
Faculty of Computer Science, Electrical Engineering and Mathematics

Early Performance Analysis of
Automation Systems Based on
Systems Engineering Models

Jens Frieben

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Doktor der Naturwissenschaften (Dr. rer. nat.)

Paderborn, August 26, 2017

Abstract

Designing and scaling complex, networked automation systems is a challenging
task. Developers have to consider different kinds of influence factors that im-
pact the system performance already in the early stages of the development. For
example, estimating the average workload of a Programmable Logic Controller
(PLC), deploying software onto resources, or assigning sensors and actuators
to PLCs are difficult tasks when coping with complex systems. If performance
bottlenecks are detected too late, costly corrections may follow and the com-
missioning can be significantly delayed.

There already exist several approaches to predict the performance of a system
under development. However, the developers must identify and decide themsel-
ves which factors must be regarded and to what detail. Therefore, developers
usually require in-depth knowledge of the system which is – at least to this level
of detail – not available until the discipline specific development starts. Exis-
ting approaches only cover parts of the system and differ in their level of detail,
scope, usability, and applicability to predict automation systems. In particular
it is not clear, which factors influence the performance of a PLC and how these
can be used for an early validation of a system model.

The first contribution of this thesis is the identification and creation of a list
of influence factors that impact one or more quality of service attributes of an
automation system. For each factor, a decision is made, whether it is available in
the early development stages, what assumptions must be made by the developer,
and what impact it has on the overall system performance.

The second contribution is a method that enables developers of automated sy-
stems to define the identified influence factors in systems engineering models
and to carry out a subsequent automatic performance analysis. The method
includes a model for the specification of influence factors and their parameters
within an existing Systems Engineering model as well as a process to guide the
developers through the specification of these factors. Based on these extended
Systems Engineering models, an analysis can be performed to predict the utili-
zation of a selected PLC. The results can be used to evaluate the design of the
automation in the early phases and, therefore, avoid costly and time consuming
changes in the following integration phase.

i

Zusammenfassung

Der Entwurf und die Auslegung komplexer, vernetzter Automatisierungssys-
teme ist eine anspruchsvolle Aufgabe. Während der Entwicklung dieser Systeme
müssen unterschiedliche Arten von Einflussfaktoren berücksichtigt werden, die
die Leistungsfähigkeit einer Speicherprogrammierbaren Steuerung (SPS) beein-
flussen können. Eine präzise Schätzung der Auslastung einer SPS ist gerade in
den frühen Phasen der Entwicklung eines automatisierten Systems nur schwer
möglich. Diese wird zum Beispiel durch die Verteilung von Softwarekomponen-
ten auf Ressourcen oder die Zuordnung von Sensoren und Aktoren zu Steue-
rungen beeinflusst. Werden jedoch Leistungsengpässe zu spät erkannt, können
kostenaufwändige Korrekturen folgen und die Inbetriebnahme des Systems sig-
nifikant verzögern.

Zur Vorhersage der Performanz eines sich in der Entwicklung befindlichen Sy-
stems gibt es bereits mehrere Ansätze. Jedoch müssen die Entwickler selbst
entscheiden, welche Faktoren für die Vorhersage entscheidend sind und zu wel-
chem Detailgrad diese erfasst werden müssen. Daher benötigen die Entwickler
in der Regel ein fundiertes Wissen über das System, dass - zumindest bis zu
diesem Detaillierungsgrad - nicht bis zur disziplinspezifischen Entwicklung ver-
fügbar ist. Zusätzlich decken bestehende Prognoseansätze oft nur Teile des Ge-
samtsystems ab und unterscheiden sich in ihrem Detaillierungsgrad, Umfang,
ihrer Verwendbarkeit und Anwendbarkeit auf Automatisierungssysteme. Insbe-
sondere ist unklar, welche Faktoren die Leistungsfähigkeit einer SPS beeinflus-
sen und wie diese für eine frühzeitige Validierung eines Systemmodells genutzt
werden können.

Der erste Beitrag dieser Arbeit ist daher die Identifizierung von Einflussfakto-
ren, die eine oder mehrere Qualitätseigenschaften eines Automatisierungssys-
tems beeinflussen. Für jeden Faktor wird entschieden, ob dieser bereits in den
frühen Entwicklungsstadien identifiziert werden kann, welche Annahmen vom
Entwickler getroffen werden müssen und welche Auswirkungen er auf das Ge-
samtsystem hat.

Der zweite Beitrag dieser Arbeit ist eine Methode, die es Entwicklern automati-
sierter Systeme ermöglicht, die zuvor identifizierten Einflussfaktoren in Systems
Engineering Modellen zu integrieren und automatische Leistungsanalysen dur-
chzuführen. Hierzu gehören ein Modell zur Spezifikation der Einflussfaktoren
und Parameter innerhalb eines bestehenden Systems Engineering Modells sowie
ein Prozess, um die Entwickler durch die Spezifikation der Faktoren zu führen.
Basierend auf den erweiterten Systems Engineering Modellen können automa-
tische Analysen zur Leistungsprognose einer ausgewählten SPS durchgeführt
werden. Mit den Ergebnissen der Prognose lassen sich schon in den frühen
Phasen der Entwicklung Designentscheidungen validieren und somit spätere,
kostspielige Änderungen vermeiden.

iii

Danksagung

Danke. Dieses Wort möchte ich an alle aussprechen, die mich in den letzten
Jahren mit Rat und Tat unterstützt haben. Anfangen möchte ich hiermit bei
Wilhelm Schäfer. Ohne seinen Zuspruch und sein direktes Feedback wäre es
wohl nicht zu dieser Arbeit gekommen. Seine Unterstützung, gerade in den
ersten Jahren, hat mir sehr geholfen an dem Ziel der Promotion festzuhalten.

Danken möchte ich auch Eric Bodden und Roman Dumitrescu, die mich ge-
meinsam nach Wilhelm Schäfer weiter betreut und mir so geholfen haben diese
Arbeit zum Abschluss zu bringen. Ich bedanke mich auch bei Ansgar Trächtler,
der mir bei allgemeinen und automatisierungsspezifischen Fragen gute Antwor-
ten und Anregungen geben hat. Das Gleiche gilt für Matthias Meyer, der mir
in vielen Diskussionen andere Blickwinkel aufgezeigt und mich über die letzten
sechs Jahre immer unterstützt hat.

Einen besonderen Dank richte ich an Marie Platenius und Matthias Becker.
Beide haben mir mit intensiven Diskussionen, Feedback und Tipps bei der Lei-
stungsprognose, der Evaluierung und dem Aufbau sehr geholfen. Im allgemei-
nen danke ich allen Kollegen und Kolleginnen der Fachgruppe Softwaretechnik
und des Fraunhofer IEM, welche mit mir in den letzten Jahren bei unzähligen
Kaffeepausen Probleme und Ideen diskutiert haben. Insbesondere möchte ich
mich bei Jörg Holtmann, David Schmelter, Thorsten Koch und meinem Büro-
kollegen Markus Fockel bedanken. Für technische oder administrative Fragen
konnte ich mich immer an Jutta Haupt und Jürgen ’Sammy’ Maniera wenden.
Allen nochmals vielen Dank!

Einen guten Start in das Thema Leistungsprognose sowie Unterstützung bei
der Realisierung verdanke ich Steffen Becker. Für die gute Zusammenarbeit
mit dem Industriepartner Phoenix Contact danke ich insbesondere dem Pro-
jektleiter Henning Heutger.

Und natürlich möchte ich mich ganz herzlich bei meiner Familie bedanken!
Zunächst bei meinen Eltern, die mir meine Ausbildung ermöglicht und damit
die Grundlage für diese Arbeit geschaffen haben. In erster Linie möchte ich mich
aber bei meiner Frau Tanja bedanken, welche mich die letzten Jahre gefördert,
beraten, erduldet und auf vielfältige Weise unterstützt hat.

v

Contents

Abstract i

Zusammenfassung iii

Danksagung v

Table of Contents vii

1 Introduction 1
1.1 Problem Statement . 4
1.2 Contribution . 6
1.3 Overview . 7
1.4 Thesis Outline . 9

2 Foundations 11
2.1 Industrial Automation . 11

2.1.1 IEC 61131-3 . 13
2.1.2 Fieldbusses and automation networks 17
2.1.3 Topologies and network devices 19
2.1.4 Automation pyramid and management systems 20

2.2 Systems Engineering . 22
2.2.1 CONSENS . 22
2.2.2 SysML . 25
2.2.3 SysML4CONSENS . 27

2.3 Performance Modeling and Prediction 28
2.3.1 MARTE . 32
2.3.2 Palladio . 35

3 Running Example 39
3.1 Overview . 40
3.2 CONSENS Models . 43

3.2.1 Environment . 43
3.2.2 Unit2 of the turbocharger production system 45
3.2.3 AssemblyConnector in detail 45

4 Influence Factors 49
4.1 Related Work . 51
4.2 Parameter Types . 55

4.2.1 Primitive Types . 55
4.2.2 Filesize . 56
4.2.3 Using Stochastic Parameter: Probability Functions 57
4.2.4 Execution Time . 60

vii

Contents

4.2.5 Access Frequency / Arrival Pattern 65

4.2.6 Operations . 67

4.3 Applications . 68

4.3.1 Programs . 69

4.3.2 Function Blocks . 70

4.3.3 Functions . 72

4.3.4 Tasks . 73

4.4 PLC . 77

4.4.1 CPU & Architecture . 77

4.4.2 Operating System . 80

4.4.3 Firmware and IEC Runtime 84

4.4.4 IPTraffic . 85

4.5 IO - Fieldbus communication . 86

4.5.1 Fieldbus Examples . 87

4.5.2 PROFINET in Detail . 89

4.5.3 Topologies and Network Devices 92

4.5.4 IO Parameter . 93

4.6 Services . 95

4.7 Summary . 101

5 Automation Influence Model and Development Process 103
5.1 Automation Influence Model . 104

5.1.1 Related Work . 105

5.1.2 Required Modeling Depth 108

5.1.3 Topology Independent and Topology Specific Model . . . 112

5.1.4 Hardware Dependent and Independent Load Specifications115

5.1.5 Model Specification . 118

5.2 Development Process . 131

5.2.1 Related Work . 132

5.2.2 Proposed Development Process for Modeling Influence
Factors . 134

5.3 Summary . 140

6 Realization of Modeling and Analysis 141
6.1 UML Profile for Modeling Influence Factors 142

6.1.1 AIM Profile Root Package 144

6.1.2 POU Package . 146

6.1.3 Task Package . 147

6.1.4 Service Package . 148

6.1.5 IO Package . 150

6.2 Performance Analysis with Palladio 153

6.2.1 Requirements . 153

6.2.2 Related Work: Performance Prediction Approaches 154

6.2.3 Palladio Simulation Models 157

6.3 Overview of Models and Transformations 167

6.3.1 Automationmodel . 169

6.3.2 Transformations . 170

viii

Contents

6.4 Summary . 173

7 Evaluation 175
7.1 Evaluation Process . 175
7.2 Evaluation Context . 177

7.2.1 Setup of the Performance Prototype 179
7.3 Evaluation Results . 181
7.4 Discussion of the Results . 183
7.5 Threats to Validity . 185
7.6 Summary . 186

8 Conclusion and Summary 187
8.1 Results and Conclusions . 188
8.2 Benefits . 190
8.3 Future Work . 191

Bibliography 195

List of Figures 223

List of Tables 225

A Turbocharger example 227
A.1 Changes to the original turbocharger automation system 227
A.2 List of System- and Environment elements 228
A.3 List of Software components . 231

ix

CHAPTER 1
Introduction

The size and the complexity of automated systems has grown rapidly in the last
years and their use has extended to more domains than just the production of
goods. Automation of tasks can be found in every aspect of day-to-day life, ran-
ging from traffic control, wastewater processing, wind energy production, and
the control of complex chemical processes as shown in Figure 1.1. These auto-
mation systems usually require a thorough planning in the early development
stages due to the fact that it is usually not possible to create prototypes or make
adjustments in the later phases of the development process [LFVH13, FT14].

(a) Traffic system (b) Wastewater (c) Wind energy (d) Chemical plant

Figure 1.1: Examples for automated systems (source: Phoenix Contact)

Automation tasks are usually performed by a combination of electrical and me-
chanical machines like conveyor belts, rollers, pushers, drills, or robots. They
are controlled by Programmable Logic Controllers (PLC) which run software to
compute the tasks at hand [FMS04, GG13, Lun08, KRK95]. Automation sys-
tems are, depending on size and purpose, hierarchically structured with coor-
dination tasks on higher levels and critical, real-time tasks on lower levels. An
example for such a hierarchy are several conveyor belts in an automation system
which are controlled by a top level synchronization system. On the lower levels
(belt control), motion control requires the PLC to read sensor data, perform
the computation, and send commands back to the motors in less than 1 ms to
ensure smooth operation. When planning an automation system, this mixture
of top level decision making and low level real-time communication needs to be
carefully planned. Controlling different automation tasks puts a high load on
the PLC, leading to a high utilization of the CPU. Thus, for each automation
system and environment, it must be ensured that the PLC can cope with
the load of data to be processed, such that timely operation is guaran-
teed. However, selecting a fitting PLC for the automation task or adapting the

1

Chapter 1 Introduction

overall structure of the system is mostly based on the experience of the
developers and might lead to incorrect assumptions and estimations.

These developers are usually members of different disciplines involved in the de-
velopment of automation systems [VHSFL14, KVH13, FEH+13, BR05]. Pro-
cess engineers define the working steps (drop, align, drill, realign, bend etc.)
of the machine to produce the final product. Mechanical engineers construct
the shape of the production system. Control engineers have to develop and
parameterize control algorithms (e.g., proportional-integral-derivative (PID)),
which calculate the data for actuators. The electrical engineers have to set up
the PLC, sensors, actuators, and fieldbusses. A software engineer programs
the sequence control and interfaces to overlying management systems. Each of
these disciplines impact the overall design of the automation system and conse-
quently the factors that influence the utilization of a PLC. In this thesis,
the term influence factor is used to categorize factors that will directly or
indirectly impact the utilization of a PLC.

The use of Systems Engineering (SE) methods is becoming a necessary prere-
quisite to develop large and complex automation systems [VHSFL14, TDBG15,
BOF+14]. Systems Engineering models provide a rough sketch of the system
under development. They are used to improve the overall understanding of the
system and to coordinate the involved disciplines by providing initial, coarse
models of the system under development. These models are the basis for the
subsequent, fine grained and discipline-specific development stages. By using
these initial system models, changes in one discipline – for example switching the
fieldbus type, splitting functionality onto multiple PLCs, or adding new sensors
and actuators – can be better identified and tracked [GGS+07, GCD+14].

The design decisions made in the early stages of the development are often
critical for the following, discipline specific stages [HSST13]. However, changes
in one discipline will most likely influence or affect design decisions and artifacts
of the other disciplines as well. A control engineer choosing a fitting PLC with a
given set of features and properties, has an impact on the software development
due to available services, programming languages, and libraries. The selection
of the fieldbus influences the electrical design, may raise security issues, and
impacts the overall performance of the PLC. Rearranging sensors and actuators
might lead to a different software deployment or influences how many PLCs are
needed to perform all necessary control tasks. Splitting software functions onto
multiple PLCs may lead to more traffic on the fieldbus due to synchronization
and data exchange, which in turn might reduce the minimum cycle time but
increase the delay of messages.

Figure 1.2 shows a simplified development process based on VDI 2206 [Ver04].
During the system design phase, requirements are gathered and a coarse system
model created. The different disciplines start their development based on this
system model. During the integration phase, errors may occur due to unspeci-
fied requirements or lack of synchronization between the disciplines. The figure
depicts the errors E1 and E2 and arrows indicate the phases in which these
could have been avoided. To give an insight into the various problems that may

2

arise during the development of an automation system, the errors E1 and E2
are briefly described in the following.

electrical engineering
mechanical engineering

ProductRequirements

software engineering

E2:
Can't connect 9
PROFINET devices
with 8ms response
time, max is 4.

E1:
Can‘t realize 4ms
cyclic task interval
with program
execution of 5ms

system
 d

esig
n

Discipline-specific development

sy
st

em
 in

te
g

ra
ti

o
n

modeling and model analysis

Figure 1.2: Costly changes in the late phases of the development due to
performance-related errors

E1: For motion control purposes, it is necessary to process data synchronously
and in a very short amount of time. Therefore, cyclic tasks are often configured
with a maximum interval time of 2 to 5 ms and setup for the execution of motion
control programs. In case multiple programs are executed in the same task,
other services require more computation time, or if some programs preempt the
motion control program, the set interval time can not be met. As a result, the
motion control will not work correctly and workpieces or the whole production
plant might be damaged. A watchdog, checking the task interval time and
the actual execution time of the programs will put the production plant into
an error state if a certain limit has been reached. Therefore, it is essential to
configure task times and program deployments correctly and foresee possible
peaks in the PLC’s utilization. If different developers are used to program the
behavior of the production plant, they might not even know that these timing
constraints exist.

E2: The second error describes a problem based on an incorrect dimensioning of
bus systems and their throughput. A fieldbus is used to send sensor or actuator
data between the PLC and the IOs. Depending on the fieldbus mode, the send-
and receive interval is bound to the program/task execution. If a motion control
task is running every 4 ms, reading sensor inputs from the devices and sending
commands to the actuators, the data must also be sent every 4 ms from each
device in the network. This will put stress on the PLC which needs to copy the
messages from the IP stack to the program and back again. This copying of
data might not sound like a very performance consuming task, but depending
on the number of devices, the amount of data, and the necessary refresh interval
of task and fieldbus, many PLCs reach their limit fast [FH12].

3

Chapter 1 Introduction

1.1 Problem Statement

The examples show that designing and scaling a complex, networked automa-
tion system is a challenging task. The developers have to consider different
kinds of influence factors that have an impact on the overall system. Also,
these factors are contributed by different disciplines as briefly described above.
Flawlessly estimating the average workload of a PLC, deploying software onto
resources, or assigning sensors and actuators to PLCs will become a difficult
task when coping with such complex systems.

Miscalculations or other design errors identified in the late phases of the deve-
lopment can lead to costly changes or substantial delays for the commissioning
of the automation system [SHK98]. Therefore, it will be mandatory to provide
means for specifying automation-specific information that will help developers
to evaluate their designs in the early phases of the development.

There already exist several approaches to predict the behavior and quality of
service attributes of a system under development. These approaches usually
cover one or more factors that influence the system but not every aspect of
the automation domain. They are also only applicable during the discipline-
specific development or the system integration phase. Figure 1.3 illustrates the
four disciplines and maps selected tools to these areas (indicated by the num-
bers). These areas overlap to indicate that some approaches are designed to
cover or require information from multiple disciplines. TrueTime [HCÅ03] (1) is
a MATLAB [Mat16] and Simulink [Mat17] based simulator for real-time control
systems. The framework allows the specification, programming, and simulation
of programs, threads, real-time kernels, schedulers, network transmissions, and
continuous plant dynamics. To check for the design of the network with regard
to throughput, determinism, delays and jitter different network simulators like
OMNeT++ [Ope17] (2), OPNET [Riv17] (3), or NS2/NS3 [VIN17, NS-17] (4)
are available. Approaches tailored for automation systems are presented by
Frey and Liu [LF07] (5), [MDFF06b] (6), or Halang [LF12] (7) to predict the
response times of complex hierarchically structured systems with control loops
based on different network types and topologies. Other approaches focus on
general techniques to model and analyze complex systems for various domains
like large scale server environments [BKR09, RBB+11] (8), automotive [TA17],
or embedded devices [Obj06] (9), [Wan06] (10). Tools like SolidWorks [Das17]
(11) are used to create plain mechanical CAD constructions of an automation
system. With [ISG17] (12), simulations can be performed that take all automa-
tion specific factors into account. But such a simulation can only be performed
in the late phases of the development when, for example, the code is available.
To specify the electronics of an automation system, tools like EPLan [EPL17]
(13) are used.

All of these approaches focus on a very specific aspect of the automation system
and not on the system as a whole. However, there are also several approaches
like SysML4AT [VHSFL14] (14), [SW09] (15), or [TF11] (16) which abstract

4

1.1 Problem Statement

electrical engineering
mechanical engineering

software engineering

system
 d

esig
n

modeling and model analysis

Software-
Engineering Electrical-

Engineering

Mechanical-
Engineering

Control-
Engineering

(1)

(2)
(4)

(3)

(5)
(6)
(7)

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15) (16)

Figure 1.3: Disciplines and their specific analysis tools

from these discipline specific tools and provide information on Systems Engi-
neering models or on a similar level of detail. These approaches are not intended
to analyze the performance of a PLC in the early development stages.

They also differ in their level of detail and their notation towards the dom-
ain of industrial automation systems. Some of them provide influence factors
and parameters in a well-know terminology and abstraction level used by au-
tomation system developers (e.g. [CHL+03, LF07]). MARTE [Obj06], Palladio
[RBB+11], [Bon09] or [Wan06] only provide general means to model factors
that influence the automation system. The developers must identify and decide
themselves which factors must be regarded in an automation system and model
them in detail.

Another problem is the integration of these prediction, respectively evaluation,
approaches into the early stages of the development. They usually require in-
depth knowledge of the system which is – at least to this level of detail – not
available until the discipline specific development starts. If this knowledge is
available, if assumptions are made, or if they are set as specific requirements,
this information is usually solely persisted in the discipline-specific models and
not propagated to the other disciplines.

Systems Engineering (SE) models provide a rough sketch of the system under
development. Incorporating automation system-specific influence factors into
Systems Engineering models is a necessary prerequisite to enable the early vali-
dation of the design models. SE approaches like CONSENS [GLL12, IKDN13]
provide the possibility to model each sensor and actuator, fieldbus, and task

5

Chapter 1 Introduction

allocation. But they lack the capabilities to specify program execution times as
upper bounds for the developer to withhold, they lack a PLC independent way
to model resource usage of a program, and they lack the capability to model
properties on a suitable level of abstraction. By using additional profiles like
MARTE [Obj06] this information could be added to the System Engineering
models. However, this would lead to more complex models, reducing the over-
all usability and forcing the developers to use a detailed modeling language
for embedded devices. An automation-domain-specific notation that enables
developers to easily annotate existing Systems Engineering models is missing.

1.2 Contribution

Developers involved in the early phases of the development, respectively the sy-
stem design phase, take different systems engineering roles [She96]. This thesis
focuses on the role “System Analyst”, whose task it is to validate the overall
system design with respect to the performance of the PLC. To do this, the
two main problems that have been identified in the previous section need to be
solved. First, it is unknown which influence factors must be considered when
validating the selected PLC of an automation system in the early development
stages. And second, formalisms and appropriate processes to capture these in-
fluence factors in Systems Engineering models are missing. This thesis provides
the following contributions to solve these problems:

C1: Identification of Influence Factors
Several approaches exists that focus on the analysis of a specific part of an
automation system. Each of these approaches also has a different view on
the problem and therefore varying influence factors they cover. This means a
developer can only model a network and its parameters in one tool and needs
a different one to model the software services of an automation system. A
complete list of influence factors that impact the overall automation system and
which can be used to evaluate the design in the early stages of the development is
not available. Therefore, the first contribution of this thesis is the identification
of these influence factors.

An extensive list is gathered that details each influence factor in an automation
system that impacts one or more quality of service properties. It is discussed
whether the influence factors are available in the early development stages,
what assumptions have to be made, its overall impact on the system, and which
parameters need to be taken into account.

C2: Method for Modeling Automation System Influence Factors
Current System Engineering methods support the development of automation
systems, but domain-specific performance-relevant information is neglected. It
is possible to use performance modeling profiles like MARTE [Obj06] or SPTP
[Obj05] to achieve these goals. However, they focus on the annotation of only

6

1.3 Overview

software relevant factors, are domain unspecific, and are tailored for a detailed,
in-depth analysis of software functions. The second contribution of this thesis
is therefore a method for capturing automation specific influence factors on a
high level of abstraction that is applicable for the use in the early phases of the
development.

For this thesis, a method has been developed that allows the automation system
developers to specify influence factors in the early development phases of an
automation system. This method consists of a formal model to capture the
influence factors based on Systems Engineering models and a process to guide
developers during the specification of these factors and parameters.

As an exemplary Systems Engineering approach, CONSENS has been selected.
CONSENS provides means to model complex systems on a high abstraction
level, providing developers of multiple disciplines the possibility to synchronize
and coordinate themselves. It has been selected due to its rising use in the
domain of mechanical engineering [TDBG15] and because a detailed model
from a given real world application has been made available for this thesis
(see Chapter 3). Additionally, in [HBM+15, HBM+16] a fitting development
process has been proposed which could be extended to cope with the definition
of influence factors with minimal effort.

In addition to these two contributions, a prototypical tool-suite has been develo-
ped. It allows developers to annotate existing CONSENS Systems Engineering
models and to automatically derive inputs for a performance simulation. The
simulation is used to predict quality of service attributes of the automation
system under development. The scope of this thesis only covers a simulation
of the overall utilization of a single PLC. The results of this simulation can be
used to evaluate the current system design by providing predicted values of the
PLCs utilization.

1.3 Overview

To achieve the stated contributions and to provide means for predicting the
utilization of a PLC for a final evaluation, the following steps depicted in Figure
1.4 are carried out.

First (Step 1), this thesis deals with the identification of influence factors that
will impact the overall PLC performance. To find the necessary factors, three
sources will be considered: Exemplary Systems Engineering models of automa-
tion systems, industrial firmware of a well know PLC vendor (Phoenix Contact),
and common factors from existing performance prediction approaches. For each
influence factor, the respective parameters are identified. With regard to the
performance prediction in the early stages of the development, the influence
factors are either used, neglected, or simplified depending on whether it is ne-
cessary or appropriate to model them. The result of this step is a list of
influence factors and their parameters.

7

Chapter 1 Introduction

Exemplary SE
models

Industrial
firmware

Identification of
Influence Factors

Influence factors
+ Parameters

Develop
domain specific
formal model

Influence
Model

Realize
Palladio

Simulation
Evaluate

simulation
results

Specify
performance

analysis processCommon factors from
Performance Prediction

approaches

UML
Profile

Evaluation

Concept

Development
Process

Derive
UML Profile

Artefact

Palladio
Simulation

Models

Simulate
PLC

Process

Simulation
results

23

4

56
7

1

Figure 1.4: Approach for identifying and developing an automation specific per-
formance analysis based on System Engineering models

Second (Step 2), a formal model to capture the selected factors and parameters
is developed. Some influence factors might be directly modeled, some must be
derived from automation specific elements like sensors, actuators, fieldbusses, or
provided services. The formal model incorporates domain specific elements and
therefore allow developers to use their well known terminology. This approach
improves the usability and prevents misunderstandings between the involved
domains during the development of the automated system. The outcome of
this step is a formal model that captures the influence factors, their
parameters, and relations to each other in the context of a CONSENS
Systems Engineering model.

Afterward, a process is defined based on the identified influence factors (Step 3).
This process will guide developers through the specification of factors and
parameters in the formal model. The process defines, at which point in the
development process of an automation system a performance analysis should
be carried out and what information needs to be gathered before starting the
analysis. Basis for this development process is an existing CONSENS process
developed for the specification of software requirements and their analysis in
the early stages of the development.

To be able to evaluate the proposed method, a UML profile is specified (Step 4)
that extends the SysML4CONSENS profile provided by [KDHM13, IKDN13].
The profile and models are created for and with the Papyrus Modeling envi-

8

1.4 Thesis Outline

ronment [Ecl17c] (as part of the Eclipse IDE [Ecl17a]). The UML profile
captures selected influence factors and allows to annotate existing
automation system models. A running example introduced in Chapter 3
serves as a basis for these influence factor annotations.

Parallel to the creation of the UML profile, a suitable simulation tool is selected
(Step 5). This tool and its models should be easy to use, provide a good interface
to access or generate input models and support a fast and reliable performance
simulation. Based on these and further requirements, the Palladio Component
Model (PCM) [BKR09, RBB+11] (see Chapter 2) has been chosen as the pri-
mary performance simulation tool/framework. This framework is usually used
for the performance modeling and simulation of software architectures of high
performance servers and clusters in the early design phases. For this thesis, the
capabilities of Palladio are extended to support the automation domain specific
requirements. To be able to simulate a PLC, the according Palladio models
need to be created as well as specific load profiles captured from an existing
PLC.

The UML profile and the Palladio simulation models can be used to simulate
a PLC in the context of the modeled automation system (Step 6). Finally, the
predicted utilization of the PLC is compared to measurements taken from a per-
formance prototype which resembles the basic characteristics of the exemplary
automation system (Step 7).

1.4 Thesis Outline

This thesis is structured as follows. In Chapter 2, the foundations necessary
to understand the contents of this thesis are given. It includes an introduction
into the automation domain and provides insights to the used modeling and
simulation tools. An exemplary automation system is used throughout this
thesis. An overview of this system as well as selected, detailed CONSENS
models are provided in Chapter 3. Chapter 4 gives an overview of the identified
influence factors that impact the performance of a PLC or automation system.
Each factor is analyzed and a decision is made, whether it should be modeled
in the early development phases and to what degree. The following Chapter 5
introduces the proposed development process and lists related work. The second
part of this chapter covers the formal aspects of modeling the influence factors.
Chapter 6 details the UML profile that is used to model the example automation
system and its influence factors. This chapter also covers the selection of a
fitting prediction approach and the follow-up design of the Palladio models.
Therefore, an excerpt of the simulation models used to conduct a performance
analysis for a PLC are introduced. Also, several semi- and fully automatic
transformation steps that reduce the need for human interaction when deriving
the simulation from the UML-based Systems Engineering models are briefly
explained. To evaluate the developed concepts, Chapter 7 sets up the evaluation
context and details the setup of the performance prototype. Afterward, the

9

Chapter 1 Introduction

simulation results are compared to a performance prototype. The results of
this comparison will be discussed and threats to validity of this evaluation are
pointed out. Finally, in Chapter 8, a short summary is given and open questions
and future work are discussed.

10

CHAPTER 2
Foundations

This chapter introduces the foundations for this thesis. The first Section 2.1 will
give a brief introduction into the automation domain. Important concepts and
essential components which impact the design of an automation system are high-
lighted. In Section 2.2, a short introduction to Systems Engineering is given.
This section also includes the presentation of CONSENS and its models, the
visual modeling language SysML as well as the SysML4CONSENS profile which
is used to create CONSENS models based on SysML. The SysML4CONSENS
profile is used to create a formal, analyzable CONSENS model (see Chapter
3) and is a required foundation for the influence profile presented in Chapter
6. The last Section 2.3 focuses on the area of performance modeling and pre-
diction. In Subsection 2.3.1, the MARTE UML2 profile will be presented which
allows annotate existing models with performance relevant annotations. Sub-
section 2.3.2 introduces the Palladio Component Framework, its models, and
various analysis tools to predict the performance of a system.

2.1 Industrial Automation

The idea to reduce the need for human work in the production of goods and
services by automating tasks exists for a while now. A classic example of an
automated task is the grinding in water- or windmills, in particular, the part of
turning the millstones. This automation of tasks increases the productivity and
replaces animal or human workforce. Today, complex tasks are performed by
a combination of electrical and mechanical machines like conveyor belts, drills,
or robots and the domain is commonly described as automation or industrial
automation [Lau13, FMS04, GG13, Lun08, KRK95].

Most automation tasks are hierarchically structured, leaving the coordination
tasks on higher levels and critical real-time tasks closer the hardware. They
are controlled by Programmable Logic Controllers (PLC), running programs
written in one of the languages specified in the IEC standard 61131-3[Int13a].
The automation tasks are performed by a combination of electrical and me-
chanical machines like conveyor-belts, roller, pusher, drills or whole robots. A
PLC uses inputs gathered by sensors and decides upon these information how
to control the actuators. Examples for sensors are light barriers, heat or pres-
sure sensors. Typical actuators in a production environment could be motors
in conveyor belts, valves or hydraulic pushers. In the early days of PLC based

11

Chapter 2 Foundations

automation, these sensors and actuators – also named IO for input/output –
were connected directly to the PLC. Later on, due to the high amount of cables
and the resulting installation difficulties, fieldbusses were used to send grou-
ped or even compressed data between the IOs and the PLC. PLCs are used
for a various range of tasks in different domains like factory automation, waste
water treatment, traffic control, lifts, public transportation or modern energy
networks.

PLC

Input Processing Output

Sensor

Actuator

Fieldbus-Device

Fieldbus

Legend

Figure 2.1: Schematic representation of a simple automation system

A schematic of a small automation system is given in Figure 2.1. The PLC in the
center queries sensor data of the system it controls. Based on the current state
of the PLC and the inputs from the sensors, the PLC decides what commands
or values are send to the actuators. In general, the shorter the time of these
repeating steps (small sampling rate) is, the more accurate the system can
function. Small sampling rates are, for example, needed if a conveyor belt
moves goods that needs to be sorted. A sensor identifies a good, an actuators
pushes it from the belt. If the time between the identification and the signal to
the pusher takes to long, the good has already passed the position. However,
smaller cycle times lead to more calculations and a higher utilization of the
PLC. In general, it is the goal to use cycle times as small as possible. This will
increase the precision of the automation system and also allows to move goods
faster and, therefore, increases the overall throughput of the system.

The PLC follows a strict order of actions to execute instructions for the au-
tomation task (see Figure 2.2) in such a cycle. After powering on or a reset
the PLC first initializes all values for the programs. This includes all variables,
counters, markers as well as all used input data provided by the sensors. Af-
terward, a loop starts with three steps. First, all inputs are read from the IO
system (e.g. a fieldbus controller). Then the different instructions are executed
and commands for the actuators calculated. After the last instruction execu-
tion, the local data is copied from memory to the output image where a fieldbus
controller send it directly to the actuators.

12

2.1 Industrial Automation

Start/Restart

Default values for
variables and counter

Copy input data
program memory

Instruction 1
Instruction 2

Instruction n
...

Copy program memory
to output data

Input

Output

Figure 2.2: Different steps of the of the PLCs cycle

2.1.1 IEC 61131-3

Soon after the industrial automation was becoming more and more important
for modern production systems, the need to standardize the programming of
PLC was inevitable. Today, the de-facto standard for programming PLCs is
the IEC 61131-3 standard [Int13a] specified by the International Electrotechni-
cal Commission (IEC) [Int16a]. The standard is composed of nine parts each
defining different aspects of automation systems and components. The latest
version has been released in 2013. For programming PLCs, the interesting part
of the standard is “Part 3”. It specifies the syntax and semantics of a set of
five programming languages. The third edition of this standard introduced a
range of new features like additional data types, conversion functions, referen-
ces, name spaces and the most importantly object oriented features of classes
and function blocks. The following subsections give a brief introduction to the
common parts of the standard and these different programming languages.

All of the languages share IEC 61131 common elements. The following list is
giving a short overview over some of these elements. A complete overview of the
core elements as well as additional constructs can be found in the IEC 61131-3
standard or in [JT10].

� Configuration: The configuration is the main container for global pro-
gram variables and settings. In most PLCs the configuration is the equi-
valent to a runtime environment. Therefore, the term IEC runtime envi-
ronment covers/includes the configuration in this thesis. The IEC runtime
environment provides an execution context, data from fieldbusses, global
variables, and allows the exchange of data between programs.

� Resource: The resource represents a (logical) processing unit on which
the programs are executed. In the early days of industrial automation,

13

Chapter 2 Foundations

each resource was a single CPU and most of the PLCs contained only one.
Due to the increasing use of multicore systems, a PLC may contain more
than one resource, but this can be rarely found.

� POU: The Program Organization Unit is a generic name for Functions
(ADD, SQRT, SIN, COS, GT, MIN, MAX, AND, OR, etc.), Function
Blocks or Programs

� Program: Programs are the top level elements which can be used to
structure the application. Each Program is written with one of the five
IEC languages and executed via tasks. A Program can contain Function
or Function Block calls, but cannot execute other Programs.

� Function Block: The IEC 61131-3 Function Blocks (FB) can be com-
pared to programs. They must be executed within a task or program
and – in contrast to functions - keep their internal variables after their
execution. A Function Block can have both input and output parameters
and must be instantiated from a previously defined type.

� Function: A Function must be declared and can afterwards be called
from Programs, Function Blocks, and other Functions. They do not per-
sist any variables.

� Task: This element is used to trigger the execution of Programs and
Function Blocks. There are different execution behaviors for tasks (cyclic,
event based, and idle) which are explained in more detail in Chapter 4.
Tasks have priorities and can preempt each other.

Figure 2.3 summarizes the different elements of the IEC 61131-3 standard. A
Configuration can contain several Resources. Each Resource triggers various
kinds of Tasks. Each Task contains a Program, respectively a Program instance.
A Program can further use instances of Function Blocks and Function calls
to hierarchically structure the functionality of the Program. In the following

Configuration

Resource ResourceResource

Task Task Task

ProgramProgram Program

Function Block Function

Function Block Function Function

Figure 2.3: Structure of the IEC core elements

subsections, the different IEC 61131-3 programming languages are listed with
simple (code) examples and a short description.

14

2.1 Industrial Automation

Instruction List (IL)

The Instruction List is a low-level machine-oriented language offered by most
of the programming systems. It can be compared to the assembler language.
Its main advantage are the detailed, easy to trace instruction steps which help
debugging machines with a lot of sensor/actuator interaction. However, it is not
recommended to use this language for more complex programs and algorithms.
The listing below shows an excerpt of a training exercise from the Beckhoff
Automation website [Bec17].

Listing 2.1: Instruction List code example (source [Bec17])

LD TRUE (* load TRUE in the accumulator *)
ANDN BOOL1 (* execute AND with the negated value o f the BOOL1 var *)
JMPC l a b e l (* i f r e s u l t TRUE, then jump to the l a b e l ” l a b e l ”*)
LDN BOOL2 (* save the negated value o f *)
ST ERG (*BOOL2 in ERG*)
l a b e l :
LD BOOL2 (* save the value o f *)
ST ERG (*BOOL2 in ERG*)

Ladder Diagram (LD)

The Ladder Diagram offers a more electronic influenced approach to program
PLCs. The structure and elements in this language resemble ladders based
on the circuit diagrams of relay logic hardware. They are widely used where
sequential control of a process or manufacturing operation is required. Figure
2.4 shows an example taken from the Beckhoff Automation website [Bec17].
Like an electrical can the ladder digram be read from left to right. Elements
in brackets represent contacts (sensors) and in round parenthesis actuators.
Depending on closed brackets, a path can be traced from the left to the right
side. Like in electrical plans, this would lead to an activation of all actuators on
this path. More information about Ladder Diagrams can be found in [JT10].

()

()

IN1 IN2 Schalt1 %QX3.0

Motor1Stell1 Stell2

Schalt2 Schalt3 Schalt4

%IX2.7

%IX2.8 %IX2.0

Figure 2.4: Example for a Ladder Diagram code snipplet (source [Bec17])

15

Chapter 2 Foundations

Structured Text (ST)

Structured Text can be best compared to the Pascal programming language. It
is the best IEC language for programming algorithms and complex behavior in
automation systems. It offers predetermined structures for often used constructs
such as IF, CASE, FOR, WHILE and so on. The code shown in listing 2.2
specifies variables that are used as state for a state machine.

Listing 2.2: A code snipplet written in Structured Text (source [Bec17])

i n i t := 0 ;
enabled := 1 ;
working := 2 ;
d i s ab l ed := 3 ;
ready := 4 ;
i f s t a t e = i n i t then

i f s t t c p r e a d y and s t s q l r e a d y then
s t a t e := enabled ;

e n d i f ;
RETURN;

e n d i f ;

Function Block Diagram (FBD)

Another common graphical language is the Function Block Diagram (FBD).
Each Function Block (FB) must be specified and then instantiated in a Program
or parent FB (similar to classes and objects). They hold their internal (state)
variables as long as the PLC runs and provide invars, outvars and inoutvars as
ports to exchange data with each other. The Figure 2.5 shows a simple example
of multiple Function Blocks that are connected with each other. There are basic
FB specified by the standard like MUL, ADD or AND which can be used to
compose new Function Blocks. It is also possible to specify the internal behavior
of a Function Block with one of the other languages. The example diagram
is also taken from the Beckhoff website [Bec17]. Function Blocks allow the
structuring and modularization of complex automation systems. One or more
Function Blocks can encapsulate functionality of a hardware module or allow the
reuse in different applications. The latest version of the IEC 61131-3 introduced
inheritance to Function Blocks, focusing even more on object oriented design
of complex automation systems and enabling better implementation of product
lines. More on Function Blocks and their specific execution behavior in 4.3.2.

Sequential Function Chart (SFC)

This language is not specified directly in the IEC standard, but in its referenced
document IEC 60848: 2002, GRAFCET Specification language for sequential
function charts. It has been originally developed by SIEMENS and is now
adapted by many programming tools and PLC vendors. SFCs break a sequential
task down into steps, transitions and actions. Therefore is this language ideal

16

2.1 Industrial Automation

A

B

A

B 5

AND

D

OR

GEMUL

TRIGR

S1 Q0

Figure 2.5: Example of a Function Block Diagram (source [Bec17])

to program and visualize sequences of actions the PLC must execute. SFCs
also provides constructs for branching or parallel execution. Figure 2.6 shows
three states and transitions between them. In state Filling ready the pump will
be turned on.

Start

Filling
ready

Filling
finished

Start

fill level low

fill level high

N Pump_on

P Pump_off

Figure 2.6: Example Sequential Function Chart (source [Bec17])

2.1.2 Fieldbusses and automation networks

In the beginning of industrial automation, each sensor and actuator (IO) was
directly connected to the PLC. This lead to very complicated wiring and in
some cases also to severe bottlenecks in space to route the cables. The need
to combine different IOs in just one connection became obvious and therefore
multiple IOs needed to be multiplexed in one signal cable. This is done with
a bus system. In industrial automation, such a bus system is also called field
bus, due to its goal to connect the different IOs in the field with the PLC in a
wiring cabinet [SW08, G+01]. Today, several hundreds of bus systems exists,
each with different properties regarding speed, topology, bandwidth, delay and
more [Tho05, LaÎ99, Mah13, GJF13, GH13, PN09]. In 1999, the IEC standards
committee created the initial form of the IEC 61158 standard [Int03] with eight
different protocol sets to fix the foundations for the most common fieldbusses.
These sets included, among others, PROFIBUS and Interbus which will be
briefly introduced in the following Chapters.

17

Chapter 2 Foundations

Figure 2.7 shows a conceptual structure of an automation system. In the upper
part is the control network or office network. Supervisory systems, engineering
workstations and control station are placed here to access data in the subnet-
works below. On the left side is a PLC with IOs connected via bus couplers.
These bus couplers are used to multiplex and demultiplex the different values
from and to the sensors and actuators. Depending on the fieldbus technology
they are also called slaves, devices and so on. The bus couplers contain one
or more modules to connect the IOs. In the subnetwork on the right side, the
bus couplers are connected not directly to the PLC, but are part of the control
network. This kind of topology is becoming more and more popular due to the
use of industrial Ethernet [DSA+14]. They simplify the integration due to the
common Ethernet and the overlaying IP protocols. Another trend is the use
of wireless communication [MLK06]. Omitting cables for example, allows the
design of more flexible production facilities or an easy exchange of tools on a
robot. The PLC in the figure shows a PLC with three buscouplers connected
via a wireless network.

Fieldbus-
Coupler

Fieldbus-
Coupler

Fieldbus-
Coupler

PLC
HMI

I/O

I/O

I/O
I/O

I/O

Fieldbus-
Coupler

Fieldbus-
Coupler

PLC
HMI

I/O

I/O

I/O
I/O

MES SCADA Control-
Station

TCP/IP

internet

maintenance

manager

customer

sensors and
actuators

PLC
HMI

Fieldbus-
Coupler

Fieldbus-
Coupler

Fieldbus-
Coupler

I/O

I/O

I/O
I/O

I/O

Figure 2.7: Conceptual fieldbus structure of an automation system

The different kinds of fieldbus technologies each have their specific design goals.
In general, the primary goal is to exchange data between the PLC and the
sensors/actuators in a deterministic and fast way. Standard communication
usually requires a response of 100ms. Factory automation requires a response
time in the order of 10ms. And for precise control of actuators for motion
control, response times around 1ms are necessary with a jitter below 1 µs.
Some more details on fieldbusses and their specific properties can be found in
Chapter 4.

In general, the output of a sensor or input of an actuator can be a digital or

18

2.1 Industrial Automation

an analog signal. When using a digital fieldbus, an analog value in form of
a certain voltage must be converted to a digital value with an AD-Converter.
Digital sensors or actuators usually include such an AD-Converter. In the
context of fieldbusses, the term digital or analog is also used as the type of IO
device, with respect to its data size that is transmitted via the fieldbus to the
PLC. A light barrier that only sends a signal when an object is detected is an
example for a digital IO. The data this sensor transmits can be represented
with just 1 bit. Analog devices can provide more values in a set rage by using a
bigger data size. For example, can this range depend on the voltage the sensor
outputs. This voltage is converted to a digital signal. A temperature sensor
may provide a specific voltage for its given temperature range which is then
converted to an 8 bit value. Providing a greater data size (e.g. 16 bit) will
result a finer resolution or a greater range of values.

2.1.3 Topologies and network devices

A network topology describes the structure of a network, including its nodes and
connections. In a fieldbus, nodes usually are the PLC, fieldbus devices and IOs.
The PLC often takes the role of the master controlling each slave. The fieldbus
device can be roughly described as a device that multiplexes/demultiplex the
IO data provided by the sensors and actuators. There are two ways of defining
a network structure: the physical topology and the logical (or signal) topology.
Physical topology is the concrete layout of the network as realized with IOs,
devices, cables, and via other connections like wireless setups. The logical
topology refers to the nature of the paths the signals or messages are send
from node to node. Some fieldbusses can even be realized by different physical
topologies. More information on fieldbusses and their topologies can be found
in [Tho05, G+01]. A comprehensive overview and in-depth introduction to
computer networks is provided by Tanenbaum [Tan02].

Figure 2.8 shows the common topologies. In a Ring (a) all devices are connected
to a predecessor and a successor. All data transmitted between nodes travels
from one node to the next node in a circular manner. Dual-Rings also provide a
second connection backwards which for example allows the network to function
even if the connection between two nodes is separated. In the bus network
topology (b), every node is connected to a main cable called the bus. Each
node is therefore directly connected to one another. All data that is transmitted
between nodes is able to be received by all nodes. The tree (c) has a “root” node
at the top level of the hierarchy. Each node has further connections to its child
nodes, but not to nodes on the same hierarchal level. A message or signal from
the root the one of the leafs has to be forwarded by all nodes in between. The
Star topology (d) has a single node in the center and from this node connections
to all remaining nodes in the network. No other connections between nodes are
allowed. The Line (e) has a starting and an end point with multiple nodes
in between. All node between the start and end points are connected to a
successor and a predecessor. The Meshed (f) and fully Meshed (g) networks

19

Chapter 2 Foundations

contain nodes with a point-to-point link. Messages to a not directly connected
node must be forwarded by nodes in between. In a fully Meshed network, data
can be simultaneously transmitted from any single node to all of the other
nodes.

a) Ring b) Bus c) Tree d) Star

e) Line f) Meshed g) fully Meshed

Figure 2.8: Examples of (fieldbus) network topologies

2.1.4 Automation pyramid and management systems

Automation systems currently consists of multiple layers, each for a different
purpose and very specific requirements. Figure 2.9 shows the Automation Py-
ramid [FMS04, KRK95] which is often used to explain these layers. At the
bottom of this pyramid are the already introduced sensors and actuators. The
data provided by the sensors is used by the PLCs on the next level to calculate
the output used for the actuators. The communication on this level is in real-
time and has very strict requirements to performance and determinism. Multi-
ple PLCs are often coordinated by a SCADA system which itself is controlled
by an Manufacturing Execution System. These systems are briefly explained
in the following sections. A similar classification into levels is provided by the
IEC 62264 standard [Int13b].

SCADA
Supervisory Control and Data Acquisition (SCADA) systems are used in au-
tomated systems to monitor and control technical processes. These systems
collect and evaluate process data from multiple PLCs or directly from their
IOs. SCADA systems can also manipulate data and therefore be used to coor-
dinate, respectively control multiple PLCs in larger automation systems like
huge chemical processing plants. In the first generation of SCADA systems
(monolithic), central mainframes controlled the PLCs. For this purpose, de-
dicated communication links and instructions send with proprietary protocols
were used. The second generation (distributed) made use of local area net-
works to send and receive data from different PLCs in real time. Each PLC

20

2.1 Industrial Automation

Process level

Control level

Field level

ERP

MES

SCADA

PLC

Sensors/Actuators (I/O)

Enterprise level

Plant level

Figure 2.9: The automation pyramid with different function levels (based on
[FMS04, KRK95])

was responsible for a specific task, which made the monolithic approach obso-
lete. In the last generation (networked), a continuous network between PLCs,
services at the management level (see ERP and MES), and to other external
systems via the Internet is realized. This allows the exchange of data between
any systems with ease. Communication between SCADA systems, PLCs and
other automation devices is realized by different protocols. OPC (OLE for Pro-
cess Control) and its successor OPC-UA (Unified Architecture) are widespread
protocols based on TCP/IP.

Manufacturing-Execution-System (MES)
The Manufacturing Execution System (MES) is directly connected to the con-
trol technology and serves as an intermediate layer to the lower levels (SCADA
& PLC & IO) and the above lying resource planning (ERP). The tasks of MES
includes enterprise data acquisition, machine data acquisition and personal data
collection. The MES is mainly used for continuously controlling the enforce-
ment of an existing production planning and the feedback from the process.
They identify for example material shortages and report them to the upper
levels. It is a trend that MES access PLCs and their data directly, using the
standardized interfaces such as OPC-UA.

Enterprise-Resource-Planning (ERP)
ERP systems are software systems that are used for detailed resource planning
in a company. Well-known ERP systems are for example SAP ERP from SAP
[KG17] or Oracle’s E-Business Suite [Ora17]. ERP systems reflect the business
processes of the company and map them to the underlying tasks for PLCs.
They provide important information used mainly in materials management,
production, finance and accounting in an enterprise. Often ERP systems have
a rich set of different interfaces to other (external and internal) systems such as
web shops or other business-2-business platforms. The data ERP systems need
is usually provided from the underlying MES system.

21

Chapter 2 Foundations

2.2 Systems Engineering

“An interdisciplinary approach and means to enable the realization of success-
ful systems” is the short definition of Systems Engineering by the International
Council of Systems Engineering (INCOSE) handbook [WRF+15]. At the core,
Systems Engineering focuses on how to develop and manage complex systems
over their life cycles with a holistic view onto the system under development.
Using a Systems Engineering approach for the development of complex systems
should increase the overall effectiveness of projects. By front loading effort and
investing in communication and synchronization, time- and cost intensive er-
rors in the late development phases can be reduced [EGEE+08]. This includes,
among other points, the analysis of customer needs, capturing functional and
non-functional requirements, design, and system validation. It is a interdiscipli-
nary field of engineering and management that, for the domain of automation
systems, usually involves three disciplines: Mechanical engineering, electrical
engineering, and software engineering. Over the past years, the traditional
document-based systems engineering is slowly replaced by the Model-Based
Systems Engineering (MBSE) as the future development paradigm for techni-
cal systems [BOF+14]. MBSE approaches make use of a formal system model
that describes elements and relations between them, and ensures a common
basis throughout the development phase for all involved disciplines [RBG13].

Depending on the used approach and the formality of the underlying models,
different kinds of subsequent or even parallel analysis can be conducted [BFF90,
ZPK00, Smi62, PJ08, MU09, Lop15, RBG13]. These analysis help to validate
the system design in the early development stages. This will reduce costly time-
and cost intensive changes in the integration phase of a project.

To create such Systems Engineering models, different methodologies are avai-
lable, each using varying processes, capability models, and languages [E+07,
E+07]. In the following subsections, CONSENS (CONceptual design Specifi-
cation technique for the ENgineering of complex Systems) and SysML, as a
visual modeling languages, will be briefly described. Other well known Systems
Engineering approaches are for example, SYSMOD [Wei15], Telelogic Harmony-
SE [Dou06, Hof08], Object-Oriented Systems Engineering Method (OOSEM)
[LFM00], Rational Unified Process for Systems Engineering (RUP SE) [CP03],
or Dori Object-Process Methodology (OPM) [Dor11].

2.2.1 CONSENS

The specification technique CONSENS (Conceptual Design Specification Techni-
que for the Engineering of Complex Systems) is a Systems Engineering approach
to specify the product and its according production system [GDKN11, DDGI14,
GFDK09, Fra06, GLL12]. In CONSENS, the developers create a general sy-
stem model, specifying (among others) requirements, functions and an abstract
structure of the system to develop. If this system model, named principle so-
lution, has reached a mature state, the different disciplines start with their

22

2.2 Systems Engineering

discipline-specific realization. Changes which occur in these phases can be sy-
nchronized with the other disciplines, by using the principle solution [Rie14].
This helps to synchronize and coordinate the developers during the separated
development.

Environment Application Scenarios Requirements

Active Structure

discipline-specific development

electrical engi
mechanical e

Requirements

software engine

system
d

esig
n

discipline-specific

modeling and mod

Functions

sy
st

em
re

q
u
ir
em

en
ts

an
al

ys
is

sy
st

em
ar

ch
it
ec

tu
ra

l
d
es

ig
n

Behavior
-Activities

...

ID Text
1 Req. Descr.
2 Req. Descr.
3 Req. Descr.
... ...

Scenario descr.

Behavior-
Sequences

Behavior
-States

Figure 2.10: CONSENS partial models and alignment to the VDI 2206 process

Figure 2.10 shows the different partial models that form the principle solution
and their order in the proposed development process. This process is part of/-
based on the system design phase of the Vee-Model defined in the VDI guideline
2206 [Ver04]. These models and steps are described from top to bottom. During
the system requirements analysis, three different models are created.

Application scenarios each describe a specific situation of the system. This
includes the behavior of the system, the events that trigger this state and ot-
her descriptions to understand the system. The primary task of application
scenarios is to describe a problem (for a certain situation) and a rough solution.

Another model of the principle solution covers the Requirements of the over-
all system, including the product as well as the production system. The list
of requirements defines functional and non-functional requirements. They des-
cribe the desired functionality, behavior as well as properties of the system.
The requirements are textually described and enriched by attributes and their
characteristics.

An important part of the analysis is the Environment model of the system that
has to be developed. The environment model focuses on elements that interact
or influence the system under development and captures the relations between
them. Examples for such interactions are SCADA systems that coordinate
multiple production plants, logging server that access data, mobile devices, or
humans using the integrated HMI to control the system.

The Functions model is used to create a hierarchical subdivision of the functi-
onality, organized in as a tree. A function represents a general and required
coherence between input and output parameters to fulfill a task. In CONSENS,
functions are realized by solution patterns and their realizations. The solution

23

Chapter 2 Foundations

patterns define the characteristics of an element that need to be realized as well
as interactions between elements.

After the four models have been created, the system architectural design be-
gins. The first step is the specification of an Active Structure model. It is
used to give a hierarchical overview of the system structure by modeling system
elements, their attributes, and relations between them. Different kinds of flows
are used to further detail these relations between elements and how they influ-
ence each other. They are unidirectional or bidirectional and can be used to
model energy, information, and material flows in the system. Figure 2.11 shows
a simplified active structure diagram specifying system elements and flows in
a production system. The HMI system element and the SCADA environment
element communicating with the MillingCenter. For this, they use Informa-
tionflows (dashed lines). The HMI sends and receives control messages from
the PLC, which is a sub element of the MillingCenter. Ports are used to type
the kind of Informationflow. The same principle applies to the Materialflow
(double lines) from the Cooling Liquid Supply to the Mill. The MaterialFlow
denotes that the Cooling Liquid Supply element provides a cooling liquid to
the mill. Via additional Informationflows, various commands and information
messages are exchanged (e.g. current pressure or status). The EnergySupply
system element provides electrical energy via ElectricalFlows. CONSENS spe-

Cooling Liquid
Supply PLC Mill

Energy-
Supply

HMI

SCADA

Environment-Element

System-Element

Port

Informationflow

Energyflow

Materialflow

Legend

el. energy el. energy

el. energy

cooling liquid

status
message

control messages

status

commands

commands

current_pressure

MillingCenter

Figure 2.11: Exemplary active structure diagram

cifies additional elements to model for example disturbances, measurements,
logical units, optional, or variant elements.

To further detail the behavior of the system (on a high level of abstraction),
different kinds of behavior models can be used. Figure 2.10 lists Behavior-
Activities, Behavior-Sequences and Behavior-States. Each provides me-
ans to model the discreet behavior of the whole or parts of the system. To create
CONSENS models, the SysML4CONSENS UML profile [KDHM13, IKDN13]

24

2.2 Systems Engineering

has been developed (see Chapter 6). It is based on UML, respectively SysML,
and therefore makes use of UML Sequence-, Activity-, and State-Diagrams.

After the principle solution has reached a mature state, the system architectural
design phase ends and the discipline specific development begins. During this
phase, the disciplines can be coordinated, respectively synchronized, via the
principle solution which holds system elements from each discipline. Further
details of the process are described in [HBM+16, HSST13]. In addition to the
introduced models, CONSENS provides means to specify the abstract manu-
facturing process sequences, the shape of a production system, the resources
needed to manufacture the product, and a System of Objectives to formally
represent external, inherent, and internal objectives and their connections.

2.2.2 SysML

The Systems Modeling Language, short SysML, is a standard provided by
the OMG [Obj15b]. It is a graphical modeling language for specifying, de-
signing, and verifying complex systems. SysML provides means to model for
example hardware, software, information, procedures, requirements, and rela-
tions between these elements. A good overview and more in-depth explana-
tions of the SysML modeling language can be found in the books written by
Weilkiens [Wei11] and Friedenthal [FMS14]. SysML is the foundation of the
SysML4CONSENS profile described Section 2.2.3.

Activity
Diagram

Sequence
Diagram

State Machine
Diagram

Use Case
Diagram

Block Definition
Diagram

Parametric
Diagram

Internal Block
Diagram

Package
Diagram

Requirement
Diagram

Structure
Diagram

Behavior
Diagram

SysML
Diagram

Same as UML 2 Modified from UML 2 New diagram type

Legend

Figure 2.12: SysML Diagram Types [Wei11]

Figure 2.12 shows the diagrams that are used to specify different aspects of a
model. Since SysML reuses a large part of the UML, existing diagrams can
be reused and do not need to be modified/extended. SysML also provides new
diagrams for various purposes and extends selected ones.

Core part of the SysML are the block definition and internal block diagrams
that are used to model the structure of a system. A block definition diagram
(BDD) describes the system hierarchy and components. The internal block di-
agram (IBD) is used to specify the internal structure of a system in terms of

25

Chapter 2 Foundations

its parts, ports, and connectors. Similar to the UML is the package diagram
used to organize the model. Figure 2.13 shows a simple example for the use
of an BDD (left) and the detailing IBD (right). The BDD defines the types
MillingCenter, EnergySupply, PLC, and CoolingLiquidSupply with their relati-
ons and properties. In the IBD, the internal structure of the MillingCenter is
further detailed and parts (representing the instances) are connected via ports
and flows. These ports specify interaction points on blocks and parts. Flow
ports define what can flow in or out and are also types by a block, value type,
or an explicit flow specification. More details on blocks, parts, ports and flows,
a well as a similar example can be found in [FMS08].

<<block>>
Cooling Liquid

Supply

<<block>>
Mill

<<block>>
Energy Supply

<<block>>
PLC

<<block>>
MillingCenter

bdd Structure

(a) Block Definition Diagram

<<part>>
c1:Cooling Liquid

Supply

<<part>>
m1:Mill

<<part>>
e1:Energy Supply

 ibd MillingCenter

l1
:L

iq
u
id

e1
:e

l.
 e

n
er

g
y

e2:el. energy

(b) Internal Block Diagram

Figure 2.13: Exemplary BDD and IBD diagrams

To model the behavior of a system, four types of diagrams can be used that
are imported from the UML specification. States, transitions, and actions are
specified with the state machine diagram. Use cases describe functionality and
interactions with other systems, system parts or users. Sequence diagrams pro-
vide an ordered view on the interaction between different parts of the system
and the activity diagram represents the flow of data and control between acti-
vities.

Furthermore, SysML provides a requirement diagram to create a hierarchy of
requirements. These requirements can be linked to various model elements
and identify satisfy or verify relations between them. Constraints on system
property values can be modeled with the parametric diagram. Such properties
could be for example performance, reliability, length, or mass of an element.

SysML provides a visual modeling language and not a methodology to deve-
lop systems. However, SysML is used in broad range of Systems Engineer-
ing approaches [JLS11, BKFVH14, Alt12, IKDN13, VHSFL14, KVH13] inclu-
ding Rational Unified Process for Systems Engineering (RUP SE) [CP03], the
Object-Oriented Systems Engineering Method (OOSEM) [LFM00], and Telelo-
gic Harmony-SE [Dou06, Hof08].

26

2.2 Systems Engineering

2.2.3 SysML4CONSENS

The SysML4CCONSENS [KDHM13, IKDN13] is a UML profile that further
extends the SysML language specification by CONSENS specific elements. The
profile has been developed by Holtmann et al. to create formal models ba-
sed on the CONSENS methodology. The SysML already provides a rich basis
of elements that overlap with CONSENS to a high degree. This includes re-
quirements, flows, activities, state machines, function hierarchies, and block
diagrams.

Figure 2.14 shows an excerpt of the profile definition. The three kinds of Flows
in CONSENS are InformationFlow, EngergyFlow, and MaterialFlow which can
be easily represented by extending the SysML FlowSpecification. This approach
will preserve the ability to use ports in the models and according editors. To
model system elements, the Block is simply extended by the SystemElement-
Template stereotype. This also covers the environment model including the
EnvironmentElements and SystemTemplate. More detailed examples of CON-
SENS models created with the SysML4CONSENS profiles are given throughout
this thesis, starting in Chapter 3.

«Stereotype»
Block

«Stereotype»
SystemTemplate

«Stereotype»
SystemElementTemplate

«Stereotype»
EnvironmentElementTemplate

«Stereotype»
FlowSpecification

«Stereotype»
InformationFlowSpecification

«Stereotype»
EnergyFlowSpecification
 + isMechanical: Boolean [1]

«Stereotype»
MaterialFlowSpecification

Figure 2.14: Excerpt of the SysML4CONSENS UML profile

The SysML4CONSENS profile is the basis for the Automation Influence Model
(AIM) profile which extends or references a small subset of stereotypes. This
profile is detailed in Chapter 6. Table 2.1 list all stereotypes defined in the
profile as well as their corresponding base elements the stereotype extends.
This base element is either a stereotype defined in the SysML 1.3 profile or a
metaclass in the UML metamodel.

Table 2.1: List of used System and Environment elements

Stereotype Extends

SystemTemplate SysML1.3::Block

SystemElementTemplate SysML1.3::Block

EnvironmentElementTemplate SysML1.3::Block

27

Chapter 2 Foundations

Table 2.1: List of used System and Environment elements

Stereotype Extends

InformationFlowSpecification SysML1.3::FlowSpecification

EnergyFlowSpecification SysML1.3::FlowSpecification

MaterialFlowSpecification SysML1.3::FlowSpecification

ContinuousInformationFlowSpecification InformationFlowSpecification

DiscreteInformationFlowSpecification InformationFlowSpecification

MeasurementPoint UML::Port

SystemElementExemplar UML::Property

SystemExemplar UML::Property

EnvironmentElementExemplar UML::Property

LogicalRelation UML::Connector

Function UML::Class

FunctionContainment UML::Association

Induce UML::Abstraction

ApplicationScenario UML::UseCase

partialModel UML::Package

MechanicalConnection UML::Connector

LogicalGroup UML::Comment

FlowConnector UML::Connector

ConsensRequirement SysML::Requirement

Since the base concept of CONSENS does not provide types and instances,
an equivalent mapping to SysML and UML must be made. The stereotypes
SystemElementTemplate and EnvironmentElementTemplate extend the SysML
Block to specify a type. Such a type can be referenced by its instance, specified
by the SystemElementExemplar and EnvironmentElementExemplar which are
based on the UML Property metaclass.

2.3 Performance Modeling and Prediction

Performance prediction of software and hardware is the focus of various research
approaches for quite a while now.

“Performance evaluation is concerned with the description, analysis and optimi-
sation of the dynamic behaviour of computer and communication systems. This
involves the investigation of the flow of data, and control information, within
and between components of a system. The aim is to understand the behaviour
of the system and identify the aspects of the system which are sensitive from a
performance point of view.” [Hil05]

The primary goal is to predict certain quality of service attributes of the system
under investigation like network throughput, task execution behavior, or CPU

28

2.3 Performance Modeling and Prediction

utilization. This will help developers to identify problems or bottlenecks in the
early stages of the development before costly changes must be made [SHK98].

The basis for such prediction approaches are low-level formal models such as
Markov chains, queuing networks, stochastic Petri nets, and stochastic pro-
cess algebra. Also the target domain varies from approach to approach, ran-
ging from the prediction of cache misses in a CPU architecture up to net-
work traffic in IP networks. Each approach has a different focus and under-
lying technique to provide the necessary evaluation data. They are spanning
from embedded [Hap05, Wan06], non-embedded [WS02, BdMIS04], distribu-
ted [FCF+13, TP09, CHL+03, LWF08, FCF+13], with fieldbus [LF07, LF12,
COH07, MDFF06b, HCÅ03] to just standalone PLCs [FH12, FHMB13]. In
[Per06] an evaluation and comparison of performance analysis methods for dis-
tributed embedded systems is given. [BdMIS04] also gives an overview of several
model-based prediction approaches for the development of software.

Figure 2.15 sketches an abstract performance prediction process. It is based
on [Bec08], but replaces the software model with a model of the system. The
System Model is modeled with common modeling approaches like SysML, UML,
or CONSENS. Usually multiple disciplines and their developer are involved in
the creation or refinement of this model. Performance specific information is
typically not a part of this System Model. Therefore is it necessary to either
create an additional or add performance specific annotations in the existing
model. These annotations cover, among others, resources, resource demands,
input parameters, and workload definitions. A popular example for such an
annotation profile is MARTE (see section 2.3.1).

System
Model

Annotated
System
Model

Prediction
Results

System

QoS
Analysis
Model

feedback

transformation

analyze/
simulation

models

estimate/
measure

Queuing Networks,
Stochastic Petri Nets,

Stochastic Process
Algebras, Simulation, ...

Response Time,
Throughput, Failure

Probability, ...

UML, SysML,
CONSENS, ...

MARTE, QML, ...

hidden
in tools

Artefact

Relation

Activity

Legend

Figure 2.15: Model-based Performance Prediction Process (modified from
[Bec08])

In case all necessary performance specific information has been provided, trans-
formations can be executed that will transform the Annotated System Model
into one or more QoS Analysis Models. These models can be formalized by
Queuing Networks, Stochastic Petri Nets, Stochastic Process Algebras or spe-
cific Simulations. According tools use these transformed models as input to
predict certain QoS attributes like response times or throughput. These results

29

Chapter 2 Foundations

can be used by the developers to improve their original System Model up to the
point where all requirements are met and the system can finally be realized.

To conduct a performance evaluation, usually three techniques are used: For-
mal analysis with analytical modeling, simulations, and measurements based
on performance prototypes. Each technique has pros and cons, and the de-
cision which one to use should be (but not not limited to) based on the life cycle
stage the system is in [Jai90]. In the following, a brief introduction to three
formal Queuing Networks (QN), Stochastic Process Algebras, and Stochastic
Petri-nets is given. Afterward, the simulation and performance prototype are
discussed.

Queuing Networks, short QN, are a powerful tool for system performance eva-
luation and prediction. Queues and their service centers represent processing
resources which process job queues for a specific service. Queuing system models
represent the system as a unique resource, whereas queuing networks represent
the system as a set of interacting service centers. The latter are used to mo-
del system structure and to represent traffic flow among resources. This can
be used to model jobs traveling through a network of queuing networks using
probabilistic routes. The result of an analysis provides for example the average
response time of the overall system, waiting times for individual queues, and
utilization of the services.

Figure 2.16 provided by [Bec08] shows an exemplary queuing network that pro-
vides service to a set of customers. A QN is open, if customers can arrive at
the system and leave it again. A constant number of customers as shown in
the figure is called closed. Jobs queue at the CPU until they are processed.
Afterward, they either use a hard-drive with a probability of 30% or a network
resource with a probability of 70%. Due to the fact that this system is closed,
all jobs return to the CPU after a short delay, indicated by the clock. Queuing
Networks are the basis for a increasing number of performance prediction met-
hods as surveyed by Balsamo et al. [BdMIS04].

CPU
HDD

NET

0.3

0.7

Figure 2.16: Example of a queuing network ([Bec08])

Petri Nets [Pet83] consist of a set of places and transitions. Transitions remove
and add tokens on places whenever they fire. They cannot fire, if not in all pla-
ces sufficient numbers of tokens are available. Stochastic Petri Nets[MBB+89]
extend Petri Nets by random variables to represent the duration of activities,
or delays until given events. In addition to that, probabilistic routing of tokens

30

2.3 Performance Modeling and Prediction

P1 P2 P3

P4

T1 T2 T3

executing requesting accessing

common memory

Figure 2.17: Simple Petri Net with four places (source [Hil09])

between the places can be specified. Figure 2.17 shows a simple example of a
Petri Net that specifies four places (P1 to P4) and three transitions in between.
The stochastic Petri Net represents a processor requesting and gaining access
to the common memory. The example is taken from a teaching course of the
University of Edinburgh created by Hillston [Hil09]. The processor executes
for a given time and requests afterwards access to the memory. This memory
could be used by other processors, consuming the available token and therefore
inhibiting the firing of the transition T3. Stochastic Petri Nets can be used to
model and conduct a performance analysis [Mol82, MBC+94].

Stochastic Process algebras are abstract languages for specifying and designing
concurrent systems. They are based on Milner’s Calculus of Communicating
Systems (CCS) [Mil89]. Their advantage is the ability to model the behavior
of parallel processes formally. Therefore, routes through the model are not ne-
cessarily depended on probabilities, but behave to the semantics of the algebra.
This further allows the analysis of other system properties like checking for
deadlocks.

These performance prediction methods are used to model and analyze (solve)
systems to evaluate certain quality of service attributes. Performance simula-
tions are often based upon these methods. A simulation can incorporate more
details from the real world at the expense of time it takes to come to results
which are sufficiently precise. There exist a huge range of simulation tools used
for different purposes.

TrueTime[CHL+03, HCÅ03, COH07] is a MATLAB [Mat16] and Simulink
[Mat17] based simulator for real-time control systems. The framework allows
the specification, programming, and simulation of programs, threads, real-time
kernels, schedulers, network transmissions, and continuous plant dynamics.
To check for the design of the network with regard to throughput, determi-
nism, delays and jitter different network simulators like OMNeT++, OPNET,
or NS2/NS3 [Ope17, VIN17, NS-17, VH08, Riv17] are available. Other ap-
proaches can be used to predict the response times of complex automation
systems with control loops based on different network types and topologies
[LF07, LF12, MDFF06b]. And lastly are several approaches tailored or focused
on the analysis of program executions in general [BKR09, RBB+11] or with a
focus on the automotive domain [TA17, AADG12]. In [MWD+05], a simulation
based on Colored Petri Nets is used to predict end-to-end delays and compared

31

Chapter 2 Foundations

to or extended with results form a formal analysis based on model checking.
In addition, the UML-PSI tool by Marzolla Balsamo and Marzolla [BM03] de-
rives an event-driven simulation from UML system models. Cortellessa et al.
[CPR07] use annotated UML models and transform them into specifically desig-
ned simulation models. Palladio, the tool that has been selected for this thesis
based on a set of requirements, is a simulation based approach. More details in
section 6.2.1.

Prototyping is often used to check the applicability of a function or - in case
of performance prediction - to get an idea how the system will behave under
certain usage scenarios. The prototype implements a subset of functions, either
fully or as mock ups, so that basic analysis can be conducted. The prototype
has the advantage that multiple aspects of the systems design can be checked
like user interaction, performance, or behavior. However, all functions that are
not fully implemented might have a significant impact on the performance of the
system. Prototypes can be used in the early phases of the development. They
are usually more cost intensive than model based approaches due to additional
programming and measurement tasks. This includes the creation of workload
generators, test environments, and interfaces to external systems.

2.3.1 MARTE

The Modeling and Analysis of Real Time and Embedded systems (MARTE)
[SG13, Obj06, HPV15] is the successor of the UML profile for Schedulability,
Performance, and Time [Obj05]. The profile allows the annotation of existing
UML models to further provide performance specific information with a focus
on real-time and embedded devices. The profile contains four parts: a core
framework defining the basic concepts required to support real-time and em-
bedded domain, a package to support modeling of applications (hardware and
software platform), quantitative analysis of UML2 models, textual language
for value specification within UML2 model specially schedulability, and perfor-
mance analysis.

MARTE supplements standard UML with the following basic capabilities

� Define and specify different types of quantitative and qualitative mea-
sures. This means that MARTE is capable of modeling different quality
aspects of the (software) system, like network bandwidth, execution times
of programs or arrival patterns between service calls.

� A time model to specify for example clocks, timepoints, and durations.
� A model to specify hardware resources like processors, memory, networks,

input and output devices and many more.
� A model to specify software resources like threads, processes, or mutexes.
� The means to specify how software components are related to hardware

components. This also covers the deployment of software onto hardware
resources.

32

2.3 Performance Modeling and Prediction

How MARTE can be used to model these different aspects of a complex system
is briefly introduced with the following precise clock example, taken from the
book “Modeling and Analysis of Real-Time and Embedded Systems with UML
and MARTE” [SG13]. Figure 2.18 shows a class diagram with three classes.
The Timer class has been extended by the timerResource stereotype. The ad-
ditional properties this stereotype provides are used to specify that the Timer
is executing or triggering a function of the Displayer every 100 us in a peri-
odic way. The Displayer is a scheduable resource that uses a certain amount
of processor resources when the timeout() function is called. In this case, the
value specified is depended on a CPU Speed variable provided by an under-
lying hardware model and notated via MARTEs Value Specification Language
(VSL). The last element shows a hwDevice namend LEDDisplay which is used
to visualize the current time.

Figure 2.18: Precise clock class diagram (modified from [SG13])

Figure 2.19 shows the behavior of the system in form of a sequence diagram.
It is also used to further define requirements the system must fulfill, by adding
the TimedConstraint stereotype to the sequence diagram. It defines that the
duration between time points t2 and t1 is required to be less than or equal
to 100 ms. The Displayer creates a Timer, which will then call the timeout
function every 100 ms back to the Displayer. The TimedInstantObservation
stereotype is used to associate a clock with to time points (@t1 and @t2) to be
able to validate the constraint.

An important foundation of MARTE is a rich set of basic definitions to formalize
all aspects of the model, ranging from time to length as dimensions. For this,
a special stereotype Dimension is used. A dimension in MARTE is a list of
named units belonging to a given standard physical dimension. MARTE covers
four dimensions: length (L), mass (M), time (T), and data (D). These can be
combined to represent other more complex units, such as speed (length over
time) or area (length squared), and so on. The standard set of dimensions and
measurement units contain, among others, LengthUnitKind, WeightUnitKind,
DataSizeUnitKind, TimeUnitKind, and DataTxRateUnitKind. An exerpt of
these units are shown in Figure 2.20. The TimeUnitKind defines different kinds
of time measurement units like seconds (s) and further more units that can refer
to this base unit ms {baseUnit=s, convFactor=0.001}. Other measurements
like the tick must be put into relation depending on the context (e.g. tick is
every 1ms for a certain hardware device). The convFactor attribute allows to

33

Chapter 2 Foundations

Figure 2.19: Precise clock sequence diagram ([SG13])

create more easily readable models and still set different values into relation.
The three examples in the figure each represent a Time, Length, and Data
dimension, denoted by the attribute symbol.

Figure 2.20: Exemplary set of dimensions and measurement units

To model various aspects of a real-time system, MARTE provides a set of
non-functional property types (nfp types) and arrival patterns. These nfp
types can be used to set data transfer rates (NFP DataTxRate), Frequency
(NFP Frequency), or power (NFP Power). To model the timing behavior of a
system and its environment ArrivalPatterns can be used.

Figure 2.21 shows an exert of these patterns to model for example the fre-
quency in which a user triggers functions or how IP packages arrive at the
network interface of an embedded system. They provide means for modeling
probabilistically-distributed workloads. MARTE provides a set of commonly
used patterns as shown in the figure. A stimuli defined with a PeriodicPattern
will be triggered in set intervals, respectively periods. The PeriodicPattern al-
lows to set further properties like the jitter, which will bring in a variance from
this fixed period length.

34

2.3 Performance Modeling and Prediction

Figure 2.21: ArrivalPatterns to model probabilistically-distributed workloads

2.3.2 Palladio

The Palladio Component Model (further referenced just as Palladio) [RBB+11,
Rec08, BKR09] “is an architecture description language supporting design time
performance evaluations of component-based software systems” [Hap08]. Palla-
dio provides a rich set of approaches to conduct performance analysis. Various
transformations can be used to map the PCM to for example stochastic re-
gular expression [FBH05], Layered Queueing Networks [Fra99], or event-based
simulation frameworks [BKR07].

Core of the Palladio Component Model consists of five partial models, each
targeted for a certain role in a component-based software engineering process.
Component developers specify and implement components in a Repository mo-
del. Software architects compose the different components in a System mo-
del. The System deployer creates an ResourceEnvironment model containing
platforms and networks and allocates/deploys the composed system onto the
environment with the Allocation model. Finally the Business domain experts
model the behavior of the users or external service that access the system with
a Usage model. The five models are further detailed in this section.

These models are the basis for a rich set of transformations into further analysis
tools and approaches. Focus of this thesis is SimuCom, a core part of Palla-
dio. SimuCom performs a process and event-based simulation of the modeled
system and allows to take measurements for QoS metrics like CPU utilization or
response times. Simucom also provides fine grained data of the simulation, allo-
wing the performance analyst to conduct in-depth investigations of the system
under development. Via extension mechanisms, for example, custom operating
system schedulers can be created and added to the Simcom simulation.

The PCM Solver is also integrated into the base package of Palladio and
provides two sub-solver. The first is based on stochastic regular expressions
(SRE) and provides a fast calculation of distribution function for one user. The
second sub-solver is another analytical approach based on Layered Queueing
Networks that allows a fast numeric approximation of performance metrics for
multiple users and concurrent processes.

SimuLizar [BLB13, BBM13] is another Palladio plug-in for analyzing self-
adaptive systems such as cloud computing systems. SimuLizar does not gene-

35

Chapter 2 Foundations

rate specific models but interprets the PCM input to provide measurements of
for example response times or utilization. By interpreting the models, Simulizar
can cope with changes during the simulation, hence the focus on self-adapting
systems.

ProtoCom transforms PCM models into runnable Java code as a performance
prototype that can be executed. During the execution, a set of sensors capture
metrics of the system, allowing to conduct a performance analysis. These can
be used for an early assessment of the modeled software system within a real
environment.

Palladio Component Model

The models that are part of the Palladio Component Model are shown in Figure
2.22. On the left side, the five models and their relations between them are
depicted. On the right side, the different transformations are sketched that
generate the input models for each analysis approach. Instead of generating,
Simulizar interprets existing Palladio models to perform its analysis. Other
targets are input models for the Layered Queueing Networks (LQN) solver or
a Stochastic Regular Expressions (SRE) notation for the SRE solver. Both are
part of the standard Palladio PCM solvers [KG08]. In the following subsections,
each model is briefly described.

Repository

Resourceenvironment

System

Allocation

Usagemodel

requires

requires

requires
requires

requiresrequires Palladio
PCM Models

SimuCom

LQN Solver

Simulizar

SRE

ProtoCom

model-2-text

model-2-model

interpretation

model-2-text

model-2-text

Figure 2.22: Palladio-Models used by different analysis tools

Repository Model
In the Repository Model, the developers specifies and implements components
that are used in the System model to compose complex software. The major
elements of this model are Interfaces, Components, and the Resource Deman-
ding Service Effect Specifications. Operations and Parameters called between
components must be specified by Interfaces. Components can provide or require
one or more interfaces which serve as a contract between them.

36

2.3 Performance Modeling and Prediction

Components can be categorized into atomic BasicComponents or Composed-
Components which are created by composing Basic- or other ComposedCom-
ponents. Components must implement their interfaces by providing an abstract
behavioral specification called Resource-Demanding Service-Effect-Specification
(RD-SEFF). This is used to specify how the components use hardware/software
resources during their operation and which other operations are called. Internal
actions are used to specify the Resource Demand of a components operation.
An abstract demand of a resource is modeled like CPU units needed or bytes
read or written to a hard disk. These resources must be specified in the Re-
source Environment model, which will be detailed later. External actions are
used to trigger operations on other Components. Other available actions al-
low the specification of complex control flows like Loop, Fork, Acquire, Release
or Branch actions. Palladio provides an EBNF to further detail the resource
usages and parametric dependencies. The following Probability Mass Function

data.BY TESIZE = IntPMF [(1000; 0.8)(2000; 0.2)]

sets the BYTESIZE property of the data variable to 1000 bytes in 80% of the
executions and to 2000 for the remaining 20%.

System Model
The System Model is used to instantiate and assemble the different components.
These instances, called assembly contexts, are connected via SystemAssembly-
Connectors. The System itself provides interfaces that externals systems or
users can access. All calls are delegated to the appropriate assembly contexts.

Resource Environment Model
This model is used to specify the hardware and environment of the overall sy-
stem. It consists of Resource Containers which are connected via network links.
Containers consists of multiple active and passive resources that can be refe-
renced and used by the Components and their RD-SEFFS. A typical resource
for a PLC is the CPU, which needs to specify a processing rate of any number
of resource units per time unit (e.g. 64.000 resource units per millisecond).
An active resource can also be configured with different schedulers/scheduling
strategies, depending on the operating system and its settings.

Allocation Model
After the overall system has been composed in the System model and the un-
derlying Resource Environment is set up, the allocation model is used. This
model contains deployment information how each component of the system is
assigned to a corresponding hardware resource/execution environment.

Usage Model
To model interactions with users or other external systems, the Usage model
is used. It contains one or multiple UsageScenarios in which the call of one
or more operations of the provided system interfaces is specified. Different
workload profiles can be used to model the pattern and arrival times of these
calls. Like RD-SEFF can UsageScenarios contain complex control flows with
various loops and branches.

37

CHAPTER 3
Running Example

For this thesis, a medium sized production system provided by ELHA1 to mill
the body of Turbochargers is used as an ongoing example. To protect the
intellectual property of ELHA, the provided System Engineering models have
been modified to obfuscate the real system structure and its components. Figure
3.1 shows a photo of a similar system with two Mills. The input and output
workpieces are transported by robots in-between. Several other components like
stations to measure, buffer, or to engrave the workpieces are also part of this
production system. Most of the stations can be reused. Therefore, a module
oriented approach has been used by ELHA. A module can contain none or more
stations and holds all structural and behavioral information. A module can be
composed of other modules. Modules are controlled by one or many PLCs. The
PLCs execute the Programs and Function Blocks to control, for example, the
individual stations and the transport of the workpieces.

Figure 3.1: Photo of two milling centers with automation hardware for work-
piece transport (source ELHA)

1ELHA Maschinenbau – http://www.elha.de/

39

Chapter 3 Running Example

3.1 Overview

The overall composition of the system is shown in the active structure Figure
3.2 – please note that the model has been heavily simplified to give just an over-
view of some of the different parts. Also, all flows (information, material, and
electrical energy) have been hidden to improve the visibility. The figure shows
the different stations and indicates the three main modules of this automation
system. A detailed excerpt of the right part (Unit2) is shown in Figure 3.3.
The active structure is one of multiple models to specify the CONSENS prin-
ciple solution. It is used to give a hierarchical overview of the system structure
and the relations between the different elements. Environment elements (yel-
low) indicate an element that is not part of the system under development, but
which influences it. In case of the turbocharger production system, the typical
environment elements are chippings from the mill, operators working with the
production system, external remote diagnostic systems accessing the internal
data, or sources for water, air, oil, and electrical energy. The system element
(blue) is used to model the structure of the system under development. Each
system element can be further composed of more elements on a lower hierarchy
level, detailing the model element. The relations between elements can be spe-
cified in more detail, for which the active structure model uses different types:
the electrical flow to indicate that two elements are connected with a power
connector, the material flow to show that some kind of material is exchanged
between elements, like workpieces or cooling water, and the information flow
which is used to model communication between elements.

Unit1 Transport Unit2

Reject
slide

Assembly-
line

Workpiece-
delivery

Shuttle
(Input)

Shuttle
(Output)Mill

HMIPLCRT-
Robot

Reject
slide

Measure-
ment

Buffer-
station

Engrave-
ment

SPC-
Station

HMIPLC

HFT-
Robot

Supply
distr.

Reject
slide

Measure-
ment

Engrave-
ment

SPC-
Station

HMI PLCFT-
Robot

Mill

Shuttle
(Input)

Shuttle
(Output)

Assembly-
connector

Chippings
disposal

Compr.
Air

Oil Cooling

Material
supply

SCADA
Remote
Diag.Operator Workpiece Maintenance Environment

El. Energy
supply

Suction

Figure 3.2: Overview of the ELHA production system elements

The Figure 3.2 shows two hierarchy levels of the production system and se-
lected environment elements. At the top level, three system elements can be
identified. First is the Unit1 in which workpieces gets loaded and checked. The
Unit1 also includes the first mill and two shuttles used to deliver and take out
workpieces of the mill. The shuttles are loaded and unloaded by a robot arm.
The second top-level element is the Transport unit. When the first processing
step of the workpieces is finished, the shuttles transport the workpiece out of the
mill. A robot called HFT-Robot (Halb-Fertig-Teil) takes the workpiece from the
shuttle and puts it on an engraving station. There, a serial number and other
information is engraved into the piece before the same robot delivers it to the

40

3.1 Overview

measurement station. If the setpoints deviate from the actual values, the robot
takes the workpiece and puts it on a Reject slide where the operator will manu-
ally remove it from the production process. If the next mill is ready to process
the next workpiece, the robot will place it onto the shuttle of Unit2. In case
the mill is not ready, the workpiece will be delivered to a Buffer station. Unit2
is a mixture of Unit1 and the Transport unit. It includes a mill and shuttles, a
second engraving and measurement station to check the quality of the second
milling step and several other modules that can be found in the previous two
parts. If the workpiece is within the set production tolerances, another robot
of Unit2 will put the workpiece on a special belt where it will be moved to the
next step in the production line, which is not part of the ELHA production
system.

Unit 2

PLC HMI

Shuttle

(Output)
Mill

Shuttle

(Input)

Reject slide

Movement

commandsStatus

Workpiece

el. Energy

Compressed Air

Movement contr.

Control operating

supplies

State

Workpiece

el. Energy

State

Status

Movement commands (NC)
Status

User commands

el.

Energy

el. Energy

Engravement-

station

Measurement-

station

FT-Robot

SPC-

Workstation

Assemblyline-

Connector

State, Measurements

Workpiece

Workpiece

Compressed

Air,

el.

Energy

el. Energy,

Compressed Air

Compressed Air

Command information

Workpiece

Workpiece

Workpiece

Control information

1
B/M Data

Control

Measurements

6

el. Energy

1
B/M Data

Workpiece

2

Sensor,

Status analog

Assemblyline

Unit2

Figure 3.3: A simplified CONSENS active structure of Unit2

Figure 3.3 shows a more detailed view of Unit2. In this figure, some of the
material, energy, and information flows are left out to reduce the complexity
and improve visibility. The following list details some elements for a better
understanding of the example system.

� Mill: The mill is the center of the production system. The workpieces
coming from the foundry are rough and need to be drilled, ground, milled,
and polished. The mill is a closed system with input and output gates on
the left and right side. The shuttles are used to transport the workpiece
through the gates into the mill and out again. Inside the mill, multiple
tools can be used to process the workpiece.

� Workpiece delivery: This part is used to order the workpieces and
put them on predefined places where a robot can pick them up. Several
sensors check for availability and position of the workpieces. A conveyor

41

Chapter 3 Running Example

system is used to push the delivered workpieces to the front.
� Shuttle: The shuttle is a component that is used multiple times. It

transports the workpiece in and out of the mill. For the transport, the
workpieces must be locked. To do this, several sensors and actuators
are used. Depending on the complexity of the workpiece, a phased or
staged locking process in close cooperation and/or synchronization with
the robot is necessary.

� Robot: For the turbocharger production line, three robots are used. The
RT-Robot (Rohteil-Robot) has the simple task of taking the workpiece
from the workpiece delivery and to place it on the shuttle. The second
HFT-Robot (Halb-Fertig-Teil) has tasks that needs to be executed in a
specific order and which are highly time critical to ensure the throughput
of the production line. Some of these tasks are to take the workpiece
from the shuttle, deliver to the engraving station, to the measurement
station, to the reject slide, to the buffer station, to the SPC-Workstation
and to the shuttle of the Unit2 mill. The last robot is the FT-Robot
(Fertig-Teil) which has to perform the same tasks as the second robot;
but instead of delivering the workpiece to another shuttle it has to deploy
it on a conveyor belt.

� Engraving-Station: This station is used to engrave the workpiece. A
serial number and additional information are engraved with a laser or a
drill. Like the shuttle, it is necessary to lock the workpieces for processing
into place. This locking might also be multi-staged and a synchronization
with the robot delivering the workpiece could be needed.

� Measurement-Station: To check whether the production tolerances are
adhered after the milling process, the measurement station can automa-
tically measure predefined distances or faces. The measurement data is
stored in the station until it is collected by the SCADA system.

� Buffer-Station: If the Unit2 mill is under stress and cannot process
workpiece as fast the Unit1 mill, all accumulated pieces can be stored in
a buffer station. The amount of pieces that can be stored depends on the
type of buffer station.

� Reject slide: The slide is just used to remove damaged workpieces or the
ones which were not in the tolerance range after the measurement. The
operator of the system needs to manually take the pieces from the slide.
No actuators are used, just a single sensor at the top to check whether
the slide is still free or full.

� HMI: One of the most important ways to influence and control the system
is via the human machine interface (HMI). The current status of all the
components and the overall system can be queried here. Often provides
the HMI means to switch between manual and automatic mode. Manual
mode is usually used to find problems in the production process because
each individual component can be accessed and modified step by step.

� PLC: Heart of the automation system is usually one or more program-
mable logic controller (PLC). The PLC gathers data from the sensors,
calculates the next steps to perform and sends the command/data to the
actuators. Complex automation systems consist of a network of PLCs ex-

42

3.2 CONSENS Models

changing data. Details on PLCs and programming of automation systems
can be found in Chapter 2.

� SCADA: The Supervisory Control and Data Acquisition (SCADA) sy-
stem used for remote monitoring and control of the turbocharger pro-
duction. In addition, it monitors industrial processes for display or for
recording functions. The SCADA system is an environment element and
therefore not shown the Figure 3.3.

� Remote-Diagnostics: Like the SCADA system are remote diagnostic
systems used to access the current state of the overall system as well as
individual components. It allows the maintainer to check for problems
without the need to physically access the automation system. Like the
SCADA system is the Remote-Diagnostics an environment element that
accesses several subelements of the Unit2 and not shown in Figure 3.3.

3.2 CONSENS Models

In the following sections, the different parts and a detailed structure of the Tur-
bocharger production system is shown. To protect the intellectual property of
ELHA, the system structure and its components are obfuscated. The diagrams
show excerpts of the full CONSENS model. Most labels of connectors are remo-
ved to improve the overall visibility. This helps to focus on the important parts
of the Turbocharger model. The original software of the production system con-
tains more than 370 Function Blocks. They are hierarchically structured and
contained in round about 35 entry level Function Blocks. For this thesis, this
huge amount of software components has been reduced to only a few, selected
elements. This will further reduce the complexity of the model and allows the
reader to focus on the techniques and concepts. A full list of all used Syste-
mElements, EnvironmentElements, Tasks, Function Blocks, and Programs can
be reviewed in the Appendix 3. The models shown in the following subsections
have been created with the SysML4CONSENS profile [KDHM13] as introduced
in Chapter 2. The profile extends SysML by a selection of CONSENS specific
stereotypes. The models are created with the Papyrus Modeling environment
[Ecl17c] (as part of the Eclipse IDE [Ecl17a]).

3.2.1 Environment

The environment model of the turbocharger production system is depicted in Fi-
gure 3.4. The SystemElement TurboChargerMill (blue) in the center interacts
via flows with the various EnvironmentElements (yellow) in its surrounding.
EnvironmentElements indicate an element that is not part of the system under
development but which influences it. The environment model (as well as the
following active structure models) provide three basic kinds of flows for speci-
fying an interaction between elements: the electrical flow to indicate that two
elements are connected with a power connector, the material flow to show that

43

Chapter 3 Running Example

some kind of material is exchanged between elements, like for example work-
pieces, chippings or cooling water, and the information flow which is used to
model communication between elements of the active structure.

In case of the turbocharger production system, typical environment elements are
chippings from the mill, operators working with the production system, external
remote diagnostic systems accessing the internal data or sources for water, air,
oil or electrical energy. Other elements like the CompressedAirSupply or the
OilSupply use material flows to indicate that some kind of material is exchanged
between the elements. And the ElectricalEnergySupply provides energy to the
SystemElement with the ele.Energy flow.

The SCADA and RemoteDiagnostics environment elements are two elements
often used as examples throughout this thesis. Both elements aquire data from
the system via information flows. The SCADA-Data transfers data in form of
variables from the PLC to the SCADA-System and back again. The Diagnostics
information flow is used to collect log files from the PLC so that they can be
analyzed and stored.

The kind of flow is depending on the developers perspective. A fieldbus is used
to exchange sensor and actuator data between different elements. However, it
is also possible to use the fieldbus as an energy supply for the IOs. In this case
a developer might choose to model an energy flow instead of an information
flow. The selection of a flow kind depends on the intended use and should be
fixed throughout the model by modeling guidelines.

«Block, SystemTemplate»
Umfeld

«part»
«SystemExemplar»

SystemExemplar1: TurboChargerMill

«part»
«EnvironmentElementExemplar»

Operator: Operator

«part»
«EnvironmentElementExemplar»

scada: SCADA

«part»
«EnvironmentElementExemplar»

Workpiece: Workpiece

«part»
«EnvironmentElementExemplar»

Environment: Environment

«part»
«EnvironmentElementExemplar»

AssembyLine: AssemblyLine

«part»
«EnvironmentElementExemplar»

MaterialSupply: MaterialSupply

«part»
«EnvironmentElementExemplar»

RemoteDiagnostics: RemoteDiagnostics

«part»
«EnvironmentElementExemplar»

ElectrEnergySupply: ElectrEnergySupply

«part»
«EnvironmentElementExemplar»

OilSupply: OilSupply

«part»
«EnvironmentElementExemplar»

CompressedAirSupply: CompressedAirSupply

«part»
«EnvironmentElementExemplar»

CoolingInstallation: CoolingInstallation

«part»
«EnvironmentElementExemplar»

Maintenance: Maintenance

workpieces

material

Diagnostics

coolingLiq

ele.Energy

Operate, Use, Inspect

Compr. Air

oil

Chippings, Oil

Maint.Data

Temperature, Vibration

SCADA dataSCADA data

ele.Energy

coolingLiq material

oil

workpieces

Maint.Data

Chippings, Oil

Operate, Use, Inspect

Diagnostics

Temperature, Vibration

Compr. Air

Figure 3.4: Environment model for the Turbocharger example (simplified)

44

3.2 CONSENS Models

3.2.2 Unit2 of the turbocharger production system

The TurboChargerMill is a top level SystemElement that is further decompo-
sed into Unit1, Transportation, and Unit2. This hierarchy level is skipped to
directly detail the containing elements of Unit2 in Figure 3.5. Similar to the
environment model diagram, this figure shows only selected parts of the model
to improve the overall visibility.

The Unit2 consists of thirteen SystemElements modeled as parts. These parts,
as well as their according types specified as SysML Blocks, are annotated by
SysML4CONSENS stereotypes. In the center of Figure 3.5, the PLC – focus
of this thesis – is shown. The compartment of the PLC includes parts of the
PLC: a WebServer, an OPC-UAServer, and an FTPServer. The parts are also
typed by their according blocks. The PLC contains also contains the MainTask
and the MillTask. These elements will be explained in more details in Chapter
4 and Chapter 6. The figure visualizes two outer ports of Unit2 that are used
to delegate information flows to the different subparts of the PLC. These flows
are the Diagnostics and SCADA-Data flows that have been introduced in the
environment model. Ports from the EnvironmentElements, OPC-UAServer and
FTPServer are typed by corresponding information flows. The HMI uses data
provided by the PLC to visualize the current state of the Unit2. This access
is realized via a Webserver which transfers the data to the HMI via the HMI
Data information flow.

There are several ways to model a data exchange between elements, depen-
ding on the level of detail that needs to be achieved for the current modeling
purposes. The first one is to model each data exchange with an information
flow connecting the two communicating partners directly. An example for this
approach is the data exchange between the SCADA-System and the OPC-UA-
Server. The second alternative is an explicit modeling of the communication
system or media in use. In Figure 3.5, a SystemElement Interbus has been cre-
ated to represent the underlying (field)bus for exchanging data. Each fieldbus
specific Informationflow is routed over this element. Especially in automation
systems, in which fieldbuses are an important part of the system structure, an
explicit modeling of buses is advised. A complex production system may con-
sist of several, separated buses for different communication purposes like fast
motion control and data exchange over the Internet. Despite the fact that the
element and the flows have already been named “interbus”, the influence model
specific information to type the bus are not yet added to the model (see Chapter
5).

3.2.3 AssemblyConnector in detail

The Figure 3.6 further refines the AssemblyConnector SystemElement. The
AssemblyConnector is used to put the finished workpieces onto a carrier that
transports them to the next production system. Each carrier can transport
three workpieces which must be fixed during transport. For this task, a left and

45

Chapter 3 Running Example

«B
lo

ck
, S

ys
te

m
El

em
en

tT
em

pl
at

e»
U

ni
t2

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

FT
Ro

bo
t:

Ku
ka

Ro
bo

t

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

M
ill

: M
ill

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

In
Sh

ut
tle

: S
hu

ttl
e

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

O
ut

Sh
ut

tle
: S

hu
ttl

e

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

SP
CS

ta
tio

n:
SP

CS
ta

tio
n

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

As
se

m
bl

yC
on

ne
ct

or
: A

ss
em

bl
y..

.

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

Re
je

ct
sli

de
: R

ej
ec

ts
lid

e

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

H
M

I:
H

M
I

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

PL
C_

un
it2

: U
ni

t2
PL

C

«p
ar

t»
W

eb
se

rv
er

: W
eb

se
rv

er

«p
ar

t»
O

PC
UA

Se
rv

er
: O

PC
-U

AS
er

ve
r

«p
ar

t»
Ft

ps
er

ve
r:

FT
PS

er
ve

r

«r
ef

er
en

ce
»

m
ai

nT
as

k:
 M

ai
nT

as
k

«r
ef

er
en

ce
»

de
fa

ul
tT

as
k:

 M
ill

Ta
sk

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

En
gr

av
em

en
tS

ta
tio

n:
En

gr
av

em
...

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

M
ea

su
re

m
en

tS
ta

tio
n:

 M
ea

su
re

...

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

Em
er

ge
nc

yS
to

p:
 E

m
er

ge
nc

yS
to

pB
ut

to
n

«p
ar

t»
«S

ys
te

m
El

em
en

tE
xe

m
pl

ar
»

in
te

rb
us

1:
In

te
rb

us

H
M

I D
at

a

ib
as

s2

ib
1_

sh
ut

tle
ou

t

ib
1_

pl
c

ib
1_

en
gr

Em
er

ge
nc

yS
to

p
Si

gn
al

ib
1_

sh
ut

tle
in

D
ia

g.
D

at
a

M
ea

su
re

m
en

t d
at

a
an

d
co

nt
ro

l

In
Sh

ut
tle

co
nt

ro
l

En
gr

av
em

en
t d

at
a

Ro
bo

t c
on

tro
l i

nf
or

m
at

io
n

M
ill

 s
yn

ch
ro

ni
za

tio
n

SC
AD

A-
D

at
a

SC
AD

A-
D

at
a

ib
1_

sp
c

Re
je

ct
sli

de
 c

on
tro

l

ib
as

s1

H
M

Id
at

a

ib
1_

ku
ka

ib
1_

re
je

ct
s

ib
1_

m
ea

s

Lo
gF

ile
Ac

ce
ss

As
se

m
bl

y
in

fo
rm

at
io

n

ib
1_

hm
i

ib
1_

m
ill

O
ut

Sh
ut

tle
co

nt
ro

l

ib
as

s3

SP
C

da
ta

ib
1_

em
er

ge
ny

M
ill

 s
yn

ch
ro

ni
za

tio
n

In
Sh

ut
tle

co
nt

ro
l

O
ut

Sh
ut

tle
co

nt
ro

l

H
M

Id
at

a

Re
je

ct
sli

de
 c

on
tro

l
En

gr
av

em
en

t d
at

a
Em

er
ge

nc
yS

to
p

Si
gn

al

Ro
bo

t c
on

tro
l i

nf
or

m
at

io
n

SP
C

da
ta

As
se

m
bl

y
in

fo
rm

at
io

n

M
ea

su
re

m
en

t d
at

a
an

d
co

nt
ro

l

ib
1_

ku
ka

SC
AD

A-
D

at
a

SC
AD

A-
D

at
a

ib
1_

pl
c

ib
1_

hm
iib
1_

re
je

ct
s

ib
1_

em
er

ge
ny

ib
1_

en
gr

ib
1_

sh
ut

tle
ou

t

ib
1_

sh
ut

tle
in

ib
1_

m
ill

ib
1_

m
ea

s

ib
as

s1

ib
1_

sp
c

H
M

I D
at

a

Lo
gF

ile
Ac

ce
ss

D
ia

g.
D

at
a

ib
as

s2
ib

as
s3

Figure 3.5: Excerpt of the Unit2 System element of the Turbocharger example

46

3.2 CONSENS Models

right Fixing for each lane is used. Also a LaneSensor checks for empty/full lanes
on each carrier. An underlying conveyor belt runs continuously. Therefore, a
stopper is used to stop carriers in a certain position. The raiser slightly raises
the workpiece carrier so that no vibration from the conveyor belt is transfered
to the workpiece carrier during the placement of the workpieces by the robot.
The carrier is only send to the next production system if no queue exists in
front of it. Therefore, an EmptyQueue sensor is used to send a ’lane free’ to
release the stopper. The whole AssemblyConnector contains eight actuators,
four sensors and three buscouplers to send data from and to the PLC. The data
is exchanged via information flows that are typed by the ports. The labels of
the ports and connections are omitted in the figure.

«Block, SystemElementTemplate»
AssemblyConnector

«part»
«SystemElementExemplar»

SensorLane1: LaneSensor

«part»
«SystemElementExemplar»

FixingL1Left: Fixing

«part»
«SystemElementExemplar»

SensorLane3: LaneSensor

«part»
«SystemElementExemplar»

FixingL1Right: Fixing

«part»
«SystemElementExemplar»

StopperFront: Stopper

«part»
«SystemElementExemplar»
EmptyQueueSensor: Queue...

«part»
«SystemElementExemplar»

FixingL2Right: Fixing

«part»
«SystemElementExemplar»

SensorLane2: LaneSensor

«part»
«SystemElementExemplar»

FixingL3Left: Fixing

«part»
«SystemElementExemplar»

FixingL3Right: Fixing

«part»
«SystemElementExemplar»

WPCRaiser: Raiser

«part»
«SystemElementExemplar»

FixingL2Left: Fixing

«part»
«SystemElementExemplar»

bc1: Buscoupler1

«part»
«SystemElementExemplar»

bc2: Buscoupler2

«part»
«SystemElementExemplar»

bc3: Buscoupler3

Figure 3.6: The AssemblyConnector and various sensors and actuators

47

CHAPTER 4
Influence Factors

In this chapter, the different influence factors that impact the overall utilization
or throughput of an automation system are identified and suitable representati-
ons are specified. Several hardware, software, and environment related influence
factors exist that need to be considered when developing a new or updating an
existing system. The factors and their parameters will be described in detail
in the following subsections. Depending on the influence of the factor, the ease
to model it, and if the necessary information is already available in the early
development phases, the factors are either neglected, simplified, or considered
in full detail.

The list of influence factors has been gathered by analyzing common factors
from existing performance prediction approaches, by exhibiting the firmware
of a well know PLC vendor (Phoenix Contact), and by analyzing exemplary
System Engineering models of automation systems as shown in Figure 4.1. One
of these exemplary systems is the ELHA turbocharger milling system which is
introduced in Chapter 3. However, the major part of the identified influence
factors has been obtained during a two-year long project with Phoenix Contact.
The goal of this project was to develop a tool to support a sales person to chose a
fitting PLC performance class for a given customer automation system. Most of
the measurements and detailed information are under restricted confidentiality.
Still, the experience gained in this project is used to support the decisions when
identifying and rating the influence factors. Several presentations, posters, and
publications (e.g. [FH12, FHMB13]) are results of this industry-driven project.

Exemplary SE
models

Industrial
firmware

Identification of
Influence Factors

Influence factors
+ Parameters

Common factors from
Performance Prediction

approaches

1

Figure 4.1: Identification of influence factors and artifacts

49

Chapter 4 Influence Factors

Contribution C1:
Identification of Influence Factors
The contribution of this chapter is the identification of influence factors that
impact quality of service (QoS) attributes of an automation system like the
CPU utilization of a PLC. An extensive list will be gathered that details each
influence factor. It will be discussed, whether information about the influence
factors is available in the early development stages, which assumptions have to
be made, its overall impact on the system, and which parameters need to be
taken into account.

This chapter is structured as follows. First, a selection of related work is pre-
sented (see Section 4.1), providing a general overview of different performance
prediction approaches and the domains they provide influence factors for. Af-
terward, the foundation for describing the influence factors is set by defining
used parameters and notations, starting with Section 4.2. Focus of this chapter
are the following influence factors: The application related influence factors are
described in more detail in Section 4.3. These factors include - among others -
IEC 61131-3 related programs, functions, and task deployment settings. They
are usually independent of the PLC they are executed on. The second topic are
hardware dependent (4.4) influence factors like architecture, operating system,
firmware, and CPU. The input-output-systems (IO) has a huge impact on per-
formance of a PLC and is discussed in the third part (Section 4.5). The fourth
Section 4.6 deals with additional services of a PLC such as an FTPServer or an
OPC-UA server. They could be categorized into the firmware (and thus associ-
ated with the section PLC), but are often used very application-specific. Since
services have a non-negligible impact on the PLC performance, these factors
have to be considered separately. The last section of this chapter (Section 4.7)
gives an overview of all influence factors and their associated parameters. The
results of this first identification are captured in a formal model in Chapter 5
and later on transferred into the UML profile presented in Chapter 6.

Summary:
The core influence factors which must be considered when conducting an ana-
lysis and/or developing an automation system are listed below. Most details
are only important for a precise analysis of a PLC or side effects in a network
or fieldbus. For example, even small changes in the compiler settings or task
priorities can influence the execution behavior of a task and its programs. But
these effects are usually hard to model or details are simply not available in the
early stages of the development. Forcing developers to consider each and every
little aspect will reduce the overall usability and lead to longer specification
and analysis times [Jai90]. Also, by providing too much detail, the performance
prediction will become harder, leading to wrong results. Starting with more
abstract, high-level models to perform performance predictions and then detail
these models to conduct in-depth analysis should be preferred [Jai90].

� Program: The execution of Program code directly influences the utili-

50

4.1 Related Work

zation of the PLC and the automations systems performance
� Function Block: Invoking a Function Block and its optional background

load puts stress on the PLCs CPU.
� Cyclic Task: The CyclicTask is a periodic task with fixed intervals. The

task is used to trigger the execution of a Program or Function Block.
� Event Task: This aperiodic task is hard to model due to the different

sources for events which trigger the execution. An approximation with
density functions is best to incorporate their induced utilization.

� Idle Task: The idle task is dependent on the execution time of associated
Programs and Function Blocks. The interval of the task may jitter.

� PLC: The PLC as a container for several hardware related factors like
CPU frequency, caching, architecture and multi core influences the exe-
cution of Programs and Function Blocks, services, and all other compu-
tational factors.

� OS: Operating system processes create a base utilization on the PLC. For
embedded devices these processes are stripped down to a necessary core.
The base utilization can be neglected, but the impact of this factor is low.

� Firmware & Runtime: Management processes and Runtime Environ-
ment influence the code execution and create a background utilization.
Usually the performance oriented design puts low stress on the CPU and
is therefore a low impact factor.

� IPTraffic: The major part of IPTraffic is covered in the IO and the service
influence factors. However, a tight integration with an office network or
attacks may (in rare cases) affect the automation system

� IO: Receiving, processing and sending of process data is are CPU intensive
tasks. Their impact on the performance of a PLC are high. Several
parameters need to be considered.

� Services: There are various types of services already available and in
development for future PLC generations. They become more and more
popular, hence their influence on the PLCs performance can not be neg-
lected. When and to what degree the performance of the PLC is influenced
is depending on the service and the vendor.

4.1 Related Work

To identify influence factors three primary sources are taken into account: Ex-
emplary automation systems, an in-depth analysis of an industrial PLC firm-
ware and various literature for performance modeling. This literature can be
broadly categorized into general approaches (e.g. how to model factors and
perform analysis) and domain specific approaches (e.g. to predict the energy
consumption of a fieldbus). Each approach has a different focus and under-
lying techniques to provide the necessary evaluation data. They span from em-
bedded [Hap05, Wan06], non-embedded [WS02], distributed [TP09, CHL+03,
LWF08, FCF+13], with fieldbus [LF07, LF12, COH07, MDFF06b, HCÅ03] to
just standalone PLCs [FH12, FHMB13]. In [Per06], an evaluation and compa-
rison of performance analysis methods for distributed embedded systems are

51

Chapter 4 Influence Factors

given. Another survey compares different model-based performance prediction
approaches[BdMIS04]. The majority of these approaches only provide means
to model and simulate a specific aspect or part of the automation system, but
do not focus on the identification of factors. However, they usually provide
examples which can be used as further input for the identification process.

This thesis focuses on the application domain of industrial control systems. The
approaches listed provide different kinds of influence factors and parameters for
their specific uses. They are used as a basis and give a first insight to some
of these factors which must be considered in automation systems. Additional,
in-depth related work is referenced when inspecting each influence factor and
its parameters in detail in the following sections. The listed approaches are to
a part also presented in the related work sections of other Chapters, but inves-
tigated under different aspects like development process, their formal model, or
simulation approach/tool support.

“The art of computer systems performance analysis”[Jai90] by Rai Jain is a basis
literature for conducting performance analysis. He presents general aspects on
how to prepare, conduct, and interpret the results of an analysis. Different
kinds of techniques are discussed and advantages and disadvantages for specific
purposes are presented. The book does not introduce a common set of influence
factors but explains how to identify, rate, and model them. Generally applicable
examples help to identify automation specific influence factors as well as the
metrics to capture them.

The Modeling and Analysis of Real-Time and Embedded systems (MARTE)
[Obj06] is the successor of the UML profile for Schedulability, Performance,
and Time (SPTP) [Obj05]. MARTE allows the annotation of existing UML
models to further provide performance specific information with a focus on
real-time and embedded devices. The profile allows the definition of elements
like semaphores, concurrent tasks, or schedulers and scheduling policies. Soft-
ware elements can be annotated with execution times, resource usages, and
relations among each other. The pool of resources contains for example proces-
sors, memory, input and output devices, and networks. It is a general approach
covering a broad range of embedded, real-time systems and their factors.

UML-RT [Sel98, KHCD17] is a UML profile designed to model real-time sys-
tems. It introduces Capsules and Protocols to model structure and behavior
of an (embedded) system. Capsules are classes that own a behavior specified
via state machines and which communicate via messages send through ports.
These ports are typed via Protocols that explicitly define the kind and order of
messages that can be send and received by the port. While the core of UML-RT
is based on these elements, it also provides elements to model more complex sy-
stems like Service Access Point (SAP) or Service Provision Point (SPP). While
the specification of timing constraints and durations is possible, detailed option
to model arrival times or service access is not supported.

The simulation frameworks OMNeT++ [Ope17, VH08], NS2 [IH08, VIN17],
and its predecessor NS3 [RH10] are focused on network analysis. These appro-
aches are used to model the in-depth structure and behavior of TCP, routing,

52

4.1 Related Work

and multicast protocols over wired and wireless networks. Their modular ap-
proach allows the definition of further modules that can represent tasks and
other properties of embedded devices. However, the influence factors and pa-
rameters they initially provide are network specific and cover delays, latencies,
messages sizes, and more.

The Palladio Component Model (PCM) [BKR09, RBB+11] is an architecture
description language supporting performance evaluations of component-based
software systems. Palladio provides mean to specify distributed processing re-
sources connected via networks as well as passive resources. CPUs and hard
disks are examples of processing resources, connections to a database or me-
mory are passive resources. Palladio also offers the ability to model different
scheduler for processing resources like an operating system. The OS can use
scheduler to run the processes and assign them to different CPUs or cores. For
this, basic scheduling algorithms and a framework to specify custom schedu-
ler (see [Hap08, Hap04, Hap16]) can be used. Palladio further specifies a set
of common units like file sizes. More details on Palladio are provided in the
foundations Chapter 2 and in Chapter 6.

With the TrueTime library [CHL+03, HCÅ03, COH07] for MATLAB [Mat16]
and Simulink [Mat17], an automation domain targeted approach is presented.
The framework allows the specification, programming, and simulation of pro-
grams, threads, real-time kernels, schedulers, network transmissions, as well
as continuous plant dynamics. The library provides blocks which must be in-
stantiated and parameterized. Such a block can abstract a complete fieldbus
used to transport control commands and data or parts of an operating system.
The influence factors available in TrueTime are to a large part congruent to the
identified factors gathered during the analysis of the Phoenix Contact firmware.

In UML-Based Performance Modeling Framework for Component-Based Dis-
tributed Systems [Kah01] an approach to model performance relevant infor-
mation in existing UML models. These models are then transformed into a
textual notation that only holds performance relevant information. To conduct
a performance analysis, the intermediate notation is again transformed into
augmented queuing networks and solved. They show how to model distributed
software systems considering three basic factors: CPU usage, hard disc access,
and network traffic. These metrics are used for the definitions of functions and
operations which are called during the systems runtime. The order of calls is
specified via sequence diagrams, their workloads are modeled with collaboration
diagrams. Their approach uses an abstract notation of general factors like the
CPU, but allows to define complex ones by combining basic types.

A similar approach based on Modelica [Mod17b] is presented by Frey et al.
[LWF08, FL09]. Their goal is to conduct open-loop response time analysis as
well as closed-loop analysis of networked control systems. Furthermore, they
developed a library for Modelica that allows the definition of distributed au-
tomation systems, but with a focus on the underlying fieldbus. Components
provided by the library are for example Ethernet or CAN networks, CPU, me-
mory, caches, or data structures. Their controller library allows the definition

53

Chapter 4 Influence Factors

of schedulers including different scheduling strategies. By using the modular
Modelica elements, even complex systems can be created by hierarchically com-
posing components.

In [PMDB14], the focus is set on the model driven development of safety-critical
systems. They define viewpoints and provide a method for the multi-view mo-
deling of hardware platforms. By integrating their viewpoints and the support
for hierarchical and variable horizontal composition of hardware platforms into
the MechatronicUML [DPP+16] modeling language, they enable developers to
generate runnable code for the modeled targets. To do this, they provide a
resource model that allows the specification and parameterization of embedded
devices like micro controllers or control units. This model can be composed
of atomic computing resources like processor, memory, flash or communication
resources. Such resources can include their specific physical layer attributes like
data rates and protocols. The hardware model in combination with software
annotated by WCETs allows a subsequent performance analysis of the system
under development.

Wanderler provides in his thesis [Wan06] another approach to conduct perfor-
mance analysis based on a modular and interface-based design for embedded
real-time systems. The approach is also based on MATLAB and provides a
toolbox named Real-Time Calculus (RTC) Toolbox. RTC provides libraries
to perform a modular, interface-based design and a subsequent performance
analysis based on variability characterization curves (VCCs) [MZCW04]. To
do so, the approach analyzes the flow of event streams over resources to derive
performance characteristics of the modeled system. The thesis is focused on
basic techniques to conduct a performance analysis and therefore presents only
a few influence factors like CPUs, buses, and basic scheduling strategies that
are used as examples in his work.

In [FCS12], Feljan, Carlson and Seceleanu propose a performance prediction
approach for allocating tasks to multicore processors. They use Matlab to si-
mulate a set of tasks allocated to CPUs and cores. Input for the simulation
in an architectural specification of the system including tasks and connections.
Each task has a set of properties to specify, for example, best and worst case
execution time, core affinity, or send and received data. The hardware plat-
form contains information about the number of cores, communication delay
parameters, and scheduling options.

In ’Design-Time Performance Analysis of Component-Based Real-Time Sys-
tems’ [Bon09], Bondarau has the goal of predicting the performance of a sy-
stem based on the properties of the involved individual components. His Deep-
Compass framework in conjunction with the CARAT-RTIE Performance toolkit
[ITE17] is used to create a set of models (e.g. behavior, resource, or process),
which can be transformed into executable system models. The resource model
is used to specify parameter-dependent requirements for software components,
like the number of processing cycles. These can either be estimated or measured
on a reference processor. The performance model is used to model the hardware
of the system. This includes – among other parts – processor core, memory,

54

4.2 Parameter Types

and busses. For each of these elements, various parameters like clock frequency
or architecture can be defined. The parameter-dependent specification of the
behavior of operations can be modeled with the behavior model. The appro-
ach does not focus on a target domain or area but provides means to include
embedded or industrial automation systems.

Summary:
The related work shows that all of these approaches focus on specific aspects
of the automation system. They provide different means to model influence
factors, ranging from network specific to cloud-based server farms. They all
provide information which can be used to identify important influence factors for
this thesis. General (performance) modeling approaches like MARTE [Obj06],
Palladio [RBB+11], [Bon09], or [Wan06] are generally applicable. Nonetheless,
they reveal (standard) factors that can or must be considered. As mentioned
is this list not complete. Depending on the influence factor, additional related
work is introduced.

4.2 Parameter Types

Each influence factor can be further characterized by a set of parameters. These
parameters vary from factor to factor, but the basic types of parameters are
reoccurring. Most of them can be represented by a primitive type like an Integer
or Boolean. But for some cases, it is more convenient to use special types that fit
the need of the parameter best. An example is the file size, which includes the
size and a selected unit (e.g. kb). Furthermore, there are some parameters that
cannot easily be expressed without a complex type. These could be, for example,
arrival patterns which specify how often an event occurs. The types defined in
this section are a selection or combination of different units and parameters
used in the modeling approaches [Dou04, Obj06, Obj05, RBK+07]. They have
been selected with a focus on an ease of use and their suitable application in the
early development stages of an automation system. The following subsections
detail the types used to specify the parameters of the different influence factors
in this chapter.

4.2.1 Primitive Types

The most basic type to define a parameter or variable type for an influence fac-
tor is the primitive type. Each programming or modeling language defines their
own set of primitive types which can be further used. For example, the Uni-
fied Modeling Language [Obj15a] specifies primitive domains each containing
predefined primitives like Integer, Boolean, Real, String, and Unlimited (*). In
addition to the basic types, UML allows the definition of own types by exten-
ding the primitive class. MARTE [Obj06] extends UML primitives by adding

55

Chapter 4 Influence Factors

short, long, unsingedLong, and many more. The Systems Modeling Language
[Obj15b] specifies extensible PrimitiveValueTypes and further groups numbers
and non-number primitives.

For some influence factors, it is necessary to not only specify how many variables
are used but also which type these parameters have. A reasonable example is the
String variable versus the Integer variable. A String can vary in length which
might lead to a more complex copy process. An Integer can be copied and
serialized more easily. The OPC server on a ILC 171 ETH21, puts a specific
load on the CPU depending on the type of variable that is send to a client
[FH12, FHMB13].

For this thesis, the following set of primitives is specified. Based on measure-
ments of the firmware during the Phoenix Contact analysis project and related
work (e.g. MARTE or UML), this set will be sufficient to describe the different
influence factors and their parameters. The Table 4.1 lists these primitives.

Table 4.1: Basic set of primitive types

Name Description

Integer Natural numbers (signed)

Double Double-precision floating-point (signed)

Boolean Unsigned bit value – false(0) and true(1)

String Arbitrary long sequence of characters, e.g. ”Hello World”

4.2.2 Filesize

Several services allow the transmission of files over a network like project data
or log files. The utilization of the PLC is dependent on the size of the file is
processed or sent. To specify a file size, a simple integer would be sufficient,
assuming that the unit is fixed to the lowest scale. While this is a feasible
approach, it is not a very convenient one. Therefore, most specifications or
profiles [Obj05, Obj06, RBB+11] use either predefined units or allow the defi-
nition of them. The size of a file can be defined by means of an Integer value

Table 4.2: Units to specify the size of a file

Name Symbol Number of Bytes

Byte Byte 1

Kilobyte KB 1,024

Megabyte MB 1,048,576

Gigabyte GB 1,073,741,824

Terabyte TB 1,099,511,627,776

1PLC - ILC 171 ETH 2TX – https://www.phoenixcontact.com/online/portal/de?uri=

pxc-oc-itemdetail:pid=2700975

56

https://www.phoenixcontact.com/online/portal/de?uri=pxc-oc-itemdetail:pid=2700975
https://www.phoenixcontact.com/online/portal/de?uri=pxc-oc-itemdetail:pid=2700975

4.2 Parameter Types

and a unit. The available units are given in Table 4.2. The size of files above
Terabyte do not play a vital role in the automation domain and are therefore
neglected. However, the list can be extended at any time. Examples of different
file size definitions are a log file with 230KB, a configuration file with 12B, and a
complete project file (containing settings, programs, and graphics for the HMI)
with 3.2MB.

4.2.3 Using Stochastic Parameter: Probability Functions

In some situations, it is better to model certain parameters not with a fixed
value, but with a random one. This approach is especially suited for cases
in which a program runs smoothly until a certain condition is met and the
program execution time peaks. Such a program could run 99% of the time with
an average of 6 ms per execution, but in the last 1% a peak will push this time
up to 12ms. Setting the 12 ms as a WCET would be a safe approach. But in
certain situations exceptions of the usual behavior needs to be considered as
well.

In these situations, probability distribution functions can be used. To use sto-
chastic functions, it is first necessary to give a short introduction to random
variables. A random variable is a variable whose value can take on a set of pos-
sible different values, each with an associated probability [Kol60, All14]. This
can also be expressed as a measurable function

X : Ω 7→ E

where Ω is the probability space and E the set of observable events (measurable
space). The measurable space is usually mapped to real numbers R. For a dice
roll, the random variable X could be 1, 2, 3, 4, 5 or 6. Therefore, the probability
space is 1, 2, 3, 4, 5, 6. The probability that X takes value 3 is denoted with
P (X = 3) and its value is 1/6. The full notation is P(X = value) = probability
of that value, P (X = 3) = 1/6. Random variables are needed to specify
probability mass and density functions in the following sections.

Providing a simplification for modeling purposes: In the following subsecti-
ons, the probability mass function and the probability density function are
introduced and their usage in this thesis is specified. For certain influence fac-
tors, name and notation will be modified to provide a more natural usage. An
example for such a simplification is the BoundedExecution (see 4.2.4) which
will select a random value between an upper and a lower bound. So instead of
providing a distribution function (to a random generator), a simplified notation
is used to model the possible values that will be available. Some of these simpli-
fications are inspired by the Palladio Component Framework [RBB+11, Rec08]
(see section 2) and by SysML [Obj15b]. A drawback of this approach is that
this notation is not as flexible as complex distribution functions like a Bernoulli,

57

Chapter 4 Influence Factors

Binomial, or Poisson distribution. At the early development stages when mul-
tiple factors are only estimated, this less accurate but easier to use notation is
sufficient.

Other approaches use a wider range of stochastic functions for continuous va-
lues. MARTE provides a set of probability distribution operations including
Bernoulli, Binomial, Exp, Gamma, Normal, Poisson and an Uniform Distribu-
tion Function. SysML to provides distribution properties via the distributed-
Property stereotype. This stereotype can further be specialized by a developer.
Part of the basic SysML [Obj15b] specification are the interval and a normal
distribution as shown in [Wei11].

Probability Mass Function

The first use of a stochastic expression is to define not just one fixed value like
the Worst-Case-Execution-Time (see 4.2.4), but a set of possible values. Each
value is paired with a probability in form of a double value. Over the complete
set of values, the probabilities must add up to exactly 1. This is basically the
definition of a Probability Mass Function (PMF) [Ste09]. Figure 4.2 shows two
examples. In the left chart (value range example), a PMF is used to select
values between 4 and 8 as an execution time depending on their probability.
4 ms and 8 ms have a probability of 10%, 5 and 7 of 20% and the value 6 is
used with the highest chance of 40%. In the right chart (peak example), the
execution time is 6 ms in 99% of the time. But there are some peaks where the
execution time doubles to 12ms. This happens only in 1% of the cases.

probability

execution time4 5 6 7 8

0.4

0.2 0.2

0.10.1

probability

execution time6 12

0.01

0.99

peak examplevalue range example

Figure 4.2: Two examples of PMF with different values and their probabilities

To later add these stochastic functions to the Systems Engineering models, a
textual representation is needed. Using mathematical formulas or dedicated
languages like MathML [ABC+03] to specify the functions would be very time
consuming and error prone – especially in the early development phases where
exact models for a performance evaluation are not even necessary. Therefore,
an easier and more intuitive notation must be found. The Palladio Component
Framework [RBB+11] already uses much simpler expressions for modeling of
stochastic functions. They defined a full EBNF based language which is capable
of specifying the Probability Mass Function in a simple, easy to learn textual

58

4.2 Parameter Types

expression. Therefore, the language definition used in the Palladio Component
Model – more precise in the StoEx model (see [RBB+11, RRMP08] section 2.5
random variables) – is partially used to model all stochastic expressions in this
thesis. More information about the Palladio Component Model can be found
in Chapter 2. The definition of the PMF provided by Palladio and used in this
thesis is:

� IntPMF: A mass function returning different integer values. To des-
cribe the two charts of Figure 4.2 in a formal and textual notation,
the following two definitions are necessary. For the value range example
IntPMF[(4,0.1) (5,0.2) (6,0.4) (7,0.2) (8,0.1)] and for the peak example
PMF[(6,0.99) (12,0.01)]

IntPMF [(Int , Double)+]

Probability Density Function

To model a range of (continuous) variables, Palladio uses the Probability Den-
sity Function (PDF). This basically allows the specification of intervals with
probabilities which the random variable falls into. To model the function more
easily, the Palladio Component Framework uses a discretization with either
fixed or variable intervals. This simplifies the modeling of probability distribu-
tions and is especially useful if the function consists of large parts and a few
peaks. So instead of defining a PMF for a range from 10 ms to 30 ms with 20
values having the same probability, only one interval needs to be specified.

Intervals with variable length are defined as boxed PDF. The following definition
is taken from [RBB+11]. They specify intervals I, so that for each two intervals
J1, J2 ∈ I, J1 6= J2 the disjunction is the empty set J1 ∩ J2 = ∅ and the union
of all intervals forms a new interval from zero to x ∈ R+,∪J∈I = [0, x[. This
means that the intervals do not overlap and that there are no gaps between the
intervals. To ensure both properties mentioned above, the intervals are specified
by their right hand value only. The result is a set IX whose values define the
right hand sides of all intervals. Now, an order can be defined of these sets set
such that x1 < x2 < · · · < xn−1 < xn. Then the ith interval is [xi−1, xi[for
i > 1 and [0, x1[for i = 1.

Palladio provides just one variant of the PDF.

� DoublePDF: With the textual notation PDF[(10,0) (30,0.3) (35,0.6)
(45,0.1)] the graph in Figure 4.3 is described. The chance that the random
variable takes a value between 0 ms and 10 ms is at 0%, between 10 ms
and 30 ms is at 30%. Then there is a peak with a chance of 60% that the
random variable falls into the interval between 30 ms and 30 ms. Last,
with a chance of 10% the variable has a value between 35 ms and 45 ms.
The formal notation for the function is

DoublePDF [(Double , Double)+]

59

Chapter 4 Influence Factors

The Palladio PDF function returns a Double value. For this thesis, each influ-
ence factors and its parameters are modeled with a given unit. To simplify the
modeling process, the provided values must be each defined as an Integer. This
forces developers to model human readable values like 10 min, 1 sec, or 30 Kb,
instead of being able to set times to 0,00001 hours. The defined DoublePDF
function will also be wrapped by more convenient functions in the following
sections, specifying whether to model an execution time or arrival pattern.

probability

execution time
10ms 30ms

35ms
45ms

Interval [10,20]

Figure 4.3: A PDF with variables intervals

4.2.4 Execution Time

This subsection focuses on the definition of execution times for Programs,
Function Blocks, Functions, or any other part of the automation system that
uses a processing resources for a given time. It is often specified with a time
value that denotes the overall duration from start to end of an execution. This
is a convenient way and usually represents the mindset and experience of the de-
veloper best. Dependencies to underlying hardware, parameters, environmental
conditions, or other running executions are not considered. Because this value
can be roughly estimated, this further simplifies the modeling process especially
in the early stages of the system development. This estimation is often based
on experience of the developers or the timing behavior is already known from
existing software. This leads to a follow-up problem of the transferability of
these results to another PLC, which is handled in Chapter 5.

The MARTE UML profile [Obj06] also provides detailed means to specify time
and intervals. For this thesis, it is necessary to model how long an execution
of code will take. Therefore, the time units that can be used are first set up in
Table 4.3 . Times below the nanosecond and above a week have been neglected
due to their seldom usage. However, the table can easily be extended in case
it is necessary to incorporate such extreme values. Usage examples for time
specifications are 100 ms, 1 s, or 100.000 µs.

Most tools and approaches use the worst-case execution time (WCET) [WEE+08,
OS97, BB00, EES+02, FHL+01] as a maximum and fixed value the execution

60

4.2 Parameter Types

Table 4.3: Available time units

Unit Symbol Description

nanosecond ns 1 second = 1,000,000,000 nanoseconds

microsecond µs 1 second = 1,000,000 microseconds

millisecond ms 1 second = 1,000 milliseconds

second sec base unit of Time

minute min 1 minute = 60 seconds

hour hr 1 hours = 60 minutes

day d 1 day = 24 hours

week wk 1 week = 7 days

will take. However, there are more ways to specify the duration of a program
execution, like giving an upper and lower bound, or defining a density function.
These approaches are explained in more detail. The different ways to model
the execution time in this thesis are depicted in Figure 4.4 and will be detailed
in the following subsections.

Execution Time

Worst Case Execution Time BoundedExecution RandomSetExecution RandomIntervalExecution

Figure 4.4: The four subtypes to model execution times

Worst Case Execution Time

The Worst-Case Execution Time (WCET) is usually used during the design
of real-time systems, where knowing the longest time for an execution of an
embedded software is important for its reliability and correct behavior [ZBN93,
EES+02, LPT10]. “WCET analysis computes upper bounds for the execution
times of pieces of code for a given application, where the execution time of
a piece of code is defined as the time it takes the processor to execute that
piece of code” [PB00]. The WCET is often a pessimistic overestimation of
the real WCET, highly processor, architecture, and compiler dependent and in
most cases under the assumption that no preemption takes place. Figure 4.5
(modified from [Erm03]), shows the relation between the Best-Case-Execution-
Time (BCET) and the WCET. The program execution is finished to a certain
probability at a specific time. This time is shown on the x-axis of the graph.
If a WCET is estimated to be in the red area, then there are some program
executions that take longer then expected – the WCET is wrong. This can
lead to severe problems due to false scheduling strategies or the deployment of
too many software components on a single PLC. Any WCET that is beyond
the red marked area is ok but too high and, therefore, will lead to a waste of

61

Chapter 4 Influence Factors

resources. The aim of almost all WCET approaches is to get as close to the
real boundaries of the program execution as possible.

tighter tighter

Actual
WCET

Actual
BCET

probability

execution time

safe WCET
estimates

safe BCET
estimates

unsafe
estimates

possible execution times
Measurements
produces values in
the unsafe range

Static WCET analysis
produces values in
the safe range

Figure 4.5: Execution time estimates (source [Erm03])

The procedure to determine the WCET varies from approach to approach. The
following example is taken from [Erm03]. Figure 4.6 shows the different stages
of a program and a WCET analysis. The program is written in source code
which is compiled to object code. Running this object code on a hardware
allows the determination of the actual WCET. Information provided by the
program stages is used for the analysis. Input for a WCET calculation is a
flow analysis of the code. Such a flow analysis is often based upon a control
flow graph created from the code directly or an intermediate abstract syntax
tree. The low-level analysis is used to compute how the blocks in the control
flow graph are executed on the target hardware. For modern processors, it is
important to consider the effects of performance boosting features, like caches
and pipelines.

Source
Code

Object
Code

Actual
WCET

Compiler
Target

Hardware

Flow
Analysis

CompilerCalculation

Low-Level
Analysis

WCET
Estimate

?Corre-
spondenceInfo

Program stages

WCET Analysis stages

Figure 4.6: Components of a WCET Analysis (source [Erm03])

The different approaches and tools vary from this procedure and make use of
a broad range of other techniques like statistical-based estimation [HHM09].
A good overview can be found in [Erm03]. Well-known tools for WCET ana-
lysis are AbsInt aiT [FH04], RapiTime Worst-Case Execution Time Analyzer
from Rapita Systems [WEE+08], Bound-T Execution Time Analyzer from Ti-

62

4.2 Parameter Types

dorum [Tid17], and Chronos an open source static WCET analysis tool from
the National University of Singapore [LLMR07].

Of course, there is always the simple solution of measuring a lot of code execu-
tions with different sets of input, each time marking the highest time. Another
option is using static analysis techniques and count assembler instructions for
each function deducing the WCET. But both approaches are quite inaccurate.

BoundedExecution

With the bounded execution, a lower and upper bound are set in which the
run time of a program may vary. Basically, the best and worst execution times
are fixed and the values in between are uniformly distributed. The Bounde-
dExecution function returns an integer value. Figure 4.7 illustrates the possible
execution times in the blue area which is enclosed by the WCET and the BCET.

upper bound
(WCET)

lower bound
(BCET)

probability

execution time
possible execution times

Uniform distributed
execution times

Figure 4.7: A uniform distribution between lower and upper bound

For returning discrete values, the BoundedExecution function can be realized
by a Probability Mass Function (PMF) (see 4.2.3) which returns a random
variable that is equally likely to take any of the integer values imin and imax.
The lower and upper bounds are used to calculate the interval length. Based
on the length, the probability for each discrete value (integer) can be calculated
and used for the PMF. For a simple and intuitive usage during the development
of automation systems, this way of modeling provides a more detailed insight to
the execution of a program. For this thesis, the execution time is specified as a
discrete Integer value and each specification must include a time unit. The time
unit should be on a fitting granularity but can be freely chosen by the developers.
When setting up a bounded execution, the function should return values as
discrete numbers (Integer). Note that the definition of bounded execution times
will lead to more precise performance evaluation results compared to the fixed
WCET. But to be safe that a deployment of software or scheduling strategy
will work with the chosen automation system design, worst case execution times
should be preferred over bounded executions. The simplification of the PMF

63

Chapter 4 Influence Factors

narrows the return values down to just integer values. This is feasible because
the according time unit is provided.

The notation to specify these values is given below:

BoundedExecution [(I n t e g e r : I n t e g e r) , Timeunit]

An example for the specification of an execution time for a Program or Function
Block that lies between 10 ms and 15 ms could be done with BoundedExecu-
tion[(10:15),ms].

RandomSetExecution

To model a set of execution times and assign each value a certain probability, the
Probability Mass Function (see 4.2.3) can be used. The RandomSetExecution
wraps the access to the PMF function to simplify its usage and to indicate that
the returned values are used for execution times. It does not add any additional
information to the PMF function. The parameters of this function are tuples
containing an execution time value and its probability formulated as a Double
value ranging from 0 to 1. The sum of all probability values must be exactly 1.

RandomSetExecution [(Int , Double)] , Timeunit

RandomIntervalExecution

Similar to the RandomSetExecution the RandomIntervalExecution wraps the
PDF function into a more convenient representation for the developer. Its
parameters are tuples of ranges and probability. The range is set as two integer
values, denoting the upper and lower value. The probability is formulated
as a Double value, also ranging from 0 to 1 and with an accumulated value
of exactly 1. During the analysis, the RandomIntervalExecution will provide
integer values randomly chosen from the given intervals. Therefore the interval
limits can be specified without the use of including (”20]”) or excluding (”20[”)
boundaries, as it is done for interval definitions handling non-natural values. It
is assumed that the random values are uniformly distributed. A usage example
is RandomIntervalExecution[([10,15],0,3) ([16,20],0.2) ([21,25],0.5)]. This will
return an execution time from 10 to 15 in 30%, from 16 to 20 in 20%, and from
21 to 25 in 50% of the cases.

RandomIntervalExecution [([Int , Int] , Double)+] , Timeunit

64

4.2 Parameter Types

4.2.5 Access Frequency / Arrival Pattern

Each influence factor puts a load onto the PLC increasing the overall utilization.
This effect can happen continuously in the background or if a certain action is
performed. Function Blocks and Programs, for example, are executed when its
containing Task is triggered. The Task execution, however, is set to a specific
interval or event. The same applies to services that can be accessed by external
systems like a management server or HMI. The HMI can be configured to grab
all necessary variables from the PLC in a specified refresh interval of the web
page. Or it could request the variables only if a user interacts with it. There-
fore, two different arrival patterns are usually defined: periodic and aperiodic.
The first is used when a fixed interval can be set between to sequenced events.
If this is not possible, an aperiodic pattern must be used. This can further be
detailed as bounded, bursty, irregular, and stochastic, like defined in [Dou04].
Bounded is used when a minimum and maximum arrival time can be specified.
Bursty describes patterns with a high change of events in a short interval. To
model a bursty pattern, a maximum burst length and a burst interval must be
set. Irregular means that the arrival times can not be specified. And the sto-
chastic pattern is used if the value can be specified by a probability function.
Other modeling languages use similar approaches to model these two types.
MARTE [Obj06] introduces ArrivalPattern and distinguishes between Periodi-
cPattern and AperiodicPattern. AperiodicPattern can further be categorized
into SporadicPattern, BurstPattern, IrregularPattern, and ClosedPattern. The
UML profile for Schedulability, Performance, and Time Specification [Obj05]
uses similar patterns names bounded, bursty, irregular, periodic and unbounded.

OPC-Server

CP
O

Remote Management

HMI

pressure

Device OPC-UA
Client/Server

OPC-Server

CP
O

RandomSetPattern([(5,0.05),(10,0.15)
(15,0.6)(20,0.15),(25,0.05)])

BoundedPattern([10,20])

PeriodicPattern([1000])

[]
10 20

Figure 4.8: Examples for different access frequencies

For the specification of influence factors in the early development of automation
systems, it is best to focus on an easy rather than precise modeling. This is
often not even possible due to the missing information in this stage of the
development. Therefore, only three different arrival patterns are used in this
thesis. Figure 4.8 depicts the three kinds.

Figure 4.9 gives an overview over the different access/arrival patterns that are
used in this thesis. In addition to the periodic access, three more stochastic
access pattern are used. Each pattern is briefly described in the following
subsections.

65

Chapter 4 Influence Factors

Arrival Pattern

PeriodicPattern BoundedPattern RandomSetPattern RandomIntervalPattern

Figure 4.9: Different subtypes of the arrival pattern

PeriodicPattern

The fixed or periodic pattern is a common specification for technical systems
that have a fixed refresh interval like. This pattern can be used for a SCADA
system which collects data from a PLC in fixed intervals. Profiles like MARTE
[Obj06] provide even more details by allowing the developer to set additional
parameters like jitter. Such a jitter might be induced internal scheduling or
network-related delays. However, these fine-grained details are neglected here
but can be added later by providing additional properties to the pattern. The
access in fixed intervals can be specified with the notation given below. An ex-
ample of the usage is PeriodicPattern([1000]), triggering a utilization or service
access in intervals of 1000 ms.

Per i od i cPat te rn [I n t e g e r]

BoundedPattern

Instead of setting a fixed interval, the BoundedPattern allows providing an
upper and lower limit from which a value is randomly selected. This behavior
is similar to the BoundedExecutionTime. The function needs two parameters
as the two limits and will return an Integer uniformly distributed between the
two given limits. This enables a developer to set the time between two events
to a range of values instead of a fixed one. The bounded access can be specified
with the following notation.

BoundedPattern [I n t e g e r : I n t e g e r]

The example shown in Figure 4.8 could be specified with BoundedPattern([10,20]),
using random intervals between the bounds 10 and 20.

RandomSetPattern

The RandomSetPattern is used to wrap the Integer based Probability Mass
Function into a dedicated function that provides a randomly selected value. The
RandomSetPattern accepts tuples setting the integer value and its probability
as a double, ranging from 0 to 1. The sum of all probabilities must be exactly 1.
The RandomSetPattern will return an Integer value based on these probabilities

66

4.2 Parameter Types

as described in 4.2.3. The example given in 4.8 shows the definition of a random
set with the notation RandomSetPattern([(5,0.05) (10,0.15) (15,0.6) (20,0.15)
(25,0.05)]). The peak value of 20 and therefore the time between two successive
events will be selected with a probability of 60%.

RandomSetPattern [(Int , Double)+]

RandomIntervalPattern

The last arrival pattern is the RandomIntervalPattern. Like the RandomSetPat-
tern, is it similar to its execution time counterpart (RandomIntervalExecution)
and just simplifies the usage. With the expression RandomIntervalPattern[
([10,15],0,3) ([16,20],0.2) ([21,25],0.5)] three intervals are specified. An evalu-
ation of this expression during an analysis will return a value from 10 to 15 in
30%, from 16 to 20 in 20%, and from 21 to 25 in 50% of the cases. The Rando-
mIntervalPattern will return Interger values. Therefore, the interval limits can
be specified without the use of including (”20]”) or excluding (”20[”) boundaries.

RandomIntervalPattern [([Int , Int] , Double)+]

4.2.6 Operations

Some services and Functions Blocks allow the execution of operations they
(or other components) provide. To model these operations a simple string
can be used to specify which operation should be triggered. However, the
OPC-UA server, for example, allows the execution (call) of methods with a
set of parameters and return values. To be able to later specify the influence
factors up to a fitting level of detail, the different method parameters need
to be considered. The return values of methods complicate the modeling of
influence factors. Additionally, they will most likely not be used as an input for
further computations as the underlying analysis tool needs to support dynamic
variables and variable binding. The operations defined in this model are used
to invoke or simulate a certain utilization at the PLC. A 100% representation
of real code (and functions) is not necessary. Therefore, the type Operation is
defined as a set of parameters and no return value. Each parameter is a tuple
of name and type, referring a primitive type as specified in subsection primitive
types (4.2.1). In this thesis the following syntax is used:

OPERATION = opName ”(” PARAMTER* ”) ” ;
PARAMTER = (v a r i a b l e :TYPE) ;
TYPE = (”STRING” | ”BOOL” | ”INT” | ”DOUBLE”) ;

Examples are updateCache(), writeValues(value:INT), getUserList(), or authen-
ticateUser(username:STRING,password:STRING).

67

Chapter 4 Influence Factors

The detailed definition of operations indicates an in-depth modeling of influence
factors or services. It should be checked, whether this level of detail is necessary
for the desired goal of conducting an early evaluation of the automation systems
performance. Often, simpler definitions like an average base load or a varying
execution time could be used instead.

4.3 Applications

The category Applications groups all kinds of compiled or interpreted code
and their execution configurations that are used to fulfill the systems function.
Applications do not include PLC specific executables as part of the firmware
or services. For the milling example introduced in Chapter 3, typical programs
control the robot movement, the workpiece delivery, or the engraving station.
A list of programs used in the example is given in Appendix A. In addition, to
control programs, other functions like writing log files in specific time intervals
or the sending of TCP/IP messages to a remote server could be realized by
dedicated programs.

In the IEC 61131-3 standard [Int13a] Programs, Functions, and Function Blocks
are grouped under the term Program Organisation Unit (POU). Functions can
be assigned parameters, but have no state and static variables. The Function
Block (short FB) has input and output parameters and static variables. A very
important property of the FB is, that they keep their internal state after they
have been instantiated. So the output of an FB depends on its current state.
The Program represents a main part of an application and is used (beside the
resource) for global variables and the assignment of physical addresses. In all
other aspects, the Program behaves just like a Function Block. Both Programs
and Function Blocks are executed/triggered by a task. More details on POUs,
resources, and configurations can be found in chapter 2.

Figure 4.10 shows the software model defined by the IEC 61131-3 standard and
all the previously introduced POUs. It depicts the configuration as the main
container in which one or more resources can be defined. Each resource handles
the different Task types which are used to execute the associated Programs
and Function Blocks. Function Blocks can be instantiated and accessed inside
a Program but may be triggered by a completely different task in the same
resource. Variables can be accessed via a global scheme to allow Programs and
Function Blocks to exchange information.

Programs, Function Blocks, and Functions are part of the influence factors that
can be specified in the early development stages. In case the automation system
use existing POUs or is a modified version of an older system, this in-depth kno-
wledge is already available. Otherwise is it easily possible to estimate Program
execution times and refine them with Function Blocks and Functions in the
later iterations of the development. Programs and Function Blocks can usually

68

4.3 Applications

Configuration

Resource

Task Task

Program

FB

Program

FB FB

Resource

Task Task

Program Program

FB FB

Global and direct variables

Access path

FBVariable Function Block Path for variable access Control flow

Figure 4.10: IEC 61131-3 software model, modified from [Int13a]

be mapped to specific functions or modules of the automation system. Anot-
her reason why a coarse model of the automation systems software is usually
available in the early system design phases [Dub11].

4.3.1 Programs

There are different kinds of programs used to realize the system’s desired functi-
onality and behavior based on the capabilities of the used PLCs. These kinds
can be roughly grouped into IEC based programs and native executables. The
majority of programs can be assigned to the first group, the IEC based pro-
grams.

The International Electrotechnical Commission (IEC) [Int16a] has defined a
worldwide standard for the programming of PLCs [Int13a]. The different parts
of this standard and its accompanying programming languages are described in
detail in Section 2.1.1. Programs are the top level elements which can be used
to structure the application. Each Program is written with one of the five IEC
languages and executed via tasks. A Program can contain Function or Function
Block calls (see 2.1.1), but cannot execute other Programs.

IEC Programs are usually programed with a vendor specific engineering tool,
whereas not all vendors support all five IEC languages. Some vendors even
extend the existing language capabilities or develop entirely new ones (S7 SCL
(Structured Control Language) [SIEc], S7-Graph [SIEb] or SIMATIC S7 CFC
(Continuous Function Chart) [SIEa]). A current trend is to add model-driven
approaches to the engineering tools to cope with the increasing complexity
of automated systems. State machines or other UML [Obj15a] like diagrams

69

Chapter 4 Influence Factors

[Bec16b, Smab] can be used to model the programs structure and behavior.
Code generators will transform these models to IEC languages like Structured
Text, which can be easily edited afterwards.

To execute the programs they usually need to be compiled for the runtime
environment (see 2.1.1) of the PLC. This runtime environment is used (among
various other functions) to set up the tasks, global variables, and to provide
access to the IO variables from the IO system.

Currently, the minority of programs executed on PLCs are native code based.
Native programs are compiled for a specific PLC and its architecture. The va-
rious vendors of PLCs each support a number of different programming langua-
ges. The most common are C, C ++ and C#. Special frameworks or libraries
need to be included in the native code programs to access the PLCs runtime
environment or its equivalent APIs. However, in the last couple of years, model-
driven tools such as Matlab/SIMULINK became more and more popular for
the design of automation systems behavior, increasing the use of native pro-
grams. “Simulink is a block diagram environment for multidomain simulation
and Model-Based Design. It supports simulation, automatic code generation,
and continuous test and verification of embedded systems.” [Mat16, Mat17].
Matlab/SIMULINK simplifies the design of control engineering tasks and is
far more intuitive for the control engineer. Matlab/SIMULINK offers the
option to easily add new functionality for code generation of specific targets
(PLCs) and compile the code in a single workflow. This allows the engineer to
deploy the code directly onto the PLC without further changes or working steps.
If there is no code generator addon for a specific PLC available, Matlab/SI-
MULINK can also generate plain C or C++ code which could be manually
compiled and deployed onto the PLC.

Despite the differences between IEC and native based programs, they share
common properties. Running code on a PLC will put a certain load onto the
CPU. This utilization is highly dependent on the execution time for each Pro-
gram. There are different ways to model the execution time of a Program as
specified in Section 4.2.4. A second parameter that needs to be considered is the
frequency in which a Program is executed. In more sophisticated systems multi-
ple cores are available that allow the parallel execution of Programs. Depending
on the vendor and PLC is the developer allowed to change core settings to fine
tune the system. Parameters of the influence factor Program can be defined as
follows:

4.3.2 Function Blocks

The IEC 61131-3 Function Block (FB) can be compared to a Program. An FB
must be executed within a Task or Program and keeps it internal variables after
initialization and execution. A Function Block can have both input and output
parameters and must be instantiated in a containing Program or FB. Several
basic types are specified in the IEC 61131-3 and the PLCOpen standard. This

70

4.3 Applications

Table 4.4: Influence factor parameter for Programs

Name Type Description

Execution
time

ExecutionTime The time it takes the Program to run
through the code for one execution wit-
hout preemption

Frequency ArrivalPattern The frequency in which the Program is
executed (by a task).

Core Integer Optional parameter specifying the core on
which the program is executed on. Usu-
ally the operating system scheduler hand-
les this assignment (see section 4.4.2)

common set of types is usually extended by vendor specific Function Blocks.
Figure 4.11 shows three different Function Blocks. The CTUD block is used
as an up/down counter and specified in the IEC 61131-3 standard. The se-
cond Function Block is UA connect which is used to create a (secure) transport
connection and an OPC-UA session. This connection must be terminated by
another FB (UA Disconnect). The last FB is provided by Phoenix Contact as
a PLC vendor. The DBFL MySQL ACCESS block allows access to a database
which is stored on a MySQL server. The data types of the in and out parame-
ters are omitted in the figure.

CTUD UA_Connect DBFL_MySQL_ACCESS

QU

QD

CV

CU

CD

R

LD

PV

ConnectionHdl

Done

Busy

Error

ErrorID

Execute

ServerEndPointUrl

SessionConnectionInfo

Timeout

TCP_READY

SQL_READY

SQL_DONE

SQL_SERVER_INFO

ERROR

TCP_STATUS

SQL_STATUS

SQL_ERRMSG

RCV_SIZE

ROW_CNT

COL_CNT

SQL_IN

IP_ACTIVATE

DB_ACTIVATE

DB_USER

DB_PASSWORD

IP_ADDRESS

IP_PORT

DB_NAME

TIME_OUT

NO_KEEPALIVE

RESET

SQL_IN

RCV_BUFFER

Figure 4.11: Three Function Blocks examples: IEC 61131-3 standard, PLCO-
pen standard and a vendor specific.

Another example for a vendor specific Function Block is an IP-Block which
allows the developer to open a IP Communication via UDP or TCP protocol.
This example shows perfectly, that some of the Function Blocks have a close
integration into the underlying operating system. So invoking a Function Block
and executing its code often triggers firmware specific operations. These ope-
rations might also be running in parallel to the IEC Programs und Function
Blocks, leading to a background or base utilization of the PLC. This back-
ground utilization (base load) can be slightly different on PLCs using the same

71

Chapter 4 Influence Factors

IP Function Blocks but varying firmware version or operating systems. There-
fore it is necessary to measure the usage of the Function Block for each PLC it
will be executed on.

The in and out variables of a Function Block are used to set the parameters
and (indirectly) select one of possibly multiple functions the FB can perform.
To specify the different utilizations of these functions, it is best not to model
each in and out parameter but to use a higher abstraction level by just defining
abstract operations. For the IP-Block this are for example connect, send, receive
instead of setting the in ports to specific integer values.

This does not only simplify the specification process, but it is also more in-
tuitive for the developer and allows an easier setup of execution probabilities
for each function. It is also tailored towards the increasing use of object orien-
tation in the automation domain [Vya13]. Since the third edition of the IEC
standard, Function Blocks can also explicitly specify methods, use inheritance,
and interfaces. See [Wer09] for more information. This further supports the
decision to abstract the functionality of a Function Block into different provided
operations.

The Table 4.5 lists all parameters needed to model the influence factor Function
Block. Currently, the definition of operations and their according utilization is
separated. In the formal model introduced in Chapter 5 a more condensed (and
natural) notation will be introduced.

Table 4.5: Influence factor parameter for Function Blocks

Name Type Description

Baseload ExecutionTime A background noise that is always induced
by the Function Block. This parameter is
optional and applies not to all FB.

Frequency ArrivalPattern The frequency in which the Function
Block is executed

Operations Operation This parameter models the different ope-
rations that abstract the behavior of the
Function Block.

Load per Ope-
ration

ExecutionTime This parameter must be specified for each
Operation. It defines the execution time
for each operation call.

4.3.3 Functions

Functions can be specified and called from Programs, Function Blocks and other
Functions. They do not hold a state between calls – which is one of the main
differences to the Function Blocks – and do not need to be instantiated. Each
Function provides a return value upon execution and can be further detailed by
specifying zero or more parameters. Their influence on the PLC performance

72

4.3 Applications

is given by the parameters and the rate in which they are called. Like the
definition of Operations the return values of Functions are neglected. These
return values complicate the modeling process and will most likely not be used
as an input for further computations as the underlying analysis tool needs to
support variable binding. Functions usually provide detailed and specific ope-
rations (on data) and therefore should not be extensively used in an influence
model tailored towards a high level Systems Engineering model. The following
table identifies the frequency a function is called via an arrival pattern. Ho-
wever, in most cases Functions are called during the execution of a Program
or Function Block and therefore do not necessarily require an ArrivalPattern.
The definition of a Function is covered by the use of the previously introduced
Operations. The table of parameters contains just the frequency in which the
functions are called and a definition of the execution time per operation. The
formal model introduced in Chapter 5 provides a more condensed (and natural)
notation.

Table 4.6: Influence factor parameter for Functions

Name Type Description

Frequency ArrivalPattern The frequency in which the Function is
called

Load per Call ExecutionTime This parameter must be specified for each
Operation. It defines the execution time
for each operation call. It depends on op-
tional parameters.

4.3.4 Tasks

To calculate or simulate the utilization of a PLC, it is important to know exactly
when and what Programs, Function Blocks, or Functions are executed. This
information is given in the task configuration. There are several types of Tasks
specified in the IEC 61131-3 [Int13a] standard (see chapter 2), each with its own
timing and execution semantics that can be set up in the task configuration.

If tasks are executed too often (oversampling) or with overlapping intervals,
the available resources of the PLC might not be sufficient to execute them in a
timely manner. Each part of an automation system has different requirements
for the execution of its software components. Connections to external systems,
internal program timeouts, safety components, and of course motion control
with fast access to the IO system are just a few examples of these requirements.
Therefore, it is vital to set up fitting tasks and their associated Programs and
Function Blocks. Tasks also help to further structure the overall application
and separate the different controlling aspects.

A common parameter for each Task type is the priority. This priority is used by
the operating system to execute tasks with a higher priority before processing
the lower ones. The scheduling influence factor is detailed in Paragraph 4.4.2,

73

Chapter 4 Influence Factors

the parameter, however, is defined at the task. In following subsections detail
the different types of tasks and their individual parameters.

Cyclic Task

All Programs and Function Block instances associated to the cyclic task will be
executed in a fixed time interval. Figure 4.12 shows a graph with two programs
executed in one task. The programs vary in their execution time, but the
interval of 10 ms is fixed resulting in a varying delta time between the task
trigger events.

5 ms 7 ms 4 ms

programs

time

2 ms 2 ms 2 ms

10 ms 10 ms 10 ms

delta deltadelta

Figure 4.12: Execution of a cyclic task with a fixed interval time of 10ms

In addition to the derived attributes from the (abstract) task, Cyclic Tasks
contain a priority attribute for handling the execution ordering of multiple
tasks at the same time point or for preemption purposes. The Figure 4.13
shows three different Cyclic Tasks with varying intervals and priorities. The
associated Function Blocks and Programs are not shown here. The first task
(task hmi) is executed every second and is used to gather data for the graphical
interface. task wpd is used to handle all programs for the workpiece delivery
component and is executed every 50 ms with a higher priority than the less
important GUI task. For motion control, very fast cycle times are needed to
achieve the desired precision of the tools. Therefore, task engraving is executed
every 5 ms and with an even higher priority than all other tasks. If two or more
tasks are executed at the same time point, the tasks with the higher priority
are executed first, followed by the ones with lower priority. If a high priority
task is triggered while a low priority task is running, this task will be paused
and after the execution resumed. To model the influence factor CyclicTask (see
Table 4.7) only two parameters needed. First the access frequency to specify
the time interval in which the task is triggered and the priority of the task.
Every other aspect that influences the utilization or behavior of the PLC can
either be neglected or is covered by other influence factors like the firmware (see
4.4.3).

74

4.3 Applications

task_hmi

SINGLE

INTERVAL

PRIORITY

t#1000ms

2

task_wpd

SINGLE

INTERVAL

PRIORITY

t#50ms

5

task_engraving

SINGLE

INTERVAL

PRIORITY

t#5ms

9

Figure 4.13: Cyclic Tasks with different priorities and intervals

Table 4.7: Parameter for the influence factor CyclicTask

Name Type Description

Frequency Cyclic The frequency in which the task and its
associated POUs are triggered

Priority Integer Priority of the task

Event Task

The second task type is the triggered task or event task. An external trigger (e.g.
a rising signal) is used to start the task and, therefore, execute all Programs and
Function Blocks of the task. The sources of this trigger event could be external
systems (e.g. SCADA) setting remotely a variable, an input from a light barrier
sensor transported by the fieldbus, or other programs that are running on the
same PLC. Figure 4.14 shows the execution of an event task, denoted with the
event sign in the bottom part of the figure. The intervals between the program
executions as well as the delta times vary.

5 ms 7 ms 4 ms

programs

time

2 ms 2 ms 2 ms

15 ms 11 ms

delta delta

Figure 4.14: Triggered EventTask with varying delta times

The Event Task must be considered for the development and performance pre-
diction of an automated system. However, the modeling and analysis of different
events, event sources, and relations between events get complicated fast. For
an easier handling (especially in the early development phases) it is, therefore,
best to abstract from the event sources and focus just on the probabilities of
an event to occur. The Table 4.8, therefore, contains just the parameter access
frequency with the two stochastic methods (PDF and PMF) and the priority
of the task. MARTE [Obj06] (see Section 2.3.1) uses a similar approach where

75

Chapter 4 Influence Factors

different timer (schedulable resources) can be further annotated by arrival pat-
terns.

Table 4.8: Parameter for the influence factor Event Task

Name Type Description

Frequency ArrivalPattern The frequency in which the task (and its
associated POUs) is triggered

Priority Integer Priority of the task

Idle Task

A subtype of the Event Task is the Default, Free Wheeling or Idle Task. This
task can be best compared to an endless loop in which all its associated Pro-
grams and Function Blocks are executed - the triggering event is always set
to true. Depending on the vendor of the PLC, the loop does not start right
after its last execution but waits for a specific time (e. g. a fixed 4 ms delay,
10% of the tasks execution time or using a specific formula). Idle tasks are
usually selected for all Programs that should be executed as often as possible
and where the exact timing is not important. The “cycle time” of the Idle Task
is the added execution time of all associated Programs and Function Blocks,
which results in a jittering execution and utilization. The Figure 4.15 shows
the execution of two programs. The delta time – or in this case wait time – is
calculated every cycle based on different vendor specific settings. In this case,
the delta time is calculated with

δ =
⌈∑

i∈Programs exectime(i)

2

⌉
which is added on top of the execution time. This approach is often used to
wait for other low priority tasks like the Webserver (see services section) to get
some time to execute.

5 ms 7 ms 4 ms

programs

time

2 ms 2 ms 2 ms

11 ms 14 ms

delta delta

9 ms

delta

4 ms 5 ms 3 ms

Figure 4.15: Wait times (delta) based on cumulative execution times

The Idle Task is, therefore, highly dynamically and it is best to not specify
the access frequency of the idle task as the sum of all contained Programs and

76

4.4 PLC

Function Blocks. For this reason, the Idle Task must be incorporated into
the influence factors as a dedicated task type. An subsequent analysis must
reflect this behavior and consider different execution times and preemption. In
Chapter 6 the Palladio Component Framework has been selected as a simulation
framework and its internal scheduler extended to allow use of Idle Tasks.

The only parameter that can be set for the Idle Task is the inherited priority.
However, most vendors do not allow to manually set the priority of this task
due to unforeseen interactions with other tasks and processes. The following
Table 4.9 lists the parameters.

Table 4.9: Parameter for the influence factor Idle Task

Name Type Description

Priority Integer Priority of the task

4.4 PLC

In this subsection vendor specific and PLC dependent influence factors are con-
sidered. They include all hardware and software related factors like the CPU,
architecture, memory, or software (=firmware). Some of these factors must,
others should be to some degree considered when conducting a performance
prediction.

Most of the factors identified in this subsection impact the performance of a
PLC only slightly or require in-depth knowledge of the PLC, its structure, and
behavior. These factors and their details should be hidden in the correspon-
ding analysis/simulation models and not be considered in high-level Systems
Engineering models. Therefore, this information needs to be wrapped into ex-
ternal definitions. In this thesis, the term load profile is used to model specific
behavior of an influence factor based on its parameters. The PLC is an ideal
example for a load profile. It hides detailed information form the developer
like an operating system background utilization. Analysis tools and models can
load profiles and use the detailed information. Load profiles can also be used
for various other influence factors, like an FTPServer.

4.4.1 CPU & Architecture

The most obvious influence factor that impacts the utilization of a PLC is
the underlying computational hardware - the CPU. PLC vendors use various
types of CPUs, each with different architectures (e.g. x86, ARM, PowerPC),
cache sizes, instruction sets, and a varying number of cores. All these factors
do influence the actual computation power of the PLC and subsequent the
utilization during operation. Even different compilers and compiler settings
for a specific CPU/architecture can have a measurable influence. The most

77

Chapter 4 Influence Factors

important CPU related factors are listed below, each with a short explanation
how they influence the performance prediction and to what degree. However,
most of these factors are neglected due to the high amount of modeling effort,
the need to have existing source code or to the – in relationship to the other
factors – far to low impact on the performance. Noteworthy for the early
prediction of PLC utilization are just two factors: CPU frequency and the
number of cores. These are also the two main factors that are used in a wide
range of performance analysis tools with a focus on high level functions of
a system. Examples are [HCÅ03], [BKR09], [FL09], or [Kah01]. As stated
by [Jai90], it is necessary to remain on an appropriate modeling level for the
desired prediction goal. In comparison to the other factors, going too much into
detail will not yield a way more accurate prediction of the systems utilization.

� Cache and Caching: Each CPU and PLC board uses a different amount
of first, second and third level cache. This cache has a huge influence on
the overall execution of programs due to the fast access on already lo-
aded information [LL99, MB91, LM12, WSR99, LMW99]. Each cache
miss - data that is not in the cache and must be loaded from RAM
(Random Access Memory) or even the hard drive - causes long loading
times [WM95, GMM97, DM97]. To incorporate a cache into an analysis
is a complex task. The size of each cache and the different compiler opti-
mizations must be taken into account. To calculate the correct execution
times of a program, the source code must be also available – which is for
an early performance prediction usually not the case. Last but not least,
every program that is running on the CPU affects the caching behavior.
So the holistic system, including all processes and threads, must be con-
sidered. Therefore, it is not feasible to include the runtime improvements
of caching into the early performance prediction of an automation system.
As for the use of higher level caches (third level memory – RAM) it is
safe to assume that for future applications and PLC generations the size
of the RAM is always sufficient.

� Compiler: Modern compilers use a wide range of optimizations to ge-
nerate machine code perfectly optimized for a specific CPU and archi-
tecture. Turning on optimization flags for example, makes the compi-
ler attempt to improve the performance and/or code size at the expense
of compilation time and possibly the ability to later debug the program
[CFA+07, HKW05, GH01, Han13]. Developers still have the possibility to
influence these optimizations as they see fit. As stated before, to make pre-
dictions about the improvements of different compiler settings, the source
code of a program must be available. It is, therefore, a too complex and
time-consuming task to consider the influence of different compilers and
compiler settings in the early development stages of an automated system.
Additionally, in comparison to the fixed, compiled code of the firmware
and operating system to the varying applications in form of Programs,
Functions and Function Blocks this factor can be neglected. They are
covered by the base utilization of the operating system (4.4.2).

78

4.4 PLC

� Architecture: Running a program on different architectures (with va-
rying instruction sets) can also influence the execution speed of a program
[GH01, LM12]. This effect is not as huge as cache misses but depending
on the computational tasks like plain calculations (number crunching)
or image processing, this could be a measurable factor. Modern CPUs
also use Pipelining [SL05] to execute more instructions per clock interval,
increasing the performance of the CPU. Instead of processing each in-
struction sequentially, each instruction is split up into a sequence of steps
and each step can be executed in parallel. This effect is also dependent
on the compiler and its settings, ordering or using instructions that can
be best split up into steps. However, similar to the compiler and compiler
settings are the effects of different instructions sets and pipelining hard
to model with and without the source code. To still take performance
improvements of pipelining into account, one option is to use a modifier/-
multiplier on the CPU frequency. More on this workaround can be found
in the descriotion of the factors CPU frequency and Multicore.

� Additional Hardware: PLC vendors use in conjunction to a CPU often
other computation devices for specific purposes like communication. Com-
plex Programmable Logic Device (CPLD), micro controller units (MCU),
digital signal processor (DSP), graphics processing unit (GPU) or field-
programmable gate arrays (FPGA) are examples for these kinds of devi-
ces which can be integrated into the base board of the PLC. They all can
achieve outstanding performance for their specific tasks [AMY09]. For
PLCs, the FPGA is often used to handle the high performance fieldbus
communication – it is necessary to send and receive huge amounts of data
from multiple (io)devices in specific time intervals with jittering under just
a few µs. If PLCs provide special hardware, this should to be considered
in the performance prediction. However, the modeling effort to incorpo-
rate different processing resources is very high. Programs and Function
Blocks will be to large parts executed on the CPU. In contrast, specific
function calls might be redirected to an FPGA and therefore must be
modeld explicitly and assigned to the FPGA. This additional modeling
effort is inadequate in the early development stages. Additionally, do
most of the vendors use the hardware for tasks like regular network com-
munication, special IO communication, or other operating system related
tasks. Therefore it is better to ignore special hardware for the Program
and Function Block analysis and consider the influence of hardware in the
factors Operating system (Section 4.4.2), IPTraffic (Section 4.4.4) and IO
(Section 4.5).

� CPU frequency: The clock frequency (or clock rate) of the central
processing unit is the most obvious factor to value/rate the performance.
An internal clock regulates the rate at which instructions are executed –
the more instructions per second can be executed, the faster a program is
started, run, and finished. The clock frequency is measured in hertz (Hz).
Other factors influence the overall computational power of modern CPUs
as well. Technical limits inhibit to go for higher clock frequencies and

79

Chapter 4 Influence Factors

force the vendors to implement new technologies like complex pipelining
or multicore architectures [Man00, Gee05]. Still, to compare program
executions – respectively predict their execution – on different CPUs, one
of two common attributes that can be used is the raw clock frequency.

� Multicore: The second attribute that is very important for the perfor-
mance prediction of PLCs is the number of cores (or CPUs). Multicore
architectures were very uncommon in the automation domain for the last
years but due to the recent drop in availability of single core CPUs, they
become more and more popular. One reason why multicore CPUs were
avoided is the non-determinism that accomplishes the distribution of thre-
ads and process onto different cores and the resulting parallelism during
the program execution. Like caching, it is more complex to ensure the
flawless execution of firmware and application code. This is especially
important for safety critical applications and PLCs that must be certified
for these kinds of usages. But still, multicore CPUs provide a huge boost
in performance, under the premise that the programs can be executed in
parallel [Gee05]. For the performance prediction of automation systems,
not just applications (Programs and Function Blocks) but also opera-
ting system functions and additional services must be considered. They
provide a rich and easy to parallelize environment that can make use of
the multicore architectures and the resulting performance boost. Shared
resources that could influence the parallel execution are foremost the net-
work communication and the fieldbus data exchange. Via configurations
are concurrent accesses reduced to a minimum (process data mapping) or
handled down to special hardware as mention in the additional hardware
factor. Therefore, it is possible to - at least for an early performance
prediction – neglect waiting times between parallel processes.

The Table 4.10 lists the minimal amount of parameters that must be considered
when modeling the hardware of a PLC.

Table 4.10: Parameter for the influence factor PLC

Name Type Description

PLC String Name or type of PLC that will be used

Number of Cores Integer The number of available cores for parallel
execution of code

CPU Frequency Integer The frequency of the processor as an ab-
stract unit for instruction throughput

4.4.2 Operating System

Almost all modern PLCs use off-the-shelf (real-time) operating systems [TWTT87,
SGGS98] under their custom firmware. Depending on the desired use of the

80

4.4 PLC

PLC (e.g. motion control or safety), the different operating systems each pro-
vide unique perks. Common choices for such operating systems are for example
embOS [SEG], Windows Embedded [Mic16], VxWorks [Win], QNX [QNX16],
Real-time Linux (CONFIG RT PREEMPT [Lin16] or RTAI [RTA16]), FreeR-
TOS [Fre16] or Nucleus OS [Men16].

Each operating system has different architectures and background processes
with their unique programs and performance profiles [RBH+95, WSR99]. In
addition, they can handle different tasks (like network communication) much
more efficient than others. For a performance prediction of a PLC, it is, the-
refore, necessary to know the underlying operating system and its utilization
under different working conditions. Capturing each individual process and its
behavior for certain tasks could lead to a highly detailed model of the PLC and
therefore to a much more precise prediction. As for the early design evalua-
tion of automated systems – where the software and detailed tasks might not
even exist yet – the modeling and consideration of a simpler background ’noise’
should be sufficient. Therefore, the base load of a PLC which is induced by the
operating system is one parameter for the influence factor. As mentioned in the
previous section ’PLC’, a profile can be used that includes all the details of a
PLC. The operating system and its base load would be a perfect candidate for
this set of PLC dependent factors and settings.

Table 4.11: Parameter for the influence factor Operating System

Name Type Description

Baseload ExecutionTime An exection time as a placeholder for all
program and function executions that are
induced by the operating system

Scheduling

The scheduling of processes influences the system behavior in many ways. There
are several scheduling algorithms or strategies [RS94, GTU91, PS85] available,
each tailored to specific requirements and with their unique properties. An
influential technique in scheduling operation system processes is preemption.
Preemption allows the scheduler to temporarily interrupt a process without
requiring its cooperation to execute a process with higher priority. This is a
very important property of real-time operating systems. They guarantee that
certain processes can be executed without the need to wait for other, lower
priority processes. This also reduces the jitter of the process, which is very
important for the synchronous execution of motion control tasks [PS01]. The
scheduling jitter in real-time operating systems is a deviation from ideal timing
event – the delay between the time when task shall be started, and the time
the task is actually being started.

Cyclic tasks are configured to run at specific time intervals and execute their
associated Programs and Function Blocks within these intervals. If the jitter

81

Chapter 4 Influence Factors

is too high, these intervals may be reached and even exceeded, leading to a
watchdog alarm stopping the PLC and the whole production system. This is
an obvious example of the impact of jitter and scheduling. A smaller but none
the less important example is the internal processing of incoming data from the
fieldbusses. This data must be analyzed and forwarded to the correct memory
areas of the tasks. Depending on the firmware architecture, jitter in these
tasks may lead to inconsistent data that is used for the calculation of actuator
commands. Therefore it is the goal of many real-time operating systems and
their schedulers to minimize the jitter and latencies [BFV08].

The scheduling influences the utilization of the PLC indirectly. If for example,
all Programs are executed once but the ordering or possible interruptions of
other Programs is constant, the overall sum of execution times remains the
same. The utilization only changes, if certain Programs are executed more
often due to the selected scheduling algorithm. Additionally, in most cases
have developers no influence on the scheduling strategy and its configuration.
Details to the following scheduling strategies can be found in [Leu04], [PS85],
or [RS94].

� First Come First Serve (FCFS) Scheduling: Jobs are executed in a FIFO
order, meaning first come, first serve. High priority tasks must wait for
low priority tasks that even might wait for a time-consuming IO access.
The FCFS is easy to understand and implement, but the average wait
time is high, leading to a very poor average performance.

� Shortest-Job-First (SJF) Scheduling: The scheduler knows which proces-
ses are ready to run and orders them by their execution time. It is the
best approach to minimize waiting time, but impossible to implement due
to the lack of information. The scheduler needs to know in advance how
much time a process will take.

� Priority Scheduling: As one of the early scheduling strategies, each process
was assigned a priority. The process with the highest priority will be
executed first. Processes having the same priority level are executed FIFO.
The priority can be changed during the execution and may be influenced
by the memory, time, or other resource requirements.

� Round Robin (RR) Scheduling: The scheduler defines fixed time interval
in which a process can be executed, called quantum. If the process has
not finished in its quantum, the process is preempted and the next one
continues. There are different approaches regarding the case when a pro-
cess finishes before the end of its quantum. Some scheduler start right
away with the next process, others wait and do nothing. An advantage
of this approach is, that it enables a better runtime analysis and reduces
jitter in the execution.

� Multilevel Queue Scheduling: This strategy consists of multiple queues,
each with its own scheduling algorithms. The queues have a predefined
priority. Multilevel queues are often used to group processes based on
properties like process type, CPU time, IO access, or memory size. User
processes might run with a lower priority than system processes.

82

4.4 PLC

� Fixed-Priority Preemptive Scheduling (FPPS): This scheduling strategy
is often used in real-time operating systems. A fixed priority preemptive
scheduling allows the processor to execute the highest priority processes
currently ready. A problem of this strategy is the possible starvation of
low priority processes.

The different scheduling strategies each have various configuration parameter
or attributes that need to be considered. These could be for example the star-
vation boost value, the quantum size, length of the time slice, load balancing
options, queuing configuration or context switching time. They all influence
the scheduling and are entangled with each other. More details on schedulers
in (real-time) operating systems can be found in [SGGS98, RS94].

Scheduling strategies can impact the behavior of a PLC and its surrounding
automation system. Lower priority process may be preempted and as a result
according response times rise. However, they usually impact the overall uti-
lization only slightly. An example is a Task that executes a Program in set
intervals. If the Program is preempted too often, the maximum execution time
is reached and a Watchdog triggered which stops the PLC. Therefore, to analyze
an automation system and the timely execution of Tasks and their Programs,
it is necessary to consider at least priorities. It is important to note, that sche-
duling also covers the dynamic assignment of processes onto cores at runtime.
If all processes can be run in parallel without waiting for shared resources, the
scheduling can greatly enhance performance [GTU91]. However, setting pro-
cess affinities is part of the in-depth details of the scheduler and not explicitly
covered in this influence factor.

For this reason, yields the influence factor Scheduling only one parameter iden-
tifying the used scheduling algorithm. It could be necessary for underlying
analysis tools to have this information. However, as mentioned is this parame-
ter usually tied to the PLC and can not be modified separately.

Table 4.12: Parameter for the influence factor Scheduler

Name Type Description

Scheduling Strategy String Identifier used to set the used scheduling
strategy.

File system

Accessing the file system as a shared resource for all tasks and programs running
on the PLC has an impact on the program execution. Programs must wait for
their turn to write or read data. But during the execution of a typical PLC
program like a PID controller, there is usually no access to the file system. All
data is held in memory and is written only in small amounts/sizes. This is of
course after the systems startup in which all data is loaded from an SDCard or
other storage. However, the startup phase is not considered in this case. The

83

Chapter 4 Influence Factors

only exception from this case is the logging of IO data for analysis. This puts a
high load on the file system of a PLC and can lead to a high CPU stress. Due
to this reason, the collection/logging of data is often turned on just for a couple
of seconds or minutes – and not during normal operation but just for testing.
Other services like FTPServer do access the file system to write and read files.

Because the use of data logging is the exception and most PLCs programs are
held in memory, the influence of the file system access can be neglected. Load
put on the file system caused by additional services like the FTPServer are
handled separately in Section 4.6. In case it is necessary to model file access on
the PLC, Table 4.13 list the parameters for this low impact influence factor.

Table 4.13: Parameter for the influence factor file system

Name Type Description

File size Bytes No differentiation between reading and writing.
Just the file size is taken into account.

Access ArrivalPattern Periodic or aperiodic access on files with a spe-
cified size

4.4.3 Firmware and IEC Runtime

Similar to the operating system (Section 4.4.2) the firmware provides and the
runtime access to the resources of the PLC and additional functionality.

The firmware consists of management tasks and drivers. The first are used to
enable remote debugging, download of new firmware, reading and writing of va-
riables, user and permission management, redundancy, data consistency checks
and much more - all depending on the PLC and its vendor. Additionally, there
exist some firmware related service programs like Webserver, FTPserver, or
OPC-UA Server. They take a very important role in the performance pre-
diction of a PLC, due to their extensive use and specific utilization profiles.
These kinds of influences are discussed in Section 4.6.

Drivers enable the access to the hardware and are usually fine-tuned to provide
the best performance with respect to jitter and data throughput. Their over-
head is minimal and scales with the amount of information that is processed or
with the number of calls from a higher level program (e.g. Operating system
or IEC Program). Other kinds of drivers are used to control system lights like
the power or bus failure Led.

The IEC Runtime is used to execute IEC 61131-3 Code and provide the neces-
sary infrastructure for this task. This includes the interpretation of IEC code (if
not compiled into machine code), debugging, hot code replacement during ope-
ration, variable monitoring and so on. The IEC 61131-3 [Int13a] standard also
defines how variables are addressed and accessed between Resources, Programs
and Function Blocks - this must be implemented by the runtime environment.

84

4.4 PLC

On top of these standard features, many PLC vendors provide a huge range of
extended features and services. For example, Beckhoff industry PCs allow the
developers to access the runtime, all its data, and devices via an API called
Automation Device Specification [Bec16a]. Other vendors like CodeSys [Smaa]
or Phoenix Contact eCLR/ProConOS [Pho16] also provide similar services to
access and manage the complex runtimes and to allow software developers to
integrate PLCs into non-industrial infrastructures.

Like the operating system, the IEC Runtime (no matter which) and the firmware
influence the performance of the PLC. However, the workload that is induced by
them – without the execution of IEC Programs, Functions or Function Blocks
– is comparable to the background noise of the operating system. All the
application related utilization is already covered in Section 4.3. To model them
in detail, it would be necessary to use special tools (e.g. profiler) to create
fine-grained traces, allowing to map a specific utilizations to process and tasks.
For the developer of automation systems, this is not a feasible task. Therefore,
these models need to be provided by the different vendors. The Table 4.14 lists
only one parameter identified for this influence factor.

Table 4.14: Parameter for the influence factor IEC Runtime

Name Type Description

Base load ExecutionTime The time it takes for the CPU to execute
all background functions of the IEC run-
time

4.4.4 IPTraffic

Another influence factor that is directly dependent on the PLCs hardware and
the running operating system is the utilization induced by sending and receiving
network packets. Each packet that is received at the network interface must be
inspected and forwarded to either the IP-stack of the operating system or the
fieldbus stack in case the fieldbus is Ethernet based. It is, therefore, necessary
to consider the processing of IP traffic. Inspection and forwarding are time- and
therefore performance consuming steps, but highly dependent on the hardware,
firmware, and operating system.

The most influential parameters are the payload size and how many packets
are received at the network interface in a given period. Malformed or damaged
packets increase the processing overhead. This is can be the case in industrial
environments, where electrical disturbances influence the communication media
or if a hacker tries to bring the PLC to its processing limits (denial of service
attack) by sending huge numbers of (malformed) packets [LWH05, ACS09].
The goal for each vendor is to optimize the stack [CS00, HJ03] or make it more
robust.

85

Chapter 4 Influence Factors

There are already several studies that investigate how to model, predict, and
analyze IP (internet) traffic and its parameters (see [PKC96, Mah97, FGHW99]
or [KLL03] (sec 4.3)). These parameters can often be found in network simu-
lators like OMNeT++ [V+01, VH08] or NS2 [IH08]. They support modeling
of characteristics like error rate, throughput (Hz), or Capacity (Tx Rate). In
[HPV15], a MARTE profile for modeling complex networks is provided. Howe-
ver, these models and approaches go deep into the details of IP networks and,
therefore, require in-depth modeling and/or analysis capabilities.

For the purpose of estimating a network load in an industrial network and the
ease of use, these details should be abstracted to a more common and easy to
model factor. The PLC influence factor IPTraffic only considers incoming traffic
and not topology, nodes, and accessing devices. Most of the services that will be
detailed in the following sections also already include the network traffic that is
induced by their provided services. For a further, detailed analysis other tools
might be used to investigate each aspect of occurring IPTraffic in the network
(see section fieldbus 4.5.2).

Therefore to model the IPTraffic, the first parameter is the number of incoming
packets. Both can be specified with an integer value. The size and numer of
packets may vary, therefore, stochastic functions like the PMF should be used
to set the value. Table 4.15 lists the parameters which are sufficient to model
a coarse IOTraffic influence factor.

Table 4.15: Parameter for the influence factor IPTraffic

Name Type Description

Number of
packets

Integer The number of packets per time unit

Size of packets Integer The average size of the packets

4.5 IO - Fieldbus communication

Inputs and outputs transported and provided by an IO-System are a crucial part
of automation systems. Sensors provide input data for a PLC and actuators
influence their environment. The data send from and to the PLC is transmitted
via fieldbusses. A fieldbus is an industrial network system for real-time distri-
buted control. A PLC might be connected to one or more different fieldbus
systems like PROFINET [Pro16a] or INTERBUS [Pro16b]. Depending on the
PLC, the communication over fieldbusses is either realized in hardware (e.g. Di-
gital Processing Module (DPM) or Field-Programmable Gate Array (FPGA)),
in software only, or a combination of both of them. A communication over a
hardware solution also uses a certain amount of CPU time but is significantly
faster than a software solution. Due to the real-time constraints, they consume
a significant part of the CPU performance. More details on fieldbusses can be
found in Chapter Foundations 2.

86

4.5 IO - Fieldbus communication

4.5.1 Fieldbus Examples

There is a huge number of fieldbus technologies available for a wide range
of tasks from process or industrial automation, building automation, substa-
tion automation, automatic meter reading and vehicle automation applications
[Tho05, LaÎ99, Mah13, Ros08, MR04]. An excerpt of these fieldbusses is briefly
introduced in the following list. This list does not contain PROFINET, which
will be described in more detail afterward. The list is intended to give an
overview of the common and non-common features and characteristics of field-
busses with a focus on Ethernet-based ones. It neither provides a complete list
of all their attributes and details, nor a performance analysis of each fieldbus
[Pry08, LL02, FFMT04, LMT99, HW00, MDFF06a, PN09].

� ASI The Actuator Sensor Interface (AS-i) is a fieldbus usually used for
the lower field level process data exchange and not intended for all areas
of automation. ASI has been developed during the 1980s by a group
of several companies and published in 1994. Today, the specification is
managed by AS-International [AS-17] and based on the standards IEC
62026-2 and EN 50295. Two perks of this fieldbus are the (compared
to other fieldbusses) lower costs and the possibility to connect all IOs
with two cables that can also provide power. The ASI fieldbus requires a
master to control up to 62 slaves. The master polls the slaves (usually an
IO) with a maximum bus cycle time of 10ms, reaching a datarate of 167
kBit/s. For each slave 4 bit digital input and 3 bit digital output data is
addressable. The topology of an ASI fieldbus may be either Bus, Ring,
Tree, or Star at up to a segment length of 100 meters – if not extended
by additional devices. More information on the fieldbus can be found on
the AS-Interface User Organization’s [AS-17] website.

� CANopen CANopen is a multi layered (industrial automation) protocol
that is using the CAN bus for data exchange on the lower protocol levels.
Both, the basic communication mechanisms (communication profile), as
well as the functionality of the communicating devices (device profile) are
defined. CANopen supports up to 127 logical devices, one with master
functionality. The underlying CAN bus defines a line (bus) topology. A
cycle can be completed within 1 ms on a CANbus running at 1 Mbit, if the
conditions are set up correctly (like high priority communication). Each
slave can also access the data provided by another slave. The CANopen
specifications can be found on the homepage of the Can in Automation
(CiA) e.V. [CAN17].

� CC-Link IE The CC-Linke IE fieldbus has been developed by Mitsubishi
and promoted by the CC-Link Partner Association [CLP17] since the year
2000. Features of this fielbus system are a high noise immunity, a floating
master function for higher availability, hot swap of stations (masters and
slaves) and many more. It is available as a fieldbus or as a control network
variant. CC-Link Field can send 16Bytes of in 2.8 ms (in high speed mode)
in a network with 120 nodes.

� EtherCAT Developed by Beckhoff, EtherCAT is one of the most common

87

Chapter 4 Influence Factors

and fast fieldbus systems available and stands for Ethernet for Control
Automation Technology. It supports a flexible wiring and configuration
and EtherCAT Slave Controllers can be implemented as FPGA, ASIC,
or with standard µController. The master does not need any dedicated
hardware - a standard ethernet controller is sufficient. The protocol allows
a precise synchronization of the slaves below 1 µs by exact adjustment of
the distributed clocks. The tree topology supports cable lengths up to
100 m and (theoretically) 65535 nodes in one seqment. More information
about EtherCAT can be found on the EtherCAT [Eth17a] website.

� Ethernet/IP EtherNet/IP is an industrial Ethernet network that is one
of the leading industrial ethernet networks in the United States. It uses
the User Datagram Protocol (UDP) to send IO data. It also allows uplo-
ading and downloading of parameters, setpoints, and programs. The pro-
tocol uses a producer/consumer system that makes it very efficient for
slave-to-slave communication. More information can be found on the
ODVA website [ODV17] (formerly Open DeviceNet Vendors Association,
Inc.). It supports a star, hierarchical and bus (device level ring (DLR))
topology by using industrial Ethernet switches to ’route’ the packages into
different collusion domains.

� FlexRay This deterministic, fault-tolerant, and high-speed network com-
munications protocol [Par12, Fle10] is the sucessor of CAN and LIN (Local
Interconnect Network) with a clear focus on the automotive area. It is
an atypical bus system for the automation industry [SJ08] (with little ap-
plications) and has been added to this list to indicate that in some cases
even domain unfamiliar bus system can be used for automation purposes.
The bus is governed by the FlexRay Consortium. It’s topology can be
set up in a bus, star, or even a mixture of both with a maximum payload
of 254 bytes per frame. The duration of a cycle is defined during the
design of the network, but is usually between 1 ms and 5 ms. It uses
TDMA (Time division multiple access) to build slots for each node in the
bus system. The transfer rate can be set to 2.5 Mbit/s, 5 Mbit/s, or 10
Mbit/s. This fieldbus is very atypical for the automation industry, but
still provides similar properties for the configuration and use and – despite
its automotive focus – in view for industrial applications [SJ08]

� INTERBUS This fieldbus [BM94] has been developed by Phoenix Con-
tact and managed by the INTERBUS Club [Pro16b]. It is based on a ring
topology in which a master exchanges IO data between multiple distri-
buted I/O modules that are connected to sensors and actuators. Devices
in the ring can open further segments, extending the ring. INTERBUS
supports up to 512 devices (slaves) with a maximum of 4096 IO points,
a transmission rate of 500 kbps, and a max bus length of 400 m. The
cycle time required to exchange all IO data depends on the number of
devices and data send. The cycle time has a linear growth depending on
IO points. As Ethernet-based fieldbusses are becoming more popular, the
INTERBUS Club has been integrated into the PROFIBUS International.

� Modbus/TCP MODBUS [Mod04] is an application-layer messaging pro-
tocol which provides client/server communication between devices con-

88

4.5 IO - Fieldbus communication

nected on different types of buses or networks. Modbus/TCP is the va-
riant which uses TCP/IP networks to send the messages. It focuses on
message exchange for non-real-time applications and is widely used. The
Modbus server polls each client, which can also implement a server stack
as well. For each response and request cycle, the message passes 4 stacks
(server → client → runtime → client →server) as well as all switches and
routers in between. Modbus is managed by the Modbus Organization, a
group of independent users and suppliers of automation devices [Mod17a].
Due to its nature, performance and speed comparisons with other fieldbus
systems are not reasonable.

� Powerlink This fieldbus technology was introduced by the automation
company B&R in 2001. It is now an open protocol managed by the
Ethernet POWERLINK Standardization Group (EPSG) [Eth17b]. As
the name already suggests is Powerlink another Ethernet-based fieldbus.
It requires a special master card that handles the slaves and polls each
slave in predefined intervals. The network topology is not fixed, allowing
developers to choose a fitting one for the current application. Since version
3, additional features like bulk polling have been added.

� Profibus Profibus, like PROFINET, is managed by Profibus Interna-
tional (PI) [Pro17] and stands for Process Field Bus. The technology is
pushed by SIEMENS. Currently, two variants are in use. PROFIBUS DP
(Decentralised Peripherals) is used to operate sensors and actuators via
a centralized controller. PROFIBUS PA (Process Automation) is used
to monitor measuring equipment via a process control system in (highly
critical or safety relevant) process automation applications. Profibus uses
a master-slave approach, whereas multiple masters can communicate with
a token ring.

� Sercos III Sercos III merges the hard real-time aspects of the Sercos
interface [Ser17] with Ethernet. This fieldbus supports up to 511 slave
devices which can exchange data with a minimum refresh interval of 31.25
µs. It requires a special master card to manage the slave devices, which
can be set up in a line or ring topology. The protocol allows the use of
the Ethernet medium to send non-fieldbus data. This data is, however,
send with a lower priority and a high chance of being heavily fragmented,
based on the set cycle time of the ring/line. Depending on the set real-
time properties and the number of slaves, the maximum data size is 50
Byte (cycle time 1 ms, 85 slaves with NRT channel)[Ros08].

4.5.2 PROFINET in Detail

The factors identified in this thesis are to a great part influenced by the firmware
analysis project conducted with Phoenix Contact. Therefore, the most detailed
fieldbus system under investigation is PROFINET. The focus remains on the
CPU utilization, not remote communication effects or response times. These
effects can be analyzed by dedicated approaches and are not scope of this thesis.

89

Chapter 4 Influence Factors

PROFINET is an open Industrial Ethernet standard developed by Siemens and
other partners of PROFIBUS/PROFINET International (PI) and is defined in
the International fieldbus standard IEC 61158 [Int16b]. It allows the merging
of automation and office networks due to the use of the Ethernet standard
IEEE 802.3. PROFINET provides two channels as shown in Figure 4.16: A
real-time and non real-time channel for different communication purposes. The
Standard TCP/IP channel is used for non-time critical tasks like downloading of
configurations, device parameters, accessing diagnostics information, and device
management. The real-time channel is used for time-critical data, mainly the
automation relevant process data that is send cyclic between the PROFINET
master and the profinet devices. The real-time channel is also used for sending
alarms, critical messages, and communication monitoring. Possible topologies
are line, ring, and star structures.

Application8layer

Presentation8layer

Session8layer

Transport8layer

Network8layer

Data8link8layer

Physical8layer

Non time-critical
communication

Real-time
communication

PROFINET8Application8layer

TCP/UDP

Standard8Ethernet
IEEE802.3

PROFINET
Real-time8
channelIP

Figure 4.16: The two communication channels and their according ISO OSI
layers

The two channels allow PROFINET to support different operating modes ran-
ging from non-real-time (e.g. HMI access) in a component based design named
Class-A, soft real-time approach named Class-B or RT for real-time and a class
for motion control purposes called Class-C or IRT (isochronous real time). Pro-
fibus International (PI) has moved away from the terms RT/IRT and introduced
the term PROFINET IO for both RT and IRT. The different classes and their
timing requirements ranging from below 1 ms to up to 100 ms are shown in
Figure 4.17.

PROFINET makes use of standard protocols for setup, configuration, and
maintenance. For example is the Dynamic Host Configuration Protocol (DHCP)
used for assigning IP addresses to the different devices. Via the Domain Name
Service (DNS) these IP addresses can be resolved by providing easily readable
(host)names. For management purposes, the Simple Network Management Pro-
tocol (SNMP) can be used to provide information to a broad range of network
tools. Lastly, ARP (Address Resolution Protocol) and ICMP (Internet Control
Message) are in use for lower level network configuration and management.

90

4.5 IO - Fieldbus communication

TCP/IP

Real-time

Controller and HMI Factory Automation Motion Control

100 ms 10 ms < 1 ms

PLC

00101011010001

HMI PLC

00101011010001

PLC

00101011010001

CbA:
Component
based Automation

A
RT:
Soft Real Time
(Software Based)

B
IRT:
Isochronous Real Time
(Hardware Based)

C

Figure 4.17: Different PROFINET performance classes (modified Figure from
[Ros08])

Sensors and actuators producing and consuming inputs and outputs (IO) are
connected to PROFINET-Devices (short pndevice) which convert the digital
or analog signals into Ethernet frames. These frames are sent in predefined
time slots to the PLC and back again. Each pndevice consists of one or more
slots, on which sensors and actuators can be connected to. The module size
defines the amount of data that can be sent to or from a pndevice. At the PLC,
the data is provided to the running programs as variables, also called process
data. Therefore, each task running programs with connected process data has
a connection to a specific module in the PROFINET. A message sent from the
PLC to a pndevice has a fixed length based on the sum of all modules. The
devices send interval can be specified independently from the receive interval.

Figure 4.18 shows an exemplary PROFINET device with two modules and
three IO points. The pndevice creates a message (PNmsg) with a specific frame
structure. This frame is sent in a preconfigured interval to the PLC. At the
PLC, the frame is received, analyzed, and the data is copied into the task buffer.
The task will take the data upon its execution and copies it again to provide
it to the programs. The same procedure in reverse order is used for sending
data from the program, over the task to the device. This copying of data is
highly optimized due to the fast update times and jitter constraints. Depending
on the implementation of the PROFINET stack and the communication with
dedicated hardware like an FPGA or a TPS-1 single-chip device interface for
PROFINET2) the overall PROFINET communication can stress the PLC up
to a utilization of 57% for just 16 pndevices [FH12].

There are different network topologies that are supported by PROFINET as
shown in Figure 4.19. PROFINET is an Ethernet-based fieldbus and therefore
needs additional equipment like switches to relay Ethernet packages between the

2The TPS-1 is a highly integrated chip that contains all required components.
It supports the conformance class C and can thus be used for all PROF-
INET communication channels. https://www.phoenixcontact-software.com/de/

profinet-industrial-ethernet/single-chip-interface-tps-1

91

https://www.phoenixcontact-software.com/de/profinet-industrial-ethernet/single-chip-interface-tps-1
https://www.phoenixcontact-software.com/de/profinet-industrial-ethernet/single-chip-interface-tps-1

Chapter 4 Influence Factors

Task1 Task2

PN
msg

from:Device1

Device1

Slot 1

Slot 2

PLC

Process data
(variable)

{

{

Shared
Memory

Figure 4.18: Simplified illustration of sending and receiving PROFINET fra-
mes

nodes (see [Tan02]). The specific requirements for each device like minimum
throughput, performance, jitter, and delays are precisely defined in the PROF-
INET specification. The Star topology (a) allows the IO-Devices to be grouped
in a Star formation around a Switch or any device with switching functionality.
Most IO-Devices also include an integrated switch with two to four ports. The
second topology is a hierarchical Tree (b). The PROFINET messages must be
relayed from switch to switch until they reach their designated IO-Device. The
last topology is the Line (c) which is a commonly used and requires integrated
switches in each device. So on a physical layer, each PROFINET network
can be fitted to the needs of the current automation systems architecture. The
underlying functionality CbA, RT, or IRT remains the same, regardless of the
chosen topology.

c) Line with
integrated switches

b) Tree with switchesa) Star (switched)

PROFINET-Switch

PROFINET-Device

Figure 4.19: Possible PROFINET topologies (mixed forms allowed)

4.5.3 Topologies and Network Devices

Some of the fieldbusses introduced at the beginning of this section allow the
selection of a topology, others are fixed to a specific one. The Table 4.16 shows

92

4.5 IO - Fieldbus communication

a list containing each fieldbus, possible physical topologies, and the network
type.

Table 4.16: Network topologies of the presented fieldbusses

Name Physical top. Network type

AS-Interface Line, Bus, Star, Tree Master/Slave

CANopen Line Multi-Master/Slave

CC-Link IE Star, Line, Ring or a mix Master/Slave

EtherCAT Star, Line or Tree Master/Slave

Ethernet/IP Star, Tree or Line Producer/Consumer

INTERBUS Ring with branches Master/Slave

Modbus/TCP Star, Tree or Line Client/Server

Powerlink Line, Bus, Star or Tree Master/Slave

Profibus Line, Star, Ring Multi-Master/Slave

PROFINET Line, Bus, Star or Tree Controller/Device

Sercos III Ring or Line Master/Slave

The topology has an effect on the performance (cycle time, data throughput,
number of devices) of the fieldbus, which will in consequence influence the per-
formance of the PLC the fieldbus is connected to. Especially for Ethernet-based
fieldbusses, devices like Hubs, Switches, and Routers impact the overall perfor-
mance and behavior of the network by adding delays during the forwarding
of messages. However, in non-ethernet-based networks, this effect is usually
too minimal to be considered in the early systems engineering models. There
are several approaches and tools (e.g. OMNeT++, NS2, NS3) that can be
used to analyze a network in detail, down to the energy consumption per ar-
riving network packet [Fee01], but they are not in the scope of thesis. The
selection of either a star or a tree topology has often only the noticeable ef-
fect, that more equipment must be used which slows down the forwarding of
messages. However, these effects and additional latencies are usually already
considered in the specification of the fieldbus or the requirements for the devi-
ces that need to be certified for it. To make a (performance) prediction of even
these fine detailed settings, several approaches and tools are already available
[SKKS11, LF07, MDFF06b, COH07]. These tools also consider the standard
network related parameters like network latency, jitter, forwarding delays, qua-
lity of service (priority of packages), package loss, package collisions, and much
more.

4.5.4 IO Parameter

There exists a huge number of different fieldbus technologies, each having their
own specific attributes and values. To allow the modeling of performance rele-
vant information in the early development phases, the common parameter need
to be identified and represented in a fitting, abstract way. The following list is

93

Chapter 4 Influence Factors

based on the performance evaluations from Phoenix Contact and several other
performance modeling approaches. In [LF07] just the PLC, switches, and mo-
dules are considered for the simulation of a PROFINET network. TrueTIme
[HCÅ03, CHO10] only uses the term network and nodes for a simulation - all
other details are hidden in the simulation models and are not accessible for the
user. In [MDFF06b], again just switches, IOs, and PLCs are considered in the
simulation. They usually neglect the current data size that needs to be trans-
ported over a network or the distances between nodes. These parameters are
listed here as well to provide a broader information base for subsequent analysis
approaches.

Number of devices The number of devices in a fieldbus is parameter appli-
cable for almost all technologies. For PROFINET this is the count of
pndevices, for EtherCAT this is the number of slaves. These devices com-
bine several analog or digital inputs into a frame or package and send the
data to the PLC. Each IO point that is connected to a device will add to
the amount of data send to the PLC. This data needs to be processed,
creating a specific utilization on the PLC. Depending on the fieldbus, is
the data fixed per device or related to the amount and kinds of IOs. In
Ethernet-based fieldbusses, each device also needs to be addressed by one
or more network packages. The detailed PROFINET example showed
that it is even possible to set varying refresh intervals for sending and
receiving per device.

Process data size For fieldbusses the amount of data, which is send over to the
PLC and back again, is a parameter that must be considered. Copying
data, creating the frames, or parsing the data does impact the PLC and of
course the fieldbus throughput. Most fieldbusses use the number of Bytes
per package or kbytes/s as a unit of measurement. However, the size is
often set by the kind of devices used (e.g. digital or analog devices (see
section 2.1.2)). Analog are all devices that provide or use values with more
than two states (0 or 1). A light barrier that only sends a signal when an
object is detected is an example for a digital sensor. The data this sensor
transmits can be represented with just 1 bit. Analog devices can provide
more values in a given range. This range is for example depending on the
voltage. In a fieldbus, the voltage is converted to a digital signal e.g. 8
bit, ranging from 0 to 255. A temperature sensor may provide a specific
voltage for its given temperature range which is then converted to an 8
bit value. Providing a greater data size (e.g. 16 bit) will result in a finer
resolution or a greater range of values. However, the classification of a
device type as analog or digital is not sufficient for the in-depth analysis
of a network (see topology specific model in 5.1.3). The bit size of an
analog device may change depending on the fieldbus. The analog/digital
property is sufficient for an early analysis. Default values depending on
the fieldbus and device type can be assumed for an analog device. For
more in-depth analysis, the actual bit size must be provided.

Cylce times The cycle time indicates how often data is exchanged between the

94

4.6 Services

PLC and the devices/slaves. There are usually two ways how the cycle
time is determined. The first approach uses an automatically calculated
time that is performed offline during the configuration of the fieldbus or in
the startup phase. It is usually based on data sizes and number of devices.
The second, and uncommon way, is to set it up by the engineer manually
(also in offline configuration). Shorter cycles induce a non-neglectable
stress on the PLC and must, therefore, be considered in the early design.
Some fieldbus technologies are not able to set certain cycles times if the
amount of data or the length of the cable/segment is too high. And
for some fieldbusses, the cycle time may vary (see ModbusTCP) between
intervals. Therefore, a fixed (periodic pattern) value is usually suited
for most systems, but a varying value is necessary (including stochastic
arrival patterns).

Maximum cable/segment length Interesting - not only for the electrical engi-
neer – is the maximum cable or segment length. This parameter might
influence the cycle time of the fieldbus, depending on the used techno-
logy. The length of cables and segments is also a requirement that must
be considered when choosing a fieldbus for an automation system. Some
fieldbusses do not support a cycle time of 1 ms in combination with a
specified cable length of 500m. To specify the cable length, the deve-
lopment of the automation system must be in a more advanced stage or
estimated. Therefore, for an early analysis of the fieldbus, the length pa-
rameter should be taken into account for the creation of the more detailed
modeling phases, see topology specific model in section 5.1.3

The different fielbusses have their own properties and requirements that need
to be considered. During the analysis of the firmware it was measurable, that
the mapping of process data onto the different tasks had an impact on the PLC
performance. This effect is, however, highly dependent on the firmware and
the protocol stack. Therefore, the mapping of data to Programs and Tasks
has not been added to the list of parameters, despite it has been used for
previous performance predictions [FH12]. Another factor that might influence
the fieldbus behavior is the used cable or medium like fiberglass, copper or other
wireless communication like bluetooth [GH09].

To cover all these properties in an abstract model is not feasible. A possible
solution for this is the separation into two level of abstraction: A topology
independent and a topology specific layer. This approach is further detailed in
section 5.1.3.

The Table 4.17 summarizes the important parameters that needs to be consi-
dered when using a fieldbus system:

4.6 Services

Services are used to represent the secondary functions of the PLC. Most services
provide means for communication with other devices or systems. Well-known

95

Chapter 4 Influence Factors

Table 4.17: Influence factor parameter for the io system

Name Type Description

Number of de-
vices

Integer Specifies how many devices are connected
to the PLC

Process data
size

Integer Specifies how much data is exchanged

Cycle times Integer The refresh interval in which data is
exchanged–

Segment
length

Integer Length of the cables/segments

representatives for services, which are available on almost all PLCs, are the
FTPserver and the Webserver. Both allow developers to exchange data with
the PLC. The following list describes four selected services in more detail. These
services are common and cover different aspects of communication, ranging from
reading variables over downloading files up to executing operations on a PLC.
Most of these services provide their functionality via standardized protocols like
HTTP. However, depending on the vendor and PLC, custom services and pro-
tocols like Beckhoffs ADS [Bec16a] can be implemented. There are many more
services available and their number is – due to the increasing use of software
and communication in the automation domain [BJN+06] – rising.

� FTPServer: The FTPServer is used to download log files from the PLC,
to upload new projects, or to even exchange the whole firmware. Usually,
the FTPServer is a low priority process that will get CPU performance
when all other controlling tasks are completed. When using the server,
only two parameters can be identified: The filesize to set the size of the file
that is transferred and the access frequency to specify how often the server
is accessed. Other aspects like the overhead to build up a connection
or to authenticate are neglectable in comparison to the data copy and
sending utilization. However, there exist some denial of service attacks
that just open a connection and wait for a timeout. By doing so, memory
is allocated and the server needs more processing time. The Figure 4.20
depicts an FTPServer receiving a project file with a size of 3 MB. It

FTPSERVER

Project or program

Logfiles

Filesize 3 Mbyte

Filesize 205 Kbyte
Every 60 minutes

Engineering workstation

Management server

Figure 4.20: Example of different usages of the FTPServer service

96

4.6 Services

is transferred from an engineering workstation every time a bugfix has
been created. A reoccurring use of the service is the automatic collection
of log files created on the PLC. A management server connects to the
FTPServer and downloads one or multiple log files of a given size. This
download might happen every 60 minutes, depending on the importance of
the log files. How the FPTServer influences the overall utilization of the
PLC is depending on various factors, ranging from the implementation
of the TCP/IP-Stack, the operation modes (active or passive), or the
transfer type (binary or ASCII) of the FTP. For most implementations of
an FTPSever, a varying background utilization can be identified. This is
the management overhead of the FTPServer which handles the Listener-
and Threadpools for possible connection attempts or existing open, but
not active connections. The background utilization can also be specified
as a baseload.

Table 4.18: Influence factor parameter for the service FTPServer

Name Type Description

Baseload ExecutionTime A background utilization in-
duced by the service for paral-
lel management tasks.

File size Filesize Size of the file that is copied.

Access frequency ArrivalPattern The frequency how often or in
which intervals this service is
accessed.

� Webserver: The Webserver allows remote users to view the state and
variables of the PLC. The variables are copied from the runtime environ-
ment and made available for the Webserver process. But this is just the
smaller share of the Webserver utilization. Executing server based scripts
or executables like CGI and wrapping them into the HTTP protocol takes
a lot more time. This generates a certain amount of CPU usage depending
on the access rate and the file size of the website. The number of accessed
variables must also be considered. Figure 4.21 shows a Webserver being
accessed from three different types of devices. First, a Remote Manage-
ment Server uses the website on the PLC to visualize the current status.
In this case, 150 variables must be accessed and shown in a dynamically
generated HTML page. The user refreshes the page sporadically. Next,
a mobile device like a tablet or phone is used. A typical example is a
tablet of a technician inside the factory who is now able to observe the
current state of the PLC. Often a virtual private network (VPN) is used
to extend a private network over a public network allow the technician
to view the state at home from his mobile phone. The last example is
a Webserver providing data for a human machine interface (HMI). The
HMI is a simple panel able to display HTML pages and mounted at or
near the automation system. The HMI usually refreshes the HTML page
in a specified interval like 1000ms. Similar to the FTPServer is it possible

97

Chapter 4 Influence Factors

that the Webserver needs a Threadpool and active listeners to function
correctly. Therefore, the Webserver creates a certain amount of baseload
utilization on the PLC as well.

50 variables

Every 1000 ms

Remote Management

WEBSERVER

HMI

pressure

20 variables

150 variables

Mobile devices

Figure 4.21: Example of different usages of the WebServer service

Table 4.19: Influence factor parameter for the service Webserver

Name Type Description

Baseload ExecutionTime A background utilization in-
duced by the service for paral-
lel management tasks.

File size Filesize Size of the file that is copied.

Access frequency ArrivalPattern The frequency how often or in
which intervals this service is
accessed.

Num. of variables Integer Specifies how many variables
are copies per access.

Type of variables Primitive Type The type of the accessed va-
riable influences the copy pro-
cess.

� OPC-UA: OPC stands for Object Linking and Embedding (OLE) for
Process Control and is used to exchange data between control devices. Its
successor, the OPC-UA (for Unified Architecture) server, provides services
to browse and request variables from the runtime or other PLC related ob-
jects. Its main features are the platform independence, integrated secure
concepts (encryption, authentication, and auditing), the ability to add
new features without affecting existing applications, and a comprehensive
information model for defining and retrieving complex information. The
OPC-UA server is often used to exchange data between PLCs and other
external systems like SCADA, diagnosis or HMI. An OPC-UA client usu-
ally requests these variables in predefined intervals to update its state. In

98

4.6 Services

addition to the rate of access, the variable type and the number of varia-
bles have an impact on the PLC performance. OPC-UA provides a broad
range of other features to interact with the PLC the server is running on.
It is, for example, possible to trigger alarms on the PLC that must be
confirmed by an maintainer of the automation system. Additionally, is
the OPC-Server capable of calling commands which are used to execute
functions or applications remotely on the PLC. Figure 4.22 shows some

50 variables

Every 1000 ms

Remote Management

HMI

pressure

1000 variables

320 variables

OPC-Server

CP
O

Every 5000 msSCADA system

Device OPC-UA
Client/Server

Device OPC-UA
Client/Server

1 command,
3 alarms

10 variables 22 variables,
 2 alarms

OPC-Server

CP
O

OPC-Server

CP
O

Every 20 msEvery 50 ms

Figure 4.22: The OPC-UA Server and its central role

exemplary scenarios for the use of an OPC-UA server. In the top right is
a remote management station depicted that accesses 320 variables to visu-
alize them to a technician. In the second example a SCADA system reads
1000 variables every 500 ms to store them in a database. This informa-
tion can be aggregated and used for condition monitoring. The SCADA
system also reads alarms and is able to trigger a command on the PLC.
Next, instead of using a Webserver, the HMI communicates directly with
the OPC-Server to visualize the current PLC state. Modern HMI include
a small OPC-UA client that is capable of registering on variables to use an
efficient publish/subscribe system that sends data only on value changes.
However, in this example the data is exchanged based on a fixed interval
set to 1000 ms. The last two accesses to the OPC-Server are performed
by two devices. One of the goals of the unified architecture is to simplify
networking of PLCs from different vendors. This enables the exchange of
process data without the use of fieldbusses. For example can alarms and
commands be send between devices, allowing a more component oriented
structure. This access and communication is not restricted to the field le-
vel between automation devices but can also be used to connect the field
level with the enterprise infrastructure. The standard even sets the basis
for a simple file transfer over the OPC-UA server, making the FTPServer
obsolete. The OPC-UA server needs a set of listeners and management
threads to function properly, resulting in a baseload of this service.

99

Chapter 4 Influence Factors

Table 4.20: Influence factor parameter for the service OPC-UA

Name Type Description

Baseload ExecutionTime A background utilization in-
duced by the service for paral-
lel management tasks.

File size Filesize Size of the file that is copied.

Access frequency ArrivalPattern The frequency how often or in
which intervals this service is
accessed.

Operations Operation This parameter models the
different operations that ab-
stract the behavior of the
Function Block.

Load per Opera-
tion

ExecutionTime This parameter must be spe-
cified for each Operation. It
defines the execution time for
each operation call.

� SNMP: The Simple Network Management Protocol (SNMP) is com-
monly used to provide information about the device over the network
(IP). SNMP server provide management data as variables structured in
an information tree. The structure of this tree is defined in Management
Information Bases (MIB). The protocol defines a standard set of variables.
Each device, however, can define own MIBs to specificy which kind of in-
formation is found in the tree. Management software like WhatsUp Gold
[Ips17] can import the device specific MIBs and access these variables to
manage and overview the network. In addition to reading variables from
the devices, some values can also be set/written over the protocol. Until
authentication and authorization was added to SNMP in version 3, this
was however a high security risk.

Remote Management

50 variables

15 variables

Every 30 sManagement Logging

SNMP Server
MIB

MIB

Heartbeat 'ping'

Figure 4.23: SNMP server is providing data for the network management tools

Figure 4.23 shows a device with a running SNMP server. A management
station is used to access a couple of variables sporadically. Another server
is used to a ping every 30 seconds (heartbeat), checking whether the
device is still online. The management station also collectes data about

100

4.7 Summary

the number of logged in users, current device temperature, or van speed.
The stress that is put onto the PLC is again depending on the IP-stack
and the operating system. In most well designed networks, the utilization
caused by a ping or the SNMP protocol in general can be neglected.

There are many more (vendor specific) services. The list continues with
MQTT-Servers [Org17], SQL-Clients [SQL], DDS-Interfaces [Obj04], or
Apache Thrift-Interfaces [Apa17]. Each of these services has its unique
performance profile when accessing data or functions on the PLC. Com-
mon among all services are, however, the baseload that a service uses
and the fact that the utilization is depended on the (access) frequency in
which an external system or a user interacts with the service.

Table 4.21: Influence factor parameter for the service SNMP

Name Type Description

Baseload ExecutionTime A background utilization in-
duced by the service for paral-
lel management tasks.

Access frequency ArrivalPattern The frequency how often or in
which intervals this service is
accessed.

Num. of variables Integer Specifies how many variables
are copies per access.

Type of variables Primitive Type The type of the accessed va-
riable influences the copy pro-
cess.

4.7 Summary

In this chapter, the various influence factors that impact the performance of a
PLC in an automation system have been investigated. These factors have been
identified based upon common factors from existing performance prediction
approaches, by exhibiting the firmware of a well know PLC vendor Phoenix
Contact, and by analyzing exemplary System Engineering models of automation
systems. This list of influence factors is gathered depending on overall impact
on the PLC, how difficult it is to model/capture them, or whether information
is available in the early development stages. A short summary is given in the
following list.

� Program: The execution of Program code directly influences the utili-
zation of the PLC and the automations systems performance

� Function Block: Invoking a Function Block and its optional background
load puts stress on the PLCs CPU.

� Cyclic Task: The CyclicTask is a periodic task with fixed intervals. The
task is used to trigger the execution of a Program or Function Block.

101

Chapter 4 Influence Factors

� Event Task: This aperiodic task is hard to model due to the different
sources for events which trigger the execution. An approximation with
density functions is best to incorporate their induced utilization.

� Idle Task: The idle task is dependent on the execution time of associated
Programs and Function Blocks. The interval of the task may jitter.

� PLC: The PLC as a container for several hardware related factors like
CPU frequency, caching, architecture and multi core influences the exe-
cution of Programs and Function Blocks, services, and all other compu-
tational factors.

� OS: Operating system processes create a base utilization on the PLC. For
embedded devices these processes are stripped down to a necessary core.
The base utilization can be neglected, but the impact of this factor is low.

� Firmware & Runtime: Management processes and Runtime Environ-
ment influence the code execution and create a background utilization.
Usually the performance oriented design puts low stress on the CPU and
is therefore a low impact factor.

� IPTraffic: The major part of IPTraffic is covered in the IO and the service
influence factors. However, a tight integration with an office network or
attacks may (in rare cases) affect the automation system

� IO: Receiving, processing and sending of process data is are CPU intensive
tasks. Their impact on the performance of a PLC are high. Several
parameters need to be considered.

� Services: There are various types of services already available and in
development for future PLC generations. They become more and more
popular, hence their influence on the PLCs performance can not be neg-
lected. When and to what degree the performance of the PLC is influenced
is depending on the service and the vendor.

These core influence factors must be considered when conducting an analysis
and/or developing an automation system. As stated in the beginning of this
Chapter and in the detailed introductions of each influence factor, are most
details only important for a precise analysis of the PLC. Even small changes in
the compiler settings or task priorities can influence the execution behavior of an
idle task. But these effects are usually hard to model or are simply not available
in the early stages of the development. Forcing developers to consider each and
every little aspect might not lead to the desired early evaluation of the system.
Also, by providing too much details, the prediction of the performance will
become harder and might lead to wrong results. Starting with more abstract,
high-level models to perform performance predictions and then detail these
models to conduct in-depth analysis should be preferred [Jai90]. In Chapter 5,
these factors will be used to create a formal model that captures the relations
between factors and all their parameters.

102

CHAPTER 5
Automation Influence Model and
Development Process

To plan a complex automation system, a team of developers needs reliable in-
formation to choose the right components, fieldbus technology, or to find an
optimal software deployment. Using Systems Engineering methods, the de-
veloper team is able to create a first design model of the system. This model
usually focuses on hardware and electrical components. But over the last couple
of years, software became an increasingly important part of the overall auto-
mation system [Vya13, SN99]. This is forcing developers to consider software
artifacts like programs or external services in the early development phases
as well. System Engineering methods like CONSENS [GFDK09] allow the mo-
deling of hardware, software, and different kinds of flows to indicate an exchange
of information, energy, or material. CONSENS also provide means to model
requirements and to relate them to the model elements.

Current System Engineering methods in general support the development of au-
tomation systems. However, domain-specific performance relevant information
is neglected. It is possible to use performance modeling profiles like MARTE
[Obj06] to provide this additional information, but they usually focus on the
annotation of software relevant factors only or are domain-unspecific and tailo-
red towards a detailed timing analysis. In Chapter 4, influence factors and their
various parameters are identified. To capture the influence factors for a subse-
quent analysis, a formal model is needed that can be automatically analyzed or
transformed into analysis models. To validate the early design of an automa-
tion system development, this formal model should be integrated into existing
Systems Engineering models. Additionally, a process that guides developers to
capture and structure the influence factors for each automation system is nee-
ded. This is necessary, because an analysis can only be conducted if a certain
level of detail is achieved and the needed influence factors and their relations
can be modeled.

Contribution C2:
Method for Modeling Automation System Influence Factors
The second contribution of this thesis is a method for capturing automation
specific influence factors in the early phases of the development. This method
consists of a formal model to capture the influence factors based on Systems
Engineering models and a process to guide developers during the specification.

103

Chapter 5 Automation Influence Model and Development Process

CONSENS has been selected as the foundational Systems Engineering approach
which is extended by model elements to capture the influence factors. CON-
SENS provides means to model complex systems on a high abstraction level,
providing developers of multiple disciplines the possibility to synchronize and
coordinate themselves. To capture all performance relevant influence factors, a
formal model has been developed that extends CONSENS. This model is called
the Automation Influence Model, or short AIM. The second part of this contri-
bution is the definition of an accompanying development process. This process
is used to guide System Engineers through the steps of adding influence factors
and their parameters to existing or new CONSENS models.

Identification of
Influence Factors Influence factors

+ Parameters

Develop
domain specific
formal model Automation

Influence
Model

Specify
performance

analysis process

Development
Process

21

3

Figure 5.1: Overview of steps and artifacts in Chapter 5

This Chapter is split into two parts. In Section 5.1, the influence factors,
their parameters, and their relations are formalized in a class model (Step 2 in
Figure 5.1). It it discussed, what information needs to be available at which
development step to specify the influence factors or how detailed the Systems
Engineering models need to be. This covers the various levels of detail that
can or must be achieved, the refinement of components, and the specification
of hardware dependent and hardware independent software. The second part,
Section 5.2, focuses on the process that guides automation system developers
through the specification of influence factors (Step 3 in Figure 5.1).

5.1 Automation Influence Model

The Automation Influence Model (AIM) is used to formalize the different influ-
ence factors and how they are related to each other. A formal model provides
well-formed syntax and semantics, making it (automatically) process- and ana-
lyzable. This is a necessary prerequisite to run automatic performance predicti-
ons based on the influence factors an automation system developer provides.
The formal model is developed in this chapter and is used as a basis for the
UML profile created in Chapter 6 to evaluate the developed method.

To define a formal model, it is necessary to identify a set of elements, their
properties, and relations between them. For this, three questions need to be
answered first:

104

5.1 Automation Influence Model

� Required modeling depth: The modeling depth will affect the deve-
lopment process as well as the number and kind of elements available to
developers to create the model. It must be taken into account, whether
developers will be able to refine certain elements into subsystems and how
this will impact the overall model. In Section 5.1.2 it is discussed, why
refinement is necessary, how detailed a model must be, which elements
can be refined, and what impact a refinement has on the model.

� Topology independent models: The fieldbus influence factor needs
considerable effort to model all relevant elements. But in the early stages
of the development, the kind of fieldbus is usually not fixed. It is therefore
necessary, to enable developers to first model the fieldbus independent
of a technology and topology. In Section 5.1.3, a method for refining
modeling topology independent into topology dependent model elements
is presented. This impacts the overall design of the formal model and its
elements.

� Hardware dependent and independent Load Specifications: Soft-
ware with a fixed execution time runs on each PLC for the same duration
regardless of the actual hardware (e.g. CPU speed). Therefore, the exe-
cution time must be estimated or measured for each PLC, leading to a
high modeling effort. To model the execution time independent from the
PLCs hardware, additional elements and properties must be made availa-
ble in the formal model to capture different kinds of loads. Section 5.1.4
introduced these different kinds of load specifications.

Before discussing these questions, related work considering similar problems or
formal models for performance modeling in general are presented in Section
5.1.1. Afterward, the specification of the Automation Influence Model is de-
tailed in Section 5.1.5. Class diagrams are used to capture the various elements,
their properties, and relations between them.

The Automation Influence Model already abstracts from certain influence fac-
tor details like the PLC’s CPU caching and focuses only on aspects which are
essential to model/annotate in the Systems Engineering models. This improves
the overall modeling process reducing time and effort to annotate existing Sy-
stems Engineering models. Influence factors that are neglected in this formal
model are be provided by the more detailed analysis models (see Chapter 6),
which take aspects like multicore, priorities, and the caching into account.

5.1.1 Related Work

Formal models are used to specify quality of service attributes for a range of
approaches. Most of the analysis tools provide their own input models and
specification language to model the different parts of the automation system
they want to analyze. In the following, a short selection of formal models
to capture performance specific information is given. A comprehensive list of
other formal models can be found in the survey form Balsamo et al. [BdMIS04].

105

Chapter 5 Automation Influence Model and Development Process

Another survey, with a focus on modeling and predicting the performance of
component-based systems, has been conducted by Becker et al. [BGMO06].

MARTE (Modeling and Analysis of Real Time and Embedded systems) [SG13,
Obj06, HPV15] is a well known UML Profile for annotating existing UML mo-
dels. It is a general approach that allows to annotate UML models with per-
formance specific information with a focus on real-time and embedded devices.
The stereotypes defined in the profile allow developers to define elements like
semaphores, concurrent tasks, or schedulers and scheduling policies. Software
elements can be annotated with execution times, resource usages, and relations
among each other. To model hardware specific elements, the pool of resources
contains for example processors, memory, input and output devices, and net-
works. The application of UML and MARTE to predict the performance of
software systems is also content of the book by Koycheva [Koy13].

In [GM04], a language has been developed for representing performance-related
properties of components and of their composition. This language can be pro-
cessed and a compositional performance analysis conducted. Components are
annotated with services they use or provide. Examples for lower level services
are a network with properties like bandwidth or bytes sec or a CPU with speed
and number of operations per second. Via connectors, these services are linked
and a complex system is composes. Afterward, their component based approach
is mapped onto the SPTP [Obj05] UML profile and made available for other
analysis approaches.

The Palladio Component Model (PCM)[BKR09, RBB+11] is an architecture
description language supporting performance evaluations of component-based
software systems. The language and meta models are formally specified with
the EMF Framework [Ecl17b]. Palladio enables developers to model high per-
formance software systems that are distributed on different processing resources
and connected via networks. The framework and meta model allows developers
to create extensions that provide user defined model elements and/or additio-
nal analysis. It is for example possible to add different scheduler for processing
resources like an operating system which can assign different processes to CPUs
or cores. For this, basic scheduling algorithms and a framework to specify cu-
stom scheduler (see [Hap08, Hap04, Hap16]) can be used. All meta models
and language definitions are described in detail in the Palladio [RBB+11] tech
report.

In [PMDB14], the focus is set on the model driven development of safety-critical
systems. They define viewpoints and provide a method for the multi-view mo-
deling of hardware platforms. By integrating their viewpoints and the support
for hierarchical and variable horizontal composition of hardware platforms into
the MechatronicUML [DPP+16] modeling language, they enable developers to
generate runnable code for the modeled targets. In their approach they make
use of a resource model that allows the specification and parametrization of
embedded devices like micro-controllers or control units. This model can be
composed of atomic computing resources like processor, memory, flash, or com-
munication resources with, for example, their physical layer attributes like data

106

5.1 Automation Influence Model

rates and protocols. These hardware models in combination with software an-
notated by WCET, allow subsequent performance analysis. MechatronicUML
and its extensions are based on the EMF Framework [Ecl17b] to formally specify
meta models.

In [FK98], the Quality of Service modeling language (QML) is described which
provides means to specify quality of service attributes for interfaces, operations,
operation parameters, and operation results. The modeling language allows to
model contract types to define the dimensions of quality attributes like per-
formance as delay in milliseconds and throughput in mb/sec or reliability in
Mean-Time-To-Failure (MTTF) or numOfFailures. The contacts can be used
to understand/specify the quality of service requirements for individual compo-
nents as well as the complete system under development. Frølund and Koistinen
also show how their contract types, contracts, and profiles can integrated with
UML to model complex software architectures.

In [AS00], Arief and Speirs present an approach for an UML tool and its models
to automatically generate simulation programs. They use UML class diagrams
to model the static structure and sequence diagrams to model the dynamic
properties of a system under investigation. With their Simulation Modelling
Language (SimML) they provide a formal basis to model elements like process,
data, or queue. They provide information that can be used by a statistics
component. This component collects data that is relevant to the performance
evaluation of the simulated system. The annotated model is transformed into
Java code and executed to perform a discrete-event process-based simulation.
As a result, different quality of service properties like processing delay, average
service time, or number of processed jobs can be predicted and the design of
the software evaluated.

In ’UML-Based Performance Modeling Framework for Component-Based Dis-
tributed Systems’ [Kah01] an approach to model performance relevant infor-
mation in existing UML models. They show how to model distributed software
systems considering three basic resources: CPU usage, hard disc access, and
network traffic. It is possible to define complex factors by combining the basic
resources in combination with an additional queuing or delay behavior. Via
the textual Performance Modeling Language (PML), the resource usages can
be added to classes and operations. The annotations for accessing CPU and
disk for a given operation would be defined as Write() {cpu=10,disk=80}.

The paper ’UML Extensions for the Specification and Evaluation of Latency
Constraints in Architectural Models’ [dMLH+00] by de Miguel et al. introduce a
UML extensions to represent temporal requirements and resource usages. These
extensions add a set of formal constraints and stereotypes, which can be used
to model general latency and capacity quality of service requirements. Part
of these constraints and stereotypes are definitions to model periodic timing
constraints, execution times of uml elements, stereotypes to define networks
and processors, or cyclic classes to define the temporal distribution of cyclic
operations. The UML diagrams extended by the annotations are used as input
models for the automatic generation of scheduling and simulation models for

107

Chapter 5 Automation Influence Model and Development Process

different tools. Their formal model to specify quality of service attributes and
artifacts is based on UML, stereotypes, and OCL[Obj17] constraints.

Conclusion

This section introduced related work and provided insights to selected approa-
ches. Most of the analysis tools provide their own input models and specification
language to model the different parts of the system they want to analyze. They
focus on a specific goal or target area and do not cover the wide range of influ-
ence factors identified in Chapter 4. However, they share similarities, common
elements, and techniques to create (automation) system models. These com-
mon elements are considered during the definition of the formal Automation
Influence Model in Section 5.1.5, as well as meta questions regarding the re-
quired modeling depth (see Section 5.1.2) and the need to provide hardware
independent models (Section 5.1.4).

5.1.2 Required Modeling Depth

Modeling complex (automation) systems is a time consuming task that needs
a high degree of communication and interaction between the different involved
disciplines. The (simplified) goal of Systems Engineering approaches is to pro-
vide a process and models to create an overview of the whole system including
all involved disciplines. As a result, Systems Engineering models are a first,
partially rough sketch of the system under development. In most cases, at le-
ast some parts of the system under development need to be modeled in more
detail to provide enough information for the involved domains or to conduct
appropriate analysis. This leads to two points that need to be discussed before
deciding which model elements must to be considered or created.

� Question 1: When to stop going into further details and start with the
discipline specific development.

� Question 2: Which level of detail needs to be achieved to be able to
specify a subset or all influence factors.

These points are discussed in the following.

Question 1: The first, general problem has been tackled before in various
domains, ranging from common modeling [BRS95], over software development
[SVC06, SVE07], to performance modeling up to Systems Engineering [Alt12,
BRS95, CBB15]. A partial answer can be given by the three characteristics of
a (software) model as given by [Sta73, HM08] or [MSUW02]. First, the model
needs to abstract properties and remove details of the modeled object. This is
the Reduction Aspect or Abstraction property of a model. It will make the model
less detailed as its real world counterpart, resulting in an easier to understand
representation, allowing to focus on the important properties only. Second,

108

5.1 Automation Influence Model

the real world object with all its considered attributes is projected (Projection
Aspect) onto its model. “A model can be seen as the result of a projection
(in a mathematical sense). The real world object is projected onto its model
representative by removing the unconsidered attributes. This projection is an
isomorphism if the projection of the real world entities on the model entities still
allows conclusions to be drawn from the model entity onto the real world entity
with respect to the aim of the model. The term refers to the equivalence (iso=
equal, morph = shape) between the model and the real world entity.” [Bec08].
And third, a model must have a purpose and is pragmatic. This allows to use
the model instead of the real world object to answer specific questions under
given assumptions.

Therefore, the question how detailed a Systems Engineering model (of an auto-
mation system) needs to be, depends on the use of the model. Usually the focus
of Systems Engineering models like CONSENS is to create a holistic overview
of the system. The Vee-Model for the CONSENS development process suggests
that after the principle solution has been fixed, the different disciplines start
their designs based on the coarse structure of the system. However, this rigid
process is now replaced by a more iterative approach [Rie14, HBM+15]. But
there is still no guideline or process how to find the correct level of detail for a
specific system under development.

Question 2: The second problem, knowing which level of detail needs to be
achieved to be able to specify a subset or all influence factors, can be easily
answered for the majority of influence factors. These factors rely on the PLC
as a crucial part of the automation system. This includes – of course the PLC
itself – as well as the Tasks, Programs, Function Blocks, Functions, and Services.
As a result, to model these elements, it is necessary to provide a containing or
referable PLC. Section 5.1.5 details the different model elements that make use
of these relations to a PLC.

Function Blocks, Functions, and Tasks can be defined anywhere in the automa-
tion system, including the PLC, subsystems, or IOs. This has the advantage
that certain software related elements can be a part of their according hardware
element, creating automation specific modules. It is necessary to reference the
PLC that will execute these software elements.

The services must be a part of the PLC. They are provided by a PLC and can
not be defined outside of it. For example, the FTPserver is a component of the
PLCs firmware and can not be run or modeled on a different element. Services
are preset by the chosen PLC type. Elements that make use of the provided
Services are not dependent on an existing PLC, but must reference them for
the service access.

For fieldbuses and IOs, the question what level of detail needs to be achieved to
model all required elements can not be answered with a simple solution. The
general purpose of a fieldbus is to connect the various IOs with the PLC for
data exchange purposes. On a high level of abstraction, the type of fieldbus, the

109

Chapter 5 Automation Influence Model and Development Process

IOs, and the PLC are sufficient to derive information for subsequent analysis.
However, for more sophisticated analysis, the fieldbus specific elements like
buscouplers, connections, or nodes must be considered. The following example
illustrates how a fieldbus can be specified on different modeling depths.

Figure 5.2 shows an excerpt of the Unit2 of the turbocharger production sy-
stem. The full example of this unit is presented in Chapter 3. The FT-Robot
is communicating with the Mill to know when to release the clamps and the
gripper. This is a more functional view that shows how both components need
to interact with each other. The only modeled elements are the components
and their exchanged information. However, the communication between these
elements must be exchanged via a fieldbus and is usually handled by a PLC.
Such a communication impacts the performance of an automation system, re-
spectively the PLC. Omitting the fieldbus and its properties will lead to an
imprecise prediction. Therefore, this level of detail is not sufficient.

FT-Robot Mill
Status

Command

Figure 5.2: Active structure with a functional view on communication

The fieldbus and its incoming and outgoing flows are added in Figure 5.3.
Neither the FT-Robot, nor the Mill have computational units themselves. They
are just subcomponents coordinated via the PLC as the heart of the automation
system. The PLC collects data from both subsystems and also runs/executes
the Programs and Function Blocks controlling the behavior of the system. The
logical view has been detailed by a more technical view on the system, introdu-
cing a processing resource (PLC) and a fieldbus. The Fieldbus element repre-
sents the fieldbus that is used to relay all exchanged data. This information is
crucial for the development, because now the electrical engineers as well as the
software engineers know, which component is executing the programs and that
a data exchange between the PLC and the subcomponents must be realized
via a given fieldbus. This level of depth is sufficient to model the fieldbus, its
properties, and connected IOs or elements. There are alternatives to model the
fieldbus. One of them is to use type each information flow, connector, and port
with a specific fieldbus. But these elements would not be shown directly in the
diagram, making the model more complicated and harder to understand.

To incorporate all fieldbus specific influence factors and parameters, the level of
detail must be increased on more step. The electrical engineer and the mecha-
nical engineers need to know, how the information is exchanged. This means,
that details about the used technology, necessary wiring, additional (communi-
cation) components, or topology are needed. Figure 5.4 shows a more detailed
view including two Buscouplers and an Energysupply. The sensor/actuator
data from the Mill and the FT-Robot is not send directly to the PLC, but is re-
layed by a fieldbus specific bus coupler component. These buscouplers provide

110

5.1 Automation Influence Model

FT-Robot Fieldbus
Status

Mill-Command

Mill
Command

FT-Robot-Status

PLC

Mill-

Command

FT-Robot-Status

Command

Status
Mill-

Figure 5.3: Active structure with a more technical view on communication

information to conduct an in-depth performance analysis of the fieldbus. De-
pending on the fieldbus type, the number and properties of the fieldbus specific
elements can vary. See Section 5.1.3 for a detailed analysis of fieldbus specific
elements.

The Figure 5.4 also contains the energy supply needed by the Buscoupler, PLC,
FT-Robot, and the Mill. The energy flows are used to provide electrical energy
to the Energysupply unit. Usually, in this modeling depth each component is
not directly connected via a energy or information flow. For this, Ports are used
which type the information, signal, or energy and enable a much more formal
and precise modeling. However, the ports are omitted in this figure due to the
emphasis on the buscouplers which are actually used to connect the different
system elements.

FT-Robot Fieldbus Mill

Buscoupler Buscoupler

Energy
-supply

Mill-Command

Ele.energy

Ele.energy Ele.energy

Ele.energy

Mill-Command

Status
Command

FT-Robot-Status

FT-Robot-Status

Ele.energy

PLC

Status

Command

Figure 5.4: Active structure with a detailed model of the communication

Conclusion

The two questions answered in this section showed that the depth and detail
in which a model is created highly depends on the purpose of the model. To

111

Chapter 5 Automation Influence Model and Development Process

incorporate all influence factors in the Systems Engineering models, at least
basic information needs to be available. This includes the PLC, Tasks, Pro-
grams, Services, and IOs. These elements must be added in order to perform
a performance prediction. Regarding the fieldbus, two different levels can be
identified: an abstract level only considering basic information and IOs and a
more detailed view covering the topology of the fieldbus. These two levels of
detail are further detailed in Section 5.1.3.

An important point that needs to be considered is the refinement of elements
into smaller parts. Programs and Function Blocks are software based examples
for such refinements. A Function Block can be composed of further Function
Blocks. The Automation Influence Model must be capable to handle such refi-
nements.

Another example of a hardware centric refinement is given in Figure 5.5. It
depicts how the hardware modules AssemblyConnector element and PLC are
refined into smaller components. On the higher level of detail, a developer esti-
mated that the AssemblyConnector will consist of nine IOs and a total datasize
of 132 Byte. In the following development steps, the AssemblyConnector will
be further detailed, allowing the specification of each single IO with its own
data size and kind. In the figure, the information flows connecting each IO are
combined into a single flow to provide a better visualization.

PLC

delivery commands
Assembly-
Connector

PLC

command x

AssemblyConnector

FixingL1Left FixingL1Right
FixingL1Left FixingL1Right
FixingL1Left FixingL1Right

SensorLane3
SensorLane2
SensorLane1

Buscoupler2
Buscoupler1

6

- 9x IOs
- 132 Byte

- digital
- 1 Bit

- analog
- 2 Byte

- digital
- 1 Bit

Le
ve

l
of

 D
et

ai
l

sensor data

sensor data

3

low

high

Figure 5.5: Refinement of the AssemblyConnector containing several IOs

As a result, the Automation Influence Model must be capable to model high-
level elements that optionally can be refined in later stages of the development.
For this, the topology dependent and topology specific level have been specified,
which are presented in the following section.

5.1.3 Topology Independent and Topology Specific Model

As identified in the previous section can some influence factors be specified at
different levels of detail. This also applies to a fieldbus or network used to
provide a communication channel between the PLC and IOs. In these early

112

5.1 Automation Influence Model

stages, a highly detailed specification of the fieldbus and all its components and
settings is usually not addressed. The bus systems and networks are roughly
sketched and later refined.

However, in case an early validation of the system design should be conducted,
all fieldbus specific information must be added to the model to fully describe
the influence factor. This would force developers to provide each buscoupler,
switch, hub, fieldbus setting, and IO configuration already in these early stages.
As a result, the model would incorporate information that might not be needed
at this point and therefore violate the model reduction aspect. Additionally,
changing the type of fieldbus in the early stages could result in an in-depth and
time consuming restructuring of the model.

To counter this problem, two consecutive models are provided: the topology
independent model and the topology specific model. The first model provi-
des elements to specify a fieldbus with very few elements on a high level of
abstraction. It is sufficient to conduct a basic performance analysis and provi-
des the foundations for a subsequent refinement into the second, more detailed
model. This second model includes all, fieldbus-specific details that must be
incorporated into the Systems Engineering models. This approach will allow
developers to focus on the important elements of the model and reduce time
and effort to create or update detailed fieldbusses.

Topology Independent Model

The Topology Independent Model (TIM) provides all basis influence factors
including PLC, Tasks, Programs, Function Blocks, Functions, and so on. It also
covers an abstract fieldbus and IO definition, that can be used to roughly sketch
the communication parts of the system under development. However, it does
not include topology specific model elements like network nodes, buscouplers,
connections, or network interfaces. The fieldbus can reference all necessary
elements without the need to specify how they are connected or witch topology
is used.

When conducting a performance prediction only based on the TIM, various
assumptions must be made by the analysis or preceding transformation steps.
Basically all minimum required parameters must be set either randomly, by a
default value, or derived from the current model.

Taking PROFINET as an exemplary fieldbus specified with the TIM, it will
contain the fieldbus type (PROFINET), the desired or minimal interval time
and several IOs. For the analysis, the IOs must be assigned to currently neg-
lected buscouplers. A simple way to do this is to just assume each buscoupler
can manage eight IOs, no matter if they are digital or analog. Also, each
buscoupler will be set to a given refresh interval and data size to exchange.
When conducting a performance prediction based on the TIM, the developers
must keep in mind that serveral assumptions are made and that the results of
the prediction can deviate from the measurements and from the more detailed

113

Chapter 5 Automation Influence Model and Development Process

Topology Specific Model (TSM). However, this way an early performance pre-
diction covering the major influence factors of the system is possible, without
the tedious task to model all fieldbus specific elements and parameters.

Topology Specific Model

The Topology Specific Model (TSM) is used when the kind of fieldbus has been
fixed and a level of detail is achieved that allows the modeling of fieldbus specific
elements like buscouplers, gateways, bridges, routers, switches, and so on. The
TSM provides more detailed IOs properties, allowing the developer to specify
parameters and settings tailored for each device. However, changing back from
the detailed TSM to the more abstract TIM might result in in-depth corrections,
spanning throughout the model. Fieldbus specific elements must be removed
or given properties values updated. Figure 5.6 depicts, how the TSM model
extends the elements of the TIM providing fieldbus specific influence factors and
parameters. The TSM makes use of the high level elements specified by the TIM
and either references or extends them to provide fieldbus-specific elements. A
major part of this extension is based on the IO elements and properties defined
in the TIM.

IO

Topology Independent Model
(TIM)

Topology Specific Model (TSM)
e.g. PROFINET, INTERBUS, ModBusTCP

Figure 5.6: Topology specific parts extending the TIM base

There are two ways the TSM can be designed. Either as a holistic model
containing all network devices and settings which can be generally applied or
as multiple extensions for each kind of communication technology available for
an analysis. Having to include all current and future fieldbusses, covering the
broad range of network devices - without just defining an abstract network-
node element -, and incorporating all of their specific properties would be an
impossible task. The TSM would steadily grow and cover a wide range of
fieldbusses. For this thesis, the second design choice to use multiple, fieldbus-
specific TSMs has been selected. This approach is more flexible with regard to
upcoming fieldbusses, their unique model elements and parameters, as well as
necessary additions to the analysis.

114

5.1 Automation Influence Model

Conclusion

Using these two kinds of models, developers are able to specify influence factors
at varying levels of detail. This allows a rough analysis of the system without
the need to model each topology dependent element in the early stages of the
development. In the TIM, changes to the underlying fieldbus will result only
in minor model changes like setting the interval time, name, or version of the
fieldbus. The TIM can be refined until a mature state is reached or the decision
for a fieldbus has been made. From this point on, the TSM can be used to set
up the fieldbus and topology dependent model elements and their parameters.
Splitting up the TSM into different, fieldbus specific parts further pushes the
extensibility and flexibility due to future changes and additions of fieldbusses.
This approach also matches with the proposed realization by using UML profiles
for each TSM (see Chapter 6).

5.1.4 Hardware Dependent and Independent Load Specifications

By simply using execution times (e.g. 50ms, 3sec) to define how much a Pro-
gram or Function Block will stress the PLCs CPU is a valid strategy. Execution
times can be estimated and provide developers a natural way to set the time
it takes for a software to execute and how much load it will put on the PLC.
However, using fixed execution times limit flexibility, extensibility, and porta-
bility. A Function Block with a fixed execution time runs on each PLC in the
same duration, but should be finished on faster CPUs much earlier. Therefore,
the execution time of the Function Block must be estimated or measured for
each PLC, leading to a much higher modeling effort.

A solution to this problem is an abstract demand of a software. A resource
like a CPU can process a certain amount of this demand in a given time. This
allows to model the software independently of the hardware. In the following,
three different ways to model load specifications are presented. A fixed time as
an ExecutionTimeSpecification, an abstract demand via a ResourceUsageSpeci-
fication, and a ModelUsageSpecification that indicates that the load is covered
by the analysis model and not defined via the influence factor. They each offer
different advantages when modeling specific influence factors.

� ExecutionTimeSpecification: The basic and most intuitive approach
is to use a fixed time value. This value must be provided by the develo-
pers of an automation system and is usually estimated or measured from
existing software. The value specifies a time how long an execution will
take on a given CPU. There are various ways to specify such a time value,
ranging from Worst-Case-Execution-Times to Probability-Mass-Functions
(see Chapter 4). The Wort-Case-Execution-Time, for example, allows a
developer to estimate the time a Program will run in the worst case scena-
rio (= the longest duration possible). Specifying such a time value will also
function as a requirement for the Program, forcing the developer to up-
hold the given time boundaries when programming the software. Setting

115

Chapter 5 Automation Influence Model and Development Process

a fixed time value for the execution of a program is an option available
in most performance modeling approaches like MARTE [SG13, Obj06],
TrueTime [HCÅ03], OmNet++ [Ope17], or the Timing-Architects Tool
Suite [TA17].

� ResourceUsageSpecification: By setting a fixed execution time, the
actual performance of a PLC is not considered. The set execution time
can be estimated or reused from previous projects, but as soon as the
(performance class of the) PLC changes, the execution times will likely
not be applicable for the new system. A faster PLC could execute a
program in less time, on a slower PLC in more time. Therefore, it is
necessary to provide another option to specify, how much load will be put
on a CPU running a Program or Service execution.

Depending on the analysis tool and its features, a literal is provided that
is parsed during the analysis. In this thesis, the Palladio Component
Framework is used to run performance simulations to predict the PLC
utilization in an automation system. Palladio uses resources and specifies
demand with SEFF (see 2.3.2) to calculate the utilization of a resource.
An exemplary resource is the CPU which can process 15000 resource units
per time unit. Specifying a usage of 5000 per time unit will result in a
utilization of 33%. MARTE provides the Value Specification Language
(VSL) to set resource usages based on execution times. With a expression
like exectime = ((117 ∗ $CPUspeed), us), a hardware independent execu-
tion time is set. By using a variable CPU speed in a formula, it is later
possible to reuse the element without changing the model or creating a
different model for every hardware setup.

The Timing-Architects Tool Suite allows the specification of Runnables
that are executed on the hardware. Each runable can contain several
instructions to perform, representing different algorithms or code1. The
hardware is also modeled separately with the capability to execute a cer-
tain amount of instructions per time unit. TrueTime ([HCÅ03, CHL+03,
COH07]) allows the specification of functions. These functions can con-
tain runnable code or simulated execution times specified by delays.

Using an analysis tool specific to model resource usages will make the
simulation much more accurate. However, finding the correct resource
specifications and identifying the resource usage is often quite complicated
[Jai90]. More information on how to model resource specific usages is
given in Chapter 2 and an example evaluation including the modeling of
resources and resource usages shown in Chapter 6.

� ModelUsageSpecification: In the last option, the developer can neither
specify the execution time nor resource usage. The details are hidden
in the analysis models and are PLC specific. This is, for example, the
case when selecting and parameterizing a fieldbus. The utilization for

1AMALTHEA Tool Platform Help - http://www.amalthea-project.org

116

http://www.amalthea-project.org

5.1 Automation Influence Model

this influence factor is calculated based on given parameters and not on
an execution time a developer must specify in the Systems Engineering
model. Special hardware like FPGA or ASIC might boost the performance
when using a specific fieldbus on a selected PLC.

Another example are PLC specific service operations. The access of ser-
vices and their operation parameters can be modeled, but not the actual
stress they will put on the CPU. They too, rely heavily on vendor, PLC,
or even firmware specific implementations that might boost the execution
of certain services.

Conclusion

Three alternatives for modeling the effect of an influence factor have been dis-
cussed. The first one is the hardware dependent definition of specific execution
times, the second one is the definition of hardware independent (abstract) re-
source usages, and the third one is the usage of non-modifiable, PLC specific
features which can only be parameterized. To capture these alternatives, Figure
5.7 shows the different kinds which are grouped under the term LoadSpecifica-
tion. The hardware independent branch contains the ExecutionTimeSpecifica-
tion which specifies a fixed time with the WCET, BoundedExecution, Rand-
omSetExecution and RandomIntervalExecution as specified in Section 4.2.4.
The hardware dependent branch provides a specification for a resource based
usage or with the indirect way over the model parameters. And the last leaf on
the right side specifies the ModelUsageSpecification to define that the analysis
model is used to specify the load that is put on the PLC.

LoadSpecification

Hardware independent Hardware dependent

ExecutionTimeSpecification ResourceUsageSpecification ModelUsageSpecification

Figure 5.7: LoadSpecification and different sub types

Each of these alternatives can not be applied to every influence factor. The
following Table 5.1.4 lists the influence factors and their applicable LoadSpe-
cification types. A short, supplementary description provides further details.
Please note. that the terms ExecutionTime, ResourceUsage, and ModelUsage
are abbreviations for the previously specified LoadSpecification subtypes to bet-
ter fit the table.

117

Chapter 5 Automation Influence Model and Development Process

Table 5.1: Influence factors and applicable LoadSpecification type

Factor(s) Usage Description
Program ExecutionTime,

ResourceUsage
Either a fixed time value or a resource usage can
be used. A Program is not a part of a PLC and
therefore no program should be specified by the
model.

Function
Block

ExecutionTime,
ResourceUsage,
ModelUsage

Each alternative can be used. Basis Function
Blocks can be provided by the PLC/vendor (e.g.
IP, MySQL,..), reused from previous projects or
estimated.

Function ExecutionTime,
ResourceUsage,
ModelUsage

Function provide the same alternatives. They can
be part of the PLC (e.g. TON, ADD, ...), reused
from previous projects or estimated.

CyclicTask,
EventTask,
IdleTask

ModelUsage Only model parameters are used. The parametri-
zation of a task will result in a CPU load. Vendor
and PLC specific.

CPU ModelUsage Part of the analysis model, resp. the PLC. Can
not be modified by the developer.

OS ModelUsage Part of the analysis model, resp. the PLC. Can
not be modified by the developer.

Firmware &
Runtime

ModelUsage Elemental part of the PLC that must be modeled
with in-depth knowledge of the PLC. Can not be
modified by the developer.

File System ModelUsage Similar to CPU, OS, and Firmware is this part
of the model and should not be modified by a
developer.

IPTraffic ModelUsage The parameters of incoming IP traffic can be gi-
ven, not modeled in detail how much load will be
put on the CPU.

IO ModelUsage A coarse and detailed IO model can be specified
that resembles the parameters for this influence
factor. How much stress will be put on the CPU
is highly dependent on the PLC and its supple-
mentary hardware (e.g. a FPGA).

Services ModelUsage,
ResourceUsage,
ExecutionTime

Services are usually provided by the PLC and the-
refore primarily modeled as parameters. There
are however some services that might be provi-
ded through additional software that are in the
scope of the developers responsibility. Therefore
the CPU utilization of this factor can be modeled
with all three alternatives.

All remaining influence factors like compilers, caching, or additional hardware
are part of the underlying analysis model and are therefore of kind ModelUsage.

5.1.5 Model Specification

The Automation Influence Model consists of multiple parts that are detailed
in the following subsections. Each part, namely PLC hardware, POUs, Tasks,
IOs, and Services, covers a group of influence factors and their parameters. The

118

5.1 Automation Influence Model

IO part will be specified in more detail by providing the previously introduced
Topology Independent and Specific Models.

PLC

Most of the performance specific details of the PLC like the firmware, opera-
ting system, scheduling, or runtime must be covered by the detailed analysis
models. Therefore, only a few parameters are visible/modifiable to a develo-
per of an automation system. Figure 5.8 shows the PLC, its attributes, and
containment relations. To identify a concrete PLC and use the according, de-
tailed analysis models the articleNumber is used. In most cases, this number is
not human readable, therefore the PLCIdentificationID provides a more easier
to read identification string. The vendor attribute can be derived from the
articleNumber and is an additional property to increase human readability.

The IPTraffic is used to model the incoming IP packets in a very simplified
way. The number of packets and the size can be specified - both with a fixed,
bounded, random interval or random set modifier. Another way to model the ip
traffic could be profiles that include certain patterns which occur in a factory.
Examples for such patterns are a timed collection of log files or the deployment
of regular updates onto multiple PLCs. These patterns are omitted in this
thesis and could be part of future work for network specific TSM. Function
Blocks, Functions and Programs are contained by the PLC. They are triggered
by Tasks. More information on these model elements can be found in the
following sections.

In Figure 5.8 two more enumerations are depicted. The ExecutionTime enume-
ration provides a set of literals to specify which kind of execution time (WCET,
Bounded, RandomInterval, or RandomSet) is used. The execution time of,
for example a Program, could also be specified with a string literal. However,
providing an additional enumeration value simplifies the parsing of the string
literal and constrains on the model. The second enumeration is the AccessPat-
tern. It is created for a similar purpose, but with the different literals Periodic,
Bounded, RandomSet, and RandomInterval to specify arrival patterns.

POU

To specify Programs, Function Blocks and Functions, two approaches can be
followed. The first approach is more focused on CONSENS. The elements in
the active structure do not follow a type and instance system. Environment-,
System-, and SolutionElements can be compared to prototypes. This is a con-
venient way to create systems engineering models easily, fast, and also fits the
mindset of mechanical and electrical engineers best. Following this approach,
each POU would be defined directly in the corresponding usage specification.

The other alternative to model the POUs is a strict type and instance system.
This forces the systems engineers to specify Program, Function Block, and

119

Chapter 5 Automation Influence Model and Development Process

PLC

vendor : EString
articleNumber : EString
PlcIdentificationID : EString

IPTraffic

numberOfPacketsLiteral : EString
numberOfPacketsValueKind : ValueKind=FIXED
sizeOfPacketsLiteral : EString
sizeOfPacketsValueKind : ValueKind = FIXED

Fieldbus

name : EString
interval : EInt
type : EString

Service

serviceName : EString

Task

name : EString
priority : EInt

Function

FunctionBlock

Program

core : EInt
[0..1] iptraffic

[0..*] fieldbusses

[0..*] providedServices

[0..*] tasks

[0..*] functions

[0..*] functionblocks

[0..*] programs

ExecutionTime

WCET
Bounded
RandomInterval
RandomSet

AccessPattern

Periodic
RandomSet
RandomInterval
Bounded

Figure 5.8: Formal model of the PLC, its attributes and containment relations

Function types in a first and to use these types in instances in a second step.
This improves the reuse of POUs within a complex Systems Engineering model
as well as the reuse of specific elements from previously created automation
systems. However, reusing POUs specified with a fixed execution time may
lead to incorrect performance predictions in case, the POU is executed on a
faster or slower resource (CPU). Therefore, it should always be validated if the
specified values of the selected POUs are still applicable for the current model.
This problem will not occur if, instead of a fixed execution time, a hardware
independent resource usage has been modeled (see section 5.1.4).

For this thesis, the selected approach for specifying POUs is based on the well
known type and instance system. Using types and instances improves the usa-
bility and is already known by IEC 61131-3 developers. Additionally, the profile
that is presented in Chapter 6, is based on SysML4CONSENS which also uses
a strict type and instance system (Blocks and parts). Therefore, the types for
Programs, Function Blocks, and Functions must first be specified as contain-
ments of the PLC.

This close relation to the PLC has the advantage, that it is easier to indi-
cate what Functions and Function Blocks are specific to a certain PLC and/or
vendor (e.g. Phoenix Contact specific Function Blocks for database access).
An alternative would be the introduction of a POU library container. Such
a library, embedded in the system model, could also be organized by vendors
and/or PLCs.

Figure 5.9 shows an excerpt of the influence model. Each PLC contains a set
of POU types. The POU is an abstract class that is refined by the Program,
Function, and Function Block. The Program is able to use Function Block in-
stances (FunctionBlockInstance) and call Functions (FunctionCall). It has just
one property Core which allows to set the affinity of the Program. Function
Blocks and Functions are executed every time its parent Program or Function
Block is executed. The Program itself is triggered by a Task. Functions can
be called via FunctionCalls and FBOperation are called via FBOperationCalls.

120

5.1 Automation Influence Model

For each Function or Operation Parameters can be specified (see FunctionPara-
meter, FunctionCallParameterSpec, FBOperationParameter, and FBOperation-
ParameterSpec). Parameter can further be detailed with the type property. Its
value for a call is set via the parameterLiteral in its according ParameterSpec.

POU

name : EString

ProgramInstance

instanceName : EString

FunctionCall FBOperationCall

FBOperationCallParameterSpec

parameterLiteral : EString

Program

core : EInt

FunctionBlockInstance

instanceName : EString

Function FunctionBlock

FBOperation

name : EString

FBOperationParameter

name : EString
type : PrimitiveType = STRING

FunctionParameter

name : EString
type : PrimitiveType = STRING

FunctionCallParameterSpec

parameterLiteral : EString

ResourceUsageSpecification

usageLiteral : EString
valueKind : ValueKind = FIXED

LoadSpecification

ExecutionTimeSpecification

timeunit : TimeUnit = ns
execTime : ExecutionTime = WCET
literal : EString

PLC

vendor : EString
articleNumber : EString
PlcIdentificationID : EString

[0..1] program

[0..1] function

[0..*] parameterSpecification

[0..1] operation

[0..*] parameterSpecification

[0..1] fBOperationParameter

[0..*] fBInstances

[0..*] functionCalls

[0..*] operationCalls

[0..1] functionBlock

[0..*] parameters

[0..*] functionCalls

[0..*] fBInstances

[0..*] providedOperations

[0..*] fBOperationCalls

[0..*] parameters

[0..1] functionParameter

[0..1] loadSpecification

[0..*] programInstances

[0..*] programs

[0..*] functionblocks

[0..*] functions

Figure 5.9: Classes overview for Programs, Function Blocks, Functions, and re-
lated elements

To model the influence on the PLCs performance, the abstract class POU pro-
vides three alternatives by adding or omitting a LoadSpecification. Omitting
a LoadSpecification will lead to a model usage of this POU. This means, that
the underlying analysis must provide the load this POU will put on the PLC.
In case an element ExecutionTimeSpecification is provided, the specified attri-
butes execTime and timeunit can be used to estimate the execution time of

121

Chapter 5 Automation Influence Model and Development Process

the POU. This execution time is, however, used on all PLCs this POU has
been instantiated on, regardless of the execution speed of the PLC. In case
the ResourceUsageSpecification is provided, the POU uses an abstract resource
demand that is specified for a specific analysis tool. In this thesis, the Palla-
dio Component Framework is used to perform a simulation and determine the
utilization of the PLC. Therefore, the POU needs to be specified with a PLC
independent resource demand. More details can be found in Chapter 7.

Tasks

In Chapter 4, three different types of tasks have been identified and their pa-
rameters specified. The Figure 5.10 shows the relations between the PLC,
Tasks, and Programs. Each PLC contains a set of tasks which can be either
of type CyclicTask, EventTask, or IdleTask. Each task executes one or many
ProgramInstances, which are typed by a Program. The CyclicTask provides
an attribute to specify the cycleTime in which the task is periodically execu-
ted. The EventTask is further parameterized by an AccessPatternSpecification
to provide information when the task should execute the associated programs.
The IdleTask inherits the priority from the abstract Task, but does not pro-
vide further properties to specify. The behavior of the IdleTask is vendor and
PLC specific and, therefore, must be covered by the tool that will perform the
analysis.

PLC

vendor : EString
articleNumber : EString

Task

name : EString
priority : EInt

CyclicTask

cycleTime : EInt

EventTaskIdleTask

ProgramInstance

instanceName : EString

Program

core : EInt

AccessPatternSpecification

type : AccessPattern = Periodic
literal : EString

AccessPattern

Periodic
RandomSet
RandomInterval
Bounded

[0..*] tasks

[0..*] programInstances

[0..1] program

[0..*] execute

[0..1] accessPattern

Figure 5.10: Classes overview for Tasks and related elements

The separation into different subclasses instead of a single Task with an access
pattern (e.g. the Task class), allows in the “Analyze System Performance” step
of the proposed development process (see 5.2.2) an easier transformation into
input models for the performance analysis. In this step, it is necessary to dis-
tinguish between an IdleTask and an EventTask due to the different scheduling

122

5.1 Automation Influence Model

algorithms that might be used – depending on the vendor and PLC (see EmbOS
Scheduler in Chapter 6).

Services

In this section, the classes and relations to model services and the access to
these services are introduced. There are several ways to do this.

The first approach is to model each service as an independent factor with its
own, specific parameters. An influence factor for the FTPServer would include
the properties file size and the frequency/distribution of accesses from the user
or other external systems. Another dedicated OPC-UA influence factor would
be configured with a list of send variables, their sizes as well as a similar fre-
quency/distribution for accessing the data. It would be necessary to add a new
influence factor for each new service. The advantage of this approach is that
every influence factor can be matched to exactly one service and the parameters
can be used intuitively and fit the factor perfectly. Figure 5.11 shows a couple
of services, each specified as an influence factors with their dedicated parame-
ters. This approach has also some other benefits. It would be easily possible to

FTPServer
- filesize
- access-frequency

WebServer
- filesize
- #variables
- access-frequency

OPC-UA
- #variables
- exec_command
- filesize
- access-frequency

SNMPServer
- #variables
- access-frequency

MQTTServer
- ...
- ...

Figure 5.11: Services as influence factors with individual parameters

find suitable PLCs just by defining the necessary services. A list of PLCs from
different vendors could be automatically filtered to constrain the selection of a
fitting PLC.

The second approach would be to identify the common attributes of all ser-
vices and group them together in one, abstract influence factor which provi-
des a broad range of attributes. In the near future, flexible and autonomous
production plants force the exchange of data on various levels throughout the
production process [Ver12, VDI, Kag12, GB12]. This will lead to a strengthe-
ning of existing communication standards as well as to the development of new
services. Therefore a single, abstract service influence factor is a more flexi-
ble approach to specify and model new services and their specific parameters.
A similar approach has been used for the specification of SysML stereotypes
[Obj15b]. Several stereotypes provide a rich set of properties which can not be
applied to an element at the same time. More information on SysML can be
found in Chapter 2. Figure 5.12 shows a graphical representation of the influ-
ence factor Service which can be used to model different kinds of parameters.
The parameters are as follows. The number of variables that will be accessed
is a property that can be used for the OPC-UA Server or Webserver. It is
therefore a general property that should be considered. The access frequency
has already been identified as a common parameter for all services. Several

123

Chapter 5 Automation Influence Model and Development Process

Service
- #variables
- access-frequency
- filesize
- operationExecution

Figure 5.12: The (abstract) Service influence factor

services allow to request files. The OPC-UA server, FTPServer, and even the
Webserver can transmit data. In the listed examples, only the OPC-UA server
is able to execute operations. However, other services like Beckhoffs ADS sup-
port [Bec16a] calling functions like the ADSRDSTATE block. Future services
will also be able to execute or trigger operations and programs on the PLC.
Therefore this property must be taken into account.

In case, a dedicated influence factor is used for each service, the specifics of this
service must be represented by this factor. Due to the increasing number of
services for automation systems, it is not feasible to update the list of factors
when necessary. Additionally, using just one service would require all invol-
ved developers of an automation system to synchronize with each other and
successively add parameters like variables and operation accesses to the defined
service.

Therefore, it should be possible that each developer (in its discipline) can model
the parameters independently. During the analysis, all parameters must be
merged and assigned to the appropriate service. Due to the fact, that the
analysis tools/models must be updated/configured for each existing and new
service anyways, this would be an ideal way to reduce the overall modeling
effort.

Figure 5.13 shows an example of modeling each service usage of an OPC UA
server independently. The parameters shown are specified by one or more en-
gineers and tailored for specific tasks in the automation system. The access
of 50 variables is set up by the electrical engineer who needs process data for
the execution of a smaller device. The transfer of a log file to a management
server every 5000ms is modeled by an software engineer. The third factor on
the left side models the use of a command send to the OPC-UA server. The
updateCache function is executed in an interval of 5000ms. On the right side
a smaller device is accessing 10 variables every 10ms. The last factor shows an
access with a distribution function. The RandomSetPattern defines an access
every 12 minutes with a probability of 5%, every 15 minutes with 90% and
every 17 minutes with 5%.

Basically each access is modeled and the parameters are transfered to a cor-
responding service in the analysis. Therefore, the services are not explicitly
modeled with the possible features they provide, but rather are the sum of all
modeled accesses. In chapter 6, the UML profile used to annotate the Systems
Engineering models is specified. The profile allows to define such services. The
analysis is able to identify these services and use the corresponding analysis

124

5.1 Automation Influence Model

OPC-UA
- 50 variables
- cyclic: 1000 ms

OPC-UA
- exec_updateCache()
- cyclic: 5000 ms

OPC-UA
- 300 kb file (main.log)
- cyclic: 5000 ms

OPC-UA
- 320 variables
- RandomSetPattern[(12;0.05)
 (15;0.90)(17;0.05):min]

OPC-UA
- 10 variables
- cyclic: 50 ms

OPC-Server

CP
O

Remote Management

Every 5000 ms

SCADA system

Every 1000 ms

HMI

pressure

Device OPC-UA
Client/Server

OPC-Server

CP
O

Every 50 ms

Figure 5.13: Combination of multiple influence factor specifications into one

models and load profiles. All accesses that set the parameters for the factor
are transferred to the analysis model and provide the necessary input for the
performance prediction. This allows to model accesses independently of the
service and with a focus on a task, rather then the implementing server. PLC
vendors can provide their own profile extensions and according analysis models
to incorporate new or modified services.

The according classes, properties, and relations to model the influence factor
service are described as follows. Each PLC may contain zero or more Servi-
ces. Usually the number and kind of services provided by a PLC is depending
on its type. Different vendors and performance classes of a PLC might offer
varying sets of services (e.g. without an OPC-UA server or just with a simple
webserver). While the number and kind of services might be fixed by the PLC,
the developer/engineer often has the ability to disable a service which will not
be used. In this thesis, the developer is responsible for setting up the provi-
ded services. This also includes the specification of ServiceOperations and their
ServiceOperationParameters.

Elements which can use the services must be of kind AbstractElement. For the
application in CONSENS, SystemElements or EnvironmentElements would,
therefore, be subtypes of AbstractElement. Three different kinds of Service-
Access are considered in this thesis. The VariableAccess represents a query on
a set of variables. Its parameters are the number and type of variables accessed.
The FileAccess only needs to specify the size of the file which will be transfe-
red from the service provider to the requesting element. The third type is the
OperationAcces which is used to model an execution of a service operation.
A Service needs to provide operations which the OperationServiceAccess must
reference. Each ServiceOperation may provide zero or more parameters which
can also be referenced by the according OperationParameter.

As mentioned are some services PLC or vendor specific. Selected PLCs may
actually not provide a service or operation that has been modeled. Therefore,
before running an analysis, appropriate checks must be made to find inconsis-
tencies between the influence model and an analysis model. This check is not
covered in this thesis.

125

Chapter 5 Automation Influence Model and Development Process

Service

serviceName : EString
ServiceAccess

PLC

vendor : EString
articleNumber : EString

AbstractElement

name : EString

FileAccess

fileSize : EInt

OperationAccess

name : EString

VariableAccess

numberVariables : EInt
variableType : PrimitiveType = STRING

OperationParameterSpec

literal : EString

Operation

name : EString

OperationParameter

name : EString
type : PrimitiveType = STRING

LoadSpecification

[0..1] accessingElement

[0..*] operationparameters

[0..*] operations

[0..*] operationparameters

[0..1] loadspecification

[0..1] loadspecification

[0..1] targetOperation

[0..1] operationparameter

[0..*] providedServices

[1..1] targetService

Figure 5.14: Classes overview for services and related elements

IO

One crucial problem when modeling the influence factor IO system, is the large
number of parameters that need to be taken into account. For a PLC, the
compiler, caching, scheduling, and many more parameters may affect the ac-
tual performance. These “fine tuning” parameters are usually included in the
detailed models of an specific analysis tool for each PLC. The same applies to
the modeling of fieldbusses. There are several general attributes that are shared
among all fieldbusses (see influence factors in Chapter 4) and other important
features such as the topology or the type and performance of devices used in a
fieldbus.

As mentioned in section 5.1.2 is it necessary to support multiple levels of ab-
straction. To model the influence factor IO and its parameters this thesis uses
the two levels Topology Independend Model (TIM) and Topology Specific Model
(TSM) to separate fieldbus independent information from fieldbus dependent.
The TIM includes the common elements and attributes that can be applied
on any fieldbus (see Chapter 4). On the TSM level, the fieldbus specific infor-
mation must be specified. This includes for example cable lengths, segments,
collusion domains, topologies, and other network related properties. The two
modeling levels are described in more detail in the following subsections.

Abstract models for the fieldbus (TIM) The main task of a fieldbus system is
to connect the sensors and actuators to the PLC so that data can be exchanged
between them. The data from the IOs is usually converted to variables that
can be accessed by the POUs running on the PLC. A common property for
each fieldbus is that all data provided by the sensor and actuator has a specific

126

5.1 Automation Influence Model

size. The cycle in which the data is updated depends on the POU execution
and/or on the interval in which the fieldbus gathers data from each IO. Figure
5.15 shows the classes to model the influence factor IO on this high abstraction
level.

PLC

vendor : EString
articleNumber : EString

Fieldbus

name : EString
interval : EInt
type : EString

IO

name : EString
datasize : EInt
digital : EBoolean = false

IOEndpoint

IOAccess

datasize : EInt

SystemModel

name : EString
POU

name : EString

IOCollection

numberOfIOs : EInt
datasize : EInt

SystemElement

[0..*] fieldbusses

[0..*] ioAccess

[0..*] pous

[0..1] sourcePOU

[0..1] targetIOEndpoint

[0..*] ioendpoints

[0..*] subElements

[0..*] ios

Figure 5.15: Classes for modeling an abstract fieldbus

Each PLC may provide none or multiple fieldbusses, depending on the type of
PLC and its configuration. The Fieldbus provides three properties: a name
for the identification, a type specification and an interval in which the IOs
will be refreshed/polled. The type is used to later select a fitting simulation
model and to generate the necessary input models and their modeling depth.
Each fieldbus contains zero or more IOEndpoints which can either be an IO or
a whole IOCollection. The IO is a simple actuator or sensor which provides
information about the datasize it will provide or need. An additional property
digital is used to indicated whether the IO is digital or analog. The IOCollection
is a convenience class which can be used to model a complete set of IOs and
estimate their aggregated datasize.

To model the access of, for example a Program to a sensor, the IOAccess can
be used. This relation class connects a POU with an IOEndpoint. It provides
an additional attribute to specify the amount of data that is accessed. This
attribute is only necessary if the IOEndpoint is an IOCollection and just a
subset of the IOs is accessed.

Depending on the approach and tool, the abstract model does not provide
sufficient information to conduct a (performance) prediction. Details about the
underlying media, topology, refresh times, and many more must be available to
create valid models for an analysis. Therefore, it is necessary to derive or assume
additional model elements and parameters. A simplified example is shown in

127

Chapter 5 Automation Influence Model and Development Process

Figure 5.16. The abstract TIM provides just the IOs and, to some extend,
also details about the kind of IO (e.g. digital or analog). For a simulation, a
transition has to be made which adds a fixed cycle time – depending on the
number of IOs – and specifies the underlying topology. The IOs are evenly
distributed to added fieldbus specific buscouplers. These necessary transitions
can be made semi- or fully automatically, depending on the used fieldbus. More
sophisticated simulation tools with different analysis aspects like OmNet++ or
TrueTime, may require other or additional data to conduct a sufficient analysis.

IO

IO

IO

IOIOIOIO

Fieldbus PROFINET

IO

IO

IO

IO

IO

IOIOIOIO

IO

IO

- cycletime=8ms
- topology=star

Ethernet (1 collusion
domain, standard delay,...)

type="PROFINET"

PLC PLC

Figure 5.16: Exemplary PROFINET transition from TIM to TSM

Detailed models for the fieldbus (TSM) The detailed model (TSM) provides
the developers the ability to model the fieldbus in much more depth, once the
fieldbus has been selected for the system under development. For this, the
abstract elements of the IO can be extended by different, topology specific
models to provide these details. Examples for such details could be new fieldbus
specific devices like buscouplers, switches, and router or common attributes like
cable/segment lengths, jitter, delays. These details provide more information
for the influence factor IO and extend the set of parameters.

Due to the sheer number of different fieldbusses and their various attributes, it
is not feasible to include them all in one model. Therefore, additional models
providing information about a specific fieldbus are needed. (Abstract) classes
can be extended by these models, allowing the developer to capture more de-
tailed information about network topologies, devices, further attributes, and
settings. However, in case these fieldbus specific elements are added to a sy-
stem model that was previously very abstract, the system model will lose its
fieldbus and topology independent nature. A switch to another fieldbus in the
later phases of the development will therefore cause extensive change effort in
the system model.

The following examples present two different topology specific models necessary
to detail the PROFINET and INTERBUS fieldbus. For an analysis, it is often
necessary to have sufficient information about all modeled influence factors. In
case a fieldbus has been selected and all its specific components and properties

128

5.1 Automation Influence Model

are modeled, this information is available and can be used as an input for e.g.
a performance simulation. The presented models do not cover each element
and property in detail. They are merely used to indicate, how a more detailed
model can be created and how an integration into the TIM is possible. Note
that there are exists various ways to model the structure of a fieldbus. The
TSM below should give an idea how these models can be build and focus on an
easier mapping onto the CONSENS UML profile in Chapter 6.

PROFINET TSM: The core elements of this package contain all informa-
tion that is necessary to model a more detailed view of the PROFINET field-
bus. In [LF07] just the PLC, switches and modules are considered for the
simulation of a PROFINET network. TrueTIme [HCÅ03, CHO10] only uses
the term network and nodes for a simulation - all other details are hidden in
the simulation models and are not accessible for the user. In [MDFF06b], again
just switches, IOs and PLCs are considered in the simulation.

This model also focuses only on a similar, smaller set of PROFINET specific
elements. The first one is a Switch, which allows to structure the network into
segments and collusion domains. Bridges are similar to switches with just a
single connection other devices. They can be represented by specialized swit-
ches and are therefore neglected here. A repeater or adapter is used to extend
an existing connection or to switch between different types of connections, like
from copper to fiber. These elements are also neglected in this model, due to
the fact, that they can be represented by special kinds of switches, too. Additi-
onally, because these nodes increase the collusion domain of a network, they are
often avoided in the design. Core elements remain the PROFINETController
and PROFINETDevices. PROFINET uses Buscoupler to connect modules
(or slots) to the bus. In the approaches listed above, these couplers are of-
ten omitted or joined together with the modules. For the ease of use, their
simplified models will be adopted here. Therefore, contain PROFINETDevi-
ces a set of modules represented by a given module size. PROFINETDevices
function as multiplexer/demultiplexer for several IOs connected to the device.
The PROFINETController needs to be modeled, but is usually also represen-
ted by, respectively is part of, the PLC. To model the specifics of a connection
between controller, switches, and devices a Connection class is used. This class
allows the developer to specify the length of the connection and the type (e.g.
copper or fiber). Connections can be used between all elements that implement
the Connectable interface.

Figure 5.17 shows this extension model which introduces the classes to model
details of the PROFINET fieldbus. The fieldbus is extended by the PROFI-
NET class which provides containment relations to various elements. To further
specify correct fieldbus models, the two enumerations Intervals and Modulsize
provide fixed values for setting up the cycle times for each PROFINETDevice
and size of the used modules on each device.

Further details on how PROFINET works and the its devices can be found in
Chapter 4. For the ease of use it it possible to combine several devices and their

129

Chapter 5 Automation Influence Model and Development Process

PROFINET

PROFINETDevice

modulesize : Modulesize = 32 Byte

Modulesize

MS_32
MS_64
MS_128
MS_256
MS_512

Intervals

ms_1
ms_2
ms_4
ms_8
ms_16
ms_32
ms_64
ms_128
ms_256
ms_512

PROFINETDeviceCollection

numberOfIOs : EInt
numberOfDevices : EInt
dataSize : EInt
receiveInterval : Intervals = 1ms
sendInterval : Intervals = 1ms

PROFINETSwitch

id : EString

IOEndpoint Fieldbus

name : EString
interval : EInt
type : EString

Connection

type : EString
length : EInt

PROFINETController

IOCollection

numberIODigital : EInt
datasize : EInt
numberIOAnalog : EInt

IO

name : EString
datasize : EInt
digital : EBoolean = false

Connectable

[0..*] pnDevices

[0..*] ioendpoints

[0..*] switches

[0..*] ios

[0..*] profinetdevicecollections

[0..*] connections

[1..1] from

[1..1] to

[1..1] profinetcontroller

Figure 5.17: Classes overview for the PROFINET fieldbus

IOs in a single PROFINETDeviceCollection. The collection provides properties
to specify the amount of devices and IOs, as well as the aggregated datasize and
refresh intervals for all included devices. However, the provided model and its
level of detail can further be detailed by additional components like gateways,
repeater, firewalls, and so on.

INTERBUS TSM: The INTERBUS fieldbus [BM94] has been developed
by Phoenix Contact and managed by the INTERBUS Club [Pro16b]. The
fieldbus consists of several core elements. The Figure 5.18 shows an excerpt
of the class diagram for the INTERBUS fieldbus. The Interbus class inher-
its its properties from the imported Fieldbus super type specified in the TIM.
Each Interbus needs an InterbusMaster to control the fieldbus. This master
is, similar to PROFINET, usually the PLC. Originating from the master is
a remote bus that connects BusTerminals and RemoteBusDevices. Remote-
Terminals are used to split a local bus or loop with LocalBusDevices from the
remote bus. The RemoteBusDevices can also split a local bus but can additi-
onally connect to IOs. Each InterbusDevice has product specific settings and

130

5.2 Development Process

properties. These properties include the maximum data size that can be trans-
mitted via the device. To reflect this, a deviceType attribute has been added
to model the product number or identification. The Connection class is used
to connect the InterbusMaster and InterbusDevices with each other. To reflect
the different bus types, the connectionType property can be used to detail the
kind of connection that will be used.

Interbus

fixedCycletime : EInt = 0

InterbusMaster

name : EString

IOEndpoint

Fieldbus

name : EString
interval : EInt
type : EString

BusTerminal

RemoteBusDevice LocalBusDevice

Connection

length : EInt
type : EString
connectionType :
ConnectionType = RemoteBus

InterbusDevice

deviceType :
EString

ConnectionType

RemoteBus
LocalBus
Loop

Connectable

[1..1] interbusMaster

[0..*] ioendpoints

[0..*] connections

[0..*] devices

[1..1] to

[1..1] from

[0..*] ios

Figure 5.18: Classes overview for the INTERBUS fieldbus

As mentioned above, exist several alternatives to create a model for the Inter-
bus fieldbus. The decision to use an enumeration to fix the type of connection
will be much more easier to map onto existing CONSENS models than a de-
dicated connection or even a (remote/local/loop-) segment class. The goal of
this thesis is to enable performance predictions in the early development sta-
ges. Therefore, such in-depth details about the topology and parameters of a
fieldbus are not focused and should be handled by dedicated analysis tools in
the domain specific development phases of the automation system. These tools
might require additional information which could be added by a more complex
TSM.

5.2 Development Process

In the first part of this chapter, the formal Automation Influence Model has
been developed which captures the various influence factors. In this second part,
the proposed process used model influence factors is developed. For this thesis,

131

Chapter 5 Automation Influence Model and Development Process

CONSENS has been selected as the Systems Engineering approach to model
and analyze the system. Therefore, it is best to choose a CONSENS related
development process instead of general automation specific or other Systems
Engineering processes. The following section gives an overview over selected
related work considering the development processes for automation systems.
Afterward, the process to specify the influence factors is described in detail
(Section 5.2.2).

5.2.1 Related Work

There are several approaches specifying processes for developing automation
systems. Each has its own focus on, for example, requirements, hardware, or
software. The following processes are listed here to give a short introduction to
these processes before continuing to the proposed process.

� Vogel-Heuser et al.[VHSFL14, FEH+12, VHBKF11] developed a SysML
profile for modeling automation manufacturing software systems (MASP)
called SysML-AT (SysML for Automation). They are focusing on four
key aspects of a consistent MDE approach. The explicit modeling of
functional and non-functional requirements, the modeling of automation
hardware, the mapping of abstract machine functions of hardware, and
an implementation that supports the generation of code.

Figure 5.19 shows the process that does not require a strict sequential
order. In the first step, the (non-)functional requirements (R1) are mo-
deled. These describe the demand for production tasks, as well as real-
time requirements for control loops. They are using the SysML concepts
to model the requirements in a textual notation and link them to certain
elements in the model. Using refinement relations, these requirements can
be described in more detail later. In the second step, the software and
machine functionality of the automation system (R2) is modeled. Au-
tomation functionality, like “angle measurement” describe the functional
behavior of an automation software (AS) and use ports to define inputs
and outputs. Based on the requirements (R1) and the results from R2,
the automation hardware can be defined as sensor, actuator or node. The
node is a resource which can later be used to deploy AS element. This is
done in the fourth step, in which the hardware model and the software
model are connected with each other. This deployment allows the desired
generation of an initial software application and configuration which is
IEC 61131-3 conform (R5).

This approach extends the SysML language by automation specific ele-
ments to enable an automation engineer friendly development process.
Discipline typical elements like sensors, actuators and nodes are added
containing more specific properties which allow a generation of IEC code.

The approach and development process, designed explicitly for automa-
tion systems, focuses on the initial creation and generation of the system.
However, they do cover the analysis in early development phases.

132

5.2 Development Process

SoftwareD
applications

Non-/functionsD
Requirements

Automation
hardware

ConnectionDtheD
HardwareDandD

SoftwareDModels

SoftwareD
implementation

4HardwareD
buildup5

Software
requirements

Hardware
requirements Devices

AutomationD
functionD+D
softwareD

applications

DeployedD
softwareD

applications

InternalD
softwareD

applicationD
behaviour

R3

R1

R2

R4

R5

Figure 5.19: System design phases (modified from [VHSFL14])

� Dubey presents an evaluation of software engineering methods in the con-
text of automation application development (AAD)[Dub11]. She focuses
on development processes based on common software engineering met-
hods. None the less involves the development of AAD engineers from
various disciplines. In her approach, she defines an automation applica-
tion life cycle as shown in Figure 5.20. This process is based on their
interaction with various practitioners and available literature.

The primary phases are specified as follows. In the requirement and design
phase, operational aspects of the AAD are collected. In this step, the
gathering of requirements and the creation of the initial design of the
system are combined into a single process design activity. She arguments
that the line between gathering requirements and design the system is
blurry and in some automation companies can not be strictly separated.
This step fully covers the design of electrical plans, hardware construction,
IO and task planning.

The initial design of this first step is further refined in the following de-
velopment step. The human machine interfaces (HMI) and control logi-
c/control application are developed, based on the requirements and first
sketches that contain for example lists of IOs and design diagrams.

These two steps cover the development of the automation system. In step
three are the necessary tests (module, integration, and factory acceptance
test (FAT)) designed and carried out. In step four, the automation system
is (disassembled), transported to the customer and assembled.

The first two steps of this approach represent not an ideal development
process, but the widely used sequential design of automation systems
commonly referred as “throw-it-over-the-wall”. Each discipline is creating
their development artifact in a specified order and deliver their artifacts
to the next discipline, resp. department. For more information see 2.1.2
Development Process in [Rie14]. She presents a generally applicable de-
velopment process of automation system applications, but without details
that must be specified during certain development steps. Her process can

133

Chapter 5 Automation Influence Model and Development Process

Requirement
and Design Development

Module testing,
integration
testing, FAT

Commissioning

Ph
as

e
Control diag,

P&I diag, control
sequences, config.

screenshots,
IO config. list,

electrical wiring
diagram

Controller
application,

HMI

Module testsuite,
integration
testsuite,
FAT suite

Commissioning
report, MoM

A
rt

if
ac

t

End customers,
control engineer,

machine manufacturer
 (OEM)

Control and
HMI developer Tester

Commissioning
engineerR

ol
e

Figure 5.20: The Automation Application Development Lifecycle (modified
from [Dub11])

be extended to cope the definition of influence factors and perform an
early analysis of the system. However, due to the lack of a formal model
and language, this would be an additional task for this thesis.

5.2.2 Proposed Development Process for Modeling Influence
Factors

Since CONSENS has been selected as the Systems Engineering approach for
this thesis, the most fitting development process for specifying the influence
factors is specified in [HBM+15, HBM+16]. Their approach is based on [GRS14]
and focuses requirements engineering and analysis in early development stages.
They precisely specify the development steps, artifacts, and system engineering
roles which match the desired approach to model the overall system structure.
These system engineering roles are originally defined by Sheard [She96]. She
presents twelve roles, each having distinct tasks during the development of a
system engineering model. Out of these twelve roles, three roles fit the desired
development process best and described in detail below.

The requirements owner (RO) translates the customer needs into specific
requirements, understandable by engineers of the different disciplines involved
in the development of the (automation) system. Artifacts produced by this
role contain a functional architecture, capturing the need of the customer. The
RO also assess the impact of requirement changes in the later phases of the
development. The next role is the system designer (SD). An engineer taking
this role is responsible for creating a high-level architecture of the system under
development. The main focus is on the overall structure and the selection of
components. “Because of the complexity of projects employing system engineers,
the emphasis tends to be on architecture, high-level design, integration, and
verification, rather on low-level development” [She96]. The inputs for this task

134

5.2 Development Process

are the previously defined functional architecture and specified requirements of
the RO. The two roles (and steps) do overlap to a certain degree.

The last role is the system analyst (SA). The SA has to make sure that the
system will meet the given requirements. With various analysis techniques –
including performance prediction via simulation – this system engineering role
makes sure that for example, the overall throughput is sufficient, outputs are
generated in the desired quality, or the memory consumption is not exceeding
the set limits. An important statement from Sheard is, that “usually the more
complex parts of the system need to be modeled in order to demonstrate that
they will work properly ...” [She96].

It is, therefore, necessary to model complex parts in more detail and anticipa-
te/make assumptions about certain design specifics in the early development
phases of the system design. For Sheard, the work of the system analyst role is
either defined at specific points during or continuous throughout the develop-
ment process/life cycle.

The development process refines the coarse Vee-Model which is based on [Ver04,
HH08, GRS14] shown in Figure 5.21. The Vee-Model specifies three main de-
velopment stages. The first phase, system design, is used to define the basic
principles and concepts of the system under development. All disciplines that
are involved in the development work together creating discipline-spanning Sy-
stems Engineering models.

This phase includes a wide range of steps like planning and clarifying the task,
gathering and formalizing of requirements, creating the function hierarchy, de-
veloping/deriving the active structure and specifying the system behavior. The
result of this phase is the so-called principle solution. This principle solution
is used for the coarse structuring, agreement, and coordination of the invol-
ved disciplines and is, therefore, the input for the next development phase, the
discipline specific development.

In this phase, the involved disciplines create more detailed models and specifi-
cations of the system under development. Each discipline uses also a wide range
of specialized tools and languages for this task. Examples are UML [RJB04]
for the software engineering discipline, Matlab/Simulink [Mat16] for the cont-
rol engineers, EPLAN [EPL17] for the electrical engineers and SOLIDWORKS
[Das17] for the mechanical construction.

The results of this separated development are combined in the system integra-
tion phase to create the system. Depending on the thoroughness and quality
of the requirements and systems engineering models from the system design
phase, this integration can either be smooth or result in costly changes. To
check whether the requirements and designs are correctly realized a continuous
testing and verification of the given requirements is necessary.

The Figure 5.22 shows the development process further detailing the system
design phase. It is based on the process developed by Holtmann [HBM+15] et
al. and extends it by a specific step for specifying the influence factors or other

135

Chapter 5 Automation Influence Model and Development Process

system
 d

esig
n

Discipline-specific development

electrical engineering
eechanical engineering

Product

sy
st

em
 in

te
g

ra
d

ti
o

n

Principle solution

Requirements

software engineering

modeling and model analysis

Testing and Verification
of Requirements

Figure 5.21: Vee-Model process for system development (modified from [Ver04,
HH08])

performance related information in the CONSENS models. According to the
BPMN [Obj11a], manual steps are indicated by a hand in the upper left corner
of a step and (semi) automatic steps by a gear symbol. The first step is to

C
u

s
to

m
e

r

In
te

rf
a

c
e

S
y
s
te

m
s
 E

n
g

in
e

e
r

R
e

q
u

ir
e

m
e

n
ts

O
w

n
e

r
S

y
s
te

m
 D

e
s
ig

n
e

r

Analyze

Environment

Identify

Application

Scenarios

Environmental

Model

Application

Scenarios

Define

Requirements

Requirements

Define

Active

Structure

Allocate

Engineering

Disciplines

S
y
s
te

m
 A

n
a

ly
s
t Define

System

Behavior

Function

Hierarchy

Active

Structure
Relevance

Annotations

Behavior –

Sequences

Relevance

Annotations

Customer

Requirements

Consolidate

Discipline-specific

Analysis Results

System Requirements

Define

Function

Hierarchy

Clear

System

Requirements

...

Requirements

Analysis

Results

System

Requirements

Initial

Iteration

Sub-

sequent

Iteration

Define

Influence

Factors

Performance

Annotations

CONSENS

System Model

...CONSENS

System Model

Software Engineer Mechanical Engineer Control Engineer Electrical Engineer

Analyse

System

Performance

Figure 5.22: Proposed development process based on [HBM+15]

capture the customer requirements. For this task the system engineering role
named customer interface (see [She96]) is responsible. The requirements are
the input for the subsequent step, in which the requirements owner analyzes
the environment of the system and captures it with the CONSENS environment

136

5.2 Development Process

model. Afterward, the output of Identify Application Scenarios is a list
of application scenarios, each roughly describing common operation modes and
behavior of the system. Each scenario focuses on a specific (technical) situation.

Another task for the requirements owner is the definition of requirements (see
step Define Requirements). The partial model Requirements contains a
collection of requirements, each uniquely identifiable and referable throughout
the partial models. These requirements specify the expected/desired behavior
of the system under development and therefore are an essential basis for the
validation and verification in the following development phases. Afterward,
the captured requirements must be approved by the customer, respectively the
customer interface role. This is done in the Clear System Requirements
step.

In case all requirements are correctly specified, the work of the requirements
owner ends until the next iteration of the development process and the system
designer starts by defining or refining the function hierarchy (Define Function
Hierarchy). Functions of the system fulfill the defined requirements and can
be broken down into more detailed subfunctions. The hierarchy starts with a
single function specifying the overall task of the system.

The following development step Define Active Structure is used to create or
update the CONSENS specific model active structure. The active structure de-
fines the internal composition and relationships between elements. More details
on the CONSENS active structure and its various model elements can be found
on the foundation chapter 2.2.1.

Up to this step, the active structure and its elements are used by all involved
engineering disciplines to identify relations or interfaces to the various parts
of the system. But in the discipline specific development phase of the Vee-
Model, not all elements are considered by each discipline. Therefore the en-
gineering disciplines are allocated to each element with relevance annotations
[HSST13, Rie14]. An example of such a relevance annotation is the energy
supply unit. This unit provides electrical power to most parts of the system
and is important for the electrical and mechanical engineering discipline. The
software and control engineer are not influenced by changes or modification and
are therefore not allocated to this active structure element.

After the engineering disciplines have been allocated, the system analyst can
define the behavior of the system (see step Define System Behavior) by
using one or more behavior models provided by CONSENS. They include State
Machines, Activity Diagrams and behavior sequences model with Sequence Di-
agrams. In [HBM+15], the authors use a formal extension of sequence diagrams
called modal sequence diagrams, to model specific requirements. Given the de-
tailed behavior of the system, its structure, and environment, they are able to
use a simulation to assure that the system meets the given requirements for a
certain situation. Up to this point, the proposed development process is similar
to the one presented by Holtmann. However, to check whether the system does

137

Chapter 5 Automation Influence Model and Development Process

not only behave like required, but also provide the performance necessary to
fulfill the requirements, further analysis must be carried out.

This thesis specifies two additional steps to extend the existing development pro-
cess. In the step Define Influence Factors, the active structure is annotated
by automation specific influence factors. Each factor is providing additional
information based on the influence factors identified in Chapter 4.

Figure 5.23 is giving an overview of these steps which will be detailed in the
following. The first three steps can be executed in any order due to the fact,
that definitions or changes to existing influence factors do not affect each other.
The following steps are depending on the data of one or more previous steps.

Define Influence Factors
Define

Fieldbus &
IO-Data

Define
Service Access

Define
IO-Access-

Connections

Define
Tasks

Select
PLC

Define POUs &
Execution Times

+ +

Figure 5.23: Detailed sub steps of ’Define Influence Factors’

Select PLC The first step is to specify the PLC that will be used for an analy-
sis of the overall system. This PLC must support the selected fieldbusses,
services, and task types. Usually, the active structure already includes
a system element to represent the PLC. This element needs to be an-
notated and the corresponding properties, like name and type, specified
accordingly. Depending on the underlying analysis approach, the engineer
selects an available PLC from a given set that is covered by the analysis
implementation. For this thesis, the available PLCs are provided by load
profiles modeled with Palladio (see Chapter 6). If previous analysis ite-
rations have already been made, a more fitting PLC might be exchanged
with the existing one (e.g. the overall utilization was too high). Other
reasons for switching a PLC could also be a different fieldbus that must
be supported or a new layout of the automation system.

Define fieldbus & IO-Data In this step, all information related to the fieldbus
and its specific settings is specified. This includes the fieldbus, sensors,
actuators, devices and further settings. Usually one or more fieldbusses
are used in an automation system. The different kinds of bus systems
need to be captured and represented in the active structure. Second, the
available sensors and actuators must be identified. These elements are
either already modeled in the active structure or need to be approximated
by marking elements as an IO collection. Also, each fieldbus has specific

138

5.2 Development Process

settings that need to be set up. These could be for example the cycle time
in which data is exchanged between the PLC and the IOs. Depending
the on the selected fieldbus and the current modeling depth, it might be
necessary to specify the distances (length) between the PLC and different
IO devices connected via the bus.

Define POUs & Execution Times An important step is to specify which Pro-
grams, Functions, and Function Blocks will be used and what their timing
or execution properties are. Often, automation systems are not developed
from scratch but are reused from similar, existing projects. This allows
the developers to make assumptions on how the POU will behave and
what execution times can be expected. In case a completely new POU
must be developed, the properties must be roughly (over)estimated. Es-
timated execution times of a Program or Function can also be used as a
requirement to adhere. Software developers are forced to check whether
their POUs do not take more time to execute than specified. If the requi-
rements can not be met, the different disciplines have to be informed and
new solutions or requirements agreed on.

During the discipline-specific development phases, a software engineer can
refine or detail the actual execution times on a POU. This allows him to
correct the estimation on a previously defined POU or to add additional
POUs that are necessary for the functionality of the automation system.
Again, changes on any influence factor must be propagated into the in-
volved disciplines.

Define Service Access The Environment model and the Active Structure al-
ready include elements that access data of or interact with services. To
model such an access, the accessing element will be extended by addi-
tional information on how often a service access occurs. It must also
be specified, which service is accessed and what kind of access is per-
formed (VariableAccess, FileAccess, or OperationAccess). This applies
to all elements that access any service, including System Elements and
Environment Elements.

Define IO-Access-Connections After the fieldbus is set up and the different
Programs and Function Blocks are known, the access of IOs from the
PLC, respectively the different POUs, can be specified. The POUs read
data provided by sensors and send commands to the actuators over a
fieldbus. Therefore, it is necessary to know which programs accesses which
IOs. After this information is added to the model, payload sizes and –
depending on the used fieldbus – cycle times can be computed.

Define Task One of the last steps is to set up the different types of tasks on
the PLC. Each task can execute one or multiple Programs that have been
specified in the previous steps. The selection of a task type and the con-
figuration of cycle times can be further restricted by automation system
(e.g. production throughput) or Program or Function Block specific re-
quirements (e.g. minimum/maximum execution time for an algorithm).

139

Chapter 5 Automation Influence Model and Development Process

Depending on the refinement iteration of the system model, some of these steps
could also be skipped and just parts of the model can be updated. After spe-
cifying the different influence factors and their parameters, the analysis and
interpretation of the results must be performed.

This is done in the subsequent process step Analyze System Performance,
which provides the system analyst with information about the possible utiliza-
tion and performance of the automation system. Various tools and techniques
can be used to investigate different aspects of the system. A selection of them
are introduced in Chapter 6 along with an in-depth example based on the Pal-
ladio Component Framework.

5.3 Summary

In this chapter, several aspects are discussed and developed. It introduced the
Automation Influence Model to formally capture the influence factors identified
in Chapter 4. This formal model provides well-formed syntax and semantics,
making it (automatically) process- and analyzable. This is a necessary prere-
quisite to run performance simulations based on the influence factors the au-
tomation developers provide. To develop this formal model, several questions
had to be answered first. The required modeling depth to capture the influence
factors (Section 5.1.2), a follow up discussion about topology dependent and
independent modeling (Section 5.1.5) and how the utilization of a PLC can
be described hardware independently (Section 5.1.4). Afterward, the parts of
the formal Automation Influence Model are introduced (Section 5.1). This mo-
del captures all influence factors, their properties and relations between them
and other Systems Engineering elements. In the second part of this chapter,
a development process and its steps is presented. It is based on an existing
development process [HBM+15] and extends it by two steps. The development
process is used by developers in the system analyst role, to annotate existing
Systems Engineering models with the identified influence factors. The resulting
proposed process is explained in section 5.2.2.

It is now possible to use a generally applicable, CONSENS-based development
process to build up a formal model that can be used for further performance
analysis.

In the following Chapter 6, the developed method is realized/implemented by
creating a UML profile that allows the annotation of existing Systems Engi-
neering models. Additionally, a fitting analysis approach is selected and the
structure, generation, and use of input models for this analysis is described.

140

CHAPTER 6
Realization of Modeling and Analysis

In Chapter 4, the different influence factors that impact the performance of
an automation system are identified. In Chapter 5, these factors are captured
in a formal model called Automation Influence Model. To be able to evaluate
the contribution of this thesis, a tool for annotating existing Systems Engineer-
ing models with the influence factors and an subsequent analysis to conduct a
performance prediction must be developed.

Influence factors
+ Parameters

Automation
Influence

Model
Realize
Palladio

Simulation

UML
Profile

Derive
UML Profile

Palladio
Simulation

Models

4

5

Figure 6.1: Creating the UML profile and Simulation models

In the first part of this Chapter, the formal model, respectively the influence
factors, are mapped onto an UML profile (Step 4 in Figure 6.1). This profile is
used to annotate existing CONSENS Systems Engineering models and extends
the SysML4CONSENS profile [KDHM13, IKDN13]. All profiles and models are
created for and with the Papyrus Modeling environment [Ecl17c] as part of the
Eclipse IDE [Ecl17a].

In the second part of this chapter, approaches and tools for the performance
prediction of an automation system are evaluated (Step 5 in Figure 6.1). As a
result of this evaluation, the Palladio Modeling Framework has been selected for
this thesis. It provides means to model, simulate, and analyze an automation
system. The models necessary for the simulation of the different influence fac-
tors and their parameters are introduced in the following sections. To improve
the possibly error prone and time-consuming process of creating the simula-
tion models manually, different model-to-model transformations are introduced
which carry out this task automatically.

This chapter is structured as follows. First, an overview of the different models
and transformation steps is given in Section 6.3. Afterward, the details of
the UML profile that extends SysML4CONSENS are introduced. Section 6.2
gives a short introduction to the Palladio models and highlights selected details.
Finally, in Section 6.3.2, the different transformations are specified that are

141

Chapter 6 Realization of Modeling and Analysis

used to transform the CONSENS Systems Engineering models into Palladio
simulation models.

6.1 UML Profile for Modeling Influence Factors

In Chapter 5 the formal basis to model the influence factors and their parame-
ters has been set up with the Automation Influence Model (AIM). This model
is now mapped to a UML profile to be able to extend existing CONSENS mo-
dels. Most of the elements and properties of this profile are 1:1 representations
of the AIM elements. However, some changes are made to better parse and
transform the annotated model into Palladio simulation models. Additionally,
these changes improve the overall modeling work flow for the system analyst
and the integration into the Papyrus tool.

To create CONSENS models currently two free of charge approaches can be
used. The first is a set of Microsoft Visio shapes. However, Viso based mo-
dels are difficult to access via external tools, making them a poor choice as
input models for further tools in a toolchain. The second option is to use
the SysML4CONSENS UML profile [KDHM13, IKDN13]. This profile extends
SysML and adds CONSENS specific stereotypes. It enables developers to cre-
ate CONSENS models that can be easily parsed, analyzed, and with various
techniques (e.g. QVTO [Obj11b]) transformed into other models.

There are already a wide range of UML profiles available that provide automa-
tion specific or performance related stereotypes. These profiles are listed in the
related work sections of Chapter 4 and 5. MARTE [Obj06] is the defacto stan-
dard for annotating performance and timing information for embedded real-
time software. However, the profile is quite complex, contains a plethora of
stereotypes, and is designed specifically for the in-depth development of soft-
ware. For a high-level annotation of Systems Engineering models MARTE is
not a practical choice. It is possible to reuse elements from MARTE like the
ArrivialPatterns, base types, units, or distribution functions. But this would
add additional dependencies to the profile and increase the overall modeling
complexity. The SPTP profile [Obj05] is not considered here, since MARTE is
an inofficial successor of this profile and already covers/includes most modeling
features. Vogel-Heuser et al. also provide a UML profile based on SysML
[VHBKF11]. This profile is used to annotate automation system specific ele-
ments like sensors and actuators. However, the profile does not provide sufficient
information for a performance prediction. Extending this profile would reduce
the overall modeling effort just marginally but induce new dependencies to ot-
her profiles. The UML-RT profile [Sel98, KHCD17] does not provide sufficient
stereotypes to model different arrival times, randomness or the possibility to
model hardware dependent or independent resource usages. It can be used to
specify WCET and time constraints, but adding the missing model elements
and mapping these to the UML-RT concepts would be too much overhead and

142

6.1 UML Profile for Modeling Influence Factors

add additional dependencies to the AIM profile, too. For these reasons, a new
profile has been developed which is detailed in the following subsections.

When to use UML profiles instead of meta models is a question depending on
the purpose and future use of the created models [Des00, SW06, SVC06]. For
this thesis, the profile mechanism from the UML specification has several ad-
vantages. First, is CONSENS already available as a profile. Extending this
profile with additional stereotypes will reduce the overall modeling effort. Most
of the necessary elements and their relations are already present in the UML,
SysML, or SysML4CONSENS classes and stereotypes. Figure 6.2 sketches the
relations between the different models. The UML elements provide the basis
for the SysML profile. This profile adds new elements and further constrains
the use of UML classes and diagrams (see Chapter 2). SysML4CONSENS
(just CONSENS in the figure) does the same with the SysML profile. The
AIM profile introduces new stereotypes that extend or reference elements in
the SysML4CONSENS, SysML, and UML. This approach wont induce furt-
her dependencies, because CONSENS4SysML cant be used without the SysML
profile and all profiles make use of the basic UML classes.

C
O
N
S
E
N
S

Pr
of
ile

S
ys
M
L

Pr
of
ile

U
M
L

M
et
am
o
d
el

AIM
Profile

Figure 6.2: Relations between UML, SysML, CONSENS, and AIM

Second, there already exists a broad range of UML compliant tools, that are
capable to view and edit models like Papyrus [Ecl17c] or Enterprise Architect
[Spa17]. A third advantage is the ability to create additional transformations
much easier using standard frameworks like QVTO. For example can Papyrus
models with applied stereotypes be transformed into MATLAB/Simulink mo-
dels. Or the annotated information from the CONSENS models can be used
to create initial UML models for the software engineer. And last, if the perfor-
mance specific information is no longer needed, the profile can be easily and side
effect free removed. Stereotypes only add information or constrain the original
model. When removing a profile, the original model will still be valid.

The AIM profile does not introduce new kinds of diagrams. It uses the al-
ready existing diagrams to model structural or behavioral information. The
SysML4CONSENS profile uses SysML Block Definition Diagram (BDD) and
Internal Block Diagram (IBD) to specify the active structure. To model be-
havior, the Activity and State Diagram from the UML specification are used.

143

Chapter 6 Realization of Modeling and Analysis

Diagrams to model or allocate software onto (hardware) resources are not used.
An introduction to the SysML4CONSENS profile can be found in Chapter 2.

The majority of classes that are extended by the AIM stereotypes are specified
in the UML meta model. This is a design decision to make the profile as gene-
rally applicable as possible. With only a few changes, the profile can be set to
extend only SysML or even just UML. However, the focus of this thesis is the
creation of a profile that can be used to annotate CONSENS models specified
via the SysML4CONSENS profile. To do this, the AIM profile extends several
UML classes like Class, Property, Activity, Operation, CallOperationAction,
OpaqueOperationAction, or Parameter. Constraints to certain CONSENS spe-
cific elements are made with OMG’s Object Contraint Language [Obj17] or
by setting explicit references to the SysML4CONSENS stereotypes. These are
usually SystemElement, EnvironmentElement, and InformationFlow. Another
advantage of using SysML base classes and diagrams for the AIM profile is the
native support of the Papyrus editor. It allows a simpler and more intuitive
handling of SysML Blocks than UML classes. However, this has no impact on
the semantics of the profile and solely improves the modeling work flow for the
developer creating annotated CONSENS models.

Figure 6.3 sketches the overall structure of the AIM profile. Common elements
to specify, for example, resource usage, time units, or file sizes are contained di-
rectly in the AIM package. The UML profile is structured after the Automation
Influence Model. All influence factors are based on the elements of the formal
model. The model, as well as the UML profile, are structured after the diffe-
rent categories of influence factors. The four sub-packages are created to group
elements by their primary use. Function Blocks and Programs are specified in
the pou-package, fieldbusses and their elements in the io-package, the different
access kinds for services in the service-package, and task related elements in the
the task-package. The following subsections detail the profile and give selected
examples of their usage.

AIM

service

iopou

task

«EPackage, Metamodel»
UML

«EPackage, ModelLibrary»
PrimitiveTypes

«import»

«import»

«EPackage, Metamodel»

«EPackage, Metamodel»
SysML

CONSENS
«import»

«import»

Figure 6.3: Overview of the AIM Profile and packages

6.1.1 AIM Profile Root Package

The root package contains common elements that are used throughout the pro-
file. Figure 6.4 shows an overview of these elements. The stereotype PLC is
used to specify the PLC and to provide all necessary properties for the analysis

144

6.1 UML Profile for Modeling Influence Factors

phase. For this, the name of the PLC and its vendor is sufficient. An analy-
sis tool needs to lookup the corresponding simulation models for this PLC. To
model the IPTraffic no explicit stereotype has been created, but all properties
moved to the PLC itself. This should simplify the modeling process. These
properties are used to specify the amount and size of incoming IP packages.
For each parameter, the value kind must be set up. The ValueKind is an enu-
meration with the literals fixed, bounded, randomset, or random interval. This
is used to parse the corresponding literals (numberOfPackagesLiteral, sizeOf-
PacketsLiteral) correctly. It would also be possible to omit the valueKind and
identify the literal just by parsing it. The stereotype PLC extends the class,
allowing its use in an UML, SysML and CONSENS model.

«Metaclass»
Class

«Stereotype»
PLC

+ vendor: String [1]
+ name: String [1]
+ numberOfPacketsLiteral: String [1]
+ numberOfPacketsValueKind: ValueKin...
+ sizeOfPacketsLiteral: String [1]
+ sizeOfPacketsValueKind: ValueKind [1]

«Enumeration»
UMLPrimitiveTypes
String
Integer
Boolean
Real
Unlimited_Natural

«Stereotype»
LoadSpecification

«Stereotype»
ResourceUsageSpecification

 + usageLiteral: String [1]
 + valueKind: ValueKin...

«Enumeration»
ValueKind

Fixed
Bounded
RandomSet
RandomInterval

«Enumeration»
TimeUnit

ms
sec
ns
us
min
h
d

«Enumeration»
FilesizeUnit

kb
mb
bit
Byte
gb

«Stereotype»
ExecutionTimeSpecification
 + usageLiteral: String [1]
+ valueKind: ValueKind [1]

 + timeunit: TimeUnit [1]

«Metaclass»
Operation

ZeroOrOneLoadSpecification
{not(self.isStereotypeApplied(self.getApplicableStereotypes()->select(e|e.name='ExecutionTimeSpecification')->any(true))
and self.isStereotypeApplied(self.getApplicableStereotypes()->select(e|e.name='ResourceUsageSpecification')->any(true)))}

Figure 6.4: AIM profile root package

Another important element is the abstract LoadSpecification which is speci-
alized by the ResourceUsageSpecification and the ExecutionTimeSpecification.
They extend the UML Class as well as the UML Operation to allow a single
specification of the stereotype and its use for multiple influences like a Program,
Function, or ServiceAccess. The ResourceUsageSpecification has two properties
to set up the amount of CPU resource that will be consumed during the call,
execution, or access. Like the property pairs on the PLC is valueKind used
to specify the kind of access, allowing to easily parse the second usageLiteral
property for the values.

The ExecutionTimeSpecification is used to define a time it takes to execute
for example a Program, Function Block, or ServiceAccess. Again, the value-

145

Chapter 6 Realization of Modeling and Analysis

Kind restricts a String that can be specified via the property usageLiteral. An
additional property timeunit is used to set the time scale.

ResourceUsageSpecification and ExecutionTimeSpecification are two distinctive
elements that can be applied to the same element in a model. This must be
prohibited by an OCL constraint, allowing either one kind of LoadSpecification
or none.

The remaining stereotypes are enumerations that will be used in more than one
sub package and are therefore defined directly in the root model. These are
the FilesizeUnit to easily select a fitting file size and the UMLPrimitiveTypes.
They are used to select a primitive type more easily than browsing through the
model and picking the UML datatypes.

Figure 6.5 shows a screenshot taken from the Papyrus editor. It shows the
applied stereotypes Block from SysML and PLC from the AIM profile on the
base UML Class. By applying the stereotype PLC to the Class/Block, the
developer has now formally set up one PLC for the automation system. It is
now possible to further specify properties like the vendor and type of the PLC.
These two properties are mandatory to later create the simulation models for
the performance prediction. The other properties can, but need not be specified
and are used to model additional load that is induced by background IP traffic.

Figure 6.5: Additional properties provided by the PLC Stereotype

6.1.2 POU Package

This package contains all stereotypes used to model automation related soft-
ware. This covers Programs, Function Blocks, and Functions. Programs and
Function Blocks are derived from the abstract POU stereotype. They do not
contain further attributes due to the fact, that they are only used to further
annotate existing Classes, respectively SysML Blocks or CONSENS SystemE-
lements. The Function stereotype extends the UML Operation to annotate an
automation system software function. Via the UML Operation none or mul-
tiple Parameter can be modeled. Therefore, the FunctionParamter stereotype

146

6.1 UML Profile for Modeling Influence Factors

extends the UML Parameter. It is possible to add further properties to the
Program, Function Block, and Function to reference contained, AIM specific,
model elements. This could simplify the access to elements (e.g. for OCL or
QVTO queries) but would also add redundant information which is already
been specified by the UML properties. The LoadSpecification in the diagram
has been imported, to visualize that ResourceUsage and ExecutionTimes can
be applied to Programs, Function Blocks and Functions.

«Stereotype»
Program

«Metaclass»
Class

«Stereotype»
FunctionBlock

«Stereotype»
Function

«Metaclass»
Operation

«Stereotype»
POU

+ ioAccess: IOEndpoint [*]

«Stereotype»
LoadSpecification

«Metaclass»
Parameter

«Stereotype»
FunctionParameter

Figure 6.6: Definition of Stereotypes to model the automation software

Figure 6.7 depicts on the left side (6.7a) the different parts of the MainProgram.
These parts – not shown in this diagram – are typed by SysML Blocks (or
UML Classes) and extended by the Function Block stereotype. On the right
side (6.7b) is a screenshot that shows the properties of the MainProgram. The
Program has a fixed execution time of 5ms which has been specified via the
ExecutionTimeSpecification stereotype. Additional information is provided by
listing the different IOs or IOCollections, which the MainProgram will access,
respectively, which IO information will be used by the Program.

6.1.3 Task Package

This small package contains the definition of three task types as depicted in
Figure 6.8. All of these tasks are derived from the abstract stereotype Task,
which defines a basic priority and coreAffinity. It extends the UML Class, which
allows the use in SysML and CONSENS models. The hierarchical structure
of Tasks containing programs and Function Blocks can be modeled best with
the established UML Class and property (respectively part) mechanisms. The
CyclicTask further provides properties to set the cycleTime and its time scale
via the timeunit. The IdleTask has no additional information to specify, due
to its highly PLC and vendor specific implementation. The last stereotype is
the EventTask that will be triggered by internal or external events specified in
Programs or the PLC settings. The triggerKind uses the introduced ValueKind
enumeration to define how the triggerLiteral String will be parsed.

147

Chapter 6 Realization of Modeling and Analysis

«Block, Program, ExecutionTimeSpecification»
MainProgram

«reference»
assemblyConnectorCtrlFB: AssemblyConnectorCtrl

«reference»
spcCtrlFB: SCPStationCtrl

«reference»
ftrobotCtrlFB: FT-RobotCtrl

«reference»
scadaConnector: ScadaData

«reference»
hmiDataConnector: HMIData

«reference»
bufferStationControl: BufferStationCtrl

(a) MainProgram parts (b) MainProgram properties

Figure 6.7: Specification of the Program MainProgram

«Stereotype»
Task

 + priority: Integer [1]
 + coreAffinity: Integer [1]

«Stereotype»
CyclicTask

 + cycleTime: Integer [1]
 + timeunit: TimeUnit [1]

«Metaclass»
Class

«Stereotype»
IdleTask

«Stereotype»
EventTask

 + triggerLiteral: String [1]
 + triggerKind: ValueKind [1]
 + timeunit: TimeUnit [1]

Figure 6.8: Stereotypes to define different kinds of tasks

An application of task stereotypes is shown in Figure 6.9 . Like the Programs
or Function Blocks is it necessary to first create Classes and extend them with
a Task stereotype. Afterward, a part of this type needs to be added to a PLC
to finish the specification of tasks. The figure shows the properties tab of the
Papyrus editor and the available parameters that can be specified. In this case,
a cyclic task with a cycle time of 150 ms and the highest available priority is
modeled.

6.1.4 Service Package

Figure 6.10 shows the content of the service package. The core element of this
package is the Service stereotype, which is used to annotate an UML Meta-
class to indicate that the extended element is a service provider. The service
provider can be accessed by other model elements by using the ServiceAccess,
which references the Service. The three different types of ServiceAccess are Va-
riableAccess, FileAccess, and OperationAccess. The first two extend the UML
OpaqueAction Metaclass, which allows the specification of these access types

148

6.1 UML Profile for Modeling Influence Factors

Figure 6.9: Properties of the MainTask

in behavioral diagrams using actions. The last one extends the CallOperatio-
nAction to reuse the standard UML semantics for executing operations. For
the same reason do SerivceOperation and ServiceOperationParameter just pro-
vide stereotypes for Operation, respectively Parameter. It is a more intuitive
and effective approach to reuse the basics of the UML standard for specifying
operations, their parameters, and operation executions than to provide new,
similar concepts. Additionally, do most of the UML complaint modeling tools
support this kind of use and represent them accordingly.

«Stereotype»
ServiceAccess

«Stereotype»
Service

«Metaclass»
Class

«Stereotype»
VariableAccess

 + numberOfVariables: Integer [1]
 + variableType: UMLPrimitiveTypes [1]

«Stereotype»
OperationAccess

«Metaclass»
Operation

«Metaclass»
Parameter

«Stereotype»
ServiceOperation

«Stereotype»
ServiceOperationParameter

«Stereotype»
FileAccess

 + filesize: Integer [1]
 + fileunit: FilesizeUnit [1]

«Metaclass»
OpaqueAction

«Metaclass»
CallOperationAction

«Metaclass»
Activity

«Stereotype»
ServiceAccessPattern

 + accessLiteral: String [1]
 + accessKind: ValueKind [1]
 + timeunit: TimeUnit [1]

«Enumeration»
ValueKind

Fixed
Bounded
RandomSet
RandomInterval

 + service

 + serviceaccess
 1

 1

Figure 6.10: Definition of Stereotypes to model services and their access

To model the frequency of a service access, the stereotype ServiceAccessPattern
extending the Activity Metaclass is provided. An application of this stereotype

149

Chapter 6 Realization of Modeling and Analysis

is shown in Figure 6.11. On the left side (6.11a) the Activity OPCUA-Server-
Access is depicted on which the stereotype ServiceAccessPattern is applied to.
The Activity contains the OperationAccess to the actual service which is de-
tailed in Figure 6.12. In this example, the service access has been set to a fixed
interval of 1500 ms, in which two actions are executed.

(a) OPC-UA Server ServiceAccessPattern (b) Access properties

Figure 6.11: Modeling the ServiceAccess of the SCADA System Element

The Activity OPCUA-Server-Access can also be graphically represented with
an Activity diagram. Such a diagram is shown on the left side (6.12a) of Figure
6.12. The first action is used to execute a ServiceOperation provided by the
OPC-UA-Server. The second action requests 1000 Integer variables.

OPCUA-Server-Access

 InitialNode1

«OperationAccess»
request-entries

«VariableAccess»
variableAccess

 FlowFinalNode1

(a) Activity with actions (b) VariableAccess properties

Figure 6.12: Definition of two actions for the ServiceAccess

6.1.5 IO Package

The IO package only contains stereotypes for the abstract topology indepen-
dent models as shown in Figure 6.13. An example how these stereotypes can be
applied is shown in Figure 6.15 the following section detailing an Interbus TSM.

150

6.1 UML Profile for Modeling Influence Factors

The fieldbus stereotype is used to annotate a Class and mark it as a fieldbus.
The stereotype provides additional properties like interval, type, and controller.
Connected IOs are referenced via the ioendpoints relation to point. An OCL
constraint (omitted in this diagram) checks, whether the IOEndpoint stereotype
is applied to related parts. The IOEndpoint is an abstract Class from which
IO and IOCollection are derived from. Please note, that the IOCollection slig-
htly differs from the formal model. For a more sophisticated model-to-model
transformation the number of IOs has been split into two properties (numberI-
OAnalog and numberIODigital). The FieldbusFlowSpecification element is not
necessary needed to specify the TIM elements of a fieldbus. It is provided as
an optional stereotype to indicate that certain InformationFlows are used as a
fieldbus. For the TSM, such a specific flow specification is needed. Therefore,
this element serves as a base class and will be extended by fieldbus specific
models like the InterbusFlowsSpecification in the following section. The field-
bus property references the according Fieldbus element in the model to easily
navigate to the element and simplify subsequent transformations into analysis
models (see Section 6.2).

«Stereotype»
IO

+ type: IOType [1]
+ datasize: Integer [1]

«Stereotype»
Fieldbus

 + interval: Integer [1]
+ type: String [1]

 + controller: PLC [1]

«Enumeration»
IOType

Digital
Analog

«Stereotype»
IOCollection

+ numberIOAnalog: Integer [1]
 + numberIODigital: Integer [1]
 + datasize: Integer [1]

«Stereotype»
IOEndpoint

«Metaclass»
Class

«Metaclass»
Property

«Stereotype»
InformationFlowSpecification

«Stereotype»
FieldbusFlowSpecification

 + fieldbus: Fieldbus [1]

 + ioendpoints

+ fieldbus

Figure 6.13: Stereotypes for the abstract IO model

Interbus TSM

The Interbus TSM is used to model Interbus specific elements in addition to the
existing AIM profile. In this thesis, a new profile (aim.interbus) is created that
imports the AIM stereotypes and extends them if necessary. Figure 6.14 shows
an overview of the specified stereotypes of this profile. It reflects the TSM model
developed in Section 5.1.5. Core element of the profile is the abstract stereotype
InterbusDevice. It is the basis for the RemoteBusDevice and LocalBusDevice.
They provide means to connect to IOEndpoint elements which could be either
IO or IOCollection. The Fieldbus has been further specialized by defining an
Interbus fieldbus element. To represent the different kinds of segments of an
Interbus network (see 5.1.5), the Enumeration InterbusConnectionType can be

151

Chapter 6 Realization of Modeling and Analysis

used to specify the type of an InterbusConnection. This element extends the
FlowConnector which is used to connect Ports of System- and Environmen-
tElements. Another property of the InterbusConnection is the length of the
segment. The InterbusMaster is used to identify the element that manages the
Interbus. The OCL expression constrains the application of this stereotypes to
elements that are also annotated as a PLC. Interbus specific flows are indicated
by applying the InterbusFlowSpecification stereotype to flow specifications.

«Stereotype»
Fieldbus

«Enumeration»
InterbusConnectionType
RemoteBus
LocalBus
Loop

«Stereotype»
Interbus

«Stereotype»
BusTerminal

«Stereotype»
RemoteBusDevice

«Stereotype»
LocalBusDevice

«Stereotype»
InterbusDevice

+ ios: IOEndpoint [*]

«Stereotype»
InterbusMaster

InterbusMasterMustBeAPLC
{self.isStereotypeApplied(self.getAppliedStereotypes()-
>select(e|e.name='PLC')->any(true))}

«Stereotype»
InterbusConnection

 + length: Integer [1]
 + type: InterbusConnectionType [1]

«Stereotype»
FlowConnector

«Stereotype»
SystemElementTemplate

«Stereotype»
FieldbusFlowSpecification

«Stereotype»
InterbusFlowSpecification

Figure 6.14: Stereotypes for the Interbus TSM model

An application of the general IO (Figure 6.13) and the topology specific Inter-
bus stereotypes (Figure 6.14) is shown in Figure 6.15. Depicted is an excerpt
of the Turbocharger example introduced in Chapter 3. All SysML4CONSENS
specific stereotypes like SystemElementExemplar or InformationFlowSpecifica-
tion (see Section 2.2.3) are neglected in this figure for a better overview. The
PLC and InterbusMaster stereotypes have been applied to the Unit2PLC. The
PLC stereotype provides additional attributes like vendor and type that are
omitted in this figure (see Screenshot 6.5). A Unit2Fieldbus element represents
the Fieldbus and the Interbus marks it as an Interbus element. All ports are ty-
ped by InformationFlowSpecifications and are further detailed by applying the
InterbusFlowSpecification and FieldbusFlowsSpecification from the AIM base
profile. To improve visibility of the figure, only the ports of the PLC and
the Unit2Fieldbus are indicated with such stereotypes. The PLC is connected
via the Interbus fieldbus to the AssemblyConnector. This element contains a
BusCoupler and two actuators FixingL2Right and FixingL2Left. The actuators
are annotated by the IO stereotype and provide additional information of type
and datasize. The BusCoupler is a RemoteBusDevice and holds a list of con-
nected sensors and actuators via the IOs property. The connections between

152

6.2 Performance Analysis with Palladio

BusCoupler and the actuators are also annotated via the InterbusConnection,
but neglected in this figure to improve the visibility.

<<InterbusMaster>>

<<IO>>
FixingL2Left

<<IO>>
FixingL2Right

<<Interbus>>

<<InterbusConnection>>

<<RemoteBusDevice>>

<<Fieldbus>>
<<Interbus>>
Unit2Fieldbus

<<PLC>>
<<InterbusMaster>>

Unit2PLC

length="10"
type="RemoteBus"

AssemblyConnector

ios="FixingL2Right,
 FixingL2Left"

Port

Flow/Connector

SystemElement

<<IO>>
type=analog
datasize=8bit

<<IO>>
type=analog
datasize=8bit

<<RemoteBusDevice>>
BusCoupler

<<FieldbusFlowSpecification>>
<<InterbusFlowSpecification>>

Stereotype

Legend

Figure 6.15: Exemplary application of Interbus stereotypes

6.2 Performance Analysis with Palladio

In the second part of this Chapter, approaches and tools for a performance
prediction of an automation system are evaluated. As a result of this evaluation,
the Palladio Modeling Framework has been selected for this thesis. It provides
means to performance model, simulate, and analyze an automation system. The
models necessary for the simulation of the different influence factors and their
parameters are further detailed in the following subsections. Palladio is used to
simulate a Phoenix Contact ILC 171 ETH 2TX with a selection of fieldbusses
and services.

6.2.1 Requirements

To select a fitting performance prediction approach or tool, the following requi-
rements have been defined. In section 6.2.2 each tool will be checked to which
degree the requirements are satisfied.

� Req1 Holistic system: The tool must be able to analyze complete au-
tomation systems. This includes networks as well as internal hardware
or software of the PLC. The simulation must provide at least the overall
utilization of the CPU(s).

153

Chapter 6 Realization of Modeling and Analysis

� Req2 Hardware dependent and independent modeling: The tool must be
able to model and analyze specific execution times as well as hardware
independent resource usages/demands.

� Req3 Modeling effort: The tool must be easy to use and understandable
for experts of the domain automation system allowing them to create or
update influence factors for a PLC.

� Req4 Toolchain: The tool must be easy to integrate into the selected
toolchain. This means, that the annotated CONSENS modeled created
with Papyrus should be easily transferred to the selected analysis tool.

� Req5 Analyzability of the performance prediction results: The tool must
provide adequate means to analyze the prediction results. This includes
foremost the CPU utilization followed by other details like execution times
of different influence factors or processes.

� Req6 Extensibility: The tool must offer the possibility to extend it. The-
refore, the code or adequate extension mechanisms should be provided.
This will help to add new features like custom made schedulers.

� Req7 Embedded systems: The tool must be applicable for the automa-
tion domain, respectively focus on embedded systems. This means it must
provide the capability to model behavior and structure in a sufficiently
detailed way to perform performance predictions in the early stages of the
development.

6.2.2 Related Work: Performance Prediction Approaches

To model and analyze the performance of a single PLC, a whole automation
system, or just the used fieldbus, several tools with varying approaches can
be used. Each approach has a different focus and underlying techniques to
provide the necessary evaluation data. They differ mostly in their focus and
application domain, spanning from embedded [Hap05, Wan06], non-embedded
[WS02], distributed [TP09, CHL+03, LWF08, FCF+13], with fieldbus [LF07,
LF12, COH07, MDFF06b, HCÅ03] to just standalone PLCs [FH12, FHMB13].
In [Per06] an evaluation and comparison of performance analysis methods for
distributed embedded systems are given. Another survey compares different
model-based performance prediction approaches [BdMIS04]. This thesis focuses
on the application domain of automation systems. The goal is to find a suitable
analysis tool for the early validation with regard to a high level of abstraction
and to develop an automatic generation of input models for it.

As mentioned, exist a growing number of performance prediction approaches
for the area of embedded and distributed embedded systems. The following
approaches have been further investigated and their applicability towards this
thesis goal and identified requirements checked.

154

6.2 Performance Analysis with Palladio

� A1 TrueTime: TrueTime [CHL+03, HCÅ03, COH07] is a MATLAB
[Mat16] and Simulink [Mat17] based simulator for real-time control sy-
stems. The framework allows the specification, programming, and simu-
lation of programs, threads, real-time kernels, schedulers, network trans-
missions, and continuous plant dynamics. The toolbox for MATLAB/Si-
mulink provides blocks that can be easily parameterized and further ex-
tended. Such a block can abstract a complete fieldbus used to transport
control commands and data. Supported busses are, among others, Ether-
net, FlexRay, and PROFINET. To simulate Programs or FB, TrueTime
executes actual code written either as C ++ functions or as MATLAB
M-files. It is possible to extend existing blocks and create additional ones.
To conduct a performance analysis, the system under development must
be programmed in detail. By using the MATLAB standard functions to
gather and visualize (performance) data, TrueTime provides detailed si-
mulation results. For the domain of automation systems, MATLAB provi-
des a well-known programming system. However, creating the simulation
models as code, the TrueTime blocks, and the hardware independent re-
source usages can be quite difficult. Additionally, is an easy integration
into the toolchain complex. More information on TrueTime can be found
in their extensive manual [CHO10].

� A2 Palladio: The Palladio Component Model (PCM) [BKR09, RBB+11]
is an architecture description language supporting performance evaluati-
ons of component-based software systems. These software systems cover
distributed processing resources which can be connected via networks.
The framework provides several ways to analyze the modeled systems like
Simucom. Simucom generates a simulation based on layered queueing
networks. Simucom also provides fine grained sensor data of the simula-
tion, allowing the performance analyst to conduct in-depth investigations
of the system under development. Palladio is open source and based on
the Eclipse Modeling Framework (EMF) technology [SBMP08, Ecl17b]
which allows an easy generation of input models. Via extension mecha-
nisms, sensors and custom operating system schedulers can be created
and added to the Simcom simulation. Palladio is realized with the Java
programming language. Other extensions for Palladio can be used to in-
corporate message based systems or to generate input models for other
simulation approaches like OMNeT++. However, Palladio is designed to
predict the performance of server and desktop systems. Its applicability
to simulate embedded systems must be ensured or realized.

� A3 OMNeT++: The Objective Modular Network Testbed in C++ [Ope17,
VH08] is a modular, component-based C++ simulation library and frame-
work. The focus of this framework is modeling and simulation of complex
networks. Vital part of the framework is the ability to create custom mo-
dules for new types of networks or to modify existing ones. OMNeT++
also provides a rich set of utilities (makefile creation tool, etc.) which
make the creation of various extensions possible [SKKS11, V+01]. They
enable the system analysts to simulate large scale IP networks as well

155

Chapter 6 Realization of Modeling and Analysis

as small, detailed, embedded wireless networks. The Eclipse based IDE
(not EMF-based) can be used to program modules and compose them
with the high-level language (NED). Still, OMNeT++ requires exten-
sive knowledge to create new modules for the simulation like schedulers,
networks, and services. Palladio provides an extension called OMPCM
[HMR13] which generated detailed OMNeT++ simulation models from
PCM models. It uses a specialized representation for description of RD-
SEFF behavior called SimCore. This extension allows a more accurate
analysis of the network and its properties but not an in-depth analysis of
the PLCs performance. Therefore, OMNeT++ can be used either stan-
dalone with its own models and simulation engine or seen as one of the
many ways Palladio can execute a performance analysis. However, for the
selection of a fitting prediction approach, OMNeT++ will be regarded as
the standalone version.

� A4 TimingArchitects: The Timing Architects Tool Suite [TA17] provides
a set of tools to model, simulate, and analyze embedded devices for the
goal of optimizing signal and execution chains. The TA tool suite can im-
port AUTOSAR [AUT17] System Description and/or ECU Configuration
files as well as Amalthea [AMA17] models. The latter are based on EMF
technology, which could be used to generate input models and integrate
the tool into the desired tool chain more easily. The Amalthea models
allow the definition of AUTOSAR runnables, tasks, buses, and more de-
sign artifacts. These runnables are specified via hardware independent
instruction sets. The hardware is modeled separately with the capability
to execute a certain amount of instructions per time unit. The TimingAr-
chitects tool suite is a commercial software and does not provide means to
incorporate custom made scheduler. However, it allows in-depth definition
and analysis of call graphs and timing aspects including the distribution
of metrics like response time.

� A5 Real-Time Calculus (RTC) Toolbox: This approach is also based on
MATLAB and provides a tool box named Real-Time Calculus (RTC)
Toolbox [Wan06]. RTC provides libraries to perform a modular, interface-
based design and a performance analysis based on variability characteri-
zation curves (VCCs) [MZCW04]. For this, the approach analyzes the
flow of event streams over resources to derive performance characteristics
of the modeled system. To analyze a distributed embedded system, the
system analyst is required to write a MATLAB program. This program
invokes commands for the creation and analysis of performance networks.
As mentioned in [Per06], will this process take considerable modeling ef-
fort for larger systems. The toolbox provides means to specify workloads,
streams, arrival times, resource components including scheduler and sche-
duling strategies on a low level. Therefore, high-level modeling of field-
busses, communication networks, tasks, programs and so on must first be
mapped onto these elements. The input model is described as a MAT-
LAB model in combination with M-code, the MATLAB programming
language.

156

6.2 Performance Analysis with Palladio

� A6 ModelicaNCLibrary: Frey et al. provide a modeling and simulation
framework [LWF08, FL09] in form of two libraries for Modelica [Mod17b].
The first library provides models for Ethernet, WLAN and ZigBee net-
works, whereas the second library contains models for different controller
types and interfacing devices. Their approach can be used to predict the
response times of complex automation systems with control loops based
on different network types and topologies [LF07, LF12, MDFF06b]. It
supports tasks, processes, different scheduler and scheduling strategies.
Additionally, it can be used to model dedicated hardware like an analog-
to-digital converter. The Modelica models must be coded in either the
Modelica language or in external functions in C or Java. The libraries are
provided as open source software which allows to extended or to create
a custom scheduler. The Modelica models are text based and can be ge-
nerated. Also, Modelica provides a rich set of tools to visualize different
parts of the simulation, further supporting the analysis.

� A7 chronSIM: The Inchron tool suite [INC17] can be used to simulate,
visualize, and analyze design alternatives during the development of an
embedded system. Part of the tool suite is chronSIM [AADG12] which
can be used to simulate the modeled system. Input for a simulation are
C files for the AUTOSAR runnables as well as a project description files
that further defines settings like tasks. These files can be generated by
external tools. With further extensions is chronSIM able to incorporate
various bus systems as well as different operating system scheduler. Ad-
ditional tools in the suite allow an in-depth analysis of task executions
and message travel times. Like Timing-Architects, is the tool focused on
the automotive domain.

Based on the previously defined requirement and introduced approaches, the
following Table 6.1 could be defined. Each tool or approach needs to be slightly
modified to incorporate the desired changes like a custom scheduler. Also, is
requirement 2 (hardware independent and dependent modeling) not fully sup-
ported by one approach. However, this requirement can easily be covered by
generating hardware dependent models for each new simulation. Best candida-
tes for a simulation based analysis are TrueTime, Palladio, and the Modelica-
based ModelicaNCLibrary. For this thesis, Palladio has been selected due to
its coverage of most requirements, the component-based modeling approach,
the various extensions available, it’s easy to extend framework, and its already
high number of different underlying simulation engines (which also include OM-
NeT++). In [dGJKK12] a similar search and selection has been made, leading
to Palladio as a fitting approach.

6.2.3 Palladio Simulation Models

This subsection briefly explains the Palladio models that will be used to predict
the utilization of a PLC. For this purpose, the influence factors, parameters,
and additional information are extracted from the Systems Engineering models

157

Chapter 6 Realization of Modeling and Analysis

Table 6.1: Overview of requirements and approaches

Re
q
1

Re
q
2

Re
q
3

Re
q
4

Re
q
5

Re
q
6

TrueTime

satisfies requirement
partially satisfies requirement
not capable

+
0
-

Palladio

OMNeT++

TimingArchitects

RTC Toolbox

ModelicaNCLibrary

chronSIM

+
+
+
o
-
+
o

o
o
o
o
o
o
o

-
+
o
o
-
o
-

-
+
o
o
-
o
o

+
+
o
+
-
+
+

+
+
o
-
o
+
-

Re
q
7

+
o
+
+
+
+
+

Legend

and based on this different Palladio models, their elements, and relations are
generated. The following sections will briefly introduce the decisions why and
how the elements are created. The full model containing all influence factors
and their PLC specific performance profiles and resource demands will not be
shown. This is to protect the intellectual property, internal structure, and
properties of the firmware that Phoenix Contact provided as a basis for an
industry driven project which is used as a basis for this thesis.

Palladio uses five input models to specify the system and its environment as
shown in Figure 6.16. The ResourceEnvironment model is used to specify the
hardware, networks, and connections. The structure and behavior of software
components is defined in the Repository model. Core parts of this model are
BasicComponents and Interfaces. Similar to Java, define the Interfaces a set of
operations to execute and the BasicComponents implement them. Vital part of
the BasicComponent are Service Effect Specifications (SEFF) that describe the
behavior of each service. They model the order and extent of resource usage
(e.g. CPU resource demand) as well as calls to other (external) components.
The System model is used to compose the components and create instances for
the simulation. To specify which software component is run on which hardware,
the Allocation model is used. Finally, the UsageModel is needed to specify a
scenario that describes the usage intensity by indirectly invoking the provided
SEFFs. More details to the five Palladio models can be found in the Foundations
Chapter 2. A sixth model that is used for the simulation of an automation
system is a an additional task model necessary to provide information to the
custom scheduler. It is not provided by Palladio. Details about this model are
given in the PLC section.

The following subsections detail the realization of selected influence factors and
their parameters in Palladio models. The focus remains on the Repository and
UsageModel which are used to specify most of the structure and behavior of
the system. The other models are necessary but mostly omitted here. This is
possible, because the Allocation model only provides a single hardware. The-
refore, all component instances will be deployed on one target. The component
instances reflect the created components usually in a 1:1 relations, meaning that
each component will be instantiated only once. Only exception from this rule

158

6.2 Performance Analysis with Palladio

Taskmodel

Repository

Resourceenvironment

System

Allocation

Usagemodel

requires

requires

requires requires requires

requiresrequires

Figure 6.16: Overview of the used model types

are Function Blocks, which can be instantiated more than once.

Model elements overview:
The following Table 6.2 shows a simplified mapping of influence factors to Pal-
ladio model elements. In the first two columns influence factors and their para-
meter are listed. All following columns indicate which elements in the different
simulation models need to be created. The influence factor PLC contains se-
veral parameters which are mapped differently. CPU, Cores, and Scheduler are
solely mapped to the Resource model via ResourceContainer. Operating Sy-
stem (OS), IPTraffic, and Firmware put a load onto the CPU based on specific
access patterns. Therefore, Interfaces, BasicComponents, SEFFs, and resource
Demands need to be created. They are triggered by their respective workloads
(open or closed) in the Usage Model. To set up task priorities for the scheduler,
the Task model is used including different TaskInfo elements. Instances of the
BasicComponent are composed to a system in the System Model. This is done
by generating AssemblyContexts and corresponding Connectors and Ports to
assemble the system. Finally, the Allocation model is used to map the Assem-
blyContexts onto the ResourceContainer. The last two steps are necessary for
each influence factor that generates Interfaces and BasicComponents.

The generated Palladio elements in the different models are briefly explained
in the following subsections. Similar steps that needs to be performed, like
the creation of the AssemblyContexts and the mapping onto the ResourceCon-
tainer, are omitted. A field containing a (>task) symbol indicates that this
element is triggered by a corresponding task Workload element. The Program,
for example, is only executed if the task is triggered in the usage scenario.

PLC

The Palladio resource environment model contains all elements to specify execu-
tion environments and their connections to each other. The resource container

159

Chapter 6 Realization of Modeling and Analysis

In
te

rfa
ce

Ba
sic

Co
m

po
ne

nt
SE

FF

Dem
an

d

W
or

kl
oa

d

Re
s.

Co
nt

ai
ne

r Pr
oc

es
sin

gR
es

so
ur

ce

Ta
sk

In
fo

As
se

m
bl

yC
.

Co
nn

ec
to

r +
 P

or
t

Al
lo

ca
tio

nC
on

te
xt

Fa
kt

or
Pa

ra
m

et
er

R
ep

os
it
or

y
U

sa
g
e

R
es

ou
rc

e
T
as

km
.

S
ys

te
m

A
llo

ca
ti
on

as
d
as

d
as

PL
C

C
PU

x
x

x
x

C
or

es
x

S
ch

ed
u
le

r
x

x
O

S
x

x
x

x
x

x
x

x
x

IP
T
ra

ff
ic

x
x

x
x

x
x

x
x

x
Fi

rm
w

ar
e

x
x

x
x

x
x

x
x

x
Pr

og
ra

m
E
xe

c.
T
im

e
x

A
cc

es
Fr

eq
.

(>
ta

sk
)

C
or

e
A
ff
.

x
Fu

n
ct

io
n

B
lo

ck
B
as

eL
oa

d
x

x
x

x
x

x
x

A
cc

es
Fr

eq
.

(>
ta

sk
)

O
p
er

at
io

n
s

x
x

x
Lo

ad
/O

p
.

x
Fu

n
ct

io
n

A
cc

es
Fr

eq
.

x
x

x
(>

ta
sk

)
Lo

ad
/O

p
.

x
T
as

k
Pr

io
ri
ty

x
x

x
x

x
x

x
x

C
yc

lic
T
as

k
C
yc

le
T
im

e
x

x
x

x
x

x
x

x
E
ve

n
tT

as
k

A
cc

es
Fr

eq
.

x
x

x
x

x
x

x
x

Id
le

T
as

k
x

x
x

x
x

x
x

x
IO

(a
ll

p
ar

am
.)

x
x

x
x

x
x

x
x

x
S
er

vi
ce

s
(a

ll
p
ar

am
.)

x
x

x
x

x
x

x
x

x

Table 6.2: Generated Palladio elements for each influence factor

160

6.2 Performance Analysis with Palladio

shown in Figure 6.17 is used to model the PLC for the Unit 2. The container
itself contains a processing resource which represents the CPU of the ILC 171
ETH 2TX with a processing rate of 64.000 resource units per millisecond, cor-
responding to a CPU with 64 MHz. This processing rate is the base value for
all calculations that transform an ExecutionTimeSpecification into a Palladio
compliant resource demand.

ILC171

CPU

Scheduling: embOS

Number of Replicas: 1

Processing Rate: 74000.0

MTTF: 0

MTTR: 0

Figure 6.17: Resource container for the ILC 171 PLC of Unit 2

An important property of the processing resource is the selected scheduling.
Palladio provides basic scheduling algorithms and a framework to specify cus-
tom scheduler (see [Hap08, Hap04, Hap16]). Using this framework, a developer
is able to create a scheduler with specific settings. These settings include quan-
tum time slices, queuing configurations, starvation boost and priority settings.
The ILC 171 uses embOS as an underlying operating system. It is available
as source code, allowing the Phoenix Contact firmware developers to access in-
depth details of the specification and make modifications to the scheduler. To
support the simulation of an embOS based PLC, the details of the scheduler
had to be incorporated into Palladio.

In addition to the configuration, the behavior of the Idle-Task (or Default-Task
for Phoenix Contact PLCs) must be implemented. The Idle-Task is executed
in a loop with a very specific waiting time between executions. These waiting
times are calculated based upon the last loop duration. Figure 6.18 visualizes
this calculation. Each Idletask period can be split into the actual execution of
the task and a waiting time. If the idle task is preempted by higher priority
tasks, this time is also taken into account and added to the duration. Afterward,
the wait time is calculated and the Idletask execution is postponed so that all
lower priority processes can be executed in this time frame.

The Palladio Metamodel lacked the ability to specify scheduler priorities for
different BasicComponents. To create a custom made scheduler for simulating
the embOS IdleTask, a sixth Taskmodel has been developed and added to the
necessary input models as shown in Figure 6.16. The Taskmodel simply provides
priorities and task type definitions and relates them to elements in the System
model. During the simulation, the scheduler reads the model and internally
manages task priorities and behavior accordingly.

161

Chapter 6 Realization of Modeling and Analysis

IdleTask

duration freeSlice

ServiceTasks + Tasks with priority
lower than Default

UserTask + Tasks with priority
higher than Default

Idletask period

60 ms 40 ms 60+20 ms 53 ms 60+5 ms 43 ms

duration = StopTime - StartTime

Calculation

freeSlice = duration * (100 - CPULoadPerCent)
CPULoadPerCent

CPULoadPerCent = 60%

period = duration + freeSlice

time60 % : 40 % 60 % : 40 % 60 % : 40 %

Figure 6.18: Specifics of the embOS Scheduler

OS, Firmware and IPTraffic

Each PLC has a set of processes and threads that will form a unique load profile.
For the ILC 171 ETH 2TX, different firmware and operating system processes
must be considered when creating Palladio simulation models. To do this, the
details of the PLC must be investigated. Fortunately, offers a special debugging
firmware for the ILC 171 a way to conduct in-depth profiling of the hardware and
software. More information on this profiling mechanism can be found in Chapter
7. To create a load profile for the ILC 171, the most influential processes and
threads have been identified under different load conditions. These processes
have been condensed and combined into three standalone demands that will
put a load onto the CPU.

� The embOS baseload represents the background utilzation induced by
the underlying operating system

� The SystemTick is a timer integrated into the operating system. It is
used to manage or trigger all PLC specific functions or processes and
invoked every millisecond.

� The IEC Runtime-Environment eCLR provides a rich set of functions
that can be used by developers. These functions usually put a load onto
the CPU when invoked, but some of them also run continuously in the
background. To exchange (engineering) data with the PLC, a vendor
specific communication stack has been implemented. This stack is called
Remoting and is a major part of the eCLRs background utilization.

For each of these three firmware specific loads, a Palladio BasicComponent and
according Interface has been created. These components are instantiated in the
System model and called from dedicated UsageScenarios. Figure 6.19 shows
the BasicComponent in the Repository model (6.19a) and the UsageScenario
(6.19b) for the EclrRemoting baseload. The SEFF of the BasicComponent
contains a ResourceDemand specified as

DoublePDF [(8640.0; 0.0)(9120.0; 0.05)(10080.0; 0.9)(10560.0; 0.05)]

to emulate a jittering of the load and not just a fixed value.

162

6.2 Performance Analysis with Palladio

IEmbos_EclrRemoting_PLC_unit2_PLC_unit2

void PLC_unit2_Embos_EclrRemoting_tick()

Embos_EclrRemoting_PLC_unit2

SEFF <PLC_unit2_Embos_EclrRemoting_tick>

PassiveResourceCompartment

ComponentParameterCompartment

<<Provides>>

(a) Repository component

Embos_EclrRemoting_PLC_unit2

<<SystemCallAction>>
IEmbos_EclrRemoting_PLC_unit2_PLC_unit2.PLC_unit2_Embos_EclrRemoting_tick

<<ClosedWorkload>>
Population: 1

Think Time: 1

(b) UsageScenario

Figure 6.19: Component and UsageScenario for the eCLRRemoting load

This same modeling approach is used to model the general IPTraffic which must
be handled by the PLC. The parameters, resource demand, and UsageScenario
arrival times can be derived from the properties defined by the AIM profile.

Programs

Each Program is part of a Task which triggers it. A Task can contain multi-
ple Programs, but at least one. To model Programs in Palladio, two different
approaches can be used. First, the Program will be represented by a BasicCom-
ponent and it’s according Interface like previously shown. This option allows
a much better reuse of the created model elements. However, due to the fact
that the majority of all Palladio models are generated and the Tasks already
need a BasicComponent and Interface, the Program specific actions and loads
can as well be added to this component. This solution simplifies the models
and decreases the time to simulate it.

Therefore, each Program is part of a Task (see subsection 6.2.3) with an as-
sociated SEFF. The SEFF is used to specify, for example, probabilities for
executions, parameters, or InternalActions. The InternalActions provide the
ability to set a resource demand for a CPU. Figure 6.20 shows three different
InternalActions executed by two SEFFS (MainTask and MillTask). The actions
are named after the Program name. The ResourceDemand is set to a specific
demand, derived from the properties of the AIM profile. In this particular case,
the WCET (or fixed time) has been calculated by the resource units the CPU
can process. Other value kinds like Bounded, RandomSet, and RandomInterval
can be mapped to Palladio by using the Stochastic Expression EBNF specified
by Palladio. If a task executes multiple Programs as shown in the example,
the different Program InternalActions are added to the SEFF and executed in
order.

Functions and Function Blocks

To simulate Function Blocks and Functions in Palladio, all Interfaces and Ba-
sicComponents need to be created first. Figure 6.21 shows on the left side

163

Chapter 6 Realization of Modeling and Analysis

<<InternalAction>>
MeasurementProgram.useCPUResource

ResourceDemand
384000.0 <CPU>

FailureOccurrenceDescriptions

InfrastructureCallsCompartment

<<InternalAction>>
MainProgram.useCPUResource

ResourceDemand
320000.0 <CPU>

FailureOccurrenceDescriptions

InfrastructureCallsCompartment

<<InternalAction>>
MillProgram.useCPUResource

ResourceDemand
384000.0 <CPU>

FailureOccurrenceDescriptions

InfrastructureCallsCompartment

MainTask MillTask

Figure 6.20: Realization of Programs with different kinds of Actions

(6.21a) an excerpt from the Palladio Repository model. The figure shows a
BasicComponent representing the CyclicTask and the included Programs. The
BasicComponent does not only provide its according Interface but also requires
the Interface of a used Function Block (IFB BufferStationCtrl). The operations
of this Interfaces can be called from inside the CyclicTasks SEFF as shown on
the right side (6.21b). After the InternalAction for the Program has been exe-
cuted an ExternalCallAction is performed. This ExternalCallActions triggers
the execution of the BufferStationControl’s FB run operation and its contained
SEFF and ResourceDemand. This approach can be repeated to model nested
call hierarchies, including Function Blocks to Function Block calls.

ICyclicTask_PLC_unit2_MainTask

void PLC_unit2_MainTask_tick()

CyclicTask_PLC_unit2_MainTask

SEFF <PLC_unit2_MainTask_tick>

PassiveResourceCompartment

ComponentParameterCompartment

<<Provides>>

<<Requires>>

IFB_BufferStationCtrl

void FB_run()

FB_BufferStationCtrl

SEFF <FB_run>

PassiveResourceCompartment

ComponentParameterCompartment

<<Provides>>

(a) Repository

<<InternalAction>>
MainProgram.useCPUResource

ResourceDemand
320000.0 <CPU>

FailureOccurrenceDescriptions

InfrastructureCallsCompartment

<<BranchAction>>
ProbabilityBranch_run

NoExecution

Probability: 0

Execution

Probability: 1

<<ExternalCallAction>>
requires_FB_BufferStationCtrl0.FB_run

InputVariableUsage

OutputVariableUsage

(b) SEFF

Figure 6.21: Repository components and SEFF for calling Function Blocks

To model PLC specific Functions, the same approach can be used. First, a
global BasicComponent and Interface are created for a specific PLC. Then all
Functions from the AIM profile are gathered and added to the Interface. This
allows other BasicComponents to use the provided Operations.

164

6.2 Performance Analysis with Palladio

Tasks

Tasks are used to trigger the execution of Programs and Function Blocks. The-
refore, they are mapped directly to UsageScenarios. Figure 6.22 shows the
specification of the MillTask and MainTask. The MainTask is the cyclic Task
that executes all associated Programs every 150ms. Therefore, a UsageScenario
has been set up using an OpenWorkload with an InterarrivalTime of 150. The
SystemCallAction will run the according Program SEFFs and their Interna-
lActions as defined in 6.2.3.

CyclicTask_PLC_unit2_MainTask

<<SystemCallAction>>
ICyclicTask_PLC_unit2_MainTask.PLC_unit2_MainTask_tick

<<Open Workload>>
Interarrival Time: 150

DefaultTask_PLC_unit2_MillTask

<<SystemCallAction>>
IDefaultTask_PLC_unit2_MillTask.PLC_unit2_MillTask_tick

<<ClosedWorkload>>
Population: 1

Think Time: 0

Figure 6.22: UsageScenarios representing the MillTask and MainTask

The second UsageScenario shown in the figure represents an IdleTask (named
DefaultTask for ILC 171). It uses a ClosedWorkload instead of an OpenWor-
kload due to its reoccurring (looping) nature. The ThinkTime property is not
used for the IdleTask. The custom made embOS scheduler, introduced in 6.2.3,
calculates the ThinkTimes dynamically based on previous execution times and
defined system settings.

Services

Services are realized the same way Function Blocks are created. For each Ser-
vice, a Palladio BasicComponent and its according Interface is created. Via
the provided Operations, the SEFFs and their resource demands are executed.
The SEFFs are derived from the AIM profile properties and all similar loads
are combined, respectively accumulated into one access. For example, if multi-
ple accesses are executed by the same ServiceAccessPattern, then these will be
combined into a single operation with its according UsageScenario. The same
applies to subsequent VariableAccess calls. Of course, this does not apply, if the
calls are executed with different ServiceAccessPatterns. Services currently rea-
lized are the OPC-Server, Webserver, and FTPServer. For each Server/Service
dedicated measurements have been made using the profiling mechanism of the
special debugging firmware provided for the ILC 171 PLC. These measurements
are the basis for creating service specific load profiles. Some details about these
measurements can be found in Chapter 7.

In the following subsection, an example for the creation of a Webserver load
profile will be given. The Webserver is a core feature of the ILC 171 ETH 2TX

165

Chapter 6 Realization of Modeling and Analysis

PLC that is used to provide a web-based HMI for application specific data.
With a special tool, included in the PC Worx Engineering tool suite called
WebVisit, the available global variables can be selected and visualized on an
HTML page with Java script. The Webserver on the PLC reads or writes the
data in fixed intervals set by the WebVisit tool.

To check the different parameters of the Webserver influence factor, several
varying WebVisit setups have been made, downloaded onto the PLC and exe-
cuted. Afterward, the profiling mechanism provided detailed information about
the CPU load induced by the Webserver. The influence factor has three basic
parameters: The number of variables accessed from the Webserver, the kind of
variable (e.g. String or Integer) and the set refresh interval.

Figure 6.23 shows two graphs visualizing the results of multiple measurements
using Integer and String variables, varying refresh times, and number of varia-
bles. All graphs show the CPU-Utilization on the y-axis as a percentage value
and the number of variables is given on the x-axis. Each line represents the
results of a measurement with refresh intervals set to 250 ms, 500 ms, 750 ms,
1000 ms, 1500 ms, 2000 ms, 3000 ms, and 4000 ms. On the left side (6.23a), the
measurements for the variable type Integer and on the right side (6.23b) type
String are shown. As expected is the utilization of the CPU highest for short
intervals and increasing number of variables. At a refresh rate of 250 ms and
100 variables, the difference in CPU utilization between Integer (29,86%) and
String (58,34%) is almost 28,48 percentage points. Based on the measurements,
formulas have been developed that are used to calculate ResourceDemands for
the SEFFs during the generation of the Palladio models.

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

0 20 40 60 80 100

C
P

U
-L

o
ad

#variables

WebServer Util (int)

250

500

750

1000

1500

2000

3000

4000

(a) Variable type Integer

0

10

20

30

40

50

60

70

0 20 40 60 80 100

C
P

U
-L

o
ad

#variables

WebServer Util (string)

250

500

750

1000

1500

2000

3000

4000

(b) Variable type String

Figure 6.23: Visualization of the Webserver utilization

IO - Interbus

To simulate the utilization induced by the Interbus fieldbus system, a BasicCom-
ponent, Interface, and associated SEFFs are created. The ResourceDemand is
also calculated based on the properties specified by the AIM profile. The ILC
171 ETH 2TX uses a special hardware to fulfill the function of the Interbus

166

6.3 Overview of Models and Transformations

Master. Therefore, a major part of the workload must not be processed by the
CPU. However, several threads are used to gather and copy the data to the
hardware. To create a load profile for the Interbus fieldbus, the performance of
the Interbus Master process has been profiled.

0,00

2,00

4,00

6,00

8,00

10,00

12,00

14,00

16,00

18,00

0 10 20 30 40 50 60 70 80 90 100

C
P

U
-l

o
ad

Interbus interval (ms)

IBM CPU-Load

Interbus Master (IBM) CPU-Load

Figure 6.24: Visualization of the Interbus Master utilization

The results of these measurements are shown in Figure 6.24. The utilization
has a peak of 15,6% at a fixed cycle time of 1ms and is decreasing rapidly at
higher cycle times. The measurements were performed using a single Interbus
device and a data size of eight Bit. For this setup, the following formula has
been derived which is used to calculate the ResourceDemand.

fibm(i) = 16, 95 ∗ i(−1,065)

The SEFF is executed via an UsageScenario with an OpenWorkload and a fixed
InterArrivalTime of 1. Therefore, the calculated background workload is put
evenly on the CPU.

The load profile for the PROFINET fieldbus has been created in a similar way.
The measurements for PROFINET have been provided by Phoenix Contact
for a different PLC. They are much more detailed and therefore, allow a fine-
grained analysis and subsequent specification of a formula.

6.3 Overview of Models and Transformations

The goal of this thesis is to model selected influence factors in the early system
development phases and perform an performance analysis. CONSENS has been
selected as one of multiple approaches to create Systems Engineering models.
These models are extended by automation system specific information.

To conduct a performance analysis, the Palladio Component Framework has
been selected. Transforming the SysML-based CONSENS models directly into

167

Chapter 6 Realization of Modeling and Analysis

Palladio input models is a valid step. However, the use of multiple models
in a chain of smaller transformations provides several advantages. First, the
CONSENS models include far more information than used for the Palladio
simulation, making a single transformation more complex. An example is tra-
versing different information flows from source to target over several hierarchies.
Therefore, only the relevant information should be selected and transformed in
a first step. Second, the performance prediction approach considers different
PLCs from various vendors. Each PLC provides their own specific parameters
contained in load profiles which are not governed in the CONSENS respectively
influence model. Additionally, some parts like task management or Function
Block creation in the Palladio models are interchangeable between PLCs and
vendors. Therefore, it is possible to identify modules which can be reused be-
tween PLC products or product families as well as different vendors. Another
advantage of using multiple models is the aggregation of information. It is, for
example, necessary to aggregate all variable accesses to the OPC-Server for a
primitive type like String or Integer. This can be easily done in an intermediate
model. And finally, a more technical reason for using multiple steps towards
the final simulation models is the handling with dedicated, PLC specific models
that are much easier to parse, debug, and create transformations for.

Figure 6.25 shows the chain of models and transformation steps from the ex-
tended CONSENS model on the left side up to the final simulation results on
the right side.

Automation Model Simulation ResultsPalladio ModelsCONSENS Model

QVTO
M2M Transformations

QVTO
M2M Transformation

AIM
UML Profile

0,0 2,5 5,0 7,5 10,0 12,5 15,0 17,5

Time

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1,0

Pr
ob

ab
ili

ty

Busy (83.2%)

Idle (16.8%)

Busy (83.2%)

Idle (16.8%)

Idle (16.8%) Busy (83.2%)

Palladio

Palladio
SimuCom Simulation

Intermediate

Figure 6.25: Chain of models and transformations

Creating performance models with Palladio is a complex and time-consuming
task. For this reason, the intermediate Automationmodel has been created.
It hides the Palladio models from the developer and further adds informa-
tion for the simulation engine. Between the CONSENS and Automationmo-
del, as well as the Automationmodel and the five Palladio models (repository,
usage, allocation, system, and resourceenvironment), automated transformati-
ons can be used. The transformations are performed with QVT-Operational
(QVTO)[Obj11b] (see Section 6.3.2).

This section first briefly introduces this intermediate Automationmodel that
reduces the overall complexity of the required transformations and also simpli-
fies the debugging/development. Afterward, the set of transformations used to
generate the Palladio models from the Automationmodel will be detailed. To

168

6.3 Overview of Models and Transformations

complete the chain of models, the following section will sketch the transforma-
tions used to generate the Automationmodel from the CONSENS respectively
CONSENS4SysML Papyrus models.

Similar to the Palladio models, contain most of the model-to-model transforma-
tions confidential information about the Phoenix Contact project. Therefore,
only selected parts are shown in the following subsections and the appendix.
They are sufficient to explain the basic properties and functionality of this ap-
proach.

6.3.1 Automationmodel

The intermediate model called Automationmodel is used to bring modularity
(up to a certain degree) into the transformation process. Instead of performing
one large transformation, two smaller and simpler transformations can be used
to generate the target Palladio models. The Automationmodel is only a subset
of the original Systems Engineering model and focuses only on the selected PLC
that will be simulated. It combines multiple influence factors and condenses the
information, making the transformation to Palladio models easier. As mentio-
ned in Chapter 1 are the simulation model and the automation model a result
of an industry project conducted for Phoenix Contact. Therefore, details about
the model elements and their properties can not be given. However, the coarse
structure of the model and examples of transformations creating or using it are
presented. Since the Automationmodel is only used as an intermediate step to
create the final output model it could also be replaced by more sophisticated
transformations. This would not influence the final simulation results.

Automation
model

PLCProduct-
configuration

Functionblock
Library

LibraryDescription

PLCProduct-
feature

<<imports>><<imports>>

<<imports>>

Figure 6.26: Automationmodel and LibraryDescription packages

The Automationmodel is furthermore split into two parts. The main part is
used to specify the automation system and the influence factors. The second
part is separated from the Automationmodel to provide reusable elements like
PLC settings, configurations, and Function Blocks in Libraries. Figure 6.26
shows the relations between the different models and packages. The Automati-
onmodel references the LibraryDescription model which contains three packages

169

Chapter 6 Realization of Modeling and Analysis

to structure the model elements. The FunctionblockLibrary package contains
all classes to model (reusable) Function Blocks, their parameters and behavior.

To specify a PLC, the classes provided in the PLCProductconfiguration are used.
Currently, this package only contains a single class (PLCProductconfiguration)
to specify PLC specific properties like name, vendor, type, processing rate, the
number of cores, and so on. However, each PLCProductconfiguration can re-
ference a set of PLCProductfeatures. These features are later used to generate
the according Palladio models. Therefore, represents the PLCProductconfigu-
ration with its unique set of PLCProductfeatures a PLC specific load profile.
Figure 6.27 shows such a configuration. The PLCProductconfiguration named
ICL 171 Rev 2.34 contains a set of PLCProductfeatures. Each of these features
is accompanied by a transformation rule that creates or modifies the Palladio
models as shown in section 6.3.2.

ILC_171_Rev_2.34

embOS_01.442eCLRRemoting_02.662

CyclicTasks_01.1 BasePOU_03.01

WWW_01.18FTP_01.42Service_OPC_01.1

INTERBUS_M_01.1

...

Figure 6.27: PLCProductconfiguration containing a unique set of features

6.3.2 Transformations

The models in Papyrus, the Automationmodel and the five Palladio models (re-
pository, usage, allocation, system, and resourceenvironment) are based on the
EMF technology. This allows choosing from a wide range of Model-To-Model
approaches provided for Eclipse. To select a fitting transformation technology,
Lehrig [Leh12] provides a decision-tree. To enable an easy, textual modification
of the transformation rules and an automation system affine target audience,
we choose QVT-Operational (QVTO) [Obj11b]. QVT-O is an imperative lan-
guage designed for writing unidirectional transformations. It is similar to pro-
gramming languages like Java and its text-based specification allows an easy
customization of its transformation rules. Additionally, QVTO supports QVT-
BlackBox operations for invoking external code. This allows the specification
of complex calculations that are used to determine the ResourceDemand for
Services, fieldbusses, or Function Blocks. Alternatives to QVT-O are ATL ci-
teATL, TGG [Sch95], or XTend [Ecl17d] were not covered in Lehrig’s work.

The following subsections introduces the two necessary transformation steps
bottom up from the Automationmodel to the six Palladio input models and
from the CONSENS4SysML to the Automationmodel.

170

6.3 Overview of Models and Transformations

Automationmodel to Palladio

One of the initial design goals of the Phoenix Contact project was to create
the transformations and generation process as modular and flexible as possi-
ble. Therefore, the transformations are developed to be interchangeable and
independent of each other up to a certain degree. A transformation contains
mapping rules that specify, how an element from the Automationmodel is trans-
formed into one or many elements in the Palladio models (see Figure 6.16 in
section 6.2.3). A root transformation rule associated to the PLCProductConfi-
guration, creates the five Palladio models and the additional Taskmodel. After-
ward, one or more follow-up transformations are executed that incrementally
build up the whole automation system in Palladio. Figure 6.28 shows an exem-
plary setup of these QVTO based transformations. On the left side, an abstract
Automationmodel has been depicted. It contains a PLC, CyclicTask, Program,
and OPC-Server. The first transformation (ILC 171 Rev 2.34) creates the six
models shown on the right side. Each subsequent transformation creates or
modifies the existing model to add specific elements to it. In this figure, only
exemplary repository elements are shown. A benefit of this approach is, despite
the ability to create new PLC products more easily, that the model creation and
debugging process is much more simpler than with one, complex transformation
that creates all models and relation.

Task

Automationmodel

ILC 171 ETH 2TX

CyclicTask MainLoop

Program Main

OPC-Server

+

+

+

CyclicTasks_01.1

BasePOU_03.01

Service_OPC_01.1

ILC_171_Rev_2.34

allocation

usagemodel

system

environment

repository

CPUos_embOS

task_main

fb_MainFB

svr_opc_base

<requires>

<requires>

<requires>

<requires>

Transformation input

Transformation output

QVTO Transformations

Figure 6.28: A set of transformations generating parts of the model

Another advantage of using QVTO transformations to generate the Palladio
models, is the possibility to easy modify attributes and configurations. The lis-
ting 6.1 shows an excerpt from the transformation embOS baseload.qvto, which
contains several global variables. Changing, for example, the priority of related
processes can be done by just setting a new integer value. The same applies to
the baseloadPercentage and deviation which influence the creation of the Re-
sourceDemand. The listing also shows two exemplary QVTO mappings used
to create a resource demand in the Repository model.

The upper mapping is used to create a ParametricResourceDemand element
that sets a resource demand for the CPU. Please note that the “@repo” at the
end of the mapping signature has been removed to fit the page. This tag is
used to define one of the six models this element is created in. To finalize

171

Chapter 6 Realization of Modeling and Analysis

the ParametricResourceDemand, a PCMRandomVariable must be created that
specifies the actual literal of the demand. For this, the second mapping is used
which builds the specification string based on the processingrate of the PLC,
the baseloadPercentage and the set deviation.

Listing 6.1: Excerpt from the embOS baseload.qvto transformation rule

1 // −−−−−− Operatingsystem (embOS)
2 property p r e f i x=”EmbOS Baseload ”;
3 property base loadPercentage : Real =0.05;
4 property dev i a t i on : Real =0.05;
5 property p r i o r i t y : I n t eg e r =250;
6

7 mapping PLC : : createRD () :pcmMM: : s e f f : : s e f f p e r f o rmanc e : :
ParametricResourceDemand{

8 var r e s r epo=pcmMM: : r e source type : : ResourceRepos i tory . a l l I n s t a n c e s () ;
9 var procresTypes=pcmMM: : r e source type : : Process ingResourceType .

a l l I n s t a n c e s () ;
10 var prt=r t r epo . ob j e c t s () [pcmMM: : r e source type : :

Process ingResourceType] ;
11 requiredResource ParametricResourceDemand := prt−>any(entityName=

”CPU”) ;
12 spec i f i cat ion Parameter i cResourceDemand := s e l f −>map createPlcRDVar ()

−>any(true) ;
13 }
14

15 mapping PLC : : createPlcRDVar () :pcmMM: : core : : PCMRandomVariable@repo{
16 var spec=(s e l f . p l cProductConf igurat ion . p r o c e s s i n g r a t e *

base loadPercentage) ;
17 var rangeo1 : Real = (spec *(1−(dev i a t i on))) ;
18 var rangem1 : Real = (spec *(1−(dev i a t i on /2))) ;
19 var rangem2 : Real = (spec *(1+(dev i a t i on /2))) ;
20 var rangeo2 : Real = (spec *(1+(dev i a t i on))) ;
21 s p e c i f i c a t i o n :=”DoublePDF[(”+ rangeo1 . t oS t r i ng () +”;0 .00000000) (”+

rangem1 . t oS t r i ng () +”;0 .05000000) (”+rangem2 . t oS t r i ng ()
+”;0 .90000000) (”+ rangeo2 . t oS t r i ng () +”;0 .05000000)] ”;

22 }

AIM to Automationmodel

This transformation is used to gather all the information scattered in the anno-
tated CONSENS model and generate the intermediate Automationmodel. The
input for this transformation is the .uml-file created by the Papyrus editor.
The Papyrus (meta-)model is also based on the Eclipse EMF technology, which
allows using QVTO just like in the previous section. The transformation also
contains a set of mappings that will create one or more target elements in the
Automationmodel. An excerpt of these mappings is shown in listing 6.2. The
upper mapping is used to create CyclicTask elements when provided an UML
Property. Properties of the target CyclicTask element like cycletime or priority
will be set according to the specifications given in the annotated CONSENS
model. Afterward, all properties are checked if they have the applied stere-
otype “AIM::pou::Program”. These elements are further provided as an input
to the mapping Type2Program which creates the according Program elements.

172

6.4 Summary

Listing 6.2: Exemplary mappings to generate the Automationmodel

1 mapping Class : : Property2Cycl icTask () : am : : Cycl icTask {
2 name:= s e l f . name ;
3 cyc l e t ime := s e l f . getValue (s e l f . ge tAppl i edStereotype (”AIM : : task : :

Cycl icTask ”) , ”cycleTime ”) . oclAsType (In t eg e r) ;
4 p r i o r i t y := s e l f . getValue (s e l f . ge tAppl i edStereotype (”AIM : : task : :

Cycl icTask ”) , ” p r i o r i t y ”) . oclAsType (In t eg e r) ;
5 s e l f . ownedElement [uml : : Property]−>forEach (prop) {
6 i f (prop . type . getAppl i edStereotype (”AIM : : pou : : Program ”) !=null) then{
7 programs += prop . type .map Type2Program () ;
8 } endif ;
9 }

10 }
11

12 mapping Type : : Type2Program () : am : : Program{
13 name := s e l f . name ;
14 execut iont ime := s e l f .map Type2WorstCaseExecutionTime () ;
15 s e l f . ownedElement [uml : : Property]−>forEach (prop) {
16 i f (prop . type . getAppl i edStereotype (”AIM : : pou : : FunctionBlock ”) !=null)

then {
17 funct ionb lockUsages += prop .map Property2FBUsage () ;
18 }endif ;
19 } ;

6.4 Summary

In this chapter, the different models and transformation steps have been explai-
ned. Afterward, the AIM UML profile that maps the identified influence factors
to the System Engineering models based on SysML4CONSENS has been intro-
duced. Section 6.2 listed some requirements and related work before detailing
the input models for Palladio, the selected analysis approach for this thesis. To
generate the simulation models, a semi-automatic toolchain based on QVTO
transformations has been presented. The concept and details of these transfor-
mations, as well as the intermediate Automationmodel, have been explained. It
is now possible to automatically generate the input for the Palladio performance
simulation from the initial Systems Engineering models.

173

CHAPTER 7
Evaluation

This chapter provides an evaluation of the concepts developed in Chapter 5
and their realization in Chapter 6. The goal is to validate whether the provided
influence factors and the proposed modeling approach can be used to conduct
a performance prediction based on Systems Engineering models. Figure 7.1
shows the steps and artifacts performed in this evaluation. The UML profile is
used to create an annotated Systems Engineering model. In combination with
the developed Simulation models and transformations, this model is used to run
a performance simulation (step 6). To evaluate the results of this simulation
(step 7), a performance prototype (see Chapter 2) is created and measured.
The comparison of the predicted and the measured utilization of a PLC shows
that the approach is sufficiently precise to validate the Systems Engineering
models in the early development stages. The maximum deviation is around
8,7%, which is still below the desired prediction accuracy of 20 percent.

Evaluate
simulation

results

UML
Profile

Palladio
Simulation

Models

Simulate
PLC

Simulation
results

6
7

Figure 7.1: Steps and artifacts of this chapter

7.1 Evaluation Process

According to Freiling et al. [EFR08] there are several types of validations that
can be used to evaluate an approach. A Type 0 validation requires a tool,
approach or metrics that can be compared to each other showing that the
approach is working in general. This validation has already been provided by
identifying the influence factors in Chapter 4 and the following realization using
the UML profile and Palladio as a simulation framework. The Type I validation
requires a comparison of predictions and measurements, that show that the
values, to some degree, conform to the observed reality. The Type II validation
focuses on the ease of use or applicability of the approach. It is therefore

175

Chapter 7 Evaluation

checked, whether the developers can (easily) apply the proposed development
process and modeling tools to specify all influence factors. This also includes
the analysis and meaningful interpretation of the prediction results.

The goal of this evaluation is to verify, that the developed models, tools, and
transformations can be used to predict the utilization of an automation system
in the early development stages. For this, a Type I validation has been be
conducted. The Goal Question Metric method [Bas92] is used to state the
following GQM goal definition template.

Goal:
Analyze the modeling and simulation of influence factors for the purpose of
validating the simulation with respect to the prediction accuracy from the
viewpoint of an automation system developer in the context of a simplified
turbocharger example.

Following GQM, a question and corresponding metrics are derived. This eva-
luation is focuses on the overall utilization of the PLC, which is expressed in
a percentage value. This percentage value is set as the metric. The question
is, whether the prediction accuracy deviates more than 20 percent between
prediction and measurement.

CONSENS
model

Apply
AIM profile Annotated

CONSENS
model

Generate
intermediate

model Intermediate
Automation

model

Palladio
models

Generate
Palladio
models

Run
Palladio

simulation

Compare

Derive
implementation

PC Worx
Project

Simulation
results

Measurements

Conduct
measurements

Comparison

Figure 7.2: Evaluation steps to compare simulation with measurement

Figure 7.2 shows the steps that are performed to determine the prediction accu-
racy with measurements taken directly from the PLC. First, existing CONSENS
models are extended by the AIM profile and the influence factors are added to
the System Engineering model. This annotated CONSENS model is the basis
for the following implementation as well as the generation of the Intermediate
Automationmodel. This model provides additional information and is transfor-
med to Palladio models for simulation purposes. This simulation is performed
by the SimuCom framework. The implementation of the IEC code and the

176

7.2 Evaluation Context

configuration of the PLC is done in PC Worx, the Engineering tool for Phoenix
Contact PLCs. The chosen PLC (ILC 171 ETH 2TX) allows the measurement
of the overall utilization which is compared to the simulation results in the last
step.

The following sections detail the context of this evaluation and the setup of
the performance prototype. They provide necessary information on the used
Systems Engineering models, the set of influence factors that are evaluated,
and how the metrics are measured on the automation system. Afterwards, the
results of the measurements and predictions are presented, followed by a short
discussion of the gathered results. Before giving a final summary, the threats
to validity are discussed.

7.2 Evaluation Context

For the evaluation, the Turbocharger production system introduced in Chapter
3 and a simple test case for the IdleTask are used. These two scenarios are
based on the same setup (see Section 7.2.1) and are described in detail below.

Simplified Turbocharger Test
The CONSENS models provided in that Chapter 3 are extended by the AIM
profile developed in Chapter 6, adding influence factors, parameters, and set-
tings. This information can be used to automatically generate Palladio models
for a performance simulation.

However, the example CONSENS models include all influence factors and a
broad range of Function Blocks, Functions, Services, and Operations. Due
to the limited performance of the ILC ETH 2TX PLC, the complete running
example from Chapter 3 cannot be used, but only a subset of it. The available
PLC is not capable to run multiple Function Blocks with high loads and has the
full range of services modeled. For example does the ILC 171 only provide an
OPC-Server instead of an OPC-UA-Server. To create performance models for
the simulation, a basic profiling of each influence factor is necessary. However,
the only available PLC with the necessary in-depth profiling mechanism was
the ILC 171 provided by Phoenix Contact. Therefore, the overall number of
Function Blocks has been reduced to eleven in contrast to the 36 used in the
running example (see Appendix A) to be able to run on the ILC 171. The
Function Blocks are executed in three programs, triggered by two tasks. Also,
the older OPC server (instead of the OPC-UA server) doesn’t provide a remote
operation access or file transfer. In consequence, the two services accesses are
removed as well from the evaluation model. Figure 7.3 shows an excerpt of
the project structure of PC Worx, the Engineering tool for Phoenix Contact
PLCs. The following list details the setup for the performance prototype and
simulation models.

� Eleven Function Blocks are defined for this example, each with varying
ExecutionTime specifications. The Function Blocks are instantiated in
three Programs and executed in their associated tasks.

177

Chapter 7 Evaluation

Figure 7.3: Screenshot of the project setup in PC Worx

� Three Programs are used that instantiate the Function Blocks. Each
Program is set up with an execution time, also specified as a fixed WCET.
The Programs are named MillProgram, MeasurementProgram and Main-
Program.

� To execute the Programs and Function Blocks, two Tasks are set up.
First, the MillTask is an IdleTask to incorporate the custom Scheduler
for the IdleTask. The second task is a cyclic task called MainTask with
a cycle time of 150 ms. The MainTask has a higher priority than the
MillTask.

� The annotated CONSENS model contains an FTPServer which is peri-
odically accessed by an FTP-Client to download logfiles. This client will
connect to the server every 5000 ms and request a 100 kb file for download.

� An OPC-Server is used to provide 1000 integer variables that will be
read by an OPC-Client. The client has a set refresh interval of 1000ms.

� The Interbus IO will be set up with fixed cycle time. Just the MainPro-
gram will write 8 digital outputs. Setting a fixed cycle time is a common
action to avoid letting the PLC automatically determine the best cycle
time which could lead to an oversampling of the fieldbus. For this example,
the Interbus cycle time is still 15 times faster than the cyclic MainTask.
Increasing the cycle time would lead to a hard measurable load induced
by the fieldbus.

Idle Task Test
The second scenario focuses on the runtime behavior of the Idle Task (see
Section 4.3.4). This common task type in automation systems executes the
associated Program instances in an endless loop. As described in Section 6.2.3
is a special scheduler used that limits the CPU utilization of the PLC to 60%.
Therefore, the second evaluation context is build up without external influences
and service accesses and just contains a simple Program in an Idle Task. It is
evaluated, whether the utilization will settle at the specified limit of 60%.

� One Program is used that contains a single Function Block. The exe-
cution time of the Program is increased from 1ms to 500 ms to create
utilization on the PLC. The value is changed after each set of measure-
ments.

178

7.2 Evaluation Context

� To execute the single Program, a IdleTask is set up and has has no
further settings. The in-depth parameters of the IdleTask for the ILC 171
ETH 2TX PLC are given in Section 6.2.3.

7.2.1 Setup of the Performance Prototype

ILC 171 ETH 2TX IB IL 24 DO 8-PAC

Laptop

Ethernet switch

PC Worx Engineering Tool
FTP-Client
OPC-Client
Telnet-Client

Ethernet

Ethernet

Interbus

Serial

Figure 7.4: Setup of the performance prototype

In this section, an overview over the implementation details of the performance
prototype and the conducted measurements is given. The model and its influ-
ence factors are simplified to create a runnable setup for the used PLC.

Figure 7.4 sketches the setup for the performance tests. The PLC used for the
execution of IEC code is a ILC 171 ETH 2TX small scale PLC from Phoenix
Contact. The PLC provides an Interbus IO system which is used to connect a
bus coupler IB IL 24 DO 8-PAC. This bus coupler can support up to 8 digital
outputs. The PLC provides also an OPC-Server, FTPServer and Webserver for
an HMI client.

A Laptop is used to program and configure the PLC with PC Worx. It is
connected to the PLC via a standard Ethernet switch. The Laptop also runs
the FTP-Client which used to download log files from the PLC as well as an
OPC-Client that accesses variables. The special debugging firmware of the ILC
171 provides the possibility to access internal states and status information via
a serial link. The PC can read the data over this link via the telnet protocol.
The data is used to gather detailed information about processes, threads and
the overall utilization of the PLC.

The performance prototype does not provide Programs and Function Blocks
with code based on the actual Turbocharger example. The original code has
been restricted by ELHA. Therefore, new code to represent the functions of the
original software needed to be implemented. To emulate the workload of the
original code, LoadGenerator Function Blocks are used that will stress the CPU
and create a specific utilization of the PLC. Listing 7.1 shows the Structured
Text of this LoadGenerator. For a given time interval, a sine-function is execu-
ted - the calculated values are not used and discarded. The interval is calculated
based on the PLC SYS TICK CNT signal, which is the most precise timer the

179

Chapter 7 Evaluation

ILC 171 provides to IEC software developers. This poses a problem concerning
the minimum load that can be simulated by a LoadGenerator. The timer has
only a precision of 1ms, which means that all specified ExecutionTimes must
be a multiple of 1ms. For this reason, the example contains no ExecutionTimes
with less than 1ms. Real world examples usually contain Function Blocks with
far shorter execution times.

Listing 7.1: Structured Text code of the LoadGenerator Function Block

1 IF Busy THEN
2 LastVal := PLC SYS TICK CNT ;
3 REPEAT
4 Real Val := Sin (Real Val * 2 . 3) ;
5 LoadProcessigTime := PLC SYS TICK CNT − LastVal ;
6 UNTIL LoadProcessigTime >= Process igTime
7 ENDREPEAT;
8 END IF ;

To emulate the usage of the fieldbus, a simple counter has been implemented
that provides a Byte value which is split up onto the eight digital outputs.

Figure 7.5 shows the Function Block Diagram that implements the Program
MainProgram. Depicted are the different Function Block instances for the Tur-
bucharger example (green) including the LoadGenerator instance. The Function
Blocks colored in red are used to generate the output for the Interbus fieldbus.
The value of the counter is converted to a Byte variable named Zaehlwert and
mapped onto the IOs.

Figure 7.5: Function Block Diagram of the MainProgram

To measure the PLCs utilization, a terminal connection is used in conjunction
with a specific debugging firmware provided by Phoenix Contact. In contrast to
a regular firmware, this allows the debugging version to send commands via the
telnet protocol that are interpreted on the PLC and console output send back
the client on the laptop. One of these commands enables the profiling of the
PLC. For a set period, the PLC logs every task, process, memory consumption,

180

7.3 Evaluation Results

execution time, and overall utilization of the CPU. The log file shown in the
listing has been obfuscated to hide vendor specific information.

Listing 7.2: Serial console output (obfuscated/modified)

1 Wait f o r end o f P r o f i l i n g (5 sec)
2 [1 8 1] embOS task l i s t
3 [1 8 2] −−−−−−−−−−−−−−−
4 [nr] task s t a t e T p r i s tack : s i z e / f r e e / used name
5 [0] 0x0250b8d0 Sema 250 s=0 f=0 u=−1% CPU−Load=0.00% aThread
6 [1] 0x029a6640 Delay 240 s=0 f=0 u=−1% CPU−Load=11.00% Sys t i ck
7 . . .
8 [8 5] 0 x0250bfc8 Delay 2 s=0 f=0 u=−1% CPU−Load=6.20% aProcess
9 [1 8 3] −−−−−−−−−−−−−−−

10 [1 8 4] Used Memory f o r Stacks : 0 kB
11 [1 8 5] Total CPU Load : 80.00%

For the evaluation of multiple influence factors including the access of services
like the OPC-Server and the FTPServer, a tool chain has been developed. This
tool chain has three functions. First, it allows the generation of loads with
tools like wget to automatically download files. Second, it uses the terminal
connection to execute a profiling on the PLC. Third, it collects all log files,
parses the data, and calculates mean, median, minimum, and maximum values
- if applicable. These processed measurements are used for the evaluation.

7.3 Evaluation Results

After the context for the evaluation has been set up and some details of the
performance prototype have been introduced, the measurements are compared
against the predictions. This section lists the measurements for the simplified
Turbocharger example and the dedicated IdleTask scheduler scenario. The first
scenario covers a complete example with various factors. The second scenario
is used as a dedicated test to validate the custom scheduler created for the
IdleTask.

Simplified Turbocharger Scenario
The annotated CONSENS models have been transformed into Automationmo-
dels. They provide further means for configuration, like the selection of a PLC
and its load profiles. In the following step, the Automationmodel is transfor-
med into Palladio models and a simulation with Simucom is executed. Simucom
and the sensor framework (as part of the Palladio Framework) provide means
to analyze the simulation results. For the Turbocharger example, a time span of
20 seconds has been simulated. This took round about one and a half minute.

Table 7.1 provides an overview of the measurements and predictions. Overall,
five independent simulation runs have been carried out. The predicted average
utilization of the PLC can slightly vary, due to influence factors like the Opera-
ting system which are not modeled with a fixed WCET but a RandomInterva-
lExecution. Therefore, multiple simulations have been run based on the same

181

Chapter 7 Evaluation

input model. To obtain a valid measurement of the real PLCs utilization, mul-
tiple measurements are performed and processed. Between each measurement,
a pause with a length of five seconds is made to collect the data from the PLC
without interfering the following measurement. The table shows simulation re-
sults in the first row, followed by the according measurements below. The last
row lists the absolute prediction error.

Table 7.1: Comparison of predicted and measured CPU utilization

#1 #2 #3 #4 #5

Prediction 80,6% 80,4% 80,3% 80,4% 80,4%

Measurement 80,0% 80,2% 79,9% 81,5% 83,1%

Difference (abs) 0,6% 0,2% 0,4% 1,1% 2,7%

Idle Task Scenario
To further check whether the concepts and implementation of the IdleTask cu-
stom scheduler are correct or not, this second scenario is realized. It consists of
only a single IdleTask containing a simple Program. The execution time of this
program can be varied by setting a global variable used by the LoadGenerator
to perform sine-functions accordingly. For the test, the execution time is incre-
ased in steps from 1ms up to 500ms. Higher execution times lead to a watchdog
due to an overload of the PLC. Table 7.3 lists the average CPU utilization in
percent of the simulation (Pred.) and measurements (Meas.). The absolute
difference (in percentage points) between the values is given in the last row.

Table 7.2: CPU utilization with increased Program execution times
1 ms 2 ms 5 ms 10 ms 20 ms 30 ms 50 ms 100 ms 500 ms

Pred. 44,1% 52,2% 75,9% 74,4% 74,4% 74,6% 73,9% 74,1% 77,0%

Meas. 52,8% 56,0% 73,9% 71,9% 71,2% 71,0% 71,3% 73,7% 72,1%

Diff. 8,7% 3,8% 2,0% 2,5% 3,2% 3,6% 2,6% 0,4% 4,9%

Figure 7.6 visualizes the predicted utilization (Sim) and the according measu-
rements on the performance prototype (PLC). The graph, as well as the table,
show that the differences are marginal, despite the executions with 1ms and 2
ms generated load. The IdleTask scenario shows, that the embedded scheduler
of the Palladio simulation works as expected. The overall utilization settles at
75%. This is the load induced by the Program (limited to 60%) on top of the
background utilization of the Operating System and runtime environment. The
much lower utilization at execution times below 5 ms is a result of the scheduler
algorithms that dynamically calculate the wait time between task executions.
If the calculated wait time is lower than a set limit, a minimal wait time of 4ms
is forced. This leads to the observed lower utilization at 1 ms, 2 ms, and 4ms
execution time settings.

182

7.4 Discussion of the Results

Figure 7.6: Visualization of the IdleTask run

7.4 Discussion of the Results

In this section, the results of the simplified Turbocharger example and the
IdleTask will be discussed. Both scenarios reveal that the predicted utilization
of the PLC is very close to the measured one. The maximum deviation is around
8,7%, which is still below the desired prediction accuracy of 10 percentage
points.

Simplified Turbocharger Scenario
The Table 7.1 listing the results of the simplified Turbocharger example, shows
that the predicted values are very close to the measurements. There are several
causes for this effect. First, the simplified CONSENS model contains just a
few influence factors. Furthermore, are ExecutionTimes only modeled as fixed
WCET and not with random values. A reason for this decision is the implemen-
tation of the performance prototype, which does not provide adequate random
generators to vary inputs for the load generators. Additionally are all services
accessed in fixed intervals instead of varying/random access patterns. Finally,
are all resource usages for the (operating system) background tasks measured
and executed per SystemTick. All these points lead to an evenly distributed
load, reducing spikes and further simplifying the simulation.

Palladio provides even more details about the system under investigation. Fi-
gure 7.7 shows two times series diagrams generated by Palladio. Diagram 7.7a
shows the number of measurements on the x-axis and the time for the execution
of the MainTask including all Programs and Function Blocks. The execution
times are all in a tight corridor around the 25 ms execution time. This flic-
kering can be explained by the high priority operating system tasks like the
SysTick and the Interbus Master process, which pause and later continue the
MainTask. The right Figure 7.7b shows the time series for the MillTask. This
task has a lower priority than the cyclic MainTask and other internal tasks

183

Chapter 7 Evaluation

like the SysTick, Interbus, eCLR-Process, Remoting-Services, and more. The
preemption will therefore not only extend the duration of the execution but will
also increase the following wait time of the idle task. Therefore the execution
time is flickering much more heavily than the one of the cyclic task.

Time Series

0 25.000 50.000 75.000 100.000 125.000 150.000 175.000 200.000

Number of Measurement

24,90

24,95

25,00

25,05

25,10

25,15

25,20

25,25

25,30

25,35

25,40

25,45

25,50

T
im

e

(a) MainTask (Cyclic)

Time Series

0 25.000 50.000 75.000 100.000 125.000 150.000 175.000 200.000

Number of Measurement

10,0

12,5

15,0

17,5

20,0

22,5

25,0

27,5

30,0

32,5

35,0

37,5

T
im

e

(b) MillTask (IdleTask)

Figure 7.7: Times series graph for the two tasks

Idle Task Scenario
The simulation results of this scenario are shown in the Table 7.3 and visualized
in Figure 7.6. The graph as well as the table show that the differences are
marginal, despite the executions with 1ms and 2 ms execution times. A reason
for these deviations could be operating system tasks and copy actions that could
not be investigated in detail for such small execution times. Another reason for
the deviation of predicted and measured utilization for the short execution times
(1 ms and 2 ms) could be the overhead of the profiling mechanism. Furthermore,
shows the graph an upper limit of the utilization at round about 75%. This effect
reflects the current implementation of the scheduler, which holds the execution
of the IdleTask to provide a buffer for load spikes that would otherwise lead
to a watchdog. The profiler captures extensive information about memory
consumption and process execution of each thread. This will also put a load
onto the CPU which is likely higher in scenarios where the task context is
switching more often.

Conclusion
The results of the Simplified Turbocharger and IdleTask scenarios showed the
general applicability of the approach. The comparison of predicted and the
measured utilization of a PLC shows, that the approach is sufficiently pre-
cise to validate the Systems Engineering models in the early development sta-
ges. The maximum deviation is around 8,7%, which is still below the desired
prediction accuracy of 20 percent. The overall process of annotating existing
SysML4CONSENS models and their transformation into Palladio simulation
models has been evaluated. A subsequent simulation supports the developers
of an automation system to understand and estimate the future utilization of

184

7.5 Threats to Validity

a selected PLC. This will result in less changes in the integration phase and
decreases the time to market and overall development costs.

7.5 Threats to Validity

After presenting the results of the comparison between measurements and pre-
dicted values in the previous section, some threats to the validity are now further
detailed.

Size and detail of the model. The example introduced in Chapter 3 is
taken from a real world industrial automation system. However, the CONSENS
models needed to be simplified and obfuscated. They still cover all identified
influence factors and have a reasonable size to support the proposed process
and modeling approach. But the models and factors used for the evaluation
had to be further stripped down. A reason for this, are the limited capabilities
of the PLC used for the performance prototype. The PLC has a much lower
CPU frequency and less memory than the PLC used in the original ELHA
production system. Also, the actual number of IOs could not be recreated
in the performance prototype. This might pose a threat to the validity since
the performance prototype only presents a fraction of a real world example.
However, the comparison of measured and simulated utilization is both based
on the performance prototype and its according scenario, showing that the early
validation is feasible for small examples. In the future, more in-depth models
and other PLCs should be evaluated to further prove the general applicability
and scalability of this approach.

Falsification through profiling. The measurements taken from the PLC
use a specific profiling mechanism implemented in a special debug firmware.
Therefore, side effects and an additional load on the CPU are induced, due
to the profiling itself. This blurred not only the comparison in the Evaluation
chapter but also leads to a difference in the (Palladio) load profiles for the given
PLC. This could be one explanation for the differences between the predicted
and measured values in Figure 7.6 at small execution times.

Detail of measurements. As already mentioned had several of the operating
system and other firmware specific tasks to be combined into a single or set
of load profiles. The reason for this was in most cases the minor utilization
induced by these tasks or the frequency they are executed. In addition to this,
provided the profiling mechanisms just fixed sessions of five seconds, in which
the task or thread specific loads were listed with their mean value. Therefore,
it is not possible to model each load on the PLC in detail. This further lead
to an evenly distributed load of multiple tasks, making detailed predictions less
accurate.

Limitations of the performance prototype. The ExecutionTimes modeled
only as fixed WCET and not with random values like RandomSet or Bounded.
A reason for this decision is the implementation of the performance prototype,

185

Chapter 7 Evaluation

which does not provide adequate random generators to vary inputs for the load
generators. Additionally, has the Interbus Fielbus been set to a fixed cycle time
and does only include one bus coupler with eight digital outputs. This setup is
therefore not representative of real world applications.

Knowledge of influence factors in the early development stages. The
Turbocharger model has been extensively investigated and influence factors mo-
deled based on knowledge of the actual implementation of the firmware. This
leads to detailed specification of influence factors like Service access intervals or
WCET for Function Blocks. This knowledge is not available for the develop-
ment of a ground up new automation system. The evaluation shows, therefore,
the general applicability of the approach, but not under real world conditi-
ons. However, the models and influence factors are tailored towards the rough
specification of execution times and loads, or the goal to set upper limits for
the software developers and engineers to adhere. These two goals are achie-
ved by the current level of realization and therefore support the hypothesis of
this evaluation. Still, this threat to validity should be further investigated by
conducting in-depth user studies as a Type II evaluation.

Availability of load profiles. This small, exemplary evaluation showed the
applicability of a realization with Palladio simulation models. The load profiles
for the ILC 171 ETH 2TX PLC could be created due to the in-depth know-
ledge of the vendor. This level of detail might not be (easily) achieved for other
PLCs or different vendors. To create these load profiles, the PLCs must either
support extensive profiling mechanisms or the vendors must provide sufficient
information to create sufficiently precise profiles. For this thesis, no other avai-
lable PLC provided the necessary data nor possibilities to create a secondary
load profile. Therefore, it is unsure if the developed concepts can be transfer-
red. However, the modeling and specification of influence factors is generally
applicable to other PLC. They might provide different services and unique load
profiles, but the identified influence factors are non-vendor specific.

7.6 Summary

The evaluation of the proposed development process, the modeling approach,
and simulation with Palladio showed the general applicability of this thesis
contribution. However, there are several threats to validity that must be consi-
dered. For a majority of these threats, a further investigation and/or user study
will clarify the general applicability of the proposed approach. Examples are
the simplified model of the automation system with a small number of influence
factors, or the performance prototype with limited capabilities. Despite this,
the results of the comparison between simulated and measured PLC utilization
showed a promising initial approach to predict the performance of an automa-
tion system. This confirms the hypothesis, that the developed approach can
be used to predict the performance in the early development stages of
an automation system.

186

CHAPTER 8
Conclusion and Summary

Designing and scaling complex, networked automation systems is a challenging
task. Already in the early stages of the development, developers have to consi-
der different kinds of influence factors that have an impact on the overall system
performance. Estimating the throughput the average workload of a PLC, de-
ploying software onto resources, or assigning sensors and actuators to PLCs are
difficult tasks when coping with complex systems. If performance bottlenecks
are detected too late, costly corrections may follow and the commissioning can
be significantly delayed.

For the domain of industrial automation there already exists several approa-
ches to predict the behavior and quality of service attributes of a system under
development. However, these approaches usually differ in their level of detail
and their notation towards the domain of industrial automation systems. Ad-
ditionally, these approaches lack the possibility to capture automation-specific
influence factors on a high level of abstraction which is necessary for the use
in the early phases of the development. A common set of factors which cover
the core automation specific influences on different aspects of the system is not
available.

The objective of this thesis was to tackle the two main problems that have been
identified. First, the lack of a generally applicable set of influence factors which
can be used for the validation of automation systems in the early development
stages. This problem has been solved with the contribution of an extensive list
of influence factors that impact an automation system as shown in Figure 7.1.
It is the result of an identification step (1) and based on different artifacts and
related work. The second problem was the absence of a method to capture these
influence factors in Systems Engineering models and an appropriate process to
guide automation system developers through their specification. For this, the
Automation Influence Model (2) and a process (3) haven been developed. To
evaluate these contributions (6 & 7), a UML profile (4) and simulation models
(5) have been created.

In the following, the main contributions of this thesis are summarized in Section
8.1. Afterward, the core benefits of this approach are highlighted in Section 8.2.
Finally, the limitations and remaining questions of this approach are discussed
and opportunities for future work are presented.

187

Chapter 8 Conclusion and Summary

Exemplary SE
models

Industrial
firmware

Identification of
Influence Factors

Influence factors
+ Parameters

Develop
domain specific
formal model

Influence
Model

Realize
Palladio

Simulation
Evaluate

simulation
results

Specify
performance

analysis processCommon factors from
Performance Prediction

approaches

UML
Profile

Evaluation

Concept

Development
Process

Derive
UML Profile

Artefact

Palladio
Simulation

Models

Simulate
PLC

Process

Simulation
results

23

4

56
7

1

Figure 8.1: Performed steps and created artifacts to perform automation speci-
fic performance predictions

8.1 Results and Conclusions

In this section, the results of this thesis are briefly described. They are separated
into the two main contributions “C1: Identification of Influence Factors” and
“C2: Method for Modeling Automation System Influence Factors”.

C1: Identification of Influence Factors
A broad range of approaches to model and predict quality of service attributes
of automated systems focus on a specific set of influence factors. A complete
list of such influence factors that impact the overall automation system is not
available. However, this is a prerequisite for an analysis of the system during
the early development stages, where specific details are not yet available.

The first contribution of this thesis in Chapter 4, was the gathering of influ-
ence factors for an automation system that will impact one or more quality of
service attributes. For each factor is discussed whether it is available in the
early development stages, what assumptions have to be made by the developer,
its overall impact on the system, and which parameters need to be taken into
account. The gathered list is the basis to extend System Engineering approa-
ches like CONSENS by automation specific information. Models extended with
this information can be used to analyze, respectively predict, the performance
of the system before costly and time-consuming changes must be made. To
find the necessary factors, three primary sources have been taken into account:

188

8.1 Results and Conclusions

Exemplary Systems Engineering models of automation systems, the firmware of
PLC vendor Phoenix Contact, and common factors from existing performance
prediction approaches.

As a result, the key influence factors and parameters that impact the perfor-
mance of PLC used in an automation system have been identified. This is a
necessary prerequisite to create the formal Automation Influence Model and
the according development process.

C2: Method for Modeling Automation System Influence Factors
Current Systems Engineering methods support the development of automation
systems, but domain-specific performance-relevant information is neglected.
Therefore, the second contribution of this thesis was to provide a method for
capturing automation specific influence factors on a high level of abstraction
that is applicable for the use in the early phases of the development.

For this, a method has been developed that allows the automation system de-
velopers to specify influence factors integrated into System Engineering models
(see 5). The two parts of this method are a formal model to capture the vari-
ous factors (5.1) and a process to guide the developers through the specification
(5.2). The formal model incorporates domain-specific elements and therefore al-
lows developers to use their well-known terminology. In this thesis, CONSENS
has been selected as an exemplary Systems Engineering approach on which this
formal model will be applied. To further evaluate the process and model, an
UML profile that extends the SysML4CONSENS-Profile has been created. This
profile contains stereotypes to provide additional information which can be used
to annotate CONSENS elements by automation specific influence factors. The
process to guide developers through the specification of factors and parameters
will define, at which point in the development process of an automation system
a performance analysis should be carried out and what information needs to be
gathered before starting the analysis. As a basis for this development process,
an existing CONSENS process for the specification of software requirements
has been selected.

As a result, the developers of an automation system are now able to use the
process to specify important influence factors that impact the performance of
a selected PLC. This will allow them to evaluate the system design in the
early development stages of the system and therefore reduce costly and time
consuming changes in the later phases.

Realization
The developed process, the formal Automation Influence Model, and the UML
profile have been evaluated. For this, an exemplary Turbocharger production
system has been modeled and used for a subsequent analysis. To do so, the
Palladio Component Model and its simulation engine SimuCom have been se-
lected. Palladio provides a good interface to access and generate input models,

189

Chapter 8 Conclusion and Summary

is easy to use, allows a visual inspection of the simulation models, and supports
a fast and reliable performance simulation. The capabilities of Palladio had to
be extended to support the Idle Task as an automation domain specific require-
ment. Different load profiles have been created to finally run a simulation and
predict the utilization of a PLC in the context of the Turbocharger example.
The predicted utilization of the PLC has been compared to measurements taken
from a performance prototype which resembles the basic characteristics of the
exemplary automation system. The result of the simulation showed a general
applicability of the two contributions of this thesis.

8.2 Benefits

The results of this thesis provide a wide range of benefits to developers of au-
tomation systems during the early development stages. This section highlights
selected results and how they improve the design of complex automation sys-
tems. This includes the developed models and process as well as the tool and
additions for the realization and evaluation.

� The integration of automation specific influence factors in System Engi-
neering models allows developers to discuss impacts and synchronize
changes that span multiple disciplines. This will help to find errors,
imprecise requirements, and inconsistencies in the early development
stages, further reducing costly and time-consuming changes. By spe-
cifying execution times and other properties on various parts of the auto-
mation system, the discipline specific developers will have require-
ments and limits to adhere. With CONSENS, a well-known Systems
Engineering model has been selected that has already been applied in se-
veral projects, like the introduced Turbocharger production system. The
abstract and automation system specific notation should simplify the use
of the UML profile, further increasing the acceptance and the results of
this approach.

� The use of an UML profile to extend CONSENS conserves the struc-
ture and information of the models. The additional data in form of in-
fluence factors and their parameters is appended to the existing elements.
This also applies to the case in which topology independent models are
exchanged for the more detailed topology specific models. The TSM an-
notations are added to existing elements and do not interfere with the
basis model. Also, by using a profile, state-of-the-art UML tools that can
incorporate the automation specific stereotypes and provide a more user
friendly modeling environment.

� The information provided in the annotated Systems Engineering models
can be used to run a performance prediction of a selected PLC. This will
enable the developers to investigate, whether the performance of the
PLC is sufficient for the modeled task at hand. Changes to the used
fieldbus, task structure, Programs, and Function Block will lead to dif-
ferent performance properties that can now be roughly estimated.

190

8.3 Future Work

Also, decisions whether to split functionality onto different PLCs can be
analyzed before the system integration phase. The information spe-
cified is also usable for further analysis with more detailed approaches.
For example, is it possible to extract the network specific information from
the model and use it as an initial basis for network simulator input mo-
dels. The same applies for more detailed software development steps for
which MARTE can be used to detail functions of the software.

� The developed process provides an initial guide for developers at which
point in the development process of an automation system a performance
analysis should be carried out and what information needs to be gat-
hered before starting the analysis. For the development of complex or
large Systems Engineering models, in which several system analysts are
involved, this is a good basis they can build and orientate on.

� By using the Palladio Component Model and EMF-based CONSENS mo-
dels, a simple but effective tool and model chain can be used. Its allows to
transform the Systems Engineering models into simulation models with
minimal user interaction and therefore further improving the usabi-
lity of the approach. This also reduces the chance of modeling errors.
As mentioned above, is it also possible to generate input models for dif-
ferent analysis approaches by just replacing the transformations at the
correct point in the tool chain.

� The use of a modular system of transformations allows the composition
of load profiles for different PLCs. As a result, profiles for new PLCs can
be created faster by combining (existing) transformations. Separating
the different influence factors into independent transformations increase
the re-usability. This will further improve the general applicability of the
approach.

8.3 Future Work

The results of this thesis raise several possibilities for future work. In the
following, a few of these are listed and briefly described. In section 7.5 some
threats to validity have been discussed that could be tackled in the future as
well.

Extended User Studies
According to Freiling et al. [EFR08] are there several types of validations that
can be used to evaluate an approach. The Type II validation focuses on the
ease of use or applicability of the approach. It is therefore checked, whether the
developers can (easily) apply the proposed development process and modeling
tools to specify all influence factors. This also includes the analysis and mea-
ningful interpretation of the prediction results. This has been omitted in this
thesis but should be conducted in the future. Such an evaluation would help
to confirm that the integration of automation specific elements in Systems En-
gineering models supports users to create complex automation systems. Going
one step further, a Type III evaluation could be conducted. It investigates

191

Chapter 8 Conclusion and Summary

whether a newly introduced method improves the whole development process.
A similar study has been performed in [VHSFL14], where different groups of
students developed a system with this new approach and without and their
results and feedback have been compared.

Evaluate Larger Models
As mentioned in the threats to validity, has the used model for the evaluation
been simplified and obfuscated. It still covers all identified influence factors and
has a reasonable size to support the proposed process and modeling. However,
using real world automation systems to evaluate the process and model should
be an important next step, due to the fact that the size of the system under
investigation has an impact on the evaluation [KPP+02, EBGR01]. Therefore, it
must be verified, that the precision of predicted results and general applicability
holds for larger examples.

Improve Tool Support
An obvious point that should not be underestimated is the overall tool sup-
port that can be improved. Currently, the existing CONSENS model has to be
manually extended by the UML profile to be able to specify the different in-
fluence factors. The stereotypes in this profile also need to be manually added
to the corresponding CONSENS System Elements. This is a hideous and in
some cases error-prone task that can be improved by offering appropriate tool
support. Also, several OCL expressions are used to inhibit the annotation of
wrong elements or to enforce model consistency. However, there are still several
constraints that must be implemented to create valid annotations. Visual feed-
back for developers indicating modeling errors in the model will further improve
the overall usability of the approach.

Integrate and Analyze wider Range of Requirements
Currently, the approach focused on the analysis of the performance of a se-
lected PLC. However, the annotation of automation specific elements allows
the detection of other properties and problems as well. For example, could
the maximum number of devices for a certain fieldbus be verified or service
availability for PLCs types checked. A more detailed approach for specifying
functional and non-functional requirements has been provided by [VHSFL14].
Also, in [JLS11] several kinds of requirements can be specified via a profile based
on SysML and later analyzed by using Modelica. Being able to automatically
check additional requirements would further improve the development process
and help developers to find errors and inconsistencies in the early development
stages.

Support for Additional Analysis Approaches
As listed in section 6.2.2 is there an increasing number of approaches to analyze
various aspects of an automation system and its quality of service attributes. In
this thesis, the Palladio Component Model and the SimuCom simulation have
been used to predict the utilization of a selected PLC. However, it is a logical
step to further include other tools and approaches to analyze different aspects
of the system. Examples are the network throughput which can be simulated
with OMNeT++ [Ope17] or automation control loops with Modelica [LWF08]

192

8.3 Future Work

and TrueTime [CHL+03]. The integration of these approaches could be realized
by exchanging the appropriate tools and transformations in the toolchain (see
section 6.3).

Integrating and Interpreting Analysis Results
An important part of the analysis is the presentation of results to the developer.
Currently the available feedback of a performance simulation is a table view that
provides values for the overall utilization of the PLC. However, this could be
provided back into the original model and annotated or even highlighted there.
Such a visual feedback could help identifying bottlenecks. When incorporating
a wider range of requirements and their validation these results could be added
to the original model as well. For example, could a selected fieldbus be set to
a red color in case the timing constraints (cycle time) could not be adhered or
if too many devices have been added. An interpretation of the analysis results
could support user to find an issue with the current design. A simple example
would be a Function Blocks that uses too much CPU time and an automatic
interpretation would suggest setting that Function Block in a different task.

Automatic Load Profile Creation
The creation of the individual load profiles for each PLC and influence factor is
a time-consuming task. Depending on the PLC, a detailed analysis is often not
even possible due to the fact that the overall utilization or process details are not
available. However, some PLCs provide means to access this data and perform
a detailed profiling. With automated approaches similar to [Abd00, JHHF09],
load profiles could be created automatically. How this can be achieved and
whether these automatically determined values are correct, must be investigated
in future work.

Automatic Derivation of Domain Specific Models or Code
The approach presented in this thesis is based on analyzable and automatically
processable models. This means that all inputs provided by the CONSENS
models and annotated by the automation system specific influence factors can
be used in the following discipline-specific development steps. For example, is
it possible to collect all annotated Function Blocks and create Skeletons in a
desired engineering tool. This approach has also been tackled by Vogel-Heuser
et al. [VHSFL14] to generate Structured Text code for an initial software model.

193

Bibliography

[AADG12] Saoussen Anssi, Karsten Albers, Matthias Dörfel, and Sébastien
Gérard. chronval/chronsim: A tool suite for timing verification
of auto-motive applications. Proc. Embedded Real-Time Software
and Systems, ERTS, 2012.

[ABC+03] Ron Ausbrooks, Stephen Buswell, David Carlisle, Stéphane Dal-
mas, Stan Devitt, Angel Diaz, Max Froumentin, Roger Hunter,
Patrick Ion, Michael Kohlhase, et al. Mathematical markup lan-
guage (mathml) version 2.0 . w3c recommendation. World Wide
Web Consortium, 2003, 2003.

[Abd00] T. F. Abdelzaher. An automated profiling subsystem for qos-aware
services. In Proceedings Sixth IEEE Real-Time Technology and
Applications Symposium. RTAS 2000, pages 208–217, 2000.

[ACS09] Saurabh Amin, Alvaro A. Cárdenas, and S. Shankar Sastry. Hy-
brid Systems: Computation and Control: 12th International Con-
ference, HSCC 2009, San Francisco, CA, USA, April 13-15, 2009.
Proceedings, chapter Safe and Secure Networked Control Systems
under Denial-of-Service Attacks, pages 31–45. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2009.

[All14] Arnold O Allen. Probability, statistics, and queueing theory. Aca-
demic Press, 2014.

[Alt12] Oliver Alt. Modellbasierte Systementwicklung mit SysML. Carl
Hanser Verlag GmbH Co KG, 2012.

[AMA17] AMALTHEA4public. Amalthea - an open platform project for
embedded multicore systems. http://www.amalthea-project.

org/, 2017.

[AMY09] S. Asano, T. Maruyama, and Y. Yamaguchi. Performance com-
parison of fpga, gpu and cpu in image processing. In Field Pro-
grammable Logic and Applications, 2009. FPL 2009. International
Conference on, pages 126–131, Aug 2009.

[Apa17] Apache Software Foundation. Apache thrift software framework.
https://thrift.apache.org/, 2017.

[AS-17] AS-International Association e.V. As-interface. http://www.

as-interface.net, 2017.

[AS00] L. B. Arief and N. A. Speirs. A uml tool for an automatic gene-
ration of simulation programs. In Proceedings of the 2Nd Interna-
tional Workshop on Software and Performance, WOSP ’00, pages
71–76, New York, NY, USA, 2000. ACM.

195

http://www.amalthea-project.org/
http://www.amalthea-project.org/
https://thrift.apache.org/
http://www.as-interface.net
http://www.as-interface.net

Bibliography

[AUT17] AUTOSAR Foundation. Autosar (automotive open system archi-
tecture). http://www.autosar.org/, 2017.

[Bas92] Victor R Basili. Software modeling and measurement: the goal/-
question/metric paradigm. Technical report, University of Mary-
land, 1992.

[BB00] Guillem Bernat and Alan Burns. An approach to symbolic worst-
case execution time analysis. In In 25th IFAC Workshop on Real-
Time Programming, 2000.

[BBM13] Matthias Becker, Steffen Becker, and Joachim Meyer. Simulizar:
Design-time modeling and performance analysis of self-adaptive
systems. Software Engineering, 213:71–84, 2013.

[BdMIS04] S. Balsamo, A. di Marco, P. Inverardi, and M. Simeoni. Model-
based performance prediction in software development: a survey.
Software Engineering, IEEE Transactions on, 30(5):295–310, May
2004.

[Bec08] Steffen Becker. Coupled model transformations for QoS enabled
component-based software design. PhD thesis, Universitaet Olden-
burg, Uhlhornsweg 49-55, 26129 Oldenburg, 2008.

[Bec16a] Beckhoff Automation. Beckhoff Automation Device Specification
(ADS). http://infosys.beckhoff.de/index.php?content=

../content/1031/tcadscommon/html/tcadscommon_introads.

htm&id=, 2016. Accessed: 2016-02-19.

[Bec16b] Beckhoff Automation. TF1910 | TC3 UML Beckhoff Automa-
tion: Integration of uml (unified modeling language) in twincat
3.1. http://www.beckhoff.de/default.asp?twincat/tf1910.

htm, 2016. Accessed: 2016-01-15.

[Bec17] Beckhoff Automation. Beckhoff Information System. http://

infosys.beckhoff.de, 2017. Accessed: 2017-02-19.

[BFF90] Benjamin S Blanchard, Wolter J Fabrycky, and Walter J Fabrycky.
Systems engineering and analysis, volume 4. Prentice Hall Engle-
wood Cliffs, NJ, 1990.

[BFV08] Reinder J Bril, Gerhard Fohler, and Wim FJ Verhaegh. Execu-
tion times and execution jitter analysis of real-time tasks under
fixed-priority pre-emptive scheduling. External Report, Computer
Science Report, page 13, 2008.

[BGMO06] Steffen Becker, Lars Grunske, Raffaela Mirandola, and Sven Over-
hage. Performance prediction of component-based systems: A sur-
vey from an engineering perspective. In ARCHITECTING SY-
STEMS WITH TRUSTWORTHY COMPONENTS, VOLUME
3938 OF LNCS, pages 169–192. Springer, 2006.

196

http://www.autosar.org/
http://infosys.beckhoff.de/index.php?content=../content/1031/tcadscommon/html/tcadscommon_introads.htm&id=
http://infosys.beckhoff.de/index.php?content=../content/1031/tcadscommon/html/tcadscommon_introads.htm&id=
http://infosys.beckhoff.de/index.php?content=../content/1031/tcadscommon/html/tcadscommon_introads.htm&id=
http://www.beckhoff.de/default.asp?twincat/tf1910.htm
http://www.beckhoff.de/default.asp?twincat/tf1910.htm
http://infosys.beckhoff.de
http://infosys.beckhoff.de

Bibliography

[BJN+06] Manfred Broy, Matthias Jarke, Manfred Nagl, Hans Dieter Rom-
bach, Armin B Cremers, Jürgen Ebert, Sabine Glesner, Martin
Glinz, Michael Goedicke, Gerhard Goos, et al. Dagstuhl-manifest
zur strategischen bedeutung des software engineering in deutsch-
land. In Dagstuhl Seminar Proceedings. Schloss Dagstuhl-Leibniz-
Zentrum für Informatik, 2006.

[BKFVH14] Giacomo Barbieri, Konstantin Kernschmidt, Cesare Fantuzzi, and
Birgit Vogel-Heuser. A sysml based design pattern for the high-
level development of mechatronic systems to enhance re-usability.
IFAC Proceedings Volumes, 47(3):3431–3437, 2014.

[BKR07] Steffen Becker, Heiko Koziolek, and Ralf Reussner. Model-based
performance prediction with the palladio component model. In
Proceedings of the 6th international workshop on Software and per-
formance, pages 54–65. ACM, 2007.

[BKR09] Steffen Becker, Heiko Koziolek, and Ralf Reussner. The palladio
component model for model-driven performance prediction. Jour-
nal of Systems and Software, 82(1):3 – 22, 2009. Special Issue:
Software Performance - Modeling and Analysis.

[BLB13] Matthias Becker, Markus Luckey, and Steffen Becker. Performance
analysis of self-adaptive systems for requirements validation at
design-time. In Proceedings of the 9th International ACM Sigsoft
Conference on Quality of Software Architectures, QoSA 13, pages
43–52, New York, NY, USA, 2013. ACM.

[BM94] Alfredo Baginski and Martin Müller. Interbus-s. Grundlagen und
Praxis, Hüthig, 1994.

[BM03] Simonetta Balsamo and Moreno Marzolla. A simulation-based ap-
proach to software performance modeling. In ACM SIGSOFT
Software Engineering Notes, volume 28, pages 363–366. ACM,
2003.

[BOF+14] B Beihoff, C Oster, S Friedenthal, C Paredis, D Kemp, H Stoewer,
D Nichols, and J Wade. A world in motion–systems engineering
vision 2025. INCOSE-SE Leading Indicators Guide, 2014, 2014.

[Bon09] Yahor Bondarau. Design-time performance analysis of component-
based real-time systems. PhD thesis, Citeseer, 2009.

[BR05] Manfred Broy and Andreas Rausch. Das neue v-modell® xt.
Informatik-Spektrum, 28(3):220–229, 2005.

[BRS95] Jörg Becker, Michael Rosemann, and Reinhard Schütte.
Grundsätze ordnungsmäßiger modellierung. Wirtschaftsinforma-
tik, 37(5):435–445, 1995.

[CAN17] CAN in Automation (CiA). Can in Automation (CiA). https:

//www.can-cia.org/, 2017.

197

https://www.can-cia.org/
https://www.can-cia.org/

Bibliography

[CBB15] Robert Cloutier, Clifton Baldwin, and Mary Alice Bone. Systems
Engineering Simplified. CRC Press, 2015.

[CFA+07] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M.F.P. O’Boyle,
and O. Temam. Rapidly selecting good compiler optimizations
using performance counters. In Code Generation and Optimiza-
tion, 2007. CGO ’07. International Symposium on, pages 185–197,
March 2007.

[CHL+03] Anton Cervin, Dan Henriksson, Bo Lincoln, Johan Eker, and Karl-
Erik Årzén. How does control timing affect performance? Analysis
and simulation of timing using Jitterbug and TrueTime. IEEE
Control Systems Magazine, 23(3):16–30, June 2003.

[CHO10] Anton Cervin, Dan Henriksson, and Martin Ohlin. Truetime 2.0
beta?reference manual. Department of Automatic Control, Lund
University (June 2010), 2010.

[CLP17] CLPA Europe. Cc-link partner association. http://www.

clpa-europe.com/, 2017.

[COH07] Anton Cervin, Martin Ohlin, and Dan Henriksson. Simulation of
networked control systems using truetime. In Proc. 3rd Internati-
onal Workshop on Networked Control Systems: Tolerant to Faults,
2007.

[CP03] Murray Cantor and RUP Plug. Rational unified process for sy-
stems engineering part 1: Introducing rup se version 2.0. The
Rational Edge (August 2003), 2003.

[CPR07] Vittorio Cortellessa, Pierluigi Pierini, and Daniele Rossi. Integra-
ting software models and platform models for performance analy-
sis. IEEE Transactions on Software Engineering, 33(6), 2007.

[CS00] Guo Chuanxiong and Zheng Shaoren. Analysis and evaluation of
the tcp/ip protocol stack of linux. In Communication Technology
Proceedings, 2000. WCC - ICCT 2000. International Conference
on, volume 1, pages 444–453 vol.1, 2000.

[Das17] Dassault Systemes SolidWorks Corporation. Eplan engineering
configuration tool for mechatronic configuration and automated
documentation. http://www.solidworks.de/, 2017.

[DDGI14] Rafal Dorociak, Roman Dumitrescu, Jürgen Gausemeier, and Pe-
ter Iwanek. Specification technique consens for the description
of self-optimizing systems. In Design Methodology for Intelligent
Technical Systems, chapter 4.1, pages 119–127. Springer-Verlag
Berlin Heidelberg, January 2014.

[Des00] Philippe Desfray. Uml profiles versus metamodel extensions: An
ongoing debate. In OMG’s UML Workshops: UML in the. com
Enterprise: Modeling CORBA, Components, XML/XMI and Me-
tadata Workshop, pages 6–9, 2000.

198

http://www.clpa-europe.com/
http://www.clpa-europe.com/
http://www.solidworks.de/

Bibliography

[dGJKK12] Thijmen de Gooijer, Anton Jansen, Heiko Koziolek, and Anne Ko-
ziolek. An industrial case study of performance and cost design
space exploration. In Proceedings of the 3rd ACM/SPEC Interna-
tional Conference on Performance Engineering, ICPE ’12, pages
205–216, New York, NY, USA, 2012. ACM.

[DM97] James Dundas and Trevor Mudge. Improving data cache perfor-
mance by pre-executing instructions under a cache miss. In Pro-
ceedings of the 11th International Conference on Supercomputing,
ICS ’97, pages 68–75, New York, NY, USA, 1997. ACM.

[dMLH+00] Miguel de Miguel, Thomas Lambolais, Mehdi Hannouz, Stéphane
Betgé-Brezetz, and Sophie Piekarec. Uml extensions for the speci-
fication and evaluation of latency constraints in architectural mo-
dels. In Proceedings of the 2Nd International Workshop on Soft-
ware and Performance, WOSP ’00, pages 83–88, New York, NY,
USA, 2000. ACM.

[Dor11] Dov Dori. Object-process methodology: A holistic systems para-
digm. Springer Science & Business Media, 2011.

[Dou04] Bruce Powel Douglass. Real time UML: advances in the UML for
real-time systems. Addison-Wesley Professional, 2004.

[Dou06] Bruce Powel Douglass. The harmony process: The transition to
software engineering, 2006.

[DPP+16] Stefan Dziwok, Uwe Pohlmann, Goran Piskachev, David Schubert,
Sebastian Thiele, and Christopher Gerking. The mechatronicuml
design method: Process and language for platform-independent
modeling. Technical Report tr-ri-16-352, Software Engineering De-
partment, Fraunhofer IEM / Software Engineering Group, Heinz
Nixdorf Institute, Zukunftsmeile 1, 33102 Paderborn, Germany,
December 2016. Version 1.0.

[DSA+14] Peter Danielis, Jan Skodzik, Vlado Altmann, Eike Bjoern
Schweissguth, Frank Golatowski, Dirk Timmermann, and Joerg
Schacht. Survey on real-time communication via ethernet in in-
dustrial automation environments. In Emerging Technology and
Factory Automation (ETFA), 2014 IEEE, pages 1–8. IEEE, 2014.

[Dub11] A. Dubey. Evaluating software engineering methods in the con-
text of automation applications. In 2011 9th IEEE International
Conference on Industrial Informatics, pages 585–590, July 2011.

[E+07] Jeff A Estefan et al. Survey of model-based systems engineering
(mbse) methodologies. Incose MBSE Focus Group, 25(8), 2007.

[EBGR01] K. El Emam, S. Benlarbi, N. Goel, and S. N. Rai. The confounding
effect of class size on the validity of object-oriented metrics. IEEE
Transactions on Software Engineering, 27(7):630–650, Jul 2001.

199

Bibliography

[Ecl17a] Eclipse Foundation. Eclipse ide. https://eclipse.org, 2017.

[Ecl17b] Eclipse Foundation. Eclipse modeling framework (emf). https:

//www.eclipse.org/modeling/emf/, 2017.

[Ecl17c] Eclipse Foundation. Papyrus modeling environment. https://

eclipse.org/papyrus, 2017.

[Ecl17d] Eclipse Foundation. Xtend (version 2.11). http://www.eclipse.
org/xtend/, 2017. Accessed: 2017-02-19.

[EES+02] Jakob Engblom, Andreas Ermedahl, Mikael Sjödin, Jan Gustafs-
son, and Hans Hansson. Worst-case execution-time analysis for
embedded real-time systems. International Journal on Software
Tools for Technology Transfer, 4(4):437–455, 2002.

[EFR08] Irene Eusgeld, Felix C. Freiling, and Ralf Reussner, editors. De-
pendability Metrics: Advanced Lectures. Springer-Verlag, Berlin,
Heidelberg, 2008.

[EGEE+08] Joseph P Elm, Dennis Goldenson, Khaled El Emam, Nicole Dona-
telli, Angelica Neisa, NDIA SE Effectiveness Committee, et al. A
survey of systems engineering effectiveness-initial results. Techni-
cal report, Carnegie Mellon University, 2008.

[EPL17] EPLAN Software & Service GmbH. Eplan engineering configura-
tion tool for mechatronic configuration and automated documen-
tation. https://www.eplan.de, 2017.

[Erm03] Andreas Ermedahl. A Modular Tool Architecture for Worst-Case
Execution Time Analysis. Disseration for the degree of doctor of
philosophy in computer systems, Uppsala University, June 2003.
ISBN 91-554-5671-5 ISSN 1104-2516.

[Eth17a] Ethercat Technology Group and others. Ethercat-der ethernet
feldbus. ethercat technology group. https://www.ethercat.org,
2017. Accessed: 2017-02-20.

[Eth17b] Ethernet POWERLINK Standardization Group (EPSG). Ether-
net powerlink. http://www.ethernet-powerlink.org/, 2017.

[FBH05] Viktoria Firus, Steffen Becker, and Jens Happe. Parametric perfor-
mance contracts for qml-specified software components. Electronic
Notes in Theoretical Computer Science, 141(3):73–90, 2005.

[FCF+13] K. Falkner, V. Chiprianov, N.J.G. Falkner, C. Szabo, J. Hill,
G. Puddy, D. Fraser, A. Johnston, M. Rieckmann, and A. Wal-
lis. Model-driven performance prediction of distributed real-time
embedded defense systems. In Engineering of Complex Computer
Systems (ICECCS), 2013 18th International Conference on, pages
155–158, July 2013.

200

https://eclipse.org
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/modeling/emf/
https://eclipse.org/papyrus
https://eclipse.org/papyrus
http://www.eclipse.org/xtend/
http://www.eclipse.org/xtend/
https://www.eplan.de
http://www.ethernet-powerlink.org/

Bibliography

[FCS12] J. Feljan, J. Carlson, and T. Seceleanu. Towards a model-based
approach for allocating tasks to multicore processors. In Software
Engineering and Advanced Applications (SEAA), 2012 38th EU-
ROMICRO Conference on, pages 117–124, 2012.

[Fee01] Laura Marie Feeney. An energy consumption model for perfor-
mance analysis of routing protocols for mobile ad hoc networks.
Mobile Networks and Applications, 6(3):239–249, 2001.

[FEH+12] T. Frank, K. Eckert, T. Hadlich, A. Fay, C. Diedrich, and B. Vogel-
Heuser. Workflow and decision support for the design of distribu-
ted automation systems. In IEEE 10th International Conference
on Industrial Informatics, pages 293–299, July 2012.

[FEH+13] Timo Frank, Karin Eckert, Thomas Hadlich, Alexander Fay,
Christian Diedrich, and Birgit Vogel-Heuser. Erweiterung des
v-modells® für den entwurf von verteilten automatisierungssys-
temen. at-Automatisierungstechnik Methoden und Anwendungen
der Steuerungs-, Regelungs-und Informationstechnik, 61(2):79–91,
2013.

[FFMT04] Paolo Ferrari, Alessandra Flammini, Daniele Marioli, and Andrea
Taroni. Experimental evaluation of profinet performance. In Fac-
tory Communication Systems, 2004. Proceedings. 2004 IEEE In-
ternational Workshop on, pages 331–334. IEEE, 2004.

[FGHW99] Anja Feldmann, Anna C Gilbert, Polly Huang, and Walter Willin-
ger. Dynamics of ip traffic: A study of the role of variability and
the impact of control. In ACM SIGCOMM Computer Communi-
cation Review, volume 29, pages 301–313. ACM, 1999.

[FH04] Christian Ferdinand and Reinhold Heckmann. ait: Worst-case
execution time prediction by static program analysis. In Building
the Information Society, pages 377–383. Springer, 2004.

[FH12] Jens Frieben and Henning Heutger. Case study : Palladio-based
modular system for simulating plc performance. In Palladio Days
2012, Karlsruhe Reports in Informatics ; 2012,21 ISSN: 2190-4782,
pages 29–37. Karlsruhe Institute of Technology, Karlsruhe, 2012.

[FHL+01] Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Flo-
rian Martin, Michael Schmidt, Henrik Theiling, Stephan Thesing,
and Reinhard Wilhelm. Reliable and precise wcet determination
for a real-life processor. In Embedded Software, pages 469–485.
Springer, 2001.

[FHMB13] Jens Frieben, Henning Heutger, Matthias Meyer, and Steffen Bec-
ker. Modulare leistungsprognose von kompaktsteuerungen. In 9.
Paderborner Workshop Entwurf mechatronischer Systeme, pages
147–160, Paderborn, April 2013. Verlagsschriftenreihe des Heinz
Nixdorf Instituts, Paderborn.

201

Bibliography

[FK98] Svend Frølund and Jari Koistinen. Quality-of-service specification
in distributed object systems. Distributed Systems Engineering,
5(4):179, 1998.

[FL09] Georg Frey and Liu Liu. Modellierung und simulation vernetzter
automatisierungs-und regelungssysteme in modelicamodeling and
simulation of networked automation and control systems in mo-
delica. at-Automatisierungstechnik Methoden und Anwendungen
der Steuerungs-, Regelungs-und Informationstechnik, 57(9):466–
476, 2009.

[Fle10] FlexRay Consortium and others. Flexray communications system
protocol specification version 3.0.1, 2010.

[FMS04] KF Früh, Uwe Maier, and Dieter Schaudel. Handbuch der Prozes-
sautomatisierung. München: Oldenbourg Industrieverlag, 2004.

[FMS08] Sanford Friedenthal, Alan Moore, and Rick Steiner. Systems mo-
deling language (omg sysml) tutorial. In INCOSE international
symposium, volume 18, pages 1731–1862. Wiley Online Library,
2008.

[FMS14] Sanford Friedenthal, Alan Moore, and Rick Steiner. A practical
guide to SysML: the systems modeling language. Morgan Kauf-
mann, 2014.

[Fra99] Roy Gregory Franks. Performance analysis of distributed server
systems. PhD thesis, Carleton University Ottawa, 1999.

[Fra06] Ursula Frank. Spezifikationstechnik zur Beschreibung der Prinzi-
plösung selbstoptimierender Systeme. PhD thesis, Uni Paderborn,
2006.

[Fre16] FreeRTOS - Cross Platform Real Time Operating System (RTOS).
http://www.freertos.org/, 2016. Accessed: 2016-01-05.

[FT14] Tanja Frieben and Ansgar Trächtler. Virtual commissioning by
means of an adaptive selection of the modeling depth. In Pro-
ceedings of the ASME 2014 International Mechanical Engineer-
ing Congress & Exposition IMECE14, Montreal, Quebec, Canada.
ASME, November 14 - 20 2014.

[G+01] Gerhard Gruhler et al. Feldbusse und gerätekommunikationssys-
teme. Franzis, Poing, pages 978–3772357459, 2001.

[GB12] Eva Geisberger and Manfred Broy, editors. agendaCPS: Integrierte
Forschungsagenda Cyber-Physical Systems. acatech Studie. Sprin-
ger, Berlin, 2012.

[GCD+14] Jürgen Gausemeier, Anja Maria Czaja, Roman Dumitrescu, Chris-
tian Tschirner, Daniel Steffen, and Olga Wiederkehr. Studie: Sy-
stems engineering in der industriellen praxis. Broschüre, January
2014.

202

http://www.freertos.org/

Bibliography

[GDKN11] J. Gausemeier, R. Dumitrescu, S. Kahl, and D. Nordsiek. Integra-
tive development of product and production system for mechatro-
nic products. Robotics and Computer-Integrated Manufacturing,
27(4):772 – 778, 2011. Conference papers of Flexible Automation
and Intelligent ManufacturingIntelligent manufacturing and servi-
ces.

[Gee05] David Geer. Chip makers turn to multicore processors. Computer,
38(5):11–13, May 2005.

[GFDK09] J. Gausemeier, U. Frank, J. Donoth, and S. Kahl. Specification
technique for the description of self-optimizing mechatronic sys-
tems. Research in Engineering Design, 20(4):201, 2009.

[GG13] Hans-Jürgen Gevatter and Ulrich Grünhaupt. Handbuch der Mess-
und Automatisierungstechnik in der Produktion. Springer-Verlag,
2013.

[GGS+07] Jürgen Gausemeier, Holger Giese, Wilhelm Schäfer, Björn Axe-
nath, Ursula Frank, Stefan Henkler, Sebastian Pook, and Mat-
thias Tichy. Towards the design of self-optimizing mechatro-
nic systems: Consistency between domain-spanning and domain-
specific models. In International Conference On Engineering De-
sign, ICED’07, 28-31 August and Paris and France, 2007.

[GH01] S. Goedecker and A. Hoisie. Performance Optimization of Nume-
rically Intensive Codes. Society for Industrial and Applied Mat-
hematics, 2001.

[GH09] V. C. Gungor and G. P. Hancke. Industrial wireless sensor net-
works: Challenges, design principles, and technical approaches.
IEEE Transactions on Industrial Electronics, 56(10):4258–4265,
Oct 2009.

[GH13] B. Galloway and G.P. Hancke. Introduction to industrial control
networks. Communications Surveys Tutorials, IEEE, 15(2):860–
880, Second 2013.

[GJF13] P. Gaj, J. Jasperneite, and M. Felser. Computer communication
within industrial distributed environment - a survey. Industrial
Informatics, IEEE Transactions on, 9(1):182–189, Feb 2013.

[GLL12] J. Gausemeier, G. Lanza, and U. Lindemann. Produkte und Pro-
duktionssysteme integrativ konzipieren - Modellbildung und Ana-
lyse in der frühen Phase der Produktentstehung. Hanser Verlag,
München, 2012.

[GM04] Vincenzo Grassi and Raffaela Mirandola. Towards automatic com-
positional performance analysis of component-based systems. In
Proceedings of the 4th International Workshop on Software and
Performance, WOSP ’04, pages 59–63, New York, NY, USA, 2004.
ACM.

203

Bibliography

[GMM97] Somnath Ghosh, Margaret Martonosi, and Sharad Malik. Cache
miss equations: An analytical representation of cache misses. In
Proceedings of the 11th International Conference on Supercompu-
ting, ICS ’97, pages 317–324, New York, NY, USA, 1997. ACM.

[GRS14] Jürgen Gausemeier, Franz Josef Rammig, and Wilhelm Schäfer.
Design methodology for intelligent technical systems. Lecture No-
tes in Mechanical Engineering. Springer, 1(2):3, 2014.

[GTU91] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The im-
pact of operating system scheduling policies and synchronization
methods of performance of parallel applications. In ACM SIGME-
TRICS Performance Evaluation Review, volume 19, pages 120–
132. ACM, 1991.

[Han13] Yiming Han. Application performance evaluation on different com-
piler optimizations. Advances in Computer Science and its Appli-
cations, 2(3):410–415, 2013.

[Hap04] Jens Happe. Reliability Prediction of Component-Based Software
Architectures. Master’s thesis, University of Oldenburg, 2004.

[Hap05] Jens Happe. Performance Prediction for Embedded Systems, 2005.

[Hap08] Jens Happe. Predicting Software Performance in Symmetric
Multi-core and Multiprocessor Environments. Dissertation, Uni-
versity of Oldenburg, Germany, August 2008.

[Hap16] Jens Happe. Exact Schedulers Palladio Addon. https://sdqweb.
ipd.kit.edu/wiki/Exact_Schedulers, 2016. Accessed: 2016-12-
02.

[HBM+15] Jörg Holtmann, Ruslan Bernijazov, Matthias Meyer, David
Schmelter, and Christian Tschirner. Integrated systems engineer-
ing and software requirements engineering for technical systems. In
Proceedings of the International Conference on Software and Sys-
tems Process (ICSSP), pages 57–66, New York, NY, USA, August
2015. ACM. Best full paper ICSSP 2015.

[HBM+16] Jörg Holtmann, Ruslan Bernijazov, Matthias Meyer, David
Schmelter, and Christian Tschirner. Integrated and iterative sys-
tems engineering and software requirements engineering for techni-
cal systems. Journal of Software Evolution and Process, May 2016.

[HCÅ03] Dan Henriksson, Anton Cervin, and Karl-Erik Årzén. Truetime:
Real-time control system simulation with matlab/simulink. In
Proceedings of the Nordic Matlab conference, 2003.

[HH08] Reinhard Höhn and Stephan Höppner. Das V-Modell XT: Grund-
lagen, Methodik und Anwendungen. Springer-Verlag, 2008.

204

https://sdqweb.ipd.kit.edu/wiki/Exact_Schedulers
https://sdqweb.ipd.kit.edu/wiki/Exact_Schedulers

Bibliography

[HHM09] Jeffery Hansen, Scott A Hissam, and Gabriel A Moreno.
Statistical-based wcet estimation and validation. In Proceedings of
the 9th Intl. Workshop on Worst-Case Execution Time (WCET)
Analysis, 2009.

[Hil05] Jane Hillston. A compositional approach to performance modelling,
volume 12. Cambridge University Press, 2005.

[Hil09] Jane Hillston. University of edinburg - handout: Teaching course
performance modelling. http://www.inf.ed.ac.uk/teaching/

courses/pm/handouts/stochasticpetrinets.pdf, 2009. Acces-
sed: 2017-08-03.

[HJ03] Mahbub Hassan and Raj Jain. High performance TCP/IP net-
working, volume 29. Prentice Hall, 2003.

[HKW05] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Optimi-
zing general purpose compiler optimization. In Proceedings of the
2Nd Conference on Computing Frontiers, CF ’05, pages 180–188,
New York, NY, USA, 2005. ACM.

[HM08] Wolfgang Hesse and Heinrich C Mayr. Modellierung in der
softwaretechnik: eine bestandsaufnahme. Informatik-Spektrum,
31(5):377–393, 2008.

[HMR13] Jörg Henss, Philipp Merkle, and Ralf H Reussner. The ompcm si-
mulator for model-based software performance prediction: poster
abstract. In Proceedings of the 6th International ICST Confe-
rence on Simulation Tools and Techniques, pages 354–357. ICST
(Institute for Computer Sciences, Social-Informatics and Telecom-
munications Engineering), 2013.

[Hof08] Hans-Peter Hoffmann. Harmony/se: A sysml based systems engi-
neering process. Innovation, 2008.

[HPV15] F Herrera, P Peñil, and E Villar. Uml/marte network modelling
methodology. Technical report, University of Cantabria, 2015.

[HSST13] Christian Heinzemann, Oliver Sudmann, Wilhelm Schäfer, and
Matthias Tichy. A discipline-spanning development process for
self-adaptive mechatronic systems. In Proceedings of the 2013 In-
ternational Conference on Software and System Process, ICSSP
2013, pages 36–45. ACM, New York, NY, USA, 18 - 19 May 2013.

[HW00] Luc Hohwiller and Serge Wendling. Fieldbus network simulation
using a time extended estelle formalism. In Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 2000.
Proceedings. 8th International Symposium on, pages 92–97. IEEE,
2000.

205

http://www.inf.ed.ac.uk/teaching/courses/pm/handouts/stochasticpetrinets.pdf
http://www.inf.ed.ac.uk/teaching/courses/pm/handouts/stochasticpetrinets.pdf

Bibliography

[IH08] Teerawat Issariyakul and Ekram Hossain. Introduction to Network
Simulator NS2. Springer Publishing Company, Incorporated, 1
edition, 2008.

[IKDN13] Peter Iwanek, Lydia Kaiser, Roman Dumitrescu, and Alexander
Nyßen. Fachdisziplinübergreifende Systemmodellierung mechatro-
nischer Systeme mit SysML und CONSENS. In Tag des Systems
Engineering 2013, 2013.

[INC17] INCHRON. Inchron tool-suite. https://www.inchron.com, 2017.

[Int03] International Electrotechnical Commission (IEC). IEC 61158: Di-
gital data communications for measurement and control-fieldbus
for use in industrial control systems, 2003.

[Int13a] International Electrotechnical Commission (IEC). IEC 61131-3:
Programmable controllers - Part 3: Programming languages, 2013.

[Int13b] International Electrotechnical Commission (IEC). IEC 62264:
Enterprise-control system integration - part 1: Models and ter-
minology. https://webstore.iec.ch/publication/6675, 2013.

[Int16a] International Electrotechnical Commission (IEC). http://www.

iec.ch, 2016. Accessed: 2016-07-08.

[Int16b] International Electrotechnical Commission (IEC). IEC 61158 (Di-
gital data communication for measurement and control - Fieldbus
for use in industrial control systems) . https://webstore.iec.

ch/home, 2016. Accessed: 2016-02-19.

[Ips17] Ipswitch, Inc. Whatsup gold. http://www.whatsupgold.com,
2017.

[ISG17] ISG Industrielle Steuerungstechnik GmbH. Isg-virtuos. http:

//www.isg-stuttgart.de/, 2017.

[ITE17] ITEA Trust4All Consortium. CARAT-RTIE Performance toolkit.
http://www.win.tue.nl/trust4all/, 2017. Accessed: 2017-01-
13.

[Jai90] Raj Jain. The art of computer systems performance analysis:
techniques for experimental design, measurement, simulation, and
modeling. John Wiley & Sons, 1990.

[JHHF09] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. Automated
performance analysis of load tests. In 2009 IEEE International
Conference on Software Maintenance, pages 125–134, Sept 2009.

[JLS11] Hongchao Ji, Oliver Lenord, and Dieter Schramm. A model driven
approach for requirements engineering of industrial automation
systems. In Proceedings of the 4th International Workshop on
Equation-Based Object-Oriented Modeling Languages and Tools;

206

https://www.inchron.com
https://webstore.iec.ch/publication/6675
http://www.iec.ch
http://www.iec.ch
https://webstore.iec.ch/home
https://webstore.iec.ch/home
http://www.whatsupgold.com
http://www.isg-stuttgart.de/
http://www.isg-stuttgart.de/
http://www.win.tue.nl/trust4all/

Bibliography

Zurich; Switzerland; September 5; 2011, number 56, pages 9–18.
Linkø”ping University Electronic Press; Linkø”pings universitet,
2011.

[JT10] Karl-Heinz John and Michael Tiegelkamp. IEC 61131-3: pro-
gramming industrial automation systems: concepts and program-
ming languages, requirements for programming systems, decision-
making aids. Springer Science & Business Media, 2010.

[Kag12] Henning Kagermann. Umsetzungsempfehlungen für das Zukunfts-
projekt Industrie 4.0. Forschungsunion im Stifterverband für die
Deutsche Wirtschaft e.V, Berlin, 2012.

[Kah01] Pekka Kahkipuro. Uml-based performance modeling framework
for component-based distributed systems. In Performance En-
gineering, State of the Art and Current Trends, pages 167–184,
London, UK, UK, 2001. Springer-Verlag.

[KDHM13] Lydia Kaiser, Roman Dumitrescu, Jörg Holtmann, and Matthias
Meyer. Automatic verification of modeling rules in systems engi-
neering for mechatronic systems. In Proceedings of the ASME In-
ternational Design Engineering Technical Conferences & Compu-
ters and Information in Engineering Conference. ASME, ASME,
July 2013.

[KG08] Samuel Kounev and Ian Gorton. Performance Evaluation: Me-
trics, Models and Benchmarks: SPEC International Performance
Evaluation Workshop, SIPEW 2008, Darmstadt, Germany, June
27-28, 2008, Proceedings, volume 5119. Springer, 2008.

[KG17] SAP Deutschland SE & Co. KG. SAP S/4HANA. https://www.
sap.com/germany/product/enterprise-management, 2017.

[KHCD17] Nafiseh Kahani, Nicolas Hili, James R. Cordy, and Juergen Dingel.
Evaluation of uml-rt and papyrus-rt for modelling self-adaptive sy-
stems. In Proceedings of the 9th International Workshop on Model-
ling in Software Engineering, MISE ’17, pages 12–18, Piscataway,
NJ, USA, 2017. IEEE Press.

[KLL03] Alexander Klemm, Christoph Lindemann, and Marco Lohmann.
Modeling ip traffic using the batch markovian arrival process. Per-
formance Evaluation, 54(2):149–173, 2003.

[Kol60] Andrey N. Kolmogorov. Foundations of the Theory of Probability.
Chelsea Pub Co, 2 edition, June 1960.

[Koy13] Evelina Koycheva. Entwurfsbegleitende Leistungsanalyse mit
UML, MARTE und Generalisierten Netzen. Walter de Gruyter,
2013.

207

https://www.sap.com/germany/product/enterprise-management
https://www.sap.com/germany/product/enterprise-management

Bibliography

[KPP+02] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C.
Hoaglin, K. El Emam, and J. Rosenberg. Preliminary guidelines
for empirical research in software engineering. IEEE Transactions
on Software Engineering, 28(8):721–734, Aug 2002.

[KRK95] W. Kriesel, H. Rohr, and A. Koch. Geschichte und Zukunft der
Mess- und Automatisierungstechnik. Technikgeschichte in Einzel-
darstellungen. VDI Verlag, 1995.

[KVH13] K. Kernschmidt and B. Vogel-Heuser. An interdisciplinary sysml
based modeling approach for analyzing change influences in pro-
duction plants to support the engineering. In 2013 IEEE Internati-
onal Conference on Automation Science and Engineering (CASE),
pages 1113–1118, Aug 2013.

[LaÎ99] Thierry LaÎnÉ. Fieldbus Technology: Systems Integration, Net-
working, and Engineering Proceedings of the Fieldbus Conference
FeT’99 in Magdeburg, Federal Republic of Germany, September
23-24,1999, chapter Internet Technologies and Fieldbuses, pages
61–68. Springer Vienna, Vienna, 1999.

[Lau13] Rudolf Lauber. Prozeßautomatisierung I: Aufbau und Program-
mierung von Prozeßrechensystemen. Springer-Verlag, 2013.

[Leh12] Sebastian Lehrig. Assessing the quality of model-to-model trans-
formations based on scenarios. Master’s thesis, University of Pad-
erborn, Zukunftsmeile 1, October 2012.

[Leu04] Joseph YT Leung. Handbook of scheduling: algorithms, models,
and performance analysis. CRC Press, 2004.

[LF07] Liu Liu and G. Frey. Simulation approach for evaluating response
times in networked automation systems. In Emerging Technolo-
gies and Factory Automation, 2007. ETFA. IEEE Conference on,
pages 1061–1068, 2007.

[LF12] Liu Liu and Georg Frey. Effiziente modellierung und simulation
von kommunikationsnetzen in modelica. In Wolfgang A. Halang,
editor, Kommunikation unter Echtzeitbedingungen, Informatik Ak-
tuell, pages 89–98. Springer, 2012.

[LFM00] Howard Lykins, Sanford Friedenthal, and Abraham Meilich. 4.4.4
adapting uml for an object oriented systems engineering method
(oosem). INCOSE International Symposium, 10(1):490–497, 2000.

[LFVH13] C. Legat, J. Folmer, and B. Vogel-Heuser. Evolution in industrial
plant automation: A case study. In IECON 2013 - 39th Annual
Conference of the IEEE Industrial Electronics Society, pages 4386–
4391, Nov 2013.

208

Bibliography

[Lin16] Real-Time Linux Wiki config preempt rt patch for linux. https:
//rt.wiki.kernel.org/index.php/Main_Page, 2016. Accessed:
2016-01-05.

[LL99] Anthony LaMarca and Richard E Ladner. The influence of caches
on the performance of sorting. Journal of Algorithms, 31(1):66 –
104, 1999.

[LL02] Kyung Chang Lee and Suk Lee. Performance evaluation of swit-
ched ethernet for real-time industrial communications. Computer
standards & interfaces, 24(5):411–423, 2002.

[LLMR07] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudury.
Chronos: A timing analyzer for embedded software. Science of
Computer Programming, 69(1-3):56–67, 2007. http://www.comp.
nus.edu.sg/~rpembed/chronos.

[LM12] Yau-Tsun Steven Li and Sharad Malik. Performance analysis of
real-time embedded software. Springer Science & Business Media,
2012.

[LMT99] F.-L. Lian, J. R. Moyne, and D. M. Tilbury. Performance evalu-
ation of control networks for manufacturing systems. In In Pro-
ceedings of the ASME International Mechanical Engineering Con-
gress and Exposition (Dynamic Systems and Control Division, pa-
ges 6–7, 1999.

[LMW99] Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Perfor-
mance estimation of embedded software with instruction cache
modeling. ACM Trans. Des. Autom. Electron. Syst., 4(3):257–279,
July 1999.

[Lop15] Margaret L. Loper. Modeling and Simulation in the Systems En-
gineering Life Cycle. Springer-Verlag London, 2015.

[LPT10] Kai Lampka, Simon Perathoner, and Lothar Thiele. Analytic real-
time analysis and timed automata: a hybrid methodology for the
performance analysis of embedded real-time systems. Design Au-
tomation for Embedded Systems, 14(3):193–227, 2010.

[Lun08] Jan Lunze. Automatisierungstechnik: Methoden für die Überwa-
chung und Steuerung kontinuierlicher und ereignisdiskreter Sys-
teme. Oldenbourg Verlag, 2008.

[LWF08] L Liu, F Wagner, and G Frey. Simulation verteilter automatisie-
rungssysteme in modelica. VDIBERICHT, 2032:185, 2008.

[LWH05] M. Long, Chwan-Hwa John Wu, and J.Y. Hung. Denial of service
attacks on network-based control systems: impact and mitigation.
Industrial Informatics, IEEE Transactions on, 1(2):85–96, May
2005.

209

https://rt.wiki.kernel.org/index.php/Main_Page
https://rt.wiki.kernel.org/index.php/Main_Page
http://www.comp.nus.edu.sg/~rpembed/chronos
http://www.comp.nus.edu.sg/~rpembed/chronos

Bibliography

[Mah97] Bruce A Mah. An empirical model of http network traffic. In
INFOCOM’97. Sixteenth Annual Joint Conference of the IEEE
Computer and Communications Societies. Driving the Information
Revolution., Proceedings IEEE, volume 2, pages 592–600. IEEE,
1997.

[Mah13] Nitaigour P Mahalik. Fieldbus technology: industrial network stan-
dards for real-time distributed control. Springer Science & Business
Media, 2013.

[Man00] Charles C Mann. The end of moores law. Technology Review,
103(3):42–48, 2000.

[Mat16] MathWorks. MATLAB (matrix laboratory) numerical compu-
ting environment. http://www.mathworks.de/products/matlab/,
2016. Accessed: 2016-07-12.

[Mat17] MathWorks. Simulink - simulation and model-based design.
https://de.mathworks.com/products/simulink.html, 2017.

[MB91] Jeffrey C. Mogul and Anita Borg. The effect of context switches
on cache performance. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS IV, pages 75–84, New York, NY,
USA, 1991. ACM.

[MBB+89] M. Ajmone Marsan, G. Balbo, A. Bobbio, G. Chiola, G. Conte,
and A. Cumani. The effect of execution policies on the seman-
tics and analysis of stochastic petri nets. IEEE Transactions on
Software Engineering, 15(7):832–846, Jul 1989.

[MBC+94] Marco Ajmone Marsan, G. Balbo, Gianni Conte, S. Donatelli,
and G. Franceschinis. Modelling with Generalized Stochastic Petri
Nets. John Wiley & Sons, Inc., New York, NY, USA, 1st edition,
1994.

[MDFF06a] G. Marsal, B. Denis, J. M. Faure, and G. Frey. Evaluation of re-
sponse time in ethernet-based automation systems. In Emerging
Technologies and Factory Automation, 2006. ETFA ’06. IEEE
Conference on, pages 380–387, Sept 2006.

[MDFF06b] Gaëlle Marsal, Bruno Denis, J-M Faure, and Georg Frey. Evalu-
ation of response time in ethernet-based automation systems. In
Emerging Technologies and Factory Automation, 2006. ETFA’06.
IEEE Conference on, pages 380–387. IEEE, 2006.

[Men16] Mentor Graphics. Nucleus©RTOS mentor graphics real time ope-
rating system. https://www.mentor.com/embedded-software/

nucleus/, 2016. Accessed: 2016-01-05.

210

https://de.mathworks.com/products/simulink.html
https://www.mentor.com/embedded-software/nucleus/
https://www.mentor.com/embedded-software/nucleus/

Bibliography

[Mic16] Microsoft. Windows Embedded windows embedded family of ope-
rating systems. http://www.microsoft.com/windowsembedded/

en-us/windows-embedded.aspx, 2016. Accessed: 2016-01-05.

[Mil89] Robin Milner. Communication and concurrency, volume 84. Pren-
tice hall New York etc., 1989.

[MLK06] Pulat Matkurbanov, SeungKi Lee, and Dong-Sung Kim. A survey
and analysis of wireless fieldbus for industrial environments. In
SICE-ICASE, 2006. International Joint Conference, pages 5555–
5561, Oct 2006.

[Mod04] IDA Modbus. Modbus application protocol specification v1. 1a.
North Grafton, Massachusetts (www. modbus. org/specs. php),
2004.

[Mod17a] Modbus organization. Modbus organization. http://www.

modbus.org, 2017.

[Mod17b] Modelica Association. Modelica. https://www.modelica.org/,
2017. Accessed: 2016-06-12.

[Mol82] M. K. Molloy. Performance analysis using stochastic petri nets.
IEEE Transactions on Computers, C-31(9):913–917, Sept 1982.

[MR04] Perry S Marshall and John S Rinaldi. Industrial Ethernet. ISA,
2004.

[MSUW02] Stephen J Mellor, Kendall Scott, Axel Uhl, and Dirk Weise.
Model-driven architecture. In International Conference on Object-
Oriented Information Systems, pages 290–297. Springer, 2002.

[MU09] Leon McGinnis and Volkan Ustun. A simple example of sysml-
driven simulation. In Winter Simulation Conference, WSC ’09,
pages 1703–1710. Winter Simulation Conference, 2009.

[MWD+05] G Marsal, D Witsch, B Denis, JM Faure, and G Frey. Evaluation of
real-time capabilities of ethernet-based automation systems using
formal verification and simulation. Proceedings of RJCITR, 5:27–
30, 2005.

[MZCW04] Alexander Maxiaguine, Yongxin Zhu, Samarjit Chakraborty, and
Weng-Fai Wong. Tuning soc platforms for multimedia processing:
Identifying limits and tradeoffs. In Proceedings of the 2nd IEEE/A-
CM/IFIP international conference on Hardware/software codesign
and system synthesis, pages 128–133. ACM, 2004.

[NS-17] NS-3 Consortium. NS-3 discrete-event network simulator. https:
//www.nsnam.org/, 2017. Accessed: 2017-02-15.

[Obj04] Object Management Group (OMG). Object Management Group –
Data Distribution Service (DDS), Version 1.4 . http://www.omg.
org/spec/DDS/, 2004. Accessed: 2016-02-19.

211

http://www.microsoft.com/windowsembedded/en-us/windows-embedded.aspx
http://www.microsoft.com/windowsembedded/en-us/windows-embedded.aspx
http://www.modbus.org
http://www.modbus.org
https://www.modelica.org/
https://www.nsnam.org/
https://www.nsnam.org/
http://www.omg.org/spec/DDS/
http://www.omg.org/spec/DDS/

Bibliography

[Obj05] Object Management Group (OMG). OMG uml profile for Sche-
dulability, Performance, and Time (SPTP). version 1.1, 2005.

[Obj06] Object Management Group (OMG). OMG the uml profile for
marte: Modeling and Analysis of Real-Time and Embedded sys-
tems. version 1.1. http://www.omgmarte.org/, 2006.

[Obj11a] Object Management Group (OMG). OMG Business Process Mo-
del and Notation (BPMN) version 2.0. OMG Specification, Object
Management Group, 2011.

[Obj11b] Object Management Group (OMG). OMG Meta Object Facility
(MOF) 2.0 query/view/transformation. OMG Specification, Ob-
ject Management Group, 2011.

[Obj15a] Object Management Group (OMG). Object Management Group
- Unified Modeling Language version 2.5. http://www.omg.org/

spec/UML/2.5/, 2015. Accessed: 2016-03-07.

[Obj15b] Object Management Group (OMG). OMG Systems Modeling Lan-
guage (omg sysml) v1.4. http://www.omgsysml.org/, 2015.

[Obj17] Object Management Group (OMG). OMG Object Constrait Lan-
guage (OCL). http://www.omg.org/spec/OCL/, 2017.

[ODV17] ODVA Inc. Odva organization. https://www.odva.org/, 2017.

[Ope17] OpenSim Ltd. Omnet++ - discrete event simulator. https://

omnetpp.org/, 2017.

[Ora17] Oracle. Oracle e-business suite. http://www.oracle.com/us/

products/applications/ebusiness/overview/index.html,
2017.

[Org17] Organization for the Advancement of Structured Information
Standards (OASIS). Message Queue Telemetry Transport
(MQTT)). http://mqtt.org/, 2017.

[OS97] Greger Ottosson and Mikael Sjodin. Worst-case execution time
analysis for modern hardware architectures. In In Proc. ACM
SIGPLAN Workshop on Languages, Compilers and Tools for Real-
Time Systems (LCT-RTS’97. Citeseer, 1997.

[Par12] Dominique Paret. FlexRay and its applications: real time multi-
plexed network. John Wiley & Sons, 2012.

[PB00] Peter Puschner and Alan Burns. Guest editorial: A review of
worst-case execution-time analysis. Real-Time Systems, 18(2):115–
128, 2000.

[Per06] Simon Perathoner. Evaluation and Comparison of Performance
Analysis Methods for Distributed Embedded Systems. PhD thesis,
Politecnico di Milano, Politecnico di Milano, 2006.

212

http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/OCL/
https://www.odva.org/
https://omnetpp.org/
https://omnetpp.org/
http://www.oracle.com/us/products/applications/ebusiness/overview/index.html
http://www.oracle.com/us/products/applications/ebusiness/overview/index.html
http://mqtt.org/

Bibliography

[Pet83] James Peterson. Petri Net Theory and the Modelling of Systems.
Prentice Hall, 1983.

[Pho16] Phoenix Contact. Phoenix Contact – ProConOS embedded
CLR. https://www.phoenixcontact-software.com/de/

iec-61131-control/laufzeitsysteme/proconos-eclr, 2016.
Accessed: 2016-02-19.

[PJ08] Christiaan JJ Paredis and Thomas Johnson. Using omgs sysml to
support simulation. In Simulation Conference, 2008. WSC 2008.
Winter, pages 2350–2352. IEEE, 2008.

[PKC96] Kihong Park, Gitae Kim, and Mark Crovella. On the relations-
hip between file sizes, transport protocols, and self-similar network
traffic. In Network Protocols, 1996. Proceedings., 1996 Internati-
onal Conference on, pages 171–180. IEEE, 1996.

[PMDB14] Uwe Pohlmann, Matthias Meyer, Andreas Dann, and Christo-
pher Brink. Viewpoints and views in hardware platform mo-
deling for safe deployment. In Proceedings of the 2Nd Workshop
on View-Based, Aspect-Oriented and Orthographic Software Mo-
delling, VAO ’14, pages 23:23–23:30, New York, NY, USA, 2014.
ACM.

[PN09] Carlos E. Pereira and Peter Neumann. Industrial Communica-
tion Protocols, pages 981–999. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009.

[Pro16a] Profibus and Profinet International (PI). http://www.profibus.
com, 2016. Accessed: 2016-02-19.

[Pro16b] Profibus Nutzerorganisation e.V. (PNO). http://www.

interbusclub.com/, 2016. Accessed: 2016-02-19.

[Pro17] Profibus International (PI). Profibus standard iec 61158. www.

profibus.com, 2017.

[Pry08] Gunnar Prytz. A performance analysis of ethercat and profinet irt.
In Emerging Technologies and Factory Automation, 2008. ETFA
2008. IEEE International Conference on, pages 408–415. IEEE,
2008.

[PS85] James Lyle Peterson and Abraham Silberschatz. Operating system
concepts, volume 2. Addison-Wesley Reading, MA, 1985.

[PS01] Frederick M Proctor and William P Shackleford. Real-time ope-
rating system timing jitter and its impact on motor control. In
Intelligent Systems and Advanced Manufacturing, pages 10–16. In-
ternational Society for Optics and Photonics, 2001.

[QNX16] QNX. QNX Neutrino RTOS the qnx neutrino rtos (realtime opera-
ting system). http://www.qnx.com/products/neutrino-rtos/

neutrino-rtos.html, 2016. Accessed: 2016-01-05.

213

https://www.phoenixcontact-software.com/de/iec-61131-control/laufzeitsysteme/proconos-eclr
https://www.phoenixcontact-software.com/de/iec-61131-control/laufzeitsysteme/proconos-eclr
http://www.profibus.com
http://www.profibus.com
http://www.interbusclub.com/
http://www.interbusclub.com/
www.profibus.com
www.profibus.com
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html
http://www.qnx.com/products/neutrino-rtos/neutrino-rtos.html

Bibliography

[RBB+11] Ralf Reussner, Steffen Becker, Erik Burger, Jens Happe, Michael
Hauck, Anne Koziolek, Heiko Koziolek, Klaus Krogmann, and Mi-
chael Kuperberg. The Palladio Component Model. Technical re-
port, Universität Karlsruhe (TH), Karlsruhe, 2011.

[RBG13] V. Rudtsch, F. Bauer, and J. Gausemeier. Approach for the con-
ceptual design validation of production systems using automated
simulation-model generation. Procedia Computer Science, 16:69 –
78, 2013.

[RBH+95] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and
A. Gupta. The impact of architectural trends on operating system
performance. SIGOPS Oper. Syst. Rev., 29(5):285–298, December
1995.

[RBK+07] Ralf H. Reussner, Steffen Becker, Heiko Koziolek, Jens Happe,
Michael Kuperberg, and Klaus Krogmann. The Palladio Compo-
nent Model. Interner Bericht 2007-21, Universität Karlsruhe (TH),
2007. October 2007.

[Rec08] Jörg Rech. Model-Driven Software Development: Integrating Qua-
lity Assurance: Integrating Quality Assurance. IGI Global, 2008.

[RH10] George F Riley and Thomas R Henderson. The ns-3 network si-
mulator. In Modeling and Tools for Network Simulation, pages
15–34. Springer, 2010.

[Rie14] Jan Rieke. Model Consistency Management for Systems Engineer-
ing. Phd thesis, University of Paderborn, July 2014.

[Riv17] Riverbed Technology. Opnet (steelcentral). https://www.

riverbed.com/de/products/steelcentral, 2017.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Mo-
deling Language Reference Manual, The. Pearson Higher Educa-
tion, 2004.

[Ros08] Martin Rostan. Industrial ethernet technologies: Overview. In
ETG Industrial Ethernet Seminar Series, Nuremberg, 2008.

[RRMP08] Andreas Rausch, Ralf Reussner, Raffaela Mirandola, and F Pla-
sil. The common component modeling example. Lecture notes in
computer science, 5153, 2008.

[RS94] K. Ramamritham and J.A. Stankovic. Scheduling algorithms and
operating systems support for real-time systems. Proceedings of
the IEEE, 82(1):55–67, Jan 1994.

[RTA16] Real-Time Linux RTAI rtai - real time application interface official
website. https://www.rtai.org/, 2016. Accessed: 2016-01-05.

214

https://www.riverbed.com/de/products/steelcentral
https://www.riverbed.com/de/products/steelcentral
https://www.rtai.org/

Bibliography

[SBMP08] Dave Steinberg, Frank Budinsky, Ed Merks, and Marcelo Pater-
nostro. EMF: eclipse modeling framework. Pearson Education,
2008.

[Sch95] Andy Schürr. Specification of graph translators with triple graph
grammars. In in Proc. of the 20th Int. Workshop on Graph-
Theoretic Concepts in Computer Science (WG ‘94), Herrsching
(D. Springer, 1995.

[SEG] SEGGER. embOS Real Time Operating System. https://www.

segger.com/embos.html. Accessed: 2016-01-05.

[Sel98] Bran Selic. Using uml for modeling complex real-time systems.
In Languages, compilers, and tools for embedded systems, pages
250–260. Springer, 1998.

[Ser17] Sercos International e.V. Sercos international e.v. www.sercos.

com, 2017.

[SG13] Bran Selic and Sbastien Grard. Modeling and Analysis of Real-
Time and Embedded Systems with UML and MARTE: Developing
Cyber-Physical Systems. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 2013.

[SGGS98] Abraham Silberschatz, Peter B Galvin, Greg Gagne, and A Sil-
berschatz. Operating system concepts, volume 4. Addison-Wesley
Reading, 1998.

[She96] Sarah A Sheard. Twelve systems engineering roles. In INCOSE
International Symposium, volume 6, pages 478–485. Wiley Online
Library, 1996.

[SHK98] Sandra A. Slaughter, Donald E. Harter, and Mayuram S.
Krishnan. Evaluating the cost of software quality. Commun. ACM,
41(8):67–73, August 1998.

[SIEa] SIEMENS. SIMATIC S7 CFC simatic s7 cfc (conti-
nuous function chart). http://w3.siemens.com/mcms/

simatic-controller-software/en/programming-options/

simatic-s7-cfc/pages/default.aspx. Accessed: 2016-01-15.

[SIEb] SIEMENS. SIMATIC S7-GRAPH graphical language for descri-
bing procedures with alternative or parallel step sequences. http:
//w3.siemens.com/mcms/simatic-controller-software/de/

step7/simatic-s7-graph/Seiten/Default.aspx. Accessed:
2016-01-15.

[SIEc] SIEMENS. SIMATIC S7-SCL programming language
for complex algorithms, arithmetic functions or for
data processing tasks. http://w3.siemens.com/mcms/

simatic-controller-software/de/step7/simatic-s7-scl/

Seiten/Default.aspx. Accessed: 2016-01-15.

215

https://www.segger.com/embos.html
https://www.segger.com/embos.html
www.sercos.com
www.sercos.com
http://w3.siemens.com/mcms/simatic-controller-software/en/programming-options/simatic-s7-cfc/pages/default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/en/programming-options/simatic-s7-cfc/pages/default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/en/programming-options/simatic-s7-cfc/pages/default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/de/step7/simatic-s7-graph/Seiten/Default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/de/step7/simatic-s7-graph/Seiten/Default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/de/step7/simatic-s7-graph/Seiten/Default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/de/step7/simatic-s7-scl/Seiten/Default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/de/step7/simatic-s7-scl/Seiten/Default.aspx
http://w3.siemens.com/mcms/simatic-controller-software/de/step7/simatic-s7-scl/Seiten/Default.aspx

Bibliography

[SJ08] Robert Shaw and Brendan Jackman. An introduction to flexray as
an industrial network. In Industrial Electronics, 2008. ISIE 2008.
IEEE International Symposium on, pages 1849–1854. IEEE, 2008.

[SKKS11] Till Steinbach, Hermand Dieumo Kenfack, Franz Korf, and Tho-
mas C Schmidt. An extension of the omnet++ inet framework
for simulating real-time ethernet with high accuracy. In Procee-
dings of the 4th International ICST Conference on Simulation
Tools and Techniques, pages 375–382. ICST (Institute for Com-
puter Sciences, Social-Informatics and Telecommunications Engi-
neering), 2011.

[SL05] J. Shen and M.H. Lipasti. Modern Processor Design: Fundamen-
tals of Superscalar Processors. Electrical and Computer Engineer-
ing. McGraw-Hill Companies,Incorporated, 2005.

[Smaa] Smart Software Solutions GmbH (3S). 3S-Smart Software Soluti-
ons GmbH codesys runtime. https://www.codesys.com/. Acces-
sed: 2016-01-05.

[Smab] Smart Software Solutions GmbH (3S). CODESYS UML codesys
professional developer edition for modeling uml class and state di-
agrams. http://store.codesys.com/codesys-uml.html. Acces-
sed: 2016-01-15.

[Smi62] E. C. Smith. Simulation in systems engineering. IBM Systems
Journal, 1(1):33–50, 1962.

[SN99] Weiming Shen and Douglas H Norrie. Agent-based systems for
intelligent manufacturing: a state-of-the-art survey. Knowledge
and information systems, 1(2):129–156, 1999.

[Spa17] Sparx Systems. Enterprise architect. http://www.sparxsystems.
de/, 2017.

[SQL] Information technology – Database languages – SQL – Part
2: Foundation (SQL/Foundation). http://www.iso.org/iso/

catalogue_detail.htm?csnumber=53682. Accessed: 2016-02-19.

[Sta73] Herbert Stachowiak. Allgemeine Modelltheorie. Springer, Wien,
New York, 1973.

[Ste09] William J Stewart. Probability, Markov chains, queues, and simu-
lation: the mathematical basis of performance modeling. Princeton
University Press, 2009.

[SVC06] Thomas Stahl, Markus Voelter, and Krzysztof Czarnecki. Model-
Driven Software Development: Technology, Engineering, Manage-
ment. John Wiley & Sons, 2006.

[SVE07] Thomas Stahl, Markus Völter, and Sven Efftinge. Modellgetrie-
bene Softwareentwicklung. Techniken, Engineering, Management.
Dpunkt Verlag, 2007.

216

https://www.codesys.com/
http://store.codesys.com/codesys-uml.html
http://www.sparxsystems.de/
http://www.sparxsystems.de/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53682
http://www.iso.org/iso/catalogue_detail.htm?csnumber=53682

Bibliography

[SW06] Miroslaw Staron and Claes Wohlin. An industrial case study on
the choice between language customization mechanisms. In Inter-
national Conference on Product Focused Software Process Impro-
vement, pages 177–191. Springer, 2006.

[SW08] Gerhard Schnell and Bernhard Wiedemann. Bussysteme in der
automatisierungs-und prozesstechnik. Vieweg+ Teubner, Wiesba-
den, 2008.

[SW09] Daniel Schütz and Andreas Wannagat. Domänenspezifische mo-
dellierung für automatisierungstechnische anlagen mit hilfe der
sysml. atp edition, 51:54–62, 2009.

[TA17] Timing-Architects. Timing-architects - development-tools for em-
bedded multi-core systems. https://www.timing-architects.

com/, 2017.

[Tan02] Andrew Tanenbaum. Computer Networks. Prentice Hall Professi-
onal Technical Reference, 4th edition, 2002.

[TDBG15] C. Tschirner, R. Dumitrescu, M. Bansmann, and J. Gausemeier.
Tailoring model-based systems engineering concepts for industrial
application. In 2015 Annual IEEE Systems Conference (SysCon)
Proceedings, pages 69–76, April 2015.

[TF11] Kleanthis Thramboulidis and Georg Frey. An mdd process for iec
61131-based industrial automation systems. In Emerging Techno-
logies & Factory Automation (ETFA), 2011 IEEE 16th Conference
on, pages 1–8. IEEE, 2011.

[Tho05] J.-P. Thomesse. Fieldbus technology in industrial automation.
Proceedings of the IEEE, 93(6):1073–1101, 2005.

[Tid17] Tidorum Ltd. Bound-t - execution time analyzer from tidorum.
http://www.bound-t.com/, 2017.

[TP09] Lothar Thiele and Simon Perathoner. Performance prediction of
distributed platforms. In Gabriela Nicolescu and Pieter J Mos-
terman, editors, Model-Based Design of Heterogeneous Embedded
Systems, Computational Analysis, Synthesis, and Design of Dyn-
amic Systems, chapter 1, pages 3–25. CRC Press, November 2009.

[TWTT87] Andrew S Tanenbaum, Albert S Woodhull, Andrew S Tanenbaum,
and Andrew S Tanenbaum. Operating systems: design and imple-
mentation, volume 2. Prentice-Hall Englewood Cliffs, NJ, 1987.

[V+01] András Varga et al. The omnet++ discrete event simulation sy-
stem. In Proceedings of the European simulation multiconference
(ESM?2001), volume 9, page 65. sn, 2001.

[VDI] VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik.
Cyber-physical systems -chancen und nutzen aus sicht der
automation.

217

https://www.timing-architects.com/
https://www.timing-architects.com/
http://www.bound-t.com/

Bibliography

[Ver04] Verein Deutscher Ingenieure (VDI). 2206: Entwicklungsmethodik
für mechatronische systeme. VDI-Verlag, Düsseldorf, 2004.

[Ver12] Verband Deutscher Maschinen- und Anlagenbau. Trendstudie: It
und automation in den produkten des maschinenbau bis 2015,
2012.

[VH08] András Varga and Rudolf Hornig. An overview of the omnet++
simulation environment. In Proceedings of the 1st international
conference on Simulation tools and techniques for communicati-
ons, networks and systems & workshops, page 60. ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunicati-
ons Engineering), 2008.

[VHBKF11] Birgit Vogel-Heuser, Steven Braun, Benjamin Kormann, and Da-
vid Friedrich. Implementation and evaluation of {UML} as mo-
deling notation in object oriented software engineering for machine
and plant automation. {IFAC} Proceedings Volumes, 44(1):9151 –
9157, 2011. 18th {IFAC} World Congress.

[VHSFL14] Birgit Vogel-Heuser, Daniel Schütz, Timo Frank, and Christoph
Legat. Model-driven engineering of manufacturing automation
software projects ? a sysml-based approach. Mechatronics,
24(7):883 – 897, 2014. 1. Model-Based Mechatronic System Design
2. Model Based Engineering.

[VIN17] VINT Project. NS-2 - Network Simulator. http://www.isi.edu/
nsnam/ns/, 2017. Accessed: 2017-04-06.

[Vya13] V. Vyatkin. Software engineering in industrial automation: State-
of-the-art review. IEEE Transactions on Industrial Informatics,
9(3):1234–1249, Aug 2013.

[Wan06] Ernesto Wandeler. Modular performance analysis and interface
based design for embedded real time systems. PhD thesis, SWISS
FEDERAL INSTITUTE OF TECHNOLOGY ZURICH, 2006.

[WEE+08] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas
Holsti, Stephan Thesing, David Whalley, Guillem Bernat, Chris-
tian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller,
Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per Sten-
ström. The worst-case execution-time problem—overview
of methods and survey of tools. ACM Trans. Embed. Comput.
Syst., 7(3):36:1–36:53, May 2008.

[Wei11] Tim Weilkiens. Systems engineering with SysML/UML: modeling,
analysis, design. Morgan Kaufmann, 2011.

[Wei15] T. Weilkiens. Sysmod - The Systems Modeling Toolbox - Pragmatic
Mbse with Sysml. You Lulu Incorporated, 2015.

218

http://www.isi.edu/nsnam/ns/
http://www.isi.edu/nsnam/ns/

Bibliography

[Wer09] B. Werner. Object-oriented extensions for IEC 61131-3. IEEE
Industrial Electronics Magazine, 3(4):36–39, Dec 2009.

[Win] Windriver . VxWorks vxworks - windriver. http://windriver.

com/products/vxworks. Accessed: 2016-01-05.

[WM95] Wm. A. Wulf and Sally A. McKee. Hitting the memory wall:
Implications of the obvious. SIGARCH Comput. Archit. News,
23(1):20–24, March 1995.

[WRF+15] David D. Walden, Garry J. Roedler, Kevin Forsberg, R. Douglas
Hamelin, and Thomas M. Shortell, editors. Systems Engineering
Handbook: A Guide for System Life Cycle Processes and Activities.
Wiley, Hoboken, NJ, 4 edition, 2015.

[WS02] Lloyd G Williams and Connie U Smith. Pasa sm: a method for the
performance assessment of software architectures. In Proceedings
of the 3rd International Workshop on Software and Performance,
pages 179–189. ACM, 2002.

[WSR99] K. Weiss, T. Steckstor, and W. Rosenstiel. Performance analysis
of a rtos by emulation of an embedded system. In Rapid System
Prototyping, 1999. IEEE International Workshop on, pages 146–
151, Jul 1999.

[ZBN93] N. Zhang, A. Burns, and M. Nicholson. Pipelined processors and
worst case execution times. Real-Time Systems, 5(4):319–343,
1993.

[ZPK00] Bernard P Zeigler, Herbert Praehofer, and Tag Gon Kim. Theory
of modeling and simulation: integrating discrete event and conti-
nuous complex dynamic systems. Academic press, 2000.

219

http://windriver.com/products/vxworks
http://windriver.com/products/vxworks

List of Figures

1.1 Examples for automated systems (source: Phoenix Contact) . . . 1

1.2 Costly changes in the late phases of the development due to
performance-related errors . 3

1.3 Disciplines and their specific analysis tools 5

1.4 Approach for identifying and developing an automation specific
performance analysis based on System Engineering models 8

2.1 Schematic representation of a simple automation system 12

2.2 Different steps of the of the PLCs cycle 13

2.3 Structure of the IEC core elements 14

2.4 Example for a Ladder Diagram code snipplet (source [Bec17]) . . 15

2.5 Example of a Function Block Diagram (source [Bec17]) 17

2.6 Example Sequential Function Chart (source [Bec17]) 17

2.7 Conceptual fieldbus structure of an automation system 18

2.8 Examples of (fieldbus) network topologies 20

2.9 The automation pyramid with different function levels (based on
[FMS04, KRK95]) . 21

2.10 CONSENS partial models and alignment to the VDI 2206 process 23

2.11 Exemplary active structure diagram 24

2.12 SysML Diagram Types [Wei11] 25

2.13 Exemplary BDD and IBD diagrams 26

2.14 Excerpt of the SysML4CONSENS UML profile 27

2.15 Model-based Performance Prediction Process (modified from [Bec08]) 29

2.16 Example of a queuing network ([Bec08]) 30

2.17 Simple Petri Net with four places (source [Hil09]) 31

2.18 Precise clock class diagram (modified from [SG13]) 33

2.19 Precise clock sequence diagram ([SG13]) 34

2.20 Exemplary set of dimensions and measurement units 34

2.21 ArrivalPatterns to model probabilistically-distributed workloads . 35

2.22 Palladio-Models used by different analysis tools 36

3.1 Photo of two milling centers with automation hardware for work-
piece transport (source ELHA) 39

3.2 Overview of the ELHA production system elements 40

3.3 A simplified CONSENS active structure of Unit2 41

3.4 Environment model for the Turbocharger example (simplified) . 44

3.5 Excerpt of the Unit2 System element of the Turbocharger example 46

3.6 The AssemblyConnector and various sensors and actuators . . . 47

4.1 Identification of influence factors and artifacts 49

4.2 Two examples of PMF with different values and their probabilities 58

221

List of Figures

4.3 A PDF with variables intervals 60

4.4 The four subtypes to model execution times 61

4.5 Execution time estimates (source [Erm03]) 62

4.6 Components of a WCET Analysis (source [Erm03]) 62

4.7 A uniform distribution between lower and upper bound 63

4.8 Examples for different access frequencies 65

4.9 Different subtypes of the arrival pattern 66

4.10 IEC 61131-3 software model, modified from [Int13a] 69

4.11 Three Function Blocks examples: IEC 61131-3 standard, PLCO-
pen standard and a vendor specific. 71

4.12 Execution of a cyclic task with a fixed interval time of 10ms . . . 74

4.13 Cyclic Tasks with different priorities and intervals 75

4.14 Triggered EventTask with varying delta times 75

4.15 Wait times (delta) based on cumulative execution times 76

4.16 The two communication channels and their according ISO OSI
layers . 90

4.17 Different PROFINET performance classes (modified Figure from
[Ros08]) . 91

4.18 Simplified illustration of sending and receiving PROFINET frames 92

4.19 Possible PROFINET topologies (mixed forms allowed) 92

4.20 Example of different usages of the FTPServer service 96

4.21 Example of different usages of the WebServer service 98

4.22 The OPC-UA Server and its central role 99

4.23 SNMP server is providing data for the network management tools 100

5.1 Overview of steps and artifacts in Chapter 5 104

5.2 Active structure with a functional view on communication 110

5.3 Active structure with a more technical view on communication . 111

5.4 Active structure with a detailed model of the communication . . 111

5.5 Refinement of the AssemblyConnector containing several IOs . . 112

5.6 Topology specific parts extending the TIM base 114

5.7 LoadSpecification and different sub types 117

5.8 Formal model of the PLC, its attributes and containment relations120

5.9 Classes overview for Programs, Function Blocks, Functions, and
related elements . 121

5.10 Classes overview for Tasks and related elements 122

5.11 Services as influence factors with individual parameters 123

5.12 The (abstract) Service influence factor 124

5.13 Combination of multiple influence factor specifications into one . 125

5.14 Classes overview for services and related elements 126

5.15 Classes for modeling an abstract fieldbus 127

5.16 Exemplary PROFINET transition from TIM to TSM 128

5.17 Classes overview for the PROFINET fieldbus 130

5.18 Classes overview for the INTERBUS fieldbus 131

5.19 System design phases (modified from [VHSFL14]) 133

5.20 The Automation Application Development Lifecycle (modified
from [Dub11]) . 134

222

List of Figures

5.21 Vee-Model process for system development (modified from [Ver04,
HH08]) . 136

5.22 Proposed development process based on [HBM+15] 136
5.23 Detailed sub steps of ’Define Influence Factors’ 138

6.1 Creating the UML profile and Simulation models 141
6.2 Relations between UML, SysML, CONSENS, and AIM 143
6.3 Overview of the AIM Profile and packages 144
6.4 AIM profile root package . 145
6.5 Additional properties provided by the PLC Stereotype 146
6.6 Definition of Stereotypes to model the automation software . . . 147
6.7 Specification of the Program MainProgram 148
6.8 Stereotypes to define different kinds of tasks 148
6.9 Properties of the MainTask . 149
6.10 Definition of Stereotypes to model services and their access . . . 149
6.11 Modeling the ServiceAccess of the SCADA System Element . . . 150
6.12 Definition of two actions for the ServiceAccess 150
6.13 Stereotypes for the abstract IO model 151
6.14 Stereotypes for the Interbus TSM model 152
6.15 Exemplary application of Interbus stereotypes 153
6.16 Overview of the used model types 159
6.17 Resource container for the ILC 171 PLC of Unit 2 161
6.18 Specifics of the embOS Scheduler 162
6.19 Component and UsageScenario for the eCLRRemoting load . . . 163
6.20 Realization of Programs with different kinds of Actions 164
6.21 Repository components and SEFF for calling Function Blocks . . 164
6.22 UsageScenarios representing the MillTask and MainTask 165
6.23 Visualization of the Webserver utilization 166
6.24 Visualization of the Interbus Master utilization 167
6.25 Chain of models and transformations 168
6.26 Automationmodel and LibraryDescription packages 169
6.27 PLCProductconfiguration containing a unique set of features . . . 170
6.28 A set of transformations generating parts of the model 171

7.1 Steps and artifacts of this chapter 175
7.2 Evaluation steps to compare simulation with measurement 176
7.3 Screenshot of the project setup in PC Worx 178
7.4 Setup of the performance prototype 179
7.5 Function Block Diagram of the MainProgram 180
7.6 Visualization of the IdleTask run 183
7.7 Times series graph for the two tasks 184

8.1 Performed steps and created artifacts to perform automation spe-
cific performance predictions . 188

A.1 Photo of two milling centers with automation hardware for work-
piece transport (source ELHA) 227

223

List of Tables

2.1 List of used System and Environment elements 27
2.1 List of used System and Environment elements 28

4.1 Basic set of primitive types . 56
4.2 Units to specify the size of a file 56
4.3 Available time units . 61
4.4 Influence factor parameter for Programs 71
4.5 Influence factor parameter for Function Blocks 72
4.6 Influence factor parameter for Functions 73
4.7 Parameter for the influence factor CyclicTask 75
4.8 Parameter for the influence factor Event Task 76
4.9 Parameter for the influence factor Idle Task 77
4.10 Parameter for the influence factor PLC 80
4.11 Parameter for the influence factor Operating System 81
4.12 Parameter for the influence factor Scheduler 83
4.13 Parameter for the influence factor file system 84
4.14 Parameter for the influence factor IEC Runtime 85
4.15 Parameter for the influence factor IPTraffic 86
4.16 Network topologies of the presented fieldbusses 93
4.17 Influence factor parameter for the io system 96
4.18 Influence factor parameter for the service FTPServer 97
4.19 Influence factor parameter for the service Webserver 98
4.20 Influence factor parameter for the service OPC-UA 100
4.21 Influence factor parameter for the service SNMP 101

5.1 Influence factors and applicable LoadSpecification type 118

6.1 Overview of requirements and approaches 158
6.2 Generated Palladio elements for each influence factor 160

7.1 Comparison of predicted and measured CPU utilization 182
7.2 CPU utilization with increased Program execution times 182

A.1 List of used System and Environment elements 228
A.1 List of used System and Environment elements 229
A.1 List of used System and Environment elements 230
A.1 List of used System and Environment elements 231
A.2 List of Function Blocks . 231
A.2 List of Function Blocks . 232
A.3 List of used Programs . 233

225

APPENDIX A
Turbocharger example

For this thesis, a medium sized production system provided by ELHA1 to mill
the body of Turbochargers is used as an ongoing example. To protect the
intellectual property of ELHA, the provided System Engineering models have
been modified to obfuscate the real system structure and its components.

Figure A.1 shows a photo of a similar system with two Mills. The input and
output workpieces are transported by robots in-between. Several other com-
ponents like stations to measure, buffer, or to engrave the workpieces are also
part of this production system.

Figure A.1: Photo of two milling centers with automation hardware for work-
piece transport (source ELHA)

A.1 Changes to the original turbocharger automation
system

The Systems Engineering models provided by ELHA are detailed and contain
a wide range of components, subcomponents and flows. For this thesis, the
models have been manually transformed from Microsoft Visio documents to

1ELHA Maschinenbau – http://www.elha.de/

227

Appendix A Turbocharger example

SysML models created with Papyrus. Some changes have been made to simplify
the model and to obfuscate ELHA specific details. The most important changes
are as follows

� The number of Function Blocks have been reduced. Similar Function
Blocks are merged into single FB. The original software contains more
than 370 Function Blocks, hierarchically structured and contained in
round about 35 entry level Function Blocks.

� ELHA uses Siemens PLCs to control their machines. This PLC has been
exchanged with a Phoenix Contact PLC to be able to gather extensive
profiling data for the simulation models and to later compare a real PLC
with the simulation data.

� The ELHA Turbocharger mill uses a set of different Fieldbusses including
Profibus. This fieldbus is not available for the available Phoenix Contact
PLC and had to be replaced with Interbus.

� Several active structure elements and flows have been renamed to obfus-
cate the details of the production system. This has been done to protect
the intellectual property of ELHA.

A.2 List of System- and Environment elements

The following Table A.2 lists all environment and system elements created in
the Papyrus SysML model. Each element is identified by an id and provides a
short description of its function or use. The coloumn ’PartOf’ denotes the id
of which this element is a part of.

Table A.1: List of used System and Environment elements

id Element PartOf Description

1 System – Root element for the model. Contains also
all environment elements

2 Unit1 1 System containing the first mill

3 Unit2 1 System containing the second mill

4 Transport 1 System element for transport, buffering
and additional tasks

5 Material-
Supply

1 External system that provides workpieces
at the beginning of the assembly line

6 SCADA 1 SCADA system for collecting information
about the status. Also gathers measure-
ment and engravement information

7 Operator 1 Human operating the production system

8 Workpiece 1 Workpieces in different states that will be
processed by the automation system

9 Remote-
Diagnostic

1 Additional system for remote diagnosis

10 Maintenance 1 Personal for monitoring, maintenance and
repairs

228

A.2 List of System- and Environment elements

Table A.1: List of used System and Environment elements

id Element PartOf Description

11 Environment 1 Element for abstracting environment in-
fluences like vibration onto the system

12 El.Energy-
Supply

1 Supply unit providing electrical energy

13 Chippings-
Disposal

1 Supply unit for removing and storing chip-
pings

14 CompressedAir 1 Supply unit providing compressed air

15 Oil 1 Supply unit providing oil

16 Cooling 1 Supply unit providing additional cooling
liquid

17 Suction 1 Supply unit to clean air

18 AssemblyLine 1 Connection to the following production
steps

19 RT-Robot 2 First robot (“Rohteil”) taking parts from
the delivery and puts them on the input
shuttle

20 PLC 2 PLC controlling the unit 1

21 HMI 2 HMI for accessing data of and controlling
unit 1

22 Workpiece-
Delivery

2 Workpieces are delivered to the pro-
duction system by this system

23 Mill 2 The mill processing the workpieces (drill,
mill, cut)

24 ShuttleInput 2 System for injecting the workpieces into
the mill

25 ShuttleOutput 2 System for ejecting the workpieces out of
the mill

26 Rejectslide 2 Slide for damaged workpieces

27 Measurement-
Station

4 Station for measuring the workpiece after
the processing step. Data is exchanged
with SCADA system

28 HFT-Robot 4 “HalbFertigTeil”-Robot for moving work-
pieces between the different station in the
transport unit

29 Supply-
Distribution

4 System for distributing the different sup-
plies to the unit1, unit2 and transport
parts

30 SPC-Station 4 Station for manual statistical process con-
trol

31 BufferStation 4 A station for buffering workpieces in case
the unit2 mill is blocked

32 Engravement-
Station

4 Workpieces are engraved in this station.
Engravement data is send to SCADA sy-
stem

33 Rejectslide 4 Slide for damaged workpieces

229

Appendix A Turbocharger example

Table A.1: List of used System and Environment elements

id Element PartOf Description

34 PLC 4 PLC controlling the transport unit

35 HMI 4 HMI for accessing data of and controlling
the transport unit

36 SPC-Station 4 Station for manual statistical process con-
trol

37 Engravement-
Station

4 Workpieces are engraved in this station.
Engravement data is send to SCADA sy-
stem

38 Assembly-
Connector

4 Delivery system for workpieces to the as-
sembly line for the following production
steps

39 Rejectslide 4 Slide for damaged workpieces

40 Mill 3 The mill processing the workpieces (drill,
mill, cut)

41 HMI 3 HMI for accessing data of and controlling
unit 2

42 FT-Robot 3 “Fertigteil”-Robot for moving workpieces
between the different stations in the unit
2

43 PLC 3 PLC controlling the unit 2

44 ShuttleOutput 3 System for ejecting the workpieces out of
the mill

45 ShuttleInput 3 System for injecting the workpieces into
the mill

46 Measurement-
Station

3 Station for measuring the workpiece after
the processing step

47 SensorLane1 38 Digital sensor on lane one of the workpiece
carrier to check empty position

48 SensorLane2 38 Digital sensor on lane two of the workpiece
carrier to check empty position

49 SensorLane3 38 Digital sensor on lane three of the work-
piece carrier to check empty position

50 FixingL1Left 38 Left side actuator for fixing/securing the
workpiece on the carrier on lane one

51 FixingL1Right 38 Right side actuator for fixing/securing the
workpiece on the carrier on lane one

52 FixingL2Left 38 Left side actuator for fixing/securing the
workpiece on the carrier on lane two

53 FixingL2Right 38 Right side actuator for fixing/securing the
workpiece on the carrier on lane two

54 FixingL3Left 38 Left side actuator for fixing/securing the
workpiece on the carrier on lane three

55 FixingL3Right 38 Right side actuator for fixing/securing the
workpiece on the carrier on lane three

230

A.3 List of Software components

Table A.1: List of used System and Environment elements

id Element PartOf Description

56 Stopper 38 Actuator for stopping an incoming work-
piece carrier

57 WPCRaiser 38 Actuator for lifting/raising the workpiece
from the transport lane to reduce vibrati-
ons

58 EmptyLane-
Sensor

38 Sensor for checking if the assembly line is
empty

A.3 List of Software components

This section gives an overview of the Function Blocks, Programs, and Tasks used
in the example. The original software contains more than 370 Function Blocks,
hierarchically structured and contained in round about 35 entry level Function
Blocks. The root elements for the Unit1, Unit2, and Transport components are
specified as Programs. Each Program contains one or more Function Blocks.
Table A.3 list the Function Blocks that are used to model the software of the
automation system. In contrast to the list of system and environment elements,
contains this list only types and not instances created by the Programs or other
Function Blocks.

Table A.2: List of Function Blocks

id Name Description

1 ShuttleControl Function Block to control a shuttle. This in-
cludes the movement as well as the fixing of
the workpiece on the shuttle.

2 Measurment-
StationCtrl

This block is used to control all aspects of
the measurement. This includes the actua-
tors to fix the workpiece, the sensors to me-
asure the quality of the workpiece, cleanup
the data and providing the data to external
sources.

3 Engravement-
StationCtrl

The engravement process is controlled by this
Function Block. Also the actuators to fix
the workpiece on the station are controlled
by this block.

4 Rejects-SlideCtrl A simple Function Block to abstract the sen-
sors of the rejects slide.

5 MillCtrl The mill is not controlled directly by the PLC
via IEC Code, but runs on a CNC core. Ho-
wever, the interface to this core to exchange
status information an commands is imple-
mented in this function block.

231

Appendix A Turbocharger example

Table A.2: List of Function Blocks

id Name Description

6 Workpiece-DeliveryCtrl This Function Block controls all sensors and
actuators in the workpiece delivery module.
It can be used to check whether workpieces
are available and on which lane they reside.

7 Bufferstation-Ctrl This block manages the buffer station. It
contains look-ahead functionality to either
prepare the buffer for storage or to provide
buffered workpieces for the next processing
step.

8 RT-RobotCtrl Function Block that functions as an interface
to the robots own PLC. The interface prio-
vides commands that are send to the robot
and returns status of each executed process.

9 HFT-RobotCtrl Function Block that functions as an interface
to the robots own PLC. The interface prio-
vides commands that are send to the robot
and returns status of each executed process.

10 FT-RobotCtrl Function Block that functions as an interface
to the robots own PLC. The interface prio-
vides commands that are send to the robot
and returns status of each executed process.

11 HMIData This Function Block is used to update, pre-
pare and provide the necessary data that is
requested from the HMI. It is not used to ac-
tually visualize the data on the HMI.

12 SCADAData This Function Block is used to update, pre-
pare and provide the necessary data that is
requested from the SCADA system.

13 SPCStationCtrl Similar to the reject slide does this block con-
trol the sensors and actuators of the spc sta-
tion.

14 AssemblyConnectorCtrl A Function Block to manage the assembly
connector. The workpiece must be positio-
ned on a carrier. The carrier provides three
positions. The sensors and actuators to con-
trol the carrier in this station are controlled
by this block.

The number of Programs used for a specific automation task is usually solely de-
pendent on the developers and existing automation systems that can be reused.
Also, depending on the size, its modularity, and the used PLC and development
IDE, the functionality of an automation system is either split up into different
Function Blocks and executed by just one program or one program for each
individual step in an production process. The Turbocharger example makes

232

A.3 List of Software components

use of several Programs that are triggered by tasks. Each Program contains a
set of Function Blocks that are composed of further Function Blocks.

Table A.3: List of used Programs

id Name Description

1 MillProgram (U1) Program to control the milling operation for
the Unit1. It uses Function Blocks to control
the shuttles.

2 MainProgram (U1) Main program for the Unit1. Controls the
RejectsSlide, RT-Robot, and the Workpiece-
Delivery. Provides data to the HMI.

3 TransportProgram (T) Main program controlling the different modu-
les in the Transport unit. It includes FB to
control the SPS-Station, BufferStation, Sup-
plyDistribution and more.

4 MeasurementProgram
(T)

The measurement is a standalone program
for the Transport unit. It controls the Mea-
surement station (with its FBs) and the En-
gravementstation.

5 MainProgram (U2) Main program for the Unit2. Controls the
RejectsSlide, RT-Robot, and the Assembly-
Connector. Provides data to the HMI.

6 MillProgram (U2) Program to control the milling operation for
the Unit2 and its surrounding shuttles.

7 MeasurementProgram
(T)

Program to control the Measurementstation
and the Engravementstation.

233

	Abstract
	Zusammenfassung
	Danksagung
	Table of Contents
	Introduction
	Problem Statement
	Contribution
	Overview
	Thesis Outline

	Foundations
	Industrial Automation
	IEC 61131-3
	Fieldbusses and automation networks
	Topologies and network devices
	Automation pyramid and management systems

	Systems Engineering
	CONSENS
	SysML
	SysML4CONSENS

	Performance Modeling and Prediction
	MARTE
	Palladio

	Running Example
	Overview
	CONSENS Models
	Environment
	Unit2 of the turbocharger production system
	AssemblyConnector in detail

	Influence Factors
	Related Work
	Parameter Types
	Primitive Types
	Filesize
	Using Stochastic Parameter: Probability Functions
	Execution Time
	Access Frequency / Arrival Pattern
	Operations

	Applications
	Programs
	Function Blocks
	Functions
	Tasks

	PLC
	CPU & Architecture
	Operating System
	Firmware and IEC Runtime
	IPTraffic

	IO - Fieldbus communication
	Fieldbus Examples
	PROFINET in Detail
	Topologies and Network Devices
	IO Parameter

	Services
	Summary

	Automation Influence Model and Development Process
	Automation Influence Model
	Related Work
	Required Modeling Depth
	Topology Independent and Topology Specific Model
	Hardware Dependent and Independent Load Specifications
	Model Specification

	Development Process
	Related Work
	Proposed Development Process for Modeling Influence Factors

	Summary

	Realization of Modeling and Analysis
	UML Profile for Modeling Influence Factors
	AIM Profile Root Package
	POU Package
	Task Package
	Service Package
	IO Package

	Performance Analysis with Palladio
	Requirements
	Related Work: Performance Prediction Approaches
	Palladio Simulation Models

	Overview of Models and Transformations
	Automationmodel
	Transformations

	Summary

	Evaluation
	Evaluation Process
	Evaluation Context
	Setup of the Performance Prototype

	Evaluation Results
	Discussion of the Results
	Threats to Validity
	Summary

	Conclusion and Summary
	Results and Conclusions
	Benefits
	Future Work

	Bibliography
	List of Figures
	List of Tables
	Turbocharger example
	Changes to the original turbocharger automation system
	List of System- and Environment elements
	List of Software components

