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Tag der mündlichen Prüfung: 4. September 2017



Acknowledgments

Foremost, I would like to thank my advisor Prof. Dr. Andrea Walther for her

helpfulness, support, and guidance over the years. I am grateful for the opportunity

of studying and researching in the magnificent field of nonsmooth optimization. Her

enthusiasm for applied mathematics was contagious and motivational for me.

Furthermore, I would like to thank Prof. Dr. Andreas Griewank for many fruitful

and inspiring discussion as well as for his ongoing advice and insightful comments.

In particular, I would like to thank him and Prof. Dr. Marc Steinbach for examining

this doctoral thesis.

I am also very grateful to all my colleagues I worked with throughout the years.

Especially, I would like to thank the members of the group of Mathematics and

its Applications: Mladen Banovic, Olga Ebel, Benjamin Jurgelucks, Kshitij Kul-
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Abstract

Nonsmoothness is a typical characteristic of numerous optimization problems origi-

nating from both real world and scientific applications. Well known examples from

practical optimization are minimax problems frequently used in robust optimiza-

tion and the reformulation of a constrained optimization problem by adding `1- or

`∞-penalty terms of constraint violations to the original function.

Although there are plenty of publications dealing with nonsmooth analysis and opti-

mization, there are only a few state-of-the-art software tools available for nonsmooth

optimization problems. Therefore, the purpose of this thesis is to develop, imple-

ment, and examine an algorithm for unconstrained, nonconvex, and nonsmooth

optimization problems. It will be assumed that all nondifferentiabilities occurring

in the objective function are caused by the absolute value function and those func-

tions that can be expressed in terms of the absolute value function as the maximum

and minimum function. Functions of this form will be called composite piecewise

differentiable functions.

The idea of the optimization method LiPsMin developed in the scope of this the-

sis is the minimization of composite piecewise differentiable objective functions via

successive piecewise linearization overestimated by a quadratic term. The minimiza-

tion of the resulting local quadratic subproblem benefits from additional information

obtained by exploiting the structure of the underlying piecewise linearization. Con-

vergence results of LiPsMin towards first order optimal points are developed and the

numerical performance of the algorithm is investigated by comparing it with other

state-of-the-art nonsmooth optimization software packages.

Keywords: Nonsmooth optimization, Piecewise linearization, Algorithmic Differ-

entiation





Zusammenfassung

Nichtglattheit ist eine typische Eigenschaft vieler Optimierungsprobleme, die ihren

Ursprung sowohl in industriellen als auch in akademischen Anwendungen haben.

Bekannte Beispiele sind unter anderem Minimax-Probleme aus der Robusten Op-

timierung sowie die Umformulierung beschränkter Optimierungsprobleme in unbe-

schränkte Probleme indem man die Beschränkungen als `1- oder `∞- Strafterme

additiv zur Zielfunktion hinzufügt.

Obwohl es eine Vielzahl von Veröffentlichungen zu nichtglatter Analysis und Op-

timierung gibt, sind nur wenige moderne Software-Pakete für nicht-glatten Opti-

mierungsprobleme verfügbar. Aus diesem Grund ist das Ziel dieser Dissertation die

Entwicklung und Implementierung eines Algorithmus zur Lösung unbeschränkter,

nichtkonvexer und nichtglatter Optimierungsprobleme. Darüber hinaus soll der vor-

gestellte Algorithmus im Rahmen dieses Promotionsprojekts getestet werden. Es

wird angenommen, dass alle Nichtdifferenzierbarkeiten der Zielfunktion durch den

Absolutbetrag verursacht werden. Dies umfasst auch Funktionen, deren Nichtdif-

ferenzierbarkeiten mittels Absolutbetrag ausgedrückt werden können, wie z.B. die

Minimum- und Maximumsfunktion. Funktionen dieser Form werden zusammenge-

setzte stückweise differenzierbare Funktionen genannt.

Die Idee des Optimierungsalgorithmus LiPsMin, der im Rahmen dieser Dissertation

entwickelt wurde, ist die Minimierung einer zusammengesetzten stückweise diffe-

renzierbaren Funktionen durch wiederholtes Generieren lokaler Modelle der Ziel-

funktion. Diese Modelle setzen sich aus einer stückweisen Linearisierung und einem

quadratische Term zusammen. Dabei profitiert die Minimierung des so entstandenen

lokalen Modells von den zusätzlichen Informationen, die durch Strukturausnutzung

der zu Grunde liegenden stückweisen Linearisierung gewonnen werden können. Die

Untersuchung des Algorithmus LiPsMin wird durch Konvergenzergebnisse bzgl. op-

timaler Punkte erster Ordnung abgerundet. Abschließend wird die numerische Effizi-

enz des Algorithmus untersucht, indem er mit anderen modernen Software-Paketen

zur Lösung nichtglatter Optimierungsprobleme verglichen wird.

Stichworte: Nichtglatte Optimierung, Stückweise Linearisierung, Algorithmisches

Differenzieren
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1
Introduction

Nonsmoothness is a typical characteristic of numerous optimization problems origi-

nating from both real world and scientific applications. Typical examples of real

world applications are phase changes in materials, certain minimal or maximal

bounds on the usage of utilities in economies and recommender systems used by

online retailers. Well known examples from practical optimization are minimax prob-

lems frequently used in robust optimization and the reformulation of a constrained

optimization problem by adding `1- or `∞-penalty terms of constraint violations to

the original function.

Development of Nonsmooth Theory and Optimization Methods

Nonsmooth optimization deals with objective functions and possibly constraint func-

tions that are not necessarily everywhere differentiable. First optimization methods

for convex problems were developed in the 1960s and 1970s as the cutting-plane

method by J.R. Kelley [Kel60] and subgradient methods as well as the gradient-

type method with space-dilation by N.Z. Shor [Sho79]. The required concepts such

as subdifferentials and optimality conditions were introduced by T.R. Rockafellar

in his fundamental book Convex Analysis [Roc70]. In the 1980s and later on more

generalized classes of functions were considered, among others quasidifferential func-

tions by V.F. Demyanov and L.V. Vasilev [DV85], Lipschitz continuous functions

by F.H. Clarke [Cla83] and piecewise differentiable functions by S. Scholtes [Sch12].

In the 1970s first bundle methods for convex problems were introduced by C. Lemaré-

chal [Lem78] and K.C. Kiwiel [Kiw85]. Since then they represent an important

class of nonsmooth optimization methods. A variety of extended bundle methods

were developed as combinations with the trust-region method [Sch89, ANR16], with

1



1 Introduction

Newton-type methods [LV98], and refinements as proximal bundle methods [LS97,

MN92]. Additionally, bundle methods were adapted for nonconvex problems [Mif82],

constrained problems [SS05], and multi-criteria problems [Mie98].

Simultaneously, the development of subgradient methods proceeded. Especially,

variable metric methods are wide-spread such as BFGS methods by F.E. Curtis,

T. Mitchell and M.L. Overton [CMO17], and a combination of the trust region

algorithm and the limited memory BFGS method by G. Yuan, Z. Wei, and Z. Wang

[YWW13].

At the beginning of the 2000s, J.V. Burke, A.S. Lewis and M.L. Overton presented an

gradient sampling algorithm for nonconvex, nonsmooth problems in [BLO05] which

they coupled later on with quasi-Newton type methods.

Since nonsmooth optimization is still a challenging and important field, this brief

overview represents only a small extract of publications dealing with nonsmooth

problems.

Idea and Purpose of this Thesis

Nevertheless, there are only a few state-of-the-art software tools available for non-

smooth optimization. Therefore, the purpose of this thesis is to develop, implement,

and examine an algorithm for unconstrained, nonconvex, and nonsmooth optimiza-

tion problems via successive piecewise linearization. This means in detail that opti-

mization problems of the form

min
x∈Rn

f(x) (1.1)

will be considered where f : Rn → R is a Lipschitz continuous, piecewise smooth

function. A piecewise smooth function in the sense of Scholtes is a function that

is everywhere locally a continuous selection of finitely many continuously differen-

tiable functions, see [Sch12]. Additionally, it will be assumed subsequently, that all

nondifferentiabilities are caused by the absolute value function and those functions

that can be expressed in terms of the absolute value function as the maximum and

minimum function. Functions of this form will be called composite piecewise dif-

ferentiable functions in the following. These assumptions are reasonable since the

2



absolute value function causes the nondifferentiabilities of numerous target functions

arising from real world applications.

In the case of a convex, piecewise linear function the algorithm developed in this

thesis generates with appropriate parameter settings the continuous steepest descent

trajectory originally analyzed by J.-B. Hiriart-Urruty and C. Lemaréchal in the book

Convex Analysis and Minimization Algorithms I, see [HUL93, Chap. 8, Sec 3.4]. In

that book the non-convergence of the classical steepest-descent method with exact

line search was considered and illustrated with the aid of the piecewise affine and

even convex function

f : R2 → R, f(x) := max{f0(x), f±1(x), f±2(x)}, (1.2)

with f0(x) := −100, f±1(x) := 3x1 ± 2x2, f±2(x) := 2x1 ± 5x2.

This function serves as a counter-example as can be seen in Fig. 1.1. Solely those

points in which the function f0 is active are minimal points. The initial point of the

optimization run is x0 = (9,−3). The trajectory generated by the steepest descent

method with exact line search zigzags. It converges towards the point (0, 0) but

it never attains this non-stationary point. The steepest descent direction towards

the optimal points can not be found because of that and thus the method does not

converge.
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Figure 1.1: Left: Graph of function (1.2) and nondifferentiable points
Right: Zigzagging behavior of steepest descent method
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1 Introduction

Therefore, the method of the steepest descent trajectory is suggested for convex

functions in [HUL93, Chap. 3.4]. The trajectory is described as the solution of the

differential inclusion

ẋ(τ) ∈ −∂f(x(τ)), x(0) given.

where τ ≥ 0. For convex functions, convergence of the method of the steepest descent

trajectory is proven in [HUL93, Chap. 3.4]. However, the method was considered to

be not implementable, since it requires a full subdifferential of the target function

at each iterate generated by the method.

Concept of the Optimization Method LiPsMin

The idea of the optimization method

LiPsMin is the minimization of com-

posite piecewise differentiable objec-

tive functions via successive piecewise

linearization. A Clarke stationary

point of the arising local subproblems

LiPsMinLiPsMin

given by the piecewise linearization is determined by the algorithm PLMin. This

algorithm is a crucial ingredient of LiPsMin. To assure that the piecewise linear

model is bounded below, it is superimposed by a quadratic proximal term which is

controlled by estimating the quality of the model.

The minimization of the local quadratic subproblem benefits from additional infor-

mation obtained by exploiting the structure of the underlying piecewise lineariza-

tion. The polyhedral structure of the argument space caused by the nondifferentiable

points is used to analyze neighboring relations of these polyhedra. Hence, structure

exploitation allows the identification of a descent trajectory along succeeding neigh-

bor polyhedra. The availability of all components required by PLMin is mainly

guaranteed by the abs-normal form which is an alternative representation of the

piecewise linearization and allows an efficient evaluation of the very same lineariza-

tion.

4



Content and Structure of this Thesis

This thesis is concerned with the development, implementation, and examination

of an algorithm for the minimization of composite piecewise differentiable functions

via successive piecewise linearization. To motivate the algorithm some nonsmooth

sample problems are presented in Chap. 2.

The work is partitioned in three parts. Chap. 3 and Chap. 4 comprise an overview of

basic aspects of nonsmooth analysis and optimization methods. In Chap. 3 the rel-

evant concepts from convex and nonconvex nonsmooth analysis are summarized. A

focus is set on Lipschitz continuous and piecewise differentiable functions. Further-

more, optimality conditions are discussed. In Chap. 4 several classes of gradient-

based nonsmooth optimization methods are presented. The summery covers the

fundamental subgradient and cutting-plane methods from the 1960s and 1970s as

well as bundle and variable metric methods which were highly influenced by the

previous methods. Furthermore, bundle and variable metric methods are the most

common methods today and they are considered to be efficient and robust. Addition-

ally, a gradient sampling method is introduced which represents another approach

of nonsmooth optimization methods.

Chap. 5 and Chap. 6 are the centerpiece of this thesis. In these chapters the op-

timization method LiPsMin is presented. In Chap. 5 all components required by

LiPsMin are introduced such as the generation of the piecewise linearization and its

representation in abs-normal form as well as the evaluation of directionally active

gradients. These components link the nonsmooth analysis as introduced in Chap. 3

with the goal of this thesis to develop a gray-box optimization method by allowing

directional information instead of solely pointwise information as in classical black-

box optimization schemes. The overall algorithm is finally presented in Chap. 6

where all components are pieced together. The algorithm consists of an inner and

an outer loop whereby the outer loop successively generates the local models and

controls the quadratic penalty term whereas the inner loop solves the sequence of

local subproblems. Proving convergence of LiPsMin towards a Clarke stationary

point tops the theoretical development of LiPsMin off.

In Chap. 7, the numerical performance of the new algorithm is investigated by com-

paring it with other state-of-the-art nonsmooth optimization software. Therefore,

5



1 Introduction

a test set consisting of a combination of piecewise linear or piecewise smooth, and

convex or nonconvex functions is defined. The majority of these test problems is

scalable such that the performance of LiPsMin can be analyzed in terms of a grow-

ing number of optimization parameters and of occurring absolute value functions.

Therefore, LiPsMin is compared with the bundle method MPBNGC and HANSO

which combines a quasi-Newton method with a gradient sampling appraoch.

In Chap. 8 the results of this work are summarized and future research directions

are discussed.

6



2
Sample Problems for

Nonsmooth Optimization Problems

This preliminary chapter presents exemplary two established applications from the

field of optimization theory that yield nonsmooth optimization problems of the form

as the problems considered in this work.

2.1 Reformulation of Constrained Optimization Problems

A general formulation of a constrained optimization problem is given by

min
x∈Rn

f(x)

s.t. ci(x) = 0, i ∈ E ,

ci(x) ≥ 0, i ∈ I,

where the objective function f and the constraints ci are all smooth, real-valued

functions on a subset of Rn, and E and I are two finite sets of indexes. This descrip-

tion of constrained optimization problems follows [NW06] where such problems are

introduced in detail. First- and second-order optimality conditions of unconstrained

problems are obtained by considering the Lagrangian function

L(x, λ) = f(x)−
∑
i∈E∪I

λici(x)

where λi are the Lagrange multipliers. These multipliers can be considered as ad-

ditional optimization parameters and they can be interpreted as a measure for the

7



2 Sample Problems for Nonsmooth Optimization Problems

sensitivity of the optimal objective function value to the presence of the correspond-

ing constraint ci.

A common strategy to solve constrained problems is the combination of the objective

function and the constraints into a penalty function. Therewith, one obtains an

unconstrained problem and can apply standard search techniques. A popular penalty

function is the exact `1-penalty function of the form

Φ(x;µ) = f(x) + µ
∑
i∈E
|ci(x)|+ µ

∑
i∈I

max{0,−ci(x)}

where µ is the penalty parameter that punishes violations of the constraints. To solve

the original constrained problem by the reformulated problem, one has to ensure that

solutions (x∗, µ∗) of the unconstrained problem correspond with solutions (x∗, λ∗)

of the original problem which usually holds for all sufficiently large µ. However, the

occurring nonsmoothness may cause difficulties with regard to optimization methods

which were originally designed for smooth unconstrained optimization.

2.2 Minimax Problems from Robust Optimization

Robust optimization problems result among others from decision making under un-

certainties. There is a variety of decision models. Some discrete models were in-

troduced in [KY97] including the following two models which induce nonsmooth

optimization problems.

To define the models some notions are required that are introduced subsequently. Let

S be the finite set of all potentially realizable input data scenarios over a prespecified

planning horizon. Let D be the set of input data and Ds the instance of input data

corresponding to scenario s ∈ S. Let X be the set of decision variables and Fs the

set of all feasible decisions under a certain scenario s. The quality of the decision

X ∈ Fs is evaluated by applying the function f(X,Ds).

Therewith, the two decision models can be defined. At first, the absolute robust

decision XA is defined as the one that minimizes the maximal total cost, among all

8
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feasible decisions Fs over all realizable input data scenarios, i.e.,

max
s∈S

f(XA, D
s) = min

X∈
⋂

s∈S Fs

max
s∈S

f(X,Ds).

Another possible decision model is the robust deviation decision XD that exhibits

the best worst case deviation from optimality, among all feasible decisions Fs over

all realizable input data scenarios, i.e.,

max
s∈S

(f(XD, D
s)− f(X∗s , D

s)) = min
X∈

⋂
s∈S Fs

max
s∈S

(f(X,Ds)− f(X∗s , D
s)) .

The resulting minimax problems are typical for robust decision making and fit well

into the framework of this thesis.

9





3
Nonsmooth Analysis

For the solution of nonsmooth optimization problems of the form

min
x∈Rn

f(x),

where f : Rn → R is a Lipschitz continuous but not necessarily differentiable func-

tion, it is important to understand nonsmooth analysis. It provides lots of theory

about nonsmooth functions and their differentiability properties which allow us to

define generalized derivative concepts and to derive optimality conditions.

In this chapter, an overview of important properties of convex, Lipschitz continuous

and piecewise smooth functions and their subdifferentials will be given. Whereby

Lipschitz continuous functions are going to be central, since they are the most gen-

eral class of functions considered in this thesis. Based on them it will be explained

how the behavior of piecewise smooth functions and their subdifferentials changes

and simplifies, respectively. These properties of nonsmooth functions and their gen-

eralized derivatives, that are required in this work, will be introduced in the first

three sections of this chapter. Subsequently, optimality conditions will be intro-

duced. Using the subdifferentials of the previous sections, generalized criteria for

stationary and minimal points will be given,

Throughout this chapter we will work in Rn with the Euclidean norm ‖ · ‖2 and

real-valued functions will be considered.

11



3 Nonsmooth Analysis

3.1 Convex Functions

At the beginning of the development of nonsmooth theory and optimization methods

the class of convex functions was primarily considered. Therefore, many terms and

concepts of the theory for Lipschitz continuous functions originated from the convex

theory and thus it is reasonable that definitions and theorems concerning convex sets

and functions will be recalled at the beginning of this chapter following [BKM14] and

primarily [Roc70] by T.R. Rockafellar who summarized the field of convex analysis

first and extended it.

Convex Sets and Cones

First, definitions relating to convex sets are summarized.

Definition 3.1 (Convex Set). Let U be a subset of Rn. The set U is said to be

convex, if λx+ (1− λ)y ∈ U for all x, y ∈ U and λ ∈ [0, 1].

Convex sets bring lots of properties along, i.e., if Ui ⊆ Rn are convex sets for

i = 1, ...,m, then their intersection ∩mi=1Ui is again convex. Thus, one can write a

polyhedral convex set as an intersection of finitely many closed half spaces of Rn.

Another useful concept is the convex combination which denotes the vector sum∑k
i=1 λixi with xi ∈ Rn, if λi ≥ 0 for all i = 1, ..., k and

∑k
i=1 λi = 1. The concept

is used to define convex hulls.

Definition 3.2 (Convex Hull). The convex hull of a set U ⊆ Rn is

conv (U) := {x ∈ Rn | x =
k∑
i=1

λi xi,
k∑
i=1

λi = 1, xi ∈ U, λi ≥ 0, k > 0}.

Typical sets considered in the convex theory are cones C that are defined as follows:

Definition 3.3 (Cone, Convex Cone). A set C ⊆ Rn is a cone if λx ∈ C for all

x ∈ C and λ ≥ 0. Moreover, if C is convex, then it is called a convex cone.

12



3.1 Convex Functions

Definition 3.4 (Conic Hull). The conic hull of a set U ⊆ Rn is

cone (U) := {x ∈ Rn | x =
k∑
i=1

λi xi, xi ∈ U, λi ≥ 0, k > 0}.

In [BKM14, Theorem 2.3], it is proven for both the convex hull and the conic hull

that if U is a subset of Rn, then

conv (U) ⊆
⋂
U⊆Û

Û convex

Û and cone (U) ⊆
⋂
U⊆C

C convex cone

C

Three well-known cones from convex analysis are the polar cone, the contingent cone

and the normal cone that are defined below and are illustrated in Fig. 3.1.

Definition 3.5 (Polar, Contingent and Normal Cone). Let U ⊆ Rn be nonempty

and convex.

• The polar cone of U is U◦ := {y ∈ Rn | y>x ≤ 0 for all x ∈ U}.

• The contingent cone of U at x ∈ U is given by

KU (x) := {d ∈ Rn | There exist ti ↓ 0 and di → d s.t. x+ tidi ∈ U}. (3.1)

• The normal cone of U at x ∈ U is given by

NU (x) := KU (x)◦ = {z ∈ Rn | z>d ≤ 0 for all d ∈ KU (x)}. (3.2)

Convex Functions and Corresponding Subdifferentials

A function f : Rn → R is called convex, if all line segments between two points of

the graph of f lie on or above that graph. The formal definition is given as follows:

Definition 3.6 (Convex Function). A function f : Rn → R is said to be convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

whenever x, y ∈ Rn and λ ∈ [0, 1].

13
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U∘

U

(a) Polar cone of the set U

x

U

KU(x)

NU(x)

(b) Contingent and normal cone of the
convex set U at x

Figure 3.1: Different cones corresponding to the set U

Due to the fact that convex functions are not necessarily differentiable, a generalized

concept of gradients was developed and was first considered in detail in [Roc70].

Definition 3.7 (Subdifferential of Convex Function). The subdifferential of a convex

function f : Rn → R at x ∈ Rn is the set ∂f(x) of vectors ξ ∈ Rn such that

∂f(x) =
{
ξ ∈ Rn | f(y) ≥ f(x) + ξ>(y − x) for all y ∈ Rn

}
The vectors ξ ∈ ∂f(x) are called subgradients.

The epigraph of a function f is given by

epi f := {(x, r) ∈ Rn × R | f(x) ≤ r}

and it was shown that epi f is convex if and only if f is convex, see [BKM14,

Theorem 2.24]. Thus for each ξ ∈ ∂f(x) the function h(y) = f(x) + ξ>(y − x) is a

supporting hyperplane to the convex set epi f at the point (x, f(x)).

Example 3.8. The subdifferential of the tangent function f(x) = tan |x| in x = 0

is given by ∂f(x) = [−1, 1]. In Fig. 3.2 the supporting hyperplanes h1 for ξ = 1

and h2 for ξ = −1 are illustrated by solid lines. The dashed lines signify all further

hyperplanes given by the subdifferential.
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Figure 3.2: Supporting hyperplanes defined by the subdifferential ∂f(x) in x = 0

In case the function f is convex and differentiable the function h(y) represents the

tangent of f in x, the subdifferential reduces to the gradient as stated below and

thus the introduced subdifferential is a reasonable generalization of the classical

derivative concept.

Proposition 3.9. If f : Rn → R is convex and differentiable at x ∈ Rn, then

∂f(x) = {∇f(x)}.

Proof. See [Roc70, Chap. 25], [BKM14, Theorem 2.29].

3.2 Lipschitz Continuous Functions

Since Lipschitz continuous functions which are not everywhere differentiable are

considered in this work, a generalized concept of derivatives has to be used. In the

fundamental book [Cla83] the convex theory introduced previously was extended to

the more general class of Lipschitz continuous functions. Furthermore, it is shown

that the generalized subdifferential can be written in terms of the limiting subdiffer-

ential. Both subdifferentials will be introduced in this subsection, as well as other

necessary fundamental definitions and results, following [Cla83] and [BKM14].

Definition 3.10 (Lipschitz Continuity). Let U ⊆ Rn be an open subset, f : U → R
be a given function and x ∈ U . The function f is said to be locally Lipschitz
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3 Nonsmooth Analysis

continuous at x if there exists a scalar L ≥ 0 and a positive number ε such that

‖f(y)− f(z)‖ ≤ L‖y − z‖ ∀z, y ∈ Bε(x) ∩ U

holds where Bε(x) := {y ∈ Rn | ‖y − x‖ < ε}. If there exists a scalar L ≥ 0 for all

z, y ∈ Rn such that the inequality above holds, the function f is said to be Lipschitz

continuous and L is called Lipschitz constant.

Note that one can prove that every convex function f : Rn → R is locally Lipschitz

continuous at any x ∈ Rn, see, e.g., [BKM14, Chap. 2].

To define Clarke’s subdifferential the generalized directional derivative as defined in

[Cla83, Chap. 2] is required.

Definition 3.11 (Generalized Directional Derivative). Let f : Rn → R be locally

Lipschitz continuous at x ∈ Rn and d ∈ Rn a direction. The generalized directional

gradient of f at x in the direction d, denoted f◦(x; d), is defined as follows

f◦(x; d) := lim sup
y→x

t↘0

f(y + td)− f(y)

t

where y ∈ Rn and t ∈ R.

This definition does not require the existence of a limit. Additionally, it differs from

the well known directional derivative

f
′
(x; d) := lim

t↘0

f(x+ td)− f(x)

t

in that the base point y ∈ Rn varies, which makes it interesting for objective func-

tions that are not everywhere differentiable as will be explained later.

Let us recall some more basic definitions, that are useful when one considers gener-

alized directional derivatives:

• A function f : Rn \ {0} → R is said to be positively homogeneous of degree

d ∈ R, if f(tx) = tdf(x) for t > 0.

• A function f : Rn → R is said to be subadditive, if f(x+ y) ≤ f(x) + f(y) for

all x, y ∈ Rn.
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3.2 Lipschitz Continuous Functions

• A function f : Rn → R is lower semi-continuous at x0 ∈ Rn if and only if

f(x0) ≤ lim infx→x0 f(x).

• A function f : Rn → R is upper semi-continuous at x0 ∈ Rn if and only if

f(x0) ≥ lim supx→x0 f(x).

Remark: The function f is continuous, if f is lower and upper semi-continuous.

Proposition 3.12. Let f : Rn → R be locally Lipschitz continuous with Lipschitz

constant L at x ∈ Rn. Then

i) The function d 7→ f◦(x; d) is finite, positively homogeneous, and subadditive

on Rn, and satisfies |f◦(x; d)| ≤ L‖d‖.

ii) The generalized directional derivative f◦(x; d) is upper semi-continuous as a

function of (x, d) and, as a function of d alone, is Lipschitz continuous with

Lipschitz constant L on Rn.

iii) f◦(x;−d) = (−f)◦(x; d).

Proof. See [Cla83, Proposition 2.1.1].

One can now define Clarke’s generalized gradient or Clarke’s subdifferential, respec-

tively. Its idea is that any positively homogeneous and subadditive functional on

U majorizes some linear functionals on U by the Hahn-Banach Theorem where U

is a Banach space. According to this and Prop. 3.12 there is at least one linear

functional ξ : U → R such that, for all d ∈ U , one has f◦(x; d) ≥ 〈ξ, d〉. Thereby, ξ

is bounded and belongs to the dual space U∗ of continuous linear functionals on U .

This leads to the following definition:

Definition 3.13 (Clarke’s Subdifferential). Let f : Rn → R be a locally Lipschitz

continuous function at x ∈ Rn. Clarke’s subdifferential of f at x is a subset of Rn

given by

∂Cf(x) := {ξ ∈ Rn : f◦(x; d) ≥ 〈ξ, d〉 for all d ∈ Rn}.

Clarke’s subdifferential is a multifunction which means that a point x ∈ Rn is

assigned to a set ∂Cf(x) ⊆ Rn. Furthermore, Clarke’s subdifferential has some nice

properties, as, for example, the properties in the following proposition.
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3 Nonsmooth Analysis

Proposition 3.14. Let f : Rn → R be locally Lipschitz continuous with Lipschitz

constant L at a point x ∈ Rn. Then

i) ∂Cf(x) is a nonempty, convex and compact subset of Rn and ‖ξ‖ ≤ L holds

for every ξ ∈ ∂Cf(x).

ii) For every d ∈ Rn one has f◦(x; d) = max{〈ξ, d〉 : ξ ∈ ∂Cf(x)}.

Proof. See [Cla83, Proposition 2.1.2].

One of the most important properties of Clarke’s generalized gradient is that due to

Rademacher’s theorem, see, e.g., [EG92], one can write Clarke’s generalized gradient

in terms of the limiting subdifferential ∂Lf(x), that is defined in the following way:

Definition 3.15 (Limiting subdifferential). Let f : Rn → R be locally Lipschitz

continuous at x ∈ Rn. The limiting subdifferential of f at x is the set

∂Lf(x) := {ξ ∈ Rn : ∃ {xi}i∈N with xi /∈ Ωf s.t. xi → x and ∇f(xi)→ ξ}

where Ωf is the set of points where f is not differentiable.

Rademacher’s theorem says that if U ⊆ Rn is an open subset and f : U → R is

Lipschitz continuous, then f is differentiable almost everywhere in U . That is, the

points in U at which f is not differentiable form a set Ωf of Lebesgue measure zero.

Clarke proved in [Cla83, Theorem 2.5.1] that one can write Clarke’s subdifferential

as the convex hull of the limiting subdifferential, i.e.,

∂Cf(x) = conv (∂Lf(x)) (3.3)

This insight is more than helpful for the algorithm introduced in this work, since it

assures the computability of the subdifferential for piecewise smooth functions.

Derivative and Subderivative

As in the convex case, it can be shown that the subdifferential ∂Cf(x) reduces to

the derivative ∇f(x), if f is continuously differentiable at x. Thereby, Clarke’s

subdifferential is also a reasonable generalization in the nonconvex setting.
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3.2 Lipschitz Continuous Functions

Proposition 3.16. If f : Rn → R is continuously differentiable at x ∈ Rn, then

∂Cf(x) = {∇f(x)}.

Proof. See [BKM14, Theorem 3.7].

Furthermore, it makes sense to consider strictly differentiable functions at this point,

since this concept of differentiability is based on the generalized directional derivative

which was used to define Clarke’s subdifferential. Strict differentiability is defined

as follows:

Definition 3.17 (Strict Differentiability). Let f : Rn → R be a given function.

Then f admits its strict derivative at x, a linear and bound operator denoted by

Dsf(x), if for each d ∈ Rn

lim
y→x

t↘0

f(y + td)− f(y)

t
= 〈Dsf(x), d〉 (3.4)

holds and provided that the convergence is uniform for d in compact sets.

Compared with the definition of standard differentiability, this definition also con-

siders the point x as a limit of a sequence of points and therefore is more restrictive.

As a consequence, every strictly differentiable function is differentiable, but the op-

posite direction does not hold, see Exam. 3.18.

Example 3.18. The continuous function

f : R→ R,

{
f(x) = x2 sin( 1

x), x ∈ R \ {0}
f(x) = 0, x = 0

is differentiable at all x ∈ R but not strict differentiable. Considering the null

sequences {yn}n∈N and {tn}n∈N defined as

yn =
1

(n+ 3
2)π

and tn =
1

(n+ 1
2)(n+ 3

2)π

and d = 1, the limit given in Eq. (3.4) does not converge towards a unique cluster

point and thus, f is not strictly differentiable in x = 0.
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The relations between the strict derivative and Clarke’s generalized derivative is

studied in the following proposition.

Proposition 3.19. If f : Rn → R is strictly differentiable at x, then f is locally

Lipschitz continuous at x ∈ Rn and ∂Cf(x) = {Dsf(x)}. Conversely, if f is Lip-

schitz continuous near x and ∂Cf(x) reduces to a singleton {ξ}, then f is strictly

differentiable at x and Dsf(x) = ξ.

Proof. See [Cla83, Proposition 2.2.4].

Additionally, it is shown in [Cla83], that if f is locally Lipschitz continuous at

x ∈ Rn, then ∂Cf(y) reduces to a singleton for every y ∈ Bε(x) if f is continu-

ously differentiable on Bε(x). With Rademacher’s theorem we can conclude that

the subderivative of a Lipschitz function reduces to the standard derivative almost

everywhere.

Geometric Interpretation

An alternative, geometric description of the generalized gradient can be gained from

the study of cones. For the nonempty, convex set U , one considers the contingent

cone of the set at x ∈ U as given by Eq. (3.1). One can show that KU (x) is a closed

convex cone, if U is a nonempty convex set. This property does not hold anymore,

if U is a nonconvex set. Therefore, it is suggested in [Cla83, Chap. 2.4] to use the

tangent cone

TU (x) := {y ∈ Rn | d◦U (x; y) = 0}

for a nonconvex, nonempty set U at x ∈ U in terms of the generalized directional

derivative of the distance function which is given by

dU (x) = inf{||x− y|| : y ∈ U}.

Compared with the contingent cone the tangent cone is a closed convex set, if U is

a nonempty set. If U is nonempty, one can show TU (x) ⊆ KU (x), where equality

holds whenever U is convex, see [BKM14, Theorem 3.27].
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Since the above definition gives the impression that TU (x) depends on a particular

norm, it is reasonable to find an equivalent expression that illustrates the norm

independence of the tangent cone.

Theorem 3.20. The tangent cone TU (x) of the nonempty set U at x ∈ U can also

be written as

TU (x) ≡ {d ∈ Rn | ∀ti → 0, ti ∈ (0,∞) and ∀xi → x, xi ∈ U,

∃ di → d : xi + tidi ∈ U}.

Proof. See [BKM14, Theorem 3.26].

Since the contingent cone KU (x) is not necessarily convex if U is nonconvex, the

normal cone NU (x) for nonconvex sets U is defined via the tangent cone TU (x) as

follows:

Definition 3.21 (Normal Cone of a Nonconvex Set). The normal cone of the

nonempty set U at x ∈ U is the set

NU (x) ≡ {z ∈ Rn | zTd ≤ 0 ∀ d ∈ TU (x)}.

In Fig. 3.3 the introduced cones are shown for both a convex and nonconvex set.

KU(x)=TU(x)

NU(x)

U

(a) Convex set U

NU(x)

U

TU(x)
KU(x)

U

(b) Nonconvex set U

Figure 3.3: Contingent, tangent and normal cone

Finally, the following relationships between both the tangent cone of the epigraph
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and the epigraph of the generalized directional derivative as well as Clarke’s sub-

differential and the normal cone can be shown.

Theorem 3.22. If f : Rn → R is locally Lipschitz continuous at x, then

i) Tepi f (x, f(x)) = epi f◦(x; ·).

ii) ∂Cf(x) = {ξ ∈ Rn| (ξ,−1) ∈ Nepi f (x, f(x)}.

Proof. See [BKM14, Theorem 3.31, Theorem 3.32].

Rules of Calculus

For computing elements of Clarke’s subdifferential, algorithmic differentiation (AD)

will be used as will be explained in Chap. 5. One of the basic ideas of AD is to write

a continuously differentiable function f as a composition of so called continuously

differentiable elemental functions ϕ. The derivatives of these elemental functions

are well known and the derivative of f is computed by the chain rule. Hence, it

is important to have sharp rules of calculus as they are available for continuously

differentiable functions also for the generalized case considered in this thesis. Unfor-

tunately, most of these rules change in that they do not satisfy calculus rules sharply.

Many of them can be found in [Cla83, Chap. 2.3] and [BKM14, Chap. 3.2.2]. In the

following, some rules are given exemplarily.

• Scalar multiples: Let f : Rn → R be locally Lipschitz continuous at x. Then

one has ∂C(λf)(x) = λ∂Cf(x) for all λ ∈ R.

• Finite sum: Let fi : Rn → R with i = 1, ...,m be locally Lipschitz continuous

at x. Then one has ∂C (
∑m

i=1 fi) (x) ⊆
∑m

i=1 ∂Cfi(x).

• Mean-Value Theorem: Let x, y ∈ Rn with x 6= y, and suppose that f is

locally Lipschitz continuous on an open set U ⊆ Rn such that the line segment

[x, y] ⊆ U . Then there exists a point u ∈ (x, y) such that

f(y)− f(x) ∈ 〈∂Cf(u), y − x〉.

• Chain rule: Let f be such that f = g ◦ h, where h : Rn → Rm is locally

Lipschitz continuous at x ∈ Rn and g : Rm → R is locally Lipschitz continuous
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at h(x) ∈ Rm. Then f is locally Lipschitz continuous at x ∈ Rn and

∂Cf(x) ⊆ conv{∂Ch(x)>∂Cg(h(x))}.

• Pointwise maxima: Let f1, ..., fm be locally Lipschitz continuous functions

at x. Then the function f : Rn → R defined by

f(x) := max{fi(x) | i = 1, ...,m}

is locally Lipschitz continuous at x and

∂Cf(x) ⊆ conv{∂Cfi(x) | i ∈ I(x)}

where I(x) := {i ∈ {1, ...,m} | fi(x) = f(x)}.

• Product rule: Let f1 and f2 be locally Lipschitz continuous at x ∈ Rn. Then

f1f2 is locally Lipschitz at x ∈ Rn, and one has

∂C(f1f2)(x) ⊆ f2(x)∂Cf1(x) + f1(x)∂Cf2(x).

Sharp calculus rules lose validity also for further rules, i.e., the evaluation of partial

generalized gradients. Because of that it is necessary to find how to guarantee that

only elements of the considered subdifferential can be computed. Sharp calculus rules

are guaranteed for lexicographic functions as introduced in [Nes05]. It was shown in

[KB15] that piecewise differentiable functions in the sense of [Sch12] are lexicographic

functions. Within the scope of this thesis, directionally active gradients as defined

in Chap. 5.4 are used to compute guaranteed elements of Clarke’s subdifferential.

3.3 Piecewise Differentiable Functions

The objective functions of the minimization problem considered in this thesis were

defined to be piecewise differentiable functions. S. Scholtes addressed this class of

functions in depth in his habilitation thesis in 1994 that was reprinted in 2012, see

[Sch12]. Parts of this work will be summarized in the following section. Especially

characteristics of piecewise affine and piecewise smooth functions will be introduced.
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3 Nonsmooth Analysis

The optimization algorithm developed in Chap. 6 uses piecewise affine functions to

build a local model of the piecewise smooth objective function and thus, they are an

important component of the introduced algorithm. Subsequently, piecewise smooth

functions in general will be discussed.

3.3.1 Piecewise Affine Functions

Piecewise affine functions possess some very useful properties that will be examined

subsequently as the polyhedral decomposition of the domain, the representation

by superposition of finitely many minimum and maximum functions and finally a

beneficial description of the subdifferential. Since the polyhedral structure plays a

decisive role when considering piecewise affine functions, this section starts with an

overview of important definitions of polyhedral theory.

Polyhedral Sets and Polyhedral Cones

In the following, important definition and results from [Sch12] that are required to

describe a polyhedron will be summarized. Some terms needed for the discussion of

polyhedral theory were already introduced in previous sections, as the convex hull,

the convex cone and the normal cone. The affine hull of U given by

aff(U) = {
m∑
i=1

λixi | m ∈ N, xi ∈ U, λi ∈ R,
m∑
i=1

λi = 1}

is required to define the relative interior of U .

Definition 3.23 (Relative Interior). A point x ∈ U is called a relative interior point

of U if there exists a number ε > 0 such that every point y ∈ aff(U) with ‖y−x‖ < ε

is contained in U . The set of all relative interior points of U , denoted relint(U), is

called relative interior of U .

Thus, central definitions of this subsection are the following terms:
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Definition 3.24 (Polyhedron, Polytope). A nonempty set P ⊆ Rn is called a poly-

hedron if there exists a real m× n-matrix A and a b ∈ Rm such that

P = {x ∈ Rn | Ax ≤ b}.

A compact polyhedron is called a polytope.

Definition 3.25 (Polyhedral Cone). A nonempty set C ⊆ Rn is called a polyhedral

cone if there exists a m× n-matrix A such that

C = {x ∈ Rn | Ax ≤ 0}.

The normal cone of the polyhedral cone C at the origin is characterized by the

Farkas’ lemma as quoted in [Sch12, Lemma 2.1.1] by

NC(0) = cone{ai | i ∈ {1, ...,m}}

where ai ∈ Rn, i = 1, ..., n, are the rows of A. Furthermore, via the Farkas-

Minkowski-Weyl theorem one can describe the normal cone of a polyhedron P =

{y ∈ Rn | a>i y ≤ bi, i = 1, ...,m} with x ∈ P by

NP (x) = cone{ai | i ∈ {1, ...,m}, a>i x = bi}.

Considering the faces of a polyhedron allows us to describe the polyhedron in more

detail. Therefore, the following definitions are introduced.

Definition 3.26 (Max-Face). Let U ∈ Rn be a closed convex set. The mapping FU

assigns to each linear functional in Rn the set of all maximizers x ∈ U of the linear

functional over U , i.e.,

FU (y) = {x ∈ U | y>x ≥ y>z for every z ∈ U}.

The set FU (y) is called max-face of the set U corresponding to the vector y ∈ Rn.

Definition 3.27 (Face Lattice, Face, Collection of Index Sets). Let P ⊆ Rn be a

polyhedron of the form P = {x ∈ Rn | Ax ≤ b} with A ∈ Rm×n and b ∈ Rm.
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3 Nonsmooth Analysis

• The collection of all max-faces of P together with the empty set is called the

face lattice of P .

• The elements of the face lattice are called faces. If a face is nonempty and

does not coincide with P , it is called a proper face.

• The collection of index sets I(A, b) is defined by

I(A, b) = {I ⊆ {1, ...,m} | There exists a x ∈ Rn with

a>i x = bi, i ∈ I, a>j x < bj , j ∈ {1, ...,m} \ I}

and for every index set I ⊆ {1, ...,m} a corresponding polyhedron is given by

PI = {x ∈ Rn | a>i x = bi, i ∈ I, a>j x ≤ bj , j ∈ {1, ...,m} \ I}.

Hence, faces of P can be represented by index sets and thereby, further properties

of the elements of the face lattice can be shown.

Proposition 3.28.

• A subset P̃ ⊆ P is a max-face of P if and only if there exists an index set

I ∈ I(A, b) such that P̃ = PI .

• Any two faces PI and PJ corresponding to distinct index sets I, J ∈ I(A, b)

are distinct.

• I ∩ J ∈ I(A, b) for any two index sets I, J ∈ I(A, b).

Proof. See [Sch12, Proposition 2.1.3].

The face lattice and the collection of index sets will be used in Subsection 5.4.2 to

define a partially ordering via the faces of a polyhedron.

Properties and Representations of Piecewise Affine Functions

Subsequently, piecewise affine functions will be defined. Furthermore, two alterna-

tive representations will be discussed and an important result from [Sch12] regard-

ing the decomposition of the domain caused by nondifferentiable points of piecewise
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3.3 Piecewise Differentiable Functions

affine functions will be introduced.

Definition 3.29 (Piecewise Affine Function, Selection Function). A continuous

function f : Rn → Rm is called piecewise affine if there exists a finite set of

affine functions fi(x) = Aix + bi, i = 1, ..., k, such that the inclusion f(x) ∈
{f1(x), ..., fk(x)} holds for every x ∈ Rn.

The affine functions fi(x) = Aix+ bi, i = 1, ..., k are called selection functions.

The function f is called piecewise linear, if there exist a corresponding set of linear

selection functions.

It can be shown that piecewise affine functions are Lipschitz continuous.

Proposition 3.30. Every piecewise affine function f : Rn → Rm is Lipschitz con-

tinuous. If (A1, b1),...,(Ak, bk) is a collection of matrix-vector pairs corresponding

to f , then max{|||A1|||, ..., |||Ak|||} is a Lipschitz constant of f where |||A||| is the

operator norm defined as

|||A||| = max
x 6=y

‖Ax−Ay‖
‖x− y‖

.

Proof. See [Sch12, Proposition 2.2.7].

Subsequently we will assume that m = 1 and thus, we consider the affine selection

functions fi(x) = a>i x+ bi for i = 1, ..., k.

There are several generalized ways to represent piecewise affine functions. These rep-

resentations can be used to illustrate several properties of piecewise affine functions

and in some cases also to exploit these properties.

A notable representation of piecewise affine functions is the max-min representa-

tion, since it is not obvious that every real-valued, piecewise affine function can be

expressed as a superposition of finitely many minimum and maximum functions.

Moreover, this means that every piecewise affine function can be written in terms

of the absolute value function.

Proposition 3.31. If f : Rn → R is piecewise affine with affine selection functions

f1(x) = a>1 x+ b1, ..., fk(x) = a>k x+ bk, then there exist a finite number of index sets
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M1, ...,Ml ⊆ {1, ..., k} such that

f(x) = max
1≤i≤l

min
j∈Mi

a>i x+ bi.

Proof. See [Sch12, Proposition 2.2.2].

The drawback of this representation is that it may be very difficult to transform

arbitrary piecewise affine functions into the max-min representation.

Another possibility described in [Sch12] is to write a piecewise affine function in

terms of its set of selection functions a>i x + bi for i = 1, ..., k. Let us assume

that these selection functions are mutually distinct and consider the sets pi = {x ∈
Rn | f(x) = a>i x+bi} for i = 1, ..., k. Since f is continuous, the sets pi are closed and

since f is piecewise affine and the selection functions are mutually distinct the union

of all sets pi covers Rn and the collection of all sets pi with nonempty interior is a

decomposition of Rn. In [Sch12, Proposition 2.2.3] it is proven that every piecewise

affine (piecewise linear) function f : Rn → R admits a corresponding polyhedral

(conical) decomposition of Rn. How to describe this structure for the purpose of

this thesis and how it can be efficiently exploited for the introduced optimization

algorithm will be explained in Subsection 5.4.2.

3.3.2 Piecewise Smooth Functions

Finally, the objective functions targeted by the considered optimization problem will

be introduced. As before we follow [Sch12] for this brief introduction and start with

the definition of piecewise smooth functions.

Definition 3.32 (Continuous Selection, Piecewise Differentiable Function). Let U ⊆
Rn and fi : U → Rm, i = 1, ..., k, be a collection of continuous functions. A function

f : U → Rm is said to be a continuous selection of functions f1, ..., fk on the set

O ⊆ U if f is continuous on O and f(x) ∈ {f1(x), ..., fk(x)} for every x ∈ O.

A function f : U → Rm defined on an open set U ⊆ Rn is called piecewise differ-

entiable, if for every x0 ∈ U there exists an open neighborhood O ⊆ U and a finite

number of continuously differentiable functions fi : O → Rm, i = 1, ..., k, such that

f is a continuous selection of f1, ..., fk on O.
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3.3 Piecewise Differentiable Functions

Subsequently, we will again only consider the case m = 1.

Since only real-valued functions are considered throughout this thesis, one can show

that the result of a variety of operations on piecewise differentiable functions is

again a piecewise differentiable function, as for scalar multiplication, finite sum, and

pointwise maximum or minimum. This also holds for the superposition f ◦ g of two

piecewise differentiable functions.

To describe piecewise differentiable functions in more detail, the active index set as

well as the essentially active index set are useful.

Definition 3.33 (Active Index Set, Essentially Active Index Set). Given a set of

selection functions f1, ..., fk for a piecewise differentiable function f at a point x0,

the active set at the point x0 is given by

If (x0) = {i ∈ {1, ..., k} | f(x0) = fi(x0)}.

The selection functions fi, i ∈ If (x0), are called active selection functions at x0.

Furthermore, the set of essentially active indices is given by

Ief (x0) = {i ∈ {1, ..., k} | x0 ∈ cl(int{x ∈ U | f(x) = fi(x)})}.

A selection function fi is called essentially active at x0 if i ∈ Ief (x0).

For the algorithm developed in this thesis both index sets play an important part

but since the identification of the active functions will be realized in an adapted

manner, we will not go into detail at this point any further.

Lipschitz Continuity and Subdifferentials of Piecewise Smooth Functions

Concluding this section about piecewise differentiable functions, two important re-

sults proven in [Sch12] will be presented. First, it is shown in that book that

piecewise smooth functions as introduced in this section are Lipschitz continuous.

Proposition 3.34. Every piecewise differentiable function is locally Lipschitz con-

tinuous. A Lipschitz constant in a neighborhood of x0 is given by the maximum of

the Lipschitz constants of the selection functions.
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Proof. See [Sch12, Corollary 4.1.1].

This obviously means that the theory of Lipschitz continuous functions that was

introduced in subsection 3.2 can be applied.

The second result is a description of the Clarke’s subdifferential via the limiting sub-

differential by integrating the additional properties of piecewise smooth functions.

Proposition 3.35. If U ⊆ Rn open and f : U → R is a piecewise differentiable

function with C1 selection functions fi : O → R, i = 1, ..., k at x0 ∈ O ⊆ U , then

∂Cf(x0) = conv (∇fi(x0) : i ∈ Ief (x0) ).

Proof. See [Sch12, Proposition 4.3.1].

Thus, the limiting gradient of a piecewise smooth function consists of finitely many

gradients each corresponding to an essentially active selection function. This is a

remarkable property of the limiting subdifferential, since it ensures that it can be

computed entirely. Additionally, Clarke’s subdifferential is available as the convex

hull of the limiting subdifferential.

3.4 Optimality Conditions

In this concluding section, the topics of nonsmooth analysis and optimization will be

linked by defining local and global minima and by presenting generalized optimality

conditions for nonsmooth optimization problems. The considered unconstrained

optimization problem is of the form

(P ) min
x∈Rn

f(x)

where the objective function f : Rn → R is Lipschitz continuous and piecewise

smooth. In general, minimal points and Clarke stationary points are defined as

follows:

• A point x∗ is a global minimizer of f if f(x∗) ≤ f(x) for all x ∈ Rn.
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• A point x∗ is a local minimizer of f if there is a neighborhood U of x∗ such

that f(x∗) ≤ f(x) for all x ∈ U .

• A point x∗ is a strict local minimizer of f if there is a neighborhood U of x∗

such that f(x∗) < f(x) for all x ∈ U with x 6= x∗.

• A point x ∈ Rn is a Clarke stationary point of f if it satisfies 0 ∈ ∂Cf(x).

First order necessary conditions for the optimization problem (P) are given in the

following proposition.

Proposition 3.36. Let f : Rn → R be a locally Lipschitz continuous function at

x∗ ∈ Rn. If f attains a local minimum at x∗, then

0 ∈ ∂Cf(x∗) and f◦(x∗; d) ≥ 0 for all d ∈ Rn.

Proof. See [BKM14, Theorem 4.1].

If the objective function is also convex and x∗ ∈ Rn is a Clarke stationary point, one

obtains that x∗ is a global minimizer of f . This can easily be shown by applying the

subgradient inequality from Def. 3.7. Furthermore, sufficient optimality conditions

can be formulated, if f is convex.

Proposition 3.37. If the function f : Rn → R is convex, then f attains its global

minimum at x∗ ∈ Rn if and only if at least one of the following conditions holds:

i) 0 ∈ ∂Cf(x∗),

ii) f
′
(x∗; d) ≥ 0 for all d ∈ Rn.

Proof. See [BKM14, Theorem 4.2].
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4
Nonsmooth Optimization Methods

Since the 1960s various approaches for solving nonsmooth optimization problems

were developed. The purpose of this chapter is to give a brief overview of methods

that pointed the way ahead as subgradient and cutting-plane methods and state-of-

the-art methods as bundle methods, variable metric methods and gradient sampling

methods. This overview does not claim to be complete. Nevertheless, it explains

various important ideas from nonsmooth optimization considering representative

popular methods.

Subgradient methods generalizing descent methods by replacing the gradient by

an arbitrary subgradient were introduced amongst others by N.Z. Shor and will

be summarized in Sec. 4.1. The standard cutting-plane method was presented by

J.E. Kelley and will be explained in Sec. 4.2. Cutting-plane methods are the basis

for bundle methods which are wide-spread today and are outlined in Sec. 4.3. They

are supposed to be very efficient and robust. Since there exists a huge variety of

bundle methods with different priorities and characteristics, the brief introduction

will be focused on a proximal bundle method proposed by M.M. Mäkelä and P.

Neittaanmäki with similar requirements as the optimization method developed in

this thesis.

The idea of subgradient methods was also refined in such a way that methods orig-

inally developed for smooth optimization problems were generalized for the non-

smooth case. Promising methods of smooth optimization were adapted such as

variable metric methods and trust region methods. In Sec. 4.4, a variable metric

method will be presented which utilizes the BFGS method that was developed by

A.S. Lewis and Micheal L. Overton and which again assumes similar properties of

the objective functions as the method developed in this thesis.
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4 Nonsmooth Optimization Methods

In the 2000s a new approach was presented by J.V. Burke, A.S. Lewis and M.L. Over-

ton in [BLO05]. They introduced gradient sampling methods which do not require

any subgradient information and will be summarized in Sec. 4.5.

4.1 Subgradient Methods

Subgradient methods were developed since the 1960s. An early overview of sub-

gradient methods can be found in [Sho79, Chap. 2], whereas this brief introduction

follows [BKM14, Chap. 10]. The idea of subgradient methods is to generalize gra-

dient descent methods from smooth optimization by replacing the gradient by an

arbitrary subgradient. Thus, one obtains the iteration formula

xk+1 = xk − tk
ξk
‖ξk‖

(4.1)

where ξk ∈ ∂Cf(xk) is a subgradient of f at the iterate xk and tk > 0 is a step

multiplier. A difficulty is the definition of a termination criterion, since the sequence

of subgradient ξk does not necessarily converge to 0. Another disadvantage is that

contrary to the gradient descent method one can not guarantee that the search

direction obtained from the subgradient causes descent. As a consequence, standard

line searches can not be applied. To achieve some convergence statements further

assumptions concerning the step size have to be made. In [Sho79, Chap. 2.2] it was

proven that the subgradient method convergences globally for a convex function and

step multipliers satisfying

lim
k→∞

tk = 0 and

∞∑
k=1

tk = +∞.

Under certain additional assumptions a linear rate of convergence can be proven.

To improve the rate of convergence several other algorithms were developed such as

Shor’s r-algorithm with space dilation described in [Sho79, Chap. 3]. Its idea is to

combine two sequential subgradients and thereby, to obtain additional information.

34



4.2 Cutting-Plane Methods

4.2 Cutting-Plane Methods

The standard cutting plane method was introduced by J.E. Kelley in [Kel60]. As in

the previous section this brief introduction follows [BKM14, Chap. 11]. It considers

optimization problems of the form

min
x∈X

f(x)

where X ⊆ Rn is a nonempty, closed convex set and f : Rn → R is a convex function.

The idea of the method is to approximate the objective function from below by a

piecewise affine function

f̂k(x) = max
j=0,...,k

{f(xj) + ξ>j (x− xj)} (4.2)

where xk is the current iterate and the other xj with j = 0, ..., k − 1 are auxiliary

points. One assumes that for each point xj , j = 0, ..., k, a subgradient ξj ∈ ∂Cf(xj)

is available. Thus, for each j = 0, ..., k and for all x ∈ X the inequality f(x) ≥
f(xj) + ξ>j (x− xj) holds and one obtains that

f(x) ≥ max
j=0,...,k

{f(xj) + ξ>j (x− xj)} for all x ∈ X.

To identify a new iterate, one considers the minimization problem

min
x∈X

max
j=0,...,k

{f(xj) + ξ>j (x− xj)} − f(xk)

where f is replaced by its approximation f̂k. Subtracting the function value f(xk)

from the objective function allows the reformulation of this nondifferentiable opti-

mization problem into a linearly constrained problem of the form

min
v∈R

xk+d∈X

v s.t. − αj + ξ>j d ≤ v ∀j = 0, ..., k (4.3)

where d = x − xk and αj := f(xk) − f(xj) − ξ>j (xk − xj) is the linearization error.

Thus, the new iterate xk+1 = xk +d is given by the solution of (4.3). By adding the

corresponding cutting plane to the approximation (4.2), one obtains a more precise
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model in such a way that f̂k(x) ≤ f̂k+1(x). A possible termination condition is

given by the linearization error αk ≤ ε.

The initial iteration of the cutting-plane method can cause difficulties. If the set X

is not chosen properly, the approximation f̂0 might not be bounded below. Thus,

the choice of an appropriate initial set X is crucial for the success of the method.

Assuming that the set X is chosen properly, the graph of the model f̂k approximates

the original objective function f more accurately from below with each iteration and

thereby, the global convergence of the method can be guaranteed as shown in [Kel60].

However, the convergence results are rather poor in practice.

To remedy these disadvantages of the cutting-plane method first bundle methods

were developed as for instance by Kiwiel, see [Kiw85].

4.3 Bundle Methods

Nowadays, some of the most common methods in nonsmooth optimization are

bundle-type methods. The idea of these methods is to exploit the previous iter-

ations by gathering the corresponding subgradient information in a bundle. This is

an important difference to subgradient-type methods that only use local informa-

tion at the current iterate. By looking at a bundle of subgradients it is possible to

define and implement stopping criteria, which is an additional advantage compared

with subgradient-type methods. Bundle methods are quite similar to cutting plane

methods. However, in contrast to cutting plane methods, bundle methods do not

only gather subgradient information but also remove subgradients from the bundle

due to certain heuristics. First bundle-type methods for convex, locally Lipschitz

functions were developed in the 1970s and 1980s. These approaches were refined

over the years and extended to nonconvex and constraint optimization problems.

The proximal bundle method for nonconvex constrained optimization introduced by

M.M. Mäkelä and P. Neittaanmäki in [MN92, Chap. 3] is a well-known representative

of these extensions. Thus, the ideas of bundle methods will be described by reference
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of this example in the following. They consider the problem

min f(x) s.t. Fi(x) ≤ 0, for i = 1, ...,mF ,

Cx ≤ b, C ∈ RmC×n, b ∈ RmC ,

xmin ≤ x ≤ xmax, xmin, xmax ∈ Rn

 (4.4)

where f and Fi for i = 1, ...,mF are locally Lipschitz functions defined on Rn. The

rows of C are denoted by Ci. The total constraint function is defined by

F (x) = max{Fi(x) | i = 1, ...,mF }.

Suppose that problem (4.4) satisfies the Cottle constraint qualification as defined

below, and that the feasible set G = GF ∩ GC = {x | F (x) ≤ 0} ∪ {x | Cx ≤ b} is

nonempty.

Definition 4.1 (Cottle constraint qualification). The problem (4.4) is said to satisfy

the Cottle constraint qualification at x if either F (x) < 0 or there do not exist any

νi ≥ 0 for i ∈ I := {1, ...,mC} such that νi(C
T
i x− bi) = 0 and

0 ∈ ∂F (x) +
∑
i∈I

νiCi.

Assume that the subgradients ξf ∈ ∂f(x), ξF ∈ ∂F (x) and function values f(x),

F (x) can be evaluated. One defines an improvement function

H(x; y) := max{f(x)− f(y), F (x)} for all x ∈ Rn

at y ∈ Rn. If the current iterate xk ∈ Rn is nonoptimal, we would like to find the

descent direction dk ∈ Rn that solves the linearly constraint problem

minH(xk + d;xk) s.t. xk + d ∈ GC . (4.5)

For the moment, we will suppose that problem (4.4) is convex. One assumes that

we have at the current iterate xk the auxiliary points yj ∈ Rn and the subgradients

ξfj ∈ ∂f(yj) for j ∈ Jkf ⊂ {1, ..., k} and ξFj ∈ ∂F (yj) for j ∈ JkF ⊂ {1, ..., k} where

the index sets Jkf and JkF are assumed to be nonempty. With these subgradients one
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defines the linearizations at x ∈ Rn by

f̄j(x) := f̄(x; yj) = f(yj) + (ξfj )T (x− xj) for all j ∈ Jkf
F̄j(x) := F̄ (x; yj) = F (yj) + (ξFj )T (x− xj) for all j ∈ JkF

and the polyhedral approximation of H(·, xk) by

Ĥk(x) := max{f̂k(x)− f(x), F̂ k(x)}

with f̂k(x) := max{f̄j(x) | j ∈ Jkf } and F̂ k(x) := max{F̄j(x) | j ∈ JkF }.

Analogous to the cutting plane method one replaces the original improvement func-

tion by its approximation Ĥk. Therewith, one obtains the following approximation

of problem (4.5)

min Ĥ(xk + d) +
uk
2
‖d‖2 s.t. C(xk + d) ≤ b, (4.6)

where uk > 0 is a weighting parameter and the quadratic penalty term ensures

that the problem is bounded below. Hence, a solution of the problem exists. The

weighting parameter is updated by the safeguarded quadratic interpolation tech-

nique that was introduced by Kiwiel in [Kiw90]. This problem can be rewritten as

a (differentiable) quadratic problem of the form

min v + uk
2 ‖d‖

2 s.t. −αkf,j + (ξfj )Td ≤ v, for all j ∈ Jkf ,
−αkF,j + (ξFj )Td ≤ v, for all j ∈ JkF ,
−αkC,i + CTi d ≤ 0, for all i ∈ I.

 (4.7)

by defining the so-called linearization errors αkf,j := f(xk) − f̄j(xk) for j ∈ Jkf ,

αkF,j := −F̄j(xk) for j ∈ JkF and αkC,i := −CTi xk + bi for i ∈ I.

If one always added the index of each iteration, problems with storage would be

inevitable after a huge number of iteration. The authors use the subgradient aggre-

gation strategy by [Kiw85] to choose the index sets Jkf and JkF . This strategy allows

the user to fix a maximal number of indexes Mξ stored in Jkf and JkF .

An open question is what difficulties occur if the problem (4.4) is nonconvex. It

turns out that the linearization error is no sufficient measure anymore, since the

38



4.3 Bundle Methods

approximation of the improvement function H(·, xk) is no lower approximation of

the target function anymore and thus, the linearization errors are not necessarily

greater or equal to zero. Because of this, one replaces the linearization error in

problem (4.7) by the subgradient locality measure

βkf,j := max{|αkf,j |, γf · (skj )2}, for all j ∈ Jkf
βkF,j := max{|αkF,j |, γF · (skj )2}, for all j ∈ JkF

where γf > 0 and γF > 0 are user-defined distance measure parameters that weight

the distance measure

skj :=

{
‖xj − yj‖+

∑k−1
i=j ‖xi+1 − xi‖ for j = 1, ..., k − 1

‖xk − yk‖ for j = k.

Afterwards, one would like to compute a step size tk ∈ (0, 1] such that the step

multiplier approximately minimizes the objective function f along a given direction

d and that the resulting iterate is an element of the feasible set G. In [MN92,

Chap. 3.2] a two–point line search is introduced. It assumes that mL ∈ (0, 1
2),

mR ∈ (mL, 1) and t̄ ∈ (0, 1] are fixed parameters. The first step of this line search

strategy is to find the largest number tkL ∈ [0, 1] such that

a) f(xk + tkLdk) ≤ f(xk) +mLt
k
Lvk, b) F (xk + tkLdk) ≤ 0,

c) C(xk + tkLdk) ≤ b, d) tkL ≥ t̄.

If such a parameter exists one takes a long serious step

xk+1 := xk + tkLdk and yk+1 := xk+1.

In this case one achieves a significant descent and one sets ξfk+1 ∈ ∂f(xk+1). If

requirements a) - c) hold but 0 < tkL < t̄ then we take a short serious step

xk+1 := xk + tkLdk and yk+1 := xk + tkRdk
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and if tkL = 0 we take a null step

xk+1 := xk and yk+1 := xk + tkRdk

where tkR > tkL is such that −βk+1
f,k+1 + (ξfk+1)Tdk ≥ mRvk. In these two cases

there are discontinuities in the gradient of f . The additional requirement −βk+1
f,k+1 +

(ξfk+1)Tdk ≥ mRvk in the null step ensures that xk+1 and yk+1 lie on opposite sites

of a discontinuity of the gradient and thus the new subgradient ξfk+1 ∈ ∂f(yk+1) will

force a significant modification of the next search direction finding problem.

The last major component is the stopping criterion. The necessary condition for xk

to be a local optimum of the improvement function over the feasible set GC is

0 ∈ ∂H(x;x) +
∑
i∈I

νiCi,

The subgradient aggregation provides a good approximation of the subdifferential

but it can be too uncertain. Because of that one combines the aggregate subgradient

locality measure β̃kp and the norm of the current subgradient as follows:

1

2
‖pk‖2 + β̃kp < εs.

By storing a limited number of subgradients this bundle method operates on an

approximation of the subdifferential. Indeed, if one applies the subgradient aggre-

gation strategy, one can show global convergence for the bundle method outlined

above. A drawback of bundle-type methods is the large number of user defined

parameters.

Further explanations and more details of this bundle method can be found in [MN92,

Chap. 3].

4.4 Variable Metric Methods

Variable metric methods, also known as quasi-Newton methods, are well established

in smooth optimization, because of their good convergence behavior and their reli-

ability. In [LV99], a variable metric method was introduced for convex nonsmooth
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unconstrained optimization and global convergence was proven. C. Lemaréchal and

C. Sagastizábal considered also convex functions in [LS97] and incorporated addi-

tionally bundle strategies. Despite missing convergence results for the nonconvex

and nonsmooth case, experiments indicated that variable metric methods are also

robust and efficient. This was stated, e.g., in [HUL93, Chap. 8].

A.S. Lewis and M.L. Overton presented a variable metric method in [LO13] applying

the BFGS method with an inexact line search. They consider nonsmooth, nonconvex

objective functions. To apply the BFGS method on such problems the inexact line

search and the termination criteria have to be adapted. The procedure of the BFGS

method in general remains unchanged as well as the BFGS update formula. For

further information about the BFGS method, see, e.g., [NW06, Chap. 6]. The

introduced algorithm terminates if f is not differentiable at the new iterate or if

a smooth stationary point is reached. It is considered unlikely that one actually

computes a point where f is not differentiable, among others because of numerical

rounding errors. Thus, it is reasonable to add an additional termination criterion.

The suggestion of the authors is to build up a bundle of gradients G evaluated at

nearby points and to solve the quadratic problem

d̄ = arg min{‖d‖ | d ∈ conv G}.

If ‖d̄‖ is smaller than a small positive tolerance, the algorithm terminates.

The inexact line search suggested in [LO13] imposes an Armijo condition on the re-

duction of the function value and a Wolfe condition requiring an algebraic increase

in the directional derivative along the line. Contrary to standard line search strate-

gies for nonsmooth optimization, only function values and gradients are required

but no subgradients. However, it is assumed that the oracle can detect whether or

not f is differentiable at a point x. Under certain stronger assumptions, as, e.g.,

semi-algebraic functions, termination of the line search can be guaranteed.

To obtain convergence results Lewis and Overton linked the variable metric approach

with their gradient sampling method which will be summarized in the subsequent

section.
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4.5 Gradient Sampling Methods

Gradient sampling methods are some of the latest approaches in nonsmooth opti-

mization. One of the key characteristics of these methods is that no subgradient

information is required. The original method was first introduced by J.V. Burke,

A.S. Lewis and M.L. Overton in [BLO05], where a locally Lipschitz objective func-

tion f : Rn → R is considered, that is continuously differentiable on an open

dense subset of Rn. It is also assumed that there is a point x̃ ∈ Rn for which

L = {x | f(x) ≤ f(x̃)} is compact. The method is basically constructed as a descent

method. The stabilization is controlled by the sampling radius ε.

For the purpose of this method Clarke’s subdifferential of f at x is represented by

∂Cf(x) =
⋂
ε>0

Gε(x)

where the multifunction Gε : Rn ⇒ Rn is given by

Gε(x) = cl conv∇f(Bε(x) ∩D).

Since the gradient sampling method is designed to locate a Clarke ε-stationary point,

i.e., a point that satisfies 0 ∈ ∂C,εf(x) with the Clarke ε-subdifferential defined as

∂C,εf(x) = cl conv∂Cf(Bε(x)),

the measure of proximity ρε(x) = dist(0 | Gε(x)) was introduced to detect such

stationary points.

In the following, the key steps of the gradient sampling method are outlined. At the

beginning of the k-th iteration, Clarke’s subdifferential ∂Cf(xk) is approximated by

Gk = conv{∇f(xk0),∇f(xk1), ...,∇f(xkm)}

where xk ∈ Rn is the current iterate, xk1 , ..., xkm ∈ Rn are sampled independently

and uniformly from Bε(x
k) with ε the sampling radius, and Gk ⊂ Gε(x

k). For all

points xk and xkj , j = 1, ...,m, the function f has to be differentiable, otherwise the

algorithm has to be interrupted. The quality of this approximation was analyzed in
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[BLO02].

The next step is the computation of a descent direction. Thus, the descent direction

is set as dk = −gk/‖gk‖ where gk solves the quadratic problem ming∈Gk
‖g‖2, i.e.,

‖gk‖ = dist(0 | Gk) and gk ∈ Gk.

If ‖gk‖ = 0 holds, the stationarity condition is fulfilled and the algorithm terminates.

If this termination criterion is not satisfied, a step length tk has to be computed.

The last step of each iteration is the update of the current iterate xk. Due to the

construction of the gradient sampling method, the new iterate has to be a differen-

tiable point. Therefore, one accepts xk+1 = xk + tkd
k only, if it is differentiable, else

another point x̂k ∈ Bε(xk) is chosen randomly in such a way that xk+1 = x̂k + tkd
k

is a differentiable point.

First convergence results of the gradient sampling method can be found in [BLO05].

For a fixed sampling radius it is shown that when f has compact level sets then

with probability 1 the algorithm generates a sequence of iterates having at least one

cluster point that is Clarke ε-stationary. Stronger results can be obtained, if one

assumes additionally convexity or smoothness. For a sample radius ε that reduces

to zero, it was shown that if f has a unique ε-stationary point x∗, then the set of all

cluster points generated by the gradient sampling algorithm converges to x∗.

Here, the original gradient sampling method by Burke, Lewis, and Overton was

illustrated which was introduced in 2005. Since then the method was refined in a

variety of ways, e.g., an approach for nonconvex, nonsmooth constrained problems,

see [CO12], and an adaptive gradient sampling approach which reduces significantly

the number of required gradient evaluations, see [CQ13]. F.E. Curtis and X. Que

also combined the adaptive gradient sampling idea with quasi-Newton methods as

explained in [CQ15].
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Towards Gray-Box Optimization

A widespread structure of gradient-based optimization methods is the black-box

scheme. It assigns the responsibility of each part of the optimization procedure to

either the user or the designer of an optimization method. In [HUL93] one can

find a detailed description of the black-box scheme which is sketched in Fig. 5.1.

According to this scheme, the designer of an optimization method develops the

algorithm without any knowledge of the objective function. All required information

of the objective function has to be provided by the user. The information embraces

both initial parameters as stopping parameters and values that are needed repeatedly

User: Control 

Initialize problem.

Call optimization 
method and pass 
parameters.

Exploit results.

User: Information 

Compute pointwise 
information as f(x), 
∇f(x) and g ∊ ∂f(x).

Designer: Algorithm

Execute optimization 
method:

Test for stop.

Get info.

Update x.

Figure 5.1: Black-box scheme as introduced in [HUL93].

during the optimization process as the function value and derivative information at

the current iterate. Additionally, the user has the responsibility for the control

and execution of the optimization procedure. Note that the information that are

available in this black-box scheme are restricted to be solely pointwise.

All optimization methods introduced in the previous chapter were designed as black-

45



5 Towards Gray-Box Optimization

box methods. The method of the steepest descent trajectory mentioned in Chap. 1

is designed as a black box method as well, see [HUL93]. Nevertheless, the method

of the steepest descent trajectory does not only require a single subgradient at each

iterate but the full subdifferential. Because of this drawback it was considered to be

not implementable.

The algorithm presented in this thesis opens the black box scheme by allowing direc-

tional information as the directionally active gradient. In this way, the neighborhood

of the current iterate is illuminated and turns gray, as illustrated in Fig. 5.2. These

directional components enable the exploitation of the structure of the argument

space.

User: Control 

Initialize problem.

Call optimization 
method and pass 
parameters.

Exploit results.

User: Information 

Compute pointwise 
information as f(x), 
∇f(x) and g ∊ ∂f(x).

          +

Compute directional 
information as g(x;d).

Designer: Algorithm

Execute optimization 
method:

Test for stop.

Get info.

Update x.

Figure 5.2: Gray-box scheme including directional information

This and the following chapter present the gradient-based minimization algorithm

LiPsMin which is the centerpiece of this work. The idea of the algorithm is to

minimize a piecewise smooth objective function by generating successively piecewise

linearizations at the current iterates and to solve these models by structure exploita-

tion. Therefore, this chapter focuses on the generation of the piecewise linear model

and the computation of directional components via the exploitation of the structure

caused by the nondifferentiable points. The following chapter presents the overall

optimization algorithm including convergence theory.

At the beginning of this chapter, the considered optimization problem is introduced.

Using algorithmic differentiation (AD) to compute the piecewise linearization, it is

necessary to extend the set of elemental functions by the absolute value function and
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to adapt the evaluation procedure appropriately. This is explained in Sec. 5.2. The

generation of a piecewise linearization of a piecewise smooth function at a certain

base point and the representation of this piecewise linearization in its abs-normal

form are summarized in Sec. 5.3. Finally, the computation of directional information

via structure exploitation is illuminated in Sec. 5.4.

5.1 Stating the Optimization Problem

The considered nonsmooth optimization problem is of the form

min
x∈Rn

f(x)

where the objective function f : Rn → R can be described as the composition of

a finite sequence of elemental functions. It is assumed that these elemental func-

tions are either the absolute value function or Lipschitz continuously differentiable

on their respective open domain of definition. Such functions will be called com-

posite piecewise differentiable. From the previous assumption it follows that the

objective function is a piecewise smooth function as defined in Sec. 3.3. Using the

reformulations

min(x1, x2) =
1

2
(x1 + x2 − abs(x2 − x1))

and max(x1, x2) =
1

2
(x1 + x2 + abs(x2 − x1))

a quite large range of Lipschitz continuous and piecewise smooth objective functions

originated from both real world and academic applications are covered.

5.2 Adapting the Evaluation Procedure

Applying algorithmic differentiation to compute derivative information of the con-

sidered nonsmooth objective function, the set of elemental functions Φ has to be

extended by the absolute value function. Furthermore, the evaluation scheme has

to be adapted appropriately.
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5 Towards Gray-Box Optimization

The basic idea of AD is the calculation of derivative information of a given function

f : U ⊆ Rn → R by the chain rule, see [GW08]. Therefore, the function f has

to be a composition of elemental functions ϕ ∈ Φ such that f can be given by an

evaluation procedure as illustrated in Tab. 5.1. The evaluation procedure consists

vi−n = xi i = 1 ... n

vi = ϕi(vj)j≺i i = 1 ... l

y = vl

Table 5.1: Standard evaluation procedure

of three parts. First, the independent variables are initialized. In the central part,

each intermediate variable corresponds to one elemental function, i.e., vi = ϕi(vj)j≺i

where the precedence relation j ≺ i denotes that vi depends directly on vj for j < i.

Finally, the dependent variables are assigned. In the standard approach of AD it is

assumed that the elemental functions ϕi are d times continuously differentiable with

1 ≤ d ≤ ∞ on their open domain Ui ⊆ Rn.

To evaluate composite piecewise differentiable functions the set of elemental func-

tions Φ is extended by the absolute value function, i.e., the extended elemental set

is defined as Φ̃ ≡ Φ ∪ {abs}. Since the absolute value function is not continu-

ously differentiable, the evaluation procedure has to be adapted in that the absolute

value function is regarded separately in the evaluation procedure as is illustrated in

Tab. 5.2. This adaption was presented in [FWG] by S. Fiege, A. Walther and A.

Griewank. For clarity consecutive smooth elemental functions were combined into

vi−n = xi i = 1 ... n

zi = ψi(vj)j≺i

σi = sign(zi)

 i = 1 ... s

vi = σizi = abs(zi)

y = ψs+1(vj)j≺s+1

Table 5.2: Reduced adapted evaluation procedure

larger elemental functions ψi with i = 1, ..., s+1 where s ∈ N denotes the number of

evaluations of the absolute value function. This yields a reduction of the evaluation

procedure. The intermediate value zi obtained each by larger elemental function ψi
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5.2 Adapting the Evaluation Procedure

with i = 1, .., s represent the arguments of the absolute value function. Hence, they

cause the switching in the corresponding derivative values. The vector

z = (zi)i=1,..,s ∈ Rs (5.1)

is called switching vector and furthermore, it defines the signature vector

σ = (σi(x))i=1,..,s ≡ (sign(zi(x)))i=1,...,s ∈ Rs (5.2)

which plays an important role in the structure exploitation.

Example 5.1. We consider the piecewise smooth function

f : R2 → R, f(x1, x2) = (x2
2 − (x1)+)+ with y+ ≡ max(0, y) (5.3)

which can be rewritten in terms of the absolute value function as

f(x1, x2) =
1

2
(z2 + |z2|) with z1 = x1 and z2 = x2

2 −
1

2
(z1 + |z1|) .

Its reduced adapted evaluation procedure is illustrated in Tab. 5.3.

10.50
 x 2

-0.5-1
1

0.5
0

-0.5

 x 1

0

-1.5

-1

-0.5

1.5

1

0.5

-1

 f(
x)

Figure 5.3: Plot of the PS function defined in Ex. 5.1
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5 Towards Gray-Box Optimization

v−1 = x1

v0 = x2

z1 ≡ Ψ1(vj)j≺1 = v−1

σ1 = sign(z1)

v1 = σ1z1

z2 ≡ Ψ2(vj)j≺2 = v2
0 − 1

2 (z1 + v1)

σ2 = sign(z2)

v2 = σ2z2

y ≡ Ψ3(vj)j≺3 = 1
2 (z2 + v2)

Table 5.3: Reduced adapted evaluation procedure of Ex. 5.1

5.3 Generating a Piecewise Linearization

To generate a piecewise linearization of a function conforming the adapted eval-

uation procedure, tangent linearizations of all elemental functions ϕ ∈ Φ̃ have to

be available. For the elemental functions ϕ ∈ Φ, these elemental linearization are

well-known for a given ∆x ∈ Rn from the standard approach of AD as

∆vi = ∆vj ±∆vk for vi = vj ± vk,

∆vi = vj ∗∆vk + vk ∗∆vj for vi = vj ∗ vk,

∆vi = ϕ′(vj)j≺i ∗∆(vj)j≺i for vi = ϕi(vj)j≺i with ϕi ∈ Φ.

For the absolute value function the tangent approximation

∆vi = abs(zi + ∆zi)− vi for vi = abs(zi) (5.4)

was proposed in [Gri13]. This paper by A. Griewank contains among others a

detailed analysis of the resulting piecewise linearization which is summarized sub-

sequently. If no absolute value function occurs during the function evaluation, the

function y ≡ f(x) is differentiable in a fixed point x ∈ Rn and by the chain rule, one

obtains

∆y = ∆f(x; ∆x) ≡ ∇f(x)∆x,
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5.3 Generating a Piecewise Linearization

for a fixed x ∈ Rn where ∇f(x) ∈ Rn is the gradient of f . The later equality is

no longer true if the absolute value function occurs during the function evaluation.

In this case, one obtains for a fixed x ∈ Rn the piecewise linear and continuous

increment function

∆y ≡ ∆f(x; ∆x) : Rn → R

with the argument ∆x ∈ Rn, and therefore also the piecewise linearization

fPL,x(∆x) ≡ f(x) + ∆f(x; ∆x) (5.5)

of the original PS objective function f .

Example 5.2. The piecewise linearization fPL,x of the function f introduced in

Ex. 5.1 evaluated at the base point x̄ with the argument ∆x = x− x̄ is given by

fPL,x̄(∆x) =
1

2
(z2 + |z2|) (5.6)

where the switching vector z of fPL,x̄ is given by

z1 = x̄1 + ∆x1 and z2 = x̄2
2 + 2x̄2∆x2 −

1

2
(z1 + |z1|) .

10.50
x2

-0.5-1
1

0.5
0

-0.5

x1

0

-3

-2

-1

2

1
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L
;7x
(x
!
7x
)

Figure 5.4: Plot of the piecewise linearization with x̄ = (−1, 0.5) defined in Ex. 5.2
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5 Towards Gray-Box Optimization

This piecewise linearization is a second order approximation of the underlying piece-

wise smooth function as was proven in [Gri13, Prop. 1].

Proposition 5.3. Suppose f : Ũ → R is a function as defined in Sec. 5.1 on

some open neighborhood Ũ of a closed convex domain U ⊆ Rn. Then there exists a

constant γ ∈ R such that for all pairs x̄, x ∈ U

‖f(x)− f(x̄)−∆f(x̄;x− x̄)‖ ≤ γ ‖x− x̄‖2 .

Moreover, we have for any pair x̄, x̂ ∈ U and ∆x ∈ Rn and a constant γ̃ ∈ R

‖∆f(x̄; ∆x)−∆f(x̂; ∆x)‖
1 + ‖∆x‖

≤ γ̃ ‖x̄− x̂‖ .

Proof. See [Gri13, Proposition 1].

5.3.1 Representing the Piecewise Linearization in Abs-Normal Form

In [GBRS15] an alternative representation for piecewise linear functions fPL : Rn →
R was suggested. It was shown that any piecewise linear function can be expressed

using the argument ∆x ∈ Rn and the resulting switching vector z ∈ Rs in the

abs-normal form given by[
z

y

]
=

[
cz

cy

]
+

[
Z L

a> b>

] [
∆x

|z|

]
, (5.7)

where cz ∈ Rs, cy ∈ R, Z ∈ Rs×n, L ∈ Rs×s, a ∈ Rn and b ∈ Rs. The matrix

L is strictly lower triangular, i.e., each zi with i = 1, ..., s is assumed to be an

affine function of absolute values |zj | with j < i and the input argument ∆xk for

1 ≤ k ≤ n. The structural nilpotency degree of L, i.e., the smallest number µ ≤ s

such that

Lµ = 0, (5.8)
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is called switching depth of f in the given representation. Defining the signature

matrix

Σ ≡ Σ(∆x) ≡ diag(σ(∆x)) ∈ {−1, 0, 1}s×s

for the switching vector of the piecewise linearization as defined in Eq. (5.2), one

obtains |z| ≡ Σ z for a fixed σ ∈ {−1, 0, 1}s. Solving the first equation of Eq. (5.7)

for z by using the signature matrix, the switching vector can be written as

z = (I − LΣ)−1(cz + Z∆x). (5.9)

Notice that due to the strict triangularity of LΣ the inverse (I − LΣ)−1 is well

defined and polynomial in the entries of LΣ. Substituting this expression into the

last equation of Eq. (5.7), it follows for the function value that

fσ(∆x) ≡ γσ + g>σ ∆x (5.10)

with

γσ = cy + b>Σ(I − LΣ)−1cz and g>σ = a> + b>Σ(I − LΣ)−1Z. (5.11)

That is, the gradient evaluation for the piecewise linearization reduces to the solve

of a linear system with a triangular matrix. Note that the matrices and vectors cz,

cy, Z, L, a, and b only depend on the underlying PS function f and the base point x̄

in which the PL is evaluated. Therefore, the abs-normal form proves beneficial since

it allows an efficient gradient calculation in the optimization algorithm presented in

Chap. 6.

Example 5.4. The piecewise linearization y ≡ fPL,x̄(∆x) given in Ex. 5.2 can be

written in its abs-normal form given by

z1

z2

y

 =

 x̄1

x̄2
2 − 1

2 x̄1

1
2

(
x̄2

2 − 1
2 x̄1

)
+

 1 0 0 0

−1
2 2x̄2 −1

2 0

−1
4 x̄2 −1

4
1
2




∆x1

∆x2

|z1|
|z2|

 . (5.12)
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5.3.2 Realization of the Piecewise Linearization in ADOL-C

The evaluation of the piecewise linearization is realized by the algorithmic differ-

entiation (AD) tool ADOL-C. Further information about this tool can be found

in [WG12]. Therefore, the adapted evaluation procedure introduced in Tab. 5.2

and the tangent rule for the absolute value function defined in Eq. (5.5) were in-

cluded in ADOL-C. All explanatory notes concerning implementations in ADOL-C

in this thesis refer to ADOL-C 2.6.3. A description of these drivers was published

in [FWKG17] by S. Fiege, A. Walther, K. Kulshreshtha, and A. Griewank.

To generate the corresponding piecewise linearization of a composite piecewise dif-

ferentiable function f at a fixed point x ∈ Rn, the driver

zos pl forward(tag,1,n,1,x,y,z);

with the argument x, provides the switching vector z ∈ Rs according to Tab. 5.2

and the function value y = f(x). The given tag value is used to identify the trace

which stores the function evaluation and allows the repeatedly reevaluation of the

function and its gradient for different input arguments. Here, the abbreviation zos

stands for zero-order-scalar signaling that only a function evaluation and no deriva-

tive calculation is performed and the information is propagated forward through

the evaluation procedure. One can extract the number of absolute value function

evaluations using the call

s=get num switches(tag);

where s is defined in Tab. 5.2. Subsequently, one can use the driver

fos pl forward(tag, 1, n, x, deltax, y, deltay, z, deltaz);

to actually compute the increment ∆y = ∆f(x; ∆x). One also has as output vari-

ables the switching vector z and its piecewise linearization ∆z. The abbreviation

fos stands for first-order-scalar mode.

Beyond that the abs-normal form can be evaluated by ADOL-C. As already men-

tioned above the components cz, cy, a, b, Z and L, of the abs-normal form depend

only on the underlying function f and a given base point x in which the PL is

evaluated. Hence, ADOL-C provides a driver
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abs normal(tag, 1, n, s, x, sigma, y, z, cz, cy, a, b, Z, L);

to compute the components of the abs-normal form. This driver requires the routine

fos pl reverse(tag, 1, n, s, i, res);

which applies the adapted handling of the absolute value function in the reverse

mode of ADOL-C. The routine returns res=[Zi Li] for i = 0, ..., s− 1 and res=[a>

b>] for i = s where Zi and Li denote the i-th row of the corresponding matrix. Now

all components of the abs-normal form are known except cz and cy which can be

gained by solving the linear system at the base point x for these unknown variables.

Note that at the base point x, one has ∆x = 0.

5.4 Computing Directional Information

To obtain directional information of the objective function, the analysis of the poly-

hedral decomposition caused by the nondifferentiable points is crucial. In Sec. 3.3, it

was already mentioned that piecewise smooth functions can be defined via selection

functions and that the essentially active index set allows a more exact definition

of Clarke’s subdifferential. Considering piecewise linear functions fPL : Rn → R
in particular, it was determined that every piecewise linear function admits a cor-

responding polyhedral subdivision of Rn. The exploitation of this decomposition

enables the computation of limiting subdifferentials. In the following, the concepts

introduced by [Sch12] will be transferred and extended into the setting of this work

according to [Gri13, GWFB15].

5.4.1 Description of Piecewise Smooth Functions by Signature Vectors

Adapting the definition of piecewise smooth functions f : Rn → R via selection

functions in terms of signature vectors σ as defined in Eq. (5.2), the piecewise smooth

function may be written in the form

f(x) ∈ {fσ(x) | σ ∈ E ⊆ {−1, 0, 1}s},
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where the selection functions fσ are continuously differentiable on neighborhoods of

points where they are active, that is, coincide with f . We will assume that all fσ

with σ ∈ E are essentially active in that their coincidence set {f(x) = fσ(x)} are

the closures of their interiors, i.e.,

E ≡ {σ(x) ∈ {−1, 0, 1}s | x ∈ cl(int{x ∈ Rn | f(x) = fσ(x)})}. (5.13)

Therewith, one obtains that Clarke’s subdifferential can be given by

∂Cf(x) ≡ conv(∂Lf(x)) with ∂Lf(x) ≡ {∇fσ(x) | σ ∈ E}

as was shown in Sec. 3.3.2.

5.4.2 Structure of Decomposed Domain for Piecewise Linear Functions

In the remainder of this chapter, solely piecewise linear functions fPL will be con-

sidered. The identification and exploitation of the polyhedral decomposition will

be based on the signature vector σ. The decomposition is caused by the nondif-

ferentiable points and consists of at most finitely many convex and relatively open

polyhedra Pσ of the form

Pσ = {x ∈ Rn | σ = σ(x)}.

For any piecewise linear function, it follows by continuity that Pσ must be open

but possibly empty if σ is definite, in that all its components are nonzero. For any

nonempty Pσ, one has

dim(Pσ) ≥ n+ ‖σ‖1 − s = n− s+

s∑
i=1

|σi|.

When equality holds, the signature σ is called nondegenerate, otherwise critical. In

particular degenerated situations, there may be some critical σ that are nevertheless

open in that Pσ is open.
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The closure of Pσ is given by

P σ ⊂ {x ∈ Rn : fPL(x) = fσ(x)},

with σ = σ(x) where the selection function fσ are defined as in Eq. (5.10). Note,

that identity must hold in the convex case. In the nonconvex case, fσ may coincide

with fPL at points in other polyhedra Pσ̃. In fact the coincidence sets may be the

union of many polyhedral components. In particular fσ is essentially active in the

sense of Scholtes [Sch12, Chapter 4.1] at all points in P σ provided σ is open. To

conform with the general concepts of piecewise smooth functions we may restrict fσ

to some open neighborhood of P σ such that it cannot be essentially active outside

Pσ. Thereby the set of essentially active signature vectors (5.13) can be given by

E = {σ ∈ {−1, 0, 1}s : Pσ nonempty and open}.

In [GWFB15] the polyhedral structure and neighboring relations of the polyhedra

in terms of the signature vector were studied intensely.

Proposition 5.5 (Polyhedral structure in terms of signature vectors).

(i) The signature vectors are partially ordered by the precedence relation

σ � σ̃ :⇐⇒ σ2
i ≤ σ̃i σi for 1 ≤ i ≤ s. (5.14)

(ii) The closure P σ of any Pσ is contained in the extended closure

P̂σ ≡ {x ∈ Rn : σ(x) � σ} ⊃ P σ (5.15)

with equality holding unless Pσ = ∅.

(iii) The essential signatures E are exactly the maximal elements amongst all non-

empty signatures, i.e.,

E 3 σ ≺ σ̃ =⇒ Pσ̃ = ∅ and P̂σ = P̂σ̃,

we will call such σ̃ extended essential.
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(iv) For any two signatures σ and σ̃ we have the equivalence

P̂σ ⊂ P̂σ̃ ⇐⇒ σ � σ̃.

(v) Each polyhedron intersects only the extended closures of its successors

Pσ ∩ P̂σ̃ 6= ∅ =⇒ σ � σ̃.

(vi) The closures of the essential polyhedra form a polyhedral decomposition in that⋃
σ∈E

P̂σ = Rn.

Proof. See [GWFB15, Prop. 4.2]

Example 5.6. Considering the piecewise smooth function defined in Ex. 5.1 and

its piecewise linearization evaluated at the base point x̄ = (−1, 0.5) in Ex. 5.2, one

obtains the decomposition of the argument space as illustrated in Fig. 5.5. Note

that the signature vectors of the piecewise smooth function do not coincide with

the signature vectors of the piecewise linear function, since the underlying switching

vectors differ. Hence, the decompositions of the two functions also differ, see, e.g.,

the number of polyhedra and the occurring signature vectors.
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Figure 5.5: Comparison of decompositions of the argument space
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5.4.3 Evaluating Directionally Active Gradients and Signature Vectors

The ability to compute limiting gradients ∇fσ(x) ∈ ∂Cf(x) of essentially active se-

lection functions fσ at each point x ∈ Rn whether x is differentiable or not, is one

of the key ingredients of the algorithm LiPsMin. Whenever x ∈ Rn is a nondifferen-

tiable point, this proves to be difficult, since σ ≡ σ(x) is no guaranteed element of

the set E of essentially active signature vectors. Therefore, the directionally active

signature vector σ ≡ σ(x; ∆x) and the directionally active gradient g were defined

in [Gri13] and the later one is given by

g ≡ g(x; ∆x) ∈ ∂Lf(x) such that f ′(x; ∆x) = g>∆x (5.16)

and g(x; ∆x) equals the gradient ∇fσ(x) of an essentially active selection function

fσ that coincides with f on a nonempty and open Pσ such that x, x+τ∆x ∈ P σ with

τ > 0 arbitrary small. The evaluation of these components in ADOL-C is pointed

out in the following subsection.

Besides the directionally active gradient the directionally active signature vector

plays an important role in the algorithm LiPsMin. These signature vectors are

unlike those signature vectors defined in Eq. (5.2) necessarily elements of the set E
of essentially active signature vectors. Such directionally active signature vectors

σ(x; ∆x) are defined by

σ(x; ∆x) = (σi(x; ∆x))i=1,...,s ≡ (firstsign(zi(x);∇z>i (x; ∆x)E))i=1,...,s (5.17)

where ∆x ∈ Rn is a preferred direction provided by the user, E ∈ Rn×n is a nonsingu-

lar matrix and firstsign(z;∇z>(x; ∆x)E)) returns for each component σi, i = 1, ..., s,

the sign of the first nonvanishing entry of the vector (zi(x);∇z>i (x; ∆x)E) ∈ Rn+1.

For the application considered in this thesis the matrix E was chosen as

E = [∆x, e1, ..., ej∗−1, ej∗+1, en] with j∗ = argmaxj=1,...,n|∆xj |

where ei, i = 1, ..., n, are the unit vectors. In [Gri13] more information about the

firstsign-function can be found.

With regard to an efficient computation of the directional components, the following
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5 Towards Gray-Box Optimization

finding comes in useful. Let each pi with i = 1, ..., s be the index of the first nonvan-

ishing entry of the vector (zi(x);∇z>i (x; ∆x)E) ∈ Rn+1 and p ≡ max{p1, ..., ps}. It

is quite likely that only p < n directions are required to compute a signature vector

σ(x; ∆x) which is essentially active. Although, there are cases when n directions are

required, e.g., whenever indefinite signatures are contained in E , the implementation

of the directional active gradient and signature vector should provide an option to

start with a smaller number of directions and to increase it iteratively if required as

was already remarked in [Gri13].

Note that combining this directionally active signature vector σ = σ(x; ∆x) ∈ E
with the abs-normal form introduced in subsection 5.3.1, one can compute the cor-

responding essential active selection function fσ(x) by Eq. (5.10) and its gradient

gσ ≡ ∇fσ(x) by Eq. (5.11). This approach is an efficient and robust way to evaluate

limiting subgradients ∇fσ(x) ∈ ∂fL(x).

5.4.4 Realization of Directionally Active Gradients in ADOL-C

ADOL-C provides a driver

directional active gradient(tag, n, x, deltax, g, sigxdx);

that returns the directionally active gradient g ≡ g(x; ∆x) and the directionally

active signature vector sigxdx ≡ σ(x; ∆x) ∈ Rn at a given point x ≡ x ∈ Rn and

a direction deltax ≡ ∆x ∈ Rn. The implementation of this driver was realized in

ADOL-C as follows:

int d i r e c t i o n a l a c t i v e g r a d i e n t ( tag , n , x , de ltax , g , s igxdx ) {

keep = 1 ; by = 1 ; k = 1 ; done = 0 ; j = 0 ;

s = get num switches ( tag ) ;

E = [ de l tax ] ;

max entry = max i fabs ( de l tax [ i ] ) ;

max dk = argmax i f abs ( de l tax [ i ] ) ;

while ( ( k < p) && ( done == 0) ) {
f o v p l f o rwa rd ( tag , 1 , n , k , x ,E, y , de ltay , z , de l taz , s igxdx ) ;
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sum = 0 ;

for ( i =0; i<s ; i++)

sum += fabs ( s igxdx [ i ] ) ;

i f (sum == s ) {
z o s p l f o rwa rd ( tag , 1 , n , keep , x , &y , z ) ;

f o s p l s i g r e v e r s e ( tag , 1 , n , s , s igxdx , &by , g ) ;

done = 1 ;

} else {
i f ( j==max dk )

j++;

E=[E e j ] ;

j++; k++;

}
}

i f ( done==0){
\\ Compute g (x ; d e l t a x ) with f u l l E

}
}

The routine uses those ADOL-C drivers which were introduced in Sec. 5.3.2. More-

over, the routine evaluates the directionally active gradient and the directionally

active signature vector simultaneously. In doing so the signature vector is used to

reduce the number of required directions as was mentioned in the previous subsec-

tion. The routine starts with one direction and checks whether or not the signature

is definite. As long as the signature is indefinite further directions are added.

The evaluation of the directionally active signature vector σ(x; ∆x) is realized com-

ponentwise in ADOL-C by the following routine:

short f i r s t s i g n ( int p , double ∗z , double∗ de l t a z ) {
int i =0, tmp ;

tmp=((∗ z ) >0.0) ? 1 . 0 : ( ( ( ∗ z ) <0.0) ? −1 .0 :0 .0 ) ;

while ( i<p && tmp==0.0) {
tmp=(de l t a z [ i ]>0.0) ? 1 . 0 : ( ( d e l t a z [ i ]<0.0) ? −1 .0 :0 .0 ) ;

i++;

}
return tmp ;

}
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5 Towards Gray-Box Optimization

The routine gets z ≡ zi with i ∈ {1, ..., s} and deltaz ≡ ∇zi(x; ∆x) as input

variables and returns σi(x; ∆x).
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6
Optimization of Composite Piecewise

Differentiable Functions

The main algorithm LiPsMin which was developed and implemented within the

scope of this dissertation is presented in detail in this chapter. This includes a

description of the solver PLMin of the inner problem, the convergence results, and

an overview of possible future extensions. In Fig. 6.1 the idea of LiPsMin is depicted

exemplary.

Figure 6.1: Basic idea of algorithm LiPsMin
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6 Optimization of Composite Piecewise Differentiable Functions

The algorithm consists of an outer loop that generates successively a piecewise linear

model in the current iterate xk and that calls the inner loop PLMin to solve the

local piecewise linear model complemented by a quadratic term. The quadratic

overestimation ensures that the local model is bounded below on the one hand, and

is required to obtain the desired convergence result towards a stationary point on

the other hand. If the solution ∆xk of the local subproblem causes descent in the

function values, the iterate is updated, else a nullstep is performed. In both cases,

LiPsMin updates the quadratic penalty coefficient qk.

A detailed description of all steps of LiPsMin is given in this chapter whereby the

conceptual algorithm is given as follows:

Algorithm 1 LiPsMin(x, q0, qlb, κ)

// Precondition: x ∈ Rn, κ > 0, q0 ≥ qlb > 0.
Set x0 = x.
for k = 0, 1, 2, . . . do

1. Generate a PL model fPL,xk(·) at the current iterate xk.

2. Use PLMin(xk, qk), see Algo. 2, to solve the overestimated local problem

min
∆x∈Rn

fPL,xk(∆x) +
1

2
(1 + κ)qk‖∆x‖2.

locally yielding ∆xk.
3. Set xk+1 = xk + ∆xk if f(xk + ∆xk) < f(xk) and xk+1 = xk otherwise.
4. Compute

q̂k+1 ≡ q̂(xk,∆xk) ≡
2|f(xk+1)− fPL,xk(∆xk)|

‖∆xk‖2

and set

qk+1 = max{q̂k+1, µ qk + (1− µ) q̂k+1, qlb}

with µ ∈ [0, 1].
end for

How to generate a piecewise linearization fPL,xk(·) of a piecewise smooth function

f at a certain base point xk was already explained at length in Sec. 5.3. The

determination of a Clarke stationary point of the resulting local model composed
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of the piecewise linearization fPL,xk(·) and the quadratic overestimation in step 2

of the algorithm is described in Sec. 6.2, followed by an introduction of the update

strategy given in step 4 for the quadratic penalty coefficient in Sec. 6.3. In the

algorithmic specification above there was no termination criterion given yet, so that

the algorithm generates an infinite sequence {xk}k∈N that can be examined in the

convergence analysis in Sec. 6.4. Nevertheless, a stopping criterion is required for

an implementation and therefore, a possible criterion is discussed in Sec. 6.1. In the

Sec. 6.5, possible extensions of LiPsMin are presented to reveal future development

of the algorithm LiPsMin.

6.1 Stopping Criterion

By now, Algo. 1 generates an infinite sequence {xk}k∈N. For this conceptual algo-

rithm convergence behavior towards a stationary point is studied in Sec. 6.4. Since

the purpose of Algo. 1 is the location of a cluster point that is a minimizer of the

composite piecewise smooth objective function f , or at least a critical point of f , it

is reasonable to use the stopping criterion ‖∆xk‖ < ε with ε > 0. This is approved

by the following relations.

Lemma 6.1.

i) If the piecewise smooth function f is locally minimal at x, then the quadratic

model f̂x at x defined as

f̂x(∆x) ≡ fPL,x(∆x) +
1

2
q̆‖∆x‖

with q̆ ≡ (1 + κ)q and κ > 0 is locally minimal at ∆x = 0 for all q ≥ 0.

ii) If the quadratic model f̂x at x is Clarke stationary at ∆x = 0 for some q ≥ 0,

then the piecewise smooth function f is Clarke stationary at x.

Proof. Note that according to [Gri13, Proposition 9] the subdifferential of the piece-

wise smooth function f at x contains that of the piecewise linearization evaluated
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6 Optimization of Composite Piecewise Differentiable Functions

in x at ∆x = 0, i.e.,

∂Cf(x) ⊃ ∂CfPL,x(0).

We define h : Rn → R as h(∆x) := q̆
2‖∆x‖

2 which is a twice continuously differen-

tiable function with a unique minimizer at ∆x = 0, if q > 0. The subdifferential of

h is given by ∂Ch(∆x) = {2q̆∆x}. Then, the quadratic model at x can be written

as f̂(∆x) = fPL,x(∆x) + h(∆x).

i) Let us assume for simplicity that f is locally minimal at x with f(x) = 0 and

hence f̂x(0) = 0. Suppose that f̂x(·) is not minimal at 0 for some q ≥ 0. Then we

have for some ∆x and t > 0

f̂x(t∆x) = tg>σ ∆x+ o(t) < 0,

where we have used the directional differentiability of the piecewise linear model and

gσ is a suitable generalized gradient as defined in Eq. (5.11). Then it follows by the

generalized Taylor expansion [Gri13] that for sufficiently small t also

f(x+ t∆x)− f(x) = tg>σ ∆x+ o(t) < 0,

yielding a contradiction to the minimality of f at x.

ii) If f̂x generated at x is Clarke stationary in ∆x = 0, then

0 ∈ ∂C f̂x(0) = ∂C(fPL,x + h)(0) ⊆ ∂CfPL,x(0) + ∂Ch(0).

Since ∂Ch(0) = {0} one obtains that 0 ∈ ∂CfPL,x(0). By using the inclusion relation

of the subdifferentials noted above this implies that also 0 ∈ ∂Cf(x) and hence f is

Clarke stationary in x.
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6.2 Solving the Local Model via PLMin

6.2 Solving the Local Model via PLMin

The solution of the local quadratic model

∆xk = arg min∆x∈Rn f̂xk(∆x) (6.1)

with f̂xk(∆x) ≡ fPL,xk(∆x) +
1

2
q̆k‖∆x‖2

and the overestimated quadratic coefficient q̆k ≡ (1+κ)qk is determined by the inner

loop PLMin that exploits the polyhedral structure induced by the nondifferentiabil-

ities of the piecewise linearization. Since we will only consider the k-th iteration of

Algo. 1 throughout this section, we use x, ∆x and q instead of xk, ∆xk and qk.

Example 6.2. We consider the piecewise linear function

f : R2 → R, f(x) := max{f0(x), f±1(x), f±2(x)}, (6.2)

with f0(x) := −100, f±1(x) := 3x1 ± 2x2, f±2(x) := 2x1 ± 5x2

which was already presented in the introduction, see Chap. 1. There it served as

an example for the lack of convergence of the steepest descent method combined

with an exact line search. In Fig. 6.2 an optimization run generated by PLMin is

shown which detects an minimal point in two iterations by exploiting the polyhedral

structure.
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Figure 6.2: Graph of function (6.2) and an optimization run generated by PLMin

The idea of PLMin is to determine a descent trajectory along a path of essential
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6 Optimization of Composite Piecewise Differentiable Functions

polyhedra towards a stationary point. For the determination of this trajectory two

key problems have to be solved.

At first, a local subproblem has to be defined and solved on each polyhedron along

the path of essential polyhedra such that a new segment of the descent trajectory

which defines a new iterate is obtained. In [GWFB15] by A. Griewank, A. Walther,

S. Fiege, and T. Bosse the true descent algorithm was introduced that computes

the so called critical step multiplier for a given direction in the current iterate such

that the new iterate lies on the next nondifferentiability in the given direction. The

theoretical results of this method are promising, however the implementation is chal-

lenging due to numerical inaccuracy. Therefore, another approach was presented in

[FWG] by S. Fiege, A. Walther, and A. Griewank. Instead of computing a criti-

cal step multiplier, the solution of a sequence of quadratic subproblems yields the

descent trajectory. This sequence of quadratic subproblems is defined in Sec. 6.2.1.

The second key problem is testing the current iterate for stationarity and in case of

failure the identification of a proceeding neighboring essential polyhedron that en-

sures descent. This is realized in both [GWFB15] and [FWG] by similar bundle type

methods which benefit from the availability of additional information via structure

exploitation. The stationarity test and the determination of a descent direction d

are introduced in Sec. 6.2.2. Since both the solution of the local subproblems on

essential polyhedra and the computation of the descent direction, require the solu-

tion of quadratic problems, practical aspects of the implementation are explained in

Sec. 6.2.4.

Convergence results for this algorithm are presented in Sec. 6.2.3.

The above considerations can be summarized as sketched in the following algorithm,

where the base point x, the quadratic coefficient q, and the step ∆x are used as in

Algo. 1. The base point x and the quadratic coefficient q serve as input parameters.

The step ∆x is the return parameter.

6.2.1 Defining the Sequence of Local Constrained QPs

To define the first constrained quadratic subproblem according to step 1 of Algo. 2,

we assume that an initial signature σ0 corresponding to an essential polyhedron was

68



6.2 Solving the Local Model via PLMin

Algorithm 2 PLMin(x, q)

// Precondition: x,∆xj ∈ Rn, q ≥ 0
Set ∆x0 = 0.
Identify σ0 = σ(x).
for j = 0, 1, 2, ... do

1. Determine solution δxj of local QP (6.1) constrained on the current
polyhedron Pσj .

2. Update ∆xj+1 = ∆xj + δxj .
3. Compute direction d by ComputeDesDir(∆xj+1, q, G = {gσj}), see Algo. 3.
4. If ‖d‖ = 0: STOP.
5. Identify new polyhedron Pσj+1 using direction d.

end for
Return ∆x = ∆xj+1.

identified. By constraining problem (6.1) onto the polyhedron Pσ0 , one obtains the

quadratic subproblem

δx0 =arg minδx∈Rnfσ0(δx) +
1

2
q̆‖δx‖2,

s.t. zi +∇z>i δx


≤ 0 if σ0

i < 0

≥ 0 if σ0
i > 0

= 0 if σ0
i = 0

for i = 1, . . . , s ,

where fσ0(δx) is the selection function corresponding to the essential polyhedron Pσ0 ,

zi is the i-th component of the switching variable of z, and ∇zi is the corresponding

gradient. All three, the selection function fσ0(δx) defined in Eq. (5.10), the switching

vector z defined in Eq. (5.9) and its gradient ∇z can be computed via the abs-

normal form evaluated in the base point x as explained in Sec. 5.3.1. The given

equality constraint is only active in degenerated cases which means that the essential

signature is indefinite. In order to solve the j-th subproblem the previous solutions

δxl with l = 0, ..., j − 1 have to be included as ∆xj =
∑j−1

l=0 δxl, such that the

relationship between the current essential polyhedron Pσj and the base point x is
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maintained. Hence, one obtains the following general quadratic subproblem

δxj = arg minδx∈Rnfσj (∆xj + δx) +
1

2
q̆ ‖∆xj + δx‖2 , (6.3)

s.t. zi +∇z>i (∆xj + δx)


≤ 0 if σji < 0

≥ 0 if σji > 0

= 0 if σji = 0

for i = 1, . . . , s .

By solving this sequence of quadratic subproblems for fixed σj , one can characterize

the points x̃ in the extended closure P̂σj , see Eq. (5.15), that fulfill the system of

inequalities. The proximal term added to the piecewise linear local model ensures

that the objective function is bounded below. Besides, the objective function is

positive definite and quadratic on P̂σj .

Example 6.3. The left graphic of Fig. 6.3 shows the initial iterate x0 and the corre-

sponding essential polyhedron Pσ0 of the optimization run introduced in Exam. 6.2.

By solving problem (6.3) one obtains the new iterate as illustrated in the right

graphic.

Figure 6.3: Detecting the iterate x1 by solving the local quadratic problem (6.3).

6.2.2 Stationarity Test and Identification of a Succeeding Polyhedron

The remaining challenge is the determination of a direction d which either fulfills

the stationarity test or identifies a new essential polyhedron where the local model
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function f̂x decreases. A Clarke stationary point is detected if ‖d‖ = 0, i.e., 0 ∈
∂f̂x(∆xj+1). If no Clarke stationary point was detected, a descent direction d at

∆xj+1 and a signature σj+1 have to be found such that Pσj+1 contains ∆xj+1 + τd

for small positive τ . For that the following computation of a descent direction can

be used:

Algorithm 3 ComputeDesDir(∆xj+1, q̆, G)

// Precondition: ∆xj+1 ∈ Rn, d ∈ Rn, q̆ ≥ 0, ∅ 6= G ⊂ ∂LfPL,x(∆xj+1)
repeat

Compute d = −short(q̆∆xj+1, G) as defined in Eq. (6.4).
Evaluate g = g(∆xj+1; d).
Augment the bundle G = G ∪ {g}.

until (g + q̆∆xj+1)>d ≤ −β‖d‖2
Set G = ∅.
Return d.

A very similar computation was already proposed in [GWFB15, Algo. 2]. There, it

was also proven that the algorithm terminates after finitely many iterations and that

it returns a direction d then. If d = 0 a stationary point was located. Otherwise,

the return vector d is a descent direction. However, for the general case considered

here, solely the identification of a polyhedron Pσj+1 that provides descent compared

to the current polyhedron is required. Hence, the additional multiplier β ∈ (0, 1)

was introduced to relax the descent condition compared to [GWFB15, Algo. 2].

In this algorithm, the bundle G is a subset of the limiting subdifferential of the

piecewise linear function fPL,x at the current iterate ∆xj+1. Initially, it contains

the gradient gσj of the current selection function fσj . The direction d is defined as

d = −short(qx,G) with

short(qx,G) = arg min

‖g‖
∣∣∣∣∣∣g =

|G|∑
j=1

λjgj + qx, gj ∈ G, λj ≥ 0,

|G|∑
j=1

λj = 1

 .

(6.4)

Subsequently, the bundle G gets augmented by further directionally active gradients

g(x; d) corresponding to neighboring polyhedra computed, e.g., via the abs-normal

form as given in Eq. (5.11). A more detailed description of the solution of the
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quadratic problem (6.4) is given in the Subsection 6.2.4.

Example 6.4. In Fig. 6.4 the detection of a new essential polyhedron at the current

iterate x1 of Exam. 6.2 is illustrated. This iterate is no stationary point, thus, a sub-

sequent polyhedron has to be identified. In the left graphic, all neighboring essential

polyhedra are colored blue. By computing the descent direction d by Algo. 3, one

obtains a directions d that points into the essential polyhedron Pσ1 that guarantees

descent as can be seen in the right graphic.

Figure 6.4: Detecting a new essential polyhedron Pσ1

6.2.3 Convergence Results

In [GWFB15] the convergence behavior of a similar version of Algo. 2 was already

analyzed and is adjusted for the algorithm presented in this work in this section.

Independent of the particular formulation of the algorithm the following lemma was

proven in [GWFB15] for the quadratic model f̂x as defined in (6.1).

Lemma 6.5. The function f̂ attains a global minimum whenever it is bounded below,

which must hold if q̆ > 0.

Proof. Consider a sequence {∆xj}j∈N ⊂ Rn such that

-∞ < inf
∆x∈Rn

f̂(∆x) = lim
j→∞

f̂(∆xj).
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Since there are only finitely many polyhedra we may assume without loss of gener-

ality that all elements of the infimizing sequence belong to some Pσ so that

f̂x(∆xj) = fσ(∆xj) + g>σ ∆xj +
q̆

2
||∆xj ||2

with fσ and gσ as defined in Eq. (5.10) and (5.11). If q̆ = 0, the minimization of

f̂x over the closed polyhedron P σ can be considered as a linear problem. For linear

problems it is well known that feasibility and boundedness imply the existence of an

optimal solution which is of course global. If q̆ > 0 then the ∆xj must be bounded

and have a cluster point where f̂x attains the minimal value.

Therewith, one obtains the following convergence results for Algo. 2:

Theorem 6.6. Let f̂x : Rn → R be the local quadratic model (6.1) generated by

Algo. 1 with q̆ ≥ 0. Then, Algo. 2 terminates after finitely many iterations. It

terminates at a stationary point such that d = 0 and returns the increment ∆x ∈ Rn

whenever f̂ is bounded below, which must hold if q̆ > 0.

Proof. If q̆ = 0, the minimization of f̂x can be considered as a sequence of linear

problems each defined on a essential polyhedron P σ. Since there are only finitely

many polyhedra and Algo. 3 ensures that the successive polyhedron always guar-

antees descent – if no stationary point was reached yet – a polyhedron has to be

reached after finitely many iteration that either contains a stationary point, i.e.,

d = 0, or is unbounded, which is only possible, if f̂x is unbounded.

If q̆ > 0, it is guaranteed that f̂x is bounded below. The minimization of f̂x can be

considered as a sequence of quadratic problems now. Again there are only finitely

many polyhedra and Algo. 3 ensures again that the successive polyhedron guarantees

descent. In contrast to the case q̆ = 0 solutions may now be elements of the interior

of the current essential polyhedron which has to be checked additionally. Neverthe-

less, after finitely many iteration a polyhedron has to be reached that contains a

stationary point, i.e., d = 0.
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6.2.4 Practical Aspects of Solving the Quadratic Subproblems

For the solution of the sequence of quadratic subproblems (6.3) as well as for the

computation of the descent direction d by Eq. (6.4) the open source software package

qpOASES is applied. A detailed description of the implemented parametric active-

set method can be found in [FKP+14]. It detects minimal points of convex quadratic

problems and critical points of nonconvex problems, respectively, of the form

min
x∈Rn

1

2
x>Hx+ g>x, s.t. al ≤ Ax ≤ au

where H ∈ Rn×n is a symmetric Hessian matrix, g ∈ Rn is a gradient vector,

A ∈ Rm×n is a constraint matrix, and al, au ∈ Rm are constraint bound vectors. By

solving a quadratic problem by qpOASES one obtains additionally the information

whether the current polyhedron Pσj is empty and otherwise whether the function

fσj is bounded below on the polyhedron, or not.

6.3 Update Strategy for the Penalty Coefficient q

In [Gri13] a first strategy how to compute and update the quadratic coefficient qk > 0

of the quadratic model (6.1) was proposed. However, the strategy only allowed the

coefficient to grow. To improve the convergence behavior of Algo. 1 the strategy

was adapted in [FWG] such that the estimate qk can be reduced whenever things

are going well.

The development of the update strategy of the quadratic penalty coefficient is closely

related with the convergence behavior of Algo. 1. Therefore, it is assumed that our

composite piecewise differentiable objective function f : Rn → R is defined as de-

scribed in Sec. 5.1. Additionally, f is assumed to be bounded below and to have a

bounded level set N0 ≡ {x ∈ Rn : f(x) ≤ f(x0)} with x0 the starting point of the

generated sequence of iterates. Hence, the level set is compact. Furthermore, the

objective function f is supposed to satisfy the assumptions concerning the represen-

tation of f as an evaluation procedure in Sec. 5.2 on an open neighborhood Ñ0 of

N0. In the following, the quantities x, ∆x, and q̂ denote the continuous quantities,

while the elements of sequences are marked with a superscript index.

74



6.3 Update Strategy for the Penalty Coefficient q

Prop. 5.3 which was first proposed in [Gri13] proves that the piecewise lineariza-

tion fPL,x̂(∆x) as defined in Eq. (5.5) yields a second order approximation of the

underlying function f(x). Therewith, it holds

f(x+ ∆x) = f(x) + ∆f(x; ∆x) +O(‖∆x‖2) (6.5)

≤ f(x) + ∆f(x; ∆x) + c‖∆x‖2

with the coefficient c ∈ R. Subsequently, this coefficient is set as c ≡ 1
2 q̃ whereby the

coefficient q̃(x; ∆x) can be computed for certain x and ∆x. However, it is possible

that q̃(x; ∆x) is negative and thus, the local quadratic model is not bounded below.

Therefore, the coefficient q̂(x; ∆x) is chosen as

q̂(x; ∆x) ≡ |q̃(x; ∆x)| = 2|f(x+ ∆x)− f(x)−∆f(x; ∆x)|
||∆x||2

. (6.6)

By doing so, one obtains from Eq. (6.5) for all descent directions ∆x the estimate

f(x+ ∆x)− f(x) ≤ ∆f(x; ∆x) +
1

2
q̂(x; ∆x)‖∆x‖2 ≤ 0. (6.7)

In Proposition 5.3 it was proven as well that there exists a monotonic mapping

q̄(δ) : [0,∞)→ [0,∞) such that for all x ∈ N0 and ∆x ∈ Rn

2|f(x+ ∆x)− f(x)−∆f(x; ∆x)|
||∆x||2

≤ q̄(||∆x||) (6.8)

under the assumptions of this section. This holds on one hand because if the line

segment [x, x + ∆x] is fully contained in Ñ0, then the scalar q̄(‖∆x‖) denotes the

constant of Proposition 5.3. On the other hand those steps ∆x ∈ Rn for which the

line segment [x, x + ∆x] is not fully contained in Ñ0 must have a certain minimal

size, since the base points x are restricted to N0. Then the denominators in Eq.

(6.8) are bounded away from zero so that q̄(||∆x||) exists.

Since q̄ is a monotonic descending mapping which is bounded below, it converges

to some limit q̄∗ ∈ (0,∞). Nevertheless, q̄ will generally not be known, so that it

is approximated by estimates, referred to as quadratic coefficients throughout. The

sequences of iterates {xk}k∈N with xk ∈ N0 and the corresponding steps {∆xk}k∈N
with ∆xk ∈ Rn are generated by Algo. 1 and the quadratic coefficient is consistently
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6 Optimization of Composite Piecewise Differentiable Functions

updated starting from some q0 > 0 according to

qk+1 = max{q̂k+1, µ qk + (1− µ) q̂k+1, qlb} (6.9)

with q̂k+1 := q̂(xk; ∆xk), µ ∈ [0, 1] and qlb > 0 is a lower bound. Therewith, one

obtains from Eq. (6.6) and Eq. (6.9) the update strategy of the quadratic penalty

coefficient as it was already proposed in Algo. 1.

6.4 Convergence Results

Before the convergence behavior of Algo. 1 is finally analyzed at the end of this

section, some properties of the sequences {xk}k∈N, {∆xk}k∈N, {q̂k}k∈N, and {qk}k∈N
generated by Algo. 1 are proven.

Lemma 6.7. Under the assumptions that f is a composite piecewise differentiable

function which is bounded below and has a bounded level set N0 ≡ {x ∈ Rn : f(x) ≤
f(x0)} with x0 the starting point of the sequence of iterates {xk}k∈N generated by

Algo. 1, one has:

a) The sequence of steps {∆xk}k∈N exists.

b) The sequences {∆xk}k∈N and {q̂k}k∈N are uniformly bounded.

c) The sequence {qk}k∈N is bounded.

Proof. a) By minimizing the supposed upper bound ∆f(xk; ∆x) + 1
2q
k(1 +κ)‖∆x‖2

on f(xk + ∆x)− f(xk) at least locally one always obtains a step

∆xk ≡ arg min∆x(∆f(xk; ∆x) +
1

2
qk(1 + κ)‖∆x‖2).

A globally minimizing step ∆xk must exist since ∆f(xk; ∆x) can only decrease

linearly so that the positive quadratic term always dominates for large ‖∆x‖. More-

over, ∆xk vanishes only at first order minimal points xk where ∆f(xk; ∆x) and

f ′(xk; ∆x) have the local minimizer ∆x = 0.

b) It follows from qk ≥ qlb > 0 and the continuity of all quantities on the compact

set N0 that the step size δ ≡ ‖∆x‖ must be uniformly bounded by some δ̄. This
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means that the q̂ are uniformly bounded by q̄ ≡ q̄(δ̄).

c) The sequence {qk}k∈N is bounded below by qlb. Considering the first two ar-

guments of Eq. (6.9), one obtains that qk+1 = q̂k+1 and qk+1 > qk if q̂k+1 >

µ qk + (1 − µ) q̂k+1. Respectively, if q̂k+1 ≤ µ qk + (1 − µ) q̂k+1, one obtains

qk+1 ≥ q̂k+1 and qk+1 ≤ qk. This means that the maximal element of the sequence

is given by a q̂j with j ∈ {1, ..., k + 1} and thus bounded by q̄(‖∆xj‖). Therefore,

the sequence {qk}k∈N is bounded above.

The proof of Lemma 6.7 c) gives us the important insight that qk+1 ≥ q̂k+1 holds.

With these results the main convergence result of this thesis can be proven.

Theorem 6.8. Let f : Rn → R be a composite piecewise differentiable function

which is bounded below and has a bounded level set N0 ≡ {x ∈ Rn : f(x) ≤ f(x0)}
with x0 the starting point of the sequence of iterates {xk}k∈N generated by Algo. 1.

Furthermore, f is assumed to be given by an evaluation procedure as defined in

Section 5.2.

Then a cluster point x∗ of the infinite sequence {xk}k∈N generated by Algo. 1 exists.

All cluster points of the infinite sequence {xk}k∈N are Clarke stationary.

Proof. The sequence of steps {∆xk}k∈N is generated by solving the overestimated

quadratic problem in step 2 of Algo. 1 of the form

∆xk = arg min∆x(∆f(x; ∆x) +
1

2
(1 + κ)qk‖∆x‖2).

Unless xk satisfies first order optimality conditions the step ∆xk satisfies

∆f(xk; ∆xk) +
1

2
(1 + κ)qk‖∆xk‖2 < 0. (6.10)

Therewith, one obtains from Eq. (6.7) in the form

f(xk + ∆xk)− f(xk) ≤ ∆f(xk; ∆xk) +
1

2
q̂k+1(xk; ∆xk)‖∆xk‖2

≤ ∆f(xk; ∆xk) +
1

2
qk+1‖∆xk‖2
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where q̂k+1 ≤ qk+1 holds as a result to Eq. (6.9) and from Eq. (6.10) in the form

∆f(xk; ∆xk) ≤ −1

2
qk(1 + κ)‖∆xk‖2

the following inequality

f(xk + ∆xk)− f(xk) ≤ 1

2

[
qk+1 − (1 + κ)qk

]
‖∆xk‖2. (6.11)

Applying the limit superior q̄ = lim supk→∞ q
k+1 to this inequality, it can be over-

estimated as follows

f(xk + ∆xk)− f(xk) ≤ 1

2

[
q̄ − (1 + κ)qk

]
‖∆xk‖2.

Considering a subsequence of {qkj}j∈N converging to the limit superior, it follows

that for each ε > 0 a j̄ ∈ N exists such that for all j ≥ j̄ one obtains ‖q̄ − qkj‖ < ε.

Therewith the overestimated local problem provides that the term q̄−(1+κ)qkj < 0.

Since the objective function f is bounded below on N0, infinitely many significant

descent steps can not be performed and thus f(xkj +∆xkj )−f(xkj ) has to converge to

0 as j tends towards infinity. As a consequence, the right hand side of Eq. (6.11) has

to tend towards 0 as well. Therefore, the subsequence {∆xkj}j∈N is a null sequence.

Since the level set N0 is compact, the sequence {xkj}j∈N has a subsequence that

tends to a cluster point x∗. Hence, a cluster point x∗ of the sequence {xk}k∈N exists.

Assume that the subsequence {xkj}j∈N of {xk}k∈N converges to a cluster point. As

shown above the corresponding sequence of penalty coefficients {∆xkj}j∈N converges

to zero if j tends to infinity. Therewith, one can apply Lemma 6.1 at the cluster

point x∗, where it was proven that if f̂x is Clarke stationary at ∆x = 0 for one

q ≥ 0, then the piecewise smooth function f is Clarke stationary in x yielding the

assertion.

6.5 Possible Extensions

While developing Algo. 1 in the scope of this thesis the focus was put on proving

the practicality of the algorithm in terms of convergence behavior and designing an
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implementable algorithm. In doing so considering the efficiency of the algorithm did

not play an important role. Nevertheless, efficiency should be an important aspect

in future developments. Therefore, some possible extensions shall be mentioned in

the following.

The generation of the piecewise linear model in step 1 of Algo. 1 can be realized more

efficient by exploiting sparsity in the underlying abs-normal form defined in Eq. (5.7),

especially the sparsity of the matrices Z and L. By using compressing techniques for

the abs-normal form, the amount of gradient evaluations can be reduced distinctly.

Algo. 2 can also be improved in terms of efficiency. First, the quadratic problem in

step 1 of Algo. 2 can have a huge number of constraints including many inactive con-

straints. Therefore, it is reasonable to use a quadratic solver that offers appropriate

warm start options.

The other possible improvement and certainly most promising improvement is a

different computation of the descent direction in step 3 of Algo. 2. In [GW16] new

first and second order optimality conditions for piecewise smooth functions were

introduced. These optimality conditions distinguish between minima and saddle

points. Furthermore, they allow the computation of a descent direction whenever

the optimality conditions are violated. Note that they yield a descent direction

without combinatorial effort.

6.6 Survey of Previously Published Work

Parts of this thesis were published previously. A brief overview of these papers and

summaries of their contents as well as references to the corresponding chapters of

this work are given subsequently.

In 2015 the article On Lipschitz optimization based on gray-box linearization was

presented by A. Griewank, A. Walther, S. Fiege and, T. Bosse, see [GWFB15]. The

purpose of this publication was the optimization of composite piecewise differen-

tiable functions by the development of an implementable version of the method of

the steepest descent trajectory as described in [HUL93]. The proposed algorithm

was already composed of an outer and an inner loop whereby the focus was put on

the inner loop, the so-called true descent algorithm, that optimizes the local piece-
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6 Optimization of Composite Piecewise Differentiable Functions

wise linear model. This algorithm can be considered as a predecessor of Algo. 2.

Therefore, the polyhedral structure of the piecewise linearization was studied as pre-

sented in Sec. 5.4.2 and a very similar version of the bundle-type stationarity test

that is described in Sec. 6.2.2 of this thesis was already presented. Furthermore,

convergence results for the true descent method were proven in that paper similar

to those results in Sec. 6.2.3.

In 2016 the article An algorithm for nonsmooth optimization by successive piecewise

linearization was submitted by S. Fiege, A. Walther and, A. Griewank. It is available

on www.optimization-online.org. This paper considered in detail the outer loop that

optimizes the composite piecewise differentiable function by successive piecewise

linearization and proposed Algo. 1 in the form as it is also proposed in this thesis,

see the stopping criterion in Sec. 6.1, the update strategy of the quadratic coefficient

in Sec. 6.3 and, the overall convergence proof in Sec. 6.4. Additionally, an improved

version of the true descent method was presented that solves a sequence of quadratic

problems along a path of essential polyhedra. The resulting Algo. 2 is presented in

Sec. 6.2.

Finally, the article Algorithmic differentiation for piecewise smooth functions: A case

study for robust optimization was presented by S. Fiege, A. Walther, K. Kulshreshtha

and, A. Griewank, see [FWKG17]. It complements the previous article by giving

more information on the realization of Algo. 1 and Algo. 2. In particular, details

of the newly developed drivers that were integrated into the AD-tool ADOL-C are

described, see Sec. 5.3.2 and Sec. 5.4.4.
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7
Numerical Results

The numerical performance of the introduced Algo. 1 named LiPsMin is investi-

gated in this chapter by comparing it with two further state-of-the-art nonsmooth

optimization packages. To compare the methods a set of test problems is defined in

Sec. 7.1. The considered software tools and their parameter settings are described

at the beginning of Sec. 7.2 which deals mainly with the presentation and discussion

of the numerical results generated by the software tools.

7.1 Set of Test Problems

In this section, a set of test problems is presented that will be used to test LiPsMin

and to compare it with other nonsmooth optimization methods. The test problems

were divided into four categories depending on being piecewise linear or piecewise

smooth and, convex or nonconvex, respectively. In each subdivision definitions of

all test problems can be found, as well as further information concerning those

problems. Furthermore, a great number of these test problems are scalable such that

the performance of the algorithms can be analyzed in terms of a growing number of

optimization parameters and occurring absolute value functions.

7.1.1 Piecewise Linear and Convex Problems

A list of all piecewise linear and convex test problems is given below including an

initial point x0 of the optimization runs. In Tab. 7.1 further properties are presented

such as the possible dimensions n and the amount of absolute values s occurring

during the function evaluation depending on the dimension n. Additionally, the

ratio of the dimension n and the number of absolute value functions s is given in
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the column marked by n : s. Furthermore, the optimal value f∗ of each function

is given and for each problem a reference can be found in this table.

No. Problem n s n : s f∗ Reference

1 Counterexample 2 2n n < s −100 [HUL93]

2 Goffin 50 n− 1 s < n 0 [MN92]

3 MXHILB any 2n− 1 n ≤ s 0 [HMM04]

4 L1HILB any n n = s 0 [LV00]

5 Max1 any 2n− 1 n ≤ s 0 [MN92]

Table 7.1: List of piecewise linear and convex test problems

1. Counterexample of HUL

f(x) = max {−100, 3x1 ± 2x2, 2x1 ± 5x2}

x0 = (9, −2)

2. Goffin

f(x) = 50 max
1≤i≤50

xi −
50∑
i=1

xi

x0
i = i− 25.5, for all i = 1, ..., 50.

3. MXHILB

f(x) = max
1≤i≤n

∣∣∣∣∣∣
n∑
j=1

xj
i+ j − 1

∣∣∣∣∣∣
x0
i = 1, for all i = 1, ..., n.

4. L1HILB

f(x) =

n∑
i=1

∣∣∣∣∣∣
n∑
j=1

xj
i+ j − 1

∣∣∣∣∣∣
x0
i = 1, for all i = 1, ..., n.
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5. Max1

f(x) = max
1≤i≤n

|xi|

x0
i = i, for i = 1, ..., n .

7.1.2 Piecewise Linear and Nonconvex Problems

The solely piecewise linear and nonconvex test problem is given below. In Tab. 7.2

further properties are presented, as explained in Sub. 7.1.1.

No. Problem n s n : s f∗ Reference

6 2nd Chebyshev-Rosenbrock any 2n− 1 n ≤ s 0 [GO12]

Table 7.2: List of piecewise linear and nonconvex test problems

6. Second Chebyshev-Rosenbrock

f(x) =
1

4
|x1 − 1|+

n−1∑
i=1

|xi+1 − 2|xi|+ 1|

x0
i = −0.5, when mod (i, 2) = 1, i = 1, ..., n and

x0
i = 0.5, when mod (i, 2) = 0, i = 1, ..., n.

7.1.3 Piecewise Smooth and Convex Problems

A list of all piecewise smooth and convex test problems is given in Tab. 7.3 where

also further properties are presented, as explained in Sub. 7.1.1.

No. Problem n s n : s f∗ Reference

7 MAXQ any n− 1 s < n 0 [HMM04]

8 Chained LQ any n− 1 s < n −(n− 1)21/2 [HMM04]

9 Chained CB3 I any 2(n− 1) n ≤ s 2(n− 1) [HMM04]

10 Chained CB3 II any 2 s ≤ n 2(n− 1) [HMM04]

11 MAXQUAD 10 455 n < s −0.8414083 [LV00]

Table 7.3: List of piecewise smooth and convex test problems
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7. MAXQ

f(x) = max
1≤i≤n

x2
i

x0
i = i, for i = 1, ..., n/2 and

x0
i = −i, for i = n/2 + 1, ..., n.

8. Chained LQ

f(x) =
n−1∑
i=1

max
{
−xi − xi+1, −xi − xi+1 + (x2

i + x2
i+1 − 1)

}
x0
i = −0.5, for all i = 1, ..., n .

9. Chained CB3 I

f(x) =
n−1∑
i=1

max
{
x4
i + x2

i+1, (2− xi)2 + (2− xi+1)2, 2e−xi+xi+1
}

x0
i = 2, for all i = 1, ..., n .

10. Chained CB3 II

f(x) = max

{
n−1∑
i=1

(
x4
i + x2

i+1

)
,
n−1∑
i=1

(
(2− xi)2 + (2− xi+1)2

)
,
n−1∑
i=1

(
2e−xi+xi+1

)}
x0
i = 2, for all i = 1, ..., n .

11. MAXQUAD

f(x) = max
1≤i≤5

(
xTAix− xT bi

)
Aikj = Aijk = ej/k cos(jk) sin(i), for j < k, j, k = 1, ..., 10

Aijj = j
10 |sin(i)|+

∑
k 6=j

∣∣∣Aijk∣∣∣ ,
bij = ej/i sin(ij),

x0
i = 0, for all i = 1, ..., 10 .
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7.1.4 Piecewise Smooth and Nonconvex Problems

Finally, a list of all piecewise smooth and nonconvex test problems is introduced in

Tab. 7.4 where further properties are presented as explained in Sub. 7.1.1.

No. Problem n s n : s f∗ Reference

12 1st Chebyshev-Rosenb. any n− 1 s < n 0 [GO12]

13 Number of active faces any n+ 1 n < s 0 [HMM04]

14 Chained Mifflin 2 10 n− 1 s < n ≈ −6.51 [HMM04]
Chained Mifflin 2 100 n− 1 s < n ≈ −70.15 [HMM04]
Chained Mifflin 2 1000 n− 1 s < n ≈ −706.55 [HMM04]

15 Chained Cresent I any 2 s ≤ n 0 [HMM04]

16 Chained Cresent II any n− 1 s ≤ n 0 [HMM04]

Table 7.4: List of piecewise smooth and nonconvex test problems

12. First Chebyshev-Rosenbrock

f(x) =
1

4
(x1 − 1)2 +

n−1∑
i=1

∣∣xi+1 − 2x2
i + 1

∣∣
x0
i = −0.5, when mod (i, 2) = 1, i = 1, ..., n and

x0
i = 0.5, when mod (i, 2) = 0, i = 1, ..., n.

13. Number of active faces

f(x) = max
1≤i≤n

g
− n∑

j=1

xj

 , g(xi)

 where g(y) = ln (|y|+ 1)

x0
i = 1, for all i = 1, ..., n .

14. Chained Mifflin 2

f(x) =
n−1∑
i=1

(
−xi + 2(x2

i + x2
i+1 − 1) + 1.75|x2

i + x2
i+1 − 1|

)
x0
i = −1, for all i = 1, ..., n
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15. Chained Cresent I

f(x) = max

{
n−1∑
i=1

(
x2
i + (xi+1 − 1)2 + xi+1 − 1

)
,

n−1∑
i=1

(
−x2

i − (xi+1 − 1)2 + xi+1 + 1
)}

x0
i = −1.5, when mod (i, 2) = 1, i = 1, ..., n and

x0
i = 2, when mod (i, 2) = 0, i = 1, ..., n.

16. Chained Cresent II

f(x) =

n−1∑
i=1

max
{(
x2
i + (xi+1 − 1)2 + xi+1 − 1

)
,
(
−x2

i − (xi+1 − 1)2 + xi+1 + 1
)}

x0
i = −1.5, when mod (i, 2) = 1, i = 1, ..., n and

x0
i = 2, when mod (i, 2) = 0, i = 1, ..., n.

7.2 Comparison and Discussion of Numerical Results

This section presents the results of a great number of optimization runs which are

depict in the same order as they were introduced in the previous section. The

results are mainly in tabular form but are complemented by further information

and figures. To compare and discuss the different optimization packages, the used

software packages are briefly introduced in the following.

7.2.1 Nonsmooth Software Packages and their Parameter Settings

The compared software tools and the respective parameter settings are briefly de-

scribed subsequently. Although all tools were designed to optimize nonsmooth ob-

jective functions of the form considered in this thesis, it is apparent that the three

optimization tools differ significantly from each other through, e.g., programming

language, available information, etc. Because of that any comparison of the algo-

rithms has to be considered carefully. Nevertheless, comparing the methods can still

give an appropriate idea of the performance of LiPsMin.
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LiPsMin

The algorithm LiPsMin was introduced extensively in Chap. 5 and Chap. 6. How-

ever, certain internal coefficients were just defined theoretical. Their values as used

in the implementation of the algorithm are given in Tab. 7.5 as well as the three

remaining parameters that have to be defined by the user. To apply LiPsMin the

objective function has to be available as an evaluation procedure as explained in

Sec. 5.2.

Coefficient of overestimated model, see Eq. (6.1) κ 0.5
Coefficient of update strategy, see Eq. (6.9) µ 0.9
Coefficient of termination criterion, see Algo. 3 β 0.5

Initial quadratic coefficient for PL problems q0 0.001
Initial quadratic coefficient for PS problems q0 0.1
Final accuracy tolerance eps 1e− 8
Upper bound for number of iterations maxIter 10000

Table 7.5: Parameter setting of LiPsMin (internal and user-defined parameters)

MPBNGC 2.0

The package MPBNGC is a Fortran implementation described in [Mäk03]. It solves

nonsmooth multi-objective optimization problems where the objective function f :

Rn → Rk and the constraint function g : Rn → Rm are supposed to be locally

Lipschitz continuous. In Sec. 4.3 a very similar proximal bundle method by [MN92]

was explained for the case k = 1.

To optimize user-defined problems the user has to provide a subroutine that evalu-

ates the functions f and g and single subgradients of these functions. In addition,

the user can influence the behavior of the subroutine by choosing several parame-

ters. The amount of parameters is certainly a major drawback of this type of bundle

methods, since it is not easy for the user to find out how these parameters influence

the behavior of the method and what is the best adjustment for a specific optimiza-

tion problem. For the comparison of the three optimization methods the parameters

were chosen as given in Tab. 7.6.
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Line search parameter RL 0.01
Distance measure parameter if f convex GAM 0
Distance measure parameter if f nonconvex GAM 0.5
Final accuracy tolerance EPS 1e− 8
Upper bound for the size of the bundle JMAX n
Upper bound for number of iterations NITER 10000
Upper bound of function/gradient evaluations NFASG 10000
Upper bound of function/gradient evaluations per iteration JMAX 1000

Table 7.6: Parameter setting of MPBNGC

HANSO 2.2

The package HANSO is a hybrid algorithm for smooth and nonsmooth, convex and

nonconvex objective functions. It combines a BFGS method as introduced in [LO13]

based on a weak Wolfe line search and a gradient sampling approach as presented

in [BLO05]. However, the gradient sampling method is not used by default since it

is mainly required for coherent convergence results. In practical terms the BFGS

method works sufficiently well such that the computationally expensive gradient

sampling can be neglected.

Analogous to MPBNGC the user of HANSO has to provide a subroutine that eval-

uates the function f and single, arbitrary subgradients g ∈ ∂f(x) of the considered

objective function. In addition, the user can influence the behavior of the sub-

routine by choosing several parameters. The parameter setting for the subsequent

comparison is given in Tab. 7.7.

Termination tolerance options.normtol 1e− 8
Evaluation distance options.evaldist 1e− 4
Maximal number of BFGS iterations options.maxit 10000

Table 7.7: Parameter setting of HANSO

7.2.2 Results of Piecewise Linear and Convex Problems

In the following, the results of the comparison are introduced and discussed. The

data obtained from the optimization runs are collected in tables. For each test
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problem there is one table that contains the results of all three solvers. The results

comprise in each case the detected target value (f∗), the number of function and

gradient evaluations (#f and #∇f), and the number of required iterations (Iter).

For LiPsMin, the number of gradient evaluations #∇f counts the number of reverse

sweeps needed to compute the abs-normal form. Since all problems were solved in

only a few seconds and the three solvers were written in different programming lan-

guages, a comparison of the computational time was considered as not meaningful.

n f∗ #f #∇f Iter

LiPsMin 2 −100 3 8 2

MPBNGC 2 −100 7 7 6

HANSO 2 −100 9 9 3

Table 7.8: Results of test problem 1: Counterexample of HUL

n f∗ #f #∇f Iter

LiPsMin 50 3.69e− 12 3 100 2

MPBNGC 50 5.40e− 12 66 66 65

HANSO 50 2.72e− 14 3178 3178 745

Table 7.9: Results of test problem 2: Goffin

n f∗ #f #∇f Iter

LiPsMin
10 1.24e− 8 4 60 3
50 3.40e− 8 10 900 9
100 4.37e− 8 20 3800 19

MPBNGC
10 2.92e− 10 11 11 10
50 5.49e− 10 15 15 13
100 4.01e− 10 18 18 15

HANSO
10 1.49e− 13 643 643 259
50 2.98e− 11 879 879 382
100 2.82e− 11 1233 1233 494

Table 7.10: Results of test problem 3: MAXHILB

The presentation of the results follows the same order as the definition of the test

set. Hence, the results of the piecewise linear and convex test problems defined in

Sec. 7.1.1 are presented first in Tab. 7.8 - Tab. 7.12.
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n f∗ #f #∇f Iter

LiPsMin
10 1.16e− 9 4 33 3
50 1.18e− 8 4 153 3
100 3.09e− 8 4 303 3

MPBNGC
10 1.67e− 9 24 24 15
50 2.22e− 9 25 25 16
100 3.60e− 9 24 24 17

HANSO
10 6.44e− 13 504 504 226
50 2.28e− 11 575 575 303
100 5.95e− 12 761 761 403

Table 7.11: Results of test problem 4: L1HILB

n f∗ #f #∇f Iter

LiPsMin
10 6.66e− 16 3 40 2
50 4.66e− 14 5 400 4
100 3.00e− 13 13 2400 12

MPBNGC
10 1.19e− 13 29 29 27
50 1.05e− 12 123 123 121
100 1.86e− 9 176 176 165

HANSO
10 7.63e− 6 38 38 26
50 3.81e− 6 119 119 67
100 1.91e− 6 220 220 118

Table 7.12: Results of test problem 5: Max1

As expected LiPsMin uses the additional structure information efficiently to mini-

mize the number of iterations and function value evaluations. However, the number

of gradient evaluations is increased in some cases. This is due to fact that the num-

ber of gradient evaluations is understood as the number of reverse sweeps needed to

compute the abs-normal form (ANF). Therewith, it takes (s+1) gradient evaluations

to evaluated one abs-normal form.

7.2.3 Results of Piecewise Linear and Nonconvex Problems

The results of the piecewise linear and nonconvex test problem are given in Tab. 7.13.

Non of the three optimization methods succeeds in detecting a local minimizer. In-

stead, Clarke stationary but nonminimal points are detected. This is not too surpris-
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ing since the second Chebyshev-Rosenbrock function has 2n−1− 1 Clarke stationary

points but only one minimizer as reported in [GO12]. Beyond that all three opti-

mization methods only promise to detect stationary points in the nonconvex case.

n f∗ #f #∇f Iter

LiPsMin
10 0.398438 21 400 20
50 0.400000 3 200 2
100 0.400000 3 400 2

MPBNGC
10 0.400390 10000 10000 9807
50 0.400000 188 188 187
100 0.350000 251 251 249

HANSO
10 0.399414 1383 1383 514
50 0.400000 2607 2607 463
100 0.400001 2278 2278 290

Table 7.13: Results of test problem 6: Second Chebyshev-Rosenbrock

To distinguish minimizers and Clarke stationary points that are no minimal points

new first- and second-order optimality conditions were proposed in [GW16]. These

optimality conditions are based on the linear independent kink qualifications (LIKQ)

which is a generalization of LICQ familiar from the smooth, nonlinear optimization

theory. In [GW16] it was proven that the second Chebyshev-Rosenbrock functions

satisfies LIKQ throughout Rn. Therewith, an adaption of Algo. 2 based on LIKQ

can be used to actually minimize the function. Therefore, the original computation

of a descent direction can be replaced by a reflection of the signature vector σ on the

current polyhedron Pσ into the opposing polyhedron by switching all active signs

from 1 to −1 or vice versa.

7.2.4 Results of Piecewise Smooth and Convex Problems

In the following, the results of the piecewise smooth and convex test problems are

presented in Tab. 7.14 - Tab. 7.18. A large number of optimization runs detected

successfully minimal points. The bundle method MPBNGC stopped once because

the number of maximal function and gradient evaluations was reached, see Tab. 7.16.

Taking a closer look at the run, it appears that MPBNGC almost located the min-
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imizer after a reasonable number of iteration, but could not achieve the demanded

accuracy. The quasi-Newton method HANSO failed once, see Tab. 7.18. By en-

abling the gradient sampling mode, the minimal point could be detected as well as

indicated in the additional row marked by (*).

The number of function evaluations and required iterations of all three routines

are of comparable order of magnitude. This holds mostly also for the number of

gradient evaluations. However, there are cases where the number of required gradient

evaluations by LiPsMin exceeds the numbers of the other two routines as can be

n f∗ #f #∇f Iter

LiPsMin
10 2.72e− 9 34 330 33
50 1.36e− 8 58 2850 57
100 8.09e− 9 129 12800 128

LiPsMin
(Sparsity)

10 2.72e− 9 34 198 33
50 1.36e− 8 58 399 57
100 8.09e− 9 129 1024 128

MPBNGC
10 3.45e− 9 126 126 101
50 3.79e− 9 577 577 549
100 4.46e− 9 1118 1118 1083

HANSO
10 6.16e− 17 787 787 352
50 2.12e− 16 4409 4409 1906
100 2.97e− 16 8922 8922 3991

Table 7.14: Results of test problem 7: MAXQ

seen in Tab. 7.14. One reason of the higher number of gradient evaluations is as

mentioned before that it strongly depends on the number of absolute functions values

occurring during function evaluation, since s + 1 gradients have to be evaluated to

generate an abs-normal form at a time. However, the abs-normal form, especially

the matrices Z and L, may be sparse matrices. This sparsity is not exploited yet.

Furthermore, if the switching depth ν defined in Eq. (5.8) is minimized by coding

the objective function appropriately, the matrices Z and L become even sparser.

This effect is demonstrated in Exam. 7.1 by the reformulation of the maximum of a

vector and was applied to test problem 7 as presented in Tab. 7.14.
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Example 7.1. Let f : R4 → R be the maximum function. Hence, coding the

function by

max v = max(max(v1, v2),max(v3, v4))

yields a switching depth ν = 2 in contrast to the original formulation

max v = max(max(v1,max(v2,max(v3, v4)))

which yields a switching depth ν = 3. This decreased switching depth leads to a

higher sparsity of the corresponding abs-normal forms.

n f∗ #f #∇f Iter

LiPsMin
10 −12.727922 15 140 14
50 −69.296464 15 700 14
100 −140.00714 15 1400 14

MPBNGC
10 −12.727922 40 40 33
50 −69.296464 143 143 108
100 −140.00714 468 468 273

HANSO
10 −12.727922 315 315 100
50 −69.296464 1238 1238 274
100 −140.00714 2353 2353 416

Table 7.15: Results of test problem 8: Chained LQ

n f∗ #f #∇f Iter

LiPsMin
10 18.000000 12 209 11
50 98.000000 21 1980 20
100 198.00000 22 4179 21

MPBNGC
10 18.000000 10000 10000 9999
50 98.000000 260 260 259
100 198.00000 2740 2740 2739

HANSO
10 18.000000 608 608 175
50 98.000000 968 968 149
100 198.00100 918 918 124

Table 7.16: Results of test problem 9: Chained CB3 I
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n f∗ #f #∇f Iter

LiPsMin
10 18.000000 91 270 90
50 98.000000 107 318 106
100 198.00000 106 315 105

MPBNGC
10 18.000000 46 46 45
50 98.000000 60 60 59
100 198.00000 41 41 40

HANSO
10 18.000000 198 198 71
50 98.000000 202 202 79
100 198.00000 208 208 69

Table 7.17: Results of test problem 10: Chained CB3 II

n f∗ #f #∇f Iter

LiPsMin 10 −0.841429 43 210 42

MPBNGC 10 −0.841408 40 40 39

HANSO 10 0 32 32 1

HANSO (*) 10 −0.841397 2943 2943 86

Table 7.18: Results of test problem 11: MAXQUAD

The previous results compared the convergence behavior of the three nonsmooth

optimization methods and confirmed well the theoretical considerations derived in

Sec. 6.4. However, the rate of convergence was not discussed so far, since there

are no theoretical results considering this issue yet. Nevertheless, the rate of con-

vergence is a crucial property of an optimization method. To get a first idea the

convergence behavior of three piecewise linear and convex test problems (MAXQ,

Chained LQ, Chained CB3 II) is illustrated in Fig. 7.1. These three test problems

were chosen since all optimization runs were preformed successfully by each opti-

mization routine. Each figure shows three optimization runs (n = 10, 50, 100) for

each method (LiPsMin, MPBNGC, HANSO). In particular, the function value f(xk)

is marked on the axis of ordinates while the number of the iterate k is marked on

the abscissa. Note that both scales are logarithmically. Considering problems 8 and

9 it strikes that the function value of the first iteration is bigger than the previous

one. This is due to a small initial quadratic coefficient q0 and therewith, a not suf-

ficiently accurate quadratic model. This drawback is adjusted in all further steps

by computing appropriate quadratic coefficients based on the second order model
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introduced in Sec. 6.3. In total, the results presented in Fig. 7.1 are promising,

since the convergence behavior of LiPsMin compares well with the MPBNGC and

HANSO.
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Figure 7.1: Comparison of convergence behavior

7.2.5 Results of Piecewise Smooth and Nonconvex Problems

Finally, the results of the piecewise smooth and nonconvex functions are analyzed,

see Tab. 7.19 - Tab. 7.23. As can be expected from general theory it turns out

that these problems are the most difficult to solve. Nevertheless, only a small

amount of optimization runs fails which means that the corresponding optimization

runs do not terminate regularly by detecting a Clarke stationary point. The first
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Chebyshev-Rosenbrock functions causes difficulties to all three routines as can be

seen in Tab. 7.19. The first Chebyshev-Rosenbrock function has only one stationary

point which is the global minimizer. No routine is able to locate the minimizer.

As in the piecewise smooth and convex case, the bundle method MPBNGC fails

several times because it is not able to gain the necessary accuracy. Additionally, it

also tends to terminate with a lower accuracy when successful.

n f∗ #f #∇f Iter

LiPsMin
10 0.809757 10001 100000 10000
50 0.818136 6 250 5
100 0.818136 6 500 5

MPBNGC
10 0.626470 10000 10000 9786
50 0.630265 353 353 352
100 0.006109 2283 2283 1842

HANSO
10 0.817073 18753 18753 100000
50 0.818136 2654 2654 482
100 0.818136 5173 5173 757

Table 7.19: Results of test problem 12: First Chebyshev-Rosenbrock

n f∗ #f #∇f Iter

LiPsMin
10 4.22e− 15 4 66 3
50 2.46e− 14 9 816 8
100 6.75e− 11 14 2626 13

MPBNGC
10 7.55e− 9 20 20 15
50 4.09e− 5 10000 10000 34
100 4.44e− 5 10000 10000 9993

HANSO
10 8.37e− 5 23 23 11
50 2.35e− 6 27 27 11
100 1.29e− 4 29 29 11

Table 7.20: Results of test problem 13: Number of active faces
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n f∗ #f #∇f Iter

LiPsMin
10 −6.514614 68 670 67
100 −70.15019 68 6700 67

MPBNGC
10 −6.5146142 206 206 184
100 −70.149860 100000 100000 9999

HANSO
10 −6.5146142 391 391 147
100 −70.150188 2600 2600 789

Table 7.21: Results of test problem 14: Chained Mifflin 2

n f∗ #f #∇f Iter

LiPsMin
10 5.15e− 12 56 110 55
50 4.80e− 12 57 112 56
100 3.32e− 12 58 114 57

MPBNGC
10 1.15e− 8 49 49 40
50 5.70e− 9 167 167 83
100 4.17e− 9 96 96 66

HANSO
10 1.11e− 16 171 171 49
50 1.67e− 15 180 180 52
100 1.67e− 15 145 145 46

Table 7.22: Results of test problem 15: Chained Crescent I

n f∗ #f #∇f Iter

LiPsMin
10 4.49e− 12 58 570 57
50 3.08e− 12 60 2950 59
100 3.47e− 12 60 5900 59

MPBNGC
10 5.07e− 9 196 196 195
50 7.10e− 9 519 519 518
100 8.01e− 9 733 733 684

HANSO
10 5.22e− 15 626 626 238
50 7.40e− 7 453 453 92
100 4.28e− 7 457 457 111

Table 7.23: Results of test problem 16: Chained Crescent II

In Tab. 7.22 and Tab. 7.23 it can be observed how minor changes of the objective

function may change the computational effort. Although the overall results are less

clear as in the previous section, they are promising since LiPsMin compares well
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with the other two optimization methods.

As in the piecewise smooth and convex case, the rate of convergence shall be observed

exemplary for those functions where all optimization runs located minimizing points

successfully. In this case, these are the test problems 15 and 16 (Chained Crescent

1, Chained Crescent 2). Initially, the behavior of the quadratic coefficient q is

illustrated in Fig. 7.2. In Lem. 6.7 it was proven that the quadratic coefficient is

bounded which is well reflected by the results. Additionally, it can be seen in
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Figure 7.2: Behavior of quadratic penalty coefficient q
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Figure 7.3: Comparison of convergence behavior

Fig. 7.2 and Fig. 7.3 how a small initial quadratic coefficient q0 causes an increase
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of the function value f(x1) but is immediately corrected by an adjusted quadratic

coefficient. Therewith, LiPsMin again converges with a comparable speed as the

bundle method MPBNGC and the quasi-Newton method HANSO.

In conclusion one can say that the results of LiPsMin throughout all four subsets of

test problems are promising. In terms of robustness, accuracy and convergence be-

havior it keeps up with the other state-of-the-art optimization routines. Moreover, it

is indicated how further exploitation of the polyhedral structure by applying the new

first-and second-order optimality conditions proposed in [GW16], and exploitation

of sparsity as indicated in Exam. 7.1 can improve the efficiency of LiPsMin.
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8
Conclusion

The purpose of this thesis was to develop, implement and examine an algorithm to

optimize composite piecewise differentiable objective functions by successive piece-

wise linearization. Therefore, the main result of this work is the newly developed

algorithm LiPsMin. In contrast to numerous conventional nonsmooth algorithms,

LiPsMin exploits additional structural information obtained from the successively

generated quadratic local model and in particular, from the underlying piecewise

linearization. Since the performance of LiPsMin is encouraging, it is important to

extract key concepts and ideas, and to reveal future research directions.

8.1 Summary

In this work, the unconstrained, nonconvex, and nonsmooth optimization problem

min
x∈Rn

f(x)

was considered where f : Rn → R is a composite piecewise differentiable function.

At the beginning of this thesis, the importance of this class of functions was outlined

by sample examples from optimization theory.

Subsequently, fundamental concepts from nonsmooth analysis were introduced con-

cerning convex, Lipschitz continuous, and piecewise smooth functions. These con-

cepts were required to define optimality conditions, to develop LiPsMin, and to

finally prove convergence of LiPsMin. Besides, wide-spread ideas and methods from

the field of nonsmooth optimization methods were introduce to give an idea of the

initial situation of this doctoral study.
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The idea of LiPsMin is the optimization of composite piecewise differentiable func-

tions by successive piecewise linearization and by exploitation of the resulting poly-

hedral structure. Therefore, it was necessary to have the ability to evaluate the

piecewise linear local model, to analyze its structure, and to determine how the re-

quired information can be obtained. The generation and evaluation of the piecewise

linearization was realized by an extension of the AD-tool ADOL-C, i.e., ADOL-C’s

set of elemental functions was augmented by the absolute value function as well

as a tangent approximation of the absolute value functions which ensures that the

obtained approximation of the underlying function is of second order. It turned out

to be very beneficial to express the piecewise linearization in its abs-normal form,

since it allows an efficient computation of all required components. The analysis of

the polyhedral decomposed argument space of the piecewise linearization induced

by the nondifferentiabilities enabled the determination of directional information

as the directionally active gradient. Beyond theoretical considerations, it was out-

lined how the computation of the afore mentioned components was realized in the

implementation.

The final algorithm LiPsMin consists of an outer loop that operates on the original

piecewise smooth target function. It is responsible for the generation of the local

model which is a composition of the piecewise linearization and a quadratic term

that guarantees the lower boundedness of the model. Once the quadratic local model

is built, the inner loop PLMin which minimizes the local model by solving a sequence

of constrained quadratic subproblems is called. It was proven that PLMin detects

a Clarke stationary point after finitely many iterations. Moreover, the convergence

of LiPsMin towards a Clarke stationary point was proven which is certainly one of

the main results of this thesis.

After developing and analyzing LiPsMin, its numerical performance was examined.

Therefore, it was compared with two further state-of-the-art software tools, namely

the bundle-type method MPBNGC and the quasi-Newton-type method HANSO.

The test set covered piecewise smooth, piecewise linear, convex, and nonconvex

problems. The majority of test problems was scalable in its dimension such that the

behavior of the optimizations routines for a growing complexity could be observed.

The number of required iterations, function and gradient evaluations as well as the

finally computed optimal function values were listed for each optimization run. The

102



8.2 Future Research Directions

results demonstrated that LiPsMin compares well with the other two routines in

all compared quantities. Additionally, the rate of convergence was compared for

several piecewise smooth problems, and again LiPsMin kept pace with the other

two routines.

8.2 Future Research Directions

The algorithm LiPsMin represents a good foundation for further research. The

results in Chap. 7 indicate for the considered problems a reasonable rate of conver-

gence. Therefore, it is important to further analyze the convergence behavior of the

proposed algorithm such that the observed behavior gets confirmed theoretically.

Since the focus of this thesis was the development of an implementable algorithm,

the efficiency of the algorithm was neglected and should be improved. Therefore,

three working points were identified. First, exploiting the sparsity properties of the

abs-normal form promises to notably reduce the number of gradient evaluations and

the amount of required storage. Second, the constrained quadratic subproblems

successively solved by PLMin might have a large number of constraints, but they

also might have a similar structure which could be exploited by an appropriate QP-

solver with proper warm-start options. However, the most promising improvement

seems to be a replacement of the bundle-based stationarity test by an approach based

on new first- and second-order optimality conditions introduced in [GW16]. This

approach promises to test on stationarity without combinatorial effort and yields a

descent direction whenever the stationarity test fails.

The previous considerations aimed for an improvement of the algorithm while con-

sidering the same optimization problem as in this thesis. Another interesting aspect

is an extension of LiPsMin for more general optimization problems. Considering

more general objective functions which include, e.g., the Euclidean norm or even

jumps is of interest, since there are numerous applications causing such objective

functions. However, an extension to these more general functions is not straight

forward. Including the Euclidean norm yields an approximation which is no longer

of second order and allowing jumps causes objective functions which are no longer

Lipschitz continuous. Although these more general functions are much more difficult
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to handle, they should be considered due to their great importance. The considered

optimization problem can also be generalized by allowing constraints. The degree of

difficulty of this purpose depends certainly on the type of constraints such as box-

constraints, smooth and nonsmooth equality and inequality constraints. According

to the constraints it has to be answered which optimality conditions hold and how

the constraints can be integrated in the algorithm.

In summary, it appears that LiPsMin represents already in its current form an algo-

rithm that compares well with other nonsmooth optimization software. The analysis

of the structure induced by the nondifferentiabilities proved to be very beneficial

and by gaining an even deeper knowledge of this structure further improvement

of LiPsMin can be expected for a more efficient and for a more general version of

LiPsMin, respectively.
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[Mie98] Kaisa Miettinen. Nonlinear Multiobjective Optimization. Springer, 1998.

[Mif82] Robert Mifflin. A modification and an extension of Lemaréchal’s algo-
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