des maschinellen Lernens nutzt, um On-Topic Aussagen in Anforde-
rungsbeschreibungen zu erkennen und die wesentlichen Bestandteile funktionaler
Anforderungen in ein definiertes Template zu übertragen. Dollmann (2016) unterteilt
dabei die Anforderungsbeschreibungen in einzelne Sätze und übergibt diese an die
Klassifikationskomponente, die Sätze in Off-Topic und On-Topic unterteilen kann.
Handelt es sich bei einem klassifizierten Satz um On-Topic und damit um funktionale
Anforderungen, wird die Extraktion von Attribut-Wert-Paaren vorgenommen, mit
dem Ziel, ein vorgegebenes Template iterativ zu befüllen: Die wichtigsten Elemente
des Templates sind die Komponente (Subjekt), die Aktion (Prädikat) und das Objekt
(Objekt). Aktionen beschreiben, was eine Komponente leisten soll und Objekte be-
schreiben, worauf sich die Aktionen beziehen. Sowohl Komponenten als auch Objekte
können in den Anforderungsbeschreibungen weiter konkretisiert werden, wofür die
Felder Verfeinerung der Komponente und Verfeinerung des Objektes vorgesehen
sind. Darüber hinaus können Vor- und Nachbedingungen (z. B. Zeitrestriktionen)
existieren, die für die Ausführung von Aktionen gelten müssen oder sollen und die
im Template als Bedingungen angegeben sind.
Über genannte Beiträge hinaus existieren mehrheitlich Ansätze, die sich der Analyse

und Kompensation qualitativ hochwertiger(er) Anforderungsbeschreibungen widmen
oder weitreichende Annahmen zur Textqualität treffen. Sie sind somit für den
Anwendungsfall in dieser Arbeit ungeeignet (z. B. Deeptimahanti und Sanyal, 2011).

3.3 Umgang mit Ambiguität und Unvollständigkeit

Dieser Abschnitt beinhaltet den Stand der Wissenschaft und Technik zur Erken-
nung und Kompensation von Ambiguität (s. Abschnitt 3.3.1) und Unvollständigkeit
(s. Abschnitt 3.3.2). Die Themengebiete des Requirements Engineerings und des Natu-
ral Language Processings sind dabei durch gemeinsame Fragestellungen und Verfahren
eng verbunden (Berzins et al., 2008).

3.3.1 Disambiguierung im Anforderungskontext

Eine Vielzahl an Veröffentlichungen thematisiert Ambiguität in Anforderungsbeschrei-
bungen (Pekar et al., 2014; Umber und Bajwa, 2011; Kamsties, 2005; Osborne und



3.3 Umgang mit Ambiguität und Unvollständigkeit 45

MacNish, 1996). Dabei zeigt sich, dass ambige Softwareanforderungen zu vielseitigen
Problemen in der Softwareentwicklung führen können (Pekar et al., 2014, S. 242).
So wird häufig sowohl der Projekterfolg (Standish Group International, 1995)

als auch die Kundenzufriedenheit (Sommerville, 2007, S. 121) durch Ambiguität als
gefährdet angesehen. Allerdings reicht die Spannweite der Veröffentlichungen hierzu
von

”
[...] ambiguity is a more complex phenomenon than is often recognized in the

literature“ (Kamsties et al., 2001, S. 1) bis hin zu
”
[...] requirement ambiguity did

not cause many defects“ (Philippo et al., 2013, S. 78). Ein möglicher Einfluss des
Ambiguitätsphänomens auf die Anforderungsqualität und somit auf den Projekterfolg
gilt daher in der Literatur durchaus als umstritten (s. insb. Philippo et al., 2013).
Die im Rahmen dieser Arbeit betrachteten Anforderungsbeschreibungen

(s.Abschnitt 1.4) sind jedoch, bedingt durch die Verwendung von natürlicher
Sprache (s. Abschnitt 1.3.1) und geringes bzw. fehlendes Vorwissen der Endanwen-
der, prädestiniert für Ambiguität. So kommt es vor, dass eine Software gemäß
vorgegebener Anforderungsbeschreibungen entwickelt wird, diese jedoch nicht den
intendierten Anforderungen der Stakeholder entspricht (Kamsties und Paech, 2000,
S. 2) oder sogar Fehler enthält (Firesmith, 2007, S. 19). Insbesondere im Fall des
OTF-Computings, der eine automatisierte Komposition von Services vorsieht, kann
Ambiguität zu mangelhafter Software führen (Geierhos et al., 2015, S. 279).
Die Ambiguitätserkennung kann dabei manuell – beispielsweise mit Hilfe von

Wortlisten oder Checklisten (z. B. Kamsties et al., 2001), unterstützt durch Software
oder gänzlich vollautomatisiert erfolgen. Dies deutet bereits an, dass es eine Vielzahl
an Methoden gibt, die sich nur schwer vollumfänglich gegenüberstellen lassen (Bano,
2015; Shah und Jinwala, 2015). Zum einen gibt es Ansätze, die eine Vielzahl an Ambi-
guitätsformen erkennen können (generalisiert) und zum anderen existieren Verfahren,
die sich auf die Erkennung einer Form (z. B. lexikalische Ambiguität, s. Abschnitt 2.1)
beschränken (spezialisiert). In beiden Fällen werden linguistische Ressourcen benötigt,
welche die Eigenschaften des jeweiligen Ambiguitätsphänomens abdecken. Sie werden
im Folgenden zur besseren Verständlichkeit der Disambiguierungsansätze dargestellt.

3.3.1.1 Linguistische Ressourcen

Linguistische Ressourcen haben im NLP elementaren Charakter, da sie die notwendige
Wissensbasis darstellen, auf der die jeweiligen Methoden arbeiten. Der Schwerpunkt
liegt im Folgenden auf den Ressourcen, die für die lexikalische, syntaktische und
referentielle Disambiguierung von Bedeutung sind.

Ressourcen lexikalischer Disambiguierung

Eine Ressource, die vielfach zur lexikalischen Disambiguierung aber auch in anderen
NLP-Kontexten herangezogen wird, ist WordNet. Hierbei handelt es sich um ein
frei verfügbares lexikalisch-semantisches Netz (Datenbank) für die englische Sprache
(Miller, 1995). Es wird seit 1985 am Cognitive Science Laboratory der Princeton
University entwickelt und enthält semantische sowie lexikalische Beziehungen zwischen
einzelnen Wörtern (Nomina, Verben und Adjektive sowie Adverbien).
Dabei werden nicht die Wörter als solche untereinander in Beziehung gesetzt,

sondern spezifische Lesarten (Synsets), was zu einer semantischen Disambiguation



46 3 Stand der Wissenschaft und Technik

führt. Als Beziehungen werden dabei unter anderem Synonymie, Antonymie und
Hyponymie sowie Meronymie abgebildet, wobei die am häufigsten abgebildete Be-
ziehung zwischen Synsets die Hyponymie ist. Einen Überblick über den Umfang
von Wordnet gibt die in der WordNet-Dokumentation enthaltene Statistik (Word-
Net, 2010). WordNet enthält insgesamt 147.278 Einträge, wovon einige in mehrere
syntaktische Kategorien fallen (vgl. Tabelle 3.1).

POS Unique Strings Synsets Word-Sense Pairs

Nomina 117798 82115 146312
Verben 11529 13767 25047
Adjektive 21479 18156 30002
Adverben 4481 3621 5580

Tabelle 3.1: WordNet 3.0 Statistik (Verteilung der Einträge)

WordNet wird in dieser Arbeit primär zur Word Sense Disambiguation (WSD)
eingesetzt und ist auf die englische Sprache spezialisiert. Für die deutsche Sprache
steht GermaNet zur Verfügung, welches identisch aufgebaut ist (Henrich und Hinrichs,
2010; Hamp und Feldweg, 1997).
Eine umfangreiche und mehrsprachige Alternative zu WordNet ist BabelNet.

Hierbei handelt es sich um ein mehrsprachiges Wörterbuch, das lexikalisches und
enzyklopädisches Wissen zu Einträgen bereitstellt (Flati und Navigli, 2014, S. 11). Für
die englische Sprache liegen beispielsweise 11,8 Millionen Wörter in ihrer Grundform
vor, wobei davon 413.144 Wörter als polysem und 11,4 Millionen Wörter als eindeutig
klassifiziert sind. Darüber hinaus fungiert BabelNet als semantisches Netz, welches
Konzepte und Named Entities (NE) über semantische Beziehungen (Babel Synsets)
verbindet (s. Abbildung 3.2).

Abbildung 3.2: BabelNet als semantisches Netz.
Entnommen aus Navigli und Ponzetto (2012a, S. 221)

Jedes Synset enthält dabei eine bestimmte Lesart zusammen mit Synonymen in
verschiedenen Sprachen. Über 1,5 Millionen Synsets sind in mindestens einer Domäne
klassifiziert (

”
Sharepoint“ →

”
Computing“), wobei die vorliegenden Informationen

oftmals weit über die bloße Angabe einer Domäne hinausgehen (z. B.Kategorien:

”
Windows software, Microsoft“, Genre:

”
Content Management Systems“).



3.3 Umgang mit Ambiguität und Unvollständigkeit 47

Tabelle 3.2 enthält eine allgemeine Statistik17, die einen Überblick über den Umfang
der Ressource gibt. In der Version 3.6 unterstützt BabelNet 271 Sprachen, darunter al-
le europäischen Sprachen. Für diese Arbeit ist die umfangreiche Sprachunterstützung
gerade im Hinblick auf die Erweiterbarkeit und Adaptierbarkeit des Konzepts von
Bedeutung (s. Abschnitt 7.4.2).
Mit 13,8 Millionen Synsets und insgesamt 745,9 Millionen Lesarten erreicht Ba-

belNet darüber hinaus eine bemerkenswerte sprachübergreifende Abdeckung. Das
semantische Netz beinhaltet 380,2 Millionen lexikalisch-semantische Beziehungen,
wie sie auch in WordNet vorzufinden sind.

Aspekt Ausprägung

Babel Senses 745,9
Babel Synsets 13,8
Glossareinträge 40,7
Komposita 0,7
Konzepte 6,1
lexikalisch-semantische Beziehungen 380,2
NE 7,7
RDF Triples 1.971,7

Tabelle 3.2: BabelNet 3.6 (Statistik, Angaben in Millionen)

Unter anderem wird BabelNet zur Disambiguierung (Navigli und Ponzetto, 2012b)
und zum Entity Linking (EL) verwendet (Moro et al., 2014b). Letzteres zum Beispiel
im verwandten Babelfy-System (s. Abschnitt 3.3.1.2).

Ressourcen syntaktischer Disambiguierung

Wie angeführt, ist die natürliche Sprache gleich mehrfach anfällig für Ambiguität. Im
Hinblick auf die Erkennung und Kompensation syntaktischer Ambiguität, die beim
Parsing eines Satzes auftreten kann, wird auch von einem Suchprozess gesprochen:
Ein statistischer NLP-Algorithmus sucht auf Grundlage definierter grammatikalischer
Regeln verschiedene Kombinationswege für eine Satzstruktur und disambiguiert somit
die Eingabe über die wahrscheinlichste Kombination (Allen, 1995, S. 47). Die dafür
benötigten Wahrscheinlichkeiten und Regeln müssen zuvor gelernt werden, wobei
zum Beispiel sogenannte Treebanks genutzt werden können (Theda, 2017, S. 19 ff.).
Treebanks18 (auch: Baumbanken)

”
als spezielle Form von Korpora sind ein fester

Bestandteil der Computerlinguistik, da sie detaillierte linguistische Informationen
kodieren [(vgl. Abbildung 3.3)]. Sie werden dabei als eine Sammlung von Einheiten
(meist Sätzen) verstanden, deren syntaktische Satzstruktur annotiert ist“ (Carsten-
sen et al., 2010, S. 492). Grundsätzlich besteht ein Korpus dabei aus Text, einem
Annotationsschema und beschreibenden Metadaten, wobei das Annotationsschema
entweder konstituenten- oder dependenzbasiert gewählt wird (Carstensen et al., 2010,
S. 492; Hajičová et al., 2010, S. 171; Theda, 2017, S. 19). Die Baumbanken werden

17Siehe weiterführend: http://babelnet.org/stats (Stand: 12.01.17).
18Die syntaktische Struktur wird traditionell als Baumstruktur kodiert.



48 3 Stand der Wissenschaft und Technik

dabei überwiegend
”
manuell oder semi-automatisch erstellt und [haben] folglich einen

kleineren Umfang als ein automatisch geparstes Korpus“ (Carstensen et al., 2010,
S. 493). Ihre Erstellung gilt daher gemeinhin als zeit- und kostenintensiv, weshalb
Qualitätsmerkmalen wie Wiederverwendbarkeit und Konsistenz bei der Banken-
erstellung ein besonderer Stellenwert zugesprochen wird (Carstensen et al., 2010,
S. 493, 495 f.). Eine Übersicht über bestehende, teils verwandte Baumbanken gibt
Theda (2017, S. 17 ff.), deren Arbeit im Folgenden herangezogen wird19:

”
Bis Mitte der 90er Jahre wurden vor allem [...][konstituentenbasierte] Annotations-

schemata verwendet. Hier werden die hauptsächlichen syntaktischen Kategorien wie
NP oder VP in einer Baumstruktur annotiert“ (Carstensen et al., 2010, S. 493). Als
etablierte und verbreitete Ressource gilt dabei die Penn Treebank (Marcus et al., 1993;
Marcus et al., 1994), die mit mehr als 50.000 annotierten Sätzen sehr umfangreich ist
und von einer Vielzahl an statistischen Parsern als Ressource herangezogen wird20.
Bei den Sätzen handelt es sich um englischsprachige Sätze, die hinsichtlich POS-Tags
und syntaktischer Struktur annotiert sind. Neben dieser englischsprachigen Version
stehen auch adaptierte Sprachversionen zur Verfügung, wobei auf die Penn Arabic
Treebank (Maamouri et al., 2004) und die Penn Chinese Treebank (Xue et al., 2005)
als Beispiele zu verweisen ist (Theda, 2017, S. 20).
Weitere konstituentenbasierte Treebanks sind die BulTreeBank (Simov, 2004)

und die LinGO Redwoods (Oepen et al., 2004). Für die deutsche Sprache existiert
beispielsweise das TIGER Korpus (Brants et al., 2002) sowie die, exemplarisch
in Abbildung 3.3 als Auszug abgebildete, Tübinger Baumbank des Deutschen /
Zeitungskorpus (TüBa-D/Z) (Telljohann et al., 2015).

Abbildung 3.3: Ein beispielhafter Satz aus der TüBa-D/Z.
Entnommen aus Carstensen et al. (2010, S. 501)

Darüber hinaus stehen dependenzbasierte Treebanks zur Verfügung, die zunehmend
Verwendung finden. Ziel ist es hier, die gerichteten Abhängigkeiten zwischen zwei

19Eine weitere umfangreiche Übersicht findet sich in der englischsprachigen Wikipedia.
Siehe: https://en.wikipedia.org/wiki/Treebank (Stand: 08.02.17).

20Theda (2017) nennt u. a. Charniak (1997), Collins (1996) sowie den Standford Parser (Klein und
Manning, 2003) und Parsey McParseface (Andor et al., 2016) als beispielhafte Parser.



3.3 Umgang mit Ambiguität und Unvollständigkeit 49

Wörtern abzubilden (Carstensen et al., 2010, S. 494). Als prominenter Vertreter ist
dabei die Prague Dependency Treebank (PDC) zu nennen (Hajič et al., 2001).

Ressourcen referentieller Disambiguierung

”
Im Gegensatz zu syntaktisch annotierten Korpora [...] stehen für die Anaphern-
resolution nur sehr wenige annotierte Korpora zur Verfügung“ (Carstensen et al.,
2010, S. 407). Dabei ist zu beachten, dass die Anaphern- und Koreferenzauflösung
auf unterschiedliche Weise durchgeführt werden kann, wobei zwischen linguistischen
Ansätzen, Heuristiken und Methoden des maschinellen Lernens unterschieden wird
(Carstensen et al., 2010, S. 404). Nicht alle dieser Herangehensweisen sind dabei
auf Ressourcen angewiesen (s. Abschnitt 3.3.1.4), weshalb im Folgenden der Fokus
vermehrt auf dem Ressourcenbedarf der Methoden des maschinellen Lernens liegt.

Zum Training und zur Evaluation dieser Methoden werden im Rahmen der Kore-
ferenzauflösung spezielle Korpora verwendet (s. insb. Recasens Potau, 2010, S. 10).
Beispiele sind die Korpora ACE, MUC sowie die TüBa-D/Z, die entsprechende
Annotationsebenen21 beinhalten. Eine Auswahl22 findet sich in Tabelle 3.3.

Korpus Quelle Domäne Token

ACE2004 Doddington et al. (2004) Zeitungstexte 189.620
MUC6 Grishman und Sundheim (1996) Zeitungstexte 30.000
OntoNotes1 Weischedel et al. (2007) Gemischt 300.000
OntoNotes5 Weischedel et al. (2012) Gemischt 1.745.000
3S12 Schäfer et al. (2012) Wissenschaft 1.326.147
TüBa-D/Z Telljohann et al. (2015) Zeitungstexte 1.787.801
WikiCoref Ghaddar und Langlais (2016) Enzyklopädieartikel 60.000

Tabelle 3.3: Annotierte Korpora zur Koreferenzauflösung (Auswahl).
In Anlehnung an Ghaddar und Langlais (2016, S. 140)

Als grundlegende und etablierte Ressourcen sind die ACE- sowie die MUC-Korpora
zu nennen. Sie sind mit Koreferenzrelationen annotiert und bestehen sowohl aus
Trainings- als auch aus Testdatensätzen. Ihnen wird jedoch vorgehalten (z. B.Guha
et al., 2015, S. 1108; Chaimongkol et al., 2014, S. 3187), nur begrenzt adaptierbar zu
sein, da sie überwiegend auf Zeitungstexten (und Ähnlichem) basieren und damit zum
Beispiel nicht als Trainingsdaten für wissenschaftliche Texte geeignet sind. Aus diesem
Grund existieren weitere Korpora, die hinsichtlich verschiedener Fragestellungen und
Domänen konzipiert sind. Als aktuelleres Beispiel ist das Korpus von Guha et al.
2015 zu nennen, welches wissenschaftliche Texte mehrerer Forschungsgebiete umfasst.

Zum Vergleich der Ressourcen wird oftmals die Gesamtanzahl an Token herange-
zogen, wobei fraglich ist, ob sich nicht problemspezifische Annotationen und deren
Anzahl eher zum Vergleich eignen. Als Beispiel kann die TüBa-D/Z herangezogen
werden, welche 54.382 Koreferenz-Relationen, 50.721 anaphorische Relationen und
1.582 kataphorische Relationen aufweist23. Da aber nur wenige Arbeiten solche de-

21Beispielsweise enthält die TüBa-D/Z Annotationsebenen zu Anaphern und Koreferenz-Relationen.
22Die Auswahl wurde hinsichtlich unterschiedlicher Domänen und Datenumfang getroffen.
23Siehe: http://sfs.uni-tuebingen.de/ascl/resources/corpora/tueba-dz.html (Stand: 15.02.17).



50 3 Stand der Wissenschaft und Technik

taillierten Angaben beinhalten und ein Vergleich damit nicht durchzuführen ist, wird
in dieser Arbeit ebenfalls auf Token als Vergleichseinheit zurückgegriffen, um die
unterschiedlichen Ressourcenumfänge darzustellen (vgl. Tabelle 3.3). Dabei zeigt
sich, dass bei der Auswahl geeigneter Ressourcen nicht nur auf die Domäne, son-
dern auch auf den Ressourcenumfang zu achten ist. Einen großen Umfang und eine
nennenswerte thematische Abdeckung verspricht OntoNotes5.
Wie Carstensen et al. (2010) weiterhin anmerken, benötigen Methoden des maschi-

nellen Lernens über diese Ressourcen hinaus ein
”
gewisses Maß an Domänen- oder

Weltwissen“ (Carstensen et al., 2010, S. 404), welches beispielsweise der Auflösung
definiter NPs dienlich ist. Dieses kann ergänzend aus Ressourcen wie WordNet,
YAGO oder Wikipedia abgerufen werden (s. z. B. Rahman und Ng, 2011). Auch
existieren Ressourcen, die mehrere Annotationsebenen umfassen, Zwischenverbin-
dungen abbilden (vgl. Abbildung 3.4) und somit die Anwendung von Domänen- oder
Weltwissen ermöglichen bzw. erleichtern.

Abbildung 3.4: Zwischenverbindungen einzelner Annotationsebenen (OntoNotes).
In Anlehnung an Weischedel et al. (2011, S. 61)

3.3.1.2 Lexikalische Ambiguität

Lexikalische Ambiguität und deren Disambiguierung (auch: Word Sense Disambigua-
tion, s. Abschnitt 2.1.1) wird im Anforderungskontext vielseitig diskutiert. Nach Bano
(2015, S. 23) widmet sich dabei die Mehrheit der Publikationen der reinen Ambi-
guitätserkennung, während sich eine deutlich geringere Anzahl an Veröffentlichungen
mit der lexikalischen Disambiguierung in diesem Anwendungsgebiet befasst. Dabei
ist der Diskussionsgegenstand, nämlich die Ambiguität einzelner Lexeme, nicht so
eindeutig in der Literatur definiert, wie es auf den ersten Blick erscheint.
Eine oftmals herangezogene Definition von lexikalischer Ambiguität ist die von Ber-

ry et al. (2003, S. 10):
”
Lexical ambiguity occurs when a word has several meanings“.

Dennoch wird der Begriff an vielen Stellen inkonsistent verwendet. So definieren zum
Beispiel Nigam et al. (2012) den Begriff unter Bezug auf Berry et al. (2003), fassen
in der Analyse aber auch Fälle von Vagheit unter dem Begriff zusammen (Nigam
et al., 2012, S. 354). Auch Huertas und Juárez-Ramı́rez (2012, S. 374) bezeichnen



3.3 Umgang mit Ambiguität und Unvollständigkeit 51

vage Begriffe (z. B. Steigerung von Adjektiven und Adverbien) als lexikalisch ambig.
Im Folgenden werden daher auch Verfahren der lexikalischen Disambiguierung im
Anforderungskontext herangezogen, die von der ursprünglichen Definition abweichen.
Die Erkennung von lexikalischer Ambiguität ist (z. B. neben der syntakti-

schen und referentiellen Disambiguierung) ein Teilgebiet der Disambiguierung und
geschieht vielfach über einen Abgleich einzelner Lexeme mit (für z. B. eine Domäne
oder Sprache) geeigneten Ressourcen (z. B.Korpora, Wörterbücher)24. Hierbei wird
für ein erkanntes Wort (z. B. Computer) in einer gegebenen Ressource nachgeschlagen,
ob es zugehörige Lesarten gibt (z. B.

”
a machine for performing calculations automa-

tically“) und wenn ja, ob mehr als eine existiert (in diesem Fall sind es zwei Lesarten)
und das Wort damit als potentiell ambig gilt. Eine vereinfachte Variante davon ist,
Wörter mit einer Liste von bereits als ambig bekannter Wörter abzugleichen.

Ein solcher Abgleich zwischen Lexemen und einer Liste von ambigen Wörtern
erfolgt zum Beispiel bei Lami (2005), Gleich et al. (2010), Nigam et al. (2012),
Génova et al. (2013) sowie Tjong und Berry (2013). Kiyavitskaya et al. (2008),
Matsuoka und Lepage (2011) sowie Rojas und Sliesarieva (2010) greifen auf WordNet
als linguistische Ressource zurück. Ergänzend wird bei Rojas und Sliesarieva (2010)
noch VerbNet (Kipper-Schuler, 2005) als Ressource hinzugezogen.
Ein Vorteil einer eigenen oder modifizierbaren Ressource ist, dass sowohl spezifi-

sches Vokabular (z. B. Fachtermini) als auch Eigennamen (z. B.
”
Sharepoint Server“)

abgebildet werden können, die gegebenenfalls einer besonderen Disambiguierung
bedürfen. WordNet ist zwar nicht auf technisches Fachvokabular spezialisiert, hat
aber einen sehr umfangreichen Wortschatz und deckt damit bereits viele technische
Fachbegriffe ab (z. B.

”
mailing list“). Bei Eigennamen ist WordNet allerdings als

Ressource aufgrund seiner geringen Abdeckung nicht heranzuziehen – wohl wissend,
dass es Verfahren zur Erweiterung von WordNet gibt (z. B. Toral et al., 2008; Magnini
et al., 2002). Da in der Regel keine Beschränkung der Domäne vorgenommen wird, ist
eine Erweiterung jedoch in den meisten Fällen kaum zufriedenstellend durchzuführen.
Exemplarisch für Verfahren zur reinen Erkennung lexikalischer Ambiguität wird

im Folgenden das vielfach diskutierte Systemized Requirements Engineering Envi-
ronment (SREE) von Tjong und Berry (2013) vorgestellt. Es handelt sich dabei
um eine Applikation, die potentielle Ambiguität (die Autoren verstehen hierun-
ter sowohl Ambiguität als auch Ungenauigkeit, Unbestimmtheit und Vagheit) in
natürlichsprachlichen Anforderungen durch Abgleich mit entsprechenden Indikator-
listen aufdecken kann. SREE besteht dabei aus zwei Hauptkomponenten: (1) Dem
Ambiguity Indicator Corpus (AIC) nach Tjong (2008) und dem (2) Lexical Analyzer.
Während (1) ein Korpus darstellt, der

”
Indikatoren“25 für ambige Lexeme enthält,

handelt es sich bei (2) um die Komponente, die Anforderungen tokenisiert, mit dem
AIC abgleicht und den Endanwender über potentielle Ambiguitäten informiert.

Wie unter anderem das Beispiel SREE zeigt, ist bisher stets eine hohe Benutzerin-
teraktion bei der Kompensation potentieller Ambiguitäten erforderlich, wenngleich
die Erkennung von potentiell ambigen Wörtern eine große Hilfe darstellen kann

24Für weitere Angaben zur fundamentalen Rolle der Ressourcen im WSD siehe Navigli (2009, S. 6).
25Es handelt sich beim AIC um eine Sammlung von zehn Subkorpora: Continuance, Coordinator,

Directive, Incomplete, Optional, Plural, Pronoun, Quantifier, Vague und Weak. Das Korpus
Quantifier enthält z. B. die Wörter: all, any, few, little, many, much, several und andsome.



52 3 Stand der Wissenschaft und Technik

(Tjong und Berry, 2013, S. 82). Allerdings weisen Shah und Jinwala (2015, S. 1) dar-
auf hin, dass das manuelle Auflösen von Ambiguität ein ermüdender, zeitraubender,
fehleranfälliger und schlussendlich teurer Vorgang ist (Popescu et al., 2008; Berry
et al., 2003). Ein (semi-)automatisiertes Vorgehen ist demnach zur Wahrung der Qua-
lität und Motivation sowie zur Begrenzung der Kosten erforderlich. An dieser Stelle
ist auf die Arbeit von Mihalcea (2003) hinzuweisen, in der lexikalisch ambige Lexeme
erkannt werden, aber nur dann als lexikalisch ambig gelten, wenn sie nicht durch den
unmittelbaren Kontext (im Sinne von eindeutigen Lexemen in der Nachbarschaft)
disambiguiert werden können. Dies reduziert die Anzahl potentiell ambiger Lexeme
für Disambiguationsverfahren und kann somit die Performanz verbessern.
Neben dem Abgleich mit (umfangreichen) linguistischen Ressourcen existieren

somit auch Möglichkeiten, die ohne externe Ressourcen anzuwenden sind. Dies-
bezüglich widmet sich beispielsweise der Forschungsbereich Word Sense Inducti-
on (WSI) der Idee, identische Lesarten über den gemeinsamen Kontext (

”
similar

neighboring words“) zu identifizieren und zu gruppieren (Navigli, 2009, S. 26). Hierbei
ist zwischen

”
Context clustering“,

”
Word clustering“ und

”
Cooccurrence graphs“ zu

unterscheiden, die insbesondere in Manning und Schütze (1999) genauer ausgeführt
werden (Navigli, 2009, S. 26). Dieses Thema leitet bereits den logischen Folgeschritt
ein, nämlich die tatsächliche lexikalische Disambiguierung.
Die lexikalische Disambiguierung (auch:Word Sense Disambiguation, WSD)

hat zum Ziel, die Ambiguität eines einzelnen Lexems aufzulösen (s. Abschnitt 2.1.1)26.
Hierbei gilt es herauszufinden, welche Lesart eines Lexems in einem gegebenen
Kontext gemeint ist (Agirre und Edmonds, 2007, S. 1).
Dabei kann die WSD unterschiedlich aufgebaut sein und durchgeführt werden

(Navigli, 2009, S. 14 ff.; Agirre und Edmonds, 2007, S. 13), wobei es grundsätzlich ein
Klassifikationsproblem ist:

”
Word senses are the classes, the context provides the evi-

dence, and each occurrence of a word is assigned to one or more of its possible classes
based on the evidence“ (Agirre und Edmonds, 2007, S. 2). Die Einteilung der bestehen-
den Verfahren geschieht unter Hinzunahme der Arbeit von Agirre und Edmonds (2007,
S. 13). Diese unterteilen bestehende WSD-Verfahren in die Kategorien: Wissensbasiert
(engl. knowledge-based), unüberwacht korpusbasiert (engl. unsupervised corpus-based),
überwacht korpusbasiert (engl. supervised corpus-based) und Kombinationen derer
(engl. combinations)27. Unter wissensbasiert fallen sowohl Disambiguierungsregeln,
Restriktionen und Präferenzen28 als auch semantische Ähnlichkeitsmaße, die den
Kontext eines Lexems im Abgleich mit einer Ressource berücksichtigen. Auch fallen
Heuristiken in diese Kategorie (Agirre und Edmonds, 2007, S. 13). Ein Beispiel
hierfür ist das Vorgehen von Gale et al. (1992), welches sich am besten mit

”
one-

sense-per-discourse“ beschreiben lässt. Es basiert auf der Beobachtung, dass es sehr
wahrscheinlich ist29, dass ein Wort in einem Diskurs nur eine einzige Lesart einnimmt
und wird entsprechend als zusätzliches Merkmal in WSD-Systemen berücksichtigt.

26Eine Übersicht über Verfahren zur WSD geben Navigli (2009) sowie Agirre und Edmonds (2007).
27Navigli (2009, S. 14) führen für wissensbasierte Verfahren die Begriffe

”
knowledge-rich“ und

”
dictionary-based“ an; für korpusbasierte Verfahren hingegen den Begriff

”
knowledge-poor“.

28Restriktionen und Präferenzen grenzen (
”
rule out“) das Spektrum möglicher Lesarten durch

(semantische) Beziehungen wie EAT-FOOD ein. Siehe dazu Agirre und Edmonds (2007, S. 119).
29Gale et al. (1992, S. 1) geben für hochwertige Diskurse die Tendenz zu einer Lesart mit 98% an.



3.3 Umgang mit Ambiguität und Unvollständigkeit 53

Häufig finden auch semantische Ähnlichkeitsmaße im Rahmen der WSD An-
wendung, wobei gleich mehrere Maße zur Verfügung stehen (vgl. Tabelle 3.4). Die
Auswahl eines geeigneten Maßes ist dabei nicht trivial und kann zum Beispiel un-
ter Berücksichtigung von bestehenden Gegenüberstellungen wie McCarthy et al.
(2004) und Patwardhan et al. (2003) sowie insbesondere Budanitsky und Hirst
(2006) erfolgen, wobei schnell deutlich wird, dass die Eignung eines Maßes als
Ähnlichkeitsindikator jeweils von der angedachten Anwendung abhängt (Vöhringer
und Fliedl, 2011, S. 783). In Tabelle 3.4 sind diejenigen Ansätze markiert (•), die
in den Arbeiten zu semantischen Ähnlichkeitsmaßen von (BH01) Budanitsky und
Hirst (2001), (MC04) McCarthy et al. (2004), (PT03) Patwardhan et al. (2003) sowie
(CM05) Corley und Mihalcea (2005) die besten Evaluationsergebnisse erzielt haben.

Maß Originalquelle BH01 MC04 PT03 CM05

WUP Wu und Palmer (1994) – – – ◦
HSO Hirst und St-Onge (1995) ◦ – ◦ –
RES Resnik (1995) ◦ – ◦ ◦
JCN Jiang und Conrath (1997) • ◦ • •
LCH Leacock und Chodorow (1998) ◦ – ◦ ◦
LIN Lin (1998) ◦ – ◦ ◦
aLESK Banerjee und Pedersen (2002) – • • –

Tabelle 3.4: Maße semantischer Nähe und deren Nutzung bei der Disambiguierung
• = Gewinner; ◦ = Verlierer; – = Nicht evaluiert

Im Kontext von Softwareanforderungen nutzen beispielsweise Matsuoka und Lepage
(2011) das semantische Ähnlichkeitsmaß WUP (Wu und Palmer, 1994), um zwischen
verschiedenen möglichen Lesarten zu unterscheiden. Endanwender können daraufhin
die erkannten vermeintlich ambigen Lexeme, wenn notwendig, überarbeiten. Aller-
dings obliegt die Disambiguierung schlussendlich noch immer den Endanwendern.
Eine Lösung kann die automatische Entscheidung für oder gegen eine Lesart über
einen definierten Grenzwert sein, wie es beispielsweise Vöhringer und Fliedl (2011)
im Rahmen der Erkennung und Auflösung von Terminologiekonflikten realisieren.
Weiterhin sind wissensbasierte Verfahren auf Ressourcen wie Disambiguierungsre-

geln30 und Heuristiken angewiesen, die nicht für alle Sprachen und Domänen vorliegen
und damit Schwachstellen darstellen. Auch überwachte korpusbasierte Verfahren
weisen diese Schwachstellen auf, da sie auf manuell annotierten Korpora trainiert
werden oder ein Bootstrapping-Verfahren nutzen (Semi-überwachtes Verfahren).
Dieser Problematik sehen sich unüberwachte korpusbasierte Verfahren nicht ge-

genüber (Agirre und Edmonds, 2007, S. 12), da diese vor allem Methoden, die Wörter
in ihrem spezifischen Kontext clustern und darüber die Lesart erschließen, umfassen
(Agirre und Edmonds, 2007, S. 14).

”
These line of work is often referred to as word

sense discrimination, as the word meanings are not disambiguated against a sense
inventory, but are discriminated against each other“ (Mihalcea, 2010, S. 1028). Einen
solchen Ansatz, der sowohl automatisiert im Training als auch in der Anwendung
vorgeht, stellt beispielsweise Schütze (1998) vor.

30Disambiguierungsregeln sind aufwändig in der Erstellung und Wartung, da sie untereinander
komplexe Abhängigkeiten besitzen und umfangreiches Expertenwissen voraussetzen.



54 3 Stand der Wissenschaft und Technik

Diese bisher recht klare Kategorisierung der Verfahren liegt in der Realität nicht vor,
da ebenfalls Ansätze existieren, die wissensbasierte und korpusbasierte Verfahren
kombinieren (z. B. Montoyo et al., 2005). Auch ergänzen zusätzlich hybride Verfah-
ren die bisherigen WSD-Ansätze, beispielsweise durch die Hinzunahme von EL31.
Beide Vorgehensweisen (Kombination von WSD-Ansätzen und die Hinzunahme von
EL) zielen auf mögliche Synergieeffekte ab. So können beispielsweise semantische
Ähnlichkeitsmaße dazu genutzt werden, um bevorzugte Lesarten in unüberwachten
korpusbasierten Verfahren zu trainieren (Agirre und Edmonds, 2007, S. 13).
Ein aktuelles und mehrsprachiges WSD- und EL-System ist Babelfy32. Dieses ist

ein kombiniertes System zur Disambiguierung und zum EL in kurzen und langen
Fließtexten (Moro et al., 2014b, S. 241). Der Ansatz ist wissensbasiert und nutzt das
semantische Netz von BabelNet, was insbesondere die semantischen Beziehungen
sowie die benannten Entitäten umfasst (Moro et al., 2014a). Nach Moro et al. (2014a,
S. 25) ist es der erste Ansatz, der die Disambiguierung parallel zum EL durchführt.

Abbildung 3.5: Disambiguierung und Entity Linking mittels Babelfy

Abbildung 3.5 stellt auszugsweise die Funktionalität von Babelfy am Satz
”
Because

we do lot of teamwork in our international team, we need a Sharepoint server with
Web dav access“ unter Verwendung der Weboberfläche dar.

Zum einen werden Konzepte wie
”
team“ und

”
international“ erkannt und annotiert,

zum anderen werden benannte Entitäten erkannt und verknüpft. Dies ist insbesondere
im Rahmen dieser Arbeit von Interesse, da auch Fachtermini wie

”
Web dav“ korrekt

erkannt und annotiert werden. Hilfreich ist auch die Funktion, dass Babelfy Komposita
wie

”
Sharepoint server“ sowohl als Komposition als auch in der jeweiligen isolierten

Bedeutung erkannt und annotiert (nicht abgebildet).
Im Rahmen dieser Arbeit eignet sich Babelfy insbesondere aufgrund der sehr

guten WSD-Ergebnisse (Raganato et al., 2017). Zum Beispiel bei experimenteller
Anwendung auf sechs verschiedenen Goldstandards (Moro et al., 2014b). Hervorzuhe-
ben sind hierbei die guten sprachübergreifenden Ergebnisse bei der Anwendung auf
kurzen sowie hochgradig ambigen Texten. Letzteres wurde durch Anwendung auf
dem KORE50-Korpus33 mit guten Ergebnissen erprobt (Moro et al., 2014b, S. 240).

31EL verfolgt dabei das Ziel, benannte Entitäten in Fließtexten zu erkennen und eindeutig auf eine
gegebene Wissensbasis (engl. knowledge base) zu referenzieren (Flati und Navigli, 2014, S. 12).

32Siehe weiterführend: http://babelfy.org (Stand: 12.01.17).
33Keyphrase Overlap Relatedness for Entity Disambiguation. Siehe: http://mpi-inf.mpg.de/

departments/databases-and-information-systems/research/yago-naga/aida (Stand: 12.01.17).



3.3 Umgang mit Ambiguität und Unvollständigkeit 55

Wie dargestellt werden konnte, wird dem Problem der lexikalischen Ambiguität
im NLP vermehrt durch POS-Tagging und WSD-Verfahren begegnet. Liegt der
Verarbeitungsfokus jedoch nicht nur auf dem einzelnen Wort, greifen diese Vorgehens-
weisen zu kurz. So ist die natürliche Sprache zusätzlich geprägt von umfangreicher
syntaktischer Ambiguität (Jurafsky und Martin, 2009, S. 38), deren Auflösung die
Betrachtung auf syntaktischer Ebene bedarf (s. Abschnitt 2.1.2).

3.3.1.3 Syntaktische Disambiguierung

Von syntaktischer Ambiguität wird gesprochen, wenn, aufgrund des Zusammenspiels
umfangreicher Grammatikregeln einer Sprache,

”
[...] einem Ausdruck mehr als eine

syntaktische Beschreibung zugeordnet werden kann“ (Ernst, 2003, S. 87). Dabei kann
bereits die

”
Anzahl der syntaktischen Lesarten von ganz gewöhnlichen Sätzen, die

von größeren Parsing-Systemen geliefert wird, [...] erheblich höher [sein] als der
Ambiguitätsgrad, den selbst geschulte Syntaktiker auf den ersten Blick erkennen“
(Carstensen et al., 2010, S. 308). Carstensen et al. (2010, S. 308) weist in diesem
Zusammenhang darauf hin, dass gültige Beispielsätze existieren, deren Satzstruktur-
analyse zu Ambiguitätsgraden von einer Million und mehr führen. Es handelt sich bei
syntaktischer Ambiguität demnach nicht um ein domänenspezifisches Problem der
maschinellen Anforderungsverarbeitung. Vielmehr ist es eine elementare Herausforde-
rung natürlicher Sprachen, welcher überwiegend mit Methoden der probabilistischen
Satzstrukturanalyse34 begegnet wird (Jurafsky und Martin, 2009, S. 38).
Zur automatischen Satzstrukturanalyse werden Parser (auch:Natural language

parser) herangezogen (Lobin und Heringer, 2010, S. 41), die in der Lage sind, gege-
benen Sätzen syntaktische Strukturen zuzuordnen. Dies umfasst die

”
Beschreibung

des syntaktischen Baus von Sätzen durch Ermittlung elementarer Grundeinheiten
wie Morphem, Wort, Satzglied und ihre Beziehung untereinander“ (Bußmann, 1983,
S. 445). Diesbezüglich kann eine Dreiteilung der Disambiguierung in Eingabe, Verar-
beitung und Ausgabe erfolgen:

• Eingabe: Natürlichsprachliche Anforderungsbeschreibung

• Verarbeitung: Überprüfung der Eingabe hinsichtlich gültiger Grammatik und
Zuordnung passender syntaktischer Struktur(en)

• Ausgabe: Repräsentationen syntaktischer Strukturen (z. B. als Bäume)

Wie im Schritt der Verarbeitung deutlich wird, kann die Zuordnung mehrerer
möglicher syntaktischer Strukturen erfolgen, was eher der Regelfall als der Son-
derfall ist. Nach Carstensen et al. (2010, S. 303) besteht ein solcher

”
syntaktischer

Analyseprozess zu einem nicht unwesentlichen Anteil aus Suchprozessen. Ein solcher
Suchprozess lässt sich graphentheoretisch als Durchlaufen eines Suchraums (Such-
graphen) charakterisieren, der einen Startzustand Z0 [...] und einen oder mehrere
Endzustände E1, E2, ... , En [besitzt]“ (Carstensen et al., 2010, S. 303). Hierbei ist

”
die

34Der engl. Begriff des Parsings wird in verschiedenen wissenschaftlichen Disziplinen unterschiedlich
(aber oftmals ähnlich) verwendet. Die Computerlinguistik nutzt den Begriff z. B. im Sinne der
automatischen Satzstrukturanalyse, während er in der Psycholinguistik beschreibt, wie Menschen
Satzstrukturen kognitiv verarbeiten (Theda, 2017, S. 12 f.; Carstensen et al., 2010, S. 303).



56 3 Stand der Wissenschaft und Technik

Verwaltung alternativer Lösungsmöglichkeiten ein zentrales Problem“ (Lobin und
Heringer, 2010, S. 41). So können alle Möglichkeiten ausgegeben werden, wie ein Satz
syntaktisch analysiert werden kann oder aber es wird die wahrscheinlichste Variante
ausgegeben. Letzteres wird durch die probabilistischen Parser erreicht, die ihr Wissen
aus einer Menge annotierter Sätze ableiten (s. Abschnitt 3.3.1.1) und versuchen, die
wahrscheinlichste Satzstruktur in bisher unbekannten Sätzen zu analysieren35.

Grundsätzlich ist darüber hinaus zwischen Dependenz- und Konstituentenparsern
zu unterscheiden, die jeweils von unterschiedlichen syntaktischen Strukturen ausgehen.
Dependenzparser analysieren die grammatikalische Struktur eines Satzes mit dem
Fokus auf der Beziehung zwischen regierenden Wörtern und abhängigen Elementen.
Dabei wird überwiegend davon ausgegangen, dass das Verb die Satzstruktur in Form
von Leerstellen vorgibt und somit alle anderen Wörter in einem Satz vom Verb
(direkt oder indirekt) über definierte Beziehungen abhängig sind (Carstensen et al.,
2010, S. 282 ff.). Demgegenüber basieren Konstituentenparser auf der Idee, dass sich
die natürliche Sprachsyntax mithilfe von kontextfreien Grammatiken beschreiben
lässt, wobei

”
neben Wörtern auch komplexere Einheiten, die sogenannten Konstitu-

enten oder Phrasen“ (Carstensen et al., 2010, S. 281), sowie Beziehungen zwischen
Konstituenten, angenommen werden. Die Ergebnisse lassen sich, unabhängig von der
gewählten Grammatiktheorie, als Strukturbäume darstellen (vgl. Abbildung 3.6).

PRP VBP TO VB NNS TO PRP $ NNS

I want to send emails to my colleagues

root

nsubj

xcomp

mark dobj

nmod

case

nmod:poss

[...]

VP

VP

NP

NN

colleagues

PRP$

my

IN

to

NP

NNS

emails

VB

send

TO

to PP

Dependenzparser

Konstituentenparser

Abbildung 3.6: Gegenüberstellung verschiedenartiger Strukturbäume

Dass Parsing im Kontext von Softwareanforderungen einen hohen Stellenwert hat,
zeigen Arbeiten wie die von Roth et al. (2014), die in ihrer Veröffentlichung

”
Software

Requirements: A new Domain for Semantic Parsers“ die Verbindung zwischen seman-

35Siehe weiterführend: http://nlp.stanford.edu/software/lex-parser.shtml (Stand: 11.01.17).



3.3 Umgang mit Ambiguität und Unvollständigkeit 57

tischen Parsern und der Domäne der Softwareanforderungen aufzeigen. Dependenz-
parser im Speziellen nutzen beispielsweise Drechsler et al. (2014) zur automatischen
Verarbeitung natürlichsprachlicher Softwareanforderungen. Der Stanford Parser wird
zur syntaktischen Analyse natürlichsprachlicher Anforderungen unter anderem bei
Deeptimahanti und Sanyal (2009), Umber und Bajwa (2011), Friedrich et al. (2011),
Bajwa et al. (2012) sowie Landhäußer et al. (2015) genutzt.
Um einen weiteren Überblick über aktuelle Parsing-Ansätze zu erhalten, werden

im Folgenden die Ergebnisse aus Choi et al. (2015, S. 389) herangezogen, die zehn
statistische Dependenzparser (Stand der Technik) in Hinblick auf Präzision und
Performanz testen (vgl. Tabelle 3.5).

Parser Quelle Präzision Performanz

ClearNLP Choi und McCallum (2013) 2.
GN13 Goldberg und Nivre (2013)
LTDP Huang et al. (2012)
Mate Bohnet (2010) 1.
RBG Lei et al. (2014) 2.
Redshift Honnibal et al. (2013)
spaCy36 – 1.
SNN Chen und Manning (2014)
Turbo Martins et al. (2013) 3.
Yara Rasooli und Tetreault (2015) 3.

Tabelle 3.5: Überblick über aktuelle Dependenzparser.
In Anlehnung an Choi et al. (2015)

Es zeigt sich, dass keines der Top-Parsing-Verfahren präzise und zugleich performant
ist. Choi et al. (2015) weisen in diesem Zusammenhang darauf hin, dass alle Ansätze
eine Vielzahl an Konfigurationsmöglichkeiten aufweisen und hinsichtlich eines Kom-
promisses zwischen Performanz und Präzision optimiert werden können. Dennoch
empfehlen Choi et al. (2015) die Verfahren Mate, RBG, Turbo, ClearNLP und
Yara im Hinblick auf Präzision, während spaCy und ClearNLP37 unter dem Aspekt
der Performanz zu empfehlen sind. Darüber hinaus findet sich eine umfangreiche
Übersicht bestehender Dependenz- und Konstituentenparser in Theda (2017).
Der Schwerpunkt in dieser Arbeit liegt hinsichtlich syntaktischer Ambiguitäten auf

der Koordinationsambiguität und der PP-Anbindungsambiguität (s. Abschnitt 2.1.2).
Letztere ist ein etablierter Forschungsgegenstand (Bailey et al., 2015; Agirre et al.,
2008, S. 318), über den unter anderem Lapata und Keller (2005, S. 21 ff.) eine
komprimierte Übersicht geben. Oftmals wird die PP-Anbindungsambiguität
(s. Abschnitt 2.1.2) dabei als Klassifikationsproblem begriffen, in welchem es zu klären
gilt, ob eine Anbindung an einer NP oder VP, bei gegebenen Kontextinformationen,
erfolgen muss (Lapata und Keller, 2005, S. 21). Dabei erfordert die Auflösung von
PP-Anbindungsambiguitäten die Hinzunahme von Zusatzwissen, da die resultie-
renden syntaktischen Strukturen jeweils gültig sind und eine Entscheidung ohne

36Siehe weiterführend: https://spacy.io/ (Stand: 11.01.17).
37Unter Verwendung von

”
greedy parsing“.



58 3 Stand der Wissenschaft und Technik

weiteren Kontext nicht erfolgen kann: Diesbezüglich nutzt beispielsweise McLauchlan
(2004) verschiedene Thesauri, um die Entscheidung zu unterstützen38 und auch
Ressourcen wie VerbNet und WordNet werden herangezogen (Bailey et al., 2015;
Agirre et al., 2008), um semantische Informationen in die Entscheidungsfindung mit
einfließen zu lassen und so eine syntaktische Präferenz zu generieren. Auch nutzen
Nakov und Hearst (2005) online verfügbare Inhalte und speziell aus diesen abgelei-
tete Charakteristika (z. B. die optionale Klammerung von PP als Hinweis auf eine
VP-Anbindung). Es existieren darüber hinaus mehrere Verfahren des maschinellen
Lernens (z. B.Ratnaparkhi et al., 1994; Collins und Brooks, 1995; Zavrel et al., 1997;
Ratnaparkhi, 1998; Pantel und Lin, 2000), die sich dieser Problemstellung annehmen
und die eine Genauigkeit zwischen 81,60% und 88,10% erreichen (Bailey et al., 2015,
S. 13). Zum Vergleich: Die durchschnittliche Genauigkeit menschlicher Entscheider
liegt bei 88,20% (Bailey et al., 2015) bzw. 93,20% (Lapata und Keller, 2005)39.
Der PP-Anbindungsdisambiguierung im Anforderungskontext widmen sich Bajwa

et al. (2012), wobei das Ziel die automatische Überführung von natürlichsprachlichen
zu formal spezifizierten Randbedingungen in der Object Constraint Language (OCL)
ist. Zur Satzstrukturanalyse der natürlichen Sprache (Englisch) nutzen sie dabei
den Stanford Parser sowie den Stanford POS-Tagger, wobei sie auftretende syn-
taktische Ambiguität (attached ambiguity) und Homonymie als hauptsächlich qua-
litätsmindernde Probleme (hinsichtlich konsistenten und validen Spezifikationen) in
ihrem Fall identifizieren (Bajwa et al., 2012, S. 179). Zur Disambiguierung führen
sie eine syntaktische Analyse durch, indem sie erzeugte Dependenzbäume mit UML-
Klassenmodellen abgleichen40, die zusammen mit dem Ursprungstext bereitgestellt
werden. Durch dieses Vorgehen können sie die Genauigkeit des Stanford Parsers von
85% auf 93% (attachment ambiguity) und von 97% auf 99% (Homonymie) erhöhen
(Bajwa et al. 2012; Shah und Jinwala 2015). Wie Shah und Jinwala (2015, S. 3)
allerdings anmerken, besteht hierbei die Gefahr, dass Ambiguitäten, die nur im
UML-Klassenmodell bestehen, erst durch dessen Hinzunahme als weiterer Kontext,
mit in die Spezifikation aufgenommen werden.
Die Koordinationsambiguität ist im Vergleich zur zuvor genannten Ambiguität

ein weniger populäres Themengebiet im Bereich der maschinellen Verarbeitung von
Softwareanforderungen und wird vor allem durch die vielzitierte Arbeit von Berry
et al. (2003) als Problem in den Fokus gerückt. Auch sonst existieren zu diesem The-
ma vergleichsweise wenige Arbeiten (Nakov und Hearst, 2005, S. 840; Chantree et al.,
2007, S. 287) – einen Überblick geben sowohl Chantree et al. (2007, S. 288 f.) als auch
Yang et al. (2010c, S. 61). Dabei kann Koordinationsambiguität überall dort auftreten,
wo koordinierende Konjunktionen genutzt werden und ist insbesondere im Englischen
problematisch, da Konjunktionen dort hochfrequent auftreten (Chantree et al., 2007,
S. 288). Nach Chantree et al. (2007, S. 288) machen

”
and“ und

”
or“ zusammen 3%

der Wörter im British National Corpus (BNC)41 aus, was eine beachtliche Anzahl
darstellt. Wie auch bei Yang et al. (2010c) und Chantree et al. (2007) liegt der

38Z.B. wird die Kookkurrenz lex. Einheiten in Form von Quadrupel (v, n1, p, n2) abgespeichert.
39In Bailey et al. (2015, S. 13) stehen den menschlichen Entscheidern nur Quadrupel zur Verfügung,

während in Lapata und Keller (2005, S. 23) bei Kenntnis des gesamten Satzes getestet wird.
40Das Verfahren sieht vor, dass zusätzliche Kontextinformationen (ähnlich zu genannten Thesauri)

aus den UML-Diagrammen extrahiert werden und eine syntaktische Präferenz ermöglichen.
41Siehe weiterführend: http://www.natcorp.ox.ac.uk (Stand: 13.01.17).



3.3 Umgang mit Ambiguität und Unvollständigkeit 59

Fokus in dieser Arbeit auf den Konjunktionen
”
and“ und

”
or“. Die Erkennung von

potentiell ambigen Wortkonstellationen ist über syntaktische Muster möglich. So
präsentieren beispielsweise Yang et al. (2010c, S. 54) diesbezüglich eine Auswahl
syntaktischer Muster, die sie

”
Construction patterns used in coordination ambiguity“

nennen. Agarwal und Boggess (1992) erkennen Koordinationen unter Hinzunahme
von POS-Tags, ein simples aber effektives Vorgehen, das von Chantree et al. (2007,
S. 290) als sinnvoller initialer Schritt in einem Gesamtsystem zur Disambiguierung
genannt wird. Chantree et al. (2005) testen darüber hinaus in ihrer Arbeit die Hypo-
these, dass die wahrscheinlichste Lesart einer Koordination über die Wortverteilung42

in einem generischen Korpus gefunden werden kann (Chantree et al., 2005; Chantree
et al., 2007). Dieses Vorgehen erinnert an die Arbeit von Resnik (1999), der die
semantische Ähnlichkeit zwischen Wörtern zur Disambiguierung hinzuzieht und
welche Chantree et al. (2005) auch als Vergleichswert heranziehen. Darüber hinaus
existieren Ansätze, die Koordinationsambiguität aufzulösen versuchen, indem sie
linguistische Merkmale (z. B.Groß- und Kleinschreibung, Kommata) der Konjunktion
heranziehen (Okumura und Muraki, 1994) oder indem Sie die Kookkurrenz, also das
gemeinsame Auftreten von lexikalischen Einheiten (Modifikatoren und verbundene
Wörter), berücksichtigen und Regeln und Muster auf Grundlage verschiedener linguis-
tischer Ressourcen ableiten (Yang et al., 2010c, S. 61). Beispielsweise werden online
verfügbare Inhalte und speziell aus diesen abgeleitete Charakteristika herangezogen
(z. B. Nakov und Hearst, 2005, S. 839 ff.). Goldberg (1999) wiederum nutzt das WSJ,
um die Disambiguierung in den Fällen der syntaktischen Struktur

”
N1 P N2 CC N3“

wie zum Beispiel in
”
collection of files and documents“ zu ermöglichen.

Speziell auf Anforderungsbeschreibungen gehen auch die Arbeiten von Chantree
et al. (2006) sowie Yang et al. ein (Yang et al., 2010a; Yang et al., 2010b; Yang et al.,
2010c), wobei nicht die Disambiguierung im Mittelpunkt steht, sondern die Gefahr
der Fehlinterpretation, die von einer spezifischen Koordinationsambiguität ausgeht
(Yang et al., 2010b, S. 1218). Diesem Ansatz liegt die Annahme zu Grunde, dass die
meisten Ambiguitäten (zumindest von Menschen) nicht falsch interpretiert werden
und daher nicht schädlich sind (Yang et al., 2010b, S. 1218). Dies ist im Rahmen der
vorliegenden Arbeit interessant, da eine Beachtung nur schädlicher Ambiguitäten
zu einer Minimierung der Laufzeit führen würde – allerdings müsste sichergestellt
werden, dass die Ambiguitäten auch in maschineller Verarbeitung unschädlich sind.

3.3.1.4 Automatische Koreferenzauflösung

Koreferenzauflösung ist auch in der Verarbeitung natürlichsprachlicher Anforde-
rungen von erheblicher Bedeutung. Körner (2014) merkt allerdings an, dass viele
Verfahren sich

”
[...] hauptsächlich mit der Auflösung von Personalpronomina und

den dazugehörigen Bezeichnern/Namen“ (Körner, 2014, S. 174) beschäftigen und im
Softwareanforderungskontext unerprobt sind.
Um referentielle Ambiguität (s. Abschnitt 2.1.3) erkennen und kompensieren zu

können, müssen zuerst Referenten und zugehörige (sowie möglicherweise zugehörige)
Referenzausdrücke erkannt werden. Es existiert eine Reihe von Verfahren zur Ko-

42Betrachtet wird, ob lexikalische Köpfe vermehrt mit ihrem Modifikator oder mit dem, durch
Koordination verknüpften, zweiten Kopf als syntaktische Einheit auftreten.



60 3 Stand der Wissenschaft und Technik

referenzauflösung, die bereits zur Erfüllung dieser Aufgabe mit Komponenten zur
Auflösung von referentieller Ambiguität ausgestattet sind.

Ziel dieser Verfahren ist es, Koreferenzketten zu bilden, was bedeutet, koreferente
Referenzausdrücke zusammen darzustellen (Stede, 2012, S. 50). Eine Sonderform
sind Verfahren, die auch Singletons erkennen – also Referenten, die nur einmalig im
Text vorkommen (z. B. Recasens et al., 2013). Einen Überblick über die Thematik
der Koreferenzresolution geben unter anderem Stoyanov et al. (2009) sowie Mitkov
(1999). Ambiguität nimmt dabei bei Mitkov (1999) einen hohen Stellenwert ein.

Ansätze der Anaphernresolution können in
”
Linguistische Ansätze“,

”
Heuristiken“

und
”
Maschinelles Lernen“ unterteilt werden (Carstensen et al., 2010, S. 400 ff.). An

anderer Stelle findet sich eine Aufteilung von Verfahren der Koreferenzanalyse in

”
Wissensbasierte Ansätze“ und

”
Maschinelle Lernverfahren“ (Geierhos, 2010, S. 94).

Unter anderem Prokofyev et al. (2015, S. 463) wiederrum unterteilen Verfahren
hinsichtlich der eingebundenen Ressourcen in

”
wissensreich“ (engl. knowledge-rich)

und
”
wissensarm“ (engl. knowledge-lean).

Wissensarme Verfahren, die in vielen Fällen nur auf wenigen Regeln, aus-
gewählten Features sowie morphologischen als auch syntaktischen Informationen
beruhen (z. B. Lee et al., 2011; Bengtson und Roth, 2008; Mitkov, 1998), erreichen
teils sehr gute Evaluationswerte (Harabagiu et al., 2001, S. 1). An dieser Stelle ist
beispielsweise das Centering-Modell (Grosz et al., 1995) als früher linguistischer
Ansatz der Anaphernresolution zu nennen. Carstensen et al. (2010, S. 408) bezeichnen
den Ansatz von Lappin und Leass (1994) als wichtig im Bereich der Heuristiken.
Bei der Anwendung wissensreicher Verfahren stehen die Ressourcen im Mit-

telpunkt, wobei die herangezogenen Wissensquellen dabei vielfältiger Natur sind.
Vielfache Verwendung finden WordNet (Huang et al., 2009; Ponzetto und Strube,
2006; Markert und Nissim, 2005; Harabagiu et al., 2001) und umfangreiche Korpora
(Haghighi und Klein, 2009; Yang und Su, 2007; Markert und Nissim, 2005). Die
Akquise von Wissen ist aber nach wie vor zeitintensiv, aufwändig sowie fehleranfällig
und damit der sprichwörtliche Flaschenhals vieler Verfahren (Uryupina et al., 2012,
S. 185; Harabagiu et al., 2001, S. 1).
Webressourcen wie die Wikipedia sind aufgrund ihres Umfangs (Haghighi und

Klein, 2009; Yang und Su, 2007) und auch wegen ihrer internen Verknüpfung be-
liebt (Kobdani et al., 2011; Bryl et al., 2010). So nutzen beispielsweise Strube und
Ponzetto (2006) Wikipedia zur Berechnung der semantischen Ähnlichkeit von Re-
ferenzausdrücken als Erweiterung (zusätzliches Feature) ihres ML-Verfahrens zur
Koreferenzauflösung (Ponzetto und Strube, 2006).
Über einzelne Ressourcen hinaus bietet das Semantic Web eine bisher nicht dage-

wesene Menge an semantisch angereicherten Datenbeständen und ist aufgrund dieses
Umfangs sowie der Struktur prädestiniert für die Anwendung in NLP-Applikationen,
so auch für die Koreferenzauflösung. Bryl et al. (2010, S. 759) weisen jedoch dar-
auf hin, dass die Erweiterung bestehender Verfahren der Koreferenzauflösung um
diese Ressourcen bei weitem kein trivialer Akt ist. Insbesondere benennen sie die
Heterogenität und die Ambiguität der verschiedenen Ressourcen im Semantic Web
als problematisch. Darüber hinaus besteht ein Problem in der Wissensverteilung –
zu manchen Themen existiert viel, zu anderen Themen wenig Wissen (Bryl et al.,
2010, S. 759). Somit kann eine ausreichende Abdeckung nicht garantiert werden.



3.3 Umgang mit Ambiguität und Unvollständigkeit 61

Diesbezüglich untersuchen Uryupina et al. (2012) die zwei etablierten Webressourcen
Wikipedia und YAGO hinsichtlich einer möglichen Verbesserung in der Leistung von
Systemen zur Koreferenzauflösung. Hierzu extrahieren sie semantische Informationen
und integrieren diese in das Beautiful Anaphora Resolution Toolkit (BART). Dabei
stellen sie fest, dass eine Verbesserung nur erreicht wird, wenn Maßnahmen zur er-
weiterten Disambiguierung und Filterung der Ressourcen herangezogen werden. Die
daraufhin ausgearbeiteten Lösungen zur Reduzierung des Rauschens in den Daten
basieren auf der Anwendung von Disambiguationswerkzeugen und Pruning, um stark
generische Informationen zu entfernen. Auch Rahman und Ng (2011) können durch
Hinzunahme von Weltwissen (YAGO) die Auflösung von Koreferenzen verbessern.
Darüber hinaus beziehen sie auch FrameNet mit ein. Ressourcen wie FrameNet und
VerbNet werden oftmals aufgrund ihrer Strukturiertheit und semantischen Anno-
tationen herangezogen. Darüber hinaus nutzen Ng (2007) zur Akquise von Wissen
beispielsweise die Penn Treebank, die semantisch annotierte Nominalphrasen enthält.
Das Problem des begrenzten Ressourcenumfangs bleibt aber bestehen.
In Tabelle 3.6 sind Verfahren der automatischen Koreferenzresolution, zusammen

mit einer Aufteilung in
”
regelbasiert“ (Reg.) und

”
datenbasiert“ (Dat.), aufgelistet,

wobei bereits eine Vorauswahl getroffen wurde: Für diese Arbeit sind nur solche
Verfahren relevant, für die eine Implementierung vorliegt bzw. Zugriff auf alle not-
wendigen Ressourcen gegeben ist und bei denen es sich nicht nur um primäre
Experimentierumgebungen handelt. Weiterhin enthält Tabelle 3.6 Angaben darüber,
ob sich die Verfahren in aktiver Weiterentwicklung befinden (•).
Als Beispiel ist BART anzuführen, dass ein modulares Koreferenzresolutionssystem

darstellt (Carstensen et al., 2010; Versley et al., 2008) und dabei verschiedene
statistische Ansätze sowie ein einfaches Anpassen der Features unterstützt. Allerdings
handelt es sich dabei primär um eine Entwicklungsumgebung und wurde daher unter
einen anderem Schwerpunkt entwickelt (Versley et al., 2008, S. 9, 11), als es für diese
Arbeit erforderlich ist (z. B.Geschwindigkeit).

Nr. Ansatz Quelle Aktiv Reg. Dat.

1 Illinois Bengtson und Roth (2008) • ◦ •
2 CherryPicker Rahman und Ng (2009) ◦ ◦ •
3 Reconcile Stoyanov et al. (2010) – ◦ •
4 ARKref O’Connor und Heilman (2013) ◦ • ◦
5 dcoref Lee et al. (2013) • • •
6 Berkeley Durrett und Klein (2013) – ◦ •
7 HOTCoref Björkelund und Kuhn (2014) ◦ ◦ •

Tabelle 3.6: Ansätze zur automatischen Koreferenzauflösung

Im Folgenden werden zwei aktive Verfahren detaillierter vorgestellt. Das dcoref (5)
ist Bestandteil des Stanford CoreNLP Natural Language Processing Toolkits (Manning
et al., 2014). Es ermöglicht die Erkennung von Referenzausdrücken und die Auflösung
von pronominaler sowie nominaler Koreferenz (Lee et al., 2013) und befindet sich in
aktiver Entwicklung43. Dabei werden bewährte Vorgehensweisen deterministischer,

43Siehe weiterführend: http://www-nlp.stanford.edu/software/dcoref.shtml (Stand: 11.01.17).



62 3 Stand der Wissenschaft und Technik

regelbasierter Systeme (Transparenz und Modularität) sowie des ML (weitreichende
Informationen und präzise Features) kombiniert und sequenziell angewendet (Lee
et al., 2013, S. 887 f.). Als eine Ressource wird dabei initial Wikipedia herangezogen
(Lee et al., 2013, S. 895). Die sogenannte Siebarchitektur (engl. sieve architecture)
basiert darauf, verschiedene Koreferenzmodelle sequenziell, geordnet nach Präzision,
anzuwenden, wobei die Anwendung stets auf der Ausgabe der vorherigen Komponente
beruht. Vielfache Anwendung erfährt dcoref aufgrund des modularen Aufbaus und der
herausragenden Performanz. Dabei ist dcoref nicht gänzlich ohne Anpassungen an die
jeweilige Sprache (z. B. Zhang et al., 2012) und Domäne anzuwenden, was Passonneau
et al. (2015, S. 243, 245 ff.) exemplarisch anhand der Domäne

”
Finanznachrichten“

aufzeigen. Allerdings kommt das Toolkit den Entwicklern hier durch eine hohe
Konfigurierbarkeit entgegen44.
Als datenbasiertes Verfahren steht das Illinois Coreference Package (1) zur

Verfügung, welches von der University of Illinois at Urbana-Champaign entwickelt
wird. Es umfasst ein Tool zur Resolution von Koreferenzen sowie eine Reihe von dazu-
gehörigen NLP-Features (z. B.WordNet Relationen, semantische Klassen), angelehnt
an Culotta et al. (2007). Nach Bengtson und Roth (2008, S. 6) liegt der Schwerpunkt
auf der englischen Sprache – weitere Sprachimplementierungen sind nicht bekannt.
Der modulare Aufbau des Verfahrens erlaubt eine Evaluation der einzelnen Features
hinsichtlich des Beitrags zur Koreferenzauflösung (Bengtson und Roth, 2008, S. 4, 8).
Zur Evaluation werden spezielle Korpora verwendet (s. Abschnitt 3.3.1.1 sowie

Recasens Potau, 2010, S. 10). Tabelle 3.7 zeigt quantitative Evaluationsmaße der
angeführten Ansätze – soweit vorhanden. Gezeigt wird das harmonisierte F1-Maß45.
Die Ansätze basieren in der Regel auf englischer Sprache, jedoch sind weitere Faktoren
von Relevanz, sodass ein direkter Vergleich schwer fällt bzw. nur einen Eindruck
der Erkennungsqualität geben kann. Von Bedeutung ist unter anderem auch die
jeweilige Konfiguration, wodurch die folgenden Angaben nur eine Übersicht geben
können. Weiterhin weist Recasens Potau (2010) auf die generelle Problematik der
Vergleichbarkeit hin:

”
The lack of a reliable metric, the use of different corpora

(and of different portions of the same corpus) and the reliance on true or system
mention boundaries [...] make any comparison between different systems meaningless“
(Recasens Potau, 2010, S. 19).

Zwar existiert augenscheinlich eine Vielzahl an Verfahren zur automatischen
Koreferenzresolution, allesamt stehen aber dem Problem der Ambiguität gegenüber
(z. B. Raghunathan et al., 2010, S. 500), wie Poesio und Artstein (2005, S. 76) am
Beispiel der Anaphernresolution aufzeigen. Dabei zeigt sich Baldwin (1997, S. 39)
wenig überrascht davon, dass kurze Texte tendenziös eher ambig sind als Texte, die
voll umfänglich verfasst wurden.

44Siehe weiterführend: http://nlp.stanford.edu/software/dcoref.shtml (Stand: 11.01.17).
45CEAF wird unterteilt in Mention (M) und Entity-basiert (E).
46ACE04, vgl. Bengtson und Roth (2008, S. 300)
47ACE05, vgl. Rahman und Ng (2009, S. 976)
48ACE05, vgl. Reconcile Development Team (2011)
49ACE04-Roth-Dev, vgl. O’Connor und Heilman (2013, S. 7)
50CoNLL11-Dev, vgl. Stanford NLP Group (2016)
51CoNLL12-Dev, vgl. Stanford NLP Group (2016)
52CoNLL12, vgl. Berkeley NLP Group (2016)



3.3 Umgang mit Ambiguität und Unvollständigkeit 63

Nr. Ansatz Evaluation
MUC B3 CEAF

1 Illinois46 75,8 80,8 –
2 CherryPicker47 69,3 61,4 (M) 59,5
3 Reconcile48 59,9 69,1 –
4 ARKref49 – 80,5 –
5 dcoref50 60,7 52,1 (E) 50,1

dcoref51 65,0 54,5 (E) 56,1
6 Berkeley52 70,6 58,2 (E) 54,8
7 HOTCoref53 70,7 58,6 (E) 55,6

Tabelle 3.7: Ansätze zur Koreferenzauflösung (F1-Maß)

Verfahren der Koreferenzresolution begegnen dieser Herausforderung durch aus-
gewählte disambiguierende Faktoren (Regeln, Features). Lee et al. (2011, S. 28) weisen
dabei auf die Notwendigkeit hochgradig präziser lexikalischer und syntaktischer Fea-
tures hin. Allerdings können auch mit präzisen Features nicht alle Ambiguitäten ohne
semantisches Zusatzwissen aufgelöst werden. Herausgestellt werden sollen an dieser
Stelle Verfahren, die als Nachbearbeitung auf Koreferenzketten angewendet werden,
um Ambiguität aufzulösen. Prokofyev et al. (2015) entwickeln mit SANAPHOR
ein System, dass auf das semantische Web zurückgreift und annotierte Referenz-
ausdrücke durch zusätzliches Wissen (z. B.Wikipedia) zu disambiguieren versucht.
Bestehende Koreferenzketten werden wenn notwendig modifiziert54. Auch Bansal und
Klein (2012) nutzen zur Disambiguierung Web features, die auf Reconcile angewendet
werden (Stoyanov et al., 2010).
Der Vollständigkeit halber ist noch auf Verfahren zu verweisen, die Ambi-

guität erkennen aber nicht auflösen. Yang et al. (2011) präsentieren beispielsweise
ein Klassifikationsverfahren, dass potentiell schädliche anaphorische Ambiguitäten
(engl. potentially nocuous ambiguities), das bedeutet Ambiguitäten, die sehr wahr-
scheinlich fehlinterpretiert werden, erkennt und Endanwender über deren Existenz
informiert (Yang et al., 2010a; Yang et al., 2010b; Yang et al., 2010c). Es wird
demnach nicht versucht, die Ambiguität durch die Wahl der am wahrscheinlichsten
Disambiguation zwangsläufig aufzulösen (Yang et al., 2011, S. 186). Dies ist aber im
Rahmen der Zielsetzung einer weitestgehenden Automatisierung der Anforderungs-
kompensation erforderlich.

3.3.2 Reduktion von Unvollständigkeit

Vollständigkeit wird in der Literatur oftmals als eine elementare Qualitätseigenschaft
von Anforderungen und in einem Atemzug mit Konsistenz, Eindeutigkeit und
Verifizierbarkeit genannt (Grande, 2011, S. 83 f.; Fabbrini et al., 2000, S. 3 f.; IE-
EE, 1998, S. 4). Dabei bleibt unklar, was unter dem Begriff der Vollständigkeit
(engl. completeness) verstanden wird, welcher Bezugspunkt gewählt wird (z. B. eine
Anforderung oder eine Dokumentation von Anforderungen) und wann der Zustand

53CoNLL12, vgl. Björkelund und Kuhn (2014, S. 53 ff.)
54Demonstriert wird das Verfahren an Stanford dcoref.



64 3 Stand der Wissenschaft und Technik

der Vollständigkeit erreicht ist (Firesmith, 2005, S. 27; Ferrari et al., 2014, S. 25 f.).
Firesmith (2005, S. 41) und Davis et al. (1993, S. 145) stellen diesbezüglich in Frage,
ob dieser Zustand generell erreicht werden kann. Nach Pekar et al. (2014, S. 243) ist
Unvollständigkeit nach Ambiguität das in der Literatur am meisten identifizierte
Problem im Kontext von Anforderungstexten.
Oftmals beziehen sich vollständige Anforderungen (engl. complete requirements)

oder die Vollständigkeit von Anforderungen (engl. completeness of requirements) auf
das gänzliche Fehlen von Anforderungen innerhalb einer Anforderungsdokumentation.
In dieser Arbeit liegt der Fokus auf vorhandenen, aber unvollständigen Anforde-
rungen, die beispielsweise von Firesmith (2005, S. 36 ff.) als

”
complete individual

requirements“ bezeichnet werden. Allerdings ist dieser Begriff noch weiter zu erläutern,
da Vollständigkeit in Abhängigkeit der Art von Anforderung (s. Abschnitt 1.2) un-
terschiedlich ausgeprägt sein kann. Eine NFA kann vollständig sein, obwohl Infor-
mationen fehlen, die eine FA voraussetzen würde (Firesmith, 2005, S. 36 ff.). So
kann der Satz

”
Die Sicherheit wird durch Verschlüsselung aller ausgehender E-Mails

gewährleistet“ für eine NFA hinreichend sein, während er für eine FA nicht geeignet
ist, da Details zur funktionalen Umsetzung (z. B.Verschlüsselung durch PGP) fehlen.
Weitgehende Einigkeit besteht in den Auswirkungen, die unvollständige Anfor-

derungen für ein Softwareprodukt (Ghazarian, 2009), die Produktsicherheit (HSE,
2003) oder ein gesamtes Projekt (Kamata und Tamai 2007; Standish Group Inter-
national 1995; Bell und Thayer 1976) haben können. Im Kontext dieser Arbeit ist
auch auf die negativen Auswirkungen auf die Kundenakzeptanz und -zufriedenheit
hinzuweisen (Firesmith, 2005, S. 28; Davis et al., 1993, S. 142). Darüber hinaus
kann Unvollständigkeit weitere Formen der Ungenauigkeit, beispielsweise Ambi-
guität, begünstigen oder sogar verursachen (s. Abschnitt 2.1.2). Das Phänomen der
Unvollständigkeit ist demnach nicht als isoliertes Phänomen zu betrachten.

3.3.2.1 Identifikation unvollständiger Anforderungen

Der Identifikation unvollständiger Anforderungen widmen sich sowohl Praxis als
auch Wissenschaft seit mehreren Jahrzehnten (z. B. Fagan, 1976). Bereits Boe-
hm (1984, S. 86) führt eine Vielzahl an Verifikations- und Validierungstechniken
(z. B. Lesetechniken, Checklisten und Interviews aber auch mathematische Beweise
und Modelle) auf, die unter anderem das Unvollständigkeitsphänomen adressieren.
Im Fokus der Literatur stehen dabei generelle Überlegungen zur Identifikation sowie
Möglichkeiten der (softwaretechnischen) Unterstützung (z. B.Decker et al., 2007).
Im Folgenden werden manuelle sowie softwareunterstützte Identifikationverfahren
angeführt. Manuelle Verfahren dienen in dieser Arbeit allerdings primär der themati-
schen Abdeckung. Einen umfassenden Überblick geben beispielsweise Aurum et al.
(2002) sowie Laitenberger und DeBaud (2000).

Manuelle Verfahren

Eine naheliegende Möglichkeit, Unvollständigkeit zu erkennen, ist ein Abgleich mit
den eigenen, individuellen Erfahrungswerten während des Lesens. Dieses Vorgehen
wird ad hoc review genannt und ist für Anforderungsbeschreibungen in natürlicher
Sprache geeignet (Shull et al., 2000, S. 75). Es ist aber weder systematisch im Aufbau,



3.3 Umgang mit Ambiguität und Unvollständigkeit 65

noch fokussiert und nur schwer nachzuvollziehen, geschweige denn an neue Projek-
tumstände anzupassen (Shull et al., 2000, S. 74). Weitere Ansätze zur Identifikation
(und Kompensation) von Unvollständigkeit wie von Yadav et al. (1988) basieren
ebenfalls oftmals auf der Begutachtung durch Dritte und sind daher geprägt von
Subjektivität, eingeschränkten Perspektiven bzw. individuellen Schwerpunkten sowie
einer inkonsistenten Bewertung (Menzel et al. 2010, S. 15; España et al. 2009, S. 1).
Auch weil die Wahrnehmung von Vollständigkeit aufgrund von expliziten und impli-
ziten Annahmen stark variieren kann (Albayrak et al., 2009). Eine standardisierte
Vollständigkeitsprüfung, wie von Firesmith (2005, S. 39) vorgeschlagen, kann diese
Probleme minimieren aber nicht gänzlich ausschließen.
Firesmith (2005, S. 39) empfiehlt daher im Umgang mit

”
individual requirements“

unter anderem die Erstellung von Checklisten für Anforderungsarten und deren
Komponenten sowie die Nutzung von projektspezifischen

”
requirement completeness

guidelines and/or standards“ (Firesmith, 2005, S. 39). Checklisten sind dabei als
Vorgehen unter anderem aufgrund einer ausgeprägteren Struktur und besseren
Anpassungsmöglichkeiten an neue Projektumstände den ad hoc reviews vorzuziehen
(Shull et al., 2000, S. 74). Darüber hinaus existieren systematische Lesetechniken wie
das

”
Perspective-Based Reading“ (Shull et al., 2003) oder das

”
Defect-Based Reading“,

die in Form von Schritt-für-Schritt-Verfahren auftreten (Shull et al., 2001). Dabei
werden mehreren Lesern unterschiedliche Stakeholder -Perspektiven bzw. mögliche
Softwaredefekte mit konkreten Fragestellungen (z. B. zur Vollständigkeit) zugeteilt,
um eine möglichst große Spezifiziertheit und Vollständigkeit zu erreichen.
Aurum et al. (2002, S. 146 ff.) zeigen dabei auch softwaretechnische Un-

terstützungsmöglichkeiten auf, die den Softwareinspektionsprozess effizienter
gestalten sollen. Daran anknüpfend werden im Folgenden softwareunterstützte
Ansätze zur Identifikation von Unvollständigkeit herangezogen.

Softwareunterstützte Verfahren

Softwareunterstützte Verfahren identifizieren Unvollständigkeit zum einen durch den
Abgleich einer Anforderungsbeschreibung mit weiteren Ressourcen, beispielsweise
Qualitätsmodellen oder Ontologien. Zum anderen gibt es Verfahren, die unter anderem
domänenspezifische Wörterbücher als Unvollständigkeitsindikatoren heranziehen.
Huertas und Juárez-Ramı́rez (2012) erkennen unvollständige Anforderungen bei-

spielsweise über einen Abgleich mit vorgegebenen
”
W-Fragen“55. So gilt eine An-

forderung (in diesem Fall ein Satz) als vollständig, wenn Actor (
”
Who“), Function

(
”
What“) und Detail (

”
Where / When“) angegeben sind.

Systematischer gehen Fabbrini et al. (2001) vor, die mit QuARS (Quality Analyzer
of Requirement Specification) eine Anwendung bereitstellen, die auf Grundlage eines
Qualitätsmodells die Überarbeitung von Anforderungsbeschreibungen durch einen
Stakeholder ermöglicht. Im Rahmen der Specification completion wird auf Satzbasis
nach unvollständig spezifizierten Subjekten gesucht (z. B.

”
flow“) die einer weiteren

Spezifizierung bedürfen (z. B.
”
data flow“). Ähnlich gehen Fantechi und Spinicci

(2005) vor, die mit dem Java Requirement Analyzer einen Ansatz vorstellen, der

55Offene
”
W-Fragen“ sind Fragen, die mit einem W-Wort beginnen (z. B.

”
Wann“).



66 3 Stand der Wissenschaft und Technik

die Satzstruktur analysiert und mit speziellen Wörterbücher abgleicht, um fehlende
Bestandteile eines Subject-Action-Object-Triples zu identifizieren.
Unvollständige Spezifizierung greifen auch Körner (2014) sowie Körner und Brumm

(2010) zur Verbesserung natürlichsprachlicher Anforderungen auf: Unvollständig
spezifizierte Prozesswörter (engl. incompletely specified process words) und unvoll-
ständig spezifizierte Bedingungen (engl. incompletely specified conditions). Körner
und Brumm (2010) stellen dabei eine Anwendung namens Requirements Engineering
Specification Improver (RESI) bereit, die sprachliche Mängel in Anforderungstexten
aufzeigen und im Dialog mit einem Stakeholder kompensieren kann. RESI bezieht
die hierbei notwendigen Informationen (z. B. Prädikate und Leerstellen) aus Ressour-
cen wie ResearchCyc56 und semantischen Wortdatenbanken wie WordNet (Miller,
1995). Vergleichbar ist der Ansatz von Landhäußer et al. (2015), der unvollständige
Nominalisierungen erkennt und Nutzern zur Korrektur anzeigt.
Geierhos et al. (2015) diskutieren eine Vorgehensweise, die über den Abgleich

mit einer Ontologie hinausgeht und auf domänenspezifischer Ähnlichkeitssuche
(engl. similarity retrieval) basiert. Ziel ist es, unbeschränkte Anforderungsbeschrei-
bungen zu ermöglichen und Endanwender mittels Textvorschlägen zu unterstützen
(Geierhos et al., 2015, S. 277). Dabei werden natürlichsprachliche Anforderungsbe-
schreibungen, die in Form und Inhalt einmalig sind (UGC), auf ihre semantischen
Hauptkomponenten reduziert, indiziert und iterativ als Vorlagen verwendet. Hierbei
werden domänenspezifischen Ontologien herangezogen, um fehlende Informationen
im Eingabetext zuverlässig durch Informationen aus den Vorlagen kompensieren zu
können (Geierhos und Bäumer, 2016).
Ontologien werden auch andernorts zur Erkennung von Unvollständigkeit einge-

setzt (Bhat et al. 2014; Kaiya und Saeki 2006; Kaiya und Saeki 2005). So präsentieren
Verma und Kass (2008) mit RAT (Requirements Analysis Tool) eine Anwendung,
die automatisch eine Vielzahl von syntaktischen und semantischen Analysen auf
natürlichsprachlichen Anforderungsdokumenten anwendet und Texte basierend auf

”
Best Practices der Branche“ prüft. Dabei werden sowohl unvollständige Anforde-
rungen (z. B. offene Leerstellen eines Prädikats) als auch fehlende Anforderungen
identifiziert (Verma und Kass, 2008, S. 753). Als Ressourcen werden benutzerspezifi-
sche Glossare, kontrollierte Syntax und domänenspezifische Ontologien einbezogen.
Es müssen allerdings nicht zwangsläufig klassische Lexika oder Ontologien als

Ressourcen dienen. Ferrari et al. (2014) ermöglichen mit ihrem Completeness Assistant
for Requirements (CAR) die Messung von Vollständigkeit durch Hinzunahme von
Dokumenten, die während der Aufnahme von Anforderungen anfallen. Vollständigkeit
zeichnet sich dabei dadurch aus, dass alle in den Dokumenten genannten Konzepte
und Abhängigkeiten auch in den formulierten Anforderungen wiederzufinden sind.
Interessant an diesem Ansatz ist das Vorgehen, Ausdrücke und Verbindungen zwischen
Ausdrücken aus den Dokumenten zu extrahieren und als Abgleich zu nutzen.

3.3.2.2 Kompensation unvollständiger Anforderungen

Es existieren nur wenige Arbeiten zur Kompensation unvollständiger
natürlichsprachlicher Anforderungen. Verfahren, die natürlichsprachliche Anforde-

56Siehe weiterführend: http://www.cyc.com/platform/researchcyc/ (Stand: 11.01.17).



3.3 Umgang mit Ambiguität und Unvollständigkeit 67

rungen unterstützen, beschränken die Anwendung dabei oftmals auf kontrollierte
Sprachen (z. B.Holtmann et al., 2011). Dennoch existieren, wie bereits zuvor im
Rahmen der Identifikationsverfahren dargestellt, Verfahren wie RESI von Körner und
Brumm (2010), die Vollständigkeit im Sinne vollständig spezifizierter Prozesswörter
behandeln. Einen solchen prädikatbasierten Ansatz präsentieren Bäumer und
Geierhos (2016). Die Identifikation unvollständiger Prädikate basiert dabei auf
bestehenden Techniken im Kontext von Semantic Role Labeling (SRL), die sowohl
Prädikate als auch Argumente erkennen können. Informationen über die spezifische
Prädikat-Argument-Struktur (PAS) sind dabei Ressourcen wie Propbank (Palmer
et al., 2005) und FrameNet (Baker et al., 1998) zu entnehmen, wobei in diesem
Fall Propbank genutzt wird. Die Kompensation erfolgt über ein speziell angepasstes
IR-Modul, dessen Index mit bereits vorverarbeiteten Anforderungsbeschreibungen
bzw. User Stories gespeist wurde. Dies ermöglicht kontextspezifische Suchanfra-
gen (auch:Kompensationsanfragen), die eine geeignete Instanz für eine fehlende
Instantiierung im jeweiligen Kontext zurückgeben können.
Eine Weiterentwicklung stellt der Ansatz von Geierhos und Bäumer (2016) dar,

der ebenfalls auf eine prädikatbasierte Kompensation zurückgreift. Zusätzlich wird
die Kompensation durch domänenspezifisches Wissen verfeinert (mithilfe entspre-
chender Ontologien) sowie erweitert (

”
Concept Expansion“). Wird beispielsweise

eine geeignete Instanz für ein fehlendes Argument gefunden (z. B.
”
Friends“), prüft

das erweiterte Verfahren, ob ähnliche Instanzen der gleichen semantischen Kategorie
vorliegen und schlägt diese ebenfalls vor (z. B.

”
Colleagues“ und

”
Family“).

Diese Verfahren unterliegen dabei zwei nennenswerten Limitationen: (1) der nur
begrenzt verfügbaren domänenspezifischen Ressourcen sowie der Performanz existie-
render Semantic Role Labeler. Erstgenanntes ist bereits in Abschnitt 3.2 als Problem
diskutiert worden. Letzteres ist Gegenstand aktueller Forschung, so zum Beispiel bei
Schenk und Chiarcos (2016) sowie Laparra und Rigau (2013).
Ferrari et al. (2014) schlagen, ähnlich zu Geierhos und Bäumer (2016), ein auf

Textvorschlägen basiertes Verfahren vor, was Unvollständigkeit feststellt und interak-
tiv behebt. Den Aspekt fehlender Ressourcen kompensieren sie, indem bestehende
Dokumente herangezogen werden, die während der Aufnahme von Anforderun-
gen anfallen, beispielsweise bei Planungstreffen. CAR extrahiert relevante Terme
und Termbeziehungen aus den Dokumenten und untersucht eine gegebene Anfor-
derungsbeschreibung hinsichtlich vorkommender Terme und der Übereinstimmung.
Abbildung 3.7 zeigt diesbezüglich die CAR-Programmoberfläche, welche sowohl die
Anforderungen (erste Textbox) als auch die zusätzlichen Dokumente als Freitext
(zweite Textbox) beinhaltet (Ferrari et al., 2014, S. 31 ff.).

Stetig wird die Vollständigkeit der Anforderungen berechnet (vgl. Ferrari et al.,
2014, S. 31) und es werden dem Benutzer Terme vorgeschlagen, auf dessen Grundlage
eine weitere Anforderung zu schreiben und der Anforderungssammlung hinzuzufügen
ist. Wird eine neue Anforderung hinzugefügt, wird die Vollständigkeit erneut berech-
net. Wie in Abbildung 3.7 ersichtlich ist, werden kontrollierte natürlichsprachliche
Anforderungsbeschreibungen vorausgesetzt.



68 3 Stand der Wissenschaft und Technik

Abbildung 3.7: Completeness Assistant for Requirements.
Entnommen aus Ferrari et al. (2014, S. 32)

3.3.3 Kombinierte Ansätze

Die Idee, natürlichsprachliche Anforderungen nicht isoliert auf eine Form der Unge-
nauigkeit oder Unvollständigkeit zu prüfen, sondern mehrere Verfahren der Erkennung
und/oder Kompensation zu kombinieren, findet sich mehrfach in der Literatur. So
existieren sowohl kombinierte Ansätze, die unterschiedliche Formen der Ambiguität
erkennen können (z. B. Tjong und Berry, 2013; Bajwa et al., 2012) als auch Ansätze,
die beispielsweise Ambiguität sowie Unvollständigkeit erkennen (z. B.Körner, 2014;
Huertas und Juárez-Ramı́rez, 2012; Fabbrini et al., 2001).
Einen Überblick über bestehende Forschungsansätze zur Disambiguierung im

Kontext von natürlichsprachlichen Anforderungen geben Husain und Beg (2015)
sowie Shah und Jinwala (2015). Shah und Jinwala (2015) unterscheiden dabei
Verfahren im Wesentlichen hinsichtlich des Grades an Automatisierung, gewählten
Ansatzes (Regelbasiert, Ontologie-basiert etc.) und verwendeten Technologien (z.
B. Stanford Parser). Eine weitere umfangreiche Darstellung existierender Ansätze
zur Disambiguierung im Anforderungskontext gibt Bano (2015), die den Fokus
allerdings auf empirische Arbeiten legt. Im Folgenden werden kombinierte Ansätze
der Erkennung und Kompensation von Ambiguitäten sowie Unvollständigkeit im
Sinne einer bestmöglichen Gesamtübersicht aufgeführt (vgl. Tabelle 3.8).
Tabelle 3.8 listet kombinierte Ansätze hinsichtlich der Dimensionen

”
Defekte“,

”
Zie-

le“,
”
Eingabe / Ausgabe“ (I/O) und

”
Interaktion“ auf.

”
Defekte“ gibt die Abdeckung

der Verfahren wieder. So handelt es sich bei NL2OCL und SR-Elicitor um Verfahren,



3.3 Umgang mit Ambiguität und Unvollständigkeit 69

die eine geringe Abdeckung haben und bei QuARS und QuARSexpress um Ansätze,
die eine Vielzahl von Defiziten abdecken. Darüber hinaus unterscheiden sich die
Verfahren auch in der Zielsetzung, während QuARS das Ziel verfolgt, möglichst viele
Defizite in Anforderungstexten zu erkennen, zielen NL2OCL und SR-Elicitor auf die
Erkennung sowie Kompensation ab. Beide Verfahren verzichten dabei auf Benutzerin-
teraktion. Demgegenüber steht der RESI, welcher eine hohe Benutzerinteraktion bei
der Kompensation ausgewählter Defizite vorsieht. RESI und der Natural Language
Automatic Requirement Evaluator (NLARE) werden detaillierter vorgestellt, um die
Unterschiede und Besonderheiten aufzuzeigen.
Huertas und Juárez-Ramı́rez (2012) stellen mit NLARE einen kombinierten Ansatz

vor, der auf FA und die Erkennung von Ambiguität, Unvollständigkeit und Atoma-
rität spezialisiert ist. Unter Ambiguität verstehen die Autoren steigerbare Adjektive
und Adverbien. Unvollständigkeit bezieht sich auf den Abgleich mit vorgegebenen
W-Fragen (

”
Who“,

”
What“,

”
Where“,

”
When“) und Atomarität bezeichnet das

Qualitätsmerkmal, dass ein einzelner Satz auch nur einen einzigen Anforderungsge-
genstand beschreiben soll.

N
L
A
R
E

57
N
L
A
R
E
2
58

SR
E
E

59
R
E
SI

60
Q
uA

R
S
61

N
L
2O

C
L

62
SR

-E
lic
it
or

63
SR

R
-D
ir
ec
to
r
64

Q
uA

R
S e

x
pr
es
s
65

Sm
el
la

66
A
Q
U
SA

67

D
ef
ek
te

Lexikalische Ambiguität • • • • • • • • • • •
Syntaktische Ambiguität ◦ ◦ • ◦ • • • • • ◦ ◦
Referentielle Ambiguität ◦ ◦ • ◦ • ◦ ◦ ◦ • ◦ ◦

Vagheit ◦ ◦ • • • ◦ ◦ • • • ◦
Unvollständigkeit • • • • • ◦ ◦ ◦ • • •

Lesbarkeit ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ •
Konsistenz ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • • •
Atomarität • • ◦ ◦ • ◦ ◦ ◦ • ◦ •

Z
ie
le Erkennung • • • • • • • • • • •

Kompensation ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦

I/
O Strukturierte Eingabe ◦ ◦ ◦ • ◦ • ◦ ◦ ◦ • •

Strukturierte Ausgabe ◦ ◦ ◦ • ◦ • • ◦ ◦ ◦ ◦
Hoch ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦
Mittel ◦ ◦ ◦ ◦ • ◦ ◦ ◦ • ◦ ◦

In
te
ra
k
t.

Niedrig • • • ◦ ◦ ◦ ◦ • ◦ ◦ ◦
Keine ◦ ◦ ◦ ◦ ◦ • • ◦ ◦ • •

Tabelle 3.8: Kombinierte Kompensationsverfahren

57vgl. Huertas und Juárez-Ramı́rez (2012).
58vgl. Huertas und Juárez-Ramı́rez (2013).
59vgl. Tjong (2008) sowie Tjong und Berry (2013).
60vgl. Körner und Brumm (2010) sowie Körner (2014).
61vgl. Lami (2005).
62vgl. Bajwa et al. (2012).
63vgl. Umber und Bajwa (2011).



70 3 Stand der Wissenschaft und Technik

NLARE nutzt zum Verarbeiten der natürlichen Sprache das Natural Language Toolkit
(NLTK) und reguläre Ausdrücke (engl. regular expressions, RegEx ). Die sequenzielle
Verarbeitung umfasst neben einer Satzgrenzenerkennung und Tokenisierung eine
Rechtschreibkorrektur als Preprocessing (vgl. Abbildung 3.8). Als Ausgabe erhalten
Anwender Hinweise wie

”
The requirement is ambiguous because it contains the word

’earlier’ and ’later’“ (Huertas und Juárez-Ramı́rez, 2012, S. 375). Eine Kompensation
oder weitere Hilfestellung findet nicht statt.

SentenceSentence

NLP Data Loader

Requirements
Reader

Tokenizer

Sentence

Token

Spellchecker

SentenceSentence

Requirements Evaluator

Atomicity Ambiguity

Completeness

Actor

Function

Detail

Abbildung 3.8: Natural Language Automatic Requirement Evaluator.
In Anlehnung an Huertas und Juárez-Ramı́rez (2012, S. 373)

Der RESI von Körner und Brumm (2010) bzw. Körner (2014) unterscheidet sich
deutlich von NLARE im Hinblick auf (vorgesehene) Benutzerinteraktion, Flexibilität
und Abdeckung linguistischer Defekte.
RESI ist in der Lage, Anforderungsspezifikationen als Graph einzulesen und auto-

matisiert auf linguistische Defekte zu untersuchen. Werden Defekte gefunden, initiiert
RESI einen Benutzerdialog (Körner und Brumm, 2010, S. 456). Hierbei wird nicht
nur auf die problematischen Textstellen verwiesen, sondern explizite Kompensati-
onshinweise für jede Art von Defizit (z. B. unvollständiges Prozesswort

”
Returning-

Something“) sowie Ausprägung (z. B.
”
SUBJECT: giver“) gegeben (Körner und

Brumm, 2010, S. 456 f.). Dies erfordert das Einbinden von Ressourcen, die zum einen
das Erkennen der Defizite ermöglichen (Regeln) und zum anderen die zusätzlichen
Informationen zur Kompensation bereitstellen (unterschiedliche Ontologien).
Abbildung 3.9 zeigt den Programmablauf von RESI. Nach dem Einlesen der struk-

turierten Anforderungsspezifikationen wird ein Preprocessing durchgeführt, welches
POS-Tagging und Lemmatisierung umfasst. Das daraus resultierende Spezifikations-
objekt wird mittels angewandter Regeln auf linguistische Defizite untersucht, die
vom Benutzer zuvor ausgewählt wurden. Wie Abbildung 3.9 zeigt, werden die Regeln
iterativ auf das Spezifikationsobjekt angewandt und der Benutzer zur Kompensation
erkannter Defizite aufgefordert. RESI exportiert nach Durchlauf aller gewählter
Regeln das Spezifikationsobjekt als Graph.

64vgl. Rojas und Sliesarieva (2010).
65vgl. Bucchiarone et al. (2010).
66vgl. Femmer et al. (2016a).
67vgl. Lucassen et al. (2016).



3.4 Diskussion und Zwischenfazit 71

Abbildung 3.9: Requirements Engineering Specification Improver.
Entnommen aus Körner (2014, S. 60)

3.4 Diskussion und Zwischenfazit

Natürlichsprachliche Anforderungsbeschreibungen ermöglichen es Endanwendern, an
der Idee des OTF-Computings zu partizipieren und bedarfsgerechte Servicekompo-
sitionen zu nutzen. Wie dargestellt, sind dabei natürlichsprachliche Anforderungs-
beschreibungen als Ausgangspunkt zu erwarten, die unvollständig und hochgradig
ambig sind sowie stark im Umfang und Detailgrad variieren. Dies steht im Kontrast
zu den bisher im OTF-Computing genutzten Spezifikationsansätzen für Services, die
auf semi-formalen bzw. formalen Sprachen beruhen (Huma et al., 2012; Platenius
et al., 2016). Diese sind ungeeignet, da Endanwender nicht über die notwendigen
Fachkenntnisse verfügen und somit eine unüberwindbare Einstiegsbarriere vorfinden.
Die natürliche Sprache als Bestandteil der OTF-Vision bedeutet dabei, dass sie als

alleinige Schnittstelle zum Endanwender fungiert. Alle notwendigen Informationen
müssen aus den Anforderungsbeschreibungen, die Endanwender zur Verfügung stellen,
extrahiert werden – unter Berücksichtigung genannter Defizite wie Unvollständigkeit
und Ambiguität. Gleichzeitig muss die Interaktion mit dem Endanwender auf ein
Minimum reduziert werden, um eine performante Bereitstellung der gewünschten
Servicekomposition zu ermöglichen. Aus diesem Grund sind Anforderungsextraktions-
und Kompensationverfahren erforderlich, die a) performant sind und b) keine bis
minimale Benutzerinteraktion erfordern.
Die Extraktion von Anforderungen aus natürlichsprachlichen Beschreibungen

stellt ein weitestgehend unbearbeitetes Forschungsfeld dar. Nur wenige Ansätze
existieren, die in der Lage sind, Anforderungen aus Fließtexten zu extrahieren und
auf die Kernelemente zu reduzieren. Nennenswert ist vor allem das von Dollmann
und Geierhos (2016) entwickelte REaCT, dass zum einen eine Klassifikation von
On- und Off-Topic-Inhalten vornehmen kann und zum anderen die Extraktion von
semantischen Kernelementen vollzieht.



72 3 Stand der Wissenschaft und Technik

Demgegenüber handelt es sich bei Ungenauigkeit und Unvollständigkeit in Anfor-
derungsbeschreibungen um Themen des REs, die mit großem Forschungsinteresse
seitens der Wissenschaftsgemeinschaft einhergehen. Dies mag der Tatsache geschuldet
sein, dass es sich dabei nicht um reine RE-Themen handelt, sondern um Themen,
die viele wissenschaftliche Fachbereiche tangieren, darunter insbesondere die Compu-
terlinguistik mit dem Ziel der maschinellen Textverarbeitung.
Nicht zu unterschätzen ist allerdings die Praxisrelevanz dieser Thematik, die sich

in auffällig vielen Kooperationen zwischen Praxis und Wissenschaft in diesem Bereich
abzeichnet. Fehlerhafte Softwareanforderungen stellen eine Gefahr für den Projekt-
und Unternehmenserfolg dar und betreffen sowohl kleine Softwaremanufakturen
als auch große Softwarehäuser. Schon längst sehen sich neben diesen klassischen
Softwareherstellern zum Beispiel auch Autohersteller (z. B.Mercedes Benz) und
Raumfahrtbehörden (z. B.NASA68) mit der Notwendigkeit, natürlichsprachliche
Softwareanforderungen einer Qualitätskontrolle und Kompensation zu unterziehen,
konfrontiert. Die Notwendigkeit, diese Gefahr zu minimieren, geht mit der Erkenntnis
einher, dass natürlichsprachliche Anforderungen nach wie vor notwendig sind und
Ungenauigkeit und Unvollständigkeit gleichzeitig so vielfältig auftreten können, dass
softwareseitige Unterstützung und automatische Kompensation erforderlich ist.
Als Resultat dieser Bemühungen existiert eine Vielzahl an Ansätzen und Verfah-

ren, die spezifische oder mehrere Formen von Ungenauigkeit und Unvollständigkeit
erkennen und in manchen Fällen kompensieren können. Diese Ansätze und Verfahren
unterscheiden sich im Vorgehen, Grad der Automatisierung, Aus- und Eingabeforma-
ten, Performanz sowie zahlreichen Annahmen und Umweltfaktoren (vgl. Tabelle 3.8).
Gemein haben sie, dass der Fokus der Entwicklung auf der Erkennung und/oder Kom-
pensation liegt. Dies ist ein wesentlicher Unterschied zu den Anforderungen, die in
dieser Arbeit an die Verfahren gestellt werden (z. B. weitestgehende Automatisierung).
Doch wie passen diese bestehenden Arbeiten zu der Vision des OTF-Computings?

Wie können sie dabei helfen, Anforderungsbeschreibungen, die hochgradig individuell
sind und auf mehreren Ebenen fehleranfällig sein können, soweit zu verbessern, dass
sie die bedarfsgerechte Komposition von Softwareservices ermöglichen? Und lassen
sich die Ansätze und Verfahren kombinieren, sodass sowohl die Notwendigkeit ihrer
Anwendung erkannt werden kann als auch die Anwendung einzelner Komponenten
im Einklang einer synergetischen Kompensationsstrategie steht?
Am Beispiel der Ambiguität von Lexemen wird die facettenreiche Problematik im

Kontext des OTF-Computings greifbar. So ist es beispielsweise schnell ersichtlich,
dass eine maschinelle Verarbeitung des Wortes

”
senden“ mit seinen acht Lesarten

zu Verständnisproblemen führen kann, auch wenn für Endanwender im Moment der
Anforderungsbeschreibung für eine E-Mail-Anwendung nur die Lesart

”
transmitted to

another place“ im Vordergrund steht. Für die lexikalische Disambiguierung existiert
dabei eine Vielzahl an Verfahren, die die wahrscheinlichste Lesart im Kontext einer
Anforderungsbeschreibung ermitteln können. Derzeit eine der vielversprechendsten
Softwarelösungen außerhalb des RE-Kontextes ist Babelfy, die unstrukturierten Fließ-
text entgegennehmen kann und disambiguierte Lesarten pro Lexem wiedergibt, ohne
dabei Benutzerinteraktion zu erfordern. Auf Grund einer heterogenen, umfangreichen
Datenbasis ist Babelfy domänenübergreifend einsetzbar.

68National Aeronautics and Space Administration.



3.4 Diskussion und Zwischenfazit 73

Liegt der Fokus nicht mehr auf dem einzelnen Lexem sondern auf der Zusam-
menfügung von Wörtern, steigt die Komplexität der Erkennung und Kompensation.
In dieser Arbeit wird unter dem Begriff der syntaktischen Ambiguität sowohl das
Phänomen der Anbindungsambiguität im Falle von Präpositionalphrasen als auch
die Koordinationsambiguität zusammengefasst. Wie aufgezeigt wurde, bestehen auch
hier bereits Ansätze und Verfahren, allerdings bei weitem nicht so viele und etablierte,
wie bei der lexikalischen Ambiguität. Wird der RE-Kontext bei der Auswahl eines
Verfahrens hinzugenommen, verringert sich die Anzahl erneut erheblich.
Die Erkennung von potentiell ambigen Strukturen ist sowohl bei der PP-

Anbindungsambiguität als auch bei der Koordinationsambiguität über syntaktische
Muster möglich. Dies ist im Rahmen dieser Arbeit von besonderem Vorteil, da der
Abgleich mit Mustern sehr performant durchgeführt werden kann und die Entschei-
dung, ob eine Kompensationsmethode aufgerufen werden muss oder nicht, in diesen
Fällen sehr zuverlässig und ohne großen Aufwand erfolgt.
Die Disambiguierung gestaltet sich dann allerdings komplizierter, da nur wenige

Arbeiten zur Auflösung von Koordinationsambiguität und PP-Anbindungsambiguität
existieren, die im Rahmen dieser Arbeit Anwendung finden können. Im Falle der
Koordinationen existieren zum Beispiel Ansätze, die linguistische Merkmale der
Konjunktion heranziehen oder das gemeinsame Auftreten von lexikalischen Ein-
heiten (Modifikatoren und verbundene Wörter) berücksichtigen. Das Ableiten von
Regeln und Mustern auf Grundlage verschiedener linguistischer Ressourcen erscheint
dabei zielführend und performant zugleich. Auch für die Disambiguierung von PP-
Anbindungen existieren Verfahren, die auf Zusatzwissen zur Auflösung zurückgreifen
(z. B.WordNet, VerbNet). Darüber hinaus werden Verfahren des maschinellen Lernens
genutzt, die sehr gute Ergebnisse erzeugen.
Wie dargestellt werden konnte, existieren darüber hinaus mehrere Ansätze und

Verfahren der Anaphernresolution und der automatischen Koreferenzresolution. Die
Ansätze können dabei grob in

”
Linguistische Ansätze“,

”
Heuristiken“ und

”
Ma-

schinelles Lernen“ unterteilt werden. Hervorgehoben werden kann dabei die dcoref -
Komponente, die Bestandteil des Stanford CoreNLP Natural Language Processing
Toolkits ist. Sie ermöglicht die Erkennung von Referenzausdrücken und die Auflösung
von pronominaler sowie nominaler Koreferenz, ist als externe Programmkomponente
konzipiert und befindet sich in aktiver Entwicklung.
Unvollständige Softwareanforderungen zu erkennen ist Gegenstand einer Vielzahl

an Publikationen. So werden beispielsweise Reviews, Lesetechniken und Checklisten
als manuelles Vorgehen zum einen und softwareunterstützte Anforderungsabgleiche
mit Qualitätsmodellen, Ontologien oder Anforderungsdokumenten zum anderen
vorgeschlagen. Vielfach liegt der Fokus dabei auf der Erkennung gänzlich fehlender
Anforderungen und nicht auf Unvollständigkeit im Sinne fehlender Teilinformationen.
Die Kompensation unvollständiger Softwareanforderungen ist ein weniger mit Pu-
blikationen bedachtes Forschungsfeld, indem vor allem die Ansätze von Körner und
Brumm (2010) sowie Geierhos und Bäumer (2016) nennenswert sind. Beide Arbeiten
legen den Fokus auf unvollständige Prädikate (

”
Prozesswörter“) als semantisches

Zentrum einer FA. Während beide Arbeiten unvollständige Prädikate erkennen und
eine Kompensation initiieren, kann nur das Verfahren von Bäumer und Geierhos
(2016) eine automatische Kompensation auf Basis ähnlicher Anforderungsbeschrei-



74 3 Stand der Wissenschaft und Technik

bungen vornehmen und die Ergebnisse strukturiert ausgeben. Damit ist es geeignet,
in ein automatisiertes Kompensationssystem aufgenommen zu werden und kann
dabei helfen, fehlende Angaben von Endanwendern zu kompensieren, noch bevor die
Komposition geeigneter Services erfolgt.
Eine wirkliche Zusammenführung der genannten Verfahren im Sinne einer weitest-

gehend automatisierten Gesamtstrategie zur Verbesserung von Anforderungsbeschrei-
bungen existiert nicht, wenn auch einzelne Verfahren mehrere Defizite abdecken: So
deckt beispielsweise das populäre Tool QuARS eine ganze Reihe von Ambiguitäten
und anderen Qualitätsmerkmalen (z. B. Lesbarkeit) ab. Eine Kompensation findet
aber nicht statt, sodass eine hohe Benutzerinteraktion zumindest bei der Kompensa-
tion notwendig ist. Benutzerinteraktion ist dabei auch ein wesentlicher Einflussfaktor
der Performanz und Akzeptanz des gesamten Verarbeitungsvorgangs und als kritisch
zu bezeichnen. Endanwender erwarten, dass ihre Anforderungen on-the-fly verarbeitet
werden und das sie schnellstmöglich passende Servicekompositionen präsentiert be-
kommen. Eine wiederholte Nachfrage bezüglich der Auflösung von Ambiguitäten oder
der Kompensation von Unvollständigkeit wäre ein ermüdender, langsamer Prozess.
Darüber hinaus kann nicht sichergestellt werden, dass die Endanwender überhaupt
die Ambiguität oder die Unvollständigkeit erkennen, was sehr wahrscheinlich zu
einem Abbruch der Anforderungsbeschreibung führen würde. Diesbezüglich wäre
zum Beispiel NL2OCL eine Alternative, das den Fokus auf die Kompensation lexika-
lischer und syntaktischer Ambiguität legt und keine Benutzerinteraktion vorsieht.
Allerdings sind für die Auflösung strukturierte Zusatzinformationen erforderlich, die
im betrachteten OTF-Szenario mit Endanwendern nicht vorliegen.
Es bestehen also durchaus Arbeiten, die mehrere Formen von Ungenauigkeit und

Unvollständigkeit erkennen und/oder kompensieren können. Allerdings gehen diese
Arbeiten oftmals in der Erkennung und Kompensation strikt iterativ vor, ohne die
Auswirkungen der Kompensation auf die Anforderungsbeschreibung und auf Folge-
komponenten zu berücksichtigen. Wie wirkt sich beispielsweise die Kompensation
von Unvollständigkeit auf mögliche Ambiguitäten aus? Darüber hinaus wird in den
wenigsten Fällen hinterfragt, ob die Anwendung eines Kompensationsschrittes zum
Verständnis einer betroffenen FA wirklich notwendig ist – betrifft die Ambiguität
zum Beispiel wirklich wesentliche Elemente einer FA oder kann die Kompensation
im Sinne der Performanz gegebenenfalls übersprungen werden?
Ein weiterer Punkt, der durch bestehende Verfahren nicht abgedeckt wird, ist die

Synergie zwischen einzelnen Verfahren. So wird in keinem bekannten Fall unterstützt,
dass die Kompensation eines Defizits bereits wertvolle Informationen zur Lösung
eines weiteren Defizits erzeugen kann.
Zusammenfassend kann festgestellt werden, dass mit REaCT mindestens ein geeig-

netes Verfahren zur Extraktion von Anforderungen aus Fließtexten besteht und eine
Reihe an Ansätzen und Verfahren zur Erkennung und Kompensation von Ungenau-
igkeit und Unvollständigkeit in natürlichsprachlichen Anforderungsbeschreibungen
existiert. Diese Verfahren sind zum größten Teil spezialisiert auf ein spezifisches
Defizit und nicht primär für die Integration in ein Kompensationssystem vorgese-
hen. Entsprechend selten anzutreffen sind Überlegungen zu Benutzerinteraktion,
Performanz, Synergien, Interoperabilität und Kompatibilität der Verfahren.



Teil II

Methodische Vorgehensweise

75





Zu leistende Arbeit 4
Das Ziel dieser Arbeit ist die strategiebasierte Erkennung und Kompensation von
Ambiguität und Unvollständigkeit in natürlichsprachlichen Anforderungsbeschrei-
bungen, dargestellt am Anwendungsfall des OTF-Computings. Aufbauend auf dem
Stand der Wissenschaft und Technik (s.Kapitel 3) sowie anschließender Diskussion
werden die Anforderungen an diese Arbeit im Folgenden weiter konkretisiert.

4.1 Konzeption eines strategiebasierten
Anforderungskompensationssystems

Zur Kompensation von Ambiguität und Unvollständigkeit in Anforderungsbeschrei-
bungen existiert eine Reihe von Verfahren, von denen aber nur wenige für eine Auto-
matisierung und den Anwendungsfall des OTF-Computings geeignet sind – sei es aus
Gründen mangelnder Performanz und Verfügbarkeit, hoher Benutzerinteraktion, feh-
lender Ressourcen und Weiterentwicklung oder Inkompatibilitäten (s. Abschnitt 3.4).
Darüber hinaus handelt es sich mehrheitlich um Insellösungen, die zwar die Erken-
nung und/oder Kompensation von Ambiguitäten und Unvollständigkeit unterstützen,
jedoch nicht für die Integration in ein automatisiertes Softwaresystem wie CORDULA
vorgesehen sind. Ihnen mangelt es beispielsweise an Schnittstellen und standardisier-
ten Ein- und Ausgabeformaten. Diese Umstände erfordern zum einen die Auswahl
geeigneter Kompensationsverfahren und zum anderen Überlegungen zur Initialisie-
rung und Steuerung der jeweiligen Verarbeitungskomponenten (s. Abschnitt 5.5) im
resultierenden Softwaresystem (s.Kapitel 7).

1. Defizite
identifizieren

2. Verfahren
selektieren

3. Verfahren
adaptieren

4. Indikatoren
kombinieren

5. Strategien
konstruieren

6. System
konzipieren

7. System
implementieren

8. System
evaluieren

I want to send large emails 
and I want to delete them. 
Because I like to sit in the
bus and write emails I 
want also to read and zip. 

I want to delete spam. +

I want to send large emails
and I want to delete them.
Because I like to sit in the
bus and write emails.

?
Bitte geben Sie Ihre Beschreibung ein.

Evaluation

ok
ok
ok
ok
ok
ok

Task 1
Task 2
Task 3
Task 4
Task 5
Task 6

Done.

Abbildung 4.1: Methodische Vorgehensweise in der Dissertation

77



78 4 Zu leistende Arbeit

Abbildung 4.1 zeigt die stark abstrahierte methodische Vorgehensweise, die dieser
Arbeit zugrunde liegt. Wie ersichtlich wird, sind aufbauend auf der Problemstellung
Verfahren zur Erkennung und Kompensation lexikalischer, syntaktischer und referen-
tieller Ambiguität sowie Unvollständigkeit zu selektieren und zu adaptieren, sodass
sie kombiniert und zweckgebunden angewendet werden können.
Zusätzlich sind Steuerungsmechanismen notwendig (Indikatoren und Strategien),

die die Notwendigkeit der Kompensation festlegen und die einzelnen Kompensations-
verfahren steuern. Diese strategiebasierte Kompensation ist Teil eines Softwaresys-
tems, das es im Rahmen dieser Dissertation zu konzipieren, zu implementieren und
zu evaluieren gilt. Hierzu sind unter anderem lexikalische Ressourcen notwendig, die
in Teilen noch nicht existent sind und daher entwickelt werden müssen.
Die Zusammenführung von Indikatoren, Strategien sowie Erkennungs- und Kompen-

sationsverfahren wird innerhalb eines maschinellen Textanalysesystems vorgenommen.
Hierzu muss zuerst ein Softwarekonzept entwickelt werden (s.Abschnitt 5.5), das
unter anderem die Benutzerschnittstellen, einzelne Verarbeitungsschritte sowie Ein-
und Ausgabeformate beinhaltet. Genauer gesagt umfasst die Konzeptionstätigkeit:

• Ermittlung notwendiger Preprocessing-Schritte für Anforderungsbeschreibun-
gen und Konzeption einer entsprechenden Preprocessing pipeline

• Ermittlung der, zur Problemlösung und Implementierung geeigneten,
Erkennungs- und Kompensationsverfahren

• Bedarfsgerechte Erweiterung ermittelter Verfahren im Sinne einer
performanten, zielführenden Kompensation

• Definition der Ausgabeparameter zur maschinellen Weiterverarbeitung kom-
pensierter sowie strukturierter FA im Anwendungsfall des OTF-Computings

• Definition notwendiger Ausgabeparameter der Benutzerauskunft (Ergebnisse,
Erläuterungen, Kompensationsprotokolle)

• Abgleich des Konzepts mit Qualitätsmerkmalen der Softwareentwicklung
(insb. Leistungsfähigkeit, Adaptierbarkeit, Wartbarkeit)

Auf die Lösung dieser Teilziele folgt die Implementierung des Textanalysesystems
(CORDULA), das als funktionaler Prototyp umgesetzt wird. Dies bedeutet, dass
die grundsätzliche Funktionsfähigkeit des Konzepts aufgezeigt und evaluiert werden
kann. Hierzu sind als Implementierungsgegenstände insbesondere zu benennen:

• Entwicklung plattformübergreifender Benutzerschnittstellen zur Eingabe
unstrukturierter Anforderungsbeschreibungen sowie zur Ausgabe kompensierter,
strukturierter FA und Erläuterungen zum Kompensationsprozess

• Implementierung ausgewählter Verarbeitungskomponenten

• Implementierung der entwickelten Indikatoren zur Erkennung
potentieller Ambiguität und Unvollständigkeit



4.1 Konzeption eines strategiebasierten Anforderungskompensationssystems 79

• Implementierung der entwickelten Strategien zur Steuerung
ausgewählter Verarbeitungskomponenten in CORDULA

• Bereitstellung einer standardisierten Schnittstelle zur maschinellen Weiterver-
arbeitung kompensierter FA im Anwendungsfall des OTF-Computings

Die Konzeption und Implementierung geht dabei einher mit folgenden Fragen:

• Wie kann die Kompensation performant durchgeführt werden?
• Können Synergien zwischen den Verarbeitungskomponenten die
Kompensationsergebnisse verbessern?

• Welche Softwarearchitektur ist für das Konzept, insbesondere im
Anwendungsfall des OTF-Computings, geeignet?

4.1.1 Auswahl geeigneter Kompensationsverfahren

Der Arbeitsschwerpunkt liegt auf der Kombination ausgewählter Verfahren zwecks
automatischer Ausführung und somit weniger auf der Erstellung oder Optimierung
von Kompensationsverfahren. Diesbezüglich hat sich bereits in Abschnitt 3.3 ein sehr
heterogenes Bild bestehender Verfahren ergeben. Aus diesem Grund gilt es als ein
Teilziel, die für diese Arbeit geeigneten Kompensationsverfahren zu identifizieren.
Als grundsätzlich geeignet wird ein Verfahren angenommen, wenn es ...

• ... mindestens eine konkrete Erkennung und/oder Kompensation vollzieht
(z. B.Disambiguierung von Koordinationsambiguität),

• ... über Schnittstellen zur Integration verfügt
(z. B. als Programmbibliothek existiert),

• ... standardisierte Ein- und Ausgabeformate unterstützt
(z. B. etablierte NLP-Formate wie CoNLL-U69),

• ... keine Benutzerinteraktion zwingend voraussetzt,

• ... vollständig zugänglich und frei verfügbar ist,

• (... sich in aktiver Entwicklung befindet).

Darüber hinaus können Anforderungen an ein Verfahren bestehen, die sich aus der
spezifischen Kompensation oder Implementierung heraus ergeben (z. B. notwendige
Konfigurationsparameter um Synergien nutzen zu können) und die hier nicht auf-
geführt sind. Die Frage, die es in den folgenden Abschnitten und insbesondere im
Abschnitt der Systemkonzeption (s. Abschnitt 5.5) zu beantworten gilt, ist:

69Siehe weiterführend: http://universaldependencies.org/format.html (Stand: 05.03.2017).



80 4 Zu leistende Arbeit

• Welche Verfahren eignen sich für die Erkennung und Kompensation
lexikalischer und referentieller Ambiguität, Koordinationsambiguität,
PP-Anbindungsambiguität sowie Unvollständigkeit in UGC unter den
Gesichtspunkten der Automatisierung und hoher Performanz?

Allein die Auswahl der Verfahren reicht nicht aus, um zum einen ihre Wechselwir-
kungen bei gemeinsamer Ausführung abschätzen zu können und zum anderen sie
vollautomatisiert zu implementieren. Aus diesem Grund ist die Entwicklung weiter
fortgeschrittener Kompensationsstrategien erforderlich.

4.1.2 Entwicklung fortgeschrittener Kompensationsstrategien

Wie zuvor dargestellt, werden ausgewählte Verfahren im Sinne der Automatisierung
und Performanz kombiniert. Dabei stellt sich die Frage, wie die Verfahrenskombi-
nationen gestaltet werden können, damit zum einen nur die Verfahren ausgeführt
werden, die wirklich im Falle einer spezifischen Anforderungsbeschreibung benötigt
werden und zum anderen diese so miteinander interagieren, dass sie sich gegenseitig
unterstützen. Das bedeutet allerdings auch, dass mit Widersprüchen und Konflik-
ten zu rechnen und seitens des Systems umzugehen ist. Dies wird in dieser Arbeit
über kontextsensitive Indikatoren (Erkennung von Kompensationsbedarf) und Kom-
pensationsstrategien (Steuerung der Verarbeitungskomponenten) realisiert, deren
Entwicklung elementares Teilziel dieser Arbeit ist. Indikatoren können hier als Qua-
litätsmerkmale in den Anforderungsbeschreibungen verstanden werden, die Aufschluss
über potentielles Vorkommen von Ambiguität und Unvollständigkeit geben und die
Ausführung von Kompensationsstrategien begründen. Kompensationsstrategien grei-
fen daraufhin auf gefundene Indikatoren zurück und kombinieren entsprechend der
Beschreibungsqualität bedarfsgerecht die Kompensationsverfahren. Sie definieren
auch den Informationsumfang im Kommunikationsprozess zwischen einzelnen Ver-
fahren. Ein solches Vorgehen der optimalen Kombination bestehender Verfahren
zur Kompensation von ambigen und unvollständigen Anforderungsbeschreibungen
existiert derzeit noch nicht. Die daher notwendige Entwicklung fortgeschrittener
Kompensationsstrategien wird von folgenden Fragestellungen begleitet:

• Welche Indikatoren können identifiziert werden, um Formen der
Ambiguität und Unvollständigkeit in Anforderungsbeschreibungen zu erkennen?

• Welche Strategien sind notwendig, um die Kompensation von Ungenauigkeit
und Unvollständigkeit flexibel und performant durchzuführen?

• Können Kompensationsverfahren sich gegenseitig im Sinne einer korrekten
Entscheidungsfindung unterstützen?

4.1.3 Erstellung linguistischer Ressourcen

Wie in Abschnitt 3.2 und insbesondere von Tichy et al. (2015) dargestellt, gibt es nicht
genügend linguistische Ressourcen für natürlichsprachliche Anforderungsbeschrei-
bungen. Diese annotierten Korpora werden benötigt, um die hier angesprochenen



4.1 Konzeption eines strategiebasierten Anforderungskompensationssystems 81

Indikatoren, Strategien und Verarbeitungsschritte der Anforderungskompensation
für das Softwaresystem zu entwickeln und zu evaluieren. Es existieren beispielhafte
Anforderungsbeschreibungen aus Lehrbüchern. Darüber hinaus gibt es vereinzelnd
Beschreibungen, die im Internet frei zugänglich über Suchmaschinen gefunden werden
können. Auch Tichy et al. (2015) stellen eine Sammlung von Anforderungsbeschrei-
bungen zur Verfügung, allerdings sind auch dort längst nicht alle der insgesamt
(derzeit) 46 englischsprachigen Beschreibungstexte im Rahmen dieser Arbeit nutz-
bar: So befinden sich Texte in natürlicher aber auch kontrollierter Sprache unter
diesen Beschreibungen, wovon aber viele Lehrbeispiele sind. Darüber hinaus sind
Beschreibungen zwar aufgeführt aber nicht mehr abrufbar. Aus diesem Grund ist ein
Teilziel dieser Arbeit, eigene linguistische Ressourcen zu erstellen, die insbesondere
für die verschiedenen Anwendungsfälle in dieser Arbeit geeignet sind. Geeignet heißt
in diesem Fall, dass sie hinsichtlich domänenspezifischer Merkmale ähnlich zu Anfor-
derungsbeschreibungen sind. Im Folgenden werden die erforderlichen Ressourcen in
den Kontext dieser Arbeit eingebettet. Die Erstellung fehlender Ressourcen wird in
Kapitel 6 beschrieben und begleitet von folgenden Fragestellungen:

• Aus welchen frei zugänglichen Quellen können Anforderungsbeschreibungen
akquiriert werden?

• Welche Eigenschaften müssen diese Beschreibungen aufweisen, um als ähnlich
zu denen zu gelten, die im OTF-Computing zu erwarten sind?

• In welchem Format und hinsichtlich welcher Struktur sind die akquirierten
Beschreibungen abzuspeichern?

4.1.3.1 Anforderungsbeschreibungskorpus

Um mehr über die Charakteristika von Anforderungsbeschreibungen zu erfahren,
die Gegenstand dieser Arbeit sind, ist eine Sammlung eben dieser Beschreibungen
erforderlich. Wie allerdings bereits dargestellt, existiert so ein Korpus derzeit nicht.
Diesem Problem kann auf zwei Arten begegnet werden:
Zum einen können Anforderungsbeschreibungen durch eine Personengruppe un-

ter Anleitung verfasst werden, wobei die Anleitung in diesem Fall nur die grobe
Vorgabe eines Anwendungsszenarios im OTF-Computings umfasst. Dies hätte den
Vorteil, dass die Beschreibungen in den OTF-Kontext passen. Allerdings geht dies
mit den gleichen Nachteilen einher, die auch die Anforderungsbeschreibungen haben,
die aus Lehrbüchern extrahiert werden: Sie sind, trotz größtmöglicher Vermeidung
von Beeinflussung, konstruiert. Zum anderen kann auf ähnliche Beschreibungen
zurückgegriffen werden, die bereits existieren. Ähnlich bedeutet dabei, dass diese
Beschreibungen bestimmte Merkmale mit den Softwarebeschreibungen gemein haben,
die im OTF-Computing zu erwarten sind. Positiv hervorzuheben ist, dass diese
Anforderungsbeschreibungen nicht aufgrund eines Arbeitsauftrags oder sonstiger
Einflussnahme verfasst wurden und somit Charakteristika realer Anforderungsbe-
schreibungen aufzeigen. Allerdings wären diese Anforderungen nicht OTF-spezifisch
und bezögen sich nicht zwangsläufig auf Softwareservices. Wie allerdings in Ab-
schnitt 3.2 dargestellt, existieren auch keine Korpora, die ähnliche Beschreibungen
umfassen. Dies bedeutet, dass in beiden Fällen das Erstellen entsprechender Korpora



82 4 Zu leistende Arbeit

unabdingbar ist. In dieser Arbeit wird deshalb die Erstellung einer solchen Samm-
lung von Beschreibungen als Teilziel umgesetzt. Daher gilt es, frei zugängliche (insb.
online verfügbare) Anforderungsbeschreibungen zu akquirieren und in einem Korpus
zusammenzuführen (s. Abschnitt 6.1). Diese Anforderungsbeschreibungen müssen
von Endanwendern in natürlicher Sprache (Englisch) verfasst sein und sind nicht
Teil einer professionellen Anforderungsdokumentation.

4.1.3.2 Softwarespezifisches PAS-Korpus

Wie in Abschnitt 2.3 dargestellt, wird Unvollständigkeit über unbesetzte Stellen
(d. h. fehlende Instantiierung) in der Prädikat-Argument-Struktur (PAS) einer FA defi-
niert. Um dabei automatisch zu ermitteln, welche Prädikate mit welchen Argumenten
einhergehen, um eine Anforderung als vollständig zu bezeichnen, ist das Nachschla-
gen in einer entsprechenden Ressource erforderlich, die diese domänenspezifischen
Angaben enthält (s. Abschnitt 2.3). Eine solche Ressource existiert speziell für Soft-
wareanforderungsbeschreibungen derzeit noch nicht. Wohl aber existieren allgemeine
sprachliche Ressourcen, die die Valenz eines Prädikats abspeichern (z. B.Propbank).
Deshalb ist ein weiteres Teilziel dieser Arbeit, generelle Valenzinformationen (über
die Stelligkeit eines Prädikats) mit seiner domänenspezifischen Verwendung zu ver-
knüpfen. Dafür ist eine Ressourcenerweiterung notwendig, die im Rahmen dieser
Arbeit zu leisten ist: So kann eine binäre Angabe für jede Lesart eines Prädikats Auf-
schluss darüber geben, ob ein Argument erforderlich ist oder nicht. Um die Prädikate
dabei einer bestimmten Domäne zuordnen zu können, sind Korpora notwendig, die
hinsichtlich ihrer Prädikat-Argument-Struktur analysiert wurden. In dieser Arbeit
wird diese Analyse für die Domäne der Softwareanforderungen und im speziellen für
Anforderungen aus dem Bereich der E-Mail-Kommunikation geleistet70.

Die bisher geplante Ressourcenerweiterung erlaubt zwar die Erkennung von Unvoll-
ständigkeit, jedoch noch nicht deren Kompensation. Für die Kompensation sind Infor-
mationen erforderlich, die Aufschluss über die Möglichkeiten zur Vervollständigung
einer leeren Argumentposition im spezifischen Kontext einer Anforderungsbeschrei-
bung geben. Um eine größtmögliche Abdeckung verschiedener Kontexte zu errei-
chen, ist ein Ressourcenumfang erforderlich, der das Korpus aus Abschnitt 4.1.3.1
überschreitet und einen hohen Variantenreichtum (mit Bezug auf Kontexte) aufweist.
Die Vorstellung des PAS-Korpus findet in Abschnitt 6.2 statt.

4.2 Evaluation des Textanalysesystems

Die Funktionsweise des Konzepts bzw. des funktionalen Prototyps von CORDULA
gilt es im Rahmen einer Evaluation zu prüfen (s.Kapitel 8). Hierbei liegt zum
einen der Evaluationsschwerpunkt auf den entwickelten Indikatoren und Strategi-
en (s. Abschnitt 5.2). Es gilt zu evaluieren, ob die Strategiewahl und -anwendung
erwartungsgemäß funktioniert (s. Abschnitt 4.2.1). Dabei ist die Zuverlässigkeit der
zugrundeliegenden Indikatoren von besonderer Bedeutung. In diesem Zusammenhang
gilt es Fehlertypen zu identifizieren, die bei der weiteren Entwicklung berücksichtigt

70E-Mail-Kommunikation wird hier als gemeinsames Beispielszenario der Arbeitsbereiche im Teil-
projekt B1

”
Parameterized Service Specifications“ des SFB901 OTF-Computing aufgegriffen.



4.2 Evaluation des Textanalysesystems 83

werden müssen. Zum anderen ist sowohl die Performanz des Gesamtsystems als auch
der Indikatoren, Strategien und Komponenten zu evaluieren (s. Abschnitt 4.2.2), da
somit erstens die Identifikation von Leistungsengpässen im Softwaresystem ermöglicht
wird und zweitens eine Performanzverbesserung die Steigerung der Nutzerzufrieden-
heit und -akzeptanz erwarten lässt (s. Abschnitt 7.4).

4.2.1 Evaluation der Strategieanwendung

Die Evaluation der Strategieanwendung (s.Abschnitt 8.2) betrifft sowohl die indi-
katorbasierte Strategiewahl (Korrektheit) als auch die Anwendungshäufigkeit der
einzelnen Strategien (Aufteilung). Darüber hinaus ist von Interesse, wie sich das
Softwaresystem verhält, wenn keine geeignete Strategie für eine vorgefundene Indika-
torkombination vorhanden ist und wie oft diese Situation mit den, in dieser Arbeit
vordefinierten, Kompensationsstrategien auftritt (Abdeckung). Hieraus ergeben sich
folgende Evaluationsaufträge:

• Evaluierung der jeweiligen Strategiehäufigkeit bei der Strategiewahl

• Evaluierung der Indikatorzuverlässigkeit

• Evaluierung der Abdeckung auftretender Indikatorkombinationen

Neben diesen Evaluationsaufträgen mit direktem Bezug zur Strategieanwendung ist
auch die Identifikation von Fehlertypen Gegenstand dieses Evaluationsteils. Hierbei
ist das Ziel, Fehler in der indikatorbasierten Strategieauswahl zu identifizieren und
zu systematisieren, um sie in der Folgeentwicklung berücksichtigen zu können.

• Identifikation von Fehlern, die die Indikatorzuverlässigkeit negativ beeinflussen
und somit die Strategieauswahl erschweren

• Identifikation der Auswirkung von Indikatorabhängigkeiten71 auf die Qualität
der Strategieauswahl

Folgende Fragen sind bei der Evaluation der Strategieanwendung zu berücksichtigen:

• Welche Datenbasis (Evaluationskorpus) eignet sich für die Evaluation?
• Nach welchen Kriterien kann die Fehlertypisierung erfolgen?

4.2.2 Evaluation der Systemperformanz

Die Evaluation der Performanz (s. Abschnitt 8.2) kann auf Systemebene aber auch
auf Ebene der Verarbeitungskomponenten, Strategien und Indikatoren erfolgen. Per-
formanz (im Sinne von Laufzeit) wird in dieser Arbeit dabei in Initialisierungs-,
Ausführungs- und Gesamtlaufzeit unterteilt, um einen detaillierteren Einblick in die
Laufzeiten zu erhalten. Da die Laufzeit des System unweigerlich von den gewählten

71Teilinformationen (z. B. semantische Kategorien) werden in mehreren Indikatoren herangezogen.



84 4 Zu leistende Arbeit

Kompensationsstrategien abhängt und die Laufzeit der Strategien wiederum maß-
geblich (aber nicht ausschließlich) durch die gewählten Kompensationsmethoden
bestimmt wird, empfiehlt sich eine Evaluation der Performanz auf allen Ebenen.
Hierbei ist von besonderem Interesse, wie sich das Softwaresystem unter steigender
Last verhält (bspw. die Verarbeitungszeit linear zur Last steigt) oder wie einzel-
ne Komponenten zur Gesamtlaufzeit beitragen. Diesbezüglich sind ebenfalls die
implementierten Maßnahmen zur Performanzsteigerung (insb. Caching-Ansätze)
hinsichtlich Nutzen und Entwicklung (z. B. Speicherumfang) zu evaluieren.
Mit Bezug auf CORDULA als Gesamtsystem sind sowohl die Ausführungszeiten

(insb. unter steigender Last bzw. Anforderungsumfang) als auch die Initialisierungs-
zeiten von Interesse. Darüber hinaus ist ein hoher Anteil nebensächlicher Angaben
in den Anforderungsbeschreibungen zu erwarten (s. Abschnitt 1.4), weshalb die Frage
nach dem Einfluss dieser nebensächlichen Angaben auf die Systemlaufzeit aufkommt.
Folgende Evaluationsaufträge lassen sich für die weitere Vorgehensweise ableiten:

• Messung der Ausführungszeit bei zunehmendem Beschreibungsumfang

• Messung Initialisierungszeit auf Systemebene

• Evaluierung möglicher Laufzeitbeeinflussung nebensächlicher Angaben

• Evaluierung der Strategielaufzeiten unter zunehmendem Beschreibungsumfang

Wie bereits angeführt, sind diese Laufzeiten unmittelbar beeinflusst von den Verarbei-
tungskomponenten, die daher ebenfalls zu evaluieren sind. Hierbei ist von Interesse,
welche Verarbeitungskomponenten gewählter Methoden die Systemlaufzeit am meis-
ten beeinflussen. Wobei sich hierbei auch die Frage stellt, ob nicht sogar einzelne
Komponentenbestandteile für hohe Laufzeiten verantwortlich sind und diese, einmal
identifiziert, nicht in der weiteren Entwicklung ausgetauscht werden können.

• Identifikation der Laufzeitanteile hinzugezogener Verarbeitungskomponenten
sowohl im Preprocessing als auch in der Kompensation

• Identifikation von Wertebereichen, in denen die jeweilige Komponenteninitiali-
sierungszeit schwankt

• Messung der Laufzeit einzelner Komponentenbestandteile

Als eine Möglichkeit der Performanzsteigerung wird das WSD-Caching implementiert.
Um dabei den Effekt auf die Performanz nachzuweisen und die Entwicklung des
Zwischenspeichers besser zu verstehen und beispielsweise abschätzen zu können, ob
ein Sättigungseffekt72 eintreten kann, sind folgende Evaluationsschritte notwendig:

• Messung der Laufzeit der lexikalischen Disambiguierung mit und ohne WSD-
Caching und Bestimmung der Performanzsteigerung

• Evaluierung der Entwicklung und insb. des Zuwachses von Lesarten im Zwischen-
speicher zur Identifikation eines Sättigungszustandes, bei dessen Erreichung
keine weiteren Lesarten in den WSD-Cache aufgenommen werden

72Zustand, in dem keine weiteren Lesarten in den Zwischenspeicher aufgenommen werden.



4.2 Evaluation des Textanalysesystems 85

• Evaluierung der Anfragenverteilung im WSD-Cache sowohl innerhalb einer
Domäne als auch auf domänenübergreifenden Anforderungsbeschreibungen

Auf Grundlage dieser Arbeitsaufträge werden in Abschnitt 8.2 Evaluationsfragen
erstellt, die es mittels geeigneter Evaluationsmethoden zu beantworten gilt. Die
Evaluation der Systemperformanz wird dabei begleitet von folgenden Fragestellungen:

• Welche Datenbasis (Evaluationskorpus) eignet sich für die Evaluation?
• Wie lässt sich die Laufzeitmessung weitestgehend automatisieren?
• Welche Anforderungen sind an die Datenauswahl und -kombination zu stellen?





Konzeptentwicklung 5
Im Folgenden findet die Konzeptentwicklung statt, in deren Rahmen wesentli-
che Designentscheidungen getroffen werden, welche die Kompensationsstrategien
(s. Abschnitt 5.2), deren zugrundeliegenden Indikatoren (s. Abschnitt 5.3) sowie das
Anforderungskompensationssystem als Ganzes betreffen (s.Abschnitt 5.5). Darauf
aufbauend werden in Abschnitt 7.4 Anforderungen an die Systemqualität diskutiert.

5.1 Ausgangssituation und Zielsetzung

Die Ausgangssituation dieser Arbeit sieht Endanwender vor, die Anforderungen an
ein gewünschtes, individuelles Softwaresystem beschreiben und eine fertige Software
als Resultat der Komposition von Services zurückerhalten (s. Abschnitt 1.1 sowie 1.4).
Dies ist im Gegensatz zum klassischen Requirements Engineering (RE) ein agiler
Prozess, der impulsiv und aus dem Bedarf heraus geschieht. Darüber hinaus kann die
Anforderungsaufnahme beispielsweise am Mobiltelefon geschehen (vgl. Abbildung
5.1), wo im Vergleich zum PC, deutlich kürzere Beschreibungen zu erwarten sind,
die dazu eine erhöhte Fehlerrate in Rechtschreibung und Grammatik aufweisen.

Abbildung 5.1: Smartphone als Benutzerschnittstelle (Mockup)

Gegenstand dieser Arbeit sind demnach Anforderungsbeschreibungen , die in Qua-
lität und Umfang stark variieren. Unter diesen Bedingungen treten unweigerlich

87



88 5 Konzeptentwicklung

Ambiguität und Unvollständigkeit als Phänomene natürlichsprachlicher Anforde-
rungsdokumentation auf (s. Kapitel 2), die von existierenden Kompensationsansätzen
nicht oder nur teilweise kompensiert werden können (s. Abschnitt 3.3). Diese Situation
wird durch Rahmenbedingungen des OTF-Computings (z. B. kurze Ausführungszeit,
minimale Benutzerinterakation) verschärft, die eine Anwendung bestimmter Ansätze
ausschließen (s.Abschnitt 3.4). So können beispielsweise Ansätze, die zwar Ambi-
guität aufzeigen aber nicht kompensieren, nicht angewendet werden, da Endanwender
ohne Hilfestellung (z. B.weiterführende Informationen) nicht fähig sind, Defizite in
ihren Anforderungsbeschreibungen zu identifizieren und zu beheben.
Die Interaktion mit dem System, die über die initiale Eingabe der Anforderungsbe-

schreibung hinausgeht, ist, insbesondere im Hinblick auf die Gesamtperformanz sowie
drohender Überforderung der Anwender, auf ein Minimum zu begrenzen. In Fällen,
in denen Benutzerinteraktion unvermeidbar ist, sind Programmausgaben notwendig,
die Benutzerinteraktion initiieren und steuern können. So reicht es beispielsweise
nicht, ein unvollständiges Prädikat (s. Abschnitt 2.3) zur Hervorhebung anzukreuzen,
wie in Abbildung 5.2 (1) dargestellt, da nicht davon auszugehen ist, dass die Unvoll-
ständigkeit ohne Zusatzinformationen seitens der Endanwender selbstständig behoben
werden kann. Vielmehr ist die gewünschte Funktionalität, wie in Abbildung 5.2 (2)
dargestellt, mit Hinweis auf fehlende Details (z. B. beispielhafte Argumente, Über-
und Unterbegriffen oder semantische Kategorien) zu präsentieren. Auf diese Weise
werden Endanwender schneller auf unvollständige Eingaben hingewiesen und können
anhand der zusätzlichen Angaben ursprüngliche Defizite punktuell verbessern.

Abbildung 5.2: Erweiterte Benutzerinteraktion (Mockup).
Entnommen aus Bäumer und Geierhos (2016, S. 550)

Dem Ziel der Entwicklung eines Anforderungskompensationssystems folgend
(s.Kapitel 4), ist die strategiebasierte Verkettung von Softwarekomponenten zur Er-
kennung und bedarfsgerechten Kompensation von Ambiguität und Unvollständigkeit
(s.Kapitel 2) in Anforderungsbeschreibungen (s.Abschnitt 1.4) Gegenstand dieses
Kapitels. Dies erfolgt unter Berücksichtigung der Rahmenbedingungen des OTF-
Computings. Die Entwicklung von Strategien und Indikatoren ist erforderlich, um
flexibel auf die schwankende Qualität der Anforderungsbeschreibungen reagieren zu
können. Sie dienen dabei insbesondere der Steuerung der heterogenen, bisher iso-



5.2 Strategiekonfiguration 89

liert betrachteten Verarbeitungskomponenten (z. B.Unvollständigkeitskompensation).
Hierbei ist zu beachten, dass es nicht

”
die eine Anforderungsbeschreibung“ gibt und

es daher auch nicht
”
die eine Strategie“ geben kann. Daher müssen die Strategien

flexibel auf Inhalt, Form und Umfang der Beschreibungen reagieren können. Darüber
hinaus sind Informationen bereitzustellen, die zum einen die Verarbeitung sowie
Kompensation für den Endanwender transparent darstellen und zum anderen eine
maschinelle Weiterverarbeitung für Folgekomponenten ermöglichen.

5.2 Strategiekonfiguration

Anforderungsbeschreibungen können in ihrer Qualität stark variieren und erfordern
daher eine flexible Vorgehensweise in der Verarbeitung und Kompensation, die in
dieser Arbeit über Strategien umgesetzt wird (vgl. Definition 5.2.1). Die Qualität
wird dabei über Hinzunahme zuvor definierter Indikatoren (z. B. syntaktische Muster)
in einer Anforderungsbeschreibung festgestellt (s. Abschnitt 5.3). Ziel ist es dabei,
nicht irgendeine Strategie zu wählen, sondern diejenige, die ausschließlich notwendige
Kompensationsschritte in optimaler Reihenfolge ausführt.

Definition 5.2.1 (Strategie)
Strategien umfassen Kompensationsmethoden, die auf spezifische Indikatoren einer ge-
gebenen Anforderungsbeschreibung reagieren (z. B.Auswahl geeigneter Verfahren). Sie
unterscheiden sich dabei in der Auswahl, Ausführung und Interaktion der Methoden.

Die Notwendigkeit verschiedener Strategien ergibt sich aus den möglichen Indika-
torkombinationen. So kann eine Anforderungsbeschreibung beispielsweise frei von
Ambiguität sein und bedarf daher keiner entsprechenden Kompensation. Sehr wohl
aber ist die Extraktion von FA und die strukturierte Ergebnisausgabe erforderlich.
Gäbe es nur eine einzige Strategie, würde die Verarbeitung und Kompensation in-
effizient ausgeführt, da Kompensationsschritte initiiert würden, die für eine reine
Anforderungsextraktion nicht notwendig sind.

Strategien

Strategie i

Methode 1

Methode 2

Methode n

Verfahren j

Regel 1

Regel 2

Regel m

Abbildung 5.3: Logischer Aufbau von Strategien

Der Zusammenhang zwischen Strategien, Methoden und Verfahren ist in Abbil-
dung 5.3 dargestellt. Methoden umfassen Verfahren zur Kompensation von Ambi-
guität und Unvollständigkeit. Exemplarisch könnte eine Methode der lexikalischen



90 5 Konzeptentwicklung

Disambiguierung und eine weitere Methode zur Kompensation von Unvollständigkeit
dienen. Somit wird ersichtlich, dass es sich bei den Methoden jeweils um Software-
komponenten handelt, deren Verfahren auf einen spezifischen Verarbeitungs- oder
Kompensationsprozess zugeschnitten sind. Hierbei können Verfahren beispielsweise
auf Regeln (vgl. Abbildung 5.3) oder auf ML-Ansätze zurückgreifen. Strategien
bedienen sich unterschiedlicher Methoden und wenden diese bedarfsgerecht auf die
Anforderungsbeschreibung an, wobei dies auf Wortebene (z. B. Lexikalische Disam-
biguierung), auf Basis der Sätze (z. B. Syntaktische Disambiguierung) oder auf der
gesamten Beschreibung (z. B.Referentielle Disambiguierung) erfolgen kann. Das
Zusammenwirken der Indikatoren und Strategien ist in Abbildung 5.4 dargestellt.

Initiale Anforderungs-
beschreibung

Indikatoren im Text
M0 = {x1, x2, x3} Selector

Controller

S2

Strategieindex

Strategy repository

S1 S2 S3

Verarbeitung und
Kompensation

S1: M1 = {x1, x2, x3, x8}
S2: M2 = {x1, x2, x3}
S3: M3 = {x1}
S4: ...

X

Erstelle
Strategie

S2

Strukturierte, kompensierte
Anforderungsbeschreibung

Abbildung 5.4: Selektion und Anwendung von Strategien auf Indikatorbasis

Im Mittelpunkt von Abbildung 5.4 stehen die Komponenten Selector und Controller .
Die Selector -Komponente sucht nach Indikatoren (xi) in Anforderungsbeschreibun-
gen, die Hinweise auf die Beschreibungsqualität geben können und wählt daraufhin
geeignete Strategien aus dem Strategy repository aus, sofern diese vorhanden sind.
Geeignet sind Strategien dann, wenn alle erkannten Indikatoren (M0 = {x1, x2, x3})
abgedeckt sind (z. B.M0 = M1). Die Menge gefundener Indikatoren zeigt somit auf,
welche Verarbeitungs- und Kompensationsschritte notwendig sind, um zum einen die
Qualität der initialen Anforderungsbeschreibung als solche zu verbessern und zum
anderen eine strukturierte Ausgabe zu ermöglichen, die maschinell weiterverarbeitet
werden kann. Die Controller -Komponente überwacht gewählte Strategien und kann
zum Beispiel auf Verarbeitungsfehler einzelner Verarbeitungskomponenten reagieren.
Diese Fehler oder die Erkenntnis, dass ein erkannter Indikator nicht die Anwendung
einer Strategie rechtfertigt (z. B. existieren ambige Lexeme, diese sind aber für die
erkannten FA irrelevant), können den Strategiewechsel durch den Controller auslösen.
Darüber hinaus ist der Controller berechtigt, Widersprüche in Verarbeitungsergebnis-
sen einzelner Methoden durch den Grundsatz

”
Expert first“ aufzulösen. Dies bedeutet,



5.2 Strategiekonfiguration 91

dass im Falle widersprüchlicher Ausgaben die Ausgaben der Expertenkomponente
herangezogen werden, in der Annahme, dass diese korrekt sind.
Wie das Beispiel in Abbildung 5.4 zeigt, wird die Indikatormenge M0 prinzipiell von

zwei Strategien unterstützt (S1, S2), wobei es sich im Falle der Strategie S2 um eine
exakte Übereinstimmung der geforderten und der seitens der Strategie unterstützten
Indikatoren handelt. Strategie S2 ist demnach gegenüber Strategie S1 zu bevorzugen,
da nur Kompensationsschritte ausgeführt werden, die erforderlich sind.
Wird im Strategy repository keine geeignete Strategie gefunden, besteht die

Möglichkeit, automatisch eine grundlegende Strategiekonfiguration zu erstellen. Hier-
bei ist grundsätzlich die Aufnahme weiterer sowie die Revidierung bestehender
Konfigurationen vorgesehen. Motiviert wird dies zum einen durch eine angenommene
Steigerung der Effizienz, da Strategien, die aus dem Strategy repository abgerufen wer-
den können, schneller bereitstehen als jene, die erst zum Zeitpunkt der Verarbeitung
und Kompensation konfiguriert werden müssen. Zum anderen können Strategien, die
zum Entwicklungszeitpunkt bedarfsgerecht waren, gegebenenfalls unter veränderten
Konditionen (z. B.Wechsel auf kontrollierte Sprache) obsolet werden.
Die Aufnahme neuer Strategiekonfigurationen in das Strategy repository erfolgt

dabei automatisiert. Ein Kriterium für die Aufnahme in das Repository kann beispiels-
weise die häufige Ausführung gleicher Strategiekonfigurationen sein. Dies erfordert
die Speicherung von Konfigurationsaufrufen sowie die Festlegung eines Grenzwerts,
dessen Überschreitung die Aufnahme einer Strategiekonfiguration in das Strategy
repository initiiert. Demgegenüber trägt das Update von Strategiekonfigurationen
zum Wegfall von Strategien aus dem Strategy repository bei. Grundsätzlich ist dieser
Schritt notwendig, da, wie dargestellt, die Aufnahme neuer Strategien vorgesehen ist
und das Strategy repository ohne entsprechende Maßnahmen nur an Umfang zuneh-
men würde, obwohl existierende Strategien nach einiger Zeit nicht mehr benötigt
werden. Dies hätte einen negativen Einfluss auf die Gesamtlaufzeit, da alle Strategien
mit den Indikatoren einer Anforderungsbeschreibung abzugleichen sind.
In dieser Arbeit sind demnach Kompensationsstrategien vorkonfiguriert, die sich

hinsichtlich Laufzeit und Abdeckung unterscheiden. Daneben existiert die Möglichkeit
einer bedarfsgerechten, automatisch selbstkonfigurierenden Strategie. Strategien sind
dabei in einen definierten Verarbeitungskontext eingebettet (vgl. Abbildung 5.5): Vor
der Strategieanwendung wird ein Preprocessing (s. Abschnitt 5.5.2 und Anhang C.1)
durchgeführt. Anschließend werden die Ergebnisse strukturiert gespeichert.

Preprocessing Strategie-
anwendung

Ergebnis-
strukturierung

Abbildung 5.5: Strategieeinbettung in den Verarbeitungskontext

In den folgenden Abschnitten werden die einzelnen Strategiekonfigurationen darge-
stellt. Die einzelnen Strategien bauen aufeinander auf und werden daher hinsichtlich
ihrer zunehmenden Komplexität erläutert. Eine Übersicht aller Strategiekonfigura-
tionen findet sich in Abbildung 5.6. Sie gibt sowohl Auskunft über die Konfiguration
als auch über die Laufzeit einzelner Strategien.



C
o
n
tro

ller

S
trategie
L
igh

t
S
trategie
B
a
sic

S
trategie

B
a
sic

p
lu
s

S
trategie
D
efa

u
lt

S
trategie

C
o
m
p
lete

S
trategie
F
a
llba

ck

In
fo
rm

a
tio

n
s-

ex
tra

k
tio

n

In
fo
rm

a
tio

n
s-

ex
tra

k
tio

n

S
y
n
ta
k
tisch

e

D
isa

m
b
ig
u
ieru

n
g
?

U
n
vollstän

d
igkeits-

ko
m
p
en
sa
tio

n

In
fo
rm

a
tio

n
s-

ex
tra

k
tio

n

L
ex
ika

lisch
e

D
isa

m
b
ig
u
ieru

n
g

S
y
n
ta
k
tisch

e

D
isa

m
b
ig
u
ieru

n
g
?

U
n
vollstän

d
igkeits-

ko
m
p
en
sa
tio

n

In
fo
rm

a
tio

n
s-

ex
tra

k
tio

n

L
ex
ika

lisch
e

D
isa

m
b
ig
u
ieru

n
g

S
y
n
ta
k
tisch

e

D
isa

m
b
ig
u
ieru

n
g

U
n
vollstän

d
igkeits-

ko
m
p
en
sa
tio

n

R
eferen

tielle

D
isa

m
b
ig
u
ieru

n
g

In
fo
rm

a
tio

n
s-

ex
tra

k
tio

n

L
ex
ika

lisch
e

D
isa

m
b
ig
u
ieru

n
g

S
y
n
ta
k
tisch

e

D
isa

m
b
ig
u
ieru

n
g

U
n
vollstän

d
igkeits-

ko
m
p
en
sa
tio

n

R
eferen

tielle

D
isa

m
b
ig
u
ieru

n
g

V
a
g
h
eits-

erken
n
u
n
g

(?
=

O
p
tion

ale
A
u
sfü

h
ru
n
g)

L
au

fzeit

V
ord

efi
n
ierte

S
trategiekon

fi
gu

ration
en

A
b
d
eck

u
n
g

A
u
tom

atisch
e

K
on

fi
gu

ration

A
b
b
ild

u
n
g
5
.6
:
S
tra

teg
ieko

n
fi
g
u
ra
tio

n
en

92



5.2 Strategiekonfiguration 93

5.2.1 Light-Strategie

Preprocessing Informations-
extraktion

Ergebnis-
strukturierung

Abbildung 5.7: Light-Strategie

Bei der Light-Strategie handelt es sich um eine reine Anforderungsextraktion, deren
Ziel es ist, FA ohne weitere Verarbeitungs- und Kompensationsschritte in Anfor-
derungsbeschreibungen zu identifizieren, klassifizieren und zu strukturieren. Vor-
aussetzung für die Anwendung der Strategie ist, dass keine Indikatoren in der
Anforderungsbeschreibung vorliegen, die die Hinzunahme von Kompensationsschrit-
ten begründen. Sie führt daher nur absolut notwendige Verarbeitungsschritte aus
und ist damit die Strategie mit der kürzesten Ausführungszeit und der geringsten
Kompensation (vgl. Abbildungen 5.6 sowie 5.7).
Wie in Abbildung 5.7 zu erkennen ist, wird das Preprocessing vor der Strategie-

anwendung ausgeführt. Daher kann die IE auf Informationen, die im Preprocessing
gewonnen wurden, zurückgreifen. Die identifizierte Sprache eines Satzes und dessen
Relevanz sind dabei besonders hervorzuheben, da sie dabei helfen, die Strategie
sehr gezielt anzuwenden: Nebensächliche und nicht-englische Sätze werden keiner
Extraktion unterzogen.

Anwendungsfall

Tabelle 5.1 zeigt die strukturierte Ergebnisausgabe für Beispiel 5.2.1, in dessen
Mittelpunkt das Prädikat

”
save“ steht. Dieses wurde durch die IE korrekt erkannt

und als Aktion annotiert.

Beispiel 5.2.1

”
I want to saveAktion unknown email addresses.“

Auch weitere semantische Informationen, wie die Rolle oder das Objekt einer FA,
werden erkannt und strukturiert gespeichert. Die extrahierten semantischen Informa-
tionen sind von hoher Relevanz für komplexere Strategien.

Lemma POS Sem. Info. Bemerkung

i PRON Rolle Wer will oder macht etwas?
want VERB Priorität Welche Priorität hat das Verlangte?
to PART
save VERB Aktion Welche Aktion ist gefordert (Prädikat)?
unknown ADJ

Objektemail NOUN Welches Objekt ist betroffen?
address NOUN

Tabelle 5.1: Beispielhafte Ergebnisausgabe der IE (Light-Strategie)



94 5 Konzeptentwicklung

5.2.2 Basic-Strategie

Preprocessing Informations-
extraktion

Syntaktische
Disambiguierung ?

Ergebnis-
strukturierung

Unvollständigkeits-
kompensation

Abbildung 5.8: Basic-Strategie

Die Basic-Strategie erweitert die zuvor vorgestelle Strategie Light um die Kom-
pensationsschritte syntaktische Disambiguierung (s. Abschnitte 2.1.2 und 5.5.4) und
Unvollständigkeitskompensation (s. Abschnitte 2.3 und 5.5.5). Ziel ist es, FA zu ex-
trahieren, strukturelle Ambiguität aufzulösen, Unvollständigkeit zu kompensieren
und die Ergebnisse der Einzelmethoden miteinander in Einklang zu bringen.
Auf die IE folgend, werden relevante, englischsprachige Sätze zuerst disambi-

guiert. Eine Besonderheit der syntaktischen Disambiguierung ist dabei, dass zunächst
überprüft wird, ob überhaupt Hinweise für strukturelle Ambiguität vorliegen, ansons-
ten wird der Satz ohne weitere Analysen übersprungen. Diese optionale Ausführung
ist in Abbildung 5.8 mit einem Fragezeichen gekennzeichnet.
Auf die Disambiguierung folgt die Kompensation unvollständiger Satzaussagen.

Prädikate, die in der IE als relevant für eine FA identifiziert worden sind, werden
auf die Vollständigkeit ihrer Argumente hin überprüft und – sofern notwendig –
komplementiert. In der Basic-Strategie steht die Disambiguierung damit im Zentrum,
welche den Ergebnisabgleich einzelner Methoden koordiniert und gegebenenfalls
notwendige Korrekturen vornimmt ( ). So wird zum einen das Ergebnis der IE
hinsichtlich fehlerhafter syntaktischer Zuordnung untersucht und zum anderen die
erkannten, fehlenden Argumente auf syntaktische Korrektheit geprüft. Demonstriert
wird dies im Folgenden an Beispiel 5.2.1, welches um eine PP erweitert wird.

Anwendungsfall

Die Methode der IE erkennt sowohl das Prädikat
”
save“ als Aktion einer funktionalen

Anforderung als auch die PP
”
in a new contact group“ als Verfeinerung der erkannten

Aktion. Die Ambiguitätsprüfung der syntaktischen Disambiguierungsmethode erkennt
potentielle Ambiguität durch PP-Anbindung und gibt die Disambiguierung frei.

Beispiel 5.2.2

”
I want to saveAktion unknown email addresses in a new contact group“.

Das Ergebnis der syntaktischen Disambiguierung ist in Abbildung 5.9 dargestellt
und spiegelt das Ergebnis der IE wider. Auch hier wurde die PP dem Prädikat

”
save“



5.2 Strategiekonfiguration 95

zugeordnet und nicht etwa der NP
”
unknown email addresses“. Eine Korrektur der

extrahierten funktionalen Anforderung ist möglich ( ), in diesem Fall aber aufgrund
der übereinstimmenden Ergebnisse nicht notwendig.

[...]

VP

PP

NP

NN

group

NN

contact

JJ

new

DT

a

IN

in

NP

NNS

addresses

NN

email

JJ

unknown

VB

save

Abbildung 5.9: Ergebnis der syntaktischen Disambiguierung

Die Kompensationsmethode extrahiert Argumente des Prädikats aus dem Satzkontext,
um eine Kompensationsanfrage zu erstellen (s. Abschnitt 5.5.5). In diesem Fall betrifft
dies das Prädikat

”
save“ in seiner semantischen Funktion als Aktion. Dafür werden

folgende Argumente zurückgeliefert:

• (Arg0) collector ”
I“

• (Arg1) thing saved
”
unknown email addresses in a new contact group“

Da die Kompensation der Unvollständigkeit als eigenständige Methode unabhängig
von der syntaktischen Disambiguierung arbeitet, können durch die Kompensation
syntaktische Ambiguitäten auftreten und zu fehlerhaften Ergebnissen führen. Aus
diesem Grund sieht die Strategie auch einen Ergebnisabgleich und -anpassung der
beiden Kompensationsschritte vor ( ). Hierbei gilt das Expert first-Prinzip. Divergie-
ren demnach die Ergebnisse aufgrund syntaktischer Ambiguität, wird das Ergebnis
der Expertenkomponenten zur Disambiguierung übernommen, da davon ausgegangen
wird, dass dieses Ergebnis korrekt ist.
In der Tat wurde seitens der Methode zur Unvollständigkeitskompensation das

erste Argument des Prädikats
”
save“ falsch erkannt, da die PP an die NP gebunden

wurde. Ein Umstand, der von der Methode zur syntaktischen Disambiguierung
erkannt und korrigiert wird. Durch die Korrektur der Argumentanbindung kann die
Kompensationskomponente eine korrekte Kompensationsanfrage stellen und erzeugt
so in Fällen, in denen Unvollständigkeit vorliegt, ein in den Satzkontext passendes
Kompensationsergebnis.

5.2.3 Basic Plus-Strategie

Die Basic Plus-Strategie stellt eine Erweiterung der Basic-Strategie um die Me-
thode der lexikalischen Disambiguierung dar (s. Abschnitte 2.1.1 und 5.5.4). Wie



96 5 Konzeptentwicklung

in Abbildung 5.10 zu sehen ist, reiht sich die lexikalische Disambiguierung vor der
syntaktischen Disambiguierung ein. Ziel dieser Ergänzung ist die Erweiterung sowie
Prüfung und Korrektur der IE-Ergebnisse auf lexikalischer Basis ( ). Die Aufgaben
der lexikalischen Disambiguierung sind somit vielfältig.

Preprocessing

Lexikalische
Disambiguierung

Informations-
extraktion

Syntaktische
Disambiguierung ?

Ergebnis-
strukturierung

Unvollständigkeits-
kompensation

Abbildung 5.10: Basic Plus-Strategie

Die Kernaufgabe der lexikalischen Disambiguierung ist die Bestimmung der wahr-
scheinlichsten Lesart für ein Lexem aufgrund seiner Einbettung in den Kontext
(s. Abschnitt 2.1.1), wobei nur die Lexeme disambiguiert werden, denen zuvor durch
die IE eine semantische Funktion in der FA zugeschrieben wurde. Darüber hinaus
ist die Methode zur lexikalischen Disambiguierung in der Lage, die Ergebnisse der
IE zu modifizieren. Diese Korrekturfunktion basiert im Wesentlichen auf erkannten
POS-Tags sowie semantischen Informationen. Stehen diesbezüglich die Ergebnisse
der IE und der lexikalischen Disambiguierung im Widerspruch, kann eine Korrektur
erfolgen. Wie wichtig dieser Ergebnisaustausch sein kann, wird im Folgenden an
konkreten Beispielen aufgezeigt.

Anwendungsfall

Beispiel 5.2.3 enthält eine Anforderungsbeschreibung, die von der IE verarbeitet
wurde (vgl. Tabelle 5.2). Die semantischen Informationen wurden korrekt zugeordnet
(z. B.

”
sort“ als Aktion). Allerdings wurde dabei bisher nicht berücksichtigt, dass

einzelne Lexeme mehrere Lesarten haben können. Dies ist beispielsweise bei
”
sort“

(sechs Lesarten) sowie bei
”
folders“ (zwei Lesarten) der Fall.

Beispiel 5.2.3

”
I want to sortAktion emails into separate folders“.

Durch die lexikalische Disambiguierung kann das Ergebnis der IE somit um wertvolle
Informationen ergänzt werden. Im Falle von

”
sort“ handelt es sich bei vier der sechs

Lesarten um Nomina, die per se keine Aktion darstellen können und ausgeschlossen
werden. Im nächsten Schritt entscheidet sich die Methode zur Disambiguierung nicht



5.2 Strategiekonfiguration 97

für die Lesart73
”
examine in order to test suitability“ sondern für

”
order by classes

or categories“. Dies ist eine korrekte Zuordnung, welche die Ambiguität der Aussage
weiter minimiert. Tabelle 5.2 zeigt erneut Beispiel 5.2.3, ergänzt um die Beschreibung
der disambiguierten Lesart.

# Lemma Sem. Info. Disambiguierung

1 i Rolle
2 want Priorität Have a desire for; want strongly
3 to
4 sort Aktion order by classes or categories
5 email Objekt World-wide electronic communication
6 into Verfeinerung
7 separate Verfeinerung Independent; not united or joint
8 folder Verfeinerung covering that is folded over [...]

Tabelle 5.2: Beispielhafte Ausgabe der IE, ergänzt um Disambiguierung

Neben der Disambiguierung von Lesarten ist bisher davon ausgegangen worden,
dass die Zuordnung von Wortarten (POS) durch die IE-Methode korrekt durch-
geführt wurde. Beispiel 5.2.4 hingegen enthält einen Satz, der durch die IE fehlerhaft
verarbeitet wird (vgl. Tabelle 5.3).

Beispiel 5.2.4

”
I want to automatically sort sharepoint emails into separate mail folders“.

Die Methode zur Informationsextraktion annotiert das Wort
”
automatically“ korrekt

als Adverb (ADV) und dennoch findet eine semantische Zuordnung als Aktion statt.
Dies führt in der Weiterverarbeitung zu Problemen, da

”
automatically“ nun als

eigenes Prozesswort bzw. Aktion geführt wird. In solchen Fällen greift die lexikalische
Disambiguierung korrigierend ein.

# Lemma POS-U Sem. Info.

1 i PRON Rolle
2 want VERB Priorität
3 to PART
4 automatically ADV Aktion
5 sort VERB Aktion
6 sharepoint NOUN Objekt
7 email NOUN Objekt

[...]

Tabelle 5.3: Ausgabe der IE mit fehlerhafter Aktionsangabe (Basic Plus)

So ergibt die Disambiguierung, dass es sich bei
”
automatically“ in der Tat um ein

ADV handelt, welches aber isoliert keine Aktion darstellt. Aus diesem Grund wird
die semantische Annotation

”
Aktion“ entfernt und durch

”
Verfeinerung“ ersetzt74.

73Siehe weiterführend: http://www.babelfy.org (Stand: 12.03.17).
74Der Begriff der Verfeinerung geht auf die Arbeit von Dollmann (2016) zurück, der ergänzende

Informationen (z. B.Modifikatoren) innerhalb einer FA als Verfeinerungen bezeichnet.



98 5 Konzeptentwicklung

Beispiel 5.2.5

”
The system should groupAktion emails.“

Beispiel 5.2.5 zeigt eine weitere minimalistische Anforderungsbeschreibung, die einen
Fehler durch die IE enthält. Das Wort

”
group“ wird korrekt als Aktion erkannt,

allerdings wurde das falsche POS-Tag zugeordnet: Die Informationsextraktionskom-
ponente führt

”
group“ als Nomen. Jedoch erkennt die Methode zur lexikalischen

Disambiguierung
”
group“ in diesem Kontext in der Lesart als Verb (

”
Arrange into a

group or groups“) und ersetzt gemäß der Devise Expert first die fehlerhafte Wortart.

5.2.4 Default-Strategie

Preprocessing

Lexikalische
Disambiguierung

Informations-
extraktion

Syntaktische
Disambiguierung

Ergebnis-
strukturierung

Unvollständigkeits-
kompensation

Referentielle
Disambiguierung

Abbildung 5.11: Default-Strategie

Die Default-Strategie führt erstmalig auch die Methode zur referentiellen Disambi-
guierung aus und erweitert damit die zuvor vorgestellte Basic Plus-Strategie um einen
weiteren Verarbeitungs- und Kompensationsschritt. Die referentielle Disambiguierung
hat dabei zum einen die Aufgabe, ambige Referenzen in den Anforderungsbeschrei-
bungen aufzulösen und kann zum anderen Koreferenzketten bilden, um darüber die
FA einander zuordnen zu können. Sie ist auch in der Lage, sowohl die Ergebnisse
der IE als auch die Kompensationsanfrage der Unvollständigkeitskompensation zu
modifizieren. Die Methode zur referentiellen Disambiguierung arbeitet dabei nicht
iterativ auf Satzbasis, sondern betrachtet die gesamte Anforderungsbeschreibung,
um wiederkehrende Referenzausdrücke satzübergreifend zu erkennen.

Anwendungsfall

Die Anforderungsbeschreibung in Beispiel 5.2.6 besteht aus zwei Sätzen und beschreibt
ausgewählte Anforderungen an eine E-Mail-Applikation.



5.2 Strategiekonfiguration 99

Beispiel 5.2.6

”
I want to moveAktion email spam and I want to deleteAktion the spam.
The system should reportAktion the spam to the administrator.“

In diesem Beispiel erkennt die Methode in der Anforderungsbeschreibung die beiden
Koreferenzketten (K) [email spam, the spam, the spam]0 und [I, I ]1. Während alle
Referenzausdrücke in K0 als semantische Funktion Objekte in den FA darstellen,
handelt es sich bei den Referenzausdrücken in K1 um Rollen. Für die weitere Inter-
pretation der Beschreibung ist es hilfreich zu wissen, welche Rollen in der gesamten
Anforderungsbeschreibung wiederholt vorkommen und dass die drei Aktionen auf
ein gemeinsames Objekt verweisen, auf welches mittels verschiedener Ausdrücke
referenziert wird.
Darüber hinaus ermöglicht es die Methode, die Komplexität von FA zu verringern.

Ohne eine referentielle Disambiguierung würde in Beispiel 5.2.7 nach der IE unklar
bleiben, was genau verschickt (

”
send“) werden soll. Insbesondere, da

”
them“ korrekt

als Objekt identifiziert wurde, losgelöst von der ersten Anforderung aber nicht
interpretiert werden kann.

Beispiel 5.2.7

”
I want to writeAktion emails and I want to sendAktion them.“

Durch die referentielle Disambiguierung wird deutlich, dass
”
them“ auf das zuvor

eingeführte Objekt
”
emails“ referenziert, was in den Ergebnissen vermerkt und bei

der Ausgabe berücksichtigt wird. Diese Erkenntnis ist auch bei der Kompensation
von Unvollständigkeit von Bedeutung, führt doch die Kompensationsanfrage für
das Prädikat

”
send“ viel wahrscheinlicher zu einem passenden Resultat, wenn das

berücksichtigte Argument Arg1 ”
emails“ und nicht

”
them“ lautet.

5.2.5 Complete-Strategie

Die Complete-Strategie stellt die letzte vordefinierte Strategie dar. Sie verfolgt das
Ziel einer möglichst großen Methodenabdeckung und enthält somit alle Methoden, die
bereits in der Default-Strategie Anwendung finden (vgl. Abbildung 5.12). Dennoch
unterscheidet sie sich in drei Merkmalen: Erstens wird die Complete-Strategie um eine
Methode zur Erkennung von Vagheit ergänzt. Vagheit ist oftmals für Ungenauigkeit
in Anforderungsbeschreibungen verantwortlich (s. Abschnitt 2.2). Zwar ist Vagheit
kein zentrales Thema dieser Arbeit, aber aufgrund der hohen Praxisrelevanz und der
angestrebten hohen Abdeckung sollte sie für Endanwender sichtbar sein. Demnach
kann diese Strategie potentielle Vagheit erkennen und aufzeigen.
Zweitens wird die syntaktische Disambiguierung nicht selektiv (vgl. Abbildung 5.6)

sondern auf allen Sätzen einer Anforderungsbeschreibung angewandt. Dies bedeutet,
dass keine erneute Prüfung stattfindet, ob ein konkreter Satz disambiguierungs-
bedürftig ist, sondern alle Sätze syntaktisch disambiguiert werden, sofern zuvor die
Notwendigkeit einmalig erkannt wurde. Dies kann unter dem Gesichtspunkt der
Laufzeit zu einer Verschlechterung führen, da die syntaktische Disambiguierung re-
chenintensiv ist (Carstensen et al., 2010, S. 312). Unter dem Ziel einer höchstmöglichen
Abdeckung allerdings sind diese zusätzlich gewonnenen linguistischen Informationen



100 5 Konzeptentwicklung

Preprocessing

Lexikalische
Disambiguierung

Informations-
extraktion

Syntaktische
Disambiguierung

Ergebnis-
strukturierung

Unvollständigkeits-
kompensation

Referentielle
Disambiguierung

Vagheits-
erkennung

Abbildung 5.12: Complete-Strategie

für Folgekomponenten wertvoll, da sie Aufschluss über strukturelle Abhängigkeiten
zwischen einzelnen semantischen Informationen einer FA geben (z. B.Modifikatoren).
Drittens ist die strukturierte Ausgabe dieser Strategie erweitert um linguistische

Informationen und Methodenprotokolle, die über die notwendigen Angaben hinaus-
gehen (z. B. alternative Lesarten, Kandidaten einzelner Koreferenzketten). Auch dies
kann zu einer Verlängerung der Laufzeit führen und verfolgt das Ziel, vorhandene
Informationen, die im Verarbeitungsprozess anfallen aber nicht berücksichtigt wur-
den, im Sinne einer hohen Informationsdichte für Folgekomponenten aufbereitet zur
Verfügung zu stellen. Im Folgenden wird sowohl ein Beispiel für Vagheitserkennung
als auch für die erweiterte Ergebnisstrukturierung gegeben.

Anwendungsfall

Der in Beispiel 5.2.8 dargestellte Satz einer Anforderungsbeschreibung wird mittels
IE verarbeitet. Dabei ist das Adjektiv

”
large“ als Bestandteil des Objekts annotiert

worden und wurde bisher nicht durch weitere Kompensationsmethoden verarbeitet.

Beispiel 5.2.8

”
The system must be able to sendAktion large emailsObjekt.“

Die Vagheitserkennung untersucht die, durch die IE erkannten, semantischen Bestand-
teile der FA und speichert Hinweise auf potentielle Vagheit zur späteren Ausgabe an
der Benutzerschnittstelle. Angewendet auf das Beispiel 5.2.8, erkennt die Methode
(s. Abschnitt 5.5.6) das steigerbare Adjektiv

”
large“ als potentiell vage (Löbner, 2003,

S. 63) und vermerkt dies zur späteren Ausgabe. Eine Vagheitskompensation findet
im Rahmen dieser Arbeit nicht statt (s. Kapitel 2).



5.3 Indikatoren der Strategieauswahl 101

Die erweiterte Ergebnisausgabe unterstützt alle Methoden, so beispielsweise auch die
lexikalische Disambiguierung: Während bisher die gewählte Lesart und gegebenenfalls
die korrigierte Wortart zurückgegeben wurden, werden bei der erweiterten Ausgabe
auch potentielle Kandidaten für die Lesart eines Lexems unter Angabe von Wahr-
scheinlichkeitswerten ausgegeben. Dies befähigt Folgekomponenten eigenständige
Korrekturen ohne Hinzunahme weiterer Ressourcen vorzunehmen. Darüber hinaus
werden Metainformationen zu einbezogenen Ressourcen (z. B.Name, Version) mit
ausgegeben, die sich vor allem an Entwickler von Folgekomponenten richten.

5.2.6 Fallback-Strategie

Wird keine bestehende Strategie der geforderten Indikatorkombination gerecht, greift
die Fallback -Strategie, die ausgehend von einer reinen Anforderungsextraktion flexibel
in der Methodenkonfiguration ist. Ziel ist es, nur notwendige Methoden auszuführen.
Hinsichtlich möglicher Abhängigkeiten sowie potentieller Synergien zwischen den Me-
thoden sind allerdings Qualitätseinbußen hinzunehmen, da dies bei der automatischen
Konfiguration nicht so umfassend erfolgen kann, wie es bei den vorkonfigurierten
Strategien der Fall ist. Da allerdings der Controller befähigt ist, weitere Methoden
miteinzubeziehen, deren Notwendigkeit über Indikatoren allein nicht ermittelt werden
konnte, kann sich der Strategieablauf auch während der Laufzeit anpassen. Nichtsde-
stotrotz ist die Fallback -Strategie, wie der Name bereits verdeutlicht, derzeit als eine
Rückfallstrategie zu begreifen, die gewählt wird, wenn eine Indikatorkombination
durch bestehende Strategien nicht abgedeckt werden kann. In der Weiterentwicklung
des resultierenden Softwaresystems kann angestrebt werden, einzig und allein auf eine
automatische Strategie zurückzugreifen. Dies setzt allerdings voraus, dass genügend
reale Anforderungsbeschreibungen vorliegen, um mehr über Qualitätsmerkmale und
sonstige Defizite in den Text zu erfahren. Darüber hinaus gilt es das Zusammenwirken,
Verhalten und die Ergebnisqualität der einzelnen Komponenten besser zu verstehen,
was die derzeit vorgenommene Strategieaufteilung übersichtlich ermöglicht.

5.3 Indikatoren der Strategieauswahl

Auf die zuvor beschriebenen Kompensationsstrategien zurückzugreifen ermöglicht
es, effizient und flexibel auf die Beschaffenheit einer Anforderungsbeschreibung zu
reagieren. Allerdings werfen gerade Flexibilität und unterschiedliche Konfigurati-
onsvarianten der Strategien das Problem der Entscheidungsfindung auf: Welche
Strategie ist die Beste für eine konkrete Anforderungsbeschreibung? Die Antwort auf
diese Frage ist dabei ohne die Kompensationsmethoden zu finden, die erst nach der
Strategiewahl aktiviert werden. Darüber hinaus muss die Strategieentscheidung mit
minimalem Zeitaufwand erfolgen.

5.3.1 Begriffsdefinition von Indikatoren

In Abschnitt 5.2 wird bereits der Begriff der
”
Indikatoren“ eingeführt, die inner-

halb einer Beschreibung auftreten können und die die Beschaffenheit ausmachen.
Femmer (2013) gibt in diesem Zusammenhang zu bedenken, dass es einfacher ist,



102 5 Konzeptentwicklung

qualitätsmindernde Indikatoren zu finden75, als welche, die für Qualität stehen, da
erstere oftmals konkrete

”
Spuren“ im Text hinterlassen (Femmer, 2013, S. 1). In

diesem Zusammenhang wird auch von
”
Requirements smells“ gesprochen (Femmer

et al., 2016a; Femmer et al., 2016b; Femmer et al., 2014; Femmer, 2013).

Definition 5.3.1 (Requirements smell)

”
A Requirements smell is an indicator of a quality violation, which may lead to a

defect, with a concrete location and a concrete detection mechanism.“
(Femmer et al., 2016a, S. 8)

Femmer et al. (2016a) orientieren sich dabei an
”
Code smells“, die als Indikatoren

für schlechten Quelltext stehen (nach Fowler et al., 1999). In vier Punkten werden

”
Requirements smells“ von Femmer et al. (2016a, S. 8) genauer definiert und im
Folgenden in enger Anlehnung auf die vorliegende Arbeit übertragen:

1.
”
Requirements smell“ ist ein Indikator für eine Qualitätsverletzung eines An-
forderungsartefakts. Für diese Definition verstehen wir Anforderungsqualität
im Sinne von

”
quality-in-use“, was bedeutet, dass sich schlechte Anforderungs-

qualität durch die (potentiellen) negativen Auswirkungen auf Aktivitäten im
anforderungsbasierten Softwarelebenszyklus manifestiert.

2.
”
Requirements smell“ führt nicht zwingend zu einer Fehlfunktion und ist im
jeweiligen Anwendungskontext zu bewerten [...]. Ob

”
Requirements smell“ im

jeweiligen Kontext ein Problem darstellt oder nicht, muss individuell entschieden
werden und bedarf somit Reviews und weiterer Qualitätssicherungsaktivitäten.

3. Ein
”
Requirements smell“ hat eine konkrete Position in einer Anforderungs-

beschreibung, z. B. ein Wort oder eine Sequenz.
”
Requirements smells“ sind

immer mit einer Positionsangabe ausgestattet, welche die potentielle Fehlerstel-
le kennzeichnet. Dies ist ein Unterschied zu allgemeinen Qualitätsmerkmalen
wie Vollständigkeit, was nur ein abstraktes Kriterium ist.

4.
”
Requirements smells“ ermöglichen spezifische Erkennungsmechanismen, die
mehr oder weniger akkurat in der Erkennung sein können.

Auf Grundlage von Definition 5.3.1 sowie der darauf folgenden Begriffsverfeinerung
wird im Rahmen dieser Arbeit der Begriff des Indikators wie folgt definiert:

Definition 5.3.2 (Indikator)
Ein Indikator zeigt Qualitätsverletzungen in Anforderungsbeschreibungen auf, die
für die Interpretation von Anforderungen sowie die softwaretechnische Umsetzung
potentiell schädlich sind. Indikatoren treten an mindestens einer Textposition auf und
sind mindestens einem Erkennungs- sowie Kompensationsmechanismus zugeordnet.

Da Indikatoren mehr oder weniger akkurat sein können, rechtfertigen sie die
Ausführung einer Methode und Strategie nicht in allen erkannten Fällen. So kann

75Femmer (2013) bezieht sich dabei auf Anforderungsartefakte.



5.3 Indikatoren der Strategieauswahl 103

ein Indikator, der sehr zuverlässig erkannt werden kann und damit einen sehr kon-
kreten Verdacht auf eine Qualitätsverletzung anzeigt, bereits die Anwendung von
Kompensationsmaßnahmen rechtfertigen. Demgegenüber kann ein ungenauerer und
unzuverlässigerer Indikator gegebenenfalls nur einen Anfangsverdacht auf eine Qua-
litätsverletzung begründen.

5.3.2 Bestimmung kontextsensitiver Indikatoren

In diesem Abschnitt werden die Indikatoren, welche die Ausführung einzelner Me-
thoden und damit auch einzelner Strategien rechtfertigen, dargestellt. Es wird von
kontextsensitiven Indikatoren gesprochen, da nicht einzelne Lexeme einen Indikator
bilden, sondern erst der Kontext bzw. bestimmte Textmuster genug Aussagekraft
erzeugen, um als Indikatoren (zuverlässig) zu fungieren. Indikatoren können dabei
auf Satzbasis oder auf der gesamten Anforderungsbeschreibung angewendet werden.
Sie müssen aber losgelöst von den Erkennungs- und Kompensationsmethoden arbei-
ten, da diese ausschließlich im nachgelagerten Schritt, demnach bei entsprechendem
Bedarf (erkannte Indikatoren) herangezogen werden.

5.3.2.1 Lexikalische Ambiguität als Indikator

Die lexikalische Disambiguierung verfolgt das Ziel, einem Lexem seine korrekte Lesart
aus einer Menge von Lesarten zuzuordnen (s. Abschnitt 2.1.1). Ein Indikator hierfür
ist Ambiguität, also das Vorhandensein mindestens zweier potentieller Lesarten für
ein und dasselbe Lexem. Hierbei stellt sich nun die Frage, ob es wirklich notwendig
ist, alle Lexeme eines Satzes oder einer Anforderungsbeschreibung auf lexikalische
Ambiguität zu überprüfen. Und darüber hinaus, ob nicht Einschränkungen existieren,
die die Menge an potentiellen Lesarten von vornherein minimieren. Diesbezüglich
werden folgende Annahmen bereits vor der Indikatorbestimmung getroffen:

Zur Steigerung der Effizienz gelten nur Lexeme als disambiguierungsbedürftig, die
sich in On-Topic-Sätzen befinden und eine semantische Funktion innerhalb einer
FA einnehmen (s.Abschnitt 5.5.3). Letzteres wird eingegrenzt, indem nur solche
Lexeme disambiguiert werden, die nicht den semantischen Kategorien

”
Rolle“ oder

”
Priorität“76 zuzuordnen sind. Hier wird die Variabilität in der Wortwahl als so gering
angenommen, dass eine Disambiguierung nicht notwendig erscheint. Schlussendlich
werden nur Lexeme berücksichtigt, die keine Stoppwörter sind.
Beispiel 5.3.1 zeigt den Satz

”
I want to send emails to my family“, auf dem ein

Indikator für lexikalische Ambiguität identifiziert wird.

Beispiel 5.3.1 (Indikatorbestimmung für lexikalische Ambiguität)

(5) Aktion Objekt Verfein.

(4) VB NNS PRP$ NN

(3) I want to send emails to my family

(2) Rolle Priorität Aktion Objekt Verfein. Verfein.

(1) I want to send emails to my family

76Es werden weitere Kategorien wie
”
Subpriorität“ etc. gefiltert, vgl. Abbildung 5.18.



104 5 Konzeptentwicklung

In Schritt (1) ist der Originalsatz zu sehen. Dieser wird in Schritt (2) um semantische
Informationen durch die IE erweitert. Stoppwörter, die darüber hinaus keine seman-
tische Funktion innerhalb der FA haben (in diesem Fall

”
to“), werden in Schritt (3)

zusammen mit Lexemen der Funktionen
”
Rolle“ und

”
Priorität“ entfernt. Als Stopp-

wortliste eignet sich beispielsweise die von der Apache Foundation zur Verfügung
gestellte Liste77. Anschließend werden in Schritt (4) die POS-Tags der verbleibenden
Lexeme annotiert. Hier werden weitere Stoppwörter, auch auf Basis der Tags, entfernt,
die bislang aufgrund ihrer Zugehörigkeit zu semantischen Kategorien unangetastet
blieben. Schritt (5) zeigt die verbleibenden Lexeme, die daraufhin als Kandidaten
für eine Disambiguierung in Frage kommen:

”
send“,

”
emails“ und

”
family“.

Lexem Lesart Beschreibung

send send.01 cause to go somewhere
send.02 to cause or order to be taken, directed,...
send.03 cause to be directed or transmitted to another place
...
send.08 broadcast over the airwaves, as in radio or television

email email.01 a system of world-wide electronic communication
family family.01 a social unit living together

family.02 primary social group; parents and children
family.03 a collection of things sharing a common attribute
...
family.08 an association of people who share common beliefs...

Tabelle 5.4: Potentielle Lesarten verbleibender Disambiguierungskandidaten

Auf diese Vorauswahl von Kandidaten folgt ein Abgleich mit WordNet, was In-
formationen über die Anzahl möglicher Lesarten enthält (s. Abschnitt 3.3.1.1). Die
Anfragen an WordNet bezüglich möglicher Lesarten der drei Kandidaten können
durch Hinzunahme der bereits bekannten POS-Tags besser spezifiziert werden. Dies
erhöht die Aussagekraft erheblich, sind doch nur die Lesarten von Interesse, die
auch die Wortart des Kandidaten teilen (s. Auszug aus dem Anfrageergebnis in
Tabelle 5.4). Die Lexeme

”
send“78 (als Verb) und

”
family“79 (als Nomen) haben

laut WordNet jeweils acht verschiedene Lesarten. Hingegen hat
”
emails“80 nur eine

einzige Lesart und fällt daher als Kandidat weg. Es verbleiben zwei Kandidaten für
potentielle lexikalische Ambiguität. Das bisherige Ergebnis dieses Indikatorchecks ist
demnach, dass bei zwei von acht Lexemen Ambiguität vorherrschen kann.
Es stellt sich jedoch zum einen die Frage, ob wirklich alle gefundenen Lesarten

relevant sind, oder ob nicht eine weitere Einschränkung erfolgen muss. Zum anderen
gilt es zu klären, wie die Indikatoren nun im Kontext der Anforderungsbeschreibung
zu bewerten sind: Reicht der Verdacht auf Ambiguität bei zwei Lexemen aus, um den
spezifischen Satz der Anforderungsbeschreibung in Gänze einer lexikalischen Disam-
biguierung zu unterziehen? Da die zugrundeliegenden Kandidaten bereits vorgefiltert

77Siehe: http://snowball.tartarus.org/algorithms/english/stop.txt (Stand: 16.02.17).
78Siehe weiterführend: http://wordnetweb.princeton.edu/perl/webwn?s=send (Stand: 11.01.17).
79Siehe weiterführend: http://wordnetweb.princeton.edu/perl/webwn?s=family (Stand: 11.01.17).
80Siehe weiterführend: http://wordnetweb.princeton.edu/perl/webwn?s=email (Stand: 11.01.17).



5.3 Indikatoren der Strategieauswahl 105

wurden und es sich somit definitiv um für eine FA relevante, semantische Kernaussa-
gen handelt (z. B.

”
send“ = Aktion), ist es hinreichend zu wissen, dass mindestens

eine dieser ambig ist und es im Zuge der Weiterverarbeitung zu Fehlinterpretationen
führen kann. Die Disambiguierung ist demnach gerechtfertigt. Nun könnte zwar ar-
gumentiert werden, dass zum Beispiel

”
send“ unter Betrachtung des Kontextes nicht

acht verschiedene Lesarten hat, sondern eigentlich nur zwei. Nämlich
”
cause to be

directed or transmitted to another place“ (send.03) und
”
broadcast over the airwaves,

as in radio or television“ (send.08), die beide von WordNet als verb.communication
geführt werden. Jedoch bedeutet dies zum einen keine Ergebnisveränderung, da das
Lexem auch mit zwei potentiellen Lesarten als ambig gelten würde. Zum anderen sei
an dieser Stelle noch einmal an die Aufgabe der Indikatoren erinnert, die nicht darin
besteht, eine Disambiguierung durchzuführen, sondern vielmehr deren Notwendigkeit
aufzuzeigen. Es ist zu diesem Zeitpunkt vollkommen hinreichend zu wissen, dass meh-
rere Lesarten vorliegen und ein gegebenes Lexem unter allen derzeit berücksichtigten
Faktoren als ambig gilt.

5.3.2.2 Syntaktische Ambiguität als Indikator

Da es sich bei syntaktischer Ambiguität um eine strukturelle Mehrdeutigkeit handelt,
sind Indikatoren auf Basis von syntaktischen Mustern naheliegend (s. Kapitel 2). Auf
diese Weise lässt sich sowohl Koordinations- als auch PP-Anbindungsambiguität er-
kennen. Die Identifikation der Indikatoren auf Satzbasis ermöglicht eine Lokalisierung
möglicher Ambiguitäten innerhalb der Anforderungsbeschreibung.

Indikatoren zur Erkennung von Koordinationsambiguität

Für den Fall der Koordinationsambiguität werden Konjunktionen sowie syntaktische
Muster als Indikatoren herangezogen. Koordinationsambiguität, wie sie in dieser
Arbeit verstanden wird, entsteht zum einen durch die Verwendung von Konjunktionen
zusammen mit Modifikatoren, was auf Basis von Muster erkannt werden kann. Zum
anderen entsteht sie durch die Verschachtelung von Konjunktionen, deren Erkennung
durch den systematischen Abgleich von Token und definierten Mustern erreicht
wird (s. Abschnitt 2.1.2). In beiden Fällen ist die Existenz von Konjunktionen (Berry
et al., 2003, S. 11 sowie Chantree et al., 2005, S. 2 benennen explizit

”
and“ und

”
or“)

ausschlaggebend und wird überprüft, bevor Muster pro Satz gesucht werden (vgl.
Beispiel 5.3.2). Diese Reihenfolge dient vor allem einer schnelleren Verarbeitung.

Beispiel 5.3.2 (Koordinationsambiguität)

(A)

PRP VBP NNS CC NNS CC NNS VBP PRP .

I use crawlers and spiders and users report me .

(B)

PRP VBP TO VB JJ NNS CC NNS .

I want to send large emails and tasks .



106 5 Konzeptentwicklung

Wie in Beispiel 5.3.2 ersichtlich wird, enthalten beide Arten der Koordinationsambi-
guität mindestens eine Konjunktion. Dies wird als Vorauswahlkriterium herangezogen.
Darauf folgend werden Sätze, die mindestens eine Konjunktion enthalten auf weitere
Konjunktionen überprüft. Der Indikator erkennt eine potentielle Koordinationsambi-
guität, wenn mindestens zwei Konjunktionen vorliegen. Es folgt die musterbasierte
Erkennung (POS-Tags) von Ambiguität durch die Kombination von Modifikatoren
und Konjunktionen. Wie in Beispiel 5.3.2 (B) ersichtlich wird, eignet sich beispiels-
weise das Muster

”
JJ NNS CC NNS“ im Falle von zwei Nomina im Plural.

Indikatoren zur Erkennung von PP-Anbindungsambiguität

Im Fall von PP-Anbindungsambiguität existieren bereits syntaktische Muster zur
Erkennung potentieller Ambiguität, wie beispielsweise

”
V NP PP“ von Agirre et al.

(2008, S. 318) bzw. Nadh und Huyck (2009, S. 2), sodass diese hier adaptiert wer-
den können. Dieses Muster ermöglicht es, Präpositionalphrasen zu finden, die auf
Nominalphrasen in Objektposition folgen. Die hierzu notwendigen syntaktischen
Informationen können durch Shallow Parsing-Ansätze (auch:Chunking) erzeugt
werden, die als sehr performant und ausreichend zuverlässig gelten (Carstensen
et al., 2010, S. 276). Allerdings stellt sich die Frage, ob das Muster im Sinne hoher
Performanz noch weiter eingeschränkt werden kann. Eine Überlegung wäre zum
Beispiel, bestimmte Präpositionen auszuschließen, die nicht als (hochgradig) ambi-
guitätsfördernd gelten. Beim Blick in Lexika des Englischen zeigt sich, dass sehr
viele Präpositionen existieren81, sodass der Fokus auf die Gängigsten genügt. Darum
werden in Tabelle 5.5 die 15 meistgenutzten Präpositionen aufgeführt (Davies, 2016).

(1) of (2) in (3) to (4) for (5) with
(6) on (7) at (8) from (9) by (10) about
(11) as (12) into (13) like (14) through (15) after

Tabelle 5.5: Die häufigsten 15 Präpositionen der englischen Sprache

Die häufigste Präposition
”
of“ ist zugleich eine, die in der Literatur als nicht ambig

gilt, da sie in nahezu allen Fällen an die NP gebunden wird, und daher oftmals aus
Disambiguierungsverfahren ausgeschlossen wird (z. B.Ratnaparkhi, 1998, S. 1081).
Die Präposition

”
of“ wird demnach auch in dieser Arbeit nicht behandelt, weshalb das

syntaktische Muster folgerichtig noch um mindestens eine Konstituente zu ergänzen
ist (

”
V NP PP“ | PREP �=

”
of“).

5.3.2.3 Referentielle Ambiguität als Indikator

In diesem Abschnitt werden Indikatoren in zweierlei Hinsicht bestimmt: Zum einen
muss festgestellt werden, ob Ambiguität vorliegt, um entsprechend eine Methode zur
Disambiguierung zu starten. Zum anderen soll festgestellt werden, ob Koreferenzen
im Text existieren, um auch deren Erkennung zu forcieren.

81DELA führt 124 Präpositionen, Davies (2016) listet 196 und Essberger (2012, S. 6) wiederum
führt 150 unter dem Verweis auf, dass es viele weitere Präpositionen gibt.



5.3 Indikatoren der Strategieauswahl 107

Indikator zur Erkennung referentieller Ambiguität

Ein mögliches Vorgehen der Erkennung referentieller Ambiguität (s. Abschnitt 2.1.3)
wäre, auf Basis einzelner Lexeme zu prüfen, ob beispielsweise Pronomina vorliegen.
Das ist naheliegend, weil diese Ausdrücke klassischerweise auch als

”
Stellvertreter“ von

Nomina bezeichnet werden (Dittmann und Thieroff, 2009, S. 400 ff.) und die Gefahr
mit sich bringen, falsch zugeordnet zu werden (IEEE, 2011, S. 12). Diese Prüfung
kann sowohl mittels POS-Tagging geschehen als auch auf Basis von Wortlisten.
Eine Einschränkung zur Sicherung der Performanz wäre dabei beispielsweise, nur
hochfrequente Pronomina abzugleichen. Hierfür stellt Tabelle 5.6 die 15 Pronomina
der englischen Sprache dar, die am häufigsten verwendet werden (Davies, 2016).

(1) it (2) I (3) you (4) he (5) they
(6) we (7) she (8) who (9) them (10) me
(11) him (12) one (13) her (14) us (15) something

Tabelle 5.6: Die häufigsten 15 Pronomina der englischen Sprache

Diese Lösung ist aber unter drei Gesichtspunkten unbefriedigend: Einerseits enthält
Tabelle 5.6 viele Personalpronomina (z. B.

”
I“,

”
she“ oder

”
it“), wobei zu klären wäre,

wie häufig Personalpronomina in Anforderungsbeschreibungen auftreten und ob sie
hinsichtlich der Anforderungsqualität schädigend sind. Beispielsweise enthält bereits
der Satz

”
I want to read emails and I need to print them“ drei Personalpronomina,

was die Frage aufwirft, ob das bloße Vorhandensein bereits negativ zu interpretieren
ist und wenn ja, ab welcher Anzahl. Ferner ist, unter der Annahme, dass es zumindest
eine bekannte Standardrolle in Anforderungsbeschreibungen gibt, nämlich den User,
auch das Personalpronomen

”
I“ als unkritisch anzusehen. Was noch übrig bleibt, ist

das Wort
”
them“, das auf

”
emails“ referenziert und als Koreferenzkette abzubilden ist.

Ambig ist diese Konstellation aber nicht. Darüber hinaus ist ein Abgleich aller Wörter,
unabhängig von ihrer semantischen Funktion innerhalb der FA, nicht performant.
Beispiel 5.3.3 enthält einen Auszug einer Anforderungsbeschreibung, die aus zwei

aufeinanderfolgenden Sätzen besteht. Satz (2) enthält als Objekt das Personalpro-
nomen

”
them“, wobei unklar bleibt, auf was sich dieses bezieht. Es könnte sowohl

das Objekt als auch die semantische Kategorie der Verfeinerung in Satz (1) sein, da
beide Nomina im Plural vorliegen.

Beispiel 5.3.3 (Indikator für referentielle Ambiguität)

(1) Aktion Objekt Verfeinerung

I want to send emails with large files

(2) Aktion Objekt

I want to import them from an external hard drive

Es wird deutlich, dass die Indikatorbestimmung nicht auf Satzbasis erfolgen kann,
da Antezedens und der direkte anaphorische Verweis sowohl im selben, als auch in
aufeinander folgenden Sätzen auftreten können. In Beispiel 5.3.3 greift das Muster



108 5 Konzeptentwicklung

”
NNS+NNS+them“ satzübergreifend. Es lässt sich erweitern, indem auch Anteze-
denzien im Singular berücksichtigt werden, wie beispielsweise in

”
I want to send an

email with an attachment. It is a very large one“ und statt
”
them“ im Muster das

POS-Tag für Pronomen gewählt wird (
”
NN(S)+NN(S)+PRP“). Allerdings greift das

Muster nur, wenn entweder zwei Antezedenzien im selben Satz mit einem Pronomen
oder im Satz zuvor genutzt werden. Eine Aufteilung der Antezedenzien auf zwei
Sätze wird nicht berücksichtigt, da davon ausgegangen wird, dass in diesen Fällen
auf das zuletzt genannte Antezedens referenziert wird.

Indikator zur Erkennung von Koreferenzen

Um auch Koreferenzen aufdecken zu können, wird im Folgenden eine Kombination aus
Pronomina, semantischen Informationen der FA und der Ähnlichkeit zwischen Objek-
ten, Komponenten, Rollen etc. gewählt, sofern davon mehrere existieren. Beispiel 5.3.4
illustriert das an einer um semantische Kategorien erweiterten Anforderungsbeschrei-
bung82, die aus insgesamt vier Sätzen besteht. Während die Anforderungen in den
Sätzen (1) und (4) aus der Komponentensicht verfasst wurden (Was soll eine Kompo-
nente tun?), zeigen die Sätze (2) und (3) die Nutzerperspektive (Was soll der Nutzer
tun können?).

Beispiel 5.3.4 (Indikator zur Bildung von Koreferenzketten)

(1) Komponente 1 Objekt 1

The application should send emails to my family

(2) Objekt 2

I want to delete email spam

(3) Objekt 3

Furthermore users should report the spam

(4) Komponente 4 Objekt 4

The system sends encrypted emails

III I

II

Es liegen – markiert durch die Pfeile I-III – Koreferenzen vor, die sich in einzelnen
Merkmalen unterscheiden und die es zu erkennen gilt, sodass die referentielle Disam-
biguierung zur Erstellung von Koreferenzketten durchgeführt wird. Gegenstand des
Indikators in diesem Fall sind die semantischen Kategorien und die Ähnlichkeiten der
dahinter befindlichen Wörter. Durch die IE sind semantische Informationen inklusive
POS-Tags bekannt: Die Komponenten umfassen {applicationNN, systemNN} und zu
den Objekten gehören {emailsNNS, emailNN spamNN, spamNN, encryptedJJ emailsNNS}.
Folgend werden Nomina einer semantischen Kategorie sowie verwandten Kategorien

82Aus Gründen der besseren Lesbarkeit werden nur relevante Kategorien dargestellt.



5.3 Indikatoren der Strategieauswahl 109

untereinander verglichen (vgl. Tabelle 5.7). Besteht eine Kategorie aus mehreren No-
mina, werden diese jeweils einzeln miteinander abgeglichen (z. B.

”
emailNN spamNN“).

Vollständige sowie partielle Übereinstimmungen in den verglichenen Kategorien
gelten hier als ausreichend für die Ausführung der referentiellen Disambiguierung.
In Beispiel 5.3.4 existiert eine direkte Übereinstimmung zwischen den Nomina von

Objekt 1 und 4 (
”
emails“) sowie eine direkte Übereinstimmung zwischen Objekt 2

und 3 (
”
spam“). Darüber hinaus liegt eine partielle Übereinstimmung zwischen

Objekt 2 und den Objekten 1 und 4 vor (
”
email“). Bei den Komponenten 1 und 4

hingegen handelt es sich um einen Sonderfall. Ein direkter Abgleich zwischen
”
system“

und
”
application“ führt ins Leere, wobei beide Begriffe auf die identische Entität

referenzieren. Um dennoch einen Hinweis auf potentielle Koreferenz zu finden, wird
eine Synonymliste herangezogen, die hochfrequente Begriffe enthält. Durch diese Liste
wird erkennbar, dass die beiden Wörter zusammenhängen und Koreferenz gegeben
ist – der Indikator greift demnach auch in diesen Fällen, da durch die Hinzunahme
der Synonyme eine gewisse Ungenauigkeit in Kauf genommen wird.

Sem. Kategorie Abgleich Hinreichend

Priorität � —
Subpriorität � —

Aktion � —
Aktionsargument � —
Subaktion � —
Subaktionsargument � —

Sonstiges
Motivation � —
Bedingung � �

Rolle � �

Subrolle � �

Komponente � �

Komponentenverfeinerung � �

Objekt � �

Objektverfeinerung � �

Subobjekt � �

Subobjektverfeinerung � �

Tabelle 5.7: Gruppen semantischer Kategorien zum Ähnlichkeitsabgleich.
Gruppenoberbegriffe sind fett gedruckt hervorgehoben

Nun stellt sich auch bei diesem Indikator die Frage, ob bereits ein einmaliger Hinweis
auf potentielle Koreferenz ausreicht, um die Ausführung der referentiellen Disambi-
guierung zu rechtfertigen oder ob weitere Voraussetzungen erfüllt sein müssen. In der
Tat bietet es sich hier an, zwischen den semantischen Kategorien zu unterscheiden.
Wie in Tabelle 5.7 ersichtlich ist, werden nicht alle Kategorien für einen Abgleich
hinzugezogen. So wird beispielsweise auf

”
Priorität“,

”
Aktion“ und

”
Motivation“

verzichtet, wobei Prioritäten (z. B.
”
want“,

”
must“) und Aktionen (

”
send“) per se

nicht koreferent sind. Auf die Kategorie
”
Motivation“ wird aus Effizienzgründen



110 5 Konzeptentwicklung

verzichtet, da sie als nicht hochgradig relevant für die FA eingestuft wird – anders
als zum Beispiel die Kategorie

”
Bedingung“, welche wiederum allein nicht hinrei-

chend ist, um einen positiven Indikator darzustellen. Ebenfalls sind die Kategorien
rund um

”
Rolle“ isoliert nicht ausreichend, um die Methodenanwendung zu recht-

fertigen, da üblicherweise nicht mehr als zwei unterschiedliche Rollen innerhalb
einer Anforderungsbeschreibung vorkommen und diese überwiegend Standardrol-
len sind (z. B.

”
User“,

”
I“). Wenn die Notwendigkeit der Methodenausführung bei

”
Komponente“ und

”
Objekt“ sowie deren Ausprägungen erkannt wird, wird davon

ausgegangen, dass eine Wiederaufnahme bereits eingeführter Referenten erfolgt ist.

5.3.2.4 Indikatoren zur Erkennung von Unvollständigkeit

Die Bestimmung der Indikatoren für Unvollständigkeit gestaltet sich vergleichsweise
schwierig, da das Fehlen von Angaben zu prüfen ist. Als Vorteil erweist sich hierbei,
dass es sich um partiell unvollständige Anforderungen handelt (s. Abschnitt 2.3).
Es ist demnach zu überlegen, ob die bestehenden Informationen Rückschlüsse auf
die fehlenden Angaben zulassen. Wie auch bei den anderen Indikatoren muss dies
allerdings ohne die entsprechende Kompensationsmethode geschehen. Da die Un-
vollständigkeit auf Basis der Prädikate ermittelt wird, stehen diese im Zentrum der
nachfolgenden Überlegungen. Und auch hier werden die semantischen Kategorien als
Grundlage der kontextsensitiven Indikatoren herangezogen.
Ein erster Indikator für Unvollständigkeit ist die fehlende semantische Kategorie

”
Aktion“ (vgl. auch Tabelle 5.7). Diese lässt sich allerdings nur schwerlich kompensie-
ren, bildet sie doch zum einen die Ausgangslage83 der eigentlichen Kompensation und
zum anderen die semantische Kernaussage einer Anforderung84. Eine Anforderung
ohne

”
Aktion“ bzw. Prozesswort ist demnach nicht als Anforderung zu behandeln.

In den meisten Fällen sollte hier bereits die Off-Topic-Klassifikation während des
Preprocessings den entsprechenden Satz der Anforderungsbeschreibung als irrelevant
kennzeichnen. Neben den Prozesswörtern existieren die semantischen Kategorien für
Rolle, Komponente und Objekt. Diese Kategorien stellen Argumente eines Prädikats
dar. Das Subjekt einer Anforderung wird durch die Rolle oder Komponente ausge-
drückt, wobei es ausreicht, wenn eine der beiden semantischen Kategorien in einem
Satz vorzufinden ist. Fehlt das Subjekt, muss die Kompensation greifen, da Unvoll-
ständigkeit angenommen werden kann. Ein fehlendes Subjekt kann bereits bei der
maschinellen Verarbeitung (IE) auftreten, insbesondere bei einer Aufzählung von
Prozesswörtern, wie das Beispiel 5.3.5 zeigt. Hier wird das Subjekt (

”
I“) korrekt dem

Prädikat
”
write“ zugeordnet aber beispielsweise bei

”
send“ als Argument ignoriert.

Beispiel 5.3.5 (Auszug einer Anforderungsbeschreibung)

”
IRolle want to writeAktion, readAktion and sendAktion e-mailsObjekt“

Ein weiteres Argument des Prädikats ist die semantische Kategorie
”
Objekt“, wie

zum Beispiel
”
e-mails“ in Beispiel 5.3.5. Im Gegensatz zum Subjekt und Prädikat

ist das Objekt hier nicht erforderlich, um einen wohlgeformten Satz zu bilden

83Die Aktion stellt das zentrale Verb einer FA dar. Ihr Fehlen verhindert die PAS-Ermittlung.
84Siehe hierzu auch Rupp (2007, S. 219 ff.).



5.3 Indikatoren der Strategieauswahl 111

(vgl. z. B.Bakshi, 2000, S. 3 f.). Es wird aber oftmals benötigt, um einen aussa-
gekräftigen Satz zu konstruieren. Darüber hinaus wird angenommen, dass auch in
den überwiegenden Fällen bei Anforderungsbeschreibungen ein Objekt erforderlich
ist. Eine Anforderung wird demnach auch dann als unvollständig angesehen, wenn
die semantische Kategorie

”
Objekt“ fehlt.

5.3.2.5 Indikatorabhängigkeiten

Wie dargestellt, bedürfen die Kompensationsmethoden unterschiedlicher Indikatoren,
da auf spezifische Qualitätsmerkmale in Anforderungsbeschreibungen zurückgegriffen
wird. Eine Besonderheit ist dabei, dass die Mehrzahl der Indikatoren insbesondere
auf die Semantik als Quelle linguistischer Charakteristika zurückgreift, nämlich auf
die durch die IE bestimmten semantischen Kategorien. Abbildung 5.13 zeigt die
möglichen semantischen Kategorien (vgl. Tabelle 5.7) und deren Einfluss auf Indika-
toren unterschiedlicher Kompensationsmethoden (auch: Indikatorabhängigkeit).

Aktion

Rolle

Komponente

Objekt

Sonstiges

Priorität

WSD

REF

SYN

INC

Kompensation

Abbildung 5.13: Einfluss semantischer Kategorien auf Indikatoren.
WSD = Lexikalische Ambiguität; REF = Referentielle Ambiguität
SYN = Syntaktische Ambiguität; INC = Unvollständigkeit

Beispielhaft hervorgehoben (schwarz, fett gedruckt) sind in Abbildung 5.13 die Pfeile
ausgehend von den semantischen Kategorien

”
Rolle“,

”
Komponente“ und

”
Objekt“

zum Indikator für Unvollständigkeit. Dieser Indikator berücksichtigt demnach drei
semantische Kategorien, die wiederum auch von Indikatoren der lexikalischen und
referentiellen Ambiguität herangezogen werden (mit Ausnahme der Kategorie

”
Rol-

le“ im Fall der lexikalischen Ambiguität). Im Umkehrschluss bedeuten mehrfache
Indikatorabhängigkeiten auch, dass ein Fehler in einer semantischen Kategorie nicht
nur einen, sondern alle Indikatoren betrifft, die diese Kategorie in die Entschei-
dungsfindung miteinbeziehen. Wird nun die Frage nach der Zuverlässigkeit einzelner
Indikatoren gestellt, ist eine gleichzeitige Betrachtung der zugrundeliegenden Infor-
mationen und deren Zuverlässigkeit ratsam (s. Abschnitt 8.2.3).
Es fällt darüber hinaus auf, dass die Indikatoren für syntaktische Ambiguität nicht

auf die semantischen Kategorien zurückgreifen. Dies lässt sich dadurch erklären,
dass sich syntaktische Ambiguität im gesamten Satz manifestiert und daher auch
nur eine Betrachtung auf Basis morpho-syntaktischer Charakteristika, losgelöst von



112 5 Konzeptentwicklung

semantischen Funktionen, ausreichend ist. Um die Nachvollziehbarkeit für Anwender
zu sichern, werden gefundene Indikatoren erläutert (vgl. Abbildung A.1 im Anhang).

5.4 Strategieindex

Der in Abbildung 5.4 dargestellte Strategieindex greift sowohl die Strategien als auch
die Indikatoren auf, indem jeder Strategie eine Indikatorkombination zugeordnet
wird. Diese Indikatorkombination dient daraufhin sowohl der Beschreibung einer
Strategie (Strategieumfang) als auch der Auswahl geeigneter Strategien hinsicht-
lich der Indikatorkombination einer gegebenen Anforderungsbeschreibung durch
den Selector. Dabei kann jede Kombination von Indikatoren derzeit nur einmal im
Strategieindex vorkommen (im Sinne eines einmaligen Schlüssels in relationalen
Datenbanken). Grundsätzlich ist es dabei aber denkbar, diese Limitation aufzuheben
und die Bezeichnung der Strategien (z. B.Basic Plus) oder eine fortlaufende Identifi-
kationsnummer als einmaliges Merkmal zu nutzen. Offen bleibt dann jedoch die Frage,
wie zwischen zwei Strategien zu entscheiden ist, die die gleiche Indikatorkombination
unterstützen. Denkbar wäre hier die Entscheidung für oder gegen eine Strategie auf
Grundlage der Endanwenderpräferenz hinsichtlich Präzision und Performanz.
Im Rahmen dieser Arbeit kann jede Indikatorkombination durch genau eine Stra-

tegie abgedeckt werden. Tabelle 5.8 stellt hierzu den initialen Strategieindex dar.

Strategie Indikatorkombination Sem. Kategorien Zusatzinformationen
Light – – –

Basic SYN+INC

Aktion
Komponente
Objekt
Rolle

Chunking

Basic Plus SYN+INC+WSD jegliche Chunking, WordNet
Default SYN+INC+WSD+REF jegliche Chunking, WordNet, POS
Fallback jegliche jegliche Chunking, WordNet, POS

Tabelle 5.8: Initialer Strategieindex

Die Basic-Strategie hat beispielsweise den eindeutigen Schlüssel SYN+INC und führt
somit die syntaktische Disambiguierung und die Unvollständigkeitskompensation
aus, sofern entsprechende Indikatoren vorliegen. Die Indikatoren wiederum ergeben
sich in diesem Beispiel aus vier semantischen Kategorien und unter Zuhilfenahme
des Chunkings. Es liegen hier keine Überschneidungen in den zugrundeliegenden
Informationen vor. Anders sieht dies bei der Default-Strategie aus. Hier werden
jegliche semantische Kategorien herangezogen, die von unterschiedlichen Indikato-
ren genutzt werden. Fehlerhafte Informationen können in dieser Strategie demnach
zu mehreren falschen Indikatoren führen. Darüber hinaus sind die semantischen
Kategorien allein nicht mehr ausreichend, sodass WordNet als Ressource zur Erken-
nung lexikalischer Ambiguität und ein Verfahren des POS-Taggings zur Erkennung
referentieller Ambiguität hinzugezogen werden muss.
Die Darstellung in Tabelle 5.8 dient dabei auch der Zusammenfassung bisheriger

Systembestandteile, bevor im Folgenden auf die Methoden eingegangen wird.



5.5 Geplantes Vorgehen und Methodik 113

5.5 Geplantes Vorgehen und Methodik

In diesem Abschnitt wird der Verarbeitungsprozess sequenziell geschildert. Auf diese
Weise können die Komponenten unabhängig von den Strategien erläutert werden, die
die Verarbeitungsreihenfolge bestimmen bzw. verändern können (s. Abschnitt 5.2).

Extraktion Disambiguierung KompensationPreprocessing

Komponente #1 Komponente #2 Komponente #3

Input Output

Endanwender

schreiben erhalten

Strukturierung

Komponente #4

Abbildung 5.14: Informationsverarbeitung (vereinfachte Darstellung)

Ausgangspunkt für die Informationsverarbeitung sind Anforderungsbeschreibun-
gen, die von Endanwendern (s.Abschnitt 1.1) formuliert und über eine Benutzer-
schnittstelle (s. Abschnitt 5.5.1) an das Softwaresystem (auch: System)85, CORDULA,
übermittelt werden (vgl. Abbildung 5.14). Aufgrund der gravierenden Unterschiede in
der Beschreibungsqualität werden die Anforderungsbeschreibungen zuerst einem Pre-
processing unterzogen (s. Abschnitt 5.5.2) und dann an die Anforderungsidentifikation
und -extraktion (Komponente#1) weitergeleitet.
Die Extraktion der Anforderungen umfasst in dieser Arbeit primär die binäre

Klassifikation von Anforderungen und nebensächlichen Aussagen im Fließtext. Die
Extraktion von FA, was die Klassifikation von FA und NFA voraussetzt, zielt vor al-
lem auf die Performanzsteigerung des Gesamtsystems ab. Dieser Schritt wird als erster
bei der Informationsverarbeitung umgesetzt (s. Abschnitt 5.5.3), da davon auszugehen
ist, dass eine Beschränkung auf relevante Aussagen zu einer erheblichen Verringerung
der Gesamtkomplexität führt. Darauf folgen die Komponenten#2und#3 zur Di-
sambiguierung und zur Kompensation der Unvollständigkeit, die in Abbildung 5.14
ebenfalls sequenziell dargestellt sind. Die Ergebnisse werden von Komponente#4
vor der finalen Ausgabe für den Endanwender strukturiert86. Abschließend erhalten
die Endanwender ihre kompensierte Anforderungsbeschreibung zur Ansicht zurück.

5.5.1 Design der Benutzerschnittstelle mit Eingabemaske

Um Endanwender zu befähigen, Anforderungsbeschreibungen möglichst einfach an das
Softwaresystem zu übermitteln, sind Benutzerschnittstellen erforderlich, die intuitiv
zu bedienen sind und somit keine bis sehr niedrige Nutzungsbarrieren aufweisen.
Bei der Benutzerschnittstelle (vgl. Abbildung 5.15), die standardmäßig vorgesehen

ist, handelt es sich um eine Webapplikation, die auf allen internetfähigen Endgeräten

85In dieser Arbeit wird der Begriff des
”
Softwaresystems“ anstelle von

”
Programm“ genutzt, da

ein Softwaresystem
”
[...] die Gesamtheit aller Softwarebausteine (Module), die sich in einem

ganzheitlichen Zusammenhang befinden [, abbildet]“ (Denert, 2013, S. 11) während ein Programm
mit einer

”
[...] einzelnen, kleinen Lösung assoziiert [wird]“ (Denert, 2013, S. 11).

86Strukturiertheit wird hier über syntaktische Muster erzeugt (s. Abschnitt 5.5.7).



114 5 Konzeptentwicklung

Abbildung 5.15: Benutzerschnittstelle von CORDULA (Frontend)

mittels Webbrowser genutzt werden kann. Alternative Benutzerschnittstellen, bei-
spielsweise Smartphone-Applikationen, sind denkbar (vgl. Abbildung 5.1), aber auf
Grund des responsiven Designs nicht zwingend erforderlich (s. Abschnitt 7.4.2.2).
Abbildung 5.15 stellt das zentrale Eingabeformular dar, welches den Endanwen-

dern zur Eingabe der Anforderungsbeschreibungen präsentiert wird. Grundsätzlich
wird lediglich ein Textfeld und ein weiteres Bedienelement zur Initialisierung der
Verarbeitung und Kompensation benötigt. Da keine Formatierung der Anforderungs-
beschreibungen vorgesehen ist, sind Menüpunkte wie

”
Fettdruck“ oder

”
Kursiv“,

wie sie klassische Textverarbeitungsapplikationen erwarten lassen, hier obsolet. Ent-
sprechend handelt es sich bei dem Input, der an das System über die dargestellte
Benutzerschnittstelle übergeben wird, um unformatierte Beschreibungen.

5.5.2 Textvorverarbeitung

Unter Textvorverarbeitung (auch:Preprocessing) wird die Durchführung diverser
Schritte zur Textoptimierung und -analyse, die in Abhängigkeit der zu erwarteten
Eigenschaften des Inputs zu konfigurieren sind, verstanden (s. Anhang C.1). Dabei
sind nicht alle existierenden Verfahren des Preprocessings (z. B.Chunking, HTML-
Stripping) zwangsläufig anzuwenden. Zur Diskussionen stehen dabei die neun folgend
aufgeführten Verfahren:



5.5 Geplantes Vorgehen und Methodik 115

(1) Normalisierung (6) Textbereinigung
(2) Sprachenidentifikation (7) Rechtschreibkorrektur
(3) Grammatikprüfung (8) Satzendeerkennung
(4) Tokenisierung (9) POS-Tagging
(5) Synonymerkennung

Die Anforderungsbeschreibungen, die an das Softwaresystem übergeben wer-
den, können beliebige Textzeichen enthalten, sehen jedoch keine Markups87 vor
(s. Abschnitt 5.5.1). Nichtsdestotrotz ist der Input von jeglichem Markup aus Gründen
der Systemsicherheit zu bereinigen (Bhargav und Kumar, 2010, S. 267 ff.). Der Input
ist demnach einer (1) Normalisierung, die ungültige Zeichen88 erkennt und ent-
fernt sowie einer (6) Textbereinigung (z. B.HTML-Stripping) zu unterziehen. Die
Textnormalisierung ist notwendig, da ungültige Zeichen zu Fehlern in den folgenden
Komponenten führen können. Verzichtet wird auf die Normalisierung von Groß- und
Kleinschreibung, da Großschreibung zum Beispiel als ein Indiz bei der Erkennung
von benannten Entitäten genutzt werden kann.

Die (7) Rechtschreibkorrektur und (3) Grammatikprüfung, deren Notwen-
digkeit sich aus den zu erwarteten Ungenauigkeiten in den Anforderungsbeschrei-
bungen ergibt (s. Abschnitt 1.4), folgt auf die Normalisierung. Da keine Benutzerin-
teraktion im Preprocessing vorgesehen ist, müssten Rechtschreibfehler automatisch
korrigiert werden. Diese automatische Korrektur ist bei Grammatikfehlern aufgrund
der Sprachkomplexität ohne Benutzerinteraktion nicht zuverlässig umzusetzen. Und
auch die automatische Rechtschreibkorrektur geht mit der Gefahr einher, mehr Fehler
zu erzeugen als zu eliminieren, da zum Beispiel Dateiendungen und Fachtermini in den
Anforderungsbeschreibungen fälschlicherweise korrigiert werden könnten. Dennoch
werden Rechtschreib- und Grammatikprüfung durchgeführt, da diese Erkenntnisse
zur Verbesserung der Folgekomponenten (z. B. lexikalische Disambiguierung) herange-
zogen werden können. Da keine weiteren Vorverarbeitungsschritte auf dem gesamten
Fließtext anzuwenden sind, kann aufbauend auf der Rechtschreibkorrektur und Gram-
matikprüfung die (8) Satzendeerkennung angewendet werden. Diese ist notwendig,
da einzelne Folgekomponenten die satzweise Eingabe der Anforderungsbeschreibung
erwarten, beispielsweise die Klassifikation nach On- und Off-Topic.
Als Folgekomponente der Satzendeerkennung ist die (2) Sprachenidentifikation

(s. Anhang C.1) zu diskutieren. Ihre Notwendigkeit ergibt sich aus sprachspezifi-
schen NLP-Komponenten wie der Disambiguierung oder der Kompensation von
Unvollständigkeit, die zwar in dieser Arbeit auf die englische Sprache angewendet
werden, grundsätzlich aber adaptierbar sind (s.Abschnitt 7.4.2). Handelt es sich
beim gesamten Text um eine nicht unterstützte Sprache, muss das System den
Verarbeitungsvorgang ergebnislos abbrechen.
Aus den eben genannten Komponenten ergibt sich die in Abbildung 5.16 dar-

gestellte Preprocessing pipeline. Wie ersichtlich wird, handelt es sich um einen
sequenziellen Vorgang. Die Ausgabe einer Komponente ist somit stets die Eingabe
der Folgekomponente. Eine strukturelle Änderung am Fließtext findet erst durch die
Satzendeerkennung statt. Das bedeutet, dass als Ausgabe dieser Vorverarbeitung

87Weder Hervorhebungen (z. B. Fettdruck) noch HTML-Auszeichnungen sind vorgesehen.
88Unter gültigen Zeichen werden in dieser Arbeit alle druckbaren Zeichen des ASCII verstanden.



116 5 Konzeptentwicklung

eine bestimmte Anzahl an Sätzen steht, die sich durch Textoptimierungsmaßnahmen
vom initialen Fließtext des Endanwenders unterscheiden können.

Normalisierung

Textbereinigung
Grammatik-/
Rechtschreib-

prüfung

Satzende-
erkennung

Sprachen-
identifikation

Abbildung 5.16: Ablauf des Preprocessings

Verzichtet wird an dieser Stelle der Arbeit auf die Tokenisierung, Synonymerkennung
und das POS-Tagging. Diese Entscheidung wird getroffen, da die Tokenisierung als
auch das POS-Tagging bereits feste Bestandteile der meisten NLP-Komponenten
sind. Das Erkennen von Synonymen beim Preprocessing wird ausgelassen, da dieser
Schritt in der lexikalischen Disambiguierung bereits integriert ist.

5.5.3 Anforderungsextraktion

Die Extraktionskomponente übernimmt zwei Aufgaben. Zum einen muss, aufgrund
der zu erwartenden niedrigen Textqualität der Anforderungsbeschreibungen, On-
Topic von Off-Topic getrennt werden. Zum anderen muss das Wesentliche auf se-
mantische Textelemente zur Beschreibung von FA89 (z. B.Rollen, Aktionen) herunter
gebrochen werden. Wie in Abschnitt 3.2 aufgezeigt wird, existieren nur wenige Arbei-
ten zur Anforderungsextraktion auf qualitativ stark variierenden Fließtexten. Eine
Ausnahme stellt das von Dollmann und Geierhos (2016) entwickelte Requirements
Extraction and Classification Tool (REaCT) dar, das beide genannten Aufgaben
erfüllt und in dieser Arbeit zur Anforderungsextraktion herangezogen wird. Es eignet
sich besonders zur Anwendung, da es einerseits UGC wie Anforderungsbeschreibun-
gen (s. Abschnitt 1.4) unterstützt, sich bei der Analyse sehr stark an der englischen
Grammatik orientiert und andererseits eine strukturierte Datenausgabe vorsieht.
Darüber hinaus wird es aktiv weiterentwickelt (Dollmann und Geierhos, 2016).
Abbildung 5.17 zeigt den Ablauf der Anforderungsextraktion. Dollmann und Gei-

erhos (2016) arbeiten dabei auf Satzebene90, sodass die durch das Preprocessing
erhaltenen Sätze direkt in die Klassifikationskomponente zur Anforderungsidentifika-
tion übergeben werden können. Dollmann (2016, S. 64) stellt eine Auswahl geeigne-
ter Klassifikatoren vor und nutzt schlussendlich für die On-Topic- und Off-Topic-
Klassifikation den ExtraTreeClassifier (Geurts et al., 2006), der eine Erweiterung der
Random-Forests-Methode darstellt, zusammen mit einer Feature-Kombination aus

89Auch: Semantische Kategorien.
90In dieser und den folgenden Abbildungen wird als Input ein XML-Dokument angezeigt, um

hervorzuheben, dass es sich nicht um Ursprungstexte handelt, sondern um vorverarbeitete Sätze.



5.5 Geplantes Vorgehen und Methodik 117

Anforderungs-
identifikation

Extraktion von
Textelementen

Klassifikations-
modell2

Klassifikations-
modell1

Abbildung 5.17: Anforderungsidentifikation und -extraktion

Bag-of-Words und Satzlänge. Das so entwickelte System erzielt einen F1-Score von
89% bei der Differenzierung von Anforderungen und nebensächlichen Sätzen. Handelt
es sich bei einem klassifizierten Satz um On-Topic und damit um Anforderungen,
wird die Extraktion von Attribut-Wert-Paaren vorgenommen, mit dem Ziel, das
zuvor definierte Template iterativ zu befüllen (vgl. Abbildung 5.18).

Abbildung 5.18: Template funktionaler Anforderungen.
Entnommen aus Dollmann (2016, S. 54)

Die wichtigsten Elemente des Templates sind die Komponente (Subjekt), die Aktion
(Prädikat) und das Objekt. Aktionen beschreiben, was eine Komponente leisten
soll und Objekte geben an, worauf sich die Aktionen beziehen. Komponenten sowie
Objekte können in den Anforderungsbeschreibungen weiter konkretisiert werden,
wofür die Felder Verfeinerung der Komponente und Verfeinerung des Objektes vorge-
sehen sind (vgl. Abbildung 5.18). Darüber hinaus können Vor- und Nachbedingungen
(z. B. Zeitrestriktionen) existieren, die für die Ausführung von Aktionen gelten sollen
und die im Template als Bedingungen angegeben sind (Dollmann und Geierhos,
2016). Die in den Abschnitten 5.2 und 5.3 vorgestellten Strategien und Indikatoren
greifen auf die abgebildeten semantischen Kategorien zurück. Ein Überblick dazu
findet sich in Tabelle 5.7.



118 5 Konzeptentwicklung

5.5.4 Disambiguierung

Wie in Abschnitt 2.1 dargestellt, handelt es sich bei Ambiguität um ein facettenreiches
Phänomen in der Anforderungsbeschreibung, für das keine Allzwecklösung existiert.
Beispielsweise hat lexikalische Ambiguität einen anderen Ursprung als syntaktische
Ambiguität und muss daher auf eine andere Weise erkannt und kompensiert werden.
Um dieser Herausforderung flexibel zu begegnen, ist es erforderlich die Disambi-
guierungskomponente modular aufzubauen, um auf den jeweiligen Ambiguitätstyp
reagieren zu können.

5.5.4.1 Lexikalische Disambiguierung

Verfahren der lexikalischen Disambiguierung sind in Abschnitt 3.3.1 aufgeführt. In die-
ser Arbeit wird Babelfy zur lexikalischen Disambiguierung herangezogen (Moro et al.,
2014a; Moro et al., 2014b). Babelfy kann unter Hinzunahme der Ressource BabelNet
(s. Abschnitt 3.3.1.1) auf eine Vielzahl weiterer Ressourcen (z. B.Wikipedia, Word-
Net) zur Disambiguierung zurückgreifen und entsprechende Annotationen vornehmen
(s. Abschnitt 3.3.1.1). Hierbei werden Komposita und Eigennamen unterstützt (vgl.
Abbildung A.3 im Anhang), was zur hohen Erkennungsqualität beiträgt.

Abgleich

Blacklist

Abgleich

Whitelist

Disambiguierung Entity Linking

Babelfy

Abbildung 5.19: Funktionsweise der lexikalischen Disambiguierung

Der Ablauf der lexikalischen Disambiguierung und Annotation ist in Abbildung 5.19
dargestellt. Da diese auf Basis von Token durchgeführt werden soll, ist eine Tokeni-
sierung und ein POS-Tagging erforderlich. Einzelne Token können im Folgenden der
Disambiguierung unterzogen werden, wobei nur die Token disambiguiert werden, die
nicht auf der Stoppwortliste stehen und die zuvor von der Anforderungsextraktion
als relevant erkannt wurden. Die Stoppwortliste (Blacklist) enthält Lexeme in ihrer
Grundform, die nicht bedeutungstragend sind (z. B. Funktionswörter). Ziel dieser
Einschränkung ist das Erreichen einer höheren Verarbeitungsgeschwindigkeit, da eine
Disambiguierung nur bei bedeutungstragenden Token erforderlich ist. Die gleiche
Intention gilt bei der Whitelist, die Lexemen aufgrund des Vorkommens in einer
spezifischen Domäne (Domänenkorpus) eine zuvor definierte Lesart zuweist. Die
Endanwender können sich das Ergebnis der lexikalischen Disambiguierung in der



5.5 Geplantes Vorgehen und Methodik 119

Benutzerschnittstelle ausgeben lassen. Abbildung 5.20 zeigt dies exemplarisch für
den Begriff

”
application“.

Abbildung 5.20: Lexikalische Disambiguierung (Frontend)

Ein korrigiertes POS-Tag in der Anforderungsextraktion zeigt beispielhaft Abbil-
dung A.4 im Anhang. Neben reinen Hervorhebungen sind Regeln notwendig, die
flexibel auf folgende Ergebnisse der lexikalischen Disambiguierung reagieren können:

• Disambiguierung nach domänenspezifischen Kategorien
Das Token

”
Arbeitskollegen“ (

”
colleagues“) kann bei minimaler Kontextinfor-

mation auch zu
”
Woollahra Colleagues Rugby Football Club“ mit der Kategorie

”
Rugby union teams in Sydney“91 als Lesart führen. Hier sind Regeln zur
Fehlerbehebung auf Kategorienebene erforderlich.

• Umgang mit falschen POS-Tags
Durch falsche POS-Tags kann eine falsche Disambiguierung erfolgen. So kann
aus

”
[...] in order to [...]

”
eine Order92 werden. Hier kann durch eine Reihe

vordefinierter Regeln eine falsche POS-Zuweisung aufgedeckt und korrigiert
werden. Daraufhin muss die Disambiguierung erneut ausgeführt werden.

Auf die lexikalische Disambiguierung folgt die syntaktische Disambiguierung, die
ebenfalls auf Satzbasis arbeitet.

91Siehe weiterführend: http://babelnet.org/synset?word=bn:14854243n (Stand: 11.01.17).
92

”
[...] a command given by a superior that must be obeyed“. Siehe weiterführend: http://babelnet.
org/synset?word=bn:00059303n (Stand: 11.01.17).



120 5 Konzeptentwicklung

5.5.4.2 Syntaktische Disambiguierung

Wie in Abschnitt 3.3.1 dargestellt, umfasst die Satzanalyse die
”
Beschreibung des syn-

taktischen Baus von Sätzen durch Ermittlung elementarer Grundeinheiten wie Mor-
phem, Wort, Satzglied und ihre Beziehung untereinander“ (Bußmann, 1983, S. 445).
In dieser Arbeit wird dazu das parse-Modul verwendet, das Bestandteil vom Stanford
CoreNLP ist. Hierbei handelt es sich um einen probabilistischen NL-Parser, der eine
vollständige syntaktische Analyse (sowohl auf Basis von Konstituenten- als auch
Dependenzgrammatiken) unterstützt (Manning et al., 2014, S. 4). Diese syntaktischen
Informationen sind an mehreren Stellen dieser Arbeit von Bedeutung: So wird neben
der Erkennung von Koordinations- und Anbindungsambiguität (s. Abschnitt 2.1.2)
beispielsweise das Ergebnis des SRL im Rahmen der Unvollständigkeitskompensation
verbessert (s. Abschnitt 5.2.2) oder semantische Informationen der Anforderungs-
extraktion korrigiert (vgl. Abbildung A.2 im Anhang). Darüber hinaus wird auf
Grundlage der syntaktischen Informationen die Satzvereinfachung durchgeführt.
Abbildung 5.21 zeigt einen beispielhaften Dependenzbaum für den Satz

”
I want to

send emails to my colleagues“ in Anlehnung an Beispiel 2.3.1. Hervorgehoben ist das
Prädikat

”
send“ sowie zugehörige Argumente. Wie zu erkennen ist, ermöglicht die

Dependenzgrammatik die Darstellung der Abhängigkeit zwischen zwei Wörtern.

PRP VBP TO VB NNS TO PRP$ NNS

I want to send emails to my colleagues

root

nsubj

xcomp

mark dobj

nmod

case

nmod:poss

Abbildung 5.21: Beispielhafter Dependenzbaum (Stanford CoreNLP)

Nach Mehl et al. (1998) ist die
”
PP-Zuordnung [...] ein typisch computerlinguistisches

Problem, weil zu seiner Lösung komplexes semantisches Wissen erforderlich ist,
das in keinem sprachverarbeitenden System zur Verfügung steht“ (Mehl et al.,
1998, S. 2). Bei den analysierten Parsebäumen handelt es sich demnach um die
syntaktisch wahrscheinlichsten Bäume – generiert auf Grundlage von Trainingsdaten
und nicht auf Grundlage von Weltwissen (vgl. Abschnitt 3.3.1.1). Nichtsdestotrotz
kann der Herausforderung der PP-Anbindungsambiguität mittels dieser Form
der Disambiguierung begegnet werden. In Abbildung 5.22 ist hierzu ein beispielhafter
Parsebaum zu sehen. Grundsätzlich kann die Präpositionalphrase in diesem Fall
sowohl als Konstituente der NP mit dem Kopf

”
accounts“ analysiert werden als auch

als Konstituente der VP. Die Anbindung erfolgt hier an der VP. Hier sei erneut darauf
hingewiesen, dass die Ergebnisse probabilistischer Parser nicht zwangsläufig korrekt
sind (d. h. Sonderfälle existieren). Beispielhaft ist dies in Abbildung 5.23 ersichtlich,
wo fälschlicherweise eine PP erkannt wurde. Diese Zuordnung könnte im genannten
Fall – wenn auch spekulativ – auf die Cardinal Number (CD) zurückzuführen sein,
die den Parser irritieren könnte. Wird statt

”
one click“ zum Beispiel

”
a click“

angegeben, findet die Zuordnung korrekt statt.



5.5 Geplantes Vorgehen und Methodik 121

[...]

VP

VP

PP

NP

NN

click

CD

one

IN

with

NP

NNS

accounts

VB

manage

TO

to

”
I want to manage accounts with one click.“

Abbildung 5.22: Beispielhafter Parsebaum (Stanford CoreNLP)

ROOT

S

VP

PP

NP

NN

click

CD

one

IN

with

NP

NN

image

DT

the

VBZ

sends

NP

NN

software

DT

the

”
The software sends the image with one click.“

Abbildung 5.23: Fehlerhafter Parsebaum (Stanford CoreNLP)

Neben der PP-Anbindungsambiguität wird im gleichen Verarbeitungsschritt po-
tentielle Koordinationsambiguität untersucht. Werden Indikatoren für Koordi-
nationsambiguität innerhalb einer Anforderungsbeschreibung erkannt, gilt es, die
wahrscheinlichste Lesart zu identifizieren und zu speichern. Wird beispielsweise
der Satz

”
I want to send large files and pictures“ herangezogen, ist ohne Weiteres

domänenspezifisches Wissen nicht zuverlässig zu disambiguieren, ob
”
large“ nur

”
files“ oder auch

”
pictures“ modifiziert. Die parse-Methode gibt den Dependenz-

baum in Abbildung 5.24 aus. Auch diese Disambiguierung entscheidet sich dabei
für die wahrscheinlichste Lesart, was im Rahmen dieser Arbeit hinreichend ist. Zu



122 5 Konzeptentwicklung

diesem Zeitpunkt ist wichtig, dass die Entscheidung getroffen wurde, welche Lesart
weitergegeben wird.

PRP VBP TO VB JJ NNS CC NNS

I want to send large files and pictures

root

ccamod

conj

Abbildung 5.24: Koordinationsambiguität im Dependenzbaum

Als Unterthema der syntaktischen Disambiguierung wird in dieser Arbeit die Satz-
vereinfachung betrachtet. Ziel ist es, die Weiterverarbeitung komplexer Sätze zu
erleichtern, indem diese in einfache Sätze übertragen werden93, ohne die Aussage
des ursprünglichen Satzes zu schädigen. Abbildung 5.25 zeigt diesbezüglich eine
beispielhafte Hauptsatzreihe als Parsebaum, deren Hauptsätze S1 und S2 durch die
Konjunktion

”
and“ verbunden und syntaktisch gleichwertig sind (Kürschner, 2008,

S. 206). Gleichwertig bedeutet hier, dass die Sätze auch allein stehen könnten.
In diesem Beispiel ist eine Unterteilung der Hauptsatzreihe an der Konjunktion

ausreichend, um zwei einfache Sätze zu erhalten. Wie bereits angedeutet, ist darauf
zu achten, dass die Aussage des Satzes dabei nicht geschädigt wird. So stellt die
Konjunktion nicht nur die syntaktische Verbindung zwischen den Sätzen her, sondern
gibt auch die logische Beziehungen zwischen den Aussagen an. Konkret bedeutet das,
dass beide genannten Anforderungen vom Endanwender gewünscht werden – anders
als bei der Konjunktion mittels

”
oder“.

5.5.4.3 Referentielle Disambiguierung

Natürlichsprachliche Texte enthalten eine erhebliche Anzahl an Diskursreferenten und
Referenzausdrücken (Bußmann, 1983, S. 32), die in der maschinellen Verarbeitung
aufgelöst werden müssen. In dieser Arbeit wird die dcoref -Methode aus Stanford
CoreNLP herangezogen, die zum einen eine sehr gute Performanz aufweist und zum
anderen konfigurierbar und damit in einem gewissen Maße an die Softwaredomäne
anpassbar ist. Darüber hinaus sind alle Ressourcen frei zugänglich.
Anders als beispielsweise bei der lexikalischen Disambiguierung findet keine Me-

thodenanwendung auf Satzebene statt. Vielmehr wird aufgrund der Tatsache, dass
Referenzen satzübergreifend auftreten, die vollständige Anforderungsbeschreibung
auf Referenten und Referenzausdrücke untersucht, wenngleich auch festgehalten wird,
in welchem Satz und an welcher Token-Position die jeweiligen Ausdrücke auftreten.
Abbildung 5.26 zeigt den Ablauf innerhalb der Komponente: Nach Anwendung

der dcoref -Methode werden mittels eines eigenen Verfahrens weitere potentielle
Referenzausdrücke gesucht. Dies ermöglicht es, festzustellen, welche Kandidaten für
Referenzausdrücke noch existieren und gegebenenfalls in bestehenden Koreferenz-
ketten aber auch in der Disambiguierung zu berücksichtigen sind. Diese können
demnach beispielsweise hinzugenommen werden, um festzustellen, ob Ambiguität

93Mehr Informationen zu einfachen und komplexen Sätzen gibt Kürschner (2008, S. 206 ff.).



5.5 Geplantes Vorgehen und Methodik 123

ROOT

S2

VP

S

VP

VP

NP

NNS

files

VB

attach

TO

to

VBP

want

NP

PRP

I

CC

and

S1

VP

S

VP

VP

NP

NNS

emails

VB

send

TO

to

VBP

want

NP

PRP

I

”
I want to send emails and I want to attach files.“

Abbildung 5.25: Parsebaum mit möglicher Satzvereinfachung

Koreferenz-
auflösung

Erweiterte
Ausdruckssuche

Regelbasierte
Zuordnung

Liste von Refe-
renzausdrücken

dcoref

Abbildung 5.26: Auflösung von Koreferenzen

vorliegt, die gegebenenfalls zu einer falschen Koreferenzauflösung geführt hat. Ein
weiteres Beispiel sind domänenspezifische Ausdrücke (z. B.

”
User“) die in bestehende

Koreferenzketten (z. B.
”
I“,

”
my“) aufgenommen werden können (vgl. Abbildung A.5

im Anhang). Abbildung 5.27 stellt exemplarisch zwei Koreferenzketten, unter An-
gabe der gefundenen Ausdrücke (z. B.

”
my“) und ihrer Distanz im Text, dar. Es

fällt auf, dass bei (A) zwei weitere Kandidaten existieren (grau hervorgehoben).
Diese sind aber nicht domänenspezifisch und können sehr zuverlässig von dcoref als
Kandidaten ausgeschlossen werden. Anders sieht dies bei (B) aus, wo die Sätze

”
The

emails contain many files. I want to send them.“ in Anlehnung an Beispiel 2.1.7 der
Disambiguierung zu Grunde liegen. In diesem Fall liegt referentielle Ambiguität vor,



124 5 Konzeptentwicklung

da
”
them“ sich sowohl auf

”
emails“ als auch auf

”
files“ beziehen kann. Zwar sind

die meisten Verfahren mit Heuristiken und Regeln zur Lösung dieser Ambiguitäten
ausgestattet, eine Betrachtung des Kontextes und zusätzliches Hintergrundwissen
(insb. Hinzunahme semantischer Kategorien) können aber zur gegebenenfalls notwen-
digen Korrektur hinzugezogen werden. In diesem Fall könnte die Entscheidung, dass
sich

”
them“ auf

”
emails“ bezieht zum Beispiel dadurch bestätigt werden, dass in

einem Satz zuvor (nicht abgebildet)
”
emails“ so wie auch

”
them“ in der semantischen

Kategorie des Objekts genannt wurde.

I

my

my

I

his

you

2

15

4

(A)

emails

them
files

3

0

(B)

Abbildung 5.27: Koreferenzketten und Kandidaten

5.5.5 Kompensation von Unvollständigkeit

Unvollständigkeit beschreibt in dieser Arbeit die fehlende Instantiierung obliga-
torischer Leerstellen von Prädikaten (s.Abschnitt 2.3). Obligatorisch und damit
kompensationsbedürftig ist eine Instantiierung, wenn sie zur Beschreibung einer
FA wesentlichen Beitrag leistet (Bäumer und Geierhos, 2016). Um herauszufinden,
wie die Argumentenstruktur einzelner Prädikate zur Beschreibung von Software-
funktionalitäten genutzt wird, wird ein PAS-Korpus benötigt, das eine Vielzahl
akquirierter Anforderungsbeschreibungen enthält, die hinsichtlich ihrer Prädikat-
Argument-Struktur annotiert sind. Auf dieser Datenbasis wird ermittelt, welche
prädikatspezifischen Argumente vorwiegend angegeben werden. Leerstellen, die selten
instantiiert werden, werden als optional markiert und im Rahmen der Kompensati-
on ignoriert. Weiterhin lässt sich feststellen, welche Instanzen (z. B.

”
E-Mail“) und

Arten von Instanzen (z. B.
”
schriftliche Kommunikationsmittel“) mehrheitlich der

Beschreibung dienen. Diese Angaben werden daraufhin genutzt, um Leerstellen zu
instantiieren. Allerdings ist sicherzustellen, dass sich das kompensierte Argument
auch bestmöglich in den Kontext der ursprünglichen Prädikatverwendung einbettet.
Dies bedeutet, dass im Rahmen der Kompensation nicht nur das spezifische Prädikat,
sondern auch der Kontext berücksichtigt werden muss (vgl. Abbildung 5.28).
Das Konzept zur Kompensation von Unvollständigkeit lässt sich in Erkennung und

Kompensation unterteilen (Bäumer und Geierhos, 2016). Zu Beginn werden in der
Erkennung die bereits vorverarbeiteten Anforderungsbeschreibungen geladen. Dies
ist notwendig, da die Analyse der PAS auf Satzbasis erfolgt und dazu zuerst eine



5.5 Geplantes Vorgehen und Methodik 125

Abbildung 5.28: Prädikatbasierte Kompensation.
Entnommen aus Geierhos und Bäumer (2016, S. 40)

Satzendeerkennung durchgeführt werden muss. Darauf folgend wird die Erkennung
von Prädikaten und deren Argumenten mittels SRL gestartet. Sobald ein Prädikat
erkannt wird, wird geprüft (sofern es nicht auf der Blacklist steht), ob und welche
Argumente vorliegen. Die Hinzunahme eines PAS-Korpus gibt Auskunft über die
Argumentenstruktur der Prädikate und eignet sich zum Abgleich mit den durch SRL
erkannten Argumenten. Wird festgestellt, dass eine Leerstelle nicht instantiiert ist,
wird überprüft, ob es sich um ein obligatorisches Argument handelt und die Leerstelle
somit zu füllen ist. Diese Prüfung geschieht auf Grundlage des in Abschnitt 6.2
erstellten PAS-Korpus für Anforderungsbeschreibungen. Liegt ein obligatorisches
Argument vor, wird die Kompensation gestartet.

Semantic
Role Labeling Korpusabgleich Kompensation

IR-Index /
BeschreibungenPAS-Korpus

Prädikat-
datenbank

Abbildung 5.29: Erkennung und Kompensation von Unvollständigkeit

Die Kompensation nimmt unvollständige Prädikate entgegen und durchsucht das
PAS-Korpus nach ähnlichen Anforderungsbeschreibungen. Die Ähnlichkeit ergibt sich
sowohl aus der Ähnlichkeit der gesamten Anforderungsbeschreibung (Kontext) als
auch aus der Ähnlichkeit der Sätze, in denen das Prädikat vorkommt, im Vergleich zu
den Beschreibungen im Korpus. Dabei wird das Suchergebnis weiter eingeschränkt,
sodass nur Anforderungsbeschreibungen zurückgegeben werden, die neben dem
spezifischen Prädikat auch eine entsprechende Instanz für die betroffene Leerstelle
aufweisen. Wird eine Instanz zum Prädikat mit einem ähnlichen Gesamtkontext



126 5 Konzeptentwicklung

gefunden, wird es zusammen mit dem Prädikat und dem Satz, in dem es vorkommt,
ausgegeben. An dieser Stelle sind zwei weitere Situationen denkbar:

• Mehrere potentielle Instanzen für eine Leerstelle
Es können mehrere Instanzen vorgeschlagen werden, die hinsichtlich der
Ähnlichkeit als gleichrangig zu betrachten sind. In diesem Fall wird die erste
Instanz gewählt.

• Keine potentiellen Instanzen
Es können gar keine ähnlichen Anforderungsbeschreibungen gefunden werden,
womit auch keine Instanzen zurückgegeben werden können.

Darüber hinaus ist die zeitliche Gültigkeit der Datenbasis zu bedenken
(s.Abschnitt 7.4.2.4). Da Sprache einem natürlichen Wandel unterliegt, ist mit
neuen Wörtern bzw. einer neuen Verwendung von etablierten Wörtern zu rechnen.
Die Datenbasis, die ab dem Zeitpunkt der Akquise als starr anzusehen ist, verliert
somit in Teilen die Anwendbarkeit. Beispielhaft kann dies am Prädikat

”
like“

dargestellt werden, welches vor dem Siegeszug der sozialen Medien überwiegend
im Sinne von

”
etwas mögen“ verstanden wurde und nun, beispielsweise im Duden,

als
”
im Internet eine Schaltfläche anklicken, um eine positive Bewertung abzu-

geben“ (Dudenredaktion, 2016, S. 1132) geführt wird. Es ist daher erforderlich,
Prädikatdatenbanken erweitern zu können und die Datenbasis insgesamt gegen eine
aktualisierte Version austauschen zu können.

5.5.6 Erkennung von Vagheit

Vagheit als Form von Ungenauigkeit ist ein hochgradig relevantes Thema im RE
(s. Abschnitt 2.2), wenngleich auch nicht primärer Gegenstand dieser Arbeit. Nichts-
destotrotz wird die Erkennung von Vagheit in dieser Arbeit durchgeführt, was vor
allem der methodischen Abdeckung dient. Hierzu werden zwei von Geierhos und
Bäumer (2017) beschriebene Testverfahren herangezogen: Der

”
Intensifier test“ und

der
”
Gradability test“. Beide Verfahren greifen auf linguistische Merkmale in An-

forderungsbeschreibungen zurück, um vage Lexeme zu erkennen und in Teilen zu
kompensieren. Letzteres ist nicht Teil dieser Arbeit, daher ist an dieser Stelle auf
Geierhos und Bäumer (2017) zu verweisen.
Der Intensifier test basiert darauf, Ausdrücke mit intensivierender Funktion

(Hoffmann, 2009, S. 397) in Anforderungsbeschreibungen als Hinweis auf Vagheit zu
erkennen (z. B.

”
very“ in

”
very large emails“). Intensitätspartikel werden genutzt, um

die
”
von einem Adjektiv oder Adverb ausgedrückte Charakterisierung intensivierend-

steigernd oder abschwächend-abstufend [zu] modifizieren“ (Breindl und Donalies,
2012). Der zentrale Vertreter dieser Intensitätspartikel ist dabei

”
sehr“ (engl. very),

weitere sind
”
ausgesprochen“,

”
beileibe“ und

”
überaus“ (Hoffmann, 2009, S. 397).

Eine Auflistung von Intensitätspartikeln sowie eine differenziertere Betrachtung
findet sich bei Hoffmann (2009, S. 397 ff.). Geierhos und Bäumer (2017) nutzen zur
Erkennung von Vagheit den Intensitätspartikel

”
very“, der nur eine einzige Bedeutung

hat (demnach nicht ambig ist) und sowohl Adjektive als auch Adverben modifizieren
kann. In dieser Arbeit wird zur Erkennung der folgende reguläre Ausdruck aus
Geierhos und Bäumer (2017) herangezogen:

”
\s(very\s[a-z].*?)\s“



5.5 Geplantes Vorgehen und Methodik 127

Darüber hinaus wird der Gradability test herangezogen. Hierbei wird der bereits
in Abschnitt 2.2 angeführte Umstand ausgenutzt, dass die meisten Adjektive vage
sind. Adjektive, die zuvor mittels POS-Tagging annotiert wurden, werden einem
Lexikonabgleich (engl. dictionary look-up) unterzogen, um steigerbare Adjektive unter
den erkannten Adjektiven zu identifizieren. In Anlehnung an Geierhos und Bäumer
(2017) wird dabei eine modifizierte Variante des DELA-Lexikons herangezogen94.

Intensifier test Gradability test

DELARegEx

Abbildung 5.30: Erkennung von vagen Ausdrücken

Abbildung 5.30 zeigt die sequenzielle Anwendung beider Tests in einem Verarbei-
tungsschritt. Grundsätzlich sind dabei die dargestellten Ressourcen austauschbar
bzw. erweiterbar. In der jetzigen Form können die beiden Tests auch in Kombination
nur einen Hinweis auf Vagheit in Anforderungsbeschreibungen geben und sind ein
erster Schritt in Richtung Vagheitsauflösung, aber von der finalen Lösung noch weit
entfernt. Nichtsdestotrotz können diese Tests zum einen die Aufmerksamkeit der
Endanwender auf mögliche Fehlerquellen lenken. Zum anderen werden potentiell
vage Ausdrücke als solche für die weitere maschinelle Verarbeitung markiert.

5.5.7 Definition der Ausgabeformate

Der Output wird unterteilt in eine Ausgabe, die sich an die Endanwender richtet und
somit für alle lesbar und verständlich ist. Daneben gibt es eine weitere Version, die
der maschinellen Weiterverarbeitung dient (s. Abschnitt 4.1).

5.5.7.1 Ausgabe an der Benutzerschnittstelle

Die Ausgabe an der Benutzerschnittstelle muss mehrere Bedürfnisse der Endanwender
für eine bessere Transparenz der angewandten Verarbeitungs- und Kompensations-
schritte befriedigen. So müssen beispielsweise sowohl das Ergebnis als solches als
auch Erläuterungen zu den Ergebnissen für Endanwender abrufbar sein. Die Ausgabe
kann daher in drei Kategorien unterteilt werden:

• Ergebnis

• Erläuterungen zur Verarbeitung und Kompensation

• Verarbeitungs- und Kompensationsprotokoll

94Modifiziert bedeutet hier, dass DELA auf steigerbare Adjektive reduziert wurde.



128 5 Konzeptentwicklung

Das Ergebnis, wie in Abbildung 5.31 exemplarisch zu sehen, umfasst eine Ausgabe
erkannter FA, dargestellt in kontrollierter Sprache (s. Abschnitt 1.3.1) sowie Angaben
zu ausgewählten Verarbeitungs- und Kompensationsschritten (z. B. deutet das Symbol
der Schere auf die durchgeführte Satzvereinfachung hin).

Abbildung 5.31: Ergebnisausgabe (Frontend)

Bei der Ausgabe in kontrollierter Sprache, die primär eine Übersicht für die Endan-
wender darstellt und die Frage beantworten soll, ob alle funktionalen Anforderungen
vom System erkannt wurden, werden zwei Perspektiven unterstützt: DieNutzersicht
(z. B.User, Administrator etc.) und die Systemsicht (z. B.Anwendung, System). Die
kontrollierte Syntax für die Nutzersicht ist zum Beispiel als

”
As <role>, <pronoun>

<priority> <action> <object>“ definiert und orientiert sich an dem Template von
Dollmann (2016, S. 53 f.), dargestellt in Abbildung 5.18.

Beispiel 5.5.1 (Ausgaben in kontrollierter Sprache)
Eingabe:

”
An administrator should be able to send and receive emails.“

→
”
As an administratorR, I should be ableP to sendA emailsO.“

→
”
As an administratorR, I should be ableP to recieveA emailsO.“

Beispiel 5.5.1 zeigt hierfür sowohl die Eingabe in das System als auch die kontrollierte
Ausgabe. Es fällt auf, dass die Rolle des Anwenders (

”
administrator“) sowie die

erwarteten Funktionen (
”
send“,

”
receive“) mitsamt Objekt (

”
emails“) übernommen

wurden. Da in der kontrollierten Sprache nur eine Aktion pro Satz vorkommen
darf, erstellt das System zwei kontrollierte Anforderungen aus der Eingabe. Der
Grad der Normalisierung kann dabei frei bestimmt werden. In diesem Fall wird
die Ausgabe lediglich durch das Pronomen

”
I“ ergänzt. Eine Normalisierung der

Priorität (z. B. limitiert auf
”
want“,

”
must“) wäre denkbar.



5.5 Geplantes Vorgehen und Methodik 129

Über das Ergebnis hinaus sind Erläuterungen zur Verarbeitung und Kom-
pensation notwendig, die es den Endanwendern ermöglichen, die zuvor gesichteten
Resultate besser zu verstehen. Ziel ist es, Ergebnisse einzelner Verarbeitungs- und
Kompensationsschritte darzustellen. So ist es möglich, Fehler, die sich durch einzelne
Schritte ergeben und das Resultat negativ beeinflussen, zu identifizieren (z. B. nicht
erkannte Prädikate oder Argumente). Dargestellt werden folgende Informationen:

• Klassifikation von On- und Off-Topic

• Erkannte Sprachen

• Erkannte FA und ihre entsprechenden semantischen Informationen

• Ambige Lexeme und gewählte Lesart

• Ambige Satzstrukturen und gewählte Lesart

• Erkannte Koreferenzketten

• Unvollständige Prädikate mit komplettierten Argumenten

• Potentiell vage Ausdrücke

Diese Darstellung ermöglicht es Endanwendern, in kurzer Zeit einen Überblick über
die angewandten Verarbeitungs- und Kompensationsschritte zu erhalten. Es ist dem
Endanwender aber bisher, mangels einer strukturierten Gegenüberstellung, nicht
möglich, einen Vergleich zwischen zwei Ergebnissen zu ziehen. Darüber hinaus wird
explizit auf Debugging-Informationen sowie Zwischenergebnisse einzelner Schritte
verzichtet. Solche sehr technischen Informationen finden sich im Verarbeitungs-
und Kompensationsprotokoll. Dieses Protokoll stellt eine Ergänzung zu Ausga-
ben der Benutzerschnittstelle dar. Ziel ist es, Strategiewahl und -anwendung sowie
die einzelnen Kompensationsschritte zu protokollieren, um zum einen die Nachvoll-
ziehbarkeit der angewendeten Methoden zu erhöhen und zum anderen den Vergleich
zwischen Kompensationsergebnissen zu ermöglichen. Letzteres ist dem modularen
Aufbau der Informationsverarbeitung geschuldet, der einen einfachen Austausch von
Komponenten vorsieht und unweigerlich zu der Frage führt, welche Veränderungen
im Gesamtergebnis sowie in den Ergebnissen der einzelnen Komponenten durch eine
veränderte Strategie bewirkt worden sind. Das Protokoll umfasst neben den bereits
zuvor aufgeführten Resultaten:

• Merkmale der Strategiewahl

• Gewählte Strategie(n)

• Zwischenergebnisse einzelner Verarbeitungs- und Kompensationsschritte

• Einzelentscheidungen regelbasierter Verfahren (z. B.Vagheitserkennung)

• Fehlerprotokolle



130 5 Konzeptentwicklung

Allerdings eignet sich das Verarbeitungs- und Kompensationsprotokoll nicht für die
maschinelle Weiterverarbeitung, da es zwar einzelne Verarbeitungsschritte protokol-
liert, aber nicht sämtliche Ergebnisse enthält und auch nicht in einem maschinenles-
baren Dateiformat vorliegt95.

5.5.7.2 Maschinenlesbare Ausgabe

Grundsätzlich ist bei der maschinellen Ausgabe zuerst an die strukturierte Ausgabe
der Verarbeitungs- und Kompensationsergebnisse zu denken. Doch darüber hinaus
existieren noch zwei weitere denkbare Fälle der strukturierten Ausgabe:

• Zeitanalyse aller Komponenten (s. Abschnitt 7.3.2.5)

• Serialisierung der Zwischenergebnisse (s. Abschnitt 7.3.3.1)

Grundlage der maschinenlesbaren Ergebnisausgabe bildet die Anforderungsextrak-
tion. Um die Weiterverarbeitung durch Drittanwendungen zu ermöglichen, wird
die ursprüngliche Anforderungsbeschreibung, ergänzt um die extrahierten Anforde-
rungen und Kompensationergebnisse, im XML-Format96 ausgegeben. Ein Auszug
einer solchen Ausgabe ist in Beispiel 5.5.2 abgebildet, während weitere Details der
Umsetzung in der Implementierung zu finden sind (s. Abschnitt 7.3.2.5).

Beispiel 5.5.2 (Strukturierte Ausgabe, Auszug)

<description id=
”
1“ timestamp=

”
2017-02-18 15:30:29.461“>

<original>I want to send large emails.</original>
<coreference/>
<sentences>
<sentence lang=

”
en“ ontopic=

”
true“ sid=

”
1“/>

<wsd>
<token BabelNetURL=

”
http://babelnet.org/rdf/s00093485v“ .../>

<token BabelNetURL=
”
http://babelnet.org/rdf/s00029345n“ .../>

</wsd>
<vagueness>
<token POS=

”
ADJ“ TokenOffset=

”
5“ rule RuleID=

”
2“/>

</vagueness>
<srl>
<pred ArgIst=

”
0“ ArgIstTotal=

”
2“ ArgSoll=

”
5“ Sense=

”
want.01“/>

[...]
</description>

95Maschinenlesbarkeit bezeichnet hier insb. ein strukturiertes Dateiformat, welches ein automati-
siertes Parsing ermöglicht. XML gilt hier als Standard (Hammer und Bensmann, 2011, S. 113).

96Im Gegensatz zur datenorientierten JavaScript Object Notation (JSON), das eine bessere Lesbar-
keit durch Menschen und Maschinen sowie eine kleinere Dateigröße verspricht (Crockford, 2006),
können mit XML natürlichsprachliche Texte in semi-strukturierte Dokumente übertragen werden
(Mehler und Lobin, 2004, S. 3 f.). Die Möglichkeit, mit XML Inline-Annotationen vornehmen zu
können, ist wesentlicher Bestandteil der automatischen Textverarbeitung.



5.5 Geplantes Vorgehen und Methodik 131

Die Zeitanalyse dient insbesondere der Evaluation des Gesamtsystems. Zum Beispiel
lassen sich somit Komponenten identifizieren, die eine überdurchschnittlich lange
Verarbeitungszeit aufweisen. Um eine ausführliche Analyse zu ermöglichen, sind
dabei nicht nur die Gesamtausführungszeiten der Komponenten anzugeben, sondern
die Ausführungszeiten der einzelnen Verarbeitungsschritte sowie der Strategien und
Indikatoren. Zusätzlich ist die in Anspruch genommene Zeit der Komponenteninitia-
lisierung abzubilden (s. Abschnitt 7.3.2.5).

5.5.8 Analyse möglicher Verarbeitungsfehler

Die zu erwartenden Ergebnisse werden insbesondere von zwei Gegebenheiten beein-
flusst: Zum einen wird von qualitativ stark schwankenden Anforderungsbeschreibun-
gen ausgegangen, welche die Ergebnisse aller Komponenten maßgeblich beeinflussen.
Zum anderen handelt es sich um ein Konzept, das auf einer Vielzahl heterogener
Verfahren beruht und diese kombiniert. Die Komponenten sind demnach hinsichtlich
ihrer Ergebnisse nicht gänzlich isoliert zu betrachten. Im Folgenden werden mögliche
Verarbeitungsfehler der Einzelkomponenten skizziert.
Am Anfang der Informationsverarbeitung steht die Textvorverarbeitung

(auch:Preprocessing), welche die initiale Anforderungsbeschreibung als Eingabe
entgegennimmt und relevante (On-Topic) Sätze ausgibt. Die Komponente kann als
sehr robust angesehen werden, da viele der genutzten Einzelkomponenten vielfach
erprobt sind und zum Standard beinahe aller NLP-Anwendungen gehören. So sind
beispielsweise bei der Normalisierung keine Fehler zu erwarten. Vielmehr werden ein-
zelne Zeichen zuverlässig aus dem Fließtext entfernt und durch normalisierte Zeichen
ersetzt. Die darauf aufbauende Sprachenidentifikation erreicht Evaluationswerte von
99% und kann auch mit Fachsprache umgehen, sofern eine Mindestlänge erreicht
wird (s. Anhang C.1), wovon in den meisten Fällen auszugehen ist (s. Abschnitt 6.1).
Die Satzendeerkennung gilt zwar ebenfalls als robust (s. Anhang C.1), kann aber auf
Grund der geringen Textstrukturierung zu Fehlern führen (Read et al., 2012a). Wird
beispielsweise eine Anforderungsbeschreibung gänzlich ohne Satzzeichen verfasst,
wird die Erkennung von Satzenden zwar nicht unmöglich aber erheblich erschwert
(Ho et al., 2016). Dieser Fehler hat Auswirkungen auf alle Folgekomponenten, da
bereits die Klassifikation von Anforderungen auf Satzbasis agiert.
Die Komponente zur Anforderungsidentifikation nutzt REaCT zur Klassifika-

tion von On- und Off-Topic-Inhalten, welches eine hohe Treffergenauigkeit erreicht
(Dollmann und Geierhos, 2016). Allerdings geht mit fälschlicherweise als nebensächlich
klassifizierten Sätzen ein erheblicher Informationsverlust einher, da diese nicht an
Folgekomponenten weitergegeben werden (vgl. Abbildung 5.14). Die ebenfalls in
REaCT befindliche Anforderungsextraktion ist ein wichtiger Bestandteil dieser
Arbeit, da die Extraktionsergebnisse beispielsweise bei den Indikatoren zum Einsatz
kommen und die Grundlage der strukturierten Ausgabe bilden. Dollmann (2016,
S. 79 ff.) merkt an, dass die Evaluationsergebnisse mit einem durchschnittlichen F1-
Score von 72,66%, darauf hindeuten, dass eine zuverlässige vollautomatische IE aus
den Anforderungsbeschreibungen nicht erreicht werden kann. Allerdings liegt dieser
Wert nah am menschlichen Vergleichswert von 80% (Dollmann und Geierhos, 2016),
sodass dieser zum jetzigen Zeitpunkt ausreichen muss. Neben der Möglichkeit, die



132 5 Konzeptentwicklung

Klassifikationsqualität durch Erweiterung der Datenbasis zu steigern, sind Strategien
zu bedenken, die falsche Klassifikationen regelbasiert erkennen und kompensieren.
Sehr gute Ergebnisse können bei der lexikalischen Disambiguierung durch

Babelfy erwartet werden (Moro et al., 2014b, S. 239 ff.), wobei die Ergebnisse als
vorläufig zu betrachten sind, da die Möglichkeit besteht, dass einzelne Lexeme nicht
erkannt wurden oder dass eine Entscheidung über die Auflösung von Mehrwortlexe-
men getroffen werden muss. Darüber hinaus müssen fehlerhafte Disambiguierungen,
die aufgrund von minimalem Kontext getroffen wurden, regelbasiert aufgelöst werden.
Die syntaktische Disambiguierung basiert sowohl bei der Disambiguierung

von PP-Anbindungen als auch im Fall der Koordinationsambiguität auf dem par-
se-Modul des Stanford CoreNLPs. Aufgrund der Tatsache, dass es sich um einen
probabilistischen Parser handelt, der sein Sprachwissen aus einer Menge annotierter
Sätze ableitet, ist mit Fehlern in den Ergebnissen zu rechnen.

”
These statistical

parsers still make some mistakes, but commonly work rather well“97. Da die Kompen-
sationsmethoden nicht im Mittelpunkt dieser Arbeit stehen, wird nicht weiter darauf
eingegangen. Allerdings greift beispielsweise die Kompensation von Unvollständigkeit
auf die Ergebnisse dieser Expertenkomponente (

”
Expert first“, vgl. Abschnitt 5.2)

zurück, wodurch Fehler weitreichende Folgen für die Ergebnisqualität haben können.
Die Erkennung von Referenzausdrücken und das Bilden von Koreferenzketten

mittels Stanford dcoref funktioniert zuverlässig – allerdings bedarf es weitreichender
domänenspezifischer Regeln, um referentielle Ambiguität zu erkennen und aufzulösen.
Zwar kann Stanford dcoref auf eine Vielzahl an Regeln zur Auflösung zurückgreifen,
es fehlt aber dennoch an domänenspezifischem Wissen, sodass die zu erwarteten
Ergebnisse im Ganzen zufriedenstellend aber dennoch fehlerhaft sind. Die lexikali-
sche Disambiguierung kann zusätzliches Wissen zur referentiellen Disambiguierung
bereitstellen. Auch dieses muss durch Regeln eingebunden werden.
Die Kompensation von Unvollständigkeit basiert in dieser Arbeit auf dem

Abgleich lückenhafter Anforderungen mit ähnlichen Anforderungen, mit dem Ziel, die
nicht-instatiierten Leerstellen zu füllen. Es ist zu erwarten, dass dies bei hochfrequen-
ten Prädikaten zufriedenstellend geschieht. Allerdings kann nicht mit abschließender
Sicherheit bestimmt werden, ob eine gewählte Instanz im Anwendungsszenario des
Anwenders stimmig ist. Demgegenüber ist die Kompensation bei nicht frequenten
Prädikaten als problematisch zu bewerten. Hier fehlt es schlicht an Beschreibungen
im Anforderungsindex. Die durchgeführte Analyse zeigt auf, dass Verarbeitungsfehler
zu erwarten sind. Ein transparenter und kritischer Umgang mit möglichen Fehlern
ist dabei wichtig für die Weiterentwicklung und die Systemqualität. Bezüglich der
Qualität werden in Abschnitt 7.4 weitere Anforderungen erläutert. Im Folgenden
wird ein Überblick der bisherigen Arbeit in Form eines Zwischenfazits gegeben, um
Implementierungsherausforderungen zu identifizieren und daraufhin in den Imple-
mentierungsteil dieser Arbeit übergehen zu können.

97Siehe weiterführend: http://nlp.stanford.edu/software/lex-parser.shtml (Stand: 11.01.17).



5.6 Zwischenfazit und Ausblick 133

5.6 Zwischenfazit und Ausblick

Aufgrund der zu erwartenden Qualitätsschwankungen in den Anforderungsbeschrei-
bungen ist die Anwendung verschiedener Verarbeitungskomponenten zur Qua-
litätsverbesserung notwendig (s. Abschnitt 1.4). Diese vielfältigen Komponenten um-
fassen dabei sowohl Verfahren des Preprocessings als auch Kompensationsverfahren
wie die Unvollständigkeitskompensation oder Disambiguierungsansätze. Solche Ver-
fahren existieren in den meisten Fällen bereits, sind aber überwiegend für die isolierte
Anwendung ausgelegt und unterscheiden sich hinsichtlich Eingabe- und Ausgabepa-
rametern, Ressourcen und schlussendlich auch in der Laufzeit (s. Abschnitt 3.4).
Um die Komponentenauswahl auf gegebene Anforderungsbeschreibungen an-

zupassen, werden Indikatoren definiert und herangezogen, die jeweils bestimmte
Defizite in den Anforderungsbeschreibungen repräsentieren und bei positiver Er-
kennung die Ausführung entsprechender Verarbeitungskomponenten rechtfertigen
(s. Abschnitt 5.3). Die Indikatoren können dabei nicht auf die Ergebnisse der nachgela-
gerten Verfahren zurückgreifen und sind daher von eigenen Regeln (z. B. syntaktische
Muster), Verfahren (z. B.Chunker) und Ressourcen (z. B.WordNet) abhängig. Auf
Grundlage der Indikatoren erfolgt die Auswahl der Strategien, wobei zwischen vordefi-
nieren und einer automatischen Fallback -Strategie zu unterscheiden ist. Die Strategien
steuern die notwendigen Verarbeitungskomponenten, koordinieren Möglichkeiten für
Synergien und lösen Abhängigkeiten auf. Sie beeinflussen die Verarbeitung somit
weitgehend (z. B. Ergebnisse zusammenführen).

Die Verarbeitungskomponenten sind in Abschnitt 5.5 konzipiert worden. Sie beste-
hen überwiegend aus einer Hauptkomponente (z. B.Stanford CoreNLP) und werden
um zusätzliche Softwarekomponenten (z. B.Abgleich mit Blacklist) erweitert. Auch,
um die Kompatibilität zwischen den einzelnen Verarbeitungskomponenten sicherzu-
stellen. Hier sieht das Konzept ein globales Datenobjekt vor (s. Abschnitt 7.3.2.1),
dass von allen Komponenten bearbeitet wird, wofür unter anderem Konvertierungs-
prozesse notwendig sind. Aufgrund der unterschiedlichen Softwarearchitekturen der
Komponenten entstehen vielfältige Herausforderungen für die Implementierung (so-
wohl aus Software- als auch aus Ressourcensicht).

Die für das beschriebene Softwarekonzept notwendigen Ressourcen sind hinsichtlich
ihrer Art und Thematik sehr unterschiedlich und liegen überwiegend nicht (in
benötiger Struktur bzw. Umfang) vor (s. Abschnitt 4.1.3). Aus diesem Grund beginnt
die Implementierung mit der Ressourcenerstellung, was insbesondere die Erstellung
des Anforderungsbeschreibungskorpus und des PAS-Korpus umfasst (s. Kapitel 6).
Es folgt die softwaretechnische Implementierung, die von der Frage getrieben

wird, welche Softwarearchitektur geeignet ist, um zum einen die Anforderungen der
Endanwender zu erfüllen (leichte Bedienbarkeit, Plattformunabhängigkeit, geringes
technisches Vorwissen erforderlich) und zum anderen die indikatorbasierte Strategiean-
wendung und Beschreibungskompensation zu ermöglichen (s. Kapitel 7). Letzteres ist
aufgrund der unterschiedlichen Verarbeitungskomponenten (z. B. gewählte Program-
miersprachen, Softwarearchitekturen, Netzwerkkommunikation, externe Ressourcen)
als nennenswerte Herausforderung zu verstehen.





Teil III

Implementierung
und Evaluation

135





Ressourcen 6
Um die Anforderungsextraktion sowie die Kompensation von Ambiguität und Un-
vollständigkeit in Anforderungsbeschreibungen zu ermöglichen, sind linguistische
Ressourcen notwendig (s. Abschnitt 4.1.3). Deren Umfang und Aufbau unterscheiden
sich je nach Anwendung. Im Bereich des REs herrscht ein Mangel an entsprechenden
Ressourcen, wie beispielsweise Tichy et al. (2015, S. 161) darstellen. Aus diesem Grund
ist es im Rahmen dieser Arbeit notwendig, ergänzende Ressourcen zu Konzeptions-,
Test- und Evaluationszwecken aufzubauen. Im Folgenden werden elementare Res-
sourcen, namentlich das Anforderungsbeschreibungskorpus (s. Abschnitt 6.1) sowie
das Prädikat-Argument-Struktur-Korpus (s. Abschnitt 6.2), vorgestellt.

6.1 Anforderungsbeschreibungskorpus

Wie in Abschnitt 4.1.3 dargestellt, ist eine Sammlung von Anforderungsbeschreibun-
gen in dieser Arbeit von besonderer Relevanz, da sie zum einen für Testzwecke und
zur Evaluation benötigt wird und zum anderen die Ableitung spezifischer Charakte-
ristika des Textgenres ermöglicht (z. B.Vokabular, Textqualität). Dies ist wiederum
wichtig, um die Methoden und Komponenten des Softwaresystems bedarfsgerecht zu
entwickeln und zu konfigurieren. Ein Korpus ist dabei eine

”
[...] endliche Menge von

konkreten sprachlichen Äußerungen, die als empirische Grundlage für sprachwiss.
Untersuchungen dienen. Stellenwert und Beschaffenheit [...] hängen weitgehend von
den jeweils spezifischen Fragestellungen und methodischen Voraussetzungen des
theoretischen Rahmens der Untersuchung ab [...]“ (Bußmann, 1983, S. 79).
Wie dargestellt, existieren nur sehr wenige und zudem kleine Textsammlungen,

welche die zu erwartenden Eigenschaften von Anforderungsbeschreibungen abdecken
(z. B. Dollmann, 2016), sodass eine eigene zusätzliche Akquise von Anforderungsbe-
schreibungen notwendig ist. Die Akquise bezieht sich in dieser Arbeit auf die Suche
nach Anforderungsbeschreibungen im Web via Internet-Suchmaschinen98 (insbeson-
dere auf einschlägige Entwicklerplattformen). Ziel ist es, das Korpus von Dollmann
(2016), welches derzeit 200 FA sowie 492 nebensächliche Sätze umfasst, um weitere
300 FA zu erweitern, um hinsichtlich der Verteilung von FA und nebensächlichen
Angaben ein ausgewogenes Korpus zu erhalten. Bei der Auswahl geeigneter Beschrei-
bungen kommt ein zweistufiges Vorgehen zum Einsatz, wie es auch Dollmann (2016,
S. 49 ff.) anwendet: Zuerst werden aufgrund von Suchbegriffen sowie Phrasen (z. B.

”
I

want an application“) Texte akquiriert, die mögliche Anforderungsbeschreibungen
darstellen können (Kandidaten). In einem zweiten Schritt werden diese Kandidaten
händisch kontrolliert, ob es sich tatsächlich um FA oder doch um Nebensächliches

98Gesucht wird via https://www.google.de.

137



138 6 Ressourcen

handelt. Die auf diese Weise identifizierten Anforderungsbeschreibungen werden in
den Datenbestand übernommen.

6.1.1 Datenbestand

Insgesamt umfasst der zusätzlich zu Dollmann (2016) akquirierte Datenbestand 300
FA in englischer Sprache, die in Qualität und Umfang stark variieren. Beispiel 6.1.1
zeigt eine zufällig ausgewählte Anforderungsbeschreibung99, die von SourceForge
akquiriert wurde und welche den Wunsch eines Endanwenders nach der Erweiterung
einer Musikanwendung um eine Kopierfunktion von Audio-CDs beschreibt.

Beispiel 6.1.1 (Anforderungsbeschreibung)

I think it would be useful if this great piece of software included the ability to rip
MP3 (via grip) within the program: as a user I want to be able to put a CD in
and having ripped to MP3, added to the ipod all in one programme. I know this
is currently possible using separate programs, but the way that the itunes program
works as a one-stop shop, works really well from the usability point of view.

Hierbei handelt es sich um eine Beschreibung, die bereits Aufschluss über die zu
erwartende Qualität und über erste Merkmale gibt. So enthält sie zwar eine vermeint-
lich klar erkennbare FA (Kopieren von Audio-Dateien), sie weist aber dennoch eine
Reihe qualitativer Defizite auf. Exemplarisch werden einige im Folgenden benannt:
Zuerst fällt auf, dass die FA eigentlich eine zusammengesetzte FA, bestehend aus

drei Unteranforderungen, ist: (1) CDs sollen eingelegt werden können, (2) die CD
soll in das Audioformat MP3 konvertiert und (3) Dateien sollen auf einen iPod
übertragen werden. Neben dieser Tatsache finden sich bereits hier sowohl eine Reihe
impliziter Annahmen (z. B. soll nicht die CD in MP3 konvertiert werden, sondern auf
der CD befindliche Audiostücke) als auch Ellipsen, wie beispielsweise in

”
and having

ripped to MP3“, wo das Objekt der Anforderungen ausgelassen wird.
Wenig überraschend ist darüber hinaus der große Anteil anOff-Topic-Informationen

(z. B.
”
I know this is currently possible [...]“). Auch sind Rechtschreibfehler (

”
pro-

gramme“) vorzufinden, was bei UGC zu erwarten ist. Benannte Entitäten (
”
iTunes“,

”
iPod“) existieren ebenfalls, wie im Rahmen der Konzeption und insbesondere im
Kontext der lexikalischen Disambiguierung bereits vermutet (s. Abschnitt 5.5.4.1).
Eine Besonderheit ist, dass eine Angabe zur Rolle (

”
as a user“) getätigt wird. Dies

ist nicht der Regelfall aber für den Verarbeitungsschritt der IE besonders wertvoll.
Zu erwarten war ferner auch, dass die Anforderungen aus Sicht des Users verfasst
werden und entsprechende Personalpronomen (

”
I“) vorzufinden sind.

Von der Analyse einer einzigen Anforderungsbeschreibung auf den gesamten Da-
tenbestand zu schließen, ist unzureichend. Deswegen stellt Tabelle 6.1 ermittelte
Statistiken dar, die sich auf den gesamten Datenbestand beziehen und unter an-
derem Aufschluss über die Anzahl funktionaler Anforderungen sowie Wort- und
Zeichenkonstellationen geben.

99Siehe: https://sourceforge.net/p/gtkpod/feature-requests/42/ (Stand: 11.01.17).



6.1 Anforderungsbeschreibungskorpus 139

Merkmal Bäumer (2017) Dollmann (2016)

Anzahl FA 300 200
Anzahl Types / Token 1.399 / 5.521 1.266 / 4.414
∅ Token / Satz 18 22
Token Min. / Max. 7 / 49 4 / 49
∅ Zeichen / Satz 99 105
Zeichen Min. / Max. 29 / 264 29 / 292

Tabelle 6.1: Zusammensetzung des Datenbestands und Merkmalsgegenüberstellung

Wie in Tabelle 6.1 ersichtlich wird, ähneln sich die Datenbestände in den angegebenen
Werten wie Satzlänge in Token und Zeichen. Dies ist aber nur als erstes Indiz für eine
Ähnlichkeit zu werten, da eine Gegenüberstellung der häufigsten Begriffe zwischen
den Korpora (vgl. Frequenzliste in Tabelle 6.2) als auch eine Analyse der semantischen
Kategorien noch aussteht (vgl. Tabelle 6.3).

6.1.2 Gegenüberstellung

Zur Gegenüberstellung der hier akquirierten FA und der FA aus Dollmann (2016) emp-
fiehlt sich zuerst ein Blick auf die Wortfrequenz in den jeweiligen Korpora. Auf diese
Weise können Auffälligkeiten in der Wortwahl und bei der inhaltlichen Schwerpunkt-
setzung der Anforderungsbeschreibungen sichtbar gemacht werden (vgl. Tabelle 6.2).

(A) Bäumer (2017) (B) Dollmann (2016) (C) Dollmann (2016)*

1. i 278 would 122 would 119
2. software 140 have 44 it 90
3. can 77 nice 44 i 52
4. should 75 could 40 nice 43
5. app 61 add 37 have 41
6. it 43 like 35 could 39
7. want 35 should 28 add 37
8. file 30 you 25 like 35
9. program 28 file 23 should 28
10. have 22 can 21 you 25

Tabelle 6.2: Die 10 häufigsten Begriffe in den Korpora.
In Anlehnung an Dollmann (2016, S. 52)

Tabelle 6.2 zeigt sowohl die Frequenzliste für die akquirierten Daten (A) als auch
für die Daten aus Dollmann (2016), bezeichnet als (B). Da Dollmann (2016) aber
keine weiteren Angaben zur Erstellung der Frequenzliste macht (insb. nicht zur
Anwendung einer Stoppwortliste und Lemmatisierung), wird an dieser Stelle eine
eigene Frequenzliste auf Basis der Daten von Dollmann (2016) erzeugt (C)100, um
die Vergleichbarkeit zwischen den Korpora zu sichern.

100Zur Anwendung kommt Lemmatisierung und die Entfernung folgender, für den Auszug relevanter,
Stoppwörter:

”
to“,

”
the“,

”
be“,

”
a“,

”
in“,

”
and“,

”
for“,

”
if“,

”
of“,

”
that“,

”
with“ und

”
or“.



140 6 Ressourcen

Es fällt auf, dass in (A) sowohl die semantische Kategorie der Rolle (
”
i“) als auch

der Komponente (
”
software“,

”
app“,

”
program“) im Vordergrund stehen, was bei

(B) sowie bei (C) nicht der Fall ist. Bezogen auf die gesamten Korpora zeigt sich,
dass Korpus (A) einen höheren Anteil an Wörtern aufweist, die in die semantischen
Kategorien

”
Rolle“ und

”
Komponente“ fallen101 (vgl. Abbildungen 6.1 und 6.2). Zu

diesem Zeitpunkt ist von vermeintlicher Kategoriezugehörigkeit zu sprechen, da erst
die Annotation Aufschluss über die Verteilung semantischer Kategorien gibt.

Plot: 1    Bäumer (2017) Treffer: 258

Plot: 2    Dollmann (2016) Treffer: 72 

Abbildung 6.1: Wortverteilung der semantischen Kategorie
”
Rolle“ je Korpus

Plot: 1    Bäumer (2017) Treffer: 177 

Plot: 2    Dollmann (2016) Treffer: 17 

Abbildung 6.2: Wortverteilung der semantischen Kategorie
”
Komponente“ je Korpus

Zu erklären ist diese Auffälligkeit mit der unterschiedlichen Herkunft. Während Doll-
mann (2016) seine Daten ausschließlich von der Entwicklungsplattform SourceForge
akquiriert, auf der Nutzer ihre FA zur Weiterentwicklung eines existierenden Produkts
kommunizieren und dieses nicht mehr explizit in der FA erwähnen, beziehen sich die
hier akquirierten FA überwiegend auf neu zu entwickelnde Software, welche daher
sehr häufig genannt wird. Dies wird auch bei der Betrachtung frequenter Phrasen102

deutlich: Während in Korpus (B bzw. C) gehäuft Phrasen wie
”
It would be“ oder

”
Would it be possible“ vorkommen, sind es in Korpus (A) Formulierungen wie

”
I

need a software“ und
”
App should be able to“. In diesem Kontext erklärt sich auch

die hohe Frequenz der Wörter
”
you“ und

”
add“ im Datenbestand von Dollmann

(2016), da sie Teil von Nutzeraufforderung an die Softwareentwickler (
”
you“) sind,

bestimmte Softwarefunktionen zu ergänzen (
”
add“):

”
Can you please add exif support

to the package?“103. Auch erklärt sich die hohe Frequenz von
”
it“ in Korpus (C), was

ursprünglich in Dollmann (2016) als Stoppwort entfernt wurde und oftmals (aber
nicht immer) als Referenzausdruck zur bestehenden Softwareapplikation genutzt wird.
Mit Bezug zum OTF-Computing sind Formulierungen wie in Korpus (A) zu erwarten,
da Endanwender mit ihren FA auf eine noch nicht existente Software referenzieren.
Dollmann (2016) merkt bezüglich der Wortfrequenz in seinem Korpus (B) an, dass

die semantische Kategorie
”
Priorität“ unter den frequentesten Token stark vertreten

ist (
”
would“,

”
could“ und

”
should“). Diese Auffälligkeit bleibt auch bei erneuter

101Untersucht wurden
”
I“,

”
my“,

”
mine“,

”
we“,

”
User“ bzw.

”
Software“,

”
System“,

”
App“,

”
App-

lication“,
”
Tool“ und

”
Program“.

102Erzeugt wurden Frequenzlisten von Tetragrammen auf beiden Korpora.
103Siehe: https://sourceforge.net/p/graphics32/feature-requests/21/ (Stand: 04.02.17).



6.1 Anforderungsbeschreibungskorpus 141

Erstellung der Frequenzliste in (C) bestehen und findet sich darüber hinaus auch
in (A). Dies bedeutet, dass die Priorität in beiden Korpora eine wichtige Funktion
einnimmt. Diese Erkenntnis ist deckungsgleich mit den Ergebnissen aus Dollmann
(2016, S. 55) bzw. in Tabelle 6.3 (277 bzw. 209 Annotationen).

(A) Bäumer (2017) (B) Dollmann (2016)

Komponente 232 84
Komponentenverfeinerung 26 16

Aktion 333 204
Argument der Aktion 143 104

Bedingung 30 39
Priorität 277 209

Motivation 22 19
Rolle 259 42

Objekt 439 195
Verfeinerung des Objektes 127 48

∑
1.888 960

Tabelle 6.3: Anzahl annotierter Hauptinformationen nach Kategorie.
In Anlehnung an Dollmann (2016, S. 55)

Bezüglich der semantischen Kategorien finden sich in Tabelle 6.3 weiterführende
Angaben. So fällt bei den von Dollmann (2016) annotierten FA auf, dass mehr
Aktionen und Prioritäten annotiert wurden, als FA vorhanden sind. Scheinbar exis-
tieren demnach FA, die mehrere Aktionen und Prioritäten aufweisen. Dies ist nicht
ungewöhnlich, entspricht aber nicht der oftmals formulierten Empfehlung im RE,
Anforderungen atomar zu formulieren (Pohl und Rupp, 2015, S. 48). Das gleiche Bild
zeichnet sich für die semantische Kategorie der Aktionen bei (A) ab und entspricht
wahrscheinlich auch dem, was im Kontext des OTF-Computings zu erwarten ist, da
nicht davon auszugehen ist, dass sich Endanwender an RE-Empfehlungen halten,
geschweige denn diese kennen.
Auch lässt sich feststellen, dass die Rolle und die Komponente in Korpus (A)

erheblich häufiger vorkommen, als es in Korpus (B) der Fall ist. Dies wurde bereits
zuvor auf Basis der Wortfrequenz vermutet. Eine Erklärung hierfür ist die unterschied-
liche Datenherkunft. Bei Dollmann (2016) ist sowohl die Kategorie

”
Komponente“

als auch
”
Rolle“ innerhalb der FA bereits durch den Kontext (Entwicklungsforum

zu bestehenden Produkten) vorgegeben. Weiterhin fällt auf, dass bei Korpus (B)
weniger Objekte annotiert wurden, als es FA gibt, wohingegen sich im Korpus (A)
439 Objekte in 300 FA finden. Auch hier gilt, dass die Datenherkunft zu beachten ist,
wie folgendes Beispiel aus Korpus (A) aufzeigt:

”
Make it possible to import/export

themes“104 enthält zwei Angaben zur semantischen Kategorie der Aktion, bezieht
sich dabei aber nur auf ein Objekt. Demgegenüber stehen Beispiele wie

”
I need a

good Karoake Software which can remove vocals from mp3 completely and save that

104Siehe: https://sourceforge.net/p/cmsworks/feature-requests/11/ (Stand: 12.02.17).



142 6 Ressourcen

karoake file as mp3“105 aus Korpus (B), in dem mehrere Aktionen und Objekte
genannt werden und die sehr häufig in dieser Form vorzufinden sind.
Schlussendlich lässt sich nach dieser Gegenüberstellung zusammenfassen, dass die

akquirierten FA ähnlich in Qualität und Umfang zu den Anforderungen sind, die
seitens Dollmann (2016) bereitgestellt werden und sich dennoch in wesentlichen Merk-
malen unterscheiden (z. B.Häufigkeit semantischer Kategorien). Diese Unterschiede
sind dabei von erheblicher Bedeutung für diese Arbeit, da sie zum einen aufzeigen,
wie stark natürlichsprachliche Anforderungsbeschreibungen und insbesondere FA
in Umfang und Qualität variieren. Zum anderen ermöglichen sie eine umfassende
Evaluation des Systems. Durch die Zusammenführung der beiden Datenbestände
wird versucht, eine möglichst breite Abdeckung an Formulierungen zu erreichen. Auf
diese Weise wird sich den Anforderungsbeschreibungen, die im OTF-Computing zu
erwarten sind, durch vergleichbare Eigenschaften angenähert.

6.2 Prädikat-Argument-Struktur-Korpus

Das PAS-Korpus enthält Fließtexte zur Beschreibung von Softwarefunktionalitäten.
Es dient zum einen dazu, die Frequenz und die Art der domänenspezifischen
Prädikatverwendung zu analysieren. Zum anderen wird es benötigt, um instan-
tiierte Argumentpositionen von Prädikaten im jeweiligen Kontext zu extrahieren
und für die Kompensation von unvollständigen Angaben in den Anforderungsbe-
schreibungen des Endanwenders zu nutzen. Aus diesem Grund werden die Texte
nach der Akquise weiterverarbeitet (z. B. Satzgrenzenerkennung) und durch weitere
Daten (z. B.Hyperonyme) angereichert. Dieses Korpus wird beispielsweise in Bäumer
und Geierhos (2016) zur Kompensation von Unvollständigkeit und in Geierhos und
Bäumer (2017) zur Erkennung und Kompensation von Vagheit herangezogen.

6.2.1 Datenakquise und -vorverarbeitung

Das Korpus speist sich aus den Daten der Onlineplattform download.com106, die im
Zeitraum von 01. Januar bis 01. Februar 2016 mittels einer eigens entwickelten Craw-
ler -Applikation automatisiert heruntergeladen wurden und den Zeitraum von Februar
1995 bis Februar 2016 abdecken. Die Daten umfassen neben Programmbeschreibun-
gen der Hersteller (vgl. Beispiel 6.2.1) auch Bewertungen der Plattformbetreiber sowie
Kommentare und Bewertungen von Anwendern. Der so entstandene Ausgangsdaten-
satz beinhaltet somit überwiegend Texte, in denen die Softwarefunktionalitäten im
Mittelpunkt stehen (vgl. Beispiel 6.2.1). Die Qualität der Programmbeschreibungen
ist dabei schwankend und reicht von einer reinen Aufzählung von Funktionalitäten
bis hin zu ausgeschmückten Werbetexten. Um die Datenqualität zu erhöhen, ist ein
Preprocessing notwendig, das im folgenden Abschnitt 6.2.1 erläutert wird.

Insgesamt enthält der Datensatz dabei 193.641 Datensätze, aufgeteilt in 23 Soft-
warekategorien (z. B. Spiele, Sicherheit, Kommunikation) und 253 Unterkategorien
(z. B.Arkade-Spiele, Antivirus, E-Mail Software). Die Angaben zu Kategorien und

105Siehe: http://answers.yahoo.com/rss/question?qid=20120427101849AA4y0wl (Stand: 12.02.17).
106Siehe weiterführend: http://download.cnet.com (Stand: 11.01.17).



6.2 Prädikat-Argument-Struktur-Korpus 143

Unterkategorien sind für eine spätere Analyse der Prädikate im Hinblick auf die
unterschiedliche Verwendung innerhalb der Softwarekategorien von Interesse.

Beispiel 6.2.1 (Programmbeschreibung, gekürzt)

Email Scheduler Tracker is an easy-to-use e-mail management software with
which you can: Send e-mails to customers, prospects, webinar participants, etc.
in either plain text or HTML text, either immediately or at any time and date in
the future. Send automatic reminders to one or more people [...]

Die akquirierten Programmbeschreibungen werden in mehreren sequenziellen Schrit-
ten zur Verbesserung der Datenqualität modifiziert. Dabei liegt der Fokus auf
Erkennung und Abbildung der PAS einzelner Sätze, was unter anderem dazu führt,
dass die bisherigen komplexen Satzkonstruktionen aufgetrennt und als einzelne
elementare Sätze gespeichert werden. Wichtig ist, dass zu jedem Zeitpunkt eine
eindeutige Zuordnung von Sätzen und Prädikaten zum Ursprungstext möglich ist.
Hierfür werden die folgenden Schritte durchlaufen:

(1) Entfernung von Hypertext Markup Language (HTML)
Es können vereinzelt HTML-Auszeichnungen im Text existieren, die in diesem Schritt
entfernt werden (z. B.

”
<b>“), da sie nachfolgende Schritte, wie beispielsweise die

Satzendeerkennung, behindern können107.

(2) Satzendeerkennung
Die Satzendeerkennung unterteilt den Fließtext in einzelne Sätze. Dabei ist die
Erkennung von Satzenden wesentlich komplexer als das einfache Erkennen von
Interpunktionszeichen (s. Anhang C.1.2). Dies ist zum Beispiel dann der Fall, wenn
Aufzählungen in Programmbeschreibungen genutzt werden108.

(3) Erkennung der Prädikat-Argument-Struktur
Die Erkennung von Prädikaten (z. B.

”
send“) und zugehörigen Argumenten

(z. B.
”
mailing list“) in Sätzen wird in diesem Schritt durch einen Semantic

Role Labeler durchgeführt109. Die so gewonnenen Erkenntnisse werden zusammen
mit dem jeweiligen Ausgangssatz gespeichert.

(4) Anreicherung semantischer und lexikalischer Beziehungen
In diesem Schritt werden sowohl Prädikate als auch Argumente um eindeutige
semantische und lexikalische Beziehungen erweitert110.

(5) Überführung in ein strukturiertes Ausgabeformat
Die Ausgabe erfolgt hierarchisch strukturiert (Baumstruktur) unter der Nutzung

107Die Entfernung erfolgt mittels
”
jsoup“. Siehe: http://www.jsoup.org (Stand: 12.01.17).

108Die Erkennung erfolgt mittels
”
LingPipe“. Siehe: http://www.alias-i.com/ (Stand: 12.01.17).

109Genutzt wird das Toolkit
”
Mate Tools“ (Björkelund et al., 2010).

110Erweiterung durch WordNet-IDs. Siehe: http://wordnetweb.princeton.edu (Stand: 12.01.17).



144 6 Ressourcen

der Extensible Markup Language (XML). Ausgehend vom jeweiligen Prädikat als
Wurzelknoten auf der höchsten Ebene wird sowohl der Satz als auch die erkannten
Argumente des Prädikats als Folgeknoten geführt (vgl. Beispiel 6.2.2).

Beispiel 6.2.2 (Ausgabeformat)

<predicate sense=“send.01” wordnet=“01033289”>
<sentence id=“75891832-2” sid=“2” text=“Send e-mails to customers, pro-
spects, webinar participants, etc. in either plain text or HTML text, either im-
mediately or at any time and date in the future.’ ’ tid=“75891832” version=“1”
path=“downloadcom::communication::email” alias=“email”>

<arguments>
<arg id=“A1” wordnet=“06289979” type=“”>e-mails</arg>
<arg id=“A2” wordnet=“” type=“”>customers, prospects,
webinar participants</arg>

</arguments>
</sentence>
</predicate>

Zusatzinformationen wie IDs (z. B.
”
sid“) sowie semantische und lexikalische Bezie-

hungen (
”
wordnet“) sind als Attribute angegeben. Vor- und Nachteile von XML zur

Strukturierung von Korpora werden von Naumann (2003) diskutiert. Zusammenge-
fasst eignet sich die XML-Auszeichnungssprache aufgrund der Standardisierung und
der weiten Verbreitung sowie der Verfügbarkeit von Anwendungen zur Verwaltung
und Modifikation (Naumann, 2003, S. 379 f.).

6.2.2 Zusammensetzung

Die Zusammensetzung des Korpus ist von Interesse, da sich dadurch die Notwendigkeit
von Vor- und Nachbearbeitungsschritten aufgrund von spezifischen Texteigenschaften
ergibt (z. B. viele Rechtschreibfehler).
Die durchschnittliche Textlänge der Programmbeschreibungen über alle Kategori-

en hinweg beträgt 129 Wörter (737 Zeichen). Um spezifische Texteigenschaften zu
erkennen, wird eine 300 Sätze umfassende Zufallsstichprobe in der Kategorie

”
E-Mail

Software / Utilities“ erstellt und analysiert (Gesamtumfang 2.088 Beschreibungen;
11.187 Sätze). Als positiv ist die hohe Erkennungsrate der Satzgrenzenerkennung zu
bewerten. Bei 300 Sätzen sind 274 Satzgrenzen (91,3%) korrekt erkannt worden, wo-
bei die meisten der 26 falsch erkannten Satzgrenzen auf Aufzählungen zurückzuführen
sind. Darüber hinaus scheinen Sätze, die mit

”
etc.“ enden, zu Erkennungsfehlern zu

führen. Weiterhin kann festgestellt werden, dass in 70,8% der Sätze eine Software-
funktionsbeschreibung vorgenommen wird.
Die Korpusstatistik bezogen auf die 274 korrekt erkannten Sätze findet sich in

Tabelle 6.4. Durchschnittlich beträgt die Satzlänge 19 Token bzw. 120 Zeichen.
Dabei ist die Existenz kurzer Sätze wie

”
Easy to use“, die nur drei Token bzw.

13 Zeichen umfassen, ebenso interessant wie die sehr umfangreicher Sätze, geben



6.2 Prädikat-Argument-Struktur-Korpus 145

Merkmal Häufigkeit

Anzahl Types / Token 1.288 / 5.118
∅ Token / Satz 19
Token Min. / Max. 3 / 57
∅ Zeichen / Satz 108
Zeichen Min. / Max. 13 / 343

Tabelle 6.4: Zusammensetzung der Stichprobe

sie doch Auskunft über die Anwendbarkeit der in Abschnitt 5.5.2 und Anhang C.1
diskutierten Preprocessing-Verfahren, beispielsweise der Sprachenidentifizierung.
Tabelle 6.5 stellt Eigenschaften der Stichprobe dar, die für den Anwendungsfall

der prädikatbasierten Kompensation von Unvollständigkeit von Bedeutung sind.
So beinhaltet die Stichprobe insgesamt 547 Prädikate und durchschnittlich zwei
Prädikate pro Satz.

Merkmal Ausprägung

Prädikate
Anzahl Prädikate 547
∅ Prädikate / Satz 2
Named Entities
Anzahl NE 324
Sonstiges
Anzahl Rechtschreibfehler (Algorithmus) 166
Anzahl Rechtschreibfehler (Gegenprobe, Mensch) 33
Abkürzungen (z. B. IMAP) 132

Tabelle 6.5: Merkmale und ihre Ausprägungen in der Stichprobe

Die weitere Analyse der Sätze zeigt, dass der Kontext der Prädikate, welcher genutzt
wird, um fehlende Instantiierung zu kompensieren, eine Vielzahl an NE (324) und
Abkürzungen (132) aufweist. Dies ist wichtig, da kompensierte Argumente, die NE
und Abkürzungen enthalten, für Endanwender problematisch sein können, da nicht
davon ausgegangen werden kann, dass sie diese kennen.
Darüber hinaus wirken sich NE und Abkürzungen auch auf die automatische Recht-

schreibkorrektur aus. So erzielt diese insgesamt Ergebnisse, die eine alarmierend hohe
Anzahl an Fehlerkennungen und -korrekturen beinhalten. So wurde zum Beispiel

”
Winmail“ fälschlicherweise zum Vornamen

”
Ismail“ korrigiert. Als kritischer sind

Korrekturen wie bei dem Satz
”
It can Convert .eml to PDF, and .eml to Image“ zu be-

werten, der zu
”
It can Convert .XML to PDF, and .XML to Image“ verändert wurde.

Das Dateiformat EML wurde zu XML verändert und somit die Aussage verfälscht.
Angesichts dieser Ergebnisse sollte auf eine automatische Rechtschreibkorrektur
verzichtet werden. Gegen die Anwendung einer automatischen Rechtschreibkorrek-
tur spricht auch die geringe Anzahl an Rechtschreibfehlern, wie sie die manuelle
Rechtschreibkorrektur aufgezeigt hat (33 Rechtschreibfehler).



146 6 Ressourcen

6.2.3 Umfang des PAS-Korpus

Um einen Eindruck des PAS-Korpus zu erhalten, ist in Tabelle 6.6 eine weitere
Korpusstatistik dargestellt, die über die der Stichprobe hinausgeht. Wie bereits
angeführt, besteht das gesamte Korpus aus 193.641 Softwarebeschreibungen, die in
insgesamt 23 Softwarekategorien und weiter in 253 Unterkategorien unterteilt werden.

Merkmal Ausprägung

Kategorien 23
Unterkategorien 253
Beschreibungen 193.641
∅ Token / Beschreibung 123
∅ Zeichen / Beschreibung 738
∅ Sätze / Beschreibung 7
∅ Prädikate / Beschreibung 15
∅ Prädikate / Satz 2

Tabelle 6.6: Merkmale und ihre Ausprägungen im PAS-Korpus

Werden die Softwarebeschreibungen hinsichtlich der Länge betrachtet, so sind sie im
Durchschnitt 738 Zeichen bzw. 123 Token lang und bestehen aus sieben Sätzen. Dabei
schwankt die Länge je nach Softwarekategorie merklich. So sind die Beschreibungen
von Software zum Thema Reisen am längsten (∅ 1.055 Zeichen), während sie im
Bereich der Bildschirmschoner und Schreibtischhintergründe am kürzesten sind (∅
449 Zeichen). Auch ist die Verteilung der Softwarebeschreibungen innerhalb der
Kategorien nicht gleich. Am meisten Beschreibungen finden sich in den Softwarekate-
gorien Spiele (25.799), Treiber (22.442) und Betriebssystem Utilities (16.622). Die
aufgrund des E-Mail-Anwendungsfalls relevante Kategorie Kommunikation, zu der
auch E-Mail-Kommunikation zählt, umfasst 5.882 Softwarebeschreibungen.
Da es sich um ein PAS-Korpus handelt, ist neben der Verteilung der Softwarebe-

schreibungen innerhalb der Softwarekategorien auch das Vorkommen von Prädikaten
von Interesse. Hier sind im Durchschnitt 15 Prädikate pro Softwarebeschreibung
festzustellen, was durchschnittlich zwei Prädikate pro Satz bedeutet – dieser Wert
ist somit deckungsgleich zu dem Wert aus der untersuchten Stichprobe.

6.3 Weitere Ressourcen

Neben dem Anforderungsbeschreibungskorpus und dem PAS-Korpus sind Ressourcen
notwendig, die als Nebenentwicklungen innerhalb dieser Arbeit zu betrachten sind.
Sie stehen somit nicht im Vordergrund dieses Kapitels und werden dennoch der
Vollständigkeit halber im Folgenden gebündelt vorgestellt. Es handelt sich dabei
sowohl um komplette Eigenentwicklungen, als auch um modifizierte Standardressour-
cen sowie um Ressourcen, deren Umfang stark beschränkt ist und die ausschließlich
der Funktionsdemonstration dienen.
Eine sehr einfache Form von Ressourcen sind Listen, die an verschiedenen Stellen

dieser Arbeit zum Einsatz kommen, unter anderem als White- und Blacklists . Sie



6.3 Weitere Ressourcen 147

dienen primär der Performanzsteigerung des Gesamtsystems, indem bestimmte Token
von der Verarbeitung ausgenommen werden (sei es, weil das Verarbeitungsergebnis
vorweggenommen werden kann oder weil ein Token als irrelevant eingestuft wird).
So enthält beispielsweise die Blacklist der Unvollständigkeitskompensation Token
wie

”
want“,

”
like“ und

”
be“ (s. Abschnitt 5.5.5). Darüber hinaus wird an mehreren

Stellen auch die Blacklist der Apache Foundation eingebunden (z. B. beim Indikator
lexikalischer Ambiguität), auf der wenig bedeutungstragende Token wie

”
thus“,

”
to“ und

”
too“ vermerkt sind. Neben dieser Listenart existiert eine Liste vager

Adjektive, die zur Erkennung von Vagheit in Abschnitt 5.5.6 herangezogen wird. Sie
umfasst derzeit 1.465 Adjektive (z. B.

”
fast“,

”
warm“). Über eine reine Auflistung von

Token hinaus gehen Listen, die beispielsweise Synonyme enthalten und daher nicht
nur ein Token in einem Eintrag führen, sondern mehrere in Form von Aufzählungen.
So enthält die Synonymliste für den Indikator der referentiellen Ambiguität zum
Beispiel den Eintrag:

”
application, program, software, system“ (s. Abschnitt 5.3.2.3).

Nichtsdestotrotz ist es nach wie vor ein einfacher Listentyp111.
Demgegenüber stehen strukturierte Ressourcen, die unterschiedliche Informatio-

nen in einen hierarchischen Zusammenhang bringen. An mehreren Stellen in dieser
Arbeit (z. B. bei der strukturierten Ergebnisausgabe) kommt hierzu die erweiterbare
Auszeichnungssprache XML zum Einsatz. So wird unter anderem bei der Kompen-
sation von Unvollständigkeit (s. Abschnitt 5.5.5) auf eine modifizierte Version der
Propbank (Palmer et al., 2005) zurückgegriffen, die auf die, für die Kompensation
unvollständiger Prädikate notwendigen, Angaben reduziert wurde (vgl. Beispiel 6.3.1).

Beispiel 6.3.1 (Eintrag aus der modifizierten Propbank)
<roleset id=

”
delete.01“ reqroles=

”
2“ roles=

”
3“>

<role f=
”
PAG“ descr=

”
entity removing“ req=

”
1“ n=

”
0“/>

<role f=
”
PPT“ descr=

”
thing being removed“ req=

”
1“ n=

”
1“/>

<role f=
”
DIR“ descr=

”
removed from“ req=

”
0“ n=

”
2“/>

</roleset>

Die Ressource umfasst derzeit 8.128 Prädikate in mehreren Lesarten (z. B. delete.01)
und 21.153 definierte Leerstellen. Eine Besonderheit stellt das Attribut

”
req“ dar,

welches neu aufgenommen wird und die notwendige Angabe eines Prädikats im
Kontext von Anforderungsbeschreibungen markiert (s. Abschnitt 5.5.5).
Eine weitere Ressource ist der WSD-Cache. Dieser wird ihm Rahmen der lexikali-

schen Disambiguierung zur Minimierung der Laufzeit eingesetzt. Es handelt sich um
eine Zwischenspeicherung (in einer MySQL-Datenbank) von Merkmalen einzelner
Token, die über Babelfy disambiguiert und mittels BabelNet um Zusatzinformationen
(z. B.Kategorie, Domäne, Lemma) angereichert wurden (vgl. Tabelle 6.7). Derzeit
umfasst der Cache 6.827 Einträge, wobei alle Einträge nur eine Haltbarkeit von 14
Tagen haben, bevor sie erneut abgerufen werden (Zeitstempel). Es handelt sich dabei
um eine flexible Ressource, die stetiger Veränderung unterliegt.

111Die Synonymliste enthält derzeit 803 Wortgruppen mit insgesamt 10.274 Wörtern.



B
a
b
e
lID

L
e
m
m
a

K
a
te
g
o
rie

D
o
m
ä
n
e

B
e
sch

re
ib
u
n
g

Z
e
itste

m
p
e
l

b
n
:03164709n

K
eyboard

shortcu
t

G
U
I
tech

n
iq
u
es

C
om

p
u
tin

g=
0.45

In
co
m
p
u
tin

g,
a

key-
boa

rd
sh
o
rtcu

t
is

a
se-

ries
o
f
o
n
e
o
r
sever-

a
l
keys

th
a
t
in
vo
ke

a
so
ftw

a
re

o
r
o
pera

tin
g

system
operation

w
hen

triggered
by

the
u
ser.

2017-03-18

b
n
:01664953n

S
election

(G
U
I)

G
U
I
tech

n
iq
u
es

C
om

p
u
tin

g=
0.36

In
com

pu
tin

g
an

d
u
ser

in
terfa

ce
en

gin
eerin

g,
a
selectio

n
is

a
list

o
f

item
s

o
n

w
h
ich

u
ser

o
pera

tio
n
s

w
ill

ta
ke

place.

2017-03-18

b
n
:03173309n

P
oin

t
an

d
click

G
U
I
tech

n
iq
u
es

V
id
eo

gam
es=

0.63
P
oin

t
an

d
click

are
the

a
ctio

n
s
o
f
a
co
m
p
u
ter

u
ser

m
o
vin

g
a
po
in
ter

to
a

certa
in

loca
tio

n
o
n

a
screen

a
n
d
th
en

pressin
g
a
bu
tton

on
a

m
ou

se,
u
su
ally

the
left

bu
tto

n
,
o
r
o
th
er

po
in
-

tin
g
device.

2017-03-05

T
a
b
elle

6
.7
:
A
u
szu

g
a
u
s
d
em

W
S
D
-C

a
ch
e

148



Implementierung 7
Im Folgenden wird das in Kapitel 5 beschriebene Konzept als Prototyp programmier-
technisch realisiert. Hierfür wird in Abschnitt 7.1 die Systemarchitektur erläutert
und anschließend das Testsystem vorgestellt (s. Abschnitt 7.2). Die Umsetzung der
Informationsverarbeitung wird in Abschnitt 7.3 beschrieben.

7.1 Systemarchitektur

Die Begriffe System- und Softwarearchitektur sind voneinander abzugrenzen. Sys-
temarchitektur schließt

”
[...] viele Computer, Speichersysteme sowie Netzwerk-

Komponenten ein, die durch ihr Zusammenwirken eine Reihe von verfügbaren,
sicheren und skalierbaren Diensten [...]“ ermöglichen (Dustdar et al., 2003, S. 10),
während Softwarearchitektur

”
eine strukturierte oder hierarchische Anordnung der

Systemkomponenten sowie Beschreibung ihrer Beziehungen“ (Balzert, 2003, S. 4)
umfasst. Bei der Systemarchitektur ist die

”
[...] Betrachtungsweise auf Systeme als

Bauteile gerichtet und nicht auf die Software-Bauteile für [...] Systeme. Komponenten
einer System-Architektur sind daher anders zu diskutieren als Komponenten und
Beziehungen einer Software-Architektur“ (Dustdar et al., 2003, S. 5).

Clients

Request

Response

https://nana.nuc/index.jsp

HTML

Systemumfeld
Externes Umfeld

Server

Babelfy server

Client

Request

Response

https://babelfy.io/

JSON

Lokale Ressourcen (z. B. DB-Server)

Webserver

JSP-Server

Textvorverarbeitung

Anforderungsextraktion

Disambiguierung (Lex./Syn./Ref.)

Kompensation

Vagheitserkennung

Abbildung 7.1: Überblick über das Softwaresystem

Einen Überblick über das Gesamtsystem und dessen Umfeld gibt Abbildung 7.1.
Dargestellt sind neben beispielhaft gewählten Clients im Systemumfeld auch der

149



150 7 Implementierung

Server112 sowie das externe Umfeld. Die Begriffe
”
Systemumfeld“ und

”
Externes

Umfeld“ beschreiben Formen und Grenzen der Interaktion (Request – Response).
Während das Systemumfeld die Interaktion zwischen Clients und Servern innerhalb
des Softwaresystems beschreibt, umfasst das externe Umfeld Drittapplikationen
(z. B. Babelfy), die vom Server angefragt werden. In diesem Fall agiert demnach das
Softwaresystem als Client. Eine Interaktion zwischen Endanwender und externer
Ressource ist nicht vorgesehen. Der in Abbildung 7.1 dargestellte Server enthält
bereits die vorgesehenen Verarbeitungskomponenten. Auf Grund der Vielschichtigkeit
des Server -Begriffs wird im Folgenden für Kompensationskomponenten, die auf dem
zentralen Server oder weiteren Computern bereitgestellt werden und als Server -
Applikation fungieren, der Begriff eines Dienstes herangezogen. Den serverseitigen
Aspekt greift Abbildung 7.2 unter Auslassung der Client-Perspektive auf. Abgebildet
ist der zentrale Server, der Dienste bereitstellt, die zur Kompensation benötigt
werden. Diese Dienste greifen auf verschiedene Ressourcen zurück (z. B. Textdateien,
Datenbanken), die unterschiedliche Anforderungen an das System stellen können113.

Systemserver

Komponentenserver

Webserver JSP-Server DB-Server Solr-Server

SSD SSD

HTTP(S)

DB Index

(lokal auf Systemserver) (extern)

(+ Verarbeitungskomponenten)

HTTP(S)[...]
(Client)

Abbildung 7.2: Serverseitige Systemperspektive

Die Kompensationsdienste kommunizieren über HTTP-Schnittstellen bzw. wer-
den über diese auch von der zentralen Verarbeitungskomponente angesprochen
(s. Abschnitt 7.3). Dies bedeutet, dass sich alle eingebundenen Computer, wie es die
Client-Server -Architektur auch nahelegt, in einem (gemeinsamen) Netzwerk befinden
müssen bzw. über einen Zugang zum Internet verfügen. Abbildung 7.2 zeigt somit
auch den Aspekt der Skalierbarkeit auf (s. Abschnitt 7.4.2.3). Einzelne Dienste können
aufgrund der angesprochenen netzwerkbasierten Kommunikation ( ) ohne Weiteres

112Der Begriff
”
Server“ ist ambig, da dieser sowohl im Sinne der Hardware als auch im Sinne der

Software (Software, die auf einem Server ausgeführt wird) genutzt werden kann.
113Beispielsweise erfordern Modelle, die im Arbeitsspeicher gehalten werden eine entsprechend aus-

gereifte RAM-Ausstattung, während umfangreiche Lexika eine schnelle Festplatte voraussetzen.



7.2 Testumgebung 151

auf zusätzliche Computer (Komponentenserver, ) ausgelagert werden (horizontale
Skalierung). Die Kommunikation sollte dabei im Sinne der Sicherheit über HTTPS
verschlüsselt ( ) erfolgen (s. Abschnitt 7.4.1.2). In dieser prototypischen Implementie-
rung sind alle Dienste auf einem Server verfügbar (s. Abschnitt 7.2). Darüber hinaus
greifen Endanwender in diesem Szenario über das Internet auf den Server zu.

7.2 Testumgebung

Als Testumgebung wird in dieser Arbeit serverseitig ein Intel NUC114 (NUC6i3SYH)
herangezogen, der die in Tabelle 7.1 dargestellten, relevanten Merkmale aufweist.
Die Wahl der Testumgebung ist sowohl beim Server als auch beim Client der
Verfügbarkeit bereits bestehender Hardware geschuldet. Grundsätzlich können alle
(mindestens) äquivalenten Hardwarekonstellationen genutzt werden.

Merkmal Ausprägung

Prozessor Intel Core i3-6100U, 2x 2.30 GHz, 3 MB Cache
RAM Crucial SO-DIMM Kit 32GB, DDR4-2133
Festplatte Samsung SSD 850 Pro 512GB, 6 GB/s
Konnektivität Verbunden über LAN, Gigabit
Betriebssystem Linux, Debian Stretch
Java openjdk (1.8.0)

Tabelle 7.1: Testumgebung (Server)

Clientseitig wird, im Sinne der Interoperabilität (s. Abschnitt 7.4.2.1), auf verschiedene
Systeme und Konfigurationen zurückgegriffen. Primär getestet wird mit einem Apple
MacBook Pro (Retina, 13”) und einem iPhone 5S (vgl. Tabelle 7.2). Die Geräte
eignen sich insbesondere, da sie aufgrund der weiten Verbreitung und eingeschränkten
Konfigurierbarkeit bei Defekten mit wenig Aufwand formgleich zu ersetzen sind.

Merkmal Ausprägung

Modell MacBook Pro (Retina, 13”, Ende 2016)
Konnektivität Verbunden über LAN, Gigabit
Auflösung 2560 x 1600
Webbrowser Safari 10.0; Mozilla Firefox 49.0.1
Betriebssystem MacOS Sierra 10.12

Modell iPhone 5S
Konnektivität Verbunden über WLAN
Auflösung 1136 x 640
Webbrowser Safari 602.1; Google Chrome 54.0
Betriebssystem iOS 10.2

Tabelle 7.2: Testumgebungen (Clients)

114Siehe: http://intel.com/content/www/us/en/nuc/nuc-kit-nuc6i3syh.html (Stand: 12.01.17).



152 7 Implementierung

7.3 Programmiertechnische Umsetzung

Im Folgenden wird zuerst auf das Strukturierungsprinzip des zu entwickelnden
Softwaresystems eingegangen, welches die Struktur dieses Abschnitts bestimmt:

”
Der grundlegende Ansatz zur Strukturierung von Softwaresystemen ist eine Zerle-
gung in Schichten“ (Dunkel und Holitschke, 2003, S. 16). Weitläufig etabliert hat
sich dabei die Unterteilung in drei Softwareschichten, wie sie Abbildung 7.3 zeigt:
Präsentationsschicht, Anwendungsschicht und Datenschicht (auch: Persistenzschicht).

Datenschicht

Anwendungsschicht

Präsentationsschicht

Abbildung 7.3: Drei-Schichten-Architektur als Strukturierungsprinzip von Software

Nach Dunkel und Holitschke (2003, S. 17) beinhalten diese Schichten die wesentlichen
Aufgaben einer Software115. So enthält die Präsentationsschicht zum Beispiel die
Datendarstellung und die Benutzerinteraktion. Die Anwendungsschicht beinhaltet die
fachlichen Objekte sowie die fachliche Logik, während die Datenschicht die dauerhafte
Datenverwaltung ermöglicht (Dunkel und Holitschke, 2003, S. 17). Eine Schicht kann
dabei immer nur auf innere Schichten zurückgreifen. Dies

”
[führt] somit zu kohärenten

und schwach gekoppelten Strukturen und [bietet] die Basis für eine physikalische
Verteilung auf verschiedene Rechner“ (Dunkel und Holitschke, 2003, S. 16).
Die Ausprägung der Drei-Schichten-Architektur verteilter Systeme wird unter

Betrachtung der Client-Server -Struktur deutlich: Je nachdem, wie die Schichten auf
die Clients und die Server verteilt sind, demnach, wie viele Aufgaben auf der einen und
auf der anderen Seite vorgesehen sind, wird von schwer- oder leichtgewichtigen Clients
gesprochen (Dunkel und Holitschke, 2003, S. 22). Dieser Aspekt wird im folgenden
Abschnitt 7.3.1 weiter vertieft. Darüber hinaus richtet sich auch der darauffolgende
Aufbau dieses Abschnitts an dem dargestellten Prinzip der Drei-Schichten-Architektur
aus. So enthält Abschnitt 7.3.1 auch Überlegungen und Angaben zur Implementierung
der Präsentationsschicht. Es folgt Abschnitt 7.3.2 mit den fachlichen Objekten
sowie der fachlichen Logik. Die Datenschicht wird in Abschnitt 7.3.3 diskutiert.
Aufgabe wird es darüber hinaus auch sein, die Umsetzung der in Abschnitt 7.4
benannten Qualitätsmerkmale von Softwaresystemen anhand der genannten Schichten
aufzuzeigen und zu diskutieren.

115Detaillierte Inhalte zu logischen Softwareschichten geben Dunkel und Holitschke (2003, S. 16 ff.).



7.3 Programmiertechnische Umsetzung 153

7.3.1 Präsentationsschicht

Die Präsentationsschicht bezeichnet das klassische GUI, welches zum einen die Dar-
stellung von Daten ermöglicht und zum anderen Endanwender befähigt, mit dem
Softwaresystem zu interagieren. Konzeptionell besprochen wird die Benutzerschnitt-
stelle in Abschnitt 5.5.1. In Abschnitt 7.3.1.1 folgen Überlegungen zur Verteilung
der einzelnen Schichten auf die Clients bzw. den Server sowie Angaben zur program-
miertechnischen Umsetzung in Abschnitt 7.3.1.2.

7.3.1.1 Fat vs. Thin Clients

Hinsichtlich der Clients ist zwischen schwergewichtigen (engl. fat) und leichtgewich-
tigen (engl. thin) Clients zu unterscheiden116. Während Fat Clients alle genannten
Schichten beinhalten und nur zur Datenverwaltung auf Server zugreifen, sind Thin
Clients so konstruiert, dass sie die Präsentationsschicht darstellen und sich die
weiteren Schichten auf einem oder mehreren Server(n) befinden (vgl. Abbildung 7.4).

Schwergewichtiger Klient Leichtgewichtiger Klient

Präsentationsschicht Präsentationsschicht

Anwendungsschicht

Datenschicht

Anwendungsschicht

Datenschicht

DB-Zugriff

DB-Zugriff

Server

DB-ServerDB-Server

Abbildung 7.4: Unterschiedliche Schichtenaufteilung von Fat und Thin Clients.
In Anlehnung an Dunkel und Holitschke (2003, S. 22)

In dieser Arbeit ergeben sich bereits aus dem Konzept in Abschnitt 5.5.1 folgende
Anforderungen an die Clients: Zum einen muss das Softwaresystem niedrige Nut-
zungsbarrieren aufweisen, geräteübergreifend sowie plattformunabhängig arbeiten
und intuitiv zu bedienen sein, was beispielsweise komplexere Installationsroutinen,
wie sie hier erforderlich sind, ausschließt und eine niedrige Navigationstiefe erfordert.
Zum anderen soll es grundsätzlich möglich sein, auch alternative Clients zu betreiben.
Diese angeführten Anforderungen schließen die Nutzung von Fat Clients be-

reits aus, da Installations- und Konfigurationsbemühungen notwendig wären, ein
geräteübergreifendes und plattformunabhängiges System nur schwer umzusetzen
ist (z. B. aufgrund von Systemanforderungen der Verarbeitungskomponenten) sowie
die Entwicklung von alternativen Clients nennenswerten Aufwand bedingen würde.
Zwar gelten Fat Clients als leichter zu implementieren, allerdings kann eine solche
Architektur den Anforderungen dieser Arbeit nicht gerecht werden, sodass Thin
Clients zu bevorzugen sind. Thin Clients, die als reine Browser -Anwendung konzipiert

116Vor- sowie Nachteile von Thin/Fat Clients listen Dunkel und Holitschke (2003, S. 22 ff.) auf.



154 7 Implementierung

werden, basieren auf etablierten Webtechnologien (z. B.HTML5, XML, JavaScript).
Generell gelten diese Clients als komplex in der Umsetzung und können langsamer
in der Ausführung sein, da Kommunikation über Netzwerke erforderlich ist (Dunkel
und Holitschke, 2003, S. 23 ff.).

7.3.1.2 Thin Client: Benutzerinterkation und Umsetzung

Der Thin Client ermöglicht Benutzerinteraktion durch Ein- und Ausgabe von Daten.
In den Abschnitten 5.5.1 und 5.5.7 wurde hierfür Fließtext als Eingabe (Input) und
das Ergebnis, weitere Erläuterungen zur Verarbeitung und Kompensation sowie ein
Verarbeitungs- und Kompensationsprotokoll als Ausgaben (Output) gewählt. Diese
vier Ansichten sind in Abbildung 7.5, ausgehend von der Startseite, dargestellt.

1

Start Ergebnis

3Protokoll 4Erläuterung XML-Output

2

m

index.jsp result.jsp

log.jsp explain.jsp xml.jsp

(maschinenlesbar)

Abbildung 7.5: Flache Systemnavigation als Grundlage niedriger Einstiegsbarrieren

Neben den, für Endanwender verständlichen, Ansichten (1-4) existiert weiterhin
der XML-Output, der eine maschinelle Weiterverarbeitung ermöglicht (m). Damit
Endanwender die Ergebnisse strukturiert abspeichern können, ist auch diese Ansicht
über die Ergebnisansicht zu erreichen. Um die Benutzerinteraktion für die vier ein-
zelnen Ansichten möglichst intuitiv zu gestalten, wird auf die Empfehlungen von
Nielsen und Loranger (2006, S. 169 ff.) zurückgegriffen. Deshalb werden nur wesentli-
che Bedienelemente angezeigt, einheitlich bezeichnet und die Navigationstiefe auf eine
Ebene beschränkt (vgl. Abbildung 7.5). Um die Komplexität der Bedienung weiter
zu reduzieren, folgt auf Eingabe des Inputs direkt die Ergebnisanzeige, woraufhin En-
danwender sich bei Bedarf weiterführende Informationen anzeigen lassen können. Aus
der Sicht der Endanwender verhält sich die resultierende Webseite wie eine statische
Webseite, da sich die Komplexität im Verborgenen auf Seite des Servers abspielt. Die
programmiertechnische Umsetzung basiert auf JavaServer Pages (JSP)117. Hierbei
handelt es sich um eine Technologie zur Entwicklung von Webseiten, die auf Web-
standards wie HTML basiert und Möglichkeiten zur dynamischen Inhaltsgestaltung
bietet. Außerdem werden bekannte Markup-Elemente durch spezielle JSP-Elemente
ergänzt. Statt HTML-Elemente in den Programmquelltext zu übernehmen, werden
spezielle active elements in den HTML-Quelltext übernommen (Bergsten, 2004, S. 5).

117Einen Einstieg in JSP geben Balzert (2003) sowie Bergsten (2004).



7.3 Programmiertechnische Umsetzung 155

Diese JSP-Elemente werden dabei vom Server ausgeführt und die Ergebnisse in die
restliche, statische Webseite eingefügt (Bergsten, 2004, S. 4).

7.3.2 Anwendungsschicht

Die Anwendungsschicht stellt den funktionalen Kern des Softwaresystems dar. In
ihr

”
[...] werden sämtliche fachlichen Funktionalitäten der Anwendung realisiert.

Dazu gehören datentragende Geschäftsobjekte, aber auch die Realisierung fachlicher
Geschäftsprozesse“ (Dunkel und Holitschke, 2003, S. 18). Im Folgenden werden sowohl
die genannten datentragenden Klassen besprochen (s.Abschnitt 7.3.2.1) als auch
die Funktionalitäten und deren Umsetzungen aufgezeigt (s. Abschnitt 7.3.2.2). Auch
finden sich in den Abschnitten 7.3.2.3 (Indikatoren) und 7.3.2.4 (Strategien) Angaben
zur programmiertechnischen Umsetzung.

7.3.2.1 Datentragende Klassen

Im Zentrum der Softwareapplikation steht die vom Endanwender eingegebene (reale)
Anforderungsbeschreibung, die über mehrere Verarbeitungsschritte hinweg erweitert
und transformiert wird. Um dies zu erreichen, existieren elementare Datenklassen, die
sowohl die ursprüngliche Anforderungsbeschreibung, einzelne Beschreibungselemente
sowie mögliche Zusatzinformationen abbilden. Ausgehend von der Anforderungsbe-
schreibung (auch:Description), werden einzelne Sätze (auch: Sentence) erzeugt, die
wiederum aus einzelnen Token bestehen und im Ergebnis als strukturierte Sätze
(auch:Controlled sentence) ausgegeben werden können. Zwar existieren noch weitere
Klassen (z. B.Token Groups, Chains), im Folgenden werden aber nur die für das
Gesamtverständnis relevanten Klassen dargestellt (vgl. Abbildung 7.6).
Die Description-Klasse ist die höchste Klasse in der Klassenhierarchie und stellt den

Ausgangspunkt der Verarbeitung dar, da sie initial die unbearbeitete Anforderungsbe-
schreibung der Endanwender enthält und während der gesamten Weiterverarbeitung
speichert. Ausgehend von dieser Anforderungsbeschreibung werden Sentence-Objekte
erzeugt, die beispielsweise Angaben zur syntaktischen Struktur, Konjunktionen aber
auch zur Sprache sowie Relevanz (On- und Off-Topic) enthält.
Jede Sentence-Klasse kann wiederum eine Vielzahl an Controlled Sentence-Klassen

begründen, da sich die Anzahl der kontrollierten Sätze nach Anzahl der Prozesswörter
in einem Ausgangssatz richtet. Zu jedem Prozesswort, welches wie alle Wörter als To-
ken repräsentiert wird, werden weitere zugehörige semantische Kategorien (z. B. Rolle,
Objekt, Komponente) gesammelt und unter Hinzunahme einer Perspektive und einer
syntaktischen Vorgabe gespeichert (s. Abschnitt 5.5.7). Ein Controlled Sentence kann
somit auch als Menge verbundener Token verstanden werden, die auf Grundlage einer
definierten Syntax die funktionale Kernaussage eines zugrundeliegenden Satzobjektes
wiedergeben. Es wird deutlich, dass die Klasse der Token grundlegenden Charakter
hat. Sie ist die – hinsichtlich der abgebildeten sprachlichen Einheiten – kleinste
datentragende Klasse und enthält dennoch einen Großteil der Informationen, so zum
Beispiel die semantischen Kategorien und Lesarten einzelner Wörter.



156 7 Implementierung

Description

− sentenceGroups: List
− xmlRepresentation: String
− chunkPattern: String

getSentences(): List<Sentence>
getCorefGraph(): Map<int, chain>
getXmlRepresentation(): String
getTextModified(): String
getConllUString(): String

Sentence

1

Controlled SentenceToken

0..*

1

1..*

1..*

1

1..* 1..*

− action: Token 
− priority: Token
− object: Token
− role: Token
− component: Token
+ view: enum

setAction(Token)
setPriority(Token)
setObject(Token)
setRole(Token)
getSentence(): sentence

getLemma(): String
getPosU(): String
getSenses(): List<String>
setSynsetId(int)

− sid: Integer
− tid: Integer
− posU: String
− sense: String
− isPredicate: Boolean
− isVague: Boolean
− semInfo: semanticInformation
 

− onTopic: Boolean
− simplified: Boolean
− language: String
− tokens: List<Token>
− prefixConnector: String
− ConLLObject: ConLLObject
getTokens(): List<Token>
getPrefixConnector(): String
getPredicates(): List<Token>
getId(): Integer
isOnTopic(): Boolean

Abbildung 7.6: Datentragende Klassen (kompakte Darstellung)

7.3.2.2 Implementierung der Kompensationskomponenten

Im Folgenden wird die programmiertechnische Einbindung der einzelnen Kompensa-
tionskomponenten dargestellt (s. Abschnitt 5.5).

Lexikalische Disambiguierung

Wie bereits in den Abschnitten 2.1.1 und 5.5.4.1 diskutiert, wird lexikalische Ambi-
guität auf Basis einzelner Token und unter Berücksichtigung des jeweiligen Kontextes
aufgelöst. In dieser Arbeit wird hierfür Babelfy (s. Abschnitt 3.3.1.1) als Komponente
zur Disambiguierung mit der zugrundeliegenden Datenbank BabelNet herangezogen
(s. Abschnitt 3.3.1.1). Im Zentrum von Abbildung 7.7 steht die Steuerungskomponen-
te118, die relevante, englischsprachige Sätze iterativ auf Basis der Token durchläuft.
Hierbei werden alle Token, die zuvor im Rahmen des Preprocessings als semantisch
relevant für die funktionale Anforderung markiert wurden (s. Abschnitt 5.5.2), einer
Disambiguierung unterzogen – es sei denn, es wird zuvor festgestellt, dass sich das
Token auf der White- oder Blacklist befindet (s. Abschnitt 5.5.4.1).

118Hierbei handelt es sich nicht um den Controller, der im Rahmen der Strategieeinführung vorgestellt
wurde (s. Abschnitt 5.2), sondern vielmehr um eine eigene Steuerung innerhalb jeder Komponente.



7.3 Programmiertechnische Umsetzung 157

Steuerungs-
komponente

Babelfy

Query 

BabelSense

BabelNet

Externes UmfeldAnforderungs-
beschreibung (Satz)

Satz

BabelfyToken

Cache

SemanticAnnotation

Query 

1

2

Abbildung 7.7: Integration von Babelfy als Disambiguierungskomponente

Um sowohl die Token als auch den Kontext an Babelfy zu übergeben, wird der
zu untersuchende Satz zusammen mit Konfigurationsparametern119 übermittelt,
woraufhin Babelfy ein SemanticAnnotation-Objekt zurückgibt120. Dieses Objekt
enthält neben einem Disambiguation Score auch Angaben zu genutzten Ressourcen
sowie eine sogenannte BabelSynsetID pro Token (z. B.

”
bn:00005095n“), die genutzt

werden kann, um weitere Informationen (z. B. Lemma, Lesarten, Bilder) zu jedem
Token aus BabelNet abzufragen. Diese Informationen werden dem untersuchten
Token-Objekt angehängt, wie es beispielhaft in Tabelle 7.3 dargestellt ist.

Merkmal Ausprägung Quelle

SID 2

Preprocess.
TID 3
PosX NN
Lemma application
SemInfo component REaCT
isAmbig true

BabelfySense application
BabelID bn:00005095n
AmbigPictureURL .../OpenOffice.org_Writer.png

BabelNet

AmbigCategory Application software
AmbigDomain Computing
AmbigDescription A program that gives a computer

instructions that provide the user
with tools to accomplish a task

Tabelle 7.3: Durch Babelfy erweitertes Token-Objekt zu
”
application“

Tabelle 7.3 zeigt die von Babelfy und BabelNet breitgestellten Informationen, die
für jedes disambiguierte Token vorliegen. Für die maschinelle Weiterverarbeitung ist
insbesondere die disambiguierte Lesart und die BabelSynsetID von Bedeutung. Für

119Limitation genutzter Ressourcen (z. B.WordNet, Wikipedia); Disambiguierungssgrenzwerte etc.
120Siehe weiterführend: http://babelfy.org/guide (Stand: 12.01.17).



158 7 Implementierung

Endanwender sind darüber hinaus Angaben wie Domäne, Kategorie und Beschreibung
relevant, um mehr über das disambiguierte Token zu erfahren und gegebenenfalls
Verarbeitungsfehler (z. B. falsche Disambiguierung) leichter zu erkennen.

Da es sich bei Babelfy und BabelNet um externe Dienste handelt, ist eine Beein-
flussung der Ausführungszeit ohne Weiterentwicklungen nicht möglich. Eine hohe
Auslastung im Netzwerk oder eine hohe Auslastung auf den Servern kann sich auf
die Performanz der gesamten Komponente zur lexikalischen Disambiguierung negativ
auswirken. Aus diesem Grund wird ein Caching-Verfahren implementiert, das akqui-
rierte Disambiguierungsobjekte speichert, sodass für ein Token, für einen definierten
Zeitraum121, nur eine Anfrage an BabelNet zu stellen ist. Die Ergebnisse der Eva-
luation zeigen einen positiven Effekt (Minimierung der Laufzeit) des Cachings auf
die Performanz der lexikalischen Disambiguierung (s. Abschnitt 8.3.4). Es ist jedoch
festzuhalten, dass die Anfrage an Babelfy durch das Caching nicht beschleunigt
werden kann, da die Disambiguierung Fall für Fall und unter gegebenem Kontext
durchgeführt werden muss.

Syntaktische Disambiguierung

Die syntaktische Disambiguierung wurde bereits in Abschnitt 5.5.4.2 beschrieben
und wird in dieser Arbeit durch den Stanford Parser durchgeführt. Dazu werden alle
relevanten, englischsprachigen Sätze iterativ an diese Komponente übergeben. Als Re-
sultat wird ein Tree-Objekt122 zurückgegeben, welches die produzierten syntaktischen
Informationen enthält und somit beispielsweise die Grundlage dafür bildet, über eine
GrammaticalStructureFactory die Parsing-Ausgabe im CoNLL-Format zu erzeugen
(beispielsweise relevant aus Kompatibilitätsgründen zwischen Komponenten). Jeder
Satz, der die syntaktische Disambiguierung durchläuft, wird um ein Tree-Objekt
erweitert, auf welches zu jedem Zeitpunkt zugegriffen werden kann.

Steuerungs-
komponente

Stanford CoreNLP

Satz

Anforderungs-
beschreibung (Satz)

Satz

Tree

Tree

(Auslagerung 
möglich)

Abbildung 7.8: Integration von Stanford CoreNLP zur syntaktischen Disambiguierung

Der Parser als Bestandteil von Stanford CoreNLP wird als Serveranwendung aus-
geführt und entsprechend in das Gesamtsystem eingebunden (vgl. Abbildung 7.8).

121Nach 14 Tagen gilt der Cache eines Tokens als obsolet und wird überschrieben.
122Siehe weiterführend: http://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/trees/

Tree.html (Stand: 12.01.17).



7.3 Programmiertechnische Umsetzung 159

Auch hier ist es möglich (s. Abschnitt 7.4.2.3), diese Komponente auszulagern und auf
einem Computer mit sehr viel Arbeitsspeicher auszuführen. Dies ist sinnvoll, da Erfah-
rungswerte zeigen, dass Parsing mit zunehmendem Satzumfang erhebliche Ressourcen
in Anspruch nehmen kann123. Um die Auslagerung der CoreNLP -Komponente kom-
fortabel zu ermöglichen, stehen alle erforderlichen Konfigurationsparamter (z. B.URL,
Port) in einer Konfigurationsdatei zur Bearbeitung zur Verfügung. Eine Änderung
am Quelltext ist somit nicht erforderlich.
Das Ergebnis der syntaktischen Disambiguierung zeigt Abbildung 7.9 in der

Dependenz- bzw. Konstituentenansicht. Die graphische Darstellung wurde mit
conllu.js erzeugt, einer frei verfügbaren JavaScript-Programmbibliothek zur Visuali-
sierung des CoNLL-U Ausgabeformats124.

Abbildung 7.9: Dependenz- und Konstituentenansicht

Da allerdings die in Abbildung 7.9 dargestellte Konstituentenansicht für Endanwen-
der, trotz der Hervorhebung relevanter Konstituenten, aufgrund der umfangreichen
Klammerung nur schwer nachzuvollziehen ist, existiert zusätzlich eine Ansicht, die
die Baumstruktur graphisch darstellt (vgl. Abbildung A.8 im Anhang).

Referentielle Disambiguierung

In Abschnitt 5.5.4.3 wurde die referentielle Disambiguierung konzeptuell dargestellt.
Wie auch bei der syntaktischen Disambiguierung kommt hier Stanford CoreNLP zum
Einsatz. Der Aufbau gestaltet sich daher analog, wenngleich kein Satz sondern die
gesamte Anforderungsbeschreibung übergeben und kein Tree- sondern ein CorefChain-
Objekt125 zurückgegeben wird. Auf eine graphische Darstellung wird daher an dieser
Stelle verzichtet und stattdessen auf Abbildung 7.8 verwiesen. Die Angaben zu
Möglichkeiten der horizontalen Skalierung gelten analog.

123Entsprechende Erfahrungswerte finden sich in den Stanford FAQs. Siehe: http://nlp.stanford.
edu/software/parser-faq.shtml (Stand: 12.01.17).

124Siehe weiterführend: http://spyysalo.github.io/conllu.js/ (Stand: 12.01.17).
125Siehe weiterführend: http://www-nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/

hcoref/data/CorefChain.html (Stand: 12.01.17).



160 7 Implementierung

Abbildung 7.10 stellt die mittels Stanford CoreNLP erkannten Koreferenzen dar.
Beispielsweise ersichtlich ist die aufgelöste referentielle Ambiguität (

”
They“) zwischen

den Sätzen Nr. 1 und Nr. 2. Während das Personalpronomen sowohl auf
”
emails“

als auch auf
”
file attachments“ referenzieren könnte, wird sich seitens des Systems

für das letzte Antezedens (
”
file attachments“) entschieden. Auch zu erkennen ist die

Koreferenz der Pronomen
”
I“ und

”
me“ sowie die Erkennung von

”
spam“ und

”
it“.

In letzterem Fall wird korrekterweise nicht auf
”
problem“ als Antezedens referenziert.

Abbildung 7.10: Mittels Stanford CoreNLP erkannte Koreferenzen

Wie in Abschnitt 5.5.4.3 und Abbildung 5.26 dargestellt, folgt nach der Anwendung
von CoreNLP die erweiterte Ausdruckssuche, die beispielsweise auf die Ergebnisse
der lexikalischen Disambiguierung zurückgreifen kann. In diesem Schritt können
beispielsweise Token, die als weitere Kandidaten für eine Koreferenzkette in Frage
kommen, über ihre semantischen Kategorien sowie Lesarten identifiziert werden. Dies
ist besonders in Fällen hilfreich, in denen mit dem bisherigen Vorgehen aufgrund
verschiedener Schreibweisen (z. B.Microsoft Sharepoint, MS Sharepoint, Sharepoint)
fälschlicherweise keine Koreferenz festgestellt wurde. Hierfür wird auf die Token
Groups-Objekte zurückgegriffen, die Angaben zu der Zusammengehörigkeit einzelner
Token enthalten.



7.3 Programmiertechnische Umsetzung 161

Kompensation von Unvollständigkeit

Das grundsätzliche Vorgehen bei der Kompensation von Unvollständigkeit wurde in
den Abschnitten 2.3 und 5.5.5 beschrieben. Im Folgenden werden daran anknüpfend
die wesentlichen softwaretechnischen Designentscheidungen erläutert.
Da es sich bei der Erkennung und Kompensation um ein mehrschichtiges Vorgehen

handelt, bedürfen insgesamt drei beteiligte Kernkomponenten einer Erläuterung126:
Im Zentrum steht auch hier die zentrale Komponentensteuerung (1), welche die
Erkennung und Kompensation anstößt und resultierende Informationen zusam-
menführt. Diese Informationen wiederum werden von MATE Tools127 (2) sowie
Apache Solr 128 (3) bereitgestellt. Abbildung 7.11 zeigt den Informationsaustausch
zwischen den Komponenten zur Erkennung und Kompensation von Unvollständigkeit.
Eine Besonderheit in Abbildung 7.11 ist die Darstellung der getrennten Server (Hard-
ware), was die hohe Skalierbarkeit der Kompensationskomponente unterstreicht.
Denkbar ist allerdings auch, die Steuerungskomponente, MATE Tools und Apache
Solr auf einem einzigen Server auszuführen.

Steuerungs-
komponente

Anforderungs-
beschreibung (Satz)

Apache Solr
(IR)

2
Query (HTTPS)

Results (XML)
MATE Tools

(SRL)

1
Sentences (HTTPS)

SRL (CONLL-X)

Ähnliche Anforderungs-
beschreibungen

Abbildung 7.11: Komponenteninteraktion zur Kompensation von Unvollständigkeit

Bei den MATE Tools des Stuttgarter Instituts für Maschinelle Sprachverarbeitung
handelt es sich um eine Sammlung statistischer NLP-Tools, wovon der SRL in dieser
Arbeit verwendet wird, um einzelne Sätze gegebener Anforderungsbeschreibungen
hinsichtlich Prädikaten und deren Valenz zu analysieren. Wird ein Prädikat wie
beispielsweise

”
löschen“ (engl. delete) erkannt, wird geprüft, welche Argumente vor-

handen sind und welche fehlen. Für fehlende Argumente wurde eine prototypische
Wissensbasis auf Grundlage der etablierten Proposition Bank von Palmer et al. (2005)
erstellt (vgl. Beispiel 7.3.1) und um die domänenspezifische Prädikatverwendung im
Softwarekontext aus Abschnitt 6.2 ergänzt.

126Weiterführende Angaben zur Auswahl und Konfiguration der jeweiligen Komponenten finden
sich in Bäumer und Geierhos (2016) sowie Geierhos und Bäumer (2016).

127Siehe: https://code.google.com/archive/p/mate-tools/ (Stand: 12.01.17). Siehe weiterführend
auch Björkelund et al. (2010).

128Siehe weiterführend: http://lucene.apache.org/solr/ (Stand: 12.01.17).



162 7 Implementierung

Beispiel 7.3.1 (Modifizierte Prädikatdatenbank, Auszug)

<roleset id=“delete.01” reqroles=“2” roles=“3”>
<role f=“PAG” descr=“entity removing” req=“1” n=“0”/>
<role f=“PPT” descr=“thing being removed” req=“1” n=“1”/>
<role f=“DIR” descr=“removed from” req=“0” n=“2”/>

</roleset>

Auf Grundlage der unvollständigen Prädikate wird eine Kompensationsanfrage (Que-
ry) erstellt, die an einen Suchmaschinenserver übermittelt wird, um ähnliche und
vor allem zwingend vollständige Anforderungsbeschreibungen zurückzuerhalten. An
dieser Stelle kommt Apache Solr als dritte Komponente – als Kompensations- bzw.
Suchserver – zum Einsatz.
Bei Apache Solr handelt es sich um einen

”
Standalone enterprise search server“

(Apache Software Foundation, 2016), der auf Apache Lucene129, einer etablierten
Programmbibliothek zur Volltextsuche, basiert. Der Kompensationsserver enthält ei-
ne Menge von Anforderungsbeschreibungen, die mitsamt annotierten Prädikaten und
Argumenten indiziert wurden. Eine Kompensationsanfrage an diesen Server liefert
relevante Anforderungsbeschreibungen zurück, die ähnlich zu der unvollständigen
Anforderungsbeschreibung sind, die es zu kompensieren gilt und mindestens das
gesuchte Prädikat in der erkannten Lesart und mindestens das fehlende Argument
enthält. Um ähnliche Anforderungsbeschreibungen zu finden, wird der Kontext
berücksichtigt – der Satz vor und nach dem unvollständigen Satz. Eine Kompensati-
onsanfrage an Apache Solr wird dabei nach folgendem Muster erstellt:

”
Sense:[Lesart] AND NOT [fehlendes Argument]:NULL AND Context :[Kontext]“

Bestandteile des Musters sind neben dem fehlenden Argument die Kontextinformatio-
nen und auch das unvollständige Prädikat. Auffällig ist, dass bezüglich des Prädikats
nicht nach dem spezifischen Token gesucht wird (z. B.

”
deletes“), sondern nach der

erkannten Lesart (z. B.
”
delete.01“). Diesem Vorgehen liegt die Notwendigkeit zu

Grunde, zwischen den verschiedenen Lesarten bei der Kompensationsanfrage zu
unterscheiden, um Anforderungsbeschreibungen zurückzuerhalten, die sowohl im
gegebenen Kontext relevant sind, als auch das Prädikat in der identischen Lesart
beinhalten. Deutlicher wird dies anhand der Kompensationsanfrage zu folgendem
Beispielsatz:

”
Emails are the technology of the future. Because of that, I want to

send emails and I want to delete. My friends are using it, too.“ (vgl. Beispiel 7.3.2).

Beispiel 7.3.2 (Kompensationsanfrage für delete.01)
Sense:delete.01 AND NOT argument 01:NULL AND context:“Emails are the
technology of the future. My friends are using it, too”

Um einen effizienten Vergleich des aktuell untersuchen Kontext mit den Kontexten
im Suchmaschinenindex zu ermöglichen (s.Abschnitt 5.5.5), wird in Apache Solr

129Siehe weiterführend: https://lucene.apache.org (Stand: 12.01.17).



7.3 Programmiertechnische Umsetzung 163

ein Preprocessing vorgenommen, deren Ablauf in Abbildung 7.12 dargestellt ist.
Demnach werden nicht Sätze miteinander verglichen, sondern einzelne Token (Bag
of Words), die mittels eines WhiteSpaceTokenizers erstellt werden. Token, die nicht
auf der Stoppwortliste stehen, werden um Synonyme ergänzt, auf Kleinschreibung
normalisiert und auf die Stammform reduziert.

Tokenizer StopFilter SynonymFilter

LowerCaseFilter PorterStemFilter

Synonym-
wörterbuchStoppwortliste

Abbildung 7.12: Preprocessing der Kontextinformationen in Apache Solr

Das Ergebnis der Kompensationsanfrage für das Prädikat delete in der Lesart delete.01
ist in Abbildung 7.13 dargestellt (Ausgabe an der Benutzerschnittstelle). Durch die
SRL-Komponente (2) konnte hier bereits das Personalpronomen

”
I“ erkannt werden,

während das ebenfalls obligatorische Argument A1 nicht erkannt werden konnte.
Dieses Argument konnte allerdings erfolgreich kompensiert werden (

”
spam emails”)

und wird auf der Benutzeroberfläche durch ein Symbol (+) hervorgehoben.

Abbildung 7.13: Beispielhafte Ausgabe der Kompensationskomponente

7.3.2.3 Umsetzung der Indikatoren

Wie in Abschnitt 5.3 dargestellt, basieren die Indikatoren zwar überwiegend auf
gemeinsamen semantischen Informationen, die Umsetzung unterscheidet sich aber
von Fall zu Fall, sodass im Folgenden jeder Indikator getrennt implementiert wird.



164 7 Implementierung

Indikatoren lexikalischer Ambiguität

Der Verdacht auf Ambiguität wird auf Grundlage von Token (ausgewählter semanti-
scher Kategorien) getroffen, für die mehrere Lesarten in WordNet (s. Abschnitt 3.3.1.1)
existieren. Genauer gesagt, sind das alle semantischen Kategorien mit Ausnahme
von

”
Rolle“ und

”
Priorität“, die bereits von der IE-Komponente im Vorfeld extra-

hiert und gespeichert wurden (s. Abschnitt 5.3.2.1). Allerdings sind nicht alle Token
gleich wichtig für die Entscheidung, ob die Disambiguierungskomponente angewendet
werden soll oder nicht. Vielmehr gilt es, im Sinne der Verarbeitungsperformanz,
zusätzlich auf Grundlage einer Stoppwortliste130 und POS-Tags zu filtern.
Darüber hinaus ist noch offen, wie ein performanter Zugriff auf WordNet als

Ressource sichergestellt werden kann. Ziel muss dabei sein, mit geringem Zeitauf-
wand an die Lesarten eines Tokens zu gelangen, was einen netzwerkbasierten Zugriff
ausschließt. In dieser Arbeit wird deshalb auf die Java WordNet Library (JWNL)131

zurückgegriffen. Hierbei handelt es sich um eine JAVA-Implementierung der Word-
NetAPI, die umfangreichen Datenzugriff auf WordNet sowie ähnliche Ressourcen
ermöglicht. Ein wesentlicher Vorteil dieser Implementierung ist, dass die erforderli-
chen Dateien allesamt lokal bereitgestellt werden können, womit ein Netzwerkzugriff
gänzlich entfällt und ein performanter Zugriff auf WordNet sichergestellt ist.

Indikatoren syntaktischer Ambiguität

Um PP-Anbindungsambiguität musterbasiert erkennen zu können, sind Informa-
tionen über die Bestandteile eines Satzes erforderlich (engl. chunks), wie Nominal-
phrasen, Verbalphrasen oder eben Präpositionalphrasen. Wie in Abschnitt 5.3.2.2
dargestellt, kann potentielle PP-Anbindungsambiguität anhand eines Musters wie

”
VP NP PP“ erkannt werden, wobei zu prüfen ist, ob es sich bei der Präposition um

”
of“ handelt, die als unzureichender Ambiguitätsindikator gilt. Um die hierzu erfor-
derlichen Informationen (Chunks) zu erhalten, wird in dieser Arbeit der OpenNLP
Chunker (Apache Software Foundation, 2012) eingesetzt.

Beispiel 7.3.3 (Musterbasierter Indikator syntaktischer Ambiguität)
Satz:

”
I want to press the button with the mouse“

(Annotierte) Chunks: NP VP NP PP NP

Wie in Beispiel 7.3.3 sichtbar wird, enthält die Sequenz das a priori definierte Muster
und wird somit als potentiell ambig erkannt. Die Ausführungszeit des OpenNLP
Chunkers ist dabei als sehr gut zu bezeichnen, da hier beispielsweise lediglich eine
Zeit von vernachlässigbaren 0.001 Sekunden in Anspruch genommen wurde.
Im Falle der Koordinationsambiguität wird nicht auf die Ergebnisse von

OpenNLP zurückgegriffen, sondern auf die POS-Tags, die bereits seit dem Pre-
processing vorliegen. Ähnlich zu dem zuvor dargestellten Vorgehen, werden allerdings
auch die POS-Tags einer Reihe von Token eines Satzes als Sequenz dargestellt und

130Die Stoppwortliste umfasst 534 Einträge (z. B.
”
the“,

”
their“,

”
them“,

”
themselves“) und ba-

siert zu großen Teilen auf der Stoppwortliste, die von der Apache Foundation bereitgestellt
wird. Siehe: https://github.com/apache/lucene-solr/blob/master/lucene/analysis/common/

src/resources/org/apache/lucene/analysis/snowball/english_stop.txt (Stand: 12.01.17).
131Siehe weiterführend: http://jwordnet.sourceforge.net/handbook.html (Stand: 12.01.17).



7.3 Programmiertechnische Umsetzung 165

auf Muster untersucht. Ein Beispiel für ein solches Muster ist
”
JJ NNS CC NNS“132.

Wird dieses gefunden, ist eine potentielle Koordinationsambiguität gegeben.
Auch das mehrfache Vorkommen von Konjunktoren (

”
and“,

”
or“) innerhalb eines

Satzes kann auf diese Weise überprüft werden, was als weiteres Indiz für Ambiguität
gilt. Dabei kann dieses Vorgehen als sehr performant bezeichnet werden, da nur auf
bereits in den Daten direkt vorliegende Informationen zurückgegriffen wird.

Indikatoren referentieller Ambiguität

Die Erkennung potentieller referentieller Ambiguität wurde in Abschnitt 5.3.2.3
behandelt und wird, wie auch die syntaktische Ambiguität, durch einen musterbasier-
ten Indikator umgesetzt. Der Musterabgleich basiert dabei ebenfalls auf POS-Tags.
Eine Besonderheit ist, dass dieses Muster sich nicht zwangsläufig auf nur einen
einzigen Satz bezieht, sondern mehrere Sätze umfassen kann. Genauer gesagt können
Bestandteile des Musters unterschiedlichen Sätzen zugehörig sein, was eine paarweise
Untersuchung der Sätze begründet (s. Abschnitt 5.3.2.3).
Um diese Besonderheit abzudecken, ist es erforderlich, den Indikator in der gesamten

Anforderungsbeschreibung bzw. über alle relevanten, englischsprachigen Sätze hinweg
zu suchen, wobei nur Sequenzen von aufeinanderfolgenden Sätzen berücksichtigt
werden. Zunächst wird hierzu ein gegebener Satz Si auf das Vorhandensein mindestens
zweier Nomina untersucht, wobei beide Nomina deckungsgleich im Plural oder im
Singular vorliegen müssen. Wird dieses Teilmuster festgestellt, wird sowohl in S i

als auch im darauffolgenden Satz Si+1 das Vorhandensein eines Pronomen geprüft,
welches potentiell auf beide gefundenen Nomina in Si referenzieren könnte und somit
referentiell ambig wäre. Da es sich hierbei um ein iteratives Vorgehen handelt, wird
Satz Si+1 im nächsten Schritt unabhängig von möglicher Fundstellen zum neuen
Ausgangspunkt Si und der vorherige Si+2 zum Untersuchungsgegenstand Si+1 etc.
Das Thema der Erkennung potentieller Koreferenz ist von dem bisher be-

schriebenen Vorgehen vor allem dadurch abzugrenzen, dass weitere lexikalische
Informationen notwendig sind und der Indikator auf die vollständige Anforderungsbe-
schreibung133 angewendet wird (s. Abschnitt 5.3.2.3). Genauer gesagt, werden die se-
mantischen Kategorien betrachtet (s. Abschnitt 5.3.2.3), indem alle Token einer seman-
tischen Kategorie gruppiert und untereinander verglichen werden. Übereinstimmende
Token gelten als Indiz für Koreferenz, wobei einzelne Kategorien unterschiedlich
verarbeitet werden, wie in Abschnitt 5.3.2.3 dargestellt. Hervorzuheben ist darüber
hinaus die in Beispiel 7.3.4 dargestellte Synonymliste, die einbezogen wird, um eine
größere Abdeckung zwischen Token gleicher semantischer Kategorien zu erhalten.

Beispiel 7.3.4 (Synonymliste, Auszug)
component=application, program, software, system;
object=server,host;
object=certificate,certification,credential,credentials;
object=spam,junk e-mail;
object=electronic mail,e-mail,email;

132Zu lesen als: Adjektiv, Nomen (Plural), Konjunktion, Nomen (Plural).
133Im Sinne aller relevanten, englischsprachigen Sätze.



166 7 Implementierung

In dieser prototypischen Umsetzung ist die Synonymliste manuell erstellt worden134.
In der weiteren Entwicklung ist vorzusehen, diesen Erstellungsprozess in Teilen zu
automatisieren. Hier ist eine Idee, den WSD-Cache der lexikalischen Disambiguierung
um Synonyme zu erweitern und als Ressource heranzuziehen.

Indikatoren für Unvollständigkeit

Unvollständigkeit wird über das Fehlen der semantischen Kategorien Subjekt (Rolle,
Komponente) und Objekt definiert (s. Abschnitt 5.3.2.4). Die hierzu erforderlichen
Informationen liegen – wie auch bei den Indikatoren zuvor – bei der Indikatoran-
wendung bereits vor. So gestaltet sich die eigentliche Indikatoranwendung insofern
einfach, als dass es zu prüfen gilt, welche semantischen Kategorien vorhanden sind
bzw. welche fehlen. Dies erfolgt auf Satzbasis bzw. unter iterativer Verarbeitung
einzelner Token eines Satzes. Hierbei ist eine Einschränkung, dass mindestens ein
Token der Wortart Nomen als Objekt in einem Satz geführt werden muss. Diese
zusätzliche Regel wird eingeführt, um Fehler der Anforderungsextraktion durch
REaCT abzufangen135.
In der prototypischen Umsetzung wird nicht berücksichtigt, dass mehrere Prädikate

auch mehrere Objekte voraussetzen können. Derzeit ist es ausreichend, wenn ein
Objekt im Satz vorhanden ist, auch wenn zwei Prädikate vorkommen und gegebenen-
falls sogar ein Prädikat erst nach dem Objekt eingeführt wird. Dieser Umstand ist
beim Subjekt weniger entscheidend, da in der Regel nur ein Subjekt angegeben wird.

7.3.2.4 Umsetzung der Strategien

Bei der Umsetzung der in Abschnitt 5.2 erarbeiteten Strategien ist zwischen den
vordefinierten Strategien und der Fallback -Strategie zu unterscheiden, da sich die
Abläufe und somit auch die Umsetzung jeweils anders darstellen.

Strategy Adapter

− processingTimeInMillis: Long
− initializationTimeInMillis: Long
# controller: Controller
# logger: Logger
# Spellchecking: PP_SPELLCHECK

checkURLConnections()
getExplanation(): String
getInitializationStatus(): Status
process(): Boolean
equals(Object): Boolean

Complete Strategy

− chunkerME: ChunkerME
− chunkerModel: cModel
− model: POSModel

getIdentifier(): String
getExplanation(): String
processInternal(RD): Boolean

Abbildung 7.14: Vererbung von Struktur-/Verhaltensmerkmalen (kompakte Darstellung)

Das Konzept der Strategien basiert grundsätzlich auf einem Adapter. In diesem
Fall handelt es sich um einen Strategy Adapter, der als Grundgerüst verschie-
dener Strategien fungiert (vgl. Abbildung 7.14). Diese Oberklasse vererbt ihre

134Unter Einbezug von WordNet als lexikalische Ressource (s. Abschnitt 3.3.1.1).
135Die IE-Komponente REaCT klassifiziert z. B. auch Verben oder Adjektive als Objekte.



7.3 Programmiertechnische Umsetzung 167

Struktur-/Verhaltensmerkmale an die Unterklassen (wie z. B. die Complete-Strategie).
Sie stellt somit einheitliche Metainformationen sicher und sorgt für interstrategische
Vergleichbarkeit. Wie in Abbildung 7.14 erkennbar, ist beispielsweise beim Strategy
Adapter die Methode getExplanation() vorgesehen, die eine natürlichsprachliche
Erläuterung der Strategie enthält. Da diese Metainformation bei allen Strategien
gleichermaßen vorhanden sein soll, ist eine Anordnung auf Ebene der Oberklasse
sinnvoll. Weiterhin ermöglicht beispielsweise die Methode equals() explizit den Ver-
gleich von zwei Strategieadaptern (auf Ebene der einzelnen Merkmale, die unterstützt
werden) und checkURLConnections() prüft den Netzwerkverkehr zwischen einzelnen
Verarbeitungskomponenten auf Funktionsfähigkeit.

Die einzelnen Strategien enthalten die sequenziell angeordneten Verarbeitungskom-
ponenten sowie deren Anwendungsgegenstand (z. B. satzbasierte oder tokenbasierte
Anwendung). Am Beispiel der Complete-Strategie sieht dies beispielsweise wie in
Tabelle 7.4 aus. Es fällt auf, dass jede Strategie auch die für sich notwendigen
mehrsprachigen Programmausgaben bereithält.

Attribut Ausprägung

Identifier • Complete Strategy
• Vollständige Verarbeitungsstrategie

Explanation • Contains all available processing steps
• Enthält alle verfügbaren Verarbeitungsschritte

Processing Adapter • Referential Disambiguation (Beschreibung)
• Syntactical Disambiguation (Satz)
• Incompleteness Compensation (Satz)
• Wordsense Disambiguation (Satz)
• Vagueness Detection (Satz)

Tabelle 7.4: Attribute der Complete-Strategie

Der Sonderfall der Fallback -Strategie gestaltet sich ein wenig anders: Es handelt sich
zwar grundsätzlich ebenfalls um einen Strategy Adapter, der zugehörige Processing
Adapter wird aber erst zum Zeitpunkt der Anwendung gemäß der erkannten Indi-
katoren erstellt. Hierbei ist darauf hinzuweisen, dass auch bei der bedarfsgerechten
Zusammenstellung der Verarbeitungskomponenten auf die Sequenz der Ausführung
zu achten ist, da Abhängigkeiten zwischen den Komponenten bestehen oder Synergien
genutzt werden können.

7.3.2.5 XML-Schnittstellen

Insgesamt sind zwei XML-Schnittstellen in dem vorliegenden Softwaresystem vor-
handen: Die Output- und die Info-Schnittstelle. Beide Schnittstellen stehen der
Weiterverarbeitung nach erfolgreichem Programmdurchlauf zur Verfügung, wobei
keine persistente Speicherung der XML-Ausgaben stattfindet, es sei denn, diese Art
der Speicherung wird explizit vom Endanwender gewählt (s. Abschnitt 7.3.3.2). Die
Output-Schnittstelle ist für den Produktiveinsatz vorgesehen, da sie alle Ergebnisse
strukturiert zur Verfügung stellt und somit die maschinelle Weiterverarbeitung der
Anforderungsbeschreibungen ermöglicht (s. Abschnitt 5.5.7).



168 7 Implementierung

Als sehr hilfreich bei der Softwareentwicklung erwies sich darüber hinaus die Info-
Schnittstelle, die für jede Komponente und somit für jeden Verarbeitungsschritt die in
Anspruch genommene Zeit strukturiert wiedergibt (vgl. Beispiel 7.3.5). Diese Angaben
sind sowohl für das Preprocessing als auch für die Erkennung und Kompensation
vorhanden und ermöglichen es Entwicklern, Komponenten zu identifizieren, die nicht
performant agieren und das Softwaresystem in der Verarbeitung bremsen.

Beispiel 7.3.5 (Info-Schnittstelle, Auszug)

<processing time=“30573ms”>
<Referential Disambiguation time=“1588ms”>

<initialization time=“0ms”/>
<process time=“1588ms”/>

</Referential Disambiguation>
<Incompleteness Compensation time=“4168ms”>

<initialization time=“456ms”/>
<process time=“3712ms”/>

</Incompleteness Compensation>
<Word Sense Disambiguation time=“24802ms”>

<initialization time=“277ms”/>
<process time=“24525ms”/>

</Word Sense Disambiguation>
</processing>

Wie zu erkennen ist, wird nicht nur die jeweilige Verarbeitungszeit wiedergegeben,
sondern auch die Zeit, die gebraucht wird, um Verarbeitungskomponenten zu initiali-
sieren. Dies ist hier von Interesse, da mit umfangreichen Ressourcen gearbeitet wird
(z. B.Klassifikationsmodelle), deren Einlesen zeitintensiv ist. Auf diesem Wege lassen
sich notwendige Optimierungen feststellen (z. B.Austausch von Ressourcen).

7.3.3 Datenschicht

Klassischerweise sorgt die Datenschicht
”
[...] dafür, dass die fachlichen Objekte dau-

erhaft gespeichert und auch wieder geladen werden können“ (Dunkel und Holitschke,
2003, S. 18), wobei sie aufgrund der losen Kopplung möglichst wenig über die anderen
Schichten weiß (Dunkel und Holitschke, 2003, S. 18). Im Folgenden wird sowohl der
Export interner Datenobjekte (s. Abschnitt 7.3.3.1) als auch die Speicherung von
Verarbeitungsresultaten (Output) und Verarbeitungszeiten (Info) als XML-Dateien
besprochen (s. Abschnitt 7.3.3.2).

7.3.3.1 Export instantiierter Datenklassen

Mit der Objektserialisierung136 wird in dieser Arbeit das Ziel verfolgt, Zwischener-
gebnisse umfänglich verfügbar, nachvollziehbar und vergleichbar zu machen. Anders

136Umfangreiche Informationen zur Serialisierung in Java geben Krüger und Hansen (2014, S. 863 ff.).



7.3 Programmiertechnische Umsetzung 169

als bei der Ergebnisausgabe an der Benutzer- und XML-Schnittstelle, handelt es
sich hierbei um Kopien serialisierbarer Datenobjekte (z. B. ein Token) mitsamt allen
Transformationen und Ergänzungen (z. B. Lesarten). Es sind demnach weit mehr
Informationen verfügbar, womit eine maschinelle Weiterverarbeitung ermöglicht wird,
die nicht nur auf den finalen Ergebnissen basiert, sondern auch die Zwischenergebnisse
miteinbeziehen kann. Denkbar ist beispielsweise eine Applikation zur Ergebniseva-
luation oder eine ergänzende Software, die der Fehlerfindung dient. Abbildung 7.15
zeigt hierfür einen ersten Entwurf einer Softwareapplikation, die in der Lage ist, meh-
rere Anforderungsbeschreibungen (Description-Objekte) zu vergleichen und somit
gegenüberzustellen.

Abbildung 7.15: Gegenüberstellung von Description-Objekten

7.3.3.2 Persistente XML-Speicherung

Grundsätzlich ist die strukturierte Ausgabe zur maschinellen Weiterverarbeitung
vorgesehen (s. Abschnitt 5.5.7), es besteht aber die Möglichkeit für die Endanwender,
die Ergebnisse und Verarbeitungszeiten persistent auf dem Server zu speichern
und bei Bedarf zu exportieren (s. Abschnitt 7.3.1.2). Dies kann beispielsweise einem
späteren Vergleich verschiedener Ergebnisse dienen. Aus diesem Grund werden die in
Abschnitt 7.3.2.5 skizzierten XML-Schnittstellen aufgerufen und die übermittelten
Daten mit einem entsprechenden Zeitstempel und einer eindeutigen Session ID als
Dateinamen gespeichert (vgl. Abbildung 7.16).
In einer späteren programmiertechnischen Umsetzung, die über diesen Prototypen

hinausgeht und die beispielsweise auch Benutzerkonten vorsieht, ist eine benutzer-
spezifische Wahl der Dateinamen als sinnvoll zu erachten.



170 7 Implementierung

Abbildung 7.16: Protokollarchiv der Verarbeitungszeiten und Ergebnisse

7.4 Anforderungen an die Systemqualität

Zur Sicherstellung der Konzept- bzw. Systemqualität werden im Folgenden aus-
gewählte, vom Software Engineering Institute (SEI) benannte, Maßnahmen diskutiert,
die in fünf Oberkategorien unterteilt werden (VSEK Konsortium, 2007c):

• Anforderungserfüllung (Need Satisfaction Measures)

• Leistung (Performance Measures)

• Wartbarkeit (Maintenance Measures)

• Adaptierbarkeit (Adaptive Measures)

• Wirtschaftlichkeit (Organizational Measures)

Berücksichtigung finden im Folgenden die Maßnahmen in den Kategorien Leistung,
Wartbarkeit und Adaptierbarkeit. Dies bedeutet keineswegs, dass die Kategorien der
Anforderungserfüllung sowie der Wirtschaftlichkeit nicht bedeutsam wären. Vielmehr
handelt es sich hier um ein Systemkonzept mit prototypischer Umsetzung, bei der
beispielsweise die Testbarkeit oder die zu erwartenden Betriebskosten nicht im Fokus
der Überlegungen stehen.

7.4.1 Leistung

Die Kategorie Leistung beschreibt nach Vogel et al. (2009, S. 114 f.) Laufzeitan-
forderungen, welche

”
Qualitäten [umfassen], die die Akzeptanz des Systems beim

Auftraggeber oder Benutzer beeinflussen“ (Vogel et al., 2009, S. 114 f.). Im Folgenden
finden sich Überlegungen zum Leistungsverhalten (s. Abschnitt 7.4.1.1), zur Sicherheit
(s. Abschnitt 7.4.1.2) und zur Bedienbarkeit (s. Abschnitt 7.4.1.3).



7.4 Anforderungen an die Systemqualität 171

7.4.1.1 Leistungsverhalten

Vogel et al. (2009, S. 115) beschreiben Leistungsverhalten als das Leistungsvermögen
eines Softwaresystems bei der Reaktion auf äußere Ereignisse, welches

”
wesentlich

durch die Kommunikation an seinen internen und externen Schnittstellen bestimmt
[wird]“ (Vogel et al., 2009, S. 115). Dies ist ein wesentlicher Aspekt bei dem vorlie-
genden Softwaresystem, besteht es doch mehrheitlich aus Einzelkomponenten und
betreibt entsprechend intensive Schnittstellenkommunikation.
Im Zentrum der folgenden Überlegungen soll demnach nicht die

”
durchschnittliche

Zeitdauer, die das System zur Bearbeitung eines Ereignisses braucht“ (Vogel et al.,
2009, S. 115), stehen, sondern vielmehr die Frage, wie die Kommunikation zwischen
Verarbeitungskomponenten hinsichtlich des Leistungsverhaltens zu gestalten ist.

Es existieren Verarbeitungskomponenten wie die Anforderungsextraktion, die in
jedem Fall ausgeführt werden müssen (s. Abschnitt 5). Darüber hinaus ist bekannt,
dass die Verarbeitungskomponenten unterschiedlich performant sind (vgl. Beispiele in
Tabelle 7.5). Um einen Einblick in deren Performanz zu erhalten, wurden 50 zufällig
gewählte Anforderungsbeschreibungen aus dem Anforderungsbeschreibungskorpus
von Dollmann (2016) herangezogen und jeweils an die Verarbeitungskomponenten137

zur Anforderungsextraktion, Unvollständigkeitskompensation sowie syntaktischen
Disambiguierung übergeben. Tabelle 7.5 zeigt dafür die Antwortzeiten138. Wie zu
erkennen ist, unterscheiden sich die Antwortzeiten der Komponenten nennenswert.
Anhand von ausgewählten Designentscheidungen wird im Folgenden exemplarisch
dargestellt, wie versucht wird, die Systemperformanz weiter zu optimieren.

Min. Max. ∅

Anforderungsextraktion 1.136 3.564 2.122
Unvollständigkeitskompensation 259 1.031 638
Syntaktische Disambiguierung 445 2.532 1.202

Tabelle 7.5: Performanz ausgewählter Verarbeitungskomponenten (in ms)

Die Anforderungsextraktion ist von den drei abgebildeten Verarbeitungskomponenten
die mit der höchsten Antwortzeit. Sie ist aber elementar für das System und kann
deshalb nicht weggelassen werden. Nichtsdestotrotz kann die Performanz verbessert
werden, indem beispielsweise die Klassifikation von On- und Off-Topic Sätzen von der
eigentlich Anforderungsextraktion gelöst wird – und somit beide Verarbeitungsschritte
bedarfsgerecht einzeln abgerufen werden können. REaCT sieht im Original von
Dollmann (2016, S. 57) vor, dass eingehende Anforderungsbeschreibungen zuerst auf
nebensächliche Angaben überprüft werden. Dies ist aber nicht immer erforderlich139.
Eine Trennung von Klassifikation und Extraktion ist demnach performanter.
Darüber hinaus erlaubt es die Client-Server -Architektur, Ressourcen der Kompo-

nenten (z. B.Klassifikationsmodelle), wie beispielsweise der syntaktischen Disambi-
guierung, im Arbeitsspeicher zu halten (ausreichende Speichergrößen vorausgesetzt)

137Verarbeitungskomponenten in Ausgangskonfiguration.
138Informationen zum Testsystem können Abschnitt 7.2 entnommen werden.
139Beispielsweise wenn ein Satz erneut der Anforderungsextraktion übergeben werden soll.



172 7 Implementierung

und deren Anwendung dadurch zu beschleunigen (abhängig von Hardwarekonfigura-
tionen), da die Modelle nur beim erstmaligen Start geladen werden müssen.
Neben der Optimierung von Komponenten kann auch die Schnittstellenkommunika-
tion optimiert werden, sodass die Kompensationsanfragen performanter werden oder
ihre Anzahl minimiert wird. Grundsätzlich wird die Anzahl der Anfragen reduziert,
indem bereits das Preprocessing nebensächliche Sätze und nicht-englischsprachige
Sätze von der weiteren Verarbeitung ausschließt (s. Abschnitt 5.5.2). Performantere
Kompensationsanfragen lassen sich darüber hinaus beispielsweise bei der Kompensati-
on von Unvollständigkeit konfigurieren. Die Reduktion der Kompensationskandidaten
auf die ähnlichsten Treffer (z. B. fünf Treffer anstatt alle) kann bereits die Perfor-
manz der Nachbearbeitung erhöhen. Auch sollte die Antwort nur das Datenfeld der
gesuchten Information (Argument), nicht aber den gesamten Treffer enthalten.

7.4.1.2 Sicherheit

”
Sicherheit ist eine nicht-funktionale Anforderung mit durchdringendem Charakter“
(Vogel et al., 2009, S. 116). Sie ist facettenreich und von hoher Praxisrelevanz. Vogel
et al. (2009, S. 116) unterteilen Sicherheit in Vertraulichkeit (engl. confidentiality),
Authentifizierung (engl. authentication), Integrität (engl. integrity), Privatsphäre
(engl. privacy), Unleugbarkeit (engl.non-repudiation) sowie Schutz vor Zerstörung
(engl. intrusion protection).

Bisher stand Sicherheit nur selten im Fokus der in dieser Arbeit angestellten
Überlegungen. Beispielsweise beim Schutz vor fehlerhaften Daten, die zu einem
gewollten Systemabsturz führen können, fand sie in Abschnitt 5.5.2 Erwähnung.
Auch nicht alle von Vogel et al. (2009) benannten Sicherheitsbereiche sind zum
Konzeptionszeitpunkt bereits von Bedeutung. Im Folgenden werden anfängliche
Überlegungen zu den Bereichen Authentifizierung und Privatsphäre angestellt.

Authentifizierung

Authentifizierung ist
”
der Vorgang der Identitätsüberprüfung. Ein Benutzer beweist

mithilfe von Berechtigungsnachweisen gegenüber der Authentifizierungsfunktion, dass
er der ist, der er vorgibt zu sein“ (Vogel et al., 2009, S. 246). Ein etablierter Typ von
Berechtigungsnachweisen ist nach Vogel et al. (2009, S. 246) die Kombination von
Benutzername und Passwort, allerdings sind auch Zertifikate, Magnetstreifenkarten,
Fingerabdrücke oder das Tippverhalten140 geeignet.
In dieser Arbeit lässt sich Authentifizierung durch etablierte Techniken im Be-

reich der Benutzername-Passwort-Kombination umsetzen. Da es sich um ein Client-
Server -Szenario handelt, ist eine Authentifizierung des Endanwenders gegenüber
des Servers vor jeglichen weiterführenden Datenübertragung anzustreben (HTTP-
Authentifizierung). Hierzu existiert beispielsweise der defacto Standard hypertext
access (auch: .htaccess), welcher serverseitig die Authentifizierungskonfiguration für
mehrere Endanwender ermöglicht. Aber auch komplexere sowie komfortablere Um-
setzungen sind denkbar141.

140Siehe bzgl. Tippverhalten die vielzitierten Arbeiten von Monrose und Rubin (1997).
141Siehe beispielsweise Cook (2002, S. 167 ff.).



7.4 Anforderungen an die Systemqualität 173

Privatsphäre

Privatsphäre bedeutet,
”
dass Nachrichten, die zwischen zwei Systembausteinen ausge-

tauscht werden, auf dem Kommunikationspfad selber nicht gelesen, bzw. verstanden
werden können“ (Vogel et al., 2009, S. 246). Um Privatsphäre zu erreichen, ist Ver-
schlüsselungstechnologie auf diesem Kommunikationspfad notwendig. In dieser Arbeit
wird dies ebenfalls mittels einer Client-Server -Architektur realisiert.

Endanwender kommunizieren über einen Webbrowser mit dem Softwaresystem. Für
diese Kommunikation existieren Verschlüsselungsprotokolle, welche die verschlüsselte
Übertragung von Daten über ein (unbekanntes) Netzwerk ermöglichen. Ein etablierter
Standard ist die Transport Layer Security (TLS, zuvor Secure Sockets Layer), die
beispielsweise im HTTPS-Kommunikationsprotokoll Anwendung findet. Hierbei baut
der Client eine Verbindung zum Server auf und initiiert die Authentifizierung des
Servers, welche auf einem Zertifikat basiert, das vom Client auf Gültigkeit geprüft
wird. Daraufhin wird ein kryptographischer Schlüssel vereinbart, der sowohl zur
Verschlüsselung als auch zur Prüfung von Authentizität verwendet wird142.

7.4.1.3 Bedienbarkeit

Bedienbarkeit (engl. usability) umschreibt auf der einen Seite, wie und wie gut Endan-
wender das Softwaresystem mittels gegebener GUI bedienen können. Es beschreibt auf
der anderen Seite aber auch, wie sich das System bezüglich der getroffenen Eingaben
verhält (Vogel et al., 2009, S. 115). Zwar geschieht die Umsetzung des beschriebenen
Konzepts nur prototypisch (s. Kapitel 7), nichtsdestotrotz ist die Bedienbarkeit eines
Softwaresystems essentiell für dessen Akzeptanz.

Abbildung 7.17: Programmablauf (GUI) Abbildung 7.18: Fehlermeldung (GUI)

Grundsätzlich verhält sich die Interaktion mit dem beschriebenen System so, dass
die Eingabe einer Anforderungsbeschreibung erforderlich ist, um eine kompensierte,
strukturierte Anforderungsbeschreibung zurückzuerhalten. Hierzu steht eine einfa-
che Eingabemaske bereit (vgl. Abbildung 7.18). Jede weitere Interaktion mit dem
System (über eigene Programmmasken) dient der Ergebnisevaluation. Ziel ist es,
die Komplexität des Gesamtsystems auf den Benutzerschnittstellen zu verbergen
und eine nachvollziehbare Navigation zu ermöglichen. Als Beispiel hierfür wird die

142Stark vereinfachte Darstellung, für mehr Informationen bezüglich TLS siehe Ristić (2014).



174 7 Implementierung

Navigation in der erweiterten Ergebnisansicht herangezogen (vgl. Abbildung 7.17),
die den individuell durchgeführten Programmablauf darstellt und somit zur An-
sicht der Einzelergebnisse des Kompensationsprozesses dient. Die Transparenz der
Verarbeitung wird durch die Darstellung des Verarbeitungsprozesses erhöht, indem
Endanwender Schritt für Schritt das Ergebnis betrachten und nachvollziehen können.
Bezüglich der Benutzerschnittstellen merken Vogel et al. (2009, S. 115) an,

dass barrierefreies Arbeiten es erfordert, alternative Benutzerschnittstellen
(z. B. Sprachsteuerung) bereitzustellen, zumindest aber zu ermöglichen. In die-
ser Arbeit wird dieser Forderung durch Nutzung moderner Webtechnologien
(s. Abschnitt 7.4.2.2) und strukturierten Ausgaben nachgekommen. In diesem Zusam-
menhang ist der fehlende

”
Offline-Modus“ des Systems als mögliche Einschränkung

in der Nutzung zu nennen. Aufgrund der Client-Server -Architektur ist ein Arbei-
ten mit dem System nur bei bestehender Netzwerkverbindung möglich. Ein rein
lokales Arbeiten ist derzeit nicht vorgesehen. Darüber hinaus sind Überlegungen
anzustellen, wie das System auf fehlerhafte Eingaben reagiert. Kommt es zu Fehlern
in der Verarbeitung, sind diese dem Endanwender transparent zu präsentieren. Da
allerdings kein umfangreiches technisches Vorwissen erwartet werden darf, sind
die Fehlermeldungen ohne Fachsprache zu verfassen. Abbildung 7.18 zeigt eine
Fehlermeldung, die Endanwendern präsentiert wird, wenn keine Eingabe gemacht,
die Weiterverarbeitung aber dennoch gestartet wird.

7.4.2 Adaptierbarkeit

In dieser Arbeit bezieht sich Adaptierbarkeit insbesondere auf die Fähigkeit des
Konzepts bzw. des resultierenden Systems, auf einer weiteren Domäne und/oder
Sprache angewandt zu werden. Adaptierbarkeit beschreibt dabei nach Hammer (2013)
die

”
Anpassung eines Systems oder einer Applikation an einen Benutzer und/oder

eine Aufgabe“ (Hammer, 2013, S. 6). Ergänzt werden kann diese Erklärung um den
Aspekt der Systemintegration, wie in Definition 7.4.1 dargestellt wird.

Definition 7.4.1 (Adaptierbarkeit)

”
Adaptierbarkeit ist die Eigenschaft von Software, an unterschiedliche funktionale
Anforderungen anpassbar zu sein. Dies bezieht sich sowohl auf Anforderungen an die
Funktionalität der Komponente als auch auf ihre Fähigkeit, mit unterschiedlichen
Systemen zusammenzuarbeiten, d.h. eine Systemintegration zu ermöglichen“ (VSEK
Konsortium, 2007a)

Adaptierbarkeit wird im Folgenden unterteilt in Interoperabilität (s. Abschnitt 7.4.2.1),
Portabilität (s. Abschnitt 7.4.2.2), Skalierbarkeit (s. Abschnitt 7.4.2.3) und Wieder-
verwendbarkeit (s. Abschnitt 7.4.2.4).

7.4.2.1 Interoperabilität

Interoperabilität bezeichnet allgemein die
”
Fähigkeit unterschiedlicher Systeme,

möglichst nahtlos zusammenzuarbeiten“ (Dudenredaktion, 2016, S. 934). Im Kontext
dieser Arbeit wird darüber hinaus die Definition von Stempfle (1996) hinzugezogen,
die den Aspekt der Standardisierung hervorhebt:



7.4 Anforderungen an die Systemqualität 175

Definition 7.4.2 (Interoperabilität)

”
Fähigkeit einer Systemkomponente, sich aufgrund genormter Schnittstellen in ein
Gesamtsystem in der Weise integrieren zu lassen, daß ein ungehinderter, problemloser
Austausch zwischen der eingebundenen Systemkomponente und dem Gesamtsystem
stattfinden kann. [...] Interoperabilität ist damit eine Wirkung, ein Ergebnis konse-
quenter Umsetzung anerkannter Standards“ (Stempfle, 1996)

Ein hoher Grad an Interoperabilität ist dabei weit mehr als ein Zustand, den es
in dieser Arbeit zu erreichen gilt. Interoperabilität ist strenggenommen vielmehr
die zentrale Herausforderung. Schließlich handelt es sich um ein Softwaresystem,
welches eine Vielzahl heterogener Softwarekomponenten im Sinne einer gemeinsamen
Aufgabe zusammenführt. Dieser Gedanke wird auch bei Bues (1994) deutlich, der
Interoperabilität als gegeben ansieht, wenn

”
[...] heterogene Systeme mit unterschied-

lichen Zweckbestimmungen in einem Verbund zusammenwirken, so daß sie sich dem
Benutzer wie ein einziges homogenes Leistungsgefüge darstellen“ (Bues, 1994, S. 27).
Im Bereich des NLPs besteht die Diskussion rund um Interoperabilität bereits

seit Langem und erscheint durch Themen wie dynamische Ressourcen, Ressour-
cenintegration und Semantic Web auch weiterhin aktuell (z. B. Witt et al., 2009).
Die vorliegende Arbeit greift dabei auf bestehende Errungenschaften zurück, indem
die gesamte interne sowie externe Schnittstellengestaltung auf offenen, etablierten
(De-Facto-)Standards beruht (z. B.CoNLL-U143). In dieser Arbeit resultiert dies in
drei Designentscheidungen:

1. Die gesamte interne Kommunikation zwischen den Schnittstellen wird auf ein
einheitliches, internes Datenmodell normalisiert.

2. Die Gesamtausgabe der Softwareapplikation nutzt für den plattform- und
implementationsunabhängigen Austausch eine strukturierte Ausgabe.

3. Die Gesamtausgabe enthält alle vorliegenden Informationen, die zur Weiterver-
arbeitung benötigt werden könnten und die über die zentralen Verarbeitungs-
ergebnisse hinausgehen können.

Um dies zu erreichen sind Konvertierungsprozesse notwendig. Beispielsweise gibt
das REaCT-Tool zur Anforderungsextraktion (s. Abschnitt 5.5.3) standardmäßig
eine CoNLL-strukturierte Ausgabe und wahlweise XML oder JSON aus. Ein ent-
sprechender Konvertierungsprozess innerhalb des Softwaresystems transformiert die
strukturierte Ausgabe in das intern genutzte Datenformat.

7.4.2.2 Portabilität

Portabilität wird im IT-Kontext oftmals nur im Sinne der Plattformunabhängigkeit144

verwendet (z. B. Vogel et al., 2009, S. 116). Dies geht nach Bues (1994, S. 28) aber
insofern nicht weit genug, als dass sich Portabilität auch auf Daten und Benutzero-
berflächen beziehen kann. Im NLP-Kontext wird Portabilität insbesondere mit der
Fragestellung verknüpft, inwieweit sich ein Softwaresystem auf weitere Domänen
oder Sprachen übertragen lässt und welchen Aufwand dies bedarf.

143Siehe weiterführend: http://universaldependencies.org/format.html (Stand: 11.01.17).
144Fähigkeit von Softwareapplikationen, auf verschiedenen Systemplattformen ausgeführt zu werden.



176 7 Implementierung

Domäne und Sprache

Die Portabilität im Hinblick auf die Domäne (hier: Anforderungsbeschreibungen,
RE) ist beim vorgestellten Softwaresystem vor allem auf Basis der genutzten Res-
sourcen zu diskutieren, da die meisten der eingesetzten NLP-Verfahren grundsätzlich
domänenübergreifend anwendbar sind. Eine Ausnahme bildet die Komponente zur
Anforderungsextraktion, die speziell für die Domäne der Anforderungsbeschreibungen
entwickelt worden ist. Die Extraktion semantischer Kernkomponenten einer FA lässt
sich schwer auf Domänen außerhalb natürlichsprachlicher Anforderungen übertragen.
Einen Überblick über Möglichkeiten der Portierung einzelner Komponenten auf

Basis einbezogener NLP-Ressourcen gibt Tabelle 7.6. Angegeben sind Verarbeitungs-
komponenten sowie deren Portabilität auf eine andere Domäne. Darüber hinaus finden
sich sowohl Angaben zum geschätzten Portierungsaufwand als auch zur Verfügbarkeit
alternativer Ressourcen, die herangezogen werden können. Des Weiteren werden
notwendige Verfahrenswechsel angezeigt.
Das Preprocessing ist vollumfänglich portabel: Sei es die Satzgrenzenerkennung,

die Textbereinigung oder die Sprachenidentifikation – ein Domänenwechsel stellt
keinen Aufwand dar, da kein Verfahrens- oder Ressourcenwechsel erforderlich ist.
Identisch stellt sich die Situation bei der Kompensation von Vagheit und der syntak-
tischen Disambiguierung dar, die ebenfalls vollumfänglich portabel sind. In beiden
Fällen entsteht daher kein Portierungsaufwand. Anders wiederum stellt sich dies bei
den Komponenten der referentiellen und lexikalischen Disambiguierung dar: Beide
Verfahren greifen auf domänenspezifische Ressourcen (z. B.Black- und Whitelist)
zurück, um die Ergebnisqualität zu verbessern. Es ist demnach geringer Aufwand
notwendig, um entsprechende Ressourcen an eine neue Domäne anzupassen.

P
or
ta
be
l

V
er
fa
hr
en
sw
.

A
lt
.
R
es
so
ur
ce
n

A
uf
w
an
d

Preprocessing � � � –

Anforderungsextraktion � � � Hoch

Lexikalische Disambiguierung � � � Gering

Syntaktische Disambiguierung � � � –

Referentielle Disambiguierung � � � Gering

Kompensation von Unvollständigkeit � � � Hoch

Kompensation von Vagheit � � � –

Strukturierte Ausgabe � � � Hoch

Tabelle 7.6: Domänenspezifische Portabilität einzelner Systemkomponenten

Im Vergleich dazu ist eine Portierung der Kompensation von Unvollständigkeit
aufwändiger. Während das Verfahren grundsätzlich nicht auf die Domäne der Softwa-
reanforderungen beschränkt ist, ist die zentrale Ressource (Suchmaschinenindex mit
Kompensationstexten, s. Abschnitt 5.5.5) domänenspezifisch und muss für weitere



7.4 Anforderungen an die Systemqualität 177

Domänen neu konzipiert werden. Dieser Aufwand ist als erheblich einzuschätzen, da
die Datenakquise sowie -aufbereitung zeit- und arbeitsintensive Tätigkeiten sind.
Ein Verfahrenswechsel ist sowohl bei der Anforderungsextraktion als auch bei der

strukturierten Ausgabe unerlässlich. Wie bereits angeführt, ist die Anforderungsex-
traktion als Ganzes ein domänenspezifisches Verfahren, welches nicht portiert werden
kann. Ebenso verhält es sich mit der strukturierten Ausgabe, die zum einen stark von
der Anforderungsextraktion abhängt und zum anderen das Ziel hat, strukturierte
FA auszugeben, was ebenfalls schwer in eine andere Domäne zu portieren ist.
Anders als der Aspekt der Domäne ist die Sprachabhängigkeit unter zwei Ge-

sichtspunkten zu diskutieren. Zum einen bezieht sie sich auf die Anzeigesprache,
also die Sprache, in der das Softwaresystem mit dem Endanwender kommuniziert
(z. B.Anleitungstexte, Bedienelemente). Zum anderen bezieht sie sich auf die Verar-
beitungssprache, demnach auf die Sprache, die das System als Eingabe verarbeiten
kann. Die Verarbeitungssprache ist dabei als ein weitaus komplexerer Diskussionge-
genstand zu verstehen, da alle Systemkomponenten davon betroffen sind, während
bei der Anzeigesprache lediglich die Benutzerschnittstelle einer Änderung bedarf.
Die derzeitige Anzeigesprache ist Deutsch. Zum jetzigen Zeitpunkt ist das gesamte

Softwaresystem auf den Betrieb einer mehrsprachigen Benutzeroberfläche ausgelegt,
wobei die Sprachen Englisch und Deutsch bereits vorkonfiguriert sind. Sollte eine
Erweiterung um zusätzliche Sprachen erforderlich sein, ist eine Auslagerung dieser
Konfigurationsmöglichkeit in externe Konfigurationsdateien sinnvoll, auf welche bei
der prototypischen Umsetzung in dieser Arbeit verzichtet wird.
Bezugnehmend auf die Verarbeitungssprache empfiehlt sich eine erste Betrachtung

auf Ebene der Systemkomponenten. Tabelle 7.7 listet diesbezüglich die verwendeten
Komponenten zusammen mit den unterstützten Sprachen auf. Es zeigt sich, dass die
einzelnen Verarbeitungskomponenten allesamt die englische Sprache unterstützen.
Darüber hinaus verarbeiten mehrere der gewählten Einzelkomponenten (z. B. die
lexikalische und die syntaktische Disambiguierung) bereits jetzt weitere Sprachen
(z. B.Deutsch, Chinesisch). Die Fragen, die sich nun stellen, sind:

• Lassen sich die übrigen Komponenten um weitere Sprachen erweitern?

• Und falls nicht, existieren Alternativen, die implementiert werden könnten?

Im Falle des Preprocessings (s. Abschnitt 5.5.2), bestehend aus Einzelkomponenten
zur Normalisierung, Textbereinigung, Grammatik- / Rechtschreibprüfung, Satzende-
erkennung und Sprachenidentifikation, muss die Beantwortung der Fragen auf Basis
der Einzelkomponenten erfolgen.
Während die Normalisierung, Textbereinigung und Sprachenidentifikation wei-

testgehend unabhängig von der zugrundeliegenden Verarbeitungssprache agieren146,
ist beispielsweise die Satzgrenzenerkennung abhängig von der jeweiligen Sprache
(s. Anhang C.1.2). Selbiges gilt für die Grammatik- / Rechtschreibprüfung. Zwar
unterstützen die verwendeten Komponenten bereits eine Vielzahl an Sprachen, eine
Portierung auf eine weitere Sprache kann allerdings einen notwendigen Komponen-
tenwechsel und damit einen Mehraufwand bedeuten.

145Die Komponente unterstützt insg. 271 Sprachen. Siehe Abschnitt 3.3.1.1.
146Die Sprachenidentifikation unterstützt 71 Sprachen und ist mit geringem Aufwand erweiterbar.



178 7 Implementierung

E
ng
lis
ch

D
eu
ts
ch

C
hi
ne
si
sc
h

Fr
an
zö
si
sc
h

Sp
an
is
ch

A
ra
bi
sc
h

Preprocessing � � � � � �

Anforderungsextraktion � � � � � �

Lexikalische Disambiguierung145 � � � � � �

Syntaktische Disambiguierung � � � � �� ��

Referentielle Disambiguierung � � � � � �

Kompensation von Unvollständigkeit � � � � � �

Kompensation von Vagheit � � � � � �

Strukturierte Ausgabe � � � � � �

Tabelle 7.7: Unterstützte Verarbeitungssprachen einzelner Komponenten.
� = unterstützt, �� = partiell unterstützt, � = nicht unterstützt

Ein Mehraufwand entsteht auch, wenn die Komponente zur Anforderungsextraktion
an eine weitere Sprache angepasst werden sollte. Zum einen sind die Verarbeitungs-
komponenten innerhalb von REaCT (Dollmann und Geierhos, 2016) anzupassen
(z. B.Parser). Zum anderen handelt es sich um ein Klassifikationsverfahren, dass
auf Trainingsdaten angewiesen ist. Ein Wechsel der Sprache bedeutet demnach,
dass auch eine ausreichende Anzahl annotierter Anforderungsdokumente vorliegen
muss. Während dies erstens eine nennenswerte Herausforderung darstellt, ist es
zweitens auch mit erheblichem Aufwand verbunden. Die gleiche Problematik mit
den zugrundeliegenden Ressourcen ist bei der Portierung der Kompensation von
Unvollständigkeit zu erwarten. Wie auch bei der Portierung auf eine weitere Domäne,
ist der zugrundeliegende Suchmaschinenindex in Gänze zu ersetzen. Dies bedeutet,
dass ein umfangreicher Datenbestand in der Zielsprache akquiriert, aufbereitet und
annotiert werden muss, was mit hohem Aufwand verbunden ist.
Die Komponenten zur Disambiguierung unterscheiden sich wesentlich hinsichtlich

der Portabilität: Während die lexikalische Disambiguierung eine Vielzahl an Spra-
chen unterstützt, damit hochgradig portierbar ist und keinen Mehraufwand erzeugt,
geht eine Änderung bei der syntaktischen und referentiellen Disambiguierung mit
einem wahrscheinlichen Verfahrenswechsel einher. Die syntaktische Disambiguierung
unterstützt derzeit Englisch, Deutsch, Chinesisch und Französisch sowie Spanisch
und teilweise Arabisch. Die referentielle Disambiguierung unterstützt Englisch und
Chinesisch. Ein Verfahrenswechsel ist bei weiteren Sprachen unabdingbar.
Im Kontrast dazu steht die Kompensation von Vagheit, die auf linguistischen

Regeln basiert. Gelten dieselben Regeln auch für die zu portierende Sprache, so
können sie einfach übernommen werden. Sind sie allerdings nicht anwendbar, sind
neue Regeln anzugeben, was etwas Mehraufwand bedeutet.
Ein geringer Mehraufwand ist auch bei der strukturierten Ausgabe zu erwarten, die

ebenfalls an die weitere Sprache anzupassen ist. Wobei hier lediglich die Reihenfolge
der erkannten semantischen Bausteine neu definiert werden muss, falls sie von der
vordefinierten Reihenfolge abweicht (s. Abschnitt 1.3.1.2).



7.4 Anforderungen an die Systemqualität 179

Eine Übersicht über den zu erwartenden Portierungsaufwand ist Tabelle 7.8 für die
sechs meistgesprochenen Sprachen der Welt147 zu entnehmen.

C
hi
ne
si
sc
h

H
in
di

Sp
an
is
ch

Fr
an
zö
si
sc
h

A
ra
bi
sc
h

R
us
si
sc
h

Preprocessing + + 0 0 + +

Anforderungsextraktion +++ +++ +++ +++ +++ +++

Lexikalische Disambiguierung148 0 0 0 0 0 0

Syntaktische Disambiguierung 0 +++ ++ +++ ++ +++

Referentielle Disambiguierung 0 ++ ++ ++ ++ ++

Kompensation von Unvollständigkeit ++ ++ ++ ++ ++ ++

Kompensation von Vagheit + + 0 0 + +

Strukturierte Ausgabe + + + + + +

Tabelle 7.8: Geschätzter Portierungsaufwand neuer Verarbeitungssprachen
(hoher [+++], mittlerer [++], geringer [+], kein [0] Aufwand)

Systemplattform

Bei Plattformunabhängigkeit, also der Fähigkeit einer Softwareapplikation, ohne
weitere Änderung auf einer Vielzahl an Rechnerarchitekturen ausgeführt werden zu
können (Vogel et al., 2009, S. 116 f.), stellt sich bereits zu Beginn der Überlegungen
eine elementare Frage: Plattformunabhängigkeit für wen? Denn die Anforderungen
unterscheiden sich hier hinsichtlich der Server - und Client-Perspektive wesentlich:
Endanwender interagieren über eine Benutzerschnittstelle mit dem Softwaresystem.
Dabei liegt das System nicht lokal vor, sondern wird über einen Server bereitgestellt
und über einen Webbrowser aufgerufen (Client). Für Endanwender ist Plattformu-
nabhängigkeit daher insofern sichergestellt, als dass der Zugriff unabhängig von
Betriebssystem und verwendeter Hardware (z. B.Computer, Mobiltelefon) erfolgt.
Aus der Sicht der Server -Applikation gestaltet sich dies insofern anders, als dass
diese auf einem zentralen Computer ausgeführt wird. Anders als beim Endanwender
ist nicht von einer Vielzahl wechselnder Betriebssysteme und insbesondere nicht von
mobilen Betriebssystemen (z. B.Android, iOS) auszugehen. Allerdings sind dennoch
verschiedene Betriebssysteme (z. B.Windows, Linux) zu erwarten. Im Endeffekt bleibt
die Herausforderung der Plattformunabhängigkeit somit grundsätzlich bestehen.
Plattformunabhängigkeit kann hierbei auf verschiedene Weisen erreicht werden149,

im Folgenden liegt der Fokus aber auf der plattformunabhängigen Entwicklung. Dies
bedeutet, dass Anwendungen zum einen (überwiegend) unabhängig von der zugrun-
deliegenden Plattform ausführbar sind (z. B.Hybrid-Apps), sich an die Plattform
anpassen können (z. B. durch Fat Binaries) oder auf Zwischencode (z. B.Bytecode)
und entsprechenden Laufzeitumgebungen basieren.

147Nach Englisch als meistgesprochene Sprache. Siehe Statista (2016) für Details zu denWeltsprachen.
148Die Komponente unterstützt 271 Sprachen. Siehe Abschnitt 3.3.1.1.
149Weitreichende Überlegungen zur Portabilität finden sich in Hoffmann (2013, S. 107 ff.).



180 7 Implementierung

Ein populäres und etabliertes Beispiel für eine entsprechende Programmiersprache
ist Java, wobei die Portabilität insbesondere durch die genaue Spezifikation elemen-
tarer Datentypen und dem Verzicht maschinennaher Datentypen und Operatoren
gewährleistet wird (Krüger und Stark, 2009, S. 50). Die erforderliche Laufzeitumge-
bung (engl. Java Runtime Environment, JRE) ist für alle gängigen Betriebssysteme
vorhanden. Kritisch anzumerken ist allerdings, dass es sich hierbei nur um eine
begrenzte Plattformunabhängigkeit handelt, da sie im Tausch mit einer Abhängigkeit
von der Laufzeitumgebung erzielt wird (Krüger und Stark, 2009, S. 50 f.).
In dieser Arbeit wird Java zur Entwicklung des Softwaresystems unter anderen

aufgrund der weiten Verbreitung und Plattformunabhängigkeit herangezogen.

Benutzerschnittstelle

”
Portierbarkeit mit Blick auf den Menschen, den Benutzer, bedeutet die Verein-
heitlichung der Benutzeroberflächen, so daß ein Wechsel zwischen unterschiedlichen
Systemen ohne einen zusätzlichen Lernaufwand und kurzfristige Effizienzverluste
vollzogen werden kann“ (Bues, 1994, S. 28).

Diese Anforderung, die Bues (1994) an die Portabilität von Softwaresystemen stellt,
ist auch heute von Bedeutung. Mit der zunehmenden Akzeptanz mobiler Endgeräte
existiert eine Vielzahl an Softwareapplikationen, die auf verschiedenen Endgeräten
und Betriebssystemen ausgeführt werden. Hierbei ist ein nahtloses Benutzungserlebnis
von Bedeutung (s. z. B. Kadlec und Fröhlich, 2013, S. 142 f.).

Abbildung 7.19: Softwaresystem mit responsivem Webdesign (GUI)

Moderne Webapplikationen reagieren auf die wechselnden Eigenschaften der End-
geräte (dies betrifft sowohl Eigenschaften wie die Bildschirmauflösung als auch
Eingabemöglichkeiten) durch eine flexible Gestaltung, die sich an die gegebenen
Umstände anpassen kann (responsives Webdesign). Moderne Webstandards wie
HTML5, CSS3 und JavaScript bilden hierfür die Grundlage.
Das in dieser Arbeit konzipierte Softwaresystem nutzt als Benutzerschnittstelle

eine Webapplikation, die diese Möglichkeit der flexiblen Darstellung nutzt, indem sich
die Bedienelemente an die gegebene Bildschirmauflösung anpassen (s. Abschnitt 5.5).



7.4 Anforderungen an die Systemqualität 181

Abbildung 7.19 zeigt dies exemplarisch anhand eines Mobiltelefons und eines Tablet-
computers. Für Endanwender ist es daher unerheblich, welches Betriebssystem und
welches Endgerät verwendet wird, solange die Darstellung von Webinhalten möglich
und die Unterstützung von modernen Webstandards gegeben ist.

7.4.2.3 Skalierbarkeit

”
Systeme müssen [...] bei zunehmender Last adäquat reagieren, um ihre Dienste in
einer definierten Güte anbieten zu können“ (Vogel et al., 2009, S. 117). Skalierbarkeit
kann dabei vertikal oder horizontal erfolgen (Vossen et al., 2012, S. 14 f.), wobei
beide Vorgehensweisen im Kontext dieser Arbeit vorstellbar und daher im Folgenden
zu diskutieren sind. Grundsätzlich bezieht sich Skalierbarkeit hier auf die Server -
Komponente in der Client-Server -Architektur.
Nach derzeitiger Konzeption werden alle Komponenten des Systems serverseitig

bereitgestellt (vgl. Abbildung 7.20), was bedeutet, dass auf einem Computer (Knoten)
alle notwendigen Komponenten ausgeführt werden150.
Im Rahmen einer vertikalen Skalierung (

”
scale up“) könnte dieser Computer durch

einen leistungsstärkeren ersetzt oder durch Hardwareressourcen erweitert werden. Dies
hat den Vorteil, dass an der eigentlichen Software keine Veränderung vorgenommen
werden muss, da sich nur das Umfeld ändert – dies wäre ohne größere Umstände
auch bei dem hier vorgestellten Konzept umzusetzen. Ein Nachteil ist jedoch, dass
diese Skalierung einer natürlichen Grenze unterliegt: Irgendwann sind die besten
Komponenten verbaut – eine weitere Skalierung ist nicht mehr möglich.

Komponente 3

Komponente 1

Komponente 2
Server Server

Ist-Zustand Scale up Scale out

(a) (b) (c)

Abbildung 7.20: Möglichkeiten der Skalierbarkeit von Softwaresystemen.
In Anlehnung an Vossen et al. (2012, S. 15)

Bei der horizontalen Skalierung (
”
scale out“) wird das System erweitert,

”
[...] indem

mehr Knoten hinzugefügt werden. Die Arbeit wird also �auf mehr Schultern� ver-
teilt“ (Vossen et al., 2012, S. 14). Ob ein System für eine horizontale Skalierung
in Frage kommt, hängt auch vom Grad möglicher Parallelisierung und Art der
programmiertechnischen Umsetzung ab.
Das vorgestellte Konzept ist so aufgebaut, dass alle Komponenten parallel und

isoliert ausgeführt werden können. Jede einzelne Komponente könnte so beispielsweise
auf einem eigenen Knoten ausgeführt werden. Diese einzelnen Knoten wiederum
könnten dann, bis zu einem gewissen Grad, bedarfsgerecht vertikal skaliert werden.

150Ausgehend von diesen Komponenten können weitere externe Ressourcen eingebunden werden.



182 7 Implementierung

7.4.2.4 Wiederverwendbarkeit und Nachhaltigkeit

Wiederverwendbarkeit bedeutet mit Bezug zu Softwaresystemen, dass sowohl ein-
zelne Systemkomponenten als auch linguistische Ressourcen in diesem oder anderen
Softwareprojekten (in gleicher Funktion) erneut zur Anwendung kommen können
(Vogel et al., 2009, S. 117). Die hier verwendeten Systemkomponenten sind dabei als
wiederverwendbar zu bezeichnen, da sie alle genau für diesen Einsatzzweck entwickelt
worden sind (und daher z. B. notwendige Schnittstellen besitzen). Exemplarisch lässt
sich dies an der Komponente zur syntaktischen Disambiguierung aufzeigen, die als
externe Programmbibliothek für beliebige weitere Softwaresysteme herangezogen
werden kann. Auch die Komponente zur Kompensation von Unvollständigkeit ist
wiederverwendbar, wenngleich es sich nicht um eine einzige Programmbibliothek,
sondern um ein vollständiges Kompensationssystem handelt, welches über Program-
mierschnittstellen zu steuern ist (Bäumer und Geierhos, 2016). Ähnliches gilt für die
lexikalische Disambiguierung, die zwar als Programmbibliothek eingebunden werden
kann, jedoch auf externe Dienste angewiesen ist. Hier wird die Wiederverwendbarkeit
durch die Verfügbarkeit der externen Ressourcen möglicherweise eingeschränkt.
Hinsichtlich der Wiederverwendbarkeit genutzter linguistischer Ressourcen sind

somit weitere Einschränkungen zu bedenken: So stellt sich bei extern eingebundenen
Ressourcen die offensichtliche Frage nach der zukünftigen Verfügbarkeit. Im hier
beschriebenen Softwaresystem ist die lexikalische Disambiguierung die einzige Kom-
ponente, die auf extern bereitgestellte Ressourcen zurückgreift und somit im Zweifel
zu ersetzen ist, sollte die Verfügbarkeit nicht mehr gegeben sein (s. Abschnitt 7.1).
Darüber hinaus ist zu bedenken, dass Ressourcen oftmals explizit für einen Verwen-
dungszweck erstellt werden und gegebenenfalls für weitere Anwendungsszenarien
ungeeignet sind: Modelle können speziell für eine Fragestellung trainiert worden sein
oder eine Datenbank könnte aus einer speziellen Komposition von Informationen
bestehen. In der Tat ist beides anzutreffen: Die Klassifikationsmodelle, die REaCT
zur Anforderungsextraktion heranzieht, lassen sich zu genau diesem Zweck wiederver-
wenden, eignen sich aber nicht für andere Anwendungsszenarien. So verhält es sich
auch mit dem Index, der zur Unvollständigkeitskompensation herangezogen wird:
Eine sehr spezielle Ressource, die nur diesem einen Zweck dienen kann. Grundsätzlich
können Drittapplikation sie aber einbinden – damit ist sie wiederverwendbar.
Unter Nachhaltigkeit (auch: Zukunftsfähigkeit) ist die Anwendbarkeit des be-

schriebenen Konzepts unter dem zeitlichen Aspekt zu verstehen oder als Frage
formuliert: Wie lange ist das hier beschriebene Konzept in dieser Form und un-
ter Einbezug der genannten Komponenten zielführend im Sinne der Verarbeitung
von Anforderungsbeschreibungen einsetzbar? Diese Frage ist von besonderer Re-
levanz, da die natürliche Sprache einer stetigen Entwicklung unterliegt, was mit
der Zeit unweigerlich die Anpassung der Methoden verlangt. Im Folgenden wird
hierfür eine Lösung gesucht, indem die Komponenten einzelner Methoden unter
mehreren (möglichst) objektiven Faktoren hinsichtlich möglicher Modifikation und
Weiterentwicklung betrachtet werden.

Tabelle 7.9 listet Methoden zusammen mit ihrer angenommenen Nachhaltigkeit
auf (Fazit). Diese ergibt sich dabei aus neun Merkmalen, die sich insbesondere auf die
Verfügbarkeit von Quelltext und Ressourcen und deren Modifizierbarkeit beziehen.
Ein Beispiel für eine Methode mit hoher Nachhaltigkeit ist die Sprachenidentifizie-



7.4 Anforderungen an die Systemqualität 183

rung, für deren implementierte Komponente sowohl alle Ressourcen als auch der
Quelltext frei verfügbar sind. Darüber hinaus sind Schnittstellen verfügbar, um
neue Ressourcen zu erstellen. Dagegen ist eine niedrige Nachhaltigkeit der lexika-
lischen Disambiguierung wegen der Babelfy-Komponente zu attestieren, da, trotz
aktiver Weiterentwicklung, eine Modifikation derzeit mangels zugänglichem Quelltext
und Ressourcen nicht möglich und auch nicht vorgesehen ist. Dies bedeutet für die
zukünftige Entwicklung des Softwaresystems, dass möglicherweise eine alternative
WSD-Komponente zu implementieren ist (s. Abschnitt 3.3.1). Grundsätzlich ist das
Konzept dabei bewusst modular aufgebaut, um den Austausch von Ressourcen und
Komponenten jederzeit zu ermöglichen.

A
kt
iv
e
E
nt
w
ic
kl
un
g

C
om

m
un
it
y-
ge
tr
ie
be
n

Q
ue
llt
ex
t
ve
rf
üg
ba
r

Fr
ei
e
L
iz
en
z

R
es
so
ur
ce
n
ve
rf
üg
ba
r

R
es
so
ur
ce
n
m
od
ifi
zi
er
ba
r

K
ei
ne

ex
t.
A
bh
än
gi
gk
ei
te
n

M
od
ifi
ka
ti
on
sa
uf
w
an
d
ge
ri
ng

M
od
ifi
ka
ti
on

vo
rg
es
eh
en

Fazit

Preprocessing
Sprachenidentifizierung • • • • • • • • • Hoch
Rechtschreibkorrektur • • • • • • • ◦ • Hoch

Grammatikprüfung • • • • • • • ◦ • Hoch
Satzendeerkennung • ◦ • • • • • ◦ • Hoch

Anforderungsxtraktion
Identifikation ◦ ◦ ◦ – ◦ • • ◦ ◦ Niedrig

Extraktion ◦ ◦ ◦ – ◦ • • ◦ ◦ Niedrig
Kompensation

Lexikalische Disambiguierung • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ Niedrig
Syntaktische Disambiguierung • ◦ • • • • • ◦ • Hoch
Referentielle Disambiguierung • ◦ • • • • • ◦ • Hoch

Erkennung von Vagheit ◦ ◦ • • – – • • • Mittel
Unvollständigkeitskompensation ◦ ◦ ◦ – • • • • • Mittel

Tabelle 7.9: Nachhaltigkeit einzelner Komponenten nach Methoden

7.4.3 Wartbarkeit und Erweiterbarkeit

Ein Softwaresystem zeichnet sich auch durch Wartbarkeit und Erweiterbarkeit aus.
Während sich Wartbarkeit vor allem auf die Korrektur von Fehlern und gegebe-
nenfalls Aktualisierung von Ressourcen bezieht, beschreibt Erweiterbarkeit primär
das Hinzufügen oder den Austausch von Systemkomponenten aufgrund neuer oder
geänderter Systemanforderungen (Vogel et al., 2009, S. 117). Um hohe Wartbarkeit
und Erweiterbarkeit zu erreichen, sind nach Vogel et al. (2009, S. 117) die Prin-
zipien hoher Kohäsion und loser Kopplung zu befolgen. Während Kohäsion den
Umstand beschreibt, dass idealtypisch einer Klasse oder Komponente eine definierte



184 7 Implementierung

Aufgabe zugeschrieben ist, beschreibt lose Kopplung, dass geringe Abhängigkeiten
zwischen den einzelnen Komponenten eines Systems bestehen (s. Tabelle 7.10). Eine
weitestgehend lose Kopplung wird in dieser Arbeit erreicht, indem einzelne Verarbei-
tungskomponenten über standardisierte Formate (gegebenenfalls durch Konverter)
kommunizieren und ein zentrales Datenobjekt modifiziert wird. Der Wechsel einer
Komponente stellt daher keine Beeinträchtigung anderer Komponenten dar, solange
sich alle Komponenten an das definierte Austauschformat halten. Darüber hinaus ist
hohe Kohäsion gegeben, da es sich von der grundsätzlichen Systemarchitektur bei den
Verarbeitungskomponenten um Experten handelt, die explizit für definierte Aufgaben
eingebunden werden. Eine konkrete Aufgabe, wie zum Beispiel die Kompensation
von Unvollständigkeit, wird in der dafür eingebundenen Komponente vorgenommen.
Auch innerhalb der Verarbeitungskomponenten sind die zugrundeliegenden Ressour-
cen weitestgehend zugänglich und modifizierbar. Auch hier stellt die lexikalische
Disambiguierung eine Ausnahme dar, da die extern eingebundenen Ressourcen nur
begrenzt modifizierbar sind. Als positive Beispiele sind die Kompensation von Un-
vollständigkeit und die Vagheitserkennung zu nennen, deren Ressourcen gänzlich
modifizierbar sind.
Werden die zentralen Strategien unter dem Aspekt der Wartbarkeit und Erweiter-

barkeit betrachtet, ergibt sich ein vergleichbares Bild wie bei den Komponenten
und Ressourcen. Mit geringem Aufwand lassen sich neue Strategien hinzufügen
oder bestehende Strategien modifizieren. Sie liegen, wie auch die Komponenten, als
getrennte Systemeinheiten vor. Eine Änderung an einer der Strategien erfordert keine
Änderungen an den sonstigen Komponenten.



7.4 Anforderungen an die Systemqualität

Methode (Sub-)Komponenten

P
re
p
ro
c
.

Satzgrenzenerkennung Stanford CoreNLP
Zeichennormalisierung Java Normalizer
Anforderungsklassifikation REaCT

Anforderungsextraktion
REaCT
CoNLL Converter
OpenNLP Chunker

In
d
ik
a
to
re
n

PP-Anbindung Chunker
Koordinationsambiguität Syn. Muster
PRP-Referenz Syn. Muster

Koreferenz
WordNet (JWNL)
Synonymliste (Koreferenzen)

Lexikalische Ambiguität
WordNet (JWNL)
Stoppwortliste

V
e
ra

rb
e
it
u
n
g

Ref. Disambiguierung
Stanford CoreNLP
Synonymliste (Referenzen)

Syn. Disambiguierung Stanford CoreNLP

Unvollständigkeits-
Apache Solr

kompensation
Mate Tools
CoNLL Converter
Stanford CoreNLP
Propbank

Lex. Disambiguierung
BabelNet
Babelfy
WSD-Caching

Vagheitserkennung Wortliste, Regeln

Tabelle 7.10: Übersicht einzelner Systembestandteile

185





Evaluation 8
Im Folgenden wird das Gesamtsystem zwecks abschließender Bewertung evaluiert,
wobei das Evaluationskonzept (s. Abschnitt 8.1) eine Zweiteilung vorsieht: Zuerst
werden die Indikatoren und Strategien hinsichtlich ihrer Anwendbarkeit auf realen
Anforderungsbeschreibungen evaluiert und eine Typisierung möglicher Fehler bei
der Indikator- und Strategieanwendung vorgenommen (s. Abschnitt 8.2). Es folgt die
Evaluation der Performanz des Systems und seiner Bestandteile (s. Abschnitt 8.3).

8.1 Evaluationskonzept

Das Softwaresystem ist mittels der folgenden
”
sach- und fachgerechte[n] Bewertung“

(Dudenredaktion, 2016, S. 559) sowohl hinsichtlich der Anwendbarkeit der Indikatoren
und der Strategien (s. Abschnitt 8.2) als auch der Performanz (s.Abschnitt 8.3) zu
untersuchen. Es handelt sich hierbei um eine summative Evaluation, welche auf die ab-
schließende Bewertung des Ist-Zustands in dieser Arbeit abzielt. Thematisch wird bei
der Evaluation der Strategieanwendung betrachtet, welche Strategiekonfigurationen
unter unterschiedlichen Indikatorkombinationen zur Anwendung kommen und wel-
che/wie häufig/unter welchen Umständen Fehler sowohl bei der Strategieanwendung
als auch bei der Indikatorbestimmung auftreten. Neben der generellen Anwendbarkeit
des vorgestellten Konzepts wird somit auch die Zuverlässigkeit der Indikatoren und
der Strategiekonfiguration in Abhängigkeit variierender Texte untersucht. Bei der
Evaluation der Performanz steht das Gesamtsystem sowie die Verarbeitungskom-
ponenten im Fokus. Eine hohe Performanz gilt dabei als Qualitätsmerkmal eines
benutzerfreundlichen Softwaresystems.
Während das methodische Vorgehen innerhalb der Evaluationsteile voneinander

abweicht, ist die Struktur des zugrundeliegenden Protokolls einheitlich. So sieht dieses
die Festlegung von Evaluationsgegenständen vor (z. B. das Zusammenwirken von
Indikatoren und Strategien), aus denen sich der Evaluationszweck ableiten lässt
(z. B. Fehleridentifikation). Aufbauend auf dem Zweck werden daraufhin Evaluati-
onsfragen festgelegt, deren Beantwortung in einzelnen Abschnitten verteilt erfolgt
und in beiden Teilen unter Hinzunahme eines Evaluationskorpus und eines geeig-
neten methodischen Vorgehens geschieht. Im Folgenden wird die Anwendbarkeit von
Indikatoren und Strategien (s. Abschnitt 8.2) als erster der beiden Teile durchgeführt.

8.2 Evaluation der Anwendbarkeit von Strategien

Zu Beginn wird das Evaluationsprotokoll zur Strategienanwendbarkeit in Ab-
schnitt 8.2.1 dargestellt. Es folgt die Entscheidungsevaluation der Strategie-
auswahl (s. Abschnitt 8.2.2), die aufzeigt, welche Strategien auf realen Anforde-

187



188 8 Evaluation

rungsbeschreibungen zur Anwendung kommen. Daraufhin wird die Indikatorzu-
verlässigkeit, welche die zuvor betrachtete Strategieanwendung maßgeblich beein-
flusst (s. Abschnitt 8.2.3) sowie mögliche Fehlertypen (bei Strategien und Indikatoren)
untersucht (s. Abschnitt 8.2.4).

8.2.1 Evaluationsprotokoll

Der Untersuchungsfokus liegt im Folgenden auf den in den Abschnitten 5.2 und 5.3
konzipierten Strategien und Indikatoren, wobei vor allem Abhängigkeiten und
das Zusammenwirken von Indikatoren, Strategien und Methoden Evaluations-
gegenstände sind. Ein Zusammenwirken findet dabei vor allem bei der Strategie-
und Methodenanwendung statt, während sich Abhängigkeiten bei der Indikator-
und Strategieanwendung finden. So sind die Ergebnisse der Indikatoranwendung
beispielsweise maßgeblich dafür verantwortlich, welche Strategie vom Selector bei
der Strategieauswahl herangezogen wird. Fehlerhafte Indikatoren wirken sich somit
auf die Strategien aus, die gegebenenfalls notwendige Methoden nicht aktivieren
können. Die Indikatorzuverlässigkeit wiederum ergibt sich aus der Zuverlässigkeit
der zugrundeliegenden Merkmale, die teilweise von zusätzlichen Tools bereitgestellt
werden und ebenfalls fehlerhaft sein können. Der Evaluationszweck lässt sich daher
wie folgt zusammenfassen:

• Identifikation von Fehlerquellen in der Strategiewahl

• Analyse von Verarbeitungsfehlern und deren Auswirkungen
auf die Strategieanwendung

Für diesen Evaluationszweck sind im Folgenden entsprechende Evaluationsfragen
(F) dargestellt (s. Abschnitt 4.2.1):

• F1: Wie oft werden einzelne Strategien bei der Strategieauswahl herangezogen?

• F2: Inwiefern decken die vordefinierten Strategien die Indikatorkombinationen
realer Anforderungsbeschreibungen ab?

• F3: Wie zuverlässig funktionieren die definierten Indikatoren auf realen
Anforderungsbeschreibungen?

• F4: Welche Fehler beeinflussen die Indikatorzuverlässigkeit und erschweren
somit die Strategieauswahl?

• F5: Welche Fehler beeinflussen die Strategieanwendung und verschlechtern
somit das Gesamtergebnis?

Die Beantwortung dieser Fragen erfolgt auf einem Evaluationskorpus. Hierfür wird
das in Abschnitt 6.1 vorgestellte Anforderungsbeschreibungskorpus hinzugezogen.
Dabei werden 400 zufällige Anforderungsbeschreibungen aus dem Korpus im Umfang
von zwei bis fünf Sätzen (100 Beschreibungen je Umfang) vom Softwaresystem
verarbeitet.



8.2 Evaluation der Anwendbarkeit von Strategien 189

Das Vorgehen umfasst die manuelle Auswertung der Fragen F1-5 auf dem Test-
korpus. Hierzu werden die 400 Anforderungsbeschreibungen sukzessive an das Soft-
waresystem übermittelt und die Verarbeitungsergebnisse protokolliert. Dies umfasst
zum Beispiel die erfolgte Strategieauswahl oder die erkannten und der Entscheidung
zugrunde liegenden Indikatoren. Die Evaluationsergebnisse werden im Folgenden
detailliert dargestellt.

8.2.2 Evaluation der Strategieauswahl

In diesem Abschnitt wird untersucht, wie häufig sich der Selector bei der Strategieaus-
wahl auf Grundlage der kontextsensitiven Indikatoren aus Abschnitt 5.3 hinsichtlich
der einzelner Strategien zur Verarbeitung und Kompensation von Anforderungsbe-
schreibungen entscheidet. Grundsätzlich kann der Selector dabei zwischen vorde-
finierten Strategien oder einer eigenen Konfigurationsvariante (Fallback -Strategie)
wählen. Vordefiniert sind die in Abschnitt 5.2 vorgestellten Konfigurationsvarianten F1
(Evaluationsgegenstand), wobei die Complete-Strategie nicht bei der Strategieaus-
wahl berücksichtigt wird, da sowohl die Vagheitserkennung als auch die erweiterte
Ergebnisausgabe keine Evaluationsgegenstände sind. Abbildung 8.1 zeigt die Aus-
wahlhäufigkeit der einzelnen Strategien.

0 20 40 60 80 100

2 Sätze

3 Sätze

4 Sätze

5 Sätze

[% ]

Fallback Basic Basic Plus Default

Abbildung 8.1: Auswahlhäufigkeit angewendeter Kompensationsstrategien

Es fällt auf, dass die Fallback -Strategie unabhängig vom Anforderungsbeschrei-
bungsumfang im Durchschnitt 77% der Kompensationsdurchläufe abdeckt. Dies
erscheint insbesondere angesichts der erwarteten Effizienzgewinne vordefinierter Stra-
tegien suboptimal. Andererseits ist nun nachgewiesen, dass die Fallback -Strategie F2
als Rückfall-Strategie, für den Fall, dass keine vordefinierte Strategie hinsichtlich
der gefundenen Indikatorkombination geeignet ist, greift. Das heißt aber auch im
Umkehrschluss, dass kaum eine der vorher definierten Strategien im Echtfall Anwen-
dung findet, da eine partielle Abdeckung einer Indikatorkombination seitens einer
Strategiekonfiguration ausgeschlossen wurde (s. Abschnitt 5.2). Dies ist auf Grund
der Möglichkeit, eigene Strategiekonfigurationen zu erstellen, unproblematisch.
Neben der Fallback -Strategie werden laut Abbildung 8.1 die Basic Plus- (14%) und

die Default-Strategie (9%) auf die Anforderungsbeschreibungen angewendet, wobei
die Default-Strategie erst ab einem Anforderungbeschreibungsumfang von drei Sätzen
vom Selector hinzugezogen wird. Ferner fällt auf, dass die Basic-Strategie unabhängig



190 8 Evaluation

vom Anforderungsbeschreibungsumfang keine Berücksichtigung findet. Dies bedeutet,
dass in keiner der evaluierten Anforderungsbeschreibungen einzig die Indikatorkombi-
nation der syntaktischen Disambiguierung und der Unvollständigkeitskompensation
(SYN + INC) gefunden wurde. Werden neben der Basic-Strategie auch andere Indika-
torkombinationen begutachtet (vgl. Tabelle 8.1), fällt auf, dass stattdessen die Kom-
bination der lexikalischen Disambiguierung und der Unvollständigkeitskompensation
(WSD + INC) vorkommt (97 Mal). Daneben kommt auch der Indikator für lexi-
kalische Ambiguität (WSD) sehr oft vor (110 Mal), wird aber bislang von keiner
vordefinierten Strategie abgedeckt, sodass die Fallback -Strategie mit eigenen Konfi-
gurationsvarianten eingreift.

Häufigkeit Indikatorkombination Aktiv Aktion

0 SYN + INC151 Ja Wegfall
56 WSD + SYN + INC152 Ja
37 WSD + SYN + INC + REF153 Ja
33 WSD + SYN + REF Nein
38 WSD + SYN Nein
97 WSD + INC Nein Aufnahme
110 WSD Nein Aufnahme

Tabelle 8.1: Indikatorkombinationen und deren Häufigkeiten (Auszug)

Das häufige Vorkommen der Indikatorkombination WSD + INC sowie des Indikators
WSD begründen die Aufnahme als neue Konfigurationsvariante, deren Auswir-
kung auf die einzelnen Strategiehäufigkeiten sich in Abbildung 8.2 ablesen lässt. So
übernimmt die Fallback -Strategie in der neuen Strategiekonstellation nur noch 25%
(zuvor 77%) der Anforderungsbeschreibungen, während die WSD-Strategie 28% und
die WSD+INC-Strategie 24% übernehmen. Die Basic-Strategie wird vollständig ver-
worfen, was aufgrund der ausbleibenden Anwendung (mangels Indikatorkombination)
keine Ergebnisveränderung herbeiführt.

0 20 40 60 80 100

2 Sätze

3 Sätze

4 Sätze

5 Sätze

[% ]

Fallback WSD WSD+INC Basic Plus Default

Abbildung 8.2: Aufteilung der Kompensationsstrategien nach Strategierevidierung

151Äquivalent zur Basic-Strategie (s. Abschnitt 5.2.2).
152Äquivalent zur Basic Plus-Strategie (s. Abschnitt 5.2.3).
153Äquivalent zur Default-Strategie (s. Abschnitt 5.2.4).



8.2 Evaluation der Anwendbarkeit von Strategien 191

Bislang wurde nur die Aufteilung der angewendeten Strategien betrachtet, nicht aber,
ob die zugrundeliegenden Entscheidungen auf Indikatorbasis auch korrekt waren.
Dieser Frage wird im Folgenden Abschnitt nachgegangen.

8.2.3 Evaluation der Indikatorzuverlässigkeit

Die in Abschnitt 5.3 beschriebenen Indikatoren basieren auf linguistischen Merk-
malen und Merkmalsmustern, die mittels verschiedener Tools ermittelt werden
(z. B.Chunking, WordNet-Abgleich). Hierbei können Fehler auftreten, die zu falschen
oder nicht erkannten Indikatoren führen. Eine hohe Indikatorzuverlässigkeit ist er-
reicht, wenn die erkannte Notwendigkeit einer Methodenanwendung überwiegend kor-
rekt ist – die zugrundeliegenden Tools demnach zusammen mit definierten Merkmalen
und Mustern eine geringe Fehlerquote aufweisen (s. Abschnitt 5.3.2.5). Abbildung 8.3
zeigt eine Erweiterung von Abbildung 5.13, welche die unterschiedlichen Indikatoren
zusammen mit ihren zugrundeliegenden Merkmalsquellen darstellt.

Aktion

Rolle

Komponente

Objekt

Wsd

Ref

Syn

Inc

Strategiewahl

Anforderungsextraktion Chunking

WordNet

Priorität

Sonstiges

Muster

Abbildung 8.3: Indikatoren und ihre zugrundeliegenden Merkmalsquellen

Im Folgenden gilt es zu evaluieren, wie oft Fehler bei der Indikatorerkennung auftreten.
Dies lässt sich dabei als binäres Problem verstehen: Entweder liegen Merkmale
(z. B. für lexikalische Ambiguität) in der Anforderungsbeschreibung vor, oder sie
liegen nicht vor. Die Akkuratheit (engl.Accuracy) der Indikatoren ließe sich dann
darüber bestimmen, wie viele Anforderungsbeschreibungen in Relation zu allen
Beschreibungen korrekt klassifiziert wurden:

a =
korrekt klassifizierte Beschreibungen

alle betrachteten Beschreibungen
(8.1)

Im Umkehrschluss bedeutet das, dass die Fehlerrate f sich durch f = 1−a beschreiben
lässt. Dieses Maß der Akkuratheit bzw. Fehlerrate ist allerdings als oberflächlich
anzusehen, da vier mögliche Ergebniskombinationen existieren, wovon bisher nur
zwei berücksichtigt werden. Diese vier Ergebniskombinationen sind:

• True Positive (TP): Merkmal liegt vor, der Indikator schlägt aus



192 8 Evaluation

• False Positive (FP): Merkmal liegt nicht vor, der Indikator schlägt aus

• False Negative (FN): Merkmal liegt vor, der Indikator schlägt nicht aus

• True Negative (TN): Merkmal liegt nicht vor, der Indikator schlägt nicht aus

Allerdings ist es auch für menschliche Leser nicht immer einfach, Merkmale zu-
verlässig zu identifizieren, sodass in dieser Arbeit drei (angeleitete) Evaluatoren die
Anforderungsbeschreibungen evaluieren. Das Ergebnis des Softwaresystems wird dann
mit dem gemeinsamen Ergebnis (Mehrheitsentscheid) der Evaluatoren verglichen.
Bezogen auf die in Abschnitt 8.2.2 herangezogenen 400 Anforderungsbeschreibungen
stellt Tabelle 8.2 die Ergebniskombinationen pro Indikator dar.F3

TP TN FP FN

INC 171 120 34 75
REF 156 170 11 63
SYN 142 179 22 57
WSD 400 0 0 0

Tabelle 8.2: Häufigkeit der Ergebniskombinationen

Wie angemerkt, ist ein
”
Globalwert für die [...] Genauigkeit nicht ausreichend“ (Cars-

tensen et al., 2010, S. 155), da zum Beispiel auch von Interesse ist, wie zuverlässig
das angewandte Verfahren arbeitet. An dieser Stelle wird auf zwei etablierte Evalua-
tionsmaße, die vor allem im IR genutzt werden, zurückgegriffen (Carstensen et al.,
2010, S. 155): Recall (r) und Precision (p).

r =
TP

TP + FN
(8.2)

Der Recall gibt an, wie viele der Anforderungsbeschreibungen, die kompensations-
bedürftig sind (d. h. in denen Merkmale einzelner Indikatoren vorliegen) gefunden
werden. Ein niedriger Recall bedeutet demnach, dass viele defizitäre Anforderungs-
beschreibungen übersehen werden (Carstensen et al., 2010, S. 586).

p =
TP

TP + FP
(8.3)

Die Precision gibt an, wie häufig die als kompensationsbedürftig erkannten Anforde-
rungsbeschreibungen auch wirklich kompensationsbedürftig sind; d. h. wie häufig ein
vermeintlich erkannter Indikator wirklich vorliegt (Carstensen et al., 2010, S. 155).
Wie Carstensen et al. (2010, S. 155) zu bedenken geben, können

”
Precision und

Recall [...] stark voneinander abweichen. Als einheitliches Gütemaß wird daher oft
das als F-Maß (engl. F-Score) bekannte harmonische Mittel angegeben“ (Carstensen
et al., 2010, S. 155). Um die Aussagekraft der erhobenen Evaluationswerte zu erhöhen,
wird im Folgenden das harmonische Mittel herangezogen (β = 1).

Fβ = (1 + β2) · p · r
(β2 · p) + r

(8.4)



8.2 Evaluation der Anwendbarkeit von Strategien 193

F1 =
2 · p · r
p+ r

(8.5)

An dieser Stelle ist zu bedenken, dass die Hinzunahme einer (vermeintlich) nicht
zwingend notwendigen Kompensationsmethode (gleichzusetzen mit False Positive) le-
diglich einen negativen Einfluss auf die Gesamtlaufzeit hat (s. Abschnitt 8.3), während
das Nichtberücksichtigen eines Indikators zu einer Ergebnisverschlechterung führt
(False Negatives), da die notwendige Kompensation ausbleibt. Wie aufgezeigt wurde,
betrifft dies derzeit gleich mehrere Indikatoren. Es bietet sich an dieser Stelle demnach
an, den F-Score hinsichtlich der höheren Gewichtung des Recalls zu modifizieren,
um den Einfluss der FN stärker zu berücksichtigen (β = 2).

F2 =
5 · p · r
4 · p+ r

(8.6)

Tabelle 8.3 stellt die Ergebnisse der verschiedenen Evaluationsmaße dar.

Accuracy Recall Precision F1-Score F2-Score

INC 0,73 0,70 0,83 0,76 0,72
REF 0,82 0,71 0,93 0,81 0,75
SYN 0,80 0,71 0,87 0,78 0,74
WSD 1,00 1,00 1,00 1,00 1,00

Tabelle 8.3: Ergebnisse der Indikatorevaluation

Wie Tabelle 8.3 zeigt, weist die Kompensation von Unvollständigkeit (INC) den nied-
rigsten F2-Score auf, was insbesondere auf einen niedrigen Recall -Wert zurückzuführen
ist. Im Vergleich dazu ist die referentielle Disambiguierung (REF) hinsichtlich des
Recalls als gleichwertig zur Unvollständigkeit einzustufen, kann jedoch eine wesentlich
höhere Precision aufweisen (Δ 0, 1), was sich allerdings nur gering auf den F2-Score
auswirkt (Δ 0, 03). An dieser Stelle ist wiederum ein deutlicher Unterschied in der
Accuracy zu erkennen (Δ 0, 09).

Die syntaktische Disambiguierung (SYN) weist eine hohe Precision und einen
guten Recall auf. Demgegenüber scheint nur die lexikalische Disambiguierung noch
fehlerfreier zu arbeiten, was allerdings nur bedingt stimmt: Lexikalische Ambiguität
ist auf Grundlage einzelner Token festzustellen, die Indikatoren attestieren jedoch
für die gesamte Anforderungsbeschreibung Ambiguität und Unvollständigkeit. Es ist
daher sehr wahrscheinlich, dass in allen Beschreibungen mindestens ein ambiges Token
korrekt als ambig erkannt wird und somit sowohl der Recall als auch die Precision
sehr gut sind. Nichtsdestotrotz kommen auch hier Fehler in der Indikatoranwendung
vor154, die derzeit nur nicht sichtbar sind. Der WSD-Indikator stellt somit einen
Sonderfall dar, der in Abschnitt 8.2.4.1 besprochen wird.

154Die Fehler entstehen bspw. durch fehlende Einträge in den zugrundeliegenden Ressourcen. Dass
Einträge in WordNet fehlen können, wurde dabei bereits in Abschnitt 3.3.1.2 angemerkt.



194 8 Evaluation

Bei der Interpretation dieser Ergebnisse ist zu berücksichtigen, dass die Ergebnisgüte
unmittelbar von der Text- und Evaluationskomplexität abhängt, was bedeutet, dass
für einfachere Evaluationsgegenstände beispielsweise ein F1-Score von 100% als
sehr gut gilt, während bei komplexen Gegenständen bereits 60–70% als sehr gut
bezeichnet werden können (Carstensen et al., 2010, S. 586). Hierzu merken Carstensen
et al. (2010, S. 586) an, dass

”
auch Menschen [...] nicht in der Lage [sind], bei der

Analyse von komplexen Texten sowohl 100% Vollständigkeit als auch 100% Präzision
zu erreichen“ (Carstensen et al., 2010, S. 586). Um die aufgetretenen Fehler sowie
die Evaluationsergebnisse besser nachzuvollziehen, wird in Abschnitt 8.2.4 eine
Evaluation der Fehlertypen vorgenommen.

8.2.4 Evaluation möglicher Fehlertypen

Die Zuverlässigkeit von Indikatoren und Strategien wird von unterschiedlichen Fehlern
negativ beeinflusst, die im Folgenden besprochen werden. Dabei ist das Ziel, bestimm-
te Fehlertypen auszumachen und die jeweilige Auswirkung auf die Zuverlässigkeit der
Indikatoren (s. Abschnitt 8.2.4.1) und Strategien (s. Abschnitt 8.2.4.2) abzuschätzen.

8.2.4.1 Indikatoranwendung
F4

Wie sich in Abschnitt 8.2.3 zeigt, treten bei der Indikatoranwendung Fehler auf. Die
Frage, die nun beantwortet werden muss, ist: Welche Fehlerarten beeinflussen die
Indikatorzuverlässigkeit und erschweren somit die Strategieauswahl? Ausgehend von
diesen Fehlertypen ist in der Weiterentwicklung des hier beschriebenen Softwaresys-
tems beispielsweise über zusätzliche Schritte der Qualitätssicherung nachzudenken.

Indikatoren für Unvollständigkeit

Partielle Unvollständigkeit wird über fehlende Details (semantische Kategorien)
erkannt (s. Abschnitt 5.3.2.4). Dabei gilt Unvollständigkeit als gegeben, wenn die
semantischen Kategorien der Rolle oder Komponente (Subjekt) fehlen oder aber
das Objekt einer FA fehlt. Während die Kompensation von Unvollständigkeit auf
SRL-Verfahren zurückgreift, um die Argumente eines Prädikats als Kompensati-
onskandidaten zu extrahieren, bedient sich der Indikator demnach der, von der
Anforderungsextraktion bereitgestellten, semantischen Kategorien (bzw. der Infor-
mation über deren Fehlen). Hierbei kann es zu unterschiedlichen Fehlern kommen.
Diese treten allerdings allesamt ursprünglich nicht beim Indikator, sondern bereits
bei der Anforderungsextraktion auf. Zum einen können semantische Kategorien
erkannt werden, die allerdings in der Anforderungsbeschreibung so nicht existieren
(fehlerhafte Erkennung). Dies ist beispielsweise bei

”
Export to adobe pdf format would

be nice“ der Fall, wo fälschlicherweise ein Subjekt erkannt wird (
”
Export“). Zum

anderen können einzelne semantische Kategorien nicht erkannt werden (ausbleibende
Erkennung), wie beispielsweise die Rolle

”
We“ in

”
We would like to add a column for

external links [...]“. Im Hinblick auf die Indikatorzuverlässigkeit ist die ausbleibende
Erkennung semantischer Kategorien weniger schädlich für das Gesamtergebnis, da
somit im schlimmsten Fall die Kompensation von Unvollständigkeit initiiert werden
würde, was lediglich eine schlechte Performanz (Gesamtlaufzeit) bedeuten würde.



8.2 Evaluation der Anwendbarkeit von Strategien 195

Die genauere Betrachtung der Evaluationsergebnisse zeigt dabei, dass beide Fehlerty-
pen bei der Anwendung auf realen Daten vorzufinden sind. Der hohe Freiheitsgrad
in den Formulierungen führt dabei oftmals zu Unvollständigkeit, beispielsweise wenn
Auslassungen bestehen wie in

”
Would like to see an option to Open and Close archive“

(fehlende Rolle). Hierbei fällt auf, dass sehr oft das Subjekt in Anforderungsbeschrei-
bungen ausgelassen wird und der Indikator dadurch aktiviert wird.
Wie in Abschnitt 5.3.2.4 beschrieben, ist das Objekt nicht immer erforderlich

um einen wohlgeformten Satz zu bilden und dennoch wird es vom Indikator als
notwendig angesehen. Dies ermöglicht es, in grammatikalisch fehlerhaften Sätzen
wie

”
I need a software which can be only play mp3 files on Android but the user

not allow to copy or send with bluetooth“ zu erkennen, dass kein Zusammenhang
zwischen dem zu Beginn eingeführten Objekt

”
mp3 files“ und den Aktionen

”
copy“

und
”
send“ festgestellt werden kann. Dies führt allerdings auch dazu, dass Prädikate

als unvollständig erkannt werden, die kein Objekt benötigen:
”
App should be able to

run at startup“. Wie die Evaluation zeigt, sind diese im Anforderungskontext aber
die Ausnahme. Ein weiteres Beispiel ist der Satz:

”
As an administratorRolle when

IRolle start a game IRolle should be able to put the maximumObjekt durationObjekt of
the game“. Interessant an diesem Beispiel ist zum einen, dass keine Unvollständigkeit
erkannt wird, was korrekt ist. Zum anderen, dass syntaktische Ambiguität aufgrund
der PP-Anbindung vorliegt: Die PP

”
of the game“ wird nicht an die NP

”
maximum

duration“ gebunden (und ist somit nicht Teil des Objekts), sondern an die VP.
In diesem Fall hat diese syntaktische Ambiguität keinen negativen Einfluss auf
den Unvollständigkeitsindikator, es zeigt aber, dass die Indikatoren für bestimmte
linguistische Phänomene von eben diesen negativ beeinflusst werden können.

Indikatoren referentieller Ambiguität und Koreferenz

Während der Evaluation haben sich beim Indikator für referentielle Ambiguität und
Koreferenz drei Fehlertypen herauskristallisiert: Fehlerhafte POS-Tags, fehlerhafte
semantische Kategorien und fehlende Synonyme.
Die Erkennung potentiell ambiger Referenzen basiert in dieser Arbeit maßgeblich

auf POS-Tags, die als Muster (z. B.
”
NN+NN+PRP“) satzübergreifende Anwendung

finden (s. Abschnitt 5.3.2.3). Allerdings zeigt sich, dass der zugrundeliegende POS-
Tagger nicht fehlerfrei arbeitet. Dies ist nicht verwunderlich, führt jedoch zu Fehlern,
da die (in der Anzahl limitierten) definierten Muster des Indikators nicht zuverlässig
greifen. Ein Wechsel auf einen anderen POS-Tagger wäre zwar möglich, allerdings
weisen alle aktuellen Tagger eine gewisse Fehlerquote auf (ACL Wiki, 2016).

Zur Erkennung von Koreferenz werden über die POS-Tags hinaus die semantischen
Kategorien und Ähnlichkeitswerte (der semantisch annotierten Wörter) herangezogen
(s.Abschnitt 5.3.2.3). Hierbei zeigt sich, dass zwei Fehlertypen gehäuft auftreten
und zu falschen Ergebnissen führen können: Zum einen sorgen fehlerhafte seman-
tische Kategorien dafür, dass ein Vergleich zweier potentiell koreferenter Wörter
ausbleibt, da sie nicht in derselben semantischen Kategorie auftreten (z. B.wird

”
Application“ als Komponente und einmal fälschlicherweise als Objekt erkannt). Da
die semantischen Kategorien von der Expertenkomponente zur Anforderungsextrak-
tion (REaCT) bereitgestellt werden, ist auf deren Qualität zu diesem Zeitpunkt zu
vertrauen. Maßnahmen zur Qualitätsverbesserung sind somit bei der Anforderungsex-



196 8 Evaluation

traktion vorzunehmen. Zum anderen ist die zugrundeliegende Synonymliste (derzeit
manuell) zu erweitern, da zwar zum Beispiel

”
System“ auf

”
Application“ verweist,

in den Beschreibungen aber oftmals von
”
Apps“ gesprochen wird und daher keine

Übereinstimmung gefunden wird. Im Vergleich zu den fehlerhaft erkannten semanti-
schen Kategorien ist dieses Defizit einfach zu beheben (Aufnahme weiterer Synonyme
in die Liste). Das ergänzende Einbinden externer Ressourcen (z. B.WordNet) kann ei-
ne höhere Abdeckung ermöglichen, hätte allerdings in diesem Beispiel (

”
Apps“) nicht

geholfen, da kein Eintrag hierzu vorliegt. Eine kombinierte Lösung aus Synonymliste
und WordNet erscheint dennoch auf Grund der höheren Abdeckung grundsätzlich
zielführend, wenngleich eine manuelle Ergänzung unvermeidbar ist. Bestehen bleiben
Rechtschreibfehler als Fehlerquelle, die derzeit einen Abgleich mit der Synonymliste
und WordNet behindern.

Indikatoren syntaktischer Ambiguität

Die bereits beim Indikator für referentielle Ambiguität und Koreferenz genannte
Fehlerquote des POS-Taggers kann auch beim Indikator für syntaktische Ambiguität
zu Fehlern führen, da auch dieser auf POS-Tags beim Musterabgleich zurückgreift.
Zusätzlich werden Chunks im Musterabgleich hinzugezogen, die ebenfalls fehlerhaft
sein können (vgl. Abbildung 8.3). Somit ist sowohl die Erkennung von Koordinations-
ambiguität (POS-Tags) als auch die Erkennung von Präpositionalphrasen (mittels
Chunks) grundsätzlich fehleranfällig. Im Falle der Erkennung von Koordinations-
ambiguität sind POS-Tags die einzigen Anhaltspunkte, die berücksichtigt werden.
Fehlerhafte Tags führen daher zu falschen Entscheidungen. Insbesondere die Erken-
nung von Konjunktionen ist für einen performanten Indikator bedeutsam, da diese
als Vorauswahlkriterium herangezogen werden. Hierzu zeigt die Evaluation, dass
die Wörter

”
and“ und

”
or“ alle richtigerweise als Konjunktionen annotiert wurden.

Andersherum wurden auch alle annotierten Konjunktionen korrekt erkannt. Die drei
häufigsten Konjunktionen sind dabei

”
and“ (310 Treffer),

”
or“ (294 Treffer) und

”
but“ (218 Treffer). Ein vom Indikator aufgrund von Konjunktionen vorselektierter
Satz ist:

”
This software must be able to create andCC deliver highly targeted andCC

personalized messages“.
Fehlerhaft erkannte Sätze sind vor allem in der Kombination von Modifikatoren

und Konjunktionen vorzufinden. So wurde der Satz
”
Please add an option to clean

search window text on safeJJ lock or application minimize“ vom Indikator als
potentiell ambig eingestuft, da

”
safe“ als Adjektiv (Modifikator) und nicht als Nomen

erkannt wird. Und auch der Satz
”
App should be able to play songs from my favorite

artists via amazonJJ music and winamp“ gilt fälschlicherweise als potentiell
ambig, da

”
amazon“ als Adjektiv (Modifikator) annotiert wurde.

Im Hinblick auf potentielle Ambiguität durch PP-Anbindungen führen fehlerhafte
Chunks (z. B.NP statt VP) zu Fehlern, da die definierten Muster fälschlicherweise
oder nicht mehr angewendet werden. Ein Beispiel ist der Satz

”
The message dis-

played could be turnedV P on/offNP inPP preferences if desired“, in dem
”
on/off“

fälschlicherweise als NP erkannt wurde. Dabei erzielt der OpenNLP Chunker in
Performanzgegenüberstellungen bereits überzeugende Ergebnisse (z. B. Pinto et al.,
2016), sodass ein Wechsel auf alternative Chunker nicht unbedingt eine Verbesserung
vermuten lässt.



8.2 Evaluation der Anwendbarkeit von Strategien 197

Während der Evaluation haben sich auch Fälle aufgetan, in denen Indikatoren
mehrfach greifen würden, wie zum Beispiel bei:

”
It would be nice to be able to selectV P

multipleJJ filesNNS and foldersNNS/NP inPP the folder tree, and to be able to
drag these selected files to the playlist“ (Koordinations- und Anbindungsambiguität).

Indikatoren lexikalischer Ambiguität

Auch der Indikator für lexikalische Ambiguität ist einer weiteren Evaluation zu
unterziehen. Denn wird die gesamte Anforderungsbeschreibung betrachtet, liegt
in allen evaluierten Anforderungsbeschreibungen lexikalische Ambiguität vor, da
immer mindestens ein Token (in einer berücksichtigten semantischen Funktion)
vorliegt, das potentiell ambig ist. Allerdings wird bisher nicht betrachtet, wie oft
auf dem Weg zu dieser Entscheidung Fehler passieren. Wie viele Token können
beispielsweise hinsichtlich potentieller Ambiguität nicht bewertet werden, da die
zugrundeliegende Ressource (WordNet) keinen entsprechenden Eintrag enthält? Zur
weiteren Erläuterung der Problematik ist der Beispielsatz

”
I want to unsubscribe

from html newsletters with one click“ in Abbildung 8.4 dargestellt.

Fehler 1 Lesart 1 Lesart

unsubscribe
VB
Aktion

html
NN
Objekt

newsletters
NNS
Objekt

I
PRP
Rolle

want
VPB
Priorität

to
TO

from
IN

click
NN
Arg Akt.

4 Lesarten

X*

[...]

Abbildung 8.4: Fehler bei der tokenbasierten Indikatorbestimmung (WSD)

Der Indikator für lexikalische Ambguität markiert den dargestellten Satz richtigerwei-
se als ambig. In dieser Entscheidung werden die ersten drei Token

”
I“,

”
want“ und

”
to“ ignoriert, da sie entweder keiner oder einer nicht berücksichtigten semantischen
Kategorie angehören (s. Abschnitt 5.3.2.1). Das vierte untersuchte Token

”
unsubs-

cribe“ führt zu einem Fehler, da es in WordNet nicht gefunden werden kann. Es
bleibt an dieser Stelle demnach unsicher, ob lexikalische Ambiguität vorliegt und
ob der Indikator zu aktivieren ist. Die folgenden beiden relevanten Token

”
html“

und
”
newsletters“ haben jeweils nur eine Lesart in WordNet und sind daher als

nicht ambig einzustufen. Erst das zehnte Token (
”
click“) weist Ambiguität auf und

ist in WordNet vertreten, sodass der Indikator greift. Hierbei handelt es sich nicht
um ein Problem der Genauigkeit, da es sehr unwahrscheinlich (wenn auch nicht
ausgschlossen) ist, dass alle ambigen Token einer Anforderungsbeschreibung nicht
von WordNet abgedeckt werden und der Indikator daher fälschlicherweise deaktiviert
bleiben würde. Jedoch ist es aus Performanzgründen problematisch, da in diesem Fall
drei Anfragen gestellt wurden, die eigentlich, da

”
unsubscribe“ als Ambiguitätshinweis

genügt hätte155, nicht erforderlich gewesen wären.
Diese Art von Fehler kommt bei der Verarbeitung der 400 Anforderungsbeschrei-

bungen aus Abschnitt 8.2.2 insgesamt 47 Mal (12%) vor und erzeugt 55 zusätzliche

155Unsubscribe kann beispielweise als
”
sich abmelden“ oder

”
abbestellen“ gelesen werden.



198 8 Evaluation

Anfragen. Diese Angabe zeigt allerdings nur die Fälle auf, die Einfluss auf die Indi-
katorbestimmung haben. Werden alle Token der 400 Anforderungsbeschreibungen
betrachtet, die keine Stoppwörter sind (13.353 Token), so sind von diesen 82% in
WordNet abgebildet. Hiervon wiederum sind 87% ambig. Das bedeutet, dass po-
tentiell 2.366 Token (18%) im Evaluationskorpus die Performanz dieses Indikators
schädigen können, da sie nicht von WordNet abgebildet werden und zusätzliche
Anfragen begründen. Unter genauerer Betrachtung ist dabei festzustellen, dass sich
diese Menge an Token vor allem aus falsch geschriebenen Wörtern156, Fachvokabular,
Produktnamen (z. B.

”
Spotify“) und Dateiendungen (z. B.

”
xml“ ) zusammensetzt.

Dieser Performanzaspekt wird in Abschnitt 8.3 auf Systemebene untersucht.

8.2.4.2 Strategieanwendung
F5

Die Strategieanwendung kann zu fehlerhaften Ergebnissen führen. Die Fehler rei-
chen dabei von fehlenden Satzteilen, falsch klassifizierten Anforderungen bis hin
zu unleserlichen Ergebnissen. Dabei können die Fehlerquellen vielfältig sein. Im
Folgenden sind insbesondere die Fehler von Interesse, die sich durch eine Verkettung
falscher Entscheidungen und fehlerhafter Informationen ergeben. Abbildung 8.5 zeigt
beispielsweise ein fehlerhaftes Kompensationsergebnis (lückenhafte Koreferenzkette,
keine Unvollständigkeitskompensation).

Abbildung 8.5: Fehlerhafte Kompensation: Argument wurde nicht zugeordnet

In diesem Beispiel wird korrekt erkannt, dass
”
them“ als Objekt nicht isoliert in-

terpretiert werden kann, sodass es auf
”
mails” bezogen werden muss. Allerdings

ist die Referenzierung misslungen, da das Personalpronomen
”
i“ fälschlicherweise

(evtl. aufgrund der Schreibweise) seitens der Anforderungsextraktion als Objekt
erkannt wurde, dem intern sowohl das POS-Tag NN als auch PRON zugeordnet
wurde. Die Strategie musste in diesem Fall den Kompensationsvorgang abbrechen, da
keine Entscheidung über das korrekte Objekt getroffen werden konnte. Im Folgenden
werden weitere Fehlertypen aufgezeigt, die während der Evaluation auftraten.

Auswirkungen falsch oder nicht erkannter semantischer Kategorien

Fehler in semantischen Kategorien sind gravierend, da diese vielfältige Verwendung
in den Indikatoren, Strategien und Methoden finden. Abbildung 8.6 zeigt die Verwen-
dung der IE-Ergebnisse in der strategiebasierten Weiterverarbeitung und zeigt auch,
ob diese Komponenten anfällig für falsche IE-Ergebnisse sind (schwarz markiert).

156Keine Rechtschreibkorrektur durchzuführen ist weiterhin sinnvoll, da eine Rechtschreibkorrektur
zwar einen Abgleich mit WordNet potentiell ermöglicht, jedoch ggf. falsche Token (Ergebnis
falscher Korrektur) abgleicht und damit insgesamt die Indikatorzuverlässigkeit mindert.



8.2 Evaluation der Anwendbarkeit von Strategien 199

Die Vagheitserkennung bezieht die erkannten semantischen Kategorien lediglich
in der Form ein, als dass eine Filterung der zu untersuchenden Token erfolgen kann.
Demnach werden nur die Token auf Vagheit geprüft, die einer semantischen Kategorie
zugeordnet werden konnten. Aufgrund der Performanz der Vagheitserkennung ist
eine solche Filterung aber nicht notwendig, sodass in der derzeitigen Umsetzung kein
negativer Effekt durch falsche oder nicht erkannte semantische Kategorien auftritt.

Lex. Disambiguierung

Unvollständigkeits-
kompensation

Vagheits-
erkennung

Ergebnis-
strukturierung

Ref. Disambiguierung

IE

Abbildung 8.6: Komponenten mit Einbezug der IE-Ergebnisse.
• = Fehleranfällig; ◦ = Nicht fehleranfällig; � = Begrenzt fehleranfällig

Eine vergleichbare Filterung findet bei der lexikalischen Disambiguierung statt.
Hier trägt das Vorgehen allerdings wesentlich zur Performanz des Verfahrens bei, da
nur Token, die einer semantischen Kategorie angehören, mit Zusatzinformationen aus
BabelNet angereichert werden. Die Auswirkungen möglicher fehlerhafter semantischer
Kategorien sind dabei zu vernachlässigen, da die Token in jedem Fall disambiguiert
werden (BabelID) und lediglich Zusatzinformationen fehlen (z. B.Domäne). Darüber
hinaus werden die semantischen Kategorien auch als Hinweis auf Mehrwortlexeme
herangezogen, was allerdings ebenfalls nicht zu Fehlern in der Disambiguierung
sondern maximal zu Performanzeinbußen führen kann, weshalb die lexikalische
Disambiguierung in Abbildung 8.6 schraffiert dargestellt ist.
Ebenfalls der Filterung durch die semantischen Kategorien unterliegen Prädikate,

die im Rahmen der Unvollständigkeitskompensation auf Vollständigkeit zu
prüfen sind. Hierbei werden nur diejenigen Prädikate geprüft, die in der seman-
tischen Kategorie

”
Aktion“ vorliegen. Ein fälschlicherweise nicht als Aktion erkanntes

Prädikat wird daher nicht auf Vollständigkeit geprüft und verbleibt im Zweifel unvoll-
ständig. Umgekehrt werden (vermeintliche) Prädikate bzw. Aktionen kompensiert,
die nicht verarbeitet werden müssten (vgl. Abbildung 8.7). Die Auswirkung von
Fehlern in der Anforderungsextraktion ist demnach höher als beispielsweise bei der
Vagheitserkennung, auch wenn es prinzipiell das gleiche Vorgehen ist.

Abbildung 8.7: Fehlerhaftes Gesamtergebnis



200 8 Evaluation

Abbildung 8.7 zeigt die FA
”
[Phone app]Komponente should be able to importAktion a

contact to speedAktion dial list“. Fälschlicherweise wurde
”
speed“ nicht als Teil des

Objekts (
”
speed dial list“), sondern als Aktion (

”
to speed“) erkannt. Aus diesem Grund

wurde eine weitere FA extrahiert, welcher
”
dial list“ als Objekt zugeordnet wurde. In

der Funktion der Aktion ist
”
speed“ Gegenstand der Unvollständigkeitskompensation

und wäre entsprechend weiterverarbeitet worden, ohne das dies notwendig gewesen
wäre. Allerdings greift in diesem Fall die Unvollständigkeitskompensation nicht, da der
entsprechende Indikator (korrekterweise) keine Unvollständigkeit feststellen konnte.
Dieses Beispiel zeigt auf, dass ein solcher Fehler nicht immer einfach zu erkennen ist.
Auf Grund der falschen Zuordnung der semantischen Kategorie wurde aus dem Nomen
ein Verb, dem in der Funktion der Aktion alle Argumente zugeordnet werden konnten
(
”
phone app“,

”
dial list“) und das auch durch die lexikalische Disambiguierung als

korrekte Lesart bestätigt wurde.
Für die referentielle Disambiguierung sind die semantischen Kategorien von

Bedeutung, da sie zur Bildung von Koreferenzketten herangezogen werden können.
Liegen allerdings Fehler in der Kategoriezuweisung vor, können falsche Koreferenzket-
ten erstellt bzw. bestehende Ketten fälschlicherweise erweitert werden. Dies wiederum
kann auch die Kompensation von Unvollständigkeit betreffen, wenn Kompensations-
anfragen durch die referentielle Disambiguierung falsch modifiziert werden.
Gravierenden Einfluss auf die Ergebnisqualität im Sinne der Ergebnisstruktu-

rierung in kontrollierter Sprache (Satzstruktur) hingegen haben die semantischen
Kategorien. Da die erkannten Kategorien (z. B.Rolle) entsprechend der definierten
Satzmuster (s. Abschnitt 5.5.7) auf der Benutzeroberfläche positioniert werden, führen
falsch erkannte Kategorien zu unleserlichen oder unvollständigen Sätzen und damit
mindestens zu einem schlechten Ergebnis (vgl. Abbildung 8.8).

Abbildung 8.8: Fehlerhafte Ergebnisdarstellung in kontrollierter Sprache

Abbildung 8.8 zeigt gleich zwei fehlerhafte Ergebnisse. In der ersten FA (S1) ist in der
Anforderungsbeschreibung keine Priorität (z. B.

”
want“) und keine Rolle (z. B.

”
I“)

angegeben, die somit beide kompensiert werden müssten, was hier fehlschlägt. Hin-
gegen wird das Satzmuster (vermeintlich) korrekt gewählt und durch

”
As a user“

ergänzt. In der zweiten FA (S3) wird die Ausgabe in kontrollierter Sprache abge-
brochen, da keine Aktion erkannt werden konnte. Dies lässt sich auf den Umstand
zurückführen, dass alle Komponenten

”
display“ fälschlicherweise als Nomen bzw. in

der semantischen Kategorie
”
Komponente“ erkennen, statt es als Verb bzw. Aktion

zu führen.



8.2 Evaluation der Anwendbarkeit von Strategien 201

Fehler in der Unvollständigkeitskompensation

Fehler in der Unvollständigkeitskompensation können insbesondere durch ein schlech-
tes SRL-Ergebnis (z. B. falsch erkannte Argumente eines Prädikats) und fehlerhafte
syntaktische Korrekturmaßnahmen entstehen, die wiederum zu fehlerhaften Kom-
pensationsanfragen und -ergebnissen führen.
Ein Beispiel für ein fehlerhaftes SRL-Ergebnis ist:

”
Please includeAktion [the file

timestamp of the show in the log file]Argument“. Hier wird die PP an die NP ange-
bunden, wodurch das Argument einen größeren Informationsumfang als vorgesehen
hat. Diese Fehlerart kann durch die Hinzunahme der syntaktischen Disambiguierung
korrigiert werden. Es kann allerdings auch der Fall auftreten, dass die Expertenkom-
ponente für syntaktische Disambiguierung die Ergebnisse verschlechtert. Dies lässt
sich an folgendem Beispielsatz illustrieren:

”
For sending simple posts it’s OK, but

if iRolle want to sendAktion [some attachments (jpg, pdf....)]Objekt. It would be nice to
have that feature“. Die SRL-Komponente erkennt das Prädikat (send.01 ) sowie das
Argument A1 (

”
i“) korrekt (vgl. Abbildung 8.9). Darüber hinaus wird Argument A1

partiell erkannt (
”
some attachments“).

Abbildung 8.9: Fehlerhafte Kompensation: Argument nicht korrekt erkannt

Das Ergebnis in Abbildung 8.9 sieht allerdings insofern anders als das SRL-Ergebnis
aus, als dass Argument A1 nun

”
jpg, pdf“ enthält. Dies ist darauf zurückzuführen, dass

die Expertenkomponente für syntaktische Disambiguierung korrigierend eingreift und
damit leider das Ergebnis verschlechtert (

”
jpg, pdf“ statt

”
some attachments“). Hier

zeigt sich, dass in den Strategien weitere Regeln zur Qualitätssicherung notwendig
sind, da das Aufrufen der Expertenkomponente in diesem Fall nicht zwangsläufig
notwendig gewesen wäre, wenngleich beispielhafte Dateiformate die vage Angabe

”
some attachments“ genauer spezifizieren. Als positiv zu bezeichnen ist, dass die
Instanziierung des Arguments A2 (

”
friends“) erfolgte.

Ein weiteres Beispiel ist der Satz
”
EditNN sectionNN needsV BZ to be orginized

like add section to show how the breakers look. It would be great if it was possible
to change the size of characters“. Während die SRL-Komponente

”
Edit section“

als NP identifiziert, erkennt die syntaktische Disambiguierung
”
Edit“ als Verb und

”
needs“ als Nomen, sodass das korrekt erkannte Argument

”
EditNN sectionNN“

fälschlicherweise zu
”
sectionNN needsNNS“ korrigiert wird.

Fehler durch fehlerhafte Koreferenzketten

Die referentielle Disambiguierung wird auch dazu genutzt, die Ergebnisse der An-
forderungsextraktion zu verbessern (s. Abschnitt 5.2). Beispielsweise werden Perso-
nalpronomen in der semantischen Kategorie Objekt mit ihren Referenten verknüpft.
Treten hierbei Fehler auf, können falsche Zusammenhänge hergestellt werden.



202 8 Evaluation

Die folgende FA führt gleich zu mehreren Verarbeitungsfehlern:
”
[Because these

data ara rather confidential]Bedingung, it should be very important to encriptAktion

themObjekt before saving“. Als Objekt dieser FA wird das Personalpronomen
”
them“

erkannt, welches zusammen mit
”
it“ und

”
these data“ eine Koreferenzkette bildet

(vgl. Abbildung 8.10). Die Koreferenzkette ist aber insofern fehlerhaft, als dass
”
it“

fälschlicherweise Bestandteil der Kette ist. Das Verknüpfen von
”
it“ mit

”
these

data“ ist demnach falsch. Zur Qualitätsverbesserung werden semantische Kategorien
als weiteres Indiz hinzugezogen, was in diesem Fall jedoch ebenfalls zu Fehlern
führt. Das Objekt

”
them“ referenziert auf

”
these data“ im ersten Halbsatz, der

wiederum allerdings seitens der Anforderungsklassifikation als Kategorie
”
Bedingung“

annotiert wird und somit einer anderen semantischen Kategorie angehört als das
Personalpronomen. An dieser Stelle kann

”
them“ nicht korrekt ersetzt werden.

Abbildung 8.10: Beispiel für eine fehlerhafte Koreferenzkette

Die referentielle Disambiguierung kann darüber hinaus auch auf die Kompensationsan-
fragen der Unvollständigkeitskompensation Einfluss nehmen. Stellt beispielsweise ein
Personalpronomen (z. B.

”
them“) in einer FA das alleinige Objekt dar, erlaubt dies kei-

ne zielführende Kompensation. Das Ersetzen des Objekts durch ein zuvor annotiertes
Objekt (kein Personalpronomen) schafft hier Abhilfe. Allerdings kann eine fehlerhafte
Ersetzung auch genau das Gegenteil bewirken: Wird beispielsweise in der FA

”
I want

to [create emails (large files)]Objekt. I must be able to send themObjekt“ das Personal-
pronomen fälschlicherweise durch

”
files“ statt durch

”
emails“ ersetzt (z. B. aufgrund

von Ambiguität), würde das Ergebnis der Unvollständigkeitskompensation insofern
beeinflusst, als dass ein wichtiger Suchbestandteil (Argument) verfälscht wird.

Fehler durch fehlerhaftes Preprocessing

Sowohl die Indikatoren als auch die Strategien basieren auf den Ergebnissen, die
durch das Preprocessing (s. Abschnitt 5.5.2) erzeugt werden. Hierbei können Fehler
auftreten, die, wie die Evaluation zeigt, zu fehlerhaften Ergebnissen führen können.
Neben der Anforderungsextraktion, die zuvor aufgrund ihrer Relevanz für das gesamte
Softwaresystem für sich betrachtet wurde, sind vor allem noch die Anforderungs-
klassifikation (Bestandteil von REaCT) und die Satzvereinfachung (Bestandteil von
Stanford CoreNLP) zu betrachten.

Die regelbasierte Satzvereinfachung kann die Ergebnisqualität direkt negativ be-
einflussen, indem Sätze fälschlicherweise getrennt werden. Dies passiert, wenn die
zugrundeliegende Satzstruktur zuvor falsch erkannt wurde. Beispielsweise führt die
FA

”
I need a software which can be only play mp3 files on Android but the user not

allow to copy or send with bluetooth“ zu einer falschen Satzvereinfachung, da drei
Teilsätze erkannt werden, die in dieser Form von den zugrundeliegenden Regeln nicht
abgedeckt werden, sodass eine ungeeignete Regel greift.
Wie Abbildung 8.11 darüber hinaus zeigt, kann die Satzvereinfachung die Ver-

arbeitung auch indirekt negativ beeinflussen. Die beispielhafte Anforderungsbe-



8.2 Evaluation der Anwendbarkeit von Strategien 203

schreibung ist sprachlich von geringer Qualität, prinzipiell aber verarbeitbar. Die
Satzvereinfachung erkennt, dass eine komplexe Satzkonstruktion vorliegt und trennt
den komplexen Satz in zwei einfache Sätze auf.

Abbildung 8.11: Beispiel für fehlerhafte Satzvereinfachung und deren Folgefehler

In Abbildung 8.11 ist nun eine Verkettung von Fehlentscheidungen erkennbar. Durch
die Satzvereinfachung hat die Anforderungsklassifikation den ersten Satzteil als
Off-Topic klassifiziert und gelöscht. Der zweite Satzteil enthält keine wesentlichen
semantischen Informationen, was wiederum die Anforderungsextraktion erschwert. Es
fehlen semantische Kategorien (z. B.Objekt

”
mp3 files“), die nur im ersten Satzteil

vorliegen. Das verschlechtert die Ergebnisstrukturierung.

Abbildung 8.12: Beispiel für fehlerhafte Anforderungsklassifikation

Die Anforderungsklassifikation kann durch eine falsche Klassifikation das Gesamter-
gebnis erheblich schädigen, da Sätze der Weiterverarbeitung vorenthalten werden.
Wie in Abbildung 8.12 ersichtlich wird, verarbeitet die Folgekomponente (Sprachen-
dientifizierung) nur noch eine der beiden FA aufgrund der falschen Klassifikation.



204 8 Evaluation

8.3 Evaluation der Systemperformanz

Hohe Systemperformanz gilt als etabliertes Qualitätsmerkmal von Softwaresystemen
und ist im Sinne der Systemakzeptanz vor allem dort sicherzustellen, wo Nutzerin-
teraktion stattfindet (Knott, 2016, S. 2, 69 ff.). Aus diesem Grund wird im Folgenden
eine Analyse der Gesamtlaufzeiten vorgenommen, wobei zwischen Gesamtlaufzeit des
Softwaresystems (s. Abschnitt 8.3.2) und der Gesamtlaufzeit von Verarbeitungskom-
ponenten (s. Abschnitt 8.3.3) sowie von Strategien (s. Abschnitt 8.3.5) unterschieden
wird. Darüber hinaus wird das Caching-Verfahren der lexikalischen Disambiguierung,
als ein Beispiel möglicher Performanzsteigerung, näher betrachtet (s. Abschnitt 8.3.4).

8.3.1 Evaluationsprotokoll

Die Evaluation widmet sich dem in Kapitel 5 konzipierten und in Kapitel 7 im-
plementierten, Softwaresystem, wobei die Messung und Analyse der Performanz
einzelner Komponenten sowie des Gesamtsystems Evaluationsgegenstand ist.
Grundsätzlich gilt Performanz als ein etabliertes Qualitätsmerkmal von Softwaresyste-
men (Knott, 2016, S. 2, 69 ff.), hat jedoch besonderen Stellenwert im OTF-Computing.
Diesbezüglich führt beispielsweise Vogel et al. (2009, S. 114 f.) an, dass eine hohe
Performanz erheblich zur Anwenderzufriedenheit beiträgt (s. Abschnitt 7.4.1.1).
Nach Knott (2016, S. 69 ff.) bezieht sich die Performanzevaluation bei Client-Server -

basierten Softwaresystemen, wie es in dieser Arbeit beschrieben wird, insbesondere
auf die Performanz der Nutzerschnittstelle (1) und die des Servers (2). In dieser Arbeit
liegt der Fokus auf dem Server, da es sich bei der Nutzerschnittstelle um eine reine
Präsentationsschicht und nicht um eine Anwendungsschicht handelt (s. Abschnitt 7.3).
Daneben ist laut Knott (2016, S. 69 ff.) noch die Performanz des zugrundeliegenden
Netzwerks (3) zu beachten, auf welches aber kaum Einfluss genommen werden kann.
Im Falle des vorliegenden Systems betrifft externe Netzwerkkommunikation nur die
Komponente der lexikalischen Disambiguierung (s. Abschnitt 7.1) und wird gesondert
in Abschnitt 8.3.4 hinsichtlich Netzwerkschwankungen und Performanz evaluiert.
Nach Knott (2016, S. 69 ff.) können daher als Evaluationszweck folgende Punkte
ausgemacht werden:

• Identifikation von Leistungsengpässen auf Seiten des Servers

• Steigerung der Nutzerzufriedenheit durch Performanzverbesserung

Im Folgenden bezieht sich Performanz in erster Linie auf die Gesamtlaufzeit bzw. auf
den gesamten Ausführungs- und Verarbeitungszeitraum, ausgehend vom Verarbei-
tungsstart durch den Endanwender bis zur abgeschlossenen Ergebnisstrukturierung
(vgl. Definition 8.3.3). Hierbei wird weiter unterschieden157 zwischen der Initialisie-
rungszeit und der Ausführungszeit einer Komponente oder des Systems. Während
die Initialisierungszeit (vgl. Definition 8.3.1) den Ladevorgang des Systems bzw.
einer Systemkomponente beschreibt, bezieht sich die Ausführungszeit einzig auf den
Verarbeitungsprozess (vgl. Definition 8.3.2).

157In Anlehnung an den Microsoft API- undReferenzkatalog zum Thema
”
Anpassen von Timeout-

werten für Prozesse“. Siehe: https://msdn.microsoft.com/library/bb750236 (Stand: 23.02.17).



8.3 Evaluation der Systemperformanz 205

Definition 8.3.1 (Initialisierungszeit)
Die Initialisierungszeit ist die Zeit (in Millisekunden), die eine Komponente oder ein
System für die vollumfängliche Initialisierung in Anspruch nimmt.

Definition 8.3.2 (Ausführungszeit)
Die Ausführungszeit ist die Zeit (in Millisekunden), die eine Komponente oder ein
System für die vollumfängliche Verarbeitung in Anspruch nimmt.

Definition 8.3.3 (Gesamtlaufzeit)
Die Gesamtlaufzeit ist die Summe der Initialisierungszeit und Ausführungszeit (in
Millisekunden), bezogen auf das Gesamtsystem oder einzelne Komponenten.

Die Erkenntnisse, die aus der Evaluation hinsichtlich der Performanz einzelner
Komponenten, Indikatoren und Strategien sowie des Gesamtsystems gezogen wer-
den, bilden die Grundlage für die Weiterentwicklung und können zum Beispiel die
Auswechslung von Komponenten begründen, sollte keine Abhilfe für festgestellte Per-
formanzprobleme existieren. Um dies jedoch zu erreichen, müssen zu dem genannten
Evaluationszweck geeignete Evaluationsfragen (Q) formuliert werden.

• Q1: Wie entwickelt sich die Ausführungszeit unter steigender Last?

• Q2: In welchem Wertebereich schwankt die Initialisierungszeit?

• Q3: Inwiefern beeinflussen nebensächliche Angaben die Systemlaufzeit?

• Q4: Welche Verarbeitungskomponenten haben den größten Laufzeitanteil?

• Q5: In welchem Intervall schwankt die Komponenteninitialisierungszeit?

• Q6: Welchen Anteil haben Komponentenbestandteile an der Laufzeit?

• Q7: Welcher Performanzgewinn kann durch die Anwendung des WSD-
Cachings in der lexikalischen Disambiguierung erreicht werden?

• Q8: Ist eine Grenze auszumachen, ab der keine weiteren Token bzw. Lesarten
in den WSD-Cache aufgenommen werden und somit alle Anfragen
per WSD-Cache beantwortet werden können?

• Q9: Ist die Anfragenverteilung im WSD-Cache innerhalb einer Domäne anders
ausgeprägt, als bei domänenübergreifenden Anforderungsbeschreibungen?

• Q10: Wie entwickelt sich die jeweilige Strategielaufzeit unter steigender Last?

Hinsichtlich der Durchführung der Evaluation müssen folgend geeignete Methoden
herangezogen werden. Da die Systemperformanz im Fokus steht, ist ein automa-
tisiertes Evaluationsvorgehen notwendig, dass

”
Verarbeitungsgeschwindigkeit und

Antwortzeit im Hinblick auf steigende Last [misst]“ (Schulz, 2012). Hierfür wurde
der sogenannte Evaluator entwickelt, der automatisiert Benutzereingaben tätigen
und strategiebasierte Verarbeitungsprozesse starten kann.



206 8 Evaluation

Zur Durchführung bedarf es auch eines Evaluationskorpuses, welches Anforde-
rungsbeschreibungen enthält, die an das Softwaresystem übermittelt werden können.
Hierzu wird auf die in Abschnitt 6.1 beschriebene Ressource zurückgegriffen, die glei-
chermaßen FA (On-Topic) sowie Nebensächliches (Off-Topic) enthält. Wie Reisner
(2011) allerdings mit der Forderung nach

”
realistischen Testdaten“ anmerkt, ist nicht

nur auf die Auswahl der Datenbasis zu achten, sondern auch auf deren Anwendung
auf das System. So wird empfohlen,

”
die Testdaten in zufälliger Reihenfolge [zu]

verwenden“ (Reisner, 2011), da sonst die Gefahr einer Verfälschung der Evaluation
besteht – zum Beispiel durch wiederholte Datenabfrage aus einer Domäne oder
einer stets ähnlichen Anforderungsbeschreibungs- bzw. Satzlänge. In dieser Arbeit
betrifft dies auch das Verhältnis von FA und nebensächlichen Angaben innerhalb
einer Anforderungsbeschreibung.
Abbildung 8.13 stellt das Vorgehen mittels Evaluator dar. Ausgehend vom Evalua-

tionskorpus, in dem Sätze hinsichtlich ihrer Zugehörigkeit zu FA oder nebensächlichen
Angaben markiert sind, stellt die Evaluationsanwendung zufällig Anforderungsbe-
schreibungen zusammen (unter gegebenen Rahmenparametern) und übermittelt sie
iterativ an das Softwaresystem.

Off-Topic

FA

Evaluationskorpus

Evaluator System

Beschreibung

Parameter

Sätze

Sätze

Abbildung 8.13: Generierung der Testdaten mittels Evaluator

Dieses Vorgehen hat entscheidende Vorteile: Zum einen wird der Forderung von
Reisner (2011) nachgekommen, indem Anforderungsbeschreibungen in zufälliger
Reihenfolge ausgewählt sowie kombiniert werden und somit kein Datenmuster die
Ergebnisse verfälscht. Zum anderen erlauben es die Konfigurationsparameter von
Evaluator, genau zu definieren, wie die Merkmale der zu erzeugenden Anforderungs-
beschreibungen für Testzwecke ausgeprägt sein sollen (z. B.Mindestlänge, Anzahl
nebensächlicher Angaben).

8.3.2 Laufzeitanalysen des Gesamtsystems

In diesem Abschnitt geht es um die Beantwortung der Evaluationsfragen Q1, Q2 und
Q3, die alle auf das Gesamtsystem als Evaluationsgegenstand abzielen. Um die zur
Beantwortung erforderlichen Laufzeiten zu erheben, werden 500 Anforderungsbeschrei-
bungen158 auf Basis des Evaluationskorpus zufällig generiert, die jeweils an das System

158Jede Anforderungsbeschreibung besteht aus 1–5 Sätzen, wobei die konfigurierte Wahrscheinlichkeit,
dass ein Satz Off-Topic ist, bei 20% liegt. Insgesamt 1500 zufällig gewählte FA.



8.3 Evaluation der Systemperformanz 207

übertragen werden, sodass insgesamt 500 Anfragen seitens des Systems sequenziell
zu bearbeiten sind. Damit sichergestellt werden kann, dass alle Verarbeitungskompo-
nenten ausgeführt werden, ist die Complete-Strategie zur Messung der Laufzeiten
voreingestellt159. Tabelle 8.4 zeigt die durchschnittlichen Ausführungszeiten über
unterschiedliche Anforderungsbeschreibungslängen (Satzumfang). Q1
Es fällt auf, dass die durchschnittliche Ausführungszeit abhängig vom Anforde-

rungsbeschreibungsumfang zunimmt, was angesichts des erforderlichen Mehrauf-
wands in der Verarbeitung nicht weiter überrascht. Vielmehr ist hervorzuheben,
dass die Ausführungszeit merklich schwankt. Dies ist beispielsweise bei der Anforde-
rungsbeschreibung mit einem Umfang von fünf Sätzen (1.105ms) im Vergleich zur
Verarbeitung von drei Sätzen (1.566ms) erkennbar.

Anzahl Sätze 1 2 3 4 5
∅ [Token] 11 19 34 49 65

Min [ms ] 189 449 1.524 1.566 1.105
Max [ms ] 16.184 29.224 112.346 26.674 26.655

∅ [ms ] 4.010 5.488 6.976 10.011 11.742

Tabelle 8.4: Durchschnittliche Ausführungszeiten des Softwaresystems unter Last

Hervorzuheben ist darüber hinaus ein Ausreißer160 mit 112.346ms bei drei Sätzen.
Dieser ist aufgrund einer überdurchschnittlichen Verarbeitungszeit der Anforderungs-
klassifikation (107.263ms) entstanden. Wird dieser Ausreißer entfernt, liegt das
Maximum bei 17.121ms und der Durchschnitt bei 5.912ms. Dies ist nur ein weiteres
Beispiel dafür, welchen Schwankungen die Ausführungszeit unterliegt und wie einzelne
Verarbeitungskomponenten die Laufzeiten beeinflussen, was in Abschnitt 8.3.3 genau-
er evaluiert wird. Allerdings lässt sich bereits jetzt eine Zweiteilung der Laufzeiten
hinsichtlich der Verarbeitungsschritte des Preprocessings und der Strategieanwendung
vornehmen (vgl. Tabelle 8.5).

Anzahl Sätze 1 2 3 4 5
∅ Preprocessing [ms ] 1.028 2.072 3.058 2.230 2.498

∅ Complete-Strategie [ms ] 2.981 3.416 3.917 7.781 9.243

Tabelle 8.5: Durchschnittliche Ausführungszeiten

Im Durchschnitt entfallen 30% der Ausführungszeit auf das Preprocessing, während
die übrigen 70% der Erkennung- und Kompensation innerhalb der Strategieanwen-
dung zuzuschreiben sind. Hier stellt sich die Frage, ob gegebenenfalls einzelne Verar-
beitungskomponenten für diese Verteilung verantwortlich sind oder ob tatsächlich die
Aufgabenkomplexität in der Erkennung- und Kompensation für die höhere Laufzeit
verantwortlich ist. Dieser Frage wird in Abschnitt 8.3.3 nachgegangen. Q2

Neben der Ausführungszeit ist auch die Initialisierungszeit des Gesamtsystems von
Interesse. Wobei das an dieser Stelle nicht die Initialisierungzeit der Verarbeitungs-
komponenten (s. hierzu Abschnitt 8.3.3) oder des Webservers, sondern ausschließlich

159Eine Evaluation unter Anwendung unterschiedlicher Strategien findet in Abschnitt 8.3.5 statt.
160Eindeutige Evaluationskennung: B7E33EFD042791BBD3242922E28CFAC7 04032017120129.



208 8 Evaluation

die Initialisierung des Kernsystems betreffen soll. Das umfasst beispielsweise den
Verbindungsaufbau161 zu allen Verarbeitungskomponenten oder das Initialisieren
des Strategie-Controllers (s. Abschnitt 5.2). Da dieser Initialisierungsschritt nur zum
Systemstart durchgeführt wird, wird zur Evaluation das Softwaresystem wiederholt
neu gestartet und die jeweiligen Initialisierungszeiten gemessen. Bei insgesamt 120
Messungen162 kann dabei eine durchschnittliche Initialisierungszeit von 4.386ms
ermittelt werden, wobei das Minimum bei 2.167ms und das Maximum bei 19.790ms
liegt. Die Initialisierungszeit ist unabhängig vom Anforderungsbeschreibungsumfang
sowie vom Anteil nebensächlicher Angaben.Q3
Bezüglich nebensächlicher Angaben ist bisher die Frage offengeblieben, wie diese

sich auf die Ausführungszeit auswirken. Bekannt ist, dass Off-Topic-Angaben für die
Performanz schädlich sind und gefiltert werden müssen, da ihre Verarbeitung Zeit
in Anspruch nimmt aber keinen Mehrwert schafft. Dabei ist bisher nicht themati-
siert worden, inwiefern auch das Filtern, also die Anforderungsklassifikation mittels
REaCT (Dollmann und Geierhos, 2016) den Verarbeitungsprozess verlangsamt. Eine
Überlegung hierzu ist, dass nebensächliche Angaben erst die Notwendigkeit des
Filterns begründen und daher die Verarbeitungszeit der Anforderungsklassifikation
vollumfänglich als Schaden geltend zu machen ist. Angesichts der Tatsache, dass
die Klassifikation vergleichsweise viel Verarbeitungszeit bedarf, wäre der Einfluss
von nebensächlichen Angaben auf die Systemlaufzeit groß (vgl. Tabelle 8.6). Jedoch
kann auch argumentiert werden, dass die Anforderungsklassifikation elementarer
Bestandteil eines maschinellen Textanalysesystems ist. In diesem Fall wäre dem-
nach nur die Verarbeitungszeit durch die nebensächlichen Angaben verschuldet, die
durch ihre zusätzliche Klassifikation entstehen. Diesbezüglich ist mit Blick auf die
untersuchten Anforderungsbeschreibungen anzumerken, dass die Klassifikation von
Off- und On-Topic die gleiche Verarbeitungszeit in Anspruch nimmt und auch die
Länge der Sätze nur marginale Auswirkung auf die Laufzeit hat. Handelt es sich
demnach bei einem von zwei Sätzen um eine nebensächliche Angabe, so sind 50%
der Verarbeitungszeit als Schaden auszumachen. Im Vergleich zu der eingesparten
Verarbeitungszeit bei den Folgekomponenten dürfte dies zu vernachlässigen sein.

Aufbauend auf den bisherigen Erkenntnissen wird im Folgenden die Laufzeitanalyse
der Verarbeitungskomponenten vorgenommen.

8.3.3 Laufzeitanalyse der Verarbeitungskomponenten

Dieser Abschnitt gibt Antworten auf die Fragen Q4, Q5 und Q6 aus Abschnitt 8.3.1. Im
Fokus stehen dabei die Laufzeiten der Verarbeitungskomponenten und ausgewählter
Bestandteile (z. B.Verfahren). Die durchschnittlichen Ausführungs- und Initialisie-
rungszeiten, die ebenfalls auf der in Abschnitt 8.3.2 durchgeführten Evaluation
beruhen, stellt Tabelle 8.6 dar.Q4
Hinsichtlich der Ausführungszeiten der Komponenten fallen deutliche Unterschiede

auf. So ist im Bereich des Preprocessings die Satzendeerkennung auffallend zeitinten-
siv (durchschnittlich 1.120ms). Dies ist allerdings mit einer Designentscheidung zu
begründen, die in dieser Arbeit getroffen wurde. So handelt es sich hierbei um eine

161Hiermit ist die Herstellung der HTTPS-Verbindungen zu ausgelagerten Komponenten gemeint.
162120 Messungen verteilt über 12 Stunden (10 Messungen / Stunde).



8.3 Evaluation der Systemperformanz 209

Preprocessing-Komponente, die auch Informationen zur referentiellen und syntakti-
schen Disambiguierung beitragen kann (Synergieeffekt). Somit sind die gemessenen
Zeiten nicht allein auf die Satzendeerkennung zurückzuführen. Da sie allerdings bei
diesem ersten Schritt anfallen, sind sie auch hier zu messen und zu protokollieren.
Daneben sind die Zeiten der Anforderungsklassifikation sowie der -extraktion zu
sehen, beides Bestandteile des REaCT-Tools, die im Schnitt eine halbe Sekunde
Ausführungszeit beanspruchen. Darüber hinaus existieren noch die Zeichennormalisie-
rung und die Sprachenidentifizierung, die hinsichtlich der Ausführungszeiten von einer
Millisekunde zu vernachlässigen sind. Zusammenfassend lässt sich feststellen, dass die
Ausführungszeiten absolut akzeptabel erscheinen (30% der Gesamtausführungszeit).
Ein ähnliches Bild ergibt sich bei den Verarbeitungskomponenten im Bereich

der Erkennung und Kompensation, wenngleich auch eine Komponente merklich
hervorsticht: So ist beispielsweise die Vagheitserkennung im Durchschnitt bereits nach
nur einer Millisekunde abgeschlossen, während die lexikalische Disambiguierung im
Schnitt 5.204ms zur Verarbeitung benötigt. Dies ist soweit nicht verwunderlich, da die
Komponentenkomplexität bei der Disambiguierung wesentlich höher ist und darüber
hinaus eine Kompensation stattfindet, während diese bei der Vagheitserkennung
ausbleibt. Allerdings erscheint die lexikalische Disambiguierung auch im Vergleich
zu anderen Kompensationskomponenten (insb. der Unvollständigkeitskompensation)
bedeutend zeitintensiver und bedingt maßgeblich die Ausführungszeit der Erkennung
und Kompensation.

Verarbeitung Init.
Anzahl Sätze: 1 2 3 4 5 ∅

Preprocessing
Satzendeerkennung 657 1.443 1.297 1.077 1.126 1.120 1

Zeichennormalisierung 1 1 1 1 1 1 1
Sprachenidentifizierung 1 1 1 1 1 1 757–1.119

Anforderungsklassifikation 180 359 1.341 453 487 564 1
Anforderungsextraktion 187 266 415 697 877 489 1

Erkennung und Kompensation
Lex. Disambiguierung 2.858 3.155 3.675 7.497 8.835 5.204 2–257
Ref. Disambiguierung 1 1 1 1 1 1 1
Syn. Disambiguierung 13 6 11 10 10 10 1

Unvollständigkeitskompen. 106 249 224 263 384 245 27–395
Vagheitserkennung 1 1 1 1 1 1 1–2

Tabelle 8.6: Durchschnittliche Laufzeiten der Komponenten [ms].
Jeweils auf Basis von 100 Anforderungsbeschreibungen

Wie ersichtlich wird, sind auch die Initialisierungszeiten sehr unterschiedlich. Auf Q5
der einen Seite existieren Komponenten mit einer sehr geringen Initialisierungszeit,
wie beispielsweise die vollständig extern ausgelagerten Verarbeitungskomponenten
(z. B. Satzendeerkennung), deren Initialisierung entfällt163. Auf der anderen Seite
existieren Komponenten wie die Sprachenidentifizierung, die lokal ausgeführt werden
und daher zu initialisieren sind (z. B. indem Klassifikationsmodelle geladen werden).

163Entsprechender HTTPS-Verbindungsaufbau geschieht bereits im Controller (s. Abschnitt 8.3.2).



210 8 Evaluation

Werden alle Initialisierungszeiten der Verarbeitungskomponenten zusammen über
den vollständigen Evaluationsverlauf betrachtet, so ergibt sich ein Intervall zwi-
schen 1.100ms und 1.800ms, wobei der Durchschnitt bei 1.352ms liegt. Wie auch
bei den Ausführungszeiten gibt es auch hier Komponenten wie die Zeichennorma-
lisierung sowie die Vagheitserkennung, die in den Zeiten nur marginal abweichen.
Demgegenüber stehen Komponenten wie die Sprachenidentifizierung sowie die Un-
vollständigkeitskompensation, die stark schwanken.Q6
Um der Frage nach dem Einfluss einzelner Komponentenbestanteile nachgehen

zu können, werden ausgewählte Verarbeitungskomponenten hinsichtlich des Zeit-
aufwands einzelner Funktionsaufrufe untersucht. Hierbei liegt der Fokus auf den
Komponenten mit dem größten Anteil an der Gesamtausführungszeit (Satzendeer-
kennung und Lexikalische Disambiguierung).
Die Satzendeerkennung setzt sich aus mehreren Unterfunktionen zusammen, von

denen nur eine Funktion eine messbare Ausführungszeit erzeugt. So ist die Einbindung
des Stanford Parsers für 99% der Ausführungszeit verantwortlich, während alle
Nachverarbeitungsschritte hinsichtlich der Laufzeiten zu vernachlässigen sind.
Eine vergleichbare Situation herrscht bei der Verarbeitungskomponente zur lexi-

kalischen Disambiguierung. Diese lässt sich ebenfalls in mehrere Unterfunktionen
aufteilen, von denen nur drei einen sichtbaren Anteil an der Ausführungszeit haben:
(1) die Funktion zur Einbindung von Babelfy als Disambiguierungskomponente, (2)
die Funktion zum Hinzuziehen der BabelNet-Ressource und (3) die Funktion des
WSD-Caches. Während Babelfy (1) nur 5-6% der Ausführungszeit begründet, sind
BabelNet (2) und der Cache (3) zusammen für über 93% der Ausführungszeit ver-
antwortlich. Es zeigt sich somit, dass insgesamt zwei Verarbeitungskomponenten den
Großteil der Gesamtausführungszeit der Komponenten begründen und dass hierbei
von diesen Komponenten wiederum nur wenige Bestandteile involviert sind. Dies
ermöglicht in der weiteren Arbeit eine zielgerichtetere Optimierung der Systemper-
formanz.

8.3.4 Entwicklung und Nutzen des WSD-Cachings

Wie in Abschnitt 7.3.2.2 beschrieben, kann bei der lexikalischen Disambiguierung
eine Performanzsteigerung durch eine temporäre Zwischenspeicherung (Cache) auf
Basis disambiguierter Token erreicht werden. Dies ist möglich, da die Anzahl an
BabelNet-Abrufen, die notwendig sind um lexikalisches Wissen über die Token zu
akquirieren, minimiert werden kann. Um die Funktionsweise, das Verhalten und denQ7
Nutzen des Cachings besser zu verstehen, wird im Folgenden sowohl eine Evaluation
in Hinblick auf die Zeitersparnis als auch auf die Ressourcenverteilung durchgeführt.
Diesbezüglich wird zuerst auf Basis von 550 ambigen Token die Abrufzeit mit und
ohne Anwendung des Caching-Verfahrens untersucht. Es wird deutlich, dass sich die
Abrufzeiten durch das Caching-Verfahren erheblich verringern. Werden beispielsweise
90 ambige Token abgerufen, steigt die Abrufzeit ohne Caching auf 15,38 s, was im
Gegensatz zur Abrufzeit mit Caching (0,360 s) die Gesamtlaufzeit erheblich negativ
beeinflusst (s. Tabelle 8.7). Werden alle Durchläufe hinsichtlich der durchschnittlichen
Abrufzeit pro Token betrachtet, ergibt sich ein Durchschnitt von 4,2ms mit Caching
und 183,1ms ohne Caching.



8.3 Evaluation der Systemperformanz 211

Alle Token [ms] ∅ pro Token [ms]
# Token Mit Caching Ohne Caching Mit Caching Ohne Caching

10 48 2.032 4,8 203,2
20 88 3.388 4,4 169,4
30 124 6.323 4,1 210,8
40 173 7.863 4,3 196,6
50 199 6.149 3,9 123,0
60 244 12.096 4,1 201,6
70 287 12.744 4,1 182,1
80 318 15.019 4,0 187,7
90 360 15.389 4,0 171,0
100 392 18.538 3,9 185,4

∅ 4,2 ∅ 183,1

Tabelle 8.7: Stichproben zur Laufzeitevaluation der lex. Disambiguierung (BabelNet).

In diesem Beispiel wird jeweils nur eine Anfrage durchgeführt und somit eine nicht-
repräsentative Momentaufnahme erzeugt. Dies ermöglicht es, den Einfluss der Netz-
werkauslastung darzustellen. In Tabelle 8.7 ist zu erkennen, dass das Abrufen le-
xikalischer Informationen für 50 Token im Vergleich zu 40 Token weniger Zeit in
Anspruch nimmt. Ein Effekt, der sehr wahrscheinlich auf (lokale) Netzwerkauslastung
bzw. Auslastung der BabelNet-Server zurückzuführen ist. Um diesen Einflussfaktor
besser nachvollziehen zu können, bedarf es einer längerfristigen Messung. Hierzu wird
stündlich, über einen Zeitraum von zehn Tagen und unter Verwendung von zehn
zufällig gewählten Messstellen (begrenzt auf Europa, u. a. Großbritannien, Deutsch-
land, Österreich) die Serververfügbarkeit und generelle -antwortzeit von BabelNet
gemessen164 (siehe Messergebnisse in Anhang B). Abbildung B.1 zeigt die Ergebnisse
der verschiedenen Messstellen, wobei ersichtlich wird, dass die Antwortzeiten stark
abhängig von den Messstandorten sind. So liegt der zeitliche Durchschnitt in der
Tschechischen Republik (CZ) deutlich über dem Durchschnitt der Antwortzeiten
in Großbritannien (GB) und Deutschland (vgl. Abbildung B.2). Andererseits fällt
auf, dass in CZ relativ konstante Zeiten erreicht werden, während beispielsweise in
Deutschland auffällige Schwankungen (30-80ms) zu verzeichnen sind. Zusammen-
fassend lassen sich somit die Vermutungen bezüglich der Netzwerkschwankungen
bestätigen, da insbesondere für die Messstellen in Deutschland deutliche Schwankun-
gen in den Antwortzeiten zu verzeichnen sind (vgl. Abbildung B.2).
Für ein besseres Verständnis, wie die Abrufzeit für Token über längere Zeit

schwankt, wird eine vordefinierte Menge von zehn Token165 herangezogen. Die Abfrage
erfolgt alle zwei Stunden über zehn Tage, wobei im Folgenden zusätzlich davon
ausgegangen wird, dass alle Anfragen von einem Standort unter gleichbleibenden
Hardwarebedingungen (s. Abschnitt 7.2) gestellt werden.

164Eine Messung/Stunde pro Messstelle mit jeweils 10 Paketen.
165Token:

”
E-Mail“ (bn:00029345n),

”
Computer“ (bn:00021464n),

”
send“ (bn:00090548v),

”
write“

(bn:00085489v),
”
delete“ (bn:00084456v),

”
SPAM“ (bn:00048634n),

”
provider“ (bn:00064912n),

”
large“ (bn:00116076r),

”
GMX“ (bn:00726178n) und

”
Sharepoint“ (bn:15927858n).



212 8 Evaluation

Tag
Abrufzeiten [ms]

1 2 3 4 5 6 7 8 9 10 11 12 ∅

1 203 183 178 214 292 320 142 187 271 167 184 188 211
2 260 233 243 304 282 187 254 259 194 155 208 201 232
3 283 164 310 152 259 298 223 297 253 175 300 294 251
4 171 202 299 183 268 172 152 170 140 267 293 250 214
5 168 247 257 309 189 292 249 232 157 227 269 261 238
6 175 259 150 208 272 146 189 308 154 190 237 260 212
7 270 299 239 254 263 273 165 183 244 254 166 125 228
8 191 293 232 185 266 189 147 246 127 236 301 231 220
9 169 221 283 171 196 188 296 198 154 283 157 196 209

10 147 187 237 185 157 149 265 128 263 245 191 308 205

Tabelle 8.8: Durchschnittliche Abrufzeit vordefinierter Token über 10 Tage (BabelNet)

Tabelle 8.8 zeigt die ermittelten Durchschnittswerte der BabelNet-Anfragen, protokol-
liert über zehn Tage. Diese liegen im Bereich 127-320ms und damit im Durchschnitt
(222ms) über dem Ergebnis der Stichprobe (183ms, vgl. Tabelle 8.7). Im Vergleich
zu den Abrufzeiten des Cachings sind diese Werte, ungeachtet der Schwankungen,
allesamt erheblich höher. Dies überrascht wenig, da es sich um einen Vergleich
zwischen lokalen und externen Anfragen handelt. Allerdings ist die erreichte Zeiter-
sparnis, insbesondere für den Anwendungsfall des OTF-Computings, von erheblicher
Bedeutung. Für die Performanz ist auch die Entwicklung der Anfragenverteilung
nach Ressourcen von Interesse, welche maßgeblich vom verwendeten Vokabular (und
Lesarten) abhängt. Diesbezüglich ergeben sich die Evaluationsfragen Q8 und Q9, die
es im Folgenden zu beantworten gilt:Q8
Die Frage Q8 (Ist ein Sättigungszustand auszumachen, bei dessen Erreichung keine

weiteren Token bzw. Lesarten in den WSD-Cache aufgenommen werden und somit alle
Anfragen per WSD-Cache beantwortet werden können?) kann sowohl auf Basis von
Token als auch von Lesarten beantwortet werden. Ein Sättigungszustand wäre erreicht,
wenn keine Token bzw. Lesarten mehr in den Cache aufgenommen und alle Anfragen
aus diesem Zwischenspeicher beantwortet werden können. Dies kann allerdings per
se nicht eintreten, da die natürliche Sprache von Eigennamen und Neologismen
geprägt ist, welche bestehende Ressourcen nicht (vollumfänglich) abdecken und
somit Anfragen an BabelNet gestellt werden müssen, da der Zwischenspeicher keine
geeigneten Einträge enthält, wenngleich diese auch dort (überwiegend) zu keinem
Treffer führen. Allerdings könnte ein Sättigungszustand für Token bzw. Lesarten
eintreten, die in lexikalischen Ressourcen abgebildet sind bzw. innerhalb einer Domäne
verwendet werden. Deshalb wird im Folgenden die Untersuchung des kompletten
Korpus (FA und NFA) von Dollmann (2016) hinsichtlich des Vokabularzuwachses
über alle 1881 Sätze hinweg vorgenommen. Iterativ werden hierfür einzelne Sätze
in Token aufgeteilt. Diese Token werden lemmatisiert und in ein – zu Beginn
leeres – Lexikon aufgenommen. So kann beispielsweise der erste Satz vollständig
(14 Token) aufgenommen werden, während vom zweiten Satz nur sechs von zehn
Token aufgenommen werden, da die übrigen vier Token schon im Lexikon enthalten
sind. Es zeigt sich, dass 921 Sätze (48,9%) kein Token zum Lexikon beitragen, da



8.3 Evaluation der Systemperformanz 213

sie bereits in Gänze durch das darin befindliche Vokabular abgedeckt werden. Nun
bedeutet dies aber nicht, dass die Sätze, die zu Beginn tokenisiert und inventarisiert
werden, die alleinige Grundlage für das Lexikon bilden und die darauffolgenden 921
Sätze durch das Vokabular abgedeckt sind. Es kommen immer wieder neue Token
in den Sätzen vor. Das heißt, dass ein Sättigungszustand zwar theoretisch erreicht
werden kann, jedoch auf Grund der Varianz im Vokabular schwer vorherzusehen ist.
Vielmehr ist davon auszugehen, dass nach einer gewissen Anzahl von Sätzen der
Vokabularzuwachs abnimmt. Für den untersuchten Datensatz lässt sich dies insofern
nachweisen, als dass 70% des Vokabulars mit 50% der Sätze inventarisiert wird,
während die letzten 25% der Sätze nur noch 14% der Token im Lexikon beitragen. Q9

Zur Beantwortung von Frage Q9 (Ist die Anfragenverteilung im WSD-Cache inner-
halb einer Domäne anders ausgeprägt, als bei domänenübergreifenden Anforderungs-
beschreibungen?) wird zum einen das Korpus von Dollmann (2016) als Datensatz
für domänenübergreifende FA herangezogen (s.Abschnitt 6.1). Zum anderen wird
die Stichprobe aus dem PAS-Korpus als domänenspezifischer Datensatz166 hinzuge-
nommen (s. Abschnitt 6.2). Beide Testdatensätze werden iterativ an das Softwaresys-
tem übertragen, während gleichzeitig die Ressourcenverteilung in den Anfragen167

überwacht wird. Abbildung B.3 im Anhang zeigt die Ressourcenanfragen, unterteilt
in diejenigen, die der Zwischenspeicher entgegennimmt und jene, die an BabelNet
übertragen werden. Auf den ersten Blick fällt auf, dass sich die Anfragenverteilungen
in Abbildung B.3 (im Anhang) stark ähneln. Sowohl beim domänenspezifischen
(vgl. Abbildung B.3, A) als auch beim domänenübergreifenden Datensatz (vgl.
Abbildung B.3, B) wird zu Beginn ein Großteil der Anfragen durch BabelNet beant-
wortet (85% bzw. 90%), was damit zu erklären ist, dass der Zwischenspeicher erst
gefüllt werden muss. Nichtsdestotrotz ist es überraschend, dass mehr Anfragen beim
domänenübergreifenden Datensatz durch den Zwischenspeicher beantwortet werden.
Bisher war davon auszugehen, dass innerhalb einer Domäne eher zu einem gemeinsa-
men Vokabular tendiert wird. Somit sollte sich beim domänenspezifischen Datensatz
eine hohe Abdeckung durch den Zwischenspeicher einstellen. Diese Annahme scheint
sich auch nach der Hälfte der Anfragen (300 Token) zu bestätigen, da nun bereits
28% beim domänenspezifischen und 22% beim domänenübergreifenden Datensatz
durch den Zwischenspeicher beantwortet werden. Auch zum Ende hin (600 Token)
wird ein größerer Anteil der Anfragen beim domänenspezifischen Datensatz vom
Zwischenspeicher beantwortet (37,5% gegenüber 27,5%). Anders formuliert bedeutet
das, dass in der domänenspezifischen Durchführung bereits wenige Token im Cache
ausreichen, um viele Anfragen zu beantworten. Dies ist darauf zurückzuführen, dass
das verwendete Vokabular innerhalb einer Domäne kleiner ist und daher bereits nach
wenigen Anfragen ein nennenswerter Anteil der folgenden Anfragen aus dem Cache
beantwortet werden kann.

8.3.5 Laufzeitanalyse der Strategien
Q10

Die Laufzeit der Strategien wird maßgeblich durch die bereits in Abschnitt 8.3.3
evaluierte Komponentenlaufzeit beeinflusst. Da sich die Strategiekonfigurationen

166Entnommen der Kategorie
”
Kommunikation“, Unterkategorie

”
E-Mail“.

167Zur besseren Vergleichbarkeit wird eine gemeinsame Basis von 600 Token herangezogen.



214 8 Evaluation

allerdings von einander unterscheiden, wird im Folgenden der direkte Vergleich der
Gesamtlaufzeiten über alle Strategien hinweg durchgeführt. Hierzu werden für jede
Strategie jeweils 100 Anforderungsbeschreibungen im Umfang von zwei, drei und
vier Sätzen168 an das Softwaresystem übermittelt (vgl. Abbildung 8.14).

Es ist aufgrund der Strategiekonfigurationen wenig verwunderlich, dass die Light-
Strategie die geringste Gesamtlaufzeit aufweist (∅ 3.182 ms), während die Complete-
Strategie die meiste Zeit in Anspruch nimmt (∅ 9.308 ms).

Li
gh
t

Ba
sic

Ba
sic

Pl
us

D
ef
au
lt

Co
m
pl
et
e

0

0.25

0.5

0.75

1

1.25

·104

Strategien

∅
G
es
am

tl
au

fz
ei
t
[m

s]

2 Sätze 3 Sätze 4 Sätze

Abbildung 8.14: Gesamtlaufzeit der Strategien nach Beschreibungsumfang.
Jeweils 100 Durchläufe mit aktiviertem WSD-Cache

Es fällt auf, dass die Basic Plus- (∅ 8.863 ms), Default- (∅ 9.096 ms) und Complete-
Strategie (∅ 9.308 ms) zeitlich sehr nah beieinander liegen, was auf die gewählten
Kompensationskomponenten zurückzuführen ist. Damit ist sowohl die Light- als auch
die Basic-Strategie (∅ 4.389 ms) hinsichtlich einer performanten Ausführung zu
wählen, während die Basic Plus-, Default- und Complete-Strategie zwar eine höhere
Abdeckung in Erkennung und Kompensation aufweisen, dadurch aber auch mehr
Zeit in Anspruch nehmen.

8.4 Evaluationsfazit

Die durch die Evaluation erhaltenen Einblicke in das Systemverhalten sowie die
-performanz werden im Folgenden hinsichtlich ihrer Aussagekraft und Relevanz für
die Weiterentwicklung des Systems diskutiert. Während sich der erste Evaluationsteil

168Durchschnittliche Anzahl Token: 29 (2 Sätze), 49 (3 Sätze), 61 (4 Sätze).



8.4 Evaluationsfazit 215

der Zuverlässigkeit von Indikatoren widmete, befasste sich der zweite Teil mit der
Performanz einzelner Systembestandteile.

Zuverlässigkeit. Gegenstand des ersten Evaluationsteils waren die definierten Indi-
katoren aus Abschnitt 5.3, wobei insbesondere die Identifikation von Fehlerquellen
sowie die Analyse von Verarbeitungsfehlern und deren Auswirkungen auf die Stra-
tegieanwendung im Mittelpunkt der Evaluation standen (s. Abschnitt 8.2). Hierbei
zeigte sich, dass die vorgegebenen Strategien hinsichtlich der Indikatorabdeckung sub-
optimal definiert sind, da im Evaluationskorpus vermehrt bisher nicht berücksichtige
Indikatorkombinationen auftreten und die Strategien hier nicht angewendet wer-
den. Dieser Umstand ist grundsätzlich bedacht, da genau für diesen Fall die Fall-
back -Strategie konzipiert wurde (s. Abschnitt 5.2.6). Die vermehrte Anwendung der
Fallback -Strategie unterstreicht jedoch die Notwendigkeit, langfristig auf vordefi-
nierte Strategien zu verzichten und den Ansatz einer automatischen Strategie zu
verfolgen (s. Abschnitt 5.2.6). Insbesondere, um flexibler und zuverlässiger auf Qua-
litätsschwankungen (unbekannte Indikatorkombinationen) in den Daten zu reagieren.
Die Indikatorzuverlässigkeit unterliegt verschiedenen Einflüssen. So zum Beispiel

der Zuverlässigkeit im Sinne der Ergebnisqualität von zugrundeliegenden Tools sowie
der (Fehler-)Toleranz der angewendeten Regeln und Muster. Hierbei ist insbesondere
das Tool REaCT (Dollmann und Geierhos, 2016) für Fehler verantwortlich. Nicht, weil
es besonders unzuverlässig ist, sondern weil die Ergebnisse (semantische Kategorien)
in mehreren Indikatoren herangezogen werden und Fehler in der Anforderungsklassifi-
kation und -extraktion somit besonders zum Tragen kommen, während beispielsweise
Stanford coref nur bei dem Indikator für referentielle Ambiguität angewendet wird –
Verarbeitungsfehler dieser Komponente haben demnach nur begrenzte Auswirkungen
auf die generelle Indikatorzuverlässigkeit.
Um die Zuverlässigkeit der Indikatoren beurteilen zu können, wurden pro Indikator

die Qualitätsmaße Recall und Precision bestimmt (s. Abschnitt 8.2.3). Wie auch in
anderen Arbeiten zur Verbesserung natürlichsprachlicher Anforderungen (insb. Tjong,
2008, S. 2) wird dabei der Recall stärker gewichtet als die Precision, da es wichtig ist,
möglichst alle potentiell ambigen und unvollständigen Anforderungsbeschreibungen
zu identifizieren. Hierbei stellte sich insbesondere der Indikator referentieller Ambi-
guität als zuverlässig heraus (F2-Score von 0,75), während die Kompensation von
Unvollständigkeit auf Grund eines niedrigen Recalls nur 0,72 als F2-Score erreicht.
Neben den Indikatoren können auch bei der Strategieanwendung Fehler auftreten,

nämlich dann, wenn falsche Komponenten zusammenarbeiten oder die Ergebnisse
verfälschen. Besonders ärgerlich ist das, wenn korrekte Ergebnisse (z. B. syntaktische
Strukturen) durch Hinzunahme von Expertenkomponenten verschlechtert werden
(z. B. syntaktische Disambiguierung), da diesen Komponenten in der vorliegenden
Arbeit eigentlich eine Konfliktlösungskompetenz zugesprochen wird (s. Abschnitt 5.2).

Bei der Fehleranalyse zeigte sich zum einen (s. Abschnitt 8.2), dass Verarbeitungs-
fehler auftreten, die unterschiedliche Systemabschnitte betreffen und verschiedene
Ursachen haben können. So können fehlerhafte semantische Informationen sowohl
die Indikatoranwendung (erster Systemabschnitt) negativ beeinflussen als auch die
strukturierte Ausgabe schädigen (letzter Systemabschnitt). Jedoch begründen Fehler



216 8 Evaluation

in den ersten Systemabschnitten (insb. Preprocessing) oftmals gravierendere Schäden
(z. B. falsche Satzgrenzen und semantische Kategorien, fehlerhafte Klassifikation).

Darüber hinaus kann beispielsweise bei der Unvollständigkeitskompensation so-
wohl eine falsche Kompensationsanfrage auf Grund einer fehlerhaften syntaktischen
Struktur als auch eine nicht erkannte Koreferenz oder Anapher (referentielle Disam-
biguierung) zu einem schlechten Kompensationsergebnis führen.
Zum anderen zeigte sich aber auch, dass einige Komponenten als Fehlerquellen be-

sonders in Erscheinung treten. Dabei wurden falsch oder nicht erkannte semantische
Kategorien (Informationsextraktion) auf Grund des weitreichenden und gravieren-
den Einflusses hervorgehoben. Aber auch die fehlerhafte Erkennung syntaktischer
Strukturen führt zu weitreichenden Folgen. Auf technischer Ebene ist damit der
Einfluss des Stanford CoreNLP -Tools in dieser Arbeit als sehr groß zu bezeichnen,
findet es doch sowohl bei der Satzgrenzenerkennung, Satzvereinfachung, syntakti-
schen und referentiellen Disambiguierung als auch als Expertenkomponente in der
Unvollständigkeitskompensation Anwendung.

Performanz. Neben der Ergebnisverschlechterung, die Fehler in der Indikator- und
Strategieanwendungen bedingen können, ist auch der potentielle negative Einfluss
auf die Systemperformanz zu nennen. Insbesondere dann, wenn Komponenten aus-
geführt werden, die nicht ausgeführt werden müssten. Um mehr über die Performanz
des Gesamtsystems und darüber hinaus auch über die Laufzeiten der einzelnen
Komponenten und Strategien zu erfahren, wurde der zweite Evaluationsteil der
Systemperformanz gewidmet (s. Abschnitt 8.3). Hierbei standen insbesondere die
Identifikation von Leistungsengpässen auf Seiten des Servers sowie die Steigerung der
Nutzerzufriedenheit durch Performanzverbesserung im Zentrum der Überlegungen.
Die Evaluation der Verarbeitungskomponenten zeigte, dass die Satzgrenzenerken-

nung, die Anforderungsklassifikation sowie -extraktion und die lexikalische Disambi-
guierung zeitintensive Komponenten sind, wobei die lexikalische Disambiguierung
die mit Abstand höchste (und dazu unberechenbare169) Laufzeit aufweist. Dies ist
problematisch, da es für REaCT (Anforderungsklassifikation und -extraktion) derzeit
keinen äquivalenten Ersatz gibt (s. Abschnitt 3.2) und es sich bei Babelfy um die
(aktuell) beste Softwarelösung zur WSD handelt und beide Komponenten daher
nicht ersetzt werden können. Vielmehr gilt es andere Wege zu finden, die Performanz
zu steigern: So wurde exemplarisch ein Caching-Verfahren für die Disambiguierung
mittels Babelfy und BabelNet eingeführt und evaluiert, welches als Zwischenspeicher
fungiert und somit einzelne Abfragen wesentlich performanter beantworten kann.
Wie sich während der Evaluation zeigte, ist die Zeiteinsparung dabei erheblich (vgl.
Tabelle 8.7), was vor allem der Nutzerzufriedenheit (geringere Wartezeit) zugute
kommt. Jedoch lässt sich ein solches Caching nur für statische Informationen (wie
lexikalische Informationen zu Lesarten aus BabelNet) realisieren und ist demnach
für die meisten Komponenten im untersuchten Softwaresystem ungeeignet. Ferner
ist es vor allem dann effizient, wenn es innerhalb einer Domäne zum Einsatz kommt
und dadurch das Vokabular im Umfang begrenzt ist (schnellere Abdeckung).
Die Evaluation der Strategien (s. Abschnitt 8.3.5) bestätigt die offensichtliche

Annahme, dass umfangreichere Strategien (höhere Indikatorabdeckung) mit einer

169Unberechenbar im Sinne hoher Netzwerkschwankungen / schwankender Abrufzeiten.



8.4 Evaluationsfazit 217

längeren Laufzeit einhergehen. Allerdings ist festzustellen, dass auch hier einzelne
Komponenten (insb. die lexikalische Disambiguierung) einen größeren Anteil an
der Gesamtlaufzeit bedingen als andere. So unterscheidet sich die Default-Strategie
von der Complete-Strategie vor allem im Output und in der Vagheitserkennung,
was sich in den Gesamtlaufzeiten nicht bemerkbar macht. Zeitlich nur minimal
schneller als die Default-Strategie ist die Basic Plus-Strategie, obwohl diese noch die
referentielle Disambiguierung ausführt. Diese ist allerdings (in der jetzigen Form)
eine sehr performante Komponente (vgl. Tabelle 8.6) und fällt daher hinsichtlich der
Laufzeit nicht ins Gewicht.





Teil IV

Fazit und Ausblick

219





Zusammenfassung und Reflexion 9
Mehrdeutigkeiten, Vagheit und Unvollständigkeit sind als Herausforderungen der
natürlichsprachlichen Anforderungsbeschreibung in der Wissenschaft und Praxis seit
langer Zeit bekannt. Die Erkennung und/oder Kompensation sprachlicher Ungenau-
igkeiten und Unvollständigkeit ist Gegenstand vieler wissenschaftlicher Arbeiten
und praxisnaher Handlungsempfehlungen (s.Kapitel 3), deren resultierende Hand-
lungsvorschläge von der Nutzung unterschiedlicher Lesetechniken, Checklisten und
kontrollierter Sprachen bis hin zur Anwendung spezieller Software reichen. Sie al-
le vereint die Annahme, dass Stakeholder sich zum einen des Handlungsbedarfs
zur Erstellung aussagekräftiger Anforderungsbeschreibungen bewusst sind sowie
zum anderen gewillt und fähig sind, potentielle Defizite in ihren Anforderungsbe-
schreibungen zu beheben (s. Abschnitt 1.1). Diese Vorstellung bewahrheitet sich im
OTF-Computing nicht, da weder die Möglichkeit einer umfassenden Benutzerinterak-
tion besteht, noch angenommen werden kann, dass Endanwender die erforderlichen
Spezifikationskenntnisse aufweisen.
Deshalb leistet die vorliegende Arbeit einen Beitrag zur vereinfachten (disambi-

guierten, syntaktisch vollständigen) Kommunikation zwischen Endanwendern, die
ihre individuellen Anforderungen an eine geplante Software beschreiben und Entwick-
lern, welche diese final umsetzen müssen. Zwar existieren bereits hochspezialisierte
Softwarelösungen, die einzelne Defizite in natürlichsprachlichen Texten automatisiert
erkennen und korrigieren können, jedoch sind diese auf die Domäne nicht adaptierbar.
Sie zielen nicht auf Anforderungsbeschreibungen ab und übersteigen aufgrund ihrer
Bedienungskomplexität (z. B. Ein- und Ausgabeformate, Schnittstellen) meist die
Anwenderkompetenz.
Mit dieser Positionierung widmete sich diese Dissertation der Erkennung und

Kompensation struktureller, referentieller und lexikalischer Ambiguität sowie Unvoll-
ständigkeit in Anforderungsbeschreibungen. Außerdem war es das Ziel, die Auswahl,
Steuerung und Abstimmung der notwendigen Kompensationskomponenten zu auto-
matisieren sowie mit CORDULA ein endanwenderfreundliches Softwaresystem zu
Testzwecken zu implementieren (s. Kapitel 4). Eine bedarfsgerechte Analyse und Kom-
pensation qualitativ stark schwankender Anforderungsbeschreibungen hinsichtlich
mehrerer möglicher Defizite und ohne Benutzerinteraktion ist dabei ein Novum.
Die geringe Qualität der Anforderungsbeschreibungen (s. Abschnitt 1.4) ist dabei

eine Herausforderung für die maschinelle Textverarbeitung. Als wirksame Gegenmaß-
nahmen haben sich dabei die Anforderungsklassifikation sowie die Satzvereinfachung
erwiesen. Nichtsdestotrotz erschwert die geringe Textqualität die Anwendung von
elementaren Verarbeitungsschritten, wie beispielsweise der Anforderungsextraktion
im Preprocessing. Hierauf wird in dieser Arbeit mittels zahlreicher Regeln und Test-
verfahren bzw. dem Abgleich von Informationen (z. B. im Falle widersprüchlicher
POS-Tags) und der Benennung von Expertenkomponenten reagiert.

221



222 9 Zusammenfassung und Reflexion

Zur bedarfsgerechten Analyse und Kompensation wurden kontextspezifische Indi-
katoren definiert, die Anforderungsbeschreibungen der Endanwender analysieren
und über erkannte Merkmale bzw. Merkmalsmuster notwendige Verarbeitungs- und
Kompensationskomponenten auswählen. Indikatoren können dabei auf unterschiedli-
che linguistische Merkmale zurückgreifen, die in dieser Arbeit definiert wurden. Die
semantischen Kategorien als Kernkomponenten einer FA haben dabei wesentliche
Bedeutung, da sie von fast allen Indikatoren einbezogen werden. Semantische Katego-
rien sind das Ergebnis der Anforderungsextraktion und robuster gegenüber schlechter
Textqualität, verglichen mit klassischen linguistischen Merkmalen wie POS-Tags,
Chunks oder Lexikonabfragen. Die Kombination semantischer Kategorien und klas-
sischen linguistischen Merkmalen zur bedarfsgerechten Anwendung verschiedener
Kompensationsverfahren erfolgt erstmalig in dieser Arbeit und ist wesentlich für die
Zusammenführung von Anforderungsbeschreibungen und Softwarekomponenten. Die
stark schwankende Textqualität der Anforderungsbeschreibungen begründet darüber
hinaus auch, dass die Komponentensteuerung und die Ergebnisabstimmung bedarfs-
gerecht über flexible Strategien erfolgen muss (s. Abschnitt 5.2). Hierbei bezieht
sich Flexibilität sowohl auf die interne Informationsverarbeitung einer Strategie als
auch auf die Möglichkeit, Strategien neu aufzunehmen oder zu entfernen. Strategien
unterscheiden sich primär hinsichtlich der unterstützten Verarbeitungs- und Kompen-
sationkomponenten aber auch im Umfang der internen Weiterverarbeitung. Neben
vorkonfigurierten Strategien (z. B.Light, Basic, Default) ist eine Fallback -Strategie
vorgesehen, die immer dann greift, wenn eine erkannte Indikatorkombination durch
die bestehenden Strategien nicht abgedeckt wird (s. Abschnitt 5.2.6).
Das konzipierte Softwaresystem (CORDULA) formt aus den Indikatoren, Strategi-

en sowie Verarbeitungs- und Kompensationskomponenten eine Anwendungseinheit,
was insbesondere bedeutet, dass die Kommunikation zwischen den einzelnen Sys-
tembestandteilen, im Sinne einheitlicher Ein- und Ausgabeformate, hergestellt sowie
zwischen Endanwendern und dem Gesamtsystem, mittels Benutzerschnittstellen,
ermöglicht wird (s. Abschnitt 5.5). Die Konzeption orientiert sich dabei, wie auch
die Implementierung, an den identifizierten Qualitätsmerkmalen moderner Soft-
waresysteme, so zum Beispiel der Forderung nach Interoperabilität, Portabilität
und guter Wartbarkeit (s. Abschnitt 7.4). Der daraufhin entwickelte Prototyp von
CORDULA umfasst alle wesentlichen Bestandteile des Konzepts, insbesondere das
Zusammenwirken von Indikatoren, Strategien und Komponenten (s.Kapitel 7).
Gegenstand der Implementierung ist auch die Entwicklung von bisher nicht exis-

tenten Komponenten, wie es zum Beispiel bei der Unvollständigkeitskompensation
der Fall ist. Zwar wird in der Literatur bereits die Erkennung von unvollständigen
Prädikaten durchgeführt (z. B. Körner, 2014), eine automatische Kompensation von
Anforderungsbeschreibungen auf Basis der Prädikat-Argument-Struktur einzelner
FA ist aber ein Novum (Bäumer und Geierhos, 2016; Geierhos und Bäumer, 2016)
und fester Bestandteil dieser Arbeit. Besonders hervorzuheben ist dabei die bedarfs-
gerechte Hinzunahme weiterer Komponenten (z. B. syntaktische Disambiguierung),
sollte sich durch die Unvollständigkeitskompensation erneut potentielle Ambiguität
ergeben. Diese Berücksichtigung möglicher negativer Folgen der eigenen Kompensati-
onsaktivität ist ebenfalls bisher nicht Gegenstand der Forschung.



223

Allerdings umfasst ein großer Teil der Implementierung neben der reinen Softwa-
reentwicklung auch die Erstellung von linguistischen Ressourcen, die im Bereich
der natürlichsprachlichen Softwareanforderungen in erforderlichem Umfang kaum
existieren (s.Kapitel 6). Hier sind in dieser Arbeit Anforderungsbeschreibungen
herangezogen worden, die die qualitativen Merkmale der Anforderungen enthal-
ten, die im OTF-Computing zu erwarten sind. Die resultierenden Ressourcen (insb.
Anforderungsbeschreibungs- und PAS-Korpus) sind als Ergebnisse dieser Arbeit
für weitere Arbeiten im Bereich der Anforderungsanalyse und -kompensation eine
Hilfestellung, lösen sie in Teilen doch das ressourcenbedingte Kaltstartproblem vieler
Ansätze. Allerdings ist der Umfang der erstellten Ressourcen immer noch begrenzt,
sodass die Ressourcenerweiterung weiterhin Forschungsgegenstand sein muss. Dies
bezieht sich dabei nicht nur auf die beiden Korpora, sondern auch auf unscheinbarere
Ressourcen wie Synonymliste oder Blacklists.
Durch die Evaluation der Indikatoren auf realen Anforderungsbeschreibungen

konnte aufgezeigt werden, dass die definierten Indikatoren eine zufriedenstellende
Zuverlässigkeit aufweisen (∅ F2-Score von 0,80). Jedoch wurde andererseits auch
festgestellt (s. Abschnitt 5.2), dass bestimmte Strategiekonfigurationen nie Anwen-
dung finden (z. B. Strategien ohne lexikalische Disambiguierung), während andere
Indikatorkombinationen von bestehenden Strategiekonfigurationen nicht abgedeckt
werden (s.Abschnitt 8.2.2). Wie die Evaluation der Indikatorkombinationen und
der Strategien aufzeigte (s. Abschnitt 8.4), trägt die Fallback -Strategie durch ihre
datengetriebene ad hoc-Konfiguration wesentlich zur Indikatorabdeckung bei.
Im Sinne einer höheren Flexibilität erscheint es langfristig grundsätzlich sinnvoll,

gänzlich auf eine automatische Kompensationsstrategie auszuweichen. Jedoch ist
dies derzeit mangels umfangreicher Ressourcen (insb. Anforderungsbeschreibungs-
korpora) noch nicht umsetzbar. Die vorliegende Arbeit stellt hierzu jedoch bereits
wichtige Erkenntnisse bereit: Zum einen stellen die definierten Indikatoren eine
robuste Grundlage zur Konfiguration einer automatischen Strategie als auch zur
Auswahl vordefinierter Strategien dar. Zum anderen ist das Zusammenwirken der
heterogenen Komponenten grundsätzlich auch ohne vordefinierte Strategien möglich,
vorausgesetzt, die Steuerung und Ergebniskonsolidierung einzelner Komponenten
wird dem Controller als übergeordnete Instanz übertragen.

Hinsichtlich der Performanz des Gesamtsystems ist anzumerken (s. Abschnitt 8.3),
dass die bei der Evaluation gemessenen Laufzeiten stark schwanken. So schwankt
beispielsweise die Ausführungszeit bei fünf Sätzen zwischen 1,1 und 26,6 s, was auf
eine Vielzahl an Einflussfaktoren zurückzuführen ist, beispielsweise die Einbindung
der externen Babelfy-Komponente (Netzwerkauslastung). Diesbezüglich zeigte sich,
dass das beispielhaft für die lexikalische Disambiguierung implementierte Caching-
Verfahren eine effiziente Möglichkeit ist, die Gesamtlaufzeit wesentlich zu reduzieren
(s. Abschnitt 8.3.4). Allerdings ist es trotz der Tatsache, dass teilweise sehr gute
Gesamtlaufzeiten erreicht werden, fraglich, ob diese bereits die Anforderungen des
OTF-Computings erfüllen. Bei der endgültigen Wertung ist hierbei die vorliegende
Hardwarekonfiguration des Testsystems zu beachten, die verhältnismäßig schwach
gewählt ist (s. Abschnitt 7.2) und dennoch bereits gute Gesamtlaufzeiten zulässt.
Abschließend ist als zentrales Ergebnis dieser Dissertation festzustellen, das kontext-

sensitive Indikatoren und Strategien in der Lage sind, stark heterogene Verarbeitungs-



224 9 Zusammenfassung und Reflexion

und Kompensationskomponenten bedarfsgerecht auf Anforderungsbeschreibungen an-
zuwenden sowie die Einzelergebnisse der Komponenten hinsichtlich eines gemeinsamen
Kompensationsergebnisses in Einklang zu bringen und strukturiert weiterzugeben.
Sie stellen damit eine gute Ergänzung zu bestehenden Arbeiten im Bereich der
softwarebasierten Qualitätsverbesserung von natürlichsprachlichen Anforderungsbe-
schreibungen dar. Allerdings ist auch anzumerken, dass die vorgestellten Indikatoren
und Strategien nur so gut funktionieren können, wie die zugrundeliegenden Informa-
tionen bzw. Merkmale es zulassen. Anforderungsbeschreibungen wird diesbezüglich
eine schlechte Textqualität attestiert (s. Abschnitt 1.4), was die Merkmalserkennung
in der Indikatoranwendung erschwert. Darüber hinaus sind die Kompensationser-
gebnisse nur so gut, wie die Kompensationskomponenten, die diesbezüglich heran-
gezogen werden. Hier kann jedoch positiv in die Zukunft geschaut werden, da die
natürliche Sprachverarbeitung sowie das RE als aktive Forschungsgebiete zählen und
die gewählten Verarbeitungs- und Kompensationskomponenten sich überwiegend
in aktiver Entwicklung befinden. Hier gilt: Verbessert sich die Zuverlässigkeit der
einzelnen Komponenten, verbessert sich auch das Gesamtergebnis.

Fazit. Damit leistet die vorliegende Arbeit methodisch gesehen einen Beitrag zur
ganzheitlichen Erfassung und Verbesserung sprachlicher Unzulänglichkeiten in nut-
zergenerierten Anforderungsbeschreibungen, indem erstmalig parallel und sequenziell
Ambiguität, Unvollständigkeit und Vagheit behandelt werden. Erst durch den Ein-
satz linguistischer Indikatoren war es möglich, datengetrieben und bedarfsorientiert
die individuelle Textqualität zu optimieren, indem von der klassischen Textanaly-
sepipeline (s. Abschnitt 3.1) abgewichen wurde: Die ad hoc-Konfiguration der Kom-
pensationspipeline, ausgelöst durch die On-The-Fly festgestellten Defizite in den
Anforderungsbeschreibungen der Endanwender, ist ein Alleinstellungsmerkmal.



Forschungsausblick 10
Die vorliegende Arbeit stellt ein für sich genommen abgeschlossenes Forschungs-
vorhaben dar. Sie ist jedoch darüber hinaus als wissenschaftlicher Beitrag zum
Sonderforschungsbereich 901: OTF-Computing zu verstehen, in dessen Rahmen die
Weiterentwicklung vorgesehen ist. Diesbezüglich wird im Folgenden ein Forschungs-
ausblick gegeben, der an die bisherigen Ergebnisse dieser Arbeit anknüpft und über
die reine Ergebnisverbesserung hinausgeht.

10.1 Vom Endanwender lernen

In der vorliegenden Arbeit wird an vielen Stellen von Ressourcen gesprochen (insb.
Kapitel 6), die für das Softwaresystem erforderlich sind aber nicht in der erforderli-
chen Qualität oder im notwendigen Umfang vorliegen. Eine Überlegung, die hierzu
bislang noch nicht angestellt wurde, ist die des Erlernens von Wissen und Entschei-
dungen seitens des Gesamtsystems. Dabei bezieht sich das Lernen tatsächlich auf die
Aneignung von Wissen sowie eines bestimmten Verhaltens durch Erfahrungen über
die Zeit (Dudenredaktion, 2017a).
Bezogen auf Ressourcen bedeutet das, dass Eingaben von Endanwendern sei-

tens des Systems dazu genutzt werden, die bestehenden Ressourcen zu erweitern.
So lässt sich beispielsweise der Datenbestand der Unvollständigkeitskompensation
(s.Abschnitt 5.5.5) automatisiert mittels Eingaben von Endanwendern (Anforde-
rungsbeschreibungen) erweitern (Extraktion von FA, Identifikation von Prädikaten,
Leerstellen und Kontext). Der Variantenreichtum in den Anforderungsbeschreibungen
führt darüber hinaus dazu, dass die Kompensationskomponenten eine wachsende
Anzahl an kontextspezifischen Kompensationsalternativen pro Prädikat erhält. Somit
wird die Kompensation insgesamt präziser indem Kompensationsalternativen besser
in den jeweiligen Kontext einer kompensationsbedürftigen Anforderungsbeschrei-
bung einbettet werden können. Allerdings ist sicherzustellen, dass die Eingaben,
die Endanwendern tätigen, weiterhin vertraulich behandelt werden: Es muss eine
Anonymisierung der Datenbestände erfolgen.

Darüberhinaus ist Lernen in der Entscheidungsfindung möglich, denn an mehreren
Stellen im Kompensationsprozess ist davon auszugehen, dass das System sich wieder-
holt gleich entscheidet, da in einem gegebenen Kontext beispielweise nur eine plausible
Disambiguierung für ein Lexem oder einen Satz in Frage kommt. In diesem Fall liegt
zwar eine potentielle Ambiguität vor, eine Disambiguierung ist aber strenggenommen
nicht performant, da mit hoher Wahrscheinlichkeit bereits vor der Disambiguierung
auf Basis der Vergangenheitswerten bestimmt werden kann, welche Lesart korrekt
ist. Ein naheliegendes Beispiel hierfür ist die lexikalische Disambiguierung. Es ist
davon auszugehen, dass Endanwender, die eine E-Mail-Applikation beschreiben, bei-

225



226 10 Forschungsausblick

spielsweise das Prädikat
”
send“ immer in der gleichen Lesart verwenden (z. B. auch

bei
”
attachment“ und

”
write“). Um die Kompensation performant zu gestalten,

ist eine erweiterte Whitelist denkbar, die Disambiguierungsergebnisse und weitere
Informationen über den Kontext enthält und der eigentlichen Disambiguierung vorge-
schaltet wird. Befindet sich ein Lexem auf der Whitelist und handelt es sich um einen
ähnlichen Kontext sowie Domäne, kann die (zeitaufwändigere) Disambiguierung über
Babelfy übersprungen werden und die wahrscheinliche Lesart zugeordnet werden.

10.2 Extraktion und Erweiterung funktionaler Abläufe

In dieser Arbeit wird eine funktionale Anforderung, vereinfacht dargestellt, als eine
Aneinanderreihung semantischer Kategorien verstanden (z. B. Rolle, Aktion, Objekt),
deren Instantiierung unvollständig, vage oder mehrdeutig sein kann und die somit als
kompensationsbedürftig gilt. Diese Betrachtungsweise lässt dabei bislang (mit Aus-
nahme der referentiellen Disambiguierung) das Zusammenwirken mehrerer FA außen
vor. Aufbauend auf den bisherigen, in dieser Arbeit dargestellten, Ergebnissen wird
diesbezüglich angestrebt, auch funktionale Abläufe aus den Anforderungsbeschrei-
bungen zu extrahieren – somit satzübergreifend die gewünschten Funktionalitäten
(Prozesswörter) zu extrahieren und in eine Ausführungsreihenfolge zu bringen. Dies
ist von besonderer Relevanz, da Anforderungsbeschreibungen es zulassen, dass Pro-
zesswörter in beliebiger Reihenfolge kombiniert und über Temporalausdrücke wie
Temporaladverben (z. B.

”
afterwards“) oder temporale Präpositionen (z. B.

”
before“)

koordiniert werden (Landhäußer, 2016, S. 92 ff.). Ein Beispiel hierfür ist die FA
”
I

want to send emails to my friends: First I need to write them and then I want to at-
tach my files“. Die bisherige Betrachtungweise nimmt für solche FA eine intendierte
funktionale Ausführungsreihenfolge an (vgl. Abbildung 10.1, A).

send
FA #1

write
FA #2

attach
FA #3

write
FA #2

attach
FA #3

send
FA #1

1->2 2->3(A) (B) 2->3 3->1

Abbildung 10.1: Gegenüberstellung generierter Funktionsabläufe

Diese Annahme erscheint, aufgrund der geringen Textqualität (s. Abschnitt 1.4)
sowie der Möglichkeit der spontanen Anforderungsverschriftlichung (s. Abschnitt 5.1),
als gewagt. Sie ist für die vorliegende Arbeit jedoch ausreichend. Wird allerdings
auch die Ausführungsreihenfolge betrachtet, fällt auf, dass das Ergebnis wie in
Abbildung 10.1 (A) nicht ausführbar ist, da das Senden (

”
send“) der E-Mail unmöglich

vor dem Schreiben (
”
write“) erfolgen kann. Folglich unterliegen die Prozesswörter in

der Ausführung mindestens einer temporalen Anordnung (vgl. Abbildung 10.1, B).
Sie unterliegen aber nicht nur einer temporalen, sondern auch einer hierarchischen
Anordnung (vgl. Abbildung 10.2): So ist das Senden zwar zunächst als gleichwertiges



10.2 Extraktion und Erweiterung funktionaler Abläufe 227

Prozesswort zu verstehen, es setzt aber zugleich (in diesem Beispiel) das Schreiben
eines Textes und das Anhängen (

”
attach“) einer Datei voraus.

write
FA #2

attach
FA #3

sub_2

sub_1

choose
+FA #4

send
FA #1

Abbildung 10.2: Gegenüberstellung generierter Funktionsabläufe

Neben der angesprochenen Ausführungsreihenfolge genannter Prozesswörter ist die
Erweiterung bestehender Prozessabläufe zu diskutieren. So setzt nicht nur das Senden
einer E-Mail mit Anhang das Schreiben und das Anhängen voraus. Vielmehr setzt
beispielsweise auch das Anhängen einen weiteren Prozessschritt voraus, nämlich die
Auswahl (

”
choose“) entsprechender Dateien – ein Prozesswort, was in der initialen

Anforderungsbeschreibung keine Verwendung findet (vgl. Abbildung 10.2). Hierzu
ist eine entsprechende Wissensressource erforderlich, die Prozesswörter, deren hierar-
chische Beziehung zu anderen Prozesswörtern sowie Abhängigkeiten, linguistische
Relationen (z. B. Synonymie) und Kontextinformationen (z. B.Domäne) enthält. Eine
solche Ressource existiert derzeit noch nicht.





Literaturverzeichnis
ACL Wiki (2016). POS Tagging (State of the art). https://www.aclweb.
org/aclwiki/index.php?title=POS_Tagging_(State_of_the_
art)&oldid=11577. Zuletzt abgerufen am 30.03.2017.

Agarwal, R. und Boggess, L. (1992). A Simple but Useful Approach to Conjunct
Identification. In Proceedings of the 30th Annual Meeting on ACL, ACL’92, Seiten
15–21, Stroudsburg, PA, USA. ACL.

Agirre, E., Baldwin, T. und Martinez, D. (2008). Improving Parsing and PP
attachment Performance with Sense Information. In Proceedings of the Annual
Meeting of the ACL, Seiten 317–325, Columbus, OH, USA. ACL.

Agirre, E. und Edmonds, P. (Herausgeber) (2007). Word Sense Disambiguation:
Algorithms and Applications, Band: 33. Text, Speech and Language Technology.
Springer, Baskenland, Spanien / Oxford, UK.

Albayrak, O., Kurtoglu, H. und Biaki, M. (2009). Incomplete Software Requirements
and Assumptions Made by Software Engineers. In Proceedings of the 16th APSEC,
Seiten 333–339, Batu Ferringhi, Penang, Malaysia. IEEE.

Allen, J. (1995). Natural Language Understanding. The Benjamin/Cummings
Publishing Company, New York, NY, USA / Wokingham, UK / Amsterdam,
Niederlande / Bonn u. a.

Alshazly, A. A., Elfatatry, A. M. und Abougabal, M. S. (2014). Detecting defects in
software requirements specification. Alexandria Engineering Journal, 53(3):513–
527.

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S.
und Collins, M. (2016). Globally Normalized Transition-Based Neural Networks.
In Proceedings of the 54th Annual Meeting of the ACL, Seiten 2442 – 2452, Berlin.
ACL.

Apache Software Foundation (2012). Apache OpenNLP Developer Do-
cumentation. https://opennlp.apache.org/documentation/1.5.
2-incubating/manual/opennlp.html#tools.chunker. Zuletzt abgeru-
fen am 12.12.2016.

Apache Software Foundation (2016). Apache Solr 6.3.0: Solr Features. http:
//lucene.apache.org/solr/features.html. Zuletzt abgerufen am
08.12.2016.

Aurum, A., Petersson, H. und Wohlin, C. (2002). State-of-the-art: software inspections
after 25 years. Software Testing, Verification and Reliability, 12(3):133–154.

229



230 Literaturverzeichnis

Avci, O. (2008). Warum entstehen in der Anforderungsanalyse Fehler? Eine Synthese
empirischer Befunde der letzten 15 Jahre. In Industrialisierung des Software-
Managements: Fachtagung des GI-Fachausschusses Management der Anwendungs-
entwicklung und -Wartung im Fachbereich Wirtschaftsinformatik, LNI, Seiten
89–103, Stuttgart. GI.

Bailey, D., Lierler, Y. und Susman, B. (2015). Prepositional Phrase Attachment
Problem Revisited: How VERBNET Can Help. In Proceedings of the 11th IWCS,
Seiten 12–22, London, UK. ACL, ACL.

Bajwa, I. S., Lee, M. und Bordbar, B. (2012). Resolving Syntactic Ambiguities in
Natural Language Specification of Constraints. In Gelbukh, A. (Herausgeber),
Computational Linguistics and Intelligent Text Processing, Band: 7181. LNCS,
Seiten 178–187. Springer, Berlin / Heidelberg.

Baker, C. F., Fillmore, C. J. und Lowe, J. B. (1998). The Berkeley FrameNet Project.
In Proceedings of the 36th Annual Meeting of the ACL and 17th International
Conference on COLING, Band: 1, Seiten 86–90, Montreal, QC, Kanada. ACL.

Bakshi, R. N. (2000). A Course In English Grammar. Orient Longman, Hyderabad,
TS, Indien.

Baldwin, B. (1997). CogNIAC: High Precision Coreference with Limited Knowledge
and Linguistic Resources. In Proceedings of ANARESOLUTION ’97, Seiten 38–45,
Madrid, Spanien. ACL.

Baldwin, T. und Lui, M. (2010). Language Identification: The Long and the Short
of the Matter. In Proceedings of the HLT: The 2010 Annual Conference of the
NAACL, Seiten 229–237, Los Angeles, CA, USA. ACL.

Balzert, H. (2003). JSP für Einsteiger - Dynamische Websites mit Java Server Pages
erstellen. IT lernen. W3L-Verlag, Herdecke / Dortmund.

Balzert, H. (2009). Lehrbuch der Software-Technik. Spektrum Akademischer Verlag,
Heidelberg, 3. Auflage.

Banerjee, S. und Pedersen, T. (2002). An Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet. In Gelbukh, A. (Herausgeber), Proceedings of the
CICLing 2002, LNCS, Seiten 136–145, Mexico City, Mexiko / Berlin / Heidelberg.
Springer.

Bano, M. (2015). Addressing the Challenges of Requirements Ambiguity: A Review
of Empirical Literature. In Proceedings of the 5th International Workshop on
EmpiRE, Seiten 21–24, Ottawa, ON, Kanada. IEEE.

Bansal, M. und Klein, D. (2012). Coreference Semantics from Web Features. In
Proceedings of the 50th Annual Meeting of the ACL, Band: 1. ACL’12, Seiten
389–398, Stroudsburg, PA, USA. ACL.



Literaturverzeichnis 231

Bäumer, F. S. und Geierhos, M. (2016). Running out of Words: How Similar
User Stories Can Help To Elaborate Individual Natural Language Requirement
Descriptions. In Dregvaite, G. und Damasevicius, R. (Herausgeber), Proceedings
of the ICIST 2016, CCIS, Seiten 549–558, Druskininkai, Litauen. Springer.

Baumgartner, M., Klonk, M., Pichler, H., Seidl, R. und Tanczos, S. (2013). Agile
Testing: Der agile Weg zur Qualität. Carl Hanser Verlag, München.

Bell, T. E. und Thayer, T. A. (1976). Software Requirements: Are They Really a
Problem? In Proceedings of the 2nd ICSE, ICSE’76, Seiten 61–68, Los Alamitos,
CA, USA. IEEE.

Beneken, G. (o. D.). Informelle und formale Spezifikation. http://www.
software-kompetenz.de/servlet/is/15728/. Zuletzt abgerufen am
24.07.2015.

Bengtson, E. und Roth, D. (2008). Understanding the Value of Features for Co-
reference Resolution. In Proceedings of the 2008 Conference on EMNLP, Seiten
294–303, Honolulu / Urbana, IL, USA. ACL.

Berghuber, M. (2008). Ambiguität. http://www.rheton.sbg.ac.at/
rheton/2008/12/ambiguitaet/. Zuletzt abgerufen am 23.10.2015.

Bergsten, H. (2004). JavaServer Pages. O’Reilly Verlag, Sebastopol, CA, USA, 3.
Auflage.

Berkeley NLP Group (2016). Berkeley Coreference Resolution System. http:
//nlp.cs.berkeley.edu/projects/coref.shtml. Zuletzt abgerufen am
16.05.2016.

Berry, D. M. (2000). The Requirements Iceberg and Various Icepicks Chipping at
it. http://www.ieee.li/pdf/viewgraphs/iceberg.pdf. Zuletzt abge-
rufen am 23.10.2015.

Berry, D. M., Kamsties, E. und Krieger, M. M. (2003). From Contract Draf-
ting to Software Specification: Linguistic Sources of Ambiguity – A Hand-
book. Version 1.0. https://cs.uwaterloo.ca/˜dberry/handbook/
ambiguityHandbook.pdf. Zuletzt abgerufen am 16.11.2015.

Berzins, V., Martell, C., Luqi und Adams, P. (2008). Innovations in Natural Language
Document Processing for Requirements Engineering. In Paech, B. und Martell, C.
(Herausgeber), Innovations for Requirement Analysis. From Stakeholders’ Needs to
Formal Designs: 14th Monterey Workshop 2007. Revised Selected Papers, Seiten
125–146. Springer, Monterey, CA, USA / Berlin / Heidelberg.

Bhargav, A. und Kumar, B. (2010). Secure Java: For Web Application Development.
CRC Press, Boca Raton, FL, USA.

Bhat, M., Ye, C. und Jacobsen, H.-A. (2014). Orchestrating SOA Using Requirement
Specifications and Domain Ontologies. In Franch, X., Ghose, A., Lewis, G. und



232 Literaturverzeichnis

Bhiri, S. (Herausgeber), Service-Oriented Computing, Band: 8831. LNCS, Seiten
403–410. Springer, Berlin / Heidelberg.

Björkelund, A., Bohnet, B., Hafdell, L. und Nugues, P. (2010). A High-Performance
Syntactic and Semantic Dependency Parser. In COLING 2010: Demonstrations,
Seiten 33–36, Beijing, China. COLING 2010 Organizing Committee.

Björkelund, A. und Kuhn, J. (2014). Learning Structured Perceptrons for Coreference
Resolution with Latent Antecedents and Non-local Features. In Proceedings of the
52nd Annual Meeting of the ACL, Seiten 47–57, Baltimore, MD, USA. ACL.

Boehm, B. W. (1984). Verifying and Validating Software Requirements and Design
Specifications. IEEE Software, Seiten 75–88.

Bohnet, B. (2010). Very High Accuracy and Fast Dependency Parsing is Not a
Contradiction. In Proceedings of the 23rd COLING, COLING’10, Seiten 89–97,
Beijing, China / Stroudsburg, PA, USA. ACL.

Bos, J. und Spenader, J. (2011). An annotated corpus for the analysis of VP ellipsis.
Language Resources and Evaluation, 45(4):463–494.

Brants, S., Dipper, S., Hansen, S., Lezius, W. und Smithm, G. (2002). The TIGER
Treebank. In Proceedings of the First Workshop on Treebanks and Linguistic
Theories, TLT’02, Seiten 24–41, Sozopol, Bulgarien.

Bray, I. (2002). An Introduction to Requirements Engineering. Pearson Education,
Harlow, Essex, UK.

Breindl, E. und Donalies, E. (2012). Intensitätspartikel. http://hypermedia.
ids-mannheim.de/call/public/sysgram.ansicht?v_id=391. IDS
Mannheim. Zuletzt abgerufen am 28.09.2016.

Briscoe, T. (2006). An introduction to tag sequence grammars and the RASP
system parser. Technischer Bericht 662, University of Cambridge, Cambridge,
UK. UCAM-CL-TR-662. Erreichbar unter: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-662.pdf. Zuletzt abgerufen am 28.04.2016.

Briscoe, T. und Carroll, J. (2002). Robust Accurate Statistical Annotation of General
Text. In Proceedings of the 3rd LREC, Las Palmas, Spanien. ELRA.

Briscoe, T., Carroll, J. und Watson, R. (2006). The Second Release of the RASP
System. In Proceedings of the COLING/ACL on Interactive Presentation Sessions,
COLING-ACL’06, Seiten 77–80, Stroudsburg, PA, USA. ACL.

Brugger, R. (2009). IT-Projekte strukturiert realisieren: Situationen analysieren,
Lösungen konzipieren – Vorgehen systematisieren, Sachverhalte visualisieren –
UML und EPKs nutzen. Vieweg+Teubner Verlag, Wiesbaden, 2. Auflage.

Bryl, V., Giuliano, C., Serafini, L. und Tymoshenko, K. (2010). Using Background
Knowledge to Support Coreference Resolution. In Proceedings of the 19th ECAI,
Seiten 759–764, Amsterdam, Niederlande. IOS Press.



Literaturverzeichnis 233

Bucchiarone, A., Gnesi, S., Fantechi, A. und Trentanni, G. (2010). An Experience in
Using a Tool for Evaluating a Large Set of Natural Language Requirements. In
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC’10, Seiten
281–286, New York, NY, USA. ACM.

Budanitsky, A. und Hirst, G. (2001). Semantic distance in WordNet: An experimental,
application-oriented evaluation of five measures. In Workshop on WordNet and
other Lexical Resources, Second Meeting of the NAACL, Band: 2, Pittsburgh, PA,
USA. ACL.

Budanitsky, A. und Hirst, G. (2006). Evaluating WordNet-based Measures of Lexical
Semantic Relatedness. Computational Linguistics, 32(1):13–47.

Bues, M. (1994). Offene Systeme: Strategien, Konzepte und Techniken für das
Informationsmanagement. Springer, Berlin / Heidelberg.

Bußmann, H. (1983). Lexikon der Sprachwissenschaft. Kröners Taschenausgabe.
Alfred Kröner Verlag, Stuttgart.

Carstensen, K.-U., Ebert, C., Ebert, C., Jekat, S., Klabunde, R. und Langer, H.
(Herausgeber) (2010). Computerlinguistik und Sprachtechnologie: Eine Einführung.
Spektrum Akademischer Verlag, Heidelberg, 3. Auflage.

Carter, S., Weerkamp, W. und Tsagkias, M. (2012). Microblog language identification:
Overcoming the limitations of short, unedited and idiomatic text. Language
Resources and Evaluation, 47(1):195–215.

Ceccato, M., Kiyavitskaya, N., Zeni, N., Mich, L. und Berry, D. M. (2004). Ambiguity
Identification and Measurement in Natural Language Texts. Technischer Bericht
DIT-04-111, University of Trento, Trento, Italien.

Chaimongkol, P., Aizawa, A. und Tateisi, Y. (2014). Corpus for Coreference Reso-
lution on Scientific Papers. In Calzolari, N., Choukri, K., Declerck, T., Loftsson,
H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J. und Piperidis, S. (Herausge-
ber), Proceedings of the 9th International Conference on LREC, Reykjavik, Island.
ELRA.

Chantree, F., Kilgarriff, A., De Roeck, A. und Willis, A. (2005). Disambiguating
Coordinations Using Word Distribution Information. In Proceedings of RANLP,
Borovets, Bulgarien.

Chantree, F., Nuseibeh, B., De Roeck, A. und Willis, A. (2006). Identifying Nocuous
Ambiguities in Natural Language Requirements. In Proceedings of the 14th IEEE
RE, Seiten 59–68, Minneapolis, MN, USA. IEEE.

Chantree, F., Willis, A., Kilgarriff, A. und De Roeck, A. (2007). Detecting Dangerous
Coordination Ambiguities Using Word Distribution. In RANLP IV: Selected papers
from RANLP 2005, Seiten 287–296. John Benjamins Publishing, Amsterdam,
Niederlande / Philadelphia, PA, USA.



234 Literaturverzeichnis

Charniak, E. (1997). Statistical Parsing with a Context-free Grammar and Word
Statistics. In Proceedings of the 24th National Conference on AAAI and 9th
Conference on IAAI, AAAI’97/IAAI’97, Seiten 598–603, Providence, RI, USA.
AAAI Press.

Chen, D. und Manning, C. D. (2014). A Fast and Accurate Dependency Parser
using Neural Networks. In Proceedings of the 2014 Conference on EMNLP, Seiten
740–750, Doha, Katar. ACL.

Choi, J. D. und McCallum, A. (2013). Transition-based Dependency Parsing with
Selectional Branching. In Proceedings of the 51st Annual Meeting of the ACL,
Seiten 1052–1062, Sofia, Bulgarien. ACL.

Choi, J. D., Tetreault, J. und Stent, A. (2015). It Depends: Dependency Parser
Comparison Using A Web-based Evaluation Tool. In Proceedings of the 53rd
Annual Meeting of the ACL and the 7th IJCNLP, Seiten 387–396, Beijing, China.
ACL.

Collins, M. und Brooks, J. (1995). Prepositional Phrase Attachment through a
Backed-Off Model. In Yarowsky, D. und Church, K. W. (Herausgeber), Proceedings
of the 3rd Workshop on Very Large Corpora, Seiten 27–38, Cambridge, MA, USA.
ACL.

Collins, M. J. (1996). A New Statistical Parser Based on Bigram Lexical Dependencies.
In Proceedings of the 34th Annual Meeting on ACL, ACL’96, Seiten 184–191,
Stroudsburg, PA, USA. ACL.

Cook, T. (2002). Mastering JSP. SYBEX, Alameda, CA, USA.

Corley, C. und Mihalcea, R. (2005). Measuring the Semantic Similarity of Texts. In
Proceedings of the ACL Workshop on EMSEE, EMSEE’05, Seiten 13–18, Strouds-
burg, PA, USA. ACL.

Crockford, D. (2006). JSON: The Fat-Free Alternative to XML. http://www.
json.org/xml.html. Zuletzt abgerufen am 02.12.2015.

Culotta, A., Wick, M., Hall, R. und McCallum, A. (2007). First-Order Probabilistic
Models for Coreference Resolution. In Proceedings of the HLT conference / Meeting
of the NAACL, Seiten 81–88, Rochester, NY, USA. ACL.

Davies, M. (2016). Word frequency data – Corpus of Contemporary American English.
http://www.wordfrequency.info/free.asp?s=y. Zuletzt abgerufen am
08.09.2016.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A. und Theofanos, M. (1993).
Identifying and Measuring Quality in a Software Requirements Specification. In
Proceedings of the 1st International Software Metrics Symposium, Seiten 141–152,
Baltimore, MD, USA. IEEE.



Literaturverzeichnis 235

Decker, B., Ras, E., Rech, J., Jaubert, P. und Rieth, M. (2007). Wiki-Based
Stakeholder Participation in Requirements Engineering. IEEE Software, 24(2):28–
35.

Deeptimahanti, D. K. und Sanyal, R. (2009). An Innovative Approach for Generating
Static UML Models from Natural Language Requirements. In Kim, T.-h., Fang,
W.-C., Lee, C. und Arnett, K. P. (Herausgeber), Advances in Software Engineering,
Band: 30, Seiten 147–163. Springer, Berlin / Heidelberg.

Deeptimahanti, D. K. und Sanyal, R. (2011). Semi-automatic Generation of UML
Models from Natural Language Requirements. In Proceedings of the 4th ISEC,
ISEC’11, Seiten 165–174, New York, NY, USA. ACM.

Denert, E. (2013). Software-Engineering: Methodische Projektabwicklung. Springer,
Berlin / Heidelberg / New York, NY, USA. 1. korrigierter Nachdruck.

Dias Cardoso, P. M. und Roy, A. (2016). Language Identification for Social Media:
Short Messages and Transliteration. In Proceedings of the 25th International Con-
ference Companion on WWW, WWW’16 Companion, Seiten 611–614, Montreal,
QC, Kanada. International WWW Conferences Steering Committee.

Dittmann, J. und Thieroff, R. (2009). Richtiges Deutsch leicht gemacht. Bertelsmann
Wahrig. Wissenmedia, Gütersloh / München.

Doddington, G., Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S. und Weische-
del, R. (2004). The Automatic Content Extraction (ACE) Program – Tasks, Data,
and Evaluation. In Proceedings of the 4th International LREC, Seite 837–840,
Lissabon, Portugal. ELRA.

Dollmann, M. (2016). Frag die Anwender: Extraktion und Klassifikation von funk-
tionalen Anforderungen aus User-Generated-Content. Masterarbeit, Universität
Paderborn, Paderborn.

Dollmann, M. und Geierhos, M. (2016). On- and Off-Topic Classification and
Semantic Annotation of User-Generated Software Requirements. In Proceedings of
the Conference on EMNLP, Austin, TX, USA. ACL.

Dönninghaus, S. (2005). Vagheit der Sprache: Begriffsgeschichte und Funktionsbe-
schreibung anhand der tschechischen Wissenschaftssprache. Slavistische Studien
Bücher. Harrassowitz Verlag, Wiesbaden.

Drechsler, R., Soeken, M. und Wille, R. (2014). Automated and Quality-driven Requi-
rements Engineering. In Proceedings of the 2014 IEEE/ACM ICCAD, ICCAD’14,
Seiten 586–590, Piscataway, NJ, USA. IEEE.

Dudenredaktion (Herausgeber) (2016). Duden – Deutsches Universalwörterbuch: Das
umfassende Bedeutungswörterbuch der deutschen Gegenwartssprache. Dudenredak-
tion, Berlin, 8. Auflage.

Dudenredaktion (2017a). Duden, Stichwort: Lernen. http://www.duden.de/
node/665539/revisions/1613414/view. Zuletzt abgerufen am 04.03.2017.



236 Literaturverzeichnis

Dudenredaktion (2017b). Duden, Stichwort: Standardsprache. http://www.
duden.de/node/679032/revisions/1165333/view. Zuletzt abgerufen
am 05.03.2017.

Dudenredaktion (2017c). Duden, Stichwort: Text. http://www.duden.de/
node/654612/revisions/1370114/view. Zuletzt abgerufen am 03.02.2017.

Dunkel, J. und Holitschke, A. (2003). Softwarearchitektur für die Praxis. Xpert.press.
Springer, Hannover / Berlin / Heidelberg.

Dunning, T. (1994). Statistical Identification of Language. Technischer Bericht
MCCS 94-273, New Mexico State University, Las Cruces, NM, USA.

Durrett, G. und Klein, D. (2013). Easy Victories and Uphill Battles in Coreference
Resolution. In Proceedings of the Conference on EMNLP, Seattle, WA, USA. ACL.

Dustdar, S., Gall, H. und Hauswirth, M. (2003). Was ist Software-Architektur?,
Seiten 1–11. Springer, Berlin / Heidelberg.

Ernst, M. (2003). Syntaktische Ambiguität: Eine sprachübergreifende Typisierung auf
der Basis des Französischen und Spanischen, Band: 261. Europäische Hochschul-
schriften XXI. Peter Lang, Würzburg / Frankfurt am Main. Zugl.: Dissertation
an der Universität Würzburg, 2002.

España, S., Condori-Fernandez, N., Gonzalez, A. und Pastor, O. (2009). Evaluating
the Completeness and Granularity of Functional Requirements Specifications:
A Controlled Experiment. In Proceedings of the 17th IEEE RE, RE’14, Seiten
161–170, Atlanta, GA, USA. IEEE.

Essberger, J. (2012). English Prepositions List – 150 Prepositions. Englishclub.com,
Cambridge, UK.

Fabbrini, F., Fusani, M., Gnesi, S. und Lami, G. (2000). Quality Evaluation of
Software Requirements Specifications. In Proceedings of the Conference of the
Software and Internet Quality Week, Seiten 1–18, San Francisco, CA, USA.

Fabbrini, F., Fusani, M., Gnesi, S. und Lami, G. (2001). The Linguistic Approach to
the Natural Language Requirements Quality: Benefit of the use of an Automatic
Tool. In Proceedings of the 26th Annual NASA Goddard Software Engineering
Workshop, Seiten 97–105, Greenbelt, MD, USA. IEEE.

Fagan, M. (1976). Design and code inspections to reduce errors in program develop-
ment. IBM Systems Journal, 15(3):182–211.

Fahney, R., Gartung, T., Glunde, J., Hoffmann, A. und Valentini, U. (2012). Requi-
rements Engineering und Projektmanagement. Springer, Berlin / Heidelberg.

Fantechi, A. und Spinicci, E. (2005). A Content Analysis Technique for Inconsistency
Detection in Software Requirements Documents. In Proceedings of the WER 2005,
VIII Workshop on Requirements Engineering, Seiten 245–256, Porto, Portugal.



Literaturverzeichnis 237

Femmer, H. (2013). Reviewing Natural Language Requirements with Requirements
Smells – A Research Proposal. http://www4.in.tum.de/˜femmer/works/
idoese13.pdf. Zuletzt abgerufen am 27.08.2016.

Femmer, H., Fernández, D. M., Juergens, E., Klose, M., Zimmer, I. und Zimmer, J.
(2014). Rapid Requirements Checks with Requirements Smells: Two Case Studies.
In Proceedings of the 1st International Workshop on RCoSE, RCoSE’14, Seiten
10–19, New York, NY, USA. ACM.

Femmer, H., Fernández, D. M., Wagner, S. und Eder, S. (2016a). Rapid Quality Ass-
urance with Requirements Smells. Journal of Systems and Software. In Press, Cor-
rected Proof. Erreichbar unter: http://www4.in.tum.de/˜femmer/works/
2016-requirements_smells-jss.pdf. Zuletzt abgerufen am 27.08.2016.

Femmer, H., Hauptmann, B. und Widera, A. (2016b). Requirements-Smells: Auto-
matische Unterstützung bei der Qualitätssicherung von Anforderungsdokumenten.
OBJEKTspektrum, 2:14–19.

Ferlein, J. und Hartge, N. (2008). Technische Dokumentation für internationale
Märkte: Haftungsrechtliche Grundlagen - Sprache - Gestaltung - Redaktion und
Übersetzung. Expert Verlag, Renningen.

Ferrari, A., dell’ Orletta, F., Spagnolo, G. O. und Gnesi, S. (2014). Measuring and
Improving the Completeness of Natural Language Requirements. In Salinesi, C.
und van de Weerd, I. (Herausgeber), Requirements Engineering: Foundation for
Software Quality, Band: 8396. LNCS, Seiten 23–38. Springer, Essen.

Fettke, P. (2012). Enzyklopädie der Wirtschaftsinforma-
tik, Stichwort: Objektorientierte Modellierung. http://
www.enzyklopaedie-der-wirtschaftsinformatik.de/
wi-enzyklopaedie/lexikon/is-management/Systementwicklung/
Hauptaktivitaten-der-Systementwicklung/Problemanalyse-/
Objektorientierte-Modellierung. Zuletzt abgerufen am 28.07.2015.

Firesmith, D. (2007). Common Requirements Problems, Their Negative Consequences,
and the Industry Best Practices to Help Solve Them. Journal of Object Technology,
6(1):17–33.

Firesmith, D. G. (2005). Are Your Requirements Complete? Journal of Object
Technology, 4(2):27–43.

Flati, T. und Navigli, R. (2014). Three Birds (in the LLOD Cloud) with One Stone:
BabelNet, Babelfy and the Wikipedia Bitaxonomy. In Proceedings of SEMANTiCS
2014, Seiten 10–13, Leipzig.

Fowler, M., Beck, K., Brant, J., Opdyke, W. und Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Object Technology Series. Addison-Wesley,
Westford, MA, USA.



238 Literaturverzeichnis

Friedrich, F., Mendling, J. und Puhlmann, F. (2011). Process Model Generation
from Natural Language Text. In Proceedings of the 23rd CAiSE, CAiSE’11, Seiten
482–496, Berlin / Heidelberg. Springer.

Fries, N. (1980). Ambiguität und Vagheit: Einführung und kommentierte Bibliographie,
Band: 84. Linguistische Arbeiten. De Gruyter, Tübingen.

Gale, W. A., Church, K. W. und Yarowsky, D. (1992). One Sense Per Discourse.
In Proceedings of the Workshop on Speech and Natural Language, HLT’91, Seiten
233–237, Stroudsburg, PA, USA. ACL.

Gausemeier, J., Czaja, A. M., Wiederkehr, O., Dumitrescu, R., Tschirner, C. und
Steffen, D. (2013). Studie: Systems Engineering in der industriellen Praxis. 9.
Paderborner Workshop: Entwurf mechatronischer Systeme.

Geierhos, M. (2010). BiographIE: Klassifikation und Extraktion karrierespezifischer
Informationen. Doktorarbeit, LMU München, München.

Geierhos, M. und Bäumer, F. S. (2016). How to Complete Customer Requirements:
Using Concept Expansion for Requirement Refinement. In Métais, E., Meziane,
F., Saraee, M., Sugumaran, V. und Vadera, S. (Herausgeber), Proceedings of the
21st NLDB, Manchester, UK. Springer.

Geierhos, M. und Bäumer, F. S. (2017). Guesswork? Resolving Vagueness in User-
Generated Software Requirements. In Christiansen, H., Jiménez López, M. D.,
Loukanova, R. und Moss, L. (Herausgeber), Partiality and Underspecification in
Information, Languages, and Knowledge, Kapitel 3, Seiten 65–107. Cambridge
Scholars Publishing, Cambridge, UK.

Geierhos, M., Schulze, S. und Bäumer, F. S. (2015). What did you mean? Facing
the Challenges of User-generated Software Requirements. In Loiseau, S., Fili-
pe, J., Duval, B. und van den Herik, J. (Herausgeber), Proceedings of the 7th
ICAART, Special Session on PUaNLP 2015, Seiten 277–283, Lissabon, Portugal.
SCITEPRESS – Science and Technology Publications.

Génova, G., Fuentes, J. M., Llorens, J., Hurtado, O. und Moreno, V. (2013). A Frame-
work to Measure and Improve the Quality of Textual Requirements. Requirements
Engineering, 18(1):25–41.

Geurts, P., Ernst, D. und Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 63(1):3–42.

Ghaddar, A. und Langlais, P. (2016). WikiCoref: An English Coreference-annotated
Corpus of Wikipedia Articles. In Calzolari, N., Choukri, K., Declerck, T., Goggi,
S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J. und
Piperidis, S. (Herausgeber), Proceedings of the 10th International Conference on
LREC, Paris, Frankreich. ELRA.

Ghazarian, A. (2009). A Case Study of Defect Introduction Mechanisms. In van Eck,
P., Gordijn, J. und Wieringa, R. (Herausgeber), Advanced Information Systems
Engineering, Band: 5565. LNCS, Seiten 156–170. Springer, Berlin / Heidelberg.



Literaturverzeichnis 239

Gill, K. D., Raza, A., Zaidi, A. M. und Kiani, M. M. (2014). Semi-Automation for
Ambiguity Resolution in Open Source Software Requirements. In Proceedings of
the 27th CCECE, CCECE’14, Seiten 1–6, Toronto, ON, Kanada. IEEE.

Gillick, D. (2009). Sentence Boundary Detection and the Problem with the U.S. In
Proceedings of HLT: The 2009 Annual Conference of the NAACL, NAACL-Short’09,
Seiten 241–244, Stroudsburg, PA, USA. ACL.

Gleich, B., Creighton, O. und Kof, L. (2010). Ambiguity Detection: Towards a Tool
Explaining Ambiguity Sources. In Wieringa, R. und Persson, A. (Herausgeber),
Requirements Engineering: Foundation for Software Quality, Band: 6182. LNCS,
Seiten 218–232. Springer, Berlin / Heidelberg.

Goldberg, M. (1999). An Unsupervised Model for Statistically Determining Coordi-
nate Phrase Attachment. In Proceedings of the 37th Annual Meeting of the ACL,
ACL’99, Seiten 610–614, Stroudsburg, PA, USA. ACL.

Goldberg, Y. und Nivre, J. (2013). Training Deterministic Parsers with Non-
Deterministic Oracles. Transactions of the ACL, 1:403–414.

Grande, M. (2011). 100 Minuten für Anforderungsmanagement - Kompaktes Wissen
nicht nur für Projektleiter und Entwickler. Vieweg+Teubner Verlag / Springer
Fachmedien, Wiesbaden.

Grechenig, T. (2010). Softwaretechnik: Mit Fallbeispielen aus realen Entwicklungs-
projekten. Pearson Studium, München / Boston, MA, USA / Massachusetts, MA,
USA.

Grefenstette, G. (1995). Comparing Two Language Identification Schemes.
In Proceedings of the 3rd JADT, JADT’95, Seiten 263–268, Rom, Italien.
Erreichbar unter: http://www.uvm.edu/˜pdodds/teaching/courses/
2009-08UVM-300/docs/others/everything/grefenstette1995a.
pdf. Zuletzt abgerufen am 12.01.2017.

Grice, H. P. (1991). Studies in the Way of Words. Harvard University Press,
Cambridge, UK / Massachusetts, MA, USA / London, UK.

Grishman, R. und Sundheim, B. (1996). Message Understanding Conference – 6:
A Brief History. In Proceedings of COLING’96, Seiten 466–471, Kopenhagen,
Dänemark. ACM.

Grosz, B. J., Joshi, A. K. und Weinstein, S. (1995). Centering: A Framework for
Modeling the Local Coherence of Discourse. Computional Linguistics, 21(2):203–
225.

Guha, A., Iyyer, M., Bouman, D. und Boyd-Graber, J. L. (2015). Removing the
Training Wheels: A Coreference Dataset that Entertains Humans and Challenges
Computers. In The 2015 Conference of the NAACL: HLT, Seiten 1108–1118,
Denver, CO, USA. ACL.



240 Literaturverzeichnis

Gumm, H.-P. und Sommer, M. (2012). Einführung in die Informatik. Oldenbourg
Wissenschaftsverlag, München, 10. Auflage.

Haberfellner, R., Nagel, P., Becker, M., Bücher, A. und von Massow, H. (1994).
Systemgestaltung. In Daenzer, W. F. und Huber, F. (Herausgeber), Systems
Engineering: Methoden und Praxis. Verlag Industrielle Organisation Zürich, Zürich,
Schweiz, 8. Auflage.

Haghighi, A. und Klein, D. (2009). Simple Coreference Resolution with Rich Syntactic
and Semantic Features. In Proceedings of the 2009 Conference on EMNLP, Seiten
1152–1161, Singapur. ACL.

Hajič, J., Vidová-Hladká, B. und Pajas, P. (2001). The Prague Dependency Tree-
bank: Annotation Structure and Support. In Proceedings of the IRCS Workshop
on Linguistic Databases, Seiten 105–114, Philadelphia, PA, USA. University of
Pennsylvania.

Hajičová, E., Abeillé, Hajič, J., Mı́rovský, J. und Urešová, Z. (2010). Treebank
Annotation. In Indurkhya, N. und Damerau, F. J. (Herausgeber), Handbook of
Natural Language Processing, Kapitel 8, Seiten 167–188. CRC Press, London, UK
/ New York, NY, USA u. a.

Hall, A. (1990). Seven Myths of Formal Methods. IEEE Software, 7(5):11–19.

Hall, A. und Chapman, R. (2002). Correctness by Construction: Developing a
Commercial Secure System. IEEE Software, 19(1):18–25.

Hammer, N. und Bensmann, K. (2011). Webdesign für Studium und Beruf: Webseiten
planen, gestalten und umsetzen. X.media.press. Springer, Berlin / Heidelberg, 2.
Auflage.

Hammer, U. (2013). Lexikon der Wirtschaftsinformatik, Kapitel Adaptierbarkeit,
Seite 6. Springer, 3. Auflage.

Hamp, B. und Feldweg, H. (1997). GermaNet - a Lexical-Semantic Net for German. In
Proceedings of the ACL workshop Automatic Information Extraction and Building
of Lexical Semantic Resources for NLP Applications, Madrid, Spanien. ACL.

Harabagiu, S. M., Bunescu, R. C. und Maiorano, S. J. (2001). Text and Knowledge
Mining for Coreference Resolution. In Proceedings of the 2nd Meeting of the
NAACL on Language Technologies, NAACL’01, Seiten 1–8, Stroudsburg, PA, USA.
ACL.

Hardt, D. (1997). An Empirical Approach to VP Ellipsis. Computational Linguistics,
23(4):525–541.

Henrich, V. und Hinrichs, E. (2010). GernEdiT - The GermaNet Editing Tool. In
Proceedings of the 7th LREC, Seiten 2228–2235, Valletta, Malta. ELRA.

Hindle, D. und Rooth, M. (1993). Structural Ambiguity and Lexical Relations.
Computational Linguistics, 19(1):103–120.



Literaturverzeichnis 241

Hirst, G. und St-Onge, D. (1995). Lexical chains as representations of context for
the detection and correction of malapropisms. In Fellbaum, C. (Herausgeber),
WordNet: An Electronic Lexical Database, Seiten 306–332. MIT Press, Toronto,
ON, Kanada.

Ho, T.-N., Chong, T. Y., Do, V. H., Pham, V. T. und Chng, E. S. (2016). Improving
Efficiency of Sentence Boundary Detection by Feature Selection. In Nguyen, T. N.,
Trawiński, B., Fujita, H. und Hong, T.-P. (Herausgeber), Proceedings of the 8th
ACIIDS, Seiten 594–603, Berlin / Heidelberg / Da Nang, Vietnam. Springer.

Hoffmann, D. W. (2013). Software-Qualität. eXamen.press. Springer, Karlsruhe /
Berlin / Heidelberg, 2. Auflage.

Hoffmann, L. (Herausgeber) (2009). Handbuch der deutschen Wortarten. De Gruyter
Lexikon Series. Walter de Gruyter, Dortmund / Berlin / New York, NY, USA.

Holtmann, J., Meyer, J. und von Detten, M. (2011). Automatic Validation and
Correction of Formalized, Textual Requirements. In Proceedings of the 4th ICSTW,
Seiten 486–495, Berlin. IEEE.

Honnibal, M., Goldberg, Y. und Johnson, M. (2013). A Non-Monotonic Arc-Eager
Transition System for Dependency Parsing. In Proceedings of the 7th CONLL,
Seiten 163–172, Sofia, Bulgarien. ACL.

Hood, C. und Wiebel, R. (2005). Optimieren von Requirements Management &
Engineering. Springer, Berlin / Heidelberg u. a.

HSE (2003). Out of control: Why control systems go wrong and how to prevent
failure. http://automatie-pma.com/wp-content/uploads/2015/02/
hsg238.pdf. Zuletzt abgerufen am 18.01.2016.

Hsia, P., Davis, A. und Kung, D. (1993). Status Report: Requirements Engineering.
IEEE Software, 10(6):75–79.

Huang, L., Fayong, S. und Guo, Y. (2012). Structured Perceptron with Inexact
Search. In Proceedings of the 2012 Conference of the NAACL: HLT, NAACL
HLT’12, Seiten 142–151, Stroudsburg, PA, USA. ACL.

Huang, Z., Zeng, G., Xu, W. und Celikyilmaz, A. (2009). Accurate Semantic Class
Classifier for Coreference Resolution. In Proceedings of the 2009 Conference on
EMNLP, Band: 3. EMNLP’09, Seiten 1232–1240, Stroudsburg, PA, USA. ACL.

Huertas, C. und Juárez-Ramı́rez, R. (2012). NLARE, a Natural Language Proces-
sing Tool for Automatic Requirements Evaluation. In Proceedings of the CUBE
International Information Technology Conference, CUBE’12, Seiten 371–378, New
York, NY, USA. ACM.

Huertas, C. und Juárez-Ramı́rez, R. (2013). Towards assessing the quality of func-
tional requirements using english/spanish controlled languages and context free
grammar. In Proceedings of the 3rd International Conference on DICTAP, Seiten
234–241, Ostrava, Tschechische Republik. SDIWC.



242 Literaturverzeichnis

Huma, Z., Gerth, C., Engels, G. und Juwig, O. (2012). A UML-based Rich Ser-
vice Description Language for Automatic Service Discovery of Heterogeneous
Service Partners. In Kirikova, M. und Stirna, J. (Herausgeber), Proceedings of
the CAiSE’12 Forum, Band: 855, Seiten 90–97, Gdansk, Polen. CEUR-WS.org.
Erreichbar unter: http://ceur-ws.org/Vol-855/paper11.pdf. Zuletzt
abgerufen am 12.01.2017.

Husain, S. und Beg, R. (2015). Advances in Ambiguity less NL SRS: A review. In
Proceedings of ICETECH 2015, Seiten 221–225, Coimbatore, TN, Indien. IEEE.

Hußmann, H. (1993). Zur formalen Beschreibung der funktionalen Anforderungen an
ein Informationssystem. Technischer bericht, Institut für Informatik, Technische
Universität München. TUM-I9332.

IEEE (1991). IEEE Standard Computer Dictionary: Compilation of IEEE Standard
Computer Glossaries. IEEE, New York, NY, USA.

IEEE (1998). IEEE Std 830-1998 - Recommended Practice for Software Requirements
Specifications. IEEE, New York, NY, USA.

IEEE (2011). ISO/IEC/IEEE 29148 – Systems and software engineering – Life cycle
processes – Requirements engineering. IEEE, New York, NY, USA. ISO/IEC/IEEE
29148:2011(E).

Jiang, J. J. und Conrath, D. W. (1997). Semantic Similarity Based on Corpus
Statistics and Lexical Taxonomy. In Proceedings of ROCLING 1997, Taipei,
Taiwan. ACL.

Jungmann, A. (2016). Towards On-The-Fly Image Processing. Dissertation, Univer-
sität Paderborn, Paderborn.

Jurafsky, D. und Martin, J. H. (2009). Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics and Speech
Recognition. Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2. Auflage.

Kadlec, T. und Fröhlich, S. (2013). Praxiswissen Responsive Webdesign. O’Reillys
Basics. O’Reilly Verlag, Köln, 1. Auflage.

Kaiya, H. und Saeki, M. (2005). Ontology Based Requirements Analysis: Lightweight
Semantic Processing Approach. In Proceedings of the 5th QSIC, QSIC’05, Seiten
223–230, Melbourn, VIC, Australien. IEEE.

Kaiya, H. und Saeki, M. (2006). Using Domain Ontology as Domain Knowledge for
Requirements Elicitation. In Proceedings of the 14th IEEE RE, RE ’06, Seiten
189–198, Minneapolis, MN, USA. IEEE.

Kalenborn, A. (2014). Angebotserstellung und Planung von Internet-Projekten:
Die werkzeugbasierte

”
Modeling by Example“-Methode. Springer Fachmedien,

Wiesbaden.



Literaturverzeichnis 243

Kamata, M. I. und Tamai, T. (2007). How Does Requirements Quality Relate to
Project Success or Failure? In Proceedings of the 15th IEEE RE, Seiten 69–78,
Delhi, DL, Indien. IEEE.

Kamsties, E. (2005). Understanding Ambiguity in Requirements Engineering. In
Aurum, A. und Wohlin, C. (Herausgeber), Engineering and Managing Software
Requirements, Seiten 245–266. Springer, Berlin / Heidelberg.

Kamsties, E., Berry, D. M. und Paech, B. (2001). Detecting Ambiguities in Require-
ments Documents Using Inspections. In Proceedings of the 1st WISE, WISE’01,
Seiten 68–80, Paris, Frankreich.

Kamsties, E. und Paech, B. (2000). Taming Ambiguity in Natural Language Requi-
rements. In Proceedings of the 13th ICSOFT-EA, Seiten 1–8, Paris, Frankreich.

Kim, J.-D., Ohta, T., Tateisi, Y. und Tsujii, J. (2003). GENIA corpus – A semantically
annotated corpus for bio-textmining. Bioinformatics, 19(1):i180–i182.

Kipper-Schuler, K. (2005). VerbNet: a broad-coverage, comprehensive verb
lexicon. Doktorarbeit, Universiy of Pennsylvania, Philadelphia, PA,
USA. Erreichbar unter: http://verbs.colorado.edu/˜kipper/Papers/
dissertation.pdf. Zuletzt abgerufen am 03.06.2016.

Kiss, T. und Strunk, J. (2006). Unsupervised Multilingual Sentence Boundary
Detection. Computional Linguistics, 32(4):485–525.

Kiyavitskaya, N., Zeni, N., Mich, L. und Berry, D. M. (2008). Requirements for Tools
for Ambiguity Identification and Measurement in Natural Language Requirements
Specifications. Requirements Engineering, 13(3):207–239.

Klein, D. und Manning, C. D. (2003). Accurate Unlexicalized Parsing. In Procee-
dings of the 41st Annual Meeting on ACL - Volume 1, ACL’03, Seiten 423–430,
Stroudsburg, PA, USA. ACL.

Klose, M. und Wrigley, D. (2014). Einführung in Apache Solr. O’Reilly Verlag, Köln,
1. Auflage.

Kluck, N. (2014). Der Wert der Vagheit, Band: 5. Linguistics & Philosophy. De
Gruyter, Münster / Berlin.

Knott, D. (2016). Mobile App Testing: Praxisleitfaden für Softwaretester und Ent-
wickler mobiler Anwendungen. dpunkt.verlag, Heidelberg / Paderborn, 1. Auflage.

Kobdani, H., Schütze, H., Schiehlen, M. und Kamp, H. (2011). Bootstrapping
Coreference Resolution Using Word Associations. In Proceedings of the 49th
Annual Meeting of the ACL: HLT, Band: 1. HLT’11, Seiten 783–792, Stroudsburg,
PA, USA. ACL.

Körner, S. J. (2014). RECAA - Werkzeugunterstützung in der Anforderungserhebung.
Doktorarbeit, Karlsruher Institut für Technologie, Karlsruhe. KIT Scientific
Publishing.



244 Literaturverzeichnis

Körner, S. J. und Brumm, T. (2010). Natural Language Specification Improvement
with Ontologies. International Journal of Semantic Computing, 03(04):445–470.

Krüger, G. und Hansen, H. (2014). Java Programmierung – Das Handbuch zu Java 8.
O’Reilly Verlag, Köln, 8. Auflage.

Krüger, G. und Stark, T. (2009). Handbuch der Java Programmierung – Standard
Edition Version 6. Addison-Wesley, München, 5. Auflage.

Kürschner, W. (2008). Grammatisches Kompendium: Systematisches Verzeichnis
grammatischer Grundbegriffe. Francke Verlag, Tübingen, 6. Auflage. Aktualisierte
Auflage.

Kurth, H. (1991). Formale Spezifikation und Verifikation - Ein Überblick. In Pfitz-
mann, A. und Raubold, E. (Herausgeber), VIS ’91 Verläßliche Informationssysteme,
Band: 271. Informatik-Fachberichte, Seiten 45–66. Springer, Berlin / Heidelberg.

Laitenberger, O. und DeBaud, J.-M. (2000). An encompassing life cycle centric
survey of software inspection. Journal of Systems and Software, 50(1):5 – 31.

Lami, G. (2005). QuARS: A Tool for Analyzing Requirements. Technischer Bericht
ESC-TR-2005-014, Carnegie Mellon University.

Landhäußer, M. (2016). Eine Architektur für Programmsynthese aus natürlicher
Sprache. Dissertation, Karlsruher Institut für Technologie, Karlsruhe. KIT Scientific
Publishing.

Landhäußer, M., Körner, S. J., Keim, J., Tichy, W. F. und Krisch, J. (2015). DeNom:
A Tool to Find Problematic Nominalizations using NLP. In Proceedings of the
2nd International Workshop on AIRE, Seiten 9–16, Ottawa, ON, Kanada. IEEE.

Langer, H., Mehl, S. und Volk, M. (1997). Hybride NLP-Systeme und das Problem
der PP-Anbindung. In Hybride konnektionistische, statistische und symbolische
Ansätze zur Verarbeitung natürlicher Sprache, Saarbrücken / Freiburg. Workshop
auf der 21. Deutschen Jahrestagung für Künstliche Intelligenz.

Langer, S. (2002). Grenzen der Sprachenidentifizierung. In Tagungsband KONVENS
2002, Seiten 99–106, Saarbrücken. DFKI.

Laparra, E. und Rigau, G. (2013). ImpAr: A Deterministic Algorithm for Implicit
Semantic Role Labelling. In Proceedings of the 51st Annual Meeting of the ACL,
Seiten 1180–1189, Sofia, Bulgarien. ACL.

Lapata, M. und Keller, F. (2005). Web-based models for natural language processing.
ACM Transactions on Speech and Language Processing, 2(1).

Laplante, P. A. (2007). What Every Engineer Should Know about Software Enginee-
ring. CRC Press, London, UK / New York, NY, USA.

Laplante, P. A. (2013). Requirements Engineering for Software and Systems. Applied
Software Engineering Series. Auerbach Publications, Boca Raton, FL, USA, 2.
Auflage.



Literaturverzeichnis 245

Lappin, S. und Leass, H. J. (1994). An Algorithm for Pronominal Anaphora Resolu-
tion. Computional Linguistics, 20(4):535–561.

Laurent, P. und Cleland-Huang, J. (2009). Lessons Learned from Open Source
Projects for Facilitating Online Requirements Processes. In Glinz, M. und Heymans,
P. (Herausgeber), Proceedings of the 15th REFSQ, Band: 5512, Seiten 240–255.
Springer, Berlin / Heidelberg.

Leacock, C. und Chodorow, M. (1998). Combining Local Context and WordNet
Similarity for Word Sense Identification. WordNet: An electronic lexical database,
49(2):265–283.

Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M. und Jurafsky, D.
(2013). Deterministic Coreference Resolution Based on Entity-centric, Precision-
ranked Rules. Computational Linguistics, 39(4):885–916.

Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M. und Jurafsky, D.
(2011). Stanford’s Multi-pass Sieve Coreference Resolution System at the CONLL-
2011 Shared Task. In Proceedings of the 15th Conference on CONLL: Shared Task,
CONLL Shared Task ’11, Seiten 28–34, Stroudsburg, PA, USA. ACL.

Lehmann, C. (2013). Semasiologie der paradigmatischen lexikalischen Re-
lationen. http://www.christianlehmann.eu/ling/lg_system/sem/
semasiolog_lexikal_relation.php. Zuletzt abgerufen am 29.10.2015.

Lehrndorfer, A. (1996). Kontrolliertes Deutsch: linguistische und sprachpsycholo-
gische Leitlinien für eine (maschinell) kontrollierte Sprache in der technischen
Dokumentation. Tübinger Beiträge zur Linguistik. Gunter Narr Verlag, Tübingen.

Lei, T., Xin, Y., Zhang, Y., Barzilay, R. und Jaakkola, T. (2014). Low-Rank Tensors
for Scoring Dependency Structures. In Proceedings of the 52nd Annual Meeting of
the ACL, Seiten 1381–1391, Baltimore, MD, USA. ACL.

Lewandowski, T. (1994). Linguistisches Wörterbuch. Bd. 2. [I - R]. Quelle und
Meyer, Heidelberg / Wiesbaden, 6. Auflage.

Lin, D. (1998). An Information-Theoretic Definition of Similarity. In Proceedings
of the 15th ICML, Seiten 296–304, San Francisco, CA, USA. Morgan Kaufmann
Publishers.

Lobin, H. und Heringer, H. J. (2010). Computerlinguistik und Texttechnologie. UTB
3282. Wilhelm Fink Verlag, Paderborn.

Löbner, S. (2003). Semantik: eine Einführung. De Gruyter Studienbuch. Walter de
Gruyter, Berlin / New York, NY, USA.

Lopes Margarido, I., Faria, J. P., Vidal, R. M. und Vieira, M. (2011). Classification
of Defect Types in Requirements Specifications: Literature Review, Proposal and
Assessment. In Proceedings of the 6th CISTI, Seiten 1–6, Chaves, Portugal. IEEE.



246 Literaturverzeichnis

López, R. und Pardo, T. A. S. (2015). Experiments on Sentence Boundary Detection
in User-Generated Web Content. In Gelbukh, A. (Herausgeber), Proceedings of
the 16th CICLing, Seiten 227–237, Kairo, Ägypten / Cham, Schweiz. Springer.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M. und Brinkkemper, S. (2016).
Improving agile requirements: the Quality User Story framework and tool. Requi-
rements Engineering, 21(3):383–403.

Lui, M. und Baldwin, T. (2014). Accurate Language Identification of Twitter
Messages. In Proceedings of the 5th Workshop on LASM, Seiten 17–25, Göteborg,
Schweden. ACL.

Maamouri, M., Bies, A., Buckwalter, T. und Mekki, W. (2004). The Penn Arabic
Treebank: Building a Large-Scale Annotated Arabic Corpus. In Proceedings of
the NEMLAR International Conference on Arabic Language Resources and Tools,
Seiten 102–109, Kairo, Ägypten.

Magnini, B., Negri, M., Prevete, R. und Tanev, H. (2002). A WordNet-based
Approach to Named Entities Recognition. In Proceedings of the 2002 Workshop on
SEMANET, Band: 11. SEMANET’02, Seiten 1–7, Stroudsburg, PA, USA. ACL.

Manning, C. D. und Schütze, H. (1999). Foundations of Statistical Natural Language
Processing. MIT Press, London, UK u. a.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J. und McClosky,
D. (2014). The Stanford CoreNLP Natural Language Processing Toolkit. In ACL
System Demonstrations, Seiten 55–60, Baltimore, MD, USA. ACL.

Marcus, M., Kim, G., Marcinkiewicz, M. A., MacIntyre, R., Bies, A., Ferguson, M.,
Katz, K. und Schasberger, B. (1994). The Penn Treebank: Annotating Predicate
Argument Structure. In Proceedings of the Workshop on HLT, HLT’94, Seiten
114–119, Stroudsburg, PA, USA. ACL.

Marcus, M. P., Marcinkiewicz, M. A. und Santorini, B. (1993). Building a Large
Annotated Corpus of English: The Penn Treebank. Computational Linguistics,
19(2):313–330.

Markert, K. und Nissim, M. (2005). Comparing Knowledge Sources for Nominal
Anaphora Resolution. Computational Linguistics, 31(3):367–402.

Martins, A. F. T., Almeida, M. B. und Smith, N. A. (2013). Turning on the turbo:
Fast third-order non-projective turbo parsers. In Proceedings of the Annual Meeting
of the ACL, Seiten 617–622, Sofia, Bulgarien. ACL.

Massey, A. K., Rutledge, R. L., Anton, A. I. und Swire, P. P. (2014). Identifying and
Classifying Ambiguity for Regulatory Requirements. In Proceedings of the 22nd
International Requirements Engineering Conference, Seiten 83–92, Karlskrona,
Schweden. IEEE.



Literaturverzeichnis 247

Matsuoka, J. und Lepage, Y. (2011). Ambiguity Spotting using WordNet Semantic
Similarity in Support to Recommended Practice for Software Requirements Speci-
fications. In Proceedings of the 7th International Conference on NLP-KE, Seiten
479–484, Tokushima, Japan. IEEE.

McCarthy, D., Koeling, R., Weeds, J. und Carroll, J. (2004). Finding Predominant
Word Senses in Untagged Text. In Proceedings of the 42nd Annual Meeting of the
ACL, Seite 280–287, Barcelona, Spanien. ACL.

McLauchlan, M. (2004). Thesauruses for Prepositional Phrase Attachment. In
Proceedings of the CONLL 2004, Seiten 73–80, Boston, MA, USA. ACL.

McShane, M. und Babkin, P. (2015). Automatic Ellipsis Resolution: Recovering
Covert Information from Text. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, Seiten 572–578, Austin, TX, USA. AAAI, AAAI Press.

McShane, M. und Babkin, P. (2016). Detection and Resolution of Verb Phrase Ellipsis.
In Linguistic Issues In Language Technology, Band: 13. CSLI Publications.

Mehl, S., Langer, H. und Volk, M. (1998). Statistische Verfahren zur Zuordnung von
Präpositionalphrasen. In Proceedings of the Konvens ’98, Bonn. Peter Lang.

Mehler, A. und Lobin, H. (2004). Automatische Textanalyse: Systeme und Me-
thoden zur Annotation und Analyse natürlichsprachlicher Texte. VS Verlag für
Sozialwissenschaften, Wiesbaden, 1. Auflage.

Menzel, I., Mueller, M., Gross, A. und Doerr, J. (2010). An Experimental Compari-
son Regarding the Completeness of Functional Requirements Specifications. In
Proceedings of the 18th IEEE RE, Seiten 15–24, Sydney, NSW, Australien. IEEE.

Mihalcea, R. (2003). The Role of Non-Ambiguous Words in Natural Langua-
ge Disambiguation. In Proceedings of the RANLP 2003, Borovets, Bulgarien.
Erreichbar unter: https://web.eecs.umich.edu/˜mihalcea/papers/
mihalcea.ranlp03.pdf. Zuletzt abgerufen am 07.08.2016.

Mihalcea, R. (2010). Word Sense Disambiguation. In Sammut, C. und Webb, G. I.
(Herausgeber), Encyclopedia of Machine Learning, Seiten 1027–1030. Springer,
Boston, MA, USA.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of
the ACM, 38(11):39–41.

Mitkov, R. (1998). Robust pronoun resolution with limited knowledge. In Proceedings
of the 17th COLING, COLING’98, Montreal, QC, Kanada. ACL.

Mitkov, R. (1999). Anaphora Resolution: The State of the Art. Research report. Uni-
versity of Wolverhampton, Wolverhampton, UK. Research Group in Computational
Linguistics and Language Engineering.



248 Literaturverzeichnis

Mitkov, R. (2014). Anaphora Resolution. Studies in Language and Linguistics.
Taylor & Francis, New York, NY, USA. Neuauflage der 2002 erstmals publizierten
Veröffentlichung.

Moens, M.-F., Li, J. und Chua, T.-S. (Herausgeber) (2014). Mining User Generated
Content. CRC Press, Leuven, Belgien / Beijing, China / Singapur.

Monrose, F. und Rubin, A. (1997). Authentication via Keystroke Dynamics. In
Proceedings of the 4th ACM Conference on CCS, CCS’97, Seiten 48–56, New York,
NY, USA. ACM.

Montoyo, A., Suarez, A., Rigau, G. und Palomar, M. (2005). Combining Knowledge-
and Corpus-based Word-Sense-Disambiguation Methods. In Journal of Artificial
Intelligence Research, Band: 23. AAAI.

Moro, A., Cecconi, F. und Navigli, R. (2014a). Multilingual Word Sense Disambigua-
tion and Entity Linking for Everybody. In Proceedings of the 13th ISWC, Seiten
25–28, Riva del Garda, Italien. Springer.

Moro, A., Raganato, A. und Navigli, R. (2014b). Entity Linking meets Word Sense
Disambiguation: a Unified Approach. Transactions of the ACL, 2:231–244.

Morris, M. (2011). Sentence Tutorial – What is Sentence Detecti-
on? http://alias-i.com/lingpipe/demos/tutorial/sentences/
read-me.html. Zuletzt abgerufen am 28.04.2016.

Nadh, K. und Huyck, C. (2009). Prepositional Phrase Attachment Ambiguity
Resolution Using Semantic Hierarchies. In The 9th International Conference on
Artificial Intelligence and Applications, Innsbruck, Österreich. ACTA Press.

Nakov, P. und Hearst, M. (2005). Using the Web As an Implicit Training Set:
Application to Structural Ambiguity Resolution. In Proceedings of the Conference
on HLT and EMNLP, HLT’05, Seiten 835–842, Stroudsburg, PA, USA. ACL.

Naumann, S. (2003). XML als Beschreibungssprache syntaktisch-annotierter Korpora.
In Seewald-Heeg, U. (Herausgeber), Sprachtechnologie für die multilinguale Kom-
munikation – Textproduktion, Recherche, Übersetzung, Lokalisierung – Beiträge
der GLDV-Frühjahrstagung 2003, Seiten 12–25. Gardez! Verlag.

Navigli, R. (2009). Word Sense Disambiguation: A Survey. In ACM Computing
Surveys, Band: 41. ACM, New York, NY, USA.

Navigli, R. und Ponzetto, S. P. (2012a). BabelNet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic network. In
Artificial Intelligence, Band: 193, Seiten 217–250. Elsevier, Essex, UK.

Navigli, R. und Ponzetto, S. P. (2012b). Joining Forces Pays Off: Multilingual Joint
Word Sense Disambiguation. In Proceedings of the 2012 Joint Conference on
EMNLP and CONLL, Seiten 1399–1410, Jeju, Korea. ACL.



Literaturverzeichnis 249

Ng, V. (2007). Semantic Class Induction and Coreference Resolution. In Proceedings
of the 45th Annual Meeting of the ACL, Seiten 536–543, Prag, Tschechische
Republik. ACL.

Nielsen, J. und Loranger, H. (2006). Web Usability. Addison-Wesley, München, 1.
Auflage.

Nigam, A., Arya, N., Nigam, B. und Jain, D. (2012). Tool for Automatic Discovery
of Ambiguity in Requirements. International Journal of Computer Science Issues,
9(2):350–356.

O’Connor, B. und Heilman, M. (2013). ARKref: a rule-based coreference resolution
system. ArXiv e-prints, Seiten 1–10. Erreichbar unter: http://arxiv.org/
abs/1310.1975. Zuletzt abgerufen am 06.04.2016.

Oepen, S., Flickinger, D., Toutanova, K. und Manning, C. D. (2004). LinGO
Redwoods – A Rich and Dynamic Treebank for HPSG. Research on Language and
Computation, 2(4):575–596.

Okumura, A. und Muraki, K. (1994). Symmetric Pattern Matching Analysis for
English Coordinate Structures. In Proceedings of the 4th Conference on ANLP,
ANLC’94, Seiten 41–46, Stuttgart / Stroudsburg, PA, USA. ACL.

Osborne, M. und MacNish, C. K. (1996). Processing Natural Language Software
Requirement Specifications. In Proceedings of the 2nd International Conference
on Requirements Engineering, Seiten 229–236, Colorado Springs, CO, USA. IEEE.

Palmer, M., Gildea, D. und Kingsbury, P. (2005). The Proposition Bank: An
Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71–106.

Pantel, P. und Lin, D. (2000). An Unsupervised Approach to Prepositional Phrase
Attachment Using Contextually Similar Words. In Proceedings of the 38th Annual
Meeting on ACL, ACL’00, Seiten 101–108, Stroudsburg, PA, USA. ACL.

Partsch, H. A. (2010). Requirements-Engineering systematisch: Modellbildung für
softwaregestützte Systeme. eXamen.press. Springer, Berlin / Heidelberg.

Passonneau, R. J., Ramelson, T. und Xie, B. (2015). Named Entity Recognition
from Financial Press Releases. In Fred, A., Dietz, G. J. L., Aveiro, D., Liu, K. und
Filipe, J. (Herausgeber), Proceedings of the 6th IC3K, Seiten 240–254. Springer,
Rom, Italien.

Patwardhan, S., Banerjee, S. und Pedersen, T. (2003). Using Measures of Semantic
Relatedness for Word Sense Disambiguation. In Proceedings of the 4th CICLing,
Seiten 241–257, Mexico City, Mexiko. ACL.

Pekar, V., Felderer, M. und Breu, R. (2014). Improvement Methods for Software
Requirement Specifications: A Mapping Study. In Proceedings of the 9th QUATIC,
Seiten 242–245, Guimarães, Portugal. IEEE.



250 Literaturverzeichnis

Petermann, K. (2014). Verbale und nonverbale Vagheit in englisch- und deutsch-
sprachigen Interviews, Band: 118. Forum für Fachsprachen-Forschung. Frank &
Timme, Berlin.

Pfeifer, W. (o. D.). Etymologisches Wörterbuch (nach Pfeifer): Ambiguität. http:
//www.dwds.de/?qu=Ambiguit%C3%A4t. Zuletzt abgerufen am 22.10.2015.

Philippo, E. J., Heijstek, W., Kruiswijk, B., Chaudron, M. R. und Berry, D. M.
(2013). Requirement Ambiguity Not as Important as Expected – Results of an
Empirical Evaluation. In Doerr, J. und Opdahl, A. L. (Herausgeber), Requirements
Engineering: Foundation for Software Quality, Band: 7830. LNCS, Seiten 65–79.
Springer, Berlin / Heidelberg.

Pinkal, M. (1985). Logik und Lexikon: Die Semantik des Unbestimmten. Grundlagen
der Kommunikation. Walter de Gruyter, Berlin / New York, NY, USA.

Pinkal, M. (1991). Semantik / Semantics: Ein internationales Handbuch der zeit-
genössischen Forschung., Band: 6. Handbücher zur Sprach- und Kommunikations-
wissenschaft, Kapitel Vagheit und Ambiguität, Seiten 250–270. Walter de Gruyter,
Berlin / New York, NY, USA.

Pinto, A., Oliveira, H. G. und Alves, A. O. (2016). Comparing the Performance
of Different NLP Toolkits in Formal and Social Media Text. In Mernik, M.,
Leal, J. P. und Oliveira, H. G. (Herausgeber), Proceedings of the 5th Symposium
on Languages, Applications and Technologies, SLATE’16, Maribor, Slowenien.
Dagstuhl Publishing.

Platenius, M. C. (2013). Fuzzy Service Matching in On-the-fly Computing. In
Proceedings of the 2013 9th Joint Meeting on FSE, ESEC/FSE’13, Seiten 715–718,
New York, NY, USA. ACM.

Platenius, M. C. (2016). Unscharfes Matching von umfassenden Service-
Spezifikationen. Dissertation, Universität Paderborn, Paderborn.

Platenius, M. C., Arifulina, S., Petrlic, R. und Schäfer, W. (2015). Matching of
Incomplete Service Specifications Exemplified by Privacy Policy Matching. In
Ortiz, G. und Tran, C. (Herausgeber), Advances in Service-Oriented and Cloud
Computing, Band: 508. Communications in Computer and Information Science,
Seiten 6–17. Springer, Cham, Schweiz.

Platenius, M. C., Josifovska, K., van Rooijen, L., Arifulina, S., Becker, M., Engels,
G. und Schäfer, W. (2016). An Overview of Service Specification Language and
Matching in On-The-Fly Computing (v0.3). Technischer Bericht Tr-ri-16-349,
Software Engineering Group, Heinz Nixdorf Institut, Universität Paderborn.

Poesio, M. und Artstein, R. (2005). The Reliability of Anaphoric Annotation,
Reconsidered: Taking Ambiguity into Account. In Proceedings of the Workshop on
Frontiers in Corpus Annotations II: Pie in the Sky, CorpusAnno’05, Seiten 76–83,
Stroudsburg, PA, USA. ACL.



Literaturverzeichnis 251

Pohl, K. (2007). Requirements Engineering: Grundlagen, Prinzipien, Techniken.
dpunkt.verlag, Heidelberg.

Pohl, K. (2008). Requirements Engineering: Grundlagen, Prinzipien, Techniken.
dpunkt.verlag, Heidelberg, 2. Auflage.

Pohl, K. und Rupp, C. (2015). Basiswissen Requirements Engineering: Aus- und
Weiterbildung nach IREB-Standard zum Certified Professional for Requirements
Engineering Foundation Level. dpunkt.verlag, Heidelberg, 4. Auflage.

Ponzetto, S. P. und Strube, M. (2006). Exploiting Semantic Role Labeling, WordNet
and Wikipedia for Coreference Resolution. In Proceedings of the Main Confe-
rence on HLT / Conference of the NAACL, HLT-NAACL’06, Seiten 192–199,
Stroudsburg, PA, USA. ACL.

Popescu, D., Rugaber, S., Medvidovic, N. und Berry, D. M. (2008). Reducing Ambi-
guities in Requirements Specifications Via Automatically Created Object-Oriented
Models. In Paech, B. und Martell, C. (Herausgeber), Innovations for Requirement
Analysis. From Stakeholders’ Needs to Formal Designs: Revised Selected Papers,
Seiten 103–124. Springer, Berlin / Heidelberg / Monterey, CA, USA.

Prokofyev, R., Tonon, A., Luggen, M., Vouilloz, L., Difallah, D. E. und Cudré-
Mauroux, P. (2015). SANAPHOR: Ontology-Based Coreference Resolution. In
Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K.,
Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K. und Staab, S. (Herausgeber),
Proceedings of the 14th ISWC, Seiten 458–473. Springer, Bethlehem, PA, USA.

Propbank (2010). Frameset – Predicate: send. http://verbs.colorado.
edu/propbank/framesets-english/send-v.html. Zuletzt abgerufen am
24.12.2015.

Raganato, A., Camacho-Collados, J. und Navigli, R. (2017). Word Sense Disambigua-
tion: A Unified Evaluation Framework and Empirical Comparison. In Proceedings
of the 15th Conference of the EACL: Volume 1, Long Papers, Seiten 99–110,
Valencia, Spanien. ACL, ACL.

Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky,
D. und Manning, C. (2010). A Multi-pass Sieve for Coreference Resolution. In
Proceedings of the 2010 Conference on EMNLP, EMNLP’10, Seiten 492–501,
Stroudsburg, PA, USA. ACL.

Rahman, A. und Ng, V. (2009). Supervised Models for Coreference Resolution. In
Proceedings of the 2009 Conference on EMNLP, Seiten 968–977, Singapur. ACL.

Rahman, A. und Ng, V. (2011). Coreference Resolution with World Knowledge.
In Proceedings of the 49th Annual Meeting of the ACL, Band: 1. HLT’11, Seiten
814–824, Stroudsburg, PA, USA. ACL.

Rasooli, M. S. und Tetreault, J. (2015). Yara Parser: A Fast and Accurate Dependency
Parser. In CoRR, Band: abs/1503.06733, Seiten 1–14. Erreichbar unter: http:
//arxiv.org/pdf/1503.06733v1.pdf. Zuletzt abgerufen am 19.05.2016.



252 Literaturverzeichnis

Ratnaparkhi, A. (1998). Statistical Models for Unsupervised Prepositional Phrase
Attachment. In Proceedings of the 17th COLING - Volume 2, COLING’98, Seiten
1079–1085, Stroudsburg, PA, USA. ACL.

Ratnaparkhi, A., Reynar, J. und Roukos, S. (1994). A Maximum Entropy Model
for Prepositional Phrase Attachment. In Proceedings of the Workshop on HLT,
HLT’94, Seiten 250–255, Stroudsburg, PA, USA. ACL.

Read, J., Dridan, R., Oepen, S. und Solberg, L. J. (2012a). Sentence Boundary
Detection: A Long Solved Problem? In Proceedings of COLING 2012: Posters,
Seiten 985–994, Mumbai, MH, Indien. ACL. Erreichbar unter: http://www.
aclweb.org/anthology/C12-2096. Zuletzt abgerufen am 24.04.2016.

Read, J., Flickinger, D., Dridan, R., Oepen, S. und Øvrelid, L. (2012b). The WeSearch
Corpus, Treebank, and Treecache - A Comprehensive Sample of User-Generated
Content. In Proceedings of the 8th International Conference on LREC, Seiten
1829–1835, Istanbul, Türkei. ELRA.

Recasens, M., de Marneffe, M.-C. und Potts, C. (2013). The Life and Death of
Discourse Entities: Identifying Singleton Mentions. In Proceedings of the 2013
Conference of the NAACL: HLT, Seiten 627–633, Atlanta, GA, USA. ACL.

Recasens Potau, M. (2010). Coreference: Theory, Annotation, Resolution and Eva-
luation. Doktorarbeit, University of Barcelona.

Reconcile Development Team (2011). Reconcile – Coreference Resolution Engi-
ne. https://www.cs.utah.edu/nlp/reconcile/. Zuletzt abgerufen am
16.05.2016.

Reese, R. M. (2015). Natural Language Processing with Java. Community Experience
Distilled. PACKT Publishing, Birmingham, UK / Mumbai, MH, Indien.

Řeh̊uřek, R. und Kolkus, M. (2009). Language Identification on the Web: Extending
the Dictionary Method. In Gelbukh, A. (Herausgeber), Proceedings of the 10th
CICLing, Seiten 357–368, Berlin / Heidelberg / Mexico City, Mexiko. Springer.

Reisner, S. (2011). Wege zu realistischen Performance-Tests. http://www.
computerwoche.de/a/wege,1232121. Computerwoche. Zuletzt abgerufen
am 23.02.2017.

Resnik, P. (1995). Using Information Content to Evaluate Semantic Similarity in
a Taxonomy. In Proceedings of the 14th IJCAI - Volume 1, IJCAI’95, Montreal,
QC, Kanada. ACM.

Resnik, P. (1999). Semantic Similarity in a Taxonomy: An Information-Based Measure
and its Application to Problems of Ambiguity in Natural Language. Journal of
Artificial Intelligence Research, 11:95–130.

Ristić, I. (2014). Bulletproof SSL and TLS. Feisty Duck, London, UK, 2. Auflage.



Literaturverzeichnis 253

Robertson, S. und Robertson, J. (2006). Mastering the Requirements Process. Pearson
Education, 2. Auflage.

Robertson, S. und Robertson, J. (2012). Mastering the Requirements Process: Getting
Requirements Right. Pearson Education, 3. Auflage.

Rojas, A. B. und Sliesarieva, G. B. (2010). Automated Detection of Language
Issues Affecting Accuracy, Ambiguity and Verifiability in Software Requirements
Written in Natural Language. In Proceedings of the NAACL HLT 2010 YIWCALA,
YIWCALA’10, Seiten 100–108, Stroudsburg, PA, USA. ACL.

Roth, M., Diamantopoulos, T., Klein, E. und Symeonidis, A. (2014). Software
Requirements: A new Domain for Semantic Parsers. In Proceedings of the ACL
2014 Workshop on Semantic Parsing, Seiten 50–54, Baltimore, MD, USA. ACL,
ACL.

Rudrapal, D., Jamatia, A., Chakma, K., Das, A. und Gambäck, B. (2015). Sentence
Boundary Detection for Social Media Text. In Sharma, D. M., Sangal, R. und Sherly,
E. (Herausgeber), Proceedings of the 12th ICON, ICON’15, Seiten 1–7. Erreichbar
unter: http://ltrc.iiit.ac.in/icon2015/icon2015_proceedings/
PDF/13_rp.pdf. Zuletzt abgerufen am 28.04.2016.

Rupp, C. (2007). Requirements-Engineering und -Management: Professionelle, itera-
tive Anforderungsanalyse für die Praxis. Carl Hanser Verlag, München / Wien,
Österreich, 4. Auflage.

Rupp, C. (2012). Requirements Engineering: Ein Überblick. dpunkt.verlag, Nürnberg
/ Heidelberg, 3. Auflage.

Rupp, C. (2013). Systemanalyse kompakt. IT kompakt. Springer, Berlin / Heidelberg,
3. Auflage.

Rupp, C. (2014). Requirements-Engineering und -Management Aus der Praxis von
klassisch bis agil. Hanser, München, 6. Auflage.

Rupp, C. und Queins, S. (2012). UML 2 glasklar: Praxiswissen für die UML-
Modellierung. Carl Hanser Verlag, 4. Auflage.

Schäfer, U., Spurk, C. und Steffen, J. (2012). A Fully Coreference-annotated Corpus
of Scholarly Papers from the ACL Anthology. In Proceedings of COLING 2012:
Posters, Seiten 1059–1070, Mumbai, MH, Indien. ACL.

Schenk, N. und Chiarcos, C. (2016). Unsupervised Learning of Prototypical Fillers
for Implicit Semantic Role Labeling. In Proceedings of the 2016 Conference of the
NAACL: HLT, Seiten 1473–1479, San Diego, CA, USA. ACL.

Schienmann, B. (2002). Kontinuierliches Anforderungsmanagement: Prozesse -
Techniken - Werkzeuge. Programmer’s Choice. Pearson Deutschland.

Schmuller, J. (2003). Jetzt lerne ich UML: Der einfache Einstieg in die visuelle
Objektmodellierung. Markt+Technik Verlag, München.



254 Literaturverzeichnis

Schneider, G. und Vecellio, S. (2011). ICT-Systemabgrenzung, Anforderungsspe-
zifikation und Evaluation: Grundlagen zur Systemanalyse und -beschaffung mit
Beispielen, Fragen und Antworten. Compendio Bildungsmedien, Zürich, Schweiz,
1. Auflage.

Schneider, H.-J. (Herausgeber) (1998). Lexikon Informatik und Datenverarbeitung.
Walter de Gruyter, 4. Auflage.

Schulz, A. (2012). Last- und Performance-Tests optimal durchführen.
http://it-administrator.de/themen/netzwerkmanagement/
fachartikel/117300.html. Zuletzt abgerufen am 23.02.2017.

Schütze, H. (1998). Automatic Word Sense Discrimination. Computational Linguistics,
24(1):97–123.

Schwinn, H. (2011). Requirements Engineering: Modellierung von Anwendungssyste-
men. Oldenbourg Verlag, München.

Schwitter, R. (1998). Kontrolliertes Englisch für Anforderungsspezifikationen. Dok-
torarbeit, Universität Zürich.

Sennet, A. (2016). Ambiguity. In Zalta, E. N. (Herausgeber), The Stanford Encyclo-
pedia of Philosophy. CSLI, Stanford University. Auflage: Spring 2016.

Shah, U. S. und Jinwala, D. C. (2015). Resolving Ambiguities in Natural Language
Software Requirements: A Comprehensive Survey. SIGSOFT Software Engineering
Notes, 40(5):1–7.

Shull, F., Carver, J., Travassos, G. H., Maldonado, J. C., Conradi, R. und Basili,
V. R. (2003). Replicated Studies: Building a Body of Knowledge about Software
Reading Techniques. In Juristo, N. und Moreno, A. M. (Herausgeber), Lecture
Notes on Empirical Software Engineering, Kapitel 2, Seiten 39–84. World Scientific,
River Edge, NJ, USA.

Shull, F., Rus, I. und Basili, V. R. (2000). How Perspective-Based Reading Can
Improve Requirements Inspections. Computer, 33(7):73–79.

Shull, F., Rus, I. und Basili, V. R. (2001). Improving Software Inspections by Using
Reading Techniques. In Proceedings of the 23rd ICSE, ICSE’01, Seiten 726–727,
Washington, DC, USA. IEEE.

Simov, K. (2004). BulTreeBank Project Overview. BulTreeBank Project Techni-
cal Report. Technischer Bericht BTB-TR01, Linguistic Modelling Laboratory,
Bulgarian Academy of Sciences.

Sommerville, I. (2007). Software Engineering. International Computer Science Series.
Pearson Education, Essex, UK, 8. Auflage.

Sommerville, I. (2009). Web Chapter 27: Formal Specification. http://www.
SoftwareEngineering-9.com/Web/ExtraChaps/FormalSpec.pdf.
Zuletzt abgerufen am 19.08.2015.



Literaturverzeichnis 255

Sommerville, I. (2011). Software Engineering. Xpert.press. Pearson, Boston, MA,
USA.

Souter, C., Churcher, G., Hayes, J., Hughes, J. und Johnson, S. (1994). Natural
Language Identification using Corpus-Based Models. In HERMES - Journal of
Language and Communication in Business, Band: 7. Faculty of Modern Languages,
Aarhus School of Business, Aarhus, Dänemark.

Springer Gabler (2015). Gabler Wirtschaftslexikon, Stichwort: Anspruchs-
gruppen. http://wirtschaftslexikon.gabler.de/Archiv/1202/
anspruchsgruppen-v6.html. Zuletzt abgerufen am 20.06.2015.

Standish Group International (1995). The CHAOS Report (1994).
https://www.standishgroup.com/sample_research_files/
chaos_report_1994.pdf. Zuletzt abgerufen am 18.01.2016.

Stanford NLP Group (2016). Stanford Deterministic Coreference Resolution System.
http://nlp.stanford.edu/software/dcoref.html. Zuletzt abgerufen
am 16.05.2016.

Stang, K. (2002). Projektmanagement, Anforderungsanalyse und externe Qua-
litätssicherung: IT-Projekte durch umfassendes Anforderungsmanagement erfolg-
reich gestalten. vdf Hochschulverlag AG, Zürich, Schweiz.

Statista (2016). The most spoken languages worldwide (speakers and na-
tive speaker in millions). https://www.statista.com/statistics/
266808/the-most-spoken-languages-worldwide/. Zuletzt abgerufen
am 28.10.2016.

Stede, M. (2012). Discourse Processing. Synthesis Lectures on HLT. Morgan &
Claypool Publishers, Potsdam.

Stempfle, H. (1996). Der Einsatz Offener Systeme in der Praxis – Technologien,
Standards, Probleme. Diplomarbeit, Fachhochschule Augsburg, Augsburg.
Erreichbar unter: http://www.hs-augsburg.de/inf/diplomarbeiten/
langfassungen/stempfle-stork-1996/OpenSystems/einleit.
htm#Interoperabilit%E4t_und_Portabilit%E4t. Zuletzt abgerufen
am 22.10.2016.

Stoyanov, V., Cardie, C., Gilbert, N., Riloff, E., Buttler, D. und Hysom, D. (2010).
Coreference Resolution with Reconcile. In Proceedings of the ACL 2010 Conference
Short Papers, Seiten 156–161, Uppsala, Schweden. ACL.

Stoyanov, V., Gilbert, N., Cardie, C. und Riloff, E. (2009). Conundrums in Noun
Phrase Coreference Resolution: Making Sense of the State-of-the-Art. In Procee-
dings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
IJCNLP of the AFNLP, Seiten 656–664, Suntec, Singapore. ACL.

Strube, M. und Ponzetto, S. P. (2006). WikiRelate! Computing Semantic Relatedness
Using Wikipedia. In Proceedings of the 21st National Conference on Artificial
Intelligence, Band: 2. AAAI’06, Seiten 1419–1424, Boston, MA, USA. AAAI Press.



256 Literaturverzeichnis

Telljohann, H., Hinrichs, E. W., Kübler, S., Zinsmeister, H. und Beck, K. (2015).
Stylebook for the Tübingen Treebank of Written German (TüBa-D/Z). Technischer
Bericht, Universität Tübingen.

Theda, M. (2017). Was ist gemeint? Strukturell ambige Sätze als Herausforderung
für Parsing-Ansätze. Masterarbeit, Universität Paderborn, Paderborn.

Tichy, W. F., Landhäußer, M. und Körner, S. J. (2015). nlrpBENCH: A Bench-
mark for Natural Language Requirements Processing. In Multikonferenz Software
Engineering & Management 2015.

Tiemeyer, E. (2013). Handbuch IT-Management: Konzepte, Methoden, Lösungen
und Arbeitshilfen für die Praxis. Carl Hanser Verlag, München, 5. Auflage.

Tjong, S. F. (2008). Avoiding Ambiguity in Requirements Specifications. Doktorarbeit,
University of Nottingham, Nottingham, UK.

Tjong, S. F. und Berry, D. M. (2013). The Design of SREE – A Prototype Potential
Ambiguity Finder for Requirements Specifications and Lessons Learned. In Doerr,
J. und Opdahl, A. L. (Herausgeber), Requirements Engineering: Foundation for
Software Quality, Band: 7830. LNCS, Seiten 80–95. Springer, Berlin / Heidelberg.

Toral, A., Muñoz, R. und Monachini, M. (2008). Named Entity WordNet. In Calzolari,
N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. und Tapias, D.
(Herausgeber), Proceedings of the 6th LREC, Marrakech, Marokko. ELRA.

Tye, M. (1998). Routledge Encyclopedia of Philosophy: Vagueness. https://www.
rep.routledge.com/articles/vagueness/v-1/. Zuletzt abgerufen am
04.01.2016.

Umber, A. und Bajwa, I. S. (2011). Minimizing Ambiguity in Natural Language
Software Requirements Specification. In Proceedings of the 6th ICDIM, Seiten
102–107, Melbourn, VIC, Australien. IEEE.

Uryupina, O., Poesio, M., Giuliano, C. und Tymoshenko, K. (2012). Disambiguation
and Filtering Methods in Using Web Knowledge for Coreference Resolution. In
Cross-Disciplinary Advances in Applied Natural Language Processing: Issues and
Approaches, Seiten 185–201. IGI Global.

Verma, K. und Kass, A. (2008). Requirements Analysis Tool: A Tool for Automatically
Analyzing Software Requirements Documents. In Sheth, A., Staab, S., Dean,
M., Paolucci, M., Maynard, D., Finin, T. und Thirunarayan, K. (Herausgeber),
Proceedings of the ISWC 2008, Band: 5318. LNCS, Seiten 751–763. Springer, Berlin
/ Heidelberg.

Versley, Y., Ponzetto, S. P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X.
und Moschitti, A. (2008). BART: a modular toolkit for coreference resolution. In
Proceedings of the 2008 Conference of the ACL, Seiten 9–12, Columbus, OH, USA.
ACL.



Literaturverzeichnis 257

Vlas, R. und Robinson, W. N. (2011). A Rule-Based Natural Language Technique for
Requirements Discovery and Classification in Open-Source Software Development
Projects. In Proceedings of the 44th HICSS, Seiten 1–10, Kauai, HI, USA. IEEE.

Vogel, O., Arnold, I., Chughtai, A., Ihler, E., Kehrer, T., Mehlig, U. und Zdun, U.
(2009). Software-Architektur: Grundlagen, Konzepte, Praxis. Spektrum Akademi-
scher Verlag, Heidelberg, 2. Auflage.

Vöhringer, J. und Fliedl, G. (2011). Adapting the lesk algorithm for calculating term
similarity in the context of requirements engineering. In Pokorny, J., Repa, V.,
Richta, K., Wojtkowski, W., Linger, H., Barry, C. und Lang, M. (Herausgeber),
Information Systems Development: Business Systems and Services: Modeling and
Development, Seiten 781–790. Springer, New York, NY, USA.

Vossen, G., Haselmann, T. und Hoeren, T. (2012). Cloud-Computing für Un-
ternehmen: Technische, wirtschaftliche, rechtliche und organisatorische Aspekte.
dpunkt.verlag, Münster / Paderborn, 1. Auflage.

VSEK Konsortium (2007a). Adaptierbarkeit. http://www.
software-kompetenz.de/?29860. Zuletzt abgerufen am 19.10.2016.

VSEK Konsortium (2007b). Formale Spezifikationstechniken. http://www.
software-kompetenz.de/servlet/is/16651. Zuletzt abgerufen am
19.08.2015.

VSEK Konsortium (2007c). Qualitätsmodell des Software Engineering Instituts
(SEI). http://www.software-kompetenz.de/?18738. Zuletzt abgerufen
am 20.10.2016.

Weischedel, R., Hovy, E., Marcus, M., Palmer, M., Belvin, R., Pradhan, S., Rams-
haw, L. und Xue, N. (2011). OntoNotes: A Large Training Corpus for Enhanced
Processing. In Olive, J., Christianson, C. und McCary, J. (Herausgeber), Hand-
book of Natural Language Processing and Machine Translation – DARPA Global
Autonomous Language Exploitation. Springer, New York, NY, USA.

Weischedel, R., Pradhan, S., Ramshaw, L., Kaufman, J., Franchini, M., El-Bachouti,
M., Xue, N., Palmer, M., Hwang, J. D., Bonial, C., Choi, J., Mansouri, A., Foster,
M., Hawwary, A.-a., Marcus, M., Taylor, A., Greenberg, C., Hovy, E., Belvin, R.
und Houston, A. (2012). OntoNotes Release 5.0 with OntoNotes DB Tool v0.999
beta. Technischer Bericht 2012-09-28, Raytheon BBN Technologies.

Weischedel, R., Pradhan, S., Ramshaw, L., Micciulla, L., Palmer, M., Xue, N.,
Marcus, M., Taylor, A., Babko-Malaya, O., Hovy, E., Belvin, R. und Houston, A.
(2007). OntoNotes Release 1.0 with OntoNotes DB Tool v. 0.9 beta. Technischer
Bericht 2007-02-15, BBN Technologies.

Wiegers, K. E. (2005). Software Requirements. Microsoft Press, Washington, DC,
USA, 2. Auflage.



258 Literaturverzeichnis

Witt, A., Heid, U., Sasaki, F. und Sérasset, G. (2009). Multilingual language resources
and interoperability. Language Resources and Evaluation, 43(1):1–14.

WordNet (2010). wnstats - WordNet 3.0 database statistics. http://wordnet.
princeton.edu/wordnet/man/wnstats.7WN.html. Zuletzt abgerufen am
28.03.2016.

Wu, Z. und Palmer, M. (1994). Verbs Semantics and Lexical Selection. In Proceedings
of the 32nd Annual Meeting on ACL, ACL’94, Seiten 133–138, Stroudsburg, PA,
USA. ACL.

Xue, N., Xia, F., Chiou, F.-D. und Palmer, M. (2005). The Penn Chinese TreeBank:
Phrase structure annotation of a large corpus. Natural Language Engineering,
11(2):207–238. Cambridge University Press.

Yadav, S. B., Bravoco, R. R., Chatfield, A. T. und Rajkumar, T. M. (1988). Compa-
rison of Analysis Techniques for Information Requirement Determination. Com-
munication of the ACM, 31(9):1090–1097.

Yang, H., de Roeck, A., Gervasi, V., Willis, A. und Nuseibeh, B. (2010a). Extending
Nocuous Ambiguity Analysis for Anaphora in Natural Language Requirements. In
Proceedings of the 18th IEEE RE, Seiten 25–34, Sydney, NSW, Australien. IEEE.

Yang, H., de Roeck, A., Willis, A. und Nuseibeh, B. (2010b). A Methodology
for Automatic Identification of Nocuous Ambiguity. In Proceedings of the 23rd
COLING, COLING’10, Seiten 1218–1226, Stroudsburg, PA, USA. ACL.

Yang, H., Roeck, A., Gervasi, V., Willis, A. und Nuseibeh, B. (2011). Analysing
anaphoric ambiguity in natural language requirements. Requirements Engineering,
16(3):163–189.

Yang, H., Willis, A., De Roeck, A. und Nuseibeh, B. (2010c). Automatic Detection
of Nocuous Coordination Ambiguities in Natural Language Requirements. In
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, ASE’10, Seiten 53–62, New York, NY, USA. ACM.

Yang, X. und Su, J. (2007). Coreference Resolution Using Semantic Relatedness
Information from Automatically Discovered Patterns. In Proceedings of the 45th
Annual Meeting of the ACL, Seiten 528–535, Prag, Tschechische Republik. ACL.

Zavrel, J., Daelemans, W. und Veenstra, J. (1997). Resolving PP attachment
Ambiguities with Memory-Based Learning. In Ellison, T. (Herausgeber), CONLL
’97: Computational Natural Language Learning, Seiten 136–144. ACL, Madrid,
Spanien.

Zhang, X., Wu, C. und Zhao, H. (2012). Chinese Coreference Resolution via Ordered
Filtering. In Joint Conference on EMNLP and CONLL - Proceedings of the Shared
Task: Modeling Multilingual Unrestricted Coreference in OntoNotes, Seiten 95–99,
Jeju, Korea. ACL.



Teil V

Anhang

xvii





Programmoberflächen A

Abbildung A.1: Erläuterungen zur Indikatoranwendung für Endanwender

xix



A Programmoberflächen

Abbildung A.2: Erläuternde Darstellung der Korrektur mittels CoreNLP

Abbildung A.3: Ergebnis der lexikalischen Disambiguierung mittels Babelfy

xx



Abbildung A.4: Erläuternde Darstellung der POS-Korrektur mittels BabelNet

Abbildung A.5: Darstellung erkannter Koreferenzketten mittels CoreNLP

xxi



A Programmoberflächen

Abbildung A.6: Ergebnis der Verarbeitung

Abbildung A.7: Verarbeitungs- und Kompensationsprotokoll

xxii



Abbildung A.8: Beispielsyntaxbaum des Stanford Parsers

xxiii





Material zur Evaluation B

Abbildung B.1: Nach Geschwindigkeit klassifizierte Messtellen (RIPE NCC)

Abbildung B.2: Messergebnisse nach Ländern (Auszug)

xxv



B Material zur Evaluation

(A) Domänenspezifische Anfragen:

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

0

100

200

300

400

500

600

Ambige Token

D
is
am

b
ig
u
ie
rt
e
T
ok
en

Cache
BabelNet

(B) Domänenübergreifende Anfragen:

50 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

60
0

0

100

200

300

400

500

600

Ambige Token

D
is
am

b
ig
u
ie
rt
e
T
ok
en

Cache
BabelNet

Abbildung B.3: Ressourcenverteilung lex. Disambiguierungsanfragen

xxvi



Ergänzende Ausführungen C
C.1 Ausgewählte Verfahren der Textvorverarbeitung

Gegenstand dieser Arbeit ist, wie in Abschnitt 3.2 ersichtlich wird, UGC, der weder
Struktur noch Textannotationen aufweist und einer Vorverarbeitung bedarf, um
die Anwendung der Textverarbeitung zu ermöglichen. Die Vorverarbeitung von
Fließtexten (engl. preprocessing) ist dabei ein elementarer Schritt im NLP. Ziel ist
es, aus einem Dokument

”
linguistische Einheiten, wie z. B.Wörter, Phrasen, Sätze,

Absätze oder Diskursabschnitte“ (Carstensen et al., 2010, S. 264) zu isolieren und den
folgenden Verarbeitungsschritten in einer homogenen Form zugänglich zu machen.
Die sequenzielle Anwendung einzelner Textvorverarbeitungsschritte muss auf die

Anforderungen der Eingabetexte angepasst werden. Im Folgenden werden Verfahren
der Sprachenidentifizierung und Satzgrenzenerkennung exemplarisch vorgestellt,
die unter dem Kriterium

”
Anwendbarkeit auf UGC“ ausgewählt wurden. Diese

Verfahren haben im Rahmen dieser Arbeit eine besondere Bedeutung, da sie (auch in
Kombination) die Weiterverarbeitung maßgeblich durch eine frühe Strukturanpassung
(Unterteilung in Sätze) und Klassifikation (Einteilung in Sprachen) mitgestalten.

C.1.1 Sprachenidentifizierung

Ansätze zur Sprachenidentifizierung (engl. language identification) haben die Erken-
nung der jeweiligen natürlichen Sprache, in der ein Fließtext verfasst wurde, zum
Gegenstand (Baldwin und Lui, 2010, S. 229). Dies ist beispielsweise im Information
Retrieval (IR) relevant (Klose und Wrigley, 2014, S. 62 ff.), in dessen Preprocessing
eine Vielzahl von Dokumenten unterschiedlicher Sprachen verarbeitet werden. Aber
auch in der vorliegenden Arbeit hat diese Identifizierung hohe Relevanz, da sie darüber
entscheidet, ob eine FA der Weiterverarbeitung zugeführt wird oder nicht. Da die
meisten Komponenten auf eine begrenzte Anzahl von Sprachen zugeschnitten sind, ist
eine zuverlässige Sprachenidentifizierung ein wichtiger Schritt der Qualitätssicherung.
Diesbezüglich existieren verschiedene Vorgehensweisen der Sprachenidentifizierung

(Souter et al., 1994, S. 183 ff.). So kann ein Fließtext beispielsweise auf das Vorkom-
men charakteristischer Zeichen (z. B.

”
ñ“,

”
ß“) oder spezifischer Funktionswörter

(z. B.
”
the“,

”
and“) untersucht werden (

”
Small Word Technique“), die für eine Spra-

che auszeichnend sind (Grefenstette, 1995, S. 265 ff.). Diese Arbeit beschränkt sich auf
die Unterscheidung in (1) wortbasierte Sprachenerkenner und (2) N-Gramm basierte
Sprachenerkenner (Řeh̊uřek und Kolkus, 2009, S. 359 ff.; Langer, 2002, S. 99 f., 106),
die als zuverlässige Vorgehensweisen gelten (Souter et al., 1994).
Wortbasierte Sprachenerkenner (1) basieren auf einem Abgleich mit Wörterbüchern

und haben den Vorteil, dass sie manuell angepasst werden können (z. B.Hinzunahme
von Fachtermini). Dies bedeutet im Umkehrschluss aber auch einen erhöhten Aufwand

xxvii



xxviii C Ergänzende Ausführungen

und eine schlechtere Performanz, da unbekannte Wörter nicht zugeordnet werden
können. Anders ist dies bei (2). Hier wird ein System auf Basis von N-Grammen
trainiert, sodass die

”
[...] Wahrscheinlichkeit gängiger Bytefolgen in elektronischen

Texten [...]“ (Langer, 2002, S. 99 f.) ausschlaggebend für die Klassifikation ist. Ein
großer Vorteil ist, dass die Identifikation unabhängig vom (ggf. teils unbekannten)
Vokabular erfolgen kann. Ein Nachteil besteht darin, dass Identifizierungsfehler nur
schwer nachzuvollziehen und zu korrigieren sind (Langer, 2002, S. 100, 106).
Zur Umsetzung gibt es bereits eine Reihe von Softwarebibliotheken, welche die

Sprachenidentifizierung mittels einer Vielzahl von Programmiersprachen ermöglichen
(z. B. language-detector 170 oder Compact Language Detector 2 171). Darüber hinaus
existieren sowohl kostenpflichtige als auch kostenlose Web Services, die Spracheni-
dentifizierung auf Grundlage von Fließtexten mittels Web-Schnittstellen anbieten172.
Oftmals wird die

”
[...] automatische Sprachenidentifizierung für elektronische

Dokumente, deren Mindestlänge eine bestimmte Wortzahl überschreitet und die
regulären Text enthalten, [...] als weitgehend gelöstes Problem“ verstanden (Langer,
2002, S. 99). Dies bedeutet, dass bestehende Verfahren der Sprachenidentifizierung
überwiegend gute Resultate erzielen und dass längere und

”
saubere“ Texte zu besseren

Identifizierungsergebnissen führen können (Klose und Wrigley, 2014, S. 62). Das
Interesse an der Sprachenidentifizierung von kurzen und

”
verrauschten“ Texten nimmt

jedoch mit der zunehmenden Relevanz von Kurznachrichtendiensten und sozialen
Netzwerken rapide zu (z. B.Dias Cardoso und Roy, 2016; Lui und Baldwin, 2014;
Carter et al., 2012), was auch der Verarbeitung von qualitativ stark schwankenden
Anforderungsbeschreibungen zuträglich ist.

Nach Langer (2002, S. 103) liegen die
”
[...] Erkennungsraten aller bekannten Algo-

rithmen [bei] über 99% [...]“, wenn es sich bei den Eingabedokumenten um Standard-
dokumente handelt. Diese Dokumente sind nach Langer (2002, S. 103) monolingual
und enthalten regulären Text und mindestens 20 Wörter. Daneben gibt zum Beispiel
Dunning (1994) bei der statistischen Sprachenidentifikation auf N-Gramm-Basis an,
dass bereits wenige Tausend Wörter als Trainingsdaten ausreichen, um eine gute
Perfomanz zu erzielen und bereits ab 10 Zeichen gute und ab Zeichenketten mit
50 Zeichen sehr gute Ergebnisse zu erzielen sind (Dunning, 1994, S. 1). Ein großer
Anteil an Fachsprache kann dabei neben Faktoren wie einer kurzen Dokumentenlänge,
Wortwiederholungen und Eigennamen negativen Einfluss auf die Erkennungsrate
haben (Langer, 2002, S. 102 ff.).
In Hinblick auf die Anforderungen des OTF-Computings sind Verfahren zu bevor-

zugen, die auch bei kurzen und fehlerhaften Texten eine gute Performanz erzielen.
Darüber hinaus sind Anforderungsspezifikationen zwar üblicherweise von Fachtermini
geprägt, Anforderungsbeschreibungen ähneln in ihren Merkmalen aber eher UGC
mit einem geringeren Anteil an Fachtermini. In der Anwendung auf UGC zeigen
aktuelle Untersuchungen, dass N-Gramm-basierte Ansätze die robustesten und besten
Ergebnisse erzielen (z. B.Dias Cardoso und Roy, 2016).

170Siehe weiterführend: https://github.com/optimaize/language-detector (Stand: 11.01.17).
171Siehe weiterführend: https://github.com/CLD2Owners/cld2 (Stand: 11.01.17).
172Siehe weiterführend: https://detectlanguage.com (Stand: 11.01.17).



C.1 Ausgewählte Verfahren der Textvorverarbeitung xxix

C.1.2 Satzgrenzenerkennung

Die Satzgrenzenerkennung (engl. sentence boundary disambiguation, SBD) wird, wie
auch die Sprachenidentifizierung, oftmals als gelöstes Problem verstanden (Read et al.,
2012a), welchem mit einer Vielzahl an unterschiedlichen Ansätzen und Methoden
begegnet werden kann. Eine Unterteilung dieser Ansätze findet in (1) regelbasierte
SBD-Verfahren (Expertenwissen; Heuristiken und Gazetteers) und (2) ML-Ansätze
(Annotierte Korpora; Goldstandards) statt (Read et al., 2012a, S. 987). Eine ent-
sprechende Übersicht geben Read et al. (2012a) sowie Kiss und Strunk (2006) und
eine Auswahl findet sich in Tabelle C.1 zusammen mit dem jeweiligen F1-Wert auf
verschiedenen Korpora (Read et al., 2012a, S. 989 f.)173.
Verfahren der Satzgrenzenerkennung werden vielfach auf Fließtexte wie Nach-

richtentexte angewendet und erreichen teils sehr gute Ergebnisse (Kiss und Strunk,
2006). Seltener werden die Verfahren zur Vorverarbeitung von UGC wie Produktbe-
wertungen (López und Pardo, 2015) oder Kurznachrichten aus sozialen Netzwerken
(Rudrapal et al., 2015) herangezogen.

Aus diesem Grund untersuchen Read et al. (2012a, S. 991) explizit auch die
Performanz etablierter Ansätze auf informalen Texten wie UGC. Hierzu ziehen sie
Texte der NLP- und Linux-Domäne aus Webblogs (WNB/WLB) heran (Read et al.,
2012b), die einige tausend Sätze umfassen. Wie in Tabelle C.1 ersichtlich wird,
funktionieren die Verfahren allesamt auf klassischen Fließtexten besser als auf UGC,
wenngleich die Ergebnisse auf UGC auch noch immer als solide zu bezeichnen sind.

Brown CDC GENIA WSJ WNB WLB

CoreNLP 87,7 72,1 98,8 91,3 95,3 89,1
LingPipe 93,0 86,3 99,6 88,0 94,4 92,7
RASP 96,8 96,1 98,9 99,0 95,4 92,8
Splitta 95,4 96,1 99,0 99,2 94,0 91,2

Tabelle C.1: Vergleich von Satzendeerkennungstools auf verschiedenen Korpora.
Aus Read et al. (2012a, S. 990, 992)

Ein regelbasiertes Verfahren zur Satzgrenzenerkennung beinhaltet das RASP-
System174. Briscoe et al. (2006) bzw. Briscoe und Carroll (2002) stellen mit Robust
Accurate Statistical Parsing (RASP) ein NLP-System zur syntaktischen Annotation
von Freitext zur Verfügung. Es handelt sich demnach hierbei nicht um einen reinen
Ansatz zur Satzgrenzenerkennung. RASP kann auf allen Korpora solide Ergebnisse
erzielen, wenngleich auch Read et al. (2012a, S. 991) den Perfomanzverlust auf dem
CDC-Korpus hervorheben. Darüber hinaus weist Briscoe (2006, S. 24) auf Probleme
bei irregulärer Nutzung von Satzzeichen wie zum Beispiel

”
------“ oder

”
(A):-“ hin.

Da sowohl zur Strukturierung (z. B.Auflistung) als auch zur Trennung von Inhalten
in Anforderungsbeschreibungen nur Sonderzeichen zur Verfügung stehen, stellt dieser
Umstand ein Problem dar, da die häufige Satzzeichenverwendung zu erwarten ist.

173Neben dem Brown-Korpus und WSJ-Texten werden das Conan Doyle Corpus (CDC), das aus
mehreren Sherlock Holmes-Geschichten besteht und das GENIA-Korpus, das eine Sammlung
von 16.392 Sätzen aus biomedizinischen Forschungszusammenfassungen darstellt, zur Evaluation
herangezogen (Kim et al., 2003).

174Siehe weiterführend: http://ilexir.co.uk/applications/rasp/ (Stand: 11.01.17).



xxx C Ergänzende Ausführungen

Das Stanford CoreNLP beinhaltet ebenfalls einen Sentence Splitter (ssplit), der
nicht auf dem ursprünglichen Fließtext arbeitet, sondern auf einer zuvor tokenisierten
Variante (Manning et al., 2014, S. 3). Beispielsweise wird bereits beim Tokenisieren
regelbasiert zwischen Satzzeichen, die einen Satz beenden und Satzzeichen, die zum
Beispiel eine Abkürzung markieren, unterschieden. Die Evaluationsergebnisse von
CoreNLP sind auf den Webkorpora nicht überzeugend (vgl. Tabelle C.1).

Read et al. (2012a, S. 991) führen als mögliche Erklärungen zum einen an, dass
bestimmte Fehler schon durch den vorgeschalteten Tokenisierer entstehen können
und zum anderen, dass die zugrundeliegenden Regeln zur Satzgrenzenerkennung
unter Umständen nicht ständig gepflegt und weiterentwickelt werden, wie es bei
Systemen der Fall ist, die speziell auf diese Aufgabe zugeschnitten sind. Schließlich
umfasst CoreNLP eine Vielzahl an NLP-Anwendungen.
Bei dem Python-Tool Splitta175 handelt es sich um ein NLP-Toolkit, welches

primär der Tokenisierung und der SBD dient (Gillick, 2009). Genutzt wird sowohl ein
SVM-basierter Ansatz als auch ein Näıve Bayes-basierter Klassifikationsalgorithmus,
der auf dem WSJ- sowie auf dem Brown-Korpus sehr gute Ergebnisse für die englische
Sprache liefert. Auf UGC funktioniert der Ansatz allerdings schlechter, wie Rudrapal
et al. (2015, S. 5) am Beispiel von Twitter- und Facebook-Nachrichten aufzeigen.
Um einen auf ML basierenden Ansatz handelt es sich beim Tool LingPipe176. Es

stellt ein NLP-Toolkit dar, dass neben der Satzgrenzenerkennung unter anderem auch
POS-Tagging und NER bietet. Zur Erkennung von Satzgrenzen steht standardmäßig
ein MEDLINE-Modell als LingPipe SentenceModel bereit, welches auf 13 Millionen
biomedizinischen Kurztexten trainiert wurde (Reese, 2015, S. 92; Morris, 2011).
Es wird deutlich, dass keines der ausgewählten Verfahren das

”
perfekte Verfahren“

zur Satzgrenzenerkennung auf allen Korpora ist. Dennoch empfehlen sich Systeme
wie RASP und LingPipe im OTF-Kontext aufgrund der guten Performanz auf UGC
sowie auf strukturierten Texten.

175Siehe weiterführend: http://code.google.com/p/splitta/ (Stand: 17.01.17).
176Siehe weiterführend: http://alias-i.com/lingpipe/ (Stand: 17.01.17).



 

Das Heinz Nixdorf Institut ist ein Forschungszentrum der Universität Paderborn. Es entstand 
1987 aus der Initiative und mit Förderung von Heinz Nixdorf. Damit wollte er Ingenieurwis-
senschaften und Informatik zusammenführen, um wesentliche Impulse für neue Produkte und 
Dienstleistungen zu erzeugen. Dies schließt auch die Wechselwirkungen mit dem gesellschaft-
lichen Umfeld ein. 

Die Forschungsarbeit orientiert sich an dem Programm „Dynamik, Mobilität, Vernetzung: Eine 
neue Schule des Entwurfs der technischen Systeme von morgen“. In der Lehre engagiert sich 
das Heinz Nixdorf Institut in Studiengängen der Informatik, der Ingenieurwissenschaften und 
der Wirtschaftswissenschaften. 

Heute wirken am Heinz Nixdorf Institut neun Professoren mit insgesamt 150 Mitarbeiterinnen 
und Mitarbeitern. Pro Jahr promovieren hier etwa 20 Nachwuchswissenschaftlerinnen und 
Nachwuchswissenschaftler. 

The Heinz Nixdorf Institute is a research centre within the University of Paderborn. It was 
founded in 1987 initiated and supported by Heinz Nixdorf. By doing so he wanted to create a 
symbiosis of computer science and engineering in order to provide critical impetus for new 
products and services. This includes interactions with the social environment. 

Our research is aligned with the program “Dynamics, Mobility, Integration: Enroute to the tech-
nical systems of tomorrow.” In training and education the Heinz Nixdorf Institute is involved 
in many programs of study at the University of Paderborn. The superior goal in education and 
training is to communicate competencies that are critical in tomorrows economy. 

Today nine Professors and 150 researchers work at the Heinz Nixdorf Institute. Per year ap-
proximately 20 young researchers receive a doctorate. 

 








