Frederik Simon Baumer

Indikatorbasierte Erkennung und Kom-
pensation von ungenauen und unvoll-

standig beschriebenen Softwareanfor-
derungen

Indicator-based detection and compen-
sation of inaccurate and incompletely
described software requirements

Bibliografische Information Der Deutschen Bibliothek
Die Deutsche Bibliothek verzeichnet diese Publikation in der Deutschen Nationalbi-
bliografie; detaillierte bibliografische Daten sind im Internet Uber http://dnb.ddb.de

abrufbar.

Band 372 der Verlagsschriftenreihe des Heinz Nixdorf Instituts

© Heinz Nixdorf Institut, Universitat Paderborn — Paderborn — Juli 2017

ISSN (Print): 2195-5239
ISSN (Online): 2365-4422
ISBN: 978-3-942647-91-5

Das Werk einschlieBlich seiner Teile ist urheberrechtlich geschiitzt. Jede Verwertung auB3er-
halb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung der Herausgeber
und des Verfassers unzuléssig und strafbar. Das gilt insbesondere fur Vervielféltigung, Uber-
setzungen, Mikroverfilmungen, sowie die Einspeicherung und Verarbeitung in elektronischen
Systemen.

Als elektronische Version frei verfligbar lber die Digitalen Sammlungen der Universitatsbi-
bliothek Paderborn.

Satz und Gestaltung: Frederik Simon Baumer

Hersteller: readbox unipress in der readbox publishing GmbH
Munster

Printed in Germany

Geleitwort des Herausgebers

Bisher wurden kaum Versuche unternommen, den Variantenreichtum und die
Defizite natiirlichsprachlicher Softwareanfoderungen, wie sie im Spezifikations-
/Konfigurationsprozess einer Wunschsoftware durch Endanwender (Laien) entstehen,
ohne vermehrte Riickfragen in den Griff zu bekommen. Der nachfolgende Beitrag
zeigt den Verantwortlichen im ,, Requirements Engineering® auf, dass es moglich ist,
den fachfremden Anforderungssteller im Rahmen des Projektmanagements ohne
Beschrinkung seiner Ausdrucksfahigkeit miteinzubinden und durch automatisiert
vereindeutigte Softwarespezifikation den Softwareentwickler zu unterstiitzen, der
von kleineren Riickfragen absehen, dadurch schneller zur Umsetzung kommen kann.
Waihrend in der Praxis erst dariiber nachgedacht wird, dass man die Anforderungs-
analyse automatisieren konnte, wurde das in der Wissenschaft bereits erfolgreich
umgesetzt. Nun widmet man sich bereits der maschinellen Erkennung der, dem
Sprachgebrauch geschuldeten, Ungenauigkeiten und Unvollstdndigkeiten in den An-
forderungsbeschreibungen, die immer noch zu viel Interpretationsspielraum bei einer
konkreten softwaretechnischen Umsetzung zulassen. Doch diese Arbeit setzt noch
einen weiteren Meilenstein, indem diese mehrdeutigen und partiell unvollsténdigen
AuBerungen der Anforderungssteller durch intelligente (bedarfsgerechte) Wissensab-
fragen datengetrieben kompensiert werden.

Die Arbeit von Herrn Baumer ist in den Kontext des Sonderforschungsbereichs
901 ,,On-The-Fly Computing* eingebettet. Das Teilprojekt B1 beschéftigt sich in
seiner zweiten Forderphase unter anderem mit natiirlichsprachlichen Anforderungs-
spezifikationen (Juli 2015 — Juni 2019). Dabei behandelt sie unterschiedliche Arten
von Servicespezifikationen, welche die erfolgreiche Suche, Komposition und Analyse
von Services erméglichen. Hierfiir werden zunéchst unterspezifizierte Serviceanforde-
rungen des Endanwenders maschinell analysiert (d.h. identifiziert, extrahiert und
formalisiert), um Ambiguitit, Vagheit und Unvollsténdigkeit in seinen Spezifikationen
zu kompensieren. Zu diesem Zweck entwickelte Herr Biumer in der vorliegenden
Arbeit (situationsbezogene) Strategien zur Kompensation von Unterspezifiziertheit,
so dass in Abhéingigkeit von gewissen sprachlichen Ungenauigkeiten (Mehrdeutig-
keit, Unvollstandigkeit) fiir eine konkrete natiirlichsprachliche Servicespezifikation,
der passende Algorithmus (oder Strategie) gewihlt wird, um die urspriinglichen
Anforderungen des Endanwenders weitestgehend zu prézisieren. Ziel war es, ein para-
metrisiertes Modell (sog. Strategiekonfigurationen) zu entwickeln, dass automatisch
die richtige Strategie zur Kompensation menschlicher Unzulénglichkeiten bei der
Servicespezifikation wahlt. In diesem Beitrag hat sich Frederik Baumer der auto-
matisierten Erkennung und Kompensation von Ambiguitéit und Unvollstéandigkeit
in natiirlichsprachlichen Anforderungsbeschreibungen unter Beriicksichtigung der
Restriktionen (d.h. hohe Performanz, geringe Benutzerinterkation) des Anwendungs-
feldes ,, On-The-Fly Computing® vollumfanglich gewidmet. Hierfiir hat er einerseits
Strategien zur bedarfsgerechten und performanten Steuerung geeigneter Kompensati-
onsverfahren fiir ungenaue Endanwenderangaben entwickelt. Andererseits konnte er
zeigen, dass die Strategiekonfiguration selbst datengetrieben in Echtzeit situationsbe-

dingt durchgefiihrt werden und zu besseren Ergebnissen als vordefinierte Regelwerke
fithren kann. Auch die nachgewiesenen Lerneffekte seines eigens fiir Testzwecke
entwickelten Prototyps , CORDULA* (Compensation of Requirements Descriptions
Using Linguistic Analysis) durch das sog. Caching (Verankerung im Gedédchtnis des
Systems) bei der (doménenspezifischen) lexikalischen Disambiguierung beweisen die
Weitsicht bei der Entwicklung praxisnaher Lésungen.

Paderborn, 12. Juli 2017 Jun.-Prof. Dr. Michaela Geierhos

cordu

Compensation Of Requirements
Descriptions Using Linguistic Analysis

Indikatorbasierte Erkennung und Kompensation
von ungenauen und unvollstandig beschriebenen
Softwareanforderungen

Der Fakultat fiir Wirtschaftswissenschaften der

Universitat Paderborn

zur Erlangung des akademischen Grades
Doktor der Wirtschaftswissenschaften
— Doctor rerum politicarum —

vorgelegte Dissertation

von

Frederik Simon Biaumer

geboren am 09. Februar 1988

in Aachen

Tag des Kolloquiums: 26. Juli 2017
Referentin: Jun.-Prof. Dr. Michaela Geierhos
Korreferent: Prof. Dr.-Ing. habil. Wilhelm Dangelmaier

Vorveroffentlichungen

Im Zusammenhang mit der vorliegenden Dissertation veréffentliche Beitrage:

e Michaela Geierhos & Frederik S. Baumer: In Henning Christiansen, M.
Dolores Jiménez Lépez, Roussanka Loukanov & Larry Moss (Hrsg.): Partiality
and Underspecication in Information, Languages, and Knowledge, S. 65-107.
Cambridge Scholars Publishing.

e Frederik S. Baumer & Michaela Geierhos: Running Out of Words: How
Similar User Stories Can Help to Elaborate Individual Natural Language Re-
quirement Descriptions. In: Dregvaite, Giedre, Damasevicius, Robertas (Hrsg.):
Information and Software Technologies — 22nd International Conference, ICIST
2016, Druskininkai, Lithuania, October 13-15, 2016, Proceedings, CCIS 639, S.
549-558. Springer. ISBN 978-3-319-46253-0. doi:10.1007/978-3-319-46254-7.

e Michaela Geierhos & Frederik S. Baumer: How to Complete Customer Requi-
rements Using Concept Expansion for Requirement Refinement. In: Proceedings
of the 21st International Conference on Applications of Natural Language to
Information Systems, NLDB 2016, Springer, LNAT 9612, 2016, Salford, UK,
Juni 2016, S. 37-47. ISBN 978-3-319-41753-0. doi:10.1007/978-3-319-41754-7 4.

e Lorijn van Rooijen, Frederik S. Bidumer, Marie Christin Platenius, Michaela
Geierhos, Heiko Hamann & Gregor Engels: From User Demand to Software
Service: Using Machine Learning to Automate the Requirements Specication
Process. In: Proceedings of the 4th International Workshop on Articial Intelli-
gence for Requirements Engineering (AIRE’17), 5. September 2017, Lissabon.
(im Druck)

e Frederik S. Bidumer, Markus Dollmann & Michaela Geierhos: Studying
Software Descriptions in SourceForge and App Stores for a better Understanding
of real-life Requirements. In: Proceedings of the 2nd International Workshop
on App Market Analytics (WAMA 2017), 5. September 2017, Paderborn. (im
Druck)

e Michaela Geierhos, Sabine Schulze & Frederik Badumer: What did you mean?
Facing the Challenges of User-generated Software Requirements. In Procee-

dings of the 7th International Conference on Agents and Articial Intelligence
(ICAART), Lissabon, Januar 2015. S. 277-283. ISBN 978-989-758-073-4

Zusammenfassung

Die vorliegende Dissertation ist im Rahmen des Sonderforschungsbereichs 901:
On-The-Fly Computing (auch: OTF-Computing) entstanden. Die Vision des OTF-
Computings sieht vor, dass zukiinftig der individuelle Softwarebedarf von Endanwen-
dern durch die automatische Komposition bestehender Softwareservices gedeckt wird.
Im Fokus stehen dabei natiirlichsprachliche Softwareanforderungen, die Endanwender
formulieren und an OTF-Anbieter als Anforderungsbeschreibung iibergeben. Sie
dienen an dieser Stelle als alleinige Kompositionsgrundlage, kénnen allerdings unge-
nau und unvollstandig sein. Dies sind Defizite, die bislang durch Softwareentwickler
im Rahmen eines bidirektionalen Konsolidierungsprozesses erkannt und behoben
wurden. Allerdings ist eine solche Qualitétssicherung im OTF-Computing nicht mehr
vorgesehen — der klassische Konsolidierungsprozess entfallt.

Hier setzt die Dissertation an, indem sie sich mit Ungenauigkeiten frei formulier-
ter Anforderungsbeschreibungen beim Softwareentwurf auseinandersetzt. Hierfiir
wird mit CORDULA (Compensation of Requirements Descriptions Using Linguistic
Analysis) ein System entwickelt, dass sprachliche Unzuldnglichkeiten (Ambiguitiit,
Vagheit sowie Unvollstédndigkeit) in den Formulierungen unerfahrener Endanwender
erkennt und kompensiert. CORDULA unterstiitzt dabei die Suche nach geeigneten
Softwareservices zur Komposition, indem Anforderungsbeschreibungen in kanonische
Kernfunktionalitéten iiberfithrt werden.

Die vorliegende Arbeit leistet somit methodisch gesehen einen Beitrag zur ganz-
heitlichen Erfassung und Verbesserung sprachlicher Unzulénglichkeiten in nutzer-
generierten Anforderungsbeschreibungen, indem erstmalig parallel und sequenziell
Ambiguitét, Unvollstandigkeit und Vagheit behandelt werden. Erst durch den Einsatz
linguistischer Indikatoren ist es moglich, datengetrieben und bedarfsorientiert die in-
dividuelle Textqualitdt zu optimieren, indem von der klassischen Textanalysepipeline
abgewichen wurde: Die ad hoc-Konfiguration der Kompensationspipeline, ausgelost
durch die On-The-Fly festgestellten Defizite in den Anforderungsbeschreibungen der

Endanwender, ist ein Alleinstellungsmerkmal.

Abstract

This dissertation has been written within the scope of Collaborative Research Centre
901: On-The-Fly Computing (also known as OTF Computing). The vision of OTF
Computing is to have the software needs of end users in the future covered by
an automatic composition of existing software services. Here we focus on natural
language software requirements that end users formulate and submit to OTF providers
as requirement specifications. These requirements serve as the sole foundation for
the composition of software; but they can be inaccurate and incomplete. Up to
now, software developers have identified and corrected these deficits by using a
bidirectional consolidation process. However, this type of quality assurance is no
longer included in OTF Computing — the classic consolidation process is dropped.

This is where this work picks up, dealing with the inaccuracies of freely formulated
software design requirements. To do this, we developed the CORDULA (Compensa-
tion of Requirements Descriptions Using Linguistic Analysis) system that recognizes
and compensates for language deficiencies (e.g., ambiguity, vagueness and incomple-
teness) in requirements written by inexperienced end users. CORDULA supports
the search for suitable software services that can be combined in a composition by
transferring requirement specifications into canonical core functionalities.

This dissertation provides the first-ever method for holistically recording and
improving language deficiencies in user-generated requirement specifications by
dealing with ambiguity, incompleteness and vagueness in parallel and in sequence.
Using linguistic indicators makes it possible to optimize the individual text quality in
a data-driven and needs-oriented manner by deviating from the classical text analysis
pipeline: Its distinguishing feature is the ad hoc configuration of the compensating
pipeline, triggered by the deficiencies that On-The-Fly Computing detected in the

requirement specifications of end users.

Danksagung

An dieser Stelle mochte ich allen danken, die mich auf unterschiedlichste Weise bei
der Erstellung dieser Arbeit unterstiitzt haben.

Zuerst mochte ich Jun.-Prof. Dr. phil. habil. Michaela Geierhos danken, die meine
Dissertation betreut und mich dabei in einem beachtlichen Mafle unterstiitzt hat.
Sie hat mich motiviert, mir Etappenziele sowie Herausforderungen aufgezeigt und
mir diese vor allem auch zugetraut. Fiir das in mich gesetzte Vertrauen, ihre Geduld
und ihre Diskussionsbereitschaft bedanke ich mich vielmals.

Ich bedanke mich dariiber hinaus bei Prof. Dr.-Ing. habil. Wilhelm Dangelmaier fiir
die Ubernahme des Zweitgutachtens sowie die konstruktiven Anmerkungen, mit denen
er meine Dissertation in unseren Gespriachen bedacht hat. Mein Dank richtet sich
auch an Prof. Dr. René Fahr und Prof. Dr.-Ing. Heiko Hamann fiir die Bereitschaft,
als Mitglieder in meiner Promotionskommission zu fungieren.

Besonders danken méchte ich meinen Kollegen am Heinz Nixdorf Institut, Stephan
Abke, Markus Dollmann, Nicolai Grote, Annette Steffens und Jens Weber, fiir all
die hilfreichen und konstruktiven Ratschlige. Danke fiir die gute Zusammenarbeit!
Unterstiitzt wurde ich wiahrend meiner Tatigkeit zusétzlich durch Edwin Friesen,
Marcel Grawe und Joschka Kersting, die durch vielfdltige Unterstiitzung zum Gelingen
dieser Arbeit beigetragen haben. Weiterhin méchte ich mich bei Sven Heim bedanken,
der eine grofle Hilfe, Kritiker und guter Diskussionspartner war.

Mein Dank geht auch an meine Kollegen des Sonderforschungsbereichs 901. Hier
mochte ich mich insbesondere bei Dr. Marie Christin Platenius und Dr. Lorijn van
Rooijen fiir die gute Zusammenarbeit im Teilprojekt bedanken.

Zum Schluss mochte ich meiner Familie fiir das Lektorat danken. Mein grofler
Dank geht an meine Eltern, die mich immer unterstiitzten und es auch bei dieser
Arbeit taten. Ich habe zwei tolle Schwestern, die ich nicht missen méchte und eine
wunderbare Freundin, die sich lange Monologe iiber indikatorbasierte Kompensation

angehort und mir den Riicken freigehalten hat. Allen bin ich sehr dankbar.

Paderborn, Juli 2017 Frederik Simon Baumer

Inhaltsverzeichnis

Motivation, Herausforderungen und Ziele

I Grundlagen und Stand der Forschung

1 Anforderungserhebung und Dokumentation

1.1

Anforderungsquellen

1.2 Anforderungen an Softwaresysteme
1.2.1 Funktionale Anforderungen
1.2.2 Nicht-funktionale Anforderungen

1.3

1.4

1.2.3 Rahmenbedingungen
Anforderungsdokumentation

1.3.1 Informale Anforderungsdokumentation
1.3.2 Semi-formale Anforderungsdokumentation
1.3.3 Formale Anforderungsdokumentation

1.3.4 Gegeniiberstellung .
Anforderungsbeschreibungen

2 Ungenauigkeit und Unvollstandigkeit

2.1

2.2
2.3

Ambiguitat

2.1.1 Lexikalische Ambiguitdt
2.1.2 Syntaktische Ambiguitdt
2.1.3 Referentielle Ambiguitdt

Vagheit
Unvollstandigkeit

3 Stand der Wissenschaft und Technik
Maschinelle Textanalyse im Kontext dieser Arbeit
Anforderungsextraktion im OTF-Computing

3.1
3.2
3.3

3.4

Umgang mit Ambiguitdt und

Unvollstandigkeit

3.3.1 Disambiguierung im Anforderungskontext
3.3.2 Reduktion von Unvollstandigkeit

3.3.3 Kombinierte Ansétze
Diskussion und Zwischenfazit

10
10
11
11
15
19
22
23
26

29
31
32
33
35
36
37

41
41
42
44
44
63
68
71

ii Inhaltsverzeichnis
Il Methodische Vorgehensweise 75
4 Zu leistende Arbeit s
4.1 Konzeption eines strategiebasierten Anforderungskompensationssystems 77
4.1.1 Auswahl geeigneter Kompensationsverfahren 79

4.1.2 Entwicklung fortgeschrittener Kompensationsstrategien 80

4.1.3 Erstellung linguistischer Ressourcen 80

4.2 Evaluation des Textanalysesystems 82
4.2.1 Evaluation der Strategieanwendung 83

4.2.2 Evaluation der Systemperformanz 83

5 Konzeptentwicklung 87
5.1 Ausgangssituation und Zielsetzung 87
5.2 Strategiekonfiguration o000 89
5.2.1 Light-Strategie 93

5.2.2 Basic-Strategie o 94

5.2.3 Basic Plus-Strategie 95

5.2.4 Default-Strategie Lo 98

5.2.5 Complete-Strategie 99

5.2.6 Fallback-Strategie o o000 101

5.3 Indikatoren der Strategieauswahl 101
5.3.1 Begriffsdefinition von Indikatoren 101

5.3.2 Bestimmung kontextsensitiver Indikatoren 103

5.4 Strategieindex L 112
5.5 Geplantes Vorgehen und Methodik 113
5.5.1 Design der Benutzerschnittstelle mit Eingabemaske 113

5.5.2 Textvorverarbeitung 114

5.5.3 Anforderungsextraktion 116

5.5.4 Disambiguierung oL oL o 118

5.5.5 Kompensation von Unvollstandigkeit 124

5.5.6 Erkennung von Vagheit 126

5.5.7 Definition der Ausgabeformate 127

5.5.8 Analyse moglicher Verarbeitungsfehler 131

5.6 Zwischenfazit und Ausblick L. 133
Il Implementierung und Evaluation 135
6 Ressourcen 137
6.1 Anforderungsbeschreibungskorpus 137
6.1.1 Datenbestand L oo 138

6.1.2 Gegentiberstellung oo 139

6.2 Pradikat-Argument-Struktur-Korpus 142
6.2.1 Datenakquise und -vorverarbeitung 142

6.2.2 Zusammensetzung 144

6.2.3 Umfang des PAS-Korpus 146

6.3 Weitere Ressourcen

Inhaltsverzeichnis iii

7 Implementierung 149
7.1 Systemarchitektur. oo 149
7.2 Testumgebung 151
7.3 Programmiertechnische Umsetzung 152

7.3.1 Préasentationsschicht 0oL 153
7.3.2 Anwendungsschicht00 155
7.3.3 Datenschicht o oo 168
7.4 Anforderungen an die Systemqualitat 170
741 Leistung 170
7.4.2 Adaptierbarkeit L 174
7.4.3 Wartbarkeit und Erweiterbarkeit 183

8 Evaluation 187
8.1 Evaluationskonzept 187
8.2 Evaluation der Anwendbarkeit von Strategien 187

8.2.1 Evaluationsprotokoll 188
8.2.2 Evaluation der Strategieauswahl 189
8.2.3 Evaluation der Indikatorzuverléssigkeit 191
8.2.4 Evaluation méglicher Fehlertypen 194
8.3 Evaluation der Systemperformanz L. 204
8.3.1 Evaluationsprotokoll 204
8.3.2 Laufzeitanalysen des Gesamtsystems 206
8.3.3 Laufzeitanalyse der Verarbeitungskomponenten 208
8.3.4 Entwicklung und Nutzen des WSD-Cachings 210
8.3.5 Laufzeitanalyse der Strategien 213
8.4 Evaluationsfazit 214

IV Fazit und Ausblick 219

9 Zusammenfassung und Reflexion 221

10 Forschungsausblick 225
10.1 Vom Endanwender lernen 225
10.2 Extraktion und Erweiterung funktionaler Ablaufe 226

Literaturverzeichnis 229

V Anhang Xvii

A Programmoberflachen xix

B Material zur Evaluation XXV

C Ergadnzende Ausfithrungen xxvii

Abkiirzungsverzeichnis

a Accuracy

ACE Automatic Content Extraction (Evaluation)

ADV Adverb

AIC Ambiguity Indicator Corpus

API Application Programming Interface

ASCII American Standard Code for Information Interchange
BART Beautiful Anaphora Resolution Toolkit

BLANC BiLateral Assessment of Noun-phrase Coreference
BNC British National Corpus

CAR Completeness Assistant for Requirements

CD Cardinal Number

CDC Conan Doyle Corpus

CEAF Constrained Entity Aligned F-measure

CoNLL Conference on Natural Language Learning
CORDULA Compensation of Req. Descriptions Using Linguistic Analysis
CSS Cascading Style Sheets

DELA Dictionnaires Electroniques du LADL

EL Entity Linking

FA Funktionale Anforderungen

FAQ Frequently Asked Questions

FN Fualse negative

FP Fualse positive

GUI Graphical User Interface

HOTCoref Higher Order Tree Coreference

vi Abkiirzungsverzeichnis

HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
HTML Hypertext Markup Language

IE Informationsextraktion

IMAP Internet Message Access Protocol
IR Information Retrieval

IT Informationstechnologie

IEEE [Institute of Electrical and Electronics Engineers
JRE Java Runtime Environment

JSON JavaScript Object Notation

JSP JavaServer Pages

JWNL Java WordNet Library

ML Maschinelles Lernen

MUC Message Understanding Conference
NE Named Entities

NER Named Entity Recognition

NFA Nicht-funktionale Anforderungen
NLARE Natural Language Automatic Requirement Evaluator
NLTK Natural Language Toolkit

NLP Natural Language Processing

NL Natural Language

NN Nomen

NP Nominalphrase

NUC Next Unit of Computing

OCL Object Constraint Language

OTF On-The-Fly

P Precision

PAS Pridikat-Argument-Struktur

Abktirzungsverzeichnis vii

PDC Prague Dependency Treebank

PDF Portable Document Format

PGP Pretty Good Privacy

POS Part of Speech

PP Pripositionalphrase

PCFG Probabilistic Context-Free Grammars

QuARS Quality Analyzer for Requirement Specifications
r Recall

RAM Random-Access Memory

RASP Robust Accurate Statistical Parsing

RDF Resource Description Framework

RE Requirements Engineering

REaCT Requirements Extraction and Classification Tool
RegEx Regular Expressions

RESI Requirements Engineering Specification Improver
SBD Sentence Boundary Disambiguation

SBVR Semantic Business Vocabulary and Rules

SEI Software Engineering Institute

SPARQL SPARQL Protocol And RDF Query Language
SREE Systemized Requirements Engineering Environment
SRL Semantic Role Labeling

SRS Software Requirement Specification

SSL Service Specification Language

TLS Transport Layer Security

TN True negative

TP True positive

SVM Support Vector Machine

TiiBa-D/Z Tiibinger Baumbank des Deutschen / Zeitungskorpus

viii

Abkiirzungsverzeichnis

UGC User Generated Content
UML Unified Modeling Language
URL Uniform Resource Locator
\% Verb

VP Verbalphrase

VPE Verbal Phrase Ellipsis

WSD Word Sense Disambiguation
WSI Word Sense Induction

WSJ Wall Street Journal

XML Extensible Markup Language
YAGO Yet Another Great Ontology

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

Abbildungsverzeichnis

Stakeholder map 8
Dokumentation vs. Spezifikation 12
Dokumentationsmethoden und ihre Formalisierungsgrade 13
Klassifikation der Dokumentationstechniken 14
Teilmengen natiirlicher Sprache 16
Syntaktisches Anforderungsmuster L. 18
Semi-formale Dokumentation mittels Klassendiagramm 21
Formale Spezifikation und Design 24
Requirements Iceberg Lo 29
Typologie von Anforderungsfehlern 30
Der Begriff der Ungenauigkeit 31
NLP-Verarbeitungsschritte im Arbeitskontext 41
BabelNet als semantisches Netz 46
Ein beispielhafter Satz aus der TiiBa-D/Z 48
Zwischenverbindungen einzelner Annotationsebenen (OntoNotes) . . . 50
Disambiguierung und Entity Linking mittels Babelfy 54
Gegeniiberstellung verschiedenartiger Strukturbdume 56
Completeness Assistant for Requirements 68
Natural Language Automatic Requirement Evaluator 70
Requirements Engineering Specification Improver 71
Methodische Vorgehensweise in der Dissertation 7
Smartphone als Benutzerschnittstelle (Mockup) 87
Erweiterte Benutzerinteraktion (Mockup) 88
Logischer Aufbau von Strategien. 89
Selektion und Anwendung von Strategien auf Indikatorbasis 90
Strategieeinbettung in den Verarbeitungskontext 91
Strategiekonfigurationen oo 92
Light-Strategie 93
Basic-Strategie 94
Ergebnis der syntaktischen Disambiguierung 95
Basic Plus-Strategie 96
Default-Strategie 98
Complete-Strategie 100
Einfluss semantischer Kategorien auf Indikatoren 111
Informationsverarbeitungo oo 113

Abbildungsverzeichnis

5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25
5.26
5.27
5.28
5.29
5.30
5.31

6.1
6.2

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
.17
7.18
7.19
7.20

8.1
8.2
8.3
8.4
8.5

Benutzerschnittstelle von CORDULA (Frontend) 114
Ablauf des Preprocessings 116
Anforderungsidentifikation und -extraktion 117
Template funktionaler Anforderungen 117
Funktionsweise der lexikalischen Disambiguierung 118
Lexikalische Disambiguierung (Frontend) 119
Beispielhafter Dependenzbaum (Stanford CoreNLP) 120
Beispielhafter Parsebaum (Stanford CoreNLP) 121
Fehlerhafter Parsebaum (Stanford CoreNLP) 121
Koordinationsambiguitéit im Dependenzbaum 122
Parsebaum mit moglicher Satzvereinfachung 123
Auflésung von Koreferenzen 123
Koreferenzketten und Kandidaten 124
Priadikatbasierte Kompensation 125
Erkennung und Kompensation von Unvollstandigkeit 125
Erkennung von vagen Ausdriicken 0oL 127
Ergebnisausgabe (Frontend) 128
Wortverteilung der semantischen Kategorie ,,Rolle” je Korpus 140
Wortverteilung der semantischen Kategorie ,, Komponente“ je Korpus 140

Uberblick iiber das Softwaresystem 149
Serverseitige Systemperspektive o000 150
Drei-Schichten-Architektur als Strukturierungsprinzip von Software . 152
Unterschiedliche Schichtenaufteilung von Fat und Thin Clients 153
Flache Systemnavigation als Grundlage niedriger Einstiegsbarrieren . 154
Datentragende Klassen (kompakte Darstellung) 156
Integration von Babelfy als Disambiguierungskomponente 157
Integration von Stanford CoreNLP zur syntaktischen Disambiguierung 158
Dependenz- und Konstituentenansicht 159
Mittels Stanford Core NLP erkannte Koreferenzen 160
Komponenteninteraktion zur Kompensation von Unvollstédndigkeit . . 161
Preprocessing der Kontextinformationen in Apache Solr 163
Beispielhafte Ausgabe der Kompensationskomponente 163
Vererbung von Struktur-/Verhaltensmerkmalen 166
Gegeniiberstellung von Description-Objekten 169
Protokollarchiv der Verarbeitungszeiten und Ergebnisse 170
Programmablauf (GUI) 173
Fehlermeldung (GUI) 173
Softwaresystem mit responsivem Webdesign (GUI) 180
Moglichkeiten der Skalierbarkeit von Softwaresystemen 181
Auswahlhéufigkeit angewendeter Kompensationsstrategien 189
Aufteilung der Kompensationsstrategien nach Strategierevidierung . . 190
Indikatoren und ihre zugrundeliegenden Merkmalsquellen 191
Fehler bei der tokenbasierten Indikatorbestimmung (WSD) 197
Fehlerhafte Kompensation: Argument wurde nicht zugeordnet 198

Abbildungsverzeichnis xi

8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14

10.1
10.2

Al
A2
A3
A4
A5
A6
AT
A8

B.1
B.2
B.3

Komponenten mit Einbezug der IE-Ergebnisse 199
Fehlerhaftes Gesamtergebnis 199
Fehlerhafte Ergebnisdarstellung in kontrollierter Sprache 200
Fehlerhafte Kompensation: Argument nicht korrekt erkannt 201
Beispiel fiir eine fehlerhafte Koreferenzkette 202
Beispiel fiir fehlerhafte Satzvereinfachung und deren Folgefehler . . . 203
Beispiel fiir fehlerhafte Anforderungsklassifikation 203
Generierung der Testdaten mittels Evaluator 206
Gesamtlaufzeit vordefinierter Strategien nach Beschreibungsumfang . 214
Gegeniiberstellung generierter Funktionsablaufe 226
Gegeniiberstellung generierter Funktionsablaufe 227
Erlduterungen zur Indikatoranwendung fiir Endanwender xix
Erlduternde Darstellung der Korrektur mittels CoreNLP XX
Ergebnis der lexikalischen Disambiguierung mittels Babelfy XX
Erlduternde Darstellung der POS-Korrektur mittels BabelNet xxi
Darstellung erkannter Koreferenzketten mittels CoreNLP xxi
Ergebnis der Verarbeitung oL xxii
Verarbeitungs- und Kompensationsprotokoll xxii
Beispielsyntaxbaum des Stanford Parsers xxiii
Nach Geschwindigkeit klassifizierte Messtellen (RIPE NCC) XXV
Messergebnisse nach Landern (Auszug) XXV
Ressourcenverteilung lex. Disambiguierungsanfragen xxVi

1.1
1.2
1.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

6.1
6.2
6.3
6.4
6.5
6.6
6.7

7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9

Tabellenverzeichnis

Diagrammtypen der UML 2 20
Vor- und Nachteile von Dokumentationstechniken 25
Chancen und Risiken einzelner Dokumentationstechniken (Benutzersicht) 27

WordNet 3.0 Statistik (Verteilung der Eintrage) 46
BabelNet 3.6 (Statistik) 47
Annotierte Korpora zur Koreferenzauflssung (Auswahl) 49
MafBe semantischer Néihe und deren Nutzung bei der Disambiguierung 53
Uberblick iiber aktuelle Dependenzparser 57
Ansiétze zur automatischen Koreferenzauflosung 61
Ansétze zur Koreferenzauflosung (Fi-MaBl) 63
Kombinierte Kompensationsverfahren 69
Beispielhafte Ergebnisausgabe der IE (Light-Strategie) 93
Beispielhafte Ausgabe der IE, ergéinzt um Disambiguierung 97
Ausgabe der IE mit fehlerhafter Aktionsangabe (Basic Plus) 97
Potentielle Lesarten verbleibender Disambiguierungskandidaten . . . 104
Die haufigsten 15 Pripositionen der englischen Sprache 106
Die héufigsten 15 Pronomina der englischen Sprache 107
Gruppen semantischer Kategorien zum Ahnlichkeitsabgleich 109
Initialer Strategieindex L. 112
Zusammensetzung des Datenbestands und Merkmalsgegeniiberstellung 139
Die 10 haufigsten Begriffe in den Korpora 139
Anzahl annotierter Hauptinformationen nach Kategorie 141
Zusammensetzung der Stichprobe 000000 145
Merkmale und ihre Auspragungen in der Stichprobe 145
Merkmale und ihre Auspragungen im PAS-Korpus 146
Auszug aus dem WSD-Cache 148
Testumgebung (Server) o 151
Testumgebungen (Clients) 151
Durch Babelfy erweitertes Token-Objekt zu , application* 157
Attribute der Complete-Strategie 167
Performanz ausgewéhlter Verarbeitungskomponenten 171
Doménenspezifische Portabilitét einzelner Systemkomponenten 176
Unterstiitzte Verarbeitungssprachen einzelner Komponenten 178
Geschétzter Portierungsaufwand neuer Verarbeitungssprachen 179
Nachhaltigkeit einzelner Komponenten nach Methoden 183

xiii

xiv Tabellenverzeichnis
7.10 Ubersicht einzelner Systembestandteile 185
8.1 Indikatorkombinationen und deren Hiufigkeiten (Auszug) 190
8.2 Héufigkeit der Ergebniskombinationen 192
8.3 Ergebnisse der Indikatorevaluation 193
8.4 Durchschnittliche Ausfiihrungszeiten des Softwaresystems unter Last . 207
8.5 Durchschnittliche Ausfiihrungszeiten 207
8.6 Durchschnittliche Laufzeiten der Komponenten 209
8.7 Stichproben zur Laufzeitevaluation der lex. Disambiguierung 211
8.8 Durchschnittliche Abrufzeit vordefinierter Token tiber 10 Tage 212
C.1 Vergleich von Satzendeerkennungstools auf verschiedenen Korpora . .xxix

8.1
8.2
8.3
8.4
8.5
8.6

Formelverzeichnis

Accuracy 191
Recall 192
Precision 192
Fg-Score 193
Fy-Score 193
Fy-Score e 193

XV

Motivation, Herausforderungen und Ziele

Im Projektmanagement besteht eine der zentralen Herausforderungen darin, dass
Auftraggeber! und Auftragnehmer ein gemeinsames Verstindnis fiir die Bestandteile
des Projektauftrages entwickeln. Herausfordernd ist dabei insbesondere, dass Auf-
traggeber die Anforderungen iiberwiegend aus ihrer Perspektive beschreiben und
damit einen hohen Freiheitsgrad in der Projektumsetzung zulassen. Dariiber hinaus
sind die Anforderungen natiirlichsprachlich formuliert und daher oftmals mehrdeutig
(auch: ambig) sowie in Teilen unvollsténdig. Dieser Herausforderung wird im Pro-
jektmanagement durch einen wechselseitigen Konsolidierungsprozess begegnet, in
dem Riickfragen moglich sind und die Parteien sich auf ein gemeinsames Verstédndnis
der Anforderungen einigen. Ubertragen auf Softwareprojekte bedeutet das, dass
Stakeholder (z.B.Endanwender) und Softwareentwickler sich hinsichtlich der An-
forderungen an ein geplantes Softwareprodukt einig werden und damit gemeinsam
die Gefahr einer nicht-deterministischen Entwicklung reduzieren. Dieser Konsolidie-
rungsprozess wird dabei auch als Ubersetzungsschritt zwischen der Anwender- und
der Entwicklerperspektive bezeichnet und zielt insbesondere auf das Ausrdumen von
Ungewissheiten auf Seite der Entwickler ab. Er gilt allerdings auch als langwierig
fiir Stakeholder, die sich Riickfragen gegeniibersehen, von denen sie, zum Beispiel als
resultatorientierte Endanwender, im Arbeitsalltag nicht direkt betroffen sind und
deren Beantwortung sie leicht iiberfordern kann. Schlussendlich ist es aber aufgrund
der direkten Kommunikation zwischen den Parteien ein zielfiihrendes Vorgehen, das
den Projekterfolg bereits in einem frithen Stadium sichern kann.

Es ist jedoch einschriankend zu sagen, dass ein solcher bidirektionaler Konsolidie-
rungsprozess in der Softwareentwicklung nicht immer vorgesehen ist. So beispielswei-
se beim On-The-Fly Computing (auch: OTF-Computing), bei dem der individuelle
Softwarebedarf von Endanwendern durch die automatische Komposition einzelner
Softwareservices gedeckt wird. Die klassische Entwicklerrolle féllt somit faktisch weg,
wihrend die Notwendigkeit eines Konsolidierungsprozesses weiterhin besteht.

Im OTF-Computing werden Einzelservices von Softwareherstellern entwickelt und
auf Serviceméirkten bereitgestellt. Ziel ist es, geeignete (d.h.bedarfsgerechte und
kompatible) Servicekompositionen fiir gegebene Softwareanforderungen zu generieren
und diese den Endanwendern zur Verfiigung zu stellen. Im Fokus dieser Arbeit stehen
dabei natiirlichsprachliche Softwareanforderungen, die von Endanwendern formuliert
und an OTF-Anbieter als Anforderungsbeschreibung iibergeben werden.

Hier setzt diese Arbeit an, indem sie sich mit Ungenauigkeiten frei formulierter An-
forderungsbeschreibungen beim Softwareentwurf auseinandersetzt. Hierfiir wird mit
CORDULA (Compensation of Requirements Descriptions Using Linguistic Analysis)
ein System entwickelt, dass sprachliche Unzulanglichkeiten in den Formulierungen
unerfahrener Endanwender erkennt und ohne Riickfragen optimiert. Es ist dabei nicht
das Ziel, aus Nutzereingaben direkt vollstéindige Softwarespezifikation abzuleiten,
wie sie Programmierer erwarten wiirden. Vielmehr wird die Suche nach geeigne-
ten Softwareservices zur Komposition unterstiitzt, indem CORDULA individuelle
Anforderungsbeschreibungen in ihre kanonischen Kernfunktionalitdten iiberfiihrt.

!Aus Griinden der Lesbarkeit wird auf eine geschlechtsspezifische Differenzierung verzichtet.
Entsprechende Begriffe gelten im Sinne der Gleichbehandlung fiir beide Geschlechter.

2 Motivation, Herausforderungen und Ziele

cordu

Gompensation Of Requirements
Desariptions Using Linglistic Analysis

Softwareservices

Servicemarkt
. 4 Service 1 *-‘
H Q Anforderungen H
E e, ..EKomposition H’{ Service 2 ‘

+ 3 ‘

Service 3 *—‘

Software

Endanwender

Vision des OTF-Computings. In Anlehnung an Jungmann (2016, S. 20)

Diese Anbieter verarbeiten die Anforderungsbeschreibung und antworten mit einer
Komposition von Softwareservices. Zwar existieren auch semi-formale und formale
Moglichkeiten der Anforderungsspezifikation, diese stehen Endanwendern aber nicht
zur Verfiigung, da ihnen die Fachkenntnis fehlt um sie zu benutzen und sie demnach
an der Teilname gehindert wiirden. Im Vergleich zu (semi-)formalen Ansétzen sind
Ambiguitdten und Unvollsténdigkeit fester Bestandteil der natiirlichen Sprache — sie
dienen der Sprachokonomie, begiinstigen aber Missverstédndnisse. So auch in der
maschinellen Verarbeitung von Anforderungsbeschreibungen im OTF-Computing:
Ambiguitéiten und Unvollstdndigkeit sind in der Vision einer automatisierten, hoch-
performanten Komposition hinderlich, da sie Ungewissheit erzeugen und damit den
Gesamtprozess verlangsamen, wenn nicht sogar schédigen. Mangels klassischem
Konsolidierungsprozess sind integrierte Vorgehensweisen erforderlich, die sich der
Kompensation dieser Ungewissheiten im OTF-Computing widmen.

Herausforderungen

Die von Endanwendern iibermittelten Anforderungsbeschreibungen sind hinsichtlich
Informationsgehalt und -giite zu beurteilen. Zum einen ist beziiglich des Informati-
onsgehalts zu erwarten, dass (aus der Entwicklungsperspektive) notwendige Angaben
fehlen wihrend nebenséichliche Angaben vorliegen, welche es aber im Sinne einer
performanten Servicekomposition frithzeitig zu erkennen und zu filtern gilt:

Beispiel (Anforderungsbeschreibung)
wSince I want to listen to music on the go, I need a software which can be only play
mp8 files on Android but the user not allow to copy or send with bluetooth

Zum anderen miissen vorhandene, notwendige Angaben wiederum hinsichtlich der
Informationsgiite bewertet werden, wobei der Fokus in dieser Arbeit auf ambigen
(,send* hat acht Lesarten®) und unvollstindigen Angaben (Was soll wohin nicht

2In Anlehnung an http://qr.ae/Toz3yi (Stand: 19.05.2017).
3Siehe weiterfithrend: http://wordnetweb.princeton.edu/perl/webwn?s=send (Stand: 19052017)

Motivation, Herausforderungen und Ziele 3

kopiert werden?) und deren Erkennung und Kompensation liegt. Bestehende Ansitze
zur Prévention, Erkennung und Kompensation konzentrieren sich dabei zumeist auf
einzelne Auspriagungen von Ambiguitdten bzw. Unvollstdndigkeit und sind oftmals
nicht als softwaregestiitzte Verfahren konzipiert, sondern existieren als Lesetechniken,
Checklisten oder Review-Prozesse. Softwaregestiitzte Verfahren setzten vielfach Ein-
schrinkungen voraus, die den Umfang der natiirlichen Sprache, beispielsweise den
Wortschatz, begrenzen oder zusétzliche Ressourcen, wie Korpora oder strukturierte
Anforderungsdokumente, benotigen, die jedoch nicht existieren. Fiir das Anwen-
dungsszenario des OTF-Computings sind diese bestehenden Ansétze ungeeignet, da
sie nicht ohne Benutzerinteraktion anzuwenden und nicht fiir die Anbindung an
Drittsysteme vorgesehen sind sowie oftmals nicht ohne weitere Einschrankungen auf
natiirlicher Sprache arbeiten kénnen. Auch erforderliche Zusatzinformationen wie
Klassendiagramme und umfangreiche doménenspezifische Korpora sind im OTF-
Szenario seitens der Endanwender nicht zu erwarten. Dariiber hinaus ist die Per-
formanz bisheriger Ansédtze zu hinterfragen, da keine der Methoden priift, ob die
eigene Anwendung iiberhaupt notwendig ist. So kénnte die Anwendung der Unvoll-
stiandigkeitskompensation beispielsweise iibersprungen werden, wenn keine Hinweise
auf Unvollstidndigkeit vorliegen. Dariiber hinaus fehlt bisher eine Interaktion zwischen
den Erkennungs- und Kompensationsanséitzen sowohl hinsichtlich Synergien als auch
schédlicher Auswirkungen der eigenen Aktivitdt auf die Anforderungsbeschreibung;:
Hier fehlt es an definierten prozeduralen Ablaufen, welche die Notwendigkeit der
Methodenausfithrung erkennen und diese so flexibel steuern, dass Informationen
untereinander geteilt werden kénnen.

Zielsetzung

Ziel ist die automatische Erkennung und Kompensation von Ambiguitiat und Un-
vollstandigkeit in natiirlichsprachlichen Anforderungsbeschreibungen. Dies geschieht
unter Beriicksichtigung der Anforderungen des OTF-Computings beziiglich hoher
Performanz, Flexibilitédt und niedriger Benutzerinteraktion. Diesbeziiglich ist die Iden-
tifikation geeigneter Verfahren zur Erkennung und Kompensation lexikalischer, syntak-
tischer und referentieller Ambiguitét sowie Unvollsténdigkeit in natiirlichsprachlichen
Anforderungsbeschreibungen ein vorgelagerter Schritt (s. Kapitel 3). Auf diesen Schritt
folgt die Entwicklung von Strategien zur bedarfsgerechten und performanten Steue-
rung der geeigneten Erkennungs- und Kompensationsverfahren (s. Abschnitt 5.2).
Diese Strategien ermoglichen es, einzelne Verfahren bzw. deren Ausfithrung zu
itberwachen, Ergebnisse abzugleichen und Synergieeffekte zu nutzen. Hierzu ist, im
Sinne einer hohen Performanz, die Entwicklung von kontextsensitiven Indikatoren zur
Ermittlung des Kompensationsbedarfs erforderlich, die einzelne Strategien aktivieren
kénnen (s. Abschnitt 5.3). Die Besonderheit bei der Indikatorenentwicklung ist, dass
diese nicht auf die Ergebnisse der nachgelagerten Erkennungs- und Kompensations-
verfahren zuriickgreifen kénnen und daher iiberwiegend Textmerkmale heranziehen,
die ebenfalls erst im Rahmen dieser Arbeit zu identifizieren und zu systematisie-
ren sind. Dies wiederum setzt doméanenspezifische Ressourcen voraus, die in Teilen
noch nicht existieren und daher erstellt (z. B. PAS-Korpus) bzw. zusammengetragen
(z. B. Anforderungsbeschreibungskorpus) werden miissen (s. Kapitel 6).

4 Motivation, Herausforderungen und Ziele

Die Anwendbarkeit der Verfahren, Indikatoren und Strategien gilt es dariiber hinaus
anhand eines Prototyps zu evaluieren, wobei dies die Konzeption (s. Kapitel 5) und
Implementierung (s. Kapitel 7) eines strategiebasierten Anforderungskompensations-
systems (CORDULA) zur Aufnahme, Verarbeitung, Kompensation und Struktu-
rierung unstrukturierter Anforderungsbeschreibungen voraussetzt. Im Folgenden
werden diesbeziiglich zunichst bestehende Definitionen und Ansétze diskutiert, um
die eigene Arbeit in den Kontext der existierenden Forschung einzubetten (s. Teil I).

Teil |

Grundlagen und
Stand der Forschung

Anforderungserhebung
und Dokumentation

In diesem Kapitel werden grundlegende Begrifflichkeiten wie Stakeholder
(s. Abschnitt 1.1) sowie ,,Anforderung® erlautert (s. Abschnitt1.2), wobei insbe-
sondere eine Unterteilung in funktionale und nicht-funktionale Anforderungen
vorzunehmen ist. Darauf folgt in Abschnitt 1.3 die Betrachtung von Methoden und
Techniken der Anforderungsdokumentation. AbschlieBend wird in Abschnitt 1.4 der
Begriff der ,, Anforderungsbeschreibung definiert, welcher fiir den weiteren Verlauf
der Arbeit als Sonderform der Anforderungsdokumentation von Bedeutung ist.

1.1 Anforderungsquellen

Im betriebswirtschaftlichen Kontext werden alle ,internen und externen Personen-
gruppen, die von den unternehmerischen Tétigkeiten gegenwértig oder in Zukunft
direkt oder indirekt betroffen sind“ (Springer Gabler, 2015) als Stakeholder bezeichnet.
Dieses Begriffsverstéindnis ldsst sich auch auf Softwareentwicklungsprojekte anwenden,
da hier ebenfalls die direkten sowie indirekten Interessen und Bediirfnisse mehrerer
natiirlicher und juristischer Personen(-gruppen) zu beriicksichtigen sind* (Balzert,
2009; Fahney et al., 2012). Somit sind Stakeholder wichtige Informationsquellen fur
Anforderungen (sog. Anforderungsquellen) und definieren die Rahmenbedingungen
eines zu entwickelnden Systems (Pohl und Rupp, 2015, S.211f.).

Die Interessen und damit auch die Anforderungen der jeweiligen Stakeholder sind
untereinander nicht immer zu vereinbaren (Pohl und Rupp, 2015, S. 22). Grechenig
(2010) weist daher darauf hin, dass es wichtig ist, Anforderungen zu priorisieren und
einzelne Stakeholder in Leitungspositionen mit einem Mandat zur Konfliktlosung zu
versehen. Dieser Aspekt des Rangs wird auch von Schwinn (2011, S. 170) aufgegriffen,
der die Rolle eines ,,Chef-Planers“ empfiehlt, welcher im Wesentlichen inhaltliche
und formelle Gesamtverantwortung® fiir ein IT-Projekt iibernimmt.

Dariiber hinaus koénnen sich Anforderungen verindern, wegfallen oder hinzukom-
men. Ebenso werden Stakeholder unter Umstédnden im Projektverlauf ausscheiden
bzw. erst spiiter identifiziert werden. Das Ubersehen von Stakeholdern hat hierbei
,haufig zur Konsequenz, dass Anforderungen an das System liickenhaft sind“ (Pohl
und Rupp, 2015, S. 22) oder sogar ginzlich fehlen.

4Eine dhnliche Auffassung findet sich im Systems Engineering (Haberfellner et al., 1994, S. 186f.).

5Das bedeutet nach Tiemeyer (2013, S. 246 f.) unter anderem, Verantwortung fiir das Erreichen der
formulierten Projektziele und das Einhalten definierter Zeit- und Kostenrahmen zu {ibernehmen.
Dariiber hinaus gilt es, den effizienten Einsatz der Projektressourcen sowie die Einhaltung der
gesetzten Qualitidtsanforderungen zu iiberwachen.

8 1 Anforderungserhebung und Dokumentation

Weiterhin ist zu beachten, dass jede Stakeholder-Gruppe eine eigene Sicht auf Funktio-
nen hat (Grechenig, 2010, S. 1431.). Diese Sichtweise geht einher mit unterschiedlichen
Rollen, die innerhalb eines Softwareentwicklungsprojekts von Stakeholdern einge-
nommen werden (Robertson und Robertson, 2012, S.441{f.). Ebenso wird dieses
Rollenverstindnis in der Begriffsdefinition von Pohl (2007, S.65) bzw. Robertson
und Robertson (2006) deutlich, an der sich diese Arbeit orientiert:

Definition 1.1.1 (Stakeholder)

FEin Stakeholder ist eine Person oder eine Organisation, die ein potenzielles Interesse
an dem zukiinftigen System hat und somit auch Anforderungen an das System stellt.
FEine Person kann dabei die Interessen von mehreren Personen oder Organisatio-
nen vertreten und somit gleichzeitig mehrere Rollen einnehmen (z. B. Kunde und
Endanwender).

Die verschiedenen Stakeholder und deren Wirkungsbereiche sind in Abbildung 1.1
dargestellt. Eine der bekannteren Rollen ist beispielsweise die des Endanwenders
(engl. user), der mit der Software arbeiten wird und an ihrer benutzerfreundlichen
Bedienung interessiert ist. Weniger offensichtlich ist die Rolle des betriebsinternen
Datenschutzbeauftragten, dessen Fokus auf der rechtskonformen Datenspeicherung
und -verarbeitung liegt (Robertson und Robertson, 2012, S. 44 f.).

Regulator

The wider environment

Financial (sociotechnical))
beneficiary N . = __ieemmmmmeee-l F Negative
" The containing business \\\ stakeholder
Internal (sociotechnical) Owner

""""""""""""""" o External

consultant
consultant

Sponsor

Customer

Political

beneficiary
Functhnal _________ o T s Maintenance
beneficiary operator

User

Operational
support

Abbildung 1.1: Stakeholder map.
In Anlehnung an Robertson und Robertson (2012, S.45)

Im Zentrum von Abbildung 1.1 steht das Softwareprodukt, wobei die gewdlbte
Umrandung verdeutlicht, dass sich die Form eines Produkts im Laufe des Projektzeit-
raums dndern kann bzw. zum Zeitpunkt der Projektinitiierung nicht abschlieflend zu
definieren ist. Um das Produkt herum befinden sich drei Wirkungsbereiche, wovon
der erste Bereich (,, The operational work area) alle Stakeholder enthélt, die direkt
mit dem Produkt agieren. Der zweite Bereich (, The containing business®) enthélt
Gruppen, die von dem Produkt in einer beliebigen Art profitieren und der dritte
Bereich (,, The wider environment*) vereinigt Stakeholder, die dariiber hinaus Einfluss
auf oder Interesse an dem Produkt haben (Robertson und Robertson, 2012, S. 45).

1.2 Anforderungen an Softwaresysteme 9

Die Tatsache, dass Stakeholder mehrere Rollen innehaben kénnen®, wird in Ab-
bildung 1.1 deutlich: So werden Kunden (engl. customer) nach Fertigstellung der
Software zu Eigentiimern (engl. owner) und dariiber hinaus, sofern die Software
zur eigenen Benutzung angeschafft wird, auch zum Endanwender. Grechenig (2010,
S.143) weist in diesem Zusammenhang darauf hin, dass viele Stakeholder nicht
zwangslaufig Techniker sind und somit weder den , typischen Techniker-lingo und
technische Systembeschreibungen® (Grechenig, 2010, S.143) verstehen, noch ihre
Anforderungen in dieser Form verschriftlichen kénnen — im Gegensatz zum ,, Core
Team* aus Abbildung 1.1, welches an den Entwicklungsarbeiten des Produkts betei-
ligt ist und deshalb dieselbe Fachsprache spricht. Aus diesem Grund werden oftmals
fiir die unterschiedlichen Stakeholder spezielle Anforderungsdokumentations- und
Erhebungstechniken genutzt (Grechenig, 2010, S. 143).

In dieser Arbeit wird, der Terminologie des Sonderforschungsbereichs 901 folgend,
der Begriff ,,Endanwender” wie folgt verwendet:

Definition 1.1.2 (Endanwender)

Endanwender sind Stakeholder, die ein Anwendungsinteresse an Softwareprojekten
haben. Sie haben eine vage Vorstellung ihrer individuellen Softwareanforderungen,
konnen diese aber aufgrund fehlender Erfahrung und ohne Expertenhilfe nicht formal
dokumentieren.

Die Endanwender werden besonders hervorgehoben, da sie den Ausgangspunkt der
informalen Anforderungsdokumentation darstellen und damit auch im Fokus dieser
Arbeit stehen. Im weiteren Verlauf wird sowohl der Begriff der Stakeholder im Allge-
meinen, als auch der des Endanwenders im Speziellen genutzt — Letzterer insbesondere
im Zusammenhang mit den in Abschnitt 1.4 erlduterten Anforderungsbeschreibungen.

1.2 Anforderungen an Softwaresysteme

Fiir den Begriff der ,, Anforderung* (engl. requirement) existieren im Informatikkontext
mehrere Definitionsansétze (z. B. Rupp, 2014; Sommerville, 2011; Balzert, 2009; Pohl,
2007). Nach Balzert (2009, S. 455) legen Anforderungen fest, ,was man von einem
Softwaresystem als Eigenschaften erwartet“. Unter ,man* sind dabei alle Stakeholder
zu verstehen.

Als , Eigenschaften® identifiziert Balzert (2009) neben den priméren funktionalen
und nicht-funktionalen Anforderungen die Visionen und Ziele, die am Anfang einer
Produktspezifikation stehen und welche die Rahmenbedingungen fiir das System und
die Entwicklung definieren. Laut IEEE (1991) ist eine Anforderung”:

1. ,Eine Eigenschaft oder Fihigkeit, die von einem Benutzer (Person oder System)
zur Losung eines Problems oder zur Erreichung eines Ziels benotigt wird.

Eine #hnliche Auffassung wird auch im Systems Engineering vertreten (Haberfellner et al., 1994,
AS. 186 f.,311; Gausemeier et al., 2013, S.29).
7Ubersetzung entnommen aus Rupp (2014, S.13f1.).

10 1 Anforderungserhebung und Dokumentation

2. Eine Eigenschaft oder Féhigkeit, die ein System oder Teilsystem erfiillen oder
besitzen muss, um einen Vertrag, eine Norm, eine Spezifikation oder andere,
formell vorgegebene Dokumente zu erfiillen.

3. Eine dokumentierte Repriisentation einer Eigenschaft oder Fihigkeit gemi8 (1)
oder (2).

Diese Definition ergéinzt die allgemeine Auffassung einer Anforderung von Bal-
zert (2009) um einen wesentlichen Aspekt: Die ,,dokumentierte Reprisentation*
(s. Abschnitt 1.3). Eine isolierte dokumentierte Anforderung — das ,erreichte in-
haltliche Versténdnis iiber eine Anforderung® (Pohl, 2007, S.47) — wird auch als
Anforderungsartefakt bezeichnet und zusammen mit anderen derartigen Artefakten
in Anforderungsdokumenten verwaltet (Pohl, 2007, S.14).

1.2.1 Funktionale Anforderungen

Funktionale Anforderungen (FA) ergeben sich aus dem gewiinschten Softwarenutzen
der jeweiligen Stakeholder. Demnach ist eine funktionale Anforderung das, was eine
Software im individuellen (Geschifts-)Kontext niitzlich macht (Rupp, 2014) bzw.
koénnen muss (Schneider, 1998, S. 33) und somit auch das, was eine Software in der
Lage sein muss, an Funktionalitét zu erbringen (Sommerville, 2011; Balzert, 2009;
Schienmann, 2002; IEEE, 1991).

Beispiel 1.2.1 (Funktionale Anforderung)
(a) ,Alle Druckauftrige an das System werden vom Benutzer getditigt. “
(b) ,Der Benutzer kann Druckauftrige erstellen und konfigurieren.

(c) ,Wird die ,Drucken‘-Option gewdihlt, dffnet das System den ,Drucken‘-Dialog
und fordert den Benutzer zur Fingabe der Seitenzahlen auf.“

Das Beispiel 1.2.1 zeigt drei frei formulierte FA, die sich hinsichtlich des Abstrakti-
onsgrades unterscheiden. Bray (2002, S. 15ff.) weist darauf hin, dass Anforderungen
auf verschiedenen Abstraktionsebenen ausgedriickt werden konnen, die Wahl der
Ebene aber dem Verfasser obliegt. Eine Endanwenderanforderung kann zum Beispiel
sehr allgemein gehalten sein (Pohl, 2007, S. 15).

1.2.2 Nicht-funktionale Anforderungen

Anforderungen, die keine FA darstellen, werden in der Fachliteratur unterschiedlich
behandelt: Traditionell ist der Begriff , nicht-funktionale Anforderungen“ (NFA) in
der Literatur etabliert (Rupp, 2014; Sommerville, 2011; Balzert, 2009; Pohl, 2007).
Vereinfacht ausgedriickt sind NFA damit alle Anforderungen, die nicht funktional
sind (Rupp, 2014). So ziahlt IEEE (1991) beispielsweise ,, design requirement, inter-
face requirement® und , performance requirement* als kontrastierende Begriffe zu
funktionalen Anforderungen auf und macht sie damit zum Bestandteil der NFA.
Allerdings widersprechen beispielsweise Balzert (2009) und Sommerville (2011) dieser

1.3 Anforderungsdokumentation 11

strikten Definition, indem sie anfiithren, dass NFA auch die FA betreffen kénnen
(beispielsweise Zuverléssigkeit, Sicherheit oder Internationalisierung). Denn oftmals
beziehen sich NFA auf das System als Ganzes (vgl. Beispiel 1.2.2).

Beispiel 1.2.2 (NFA) ,Das System muss sicher und schnell sein.“

Pohl (2007) sieht ebenfalls in NFA Eigenschaften, die das Gesamtsystem betreffen
und widerspricht dennoch diesem Begriffsverstédndnis entschieden, indem er anfiihrt,
»dass es sich bei vielen [...][NFA] um unterspezifizierte Anforderungen handelt“®
(Pohl, 2007, S.16). Demnach ist die Klasse der NFA in zwei Unterklassen aufzuteilen
(Pohl, 2007, S.16):

1. Unterspezifizierte funktionale Anforderungen
Durch Sperzifizierung ldsst sich dieser Anforderungstyp in FA iiberfiihren.

2. Qualitdtsanforderungen
Dieser Anforderungstyp bezieht sich auf qualitative Eigenschaften, die so-
wohl das Gesamtsystem, als auch einzelne Funktionen und Funktionsgruppen
betreffen kénnen. Sie konnen in der Regel nicht durch FA spezifiziert werden.

Im weiteren Verlauf der Arbeit wird bei Qualitdtsanforderungen dem Begriffs-
verstédndnis von Pohl (2007) gefolgt.

1.2.3 Rahmenbedingungen

Neben der inhaltlichen Betrachtung von Anforderungen ist beispielsweise die Per-
spektive der ,, Verdnderbarkeit* zu beriicksichtigen: So kénnen organisatorische oder
technologische Anforderungen (z. B. seitens des Gesetzgebers) existieren, die als Rah-
menbedingungen (engl. constraints) zu beriicksichtigen sind, Einfluss auf die Funk-
tionen nehmen und dennoch nicht veriindert werden kénnen (Rupp, 2014; Balzert,
2009). Diesbeziiglich kann nach Pohl (2007) generell zwischen Rahmenbedingungen,
die das zu entwickelnde System betreffen und jenen, die den Entwicklungsprozess
tangieren, unterschieden werden (vgl. Beispiel 1.2.3).

Beispiel 1.2.3 (Rahmenbedingung)
,Die Entwicklung des Gesamtsystems darf einen maximalen Personalaufwand von
24 Monaten nicht tiberschreiten.

1.3 Anforderungsdokumentation

Unter dem Begriff ,, Anforderungsdokumentation“ wird ein Dokument verstanden,
das als Teil der Vertragsgrundlage eines Softwareprojekts existiert und die Ergebnisse
der Anforderungsanalyse — unabhéngig von den genutzten Methoden — kumuliert
(Grechenig, 2010, S.1751f.). Eine Anforderungsdokumentation stellt somit eine Zu-
sammenfassung aller identifizierten Anforderungen dar. In der Literatur existiert

8Der Begriff der Ungenauigkeit wird in Kapitel 2 definiert.

12 1 Anforderungserhebung und Dokumentation

keine einheitliche Begriffsverwendung, sodass auch ,,Spezifikation“, , Anforderungsana-
lysedokument®, ,, Software- Requirements-Specification (SRS)“ und , Lastenheft /Pflich-
tenheft“ sowohl in verschiedenen Kontexten als auch synonym verwendet werden
(Baumgartner et al., 2013; Grande, 2011; Grechenig, 2010). Im Rahmen dieser Arbeit
wird deshalb die Anforderungsdokumentation in Anlehnung an Pohl (2007, S. 43,
2291f.) sowie Grechenig (2010, S.175) wie folgt definiert:

Definition 1.3.1 (Anforderungsdokumentation)

Als Anforderungsdokumentation wird die Tdtigkeit bezeichnet, informal vorliegende
Informationen (z. B. Interviewprotokolle, Notizen, Skizzen) mittels (vordefinierter)
Dokumentationstechniken festzuhalten (z. B. schriftlich). Die Art und Weise der
Ubertragung, die Methode sowie die Qualititskriterien ergeben sich aus vorgegebenen
Dokumentationsvorschriften, die wiederum aus Normen ableitbar sind oder von
leitenden Stakeholdern initial formuliert werden.

Der primére Nutzen der Anforderungsdokumentation ist die systematische, struk-
turierte Verwaltung von Anforderungen, die aus verschiedenen Quellen und in un-
terschiedlicher Qualitdt gewonnen wurden. Sie werden somit strukturell und in-
haltlich aufgewertet und stehen als Informations- und Wissensbasis aber auch als
Konstruktions-, Verhandlungs- und Vertragsgrundlage zur Verfiigung. Auch dann,
wenn einzelne Stakeholder gegebenenfalls nicht mehr greifbar sind.

Spezifizierte Dokumentierte

Anforderungen Informationen

Abbildung 1.2: Dokumentation vs. Spezifikation. Laut Pohl (2007, S. 220)

Wie Abbildung 1.2 zeigt, stellen dokumentierte Informationen die Ausgangslage dar.
Sie wurden beispielsweise wiahrend Interviews mit Stakeholdern verschriftlicht.

Definition 1.3.2 (Dokumentierte Anforderung)

Dokumentierte Informationen, die den Dokumentationsvorschriften entsprechen,
stellen dokumentierte Anforderungen dar. Die Dokumentationsvorschriften ergeben
sich wiederum aus Normen oder werden von leitenden Stakeholdern initial formuliert.

Analog verhalt es sich mit dokumentierten und spezifizierten Anforderungen. Anforde-
rungsdokumentationen sind demnach abzugrenzen von Anforderungsspezifikationen,
die sich aus Anforderungsdokumenten ergeben, wenn sie den vorgegebenen Spezifika-
tionsvorschriften entsprechen (Pohl, 2007, S. 44).

Definition 1.3.3 (Spezifizierte Anforderung)

Dokumentierte Anforderungen, die den Spezifikationsvorschriften entsprechen, stellen
spezifizierte Anforderungen dar. Die Spezifikationsvorschriften ergeben sich wiederum
aus Normen oder werden initial von leitenden Stakeholdern formuliert.

1.3 Anforderungsdokumentation 13

Zur Dokumentation bzw. Spezifikation von Anforderungen stehen Methoden zur
Verfiigung, die sich unter anderem im Formalisierungsgrad stark unterscheiden
(Wiegers, 2005, S.153). So kénnen sowohl informale Methoden, wie die natiirliche
Sprache, als auch semi-formale und formale Verfahren eingesetzt werden (Tiemeyer,
2013, S.3271.). Eine strikte Trennung zwischen den Ansétzen existiert nicht, sodass
in Anforderungsdokumentationen oftmals mindestens zwei Varianten zur Anwendung
kommen (Laplante, 2013, S. 83).

Zeit
L

Informale
Spezifikation

Semi-formale
Spezifikation

Formalitats-
grad

Formale
v Spezifikation

Produkt

Abbildung 1.3: Methoden und ihre Formalisierungsgrade.
In Anlehnung an Beneken (o. D.)

Wie Abbildung 1.3 illustriert, sind alle genannten Methoden — ausgehend von einer
Idee oder Problemstellung — fiir die angestrebte Produktentwicklung zielfithrend. Da-
bei wird ersichtlich, dass im Laufe der Zeit final ein einheitlicher Formalisierungsgrad
beim Endprodukt erreicht wird.

Trotz hoherem Zeitaufwand ist es laut Brugger (2009, S.237) wiinschenswert und
der Kreativitdt zutriglich, dass zu Beginn eines Projekts informale Methoden einge-
setzt werden. Erst wenn konkrete Handlungspléne vorliegen, kann in Abhéngigkeit der
Projektgrofle zu formalen oder semi-formalen Methoden gewechselt werden (Brugger,
2009, S.237). Wann genau dieser Paradigmenwechsel von der informalen Produktidee
bzw. Problemstellung zur formalen Spezifikation des Produkts vollzogen werden kann,
héngt von projektspezifischen Faktoren ab (z. B. Gesamtprojektkomplexitét).

Am Beispiel der formalen Spezifikation kann aufgezeigt werden, dass ein hoher
Grad an Formalisierung schon zu einem sehr frithen Zeitpunkt erreicht wird. Dies ist
bei informalen Spezifikationen erst wesentlich spéter der Fall (vgl. Abbildung 1.3), da
beim Einsatz informaler Methoden kein komplettes Regelwerk bereitsteht (Tiemeyer,
2013, S. 328). Vielmehr werden die Ausdrucksmoglichkeiten der Stakeholder bewusst
kaum eingeschrinkt. Beispiele fiir die informale Methode sind die natiirliche Sprache
und Schaubilder wie sogenannte Boz-and-Arrow-Diagramme (Tiemeyer, 2013, S. 328).
Im Gegensatz dazu unterliegen semi-formale Verfahren einer vordefinierten, eindeuti-
gen Syntax. Die Représentation kann eine ,graphische Notation sein, mit prazisen
Regeln zur Erstellung der Diagramme oder eine textuelle Notation mit dhnlichen
Regeln“ (Tiemeyer, 2013, S.328). Ein Beispiel fir semi-formale Sprachen ist die

14 1 Anforderungserhebung und Dokumentation

Unified Modeling Language (UML), bei der ,die Syntax [...] grofitenteils formal, die
Semantik jedoch zum iiberwiegenden Teil natiirlichsprachlich spezifiziert ist* (Pohl,
2007, S.290). Formale Verfahren iibersteigen diesen Ansatz, indem Anforderungen
mittels formal spezifizierter Syntax und Semantik modelliert werden (Pohl, 2007,
S.290). Nach HuBmann (1993, S.5) sind solche Dokumentationstechniken kaum in-
tuitiv zu verstehen, bieten aber wesentliche Vorteile, insbesondere was ihre Préizision
und Verifizierbarkeit betrifft.

S Timing- Zustands- Petrinetze
2 Diagramm @ automat
8 ER-Diagramm
© Entsch. .
® baume P Aktivitats- Syntax-
Diagramm Diagramm
B§eCasef @ Geschéftsprozess-Diagramm
lagramm I QO Klassen-
Struktogramm Diagramm
@ Kommunikations-
I Diagramm |
® Sequenz-
Diagramm
verbal ® Zustands-
Matrix/Tabelle
Entscheidungs-
I tabelle XML, DTD
3 referenzierbarer Gliederungs- UseCase- Pseudocode & XML-
= Text schablone Schablone @ Schemata
x| O Text () Regeln@ Constraints @ OCL@ @ O
e Textschablone @ Formale Logik
informal semi-formal / formalisiert formal

Abbildung 1.4: Klassifikation der Dokumentationstechniken.
In Anlehnung an Balzert (2009, S.101)

Balzert (2009, S.100f.) klassifiziert verschiedene Dokumentationstechniken mittels
der kontraren Kategorien ,textuell — graphisch® und ,;informal — formal“. Textuell
umfasst dabei die Darstellung durch natiirlichsprachliche Texte — das heifit durch eine
wschriftlich fixierte im Wortlaut festgelegte, inhaltlich zusammenhéngende Folge von
Aussagen® (Dudenredaktion, 2017c). Werden Informationen graphisch dargestellt,
geschieht dies durch Symbole, Linien und zusétzliche, textuelle Annotationen (Balzert,
2009, S.109). Der Grad der Formalisierung gibt die Formalisierung mittels definierter
Strukturvorgaben an. Diese Vorgaben existieren sowohl fiir textuelle als auch fiir
graphische Dokumentationstechniken (Balzert, 2009, S.109). Die sich durch die
Kategorien ergebenden vier Quadranten sind in Abbildung 1.4 dargestellt.

Die natiirliche Sprache (,, Text“) ist als textuelle, informale Technik im dritten Qua-
dranten abgebildet. Im Gegensatz dazu ist die formale Logik im vierten Quadranten
anzusiedeln. Sie weist einen hohen Formalisierungsgrad auf, basiert aber ebenfalls auf
einer textuellen Darstellung. Klassendiagramme und Petrinetze sind als Beispiele fiir

1.3 Anforderungsdokumentation 15

graphische Techniken im ersten Quadranten anzufiihren, wobei Petrinetze wesentlich
formaler definiert sind.

In den folgenden Abschnitten werden ausgewihlte Dokumentationstechniken unter
dem Aspekt ihres methodischen Formalisierungsgrades vorgestellt und ihre jeweiligen
Vor- und Nachteile diskutiert.

1.3.1 Informale Anforderungsdokumentation

Die Anforderungsdokumentation mittels natiirlicher Sprache ist eine in der Pra-
xis weit verbreitete Technik (Rupp, 2014; Sommerville, 2011; Balzert, 2009; IEEE,
1998). Unter ,natiirlicher Sprache® wird dabei die ,,Umgangssprache als Kommuni-
kationsmittel“ (Lewandowski, 1994, S.740f.) verstanden, die sowohl Hochsprache,
Alltagssprache sowie Dialekte und Sprachvarianten umfasst — eine , historisch ent-
wickelte, regionale und sozial geschichtete Sprache® (Bufimann, 1983, S.342), die
von kiinstlichen Sprachsystemen (Kunstsprachen, Weltsprachen) abzugrenzen ist.
Im Gegensatz zu Kunstsprachen ist die natiirliche Sprache durch ihre historische
Wandelbarkeit und lexikalische sowie strukturelle Ambiguitéit geprigt (BuBmann,
1983, S.279,342f.). Natiirliche Sprache wird im weiteren Verlauf dieser Arbeit in
Anlehnung an Lewandowski (1994, S. 740) wie folgt definiert:

Definition 1.3.4 (Natiirliche Sprache)

Natiirliche Sprache als Kommunikationsmittel ist die Umgangssprache. Eine his-
torisch gewachsene Sprache, die mehr oder weniger standardisierte Varietiten wie
Hochsprache vs. Umgangssprache, Dialekte oder Regionalsprachen aufweist. Aus
logischer Sicht ist sie voll von historischen Zufilligkeiten, von Mehrdeutigkeiten und
Inkonsequenzen; sie ist plastisch und variabel, pragmatisch, offen und dynamisch.

Wie deutlich wird, besitzt die natiirliche Sprache Eigenschaften, die insbesondere im
Kontext der Anforderungsdokumentation zu nennen sind. Natiirliche Sprache ...

e _tritt in zeitlicher, regionaler und sozialer Variation auf;

o erfiillt eine Reihe von Funktionen und dient nicht nur der Reprasentation von
Sachverhalten;

e ist nicht explizit, sondern implizit in dem Sinne, [dass] beim Verstehen von
AuBlerungen besonders beim Ubergang von der wortlichen Bedeutung zu einer
intendierten Bedeutung Préasuppositionen und Implikationen gelten |[...J;

e ist in ihrem Gebrauch abhéngig von Kontexten aller Art, von rédumlicher und
zeitlicher Deixis;

e ist [...] oft in der Weise mehrdeutig, [dass] Ausdriicke in verschiedenen Kontexten
Verschiedenes bedeuten;

e ist in ihren referierenden Ausdriicken bis zu einem gewissen Ausmafl vage [...J;

e ist syntaktisch nicht immer wohlgeformt (Ellipsen usw.)“.
(Lewandowski, 1994, S.740f.)

16 1 Anforderungserhebung und Dokumentation

Wird die natiirliche Sprache differenzierter betrachtet, kristallisieren sich Teilmen-
gen heraus, die sich zum Beispiel in der Entstehung, Verwendung und Verbreitung
voneinander unterscheiden (vgl. Abbildung 1.5).

Kontrollierte Naturliche

Sprache Sprache

Abbildung 1.5: Teilmengen natiirlicher Sprache.
In Anlehnung an Schwitter (1998, S.57)

Die grofite Teilmenge der natiirlichen Sprache stellt die zur 6ffentlichen Kommuni-
kation genutzte Standardsprache (auch: Gemeinsprache) dar. Hierbei handelt es
sich um eine , deskriptive Bezeichnung fiir die historisch legitimierte, iiberregionale,
miindliche und schriftliche Sprachform der sozialen Mittel- beziechungsweise Ober-
schicht* (BuBmann, 1983, S.502) und somit um eine ,iiber den Mundarten, lokalen
Umgangssprachen und Gruppensprachen stehende, allgemein verbindliche Sprach-
form* (Dudenredaktion, 2017b). Ihre Normierung wird durch das Bildungssystem,
Medien und Institutionen kontrolliert (Bufimann, 1983, S.502)°.

Fachsprachen unterscheiden sich von der Standardsprache ,,vor allem durch einen
fachspezifischen differenzierten Wortschatz mit Tendenz zu fester bzw. normierter
Terminologie“ (Bufimann, 1983, S.137). Allerdings weist Lehrndorfer (1996, S. 37)
darauf hin, dass die ,langezeit populidre These, das Wesentliche einer Fachsprache
liege in den Fachworten und nicht in der Syntax, [...] inzwischen relativiert werden
[kann]“. Dariiber hinaus ist die Fachsprache nicht disjunkt von der Standardsprache,
da sie sich zum einen der Worter und Grammatik der Standardsprache bedient und
zum anderen ein Austausch mit ihr stattfindet, ,da haufig Fachgebiete von gestern
zum Populérwissen von heute avancieren (Lehrndorfer, 1996, S. 25).

Hingegen ist kontrollierte Sprache (auch: Normsprache) der Versuch, Fachspra-
che einer ,,Kontrolle“ zu unterwerfen und sie damit der , Intuition, Situation und
Sprachregister” (Lehrndorfer, 1996, S.40) zu entziehen. Dabei sind , kontrollierte
Sprachen [...] keine Kunstsprachen, wie zum Beispiel das Esperanto, sondern der
Zuschnitt einer bestehenden Sprache auf eine bestimmte Anwendung und seine
Benutzer® (Ferlein und Hartge, 2008, S.40). Sie werden genutzt, um den Austausch
iiber komplexe Themen zu erleichtern, technische Dokumentationen verstéandlicher
zu gestalten oder Aussagen leichter iiberpriifen zu kénnen.

Kontrollierte Sprachen stellen somit eine sehr kleine Teilmenge dar, die eine grofie
Schnittmenge mit Fachsprachen aufweist und einzelne Charakteristika der Stan-
dardsprache, insbesondere den normativen Charakter, besitzt (vgl. Abbildung 1.5).

9Der Begriff der Standardsprache ist in der Varietitenlinguistik umstritten und die angefiihrte
Definition nicht abschliefend. Im Rahmen dieser Arbeit ist die Definition hinreichend, da sie
den normativen Charakter sowie ihre gesellschaftliche Relevanz aufzeigt.

1.3 Anforderungsdokumentation 17

Kontrollierte Sprache lisst sich in Anlehnung an Pohl (2008, S. 710) und Lehrndorfer
(1996, S.401f.) wie folgt definieren:

Definition 1.3.5 (Kontrollierte Sprache)

FEine kontrollierte Sprache ist eine echte Teilmenge der natiirlichen Sprache. Sie
besitzt eine in Bezug auf eine spezifische Domine eingeschrinkte Grammatik (Syntaz)
und definiert eine Menge von Begriffen (Lexik), die zur Konstruktion von Aussagen
tber die Domdne verwendet werden konnen. Ihr Ziel ist die Dokumentation komplexer
thematischer Zusammenhdnge.

Kontrollierte Sprache eignet sich als Fachsprache zur vereinfachten Formulierung
von Aussagen iiber eine Doméane. Die begrenzte Ausdrucksmoglichkeit ist eine we-
sentliche Eigenschaft der kontrollierten Sprache und fithrt aufgrund der ,,Quasi-
Standardisierung® und einem gemeinsamen Vokabular zu einer besseren Lesbarkeit
und einem hoheren Versténdnis bei den Stakeholdern. Damit eignen sich kontrollierte
Sprachen insbesondere fiir die Spezifikation von Anforderungen, da einerseits der
Interpretationsspielraum verkleinert wird und andererseits die Moglichkeit besteht,
Widerspriiche schneller aufzuspiiren (Pohl, 2007, S. 247).

Bei der Erhebung von Anforderungen sind kontrollierte Sprachen weniger geeignet,
da sie zum einen die Ausdrucksfihigkeit der Stakeholder einschréinken und zum ande-
ren umfangreiche Leitfdden voraussetzen, in denen der Umgang mit der kontrollierten
Sprache erlautert wird. Indem nicht nur die Menge an zuléssigen Woértern und deren
Bedeutung definiert wird, sondern auch eine Einschrankung in der Grammatik der
jeweiligen Sprache erfolgt, ist sie wesentlich restriktiver als beispielsweise ein Glossar.

1.3.1.1 Glossare

Ein Glossar vermeidet durch die Identifikation sowie Definition wesentlicher fachlicher
und technischer Begriffe nicht nur Ambiguitdten, sondern bildet eine gemeinsame
Sprachgrundlage unter den Stakeholdern (Grechenig, 2010, S.195). Mdéglich wird das
durch die strukturierte Auflistung aller Termini eines Fachgebiets (Terminologie) und
deren Definitionen (Balzert, 2009, S.482). In dieser Arbeit wird ein Glossar nach
Pohl (2008, S.707) wie folgt definiert:

Definition 1.3.6 (Glossar)

Ein Glossar legt die spezifische Bedeutung einer Menge von Fachbegriffen einer
Domdne (d. h. eine Fachterminologie) fest. Neben den Begriffsdefinitionen kann ein
Glossar Verweise zwischen verwandten Begriffen sowie Beispiele zur Erliuterung der
Begriffe beinhalten.

Ein Glossar verhindert somit, dass beispielsweise synonyme Begriffe in der Dokumen-
tation verwendet werden konnen. Auch, weil alle Stakeholder dazu aufgerufen sind,
sich bei ihrer Anforderungsformulierung auf die im Glossar befindlichen Termini
zu beschrinken. Um ein gemeinsames Begriffsverstéindnis zu fordern, konnen unter
anderem Beispiele und Gegenbeispiele darin aufgefiihrt werden (Pohl, 2007, S. 244).

Syntaktische Strukturen fiir die Dokumentation von natiirlichsprachlichen Anfor-
derungen werden von einem Glossar nicht vorgegeben, kénnen aber durch ergénzende

18 1 Anforderungserhebung und Dokumentation

Vorgehensweisen, wie zum Beispiel syntaktischen Anforderungsmustern, vorgegeben
werden. Die hierbei eingefiithrten Limitationen syntaktischer Strukturen werden im
Folgenden diskutiert.

1.3.1.2 Syntaktisches Anforderungsmuster

Ein vorgegebener Liickentext in Form von syntaktischen Anforderungsmustern dient
der Vermeidung von héufig auftretenden Fehlern, wobei die Semantik dabei bewusst
nicht eingeschriinkt wird. Rupp (2014, S. 2171.) bezeichnet diese Muster als Baupline
einzelner qualitativ hochwertiger Anforderungen, in denen aber durchaus Anderungen
und Variationen gestattet sind. Dabei existieren verschiedene Schablonen, die sowohl
fiir FA als auch fiir NFA eingesetzt werden. In Anlehnung an Rupp (2014, S.218)
wird in dieser Arbeit das syntaktische Anforderungsmuster wie folgt definiert.

Definition 1.3.7 (Syntaktische Anforderungsmuster)

Syntaktische Anforderungsmuster (Anforderungsschablone) sind Sprachfragmente,
die sowohl Satzstellung als auch Wortwahl bei einzelnen Anforderungsformulierungen
festlegen.

Eine mogliche Schablone zur natiirlichsprachlichen Dokumentation funktionaler
Anforderungen ist in Abbildung 1.6 dargestellt. Das Prozesswort beschreibt eine zu
erbringende Systemfunktion durch ein Verb (z. B. ,,anzeigen®, , exportieren®). Dariiber
hinaus ist die Angabe von Bedingungen und Qualitatsanforderungen maoglich, die an
das entsprechende Prozesswort gebunden sind. Als Prozesswort dient im Beispiel 1.3.1
das Verb ,weiterleiten®, an das die Qualitatsanforderung ,, mazimal zwei Versuche*
und die Bedingung ,, entgegengenommener Druckauftrag” gekoppelt sind.

MUSS ., "
[Wann?] | DAS DIE MOGLICHKEIT Objekt &
[Unter welcher Bedingung?] SOLL SYSTEM BIETEN [Prozesswort]
WIRD FAHIG SEIN [Qualitét]

Abbildung 1.6: Syntaktisches Anforderungsmuster.
In Anlehnung an Pohl (2007, S.220) bzw. Rupp (2014, S.2181f.)

Beispiel 1.3.1 (Ausgefiilltes Anforderungsmuster)
, Wird ein Druckauftrag entgegengenommen, soll das System fihig sein, den Auftrag
an den Drucker in mazimal zwei Versuchen weiterleiten. ¢

Die Vorgabe konkreter, ausgewéhlter Grammatikregeln riickt die natiirliche Sprache
mit ihrem urspriinglichen informalen Charakter als Modellierungssprache niher an
kiinstlich definierte, (semi-)formale Modellierungssprachen. Im Folgenden werden
deshalb sowohl textuelle als auch visuelle Modellierungssprachen im Sinne einer
Abgrenzung betrachtet.

1.3 Anforderungsdokumentation 19

1.3.2 Semi-formale Anforderungsdokumentation

Semi-formale Methoden stellen nach Brugger (2009, S.234) einen ,, Kompromiss
zwischen Formalitat und Verstdndlichkeit dar®. Grundsétzlich basieren sie auf einer
vorgegebenen Struktur bzw. einer prézise definierten Syntax und auf graphischer
Darstellung (Kurth, 1991, S.47). Es ist moglich, Ergdnzungen in natiirlicher Sprache
vorzunehmen, die unter anderem als Tréger der Semantik fungieren (Brugger, 2009,
S.234). Brugger (2009, S.234f.) weist dariiber hinaus darauf hin, dass nicht alle semi-
formalen Techniken den gleichen Formalisierungsgrad aufweisen. Der semi-formale
Charakter sorgt aber letztendlich dafiir, dass nicht alle Stakeholder in der Lage
sind, ihre Softwareanforderungen modellbasiert zu dokumentieren. Dabei haben
semi-formale Methoden entschiedene Vorteile fiir Stakeholder, wie beispielsweise
die Strukturiertheit und Ubersichtlichkeit durch verschiedene Sichten auf das zu
spezifizierende Problem.

Fiir jede Perspektive existiert eine geeignete Modellierungssprache, mit der die
betrachteten Informationen zweckméfiig dokumentiert werden kénnen (Rupp, 2012,
S.16ff.). Traditionell stellen ,Struktur®, ,Funktion“ und , Verhalten® nach Pohl
und Rupp (2015, S.37, 75) die ,komplementiren Perspektiven zur Beschreibung
funktionaler Anforderungen® dar (Pohl, 2007, S. 184 {t.):

e Strukturperspektive
Betrachtung statischer System- und Datenstrukturen unter Ausblendung dyna-
mischer Aspekte wie Zustandsanderungen (Rupp, 2012, S.17).

e Funktionsperspektive
Der Fokus liegt auf bereitzustellenden Systemfunktionen, wobei auch die Ein-
und Ausgaben (Daten / Informationen) und deren Manipulation durch Sys-
temfunktionen betrachtet werden (Rupp, 2012, S. 17).

e Verhaltensperspektive
Betrachtet werden Zustiande, Zustandswechsel und erzeugte Ausgaben, die
ein System bzw. einzelne Komponenten und Objekte einnehmen kénnen. Es
besteht eine enge Verkniipfung mit der Funktionsperspektive (Rupp, 2012,
S.17).

Pohl (2007, S.186) weist auf zwei wichtige Eigenschaften dieser Techniken hin: Zum
einen sind die dargestellten Perspektiven nicht disjunkt. Dies fiihrt dazu, dass eine
Integration der verschiedenen Perspektiven notwendig ist, was wiederum die wech-
selseitige Priifung einzelner Modelle auf Konsistenz und Vollstédndigkeit ermoglicht
(Pohl und Rupp, 2015, S. 76). Zum anderen sind bislang keine Qualitidtsanforderungen
beriicksichtigt. Diese konnen durch textuelle Annotationen in den Modellen hinzu-
gefiigt werden. Eine Integration der verschiedenen Perspektiven ist teilweise mittels
objektorientierten Modellierungsprachen moglich (Pohl, 2007, S. 186).
Objektorientierte Modellierungssprachen stellen nach Fettke (2012) ,eine Alterna-
tive zur strukturierten Systemanalyse und zum strukturierten Systementwurf* dar
und ermdglichen eine weitreichende Integration der genannten Perspektiven (Pohl,
2007, S.200). Im Zentrum dieser Modellierungssprachen stehen Objekte bzw. Klas-
sen, die ,,durch eine Datenstruktur, Funktionen zur Manipulation der Daten sowie

20 1 Anforderungserhebung und Dokumentation

durch ein spezifisches Verhalten definiert werden“ (Pohl, 2007, S.200). Mit diesen
Eigenschaften ermoglichen objektorientierte Modellierungssprachen nach Schwinn
(2011, S.51) eine ,,durchgéngigen Sichtweise in der Software-Entwicklung — von den
Systemanforderungen, dem Bauplan, bis zum Code* (Schwinn, 2011, S.51). Bereits
wéhrend der Erhebung und Dokumentation von Anforderungen kénnen somit relevan-
te Systemeigenschaften bestimmt und hinsichtlich der oben genannten Perspektiven
prézise spezifiziert werden (Schwinn, 2011, S.51).

Im Unterschied zu , traditionellen Ansitzen“ (Pohl, 2007, S.200) ist durch die Inte-
gration dieser Perspektiven die Notwendigkeit und die Gefahr von Methodenbriichen
wesentlich niedriger (Schwinn, 2011, S.51). Zur objektorientierten Modellierung
eignet sich beispielsweise die UML, die mittlerweile als Standard der Softwaresystem-
Modellierung im Software Engineering gilt (Schwinn, 2011, S.47) und sich in der
objektorientierten Architekturentwicklung etabliert hat (Tiemeyer, 2013, S. 327).

Diagrammtypen

Bei der UML handelt es sich um eine graphische Modellierungssprache, die nach
Rupp und Queins (2012, S.4f.) zur Modellierung, Visualisierung sowie Spezifikation
und Dokumentation komplexer Systeme eingesetzt wird (Schwinn, 2011, S. 48, 53).
Sie wird gemeinhin als eine semi-formale Methode verstanden, auch wenn sie sowohl
natiirlichsprachliche als auch formale Elemente!® aufweist (Laplante, 2007, S. 58, 103;
Laplante, 2013, S. 83f.).

Zu den Vorteilen der UML zédhlen ihre Standardisierung und Verbreitung: So
fithrt die Standardisierung zur eindeutigen Definition einzelner Diagramme (vgl.
Tabelle 1.1), die aufgrund der hohen Praxisrelevanz in vielen Unternehmen weit
verbreitet sind. Thr Gebrauch fithrt erwartungsgeméf im Vergleich zu informalen
Dokumentationstechniken zu weniger Missverstandnissen und Fehlinterpretationen.

UML-Diagramme

Struktur Verhalten Interaktion
Klassen-, Use-Case-, Sequenz-,
Objekt-, Aktivitats-, Kommunikations-,
Kompositionsstruktur-, | Zustandsdiagramm | Interaktionsiibersichts-,
Komponenten-, Timing-Diagramm
Verteilungs-,
Paket-,
Profil-Diagramm

Tabelle 1.1: Diagrammtypen der UML 2.
In Anlehnung an Rupp und Queins (2012, S.7)

0 aplante (2007, S.58) nennt explizit die Object Constraint Language, mit der Randbedingungen
in der Softwareentwicklung formal beschrieben werden (z. B. Preconditions / Postconditions).

1.3 Anforderungsdokumentation 21

Perspektiven

Die UML besitzt in der zweiten Version insgesamt 14 Diagrammtypen (vgl. Tabel-
le 1.1), von denen zwar nicht alle fiir Neuentwicklung eines Softwaresystems hilfreich
sind, die verschiedenen Perspektiven (Struktur-, Verhalten- und Funktionsperspekti-
ve) aber gut abdecken (Schwinn, 2011, S.51). Nach Pohl und Rupp (2015) eignen sich
zur Modellierung der Strukturperspektive beispielsweise UML-Klassendiagramme,
die als ,statische Basis der Anwendungssysteme* gelten (Schwinn, 2011, S.55). Sie
beschreiben die statische Struktur eines Systems und beantworten damit folgende
Frage: ,,Aus welchen Klassen besteht [das] System und wie stehen diese untereinander
in Beziehung?“ (Rupp und Queins, 2012, S.11).

Abbidung 1.7 zeigt ein Modellierungsbeispiel, welches zwei Klassen (Person,
E-Mail-Konto) umfasst. Neben Namen, Merkmalen (Attributen) und Operationen,
die in den Klassen selbst untergebracht sind, ist auch eine Kante zur Darstellung
der Beziehung (Assoziation) abgebildet (vgl. Abbildung 1.7). Als optional gelten im
Klassendiagramm die Rollen (z. B.,Besitzer®) und die Multiplizitdten (z.B.,,0..%¢).
Letztere geben an, , wie viele Instanzen einer Klasse in Bezug auf die betrachteten
Assoziationen mit wie vielen Instanzen der assoziierten Klassen in Beziehung stehen
konnen® (Pohl und Rupp, 2015, S. 80).

Person Multiplizitaten E-Mail-Konto
Name Zugriffsrechte
Geburtsdatum A 4 Letzter Logln

1 besitzt 0.*

Besitzer Besitz

\ S R
<Operationen> <Operationen>
N Rollen
0.* 0.*
hat Zugriff

Abbildung 1.7: Semi-formale Dokumentation mittels Klassendiagramm.
In Anlehnung an Pohl und Rupp (2015, S.80)

Rupp (2007, S.194f.) weist im Kontext der Anforderungsdokumentation auf die
Moglichkeit hin, Klassendiagramme auch als Begriffsmodelle zu nutzen und damit —
ergéinzend zu einem Glossar — Begriffe und deren Beziehungen zu beschreiben.

Anders als die statische Strukturperspektive ist die Verhaltensperspektive dy-
namisch (Pohl und Rupp, 2015, S. 89) und umfasst die Darstellung von Objekten, die
sihren Zustand als Reaktion auf Ereignisse und Zeitablauf éndern® (Schmuller, 2003,
S.120). Um dieses ,reaktive Verhalten eines Systems* (Pohl und Rupp, 2015, S.91)
abzubilden, werden UML-Zustandsdiagramme genutzt. Sie ermoglichen es, Objekte,
Zustéinde und Ubergénge zwischen Zusténden sowie die Start- und Endpunkte einer
Reihe von Zustandséinderungen darzustellen (Schmuller, 2003, S. 120).

Die Funktionalitit eines Systems und die damit einhergehende Transformation von
Eingaben in definierte Ausgaben kann durch die Funktionsperspektive dargestellt
werden (Pohl und Rupp, 2015, S.82). UML-Aktivitdtsdiagramme werden einge-

22 1 Anforderungserhebung und Dokumentation

setzt, da sie sich ,wie kaum eine andere Dokumentationstechnik [dazu eignen,][...]
Ablaufe jeglicher Art und deren Regeln darzustellen® (Rupp, 2007, S.205f.). Ein
Aktivitdtsdiagramm stellt beispielsweise die Konstellation von Aktionen (kleinste
ausfiihrbare Einheit innerhalb einer Aktivitéit) und deren Verbindungen (gerichtete
Kanten) mit Kontroll- und Datenfliissen dar, wobei das Kontrollflussmodell die
Reihenfolge von Aktionen spezifiziert und das Datenmodell die Daten angibt, die
zwischen den Aktionen ausgetauscht werden (Balzert, 2009, S. 236 ff.). Die zentra-
le Frage, die mit diesem Diagramm beantwortet werden kann, ist, wie bestimmte
flussorientierte Prozesse oder Algorithmen ablaufen (Rupp und Queins, 2012, S.12).

Diese Sichtweise ermoglicht es, durch Systematisierung und Strukturierung der
Anforderungen, fehlende Aktionen oder Denkfehler zu erkennen, die in natiirlicher
Sprache gegebenenfalls iibersehen worden wiren. Diese Uberpriifbarkeit und das
mathematische Konkretisieren von Anforderungen (als Kalkiil) wird in formalen Me-
thoden weitergefiihrt, indem die formale Syntax um eine semantische Interpretation
erweitert wird (Kurth, 1991, S. 48f.).

1.3.3 Formale Anforderungsdokumentation

Anders als informale und semi-formale Dokumentationstechniken, haben formale
Sprachen eine eindeutig definierte Syntax und Semantik (Schneider, 1998, S. 809). Fiir
die Spezifikation von Softwaresystemen bedeutet das, dass ,,die ungenaue menschliche
Sprache durch die prézisen Mittel der Mathematik [...] ersetzt* (VSEK Konsortium,
2007b) wird und fehlerhafte Spezifikationen zu einem moglichst frithen Zeitpunkt
vermieden werden. ,,Qualitit wird [somit] in formal spezifizierte Systeme hineinkon-
struiert” (VSEK Konsortium, 2007b).

Der formale Charakter ermdglicht einerseits die exakte Dokumentation sowie
(Teil-) Verifikation (Tiemeyer, 2013, S.238), fithrt aber andererseits zum Ausschluss
vieler Stakeholder (Wiegers, 2005, S.153) und geringerer Akzeptanz (Hood und
Wiebel, 2005, S.38), da das zugrundeliegende logische Modell von mathematischer
Natur ist und damit Fachwissen zur Interpretation voraussetzt (Kurth, 1991, S.48).

Nach Brugger (2009, S.233) sind formale Sprachen damit ,ungeeignet fiir die
Kommunikation auf breiter Basis“, was aber nicht bedeutet, dass formale Methoden
nicht zu erlernen sind oder dass das notwendige mathematische Grundverstindnis
ihren Einsatz verhindert (Hall, 1990, S. 16 ff.).

Formale Methoden, wie beispielsweise die Pridikatenlogik (Stang, 2002, S. 120),
werden in vielen Softwarebereichen zur Spezifikation genutzt (Hall, 1990, S.16).
Sie sind, unter anderem bei der Entwicklung sicherheitskritischer Systeme (z.B.
Hall und Chapman, 2002), insbesondere im Hinblick auf vermeidbare Widerspriiche,
Inkonsistenzen und Fehler, oftmals unverzichtbar und der Dokumentation mittels
natiirlicher Sprache, insbesondere wegen der Verifikationsmoglichkeiten, iiberlegen.
Beispielsweise befasst sich die Pridikatenlogik mit Aussagen, die, im Gegensatz
zu Fragen, Ausrufen usw., in der modelltheoretischen Semantik Wahrheitswerte
annehmen — sie konnen demnach wahr oder falsch hinsichtlich einer bestimmten
Variablenbelegung werden (Stang, 2002, S. 120).

1.3 Anforderungsdokumentation 23

Beispiel 1.3.2 (Pridikatenlogische Aussagen)

(a) Az, y(person(x) A emailkonto(y) A besitzen(z,y))
(b) Va(person(x) — Jy(emailkonto(y) A besitzen(z,y)))
(¢) Yy(emailkonto(y) — x(person(z) A besitzen(z,y)))

Beispiel 1.3.2 enthélt drei pridikatenlogische Aussagen: (a) gibt an, dass mindestens
eine Person mindestens ein E-Mail-Konto besitzt. Nun ist in dieser Arbeit die
modelltheoretische Uberpriifbarkeit der Aussagen von besonderem Interesse, welche
sich bei der Interpretation einer formalen Grammatik auf einem vorgegeben Modell
nachweisen ldsst (Pohl, 2007, S.247). So sagt zum Beispiel (b) aus, dass jede Person
ein E-Mail-Konto besitzt. Diese Aussage ldsst sich falsifizieren, sobald mindestens
eine Person genannt wird, die kein E-Mail-Konto besitzt. Anders verhélt es sich
bei (¢), wo die Aussage getroffen wird, dass jedes E-Mail-Konto mindestens einen
Besitzer hat. Diese Aussage liele sich nur dadurch falsifizieren, wenn mindestens ein
herrenloses E-Mail-Konto existieren wiirde.

Wie Beispiel 1.3.2 zeigt, konnen Anforderungen an ein Softwaresystem auch im
priadikatenlogischen Sinne interpretiert werden, was bedeutet, dass Anforderungsdo-
kumentationen ,,mit den géingigen Instrumenten von Aussagen- und Pradikatenlogik
bearbeitet werden [kénnen|* (Stang, 2002, S.120). So kénnen beispielsweise Anforde-
rungen, die nicht gleichzeitig in einem System realisiert werden kénnen, durch die
logische Analyse ad absurdum gefiihrt werden.

Hood und Wiebel (2005, S.38) fiithren dariiber hinaus an, dass formale Methoden
und Notationen in der Einfithrung mit kostenintensivem Mehraufwand einhergehen.
Allerdings lasst sich auch dahingehend argumentieren, dass eine hohe Qualitét, das
heifit die frithzeitige Entdeckung von Fehlern, zur Vermeidung von kostenintensiven
Garantie- und Gewéhrleistungsfillen beitrdgt (Hall und Chapman, 2002, S. 24).

1.3.4 Gegeniiberstellung

Informale Anforderungsbeschreibungen der Stakeholder dienen oftmals als Grund-
lage fiir einen initialen Softwareentwurf, der in einer spéteren Projektphase in eine
formalere Spezifikation iiberfithrt werden kann. In Abbildung 1.8 ist der reflektier-
te Charakter dieses Vorgehens zu erkennen, da in diesen Schritten explizit eine
Riickkopplung zum vorherigen Spezifikationsschritt vorgesehen ist. Dieser iterative
Evaluationsprozess zwischen Anforderungsbeschreibungen und Spezifikation tréigt
wesentlich zur Qualitdtssicherung bei.

Eine Priifung der Anforderungen findet zum Beispiel bei der formalen Spezifikation
statt, wo Entwurfsfehler (z. B. Widerspriiche) entdeckt und in den zugrundeliegenden
Sperzifikationen behoben werden kénnen. Je spezifischer die Spezifikation wird, desto
weniger Stakeholder werden noch miteinbezogen - auler den Softwareentwicklern, die
den gesamten Prozess aktiv mitgestalten miissen. Es ist aber auch herauszustellen,
dass formale und informale Vorgehensweisen als komplementér zu betrachten sind:
Die angefithrten Methoden mit ihren jeweiligen technischen Ausprigungsformen
(z. B. kontrollierte Sprachen oder UML) haben unterschiedliche Anwendungsfille,
Nutzer sowie Stérken und Schwichen. Sie kénnen daher in der gemeinsamen Nutzung
Synergieeffekte erzielen.

24 1 Anforderungserhebung und Dokumentation

L Zunehmender Einbezug von Entwicklern

Abnehmender Einbezug von anderen Stakeholdern

Anforderungs- System- Architektur- Formale High-Level
; anforderungs- P N
beschreibung . . entwurf Spezifikation Design
spezifikation
| |
J Spezifikation 1

Design

Abbildung 1.8: Formale Spezifikation und Design.
In Anlehnung an Sommerville (2009, S.4)

Im Fokus der Bewertung dieser Methoden stehen oftmals die Begriffe Prézision
und Anwendbarkeit, die in der folgenden Gegeniiberstellung unter den Aspekten
Formalitétsgrad sowie Benutzerakzeptanz aufgegriffen werden.

Formalitatsgrad

Als Stédrke der semi-formalen und formalen Methoden wird oftmals ihre hohe
Prizision genannt (Rupp 2014, S.214; Hood und Wiebel 2005, S.37; Sommer-
ville 2009, S. 3). Diese ist auch bei komplexen Sachverhalten zu erreichen, die unter
Umsténden in natiirlicher Sprache nur schwer konsistent und strukturiert zu fassen
sind (Pohl, 2007, S.298). Hierzu wird unter anderem auf die Darstellung von dis-
kreten Perspektiven, die den Ausdruck eines bestimmten Blickwinkels ermoglichen,
zuriickgegriffen (Pohl, 2007, S.298).

Bei der Verwendung natiirlicher Sprache kénnen Perspektiven (s. Abschnitt 1.3.2)
unbewusst vermischt werden und damit, durch eine geringe Strukturierung sowie
unklare Perspektivenzuteilung, die Qualitdt der Dokumentation mindern (Pohl und
Rupp, 2015, S. 38). Sehr genaue Anforderungensdokumentationen sind mit informalen
Methoden nur unter erheblichem Mehraufwand zu erreichen (Hsia et al., 1993).

Neben der Prizision ist noch die Eindeutigkeit ein wichtiges Kriterium. Denn
formale Dokumentationstechniken ermoglichen eindeutige Spezifikationen, da sie die
erneute Priifung bestehender Anforderungen wihrend der Formalisierung erfordern
(Sommerville 2009, S.3f.; Kurth 1991, S.48f.). Wichtig ist hierbei die Erkenntnis,
dass formale Methoden zwar die Moglichkeit einer fehlerfreien Spezifikation er6ffnen,
Entwurfsfehler aber weiterhin méglich sind (Hall, 1990, S. 12). Prinzipiell kann jedoch
ein hoher Formalisierungsgrad und die Méglichkeiten der Verifikation und Validierung
die Identifikation von Fehlern unterstiitzen (Sommerville, 2009, S. 31t.).

Im Gegensatz dazu erméglicht die informale Dokumentationstechnik eine ungenaue
Verwendung der natiirlichen Sprache (Pohl 2007, S. 239 ff.; Balzert 2009, S. 481), unter
anderem dadurch, dass sie auf mehreren Ebenen hochgradig ambig ist (IEEE, 1998,
S.41.) und schnell unstrukturiert wird, wodurch Redundanzen und Widerspriiche
schwerer zu erkennen sind (Rupp, 2013, S. 79, 83). Die fehlende Prézision erschwert
die Kommunikation zwischen den Stakeholdern und ergibt sich insbesondere aus

1.3 Anforderungsdokumentation 25

den Phinomenen der Ungenauigkeit und Unvollstandigkeit (Pohl 2007, 239 ff.; Rupp
2014, S.214; Grechenig 2010, S. 153).

Hinsichtlich der universellen Anwendbarkeit sind formale Methoden oftmals
gegeniiber der natiirlichen Sprache unterlegen (Hood und Wiebel 2005, S. 37; Som-
merville 2009, S. 3; Pohl und Rupp 2015, S. 38). Es besteht eine Einschriankung bei den
abzubildenden Problembereichen (z. B. geringe Skalierbarkeit, daher Konzentration
auf kritische Systembestandteile) oder Systembestandteilen (z. B. schlechte Anwend-
barkeit auf Gestaltung von GUI), was ein deutlicher Nachteil ist. Die natiirliche
Sprache hingegen ist universell anwendbar und flexibel im Grad der Detaillierung
sowie Abstrahierung (Pohl 2007, S.239; Balzert 2009, S.481; Kalenborn 2014, S.73).

Benutzerakzeptanz

Die Benutzerakzeptanz einzelner Dokumentationstechniken wird oftmals hinsichtlich
ihrer Benutzerfreundlichkeit und moglicher Einstiegsbarrieren bewertet (vgl.
Tabelle 1.3), wobei dies im Falle der natiirlichen Sprache vor allem den geringen
Schulungsaufwand und die damit vergleichsweise kurze Einarbeitungszeit umfasst
(Pohl 2007, S.239; Rupp 2012, S.16; Rupp 2013, S. 79ff.; Kurth 1991, S.47; Ka-

Vorteile Nachteile
7

e Strukturierte Darstellung /
o Kompakte Darstellung

= | ® Mehrere Abstraktionsebenen e Ungenauigkeit ® °

é o Flexibler Detailgrad % ¢ ¢ e Vermischung von Perspektiven ¢
O | e Universelle Anwendbarkeit » ¢ @

=

=l Hohe Prézision © e Nicht universell anwendbar ¢

g | ® Komplexe Sachverhalte ¢ o Ggf. Softwaretools notwendig ©
i

<

=

5}

n

e Vermeidung von Entwurfsfehlern ¢ | e Limitierte Skalierbarkeit 9
e Sehr hohe Prizision * ° e Nicht universell anwendbar ™ ¢
o Verifikation / Validierung * e Ggf. Softwaretools notwendig 7

Formal

Tabelle 1.2: Vor- und Nachteile von Dokumentationstechniken

@ vgl. Pohl (2007)

b vgl. Balzert (2009)

¢ vgl. Kalenborn (2014)

2 vgl. Pohl und Rupp (2015)

¢ vgl. Rupp (2014)

fvgl. Rupp (2013)

9 vgl. Sommerville (2009)

h vel. Hood und Wiebel (2005)
¢ vgl. Sommerville (2011)

7 vgl. Kurth (1991)

26 1 Anforderungserhebung und Dokumentation

lenborn 2014, S.73). Im Vergleich zu semi-formalen und formalen Methoden ist
dies ein starkes Argument, da diese sich nicht nur dem ungerechtfertigten Vorwurf
unnotiger Schulungen zur Methodenkompetenz ausgesetzt sehen (Kurth 1991, S.48f.;
Sommerville 2009, S.4), sondern auch Mehraufwand fiir die Stakeholder bei der
Erstellung der Modelle entsteht (Rupp 2014, S.213; Kurth 1991, S. 48f.; Hood und
Wiebel 2005, S.37; Sommerville 2011, S. 336).

Dass zwangslaufig Mehrkosten bei der Verwendung formaler Methoden entstehen,
ist umstritten (z. B. Hall, 1990, S.17{f.). So kénnen Schulungskosten beispielsweise
als einmalige Investition und nicht als projektspezifischer Mehraufwand gesehen
werden. Ferner gibt Hall (1990, S.16f.) zu bedenken, dass Unterweisungen auch
unabhéngig von der gewéhlten Methode notwendig sind.

Trotzdem bleibt die limitierte Ausdrucksfihigkeit als Gegenargument fiir
formale Techniken bestehen. Hierbei besteht das Risiko, dass Stakeholder zwar Mo-
dellierungskenntnisse aufweisen, beispielsweise aber die eigenen Arbeitsschritte und
Softwareanforderungen nicht modellieren kénnen, da sie in ihrer Ausdrucksfahigkeit
limitiert sind (Pohl, 2007, S.298). Allerdings kann diese Restriktion auch als Chance
begriffen werden, sofern diese zu einer Verringerung der thematischen Komplexitét
fithrt. So kann auch in der natiirlichsprachlichen Anforderungsdokumentation die
Ausdrucksfahigkeit eingeschrankt werden. Beispielsweise schranken Glossare die
zuléssige Terminologie ein und syntaktische Anforderungsmuster limitieren die Syn-
tax. Dies geschieht mit dem Ziel, das Risiko von Redundanzen, Widerspriichen und
Uniibersichtlichkeit zu minimieren (Pohl, 2007, S.2391f.).

Zwar ist es weitestgehend moglich, Anforderungen frei von Ungenauigkeiten zu
verfassen, es stellt Stakeholder aber vor erhebliche Herausforderungen (Kamsties,
2005). Dies erscheint vor dem Hintergrund fehlender Restiktionen und Vorgaben
insbesondere dann unrealistisch, wenn viele Stakeholder an der Anforderungsdo-
kumentation beteiligt sind, was mit zunehmender Projektgrofle der Regelfall ist
(Grechenig, 2010, S. 143). Der resultierende Interpretationsspielraum stellt ein
erhebliches Projektrisiko dar (Pohl, 2007, S.2391t.).

Schlussendlich weist Rupp (2013, S. 83) am Beispiel von Klassendiagrammen darauf
hin, dass selbst Stakeholder, die iiber die notwendigen Modellierungskenntnisse
verfiigen und eine Anforderungsdokumentation prinzipiell gutheifien, die modellba-
sierte Dokumentation ablehnen kénnen, wenn der notwendige Modellierungswille
fehlt, bzw. eine Methode, losgelost vom jeweiligen Formalisierungsgrad, keine Akzep-
tanz unter den Stakeholdern findet (Hall 1990, 18f.; Kurth 1991, S.46; Hood und
Wiebel 2005, S. 38). Endanwender, die nicht {iber ausreichende Methodenkompetenz
verfiigen, sind daran interessiert, ohne Einschriankungen in ihrer Ausdrucksfihigkeit
die individuellen Anforderungen an ein Softwareprojekt zu beschreiben. Gegenstand
dieser Arbeit sind daher informale Anforderungsbeschreibungen, mit allen Vor- und
Nachteilen der natiirlichsprachlichen Anforderungsdokumentation.

1.4 Anforderungsbeschreibungen

Der Begriff der ,, Anforderungsbeschreibung® steht in dieser Arbeit fiir eine Menge
informal formulierter Anforderungen an ein Softwareprodukt (Leistungsumfang). Die
individuellen Anforderungen werden von Endanwendern mit der Intention gestellt,

1.4 Anforderungsbeschreibungen 27

bei einer zukiinftigen Softwareentwicklung beriicksichtigt zu werden und damit den
gewiinschten Funktionsumfang abzudecken. Die Art und Weise der softwareseitigen
Umsetzung ist dabei nicht zwangsldufig vorgegeben (vgl. Beispiel 1.4.1).

Zwar existiert keine eindeutige Definition von ,, Anforderungsbeschreibung®, al-
lerdings wird der Terminus bereits in der Literatur mit Bezug auf die Entwicklung
von Softwareprodukten verwendet. So nutzen beispielsweise Schneider und Vecellio
(2011, S.106) den Begriff ,, Anforderungsbeschreibung® im Kontext strukturierter
Dokumentation von Anforderungen und mit Hinweis auf IEEE 830 Standard zur
Spezifikation von Anforderungen (IEEE, 1998). Auch Gumm und Sommer (2012,
S.837) sehen in Anforderungsbeschreibungen ein strukturiertes Dokument, welches
das Resultat einer Anforderungsanalyse ist und verweisen auf den IEEE 830 Standard.
»Herzstiick® einer solchen Beschreibung ist nach Gumm und Sommer (2012, S.837)
die ,,Beschreibung der funktionalen und nicht-funktionalen Anforderungen®.

Demgegeniiber bezeichnet Schienmann (2002) nur den Teil einer strukturierten
Anforderung als ,, Anforderungsbeschreibung®, der eine Beschreibung der jeweiligen

Chancen Risiken

o Hohe Verstindlichkeit % ° e Redundanzen ¢
= | ® Volle Ausdrucksfahigkeit o Widerspriiche ¢
é o Geringer Schulungsaufwand % ¢ e Uniibersichtlichkeit ¢
Q| e Kurze Einarbeitungszeit % ¢ o Interpretationsspielraum 7 9 »
=
= | ® Verringerung der Komplexitit » ¢ | o Limitierte Ausdrucksfihigkeit ¢
E e Schnelle Memorisierung ¢ e Mehraufwand ¢
q? e Komplizierung 9
‘g e Modellierungskenntnisse 9
R e Fehlender Modellierungswillen ¢

o Eindeutige Spezifizierung / o Methodenkenntnisse > 7> *
=| ® Hochgradig reflektiv /» o Mehraufwand ® !
g o Gefahr von Mehrkosten 7 *
ﬁ e Komplizierung b

o Fehlende Akzeptanz » » %

Tabelle 1.3: Chancen und Risiken einzelner Dokumentationstechniken (Benutzersicht)

@ vgl. Rupp (2013)

b vgl. Kurth (1991)

¢ vgl. Rupp (2012)

 vgl. Pohl (2007)

¢ vgl. Kalenborn (2014)

fvgl. IEEE (1998)

9 vgl. Rupp (2014)

h vgl. Grechenig (2010)

¢ vgl. Rupp und Queins (2012)
7 vgl. Sommerville (2009)

k vgl. Hall (1990)

! vgl. Hood und Wiebel (2005)

28 1 Anforderungserhebung und Dokumentation

Anforderung enthilt, die ,,moglichst kurz und pridgnant in einigen Sétzen formuliert
werden [sollte]* (Schienmann, 2002, S. 152). Die wesentlichen Aspekte , Umfang“ und
,Prignanz“ sind im Folgenden zu beriicksichtigen:

Definition 1.4.1 (Anforderungsbeschreibung)

Bei Anforderungsbeschreibungen handelt es sich um informale Fliefitexte in
natiirlicher Sprache, die eine Menge von Anforderungen an ein Softwareprodukt
beinhalten. Sie sind in der Ausdrucksfihigkeit unbeschrinkt und konnen sowohl in
der Linge als auch im Detailgrad und Abstraktionsniveau stark variieren.

Demnach wird Anforderungsbeschreibungen in dieser Arbeit kein hoher Grad an
Strukturierung und Formalisierung sowie Prignanz zugesprochen. Vielmehr handelt
es sich um Freitexte (vgl. Beispiel 1.4.1), die oftmals ,[...] schwammige, unvollstindige,
widerspriichliche Anforderungen auf unterschiedlichem Abstraktionsniveau — von
Beispielen bis hin zu globalen Aussagen [beinhalten]“ (Balzert, 2009, S.507).

Auch der Umfang der Anforderungsbeschreibungen schwankt stark. Dabei kann es
sich um einen einzigen, aber pragnanten Satz mit zentralen Softwareanforderungen
bis hin zu einem sehr umfangreichen Text mit vielen Details handeln, der aber mit
unwichtigen Angaben (Off-Topic) versetzt ist (vgl. ,,like my movies from my summer
holidays in ultra hd* in Beispiel 1.4.1).

Beispiel 1.4.1 (Anforderungsbeschreibung)

I want an application with that i can write, read and mark my e-mails (as rea-
d/unread). Also, iy want to mark important; e-mails with stars. The application
must handle big, attachementss, like my movies from my summer holidays in
ultra hd. Of course, the application must filter undesired emails. It would be
great, if e-mails could be marked as read or may also be deleted automatically
by defined rules. A nice and intuitive, user interface to sort e-mails in folderss
would be desirable. Of course, the application must be able to format texts (bold,
italic, underline, ...). e-mails that I have not yet completed, should be stored in a
separate folder. It would be great, if i could specify a due date for these draft
e-mails, and also for incoming e-mails. Also reminders for e-mails, for example
location based, would be great thing.

Beispiel 1.4.1 enthélt mehrere problematische Textstellen. Die Problematik bezieht
sich dabei sowohl auf das Textversténdnis, als auch auf die Qualitédt der Anforderung.
So werden Angaben wie , important* (1) und ,,big* (2) genutzt, die als vage zu
bezeichnen sind. Dartiber hinaus erschweren Rechtschreibfehler (,, attachements®, (3)
bzw. ,,i“ (0)) sowie Ambiguititen und Schreibvarianten (4) einzelner Worter (,,e-
mails“, ,emails“) die maschinelle Textverarbeitung. Auch vermeintlich vollstindige
Anforderungen sind vage (,,stored in a separate folder* (5) — Was fiir ein Ordner?).
Anforderungsbeschreibungen als vorlaufiges Ergebnis der informalen Anforderungs-
dokumentation (s. Abschnitt 1.3.1) weisen, wie in Beispiel 1.4.1 ersichtlich, eine
Vielzahl an Defiziten auf und miissen vor einer (maschinellen) Weiterverarbeitung
iiberarbeitet werden. Phdnomene wie Ungenauigkeit und Unvollsténdigkeit werden
daher im folgenden Kapitel 2 als Schwerpunkt dieser Arbeit gesondert diskutiert.

Ungenauigkeit
und Unvollstandigkeit

Anforderungen sind ,[...] naturgeméf zunéchst vage, verschwommen, mehrdeutig, un-
zusammenhingend, unvollstéindig und gelegentlich sogar widerspriichlich* (Partsch,
2010, S.18). Unvollstandigkeit und Ungenauigkeit sind dabei Phénomene, die ins-
besondere in der informalen Anforderungsbeschreibung auftreten und die Anforde-
rungsqualitét erheblich mindern konnen (s. Abschnitt 1.3.4). Dabei kann die Ent-
stehungsursache variieren, wie Berry (2000) anhand eines ,, Anforderungseisbergs*
(engl. requirements iceberg) darstellt (vgl. Abbildung 2.1).

Ungenauigkeit Endanwendersicht

Unvollstandigkeit

Abbildung 2.1: Requirements Iceberg. In Anlehnung an Berry (2000)

Ein Stakeholder, in diesem Fall ein Endanwender, kennt nur einen Teil der Anforde-
rungen, die an eine Softwareapplikation gestellt werden (Spitze des Eisbergs) und
kann demnach auch nur diese beschreiben. In diesen Anforderungsbeschreibungen
konnen Ambiguitdt und Vagheit als Formen von Ungenauigkeit auftreten. Dariiber
hinaus gibt es Anforderungen, die dem Stakeholder (z.B. Endanwender, Entwickler)
nicht bekannt sind (Rumpf des Eisbergs) und daher auch nicht beschrieben wer-
den kénnen (Unvollstandigkeit). Sie kénnen aber wesentlichen Charakter fiir die
Gesamtfunktionalitét der Applikation haben (Pohl, 2008, S.9).

Unvollstandigkeit und Ungenauigkeit finden sich auch in der Fehlertypologie von
Avci (2008, S.93) wieder. Als Anforderungsfehler bezeichnet Avei (2008, S.93) ,[...]
ein unzureichendes Merkmal oder ein erwartetes, jedoch fehlendes Merkmal eines Ar-
beitsergebnisses der Anforderungsanalyse, sofern es eine Anderung in diesem Ergebnis
notwendig macht“. Dabei werden zwei Arten von Fehlern unterschieden: Diejenigen,
die in einzelnen Anforderungen auftreten und jene, die in oder durch eine Beziehung
zwischen zwei oder mehreren Anforderungen entstehen (vgl. Abbildung 2.2).

29

30 2 Ungenauigkeit und Unvollstdndigkeit

Anforderungsfehler

Beziehung zwischen zwei
oder mehreren Anforderungen

eine Anforderung

—I fehlende Anforderung Inkonsistente Anforderungen |

—I ambige Anforderung Redundante Anforderungen |

—I unvollstandige Anforderung

|
|
—I falsche Anforderung |
|
|

—I missverstandliche Anforderung

Abbildung 2.2: Typologie von Anforderungsfehlern.
In Anlehnung an Avci (2008, S.93)

In dieser Arbeit liegt der Fokus auf Unvollstéindigkeit und Ambiguitdt in der Be-
schreibung einzelner Anforderungen. Unvollstédndigkeit bezeichnet dabei das Fehlen
einer Auspragung einer vorhandenen Anforderung. Es wird demnach von einer
unvollsténdigen Anforderung oder auch incomplete individual requirement nach Fi-
resmith (2005, S.35ff.) gesprochen. Demnach ist nicht das génzliche Fehlen einer
obligatorischen Anforderung gemeint (fehlende Anforderung). Dies ist aufgrund der
Fokussierung auf natiirlichsprachliche Anforderungen auch nicht umsetzbar, da — im
Gegensatz zu formalen Anforderungsspezifikationen — keine Konsistenzpriifung und
Validierung ermoglicht wird.

Die von Avci (2008, S.93) als problematisch aufgefiihrte ambige Anforderung wird
im Folgenden besonders behandelt. Zum einen, weil bereits der Ambiguitétsbegriff,
der von Avci (2008) nicht definiert wird, umstritten ist und einer Erlduterung bedarf.
Zum anderen, weil fiir eine differenziertere Betrachtung zwischen mehreren Formen der
Ambiguitét in natiirlicher Sprache zu unterscheiden ist. Um dies zu strukturieren, wird
die Bezeichnung der ,, Ungenauigkeit“!! verwendet, die als Oberbegriff die verwandten
Phinomene Ambiguitit und Vagheit!? zusammenfiihrt (vgl. Abbildung 2.3). Dies
geschieht wohl wissend, dass es keine allgemeingiiltige Definition und Aufteilung des
Mehrdeutigkeitsphinomens gibt.

Anders als Abbildung 2.3 suggeriert, handelt es sich bei Ambiguitdt und Vagheit
nicht um isolierte Phéanomene, sondern um Auspriagungen von Ungenauigkeit, die auch
gleichzeitig auftreten konnen. Beide eint, dass sie unvollstéindiges Wissen darstellen
und damit eine gewisse Unsicherheit bei der Interpretation erzeugen. Nichtsdestotrotz
gelten sie insofern als eigenstdndige Phénomene, als dass sie unterschiedlich zu
kompensieren sind.

HSiehe auch Dudenredaktion (2016, S.1847).
12Das Phéinomen der Vagheit ist nur begrenzt Gegenstand dieser Arbeit. Mehr Informationen zur
Vagheit im Anforderungskontext geben Geierhos und Béumer (2017).

2.1 Ambiguitét 31

Ungenauigkeit

[]
Ambiguitat Vagheit

Wird nicht weiter detailliert,
| da Vagheit nicht Gegenstand

—I Lexikalische Ambiguitat
dieser Arbeit ist

—I Homonymie |

—I Polysemie |

—I Syntaktische Ambiguitat |

—I Koordinationsambiguitat |

—I Anbindungsambiguit&t |

—I Elliptische Ambiguitat |

—I Referentielle Ambiguitat |

Abbildung 2.3: Der Begriff der Ungenauigkeit

Im Folgenden werden sowohl die Auspragungen von Ambiguitdt als auch Un-
vollstdndigkeit im Kontext dieser Arbeit und im Hinblick auf Kompensati-
onsmoglichkeiten beschrieben.

2.1 Ambiguitat

In der modernen Sprachwissenschaft steht der Begriff der Ambiguitéat fiir die Mehr-
deutigkeit sprachlicher AuBerungen (Pfeifer, o. D.), die bewusst oder unbewusst
verwendet werden kann (Berghuber, 2008). Nach Lobner (2003, S.53ff.) kénnen
Woarter zum Beispiel mehrere Bedeutungen innehaben (lexikalische Ambiguitét) und
auch Sdtze mehrere Lesarten erlauben (syntaktische Ambiguitét).

Definition 2.1.1 (Ambiguitit)

FEigenschaft von Ausdriicken natirlicher Sprachen, denen mehrere Interpretationen
[(auch: Lesarten)] zugeordnet werden konnen, bzw. die unter lexikalischem, semanti-
schem, syntaktischem w. a. Aspekt in der linguistischen Beschreibung mehrfach zu
spezifizieren sind. (BufSmann, 1983, S. 26)

Beispiel 2.1.1 (Ambiguitét)
LEin Rechtsklick mit der Maus, schliefit das Fenster.“
,Die Mausy knabbert an der Weihnachtsschokolade. “

Beispiel 2.1.1 zeigt exemplarisch einen Fall von lexikalischer Ambiguitéit. Das Wort
»~Maus“ kann je nach Lesart ein Peripheriegerdt (Maus;) oder ein Tier (Mauss)

32 2 Ungenauigkeit und Unvollstdndigkeit

beschreiben. Aus dem Kontext ,, Rechtsklick“ wird fiir den menschlichen Leser die
korrekte Bedeutung von ,,Maus®“ schnell ersichtlich und auch die meisten automa-
tischen Verfahren benotigen diese Kontext- Trigger zur Kompensation (Carstensen
et al., 2010, S. 383). Diese Auflosung von Ambiguitéiten wird als Disambiguierung
bezeichnet und wird zumeist {iber den sprachlichen oder auersprachlichen Kontext
realisiert (Bufimann, 1983, S. 26):

Definition 2.1.2 (Disambiguierung)

Disambiguierung ist der Vorgang und das Ergebnis der Auflosung lexikalischer oder
struktureller Mehrdeutigkeit sprachlicher Ausdriicke durch den sprachlichen oder
aufersprachlichen Kontext.

Die Disambiguierung ist dabei abhéngig von der Form der Ambiguitiat. Daher wird
im Folgenden auf die Besonderheiten der lexikalischen, syntaktischen sowie der
referentiellen Ambiguitit eingegangen, auf die sich in dieser Arbeit konzentriert wird.

2.1.1 Lexikalische Ambiguitdt

Lexikalische Ambiguitit (engl. lexical ambiguity) bezieht sich auf die Mehrdeutigkeit
eines einzelnen Wortes (Lexem), also auf ,, Ausdriicke mit derselben Laut- und/oder
Schriftform und mehr als einer lexikalischen Bedeutung® (Lobner, 2003, S.58).
Dabei wird zwischen Homonymie (Gleichnamigkeit) und Polysemie (Vieldeutigkeit)
unterschieden (z. B. Berry et al., 2003, S. 10), wobei diese Unterscheidung umstritten
ist (Lébner 2003, S. 61; Lehmann 2013).

Von einem Homonym wird gesprochen, wenn ein Lexem den gleichen Wortkérper
(Laut- und/oder Schriftform) wie ein weiteres Lexem hat, ,aber in der Bedeutung und
Herkunft verschieden ist* (Dudenredaktion, 2016, S.887). Dies wird in Beispiel 2.1.2
anhand des Wortes ,, Ton* illustriert, das in der unterschiedlichen Verwendung des
Wortkorpers keine gemeinsame Bedeutungsfacette hat.

Beispiel 2.1.2 (Homonymie)
LEin Tony erklingt bei falschen Eingaben.“ (Klang)
,Die Kinder formten Tépfe aus Tony.“ (Bodenart)

Wiéhrend ,,[...] Félle von Homonymie sehr selten und zufallsbedingt sind“ (Lobner,
2003, S.60), kommt Polysemie im Alltag oft vor. Dabei handelt es sich um Lexeme,
die gewollt ,,mehrere miteinander verbundene Bedeutungen® (Lébner, 2003, S. 60)
haben. ,, Polysemie entsteht durch Schaffung abgeleiteter Bedeutungen auf der Basis
einer Grundbedeutung® (Lehmann, 2013), was anhand des Beispiels 2.1.3 durch eine
kontextbasierte Disambiguierung des Wortes ,,Schreibtisch® aufgezeigt wird.

Beispiel 2.1.3 (Polysemie)
,Vor dem Start wird eine Verkniipfung auf dem Schreibtischy erzeugt.“ (Desktop)
SAuf dem Schreibtischy stapelt sich Papier.“ (Mdébelstick)

»Schreibtisch* kann sowohl fiir ein Mobelstiick, als auch fiir eine graphische Be-
nutzeroberfliche stehen — in beiden Féllen dient das Wort zur Beschreibung einer

2.1 Ambiguitét 33

Ablagemoglichkeit. Das Auftreten von Polysemie erklart Lobner (2003) durch eine
natiirliche 6konomische Tendenz von Sprache — verfiighare Ausdriicke mit dhnlicher
Bedeutung werden fiir neue Zwecke wiederverwendet. Dies bedeutet, dass jede dieser
Bedeutungen auch gelernt werden muss (Lobner, 2003, S. 60).

Demnach ist lexikalische Ambiguitét in der Erkennung und Disambiguierung noch
insofern dankbar, als das die linguistische Reflexion einzelner Lexeme hinreichend ist,
insbesondere dann, wenn die Anzahl moglicher Lesarten hoch ist oder die einzelnen
Lesarten stark divergieren (Ceccato et al., 2004; Sennet, 2016). Hierbei wird auf beste-
hende linguistische Ressourcen zuriickgegriffen (z. B. Rojas und Sliesarieva, 2010), um
die potentielle Ambiguitét zu erkennen (z. B. Kipper-Schuler, 2005). Dariiber hinaus
existieren Techniken wie das POS-Tagging, die Ambiguitéten erkennen konnen, die
aufgrund der Wortart entstehen (z. B. Nomen ,, Book“ und Verb ,to book*).

Eine Besonderheit bei der lexikalischen Ambiguitit ist, dass die Ambiguitéit das
Lexem als Ganzes betrifft. Vielfach wird daher in der Literatur auf Wortlisten
(auch: Ambiguitétslisten) zuriickgegriffen, die eine Auswahl ambiger Begriffe enthalten
(z.B. Lami, 2005; Gleich et al., 2010; Nigam et al., 2012; Génova et al., 2013; Tjong
und Berry, 2013), statt Merkmale zu identifizieren. Allerdings kénnen nicht nur
Lexeme ambig sein, sondern auch Satzgefiige (syntaktische Ambiguitét).

2.1.2 Syntaktische Ambiguitit

Syntaktische Ambiguitét tritt nach Berry et al. (2003, S. 101.) auf, wenn eine Sequenz
von Wortern zu mehr als einer grammatikalischen Struktur fithren kann, von der
jede eine andere Bedeutung innehat (vgl. auch Ernst 2003, S.87). Da es sich bei
syntaktischer Ambiguitdt um ein hochkomplexes Problem handelt, ist auch die
Effizienz moglicher Disambiguierungslosungen zu beriicksichtigen (Carstensen et al.,
2010, S. 312), die sich nach der Art der syntaktischen Ambiguitéit richten. In dieser
Arbeit liegt der Fokus auf der Koordinations- und PP-Anbindungsambiguitit.

Beispiel 2.1.4 (Koordinationsambiguitiit)
s[[Die Anwendung] [erstellt [[ausfiihrliche Berichte]; und Dokus]]].
»[[Die Anwendung] [erstellt [ausfihrliche [Berichte und Dokus]a]].

Unter ,,Koordination® werden in Anlehnung an Bufimann (1983, S.276) ,[...] syn-
taktische Strukturfen verstanden], die aus zwei oder mehr Konjunkten (= Worter,
Satzglieder oder Sitze)“ bestehen, wobei die Elemente durch , koordinierende Kon-
junktionen (und, aber, denn) verkniipft sind“.

So ist in Beispiel 2.1.4 unklar, ob sich das Adjektiv , ausfihrliche* nur auf das
erste Konjunkt , Berichte* oder auf beide ,, Berichte* und ,, Dokumentation® bezieht.
Laut Berry et al. (2003, S.11) liegen diese Ambiguitéten vor, wenn mehr als eine
Konjunktion in einem Satz genutzt oder eine Konjunktion zusammen mit einem
Modifikator genutzt wird (vgl. Beispiel 2.1.4).

Ebenfalls relevant ist die Anbindungsambiguitét bezogen auf Prapositionalphrasen
(engl. PP-attachment ambiguity). Mehl et al. (1998) stellen diesbeziiglich in einer
,» Untersuchung von 710 PP-Belegen [fest, dass][...] nicht weniger als 502 (=70,7%)
von ihrer syntaktischen Position her nicht eindeutig zuzuordnen [sind]“ (Mehl et al.,
1998, S.1). Langer et al. (1997, S. 1) weisen darauf hin, dass auch fachsprachliche

34 2 Ungenauigkeit und Unvollstdndigkeit

Texte von Anbindungsambiguitit geprégt sind. Dabei ist die ,, PP-Zuordnung [...] ein
typisch computerlinguistisches Problem, weil zu seiner Losung komplexes semantisches
Wissen erforderlich ist, das in keinem sprachverarbeitenden System zur Verfiigung
steht* (Mehl et al., 1998, S.2).

Beispiel 2.1.5 (PP-Anbindungsambiguitét)
»[[Die Software][verschickt[das Bild] [mit einem Knopfdruck/pp)]*
»[[Die Software][verschickt[das Bild [mit einem Knopfdruckpp/a]]*

Am Beispiel 2.1.5 zeigt sich, dass die Ambiguitdt darin besteht, dass die
Prépositionalphrase ,,mit einem Knopfdruck® das Instrument der Handlung (PPy)
innerhalb der Software sein kann (Verbalphrase) oder aber das Bild néher spezifiziert
(PP), auf dem der Vorgang als solches illustriert wird. Hierbei ist PP, die Konsti-
tuente einer Nominalphrase. Insgesamt ergeben sich somit zwei Lesarten durch die
unterschiedliche syntaktische Anbindung der PP.

Carstensen et al. (2010, S.302) weisen darauf hin, dass die ,, Wahrscheinlichkeit
einer PP-Anbindung in den allermeisten Féllen nicht nur strukturell determiniert ist,
sondern auch stark vom lexikalischen Material abhéngt“. Hindle und Rooth (1993)
verbessern beispielsweise die syntaktische Disambiguierung durch die ,, Lexikalisierung
einer Grammatik erheblich“ (Carstensen et al., 2010, S. 328). Dies bedeutet, dass
die Disambiguierung unter Zuhilfenahme des lexikalischen Kontexts innerhalb eines
automatisch geparsten Korpus geschieht (Hindle und Rooth, 1993).

Hingegen entsteht beispielsweise die elliptische Ambiguitét nicht primér durch die
Struktur, sondern durch Auslassungen (auch: Aussparungen). Auslassungen bezeich-
nen dabei ein fehlendes, lexikalisch oder syntaktisch notwendiges Element. Ellipsen
sollten im Natural Language Processing (NLP) aufgelost werden, da sie der automa-
tischen Verarbeitung Informationen vorenthalten, die fiir den menschlichen Leser
sichtbar sind (McShane und Babkin, 2016, S. 2; McShane und Babkin, 2015).

Normalerweise konnen diese fehlenden Elemente sehr wohl ,;aus dem sprachlichen
Kontext oder der Redesituation [rekonstruiert werden]* (Bufimann, 1983, S.117).
Ambig wird ein Satz erst dann, wenn dem Leser nicht eindeutig klar wird, ob ein
Element fehlt (Berry et al., 2003, S.11) oder wie es im Kontext zu kompensieren ist.
Beispiel 2.1.6 (a) zeigt das Ergebnis einer Tilgungstransformation!®. Es ist unklar,
ob ,kennt* ausgelassen wurde und es sich somit um eine Ellipse handelt.

Beispiel 2.1.6 (Elliptische Ambiguitét)
(a) ,Ich kenne einen besseren Programmierer als Jens [kennt]“
(b) ,Alle Chatpartner benehmen sich [gut]. “

Im Gegensatz zur lexikalischen Ambiguitdt kann die syntaktische Ambiguitét nur
begrenzt auf Grundlage einzelner Worter erkannt werden, da Bezichungen und
Abhéngigkeiten zwischen Wortern zu beriicksichtigen sind. Gleichwohl nutzen Gleich
et al. (2010, S.222) Signalworter (z.B., only“, ,also®, ,even®) als Merkmal, um
Lexeme zu erkennen, die haufig fiir syntaktische Ambiguitét verantwortlich sind sowie
die Konjunktionen , and* sowie ,or* in Kombination (Gleich et al., 2010, S.222).

3Die eckigen Klammern stellen in diesem Beispiel fehlende Elemente dar.

2.1 Ambiguitét 35

Auch Chantree et al. (2007) nutzen Signalworter als Merkmale zur Erkennung
moglicher strukturell ambiger Sétze (Koordinationen).

Hingegen basiert die Arbeit von Agarwal und Boggess (1992) auf Strukturinforma-
tionen wie POS-Tags zur Erkennung von Konjunktionen. Diese kénnen auch im Falle
referentieller Ambiguitét genutzt werden. Gleich et al. (2010, S. 222) nutzen zur Erken-
nung potentieller referentieller Ambiguitét als Merkmal den Abgleich von Pronomina
(z.B.,,she*). Yang et al. (2010¢) ergéinzen die reinen POS-Tags durch sogenannte
,, Construction patterns® wie ,adj nqy ¢ no“ als Merkmale fiir Koordinationsambiguitat
(Yang et al., 2010c, S. 54).

Auch im Falle von PP-Anbindungsambiguitit weist beispielsweise die Struktur
V NP PP als Merkmal auf potentielle Ambiguitdt hin (Agirre et al., 2008, S. 318).
Es ist zunédchst nicht zu erkennen, ob die PP zur Nominalphrase oder zum Verb
zugeordnet werden muss (s. Abschnitt 2.1.2).

Die Erkennung und das Auflésen von Ellipsen gilt als sehr herausfordernd (Bos und
Spenader, 2011; Hardt, 1997) und es ist unrealistisch, eine vollstdndige Auflésung aller
Ellipsen auf doméneniibergreifenden Freitexten zu erwarten (McShane und Babkin,
2016, S. 2). Laut Pinkal (1985, S. 76 f.) lésst sich elliptische Ambiguitét dariiber hinaus
nicht als isoliertes syntaktisches Problem begreifen. Als Beispiel kénnen mehrstellige
Prédikate dienen (Valenz), bei denen einzelne Argumentpositionen unbesetzt sind
(vgl. ,gut“ als Argument des Pridikats benehmen). Das Fehlen bzw. das Auslassen
mindestens eines Arguments kann zu Ambiguitét fithren (s. Abschnitt 2.3).

2.1.3 Referentielle Ambiguitat

Ein Grenzfall hinsichtlich der Charakterisierung von Ambiguitét ist die referentielle
Ambiguitét. Sie kann entweder der syntaktischen oder der semantischen Ambiguitét
zugeordnet werden, je nachdem ob innerhalb eines Satzes referenziert wird oder iiber
den Satz hinaus.

Als Referenz wird die Beziehung zwischen einem Wort oder einem Satz und einer
Entitdt in der realen Welt, welche das Wort oder der Satz beschreibt, bezeichnet
(Berry et al., 2003, S.12). BuBfmann (1983, S.428) spricht hierbei von der ,, Bezugnah-
me auf innersprachlichen und auflersprachlichen Kontext durch sprachliche Mittel“.
In diesem Zusammenhang werden Anaphern als zuriickverweisendes Element (Refe-
renzausdruck) bezeichnet, die als Referenz in Abhéngigkeit einer zuvor genannten
Referenz eines anderen Elements stehen. Anaphern konnen daher nicht aufgelost
werden, ohne den Kontext oder einen weiteren Referenzausdruck (engl. mention) her-
anzuziehen (Stede, 2012, S. 41). Das Auflésen von Anaphern wird Anaphernresolution
genannt (vgl. Definition 2.1.3).

Definition 2.1.3 (Anaphernresolution)

,The task of finding an antecedent for each anaphora in a text. An anaphor is
characterized by the fact that its discourse referent can only be identified when its
antecedent is interpreted. ,Anaphora’ is an irreflexive, non-symmetrical relation”

(Stede, 2012, S.41).

Verweisen mindestens zwei Referenzausdriicke innerhalb eines Textes auf eine iden-
tische Entitét, wird von Koreferenz gesprochen (Mitkov, 2014, S.5). Eine Sequenz

36 2 Ungenauigkeit und Unvollstdndigkeit

aller Referenzausdriicke, die einer spezifischen Entitét zugeordnet werden konnen,
wird Koreferenzkette (engl. coreferential chain) genannt und ist Ergebnis der Korefe-
renzresolution (vgl. Definition 2.1.4).

Definition 2.1.4 (Koreferenzresolution)

,The task of partitioning the set of mentions of discourse referents in a text into
classes (or ,chains‘) corresponding to those referents. Since referents are identical,
,coreference’ is an equivalence relation (reflexive, symmetrical, transitive)“

(Stede, 2012, S.41).

Die Wiederaufnahme einer zuriickliegenden Textstelle (anaphorische Verbindung)
wird in Beispiel 2.1.7 anhand eines Personalpronomens aufgezeigt. Das Personalpro-
nomen (,,Sie®) referiert auf das zuvor genannte Antezedens (,, Dateien*). Referentielle
Ambiguitit entsteht nun, wenn eine Anapher sich auf mehr als ein Antezedens
beziehen kann (Berry et al., 2003, S.12).

Wie Beispiel 2.1.7 zeigt, konnte auch ,, F-Mails* mit ,,Sie“ gemeint sein. Neben
Personalpronomina kénnen auch andere Pronomina und Proformen als Stellvertreter
im Text fungieren.

Beispiel 2.1.7 (Anaphorische Ambiguitiit)

Die E-Mails enthalten mehrere Dateien. Sie sind grofs.

Hier wird ersichtlich, dass die unterschiedlichen Auspriagungen von Ambiguitéit nicht
isoliert voneinander betrachtet werden konnen. Genauso verhélt es sich mit dem
Phédnomen der Ungenauigkeit als Ganzes: Vagheit und Ambiguitéit sind verwandte
Phénomene, die in Kombination auftreten konnen. Vagheit ist dabei weitaus mehr
als eine Unterform der Ambiguitédt (Donninghaus, 2005, S.64f.): Sie wird in vielen
Anwendungen und Doménen als ein eigenstandiges, komplexes, sprachliches Problem
diskutiert (z.B.Petermann 2014; Dénninghaus 2005; Fries 1980).

Als grobes Unterscheidungsmerkmal stellt Pinkal (1991, S. 264) fest: , Vage Aus-
driicke haben ein unbestimmtes Denotat; ambige Ausdriicke besitzen mehrere alter-
native Denotate“. Es kann dariiber hinaus nach Pinkal (1991) keine unbestimmte
Lesart eines ambigen Ausdrucks geben: ,, Ambige Ausdriicke sind, im Gegensatz zu
vagen, desambiguierungs- bzw. prizisierungsbediirftig® (Pinkal, 1991, S.264). Um
eine Unterscheidung der beiden Phinomene zu erleichtern, wird die Vagheit im
Folgenden kurz beschrieben.

2.2 Vagheit

Die Komplexitit des Vagheitsphénomens zeigt sich schon an den vielen Definitions-
versuchen, die zum Teil miteinander unvereinbar sind (Tye 1998; Dénninghaus 2005,
S.1591f.). Fries (1980, S.41ff.) sieht in der Vagheit eine Ausprigung von Mehrdeu-
tigkeit, wobei er Mehrdeutigkeit als einen Oberbegriff fiir jegliche Moglichkeit der

2.3 Unvollstiandigkeit 37

mehrfachen Interpretation von Morphemen, Lexemen etc. wihlt, unter den auch
Ambiguitét fallt. BuBmann (1983, S.567) sieht in Vagheit ebenfalls einen ,, Teilaspekt
von sprachlicher Mehrdeutigkeit* und betrachtet sie somit als einen ,,komplementéren
Begriff zu Ambiguitdt” (Bufimann, 1983, S. 567).

Definition 2.2.1 (Vagheit)

LEin sprachlicher Ausdruck (Pridikat) ist vage, wenn fiir bestimmte Objekte durch
die Bedeutung des Pradikats trotz Kenntnis der relevanten Tatsachen nicht eindeutig
bestimmbar ist, ob sie unter den ausgedriickten Begriff fallen oder nicht, das heifst,
wenn Grenzfille existieren. Die Extension eines durch ein vages Pridikat ausge-
driickten Begriffs hat also unscharfe Grenzen.“

(Kluck 2014, S. 14; Grice 1991, S.177)

Berry et al. (2003, S. 14) diskutieren sprachliche Vagheit im Kontext von NFA die als
vage gelten, wenn nicht klar ist, wie sie zu messen sind. Sie nennen als Beispiel eine
sschnelle Antwortzeit® (engl. fast response time). Eine préizise Form der Beschrei-
bung und Messung ist nicht gegeben und fiihrt zu willkiirlicher Quantifizierung, die
wiederum offen ldsst, ob der Kern der Anforderungen umgesetzt wurde (Berry et al.,
2003, S.14): Was fiir einen Stakeholder schnell sein kann, kann fiir einen anderen
noch von moderater Geschwindigkeit sein.

Laut Lobner (2003, S.62) ist Vagheit , bei allen Konzepten zu verzeichnen, die
Merkmale beinhalten, deren Wert auf einer kontinuierlichen Skala variieren kann*.
Ob etwas als groB, schnell oder schmackhaft bezeichnet wird, ist demnach , eine Frage
des Grades auf einer offenen Skala® (Lobner, 2003, S. 63). Laut Lobner (2003, S. 63)
sind dabei ,steigerbare Adjektive [...] generell vage®.

Beispiel 2.2.1 (Vagheit in einer Anforderung)
Es miissen E-Mails mit groffen Anhingen verschickt werden kénnen®.

Das Phénomen der Vagheit kann, wie auch die lexikalische Ambiguitét, auf Basis von
Wortlisten erkannt werden. So nutzen beispielsweise Gleich et al. (2010) Vagheitslisten,
die zum Teil auf der Arbeit von Berry et al. (2003) basieren. Auch sind, wie bereits
angefiihrt, ,steigerbare Adjektive [...] generell vage“ (Lobner, 2003, S.63) — sie
konnen daher als Merkmal potentieller Vagheit herangezogen werden. Dariiber
hinaus kénnen nach Pinkal (1985, S.223) nur relative Adjektive durch ,sehr* und
yziemlich® modifiziert werden, was unter anderem in Geierhos und Biaumer (2017)
zur maschinellen Erkennung von Vagheit herangezogen wird.

Lébner (2003, S.63) weist darauf hin, dass Vagheit nicht isoliert von Ambiguitét
zu betrachten ist, sondern beides auch gemeinsam auftreten kann. So ist jede der
Bedeutungsvarianten von , schwer® (,, gewichtig“, ,schwierig, , gravierend* usw.)
fiir sich genommen vage. ,Die zugrunde liegenden Skalen sind klar verschieden
(Polysemie), aber wo genau im konkreten Fall die Grenze zwischen ,schwert und
nicht schwer* zu ziehen ist, ist eine Frage des Grades“ (Lobner, 2003, S.63).

2.3 Unvollstandigkeit

Unvollstdndigkeit ist in dieser Arbeit ebenfalls unter dem Aspekt der Softwarean-
forderungen zu definieren. Dabei ist, wie in Kapitel 2 bereits angefiihrt, nicht das

38 2 Ungenauigkeit und Unvollstdndigkeit

grundsétzliche Fehlen von Anforderungen unter Unvollstdndigkeit zu verstehen, son-
dern die liickenhafte Ausprigung einer benannten Anforderung (Auslassungen). Die
Relevanz zeigt sich in der Beschreibung von Massey et al. (2014, S.86), die hier als
erster Definitionsversuch herangezogen wird (vgl. Definition 2.3.1).

Definition 2.3.1 (Unvollstéindigkeit)
Unvollstindigkeit tritt auf, wenn eine Aussage nicht geniigend Informationen beinhal-

tet, um eine einzige klare Ausleqgung zu ermdglichen.
(Massey et al., 2014, S. 86)

Diese Definition ldsst allerdings offen, was unter ,, enough information* zu verstehen
ist. Diesbeziiglich konnen Alshazly et al. (2014, S.518) herangezogen werden, die den
Fehlertyp der Auslassung (engl. omission) als ,,necessary information related to the
problem being solved by the software has been omitted from requirements document
or are not complete* (Alshazly et al., 2014, S.518) definieren.

Interessant an dieser Definition ist die Problemfokussiertheit, die das Spektrum
fehlender Informationen eingrenzt. Eine Anforderung ist demnach unvollstandig,
wenn aufgrund von fehlender, zur Problemlésung notwendiger Informationen, keine
klare Interpretation der Anforderung moglich ist. Firesmith (2005, S.35) geht weiter
und versteht unter , necessary information® einen Informationsumfang, der eine
Implementierung und Verifikation ohne zusétzliche Beschreibung erméglicht. Ahnlich
findet sich dies auch bei Wiegers (2005, S. 20): ,,Jede Anforderung muss die erwartete
Funktionalitét vollstéindig beschreiben. Sie muss alle Informationen enthalten, die der
Entwickler benotigt, um diese Funktionalitdt zu entwerfen und zu implementieren*.

Fehlende Informationen, die aber keinen negativen Einfluss auf die beabsichtige
Aussage einer Anforderungsbeschreibung haben, sind nach Lopes Margarido et al.
(2011, S.4) zu vernachléssigen.

Beispiel 2.3.1 (Pridikat-Argument-Struktur)
wIcharg, mochte E-Mailsarg, mit grofien Anhdngen sendenprq..

Beispiel 2.3.1 zeigt eine Anforderungsbeschreibung, die das Senden von E-Mails
als Gegenstand hat. Um diese Anforderung programmiertechnisch umsetzen zu
konnen, miissen seitens der Softwareentwickler zwangslaufig Annahmen getroffen
werden, da nicht angefithrt wird, ob eine E-Mail beispielsweise formatiert oder an
wen eine ausgehende E-Mail adressiert wird (z. B. an eine Person oder an eine Gruppe
von Personen). Bei beiden Auslassungen handelt es sich demnach um notwendige
Angaben, deren Fehlen erkannt und kompensiert werden muss. Hierzu werden in
dieser Arbeit zwei Verfahren herangezogen: (1) Die Erkennung von Unvollstédndigkeit
durch Hinzunahme von morpho-syntaktischem Wissen und (2) die Kompensation
durch doménenspezifisches Wissen (s. Kapitel 5).

Die Erkennung von Unvollstiandigkeit durch Hinzunahme von morpho-
syntaktischem Wissen (1) basiert in dieser Arbeit auf der Eigenschaft von Pradikaten,
,Leerstellen um sich zu er6ffnen, die in bestimmter Zahl und Art obligatorisch zu
besetzen sind“ (Bufimann, 1983, S.567). Dies wird auch als Valenz bezeichnet und
entsprechende Leerstellen werden durch Argumente bestiickt. ,Je nachdem, wie
viele [Argumente] ein Pridikat verlangt, bezeichnet man es als ein-, zwei- oder

2.3 Unvollstiandigkeit 39

dreistellig” (BuBimann, 1983, S.41). So hat beispielsweise das Pridikat ,, senden* aus
Beispiel 2.3.1 laut der Propbank (2010) drei Leerstellen zu besetzen (Argy, Argi,
Args), wobei nur zwei davon tatséchlich durch vorliegende Informationen aus dem
Text instantiiert werden:

e (Argg) sender SIch®
e (Arg;) sent » E-Mails mit groflen Anhdngen*
e (Argp) sent-to —

Auf morpho-syntaktischer Ebene ist damit eine freie Leerstelle (engl. non-
instantiation) identifiziert worden. Ungeklirt ist, ob es sich um eine obligatorische
Information im Sinne der Problemlésung und damit um eine kompensationswiirdige
Argumentposition handelt.

Um dies zu kliren, wird das doménenspezifische Wissen (2) herangezogen. Die
Kompensation setzt voraus, dass Ressourcen existieren (z. B. Korpora, Ontologien),
die fiir Anforderungen einer Doméne die obligatorischen Informationen (Problem-
fokussiertheit) enthalten. Wissensabfragen, welche Informationen zu einer spezifi-
schen Anforderung erwartet werden und damit obligatorisch sind, kénnen Unvoll-
stindigkeit aufdecken und beispielsweise durch hinterlegte Standardwerte kompensie-
ren (s. Abschnitt 5.5.5).

Stand der Wissenschaft
und Technik

Im Folgenden werden sowohl Arbeiten der maschinellen Anforderungsextraktion als
auch der Erkennung und Kompensation von Ambiguitéit sowie Unvollstandigkeit
dargestellt. Zu Beginn wird im Sinne der weiteren Kapitelgliederung ein bestehendes
NLP-Verarbeitungskonzept besprochen. Es folgen Arbeiten zur Anforderungsextrak-
tion sowie zum Dokumententyp der Anforderungsbeschreibung (s. Abschnitt 3.2).
Darauf aufbauend werden in Abschnitt 3.3.1 bestehende Disambiguierungsansétze
dargelegt, bevor Ansétze zur Kompensation von Unvollsténdigkeit thematisiert wer-
den (s. Abschnitt 3.3.2) und eine Betrachtung bestehender kombinierter Ansétze
erfolgt (s. Abschnitt 3.3.3). Das Kapitel schlieft mit Diskussion und Fazit.

3.1 Maschinelle Textanalyse im Kontext dieser Arbeit

Fiir Anforderungsbeschreibungen stellt Abbildung 3.1 einen in Geierhos und Béumer
(2017) beschriebenen sequenziellen Ablauf der maschinellen Textverarbeitung dar,
der insbesondere auf die Extraktion semantischer Hauptkomponenten und die Kom-
pensation von Ungenauigkeit sowie Unvollstandigkeit abzielt.

—> n.n —»|=/| Anforderungs-
£ AA A — | beschreibung
Endanwender (Abschnitt 3.2)

v
-y Anforderungs-

<

extraktion € Trainingskorpora
(Abschnitt 3.2) Anforderungs- | |
l beschreibungen |

Disambiguierung |4.........
(Abschnitt 3.3.1)

Ontologien

v
Auflosung
von Vagheit
v

Ah I'cfhkeitssuche

Maschinelle Textanalyse
Fehlende Informationen

Kompensation von
Unvollsténdigkeit

Domanenspe-
(Abschnitt 3.3.2) zifische Lexika

¢ <4— Informationsfluss
Template < Obligatorische Ressourcen
e Textverarbeitung | il 4- - - Zusatzliche Ressourcen

Abbildung 3.1: NLP-Verarbeitungsschritte im Arbeitskontext.
In Anlehnung an Geierhos und B&umer (2017, S. 81)

41

42 3 Stand der Wissenschaft und Technik

Wenngleich auch nicht alle der in Abbildung 3.1 dargestellten Verarbeitungskom-
ponenten Gegenstand dieser Arbeit sind (z. B. Auflosung von Vagheit), so eignet
sich die Abbildung dennoch fiir die weitere Gliederung dieses Kapitels. Es werden
zum einen Extraktions- und Kompensationskomponenten in einer beispielhaften
Ausfiihrungsreihenfolge dargestellt. Zum anderen wird der entsprechende Bedarf an
natiirlichsprachlichen Ressourcen ersichtlich.

Zwar wird in Abbildung 3.1 auf die Darstellung obligatorischer Preprocessing-
Schritte! (z. B. Satzendeerkennung) verzichtet, nichtsdestotrotz ist deren Anwendung
angesichts der in Kapitel 1.4 beschriebenen qualitativen Schwankungen innerhalb der
Anforderungsbeschreibungen indiskutabel wichtig und wird auch in Geierhos und
Béaumer (2017, S. 781.) diesbeziiglich als elementar bezeichnet.

Ersichtlich wird, wie das konzipierte System Anforderungsbeschreibungen von
Endanwendern entgegennimmt und darauthin Anforderungen extrahiert, was unter
anderem das Filtern von nebenséichlichen Angaben beinhaltet. Der hier verarbeitete
Dokumententyp der Anforderungsbeschreibung wird bereits in Kapitel 1.4 behandelt
und im folgenden Szenario des OTF-Computings weiter vertieft (s. Abschnitt 3.2).
Den identifizierten Herausforderungen der maschinellen Verarbeitung von Anforde-
rungsbeschreibungen begegnend, werden anschliefend geeignete Ansétze der Anfor-
derungsextraktion und der einhergehende Ressourcenbedarf diskutiert.

In Abbildung 3.1 folgen auf die Anforderungsextraktion die Disambiguierung, die
Auflésung von Vagheit und die Kompensation von Unvollstindigkeit als isolierte Ver-
arbeitungskomponenten. Diese Komponenten dienen der Anforderungsaufbereitung,
bevor eine Ergebnisausgabe in Form eines Templates geschieht. Bestehende Ansétze
der Disambiguierung werden in Abschnitt 3.3.1 behandelt und umfassen sowohl die
lexikalische, syntaktische als auch die referentielle Disambiguierung.

Neben Ungenauigkeit ist Unvollstandigkeit ein zentrales Thema der vorliegenden
Arbeit, zu dem es bereits ebenfalls eine Vielzahl von Vorarbeiten gibt. Diese Arbeiten
werden in Abschnitt 3.3.2 behandelt und decken die Erkennung und Kompensation
von Unvollstandigkeit ab.

Es existieren dariiber hinaus Ansétze, die mehrere Erkennungs- sowie Kompen-
sationsschritte kombinieren. Diese kombinierten Ansétze werden in Abschnitt 3.3.3
gesondert betrachtet, da sie mogliche Synergieeffekte sowie Limitationen aufzei-
gen und aufgrund ihres integrativen Systemcharakters besonderen Einfluss auf die
abschlieBende Diskussion und das Fazit in diesem Kapitel haben (s. Abschnitt 3.4).

3.2 Anforderungsextraktion im OTF-Computing

Um die zentrale Rolle der Anforderungsextraktion in dieser Arbeit besser zu verste-
hen, ist ein Blick auf die zu verarbeitenden Dokumententypen notwendig. Wie in den
Abschnitten 1.3 und 1.4 dargestellt, handelt es sich bei Anforderungsbeschrei-
bungen um eine Unterform der Anforderungsdokumentation bzw. -spezifikation, die
insbesondere durch ihren informalen Charakter und explizit durch zu erwartende
Ungenauigkeit und Unvollsténdigkeit gepragt ist. Sie ist damit das Ergebnis individu-
eller Rahmenbedingungen (z. B. Vorwissen der Stakeholder). Als Beispiel fiir diesen

Diese notwendigen Preprocessing-Schritte werden gesondert in Kapitel C.1 dargestellt.

3.2 Anforderungsextraktion im OTF-Computing 43

Dokumententyp kénnen Anforderungsbeschreibungen der Open Source-Bewegung
dienen, denen Eigenschaften wie ein hoher Anteil nebenséchlicher, erlauternder Kom-
munikation und ein hoher Anteil an Ambiguititen zugeschrieben werden. Diese
Eigenschaften sind insbesondere auf die grofie Anzahl an (heterogenen) Stakehol-
dern, deren unterschiedlichen Erfahrungsstdnden und Fachwissen sowie ein fehlendes
oder minimales Regelwerk zuriickzufithren (Gill et al., 2014; Vlas und Robinson,
2011; Laurent und Cleland-Huang, 2009). Anforderungsbeschreibungen riicken damit
ndher an einen informalen Dokumententyp heran, der allgemein als User Generated
Content (UGC) bezeichnet wird (s.insb. Moens et al., 2014, S. 7).

Wird die Thematik der Anforderungsbeschreibung bzw. -spezifikation im Kontext
des OTF-Computings betrachtet, liegt der Fokus bestehender Arbeiten auf der
Anwendung und Entwicklung semi-formaler bzw. formaler Spezifikationssprachen
fiir Softwareservices'®. In erster Linie umfasst das die Service Specification Language
(SSL), die explizit zur umfassenden Spezifikation von Services entwickelt wurde
und unter anderem FA sowie NFA abdeckt (Platenius et al., 2016, S.51f.). Dartiber
hinaus entwickeln Huma et al. (2012) eine UML-basierte Beschreibungssprache, deren
Vorteil es ist, dass Stakeholder sich der bereits etablierten und gut dokumentierten
UML bedienen kénnen und somit der Einarbeitungsaufwand geringer ausfallen kann.

Wie allerdings in Abschnitt 1.3.4 und dariiber hinaus von Geierhos et al. (2015,
S.277) angemerkt wird, ist jede Form der semi-formalen bzw. formalen Spezifikation
fiir Endanwender ungeeignet. Endanwender verfiigen nicht iiber die notwendigen
Fachkenntnisse, kennen dariiber hinaus gewisse Angaben (z. B. Vor- und Nachbedin-
gungen eines Services) nicht (vollstindig) und kénnen diese daher erst recht nicht
formal spezifizieren (Ferrari et al., 2014). Im Vergleich dazu kénnen Anforderungsbe-
schreibungen von Endanwendern verfasst werden (s. Abschnitt 1.4), sind aber auch
im OTF-Kontext unstrukturiert, oftmals fehlerhaft (im Sinne von Grammatik und
Rechtschreibung), unvollstéindig und mehrdeutig. Dies steht im Kontrast zu den beste-
henden (semi-)formalen Spezifikationsméglichkeiten, die bisher im OTF-Computing
zur Verfiigung stehen!®.

FEine weitere Herausforderung im Umgang mit Anforderungsbeschreibungen sind
fehlende linguistische Ressourcen, die Qualitéit und Eigenschaften aufweisen, wie sie
bei Anforderungsbeschreibungen im OTF-Computing zu erwarten sind. Tichy et al.
(2015) beschreiben diese Situation zutreffend im Hinblick auf natiirlichsprachliche
Anforderungen: ,, Textbooks contain few examples and they seem to be written by
the authors or copied from other textbooks. Many examples about NLP requirements
processing use an artificial, strongly restricted language“ (Tichy et al., 2015, S.161).
Ein Problem dieser selbst kreierten Anforderungsbeschreibungen ist, dass sie oftmals
idealtypisch sind oder bewusst auf einen bestimmten Problemfall hin gestaltet wurden
— sie unterscheiden sich daher teils erheblich von ,echten“ Anforderungen.

15 A service is a software component that is deployed and running on a service provider’s platform.
One example for a service is Google Maps“ (Platenius, 2016, S.11).

16 An dieser Stelle sei angemerkt, dass Unvollsténdigkeit und Ungenauigkeit auch bei (semi-)formalen
Methoden nicht vollstindig auszuschliefen sind. So ist Unvollstindigkeit im OTF-Computing
sowohl auf der Anfrageseite (Benutzeranforderungen) als auch auf der Anbieterseite (Services-
pezifikationen) vorzufinden. Die Griinde sind heterogen und reichen von Unwissenheit auf der
Anfrageseite bis hin zu Auslassung von Informationen zur Wahrung von Geschiéftsgeheimnissen
auf Anbieterseite (Platenius et al., 2015, S. 7; Platenius, 2013, S. 716 f.).

44 3 Stand der Wissenschaft und Technik

Die Anforderungsextraktion im OTF-Computing sieht sich daher dem Problem
gegeniiber, dass Trainingsdaten fehlen, auf denen die Merkmale von Anforderungs-
beschreibungen gelernt oder regelbasierte Anséitze entwickelt werden konnen. Es
bedarf daher der Erstellung linguistischer Ressourcen (s. Kapitel 6), welche die Ei-
genschaften von Anforderungsbeschreibungen adéquat abbilden, um Ansétze der
Anforderungsextraktion entwickeln und evaluieren zu kénnen.

Derzeit existieren nur wenige Arbeiten, die sich der Anforderungsextraktion aus
qualitativ stark schwankenden Texten widmen. So fithren beispielsweise Vlas und
Robinson (2011) eine Untersuchung von unstrukturierten und informalen Anforde-
rungsbeschreibungen im Bereich der Open Source-Software durch, um mehr iiber frei
formulierte Anforderungstexte zu lernen. Dariiber hinaus stellt Dollmann (2016) bzw.
Dollmann und Geierhos (2016) ein Tool namens REaCT zur Verfiigung, welches
Verfahren des maschinellen Lernens nutzt, um On-Topic Aussagen in Anforde-
rungsbeschreibungen zu erkennen und die wesentlichen Bestandteile funktionaler
Anforderungen in ein definiertes Template zu iibertragen. Dollmann (2016) unterteilt
dabei die Anforderungsbeschreibungen in einzelne Satze und iibergibt diese an die
Klassifikationskomponente, die Satze in Off-Topic und On-Topic unterteilen kann.
Handelt es sich bei einem klassifizierten Satz um On-Topic und damit um funktionale
Anforderungen, wird die Extraktion von Attribut-Wert-Paaren vorgenommen, mit
dem Ziel, ein vorgegebenes Template iterativ zu befiillen: Die wichtigsten Elemente
des Templates sind die Komponente (Subjekt), die Aktion (Préadikat) und das Objekt
(Objekt). Aktionen beschreiben, was eine Komponente leisten soll und Objekte be-
schreiben, worauf sich die Aktionen beziehen. Sowohl Komponenten als auch Objekte
konnen in den Anforderungsbeschreibungen weiter konkretisiert werden, wofiir die
Felder Verfeinerung der Komponente und Verfeinerung des Objektes vorgesehen
sind. Dariiber hinaus konnen Vor- und Nachbedingungen (z. B. Zeitrestriktionen)
existieren, die fiir die Ausfithrung von Aktionen gelten miissen oder sollen und die
im Template als Bedingungen angegeben sind.

Uber genannte Beitrige hinaus existieren mehrheitlich Ansitze, die sich der Analyse
und Kompensation qualitativ hochwertiger(er) Anforderungsbeschreibungen widmen
oder weitreichende Annahmen zur Textqualitit treffen. Sie sind somit fiir den
Anwendungsfall in dieser Arbeit ungeeignet (z. B. Deeptimahanti und Sanyal, 2011).

3.3 Umgang mit Ambiguitdt und Unvollstindigkeit

Dieser Abschnitt beinhaltet den Stand der Wissenschaft und Technik zur Erken-
nung und Kompensation von Ambiguitét (s. Abschnitt 3.3.1) und Unvollstéindigkeit
(s. Abschnitt 3.3.2). Die Themengebicete des Requirements Engineerings und des Natu-
ral Language Processings sind dabei durch gemeinsame Fragestellungen und Verfahren
eng verbunden (Berzins et al., 2008).

3.3.1 Disambiguierung im Anforderungskontext

Eine Vielzahl an Veroffentlichungen thematisiert Ambiguitét in Anforderungsbeschrei-
bungen (Pekar et al., 2014; Umber und Bajwa, 2011; Kamsties, 2005; Osborne und

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 45

MacNish, 1996). Dabei zeigt sich, dass ambige Softwareanforderungen zu vielseitigen
Problemen in der Softwareentwicklung fithren konnen (Pekar et al., 2014, S. 242).

So wird héufig sowohl der Projekterfolg (Standish Group International, 1995)
als auch die Kundenzufriedenheit (Sommerville, 2007, S.121) durch Ambiguitét als
gefahrdet angesehen. Allerdings reicht die Spannweite der Verdffentlichungen hierzu
von ,,/[...] ambiguity is a more complex phenomenon than is often recognized in the
literature” (Kamsties et al., 2001, S.1) bis hin zu ,,/...] requirement ambiguity did
not cause many defects* (Philippo et al., 2013, S.78). Ein moglicher Einfluss des
Ambiguitdtsphanomens auf die Anforderungsqualitéit und somit auf den Projekterfolg
gilt daher in der Literatur durchaus als umstritten (s.insb. Philippo et al., 2013).

Die im Rahmen dieser Arbeit betrachteten Anforderungsbeschreibungen
(s. Abschnitt 1.4) sind jedoch, bedingt durch die Verwendung von natiirlicher
Sprache (s. Abschnitt 1.3.1) und geringes bzw. fehlendes Vorwissen der Endanwen-
der, priadestiniert fiir Ambiguitdt. So kommt es vor, dass eine Software geméifl
vorgegebener Anforderungsbeschreibungen entwickelt wird, diese jedoch nicht den
intendierten Anforderungen der Stakeholder entspricht (Kamsties und Paech, 2000,
S.2) oder sogar Fehler enthilt (Firesmith, 2007, S.19). Insbesondere im Fall des
OTF-Computings, der eine automatisierte Komposition von Services vorsieht, kann
Ambiguitét zu mangelhafter Software fithren (Geierhos et al., 2015, S. 279).

Die Ambiguitéitserkennung kann dabei manuell — beispielsweise mit Hilfe von
Wortlisten oder Checklisten (z. B. Kamsties et al., 2001), unterstiitzt durch Software
oder génzlich vollautomatisiert erfolgen. Dies deutet bereits an, dass es eine Vielzahl
an Methoden gibt, die sich nur schwer vollumfénglich gegeniiberstellen lassen (Bano,
2015; Shah und Jinwala, 2015). Zum einen gibt es Ansitze, die eine Vielzahl an Ambi-
guitétsformen erkennen kénnen (generalisiert) und zum anderen existieren Verfahren,
die sich auf die Erkennung einer Form (z. B. lexikalische Ambiguitét, s. Abschnitt 2.1)
beschriinken (spezialisiert). In beiden Fillen werden linguistische Ressourcen benétigt,
welche die Eigenschaften des jeweiligen Ambiguitdtsphdnomens abdecken. Sie werden
im Folgenden zur besseren Verstandlichkeit der Disambiguierungsansétze dargestellt.

3.3.1.1 Linguistische Ressourcen

Linguistische Ressourcen haben im NLP elementaren Charakter, da sie die notwendige
Wissensbasis darstellen, auf der die jeweiligen Methoden arbeiten. Der Schwerpunkt
liegt im Folgenden auf den Ressourcen, die fiir die lexikalische, syntaktische und
referentielle Disambiguierung von Bedeutung sind.

Ressourcen lexikalischer Disambiguierung

Eine Ressource, die vielfach zur lexikalischen Disambiguierung aber auch in anderen
NLP-Kontexten herangezogen wird, ist WordNet. Hierbei handelt es sich um ein
frei verfiigbares lexikalisch-semantisches Netz (Datenbank) fiir die englische Sprache
(Miller, 1995). Es wird seit 1985 am Cognitive Science Laboratory der Princeton
University entwickelt und enthélt semantische sowie lexikalische Beziehungen zwischen
einzelnen Wortern (Nomina, Verben und Adjektive sowie Adverbien).

Dabei werden nicht die Worter als solche untereinander in Beziehung gesetzt,
sondern spezifische Lesarten (Synsets), was zu einer semantischen Disambiguation

46 3 Stand der Wissenschaft und Technik

fithrt. Als Bezichungen werden dabei unter anderem Synonymie, Antonymie und
Hyponymie sowie Meronymie abgebildet, wobei die am haufigsten abgebildete Be-
ziehung zwischen Synsets die Hyponymie ist. Einen Uberblick iiber den Umfang
von Wordnet gibt die in der WordNet-Dokumentation enthaltene Statistik (Word-
Net, 2010). WordNet enthélt insgesamt 147.278 Eintridge, wovon einige in mehrere
syntaktische Kategorien fallen (vgl. Tabelle 3.1).

POS Unique Strings Synsets Word-Sense Pairs

Nomina 117798 82115 146312
Verben 11529 13767 25047
Adjektive 21479 18156 30002
Adverben 4481 3621 5580

Tabelle 3.1: WordNet 3.0 Statistik (Verteilung der Eintrige)

WordNet wird in dieser Arbeit primér zur Word Sense Disambiguation (WSD)
eingesetzt und ist auf die englische Sprache spezialisiert. Fiir die deutsche Sprache
steht GermaNet zur Verfiigung, welches identisch aufgebaut ist (Henrich und Hinrichs,
2010; Hamp und Feldweg, 1997).

Eine umfangreiche und mehrsprachige Alternative zu WordNet ist BabelNet.
Hierbei handelt es sich um ein mehrsprachiges Worterbuch, das lexikalisches und
enzyklopddisches Wissen zu Eintrégen bereitstellt (Flati und Navigli, 2014, S. 11). Fiir
die englische Sprache liegen beispielsweise 11,8 Millionen Worter in ihrer Grundform
vor, wobei davon 413.144 Worter als polysem und 11,4 Millionen Wérter als eindeutig
klassifiziert sind. Dariiber hinaus fungiert BabelNet als semantisches Netz, welches
Konzepte und Named Entities (NE) iiber semantische Beziehungen (Babel Synsets)
verbindet (s. Abbildung 3.2).

...the plays and novels of Samuel Beckett... L — playgy, dramagy, obrag,
...based on Shakgspeare’s p!ay Othello... _-- Tomsl . - o Biihnenwerk,;, obrac,,
-..dramatic media (plays, films, etc.)... -7 s haspent — Theaterstiick,, opera
. |stage direction) -
S teatrale,;, drammay,
\ has-part —— piece de théatre,,

actor’s line) *

History of
theatre

\ Musicat

...dramatic force in A. Miller’s play...
N theatre

...as the play opens the audience...
...characters in the play take...

.
N . - . -

- e -] literar:

“al - _(Crime fiction _.‘.neralur‘e‘ i -

~ e derived-from

Machine Translation system Wikipedia WordNet

Abbildung 3.2: BabelNet als semantisches Netz.
Entnommen aus Navigli und Ponzetto (2012a, S.221)

Jedes Synset enthélt dabei eine bestimmte Lesart zusammen mit Synonymen in
verschiedenen Sprachen. Uber 1,5 Millionen Synsets sind in mindestens einer Doméine
Klassifiziert (,, Sharepoint* — ,, Computing“), wobei die vorliegenden Informationen
oftmals weit iiber die bloBe Angabe einer Doméne hinausgehen (z. B. Kategorien:
» Windows software, Microsoft*, Genre: ,, Content Management Systems®).

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 47

Tabelle 3.2 enthiilt eine allgemeine Statistik'”, die einen Uberblick iiber den Umfang
der Ressource gibt. In der Version 3.6 unterstiitzt BabelNet 271 Sprachen, darunter al-
le européischen Sprachen. Fiir diese Arbeit ist die umfangreiche Sprachunterstiitzung
gerade im Hinblick auf die Erweiterbarkeit und Adaptierbarkeit des Konzepts von
Bedeutung (s. Abschnitt 7.4.2).

Mit 13,8 Millionen Synsets und insgesamt 745,9 Millionen Lesarten erreicht Ba-
belNet dariiber hinaus eine bemerkenswerte sprachiibergreifende Abdeckung. Das
semantische Netz beinhaltet 380,2 Millionen lexikalisch-semantische Beziehungen,
wie sie auch in WordNet vorzufinden sind.

Aspekt Ausprigung
Babel Senses 745,9
Babel Synsets 13,8
Glossareintriage 40,7
Komposita 0,7
Konzepte 6,1
lexikalisch-semantische Beziehungen 380,2
NE 7,7
RDF Triples 1.971,7

Tabelle 3.2: BabelNet 3.6 (Statistik, Angaben in Millionen)

Unter anderem wird BabelNet zur Disambiguierung (Navigli und Ponzetto, 2012b)
und zum Entity Linking (EL) verwendet (Moro et al., 2014b). Letzteres zum Beispiel
im verwandten Babelfy-System (s. Abschnitt 3.3.1.2).

Ressourcen syntaktischer Disambiguierung

Wie angefiihrt, ist die natiirliche Sprache gleich mehrfach anfillig fiir Ambiguitét. Im
Hinblick auf die Erkennung und Kompensation syntaktischer Ambiguitét, die beim
Parsing eines Satzes auftreten kann, wird auch von einem Suchprozess gesprochen:
Ein statistischer NLP-Algorithmus sucht auf Grundlage definierter grammatikalischer
Regeln verschiedene Kombinationswege fiir eine Satzstruktur und disambiguiert somit
die Eingabe tiber die wahrscheinlichste Kombination (Allen, 1995, S.47). Die dafiir
benotigten Wahrscheinlichkeiten und Regeln miissen zuvor gelernt werden, wobei
zum Beispiel sogenannte Treebanks genutzt werden kénnen (Theda, 2017, S. 191F.).

Treebanks'® (auch: Baumbanken) ,als spezielle Form von Korpora sind ein fester
Bestandteil der Computerlinguistik, da sie detaillierte linguistische Informationen
kodieren [(vgl. Abbildung 3.3)]. Sie werden dabei als eine Sammlung von Einheiten
(meist Sdtzen) verstanden, deren syntaktische Satzstruktur annotiert ist“ (Carsten-
sen et al., 2010, S.492). Grundsitzlich besteht ein Korpus dabei aus Text, einem
Annotationsschema und beschreibenden Metadaten, wobei das Annotationsschema
entweder konstituenten- oder dependenzbasiert gewiihlt wird (Carstensen et al., 2010,
S.492; Hajicova et al., 2010, S.171; Theda, 2017, S.19). Die Baumbanken werden

17Siehe weiterfithrend: nttp://babelnet.org/stats (Stand: 12.01.17).
18Die syntaktische Struktur wird traditionell als Baumstruktur kodiert.

48 3 Stand der Wissenschaft und Technik

dabei iiberwiegend ,, manuell oder semi-automatisch erstellt und [haben] folglich einen
kleineren Umfang als ein automatisch geparstes Korpus® (Carstensen et al., 2010,
S.493). Thre Erstellung gilt daher gemeinhin als zeit- und kostenintensiv, weshalb
Qualitdtsmerkmalen wie Wiederverwendbarkeit und Konsistenz bei der Banken-
erstellung ein besonderer Stellenwert zugesprochen wird (Carstensen et al., 2010,
S.493,4951.). Eine Ubersicht iiber bestehende, teils verwandte Baumbanken gibt
Theda (2017, S.17ff.), deren Arbeit im Folgenden herangezogen wird!®:

,»Bis Mitte der 90er Jahre wurden vor allem [...][konstituentenbasierte] Annotations-
schemata verwendet. Hier werden die hauptsichlichen syntaktischen Kategorien wie
NP oder VP in einer Baumstruktur annotiert* (Carstensen et al., 2010, S.493). Als
etablierte und verbreitete Ressource gilt dabei die Penn Treebank (Marcus et al., 1993;
Marcus et al., 1994), die mit mehr als 50.000 annotierten Sitzen sehr umfangreich ist
und von einer Vielzahl an statistischen Parsern als Ressource herangezogen wird?,
Bei den Sétzen handelt es sich um englischsprachige Sétze, die hinsichtlich POS-Tags
und syntaktischer Struktur annotiert sind. Neben dieser englischsprachigen Version
stehen auch adaptierte Sprachversionen zur Verfiigung, wobei auf die Penn Arabic
Treebank (Maamouri et al., 2004) und die Penn Chinese Treebank (Xue et al., 2005)
als Beispiele zu verweisen ist (Theda, 2017, S. 20).

Weitere konstituentenbasierte Treebanks sind die BulTreeBank (Simov, 2004)
und die LinGO Redwoods (Oepen et al., 2004). Fiir die deutsche Sprache existiert
beispielsweise das TIGER Korpus (Brants et al., 2002) sowie die, exemplarisch
in Abbildung 3.3 als Auszug abgebildete, Tiibinger Baumbank des Deutschen /
Zeitungskorpus (TiBa-D/Z) (Telljohann et al., 2015).

Der Autokonvoi mit den Probenbesuchern fshrt eine StraBe entlang die noch heute LagerstraBe heiBt
ART NN APPR ART NN VVFIN ART NN PTKVZ $, PRELS ADV ADV NN VVFIN $.

Abbildung 3.3: Ein beispielhafter Satz aus der TiiBa-D/Z.
Entnommen aus Carstensen et al. (2010, S.501)

Dariiber hinaus stehen dependenzbasierte Treebanks zur Verfiigung, die zunehmend
Verwendung finden. Ziel ist es hier, die gerichteten Abhéngigkeiten zwischen zwei

9Eine weitere umfangreiche Ubersicht findet sich in der englischsprachigen Wikipedia.
Siehe: nttps://en.wikipedia.org/wiki/Treebank (Stand: 08.02.17).

20Theda (2017) nennt u. a. Charniak (1997), Collins (1996) sowie den Standford Parser (Klein und
Manning, 2003) und Parsey McParseface (Andor et al., 2016) als beispiclhafte Parser.

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 49

Wortern abzubilden (Carstensen et al., 2010, S.494). Als prominenter Vertreter ist
dabei die Prague Dependency Treebank (PDC) zu nennen (Hajic et al., 2001).

Ressourcen referentieller Disambiguierung

»Im Gegensatz zu syntaktisch annotierten Korpora [...] stehen fiir die Anaphern-
resolution nur sehr wenige annotierte Korpora zur Verfiigung® (Carstensen et al.,
2010, S.407). Dabei ist zu beachten, dass die Anaphern- und Koreferenzauflosung
auf unterschiedliche Weise durchgefiihrt werden kann, wobei zwischen linguistischen
Ansitzen, Heuristiken und Methoden des maschinellen Lernens unterschieden wird
(Carstensen et al., 2010, S.404). Nicht alle dieser Herangehensweisen sind dabei
auf Ressourcen angewiesen (s. Abschnitt 3.3.1.4), weshalb im Folgenden der Fokus
vermehrt auf dem Ressourcenbedarf der Methoden des maschinellen Lernens liegt.
Zum Training und zur Evaluation dieser Methoden werden im Rahmen der Kore-
ferenzauflosung spezielle Korpora verwendet (s. insb. Recasens Potau, 2010, S. 10).
Beispiele sind die Korpora ACE, MUC sowie die TiiBa-D/Z, die entsprechende
Annotationsebenen?' beinhalten. Eine Auswahl?? findet sich in Tabelle 3.3.

Korpus Quelle Doméne Token
ACE2004 Doddington et al. (2004) Zeitungstexte 189.620
MUC6 Grishman und Sundheim (1996) Zeitungstexte 30.000
OntoNotesl Weischedel et al. (2007) Gemischt 300.000
OntoNotes5 Weischedel et al. (2012) Gemischt 1.745.000
3512 Schiifer et al. (2012) Wissenschaft 1.326.147
TiBa-D/Z Telljohann et al. (2015) Zeitungstexte 1.787.801

WikiCoref ~ Ghaddar und Langlais (2016) Enzyklopéadieartikel 60.000

Tabelle 3.3: Annotierte Korpora zur Koreferenzauflosung (Auswahl).
In Anlehnung an Ghaddar und Langlais (2016, S. 140)

Als grundlegende und etablierte Ressourcen sind die ACE- sowie die MUC-Korpora
zu nennen. Sie sind mit Koreferenzrelationen annotiert und bestehen sowohl aus
Trainings- als auch aus Testdatensétzen. Thnen wird jedoch vorgehalten (z. B. Guha
et al., 2015, S.1108; Chaimongkol et al., 2014, S. 3187), nur begrenzt adaptierbar zu
sein, da sie iiberwiegend auf Zeitungstexten (und Ahnlichem) basieren und damit zum
Beispiel nicht als Trainingsdaten fiir wissenschaftliche Texte geeignet sind. Aus diesem
Grund existieren weitere Korpora, die hinsichtlich verschiedener Fragestellungen und
Doménen konzipiert sind. Als aktuelleres Beispiel ist das Korpus von Guha et al.
2015 zu nennen, welches wissenschaftliche Texte mehrerer Forschungsgebiete umfasst.

Zum Vergleich der Ressourcen wird oftmals die Gesamtanzahl an Token herange-
zogen, wobei fraglich ist, ob sich nicht problemspezifische Annotationen und deren
Anzahl eher zum Vergleich eignen. Als Beispiel kann die TiiBa-D/Z herangezogen
werden, welche 54.382 Koreferenz-Relationen, 50.721 anaphorische Relationen und
1.582 kataphorische Relationen aufweist?3. Da aber nur wenige Arbeiten solche de-

21Beispielsweise enthilt die TiiBa-D/Z Annotationsebenen zu Anaphern und Koreferenz-Relationen.
22Die Auswahl wurde hinsichtlich unterschiedlicher Doménen und Datenumfang getroffen.
23Siehe: http://sfs.uni-tuebingen.de/ascl/resources/corpora/tueba-dz.html (Stand: 15.02.17).

50 3 Stand der Wissenschaft und Technik

taillierten Angaben beinhalten und ein Vergleich damit nicht durchzufiihren ist, wird
in dieser Arbeit ebenfalls auf Token als Vergleichseinheit zuriickgegriffen, um die
unterschiedlichen Ressourcenumfinge darzustellen (vgl. Tabelle 3.3). Dabei zeigt
sich, dass bei der Auswahl geeigneter Ressourcen nicht nur auf die Doméne, son-
dern auch auf den Ressourcenumfang zu achten ist. Einen grofen Umfang und eine
nennenswerte thematische Abdeckung verspricht OntoNotes5.

Wie Carstensen et al. (2010) weiterhin anmerken, benstigen Methoden des maschi-
nellen Lernens iiber diese Ressourcen hinaus ein ,,gewisses Mafl an Doménen- oder
Weltwissen® (Carstensen et al., 2010, S. 404), welches beispielsweise der Auflosung
definiter NPs dienlich ist. Dieses kann ergéinzend aus Ressourcen wie WordNet,
YAGO oder Wikipedia abgerufen werden (s.z. B. Rahman und Ng, 2011). Auch
existieren Ressourcen, die mehrere Annotationsebenen umfassen, Zwischenverbin-
dungen abbilden (vgl. Abbildung 3.4) und somit die Anwendung von Doménen- oder
Weltwissen ermoglichen bzw. erleichtern.

Syntax o: Propositions

admit,
admit,

—Arg1__
~ N e6:
- < transfer,
N
argo” | argt B /39

/ \ N

%‘3//47/93 welo eI\ ez

AT A YN A
cloar)

s /\ i to /N ;.

The Pakistan's Abdul admitted he .l . Nuclear Jrn, Li
founder Nuclear ~ Qadeer
department Khan

Coreference Concepts

Abbildung 3.4: Zwischenverbindungen einzelner Annotationsebenen (OntoNotes).
In Anlehnung an Weischedel et al. (2011, S.61)

3.3.1.2 Lexikalische Ambiguitét

Lexikalische Ambiguitét und deren Disambiguierung (auch: Word Sense Disambigua-
tion, s. Abschnitt 2.1.1) wird im Anforderungskontext vielseitig diskutiert. Nach Bano
(2015, S.23) widmet sich dabei die Mehrheit der Publikationen der reinen Ambi-
guitétserkennung, wahrend sich eine deutlich geringere Anzahl an Veréffentlichungen
mit der lexikalischen Disambiguierung in diesem Anwendungsgebiet befasst. Dabei
ist der Diskussionsgegenstand, ndmlich die Ambiguitat einzelner Lexeme, nicht so
eindeutig in der Literatur definiert, wie es auf den ersten Blick erscheint.

Eine oftmals herangezogene Definition von lexikalischer Ambiguitét ist die von Ber-
ry et al. (2003, S.10): ,, Lezical ambiguity occurs when a word has several meanings®.
Dennoch wird der Begriff an vielen Stellen inkonsistent verwendet. So definieren zum
Beispiel Nigam et al. (2012) den Begriff unter Bezug auf Berry et al. (2003), fassen
in der Analyse aber auch Fille von Vagheit unter dem Begriff zusammen (Nigam
et al., 2012, S.354). Auch Huertas und Judrez-Ramirez (2012, S.374) bezeichnen

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 51

vage Begriffe (z. B. Steigerung von Adjektiven und Adverbien) als lexikalisch ambig.
Im Folgenden werden daher auch Verfahren der lexikalischen Disambiguierung im
Anforderungskontext herangezogen, die von der urspriinglichen Definition abweichen.

Die Erkennung von lexikalischer Ambiguitét ist (z. B.neben der syntakti-
schen und referentiellen Disambiguierung) ein Teilgebiet der Disambiguierung und
geschieht vielfach iiber einen Abgleich einzelner Lexeme mit (fiir z. B. eine Doméne
oder Sprache) geeigneten Ressourcen (z. B. Korpora, Worterbiicher)?!. Hierbei wird
fiir ein erkanntes Wort (z. B. Computer) in einer gegebenen Ressource nachgeschlagen,
ob es zugehorige Lesarten gibt (z. B., a machine for performing calculations automa-
tically*) und wenn ja, ob mehr als eine existiert (in diesem Fall sind es zwei Lesarten)
und das Wort damit als potentiell ambig gilt. Eine vereinfachte Variante davon ist,
Worter mit einer Liste von bereits als ambig bekannter Worter abzugleichen.

Ein solcher Abgleich zwischen Lexemen und einer Liste von ambigen Wortern
erfolgt zum Beispiel bei Lami (2005), Gleich et al. (2010), Nigam et al. (2012),
Génova et al. (2013) sowie Tjong und Berry (2013). Kiyavitskaya et al. (2008),
Matsuoka und Lepage (2011) sowie Rojas und Sliesarieva (2010) greifen auf WordNet
als linguistische Ressource zuriick. Erginzend wird bei Rojas und Sliesarieva (2010)
noch VerbNet (Kipper-Schuler, 2005) als Ressource hinzugezogen.

Fin Vorteil einer eigenen oder modifizierbaren Ressource ist, dass sowohl spezifi-
sches Vokabular (z. B. Fachtermini) als auch Eigennamen (z. B., Sharepoint Server)
abgebildet werden konnen, die gegebenenfalls einer besonderen Disambiguierung
bediirfen. WordNet ist zwar nicht auf technisches Fachvokabular spezialisiert, hat
aber einen sehr umfangreichen Wortschatz und deckt damit bereits viele technische
Fachbegriffe ab (z. B. ,mailing list“). Bei Eigennamen ist WordNet allerdings als
Ressource aufgrund seiner geringen Abdeckung nicht heranzuziehen — wohl wissend,
dass es Verfahren zur Erweiterung von WordNet gibt (z. B. Toral et al., 2008; Magnini
et al., 2002). Da in der Regel keine Beschrinkung der Doméne vorgenommen wird, ist
eine Erweiterung jedoch in den meisten Fillen kaum zufriedenstellend durchzufiihren.

Exemplarisch fiir Verfahren zur reinen Erkennung lexikalischer Ambiguitdt wird
im Folgenden das vielfach diskutierte Systemized Requirements Engineering Envi-
ronment (SREE) von Tjong und Berry (2013) vorgestellt. Es handelt sich dabei
um eine Applikation, die potentielle Ambiguitit (die Autoren verstehen hierun-
ter sowohl Ambiguitét als auch Ungenauigkeit, Unbestimmtheit und Vagheit) in
natiirlichsprachlichen Anforderungen durch Abgleich mit entsprechenden Indikator-
listen aufdecken kann. SREE besteht dabei aus zwei Hauptkomponenten: (1) Dem
Ambiguity Indicator Corpus (AIC) nach Tjong (2008) und dem (2) Lexical Analyzer.
Wihrend (1) ein Korpus darstellt, der ,, Indikatoren“?® fiir ambige Lexeme enthélt,
handelt es sich bei (2) um die Komponente, die Anforderungen tokenisiert, mit dem
AIC abgleicht und den Endanwender iiber potentielle Ambiguitéten informiert.

Wie unter anderem das Beispiel SREE zeigt, ist bisher stets eine hohe Benutzerin-
teraktion bei der Kompensation potentieller Ambiguitéten erforderlich, wenngleich
die Erkennung von potentiell ambigen Wortern eine grofie Hilfe darstellen kann

24T iir weitere Angaben zur fundamentalen Rolle der Ressourcen im WSD siehe Navigli (2009, S. 6).

25Es handelt sich beim AIC um eine Sammlung von zehn Subkorpora: Continuance, Coordinator,
Directive, Incomplete, Optional, Plural, Pronoun, Quantifier, Vague und Weak. Das Korpus
Quantifier enthilt z. B. die Worter: all, any, few, little, many, much, several und andsome.

52 3 Stand der Wissenschaft und Technik

(Tjong und Berry, 2013, S. 82). Allerdings weisen Shah und Jinwala (2015, S. 1) dar-
auf hin, dass das manuelle Auflésen von Ambiguitéit ein ermiidender, zeitraubender,
fehleranfilliger und schlussendlich teurer Vorgang ist (Popescu et al., 2008; Berry
et al., 2003). Ein (semi-)automatisiertes Vorgehen ist demnach zur Wahrung der Qua-
litdt und Motivation sowie zur Begrenzung der Kosten erforderlich. An dieser Stelle
ist auf die Arbeit von Mihalcea (2003) hinzuweisen, in der lexikalisch ambige Lexeme
erkannt werden, aber nur dann als lexikalisch ambig gelten, wenn sie nicht durch den
unmittelbaren Kontext (im Sinne von eindeutigen Lexemen in der Nachbarschaft)
disambiguiert werden konnen. Dies reduziert die Anzahl potentiell ambiger Lexeme
fiir Disambiguationsverfahren und kann somit die Performanz verbessern.

Neben dem Abgleich mit (umfangreichen) linguistischen Ressourcen existieren
somit auch Moglichkeiten, die ohne externe Ressourcen anzuwenden sind. Dies-
beziiglich widmet sich beispielsweise der Forschungsbereich Word Sense Inducti-
on (WSI) der Idee, identische Lesarten iiber den gemeinsamen Kontext (,,similar
neighboring words*) zu identifizieren und zu gruppieren (Navigli, 2009, S. 26). Hierbei
ist zwischen ,, Context clustering®, ,, Word clustering* und ,, Cooccurrence graphs® zu
unterscheiden, die insbesondere in Manning und Schiitze (1999) genauer ausgefiihrt
werden (Navigli, 2009, S. 26). Dieses Thema leitet bereits den logischen Folgeschritt
ein, ndmlich die tatséchliche lexikalische Disambiguierung.

Die lexikalische Disambiguierung (auch: Word Sense Disambiguation, WSD)
hat zum Ziel, die Ambiguitiit eines einzelnen Lexems aufzulésen (s. Abschnitt 2.1.1)%.
Hierbei gilt es herauszufinden, welche Lesart eines Lexems in einem gegebenen
Kontext gemeint ist (Agirre und Edmonds, 2007, S. 1).

Dabei kann die WSD unterschiedlich aufgebaut sein und durchgefiihrt werden
(Navigli, 2009, S. 14 ff.; Agirre und Edmonds, 2007, S. 13), wobei es grundsitzlich ein
Klassifikationsproblem ist: ,, Word senses are the classes, the context provides the evi-
dence, and each occurrence of a word is assigned to one or more of its possible classes
based on the evidence* (Agirre und Edmonds, 2007, S. 2). Die Einteilung der bestehen-
den Verfahren geschieht unter Hinzunahme der Arbeit von Agirre und Edmonds (2007,
S.13). Diese unterteilen bestehende WSD-Verfahren in die Kategorien: Wissensbasiert
(engl. knowledge-based), uniiberwacht korpusbasiert (engl. unsupervised corpus-based),
iiberwacht korpusbasiert (engl. supervised corpus-based) und Kombinationen derer
(engl. combinations)?”. Unter wissensbasiert fallen sowohl Disambiguierungsregeln,
Restriktionen und Priferenzen® als auch semantische AhnlichkeitsmafBe, die den
Kontext eines Lexems im Abgleich mit einer Ressource beriicksichtigen. Auch fallen
Heuristiken in diese Kategorie (Agirre und Edmonds, 2007, S.13). Ein Beispiel
hierfiir ist das Vorgehen von Gale et al. (1992), welches sich am besten mit ,, one-
sense-per-discourse* beschreiben ldsst. Es basiert auf der Beobachtung, dass es sehr
wahrscheinlich ist?”, dass ein Wort in einem Diskurs nur eine einzige Lesart einnimmt
und wird entsprechend als zusétzliches Merkmal in WSD-Systemen beriicksichtigt.

26Fine Ubersicht iiber Verfahren zur WSD geben Navigli (2009) sowie Agirre und Edmonds (2007).
2TNavigli (2009, S.14) fithren fiir wissensbasierte Verfahren die Begriffe ,,knowledge-rich* und
»dictionary-based* an; fiir korpusbasierte Verfahren hingegen den Begriff ,, knowledge-poor*.
28Restriktionen und Priferenzen grenzen (,rule out“) das Spektrum méglicher Lesarten durch

(semantische) Beziehungen wie EAT-FOOD ein. Siehe dazu Agirre und Edmonds (2007, S. 119).
PGale et al. (1992, S.1) geben fiir hochwertige Diskurse die Tendenz zu einer Lesart mit 98% an.

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 53

Hiufig finden auch semantische Ahnlichkeitsmafle im Rahmen der WSD An-
wendung, wobei gleich mehrere Mafle zur Verfiigung stehen (vgl. Tabelle 3.4). Die
Auswahl eines geeigneten Mafes ist dabei nicht trivial und kann zum Beispiel un-
ter Berticksichtigung von bestehenden Gegeniiberstellungen wie McCarthy et al.
(2004) und Patwardhan et al. (2003) sowie insbesondere Budanitsky und Hirst
(2006) erfolgen, wobei schnell deutlich wird, dass die Eignung eines Mafles als
Ahnlichkeitsindikator jeweils von der angedachten Anwendung abhéngt (Véhringer
und Fliedl, 2011, S.783). In Tabelle 3.4 sind diejenigen Ansétze markiert (o), die
in den Arbeiten zu semantischen AhnlichkeitsmaBen von (BHO1) Budanitsky und
Hirst (2001), (MC04) McCarthy et al. (2004), (PT03) Patwardhan et al. (2003) sowie
(CMO05) Corley und Mihalcea (2005) die besten Evaluationsergebnisse erzielt haben.

Mai} Originalquelle BHO01 MC04 PT03 CMO05
WUP Wu und Palmer (1994) - - - o
HSO Hirst und St-Onge (1995) o - o -
RES Resnik (1995) o — o o
JCN Jiang und Conrath (1997) . o o o
LCH Leacock und Chodorow (1998) o - o o
LIN Lin (1998) 5 = > o
aLESK Banerjee und Pedersen (2002) - ° ° —

Tabelle 3.4: Mafle semantischer Nihe und deren Nutzung bei der Disambiguierung
e = Gewinner; o = Verlierer; — = Nicht evaluiert

Im Kontext von Softwareanforderungen nutzen beispielsweise Matsuoka und Lepage
(2011) das semantische Ahnlichkeitsma WUP (Wu und Palmer, 1994), um zwischen
verschiedenen maglichen Lesarten zu unterscheiden. Endanwender kénnen daraufhin
die erkannten vermeintlich ambigen Lexeme, wenn notwendig, {iberarbeiten. Aller-
dings obliegt die Disambiguierung schlussendlich noch immer den Endanwendern.
Eine Losung kann die automatische Entscheidung fiir oder gegen eine Lesart iiber
einen definierten Grenzwert sein, wie es beispielsweise Vohringer und Fliedl (2011)
im Rahmen der Erkennung und Auflésung von Terminologiekonflikten realisieren.

Weiterhin sind wissensbasierte Verfahren auf Ressourcen wie Disambiguierungsre-
geln® und Heuristiken angewiesen, die nicht fiir alle Sprachen und Doménen vorliegen
und damit Schwachstellen darstellen. Auch iiberwachte korpusbasierte Verfahren
weisen diese Schwachstellen auf, da sie auf manuell annotierten Korpora trainiert
werden oder ein Bootstrapping-Verfahren nutzen (Semi-iiberwachtes Verfahren).

Dieser Problematik sehen sich uniiberwachte korpusbasierte Verfahren nicht ge-
geniiber (Agirre und Edmonds, 2007, S. 12), da diese vor allem Methoden, die Wérter
in ihrem spezifischen Kontext clustern und dariiber die Lesart erschlieen, umfassen
(Agirre und Edmonds, 2007, S.14). ,, These line of work is often referred to as word
sense discrimination, as the word meanings are not disambiguated against a sense
inventory, but are discriminated against each other* (Mihalcea, 2010, S. 1028). Einen
solchen Ansatz, der sowohl automatisiert im Training als auch in der Anwendung
vorgeht, stellt beispielsweise Schiitze (1998) vor.

30Disambiguierungsregeln sind aufwindig in der Erstellung und Wartung, da sie untereinander
komplexe Abhéngigkeiten besitzen und umfangreiches Expertenwissen voraussetzen.

54 3 Stand der Wissenschaft und Technik

Diese bisher recht klare Kategorisierung der Verfahren liegt in der Realitit nicht vor,
da ebenfalls Ansétze existieren, die wissensbasierte und korpusbasierte Verfahren
kombinieren (z. B. Montoyo et al., 2005). Auch ergénzen zusétzlich hybride Verfah-
ren die bisherigen WSD-Ansitze, beispielsweise durch die Hinzunahme von EL3!,
Beide Vorgehensweisen (Kombination von WSD-Ansétzen und die Hinzunahme von
EL) zielen auf mogliche Synergieeffekte ab. So kénnen beispielsweise semantische
AhnlichkeitsmaBe dazu genutzt werden, um bevorzugte Lesarten in uniiberwachten
korpusbasierten Verfahren zu trainieren (Agirre und Edmonds, 2007, S. 13).

Ein aktuelles und mehrsprachiges WSD- und EL-System ist Babelfy®2. Dieses ist
ein kombiniertes System zur Disambiguierung und zum EL in kurzen und langen
FlieBtexten (Moro et al., 2014b, S.241). Der Ansatz ist wissensbasiert und nutzt das
semantische Netz von BabelNet, was insbesondere die semantischen Beziehungen
sowie die benannten Entitdten umfasst (Moro et al., 2014a). Nach Moro et al. (2014a,
S.25) ist es der erste Ansatz, der die Disambiguierung parallel zum EL durchfiihrt.

Concept Concept Concept Named Entity Named Entity Concept
international team ,we need a Sharepoint server with Web dav access
international need Web dav access
Concerning or Require as useful, WebDAV ist ein The right to enter
belonging to all or at just, or proper \ offener Standard zur
least two or more Bereitstellung von
nations Dateien im Internet

y

team Sharepoint
Der Anglizismus server
bezeichnet einen SharePoint ist eine

Zusammenschluss Webanwendung von
von mehreren Microsoft, die unter
anderem folgende

Abbildung 3.5: Disambiguierung und Entity Linking mittels Babelfy

Abbildung 3.5 stellt auszugsweise die Funktionalitdt von Babelfy am Satz ,, Because
we do lot of teamwork in our international team, we need a Sharepoint server with
Web dav access* unter Verwendung der Weboberfliche dar.

Zum einen werden Konzepte wie ,,team® und ,,international“ erkannt und annotiert,
zum anderen werden benannte Entitédten erkannt und verkniipft. Dies ist insbesondere
im Rahmen dieser Arbeit von Interesse, da auch Fachtermini wie ,, Web dav* korrekt
erkannt und annotiert werden. Hilfreich ist auch die Funktion, dass Babelfy Komposita
wie ,, Sharepoint server sowohl als Komposition als auch in der jeweiligen isolierten
Bedeutung erkannt und annotiert (nicht abgebildet).

Im Rahmen dieser Arbeit eignet sich Babelfy insbesondere aufgrund der sehr
guten WSD-Ergebnisse (Raganato et al., 2017). Zum Beispiel bei experimenteller
Anwendung auf sechs verschiedenen Goldstandards (Moro et al., 2014b). Hervorzuhe-
ben sind hierbei die guten sprachiibergreifenden Ergebnisse bei der Anwendung auf
kurzen sowie hochgradig ambigen Texten. Letzteres wurde durch Anwendung auf
dem KORE50-Korpus® mit guten Ergebnissen erprobt (Moro et al., 2014b, S. 240).

SIEL verfolgt dabei das Ziel, benannte Entititen in FlieBtexten zu erkennen und eindeutig auf eine
gegebene Wissensbasis (engl. knowledge base) zu referenzieren (Flati und Navigli, 2014, S.12).

32Giche weiterfithrend: http://babelfy.org (Stand: 12.01.17).

33 Keyphrase Owverlap Relatedness for Entity Disambiguation. Siehe: http://mpi-inf.mpg.de/
departments/databases-and-information-systems/research/yago-naga/aida (Stand: 12.01.17).

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 55

Wie dargestellt werden konnte, wird dem Problem der lexikalischen Ambiguitét
im NLP vermehrt durch POS-Tagging und WSD-Verfahren begegnet. Liegt der
Verarbeitungsfokus jedoch nicht nur auf dem einzelnen Wort, greifen diese Vorgehens-
weisen zu kurz. So ist die natiirliche Sprache zusétzlich gepréigt von umfangreicher
syntaktischer Ambiguitét (Jurafsky und Martin, 2009, S. 38), deren Auflosung die
Betrachtung auf syntaktischer Ebene bedarf (s. Abschnitt 2.1.2).

3.3.1.3 Syntaktische Disambiguierung

Von syntaktischer Ambiguitit wird gesprochen, wenn, aufgrund des Zusammenspiels
umfangreicher Grammatikregeln einer Sprache, ,[...] einem Ausdruck mehr als eine
syntaktische Beschreibung zugeordnet werden kann® (Ernst, 2003, S. 87). Dabei kann
bereits die ,,Anzahl der syntaktischen Lesarten von ganz gewohnlichen Sétzen, die
von groBeren Parsing-Systemen geliefert wird, [...] erheblich hoher [sein] als der
Ambiguitéitsgrad, den selbst geschulte Syntaktiker auf den ersten Blick erkennen*
(Carstensen et al., 2010, S.308). Carstensen et al. (2010, S.308) weist in diesem
Zusammenhang darauf hin, dass giiltige Beispielsétze existieren, deren Satzstruktur-
analyse zu Ambiguitétsgraden von einer Million und mehr fiithren. Es handelt sich bei
syntaktischer Ambiguitdt demnach nicht um ein doménenspezifisches Problem der
maschinellen Anforderungsverarbeitung. Vielmehr ist es eine elementare Herausforde-
rung natiirlicher Sprachen, welcher iiberwiegend mit Methoden der probabilistischen
Satzstrukturanalyse®! begegnet wird (Jurafsky und Martin, 2009, S. 38).

Zur automatischen Satzstrukturanalyse werden Parser (auch: Natural language
parser) herangezogen (Lobin und Heringer, 2010, S.41), die in der Lage sind, gege-
benen Sdtzen syntaktische Strukturen zuzuordnen. Dies umfasst die ,,Beschreibung
des syntaktischen Baus von Sétzen durch Ermittlung elementarer Grundeinheiten
wie Morphem, Wort, Satzglied und ihre Beziehung untereinander* (Bufimann, 1983,
S.445). Diesbeziiglich kann eine Dreiteilung der Disambiguierung in Eingabe, Verar-
beitung und Ausgabe erfolgen:

e Eingabe: Natiirlichsprachliche Anforderungsbeschreibung

e Verarbeitung: Uberpriifung der Eingabe hinsichtlich giiltiger Grammatik und
Zuordnung passender syntaktischer Struktur(en)

e Ausgabe: Reprisentationen syntaktischer Strukturen (z.B. als Baume)

Wie im Schritt der Verarbeitung deutlich wird, kann die Zuordnung mehrerer
moglicher syntaktischer Strukturen erfolgen, was eher der Regelfall als der Son-
derfall ist. Nach Carstensen et al. (2010, S. 303) besteht ein solcher ,syntaktischer
Analyseprozess zu einem nicht unwesentlichen Anteil aus Suchprozessen. Ein solcher
Suchprozess lisst sich graphentheoretisch als Durchlaufen eines Suchraums (Such-
graphen) charakterisieren, der einen Startzustand Z [...] und einen oder mehrere
Endzusténde Eq, Eo, ... , E, [besitzt]“ (Carstensen et al., 2010, S. 303). Hierbei ist ,,die

34Der engl. Begriff des Parsings wird in verschiedenen wissenschaftlichen Disziplinen unterschiedlich
(aber oftmals dhnlich) verwendet. Die Computerlinguistik nutzt den Begriff z. B.im Sinne der
automatischen Satzstrukturanalyse, wihrend er in der Psycholinguistik beschreibt, wie Menschen
Satzstrukturen kognitiv verarbeiten (Theda, 2017, S.12f.; Carstensen et al., 2010, S. 303).

56 3 Stand der Wissenschaft und Technik

Verwaltung alternativer Losungsmoglichkeiten ein zentrales Problem* (Lobin und
Heringer, 2010, S.41). So kénnen alle Moglichkeiten ausgegeben werden, wie ein Satz
syntaktisch analysiert werden kann oder aber es wird die wahrscheinlichste Variante
ausgegeben. Letzteres wird durch die probabilistischen Parser erreicht, die ihr Wissen
aus einer Menge annotierter Sétze ableiten (s. Abschnitt 3.3.1.1) und versuchen, die
wahrscheinlichste Satzstruktur in bisher unbekannten Sitzen zu analysieren®.
Grundsétzlich ist dariiber hinaus zwischen Dependenz- und Konstituentenparsern
zu unterscheiden, die jeweils von unterschiedlichen syntaktischen Strukturen ausgehen.
Dependenzparser analysieren die grammatikalische Struktur eines Satzes mit dem
Fokus auf der Beziehung zwischen regierenden Wortern und abhéingigen Elementen.
Dabei wird tiberwiegend davon ausgegangen, dass das Verb die Satzstruktur in Form
von Leerstellen vorgibt und somit alle anderen Worter in einem Satz vom Verb
(direkt oder indirekt) iiber definierte Beziehungen abhéngig sind (Carstensen et al.,
2010, S. 282 1f.). Demgegeniiber basieren Konstituentenparser auf der Idee, dass sich
die natiirliche Sprachsyntax mithilfe von kontextfreien Grammatiken beschreiben
ldsst, wobei ,neben Wortern auch komplexere Einheiten, die sogenannten Konstitu-
enten oder Phrasen“ (Carstensen et al., 2010, S.281), sowie Beziehungen zwischen
Konstituenten, angenommen werden. Die Ergebnisse lassen sich, unabhéngig von der
gewdhlten Grammatiktheorie, als Strukturbdume darstellen (vgl. Abbildung 3.6).

Dependenzparser
nmod
dobj

PRP VBP TO VB NNS TO PRP $ NNS

Konstituentenparser

NP
| PN

emails to PRP$ NN

my colleagues
Abbildung 3.6: Gegeniiberstellung verschiedenartiger Strukturbdume
Dass Parsing im Kontext von Softwareanforderungen einen hohen Stellenwert hat,

zeigen Arbeiten wie die von Roth et al. (2014), die in ihrer Veréffentlichung ,, Software
Requirements: A new Domain for Semantic Parsers® die Verbindung zwischen seman-

35Giehe weiterfithrend: http://nlp.stanford.edu/software/lex-parser.shtml (Stand: 110117)

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 57

tischen Parsern und der Doméne der Softwareanforderungen aufzeigen. Dependenz-
parser im Speziellen nutzen beispielsweise Drechsler et al. (2014) zur automatischen
Verarbeitung natiirlichsprachlicher Softwareanforderungen. Der Stanford Parser wird
zur syntaktischen Analyse natiirlichsprachlicher Anforderungen unter anderem bei
Deeptimahanti und Sanyal (2009), Umber und Bajwa (2011), Friedrich et al. (2011),
Bajwa et al. (2012) sowie Landh&ufler et al. (2015) genutzt.

Um einen weiteren Uberblick iiber aktuelle Parsing-Ansétze zu erhalten, werden
im Folgenden die Ergebnisse aus Choi et al. (2015, S. 389) herangezogen, die zehn
statistische Dependenzparser (Stand der Technik) in Hinblick auf Prézision und
Performanz testen (vgl. Tabelle 3.5).

Parser Quelle Prazision Performanz
ClearNLP Choi und McCallum (2013) 2.
GN13 Goldberg und Nivre (2013)

LTDP Huang et al. (2012)

Mate Bohnet (2010) 1.

RBG Lei et al. (2014) 2.

Redshift ~ Honnibal et al. (2013)

spaCy?® - 1.
SNN Chen und Manning (2014)

Turbo Martins et al. (2013) 3.

Yara Rasooli und Tetreault (2015) 3.

Tabelle 3.5: Uberblick iiber aktuelle Dependenzparser.
In Anlehnung an Choi et al. (2015)

Es zeigt sich, dass keines der Top-Parsing-Verfahren préizise und zugleich performant
ist. Choi et al. (2015) weisen in diesem Zusammenhang darauf hin, dass alle Ansétze
eine Vielzahl an Konfigurationsmoglichkeiten aufweisen und hinsichtlich eines Kom-
promisses zwischen Performanz und Prézision optimiert werden kénnen. Dennoch
empfehlen Choi et al. (2015) die Verfahren Mate, RBG, Turbo, ClearNLP und
Yara im Hinblick auf Prizision, wihrend spaCy und ClearNLP37 unter dem Aspekt
der Performanz zu empfehlen sind. Dariiber hinaus findet sich eine umfangreiche
Ubersicht bestehender Dependenz- und Konstituentenparser in Theda (2017).

Der Schwerpunkt in dieser Arbeit liegt hinsichtlich syntaktischer Ambiguitdten auf
der Koordinationsambiguitét und der PP-Anbindungsambiguitit (s. Abschnitt 2.1.2).
Letztere ist ein etablierter Forschungsgegenstand (Bailey et al., 2015; Agirre et al.,
2008, S.318), iiber den unter anderem Lapata und Keller (2005, S.21ff.) eine
komprimierte Ubersicht geben. Oftmals wird die PP-Anbindungsambiguitiit
(s. Abschnitt 2.1.2) dabei als Klassifikationsproblem begriffen, in welchem es zu kldren
gilt, ob eine Anbindung an einer NP oder VP, bei gegebenen Kontextinformationen,
erfolgen muss (Lapata und Keller, 2005, S.21). Dabei erfordert die Auflésung von
PP-Anbindungsambiguitidten die Hinzunahme von Zusatzwissen, da die resultie-
renden syntaktischen Strukturen jeweils giiltig sind und eine Entscheidung ohne

36Siche weiterfiihrend: nhttps://spacy.io/ (Stand: 11.01.17).
3TUnter Verwendung von ,,greedy parsing“.

58 3 Stand der Wissenschaft und Technik

weiteren Kontext nicht erfolgen kann: Diesbeziiglich nutzt beispielsweise McLauchlan
(2004) verschiedene Thesauri, um die Entscheidung zu unterstiitzen®*® und auch
Ressourcen wie VerbNet und WordNet werden herangezogen (Bailey et al., 2015;
Agirre et al., 2008), um semantische Informationen in die Entscheidungsfindung mit
einflieen zu lassen und so eine syntaktische Priferenz zu generieren. Auch nutzen
Nakov und Hearst (2005) online verfiigbare Inhalte und speziell aus diesen abgelei-
tete Charakteristika (z.B. die optionale Klammerung von PP als Hinweis auf eine
VP-Anbindung). Es existieren dariiber hinaus mehrere Verfahren des maschinellen
Lernens (z. B. Ratnaparkhi et al., 1994; Collins und Brooks, 1995; Zavrel et al., 1997;
Ratnaparkhi, 1998; Pantel und Lin, 2000), die sich dieser Problemstellung annehmen
und die eine Genauigkeit zwischen 81,60% und 88,10% erreichen (Bailey et al., 2015,
S.13). Zum Vergleich: Die durchschnittliche Genauigkeit menschlicher Entscheider
liegt bei 88,20% (Bailey et al., 2015) bzw. 93,20% (Lapata und Keller, 2005)3°.

Der PP-Anbindungsdisambiguierung im Anforderungskontext widmen sich Bajwa
et al. (2012), wobei das Ziel die automatische Uberfiihrung von natiirlichsprachlichen
zu formal spezifizierten Randbedingungen in der Object Constraint Language (OCL)
ist. Zur Satzstrukturanalyse der natiirlichen Sprache (Englisch) nutzen sie dabei
den Stanford Parser sowie den Stanford POS-Tagger, wobei sie auftretende syn-
taktische Ambiguitét (attached ambiguity) und Homonymie als hauptséchlich qua-
litdtsmindernde Probleme (hinsichtlich konsistenten und validen Spezifikationen) in
ihrem Fall identifizieren (Bajwa et al., 2012, S.179). Zur Disambiguierung fiithren
sie eine syntaktische Analyse durch, indem sie erzeugte Dependenzbdume mit UML-
Klassenmodellen abgleichen®’, die zusammen mit dem Ursprungstext bereitgestellt
werden. Durch dieses Vorgehen kénnen sie die Genauigkeit des Stanford Parsers von
85% auf 93% (attachment ambiguity) und von 97% auf 99% (Homonymie) erhshen
(Bajwa et al. 2012; Shah und Jinwala 2015). Wie Shah und Jinwala (2015, S. 3)
allerdings anmerken, besteht hierbei die Gefahr, dass Ambiguitéiten, die nur im
UML-Klassenmodell bestehen, erst durch dessen Hinzunahme als weiterer Kontext,
mit in die Spezifikation aufgenommen werden.

Die Koordinationsambiguitét ist im Vergleich zur zuvor genannten Ambiguitét
ein weniger populdres Themengebiet im Bereich der maschinellen Verarbeitung von
Softwareanforderungen und wird vor allem durch die vielzitierte Arbeit von Berry
et al. (2003) als Problem in den Fokus geriickt. Auch sonst existieren zu diesem The-
ma vergleichsweise wenige Arbeiten (Nakov und Hearst, 2005, S. 840; Chantree et al.,
2007, S.287) — einen Uberblick geben sowohl Chantree et al. (2007, S.288f.) als auch
Yang et al. (2010c, S. 61). Dabei kann Koordinationsambiguitét iiberall dort auftreten,
wo koordinierende Konjunktionen genutzt werden und ist insbesondere im Englischen
problematisch, da Konjunktionen dort hochfrequent auftreten (Chantree et al., 2007,
S.288). Nach Chantree et al. (2007, S.288) machen ,,and“ und ,, or* zusammen 3%
der Wérter im British National Corpus (BNC)* aus, was eine beachtliche Anzahl
darstellt. Wie auch bei Yang et al. (2010c) und Chantree et al. (2007) liegt der

387, B. wird die Kookkurrenz lex. Einheiten in Form von Quadrupel (v, n1, p, n2) abgespeichert.
39Tn Bailey et al. (2015, S. 13) stehen den menschlichen Entscheidern nur Quadrupel zur Verfiigung,
withrend in Lapata und Keller (2005, S.23) bei Kenntnis des gesamten Satzes getestet wird.
49Das Verfahren sieht vor, dass zusitzliche Kontextinformationen (dhnlich zu genannten Thesauri)
aus den UML-Diagrammen extrahiert werden und eine syntaktische Priiferenz ermdoglichen.

4Siehe weiterfithrend: http://www.natcorp.ox.ac.uk (St‘dnd: 13.01.17).

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 59

Fokus in dieser Arbeit auf den Konjunktionen ,,and“ und , or“. Die Erkennung von
potentiell ambigen Wortkonstellationen ist iiber syntaktische Muster méoglich. So
prisentieren beispielsweise Yang et al. (2010c, S.54) diesbeziiglich eine Auswahl
syntaktischer Muster, die sie ,, Construction patterns used in coordination ambiguity*
nennen. Agarwal und Boggess (1992) erkennen Koordinationen unter Hinzunahme
von POS-Tags, ein simples aber effektives Vorgehen, das von Chantree et al. (2007,
S.290) als sinnvoller initialer Schritt in einem Gesamtsystem zur Disambiguierung
genannt wird. Chantree et al. (2005) testen dariiber hinaus in ihrer Arbeit die Hypo-
these, dass die wahrscheinlichste Lesart einer Koordination iiber die Wortverteilung*?
in einem generischen Korpus gefunden werden kann (Chantree et al., 2005; Chantree
et al., 2007). Dieses Vorgehen erinnert an die Arbeit von Resnik (1999), der die
semantische Ahnlichkeit zwischen Wortern zur Disambiguierung hinzuzieht und
welche Chantree et al. (2005) auch als Vergleichswert heranzichen. Dariiber hinaus
existieren Ansitze, die Koordinationsambiguitéit aufzulosen versuchen, indem sie
linguistische Merkmale (z. B. Gro$- und Kleinschreibung, Kommata) der Konjunktion
heranziehen (Okumura und Muraki, 1994) oder indem Sie die Kookkurrenz, also das
gemeinsame Auftreten von lexikalischen Einheiten (Modifikatoren und verbundene
Worter), beriicksichtigen und Regeln und Muster auf Grundlage verschiedener linguis-
tischer Ressourcen ableiten (Yang et al., 2010c, S.61). Beispielsweise werden online
verfiighare Inhalte und speziell aus diesen abgeleitete Charakteristika herangezogen
(z.B. Nakov und Hearst, 2005, S.839{f.). Goldberg (1999) wiederum nutzt das WSJ,
um die Disambiguierung in den Féllen der syntaktischen Struktur ,N; P Ny CC N3“
wie zum Beispiel in ,, collection of files and documents® zu ermoglichen.

Speziell auf Anforderungsbeschreibungen gehen auch die Arbeiten von Chantree
et al. (2006) sowie Yang et al. ein (Yang et al., 2010a; Yang et al., 2010b; Yang et al.,
2010c), wobei nicht die Disambiguierung im Mittelpunkt steht, sondern die Gefahr
der Fehlinterpretation, die von einer spezifischen Koordinationsambiguitét ausgeht
(Yang et al., 2010b, S.1218). Diesem Ansatz liegt die Annahme zu Grunde, dass die
meisten Ambiguitaten (zumindest von Menschen) nicht falsch interpretiert werden
und daher nicht schiidlich sind (Yang et al., 2010b, S. 1218). Dies ist im Rahmen der
vorliegenden Arbeit interessant, da eine Beachtung nur schédlicher Ambiguitéiten
zu einer Minimierung der Laufzeit fithren wiirde — allerdings miisste sichergestellt
werden, dass die Ambiguitdten auch in maschineller Verarbeitung unschédlich sind.

3.3.1.4 Automatische Koreferenzauflésung

Koreferenzauflosung ist auch in der Verarbeitung natiirlichsprachlicher Anforde-
rungen von erheblicher Bedeutung. Korner (2014) merkt allerdings an, dass viele
Verfahren sich ,[...] hauptséchlich mit der Auflésung von Personalpronomina und
den dazugehérigen Bezeichnern/Namen® (Kérner, 2014, S. 174) beschéftigen und im
Softwareanforderungskontext unerprobt sind.

Um referentielle Ambiguitdt (s. Abschnitt 2.1.3) erkennen und kompensieren zu
kénnen, miissen zuerst Referenten und zugehérige (sowie moglicherweise zugehorige)
Referenzausdriicke erkannt werden. Es existiert eine Reihe von Verfahren zur Ko-

42Betrachtet wird, ob lexikalische Kopfe vermehrt mit ihrem Modifikator oder mit dem, durch
Koordination verkniipften, zweiten Kopf als syntaktische Einheit auftreten.

60 3 Stand der Wissenschaft und Technik

referenzauflosung, die bereits zur Erfiillung dieser Aufgabe mit Komponenten zur
Auflésung von referentieller Ambiguitit ausgestattet sind.

Ziel dieser Verfahren ist es, Koreferenzketten zu bilden, was bedeutet, koreferente
Referenzausdriicke zusammen darzustellen (Stede, 2012, S.50). Eine Sonderform
sind Verfahren, die auch Singletons erkennen — also Referenten, die nur einmalig im
Text vorkommen (z. B. Recasens et al., 2013). Einen Uberblick iiber die Thematik
der Koreferenzresolution geben unter anderem Stoyanov et al. (2009) sowie Mitkov
(1999). Ambiguitét nimmt dabei bei Mitkov (1999) einen hohen Stellenwert ein.

Ansitze der Anaphernresolution konnen in , Linguistische Anséatze®, ,, Heuristiken“
und ,,Maschinelles Lernen® unterteilt werden (Carstensen et al., 2010, S.4001f.). An
anderer Stelle findet sich eine Aufteilung von Verfahren der Koreferenzanalyse in
,» Wissensbasierte Ansétze“ und ,,Maschinelle Lernverfahren“ (Geierhos, 2010, S. 94).
Unter anderem Prokofyev et al. (2015, S.463) wiederrum unterteilen Verfahren
hinsichtlich der eingebundenen Ressourcen in ,,wissensreich® (engl. knowledge-rich)
und ,,wissensarm® (engl. knowledge-lean).

Wissensarme Verfahren, die in vielen Féllen nur auf wenigen Regeln, aus-
gewihlten Features sowie morphologischen als auch syntaktischen Informationen
beruhen (z. B. Lee et al., 2011; Bengtson und Roth, 2008; Mitkov, 1998), erreichen
teils sehr gute Evaluationswerte (Harabagiu et al., 2001, S.1). An dieser Stelle ist
beispielsweise das Centering-Modell (Grosz et al., 1995) als frither linguistischer
Ansatz der Anaphernresolution zu nennen. Carstensen et al. (2010, S. 408) bezeichnen
den Ansatz von Lappin und Leass (1994) als wichtig im Bereich der Heuristiken.

Bei der Anwendung wissensreicher Verfahren stehen die Ressourcen im Mit-
telpunkt, wobei die herangezogenen Wissensquellen dabei vielféltiger Natur sind.
Vielfache Verwendung finden WordNet (Huang et al., 2009; Ponzetto und Strube,
2006; Markert und Nissim, 2005; Harabagiu et al., 2001) und umfangreiche Korpora
(Haghighi und Klein, 2009; Yang und Su, 2007; Markert und Nissim, 2005). Die
Akquise von Wissen ist aber nach wie vor zeitintensiv, aufwindig sowie fehleranféllig
und damit der sprichwortliche Flaschenhals vieler Verfahren (Uryupina et al., 2012,
S.185; Harabagiu et al., 2001, S.1).

Webressourcen wie die Wikipedia sind aufgrund ihres Umfangs (Haghighi und
Klein, 2009; Yang und Su, 2007) und auch wegen ihrer internen Verkniipfung be-
liebt (Kobdani et al., 2011; Bryl et al., 2010). So nutzen beispielsweise Strube und
Ponzetto (2006) Wikipedia zur Berechnung der semantischen Ahnlichkeit von Re-
ferenzausdriicken als Erweiterung (zusétzliches Feature) ihres ML-Verfahrens zur
Koreferenzauflosung (Ponzetto und Strube, 2006).

Uber einzelne Ressourcen hinaus bietet das Semantic Web eine bisher nicht dage-
wesene Menge an semantisch angereicherten Datenbestéinden und ist aufgrund dieses
Umfangs sowie der Struktur pridestiniert fiir die Anwendung in NLP-Applikationen,
so auch fiir die Koreferenzauflosung. Bryl et al. (2010, S.759) weisen jedoch dar-
auf hin, dass die Erweiterung bestehender Verfahren der Koreferenzauflosung um
diese Ressourcen bei weitem kein trivialer Akt ist. Insbesondere benennen sie die
Heterogenitéit und die Ambiguitit der verschiedenen Ressourcen im Semantic Web
als problematisch. Dariiber hinaus besteht ein Problem in der Wissensverteilung
zu manchen Themen existiert viel, zu anderen Themen wenig Wissen (Bryl et al.,
2010, S.759). Somit kann eine ausreichende Abdeckung nicht garantiert werden.

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 61

Diesbeziiglich untersuchen Uryupina et al. (2012) die zwei etablierten Webressourcen
Wikipedia und YAGO hinsichtlich einer moglichen Verbesserung in der Leistung von
Systemen zur Koreferenzauflésung. Hierzu extrahieren sie semantische Informationen
und integrieren diese in das Beautiful Anaphora Resolution Toolkit (BART). Dabei
stellen sie fest, dass eine Verbesserung nur erreicht wird, wenn Mafinahmen zur er-
weiterten Disambiguierung und Filterung der Ressourcen herangezogen werden. Die
daraufhin ausgearbeiteten Losungen zur Reduzierung des Rauschens in den Daten
basieren auf der Anwendung von Disambiguationswerkzeugen und Pruning, um stark
generische Informationen zu entfernen. Auch Rahman und Ng (2011) kénnen durch
Hinzunahme von Weltwissen (YAGO) die Aufldsung von Koreferenzen verbessern.
Dariiber hinaus beziehen sie auch FrameNet mit ein. Ressourcen wie FrameNet und
VerbNet werden oftmals aufgrund ihrer Strukturiertheit und semantischen Anno-
tationen herangezogen. Dariiber hinaus nutzen Ng (2007) zur Akquise von Wissen
beispielsweise die Penn Treebank, die semantisch annotierte Nominalphrasen enthélt.
Das Problem des begrenzten Ressourcenumfangs bleibt aber bestehen.

In Tabelle 3.6 sind Verfahren der automatischen Koreferenzresolution, zusammen
mit einer Aufteilung in ,regelbasiert* (Reg.) und ,,datenbasiert* (Dat.), aufgelistet,
wobei bereits eine Vorauswahl getroffen wurde: Fiir diese Arbeit sind nur solche
Verfahren relevant, fiir die eine Implementierung vorliegt bzw. Zugriff auf alle not-
wendigen Ressourcen gegeben ist und bei denen es sich nicht nur um primére
Experimentierumgebungen handelt. Weiterhin enthélt Tabelle 3.6 Angaben dariiber,
ob sich die Verfahren in aktiver Weiterentwicklung befinden (e).

Als Beispiel ist BART anzufiihren, dass ein modulares Koreferenzresolutionssystem
darstellt (Carstensen et al., 2010; Versley et al., 2008) und dabei verschiedene
statistische Ansétze sowie ein einfaches Anpassen der Features unterstiitzt. Allerdings
handelt es sich dabei primér um eine Entwicklungsumgebung und wurde daher unter
einen anderem Schwerpunkt entwickelt (Versley et al., 2008, S.9,11), als es fiir diese
Arbeit erforderlich ist (z. B. Geschwindigkeit).

Nr. Ansatz Quelle Aktiv Reg. Dat.
1 Ilinois Bengtson und Roth (2008) . o .
2 CherryPicker Rahman und Ng (2009) o o o
3 Reconcile Stoyanov et al. (2010) - o .
4 ARKref O’Connor und Heilman (2013) o . o
5 dcoref Lee et al. (2013) B o
6 Berkeley Durrett und Klein (2013) - o .
7 HOTCoref Bjorkelund und Kuhn (2014) o o .

Tabelle 3.6: Ansiitze zur automatischen Koreferenzauflésung

Im Folgenden werden zwei aktive Verfahren detaillierter vorgestellt. Das dcoref (5)
ist Bestandteil des Stanford CoreNLP Natural Language Processing Toolkits (Manning
et al., 2014). Es ermoglicht die Erkennung von Referenzausdriicken und die Auflosung
von pronominaler sowie nominaler Koreferenz (Lee et al., 2013) und befindet sich in
aktiver Entwicklung*®. Dabei werden bewiihrte Vorgehensweisen deterministischer,

43Siehe weiterfithrend: http://www-nlp.stanford.edu/software/dcoref.shtml (Stand: 11.01.17).

62 3 Stand der Wissenschaft und Technik

regelbasierter Systeme (Transparenz und Modularitét) sowie des ML (weitreichende
Informationen und prézise Features) kombiniert und sequenziell angewendet (Lee
et al., 2013, S.887f.). Als eine Ressource wird dabei initial Wikipedia herangezogen
(Lee et al., 2013, S.895). Die sogenannte Siebarchitektur (engl. sieve architecture)
basiert darauf, verschiedene Koreferenzmodelle sequenziell, geordnet nach Prizision,
anzuwenden, wobei die Anwendung stets auf der Ausgabe der vorherigen Komponente
beruht. Vielfache Anwendung erféhrt dcoref aufgrund des modularen Aufbaus und der
herausragenden Performanz. Dabei ist dcoref nicht génzlich ohne Anpassungen an die
jeweilige Sprache (z. B. Zhang et al., 2012) und Doméne anzuwenden, was Passonneau
et al. (2015, S. 243,245 ff.) exemplarisch anhand der Doméne , Finanznachrichten*
aufzeigen. Allerdings kommt das Toolkit den Entwicklern hier durch eine hohe
Konfigurierbarkeit entgegen®‘.

Als datenbasiertes Verfahren steht das Illinois Coreference Package (1) zur
Verfiigung, welches von der University of Illinois at Urbana-Champaign entwickelt
wird. Es umfasst ein Tool zur Resolution von Koreferenzen sowie eine Reihe von dazu-
gehorigen NLP-Features (z. B. WordNet Relationen, semantische Klassen), angelehnt
an Culotta et al. (2007). Nach Bengtson und Roth (2008, S.6) liegt der Schwerpunkt
auf der englischen Sprache — weitere Sprachimplementierungen sind nicht bekannt.
Der modulare Aufbau des Verfahrens erlaubt eine Evaluation der einzelnen Features
hinsichtlich des Beitrags zur Koreferenzauflosung (Bengtson und Roth, 2008, S. 4, 8).

Zur Evaluation werden spezielle Korpora verwendet (s. Abschnitt 3.3.1.1 sowie
Recasens Potau, 2010, S.10). Tabelle 3.7 zeigt quantitative Evaluationsmafle der
angefithrten Ansitze — soweit vorhanden. Gezeigt wird das harmonisierte F;-Maf*®.
Die Ansétze basieren in der Regel auf englischer Sprache, jedoch sind weitere Faktoren
von Relevanz, sodass ein direkter Vergleich schwer fillt bzw. nur einen Eindruck
der Erkennungsqualitdt geben kann. Von Bedeutung ist unter anderem auch die
jeweilige Konfiguration, wodurch die folgenden Angaben nur eine Ubersicht geben
konnen. Weiterhin weist Recasens Potau (2010) auf die generelle Problematik der
Vergleichbarkeit hin: |, The lack of a reliable metric, the use of different corpora
(and of different portions of the same corpus) and the reliance on true or system
mention boundaries [...] make any comparison between different systems meaningless*
(Recasens Potau, 2010, S. 19).

Zwar existiert augenscheinlich eine Vielzahl an Verfahren zur automatischen
Koreferenzresolution, allesamt stehen aber dem Problem der Ambiguitéit gegeniiber
(z.B. Raghunathan et al., 2010, S.500), wie Poesio und Artstein (2005, S.76) am
Beispiel der Anaphernresolution aufzeigen. Dabei zeigt sich Baldwin (1997, S.39)
wenig iiberrascht davon, dass kurze Texte tendenzios eher ambig sind als Texte, die
voll umfanglich verfasst wurden.

44Giehe weiterfithrend: http://nlp.stanford.edu/software/dcoref.shtml (Stand: 110117)
45CEAF wird unterteilt in Mention (M) und Entity-basiert (E).

46 ACE04, vgl. Bengtson und Roth (2008, S. 300)

47T ACE05, vgl. Rahman und Ng (2009, S.976)

48 ACE05, vgl. Reconcile Development Team (2011)

49 ACE04-Roth-Dev, vgl. O’Connor und Heilman (2013, S. 7)

50CoNLL11-Dev, vgl. Stanford NLP Group (2016)

51CoNLL12-Dev, vgl. Stanford NLP Group (2016)

52CoNLL12, vgl. Berkeley NLP Group (2016)

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 63

Nr. Ansatz Evaluation
MUC B? CEAF
1 Ilinois*® 75,8 80,8 -
2 CherryPicker®” 69,3 61,4 (M) 59,5
3 Reconcile®® 59,9 69,1 -
4 ARKref* - 80,5 -
5 dcoref* 60,7 52,1 (E) 50,1
dcoref°! 65,0 54,5 (E) 56,1
6 Berkeley®? 70,6 582 (E) 54,8
7 HOTCoref> 70,7 58,6 (E) 55,6

Tabelle 3.7: Ansitze zur Koreferenzauflssung (Fq-MafB)

Verfahren der Koreferenzresolution begegnen dieser Herausforderung durch aus-
gewihlte disambiguierende Faktoren (Regeln, Features). Lee et al. (2011, S. 28) weisen
dabei auf die Notwendigkeit hochgradig préziser lexikalischer und syntaktischer Fea-
tures hin. Allerdings konnen auch mit prazisen Features nicht alle Ambiguitdten ohne
semantisches Zusatzwissen aufgelost werden. Herausgestellt werden sollen an dieser
Stelle Verfahren, die als Nachbearbeitung auf Koreferenzketten angewendet werden,
um Ambiguitiat aufzulosen. Prokofyev et al. (2015) entwickeln mit SANAPHOR
ein System, dass auf das semantische Web zuriickgreift und annotierte Referenz-
ausdriicke durch zusétzliches Wissen (z. B. Wikipedia) zu disambiguieren versucht.
Bestehende Koreferenzketten werden wenn notwendig modifiziert®. Auch Bansal und
Klein (2012) nutzen zur Disambiguierung Web features, die auf Reconcile angewendet
werden (Stoyanov et al., 2010).

Der Vollstandigkeit halber ist noch auf Verfahren zu verweisen, die Ambi-
guitét erkennen aber nicht auflosen. Yang et al. (2011) présentieren beispielsweise
ein Klassifikationsverfahren, dass potentiell schiadliche anaphorische Ambiguitéiten
(engl. potentially nocuous ambiguities), das bedeutet Ambiguitéiten, die sehr wahr-
scheinlich fehlinterpretiert werden, erkennt und Endanwender iiber deren Existenz
informiert (Yang et al., 2010a; Yang et al., 2010b; Yang et al., 2010¢). Es wird
demnach nicht versucht, die Ambiguitit durch die Wahl der am wahrscheinlichsten
Disambiguation zwangsldufig aufzulosen (Yang et al., 2011, S. 186). Dies ist aber im
Rahmen der Zielsetzung einer weitestgehenden Automatisierung der Anforderungs-
kompensation erforderlich.

3.3.2 Reduktion von Unvollstandigkeit

Vollstéandigkeit wird in der Literatur oftmals als eine elementare Qualitétseigenschaft
von Anforderungen und in einem Atemzug mit Konsistenz, Eindeutigkeit und
Verifizierbarkeit genannt (Grande, 2011, S.83f.; Fabbrini et al., 2000, S.3f.; 1E-
EE, 1998, S.4). Dabei bleibt unklar, was unter dem Begriff der Vollstandigkeit
(engl. completeness) verstanden wird, welcher Bezugspunkt gewihlt wird (z. B. eine
Anforderung oder eine Dokumentation von Anforderungen) und wann der Zustand

53CoNLL12, vgl. Bjérkelund und Kuhn (2014, S. 53 f.)
*4Demonstriert wird das Verfahren an Stanford dcoref.

64 3 Stand der Wissenschaft und Technik

der Vollstandigkeit erreicht ist (Firesmith, 2005, S. 27; Ferrari et al., 2014, S.251.).
Firesmith (2005, S.41) und Davis et al. (1993, S. 145) stellen diesbeziiglich in Frage,
ob dieser Zustand generell erreicht werden kann. Nach Pekar et al. (2014, S.243) ist
Unvollstandigkeit nach Ambiguitéit das in der Literatur am meisten identifizierte
Problem im Kontext von Anforderungstexten.

Oftmals beziehen sich vollstindige Anforderungen (engl. complete requirements)
oder die Vollstéindigkeit von Anforderungen (engl. completeness of requirements) auf
das génzliche Fehlen von Anforderungen innerhalb einer Anforderungsdokumentation.
In dieser Arbeit liegt der Fokus auf vorhandenen, aber unvollstindigen Anforde-
rungen, die beispielsweise von Firesmith (2005, S.36{f.) als ,,complete individual
requirements* bezeichnet werden. Allerdings ist dieser Begriff noch weiter zu erldutern,
da Vollstandigkeit in Abhéngigkeit der Art von Anforderung (s. Abschnitt 1.2) un-
terschiedlich ausgeprigt sein kann. Eine NFA kann vollstandig sein, obwohl Infor-
mationen fehlen, die eine FA voraussetzen wiirde (Firesmith, 2005, S.361f.). So
kann der Satz ,,Die Sicherheit wird durch Verschliisselung aller ausgehender E-Mails
gewdhrleistet fiir eine NFA hinreichend sein, wiahrend er fiir eine FA nicht geeignet
ist, da Details zur funktionalen Umsetzung (z. B. Verschliisselung durch PGP) fehlen.

Weitgehende Einigkeit besteht in den Auswirkungen, die unvollsténdige Anfor-
derungen fiir ein Softwareprodukt (Ghazarian, 2009), die Produktsicherheit (HSE,
2003) oder ein gesamtes Projekt (Kamata und Tamai 2007; Standish Group Inter-
national 1995; Bell und Thayer 1976) haben kénnen. Im Kontext dieser Arbeit ist
auch auf die negativen Auswirkungen auf die Kundenakzeptanz und -zufriedenheit
hinzuweisen (Firesmith, 2005, S.28; Davis et al., 1993, S.142). Dariiber hinaus
kann Unvollsténdigkeit weitere Formen der Ungenauigkeit, beispielsweise Ambi-
guitét, begiinstigen oder sogar verursachen (s. Abschnitt 2.1.2). Das Phinomen der
Unvollstandigkeit ist demnach nicht als isoliertes Phénomen zu betrachten.

3.3.2.1 Identifikation unvollstandiger Anforderungen

Der Identifikation unvollstéindiger Anforderungen widmen sich sowohl Praxis als
auch Wissenschaft seit mehreren Jahrzehnten (z.B. Fagan, 1976). Bereits Boe-
hm (1984, S.86) fiihrt eine Vielzahl an Verifikations- und Validierungstechniken
(z. B. Lesetechniken, Checklisten und Interviews aber auch mathematische Beweise
und Modelle) auf, die unter anderem das Unvollstandigkeitsphénomen adressieren.
Im Fokus der Literatur stehen dabei generelle Uberlegungen zur Identifikation sowie
Méoglichkeiten der (softwaretechnischen) Unterstiitzung (z. B. Decker et al., 2007).
Im Folgenden werden manuelle sowie softwareunterstiitzte Identifikationverfahren
angefithrt. Manuelle Verfahren dienen in dieser Arbeit allerdings primér der themati-
schen Abdeckung. Einen umfassenden Uberblick geben beispielsweise Aurum et al.
(2002) sowie Laitenberger und DeBaud (2000).

Manuelle Verfahren

Eine naheliegende Moglichkeit, Unvollsténdigkeit zu erkennen, ist ein Abgleich mit
den eigenen, individuellen Erfahrungswerten wéhrend des Lesens. Dieses Vorgehen
wird ad hoc review genannt und ist fiir Anforderungsbeschreibungen in natiirlicher
Sprache geeignet (Shull et al., 2000, S. 75). Es ist aber weder systematisch im Aufbau,

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 65

noch fokussiert und nur schwer nachzuvollziehen, geschweige denn an neue Projek-
tumstinde anzupassen (Shull et al., 2000, S. 74). Weitere Ansitze zur Identifikation
(und Kompensation) von Unvollstandigkeit wie von Yadav et al. (1988) basieren
ebenfalls oftmals auf der Begutachtung durch Dritte und sind daher geprigt von
Subjektivitit, eingeschrinkten Perspektiven bzw. individuellen Schwerpunkten sowie
einer inkonsistenten Bewertung (Menzel et al. 2010, S. 15; Espafia et al. 2009, S. 1).
Auch weil die Wahrnehmung von Vollstandigkeit aufgrund von expliziten und impli-
ziten Annahmen stark variieren kann (Albayrak et al., 2009). Eine standardisierte
Vollstandigkeitspriifung, wie von Firesmith (2005, S. 39) vorgeschlagen, kann diese
Probleme minimieren aber nicht génzlich ausschliefen.

Firesmith (2005, S.39) empfiehlt daher im Umgang mit , individual requirements*
unter anderem die Erstellung von Checklisten fiir Anforderungsarten und deren
Komponenten sowie die Nutzung von projektspezifischen ,, requirement completeness
guidelines and/or standards“ (Firesmith, 2005, S.39). Checklisten sind dabei als
Vorgehen unter anderem aufgrund einer ausgepréigteren Struktur und besseren
Anpassungsmoglichkeiten an neue Projektumstéinde den ad hoc reviews vorzuziehen
(Shull et al., 2000, S. 74). Dariiber hinaus existieren systematische Lesetechniken wie
das ,, Perspective-Based Reading* (Shull et al., 2003) oder das ,, Defect-Based Reading“,
die in Form von Schritt-fiir-Schritt-Verfahren auftreten (Shull et al., 2001). Dabei
werden mehreren Lesern unterschiedliche Stakeholder-Perspektiven bzw. mogliche
Softwaredefekte mit konkreten Fragestellungen (z. B. zur Vollstindigkeit) zugeteilt,
um eine moglichst grofle Spezifiziertheit und Vollstdndigkeit zu erreichen.

Aurum et al. (2002, S.146ff.) zeigen dabei auch softwaretechnische Un-
terstiitzungsmoglichkeiten auf, die den Softwareinspektionsprozess effizienter
gestalten sollen. Daran ankniipfend werden im Folgenden softwareunterstiitzte
Ansitze zur Identifikation von Unvollstdndigkeit herangezogen.

Softwareunterstiitzte Verfahren

Softwareunterstiitzte Verfahren identifizieren Unvollstandigkeit zum einen durch den
Abgleich einer Anforderungsbeschreibung mit weiteren Ressourcen, beispielsweise
Qualitdtsmodellen oder Ontologien. Zum anderen gibt es Verfahren, die unter anderem
doménenspezifische Worterbiicher als Unvollstédndigkeitsindikatoren heranziehen.

Huertas und Judrez-Ramirez (2012) erkennen unvollstdndige Anforderungen bei-
spielsweise iiber einen Abgleich mit vorgegebenen ,, W-Fragen“®. So gilt eine An-
forderung (in diesem Fall ein Satz) als vollstindig, wenn Actor (, Who*), Function
(, What*) und Detail (,, Where / When*) angegeben sind.

Systematischer gehen Fabbrini et al. (2001) vor, die mit QUARS (Quality Analyzer
of Requirement Specification) eine Anwendung bereitstellen, die auf Grundlage eines
Qualititsmodells die Uberarbeitung von Anforderungsbeschreibungen durch einen
Stakeholder erméglicht. Im Rahmen der Specification completion wird auf Satzbasis
nach unvollsténdig spezifizierten Subjekten gesucht (z. B. flow“) die einer weiteren
Spezifizierung bediirfen (z.B.,data flow*). Ahnlich gehen Fantechi und Spinicci
(2005) vor, die mit dem Java Requirement Analyzer einen Ansatz vorstellen, der

550Offene ,,W-Fragen“ sind Fragen, die mit einem W-Wort beginnen (z. B.,,Wann*).

66 3 Stand der Wissenschaft und Technik

die Satzstruktur analysiert und mit speziellen Worterbiicher abgleicht, um fehlende
Bestandteile eines Subject-Action-Object-Triples zu identifizieren.

Unvollstindige Spezifizierung greifen auch Korner (2014) sowie Kérner und Brumm
(2010) zur Verbesserung natiirlichsprachlicher Anforderungen auf: Unvollstindig
spezifizierte Prozessworter (engl. incompletely specified process words) und unvoll-
standig spezifizierte Bedingungen (engl. incompletely specified conditions). Korner
und Brumm (2010) stellen dabei eine Anwendung namens Requirements Engineering
Specification Improver (RESI) bereit, die sprachliche Méngel in Anforderungstexten
aufzeigen und im Dialog mit einem Stakeholder kompensieren kann. RESI bezieht
die hierbei notwendigen Informationen (z.B. Pridikate und Leerstellen) aus Ressour-
cen wie ResearchCyc®® und semantischen Wortdatenbanken wie WordNet (Miller,
1995). Vergleichbar ist der Ansatz von Landhé&ufier et al. (2015), der unvollstandige
Nominalisierungen erkennt und Nutzern zur Korrektur anzeigt.

Geierhos et al. (2015) diskutieren eine Vorgehensweise, die iiber den Abgleich
mit einer Ontologie hinausgeht und auf doménenspezifischer Ahnlichkeitssuche
(engl. similarity retrieval) basiert. Ziel ist es, unbeschrinkte Anforderungsbeschrei-
bungen zu erméglichen und Endanwender mittels Textvorschldgen zu unterstiitzen
(Geierhos et al., 2015, S.277). Dabei werden natiirlichsprachliche Anforderungsbe-
schreibungen, die in Form und Inhalt einmalig sind (UGC), auf ihre semantischen
Hauptkomponenten reduziert, indiziert und iterativ als Vorlagen verwendet. Hierbei
werden doménenspezifischen Ontologien herangezogen, um fehlende Informationen
im Eingabetext zuverldssig durch Informationen aus den Vorlagen kompensieren zu
kénnen (Geierhos und Bdumer, 2016).

Ontologien werden auch andernorts zur Erkennung von Unvollstédndigkeit einge-
setzt (Bhat et al. 2014; Kaiya und Saeki 2006; Kaiya und Saeki 2005). So présentieren
Verma und Kass (2008) mit RAT (Requirements Analysis Tool) eine Anwendung,
die automatisch eine Vielzahl von syntaktischen und semantischen Analysen auf
natiirlichsprachlichen Anforderungsdokumenten anwendet und Texte basierend auf
, Best Practices der Branche® priift. Dabei werden sowohl unvollstédndige Anforde-
rungen (z. B.offene Leerstellen eines Pradikats) als auch fehlende Anforderungen
identifiziert (Verma und Kass, 2008, S.753). Als Ressourcen werden benutzerspezifi-
sche Glossare, kontrollierte Syntax und doménenspezifische Ontologien einbezogen.

Es miissen allerdings nicht zwangslaufig klassische Lexika oder Ontologien als
Ressourcen dienen. Ferrari et al. (2014) erméglichen mit ihrem Completeness Assistant
for Requirements (CAR) die Messung von Vollstandigkeit durch Hinzunahme von
Dokumenten, die wiahrend der Aufnahme von Anforderungen anfallen. Vollstandigkeit
zeichnet sich dabei dadurch aus, dass alle in den Dokumenten genannten Konzepte
und Abhéngigkeiten auch in den formulierten Anforderungen wiederzufinden sind.
Interessant an diesem Ansatz ist das Vorgehen, Ausdriicke und Verbindungen zwischen
Ausdriicken aus den Dokumenten zu extrahieren und als Abgleich zu nutzen.

3.3.2.2 Kompensation unvollstindiger Anforderungen

Es existieren nur wenige Arbeiten zur Kompensation unvollstandiger
natiirlichsprachlicher Anforderungen. Verfahren, die natiirlichsprachliche Anforde-

56Siehe weiterfithrend: http://www.cyc.com/platform/researchcyc/ (Stand: 11.01.17).

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 67

rungen unterstiitzen, beschrinken die Anwendung dabei oftmals auf kontrollierte
Sprachen (z.B.Holtmann et al., 2011). Dennoch existieren, wie bereits zuvor im
Rahmen der Identifikationsverfahren dargestellt, Verfahren wie RESI von Koérner und
Brumm (2010), die Vollsténdigkeit im Sinne vollsténdig spezifizierter Prozessworter
behandeln. Einen solchen pridikatbasierten Ansatz prisentieren Baumer und
Geierhos (2016). Die Identifikation unvollstandiger Prédikate basiert dabei auf
bestehenden Techniken im Kontext von Semantic Role Labeling (SRL), die sowohl
Prédikate als auch Argumente erkennen kénnen. Informationen iiber die spezifische
Pradikat-Argument-Struktur (PAS) sind dabei Ressourcen wie Propbank (Palmer
et al., 2005) und FrameNet (Baker et al., 1998) zu entnehmen, wobei in diesem
Fall Propbank genutzt wird. Die Kompensation erfolgt iiber ein speziell angepasstes
IR-Modul, dessen Index mit bereits vorverarbeiteten Anforderungsbeschreibungen
bzw. User Stories gespeist wurde. Dies ermoglicht kontextspezifische Suchanfra-
gen (auch: Kompensationsanfragen), die eine geeignete Instanz fiir eine fehlende
Instantiierung im jeweiligen Kontext zuriickgeben kénnen.

Eine Weiterentwicklung stellt der Ansatz von Geierhos und Baumer (2016) dar,
der ebenfalls auf eine pradikatbasierte Kompensation zuriickgreift. Zusétzlich wird
die Kompensation durch doménenspezifisches Wissen verfeinert (mithilfe entspre-
chender Ontologien) sowie erweitert (,, Concept Expansion®). Wird beispielsweise
eine geeignete Instanz fiir ein fehlendes Argument gefunden (z. B.,, Friends*), priift
das erweiterte Verfahren, ob &hnliche Instanzen der gleichen semantischen Kategorie
vorliegen und schldgt diese ebenfalls vor (z.B.,, Colleagues® und ,, Family“).

Diese Verfahren unterliegen dabei zwei nennenswerten Limitationen: (1) der nur
begrenzt verfiigharen doménenspezifischen Ressourcen sowie der Performanz existie-
render Semantic Role Labeler. Erstgenanntes ist bereits in Abschnitt 3.2 als Problem
diskutiert worden. Letzteres ist Gegenstand aktueller Forschung, so zum Beispiel bei
Schenk und Chiarcos (2016) sowie Laparra und Rigau (2013).

Ferrari et al. (2014) schlagen, dhnlich zu Geierhos und Baumer (2016), ein auf
Textvorschldgen basiertes Verfahren vor, was Unvollstandigkeit feststellt und interak-
tiv behebt. Den Aspekt fehlender Ressourcen kompensieren sie, indem bestehende
Dokumente herangezogen werden, die wihrend der Aufnahme von Anforderun-
gen anfallen, beispielsweise bei Planungstreffen. CAR extrahiert relevante Terme
und Termbeziehungen aus den Dokumenten und untersucht eine gegebene Anfor-
derungsbeschreibung hinsichtlich vorkommender Terme und der Ubereinstimmung.
Abbildung 3.7 zeigt diesbeziiglich die CAR-Programmoberfliche, welche sowohl die
Anforderungen (erste Textbox) als auch die zusétzlichen Dokumente als Freitext
(zweite Textbox) beinhaltet (Ferrari et al., 2014, S. 311f.).

Stetig wird die Vollstindigkeit der Anforderungen berechnet (vgl. Ferrari et al.,
2014, S.31) und es werden dem Benutzer Terme vorgeschlagen, auf dessen Grundlage
eine weitere Anforderung zu schreiben und der Anforderungssammlung hinzuzufiigen
ist. Wird eine neue Anforderung hinzugefiigt, wird die Vollstédndigkeit erneut berech-
net. Wie in Abbildung 3.7 ersichtlich ist, werden kontrollierte natiirlichsprachliche
Anforderungsbeschreibungen vorausgesetzt.

68 3 Stand der Wissenschaft und Technik

8006 Compl Assi: for Req

Write a requirement with the following terms:
Get other terms

Suspend Terms

i

Suspend Relations

]The ATS system shall notify the inhibition of control of the train doors to the train conductor|]

5. The ATS system shall receive train location information Add
from the trains

6. The ATS system shall support a function

to force a train to skip a station

7. The ATS system shall support a function that allows

the inhibition of control of the train doors

Concept Completeness 0.0859
Interaction Completeness 0.0247

D L T e e e e e
authority having jurisdiction. If this function is provided, a CBTC system may indicate
the train hold information to the train operator and EONAUEEOR on their displays, and/or
prevent a CBTC-equipped train from departing the station in ATO mode.

6.3.6.3 Skip station stop.

IAn ATS system may include facilities to direct a CBTC-equipped train or group of
CBTC-equipped trains to pass through a station or group of stations without stopping. For
trains operated with crews, a CBTC system may indicate the skip station information to the
train operator and EondUEtoR on their displays. In ATO mode, the train shall automatically
skip the designated stations.

6.3.6.4 Door _ inhibit.

An ATS system may include facilities to inhibit (and subsequently permit) caTC NSNS of
the h, in accordance with 6.2.3.

Abbildung 3.7: Completeness Assistant for Requirements.
Entnommen aus Ferrari et al. (2014, S. 32)

3.3.3 Kombinierte Ansatze

Die Idee, natiirlichsprachliche Anforderungen nicht isoliert auf eine Form der Unge-
nauigkeit oder Unvollstindigkeit zu priifen, sondern mehrere Verfahren der Erkennung
und/oder Kompensation zu kombinieren, findet sich mehrfach in der Literatur. So
existieren sowohl kombinierte Ansétze, die unterschiedliche Formen der Ambiguitét
erkennen kénnen (z. B. Tjong und Berry, 2013; Bajwa et al., 2012) als auch Ansétze,
die beispielsweise Ambiguitéit sowie Unvollstindigkeit erkennen (z. B. Kérner, 2014;
Huertas und Juérez-Ramirez, 2012; Fabbrini et al., 2001).

Einen Uberblick iiber bestehende Forschungsansitze zur Disambiguierung im
Kontext von natiirlichsprachlichen Anforderungen geben Husain und Beg (2015)
sowie Shah und Jinwala (2015). Shah und Jinwala (2015) unterscheiden dabei
Verfahren im Wesentlichen hinsichtlich des Grades an Automatisierung, gewihlten
Ansatzes (Regelbasiert, Ontologie-basiert etc.) und verwendeten Technologien (z.
B. Stanford Parser). Eine weitere umfangreiche Darstellung existierender Ansitze
zur Disambiguierung im Anforderungskontext gibt Bano (2015), die den Fokus
allerdings auf empirische Arbeiten legt. Im Folgenden werden kombinierte Ansétze
der Erkennung und Kompensation von Ambiguitdten sowie Unvollstandigkeit im
Sinne einer bestmoglichen Gesamtiibersicht aufgefiihrt (vgl. Tabelle 3.8).

Tabelle 3.8 listet kombinierte Ansétze hinsichtlich der Dimensionen ,, Defekte®, | Zie-
le, , Eingabe / Ausgabe“ (I/O) und , Interaktion“ auf. ,Defekte® gibt die Abdeckung
der Verfahren wieder. So handelt es sich bei NL20OCL und SR-Elicitor um Verfahren,

3.3 Umgang mit Ambiguitit und Unvollstandigkeit 69

die eine geringe Abdeckung haben und bei QUARS und QuARS.;,ress um Ansétze,
die eine Vielzahl von Defiziten abdecken. Dariiber hinaus unterscheiden sich die
Verfahren auch in der Zielsetzung, wihrend QuARS das Ziel verfolgt, moglichst viele
Defizite in Anforderungstexten zu erkennen, zielen NL20OCL und SR-Elicitor auf die
Erkennung sowie Kompensation ab. Beide Verfahren verzichten dabei auf Benutzerin-
teraktion. Demgegeniiber steht der RESI, welcher eine hohe Benutzerinteraktion bei
der Kompensation ausgewahlter Defizite vorsieht. RESI und der Natural Language
Automatic Requirement Evaluator (NLARE) werden detaillierter vorgestellt, um die
Unterschiede und Besonderheiten aufzuzeigen.

Huertas und Judrez-Ramirez (2012) stellen mit NLARE einen kombinierten Ansatz
vor, der auf FA und die Erkennung von Ambiguitdt, Unvollstiandigkeit und Atoma-
ritét spezialisiert ist. Unter Ambiguitét verstehen die Autoren steigerbare Adjektive
und Adverbien. Unvollstandigkeit bezieht sich auf den Abgleich mit vorgegebenen
W-Fragen (,, Who*, , What“, , Where*, , When*) und Atomaritit bezeichnet das
Qualitdtsmerkmal, dass ein einzelner Satz auch nur einen einzigen Anforderungsge-
genstand beschreiben soll.

& g &
s 8 s S8 L8
T ESTTESS

TTFTITLEIT IS

SIS T TSI T

Lexikalische Ambiguitit (e (e |e | e | e | e | e | o | o | o e

Syntaktische Ambiguitdt o |o|e|o| e |e|e | e | e |0 |0

o Referentielle Ambiguitéit o | o |e|o|efo|ofo|e|o]o

% Vagheit [o|o|e|e|e|[o|oc|e|e|e]o0

ks, Unvollstandigkeit | e e |e o | e |o|o|o|e|e|e
A .

Lesbarkeit |o|o|olo|e]o|o|o|e|o|e

Konsistenz | o|o|o]Jo]e]o|o|o|e|e]|e

Atomaritit |e (e |o|o|e|o|o|o|e|o|e

= Erkennung |e | e |e|e|e (e |e o o e e

S Kompensation | o |o|o]|e|lo|e|e|o|o|o]|o0

o Strukturierte Eingabe | o o |o | e|lo|e|o|o|o|e| e

=~ Strukturierte Ausgabe | o |o|o|e|o|e|e|o|o oo

. Hoch |o|o|o|elo]o|o|lo]o]o]|o

% Mittel | o o |o]o|e]o|o|o|e|o]o

E Niedrig (@ |@e|e|o|o|o|o|e|o|o]o

= Keine |o|o|o]o]o]e|e|o|o|e]|e

Tabelle 3.8: Kombinierte Kompensationsverfahren

57vgl. Huertas und Judrez-Ramirez (2012).

%8vgl. Huertas und Judrez-Ramirez (2013).

vegl. Tjong (2008) sowie Tjong und Berry (2013).
60vgl. Kérner und Brumm (2010) sowie Kérner (2014).
61vgl. Lami (2005).

62vgl. Bajwa et al. (2012).

63vgl. Umber und Bajwa (2011).

70 3 Stand der Wissenschaft und Technik

NLARE nutzt zum Verarbeiten der natiirlichen Sprache das Natural Language Toolkit
(NLTK) und regulidre Ausdriicke (engl. regular expressions, RegEx). Die sequenzielle
Verarbeitung umfasst neben einer Satzgrenzenerkennung und Tokenisierung eine
Rechtschreibkorrektur als Preprocessing (vgl. Abbildung 3.8). Als Ausgabe erhalten
Anwender Hinweise wie ,, The requirement is ambiguous because it contains the word
‘earlier’ and ’later’* (Huertas und Judrez-Ramirez, 2012, S. 375). Eine Kompensation
oder weitere Hilfestellung findet nicht statt.

NLP Data Loader Requirements Evaluator
[Atomicity | [Ambiguity |

Tokenizer
Requirements

Reader ‘» Completeness

Abbildung 3.8: Natural Language Automatic Requirement FEvaluator.
In Anlehnung an Huertas und Judrez-Ramirez (2012, S.373)

Der RESI von Kérner und Brumm (2010) bzw. Kérner (2014) unterscheidet sich
deutlich von NLARE im Hinblick auf (vorgesehene) Benutzerinteraktion, Flexibilitét
und Abdeckung linguistischer Defekte.

RESI ist in der Lage, Anforderungsspezifikationen als Graph einzulesen und auto-
matisiert auf linguistische Defekte zu untersuchen. Werden Defekte gefunden, initiiert
RESI einen Benutzerdialog (Kérner und Brumm, 2010, S.456). Hierbei wird nicht
nur auf die problematischen Textstellen verwiesen, sondern explizite Kompensati-
onshinweise fiir jede Art von Defizit (z. B. unvollstindiges Prozesswort ,, Returning-
Something*) sowie Ausprigung (z.B.,SUBJECT: giver) gegeben (Korner und
Brumm, 2010, S.456{.). Dies erfordert das Einbinden von Ressourcen, die zum einen
das Erkennen der Defizite ermoglichen (Regeln) und zum anderen die zusétzlichen
Informationen zur Kompensation bereitstellen (unterschiedliche Ontologien).

Abbildung 3.9 zeigt den Programmablauf von RESI. Nach dem Einlesen der struk-
turierten Anforderungsspezifikationen wird ein Preprocessing durchgefiihrt, welches
POS-Tagging und Lemmatisierung umfasst. Das daraus resultierende Spezifikations-
objekt wird mittels angewandter Regeln auf linguistische Defizite untersucht, die
vom Benutzer zuvor ausgewahlt wurden. Wie Abbildung 3.9 zeigt, werden die Regeln
iterativ auf das Spezifikationsobjekt angewandt und der Benutzer zur Kompensation
erkannter Defizite aufgefordert. RESI exportiert nach Durchlauf aller gewihlter
Regeln das Spezifikationsobjekt als Graph.

64vgl. Rojas und Sliesarieva (2010).
65vgl. Bucchiarone et al. (2010).
66vgl. Femmer et al. (2016a).
67vgl. Lucassen et al. (2016).

3.4 Diskussion und Zwischenfazit 71

RESI

Initiales

— » Spezifikations-

Objekt

2)Vorverarbeitung

Spezifikation Vorverarbeitetes
. The system delivers data to Spezifikations-
the transmitter... Objekt

Verbessertes
Spezifikations
Objekt

Abbildung 3.9: Requirements Engineering Specification Improver.
Entnommen aus Kérner (2014, S. 60)

3.4 Diskussion und Zwischenfazit

Natiirlichsprachliche Anforderungsbeschreibungen ermoglichen es Endanwendern, an
der Idee des OTF-Computings zu partizipieren und bedarfsgerechte Servicekompo-
sitionen zu nutzen. Wie dargestellt, sind dabei natiirlichsprachliche Anforderungs-
beschreibungen als Ausgangspunkt zu erwarten, die unvollstindig und hochgradig
ambig sind sowie stark im Umfang und Detailgrad variieren. Dies steht im Kontrast
zu den bisher im OTF-Computing genutzten Spezifikationsansétzen fiir Services, die
auf semi-formalen bzw. formalen Sprachen beruhen (Huma et al., 2012; Platenius
et al., 2016). Diese sind ungeeignet, da Endanwender nicht iiber die notwendigen
Fachkenntnisse verfiigen und somit eine uniiberwindbare Einstiegsbarriere vorfinden.

Die natiirliche Sprache als Bestandteil der OTF-Vision bedeutet dabei, dass sie als
alleinige Schnittstelle zum Endanwender fungiert. Alle notwendigen Informationen
miissen aus den Anforderungsbeschreibungen, die Endanwender zur Verfiigung stellen,
extrahiert werden — unter Berticksichtigung genannter Defizite wie Unvollstéandigkeit
und Ambiguitat. Gleichzeitig muss die Interaktion mit dem Endanwender auf ein
Minimum reduziert werden, um eine performante Bereitstellung der gewiinschten
Servicekomposition zu ermoglichen. Aus diesem Grund sind Anforderungsextraktions-
und Kompensationverfahren erforderlich, die a) performant sind und b) keine bis
minimale Benutzerinteraktion erfordern.

Die Extraktion von Anforderungen aus natiirlichsprachlichen Beschreibungen
stellt ein weitestgehend unbearbeitetes Forschungsfeld dar. Nur wenige Ansétze
existieren, die in der Lage sind, Anforderungen aus Flietexten zu extrahieren und
auf die Kernelemente zu reduzieren. Nennenswert ist vor allem das von Dollmann
und Geierhos (2016) entwickelte REaCT, dass zum einen eine Klassifikation von
On- und Off-Topic-Inhalten vornehmen kann und zum anderen die Extraktion von
semantischen Kernelementen vollzieht.

72 3 Stand der Wissenschaft und Technik

Demgegeniiber handelt es sich bei Ungenauigkeit und Unvollstandigkeit in Anfor-
derungsbeschreibungen um Themen des REs, die mit groem Forschungsinteresse
seitens der Wissenschaftsgemeinschaft einhergehen. Dies mag der Tatsache geschuldet
sein, dass es sich dabei nicht um reine RE-Themen handelt, sondern um Themen,
die viele wissenschaftliche Fachbereiche tangieren, darunter insbesondere die Compu-
terlinguistik mit dem Ziel der maschinellen Textverarbeitung.

Nicht zu unterschétzen ist allerdings die Praxisrelevanz dieser Thematik, die sich
in auffillig vielen Kooperationen zwischen Praxis und Wissenschaft in diesem Bereich
abzeichnet. Fehlerhafte Softwareanforderungen stellen eine Gefahr fiir den Projekt-
und Unternehmenserfolg dar und betreffen sowohl kleine Softwaremanufakturen
als auch grofie Softwarehéduser. Schon langst sehen sich neben diesen klassischen
Softwareherstellern zum Beispiel auch Autohersteller (z. B.Mercedes Benz) und
Raumfahrtbehdrden (z.B.NASA%) mit der Notwendigkeit, natiirlichsprachliche
Softwareanforderungen einer Qualitdtskontrolle und Kompensation zu unterziehen,
konfrontiert. Die Notwendigkeit, diese Gefahr zu minimieren, geht mit der Erkenntnis
einher, dass natiirlichsprachliche Anforderungen nach wie vor notwendig sind und
Ungenauigkeit und Unvollstdndigkeit gleichzeitig so vielfdltig auftreten konnen, dass
softwareseitige Unterstiitzung und automatische Kompensation erforderlich ist.

Als Resultat dieser Bemiihungen existiert eine Vielzahl an Ansitzen und Verfah-
ren, die spezifische oder mehrere Formen von Ungenauigkeit und Unvollstéandigkeit
erkennen und in manchen Féllen kompensieren konnen. Diese Ansétze und Verfahren
unterscheiden sich im Vorgehen, Grad der Automatisierung, Aus- und Eingabeforma-
ten, Performanz sowie zahlreichen Annahmen und Umweltfaktoren (vgl. Tabelle 3.8).
Gemein haben sie, dass der Fokus der Entwicklung auf der Erkennung und/oder Kom-
pensation liegt. Dies ist ein wesentlicher Unterschied zu den Anforderungen, die in
dieser Arbeit an die Verfahren gestellt werden (z. B. weitestgehende Automatisierung).

Doch wie passen diese bestehenden Arbeiten zu der Vision des OTF-Computings?
Wie kénnen sie dabei helfen, Anforderungsbeschreibungen, die hochgradig individuell
sind und auf mehreren Ebenen fehleranféllig sein kénnen, soweit zu verbessern, dass
sie die bedarfsgerechte Komposition von Softwareservices ermoéglichen? Und lassen
sich die Ansétze und Verfahren kombinieren, sodass sowohl die Notwendigkeit ihrer
Anwendung erkannt werden kann als auch die Anwendung einzelner Komponenten
im Einklang einer synergetischen Kompensationsstrategie steht?

Am Beispiel der Ambiguitét von Lexemen wird die facettenreiche Problematik im
Kontext des OTF-Computings greifbar. So ist es beispielsweise schnell ersichtlich,
dass eine maschinelle Verarbeitung des Wortes ,;senden* mit seinen acht Lesarten
zu Verstandnisproblemen fiithren kann, auch wenn fiir Endanwender im Moment der
Anforderungsbeschreibung fiir eine E-Mail-Anwendung nur die Lesart ,, transmitted to
another place” im Vordergrund steht. Fiir die lexikalische Disambiguierung existiert
dabei eine Vielzahl an Verfahren, die die wahrscheinlichste Lesart im Kontext einer
Anforderungsbeschreibung ermitteln kénnen. Derzeit eine der vielversprechendsten
Softwarelosungen aufierhalb des RE-Kontextes ist Babelfy, die unstrukturierten Flie-
text entgegennehmen kann und disambiguierte Lesarten pro Lexem wiedergibt, ohne
dabei Benutzerinteraktion zu erfordern. Auf Grund einer heterogenen, umfangreichen
Datenbasis ist Babelfy doméaneniibergreifend einsetzbar.

68 National Aeronautics and Space Administration.

3.4 Diskussion und Zwischenfazit 73

Liegt der Fokus nicht mehr auf dem einzelnen Lexem sondern auf der Zusam-
menfiigung von Wortern, steigt die Komplexitéit der Erkennung und Kompensation.
In dieser Arbeit wird unter dem Begriff der syntaktischen Ambiguitit sowohl das
Phénomen der Anbindungsambiguitéit im Falle von Prépositionalphrasen als auch
die Koordinationsambiguitit zusammengefasst. Wie aufgezeigt wurde, bestehen auch
hier bereits Ansétze und Verfahren, allerdings bei weitem nicht so viele und etablierte,
wie bei der lexikalischen Ambiguitét. Wird der RE-Kontext bei der Auswahl eines
Verfahrens hinzugenommen, verringert sich die Anzahl erneut erheblich.

Die Erkennung von potentiell ambigen Strukturen ist sowohl bei der PP-
Anbindungsambiguitét als auch bei der Koordinationsambiguitét {iber syntaktische
Muster moglich. Dies ist im Rahmen dieser Arbeit von besonderem Vorteil, da der
Abgleich mit Mustern sehr performant durchgefiihrt werden kann und die Entschei-
dung, ob eine Kompensationsmethode aufgerufen werden muss oder nicht, in diesen
Féllen sehr zuverlédssig und ohne grofien Aufwand erfolgt.

Die Disambiguierung gestaltet sich dann allerdings komplizierter, da nur wenige
Arbeiten zur Auflésung von Koordinationsambiguitat und PP-Anbindungsambiguitét
existieren, die im Rahmen dieser Arbeit Anwendung finden kénnen. Im Falle der
Koordinationen existieren zum Beispiel Ansétze, die linguistische Merkmale der
Konjunktion heranziehen oder das gemeinsame Auftreten von lexikalischen Ein-
heiten (Modifikatoren und verbundene Wéorter) berticksichtigen. Das Ableiten von
Regeln und Mustern auf Grundlage verschiedener linguistischer Ressourcen erscheint
dabei zielfithrend und performant zugleich. Auch fiir die Disambiguierung von PP-
Anbindungen existieren Verfahren, die auf Zusatzwissen zur Auflésung zuriickgreifen
(z. B. WordNet, VerbNet). Dariiber hinaus werden Verfahren des maschinellen Lernens
genutzt, die sehr gute Ergebnisse erzeugen.

Wie dargestellt werden konnte, existieren dariiber hinaus mehrere Ansitze und
Verfahren der Anaphernresolution und der automatischen Koreferenzresolution. Die
Ansétze konnen dabei grob in , Linguistische Ansédtze®, ,Heuristiken“ und ,Ma-
schinelles Lernen“ unterteilt werden. Hervorgehoben werden kann dabei die dcoref-
Komponente, die Bestandteil des Stanford Core NLP Natural Language Processing
Toolkits ist. Sie ermoglicht die Erkennung von Referenzausdriicken und die Auflésung
von pronominaler sowie nominaler Koreferenz, ist als externe Programmkomponente
konzipiert und befindet sich in aktiver Entwicklung.

Unvollstandige Softwareanforderungen zu erkennen ist Gegenstand einer Vielzahl
an Publikationen. So werden beispielsweise Reviews, Lesetechniken und Checklisten
als manuelles Vorgehen zum einen und softwareunterstiitzte Anforderungsabgleiche
mit Qualitdtsmodellen, Ontologien oder Anforderungsdokumenten zum anderen
vorgeschlagen. Vielfach liegt der Fokus dabei auf der Erkennung génzlich fehlender
Anforderungen und nicht auf Unvollsténdigkeit im Sinne fehlender Teilinformationen.
Die Kompensation unvollstandiger Softwareanforderungen ist ein weniger mit Pu-
blikationen bedachtes Forschungsfeld, indem vor allem die Ansédtze von Korner und
Brumm (2010) sowie Geierhos und Baumer (2016) nennenswert sind. Beide Arbeiten
legen den Fokus auf unvollstédndige Priadikate (,Prozessworter) als semantisches
Zentrum einer FA. Wihrend beide Arbeiten unvollstindige Préadikate erkennen und
eine Kompensation initiieren, kann nur das Verfahren von Baumer und Geierhos
(2016) eine automatische Kompensation auf Basis dhnlicher Anforderungsbeschrei-

74 3 Stand der Wissenschaft und Technik

bungen vornehmen und die Ergebnisse strukturiert ausgeben. Damit ist es geeignet,
in ein automatisiertes Kompensationssystem aufgenommen zu werden und kann
dabei helfen, fehlende Angaben von Endanwendern zu kompensieren, noch bevor die
Komposition geeigneter Services erfolgt.

Eine wirkliche Zusammenfithrung der genannten Verfahren im Sinne einer weitest-
gehend automatisierten Gesamtstrategie zur Verbesserung von Anforderungsbeschrei-
bungen existiert nicht, wenn auch einzelne Verfahren mehrere Defizite abdecken: So
deckt beispielsweise das populdre Tool QuARS eine ganze Reihe von Ambiguititen
und anderen Qualitdtsmerkmalen (z. B. Lesbarkeit) ab. Eine Kompensation findet
aber nicht statt, sodass eine hohe Benutzerinteraktion zumindest bei der Kompensa-
tion notwendig ist. Benutzerinteraktion ist dabei auch ein wesentlicher Einflussfaktor
der Performanz und Akzeptanz des gesamten Verarbeitungsvorgangs und als kritisch
zu bezeichnen. Endanwender erwarten, dass ihre Anforderungen on-the-fly verarbeitet
werden und das sie schnellstméoglich passende Servicekompositionen prasentiert be-
kommen. Eine wiederholte Nachfrage beziiglich der Auflésung von Ambiguitéten oder
der Kompensation von Unvollstandigkeit wére ein ermiidender, langsamer Prozess.
Dariiber hinaus kann nicht sichergestellt werden, dass die Endanwender {iberhaupt
die Ambiguitdt oder die Unvollstindigkeit erkennen, was sehr wahrscheinlich zu
einem Abbruch der Anforderungsbeschreibung fiihren wiirde. Diesbeziiglich wire
zum Beispiel NL20CL eine Alternative, das den Fokus auf die Kompensation lexika-
lischer und syntaktischer Ambiguitéit legt und keine Benutzerinteraktion vorsieht.
Allerdings sind fiir die Auflésung strukturierte Zusatzinformationen erforderlich, die
im betrachteten OTF-Szenario mit Endanwendern nicht vorliegen.

Es bestehen also durchaus Arbeiten, die mehrere Formen von Ungenauigkeit und
Unvollstédndigkeit erkennen und/oder kompensieren kénnen. Allerdings gehen diese
Arbeiten oftmals in der Erkennung und Kompensation strikt iterativ vor, ohne die
Auswirkungen der Kompensation auf die Anforderungsbeschreibung und auf Folge-
komponenten zu beriicksichtigen. Wie wirkt sich beispielsweise die Kompensation
von Unvollstdndigkeit auf mogliche Ambiguitdten aus? Dariiber hinaus wird in den
wenigsten Fillen hinterfragt, ob die Anwendung eines Kompensationsschrittes zum
Verstandnis einer betroffenen FA wirklich notwendig ist — betrifft die Ambiguitét
zum Beispiel wirklich wesentliche Elemente einer FA oder kann die Kompensation
im Sinne der Performanz gegebenenfalls iibersprungen werden?

Ein weiterer Punkt, der durch bestehende Verfahren nicht abgedeckt wird, ist die
Synergie zwischen einzelnen Verfahren. So wird in keinem bekannten Fall unterstiitzt,
dass die Kompensation eines Defizits bereits wertvolle Informationen zur Losung
eines weiteren Defizits erzeugen kann.

Zusammenfassend kann festgestellt werden, dass mit REaCT mindestens ein geeig-
netes Verfahren zur Extraktion von Anforderungen aus Flietexten besteht und eine
Reihe an Ansétzen und Verfahren zur Erkennung und Kompensation von Ungenau-
igkeit und Unvollsténdigkeit in natiirlichsprachlichen Anforderungsbeschreibungen
existiert. Diese Verfahren sind zum grofiten Teil spezialisiert auf ein spezifisches
Defizit und nicht primér fiir die Integration in ein Kompensationssystem vorgese-
hen. Entsprechend selten anzutreffen sind Uberlegungen zu Benutzerinteraktion,
Performanz, Synergien, Interoperabilitdt und Kompatibilitét der Verfahren.

Teil 11

Methodische Vorgehensweise

75

Zu leistende Arbeit

Das Ziel dieser Arbeit ist die strategiebasierte Erkennung und Kompensation von
Ambiguitit und Unvollsténdigkeit in natiirlichsprachlichen Anforderungsbeschrei-
bungen, dargestellt am Anwendungsfall des OTF-Computings. Aufbauend auf dem
Stand der Wissenschaft und Technik (s. Kapitel 3) sowie anschlieender Diskussion
werden die Anforderungen an diese Arbeit im Folgenden weiter konkretisiert.

4.1 Konzeption eines strategiebasierten
Anforderungskompensationssystems

Zur Kompensation von Ambiguitat und Unvollstandigkeit in Anforderungsbeschrei-
bungen existiert eine Reihe von Verfahren, von denen aber nur wenige fiir eine Auto-
matisierung und den Anwendungsfall des OTF-Computings geeignet sind — sei es aus
Griinden mangelnder Performanz und Verfiigbarkeit, hoher Benutzerinteraktion, feh-
lender Ressourcen und Weiterentwicklung oder Inkompatibilititen (s. Abschnitt 3.4).
Dariiber hinaus handelt es sich mehrheitlich um Insellésungen, die zwar die Erken-
nung und/oder Kompensation von Ambiguititen und Unvollstéindigkeit unterstiitzen,
jedoch nicht fiir die Integration in ein automatisiertes Softwaresystem wie CORDULA
vorgesehen sind. Thnen mangelt es beispielsweise an Schnittstellen und standardisier-
ten Ein- und Ausgabeformaten. Diese Umstéinde erfordern zum einen die Auswahl
geeigneter Kompensationsverfahren und zum anderen Uberlegungen zur Initialisie-
rung und Steuerung der jeweiligen Verarbeitungskomponenten (s. Abschnitt 5.5) im
resultierenden Softwaresystem (s. Kapitel 7).

| want to send large emails| o
and | want to delete fhem. a
Because | like tositin the o g
bus and write emails | o [m]
want also to read and zip. o)
Lywapt to delete spam. [m] o {} + {}
1. Defizite 2. Verfahren 3. Verfahren 4. Indikatoren
identifizieren selektieren adaptieren kombinieren
[Evaluation
: D Bine geben i schebung en. Task 1 ok
7 =
! 1%] =k
Task 5 k
\ 1 =
Done.
5. Strategien 6. System 7.System 8. System
konstruieren konzipieren implementieren evaluieren

Abbildung 4.1: Methodische Vorgehensweise in der Dissertation

7

78 4 Zu leistende Arbeit

Abbildung 4.1 zeigt die stark abstrahierte methodische Vorgehensweise, die dieser
Arbeit zugrunde liegt. Wie ersichtlich wird, sind aufbauend auf der Problemstellung
Verfahren zur Erkennung und Kompensation lexikalischer, syntaktischer und referen-
tieller Ambiguitét sowie Unvollstdndigkeit zu selektieren und zu adaptieren, sodass
sie kombiniert und zweckgebunden angewendet werden kénnen.

Zusitzlich sind Steuerungsmechanismen notwendig (Indikatoren und Strategien),
die die Notwendigkeit der Kompensation festlegen und die einzelnen Kompensations-
verfahren steuern. Diese strategiebasierte Kompensation ist Teil eines Softwaresys-
tems, das es im Rahmen dieser Dissertation zu konzipieren, zu implementieren und
zu evaluieren gilt. Hierzu sind unter anderem lexikalische Ressourcen notwendig, die
in Teilen noch nicht existent sind und daher entwickelt werden miissen.

Die Zusammenfiihrung von Indikatoren, Strategien sowie Erkennungs- und Kompen-
sationsverfahren wird innerhalb eines maschinellen Textanalysesystems vorgenommen.
Hierzu muss zuerst ein Softwarekonzept entwickelt werden (s. Abschnitt 5.5), das
unter anderem die Benutzerschnittstellen, einzelne Verarbeitungsschritte sowie Ein-
und Ausgabeformate beinhaltet. Genauer gesagt umfasst die Konzeptionstatigkeit:

e Ermittlung notwendiger Preprocessing-Schritte fiir Anforderungsbeschreibun-
gen und Konzeption einer entsprechenden Preprocessing pipeline

e Ermittlung der, zur Problemlésung und Implementierung geeigneten,
Erkennungs- und Kompensationsverfahren

e Bedarfsgerechte Erweiterung ermittelter Verfahren im Sinne einer
performanten, zielfiihrenden Kompensation

e Definition der Ausgabeparameter zur maschinellen Weiterverarbeitung kom-
pensierter sowie strukturierter FA im Anwendungsfall des OTF-Computings

e Definition notwendiger Ausgabeparameter der Benutzerauskunft (Ergebnisse,
Erlauterungen, Kompensationsprotokolle)

e Abgleich des Konzepts mit Qualitdtsmerkmalen der Softwareentwicklung
(insb. Leistungsfihigkeit, Adaptierbarkeit, Wartbarkeit)

Auf die Losung dieser Teilziele folgt die Implementierung des Textanalysesystems
(CORDULA), das als funktionaler Prototyp umgesetzt wird. Dies bedeutet, dass
die grundsétzliche Funktionsfihigkeit des Konzepts aufgezeigt und evaluiert werden
kann. Hierzu sind als Implementierungsgegenstinde insbesondere zu benennen:

e Entwicklung plattformiibergreifender Benutzerschnittstellen zur Eingabe
unstrukturierter Anforderungsbeschreibungen sowie zur Ausgabe kompensierter,
strukturierter FA und Erlduterungen zum Kompensationsprozess

e Implementierung ausgewihlter Verarbeitungskomponenten

e Implementierung der entwickelten Indikatoren zur Erkennung
potentieller Ambiguitdt und Unvollstandigkeit

4.1 Konzeption eines strategiebasierten Anforderungskompensationssystems 79

e Implementierung der entwickelten Strategien zur Steuerung
ausgewahlter Verarbeitungskomponenten in CORDULA

e Berecitstellung einer standardisierten Schnittstelle zur maschinellen Weiterver-
arbeitung kompensierter FA im Anwendungsfall des OTF-Computings

Die Konzeption und Implementierung geht dabei einher mit folgenden Fragen:

e Wie kann die Kompensation performant durchgefithrt werden?

e Konnen Synergien zwischen den Verarbeitungskomponenten die
Kompensationsergebnisse verbessern?

e Welche Softwarearchitektur ist fiir das Konzept, insbesondere im
Anwendungsfall des OTF-Computings, geeignet?

4.1.1 Auswahl geeigneter Kompensationsverfahren

Der Arbeitsschwerpunkt liegt auf der Kombination ausgewahlter Verfahren zwecks
automatischer Ausfithrung und somit weniger auf der Erstellung oder Optimierung
von Kompensationsverfahren. Diesbeziiglich hat sich bereits in Abschnitt 3.3 ein sehr
heterogenes Bild bestehender Verfahren ergeben. Aus diesem Grund gilt es als ein
Teilziel, die fiir diese Arbeit geeigneten Kompensationsverfahren zu identifizieren.
Als grundsétzlich geeignet wird ein Verfahren angenommen, wenn es ...

e ... mindestens eine konkrete Erkennung und/oder Kompensation vollzieht
(z.B. Disambiguierung von Koordinationsambiguitét),

e ... iiber Schnittstellen zur Integration verfiigt
(z.B. als Programmbibliothek existiert),

e ... standardisierte Ein- und Ausgabeformate unterstiitzt
(z. B. etablierte NLP-Formate wie CoNLL-U%?),

e ... keine Benutzerinteraktion zwingend voraussetzt,
e ... vollsténdig zugénglich und frei verfiigbar ist,

e (... sich in aktiver Entwicklung befindet).

Dariiber hinaus kénnen Anforderungen an ein Verfahren bestehen, die sich aus der
spezifischen Kompensation oder Implementierung heraus ergeben (z. B. notwendige
Konfigurationsparameter um Synergien nutzen zu kénnen) und die hier nicht auf-
gefiihrt sind. Die Frage, die es in den folgenden Abschnitten und insbesondere im
Abschnitt der Systemkonzeption (s. Abschnitt 5.5) zu beantworten gilt, ist:

69Giehe weiterfithrend: http://universaldependencies.org/format.html (Stand: 05032017)

80 4 Zu leistende Arbeit

e Welche Verfahren eignen sich fiir die Erkennung und Kompensation
lexikalischer und referentieller Ambiguitéit, Koordinationsambiguitéit,
PP-Anbindungsambiguitét sowie Unvollstdndigkeit in UGC unter den
Gesichtspunkten der Automatisierung und hoher Performanz?

Allein die Auswahl der Verfahren reicht nicht aus, um zum einen ihre Wechselwir-
kungen bei gemeinsamer Ausfithrung abschétzen zu kénnen und zum anderen sie
vollautomatisiert zu implementieren. Aus diesem Grund ist die Entwicklung weiter
fortgeschrittener Kompensationsstrategien erforderlich.

4.1.2 Entwicklung fortgeschrittener Kompensationsstrategien

Wie zuvor dargestellt, werden ausgewéhlte Verfahren im Sinne der Automatisierung
und Performanz kombiniert. Dabei stellt sich die Frage, wie die Verfahrenskombi-
nationen gestaltet werden kénnen, damit zum einen nur die Verfahren ausgefiihrt
werden, die wirklich im Falle einer spezifischen Anforderungsbeschreibung benétigt
werden und zum anderen diese so miteinander interagieren, dass sie sich gegenseitig
unterstiitzen. Das bedeutet allerdings auch, dass mit Widerspriichen und Konflik-
ten zu rechnen und seitens des Systems umzugehen ist. Dies wird in dieser Arbeit
tiber kontextsensitive Indikatoren (Erkennung von Kompensationsbedarf) und Kom-
pensationsstrategien (Steuerung der Verarbeitungskomponenten) realisiert, deren
Entwicklung elementares Teilziel dieser Arbeit ist. Indikatoren kénnen hier als Qua-
litdtsmerkmale in den Anforderungsbeschreibungen verstanden werden, die Aufschluss
iiber potentielles Vorkommen von Ambiguitéit und Unvollstdndigkeit geben und die
Ausfithrung von Kompensationsstrategien begriinden. Kompensationsstrategien grei-
fen daraufhin auf gefundene Indikatoren zuriick und kombinieren entsprechend der
Beschreibungsqualitéit bedarfsgerecht die Kompensationsverfahren. Sie definieren
auch den Informationsumfang im Kommunikationsprozess zwischen einzelnen Ver-
fahren. Ein solches Vorgehen der optimalen Kombination bestehender Verfahren
zur Kompensation von ambigen und unvollstindigen Anforderungsbeschreibungen
existiert derzeit noch nicht. Die daher notwendige Entwicklung fortgeschrittener
Kompensationsstrategien wird von folgenden Fragestellungen begleitet:

e Welche Indikatoren kénnen identifiziert werden, um Formen der
Ambiguitét und Unvollstandigkeit in Anforderungsbeschreibungen zu erkennen?

e Welche Strategien sind notwendig, um die Kompensation von Ungenauigkeit
und Unvollstandigkeit flexibel und performant durchzufithren?

e Konnen Kompensationsverfahren sich gegenseitig im Sinne einer korrekten
Entscheidungsfindung unterstiitzen?

4.1.3 Erstellung linguistischer Ressourcen

Wie in Abschnitt 3.2 und insbesondere von Tichy et al. (2015) dargestellt, gibt es nicht
geniigend linguistische Ressourcen fiir natiirlichsprachliche Anforderungsbeschrei-
bungen. Diese annotierten Korpora werden benotigt, um die hier angesprochenen

4.1 Konzeption eines strategiebasierten Anforderungskompensationssystems 81

Indikatoren, Strategien und Verarbeitungsschritte der Anforderungskompensation
fiir das Softwaresystem zu entwickeln und zu evaluieren. Es existieren beispielhafte
Anforderungsbeschreibungen aus Lehrbiichern. Dariiber hinaus gibt es vereinzelnd
Beschreibungen, die im Internet frei zugénglich tiber Suchmaschinen gefunden werden
konnen. Auch Tichy et al. (2015) stellen eine Sammlung von Anforderungsbeschrei-
bungen zur Verfiigung, allerdings sind auch dort ldngst nicht alle der insgesamt
(derzeit) 46 englischsprachigen Beschreibungstexte im Rahmen dieser Arbeit nutz-
bar: So befinden sich Texte in natiirlicher aber auch kontrollierter Sprache unter
diesen Beschreibungen, wovon aber viele Lehrbeispiele sind. Dariiber hinaus sind
Beschreibungen zwar aufgefiihrt aber nicht mehr abrufbar. Aus diesem Grund ist ein
Teilziel dieser Arbeit, eigene linguistische Ressourcen zu erstellen, die insbesondere
fiir die verschiedenen Anwendungsfiille in dieser Arbeit geeignet sind. Geeignet heifit
in diesem Fall, dass sie hinsichtlich doménenspezifischer Merkmale dhnlich zu Anfor-
derungsbeschreibungen sind. Im Folgenden werden die erforderlichen Ressourcen in
den Kontext dieser Arbeit eingebettet. Die Erstellung fehlender Ressourcen wird in
Kapitel 6 beschrieben und begleitet von folgenden Fragestellungen:

e Aus welchen frei zuginglichen Quellen kénnen Anforderungsbeschreibungen
akquiriert werden?

e Welche Eigenschaften miissen diese Beschreibungen aufweisen, um als &hnlich
zu denen zu gelten, die im OTF-Computing zu erwarten sind?

e In welchem Format und hinsichtlich welcher Struktur sind die akquirierten
Beschreibungen abzuspeichern?

4.1.3.1 Anforderungsbeschreibungskorpus

Um mehr {iber die Charakteristika von Anforderungsbeschreibungen zu erfahren,
die Gegenstand dieser Arbeit sind, ist eine Sammlung eben dieser Beschreibungen
erforderlich. Wie allerdings bereits dargestellt, existiert so ein Korpus derzeit nicht.
Diesem Problem kann auf zwei Arten begegnet werden:

Zum einen konnen Anforderungsbeschreibungen durch eine Personengruppe un-
ter Anleitung verfasst werden, wobei die Anleitung in diesem Fall nur die grobe
Vorgabe eines Anwendungsszenarios im OTF-Computings umfasst. Dies hétte den
Vorteil, dass die Beschreibungen in den OTF-Kontext passen. Allerdings geht dies
mit den gleichen Nachteilen einher, die auch die Anforderungsbeschreibungen haben,
die aus Lehrbiichern extrahiert werden: Sie sind, trotz grofitmoglicher Vermeidung
von Beeinflussung, konstruiert. Zum anderen kann auf dhnliche Beschreibungen
zuriickgegriffen werden, die bereits existieren. Ahnlich bedeutet dabei, dass diese
Beschreibungen bestimmte Merkmale mit den Softwarebeschreibungen gemein haben,
die im OTF-Computing zu erwarten sind. Positiv hervorzuheben ist, dass diese
Anforderungsbeschreibungen nicht aufgrund eines Arbeitsauftrags oder sonstiger
Einflussnahme verfasst wurden und somit Charakteristika realer Anforderungsbe-
schreibungen aufzeigen. Allerdings wiren diese Anforderungen nicht OTF-spezifisch
und bezogen sich nicht zwangslaufig auf Softwareservices. Wie allerdings in Ab-
schnitt 3.2 dargestellt, existieren auch keine Korpora, die &hnliche Beschreibungen
umfassen. Dies bedeutet, dass in beiden Fillen das Erstellen entsprechender Korpora

82 4 Zu leistende Arbeit

unabdingbar ist. In dieser Arbeit wird deshalb die Erstellung einer solchen Samm-
lung von Beschreibungen als Teilziel umgesetzt. Daher gilt es, frei zugéngliche (insb.
online verfiighare) Anforderungsbeschreibungen zu akquirieren und in einem Korpus
zusammenzufiithren (s. Abschnitt6.1). Diese Anforderungsbeschreibungen miissen
von Endanwendern in natiirlicher Sprache (Englisch) verfasst sein und sind nicht
Teil einer professionellen Anforderungsdokumentation.

4.1.3.2 Softwarespezifisches PAS-Korpus

Wie in Abschnitt 2.3 dargestellt, wird Unvollstandigkeit iiber unbesetzte Stellen
(d. h. fehlende Instantiierung) in der Préadikat-Argument-Struktur (PAS) einer FA defi-
niert. Um dabei automatisch zu ermitteln, welche Pradikate mit welchen Argumenten
einhergehen, um eine Anforderung als vollsténdig zu bezeichnen, ist das Nachschla-
gen in einer entsprechenden Ressource erforderlich, die diese doménenspezifischen
Angaben enthélt (s. Abschnitt 2.3). Eine solche Ressource existiert speziell fur Soft-
wareanforderungsbeschreibungen derzeit noch nicht. Wohl aber existieren allgemeine
sprachliche Ressourcen, die die Valenz eines Prédikats abspeichern (z. B. Propbank).
Deshalb ist ein weiteres Teilziel dieser Arbeit, generelle Valenzinformationen (iiber
die Stelligkeit eines Préadikats) mit seiner doménenspezifischen Verwendung zu ver-
kniipfen. Datfiir ist eine Ressourcenerweiterung notwendig, die im Rahmen dieser
Arbeit zu leisten ist: So kann eine bindre Angabe fiir jede Lesart eines Pradikats Auf-
schluss dariiber geben, ob ein Argument erforderlich ist oder nicht. Um die Pradikate
dabei einer bestimmten Doméne zuordnen zu kénnen, sind Korpora notwendig, die
hinsichtlich ihrer Pradikat-Argument-Struktur analysiert wurden. In dieser Arbeit
wird diese Analyse fiir die Doméne der Softwareanforderungen und im speziellen fiir
Anforderungen aus dem Bereich der E-Mail-Kommunikation geleistet™.

Die bisher geplante Ressourcenerweiterung erlaubt zwar die Erkennung von Unvoll-
sténdigkeit, jedoch noch nicht deren Kompensation. Fiir die Kompensation sind Infor-
mationen erforderlich, die Aufschluss iiber die Moglichkeiten zur Vervollstindigung
einer leeren Argumentposition im spezifischen Kontext einer Anforderungsbeschrei-
bung geben. Um eine grofitmogliche Abdeckung verschiedener Kontexte zu errei-
chen, ist ein Ressourcenumfang erforderlich, der das Korpus aus Abschnitt 4.1.3.1
tiberschreitet und einen hohen Variantenreichtum (mit Bezug auf Kontexte) aufweist.
Die Vorstellung des PAS-Korpus findet in Abschnitt 6.2 statt.

4.2 Evaluation des Textanalysesystems

Die Funktionsweise des Konzepts bzw. des funktionalen Prototyps von CORDULA
gilt es im Rahmen einer Evaluation zu priifen (s. Kapitel 8). Hierbei liegt zum
einen der Evaluationsschwerpunkt auf den entwickelten Indikatoren und Strategi-
en (s. Abschnitt 5.2). Es gilt zu evaluieren, ob die Strategiewahl und -anwendung
erwartungsgemif funktioniert (s. Abschnitt 4.2.1). Dabei ist die Zuverldssigkeit der
zugrundeliegenden Indikatoren von besonderer Bedeutung. In diesem Zusammenhang
gilt es Fehlertypen zu identifizieren, die bei der weiteren Entwicklung berticksichtigt

70E-Mail-Kommunikation wird hier als gemeinsames Beispielszenario der Arbeitsbereiche im Teil-
projekt B1 ., Parameterized Service Specifications des SFB901 OTF-Computing aufgegriffen.

4.2 Evaluation des Textanalysesystems 83

werden missen. Zum anderen ist sowohl die Performanz des Gesamtsystems als auch
der Indikatoren, Strategien und Komponenten zu evaluieren (s. Abschnitt 4.2.2), da
somit erstens die Identifikation von Leistungsengpéssen im Softwaresystem ermoglicht
wird und zweitens eine Performanzverbesserung die Steigerung der Nutzerzufrieden-
heit und -akzeptanz erwarten lasst (s. Abschnitt 7.4).

4.2.1 Evaluation der Strategieanwendung

Die Evaluation der Strategicanwendung (s. Abschnitt 8.2) betrifft sowohl die indi-
katorbasierte Strategiewahl (Korrektheit) als auch die Anwendungshéufigkeit der
einzelnen Strategien (Aufteilung). Dariiber hinaus ist von Interesse, wie sich das
Softwaresystem verhilt, wenn keine geeignete Strategie fiir eine vorgefundene Indika-
torkombination vorhanden ist und wie oft diese Situation mit den, in dieser Arbeit
vordefinierten, Kompensationsstrategien auftritt (Abdeckung). Hieraus ergeben sich
folgende Evaluationsauftrage:

e Evaluierung der jeweiligen Strategiechédufigkeit bei der Strategiewahl
e Evaluierung der Indikatorzuverléssigkeit

e Evaluierung der Abdeckung auftretender Indikatorkombinationen

Neben diesen Evaluationsauftrigen mit direktem Bezug zur Strategieanwendung ist
auch die Identifikation von Fehlertypen Gegenstand dieses Evaluationsteils. Hierbei
ist das Ziel, Fehler in der indikatorbasierten Strategieauswahl zu identifizieren und
zu systematisieren, um sie in der Folgeentwicklung beriicksichtigen zu kénnen.

e Identifikation von Fehlern, die die Indikatorzuverléssigkeit negativ beeinflussen
und somit die Strategieauswahl erschweren

e Identifikation der Auswirkung von Indikatorabhingigkeiten”™ auf die Qualitéit
der Strategieauswahl

Folgende Fragen sind bei der Evaluation der Strategieanwendung zu beriicksichtigen:

e Welche Datenbasis (Evaluationskorpus) eignet sich fiir die Evaluation?
e Nach welchen Kriterien kann die Fehlertypisierung erfolgen?

4.2.2 Evaluation der Systemperformanz

Die Evaluation der Performanz (s. Abschnitt 8.2) kann auf Systemebene aber auch
auf Ebene der Verarbeitungskomponenten, Strategien und Indikatoren erfolgen. Per-
formanz (im Sinne von Laufzeit) wird in dieser Arbeit dabei in Initialisierungs-,
Ausfithrungs- und Gesamtlaufzeit unterteilt, um einen detaillierteren Einblick in die
Laufzeiten zu erhalten. Da die Laufzeit des System unweigerlich von den gewihlten

"I Teilinformationen (z. B.semantische Kategorien) werden in mehreren Indikatoren herangezogen.

84 4 Zu leistende Arbeit

Kompensationsstrategien abhéngt und die Laufzeit der Strategien wiederum maf-
geblich (aber nicht ausschliefilich) durch die gewihlten Kompensationsmethoden
bestimmt wird, empfiehlt sich eine Evaluation der Performanz auf allen Ebenen.
Hierbei ist von besonderem Interesse, wie sich das Softwaresystem unter steigender
Last verhdlt (bspw. die Verarbeitungszeit linear zur Last steigt) oder wie einzel-
ne Komponenten zur Gesamtlaufzeit beitragen. Diesbeziiglich sind ebenfalls die
implementierten Manahmen zur Performanzsteigerung (insb. Caching-Ansitze)
hinsichtlich Nutzen und Entwicklung (z. B. Speicherumfang) zu evaluieren.

Mit Bezug auf CORDULA als Gesamtsystem sind sowohl die Ausfithrungszeiten
(insb. unter steigender Last bzw. Anforderungsumfang) als auch die Initialisierungs-
zeiten von Interesse. Dariiber hinaus ist ein hoher Anteil nebenséichlicher Angaben
in den Anforderungsbeschreibungen zu erwarten (s. Abschnitt 1.4), weshalb die Frage
nach dem Einfluss dieser nebenséchlichen Angaben auf die Systemlaufzeit aufkommt.
Folgende Evaluationsauftriage lassen sich fiir die weitere Vorgehensweise ableiten:

e Messung der Ausfithrungszeit bei zunehmendem Beschreibungsumfang

e Messung Initialisierungszeit auf Systemebene

e Evaluierung moglicher Laufzeitbeeinflussung nebenséchlicher Angaben

e Evaluierung der Strategielaufzeiten unter zunehmendem Beschreibungsumfang

Wie bereits angefiihrt, sind diese Laufzeiten unmittelbar beeinflusst von den Verarbei-
tungskomponenten, die daher ebenfalls zu evaluieren sind. Hierbei ist von Interesse,
welche Verarbeitungskomponenten gewihlter Methoden die Systemlaufzeit am meis-
ten beeinflussen. Wobei sich hierbei auch die Frage stellt, ob nicht sogar einzelne
Komponentenbestandteile fiir hohe Laufzeiten verantwortlich sind und diese, einmal
identifiziert, nicht in der weiteren Entwicklung ausgetauscht werden koénnen.

e Identifikation der Laufzeitanteile hinzugezogener Verarbeitungskomponenten
sowohl im Preprocessing als auch in der Kompensation

o Identifikation von Wertebereichen, in denen die jeweilige Komponenteninitiali-
sierungszeit schwankt

e Messung der Laufzeit einzelner Komponentenbestandteile

Als eine Moglichkeit der Performanzsteigerung wird das WSD-Caching implementiert.
Um dabei den Effekt auf die Performanz nachzuweisen und die Entwicklung des
Zwischenspeichers besser zu verstehen und beispielsweise abschétzen zu konnen, ob
ein Sattigungseffekt™ eintreten kann, sind folgende Evaluationsschritte notwendig:

e Messung der Laufzeit der lexikalischen Disambiguierung mit und ohne WSD-
Caching und Bestimmung der Performanzsteigerung

e Evaluierung der Entwicklung und insb. des Zuwachses von Lesarten im Zwischen-
speicher zur Identifikation eines Sattigungszustandes, bei dessen Erreichung
keine weiteren Lesarten in den WSD-Cache aufgenommen werden

72Zustand, in dem keine weiteren Lesarten in den Zwischenspeicher aufgenommen werden.

4.2 Evaluation des Textanalysesystems 85

e Evaluierung der Anfragenverteilung im WSD-Cache sowohl innerhalb einer
Doméne als auch auf doméneniibergreifenden Anforderungsbeschreibungen

Auf Grundlage dieser Arbeitsauftriage werden in Abschnitt 8.2 Evaluationsfragen
erstellt, die es mittels geeigneter Evaluationsmethoden zu beantworten gilt. Die
Evaluation der Systemperformanz wird dabei begleitet von folgenden Fragestellungen:

e Welche Datenbasis (Evaluationskorpus) eignet sich fiir die Evaluation?
e Wie ldsst sich die Laufzeitmessung weitestgehend automatisieren?
e Welche Anforderungen sind an die Datenauswahl und -kombination zu stellen?

Konzeptentwicklung

Im Folgenden findet die Konzeptentwicklung statt, in deren Rahmen wesentli-
che Designentscheidungen getroffen werden, welche die Kompensationsstrategien
(s. Abschnitt 5.2), deren zugrundeliegenden Indikatoren (s. Abschnitt 5.3) sowie das
Anforderungskompensationssystem als Ganzes betreffen (s. Abschnitt 5.5). Darauf
aufbauend werden in Abschnitt 7.4 Anforderungen an die Systemqualitdt diskutiert.

5.1 Ausgangssituation und Zielsetzung

Die Ausgangssituation dieser Arbeit sieht Endanwender vor, die Anforderungen an
ein gewiinschtes, individuelles Softwaresystem beschreiben und eine fertige Software
als Resultat der Komposition von Services zuriickerhalten (s. Abschnitt 1.1 sowie 1.4).
Dies ist im Gegensatz zum klassischen Requirements Engineering (RE) ein agiler
Prozess, der impulsiv und aus dem Bedarf heraus geschieht. Dariiber hinaus kann die
Anforderungsaufnahme beispielsweise am Mobiltelefon geschehen (vgl. Abbildung
5.1), wo im Vergleich zum PC, deutlich kiirzere Beschreibungen zu erwarten sind,
die dazu eine erhéhte Fehlerrate in Rechtschreibung und Grammatik aufweisen.

..... 2 1155 R coeen 2 1155 B =

| want to send emails
to my friends. But | need
to attach large photos.

@

Kompaosition 1
Email service
Senden, anhéngen

MEIA powwstese
)

QWERTZU I OFP ==

Komposition 2
A'SDFGHUJKL Email service

Schreiben, senden

{f Y X CVBNMCKX a
(<] P
123 @ Q space return

Abbildung 5.1: Smartphone als Benutzerschnittstelle (Mockup)

Gegenstand dieser Arbeit sind demnach Anforderungsbeschreibungen , die in Qua-
litdt und Umfang stark variieren. Unter diesen Bedingungen treten unweigerlich

87

88 5 Konzeptentwicklung

Ambiguitit und Unvollstdndigkeit als Phdnomene natiirlichsprachlicher Anforde-
rungsdokumentation auf (s. Kapitel 2), die von existierenden Kompensationsansétzen
nicht oder nur teilweise kompensiert werden kénnen (s. Abschnitt 3.3). Diese Situation
wird durch Rahmenbedingungen des OTF-Computings (z. B. kurze Ausfithrungszeit,
minimale Benutzerinterakation) verschérft, die eine Anwendung bestimmter Ansétze
ausschliefen (s. Abschnitt 3.4). So konnen beispielsweise Ansétze, die zwar Ambi-
guitét aufzeigen aber nicht kompensieren, nicht angewendet werden, da Endanwender
ohne Hilfestellung (z. B. weiterfithrende Informationen) nicht fihig sind, Defizite in
ihren Anforderungsbeschreibungen zu identifizieren und zu beheben.

Die Interaktion mit dem System, die iiber die initiale Eingabe der Anforderungsbe-
schreibung hinausgeht, ist, insbesondere im Hinblick auf die Gesamtperformanz sowie
drohender Uberforderung der Anwender, auf ein Minimum zu begrenzen. In Fillen,
in denen Benutzerinteraktion unvermeidbar ist, sind Programmausgaben notwendig,
die Benutzerinteraktion initiieren und steuern koénnen. So reicht es beispielsweise
nicht, ein unvollsténdiges Priadikat (s. Abschnitt 2.3) zur Hervorhebung anzukreuzen,
wie in Abbildung 5.2 (1) dargestellt, da nicht davon auszugehen ist, dass die Unvoll-
standigkeit ohne Zusatzinformationen seitens der Endanwender selbststéndig behoben
werden kann. Vielmehr ist die gewiinschte Funktionalitit, wie in Abbildung 5.2 (2)
dargestellt, mit Hinweis auf fehlende Details (z. B. beispielhafte Argumente, Uber-
und Unterbegriffen oder semantische Kategorien) zu présentieren. Auf diese Weise
werden Endanwender schneller auf unvollstdndige Eingaben hingewiesen und kénnen
anhand der zusétzlichen Angaben urspriingliche Defizite punktuell verbessern.

Kompensation OOQO)] | Kompensation OO0
‘ Datei ‘Bearbeiten‘ Optionen ‘ Tools ‘ Fenster ‘ Hilfe ‘ ‘ Datei ‘Bearbenen‘ Optionen ‘ Tools ‘ Fenster ‘ Hilfe ‘
Tab1 |[Tab2 [Tab3 Tab1 [Tab2 [Tab3
| want to send><e-Mails. Furthermore, | need to | want to send e-Mails. Furthermore, | need to attach
attach large files to these e-Mails. large filesq*these e-Mails.

Fehler: Unvollstandigkeit

Send.01: Argumentposition 2
ist nicht instantiiert.

Beispiele ~

Friends
Group of people

L S Kompensieren | | | (S

M (@)

Abbildung 5.2: Erweiterte Benutzerinteraktion (Mockup).
Entnommen aus Béumer und Geierhos (2016, S. 550)

Dem Ziel der Entwicklung eines Anforderungskompensationssystems folgend
(s. Kapitel 4), ist die strategiebasierte Verkettung von Softwarekomponenten zur Er-
kennung und bedarfsgerechten Kompensation von Ambiguitit und Unvollstandigkeit
(s. Kapitel 2) in Anforderungsbeschreibungen (s. Abschnitt 1.4) Gegenstand dieses
Kapitels. Dies erfolgt unter Beriicksichtigung der Rahmenbedingungen des OTF-
Computings. Die Entwicklung von Strategien und Indikatoren ist erforderlich, um
flexibel auf die schwankende Qualitéit der Anforderungsbeschreibungen reagieren zu
konnen. Sie dienen dabei insbesondere der Steuerung der heterogenen, bisher iso-

5.2 Strategiekonfiguration 89

liert betrachteten Verarbeitungskomponenten (z. B. Unvollstdndigkeitskompensation).
Hierbei ist zu beachten, dass es nicht , die eine Anforderungsbeschreibung® gibt und
es daher auch nicht ,die eine Strategie“ geben kann. Daher miissen die Strategien
flexibel auf Inhalt, Form und Umfang der Beschreibungen reagieren kénnen. Dariiber
hinaus sind Informationen bereitzustellen, die zum einen die Verarbeitung sowie
Kompensation fiir den Endanwender transparent darstellen und zum anderen eine
maschinelle Weiterverarbeitung fiir Folgekomponenten ermoglichen.

5.2 Strategiekonfiguration

Anforderungsbeschreibungen kénnen in ihrer Qualitdt stark variieren und erfordern
daher eine flexible Vorgehensweise in der Verarbeitung und Kompensation, die in
dieser Arbeit iiber Strategien umgesetzt wird (vgl. Definition 5.2.1). Die Qualitét
wird dabei iiber Hinzunahme zuvor definierter Indikatoren (z. B. syntaktische Muster)
in einer Anforderungsbeschreibung festgestellt (s. Abschnitt 5.3). Ziel ist es dabei,
nicht irgendeine Strategie zu wihlen, sondern diejenige, die ausschliefilich notwendige
Kompensationsschritte in optimaler Reihenfolge ausfiihrt.

Definition 5.2.1 (Strategie)

Strategien umfassen Kompensationsmethoden, die auf spezifische Indikatoren einer ge-
gebenen Anforderungsbeschreibung reagieren (z. B. Auswahl geeigneter Verfahren). Sie
unterscheiden sich dabei in der Auswahl, Ausfihrung und Interaktion der Methoden.

Die Notwendigkeit verschiedener Strategien ergibt sich aus den moglichen Indika-
torkombinationen. So kann eine Anforderungsbeschreibung beispielsweise frei von
Ambiguitét sein und bedarf daher keiner entsprechenden Kompensation. Sehr wohl
aber ist die Extraktion von FA und die strukturierte Ergebnisausgabe erforderlich.
Gébe es nur eine einzige Strategie, wiirde die Verarbeitung und Kompensation in-
effizient ausgefiihrt, da Kompensationsschritte initiiert wiirden, die fiir eine reine
Anforderungsextraktion nicht notwendig sind.

e N
Strategien)
Verfahren j
Strategie i —
Methode 1 | | Regell
Methode 2 Regel 2
Methode n Regel m
.

(. /
Abbildung 5.3: Logischer Aufbau von Strategien

Der Zusammenhang zwischen Strategien, Methoden und Verfahren ist in Abbil-
dung 5.3 dargestellt. Methoden umfassen Verfahren zur Kompensation von Ambi-
guitéit und Unvollstandigkeit. Exemplarisch kénnte eine Methode der lexikalischen

90 5 Konzeptentwicklung

Disambiguierung und eine weitere Methode zur Kompensation von Unvollstéandigkeit
dienen. Somit wird ersichtlich, dass es sich bei den Methoden jeweils um Software-
komponenten handelt, deren Verfahren auf einen spezifischen Verarbeitungs- oder
Kompensationsprozess zugeschnitten sind. Hierbei kénnen Verfahren beispielsweise
auf Regeln (vgl. Abbildung 5.3) oder auf ML-Ansitze zuriickgreifen. Strategien
bedienen sich unterschiedlicher Methoden und wenden diese bedarfsgerecht auf die
Anforderungsbeschreibung an, wobei dies auf Wortebene (z. B. Lexikalische Disam-
biguierung), auf Basis der Sdtze (z. B. Syntaktische Disambiguierung) oder auf der
gesamten Beschreibung (z. B. Referentielle Disambiguierung) erfolgen kann. Das
Zusammenwirken der Indikatoren und Strategien ist in Abbildung 5.4 dargestellt.

Initiale Anforderungs-) Indikatoren im Text S M, =1, Xy Xy g}
beschreibung [M, ={x,, x, X;} Selector ¢ S, M, = {x,, X, X}
23: M, ={x}
S, +
y Strategieindex
- Controller
1
1
v v :
S, o s, © s, X \
1
1
Strategy repository : Erstelle
| Strategie
1
1
1
1

Verarbeitung und Tttt .| Strukturierte, kompensierte

| Anforderungsbeschreibung

Kompensation

Abbildung 5.4: Selektion und Anwendung von Strategien auf Indikatorbasis

Im Mittelpunkt von Abbildung 5.4 stehen die Komponenten Selector und Controller.
Die Selector-Komponente sucht nach Indikatoren (z;) in Anforderungsbeschreibun-
gen, die Hinweise auf die Beschreibungsqualitidt geben kénnen und wéhlt darauthin
geeignete Strategien aus dem Strategy repository aus, sofern diese vorhanden sind.
Geeignet sind Strategien dann, wenn alle erkannten Indikatoren (Mo = {z1, 22, 3})
abgedeckt sind (z. B. My = M;). Die Menge gefundener Indikatoren zeigt somit auf,
welche Verarbeitungs- und Kompensationsschritte notwendig sind, um zum einen die
Qualitdt der initialen Anforderungsbeschreibung als solche zu verbessern und zum
anderen eine strukturierte Ausgabe zu ermdglichen, die maschinell weiterverarbeitet
werden kann. Die Controller-Komponente iiberwacht gewéhlte Strategien und kann
zum Beispiel auf Verarbeitungsfehler einzelner Verarbeitungskomponenten reagieren.
Diese Fehler oder die Erkenntnis, dass ein erkannter Indikator nicht die Anwendung
einer Strategie rechtfertigt (z. B. existieren ambige Lexeme, diese sind aber fiir die
erkannten FA irrelevant), konnen den Strategiewechsel durch den Controller auslosen.
Dartiber hinaus ist der Controller berechtigt, Widerspriiche in Verarbeitungsergebnis-
sen einzelner Methoden durch den Grundsatz ,, Expert first* aufzulosen. Dies bedeutet,

5.2 Strategiekonfiguration 91

dass im Falle widerspriichlicher Ausgaben die Ausgaben der Expertenkomponente
herangezogen werden, in der Annahme, dass diese korrekt sind.

Wie das Beispiel in Abbildung 5.4 zeigt, wird die Indikatormenge M, prinzipiell von
zwel Strategien unterstiitzt (S, S2), wobei es sich im Falle der Strategie Ss um eine
exakte Ubereinstimmung der geforderten und der seitens der Strategie unterstiitzten
Indikatoren handelt. Strategie S, ist demnach gegeniiber Strategie S; zu bevorzugen,
da nur Kompensationsschritte ausgefithrt werden, die erforderlich sind.

Wird im Strategy repository keine geeignete Strategie gefunden, besteht die
Moglichkeit, automatisch eine grundlegende Strategiekonfiguration zu erstellen. Hier-
bei ist grundsétzlich die Aufnahme weiterer sowie die Revidierung bestehender
Konfigurationen vorgesehen. Motiviert wird dies zum einen durch eine angenommene
Steigerung der Effizienz, da Strategien, die aus dem Strategy repository abgerufen wer-
den konnen, schneller bereitstehen als jene, die erst zum Zeitpunkt der Verarbeitung
und Kompensation konfiguriert werden miissen. Zum anderen konnen Strategien, die
zum Entwicklungszeitpunkt bedarfsgerecht waren, gegebenenfalls unter verdnderten
Konditionen (z. B. Wechsel auf kontrollierte Sprache) obsolet werden.

Die Aufnahme neuer Strategiekonfigurationen in das Strategy repository erfolgt
dabei automatisiert. Ein Kriterium fiir die Aufnahme in das Repository kann beispiels-
weise die haufige Ausfithrung gleicher Strategiekonfigurationen sein. Dies erfordert
die Speicherung von Konfigurationsaufrufen sowie die Festlegung eines Grenzwerts,
dessen Uberschreitung die Aufnahme einer Strategiekonfiguration in das Strategy
repository initiiert. Demgegeniiber trigt das Update von Strategiekonfigurationen
zum Wegfall von Strategien aus dem Strategy repository bei. Grundsétzlich ist dieser
Schritt notwendig, da, wie dargestellt, die Aufnahme neuer Strategien vorgesehen ist
und das Strategy repository ohne entsprechende Mafinahmen nur an Umfang zuneh-
men wiirde, obwohl existierende Strategien nach einiger Zeit nicht mehr benéttigt
werden. Dies hitte einen negativen Einfluss auf die Gesamtlaufzeit, da alle Strategien
mit den Indikatoren einer Anforderungsbeschreibung abzugleichen sind.

In dieser Arbeit sind demnach Kompensationsstrategien vorkonfiguriert, die sich
hinsichtlich Laufzeit und Abdeckung unterscheiden. Daneben existiert die Moglichkeit
einer bedarfsgerechten, automatisch selbstkonfigurierenden Strategie. Strategien sind
dabei in einen definierten Verarbeitungskontext eingebettet (vgl. Abbildung 5.5): Vor
der Strategicanwendung wird ein Preprocessing (s. Abschnitt 5.5.2 und Anhang C.1)
durchgefiihrt. AnschlieBend werden die Ergebnisse strukturiert gespeichert.

=) AN
— Preprocessin Strategie- Ergebnis- f—

v g anwendung strukturierung XML

OuTPUT

Abbildung 5.5: Strategieeinbettung in den Verarbeitungskontext

In den folgenden Abschnitten werden die einzelnen Strategiekonfigurationen darge-
stellt. Die einzelnen Strategien bauen aufeinander auf und werden daher hinsichtlich
ihrer zunehmenden Komplexitit erldutert. Eine Ubersicht aller Strategiekonfigura-
tionen findet sich in Abbildung 5.6. Sie gibt sowohl Auskunft {iber die Konfiguration
als auch iiber die Laufzeit einzelner Strategien.

Strategie
Light

Strategie
Basic

Qoiﬁo:mﬁ

Strategie
Basic plus

Strategie
Default

Informations- | Informations- Informations- | Informations-
extraktion extraktion extraktion extraktion
Syntaktische Lexikalische Lexikalische
Disambiguierung ? Disambiguierung Disambiguierung
Unvollsténdigkeits- Syntaktische Syntaktische
kompensation Disambiguierung ? Disambiguierung
Unvollsténdigkeits- Unvollsténdigkeits-
kompensation kompensation
Referentielle
Disambiguierung
(? = Optionale Ausfithrung)
Laufzeit

Strategie
Fallback

Strategie
Complete

”waoibmiosm-
i extraktion

. Syntaktische
' Disambiguierung

i Unvollsténdigkeits-,
' kompensation !

| Vagheits- |
' erkennung

Abdeckung

Vordefinierte Strategiekonfigurationen

Abbildung 5.6: Strategiekonfigurationen

Automatische
Konfiguration

92

5.2 Strategiekonfiguration 93

5.2.1 Light-Strategie

N . .) S . N
Jrgebnis- f—

— Preprocessing - geb]
: strukturierung XML

Abbildung 5.7: Light-Strategie

Informations-
extraktion

Bei der Light-Strategie handelt es sich um eine reine Anforderungsextraktion, deren
Ziel es ist, FA ohne weitere Verarbeitungs- und Kompensationsschritte in Anfor-
derungsbeschreibungen zu identifizieren, klassifizieren und zu strukturieren. Vor-
aussetzung fiir die Anwendung der Strategie ist, dass keine Indikatoren in der
Anforderungsbeschreibung vorliegen, die die Hinzunahme von Kompensationsschrit-
ten begriinden. Sie fithrt daher nur absolut notwendige Verarbeitungsschritte aus
und ist damit die Strategie mit der kiirzesten Ausfithrungszeit und der geringsten
Kompensation (vgl. Abbildungen 5.6 sowie 5.7).

Wie in Abbildung 5.7 zu erkennen ist, wird das Preprocessing vor der Strategie-
anwendung ausgefiithrt. Daher kann die IE auf Informationen, die im Preprocessing
gewonnen wurden, zuriickgreifen. Die identifizierte Sprache eines Satzes und dessen
Relevanz sind dabei besonders hervorzuheben, da sie dabei helfen, die Strategie
sehr gezielt anzuwenden: Nebenséchliche und nicht-englische Séatze werden keiner
Extraktion unterzogen.

Anwendungsfall

Tabelle 5.1 zeigt die strukturierte Ergebnisausgabe fiir Beispiel 5.2.1, in dessen
Mittelpunkt das Prédikat ,,save“ steht. Dieses wurde durch die IE korrekt erkannt
und als Aktion annotiert.

Beispiel 5.2.1
I want to savearsion, unknown email addresses. “

Auch weitere semantische Informationen, wie die Rolle oder das Objekt einer FA,
werden erkannt und strukturiert gespeichert. Die extrahierten semantischen Informa-
tionen sind von hoher Relevanz fiir komplexere Strategien.

Lemma POS Sem. Info. Bemerkung
i PRON Rolle Wer will oder macht etwas?
want VERB Prioritéit Welche Prioritat hat das Verlangte?
to PART _

save VERB Aktion Welche Aktion ist gefordert (Pradikat)?
unknown ADJ

email NOUN Objekt Welches Objekt ist betroffen?

address NOUN

Tabelle 5.1: Beispiclhafte Ergebnisausgabe der IE (Light-Strategie)

94 5 Konzeptentwicklung

5.2.2 Basic-Strategie

N/ . - — . N
- Lrgebnis- _—

| Preprocessing Informations geb!
’ extraktion strukturierung XML

~
R

~ | Syntaktische
[]

Disambiguierung ?

]

_| Unvollsténdigkeits-
kompensation

Abbildung 5.8: Basic-Strategie

Die Basic-Strategie erweitert die zuvor vorgestelle Strategie Light um die Kom-
pensationsschritte syntaktische Disambiguierung (s. Abschnitte 2.1.2 und 5.5.4) und
Unvollstandigkeitskompensation (s. Abschnitte 2.3 und 5.5.5). Ziel ist es, FA zu ex-
trahieren, strukturelle Ambiguitit aufzulosen, Unvollstdndigkeit zu kompensieren
und die Ergebnisse der Einzelmethoden miteinander in Einklang zu bringen.

Auf die IE folgend, werden relevante, englischsprachige Sétze zuerst disambi-
guiert. Eine Besonderheit der syntaktischen Disambiguierung ist dabei, dass zunéchst
iberpriift wird, ob {iberhaupt Hinweise fiir strukturelle Ambiguitdt vorliegen, ansons-
ten wird der Satz ohne weitere Analysen iibersprungen. Diese optionale Ausfithrung
ist in Abbildung 5.8 mit einem Fragezeichen gekennzeichnet.

Auf die Disambiguierung folgt die Kompensation unvollstindiger Satzaussagen.
Pradikate, die in der IE als relevant fiir eine FA identifiziert worden sind, werden
auf die Vollsténdigkeit ihrer Argumente hin iiberpriift und — sofern notwendig —
komplementiert. In der Basic-Strategie steht die Disambiguierung damit im Zentrum,
welche den Ergebnisabgleich einzelner Methoden koordiniert und gegebenenfalls
notwendige Korrekturen vornimmt (). So wird zum einen das Ergebnis der TE
hinsichtlich fehlerhafter syntaktischer Zuordnung untersucht und zum anderen die
erkannten, fehlenden Argumente auf syntaktische Korrektheit gepriift. Demonstriert
wird dies im Folgenden an Beispiel 5.2.1, welches um eine PP erweitert wird.

Anwendungsfall

Die Methode der IE erkennt sowohl das Préadikat ,, save® als Aktion einer funktionalen
Anforderung als auch die PP ,,in a new contact group* als Verfeinerung der erkannten
Aktion. Die Ambiguitétspriifung der syntaktischen Disambiguierungsmethode erkennt
potentielle Ambiguitdt durch PP-Anbindung und gibt die Disambiguierung frei.

Beispiel 5.2.2
LI want to save o, unknown email addresses in a new contact group“.

Das Ergebnis der syntaktischen Disambiguierung ist in Abbildung 5.9 dargestellt
und spiegelt das Ergebnis der IE wider. Auch hier wurde die PP dem Prédikat ,, save*

5.2 Strategiekonfiguration 95

zugeordnet und nicht etwa der NP [unknown email addresses”. Fine Korrektur der
extrahierten funktionalen Anforderung ist moglich (2), in diesem Fall aber aufgrund
der iibereinstimmenden Ergebnisse nicht notwendig.

]
|

VP
-
VB NP PP
sswe JJ NN NNS IN NP

| | | = N

unknown email addresses in DT JJ NN NN

a new contact group

Abbildung 5.9: Ergebnis der syntaktischen Disambiguierung

Die Kompensationsmethode extrahiert Argumente des Préadikats aus dem Satzkontext,
um eine Kompensationsanfrage zu erstellen (s. Abschnitt 5.5.5). In diesem Fall betrifft
dies das Pradikat ,,save“ in seiner semantischen Funktion als Aktion. Dafiir werden
folgende Argumente zuriickgeliefert:

o (Argo) collector ,I¢
e (Argy) thing saved ,unknown email addresses in a new contact group*

Da die Kompensation der Unvollstandigkeit als eigenstdndige Methode unabhéngig
von der syntaktischen Disambiguierung arbeitet, konnen durch die Kompensation
syntaktische Ambiguitéiten auftreten und zu fehlerhaften Ergebnissen fithren. Aus
diesem Grund sieht die Strategie auch einen Ergebnisabgleich und -anpassung der
beiden Kompensationsschritte vor (). Hierbei gilt das Expert first-Prinzip. Divergie-
ren demnach die Ergebnisse aufgrund syntaktischer Ambiguitét, wird das Ergebnis
der Expertenkomponenten zur Disambiguierung {ibernommen, da davon ausgegangen
wird, dass dieses Ergebnis korrekt ist.

In der Tat wurde seitens der Methode zur Unvollstéandigkeitskompensation das
erste Argument des Pradikats , save® falsch erkannt, da die PP an die NP gebunden
wurde. Ein Umstand, der von der Methode zur syntaktischen Disambiguierung
erkannt und korrigiert wird. Durch die Korrektur der Argumentanbindung kann die
Kompensationskomponente eine korrekte Kompensationsanfrage stellen und erzeugt
so in Fillen, in denen Unvollstdndigkeit vorliegt, ein in den Satzkontext passendes
Kompensationsergebnis.

5.2.3 Basic Plus-Strategie

Die Basic Plus-Strategie stellt eine Erweiterung der Basic-Strategie um die Me-
thode der lexikalischen Disambiguierung dar (s. Abschnitte2.1.1 und 5.5.4). Wie

96 5 Konzeptentwicklung

in Abbildung 5.10 zu sehen ist, reiht sich die lexikalische Disambiguierung vor der
syntaktischen Disambiguierung ein. Ziel dieser Ergénzung ist die Erweiterung sowie
Priifung und Korrektur der TE-Ergebnisse auf lexikalischer Basis (2). Die Aufgaben
der lexikalischen Disambiguierung sind somit vielfiltig.

N . .
—| Preprocessing Informat,lons_
: extraktion
L) _

Ergebnis-
strukturierung

<

~
9]
Lexikalische ~
Disambiguierung o
~ Syntaktische
o d Disambiguierung ?

_| Unvollstindigkeits-
kompensation

Abbildung 5.10: Basic Plus-Strategie

Die Kernaufgabe der lexikalischen Disambiguierung ist die Bestimmung der wahr-
scheinlichsten Lesart fiir ein Lexem aufgrund seiner Einbettung in den Kontext
(s. Abschnitt 2.1.1), wobei nur die Lexeme disambiguiert werden, denen zuvor durch
die IE eine semantische Funktion in der FA zugeschrieben wurde. Dariiber hinaus
ist die Methode zur lexikalischen Disambiguierung in der Lage, die Ergebnisse der
IE zu modifizieren. Diese Korrekturfunktion basiert im Wesentlichen auf erkannten
POS-Tags sowie semantischen Informationen. Stehen diesbeziiglich die Ergebnisse
der IE und der lexikalischen Disambiguierung im Widerspruch, kann eine Korrektur
erfolgen. Wie wichtig dieser Ergebnisaustausch sein kann, wird im Folgenden an
konkreten Beispielen aufgezeigt.

Anwendungsfall

Beispiel 5.2.3 enthélt eine Anforderungsbeschreibung, die von der IE verarbeitet
wurde (vgl. Tabelle 5.2). Die semantischen Informationen wurden korrekt zugeordnet
(z.B.,,sort* als Aktion). Allerdings wurde dabei bisher nicht beriicksichtigt, dass
einzelne Lexeme mehrere Lesarten haben koénnen. Dies ist beispielsweise bei ,, sort*
(sechs Lesarten) sowie bei ,, folders* (zwei Lesarten) der Fall.

Beispiel 5.2.3
L want to sortagen emails into separate folders®.

Durch die lexikalische Disambiguierung kann das Ergebnis der IE somit um wertvolle
Informationen ergénzt werden. Im Falle von ,, sort“ handelt es sich bei vier der sechs
Lesarten um Nomina, die per se keine Aktion darstellen kénnen und ausgeschlossen
werden. Im néchsten Schritt entscheidet sich die Methode zur Disambiguierung nicht

5.2 Strategiekonfiguration 97

fiir die Lesart™

or categories®. Dies ist eine korrekte Zuordnung, welche die Ambiguitéit der Aussage
weiter minimiert. Tabelle 5.2 zeigt erneut Beispiel 5.2.3, ergénzt um die Beschreibung
der disambiguierten Lesart.

»examine in order to test suitability® sondern fiir ,,order by classes

Lemma Sem. Info. ‘ Disambiguierung
1 i Rolle

2 want Prioritét Have a desire for; want strongly
3 to

4 sort Aktion order by classes or categories
5 email Objekt World-wide electronic communication
6 into Verfeinerung

7 separate Verfeinerung Independent; not united or joint
8 folder Verfeinerung covering that is folded over [...]

Tabelle 5.2: Beispielhafte Ausgabe der IE, ergénzt um Disambiguierung

Neben der Disambiguierung von Lesarten ist bisher davon ausgegangen worden,
dass die Zuordnung von Wortarten (POS) durch die IE-Methode korrekt durch-
gefithrt wurde. Beispiel 5.2.4 hingegen enthélt einen Satz, der durch die IE fehlerhaft
verarbeitet wird (vgl. Tabelle 5.3).

Beispiel 5.2.4
I want to automatically sort sharepoint emails into separate mail folders*.

Die Methode zur Informationsextraktion annotiert das Wort ,, automatically“ korrekt
als Adverb (ADV) und dennoch findet eine semantische Zuordnung als Aktion statt.
Dies fithrt in der Weiterverarbeitung zu Problemen, da , automatically® nun als
eigenes Prozesswort bzw. Aktion gefiihrt wird. In solchen Féllen greift die lexikalische
Disambiguierung korrigierend ein.

Lemma POS-U Sem. Info.
1 i PRON Rolle
2 want VERB Prioritét
3 to PART _
4 automatically ADV Aktion
5 sort VERB Aktion
6 sharepoint NOUN Objekt
7 email NOUN Objekt

-]
Tabelle 5.3: Ausgabe der IE mit fehlerhafter Aktionsangabe (Basic Plus)
So ergibt die Disambiguierung, dass es sich bei ,, automatically” in der Tat um ein

ADV handelt, welches aber isoliert keine Aktion darstellt. Aus diesem Grund wird
die semantische Annotation ,, Aktion“ entfernt und durch , Verfeinerung ersetzt™.

"3Siche weiterfiihrend: http://www.babelfy.org (Stand: 12.03.17).
™Der Begriff der Verfeinerung geht auf die Arbeit von Dollmann (2016) zuriick, der ergéinzende
Informationen (z.B.Modifikatoren) innerhalb einer FA als Verfeinerungen bezeichnet.

98 5 Konzeptentwicklung

Beispiel 5.2.5
,The system should groupaxsion emails. “

Beispiel 5.2.5 zeigt eine weitere minimalistische Anforderungsbeschreibung, die einen
Fehler durch die IE enthélt. Das Wort ,, group* wird korrekt als Aktion erkannt,
allerdings wurde das falsche POS-Tag zugeordnet: Die Informationsextraktionskom-
ponente fiithrt , group“ als Nomen. Jedoch erkennt die Methode zur lexikalischen
Disambiguierung ,, group® in diesem Kontext in der Lesart als Verb (,, Arrange into a
group or groups®) und ersetzt gemif der Devise Expert first die fehlerhafte Wortart.

5.2.4 Default-Strategie

N . .
Preprocessing Informations-
‘ ! 4 extraktion
L) S

>

R AN
Ergebnis-
strukturierung

XML

~
RS

Lexikalische
Disambiguierung

]

~ Syntaktische
o Disambiguierung

]

_{ Unvollstindigkeits-

Q

kompensation

]

Referentielle
Disambiguierung

~
R

Abbildung 5.11: Default-Strategie

Die Default-Strategie fithrt erstmalig auch die Methode zur referentiellen Disambi-
guierung aus und erweitert damit die zuvor vorgestellte Basic Plus-Strategie um einen
weiteren Verarbeitungs- und Kompensationsschritt. Die referentielle Disambiguierung
hat dabei zum einen die Aufgabe, ambige Referenzen in den Anforderungsbeschrei-
bungen aufzulosen und kann zum anderen Koreferenzketten bilden, um dariiber die
FA einander zuordnen zu konnen. Sie ist auch in der Lage, sowohl die Ergebnisse
der IE als auch die Kompensationsanfrage der Unvollstdndigkeitskompensation zu
modifizieren. Die Methode zur referentiellen Disambiguierung arbeitet dabei nicht
iterativ auf Satzbasis, sondern betrachtet die gesamte Anforderungsbeschreibung,
um wiederkehrende Referenzausdriicke satziibergreifend zu erkennen.

Anwendungsfall

Die Anforderungsbeschreibung in Beispiel 5.2.6 besteht aus zwei Sétzen und beschreibt
ausgewahlte Anforderungen an eine E-Mail-Applikation.

5.2 Strategiekonfiguration 99

Beispiel 5.2.6
LI want to moveagon, email spam and I want to deleteaion the spam.
The system should report grsion the spam to the administrator.

In diesem Beispiel erkennt die Methode in der Anforderungsbeschreibung die beiden
Koreferenzketten (K) [email spam, the spam, the spam]o und [I, I];. Wéhrend alle
Referenzausdriicke in Ky als semantische Funktion Objekte in den FA darstellen,
handelt es sich bei den Referenzausdriicken in K; um Rollen. Fiir die weitere Inter-
pretation der Beschreibung ist es hilfreich zu wissen, welche Rollen in der gesamten
Anforderungsbeschreibung wiederholt vorkommen und dass die drei Aktionen auf
ein gemeinsames Objekt verweisen, auf welches mittels verschiedener Ausdriicke
referenziert wird.

Dariiber hinaus ermdoglicht es die Methode, die Komplexitit von FA zu verringern.
Ohne eine referentielle Disambiguierung wiirde in Beispiel 5.2.7 nach der IE unklar
bleiben, was genau verschickt (,,send“) werden soll. Insbesondere, da ,,them* korrekt
als Objekt identifiziert wurde, losgelost von der ersten Anforderung aber nicht
interpretiert werden kann.

Beispiel 5.2.7
I want to writeagsion emails and I want to sendagsion them.

Durch die referentielle Disambiguierung wird deutlich, dass ,,them* auf das zuvor
eingefiihrte Objekt ,, emails® referenziert, was in den Ergebnissen vermerkt und bei
der Ausgabe bertiicksichtigt wird. Diese Erkenntnis ist auch bei der Kompensation
von Unvollstédndigkeit von Bedeutung, fithrt doch die Kompensationsanfrage fiir
das Pridikat ,,send“ viel wahrscheinlicher zu einem passenden Resultat, wenn das
beriicksichtigte Argument Arg; ,,emails“ und nicht ,,them* lautet.

5.2.5 Complete-Strategie

Die Complete-Strategie stellt die letzte vordefinierte Strategie dar. Sie verfolgt das
Ziel einer moglichst groffen Methodenabdeckung und enthélt somit alle Methoden, die
bereits in der Default-Strategie Anwendung finden (vgl. Abbildung 5.12). Dennoch
unterscheidet sie sich in drei Merkmalen: Erstens wird die Complete-Strategie um eine
Methode zur Erkennung von Vagheit ergénzt. Vagheit ist oftmals fiir Ungenauigkeit
in Anforderungsbeschreibungen verantwortlich (s. Abschnitt 2.2). Zwar ist Vagheit
kein zentrales Thema dieser Arbeit, aber aufgrund der hohen Praxisrelevanz und der
angestrebten hohen Abdeckung sollte sie fiir Endanwender sichtbar sein. Demnach
kann diese Strategie potentielle Vagheit erkennen und aufzeigen.

Zweitens wird die syntaktische Disambiguierung nicht selektiv (vgl. Abbildung 5.6)
sondern auf allen Sétzen einer Anforderungsbeschreibung angewandt. Dies bedeutet,
dass keine erneute Priifung stattfindet, ob ein konkreter Satz disambiguierungs-
bediirftig ist, sondern alle Sétze syntaktisch disambiguiert werden, sofern zuvor die
Notwendigkeit einmalig erkannt wurde. Dies kann unter dem Gesichtspunkt der
Laufzeit zu einer Verschlechterung fithren, da die syntaktische Disambiguierung re-
chenintensiv ist (Carstensen et al., 2010, S. 312). Unter dem Ziel einer hochstmoglichen
Abdeckung allerdings sind diese zusétzlich gewonnenen linguistischen Informationen

100 5 Konzeptentwicklung

N . .
—| Preprocessin Informat,lons'
‘ L g F‘ extraktion
L) _

>

Ergebnis-
strukturierung

I

~
RS

Disambiguierung o

]

Syntaktische ‘
Disambiguierung

Unvollstiandigkeits- ‘
kompensation

] |

| Referentielle F‘ Vagheits- ‘

| Lexikalische ‘,,. ‘

~
.54

Disambiguierung erkennung

Abbildung 5.12: Complete-Strategie

fiir Folgekomponenten wertvoll, da sie Aufschluss {iber strukturelle Abhéngigkeiten
zwischen einzelnen semantischen Informationen einer FA geben (z. B. Modifikatoren).

Drittens ist die strukturierte Ausgabe dieser Strategie erweitert um linguistische
Informationen und Methodenprotokolle, die iiber die notwendigen Angaben hinaus-
gehen (z. B. alternative Lesarten, Kandidaten einzelner Koreferenzketten). Auch dies
kann zu einer Verliangerung der Laufzeit fiihren und verfolgt das Ziel, vorhandene
Informationen, die im Verarbeitungsprozess anfallen aber nicht beriicksichtigt wur-
den, im Sinne einer hohen Informationsdichte fiir Folgekomponenten aufbereitet zur
Verfiigung zu stellen. Im Folgenden wird sowohl ein Beispiel fiir Vagheitserkennung
als auch fir die erweiterte Ergebnisstrukturierung gegeben.

Anwendungsfall

Der in Beispiel 5.2.8 dargestellte Satz einer Anforderungsbeschreibung wird mittels
IE verarbeitet. Dabei ist das Adjektiv , large als Bestandteil des Objekts annotiert
worden und wurde bisher nicht durch weitere Kompensationsmethoden verarbeitet.

Beispiel 5.2.8
»The system must be able to sendapyon large emailsopjers.

Die Vagheitserkennung untersucht die, durch die IE erkannten, semantischen Bestand-
teile der FA und speichert Hinweise auf potentielle Vagheit zur spéteren Ausgabe an
der Benutzerschnittstelle. Angewendet auf das Beispiel 5.2.8, erkennt die Methode
(s. Abschnitt 5.5.6) das steigerbare Adjektiv ,,large“ als potentiell vage (Lébner, 2003,
S.63) und vermerkt dies zur spéteren Ausgabe. Eine Vagheitskompensation findet
im Rahmen dieser Arbeit nicht statt (s. Kapitel 2).

5.3 Indikatoren der Strategieauswahl 101

Die erweiterte Ergebnisausgabe unterstiitzt alle Methoden, so beispielsweise auch die
lexikalische Disambiguierung: Wahrend bisher die gewéhlte Lesart und gegebenenfalls
die korrigierte Wortart zuriickgegeben wurden, werden bei der erweiterten Ausgabe
auch potentielle Kandidaten fiir die Lesart eines Lexems unter Angabe von Wahr-
scheinlichkeitswerten ausgegeben. Dies befidhigt Folgekomponenten eigenstandige
Korrekturen ohne Hinzunahme weiterer Ressourcen vorzunehmen. Dariiber hinaus
werden Metainformationen zu einbezogenen Ressourcen (z. B. Name, Version) mit
ausgegeben, die sich vor allem an Entwickler von Folgekomponenten richten.

5.2.6 Fallback-Strategie

Wird keine bestehende Strategie der geforderten Indikatorkombination gerecht, greift
die Fallback-Strategie, die ausgehend von einer reinen Anforderungsextraktion flexibel
in der Methodenkonfiguration ist. Ziel ist es, nur notwendige Methoden auszufiihren.
Hinsichtlich méglicher Abhéngigkeiten sowie potentieller Synergien zwischen den Me-
thoden sind allerdings Qualitédtseinbuflen hinzunehmen, da dies bei der automatischen
Konfiguration nicht so umfassend erfolgen kann, wie es bei den vorkonfigurierten
Strategien der Fall ist. Da allerdings der Controller befihigt ist, weitere Methoden
miteinzubeziehen, deren Notwendigkeit iiber Indikatoren allein nicht ermittelt werden
konnte, kann sich der Strategieablauf auch wiahrend der Laufzeit anpassen. Nichtsde-
stotrotz ist die Fallback-Strategie, wie der Name bereits verdeutlicht, derzeit als eine
Riickfallstrategie zu begreifen, die gew#hlt wird, wenn eine Indikatorkombination
durch bestehende Strategien nicht abgedeckt werden kann. In der Weiterentwicklung
des resultierenden Softwaresystems kann angestrebt werden, einzig und allein auf eine
automatische Strategie zuriickzugreifen. Dies setzt allerdings voraus, dass geniigend
reale Anforderungsbeschreibungen vorliegen, um mehr {iber Qualitdtsmerkmale und
sonstige Defizite in den Text zu erfahren. Dariiber hinaus gilt es das Zusammenwirken,
Verhalten und die Ergebnisqualitéat der einzelnen Komponenten besser zu verstehen,
was die derzeit vorgenommene Strategieaufteilung iibersichtlich erméglicht.

5.3 Indikatoren der Strategieauswahl

Auf die zuvor beschriebenen Kompensationsstrategien zuriickzugreifen ermoglicht
es, effizient und flexibel auf die Beschaffenheit einer Anforderungsbeschreibung zu
reagieren. Allerdings werfen gerade Flexibilitdt und unterschiedliche Konfigurati-
onsvarianten der Strategien das Problem der Entscheidungsfindung auf: Welche
Strategie ist die Beste fiir eine konkrete Anforderungsbeschreibung? Die Antwort auf
diese Frage ist dabei ohne die Kompensationsmethoden zu finden, die erst nach der
Strategiewahl aktiviert werden. Dariiber hinaus muss die Strategieentscheidung mit
minimalem Zeitaufwand erfolgen.

5.3.1 Begriffsdefinition von Indikatoren

In Abschnitt 5.2 wird bereits der Begriff der ,Indikatoren® eingefiihrt, die inner-
halb einer Beschreibung auftreten konnen und die die Beschaffenheit ausmachen.
Femmer (2013) gibt in diesem Zusammenhang zu bedenken, dass es einfacher ist,

102 5 Konzeptentwicklung

qualitdtsmindernde Indikatoren zu finden™, als welche, die fiir Qualitét stehen, da
erstere oftmals konkrete ,,Spuren im Text hinterlassen (Femmer, 2013, S.1). In
diesem Zusammenhang wird auch von ,, Requirements smells* gesprochen (Femmer
et al., 2016a; Femmer et al., 2016b; Femmer et al., 2014; Femmer, 2013).

Definition 5.3.1 (Requirements smell)

LA Requirements smell is an indicator of a quality violation, which may lead to a
defect, with a concrete location and a concrete detection mechanism. “
(Femmer et al., 2016a, S.8)

Femmer et al. (2016a) orientieren sich dabei an ,, Code smells“, die als Indikatoren
fir schlechten Quelltext stehen (nach Fowler et al., 1999). In vier Punkten werden
» Requirements smells* von Femmer et al. (2016a, S.8) genauer definiert und im
Folgenden in enger Anlehnung auf die vorliegende Arbeit {ibertragen:

1. ,, Requirements smell“ ist ein Indikator fiir eine Qualitétsverletzung eines An-
forderungsartefakts. Fiir diese Definition verstehen wir Anforderungsqualitét
im Sinne von ,, quality-in-use*, was bedeutet, dass sich schlechte Anforderungs-
qualitidt durch die (potentiellen) negativen Auswirkungen auf Aktivitéiten im
anforderungsbasierten Softwarelebenszyklus manifestiert.

2. ,, Requirements smell* fiihrt nicht zwingend zu einer Fehlfunktion und ist im
jeweiligen Anwendungskontext zu bewerten [...]. Ob ,, Requirements smell* im
jeweiligen Kontext ein Problem darstellt oder nicht, muss individuell entschieden
werden und bedarf somit Reviews und weiterer Qualitatssicherungsaktivitéiten.

3. Ein ,, Requirements smell* hat eine konkrete Position in einer Anforderungs-
beschreibung, z. B. ein Wort oder eine Sequenz. ,, Requirements smells* sind
immer mit einer Positionsangabe ausgestattet, welche die potentielle Fehlerstel-
le kennzeichnet. Dies ist ein Unterschied zu allgemeinen Qualitdtsmerkmalen
wie Vollsténdigkeit, was nur ein abstraktes Kriterium ist.

4. ,, Requirements smells* ermoglichen spezifische Erkennungsmechanismen, die
mehr oder weniger akkurat in der Erkennung sein koénnen.

Auf Grundlage von Definition 5.3.1 sowie der darauf folgenden Begriffsverfeinerung
wird im Rahmen dieser Arbeit der Begriff des Indikators wie folgt definiert:

Definition 5.3.2 (Indikator)

Ein Indikator zeigt Qualitdtsverletzungen in Anforderungsbeschreibungen auf, die
fiir die Interpretation von Anforderungen sowie die softwaretechnische Umsetzung
potentiell schadlich sind. Indikatoren treten an mindestens einer Textposition auf und
sind mindestens einem Erkennungs- sowie Kompensationsmechanismus zugeordnet.

Da Indikatoren mehr oder weniger akkurat sein konnen, rechtfertigen sie die
Ausfithrung einer Methode und Strategie nicht in allen erkannten Fillen. So kann

"Femmer (2013) bezieht sich dabei auf Anforderungsartefakte.

5.3 Indikatoren der Strategieauswahl 103

ein Indikator, der sehr zuverldssig erkannt werden kann und damit einen sehr kon-
kreten Verdacht auf eine Qualitdtsverletzung anzeigt, bereits die Anwendung von
Kompensationsmafinahmen rechtfertigen. Demgegeniiber kann ein ungenauerer und
unzuverlassigerer Indikator gegebenenfalls nur einen Anfangsverdacht auf eine Qua-
litdtsverletzung begriinden.

5.3.2 Bestimmung kontextsensitiver Indikatoren

In diesem Abschnitt werden die Indikatoren, welche die Ausfithrung einzelner Me-
thoden und damit auch einzelner Strategien rechtfertigen, dargestellt. Es wird von
kontextsensitiven Indikatoren gesprochen, da nicht einzelne Lexeme einen Indikator
bilden, sondern erst der Kontext bzw. bestimmte Textmuster genug Aussagekraft
erzeugen, um als Indikatoren (zuverlissig) zu fungieren. Indikatoren konnen dabei
auf Satzbasis oder auf der gesamten Anforderungsbeschreibung angewendet werden.
Sie miissen aber losgelost von den Erkennungs- und Kompensationsmethoden arbei-
ten, da diese ausschlielich im nachgelagerten Schritt, demnach bei entsprechendem
Bedarf (erkannte Indikatoren) herangezogen werden.

5.3.2.1 Lexikalische Ambiguitat als Indikator

Die lexikalische Disambiguierung verfolgt das Ziel, einem Lexem seine korrekte Lesart
aus einer Menge von Lesarten zuzuordnen (s. Abschnitt 2.1.1). Ein Indikator hierfiir
ist Ambiguitét, also das Vorhandensein mindestens zweier potentieller Lesarten fiir
ein und dasselbe Lexem. Hierbei stellt sich nun die Frage, ob es wirklich notwendig
ist, alle Lexeme eines Satzes oder einer Anforderungsbeschreibung auf lexikalische
Ambiguitét zu tiberpriifen. Und dariiber hinaus, ob nicht Einschrankungen existieren,
die die Menge an potentiellen Lesarten von vornherein minimieren. Diesbeziiglich
werden folgende Annahmen bereits vor der Indikatorbestimmung getroffen:

Zur Steigerung der Effizienz gelten nur Lexeme als disambiguierungsbediirftig, die
sich in On-Topic-Satzen befinden und eine semantische Funktion innerhalb einer
FA einnehmen (s. Abschnitt 5.5.3). Letzteres wird eingegrenzt, indem nur solche
Lexeme disambiguiert werden, die nicht den semantischen Kategorien ,, Rolle“ oder
, Prioritat“™ zuzuordnen sind. Hier wird die Variabilitét in der Wortwahl als so gering
angenommen, dass eine Disambiguierung nicht notwendig erscheint. Schlussendlich
werden nur Lexeme beriicksichtigt, die keine Stoppworter sind.

Beispiel 5.3.1 zeigt den Satz ,,I want to send emails to my family“, auf dem ein
Indikator fiir lexikalische Ambiguitit identifiziert wird.

Beispiel 5.3.1 (Indikatorbestimmung fiir lexikalische Ambiguitit)
(5)
) VB NNS PRPS NN

(3) 1 waril ¥ send emails }6 my family

(2) {Rolle} {Pm’orz’ta’t} {Aktion} {Objekt} [Verfez'n. Verfein.}

(1) I want to send emails to my family

"0Es werden weitere Kategorien wie ,,Subprioritiit* etc. gefiltert, vgl. Abbildung 5.18.

104 5 Konzeptentwicklung

In Schritt (1) ist der Originalsatz zu sehen. Dieser wird in Schritt (2) um semantische
Informationen durch die IE erweitert. Stoppworter, die dariiber hinaus keine seman-
tische Funktion innerhalb der FA haben (in diesem Fall ¢0%), werden in Schritt (3)
zusammen mit Lexemen der Funktionen ,Rolle* und ,,Prioritét“ entfernt. Als Stopp-
wortliste eignet sich beispielsweise die von der Apache Foundation zur Verfiigung
gestellte Liste””. Anschlieflend werden in Schritt (4) die POS-Tags der verbleibenden
Lexeme annotiert. Hier werden weitere Stoppworter, auch auf Basis der Tags, entfernt,
die bislang aufgrund ihrer Zugehorigkeit zu semantischen Kategorien unangetastet
blieben. Schritt (5) zeigt die verbleibenden Lexeme, die daraufhin als Kandidaten
fiir eine Disambiguierung in Frage kommen: , send“, , emails* und ,, family*.

Lexem Lesart Beschreibung

send send.01 cause to go somewhere
send.02 to cause or order to be taken, directed,...
send.03 cause to be directed or transmitted to another place

send.08 broadcast over the airwaves, as in radio or television
email email.01 a system of world-wide electronic communication
family family.01 a social unit living together

family.02 primary social group; parents and children

family.03 @ collection of things sharing a common attribute

family.08 an association of people who share common beliefs...

Tabelle 5.4: Potentielle Lesarten verbleibender Disambiguierungskandidaten

Auf diese Vorauswahl von Kandidaten folgt ein Abgleich mit WordNet, was In-
formationen iiber die Anzahl moglicher Lesarten enthilt (s. Abschnitt 3.3.1.1). Die
Anfragen an WordNet beziiglich moglicher Lesarten der drei Kandidaten kénnen
durch Hinzunahme der bereits bekannten POS-Tags besser spezifiziert werden. Dies
erhoht die Aussagekraft erheblich, sind doch nur die Lesarten von Interesse, die
auch die Wortart des Kandidaten teilen (s. Auszug aus dem Anfrageergebnis in
Tabelle 5.4). Die Lexeme , send“™ (als Verb) und ,, family“™ (als Nomen) haben
laut WordNet jeweils acht verschiedene Lesarten. Hingegen hat ,, emails“® nur eine
einzige Lesart und féllt daher als Kandidat weg. Es verbleiben zwei Kandidaten fiir
potentielle lexikalische Ambiguitét. Das bisherige Ergebnis dieses Indikatorchecks ist
demnach, dass bei zwei von acht Lexemen Ambiguitdt vorherrschen kann.

Es stellt sich jedoch zum einen die Frage, ob wirklich alle gefundenen Lesarten
relevant sind, oder ob nicht eine weitere Einschrinkung erfolgen muss. Zum anderen
gilt es zu kliren, wie die Indikatoren nun im Kontext der Anforderungsbeschreibung
zu bewerten sind: Reicht der Verdacht auf Ambiguitdt bei zwei Lexemen aus, um den
spezifischen Satz der Anforderungsbeschreibung in Génze einer lexikalischen Disam-
biguierung zu unterziehen? Da die zugrundeliegenden Kandidaten bereits vorgefiltert

"Siehe: http://snowball.tartarus.org/algorithms/english/stop.txt (Stand: 16.02.17).

7SSiChC weiterfiithrend: http://wordnetweb.princeton.edu/perl/webwn?s=send (Stand: 110117)
"Siehe weiterfithrend: http://wordnetweb.princeton.edu/perl/webwn?s=family (Stand: 110117)
80Giehe weiterfithrend: http://wordnetweb.princeton.edu/perl/webwn?s=email (St‘rlnd: 11.01.17).

5.3 Indikatoren der Strategieauswahl 105

wurden und es sich somit definitiv um fiir eine FA relevante, semantische Kernaussa-
gen handelt (z.B. ,,send“ = Aktion), ist es hinreichend zu wissen, dass mindestens
eine dieser ambig ist und es im Zuge der Weiterverarbeitung zu Fehlinterpretationen
fithren kann. Die Disambiguierung ist demnach gerechtfertigt. Nun konnte zwar ar-
gumentiert werden, dass zum Beispiel ,,send* unter Betrachtung des Kontextes nicht
acht verschiedene Lesarten hat, sondern eigentlich nur zwei. Namlich , cause to be
directed or transmitted to another place* (send.03) und , broadcast over the airwaves,
as in radio or television“ (send.08), die beide von WordNet als verb.communication
gefiithrt werden. Jedoch bedeutet dies zum einen keine Ergebnisveréinderung, da das
Lexem auch mit zwei potentiellen Lesarten als ambig gelten wiirde. Zum anderen sei
an dieser Stelle noch einmal an die Aufgabe der Indikatoren erinnert, die nicht darin
besteht, eine Disambiguierung durchzufiihren, sondern vielmehr deren Notwendigkeit
aufzuzeigen. Es ist zu diesem Zeitpunkt vollkommen hinreichend zu wissen, dass meh-
rere Lesarten vorliegen und ein gegebenes Lexem unter allen derzeit beriicksichtigten
Faktoren als ambig gilt.

5.3.2.2 Syntaktische Ambiguitat als Indikator

Da es sich bei syntaktischer Ambiguitét um eine strukturelle Mehrdeutigkeit handelt,
sind Indikatoren auf Basis von syntaktischen Mustern naheliegend (s. Kapitel 2). Auf
diese Weise ldsst sich sowohl Koordinations- als auch PP-Anbindungsambiguitét er-
kennen. Die Identifikation der Indikatoren auf Satzbasis erméglicht eine Lokalisierung
moglicher Ambiguitédten innerhalb der Anforderungsbeschreibung.

Indikatoren zur Erkennung von Koordinationsambiguitit

Fiir den Fall der Koordinationsambiguitéit werden Konjunktionen sowie syntaktische
Muster als Indikatoren herangezogen. Koordinationsambiguitét, wie sie in dieser
Arbeit verstanden wird, entsteht zum einen durch die Verwendung von Konjunktionen
zusammen mit Modifikatoren, was auf Basis von Muster erkannt werden kann. Zum
anderen entsteht sie durch die Verschachtelung von Konjunktionen, deren Erkennung
durch den systematischen Abgleich von Token und definierten Mustern erreicht
wird (s. Abschnitt 2.1.2). In beiden Fillen ist die Existenz von Konjunktionen (Berry
et al., 2003, S. 11 sowie Chantree et al., 2005, S.2 benennen explizit ,,and“ und , or*)
ausschlaggebend und wird {iberpriift, bevor Muster pro Satz gesucht werden (vgl.
Beispiel 5.3.2). Diese Reihenfolge dient vor allem einer schnelleren Verarbeitung.

Beispiel 5.3.2 (Koordinationsambiguitt)

PRP VBP NNS NNS NNS VBP PRP

1 use crawlers and spiders and users report me

(A)

PRP VBP TO VB (NNS CC NNS)

1 want to send large emails and tasks

(B)

106 5 Konzeptentwicklung

Wie in Beispiel 5.3.2 ersichtlich wird, enthalten beide Arten der Koordinationsambi-
guitédt mindestens eine Konjunktion. Dies wird als Vorauswahlkriterium herangezogen.
Darauf folgend werden Sétze, die mindestens eine Konjunktion enthalten auf weitere
Konjunktionen iiberpriift. Der Indikator erkennt eine potentielle Koordinationsambi-
guitét, wenn mindestens zwei Konjunktionen vorliegen. Es folgt die musterbasierte
Erkennung (POS-Tags) von Ambiguitit durch die Kombination von Modifikatoren
und Konjunktionen. Wie in Beispiel 5.3.2 (B) ersichtlich wird, eignet sich beispiels-
weise das Muster ,JJ NNS CC NNS* im Falle von zwei Nomina im Plural.

Indikatoren zur Erkennung von PP-Anbindungsambiguitat

Im Fall von PP-Anbindungsambiguitét existieren bereits syntaktische Muster zur
Erkennung potentieller Ambiguitét, wie beispielsweise ,V NP PP“ von Agirre et al.
(2008, S.318) bzw. Nadh und Huyck (2009, S.2), sodass diese hier adaptiert wer-
den kénnen. Dieses Muster ermoglicht es, Priapositionalphrasen zu finden, die auf
Nominalphrasen in Objektposition folgen. Die hierzu notwendigen syntaktischen
Informationen kénnen durch Shallow Parsing-Ansitze (auch: Chunking) erzeugt
werden, die als sehr performant und ausreichend zuverlissig gelten (Carstensen
et al., 2010, S.276). Allerdings stellt sich die Frage, ob das Muster im Sinne hoher
Performanz noch weiter eingeschriinkt werden kann. Eine Uberlegung wire zum
Beispiel, bestimmte Prépositionen auszuschlieBen, die nicht als (hochgradig) ambi-
guitatsfordernd gelten. Beim Blick in Lexika des Englischen zeigt sich, dass sehr
viele Pripositionen existieren®!, sodass der Fokus auf die Géngigsten geniigt. Darum
werden in Tabelle 5.5 die 15 meistgenutzten Pripositionen aufgefiihrt (Davies, 2016).

(1) of (2)in (3) to (4) for (5) with
(6) on (7) at (8) from (9) by (10) about
(11) as (12) into (13) like (14) through (15) after

Tabelle 5.5: Die hiufigsten 15 Prépositionen der englischen Sprache

Die haufigste Praposition ,,of “ ist zugleich eine, die in der Literatur als nicht ambig
gilt, da sie in nahezu allen Féllen an die NP gebunden wird, und daher oftmals aus
Disambiguierungsverfahren ausgeschlossen wird (z. B. Ratnaparkhi, 1998, S.1081).
Die Préaposition ,,of “ wird demnach auch in dieser Arbeit nicht behandelt, weshalb das
syntaktische Muster folgerichtig noch um mindestens eine Konstituente zu ergénzen
ist (,V NP PP“ | PREP # ,of“).

5.3.2.3 Referentielle Ambiguitat als Indikator

In diesem Abschnitt werden Indikatoren in zweierlei Hinsicht bestimmt: Zum einen
muss festgestellt werden, ob Ambiguitdt vorliegt, um entsprechend eine Methode zur
Disambiguierung zu starten. Zum anderen soll festgestellt werden, ob Koreferenzen
im Text existieren, um auch deren Erkennung zu forcieren.

8IDELA fiithrt 124 Priipositionen, Davies (2016) listet 196 und Essberger (2012, S.6) wiederum
fiihrt 150 unter dem Verweis auf, dass es viele weitere Préipositionen gibt.

5.3 Indikatoren der Strategicauswahl 107

Indikator zur Erkennung referentieller Ambiguitat

Ein mogliches Vorgehen der Erkennung referentieller Ambiguitéit (s. Abschnitt 2.1.3)
ware, auf Basis einzelner Lexeme zu priifen, ob beispielsweise Pronomina vorliegen.
Das ist naheliegend, weil diese Ausdriicke klassischerweise auch als ,, Stellvertreter” von
Nomina bezeichnet werden (Dittmann und Thieroff, 2009, S. 400 ff.) und die Gefahr
mit sich bringen, falsch zugeordnet zu werden (IEEE, 2011, S. 12). Diese Priifung
kann sowohl mittels POS-Tagging geschehen als auch auf Basis von Wortlisten.
Eine Einschrankung zur Sicherung der Performanz wére dabei beispielsweise, nur
hochfrequente Pronomina abzugleichen. Hierfiir stellt Tabelle 5.6 die 15 Pronomina
der englischen Sprache dar, die am h#ufigsten verwendet werden (Davies, 2016).

(1) at (2) 1 (3) you (4) he (5) they
(6) we (7) she (8) who (9) them (10) me
(11) him (12) one (13) her (14) us (15) something

Tabelle 5.6: Die hiufigsten 15 Pronomina der englischen Sprache

Diese Losung ist aber unter drei Gesichtspunkten unbefriedigend: Einerseits enthélt
Tabelle 5.6 viele Personalpronomina (z. B. ,1“, | she® oder ,,it“), wobei zu kldren wire,
wie hiufig Personalpronomina in Anforderungsbeschreibungen auftreten und ob sie
hinsichtlich der Anforderungsqualitét schiadigend sind. Beispielsweise enthilt bereits
der Satz I want to read emails and I need to print them® drei Personalpronomina,
was die Frage aufwirft, ob das blofie Vorhandensein bereits negativ zu interpretieren
ist und wenn ja, ab welcher Anzahl. Ferner ist, unter der Annahme, dass es zumindest
eine bekannte Standardrolle in Anforderungsbeschreibungen gibt, ndmlich den User,
auch das Personalpronomen ,,/“ als unkritisch anzusehen. Was noch {ibrig bleibt, ist
das Wort ,,them, das auf ,, emails“ referenziert und als Koreferenzkette abzubilden ist.
Ambig ist diese Konstellation aber nicht. Dariiber hinaus ist ein Abgleich aller Worter,
unabhéngig von ihrer semantischen Funktion innerhalb der FA, nicht performant.

Beispiel 5.3.3 enthélt einen Auszug einer Anforderungsbeschreibung, die aus zwei
aufeinanderfolgenden Sétzen besteht. Satz (2) enthélt als Objekt das Personalpro-
nomen ,,them*, wobei unklar bleibt, auf was sich dieses bezieht. Es kénnte sowohl
das Objekt als auch die semantische Kategorie der Verfeinerung in Satz (1) sein, da
beide Nomina im Plural vorliegen.

Beispiel 5.3.3 (Indikator fiir referentielle Ambiguitét)

0

I want to send ema\;ils with lglrge files

(2) (Aktion) [ObYekt]

I want to import them from an external hard drive

Es wird deutlich, dass die Indikatorbestimmung nicht auf Satzbasis erfolgen kann,
da Antezedens und der direkte anaphorische Verweis sowohl im selben, als auch in
aufeinander folgenden Sétzen auftreten konnen. In Beispiel 5.3.3 greift das Muster

108 5 Konzeptentwicklung

»NNS+NNS+them* satziibergreifend. Es ldsst sich erweitern, indem auch Anteze-
denzien im Singular berticksichtigt werden, wie beispielsweise in ,, I want to send an
email with an attachment. It is a very large one* und statt ,them* im Muster das
POS-Tag fiir Pronomen gewihlt wird (,NN(S)+NN(S)+PRP“). Allerdings greift das
Muster nur, wenn entweder zwei Antezedenzien im selben Satz mit einem Pronomen
oder im Satz zuvor genutzt werden. Eine Aufteilung der Antezedenzien auf zwei
Sétze wird nicht beriicksichtigt, da davon ausgegangen wird, dass in diesen Féllen
auf das zuletzt genannte Antezedens referenziert wird.

Indikator zur Erkennung von Koreferenzen

Um auch Koreferenzen aufdecken zu kénnen, wird im Folgenden eine Kombination aus
Pronomina, semantischen Informationen der FA und der Ahnlichkeit zwischen Objek-
ten, Komponenten, Rollen etc. gewéhlt, sofern davon mehrere existieren. Beispiel 5.3.4
illustriert das an einer um semantische Kategorien erweiterten Anforderungsbeschrei-
bung®?, die aus insgesamt vier Sitzen besteht. Wihrend die Anforderungen in den
Sétzen (1) und (4) aus der Komponentensicht verfasst wurden (Was soll eine Kompo-
nente tun?), zeigen die Sitze (2) und (3) die Nutzerperspektive (Was soll der Nutzer
tun konnen?).

Beispiel 5.3.4 (Indikator zur Bildung von Koreferenzketten)

11 r@\
(1) Kompanente 1 Objekt 1
The application should send emails to my family
11
(2) (Objekt 2]
1 wqnt to delete email sppm
(3) Objekt 3
Furthermore USPrs should report the spam

(4) [Objekt 4)

The system sends encrypted emails

Es liegen — markiert durch die Pfeile I-III — Koreferenzen vor, die sich in einzelnen
Merkmalen unterscheiden und die es zu erkennen gilt, sodass die referentielle Disam-
biguierung zur Erstellung von Koreferenzketten durchgefiihrt wird. Gegenstand des
Indikators in diesem Fall sind die semantischen Kategorien und die Ahnlichkeiten der
dahinter befindlichen Worter. Durch die ITE sind semantische Informationen inklusive
POS-Tuags bekannt: Die Komponenten umfassen {applicationyy, systemyy} und zu
den Objekten gehoren {emailsyys, emailyy spamyy, spamyy, encryptedy; emailsyys}.
Folgend werden Nomina einer semantischen Kategorie sowie verwandten Kategorien

82 Aus Griinden der besseren Lesbarkeit werden nur relevante Kategorien dargestellt.

5.3 Indikatoren der Strategieauswahl 109

untereinander verglichen (vgl. Tabelle 5.7). Besteht eine Kategorie aus mehreren No-
mina, werden diese jeweils einzeln miteinander abgeglichen (z. B. emailyy spamyn®).
Vollstéindige sowie partielle Ubereinstimmungen in den verglichenen Kategorien
gelten hier als ausreichend fiir die Ausfiihrung der referentiellen Disambiguierung.

In Beispiel 5.3.4 existiert eine direkte Ubereinstimmung zwischen den Nomina von
Objekt 1 und 4 (,,emails“) sowie eine direkte Ubereinstimmung zwischen Objekt 2
und 3 (,,spam*). Dariiber hinaus liegt eine partielle Ubereinstimmung zwischen
Objekt 2 und den Objekten 1 und 4 vor (,,email*). Bei den Komponenten 1 und 4
hingegen handelt es sich um einen Sonderfall. Ein direkter Abgleich zwischen ,, system
und ,, application* fithrt ins Leere, wobei beide Begriffe auf die identische Entitét
referenzieren. Um dennoch einen Hinweis auf potentielle Koreferenz zu finden, wird
eine Synonymliste herangezogen, die hochfrequente Begriffe enthélt. Durch diese Liste
wird erkennbar, dass die beiden Worter zusammenhéingen und Koreferenz gegeben
ist — der Indikator greift demnach auch in diesen Féllen, da durch die Hinzunahme
der Synonyme eine gewisse Ungenauigkeit in Kauf genommen wird.

Sem. Kategorie Abgleich Hinreichend
Prioritéat o —
Subprioritit o —
Aktion o —
Aktionsargument o —
Subaktion o —
Subaktionsargument o —
Sonstiges

Motivation o —
Bedingung . o
Rolle

Subrolle

Komponente ° °
Komponentenverfeinerung ° .
Objekt . .
Objektverfeinerung ° °
Subobjekt ° °
Subobjektverfeinerung . °

Tabelle 5.7: Gruppen semantischer Kategorien zum Ahnlichkeitsabgleich.
Gruppenoberbegriffe sind fett gedruckt hervorgehoben

Nun stellt sich auch bei diesem Indikator die Frage, ob bereits ein einmaliger Hinweis
auf potentielle Koreferenz ausreicht, um die Ausfiihrung der referentiellen Disambi-
guierung zu rechtfertigen oder ob weitere Voraussetzungen erfiillt sein miissen. In der
Tat bietet es sich hier an, zwischen den semantischen Kategorien zu unterscheiden.
Wie in Tabelle 5.7 ersichtlich ist, werden nicht alle Kategorien fiir einen Abgleich
hinzugezogen. So wird beispielsweise auf , Prioritat”, ,Aktion* und ,,Motivation*
verzichtet, wobei Prioritdten (z. B.,want“, ,must“) und Aktionen (,,send“) per se
nicht koreferent sind. Auf die Kategorie ,,Motivation* wird aus Effizienzgriinden

110 5 Konzeptentwicklung

verzichtet, da sie als nicht hochgradig relevant fiir die FA eingestuft wird — anders
als zum Beispiel die Kategorie ,,Bedingung”, welche wiederum allein nicht hinrei-
chend ist, um einen positiven Indikator darzustellen. Ebenfalls sind die Kategorien
rund um ,,Rolle” isoliert nicht ausreichend, um die Methodenanwendung zu recht-
fertigen, da iiblicherweise nicht mehr als zwei unterschiedliche Rollen innerhalb
einer Anforderungsbeschreibung vorkommen und diese {iberwiegend Standardrol-
len sind (z. B., User, ,I%). Wenn die Notwendigkeit der Methodenausfiithrung bei
,Komponente* und , Objekt“ sowie deren Auspriagungen erkannt wird, wird davon
ausgegangen, dass eine Wiederaufnahme bereits eingefiihrter Referenten erfolgt ist.

5.3.2.4 Indikatoren zur Erkennung von Unvollstédndigkeit

Die Bestimmung der Indikatoren fiir Unvollstidndigkeit gestaltet sich vergleichsweise
schwierig, da das Fehlen von Angaben zu priifen ist. Als Vorteil erweist sich hierbei,
dass es sich um partiell unvollstandige Anforderungen handelt (s. Abschnitt 2.3).
Es ist demnach zu {iberlegen, ob die bestehenden Informationen Riickschliisse auf
die fehlenden Angaben zulassen. Wie auch bei den anderen Indikatoren muss dies
allerdings ohne die entsprechende Kompensationsmethode geschehen. Da die Un-
vollstandigkeit auf Basis der Pradikate ermittelt wird, stehen diese im Zentrum der
nachfolgenden Uberlegungen. Und auch hier werden die semantischen Kategorien als
Grundlage der kontextsensitiven Indikatoren herangezogen.

Ein erster Indikator fiir Unvollstandigkeit ist die fehlende semantische Kategorie
»Aktion® (vgl. auch Tabelle 5.7). Diese lisst sich allerdings nur schwerlich kompensie-
ren, bildet sie doch zum einen die Ausgangslage®® der eigentlichen Kompensation und
zum anderen die semantische Kernaussage einer Anforderung®!. Eine Anforderung
ohne , Aktion“ bzw. Prozesswort ist demnach nicht als Anforderung zu behandeln.
In den meisten Fillen sollte hier bereits die Off-Topic-Klassifikation wihrend des
Preprocessings den entsprechenden Satz der Anforderungsbeschreibung als irrelevant
kennzeichnen. Neben den Prozesswortern existieren die semantischen Kategorien fiir
Rolle, Komponente und Objekt. Diese Kategorien stellen Argumente eines Prédikats
dar. Das Subjekt einer Anforderung wird durch die Rolle oder Komponente ausge-
driickt, wobei es ausreicht, wenn eine der beiden semantischen Kategorien in einem
Satz vorzufinden ist. Fehlt das Subjekt, muss die Kompensation greifen, da Unvoll-
stéandigkeit angenommen werden kann. Ein fehlendes Subjekt kann bereits bei der
maschinellen Verarbeitung (IE) auftreten, insbesondere bei einer Aufzihlung von
Prozesswortern, wie das Beispiel 5.3.5 zeigt. Hier wird das Subjekt (,,/“) korrekt dem
Prédikat ,,write“ zugeordnet aber beispielsweise bei ,, send“ als Argument ignoriert.

Beispiel 5.3.5 (Auszug einer Anforderungsbeschreibung)
wIRotte want to writeaision, T€0dartion aNd S€ENA ALtion €-MAlSOpjer

Ein weiteres Argument des Pridikats ist die semantische Kategorie ,,Objekt*, wie
zum Beispiel | e-mails“ in Beispiel 5.3.5. Im Gegensatz zum Subjekt und Pradikat
ist das Objekt hier nicht erforderlich, um einen wohlgeformten Satz zu bilden

83Die Aktion stellt das zentrale Verb einer FA dar. Thr Fehlen verhindert die PAS-Ermittlung.
84Giehe hierzu auch Rupp (2007, S.219f.).

5.3 Indikatoren der Strategieauswahl 111

(vgl. z. B.Bakshi, 2000, S.3f.). Es wird aber oftmals benétigt, um einen aussa-
gekriftigen Satz zu konstruieren. Dariiber hinaus wird angenommen, dass auch in
den iiberwiegenden Fillen bei Anforderungsbeschreibungen ein Objekt erforderlich
ist. Eine Anforderung wird demnach auch dann als unvollstdndig angesehen, wenn
die semantische Kategorie ,,Objekt“ fehlt.

5.3.2.5 Indikatorabhdngigkeiten

Wie dargestellt, bediirfen die Kompensationsmethoden unterschiedlicher Indikatoren,
da auf spezifische Qualitatsmerkmale in Anforderungsbeschreibungen zuriickgegriffen
wird. Eine Besonderheit ist dabei, dass die Mehrzahl der Indikatoren insbesondere
auf die Semantik als Quelle linguistischer Charakteristika zuriickgreift, ndmlich auf
die durch die IE bestimmten semantischen Kategorien. Abbildung 5.13 zeigt die
moglichen semantischen Kategorien (vgl. Tabelle 5.7) und deren Einfluss auf Indika-
toren unterschiedlicher Kompensationsmethoden (auch: Indikatorabhéngigkeit).

Aktion —
Rolle —
Komponente —

7.— Kompensation
Objekt —

Sonstiges —
Prioritdt —

Abbildung 5.13: Einfluss semantischer Kategorien auf Indikatoren.
WSD = Lexikalische Ambiguitit; REF = Referentielle Ambiguitét
SYN = Syntaktische Ambiguitét; INC = Unvollsténdigkeit

Beispielhaft hervorgehoben (schwarz, fett gedruckt) sind in Abbildung 5.13 die Pfeile
ausgehend von den semantischen Kategorien ,,Rolle”, , Komponente“ und ,,Objekt*
zum Indikator fiir Unvollstdndigkeit. Dieser Indikator beriicksichtigt demnach drei
semantische Kategorien, die wiederum auch von Indikatoren der lexikalischen und
referentiellen Ambiguitéit herangezogen werden (mit Ausnahme der Kategorie ,,Rol-
le“ im Fall der lexikalischen Ambiguitét). Im Umkehrschluss bedeuten mehrfache
Indikatorabhéngigkeiten auch, dass ein Fehler in einer semantischen Kategorie nicht
nur einen, sondern alle Indikatoren betrifft, die diese Kategorie in die Entschei-
dungsfindung miteinbeziehen. Wird nun die Frage nach der Zuverléssigkeit einzelner
Indikatoren gestellt, ist eine gleichzeitige Betrachtung der zugrundeliegenden Infor-
mationen und deren Zuverldssigkeit ratsam (s. Abschnitt 8.2.3).

Es fallt dariiber hinaus auf, dass die Indikatoren fiir syntaktische Ambiguitét nicht
auf die semantischen Kategorien zuriickgreifen. Dies ldsst sich dadurch erkléren,
dass sich syntaktische Ambiguitdt im gesamten Satz manifestiert und daher auch
nur eine Betrachtung auf Basis morpho-syntaktischer Charakteristika, losgelost von

112 5 Konzeptentwicklung

semantischen Funktionen, ausreichend ist. Um die Nachvollziehbarkeit fiir Anwender
zu sichern, werden gefundene Indikatoren erlautert (vgl. Abbildung A.1 im Anhang).

5.4 Strategieindex

Der in Abbildung 5.4 dargestellte Strategieindex greift sowohl die Strategien als auch
die Indikatoren auf, indem jeder Strategie eine Indikatorkombination zugeordnet
wird. Diese Indikatorkombination dient darauthin sowohl der Beschreibung einer
Strategie (Strategieumfang) als auch der Auswahl geeigneter Strategien hinsicht-
lich der Indikatorkombination einer gegebenen Anforderungsbeschreibung durch
den Selector. Dabei kann jede Kombination von Indikatoren derzeit nur einmal im
Strategieindex vorkommen (im Sinne eines einmaligen Schliissels in relationalen
Datenbanken). Grundsétzlich ist es dabei aber denkbar, diese Limitation aufzuheben
und die Bezeichnung der Strategien (z. B. Basic Plus) oder eine fortlaufende Identifi-
kationsnummer als einmaliges Merkmal zu nutzen. Offen bleibt dann jedoch die Frage,
wie zwischen zwei Strategien zu entscheiden ist, die die gleiche Indikatorkombination
unterstiitzen. Denkbar wére hier die Entscheidung fiir oder gegen eine Strategie auf
Grundlage der Endanwenderpréferenz hinsichtlich Prézision und Performanz.

Im Rahmen dieser Arbeit kann jede Indikatorkombination durch genau eine Stra-
tegie abgedeckt werden. Tabelle 5.8 stellt hierzu den initialen Strategieindex dar.

Strategie | Indikatorkombination | Sem. Kategorien | Zusatzinformationen
Light - - -
Aktion
Basic SYN+INC Iég}l;}lz;)ncntc Chunking

Rolle
Basic Plus SYN+INC+WSD | jegliche Chunking, WordNet
Default SYN+INC+WSD+REF | jegliche Chunking, WordNet, POS
Fallback jegliche | jegliche Chunking, WordNet, POS

Tabelle 5.8: Initialer Strategieindex

Die Basic-Strategie hat beispielsweise den eindeutigen Schliissel SYN+INC und fiihrt
somit die syntaktische Disambiguierung und die Unvollstandigkeitskompensation
aus, sofern entsprechende Indikatoren vorliegen. Die Indikatoren wiederum ergeben
sich in diesem Beispiel aus vier semantischen Kategorien und unter Zuhilfenahme
des Chunkings. Es liegen hier keine Uberschneidungen in den zugrundeliegenden
Informationen vor. Anders sieht dies bei der Default-Strategie aus. Hier werden
jegliche semantische Kategorien herangezogen, die von unterschiedlichen Indikato-
ren genutzt werden. Fehlerhafte Informationen konnen in dieser Strategie demnach
zu mehreren falschen Indikatoren fithren. Dariiber hinaus sind die semantischen
Kategorien allein nicht mehr ausreichend, sodass WordNet als Ressource zur Erken-
nung lexikalischer Ambiguitét und ein Verfahren des POS-Tuaggings zur Erkennung
referentieller Ambiguitiat hinzugezogen werden muss.

Die Darstellung in Tabelle 5.8 dient dabei auch der Zusammenfassung bisheriger
Systembestandteile, bevor im Folgenden auf die Methoden eingegangen wird.

5.5 Geplantes Vorgehen und Methodik 113

5.5 Geplantes Vorgehen und Methodik

In diesem Abschnitt wird der Verarbeitungsprozess sequenziell geschildert. Auf diese
Weise konnen die Komponenten unabhéngig von den Strategien erldutert werden, die
die Verarbeitungsreihenfolge bestimmen bzw. verdndern konnen (s. Abschnitt 5.2).

v
Input ¢ schreiben n.n ¢ erhalten Output
E‘ndanwen(;r A
v

Preprocessing % Extraktion [|Disambiguierung® Kompensation | Strukturierung

Komponente #1 Komponente #2 Komponente #3 Komponente #4

Abbildung 5.14: Informationsverarbeitung (vereinfachte Darstellung)

Ausgangspunkt fiir die Informationsverarbeitung sind Anforderungsbeschreibun-
gen, die von Endanwendern (s. Abschnitt 1.1) formuliert und iiber eine Benutzer-
schnittstelle (s. Abschnitt 5.5.1) an das Softwaresystem (auch: System)®5, CORDULA,
tibermittelt werden (vgl. Abbildung 5.14). Aufgrund der gravierenden Unterschiede in
der Beschreibungsqualitdt werden die Anforderungsbeschreibungen zuerst einem Pre-
processing unterzogen (s. Abschnitt 5.5.2) und dann an die Anforderungsidentifikation
und -extraktion (Komponente #1) weitergeleitet.

Die Extraktion der Anforderungen umfasst in dieser Arbeit primér die binére
Klassifikation von Anforderungen und nebenséchlichen Aussagen im Fliefitext. Die
Extraktion von FA, was die Klassifikation von FA und NFA voraussetzt, zielt vor al-
lem auf die Performanzsteigerung des Gesamtsystems ab. Dieser Schritt wird als erster
bei der Informationsverarbeitung umgesetzt (s. Abschnitt 5.5.3), da davon auszugehen
ist, dass eine Beschréankung auf relevante Aussagen zu einer erheblichen Verringerung
der Gesamtkomplexitit fithrt. Darauf folgen die Komponenten #2und #3 zur Di-
sambiguierung und zur Kompensation der Unvollsténdigkeit, die in Abbildung 5.14
ebenfalls sequenziell dargestellt sind. Die Ergebnisse werden von Komponente #4
vor der finalen Ausgabe fiir den Endanwender strukturiert®. Abschliefend erhalten
die Endanwender ihre kompensierte Anforderungsbeschreibung zur Ansicht zuriick.

5.5.1 Design der Benutzerschnittstelle mit Eingabemaske

Um Endanwender zu befdhigen, Anforderungsbeschreibungen moglichst einfach an das
Softwaresystem zu iibermitteln, sind Benutzerschnittstellen erforderlich, die intuitiv
zu bedienen sind und somit keine bis sehr niedrige Nutzungsbarrieren aufweisen.
Bei der Benutzerschnittstelle (vgl. Abbildung 5.15), die standardméflig vorgesehen
ist, handelt es sich um eine Webapplikation, die auf allen internetfihigen Endgeréiten

85In dieser Arbeit wird der Begriff des ,,Softwaresystems“ anstelle von ,, Programm® genutzt, da
ein Softwaresystem ,,[...] die Gesamtheit aller Softwarebausteine (Module), die sich in einem
ganzheitlichen Zusammenhang befinden [, abbildet]“ (Denert, 2013, S. 11) withrend ein Programm
mit einer ,,[...] einzelnen, kleinen Losung assoziiert [wird]“ (Denert, 2013, S.11).

86Strukturiertheit wird hier iiber syntaktische Muster erzeugt (s. Abschnitt 5.5.7).

114 5 Konzeptentwicklung

Cordu Sl FAQ Kontakt

Compensation Of Requirements
Descriptions Using Linguistic Analysis

Anforderungsbeschreibung eingeben

Bitte geben Sie im Folgenden Ihre Anforderungsbeschreibung ein.
Zu Testzwecken konnen Sie dieses Beispiel aufrufen.

Hello Marcel! | want an application to write, read, delete and sort emails. | want to delete spam and | want to
report the spam. The application must be able to handle big attachments, like the movies from my last summer
holidays. As a user, | want the ability to filter undesired mails. Additional, when writing emails, the application
must be able to format text as bold or italic. Thank you very much!

 System initialisiert. Strategie: Automatisch

Abbildung 5.15: Benutzerschnittstelle von CORDULA (Frontend)

mittels Webbrowser genutzt werden kann. Alternative Benutzerschnittstellen, bei-
spielsweise Smartphone-Applikationen, sind denkbar (vgl. Abbildung 5.1), aber auf
Grund des responsiven Designs nicht zwingend erforderlich (s. Abschnitt 7.4.2.2).
Abbildung 5.15 stellt das zentrale Eingabeformular dar, welches den Endanwen-
dern zur Eingabe der Anforderungsbeschreibungen prisentiert wird. Grundsétzlich
wird lediglich ein Textfeld und ein weiteres Bedienelement zur Initialisierung der
Verarbeitung und Kompensation benétigt. Da keine Formatierung der Anforderungs-
beschreibungen vorgesehen ist, sind Meniipunkte wie , Fettdruck® oder ,,Kursiv®,
wie sie klassische Textverarbeitungsapplikationen erwarten lassen, hier obsolet. Ent-
sprechend handelt es sich bei dem Input, der an das System iiber die dargestellte
Benutzerschnittstelle iibergeben wird, um unformatierte Beschreibungen.

5.5.2 Textvorverarbeitung

Unter Textvorverarbeitung (auch: Preprocessing) wird die Durchfiihrung diverser
Schritte zur Textoptimierung und -analyse, die in Abhéngigkeit der zu erwarteten
Eigenschaften des Inputs zu konfigurieren sind, verstanden (s. Anhang C.1). Dabei
sind nicht alle existierenden Verfahren des Preprocessings (z. B. Chunking, HTML-
Stripping) zwangsliufig anzuwenden. Zur Diskussionen stehen dabei die neun folgend
aufgefiithrten Verfahren:

5.5 Geplantes Vorgehen und Methodik 115

(1) Normalisierung (6) Textbereinigung

(2) Sprachenidentifikation (7) Rechtschreibkorrektur
(3) Grammatikpriifung (8) Satzendeerkennung
(4) Tokenisierung (9) POS-Tugging

(5) Synonymerkennung

Die Anforderungsbeschreibungen, die an das Softwaresystem iibergeben wer-
den, konnen beliebige Textzeichen enthalten, sehen jedoch keine Markups®” vor
(s. Abschnitt 5.5.1). Nichtsdestotrotz ist der Input von jeglichem Markup aus Griinden
der Systemsicherheit zu bereinigen (Bhargav und Kumar, 2010, S.267{f.). Der Input
ist demnach einer (1) Normalisierung, die ungiiltige Zeichen® erkennt und ent-
fernt sowie einer (6) Textbereinigung (z. B. HTML-Stripping) zu unterziehen. Die
Textnormalisierung ist notwendig, da ungiiltige Zeichen zu Fehlern in den folgenden
Komponenten fithren kénnen. Verzichtet wird auf die Normalisierung von Grof- und
Kleinschreibung, da Grofischreibung zum Beispiel als ein Indiz bei der Erkennung
von benannten Entitdten genutzt werden kann.

Die (7) Rechtschreibkorrektur und (3) Grammatikpriifung, deren Notwen-
digkeit sich aus den zu erwarteten Ungenauigkeiten in den Anforderungsbeschrei-
bungen ergibt (s. Abschnitt 1.4), folgt auf die Normalisierung. Da keine Benutzerin-
teraktion im Preprocessing vorgesehen ist, miissten Rechtschreibfehler automatisch
korrigiert werden. Diese automatische Korrektur ist bei Grammatikfehlern aufgrund
der Sprachkomplexitét ohne Benutzerinteraktion nicht zuverldssig umzusetzen. Und
auch die automatische Rechtschreibkorrektur geht mit der Gefahr einher, mehr Fehler
zu erzeugen als zu eliminieren, da zum Beispiel Dateiendungen und Fachtermini in den
Anforderungsbeschreibungen félschlicherweise korrigiert werden kénnten. Dennoch
werden Rechtschreib- und Grammatikpriifung durchgefiihrt, da diese Erkenntnisse
zur Verbesserung der Folgekomponenten (z. B. lexikalische Disambiguierung) herange-
zogen werden konnen. Da keine weiteren Vorverarbeitungsschritte auf dem gesamten
FlieBtext anzuwenden sind, kann aufbauend auf der Rechtschreibkorrektur und Gram-
matikpriifung die (8) Satzendeerkennung angewendet werden. Diese ist notwendig,
da einzelne Folgekomponenten die satzweise Eingabe der Anforderungsbeschreibung
erwarten, beispielsweise die Klassifikation nach On- und Off-Topic.

Als Folgekomponente der Satzendeerkennung ist die (2) Sprachenidentifikation
(s. Anhang C.1) zu diskutieren. Thre Notwendigkeit ergibt sich aus sprachspezifi-
schen NLP-Komponenten wie der Disambiguierung oder der Kompensation von
Unvollstandigkeit, die zwar in dieser Arbeit auf die englische Sprache angewendet
werden, grundsétzlich aber adaptierbar sind (s. Abschnitt 7.4.2). Handelt es sich
beim gesamten Text um eine nicht unterstiitzte Sprache, muss das System den
Verarbeitungsvorgang ergebnislos abbrechen.

Aus den eben genannten Komponenten ergibt sich die in Abbildung 5.16 dar-
gestellte Preprocessing pipeline. Wie ersichtlich wird, handelt es sich um einen
sequenziellen Vorgang. Die Ausgabe einer Komponente ist somit stets die Eingabe
der Folgekomponente. Eine strukturelle Anderung am FlieBtext findet erst durch die
Satzendeerkennung statt. Das bedeutet, dass als Ausgabe dieser Vorverarbeitung

8T"Weder Hervorhebungen (z. B. Fettdruck) noch HTML-Auszeichnungen sind vorgesehen.
88Unter giiltigen Zeichen werden in dieser Arbeit alle druckbaren Zeichen des ASCII verstanden.

116 5 Konzeptentwicklung

eine bestimmte Anzahl an Sétzen steht, die sich durch Textoptimierungsmafinahmen
vom initialen Flieitext des Endanwenders unterscheiden kénnen.

AN
4’
Grammatik-/
Textbereinigung Rechtschreib-
priifung
AN
Satzende- Sprachen- e
erkennung identifikation XML
OUTPUT

Abbildung 5.16: Ablauf des Preprocessings

Verzichtet wird an dieser Stelle der Arbeit auf die Tokenisierung, Synonymerkennung
und das POS-Tagging. Diese Entscheidung wird getroffen, da die Tokenisierung als
auch das POS-Tagging bereits feste Bestandteile der meisten NLP-Komponenten
sind. Das Erkennen von Synonymen beim Preprocessing wird ausgelassen, da dieser
Schritt in der lexikalischen Disambiguierung bereits integriert ist.

5.5.3 Anforderungsextraktion

Die Extraktionskomponente iibernimmt zwei Aufgaben. Zum einen muss, aufgrund
der zu erwartenden niedrigen Textqualitdt der Anforderungsbeschreibungen, On-
Topic von Off-Topic getrennt werden. Zum anderen muss das Wesentliche auf se-
mantische Textelemente zur Beschreibung von FA% (z. B. Rollen, Aktionen) herunter
gebrochen werden. Wie in Abschnitt 3.2 aufgezeigt wird, existieren nur wenige Arbei-
ten zur Anforderungsextraktion auf qualitativ stark variierenden Fliefitexten. Eine
Ausnahme stellt das von Dollmann und Geierhos (2016) entwickelte Requirements
Eztraction and Classification Tool (REaCT) dar, das beide genannten Aufgaben
erfiillt und in dieser Arbeit zur Anforderungsextraktion herangezogen wird. Es eignet
sich besonders zur Anwendung, da es einerseits UGC wie Anforderungsbeschreibun-
gen (s. Abschnitt 1.4) unterstiitzt, sich bei der Analyse sehr stark an der englischen
Grammatik orientiert und andererseits eine strukturierte Datenausgabe vorsieht.
Dariiber hinaus wird es aktiv weiterentwickelt (Dollmann und Geierhos, 2016).
Abbildung 5.17 zeigt den Ablauf der Anforderungsextraktion. Dollmann und Gei-
erhos (2016) arbeiten dabei auf Satzebene®, sodass die durch das Preprocessing
erhaltenen Sétze direkt in die Klassifikationskomponente zur Anforderungsidentifika-
tion iibergeben werden kénnen. Dollmann (2016, S.64) stellt eine Auswahl geeigne-
ter Klassifikatoren vor und nutzt schlussendlich fiir die On-Topic- und Off-Topic-
Klassifikation den EztraTreeClassifier (Geurts et al., 2006), der eine Erweiterung der
Random-Forests-Methode darstellt, zusammen mit einer Feature-Kombination aus

89 Auch: Semantische Kategorien.
9In dieser und den folgenden Abbildungen wird als Input ein XML-Dokument angezeigt, um
hervorzuheben, dass es sich nicht um Ursprungstexte handelt, sondern um vorverarbeitete Sétze.

5.5 Geplantes Vorgehen und Methodik 117

Klassifikations-
modelly

Klassifikations-

modelly

N
— N Anforderungs- Extraktlon von —
XML identifikation Textelementen XM

L
INPUT ouTeUT

Abbildung 5.17: Anforderungsidentifikation und -extraktion

Bag-of-Words und Satzldnge. Das so entwickelte System erzielt einen Fy-Score von
89% bei der Differenzierung von Anforderungen und nebenséichlichen Sétzen. Handelt
es sich bei einem klassifizierten Satz um On-Topic und damit um Anforderungen,
wird die Extraktion von Attribut-Wert-Paaren vorgenommen, mit dem Ziel, das
zuvor definierte Template iterativ zu befiillen (vgl. Abbildung 5.18).

‘ Verfeinerung der Komponente ‘

‘Argument(e) ‘ ‘ Bedingung(en) ‘

‘ Prioritat ‘ ‘ Motivation ‘ ‘ Rolle(n) ‘

Objekt(e):

‘ Verfeinerung des Objektes ‘

Sub-Aktion(en):

‘ Sub-Prioritat ‘ ‘ Sub-Argument(e) ‘ ‘ Sub-Rolle(n) ‘

Sub-Objekt(e):
Verfeinerung des Sub-Objektes

Abbildung 5.18: Template funktionaler Anforderungen.
Entnommen aus Dollmann (2016, S. 54)

Die wichtigsten Elemente des Templates sind die Komponente (Subjekt), die Aktion
(Priadikat) und das Objekt. Aktionen beschreiben, was eine Komponente leisten
soll und Objekte geben an, worauf sich die Aktionen beziehen. Komponenten sowie
Objekte konnen in den Anforderungsbeschreibungen weiter konkretisiert werden,
wofiir die Felder Verfeinerung der Komponente und Verfeinerung des Objektes vorge-
sehen sind (vgl. Abbildung 5.18). Dariiber hinaus kénnen Vor- und Nachbedingungen
(z.B. Zeitrestriktionen) existieren, die fiir die Ausfilhrung von Aktionen gelten sollen
und die im Template als Bedingungen angegeben sind (Dollmann und Geierhos,
2016). Die in den Abschnitten 5.2 und 5.3 vorgestellten Strategien und Indikatoren
greifen auf die abgebildeten semantischen Kategorien zuriick. Ein Uberblick dazu
findet sich in Tabelle 5.7.

118 5 Konzeptentwicklung

5.5.4 Disambiguierung

Wie in Abschnitt 2.1 dargestellt, handelt es sich bei Ambiguitit um ein facettenreiches
Phénomen in der Anforderungsbeschreibung, fiir das keine Allzwecklosung existiert.
Beispielsweise hat lexikalische Ambiguitét einen anderen Ursprung als syntaktische
Ambiguitdt und muss daher auf eine andere Weise erkannt und kompensiert werden.
Um dieser Herausforderung flexibel zu begegnen, ist es erforderlich die Disambi-
guierungskomponente modular aufzubauen, um auf den jeweiligen Ambiguitéitstyp
reagieren zu konnen.

5.5.4.1 Lexikalische Disambiguierung

Verfahren der lexikalischen Disambiguierung sind in Abschnitt 3.3.1 aufgefiihrt. In die-
ser Arbeit wird Babelfy zur lexikalischen Disambiguierung herangezogen (Moro et al.,
2014a; Moro et al., 2014b). Babelfy kann unter Hinzunahme der Ressource BabelNet
(s. Abschnitt 3.3.1.1) auf eine Vielzahl weiterer Ressourcen (z. B. Wikipedia, Word-
Net) zur Disambiguierung zuriickgreifen und entsprechende Annotationen vornehmen
(s. Abschnitt 3.3.1.1). Hierbei werden Komposita und Eigennamen unterstiitzt (vgl.
Abbildung A.3 im Anhang), was zur hohen Erkennungsqualitiit beitrégt.

AN

p— —»‘ Abgleich %‘ Abgleich ‘
XML

INPUT
‘Disambiguierung%‘ Entity Linking F p—
XML
A

—ourput

7777777777 Babelfy

Abbildung 5.19: Funktionsweise der lexikalischen Disambiguierung

Der Ablauf der lexikalischen Disambiguierung und Annotation ist in Abbildung 5.19
dargestellt. Da diese auf Basis von Token durchgefiihrt werden soll, ist eine Tokeni-
sierung und ein POS-Tagging erforderlich. Einzelne Token konnen im Folgenden der
Disambiguierung unterzogen werden, wobei nur die Token disambiguiert werden, die
nicht auf der Stoppwortliste stehen und die zuvor von der Anforderungsextraktion
als relevant erkannt wurden. Die Stoppwortliste (Blacklist) enthilt Lexeme in ihrer
Grundform, die nicht bedeutungstragend sind (z. B. Funktionsworter). Ziel dieser
Einschréankung ist das Erreichen einer htheren Verarbeitungsgeschwindigkeit, da eine
Disambiguierung nur bei bedeutungstragenden Token erforderlich ist. Die gleiche
Intention gilt bei der Whitelist, die Lexemen aufgrund des Vorkommens in einer
spezifischen Doméne (Domé&nenkorpus) eine zuvor definierte Lesart zuweist. Die
Endanwender kénnen sich das Ergebnis der lexikalischen Disambiguierung in der

5.5 Geplantes Vorgehen und Methodik 119

Benutzerschnittstelle ausgeben lassen. Abbildung 5.20 zeigt dies exemplarisch fiir
den Begriff |, application®.

© Lexikalische Disambiguierung

Im Folgenden kénnen Sie erkannte Ambiguitéten durchsuchen.

Satz #1 | want an application to write , read , delete and sort emails . 008 (LEROE. 00 - G2 pRenImi0
Satz #2 | want to delete spam

Satz #3 | want to report the spam

Satz #4
The application must be able to handle big attachments , like the movies from my Lesart
last summer holidays . L
application
Gloss
Satz #5 As a user , | want the ability to filter undesired mails . A program that gives a

computer instructions that
provide the user with tools to

Satz #6 accomplish a task
Additional , when writing emails , the application must be able to format text as bold

Abbildung 5.20: Lexikalische Disambiguierung (Frontend)

Ein korrigiertes POS-Tag in der Anforderungsextraktion zeigt beispielhaft Abbil-
dung A.4 im Anhang. Neben reinen Hervorhebungen sind Regeln notwendig, die
flexibel auf folgende Ergebnisse der lexikalischen Disambiguierung reagieren kénnen:

e Disambiguierung nach doménenspezifischen Kategorien
Das Token ,,Arbeitskollegen® (,, colleagues*) kann bei minimaler Kontextinfor-
mation auch zu ,, Woollahra Colleagues Rugby Football Club“ mit der Kategorie
. Rugby union teams in Sydney“°! als Lesart fithren. Hier sind Regeln zur
Fehlerbehebung auf Kategorienebene erforderlich.

e Umgang mit falschen POS-Tags
Durch falsche POS-Tags kann eine falsche Disambiguierung erfolgen. So kann
aus ,[...] in order to [...], eine Order?? werden. Hier kann durch eine Reihe
vordefinierter Regeln eine falsche POS-Zuweisung aufgedeckt und korrigiert
werden. Daraufhin muss die Disambiguierung erneut ausgefiihrt werden.

Auf die lexikalische Disambiguierung folgt die syntaktische Disambiguierung, die
ebenfalls auf Satzbasis arbeitet.

91Siehe weiterfithrend: http://babelnet.org/synset?word=bn:14854243n (Stand: 11‘01.17).
92 [...] a command given by a superior that must be obeyed“. Siehe weiterfiihrend: http://babelnet.
org/synset?word=bn:00059303n (Stand: 110117)

120 5 Konzeptentwicklung

5.5.4.2 Syntaktische Disambiguierung

Wie in Abschnitt 3.3.1 dargestellt, umfasst die Satzanalyse die ,, Beschreibung des syn-
taktischen Baus von Sdtzen durch Ermittlung elementarer Grundeinheiten wie Mor-
phem, Wort, Satzglied und ihre Beziehung untereinander® (Bufimann, 1983, S. 445).
In dieser Arbeit wird dazu das parse-Modul verwendet, das Bestandteil vom Stanford
CoreNLP ist. Hierbei handelt es sich um einen probabilistischen NL-Parser, der eine
vollsténdige syntaktische Analyse (sowohl auf Basis von Konstituenten- als auch
Dependenzgrammatiken) unterstiitzt (Manning et al., 2014, S.4). Diese syntaktischen
Informationen sind an mehreren Stellen dieser Arbeit von Bedeutung: So wird neben
der Erkennung von Koordinations- und Anbindungsambiguitét (s. Abschnitt 2.1.2)
beispielsweise das Ergebnis des SRL im Rahmen der Unvollstdndigkeitskompensation
verbessert (s. Abschnitt 5.2.2) oder semantische Informationen der Anforderungs-
extraktion korrigiert (vgl. Abbildung A.2 im Anhang). Dariiber hinaus wird auf
Grundlage der syntaktischen Informationen die Satzvereinfachung durchgefiihrt.
Abbildung 5.21 zeigt einen beispielhaften Dependenzbaum fiir den Satz ,, I want to
send emails to my colleagues® in Anlehnung an Beispiel 2.3.1. Hervorgehoben ist das
Pridikat ,,send“ sowie zugehorige Argumente. Wie zu erkennen ist, ermoglicht die
Dependenzgrammatik die Darstellung der Abhéngigkeit zwischen zwei Wortern.

nmod
PRP VBP TO VB NNS TO PRP$ NNS

want to to [my colleagues}

Abbildung 5.21: Beispielhafter Dependenzbaum (Stanford CoreNLP)

Nach Mehl et al. (1998) ist die ,,PP-Zuordnung [...] ein typisch computerlinguistisches
Problem, weil zu seiner Losung komplexes semantisches Wissen erforderlich ist,
das in keinem sprachverarbeitenden System zur Verfiigung steht“ (Mehl et al.,
1998, S.2). Bei den analysierten Parsebdumen handelt es sich demnach um die
syntaktisch wahrscheinlichsten Béaume — generiert auf Grundlage von Trainingsdaten
und nicht auf Grundlage von Weltwissen (vgl. Abschnitt 3.3.1.1). Nichtsdestotrotz
kann der Herausforderung der PP-Anbindungsambiguitit mittels dieser Form
der Disambiguierung begegnet werden. In Abbildung 5.22 ist hierzu ein beispielhafter
Parsebaum zu sehen. Grundsétzlich kann die Préapositionalphrase in diesem Fall
sowohl als Konstituente der NP mit dem Kopf ,, accounts® analysiert werden als auch
als Konstituente der VP. Die Anbindung erfolgt hier an der VP. Hier sei erneut darauf
hingewiesen, dass die Ergebnisse probabilistischer Parser nicht zwangsldufig korrekt
sind (d. h. Sonderfélle existieren). Beispielhaft ist dies in Abbildung 5.23 ersichtlich,
wo félschlicherweise eine PP erkannt wurde. Diese Zuordnung konnte im genannten
Fall — wenn auch spekulativ — auf die Cardinal Number (CD) zuriickzufiihren sein,
die den Parser irritieren konnte. Wird statt ,one click® zum Beispiel ,a click®
angegeben, findet die Zuordnung korrekt statt.

5.5 Geplantes Vorgehen und Methodik 121

]
\

VP
/\
TO VP
to VB NP PP

| | RN

manage NNS IN NP

| N

accounts with CD NN

one click

» I want to manage accounts with one click.”
Abbildung 5.22: Beispielhafter Parsebaum (Stanford CoreNLP)

ROOT

S

/\

NP VP
/\ /\
|

DT NN VBZ PP
the software sends NP IN NP

A N PN

DT NN with CD NN

the image one click

» The software sends the image with one click.“

Abbildung 5.23: Fehlerhafter Parsebaum (Stanford CoreNLP)

Neben der PP-Anbindungsambiguitéit wird im gleichen Verarbeitungsschritt po-
tentielle Koordinationsambiguitit untersucht. Werden Indikatoren fiir Koordi-
nationsambiguitéit innerhalb einer Anforderungsbeschreibung erkannt, gilt es, die
wahrscheinlichste Lesart zu identifizieren und zu speichern. Wird beispielsweise
der Satz ,, I want to send large files and pictures” herangezogen, ist ohne Weiteres
doménenspezifisches Wissen nicht zuverldssig zu disambiguieren, ob , large* nur
Hfiles oder auch | pictures” modifiziert. Die parse-Methode gibt den Dependenz-
baum in Abbildung 5.24 aus. Auch diese Disambiguierung entscheidet sich dabei
fiir die wahrscheinlichste Lesart, was im Rahmen dieser Arbeit hinreichend ist. Zu

122 5 Konzeptentwicklung

diesem Zeitpunkt ist wichtig, dass die Entscheidung getroffen wurde, welche Lesart

weitergegeben wird.

PRP VBP TO VB JJ NNS CC NNS
I want to send |large files and

Abbildung 5.24: Koordinationsambiguitit im Dependenzbaum

Als Unterthema der syntaktischen Disambiguierung wird in dieser Arbeit die Satz-
vereinfachung betrachtet. Ziel ist es, die Weiterverarbeitung komplexer Sitze zu
erleichtern, indem diese in einfache Sitze iibertragen werden®, ohne die Aussage
des urspriinglichen Satzes zu schédigen. Abbildung 5.25 zeigt diesbeziiglich eine
beispielhafte Hauptsatzreihe als Parsebaum, deren Hauptsétze S7 und Sy durch die
Konjunktion , and“ verbunden und syntaktisch gleichwertig sind (Kiirschner, 2008,
S.206). Gleichwertig bedeutet hier, dass die Sitze auch allein stehen kénnten.

In diesem Beispiel ist eine Unterteilung der Hauptsatzreihe an der Konjunktion
ausreichend, um zwei einfache Satze zu erhalten. Wie bereits angedeutet, ist darauf
zu achten, dass die Aussage des Satzes dabei nicht geschidigt wird. So stellt die
Konjunktion nicht nur die syntaktische Verbindung zwischen den Sétzen her, sondern
gibt auch die logische Beziehungen zwischen den Aussagen an. Konkret bedeutet das,
dass beide genannten Anforderungen vom Endanwender gewiinscht werden — anders
als bei der Konjunktion mittels ,oder*.

5.5.4.3 Referentielle Disambiguierung

Natiirlichsprachliche Texte enthalten eine erhebliche Anzahl an Diskursreferenten und
Referenzausdriicken (BuBmann, 1983, S. 32), die in der maschinellen Verarbeitung
aufgelost werden miissen. In dieser Arbeit wird die dcoref-Methode aus Stanford
CoreNLP herangezogen, die zum einen eine sehr gute Performanz aufweist und zum
anderen konfigurierbar und damit in einem gewissen Mafle an die Softwaredoméne
anpassbar ist. Dariiber hinaus sind alle Ressourcen frei zugénglich.

Anders als beispielsweise bei der lexikalischen Disambiguierung findet keine Me-
thodenanwendung auf Satzebene statt. Vielmehr wird aufgrund der Tatsache, dass
Referenzen satziibergreifend auftreten, die vollstdndige Anforderungsbeschreibung
auf Referenten und Referenzausdriicke untersucht, wenngleich auch festgehalten wird,
in welchem Satz und an welcher Token-Position die jeweiligen Ausdriicke auftreten.

Abbildung 5.26 zeigt den Ablauf innerhalb der Komponente: Nach Anwendung
der dcoref-Methode werden mittels eines eigenen Verfahrens weitere potentielle
Referenzausdriicke gesucht. Dies erméglicht es, festzustellen, welche Kandidaten fiir
Referenzausdriicke noch existieren und gegebenenfalls in bestehenden Koreferenz-
ketten aber auch in der Disambiguierung zu beriicksichtigen sind. Diese koénnen
demnach beispielsweise hinzugenommen werden, um festzustellen, ob Ambiguitét

93Mehr Informationen zu einfachen und komplexen Sétzen gibt Kiirschner (2008, S.206ft.).

5.5 Geplantes Vorgehen und Methodik 123

ROOT
S T
S CcC S
NP VP and NP VP
PRP VBP S PRP VBP S
| | | | | |
I want VP I want VP
/\ /\
TO VP TO VP
to VB NP to VB NP
| | | |
send NNS attach NNS
| |
emails files

L want to send emails and I want to attach files.”

Abbildung 5.25: Parsebaum mit moglicher Satzvereinfachung

Y
e

dcoref Liste von Refe-
renzausdriicken

T
I
! !
Y Y

Koreferenz- Erweiterte
auflosung Ausdruckssuche

7l N
Regelbasierte | |——

Zuordnung -

—outeut

AN

‘

— iNpUT

Abbildung 5.26: Auflssung von Koreferenzen

vorliegt, die gegebenenfalls zu einer falschen Koreferenzauflosung gefithrt hat. FEin
weiteres Beispiel sind doménenspezifische Ausdriicke (z. B. ,, User®) die in bestehende
Koreferenzketten (z. B.,, %, ,my*) aufgenommen werden konnen (vgl. Abbildung A.5
im Anhang). Abbildung 5.27 stellt exemplarisch zwei Koreferenzketten, unter An-
gabe der gefundenen Ausdriicke (z.B.,my*) und ihrer Distanz im Text, dar. Es
tallt auf, dass bei (A) zwei weitere Kandidaten existieren (grau hervorgehoben).
Diese sind aber nicht domé#nenspezifisch und kénnen sehr zuverlissig von dcoref als
Kandidaten ausgeschlossen werden. Anders sieht dies bei (B) aus, wo die Sétze ,, The
emails contain many files. I want to send them.“ in Anlehnung an Beispiel 2.1.7 der
Disambiguierung zu Grunde liegen. In diesem Fall liegt referentielle Ambiguitét vor,

124 5 Konzeptentwicklung

da ,them“ sich sowohl auf ,,emails* als auch auf , files* beziehen kann. Zwar sind
die meisten Verfahren mit Heuristiken und Regeln zur Losung dieser Ambiguitéiten
ausgestattet, eine Betrachtung des Kontextes und zusétzliches Hintergrundwissen
(insb. Hinzunahme semantischer Kategorien) kénnen aber zur gegebenenfalls notwen-
digen Korrektur hinzugezogen werden. In diesem Fall konnte die Entscheidung, dass
sich ,them* auf , emails* bezieht zum Beispiel dadurch bestéitigt werden, dass in
einem Satz zuvor (nicht abgebildet) ,, emails“ so wie auch , them® in der semantischen
Kategorie des Objekts genannt wurde.

(A) (B)

Abbildung 5.27: Koreferenzketten und Kandidaten

5.5.5 Kompensation von Unvolistandigkeit

Unvollstandigkeit beschreibt in dieser Arbeit die fehlende Instantiierung obliga-
torischer Leerstellen von Pridikaten (s. Abschnitt 2.3). Obligatorisch und damit
kompensationsbediirftig ist eine Instantiierung, wenn sie zur Beschreibung einer
FA wesentlichen Beitrag leistet (Baumer und Geierhos, 2016). Um herauszufinden,
wie die Argumentenstruktur einzelner Pradikate zur Beschreibung von Software-
funktionalitdten genutzt wird, wird ein PAS-Korpus benétigt, das eine Vielzahl
akquirierter Anforderungsbeschreibungen enthéilt, die hinsichtlich ihrer Pradikat-
Argument-Struktur annotiert sind. Auf dieser Datenbasis wird ermittelt, welche
pradikatspezifischen Argumente vorwiegend angegeben werden. Leerstellen, die selten
instantiiert werden, werden als optional markiert und im Rahmen der Kompensati-
on ignoriert. Weiterhin ldsst sich feststellen, welche Instanzen (z. B. ,E-Mail“) und
Arten von Instanzen (z. B. schriftliche Kommunikationsmittel*) mehrheitlich der
Beschreibung dienen. Diese Angaben werden darauthin genutzt, um Leerstellen zu
instantiieren. Allerdings ist sicherzustellen, dass sich das kompensierte Argument
auch bestmoglich in den Kontext der urspriinglichen Pridikatverwendung einbettet.
Dies bedeutet, dass im Rahmen der Kompensation nicht nur das spezifische Pradikat,
sondern auch der Kontext berticksichtigt werden muss (vgl. Abbildung 5.28).

Das Konzept zur Kompensation von Unvollsténdigkeit lédsst sich in Erkennung und
Kompensation unterteilen (Baumer und Geierhos, 2016). Zu Beginn werden in der
Erkennung die bereits vorverarbeiteten Anforderungsbeschreibungen geladen. Dies
ist notwendig, da die Analyse der PAS auf Satzbasis erfolgt und dazu zuerst eine

5.5 Geplantes Vorgehen und Methodik

125

Requirements

p

Predicate Argument Analysis

[...] lo want to send

mail with large attachments
2 TO-WHOM?[...]

Similarity Search

[...] youp want to send
an emaily to multiple
recipients,. It features

Semantic Classification
<Argp> |, you, we = {HUMAN}
<Arg,> recipients = {HUMAN}

image attachments [...]

Sugg:stions

Predicate send Predicate send Predicate send

<Argp>l == s e e e - - - < <Argp>You == = = = - <Argp>{HUMAN}
<Arg¢> mail with large attachments % <Arg{> email <Arg1> mail with large attachments
User <Argo> <« - - - -| <Argy> multi recipients || <Argo>{HUMAN}

Pradikatbasierte Kompensation.
Entnommen aus Geierhos und Béumer (2016, S. 40)

Abbildung 5.28:

Satzendeerkennung durchgefiihrt werden muss. Darauf folgend wird die Erkennung
von Pridikaten und deren Argumenten mittels SRL gestartet. Sobald ein Préadikat
erkannt wird, wird gepriift (sofern es nicht auf der Blacklist steht), ob und welche
Argumente vorliegen. Die Hinzunahme eines PAS-Korpus gibt Auskunft iiber die
Argumentenstruktur der Pradikate und eignet sich zum Abgleich mit den durch SRL
erkannten Argumenten. Wird festgestellt, dass eine Leerstelle nicht instantiiert ist,
wird {iberpriift, ob es sich um ein obligatorisches Argument handelt und die Leerstelle
somit zu fiillen ist. Diese Priifung geschieht auf Grundlage des in Abschnitt 6.2
erstellten PAS-Korpus fiir Anforderungsbeschreibungen. Liegt ein obligatorisches
Argument vor, wird die Kompensation gestartet.

=
-XML PAS-Korpus
INPUT
| : |
‘ Semantic

Role Labeling %" Korpusabgleich %‘ Kompensation

! l

IR-Index /

Beschreibungen

Pridikat-
datenbank

XML
ouTPUT

Abbildung 5.29: Erkennung und Kompensation von Unvollstdndigkeit

Die Kompensation nimmt unvollstdndige Pradikate entgegen und durchsucht das
PAS-Korpus nach dhnlichen Anforderungsbeschreibungen. Die Ahnlichkeit ergibt sich
sowohl aus der Ahnlichkeit der gesamten Anforderungsbeschreibung (Kontext) als
auch aus der Ahnlichkeit der Siitze, in denen das Priidikat vorkommt, im Vergleich zu
den Beschreibungen im Korpus. Dabei wird das Suchergebnis weiter eingeschrankt,
sodass nur Anforderungsbeschreibungen zuriickgegeben werden, die neben dem
spezifischen Pridikat auch eine entsprechende Instanz fiir die betroffene Leerstelle
aufweisen. Wird eine Instanz zum Pradikat mit einem &hnlichen Gesamtkontext

126 5 Konzeptentwicklung

gefunden, wird es zusammen mit dem Pradikat und dem Satz, in dem es vorkommt,
ausgegeben. An dieser Stelle sind zwei weitere Situationen denkbar:

e Mehrere potentielle Instanzen fiir eine Leerstelle
Es konnen mehrere Instanzen vorgeschlagen werden, die hinsichtlich der
Ahnlichkeit als gleichrangig zu betrachten sind. In diesem Fall wird die erste
Instanz gewé&hlt.

e Keine potentiellen Instanzen
Es konnen gar keine &hnlichen Anforderungsbeschreibungen gefunden werden,
womit auch keine Instanzen zuriickgegeben werden koénnen.

Dariiber hinaus ist die zeitliche Giiltigkeit der Datenbasis zu bedenken
(s. Abschnitt 7.4.2.4). Da Sprache einem natiirlichen Wandel unterliegt, ist mit
neuen Wortern bzw. einer neuen Verwendung von etablierten Woértern zu rechnen.
Die Datenbasis, die ab dem Zeitpunkt der Akquise als starr anzusehen ist, verliert
somit in Teilen die Anwendbarkeit. Beispielhaft kann dies am Pradikat ,like®
dargestellt werden, welches vor dem Siegeszug der sozialen Medien iiberwiegend
im Sinne von ,etwas mogen“ verstanden wurde und nun, beispielsweise im Duden,
als ,im Internet eine Schaltflache anklicken, um eine positive Bewertung abzu-
geben“ (Dudenredaktion, 2016, S.1132) gefiihrt wird. Es ist daher erforderlich,
Priadikatdatenbanken erweitern zu kénnen und die Datenbasis insgesamt gegen eine
aktualisierte Version austauschen zu kénnen.

5.5.6 Erkennung von Vagheit

Vagheit als Form von Ungenauigkeit ist ein hochgradig relevantes Thema im RE
(s. Abschnitt 2.2), wenngleich auch nicht primérer Gegenstand dieser Arbeit. Nichts-
destotrotz wird die Erkennung von Vagheit in dieser Arbeit durchgefiihrt, was vor
allem der methodischen Abdeckung dient. Hierzu werden zwei von Geierhos und
Béaumer (2017) beschriebene Testverfahren herangezogen: Der , Intensifier test“ und
der ,, Gradability test“. Beide Verfahren greifen auf linguistische Merkmale in An-
forderungsbeschreibungen zuriick, um vage Lexeme zu erkennen und in Teilen zu
kompensieren. Letzteres ist nicht Teil dieser Arbeit, daher ist an dieser Stelle auf
Geierhos und Béumer (2017) zu verweisen.

Der Intensifier test basiert darauf, Ausdriicke mit intensivierender Funktion
(Hoffmann, 2009, S.397) in Anforderungsbeschreibungen als Hinweis auf Vagheit zu
erkennen (z. B. ,very“ in ,very large emails®). Intensitédtspartikel werden genutzt, um
die ,,von einem Adjektiv oder Adverb ausgedriickte Charakterisierung intensivierend-
steigernd oder abschwichend-abstufend [zu] modifizieren“ (Breindl und Donalies,
2012). Der zentrale Vertreter dieser Intensitétspartikel ist dabei ,,sehr® (engl. very),
weitere sind ,,ausgesprochen®, | beileibe“ und ,iiberaus® (Hoffmann, 2009, S. 397).
Eine Auflistung von Intensitétspartikeln sowie eine differenziertere Betrachtung
findet sich bei Hoffmann (2009, S.3971f.). Geierhos und Béumer (2017) nutzen zur
Erkennung von Vagheit den Intensitétspartikel ,, very“, der nur eine einzige Bedeutung
hat (demnach nicht ambig ist) und sowohl Adjektive als auch Adverben modifizieren
kann. In dieser Arbeit wird zur Erkennung der folgende reguldre Ausdruck aus
Geierhos und Baumer (2017) herangezogen: ,\s (very\s[a-z] .x?)\s"

5.5 Geplantes Vorgehen und Methodik 127

Dariiber hinaus wird der Gradability test herangezogen. Hierbei wird der bereits
in Abschnitt 2.2 angefithrte Umstand ausgenutzt, dass die meisten Adjektive vage
sind. Adjektive, die zuvor mittels POS-Tagging annotiert wurden, werden einem
Lexikonabgleich (engl. dictionary look-up) unterzogen, um steigerbare Adjektive unter
den erkannten Adjektiven zu identifizieren. In Anlehnung an Geierhos und Baumer
(2017) wird dabei eine modifizierte Variante des DELA-Lexikons herangezogen™

e) o

— —»‘ Intensifier test %‘ Gradability test % .
XML XML
OUTPUT

INPUT

Abbildung 5.30: Erkennung von vagen Ausdriicken

Abbildung 5.30 zeigt die sequenzielle Anwendung beider Tests in einem Verarbei-
tungsschritt. Grundsétzlich sind dabei die dargestellten Ressourcen austauschbar
bzw. erweiterbar. In der jetzigen Form konnen die beiden Tests auch in Kombination
nur einen Hinweis auf Vagheit in Anforderungsbeschreibungen geben und sind ein
erster Schritt in Richtung Vagheitsauflosung, aber von der finalen Losung noch weit
entfernt. Nichtsdestotrotz konnen diese Tests zum einen die Aufmerksamkeit der
Endanwender auf mégliche Fehlerquellen lenken. Zum anderen werden potentiell
vage Ausdriicke als solche fiir die weitere maschinelle Verarbeitung markiert.

5.5.7 Definition der Ausgabeformate

Der Output wird unterteilt in eine Ausgabe, die sich an die Endanwender richtet und
somit fiir alle lesbar und versténdlich ist. Daneben gibt es eine weitere Version, die
der maschinellen Weiterverarbeitung dient (s. Abschnitt 4.1).

5.5.7.1 Ausgabe an der Benutzerschnittstelle

Die Ausgabe an der Benutzerschnittstelle muss mehrere Bediirfnisse der Endanwender
fiir eine bessere Transparenz der angewandten Verarbeitungs- und Kompensations-
schritte befriedigen. So miissen beispielsweise sowohl das Ergebnis als solches als
auch Erldauterungen zu den Ergebnissen fiir Endanwender abrufbar sein. Die Ausgabe
kann daher in drei Kategorien unterteilt werden:

e Ergebnis
o Erlduterungen zur Verarbeitung und Kompensation

e Verarbeitungs- und Kompensationsprotokoll

94Modifiziert bedeutet hier, dass DELA auf steigerbare Adjektive reduziert wurde.

128 5 Konzeptentwicklung

Das Ergebnis, wie in Abbildung 5.31 exemplarisch zu sehen, umfasst eine Ausgabe
erkannter FA, dargestellt in kontrollierter Sprache (s. Abschnitt 1.3.1) sowie Angaben
zu ausgewihlten Verarbeitungs- und Kompensationsschritten (z. B. deutet das Symbol
der Schere auf die durchgefiihrte Satzvereinfachung hin).

lhre Eingabe

Hello Marcel! | want an application to write, read, delete and sort emails. | want to delete spam and | want to
report the spam.

Ergebnis
Nr. SID Anforderung
1 S1 ¥ As a user, | want to write emails
¥ As a user, | want to read emails

¥ As a user, | want to delete emails
¥ As a user, | want to sort emails

& | want an application to write, read, delete and sort emails.

2 S2 ¥ As a user, | want to delete spam
az
S
& | want to delete spam
I | want to delete spam and | want to report the spam.
3 S3 ¥ As a user, | want to report spam
az

@ | want to report the spam
I | want to delete spam and | want to report the spam.

Abbildung 5.31: Ergebnisausgabe (Frontend)

Bei der Ausgabe in kontrollierter Sprache, die primér eine Ubersicht fiir die Endan-
wender darstellt und die Frage beantworten soll, ob alle funktionalen Anforderungen
vom System erkannt wurden, werden zwei Perspektiven unterstiitzt: Die Nutzersicht
(z.B. User, Administrator etc.) und die Systemsicht (z. B. Anwendung, System). Die
kontrollierte Syntax fiir die Nutzersicht ist zum Beispiel als ,, As <role>, <pronoun>
<priority> <action> <object>*“ definiert und orientiert sich an dem Template von
Dollmann (2016, S.53f.), dargestellt in Abbildung 5.18.

Beispiel 5.5.1 (Ausgaben in kontrollierter Sprache)

Eingabe: ,An administrator should be able to send and receive emails. “
— ,As an administratorg, I should be ablep to sendy emailsp. ©

— ,As an administratorg, I should be ablep to recievey emailsp.

Beispiel 5.5.1 zeigt hierfiir sowohl die Eingabe in das System als auch die kontrollierte
Ausgabe. Es fillt auf, dass die Rolle des Anwenders (,, administrator®) sowie die
erwarteten Funktionen (,,send*, | receive”) mitsamt Objekt (,, emails®) iibernommen
wurden. Da in der kontrollierten Sprache nur eine Aktion pro Satz vorkommen
darf, erstellt das System zwei kontrollierte Anforderungen aus der Eingabe. Der
Grad der Normalisierung kann dabei frei bestimmt werden. In diesem Fall wird
die Ausgabe lediglich durch das Pronomen ,,/“ ergénzt. Eine Normalisierung der
Prioritét (z. B.limitiert auf ,want“, ,must*) wére denkbar.

5.5 Geplantes Vorgehen und Methodik 129

Uber das Ergebnis hinaus sind Erliuterungen zur Verarbeitung und Kom-
pensation notwendig, die es den Endanwendern ermdoglichen, die zuvor gesichteten
Resultate besser zu verstehen. Ziel ist es, Ergebnisse einzelner Verarbeitungs- und
Kompensationsschritte darzustellen. So ist es moglich, Fehler, die sich durch einzelne
Schritte ergeben und das Resultat negativ beeinflussen, zu identifizieren (z. B.nicht
erkannte Pridikate oder Argumente). Dargestellt werden folgende Informationen:

e Klassifikation von On- und Off-Topic

Erkannte Sprachen

Erkannte FA und ihre entsprechenden semantischen Informationen

Ambige Lexeme und gewéhlte Lesart

Ambige Satzstrukturen und gewéhlte Lesart

Erkannte Koreferenzketten

Unvollstéandige Pradikate mit komplettierten Argumenten

Potentiell vage Ausdriicke

Diese Darstellung erméglicht es Endanwendern, in kurzer Zeit einen Uberblick iiber
die angewandten Verarbeitungs- und Kompensationsschritte zu erhalten. Es ist dem
Endanwender aber bisher, mangels einer strukturierten Gegeniiberstellung, nicht
moglich, einen Vergleich zwischen zwei Ergebnissen zu ziehen. Dariiber hinaus wird
explizit auf Debugging-Informationen sowie Zwischenergebnisse einzelner Schritte
verzichtet. Solche sehr technischen Informationen finden sich im Verarbeitungs-
und Kompensationsprotokoll. Dieses Protokoll stellt eine Ergdnzung zu Ausga-
ben der Benutzerschnittstelle dar. Ziel ist es, Strategiewahl und -anwendung sowie
die einzelnen Kompensationsschritte zu protokollieren, um zum einen die Nachvoll-
ziehbarkeit der angewendeten Methoden zu erhéhen und zum anderen den Vergleich
zwischen Kompensationsergebnissen zu ermoglichen. Letzteres ist dem modularen
Aufbau der Informationsverarbeitung geschuldet, der einen einfachen Austausch von
Komponenten vorsieht und unweigerlich zu der Frage fiihrt, welche Verdnderungen
im Gesamtergebnis sowie in den Ergebnissen der einzelnen Komponenten durch eine
verédnderte Strategie bewirkt worden sind. Das Protokoll umfasst neben den bereits
zuvor aufgefithrten Resultaten:

e Merkmale der Strategiewahl

Gewihlte Strategie(n)
e Zwischenergebnisse einzelner Verarbeitungs- und Kompensationsschritte

Einzelentscheidungen regelbasierter Verfahren (z. B. Vagheitserkennung)

Fehlerprotokolle

130 5 Konzeptentwicklung

Allerdings eignet sich das Verarbeitungs- und Kompensationsprotokoll nicht fiir die
maschinelle Weiterverarbeitung, da es zwar einzelne Verarbeitungsschritte protokol-
liert, aber nicht simtliche Ergebnisse enthélt und auch nicht in einem maschinenles-
baren Dateiformat vorliegt™.

5.5.7.2 Maschinenlesbare Ausgabe

Grundsétzlich ist bei der maschinellen Ausgabe zuerst an die strukturierte Ausgabe
der Verarbeitungs- und Kompensationsergebnisse zu denken. Doch dariiber hinaus
existieren noch zwei weitere denkbare Félle der strukturierten Ausgabe:

e Zeitanalyse aller Komponenten (s. Abschnitt 7.3.2.5)

e Serialisierung der Zwischenergebnisse (s. Abschnitt 7.3.3.1)

Grundlage der maschinenlesbaren Ergebnisausgabe bildet die Anforderungsextrak-
tion. Um die Weiterverarbeitung durch Drittanwendungen zu ermoglichen, wird
die urspriingliche Anforderungsbeschreibung, ergianzt um die extrahierten Anforde-
rungen und Kompensationergebnisse, im XML-Format® ausgegeben. Ein Auszug
einer solchen Ausgabe ist in Beispiel 5.5.2 abgebildet, wiahrend weitere Details der
Umsetzung in der Implementierung zu finden sind (s. Abschnitt 7.3.2.5).

Beispiel 5.5.2 (Strukturierte Ausgabe, Auszug)

<description id=,1“ timestamp=,2017-02-18 15:30:29.461“>
<original>1 want to send large emails.</original>
<coreference/>
<sentences>
<sentence lang=,en‘ ontopic= ,true” sid=,1“/>
<wsd>
<token BabelNetURL= ,http://babelnet.org/rdf/s00093485v ... />
<token BabelNetURL= ,http://babelnet.org/rdf/s00029345n* .../>
</wsd>
<wvagueness>
<token POS=,ADJ* TokenOffset=,5% rule RuleID=,2%/>
</vagueness>
<srl>
<pred Arglst=,0“ ArglstTotal=,2“ ArgSoll=,5“ Sense= ,want.01/>
-]

< /description>

95Maschinenlesbarkeit bezeichnet hier insb. ein strukturiertes Dateiformat, welches ein automati-
siertes Parsing ermdglicht. XML gilt hier als Standard (Hammer und Bensmann, 2011, S.113).

9Tm Gegensatz zur datenorientierten JavaScript Object Notation (JSON), das eine bessere Lesbar-
keit durch Menschen und Maschinen sowie eine kleinere Dateigrofie verspricht (Crockford, 2006),
konnen mit XML natiirlichsprachliche Texte in semi-strukturierte Dokumente iibertragen werden
(Mehler und Lobin, 2004, S.3f.). Die Moglichkeit, mit XML Inline-Annotationen vornehmen zu
konnen, ist wesentlicher Bestandteil der automatischen Textverarbeitung.

5.5 Geplantes Vorgehen und Methodik 131

Die Zeitanalyse dient insbesondere der Evaluation des Gesamtsystems. Zum Beispiel
lassen sich somit Komponenten identifizieren, die eine iiberdurchschnittlich lange
Verarbeitungszeit aufweisen. Um eine ausfithrliche Analyse zu ermoglichen, sind
dabei nicht nur die Gesamtausfithrungszeiten der Komponenten anzugeben, sondern
die Ausfiihrungszeiten der einzelnen Verarbeitungsschritte sowie der Strategien und
Indikatoren. Zusétzlich ist die in Anspruch genommene Zeit der Komponenteninitia-
lisierung abzubilden (s. Abschnitt 7.3.2.5).

5.5.8 Analyse moglicher Verarbeitungsfehler

Die zu erwartenden Ergebnisse werden insbesondere von zwei Gegebenheiten beein-
flusst: Zum einen wird von qualitativ stark schwankenden Anforderungsbeschreibun-
gen ausgegangen, welche die Ergebnisse aller Komponenten mafigeblich beeinflussen.
Zum anderen handelt es sich um ein Konzept, das auf einer Vielzahl heterogener
Verfahren beruht und diese kombiniert. Die Komponenten sind demnach hinsichtlich
ihrer Ergebnisse nicht génzlich isoliert zu betrachten. Im Folgenden werden mogliche
Verarbeitungsfehler der Einzelkomponenten skizziert.

Am Anfang der Informationsverarbeitung steht die Textvorverarbeitung
(auch: Preprocessing), welche die initiale Anforderungsbeschreibung als Eingabe
entgegennimmt und relevante (On-Topic) Sitze ausgibt. Die Komponente kann als
sehr robust angesehen werden, da viele der genutzten Einzelkomponenten vielfach
erprobt sind und zum Standard beinahe aller NLP-Anwendungen gehéren. So sind
beispielsweise bei der Normalisierung keine Fehler zu erwarten. Vielmehr werden ein-
zelne Zeichen zuverlédssig aus dem Fliefitext entfernt und durch normalisierte Zeichen
ersetzt. Die darauf aufbauende Sprachenidentifikation erreicht Evaluationswerte von
99% und kann auch mit Fachsprache umgehen, sofern eine Mindestlinge erreicht
wird (s. Anhang C.1), wovon in den meisten Fillen auszugehen ist (s. Abschnitt 6.1).
Die Satzendeerkennung gilt zwar ebenfalls als robust (s. Anhang C.1), kann aber auf
Grund der geringen Textstrukturierung zu Fehlern fiihren (Read et al., 2012a). Wird
beispielsweise eine Anforderungsbeschreibung génzlich ohne Satzzeichen verfasst,
wird die Erkennung von Satzenden zwar nicht unméoglich aber erheblich erschwert
(Ho et al., 2016). Dieser Fehler hat Auswirkungen auf alle Folgekomponenten, da
bereits die Klassifikation von Anforderungen auf Satzbasis agiert.

Die Komponente zur Anforderungsidentifikation nutzt REaCT zur Klassifika-
tion von On- und Off-Topic-Inhalten, welches eine hohe Treffergenauigkeit erreicht
(Dollmann und Geierhos, 2016). Allerdings geht mit félschlicherweise als nebenséchlich
klassifizierten Sétzen ein erheblicher Informationsverlust einher, da diese nicht an
Folgekomponenten weitergegeben werden (vgl. Abbildung 5.14). Die ebenfalls in
REaCT befindliche Anforderungsextraktion ist ein wichtiger Bestandteil dieser
Arbeit, da die Extraktionsergebnisse beispielsweise bei den Indikatoren zum Einsatz
kommen und die Grundlage der strukturierten Ausgabe bilden. Dollmann (2016,
S.791ff.) merkt an, dass die Evaluationsergebnisse mit einem durchschnittlichen F;-
Score von 72,66%, darauf hindeuten, dass eine zuverliissige vollautomatische IE aus
den Anforderungsbeschreibungen nicht erreicht werden kann. Allerdings liegt dieser
Wert nah am menschlichen Vergleichswert von 80% (Dollmann und Geierhos, 2016),
sodass dieser zum jetzigen Zeitpunkt ausreichen muss. Neben der Moglichkeit, die

132 5 Konzeptentwicklung

Klassifikationsqualitéit durch Erweiterung der Datenbasis zu steigern, sind Strategien
zu bedenken, die falsche Klassifikationen regelbasiert erkennen und kompensieren.

Sehr gute Ergebnisse konnen bei der lexikalischen Disambiguierung durch
Babelfy erwartet werden (Moro et al., 2014b, S.2391f.), wobei die Ergebnisse als
vorldufig zu betrachten sind, da die Moglichkeit besteht, dass einzelne Lexeme nicht
erkannt wurden oder dass eine Entscheidung iiber die Auflésung von Mehrwortlexe-
men getroffen werden muss. Dariiber hinaus miissen fehlerhafte Disambiguierungen,
die aufgrund von minimalem Kontext getroffen wurden, regelbasiert aufgelost werden.

Die syntaktische Disambiguierung basiert sowohl bei der Disambiguierung
von PP-Anbindungen als auch im Fall der Koordinationsambiguitit auf dem par-
se-Modul des Stanford CoreNLPs. Aufgrund der Tatsache, dass es sich um einen
probabilistischen Parser handelt, der sein Sprachwissen aus einer Menge annotierter
Sétze ableitet, ist mit Fehlern in den Ergebnissen zu rechnen. ,, These statistical
parsers still make some mistakes, but commonly work rather well“?”. Da die Kompen-
sationsmethoden nicht im Mittelpunkt dieser Arbeit stehen, wird nicht weiter darauf
eingegangen. Allerdings greift beispielsweise die Kompensation von Unvollstandigkeit
auf die Ergebnisse dieser Expertenkomponente (,, Ezpert first“, vgl. Abschnitt 5.2)
zuriick, wodurch Fehler weitreichende Folgen fiir die Ergebnisqualitidt haben kénnen.

Die Erkennung von Referenzausdriicken und das Bilden von Koreferenzketten
mittels Stanford dcoref funktioniert zuverldssig — allerdings bedarf es weitreichender
doménenspezifischer Regeln, um referentielle Ambiguitét zu erkennen und aufzulosen.
Zwar kann Stanford dcoref auf eine Vielzahl an Regeln zur Auflosung zuriickgreifen,
es fehlt aber dennoch an doménenspezifischem Wissen, sodass die zu erwarteten
Ergebnisse im Ganzen zufriedenstellend aber dennoch fehlerhaft sind. Die lexikali-
sche Disambiguierung kann zusétzliches Wissen zur referentiellen Disambiguierung
bereitstellen. Auch dieses muss durch Regeln eingebunden werden.

Die Kompensation von Unvollstindigkeit basiert in dieser Arbeit auf dem
Abgleich liickenhafter Anforderungen mit &hnlichen Anforderungen, mit dem Ziel, die
nicht-instatiierten Leerstellen zu fiillen. Es ist zu erwarten, dass dies bei hochfrequen-
ten Pradikaten zufriedenstellend geschieht. Allerdings kann nicht mit abschlieBender
Sicherheit bestimmt werden, ob eine gewiéhlte Instanz im Anwendungsszenario des
Anwenders stimmig ist. Demgegeniiber ist die Kompensation bei nicht frequenten
Prédikaten als problematisch zu bewerten. Hier fehlt es schlicht an Beschreibungen
im Anforderungsindex. Die durchgefiithrte Analyse zeigt auf, dass Verarbeitungsfehler
zu erwarten sind. Ein transparenter und kritischer Umgang mit moglichen Fehlern
ist dabei wichtig fiir die Weiterentwicklung und die Systemqualitit. Beziiglich der
Qualitidt werden in Abschnitt 7.4 weitere Anforderungen erlautert. Im Folgenden
wird ein Uberblick der bisherigen Arbeit in Form eines Zwischenfazits gegeben, um
Implementierungsherausforderungen zu identifizieren und daraufhin in den Imple-
mentierungsteil dieser Arbeit iibergehen zu kénnen.

97Siehe weiterfiihrend: http://nlp.stanford.edu/software/lex-parser.shtml (Stand: 11.01.17)‘

5.6 Zwischenfazit und Ausblick 133

5.6 Zwischenfazit und Ausblick

Aufgrund der zu erwartenden Qualitdtsschwankungen in den Anforderungsbeschrei-
bungen ist die Anwendung verschiedener Verarbeitungskomponenten zur Qua-
litdtsverbesserung notwendig (s. Abschnitt 1.4). Diese vielfiltigen Komponenten um-
fassen dabei sowohl Verfahren des Preprocessings als auch Kompensationsverfahren
wie die Unvollstandigkeitskompensation oder Disambiguierungsansétze. Solche Ver-
fahren existieren in den meisten Féllen bereits, sind aber iiberwiegend fiir die isolierte
Anwendung ausgelegt und unterscheiden sich hinsichtlich Eingabe- und Ausgabepa-
rametern, Ressourcen und schlussendlich auch in der Laufzeit (s. Abschnitt 3.4).

Um die Komponentenauswahl auf gegebene Anforderungsbeschreibungen an-
zupassen, werden Indikatoren definiert und herangezogen, die jeweils bestimmte
Defizite in den Anforderungsbeschreibungen représentieren und bei positiver Er-
kennung die Ausfithrung entsprechender Verarbeitungskomponenten rechtfertigen
(s. Abschnitt 5.3). Die Indikatoren konnen dabei nicht auf die Ergebnisse der nachgela-
gerten Verfahren zuriickgreifen und sind daher von eigenen Regeln (z. B. syntaktische
Muster), Verfahren (z. B. Chunker) und Ressourcen (z. B. WordNet) abhéingig. Auf
Grundlage der Indikatoren erfolgt die Auswahl der Strategien, wobei zwischen vordefi-
nieren und einer automatischen Fallback-Strategie zu unterscheiden ist. Die Strategien
steuern die notwendigen Verarbeitungskomponenten, koordinieren Moglichkeiten fiir
Synergien und l6sen Abhéngigkeiten auf. Sie beeinflussen die Verarbeitung somit
weitgehend (z. B. Ergebnisse zusammenfiihren).

Die Verarbeitungskomponenten sind in Abschnitt 5.5 konzipiert worden. Sie beste-
hen iiberwiegend aus einer Hauptkomponente (z. B. Stanford Core NLP) und werden
um zusétzliche Softwarekomponenten (z. B. Abgleich mit Blacklist) erweitert. Auch,
um die Kompatibilitédt zwischen den einzelnen Verarbeitungskomponenten sicherzu-
stellen. Hier sieht das Konzept ein globales Datenobjekt vor (s. Abschnitt 7.3.2.1),
dass von allen Komponenten bearbeitet wird, wofiir unter anderem Konvertierungs-
prozesse notwendig sind. Aufgrund der unterschiedlichen Softwarearchitekturen der
Komponenten entstehen vielfiltige Herausforderungen fiir die Implementierung (so-
wohl aus Software- als auch aus Ressourcensicht).

Die fiir das beschriebene Softwarekonzept notwendigen Ressourcen sind hinsichtlich
ihrer Art und Thematik sehr unterschiedlich und liegen iiberwiegend nicht (in
bendétiger Struktur bzw. Umfang) vor (s. Abschnitt 4.1.3). Aus diesem Grund beginnt
die Implementierung mit der Ressourcenerstellung, was insbesondere die Erstellung
des Anforderungsbeschreibungskorpus und des PAS-Korpus umfasst (s. Kapitel 6).

Es folgt die softwaretechnische Implementierung, die von der Frage getrieben
wird, welche Softwarearchitektur geeignet ist, um zum einen die Anforderungen der
Endanwender zu erfiillen (leichte Bedienbarkeit, Plattformunabhéngigkeit, geringes
technisches Vorwissen erforderlich) und zum anderen die indikatorbasierte Strategiean-
wendung und Beschreibungskompensation zu erméglichen (s. Kapitel 7). Letzteres ist
aufgrund der unterschiedlichen Verarbeitungskomponenten (z. B. gewihlte Program-
miersprachen, Softwarearchitekturen, Netzwerkkommunikation, externe Ressourcen)
als nennenswerte Herausforderung zu verstehen.

Teil 111

Implementierung
und Evaluation

135

Ressourcen

Um die Anforderungsextraktion sowie die Kompensation von Ambiguitéit und Un-
vollstédndigkeit in Anforderungsbeschreibungen zu erméglichen, sind linguistische
Ressourcen notwendig (s. Abschnitt 4.1.3). Deren Umfang und Aufbau unterscheiden
sich je nach Anwendung. Im Bereich des REs herrscht ein Mangel an entsprechenden
Ressourcen, wie beispielsweise Tichy et al. (2015, S. 161) darstellen. Aus diesem Grund
ist es im Rahmen dieser Arbeit notwendig, ergénzende Ressourcen zu Konzeptions-,
Test- und Evaluationszwecken aufzubauen. Im Folgenden werden elementare Res-
sourcen, namentlich das Anforderungsbeschreibungskorpus (s. Abschnitt 6.1) sowie
das Pridikat-Argument-Struktur-Korpus (s. Abschnitt 6.2), vorgestellt.

6.1 Anforderungsbeschreibungskorpus

Wie in Abschnitt 4.1.3 dargestellt, ist eine Sammlung von Anforderungsbeschreibun-
gen in dieser Arbeit von besonderer Relevanz, da sie zum einen fiir Testzwecke und
zur Evaluation benotigt wird und zum anderen die Ableitung spezifischer Charakte-
ristika des Textgenres ermoglicht (z. B. Vokabular, Textqualitdt). Dies ist wiederum
wichtig, um die Methoden und Komponenten des Softwaresystems bedarfsgerecht zu
entwickeln und zu konfigurieren. Ein Korpus ist dabei eine ,,[...] endliche Menge von
konkreten sprachlichen AuBerungen, die als empirische Grundlage fiir sprachwiss.
Untersuchungen dienen. Stellenwert und Beschaffenheit [...] hingen weitgehend von
den jeweils spezifischen Fragestellungen und methodischen Voraussetzungen des
theoretischen Rahmens der Untersuchung ab [...]* (BuBmann, 1983, S.79).

Wie dargestellt, existieren nur sehr wenige und zudem kleine Textsammlungen,
welche die zu erwartenden Eigenschaften von Anforderungsbeschreibungen abdecken
(z.B. Dollmann, 2016), sodass eine eigene zusitzliche Akquise von Anforderungsbe-
schreibungen notwendig ist. Die Akquise bezieht sich in dieser Arbeit auf die Suche
nach Anforderungsbeschreibungen im Web via Internet-Suchmaschinen® (insbeson-
dere auf einschligige Entwicklerplattformen). Ziel ist es, das Korpus von Dollmann
(2016), welches derzeit 200 FA sowie 492 nebensichliche Sitze umfasst, um weitere
300 FA zu erweitern, um hinsichtlich der Verteilung von FA und nebenséchlichen
Angaben ein ausgewogenes Korpus zu erhalten. Bei der Auswahl geeigneter Beschrei-
bungen kommt ein zweistufiges Vorgehen zum Einsatz, wie es auch Dollmann (2016,
S.49ff.) anwendet: Zuerst werden aufgrund von Suchbegriffen sowie Phrasen (z.B. 1
want an application®) Texte akquiriert, die mogliche Anforderungsbeschreibungen
darstellen kénnen (Kandidaten). In einem zweiten Schritt werden diese Kandidaten
héndisch kontrolliert, ob es sich tatsidchlich um FA oder doch um Nebenséchliches

98Gesucht wird via https://www.google.de.

137

138 6 Ressourcen

handelt. Die auf diese Weise identifizierten Anforderungsbeschreibungen werden in
den Datenbestand iibernommen.

6.1.1 Datenbestand

Insgesamt umfasst der zusétzlich zu Dollmann (2016) akquirierte Datenbestand 300
FA in englischer Sprache, die in Qualitdt und Umfang stark variieren. Beispiel 6.1.1
zeigt eine zufillig ausgewihlte Anforderungsbeschreibung®, die von SourceForge
akquiriert wurde und welche den Wunsch eines Endanwenders nach der Erweiterung
einer Musikanwendung um eine Kopierfunktion von Audio-CDs beschreibt.

Beispiel 6.1.1 (Anforderungsbeschreibung)

I think it would be useful if this great piece of software included the ability to rip
MP3 (via grip) within the program: as a user I want to be able to put a CD in
and having ripped to MP3, added to the ipod all in one programme. I know this
1s currently possible using separate programs, but the way that the itunes program
works as a one-stop shop, works really well from the usability point of view.

Hierbei handelt es sich um eine Beschreibung, die bereits Aufschluss iiber die zu
erwartende Qualitdt und iiber erste Merkmale gibt. So enthélt sie zwar eine vermeint-
lich klar erkennbare FA (Kopieren von Audio-Dateien), sie weist aber dennoch eine
Reihe qualitativer Defizite auf. Exemplarisch werden einige im Folgenden benannt:

Zuerst fallt auf, dass die FA eigentlich eine zusammengesetzte FA, bestehend aus
drei Unteranforderungen, ist: (1) CDs sollen eingelegt werden konnen, (2) die CD
soll in das Audioformat MP3 konvertiert und (3) Dateien sollen auf einen iPod
iibertragen werden. Neben dieser Tatsache finden sich bereits hier sowohl eine Reihe
impliziter Annahmen (z. B. soll nicht die CD in MP3 konvertiert werden, sondern auf
der CD befindliche Audiostiicke) als auch Ellipsen, wie beispielsweise in ,,and having
ripped to MP3“, wo das Objekt der Anforderungen ausgelassen wird.

Wenig {iberraschend ist dariiber hinaus der grofie Anteil an Off-Topic-Informationen
(z.B. I know this is currently possible [...]*). Auch sind Rechtschreibfehler (,,pro-
gramme*) vorzufinden, was bei UGC zu erwarten ist. Benannte Entitdten (,,iTunes®,
»1Pod*) existieren ebenfalls, wie im Rahmen der Konzeption und insbesondere im
Kontext der lexikalischen Disambiguierung bereits vermutet (s. Abschnitt 5.5.4.1).
Eine Besonderheit ist, dass eine Angabe zur Rolle (,as a user®) getitigt wird. Dies
ist nicht der Regelfall aber fiir den Verarbeitungsschritt der IE besonders wertvoll.
Zu erwarten war ferner auch, dass die Anforderungen aus Sicht des Users verfasst
werden und entsprechende Personalpronomen (,,/¢) vorzufinden sind.

Von der Analyse einer einzigen Anforderungsbeschreibung auf den gesamten Da-
tenbestand zu schlielen, ist unzureichend. Deswegen stellt Tabelle 6.1 ermittelte
Statistiken dar, die sich auf den gesamten Datenbestand beziehen und unter an-
derem Aufschluss iiber die Anzahl funktionaler Anforderungen sowie Wort- und
Zeichenkonstellationen geben.

QQSiehe: https://sourceforge.net/p/gtkpod/feature-requests/42/ (St‘dnd: 11.01.17).

6.1 Anforderungsbeschreibungskorpus 139

Merkmal Biumer (2017) Dollmann (2016)
Anzahl FA 300 200
Anzahl Types | Token 1.399 / 5.521 1.266 / 4.414
& Token /| Satz 18 22
Token Min. / Max. 7/ 49 4/ 49
@ Zeichen / Satz 99 105
Zeichen Min. / Max. 29 / 264 29 /292

Tabelle 6.1: Zusammensetzung des Datenbestands und Merkmalsgegeniiberstellung

Wie in Tabelle 6.1 ersichtlich wird, &hneln sich die Datenbesténde in den angegebenen
Werten wie Satzldnge in Token und Zeichen. Dies ist aber nur als erstes Indiz fiir eine
Ahnlichkeit zu werten, da eine Gegeniiberstellung der haufigsten Begriffe zwischen
den Korpora (vgl. Frequenzliste in Tabelle 6.2) als auch eine Analyse der semantischen
Kategorien noch aussteht (vgl. Tabelle 6.3).

6.1.2 Gegeniiberstellung

Zur Gegeniiberstellung der hier akquirierten FA und der FA aus Dollmann (2016) emp-
fiehlt sich zuerst ein Blick auf die Wortfrequenz in den jeweiligen Korpora. Auf diese
Weise konnen Auffilligkeiten in der Wortwahl und bei der inhaltlichen Schwerpunkt-
setzung der Anforderungsbeschreibungen sichtbar gemacht werden (vgl. Tabelle 6.2).

(A) Baumer (2017) ‘ (B) Dollmann (2016) (C) Dollmann (2016)*
1. 4 278 | would 122 | would 119
2. software 140 | have 44 | 4t 90
3. can 77 | nice 44 | 1 52
4. should 75 | could 40 | nice 43
5. app 61 | add 37 | have 41
6. ot 43 | like 35 | could 39
7. want 35 | should 28 | add 37
8. file 30 | you 25 | like 35
9. program 28 | file 23 | should 28
10. have 22 | can 21 | you 25

Tabelle 6.2: Die 10 hiufigsten Begriffe in den Korpora.
In Anlehnung an Dollmann (2016, S. 52)

Tabelle 6.2 zeigt sowohl die Frequenzliste fiir die akquirierten Daten (A) als auch
fiir die Daten aus Dollmann (2016), bezeichnet als (B). Da Dollmann (2016) aber
keine weiteren Angaben zur Erstellung der Frequenzliste macht (insb. nicht zur
Anwendung einer Stoppwortliste und Lemmatisierung), wird an dieser Stelle eine
eigene Frequenzliste auf Basis der Daten von Dollmann (2016) erzeugt (C)1%°, um
die Vergleichbarkeit zwischen den Korpora zu sichern.

100Zur Anwendung kommt Lemmatisierung und die Entfernung folgender, fiir den Auszug relevanter,

Stoppworter: ,to*, ,,the“, be*, ,a“, ,in“, jand®, ,for*, Jif“, ,of“, ,that*, jwith* und ,or¢.

140 6 Ressourcen

Es fallt auf, dass in (A) sowohl die semantische Kategorie der Rolle (,,i“) als auch
der Komponente (,,software®, ,,app“, ,program*) im Vordergrund stehen, was bei
(B) sowie bei (C) nicht der Fall ist. Bezogen auf die gesamten Korpora zeigt sich,
dass Korpus (A) einen hoheren Anteil an Wortern aufweist, die in die semantischen
Kategorien ,,Rolle* und ,, Komponente® fallen'®® (vgl. Abbildungen 6.1 und 6.2). Zu
diesem Zeitpunkt ist von vermeintlicher Kategoriezugehorigkeit zu sprechen, da erst
die Annotation Aufschluss iiber die Verteilung semantischer Kategorien gibt.
LI

N ER RO i
0 A A IR 1 N

Abbildung 6.1: Wortverteilung der semantischen Kategorie ,,Rolle“ je Korpus

Plot: 1 Béumer (2017,

Plot: 2 Dollmann (2016) Treffer: 17

L1 [1]]] |

Abbildung 6.2: Wortverteilung der semantischen Kategorie ,, Komponente® je Korpus

Zu erkldren ist diese Auffilligkeit mit der unterschiedlichen Herkunft. Wahrend Doll-
mann (2016) seine Daten ausschliefilich von der Entwicklungsplattform SourceForge
akquiriert, auf der Nutzer ihre FA zur Weiterentwicklung eines existierenden Produkts
kommunizieren und dieses nicht mehr explizit in der FA erwahnen, beziehen sich die
hier akquirierten FA {iberwiegend auf neu zu entwickelnde Software, welche daher
sehr hiufig genannt wird. Dies wird auch bei der Betrachtung frequenter Phrasen'®?
deutlich: Wihrend in Korpus (B bzw. C) gehduft Phrasen wie ,, It would be“ oder
» Would it be possible* vorkommen, sind es in Korpus (A) Formulierungen wie , 1
need a software” und , App should be able to“. In diesem Kontext erkldrt sich auch
die hohe Frequenz der Worter ,,you“ und , add“ im Datenbestand von Dollmann
(2016), da sie Teil von Nutzeraufforderung an die Softwareentwickler (,,you®) sind,
bestimmte Softwarefunktionen zu erginzen (,,add“): ,, Can you please add exif support
to the package?“193. Auch erklirt sich die hohe Frequenz von , it“ in Korpus (C), was
urspriinglich in Dollmann (2016) als Stoppwort entfernt wurde und oftmals (aber
nicht immer) als Referenzausdruck zur bestehenden Softwareapplikation genutzt wird.
Mit Bezug zum OTF-Computing sind Formulierungen wie in Korpus (A) zu erwarten,
da Endanwender mit ihren FA auf eine noch nicht existente Software referenzieren.

Dollmann (2016) merkt beziiglich der Wortfrequenz in seinem Korpus (B) an, dass
die semantische Kategorie ,, Prioritdat* unter den frequentesten Token stark vertreten
ist (,,would“, , could* und , should“). Diese Auffilligkeit bleibt auch bei erneuter

01Untersucht wurden ,I¢, ,my*, ,mine*, ,we, , User* bzw. ,,Software®, ,,System*, , App*, ,, App-
lication®, ,, Tool* und ,, Program*.

102Frzeugt wurden Frequenzlisten von Tetragrammen auf beiden Korpora.

103Gjehe: https://sourceforge.net/p/graphics32/feature-requests/21/ (Stand: 04.02.17).

6.1 Anforderungsbeschreibungskorpus 141

Erstellung der Frequenzliste in (C) bestehen und findet sich dartiber hinaus auch
in (A). Dies bedeutet, dass die Prioritit in beiden Korpora eine wichtige Funktion
einnimmt. Diese Erkenntnis ist deckungsgleich mit den Ergebnissen aus Dollmann
(2016, S.55) bzw. in Tabelle 6.3 (277 bzw. 209 Annotationen).

(A) Biumer (2017) (B) Dollmann (2016)

Komponente 232 84
Komponentenverfeinerung 26 16
Aktion 333 204

Argument der Aktion 143 104
Bedingung 30 39

Prioritét 277 209

Motivation 22 19

Rolle 259 42

Objekt 439 195

Verfeinerung des Objektes 127 48
> 1.888 960

Tabelle 6.3: Anzahl annotierter Hauptinformationen nach Kategorie.
In Anlehnung an Dollmann (2016, S. 55)

Beziiglich der semantischen Kategorien finden sich in Tabelle 6.3 weiterfithrende
Angaben. So fallt bei den von Dollmann (2016) annotierten FA auf, dass mehr
Aktionen und Prioritdten annotiert wurden, als FA vorhanden sind. Scheinbar exis-
tieren demnach FA, die mehrere Aktionen und Prioritdten aufweisen. Dies ist nicht
ungewohnlich, entspricht aber nicht der oftmals formulierten Empfehlung im RE,
Anforderungen atomar zu formulieren (Pohl und Rupp, 2015, S. 48). Das gleiche Bild
zeichnet sich fiir die semantische Kategorie der Aktionen bei (A) ab und entspricht
wahrscheinlich auch dem, was im Kontext des OTF-Computings zu erwarten ist, da
nicht davon auszugehen ist, dass sich Endanwender an RE-Empfehlungen halten,
geschweige denn diese kennen.

Auch ldsst sich feststellen, dass die Rolle und die Komponente in Korpus (A)
erheblich haufiger vorkommen, als es in Korpus (B) der Fall ist. Dies wurde bereits
zuvor auf Basis der Wortfrequenz vermutet. Eine Erklarung hierfiir ist die unterschied-
liche Datenherkunft. Bei Dollmann (2016) ist sowohl die Kategorie ,, Komponente*
als auch , Rolle* innerhalb der FA bereits durch den Kontext (Entwicklungsforum
zu bestehenden Produkten) vorgegeben. Weiterhin fallt auf, dass bei Korpus (B)
weniger Objekte annotiert wurden, als es FA gibt, wohingegen sich im Korpus (A)
439 Objekte in 300 FA finden. Auch hier gilt, dass die Datenherkunft zu beachten ist,
wie folgendes Beispiel aus Korpus (A) aufzeigt: , Make it possible to import/export
themes“1%* enthilt zwei Angaben zur semantischen Kategorie der Aktion, bezieht
sich dabei aber nur auf ein Objekt. Demgegeniiber stehen Beispiele wie ,, I need a
good Karoake Software which can remove vocals from mp8 completely and save that

1O4SiChCZ https://sourceforge.net/p/cmsworks/feature-requests/11/ (Stand: 120217)

142 6 Ressourcen

karoake file as mp3“'% aus Korpus (B), in dem mehrere Aktionen und Objekte
genannt werden und die sehr haufig in dieser Form vorzufinden sind.

Schlussendlich ldsst sich nach dieser Gegeniiberstellung zusammenfassen, dass die
akquirierten FA dhnlich in Qualitéit und Umfang zu den Anforderungen sind, die
seitens Dollmann (2016) bereitgestellt werden und sich dennoch in wesentlichen Merk-
malen unterscheiden (z. B. Haufigkeit semantischer Kategorien). Diese Unterschiede
sind dabei von erheblicher Bedeutung fiir diese Arbeit, da sie zum einen aufzeigen,
wie stark natiirlichsprachliche Anforderungsbeschreibungen und insbesondere FA
in Umfang und Qualitét variieren. Zum anderen ermoglichen sie eine umfassende
Evaluation des Systems. Durch die Zusammenfithrung der beiden Datenbesténde
wird versucht, eine moglichst breite Abdeckung an Formulierungen zu erreichen. Auf
diese Weise wird sich den Anforderungsbeschreibungen, die im OTF-Computing zu
erwarten sind, durch vergleichbare Eigenschaften angenédhert.

6.2 Pradikat-Argument-Struktur-Korpus

Das PAS-Korpus enthélt Flieftexte zur Beschreibung von Softwarefunktionalitéten.
Es dient zum einen dazu, die Frequenz und die Art der doméanenspezifischen
Pradikatverwendung zu analysieren. Zum anderen wird es benétigt, um instan-
tilerte Argumentpositionen von Pradikaten im jeweiligen Kontext zu extrahieren
und fiir die Kompensation von unvollstéindigen Angaben in den Anforderungsbe-
schreibungen des Endanwenders zu nutzen. Aus diesem Grund werden die Texte
nach der Akquise weiterverarbeitet (z. B. Satzgrenzenerkennung) und durch weitere
Daten (z. B. Hyperonyme) angereichert. Dieses Korpus wird beispielsweise in Bdumer
und Geierhos (2016) zur Kompensation von Unvollstindigkeit und in Geierhos und
Béaumer (2017) zur Erkennung und Kompensation von Vagheit herangezogen.

6.2.1 Datenakquise und -vorverarbeitung

Das Korpus speist sich aus den Daten der Onlineplattform download.com!®, die im
Zeitraum von 01. Januar bis 01. Februar 2016 mittels einer eigens entwickelten Craw-
ler-Applikation automatisiert heruntergeladen wurden und den Zeitraum von Februar
1995 bis Februar 2016 abdecken. Die Daten umfassen neben Programmbeschreibun-
gen der Hersteller (vgl. Beispiel 6.2.1) auch Bewertungen der Plattformbetreiber sowie
Kommentare und Bewertungen von Anwendern. Der so entstandene Ausgangsdaten-
satz beinhaltet somit {iberwiegend Texte, in denen die Softwarefunktionalitéten im
Mittelpunkt stehen (vgl. Beispiel 6.2.1). Die Qualitéit der Programmbeschreibungen
ist dabei schwankend und reicht von einer reinen Aufzéhlung von Funktionalitéten
bis hin zu ausgeschmiickten Werbetexten. Um die Datenqualitét zu erhéhen, ist ein
Preprocessing notwendig, das im folgenden Abschnitt 6.2.1 erldutert wird.
Insgesamt enthélt der Datensatz dabei 193.641 Datensétze, aufgeteilt in 23 Soft-
warekategorien (z. B. Spiele, Sicherheit, Kommunikation) und 253 Unterkategorien
(z. B. Arkade-Spiele, Antivirus, E-Mail Software). Die Angaben zu Kategorien und

105Gjehe: http://answers.yahoo.com/rss/question?qid=20120427101849AR4y0wl (Stand: 120217)
106Siehe weiterfithrend: http://download.cnet.com (Stand: 11.01.17).

6.2 Pradikat-Argument-Struktur-Korpus 143

Unterkategorien sind fiir eine spitere Analyse der Prédikate im Hinblick auf die
unterschiedliche Verwendung innerhalb der Softwarekategorien von Interesse.

Beispiel 6.2.1 (Programmbeschreibung, gekiirzt)

Email Scheduler Tracker is an easy-to-use e-mail management software with
which you can: Send e-mails to customers, prospects, webinar participants, etc.
i either plain text or HTML text, either immediately or at any time and date in
the future. Send automatic reminders to one or more people |[...]

Die akquirierten Programmbeschreibungen werden in mehreren sequenziellen Schrit-
ten zur Verbesserung der Datenqualitdt modifiziert. Dabei liegt der Fokus auf
Erkennung und Abbildung der PAS einzelner Sétze, was unter anderem dazu fiihrt,
dass die bisherigen komplexen Satzkonstruktionen aufgetrennt und als einzelne
elementare Sétze gespeichert werden. Wichtig ist, dass zu jedem Zeitpunkt eine
eindeutige Zuordnung von Sétzen und Prédikaten zum Ursprungstext moglich ist.
Hierfiir werden die folgenden Schritte durchlaufen:

(1) Entfernung von Hypertert Markup Language (HTML)

Es konnen vereinzelt HTML-Auszeichnungen im Text existieren, die in diesem Schritt
entfernt werden (z. B.,,*), da sie nachfolgende Schritte, wie beispielsweise die
Satzendeerkennung, behindern kénnent”.

(2) Satzendeerkennung

Die Satzendeerkennung unterteilt den Fliefitext in einzelne Sétze. Dabei ist die
Erkennung von Satzenden wesentlich komplexer als das einfache Erkennen von
Interpunktionszeichen (s. Anhang C.1.2). Dies ist zum Beispiel dann der Fall, wenn
Aufzihlungen in Programmbeschreibungen genutzt werden'®,

(3) Erkennung der Pridikat-Argument-Struktur

Die Erkennung von Pridikaten (z.B.,send“) und zugehorigen Argumenten
(z.B.,mailing list*) in Sétzen wird in diesem Schritt durch einen Semantic
Role Labeler durchgefiihrt'®. Die so gewonnenen Erkenntnisse werden zusammen
mit dem jeweiligen Ausgangssatz gespeichert.

(4) Anreicherung semantischer und lexikalischer Beziehungen
In diesem Schritt werden sowohl Pradikate als auch Argumente um eindeutige
semantische und lexikalische Beziehungen erweitert!°.

(5) Uberfiihrung in ein strukturiertes Ausgabeformat
Die Ausgabe erfolgt hierarchisch strukturiert (Baumstruktur) unter der Nutzung

107Die Entfernung erfolgt mittels ,jsoup“. Siehe: nttp://www.jsoup.org (Stand: 12.01.17).
108Dje Erkennung erfolgt mittels ,,LingPipe“. Siehe: http://www.alias-1i.com/ (Stand: 12.01.17).
109Genutzt wird das Toolkit ,,Mate Tools® (Bjérkelund et al., 2010).

HO0Erweiterung durch WordNet-IDs. Siehe: http://wordnetweb.princeton.edu (Stand: 12.01.17).

144 6 Ressourcen

der Extensible Markup Language (XML). Ausgehend vom jeweiligen Pridikat als
Wurzelknoten auf der héchsten Ebene wird sowohl der Satz als auch die erkannten
Argumente des Pridikats als Folgeknoten gefiihrt (vgl. Beispiel 6.2.2).

Beispiel 6.2.2 (Ausgabeformat)

<predicate sense="“send.01” wordnet="01033289" >
<sentence id=“75891832-2” sid=“2" text="“Send e-mails to customers, pro-
spects, webinar participants, etc. in either plain text or HTML text, either im-
mediately or at any time and date in the future.”” tid=“75891832” version=“1"
path=“downloadcom::communication::email” alias="“email” >
<arguments>
<arg id=“A1” wordnet="“06289979" type="">e-mails</arg>
<arg id=“A2” wordnet="" type="">customers, prospects,
webinar participants</arg>
</arguments>
</sentence>
</predicate>

Zusatzinformationen wie IDs (z. B. ,sid“) sowie semantische und lexikalische Bezie-
hungen (,,wordnet*) sind als Attribute angegeben. Vor- und Nachteile von XML zur
Strukturierung von Korpora werden von Naumann (2003) diskutiert. Zusammenge-
fasst eignet sich die XML-Auszeichnungssprache aufgrund der Standardisierung und
der weiten Verbreitung sowie der Verfiigbarkeit von Anwendungen zur Verwaltung
und Modifikation (Naumann, 2003, S.379f.).

6.2.2 Zusammensetzung

Die Zusammensetzung des Korpus ist von Interesse, da sich dadurch die Notwendigkeit
von Vor- und Nachbearbeitungsschritten aufgrund von spezifischen Texteigenschaften
ergibt (z. B. viele Rechtschreibfehler).

Die durchschnittliche Textlinge der Programmbeschreibungen iiber alle Kategori-
en hinweg betriigt 129 Worter (737 Zeichen). Um spezifische Texteigenschaften zu
erkennen, wird eine 300 Sétze umfassende Zufallsstichprobe in der Kategorie ,, E-Mail
Software / Utilities“ erstellt und analysiert (Gesamtumfang 2.088 Beschreibungen;
11.187 Sétze). Als positiv ist die hohe Erkennungsrate der Satzgrenzenerkennung zu
bewerten. Bei 300 Sitzen sind 274 Satzgrenzen (91,3 %) korrekt erkannt worden, wo-
bei die meisten der 26 falsch erkannten Satzgrenzen auf Aufzihlungen zuriickzufiihren
sind. Dariiber hinaus scheinen Sétze, die mit ,etc.“ enden, zu Erkennungsfehlern zu
fithren. Weiterhin kann festgestellt werden, dass in 70,8 % der Sitze eine Software-
funktionsbeschreibung vorgenommen wird.

Die Korpusstatistik bezogen auf die 274 korrekt erkannten Sétze findet sich in
Tabelle 6.4. Durchschnittlich betrigt die Satzlange 19 Token bzw. 120 Zeichen.
Dabei ist die Existenz kurzer Séitze wie ,, Fasy to use®, die nur drei Token bzw.
13 Zeichen umfassen, ebenso interessant wie die sehr umfangreicher Sitze, geben

6.2 Pradikat-Argument-Struktur-Korpus 145

Merkmal Haufigkeit
Anzahl Types | Token 1.288 / 5.118
& Token /| Satz 19
Token Min. / Max. 3 /57
@ Zeichen / Satz 108
Zeichen Min. / Max. 13 / 343

Tabelle 6.4: Zusammensetzung der Stichprobe

sie doch Auskunft iiber die Anwendbarkeit der in Abschnitt 5.5.2 und Anhang C.1
diskutierten Preprocessing-Verfahren, beispielsweise der Sprachenidentifizierung.

Tabelle 6.5 stellt Eigenschaften der Stichprobe dar, die fiir den Anwendungsfall
der pradikatbasierten Kompensation von Unvollstdndigkeit von Bedeutung sind.
So beinhaltet die Stichprobe insgesamt 547 Préadikate und durchschnittlich zwei
Pradikate pro Satz.

Merkmal Auspriagung
Pridikate

Anzahl Pradikate 547
@ Pridikate / Satz 2
Named Entities

Anzahl NE 324
Sonstiges

Anzahl Rechtschreibfehler (Algorithmus) 166
Anzahl Rechtschreibfehler (Gegenprobe, Mensch) 33
Abkiirzungen (z. B.IMAP) 132

Tabelle 6.5: Merkmale und ihre Auspriagungen in der Stichprobe

Die weitere Analyse der Sétze zeigt, dass der Kontext der Pridikate, welcher genutzt
wird, um fehlende Instantiierung zu kompensieren, eine Vielzahl an NE (324) und
Abkiirzungen (132) aufweist. Dies ist wichtig, da kompensierte Argumente, die NE
und Abkiirzungen enthalten, fiir Endanwender problematisch sein kénnen, da nicht
davon ausgegangen werden kann, dass sie diese kennen.

Dariiber hinaus wirken sich NE und Abkiirzungen auch auf die automatische Recht-
schreibkorrektur aus. So erzielt diese insgesamt Ergebnisse, die eine alarmierend hohe
Anzahl an Fehlerkennungen und -korrekturen beinhalten. So wurde zum Beispiel
,» Winmail“ falschlicherweise zum Vornamen ,, Ismail“ korrigiert. Als kritischer sind
Korrekturen wie bei dem Satz ,, It can Convert .eml to PDF, and .eml to Image* zu be-
werten, der zu ,, It can Convert . XML to PDF, and . XML to Image* verdindert wurde.
Das Dateiformat EML wurde zu XML verdndert und somit die Aussage verfilscht.
Angesichts dieser Ergebnisse sollte auf eine automatische Rechtschreibkorrektur
verzichtet werden. Gegen die Anwendung einer automatischen Rechtschreibkorrek-
tur spricht auch die geringe Anzahl an Rechtschreibfehlern, wie sie die manuelle
Rechtschreibkorrektur aufgezeigt hat (33 Rechtschreibfehler).

146 6 Ressourcen

6.2.3 Umfang des PAS-Korpus

Um einen Eindruck des PAS-Korpus zu erhalten, ist in Tabelle 6.6 eine weitere
Korpusstatistik dargestellt, die iiber die der Stichprobe hinausgeht. Wie bereits
angefiihrt, besteht das gesamte Korpus aus 193.641 Softwarebeschreibungen, die in
insgesamt 23 Softwarekategorien und weiter in 253 Unterkategorien unterteilt werden.

Merkmal Auspriagung
Kategorien 23
Unterkategorien 253
Beschreibungen 193.641
& Token / Beschreibung 123
@ Zeichen / Beschreibung 738
& Sétze / Beschreibung 7
@ Pridikate / Beschreibung 15
@ Pradikate / Satz 2

Tabelle 6.6: Merkmale und ihre Ausprigungen im PAS-Korpus

Werden die Softwarebeschreibungen hinsichtlich der Lange betrachtet, so sind sie im
Durchschnitt 738 Zeichen bzw. 123 Token lang und bestehen aus sieben Sétzen. Dabei
schwankt die Léange je nach Softwarekategorie merklich. So sind die Beschreibungen
von Software zum Thema Reisen am langsten (& 1.055 Zeichen), wihrend sie im
Bereich der Bildschirmschoner und Schreibtischhintergriinde am kiirzesten sind (&
449 Zeichen). Auch ist die Verteilung der Softwarebeschreibungen innerhalb der
Kategorien nicht gleich. Am meisten Beschreibungen finden sich in den Softwarekate-
gorien Spiele (25.799), Treiber (22.442) und Betriebssystem Utilities (16.622). Die
aufgrund des E-Mail-Anwendungsfalls relevante Kategorie Kommunikation, zu der
auch E-Mail-Kommunikation zahlt, umfasst 5.882 Softwarebeschreibungen.

Da es sich um ein PAS-Korpus handelt, ist neben der Verteilung der Softwarebe-
schreibungen innerhalb der Softwarekategorien auch das Vorkommen von Pridikaten
von Interesse. Hier sind im Durchschnitt 15 Priadikate pro Softwarebeschreibung
festzustellen, was durchschnittlich zwei Prédikate pro Satz bedeutet — dieser Wert
ist somit deckungsgleich zu dem Wert aus der untersuchten Stichprobe.

6.3 Weitere Ressourcen

Neben dem Anforderungsbeschreibungskorpus und dem PAS-Korpus sind Ressourcen
notwendig, die als Nebenentwicklungen innerhalb dieser Arbeit zu betrachten sind.
Sie stehen somit nicht im Vordergrund dieses Kapitels und werden dennoch der
Vollstéandigkeit halber im Folgenden gebiindelt vorgestellt. Es handelt sich dabei
sowohl um komplette Eigenentwicklungen, als auch um modifizierte Standardressour-
cen sowie um Ressourcen, deren Umfang stark beschrankt ist und die ausschliefllich
der Funktionsdemonstration dienen.

Eine sehr einfache Form von Ressourcen sind Listen, die an verschiedenen Stellen
dieser Arbeit zum Einsatz kommen, unter anderem als White- und Blacklists. Sie

6.3 Weitere Ressourcen 147

dienen primér der Performanzsteigerung des Gesamtsystems, indem bestimmte Token
von der Verarbeitung ausgenommen werden (sei es, weil das Verarbeitungsergebnis
vorweggenommen werden kann oder weil ein Token als irrelevant eingestuft wird).
So enthélt beispielsweise die Blacklist der Unvollstandigkeitskompensation Token
wie ,want“, ,like“ und , be* (s. Abschnitt 5.5.5). Dariiber hinaus wird an mehreren
Stellen auch die Blacklist der Apache Foundation eingebunden (z.B.beim Indikator
lexikalischer Ambiguitéit), auf der wenig bedeutungstragende Token wie ,thus®,
,to“ und ,too“ vermerkt sind. Neben dieser Listenart existiert eine Liste vager
Adjektive, die zur Erkennung von Vagheit in Abschnitt 5.5.6 herangezogen wird. Sie
umfasst derzeit 1.465 Adjektive (z. B. fast®, ,, warm®). Uber eine reine Auflistung von
Token hinaus gehen Listen, die beispielsweise Synonyme enthalten und daher nicht
nur ein Token in einem Eintrag fithren, sondern mehrere in Form von Aufzihlungen.
So enthélt die Synonymliste fiir den Indikator der referentiellen Ambiguitdt zum
Beispiel den Eintrag: , application, program, software, system® (s. Abschnitt 5.3.2.3).
Nichtsdestotrotz ist es nach wie vor ein einfacher Listentyp!!!.

Demgegeniiber stehen strukturierte Ressourcen, die unterschiedliche Informatio-
nen in einen hierarchischen Zusammenhang bringen. An mehreren Stellen in dieser
Arbeit (z. B.bei der strukturierten Ergebnisausgabe) kommt hierzu die erweiterbare
Auszeichnungssprache XML zum Einsatz. So wird unter anderem bei der Kompen-
sation von Unvollstandigkeit (s. Abschnitt 5.5.5) auf eine modifizierte Version der
Propbank (Palmer et al., 2005) zuriickgegriffen, die auf die, fiir die Kompensation
unvollstandiger Pridikate notwendigen, Angaben reduziert wurde (vgl. Beispiel 6.3.1).

Beispiel 6.3.1 (Eintrag aus der modifizierten Propbank)
<roleset id=delete.01“ reqroles=,2“ roles=,3“>
<role f=,PAG* descr= ,entity removing“ req=,1“ n=,0“/>
<role f=,PPT* descr=,thing being removed“ req=,1“ n=,1“/>
<role f=,DIR“ descr=,removed from* req=,0“ n=,2%/>
</roleset>

Die Ressource umfasst derzeit 8.128 Prédikate in mehreren Lesarten (z.B. delete.01)
und 21.153 definierte Leerstellen. Eine Besonderheit stellt das Attribut ,,req“ dar,
welches neu aufgenommen wird und die notwendige Angabe eines Pradikats im
Kontext von Anforderungsbeschreibungen markiert (s. Abschnitt 5.5.5).

Eine weitere Ressource ist der WSD-Cache. Dieser wird ihm Rahmen der lexikali-
schen Disambiguierung zur Minimierung der Laufzeit eingesetzt. Es handelt sich um
eine Zwischenspeicherung (in einer MySQL-Datenbank) von Merkmalen einzelner
Token, die tiber Babelfy disambiguiert und mittels BabelNet um Zusatzinformationen
(z. B. Kategorie, Doméne, Lemma) angereichert wurden (vgl. Tabelle 6.7). Derzeit
umfasst der Cache 6.827 Eintriage, wobei alle Eintrdge nur eine Haltbarkeit von 14
Tagen haben, bevor sie erneut abgerufen werden (Zeitstempel). Es handelt sich dabei
um eine flexible Ressource, die stetiger Verdnderung unterliegt.

1Dije Synonymliste enthilt derzeit 803 Wortgruppen mit insgesamt 10.274 Wortern.

BabellD

7 Lemma

7 Kategorie

7 Domine

Beschreibung

7 Zeitstempel

bn:03164709n

Keyboard shortcut

GUI _techniques

Computing=0.45

In computing, a key-
board shortcut is a se-
ries of one or sever-
al keys that invoke a
software or operating
system operation when
triggered by the user.

2017-03-18

bn:01664953n

Selection (GUI)

GUI _techniques

Computing=0.36

In computing and user
interface engineering,
a selection is a list of
items on which user
operations will take
place.

2017-03-18

bn:03173309n

Point and click

GUI _techniques

Video_games=0.63

Point and click are the
actions of a computer
user moving a pointer
to a certain location
on a screen and then
pressing a button on a
mouse, usually the left
button, or other poin-
ting device.

2017-03-05

Tabelle 6.7: Auszug aus dem WSD-Cache

148

Implementierung

Im Folgenden wird das in Kapitel 5 beschriebene Konzept als Prototyp programmier-
technisch realisiert. Hierfiir wird in Abschnitt 7.1 die Systemarchitektur erlautert
und anschlieBend das Testsystem vorgestellt (s. Abschnitt 7.2). Die Umsetzung der
Informationsverarbeitung wird in Abschnitt 7.3 beschrieben.

7.1 Systemarchitektur

Die Begriffe System- und Softwarearchitektur sind voneinander abzugrenzen. Sys-
temarchitektur schlieit ,[...] viele Computer, Speichersysteme sowie Netzwerk-
Komponenten ein, die durch ihr Zusammenwirken eine Reihe von verfiigbaren,
sicheren und skalierbaren Diensten [...]* erméglichen (Dustdar et al., 2003, S. 10),
wahrend Softwarearchitektur , eine strukturierte oder hierarchische Anordnung der
Systemkomponenten sowie Beschreibung ihrer Beziehungen® (Balzert, 2003, S.4)
umfasst. Bei der Systemarchitektur ist die ,,[...] Betrachtungsweise auf Systeme als
Bauteile gerichtet und nicht auf die Software-Bauteile fiir [...] Systeme. Komponenten
einer System-Architektur sind daher anders zu diskutieren als Komponenten und
Beziehungen einer Software-Architektur® (Dustdar et al., 2003, S. 5).

| Webserver | B

L| JSP-Server | Babelfy
Babelfy server
< y

Textvorverarbeitung

— Request) Anforderungsextraktion {}l Request
= https://nana.nuc/index.jsp https://babelfy.io/
- Disambiguierung (Lex/syn/Ref) {'}|
< Response Response
I ML Kompensation {}l JSON
— | Vagheitserkennung i:}|
) Lokale Ressourcen (z. B. DB-Server)
Clients Server

Systemumfeld
Client Externes Umfeld

Abbildung 7.1: Uberblick iiber das Softwaresystem

Einen Uberblick iiber das Gesamtsystem und dessen Umfeld gibt Abbildung 7.1.
Dargestellt sind neben beispielhaft gewéhlten Clients im Systemumfeld auch der

149

150 7 Implementierung

Server'!? sowie das externe Umfeld. Die Begriffe , Systemumfeld“ und ,, Externes

Umfeld“ beschreiben Formen und Grenzen der Interaktion (Request — Response).
Wihrend das Systemumfeld die Interaktion zwischen Clients und Servern innerhalb
des Softwaresystems beschreibt, umfasst das externe Umfeld Drittapplikationen
(z.B. Babelfy), die vom Server angefragt werden. In diesem Fall agiert demnach das
Softwaresystem als Client. Eine Interaktion zwischen Endanwender und externer
Ressource ist nicht vorgesehen. Der in Abbildung 7.1 dargestellte Server enthélt
bereits die vorgesehenen Verarbeitungskomponenten. Auf Grund der Vielschichtigkeit
des Server-Begriffs wird im Folgenden fiir Kompensationskomponenten, die auf dem
zentralen Server oder weiteren Computern bereitgestellt werden und als Server-
Applikation fungieren, der Begriff eines Dienstes herangezogen. Den serverseitigen
Aspekt greift Abbildung 7.2 unter Auslassung der Client-Perspektive auf. Abgebildet
ist der zentrale Server, der Dienste bereitstellt, die zur Kompensation benétigt
werden. Diese Dienste greifen auf verschiedene Ressourcen zuriick (z. B. Textdateien,
Datenbanken), die unterschiedliche Anforderungen an das System stellen kénnen!'3.

—3
 —
L] HTTP(S) 8 HTTP(S)
(Client) g
Systemserver 1
(lokal auf Systemserver) (extern) 9
3| | =3
ONDSHOINO| ' =] 1=
Webserver JSP-Server DB-Server ~Solr-Server *8 *8

Komponentenserver

&b o

(+ Verarbeitungskomponenten)

Abbildung 7.2: Serverseitige Systemperspektive

Die Kompensationsdienste kommunizieren tiber HTTP-Schnittstellen bzw. wer-
den iiber diese auch von der zentralen Verarbeitungskomponente angesprochen
(s. Abschnitt 7.3). Dies bedeutet, dass sich alle eingebundenen Computer, wie es die
Client-Server-Architektur auch nahelegt, in einem (gemeinsamen) Netzwerk befinden
miissen bzw. iiber einen Zugang zum Internet verfiigen. Abbildung 7.2 zeigt somit
auch den Aspekt der Skalierbarkeit auf (s. Abschnitt 7.4.2.3). Einzelne Dienste kénnen
aufgrund der angesprochenen netzwerkbasierten Kommunikation (%) ohne Weiteres

H2Der Begriff ,, Server® ist ambig, da dieser sowohl im Sinne der Hardware als auch im Sinne der
Software (Software, die auf einem Server ausgefithrt wird) genutzt werden kann.

13 Beispielsweise erfordern Modelle, die im Arbeitsspeicher gehalten werden eine entsprechend aus-
gereifte RAM-Ausstattung, wihrend umfangreiche Lexika eine schnelle Festplatte voraussetzen.

7.2 Testumgebung 151

auf zusitzliche Computer (Komponentenserver, #) ausgelagert werden (horizontale
Skalierung). Die Kommunikation sollte dabei im Sinne der Sicherheit iiber HTTPS
verschliisselt (@) erfolgen (s. Abschnitt 7.4.1.2). In dieser prototypischen Implementie-
rung sind alle Dienste auf einem Server verfiigbar (s. Abschnitt 7.2). Dariiber hinaus
greifen Endanwender in diesem Szenario iiber das Internet auf den Server zu.

7.2 Testumgebung

Als Testumgebung wird in dieser Arbeit serverseitig ein Intel NUC™* (NUC6i3SYH)
herangezogen, der die in Tabelle 7.1 dargestellten, relevanten Merkmale aufweist.
Die Wahl der Testumgebung ist sowohl beim Server als auch beim Client der
Verfiigbarkeit bereits bestehender Hardware geschuldet. Grundsétzlich kénnen alle
(mindestens) dquivalenten Hardwarekonstellationen genutzt werden.

Merkmal Ausprigung
Prozessor Intel Core i3-6100U, 2x 2.30 GHz, 3 MB Cache
RAM Crucial SO-DIMM Kit 32GB, DDR4-2133
Festplatte Samsung SSD 850 Pro 512GB, 6 GB/s
Konnektivitit Verbunden iiber LAN, Gigabit
Betriebssystem Linux, Debian Stretch
Java openjdk (1.8.0)

Tabelle 7.1: Testumgebung (Server)

Clientseitig wird, im Sinne der Interoperabilitiit (s. Abschnitt 7.4.2.1), auf verschiedene
Systeme und Konfigurationen zuriickgegriffen. Primér getestet wird mit einem Apple
MacBook Pro (Retina, 13”) und einem iPhone 5S (vgl. Tabelle 7.2). Die Geréte
eignen sich insbesondere, da sie aufgrund der weiten Verbreitung und eingeschrénkten
Konfigurierbarkeit bei Defekten mit wenig Aufwand formgleich zu ersetzen sind.

Merkmal Auspriagung
Modell MacBook Pro (Retina, 13”, Ende 2016)
Konnektivitat Verbunden iiber LAN, Gigabit
Auflésung 2560 x 1600
Webbrowser Safari 10.0; Mozilla Firefox 49.0.1
Betriebssystem MacOS Sierra 10.12
Modell iPhone 5S
Konnektivitat Verbunden iiber WLAN
Auflésung 1136 x 640
Webbrowser Safari 602.1; Google Chrome 54.0
Betriebssystem iO0S 10.2

Tabelle 7.2: Testumgebungen (Clients)

H4Gjehe: http://intel.com/content/www/us/en/nuc/nuc-kit-nuc6i3syh.html (St‘dnd: 12.01.17).

152 7 Implementierung

7.3 Programmiertechnische Umsetzung

Im Folgenden wird zuerst auf das Strukturierungsprinzip des zu entwickelnden
Softwaresystems eingegangen, welches die Struktur dieses Abschnitts bestimmt:
,Der grundlegende Ansatz zur Strukturierung von Softwaresystemen ist eine Zerle-
gung in Schichten“ (Dunkel und Holitschke, 2003, S.16). Weitldufig etabliert hat
sich dabei die Unterteilung in drei Softwareschichten, wie sie Abbildung 7.3 zeigt:
Prisentationsschicht, Anwendungsschicht und Datenschicht (auch: Persistenzschicht).

Prasentationsschicht
Anwendungsschicht

Datenschicht

Abbildung 7.3: Drei-Schichten-Architektur als Strukturierungsprinzip von Software

Nach Dunkel und Holitschke (2003, S. 17) beinhalten diese Schichten die wesentlichen
Aufgaben einer Software!'>. So enthélt die Prisentationsschicht zum Beispiel die
Datendarstellung und die Benutzerinteraktion. Die Anwendungsschicht beinhaltet die
fachlichen Objekte sowie die fachliche Logik, wihrend die Datenschicht die dauerhafte
Datenverwaltung erméglicht (Dunkel und Holitschke, 2003, S.17). Eine Schicht kann
dabei immer nur auf innere Schichten zuriickgreifen. Dies ,,[fithrt] somit zu kohérenten
und schwach gekoppelten Strukturen und [bietet] die Basis fiir eine physikalische
Verteilung auf verschiedene Rechner® (Dunkel und Holitschke, 2003, S. 16).

Die Auspriagung der Drei-Schichten-Architektur verteilter Systeme wird unter
Betrachtung der Client-Server-Struktur deutlich: Je nachdem, wie die Schichten auf
die Clients und die Server verteilt sind, demnach, wie viele Aufgaben auf der einen und
auf der anderen Seite vorgesehen sind, wird von schwer- oder leichtgewichtigen Clients
gesprochen (Dunkel und Holitschke, 2003, S. 22). Dieser Aspekt wird im folgenden
Abschnitt 7.3.1 weiter vertieft. Dariiber hinaus richtet sich auch der darauffolgende
Aufbau dieses Abschnitts an dem dargestellten Prinzip der Drei-Schichten-Architektur
aus. So enthilt Abschnitt 7.3.1 auch Uberlegungen und Angaben zur Implementierung
der Prasentationsschicht. Es folgt Abschnitt 7.3.2 mit den fachlichen Objekten
sowie der fachlichen Logik. Die Datenschicht wird in Abschnitt 7.3.3 diskutiert.
Aufgabe wird es dariiber hinaus auch sein, die Umsetzung der in Abschnitt 7.4
benannten Qualitdtsmerkmale von Softwaresystemen anhand der genannten Schichten
aufzuzeigen und zu diskutieren.

H5Detaillierte Inhalte zu logischen Softwareschichten geben Dunkel und Holitschke (2003, S. 16 f.).

7.3 Programmiertechnische Umsetzung 153

7.3.1 Prasentationsschicht

Die Prisentationsschicht bezeichnet das klassische GUI, welches zum einen die Dar-
stellung von Daten erméoglicht und zum anderen Endanwender beféhigt, mit dem
Softwaresystem zu interagieren. Konzeptionell besprochen wird die Benutzerschnitt-
stelle in Abschnitt 5.5.1. In Abschnitt 7.3.1.1 folgen Uberlegungen zur Verteilung
der einzelnen Schichten auf die Clients bzw. den Server sowie Angaben zur program-
miertechnischen Umsetzung in Abschnitt 7.3.1.2.

7.3.1.1 Fat vs. Thin Clients

Hinsichtlich der Clients ist zwischen schwergewichtigen (engl. fat) und leichtgewich-
tigen (engl. thin) Clients zu unterscheiden!'®. Wihrend Fat Clients alle genannten
Schichten beinhalten und nur zur Datenverwaltung auf Server zugreifen, sind Thin
Clients so konstruiert, dass sie die Prasentationsschicht darstellen und sich die
weiteren Schichten auf einem oder mehreren Server(n) befinden (vgl. Abbildung 7.4).

Schwergewichtiger Klient Leichtgewichtiger Klient

(= —
Prasentationsschicht Prasentationsschicht | __ K
| |
K 5j

Anwendungsschicht | || - - — — — — { — — — - — — — — — — — — — — _
Server

Datenschicht .
Anwendungsschicht e | | | f
'y (=] | =1 f===]
,,,,,,,,,,,,, Datenschicht 8 8 8
DB-Zugriff i

v v DB-Zugriff —

—_

;

Abbildung 7.4: Unterschiedliche Schichtenaufteilung von Fat und Thin Clients.
In Anlehnung an Dunkel und Holitschke (2003, S. 22)

In dieser Arbeit ergeben sich bereits aus dem Konzept in Abschnitt 5.5.1 folgende
Anforderungen an die Clients: Zum einen muss das Softwaresystem niedrige Nut-
zungsbarrieren aufweisen, geriteiibergreifend sowie plattformunabhéngig arbeiten
und intuitiv zu bedienen sein, was beispielsweise komplexere Installationsroutinen,
wie sie hier erforderlich sind, ausschliefit und eine niedrige Navigationstiefe erfordert.
Zum anderen soll es grundsétzlich moglich sein, auch alternative Clients zu betreiben.

Diese angefiihrten Anforderungen schlieen die Nutzung von Fat Clients be-
reits aus, da Installations- und Konfigurationsbemiihungen notwendig wéren, ein
geréteiibergreifendes und plattformunabhéngiges System nur schwer umzusetzen
ist (z. B. aufgrund von Systemanforderungen der Verarbeitungskomponenten) sowie
die Entwicklung von alternativen Clients nennenswerten Aufwand bedingen wiirde.
Zwar gelten Fat Clients als leichter zu implementieren, allerdings kann eine solche
Architektur den Anforderungen dieser Arbeit nicht gerecht werden, sodass Thin
Clients zu bevorzugen sind. Thin Clients, die als reine Browser-Anwendung konzipiert

H16Vor- sowie Nachteile von Thin/Fat Clients listen Dunkel und Holitschke (2003, S.22ff.) auf.

154 7 Implementierung

werden, basieren auf etablierten Webtechnologien (z. B. HTML5, XML, JavaScript).
Generell gelten diese Clients als komplex in der Umsetzung und kénnen langsamer
in der Ausfiihrung sein, da Kommunikation {iber Netzwerke erforderlich ist (Dunkel
und Holitschke, 2003, S.23f.).

7.3.1.2 Thin Client: Benutzerinterkation und Umsetzung

Der Thin Client erméglicht Benutzerinteraktion durch Ein- und Ausgabe von Daten.
In den Abschnitten 5.5.1 und 5.5.7 wurde hierfiir Fliefitext als Eingabe (Input) und
das Ergebnis, weitere Erlduterungen zur Verarbeitung und Kompensation sowie ein
Verarbeitungs- und Kompensationsprotokoll als Ausgaben (Output) gewéhlt. Diese
vier Ansichten sind in Abbildung 7.5, ausgehend von der Startseite, dargestellt.

J T Q
Start Jé_, Ergebnis @
index.jsp result,jsp (maschinenlesbar)

******* A

Protokoll > Erlauterung ¥ XML-Output "

explain.jsp

Abbildung 7.5: Flache Systemnavigation als Grundlage niedriger Einstiegsbarrieren

Neben den, fiir Endanwender versténdlichen, Ansichten (1-4) existiert weiterhin
der XML- Output, der eine maschinelle Weiterverarbeitung ermoglicht (m). Damit
Endanwender die Ergebnisse strukturiert abspeichern kénnen, ist auch diese Ansicht
iiber die Ergebnisansicht zu erreichen. Um die Benutzerinteraktion fiir die vier ein-
zelnen Ansichten moglichst intuitiv zu gestalten, wird auf die Empfehlungen von
Nielsen und Loranger (2006, S. 169 ff.) zuriickgegriffen. Deshalb werden nur wesentli-
che Bedienelemente angezeigt, einheitlich bezeichnet und die Navigationstiefe auf eine
Ebene beschrinkt (vgl. Abbildung 7.5). Um die Komplexitit der Bedienung weiter
zu reduzieren, folgt auf Eingabe des Inputs direkt die Ergebnisanzeige, woraufthin En-
danwender sich bei Bedarf weiterfithrende Informationen anzeigen lassen konnen. Aus
der Sicht der Endanwender verhilt sich die resultierende Webseite wie eine statische
Webseite, da sich die Komplexitdt im Verborgenen auf Seite des Servers abspielt. Die
programmiertechnische Umsetzung basiert auf JavaServer Pages (JSP)'7. Hierbei
handelt es sich um eine Technologie zur Entwicklung von Webseiten, die auf Web-
standards wie HTML basiert und Moglichkeiten zur dynamischen Inhaltsgestaltung
bietet. Auflerdem werden bekannte Markup-Elemente durch spezielle JSP-Elemente
erganzt. Statt HTML-Elemente in den Programmquelltext zu iibernehmen, werden
spezielle active elements in den HTML-Quelltext iibernommen (Bergsten, 2004, S.5).

"7Einen Einstieg in JSP geben Balzert (2003) sowie Bergsten (2004).

7.3 Programmiertechnische Umsetzung 155

Diese JSP-Elemente werden dabei vom Server ausgefithrt und die Ergebnisse in die
restliche, statische Webseite eingefiigt (Bergsten, 2004, S. 4).

7.3.2 Anwendungsschicht

Die Anwendungsschicht stellt den funktionalen Kern des Softwaresystems dar. In
ihr |[...] werden séamtliche fachlichen Funktionalititen der Anwendung realisiert.
Dazu gehoren datentragende Geschéftsobjekte, aber auch die Realisierung fachlicher
Geschiéftsprozesse* (Dunkel und Holitschke, 2003, S. 18). Im Folgenden werden sowohl
die genannten datentragenden Klassen besprochen (s. Abschnitt7.3.2.1) als auch
die Funktionalititen und deren Umsetzungen aufgezeigt (s. Abschnitt 7.3.2.2). Auch
finden sich in den Abschnitten 7.3.2.3 (Indikatoren) und 7.3.2.4 (Strategien) Angaben
zur programmiertechnischen Umsetzung.

7.3.2.1 Datentragende Klassen

Im Zentrum der Softwareapplikation steht die vom Endanwender eingegebene (reale)
Anforderungsbeschreibung, die iiber mehrere Verarbeitungsschritte hinweg erweitert
und transformiert wird. Um dies zu erreichen, existieren elementare Datenklassen, die
sowohl die urspriingliche Anforderungsbeschreibung, einzelne Beschreibungselemente
sowie mogliche Zusatzinformationen abbilden. Ausgehend von der Anforderungsbe-
schreibung (auch: Description), werden einzelne Sétze (auch: Sentence) erzeugt, die
wiederum aus einzelnen Token bestehen und im Ergebnis als strukturierte Sétze
(auch: Controlled sentence) ausgegeben werden konnen. Zwar existieren noch weitere
Klassen (z.B. Token Groups, Chains), im Folgenden werden aber nur die fir das
Gesamtverstindnis relevanten Klassen dargestellt (vgl. Abbildung 7.6).

Die Description-Klasse ist die hochste Klasse in der Klassenhierarchie und stellt den
Ausgangspunkt der Verarbeitung dar, da sie initial die unbearbeitete Anforderungsbe-
schreibung der Endanwender enthélt und wéhrend der gesamten Weiterverarbeitung
speichert. Ausgehend von dieser Anforderungsbeschreibung werden Sentence-Objekte
erzeugt, die beispielsweise Angaben zur syntaktischen Struktur, Konjunktionen aber
auch zur Sprache sowie Relevanz (On- und Off-Topic) enthilt.

Jede Sentence-Klasse kann wiederum eine Vielzahl an Controlled Sentence-Klassen
begriinden, da sich die Anzahl der kontrollierten Sitze nach Anzahl der Prozessworter
in einem Ausgangssatz richtet. Zu jedem Prozesswort, welches wie alle Worter als To-
ken représentiert wird, werden weitere zugehéorige semantische Kategorien (z. B. Rolle,
Objekt, Komponente) gesammelt und unter Hinzunahme einer Perspektive und einer
syntaktischen Vorgabe gespeichert (s. Abschnitt 5.5.7). Ein Controlled Sentence kann
somit auch als Menge verbundener Token verstanden werden, die auf Grundlage einer
definierten Syntax die funktionale Kernaussage eines zugrundeliegenden Satzobjektes
wiedergeben. Es wird deutlich, dass die Klasse der Token grundlegenden Charakter
hat. Sie ist die — hinsichtlich der abgebildeten sprachlichen Einheiten — kleinste
datentragende Klasse und enthélt dennoch einen Grofiteil der Informationen, so zum
Beispiel die semantischen Kategorien und Lesarten einzelner Worter.

156 7 Implementierung

Description Sentence
— sentenceGroups: List — onTopic: Boolean
— xmlRepresentation: String 1 e simplified: Boolean
— chunkPattern: String > =— — language: String
— tokens: List<Token>
— | — prefixConnector: String
1 [- ConLLObject: ConLLObject
getSentences(): List<Sentence> getTokens(): List<Token>
getCorefGraph(): Map<int, chain getPrefixConnector(): String
getXmlRepresentation(): String getPredicates(): List<Token>
getTextModified(): String getld(): Integer
getConllUString(): String isOnTopic(): Boolean
1
1'-* 0"*
Token Controlled Sentence
— sid: Integer — action: Token
— tid: Integer — priority: Token
— posU: String - 1% T object: Token
— sense: String = ~— — role: Token
— isPredicate: Boolean — component: Token
— isVague: Boolean + view: enum
— semlnfo: semanticInformation setAction(Token)
getLemma(): String setPriority(Token)
getPosU(): String setObject(Token)
getSenses(): List<String> setRole(Token)
setSynsetld(int) getSentence(): sentence

Abbildung 7.6: Datentragende Klassen (kompakte Darstellung)

7.3.2.2 Implementierung der Kompensationskomponenten

Im Folgenden wird die programmiertechnische Einbindung der einzelnen Kompensa-
tionskomponenten dargestellt (s. Abschnitt 5.5).

Lexikalische Disambiguierung

Wie bereits in den Abschnitten 2.1.1 und 5.5.4.1 diskutiert, wird lexikalische Ambi-
guitdt auf Basis einzelner Token und unter Beriicksichtigung des jeweiligen Kontextes
aufgelost. In dieser Arbeit wird hierfiir Babelfy (s. Abschnitt 3.3.1.1) als Komponente
zur Disambiguierung mit der zugrundeliegenden Datenbank BabelNet herangezogen
(s. Abschnitt 3.3.1.1). Im Zentrum von Abbildung 7.7 steht die Steuerungskomponen-
te''®, die relevante, englischsprachige Sitze iterativ auf Basis der Token durchlauft.
Hierbei werden alle Token, die zuvor im Rahmen des Preprocessings als semantisch
relevant fiir die funktionale Anforderung markiert wurden (s. Abschnitt 5.5.2), einer
Disambiguierung unterzogen — es sei denn, es wird zuvor festgestellt, dass sich das
Token auf der White- oder Blacklist befindet (s. Abschnitt 5.5.4.1).

H18Hierbei handelt es sich nicht um den Controller, der im Rahmen der Strategieeinfiihrung vorgestellt
wurde (s. Abschnitt 5.2), sondern vielmehr um eine eigene Steuerung innerhalb jeder Komponente.

7.3 Programmiertechnische Umsetzung 157

Anforderungs-
beschreibung (Satz)

Sa
y

Externes Umfeld

S
[

Steuerungs-
komponente

oo [l

Ouer)ﬁ;
=
< — —lc=a

BabelSense " T Cache

BabelfyToken [BabelNet

Abbildung 7.7: Integration von Babelfy als Disambiguierungskomponente

Um sowohl die Token als auch den Kontext an Babelfy zu iibergeben, wird der
zu untersuchende Satz zusammen mit Konfigurationsparametern!'® iibermittelt,
woraufhin Babelfy ein SemanticAnnotation-Objekt zuriickgibt'?. Dieses Objekt
enthélt neben einem Disambiguation Score auch Angaben zu genutzten Ressourcen
sowie eine sogenannte BabelSynsetID pro Token (z.B.,bn:00005095n%), die genutzt
werden kann, um weitere Informationen (z. B. Lemma, Lesarten, Bilder) zu jedem
Token aus BabelNet abzufragen. Diese Informationen werden dem untersuchten
Token-Objekt angehéngt, wie es beispielhaft in Tabelle 7.3 dargestellt ist.

Merkmal Ausprigung Quelle
SID 2

TID 3 Preprocess
PosX NN ’
Lemma application

SemlInfo component REaCT
isAmbig true

Sense application Babelfy
BabellD bn:00005095n

AmbigPictureURL .../OpenOffice.org_Writer.png
AmbigCategory Application_software

AmbigDomain Computing BabelNet

AmbigDescription A program that gives a computer
instructions that provide the user
with tools to accomplish a task

Tabelle 7.3: Durch Babelfy erweitertes Token-Objekt zu ,, application®

Tabelle 7.3 zeigt die von Babelfy und BabelNet breitgestellten Informationen, die
fiir jedes disambiguierte Token vorliegen. Fiir die maschinelle Weiterverarbeitung ist
insbesondere die disambiguierte Lesart und die BabelSynsetID von Bedeutung. Fiir

19 imitation genutzter Ressourcen (z. B. WordNet, Wikipedia); Disambiguierungssgrenzwerte etc.
120Giche weiterfithrend: http://babelfy.org/guide (Stand: 12.01.17).

158 7 Implementierung

Endanwender sind dariiber hinaus Angaben wie Doméne, Kategorie und Beschreibung
relevant, um mehr iiber das disambiguierte Token zu erfahren und gegebenenfalls
Verarbeitungsfehler (z. B. falsche Disambiguierung) leichter zu erkennen.

Da es sich bei Babelfy und BabelNet um externe Dienste handelt, ist eine Beein-
flussung der Ausfithrungszeit ohne Weiterentwicklungen nicht moglich. Eine hohe
Auslastung im Netzwerk oder eine hohe Auslastung auf den Servern kann sich auf
die Performanz der gesamten Komponente zur lexikalischen Disambiguierung negativ
auswirken. Aus diesem Grund wird ein Caching-Verfahren implementiert, das akqui-
rierte Disambiguierungsobjekte speichert, sodass fiir ein Token, fiir einen definierten
Zeitraum'?!, nur eine Anfrage an BabelNet zu stellen ist. Die Ergebnisse der Eva-
luation zeigen einen positiven Effekt (Minimierung der Laufzeit) des Cachings auf
die Performanz der lexikalischen Disambiguierung (s. Abschnitt 8.3.4). Es ist jedoch
festzuhalten, dass die Anfrage an Babelfy durch das Caching nicht beschleunigt
werden kann, da die Disambiguierung Fall fiir Fall und unter gegebenem Kontext
durchgefiihrt werden muss.

Syntaktische Disambiguierung

Die syntaktische Disambiguierung wurde bereits in Abschnitt 5.5.4.2 beschrieben
und wird in dieser Arbeit durch den Stanford Parser durchgefiihrt. Dazu werden alle
relevanten, englischsprachigen Sétze iterativ an diese Komponente iibergeben. Als Re-
sultat wird ein Tree-Objekt!?? zuriickgegeben, welches die produzierten syntaktischen
Informationen enthélt und somit beispielsweise die Grundlage dafiir bildet, {iber eine
GrammaticalStructureFactory die Parsing-Ausgabe im CoNLL-Format zu erzeugen
(beispielsweise relevant aus Kompatibilititsgriinden zwischen Komponenten). Jeder
Satz, der die syntaktische Disambiguierung durchléuft, wird um ein Tree-Objekt
erweitert, auf welches zu jedem Zeitpunkt zugegriffen werden kann.

Anforderungs-
beschreibung (Satz)
A
Sat
y atz Stanford CoreNLP
 — —1
Steuerungs-| =31 Satz Y=
komponente ola o
o™ Tree 2

(Auslagerung

moglich
Tree glich)

Abbildung 7.8: Integration von Stanford Core NLP zur syntaktischen Disambiguierung

Der Parser als Bestandteil von Stanford CoreNLP wird als Serveranwendung aus-
gefiihrt und entsprechend in das Gesamtsystem eingebunden (vgl. Abbildung 7.8).

121Nach 14 Tagen gilt der Cache eines Tokens als obsolet und wird {iberschrieben.
122Gjehe weiterfiihrend: http://nlp.stanford.edu/nlp/javadoc/Jjavanlp/edu/stanford/nlp/trees/
Tree.htnl (Stand: 12.01.17).

7.3 Programmiertechnische Umsetzung 159

Auch hier ist es moglich (s. Abschnitt 7.4.2.3), diese Komponente auszulagern und auf
einem Computer mit sehr viel Arbeitsspeicher auszufiihren. Dies ist sinnvoll, da Erfah-
rungswerte zeigen, dass Parsing mit zunehmendem Satzumfang erhebliche Ressourcen
in Anspruch nehmen kann'?. Um die Auslagerung der CoreNLP-Komponente kom-
fortabel zu ermdoglichen, stehen alle erforderlichen Konfigurationsparamter (z. B. URL,
Port) in einer Konfigurationsdatei zur Bearbeitung zur Verfiigung. Eine Anderung
am Quelltext ist somit nicht erforderlich.

Das Ergebnis der syntaktischen Disambiguierung zeigt Abbildung 7.9 in der
Dependenz- bzw. Konstituentenansicht. Die graphische Darstellung wurde mit
conllu.js erzeugt, einer frei verfiigbaren JavaScript-Programmbibliothek zur Visuali-
sierung des CoNLL-U Ausgabeformats'?*.

© Syntaktische Disambiguierung

Dependenzansicht

edit
d
Xcomp dobj i case:
nsubj mark: t;% -!'/< det:
Lol 4 Nae & we I § e K
1] I want to press the button with the mouse

Konstituentenansicht

[ROOT [S [NP [PRP I]] [VP [VBP want] [S [VP [TO to] [VP [VB press] [NP [DT the] [NN button]] [PP [IN
with] [NP [DT the] [NN mouse]IIIIT]

Abbildung 7.9: Dependenz- und Konstituentenansicht

Da allerdings die in Abbildung 7.9 dargestellte Konstituentenansicht fiir Endanwen-
der, trotz der Hervorhebung relevanter Konstituenten, aufgrund der umfangreichen
Klammerung nur schwer nachzuvollziehen ist, existiert zusétzlich eine Ansicht, die
die Baumstruktur graphisch darstellt (vgl. Abbildung A.8 im Anhang).

Referentielle Disambiguierung

In Abschnitt 5.5.4.3 wurde die referentielle Disambiguierung konzeptuell dargestellt.
Wie auch bei der syntaktischen Disambiguierung kommt hier Stanford Core NLP zum
Einsatz. Der Aufbau gestaltet sich daher analog, wenngleich kein Satz sondern die
gesamte Anforderungsbeschreibung tibergeben und kein Tree- sondern ein CorefChain-
Objekt!'?® zuriickgegeben wird. Auf eine graphische Darstellung wird daher an dieser
Stelle verzichtet und stattdessen auf Abbildung 7.8 verwiesen. Die Angaben zu
Moglichkeiten der horizontalen Skalierung gelten analog.

123Entsprechende Erfahrungswerte finden sich in den Stanford FAQs. Siehe: http://nlp.stanford.
edu/software/parser-faq.shtml (Stand: 12.01.17).

124Gjche weiterfithrend: http://spyysalo.github.io/conllu.js/ (Stand: 12.01.17).

125SiChC weiterfithrend: http://www-nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/
hcoref/data/CorefChain.html (Stand: 12.01.17).

160 7 Implementierung

Abbildung 7.10 stellt die mittels Stanford CoreNLP erkannten Koreferenzen dar.
Beispielsweise ersichtlich ist die aufgeloste referentielle Ambiguitét (,, They“) zwischen
den Satzen Nr. 1 und Nr. 2. Wahrend das Personalpronomen sowohl auf ,, emails*
als auch auf file attachments® referenzieren konnte, wird sich seitens des Systems
fiir das letzte Antezedens (,,file attachments®) entschieden. Auch zu erkennen ist die
Koreferenz der Pronomen ,,/“ und ,,me* sowie die Erkennung von ,,spam* und ., it“.
In letzterem Fall wird korrekterweise nicht auf ,, problem* als Antezedens referenziert.

) coref----

1| The systeﬁ must be able to send emails with file attachments .

2 They can be large .

Mention)
3|AsaUser, I need to write and design emails .

-coref-

. A £ .
Mention Mention Mention
— = o
4| Furthermore , since spam is a serious problem , I want to delete it

5| Emails with file attachments should be highlighted .
- -coref-
——————— X ‘;l-——-—-coref-——-—-——-—-—\‘
stention)
6 The system should send me an alert every time new emails appear .

Abbildung 7.10: Mittels Stanford CoreNLP erkannte Koreferenzen

Wie in Abschnitt 5.5.4.3 und Abbildung 5.26 dargestellt, folgt nach der Anwendung
von CoreNLP die erweiterte Ausdruckssuche, die beispielsweise auf die Ergebnisse
der lexikalischen Disambiguierung zuriickgreifen kann. In diesem Schritt konnen
beispielsweise Token, die als weitere Kandidaten fiir eine Koreferenzkette in Frage
kommen, iiber ihre semantischen Kategorien sowie Lesarten identifiziert werden. Dies
ist besonders in Féllen hilfreich, in denen mit dem bisherigen Vorgehen aufgrund
verschiedener Schreibweisen (z. B. Microsoft Sharepoint, MS Sharepoint, Sharepoint)
falschlicherweise keine Koreferenz festgestellt wurde. Hierfiir wird auf die Token
Groups-Objekte zuriickgegriffen, die Angaben zu der Zusammengehorigkeit einzelner
Token enthalten.

7.3 Programmiertechnische Umsetzung 161

Kompensation von Unvollstandigkeit

Das grundsitzliche Vorgehen bei der Kompensation von Unvollstéandigkeit wurde in
den Abschnitten 2.3 und 5.5.5 beschrieben. Im Folgenden werden daran ankniipfend
die wesentlichen softwaretechnischen Designentscheidungen erldutert.

Da es sich bei der Erkennung und Kompensation um ein mehrschichtiges Vorgehen
handelt, bediirfen insgesamt drei beteiligte Kernkomponenten einer Erliuterung!2:
Im Zentrum steht auch hier die zentrale Komponentensteuerung (1), welche die
Erkennung und Kompensation anstofit und resultierende Informationen zusam-
menfiithrt. Diese Informationen wiederum werden von MATE Tools'*" (2) sowie
Apache Solr'?® (3) bereitgestellt. Abbildung 7.11 zeigt den Informationsaustausch
zwischen den Komponenten zur Erkennung und Kompensation von Unvollstédndigkeit.
Eine Besonderheit in Abbildung 7.11 ist die Darstellung der getrennten Server (Hard-
ware), was die hohe Skalierbarkeit der Kompensationskomponente unterstreicht.
Denkbar ist allerdings auch, die Steuerungskomponente, MATE Tools und Apache
Solr auf einem einzigen Server auszufiithren.

Anforderungs-
beschreibung (Satz)

A 4
— |, Sentences (HTTPS) — Query (HTTPS) —
— — —
3 G IN | PR >
0 SRL (CONLL-X) o Results (XML) o
MATE Tools Steuerungs- Apache Solr
(SRL) komponente (IR)

][+

Ahnliche Anforderungs-

XML| beschreibungen

=

Abbildung 7.11: Komponenteninteraktion zur Kompensation von Unvollstindigkeit

Bei den MATE Tools des Stuttgarter Instituts fiir Maschinelle Sprachverarbeitung
handelt es sich um eine Sammlung statistischer NLP-Tools, wovon der SRL in dieser
Arbeit verwendet wird, um einzelne Sitze gegebener Anforderungsbeschreibungen
hinsichtlich Préadikaten und deren Valenz zu analysieren. Wird ein Prédikat wie
beispielsweise ,,l6schen (engl. delete) erkannt, wird gepriift, welche Argumente vor-
handen sind und welche fehlen. Fiir fehlende Argumente wurde eine prototypische
Wissensbasis auf Grundlage der etablierten Proposition Bank von Palmer et al. (2005)
erstellt (vgl. Beispiel 7.3.1) und um die doménenspezifische Priadikatverwendung im
Softwarekontext aus Abschnitt 6.2 ergénzt.

126Weiterfiihrende Angaben zur Auswahl und Konfiguration der jeweiligen Komponenten finden
sich in Béumer und Geierhos (2016) sowie Geierhos und Baumer (2016).

127Gjche: https://code.google.com/archive/p/mate-tools/ (Stand: 12.01.17). Siehe weiterfithrend
auch Bjorkelund et al. (2010).

128Gjehe weiterfithrend: http://lucene.apache.org/solr/ (Stand: 12.01.17).

162 7 Implementierung

Beispiel 7.3.1 (Modifizierte Pridikatdatenbank, Auszug)

<roleset id=“delete.01” reqroles=“2" roles=“3">
<role f=“PAG” descr="“entity removing” req=*“1" n=“0"/>
<role f=“PPT” descr=*“thing being removed” req=“1" n=1" />
<role f=“DIR” descr="“removed from” req="“0" n=2" />
</roleset>

Auf Grundlage der unvollstindigen Préadikate wird eine Kompensationsanfrage (Que-
ry) erstellt, die an einen Suchmaschinenserver iibermittelt wird, um dhnliche und
vor allem zwingend vollstéandige Anforderungsbeschreibungen zuriickzuerhalten. An
dieser Stelle kommt Apache Solr als dritte Komponente — als Kompensations- bzw.
Suchserver — zum Einsatz.

Bei Apache Solr handelt es sich um einen , Standalone enterprise search server*
(Apache Software Foundation, 2016), der auf Apache Lucene!?®; einer etablierten
Programmbibliothek zur Volltextsuche, basiert. Der Kompensationsserver enthélt ei-
ne Menge von Anforderungsbeschreibungen, die mitsamt annotierten Pradikaten und
Argumenten indiziert wurden. Eine Kompensationsanfrage an diesen Server liefert
relevante Anforderungsbeschreibungen zuriick, die &hnlich zu der unvollstandigen
Anforderungsbeschreibung sind, die es zu kompensieren gilt und mindestens das
gesuchte Pridikat in der erkannten Lesart und mindestens das fehlende Argument
enthédlt. Um ahnliche Anforderungsbeschreibungen zu finden, wird der Kontext
beriicksichtigt — der Satz vor und nach dem unvollstéandigen Satz. Eine Kompensati-
onsanfrage an Apache Solr wird dabei nach folgendem Muster erstellt:

s9ense:[Lesart] AND NOT [fehlendes Argument]: NULL AND Context:[Kontext]*

Bestandteile des Musters sind neben dem fehlenden Argument die Kontextinformatio-
nen und auch das unvollstandige Pradikat. Auffillig ist, dass beziiglich des Pradikats
nicht nach dem spezifischen Token gesucht wird (z. B., deletes), sondern nach der
erkannten Lesart (z.B. ,delete.01%). Diesem Vorgehen liegt die Notwendigkeit zu
Grunde, zwischen den verschiedenen Lesarten bei der Kompensationsanfrage zu
unterscheiden, um Anforderungsbeschreibungen zuriickzuerhalten, die sowohl im
gegebenen Kontext relevant sind, als auch das Prédikat in der identischen Lesart
beinhalten. Deutlicher wird dies anhand der Kompensationsanfrage zu folgendem
Beispielsatz: ,, Emails are the technology of the future. Because of that, I want to
send emails and I want to delete. My friends are using it, too.“ (vgl. Beispiel 7.3.2).

Beispiel 7.3.2 (Kompensationsanfrage fiir delete.01)
Sense:delete.01 AND NOT argument_01:NULL AND contezt: “Emails are the
technology of the future. My friends are using it, too”

Um einen effizienten Vergleich des aktuell untersuchen Kontext mit den Kontexten
im Suchmaschinenindex zu ermdglichen (s. Abschnitt 5.5.5), wird in Apache Solr

129Gjehe weiterfiihrend: https://lucene.apache.org (Stand: 12.01.17).

7.3 Programmiertechnische Umsetzung 163

ein Preprocessing vorgenommen, deren Ablauf in Abbildung 7.12 dargestellt ist.
Demnach werden nicht Sétze miteinander verglichen, sondern einzelne Token (Bag
of Words), die mittels eines WhiteSpace Tokenizers erstellt werden. Token, die nicht
auf der Stoppwortliste stehen, werden um Synonyme erginzt, auf Kleinschreibung
normalisiert und auf die Stammform reduziert.

Y
e

Synonym-
worterbuch

J : :
‘ Tokenizer %‘ StopFilter P’ SynonymFilter

i

N
LowerCaseFilter —> PorterStemFilteT%'
XML

Abbildung 7.12: Preprocessing der Kontextinformationen in Apache Solr

Das Ergebnis der Kompensationsanfrage fiir das Priadikat delete in der Lesart delete.01
ist in Abbildung 7.13 dargestellt (Ausgabe an der Benutzerschnittstelle). Durch die
SRL-Komponente (2) konnte hier bereits das Personalpronomen , [erkannt werden,
wéahrend das ebenfalls obligatorische Argument A1 nicht erkannt werden konnte.
Dieses Argument konnte allerdings erfolgreich kompensiert werden (,,spam emails™)
und wird auf der Benutzeroberflache durch ein Symbol (+) hervorgehoben.

© Kompensation von Unvollstandigkeit

Im Folgenden sehen Sie erkannte, zuldssige Préadikate und deren Argumente.

SID/TID Lesart (Ist/Soll/Kann) Argumente
S1T4 send.01 (2/3/3) El A1: "emails"
AO: "I"
=+ A2: "[friends]"
S2T4 delete.01 (1/2/3) AO:"I"

=+ A1: "[spam emails]"

Abbildung 7.13: Beispielhafte Ausgabe der Kompensationskomponente

7.3.2.3 Umsetzung der Indikatoren

Wie in Abschnitt 5.3 dargestellt, basieren die Indikatoren zwar tiberwiegend auf
gemeinsamen semantischen Informationen, die Umsetzung unterscheidet sich aber
von Fall zu Fall, sodass im Folgenden jeder Indikator getrennt implementiert wird.

164 7 Implementierung

Indikatoren lexikalischer Ambiguitat

Der Verdacht auf Ambiguitéit wird auf Grundlage von Token (ausgewihlter semanti-
scher Kategorien) getroffen, fiir die mehrere Lesarten in WordNet (s. Abschnitt 3.3.1.1)
existieren. Genauer gesagt, sind das alle semantischen Kategorien mit Ausnahme
von , Rolle“ und ,,Prioritat“, die bereits von der IE-Komponente im Vorfeld extra-
hiert und gespeichert wurden (s. Abschnitt 5.3.2.1). Allerdings sind nicht alle Token
gleich wichtig fiir die Entscheidung, ob die Disambiguierungskomponente angewendet
werden soll oder nicht. Vielmehr gilt es, im Sinne der Verarbeitungsperformanz,
zusitzlich auf Grundlage einer Stoppwortliste!3® und POS-Tags zu filtern.

Dariiber hinaus ist noch offen, wie ein performanter Zugriff auf WordNet als
Ressource sichergestellt werden kann. Ziel muss dabei sein, mit geringem Zeitauf-
wand an die Lesarten eines Tokens zu gelangen, was einen netzwerkbasierten Zugriff
ausschlieft. In dieser Arbeit wird deshalb auf die Java WordNet Library (JWNL)!3!
zuriickgegriffen. Hierbei handelt es sich um eine JAVA-Implementierung der Word-
Net API, die umfangreichen Datenzugriff auf WordNet sowie dhnliche Ressourcen
ermoglicht. Ein wesentlicher Vorteil dieser Implementierung ist, dass die erforderli-
chen Dateien allesamt lokal bereitgestellt werden kénnen, womit ein Netzwerkzugriff
génzlich entféllt und ein performanter Zugriff auf WordNet sichergestellt ist.

Indikatoren syntaktischer Ambiguitat

Um PP-Anbindungsambiguitit musterbasiert erkennen zu kénnen, sind Informa-
tionen iiber die Bestandteile eines Satzes erforderlich (engl. chunks), wie Nominal-
phrasen, Verbalphrasen oder eben Pripositionalphrasen. Wie in Abschnitt 5.3.2.2
dargestellt, kann potentielle PP-Anbindungsambiguitit anhand eines Musters wie
, VP NP PP“ erkannt werden, wobei zu priifen ist, ob es sich bei der Préposition um
»of “ handelt, die als unzureichender Ambiguitatsindikator gilt. Um die hierzu erfor-
derlichen Informationen (Chunks) zu erhalten, wird in dieser Arbeit der OpenNLP
Chunker (Apache Software Foundation, 2012) eingesetzt.

Beispiel 7.3.3 (Musterbasierter Indikator syntaktischer Ambiguitét)
Satz: I want to press the button with the mouse*
(Annotierte) Chunks: NP VP NP PP NP

Wie in Beispiel 7.3.3 sichtbar wird, enthélt die Sequenz das a prior: definierte Muster
und wird somit als potentiell ambig erkannt. Die Ausfithrungszeit des OpenNLP
Chunkers ist dabei als sehr gut zu bezeichnen, da hier beispielsweise lediglich eine
Zeit von vernachlédssigbaren 0.001 Sekunden in Anspruch genommen wurde.

Im Falle der Koordinationsambiguitédt wird nicht auf die Ergebnisse von
OpenNLP zuriickgegriffen, sondern auf die POS-Tags, die bereits seit dem Pre-
processing vorliegen. Ahnlich zu dem zuvor dargestellten Vorgehen, werden allerdings
auch die POS-Tags einer Reihe von Token eines Satzes als Sequenz dargestellt und

139Die Stoppwortliste umfasst 534 Eintriige (z. B.,the®, ,their®, them®, ,themselves“) und ba-
siert zu grofien Teilen auf der Stoppwortliste, die von der Apache Foundation bereitgestellt
wird. Siehe: https://github.com/apache/lucene-solr/blob/master/lucene/analysis/common/
src/resources/org/apache/lucene/analysis/snowball/english_stop.txt (Stand: 120117)

131Giehe weiterfithrend: http://jwordnet.sourceforge.net/handbook.html (St‘dnd: 12.01.17).

7.3 Programmiertechnische Umsetzung 165

auf Muster untersucht. Ein Beispiel fiir ein solches Muster ist ,,JJ NNS CC NNS«132,
Wird dieses gefunden, ist eine potentielle Koordinationsambiguitit gegeben.

Auch das mehrfache Vorkommen von Konjunktoren (,,and“, ,,or®) innerhalb eines
Satzes kann auf diese Weise iiberpriift werden, was als weiteres Indiz fiir Ambiguitat
gilt. Dabei kann dieses Vorgehen als sehr performant bezeichnet werden, da nur auf
bereits in den Daten direkt vorliegende Informationen zuriickgegriffen wird.

Indikatoren referentieller Ambiguitat

Die Erkennung potentieller referentieller Ambiguitét wurde in Abschnitt 5.3.2.3
behandelt und wird, wie auch die syntaktische Ambiguitét, durch einen musterbasier-
ten Indikator umgesetzt. Der Musterabgleich basiert dabei ebenfalls auf POS-Tags.
Eine Besonderheit ist, dass dieses Muster sich nicht zwangslaufig auf nur einen
einzigen Satz bezieht, sondern mehrere Sétze umfassen kann. Genauer gesagt kénnen
Bestandteile des Musters unterschiedlichen Sétzen zugehorig sein, was eine paarweise
Untersuchung der Sétze begriindet (s. Abschnitt 5.3.2.3).

Um diese Besonderheit abzudecken, ist es erforderlich, den Indikator in der gesamten
Anforderungsbeschreibung bzw. iiber alle relevanten, englischsprachigen Sétze hinweg
zu suchen, wobei nur Sequenzen von aufeinanderfolgenden Sétzen beriicksichtigt
werden. Zunédchst wird hierzu ein gegebener Satz S; auf das Vorhandensein mindestens
zweier Nomina untersucht, wobei beide Nomina deckungsgleich im Plural oder im
Singular vorliegen miissen. Wird dieses Teilmuster festgestellt, wird sowohl in S;
als auch im darauffolgenden Satz S;;; das Vorhandensein eines Pronomen gepriift,
welches potentiell auf beide gefundenen Nomina in S; referenzieren kénnte und somit
referentiell ambig wire. Da es sich hierbei um ein iteratives Vorgehen handelt, wird
Satz S;;1 im néchsten Schritt unabhéngig von moglicher Fundstellen zum neuen
Ausgangspunkt S; und der vorherige S;12 zum Untersuchungsgegenstand S;.; etc.

Das Thema der Erkennung potentieller Koreferenz ist von dem bisher be-
schriebenen Vorgehen vor allem dadurch abzugrenzen, dass weitere lexikalische
Informationen notwendig sind und der Indikator auf die vollsténdige Anforderungsbe-
schreibung!®® angewendet wird (s. Abschnitt 5.3.2.3). Genauer gesagt, werden die se-
mantischen Kategorien betrachtet (s. Abschnitt 5.3.2.3), indem alle Token einer seman-
tischen Kategorie gruppiert und untereinander verglichen werden. Ubereinstimmende
Token gelten als Indiz fiir Koreferenz, wobei einzelne Kategorien unterschiedlich
verarbeitet werden, wie in Abschnitt 5.3.2.3 dargestellt. Hervorzuheben ist dariiber
hinaus die in Beispiel 7.3.4 dargestellte Synonymliste, die einbezogen wird, um eine
groflere Abdeckung zwischen Token gleicher semantischer Kategorien zu erhalten.

Beispiel 7.3.4 (Synonymliste, Auszug)
component=application, program, software, system;
object=server,host;
object=certificate, certification, credential, credentials;
object=spam,junk e-mail;
object=electronic mail,e-mail,email;

13271 lesen als: Adjektiv, Nomen (Plural), Konjunktion, Nomen (Plural).
133Im Sinne aller relevanten, englischsprachigen Siitze.

166 7 Implementierung

In dieser prototypischen Umsetzung ist die Synonymliste manuell erstellt worden'34,
In der weiteren Entwicklung ist vorzusehen, diesen Erstellungsprozess in Teilen zu
automatisieren. Hier ist eine Idee, den WSD-Cache der lexikalischen Disambiguierung
um Synonyme zu erweitern und als Ressource heranzuziechen.

Indikatoren fiir Unvollstandigkeit

Unvollstiandigkeit wird iiber das Fehlen der semantischen Kategorien Subjekt (Rolle,
Komponente) und Objekt definiert (s. Abschnitt 5.3.2.4). Die hierzu erforderlichen
Informationen liegen — wie auch bei den Indikatoren zuvor — bei der Indikatoran-
wendung bereits vor. So gestaltet sich die eigentliche Indikatoranwendung insofern
einfach, als dass es zu priifen gilt, welche semantischen Kategorien vorhanden sind
bzw. welche fehlen. Dies erfolgt auf Satzbasis bzw. unter iterativer Verarbeitung
einzelner Token eines Satzes. Hierbei ist eine Einschréankung, dass mindestens ein
Token der Wortart Nomen als Objekt in einem Satz gefithrt werden muss. Diese
zuséitzliche Regel wird eingefiihrt, um Fehler der Anforderungsextraktion durch
REaCT abzufangen!®.

In der prototypischen Umsetzung wird nicht beriicksichtigt, dass mehrere Prédikate
auch mehrere Objekte voraussetzen konnen. Derzeit ist es ausreichend, wenn ein
Objekt im Satz vorhanden ist, auch wenn zwei Priadikate vorkommen und gegebenen-
falls sogar ein Priadikat erst nach dem Objekt eingefiithrt wird. Dieser Umstand ist
beim Subjekt weniger entscheidend, da in der Regel nur ein Subjekt angegeben wird.

7.3.2.4 Umsetzung der Strategien

Bei der Umsetzung der in Abschnitt 5.2 erarbeiteten Strategien ist zwischen den
vordefinierten Strategien und der Fallback-Strategie zu unterscheiden, da sich die
Abléufe und somit auch die Umsetzung jeweils anders darstellen.

Strategy Adapter Complete Strategy
— processingTimelnMillis: Long — chunkerME: ChunkerME
— initializationTimelnMillis: Long — chunkerModel: cModel
controller: Controller - model: POSModel
logger: Logger <
Spellchecking: PP_ SPELLCHECK
checkURLConnections() getldentifier(): String
getExplanation(): String getExplanation(): String
getlnitializationStatus(): Status processinternal(RD): Boolean

process(): Boolean
equals(Object): Boolean

Abbildung 7.14: Vererbung von Struktur-/Verhaltensmerkmalen (kompakte Darstellung)

Das Konzept der Strategien basiert grundsétzlich auf einem Adapter. In diesem
Fall handelt es sich um einen Strategy Adapter, der als Grundgeriist verschie-
dener Strategien fungiert (vgl. Abbildung 7.14). Diese Oberklasse vererbt ihre

134Unter Einbezug von WordNet als lexikalische Ressource (s. Abschnitt 3.3.1.1).
135Die IE-Komponente REaCT klassifiziert z. B. auch Verben oder Adjektive als Objekte.

7.3 Programmiertechnische Umsetzung 167

Struktur-/Verhaltensmerkmale an die Unterklassen (wie z. B. die Complete-Strategie).
Sie stellt somit einheitliche Metainformationen sicher und sorgt fiir interstrategische
Vergleichbarkeit. Wie in Abbildung 7.14 erkennbar, ist beispielsweise beim Strategy
Adapter die Methode getEzplanation() vorgesehen, die eine natiirlichsprachliche
Erlduterung der Strategie enthélt. Da diese Metainformation bei allen Strategien
gleichermafien vorhanden sein soll, ist eine Anordnung auf Ebene der Oberklasse
sinnvoll. Weiterhin ermdglicht beispielsweise die Methode equals() explizit den Ver-
gleich von zwei Strategieadaptern (auf Ebene der einzelnen Merkmale, die unterstiitzt
werden) und checkURLConnections() priift den Netzwerkverkehr zwischen einzelnen
Verarbeitungskomponenten auf Funktionsfahigkeit.

Die einzelnen Strategien enthalten die sequenziell angeordneten Verarbeitungskom-
ponenten sowie deren Anwendungsgegenstand (z. B. satzbasierte oder tokenbasierte
Anwendung). Am Beispiel der Complete-Strategie sieht dies beispielsweise wie in
Tabelle 7.4 aus. Es fillt auf, dass jede Strategie auch die fiir sich notwendigen
mehrsprachigen Programmausgaben bereithélt.

Attribut Auspriagung
Identifier o Complete Strategy

e Vollstéandige Verarbeitungsstrategie
Ezxplanation e Contains all available processing steps

o Enthélt alle verfiigharen Verarbeitungsschritte
Processing Adapter e Referential Disambiguation (Beschreibung)

o Syntactical Disambiguation (Satz)

o Incompleteness_Compensation (Satz)

o Wordsense Disambiguation (Satz)

e Vagueness_Detection (Satz)

Tabelle 7.4: Attribute der Complete-Strategie

Der Sonderfall der Fallback-Strategie gestaltet sich ein wenig anders: Es handelt sich
zwar grundsitzlich ebenfalls um einen Strategy Adapter, der zugehorige Processing
Adapter wird aber erst zum Zeitpunkt der Anwendung geméf der erkannten Indi-
katoren erstellt. Hierbei ist darauf hinzuweisen, dass auch bei der bedarfsgerechten
Zusammenstellung der Verarbeitungskomponenten auf die Sequenz der Ausfiithrung
zu achten ist, da Abhéngigkeiten zwischen den Komponenten bestehen oder Synergien
genutzt werden kénnen.

7.3.2.5 XML-Schnittstellen

Insgesamt sind zwei XML-Schnittstellen in dem vorliegenden Softwaresystem vor-
handen: Die Output- und die Info-Schnittstelle. Beide Schnittstellen stehen der
Weiterverarbeitung nach erfolgreichem Programmdurchlauf zur Verfiigung, wobei
keine persistente Speicherung der XML-Ausgaben stattfindet, es sei denn, diese Art
der Speicherung wird explizit vom Endanwender gewéhlt (s. Abschnitt 7.3.3.2). Die
Output-Schnittstelle ist fiir den Produktiveinsatz vorgesehen, da sie alle Ergebnisse
strukturiert zur Verfiigung stellt und somit die maschinelle Weiterverarbeitung der
Anforderungsbeschreibungen ermoglicht (s. Abschnitt 5.5.7).

168 7 Implementierung

Als sehr hilfreich bei der Softwareentwicklung erwies sich dariiber hinaus die Info-
Schnittstelle, die fiir jede Komponente und somit fiir jeden Verarbeitungsschritt die in
Anspruch genommene Zeit strukturiert wiedergibt (vgl. Beispiel 7.3.5). Diese Angaben
sind sowohl fiir das Preprocessing als auch fiir die Erkennung und Kompensation
vorhanden und ermdglichen es Entwicklern, Komponenten zu identifizieren, die nicht
performant agieren und das Softwaresystem in der Verarbeitung bremsen.

Beispiel 7.3.5 (Info-Schnittstelle, Auszug)

<processing time=“30573ms" >
<Referential Disambiguation time="1588ms”" >
<initialization time=*“0ms” />
<process time=*“1588ms” />
</Referential Disambiguation>
<Incompleteness_Compensation time=“/168ms” >
<initialization time=*“/56ms” />
<process time=*“3712ms”" />
< /Incompleteness_Compensation>
<Word_Sense_Disambiguation time=“2/802ms" >
<initialization time="“277ms” />
<process time="“24525ms” />
</Word_Sense_Disambiguation>
</processing>

Wie zu erkennen ist, wird nicht nur die jeweilige Verarbeitungszeit wiedergegeben,
sondern auch die Zeit, die gebraucht wird, um Verarbeitungskomponenten zu initiali-
sieren. Dies ist hier von Interesse, da mit umfangreichen Ressourcen gearbeitet wird
(z. B. Klassifikationsmodelle), deren Einlesen zeitintensiv ist. Auf diesem Wege lassen
sich notwendige Optimierungen feststellen (z. B. Austausch von Ressourcen).

7.3.3 Datenschicht

Klassischerweise sorgt die Datenschicht ,,[...] dafiir, dass die fachlichen Objekte dau-
erhaft gespeichert und auch wieder geladen werden kénnen® (Dunkel und Holitschke,
2003, S. 18), wobei sie aufgrund der losen Kopplung mdoglichst wenig iiber die anderen
Schichten weifl (Dunkel und Holitschke, 2003, S.18). Im Folgenden wird sowohl der
Export interner Datenobjekte (s. Abschnitt 7.3.3.1) als auch die Speicherung von
Verarbeitungsresultaten (OQutput) und Verarbeitungszeiten (Info) als XML-Dateien
besprochen (s. Abschnitt 7.3.3.2).

7.3.3.1 Export instantiierter Datenklassen

Mit der Objektserialisierung'®® wird in dieser Arbeit das Ziel verfolgt, Zwischener-
gebnisse umfianglich verfiigbar, nachvollziehbar und vergleichbar zu machen. Anders

136Umfangreiche Informationen zur Serialisierung in Java geben Kriiger und Hansen (2014, S. 863 ff.).

7.3 Programmiertechnische Umsetzung 169

als bei der Ergebnisausgabe an der Benutzer- und XML-Schnittstelle, handelt es
sich hierbei um Kopien serialisierbarer Datenobjekte (z. B.ein Token) mitsamt allen
Transformationen und Ergéinzungen (z. B. Lesarten). Es sind demnach weit mehr
Informationen verfiighbar, womit eine maschinelle Weiterverarbeitung erméglicht wird,
die nicht nur auf den finalen Ergebnissen basiert, sondern auch die Zwischenergebnisse
miteinbeziehen kann. Denkbar ist beispielsweise eine Applikation zur Ergebniseva-
luation oder eine ergédnzende Software, die der Fehlerfindung dient. Abbildung 7.15
zeigt hierfiir einen ersten Entwurf einer Softwareapplikation, die in der Lage ist, meh-
rere Anforderungsbeschreibungen (Description-Objekte) zu vergleichen und somit
gegeniiberzustellen.

® 00 Requirements Description EVAL 2

Descripti
@ Testbeschreibung 1 &

™ Beschreibung 2 Token: lsends ‘ Meta information
BnliiEs [send ‘ TokenlID: 5
Sense: [send.Ol ‘ Details... | | SentencelD: 2

Length: 5

Alternatives: SynsetID: 2

BabellD: none

Semantic Role: [[E Action 4] (Context | | isPredicate: true
isVague: false

() Predicate Total Arguments: 3

8:’9”'“"[Given Arguments: |3 |~
lone

cordula

= Compare

Abbildung 7.15: Gegeniiberstellung von Description-Objekten

7.3.3.2 Persistente XML-Speicherung

Grundsétzlich ist die strukturierte Ausgabe zur maschinellen Weiterverarbeitung
vorgesehen (s. Abschnitt 5.5.7), es besteht aber die Maglichkeit fiir die Endanwender,
die Ergebnisse und Verarbeitungszeiten persistent auf dem Server zu speichern
und bei Bedarf zu exportieren (s. Abschnitt 7.3.1.2). Dies kann beispielsweise einem
spateren Vergleich verschiedener Ergebnisse dienen. Aus diesem Grund werden die in
Abschnitt 7.3.2.5 skizzierten XML-Schnittstellen aufgerufen und die iibermittelten
Daten mit einem entsprechenden Zeitstempel und einer eindeutigen Session ID als
Dateinamen gespeichert (vgl. Abbildung 7.16).

In einer spateren programmiertechnischen Umsetzung, die iiber diesen Prototypen
hinausgeht und die beispielsweise auch Benutzerkonten vorsieht, ist eine benutzer-
spezifische Wahl der Dateinamen als sinnvoll zu erachten.

170 7 Implementierung

Gespeicherte Ausgaben (XML)

Name GroBe Loschen?
FOF2BDC935561FOFBCD503DBBEOE4B89_29112016122118_time.xml 1387 Bytes léschen
FOF2BDC935561FOFBCD503DBBEOE4B89_29112016122122_result.xml 1592 Bytes l6schen
FOF2BDC935561FOFBCD503DBBEOE4B89_29112016122124_time.xml 1387 Bytes l6schen

Debug Pfad (lokal)

/Users/frederik/Documents/workspace9/.metadata/.plugins/org.eclipse.wst.server.core/tmp0/wtpwebapps/Inforn

Abbildung 7.16: Protokollarchiv der Verarbeitungszeiten und Ergebnisse

7.4 Anforderungen an die Systemqualitat
Zur Sicherstellung der Konzept- bzw. Systemqualitdt werden im Folgenden aus-
gewihlte, vom Software Engineering Institute (SEI) benannte, Mafinahmen diskutiert,

die in fiinf Oberkategorien unterteilt werden (VSEK Konsortium, 2007¢):

e Anforderungserfiillung (Need Satisfaction Measures)

Leistung (Performance Measures)

Wartbarkeit (Maintenance Measures)

o Adaptierbarkeit (Adaptive Measures)

Wirtschaftlichkeit (Organizational Measures)

Beriicksichtigung finden im Folgenden die Mafinahmen in den Kategorien Leistung,
Wartbarkeit und Adaptierbarkeit. Dies bedeutet keineswegs, dass die Kategorien der
Anforderungserfiillung sowie der Wirtschaftlichkeit nicht bedeutsam wéren. Vielmehr
handelt es sich hier um ein Systemkonzept mit prototypischer Umsetzung, bei der
beispielsweise die Testbarkeit oder die zu erwartenden Betriebskosten nicht im Fokus
der Uberlegungen stehen.

7.4.1 Leistung

Die Kategorie Leistung beschreibt nach Vogel et al. (2009, S.114f.) Laufzeitan-
forderungen, welche ,Qualitéiten [umfassen], die die Akzeptanz des Systems beim
Auftraggeber oder Benutzer beeinflussen® (Vogel et al., 2009, S. 114 f.). Im Folgenden
finden sich Uberlegungen zum Leistungsverhalten (s. Abschnitt 7.4.1.1), zur Sicherheit
(s. Abschnitt 7.4.1.2) und zur Bedienbarkeit (s. Abschnitt 7.4.1.3).

7.4 Anforderungen an die Systemqualitét 171

7.4.1.1 Leistungsverhalten

Vogel et al. (2009, S. 115) beschreiben Leistungsverhalten als das Leistungsvermogen
eines Softwaresystems bei der Reaktion auf duflere Ereignisse, welches , wesentlich
durch die Kommunikation an seinen internen und externen Schnittstellen bestimmt
[wird]“ (Vogel et al., 2009, S.115). Dies ist ein wesentlicher Aspekt bei dem vorlie-
genden Softwaresystem, besteht es doch mehrheitlich aus Einzelkomponenten und
betreibt entsprechend intensive Schnittstellenkommunikation.

Im Zentrum der folgenden Uberlegungen soll demnach nicht die ,,durchschnittliche
Zeitdauer, die das System zur Bearbeitung eines Ereignisses braucht“ (Vogel et al.,
2009, S.115), stehen, sondern vielmehr die Frage, wie die Kommunikation zwischen
Verarbeitungskomponenten hinsichtlich des Leistungsverhaltens zu gestalten ist.

Es existieren Verarbeitungskomponenten wie die Anforderungsextraktion, die in
jedem Fall ausgefiihrt werden miissen (s. Abschnitt 5). Dariiber hinaus ist bekannt,
dass die Verarbeitungskomponenten unterschiedlich performant sind (vgl. Beispiele in
Tabelle 7.5). Um einen Einblick in deren Performanz zu erhalten, wurden 50 zuféllig
gewihlte Anforderungsbeschreibungen aus dem Anforderungsbeschreibungskorpus
von Dollmann (2016) herangezogen und jeweils an die Verarbeitungskomponenten!'®”
zur Anforderungsextraktion, Unvollstandigkeitskompensation sowie syntaktischen
Disambiguierung iibergeben. Tabelle 7.5 zeigt dafiir die Antwortzeiten*®. Wie zu
erkennen ist, unterscheiden sich die Antwortzeiten der Komponenten nennenswert.
Anhand von ausgewahlten Designentscheidungen wird im Folgenden exemplarisch
dargestellt, wie versucht wird, die Systemperformanz weiter zu optimieren.

Min. | Max. %]
Anforderungsextraktion | 1.136 | 3.564 | 2.122
Unvollstindigkeitskompensation 259 | 1.031 638
Syntaktische Disambiguierung 445 | 2.532 | 1.202

Tabelle 7.5: Performanz ausgewiihlter Verarbeitungskomponenten (in ms)

Die Anforderungsextraktion ist von den drei abgebildeten Verarbeitungskomponenten
die mit der hochsten Antwortzeit. Sie ist aber elementar fiir das System und kann
deshalb nicht weggelassen werden. Nichtsdestotrotz kann die Performanz verbessert
werden, indem beispielsweise die Klassifikation von On- und Off-Topic Sétzen von der
eigentlich Anforderungsextraktion gelost wird — und somit beide Verarbeitungsschritte
bedarfsgerecht einzeln abgerufen werden kénnen. REaCT sieht im Original von
Dollmann (2016, S.57) vor, dass eingehende Anforderungsbeschreibungen zuerst auf
nebensichliche Angaben iiberpriift werden. Dies ist aber nicht immer erforderlich!3°.
Eine Trennung von Klassifikation und Extraktion ist demnach performanter.
Dariiber hinaus erlaubt es die Client-Server-Architektur, Ressourcen der Kompo-
nenten (z. B. Klassifikationsmodelle), wie beispielsweise der syntaktischen Disambi-
guierung, im Arbeitsspeicher zu halten (ausreichende Speichergréfien vorausgesetzt)

137Verarbeitungskomponenten in Ausgangskonfiguration.
138nformationen zum Testsystem konnen Abschnitt 7.2 entnommen werden.
139Beispielsweise wenn ein Satz erneut der Anforderungsextraktion iibergeben werden soll.

172 7 Implementierung

und deren Anwendung dadurch zu beschleunigen (abhingig von Hardwarekonfigura-
tionen), da die Modelle nur beim erstmaligen Start geladen werden miissen.

Neben der Optimierung von Komponenten kann auch die Schnittstellenkommunika-
tion optimiert werden, sodass die Kompensationsanfragen performanter werden oder
ihre Anzahl minimiert wird. Grundsétzlich wird die Anzahl der Anfragen reduziert,
indem bereits das Preprocessing nebenséachliche Sitze und nicht-englischsprachige
Sétze von der weiteren Verarbeitung ausschliefft (s. Abschnitt 5.5.2). Performantere
Kompensationsanfragen lassen sich dariiber hinaus beispielsweise bei der Kompensati-
on von Unvollstandigkeit konfigurieren. Die Reduktion der Kompensationskandidaten
auf die dhnlichsten Treffer (z. B. fiinf Treffer anstatt alle) kann bereits die Perfor-
manz der Nachbearbeitung erhthen. Auch sollte die Antwort nur das Datenfeld der
gesuchten Information (Argument), nicht aber den gesamten Treffer enthalten.

7.4.1.2 Sicherheit

»oicherheit ist eine nicht-funktionale Anforderung mit durchdringendem Charakter*
(Vogel et al., 2009, S.116). Sie ist facettenreich und von hoher Praxisrelevanz. Vogel
et al. (2009, S.116) unterteilen Sicherheit in Vertraulichkeit (engl. confidentiality),
Authentifizierung (engl. authentication), Integritéit (engl. integrity), Privatsphire
(engl. privacy), Unleugbarkeit (engl. non-repudiation) sowie Schutz vor Zerstorung
(engl. intrusion protection).

Bisher stand Sicherheit nur selten im Fokus der in dieser Arbeit angestellten
Uberlegungen. Beispielsweise beim Schutz vor fehlerhaften Daten, die zu einem
gewollten Systemabsturz fithren kénnen, fand sie in Abschnitt 5.5.2 Erwéhnung.
Auch nicht alle von Vogel et al. (2009) benannten Sicherheitsbereiche sind zum
Konzeptionszeitpunkt bereits von Bedeutung. Im Folgenden werden anfingliche
Uberlegungen zu den Bereichen Authentifizierung und Privatsphére angestellt.

Authentifizierung

Authentifizierung ist ,,der Vorgang der Identitétsiiberpriifung. Ein Benutzer beweist
mithilfe von Berechtigungsnachweisen gegeniiber der Authentifizierungsfunktion, dass
er der ist, der er vorgibt zu sein“ (Vogel et al., 2009, S.246). Ein etablierter Typ von
Berechtigungsnachweisen ist nach Vogel et al. (2009, S.246) die Kombination von
Benutzername und Passwort, allerdings sind auch Zertifikate, Magnetstreifenkarten,
Fingerabdriicke oder das Tippverhalten'? gecignet.

In dieser Arbeit léasst sich Authentifizierung durch etablierte Techniken im Be-
reich der Benutzername-Passwort-Kombination umsetzen. Da es sich um ein Client-
Server-Szenario handelt, ist eine Authentifizierung des Endanwenders gegeniiber
des Servers vor jeglichen weiterfithrenden Dateniibertragung anzustreben (HTTP-
Authentifizierung). Hierzu existiert beispielsweise der defacto Standard hypertext
access (auch: .htaccess), welcher serverseitig die Authentifizierungskonfiguration fiir
mehrere Endanwender erméglicht. Aber auch komplexere sowie komfortablere Um-
setzungen sind denkbar!4!.

10Giehe bzgl. Tippverhalten die vielzitierten Arbeiten von Monrose und Rubin (1997).
141Gjehe beispielsweise Cook (2002, S. 167 ff.).

7.4 Anforderungen an die Systemqualitét 173

Privatsphare

Privatsphére bedeutet, ,,dass Nachrichten, die zwischen zwei Systembausteinen ausge-
tauscht werden, auf dem Kommunikationspfad selber nicht gelesen, bzw. verstanden
werden konnen® (Vogel et al., 2009, S.246). Um Privatsphére zu erreichen, ist Ver-
schliisselungstechnologie auf diesem Kommunikationspfad notwendig. In dieser Arbeit
wird dies ebenfalls mittels einer Client-Server-Architektur realisiert.

Endanwender kommunizieren iiber einen Webbrowser mit dem Softwaresystem. Fiir
diese Kommunikation existieren Verschliisselungsprotokolle, welche die verschliisselte
Ubertragung von Daten iiber ein (unbekanntes) Netzwerk ermdglichen. Ein etablierter
Standard ist die Transport Layer Security (TLS, zuvor Secure Sockets Layer), die
beispielsweise im HTTPS-Kommunikationsprotokoll Anwendung findet. Hierbei baut
der Client eine Verbindung zum Server auf und initiiert die Authentifizierung des
Servers, welche auf einem Zertifikat basiert, das vom Client auf Giiltigkeit gepriift
wird. Darauthin wird ein kryptographischer Schliissel vereinbart, der sowohl zur
Verschliisselung als auch zur Priifung von Authentizitit verwendet wird!2.

7.4.1.3 Bedienbarkeit

Bedienbarkeit (engl. usability) umschreibt auf der einen Seite, wie und wie gut Endan-
wender das Softwaresystem mittels gegebener GUI bedienen konnen. Es beschreibt auf
der anderen Seite aber auch, wie sich das System beziiglich der getroffenen Eingaben
verhilt (Vogel et al., 2009, S.115). Zwar geschieht die Umsetzung des beschriebenen
Konzepts nur prototypisch (s. Kapitel 7), nichtsdestotrotz ist die Bedienbarkeit eines
Softwaresystems essentiell fiir dessen Akzeptanz.

Durchgefiihrter Programmablauf
Der variert je nach i Anforderungsbeschreibung eingeben

Bitte geben Sie im Folgenden Ihre Anforderungsbeschreibt
Zu Testzwecken kénnen Sie dieses Beispiel aufrufen.

© Fehler 001. Bitte geben Sie eine Anforderungsbeschreibung ein!

Abbildung 7.17: Programmablauf (GUT) Abbildung 7.18: Fehlermeldung (GUI)

Grundsétzlich verhélt sich die Interaktion mit dem beschriebenen System so, dass
die Eingabe einer Anforderungsbeschreibung erforderlich ist, um eine kompensierte,
strukturierte Anforderungsbeschreibung zuriickzuerhalten. Hierzu steht eine einfa-
che Eingabemaske bereit (vgl. Abbildung 7.18). Jede weitere Interaktion mit dem
System (iiber eigene Programmmasken) dient der Ergebnisevaluation. Ziel ist es,
die Komplexitéit des Gesamtsystems auf den Benutzerschnittstellen zu verbergen
und eine nachvollziehbare Navigation zu erméglichen. Als Beispiel hierfiir wird die

M2Gtark vereinfachte Darstellung, fiir mehr Informationen beziiglich TLS siehe Risti¢ (2014).

174 7 Implementierung

Navigation in der erweiterten Ergebnisansicht herangezogen (vgl. Abbildung 7.17),
die den individuell durchgefithrten Programmablauf darstellt und somit zur An-
sicht der Einzelergebnisse des Kompensationsprozesses dient. Die Transparenz der
Verarbeitung wird durch die Darstellung des Verarbeitungsprozesses erhoht, indem
Endanwender Schritt fiir Schritt das Ergebnis betrachten und nachvollziechen kénnen.

Beziiglich der Benutzerschnittstellen merken Vogel et al. (2009, S.115) an,
dass barrierefreies Arbeiten es erfordert, alternative Benutzerschnittstellen
(z. B. Sprachsteuerung) bereitzustellen, zumindest aber zu ermoglichen. In die-
ser Arbeit wird dieser Forderung durch Nutzung moderner Webtechnologien
(s. Abschnitt 7.4.2.2) und strukturierten Ausgaben nachgekommen. In diesem Zusam-
menhang ist der fehlende ,, Offline-Modus“ des Systems als mogliche Einschrankung
in der Nutzung zu nennen. Aufgrund der Client-Server-Architektur ist ein Arbei-
ten mit dem System nur bei bestehender Netzwerkverbindung moglich. Ein rein
lokales Arbeiten ist derzeit nicht vorgesehen. Dariiber hinaus sind Uberlegungen
anzustellen, wie das System auf fehlerhafte Eingaben reagiert. Kommt es zu Fehlern
in der Verarbeitung, sind diese dem Endanwender transparent zu présentieren. Da
allerdings kein umfangreiches technisches Vorwissen erwartet werden darf, sind
die Fehlermeldungen ohne Fachsprache zu verfassen. Abbildung 7.18 zeigt eine
Fehlermeldung, die Endanwendern présentiert wird, wenn keine Eingabe gemacht,
die Weiterverarbeitung aber dennoch gestartet wird.

7.4.2 Adaptierbarkeit

In dieser Arbeit bezieht sich Adaptierbarkeit insbesondere auf die Fahigkeit des
Konzepts bzw. des resultierenden Systems, auf einer weiteren Doméne und/oder
Sprache angewandt zu werden. Adaptierbarkeit beschreibt dabei nach Hammer (2013)
die ,,Anpassung eines Systems oder einer Applikation an einen Benutzer und/oder
eine Aufgabe“ (Hammer, 2013, S.6). Erginzt werden kann diese Erklarung um den
Aspekt der Systemintegration, wie in Definition 7.4.1 dargestellt wird.

Definition 7.4.1 (Adaptierbarkeit)

LAdaptierbarkeit ist die Figenschaft von Software, an unterschiedliche funktionale
Anforderungen anpassbar zu sein. Dies bezieht sich sowohl auf Anforderungen an die
Funktionalitit der Komponente als auch auf ihre Fihigkeit, mit unterschiedlichen
Systemen zusammenzuarbeiten, d.h. eine Systemintegration zu ermdglichen® (VSEK
Konsortium, 2007a)

Adaptierbarkeit wird im Folgenden unterteilt in Interoperabilitét (s. Abschnitt 7.4.2.1),
Portabilitéat (s. Abschnitt 7.4.2.2), Skalierbarkeit (s. Abschnitt 7.4.2.3) und Wieder-
verwendbarkeit (s. Abschnitt 7.4.2.4).

7.4.2.1 Interoperabilitait

Interoperabilitdt bezeichnet allgemein die ,Féhigkeit unterschiedlicher Systeme,
moglichst nahtlos zusammenzuarbeiten® (Dudenredaktion, 2016, S.934). Im Kontext
dieser Arbeit wird dariiber hinaus die Definition von Stempfle (1996) hinzugezogen,
die den Aspekt der Standardisierung hervorhebt:

7.4 Anforderungen an die Systemqualitét 175

Definition 7.4.2 (Interoperabilitéit)

LFahigkeit einer Systemkomponente, sich aufgrund genormter Schnittstellen in ein
Gesamtsystem in der Weise integrieren zu lassen, daf$ ein ungehinderter, problemloser
Austausch zwischen der eingebundenen Systemkomponente und dem Gesamtsystem
stattfinden kann. [...] Interoperabilitit ist damit eine Wirkung, ein Ergebnis konse-
quenter Umsetzung anerkannter Standards® (Stempfle, 1996)

Ein hoher Grad an Interoperabilitit ist dabei weit mehr als ein Zustand, den es
in dieser Arbeit zu erreichen gilt. Interoperabilitit ist strenggenommen vielmehr
die zentrale Herausforderung. Schliellich handelt es sich um ein Softwaresystem,
welches eine Vielzahl heterogener Softwarekomponenten im Sinne einer gemeinsamen
Aufgabe zusammenfiihrt. Dieser Gedanke wird auch bei Bues (1994) deutlich, der
Interoperabilitét als gegeben ansieht, wenn ,[...] heterogene Systeme mit unterschied-
lichen Zweckbestimmungen in einem Verbund zusammenwirken, so dafl sie sich dem
Benutzer wie ein einziges homogenes Leistungsgefiige darstellen (Bues, 1994, S.27).

Im Bereich des NLPs besteht die Diskussion rund um Interoperabilitat bereits
seit Langem und erscheint durch Themen wie dynamische Ressourcen, Ressour-
cenintegration und Semantic Web auch weiterhin aktuell (z. B. Witt et al., 2009).
Die vorliegende Arbeit greift dabei auf bestehende Errungenschaften zuriick, indem
die gesamte interne sowie externe Schnittstellengestaltung auf offenen, etablierten
(De-Facto-)Standards beruht (z. B. CoONLL-U3). In dieser Arbeit resultiert dies in
drei Designentscheidungen:

1. Die gesamte interne Kommunikation zwischen den Schnittstellen wird auf ein
einheitliches, internes Datenmodell normalisiert.

2. Die Gesamtausgabe der Softwareapplikation nutzt fiir den plattform- und
implementationsunabhéngigen Austausch eine strukturierte Ausgabe.

3. Die Gesamtausgabe enthilt alle vorliegenden Informationen, die zur Weiterver-
arbeitung bendtigt werden konnten und die iiber die zentralen Verarbeitungs-
ergebnisse hinausgehen kénnen.

Um dies zu erreichen sind Konvertierungsprozesse notwendig. Beispielsweise gibt
das REaCT-Tool zur Anforderungsextraktion (s. Abschnitt5.5.3) standardméfig
eine CoNLL-strukturierte Ausgabe und wahlweise XML oder JSON aus. Ein ent-
sprechender Konvertierungsprozess innerhalb des Softwaresystems transformiert die
strukturierte Ausgabe in das intern genutzte Datenformat.

7.4.2.2 Portabilitdt

Portabilitit wird im IT-Kontext oftmals nur im Sinne der Plattformunabhingigkeit!44
verwendet (z.B. Vogel et al., 2009, S.116). Dies geht nach Bues (1994, S.28) aber
insofern nicht weit genug, als dass sich Portabilitéat auch auf Daten und Benutzero-
berflachen beziehen kann. Im NLP-Kontext wird Portabilitdt insbesondere mit der
Fragestellung verkniipft, inwieweit sich ein Softwaresystem auf weitere Doménen
oder Sprachen iibertragen ldsst und welchen Aufwand dies bedarf.

M3Gjehe weiterfithrend: http://universaldependencies.org/format.html (Stand: 110117)
M4 shigkeit von Softwareapplikationen, auf verschiedenen Systemplattformen ausgefiihrt zu werden.

176 7 Implementierung

Doméne und Sprache

Die Portabilitéit im Hinblick auf die Doméne (hier: Anforderungsbeschreibungen,
RE) ist beim vorgestellten Softwaresystem vor allem auf Basis der genutzten Res-
sourcen zu diskutieren, da die meisten der eingesetzten NLP-Verfahren grundsétzlich
doméneniibergreifend anwendbar sind. Eine Ausnahme bildet die Komponente zur
Anforderungsextraktion, die speziell fiir die Doméne der Anforderungsbeschreibungen
entwickelt worden ist. Die Extraktion semantischer Kernkomponenten einer FA ldsst
sich schwer auf Doménen auflerhalb natiirlichsprachlicher Anforderungen iibertragen.

Einen Uberblick iiber Méglichkeiten der Portierung einzelner Komponenten auf
Basis einbezogener NLP-Ressourcen gibt Tabelle 7.6. Angegeben sind Verarbeitungs-
komponenten sowie deren Portabilitét auf eine andere Doméne. Dariiber hinaus finden
sich sowohl Angaben zum geschétzten Portierungsaufwand als auch zur Verfiigbarkeit
alternativer Ressourcen, die herangezogen werden konnen. Des Weiteren werden
notwendige Verfahrenswechsel angezeigt.

Das Preprocessing ist vollumféinglich portabel: Sei es die Satzgrenzenerkennung,
die Textbereinigung oder die Sprachenidentifikation — ein Doménenwechsel stellt
keinen Aufwand dar, da kein Verfahrens- oder Ressourcenwechsel erforderlich ist.
Identisch stellt sich die Situation bei der Kompensation von Vagheit und der syntak-
tischen Disambiguierung dar, die ebenfalls vollumfénglich portabel sind. In beiden
Fallen entsteht daher kein Portierungsaufwand. Anders wiederum stellt sich dies bei
den Komponenten der referentiellen und lexikalischen Disambiguierung dar: Beide
Verfahren greifen auf doménenspezifische Ressourcen (z. B. Black- und Whitelist)
zuriick, um die Ergebnisqualitit zu verbessern. Es ist demnach geringer Aufwand
notwendig, um entsprechende Ressourcen an eine neue Doméne anzupassen.

Kompensation von Unvollstéandigkeit
Kompensation von Vagheit
Strukturierte Ausgabe

C [] Hoch

o

o
O

Q
&
& §
> § S X
SEE 5
>N >
T @ g§
SN L
R R o
Preprocessing | o | o | o
Anforderungsextraktion | o | e | @ | Hoen
Lexikalische Disambiguierung | e | o | @ | Gering
Syntaktische Disambiguierung | o | o | o
Referentielle Disambiguierung | e | o | @ | cering
[]
L]
O

® | ® | Hoch

Tabelle 7.6: Doménenspezifische Portabilitét einzelner Systemkomponenten

Im Vergleich dazu ist eine Portierung der Kompensation von Unvollstdndigkeit
aufwéndiger. Wahrend das Verfahren grundsétzlich nicht auf die Doméne der Softwa-
reanforderungen beschrinkt ist, ist die zentrale Ressource (Suchmaschinenindex mit
Kompensationstexten, s. Abschnitt 5.5.5) doménenspezifisch und muss fiir weitere

7.4 Anforderungen an die Systemqualitét 177

Doménen neu konzipiert werden. Dieser Aufwand ist als erheblich einzuschétzen, da
die Datenakquise sowie -aufbereitung zeit- und arbeitsintensive Té#tigkeiten sind.

Ein Verfahrenswechsel ist sowohl bei der Anforderungsextraktion als auch bei der
strukturierten Ausgabe unerldsslich. Wie bereits angefiihrt, ist die Anforderungsex-
traktion als Ganzes ein doménenspezifisches Verfahren, welches nicht portiert werden
kann. Ebenso verhélt es sich mit der strukturierten Ausgabe, die zum einen stark von
der Anforderungsextraktion abhéingt und zum anderen das Ziel hat, strukturierte
FA auszugeben, was ebenfalls schwer in eine andere Doméne zu portieren ist.

Anders als der Aspekt der Doméne ist die Sprachabhiingigkeit unter zwei Ge-
sichtspunkten zu diskutieren. Zum einen bezieht sie sich auf die Anzeigesprache,
also die Sprache, in der das Softwaresystem mit dem Endanwender kommuniziert
(z.B. Anleitungstexte, Bedienelemente). Zum anderen bezieht sie sich auf die Verar-
beitungssprache, demnach auf die Sprache, die das System als Eingabe verarbeiten
kann. Die Verarbeitungssprache ist dabei als ein weitaus komplexerer Diskussionge-
genstand zu verstehen, da alle Systemkomponenten davon betroffen sind, wahrend
bei der Anzeigesprache lediglich die Benutzerschnittstelle einer Anderung bedarf.

Die derzeitige Anzeigesprache ist Deutsch. Zum jetzigen Zeitpunkt ist das gesamte
Softwaresystem auf den Betrieb einer mehrsprachigen Benutzeroberfliche ausgelegt,
wobei die Sprachen Englisch und Deutsch bereits vorkonfiguriert sind. Sollte eine
Erweiterung um zusétzliche Sprachen erforderlich sein, ist eine Auslagerung dieser
Konfigurationsmoglichkeit in externe Konfigurationsdateien sinnvoll, auf welche bei
der prototypischen Umsetzung in dieser Arbeit verzichtet wird.

Bezugnehmend auf die Verarbeitungssprache empfiehlt sich eine erste Betrachtung
auf Ebene der Systemkomponenten. Tabelle 7.7 listet diesbeziiglich die verwendeten
Komponenten zusammen mit den unterstiitzten Sprachen auf. Es zeigt sich, dass die
einzelnen Verarbeitungskomponenten allesamt die englische Sprache unterstiitzen.
Dariiber hinaus verarbeiten mehrere der gewéhlten Einzelkomponenten (z. B. die
lexikalische und die syntaktische Disambiguierung) bereits jetzt weitere Sprachen
(z.B. Deutsch, Chinesisch). Die Fragen, die sich nun stellen, sind:

e Lassen sich die iibrigen Komponenten um weitere Sprachen erweitern?
e Und falls nicht, existieren Alternativen, die implementiert werden koénnten?

Im Falle des Preprocessings (s. Abschnitt 5.5.2), bestehend aus Einzelkomponenten
zur Normalisierung, Textbereinigung, Grammatik- / Rechtschreibpriifung, Satzende-
erkennung und Sprachenidentifikation, muss die Beantwortung der Fragen auf Basis
der Einzelkomponenten erfolgen.

Wihrend die Normalisierung, Textbereinigung und Sprachenidentifikation wei-
testgehend unabhiingig von der zugrundeliegenden Verarbeitungssprache agieren'46,
ist beispielsweise die Satzgrenzenerkennung abhéngig von der jeweiligen Sprache
(s. Anhang C.1.2). Selbiges gilt fiir die Grammatik- / Rechtschreibpriifung. Zwar
unterstiitzen die verwendeten Komponenten bereits eine Vielzahl an Sprachen, eine
Portierung auf eine weitere Sprache kann allerdings einen notwendigen Komponen-
tenwechsel und damit einen Mehraufwand bedeuten.

145Dije Komponente unterstiitzt insg. 271 Sprachen. Siehe Abschnitt 3.3.1.1.
16Dje Sprachenidentifikation unterstiitzt 71 Sprachen und ist mit geringem Aufwand erweiterbar.

178 7 Implementierung

55
S5FErS
55585
I
FSITTERD
Preprocessing | e | @ | o | e | e |0
Anforderungsextraktion | e [o | o |o|o | o
Lexikalische Disambiguierung'®® | o | o | o | o | o | o
Syntaktische Disambiguierung (e | e | e | e | o | o
Referentielle Disambiguierung | ¢ [o | e |0 | o | o
Kompensation von Unvollstéandigkeit | ¢ [o | o | o | o | o
Kompensation von Vagheit (e [o | o |o|o |0
Strukturierte Ausgabe | o | o olo|o

Tabelle 7.7: Unterstiitzte Verarbeitungssprachen einzelner Komponenten.
e = unterstiitzt, o = partiell unterstiitzt, o = nicht unterstiitzt

Ein Mehraufwand entsteht auch, wenn die Komponente zur Anforderungsextraktion
an eine weitere Sprache angepasst werden sollte. Zum einen sind die Verarbeitungs-
komponenten innerhalb von REaCT (Dollmann und Geierhos, 2016) anzupassen
(z.B. Parser). Zum anderen handelt es sich um ein Klassifikationsverfahren, dass
auf Trainingsdaten angewiesen ist. Ein Wechsel der Sprache bedeutet demnach,
dass auch eine ausreichende Anzahl annotierter Anforderungsdokumente vorliegen
muss. Wahrend dies erstens eine nennenswerte Herausforderung darstellt, ist es
zweitens auch mit erheblichem Aufwand verbunden. Die gleiche Problematik mit
den zugrundeliegenden Ressourcen ist bei der Portierung der Kompensation von
Unvollsténdigkeit zu erwarten. Wie auch bei der Portierung auf eine weitere Doméne,
ist der zugrundeliegende Suchmaschinenindex in Génze zu ersetzen. Dies bedeutet,
dass ein umfangreicher Datenbestand in der Zielsprache akquiriert, aufbereitet und
annotiert werden muss, was mit hohem Aufwand verbunden ist.

Die Komponenten zur Disambiguierung unterscheiden sich wesentlich hinsichtlich
der Portabilitdt: Wahrend die lexikalische Disambiguierung eine Vielzahl an Spra-
chen unterstiitzt, damit hochgradig portierbar ist und keinen Mehraufwand erzeugt,
geht eine Anderung bei der syntaktischen und referentiellen Disambiguierung mit
einem wahrscheinlichen Verfahrenswechsel einher. Die syntaktische Disambiguierung
unterstiitzt derzeit Englisch, Deutsch, Chinesisch und Franzosisch sowie Spanisch
und teilweise Arabisch. Die referentielle Disambiguierung unterstiitzt Englisch und
Chinesisch. Ein Verfahrenswechsel ist bei weiteren Sprachen unabdingbar.

Im Kontrast dazu steht die Kompensation von Vagheit, die auf linguistischen
Regeln basiert. Gelten dieselben Regeln auch fiir die zu portierende Sprache, so
konnen sie einfach iibernommen werden. Sind sie allerdings nicht anwendbar, sind
neue Regeln anzugeben, was etwas Mehraufwand bedeutet.

Ein geringer Mehraufwand ist auch bei der strukturierten Ausgabe zu erwarten, die
ebenfalls an die weitere Sprache anzupassen ist. Wobei hier lediglich die Reihenfolge
der erkannten semantischen Bausteine neu definiert werden muss, falls sie von der
vordefinierten Reihenfolge abweicht (s. Abschnitt 1.3.1.2).

7.4 Anforderungen an die Systemqualitét 179

Eine Ubersicht iiber den zu erwartenden Portierungsaufwand ist Tabelle 7.8 fiir die

sechs meistgesprochenen Sprachen der Welt'*” zu entnehmen.
o
5 oo
5 N A
S N & ~ 5
S X A N N 3
SIS S N &
O A=\ S AN
Preprocessing | + + 0 0 + +
Anforderungsextraktion | o+ | 44+ | 44+ | 44+ |+t | t44
Lexikalische Disambiguierung!4® | o 0 0 0 0 0
Syntaktische Disambiguierung | o I IRV UV I R
Referentielle Disambiguierung | o I IR T R
Kompensation von Unvollstindigkeit | ++ | ++ | ++ | ++ | ++ | ++
Kompensation von Vagheit | + + 0 0 + +
Strukturierte Ausgabe | + n n + n +

Tabelle 7.8: Geschétzter Portierungsaufwand neuer Verarbeitungssprachen
(hoher [+++], mittlerer [++], geringer [+], kein [o] Aufwand)

Systemplattform

Bei Plattformunabhéngigkeit, also der Fihigkeit einer Softwareapplikation, ohne
weitere Anderung auf einer Vielzahl an Rechnerarchitekturen ausgefiihrt werden zu
kénnen (Vogel et al., 2009, S.116f.), stellt sich bereits zu Beginn der Uberlegungen
eine elementare Frage: Plattformunabhéingigkeit fiir wen? Denn die Anforderungen
unterscheiden sich hier hinsichtlich der Server- und Client-Perspektive wesentlich:
Endanwender interagieren iiber eine Benutzerschnittstelle mit dem Softwaresystem.
Dabei liegt das System nicht lokal vor, sondern wird {iber einen Server bereitgestellt
und iiber einen Webbrowser aufgerufen (Client). Fiir Endanwender ist Plattformu-
nabhéngigkeit daher insofern sichergestellt, als dass der Zugriff unabhangig von
Betriebssystem und verwendeter Hardware (z. B. Computer, Mobiltelefon) erfolgt.
Aus der Sicht der Server-Applikation gestaltet sich dies insofern anders, als dass
diese auf einem zentralen Computer ausgefithrt wird. Anders als beim Endanwender
ist nicht von einer Vielzahl wechselnder Betriebssysteme und insbesondere nicht von
mobilen Betriebssystemen (z. B. Android, i0S) auszugehen. Allerdings sind dennoch
verschiedene Betriebssysteme (z. B. Windows, Linux) zu erwarten. Im Endeffekt bleibt
die Herausforderung der Plattformunabhéngigkeit somit grundsétzlich bestehen.

Plattformunabhingigkeit kann hierbei auf verschiedene Weisen erreicht werden!®?,
im Folgenden liegt der Fokus aber auf der plattformunabhéngigen Entwicklung. Dies
bedeutet, dass Anwendungen zum einen (iiberwiegend) unabhéngig von der zugrun-
deliegenden Plattform ausfiihrbar sind (z. B. Hybrid-Apps), sich an die Plattform
anpassen konnen (z. B. durch Fat Binaries) oder auf Zwischencode (z. B. Bytecode)
und entsprechenden Laufzeitumgebungen basieren.

147Nach Englisch als meistgesprochene Sprache. Siehe Statista (2016) fiir Details zu den Weltsprachen.
8Dje Komponente unterstiitzt 271 Sprachen. Siehe Abschnitt 3.3.1.1.
149Weitreichende Uberlegungen zur Portabilitéit finden sich in Hoffmann (2013, S. 107 f£.).

180 7 Implementierung

Ein populdres und etabliertes Beispiel fiir eine entsprechende Programmiersprache
ist Java, wobei die Portabilitét insbesondere durch die genaue Spezifikation elemen-
tarer Datentypen und dem Verzicht maschinennaher Datentypen und Operatoren
gewihrleistet wird (Kriiger und Stark, 2009, S.50). Die erforderliche Laufzeitumge-
bung (engl. Java Runtime Environment, JRE) ist fiir alle géngigen Betriebssysteme
vorhanden. Kritisch anzumerken ist allerdings, dass es sich hierbei nur um eine
begrenzte Plattformunabhéngigkeit handelt, da sie im Tausch mit einer Abhéangigkeit
von der Laufzeitumgebung erzielt wird (Kriiger und Stark, 2009, S.50f.).

In dieser Arbeit wird Java zur Entwicklung des Softwaresystems unter anderen
aufgrund der weiten Verbreitung und Plattformunabhéngigkeit herangezogen.

Benutzerschnittstelle

,, Portierbarkeit mit Blick auf den Menschen, den Benutzer, bedeutet die Verein-
heitlichung der Benutzeroberflichen, so dafl ein Wechsel zwischen unterschiedlichen
Systemen ohne einen zusétzlichen Lernaufwand und kurzfristige Effizienzverluste
vollzogen werden kann“ (Bues, 1994, S. 28).

Diese Anforderung, die Bues (1994) an die Portabilitéit von Softwaresystemen stellt,
ist auch heute von Bedeutung. Mit der zunehmenden Akzeptanz mobiler Endgeréite
existiert eine Vielzahl an Softwareapplikationen, die auf verschiedenen Endgeréten
und Betriebssystemen ausgefiihrt werden. Hierbei ist ein nahtloses Benutzungserlebnis
von Bedeutung (s. z. B. Kadlec und Frohlich, 2013, S. 1421.).

Anforderungsbeschreibung eingeben]

v ystem st
‘Strategie: Automatisch

Statogio: Atomatisch © Arsysenn

©2016 Sem. ino. Pacerbom

|) i ‘
\ — } N -
e —

Abbildung 7.19: Softwaresystem mit responsivem Webdesign (GUT)

Moderne Webapplikationen reagieren auf die wechselnden Eigenschaften der End-
gerdte (dies betrifft sowohl Eigenschaften wie die Bildschirmauflosung als auch
Eingabemoglichkeiten) durch eine flexible Gestaltung, die sich an die gegebenen
Umsténde anpassen kann (responsives Webdesign). Moderne Webstandards wie
HTML5, CSS3 und JavaScript bilden hierfiir die Grundlage.

Das in dieser Arbeit konzipierte Softwaresystem nutzt als Benutzerschnittstelle
eine Webapplikation, die diese Moglichkeit der flexiblen Darstellung nutzt, indem sich
die Bedienelemente an die gegebene Bildschirmaufldsung anpassen (s. Abschnitt 5.5).

7.4 Anforderungen an die Systemqualitét 181

Abbildung 7.19 zeigt dies exemplarisch anhand eines Mobiltelefons und eines Tablet-
computers. Fiir Endanwender ist es daher unerheblich, welches Betriebssystem und
welches Endgerét verwendet wird, solange die Darstellung von Webinhalten méglich
und die Unterstiitzung von modernen Webstandards gegeben ist.

7.4.2.3 Skalierbarkeit

»Systeme miissen [...] bei zunehmender Last adiquat reagieren, um ihre Dienste in
einer definierten Giite anbieten zu kénnen® (Vogel et al., 2009, S. 117). Skalierbarkeit
kann dabei vertikal oder horizontal erfolgen (Vossen et al., 2012, S.14f.), wobei
beide Vorgehensweisen im Kontext dieser Arbeit vorstellbar und daher im Folgenden
zu diskutieren sind. Grundsétzlich bezieht sich Skalierbarkeit hier auf die Server-
Komponente in der Client-Server-Architektur.

Nach derzeitiger Konzeption werden alle Komponenten des Systems serverseitig
bereitgestellt (vgl. Abbildung 7.20), was bedeutet, dass auf einem Computer (Knoten)
alle notwendigen Komponenten ausgefiihrt werden!®,

Im Rahmen einer vertikalen Skalierung (,,scale up*“) konnte dieser Computer durch
einen leistungsstarkeren ersetzt oder durch Hardwareressourcen erweitert werden. Dies
hat den Vorteil, dass an der eigentlichen Software keine Verdnderung vorgenommen
werden muss, da sich nur das Umfeld &ndert — dies wére ohne groBere Umsténde
auch bei dem hier vorgestellten Konzept umzusetzen. Ein Nachteil ist jedoch, dass
diese Skalierung einer natiirlichen Grenze unterliegt: Irgendwann sind die besten
Komponenten verbaut — eine weitere Skalierung ist nicht mehr moglich.

Server Server
Komponente 2

Komponente 3
(a) (b) (c)

Ist-Zustand Scale up Scale out

Abbildung 7.20: Moglichkeiten der Skalierbarkeit von Softwaresystemen.
In Anlehnung an Vossen et al. (2012, S.15)

Bei der horizontalen Skalierung (,,scale out*) wird das System erweitert, ,,[...] indem
mehr Knoten hinzugefiigt werden. Die Arbeit wird also »auf mehr Schultern< ver-
teilt“ (Vossen et al., 2012, S.14). Ob ein System fiir eine horizontale Skalierung
in Frage kommt, héngt auch vom Grad moglicher Parallelisierung und Art der
programmiertechnischen Umsetzung ab.

Das vorgestellte Konzept ist so aufgebaut, dass alle Komponenten parallel und
isoliert ausgefiihrt werden konnen. Jede einzelne Komponente kénnte so beispielsweise
auf einem eigenen Knoten ausgefiithrt werden. Diese einzelnen Knoten wiederum
konnten dann, bis zu einem gewissen Grad, bedarfsgerecht vertikal skaliert werden.

150 Ausgehend von diesen Komponenten kénnen weitere externe Ressourcen eingebunden werden.

182 7 Implementierung

7.4.2.4 Wiederverwendbarkeit und Nachhaltigkeit

Wiederverwendbarkeit bedeutet mit Bezug zu Softwaresystemen, dass sowohl ein-
zelne Systemkomponenten als auch linguistische Ressourcen in diesem oder anderen
Softwareprojekten (in gleicher Funktion) erneut zur Anwendung kommen koénnen
(Vogel et al., 2009, S.117). Die hier verwendeten Systemkomponenten sind dabei als
wiederverwendbar zu bezeichnen, da sie alle genau fiir diesen Einsatzzweck entwickelt
worden sind (und daher z. B. notwendige Schnittstellen besitzen). Exemplarisch lésst
sich dies an der Komponente zur syntaktischen Disambiguierung aufzeigen, die als
externe Programmbibliothek fiir beliebige weitere Softwaresysteme herangezogen
werden kann. Auch die Komponente zur Kompensation von Unvollstéandigkeit ist
wiederverwendbar, wenngleich es sich nicht um eine einzige Programmbibliothek,
sondern um ein vollsténdiges Kompensationssystem handelt, welches iiber Program-
mierschnittstellen zu steuern ist (Béumer und Geierhos, 2016). Ahnliches gilt fiir die
lexikalische Disambiguierung, die zwar als Programmbibliothek eingebunden werden
kann, jedoch auf externe Dienste angewiesen ist. Hier wird die Wiederverwendbarkeit
durch die Verfiigbarkeit der externen Ressourcen moglicherweise eingeschrénkt.

Hinsichtlich der Wiederverwendbarkeit genutzter linguistischer Ressourcen sind
somit weitere Einschrankungen zu bedenken: So stellt sich bei extern eingebundenen
Ressourcen die offensichtliche Frage nach der zukiinftigen Verfiigbarkeit. Im hier
beschriebenen Softwaresystem ist die lexikalische Disambiguierung die einzige Kom-
ponente, die auf extern bereitgestellte Ressourcen zuriickgreift und somit im Zweifel
zu ersetzen ist, sollte die Verfugbarkeit nicht mehr gegeben sein (s. Abschnitt 7.1).
Dariiber hinaus ist zu bedenken, dass Ressourcen oftmals explizit fiir einen Verwen-
dungszweck erstellt werden und gegebenenfalls fiir weitere Anwendungsszenarien
ungeeignet sind: Modelle kénnen speziell fiir eine Fragestellung trainiert worden sein
oder eine Datenbank kénnte aus einer speziellen Komposition von Informationen
bestehen. In der Tat ist beides anzutreffen: Die Klassifikationsmodelle, die REaCT
zur Anforderungsextraktion heranzieht, lassen sich zu genau diesem Zweck wiederver-
wenden, eignen sich aber nicht fiir andere Anwendungsszenarien. So verhélt es sich
auch mit dem Index, der zur Unvollstdndigkeitskompensation herangezogen wird:
Eine sehr spezielle Ressource, die nur diesem einen Zweck dienen kann. Grundsétzlich
konnen Drittapplikation sie aber einbinden — damit ist sie wiederverwendbar.

Unter Nachhaltigkeit (auch: Zukunftsfihigkeit) ist die Anwendbarkeit des be-
schriebenen Konzepts unter dem zeitlichen Aspekt zu verstehen oder als Frage
formuliert: Wie lange ist das hier beschriebene Konzept in dieser Form und un-
ter Einbezug der genannten Komponenten zielfithrend im Sinne der Verarbeitung
von Anforderungsbeschreibungen einsetzbar? Diese Frage ist von besonderer Re-
levanz, da die natiirliche Sprache einer stetigen Entwicklung unterliegt, was mit
der Zeit unweigerlich die Anpassung der Methoden verlangt. Im Folgenden wird
hierfiir eine Losung gesucht, indem die Komponenten einzelner Methoden unter
mehreren (moglichst) objektiven Faktoren hinsichtlich méglicher Modifikation und
Weiterentwicklung betrachtet werden.

Tabelle 7.9 listet Methoden zusammen mit ihrer angenommenen Nachhaltigkeit
auf (Fazit). Diese ergibt sich dabei aus neun Merkmalen, die sich insbesondere auf die
Verfiigbarkeit von Quelltext und Ressourcen und deren Modifizierbarkeit beziehen.
FEin Beispiel fiir eine Methode mit hoher Nachhaltigkeit ist die Sprachenidentifizie-

7.4 Anforderungen an die Systemqualitét 183

rung, fiir deren implementierte Komponente sowohl alle Ressourcen als auch der
Quelltext frei verfiigbar sind. Dariiber hinaus sind Schnittstellen verfiigbar, um
neue Ressourcen zu erstellen. Dagegen ist eine niedrige Nachhaltigkeit der lexika-
lischen Disambiguierung wegen der Babelfy-Komponente zu attestieren, da, trotz
aktiver Weiterentwicklung, eine Modifikation derzeit mangels zugéinglichem Quelltext
und Ressourcen nicht moéglich und auch nicht vorgesehen ist. Dies bedeutet fiir die
zukiinftige Entwicklung des Softwaresystems, dass moglicherweise eine alternative
WSD-Komponente zu implementieren ist (s. Abschnitt 3.3.1). Grundsatzlich ist das
Konzept dabei bewusst modular aufgebaut, um den Austausch von Ressourcen und

Komponenten jederzeit zu ermoglichen. &
s &8
FFIES
& § 55
S 9 & Ly KT E
FIFT & E &
S, TTET IS
T L& F S IIF g 2
N o O N 8 Aad & 4
VA EFEF SIS
~ %) (%) K)
TP S SEESS
o & ISAS & S
ST TS &
FFFTEFELFTSS
T ORI EY VT Fasit
Preprocessing
Sprachenidentifizierung | e | e e [e | o | o | e | e | e | Hoch
Rechtschreibkorrektur |e | e | e | e | e | e | e | o | e | Hoch
Grammatikpriifung | e |e (e | e | e |e| e | o | e | Hoch
Satzendeerkennung (e |o | e | e | e | e e |0 |e | Hoch
Anforderungsxtraktion
Identifikation | o J o | o |~ | o | e | e | o | o | Niedrig
Extraktion | o | o | o | — e | o | o | Niedrig
Kompensation
Lexikalische Disambiguierung | @ | o | o | o o | o| o | Niedrig
Syntaktische Disambiguierung | @ | o | @ | ® e | o | e | Hoch
Referentielle Disambiguierung | @ | o | o | @ e | o | e | Hoch
Erkennung von Vagheit | o |o | e | e | — | —| e | o | o | Mittel
Unvollstéandigkeitskompensation | oo | o |~ (e | e | e | e | e | Mittel

Tabelle 7.9: Nachhaltigkeit einzelner Komponenten nach Methoden

7.4.3 Wartbarkeit und Erweiterbarkeit

Ein Softwaresystem zeichnet sich auch durch Wartbarkeit und Erweiterbarkeit aus.
Waihrend sich Wartbarkeit vor allem auf die Korrektur von Fehlern und gegebe-
nenfalls Aktualisierung von Ressourcen bezieht, beschreibt Erweiterbarkeit primér
das Hinzufiigen oder den Austausch von Systemkomponenten aufgrund neuer oder
gednderter Systemanforderungen (Vogel et al., 2009, S.117). Um hohe Wartbarkeit
und Erweiterbarkeit zu erreichen, sind nach Vogel et al. (2009, S.117) die Prin-
zipien hoher Kohésion und loser Kopplung zu befolgen. Wihrend Kohésion den
Umstand beschreibt, dass idealtypisch einer Klasse oder Komponente eine definierte

184 7 Implementierung

Aufgabe zugeschrieben ist, beschreibt lose Kopplung, dass geringe Abhéngigkeiten
zwischen den einzelnen Komponenten eines Systems bestehen (s. Tabelle 7.10). Eine
weitestgehend lose Kopplung wird in dieser Arbeit erreicht, indem einzelne Verarbei-
tungskomponenten iiber standardisierte Formate (gegebenenfalls durch Konverter)
kommunizieren und ein zentrales Datenobjekt modifiziert wird. Der Wechsel einer
Komponente stellt daher keine Beeintriachtigung anderer Komponenten dar, solange
sich alle Komponenten an das definierte Austauschformat halten. Dariiber hinaus ist
hohe Kohésion gegeben, da es sich von der grundsétzlichen Systemarchitektur bei den
Verarbeitungskomponenten um Experten handelt, die explizit fiir definierte Aufgaben
eingebunden werden. Eine konkrete Aufgabe, wie zum Beispiel die Kompensation
von Unvollstandigkeit, wird in der dafiir eingebundenen Komponente vorgenommen.
Auch innerhalb der Verarbeitungskomponenten sind die zugrundeliegenden Ressour-
cen weitestgehend zugénglich und modifizierbar. Auch hier stellt die lexikalische
Disambiguierung eine Ausnahme dar, da die extern eingebundenen Ressourcen nur
begrenzt modifizierbar sind. Als positive Beispiele sind die Kompensation von Un-
vollsténdigkeit und die Vagheitserkennung zu nennen, deren Ressourcen ginzlich
modifizierbar sind.

Werden die zentralen Strategien unter dem Aspekt der Wartbarkeit und Erweiter-
barkeit betrachtet, ergibt sich ein vergleichbares Bild wie bei den Komponenten
und Ressourcen. Mit geringem Aufwand lassen sich neue Strategien hinzufiigen
oder bestehende Strategien modifizieren. Sie liegen, wie auch die Komponenten, als
getrennte Systemeinheiten vor. Eine Anderung an einer der Strategien erfordert keine
Anderungen an den sonstigen Komponenten.

7.4 Anforderungen an die Systemqualitét

‘ Methode

| (Sub-)Komponenten

Satzgrenzenerkennung

Stanford CoreNLP

8’ Zeichennormalisierung Java Normalizer
a Anforderungsklassifikation | REaCT
2 REaCT
& Anforderungsextraktion CoNLL Converter
OpenNLP Chunker
PP-Anbindung Chunker
g | Koordinationsambiguitit | Syn. Muster
jo: PRP-Referenz Syn. Muster
g Koref WordNet (JWNL)
= oreferenz, .
S Synonymliste (Koreferenzen)
™ | Lexikalische Ambiguitét WordNet (JWNL)
Stoppwortliste
. L Stanford CoreNLP
Ref. Disambiguierung Synonymliste (Referenzen)
Syn. Disambiguierung Stanford CoreNLP
bgﬂ Apache Solr
2 | Unvollsténdigkeits- Mate Tools
g kompensation CoNLL Converter
= Stanford CoreNLP
g Propbank
>~ BabelNet
Lex. Disambiguierung Babelfy

WSD- Caching

Vagheitserkennung

Jortliste, Regeln

Tabelle 7.10: Ubersicht einzelner Systembestandteile

185

Evaluation

Im Folgenden wird das Gesamtsystem zwecks abschlieSender Bewertung evaluiert,
wobei das Evaluationskonzept (s. Abschnitt 8.1) eine Zweiteilung vorsieht: Zuerst
werden die Indikatoren und Strategien hinsichtlich ihrer Anwendbarkeit auf realen
Anforderungsbeschreibungen evaluiert und eine Typisierung moglicher Fehler bei
der Indikator- und Strategieanwendung vorgenommen (s. Abschnitt 8.2). Es folgt die
Evaluation der Performanz des Systems und seiner Bestandteile (s. Abschnitt 8.3).

8.1 Evaluationskonzept

Das Softwaresystem ist mittels der folgenden ,sach- und fachgerechte[n] Bewertung*
(Dudenredaktion, 2016, S. 559) sowohl hinsichtlich der Anwendbarkeit der Indikatoren
und der Strategien (s. Abschnitt 8.2) als auch der Performanz (s. Abschnitt 8.3) zu
untersuchen. Es handelt sich hierbei um eine summative Evaluation, welche auf die ab-
schlieende Bewertung des Ist-Zustands in dieser Arbeit abzielt. Thematisch wird bei
der Evaluation der Strategieanwendung betrachtet, welche Strategiekonfigurationen
unter unterschiedlichen Indikatorkombinationen zur Anwendung kommen und wel-
che/wie hiufig/unter welchen Umstéinden Fehler sowohl bei der Strategieanwendung
als auch bei der Indikatorbestimmung auftreten. Neben der generellen Anwendbarkeit
des vorgestellten Konzepts wird somit auch die Zuverlédssigkeit der Indikatoren und
der Strategiekonfiguration in Abhingigkeit variierender Texte untersucht. Bei der
Evaluation der Performanz steht das Gesamtsystem sowie die Verarbeitungskom-
ponenten im Fokus. Eine hohe Performanz gilt dabei als Qualitdtsmerkmal eines
benutzerfreundlichen Softwaresystems.

Waihrend das methodische Vorgehen innerhalb der Evaluationsteile voneinander
abweicht, ist die Struktur des zugrundeliegenden Protokolls einheitlich. So sieht dieses
die Festlegung von Evaluationsgegenstinden vor (z. B. das Zusammenwirken von
Indikatoren und Strategien), aus denen sich der Evaluationszweck ableiten lisst
(z. B. Fehleridentifikation). Aufbauend auf dem Zweck werden daraufthin Evaluati-
onsfragen festgelegt, deren Beantwortung in einzelnen Abschnitten verteilt erfolgt
und in beiden Teilen unter Hinzunahme eines Evaluationskorpus und eines geeig-
neten methodischen Vorgehens geschieht. Im Folgenden wird die Anwendbarkeit von
Indikatoren und Strategien (s. Abschnitt 8.2) als erster der beiden Teile durchgefiihrt.

8.2 Evaluation der Anwendbarkeit von Strategien
Zu Beginn wird das Evaluationsprotokoll zur Strategienanwendbarkeit in Ab-

schnitt 8.2.1 dargestellt. Es folgt die Entscheidungsevaluation der Strategie-
auswahl (s. Abschnitt8.2.2), die aufzeigt, welche Strategien auf realen Anforde-

187

188 8 Evaluation

rungsbeschreibungen zur Anwendung kommen. Daraufhin wird die Indikatorzu-
verldssigkeit, welche die zuvor betrachtete Strategieanwendung mafigeblich beein-
flusst (s. Abschnitt 8.2.3) sowie mogliche Fehlertypen (bei Strategien und Indikatoren)
untersucht (s. Abschnitt 8.2.4).

8.2.1 Evaluationsprotokoll

Der Untersuchungsfokus liegt im Folgenden auf den in den Abschnitten 5.2 und 5.3
konzipierten Strategien und Indikatoren, wobei vor allem Abhéingigkeiten und
das Zusammenwirken von Indikatoren, Strategien und Methoden Evaluations-
gegenstinde sind. Ein Zusammenwirken findet dabei vor allem bei der Strategie-
und Methodenanwendung statt, wahrend sich Abhéngigkeiten bei der Indikator-
und Strategieanwendung finden. So sind die Ergebnisse der Indikatoranwendung
beispielsweise mafigeblich dafiir verantwortlich, welche Strategie vom Selector bei
der Strategieauswahl herangezogen wird. Fehlerhafte Indikatoren wirken sich somit
auf die Strategien aus, die gegebenenfalls notwendige Methoden nicht aktivieren
konnen. Die Indikatorzuverlédssigkeit wiederum ergibt sich aus der Zuverlassigkeit
der zugrundeliegenden Merkmale, die teilweise von zusétzlichen Tools bereitgestellt
werden und ebenfalls fehlerhaft sein konnen. Der Evaluationszweck lésst sich daher
wie folgt zusammenfassen:

e Identifikation von Fehlerquellen in der Strategiewahl

e Analyse von Verarbeitungsfehlern und deren Auswirkungen
auf die Strategieanwendung

Fiir diesen Evaluationszweck sind im Folgenden entsprechende Evaluationsfragen
(F) dargestellt (s. Abschnitt4.2.1):

e F1: Wie oft werden einzelne Strategien bei der Strategieauswahl herangezogen?

e F2: Inwiefern decken die vordefinierten Strategien die Indikatorkombinationen
realer Anforderungsbeschreibungen ab?

e F3: Wie zuverlissig funktionieren die definierten Indikatoren auf realen
Anforderungsbeschreibungen?

e F4: Welche Fehler beeinflussen die Indikatorzuverlédssigkeit und erschweren
somit die Strategieauswahl?

e F'5: Welche Fehler beeinflussen die Strategieanwendung und verschlechtern
somit das Gesamtergebnis?

Die Beantwortung dieser Fragen erfolgt auf einem Evaluationskorpus. Hierfiir wird
das in Abschnitt 6.1 vorgestellte Anforderungsbeschreibungskorpus hinzugezogen.
Dabei werden 400 zufillige Anforderungsbeschreibungen aus dem Korpus im Umfang
von zwei bis fiinf Sdtzen (100 Beschreibungen je Umfang) vom Softwaresystem
verarbeitet.

8.2 Evaluation der Anwendbarkeit von Strategien 189

Das Vorgehen umfasst die manuelle Auswertung der Fragen F1-5 auf dem Test-
korpus. Hierzu werden die 400 Anforderungsbeschreibungen sukzessive an das Soft-
waresystem iibermittelt und die Verarbeitungsergebnisse protokolliert. Dies umfasst
zum Beispiel die erfolgte Strategieauswahl oder die erkannten und der Entscheidung
zugrunde liegenden Indikatoren. Die Evaluationsergebnisse werden im Folgenden
detailliert dargestellt.

8.2.2 Evaluation der Strategieauswahl

In diesem Abschnitt wird untersucht, wie haufig sich der Selector bei der Strategieaus-
wahl auf Grundlage der kontextsensitiven Indikatoren aus Abschnitt 5.3 hinsichtlich
der einzelner Strategien zur Verarbeitung und Kompensation von Anforderungsbe-
schreibungen entscheidet. Grundsétzlich kann der Selector dabei zwischen vorde-
finierten Strategien oder einer eigenen Konfigurationsvariante (Fallback-Strategie)
wiahlen. Vordefiniert sind die in Abschnitt 5.2 vorgestellten Konfigurationsvarianten
(Evaluationsgegenstand), wobei die Complete-Strategie nicht bei der Strategieaus-
wahl beriicksichtigt wird, da sowohl die Vagheitserkennung als auch die erweiterte
Ergebnisausgabe keine Evaluationsgegenstédnde sind. Abbildung 8.1 zeigt die Aus-
wahlhdufigkeit der einzelnen Strategien.

5 Sétze
4 Satze
3 Sétze

2 Sitze

0 20 40 60 80 100
(%]
I Fallback Basic Basic Plus wmm Default

Abbildung 8.1: Auswahlhiufigkeit angewendeter Kompensationsstrategien

Es fallt auf, dass die Fallback-Strategie unabhéngig vom Anforderungsbeschrei-
bungsumfang im Durchschnitt 77% der Kompensationsdurchlidufe abdeckt. Dies
erscheint insbesondere angesichts der erwarteten Effizienzgewinne vordefinierter Stra-
tegien suboptimal. Andererseits ist nun nachgewiesen, dass die Fallback-Strategie
als Riickfall-Strategie, fiir den Fall, dass keine vordefinierte Strategie hinsichtlich
der gefundenen Indikatorkombination geeignet ist, greift. Das heifit aber auch im
Umkehrschluss, dass kaum eine der vorher definierten Strategien im Echtfall Anwen-
dung findet, da eine partielle Abdeckung einer Indikatorkombination seitens einer
Strategiekonfiguration ausgeschlossen wurde (s. Abschnitt 5.2). Dies ist auf Grund
der Moglichkeit, eigene Strategiekonfigurationen zu erstellen, unproblematisch.
Neben der Fallback-Strategie werden laut Abbildung 8.1 die Basic Plus- (14%) und
die Default-Strategie (9%) auf die Anforderungsbeschreibungen angewendet, wobei
die Default-Strategie erst ab einem Anforderungbeschreibungsumfang von drei Sétzen
vom Selector hinzugezogen wird. Ferner fillt auf, dass die Basic-Strategie unabhéngig

F1l

F2

190 8 Evaluation

vom Anforderungsbeschreibungsumfang keine Beriicksichtigung findet. Dies bedeutet,
dass in keiner der evaluierten Anforderungsbeschreibungen einzig die Indikatorkombi-
nation der syntaktischen Disambiguierung und der Unvollstdndigkeitskompensation
(SYN + INC) gefunden wurde. Werden neben der Basic-Strategie auch andere Indika-
torkombinationen begutachtet (vgl. Tabelle 8.1), fallt auf, dass stattdessen die Kom-
bination der lexikalischen Disambiguierung und der Unvollstandigkeitskompensation
(WSD + INC) vorkommt (97 Mal). Daneben kommt auch der Indikator fiir lexi-
kalische Ambiguitét (WSD) sehr oft vor (110 Mal), wird aber bislang von keiner
vordefinierten Strategie abgedeckt, sodass die Fallback-Strategie mit eigenen Konfi-
gurationsvarianten eingreift.

Hiufigkeit Indikatorkombination Aktiv Aktion
0 SYN + INC!! Ja Wegfall
56 WSD + SYN + INC!?2 Ja
37 WSD + SYN + INC + REF!® Ja
33 WSD + SYN + REF Nein
38 WSD + SYN Nein
97 WSD + INC Nein Aufnahme
110 WSD Nein Aufnahme

Tabelle 8.1: Indikatorkombinationen und deren Haufigkeiten (Auszug)

Das héufige Vorkommen der Indikatorkombination WSD + INC sowie des Indikators
WSD begriinden die Aufnahme als neue Konfigurationsvariante, deren Auswir-
kung auf die einzelnen Strategiehédufigkeiten sich in Abbildung 8.2 ablesen lésst. So
iibernimmt die Fallback-Strategie in der neuen Strategiekonstellation nur noch 25%
(zuvor 77%) der Anforderungsbeschreibungen, wéihrend die WSD-Strategie 28% und
die WSD+INC-Strategie 24% tibernehmen. Die Basic-Strategie wird vollstandig ver-
worfen, was aufgrund der ausbleibenden Anwendung (mangels Indikatorkombination)
keine Ergebnisverdnderung herbeifiihrt.

5 Sétze
4 Sitze

3 Sétze

2 Sétze
|

80 100

(%]
W Fallback e WSD WSD+INC Basic Plus wmm Default

Abbildung 8.2: Aufteilung der Kompensationsstrategien nach Strategierevidierung

151 A quivalent zur Basic-Strategie (s. Abschnitt 5.2.2).
152 Aquivalent zur Basic Plus-Strategie (s. Abschnitt 5.2.3).
153 Aquivalent zur Default-Strategie (s. Abschnitt 5.2.4).

8.2 Evaluation der Anwendbarkeit von Strategien 191

Bislang wurde nur die Aufteilung der angewendeten Strategien betrachtet, nicht aber,
ob die zugrundeliegenden Entscheidungen auf Indikatorbasis auch korrekt waren.
Dieser Frage wird im Folgenden Abschnitt nachgegangen.

8.2.3 Evaluation der Indikatorzuverlassigkeit

Die in Abschnitt 5.3 beschriebenen Indikatoren basieren auf linguistischen Merk-
malen und Merkmalsmustern, die mittels verschiedener Tools ermittelt werden
(z. B. Chunking, WordNet-Abgleich). Hierbei konnen Fehler auftreten, die zu falschen
oder nicht erkannten Indikatoren fithren. Eine hohe Indikatorzuverléssigkeit ist er-
reicht, wenn die erkannte Notwendigkeit einer Methodenanwendung iiberwiegend kor-
rekt ist — die zugrundeliegenden Tools demnach zusammen mit definierten Merkmalen
und Mustern eine geringe Fehlerquote aufweisen (s. Abschnitt 5.3.2.5). Abbildung 8.3
zeigt eine Erweiterung von Abbildung 5.13, welche die unterschiedlichen Indikatoren
zusammen mit ihren zugrundeliegenden Merkmalsquellen darstellt.

Aktion —

Rolle — WordNet

Komponente
.— Strategiewahl
Objekt —

Sonstiges —

Prioritat —
Anforderungsextraktion Chunking Muster

Abbildung 8.3: Indikatoren und ihre zugrundeliegenden Merkmalsquellen

Im Folgenden gilt es zu evaluieren, wie oft Fehler bei der Indikatorerkennung auftreten.
Dies ldsst sich dabei als binéres Problem verstehen: Entweder liegen Merkmale
(z. B.fiir lexikalische Ambiguitéit) in der Anforderungsbeschreibung vor, oder sie
liegen nicht vor. Die Akkuratheit (engl. Accuracy) der Indikatoren liefle sich dann
dariiber bestimmen, wie viele Anforderungsbeschreibungen in Relation zu allen
Beschreibungen korrekt klassifiziert wurden:

_ korrekt klassifizierte Beschreibungen

8.1
alle betrachteten Beschreibungen (81)

Im Umkehrschluss bedeutet das, dass die Fehlerrate f sich durch f = 1—a beschreiben
lasst. Dieses Mafl der Akkuratheit bzw. Fehlerrate ist allerdings als oberflachlich
anzusehen, da vier mogliche Ergebniskombinationen existieren, wovon bisher nur
zwel beriicksichtigt werden. Diese vier Ergebniskombinationen sind:

e True Positive (TP): Merkmal liegt vor, der Indikator schldgt aus

F3

192 8 Evaluation

e False Positive (FP): Merkmal liegt nicht vor, der Indikator schligt aus
o False Negative (FN): Merkmal liegt vor, der Indikator schlégt nicht aus

e True Negative (TN): Merkmal liegt nicht vor, der Indikator schligt nicht aus

Allerdings ist es auch fiir menschliche Leser nicht immer einfach, Merkmale zu-
verléssig zu identifizieren, sodass in dieser Arbeit drei (angeleitete) Evaluatoren die
Anforderungsbeschreibungen evaluieren. Das Ergebnis des Softwaresystems wird dann
mit dem gemeinsamen Ergebnis (Mehrheitsentscheid) der Evaluatoren verglichen.
Bezogen auf die in Abschnitt 8.2.2 herangezogenen 400 Anforderungsbeschreibungen
stellt Tabelle 8.2 die Ergebniskombinationen pro Indikator dar.

[TP TN FP FN
INC| 171 120 34 75
REF | 156 170 11 63
SYN| 142 179 22 57
WSD|[400 0 0 0

Tabelle 8.2: Haufigkeit der Ergebniskombinationen

Wie angemerkt, ist ein ,,Globalwert fiir die [...] Genauigkeit nicht ausreichend* (Cars-
tensen et al., 2010, S.155), da zum Beispiel auch von Interesse ist, wie zuverlissig
das angewandte Verfahren arbeitet. An dieser Stelle wird auf zwei etablierte Evalua-
tionsmafBe, die vor allem im IR genutzt werden, zuriickgegriffen (Carstensen et al.,
2010, S.155): Recall (r) und Precision (p).

TP
S — 8.2
"TTPYFN ®2)
Der Recall gibt an, wie viele der Anforderungsbeschreibungen, die kompensations-
bediirftig sind (d.h.in denen Merkmale einzelner Indikatoren vorliegen) gefunden
werden. Ein niedriger Recall bedeutet demnach, dass viele defizitédre Anforderungs-
beschreibungen tibersehen werden (Carstensen et al., 2010, S. 586).

TP

- 8.3
TP+ FP (8:3)

p

Die Precision gibt an, wie haufig die als kompensationsbediirftig erkannten Anforde-
rungsbeschreibungen auch wirklich kompensationsbediirftig sind; d. h. wie haufig ein
vermeintlich erkannter Indikator wirklich vorliegt (Carstensen et al., 2010, S. 155).

Wie Carstensen et al. (2010, S.155) zu bedenken geben, kénnen ,, Precision und
Recall [...] stark voneinander abweichen. Als einheitliches Giitemafl wird daher oft
das als F-MaB (engl. F-Score) bekannte harmonische Mittel angegeben“ (Carstensen
et al., 2010, S. 155). Um die Aussagekraft der erhobenen Evaluationswerte zu erhhen,
wird im Folgenden das harmonische Mittel herangezogen (5 = 1).

p-r

F5:(1+[>’2)-7(52_p)+r (8.4)

8.2 Evaluation der Anwendbarkeit von Strategien 193

2:p-r
ptr

= (8.5)

An dieser Stelle ist zu bedenken, dass die Hinzunahme einer (vermeintlich) nicht
zwingend notwendigen Kompensationsmethode (gleichzusetzen mit False Positive) le-
diglich einen negativen Einfluss auf die Gesamtlaufzeit hat (s. Abschnitt 8.3), wihrend
das Nichtberiicksichtigen eines Indikators zu einer Ergebnisverschlechterung fithrt
(False Negatives), da die notwendige Kompensation ausbleibt. Wie aufgezeigt wurde,
betrifft dies derzeit gleich mehrere Indikatoren. Es bietet sich an dieser Stelle demnach
an, den F-Score hinsichtlich der hoheren Gewichtung des Recalls zu modifizieren,
um den Einfluss der FN stirker zu beriicksichtigen (5 = 2).

S-p-r

Fy=—
4-p+r

(8.6)

Tabelle 8.3 stellt die Ergebnisse der verschiedenen Evaluationsmafle dar.

‘ Accuracy ‘ Recall Precision ‘ F,-Score F,-Score

INC 0,73 0,70 0,33 0,76 0,72
REF 0,82 0,71 0,93 0,81 0,75
SYN 0,30 0,71 0,87 0,78 0,74
WSD 1,00 1,00 1,00 1,00 1,00

Tabelle 8.3: Ergebnisse der Indikatorevaluation

Wie Tabelle 8.3 zeigt, weist die Kompensation von Unvollstidndigkeit (INC) den nied-
rigsten Fo-Score auf, was insbesondere auf einen niedrigen Recall-Wert zuriickzufiihren
ist. Im Vergleich dazu ist die referentielle Disambiguierung (REF) hinsichtlich des
Recalls als gleichwertig zur Unvollsténdigkeit einzustufen, kann jedoch eine wesentlich
hohere Precision aufweisen (A 0,1), was sich allerdings nur gering auf den Fo-Score
auswirkt (A 0,03). An dieser Stelle ist wiederum ein deutlicher Unterschied in der
Accuracy zu erkennen (A 0,09).

Die syntaktische Disambiguierung (SYN) weist eine hohe Precision und einen
guten Recall auf. Demgegeniiber scheint nur die lexikalische Disambiguierung noch
fehlerfreier zu arbeiten, was allerdings nur bedingt stimmt: Lexikalische Ambiguitat
ist auf Grundlage einzelner Token festzustellen, die Indikatoren attestieren jedoch
fiir die gesamte Anforderungsbeschreibung Ambiguitdt und Unvollsténdigkeit. Es ist
daher sehr wahrscheinlich, dass in allen Beschreibungen mindestens ein ambiges Token
korrekt als ambig erkannt wird und somit sowohl der Recall als auch die Precision
sehr gut sind. Nichtsdestotrotz kommen auch hier Fehler in der Indikatoranwendung
vor'®, die derzeit nur nicht sichtbar sind. Der WSD-Indikator stellt somit einen
Sonderfall dar, der in Abschnitt 8.2.4.1 besprochen wird.

154Djie Fehler entstehen bspw. durch fehlende Eintriige in den zugrundeliegenden Ressourcen. Dass
Eintrége in WordNet fehlen kénnen, wurde dabei bereits in Abschnitt 3.3.1.2 angemerkt.

F4

194 8 Evaluation

Bei der Interpretation dieser Ergebnisse ist zu beriicksichtigen, dass die Ergebnisgiite
unmittelbar von der Text- und Evaluationskomplexitéit abhéngt, was bedeutet, dass
fiir einfachere Evaluationsgegenstinde beispielsweise ein Fi-Score von 100% als
sehr gut gilt, wihrend bei komplexen Gegenstéinden bereits 60-70% als sehr gut
bezeichnet werden konnen (Carstensen et al., 2010, S. 586). Hierzu merken Carstensen
et al. (2010, S.586) an, dass ,auch Menschen [...] nicht in der Lage [sind], bei der
Analyse von komplexen Texten sowohl 100% Vollstindigkeit als auch 100% Prizision
zu erreichen (Carstensen et al., 2010, S.586). Um die aufgetretenen Fehler sowie
die Evaluationsergebnisse besser nachzuvollziehen, wird in Abschnitt 8.2.4 eine
Evaluation der Fehlertypen vorgenommen.

8.2.4 Evaluation maoglicher Fehlertypen

Die Zuverléssigkeit von Indikatoren und Strategien wird von unterschiedlichen Fehlern
negativ beeinflusst, die im Folgenden besprochen werden. Dabei ist das Ziel, bestimm-
te Fehlertypen auszumachen und die jeweilige Auswirkung auf die Zuverlissigkeit der
Indikatoren (s. Abschnitt 8.2.4.1) und Strategien (s. Abschnitt 8.2.4.2) abzuschétzen.

8.2.4.1 Indikatoranwendung

Wie sich in Abschnitt 8.2.3 zeigt, treten bei der Indikatoranwendung Fehler auf. Die
Frage, die nun beantwortet werden muss, ist: Welche Fehlerarten beeinflussen die
Indikatorzuverléssigkeit und erschweren somit die Strategieauswahl? Ausgehend von
diesen Fehlertypen ist in der Weiterentwicklung des hier beschriebenen Softwaresys-
tems beispielsweise iiber zusétzliche Schritte der Qualitatssicherung nachzudenken.

Indikatoren fiir Unvollstandigkeit

Partielle Unvollstandigkeit wird iiber fehlende Details (semantische Kategorien)
erkannt (s. Abschnitt 5.3.2.4). Dabei gilt Unvollstdndigkeit als gegeben, wenn die
semantischen Kategorien der Rolle oder Komponente (Subjekt) fehlen oder aber
das Objekt einer FA fehlt. Wihrend die Kompensation von Unvollstandigkeit auf
SRL-Verfahren zuriickgreift, um die Argumente eines Priadikats als Kompensati-
onskandidaten zu extrahieren, bedient sich der Indikator demnach der, von der
Anforderungsextraktion bereitgestellten, semantischen Kategorien (bzw. der Infor-
mation iiber deren Fehlen). Hierbei kann es zu unterschiedlichen Fehlern kommen.
Diese treten allerdings allesamt urspriinglich nicht beim Indikator, sondern bereits
bei der Anforderungsextraktion auf. Zum einen kénnen semantische Kategorien
erkannt werden, die allerdings in der Anforderungsbeschreibung so nicht existieren
(fehlerhafte Erkennung). Dies ist beispielsweise bei ,, Export to adobe pdf format would
be nice* der Fall, wo filschlicherweise ein Subjekt erkannt wird (,, Ezport“). Zum
anderen konnen einzelne semantische Kategorien nicht erkannt werden (ausbleibende
Erkennung), wie beispielsweise die Rolle ,, We* in ,, We would like to add a column for
external links [...]“. ITm Hinblick auf die Indikatorzuverlissigkeit ist die ausbleibende
Erkennung semantischer Kategorien weniger schédlich fiir das Gesamtergebnis, da
somit im schlimmsten Fall die Kompensation von Unvollstédndigkeit initiiert werden
wiirde, was lediglich eine schlechte Performanz (Gesamtlaufzeit) bedeuten wiirde.

8.2 Evaluation der Anwendbarkeit von Strategien 195

Die genauere Betrachtung der Evaluationsergebnisse zeigt dabei, dass beide Fehlerty-
pen bei der Anwendung auf realen Daten vorzufinden sind. Der hohe Freiheitsgrad
in den Formulierungen fiihrt dabei oftmals zu Unvollstéindigkeit, beispielsweise wenn
Auslassungen bestehen wie in ,, Would like to see an option to Open and Close archive*
(fehlende Rolle). Hierbei fillt auf, dass sehr oft das Subjekt in Anforderungsbeschrei-
bungen ausgelassen wird und der Indikator dadurch aktiviert wird.

Wie in Abschnitt 5.3.2.4 beschrieben, ist das Objekt nicht immer erforderlich
um einen wohlgeformten Satz zu bilden und dennoch wird es vom Indikator als
notwendig angesehen. Dies ermoglicht es, in grammatikalisch fehlerhaften Sétzen
wie ,, I need a software which can be only play mp3 files on Android but the user
not allow to copy or send with bluetooth® zu erkennen, dass kein Zusammenhang
zwischen dem zu Beginn eingefiihrten Objekt ,,mp3 files“ und den Aktionen , copy*
und ,,send“ festgestellt werden kann. Dies fithrt allerdings auch dazu, dass Pradikate
als unvollsténdig erkannt werden, die kein Objekt bendctigen: ,, App should be able to
run at startup“. Wie die Evaluation zeigt, sind diese im Anforderungskontext aber
die Ausnahme. Ein weiteres Beispiel ist der Satz: , As an administratorgee when
Irouie start a game Ipoye should be able to put the mazimumopjer: durationopjers of
the game®. Interessant an diesem Beispiel ist zum einen, dass keine Unvollsténdigkeit
erkannt wird, was korrekt ist. Zum anderen, dass syntaktische Ambiguitdt aufgrund
der PP-Anbindung vorliegt: Die PP | of the game* wird nicht an die NP ,, mazimum
duration” gebunden (und ist somit nicht Teil des Objekts), sondern an die VP.
In diesem Fall hat diese syntaktische Ambiguitit keinen negativen Einfluss auf
den Unvollstéindigkeitsindikator, es zeigt aber, dass die Indikatoren fiir bestimmte
linguistische Phénomene von eben diesen negativ beeinflusst werden kénnen.

Indikatoren referentieller Ambiguitit und Koreferenz

Wihrend der Evaluation haben sich beim Indikator fiir referentielle Ambiguitat und
Koreferenz drei Fehlertypen herauskristallisiert: Fehlerhafte POS- Tags, fehlerhafte
semantische Kategorien und fehlende Synonyme.

Die Erkennung potentiell ambiger Referenzen basiert in dieser Arbeit mafigeblich
auf POS-Tags, die als Muster (z. B.,NN+NN+PRP*) satziibergreifende Anwendung
finden (s. Abschnitt 5.3.2.3). Allerdings zeigt sich, dass der zugrundeliegende POS-
Tagger nicht fehlerfrei arbeitet. Dies ist nicht verwunderlich, fithrt jedoch zu Fehlern,
da die (in der Anzahl limitierten) definierten Muster des Indikators nicht zuverlissig
greifen. Ein Wechsel auf einen anderen POS-Tagger wire zwar moglich, allerdings
weisen alle aktuellen Tagger eine gewisse Fehlerquote auf (ACL Wiki, 2016).

Zur Erkennung von Koreferenz werden iiber die POS-Tags hinaus die semantischen
Kategorien und Ahnlichkeitswerte (der semantisch annotierten Worter) herangezogen
(s. Abschnitt 5.3.2.3). Hierbei zeigt sich, dass zwei Fehlertypen gehduft auftreten
und zu falschen Ergebnissen fithren konnen: Zum einen sorgen fehlerhafte seman-
tische Kategorien dafiir, dass ein Vergleich zweier potentiell koreferenter Worter
ausbleibt, da sie nicht in derselben semantischen Kategorie auftreten (z.B.wird
»Application® als Komponente und einmal filschlicherweise als Objekt erkannt). Da
die semantischen Kategorien von der Expertenkomponente zur Anforderungsextrak-
tion (REaCT) bereitgestellt werden, ist auf deren Qualitét zu diesem Zeitpunkt zu
vertrauen. Mafinahmen zur Qualitétsverbesserung sind somit bei der Anforderungsex-

196 8 Evaluation

traktion vorzunehmen. Zum anderen ist die zugrundeliegende Synonymliste (derzeit
manuell) zu erweitern, da zwar zum Beispiel ,, System* auf ,, Application* verweist,
in den Beschreibungen aber oftmals von ,, Apps“ gesprochen wird und daher keine
Ubereinstimmung gefunden wird. Im Vergleich zu den fehlerhaft erkannten semanti-
schen Kategorien ist dieses Defizit einfach zu beheben (Aufnahme weiterer Synonyme
in die Liste). Das ergénzende Einbinden externer Ressourcen (z. B. WordNet) kann ei-
ne hohere Abdeckung erméglichen, hitte allerdings in diesem Beispiel (,, Apps*) nicht
geholfen, da kein Eintrag hierzu vorliegt. Eine kombinierte Losung aus Synonymliste
und WordNet erscheint dennoch auf Grund der hoheren Abdeckung grundsétzlich
zielfithrend, wenngleich eine manuelle Ergéinzung unvermeidbar ist. Bestehen bleiben
Rechtschreibfehler als Fehlerquelle, die derzeit einen Abgleich mit der Synonymliste
und WordNet behindern.

Indikatoren syntaktischer Ambiguitat

Die bereits beim Indikator fiir referentielle Ambiguitit und Koreferenz genannte
Fehlerquote des POS-Taggers kann auch beim Indikator fiir syntaktische Ambiguitét
zu Fehlern fithren, da auch dieser auf POS-Tags beim Musterabgleich zuriickgreift.
Zusitzlich werden Chunks im Musterabgleich hinzugezogen, die ebenfalls fehlerhaft
sein kénnen (vgl. Abbildung 8.3). Somit ist sowohl die Erkennung von Koordinations-
ambiguitit (POS-Tags) als auch die Erkennung von Pripositionalphrasen (mittels
Chunks) grundsitzlich fehleranfillig. Im Falle der Erkennung von Koordinations-
ambiguitédt sind POS-Tags die einzigen Anhaltspunkte, die berticksichtigt werden.
Fehlerhafte Tags fithren daher zu falschen Entscheidungen. Insbesondere die Erken-
nung von Konjunktionen ist fiir einen performanten Indikator bedeutsam, da diese
als Vorauswahlkriterium herangezogen werden. Hierzu zeigt die Evaluation, dass
die Worter ,and“ und ,,or* alle richtigerweise als Konjunktionen annotiert wurden.
Andersherum wurden auch alle annotierten Konjunktionen korrekt erkannt. Die drei
haufigsten Konjunktionen sind dabei ,,and“ (310 Treffer), ,,or* (294 Treffer) und
»but® (218 Treffer). Ein vom Indikator aufgrund von Konjunktionen vorselektierter
Satz ist: ,, This software must be able to create andcc deliver highly targeted andcc
personalized messages®.

Fehlerhaft erkannte Sétze sind vor allem in der Kombination von Modifikatoren
und Konjunktionen vorzufinden. So wurde der Satz ,, Please add an option to clean
search window text on safe;; lock or application minimize“ vom Indikator als
potentiell ambig eingestuft, da , safe* als Adjektiv (Modifikator) und nicht als Nomen
erkannt wird. Und auch der Satz ,, App should be able to play songs from my favorite
artists via amazon;; music and winamp* gilt filschlicherweise als potentiell
ambig, da ,,amazon® als Adjektiv (Modifikator) annotiert wurde.

Im Hinblick auf potentielle Ambiguitat durch PP-Anbindungen fiihren fehlerhafte
Chunks (z.B.NP statt VP) zu Fehlern, da die definierten Muster filschlicherweise
oder nicht mehr angewendet werden. Ein Beispiel ist der Satz ,, The message dis-
played could be turnedyp on/offyp inpp preferences if desired“, in dem ,,on/off*
falschlicherweise als NP erkannt wurde. Dabei erzielt der OpenNLP Chunker in
Performanzgegeniiberstellungen bereits iiberzeugende Ergebnisse (z. B. Pinto et al.,
2016), sodass ein Wechsel auf alternative Chunker nicht unbedingt eine Verbesserung
vermuten lésst.

8.2 Evaluation der Anwendbarkeit von Strategien 197

Wihrend der Evaluation haben sich auch Félle aufgetan, in denen Indikatoren
mehrfach greifen wiirden, wie zum Beispiel bei: ,, It would be nice to be able to selecty p
multiple;; filesyns and foldersyys/np inpp the folder tree, and to be able to
drag these selected files to the playlist* (Koordinations- und Anbindungsambiguitét).

Indikatoren lexikalischer Ambiguitat

Auch der Indikator fiir lexikalische Ambiguitét ist einer weiteren Evaluation zu
unterziehen. Denn wird die gesamte Anforderungsbeschreibung betrachtet, liegt
in allen evaluierten Anforderungsbeschreibungen lexikalische Ambiguitét vor, da
immer mindestens ein Token (in einer berticksichtigten semantischen Funktion)
vorliegt, das potentiell ambig ist. Allerdings wird bisher nicht betrachtet, wie oft
auf dem Weg zu dieser Entscheidung Fehler passieren. Wie viele Token konnen
beispielsweise hinsichtlich potentieller Ambiguitéat nicht bewertet werden, da die
zugrundeliegende Ressource (WordNet) keinen entsprechenden Eintrag enthélt? Zur
weiteren Erlduterung der Problematik ist der Beispielsatz ,,I want to unsubscribe
from html newsletters with one click“ in Abbildung 8.4 dargestellt.

Fehler 1Lesart 1 Lesart 4 Lesarten
*/\m/_\ X
unsubscribe html newsletters click
VB NN NNS NN
Aktion Objekt Objekt Arg Akt.

Abbildung 8.4: Fehler bei der tokenbasierten Indikatorbestimmung (WSD)

Der Indikator fiir lexikalische Ambguitidt markiert den dargestellten Satz richtigerwei-
se als ambig. In dieser Entscheidung werden die ersten drei Token ,, I, , want“ und
,to“ ignoriert, da sie entweder keiner oder einer nicht beriicksichtigten semantischen
Kategorie angehoren (s. Abschnitt 5.3.2.1). Das vierte untersuchte Token , unsubs-
cribe” fithrt zu einem Fehler, da es in WordNet nicht gefunden werden kann. Es
bleibt an dieser Stelle demnach unsicher, ob lexikalische Ambiguitét vorliegt und
ob der Indikator zu aktivieren ist. Die folgenden beiden relevanten Token , html“
und , newsletters* haben jeweils nur eine Lesart in WordNet und sind daher als
nicht ambig einzustufen. Erst das zehnte Token (,click®) weist Ambiguitdt auf und
ist in WordNet vertreten, sodass der Indikator greift. Hierbei handelt es sich nicht
um ein Problem der Genauigkeit, da es sehr unwahrscheinlich (wenn auch nicht
ausgschlossen) ist, dass alle ambigen Token einer Anforderungsbeschreibung nicht
von WordNet abgedeckt werden und der Indikator daher filschlicherweise deaktiviert
bleiben wiirde. Jedoch ist es aus Performanzgriinden problematisch, da in diesem Fall
drei Anfragen gestellt wurden, die eigentlich, da ,,unsubscribe* als Ambiguitétshinweis
geniigt hitte!®, nicht erforderlich gewesen wiiren.

Diese Art von Fehler kommt bei der Verarbeitung der 400 Anforderungsbeschrei-
bungen aus Abschnitt 8.2.2 insgesamt 47 Mal (12%) vor und erzeugt 55 zusétzliche

155 Unsubscribe kann beispielweise als ,,sich abmelden® oder ,abbestellen“ gelesen werden.

F5

198 8 Evaluation

Anfragen. Diese Angabe zeigt allerdings nur die Fille auf, die Einfluss auf die Indi-
katorbestimmung haben. Werden alle Token der 400 Anforderungsbeschreibungen
betrachtet, die keine Stoppworter sind (13.353 Token), so sind von diesen 82% in
WordNet abgebildet. Hiervon wiederum sind 87% ambig. Das bedeutet, dass po-
tentiell 2.366 Token (18%) im Evaluationskorpus die Performanz dieses Indikators
schidigen konnen, da sie nicht von WordNet abgebildet werden und zusétzliche
Anfragen begriinden. Unter genauerer Betrachtung ist dabei festzustellen, dass sich
diese Menge an Token vor allem aus falsch geschriebenen Wértern'®®, Fachvokabular,
Produktnamen (z. B.,Spotify“) und Dateiendungen (z. B.,xml“) zusammensetzt.
Dieser Performanzaspekt wird in Abschnitt 8.3 auf Systemebene untersucht.

8.2.4.2 Strategieanwendung

Die Strategieanwendung kann zu fehlerhaften Ergebnissen fithren. Die Fehler rei-
chen dabei von fehlenden Satzteilen, falsch klassifizierten Anforderungen bis hin
zu unleserlichen Ergebnissen. Dabei konnen die Fehlerquellen vielféltig sein. Im
Folgenden sind insbesondere die Fehler von Interesse, die sich durch eine Verkettung
falscher Entscheidungen und fehlerhafter Informationen ergeben. Abbildung 8.5 zeigt
beispielsweise ein fehlerhaftes Kompensationsergebnis (liickenhafte Koreferenzkette,
keine Unvollstédndigkeitskompensation).

2 As a user, | want to filter undesired mails

2 As a user, | want to store [arg. missing

I As a user, | want the ability to filter undesired mails and i want to store them seperatly.

Abbildung 8.5: Fehlerhafte Kompensation: Argument wurde nicht zugeordnet

In diesem Beispiel wird korrekt erkannt, dass ,,them* als Objekt nicht isoliert in-
terpretiert werden kann, sodass es auf ,mails” bezogen werden muss. Allerdings
ist die Referenzierung misslungen, da das Personalpronomen ,i“ fialschlicherweise
(evtl. aufgrund der Schreibweise) seitens der Anforderungsextraktion als Objekt
erkannt wurde, dem intern sowohl das POS-Tag NN als auch PRON zugeordnet
wurde. Die Strategie musste in diesem Fall den Kompensationsvorgang abbrechen, da
keine Entscheidung iiber das korrekte Objekt getroffen werden konnte. Im Folgenden
werden weitere Fehlertypen aufgezeigt, die wihrend der Evaluation auftraten.

Auswirkungen falsch oder nicht erkannter semantischer Kategorien

Fehler in semantischen Kategorien sind gravierend, da diese vielfdltige Verwendung
in den Indikatoren, Strategien und Methoden finden. Abbildung 8.6 zeigt die Verwen-
dung der IE-Ergebnisse in der strategiebasierten Weiterverarbeitung und zeigt auch,
ob diese Komponenten anfillig fiir falsche IE-Ergebnisse sind (schwarz markiert).

156K eine Rechtschreibkorrektur durchzufiihren ist weiterhin sinnvoll, da eine Rechtschreibkorrektur
zwar einen Abgleich mit WordNet potentiell ermoglicht, jedoch ggf. falsche Token (Ergebnis
falscher Korrektur) abgleicht und damit insgesamt die Indikatorzuverlissigkeit mindert.

8.2 Evaluation der Anwendbarkeit von Strategien 199

Die Vagheitserkennung bezieht die erkannten semantischen Kategorien lediglich
in der Form ein, als dass eine Filterung der zu untersuchenden Token erfolgen kann.
Demnach werden nur die Token auf Vagheit gepriift, die einer semantischen Kategorie
zugeordnet werden konnten. Aufgrund der Performanz der Vagheitserkennung ist
eine solche Filterung aber nicht notwendig, sodass in der derzeitigen Umsetzung kein
negativer Effekt durch falsche oder nicht erkannte semantische Kategorien auftritt.

Lex. Disambiguierung Ref. Disambiguierung

Ergebnis-
Vagheits- strukturierung

Unvollstandigkeits- erkennung

kompensation

Abbildung 8.6: Komponenten mit Einbezug der IE-Ergebnisse.
e = Fehleranfillig; o = Nicht fehleranfillig; © = Begrenzt fehleranfillig

Eine vergleichbare Filterung findet bei der lexikalischen Disambiguierung statt.
Hier triagt das Vorgehen allerdings wesentlich zur Performanz des Verfahrens bei, da
nur Token, die einer semantischen Kategorie angehoren, mit Zusatzinformationen aus
BabelNet angereichert werden. Die Auswirkungen méoglicher fehlerhafter semantischer
Kategorien sind dabei zu vernachléssigen, da die Token in jedem Fall disambiguiert
werden (BabelID) und lediglich Zusatzinformationen fehlen (z. B. Domiéine). Dariiber
hinaus werden die semantischen Kategorien auch als Hinweis auf Mehrwortlexeme
herangezogen, was allerdings ebenfalls nicht zu Fehlern in der Disambiguierung
sondern maximal zu Performanzeinbuflen fithren kann, weshalb die lexikalische
Disambiguierung in Abbildung 8.6 schraffiert dargestellt ist.

Ebenfalls der Filterung durch die semantischen Kategorien unterliegen Prédikate,
die im Rahmen der Unvollstindigkeitskompensation auf Vollstandigkeit zu
priifen sind. Hierbei werden nur diejenigen Pradikate gepriift, die in der seman-
tischen Kategorie ,, Aktion“ vorliegen. Ein filschlicherweise nicht als Aktion erkanntes
Priadikat wird daher nicht auf Vollstandigkeit gepriift und verbleibt im Zweifel unvoll-
standig. Umgekehrt werden (vermeintliche) Priadikate bzw. Aktionen kompensiert,
die nicht verarbeitet werden miissten (vgl. Abbildung 8.7). Die Auswirkung von
Fehlern in der Anforderungsextraktion ist demnach hoher als beispielsweise bei der
Vagheitserkennung, auch wenn es prinzipiell das gleiche Vorgehen ist.

9 The Phone app should be able import contact
2 The Phone app should be able speed dial list

& Phone app should be able to import a contact to speed dial list.

Abbildung 8.7: Fehlerhaftes Gesamtergebnis

200 8 Evaluation

Abbildung 8.7 zeigt die FA , [Phone app/komponente should be able to importagion a
contact to speedapiion dial list“. Falschlicherweise wurde ., speed nicht als Teil des
Objekts (,,speed dial list*), sondern als Aktion (,,to speed*) erkannt. Aus diesem Grund
wurde eine weitere FA extrahiert, welcher , dial list“ als Objekt zugeordnet wurde. In
der Funktion der Aktion ist ,,speed Gegenstand der Unvollstdndigkeitskompensation
und wére entsprechend weiterverarbeitet worden, ohne das dies notwendig gewesen
wére. Allerdings greift in diesem Fall die Unvollstédndigkeitskompensation nicht, da der
entsprechende Indikator (korrekterweise) keine Unvollstandigkeit feststellen konnte.
Dieses Beispiel zeigt auf, dass ein solcher Fehler nicht immer einfach zu erkennen ist.
Auf Grund der falschen Zuordnung der semantischen Kategorie wurde aus dem Nomen
ein Verb, dem in der Funktion der Aktion alle Argumente zugeordnet werden konnten
(,phone app“, ,dial list*) und das auch durch die lexikalische Disambiguierung als
korrekte Lesart bestatigt wurde.

Fiir die referentielle Disambiguierung sind die semantischen Kategorien von
Bedeutung, da sie zur Bildung von Koreferenzketten herangezogen werden kénnen.
Liegen allerdings Fehler in der Kategoriezuweisung vor, kénnen falsche Koreferenzket-
ten erstellt bzw. bestehende Ketten filschlicherweise erweitert werden. Dies wiederum
kann auch die Kompensation von Unvollstandigkeit betreffen, wenn Kompensations-
anfragen durch die referentielle Disambiguierung falsch modifiziert werden.

Gravierenden Einfluss auf die Ergebnisqualitdt im Sinne der Ergebnisstruktu-
rierung in kontrollierter Sprache (Satzstruktur) hingegen haben die semantischen
Kategorien. Da die erkannten Kategorien (z. B. Rolle) entsprechend der definierten
Satzmuster (s. Abschnitt 5.5.7) auf der Benutzeroberfliche positioniert werden, fithren
falsch erkannte Kategorien zu unleserlichen oder unvollstandigen Satzen und damit
mindestens zu einem schlechten Ergebnis (vgl. Abbildung 8.8).

SID Anforderung

S1 2 As a user, to store bank deposit transactional data
& store: [in the database]

& store the bank deposit transactional data in the database.

S3
& display on the client the list of data collection.

Abbildung 8.8: Fehlerhafte Ergebnisdarstellung in kontrollierter Sprache

Abbildung 8.8 zeigt gleich zwei fehlerhafte Ergebnisse. In der ersten FA (S1) ist in der
Anforderungsbeschreibung keine Prioritét (z. B.,,want*) und keine Rolle (z.B. %)
angegeben, die somit beide kompensiert werden miissten, was hier fehlschlagt. Hin-
gegen wird das Satzmuster (vermeintlich) korrekt gewihlt und durch , As a user*
ergénzt. In der zweiten FA (S3) wird die Ausgabe in kontrollierter Sprache abge-
brochen, da keine Aktion erkannt werden konnte. Dies lisst sich auf den Umstand
zuriickfithren, dass alle Komponenten ,, display*“ félschlicherweise als Nomen bzw. in
der semantischen Kategorie ,, Komponente“ erkennen, statt es als Verb bzw. Aktion
zu fithren.

8.2 Evaluation der Anwendbarkeit von Strategien 201

Fehler in der Unvollstandigkeitskompensation

Fehler in der Unvollstandigkeitskompensation kénnen insbesondere durch ein schlech-
tes SRL-Ergebnis (z. B. falsch erkannte Argumente eines Pridikats) und fehlerhafte
syntaktische Korrekturmafinahmen entstehen, die wiederum zu fehlerhaften Kom-
pensationsanfragen und -ergebnissen fithren.

Ein Beispiel fiir ein fehlerhaftes SRL-Ergebnis ist: ,, Please includeagion [the file
timestamp of the show in the log file]argument - Hier wird die PP an die NP ange-
bunden, wodurch das Argument einen gréofieren Informationsumfang als vorgesehen
hat. Diese Fehlerart kann durch die Hinzunahme der syntaktischen Disambiguierung
korrigiert werden. Es kann allerdings auch der Fall auftreten, dass die Expertenkom-
ponente fiir syntaktische Disambiguierung die Ergebnisse verschlechtert. Dies ldsst
sich an folgendem Beispielsatz illustrieren: ., For sending simple posts it’s OK, but
if iroue want to sendagiion [some attachments (jpg, pdf....)Jopjert- It would be nice to
have that feature“. Die SRL-Komponente erkennt das Pridikat (send.01) sowie das
Argument Al (,,i“) korrekt (vgl. Abbildung 8.9). Dariiber hinaus wird Argument Al
partiell erkannt (,,some attachments*).

send.01 (2/3/3) E A1: “jpg , pdf*
AO: "i"
=+ A2: "[friends]"

Abbildung 8.9: Fehlerhafte Kompensation: Argument nicht korrekt erkannt

Das Ergebnis in Abbildung 8.9 sieht allerdings insofern anders als das SRL-Ergebnis
aus, als dass Argument Al nun ,,jpg, pdf“ enthilt. Dies ist darauf zuriickzufiihren, dass
die Expertenkomponente fiir syntaktische Disambiguierung korrigierend eingreift und
damit leider das Ergebnis verschlechtert (,,jpg, pdf* statt ,, some attachments“). Hier
zeigt sich, dass in den Strategien weitere Regeln zur Qualitéitssicherung notwendig
sind, da das Aufrufen der Expertenkomponente in diesem Fall nicht zwangsléaufig
notwendig gewesen wire, wenngleich beispielhafte Dateiformate die vage Angabe
»some attachments” genauer spezifizieren. Als positiv zu bezeichnen ist, dass die
Instanziierung des Arguments A2 (,,friends“) erfolgte.

Ein weiteres Beispiel ist der Satz ,, Edityy sectionyn needsypz to be orginized
like add section to show how the breakers look. It would be great if it was possible
to change the size of characters*. Wahrend die SRL-Komponente ,, Edit section*
als NP identifiziert, erkennt die syntaktische Disambiguierung ,, Edit* als Verb und
,needs” als Nomen, sodass das korrekt erkannte Argument ., Fdityy sectionyy*
falschlicherweise zu ,, sectionyy needsyys* korrigiert wird.

Fehler durch fehlerhafte Koreferenzketten

Die referentielle Disambiguierung wird auch dazu genutzt, die Ergebnisse der An-
forderungsextraktion zu verbessern (s. Abschnitt 5.2). Beispielsweise werden Perso-
nalpronomen in der semantischen Kategorie Objekt mit ihren Referenten verkniipft.
Treten hierbei Fehler auf, konnen falsche Zusammenhénge hergestellt werden.

202 8 Evaluation

Die folgende FA fiihrt gleich zu mehreren Verarbeitungsfehlern: ,, /Because these
data ara rather confidentialpegingung, it should be very important to encriptaxtion
themoyjers before saving®. Als Objekt dieser FA wird das Personalpronomen , them*
erkannt, welches zusammen mit ,,2t* und ,,these data® eine Koreferenzkette bildet
(vgl. Abbildung 8.10). Die Koreferenzkette ist aber insofern fehlerhaft, als dass ,,it“
falschlicherweise Bestandteil der Kette ist. Das Verkniipfen von ,,it* mit , these
data® ist demnach falsch. Zur Qualitdtsverbesserung werden semantische Kategorien
als weiteres Indiz hinzugezogen, was in diesem Fall jedoch ebenfalls zu Fehlern
fithrt. Das Objekt ,,them* referenziert auf ,these data“ im ersten Halbsatz, der
wiederum allerdings seitens der Anforderungsklassifikation als Kategorie ,,Bedingung*
annotiert wird und somit einer anderen semantischen Kategorie angehort als das
Personalpronomen. An dieser Stelle kann ,,them® nicht korrekt ersetzt werden.

 Mentfony T corefrzmzzazaeee TMention)- ™~ . Mention)
Because these data ara rather confidential, it should be very important to encript them before saving .

Abbildung 8.10: Beispiel fiir eine fehlerhafte Koreferenzkette

Die referentielle Disambiguierung kann dariiber hinaus auch auf die Kompensationsan-
fragen der Unvollstandigkeitskompensation Einfluss nehmen. Stellt beispielsweise ein
Personalpronomen (z. B. ,,them*) in einer FA das alleinige Objekt dar, erlaubt dies kei-
ne zielfithrende Kompensation. Das Ersetzen des Objekts durch ein zuvor annotiertes
Objekt (kein Personalpronomen) schafft hier Abhilfe. Allerdings kann eine fehlerhafte
Ersetzung auch genau das Gegenteil bewirken: Wird beispielsweise in der FA | I want
to [create emails (large files)opjent- I must be able to send themopjer das Personal-
pronomen filschlicherweise durch , files* statt durch , emails* ersetzt (z. B. aufgrund
von Ambiguitiit), wiirde das Ergebnis der Unvollstandigkeitskompensation insofern
beeinflusst, als dass ein wichtiger Suchbestandteil (Argument) verfélscht wird.

Fehler durch fehlerhaftes Preprocessing

Sowohl die Indikatoren als auch die Strategien basieren auf den Ergebnissen, die
durch das Preprocessing (s. Abschnitt 5.5.2) erzeugt werden. Hierbei kénnen Fehler
auftreten, die, wie die Evaluation zeigt, zu fehlerhaften Ergebnissen fiihren kénnen.
Neben der Anforderungsextraktion, die zuvor aufgrund ihrer Relevanz fiir das gesamte
Softwaresystem fiir sich betrachtet wurde, sind vor allem noch die Anforderungs-
klassifikation (Bestandteil von REaCT) und die Satzvereinfachung (Bestandteil von
Stanford CoreNLP) zu betrachten.

Die regelbasierte Satzvereinfachung kann die Ergebnisqualitiat direkt negativ be-
einflussen, indem Sétze félschlicherweise getrennt werden. Dies passiert, wenn die
zugrundeliegende Satzstruktur zuvor falsch erkannt wurde. Beispielsweise fiihrt die
FA I need a software which can be only play mp3 files on Android but the user not
allow to copy or send with bluetooth” zu einer falschen Satzvereinfachung, da drei
Teilsétze erkannt werden, die in dieser Form von den zugrundeliegenden Regeln nicht
abgedeckt werden, sodass eine ungeeignete Regel greift.

Wie Abbildung 8.11 dariiber hinaus zeigt, kann die Satzvereinfachung die Ver-
arbeitung auch indirekt negativ beeinflussen. Die beispielhafte Anforderungsbe-

8.2 Evaluation der Anwendbarkeit von Strategien 203

schreibung ist sprachlich von geringer Qualitét, prinzipiell aber verarbeitbar. Die
Satzvereinfachung erkennt, dass eine komplexe Satzkonstruktion vorliegt und trennt
den komplexen Satz in zwei einfache Sétze auf.

¥ As a user, to allow [arg. missing]
& allow: [with bluetooth]

¥ As a user, to copy [arg. missing]

¥ As a user, to send [arg. missing]

A9

[the user not allow to copy or send with bluetooth.
I | need a software which can be only play mp3 files on Android but the user not allow to copy or

send with bluetooth.

Abbildung 8.11: Beispiel fiir fehlerhafte Satzvereinfachung und deren Folgefehler

In Abbildung 8.11 ist nun eine Verkettung von Fehlentscheidungen erkennbar. Durch
die Satzvereinfachung hat die Anforderungsklassifikation den ersten Satzteil als
Off-Topic klassifiziert und geloscht. Der zweite Satzteil enthélt keine wesentlichen
semantischen Informationen, was wiederum die Anforderungsextraktion erschwert. Es
fehlen semantische Kategorien (z.B. Objekt ,,mp3 files*), die nur im ersten Satzteil
vorliegen. Das verschlechtert die Ergebnisstrukturierung.

© On-/Off-Topic Klassifikation

- App should be

© Sprachenidentifizierung

=3 App should be able to run at startup.
Abbildung 8.12: Beispiel fiir fehlerhafte Anforderungsklassifikation

Die Anforderungsklassifikation kann durch eine falsche Klassifikation das Gesamter-
gebnis erheblich schidigen, da Satze der Weiterverarbeitung vorenthalten werden.
Wie in Abbildung 8.12 ersichtlich wird, verarbeitet die Folgekomponente (Sprachen-
dientifizierung) nur noch eine der beiden FA aufgrund der falschen Klassifikation.

204 8 Evaluation

8.3 Evaluation der Systemperformanz

Hohe Systemperformanz gilt als etabliertes Qualitdtsmerkmal von Softwaresystemen
und ist im Sinne der Systemakzeptanz vor allem dort sicherzustellen, wo Nutzerin-
teraktion stattfindet (Knott, 2016, S.2,69{f.). Aus diesem Grund wird im Folgenden
eine Analyse der Gesamtlaufzeiten vorgenommen, wobei zwischen Gesamtlaufzeit des
Softwaresystems (s. Abschnitt 8.3.2) und der Gesamtlaufzeit von Verarbeitungskom-
ponenten (s. Abschnitt 8.3.3) sowie von Strategien (s. Abschnitt 8.3.5) unterschieden
wird. Dariiber hinaus wird das Caching-Verfahren der lexikalischen Disambiguierung,
als ein Beispiel moglicher Performanzsteigerung, niher betrachtet (s. Abschnitt 8.3.4).

8.3.1 Evaluationsprotokoll

Die Evaluation widmet sich dem in Kapitel 5 konzipierten und in Kapitel 7 im-
plementierten, Softwaresystem, wobei die Messung und Analyse der Performanz
einzelner Komponenten sowie des Gesamtsystems Evaluationsgegenstand ist.
Grundsétzlich gilt Performanz als ein etabliertes Qualitdtsmerkmal von Softwaresyste-
men (Knott, 2016, S.2,691f.), hat jedoch besonderen Stellenwert im OTF-Computing.
Diesbeziiglich fiithrt beispielsweise Vogel et al. (2009, S.114f.) an, dass eine hohe
Performanz erheblich zur Anwenderzufriedenheit beitrégt (s. Abschnitt 7.4.1.1).

Nach Knott (2016, S. 69 ff.) bezieht sich die Performanzevaluation bei Client-Server-
basierten Softwaresystemen, wie es in dieser Arbeit beschrieben wird, insbesondere
auf die Performanz der Nutzerschnittstelle (1) und die des Servers (2). In dieser Arbeit
liegt der Fokus auf dem Server, da es sich bei der Nutzerschnittstelle um eine reine
Présentationsschicht und nicht um eine Anwendungsschicht handelt (s. Abschnitt 7.3).
Daneben ist laut Knott (2016, S.69{f.) noch die Performanz des zugrundeliegenden
Netzwerks (3) zu beachten, auf welches aber kaum Einfluss genommen werden kann.
Im Falle des vorliegenden Systems betrifft externe Netzwerkkommunikation nur die
Komponente der lexikalischen Disambiguierung (s. Abschnitt 7.1) und wird gesondert
in Abschnitt 8.3.4 hinsichtlich Netzwerkschwankungen und Performanz evaluiert.
Nach Knott (2016, S.691f.) kénnen daher als Evaluationszweck folgende Punkte
ausgemacht werden:

o Identifikation von Leistungsengpéssen auf Seiten des Servers

e Steigerung der Nutzerzufriedenheit durch Performanzverbesserung

Im Folgenden bezieht sich Performanz in erster Linie auf die Gesamtlaufzeit bzw. auf
den gesamten Ausfiihrungs- und Verarbeitungszeitraum, ausgehend vom Verarbei-
tungsstart durch den Endanwender bis zur abgeschlossenen Ergebnisstrukturierung
(vgl. Definition 8.3.3). Hierbei wird weiter unterschieden'®” zwischen der Initialisie-
rungszeit und der Ausfithrungszeit einer Komponente oder des Systems. Wéhrend
die Initialisierungszeit (vgl. Definition 8.3.1) den Ladevorgang des Systems bzw.
einer Systemkomponente beschreibt, bezieht sich die Ausfithrungszeit einzig auf den
Verarbeitungsprozess (vgl. Definition 8.3.2).

157In Anlehnung an den Microsoft API- und Referenzkatalog zum Thema ,, Anpassen von Timeout-
werten fiir Prozesse“. Siehe: https://msdn.microsoft.com/library/bb750236 (Stand: 23.02.17).

8.3 Evaluation der Systemperformanz 205

Definition 8.3.1 (Initialisierungszeit)
Die Initialisierungszeit ist die Zeit (in Millisekunden), die eine Komponente oder ein
System fiir die vollumfingliche Initialisierung in Anspruch nimmdt.

Definition 8.3.2 (Ausfiihrungszeit)
Die Ausfiihrungszeit ist die Zeit (in Millisekunden), die eine Komponente oder ein
System fiir die vollumfingliche Verarbeitung in Anspruch nimmdt.

Definition 8.3.3 (Gesamtlaufzeit)
Die Gesamtlaufzeit ist die Summe der Initialisierungszeit und Ausfiihrungszeit (in
Millisekunden), bezogen auf das Gesamtsystem oder einzelne Komponenten.

Die Erkenntnisse, die aus der Evaluation hinsichtlich der Performanz einzelner
Komponenten, Indikatoren und Strategien sowie des Gesamtsystems gezogen wer-
den, bilden die Grundlage fiir die Weiterentwicklung und konnen zum Beispiel die
Auswechslung von Komponenten begriinden, sollte keine Abhilfe fiir festgestellte Per-
formanzprobleme existieren. Um dies jedoch zu erreichen, miissen zu dem genannten
Evaluationszweck geeignete Evaluationsfragen (Q) formuliert werden.

e 01: Wie entwickelt sich die Ausfithrungszeit unter steigender Last?

e 02: In welchem Wertebereich schwankt die Initialisierungszeit?

e 03: Inwiefern beeinflussen nebenséchliche Angaben die Systemlaufzeit?

e 04: Welche Verarbeitungskomponenten haben den gréfiten Laufzeitanteil?
e 05: In welchem Intervall schwankt die Komponenteninitialisierungszeit?

e Q6: Welchen Anteil haben Komponentenbestandteile an der Laufzeit?

e Q7: Welcher Performanzgewinn kann durch die Anwendung des WSD-
Cachings in der lexikalischen Disambiguierung erreicht werden?

e (08: Ist eine Grenze auszumachen, ab der keine weiteren Token bzw. Lesarten
in den WSD-Cache aufgenommen werden und somit alle Anfragen
per WSD-Cache beantwortet werden kénnen?

e 09: Ist die Anfragenverteilung im WSD-Cache innerhalb einer Doméne anders
ausgepragt, als bei doméneniibergreifenden Anforderungsbeschreibungen?

e 010: Wie entwickelt sich die jeweilige Strategielaufzeit unter steigender Last?

Hinsichtlich der Durchfiihrung der Evaluation miissen folgend geeignete Methoden
herangezogen werden. Da die Systemperformanz im Fokus steht, ist ein automa-
tisiertes Evaluationsvorgehen notwendig, dass ,, Verarbeitungsgeschwindigkeit und
Antwortzeit im Hinblick auf steigende Last [misst]“ (Schulz, 2012). Hierfiir wurde
der sogenannte Fuvaluator entwickelt, der automatisiert Benutzereingaben téatigen
und strategiebasierte Verarbeitungsprozesse starten kann.

206 8 Evaluation

Zur Durchfiihrung bedarf es auch eines Evaluationskorpuses, welches Anforde-
rungsbeschreibungen enthélt, die an das Softwaresystem iibermittelt werden kénnen.
Hierzu wird auf die in Abschnitt 6.1 beschriebene Ressource zuriickgegriffen, die glei-
chermafien FA (On-Topic) sowie Nebensichliches (Off-Topic) enthilt. Wie Reisner
(2011) allerdings mit der Forderung nach ,realistischen Testdaten® anmerkt, ist nicht
nur auf die Auswahl der Datenbasis zu achten, sondern auch auf deren Anwendung
auf das System. So wird empfohlen, , die Testdaten in zufilliger Reihenfolge [zu]
verwenden (Reisner, 2011), da sonst die Gefahr einer Verfilschung der Evaluation
besteht — zum Beispiel durch wiederholte Datenabfrage aus einer Doméne oder
einer stets dhnlichen Anforderungsbeschreibungs- bzw. Satzlédnge. In dieser Arbeit
betrifft dies auch das Verhéltnis von FA und nebenséchlichen Angaben innerhalb
einer Anforderungsbeschreibung.

Abbildung 8.13 stellt das Vorgehen mittels Fvaluator dar. Ausgehend vom Evalua-
tionskorpus, in dem Sétze hinsichtlich ihrer Zugehérigkeit zu FA oder nebenséchlichen
Angaben markiert sind, stellt die Evaluationsanwendung zuféllig Anforderungsbe-
schreibungen zusammen (unter gegebenen Rahmenparametern) und tibermittelt sie
iterativ an das Softwaresystem.

Se Parameter
SE = =
! =]
o | Beschreibung 0
[e] o
Off-Topic Evaluator System
Evaluationskorpus | 9t

Abbildung 8.13: Generierung der Testdaten mittels Fvaluator

Dieses Vorgehen hat entscheidende Vorteile: Zum einen wird der Forderung von
Reisner (2011) nachgekommen, indem Anforderungsbeschreibungen in zufilliger
Reihenfolge ausgewahlt sowie kombiniert werden und somit kein Datenmuster die
Ergebnisse verfilscht. Zum anderen erlauben es die Konfigurationsparameter von
Evaluator, genau zu definieren, wie die Merkmale der zu erzeugenden Anforderungs-
beschreibungen fiir Testzwecke ausgeprigt sein sollen (z. B. Mindestlédnge, Anzahl
nebensichlicher Angaben).

8.3.2 Laufzeitanalysen des Gesamtsystems

In diesem Abschnitt geht es um die Beantwortung der Evaluationsfragen Q1, Q2 und
03, die alle auf das Gesamtsystem als Evaluationsgegenstand abzielen. Um die zur
Beantwortung erforderlichen Laufzeiten zu erheben, werden 500 Anforderungsbeschrei-
bungen'®® auf Basis des Evaluationskorpus zufillig generiert, die jeweils an das System

158 Jede Anforderungsbeschreibung besteht aus 1-5 Sitzen, wobei die konfigurierte Wahrscheinlichkeit,

dass ein Satz Off-Topic ist, bei 20% liegt. Insgesamt 1500 zufiillig gewihlte FA.

8.3 Evaluation der Systemperformanz 207

iibertragen werden, sodass insgesamt 500 Anfragen seitens des Systems sequenziell
zu bearbeiten sind. Damit sichergestellt werden kann, dass alle Verarbeitungskompo-
nenten ausgefithrt werden, ist die Complete-Strategie zur Messung der Laufzeiten
voreingestellt'®. Tabelle 8.4 zeigt die durchschnittlichen Ausfithrungszeiten iiber
unterschiedliche Anforderungsbeschreibungsldngen (Satzumfang).

Es fallt auf, dass die durchschnittliche Ausfiihrungszeit abhiangig vom Anforde-
rungsbeschreibungsumfang zunimmt, was angesichts des erforderlichen Mehrauf-
wands in der Verarbeitung nicht weiter iiberrascht. Vielmehr ist hervorzuheben,
dass die Ausfithrungszeit merklich schwankt. Dies ist beispielsweise bei der Anforde-
rungsbeschreibung mit einem Umfang von fiinf Sétzen (1.105 ms) im Vergleich zur
Verarbeitung von drei Sétzen (1.566 ms) erkennbar.

Anzahl Sitze 1 2 3 4 5
& [Token) 11 19 34 49 65

Min [ms 189 449 1.524 | 1.566 | 1.105
Max [ms] | 16.184 | 29.224 | 112.346 | 26.674 | 26.655

\ @ [ms] [4.010 [5488] 6.976 | 10.011 | 11.742 |

Tabelle 8.4: Durchschnittliche Ausfithrungszeiten des Softwaresystems unter Last

Hervorzuheben ist dariiber hinaus ein Ausreifier!®® mit 112.346 ms bei drei Sitzen.
Dieser ist aufgrund einer iiberdurchschnittlichen Verarbeitungszeit der Anforderungs-
klassifikation (107.263 ms) entstanden. Wird dieser Ausreifler entfernt, liegt das
Maximum bei 17.121 ms und der Durchschnitt bei 5.912 ms. Dies ist nur ein weiteres
Beispiel dafiir, welchen Schwankungen die Ausfithrungszeit unterliegt und wie einzelne
Verarbeitungskomponenten die Laufzeiten beeinflussen, was in Abschnitt 8.3.3 genau-
er evaluiert wird. Allerdings ldsst sich bereits jetzt eine Zweiteilung der Laufzeiten
hinsichtlich der Verarbeitungsschritte des Preprocessings und der Strategicanwendung
vornehmen (vgl. Tabelle 8.5).

Anzahl Satze 1 2 3 4 5
@ Preprocessing [ms] | 1.028 | 2.072 | 3.058 | 2.230 | 2.498
@ Complete-Strategie [ms] | 2.981 | 3.416 | 3.917 | 7.781 | 9.243

Tabelle 8.5: Durchschnittliche Ausfiihrungszeiten

Im Durchschnitt entfallen 30% der Ausfiihrungszeit auf das Preprocessing, wihrend
die iibrigen 70% der Erkennung- und Kompensation innerhalb der Strategieanwen-
dung zuzuschreiben sind. Hier stellt sich die Frage, ob gegebenenfalls einzelne Verar-
beitungskomponenten fiir diese Verteilung verantwortlich sind oder ob tatséchlich die
Aufgabenkomplexitét in der Erkennung- und Kompensation fiir die hohere Laufzeit
verantwortlich ist. Dieser Frage wird in Abschnitt 8.3.3 nachgegangen.

Neben der Ausfithrungszeit ist auch die Initialisierungszeit des Gesamtsystems von
Interesse. Wobei das an dieser Stelle nicht die Initialisierungzeit der Verarbeitungs-
komponenten (s. hierzu Abschnitt 8.3.3) oder des Webservers, sondern ausschliefllich

159Fine Evaluation unter Anwendung unterschiedlicher Strategien findet in Abschnitt 8.3.5 statt.
160Eindeutige Evaluationskennung: B7E33EFD042791BBD3242922E28 CFACT_04032017120129.

Q1

Q2

Q3

Q4

208 8 Evaluation

die Initialisierung des Kernsystems betreffen soll. Das umfasst beispielsweise den
Verbindungsaufbau'® zu allen Verarbeitungskomponenten oder das Initialisieren
des Strategie- Controllers (s. Abschnitt 5.2). Da dieser Initialisierungsschritt nur zum
Systemstart durchgefiihrt wird, wird zur Evaluation das Softwaresystem wiederholt
neu gestartet und die jeweiligen Initialisierungszeiten gemessen. Bei insgesamt 120
Messungen'%? kann dabei eine durchschnittliche Initialisierungszeit von 4.386 ms
ermittelt werden, wobei das Minimum bei 2.167 ms und das Maximum bei 19.790 ms
liegt. Die Initialisierungszeit ist unabhéngig vom Anforderungsbeschreibungsumfang
sowie vom Anteil nebenséchlicher Angaben.

Beziiglich nebenséchlicher Angaben ist bisher die Frage offengeblieben, wie diese
sich auf die Ausfithrungszeit auswirken. Bekannt ist, dass Off-Topic-Angaben fiir die
Performanz schadlich sind und gefiltert werden miissen, da ihre Verarbeitung Zeit
in Anspruch nimmt aber keinen Mehrwert schafft. Dabei ist bisher nicht themati-
siert worden, inwiefern auch das Filtern, also die Anforderungsklassifikation mittels
REaCT (Dollmann und Geierhos, 2016) den Verarbeitungsprozess verlangsamt. Eine
Uberlegung hierzu ist, dass nebensichliche Angaben erst die Notwendigkeit des
Filterns begriinden und daher die Verarbeitungszeit der Anforderungsklassifikation
vollumfénglich als Schaden geltend zu machen ist. Angesichts der Tatsache, dass
die Klassifikation vergleichsweise viel Verarbeitungszeit bedarf, wire der Einfluss
von nebenséchlichen Angaben auf die Systemlaufzeit groff (vgl. Tabelle 8.6). Jedoch
kann auch argumentiert werden, dass die Anforderungsklassifikation elementarer
Bestandteil eines maschinellen Textanalysesystems ist. In diesem Fall wére dem-
nach nur die Verarbeitungszeit durch die nebenséchlichen Angaben verschuldet, die
durch ihre zusétzliche Klassifikation entstehen. Diesbeziiglich ist mit Blick auf die
untersuchten Anforderungsbeschreibungen anzumerken, dass die Klassifikation von
Off- und On-Topic die gleiche Verarbeitungszeit in Anspruch nimmt und auch die
Lange der Siatze nur marginale Auswirkung auf die Laufzeit hat. Handelt es sich
demnach bei einem von zwei Séitzen um eine nebenséchliche Angabe, so sind 50%
der Verarbeitungszeit als Schaden auszumachen. Im Vergleich zu der eingesparten
Verarbeitungszeit bei den Folgekomponenten diirfte dies zu vernachléssigen sein.

Aufbauend auf den bisherigen Erkenntnissen wird im Folgenden die Laufzeitanalyse
der Verarbeitungskomponenten vorgenommen.

8.3.3 Laufzeitanalyse der Verarbeitungskomponenten

Dieser Abschnitt gibt Antworten auf die Fragen 04, 05 und Q6 aus Abschnitt 8.3.1. Im
Fokus stehen dabei die Laufzeiten der Verarbeitungskomponenten und ausgewihlter
Bestandteile (z.B. Verfahren). Die durchschnittlichen Ausfithrungs- und Initialisie-
rungszeiten, die ebenfalls auf der in Abschnitt 8.3.2 durchgefiihrten Evaluation
beruhen, stellt Tabelle 8.6 dar.

Hinsichtlich der Ausfiithrungszeiten der Komponenten fallen deutliche Unterschiede
auf. So ist im Bereich des Preprocessings die Satzendeerkennung auffallend zeitinten-
siv (durchschnittlich 1.120 ms). Dies ist allerdings mit einer Designentscheidung zu
begriinden, die in dieser Arbeit getroffen wurde. So handelt es sich hierbei um eine

161 Hiermit ist die Herstellung der HTTPS-Verbindungen zu ausgelagerten Komponenten gemeint.
162120 Messungen verteilt iiber 12 Stunden (10 Messungen / Stunde).

8.3 Evaluation der Systemperformanz 209

Preprocessing-Komponente, die auch Informationen zur referentiellen und syntakti-
schen Disambiguierung beitragen kann (Synergieeffekt). Somit sind die gemessenen
Zeiten nicht allein auf die Satzendeerkennung zuriickzufiihren. Da sie allerdings bei
diesem ersten Schritt anfallen, sind sie auch hier zu messen und zu protokollieren.
Daneben sind die Zeiten der Anforderungsklassifikation sowie der -extraktion zu
sehen, beides Bestandteile des REaCT-Tools, die im Schnitt eine halbe Sekunde
Ausfiihrungszeit beanspruchen. Dariiber hinaus existieren noch die Zeichennormalisie-
rung und die Sprachenidentifizierung, die hinsichtlich der Ausfithrungszeiten von einer
Millisekunde zu vernachléssigen sind. Zusammenfassend lésst sich feststellen, dass die
Ausfiihrungszeiten absolut akzeptabel erscheinen (30% der Gesamtausfithrungszeit).

Ein &hnliches Bild ergibt sich bei den Verarbeitungskomponenten im Bereich
der Erkennung und Kompensation, wenngleich auch eine Komponente merklich
hervorsticht: So ist beispielsweise die Vagheitserkennung im Durchschnitt bereits nach
nur einer Millisekunde abgeschlossen, wiahrend die lexikalische Disambiguierung im
Schnitt 5.204 ms zur Verarbeitung benétigt. Dies ist soweit nicht verwunderlich, da die
Komponentenkomplexitit bei der Disambiguierung wesentlich hoher ist und dariiber
hinaus eine Kompensation stattfindet, wihrend diese bei der Vagheitserkennung
ausbleibt. Allerdings erscheint die lexikalische Disambiguierung auch im Vergleich
zu anderen Kompensationskomponenten (insb. der Unvollsténdigkeitskompensation)
bedeutend zeitintensiver und bedingt mafigeblich die Ausfiihrungszeit der Erkennung
und Kompensation.

Verarbeitung Init.
Anzahl Sitze: ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5 ‘ 15} H
Preprocessing

Satzendeerkennung 657 | 1.443 | 1.297 | 1.077 | 1.126 | 1.120 1

Zeichennormalisierung 1 1 1 1 1 1 1

Sprachenidentifizierung 1 1 1 1 1 1| 757-1.119

Anforderungsklassifikation 180 359 | 1.341 453 487 | 564 1

Anforderungsextraktion 187 | 266 415 697 | 877 | 489 1
Erkennung und Kompensation

Lex. Disambiguierung | 2.858 | 3.155 | 3.675 | 7.497 | 8.835 | 5.204 2-257

Ref. Disambiguierung 1 1 1 1 1 1 1

Syn. Disambiguierung 13 6 11 10 10 10 1

Unvollstdndigkeitskompen. 106 249 224 263 384 245 27-395

Vagheitserkennung 1 1 1 1 1 1 1-2

Tabelle 8.6: Durchschnittliche Laufzeiten der Komponenten [ms].
Jeweils auf Basis von 100 Anforderungsbeschreibungen

Wie ersichtlich wird, sind auch die Initialisierungszeiten sehr unterschiedlich. Auf Q5
der einen Seite existieren Komponenten mit einer sehr geringen Initialisierungszeit,
wie beispielsweise die vollstandig extern ausgelagerten Verarbeitungskomponenten
(z.B. Satzendeerkennung), deren Initialisierung entfillt!63. Auf der anderen Seite
existieren Komponenten wie die Sprachenidentifizierung, die lokal ausgefiihrt werden
und daher zu initialisieren sind (z. B.indem Klassifikationsmodelle geladen werden).

163Entsprechender HTTPS-Verbindungsaufbau geschieht bereits im Controller (s. Abschnitt 8.3.2).

Q6

Q7

210 8 Evaluation

Werden alle Initialisierungszeiten der Verarbeitungskomponenten zusammen iiber
den vollsténdigen Evaluationsverlauf betrachtet, so ergibt sich ein Intervall zwi-
schen 1.100 ms und 1.800 ms, wobei der Durchschnitt bei 1.352 ms liegt. Wie auch
bei den Ausfiihrungszeiten gibt es auch hier Komponenten wie die Zeichennorma-
lisierung sowie die Vagheitserkennung, die in den Zeiten nur marginal abweichen.
Demgegeniiber stehen Komponenten wie die Sprachenidentifizierung sowie die Un-
vollstandigkeitskompensation, die stark schwanken.

Um der Frage nach dem Einfluss einzelner Komponentenbestanteile nachgehen
zu konnen, werden ausgewiahlte Verarbeitungskomponenten hinsichtlich des Zeit-
aufwands einzelner Funktionsaufrufe untersucht. Hierbei liegt der Fokus auf den
Komponenten mit dem groBiten Anteil an der Gesamtausfithrungszeit (Satzendeer-
kennung und Lexikalische Disambiguierung).

Die Satzendeerkennung setzt sich aus mehreren Unterfunktionen zusammen, von
denen nur eine Funktion eine messbare Ausfithrungszeit erzeugt. So ist die Einbindung
des Stanford Parsers fir 99% der Ausfiihrungszeit verantwortlich, wihrend alle
Nachverarbeitungsschritte hinsichtlich der Laufzeiten zu vernachléssigen sind.

Eine vergleichbare Situation herrscht bei der Verarbeitungskomponente zur lexi-
kalischen Disambiguierung. Diese ldsst sich ebenfalls in mehrere Unterfunktionen
aufteilen, von denen nur drei einen sichtbaren Anteil an der Ausfiihrungszeit haben:
(1) die Funktion zur Einbindung von Babelfy als Disambiguierungskomponente, (2)
die Funktion zum Hinzuziehen der BabelNet-Ressource und (3) die Funktion des
WSD-Caches. Wihrend Babelfy (1) nur 5-6% der Ausfithrungszeit begriindet, sind
BabelNet (2) und der Cache (3) zusammen fiir iiber 93% der Ausfithrungszeit ver-
antwortlich. Es zeigt sich somit, dass insgesamt zwei Verarbeitungskomponenten den
Grofiteil der Gesamtausfiithrungszeit der Komponenten begriinden und dass hierbei
von diesen Komponenten wiederum nur wenige Bestandteile involviert sind. Dies
ermoglicht in der weiteren Arbeit eine zielgerichtetere Optimierung der Systemper-
formanz.

8.3.4 Entwicklung und Nutzen des WSD-Cachings

Wie in Abschnitt 7.3.2.2 beschrieben, kann bei der lexikalischen Disambiguierung
eine Performanzsteigerung durch eine temporire Zwischenspeicherung (Cache) auf
Basis disambiguierter Token erreicht werden. Dies ist moglich, da die Anzahl an
BabelNet-Abrufen, die notwendig sind um lexikalisches Wissen iiber die Token zu
akquirieren, minimiert werden kann. Um die Funktionsweise, das Verhalten und den
Nutzen des Cachings besser zu verstehen, wird im Folgenden sowohl eine Evaluation
in Hinblick auf die Zeitersparnis als auch auf die Ressourcenverteilung durchgefiihrt.
Diesbeziiglich wird zuerst auf Basis von 550 ambigen Token die Abrufzeit mit und
ohne Anwendung des Caching-Verfahrens untersucht. Es wird deutlich, dass sich die
Abrufzeiten durch das Caching-Verfahren erheblich verringern. Werden beispielsweise
90 ambige Token abgerufen, steigt die Abrufzeit ohne Caching auf 15,38 s, was im
Gegensatz zur Abrufzeit mit Caching (0,360 s) die Gesamtlaufzeit erheblich negativ
beeinflusst (s. Tabelle 8.7). Werden alle Durchldufe hinsichtlich der durchschnittlichen
Abrufzeit pro Token betrachtet, ergibt sich ein Durchschnitt von 4,2 ms mit Caching
und 183,1 ms ohne Caching.

8.3 Evaluation der Systemperformanz 211

Alle Token [ms] & pro Token [ms]

Token ‘ Mit Caching Ohne Caching ‘ Mit Caching Ohne Caching
10 48 2.032 4,8 203,2
20 88 3.388 14 169,4
30 124 6.323 41 210,8
40 173 7.863 43 196,6
50 199 6.149 3,9 123,0
60 244 12.096 4,1 201,6
70 287 12.744 i1 1821
80 318 15.019 4,0 187,7
90 360 15.389 4,0 171,0
100 392 18.538 3,9 185,4

Z 42 2 183,1

Tabelle 8.7: Stichproben zur Laufzeitevaluation der lex. Disambiguierung (BabelNet).

In diesem Beispiel wird jeweils nur eine Anfrage durchgefiihrt und somit eine nicht-
reprasentative Momentaufnahme erzeugt. Dies ermoglicht es, den Einfluss der Netz-
werkauslastung darzustellen. In Tabelle 8.7 ist zu erkennen, dass das Abrufen le-
xikalischer Informationen fiir 50 Token im Vergleich zu 40 Token weniger Zeit in
Anspruch nimmt. Ein Effekt, der sehr wahrscheinlich auf (lokale) Netzwerkauslastung
bzw. Auslastung der BabelNet-Server zuriickzufiihren ist. Um diesen Einflussfaktor
besser nachvollziehen zu kénnen, bedarf es einer langerfristigen Messung. Hierzu wird
stiindlich, iiber einen Zeitraum von zehn Tagen und unter Verwendung von zehn
zufillig gewihlten Messstellen (begrenzt auf Europa, u. a. GroBbritannien, Deutsch-
land, Osterreich) die Serververfiigharkeit und generelle -antwortzeit von BabelNet
gemessen'® (siche Messergebnisse in Anhang B). Abbildung B.1 zeigt die Ergebnisse
der verschiedenen Messstellen, wobei ersichtlich wird, dass die Antwortzeiten stark
abhéngig von den Messstandorten sind. So liegt der zeitliche Durchschnitt in der
Tschechischen Republik (CZ) deutlich iber dem Durchschnitt der Antwortzeiten
in GroBbritannien (GB) und Deutschland (vgl. Abbildung B.2). Andererseits fallt
auf, dass in CZ relativ konstante Zeiten erreicht werden, wihrend beispielsweise in
Deutschland auffillige Schwankungen (30-80 ms) zu verzeichnen sind. Zusammen-
fassend lassen sich somit die Vermutungen beziiglich der Netzwerkschwankungen
bestéatigen, da insbesondere fiir die Messstellen in Deutschland deutliche Schwankun-
gen in den Antwortzeiten zu verzeichnen sind (vgl. Abbildung B.2).

Fiir ein besseres Verstdndnis, wie die Abrufzeit fiir Token iiber langere Zeit
schwankt, wird eine vordefinierte Menge von zehn Token'6® herangezogen. Die Abfrage
erfolgt alle zwei Stunden tiber zehn Tage, wobei im Folgenden zusétzlich davon
ausgegangen wird, dass alle Anfragen von einem Standort unter gleichbleibenden
Hardwarebedingungen (s. Abschnitt 7.2) gestellt werden.

164Fine Messung/Stunde pro Messstelle mit jeweils 10 Paketen.

165 Token: ,,E-Mail“ (bn:00029345n), ,Computer® (bn:00021464n), ,send® (bn:00090548v), ,write®
(bn:00085489v), ,delete® (bn:00084456v), ,SPAM* (bn:00048634n), ,provider* (bn:00064912n),
ylarge® (bn:00116076r), ,GMX* (bn:00726178n) und ,,Sharepoint“ (bn:15927858n).

Q8

212 8 Evaluation

. Abrufzeiten [ms]

11 2 [3 [4 [5 [6 [7 [8 |9 [10[11[12 [
1[203 | 183|178 | 214|292 820 | 142 | 187 | 271 | 167 | 184 | 188 | 211
2260 | 233 | 243 | 304 | 282 [187 | 254 | 259 | 194 | 155 | 208 | 201 || 232
3283|164 | 310 [152 | 259 [298 | 223 [297 | 253 | 175 | 300 | 294 || 251
4171202 [299 [183 | 268 | 172 | 152 | 170 | 140 | 267 | 293 | 250 || 214
5| 168 | 247 | 257 [309 | 189 | 292 | 249 | 232 | 157 | 227 | 269 | 261 | 238
6 | 175 | 259 | 150 | 208 | 272 | 146 | 189 | 308 | 154 | 190 | 237 | 260 || 212
71270 [299 | 239 | 254 [263 | 273 | 165 | 183 | 244 | 254 | 166 | 125 || 228
8191 | 293 | 232 [185 | 266 | 189 | 147 | 246 [[127 | 236 | 301 | 231 || 220
9 169 | 221 | 283 [171 | 196 | 188 | 296 | 198 | 154 | 283 | 157 [196 || 209

10 | 147 [187 [237 [185 | 157 | 149 | 265 | 128 | 263 | 245 | 191 | 308 || 205

Tabelle 8.8: Durchschnittliche Abrufzeit vordefinierter Token iiber 10 Tage (BabelNet)

Tabelle 8.8 zeigt die ermittelten Durchschnittswerte der BabelNet-Anfragen, protokol-
liert {iber zehn Tage. Diese liegen im Bereich 127-320 ms und damit im Durchschnitt
(222 ms) iiber dem Ergebnis der Stichprobe (183 ms, vgl. Tabelle 8.7). Im Vergleich
zu den Abrufzeiten des Cachings sind diese Werte, ungeachtet der Schwankungen,
allesamt erheblich hoher. Dies {iberrascht wenig, da es sich um einen Vergleich
zwischen lokalen und externen Anfragen handelt. Allerdings ist die erreichte Zeiter-
sparnis, insbesondere fiir den Anwendungsfall des OTF-Computings, von erheblicher
Bedeutung. Fiir die Performanz ist auch die Entwicklung der Anfragenverteilung
nach Ressourcen von Interesse, welche mafigeblich vom verwendeten Vokabular (und
Lesarten) abhéngt. Diesbeziiglich ergeben sich die Evaluationsfragen 08 und Q9, die
es im Folgenden zu beantworten gilt:

Die Frage 08 (Ist ein Sittigungszustand auszumachen, bei dessen Erreichung keine
weiteren Token bzw. Lesarten in den WSD- Cache aufgenommen werden und somit alle
Anfragen per WSD-Clache beantwortet werden kénnen?) kann sowohl auf Basis von
Token als auch von Lesarten beantwortet werden. Ein Sattigungszustand wire erreicht,
wenn keine Token bzw. Lesarten mehr in den Cache aufgenommen und alle Anfragen
aus diesem Zwischenspeicher beantwortet werden konnen. Dies kann allerdings per
se nicht eintreten, da die natiirliche Sprache von Eigennamen und Neologismen
geprigt ist, welche bestehende Ressourcen nicht (vollumfinglich) abdecken und
somit Anfragen an BabelNet gestellt werden miissen, da der Zwischenspeicher keine
geeigneten Eintrige enthilt, wenngleich diese auch dort (iiberwiegend) zu keinem
Treffer fithren. Allerdings kénnte ein Sattigungszustand fiir Token bzw. Lesarten
eintreten, die in lexikalischen Ressourcen abgebildet sind bzw. innerhalb einer Doméne
verwendet werden. Deshalb wird im Folgenden die Untersuchung des kompletten
Korpus (FA und NFA) von Dollmann (2016) hinsichtlich des Vokabularzuwachses
itber alle 1881 Sétze hinweg vorgenommen. Iterativ werden hierfiir einzelne Sétze
in Token aufgeteilt. Diese Token werden lemmatisiert und in ein — zu Beginn
leeres — Lexikon aufgenommen. So kann beispielsweise der erste Satz vollsténdig
(14 Token) aufgenommen werden, wihrend vom zweiten Satz nur sechs von zehn
Token aufgenommen werden, da die {ibrigen vier Token schon im Lexikon enthalten
sind. Es zeigt sich, dass 921 Sétze (48,9%) kein Token zum Lexikon beitragen, da

8.3 Evaluation der Systemperformanz 213

sie bereits in Génze durch das darin befindliche Vokabular abgedeckt werden. Nun
bedeutet dies aber nicht, dass die Sétze, die zu Beginn tokenisiert und inventarisiert
werden, die alleinige Grundlage fiir das Lexikon bilden und die darauffolgenden 921
Sétze durch das Vokabular abgedeckt sind. Es kommen immer wieder neue Token
in den Sétzen vor. Das heiflt, dass ein Sattigungszustand zwar theoretisch erreicht
werden kann, jedoch auf Grund der Varianz im Vokabular schwer vorherzusehen ist.
Vielmehr ist davon auszugehen, dass nach einer gewissen Anzahl von Sdtzen der
Vokabularzuwachs abnimmt. Fiir den untersuchten Datensatz lésst sich dies insofern
nachweisen, als dass 70% des Vokabulars mit 50% der Sitze inventarisiert wird,
wihrend die letzten 25% der Sétze nur noch 14% der Token im Lexikon beitragen.

Zur Beantwortung von Frage Q9 (Ist die Anfragenverteilung im WSD-Cache inner-
halb einer Doméne anders ausgeprégt, als bei doméneniibergreifenden Anforderungs-
beschreibungen?) wird zum einen das Korpus von Dollmann (2016) als Datensatz
fiir doméneniibergreifende FA herangezogen (s. Abschnitt6.1). Zum anderen wird
die Stichprobe aus dem PAS-Korpus als doménenspezifischer Datensatz'®® hinzuge-
nommen (s. Abschnitt 6.2). Beide Testdatensétze werden iterativ an das Softwaresys-
tem {ibertragen, wihrend gleichzeitig die Ressourcenverteilung in den Anfragen'6?
iiberwacht wird. Abbildung B.3 im Anhang zeigt die Ressourcenanfragen, unterteilt
in diejenigen, die der Zwischenspeicher entgegennimmt und jene, die an BabelNet
iibertragen werden. Auf den ersten Blick fillt auf, dass sich die Anfragenverteilungen
in Abbildung B.3 (im Anhang) stark dhneln. Sowohl beim doménenspezifischen
(vgl. Abbildung B.3, A) als auch beim doméneniibergreifenden Datensatz (vgl.
Abbildung B.3, B) wird zu Beginn ein Grofiteil der Anfragen durch BabelNet beant-
wortet (85% bzw. 90%), was damit zu erkldren ist, dass der Zwischenspeicher erst
gefiillt werden muss. Nichtsdestotrotz ist es iiberraschend, dass mehr Anfragen beim
domiéneniibergreifenden Datensatz durch den Zwischenspeicher beantwortet werden.
Bisher war davon auszugehen, dass innerhalb einer Doméne eher zu einem gemeinsa-
men Vokabular tendiert wird. Somit sollte sich beim domé#nenspezifischen Datensatz
eine hohe Abdeckung durch den Zwischenspeicher einstellen. Diese Annahme scheint
sich auch nach der Hilfte der Anfragen (300 Token) zu bestétigen, da nun bereits
28% beim doménenspezifischen und 22% beim doméneniibergreifenden Datensatz
durch den Zwischenspeicher beantwortet werden. Auch zum Ende hin (600 Token)
wird ein groflerer Anteil der Anfragen beim doménenspezifischen Datensatz vom
Zwischenspeicher beantwortet (37,5% gegeniiber 27,5%). Anders formuliert bedeutet
das, dass in der doménenspezifischen Durchfiihrung bereits wenige Token im Cache
ausreichen, um viele Anfragen zu beantworten. Dies ist darauf zuriickzufiihren, dass
das verwendete Vokabular innerhalb einer Doméne kleiner ist und daher bereits nach
wenigen Anfragen ein nennenswerter Anteil der folgenden Anfragen aus dem Cache
beantwortet werden kann.

8.3.5 Laufzeitanalyse der Strategien

Die Laufzeit der Strategien wird mafigeblich durch die bereits in Abschnitt 8.3.3
evaluierte Komponentenlaufzeit beeinflusst. Da sich die Strategiekonfigurationen

166 Entnommen der Kategorie ,, Kommunikation®, Unterkategorie ,, E-Mail*.
167Zur besseren Vergleichbarkeit wird eine gemeinsame Basis von 600 Token herangezogen.

Q9

Q10

214 8 Evaluation

allerdings von einander unterscheiden, wird im Folgenden der direkte Vergleich der
Gesamtlaufzeiten iiber alle Strategien hinweg durchgefiihrt. Hierzu werden fiir jede
Strategie jeweils 100 Anforderungsbeschreibungen im Umfang von zwei, drei und
vier Sitzen'®® an das Softwaresystem iibermittelt (vgl. Abbildung 8.14).

Es ist aufgrund der Strategiekonfigurationen wenig verwunderlich, dass die Light-
Strategie die geringste Gesamtlaufzeit aufweist (& 3.182 ms), wihrend die Complete-
Strategie die meiste Zeit in Anspruch nimmt (& 9.308 ms).

'1Q4 | | |
195 (002 Siitze M3 Sitzel04 Siitze | |
£ o1 N 1
S 075) :
=
= 05/ 8
z
O
® 0.25 7 I I |:| I I |
0 [| I | I | I -
T
N XY &) v v
of o o s &
'.\‘(J Q‘b 0«(\
Q)Q‘% C)

Strategien

Abbildung 8.14: Gesamtlaufzeit der Strategien nach Beschreibungsumfang.
Jeweils 100 Durchldufe mit aktiviertem WSD-Cache

Es fallt auf, dass die Basic Plus- (& 8.863 ms), Default- (& 9.096 ms) und Complete-
Strategie (& 9.308 ms) zeitlich sehr nah beieinander liegen, was auf die gewihlten
Kompensationskomponenten zuriickzufiihren ist. Damit ist sowohl die Light- als auch
die Basic-Strategie (@ 4.389 ms) hinsichtlich einer performanten Ausfithrung zu
wéhlen, wiahrend die Basic Plus-, Default- und Complete-Strategie zwar eine hohere
Abdeckung in Erkennung und Kompensation aufweisen, dadurch aber auch mehr
Zeit in Anspruch nehmen.

8.4 Evaluationsfazit

Die durch die Evaluation erhaltenen Einblicke in das Systemverhalten sowie die
-performanz werden im Folgenden hinsichtlich ihrer Aussagekraft und Relevanz fiir
die Weiterentwicklung des Systems diskutiert. Wahrend sich der erste Evaluationsteil

168 Durchschnittliche Anzahl Token: 29 (2 Sitze), 49 (3 S#tze), 61 (4 Sitze).

8.4 Evaluationsfazit 215

der Zuverléssigkeit von Indikatoren widmete, befasste sich der zweite Teil mit der
Performanz einzelner Systembestandteile.

Zuverldssigkeit. Gegenstand des ersten Evaluationsteils waren die definierten Indi-
katoren aus Abschnitt 5.3, wobei insbesondere die Identifikation von Fehlerquellen
sowie die Analyse von Verarbeitungsfehlern und deren Auswirkungen auf die Stra-
tegieanwendung im Mittelpunkt der Evaluation standen (s. Abschnitt 8.2). Hierbei
zeigte sich, dass die vorgegebenen Strategien hinsichtlich der Indikatorabdeckung sub-
optimal definiert sind, da im Evaluationskorpus vermehrt bisher nicht beriicksichtige
Indikatorkombinationen auftreten und die Strategien hier nicht angewendet wer-
den. Dieser Umstand ist grundsétzlich bedacht, da genau fiir diesen Fall die Fall-
back-Strategie konzipiert wurde (s. Abschnitt 5.2.6). Die vermehrte Anwendung der
Fallback-Strategie unterstreicht jedoch die Notwendigkeit, langfristig auf vordefi-
nierte Strategien zu verzichten und den Ansatz einer automatischen Strategie zu
verfolgen (s. Abschnitt 5.2.6). Insbesondere, um flexibler und zuverlissiger auf Qua-
litdtsschwankungen (unbekannte Indikatorkombinationen) in den Daten zu reagieren.

Die Indikatorzuverldssigkeit unterliegt verschiedenen Einfliissen. So zum Beispiel
der Zuverlissigkeit im Sinne der Ergebnisqualitidt von zugrundeliegenden Tools sowie
der (Fehler-)Toleranz der angewendeten Regeln und Muster. Hierbei ist insbesondere
das Tool REaCT (Dollmann und Geierhos, 2016) fiir Fehler verantwortlich. Nicht, weil
es besonders unzuverléssig ist, sondern weil die Ergebnisse (semantische Kategorien)
in mehreren Indikatoren herangezogen werden und Fehler in der Anforderungsklassifi-
kation und -extraktion somit besonders zum Tragen kommen, wéhrend beispielsweise
Stanford coref nur bei dem Indikator fiir referentielle Ambiguitédt angewendet wird —
Verarbeitungsfehler dieser Komponente haben demnach nur begrenzte Auswirkungen
auf die generelle Indikatorzuverldssigkeit.

Um die Zuverléssigkeit der Indikatoren beurteilen zu kénnen, wurden pro Indikator
die QualitdtsmaBe Recall und Precision bestimmt (s. Abschnitt 8.2.3). Wie auch in
anderen Arbeiten zur Verbesserung natiirlichsprachlicher Anforderungen (insb. Tjong,
2008, S.2) wird dabei der Recall stirker gewichtet als die Precision, da es wichtig ist,
moglichst alle potentiell ambigen und unvollsténdigen Anforderungsbeschreibungen
zu identifizieren. Hierbei stellte sich insbesondere der Indikator referentieller Ambi-
guitit als zuverldssig heraus (Fa-Score von 0,75), wiahrend die Kompensation von
Unvollsténdigkeit auf Grund eines niedrigen Recalls nur 0,72 als Fy-Score erreicht.

Neben den Indikatoren kénnen auch bei der Strategicanwendung Fehler auftreten,
ndmlich dann, wenn falsche Komponenten zusammenarbeiten oder die Ergebnisse
verfélschen. Besonders drgerlich ist das, wenn korrekte Ergebnisse (z. B. syntaktische
Strukturen) durch Hinzunahme von Expertenkomponenten verschlechtert werden
(z. B. syntaktische Disambiguierung), da diesen Komponenten in der vorliegenden
Arbeit eigentlich eine Konfliktlésungskompetenz zugesprochen wird (s. Abschnitt 5.2).

Bei der Fehleranalyse zeigte sich zum einen (s. Abschnitt 8.2), dass Verarbeitungs-
fehler auftreten, die unterschiedliche Systemabschnitte betreffen und verschiedene
Ursachen haben koénnen. So kénnen fehlerhafte semantische Informationen sowohl
die Indikatoranwendung (erster Systemabschnitt) negativ beeinflussen als auch die
strukturierte Ausgabe schéddigen (letzter Systemabschnitt). Jedoch begriinden Fehler

216 8 Evaluation

in den ersten Systemabschnitten (insb. Preprocessing) oftmals gravierendere Schiden
(z.B. falsche Satzgrenzen und semantische Kategorien, fehlerhafte Klassifikation).

Dariiber hinaus kann beispielsweise bei der Unvollstéindigkeitskompensation so-
wohl eine falsche Kompensationsanfrage auf Grund einer fehlerhaften syntaktischen
Struktur als auch eine nicht erkannte Koreferenz oder Anapher (referentielle Disam-
biguierung) zu einem schlechten Kompensationsergebnis fiihren.

Zum anderen zeigte sich aber auch, dass einige Komponenten als Fehlerquellen be-
sonders in Erscheinung treten. Dabei wurden falsch oder nicht erkannte semantische
Kategorien (Informationsextraktion) auf Grund des weitreichenden und gravieren-
den Einflusses hervorgehoben. Aber auch die fehlerhafte Erkennung syntaktischer
Strukturen fithrt zu weitreichenden Folgen. Auf technischer Ebene ist damit der
Einfluss des Stanford CoreNLP-Tools in dieser Arbeit als sehr grof zu bezeichnen,
findet es doch sowohl bei der Satzgrenzenerkennung, Satzvereinfachung, syntakti-
schen und referentiellen Disambiguierung als auch als Expertenkomponente in der
Unvollsténdigkeitskompensation Anwendung.

Performanz. Neben der Ergebnisverschlechterung, die Fehler in der Indikator- und
Strategieanwendungen bedingen konnen, ist auch der potentielle negative Einfluss
auf die Systemperformanz zu nennen. Insbesondere dann, wenn Komponenten aus-
gefiihrt werden, die nicht ausgefiihrt werden miissten. Um mehr iiber die Performanz
des Gesamtsystems und dariiber hinaus auch iiber die Laufzeiten der einzelnen
Komponenten und Strategien zu erfahren, wurde der zweite Evaluationsteil der
Systemperformanz gewidmet (s. Abschnitt 8.3). Hierbei standen insbesondere die
Identifikation von Leistungsengpéssen auf Seiten des Servers sowie die Steigerung der
Nutzerzufriedenheit durch Performanzverbesserung im Zentrum der Uberlegungen.

Die Evaluation der Verarbeitungskomponenten zeigte, dass die Satzgrenzenerken-
nung, die Anforderungsklassifikation sowie -extraktion und die lexikalische Disambi-
guierung zeitintensive Komponenten sind, wobei die lexikalische Disambiguierung
die mit Abstand héchste (und dazu unberechenbare!'®®) Laufzeit aufweist. Dies ist
problematisch, da es fiir REaCT (Anforderungsklassifikation und -extraktion) derzeit
keinen dquivalenten Ersatz gibt (s. Abschnitt 3.2) und es sich bei Babelfy um die
(aktuell) beste Softwarelosung zur WSD handelt und beide Komponenten daher
nicht ersetzt werden konnen. Vielmehr gilt es andere Wege zu finden, die Performanz
zu steigern: So wurde exemplarisch ein Caching-Verfahren fiir die Disambiguierung
mittels Babelfy und BabelNet eingefiithrt und evaluiert, welches als Zwischenspeicher
fungiert und somit einzelne Abfragen wesentlich performanter beantworten kann.
Wie sich withrend der Evaluation zeigte, ist die Zeiteinsparung dabei erheblich (vgl.
Tabelle 8.7), was vor allem der Nutzerzufriedenheit (geringere Wartezeit) zugute
kommt. Jedoch l&sst sich ein solches Caching nur fiir statische Informationen (wie
lexikalische Informationen zu Lesarten aus BabelNet) realisieren und ist demnach
fiir die meisten Komponenten im untersuchten Softwaresystem ungeeignet. Ferner
ist es vor allem dann effizient, wenn es innerhalb einer Doméne zum Einsatz kommt
und dadurch das Vokabular im Umfang begrenzt ist (schnellere Abdeckung).

Die Evaluation der Strategien (s. Abschnitt8.3.5) bestétigt die offensichtliche
Annahme, dass umfangreichere Strategien (hohere Indikatorabdeckung) mit einer

169Unberechenbar im Sinne hoher Netzwerkschwankungen / schwankender Abrufzeiten.

8.4 Evaluationsfazit 217

langeren Laufzeit einhergehen. Allerdings ist festzustellen, dass auch hier einzelne
Komponenten (insb. die lexikalische Disambiguierung) einen groéBeren Anteil an
der Gesamtlaufzeit bedingen als andere. So unterscheidet sich die Default-Strategie
von der Complete-Strategie vor allem im Output und in der Vagheitserkennung,
was sich in den Gesamtlaufzeiten nicht bemerkbar macht. Zeitlich nur minimal
schneller als die Default-Strategie ist die Basic Plus-Strategie, obwohl diese noch die
referentielle Disambiguierung ausfiihrt. Diese ist allerdings (in der jetzigen Form)
eine sehr performante Komponente (vgl. Tabelle 8.6) und fillt daher hinsichtlich der
Laufzeit nicht ins Gewicht.

Teil IV
Fazit und Ausblick

219

Zusammenfassung und Reflexion

Mehrdeutigkeiten, Vagheit und Unvollstéandigkeit sind als Herausforderungen der
natiirlichsprachlichen Anforderungsbeschreibung in der Wissenschaft und Praxis seit
langer Zeit bekannt. Die Erkennung und/oder Kompensation sprachlicher Ungenau-
igkeiten und Unvollstandigkeit ist Gegenstand vieler wissenschaftlicher Arbeiten
und praxisnaher Handlungsempfehlungen (s. Kapitel 3), deren resultierende Hand-
lungsvorschldge von der Nutzung unterschiedlicher Lesetechniken, Checklisten und
kontrollierter Sprachen bis hin zur Anwendung spezieller Software reichen. Sie al-
le vereint die Annahme, dass Stakeholder sich zum einen des Handlungsbedarfs
zur Erstellung aussagekriftiger Anforderungsbeschreibungen bewusst sind sowie
zum anderen gewillt und fiahig sind, potentielle Defizite in ihren Anforderungsbe-
schreibungen zu beheben (s. Abschnitt 1.1). Diese Vorstellung bewahrheitet sich im
OTF-Computing nicht, da weder die Méglichkeit einer umfassenden Benutzerinterak-
tion besteht, noch angenommen werden kann, dass Endanwender die erforderlichen
Sperzifikationskenntnisse aufweisen.

Deshalb leistet die vorliegende Arbeit einen Beitrag zur vereinfachten (disambi-
guierten, syntaktisch vollstindigen) Kommunikation zwischen Endanwendern, die
ihre individuellen Anforderungen an eine geplante Software beschreiben und Entwick-
lern, welche diese final umsetzen miissen. Zwar existieren bereits hochspezialisierte
Softwarelosungen, die einzelne Defizite in natiirlichsprachlichen Texten automatisiert
erkennen und korrigieren kénnen, jedoch sind diese auf die Doméne nicht adaptierbar.
Sie zielen nicht auf Anforderungsbeschreibungen ab und iibersteigen aufgrund ihrer
Bedienungskomplexitit (z. B. Ein- und Ausgabeformate, Schnittstellen) meist die
Anwenderkompetenz.

Mit dieser Positionierung widmete sich diese Dissertation der Erkennung und
Kompensation struktureller, referentieller und lexikalischer Ambiguitét sowie Unvoll-
stiandigkeit in Anforderungsbeschreibungen. Auflerdem war es das Ziel, die Auswahl,
Steuerung und Abstimmung der notwendigen Kompensationskomponenten zu auto-
matisieren sowie mit CORDULA ein endanwenderfreundliches Softwaresystem zu
Testzwecken zu implementieren (s. Kapitel 4). Eine bedarfsgerechte Analyse und Kom-
pensation qualitativ stark schwankender Anforderungsbeschreibungen hinsichtlich
mehrerer moglicher Defizite und ohne Benutzerinteraktion ist dabei ein Novum.

Die geringe Qualitit der Anforderungsbeschreibungen (s. Abschnitt 1.4) ist dabei
eine Herausforderung fiir die maschinelle Textverarbeitung. Als wirksame Gegenmaf3-
nahmen haben sich dabei die Anforderungsklassifikation sowie die Satzvereinfachung
erwiesen. Nichtsdestotrotz erschwert die geringe Textqualitat die Anwendung von
elementaren Verarbeitungsschritten, wie beispielsweise der Anforderungsextraktion
im Preprocessing. Hierauf wird in dieser Arbeit mittels zahlreicher Regeln und Test-
verfahren bzw. dem Abgleich von Informationen (z.B.im Falle widerspriichlicher
POS-Tags) und der Benennung von Expertenkomponenten reagiert.

221

222 9 Zusammenfassung und Reflexion

Zur bedarfsgerechten Analyse und Kompensation wurden kontextspezifische Indi-
katoren definiert, die Anforderungsbeschreibungen der Endanwender analysieren
und iiber erkannte Merkmale bzw. Merkmalsmuster notwendige Verarbeitungs- und
Kompensationskomponenten auswihlen. Indikatoren kénnen dabei auf unterschiedli-
che linguistische Merkmale zuriickgreifen, die in dieser Arbeit definiert wurden. Die
semantischen Kategorien als Kernkomponenten einer FA haben dabei wesentliche
Bedeutung, da sie von fast allen Indikatoren einbezogen werden. Semantische Katego-
rien sind das Ergebnis der Anforderungsextraktion und robuster gegeniiber schlechter
Textqualitat, verglichen mit klassischen linguistischen Merkmalen wie POS-Tags,
Chunks oder Lexikonabfragen. Die Kombination semantischer Kategorien und klas-
sischen linguistischen Merkmalen zur bedarfsgerechten Anwendung verschiedener
Kompensationsverfahren erfolgt erstmalig in dieser Arbeit und ist wesentlich fiir die
Zusammenfiithrung von Anforderungsbeschreibungen und Softwarekomponenten. Die
stark schwankende Textqualitét der Anforderungsbeschreibungen begriindet dariiber
hinaus auch, dass die Komponentensteuerung und die Ergebnisabstimmung bedarfs-
gerecht iiber flexible Strategien erfolgen muss (s. Abschnitt5.2). Hierbei bezieht
sich Flexibilitéit sowohl auf die interne Informationsverarbeitung einer Strategie als
auch auf die Moglichkeit, Strategien neu aufzunehmen oder zu entfernen. Strategien
unterscheiden sich primér hinsichtlich der unterstiitzten Verarbeitungs- und Kompen-
sationkomponenten aber auch im Umfang der internen Weiterverarbeitung. Neben
vorkonfigurierten Strategien (z.B. Light, Basic, Default) ist eine Fallback-Strategie
vorgesehen, die immer dann greift, wenn eine erkannte Indikatorkombination durch
die bestehenden Strategien nicht abgedeckt wird (s. Abschnitt 5.2.6).

Das konzipierte Softwaresystem (CORDULA) formt aus den Indikatoren, Strategi-
en sowie Verarbeitungs- und Kompensationskomponenten eine Anwendungseinheit,
was insbesondere bedeutet, dass die Kommunikation zwischen den einzelnen Sys-
tembestandteilen, im Sinne einheitlicher Ein- und Ausgabeformate, hergestellt sowie
zwischen Endanwendern und dem Gesamtsystem, mittels Benutzerschnittstellen,
ermoglicht wird (s. Abschnitt 5.5). Die Konzeption orientiert sich dabei, wie auch
die Implementierung, an den identifizierten Qualitdtsmerkmalen moderner Soft-
waresysteme, so zum Beispiel der Forderung nach Interoperabilitdt, Portabilitét
und guter Wartbarkeit (s. Abschnitt 7.4). Der daraufhin entwickelte Prototyp von
CORDULA umfasst alle wesentlichen Bestandteile des Konzepts, insbesondere das
Zusammenwirken von Indikatoren, Strategien und Komponenten (s. Kapitel 7).

Gegenstand der Implementierung ist auch die Entwicklung von bisher nicht exis-
tenten Komponenten, wie es zum Beispiel bei der Unvollstédndigkeitskompensation
der Fall ist. Zwar wird in der Literatur bereits die Erkennung von unvollstéandigen
Prédikaten durchgefiihrt (z. B. Korner, 2014), eine automatische Kompensation von
Anforderungsbeschreibungen auf Basis der Priadikat-Argument-Struktur einzelner
FA ist aber ein Novum (Béumer und Geierhos, 2016; Geierhos und Baumer, 2016)
und fester Bestandteil dieser Arbeit. Besonders hervorzuheben ist dabei die bedarfs-
gerechte Hinzunahme weiterer Komponenten (z. B. syntaktische Disambiguierung),
sollte sich durch die Unvollstandigkeitskompensation erneut potentielle Ambiguitét
ergeben. Diese Beriicksichtigung moglicher negativer Folgen der eigenen Kompensati-
onsaktivitét ist ebenfalls bisher nicht Gegenstand der Forschung.

223

Allerdings umfasst ein grofier Teil der Implementierung neben der reinen Softwa-
reentwicklung auch die Erstellung von linguistischen Ressourcen, die im Bereich
der natiirlichsprachlichen Softwareanforderungen in erforderlichem Umfang kaum
existieren (s. Kapitel 6). Hier sind in dieser Arbeit Anforderungsbeschreibungen
herangezogen worden, die die qualitativen Merkmale der Anforderungen enthal-
ten, die im OTF-Computing zu erwarten sind. Die resultierenden Ressourcen (insb.
Anforderungsbeschreibungs- und PAS-Korpus) sind als Ergebnisse dieser Arbeit
fiir weitere Arbeiten im Bereich der Anforderungsanalyse und -kompensation eine
Hilfestellung, 16sen sie in Teilen doch das ressourcenbedingte Kaltstartproblem vieler
Ansétze. Allerdings ist der Umfang der erstellten Ressourcen immer noch begrenzt,
sodass die Ressourcenerweiterung weiterhin Forschungsgegenstand sein muss. Dies
bezieht sich dabei nicht nur auf die beiden Korpora, sondern auch auf unscheinbarere
Ressourcen wie Synonymliste oder Blacklists.

Durch die Evaluation der Indikatoren auf realen Anforderungsbeschreibungen
konnte aufgezeigt werden, dass die definierten Indikatoren eine zufriedenstellende
Zuverlissigkeit aufweisen (& Fa-Score von 0,80). Jedoch wurde andererseits auch
festgestellt (s. Abschnitt5.2), dass bestimmte Strategiekonfigurationen nie Anwen-
dung finden (z. B. Strategien ohne lexikalische Disambiguierung), wéhrend andere
Indikatorkombinationen von bestehenden Strategiekonfigurationen nicht abgedeckt
werden (s. Abschnitt 8.2.2). Wie die Evaluation der Indikatorkombinationen und
der Strategien aufzeigte (s. Abschnitt8.4), trigt die Fallback-Strategie durch ihre
datengetriebene ad hoc-Konfiguration wesentlich zur Indikatorabdeckung bei.

Im Sinne einer hoheren Flexibilitét erscheint es langfristig grundsétzlich sinnvoll,
génzlich auf eine automatische Kompensationsstrategie auszuweichen. Jedoch ist
dies derzeit mangels umfangreicher Ressourcen (insb. Anforderungsbeschreibungs-
korpora) noch nicht umsetzbar. Die vorliegende Arbeit stellt hierzu jedoch bereits
wichtige Erkenntnisse bereit: Zum einen stellen die definierten Indikatoren eine
robuste Grundlage zur Konfiguration einer automatischen Strategie als auch zur
Auswahl vordefinierter Strategien dar. Zum anderen ist das Zusammenwirken der
heterogenen Komponenten grundsétzlich auch ohne vordefinierte Strategien moglich,
vorausgesetzt, die Steuerung und Ergebniskonsolidierung einzelner Komponenten
wird dem Controller als iibergeordnete Instanz iibertragen.

Hinsichtlich der Performanz des Gesamtsystems ist anzumerken (s. Abschnitt 8.3),
dass die bei der Evaluation gemessenen Laufzeiten stark schwanken. So schwankt
beispielsweise die Ausfiihrungszeit bei fiinf Sitzen zwischen 1,1 und 26,6 s, was auf
eine Vielzahl an Einflussfaktoren zuriickzufiihren ist, beispielsweise die Einbindung
der externen Babelfy-Komponente (Netzwerkauslastung). Diesbeziiglich zeigte sich,
dass das beispielhaft fiir die lexikalische Disambiguierung implementierte Caching-
Verfahren eine effiziente Moglichkeit ist, die Gesamtlaufzeit wesentlich zu reduzieren
(s. Abschnitt 8.3.4). Allerdings ist es trotz der Tatsache, dass teilweise sehr gute
Gesamtlaufzeiten erreicht werden, fraglich, ob diese bereits die Anforderungen des
OTF-Computings erfiillen. Bei der endgiiltigen Wertung ist hierbei die vorliegende
Hardwarekonfiguration des Testsystems zu beachten, die verhaltnisméfig schwach
gewihlt ist (s. Abschnitt 7.2) und dennoch bereits gute Gesamtlaufzeiten zulésst.

Abschlieflend ist als zentrales Ergebnis dieser Dissertation festzustellen, das kontext-
sensitive Indikatoren und Strategien in der Lage sind, stark heterogene Verarbeitungs-

224 9 Zusammenfassung und Reflexion

und Kompensationskomponenten bedarfsgerecht auf Anforderungsbeschreibungen an-
zuwenden sowie die Einzelergebnisse der Komponenten hinsichtlich eines gemeinsamen
Kompensationsergebnisses in Einklang zu bringen und strukturiert weiterzugeben.
Sie stellen damit eine gute Ergénzung zu bestehenden Arbeiten im Bereich der
softwarebasierten Qualitdtsverbesserung von natiirlichsprachlichen Anforderungsbe-
schreibungen dar. Allerdings ist auch anzumerken, dass die vorgestellten Indikatoren
und Strategien nur so gut funktionieren kénnen, wie die zugrundeliegenden Informa-
tionen bzw. Merkmale es zulassen. Anforderungsbeschreibungen wird diesbeziiglich
eine schlechte Textqualitit attestiert (s. Abschnitt 1.4), was die Merkmalserkennung
in der Indikatoranwendung erschwert. Dariiber hinaus sind die Kompensationser-
gebnisse nur so gut, wie die Kompensationskomponenten, die diesbeziiglich heran-
gezogen werden. Hier kann jedoch positiv in die Zukunft geschaut werden, da die
natiirliche Sprachverarbeitung sowie das RE als aktive Forschungsgebiete zéhlen und
die gewahlten Verarbeitungs- und Kompensationskomponenten sich iiberwiegend
in aktiver Entwicklung befinden. Hier gilt: Verbessert sich die Zuverlassigkeit der
einzelnen Komponenten, verbessert sich auch das Gesamtergebnis.

Fazit. Damit leistet die vorliegende Arbeit methodisch gesehen einen Beitrag zur
ganzheitlichen Erfassung und Verbesserung sprachlicher Unzuldnglichkeiten in nut-
zergenerierten Anforderungsbeschreibungen, indem erstmalig parallel und sequenziell
Ambiguitat, Unvollstandigkeit und Vagheit behandelt werden. Erst durch den Ein-
satz linguistischer Indikatoren war es moglich, datengetrieben und bedarfsorientiert
die individuelle Textqualitdt zu optimieren, indem von der klassischen Textanaly-
sepipeline (s. Abschnitt 3.1) abgewichen wurde: Die ad hoc-Konfiguration der Kom-
pensationspipeline, ausgelost durch die On-The-Fly festgestellten Defizite in den
Anforderungsbeschreibungen der Endanwender, ist ein Alleinstellungsmerkmal.

Forschungsausblick

Die vorliegende Arbeit stellt ein fiir sich genommen abgeschlossenes Forschungs-
vorhaben dar. Sie ist jedoch dariiber hinaus als wissenschaftlicher Beitrag zum
Sonderforschungsbereich 901: OTF-Computing zu verstehen, in dessen Rahmen die
Weiterentwicklung vorgesehen ist. Diesbeziiglich wird im Folgenden ein Forschungs-
ausblick gegeben, der an die bisherigen Ergebnisse dieser Arbeit ankniipft und iiber
die reine Ergebnisverbesserung hinausgeht.

10.1 Vom Endanwender lernen

In der vorliegenden Arbeit wird an vielen Stellen von Ressourcen gesprochen (insb.
Kapitel 6), die fiir das Softwaresystem erforderlich sind aber nicht in der erforderli-
chen Qualitit oder im notwendigen Umfang vorliegen. Eine Uberlegung, die hierzu
bislang noch nicht angestellt wurde, ist die des Erlernens von Wissen und Entschei-
dungen seitens des Gesamtsystems. Dabei bezieht sich das Lernen tatséchlich auf die
Aneignung von Wissen sowie eines bestimmten Verhaltens durch Erfahrungen iiber
die Zeit (Dudenredaktion, 2017a).

Bezogen auf Ressourcen bedeutet das, dass Eingaben von Endanwendern sei-
tens des Systems dazu genutzt werden, die bestehenden Ressourcen zu erweitern.
So lésst sich beispielsweise der Datenbestand der Unvollstdndigkeitskompensation
(s. Abschnitt 5.5.5) automatisiert mittels Eingaben von Endanwendern (Anforde-
rungsbeschreibungen) erweitern (Extraktion von FA, Identifikation von Prédikaten,
Leerstellen und Kontext). Der Variantenreichtum in den Anforderungsbeschreibungen
fithrt dariiber hinaus dazu, dass die Kompensationskomponenten eine wachsende
Anzahl an kontextspezifischen Kompensationsalternativen pro Priadikat erhélt. Somit
wird die Kompensation insgesamt préziser indem Kompensationsalternativen besser
in den jeweiligen Kontext einer kompensationsbediirftigen Anforderungsbeschrei-
bung einbettet werden kénnen. Allerdings ist sicherzustellen, dass die Eingaben,
die Endanwendern tétigen, weiterhin vertraulich behandelt werden: Es muss eine
Anonymisierung der Datenbestéinde erfolgen.

Dariiberhinaus ist Lernen in der Entscheidungsfindung méglich, denn an mehreren
Stellen im Kompensationsprozess ist davon auszugehen, dass das System sich wieder-
holt gleich entscheidet, da in einem gegebenen Kontext beispielweise nur eine plausible
Disambiguierung fiir ein Lexem oder einen Satz in Frage kommt. In diesem Fall liegt
zwar eine potentielle Ambiguitdt vor, eine Disambiguierung ist aber strenggenommen
nicht performant, da mit hoher Wahrscheinlichkeit bereits vor der Disambiguierung
auf Basis der Vergangenheitswerten bestimmt werden kann, welche Lesart korrekt
ist. Ein naheliegendes Beispiel hierfiir ist die lexikalische Disambiguierung. Es ist
davon auszugehen, dass Endanwender, die eine E-Mail-Applikation beschreiben, bei-

225

10

226 10 Forschungsausblick

spielsweise das Pradikat ,,send“ immer in der gleichen Lesart verwenden (z. B. auch
bei ,, attachment* und ,write“). Um die Kompensation performant zu gestalten,
ist eine erweiterte Whitelist denkbar, die Disambiguierungsergebnisse und weitere
Informationen iiber den Kontext enthélt und der eigentlichen Disambiguierung vorge-
schaltet wird. Befindet sich ein Lexem auf der Whitelist und handelt es sich um einen
dhnlichen Kontext sowie Doméne, kann die (zeitaufwindigere) Disambiguierung iiber
Babelfy {ibersprungen werden und die wahrscheinliche Lesart zugeordnet werden.

10.2 Extraktion und Erweiterung funktionaler Ablaufe

In dieser Arbeit wird eine funktionale Anforderung, vereinfacht dargestellt, als eine
Aneinanderreihung semantischer Kategorien verstanden (z. B. Rolle, Aktion, Objekt),
deren Instantiierung unvollstindig, vage oder mehrdeutig sein kann und die somit als
kompensationsbediirftig gilt. Diese Betrachtungsweise ldsst dabei bislang (mit Aus-
nahme der referentiellen Disambiguierung) das Zusammenwirken mehrerer FA aufien
vor. Aufbauend auf den bisherigen, in dieser Arbeit dargestellten, Ergebnissen wird
diesbeziiglich angestrebt, auch funktionale Ablaufe aus den Anforderungsbeschrei-
bungen zu extrahieren — somit satziibergreifend die gewiinschten Funktionalitéiten
(Prozessworter) zu extrahieren und in eine Ausfiihrungsreihenfolge zu bringen. Dies
ist von besonderer Relevanz, da Anforderungsbeschreibungen es zulassen, dass Pro-
zessworter in beliebiger Reihenfolge kombiniert und iiber Temporalausdriicke wie
Temporaladverben (z. B. afterwards“) oder temporale Pripositionen (z. B. , before)
koordiniert werden (Landhéufler, 2016, S.921ff.). Ein Beispiel hierfiir ist die FA T
want to send emails to my friends: First I need to write them and then I want to at-
tach my files“. Die bisherige Betrachtungweise nimmt fiir solche FA eine intendierte
funktionale Ausfiihrungsreihenfolge an (vgl. Abbildung 10.1, A).

(A) 1->2 2->3 (B) 2->3 3->1

send write attach write attach send
FA #1 FA #2 FA #3 FA #2 FA #3 FA #1

Abbildung 10.1: Gegeniiberstellung generierter Funktionsabldufe

Diese Annahme erscheint, aufgrund der geringen Textqualitdt (s. Abschnitt 1.4)
sowie der Moglichkeit der spontanen Anforderungsverschriftlichung (s. Abschnitt 5.1),
als gewagt. Sie ist fiir die vorliegende Arbeit jedoch ausreichend. Wird allerdings
auch die Ausfithrungsreihenfolge betrachtet, fillt auf, dass das Ergebnis wie in
Abbildung 10.1 (A) nicht ausfiihrbar ist, da das Senden (,, send“) der E-Mail unmoglich
vor dem Schreiben (,,write®) erfolgen kann. Folglich unterliegen die Prozessworter in
der Ausfiihrung mindestens einer temporalen Anordnung (vgl. Abbildung 10.1, B).
Sie unterliegen aber nicht nur einer temporalen, sondern auch einer hierarchischen
Anordnung (vgl. Abbildung 10.2): So ist das Senden zwar zunéchst als gleichwertiges

10.2 Extraktion und Erweiterung funktionaler Abladufe 227

Prozesswort zu verstehen, es setzt aber zugleich (in diesem Beispiel) das Schreiben
eines Textes und das Anhéngen (,,attach®) einer Datei voraus.

choose

sub_1

send
FA #1

Abbildung 10.2: Gegeniiberstellung generierter Funktionsabldufe

Neben der angesprochenen Ausfiihrungsreihenfolge genannter Prozessworter ist die
Erweiterung bestehender Prozessabldufe zu diskutieren. So setzt nicht nur das Senden
einer E-Mail mit Anhang das Schreiben und das Anhéngen voraus. Vielmehr setzt
beispielsweise auch das Anhéngen einen weiteren Prozessschritt voraus, namlich die
Auswahl (,,choose*) entsprechender Dateien — ein Prozesswort, was in der initialen
Anforderungsbeschreibung keine Verwendung findet (vgl. Abbildung 10.2). Hierzu
ist eine entsprechende Wissensressource erforderlich, die Prozessworter, deren hierar-
chische Beziehung zu anderen Prozesswortern sowie Abhangigkeiten, linguistische
Relationen (z.B. Synonymie) und Kontextinformationen (z. B. Doméne) enthélt. Eine
solche Ressource existiert derzeit noch nicht.

Literaturverzeichnis

ACL Wiki (2016). POS Tagging (State of the art). https://www.aclweb.
org/aclwiki/index.php?title=P0OS_Tagging_(State_of_the_
art) &0ldid=11577. Zuletzt abgerufen am 30.03.2017.

Agarwal, R. und Boggess, L. (1992). A Simple but Useful Approach to Conjunct
Identification. In Proceedings of the 30th Annual Meeting on ACL, ACL’92, Seiten
15-21, Stroudsburg, PA, USA. ACL.

Agirre, E., Baldwin, T. und Martinez, D. (2008). Improving Parsing and PP
attachment Performance with Sense Information. In Proceedings of the Annual
Meeting of the ACL, Seiten 317-325, Columbus, OH, USA. ACL.

Agirre, E. und Edmonds, P. (Herausgeber) (2007). Word Sense Disambiguation:
Algorithms and Applications, Band: 33. Text, Speech and Language Technology.
Springer, Baskenland, Spanien / Oxford, UK.

Albayrak, O., Kurtoglu, H. und Biaki, M. (2009). Incomplete Software Requirements
and Assumptions Made by Software Engineers. In Proceedings of the 16th APSEC,
Seiten 333-339, Batu Ferringhi, Penang, Malaysia. IEEE.

Allen, J. (1995). Natural Language Understanding. The Benjamin/Cummings
Publishing Company, New York, NY, USA / Wokingham, UK / Amsterdam,
Niederlande / Bonn u. a.

Alshazly, A. A.| Elfatatry, A. M. und Abougabal, M. S. (2014). Detecting defects in
software requirements specification. Alezandria Engineering Journal, 53(3):513~
527.

Andor, D., Alberti, C., Weiss, D., Severyn, A., Presta, A., Ganchev, K., Petrov, S.
und Collins, M. (2016). Globally Normalized Transition-Based Neural Networks.
In Proceedings of the 54th Annual Meeting of the ACL, Seiten 2442 — 2452, Berlin.
ACL.

Apache Software Foundation (2012). Apache OpenNLP Developer Do-
cumentation. https://opennlp.apache.org/documentation/1.5.
2—-incubating/manual/opennlp.html#tools.chunker. Zuletzt abgeru-
fen am 12.12.2016.

Apache Software Foundation (2016). Apache Solr 6.3.0: Solr Features. http:
//lucene.apache.org/solr/features.html. Zuletzt abgerufen am
08.12.2016.

Aurum, A., Petersson, H. und Wohlin, C. (2002). State-of-the-art: software inspections
after 25 years. Software Testing, Verification and Reliability, 12(3):133-154.

229

230 Literaturverzeichnis

Avei, O. (2008). Warum entstehen in der Anforderungsanalyse Fehler? Eine Synthese
empirischer Befunde der letzten 15 Jahre. In Industrialisierung des Software-
Managements: Fachtagung des GI-Fachausschusses Management der Anwendungs-
entwicklung und -Wartung im Fachbereich Wirtschaftsinformatik, LNI, Seiten
89-103, Stuttgart. GI.

Bailey, D., Lierler, Y. und Susman, B. (2015). Prepositional Phrase Attachment
Problem Revisited: How VERBNET Can Help. In Proceedings of the 11th IWCS,
Seiten 12-22, London, UK. ACL, ACL.

Bajwa, I. S., Lee, M. und Bordbar, B. (2012). Resolving Syntactic Ambiguities in
Natural Language Specification of Constraints. In Gelbukh, A. (Herausgeber),
Computational Linguistics and Intelligent Text Processing, Band: 7181. LNCS,
Seiten 178-187. Springer, Berlin / Heidelberg.

Baker, C. F., Fillmore, C. J. und Lowe, J. B. (1998). The Berkeley FrameNet Project.
In Proceedings of the 36th Annual Meeting of the ACL and 17th International
Conference on COLING, Band: 1, Seiten 86-90, Montreal, QC, Kanada. ACL.

Bakshi, R. N. (2000). A Course In English Grammar. Orient Longman, Hyderabad,
TS, Indien.

Baldwin, B. (1997). CogNIAC: High Precision Coreference with Limited Knowledge
and Linguistic Resources. In Proceedings of ANARESOLUTION °97, Seiten 3845,
Madrid, Spanien. ACL.

Baldwin, T. und Lui, M. (2010). Language Identification: The Long and the Short
of the Matter. In Proceedings of the HLT: The 2010 Annual Conference of the
NAACL, Seiten 229-237, Los Angeles, CA, USA. ACL.

Balzert, H. (2003). JSP fiir Finsteiger - Dynamische Websites mit Java Server Pages
erstellen. 1T lernen. W3L-Verlag, Herdecke / Dortmund.

Balzert, H. (2009). Lehrbuch der Software-Technik. Spektrum Akademischer Verlag,
Heidelberg, 3. Auflage.

Banerjee, S. und Pedersen, T. (2002). An Adapted Lesk Algorithm for Word Sense
Disambiguation Using WordNet. In Gelbukh, A. (Herausgeber), Proceedings of the
CICLing 2002, LNCS, Seiten 136145, Mexico City, Mexiko / Berlin / Heidelberg.
Springer.

Bano, M. (2015). Addressing the Challenges of Requirements Ambiguity: A Review
of Empirical Literature. In Proceedings of the 5th International Workshop on
EmpiRE, Seiten 21-24, Ottawa, ON, Kanada. IEEE.

Bansal, M. und Klein, D. (2012). Coreference Semantics from Web Features. In
Proceedings of the 50th Annual Meeting of the ACL, Band: 1. ACL’12, Seiten
389-398, Stroudsburg, PA, USA. ACL.

Literaturverzeichnis 231

Béaumer, F. S. und Geierhos, M. (2016). Running out of Words: How Similar
User Stories Can Help To Elaborate Individual Natural Language Requirement
Descriptions. In Dregvaite, G. und Damasevicius, R. (Herausgeber), Proceedings
of the ICIST 2016, CCIS, Seiten 549-558, Druskininkai, Litauen. Springer.

Baumgartner, M., Klonk, M., Pichler, H., Seidl, R. und Tanczos, S. (2013). Agile
Testing: Der agile Weg zur Qualitdt. Carl Hanser Verlag, Miinchen.

Bell, T. E. und Thayer, T. A. (1976). Software Requirements: Are They Really a
Problem? In Proceedings of the 2nd ICSE, ICSE’76, Seiten 61-68, Los Alamitos,
CA, USA. IEEE.

Beneken, G. (0. D.). Informelle und formale Spezifikation. http://www.
software-kompetenz.de/servlet/is/15728/. Zuletzt abgerufen am
24.07.2015.

Bengtson, E. und Roth, D. (2008). Understanding the Value of Features for Co-
reference Resolution. In Proceedings of the 2008 Conference on EMNLP, Seiten
294-303, Honolulu / Urbana, IL, USA. ACL.

Berghuber, M. (2008). Ambiguitit. http://www.rheton.sbg.ac.at/
rheton/2008/12/ambiguitaet/. Zuletzt abgerufen am 23.10.2015.

Bergsten, H. (2004). JavaServer Pages. O’Reilly Verlag, Sebastopol, CA, USA, 3.
Auflage.

Berkeley NLP Group (2016). Berkeley Coreference Resolution System. http:
//nlp.cs.berkeley.edu/projects/coref.shtml. Zuletzt abgerufen am
16.05.2016.

Berry, D. M. (2000). The Requirements Iceberg and Various Icepicks Chipping at
it. http://www.ieee.li/pdf/viewgraphs/iceberg.pdf. Zuletzt abge-
rufen am 23.10.2015.

Berry, D. M., Kamsties, E. und Krieger, M. M. (2003). From Contract Draf-
ting to Software Specification: Linguistic Sources of Ambiguity — A Hand-
book. Version 1.0. https://cs.uwaterloo.ca/~dberry/handbook/
ambiguityHandbook.pdf. Zuletzt abgerufen am 16.11.2015.

Berzins, V., Martell, C., Lugi und Adams, P. (2008). Innovations in Natural Language
Document Processing for Requirements Engineering. In Paech, B. und Martell, C.
(Herausgeber), Innovations for Requirement Analysis. From Stakeholders’ Needs to
Formal Designs: 14th Monterey Workshop 2007. Revised Selected Papers, Seiten
125-146. Springer, Monterey, CA, USA / Berlin / Heidelberg.

Bhargav, A. und Kumar, B. (2010). Secure Java: For Web Application Development.
CRC Press, Boca Raton, FL, USA.

Bhat, M., Ye, C. und Jacobsen, H.-A. (2014). Orchestrating SOA Using Requirement
Specifications and Domain Ontologies. In Franch, X., Ghose, A., Lewis, G. und

232 Literaturverzeichnis

Bhiri, S. (Herausgeber), Service-Oriented Computing, Band: 8831. LNCS, Seiten
403-410. Springer, Berlin / Heidelberg.

Bjorkelund, A., Bohnet, B., Hafdell, L. und Nugues, P. (2010). A High-Performance
Syntactic and Semantic Dependency Parser. In COLING 2010: Demonstrations,
Seiten 33-36, Beijing, China. COLING 2010 Organizing Committee.

Bjorkelund, A. und Kuhn, J. (2014). Learning Structured Perceptrons for Coreference
Resolution with Latent Antecedents and Non-local Features. In Proceedings of the
52nd Annual Meeting of the ACL, Seiten 47-57, Baltimore, MD, USA. ACL.

Boehm, B. W. (1984). Verifying and Validating Software Requirements and Design
Specifications. IEEE Software, Seiten 75-88.

Bohnet, B. (2010). Very High Accuracy and Fast Dependency Parsing is Not a
Contradiction. In Proceedings of the 23rd COLING, COLING’10, Seiten 89-97,
Beijing, China / Stroudsburg, PA, USA. ACL.

Bos, J. und Spenader, J. (2011). An annotated corpus for the analysis of VP ellipsis.
Language Resources and Evaluation, 45(4):463-494.

Brants, S., Dipper, S., Hansen, S., Lezius, W. und Smithm, G. (2002). The TIGER
Treebank. In Proceedings of the First Workshop on Treebanks and Linguistic
Theories, TLT’02, Seiten 24-41, Sozopol, Bulgarien.

Bray, 1. (2002). An Introduction to Requirements Engineering. Pearson Education,
Harlow, Essex, UK.

Breindl, E. und Donalies, E. (2012). Intensitéitspartikel. http://hypermedia.
ids-mannheim.de/call/public/sysgram.ansicht?v_id=391. IDS
Mannheim. Zuletzt abgerufen am 28.09.2016.

Briscoe, T. (2006). An introduction to tag sequence grammars and the RASP
system parser. Technischer Bericht 662, University of Cambridge, Cambridge,
UK. UCAM-CL-TR-662. Erreichbar unter: https://www.cl.cam.ac.uk/
techreports/UCAM-CL-TR-662.pdf. Zuletzt abgerufen am 28.04.2016.

Briscoe, T. und Carroll, J. (2002). Robust Accurate Statistical Annotation of General
Text. In Proceedings of the 3rd LREC, Las Palmas, Spanien. ELRA.

Briscoe, T., Carroll, J. und Watson, R. (2006). The Second Release of the RASP
System. In Proceedings of the COLING/ACL on Interactive Presentation Sessions,
COLING-ACL’06, Seiten 77-80, Stroudsburg, PA, USA. ACL.

Brugger, R. (2009). IT-Projekte strukturiert realisieren: Situationen analysieren,
Lésungen konzipieren — Vorgehen systematisieren, Sachverhalte visualisieren —
UML und EPKs nutzen. Vieweg+Teubner Verlag, Wiesbaden, 2. Auflage.

Bryl, V., Giuliano, C., Serafini, L. und Tymoshenko, K. (2010). Using Background
Knowledge to Support Coreference Resolution. In Proceedings of the 19th ECAI
Seiten 759-764, Amsterdam, Niederlande. IOS Press.

Literaturverzeichnis 233

Bucchiarone, A.; Gnesi, S., Fantechi, A. und Trentanni, G. (2010). An Experience in
Using a Tool for Evaluating a Large Set of Natural Language Requirements. In
Proceedings of the 2010 ACM Symposium on Applied Computing, SAC’10, Seiten
281-286, New York, NY, USA. ACM.

Budanitsky, A. und Hirst, G. (2001). Semantic distance in WordNet: An experimental,
application-oriented evaluation of five measures. In Workshop on WordNet and
other Lexical Resources, Second Meeting of the NAACL, Band: 2, Pittsburgh, PA,
USA. ACL.

Budanitsky, A. und Hirst, G. (2006). Evaluating WordNet-based Measures of Lexical
Semantic Relatedness. Computational Linguistics, 32(1):13-47.

Bues, M. (1994). Offene Systeme: Strategien, Konzepte und Techniken fiir das
Informationsmanagement. Springer, Berlin / Heidelberg.

BuBimann, H. (1983). Lexikon der Sprachwissenschaft. Kroners Taschenausgabe.
Alfred Kroner Verlag, Stuttgart.

Carstensen, K.-U., Ebert, C., Ebert, C., Jekat, S., Klabunde, R. und Langer, H.
(Herausgeber) (2010). Computerlinguistik und Sprachtechnologie: Eine Einfiihrung.
Spektrum Akademischer Verlag, Heidelberg, 3. Auflage.

Carter, S., Weerkamp, W. und Tsagkias, M. (2012). Microblog language identification:
Overcoming the limitations of short, unedited and idiomatic text. Language
Resources and Evaluation, 47(1):195-215.

Ceccato, M., Kiyavitskaya, N., Zeni, N., Mich, L. und Berry, D. M. (2004). Ambiguity
Identification and Measurement in Natural Language Texts. Technischer Bericht
DIT-04-111, University of Trento, Trento, Italien.

Chaimongkol, P., Aizawa, A. und Tateisi, Y. (2014). Corpus for Coreference Reso-
lution on Scientific Papers. In Calzolari, N., Choukri, K., Declerck, T., Loftsson,
H., Maegaard, B., Mariani, J., Moreno, A., Odijk, J. und Piperidis, S. (Herausge-
ber), Proceedings of the 9th International Conference on LREC, Reykjavik, Island.
ELRA.

Chantree, F., Kilgarriff, A., De Roeck, A. und Willis, A. (2005). Disambiguating
Coordinations Using Word Distribution Information. In Proceedings of RANLP,
Borovets, Bulgarien.

Chantree, F., Nuseibeh, B., De Roeck, A. und Willis, A. (2006). Identifying Nocuous
Ambiguities in Natural Language Requirements. In Proceedings of the 14th IEEE
RE, Seiten 59-68, Minneapolis, MN, USA. IEEE.

Chantree, F., Willis, A., Kilgarriff, A. und De Roeck, A. (2007). Detecting Dangerous
Coordination Ambiguities Using Word Distribution. In RANLP IV: Selected papers
from RANLP 2005, Seiten 287-296. John Benjamins Publishing, Amsterdam,
Niederlande / Philadelphia, PA, USA.

234 Literaturverzeichnis

Charniak, E. (1997). Statistical Parsing with a Context-free Grammar and Word
Statistics. In Proceedings of the 2/th National Conference on AAAI and 9th
Conference on TAAI, AAAT97/TAAT97, Seiten 598-603, Providence, RI, USA.
AAAI Press.

Chen, D. und Manning, C. D. (2014). A Fast and Accurate Dependency Parser
using Neural Networks. In Proceedings of the 2014 Conference on EMNLP, Seiten
740-750, Doha, Katar. ACL.

Choi, J. D. und McCallum, A. (2013). Transition-based Dependency Parsing with
Selectional Branching. In Proceedings of the 51st Annual Meeting of the ACL,
Seiten 1052-1062, Sofia, Bulgarien. ACL.

Choi, J. D., Tetreault, J. und Stent, A. (2015). It Depends: Dependency Parser
Comparison Using A Web-based Evaluation Tool. In Proceedings of the 53rd
Annual Meeting of the ACL and the 7th IJCNLP, Seiten 387-396, Beijing, China.
ACL.

Collins, M. und Brooks, J. (1995). Prepositional Phrase Attachment through a
Backed-Off Model. In Yarowsky, D. und Church, K. W. (Herausgeber), Proceedings
of the 8rd Workshop on Very Large Corpora, Seiten 27-38, Cambridge, MA, USA.
ACL.

Collins, M. J. (1996). A New Statistical Parser Based on Bigram Lexical Dependencies.
In Proceedings of the 34th Annual Meeting on ACL, ACL’96, Seiten 184-191,
Stroudsburg, PA, USA. ACL.

Cook, T. (2002). Mastering JSP. SYBEX, Alameda, CA, USA.

Corley, C. und Mihalcea, R. (2005). Measuring the Semantic Similarity of Texts. In
Proceedings of the ACL Workshop on EMSEE, EMSEE’05, Seiten 13-18, Strouds-
burg, PA, USA. ACL.

Crockford, D. (2006). JSON: The Fat-Free Alternative to XML. http://www.
json.org/xml.html. Zuletzt abgerufen am 02.12.2015.

Culotta, A., Wick, M., Hall, R. und McCallum, A. (2007). First-Order Probabilistic
Models for Coreference Resolution. In Proceedings of the HLT conference / Meeting
of the NAACL, Seiten 81-88, Rochester, NY, USA. ACL.

Davies, M. (2016). Word frequency data — Corpus of Contemporary American English.
http://www.wordfrequency.info/free.asp?s=y. Zuletzt abgerufen am
08.09.2016.

Davis, A., Overmyer, S., Jordan, K., Caruso, J., Dandashi, F., Dinh, A., Kincaid,
G., Ledeboer, G., Reynolds, P., Sitaram, P., Ta, A. und Theofanos, M. (1993).
Identifying and Measuring Quality in a Software Requirements Specification. In
Proceedings of the 1st International Software Metrics Symposium, Seiten 141-152,
Baltimore, MD, USA. IEEE.

Literaturverzeichnis 235

Decker, B., Ras, E., Rech, J., Jaubert, P. und Rieth, M. (2007). Wiki-Based
Stakeholder Participation in Requirements Engineering. IEEE Software, 24(2):28-
35.

Deeptimahanti, D. K. und Sanyal, R. (2009). An Innovative Approach for Generating
Static UML Models from Natural Language Requirements. In Kim, T.-h., Fang,
W.-C., Lee, C. und Arnett, K. P. (Herausgeber), Advances in Software Engineering,
Band: 30, Seiten 147-163. Springer, Berlin / Heidelberg.

Deeptimahanti, D. K. und Sanyal, R. (2011). Semi-automatic Generation of UML
Models from Natural Language Requirements. In Proceedings of the 4th ISEC,
ISEC’11, Seiten 165-174, New York, NY, USA. ACM.

Denert, E. (2013). Software-Engineering: Methodische Projektabwicklung. Springer,
Berlin / Heidelberg / New York, NY, USA. 1. korrigierter Nachdruck.

Dias Cardoso, P. M. und Roy, A. (2016). Language Identification for Social Media:
Short Messages and Transliteration. In Proceedings of the 25th International Con-
ference Companion on WWW, WWW’16 Companion, Seiten 611-614, Montreal,
QC, Kanada. International WWW Conferences Steering Committee.

Dittmann, J. und Thieroff, R. (2009). Richtiges Deutsch leicht gemacht. Bertelsmann
Wahrig. Wissenmedia, Giitersloh / Miinchen.

Doddington, G., Mitchell, A., Przybocki, M., Ramshaw, L., Strassel, S. und Weische-
del, R. (2004). The Automatic Content Extraction (ACE) Program — Tasks, Data,
and Evaluation. In Proceedings of the 4th International LREC, Seite 837-840,
Lissabon, Portugal. ELRA.

Dollmann, M. (2016). Frag die Anwender: Extraktion und Klassifikation von funk-
tionalen Anforderungen aus User-Generated-Content. Masterarbeit, Universitét
Paderborn, Paderborn.

Dollmann, M. und Geierhos, M. (2016). On- and Off-Topic Classification and
Semantic Annotation of User-Generated Software Requirements. In Proceedings of
the Conference on EMNLP, Austin, TX, USA. ACL.

Dénninghaus, S. (2005). Vagheit der Sprache: Begriffsgeschichte und Funktionsbe-
schreibung anhand der tschechischen Wissenschaftssprache. Slavistische Studien
Biicher. Harrassowitz Verlag, Wiesbaden.

Drechsler, R., Soeken, M. und Wille, R. (2014). Automated and Quality-driven Requi-
rements Engineering. In Proceedings of the 2014 IEEE/ACM ICCAD, ICCAD’14,
Seiten 586-590, Piscataway, NJ, USA. IEEE.

Dudenredaktion (Herausgeber) (2016). Duden — Deutsches Universalworterbuch: Das
umfassende Bedeutungswirterbuch der deutschen Gegenwartssprache. Dudenredak-
tion, Berlin, 8. Auflage.

Dudenredaktion (2017a). Duden, Stichwort: Lernen. http://www.duden.de/
node/665539/revisions/1613414/view. Zuletzt abgerufen am 04.03.2017.

236 Literaturverzeichnis

Dudenredaktion (2017b). Duden, Stichwort: Standardsprache. http://www.
duden.de/node/679032/revisions/1165333/view. Zuletzt abgerufen
am 05.03.2017.

Dudenredaktion (2017c). Duden, Stichwort: Text. http://www.duden.de/
node/654612/revisions/1370114/view. Zuletzt abgerufen am 03.02.2017.

Dunkel, J. und Holitschke, A. (2003). Softwarearchitektur fiir die Prazis. Xpert.press.
Springer, Hannover / Berlin / Heidelberg.

Dunning, T. (1994). Statistical Identification of Language. Technischer Bericht
MCCS 94-273, New Mexico State University, Las Cruces, NM, USA.

Durrett, G. und Klein, D. (2013). Easy Victories and Uphill Battles in Coreference
Resolution. In Proceedings of the Conference on EMNLP, Seattle, WA, USA. ACL.

Dustdar, S., Gall, H. und Hauswirth, M. (2003). Was ist Software-Architektur?,
Seiten 1-11. Springer, Berlin / Heidelberg,.

Ernst, M. (2003). Syntaktische Ambiguitit: Eine sprachiibergreifende Typisierung auf
der Basis des Franzdsischen und Spanischen, Band: 261. Europdische Hochschul-
schriften XXI. Peter Lang, Wiirzburg / Frankfurt am Main. Zugl.: Dissertation
an der Universitdt Wiirzburg, 2002.

Espaiia, S., Condori-Fernandez, N., Gonzalez, A. und Pastor, O. (2009). Evaluating
the Completeness and Granularity of Functional Requirements Specifications:
A Controlled Experiment. In Proceedings of the 17th IEEFE RE, RE’14, Seiten
161-170, Atlanta, GA, USA. IEEE.

Essberger, J. (2012). English Prepositions List — 150 Prepositions. Englishclub.com,
Cambridge, UK.

Fabbrini, F., Fusani, M., Gnesi, S. und Lami, G. (2000). Quality Evaluation of
Software Requirements Specifications. In Proceedings of the Conference of the
Software and Internet Quality Week, Seiten 1-18, San Francisco, CA, USA.

Fabbrini, F., Fusani, M., Gnesi, S. und Lami, G. (2001). The Linguistic Approach to
the Natural Language Requirements Quality: Benefit of the use of an Automatic
Tool. In Proceedings of the 26th Annual NASA Goddard Software Engineering
Workshop, Seiten 97-105, Greenbelt, MD, USA. IEEE.

Fagan, M. (1976). Design and code inspections to reduce errors in program develop-
ment. IBM Systems Journal, 15(3):182-211.

Fahney, R., Gartung, T., Glunde, J., Hoffmann, A. und Valentini, U. (2012). Requi-
rements Engineering und Projektmanagement. Springer, Berlin / Heidelberg.

Fantechi, A. und Spinicci, E. (2005). A Content Analysis Technique for Inconsistency
Detection in Software Requirements Documents. In Proceedings of the WER 2005,
VIII Workshop on Requirements Engineering, Seiten 245-256, Porto, Portugal.

Literaturverzeichnis 237

Femmer, H. (2013). Reviewing Natural Language Requirements with Requirements
Smells — A Research Proposal. http://www4.in.tum.de/~femmer/works/
idoesel3.pdf. Zuletzt abgerufen am 27.08.2016.

Femmer, H., Ferndandez, D. M., Juergens, E., Klose, M., Zimmer, I. und Zimmer, J.
(2014). Rapid Requirements Checks with Requirements Smells: Two Case Studies.
In Proceedings of the 1st International Workshop on RCoSE, RCoSE’14, Seiten
10-19, New York, NY, USA. ACM.

Femmer, H., Ferndndez, D. M., Wagner, S. und Eder, S. (2016a). Rapid Quality Ass-
urance with Requirements Smells. Journal of Systems and Software. In Press, Cor-
rected Proof. Erreichbar unter: http://www4.in.tum.de/~femmer/works/
2016-requirements_smells—jss.pdf. Zuletzt abgerufen am 27.08.2016.

Femmer, H., Hauptmann, B. und Widera, A. (2016b). Requirements-Smells: Auto-
matische Unterstiitzung bei der Qualitdtssicherung von Anforderungsdokumenten.
OBJEK Tspektrum, 2:14-19.

Ferlein, J. und Hartge, N. (2008). Technische Dokumentation fiir internationale
Mirkte: Haftungsrechtliche Grundlagen - Sprache - Gestaltung - Redaktion und
Ubersetzung. Expert Verlag, Renningen.

Ferrari, A., dell’ Orletta, F., Spagnolo, G. O. und Gnesi, S. (2014). Measuring and
Improving the Completeness of Natural Language Requirements. In Salinesi, C.

und van de Weerd, 1. (Herausgeber), Requirements Engineering: Foundation for
Software Quality, Band: 8396. LNCS, Seiten 23-38. Springer, Essen.

Fettke, P. (2012). Enzyklopéadie der Wirtschaftsinforma-
tik, Stichwort: Objektorientierte Modellierung. http://
www.enzyklopaedie-der-wirtschaftsinformatik.de/
wi-enzyklopaedie/lexikon/is—management/Systementwicklung/
Hauptaktivitaten—-der—-Systementwicklung/Problemanalyse—/
Objektorientierte-Modellierung. Zuletzt abgerufen am 28.07.2015.

Firesmith, D. (2007). Common Requirements Problems, Their Negative Consequences,
and the Industry Best Practices to Help Solve Them. Journal of Object Technology,
6(1):17-33.

Firesmith, D. G. (2005). Are Your Requirements Complete? Journal of Object
Technology, 4(2):27-43.

Flati, T. und Navigli, R. (2014). Three Birds (in the LLOD Cloud) with One Stone:
BabelNet, Babelfy and the Wikipedia Bitaxonomy. In Proceedings of SEMANTiCS
2014, Seiten 10-13, Leipzig.

Fowler, M., Beck, K., Brant, J., Opdyke, W. und Roberts, D. (1999). Refactoring:
Improving the Design of Existing Code. Object Technology Series. Addison-Wesley,
Westford, MA, USA.

238 Literaturverzeichnis

Friedrich, F., Mendling, J. und Puhlmann, F. (2011). Process Model Generation
from Natural Language Text. In Proceedings of the 23rd CAiSE, CAiSE’11, Seiten
482-496, Berlin / Heidelberg. Springer.

Fries, N. (1980). Ambiguitit und Vagheit: Einfihrung und kommentierte Bibliographie,
Band: 84. Linguistische Arbeiten. De Gruyter, Tiibingen.

Gale, W. A., Church, K. W. und Yarowsky, D. (1992). One Sense Per Discourse.
In Proceedings of the Workshop on Speech and Natural Language, HLT’91, Seiten
233-237, Stroudsburg, PA, USA. ACL.

Gausemeier, J., Czaja, A. M., Wiederkehr, O., Dumitrescu, R., Tschirner, C. und
Steffen, D. (2013). Studie: Systems Engineering in der industriellen Praxis. 9.
Paderborner Workshop: Entwurf mechatronischer Systeme.

Geierhos, M. (2010). BiographlIE: Klassifikation und Extraktion karrierespezifischer
Informationen. Doktorarbeit, LMU Miinchen, Miinchen.

Geierhos, M. und Béumer, F. S. (2016). How to Complete Customer Requirements:
Using Concept Expansion for Requirement Refinement. In Métais, E., Meziane,
F., Saraee, M., Sugumaran, V. und Vadera, S. (Herausgeber), Proceedings of the
21st NLDB, Manchester, UK. Springer.

Geierhos, M. und Béumer, F. S. (2017). Guesswork? Resolving Vagueness in User-
Generated Software Requirements. In Christiansen, H., Jiménez Lépez, M. D.,
Loukanova, R. und Moss, L. (Herausgeber), Partiality and Underspecification in
Information, Languages, and Knowledge, Kapitel 3, Seiten 65-107. Cambridge
Scholars Publishing, Cambridge, UK.

Geierhos, M., Schulze, S. und Baumer, F. S. (2015). What did you mean? Facing
the Challenges of User-generated Software Requirements. In Loiseau, S., Fili-
pe, J., Duval, B. und van den Herik, J. (Herausgeber), Proceedings of the 7th
ICAART, Special Session on PUaNLP 2015, Seiten 277-283, Lissabon, Portugal.
SCITEPRESS — Science and Technology Publications.

Génova, G., Fuentes, J. M., Llorens, J., Hurtado, O. und Moreno, V. (2013). A Frame-
work to Measure and Improve the Quality of Textual Requirements. Requirements
Engineering, 18(1):25-41.

Geurts, P., Ernst, D. und Wehenkel, L. (2006). Extremely randomized trees. Machine
Learning, 63(1):3-42.

Ghaddar, A. und Langlais, P. (2016). WikiCoref: An English Coreference-annotated
Corpus of Wikipedia Articles. In Calzolari, N., Choukri, K., Declerck, T., Goggi,
S., Grobelnik, M., Maegaard, B., Mariani, J., Mazo, H., Moreno, A., Odijk, J. und
Piperidis, S. (Herausgeber), Proceedings of the 10th International Conference on
LREC, Paris, Frankreich. ELRA.

Ghazarian, A. (2009). A Case Study of Defect Introduction Mechanisms. In van Eck,
P., Gordijn, J. und Wieringa, R. (Herausgeber), Advanced Information Systems
Engineering, Band: 5565. LNCS, Seiten 156-170. Springer, Berlin / Heidelberg.

Literaturverzeichnis 239

Gill; K. D., Raza, A., Zaidi, A. M. und Kiani, M. M. (2014). Semi-Automation for
Ambiguity Resolution in Open Source Software Requirements. In Proceedings of
the 27th CCECE, CCECE’14, Seiten 1-6, Toronto, ON, Kanada. IEEE.

Gillick, D. (2009). Sentence Boundary Detection and the Problem with the U.S. In
Proceedings of HLT: The 2009 Annual Conference of the NAACL, NAACL-Short’09,
Seiten 241-244, Stroudsburg, PA, USA. ACL.

Gleich, B., Creighton, O. und Kof, L. (2010). Ambiguity Detection: Towards a Tool
Explaining Ambiguity Sources. In Wieringa, R. und Persson, A. (Herausgeber),
Requirements Engineering: Foundation for Software Quality, Band: 6182. LNCS,
Seiten 218-232. Springer, Berlin / Heidelberg.

Goldberg, M. (1999). An Unsupervised Model for Statistically Determining Coordi-
nate Phrase Attachment. In Proceedings of the 37th Annual Meeting of the ACL,
ACL’99, Seiten 610-614, Stroudsburg, PA, USA. ACL.

Goldberg, Y. und Nivre, J. (2013). Training Deterministic Parsers with Non-
Deterministic Oracles. Transactions of the ACL, 1:403-414.

Grande, M. (2011). 100 Minuten fiir Anforderungsmanagement - Kompaktes Wissen
nicht nur fir Projektleiter und Entwickler. Vieweg+Teubner Verlag / Springer
Fachmedien, Wiesbaden.

Grechenig, T. (2010). Softwaretechnik: Mit Fallbeispielen aus realen Entwicklungs-
projekten. Pearson Studium, Miinchen / Boston, MA, USA / Massachusetts, MA,
USA.

Grefenstette, G. (1995). Comparing Two Language Identification Schemes.
In Proceedings of the 3rd JADT, JADT’95, Seiten 263-268, Rom, Italien.
FErreichbar unter: http://www.uvm.edu/~pdodds/teaching/courses/
2009-08UVM-300/docs/others/everything/grefenstettel995a.
pdf. Zuletzt abgerufen am 12.01.2017.

Grice, H. P. (1991). Studies in the Way of Words. Harvard University Press,
Cambridge, UK / Massachusetts, MA, USA / London, UK.

Grishman, R. und Sundheim, B. (1996). Message Understanding Conference — 6:
A Brief History. In Proceedings of COLING 96, Seiten 466-471, Kopenhagen,
Déanemark. ACM.

Grosz, B. J., Joshi, A. K. und Weinstein, S. (1995). Centering: A Framework for
Modeling the Local Coherence of Discourse. Computional Linguistics, 21(2):203
225.

Guha, A., Tyyer, M., Bouman, D. und Boyd-Graber, J. L. (2015). Removing the
Training Wheels: A Coreference Dataset that Entertains Humans and Challenges
Computers. In The 2015 Conference of the NAACL: HLT, Seiten 1108-1118,
Denver, CO, USA. ACL.

240 Literaturverzeichnis

Gumm, H.-P. und Sommer, M. (2012). Einfihrung in die Informatik. Oldenbourg
Wissenschaftsverlag, Miinchen, 10. Auflage.

Haberfellner, R., Nagel, P., Becker, M., Biicher, A. und von Massow, H. (1994).
Systemgestaltung. In Daenzer, W. F. und Huber, F. (Herausgeber), Systems
Engineering: Methoden und Praxis. Verlag Industrielle Organisation Ziirich, Ziirich,
Schweiz, 8. Auflage.

Haghighi, A. und Klein, D. (2009). Simple Coreference Resolution with Rich Syntactic
and Semantic Features. In Proceedings of the 2009 Conference on EMNLP, Seiten
1152-1161, Singapur. ACL.

Hajic, J., Vidova-Hladkd, B. und Pajas, P. (2001). The Prague Dependency Tree-
bank: Annotation Structure and Support. In Proceedings of the IRCS Workshop
on Linguistic Databases, Seiten 105-114, Philadelphia, PA, USA. University of
Pennsylvania.

Hajicovd, E., Abeillé, Haji¢, J., Mirovsky, J. und Uresovd, Z. (2010). Treebank
Annotation. In Indurkhya, N. und Damerau, F. J. (Herausgeber), Handbook of
Natural Language Processing, Kapitel 8, Seiten 167-188. CRC Press, London, UK
/ New York, NY, USA u. a.

Hall, A. (1990). Seven Myths of Formal Methods. IEEE Software, 7(5):11-19.

Hall, A. und Chapman, R. (2002). Correctness by Construction: Developing a
Commercial Secure System. [EEE Software, 19(1):18-25.

Hammer, N. und Bensmann, K. (2011). Webdesign fiir Studium und Beruf: Webseiten
planen, gestalten und umsetzen. X.media.press. Springer, Berlin / Heidelberg, 2.
Auflage.

Hammer, U. (2013). Lezikon der Wirtschaftsinformatik, Kapitel Adaptierbarkeit,
Seite 6. Springer, 3. Auflage.

Hamp, B. und Feldweg, H. (1997). GermaNet - a Lexical-Semantic Net for German. In
Proceedings of the ACL workshop Automatic Information Fxtraction and Building
of Lexical Semantic Resources for NLP Applications, Madrid, Spanien. ACL.

Harabagiu, S. M., Bunescu, R. C. und Maiorano, S. J. (2001). Text and Knowledge
Mining for Coreference Resolution. In Proceedings of the 2nd Meeting of the
NAACL on Language Technologies, NAACL’01, Seiten 1-8, Stroudsburg, PA, USA.
ACL.

Hardt, D. (1997). An Empirical Approach to VP Ellipsis. Computational Linguistics,
23(4):525-541.

Henrich, V. und Hinrichs, E. (2010). GernEdiT - The GermaNet Editing Tool. In
Proceedings of the Tth LREC, Seiten 2228-2235, Valletta, Malta. ELRA.

Hindle, D. und Rooth, M. (1993). Structural Ambiguity and Lexical Relations.
Computational Linguistics, 19(1):103-120.

Literaturverzeichnis 241

Hirst, G. und St-Onge, D. (1995). Lexical chains as representations of context for
the detection and correction of malapropisms. In Fellbaum, C. (Herausgeber),
WordNet: An Electronic Lexical Database, Seiten 306-332. MIT Press, Toronto,
ON, Kanada.

Ho, T.-N., Chong, T. Y., Do, V. H., Pham, V. T. und Chng, E. S. (2016). Improving
Efficiency of Sentence Boundary Detection by Feature Selection. In Nguyen, T. N,
Trawinski, B., Fujita, H. und Hong, T.-P. (Herausgeber), Proceedings of the 8th
ACIIDS, Seiten 594-603, Berlin / Heidelberg / Da Nang, Vietnam. Springer.

Hoffmann, D. W. (2013). Software-Qualitit. eXamen.press. Springer, Karlsruhe /
Berlin / Heidelberg, 2. Auflage.

Hoffmann, L. (Herausgeber) (2009). Handbuch der deutschen Wortarten. De Gruyter
Lexikon Series. Walter de Gruyter, Dortmund / Berlin / New York, NY, USA.

Holtmann, J., Meyer, J. und von Detten, M. (2011). Automatic Validation and
Correction of Formalized, Textual Requirements. In Proceedings of the 4th ICSTW,
Seiten 486—495, Berlin. IEEE.

Honnibal, M., Goldberg, Y. und Johnson, M. (2013). A Non-Monotonic Arc-Eager
Transition System for Dependency Parsing. In Proceedings of the 7th CONLL,
Seiten 163-172, Sofia, Bulgarien. ACL.

Hood, C. und Wiebel, R. (2005). Optimieren von Requirements Management &
Engineering. Springer, Berlin / Heidelberg u. a.

HSE (2003). Out of control: Why control systems go wrong and how to prevent
failure. http://automatie—pma.com/wp—content/uploads/2015/02/
hsg238.pdf. Zuletzt abgerufen am 18.01.2016.

Hsia, P., Davis, A. und Kung, D. (1993). Status Report: Requirements Engineering.
IEEE Software, 10(6):75-79.

Huang, L., Fayong, S. und Guo, Y. (2012). Structured Perceptron with Inexact
Search. In Proceedings of the 2012 Conference of the NAACL: HLT, NAACL
HLT’12, Seiten 142-151, Stroudsburg, PA, USA. ACL.

Huang, Z., Zeng, G., Xu, W. und Celikyilmaz, A. (2009). Accurate Semantic Class
Classifier for Coreference Resolution. In Proceedings of the 2009 Conference on
EMNLP, Band: 3. EMNLP’09, Seiten 1232-1240, Stroudsburg, PA, USA. ACL.

Huertas, C. und Judrez-Ramirez, R. (2012). NLARE, a Natural Language Proces-
sing Tool for Automatic Requirements Evaluation. In Proceedings of the CUBE
International Information Technology Conference, CUBE’12, Seiten 371-378, New
York, NY, USA. ACM.

Huertas, C. und Judrez-Ramirez, R. (2013). Towards assessing the quality of func-
tional requirements using english/spanish controlled languages and context free
grammar. In Proceedings of the 3rd International Conference on DICTAP, Seiten
234-241, Ostrava, Tschechische Republik. SDIWC.

242 Literaturverzeichnis

Huma, Z., Gerth, C., Engels, G. und Juwig, O. (2012). A UML-based Rich Ser-
vice Description Language for Automatic Service Discovery of Heterogeneous
Service Partners. In Kirikova, M. und Stirna, J. (Herausgeber), Proceedings of
the CAiSE’12 Forum, Band: 855, Seiten 90-97, Gdansk, Polen. CEUR-WS.org.
Frreichbar unter: http://ceur-ws.org/Vol-855/paperll.pdf. Zuletzt
abgerufen am 12.01.2017.

Husain, S. und Beg, R. (2015). Advances in Ambiguity less NL SRS: A review. In
Proceedings of ICETECH 2015, Seiten 221-225, Coimbatore, TN, Indien. IEEE.

HuBmann, H. (1993). Zur formalen Beschreibung der funktionalen Anforderungen an
ein Informationssystem. Technischer bericht, Institut fiir Informatik, Technische
Universitat Miinchen. TUM-19332.

IEEE (1991). IEEE Standard Computer Dictionary: Compilation of IEEE Standard
Computer Glossaries. IEEE, New York, NY, USA.

IEEE (1998). IEEE Std 830-1998 - Recommended Practice for Software Requirements
Specifications. IEEE, New York, NY, USA.

IEEE (2011). ISO/IEC/IEEE 29148 — Systems and software engineering — Life cycle
processes — Requirements engineering. IEEE, New York, NY, USA. ISO/TIEC/IEEE
29148:2011(E).

Jiang, J. J. und Conrath, D. W. (1997). Semantic Similarity Based on Corpus
Statistics and Lexical Taxonomy. In Proceedings of ROCLING 1997, Taipei,
Taiwan. ACL.

Jungmann, A. (2016). Towards On-The-Fly Image Processing. Dissertation, Univer-
sitdt Paderborn, Paderborn.

Jurafsky, D. und Martin, J. H. (2009). Speech and Language Processing: An Intro-
duction to Natural Language Processing, Computational Linguistics and Speech
Recognition. Pearson Prentice Hall, Upper Saddle River, NJ, USA, 2. Auflage.

Kadlec, T. und Frohlich, S. (2013). Praziswissen Responsive Webdesign. O'Reillys
Basics. O’Reilly Verlag, Koln, 1. Auflage.

Kaiya, H. und Saeki, M. (2005). Ontology Based Requirements Analysis: Lightweight
Semantic Processing Approach. In Proceedings of the 5th QSIC, QSIC’05, Seiten
223-230, Melbourn, VIC, Australien. IEEE.

Kaiya, H. und Saeki, M. (2006). Using Domain Ontology as Domain Knowledge for
Requirements Elicitation. In Proceedings of the 14th IEEE RE, RE ’06, Seiten
189-198, Minneapolis, MN, USA. IEEE.

Kalenborn, A. (2014). Angebotserstellung und Planung von Internet-Projekten:
Die werkzeugbasierte ,Modeling by Example“-Methode. Springer Fachmedien,
Wiesbaden.

Literaturverzeichnis 243

Kamata, M. I. und Tamai, T. (2007). How Does Requirements Quality Relate to
Project Success or Failure? In Proceedings of the 15th IEEE RE, Seiten 69-78,
Delhi, DL, Indien. IEEE.

Kamsties, E. (2005). Understanding Ambiguity in Requirements Engineering. In
Aurum, A. und Wohlin, C. (Herausgeber), Engineering and Managing Software
Requirements, Seiten 245-266. Springer, Berlin / Heidelberg.

Kamsties, E., Berry, D. M. und Paech, B. (2001). Detecting Ambiguities in Require-
ments Documents Using Inspections. In Proceedings of the 1st WISE, WISE’01,
Seiten 68-80, Paris, Frankreich.

Kamsties, E. und Paech, B. (2000). Taming Ambiguity in Natural Language Requi-
rements. In Proceedings of the 13th ICSOFT-FEA, Seiten 1-8, Paris, Frankreich.

Kim, J.-D., Ohta, T., Tateisi, Y. und Tsujii, J. (2003). GENIA corpus — A semantically
annotated corpus for bio-textmining. Bioinformatics, 19(1):1180-1182.

Kipper-Schuler, K. (2005). VerbNet: a broad-coverage, comprehensive wverb
lezicon. Doktorarbeit, Universiy of Pennsylvania, Philadelphia, PA,
USA. Erreichbar unter: http://verbs.colorado.edu/~kipper/Papers/
dissertation.pdf. Zuletzt abgerufen am 03.06.2016.

Kiss, T. und Strunk, J. (2006). Unsupervised Multilingual Sentence Boundary
Detection. Computional Linguistics, 32(4):485-525.

Kiyavitskaya, N., Zeni, N., Mich, L. und Berry, D. M. (2008). Requirements for Tools
for Ambiguity Identification and Measurement in Natural Language Requirements
Specifications. Requirements Engineering, 13(3):207-239.

Klein, D. und Manning, C. D. (2003). Accurate Unlexicalized Parsing. In Procee-
dings of the 41st Annual Meeting on ACL - Volume 1, ACL’03, Seiten 423-430,
Stroudsburg, PA, USA. ACL.

Klose, M. und Wrigley, D. (2014). Einfihrung in Apache Solr. O'Reilly Verlag, Koln,
1. Auflage.

Kluck, N. (2014). Der Wert der Vagheit, Band: 5. Linguistics & Philosophy. De
Gruyter, Miinster / Berlin.

Knott, D. (2016). Mobile App Testing: Praxzisleitfaden fiir Softwaretester und Ent-
wickler mobiler Anwendungen. dpunkt.verlag, Heidelberg / Paderborn, 1. Auflage.

Kobdani, H., Schiitze, H., Schiehlen, M. und Kamp, H. (2011). Bootstrapping
Coreference Resolution Using Word Associations. In Proceedings of the 49th
Annual Meeting of the ACL: HLT, Band: 1. HLT’11, Seiten 783-792, Stroudsburg,
PA, USA. ACL.

Koérner, S. J. (2014). RECAA - Werkzeugunterstiitzung in der Anforderungserhebunyg.
Doktorarbeit, Karlsruher Institut fiir Technologie, Karlsruhe. KIT Scientific
Publishing.

244 Literaturverzeichnis

Korner, S. J. und Brumm, T. (2010). Natural Language Specification Improvement
with Ontologies. International Journal of Semantic Computing, 03(04):445-470.

Kriiger, G. und Hansen, H. (2014). Java Programmierung — Das Handbuch zu Java 8.
O’Reilly Verlag, Koln, 8. Auflage.

Kriiger, G. und Stark, T. (2009). Handbuch der Java Programmierung — Standard
Edition Version 6. Addison-Wesley, Miinchen, 5. Auflage.

Kiirschner, W. (2008). Grammatisches Kompendium: Systematisches Verzeichnis
grammatischer Grundbegriffe. Francke Verlag, Tiibingen, 6. Auflage. Aktualisierte
Auflage.

Kurth, H. (1991). Formale Spezifikation und Verifikation - Ein Uberblick. In Pfitz-
mann, A. und Raubold, E. (Herausgeber), VIS ’91 Verlifliche Informationssysteme,
Band: 271. Informatik-Fachberichte, Seiten 45-66. Springer, Berlin / Heidelberg.

Laitenberger, O. und DeBaud, J.-M. (2000). An encompassing life cycle centric
survey of software inspection. Journal of Systems and Software, 50(1):5 — 31.

Lami, G. (2005). QuARS: A Tool for Analyzing Requirements. Technischer Bericht
ESC-TR-2005-014, Carnegie Mellon University.

LandhduBer, M. (2016). Fine Architektur fiir Programmsynthese aus natiirlicher
Sprache. Dissertation, Karlsruher Institut fiir Technologie, Karlsruhe. KIT Scientific
Publishing.

Landhédufler, M., Korner, S. J., Keim, J., Tichy, W. F. und Krisch, J. (2015). DeNom:
A Tool to Find Problematic Nominalizations using NLP. In Proceedings of the
2nd International Workshop on AIRE, Seiten 9-16, Ottawa, ON, Kanada. IEEE.

Langer, H., Mehl, S. und Volk, M. (1997). Hybride NLP-Systeme und das Problem
der PP-Anbindung. In Hybride konnektionistische, statistische und symbolische
Ansditze zur Verarbeitung natiirlicher Sprache, Saarbriicken / Freiburg. Workshop
auf der 21. Deutschen Jahrestagung fiir Kiinstliche Intelligenz.

Langer, S. (2002). Grenzen der Sprachenidentifizierung. In Tagungsband KONVENS
2002, Seiten 99-106, Saarbriicken. DFKI.

Laparra, E. und Rigau, G. (2013). ImpAr: A Deterministic Algorithm for Implicit
Semantic Role Labelling. In Proceedings of the 51st Annual Meeting of the ACL,
Seiten 1180-1189, Sofia, Bulgarien. ACL.

Lapata, M. und Keller, F. (2005). Web-based models for natural language processing.
ACM Transactions on Speech and Language Processing, 2(1).

Laplante, P. A. (2007). What Every Engineer Should Know about Software Enginee-
ring. CRC Press, London, UK / New York, NY, USA.

Laplante, P. A. (2013). Requirements Engineering for Software and Systems. Applied
Software Engineering Series. Auerbach Publications, Boca Raton, FL, USA, 2.
Auflage.

Literaturverzeichnis 245

Lappin, S. und Leass, H. J. (1994). An Algorithm for Pronominal Anaphora Resolu-
tion. Computional Linguistics, 20(4):535-561.

Laurent, P. und Cleland-Huang, J. (2009). Lessons Learned from Open Source
Projects for Facilitating Online Requirements Processes. In Glinz, M. und Heymans,
P. (Herausgeber), Proceedings of the 15th REFSQ, Band: 5512, Seiten 240-255.
Springer, Berlin / Heidelberg.

Leacock, C. und Chodorow, M. (1998). Combining Local Context and WordNet
Similarity for Word Sense Identification. WordNet: An electronic lexical database,
49(2):265-283.

Lee, H., Chang, A., Peirsman, Y., Chambers, N., Surdeanu, M. und Jurafsky, D.
(2013). Deterministic Coreference Resolution Based on Entity-centric, Precision-
ranked Rules. Computational Linguistics, 39(4):885-916.

Lee, H., Peirsman, Y., Chang, A., Chambers, N., Surdeanu, M. und Jurafsky, D.
(2011). Stanford’s Multi-pass Sieve Coreference Resolution System at the CONLL-
2011 Shared Task. In Proceedings of the 15th Conference on CONLL: Shared Task,
CONLL Shared Task ’11, Seiten 28-34, Stroudsburg, PA, USA. ACL.

Lehmann, C. (2013). Semasiologie der paradigmatischen lexikalischen Re-
lationen. http://www.christianlehmann.eu/ling/lg_system/sem/
semasiolog_lexikal_relation.php. Zuletzt abgerufen am 29.10.2015.

Lehrndorfer, A. (1996). Kontrolliertes Deutsch: linguistische und sprachpsycholo-
gische Leitlinien fiir eine (maschinell) kontrollierte Sprache in der technischen
Dokumentation. Tiibinger Beitrédge zur Linguistik. Gunter Narr Verlag, Tiibingen.

Lei, T., Xin, Y., Zhang, Y., Barzilay, R. und Jaakkola, T. (2014). Low-Rank Tensors
for Scoring Dependency Structures. In Proceedings of the 52nd Annual Meeting of
the ACL, Seiten 1381-1391, Baltimore, MD, USA. ACL.

Lewandowski, T. (1994). Linguistisches Worterbuch. Bd. 2. [I - R]. Quelle und
Meyer, Heidelberg / Wiesbaden, 6. Auflage.

Lin, D. (1998). An Information-Theoretic Definition of Similarity. In Proceedings
of the 15th ICML, Seiten 296-304, San Francisco, CA, USA. Morgan Kaufmann
Publishers.

Lobin, H. und Heringer, H. J. (2010). Computerlinguistik und Texttechnologie. UTB
3282. Wilhelm Fink Verlag, Paderborn.

Lobner, S. (2003). Semantik: eine Einfihrung. De Gruyter Studienbuch. Walter de
Gruyter, Berlin / New York, NY, USA.

Lopes Margarido, 1., Faria, J. P., Vidal, R. M. und Vieira, M. (2011). Classification
of Defect Types in Requirements Specifications: Literature Review, Proposal and
Assessment. In Proceedings of the 6th CISTI, Seiten 1-6, Chaves, Portugal. IEEE.

246 Literaturverzeichnis

Lépez, R. und Pardo, T. A. S. (2015). Experiments on Sentence Boundary Detection
in User-Generated Web Content. In Gelbgkh., A. (Herausgeber), Proceedings of
the 16th CICLing, Seiten 227-237, Kairo, Agypten / Cham, Schweiz. Springer.

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E. M. und Brinkkemper, S. (2016).
Improving agile requirements: the Quality User Story framework and tool. Requi-
rements Engineering, 21(3):383-403.

Lui, M. und Baldwin, T. (2014). Accurate Language Identification of Twitter
Messages. In Proceedings of the 5th Workshop on LASM, Seiten 17-25, Goteborg,
Schweden. ACL.

Maamouri, M., Bies, A., Buckwalter, T. und Mekki, W. (2004). The Penn Arabic
Treebank: Building a Large-Scale Annotated Arabic Corpus. In Proceedings of
the NEMLAR International Conference on Arabic Language Resources and Tools,
Seiten 102-109, Kairo, Agypten.

Magnini, B., Negri, M., Prevete, R. und Tanev, H. (2002). A WordNet-based
Approach to Named Entities Recognition. In Proceedings of the 2002 Workshop on
SEMANET, Band: 11. SEMANET’ 02, Seiten 1-7, Stroudsburg, PA, USA. ACL.

Manning, C. D. und Schiitze, H. (1999). Foundations of Statistical Natural Language
Processing. MIT Press, London, UK u. a.

Manning, C. D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S. J. und McClosky,
D. (2014). The Stanford CoreNLP Natural Language Processing Toolkit. In ACL
System Demonstrations, Seiten 55-60, Baltimore, MD, USA. ACL.

Marcus, M., Kim, G., Marcinkiewicz, M. A., Maclntyre, R., Bies, A., Ferguson, M.,
Katz, K. und Schasberger, B. (1994). The Penn Treebank: Annotating Predicate
Argument Structure. In Proceedings of the Workshop on HLT, HLT’94, Seiten
114-119, Stroudsburg, PA, USA. ACL.

Marcus, M. P., Marcinkiewicz, M. A. und Santorini, B. (1993). Building a Large
Annotated Corpus of English: The Penn Treebank. Computational Linguistics,
19(2):313-330.

Markert, K. und Nissim, M. (2005). Comparing Knowledge Sources for Nominal
Anaphora Resolution. Computational Linguistics, 31(3):367-402.

Martins, A. F. T., Almeida, M. B. und Smith, N. A. (2013). Turning on the turbo:
Fast third-order non-projective turbo parsers. In Proceedings of the Annual Meeting
of the ACL, Seiten 617-622, Sofia, Bulgarien. ACL.

Massey, A. K., Rutledge, R. L., Anton, A. I. und Swire, P. P. (2014). Identifying and
Classifying Ambiguity for Regulatory Requirements. In Proceedings of the 22nd

International Requirements Engineering Conference, Seiten 83-92, Karlskrona,
Schweden. IEEE.

Literaturverzeichnis 247

Matsuoka, J. und Lepage, Y. (2011). Ambiguity Spotting using WordNet Semantic
Similarity in Support to Recommended Practice for Software Requirements Speci-
fications. In Proceedings of the 7th International Conference on NLP-KE, Seiten
479-484, Tokushima, Japan. IEEE.

McCarthy, D., Koeling, R., Weeds, J. und Carroll, J. (2004). Finding Predominant
Word Senses in Untagged Text. In Proceedings of the 42nd Annual Meeting of the
ACL, Seite 280-287, Barcelona, Spanien. ACL.

McLauchlan, M. (2004). Thesauruses for Prepositional Phrase Attachment. In
Proceedings of the CONLL 2004, Seiten 73-80, Boston, MA, USA. ACL.

McShane, M. und Babkin, P. (2015). Automatic Ellipsis Resolution: Recovering
Covert Information from Text. In Proceedings of the 29th AAAI Conference on
Artificial Intelligence, Seiten 572-578, Austin, TX, USA. AAAI, AAAT Press.

MecShane, M. und Babkin, P. (2016). Detection and Resolution of Verb Phrase Ellipsis.
In Linguistic Issues In Language Technology, Band: 13. CSLI Publications.

Mehl, S., Langer, H. und Volk, M. (1998). Statistische Verfahren zur Zuordnung von
Prépositionalphrasen. In Proceedings of the Konvens 98, Bonn. Peter Lang.

Mehler, A. und Lobin, H. (2004). Automatische Textanalyse: Systeme und Me-
thoden zur Annotation und Analyse natirlichsprachlicher Texte. VS Verlag fiir
Sozialwissenschaften, Wiesbaden, 1. Auflage.

Menzel, I.; Mueller, M., Gross, A. und Doerr, J. (2010). An Experimental Compari-
son Regarding the Completeness of Functional Requirements Specifications. In
Proceedings of the 18th IEEE RE, Seiten 15-24, Sydney, NSW, Australien. IEEE.

Mihalcea, R. (2003). The Role of Non-Ambiguous Words in Natural Langua-
ge Disambiguation. In Proceedings of the RANLP 2003, Borovets, Bulgarien.
Erreichbar unter: https://web.eecs.umich.edu/~mihalcea/papers/
mihalcea.ranlp03.pdf. Zuletzt abgerufen am 07.08.2016.

Mihalcea, R. (2010). Word Sense Disambiguation. In Sammut, C. und Webb, G. L.
(Herausgeber), Encyclopedia of Machine Learning, Seiten 1027-1030. Springer,
Boston, MA, USA.

Miller, G. A. (1995). WordNet: A Lexical Database for English. Communications of
the ACM, 38(11):39-41.

Mitkov, R. (1998). Robust pronoun resolution with limited knowledge. In Proceedings
of the 17th COLING, COLING’98, Montreal, QC, Kanada. ACL.

Mitkov, R. (1999). Anaphora Resolution: The State of the Art. Research report. Uni-
versity of Wolverhampton, Wolverhampton, UK. Research Group in Computational
Linguistics and Language Engineering.

248 Literaturverzeichnis

Mitkov, R. (2014). Anaphora Resolution. Studies in Language and Linguistics.
Taylor & Francis, New York, NY, USA. Neuauflage der 2002 erstmals publizierten
Veroffentlichung.

Moens, M.-F., Li, J. und Chua, T.-S. (Herausgeber) (2014). Mining User Generated
Content. CRC Press, Leuven, Belgien / Beijing, China / Singapur.

Monrose, F. und Rubin, A. (1997). Authentication via Keystroke Dynamics. In
Proceedings of the Jth ACM Conference on CCS, CCS’97, Seiten 48-56, New York,
NY, USA. ACM.

Montoyo, A., Suarez, A., Rigau, G. und Palomar, M. (2005). Combining Knowledge-
and Corpus-based Word-Sense-Disambiguation Methods. In Journal of Artificial
Intelligence Research, Band: 23. AAAIL

Moro, A., Cecconi, F. und Navigli, R. (2014a). Multilingual Word Sense Disambigua-
tion and Entity Linking for Everybody. In Proceedings of the 13th ISWC, Seiten
25-28, Riva del Garda, Italien. Springer.

Moro, A., Raganato, A. und Navigli, R. (2014b). Entity Linking meets Word Sense
Disambiguation: a Unified Approach. Transactions of the ACL, 2:231-244.

Morris, M. (2011). Sentence Tutorial — What is Sentence Detecti-
on? http://alias—i.com/lingpipe/demos/tutorial/sentences/
read-me.html. Zuletzt abgerufen am 28.04.2016.

Nadh, K. und Huyck, C. (2009). Prepositional Phrase Attachment Ambiguity
Resolution Using Semantic Hierarchies. In The 9th International Conference on
Artificial Intelligence and Applications, Innsbruck, Osterreich. ACTA Press.

Nakov, P. und Hearst, M. (2005). Using the Web As an Implicit Training Set:
Application to Structural Ambiguity Resolution. In Proceedings of the Conference
on HLT and EMNLP, HLT 05, Seiten 835-842, Stroudsburg, PA, USA. ACL.

Naumann, S. (2003). XML als Beschreibungssprache syntaktisch-annotierter Korpora.
In Seewald-Heeg, U. (Herausgeber), Sprachtechnologie fir die multilinguale Kom-
munikation — Textproduktion, Recherche, Ubersetzung, Lokalisierung — Beitrige
der GLDV-Friihjahrstagung 2003, Seiten 12-25. Gardez! Verlag.

Navigli, R. (2009). Word Sense Disambiguation: A Survey. In ACM Computing
Surveys, Band: 41. ACM, New York, NY, USA.

Navigli, R. und Ponzetto, S. P. (2012a). BabelNet: The automatic construction,
evaluation and application of a wide-coverage multilingual semantic network. In
Artificial Intelligence, Band: 193, Seiten 217-250. Elsevier, Essex, UK.

Navigli, R. und Ponzetto, S. P. (2012b). Joining Forces Pays Off: Multilingual Joint
Word Sense Disambiguation. In Proceedings of the 2012 Joint Conference on
EMNLP and CONLL, Seiten 1399-1410, Jeju, Korea. ACL.

Literaturverzeichnis 249

Ng, V. (2007). Semantic Class Induction and Coreference Resolution. In Proceedings
of the 45th Annual Meeting of the ACL, Seiten 536-543, Prag, Tschechische
Republik. ACL.

Nielsen, J. und Loranger, H. (2006). Web Usability. Addison-Wesley, Miinchen, 1.
Auflage.

Nigam, A., Arya, N., Nigam, B. und Jain, D. (2012). Tool for Automatic Discovery
of Ambiguity in Requirements. International Journal of Computer Science Issues,

9(2):350-356.

O’Connor, B. und Heilman, M. (2013). ARKref: a rule-based coreference resolution
system. ArXiv e-prints, Seiten 1-10. Erreichbar unter: http://arxiv.org/
abs/1310.1975. Zuletzt abgerufen am 06.04.2016.

Oepen, S., Flickinger, D., Toutanova, K. und Manning, C. D. (2004). LinGO
Redwoods — A Rich and Dynamic Treebank for HPSG. Research on Language and
Computation, 2(4):575-596.

Okumura, A. und Muraki, K. (1994). Symmetric Pattern Matching Analysis for
English Coordinate Structures. In Proceedings of the 4th Conference on ANLP,
ANLC’94, Seiten 41-46, Stuttgart / Stroudsburg, PA, USA. ACL.

Osborne, M. und MacNish, C. K. (1996). Processing Natural Language Software
Requirement Specifications. In Proceedings of the 2nd International Conference
on Requirements Engineering, Seiten 229-236, Colorado Springs, CO, USA. IEEE.

Palmer, M., Gildea, D. und Kingsbury, P. (2005). The Proposition Bank: An
Annotated Corpus of Semantic Roles. Computational Linguistics, 31(1):71-106.

Pantel, P. und Lin, D. (2000). An Unsupervised Approach to Prepositional Phrase
Attachment Using Contextually Similar Words. In Proceedings of the 38th Annual
Meeting on ACL, ACL’00, Seiten 101-108, Stroudsburg, PA, USA. ACL.

Partsch, H. A. (2010). Requirements-Engineering systematisch: Modellbildung fiir
softwaregestiitzte Systeme. eXamen.press. Springer, Berlin / Heidelberg.

Passonneau, R. J., Ramelson, T. und Xie, B. (2015). Named Entity Recognition
from Financial Press Releases. In Fred, A., Dietz, G. J. L., Aveiro, D., Liu, K. und
Filipe, J. (Herausgeber), Proceedings of the 6th IC3K, Seiten 240-254. Springer,
Rom, Italien.

Patwardhan, S., Banerjee, S. und Pedersen, T. (2003). Using Measures of Semantic
Relatedness for Word Sense Disambiguation. In Proceedings of the 4th CICLing,
Seiten 241-257, Mexico City, Mexiko. ACL.

Pekar, V., Felderer, M. und Breu, R. (2014). Improvement Methods for Software
Requirement Specifications: A Mapping Study. In Proceedings of the 9th QUATIC,
Seiten 242-245, Guimaraes, Portugal. IEEE.

250 Literaturverzeichnis

Petermann, K. (2014). Verbale und nonverbale Vagheit in englisch- und deutsch-
sprachigen Interviews, Band: 118. Forum fiir Fachsprachen-Forschung. Frank &
Timme, Berlin.

Pfeifer, W. (0. D.). Etymologisches Wérterbuch (nach Pfeifer): Ambiguitit. http:
//www.dwds .de/?qu=Ambiguit%C3%A4t. Zuletzt abgerufen am 22.10.2015.

Philippo, E. J., Heijstek, W., Kruiswijk, B., Chaudron, M. R. und Berry, D. M.
(2013). Requirement Ambiguity Not as Important as Expected — Results of an
Empirical Evaluation. In Doerr, J. und Opdahl, A. L. (Herausgeber), Requirements
Engineering: Foundation for Software Quality, Band: 7830. LNCS, Seiten 65-79.
Springer, Berlin / Heidelberg.

Pinkal, M. (1985). Logik und Lexikon: Die Semantik des Unbestimmten. Grundlagen
der Kommunikation. Walter de Gruyter, Berlin / New York, NY, USA.

Pinkal, M. (1991). Semantik / Semantics: Ein internationales Handbuch der zeit-
gendssischen Forschung., Band: 6. Handbiicher zur Sprach- und Kommunikations-
wissenschaft, Kapitel Vagheit und Ambiguitét, Seiten 250-270. Walter de Gruyter,
Berlin / New York, NY, USA.

Pinto, A., Oliveira, H. G. und Alves, A. O. (2016). Comparing the Performance
of Different NLP Toolkits in Formal and Social Media Text. In Mernik, M.,
Leal, J. P. und Oliveira, H. G. (Herausgeber), Proceedings of the 5th Symposium
on Languages, Applications and Technologies, SLATE’16, Maribor, Slowenien.
Dagstuhl Publishing.

Platenius, M. C. (2013). Fuzzy Service Matching in On-the-fly Computing. In
Proceedings of the 2013 9th Joint Meeting on FSE, ESEC/FSE’13, Seiten 715718,
New York, NY, USA. ACM.

Platenius, M. C. (2016). Unscharfes Matching wvon wumfassenden Service-
Spezifikationen. Dissertation, Universitit Paderborn, Paderborn.

Platenius, M. C., Arifulina, S., Petrlic, R. und Schifer, W. (2015). Matching of
Incomplete Service Specifications Exemplified by Privacy Policy Matching. In
Ortiz, G. und Tran, C. (Herausgeber), Advances in Service-Oriented and Cloud
Computing, Band: 508. Communications in Computer and Information Science,
Seiten 6-17. Springer, Cham, Schweiz.

Platenius, M. C., Josifovska, K., van Rooijen, L., Arifulina, S., Becker, M., Engels,
G. und Schéfer, W. (2016). An Overview of Service Specification Language and
Matching in On-The-Fly Computing (v0.3). Technischer Bericht Tr-ri-16-349,
Software Engineering Group, Heinz Nixdorf Institut, Universitit Paderborn.

Poesio, M. und Artstein, R. (2005). The Reliability of Anaphoric Annotation,
Reconsidered: Taking Ambiguity into Account. In Proceedings of the Workshop on
Frontiers in Corpus Annotations II: Pie in the Sky, CorpusAnno’05, Seiten 76-83,
Stroudsburg, PA, USA. ACL.

Literaturverzeichnis 251

Pohl, K. (2007). Requirements Engineering: Grundlagen, Prinzipien, Techniken.
dpunkt.verlag, Heidelberg.

Pohl, K. (2008). Requirements Engineering: Grundlagen, Prinzipien, Techniken.
dpunkt.verlag, Heidelberg, 2. Auflage.

Pohl, K. und Rupp, C. (2015). Basiswissen Requirements Engineering: Aus- und
Weiterbildung nach IREB-Standard zum Certified Professional for Requirements
Engineering Foundation Level. dpunkt.verlag, Heidelberg, 4. Auflage.

Ponzetto, S. P. und Strube, M. (2006). Exploiting Semantic Role Labeling, WordNet
and Wikipedia for Coreference Resolution. In Proceedings of the Main Confe-
rence on HLT / Conference of the NAACL, HLT-NAACL’06, Seiten 192-199,
Stroudsburg, PA, USA. ACL.

Popescu, D., Rugaber, S., Medvidovic, N. und Berry, D. M. (2008). Reducing Ambi-
guities in Requirements Specifications Via Automatically Created Object-Oriented
Models. In Paech, B. und Martell, C. (Herausgeber), Innovations for Requirement
Analysis. From Stakeholders’ Needs to Formal Designs: Revised Selected Papers,
Seiten 103-124. Springer, Berlin / Heidelberg / Monterey, CA, USA.

Prokofyev, R., Tonon, A., Luggen, M., Vouilloz, L., Difallah, D. E. und Cudré-
Mauroux, P. (2015). SANAPHOR: Ontology-Based Coreference Resolution. In
Arenas, M., Corcho, O., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K.,
Groth, P., Dumontier, M., Heflin, J., Thirunarayan, K. und Staab, S. (Herausgeber),
Proceedings of the 14th ISWC, Seiten 458-473. Springer, Bethlehem, PA, USA.

Propbank (2010). Frameset — Predicate: send. http://verbs.colorado.

edu/propbank/framesets-english/send-v.html. Zuletzt abgerufen am
24.12.2015.

Raganato, A., Camacho-Collados, J. und Navigli, R. (2017). Word Sense Disambigua-
tion: A Unified Evaluation Framework and Empirical Comparison. In Proceedings
of the 15th Conference of the EACL: Volume 1, Long Papers, Seiten 99-110,
Valencia, Spanien. ACL, ACL.

Raghunathan, K., Lee, H., Rangarajan, S., Chambers, N., Surdeanu, M., Jurafsky,
D. und Manning, C. (2010). A Multi-pass Sieve for Coreference Resolution. In
Proceedings of the 2010 Conference on EMNLP, EMNLP’10, Seiten 492-501,
Stroudsburg, PA, USA. ACL.

Rahman, A. und Ng, V. (2009). Supervised Models for Coreference Resolution. In
Proceedings of the 2009 Conference on EMNLP, Seiten 968-977, Singapur. ACL.

Rahman, A. und Ng, V. (2011). Coreference Resolution with World Knowledge.
In Proceedings of the 49th Annual Meeting of the ACL, Band: 1. HLT’11, Seiten
814-824, Stroudsburg, PA, USA. ACL.

Rasooli, M. S. und Tetreault, J. (2015). Yara Parser: A Fast and Accurate Dependency
Parser. In CoRR, Band: abs/1503.06733, Seiten 1-14. Erreichbar unter: http:
//arxiv.org/pdf/1503.06733v1.pdf. Zuletzt abgerufen am 19.05.2016.

252 Literaturverzeichnis

Ratnaparkhi, A. (1998). Statistical Models for Unsupervised Prepositional Phrase
Attachment. In Proceedings of the 17th COLING - Volume 2, COLING’98, Seiten
10791085, Stroudsburg, PA, USA. ACL.

Ratnaparkhi, A., Reynar, J. und Roukos, S. (1994). A Maximum Entropy Model
for Prepositional Phrase Attachment. In Proceedings of the Workshop on HLT,
HLT’94, Seiten 250255, Stroudsburg, PA, USA. ACL.

Read, J., Dridan, R., Oepen, S. und Solberg, L. J. (2012a). Sentence Boundary
Detection: A Long Solved Problem? In Proceedings of COLING 2012: Posters,
Seiten 985-994, Mumbai, MH, Indien. ACL. Erreichbar unter: http://www.
aclweb.org/anthology/C12-2096. Zuletzt abgerufen am 24.04.2016.

Read, J., Flickinger, D., Dridan, R., Oepen, S. und @vrelid, L. (2012b). The WeSearch
Corpus, Treebank, and Treecache - A Comprehensive Sample of User-Generated
Content. In Proceedings of the 8th International Conference on LREC, Seiten
1829-1835, Istanbul, Tiirkei. ELRA.

Recasens, M., de Marneffe, M.-C. und Potts, C. (2013). The Life and Death of
Discourse Entities: Identifying Singleton Mentions. In Proceedings of the 2013
Conference of the NAACL: HLT, Seiten 627-633, Atlanta, GA, USA. ACL.

Recasens Potau, M. (2010). Coreference: Theory, Annotation, Resolution and Eva-
luation. Doktorarbeit, University of Barcelona.

Reconcile Development Team (2011). Reconcile — Coreference Resolution Engi-
ne. https://www.cs.utah.edu/nlp/reconcile/. Zuletzt abgerufen am
16.05.2016.

Reese, R. M. (2015). Natural Language Processing with Java. Community Experience
Distilled. PACKT Publishing, Birmingham, UK / Mumbai, MH, Indien.

Rehiifek, R. und Kolkus, M. (2009). Language Identification on the Web: Extending
the Dictionary Method. In Gelbukh, A. (Herausgeber), Proceedings of the 10th
CICLing, Seiten 357-368, Berlin / Heidelberg / Mexico City, Mexiko. Springer.

Reisner, S. (2011). Wege zu realistischen Performance-Tests. http://www.
computerwoche.de/a/wege, 1232121. Computerwoche. Zuletzt abgerufen
am 23.02.2017.

Resnik, P. (1995). Using Information Content to Evaluate Semantic Similarity in
a Taxonomy. In Proceedings of the 14th IJCAI - Volume 1, IJCAT'95, Montreal,
QC, Kanada. ACM.

Resnik, P. (1999). Semantic Similarity in a Taxonomy: An Information-Based Measure
and its Application to Problems of Ambiguity in Natural Language. Journal of
Artificial Intelligence Research, 11:95-130.

Ristié, 1. (2014). Bulletproof SSL and TLS. Feisty Duck, London, UK, 2. Auflage.

Literaturverzeichnis 253

Robertson, S. und Robertson, J. (2006). Mastering the Requirements Process. Pearson
Education, 2. Auflage.

Robertson, S. und Robertson, J. (2012). Mastering the Requirements Process: Getting
Requirements Right. Pearson Education, 3. Auflage.

Rojas, A. B. und Sliesarieva, G. B. (2010). Automated Detection of Language
Issues Affecting Accuracy, Ambiguity and Verifiability in Software Requirements
Written in Natural Language. In Proceedings of the NAACL HLT 2010 YIWCALA,
YIWCALA’10, Seiten 100-108, Stroudsburg, PA, USA. ACL.

Roth, M., Diamantopoulos, T., Klein, E. und Symeonidis, A. (2014). Software
Requirements: A new Domain for Semantic Parsers. In Proceedings of the ACL
2014 Workshop on Semantic Parsing, Seiten 50-54, Baltimore, MD, USA. ACL,
ACL.

Rudrapal, D., Jamatia, A., Chakma, K., Das, A. und Gambiick, B. (2015). Sentence
Boundary Detection for Social Media Text. In Sharma, D. M., Sangal, R. und Sherly,
E. (Herausgeber), Proceedings of the 12th ICON, ICON’15, Seiten 1-7. Erreichbar
unter: http://ltrc.iiit.ac.in/icon2015/icon2015_proceedings/
PDF/13_rp.pdf. Zuletzt abgerufen am 28.04.2016.

Rupp, C. (2007). Requirements-Engineering und -Management: Professionelle, itera-
tive Anforderungsanalyse fiir die Praxis. Carl Hanser Verlag, Miinchen / Wien,
Osterreich, 4. Auflage.

Rupp, C. (2012). Requirements Engineering: Ein Uberblick. dpunkt.verlag, Niirnberg
/ Heidelberg, 3. Auflage.

Rupp, C. (2013). Systemanalyse kompakt. 1T kompakt. Springer, Berlin / Heidelberg,
3. Auflage.

Rupp, C. (2014). Requirements-Engineering und -Management Aus der Prazis von
klassisch bis agil. Hanser, Miinchen, 6. Auflage.

Rupp, C. und Queins, S. (2012). UML 2 glasklar: Praziswissen fiir die UML-
Modellierung. Carl Hanser Verlag, 4. Auflage.

Schéifer, U., Spurk, C. und Steffen, J. (2012). A Fully Coreference-annotated Corpus
of Scholarly Papers from the ACL Anthology. In Proceedings of COLING 2012:
Posters, Seiten 1059-1070, Mumbai, MH, Indien. ACL.

Schenk, N. und Chiarcos, C. (2016). Unsupervised Learning of Prototypical Fillers
for Implicit Semantic Role Labeling. In Proceedings of the 2016 Conference of the
NAACL: HLT, Seiten 1473-1479, San Diego, CA, USA. ACL.

Schienmann, B. (2002). Kontinuierliches Anforderungsmanagement: Prozesse -
Techniken - Werkzeuge. Programmer’s Choice. Pearson Deutschland.

Schmuller, J. (2003). Jetzt lerne ich UML: Der einfache Einstieg in die visuelle
Objektmodellierung. Markt+Technik Verlag, Miinchen.

254 Literaturverzeichnis

Schneider, G. und Vecellio, S. (2011). ICT-Systemabgrenzung, Anforderungsspe-
zifikation und Evaluation: Grundlagen zur Systemanalyse und -beschaffung mit
Beispielen, Fragen und Antworten. Compendio Bildungsmedien, Ziirich, Schweiz,
1. Auflage.

Schneider, H.-J. (Herausgeber) (1998). Lexikon Informatik und Datenverarbeitung.
Walter de Gruyter, 4. Auflage.

Schulz, A. (2012). Last- und Performance-Tests optimal durchfiihren.
http://it-administrator.de/themen/netzwerkmanagement/
fachartikel/117300.html. Zuletzt abgerufen am 23.02.2017.

Schiitze, H. (1998). Automatic Word Sense Discrimination. Computational Linguistics,
24(1):97-123.

Schwinn, H. (2011). Requirements Engineering: Modellierung von Anwendungssyste-
men. Oldenbourg Verlag, Miinchen.

Schwitter, R. (1998). Kontrolliertes Englisch fiir Anforderungsspezifikationen. Dok-
torarbeit, Universitét Ziirich.

Sennet, A. (2016). Ambiguity. In Zalta, E. N. (Herausgeber), The Stanford Encyclo-
pedia of Philosophy. CSLI, Stanford University. Auflage: Spring 2016.

Shah, U. S. und Jinwala, D. C. (2015). Resolving Ambiguities in Natural Language
Software Requirements: A Comprehensive Survey. SIGSOFT Software Engineering
Notes, 40(5):1-7.

Shull, F., Carver, J., Travassos, G. H., Maldonado, J. C., Conradi, R. und Basili,
V. R. (2003). Replicated Studies: Building a Body of Knowledge about Software
Reading Techniques. In Juristo, N. und Moreno, A. M. (Herausgeber), Lecture
Notes on Empirical Software Engineering, Kapitel 2, Seiten 39-84. World Scientific,
River Edge, NJ, USA.

Shull, F., Rus, I. und Basili, V. R. (2000). How Perspective-Based Reading Can
Improve Requirements Inspections. Computer, 33(7):73-79.

Shull, F., Rus, I. und Basili, V. R. (2001). Improving Software Inspections by Using
Reading Techniques. In Proceedings of the 23rd ICSE, ICSE’01, Seiten 726-727,
Washington, DC, USA. IEEE.

Simov, K. (2004). BulTreeBank Project Overview. BulTreeBank Project Techni-
cal Report. Technischer Bericht BTB-TRO01, Linguistic Modelling Laboratory,
Bulgarian Academy of Sciences.

Sommerville, I. (2007). Software Engineering. International Computer Science Series.
Pearson Education, Essex, UK, 8. Auflage.

Sommerville, I. (2009). Web Chapter 27: Formal Specification. http://www.
SoftwareEngineering—9.com/Web/ExtraChaps/FormalSpec.pdf.
Zuletzt abgerufen am 19.08.2015.

Literaturverzeichnis 255

Sommerville, I. (2011). Software Engineering. Xpert.press. Pearson, Boston, MA,
USA.

Souter, C., Churcher, G., Hayes, J., Hughes, J. und Johnson, S. (1994). Natural
Language Identification using Corpus-Based Models. In HERMES - Journal of
Language and Communication in Business, Band: 7. Faculty of Modern Languages,
Aarhus School of Business, Aarhus, Danemark.

Springer Gabler (2015). Gabler Wirtschaftslexikon, Stichwort: Anspruchs-
gruppen. http://wirtschaftslexikon.gabler.de/Archiv/1202/
anspruchsgruppen-v6.html. Zuletzt abgerufen am 20.06.2015.

Standish Group International (1995). The CHAOS Report (1994).
https://www.standishgroup.com/sample_research_files/
chaos_report_1994.pdf. Zuletzt abgerufen am 18.01.2016.

Stanford NLP Group (2016). Stanford Deterministic Coreference Resolution System.
http://nlp.stanford.edu/software/dcoref.html. Zuletzt abgerufen
am 16.05.2016.

Stang, K. (2002). Projektmanagement, Anforderungsanalyse und externe Qua-
litatssicherung: IT-Projekte durch umfassendes Anforderungsmanagement erfolg-
reich gestalten. vdf Hochschulverlag AG, Ziirich, Schweiz.

Statista (2016). The most spoken languages worldwide (speakers and na-
tive speaker in millions). https://www.statista.com/statistics/
266808/the-most—spoken—-languages-worldwide/. Zuletzt abgerufen
am 28.10.2016.

Stede, M. (2012). Discourse Processing. Synthesis Lectures on HLT. Morgan &
Claypool Publishers, Potsdam.

Stempfle, H. (1996). Der Einsatz Offener Systeme in der Praxis — Technologien,
Standards, Probleme. Diplomarbeit, Fachhochschule Augsburg, Augsburg.
Erreichbar unter: http://www.hs—augsburg.de/inf/diplomarbeiten/
langfassungen/stempfle-stork-1996/OpenSystems/einleit.
htm#Interoperabilit%$E4t_und_Portabilit%E4t. Zuletzt abgerufen
am 22.10.2016.

Stoyanov, V., Cardie, C., Gilbert, N., Riloff, E., Buttler, D. und Hysom, D. (2010).
Coreference Resolution with Reconcile. In Proceedings of the ACL 2010 Conference
Short Papers, Seiten 156-161, Uppsala, Schweden. ACL.

Stoyanov, V., Gilbert, N., Cardie, C. und Riloff, E. (2009). Conundrums in Noun
Phrase Coreference Resolution: Making Sense of the State-of-the-Art. In Procee-
dings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th
IJCNLP of the AFNLP, Seiten 656-664, Suntec, Singapore. ACL.

Strube, M. und Ponzetto, S. P. (2006). WikiRelate! Computing Semantic Relatedness
Using Wikipedia. In Proceedings of the 21st National Conference on Artificial
Intelligence, Band: 2. AAAI’06, Seiten 1419-1424, Boston, MA, USA. AAAT Press.

256 Literaturverzeichnis

Telljohann, H., Hinrichs, E. W., Kiibler, S., Zinsmeister, H. und Beck, K. (2015).
Stylebook for the Tiibingen Treebank of Written German (T@Ba-D/Z). Technischer
Bericht, Universitéit Tiibingen.

Theda, M. (2017). Was ist gemeint? Strukturell ambige Sétze als Herausforderung
fiir Parsing-Ansétze. Masterarbeit, Universitéit Paderborn, Paderborn.

Tichy, W. F., Landhéufler, M. und Kérner, S. J. (2015). nlrpBENCH: A Bench-
mark for Natural Language Requirements Processing. In Multikonferenz Software
Engineering € Management 2015.

Tiemeyer, E. (2013). Handbuch IT-Management: Konzepte, Methoden, Lisungen
und Arbeitshilfen fir die Prazis. Carl Hanser Verlag, Miinchen, 5. Auflage.

Tjong, S. F. (2008). Avoiding Ambiguity in Requirements Specifications. Doktorarbeit,
University of Nottingham, Nottingham, UK.

Tjong, S. F. und Berry, D. M. (2013). The Design of SREE — A Prototype Potential
Ambiguity Finder for Requirements Specifications and Lessons Learned. In Doerr,
J. und Opdahl, A. L. (Herausgeber), Requirements Engineering: Foundation for
Software Quality, Band: 7830. LNCS, Seiten 80-95. Springer, Berlin / Heidelberg.

Toral, A., Muioz, R. und Monachini, M. (2008). Named Entity WordNet. In Calzolari,
N., Choukri, K., Maegaard, B., Mariani, J., Odijk, J., Piperidis, S. und Tapias, D.
(Herausgeber), Proceedings of the 6th LREC, Marrakech, Marokko. ELRA.

Tye, M. (1998). Routledge Encyclopedia of Philosophy: Vagueness. https://www.
rep.routledge.com/articles/vagueness/v—-1/. Zuletzt abgerufen am
04.01.2016.

Umber, A. und Bajwa, I. S. (2011). Minimizing Ambiguity in Natural Language
Software Requirements Specification. In Proceedings of the 6th ICDIM, Seiten
102-107, Melbourn, VIC, Australien. IEEE.

Uryupina, O., Poesio, M., Giuliano, C. und Tymoshenko, K. (2012). Disambiguation
and Filtering Methods in Using Web Knowledge for Coreference Resolution. In
Cross-Disciplinary Advances in Applied Natural Language Processing: Issues and
Approaches, Seiten 185-201. IGI Global.

Verma, K. und Kass, A. (2008). Requirements Analysis Tool: A Tool for Automatically
Analyzing Software Requirements Documents. In Sheth, A., Staab, S., Dean,
M., Paolucci, M., Maynard, D., Finin, T. und Thirunarayan, K. (Herausgeber),
Proceedings of the ISWC 2008, Band: 5318. LNCS, Seiten 751-763. Springer, Berlin
/ Heidelberg.

Versley, Y., Ponzetto, S. P., Poesio, M., Eidelman, V., Jern, A., Smith, J., Yang, X.
und Moschitti, A. (2008). BART: a modular toolkit for coreference resolution. In
Proceedings of the 2008 Conference of the ACL, Seiten 9-12, Columbus, OH, USA.
ACL.

Literaturverzeichnis 257

Vlas, R. und Robinson, W. N. (2011). A Rule-Based Natural Language Technique for
Requirements Discovery and Classification in Open-Source Software Development
Projects. In Proceedings of the 44th HICSS, Seiten 1-10, Kauai, HI, USA. IEEE.

Vogel, O., Arnold, I., Chughtai, A., Thler, E., Kehrer, T., Mehlig, U. und Zdun, U.
(2009). Software-Architektur: Grundlagen, Konzepte, Praxis. Spektrum Akademi-
scher Verlag, Heidelberg, 2. Auflage.

Vohringer, J. und Fliedl, G. (2011). Adapting the lesk algorithm for calculating term
similarity in the context of requirements engineering. In Pokorny, J., Repa, V.,
Richta, K., Wojtkowski, W., Linger, H., Barry, C. und Lang, M. (Herausgeber),
Information Systems Development: Business Systems and Services: Modeling and
Development, Seiten 781-790. Springer, New York, NY, USA.

Vossen, G., Haselmann, T. und Hoeren, T. (2012). Cloud-Computing fir Un-
ternehmen: Technische, wirtschaftliche, rechtliche und organisatorische Aspekte.
dpunkt.verlag, Miinster / Paderborn, 1. Auflage.

VSEK Konsortium (2007a). Adaptierbarkeit. http://www.
software-kompetenz.de/?29860. Zuletzt abgerufen am 19.10.2016.

VSEK Konsortium (2007b). Formale Spezifikationstechniken. http://www.
software-kompetenz.de/servlet/is/16651. Zuletzt abgerufen am
19.08.2015.

VSEK Konsortium (2007¢). Qualitdtsmodell des Software Engineering Instituts
(SEI). http://www.software-kompetenz.de/?18738. Zuletzt abgerufen
am 20.10.2016.

Weischedel, R., Hovy, E., Marcus, M., Palmer, M., Belvin, R., Pradhan, S., Rams-
haw, L. und Xue, N. (2011). OntoNotes: A Large Training Corpus for Enhanced
Processing. In Olive, J., Christianson, C. und McCary, J. (Herausgeber), Hand-
book of Natural Language Processing and Machine Translation — DARPA Global
Autonomous Language Exploitation. Springer, New York, NY, USA.

Weischedel, R., Pradhan, S., Ramshaw, L., Kaufman, J., Franchini, M., El-Bachouti,
M., Xue, N., Palmer, M., Hwang, J. D., Bonial, C., Choi, J., Mansouri, A., Foster,
M., Hawwary, A.-a., Marcus, M., Taylor, A., Greenberg, C., Hovy, E., Belvin, R.
und Houston, A. (2012). OntoNotes Release 5.0 with OntoNotes DB Tool v0.999
beta. Technischer Bericht 2012-09-28, Raytheon BBN Technologies.

Weischedel, R., Pradhan, S., Ramshaw, L., Micciulla, L., Palmer, M., Xue, N.,
Marcus, M., Taylor, A., Babko-Malaya, O., Hovy, E., Belvin, R. und Houston, A.
(2007). OntoNotes Release 1.0 with OntoNotes DB Tool v. 0.9 beta. Technischer
Bericht 2007-02-15, BBN Technologies.

Wiegers, K. E. (2005). Software Requirements. Microsoft Press, Washington, DC,
USA, 2. Auflage.

258 Literaturverzeichnis

Witt, A., Heid, U., Sasaki, F. und Sérasset, G. (2009). Multilingual language resources
and interoperability. Language Resources and Evaluation, 43(1):1-14.

WordNet (2010). wnstats - WordNet 3.0 database statistics. http://wordnet.
princeton.edu/wordnet/man/wnstats.7WN.html. Zuletzt abgerufen am
28.03.2016.

Wu, Z. und Palmer, M. (1994). Verbs Semantics and Lexical Selection. In Proceedings
of the 32nd Annual Meeting on ACL, ACL’94, Seiten 133-138, Stroudsburg, PA,
USA. ACL.

Xue, N., Xia, F., Chiou, F.-D. und Palmer, M. (2005). The Penn Chinese TreeBank:
Phrase structure annotation of a large corpus. Natural Language Engineering,
11(2):207-238. Cambridge University Press.

Yadav, S. B., Bravoco, R. R., Chatfield, A. T. und Rajkumar, T. M. (1988). Compa-
rison of Analysis Techniques for Information Requirement Determination. Com-
munication of the ACM, 31(9):1090-1097.

Yang, H., de Roeck, A., Gervasi, V., Willis, A. und Nuseibeh, B. (2010a). Extending
Nocuous Ambiguity Analysis for Anaphora in Natural Language Requirements. In
Proceedings of the 18th IEEE RE, Seiten 25-34, Sydney, NSW, Australien. IEEE.

Yang, H., de Roeck, A., Willis, A. und Nuseibeh, B. (2010b). A Methodology
for Automatic Identification of Nocuous Ambiguity. In Proceedings of the 23rd
COLING, COLING’10, Seiten 1218-1226, Stroudsburg, PA, USA. ACL.

Yang, H., Roeck, A., Gervasi, V., Willis, A. und Nuseibeh, B. (2011). Analysing
anaphoric ambiguity in natural language requirements. Requirements Engineering,
16(3):163-189.

Yang, H., Willis, A., De Roeck, A. und Nuseibeh, B. (2010c). Automatic Detection
of Nocuous Coordination Ambiguities in Natural Language Requirements. In
Proceedings of the IEEE/ACM International Conference on Automated Software
Engineering, ASE’10, Seiten 53-62, New York, NY, USA. ACM.

Yang, X. und Su, J. (2007). Coreference Resolution Using Semantic Relatedness
Information from Automatically Discovered Patterns. In Proceedings of the 45th
Annual Meeting of the ACL, Seiten 528-535, Prag, Tschechische Republik. ACL.

Zavrel, J., Daelemans, W. und Veenstra, J. (1997). Resolving PP attachment
Ambiguities with Memory-Based Learning. In Ellison, T. (Herausgeber), CONLL
'97: Computational Natural Language Learning, Seiten 136-144. ACL, Madrid,
Spanien.

Zhang, X., Wu, C. und Zhao, H. (2012). Chinese Coreference Resolution via Ordered
Filtering. In Joint Conference on EMNLP and CONLL - Proceedings of the Shared
Task: Modeling Multilingual Unrestricted Coreference in OntoNotes, Seiten 95-99,
Jeju, Korea. ACL.

Teil V

Anhang

xvii

Programmoberflachen

Indicator PP-attachment
--> PP-attachment found in S1:

VP: want to delete | C2
NP: spam emails | C3
PP:in | C4

-
Indicator Coordination Ambiguity

Q

.
Indicator Incompleteness

A

-
Indicator Word Sense Ambiguity
--> Token resp. the lemma "sharepoint" wasn't found in WordNet | S1 T8

--> Word sense ambiguity found in S1:

- possibly ambigue token: delete | T4
- possibly ambigue token: spam | T5
- possibly ambigue token: Sharepoint | T8

A

Abbildung A.1: Erlduterungen zur Indikatoranwendung fiir Endanwender

Xix

A Programmoberfldchen

* * _ T16 to

* * _ T17 store

Cc9 NP _ T18 them

* * _ T19 seperatly
T20

PART TO _
VERB VB action_2
PRON PRP object_3
ADV RB refinement_of_action_2
verbessert mittels Stanford-NLP -
PUNCT _ ‘Dependenzen

Abbildung A.2: Erlduternde Darstellung der Korrektur mittels Core NLP

Satz #1 | want to Gelete Spam emails in Sharepoint .

- -y -
P s gy vy
- —

Babel-ID
bn:00048634n

Lemma
spam emails
Gloss

Unwanted e-mail (usually of a commercial nature
sent out in bulk)

Kategorie
[Email, Spamming]
Doméne

{Computing=0.404367686243}

Fehler melden

|
Babel-ID
bn:15927858n
Lemma
sharepoint

Gloss

SharePoint is a web application framework and
platform developed by Microsoft.

Kategorie

[2001_introductions,
Content_management_systems,
Document_management_systems,
Proprietary_database_management_systems,
Portal_software, SharePoint]

Domaéne

{Computing=0.44643543289}

Fehler melden

Abbildung A.3: Ergebnis der lexikalischen Disambiguierung mittels Babelfy

XX

& & _ T13 format VERB VB action_2
Cc7 NP _ T14 text NOUN NN object_2
Cc8 PP _ T15 as ADP IN argument_of_action_1
C9 NP _ T16 bold ADJ JJ argument_of_action_1
verbessert mittels BabelNet | ehemaliges Pos: NN
* * _ T17 or CONJ CC argument_of_action_1
C10 LST _ T18 italic ADJ JJ argument_of_action_1
_ _ _ T19 . PUNCT _

Abbildung A.4: Erldauternde Darstellung der POS-Korrektur mittels BabelNet

Kette

100000 "application" in sentence 3
"program" in sentence 7
"software" in sentence 9

2 “I'in sentence 2
"' in sentence 3
“I'in sentence 4
“I'in sentence 5
"my" in sentence 7
“I"in sentence 8
"user" in sentence 8

6 "emails" in sentence 3
“"emails" in sentence 6
"emails" in sentence 9

8 "email spam" in sentence 4
"the spam" in sentence 5

Abbildung A.5: Darstellung erkannter Koreferenzketten mittels CoreNLP

xxi

A Programmoberfldchen

Ergebnis

lhre Eingabe:

Ergebnis

| want an application to write, read, delete and sort emails.

Nr. SID Anforderung

1 S1 ¥ As a user, | want to write emails
¥ As a user, | want to read emails
¥ As a user, | want to delete emails
¥ As a user, | want to sort emails

& | want an application to write, read, delete and sort emails.

Abbildung A.6: Ergebnis der Verarbeitung

Verarbeitungs- und Kompensationsprotokoll

~ Word Sense Disambiguation

Input

I want an
application
to write,
read,
delete and

I want an
application
to write,
read,
delete and

enrt amaile

sort emails.

Output

[(1, 1) - bn:00086682v - MCS - 0.0, (3, 3) -
bn:00005095n - BABELFY - 1.0, (5, 5) -
bn:00095847v - MCS - 0.0, (7, 7) - bn:00092424v
- MCS - 0.0, (9, 9) - bn:00086518v - BABELFY -
1.0, (11, 11) - bn:00093376v - MCS - 0.0, (12, 12)
- bn:00029345n - BABELFY - 1.0]

[(1, 1) - bn:00086682v - MCS - 0.0, (3, 3) -
bn:00005095n - BABELFY - 1.0, (5, 5) -
bn:00095847v - MCS - 0.0, (7, 7) - bn:00092424v
- MCS - 0.0, (9, 9) - bn:00086518v - BABELFY -

1.0, (11, 11) - bn:00093376v - MCS - 0.0, (12, 12)
- hn:NNN2QRRAEN . RARFIFY . 1 N1

» Gespeicherte Ausgaben (XML)

» Gespeicherte Datenobjekte (Debug)

Sonstiges

Abbildung A.7: Verarbeitungs- und Kompensationsprotokoll

xxii

ROOT
I

5
,...:-"'""’-_.-“"-._
NP VP
| .--"'"-F'-_--"‘--
PRP VBP S
I | |
[want VP
..-:-—'""-—-__-_"‘--__
TO VP
I —_—] T
to VB NP PP
| - e
press DT NN IN NP

[[[o
the button with DT NN
I |

the mouse

Abbildung A.8: Beispielsyntaxbaum des Stanford Parsers

xxiii

B

101

Material zur Evaluat

POLAND

GERMANY

NETHERLANDS

L
Unreachable: 1

pa

GIUM

BEL

i d <100ms:3]

CZE
EPUBLIC

<20 ms: 1

English

R

Channel

@
<100 ms: 3

STRIA

AU

GARY

HUN

SWIT ZERLAND

FRANCE

SLOVEN A

ROMA]

Bay of

CROATIA

Biscay

Abbildung B.1: Nach Geschwindigkeit klassifizierte Messtellen (RIPE NCC)

Thu 23 Fri24 Sat 25 Feb 26 Mon 27 Tue 28 March Thu 02 Fri03 Sat0i

Wed 22

Abbildung B.2: Messergebnisse nach Lindern (Auszug)

XXV

B Material zur Evaluation

(A) Doménenspezifische Anfragen:

600 —————
I |==3 Cache

500 | |1 BabelNet
R
S 400 |
) r]
g r i
5 300 ¢ .
.20 r i
= [i
A r i

100 | .

0 \\Ho\\H\OH\\\Q\\H\OH\HO\H\\O\\\HO\H\\O\HHOHH\O\HHOHH;

1O o 0 o L0 o 0 (=) 10 (=) 0
— — [a\} [a\] [ap) ™ <t <t 10 0 ©

Ambige Token

(B) Doméneniibergreifende Anfragen:

60—
== Cache
1 BabelNet

500

400

300

200

Disambiguierte Token

100

0 {0 Y Y B
(e (e (e (= (e}
o O (e 0 (=}
(&N} [a\} 2] [ap) <t

Ambige Token

50
100
150
450
500
550
600

Abbildung B.3: Ressourcenverteilung lex. Disambiguierungsanfragen

XXVi

Ergédnzende Ausfithrungen

C.1 Ausgewaihlte Verfahren der Textvorverarbeitung

Gegenstand dieser Arbeit ist, wie in Abschnitt 3.2 ersichtlich wird, UGC, der weder
Struktur noch Textannotationen aufweist und einer Vorverarbeitung bedarf, um
die Anwendung der Textverarbeitung zu ermoglichen. Die Vorverarbeitung von
FlieBtexten (engl. preprocessing) ist dabei ein elementarer Schritt im NLP. Ziel ist
es, aus einem Dokument ,linguistische Einheiten, wie z. B. Worter, Phrasen, Sétze,
Absétze oder Diskursabschnitte® (Carstensen et al., 2010, S. 264) zu isolieren und den
folgenden Verarbeitungsschritten in einer homogenen Form zugénglich zu machen.
Die sequenzielle Anwendung einzelner Textvorverarbeitungsschritte muss auf die
Anforderungen der Eingabetexte angepasst werden. Im Folgenden werden Verfahren
der Sprachenidentifizierung und Satzgrenzenerkennung exemplarisch vorgestellt,
die unter dem Kriterium ,, Anwendbarkeit auf UGC*“ ausgewéhlt wurden. Diese
Verfahren haben im Rahmen dieser Arbeit eine besondere Bedeutung, da sie (auch in
Kombination) die Weiterverarbeitung mafigeblich durch eine friithe Strukturanpassung
(Unterteilung in Sétze) und Klassifikation (Einteilung in Sprachen) mitgestalten.

C.1.1 Sprachenidentifizierung

Ansétze zur Sprachenidentifizierung (engl. language identification) haben die Erken-
nung der jeweiligen natiirlichen Sprache, in der ein Flieftext verfasst wurde, zum
Gegenstand (Baldwin und Lui, 2010, S. 229). Dies ist beispielsweise im Information
Retrieval (IR) relevant (Klose und Wrigley, 2014, S.62ff.), in dessen Preprocessing
eine Vielzahl von Dokumenten unterschiedlicher Sprachen verarbeitet werden. Aber
auch in der vorliegenden Arbeit hat diese Identifizierung hohe Relevanz, da sie dariiber
entscheidet, ob eine FA der Weiterverarbeitung zugefithrt wird oder nicht. Da die
meisten Komponenten auf eine begrenzte Anzahl von Sprachen zugeschnitten sind, ist
eine zuverldssige Sprachenidentifizierung ein wichtiger Schritt der Qualitétssicherung.

Diesbeziiglich existieren verschiedene Vorgehensweisen der Sprachenidentifizierung
(Souter et al., 1994, S. 183 ff.). So kann ein FlieBtext beispielsweise auf das Vorkom-
men charakteristischer Zeichen (z.B., 0%, ,$“) oder spezifischer Funktionsworter
(z.B. ,the®, and*) untersucht werden (,,Small Word Technique®), die fiir eine Spra-
che auszeichnend sind (Grefenstette, 1995, S. 265 ff.). Diese Arbeit beschrénkt sich auf
die Unterscheidung in (1) wortbasierte Sprachenerkenner und (2) N-Gramm basierte
Sprachenerkenner (Rehtifek und Kolkus, 2009, S. 359 ff.; Langer, 2002, S.99f., 106),
die als zuverlédssige Vorgehensweisen gelten (Souter et al., 1994).

Wortbasierte Sprachenerkenner (1) basieren auf einem Abgleich mit Woérterbiichern
und haben den Vorteil, dass sie manuell angepasst werden kénnen (z. B. Hinzunahme
von Fachtermini). Dies bedeutet im Umkehrschluss aber auch einen erhéhten Aufwand

xxvii

xxviii C Ergéanzende Ausfiihrungen

und eine schlechtere Performanz, da unbekannte Worter nicht zugeordnet werden
kénnen. Anders ist dies bei (2). Hier wird ein System auf Basis von N-Grammen
trainiert, sodass die ,,[...] Wahrscheinlichkeit géngiger Bytefolgen in elektronischen
Texten [...]“ (Langer, 2002, S.991{.) ausschlaggebend fiir die Klassifikation ist. Ein
grofier Vorteil ist, dass die Identifikation unabhéngig vom (ggf. teils unbekannten)
Vokabular erfolgen kann. Ein Nachteil besteht darin, dass Identifizierungsfehler nur
schwer nachzuvollziehen und zu korrigieren sind (Langer, 2002, S. 100, 106).

Zur Umsetzung gibt es bereits eine Reihe von Softwarebibliotheken, welche die
Sprachenidentifizierung mittels einer Vielzahl von Programmiersprachen erméglichen
(z.B. language-detector'™ oder Compact Language Detector 2'™'). Dariiber hinaus
existieren sowohl kostenpflichtige als auch kostenlose Web Services, die Spracheni-
dentifizierung auf Grundlage von Flietexten mittels Web-Schnittstellen anbieten!?2.

Oftmals wird die ,[...] automatische Sprachenidentifizierung fiir elektronische
Dokumente, deren Mindestlinge eine bestimmte Wortzahl iiberschreitet und die
reguldren Text enthalten, [...] als weitgehend gelostes Problem® verstanden (Langer,
2002, S.99). Dies bedeutet, dass bestehende Verfahren der Sprachenidentifizierung
iiberwiegend gute Resultate erzielen und dass langere und ,,saubere* Texte zu besseren
Identifizierungsergebnissen fithren kénnen (Klose und Wrigley, 2014, S.62). Das
Interesse an der Sprachenidentifizierung von kurzen und ,,verrauschten“ Texten nimmt
jedoch mit der zunehmenden Relevanz von Kurznachrichtendiensten und sozialen
Netzwerken rapide zu (z. B. Dias Cardoso und Roy, 2016; Lui und Baldwin, 2014;
Carter et al., 2012), was auch der Verarbeitung von qualitativ stark schwankenden
Anforderungsbeschreibungen zutraglich ist.

Nach Langer (2002, S.103) liegen die ,,[...] Erkennungsraten aller bekannten Algo-
rithmen [bei] iiber 99% [...]“, wenn es sich bei den Eingabedokumenten um Standard-
dokumente handelt. Diese Dokumente sind nach Langer (2002, S. 103) monolingual
und enthalten reguldren Text und mindestens 20 Worter. Daneben gibt zum Beispiel
Dunning (1994) bei der statistischen Sprachenidentifikation auf N-Gramm-Basis an,
dass bereits wenige Tausend Worter als Trainingsdaten ausreichen, um eine gute
Perfomanz zu erzielen und bereits ab 10 Zeichen gute und ab Zeichenketten mit
50 Zeichen sehr gute Ergebnisse zu erzielen sind (Dunning, 1994, S. 1). Ein groer
Anteil an Fachsprache kann dabei neben Faktoren wie einer kurzen Dokumentenlénge,
Wortwiederholungen und Eigennamen negativen Einfluss auf die Erkennungsrate
haben (Langer, 2002, S. 102 ff.).

In Hinblick auf die Anforderungen des OTF-Computings sind Verfahren zu bevor-
zugen, die auch bei kurzen und fehlerhaften Texten eine gute Performanz erzielen.
Dariiber hinaus sind Anforderungsspezifikationen zwar iiblicherweise von Fachtermini
geprigt, Anforderungsbeschreibungen dhneln in ihren Merkmalen aber eher UGC
mit einem geringeren Anteil an Fachtermini. In der Anwendung auf UGC zeigen
aktuelle Untersuchungen, dass N-Gramm-basierte Ansétze die robustesten und besten
Ergebnisse erzielen (z. B. Dias Cardoso und Roy, 2016).

170Gjehe weiterfithrend: https://github.com/optimaize/language-detector (Stand: 11‘01.17)‘
17 Siehe weiterfithrend: https://github.com/CLD20wners/cld2 (Stand: 11.01.17).
172810}10 weiterfithrend: https://detectlanguage.com (Stand: 110117)

C.1 Ausgewihlte Verfahren der Textvorverarbeitung XXix

C.1.2 Satzgrenzenerkennung

Die Satzgrenzenerkennung (engl. sentence boundary disambiguation, SBD) wird, wie
auch die Sprachenidentifizierung, oftmals als gelostes Problem verstanden (Read et al.,
2012a), welchem mit einer Vielzahl an unterschiedlichen Ansétzen und Methoden
begegnet werden kann. Eine Unterteilung dieser Ansitze findet in (1) regelbasierte
SBD-Verfahren (Expertenwissen; Heuristiken und Gazetteers) und (2) ML-Ansitze
(Annotierte Korpora; Goldstandards) statt (Read et al., 2012a, S.987). Eine ent-
sprechende Ubersicht geben Read et al. (2012a) sowie Kiss und Strunk (2006) und
eine Auswahl findet sich in Tabelle C.1 zusammen mit dem jeweiligen F}-Wert auf
verschiedenen Korpora (Read et al., 2012a, S.989f.)173,

Verfahren der Satzgrenzenerkennung werden vielfach auf Flieftexte wie Nach-
richtentexte angewendet und erreichen teils sehr gute Ergebnisse (Kiss und Strunk,
2006). Seltener werden die Verfahren zur Vorverarbeitung von UGC wie Produktbe-
wertungen (Lépez und Pardo, 2015) oder Kurznachrichten aus sozialen Netzwerken
(Rudrapal et al., 2015) herangezogen.

Aus diesem Grund untersuchen Read et al. (2012a, S.991) explizit auch die
Performanz etablierter Ansétze auf informalen Texten wie UGC. Hierzu ziehen sie
Texte der NLP- und Linux-Doméne aus Webblogs (WNB/WLB) heran (Read et al.,
2012b), die einige tausend Sétze umfassen. Wie in Tabelle C.1 ersichtlich wird,
funktionieren die Verfahren allesamt auf klassischen Fliefitexten besser als auf UGC,
wenngleich die Ergebnisse auf UGC auch noch immer als solide zu bezeichnen sind.

Brown CDC GENIA WSJ WNB WLB

CoreNLP 877 7121 98,8 913 953 89,1
LingPipe 930 86,3 99,6 88,0 944 927
RASP 96,8 96,1 989 990 954 928
Splitta 954 96,1 99,0 99,2 940 912

Tabelle C.1: Vergleich von Satzendeerkennungstools auf verschiedenen Korpora.
Aus Read et al. (2012a, S.990,992)

Ein regelbasiertes Verfahren zur Satzgrenzenerkennung beinhaltet das RASP-
System!™. Briscoe et al. (2006) bzw. Briscoe und Carroll (2002) stellen mit Robust
Accurate Statistical Parsing (RASP) ein NLP-System zur syntaktischen Annotation
von Freitext zur Verfiigung. Es handelt sich demnach hierbei nicht um einen reinen
Ansatz zur Satzgrenzenerkennung. RASP kann auf allen Korpora solide Ergebnisse
erzielen, wenngleich auch Read et al. (2012a, S.991) den Perfomanzverlust auf dem
CDC-Korpus hervorheben. Dariiber hinaus weist Briscoe (2006, S.24) auf Probleme
bei irreguldrer Nutzung von Satzzeichen wie zum Beispiel ,,------ “ oder ,,(A):-“ hin.
Da sowohl zur Strukturierung (z. B. Auflistung) als auch zur Trennung von Inhalten
in Anforderungsbeschreibungen nur Sonderzeichen zur Verfiigung stehen, stellt dieser
Umstand ein Problem dar, da die hdufige Satzzeichenverwendung zu erwarten ist.

173Neben dem Brown-Korpus und WSJ-Texten werden das Conan Doyle Corpus (CDC), das aus
mehreren Sherlock Holmes-Geschichten besteht und das GENIA-Korpus, das eine Sammlung
von 16.392 Sétzen aus biomedizinischen Forschungszusammenfassungen darstellt, zur Evaluation
herangezogen (Kim et al., 2003).

174Gjehe weiterfithrend: http://ilexir.co.uk/applications/rasp/ (Stand: 11.01.17).

XXX C Ergéanzende Ausfiihrungen

Das Stanford CoreNLP beinhaltet ebenfalls einen Sentence Splitter (ssplit), der
nicht auf dem urspriinglichen FlieBtext arbeitet, sondern auf einer zuvor tokenisierten
Variante (Manning et al., 2014, S. 3). Beispielsweise wird bereits beim Tokenisieren
regelbasiert zwischen Satzzeichen, die einen Satz beenden und Satzzeichen, die zum
Beispiel eine Abkiirzung markieren, unterschieden. Die Evaluationsergebnisse von
CoreNLP sind auf den Webkorpora nicht @iberzeugend (vgl. Tabelle C.1).

Read et al. (2012a, S.991) fithren als mogliche Erklarungen zum einen an, dass
bestimmte Fehler schon durch den vorgeschalteten Tokenisierer entstehen kénnen
und zum anderen, dass die zugrundeliegenden Regeln zur Satzgrenzenerkennung
unter Umsténden nicht sténdig gepflegt und weiterentwickelt werden, wie es bei
Systemen der Fall ist, die speziell auf diese Aufgabe zugeschnitten sind. Schliellich
umfasst CoreNLP eine Vielzahl an NLP-Anwendungen.

Bei dem Python-Tool Splittal™ handelt es sich um ein NLP-Toolkit, welches
primér der Tokenisierung und der SBD dient (Gillick, 2009). Genutzt wird sowohl ein
SVM-basierter Ansatz als auch ein Naive Bayes-basierter Klassifikationsalgorithmus,
der auf dem WSJ- sowie auf dem Brown-Korpus sehr gute Ergebnisse fiir die englische
Sprache liefert. Auf UGC funktioniert der Ansatz allerdings schlechter, wie Rudrapal
et al. (2015, S.5) am Beispiel von Twitter- und Facebook-Nachrichten aufzeigen.

Um einen auf ML basierenden Ansatz handelt es sich beim Tool LingPipe'™®. Es
stellt ein NLP-Toolkit dar, dass neben der Satzgrenzenerkennung unter anderem auch
POS-Tagging und NER bietet. Zur Erkennung von Satzgrenzen steht standardméfig
ein MEDLINE-Modell als LingPipe SentenceModel bereit, welches auf 13 Millionen
biomedizinischen Kurztexten trainiert wurde (Reese, 2015, S.92; Morris, 2011).

Es wird deutlich, dass keines der ausgewéhlten Verfahren das ,,perfekte Verfahren®
zur Satzgrenzenerkennung auf allen Korpora ist. Dennoch empfehlen sich Systeme
wie RASP und LingPipe im OTF-Kontext aufgrund der guten Performanz auf UGC
sowie auf strukturierten Texten.

¢

175Giehe weiterfithrend: http://code.google.com/p/splitta/ (Stand: 17.01.17).
17GSiehe weiterfiithrend: http://alias—i.com/lingpipe/ (Stand: 170117)

Das Heinz Nixdorf Institut —
Interdisziplindres Forschungszentrum
fiir Informatik und Technik

Das Heinz Nixdorf Institut ist ein Forschungszentrum der Universitdt Paderborn. Es entstand
1987 aus der Initiative und mit Férderung von Heinz Nixdorf. Damit wollte er Ingenieurwis-
senschaften und Informatik zusammenfiihren, um wesentliche Impulse fiir neue Produkte und
Dienstleistungen zu erzeugen. Dies schlie8t auch die Wechselwirkungen mit dem gesellschaft-
lichen Umfeld ein.

Die Forschungsarbeit orientiert sich an dem Programm ,,Dynamik, Mobilitéit, Vernetzung: Eine
neue Schule des Entwurfs der technischen Systeme von morgen®. In der Lehre engagiert sich
das Heinz Nixdorf Institut in Studiengéngen der Informatik, der Ingenieurwissenschaften und
der Wirtschaftswissenschaften.

Heute wirken am Heinz Nixdorf Institut neun Professoren mit insgesamt 150 Mitarbeiterinnen
und Mitarbeitern. Pro Jahr promovieren hier etwa 20 Nachwuchswissenschaftlerinnen und
Nachwuchswissenschaftler.

Heinz Nixdorf Institute —
Interdisciplinary Research Centre
for Computer Science and Technology

The Heinz Nixdorf Institute is a research centre within the University of Paderborn. It was
founded in 1987 initiated and supported by Heinz Nixdorf. By doing so he wanted to create a
symbiosis of computer science and engineering in order to provide critical impetus for new
products and services. This includes interactions with the social environment.

Our research is aligned with the program “Dynamics, Mobility, Integration: Enroute to the tech-
nical systems of tomorrow.” In training and education the Heinz Nixdorf Institute is involved
in many programs of study at the University of Paderborn. The superior goal in education and
training is to communicate competencies that are critical in tomorrows economy.

Today nine Professors and 150 researchers work at the Heinz Nixdorf Institute. Per year ap-
proximately 20 young researchers receive a doctorate.

Zuletzt erschienene Bénde der Verlagsschriftenreihe des Heinz Nixdorf Instituts

Bd. 344 BROKELMANN, J.: Systematik der virtuellen Bd. 351 BRENNER, C.: Szenariobasierte Synthese
Inbetriebnahme von automatisierten verteilter mechatronischer Systeme.
Produktionssystemen. Dissertation, Fakul- Dissertation, Fakultat fir Elektrotechnik,
tat fir Maschinenbau, Universitat Pader- Informatik und Mathematik, Universitat
born, Verlagsschriftenreihe des Heinz Paderborn, Verlagsschriftenreihe des
Nixdorf Instituts, Band 344, Paderborn, Heinz Nixdorf Instituts, Band 351, Pader-
2015 — ISBN 978-3-942647-63-2 born, 2016 — ISBN 978-3-942647-70-0

Bd. 345 SHAREEF, Z.: Path Planning and Trajectory Bd. 352 WALL, M.: Systematik zur technologie-
Optimization of Delta Parallel Robot. induzierten Produkt- und Technologie-
Dissertation, Fakultat fur Maschinenbau, planung. Dissertation, Fakultat fir
Universitat Paderborn, Verlagsschriften- Maschinenbau, Universitat Paderborn,
reihe des Heinz Nixdorf Instituts, Band Verlagsschriftenreihe des Heinz Nixdorf
345, Paderborn, 2015 — ISBN 978-3- Instituts, Band 352, Paderborn, 2016 —
942647-64-9 ISBN 978-3-942647-71-7

Bd. 346 VAssHoOLz, M.: Systematik zur wirtschaft- Bd. 353 CoORD-LANDWEHR, A.: Selfish Network
lichkeitsorientierten Konzipierung Creation - On Variants of Network
Intelligenter Technischer Systeme. Creation Games. Dissertation, Fakultat fur
Dissertation, Fakultat fur Maschinenbau, Elektrotechnik, Informatik und Mathematik,
Universitat Paderborn, Verlagsschriften- Universitat Paderborn, Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Band reihe des Heinz Nixdorf Instituts, Band
346, Paderborn, 2015 — ISBN 978-3- 353, Paderborn, 2016 — ISBN 978-3-
942647-65-6 942647-72-4

Bd. 347 GAUSEMEIER, J. (Hrsg.): Vorausschau und Bd. 354 ANACKER, H.: Instrumentarium fiir einen
Technologieplanung. 11. Symposium fir I6sungsmusterbasierten Entwurf fortge-
Vorausschau und Technologieplanung, schrittener mechatronischer Systeme.
Heinz Nixdorf Institut, 29. und 30. Oktober Dissertation, Fakultat fir Maschinenbau,
2015, Berlin-Brandenburgische Akademie Universitat Paderborn, Verlagsschriften-
der Wissenschaften, Berlin, Verlagsschrif- reihe des Heinz Nixdorf Instituts, Band
tenreihe des Heinz Nixdorf Instituts, Band 354, Paderborn, 2016 — ISBN 978-3-
347, Paderborn, 2015 — ISBN 978-3- 942647-73-1
942647-66-3

Bd. 355 RuDTsCH, V.: Methodik zur Bewertung von

Bd. 348 HEeINzEMANN, C.: Verification and Simu- Produktionssystemen in der frihen Ent-
lation of Self-Adaptive Mechatronic wicklungsphase. Dissertation, Fakultat fur
Systems. Dissertation, Fakultat fur Maschinenbau, Universitat Paderborn,
Elektrotechnik, Informatik und Mathematik, Verlagsschriftenreihe des Heinz Nixdorf
Universitat Paderborn, Verlagsschriften- Instituts, Band 355, Paderborn, 2016 —
reihe des Heinz Nixdorf Instituts, Band ISBN 978-3-942647-74-8
348, Paderborn, 2015 — ISBN 978-3-

942647-67-0 Bd. 356 SOLLNER, C.: Methode zur Planung eines
zukunftsfahigen Produktportfolios.

Bd. 349 MARKWART, P.: Analytische Herleitung der Dissertation, Fakultat fir Maschinenbau,
Reihenfolgeregeln zur Entzerrung hoch- Universitdt Paderborn, Verlagsschriften-
auslastender Auftragsmerkmale. reihe des Heinz Nixdorf Instituts, Band
Dissertation, Fakultat fur Wirtschafts- 356, Paderborn, 2016 — ISBN 978-3-
wissenschaften, Universitat Paderborn, 942647-75-5
Verlagsschriftenreihe des Heinz Nixdorf
Instituts, Band 349, Paderborn, 2015 — Bd. 357 AMSHOFF, B.: Systematik zur muster-
ISBN 978-3-942647-68-7 basierten Entwicklung technologie-

induzierter Geschaftsmodelle.

Bd. 350 RUBBELKE, R.: Systematik zur innovations- Dissertation, Fakult&t fir Maschinenbau,
orientierten Kompetenzplanung. Universitat Paderborn, Verlagsschriften-
Dissertation, Fakultat fur Maschinenbau, reihe des Heinz Nixdorf Instituts, Band
Universitat Paderborn, Verlagsschriften- 357, Paderborn, 2016 — ISBN 978-3-
reihe des Heinz Nixdorf Instituts, Band 942647-76-2
350, Paderborn, 2016 — ISBN 978-3-

942647-69-4

Bezugsadresse:

Heinz Nixdorf Institut
Universitat Paderborn
Furstenallee 11
33102 Paderborn

Zuletzt erschienene Bénde der Verlagsschriftenreihe des Heinz Nixdorf Instituts

Bd. 358 LOFFLER, A.: Entwicklung einer Bd. 365 KLIEWE, D.: Entwurfssystematik fur den
modellbasierten In-the-Loop-Test- praventiven Schutz Intelligenter Tech-
umgebung fiir Waschautomaten. nischer Systeme vor Produktpiraterie.
Dissertation, Fakultat fur Maschinenbau, Dissertation, Fakultat fir Maschinenbau,
Universitat Paderborn, Verlagsschriften- Universitat Paderborn, Verlagsschriften-
reihe des Heinz Nixdorf Instituts, Band reihe des Heinz Nixdorf Instituts, Band
358, Paderborn, 2016 — ISBN 978-3- 365, Paderborn, 2017 — ISBN 978-3-
942647-77-9 942647-84-7

Bd. 359 LEHNER, A.: Systematik zur I6sungs- Bd. 366 IwANEK, P.: Systematik zur Steigerung der
musterbasierten Entwicklung von Frugal Intelligenz mechatronischer Systeme im
Innovations. Dissertation, Fakultét fiir Maschinen- und Anlagenbau. Disser-
Maschinenbau, Universitat Paderborn, tation, Fakultat fur Maschinenbau,
Verlagsschriftenreihe des Heinz Nixdorf Universitat Paderborn, Verlagsschriften-
Instituts, Band 359, Paderborn, 2016 — reihe des Heinz Nixdorf Instituts, Band
ISBN 978-3-942647-78-6 366, Paderborn, 2017 — ISBN 978-3-

942647-85-4

Bd. 360 GAUSEMEIER, J. (Hrsg.): Vorausschau und
Technologieplanung. 12. Symposium fir Bd. 367 ScHWEERS, C.: Adaptive Sigma-Punkte-
Vorausschau und Technologieplanung, Filter-Auslegung zur Zustands- und
Heinz Nixdorf Institut, 8. und 9. Dezember Parameterschétzung an Black-Box-
2016, Berlin-Brandenburgische Akademie Modellen. Dissertation, Fakultat fur
der Wissenschaften, Berlin, Verlagsschrif- Maschinenbau, Universitét Paderborn,
tenreihe des Heinz Nixdorf Instituts, Band Verlagsschriftenreihe des Heinz Nixdorf
360, Paderborn, 2016 — ISBN 978-3- Instituts, Band 367, Paderborn, 2017 —
942647-79-3 ISBN 978-3-942647-86-1

Bd. 361 PETER, S.: Systematik zur Antizipation von Bd. 368 ScHIERBAUM, T.: Systematik zur Kosten-
Stakeholder-Reaktionen. Dissertation, bewertung im Systementwurf mechatro-
Fakultat fir Maschinenbau, Universitét nischer Systeme in der Technologie
Paderborn, Verlagsschriftenreihe des Molded Interconnect Devices (MID).
Heinz Nixdorf Instituts, Band 361, Pader- Dissertation, Fakultat fir Maschinenbau,
born, 2016 — ISBN 978-3-942647-80-9 Universitat Paderborn, Verlagsschriften-

reihe des Heinz Nixdorf Instituts, Band

Bd. 362 ECHTERHOFF, O.: Systematik zur Erarbei- 368, Paderborn, 2017 — ISBN 978-3-
tung modellbasierter Entwicklungsauf- 942647-87-8
trége. Dissertation, Fakultat fur
Maschinenbau, Universitat Paderborn, Bd. 369 BODDEN, E.; DRESSLER, F.; DUMITRESCU, R.;
Verlagsschriftenreihe des Heinz Nixdorf GAUSEMEIER, J.; MEYER AUF DER HEIDE, F;
Instituts, Band 362, Paderborn, 2016 — SCHEYTT, C.; TRACHTLER, A. (Hrsg.): Intelli-
ISBN 978-3-942647-81-6 gente technische Systeme. Verlagsschrif-

tenreihe des Heinz Nixdorf Instituts, Band

Bd. 363 TSCHIRNER, C.: Rahmenwerk zur Integra- 369, Paderborn, 2017 — ISBN 978-3-
tion des modellbasierten Systems Engi- 942647-88-5
neering in die Produktentstehung mecha-
tronischer Systeme. Dissertation, Fakultat Bd. 370 KUHN, A.: Systematik zur Release-
fir Maschinenbau, Universitat Paderborn, Planung intelligenter technischer
Verlagsschriftenreihe des Heinz Nixdorf Systeme. Dissertation, Fakultat fur
Instituts, Band 363, Paderborn, 2016 — Maschinenbau, Universitat Paderborn,
ISBN 978-3-942647-82-3 Verlagsschriftenreihe des Heinz Nixdorf

Instituts, Band 370, Paderborn, 2017 —

Bd. 364 KNoOP, S.: Flachheitsbasierte Positions- ISBN 978-3-942647-89-2
regelungen fir Parallelkinematiken am
Beispiel eines hochdynamischen hydrau- Bd. 371 ReINOLD, P.: Integrierte, selbstoptimieren-
lischen Hexapoden. Dissertation, Fakultat de Fahrdynamikregelung mit Einzelrad-
fur Maschinenbau, Universitat Paderborn, aktorik. Dissertation, Fakultét far
Verlagsschriftenreihe des Heinz Nixdorf Maschinenbau, Universitat Paderborn,
Instituts, Band 364, Paderborn, 2016 — Verlagsschriftenreihe des Heinz Nixdorf
ISBN 978-3-942647-83-0 Instituts, Band 371, Paderborn, 2017 —

ISBN 978-3-942647-90-8

Bezugsadresse:

Heinz Nixdorf Institut
Universitat Paderborn
Furstenallee 11
33102 Paderborn

