
Local Algorithms for the Continuous
Gathering Problem 1

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

an der Fakultät für Elektrotechnik, Informatik und Mathematik
der Universität Paderborn

vorgelegt von
Pavel Podlipyan

Paderborn, November 15, 2017

1Die Arbeit wurde teilweise unterstützt vom DFG-Sonderforschungsbereich 901
(On-The-Fly Computing) und der International Graduate School Dynamic Intelli-
gent Systems.

ii

Betreuer:
Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn

Gutachter:
Prof. Dr. Friedhelm Meyer auf der Heide, Universität Paderborn
Prof. Dr. Christian Scheideler, Universität Paderborn

iii

iv

Acknowledgements
This work would not have been possible without the support of

many people to whom I would like to express my acknowledgment.
First of all, I would like to thank Prof. Dr. Friedhelm Meyer auf
der Heide for the great support, guidance and freedom he gave
me. We had many long discussions resulting in ideas that form the
basis of this thesis. I feel very lucky to have been invited to the
International Graduate School of Dynamic Intelligent Systems in
the summer of 2012. This would not have been possible without
the assistance of Astrid Canisius and Prof. Dr. Eckhard Steffen.

I am deeply thankful to all professional colleagues for supporting
my work. Special thanks goes to the members of the Algorithms
and Complexity Group and in particular my office partners Peter
Pietrzyk, Christine Markarian and Shouwei Li. I would like to
thank Alexander Mäcker for his time invested into proofread of
this thesis. I am also grateful to all the students I had the pleasure
to work with. I would like to thank my Bachelor students Johannes
Schaefer and Arne Kemper. It was a great pleasure that Johannes
joined the Algorithms and Complexity Group as a doctoral student.

Besides that, I would like to express my acknowledgement to my
family. It would not have ever been possible to get so far without my
parents Olga and Yevgeni. I am also very thankful to my sister Julia
and her family Sasha, Sofia and Lena for so much care. Finally, I
am deeply grateful to Josefine for making me happy every day. Last
but surely not least, I would like to thank Anne and Johannes as
well as all Schwaneyer, especially the Allenkreuers: Josef, Jutta,
Elisabeth, Katharina and Maria. You are the best!

Pavel Podlipyan
Paderborn, September 21, 2017

v

vi

Abstract

We consider a group of mobile robots in the Euclidean plane.
Robots have a limited vision range and do not have a central con-
trol. Each robot acts by depending solely on local information.
Many algorithmic problems arise in such a setting. In this work,
we explore the continuous gathering problem. The goal is to know
how fast the robots can gather in one not-predefined point in the
continuous time model. In this model, each robot continuously ob-
serves its local neighborhood and adapts its speed and direction fol-
lowing a local rule. We present a class of algorithms, which we call
the contracting algorithms, that perform gathering in time O(nd),
where n is the number of robots and d is the diameter of the ini-
tial configuration. We also present several contracting algorithms
and analyze their efficiency. Upper and lower bounds on the time
needed to gather all robots in one not-predefined point are given.
Besides that, we investigate how the use of proximity subgraphs of
visibility graphs influences the gathering processes. Simulations ex-
hibit a severe difference in the behavior of robots using a Gabriel or
Relative Neighborhood graphs as the visibility graph. While a lot
of collisions occur during the gathering process, typically only one
collision (the final one) takes place if robots use proximity graphs.
We present a contracting algorithm which ensures that no collision
occurs during the gathering process. This algorithm requires the
robots to have some additional capabilities, such as memory and
chirality.

vii

viii

Zusammenfassung

Im Zentrum unserer Betrachtung steht eine Gruppe von mobilen
Robotern auf euklidischer Ebene. Roboter haben begrenzte Sicht
und keine zentrale Steuerung. Sie agieren ausschließlich auf Grund-
lage lokaler Informationen. In diesem Rahmen ergeben sich viele
algorithmische Probleme. In der vorliegenden Arbeit widmen wir
uns dem Problem der kontinuierlichen Versammlung. Wir wollen
herausfinden, wie schnell sich Roboter innerhalb eines kontinuier-
lichen Zeitmodells, an einem zuvor nicht definierten Punkt, sam-
meln können. In einem solchen Modell beobachtet ein Roboter sei-
ne unmittelbare Nachbarschaft kontinuierlich, während er gleich-
zeitig Geschwindigkeit und Richtung nach lokalen Vorgaben an-
passt. Diesbezüglich legen wir eine Klasse von Algorithmen vor, die
wir kontrahierende Algorithmen nennen. Algorithmen dieser Klasse
veranlassen Roboter sich in der Zeit von O(nd) zu sammeln, wobei
n die Anzahl der Roboter und d den Durchmesser der Anfangskon-
figuration beschreiben. Ferner zeigen wir einige konkrete kontra-
hierende Algorithmen, die wir auf ihre Effizienz hin untersuchen.
Wir setzen Obere und Untere Schranken hinsichtlich der benötigten
Zeit für die Versammlung von allen Robotern in einem zuvor nicht
definierten Punkt. Daneben untersuchen wir, inwiefern sog. Proxi-
mity Untergraphen des Sichtbarkeitsgraph den Sammlungsprozess
beeinflussen. Simulationen zeigen einen deutlichen Unterschied im
Verhalten von solchen Robotern, die den Gabriel- oder Relativen
Nachbarschaftsgraph als Sichtbarkeitsgraph nutzen. Während vie-
le der Zusammenstöße während des Sammlungsprozesses auftreten,
lässt sich bei der Verwendung von Proximity Graphen typischerwei-
se nur ein Zusammenstoß (endgültig) ausmachen. In dieser Arbeit

ix

präsentieren wir eine kontrahierende Strategie, welche einen kolli-
sionsfreien Sammlungsprozess gewährleistet. Diese Strategie erfor-
dert, dass Roboter einige zusätzliche Fähigkeiten besitzen.

x

Contents

1 Introduction 1

1.1 Organization of the Thesis 4
1.2 Related Work . 5
1.3 Bibliography Note 12

2 Gathering in the Continuous Time Model 13

2.1 Problem Description and Notation 13
2.2 Contracting Algorithms 15

2.2.1 The Worst Contracting Algorithm 21
2.2.2 The Best Contracting Algorithm 24

2.3 Examples of Local Contracting Algorithms 26
2.3.1 Go-On-Bisector Algorithm 26
2.3.2 Go-To-The-Gravity-Center Algorithm 27
2.3.3 Go-To-The-Center Algorithm 31
2.3.4 Go-To-The-Relative-Center Algorithm 35

3 Collisionless Gathering 39

3.1 Go-To-The-Center Algorithm is not Collisionless . . 39
3.2 Go-To-The-Relative-Center Algorithm in One Dimen-

sion . 41
3.3 Go-To-The-Relative-Center Algorithm in Two Dimen-

sions . 43
3.4 Collisions in Go-To-The-Relative-Center Algorithm . 47

xi

3.5 The Collisionless Conjecture for Four Robots 57

4 Collisionless Gathering with Some Algorithmic Ex-
tensions 61
4.1 Safe-Go-To-The-Relative-Center Algorithm 62

4.1.1 Correctness and Runtime Analysis of the Safe-
Go-To-The-Relative-Center Algorithm 67

4.1.2 Collisionless Property of the Safe-Go-To-The-
Relative-Center Algorithm 70

4.2 The Near Gathering Problem 84

5 Conclusion and Outlook 87

Bibliography 91

xii

Chapter 1

Introduction

Autonomous aerial and ground vehicles are gradually playing a ma-
jor role in search and rescue, monitoring, surveillance and inspec-
tion operations. In the near future, scenarios in which a group of
small scale autonomous robots inspect narrow indoor or outdoor
environments might be a reality. Mobile robots would actively ex-
plore unknown environments while avoiding collisions and creating
maps. In such scenarios, ground or low-flying aerial robots cannot
rely on the information from any global positioning system. A fully
autonomous operation of robots acting solely on local information
involves a number of challenges on different levels of robot design.
For autonomous mobile robots, one of the main problems in such
a settings is to build a given formation out of an arbitrary initial
configuration. These problems are known as robot formation prob-
lems. The availability of only local information makes formation
problems particularly interesting.

The features that allow robots to work with information are their
capabilities. Examples include unique identification numbers, mem-
ory, and a compass. Typically, the aim is to use as few capabilities
as possible in order to solve a given formation problem. In this
work, we consider robots with a limited viewing range. Such robots

1

are capable of locating the positions of other robots only within a
certain fixed range. Each robot knows only the position of some
of the robots. However, robots are still required to build a given
formation out of an arbitrary initial disposition.

In this work, we consider formation problems on a high level of
abstraction. Simple models of the robot and the environment en-
sure that correctness and efficiency can be proved. The robots are
represented by the points on the Euclidean plane. These robots
neither block each other on their path while moving nor obstruct
the vision of each other. The very natural aim in every formation
problem is to use as few capabilities as possible so that the robots
remain as inexpensive as possible. Therefore, in our model robots
have no common compass : i.e., they do not agree on the orienta-
tion of their local coordinate system. Robots are anonymous, which
means that they do not have any unique identifiers. In Chapter 3,
this assumption will be relaxed. In order to achieve collisionless
gathering, robots become luminous, i.e. they have one bit of visible
external memory. This will allow them to see whether their neigh-
bors belong to one of two groups. Robots are silent, meaning that
they do not communicate directly. Robots can measure the exact
relative positions of their neighbors within their viewing range: for
example, the distances to the visible robots and the angles between
the rays to these robots. Yet, this information cannot be stored.
In Chapter 2, we consider oblivious robots, which do not use the
memory to store the past. The robots therefore, have to base their
decisions only on the current observed relative positions of their
visible neighbors. In Chapter 3, robots will gain memory in order
to achieve collisionless gathering. Besides that, in Chapter 3 the
robots are chiral : i.e., they all agree either on left- or right-hand
orientation.

2

The formation problem considered in this work is the gathering
problem. The group of n robots must gather in one point which
is not predefined. During the gathering process the robots need to
agree on the gathering point by depending only on local informa-
tion. For every robot, the set of visible robots is not fixed. We call
the graph that has an edge between any pair of robots that can see
each other is a visibility graph. In order to gather all robots at one
not-predefined point, we only demand that the visibility graph is
connected at the beginning.

One part of the puzzle is the robot model. The other part of
the puzzle is the time and activation model. The algorithms that
we present in this work inherit the common Look-Compute-Move
(LCM) model due to [CP04]. As the name of this model suggests, it
consists of three steps. When a robot is activated, it first observes
the environment within its limited viewing range and determines
the relative positions of its neighbors in the visibility graph. In
the second step, the robot calculates the target point : i.e., the
point towards which the robot will move. Finally, the robot moves
towards the target point computed in the previous step. Depending
on how often robots execute the three LCM steps we split the time
models into discrete and continuous. In this thesis we consider the
continuous time model.

The goal of this thesis is to examine how efficiently the robots
with a limited viewing range solve the gathering problem in a con-
tinuous time model. Besides that, we will also examine whether
it is possible to use local information to gather the robots without
collisions. The gathering problem in the model that we consider be-
comes trivial if an unlimited viewing range is granted to the robots.
The challenge is to gather the robots efficiently with local informa-
tion.

3

Let us consider a start configuration of n robots such that the
visibility graph is connected. For such a configuration and a given
algorithm, we are interested in several things. The first of these
is the correctness of the algorithm. The algorithm is correct if it
preserves the connectivity between the robots with respect to the
visibility graph. Besides that, we are interested in the quality of
our algorithms. The definition of a quality measure depends on the
time and activation model. In discrete time models, the quality
is commonly measured in a number of rounds. For the continuous
time model, a more suitable measure is the travel time of the robot.

Thus, our quality measure will be as follows. We use the maxi-
mum of the total time traveled by the robots until they are gathered
at one not-predefined point. The maximum is taken over n robots.
We refer to this quality measure as the (maximum) traveled time.
The last thing, though not the least point of interest, is the prop-
erty of the algorithms to gather robots without collisions. We say
that two robots collide if they are at the same point at the same
time. We dedicate the second half of this thesis to the collisionless
property of gathering algorithms.

1.1 Organization of the Thesis

We first start with an overview of the related work. In Chapter 2,
we give a formal description of the gathering problem. Then, we
define the quality measure for gathering algorithms in a continuous
time model and the class of contracting algorithms. For this class,
we present an upper and lower bound on the time needed to gather
all robots using a contracting algorithm. The rest of Chapter 2 is
dedicated to the analysis of the various local continuous gathering
algorithms.

4

In Chapter 3, we study the collisionless property of gathering
algorithms. In the simulation of the Go-To-The-Relative-Center
and Go-To-The-Gabriel-Center algorithms on the Euclidean plane,
we observe that robots gather without collisions from random con-
figurations. We show that for one dimension, the gathering with
both algorithms is collisionless. For the two-dimensional case, we
show that collision takes place only at the linear number of specific
points.

Using this structural information and additional algorithmic ex-
tensions in Chapter 4, we develop the Safe-Go-To-The-Relative-
Center algorithm. This algorithm is local, collisionless, and con-
tracting. We also apply the Safe-Go-To-The-Relative-Center algo-
rithm to the near gathering problem. In Chapter 5, we conclude
the thesis and raise some open questions.

1.2 Related Work

In the literature, robot formation problems are categorized depend-
ing on the formation that must be reached. For example, there
are chain problems [DKLM06, DKMS07, KM09, KM11], where the
goal is to achieve line formation; or there are circle formation prob-
lems [CMN04, DK02, FPSV14, Kat05], where the goal is to po-
sition all robots on the circle. The gathering problem is a forma-
tion problem with the simplest formation that must be reached.
The goal of the robots is to reach a common single point, e.g.
[ASY95, FJM17, GWB04].

The convergence problem [CDF+11a, CP04, Kat11, SY99] is a
relaxed version of the gathering problem. As the name suggests,
the difference in this case, is that the robots do not need to reach
some common point, but to converge to it. In the literature, a

5

convergence problem commonly refers to a problem in which the
goal is a single point formation. For the various formation problems,
such relaxation is also possible [KM11].

The particular formation problem is defined according to the
model of the robot, the model of the environment, and the time
and activation model. For any formation problem, there are two
questions: (1) Is there an algorithm that solves the particular for-
mation problem with a given robot model? (2) And if there is one,
what is the quality of this algorithm? A major work in the field
of formation problems has been done to answer the first question.
The theoretical analysis or simulations have been used in order to
show that robots with a certain set of capabilities are able to reach
the necessary formation. Less attention was given to the second
question. There are far fewer statements about the quality of the
algorithm.

The model of the robot, namely the set of capabilities the robot
requires to solve the particular formation problem as well as the
quality of the solution heavily depend on the environment model
and the time and activation model. In order to investigate this de-
pendence, in the last 20 years researchers focused on the gathering
and convergence problems. The simplicity of the desired forma-
tion allows us to get rid of many unnecessary complications in the
analysis. In what follows, we shortly describe the most frequently
used models in gathering and convergence problems and some other
formation problems.

The algorithm of the robot is subdivided into three logical steps:
’Look’, where the robot gets the information about the environ-
ment; ’Compute’, where the robot computes a target destination
based on the obtained information; ’Move’, where the robot moves
toward the target destination. When the robot does not perform

6

any operation, it is said to be idle. These three steps form a cycle.
The activation model is a schedule of the robot and the robot’s
timings of the steps within a cycle. There are two main models:
asynchronous and semi-synchronous.

In the general asynchronous model [CFPS03, CP04], the acti-
vation schedules of the robots are completely independent of each
other. Robots may become active at any time and the idle state
may split the cycle at any point. The only thing we know about
the cycles is that its duration is finite and the robot is activated
infinitely often. Due to this asynchronous model, only the correct-
ness and the termination of the algorithm are usually considered,
but no runtime bounds are given. In some cases, problems are con-
sidered experimentally [BCJKF14, CDF+11b]. In this experiments
authors were concentrating on the correctness and the quality of
the algorithms.

In the semi-synchronous model [DP09, SDY09, SY99], activation
schedules of the robots are synchronized and consist of rounds. One
or more robots in each round are activated at the same time. In
such a schedule, the information obtained by the robot is more
consistent. No robot will ever observe the other robot during the
motion. However, at each round, it is unknown which robots are
activated. If all robots are activated in every round, then we get
a synchronous activation model [ASY95, DKLM06, DKL+11]. In
this model, all robots perform their algorithm at the same time in
sequential rounds. For the comprehensive survey of various discrete
time models for the gathering and other related problems we refer
the reader to the book [FPS12] by Flocchini, Prencipe and Santoro.

Apart from these three discrete time models mentioned above,
there is at least one more. The continuous time model was pro-
posed for the first time in [GWB04]. The authors of [KKM12] spec-

7

ify that the continuous time model may be viewed as the extreme
instance of the discrete classical Look-Compute-Move model. As-
suming a speed limit of one, the continuous time model arises from
the discrete LCM model by fixing the maximum distance traveled
per round by δ and letting δ → 0.

After the robot is activated, it performs a look operation and
obtains an information about the surrounding environment. De-
pending on the vision range of the robot, there is an unlimited or a
limited visibility model. With unlimited visibility, every robot ob-
tains information about the whole environment. With limited visi-
bility, just partial information about the surrounding environment
is obtained by a robot. Usually, limited vision model is represented
by the unit disk graph as in [ASY95]. Each robot can only see a
certain distance away from its current position. Unlimited visibility
as in [SY99] is the most commonly used model.

Cohen and Peleg show that if robots with unlimited visibility
move towards the center of gravity, then they converge around the
single point in a highly asynchronous model [CP04]. They also
provide runtime bounds for the different activation models. Sev-
eral of these bounds have been later improved in [CDF+11a]. For
a more restricted asynchronous model, Katreniak present an algo-
rithm that solves the convergence problem with limited visibility
[Kat11]. The same algorithm solves the convergence problem with
unlimited visibility in an asynchronous model, without the need to
detect whether there is more than one robot at a given point (mul-
tiplicity detection). For robots that have a multiplicity detection,
Cieliebak et al. in [CFPS03] propose an asynchronous algorithm
that solves the gathering problem with unlimited visibility. The
authors of [CDSN17] consider the variant of the gathering prob-
lem in an asynchronous time model in which the robots need to

8

gather at only some predetermined points in the plane. The au-
thors of [ASY95] show that the robots with limited visibility acting
in a synchronous discrete time model gather at one not-predefined
point using a minimum enclosing circle algorithm. It has been
shown in [DKL+11] that robots described in [ASY95] gather in
Θ(n2) rounds. A special semi-synchronous model is considered in
[DKM10]. A round in this model consists of a movement of all
robots in random order. For this model, the authors of [DKM10]
present an algorithm that achieves gathering in O(n2) rounds in
expectation.

In most of the works mentioned above the robots are placed
on a Euclidean plane. The gathering and other formation prob-
lems on the grid are considered in [ACF+16, DSKN12, LM14]. In
[CLFJM16], the gathering problem on the grid, in a synchronous
time model, is solved by very simple robots in a linear number of
rounds. The authors of [CLFJM16] use a pipeline technique similar
to [KM09]. It is commonly assumed that robots are oblivious. They
do not use the memory to store the past. However, in [CLFJM16],
robots are able to remember a fixed number of steps. In [FJM17],
a similar gathering problem on the grid is solved in a quadratic
number of rounds with oblivious robots.

A common assumption in the models with unlimited visibility
is an absence of unique identification – the robots are anonymous.
Unique IDs or agreement on local coordinate system (i.e., a com-
pass) together with unlimited visibility make the gathering problem
trivial. It is shown in [DP09] that anonymous robots without a com-
mon compass with unlimited visibility gather in semi-synchronous
models if and only if n is odd. The various aspects of the models
with a compass are studied in [IKIW07, KTI+07, SDY06, SDY09].

Independent of the visibility model, robots can either be trans-

9

parent or not. Often, robots are viewed as points and thus their
visibility is unobstructed. The opposite assumption is made in
[LFC+17]. It is shown that the mutual visibility problem can be
solved without collisions by non-transparent, luminous robots with
unlimited visibility. The aim in the mutual visibility problem is to
reach a configuration in which each robot can see the rest (i.e., all
robots are on the boundary of the convex polygon). Robots with
lights or luminous robots are initially suggested by Peleg [Pel05].
Robots are called luminous if they have an external light with col-
ors chosen from a fixed set. The light is visible to other robots
depending on the visibility model.

Two point-shaped robots have a collision if they have the same
position at the same time. The collisionless property becomes more
important if the robots gain extent. For the first time, the Gath-
ering problem for robots with an extent is considered in [CGP06],
where the authors presented a solution for three and four robots
by exhaustively considering all possible cases. Besides that, in
[CGP06], the gathering itself is redefined, since robots with ex-
tent are not allowed to occupy the same position. Instead, gather-
ing means forming a configuration for which the union of all discs
representing the robots is connected. For the same model as in
[CGP06], a general solution for the number of robots greater than
four is presented by the authors of [AGM13] with an additional
assumption of chirality. If robots agree on the left- and right-hand
orientation, they are called chiral. Gathering of small groups of
robots with extent in an asynchronous time model is also consid-
ered in [HPT14]. Commonly, there is no direct communication
between the robots – they are silent. The collisionless motion in
the group of mobile robots with an asynchronous communication is
considered in [YDIW07].

10

The gathering of robots with an extent in an synchronous time
model is defined differently in [CDF+11b]. The goal of the robots
is to gather without touching, in such a way that disks representing
the robots do not intersect. Robots gather around a predefined
point that is already known by every robot. It is shown that robots
gather in O(nR) rounds, where n is the number of robots and R is
the distance from the gathering point to the farthest robot. This
bound has been improved in [SBMM17] by the tight linear bound.

Unlike in [CGP06] and [AGM13], the robots in [CDF+11b] have
limited visibility. The robots with limited visibility but without
extend are considered in [PPV15]. This work considers the near
gathering problem, in which the aim of the robots is to get close
enough to be in the vision range of each other without collisions and
switch in this way to the setting in which the algorithms that utilize
a global vision will work. Furthermore, the robots in [PPV15] are
equipped with a compass so that they have a common coordinate
system.

The continuous time model for the Gathering problem was first
used in [GWB04]. Unlike in common discrete time models, robots
do not act in rounds, but rather continuously adjust directions of
movement towards calculated target points, while moving with con-
stant velocity. As a result, runtime cannot be defined as the num-
ber of rounds. Instead, it is defined as the time that robots need
to reach formation needed. The authors of [KKM12] analyze the
runtime of the algorithm introduced in [GWB04], and show that the
time needed for gathering is bounded byO(min{n,OPT log(OPT)}),
where n is the number of robots and OPT is the runtime of the
optimal algorithms with unlimited visibility. There are no bounds
for the minimum enclosing circle algorithm proposed in [ASY95]
within the continuous time model.

11

1.3 Bibliography Note

Many of the results in this thesis have already been published as
a preliminary version in conference proceedings. The analysis of
the gathering problem and the collisionless property have been pre-
sented in [LMP16].

Shouwei Li, Friedhelm Meyer auf der Heide, Pavel Podlipyan:
The impact of the Gabriel subgraph of the visibility graph on the
gathering of mobile autonomous robots. In: Algorithms for Sensor
Systems, Proceedings of the 12th International Symposium on Al-
gorithms and Experiments for Wireless Sensor Networks (ALGO-
SENSORS 2016), Springer-Verlag, 25 - 26 August 2016 (LNCS)

An extended version of this paper has been invited for submission
to a special issue of the Theoretical Computer Science Journal.
The first local collisionless gathering algorithm was presented in
[LMMP17].

Shouwei Li, Christine Markarian, Friedhelm Meyer auf der Heide,
Pavel Podlipyan: A Continuous Strategy for Collisionless Gather-
ing. To appear in: Algorithms for Sensor Systems, Proceedings of
the 13th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks (ALGOSENSORS 2017), Springer-
Verlag, 7 - 8 September 2017 (LNCS).

Some results from Chapter 2 and Chapter 4 have not been pub-
lished yet.

12

Chapter 2

Gathering in the Continuous Time
Model

In this chapter we will propose simple criterion that defines a class
of algorithms that perform gathering on the Euclidean plane at time
O(nd), where d is the diameter of the initial configuration. Next,
for a given class of algorithms we consider upper and lower bound
of maximum traveled time. Then we consider robots with limited
visibility and for such robot model we present and analyze several
examples of contracting algorithms.

2.1 Problem Description and Notation

We are given a set R = {r1, . . . , rn} of n autonomous mobile robots.
We denote by ri(t) ∈ R2 the position of robot ri at time t. Robots
agree on the unit distance. Each robot has its own local coordinate
system. Robots are oblivious, meaning that they act depending
only on the information about the current point of time. They are
anonymous, meaning that they do not have IDs, and are also silent,
meaning that they do not communicate. However, the robots can
determine the positions of other robots within a viewing range 1
from its own position.

13

The given robot model is formalized by the unit disk graph. The
Euclidean distance between two robots ri and rj at time t is rep-
resented by |ri(t), rj(t)|. The two robots are open unit disk graph
(open UDG) neighbors at time t if |ri(t), rj(t)| < 1. Further, to
save the space "open" will be dropped in the description of open
unit disk graph, neighbors etc.

The set of robots that consists of the robot ri itself and all its
UDG neighbors at time t is called the UDG neighborhood of ri
and denoted by UDGt(ri). The UDG defined on all robots at
some point in time t is denoted by UDGt(R) = (R,Et), where
(ri, rj) ∈ Et iff |ri(t), rj(t)| < 1. We skip t in the notation of
the UDG neighborhood and UDG unless it needs to be mentioned
explicitly.

The disposition of robots at some point in time t on the plane is
called a configuration. The disposition of robots at time t = 0 is
called the initial configuration. Initial configurations are arbitrary
except that all robots have distinct positions and if robots have lim-
ited visibility, then UDG over all robots at time t = 0 (UDG0(R))
is connected. The goal is to gather all robots at one point that is
not predefined.

We consider the continuous time model, first introduced by Gor-
don et al. in [GWB04] and later studied by Kempkes et al. in
[KKM12]. The velocity of the robot depends solely on the rela-
tive positions of neighboring robots at the current point of time. It
may change in a non-continuous manner since robots measure the
relative positions of their neighbors without delay and instantly ad-
just their own movement with respect to the measurements. The
maximum speed of the robot is assumed to be 1.

14

2.2 Contracting Algorithms

In this section, for the continuous time model we introduce a class
of algorithms that perform gathering on the Euclidean plane at
time O(nd), where d is the diameter of the initial configuration.

Let us first define the progress measure. Let Ht(R) ⊂ R2 be
the closed convex hull around the positions of all robots at time
t. We are particularly interested in robots that are corners of a
convex hull. Namely, we consider the set of robots CHt(R) =

{ci ∈ Ht(R) : αi(t) ∈ [0, π), i ∈ [1, k], k ≤ n}, where n is the
total number of robots and k is the number of robots that belong
to the boundary of the convex hull and have the internal angle
αi(t) ∈ [0, π). We refer to CHt(R) as the corner set of the convex
hull Ht(R). Unless explicitly needed, we skip t in the notation of
the convex hull and corner set.

Definition 1 (Contracting algorithm). In the continuous time model,
a Gathering algorithm for n robots on the Euclidean plane is con-
tracting if for every time t such that cardinality of CHt(R) is
strictly greater than 1, every robot from CHt(R) moves with speed
1 in the direction that points into Ht(R).

If an algorithm is contracting, then we can bound the speed with
which the length of the convex hull is decreasing. Let l(t) be the
length of the convex hull boundary at time t. Using the corner set
we express the length as follows:

l(t) =
k∑
i=1

∣∣ci, c(i mod k)+1

∣∣ , (2.1)

where k is the number of robots in the corner set. Let l′(t) be
the speed with which the length l(t) of the convex hull bound-
ary changes. The length of the convex hull boundary will be the

15

progress measure for contracting algorithms. Before bound the l′(t)
from below we need to state one useful lemma.

Lemma 1. For 0 ≤ ϑ ≤ 1 and 0 ≤ α ≤ π it holds that

cos(αϑ) + cos(α(1− ϑ)) ≥ 2(α− π)2

π2
. (2.2)

Proof. First we would like to note that the left part of inequality
2.2 is symmetric with respect to ϑ. Thus, we only need to consider
0 ≤ ϑ ≤ 1/2. Let us get rid of ϑ by bounding the left part of
inequality 2.2 from below as follows:

cos(αϑ) + cos(α(1− ϑ)) ≥ cos(α) + 1. (2.3)

We use the interval method. The equation

cos(α) + 1− (cos(αϑ) + cos(α(1− ϑ))) = 0 (2.4)

has the following roots: α1 = 0, α2 = π if 0 < ϑ ≤ 1/2 and
0 ≤ α ≤ π if ϑ = 0. It implies that the sign of the function

f(α, ϑ) = cos(α) + 1− (cos(αϑ) + cos(α(1− ϑ))) (2.5)

does not change on the interval 0 ≤ α ≤ π for any 0 < ϑ ≤
1/2. The sign is negative, since f(π/2, 1/4) < − 1/4. If ϑ = 0, then
inequality 2.3 becomes an equality. It is left to show that

2(α− π)2

π2
≤ cos(α) + 1. (2.6)

We use the same method. Roots on interval 0 ≤ α ≤ π are α1 =

0, α2 = π and the according sign is negative, e.g. for α = π/2

2(π2 − π)2

π2
− cos

(π
2

)
+ 1 = −1

2
. (2.7)

16

ci(t)
ci−1(t) ci+1(t)

αi(t)ϑi(t) αi(t)(1− ϑi(t))
~vi(t)

ci(t)

Figure 2.1: Velocity ~vi(t) of robot ci.

Due to this we can conclude that inequality 2.2 holds for 0 ≤ ϑ ≤ 1

and 0 ≤ α ≤ π.

Now we are ready to bound from below the speed l′(t) with which
the length l(t) of the convex hull boundary changes.

Lemma 2. If a group of n robots executes a contracting Gathering
algorithm and the robots are not yet gathered (i.e., the cardinality
of CHt(R) is strictly greater than 1), then the length l(t) of the
convex hull boundary at any point in time t decreases with speed
l′(t) ≥ 8

n.

Proof. By definition of the contracting algorithm each robot ci ∈
CH(R) at time t moves with speed 1 in the direction of H(R).
We do not know how velocity ~vi(t) divides the internal angle αi(t).
This is illustrated in Figure 2.1. Due to this we introduce param-
eter ϑi(t) ∈ [0, 1] which defines two angles between the velocity
vector ~vi(t) and edges of the corner hull adjacent to robot ci. Using
parameter ϑi(t), the internal angle αi(t) is given by

αi(t) = αi(t)ϑi(t) + αi(t)(1− ϑi(t)). (2.8)

Note that a change of ~vi(t) causes just a change of parameter
ϑi(t) ∈ [0, 1] within a given range.

Now we consider a line segment between ci and ci+1. We call
this line segment the edge of the corner set. The length of this
edge is given by di,i+1(t) = |ci(t), ci+1(t)|. The velocity ~d′i,i+1(t),

17

with which the length is changing is represented by ~d′i,i+1(t) =
~Pvi(t) + ~Pvi+1(t), where ~Pvi(t), ~Pvi+1(t) are the orthogonal pro-
jection of velocity of robots ci and ci+1 onto the line between these
robots. Projections as well as ~d′i,i+1(t) can be represented by scalar
velocities d′i,i+1(t), Pvi(t), Pvi+1(t), where the sign of the scalar will
represent whether the corresponding component of speed increases
or decreases length di,i+1(t). Further, in order to simplify the no-
tation we skip time t. The value of Pvi depends on αi(1− ϑi) and
can be represented as follows:

Pvi(αi(1− ϑi)) =

cos(αi(1− ϑi)) if αi(1− ϑi) ≤ π/2;

− cos(αi(1− ϑi)) if αi(1− ϑi) > π/2.

(2.9)
In the same way we represent Pvi+1, which depends on αi+1ϑi+1.
The scalar velocity with which the length of the edge between ci

and ci+1 is changing can now be expressed as follows:

d′i,i+1(αi(1− ϑi), αi+1ϑi+1) = Pvi(αi(1− ϑi)) + Pvi+1(αi+1ϑi+1).

(2.10)
The overall speed with which the length of the corner hull is chang-
ing at time t is represented by the sum of scalar velocities of each
edge of the corner set

l′ =
k∑
i=1

d′i,j(αi(1−ϑi), αjϑj) =
k∑
i=1

(Pvi(αi(1− ϑi)) + Pvj(αjϑj)) ,

(2.11)
where j = (i mod k)+1. Although, instead of summing up over all
edges of the corner hull we can sum up over all robots by rearrang-
ing components in l′ sum. For each robot ci we define the scalar

18

l′i(αi, ϑi), which consist of two components, namely l′i(αi, ϑi) =

Pvi(αi(1− ϑi)) +Pvi(αiϑi). Then the overall speed is represented
by

l′ =
k∑
i=1

l′i(αi, ϑi) =
k∑
i=1

cos(αiϑi) + cos(αi(1− ϑi)). (2.12)

From the useful Lemma 1 we know that the function l′i(αi, ϑi)

is lower bounded by 2(αi − π)2/π2,∀αi ∈ [0, π),∀ϑi ∈ [0, 1]. Using
this fact, we can calculate the lower bound of speed with which the
length of corner hull decreases, namely

l′(t) =
k∑
i=1

l′i(αi, ϑi) ≥
2

π2

k∑
i=1

(αi − π)2; (2.13)

To bound the obtained sum we use the sum of the square’s inequal-
ity:

i=k∑
i=1

ai
2 ≥ 1

k

(
k∑
i=1

ai

)2

. (2.14)

It follows straight forward that

l′(t) ≥ 2

kπ2

(
k∑
i=1

(αi − π)

)2

. (2.15)

It is well known that the sum of internal angles of a convex polygon
is π(k− 2), where k is the number of the polygon’s vertices. Thus

l′(t) ≥ 2

kπ2

((
k∑
i=1

αi

)
− kπ

)2

, (2.16)

l′(t) ≥ 2

kπ2
(π(k − 2)− kπ)2 , (2.17)

19

l′(t) ≥ 8

k
. (2.18)

As k ≤ n, l′(t) ≥ 8
n .

It is well known that the length of the convex hull boundary is
O(d), where d is the diameter of the initial configuration. Hence,
the theorem below follows directly.

Theorem 1. Every contracting Gathering algorithm solves the Gath-
ering problem in time O(nd), where d is the diameter of an initial
configuration.

For the robots with limited visibility by simple induction the
length of the convex hull boundary is upper bounded as follows.

Lemma 3. If we are given a connected unit disk graph with n

robots, then the length l of the convex hull boundary is not greater
than 2(n− 1), where n is a number of robots.

Proof. We will show that each additional robot can increase the
length of the convex hull boundary l at most by 2. First, assume
we have only one robot and n = 1, then the length of the convex
hull boundary l ≤ 2(1− 1) = 0. If we want to increase the length
by adding one more robot we need to place it at a maximal possible
distance 1 away from the first one. In this case for n = 2 with two
robots l ≤ 2(2− 1) = 2, since the convex hull boundary consists of
two edges of length 1.

Assume that our inequality l ≤ 2(n − 1) holds for an arbitrary
number of robots n. If we want to increase the length of the convex
hull boundary by adding one more robot r to the existing n robots,
then to preserve connectivity we need to place it outside the existing
convex hull H(R) at the most a distance 1 away from one of the
robots ci that belongs to the hull.

20

Let (cp1, r) and (r, cp2), where p1, p2 ∈ [1, n] are new edges of the
corner hull around n + 1 robots. Let d = |cp1, r| + |r, cp2| be the
length of these edges. When the number of robots was k, the length
of corner hull between cp1, ci was l(cp1, ci) ≥ |cp1ci|, and between ci,
cp2 the length was l(ci, cp2) ≥ |cicp2|. Now, using triangle inequality
we can bound the length of new edges

|cp1r| ≤ 1 + |cp1ci| ≤ 1 + l(cp1ci), (2.19)

|rcp2| ≤ 1 + |cicp2| ≤ 1 + l(cicp2). (2.20)

By summing up inequalities we get the desired result

d = |ci−p1r|+ |rci+p2| ≤ l(ci−1ci) + l(cici+1) + 2. (2.21)

The difference in length between the convex hull boundaries of n
and n+ 1 robots is at most 2.

For the robots with limited visibility, Theorem 1 and Lemma 3
yield the following.

Corollary 1. If an initial configuration is a connected unit disk
graph, then a contracting Gathering algorithm solves the Gathering
problem in time O(n2).

2.2.1 The Worst Contracting Algorithm

A continuous algorithm is contracting if at any point of time t
(unless robots are already gathered), every corner robot on the
convex hull boundary moves with speed 1 inside the (closed) convex
hull. Next we consider the worst initial configuration and according
worst contracting algorithm that solves the gathering problem from

21

a given configuration in time Ω(nd), where d is the diameter of an
initial configuration.

Worst algorithm: Assume there is an initial configuration where
all robots are corners of the convex hull boundary. Moreover, the
boundary of the convex hull is a regular polygon. The target point
of each robot is a left neighbor on the hull boundary with respect
to the center of the regular polygon. Each robot moves with speed
1 towards its target point: i.e., left neighbor on the hull bound-
ary. We call this algorithm the Implicit-Go-To-The-Left algorithm,
since we do not specify how the robots in this algorithm know which
neighbor is left one. Note that such Implicit-Go-To-The-Left algo-
rithm is contracting. An instance with n = 6 robots is depicted in
Figure 2.2.

Figure 2.2: An instance of n = 6 robots that execute the Implicit-Go-To-The-
Left algorithm.

The given algorithm together with a regular polygon as the ini-
tial configuration is better known as a symmetric n-bug1 problem
[Ber59, Nah07]. Using the technique from Lemma 2 we can bound

1Mice, dogs, etc.

22

from above the speed l′(t) with which the length l(t) of the convex
hull boundary changes.

Lemma 4. In a symmetric n-bug problem the length l(t) of the
convex hull boundary decreases with speed l′(t) ≤ 2π2

n .

Proof. Let us take a look at Equation 2.12 from Lemma 2:

l′ =
k∑
i=1

l′i(αi, ϑi) =
k∑
i=1

cos(αiϑi) + cos(αi(1− ϑi)). (2.22)

This equation holds for any contracting strategy. For the symmetric
n-bug problem k = n, ϑi = 0 and αi = π(n−2)

n for all i. Thus,

l′ = n

(
1 + cos

(
π(n− 2)

n

))
= n

(
1− cos

(
2

n
π

))
. (2.23)

Next we use the fact that cos(α) ≥ 1− 1
2α

2 for α ≥ 0:

l′ ≤ n

(
1−

(
1− 1

2

(
2

n
π

)2
))

=
2π2

n
. (2.24)

It is well known that the length of the convex hull boundary is
Ω(d), where d is the diameter of the initial configuration. Accord-
ing to this fact and Lemma 4, in n-bug problems robots gather in
time Ω(nd). If we use robots with limited visibility, then the next
statement follows directly from Lemma 4 and Lemma 2.

Corollary 2. If in a symmetric n-bug problem the initial configu-
ration is a connected unit disk graph, then robots gather in time t,
with n2

2π2 ≤ t ≤ n2

8 .

23

2.2.2 The Best Contracting Algorithm

Next we consider the best contracting algorithm, such that robots
gather in time O(d), where d is the diameter of the initial configu-
ration.

Best algorithm: Let us consider robots that are corners of the con-
vex hull boundary, i.e. corner set CH(R). Each robot moves with
speed 1 on the inner angle bisector. The other robots stay idle. We
call this algorithm the Implicit-Go-On-Bisector algorithm, since it
does not specify how the robots get the information about their
neighbors on the boundary of the convex hull. Such an Implicit-
Go-On-Bisector algorithm is clearly contracting. An instance of
n = 11 robots that execute the Implicit-Go-On-Bisector algorithm
is depicted in Figure 2.3.

Figure 2.3: An instance of n = 11 robots that execute the Implicit-Go-On-
Bisector algorithm.

Using the technique from Lemma 2 again, we can bound from
below the speed l′(t) with which the length l(t) of the convex hull
boundary changes if robots use the Implicit-Go-On-Bisector algo-
rithm.

Lemma 5. If robots use the Implicit-Go-On-Bisector algorithm,
then the length l(t) of the convex hull boundary decreases with speed
l′(t) ≥ 4.

24

Proof. Let us take a look at the Equation 2.12 from Lemma 2 again:

l′ =
k∑
i=1

l′i(αi, ϑi) =
k∑
i=1

cos(αiϑi) + cos(αi(1− ϑi)). (2.25)

This equation holds for any contracting strategy. If robots use the
Implicit-Go-On-Bisector algorithm, then ϑi = 1/2 for all i. Thus,

l′ = 2
k∑
i=1

cos

(
1

2
αi

)
. (2.26)

Next we use the fact that cos
(
α
2

)
≥ 1− α

2 for α ≥ 0:

l′ ≥ 2
k∑
i=1

(
1− αi

π

)
, (2.27)

l′ ≥ 2k − 2

π

k∑
i=1

αi. (2.28)

It is well known that the sum of internal angles of a convex poly-
gon is π(k − 2), where k is the number of the polygon’s vertices.
Therefore it holds that l′ ≥ 4.

It is well known that the length of the convex hull boundary is
O(d), where d is the diameter of the initial configuration. According
to this fact and Lemma 5, robots that use Implicit-Go-On-Bisector
algorithms gather in time O(d) from any initial configuration. If we
use robots with limited visibility, then the next statement follows
directly from Lemma 5 and Lemma 2.

Corollary 3. If the initial configuration is a connected unit disk
graph, then robots gather using the Implicit-Go-On-Bisector algo-
rithm in time O(n).

25

2.3 Examples of Local Contracting Algorithms

In this section we consider robots with limited visibility and with-
out any implicit information. The input information of each robot
consists of the relative positions of other robots in its viewing range.
Next we consider several gathering algorithms that use local infor-
mation only and show that they are contracting.

2.3.1 Go-On-Bisector Algorithm

For robots with limited visibility the Go-On-Bisector algorithm pro-
posed by Gordon et al. in [GWB04] and later studied by Kempkes
et al. in [KKM12] is used.

Go-On-Bisector algorithm: Each robot r ∈ R at every point in
time t observes the relative positions of all robots within the viewing
range 1. Then the robot computes the local convex hull LHt(r) of
these positions including itself. Depending on the disposition, the
robot performs the following actions.

• If r is strictly inside the convex hull, it does not move.

• If r is on the edge of the local convex hull boundary, then it
moves with this line, maintaining the ratio of distances be-
tween its two neighbors on the border.

• If r is a corner of LHt(r), then it moves with speed 1 on the
angle bisector towards the inner angle of LHt(r). In case r
has only 1 neighbor, the inner angle is zero and r just moves
towards its only neighbor.

Proposition 1. The Go-On-Bisector algorithm is contracting.

26

First of all, if robot r is a corner robot of the convex hull Ht(R),
then it is also a corner robot of its own local convex hull LHt(r).
Moreover, such a corner robot r moves with speed 1 according to
the Go-On-Bisector algorithm inside Ht(R), since⋃

r∈R
LHt(r) ⊂ Ht(R). (2.29)

Therefore we can conclude that the Go-On-Bisector algorithm is
contracting. However, our approach from Lemma 5 does not work
with the Go-On-Bisector algorithm, since for any corner robot r of
H(R) the bisector of the inner angle in LH(r) does not necessarily
coincide with the bisector of the inner angle in H(R).

Kempkes, Kling and Meyer auf der Heide in [KKM12] show that
if robots with limited visibility use the Go-On-Bisector algorithm,
then they gather in time O(min{n,OPT log(OPT)}), where n
is the number of robots and OPT is the runtime of the optimal
algorithm with unlimited visibility.

Besides the Go-On-Bisector there are several other algorithms
that are well analyzed in the discrete time models, but there is no
quality or correctness analysis in the continuous time model: e.g.,
the Go-To-The-Gravity-Center algorithm, due to Cohen et al. in
[CP04], or the Go-To-The-Center algorithm proposed in [ASY95]
within the continuous time model.

2.3.2 Go-To-The-Gravity-Center Algorithm

Let us consider robots with limited visibility in the continuous time
model that execute the following algorithm:

Go-To-The-Gravity-Center (GTGrC) algorithm: Each robot r ∈
R, at every point in time t, observes relative positions of all robots

27

within viewing range 1. Then each robot computes its target point
T (r), which is the center of the gravity (average position) of all
these positions including itself. Depending on disposition, the robot
performs the following actions.

• If r is not at the target point T (r) yet, then the robot moves
towards it with speed 1.

• If r is already at the target point T (r), then it follows the
motion of the target point.

Note that the position of the target point might change in a dis-
continuous manner: for example, when a new robot appears in the
viewing range of r.

Proposition 2. The Go-To-The-Gravity-Center algorithm is con-
tracting.

Proof. Let us consider corner set CH(R) of the convex hull H(R).
It is well known that the center of the gravity – i.e., the centroid
or arithmetic mean of the convex polygon always lies inside the
polygon. Due to this, for any robot r ∈ CH(R) the corresponding
target point T (r) lies inside, the local convex hull LH(r). Since⋃

r∈R
LH(r) ⊂ H(R) (2.30)

we can state that any robot r ∈ CH(R) also moves inside H(R). It
is left to show that if robots are not gathered yet, then the velocity
of the corner robots is always 1.

Let us consider the corner robot r ∈ CH(R) and corresponding
internal angle α < π. Let b be a bisector of this angle and S be the
local coordinate system such that the origin is at r and the X axis
lies on b. Let us consider the average coordinate x̄ of all robots from

28

UDG(r) \ r on the X axis. Assume that x̄ is outside the convex
hull. Since the average cannot be greater than the maximum there
must be a robot in UDG(r) \ r outside of the convex hull.

Assume that x̄ is at the origin and positive direction of theX axis
points outside the convex hull. All neighbors of r are inside of the
convex hull, thus the X coordinate of every robot in UDG(r) \ r is
either negative or 0. If x̄ is at the origin, then all summands are 0.
In other words, all neighbors are on the Y axis and r is not a corner
robot of the local convex hull LH(r) and therefore r /∈ CH(R).

The arguments above imply that x̄ is strictly negative. Thus the
target point of r does not coincide with the position of r. Accord-
ing to the GTGrC algorithm, robot r moves with speed 1.

Proposition 2 and Lemma 3 imply that robots with limited vis-
ibility gather in time O(n2). They do, but they gather at more
than one non-predefined point because the unit disk graph might
fall apart into connected components during the gathering process
with GTGrC algorithm.

Definition 2 (Connectivity). If robots execute some gathering al-
gorithm and UDG(r) is connected for all t ≥ 0, then we say that
the given gathering algorithm preserves connectivity.

Lemma 6. The Go-To-The-Gravity-Center algorithm does not pre-
serve connectivity.

Proof. Let us consider the following set of initial positions

{x−n , ..., x−1 , x+1 , ..., x+n } (2.31)

of a set R = {r−1, ..., r−n, rn, ..., r1} of 2n robots in one dimensions,
where

x+i =

(
1

2
+

i2

1
10 + i2

)
(2.32)

29

and x−i = −x+i , for i = {0, . . . , n}. This set is illustrated in Fig-
ure 2.4.

Figure 2.4: An example of the initial configuration of 2n robots that breaks into
two connected components at any t > 0, if robots use the GTGrC algorithm
and n ≥ 4.

All robots execute the GTGrC algorithm. Let us consider robot
x+1 situated at the position 1/2. The unit disk graph neighborhood
of x+1 except itself consists of x−1 and {x+2 , ..., x+n }. Let us consider
the target point T (x+1). It is given by

T (x+1) =
−1

2 + 1
2 +

∑n
i=2

(
1
2 + i2

1
10+i

2

)
n+ 1

. (2.33)

The elements of the sequence 2.32 grow monotonically as i grows.
For i ≥ 2 it holds that x+i ≥ 9/10. Using this fact we can bound
from below T (x+1) as follows:

T (x+1) >
9(n− 1)

10(n+ 1)
. (2.34)

For n ≥ 4 it holds that T (x+1) > 1/2. In other words if n ≥ 4, then
target point of x+1 is strictly on the right of its position. Due to
symmetry we can conclude that the target point of x−1 is strictly on
the left of its position. The distance between x+1 x

−
1 is 1 – as soon as

they start moving the whole configuration will be disconnected.

30

2.3.3 Go-To-The-Center Algorithm

Ando, Suzuki, and Yamashita in [ASY95] present the Go-To-The-
Center algorithm. They show that robots with limited visibility
acting in a synchronous time model gather at one non-predefined
point. In this section we will show that in the continuous time
model the Go-To-The-Center algorithm gathers n robots with lim-
ited visibility in one non-predefined point in time O(n2).

The smallest or minimum enclosing circle (MEC) plays a central
role in this algorithm. Theminimum enclosing circle is the smallest
circle that contains all points of a given set on the Euclidean plane.
Let us first consider the two-dimensional case. For the MEC in 2D,
Chrystal has shown the following properties.

Proposition 3. (Chrystal [Chr85]) Let C be minimum enclosing
circle of a point set S. Then either:

1. there are two points m1,m2 ∈ S on the circumference of C
such that the line segment (m1m2) is a diameter of C, or

2. there are three points m1,m2,m3 ∈ S such that C circum-
scribes 4m1m2m3 and the center c of C is inside 4m1m2m3,
which means that 4m1m2m3 is an acute or at most a right
triangle.

Let us consider a robot r ∈ R at some point in time t together
with its unit disk graph neighborhood UDGt(r). The minimum
enclosing circle Ct(r) encircles all unit disk neighbors in UDGt(r).

With respect to the cases considered in Proposition 3 we will call
the minimum enclosing set of the robot r (at time t) the following
sets: MECt(r) = {m1,m2} or MECt(r) = {m1,m2,m3}. We say
that robots of MECt(r) form the minimum enclosing circle Ct(r)
of robot r at time t. Note that robot r might belong to its own

31

minimum enclosing set, e.g. MECt(r) = {m1, r}. In the one-
dimensional case the smallest enclosing circle that encircles more
than one robot is always formed by two robots.

The minimum enclosing circle of a point set is unique [Chr85].
The minimum enclosing circle (sphere) can be found in linear time
in the Euclidean space of any constant dimension [Meg83]. In case
there is more than one minimum enclosing set MECt(r) that may
form Ct(r), then we assume that the robot selects one of them arbi-
trarily. Further, we skip t in the notation of the minimum enclosing
set and circle unless the time must be mentioned explicitly.

Go-To-The-Center (GTC) algorithm: Each robot r ∈ R at every
point in time t observes the relative positions of all robots within
viewing range 1, i.e. UDG(r). Then the robot computes target
point T (r), which is the center of the minimum enclosing circle
around all visible robots including itself. Depending on disposition,
the robot performs the following actions:

• If r is not at the target point T (r) yet, then the robot moves
towards it with speed 1.

• If r is already at the target point T (r), then it follows the
motion of the target point.

Note that the position of the target point might change in a dis-
continuous manner: for example, when a new robot appears in the
viewing range of r.

Let us first show that the GTC algorithm preserves connectivity.

Lemma 7. Let us consider a group of robots R on the Euclidean
plane that follows the Go-To-The-Center algorithm. If {u,w} is
an edge in UDG(R) at time 0, then {u,w} is an edge in UDG(R)

at time t for all t ≥ 0.

32

Proof. Let us consider robots u and one of the unit disk edges of this
robot, namely {u,w}, w ∈ UDG(u). The area Qu is an intersection
of unit discs of all unit disk neighbors UDG(u) at time 0. The
center T (u) of the minimum enclosing circle C(u) of UDG(u) at
time 0 is situated inside area Qu as well, since the radius of C(u)

is at most the radius of the unit disk and C(u) encircles all robots
in UDG(u).

Robot u, which executes the GTC algorithm, goes towards its
target point, namely the center of minimum enclosing circle T (u).
The line segment between T (u) and u is entirely contained in Qu.
Assume that at the end of the time interval [0, t], the distance
between robots u and w is greater than 1. Since the motion of the
robots that follow the GTC algorithm is continuous, there exists
a point in time t′ ∈ [0, t] such that at that time t′ the distance
between u and w is exactly one.

Let L be an intersection of the unit discs of robots u and w at
time t′. Convex areas Qu and Qw are situated inside L, thus at time
t′ robot u (as well as w) can only move inside L. This contradicts
our assumption. Thus, if {u,w} is an edge in UDG(R) at time 0,
then {u,w} is an edge in UDG(R) for all t ≥ 0.

Next, in Lemma 8 and 9 we will show that the GTC gathering
algorithm is contracting.

Lemma 8. If robots follow the Go-To-The-Center algorithm, then
the target point T (r) of any robot r ∈ R is in H(R).

Proof. Let us consider the minimum enclosing setMEC(r) of robot
r. All robots ofMEC(r) including r itself are inside H(R). In case
MEC(r) consists of two robots m1 and m2, the target point is the
midpoint of the line segment m1m2. Since H(R) is convex and m1

33

and m2 are in it, the line segment between m1 and m2 is inside
H(R) too. Therefore, the target point is in H(R).

For the case where MEC(r) consists of three robots m1, m2

and m3, the target point is the center of the circumscribed circle
around 4m1m2m3. Let us consider without loss of generality one
of the robots inMEC(r), e.g. m1. Let us now draw the line l from
m1 through the target point T (r). It is clear that line l intersects
the opposite side of 4m1m2m3, namely m2m3 at some point a.
Since H(R) is convex and m2 and m3 are in it, the line segment
between m2 and m3 is inside H(R) too, as well as point a. The
target point T (r) must be also be inside H(R) because the same
argument applies for the line segment m1a.

Lemma 9. If robot r ∈ CH(R), then the target point T (r) does
not coincide with the position of robot r(t).

The proof of Lemma 9 is easily derived from the following propo-
sition.

Proposition 4. (Chrystal [Chr85]) Let C be the minimum enclos-
ing circle of a set of n ≥ 2 points. Then there is no point-free arc
with a length greater than π.

Here, with respect to our notation, the point-free arc is the cir-
cular arc of the minimum enclosing circle C(r) without any other
robots on it. If for some robot r ∈ CH(R) the center of the min-
imum enclosing circle – i.e., target point T (r) coincides with the
position of robot r – then there is a robot-free arc (the part of the
circle outside H(R)) with an arc length greater than π. This con-
tradicts Proposition 4. It implies that all r ∈ CH(R) move with
speed 1 and according to Lemma 8 all r ∈ CH(R) move inside the
(closed) convex hull H(R). In other words, the GTC algorithm is

34

contracting. Besides that, according to Lemma 7 the GTC algo-
rithm preserves connectivity. Summing up all the statements above
we get the following theorem.

Theorem 2. The set of robots with limited visibility gathers at one
non-predefined point using the Go-To-The-Center algorithm in the
time O(n2).

2.3.4 Go-To-The-Relative-Center Algorithm

Instead of calculating the minimum enclosing circle C(r) with re-
spect to UDG(r), we will use the Relative neighborhood graph
proposed in [Tou80]. The latter is defined in the two-dimensional
Euclidean space as follows.

Definition 3 (Relative neighborhood graph criterion). Any two
robots u, v are connected iff there does not exist any robot w ∈ R
satisfying |u,w| < |u, v| and |v, w| < |u, v|.

We denote by RNGt(r) (at time t) the subgraph obtained from
the UDG neighborhood UDGt(r) by applying the Relative neigh-
borhood graph criterion. We call RNGt(r) the unit Relative graph
neighborhood of robot r. The Relative neighborhood graph (RNG)
defined on all robots at time t is denoted by RNGt(R).

The set of points on the Euclidean plane that corresponds to the
intersection of open unit disks of all robots in RNG(r) is denoted
by Q(r). The set of points Q(r) is open and convex since it is
the intersection of open unit disks that are convex [Sin97]. The
circle CQ(r) with center at r inscribed into Q(r) is the connectivity
circle. The radius of the connectivity circle is denoted by ρQ.
Unless needed explicitly, we skip t in the notation of the Relative
neighborhood graph, neighborhoods, etc.

35

Go-To-The-Relative-Center (GTRC) algorithm: Every robot r ∈
R at every point in time t observes the relative positions of all
robots within the viewing range 1, i.e. UDG(r). From UDG(r),
the robot calculates RNG(r). It then computes the target point
T (r) which is the center of the minimum enclosing circle around
RNG(r). Depending on disposition, the robot performs the fol-
lowing actions.

• If r is not at the target point T (r) yet, then the robot moves
towards it with speed 1.

• If r is already at the target point T (r), then it follows the
motion of the target point.

Note that the position of the target point might change in a dis-
continuous manner: for example, when new robot appears in the
viewing range of r or some robot violates the relative neighborhood
criterion and changes RNG(r).

Proposition 5. For every robot r ∈ R at any fixed point in time,
T (r) ∈ Q(r).

Proposition 5 holds since the radius of C(r) is less than 1 and
C(r) encircles all the robots in RNG(r). The argumentation of the
connectivity property is similar to the one used in Lemma 7 for the
GTC algorithm.

Lemma 10. Given a group of robots R on the Euclidean plane
executing the Go-To-The-Relative-Center algorithm, if {u,w} is
an edge in the open Relative neighborhood graph RNG(R) at time
0, then there is a path from u to w in RNG(R),∀t ≥ 0.

Proof. There are two cases to be considered. Both correspond to
the situations in which during the time interval [0, t] the edge {u,w}
does or does not violate the RNG criterion.

36

Let us consider the first case, where edge {u,w} does not violate
RNG criterion during [0, t]. Assume that at time t1 it holds that
|u,w| = 1. Let L be an intersection of open unit disks of robot u
and w. Without loss of generality we consider robot u. According to
our assumption there shall exist non-empty time interval [ta, tb] ⊂
(0, t1) such that during the time interval [ta, tb] target point T (u)

of robot u was outside L.
If there is no such interval, robot u would not be able to leave L

since it is a convex set and line segment uT (u) and therefore the
whole trajectory is entirely inside L at any point of the interval
[0, t1].

However, existence of non-empty time interval [ta, tb] ⊂ (0, t1)

such that during the time interval [ta, tb] target point T (u) of robot
u was outside L contradicts Proposition 5, since Q(u) ⊆ L. We can
therefore conclude that if edge {u,w} does not violate the RNG
criterion, then it remains the edge of RNG(R) at ∀t ≥ 0.

If an edge {u,w} is not an edge in RNG(R) at time t1, due to
the RNG criterion, then there is at least one robot v that causes
connection in RNG(R) between u and w to be removed at some
point in time t′ ∈ [t0, t1]. Therefore, there shall be an alternative
path via a robot that causes the connection to be removed [Tou80].
This is why there is a path from u to w in GG(R),∀t ≥ 0.

The properties of the minimum enclosing circle do not depend
on the subgraph of the unit disk graph that we use to calculate it.
Thus, Lemma 8 and 9 also hold for the GTRC algorithm. In other
words, the GTRC algorithm is contracting and, taking Lemma 10
into account, we can conclude the following.

Theorem 3. The set of n robots with limited visibility gathers at
one non-predefined point using the Go-To-The-Relative-Center al-

37

gorithm in time O(n2).

The relative neighborhood graph does not have any impact on
runtime since, Lemma 8 and 9 depend only on the properties on
minimum enclosing circle. Because of this we can use any subgraph
of the unit disk graph as long as connectivity is preserved during
runtime. In [LMP16] we have studied the impact of the Gabriel
graph on the gathering process of robots with limited visibility in
the continuous time model.

There we presented the Go-To-The-Gabriel-Center (GTGC) al-
gorithm, where the target point is the center of the minimum en-
closing circle around the Gabriel neighborhoodGG(r). The Gabriel
graph neighborhood is the subgraph of the unit disk graph neigh-
borhood UDG(r); it is calculated using the criterion proposed by
Gabriel and Sokal in [GS69].

Definition 4 (Gabriel graph criterion). Any two robots u, v are
connected if no other robot w is present within the circle whose
diameter is line segment uw. We call this circle a Gabriel circle.

On first sight, the Gabriel graph and relative neighborhood graph
do not have any severe impact on the gathering process. The run-
time of the GTC does not improve.

Theorem 4. (Li et al. [LMP16]) The set of n robots with limited
visibility gathers at one non-predefined point using the Go-To-The-
Gabriel-Center algorithm in time O(n2).

However, simulations exhibit a severe difference in the behavior of
the GTC and GTRC algorithms: Whereas lots of collisions occur
during a run of the GTC algorithm, typically only one, the final
collision namely occurs during a run of the GTRC algorithm. We
will investigate this observation in the next chapter.

38

Chapter 3

Collisionless Gathering

In this chapter we examine the difference between the behavior of
the Go-To-The-Center and Go-To-The-Relative-Center algorithms.
We are particularly interested in the collisionless gathering prop-
erty. We say that the robots collide if they have the same position
at the same time.

Note that if two robots with limited visibility collide, they move
as one and share the same position for the rest of the execution
of the algorithm. This happens since robots see the same neigh-
borhood and therefore behave in the same way after the collision.
At the end of the gathering process, all robots collide at one non-
predefined point. We call this collision the final one. All other
collisions are called early collisions. If we have no early collisions,
the gathering is collisionless.

3.1 Go-To-The-Center Algorithm is not Colli-
sionless

Next we present an example of a robust set of initial configurations
on the Euclidean plane. For each of these, the GTC algorithm
produces many early collisions. A set of initial configurations is

39

robust if it is defined by a set of n disjoint circles so that the n
positions are drawn arbitrarily, one from each circle.

Let us consider the set of initial positions {x−1 , ..., x−n , x+n , ..., x+1 }
of a set R = {r−1, ..., r−n, rn, ..., r1} of 2n robots on the Euclidean
line, where x−i = (−1

2 + i
3n) and x+i = (12 − i

3n), for i = {1, . . . , n}.
Compare Figure 3.1.

Figure 3.1: An example of the initial configuration that has an early collision,
if robots use the GTC algorithm.

As all robots in this configuration see each other, they have the
same unit disk graph neighborhood and therefore the same target
point at the origin. Thus, according to the GTC algorithm, they
move with speed 1 towards the origin. Every pair of robots r−i , ri
produces a collision at time (12 − i

3n). The first n− 1 collisions are
early collisions.

We now define the following robust set of initial configurations in
two dimensions. Let ε = 1

8n and consider all initial configurations
{y−1 , ..., y−n , y+n , ..., y+1 } with |y−i , (x−i , 0)| ≤ ε and |y+i , (x+i , 0)| ≤ ε.

All robots in this new configuration have distinct positions and
can see each other. Thus, they have the same unit disk graph
neighborhood and therefore the same target point z, the midpoint
between y−1 and y+1 . Note that z does not change during the ex-
ecution of the algorithm. The target point z is at most ε away
from the origin, thus it is between y−n and y+n . The robots move
with speed 1 towards z. As (at most) two robots, namely those
with initial positions y−1 and y+1 , arrive at the target point at the
same time, we get for n ≥ 2 at least (n− 1) and at most (2n− 3)

40

early collisions at the target point. (For n = 2 there are no early
collisions.)

3.2 Go-To-The-Relative-Center Algorithm in One
Dimension

We are given a group of robots R = {r1, ..., rn} in one dimension,
ordered with respect to their initial positions, i.e. r1(0) < r2(0) <

. . . < rn(0). The initial positions of all robots are distinct, and the
distance between any two consecutive robots is less or equal to one.

Let us consider time 0. It is easy to see that the relative neigh-
borhood graph obtained from the unit disk graph is nothing but a
path graph with edges {rj(0), rj+1(0)}, where j = 1, 2, . . . , n − 1.
Thus, each ri, with 2 ≤ i ≤ n − 1 has the two relative neighbors
ri−1 and ri+1. The end robots r1 and rn have only one relative
neighbor, namely r2 and rn−1, respectively.

Now let t∗ be the time of a first collision of the GTRC algorithm
started in this initial configuration. For every t < t∗, the order
of the robots on the line remains unchanged, i.e. r1(t) < r2(t) <

. . . < rn(t). Thus the target points Ti(t) at time t are defined as
follows:

Ti(t) =


r1(t)+r2(t)

2 if i = 1;

ri−1(t)+ri+1(t)
2 if i = 2, . . . , n− 1;

rn−1(t)+rn(t)
2 if i = n.

(3.1)

Let us first consider the runtime of this algorithm in one dimension.

Theorem 5. In one-dimensional Euclidean space, the GTRC al-
gorithm gathers n robots in time Θ(n).

Proof. The corner hull CH(R) around the configuration where all

41

robots are placed on the same line consists of only two robots.
Let us call them c1 and c2. Due to Lemma 9, the center of the
minimum enclosing circle cannot coincide with the position of robot
c1(t) ∈ CH(R), thus robot c1 moves. By Lemma 8, the velocity
vector ~v1(t) of robot c1 points inside the corner hull. The same
holds for c2. Robots c1 and c2 move with speed 1. Thus speed l′(t)
with which the length of the global corner hull l(t) decreases is 4.
The corner hull consists of two line segments c1c2 and c2c1, both
decreasing with speed 2.

The length of the corner hull l(t) in one dimension is at most
2(n− 1). Thus, after time

t∗ =
l(t)

4
≤ (n− 1)

2
(3.2)

all robots are gathered at one point in the one-dimensional case.
In the case where all robots are placed within maximum distance
(viewing range) apart from each other, our inequality 3.2 becomes
an equality.

Next, we check the collisionless property of GTRC in one dimen-
sion. Let M be the set of robots that collide at time t∗. We claim
thatM = R. Therefore, the first collision is the final collision; there
are no early collisions.

Theorem 6. In one dimension, gathering with the Go-To-The-
Relative-Center algorithm is collisionless.

Proof. Assume that ri is in M , but ri−1 is not. Then ri and ri+1

collided at time t∗. The distance |ri(t), ri+1(t)| approaches 0 as we
let t → t∗. Due to the continuity, there exists a point t′ ∈ [0, t∗]

such that |ri−1(t), ri(t)| < |ri(t), ri+1(t)| for any t ∈ [t′, t∗].
This means that the target point of ri is on the left of ri at the

time of a first collision. Therefore it was left of ri from time 0

42

and on. But this means that ri was running with speed 1 to the
left from time 0 until time t∗. As ri+1 was to the right of ri at
time 0, it cannot reduce the distance to ri until time t∗. Thus, ri
and ri+1 can not collide at time t∗. Thus, the above assumption is
wrong. Therefore, if ri ∈ M , then r1, . . . , ri ∈ M . A symmetric
argument yields the following: if ri ∈M , then ri, ..., rn ∈M . Thus
M = R.

3.3 Go-To-The-Relative-Center Algorithm in Two
Dimensions

Is gathering with the GTRC algorithm also collisionless in a two-
dimensional Euclidean space? To answer this question we perform
simulation – the continuous motion of the robots is replaced by the
discrete one with a small discretization step. Two robots have a col-
lision if the distance between them is less than a collision threshold,
which is a few orders of magnitude less than the discretization step.
The simulation process is terminated when the maximum distance
between any two robots in the group is smaller than the final thresh-
old, which is slightly greater than the number of robots times the
discretization step.

In our experiments, we observe that all randomly generated con-
figurations had no early collisions with the GTRC algorithm. An
example that highlights the different behavior of GTC and GTRC
is shown in Figure 3.2.

The initial configuration in Figure 3.2 (a) is connected. Figures
3.2 (b) and 3.2 (c) represent the evolution of the group of robots that
use the GTC algorithm. Figures 3.2 (d) and 3.2 (e) represent robots
that use the GTRC algorithm at the same points in time t1 < t2.
Robots 2, 6 and 3, 5 that use the unit disk graph neighborhood have

43

an early collision at time t2 and behave as one since that point in
time. On the other hand, robots that used the GTRC algorithm
have no collisions.

1
2 3

4

6 5

(a) Initial configuration
at time 0.

1 2 3 4

6 5

(b) Unit disk graph at t1.

1

2, 6 3, 5

4

(c) Unit disk graph at t2.

1 2 3 4

6 5

(d) Relative neighbor-
hood graph at t1.

1 2 6 5 3 4

(e) Relative neighborhood graph
at t2.

Figure 3.2: Visibility graphs during the gathering of the robots that use origi-
nal Go-To-The-Center and Go-To-The-Relative-Center. Blue circles represent
robots; red lines represent trajectories of robots.

We perform three experiments with different inputs and measure
the number of collisions between the robots during the run.

Experiment 1: The only initial configuration known to us that
produces early collisions with the GTRC algorithm is a cross-shaped
graph (see Figure 3.3), constructed as follows. The robots are split
into two groups H and Q. The robots of one group (e.g. H) are
placed along the line h at an equal distance apart from each other.
The other group (Q) is placed on the line q perpendicular to h.
The line q crosses h at the midpoint between the end robots of H
on h. The robots of Q are placed on the distinct positions on q

such that the whole graph is connected, and the distance between
the end robots of Q on q is less than the distance between the end
robots of H on h.

In this configuration, all robots in Q will have an early collision
at the point where lines q and h cross. If we are going to "shake"

44

Figure 3.3: An instance of the cross-shaped graph that leads to early collisions
with GTRC.

such a cross-shaped initial configuration – i.e., every robot moves
independently at random in some small ε-ball around its initial
position such that connectivity is preserved – then the gathering in
the simulation with GTRC will also be collisionless.

This feature in the behavior of the GTRC algorithm in two di-
mensions is reflected in the Collisionless Conjecture, which we for-
mally describe as follows.

Conjecture 1 (Collisionless conjecture). Let us consider the arbi-
trary initial configuration of robots that use the Go-To-The-Relative-
Center algorithm in the two-dimensional Euclidean space. There
is an ε > 0 such that if the position of each robot is perturbed uni-
formly at random inside the ε-ball around its initial position, then
the probability of an early collision is 0.

Experiment 2: In this experiment, we let the robots execute
GTC and GTRC on random graphs (e.g. see Figure 3.4). The
initial configuration – i.e., the random unit disk graph is created
by the Monte Carlo method. Every robot is placed independently
at random on the plane and is removed if it is not connected to the
rest of the robots.

The statistical information about the runs of then the GTC al-
gorithm with the random graphs of different size as an input is
presented in Table 3.1. The number of early collisions grows with
the size of the input. The deviation grows as well. In the same ex-

45

Figure 3.4: An instance of the random unit relative neighborhood graph

periment, with the random graph and the GTRC algorithm, robots
had no collisions at all.

Table 3.1: Go-To-The-Center algorithm with the random unit disk graph as
an input.

Number of robots 10 20 30 40 50 60
Number of
collisions

Mean value 0.18 1.87 3.52 8.45 15.41 19.7
Standard deviation 0.67 3.19 4.55 8.38 11.57 14.29

Sample size 100 100 100 100 100 100

Experiment 3: In the last experiment, we use an initial config-
uration for the graph with a particular structure. We aim to show
that GTRC is what makes that difference, rather than the input.
Here, the input is obtained from a path graph by placing additional
m neighbors very close to every k-th robot in the path, i.e. cluster.
We call such a graph clustered path graph (see Figure 3.5). In this
way, we make sure that every such cluster around the k-th robot
will produce a collision.

Figure 3.5: An instance of the random clustered path graph with relative
neighborhood edges and a single cluster in the middle.

46

The statistical information for the experiments with the clustered
path graph is presented in Table 3.2. The small deviation at every
input size suggests that GTC with a clustered path as an input
definitely produces early collisions. In the same experiment with
a clustered path graph as an input, the GTRC algorithm had no
collisions at all.

Table 3.2: Go-To-The-Center algorithm with a clustered path graph as an
input.

Number of robots 16 26 36 46 56 66
Number of
collisions

Mean value 9.05 17.7 24.1 33.85 43.6 54.75
Standard deviation 1.1 1.69 1.45 1.81 1.24 1.29

Sample size 100 100 100 100 100 100

In the same three types of experiments, robots that used the Go-
To-The-Gabriel-Center algorithm had no collisions at all as well.
Our experiments strongly support the Collisionless Conjecture. The
major open problem in this context is to prove it. However, this
turns out to be difficult to do with common methods. In Section 3.5,
we will discuss on one of the ways to prove the conjecture for n = 4

robots.

3.4 Collisions in Go-To-The-Relative-Center Al-
gorithm

In this section we investigate the structural properties of collisions
during a gathering with the GTRC algorithm. Recall that if two or
more robots have the same position at the same point in time, then
there is a collision. We refer to the set of robots in the minimum
enclosing set MEC(r) of a robot r ∈ R as a crash point. We
are able to show that collisions in GTRC take place only at crash
points.

47

Definition 5 (Crash point). For any robot r with the minimum en-
closing set MEC(r), the midpoint between any two robots m1m2 ∈
MEC(r) is a crash point p(r). We say that robots m1 and m2

define the crash point p(r).

Note that if a minimum enclosing set consists of three robots
MEC(r) = {m1,m2,m3}, then the midpoint of every edge in
4m1m2m3 is a crash point.

The set of Relative neighborhood edges adjacent to robot r is
denoted as ERNG(r). The set of all edges of the Relative neigh-
borhood graph (RNG) is denoted by ERNG(R). In the same way,
we define the set EUDG(r) of the unit disk graph edges adjacent to
robot r and the set EMEC(r) of the Relative neighborhood edges
between robot r and the members of the minimum enclosing set
MEC(r).

For the Relative neighborhood graph RNG(R) = (R,E), we
define the set-valued map R : X Y , where X ⊂ E and Y ⊂ R2

relate the RNG edges to the area occupied by the corresponding
RNG lenses. For example, R({r, u}, {r, w}) is the union of the
RNG lenses that correspond to the RNG edges {r, u}, {r, w}.

Definition 6 (Minimum enclosing set cover). The convex hull around
robot r and the members of MEC(r) form the minimum enclosing
set cover K(r) of robot r ∈ R.

Let us now consider a robot r ∈ R and its minimum enclos-
ing sets. We show that, in any case, the minimum enclosing set
cover is a subset of the union of the RNG lenses that correspond
to the RNG edges between robot w and the robots of MEC(w),
namely K(r) ⊂ R(EMEC(r)). Using basic geometric arguments,
we conclude Lemma 11.

48

(a) Robot r together with its minimum enclosing set MEC(r)
and RNG lenses, which correspond to the RNG edges between r
and members of MEC(r).

(b) Robot r together with a crash point p(r) and the robots m1, m2 that
define this crash point. Besides that, here we depict RNG lenses that
correspond to the RNG edges {m1, r} and {m2, r}.

Figure 3.6: Lenses of the Relative neighborhood graph.

49

Lemma 11. If MEC(r) = {m1,m2,m3} is the minimum enclos-
ing set over RNG(r), then 4m1m2m3 is completely covered by the
RNG lenses that correspond to the RNG edges between r and the
robots of MEC(r).

Proof. We know that the center of the minimum enclosing circle
always lies inside of 4m1m2m3 since the given triangle is at most
a right triangle. Now let us consider robot r with the minimum
enclosing set MEC(r) = {m1,m2,m3} and RNG lenses C1, C2, C3

that r creates between its neighbors m1,m2,m3 as shown in Fig-
ure 3.6a. We would like to show that 4m1m2m3 is entirely covered
by the RNG lenses that form a non-convex figure I = C1∪C2∪C3.

Let us consider one of the edges of 4m1m2m3 and the two RNG
lenses C1, C2 that pass throughm1 andm2 as well as through robot
r. The robots and lenses are depicted in Figure 3.6b. Let us con-
sider 4m1rr

′, where r′ is an intersection of lenses on the other side
of m1,m2. This triangle is isosceles, i.e. |m1, r| = |m2, r

′|, since
r′ belongs to the circle with the center at m1 and the radius m1r.
Therefore 4m1rg is a right triangle. Cathetus m1g is shorter than
hypotenuse m1r, thus it is inside the lens C1. Since the lens is con-
vex, the other cathetus rg is also inside lens C1. We show the same
for C2 and 4m2rg and all remaining triangles that correspond to
the edges of 4m1m2m3. As a result, we prove that 4m1m2m3 is
entirely contained inside I = C1 ∪ C2 ∪ C3.

We can show similar results as in Lemma 11 for the minimum
enclosing sets with different structures.

Lemma 12. IfMEC(r) = {m1,m2} is the minimum enclosing set
over RNG(r), then 4rm1m2 (Figure 3.6b) is completely covered
by the RNG lenses between r and the robots of MEC(r).

50

Lemma 13. If MEC(r) = {m1,m2, r} is the minimum enclosing
set over RNG(r), then 4rm1m2 is completely covered by the RNG
lenses between r and the robots of MEC(r).

It remains to consider the case where MEC(r) = {m1, r} is
the minimum enclosing circle over RNG(r). We observe that the
minimum enclosing circle C(r) is a proper subset of the RNG lens
betweenm1 and r. This observation together with Lemmata 11, 12,
and 13 yield the following corollary.

Corollary 4. The union of the RNG lenses between robot r and
the robots of MEC(r) is a superset of the minimum enclosing set
cover K(r), i.e. K(r) ⊂ R(EMEC(r)).

Note that the RNG lenses between the unit disk graph neighbors
that satisfy the RNG criterion do not contain any other robots. If
there is a robot inside one of the RNG lenses, then the correspond-
ing part of the RNG will change.

Let us now consider, in detail, the collisions that occur between
the robots executing GTRC. The set of robots M ⊂ R that have a
collision at time t∗ is represented by a single robot u for any t ≥ t∗.
We call u the representative of M .

Observation 1 (Early collision). The set of robots M ⊂ R had
a collision at time t∗ if the minimum enclosing circle around the
RNG neighborhood of the representative u has a diameter greater
than zero.

Note that the opposite of an early collision is a final collision.
In other words, assume that the set of robots M ⊆ R had a colli-
sion at time t∗ and the minimum enclosing circle around the RNG
neighborhood of the representative u has the diameter zero. This
implies that, after the final collision, there are no other robots in

51

the unit disk graph neighborhood of the representative u. There
are also no robots other than those in the unit disk graph neigh-
borhood of robot u, due to the connectivity property of the GTRC
algorithm shown in Lemma 10. Thus, if final collision takes place,
then M = R. We say that the gathering is collisionless if there are
no early collisions.

In the next Lemma 14, we utilize Corollary 4 to show that a
robot w can have early collision only at the crash point p(w). The
proof is a result of carefully checking all possible dispositions of w
and K(w).

Lemma 14. Let us consider robot w during an arbitrary time in-
terval [a, b], such that during this interval, diameter dw of the min-
imum enclosing circle of robot w is strictly greater than zero. If
robot w collides with some other robots M ⊂ R during [a, b], then:

1. collision takes place at the crash point p(w) of robot w, and

2. robot w does not belong to its own minimum enclosing set
MEC(w).

Proof. We inspect the movement of robot w before the collision
during the time interval [a, b]. The diameter of the minimum en-
closing circle dw of robot w is strictly greater than zero during this
time interval. Robot w according to GTRC moves towards its tar-
get point T (w) or, if it is already at T (w), then robot w follows the
motion of the target point.

Let us consider the minimum enclosing set cover K(w). We shall
keep in mind that K(w) ⊂ R(EMEC(w)) by the Corollary 4 and
therefore there are no other robots (except w and MEC(r)) that
belong to K(w). We represent the cover as the union K(w) =

Kfr(w)∪Kin(w), where Kfr(w) is the frontier or the boundary of
K(w) and Kin(w) is an interior of K(w).

52

By definition, w ∈ K(w). The target point T (w) is inside K(w)

too since it belongs to the triangle or the line segment that forms
the minimum enclosing circle and, by the definition of K(w), the
according triangle or line segment is inside K(w). Thus, it holds
that w, T (w) ∈ K(w) ⊂ R(EMEC(w)).

Assume that robot w did not reach its target point T (w) at the
end of time interval [a, b]. Namely, w moves towards the target
point T (w) with speed 1. The velocity of the robot always points
towards T (w). For robot w during time interval [a, b], we consider
the set I that consists of infinitely many line segments that connect
robot w and T (w) at every point of the time interval [a, b].

Assume that w ∈ Kin(w) and T (w) ∈ Kin(w) during [a, b] de-
picted in Figure 3.7a. This implies that I ⊂ Kin(w) since Kin(w)

is a convex set. Every point of I together with a small enough
ball around the point are in Kin(w). Therefore, every point of the
trajectory of robot w during [a, b] is in Kin(w) together with small
enough ball around this point. No other robot may approach arbi-
trarily close to and eventually collide with w without changing the
RNG during [a, b].

Assume that w ∈ Kin(w) and T (w) ∈ Kfr(w) during [a, b] as
depicted in Figure 3.7b. If we assume that w did not reach its
target point T (w) at the end of the time interval [a, b], then (I \⋃

[a,b] T (w)) ⊂ Kin(w), where
⋃

[a,b] T (w) are the positions of T (w)

during time interval [a, b]. Every point of the trajectory of robot
w during [a, b] is entirely inside of Kin(w) together with a small
enough ball around this point. Therefore, in this case as well, no
other robot may approach arbitrarily close to and eventually collide
with w without changing the RNG during [a, b].

Now we assume that w ∈ Kfr(W) and T (w) ∈ Kin(w) during
[a, b] as depicted in Figure 3.7c. The small enough ballB(w) around

53

(a) (b) (c)

(d) (e) (f)

(g)

Figure 3.7: All possible dispositions of w and K(w).

54

the position of robot w can be separated into two parts Bin(w) =

B(w)∩Kin(w) and Bout = B(w)\(Bin(w)∩Kin(w)). According to
the GTRC, robot w moves towards T (w) ∈ Kin(w). There are no
robots at the points of Bin(w) with a small enough ball around it.
Therefore, no other robot may approach w from Bin(w) arbitrarily
close to and eventually collide with w without changing the RNG
during [a, b]. There might be some robots inside Bout, but robot w
moves away from Bout at maximum constant speed 1 and therefore
according to [Sch95] even if some robots from Bout pursue w as a
target point, they will only shorten the distance to w but never
reach it since all other robots move with the same or lower speed.

Let us now assume that both robots at position w and the target
point T (w) are on the frontier during [a, b], i.e. w ∈ Kfr(W) and
T (w) ∈ Kfr(w). There are two possible dispositions of w, T (w)

and K(w), depicted in Figure 3.7d and Figure 3.7e, respectively.

This is similar to the previous case. However, instead of K(w),
we take a look atR(EMEC(w)) = Rfr(EMEC(w))∪Rin(EMEC(w)),
whereRfr(EMEC(w)) is the frontier or the boundary ofR(EMEC(w))

and Rin(EMEC(w)) is an interior of R(EMEC(w)). We split the
small enough ball B(w) into two parts such that Bin(w) = B(w)∩
Rin(EMEC(w)) and Bout = B(w) \ (Bin(w) ∩Rin(EMEC(w)).

There are no robots at the points of Bin(w) and the small enough
ball around it. In order to show that this statement is true, let us
consider the frontier of K(w). The latter consists of a line segment
between robot w and the robots ofMEC(w). If w and T (w) belong
to the different line segments of Kfr(w) (see Figure 3.7e), then we
fall into the case where w ∈ Kfr(W) and T (w) ∈ Kin(w) during
[a, b], since robot w did not reach its target point T (w) at the end
of the time interval [a, b]. This case is already considered.

Let us take a look at the situation where w and T (w) belong

55

to the same line segment of Kfr(w) as depicted in Figure 3.7d.
There are two ways the considered line segment might be formed.
First, the line segment is formed by wm1, where m1 ∈ MEC(w).
Line segment wm1 without endpoints is insideRin(EMEC(w)) since
there must be an RNG lens between w and m1. The similar argu-
ment holds if the considered line segments of Kfr(w) is formed
by m1m2, where m1,m2 ∈ MEC(w). Line segments wm1 and
wm2 without endpoints are inside of Rin(EMEC(w)) since there
must be an RNG lens between w and m1 as well as between w

and m2. According to our assumption, T (w) ∈ Kfr(w) and there-
fore T (w) ∈ Rin(EMEC(w)). There are no other robots inside
Rin(EMEC(w)) and therefore Bin(w) does not contain any other
robot either.

According to GTRC, robot w moves towards T (w) ∈ Kfr(w).
There are no robots at the points of Bin(w) and in a small enough
ball around it. Therefore, no other robot may approach w from
Bin(w) arbitrarily close and eventually collide with w without chang-
ing the Relative neighborhood graph during [a, b]. There might be
some robots inside Bout, but robot w moves with maximum con-
stant speed 1 away from Bout and therefore, according to [Sch95],
even if some robots from Bout pursue w as a target point, they will
only shorten the distance to w but never reach it, since all other
robots move with the same or lower speed.

Summing up all the considered cases, we can state that if w 6=
T (w) during the time interval [a, b], then robot w cannot collide
with some other robot from u ∈ R.

Now let us assume that w = T (w) during the time interval [a, b].
According to GTRC, the robot follows the movement of T (w) and
might move slower than 1. If w = T (w) ∈ Kin(w) (see Figure 3.7f)
during time interval [a, b], then every point of the trajectory of

56

robot w during [a, b] is entirely inside Kin(w) together with a small
enough ball around this point. Therefore, in this case also no other
robot may approach arbitrarily close to and eventually collide with
w without changing the RNG during [a, b].

The last to consider is the case where w = T (w) ∈ Kfr(w)

as depicted in Figure 3.7g. The small enough ball B(w) around
the position of robot w can be separated into two parts Bin(w) =

B(w) ∩Kin(w) and Bout = B(w) \ (Bin(w) ∩Kin(w)). According
to the GTRC algorithm, the robot follows the movement of T (w)

and might move slower than 1. Thus, robots from Bout(w) can
approach arbitrarily close to and eventually collide with w without
changing the RNG during [a, b].

The target point T (w) ∈ Kfr(w) only if it is a midpoint between
two robots inMEC(w). According to [Chr85], this is the case only
if the line segment is the diameter of the minimum enclosing circle
C(w). The considered midpoint is nothing but the crash point p(w)

we have defined earlier.
We have shown that collision occurs at the crash point p(w)

of robot w. It is left to show that w /∈ MEC(w). Assume that
w ∈MEC(w). In this case, if w reached its own target point T (w),
then the diameter of the minimum enclosing circle C(w) will be
zero. This contradicts our statement that the minimum enclosing
circle of robot w has a diameter greater than zero. Therefore w /∈
MEC(w).

3.5 The Collisionless Conjecture for Four Robots

Lemma 14 implies that an early collision may take place with the
GTRC algorithm only at the crash points. There is at most a linear
number of crash points at every point of time. If we are going to

57

count the robots involved in the early collision, then there must be
at least 4 of them.

Observation 2. For the set R of n < 4 robots, the gathering is
always collisionless with the GTRC or GTC algorithm.

Four is the smallest number of robots that allows early collision,
since for n < 4 there is simply not enough robots for it. If we had an
early collision at time t∗ then according to Lemma 14, there exists
robot u that reached its own crash point p and there are at least two
robots m1,m2 ∈MEC(u) that do not coincide with robot u, since
u does not belong to its own minimum enclosing set MEC(u). For
an early collision, we need one more robot w that at time t∗ reached
a crash point of u as well. Therefore we need at least 4 robots for
an early collision with the GTRC algorithm. It is easy to see that
the same observation also holds for the GTC algorithm. However,
the RNG lenses around the crash point make the difference between
the behavior of the GTC and GTRC algorithms. We can already
illustrate this difference by using only n = 4 robots.

The crash point p of robot u is the midpoint between the two
robots m1 and m2. When robot w is close enough to p, then the
RNG lenses corresponding to the RNG edges {m1, w} and {m2, w}
form a narrow passage to the crash point p as depicted in Figure
3.8. If some other robot u has an early collision with w at p, then its
trajectory shall be entirely inside this narrow passage. Otherwise,
if u enters one of the RNG lenses, p will not be the crash point of
w anymore. Nevertheless, proving the Conjecture 1 turns out to be
a hard task even for n = 4 robots.

Let us consider one of the possible approaches. The main idea
consists of two steps. The first step is to show that, shortly before
an early collision, the set of a possible positions of one of the robots

58

is negligible, i.e. a set of measure zero on the Euclidean plane (i.e.,
line circle, etc.). The second step is to show that the flow related
to the time-dependent vector field Vr(t) (produced via the GTRC
algorithm) of any robot r ∈ R is the zero measure preserving in
forwards and backward time.

As part of the first step, let us now consider the crash p together
with robots m1,m2. Assume that at time t∗ there was an early
collision in p between robots u and w. Our aim is to show that
during a short time interval δ before the collision, the positions of
one of two robots, u or w belong to the set without an area.

Figure 3.8: In this figure we have: robot w, the crash point p of robot u that
coincides with the position of robot u, Relative neighbors m1 and m2 of robot
r with the according RNG lenses and line l perpendicular to m1m2.

There are two cases to be considered. In the first case, both
robots (u and w) arrive at the crash point p at the same time or
one of the robots, w.l.o.g. u, is already at p. It is easy to see that
in the second case, the only trajectory that does not cross the RNG
lenses is the straight line l perpendicular to the line segment m1m2

(see Figure 3.8). Line l is a negligible set on the Euclidean plane.
Unlike the second case, the first one turns to be hard. Here it

must also be show that the positions of both robots (u and w)

59

that arrive at the crash point p at the same time belong to the set
without an area (i.e. a Jordan curve). One of the ways is to consider
the travel time τ(x) as the function of the robot’s initial position x.
However, the function τ(x) : X → p,X ⊂ R2 that represents the
travel time from point x to the crash point p is not well defined. In
other words, we need some regularity properties of τ(x) in order to
argue about the structure of level set Itc = {x ∈ R2 : τ(x) = tc} of
τ(x), using Implicit Function Theorem, for example. This is one of
the open problems. Another open problem is to show that the flow
related to the time-dependent vector field Vr(t) (produced via the
GTRC algorithm) of any robot r ∈ R is zero measure preserving,
i.e. on Euclidean plane such flow maps any set without an area to
the set that has no area too.

60

Chapter 4

Collisionless Gathering with Some
Algorithmic Extensions

So far the collisionless gathering was considered for robots with an
extent, such as in [CGP06]. However, gathering itself in [CGP06]
is redefined, since robots with extent are not allowed to occupy the
same position. Instead, gathering means forming a configuration for
which the union of all discs representing the robots is connected.

The problem that is closer to one that we consider in this work is
studied in [CDF+11b]. The goal of the robots is to gather without
touching, in such a way that disks representing the robots do not
intersect. Robots gather around a predefined point that is already
known by every robot.

The closest problem is considered in [PPV15]. The goal of the
robots is to get close enough to each other without collisions so that
every robot is in vision range of the others. Robots in [PPV15] are
equipped with a compass so that they have a common coordinate
system.

In this chapter, our aim is to show that robots with limited visibil-
ity are able to perform collisionless gathering without a predefined
gathering point or common coordinate system. However, we would
also need some additional capabilities in comparison to the robot

61

model used in Chapter 2.

4.1 Safe-Go-To-The-Relative-Center Algorithm

We extend the robot model and design the Safe-Go-To-The-Relative-
Center algorithm (S-GTRC) using the contracting conditions from
Lemma 2 and the structural properties from Lemma 14. The goal
of S-GTRC is to gather without early collisions all the robots at
one non-predefined point for any initial configuration. The initial
configuration is arbitrary except that UDG0(R) is connected and
all the robots have distinct positions.

The extended robot model is described as follows. The viewing
range of a robot is 2. This will be needed to avoid collisions. Thus,
a robot can see the UDG neighbors of its UDG neighbors. Note
that S-GTRC preserves connectivity with respect to UDG. The
open two-unit disk graph is defined analogously to the open unit
disk graph. For all robots in R, we define 2-UDG(R) = (R, 2-Et),
where (ri, rj) ∈ 2-Et iff for ri and rj it holds that |ri(t), rj(t)| < 2.

As in the common model, robots are anonymous and each robot
has a local coordinate system that is not aligned with the coordi-
nate systems of other robots. Unlike in the common model, robots
here are chiral: i.e., they all agree either on left- or right-hand ori-
entation. Robots are equipped with synchronized clocks. Robots
are luminous: i.e., they have one bit of visible external memory
like in [DFP+12] by Das et al. The maximum speed of the robot is
assumed to be s ≥ 1.

Next, we describe S-GTRC and show that it performs gathering
in the continuous time model for the extended robot model without
early collisions in time O(n2).

The main idea of S-GTRC is described as follows. Robots are

62

Figure 4.1: The construction of target arc A ⊂ D.

separated into two groups/states: regular and safe. In the regular
group, robots execute GTRC and do not take into account the
robots in the safe group. If some robots in the regular group are
about to collide, at least one of them switches to the safe state
and, independently from other robots, moves towards some specific,
closely situated fixed point. This point is selected in such a way
that collision is not possible. The state of the robot is automatically
visible to its neighbors via the visible external memory.

Figure 4.2: Robots w with RNG lenses that correspond to RNG edges {w,m1}
and {w,m2}. Both robots are inside circle B with the center at the crash point
p(w) and radius 1/2m|m1,m2|. If robot r performs a safe move, the target point
during the safe move belongs to circle D.

From Lemma 14 we know that robot r collides only at the crash
point of some other robot w. Therefore, shortly before collision,
both robots r and w together with their target points T (w) and
T (r) are inside the relatively small ball B with the center at the
crash point p(w) and radius 1/2m|m1,m2|, where m is a positive

63

parameter. Ball B is depicted in Figure 4.2. In order to avoid
collision, we let at least one of the robots move independently from
the other robots. For a short period of time, the target point of
the robot will be selected from the circle D with the radius 1/k|w, r|
centered at the position of r, where k > 1 is a positive parameter
that will help us preserve connectivity. Circle D together with B is
depicted in Figure 4.2. Circle D is depicted in Figure 4.1. We refer
to the arc A of D as the target arc. In the safe state, robots move
towards the midpoint of the target arc. We construct the target arc
in such a way that robots in the safe state satisfy the contracting
conditions of Lemma 2. This is shown in Lemma 16.

The target arc is constructed as follows. Let us first consider arc
B ⊂ D such that the central angle ∠arc = 3π/4 and the bisector
of ∠arc coincide with the bisector of ∠m1rm2. Then, we draw
the line rg perpendicular to m1m2. With respect to this line, we
either take left or right, depending on the chirality part of B, i.e.
BL ⊂ B. Finally we subtract from BL the arc that corresponds to
the central angle ∠grb = π/20. What is left is target arc A, which
we depict in Figure 4.1.

In order to select the suitable moment for the independent mo-
tion of robot r, we check whether r is close to the crash point p(w)

of some robot w. Namely, robot r checks if ∃w : w, T (w), T (r) ∈
B1/2m|m1,m2|(p(w)), where robots m1,m2 define p(w) and |w, r| =

minu∈UDG(r)\r{|r, u|}, where UDG(r) consists of robots in both
states (regular and safe) and |w, r| ≤ ρQ and r is the leftmost
(rightmost, depending on chirality) robot with respect to the direc-
tion towards p(w).

We show in Lemma 17 that there exists a point in time at which
this condition is satisfied, shortly before collision takes place. We
refer to the logical expression above as the safety condition, denoted

64

by the function Sr : X → Z2, where X ⊂ R2: i.e., Sr(w) =

true means that robot w at its current position violates the safety
condition with respect to the crash point p(w) of robot w.

At every point in time t, each robot can read the positions and
states of its neighboring robots in 2-UDG(R). Every robot has
access to the synchronized clock. Besides that, each robot can read
and write into the two variables. These will be used to store either
the position on the Euclidean plane, denoted byM(r), or the point
in time ∆(r) together with an additional state L(r). The variable of
robot r that represents its state is called S(r). This is set by default
to regular. Our algorithm has three positive parameters, used by
all of the robots: s, m and k. Parameter m defines how close to the
crash point we check the safety condition. Parameter s tells us the
ratio between the speed of the robots in the safe and regular state.
Robots in the safe mode are assumed to be faster. Parameter k tells
us what portion of the minimum distance to other robots does the
robot cover during the motion in the safe state. The initial state
at time 0 of every robot is regular. The initial value of the memory
slots that correspond to M(r), ∆(r) and L(r) are undefined. The
Safe-Go-To-The-Relative-Center algorithm is presented in pseudo-
code as Algorithm 1.

The main difference between S-GTRC and GTRC lies in the
states: regular and safe. In regular state, a robot moves accord-
ing to GTRC. Early collisions may take place only in the regular
branch of the algorithm. The safe branch is designed to avoid early
collisions. The collision that takes place in S-GTRC without a safe
branch is called a potential early collision. Next, we show that the
safe branch avoids potential early collisions.

65

Algorithm 1 Safe-Go-To-The-Relative-Center
Require: Initial configuration, parameters m and k, velocity s.
1: Robot r observes the positions of all its neighbors (regular and safe) in

2-UDG(r) and checks:
2: if maxa,b∈2-UDG(r) |a, b| ≥ 1 then
3: Robot r observes the positions of its regular neighbors in UDG(r) and

calculates RNG(r).
4: Robot r computes the minimum circle C(r) enclosing RNG(r). The

center T (r) of C(r) is the target point of r.
5: Robot r observes the positions of all regular robots in 2-UDG(r). Using

this information r calculates crash points for every robot in UDG(r).
Then robot checks the following safety condition:

6: Robot r checks:
7: if Robot r is at its own crash point, i.e. r = p(r) AND ∃w : Sw(r) =

true AND S(w) = safe then
8: L(r) := locked
9: S(r) := regular
10: ∆(r) := |r,M(r)|

s
+ #clock

11: else
12: if ∃w : Sr(w) = true then
13: if M(r) = undefined then
14: S(r) := safe
15: M(r) := midpoint of target arc A ⊂ D, where D is the circle with

center at r and radius radius 1
k
|w, r|.

16: else
17: S(r) := regular
18: if L(r) = locked AND #clock = ∆(r) then
19: S(r) := undefined
20: ∆(r) := undefined
21: Robot r moves:
22: if S(r) = regular then
23: if r is already at T (r) then
24: Robot r remains at T (r) and moves in the same way as the target

point does.
25: else
26: Robot r moves with maximum speed 1 towards T (r).
27: else
28: if r is already at M(r) then
29: S(r) := regular
30: M(r) := undefined
31: else
32: Robot r moves with maximum speed s towards M(r).

66

4.1.1 Correctness and Runtime Analysis of the Safe-Go-
To-The-Relative-Center Algorithm

First, we show that in the safe state, the robots preserve connec-
tivity. Then, we consider the runtime and show that the robots in
the safe state move only inside the convex hull, with speed s. In
Lemma 15, we show that if parameter k is big enough (i.e., the
radius of circle D is small enough), then at the end of the indepen-
dent motion in the safe state, the robot will still have the same unit
disk graph neighbors.

Lemma 15. If robot w is in UDG(r) at time 0, when robot r
switches to safe state, then w is still in UDG(r) at time t > 0,
when robot r switches back to regular state.

Proof. Let us consider the motion of the robot r in the safe state.
Assume that the safe state of some robot r is triggered at time 0.
This state is preserved until t′ = 1/k |w(0), r(0)| only if |w(t), r(t)| ≤
ρQ(t), t ∈ [0, t′]. The robot r moves with speed s towards midpoint
M(r) of the target arc A on the circle with radius 1/k |w(0), r(0)|
centered at r(0).

Robot r requires at least a time interval of length 1/k |w(0), r(0)| ≤
1/k ρQ(0) in order to reach M(r). The motion of the other robots
does not depend on the motion of r.

The connectivity circle CQ(r) cannot change much during the
time interval [0, t′]. All other robots move at most with speed s

and are able to cover at most the same distance as r during [0, t′].
Therefore it holds that ρQ(t′) ≥ ρQ(0)− 2/k ρQ(0). Note that it
does not matter if the robot r reaches M(r) or the criterion that
triggers safe state does not hold anymore. If the criterion that
triggers safe state is violated, then robot r becomes regular earlier
than t′.

67

For k > 2 it holds that ρQ(t′) > 0 and thus any unit disk graph
edge that robot r had at time 0 will remain at the end of the safe
motion.

From Lemma 10 and Lemma 15 we can conclude that S-GTRC
preserves connectivity.

Corollary 5. Let us consider a group of robots R on the Euclidean
plane executing S-GTRC. If {u,w} is an edge in the open Relative
neighborhood graph RNG(R) at time 0, then {u,w} is an edge in
RNG(R) at ∀t ≥ 0 or there is a path from u to v in RNG(R),∀t ≥
0.

Next, we analyze the runtime. We know that the robots in the
regular state (i.e., those executing GTRC) satisfy the contracting
conditions of Lemma 2. It remains to show that in the safe state
the robots also satisfy the contracting conditions. In Lemma 16, we
show that the target arc is constructed in such way that its mid-
dle point is always inside the local and consequently also a global
convex hull.

Lemma 16. If robot r is in the safe state, then the target point
M(r) is inside the convex hull H(R) over all robots, and it does not
coincide with the position of the robot r(t) at least until it switches
into the regular state again.

Proof. Let us consider robot r that switches to the safe state at
time 0. Robot r comes back into the regular state again at time
t1. It is clear that the position of robot r does not coincide with
the target point M(r) during the time interval [0, t1). It is left to
show that the target point M(r) of robot r during the safe run lies
inside 4m1rm2, where robots m1,m2 form p(w).

During the safe run, the motion of robot r does not depend on the
motion of other robots and vice versa. Thus we will first consider

68

Figure 4.3: Robot r at the position inside B1/2m|m1,m2|p(w) that minimizes angle
α at time 0. On other hand, position m1(t1) gives us a maximum decrease of
the angle α at time t1.

the motion of robots m1 and m2 independently from the motion
of robot r during the time interval [0, t1). Next, we show that
∠m1rm2 cannot become too small during the safe run.

Let us denote ∠m1rm2 at time 0 by α(0). Angle α(0) is at
its smallest if position r(0) is at the furthest position from line
segment m1m2 as depicted in Figure 4.3. In order to save space
let l = |m1(0),m2(0)|. Since r is in the safe state it holds that
|r(0), p(w)| ≤ l/2m. We consider 4r(0)m1(0)p(w), where it holds
that cot (α(0)/2) ≤ 1/m, thus α(0) ≥ 2 arccot(1/m). If α(t1) is∠m1rm2

at time t1, then α(t1) ≥ α(0) − 2β, where β is the maximum de-
crease of α(0) caused by the motion of m1 and m2. To bound β we
use first triangle inequality in 4r(0)m1(0)p(w), i.e |r(0),m1(0)| ≤
l/2 + l/2m and then some trigonometry tan(β) ≤ l/2mk (l/2 + l/2m)−1,
thus β ≤ arctan

(
(mk (1− 1/m))−1

)
. Combining our bounds on

α(0) and β we can show that α(t1) is greater than some function
dependent on m and k, namely

α(t1) ≥ α(0)− 2β ≥ arccot (1/m) +

+ arctan
(

(mk (1− 1/m))−1
)
.

(4.1)

For k ≥ 3 and m ≥ 4 the angle α(t1) ≥ 3π
4 . According to our

algorithm, target point M(r) in the safe state is the midpoint of

69

the target arc A and A is a subset of arc B ⊂ D such that central
angle ∠arc = 3π/4 and bisector of ∠arc coincides with bisector of
∠m1rm2. Therefore, if we select m ≥ 4 and k ≥ 3, then M(r) is
inside 4m1rmw ⊂ H(R).

Lemma 16 implies that in the safe state any robot r moves with
speed s ≥ 1 inside the convex hull. This means that S-GTRC is
a contracting algorithm. Besides that, the length of the convex
hull boundary around the initial configuration is not greater than
2(n− 1), where n is a number of robots, as shown in [LMP16].

Theorem 7. The group of n robots executing S-GTRC gathers in
time O(n2).

4.1.2 Collisionless Property of the Safe-Go-To-The-Relative-
Center Algorithm

Next, we investigate the collisions of robots executing S-GTRC.
Robots that execute S-GTRC can be in one of the three states:
regular, locked (regular) or safe, where a locked robot is a robot r
that is positioned at its own crash point p(r) and ∃w : Sw(r) =

true. It actually is in the regular state but the presence of w in the
proximity of its p(r) prevents r from switching to the safe state.

Proposition 6. If robot r is in the safe state, then it does not
collide with any other robot.

This proposition holds since according to S-GTRC, during the
motion in the safe state, a robot covers at most a distance 1/k|w, r| =
1/k minu∈UDG(r)\r{|r, u|}. Due to the speed limit s, all other robots
during the safe motion of r can cover at most the same distance.
For k ≥ 3, the position of r will never coincide with the position
of some other robot. Similar argumentation works in Proposition 7
for the locked regular state.

70

Proposition 7. If robot r is in the locked state, then it does not
collide with any other robot.

Proof. If robot r is locked, then its position coincides with the po-
sition of its crash point and there is a robot w close to r such that
Sw(r) = true and w is in the safe state.

Assume that there is some other robot u close to r. If u is close
enough it is also in the UDG(w) and since Sw(r) = true it holds
that |u, r| ≥ |w, r| = minu∈UDG(r)\r{|r, u|}. Assume that robot w
switches to the safe mode at time t1, at most at time t2 it becomes
regular again and changes the RNG graph such that crash point
p(r) does not exists after t2 (we will show this in Lemma 18). If
our assumption holds, then r after time t2 is not locked.

The safe mode of w lasts for |t1, t2| ≤ 1/ks|w, r|. Robot r stays
locked until t2. During this time interval, robot u can cover at most
distance 1/k|w, r|. During the same time robot r covers at most
1/ks|w, r|. Combining this together we can see that |w(t2), r(t2)| ≥
|w(t1), r(t1)|(1 − 1/ks − 1/k), And for k ≥ 3, s ≥ 1 it holds that
(1 − 1/ks − 1/k) > 0. Thus r cannot collide with some other robot
u while being locked, since both robots always move just a part of
the minimum distance needed to be covered before the collision.

If w is also locked and it cannot turn to the safe state, then there
is w1 such that Sw1

(w) = true. Note that the locked condition
overrides the safe state and brings the robot back to a regular one.
Since w ∈ B1/m|m1,m2|(p(r)), where m1,m2 define the crash point
p(r) it holds that |w,w1| ≤ 2/m|w, r|. Using the similar arguments
as before we can state that |w(t2), r(t2)| ≥ |w(t1), r(t1)|(1− 2/ksm−
2/km). Furthermore, for k ≥ 3, s ≥ 1, m ≥ 2 it holds that (1 −
1/ks − 1/k) > 0. We can continue our consideration. Such a chain
of locks can be at most length n. However, r cannot collide with
some other robot u while being locked since they will always move

71

just a part of the minimum distance needed to be covered before
the collision.

Note that if some robot w0 is locked by w1, w1 by w2 etc., then
wi is also locked wj for any j > i. But wi cannot be locked by wj
for any j < i since:

B1/m|m1,i+1,m2,i+1|(p(wi+1)) ⊂ B1/m|m1,i,m2,i|(p(wi)), (4.2)

where m1,i,m2,i and m1,i+1,m2,i+1 define according crash points
p(wi) and p(wi+1).

In order to have a collision, according to Corollary 4, robot r
needs to reach the crash point p(w) of some other robot w. An ex-
ample of the disposition of robots r and w shortly before a collision
at p(w) is depicted in Figure 4.2.

Robot r needs to pass through a shrinking gap between two lenses
corresponding to the RNG edges between w and m1,m2. Next, in
Lemma 17, we show that the safe move always triggers before the
potential collision by carefully analyzing the safety condition. In
Lemma 18, we show that at the end of the motion in the safe state,
a robot avoids potential collision by showing that during the run,
a robot cannot reach the crash point of any other robot.

Figure 4.4: Robot r in the safe state moves towards target point M(r) the
midpoint of the target arc A ⊂ D. Black arcs C1, C2 are the parts of according
RNG lenses.

72

Lemma 17. If a set of robots M ⊂ R has a potential collision with
robot w at time t∗ in p(w), then there exists robot r ∈ M and a
point in time t < t∗ such that Sr(w) = true.

Proof. Assume that a set of robots M arrives to the crash point
p(w) together with robot w at time t∗. If our assumption holds,
then there exists r ∈ M and t < t∗ such that the safety condition
is true, namely ∃w : w, T (w), T (r) ∈ B1/2m|m1,m2|p(w), where robots
m1,m2 define p(w) and |w, r| = minu∈UDG(r)\r{|r, u|}, where UDG(r)

consists of robots in both states (regular and safe) and |w, r| ≤ ρQ
and r is leftmost (rightmost, depending on chirality) robot with
respect to the direction towards p(w). Let us now explain why.

Robots follow their target points, therefore in order to reach p(w)

the target point T (r) of any robot r ∈ M and target point T (w)

need to be at least inside the ball B1/2m|m1,m2|(p(w)). Otherwise,
robots will move outside this ball.

If robots in M and w collide, then for any robot r ∈ M the
limit of the distance |w, r| is zero as time approaches t∗. Besides
that, for any r ∈ M it holds that |w, r| = 0 at time t∗. There-
fore, due to continuity there shall be an interval [t1, t∗] where |w, r|
monotonically decreases up to 0.

Lets us now show that there exists r ∈ M and t < t∗ such
that |w, r| = minu∈UDG(r)\r{|r, u|} during [t, t∗]. We split the set
as follows: UDG(r) \ r = A ∩ B, where A ⊂ M and B 6⊂ M .
The robots in B do not take part in the collision. Let ε be the
shortest distance from r to any of the robots in B during the time
interval [0, t]. Due to monotonicity there exists r ∈ M : |w, r| =

minu∈B |w, u| and some point of time t ∈ [t1, t∗) such that |w, r| ≤
ε.

There also exists a point in time t ∈ [0, t∗) such that expression
|w, r| ≤ ρQ is true. On one hand for any r ∈M the distance |w, r|

73

monotonically decreases on [t1, t∗]. On the other hand, according
to Lemma 10 ρQ > 0 during [t1, t∗], otherwise the connectivity
property does not hold. This implies that there exists r ∈ M and
t ∈ [t1, t∗) such that |w, r| ≤ ρQ.

Eventually, we can locally check the last expression of safety con-
dition at any point in time. Namely, robot r ∈M checks whether it
is a leftmost (rightmost, depending on chirality) robot with respect
to the direction towards p(w). There can be more than one robot
that satisfy all previous condition, but the leftmost (rightmost) will
be the unique one.

Lemma 18. If a set of robots M ⊂ R has a potential collision with
robot w at time t∗ in p(w), then there exists r ∈ M such that the
safety condition is triggered by p(w) at time t1 < t∗ and for k = 4,
m ≥ 500, s ≥ 10 at the end of the safe motion at time t2 ∈ (t1, t∗)

the crash point p(w) does not exist.

Proof. Assume that there is a potential collision between robot w in
p(w) and a set of robotsM ⊂ R at time t∗. Lemma 14 tells us that
robots in the regular state collide only at the crash points of some
other robots. Let us take a look at Figure 4.4 where we illustrate
the position of some robot r ∈ M , m1, m2 and crash point p(w)

shortly before the potential collision at this crash point. Let [0, t∗)

be a short interval before the collision.
With respect to the position of robot w, there are two cases to

be considered. Either r is at the crash point p(w) during the time
interval [0, t∗), or it is not. Let us consider the first case.

If m1 or m2 are in the safe state during [0, t∗], then they are
not taken into account by any r ∈ M and w for the calculation of
target point in the regular state. However, if our assumption holds,
then according to Lemma 14 there shall be some other robots m′1

74

and m′2 such that p(w) is the midpoint between them. Thus during
some positive interval [0, t∗] robots m1,m2 and w are in a regular
state.

From Lemma 17, we know that there exist r ∈M and t1 ∈ [0, t∗)

where robot Sr(w) = true. However, if w = p(w) and ∃r : Sr(w),
then robot w is locked. Locked robot w stays in the regular state
until robot r finishes his independent motion in the safe state. We
take a look once again at Figure 4.4. Let robot r ∈ M be the
one with Sr(w) = true. Assume that in Figure 4.4 the position of
robot r is depicted at time t1. The motion of robots m1,m2 and w
does not depend on the motion of r. Assume that the positions of
m1,m2 and w are depicted in Figure 4.4 at time t2 where robot r
becomes regular again.

Robot r starts an independent motion in the safe state at time
t1. It goes with speed s towards the target point M(r), which is
the midpoint of target arc A. Next we show that A is inside the
left (or right) RNG lens, depending on chirality. Because of that,
as robot r turns back to regular state again at time t2, p(w) is not
the crash point of w since w and m1 are not RNG neighbors at
time t2 due to r.

Let us take a look at Figure 4.5a. Point c is on the line that
passes through g perpendicular to m1m2. The distance to the line
segment m1m2, i.e. |c, g|, we call the height over the crash point
p(w). The length of the line interval ab we call the distance between
the lenses at the height |c, g|.

Now let us take a look at Figure 4.5b. This figure illustrates how
we can replace all given dispositions of m1,m2 and w at the end of
the safe motion of r by the new bad one. By bad we mean that in
the new disposition the distance between the lenses at any heights
is greater than in the original one.

75

(a) Here we illustrate robot w with its RNG lenses near the crash point
p(w). We call the length of the line segment cg the height over the crash
point and we call the length of the line segment ab the distance between
the RNG lenses at height |c, g|.

(b) Here we illustrate three steps needed to obtain the worst disposition.
From the original (green lenses) disposition we move w to g (blue lenses)
and then make RNG edges as short as possible (red lenses).

Figure 4.5: Disposition of the RNG lenses.

76

First we move robot w to g. Since |g,m1| ≤ |w,m1| and |g,m2| ≤
|w,m2|, the distance between the lenses at any height is greater.
Then we move m1 and m2 to the new positions m′1,m′2 as close as
possible to g. Now we consider the bad disposition.

Let l(t) = |m1(t),m2(t)|, then the shortest length of RNG edge
{m1, w} at time t1 is l(t1)/2 − l(t1)/2m. Thus for the distance be-
tween m1 and m2 in the bad disposition it holds that l′(t1) =

2 (l(t1)/2− l(t1)/2m). During the safe motion of r, robots m1 and m2

may move towards each other, so that l′(t2) ≥ 2 (l(t1)/2− l(t1)/2m)−
2/k|w(t1), r(t1)|. If robots m1 and m2 do move towards each other,
then we obtain the worst disposition, because then the distance
between the RNG lenses in it for any height is greater than in any
other disposition at time t2.

The left part of the worst disposition is depicted in Figure 4.6.
The right part is symmetric. It is easy to see that in the worst
disposition the distance between m′1 and m′2 is bounded by l′(t2) ≥
l(t1) (1− 1/m− 4/km). The distance between r and line segment
m′1m

′
2 at time t we call x(t). Since Sr(w) = true it holds that

x(t) ≤ l(t)/m where t ∈ [t1, t2].
Since robot r moves in the safe state in the direction of m1m2,

it holds that x(t2) ≤ x(t1) + 1/kx(t1). If we take into account that
x(t1) ≤ l(t1)/m we get x(t2) ≤ l(t1)1/m (1/k + 1).

Let us now calculate the upper bound on the distance between
two lenses at height x(t1) in the worst configuration. Namely, we
need to upper bound |a, c| depicted in Figure 4.6. In this picture
|c, g| = x(t1) and |m1, g| = |m2, g| = l′(t2)/2. We express the needed
value as follows: |a, c| = |m′1, g| − |m′1, b|.

Let us begin with finding the angle θ:

sin(θ) =
|a, b|
|m′1, b|

≤ 2x(t2)

l′(t2)
≤ 2(1 + 1

k)

m(1− 1
m − 4

mk)
. (4.3)

77

Now we can bound |a, c|:

|a, c| = l′(t2)

2
− l′(t2)

2
cos(θ), (4.4)

|a, c| ≤ l(t1)

2

(
1− 1

m
− 4

mk

)
·

·
(

1− cos

(
arcsin

(
2(1 + 1

k)

m(1− 1
m − 4

mk)

)))
.

(4.5)

Let us denote the expression on the right by φ(m, k), then |a, c| ≤
l(t1)/2 φ(m, k). The distance between the lenses h(t2) at height
x(t1) for any disposition of m1,m2 and w at time t2 is bounded by
h(t2) ≤ 2|a, c| ≤ l(t1)φ(m, k).

Figure 4.6: The worst disposition.

Next we consider target arc A in details. But how do we know
that circle D depicted in Figure 4.4 intersects the lenses? So far in
Lemma 16 and in Proposition 6 we have required k ≥ 3. Now we
fix k = 4. We consider the worst disposition again in Figure 4.6.
If circle D intersects the lenses in the worst disposition, then it
intersects the lenses in any disposition that we consider. Let us

78

assume that g is an origin, gc is an X axis and bg is a Y axis. If we
let |m′1, g| = 1 then the boundary of the RNG lens is expressed by
the function µ(x) = 1−

√
1− x2. The radius of the circle B is less

ore equal to the function ρ(x) = x/k = x/4. If µ(x) ≤ 2ρ(x) then
the circle D intersects the RNG lenses. This holds for x = 16/65.
Thus, if 16/65 ≤ 1/m, i.e. m ≥ 5, circle D intersects the RNG lenses.

Let us now take a look at Figure 4.7. The locked robot w moves
s times slower than robot r in the safe state. Due to this we can
show that there are arcs of D – e.g., yg, g′y′ that stay inside the
RND lenses C1 and C2. Namely, in Figure 4.7 the line through yy′

is parallel to the line segment m1m2 where p(w) is the midpoint.
Point c depicts the position of robot r at time t1. Lines l1, l3 show
us where D intersects with the RNG lenses: C1, C2 in this case.
Line segments ab, b′a′ have a length equal to the distance between
the lenses at time t2. Line segments bc, cb′ have a length equal to
the distance that robot w can cover during the safe motion of r.

At time t1, robot r was at some point in the gap between lenses
C1 and C2. As robots w, m1 and m2 move the relative position of
lenses with respect to circleD with center cmight change. However,
the gap between C1 and C2 lower than line segment yy′ is always
between lines l1 and l3. In other words, arcs yg and g′y′ shall be
inside the RNG lenses.

Let us now calculate how the size of these arcs depends on param-
etersm, k and s. Let us consider4cgx in Figure 4.7. Let us bound
from above angle γ. Let us consider 4cgx where sin(γ) = |g, x|/|c, g|.
Here |c, g| is the radius of the circle D and |g, x| = |a, c| is the
length of the line segment between y and c that can be still in the
gap, i.e., not inside the RNG lenses.

Robot r reaches with speed s any point onD in time 1
ks |w(t1), r(t1)|,

therefore robot w can cover at most distance 1
ks|w(t1), r(t1)| with

79

speed 1. The length cathetus gx is bounded from above by the dis-
tance between the lenses and the distance that robot w can cover
during [t1, t2] as follows:

|g, x| ≤ h(t2) +
1

ks
|w(t1), r(t1)|. (4.6)

Since w and r are relatively close, i.e., both robots are inside the
B1/2m|m1,m2|p(w), we can write that:

|g, x| ≤ h(t2) +
1

ksm
l(t1), (4.7)

where l(t1) is the distance between robots m1 and m2.

Figure 4.7: Here we illustrate the relative position of robot r and the RNG
lenses during the motion of robot r in the safe state. Point c here depicts the
position of robot r at the begin of the safe motion. The end position of the
safe motion is on circle D. Lines l1, l2, l3, l4 show us where D intersects with
RNG lenses C1, C2.

Radius of the D is 1/k|w(t1), r(t1)|. Robots according to the
algorithm perform calculation at every point in time. Due to this;

80

as soon as the safety condition is fulfilled the robot turns to the
safe state. Due to the absence of delay we can say that l(t1)/2mk ≤
1/k|w(t1), r(t1)| ≤ l(t1)/mk. Using this bound together with previous
results we can bound sin(γ) as follows:

sin(γ) ≤ 2mk
(
h(t2) + 1

ksml(t1)
)

l(t1)
. (4.8)

As we simplify this we get γ ≤ arcsin (2mkφ(m, k) + 1/s). This
bound decreases as m and s grow and increases with the growth
of k. For s ≥ 10, m ≥ 500 and k = 4 it holds that γ < π/20.
Note that selected parameters also satisfy restrictions in other state-
ments: m ≥ 4, k ≥ 3 in Lemma 16 and m ≥ 2 k ≥ 3, s ≥ 1 in
Proposition 7.

We use this bound on γ together with the results of Lemma 16
in the construction of the target arc depicted in Figure 4.1. Due
to this construction, the target point M(r) ⊂ A of r during the
safe motion of r is strictly inside the corresponding RNG lens. At
the end of the safe motion crash point p(w) does not exist since
r violates Relative neighborhood criterion between w and of two
robots m1, m2 that form the crash point.

Recall that, with respect to the position of robot w, there are two
cases to be considered. Either r is at the crash point p(w) during
the time interval [0, t∗), or it is not. Let us consider the second
case.

We assume again that there is a collision in the crash point p(w)

between robot w and a set of robots M ⊂ R at time t∗. According
to Lemma 17 we know that there exists r ∈ M and t1 ∈ [0, t∗)

where robot Sr(w) = true. However, robot w is not locked as in
the previous case, since it is not at its own crash point p(w) during
[0, t∗). The crash points of r and w might coincide and the safety

81

condition for robot w might be also satisfied, i.e. Sw(r) = true.
We lack information about the structure of the MEC(r), thus we
cannot guarantee that the crash point p(r) does not exist after the
safe motion of robot w. However, Proposition 6 guarantees that w
will not collide with some other robot during the motion in the safe
state.

On the other hand, we can show that at the end of the safety
motion of robot r the crash point p(w) does not exist. Robot
r might be locked during some proper subinterval of [0, t∗), but
as it cannot collide with some other robot while being locked by
Proposition 7.

If our assumption of potential collision holds even if robot was
locked during some proper subinterval of [0, t∗),then according to
Lemma 17 there is still a point in time t1 ∈ [0, t∗) where robot
Sr(w) = true. Next we show that, independent of the motion of
w if robot performs the motion in the safety state, then the crash
point p(r) does not exist at the end of this motion.

Let us look back at Figure 4.7 once again. Robot w moves either
with speed 1 or s. Due to chirality with speed s, robot r moves
to the right in Figure 4.7. The RNG lenses intersect the line that
passes through yy′ only inside the line segment az′, since robot r
to the left can only move with speed 1.

Robot r that performs the safe motion starts at c and moves
towards target M(r) on arc yg. From the previous case we know
that yg is inside RNG lens C1 for s ≥ 10, m ≥ 500 and k = 4.
Due to this, the target point M(r) of r (midpoint of A) during the
safe motion of r is strictly inside of corresponding RNG lens. At
the end of the safe motion, crash point p(w) does not exist, since r
violates Relative neighborhood criterion between w and one of two
robots m1, m2 that form the crash point.

82

Using Proposition 6 and Proposition 7 together with Lemma 14,
Lemma 17, Lemma 18 and Theorem 7, we prove one of our main
results, namely Theorem 8.

Theorem 8. For s ≥ 10, m ≥ 500, and k = 4, the Safe-Go-To-
The-Relative-Center algorithm performs gathering in O(n2) with-
out collisions.

Proof. In this theorem, we would like to show that with S-GTRC
the gathering is collisionless. In other words if t∗ is the time of the
final collision, then for all ∈ (0, t∗), for all r, w ∈ R it holds that
|r, w| > 0. Let us consider the trajectory of robot r. It consists
of segments that correspond to the different states of the robot:
regular, locked (regular) and safe. According to Proposition 6 and
Proposition 7, in a safe and locked state robot r cannot collide with
some other robot w: i.e., in safe and locked state for all t ∈ (0, t∗),
for all r, w ∈ R if r is in the safe or locked state it holds that
|r, w| > 0.

In the regular state according to Lemma 14, the set of robots
M ⊂ R is such that r ∈M can collide only at the crash point p(w)

of some robot w ∈ M . In order to reach crash point p(w), robots
from set M \ w need to get in a regular state through the narrow
gap between the RNG lenses as illustrated in Figure 4.4. However,
this is impossible in the S-GTRC algorithm.

Let us consider the segment of the trajectory where the state of r
is regular starting from time t1 > 0 and there is a potential collision
of set M ⊂ R and w in p(w) at time t4. In other words, for any
u, v ∈ {M,w} it holds that |u, v| = 0 at time t4 > t1.

According to Lemma 17 and Lemma 18 there exists t2 < t4 and
robot u ∈M starts a safe move at t2. At the end of the safe move
(at time t3 ∈ (t2, t4)), robot r changes configuration in such way

83

that point p(w) is not the crash point of w.
At time t3 at least robot w has a different crash point p′(w)

and no other robot except w can be at this point, according to
Corollary 4. Therefore, for any r ∈ R and w ∈ R, r 6= w at time t3
it holds that |p′(w), r| > 0. As we already mentioned in Lemma 14,
in order to have a collision, robot r shall reach the crash point of
some other robot w, therefore also |w, r| > 0 for all r ∈ R at time
t3. Starting from t3 we repeat our consideration for every segment
of the trajectory, where r is in the regular state until all robots have
gathered in a final collision. On every such segment for all r, w ∈ R
it holds that |r, w| > 0, therefore for all t ∈ (0, t∗), for all r, w ∈ R
it holds that |r, w| > 0.

4.2 The Near Gathering Problem

The near gathering problem for the robots with limited visibility
was first considered in [PPV15]. The near gathering problem is a
variation of the gathering problem, where the aim of the robots
is to get close enough to be in vision range of each other without
collisions. In [PPV15] this problem was solved with robots that
are equipped with a compass so that they have a common coordi-
nate system. We would like to show that with the extended robot
model we can solve the gathering problem without agreement on a
common coordinate system.

Let us consider group R of n robots within the extended robot
mode. At time 0 we are given initial configuration such that UDG(R)

is connected. The goal is to gather all robots in one non-predefined
circle Bc, where radius c is some positive constant. Besides that,
all robots shall have distinct positions, i.e. the gathering process
shall be collisionless.

84

Before we describe the N-GTRC algorithm we need one defini-
tion. At every point in time in the N-GTRC algorithm, the robot
checks whether there exists r ∈ R such that

max
a,b∈2-UDG(r)

|a, b| < 1

2
. (4.9)

We refer to the logical expression above as the terminal condition,
denoted by the function Tr : X → Z2, where X ⊂ R2.

Near gathering Go-To-The-Relative-Center algorithm (N-GTRC):

Every robot r ∈ R at every point in time t checks the terminal
condition. If Tr = true, then the robot is idle. Otherwise, if
Tr = false, then robot r executes the S-GTRC algorithm.

First of all, we would like to make sure that all robots at the
same time recognize that they have gathered. In Lemma 19 we
consider the termination condition and make sure that if one robot
is idle, then the rest also idle. Namely, robots have gathered inside
of non-predefined circle B 1

4
.

Lemma 19. If there exists r ∈ R such that Tr = true, then for
all r ∈ R it holds that Tr = true.

Proof. Assume that there exists r ∈ R such that Tr = true. It
implies that all robots of 2-UDG(r) are inside circle B 1

4
.

Let us consider circle B1 1
4
, which has the same center as B 1

4
.

There are no other robots in B1 1
4
\B 1

4
, because if there exists robot

u in B1 1
4
\ B 1

4
, then either |a, u| > |a, b| or |b, u| > |a, b|, which

contradicts our assumption.
For any position x in B 1

4
it holds that B1 1

4
⊂ B2(x), where B2(x)

represents two unit disk centered in x. In other words any robot
in B 1

4
can see whole B1 1

4
. On the other hand, the S-GTRC algo-

rithm preserves connectivity with respect to distance 1 according

85

to Lemma 10. But since there are no other robots in B1 1
4
\B 1

4
there

cannot also be robots outside B1 1
4
. All r ∈ R are in B 1

4
and they

all are idle: i.e., for all r ∈ R,Tr = true.

The time needed to solve the near gathering problem with N-
GTRC is clearly not greater than time needed to solve the gathering
problem with S-GTRC for the same initial configuration. There-
fore, for the extended robot model we can state the following.

Theorem 9. The group of n robots solves the near gathering prob-
lem, i.e., it gathers in one non-predefined circle B 1

4
in time O(n2).

86

Chapter 5

Conclusion and Outlook

The goal of this thesis was to examine how efficiently can robots
with a limited viewing range solve the gathering problem in the
continuous time model. Besides that, the core interest was to gather
robots without collisions by using local information only.

Local information and the concurrency between the robots in the
continuous time model were two major challenges in this thesis.
From the related work, we know that the gathering problem in the
model that we consider becomes trivial if the robots are granted
unlimited viewing range.

On the other hand, robots models that are too weak (e.g., robots
know only distance but not the direction) do not allow to solve the
gathering problem even for two robots. The model with limited
visibility lies between these two extreme assumptions.

We have studied the gathering problem in the continuous time
model with limited visibility. For the given problem we have pro-
posed the class of contracting algorithms which solve the gathering
problem in time O(nd), where d is the diameter of the initial con-
figuration. The definition of this class is so simple that we were
able to use it as a criterion for the design and runtime analysis of
several gathering algorithms.

87

Concerning the gathering problem, we have shown that there are
implicit algorithms that match the lower and upper bounds for the
class of contracting algorithms. Besides that, we have analyzed
the quality and correctness of several known and new gathering
algorithms.

In addition to theoretical research, we have also performed sim-
ulations with different gathering algorithms in order to obtain a
better understanding of the dynamics during runtime. One of our
observations was that Go-To-The-Relative-Center and Go-To-The-
Gabriel-Center algorithms gather robots almost without collisions.
On the basis of this observation for the Go-To-The-Relative-Center
algorithm, we have shown that collisions take place only at spe-
cific points. This information, together with the contracting cri-
terion, allowed us to develop the Safe-Go-To-The-Relative-Center
algorithm. This algorithm is a contracting, local algorithm that
solves the gatecrashing problem without collisions. We were also
able to apply our new collisionless algorithm to the near gathering
problem. An overview of the results can be found in Table 5.1.

Nevertheless, there are still plenty of open questions. Can robots
gather faster than in quadratic time? The answer to this is yes since
there is already a known algorithm due to [KKM12] that solves the
gathering problem in time O(min{n,OPT log(OPT)}), where n
is the number of robots and OPT is the runtime of the optimal al-
gorithm with unlimited visibility. Nevertheless, what is not known
is whether there is a simple criterion for the corresponding class of
linear time gathering algorithms.

The other obvious open question is the Collisionless Conjecture.
It already seems to be difficult even for n = 4 robots. New methods
from theory of dynamic systems are needed. With certain algorith-
mic extensions, i.e. new capabilities that we granted to the robots,

88

we have been able to design the collisionless contracting gather-
ing algorithm. For many formation problems the open question is
which capabilities of robots are necessary for a given global task,
which are sufficient, and which are technically feasible.

Table 5.1: Overview of results.

Algorithm Runtime
Connec-
tivity

property

Collision-
less

property
Implicit-Go-To-The-
Left
(I-GTL)

n2

2π2 ≤ t ≤ n2

8
Cor. 2

- -

Implicit-Go-On-Bisector
(I-GOB)

O(n)
Cor. 3 - -

Go-To-The-Gravity-
Center
(GTGrC)

O(n2)
Pro. 2 7 Lem. 6 -

Go-To-The-Center
(GTC)

O(n2)
Thm. 2 3 Lem. 7 7 Sec. 3.1

Go-To-The-Relative-
Center on the line
(GTRC on the line)

Θ(n)
Thm. 5 3 Lem. 10 3 Thm. 6

Go-To-The-Relative-
Center
(GTRC)

O(n2)
Thm. 3 3 Lem. 10 7 Sec. 3.3

Go-To-The-Gabriel-
Center
(GTGC)

O(n2)
Thm. 4 3 [LMP16] 7 [LMP16]

Safe-Go-To-The-
Relative-Center
(S-GTRC)

O(n2)
Thm. 7 3 Cor. 5 3 Thm. 8

Neat Gathering Go-To-
The-Relative-Center
(N-GTRC)

O(n2)
Thm. 9 3 Cor. 5 3 Thm. 8

89

90

Bibliography

[ACF+16] Abshoff, Sebastian, Andreas Cord-Landwehr, Matthias
Fischer, Daniel Jung, and Friedhelm Meyer auf der
Heide: Gathering a closed chain of robots on a grid. In
Proceedings of the 30th International Parallel and Dis-
tributed Processing Symposium (IPDPS), pages 689–
699. IEEE, May 2016.

[AGM13] Agathangelou, Chrysovalandis, Chryssis Georgiou, and
Marios Mavronicolas: A distributed algorithm for gath-
ering many fat mobile robots in the plane. In Pro-
ceedings of the ACM Symposium on Principles of Dis-
tributed Computing (PODC), pages 250–259. ACM,
2013.

[ASY95] Ando, Hideki, Ichiro Suzuki, and Masafumi Yamashita:
Formation and agreement problems for synchronous
mobile robots with limited visibility. In Proceedings of
10th International Symposium on Intelligent Control,
pages 453–460. IEEE, 1995.

[BCJKF14] Bolla, Kálmán, Zsolt Csaba Johanyák, Tamás Kovács,
and Gábor Fazekas: Local center of gravity based gath-
ering algorithm for fat robots. In Issues and Chal-
lenges of Intelligent Systems and Computational In-

91

telligence, pages 175–183. Springer International Pub-
lishing, 2014.

[Ber59] Bernhart, Arthur: Polygons of pursuit. Scripta Math,
24:23–50, 1959.

[CDF+11a] Cord-Landwehr, Andreas, Bastian Degener, Matthias
Fischer, Martina Hüllmann, Barbara Kempkes,
Alexander Klaas, Peter Kling, Sven Kurras, Marcus
Märtens, Friedhelm Meyer auf der Heide, Christoph
Raupach, Kamil Swierkot, Daniel Warner, Christoph
Weddemann, and Daniel Wonisch: A new approach
for analyzing convergence algorithms for mobile robots.
In Automata, Languages and Programming - 38th
International Colloquium (ICALP), pages 650–661.
Springer, 2011.

[CDF+11b] Cord-Landwehr, Andreas, Bastian Degener, Matthias
Fischer, Martina Hüllmann, Barbara Kempkes,
Alexander Klaas, Peter Kling, Sven Kurras, Marcus
Märtens, Friedhelm Meyer auf der Heide, Christoph
Raupach, Kamil Swierkot, Daniel Warner, Christoph
Weddemann, and Daniel Wonisch: Collisionless gath-
ering of robots with an extent. In Theory and Prac-
tice of Computer Science - 37th Conference on Current
Trends in Theory and Practice of Computer Science
(SOFSEM), pages 178–189. Springer, 2011.

[CDSN17] Cicerone, Serafino, Gabriele Di Stefano, and Alfredo
Navarra: Gathering of robots on meeting-points: fea-
sibility and optimal resolution algorithms. Distributed
Computing, 2017.

92

[CFPS03] Cieliebak, Mark, Paola Flocchini, Giuseppe Prencipe,
and Nicola Santoro: Solving the robots gathering prob-
lem. In Automata, Languages and Programming - 30th
International Colloquium (ICALP), pages 1181–1196.
Springer, 2003.

[CGP06] Czyzowicz, Jurek, Leszek Gasieniec, and Andrzej Pelc:
Gathering few fat mobile robots in the plane. In Prin-
ciples of Distributed Systems - 10th International Con-
ference (OPODIS), pages 350–364. Springer, 2006.

[Chr85] Chrystal, George: On the problem to construct the min-
imum circle enclosing n given points in a plane. Pro-
ceedings of the Edinburgh Mathematical Society, Third
Meeting, pages 30–35, 1885.

[CLFJM16] Cord-Landwehr, Andreas, Matthias Fischer, Daniel
Jung, and Friedhelm Meyer auf der Heide: Asymptot-
ically optimal gathering on a grid. In Proceedings of
the 28th Annual ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 301–312.
ACM, 2016.

[CMN04] Chatzigiannakis, Ioannis, Michael Markou, and Sotiris
E. Nikoletseas: Distributed circle formation for anony-
mous oblivious robots. In Experimental and Efficient
Algorithms (WEA), pages 159–174, 2004.

[CP04] Cohen, Reuven and David Peleg: Convergence prop-
erties of the gravitational algorithm in asynchronous
robot systems. In 12th Annual European Symposium
on Algorithms (ESA), pages 228–239. Springer, 2004.

93

[DFP+12] Das, Shantanu, Paola Flocchini, Giuseppe Prencipe,
Nicola Santoro, and Masafumi Yamashita: The power
of lights: Synchronizing asynchronous robots using vis-
ible bits. In 32nd International Conference on Dis-
tributed Computing Systems (ICDCS), pages 506–515.
IEEE, 2012.

[DK02] Défago, Xavier and Akihiko Konagaya: Circle forma-
tion for oblivious anonymous mobile robots with no
common sense of orientation. In Proceedings of the
2002 Workshop on Principles of Mobile Computing
(POMC), pages 97–104. ACM, 2002.

[DKL+11] Degener, Bastian, Barbara Kempkes, Tobias Langner,
Friedhelm Meyer auf der Heide, Peter Pietrzyk, and
Roger Wattenhofer: A tight runtime bound for syn-
chronous gathering of autonomous robots with limited
visibility. In Proceedings of the 23rd Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA), pages 139–148. ACM, 2011.

[DKLM06] Dynia, Miroslaw, Jaroslaw Kutylowski, Pawel Lorek,
and Friedhelm Meyer auf der Heide: Maintaining com-
munication between an explorer and a base station.
In Biologically Inspired Cooperative Computing, IFIP
19th World Computer Congress, TC 10: 1st IFIP In-
ternational Conference on Biologically Inspired Com-
puting, pages 137–146. Springer, 2006.

[DKM10] Degener, Bastian, Barbara Kempkes, and Friedhelm
Meyer auf der Heide: A local O(n2) gathering algo-
rithm. In Proceedings of the 22nd Annual ACM Sym-

94

posium on Parallelism in Algorithms and Architectures
(SPAA), pages 217–223. ACM, 2010.

[DKMS07] Dynia, Miroslaw, Jaroslaw Kutylowski, Friedhelm
Meyer auf der Heide, and Jonas Schrieb: Local strate-
gies for maintaining a chain of relay stations between
an explorer and a base station. In Proceedings of the
19th Annual ACM Symposium on Parallelism in Al-
gorithms and Architectures (SPAA), pages 260–269.
ACM, 2007.

[DP09] Dieudonné, Yoann and Franck Petit: Self-stabilizing
deterministic gathering. In Algorithmic Aspects of
Wireless Sensor Networks, 5th International Workshop
(ALGOSENSORS), pages 230–241. Springer, 2009.

[DSKN12] D’Angelo, Gianlorenzo, Gabriele Di Stefano, Ralf Klas-
ing, and Alfredo Navarra: Gathering of robots on
anonymous grids without multiplicity detection. In
Structural Information and Communication Complex-
ity - 19th International Colloquium (SIROCCO), pages
327–338. Springer, 2012.

[FJM17] Fischer, Matthias, Daniel Jung, and Friedhelm Meyer
auf der Heide: Gathering anonymous, oblivious robots
on a grid. CoRR, abs/1702.03400, 2017.

[FPS12] Flocchini, Paola, Giuseppe Prencipe, and Nicola
Santoro: Distributed Computing by Oblivious Mobile
Robots. Synthesis Lectures on Distributed Computing
Theory. Morgan & Claypool Publishers, 2012.

[FPSV14] Flocchini, Paola, Giuseppe Prencipe, Nicola Santoro,
and Giovanni Viglietta: Distributed computing by mo-

95

bile robots: Solving the uniform circle formation prob-
lem. In Principles of Distributed Systems - 18th
International Conference (OPODIS), pages 217–232.
Springer, 2014.

[GS69] Gabriel, K. Ruben and Robert R. Sokal: A new sta-
tistical approach to geographic variation analysis. Sys-
tematic Biology, 18(3):259–278, 1969.

[GWB04] Gordon, Noam, Israel A. Wagner, and Alfred M. Bruck-
stein: Gathering multiple robotic a(ge)nts with lim-
ited sensing capabilities. In Ant Colony Optimization
and Swarm Intelligence, 4th International Workshop
(ANTS), pages 142–153. Springer, 2004.

[HPT14] Honorat, Anthony, Maria Potop-Butucaru, and
Sébastien Tixeuil:Gathering fat mobile robots with slim
omnidirectional cameras. Theoretical Computer Sci-
ence, 557:1–27, 2014.

[IKIW07] Izumi, Taisuke, Yoshiaki Katayama, Nobuhiro In-
uzuka, and Koichi Wada: Gathering autonomous mo-
bile robots with dynamic compasses: An optimal result.
In Distributed Computing, 21st International Sympo-
sium (DISC), pages 298–312. Springer, 2007.

[Kat05] Katreniak, Branislav: Biangular circle formation by
asynchronous mobile robots. In Structural Infor-
mation and Communication Complexity - 12th In-
ternational Colloquium (SIROCCO), pages 185–199.
Springer, 2005.

[Kat11] Katreniak, Branislav: Convergence with limited visibil-
ity by asynchronous mobile robots. In Structural In-

96

formation and Communication Complexity - 18th In-
ternational Colloquium (SIROCCO), pages 125–137.
Springer, 2011.

[KKM12] Kempkes, Barbara, Peter Kling, and Friedhelm Meyer
auf der Heide: Optimal and competitive runtime bounds
for continuous, local gathering of mobile robots. In Pro-
ceedings of the 24th Annual ACM Symposium on Paral-
lelism in Algorithms and Architectures (SPAA), pages
18–26. ACM, 2012.

[KM09] Kutylowski, Jaroslaw and Friedhelm Meyer auf der
Heide: Optimal strategies for maintaining a chain of
relays between an explorer and a base camp. Theoreti-
cal Computer Science, 410(36):3391–3405, 2009.

[KM11] Kling, Peter and Friedhelm Meyer auf der Heide: Con-
vergence of local communication chain strategies via
linear transformations: or how to trade locality for
speed. In Proceedings of the 23rd Annual ACM Sym-
posium on Parallelism in Algorithms and Architectures
(SPAA), pages 159–166. ACM, 2011.

[KTI+07] Katayama, Yoshiaki, Yuichi Tomida, Hiroyuki Imazu,
Nobuhiro Inuzuka, and Koichi Wada: Dynamic com-
pass models and gathering algorithms for autonomous
mobile robots. In Structural Information and Commu-
nication Complexity - 14th International Colloquium,
(SIROCCO), pages 274–288. Springer, 2007.

[LFC+17] Luna, Giuseppe Antonio Di, Paola Flocchini, Sruti Gan
Chaudhuri, Federico Poloni, Nicola Santoro, and Gio-
vanni Viglietta: Mutual visibility by luminous robots

97

without collisions. Information and Computation,
254:392–418, 2017.

[LM14] Lukovszki, Tamás and Friedhelm Meyer auf der Heide:
Fast collisionless pattern formation by anonymous,
position-aware robots. In Principles of Distributed
Systems - 18th International Conference (OPODIS),
pages 248–262. Springer, 2014.

[LMMP17] Li, Shouwei, Christine Markarian, Friedhelm Meyer
auf der Heide, and Pavel Podlipyan: A continuous
strategy for collisionless gathering. In Algorithms
for Sensor Systems, Proceedings of the 13th Inter-
national Symposium on Algorithms and Experiments
for Wireless Sensor Networks (ALGOSENSORS).
Springer, 2017. Full version: https://www.hni.uni-
paderborn.de/pub/9531.

[LMP16] Li, Shouwei, Friedhelm Meyer auf der Heide, and Pavel
Podlipyan: The impact of the gabriel subgraph of the
visibility graph on the gathering of mobile autonomous
robots. In Algorithms for Sensor Systems, Proceedings
of the 12th International Symposium on Algorithms
and Experiments for Wireless Sensor Networks (AL-
GOSENSORS), pages 62–79. Springer, 2016.

[Meg83] Megiddo, Nimrod: Linear-time algorithms for linear
programming in R3 and related problems. SIAM Jour-
nal on Computing, 12(4):759–776, 1983.

[Nah07] Nahin, Paul J.: Chases and Escapes: The Mathematics
of Pursuit and Evasion. Princeton University Press,
2007.

98

[Pel05] Peleg, David: Distributed coordination algorithms for
mobile robot swarms: New directions and challenges.
In Proceedings of 7th International Workshop on Dis-
tributed Computing (IWDC), pages 1–12. Springer,
2005.

[PPV15] Pagli, Linda, Giuseppe Prencipe, and Giovanni Vigli-
etta: Getting close without touching: near-gathering
for autonomous mobile robots. Distributed Comput-
ing, 28(5):333–349, Oct 2015.

[SBMM17] Sharma, Gokarna, Costas Busch, Supratik Mukhopad-
hyay, and Charles Malveaux: Tight analysis of a colli-
sionless robot gathering algorithm. ACM Transactions
on Autonomous and Adaptive Systems, 12(1):3:1–3:20,
April 2017.

[Sch95] Schierscher, Georg: Verfolgungsprobleme. Berichte über
Mathematik und Unterricht, (95-06), 1995.

[SDY06] Souissi, Samia, Xavier Défago, and Masafumi Ya-
mashita: Gathering asynchronous mobile robots with
inaccurate compasses. In Principles of Distributed
Systems - 10th International Conference (OPODIS),
pages 333–349. Springer, 2006.

[SDY09] Souissi, Samia, Xavier Défago, and Masafumi Ya-
mashita: Using eventually consistent compasses to
gather memory-less mobile robots with limited visibil-
ity. ACM Transactions on Autonomous and Adaptive
Systems, 4(1):9:1–9:27, 2009.

[Sin97] Singer, Ivan: Abstract Convex Analysis. Wiley, 1997.

99

[SY99] Suzuki, Ichiro and Masafumi Yamashita: Distributed
anonymous mobile robots: Formation of geometric pat-
terns. SIAM Journal on Computing, 28(4):1347–1363,
1999.

[Tou80] Toussaint, Godfried T.: The relative neighbourhood
graph of a finite planar set. Pattern Recognition,
12(4):261–268, 1980.

[YDIW07] Yared, Rami, Xavier Défago, Julien Iguchi-Cartigny,
and Matthias Wiesmann: Collision prevention platform
for a dynamic group of asynchronous cooperative mo-
bile robots. Journal of Networks, 2(4):28–39, 2007.

100

	Introduction
	Organization of the Thesis
	Related Work
	Bibliography Note

	Gathering in the Continuous Time Model
	Problem Description and Notation
	Contracting Algorithms
	The Worst Contracting Algorithm
	The Best Contracting Algorithm

	Examples of Local Contracting Algorithms
	Go-On-Bisector Algorithm
	Go-To-The-Gravity-Center Algorithm
	Go-To-The-Center Algorithm
	Go-To-The-Relative-Center Algorithm

	Collisionless Gathering
	Go-To-The-Center Algorithm is not Collisionless
	Go-To-The-Relative-Center Algorithm in One Dimension
	Go-To-The-Relative-Center Algorithm in Two Dimensions
	Collisions in Go-To-The-Relative-Center Algorithm
	The Collisionless Conjecture for Four Robots

	Collisionless Gathering with Some Algorithmic Extensions
	Safe-Go-To-The-Relative-Center Algorithm
	Correctness and Runtime Analysis of the Safe-Go-To-The-Relative-Center Algorithm
	Collisionless Property of the Safe-Go-To-The-Relative-Center Algorithm

	The Near Gathering Problem

	Conclusion and Outlook
	Bibliography

