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Abstract
The traffic demand in mobile access networks has grown substantially in
recent years and is expected to continue to do so, both in terms of total
volume and data rate required by individual users. The infrastructure of
mobile access networks has to keep up with this trend and provide the
data rates to satisfy the increasing demands. To achieve this, employing
coordination mechanisms is essential to use the available resources efficiently.
By exploiting recent network softwarization approaches, such coordination
mechanisms can be handled by virtualized Control Applications (CAs) that can
be flexibly positioned in the network.

In my thesis, I explore the problem of placing these CAs appropriately in
the backhaul network of a mobile access network, which I introduce as
Flow processing-aware Control Application Placement Problem (FCAPP). FCAPP
is a challenging placement problem including tight latency, data rate and
processing capacity constraints on the backhaul infrastructure. In particular,
coordination mechanisms require a considerable amount of control informa-
tion and user data to be exchanged between the base stations and to be jointly
processed at the host of a CA. To tackle this, FCAPP considers Data Flow
Groups (DFGs), a concept that ensures the aforementioned joint processing and,
in addition, also allows to express various types of coordination mechanisms.

Over the course of my research, I have considered multiple variations and
several solution approaches for FCAPP to (1) efficiently decide initial CA
placement and (2) to quickly and flexibly adapt placement decisions during
network operation in reaction to traffic load changes. In this thesis, I describe
my investigation results on FCAPP, my developed solution approaches and I
present extensive evaluation results for all of them. Most notably, I present a
fast centralized placement framework including prototype implementation
and a distributed algorithm, which both fulfill the aforementioned goals.
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Zusammenfassung
Der Datenverkehr in mobilen Zugangsnetzen ist in den letzten Jahren erhe-
blich gewachsen, sowohl im Bezug auf das gesamte Datenvolumen, als auch
im Bezug auf die Anforderungen einzelner Nutzer. Um diesen steigenden An-
forderungen gerecht zu werden, muss die Infrastruktur mobiler Zugangsnetze
diesem Trend standhalten und die geforderten Datenraten zur Verfügung
stellen. Damit dies möglich ist, ist es unter anderem essentiell, Koordinations-
mechanismen einzusetzen, die für eine effiziente Nutzung der vorhandenen
Ressourcen sorgen. Durch die Nutzung jüngster Ansätze zur Realisierung
von Netzwerkaspekten durch Software ist es möglich, diese Koordinations-
mechanismen mit Hilfe virtualisierter Kontrollapplikationen, welche flexibel im
Netzwerk positioniert werden können, zu realisieren.

In meiner Arbeit erforsche ich das Problem, diese Kontrollapplikationen
angemessen innerhalb des Backhaul-Netzwerks eines mobilen Zugangsnetzes
zu platzieren. Ich bezeichne dieses Problem als Flow processing-aware Con-
trol Application Placement Problem (FCAPP). FCAPP ist ein anspruchsvolles
Optimierungsproblem mit strikten Latenz-, Datenraten- und Verarbeitungsan-
forderungen für die Backhaul-Infrastruktur. Insbesondere erfordern Koordi-
nationmechanismen, dass eine beträchtliche Menge an Kontrollinformationen
und Benutzerdaten zwischen verschiedenen Basisstationen ausgetauscht und
gemeinsam am Ausführungsort einer Kontrollapplikationen verarbeitet wer-
den. Um dies zu bewältigen betrachtet FCAPP Data Flow Groups (DFGs). Dabei
handelt es sich um ein Konzept, welches die gemeinsame Datenverarbeitung
sicherstellt und darüber hinaus auch verschiedene Arten von Koordinations-
mechanismen ausdrücken kann.

Im Laufe meiner Forschung habe ich mehrere Variationen und verschiedene
Lösungsansätze für FCAPP in Betracht gezogen, um (1) die anfängliche
Platzierung von Kontrollapplikationen effizient zu entscheiden und (2) die
Platzierungsentscheidungen während des Netzbetriebs schnell und flexibel
an die sich ändernde Verkehrslast anzupassen. In dieser Arbeit beschreibe ich
meine Untersuchungsergebnisse zu FCAPP, meine entwickelten Lösungsan-
sätze und präsentiere für jeden von ihnen umfangreiche Evaluierungsergeb-
nisse. Insbesondere stelle ich ein schnelles zentralisiertes Platzierungs-Frame-
work mit Prototyp-Implementierung und einem verteilten Algorithmus vor,
die beide jeweils die oben genannten Ziele erfüllen.
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1
Introduction

1.1 Motivation

Observing the trend from recent years, a big challenge for current and future
wireless access networks is the consistently increasing amount of smart User
Equipment (UE) (smartphones, tablets, etc.) and the exponential growth of
traffic volume that has to be handled by a network’s infrastructure [1, 2, 3]. For
instance, the most recent "Global Mobile Data Traffic Forecast" [3] published
by Cisco in 2017 provides very interesting insights into current and future
developments of these characteristics in mobile access networks. While mobile
networks carried 400 petabytes per month in 2011, this number reached 7.2
exabytes per month at the end of 2016, which represents an 18-fold increase
in the last 5 years. To put these number into perspective, one has to visualize
that the traffic volume of the entire global internet in the year 2000 has been
around one exabyte [1]. This increase is in line with the consistent increase of
UEs in mobile access networks, which grew from 6.5 billion devices in 2012
to 8 billion devices in 2016. At the same time, the average mobile network
downstream speed per UE increased from 0.5 Mbit/s to 6.8 Mbit/s. According
to the study’s predictions, mobile data traffic is further expected to grow to
49 exabytes per month in 2021, while simultaneously the number of UEs is
expected to reach 11.6 billions with an average mobile network downstream
speed of over 20 Mbit/s per UE.

Of course, the infrastructure of mobile access networks has to keep up with
this trend and provide the data rates to satisfy the increasing demands. Mobile
network operators already deploy denser and more heterogeneous cellular
networks to meet these requirements [4]. But because of resulting issues, such
as inter-cell interference, simply using more and more network equipment or
increasing the physical layer capacity by using more spectrum is insufficient.
Additionally, it is necessary to enable efficient usage of the available network
resources by coordination mechanisms [5]. Some of these mechanisms concern
network control, such as Inter-Cell Interference Coordination (ICIC) mecha-
nisms or more generally Software-Defined Networking (SDN) mechanisms,
and come with low-latency requirements. Other mechanisms additionally
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demand high processing capacity and high data rate from the network infra-
structure, e.g. Coordinated Multi-Point (CoMP) transmission and reception.
In total, future wireless access networks are expected to include a vast range
of different coordination mechanisms [6].

But while the scope and nature of these mechanisms is manifold, all of
them induce several data flows in the network and result in considerable data
processing work to be handled, usually under stringent latency and data rate
constraints. These constraints mainly apply to the underlying network, which
transports data between the radio access network and the core backbone
network. This network is called backhaul network (see Section 2.1.1). In
particular, with the increase in traffic handled by the radio access network,
the backhaul network has to support more control information that has to be
exchanged between the Base Stations (BSs) and which has to be processed to
coordinate and schedule wireless transmissions. Enabling this and preventing
the backhaul network from becoming a bottleneck requires efficient and
flexible management of the backhaul network.

Independent of the increasing traffic volume, another trend for future net-
works is the so-called network softwarization, mainly enabled by SDN and
Network Function Virtualization (NFV) [7]. The SDN concept decouples
network control and packet forwarding in a network by moving network
control decisions to a centralized control entity (see Section 2.1.3). Recent
work also includes the idea to apply the SDN concept to wireless coordination
[8, 9, 10, 11], i.e. the control of coordination mechanisms is moved to a con-
troller node. Accordingly, this results in latency and data rate requirements
for the backhaul connection between the controller node and the coordinated
BSs to transport the required control information and in processing require-
ments for the designated controller node for making the required coordination
decisions. In particular, it is essential that the control data of the coordinated
BSs is collected and jointly processed at the same controller node. Moreover,
for coordination mechanisms like CoMP (see Section 2.1.2), it can also be ne-
cessary to forward and process the user data at the controller node. Since user
data is significantly larger in size than the aforementioned control information
in general, this further increases the requirements for the controller node and
the backhaul network.

Meanwhile, the NFV paradigm is about implementing network functions
as software applications and thus decoupling them from dedicated physical
devices (see Section 2.1.4). This concept not only allows to implement network
functions, such as the aforementioned controller nodes, as software-based
Control Applications (CAs), but also to instantiate these CAs in the network
flexibly. On the one hand, this possibility for flexible deployment is a great
opportunity, but on the other hand, it brings the challenge to place these
applications adequately and efficiently, while also considering all relevant
routing requirements. Finding good locations in the network to place CAs is
a non-trivial task; as introduced above it requires taking into account tight
latency, data rate and processing capacity constraints.
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1.2 Contribution

To assist efficient management of future wireless networks, I have decided
to investigate the placement problem described in the previous section,
which I introduce as Flow processing-aware Control Application Placement Prob-
lem (FCAPP). To reduce complexity and to benefit network mechanisms that
combine control and data processing aspects (like CoMP), I claim that co-
locating both network control and data processing in one CA is desirable.
Further, as stated in the previous section, it is not always possible to handle
data flows containing control information (and possibly user data) separately
since this data has to be jointly processed at a CA. To cope with this, I define
Data Flow Groups (DFGs) consisting of one or multiple data flows which de-
mand joint processing at the same CA. The concept of DFGs not only ensures
that all related data is jointly processed but also allows to express various types
of coordination mechanisms as a DFG, such as CoMP transmission/reception
or other ICIC approaches.

As a result, FCAPP combines latency, data rate and processing capacity con-
straints in one placement problem. Due to the flexible DFG concept, FCAPP
can be applied to all types of coordination mechanisms that allow centralized
execution and that can be flexibly instantiated on a host providing the re-
quired hardware resources. Even though my work focuses on coordination
mechanisms as application scenario, DFGs can also be used to express other
types of network mechanisms, which further extends the possible application
field for FCAPP.

While there are related problems which partially consider the constraints
relevant for FCAPP (see Section 2.3), I did not find any research covering the
full extent of FCAPP, which therefore represented an open challenge for future
networks. Moreover, many related problems target long-term placements in
the field of network planning. But this is not sufficient for mobile access
networks where traffic load can change very quickly. In a modern dense and
crowded network, many data flows appear and expire every second during
high load periods. Further, flash-crowd effects can suddenly cause drastic load
changes. Therefore, placing CAs that execute coordination mechanisms in
mobile wireless access networks generally requires flexible operation on shorter
timescales down to seconds and possibly less – yet another challenging task.

All of these challenges have led me to focus my research on the question
whether or not it is feasible to

(1) efficiently decide CA placement considering all latency, data rate and
processing capacity constraints and

(2) doing this within the order of seconds to milliseconds to flexibly adapt
placement decisions during network operation in reaction to traffic load
changes to maintain near-optimal network performance.

During the course of my research, I have worked with several variations
of FCAPP and developed efficient solution approaches for all of them. I
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formulated optimization models, which mainly serve as reference models in
the context of my work, as well as various heuristic algorithms, each bringing
a special merit depending on the application scenario’s concrete use case
requirements. As a key result, I propose a heuristic framework that is able
to place and flexibly reassign CAs fast and efficiently. Further, I present a
distributed algorithm that fulfills the same tasks without the assumption of
having all network information centrally available. At last, I also provide a
proof of concept prototype implementation. In this thesis, I describe all of
my investigation results on FCAPP, my developed solution approaches, and I
present extensive evaluation results for all of them.

The results of my research have been published in several venues. The
following list gives an overview of the publications that have been published
and submitted over the course of my research:

Conference papers:

• S. Auroux and H. Karl. Flow processing-aware Controller Placement
in Wireless DenseNets. In Proceedings of the 25th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC).
IEEE, 2014

• S. Auroux and H. Karl. Efficient Flow Processing-aware Controller
Placement in Future Wireless Networks. In Proceedings of IEEE Wireless
Communications and Networking Conference (WCNC). IEEE, 2015

• S. Auroux, M. Dräxler, A. Morelli, and V. Mancuso. Dynamic Network
Reconfiguration in Wireless DenseNets with the CROWD SDN Architec-
ture. In European Conference on Networks and Communications (EuCNC),
2015

• S. Auroux and H. Karl. Flexible reassignment of flow processing-aware
controllers in future wireless networks. In Proceedings of the 26th IEEE In-
ternational Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC). IEEE, 2015

• S. Auroux, D. Parruca, and H. Karl. Joint real-time scheduling and
interference coordination for wireless factory automation. In Proceedings
of the 27th IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications (PIMRC). IEEE, 2016

• S. Auroux, S. Scholz, and H. Karl. Assessing Genetic Algorithms for
Placing Flow Processing-aware Control Applications. In Proceedings of
European Wireless (EW), 2017

• I. Aktas, J. Ansari, S. Auroux, D. Parruca, M. Guirao, and B. Holfeld.
A Coordination Architecture for Wireless Industrial Automation. In
Proceedings of European Wireless (EW), 2017
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Submitted papers:

• H. Afifi, S. Auroux, and H. Karl. Network Function Virtualization for
Wireless Acoustic Sensor Networks: An interference-aware placement
and routing approach. In Submitted to IEEE International Conference on
Computer Communications (INFOCOM), 2018

• H. Afifi, S. Auroux, and H. Karl. MARVELO: Wireless Virtual Network
Embedding for Overlay Graphs with Loops. In Submitted to IEEE Wireless
Communications and Networking Conference (WCNC), 2018

• S. Auroux and H. Karl. Distributed Placement of Virtualized Control
Applications in Mobile Backhaul Networks. In Submitted to IEEE Wireless
Communications and Networking Conference (WCNC), 2018

1.3 Structure of the Thesis

The remainder of my thesis is structured as follows:

Chapter 2: Technical Background and Related Work
In this chapter, I explain the technical background required for the following
chapters and elaborate on related work. I focus on mobile access networks,
networking concepts and algorithmic concepts.

Chapter 3: Flow Processing-aware Control Application Placement with
Equal-Share Scheduling [12, 13]
This chapter contains the first formalization of FCAPP based on equal-share
processing scheduling. I present an optimization model as reference solution,
use it to prove FCAPP to be NP-hard, and then present a multi-layer greedy
heuristic called GreedyFCAPA to solve FCAPP fast and efficiently.

Chapter 4: Assessing Genetic Algorithms for Flow Processing-aware Con-
trol Application Placement [17]
After presenting a fast heuristic algorithm for FCAPP in Chapter 3, I assess
whether the Genetic Algorithm concept is applicable to create heuristic solu-
tions for FCAPP with improved solution quality compared to GreedyFCAPA.
I present three Genetic Algorithm (GA) approaches for FCAPP, evaluate them
and compare them to the results obtained by GreedyFCAPA.

Chapter 5: Flow Processing-aware Control Application Placement with
Proportional-Share Scheduling [21]
In this chapter, I investigate FCAPP with proportional-share scheduling as
a more elaborate processing scheduling approach. Again, I present an op-
timization model as reference solution and present a modified version of
GreedyFCAPA to obtain solutions fast and efficiently with near optimal re-
sults. The solutions are evaluated and compared to the results of the variation
with equal-share scheduling from Chapter 3 to assess the influence of the
modified scheduling approach.
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Chapter 6: Flexibly Reassigning Control Applications [14, 15]
After considering placement for fixed network states in the previous chapters,
I investigate flexible reassignment of CA placement decisions in reaction to
changing network load. I elaborate on basic reassignment considerations
and then present a flexible placement framework called FlexCAPF, which is
based on GreedyFCAPA and is able to place and flexibly reassign CAs during
network operation. FlexCAPF is evaluated by means of dynamic network
simulation with special regard to the gains of reassignment that takes into
account a previous placement.

Chapter 7: Distributed Flow Processing-aware Control Application Place-
ment [21]
So far, the solutions approaches presented all assumed centralized execution.
In this chapter, I drop this assumption and present a distributed algorithm for
FCAPP called DistCAPA. Just like FlexCAPF, DistCAPA places and flexibly
reassigns CAs during network operation. DistCAPA is evaluated with sim-
ulations of static and dynamic networks and its results are compared to the
ones obtained by FlexCAPF.

Chapter 8: Flow Processing-aware Control Application Placement with
Backbone Extension
The network model used in the previous chapters assumed a very simplified
connection of the backhaul network to the core backbone network of the
operator. In this chapter, I correct this shortcoming and present an extended
variation of FCAPP that takes the backbone connection into account appropri-
ately. I describe the extended optimization model and a modified version of
FlexCAPF, evaluate both of them and compare them to my previous results
to analyze the effects of the modification.

Chapter 9: CoMP-based Evaluation of Flow Processing-aware Control Ap-
plication Placement
To broaden my assessment of FCAPP, I study a use case based on Coordi-
nated Multi-Point (CoMP) transmission and reception, which represents a
more challenging evaluation scenario than the generic evaluation scenario
used in the preceding chapters. I first elaborate on the CoMP evaluation
scenario and then present and discuss the evaluation results obtained from it.

Chapter 10: SDN Testbed-based Evaluation of Flow Processing-aware Con-
trol Application Placement
In this chapter, I show how FlexCAPF can be implemented on top of an
SDN-based emulated backhaul network as a proof of concept. I describe the
architecture and implementation of the underlying testbed setup and then
discuss the emulation results obtained from it.

Chapter 11: Conclusion and Future Research Directions
In this final chapter, I first summarize and conclude the work presented in
previous chapters. Finally, I give an overview of possible further research
directions for FCAPP.
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2
Technical Background and
Related Work
This chapter contains necessary technical background for this thesis as well as
an overview of related work for FCAPP. First, I give an overview of relevant
networking concepts in Section 2.1. Then, I explain the algorithmic concepts
that I applied in this thesis in Section 2.2. Last, I present related work for
FCAPP in Section 2.3.

2.1 Networking Concepts

In this section, I first elaborate on the hierarchical structure of mobile access
networks. Then, I briefly discuss wireless coordination with CoMP techniques
as an example. Finally, I summarize the concept of SDN, which represents
an important background for my work and will be essential for Chapter 10,
and the concept of NFV that my work builds on by considering virtualized
Control Applications (CAs).

2.1.1 Mobile Access Networks

For my work, I consider the hierarchical structure of a mobile access network
that is commonly used since the introduction of the 3GPP LTE technology
[22, 23]. This hierarchical structure consists of

• Radio Access Network (RAN),
• Backhaul Network and
• Backbone Network.

The RAN comprises all wireless connections at the edge of the entire hierar-
chical network. It consists of the union of all the subnetworks, each of which
includes one Base Station (BS) and (usually) several User Equipments (UEs),
which are wirelessly connected to that BS. Within the scope of my work, the
RAN will not be directly considered, but it is still of high implicit importance
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since it represents the origin of the data flows which are injected into the
backhaul network.

The backhaul network is the part of the mobile access network that interconnects
the RAN and the backbone network. The backhaul network has two crucial
tasks:

1. routing user data between multiple RAN subnetworks or between the
RAN and the backbone network and

2. exchanging control information between the BSs.

As described in Section 1.1, both tasks are of special interest for my work
because of the additional control information and possibly user data for
wireless coordination approaches that is injected into the backhaul network.

In the past, backhaul networks have been deployed using copper cables, but
nowadays, backhaul networks are mostly implemented using optical fiber tech-
nologies or wireless technologies, e.g. point-to-point or point-to-multipoint
over high-capacity radio links [24]. In particular, optical technology is of-
ten considered as the backhaul technology to meet future capacity demands
[25, 26]. While my research is independent of the given backhaul technology,
I will thus assume optical backhaul networks for my evaluation scenarios.

At last, the backbone network, which is also often called core network, is the
topologically central part of a mobile access network. The backbone network
is responsible for functions not related to the radio access but needed for pro-
viding a complete mobile-broadband network, e.g. like mobility management,
authentication, charging functionality, and setup of end-to-end connections. It
further represents the gateway to external networks [22, 27]. In particular, the
backbone network can be seen as the gateway to the global internet [28]. For
the major part of my research, the backbone network plays a subordinate role,
but it will be targeted in Chapter 8.

Figure 2.1 provides an illustration of my considered hierarchical structure of
a mobile access network.

Radio Access Network Backhaul Network Backbone Network

Figure 2.1: Hierarchical structure of mobile access networks
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2.1.2 Wireless Coordination

Wireless coordination is a broad term to describe a vast range of mecha-
nisms that coordinate the wireless resources of a wireless access network to
efficiently use resources and to improve performance. Commonly, wireless
coordination mechanisms require coordination between multiple BSs and
therefore exchange control information over the backhaul network. Wireless
coordination is a well investigated field and a large variety of different ap-
proaches have been presented in the past [29, 30]. For the scope of my thesis,
I will only give a short overview of the CoMP approach.

The Coordinated Multi-Point (CoMP) concept describes a range of different
techniques to enable coordinated transmission or reception over multiple
BSs to/from a single UE to better exploit the available wireless spectrum.
This is achieved by serving or receiving from a UE cooperatively by a set
of BSs instead of just one BS. It is considered a powerful technology to
reduce interference and increase data rates for cellular radio networks such as
LTE-Advanced [31]. In addition, CoMP techniques can also enhance effective
coverage area to accommodate cell-edge users by utilizing interference signals
from different transmission points.

As coordination information and user data have to be exchanged among the
coordinated BSs, CoMP transmission or reception requires high data rates
(up to multiple Gbit/s per BSs) and low latency (down to 1 ms round trip
time between the BSs) from the backhaul network [32]. There is a number
of different techniques regarded as CoMP [33], achieving different gains and
having different requirements for the backhaul network. But following the
3GPP LTE-Advanced terminology [34], CoMP techniques can be grouped into
two main categories on which I will focus in my thesis: Joint Processing (JP)
and Joint Scheduling (JS)/Joint Beamforming (JB).

JP is the most complex but also most powerful CoMP technique, bringing an
expected improvement to the average cell throughput of up to 60% [35]. For
the downlink case, JP brings two options: either a UE receives a joint trans-
mission, i.e. multiple BSs send on the same physical resources simultaneously
to create constructive interference at the UE, or the UE dynamically selects
the BS with the best signal quality for the current data transmission. In the
uplink case, the data transmitted by a UE is received by all cooperating BSs
and is then sent from each to a central entity where the received versions of
the UE data are jointly decoded. For my considered scenario, this particularly
means that for JP the entire UE data has to be forwarded over the backhaul
network to and processed at a CA, which requires a considerable amount of
backhaul network resources.

Compared to JP, JS/JB is less complex and has fewer requirements but also
brings a lower expected gain. In the downlink, UEs receive data transmissions
only from one BS but scheduling and beamforming decisions are coordinated
among the BSs. In the uplink, UEs served by different coordinated BSs are
scheduled such that interference is reduced. In contrast to JP, it is only
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necessary to share control information but not the entire UE data over the
backhaul network.

Overall, the JP schemes with joint transmission and reception provide a more
efficient utilization of the wireless resources compared to JS/JB, but also
require significantly more resources from the backhaul network. Regarding
the context of my thesis, CoMP partially motivates the definition of DFGs in
Section 3.2 and will be an important example scenario in Chapter 9.

2.1.3 Software Defined Networking

The Software-Defined Networking (SDN) concept constitutes an important
background for my work and is also the base for the prototype implemen-
tation presented in Chapter 10. As briefly indicated in Section 1.1, the SDN
concept decouples network control and packet forwarding in a network by
moving network control decisions to a centralized control entity, the so-called
SDN controller. Thus, the SDN controller steers how traffic is routed within
a network while the actual forwarding is executed by the SDN-enabled net-
work devices, i.e. switches. This separation allows network administrators to
directly and dynamically program the network’s behavior via the centralized
SDN controller while the physical network infrastructure is provided as an
abstracted view for SDN applications and network services.

The Open Networking Foundation (ONF) is a non-profit, user-driven organi-
zation dedicated to accelerating the adoption of SDN and NFV and describes
the different components of the SDN architecture, illustrated in Figure 2.2, as
follows [36]:

ONF WHITE PAPER  
Software-Defined Networking: The New Norm for Networks

7 of 12© Open Networking Foundation. All rights reserved.

Introducing Software-Defined Networking 

Software Defined Networking (SDN) is an emerging network architecture 

where network control is decoupled from forwarding and is directly 

programmable. This migration of control, formerly tightly bound in individual 

network devices, into accessible computing devices enables the underlying 

infrastructure to be abstracted for applications and network services, which 

can treat the network as a logical or virtual entity. 

Figure 1 depicts a logical view of the SDN architecture. Network intelligence 

is (logically) centralized in software-based SDN controllers, which maintain 

a global view of the network. As a result, the network appears to the 

applications and policy engines as a single, logical switch. With SDN, 

enterprises and carriers gain vendor-independent control over the entire 

network from a single logical point, which greatly simplifies the network 

design and operation. SDN also greatly simplifies the network devices 

themselves, since they no longer need to understand and process 

thousands of protocol standards but merely accept instructions from the 

SDN controllers.

APPLICATION LAYER

CONTROL LAYER

INFRASTRUCTURE LAYER

SDN
Control
Software

Network Device

Network Device Network Device

Network Device Network Device

Business Applications

Network Services

Control Data Plane interface
(e.g., OpenFlow)

APIAPIAPI

Perhaps most importantly, network operators and administrators can 

programmatically configure this simplified network abstraction rather than 

having to hand-code tens of thousands of lines of configuration scattered 

among thousands of devices. In addition, leveraging the SDN controller’s 

centralized intelligence, IT can alter network behavior in real-time and 

deploy new applications and network services in a matter of hours or days, 

FIGURE 1 

Software-Defined Network 

Architecture

Figure 2.2: Software-defined networking architecture (from [37])
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• SDN Applications are programs that explicitly, directly, and programmat-
ically communicate their network requirements and desired network
behavior to the SDN Controller via Application Programming Inter-
faces (APIs). In addition, they may consume an abstracted view of the
network for their internal decision-making purposes.

• The SDN Controller is the logically centralized entity responsible for
translating the requirements from SDN Applications down to network
devices and providing SDN Applications with an abstract view of the
network.

• An SDN-enabled network device (e.g. a switch) exposes visibility and
uncontended control over its advertised capabilities via the control plane
interface. The logical representation may encompass all or a subset of
the physical substrate resources.

The OpenFlow protocol [38], developed at Stanford in 2008 and later standard-
ized by the ONF, is a commonly used protocol for communication between the
SDN controller and network devices. It allows direct access to and manipula-
tion of the forwarding plane of network devices. Regarding SDN controllers, a
larger range of software platforms, mostly open-source, have been developed
since the emergence of SDN. One of them is Ryu [39], which is utilized in the
FCAPP testbed setup in Chapter 10.

2.1.4 Network Function Virtualization

Mobile access networks or other telecommunication networks typically offer
a vast range of network services, such as voice over IP or file sharing. These
network services are usually composed of several network functions, like
firewalls, load balancers, Network Address Translators (NATs), Deep Packet
Inspectors (DPIs) and many others. In current networks, network functions
are often provided by physical middle-boxes implemented on dedicated hard-
ware platforms. However, modern networks often require more diverse and
new services, potentially with only short lifecycles [40]. Satisfying these de-
mands would require network operators to continuously invest into expensive
physical equipment.

The Network Function Virtualization (NFV) concept [41], proposed by mul-
tiple leading telecommunications service providers in 2012 [42], attempts to
solve this problem. The key idea of NFV is to decouple network functions
that were previously deployed as middle-boxes on dedicated hardware and to
realize them as Virtual Network Functions (VNFs) instead. As a result, virtual
instances of the network functions can be flexibly instantiated, terminated and
relocated in the network, independent from the underlying infrastructure and
without dedicated hardware. Instead, many network equipment types can be
consolidated into large-scale servers or data centers.

To pursue the idea of NFV, an industry specification group for NFV was
formed within the European Telecommunications Standards Institute (ETSI).
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Subsequently, in 2013, the group released a document including an NFV
architectural framework [43] to enable dynamic construction and management
of VNF instances. The three key components of the framework, illustrated in
Figure 2.3, can be described as follows [43, 44]:

Virtualized Network 
Functions (VNFs)

VNF

NFV Infrastructure (NFVI)

NFV Management and Orchestration (NFV MANO)

VNFVNF

Virtual 
Compute

Virtual 
Storage

Virtual 
Network

Virtualization LayerVirtualization layer

Hardware resources

Compute Storage Network

VNFVNFVNF

VNFVNFVNF

...
...

...

...

Figure 2.3: NFV architectural framework

• The Network Function Virtualization Infrastructure (NFVI) provides the
physical and virtual resources required to support the execution of
the VNFs. It includes commercial off-the-shelf hardware, accelerator
components where necessary, and a software layer which virtualizes
and abstracts the underlying hardware.

• The Virtual Network Functions (VNFs) represent a collection of software
implementations of network functions that are capable of running over
the NFVI.

• The NFV Management and Orchestration (MANO) covers lifecycle man-
agement of VNFs and the orchestration and lifecycle management of
physical and/or virtual resources that support infrastructure virtualiza-
tion.

The NFV concept constitutes a fundamental background for my work. As I
have described in Chapter 1, my research targets the placement of virtualized
CAs, which constitute a special type of VNFs. Following this, my work
can be allocated in the domain of NFV MANO and my presented solution
approaches can be considered as VNF placement approaches for all types of
VNFs that fit into my view of CAs (see Section 3.1).

2.2 Algorithmic Concepts

In this section, I provide short overviews of the concepts of genetic and
distributed algorithms, which I respectively utilize in Chapter 4 and Chapter 7.
To illustrate why I consider these concepts, I will also provide some examples
of work employing these concepts to problems related to FCAPP.
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2.2.1 Genetic Algorithms

Genetic Algorithms (GAs) are a particular type of heuristic algorithms based
on evolutionary principles and genetic operators. They are typically applied
to discrete optimization problems and are known to provide good heuristic
results [45]. In the past, GAs have been successfully applied to solve complex
problems in various areas. Examples range from well-known problems such
as the Travelling Salesman Problem (TSP) [46] over image processing [47] up
to navigating robots autonomously [48].

The idea of algorithms inspired by evolutionary principles has been around at
least since Turing [45], but the term Genetic Algorithm was coined by Holland
in 1973 [49]. GAs operate on a multiset of individuals, called population, usually
of constant size µ. Each individual represents a solution to the problem
to solve. To evaluate the quality of a solution, a so-called fitness function is
defined. As the inner workings of the genetic operators strongly depend on it,
the choice of the representation (e.g. a string of numbers, permutation) for the
individuals is critical. Their representation is often called DNA, consisting of
several building blocks called genes.

During runtime, a GA creates new individuals using genetic operators and
selects survivors based on the fitness function. Typically, a GA chooses
probabilistically between crossover operators, i.e. creating an individual by
taking genes from two selected individuals, and mutation operators, i.e. creating
a new individual by modifying an existing one. If the problem to solve is too
complex for a GA directly, so-called hybrid GAs are often used. They leverage
other heuristic algorithms (e.g. greedy algorithms) to make decisions that the
GA itself would not be able to make efficiently [50].

In total, a typical GA consists of the following steps [45]:

1) Initialization: The initial population is usually created randomly, leading
to individuals with typically rather poor fitness values, but ensuring a
high genetic diversity. Diversity is always important as low diversity
can easily result in premature convergence far away from an optimal
solution.

2) Parent selection: Individuals are chosen as parents for reproduction, based
on their fitness value.

3) Reproduction: Parents reproduce using genetic operators, resulting in λ
children.

4) Fitness evaluation: The newly created children need to be evaluated using
a problem-dependent fitness function.

5) Survivor selection: The new generation of individuals is chosen by picking
µ individuals from the parent generation and its offspring.

6) Termination: The GA repeats steps 2–5 until either a sufficiently good
solution has been found or when some other termination criteria are met
(e.g. the best individual’s fitness did not improve for a certain number
of generations).
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As an example for work applying GAs to placement tasks in the networking
domain, Xhafa et al. [51] use a GA approach to place routers within a Wireless
Mesh Network (WMN). They experiment with several mutation operators
and find that their GA approach computes router placements efficiently while
almost always achieving full connectivity. The authors of [52] present a GA-
based solution to determine the best sensor node placement for a given WMN.
They show that their algorithm places sensor nodes better than random
placement strategies in a variety of scenarios. However, the WMN scenario
differs from mine significantly. A problem more akin to FCAPP is the Virtual
Network Embedding (VNE) problem, which deals with embedding virtual
networks in a physical substrate network [53]. Mi et. al [54] propose two GA
approaches for VNE and compare them with other state of the art approaches
for solving VNE. They report that the GA approaches outperform the other
approaches in all considered metrics. Even though the VNE scenario misses
several aspects that are relevant for solving FCAPP, most importantly the
consideration of individual data flows (or DFGs), these results indicate that it
could be worth to consider GAs for solving FCAPP.

2.2.2 Distributed Algorithms

Distributed algorithms [55, 56] are algorithms that are designed to run on
distributed systems, i.e. a consortium of separated but interconnected devices
(e.g. computers or routers). The devices of a distributed system are commonly
called nodes and aim to achieve a common goal by executing a distributed
algorithm. The key difference compared to a centralized algorithm is the
unavailability of the entire system’s state during execution. Each node is
only aware of its own local state and any additional information needs to be
obtained via communication with other nodes from the system.

Distributed algorithms are used for various problems and in various applica-
tion areas, including telecommunications or wireless sensor networks [57, 58].
Standard problems solved by distributed algorithms include leader election,
consensus, distributed search, spanning tree generation, mutual exclusion,
and resource allocation [55].

Developing a distributed algorithm brings several issues. One problem often
referred to is that there is no certainty about the validity of received informa-
tion since the state of the sending node could already have changed once the
information is received. Another common problem is the potential hetero-
geneity of the nodes. Significant differences in processing power at different
nodes can, for example, result in an unpredictable behavior of a distributed
algorithm without additional synchronization effort. There are many further
possible issues, often related to node synchronization problems or unreliable
communication links. Nonetheless, it often makes sense to employ distributed
algorithms when it is very difficult or even impossible to obtain a system’s
entire state as required for centralized approaches.
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Regarding the application of distributed algorithms to problems related to
FCAPP, one close match is the family of Facility Location Problem (FLP)
variations [59], a domain where distributed algorithms are widely employed.
The authors of [60] present a distributed algorithm for uncapacitated FLP
that is inspired by a centralized greedy algorithm and that iteratively selects
facilities with best cost efficiency. They prove its correctness and also derive
an approximation ratio. Laoutaris et al. [61] more specifically consider the
uncapacitated FLP in the context of large-scale networks. The authors propose
a partially distributed algorithm that is based on iterative locally centralized
optimization on subgraphs. The authors conclude that their approach pro-
vides good scalability without serious performance sacrifices compared to
centralized optimal solutions. Finally, Keller et al. [62] look at the capacitated
FLP in the context of distributed cloud deployment. Their presented dis-
tributed algorithm is based on a centralized greedy algorithm and optimized
for minimum latency. The algorithm is designed so that all nodes that are
still missing a facility are searching for one that is ready to accept them. The
authors report promising results and good solution qualities but indicate that
finding a meaningful approximation guarantee is very hard. Even though the
work by Keller et al. can partially be applied to FCAPP (as I will elaborate
in Chapter 7), FLP still misses many aspects of FCAPP. In particular, the
FLP is limited to assigning nodes to facilities and thus misses, for instance,
the constraints for processing of individual data flows (or DFGs) included in
FCAPP.

2.3 Related Work

FCAPP shares properties with various types of optimization problems. In this
section, I will focus on the most relevant ones for my work: VNF placement,
Virtual Machine (VM) allocation and SDN controller placement. Hereafter, I
briefly present each problem, describe their connection to FCAPP, and give
an overview of related work from each field.

2.3.1 Virtual Network Function Placement

The VNF placement problem is about placing VNFs within suitable infras-
tructures while also allocating the required resources. By this definition, the
umbrella term VNF placement also comprises FCAPP as I already stated in
Section 2.1.4. But in contrast to FCAPP, the work commonly associated with
VNF placement considers the placement of network services composed of
multiple VNFs with certain interdependencies, so-called VNF service chains,
and is very akin to the VNE problem [63].

For example, Moens et al. [64] formulate an optimization model for VNF place-
ment aiming to allocate a service chain onto the physical network minimizing
the number of servers used. The authors of [65] propose an optimization
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model to create chains of VNFs in operator networks and to deploy these
chained VNFs based on requirements of the operator. Savi et al. [66] describe
an approach for placing simple chains of VNFs that takes processing costs on
network nodes into account. The authors of [67] propose a delay-aware solu-
tion for VNF scheduling and resource allocation for services. Finally, Xia et al.
[68] propose a greedy heuristic to place and chain VNFs in a computationally
efficient way.

While most available work on VNF placement deals with offline placement
without considering changing demands, a few authors have also published
work on VNF reassignment or automated scaling of VNFs and services. For in-
stance, Ghaznavi et al. [69] describe a heuristic algorithm for elastic placement
and reassignment of VNFs in response to on-demand workload that targets to
minimize operational costs in the network. Dräxler et al. [70] propose a fully
automated approach for jointly scaling and placing virtual network services.
Regarding resource consideration, their approach comes very close to FCAPP
by considering data rate, latency and detailed processing capacity constraints.

But naturally, the work on VNF placement does not incorporate the control
aspect that FCAPP adopts from SDN. Also, most importantly, the aspect of
joint data processing that is inherent to FCAPP through the concept of DFGs
is non-existent in the VNF placement domain.

2.3.2 Virtual Machine Allocation

Another important field of related work is the VM allocation problem that
tackles the placement of VMs on physical hosts while taking into account
quality of service guarantees and the costs resulting from using the hosts
[71]. Several authors have explored VM placement approaches as a solution
to overcome oversubscription and improve latency within modern data center
networks. Meng et al. [72] describe a traffic-aware VM placement problem to
minimize communication costs between different VMs and propose a two-tier
approximation algorithm to efficiently solve it. The authors of [73] introduce a
network-aware orchestration layer for the discovery of related VMs with dense
communication patters in order to collocate them. Alicherry et al. [74] propose
a network-aware algorithm for allocating VMs in distributed cloud systems.
They aim to minimize the latency between VMs allocated for a user request.
Similarly, the authors of [75] describe a distributed approach optimized for
response time and quick processing of user requests.

There is also a large variety of VM allocation work that considers autoscaling
and reoptimization based on changed system load. For instance, Sedaghat
et al. [76] describe an automated solution for adjusting both number and
size of VMs in reaction to changing system load. Xiao et al. [77] present a
greedy-based approach that employs simple load prediction to migrate VMs
from hot spots to low-load areas.

16



2.3 Related Work

Generally, the work on VM allocation has a lot of differences to FCAPP. First
of all, most of the work within this field is tailored towards either optimization
latency, which is only one aspect of FCAPP, or operational cost, which is not
targeted by FCAPP. Further, similar to VNF placement, VM allocation work
lacks network control aspects and detailed consideration of processing costs,
which is mostly limited by the processing capacity required for hosting VMs.
In particular, joint data processing as needed for my DFGs is completely
missing in this domain.

2.3.3 SDN Controller Placement

Last but not least, I consider SDN controller placement as an important
field of related work for FCAPP, as it features the same control aspects that
are also included in FCAPP. The SDN controller placement problem has
been introduced by Heller et al. [78], who examine the trade-offs between
minimizing the maximum latency and the average latency in various network
topologies. Other work focuses on resilience and reliability of the network
[79, 80]. The authors of [79] try to optimize the resilience of the network by
designing a novel metric, taking cascading failure analysis into account. Hu et
al. [80] focus on network reliability instead and try to maximize the expected
percentage of valid control paths with their controller placement models.
The authors propose multiple heuristic algorithms, evaluate them using real
Internet Service Provider (ISP) topologies and report close to optimal results
with a heuristic algorithm based on simulated annealing.

Going one step further, Bari et al. [81] propose an SDN controller placement
framework with periodic controller reassignment to optimize the average flow
set-up time in a network and present a heuristic algorithm based on simulated
annealing. Their evaluation results show that controller reassignment yields
lower flow setup time and minimal communication overhead compared to
static placements without reassignment. Dixit et al. [82] propose an elastic
distributed controller architecture that dynamically adapts the number of
controllers according to the current network load and also automatically
balances the traffic load by migrating switches from overloaded controllers
to lightly-loaded ones. Their evaluation demonstrates that their approach
significantly reduces response times during high load periods.

But apart from the network control aspects, SDN controller placement work
lacks many aspects of FCAPP such as data rate and processing capacity
constraints for data flows and the resulting constraints demanded from the
network elements. In general, SDN controller placement work also differs
from FCAPP in terms of optimization goals as it commonly focuses on either
latency or resilience/reliability. As for VM allocation above, one of these
objectives is only one of multiple aspects of FCAPP and the other one is not
particularly targeted.
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2.3.4 Conclusion

In summary, none of the presented research fields fully covers the extent of
FCAPP. Specifically, the aspect of joint data processing that I introduce via
DFGs is completely missing. Of course, there are fields where such aspects
appear, e.g. convergecast in Wireless Sensor Networks (WSNs) [83, 84], but
none of those is further related to FCAPP. Additionally, all the fields differ
in other aspects as well. The research on SDN controller placement does not
consider data rate and data processing aspects, while the research on VM and
VNF placement disregards control assignments and (partially) data processing
aspects, all of which I combine with my work on FCAPP.
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3
Flow Processing-aware Control
Application Placement with
Equal-Share Scheduling

In this chapter, I introduce FCAPP and present my first approaches to forma-
lizing and solving it. For this first formulation of FCAPP, I assume equal-share
processing scheduling (which will be explained in Section 3.2) because it is a
natural and easy to implement way to distribute processing capacity among
multiple entities.

After describing the target control hierarchy for FCAPP in Section 3.1 and
giving the problem statement in Section 3.2, I formulate a corresponding opti-
mization model in Section 3.3. Next, I prove the problem’s complexity based
on this formulation in Section 3.4 and I present a multi-layer greedy heuristic
in Section 3.5. At last, I evaluate both solution approaches in Section 3.6.

3.1 Control Hierarchy

Choosing a good control hierarchy is essential for efficient network control.
A flat, one-tier hierarchy would be the most simple choice, but in turn, a flat
hierarchy requires a lot of communication overhead to distribute information
among all control entities. A two-tier hierarchy is more complex, but an
additional tier on top of the lower tier is said to allow better aggregation
of network information and also to reduce signaling overhead [11, 85]. Of
course, this idea can be extended to employing more than two tiers and thus
aggregating information on multiple levels [86].

Which type of control hierarchy performs better in practice generally depends
on the underlying network and also on the given use case; determining the
best possible hierarchy based on a specific scenario is not within the scope
of my work. However, using a two-tier hierarchy allows to include a one-tier
hierarchy as a special case, which does not work the other way around. Further,
extending a two-tier hierarchy by additional coordination tiers is conceptually
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easy, for example by using recursive design [86]. Therefore, FCAPP considers
the following two-tier hierarchical structure of Control Applications (CAs):

• Local Control Applications (LCAs) and
• Regional Control Applications (RCAs).

The LCAs typically process data, operate on a local scope and on short time
scales. The RCAs operate on a broader scope and coordinate the LCAs. This
enables the RCAs to compensate for sub-optimal choices which may be owing
to the myopic view of the LCAs. Both LCAs and RCAs are seen as CAs
acting as functions in the sense of NFV. Therefore, I assume that LCAs
and RCAs can be flexibly instantiated or terminated on network equipment
that fulfills the necessary hardware requirements, i.e. sufficient memory and
processing capacity. It is important to note that if it is desired to omit regional
coordination, a one-tier hierarchy can also be expressed by simply setting all
RCA requirements to zero (processing, data rate) or infinity (latency), which
will be done in Chapter 7.

By way of illustration, Figure 3.1 shows a typical FCAPP scenario and a
possible control structure with one RCA and two LCAs.

LCA RCA LCA

Figure 3.1: Typical FCAPP scenario

3.2 Problem Statement

FCAPP is designed to place the control hierarchy of CAs described above into
a given network and considers data processing constraints as motivated in
Section 1.1 – in addition to the network constraints usually associated with
network control.

I consider a given backhaul network of a wireless access network as a graph
G = (V, E) with nodes V, i.e. BSs or switches, and undirected edges E,
representing the backhaul links of the network. I assume that only certain
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nodes fulfill the hardware requirements for hosting a CA, denoted by C ⊆ V.
Every such potential host c ∈ C has a processing power of pnode(c) FLOPS and
each link (u, v) ∈ E has a maximum data rate of bcap(u, v) bit/s and a latency
of lcap(u, v) seconds. The latency of a link is assumed to be independent of
the network load. In particular, possible queuing delays are ignored.

A solution for FCAPP requires a complete control structure, i.e. each node v ∈ V
is required to be controlled by at least one LCA (a node can be controlled
by more than one LCA if needed for optimal network performance) and
each LCA is required to be coordinated by exactly one RCA. To process
the exchanged control information, being the LCA of a node or the RCA
of an LCA requires pLCA or pRCA operations per control information packet
exchanged with a controlled node or a coordinated LCA, respectively. In this
case, the routing path between a node and its LCA needs to have a round
trip latency of at most lLCA seconds, including the processing delay, and a
minimum data rate of bLCA bit/s. Similarly, a round trip latency of at most
lRCA seconds and a data rate of at least bRCA bit/s are required for the routing
path from an LCA to its RCA.

Furthermore, I consider a set F of Data Flow Groups (DFGs). Each DFG consists
of one or multiple (to encompass scenarios like CoMP) data flows, each
entering the backhaul network at a node from the set of nodes V. Multiple data
flows being part of one DFG originate from different network nodes, but all
of them demand joint processing at the same LCA. The set of nodes that each
DFG is originating from is denoted by the connection matrix W ∈ {0, 1}|F|×|V|.
Every DFG x ∈ F requires pflow(x) operations per packet to be executed by
the LCA by which it is processed. Further, the routing paths between the LCA
and the nodes from which the DFG is originating need to provide a maximum
round trip latency lflow(x) seconds and a minimum data rate of bflow(x) bit/s.
For simplification, I have decided to consider the full round trip for all DFGs,
so that this model fully incorporates request and response traffic.

A DFG x ∈ F is said to be satisfied by an LCA c ∈ C if and only if

(1) c controls all nodes v with Wx,v = 1 and
(2) the routing paths from all nodes v with Wx,v = 1 to c have sufficient

resources to each provide a data rate of bflow(x) and a round trip latency
lflow(x).

It is important to recall that the round trip latency in the network also includes
the time needed for processing x at c. Therefore, to realize a round trip latency
lflow(x), a sufficient amount of processing capacity from c has to be allocated
for x to handle the required pflow(x) operations per packet in time, in addition
to the link delays. It also has to be mentioned that the problem formulation
as such only considers these required operations per packet per DFG to
encompass possible scenarios, where the processing overhead for one DFG
is independent of the number of included data flows. In most scenarios
however, it would be intuitive that the processing overhead for one DFG
should be linear in the number of included data flows. This can easily be
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accomplished by setting the pflow(x) parameter accordingly, as done in my
evaluation scenario in Section 3.6.1.

As mentioned in the beginning of this section, the scheduler for data process-
ing at an LCA is assumed to use equal-share scheduling. This means that the
processing capacity of a potential host c ∈ C is divided equally between all
controlled nodes, coordinated LCAs and satisfied DFGs.

The objectives of FCAPP are as follows, listed in descending order of impor-
tance:

1. create a valid solution, i.e. a complete control structure,
2. maximize the number of satisfied DFGs,
3. minimize the number of used CAs.

The idea behind this is as follows: While one would of course like to see
all DFGs satisfied at any time, this might not always be possible because
of a combination of too many DFGs and too little network resources. So
in this case, I see an incomplete control structure, i.e. not all nodes are
correctly controlled, as more critical for the network than a couple of yet not
processed DFGs (weighing operational stability against possibly increased
revenue). Further, more active CAs increase operational costs and hence saving
network resources is, without doubt, an important objective. But on the other
hand, dropping DFGs reduces network performance and potentially frustrates
customers. Therefore, I consider the objective of minimizing the number of
used CAs only feasible if it has no impact on the network’s performance and
I see the DFG satisfaction as more important.

Figure 3.2: Exemplary backbone fiber ring

Regarding the backbone network behind the considered backhaul network,
I limit the scope for now by assuming that all nodes are connected to the
operator’s core network by a suitable infrastructure, e.g. optical metro rings
as deployed in metropolitan areas [87] (see Figure 3.2). Further, I assume this
infrastructure to provide effectively unlimited data rate and negligible latency.
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While this ignores possible effects of the underlying backbone connection for
now, I will rectify this shortcoming in Chapter 8.

3.3 Optimization Model

My optimization model for FCAPP with equal-share scheduling is a Mixed
Integer Quadratically Constrained Program (MIQCP) [88]. It takes the param-
eters listed in Table 3.1 as inputs, which correspond to the problem statement
in Section 3.2. In the following, this optimization model will be denoted as
OPTes.

The quadratic nature of the formulation, in contrast to being entirely linear,
stems from two reasons. The first reason is the two-tier control hierarchy,
due to which a given node only requires an RCA if and only if it is an LCA.
The second reason lies in the data rate and latency requirements for DFG
satisfaction. For example, a link only needs to support a DFG’s required data
rate if and only if it is part of the corresponding LCA-to-node routing path
and if the corresponding LCA actually satisfies the DFG.

Table 3.1: OPTes input parameters

V set of nodes (i.e. BSs or switches)
C ⊆ V set of nodes that can serve as CA (RCA or LCA)
E set of undirected links with E ⊆ V ×V
F set of DFGs originating from at least one node v ∈ V
W matrix with Wx,v = 1 iff x ∈ F originates from v ∈ V
pnode(c) processing power at node c ∈ C
bcap(v, w) maximum data rate for link (v, w) ∈ E
lcap(v, w) latency of link (v, w) ∈ E
bflow(x) data rate each data flow of each DFG x ∈ F requires from

the routing path to its LCA
lflow(x) maximum acceptable round trip latency for DFG x ∈ F to

its LCA
pflow(x) operations per packet required for processing DFG x ∈ F at

an LCA
bLCA data rate required from a routing path of a node to its LCA
bRCA data rate required from a routing path of an LCA to its RCA
lLCA maximum acceptable round trip latency required from a

node and its LCA
lRCA maximum acceptable round trip latency required from an

LCA and its RCA
pLCA operations per control information packet required at an

LCA to control a node
pRCA operations per control information packet required at an

RCA to coordinate an LCA

23



3 FCAPP with Equal-Share Scheduling

OPTes determines a solution for FCAPP corresponding to the objectives de-
fined in Section 3.2 and uses the variables listed in Table 3.2 to store the
decisions about CA placement and DFG satisfaction. In order to ensure that
the DFG satisfaction constraints are fulfilled, OPTes further determines the
corresponding routing paths. OPTes uses the binary variables fc,d,u,v to express
that (u, v) ∈ E is used on the routing path from node d ∈ V to LCA c ∈ C
and, analogously, the binary variables gc,d,u,v to describe the routing paths
between an LCA and its RCA.

Table 3.2: OPTes variables

LCAc,v ∈ {0, 1} determines whether c ∈ C is an LCA for v ∈ V
RCAc,d ∈ {0, 1} det. whether c ∈ C is the RCA for LCA d ∈ C
isLCAc ∈ {0, 1} determines whether c ∈ C is an LCA
isRCAc ∈ {0, 1} determines whether c ∈ C is an RCA
Satc,x ∈ {0, 1} determines whether c ∈ C satisfies x ∈ F
isSatx ∈ {0, 1} determines whether x ∈ F is satisfied by an LCA
Procc ∈ Z+ amount of units required processing capacity

from c ∈ C
fc,u,v,w ∈ {0, 1} determines whether (v, w) ∈ E is included in the

routing path from LCA c ∈ C to node u ∈ V
gc,d,v,w ∈ {0, 1} determines whether (v, w) ∈ E is included in the

routing path from RCA c ∈ C to LCA d ∈ C

The following constraints have to be met. Some constraints use a big-M
constant denoted asM, which is a very large constant.

Every node d ∈ V needs to be controlled, i.e. there has to be a routing path
starting at an LCA (3.1) and ending at d (3.2). For all intermediate nodes on a
routing path, the ingress and egress have to be balanced (3.3).

∑
(c,w)∈E

fc,d,c,w = LCAc,d, ∀c ∈ C, d ∈ V, c 6= d (3.1)

∑
(u,d)∈E

fc,d,u,d = LCAc,d, ∀c ∈ C, d ∈ V, c 6= d (3.2)

∑
(u,v)∈E

fc,d,u,v = ∑
(v,w)∈E

fc,d,v,w, ∀c ∈ C, d, v ∈ V, c 6= d 6= v (3.3)

Similar constraints are needed for the routing paths from each LCA to its
RCA (3.4-3.6).

∑
(c,w)∈E

gc,d,c,w = RCAc,d · isLCAd, ∀c, d ∈ C, c 6= d (3.4)

∑
(v,d)∈E

gc,d,v,d = RCAc,d · isLCAd, ∀c, d ∈ C, c 6= d (3.5)

∑
(u,v)∈E

gc,d,u,v = ∑
(v,w)∈E

gc,d,v,w, ∀c, d ∈ C, v ∈ V, c 6= d 6= v (3.6)
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For obtaining a complete control structure, each node is required to be con-
trolled by at least one LCA (3.7) and each LCA must be assigned to exactly
one RCA (3.8).

∑
c∈C

LCAc,v ≥ 1, ∀v ∈ V (3.7)

∑
c∈C

RCAc,d = isLCAd, ∀d ∈ C (3.8)

Further, the LCA (3.9) and RCA (3.10) decision variables need to be set.

M· isLCAc ≥ ∑
v∈V

LCAc,v, ∀c ∈ C (3.9)

M· isRCAc ≥ ∑
d∈C

RCAc,d, ∀c ∈ C (3.10)

As explained in Section 3.2, satisfying all DFGs is not a mandatory requirement
for a valid solution for FCAPP. But is has to be guaranteed that a DFG is
satisfied by at most one LCA (3.11). If a DFG is satisfied, the corresponding
decision variable needs to be set (3.12).

∑
c∈C

Satc,x ≤ 1, ∀x ∈ F (3.11)

isSatx = ∑
c∈C

Satc,x, ∀x ∈ F (3.12)

But it is important to ensure that an LCA c can only satisfy a DFG x if the
necessary conditions stated in Section 3.2 are fulfilled. At first, c must only
satisfy x if c controls all nodes x is originating from. In other words, if there
is a v ∈ V with Wx,v = 1 and LCAc,v = 0, then c cannot satisfy x. If this is the
case, constraint (3.13) forces Satc,x to be zero.

Satc,x ≤ LCAc,v, ∀c ∈ C, x ∈ F, v ∈ V, Wx,v = 1 (3.13)

Moreover, the data rate limits of each link (3.14) must not be exceeded.

∑
c∈C,d∈V

fc,d,v,w ·
(

bLCA + ∑
x∈F

Wx,d · Satc,x · bflow(x)
)
+ ∑

c,d∈C
gc,d,v,w · bRCA

≤ bcap(v, w), ∀(v, w) ∈ E (3.14)

As a next step, the number of served units, i.e. controlled nodes, coordinated
LCAs and satisfied DFGs, is determined for each potential host in an auxiliary
variable Procc to ease notation later on (3.15).

Procc = ∑
x∈F

Satc,x + ∑
d∈V

LCAc,d + ∑
d∈C

RCAc,d, ∀c ∈ C (3.15)
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As described earlier, the equal-share scheduling model assigns the same per-
centage of a host’s processing capacity to each served unit. The processing
capacity available for each unit can be obtained by dividing a host’s process-
ing capacity pnode(c) by Procc. Then, the processing time for each unit is
obtained by dividing the required amount of operations per packet by this
processing capacity share. With this, the following constraints ensure that
the latency requirements of each DFG (3.16), LCA (3.17) and RCA (3.18) are
met, considering both processing time and link delays. Even though I do not
expect control information between LCAs and nodes or RCAs and LCAs to
be exchanged continuously, I still treat the corresponding constraints (3.17)
and (3.18) as if that were the case as in (3.16). This ensures that the required
resources are always reserved and hence available when needed.

Satc,x · pflow(x) ·
( pnode(c)

Procc

)−1
+ Satc,x · ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

)
≤ lflow(x), ∀c ∈ C, d ∈ V, x ∈ F, Wx,d = 1 (3.16)

LCAc,d · pLCA ·
( pnode(c)

Procc

)−1
+ ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

)
≤ lLCA, ∀c ∈ C, d ∈ V (3.17)

RCAc,d · pRCA ·
( pnode(c)

Procc

)−1
+ ∑

(v,w)∈E
gc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

)
≤ lRCA, ∀c, d ∈ C (3.18)

It is noteworthy that (3.16) includes an additional multiplication by Satc,x,
in contrast to (3.17) or (3.18). To understand this, it is convenient to first
explain why the same is not needed in (3.17), in contrast. The reason lies in
the nature of the fc,d,v,w variables that can only take on value 1 if and only if
LCAc,d = 1 due to constraints (3.1) and (3.2). With a similar connection to the
Satc,x variables, (3.16) could be replaced with

Satc,x · pflow(x) ·
( pnode(c)

Procc

)−1
+ ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

)
≤ lflow(x), ∀c ∈ C, d ∈ V, x ∈ F, Wx,d = 1. (3.19)

But such a connection does not exist, which is why the additional multipli-
cation by Satc,x is generally required so that the constraint is still valid if
Satc,x = 0. Sparing the multiplication could reduce the solution space of the
model significantly or the model would even become infeasible in case of big
link latency and small DFG round trip latency input values. More precisely,
there could be no c ∈ C, d ∈ V, x ∈ F, Wx,d = 1 so that

LCAc,d = 1 ∧ Satc,x = 0 ∧ lflow(x) < ∑
(v,w)∈E

fc,d,v,w ·
(

lcap(v, w) + lcap(w, v)
)
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3.3 Optimization Model

since (3.19) would be violated:

Satc,x︸ ︷︷ ︸
=0

· pflow(x) · Procc

pnode(c)
≤ lflow(x)− ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

)
︸ ︷︷ ︸

<0

.

However, it is possible to adopt (3.19) for the optimization model if the
existence of such a case can be ruled out with certainty, for example if

lflow(x) ≥ ∑
(v,w)∈E

lcap(v, w) ∀ x ∈ F. (3.20)

This turns out to be the case for my chosen evaluation scenario from Sec-
tion 3.6.1 except for large networks, for which the optimization models would
not be practical anyway. Therefore, the implementation of OPTes for the
evaluation in Section 3.6.2 uses constraint (3.19) if and only if condition (3.20)
is fulfilled, otherwise constraint (3.16) is used.

Last but not least, it is necessary to cope with possible loop and corner cases
(3.21 – 3.26).

∑
(v,w)∈E, w=c

fc,d,v,w = 0, ∀c ∈ C, d ∈ V (3.21)

∑
(v,w)∈E, v=d

fc,d,v,w = 0, ∀c ∈ C, d ∈ V (3.22)

∑
(v,w)∈E, w=c

gc,d,v,w = 0, ∀c ∈ C, d ∈ V (3.23)

∑
(v,w)∈E, v=d

gc,d,v,w = 0, ∀c ∈ C, d ∈ V (3.24)

LCAc,c = isLCAc, ∀c ∈ C (3.25)
RCAc,c = isRCAc · isLCAc, ∀c ∈ C (3.26)

The objective function (3.27) of OPTes is defined as

minimize: ∑
c∈C

(
isRCAc + isLCAc

)
−ω · ∑

x∈F
isSatx (3.27)

With ω > 2 · |C|, (3.27) provides a lexicographic order in which maximizing
DFG satisfaction weighs higher than minimizing the number of CAs. Mean-
while, a complete control structure, the most important objective, is already
required by constraints (3.7) and (3.8). Therefore, the existence of a valid
solution is strictly mandatory for OPTes to be feasible.
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3 FCAPP with Equal-Share Scheduling

3.4 Problem Complexity

In this section I prove that FCAPP is NP-hard by providing a polynomial
reduction of the NP-hard bin packing problem [89] to FCAPP.

Proof: Given a bin packing problem with bin size B and n items with sizes
a1, . . . , an, I construct an FCAPP instance as follows:

• V = {c1, . . . , cn, m, v1, . . . , vn},
• C = {c1, . . . , cn},
• E = {(vi, m), (m, ci) | i = 1, . . . , n},
• F = {x1, . . . , xn},

• Wxi ,vj =

{
1 i = j,
0 otherwise,

• bcap(vi, m) = ai ∀ i = 1, . . . , n,
• bcap(m, ci) = B ∀ i = 1, . . . , n,
• bflow(xi) = ai ∀ i = 1, . . . , n,
• pnode(c) = ∞ ∀ c ∈ C,
• lcap(v, w) = 0 ∀ (v, w) ∈ E,
• lflow(xi) = ∞ ∀ i = 1, . . . , n,
• pflow(xi) = 0 ∀ i = 1, . . . , n,
• bLCA = bRCA = pLCA = pRCA = 0,
• lLCA = lRCA = ∞.

This construction can be done in polynomial time as the number of constraints
and number of variables in OPTes are both in O(|V|3 · |E| · |F|). The resulting
network is illustrated in Figure 3.3.

m

c1 c2 cn

v1 v2 vn

x1 x2 xn

B
B

B

a1

a2

an

Figure 3.3: Reduction of bin packing to FCAPP

With this construction, all of FCAPP’s latency and processing capacity con-
straints are eliminated, as guaranteeing zero processing capacity and unlimited
latency is always trivially given. As for the data rate constraints, the only
relevant ones are the link capacity constraints for the DFG satisfaction, since
only the DFGs have non-zero data rate requirements in my construction. This
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3.5 Multi-layer Greedy Heuristic

means that in this FCAPP instance, the only requirement for ci ∈ C to satisfy
xj ∈ F is that link (m, ci) provides a data rate of bflow(xj) = aj. Denoting the
set of DFGs satisfied by ci ∈ C as Sat(ci), constraint 3.14 brings

∑
xj∈Sat(ci)

bflow(xj) = ∑
xj∈Sat(ci)

aj ≤ bcap(m, ci) = B.

Thus it holds that

Satci ,xj = 1⇔ Bin(aj) = i ∀ i, j ∈ {1, . . . , n}.

At last, it is important to note that the constructed network provides enough
capacity to satisfy all x ∈ F as |C| = |F| and ai ≤ B ∀ i = 1, . . . , n. Keeping
in mind that an optimal solution of FCAPP minimizes the number of used
LCAs, the number of LCAs needed for this FCAPP instance is equivalent to
the number of bins needed for the original bin packing instance. Also, the
sets of items in every used bin are the same as the Sat(ci) of every used LCA
ci ∈ C. Hence, if FCAPP were solvable in polynomial time, the same would
apply to the NP-hard bin packing problem. With this polynomial reduction, I
can conclude that FCAPP is NP-hard. �

3.5 Multi-layer Greedy Heuristic

In this section, I describe my multi-layer greedy heuristic to solve FCAPP,
which I call Greedy Flow processing-aware Control Application Placement Algorithm
(GreedyFCAPA). In accordance with the problem statement in Section 3.2,
GreedyFCAPA attempts to find a complete control structure while maximizing
the amount of satisfied DFGs first and minimizing the amount of used CAs
next. Further, GreedyFCAPA also calculates all corresponding routing paths
and consistently ensures all affected constraints. Therefore, a solution obtained
by GreedyFCAPA is guaranteed to be consistent with OPTes. All procedures
in this section use the input parameters from Table 3.1.

Provided with an input network, GreedyFCAPA executes the CPgreedy pro-
cedure shown in Algorithm 3.1. CPgreedy successively adds LCAs to the
network by calling findLCA and first focuses on having an LCA assigned
to each network node. If during this stage already all potential hosts are
used as LCAs, the procedure forceControl is called, which I will describe
further below. When all nodes are controlled by at least one LCA and if
there are still potential hosts available, CPgreedy switches its strategy and
fully focuses on DFG satisfaction. If for any reason during this second phase
an added LCA did not result in additional DFGs satisfied, the LCA is re-
moved again and banned, i.e. no longer considered during the remainder of
the execution. The procedure ends if all DFGs are satisfied or if all potential
hosts are either banned or already LCAs, i.e. if no remaining DFGs can be
satisfied with the network’s remaining resources. Right before terminating,
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3 FCAPP with Equal-Share Scheduling

the cleanupLCAcontrols procedure is executed, which removes all LCA-to-
node assignments that were established during runtime and that eventually
did not serve any purpose, i.e. the LCA does not satisfy any DFG originating
from the node and the node is assigned to more than one LCA.

Algorithm 3.1 CPgreedy()

option = "neighbors"
while |V| − |Vcontrolled| > 0 do

if |LCAs| = |C| then
forceControl()
break // no more potential hosts available

findLCA(option)
if |LCAs| < |C| then

option = "flows"
while |F| − |Fsatisfied| > 0 do

Satlast = |Fsatisfied|
findLCA(option)
if Satlast = |Fsatisfied| then // no additional DFGs could be satisfied

Cbanned.append(LCAs[-1])
removeLastAddedLCA()

if |LCAs| = |C| - |Cbanned| then
break // no more non-banned potential hosts available

cleanupLCAcontrols()

The findLCA procedure presented in Algorithm 3.2 determines which poten-
tial host is going to be added as an LCA next, according to the option set by
CPgreedy (see Algorithm 3.1 and Algorithm 3.4). For this purpose, it acquires
the best candidates via getLCAcandidates(option). But before adding the
best candidate as an LCA right away, findLCA first tries to find an RCA for
it, using the findRCA procedure, as an LCA that cannot be assigned to an
RCA would violate the integrity of the two-tier control hierarchy. If an RCA
can be found, the candidate is confirmed as a new LCA and is assigned to the
RCA. Finally, Algorithm 3.5 is called which assigns nodes and DFGs to the
recently added LCA.

Algorithm 3.2 findLCA(option)
candidates = getLCAcandidates(option)
for v in candidates do

c = findRCA(v)
if c is not None then

addNewLCA(v)
break // next LCA determined

The findRCA procedure shown in Algorithm 3.3 tries to assign an RCA to
a given LCA v. First, it checks the already available RCAs, starting with the
closest one. The checkRCAcontrol procedure verifies if assigning an RCA
to a node complies with all relevant network constraints (3.14, 3.16 – 3.18)
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3.5 Multi-layer Greedy Heuristic

according to the given routing path. If an existing RCA can be assigned to v,
the added RCA assignment is returned, otherwise a new RCA has to be added
to the network using a similar strategy as before, except now considering all
potential hosts that are not yet RCAs. For the special case of the first RCA in
the network, I choose the potential host with the least distance (in number of
hops) to all other potential hosts (lowest node ID in case of a tie) in order to
benefit all future RCA-to-LCA assignments.

Algorithm 3.3 findRCA(v)
paths = {shortestPath(source=c, target=v) for c in RCAs}
sort paths by lengths
for p in paths do

if checkRCAcontrol(p) then
return addRCAcontrol(c, v)

paths = {shortestPath(source=c, target=v) for c in C - RCAs} // a new
RCA needs to be added
if |RCAs| = 0 then

sort paths by average length to all potential hosts // try to place the first
RCA centrally in the network

else
sort paths by lengths

for p in paths do
if checkRCAcontrol(p) then

return addRCAcontrol(c, v)
return None // failed finding an RCA for v

The critical LCA candidate selection is done by the getLCAcandidates pro-
cedure which is shown in Algorithm 3.4. getLCAcandidates considers all
potential hosts that are not yet banned or used as an LCA. But if possible, the

Algorithm 3.4 getLCAcandidates(option)
candidates = C - (LCAs + Cbanned)
if candidates - RCAs 6= ∅ then

candidates = candidates - RCAs // avoid RCAs if possible
if option = "neighbors" then

sort candidates descending by uncontrolled nodes in {v} ∪ neighbors(v)
if best value = 0 then // no node with uncontrolled neighbors

candidates = getLCAcandidates("isolated nodes")
else if option = "isolated nodes" then

sort candidates by shortest distance to an uncontrolled node
else if option = "flows" then

sort candidates by highest amount of unsatisfied DFGs connected to v
if best value = 0 then // no node with unsatisfied DFGs

candidates = getLCAcandidates("isolated flows")
else if option = "isolated flows" then

sort candidates by shortest distance to a node with unsatisfied DFGs
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3 FCAPP with Equal-Share Scheduling

procedure also excludes any RCA to leave them with resources for coordinat-
ing future LCAs. To determine the best LCA candidates, getLCAcandidates

then uses the options neighbors or f lows, depending on what has been spec-
ified by CPgreedy. But for corner cases, getLCAcandidates is allowed to
switch to one of the more specific options isolated nodes or isolated f lows in
case the metrics used by neighbors or f lows do not provide a sufficient result
for sorting the candidates.

Algorithm 3.5 addNewLCA(v)
paths = {shortestPath(source=v, target=i) for i in V}
Fpot(v) = {}
if |V| − |Vcontrolled| > 0 then // no valid solution yet

sort paths by paths to uncontrolled nodes first, path length next
else // valid solution already found, now focus on DFG satisfaction

sort paths by paths to nodes with unsatisfied DFGs first, path length next
while (|paths| > 0 or |Fpot(v)| > 0) and (|V| − |Vcontrolled| > 0 or |F| −
|Fsatisfied| > 0) do

if |Fpot(v)| > 0 and (|V| − |Vcontrolled| = 0 or |Vnew| ≥ |V|
|C| ) then

f = getNextDFG(Fpot(v))
if checkDFGsat(v, f ) = True then

addDFGsat(v, f )
Fpot(v).remove( f )

else
if |paths| = 0 then

break // no more paths to look at
p = getNextPath(paths)
if checkLCAcontrol(p) = True then

addLCAcontrol(p)
updatePotentialDFGs(v)

else
break // no more resources left at LCA v

As stated before, the addNewLCA procedure (Algorithm 3.5) is responsible
for assigning nodes and DFGs to a new LCA v. To this end, it calculates the
shortest paths from v to all other nodes in the network. Then, it prioritizes
the nodes to be assigned to the new LCA by sorting the paths, depending on
whether a network already has a complete control structure or not. In the
former case, addNewLCA considers paths to uncontrolled nodes first, while
in the latter case, the paths are sorted according to the amount of unsatisfied
DFGs originating from the target nodes.

After the prioritization is done, nodes are assigned to be controlled by v. To
ensure that no model constraint is violated in the process, the procedure
checkLCAcontrol verifies if assigning a node to v complies with all relevant
network constraints (3.14, 3.16 – 3.18) each time before assigning it to v. When
a node is assigned to v, the updatePotentialDFGs function is executed to
update the list of the potential DFGs for v, i.e. the DFGs that are only entering
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3.5 Multi-layer Greedy Heuristic

the network through nodes that v already controls and thus can be satisfied
by v if sufficient resources are available. However, GreedyFCAPA has to hold
back before assigning potential DFGs to v. The reason for this is as follows:
Assuming a network with many data flows, an LCA would have a lot of
potential DFGs after controlling only a few nodes, run out of resources by
satisfying them very quickly and hence a complete control structure might not
be obtained. Hence, DFGs may only be satisfied by an LCA once it controls at
least |V||C| nodes that had previously been uncontrolled (represented by Vnew in
Algorithm 3.5) or if there are no more uncontrolled nodes in the network. The
choice for |V||C| is based on the fact that on average, an LCA needs to control at

least |V||C| nodes to obtain a complete control structure. In addition, this choice
will be further assessed in Chapter 4 and Chapter 5.

Eventually, when the conditions are met so that v is allowed to satisfy DFGs,
GreedyFCAPA successively tries to assign DFGs to v. The order in which
the DFGs are assigned is determined based on requested processing capacity.
Two sorting strategies suggest themselves:

• Least Demanding First (LDF)
• Most Demanding First (MDF)

Intuitively, both strategies appear favorable compared to each other depending
on the load situation in the network. With exhausted network resources,
LDF is expected to perform better because the resulting number of satisfied
DFGs should be higher compared to MDF. With sufficient network resources
available, though, one would expect that MDF results in fewer LCAs to be
used, since assigning less demanding DFGs to LCAs that already satisfy
several DFGs is naturally more promising than assigning highly demanding
ones. However, the evaluation in Section 3.6 will show whether the practical
results really meet this intuitive elaboration or not.

Coming back to assigning DFGs in Algorithm 3.5, again all relevant constraints
(3.14, 3.16 – 3.18) are checked using the checkDFGsat procedure before
confirming that v henceforth satisfies a certain DFG. In any case, the DFG is
then removed from the list of potential DFGs for v, as it is either now satisfied
by v or as it cannot be satisfied by v. addNewLCA terminates when no more
nodes and no more DFGs can be assigned to v.

Still, the aforementioned requirement for new LCAs to control |V||C| nodes that
had previously been uncontrolled before satisfying DFGs does not strictly
guarantee that all nodes will eventually be controlled. Therefore, as a last
resort, a complete control structure is ultimately enforced by the earlier
mentioned procedure forceControl (Algorithm 3.6).

forceControl basically forces each eventually uncontrolled node v to be
controlled by its closest LCA c. To do this, the procedure successively removes
the DFG with the most required processing capacity from c until either c
can control v or c could control v if the routing path had additional capacity.
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3 FCAPP with Equal-Share Scheduling

The latter is indicated by addLCAcontrol, which returns different values
depending on what constraint makes the LCA-to-node assignment impossible.
In this case, additional DFGs that currently occupy capacity of the links of the
path are removed, so that the control from c to v can finally be established.
In the end, forceControl attempts to reestablish the removed DFG-to-LCA
assignments if possible.

Algorithm 3.6 forceControl()

Fremoved = {}
for v in V −Vcontrolled do

c = getClosestLCA(v), path = shortestPath(source=c, target=v)
sort Fsat(c) descending by required processing capacity
for f in Fsat(c) do

Fremoved.append((c, f )), removeDFGsat( f )
if checkLCAcontrol(p) = True then

addLCAcontrol(p), break
else if checkLCAcontrol(p) = “processing ok, only link capacity not”
then

for (u, w) in path do
F(u,w) = { f ∈ F, f is routed over (u, w)}
sort F(u,w) (DFGs satisfied by c) by most required data rate first
for x in F(u,w) do

Fremoved.append((LCA(x), x)), removeDFGsat(x)
if brem(u, w) ≤ bLCA then

break
addLCAcontrol(p), break

for c, f in Fremoved do
if checkDFGsat(c, f ) = True then

addDFGsat(c, f )

To provide a comprising overview, Figure 3.4 summarizes the key aspects of
GreedyFCAPA in a flow chart.

3.6 Evaluation

The evaluation of this chapter consists of two parts: at first, I evaluate OPTes
against GreedyFCAPA, which is only feasible in very small scenarios owing
to the runtime of OPTes. Next, I provide performance results using varying
parameters for GreedyFCAPA in larger, real-world size scenarios.

All evaluations are executed on Intel® Xeon® E5-2695 v3 CPUs running at
2.30 GHz. I have implemented OPTes using the Pyomo package for opti-
mization modeling in Python [90] and solved it with Gurobi [91] running in
single-threaded mode. GreedyFCAPA has been implemented using Python.
All plots contain confidence intervals at a 95% confidence level.
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Figure 3.4: GreedyFCAPA flow chart

3.6.1 Evaluation Scenario

To obtain initial performance results, I have created a first, rather generic,
evaluation scenario. I will later provide an alternative topology type in
Chapter 5 and focus on a more realistic DFG scenario in Chapter 9.

For all instances of this evaluation, the nodes are placed on a regular grid
with a mean inter-BS distance of s̄ = 1000 m, which corresponds to an urban
scenario [92], and are then shifted in both x and y direction using normally
distributed random variables with zero mean and standard deviation s̄

8 . The
backhaul links are generated as mesh topology: two nodes v, w ∈ V are con-
nected if dist(v, w) ≤ 1.5 · s̄. The chosen factor 1.5 has consistently produced
fully connected but not unrealistically dense topologies. For illustration, Fig-
ure 3.5 shows two exemplary mesh topologies used in Section 3.6.3; one with
6× 6 nodes and one with 10× 10 nodes.

Each node becomes a potential host with a probability of PC and is then
assigned with a processing power of pnode = 200 GFLOPS. All links are
assigned the same fixed capacity of 2.5 Gbit/s and the latency for each link is
determined by its length multiplied by 1.45 and divided by the speed of light,
assuming an optical backhaul network [93]. The LCA and RCA parameters
from Table 3.1 are chosen as follows: bLCA = bRCA = 100 Kbit/s, lLCA = 1 ms,
lRCA = 10 ms, pLCA = pRCA = 106 operations per control packet.

To assign DFGs to nodes, I assume mobile user equipment as origin and/or
destination of the DFGs for this evaluation scenario. I use the GreenTouch
connectivity model [92] and each DFG is connected to up to three nodes with
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Figure 3.5: Exemplary mesh topologies (with potential hosts highlighted)

the best connectivity until a Signal to Interference plus Noise Ratio (SINR)
threshold of 0.0 dB is reached. A DFG belongs to one out of three types, as
shown in Table 3.3. I have extrapolated the data for these types using the
cellular traffic data for 2016 from [3]. As a base for choosing the pflow(x)
parameters, I introduce a randomized factor op(x) for each DFG, describing
the operational overhead that arises during data processing. For all ranges
listed in Table 3.3, the values have been chosen uniformly at random.

Table 3.3: Evaluation scenario: DFG types

type probability bflow lflow op(x)

audio 0.3 0.5 to 1 Mbit/s 10 ms 1 · 106 to 2 · 106

video 0.6 1 to 5 Mbit/s 10 ms 5 · 106 to 1 · 107

other 0.1 1 to 20 Mbit/s 50 ms 1 · 106 to 1 · 108

Based on this, the processing capacity requested by DFG x is determined by

pflow(x) = op(x) · ∑
v∈V

W f ,v.

To give an impression of the number of data flows per DFG produced by this
evaluation scenario, I have generated 1000 DFGs for each network used in
Section 3.6.3. Rounded to one decimal place, 71,4% of the DFGs had one data
flow, 22,6% had two data flows and 6% had three data flows.

3.6.2 OPTes vs. GreedyFCAPA

To compare the results of OPTes and GreedyFCAPA (MDF and LDF), I have
generated instances with 4 and with 9 nodes with PC = 1.0 and multiples
of 10 DFGs. These scenarios are big enough to see the important effects and
small enough to run in reasonable time.
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The time limit for OPTes has been set to a solving time of one hour. To enhance
the execution of OPTes, I first executed GreedyFCAPA for all instances and
then added additional constraints to OPTes:

∑
c∈C

isRCAc ≤ GRCA, (3.28)

∑
c∈C

isLCAc ≤ GLCA, (3.29)

∑
x∈F

isSatx ≤ GSat, (3.30)

where GRCA, GLCA and GSat are the numbers of RCAs/LCAs used and DFGs
satisfied by GreedyFCAPA (with MDF setting) for the corresponding instance.
The benefit of this is twofold: on the one hand, the solution space for OPTes to
search through is significantly reduced; on the other hand, it is prevented that
OPTes returns a solution inferior to the one of GreedyFCAPA when stopping
at the time limit.

All relevant results of this evaluation part are illustrated in Figure 3.6. A
valid solution has been found for all instances; consistently only one RCA
was used and for the 9-node instances all DFGs have been satisfied. For
the 4-node instances, however, Figure 3.6a reveals that GreedyFCAPA leaves
DFGs unsatisfied starting from around 250 DFGs (MDF) and 400 DFGs (LDF),
while OPTes is constistently able to satisfy all DFGs up to the limit for this
evaluation part of 500 DFGs.

As can be seen in Figure 3.6b and Figure 3.6d, GreedyFCAPA performs just
as well as OPTes for few DFGs before performing visibly worse than OPTes
once two LCAs are required for solving an instance. It can also be seen
that GreedyFCAPA with LDF strategy uses fewer LCAs than GreedyFCAPA
with MDF strategy – contrary to the intuitive prediction from Section 3.5. A
possible explanation for this could be that the LDF strategy causes lots of
highly demanding DFGs not to be satisfied at first, but to be later satisfied
together by an additional LCA, which would be beneficial in synergy with
the equal-share processing scheme employed by FCAPP. But instead of going
into more detail about this here, I refer to Section 5.1, where I elaborate
in detail on the downsides of equal-share scheduling. At last, Figure 3.6c
and Figure 3.6e show the runtime results. It can be seen that GreedyFCAPA
with LDF strategy requires slightly more execution time than GreedyFCAPA
with MDF strategy. This is in line with the previous explanation, since this
could be caused by highly demanding DFGs being more often rejected and
thus being more often reconsidered by different LCAs (within addNewLCA
from Algorithm 3.5). Independend of the DFG assignment strategy, however,
GreedyFCAPA operates about three to five orders of magnitude faster than
OPTes.
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Figure 3.6: Evaluation: OPTes vs. GreedyFCAPA

3.6.3 GreedyFCAPA in Larger Scenarios

To evaluate GreedyFCAPA for larger scenarios, I have generated instances
with 36 and 100 nodes, PC = 0.6 and multiples of 200 DFGs. The results can
be seen in Figure 3.7.

Again, all instances have obtained a valid solution and consistently only one
RCA was used for each instance. However, as can be seen in Figure 3.7a, not
all DFGs could always be satisfied; the 36-node and 100-node networks run
out of resources to satisfy all DFGs around 1400 and 4400 DFGs. In contrast
to the previous evaluation part, the granularity of this evaluation part does
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not feature any differences between LDF and MDF for the point where not
all DFGs can be satisfied, but GreedyFCAPA with LDF strategy is able to
satisfy more DFGs after this point. The percentage of DFGs drops down to
around 30% (MDF) and 60% (LDF), respectively, for the 36-node networks
with 6000 DFGs. In particular, this corresponds to around 1800 and 3600
DFGs, more than the turning point of around 1400 DFGs, which shows that
GreedyFCAPA, especially with LDF strategy, adapts very well to overloaded
networks and uses the bigger range of available DFGs to satisfy more of them
with the available resources.
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Figure 3.7: Evaluation: GreedyFCAPA in larger scenarios

Next, Figure 3.7b shows again that the number of used LCAs only slightly
depends on the number of nodes in the network but more on the number of
DFGs, at least as long as sufficient potential hosts are available. It can be seen
that even before the resources of the 36-node networks are exhausted, the
100-node networks need slightly more LCAs. Again, the LDF strategy requires
fewer LCAs but only marginally. Last but not least, Figure 3.7c illustrates
the runtime for the larger scenarios. It can be observed that the runtime of
GreedyFCAPA naturally depends on the amount of nodes in the network,
which results in a larger solution space to be considered. But interestingly,
the runtime of GreedyFCAPA with MDF strategy increases faster in the 36-
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3 FCAPP with Equal-Share Scheduling

node networks with more DFGs once the network resources are exhausted
and even exceeds the one of the 100-node networks with 4600 DFGs. This
can be explained by more failed attempts to satisfy DFGs, so that the same
DFGs are considered more often when adding different LCAs. Interestingly,
GreedyFCAPA with LDF strategy runs faster than GreedyFCAPA with MDF
strategy – contrary to the previous evaluation part. An explanation for this is
that the sheer amount of not satisfied and reconsidered DFGs in these large
instances outweighs the effect that I gave as an explanation beforehand.

In total, it can be said that according to the practical results obtained from
this evaluation, the LDF strategy clearly outperforms the MDF strategy in all
relevant aspects. As a result, the LDF strategy will be used as a default in the
following.

3.7 Observations

In this chapter I have given an initial problem statement for FCAPP using
equal-share processing scheduling and I have used this to formulate an
MIQCP as a reference model to solve the problem. Based on the created
MIQCP (OPTes), I have then proven FCAPP to be NP-hard. To cope with
the problem’s complexity, I have implemented and evaluated a fast heuristic
solution, GreedyFCAPA.

The evaluation reveals that GreedyFCAPA is able to solve FCAPP with a
decent solution quality while providing a runtime that might make it suitable
for networks with frequently changing network load as outlined in Section 1.2.
In particular, in the overall context of my thesis, I have made a first step to
show that the idea of performing flow processing-aware control application
placement within such networks is indeed feasible. However, the comparison
between OPTes and GreedyFCAPA also clearly revealed that there is room for
improvement, which will be my leverage point for the subsequent chapter.
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4
Assessing Genetic Algorithms
for Flow Processing-aware
Control Application Placement

In the previous chapter, I have introduced FCAPP and presented an optimiza-
tion model (OPTes) and a fast heuristic solution (GreedyFCAPA) to provide
reasonably good results in a practical amount of time. However, the question
remained open whether or not there is an alternate algorithmic approach
that gives significantly better results than GreedyFCAPA within a reasonable
amount of time. To tackle this question, I decided to explore the concept
of Genetic Algorithms (GAs) which I already introduced in Section 2.2.1.
As elaborated there, GAs have already been successfully applied to other
problems related to FCAPP, such as to VNE [54].

Together with Swante Scholz, I have developed three GA approaches, one
pure GA approach and two hybrid GA approaches, which I will describe and
evaluate in this chapter. This work has been conducted over the course of Mr.
Scholz’s bachelor thesis [94] under my supervision. First, I elaborate on the
fitness function and selection mechanisms in Section 4.1, which are common
to all three approaches. Next, I present the three GA approaches in Sections
4.2, 4.3 and 4.4. Finally, I provide extensive evaluation results in Section 4.5,
including parameter evaluations of the three GAs and a comparison with
GreedyFCAPA.

4.1 Fitness Function and Selection

While different GA approaches for FCAPP need different genetic operators
and representations, the underlying fitness evaluation for comparing the
quality of individuals and the approaches for parent and survivor selection
can remain the same as the optimization goals of each approach are identical.
Corresponding to the FCAPP objectives in Section 3.2, the following aspects
are important, in decreasing order of relevance:
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4 Assessing Genetic Algorithms for FCAPP

1. Minimizing the number of uncontrolled nodes Unodes and uncoordinated
LCAs ULCA.

2. Minimizing the number of unsatisfied DFGs UDFG.
3. Minimizing the number of used LCAs and RCAs.

The fitness of each individual can thus be expressed as:(
Unodes + ULCA, UDFG, |LCAs|+ |RCAs|

)
(4.1)

To compare the fitness of individuals with each other, it is necessary to
compute a real-valued fitness score from each tuple:

f
(
(x, y, z)

)
:= ω1 · x + ω2 · y + z, (4.2)

with ω2 > 2 · |C| and ω1 > ω2 · |F| to lexicographically order the optimization
goals.

Parent selection is done via tournament selection [95]. In tournament selection,
in order to select an individual for reproduction, two or more individuals
of the current generation are selected at random. The best of them is then
used for reproduction. This process is repeated until the required number of
children have been created.

Regarding survivor selection, all GAs choose the µ individuals with the best
fitness values from the µ + λ individuals of the current generation and its
offspring. Initially, more complex approaches for survivor selection, e.g.
tournament selection, were also considered, but first test evaluations revealed
that the aforementioned simpler choice performed just as well in practice.

4.2 Approach 1: Pure Genetic Algorithm

The first GA approach is a pure GA that gives maximal freedom over the
solution, resulting in a very powerful and complete GA.

4.2.1 Representation

The DNA of each individual is a tuple of three arrays:(
RCAs of LCAs, LCAs of nodes, LCAs for DFGs

)
The first array identifies the RCAs for all the c ∈ C (or −1 if c is not an LCA
or an uncoordinated LCA). The second array contains one LCA for each node
v ∈ V. While each node might be controlled by multiple LCAs, only one
has to be represented in this array since one LCA per node already assures
a complete control structure. The third array shows the LCAs satisfying the
DFGs (or −1 if the DFG is unsatisfied).
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4.2 Approach 1: Pure Genetic Algorithm

It is important to note that each array entry just expresses that during fitness
evaluation, the algorithm will try to fulfill the assignment with all the required
coordination and control paths. But if there are not enough resources left at an
RCA or LCA to fulfill all tasks (node control and DFG satisfaction) assigned
to it, the assignment will fail, leaving unrealized tasks that decrease the fitness
value of the individual.

4.2.2 Crossover

A very intuitive approach to design the crossover operator is preferring more
common parent genes over genes that are less common, thereby encouraging a
genetic drift towards fewer CAs being used. Algorithm 4.1 shows how parent
genes are favored based on their relative number of occurrences.

Algorithm 4.1 Weighed crossover operator (GA1)
function Crossover(ind1, ind2)

child = new Individual
cRCA, cLCA = new Counter, new Counter
for (attr, count) in [(RCAs, cRCA), (LCAs, cLCA), (Sats, cLCA)] do

a, b = ind1.attr, ind2.attr
for i in {0,...,len(a)-1} do

count[a[i]] += 1, count[b[i]] += 1
for (attr, count) in [(RCAs, cRCA), (LCAs, cLCA), (Sats, cLCA)] do

a, b, c = ind1.attr, ind2.attr, child.attr
for i in {0,...,len(a)-1} do

prob = count[a[i]] / (count[a[i]] + count[b[i]])
if randomFromUnitInterval() < prob then

c[i] = a[i]
else

c[i] = b[i]
return child

4.2.3 Mutation

As shown in Algorithm 4.2, the mutation operator uses three different func-
tions that are chosen depending on the current fitness of the individual, each
corresponding to one entry of the fitness tuple. First, mutateControlStruc-
ture randomly changes some assignments from the first two arrays of the
DNA, thereby trying to reduce the number of control violations. Analogously,
mutateDFGassignment is applied to reduce the number of unsatisfied DFGs
if an individual has no control violations (first fitness component) but still has
unsatisfied DFGs (second fitness component). At last, decreaseNumberOf-
CAs tries to reduce the number of used LCAs and RCAs by deactivating one
of the least used CAs and randomly reassigning all the tasks it was responsible
for to the other CAs still in use. As control structure and DFG satisfaction are
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of higher priority than reducing the number of LCAs and RCAs, this function
is only used once the control structure is complete and all DFGs have been
satisfied.

Algorithm 4.2 Mutation operator (GA1)
function Mutate(ind):

child = deepCopy(ind)
if child.fitness.controlStructureViolations > 0 then

mutateControlStructure(child)
else if child.fitness.unsatisfiedDFGs > 0 then

mutateDFGassignment(child)
else

decreaseNumberOfCAs(child)
return child

function mutateControlStructure(child)
for a in [child.RCAs, child.LCAs] do

for i in {0,...,len(a)-1} do
if randomFromUnitInterval() < αm then

a[i] = randomElementOf(C)

function mutateDFGassignment(child)
for i in {0,...,len(child.Sats)-1} do

if randomFromUnitInterval() < αm then
child.Sats[i] = randomElementOf(C)

function decreaseNumberOfCAs(child)
CAs = child.RCAs + child.LCAs + child.Sats
c = CA with lowest number of occurrences in CAs
remove c from CAs
for a in [self.RCAs, self.LCAs, self.Sats] do

for i in {0,...,len(a)-1} do
if a[i] == c then

a[i] = pick uniformly at random from CAs

In the functions above, αm ∈ [0, 1] is a parameter specifying the intensity of
the mutation operator.

4.3 Approach 2: Hybrid GA based on Post Processing

While the pure GA approach is very powerful in theory, it comes at the cost of
searching an unnecessarily large search space. Its representation does not, for
example, take into account that DFGs should generally be satisfied by nearby
CAs. Therefore, I describe a hybrid GA in this section that uses a less complex
representation and is combined with a heuristic that takes such matters into
account.
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4.3.1 Representation and Fitness Evaluation

To represent the individuals for this hybrid GA, two binary arrays are used
to specify for each potential host if it is to be used as RCA and as LCA. For
example, an individual for an instance with |C| = 4 could be represented as(

(1, 0, 0, 0), (0, 0, 1, 1)
)
,

meaning that the first potential host is selected as an RCA and the third and
fourth are selected as LCAs, while the second host is not used at all.

But as already described in Section 4.2.1, there is no guarantee that such an
assignment performs well. To evaluate the fitness of a given individual, a
heuristic post-processing step is used that first tries to establish complete RCA-
to-LCAs coordination and LCAs-to-node control and then tries to maximize
the number of satisfied DFGs based on this assignment.

RCA-to-LCA coordination: For each LCA, the shortest possible coordination
path to an RCA is used. The LCAs with the shortest path are coordinated
first, LCAs with the same the distance are ordered randomly.

LCA-to-node control: Each node gets controlled by its shortest possible path
to an LCA. The nodes with the shortest path are controlled first, nodes
with the same distance are ordered randomly.

DFG satisfaction: DFGs are satisfied by the LCA closest to them, using short-
est possible paths and starting with the least demanding DFG, in terms
of processing requirements, first (LDF). If two DFGs have the same
processing requirements, they are ordered randomly.
If a node that has previously been controlled by an LCA to ensure a
complete control structure becomes controlled by another LCA to satisfy
a DFG (which then of course has to allocate the resources to control the
node and to satisfy the DFG), then that first, now redundant control
assignment is removed, thereby freeing processing resources that can
possibly be used to satisfy other DFGs.

Of course, for each of these assignments, the responsible RCA or LCA has
to allocate the required resources accordingly. The implementation of this
iterative process was mostly done by reusing the procedures of GreedyFCAPA
(Section 3.5). Therefore, I have omitted a more detailed representation.

4.3.2 Crossover

The fitness evaluation for this representation, which I described in the previous
section, is rather sophisticated. But in return, the genetic operators can be kept
rather simple. Our chosen crossover procedure is described in Algorithm 4.3.
It creates a new child by choosing one of the binary operators "and" or "or"
uniformly at random.
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Algorithm 4.3 Crossover operator (GA2)
function Crossover(ind1, ind2)

child = new Individual
if randomFromUnitInterval() < 0.5 then

OP = or
else

OP = and
for i in {0,...,len(ind1.RCAs)-1} do

child.RCAs[i] = ind1.RCAs[i] OP ind2.RCAs[i]
for i in {0,...,len(ind1.LCAs)-1} do

child.LCAs[i] = ind1.LCAs[i] OP ind2.LCAs[i]
return child

4.3.3 Mutation

Mutation is either performed on the RCAs or on the LCAs, with the LCAs
being preferred, as LCA selection is more crucial in most problem instances.
Each bit of the chosen attribute is then flipped with a constant probability of
αm. Details can be seen in Algorithm 4.4.

Algorithm 4.4 Mutation operator (GA2)
function Mutate(ind)

child = deepCopy(ind)
if randomFromUnitInterval() < 0.3 then

a = child.RCAs
else

a = child.LCAs
for i in {0,...,len(a)-1} do

if randomFromUnitInterval() < αm then
a[i] = not a[i]

return child

4.3.4 Variation with Extended DNA

In Section 4.3.1, I have described that the post-processing heuristic used to
determine the fitness of an individual uses LDF ordering for assigning DFGs
to LCAs by default. This was chosen due to the corresponding evaluation
for GreedyFCAPA in the previous chapter, where LDF ordering clearly domi-
nated MDF ordering. But since GAs are entirely different algorithms, it cannot
be assumed that the same holds for this GA.

Instead of predefining a heuristic DFG processing order, however, it is also
possible to specify the DFG processing order within the genetic representation
itself, simply by adding a third array to each individual’s DNA, consisting of
a permutation of all DFGs. To better assess the impact of the processing order
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on the solution quality, this variation has also been implemented. Crossover
on that specific part of each individual is carried out by alternating position
crossover [45]. During alternating position crossover, starting from an empty
offspring, both parents’ genes are traversed alternately and appended to the
offspring permutation list. Genes already present are skipped. Mutation is
performed using shuffle mutation, i.e. each gene on an individual is swapped
with a random other gene with a probability of αm.

4.4 Approach 3: Hybrid GA based on GreedyFCAPA

In addition to the hybrid GA presented in the previous section, it is also
possible to design a hybrid GA based on GreedyFCAPA. There are two
aspects, in particular, where suboptimal decisions might be made because of
the deterministic nature of GreedyFCAPA (see Section 3.5):

1. The ordering of the LCA candidates (Algorithm 3.4) and
2. the assignment of nodes and DFGs to a chosen LCA (Algorithm 3.5).

If one or both of these aspects were to be managed by a more flexible GA,
the resulting hybrid GA might give significantly better solutions, albeit at the
expense of additional runtime. This idea has been realized by designing a
hybrid GA, consisting of GreedyFCAPA with the exception that the order of
the LCA candidates is governed by a separate GA.

4.4.1 Representation and Fitness Evaluation

Similar to Section 4.3.4, the obvious choice for representing the order of the
LCA candidates is a permutation of the |C| potential hosts. Regarding the
initialization of individuals, it would be possible to introduce at least one
individual that contains the potential hosts in the same order as GreedyFCAPA
would process them, making sure that the GA’s end result is at least as good as
the one produced by GreedyFCAPA. However, this might lead to premature
convergence as that individual would take over the population quite quickly,
diminishing its diversity. Therefore, all individuals are initialized with a
random permutation instead.

The fitness evaluation is then done by running GreedyFCAPA, but instead of
calling the routine for the LCA candidate selection (Algorithm 3.4), the list of
candidates provided by the GA’s representation is used.

4.4.2 Crossover and Mutation

As the representation consists solely of a permutation, the crossover and
mutation operators can be defined by reusing two off-the-shelf operators:
alternating position crossover (Section 4.3.4) and displacement mutation, which
takes a random slice of a list representing a permutation and moves it to a
random position in the sequence [46].
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4.4.3 Variation with Extended DNA

So far, the hybrid GA considers only one of the two possible improvements
that I identified above. But the assignment of DFGs and nodes to c ∈ C, once
c has been chosen as an LCA, could also be managed by a GA. As described
in Section 3.5, GreedyFCAPA only starts assigning DFGs to c once either all
nodes are already controlled or it controls more than nmin = |V|

|C| nodes that
were previously uncontrolled. The reason that I presented in Section 3.5 was
as follows: In a network with many data flows, an LCA would have a lot of
potential DFGs after controlling only a few nodes, run out of resources by
satisfying them very quickly and hence a complete control structure would
perhaps not be obtained. The choice for |V||C| is was made because on average, an

LCA needs to control at least |V||C| nodes to obtain a complete control structure.
But apart from that, this setting for nmin is rather arbitrary. Any larger value
would technically fulfill the same purpose, but could change the obtained
results significantly. Also, a smaller value could possibly perform better for
certain networks with low network load.

Given that GA3 already represents a genetic algorithm that interacts with the
inner working of GreedyFCAPA, the straight forward option that presents
itself is to add nmin to the representation of GA3, also undergoing genetic
operations like crossover and mutation. For this adaptive variant of GA3, the
nmin values are initialized uniformly at random with values within [0, 3).
Therefore, the adaptive GA3 variant also considers nmin values smaller than
|V|
|C| . Crossover of the nmin part of the representation is done by taking the
average of the two corresponding values of the parents. Mutation is performed
by nonuniform gaussian mutation [45], i.e. the nmin value is manipulated by
adding a normally distributed random variable X ∼ N (0, 1).

4.5 Evaluation

In this section, I evaluate and discuss the performance of our GA approaches.
I will refer to them as GA1, GA2 and GA3, in order of appearances. First, I
define default parameters as a reference for further evaluation in Section 4.5.1
and provide initial performance results based on these. Next, I provide
several parameter evaluation results for the three GAs in Section 4.5.2 and
finally compare with GreedyFCAPA in Section 4.5.3. All GA implementations
were done in Python, partially supported by the Distributed Evolutionary
Algorithms in Python (DEAP) engine [96].

All calculations are executed in single-threaded mode on Intel® Xeon® E5-
2695 v3 CPUs running at 2.30 GHz. Each graph includes confidence intervals
with a confidence level of 95%. The used evaluation scenario is completely
identical to the one described in Section 3.6.1, although I have limited this
evaluation part to using only network instances with 36 nodes. Since a single
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RCA sufficed to ensure a complete control structure for all runs, I will focus
on the number of used LCAs in the following.

4.5.1 Default Parameters

To simplify the analysis of the influence of various GA parameters, I first
specify default parameters, based on which I evaluate the impact of particular
settings. The default settings have been verified by separate evaluations; to
not unreasonably enlarge this chapter, I only present a limited selection of
the most interesting results. Further results can be found in Scholz [94]. The
chosen default settings are as follows:

Population size: µ = 20.
Offspring size: λ = µ.
Parent selection: The tournament size is set to 2.
Survivor selection: The best µ individuals from the population and its off-

spring.
Crossover/Mutation probability: pc = 0.2, pm = 1− pc.
Mutation intensity: αm = 0.15.
DFG satisfaction order (GA2 and GA3): DFGs are ordered by least demand-

ing processing capacity first (or at random in case of a tie).
Termination: All genetic algorithms are run until the best all-time fitness does

not improve for 15 generations.

These default settings are used for each evaluation run unless otherwise
noted. But before evaluating any specific settings in particular, I provide an
initial comparison of all three GAs with GreedyFCAPA based on the default
parameters.
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Figure 4.1: Performances with the default settings

Figure 4.1 depicts the performance of GreedyFCAPA and the three GAs for
networks with 36 nodes and DFG counts ranging from 100 to 1000. Fig-
ure 4.1a shows the number of RCAs and LCAs used. It can be seen that
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GA3 performs consistently better than GreedyFCAPA, while GA2 performs
even better at first but deteriorates with higher network load and eventually
gets outperformed by GreedyFCAPA starting from 900 DFGs. GA1 however
provides solutions that require up to twice as many LCAs. Regarding runtime,
Figure 4.1b illustrates that GA2 and GA3 terminate within several seconds up
to few minutes, about three orders of magnitudes more than GreedyFCAPA.
GA1 is unreasonably slow, taking another order of magnitude more.

In total, FCAPP seems to be too complex to be solved reasonably well by
the pure GA approach GA1 while the initial results of GA2 and GA3 look
quite promising. Because the computation time of GA1 would prevent from
conducting more extensive evaluation runs, I decided to focus only on GA2
and GA3 in the remainder of this evaluation.

4.5.2 Parameter Evaluation

In this part, I take a closer look at individual parameter settings of GA2 and
GA3. First, Figure 4.2 shows the performance of GA2 and GA3 for networks
with 1000 DFGs depending on the population size µ.

Figure 4.2a shows that the average solution quality tends to improve only
marginally with increasing µ. However, this improvement is consistently
included within the confidence intervals of the remaining values for µ, which
are particularly big for GA2. Figure 4.2b reveals, as expected, that the runtime
increases linearly. As a result of these two observations, I decided to stick
with the default value of µ = 20.
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Figure 4.2: The influence of population size

Next, Figure 4.3 contains plots for parameter evaluations regarding parent
selection and crossover/mutation probability, path length definition and DFG
satisfaction order. Again, the evaluated networks have a fixed number of 1000
DFGs. Figure 4.3a displays the performance of GA2 and GA3 with different
tournament sizes for parent selection. It can be seen that the tournament
size has only little influence on the solution quality. It is surprising that a
tournament size of 1 (which corresponds to selecting parents uniformly at
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random) performs quite well. Apparently, for GA2 and GA3, the parent
selection is no significant driving force for evolutionary improvement of the
individuals.
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Figure 4.3: Parent selection and crossover vs. mutation probability

Then, Figure 4.3b shows the algorithms’ performance as a function of the
crossover probability pc. Since pm = 1− pc, a value of 0 for pc means no
crossover is performed, while pc = 1 means that no mutation operations occur.
It can be seen that the crossover probability does not affect GA3 notably, while
GA2 seems to perform slightly better when crossover is rarely used. This
could indicate that the mutation operator for GA2 provides a better genetic
drift towards better solutions. But again, the differences are mostly covered
by the confidence intervals and thus it is difficult to derive any conclusions.
Again, I decided to stick to the default choice of pc = 0.2 for the remainder of
the evaluation.
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Figure 4.4: DFG processing order of GA2 and GA3

As discussed in Sections 4.3 and 4.4, when it comes to satisfying DFGs, an
order has to be specified in which the DFGs are considered. By default,
the GAs order the DFGs by their required processing capacity pflow( f ), least
demanding ones first (LDF). But the DFGs can also be ordered by most
demanding DFG first (MDF) or even randomly. Additionally, for GA2, there
is the variant from Section 4.3.4, where the DFG processing order undergoes
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genetic operations just as the rest of the DNA. For all these different strategies,
Figure 4.4 shows how well they perform on networks with a number of DFGs
ranging from 100 to 1000.

For GA2, Figure 4.4a shows that the algorithm performs best when the DFGs
are ordered with LDF strategy, followed by MDF ordering. Surprisingly, even
a random order performs better than the GA2 variant with DFG order being
part of the DNA. In theory, one would expect to see results at least as good
as for the LDF strategy. However, I assume that the convergence towards a
possibly better order happens too slowly and thus the GA2 variant is not able
to come up with a better order before reaching the condition for termination.
As depicted in Figure 4.4b, LDF ordering also performs best for GA3, while
MDF ordering only performs slightly better than random ordering. Because
of these results, LDF is kept as the default setting for both GA2 and GA3.
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Figure 4.5: Comparison of the GA3 variants

The last parameter evaluation focuses on the variant of GA3 presented in
Section 4.4.3. As mentioned there, the variable nmin, which determines the
number of formerly uncontrolled nodes that an LCA needs to control before
it can satisfy DFGs, is set to |V||C| by default. In the following, I compare the
default GA3 algorithm with the adaptive GA3 variant with nmin being part of
the DNA. The results featuring networks with 100 to 3000 DFGs are illustrated
in Figure 4.5.
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First, Figure 4.5a shows the number of LCAs used by GA3 default and GA3
adaptive. It can be observed that GA3 adaptive manages to use fewer LCAs
until the network recources are exhausted. Figure 4.5b further reveals that
GA3 adaptive consistently manages to leave fewer DFGs not satisfied and
Figure 4.5c exposes that GA3 adaptive does not even need to run substantially
longer to do this. In total, GA3 adaptive clearly outperforms the default GA3.

Finally, Figure 4.5d exhibits the nmin values included in the DNA of the final
solutions of GA3 adaptive. Interestingly, no clear trend can be observed from
the presented values. Because of the rather small confidence intervals, it
can be concluded that the nmin value is rather consistent for a given number
of DFGs. But since the DFGs generated for every distance are completely
different, a dependence on the concrete DFGs in the network can reasonably
be excluded. One possible explanation could be the number of used LCAs,
which is also consistent per DFG count. However, one aspect that can be
observed is that the nmin value determined by GA3 adaptive is consistently
higher than the one chosen by default. Since the instances for this evaluation
were generated with a probability of 0.6 for each node to be a potential host,
the expected value for this default value is nmin ≈ 1.67.

Due to the results above, I will look at the adaptive nmin variant of GA3
instead of the default GA3 in the last part of this evaluation. Unfortunately,
the envisioned variant for GA2 failed to provide good results and no parameter
improvements could be found for GA2. Therefore, GA2 will remain with the
default parameters in the following.

4.5.3 Comparison with GreedyFCAPA

In the final part of this evaluation, I compare the performance of GA2 and the
adaptive GA3 variant, now simply denoted as GA3, with GreedyFCAPA for
100 to 3000 DFGs. The results can be seen in Figure 4.6.

Figure 4.6a shows the number of unsatisfied DFGs. It can be seen that once
the network resources are continuously exhausted, GreedyFCAPA causes
the highest number of unsatisfied DFGs out of the three algorithms. GA2
performs slightly better, whereas GA3 beats both GreedyFCAPA and GA2 dis-
tinctly. Figure 4.6b provides the number of LCAs used by the algorithms and
includes multiple interesting aspects to be observed. In the beginning, both
GA2 and GA3 use fewer LCAs than GreedyFCAPA, but then GreedyFCAPA
undercuts GA2 at 800 DFGs and GA3 at 1500 DFGs. There is, however, a signif-
icant difference between these two situations. When GreedyFCAPA undercuts
GA2, both algorithms still satisfy all DFGs, which means that GreedyFCAPA
outperforms GA2 at this point, even though this changes quickly once GA2
satisfied more DFGs than GreedyFCAPA. At 1500 DFGs however, GA3 sat-
isfies way more DFGs than GreedyFCAPA, thus GreedyFCAPA only uses
fewer LCAs because it is not capable of satisfying more DFGs by using the
remaining ones. At last, Figure 4.6c features the runtime performance of the
algorithms. Similar to Figure 4.1b, GreedyFCAPA runs around three orders
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4 Assessing Genetic Algorithms for FCAPP

of magnitude faster than the GAs. These have a very similar runtime at first,
but for more DFGs, it can clearly be seen that GA3 converges faster than GA2,
on top of giving better results.
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Figure 4.6: Comparison of GreedyFCAPA with GA2 and GA3 adaptive

Overall, GA3 clearly outperforms GA2 in all regards, in particular after switch-
ing to the adaptive variant. GreedyFCAPA is beaten even more significantly
in all metrics relevant to the solution but remains with the significant runtime
advantage.

4.6 Observations

In this chapter, I have assessed the concept of GAs for FCAPP. On the one
hand, the hybrid GA approaches gave very satisfying results, allowing me to
answer my initial question, whether or not there is an alternate algorithmic
approach that gives significantly better results than GreedyFCAPA within a
reasonable amount of time, in the affirmative. But on the other hand, the
pure GA approach gave poor results and some evolutionary principles, e.g.
population size, crossover operators and parent selection, were no significant
driving force towards the positive results. In contrast, the greatest positive
influences have been achieved by choosing hybrid representations that left
much of the work required to find a solution to greedy heuristics. So despite
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obtaining satisfying results, this naturally raises doubts about whether a
different algorithmic concept would have been a better choice for my mission
to find better heuristic solutions for FCAPP.

Still, the adaptive GA3 variant represents a solution approach to be preferred
over GreedyFCAPA, but only as long as the use case allows a runtime of
several minutes. As elaborated in Section 1.2, I assume that such a runtime
is generally too long, so that GreedyFCAPA is still to be favored in most
cases. Moreover, GA3 revealed the potential for improving GreedyFCAPA by
optimizing its parameters. I will revisit this possibility in Chapter 5.4.5.
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5
Flow Processing-aware Control
Application Placement with
Proportional-Share Scheduling
After presenting several solution approaches for my initial formulation of
FCAPP based on equal-share scheduling, this chapter describes how FCAPP
can also be formulated based on proportional-share scheduling.

In Chapter 3, I assumed equal-share processing scheduling because it is a
natural and easy way to allocate processing capacity among multiple entities.
While this decision was appropriate for an initial problem formulation, it is
also evident that equal-share scheduling results in a non-optimal distribu-
tion of processing capacity for entities with unequal processing demands as
present in FCAPP. Therefore, I decided to extend the formulation of FCAPP
based on proportional-share scheduling (which will be further discussed in
Section 5.1). While the formulation based on a more elaborate scheduling
scheme is expected to be more complex, it can also be expected that the possi-
bility to distribute processing capacity non-equally will result in a significant
improvement of solution quality.

I first give a short description of proportional-share scheduling, its theoretical
advantages compared to equal-share scheduling and its effects on the prob-
lem statement of FCAPP in Section 5.1. Next, I describe the corresponding
optimization model in Section 5.2 and elaborate on the modified version of
GreedyFCAPA to work with proportional-share scheduling in Section 5.3.
At last, I evaluate the solution approaches in Section 5.4 and compare them
to the results of Section 5.4 to analyze the effect of the changed processing
scheduling approach.

5.1 Proportional-Share Scheduling

As I described in Section 3.2, equal-share processing scheduling means that
the processing capacity pnode(c) of a potential host c ∈ C is divided equally
between all entities, i.e. all controlled nodes, coordinated LCAs and satisfied
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5 FCAPP with Proportional-Share Scheduling

DFGs. Employing equal-share scheduling allows to determine the processing
capacity from c available for each unit by only keeping track of the number
of units Procc served by c. The resulting processing capacity can then be
expressed by pnode(c)

Procc
as done in constraints (3.16) – (3.18) of OPTes (page 26).

However, this scheduling strategy also has a fundamental downside in the
context of FCAPP: Let c ∈ C be an RCA and/or LCA in a solution to an
FCAPP instance. Then, the set of units served by c can be expressed by

Us(c) := {x ∈ F|Satc,x = 1} ∪ {v ∈ V|RCAc,v = 1∨ LCAc,v = 1}.

Each unit y ∈ Us(c) requires a certain amount of processing capacity pc(y)
from c to fulfill either constraint (3.16), (3.17) or (3.18). Now let y∗ ∈ Us(c) be
a unit so that

ps(y∗) = max
y∈Us(c)

pc(y).

This allows to deduce

ps(y∗) ≤
pnode(c)

Procc
=

pnode(c)
|Us(c)|

⇔ |Us(c)| ≤
pnode(c)
ps(y∗)

.

This means that with equal-share scheduling, every unit served by a potential
host c ∈ C directly induces an upper bound for the number of units that c can
serve in total. The bigger the differences between the processing requirements
of the units served, the more this leads to resources being wasted instead of
serving additional units.

Proportional-share scheduling resolves this issue. In contrast to dividing the
available processing capacity of a potential host c ∈ C equally between all
served units, proportional-share scheduling individually allocates a certain
share of the processing capacity to each served unit. In particular, the pro-
cessing capacity is distributed among different units independent of each
others’ demands, as long as the total amount of allocated resources is less
than or equal to pnode(c). In total, proportional-share scheduling admits any
combination that equal-share scheduling already allowed, but also allows for
a lot of additional assignments that were previously prevented by equal-share
scheduling. Figure 5.1 illustrates a toy example which would be invalid for
equal-share scheduling (as P1 and P2 receive insufficient processing capacity)
but is valid with proportional-share scheduling.

But while proportional-share scheduling obviously allows for a more efficient
resource usage compared to equal-share scheduling, there is also a compu-
tational downside as proportional-share scheduling requires to determine
and store appropriate allocations for each served unit individually. I will
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0% 25% 50% 75% 100%

P1 P2 P3 P4

0% 25% 50% 75% 100%

P1 P2 P3 P4

0% 25% 50% 75% 100%

Processing demand

Equal-share

Proportional-share P1 P2 P3 P4

Figure 5.1: Exemplary comparison of equal-share and proportional-share scheduling: P1 and
P2 cannot be assigned sufficient resources with equal-share scheduling.

elaborate more on this aspect when describing the optimization model with
proportional-share scheduling in the following section.

At last, it is important to note that apart from the different processing schedul-
ing approach, the problem statement from Section 3.2 remains unchanged.
Similarly, there is no formal change in problem complexity, since the proof
from Section 3.4 still applies without modification.

5.2 Optimization Model with Proportional-Share
Scheduling

In this section, I describe my optimization model for FCAPP with proportional-
share scheduling, denoted as OPTps. Just like OPTes from Section 3.3, OPTps
determines a solution for FCAPP corresponding to the objectives defined in
Section 3.2 but based on proportional-share scheduling. Therefore, OPTps
takes the same parameters as inputs as OPTes, which are listed once more
with shortened description in Table 5.1 for the reader’s convenience.

Most of the variables used by OPTps to store the decisions about CA placement
and DFG satisfaction are also identical to the ones used by OPTes (Table 5.2).
However, OPTps needs additional variables to store the decisions about the
proportional processing shares, which are listed in Table 5.3.

Regarding the constraints of OPTps, it is possible to adopt all constraints from
OPTes that do not concern processing. Similarly, the objective function remains
unchanged. In total, the following constraints have to be met. Some constraints
use a big-M constant denoted as M, which is a very large constant. The
descriptions for constraints identical to constraints from OPTes in Section 3.3
is intentionally kept short.
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5 FCAPP with Proportional-Share Scheduling

Table 5.1: OPTps input parameters

V set of nodes
C ⊆ V set of potential hosts
E set of undirected links with E ⊆ V ×V
F set of DFGs originating from at least one node v ∈ V
W matrix with Wx,v = 1 iff x ∈ F originates from v ∈ V
pnode(c) processing power at node c ∈ C
bcap(v, w) maximum data rate for link (v, w) ∈ E
lcap(v, w) latency of link (v, w) ∈ E
bflow(x) data rate required by each flow of DFG x ∈ F
lflow(x) maximum acceptable round trip latency for DFG x ∈ F
pflow(x) operations per packet required for processing DFG x ∈ F
bLCA data rate required from an LCA-to-node routing path
bRCA data rate required from an RCA-to-LCA routing path
lLCA maximum acceptable LCA-to-node round trip latency
lRCA maximum acceptable RCA-to-LCA round trip latency
pLCA operations per control information packet required at an

LCA to control a node
pRCA operations per control information packet required at an

RCA to coordinate an LCA

Table 5.2: OPTps variables (identical to OPTes)

LCAc,v ∈ {0, 1} determines whether c ∈ C is an LCA for v ∈ V
RCAc,d ∈ {0, 1} det. whether c ∈ C is the RCA for LCA d ∈ C
isLCAc ∈ {0, 1} determines whether c ∈ C is an LCA
isRCAc ∈ {0, 1} determines whether c ∈ C is an RCA
Satc,x ∈ {0, 1} determines whether c ∈ C satisfies x ∈ F
isSatx ∈ {0, 1} determines whether x ∈ F is satisfied by an LCA
fc,u,v,w ∈ {0, 1} determines whether (v, w) ∈ E is included in the

routing path from LCA c ∈ C to node u ∈ V
gc,d,v,w ∈ {0, 1} determines whether (v, w) ∈ E is included in the

routing path from RCA c ∈ C to LCA d ∈ C

Table 5.3: Additional OPTps variables

pRCA
c,d ∈ R+ processing capacity reserved at RCA c ∈ C

for coordinating LCA d ∈ C
pLCA

c,v ∈ R+ processing capacity reserved at LCA c ∈ C
for controlling node v ∈ V

pDFG
c,x ∈ R+ processing capacity reserved at LCA c ∈ C

for processing DFG x ∈ F
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5.2 Optimization Model with Proportional-Share Scheduling

LCA-to-node routing path constraints:

∑
(c,w)∈E

fc,d,c,w = LCAc,d, ∀c ∈ C, d ∈ V, c 6= d (5.1)

∑
(u,d)∈E

fc,d,u,d = LCAc,d, ∀c ∈ C, d ∈ V, c 6= d (5.2)

∑
(u,v)∈E

fc,d,u,v = ∑
(v,w)∈E

fc,d,v,w, ∀c ∈ C, d, v ∈ V, c 6= d 6= v (5.3)

RCA-to-LCA routing path constraints:

∑
(c,w)∈E

gc,d,c,w = RCAc,d · isLCAd, ∀c, d ∈ C, c 6= d (5.4)

∑
(v,d)∈E

gc,d,v,d = RCAc,d · isLCAd, ∀c, d ∈ C, c 6= d (5.5)

∑
(u,v)∈E

gc,d,u,v = ∑
(v,w)∈E

gc,d,v,w, ∀c, d ∈ C, v ∈ V, c 6= d 6= v (5.6)

Constraints ensuring a complete control strucure:

∑
c∈C

LCAc,v ≥ 1, ∀v ∈ V (5.7)

∑
c∈C

RCAc,d = isLCAd, ∀d ∈ C (5.8)

M· isLCAc ≥ ∑
v∈V

LCAc,v, ∀c ∈ C (5.9)

M· isRCAc ≥ ∑
d∈C

RCAc,d, ∀c ∈ C (5.10)

DFG satisfaction constraints:

∑
c∈C

Satc,x ≤ 1, ∀x ∈ F (5.11)

isSatx = ∑
c∈C

Satc,x, ∀x ∈ F (5.12)

Satc,x ≤ LCAc,v, ∀c ∈ C, x ∈ F, v ∈ V, Wx,v = 1 (5.13)

Link capacity constraints:

∑
c∈C,d∈V

fc,d,v,w ·
(

bLCA + ∑
x∈F

Wx,d · Satc,x · bflow(x)
)
+ ∑

c,d∈C
gc,d,v,w · bRCA

≤ bcap(v, w), ∀(v, w) ∈ E (5.14)

As described in Section 5.1, the proportional-share scheduling model assigns
individual shares of a host’s processing capacity to each served unit. The
processing time for each unit is obtained by dividing the required amount
of operations per packet by its processing capacity share. For example, the
processing time of a DFG x ∈ F satisfied by LCA c ∈ C is determined by
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5 FCAPP with Proportional-Share Scheduling

pflow(x)
pDFG

c,x
. With this, the following constraints, analoguous to constraints (3.16–

3.18) from Section 3.3, ensure that a sufficient amount of processing capacity
is allocated for each unit so that the processing time plus link delays of the
corresponding routing paths are smaller or equal to the latency requirements
of each DFG (5.15), LCA (5.16) and RCA (5.17).

Satc,x ·
pflow(x)

pDFG
c,x

+ Satc,x · ∑
(v,w)∈E

fc,d,v,w ·
(

lcap(v, w) + lcap(w, v)
)

≤ lflow(x), ∀c ∈ C, d ∈ V, x ∈ F, Wx,d = 1 (5.15)

LCAc,d ·
pLCA

pLCA
c,d

+ ∑
(v,w)∈E

fc,d,v,w ·
(

lcap(v, w) + lcap(w, v)
)

≤ lLCA, ∀c ∈ C, d ∈ V (5.16)

RCAc,d ·
pRCA

pLCA
c,d

+ ∑
(v,w)∈E

gc,d,v,w ·
(

lcap(v, w) + lcap(w, v)
)

≤ lRCA, ∀c, d ∈ C (5.17)

But processing capacity should only be provided to actually coordinated
LCAs, controlled nodes and satisfied DFGs (5.18) – (5.20) and it must not be
possible to assign more processing capacity than available at a potential host
(5.21).

pDFG
c,x ≤M · Satc,x, ∀c ∈ C, x ∈ F (5.18)

pLCA
c,v ≤M · LCAc,d, ∀c ∈ C, v ∈ V (5.19)

pRCA
c,d ≤M · RCAc,d, ∀c, d ∈ C (5.20)

∑
d∈C

pRCA
c,d + ∑

v∈V
pLCA

c,v + ∑
x∈F

pDFG
c,x ≤ pnode(c), ∀c ∈ C (5.21)

Loop prevention and corner case constraints:

∑
(v,w)∈E, w=c

fc,d,v,w = 0, ∀c ∈ C, d ∈ V (5.22)

∑
(v,w)∈E, v=d

fc,d,v,w = 0, ∀c ∈ C, d ∈ V (5.23)

∑
(v,w)∈E, w=c

gc,d,v,w = 0, ∀c ∈ C, d ∈ V (5.24)

∑
(v,w)∈E, v=d

gc,d,v,w = 0, ∀c ∈ C, d ∈ V (5.25)

LCAc,c = isLCAc, ∀c ∈ C (5.26)
RCAc,c = isRCAc · isLCAc, ∀c ∈ C (5.27)

Objective function (identical to OPTes):

minimize: ∑
c∈C

(
isRCAc + isLCAc

)
−ω · ∑

x∈F
isSatx (ω > 2 · |C|) (5.28)
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5.2 Optimization Model with Proportional-Share Scheduling

Unfortunately, the optimization model in this form poses a practical issue,
since (5.15) – (5.17) are fractional constraints that are not supported by common
solvers such as Gurobi [91], which can at most handle quadratic constraints.
Hence, it would be beneficial to tranform OPTps into an MIQCP just like
OPTes. As a first step, it is easy to at least get rid of denominator variables by
multiplying the whole constraint with the corresponding variable:

pDFG
c,x ·

(
lflow(x)− Satc,x · ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

))
≥ Satc,x · pflow(x), ∀c ∈ C, d ∈ V, x ∈ F, Wx,d = 1, (5.29)

pLCA
c,d ·

(
lLCA − ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

))
≥ LCAc,d · pLCA, ∀c ∈ C, d ∈ V, (5.30)

pLCA
c,d ·

(
lRCA − ∑

(v,w)∈E
gc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

))
≥ RCAc,d · pRCA, ∀c, d ∈ C. (5.31)

Now, (5.30) and (5.31) are already quadratic constraints and can be used
as a replacement for (5.16) and (5.17). But (5.29) is a cubic constraint and
still constitutes a problem. So I decided to go a step back and to reanalyze
constraint (5.29) theoretically, focusing on whether or not it really needs to be
a cubic constraint. In Section 3.3, I explained why the multiplication by Satc,x
was necessary for the case that Satc,x = 0. But as it turns out, this is no longer
the case for proportional-share scheduling since according to constraint (5.18)
it holds that

Satc,x = 0 ⇒ pDFG
c,x = 0

and thus the following is always fulfilled if Satc,x = 0:

pDFG
c,x︸ ︷︷ ︸
=0

·
(

lflow(x)− ∑
(v,w)∈E

fc,d,v,w ·
(

lcap(v, w) + lcap(w, v)
))
≥ Satc,x · pflow(x)︸ ︷︷ ︸

=0

.

Therefore, it is now possible to replace (5.29) by (5.32):

pDFG
c,x ·

(
lflow(x)− ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

))
≥ Satc,x · pflow(x), ∀c ∈ C, d ∈ V, x ∈ F, Wx,d = 1. (5.32)

Finally, all practical issues of OPTps are resolved so that it can be implemented
and solved by common solvers for optimization problems.
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5 FCAPP with Proportional-Share Scheduling

5.3 GreedyFCAPA with Proportional-Share Scheduling

In contrast to the creation of OPTps, modifying GreedyFCAPA to work with
proportional-share scheduling turns out to be rather simple. Since the change
only concerns the assignment of processing capacity, the main logic and
hence all procedures shown in Section 3.5 remain unchanged. However, all
procedures responsible for checking and adding RCA coordination, LCA
control and DFG satisfaction have to be modified:

• checkRCAcontrol

• addRCAcontrol

• checkLCAcontrol

• addLCAcontrol

• checkFlowSat

• addFlowSat

Because of the iterative nature of GreedyFCAPA, i.e. units are served suc-
cessively and a (potential) routing path is always given when checking and
adding RCA coordination, LCA control or DFG satisfaction, it is easy to
determine whether or not a potential host possesses a sufficient amount of
remaining processing capacity to fulfill constraints (5.15) – (5.17) accordingly.
Vice versa, when assigning a unit to be served and given a routing path P, it is
possible to simply assign exactly the required amount of processing capacity
corresponding to (5.15) – (5.17):

pDFG
c,x = pflow(x) ·

(
lflow(x)− ∑

(v,w)∈P

(
lcap(v, w) + lcap(w, v)

))−1

pLCA
c,v = pLCA ·

(
lLCA − ∑

(v,w)∈P

(
lcap(v, w) + lcap(w, v)

))−1

pRCA
c,d = pRCA ·

(
lRCA − ∑

(v,w)∈P

(
lcap(v, w) + lcap(w, v)

))−1

In addition and unlike the equal-share scheduling case, it is only necessary to
keep track of a host’s remaining processing capacity but no longer necessary
to check if the requirements of an already served unit are still fulfilled before
serving an additional unit. This could lead to a significantly reduced runtime,
which I will try to confirm in the following evaluation.

5.4 Evaluation

In the evaluation of this chapter, I compare the results of the FCAPP solution
approaches from Chapter 3 with the modifications presented in this chapter to
analyze the possible performance gain through considering proportional-share
scheduling instead of equal-share scheduling.
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5.4 Evaluation

After explaining the evaluation scenario in Section 5.4.1, I first evaluate OPTes
and OPTps against the two versions of GreedyFCAPA, which will be denoted
as GreedyFCAPAes and GreedyFCAPAps for the remainder of this section,
in Section 5.4.2. Because of the high runtime of the optimization models,
this is only possible for very small scenarios. Thus, I will also compare
GreedyFCAPAes and GreedyFCAPAps using larger, real-world size scenarios
in Section 5.4.3. Because I expect that the change to proportional-share schedul-
ing will have a major impact on the behavior of the solution approaches, I
am also revisiting the two DFG assignment strategies LDF and MDF in these
first two evaluation parts. Then, I will analyze the influence of the used
backhaul topology on the obtained results in Section 5.4.4, which will be
further motivated in Sections Section 5.4.1 and Section 5.4.3. At last, I revisit a
possibility for parameter improvement in Section 5.4.5 that was observed in
the previous chapter.

All evaluations are executed on Intel® Xeon® E5-2695 v3 CPUs running at
2.30 GHz. Both OPTes and OPTps have been implemented using the Pyomo
package for optimization modeling in Python [90] and solved with Gurobi
[91] running in single-threaded mode. All plots contain confidence intervals
at a 95% confidence level.

5.4.1 Evaluation Scenario

In addition to the mesh topologies that I introduced in Section 3.6.1, I present
an alternative topology model in this section. Since mesh topologies cause high
capital and operational expenses in practice, real-world backhaul networks are
often built as ring topologies, consisting of a high-speed optical fiber ring that
interconnects multiple smaller subnetworks, each one with a tree topology
[97, 98, 87]. To obtain results based on a more common topology and to
possibly observe different performance results based on different topologies, I
decided to also model and consider ring backhaul topologies in the following.

Similar to my generated mesh topologies, the nodes of ring topologies are
placed on a regular grid with a mean inter-BS distance of s̄ = 1000 m, cor-
responding to an urban scenario [92], and are then shifted in both x and y
direction using normally distributed random variables X, Y ∼ N (0, s̄

8 ). Then,
the backhaul links are generated in a two-step process:

1. Determine and connect the ring nodes,
2. Connect all remaining nodes.

For the first step, I start by determining the radius that minimizes the total
distance to all nodes in the network, while the center of the ring is always
positioned in the center of the regular grid. For an n× n network and node
coordinates denoted as (vx, vy) ∀ v ∈ V, it holds that
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dist(v, ring) =
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√(

vx −
(n− 1)s̄

2

)2

+

(
vy −

(n− 1)s̄
2

)2

− r

∣∣∣∣∣∣
⇒ r = argmin

r
∑

v∈V

√(vx −
(n− 1)s̄

2

)2

+

(
vy −

(n− 1)s̄
2

)2

− r

2

⇒ d
dr ∑

v∈V

√(vx −
(n− 1)s̄

2

)2

+

(
vy −

(n− 1)s̄
2

)2

− r

2

= 0

⇔ r =
s̄

n2 ∑
v∈V

√(vx −
n− 1

2

)2

+

(
vy −

n− 1
2

)2

− r

2

.

Based on this ideal ring, I then proceed to determine and connect the ring
nodes by starting with the node closest to the ideal ring and then building the
ring clockwise by choosing the neighbor (according to the regular grid) being
(1) in the correct direction and (2) closest to the ideal ring. A more detailed
representation of this procedure can be found in Algorithm 5.1.

Algorithm 5.1 createRing()
ring_completed = False
v∗ = argminv∈V dist(v, ring)
vcurr = v∗

while ring_completed = False do
grad = −

(
vcurr

x − (n−1)s̄
2

)
\
(

vcurr
y − (n−1)s̄

2

)
(a, b) =

(
sgn

(
vcurr

y − (n−1)s̄
2

)
, grad · sgn

(
vcurr

y − (n−1)s̄
2

))
cand = {v ∈ neighbors(vcurr) if

〈
(a, b), (vx − vcurr

x , vy − vcurr
y )

〉
≥ 0}

if v∗ ∈ cand then
vnext = v∗

ring_completed = True
else

vnext = argminv∈cand dist(v, ring)
connect vcurr and vnext

vcurr = vnext

After creating the ring, the remaining nodes can finally be connected. To
do this, I always connect the unconnected node being closest to an already
connected node, which results in multiple tree subnetworks with a ring node
as root. As illustration, Figure 5.2 shows a generated 6× 6 ring topology. On
the left side, I show only the generated nodes together with the determined
ideal ring and on the right side, I depict the resulting graph including the
generated backhaul links.
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Figure 5.2: Exemplary generated ring topology

Regarding the link parameters, all links that are part of the ring are assigned
a capacity of 5 Gbit/s while the remaining links are assigned a capacity of
2.5 Gbit/s. As in Section 3.6.1, the latency for each link is determined by its
length multiplied by 1.45 and divided by the speed of light, assuming an
optical backhaul network. In the remainder of this evaluation, each node
becomes a potential host with a probability of PC and is then assigned with a
processing power of pnode = 200 GFLOPS. The DFG generation as well as all
RCA, LCA and DFG parameters are kept identical to the evaluation scenario
from Section 3.6.1.

5.4.2 Optimization Models vs. GreedyFCAPA Variants

To compare OPTes, OPTps, GreedyFCAPAes and GreedyFCAPAps, I have gen-
erated mesh topologies with 4 and with 9 nodes, setting PC = 1.0 to not
unnecessarily reduce the solution space of the small networks. DFGs have
been generated as multiples of 25 (i.e. 25, 50, 75,. . . ) as long as the instances
could still be solved in reasonable time. Fortunately, OPTps still provided a
reasonable runtime for higher numbers of DFGs in the 4-node networks, in
contrast to OPTes, which allows to reveal more interesting aspects as will be
seen further below. As in Section 3.6.2, I enhanced the optimization models
by feeding them with the results of the respective heuristic approaches for
reducing their search space. Similarly, a 1-hour time limit was set for their
solving time. The few instances that did not find any valid solution within
this time were allowed to run longer until a valid solution was found.

For all these instances, a valid solution has been found and consistently only
one RCA was used. For the 9-node networks, all DFGs have been satisfied,
so the corresponding plot was omitted. The remaining results can be seen
in Figure 5.3. First, Figures 5.3a and 5.3b show the number of LCAs used by
the algorithms. While OPTes and GreedyFCAPAes show the same behavior
already known from Section 3.6.2, OPTps and GreedyFCAPAps reveal very
pleasant performance. Not only does proportional-share scheduling outper-
form equal-share scheduling significantly, which could have been expected,

67



5 FCAPP with Proportional-Share Scheduling

but in addition, GreedyFCAPAps apparently always finds a solution using
the optimal number of LCAs, unlike GreedyFCAPAes and independent of the
DFG assignment strategy (LDF or MDF). Additionally, it can be observed that
proportional-share scheduling seems to scale with the number of DFGs in a
more obvious way than equal-share scheduling.
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Figure 5.3: Evaluation: optimization models vs. GreedyFCAPA variants

Next, Figure 5.3c depicts the percentage of DFGs satisfied in the 4-node net-
works. OPTes and GreedyFCAPAes are not able to satisfy all DFGs as already
seen in Section 3.6, with a notable gap between OPTes and the GreedyFCAPAes
variants. Because it was possible to also execute OPTps for higher DFG counts,
it can also be seen how OPTps and GreedyFCAPAps behave once the resources
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are no longer sufficient to satisfy all DFGs at around 1050 DFGs. First of all,
GreedyFCAPAps (LDF and MDF) is able to satisfy all DFGs as long as OPTps.
Then, GreedyFCAPAps with MDF strategy satisfies visibly fewer DFGs than
OPTps, yet the gap is much smaller compared to the difference between OPTes
and GreedyFCAPAes with MDF strategy. But GreedyFCAPAps with LDF stra-
tegy continues to satisfy as many DFGs as OPTps up to 1200 DFGs, before a
small gap between both algorithms appears.

At last, Figures 5.3d and 5.3e illustrate the runtime required for the algo-
rithms in logarithmic scale. Looking at GreedyFCAPAes and GreedyFCAPAps,
it can clearly be seen that GreedyFCAPAps runs significantly faster than
GreedyFCAPAes. This can be explained by the fact that GreedyFCAPAps has
to perform less checking when serving new units as remarked in Section 5.3.
Moreover, GreedyFCAPAps seems to work equally fast for both LDF and
MDF strategies. Overall, GreedyFCAPAps runs about three to six orders of
magnitude faster than the optimization models.

5.4.3 GreedyFCAPA Variants in Larger Scenarios

For evaluating GreedyFCAPAes and GreedyFCAPAps in larger scenarios, I
have generated networks with 36 and 100 nodes, with both mesh topology
and ring topology, PC = 0.6 and multiples of 200 DFGs. For all instances, only
one RCA was used and for the 100-node networks all DFGs have been satisfied.
After looking at the results, my first observation was that there were very
few and only minor differences between the mesh and ring topologies with
otherwise identical parameters. Therefore, I analyze the differences separately
in Section 5.4.4 to obtain deeper insight. In this evaluation part, I only show the
results obtained from the ring topologies, which can be considered identical
to the ones obtained from the mesh topologies, in Figure 5.4.

The plots in Figure 5.4 confirm what could also be observed in Section 5.4.2.
Figures 5.4a and 5.4b show the percentage of DFGs satisfied in the 36-node
and 100-node ring topologies. For 36 nodes in particular, it can be seen that
GreedyFCAPAps satisfies all DFGs up to around 4000 DFGs, significantly
longer than GreedyFCAPAes where the resources are exhausted at around
1400 DFGs. For more than 5000 DFGs, GreedyFCAPAps with LDF strategy
again satisfies more DFGs than GreedyFCAPAps with MDF strategy. Fig-
ures 5.4c and 5.4d illustrate the number of used LCAs. They show that
GreedyFCAPAps outperforms GreedyFCAPAes significantly, requiring less
than half of the LCAs on average. Figures 5.4e and 5.4f depict the runtimes for
the same networks, showing that GreedyFCAPAps runs up to four times faster
than GreedyFCAPAes. Regarding the DFG assignment strategies LDF and
MDF, two observations can be made. First, the influence of the chosen strategy
is apparently way smaller on GreedyFCAPAps compared to GreedyFCAPAes.
Second, the LDF strategy is still to be preferred over the MDF strategy for
GreedyFCAPAps: the DFG satisfaction rate is higher, the number of used
LCAs is equal and the runtime is either equal or marginally lower. As a
result, I will continue to use the LDF assignment strategy as a default in the
following.
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Figure 5.4: Evaluation: GreedyFCAPA variants in larger scenarios

5.4.4 Mesh vs. Ring Topology Analysis

As described in the previous section, there were very few and only minor
differences between the mesh and ring topologies with otherwise identical
parameters. But given that both types of topology mainly differ in availability
of links and thus link capacity, a logical explanation could be that my chosen
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evaluation parameters cause the processing capacity to be the main bottleneck
for DFG satisfaction. So in this section, I present the results obtained from
the same instances as in Section 5.4.3 with the only difference that the link
capacities of all network links have been scaled by a factor of 0.1. This should
cause available link capacity and routing path lengths to be a more significant
factor.
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Figure 5.5: Evaluation: GreedyFCAPA variants in larger scenarios with reduced link capacities

The relevant results of the 36-node topologies are illustrated in Figure 5.5.
As the 100-node topologies showed a very similar behavior, I have omitted
them here. Figure 5.5a depicts the percentage of DFGs satisfied in the 36-
node mesh and ring topologies. Now, it can clearly be seen that more DFGs
are not satisfied in the ring topologies than for the mesh topologies, for
both GreedyFCAPAes and GreedyFCAPAps. In particular, GreedyFCAPAps
in the ring topologies is even outperformed by GreedyFCAPAes in the mesh
topologies for up to 3400 DFGs. Certainly, this stems from the lower number
of available links in the ring topologies. In addition, it is necessary to use
longer routing paths in the ring topology, so that the same number of routing
paths generally requires more link capacity from a ring topology compared to
a mesh topology. Interestingly, the difference for GreedyFCAPAes is visibly
smaller. It seems that for the inferior equal-share scheduling, processing
capacity is still a major bottleneck despite the reduced link capacity.

Next, Figure 5.5b depicts the number of LCAs used; again the difference is
more significant for GreedyFCAPAps. GreedyFCAPAps first requires more
LCAs in the ring topologies than in the mesh topologies, but starting from
around 2000 DFGs this turns around. This can be explained as follows: since
the link capacities have been reduced significantly, the links around a placed
LCA are more quickly exhausted and thus additional LCAs have to be placed
into parts of the network with less exhausted links. But with even more DFGs,
the links are so exhausted that some DFGs cannot be satisfied even by placing
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5 FCAPP with Proportional-Share Scheduling

additional LCAs. Once more, GreedyFCAPAes is clearly less affected by this
change. Despite the reduced link capacities, the inferior processing scheduling
likely still leads to the processing capacity being the main bottleneck.

5.4.5 nmin Parameter Analysis

After observing the performance improvements obtained from switching from
equal-share scheduling to proportional-share scheduling, I am now revisiting
the observations from Section 4.6. At least for equal-share scheduling, the
adaptive GA3 variant (Section 4.4.3) achieved notable performance improve-
ments by performing genetic operations on

1. the order of the LCA candidates (Algorithm 3.4) and
2. the threshold for new LCAs to satisfy DFGs nmin (Algorithm 3.5).

However, the possibilities for an iterative algorithm such as GreedyFCAPA
to adopt this are very limited. In particular, the order of the LCA candidates
is already handled by best-effort heuristic metrics and attempting different
orderings would basically mean re-executing multiple times, increasing the
runtime by the same factor. For this reason, I decided to only look into
the possibility of improving the nmin parameter, even though this lowers the
performance gain expectations. As a reminder, the instances for this evaluation
are generated with a probability of 0.6 for each node to be a potential host,
thus the expected value for the currently used nmin is |V||C| =≈ 1.67. The results
shown in Figure 4.5d suggest that it is beneficial to consider higher values.
Therefore, I conducted a study using the 36-node networks from the previous
sections with nmin = β · |V||C| , β ∈ {1, . . . , 6}, where β = 1 corresponds to the
current choice of nmin.

The results of the study, which can be seen in Figure 5.6, depict the results for
GreedyFCAPAes on the left and the results for GreedyFCAPAps on the right.
First of all, due to switching back to the default link parameters, the results
obtained from the mesh and ring topologies were again very similar, so that
I am only presenting the ones of the 36-node mesh topologies. Figures 5.6a
and 5.6b exhibit the percentage of DFGs satisfied. For GreedyFCAPAes it can
be seen that a higher β results in more DFG satisfied once the state of 100%
DFG satisfaction is left. But there is no such affect on GreedyFCAPAps. The
explanation for this is very related to my analysis of equal-share scheduling
in Section 5.1, where I elaborated that the bigger the differences between the
processing requirements of the units served, the more resources of a potential
host are wasted. Keeping this in mind, it is now essential to remember that
using a higher β value, i.e. requiring more new nodes to be controlled before
being allowed to satisfy DFGs, practically means that every newly added LCA
has a higher number of potential DFGs available once it is allowed to satisfy
them. As a result, the differences between the processing requirements of
the units served will decrease because of the applied LDF strategy. Hence,
less resources are wasted and more DFGs are satisfied per LCA. However, as

72



5.4 Evaluation

also explained in Section 5.1, proportional-share scheduling does not suffer
from this downside, which is why GreedyFCAPAps is not notably affected by
changing the β value.
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Figure 5.6: Evaluation: nmin parameter analysis for GreedyFCAPAes and GreedyFCAPAps

Similar observations can be made for the number of used LCAs depicted
in Figures 5.6c and 5.6d. For GreedyFCAPAes, higher β values result in
fewer LCAs used (until all LCAs are used anyways). But the number of
LCAs used by GreedyFCAPAps is again unaffected by varying β. Obviously,
this stems from the same effect that I explained above. Finally, the runtime
results illustrated in Figures 5.6e and 5.6f are quite astonishing. Already for
GreedyFCAPAes, a higher nmin value significantly raises the runtime, but for
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GreedyFCAPAps the increase is even larger. While this runtime increase is
higher than I would have expected, the increasing runtime as such can be
explained by the larger search space created for each LCA by forcing it to
control more nodes before satisfying any DFGs.

In total, it can be concluded that the positive effect of varying the nmin
parameter observed in the previous chapter must have been tightly con-
nected to the underlying equal-share scheduling. On the one hand, it is
of course disappointing that this possible improvement is no longer valid
for GreedyFCAPAps, but on the other hand, the increased robustness of
GreedyFCAPAps compared to GreedyFCAPAes is a satisfactory result. Obvi-
ously, I will stick to nmin = |V|

|C| based on these results.

5.5 Observations

In this chapter, I have revised my initial assumption from Chapter 3 of
equal-share scheduling and have analyzed FCAPP based on proportional-
share scheduling. While the implementation of proportional-share scheduling
raised several issues for creating the corresponding optimization model, the
adaptation into GreedyFCAPA turned out to be rather simple with aston-
ishing performance results. As the evaluation part of this chapter showed,
GreedyFCAPAps used significantly less LCAs, satisfied more DFGs, had a sig-
nificantly shorter runtime and also behaved more stable than GreedyFCAPAes.
Also, GreedyFCAPAps attained close to optimal results compared with OPTps.
Therefore, proportional-share scheduling is clearly to be favored over equal-
share scheduling and I will consider the proportional-share version of FCAPP
and the corresponding implementations in the remainder of this thesis.

Apart from the processing scheduling results, this chapter also includes the
performance comparison of different backhaul topologies and the results
turned out to be very robust as almost no differences could be observed.
However, as I stated in Section 5.4.3, this only provides a conclusion for my
chosen evaluation scenario. To avoid overlooking important aspects, I pro-
duced additional evaluation results with reduced link capacities that revealed
significant differences between the two types of topologies. The question
how much the topology influences the results and performance of FCAPP
will also be revisited in later chapters. Finally, I took the opportunity to get
back to the observations from Section 4.6, searching for further performance
improvements. But the results clearly indicated that this opportunity was no
longer relevant for proportional-share scheduling.

So in total, GreedyFCAPA with proportional-share scheduling represents a
very powerful heuristic solution for a fixed network state. Indeed, having a
fixed network state has been an implicit assumption for my evaluations so far.
In the subsequent chapter, I will explore efficient solutions for the case when
the network state, in particular the network load, changes.

74



6
Flexibly Reassigning
Control Applications

The switch from equal-share to proportional-share processing resulted in a
significant performance improvement for my FCAPP solution approaches.
However, there is still one important aspect that I have neglected so far. All
presented approaches have in common that they only consider CA placement
for a fixed network state. But finding a good placement for a given state is
only suitable for an initial placement situation and only solves the problem
temporarily. As the network load of a mobile access network can change very
quickly, the performance of a static one-time placement will typically become
worse over time. In typical networks, many data flows appear and expire
every second, which makes it necessary to modify DFG-to-LCA assignments
or to reconfigure the current CA placement.

In this chapter, I thus rectify this shortcoming by addressing flexible CA
reassignment in reaction to network load changing over time. I first describe
my considerations for flexible reassignment in Section 6.1. These considera-
tions inspired me to extent GreedyFCAPA to a Flexible flow processing-aware
Control Application Placement Framework (FlexCAPF), which I elaborate in
Section 6.2. At last, the performance of FlexCAPF is evaluated by means of
dynamic network simulation in Section 6.3.

6.1 Reassignment Considerations

As explained above, it is crucial for mobile access networks to revisit and
adjust CA placement decisions over time. The most obvious and easiest
solution is to compute a new controller placement from scratch when the
performance of the current placement deteriorates. But this approach has
significant downsides. First, such a placement is expected to result in a lot of
different assignments compared to the previous placement, i.e. a lot of nodes
will be controlled by different LCAs and DFGs will be satisfied by different
LCAs. Therefore, affecting such a placement decision in the network will
cause much reconfiguration overhead. Second, generating a completely new
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placement seems to be a waste of computational resources. In particular, even
with a fast heuristic algorithm, the runtime for a completely new placement
might be too high for frequently changing network load.

The alternative to computing a new placement from scratch is to consider
flexible reassignment based on the current, already existing CA placement.
The advantage of this approach is that existing assignments can be reused.
Hence, reconfiguration overhead is reduced and with proper reassignment
mechanisms in place, the runtime to generate a placement that maintains high
network performance can be significantly decreased. In particular, it seems
plausible to assume that for minor load changes in the network, the existing
CA positions can be kept and that only a few LCA-to-node and DFG-to-LCA
assignments have to be modified to adapt to the current network state. If this
assumption holds, it justifies a reassignment approach rather than a from-
scratch recomputing approach. But such an approach also has a downside.
While a new placement from scratch is optimized for the current network state,
a reassignment builds up on the current placement, which was optimized for
a previous, outdated network state. As a result, retained LCA-to-node and
DFG-to-LCA assignments might be non-optimal for the current network state
and the resource usage efficiency might be worse compared to a placement
computed from scratch. For this reason, designing adequate mechanisms for
reassignment is very important when building on the existing placement.

As my focus for this thesis lies on efficient CA placement decisions that happen
quickly enough to flexibly adapt placement decisions during network opera-
tion, even for high and quickly changing load, I study how to efficiently build
on the existing placement. To do so, I have decided to extend GreedyFCAPA
into a flexible CA placement framework with additional procedures to han-
dle different reassignment situations, all optimized for transforming a given
placement into a suitable one for an updated network state.

But before determining possible situations that warrant a reassignment, it is
first important to extend the problem statement by a notion of time for the
DFGs. So far, this was not necessary since only fixed network states were
considered. However, when looking at reassignment over time, it is necessary
to define when a DFG enters a network and when it expires again. I do this
by defining an arrival time tin(x) and a duration tdur(x) for each DFG x ∈ F
(Table 6.1).

Table 6.1: Additional DFG parameters

tin(x) arrival time of DFG x ∈ F
tdur(x) duration of DFG x ∈ F

Now, given an existing CA placement with a complete control structure
already in place, there are several cases which should result in (1) modifying
assignments for the current CA placement or (2) changing the current CA
placement. One such case is of course new DFGs arriving to the network. If
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such a DFG can be satisfied with the current placement, the corresponding
DFG-to-LCA assignment has to be established. If this is not possible, a new
LCA has to be added to the network, i.e. the CA placement is changed.

In addition, it would also be possible to re-evaluate DFGs, which could not be
satisfied during a previous execution, at a later point in time. But because it
is uncertain whether or not a DFG request is still relevant at some point in
time past its initial arrival time, I decided to assume that this issue is handled
outside the scope of my work. This means that not satisfied DFGs are rejected
and if the desire to process this DFG still exists at a later point in time, I
assume it to be injected into the backhaul network again then. My framework
will then perceive it as a new incoming DFG request and handle it accordingly.

Apart from additional load in the network, it is also important to assess when
the network load has decreased by a margin that allows to save resources by
deactivating CAs. I call such situations low-load situations. Last but not least, I
also want to consider the unlikely, yet crucial case where a CA host fails, i.e.
an RCA or LCA is suddenly removed from the network.

In total, I consider the following events as triggers to change the network
configuration:

1. Incoming DFGs
2. Low-load situations
3. CA host failures

Finally, since I already consider CA host failures, one could also think of the
case when additional resources are added to the network, e.g. a new potential
host or additional processing capacity for an existing host. While this is of
course possible, this does not need a special treatment as new resources will
automatically be utilized if needed for incoming DFGs. Also, in case of major
changes to the network resources, it would probably be advisable to compute
a new CA placement from scratch for once to optimally utilize resources that
were added in strategically good locations.

6.2 Flexible Multi-layer Greedy Framework

In this section, I present my Flexible flow processing-aware Control Ap-
plication Placement Framework (FlexCAPF). FlexCAPF fully incorporates
GreedyFCAPA as presented in Sections 3.5 and 5.3 for initial CA placement.
In addition, FlexCAPF includes procedures to handle the different cases de-
scribed in the previous section in which a reassignment is expedient, which
are described in the following.
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6.2.1 Satisfying Incoming DFGs

Every time a new DFG appears in the network, FlexCAPF at first tries to assign
it to one of the existing LCAs by calling the browseLCAsForDFG procedure
(Algorithm 6.1), which is designed specially for satisfying individual incoming
DFGs fast and efficiently. Unlike the addNewLCA procedure (Algorithm 3.5),
where an LCA satisfies as many DFGs as possible from its nearby nodes,
browseLCAsForDFG specifically tries to assign a certain DFG to an existing
LCA. To do this, the procedure first looks at the LCAs that happen to already
control all nodes that the new DFG x is originating from, starting with the
LCA with the least distance to all nodes x is originating from. In case of a tie,
the LCA with the highest number of DFGs already satisfied from these nodes
is considered first. If no such LCA exists or can satisfy x, then all remaining
LCAs are considered, starting with the LCA with the smallest accumulated
distance to all nodes (i) x is originating from and (ii) are not yet controlled
by that LCA. This way, the fewest link capacity is consumed for creating the
additional control assignments.

Algorithm 6.1 browseLCAsForDFG(x)
LCAs∗ = {LCAs controlling all v ∈ V with Wx,v = 1}
sort LCAs∗ ascending by average distance to all nodes x is originating from first,
by number of DFGs already satisfied from these nodes descending next
for c in LCAs∗ do

if checkDFGsat(c, x) = True then
return addDFGsat(c, x)

LCAs+ = LCAs - LCAs∗ // now check all other LCAs
sort LCAs+ ascending by accumulated distance to all nodes (i) x is originating
from and (ii) are not yet controlled by the LCA
for c in LCAs+ do

paths = {shortestPath(source=c, target=v) if c does not control v and Wx,v = 1}
for p in paths do

if checkLCAcontrol(p) = True then
addLCAcontrol(p)

else
break // c cannot satisfy x

if (all nodes assigned) and checkDFGsat(c, x) = True then
return addDFGsat(c, x)

else // c eventually cannot satisfy x, remove obsolete control assignments
for p in paths do

removeLCAcontrol(p)

If browseLCAsForDFG fails to satisfy an incoming DFG, i.e. no existing LCA
is able to satisfy the DFG, FlexCAPF launches CPgreedy, the main procedure
of GreedyFCAPA (Algorithm 3.1). As all network nodes are already controlled
by an LCA at this point, the procedure will immediately pass to the second
phase of the initial CA placement, i.e. it will add an additional LCA that will
satisfy the new DFG if possible. Additionally, CPgreedy will automatically
add an additional RCA if necessary.
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6.2.2 Low-load Situations

While it is easy to determine when adding an additional LCA is necessary,
assessing when it is possible to remove an LCA while still satisfying all DFGs
is much more complex. To do this, I first define a notion of load for an LCA.
After the switch to proportional-share scheduling, a very intuitive choice
regarding an LCA’s processing capacity presents itself:

load(c) = pnode(c)− prem(c),

where pnode(c) is the total processing capacity of c ∈ C (Table 5.1) and
prem(c) is its remaining processing capacity that is retained by FlexCAPF (see
Section 5.3). To detect low-load situations, FlexCAPF continuously monitors
the LCA load in the network and creates an estimate of the number of LCAs
actually needed for the current network load as described in Algorithm 6.2.

Algorithm 6.2 getLCAestimate()
LCAstmp = LCAs, LCAsneeded = {}, est = 0
sort LCAstmp descending by load(c), c ∈ LCAs
while Llowload ·∑c∈LCAsneeded

pnode(c) < ∑c∈LCAs load(c) and est < |LCAs| do
est = est + 1
LCAsneeded.append(LCAstmp[est])

return est

In short, the getLCAestimate procedure adds up the processing capacity
of the current LCAs, starting with the one with the highest load, until the
current network load could be handled by the combined processing capacities
of the selected LCAs in theory. But in practice, it has to be recalled that
the processing capacity that a host has to allocate for controlling a node or
processing a DFG depends on the path delay from the host to the node or the
nodes the DFG is originating from (longer path delay means that processing
has to happen faster to stay within the delay budget). Hence, the number
given by getLCAestimate is really just an estimate, as it cannot be guaranteed
that the selected LCAs can handle all tasks of the non-selected LCAs. For this
reason, the calculation also includes a parameter Llowload ∈ (0, 1], which steers
the intensity of the low-load handling. A low choice for Llowload will result in
conservative estimates, while choosing Llowload very close to 1 would lead to
very aggressive, possibly unrealistic estimates.

Algorithm 6.3 LowLoad()
est = getLCAestimate()
while |LCAs| > est do

removeLCAwithLeastLoad()
browseLCAs()
if (|V| − |Vcontrolled|) > 0 or (|F| − |Fsatisfied|) > 0 then

CPgreedy()
if |RCAs| > 1 then

rearrangeLCAs
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If the LCA estimate stays below the current number of used LCAs over the
course of a time period of Tlowload seconds, FlexCAPF executes the LowLoad

procedure that is described in Algorithm 6.3. The waiting time of Tlowload
is crucial because it prevents too frequent removal and re-addition of LCAs
when the network load fluctuates around a level which is just between needing
a certain LCA and not needing it.

Algorithm 6.4 browseLCAs()

nmin = (|V| − |Vcontrolled|) · |C|−1, paths = {}
for c in LCAs do

Fpot(c) = getPotentialDFGs(c), Vnew(c) = {}
for v in V if LCAc,v = 0 do

if (v in |V| − |Vcontrolled|) or (∃ x ∈ F : Wx,v = 1, isSatx = False) then
paths.append(shortestPath(source=c, target=v))

if |V| − |Vcontrolled| > 0 then // no valid solution yet
isSolved = False
sort paths by paths to uncontrolled nodes first, path length next

else // valid solution already found, focus on DFG satisfaction
isSolved = True
sort paths by paths to nodes with unsatisfied DFGs first, path length next

while (|paths| > 0 or ∑c∈LCAs |Fpot(c)| > 0) and (|V| − |Vcontrolled| > 0 or |F| −
|Fsatisfied| > 0) do

if isSolved = False and |V| = |Vcontrolled| then
isSolved = True
sort paths by paths to nodes with unsatisfied DFGs first, path length next

if (∑c∈LCAs |Fpot(c)| > 0) and (isSolved or |paths| = 0) then
c = random.choice({c ∈ LCAs, |Fpot(c)| > 0})

else
c = paths[0][0]

if |Fpot(c)| > 0 and (isSolved or |Vnew(c)| ≥ nmin or |paths| = 0) then
x = getNextDFG(Fpot(c))
if checkDFGsat(c, x) = True then

addDFGsat(c, x)
Fpot(c).remove(x)

else
p = paths[0], paths.remove(p)
if checkLCAcontrol(p) = True then

addLCAcontrol(p), updatePotentialDFGs(c)
else // no more resources left at LCA c

Fpot(c) = {}, paths = {p ∈ paths, p[0] 6= c}

LowLoad successively removes the LCA with the least load until the number
equal to the estimate is reached and then calls the browseLCAs procedure. As
can be seen in Algorithm 6.4, the procedure browses through all current LCAs
and tries to assign uncontrolled nodes and not satisfied DFGs to them. This
procedure works very similar to the addNewLCA procedure (Algorithm 3.5)
which I have already described in detail in Section 3.5, apart from consid-
ering all current LCAs simulateously instead of just one newly added LCA.
Therefore, I am omitting a more detailed description here. If there are still
uncontrolled nodes or not satisfied DFGs after browseLCAs has finished,
CPgreedy is launched to correct this as in Section 6.2.1.
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Algorithm 6.5 rearrangeLCAs()
RCAstmp = RCAs
sort RCAstmp ascending by number of coordinated LCAs
for c in RCAstmp do

GiveAwayLCAs(c) = True, CanTakeLCAs(c) = True
for c in RCAstmp do

if GiveAwayLCAs(c) = False then
continue

LCAstmp = {v ∈ C, RCAc,d = 1}
for v in LCAstmp do

for d in reversed(RCAstmp) do
if CanTakeLCAs(d) = False then

continue
path = shortestPath(source=d, target=v)
if checkRCAcontrol(p) then

remRCAcontrol(c, v), addRCAcontrol(path)
GiveAwayLCAs(d) = False, CanTakeLCAs(c) = False
break

At the very end of LowLoad, the procedure rearrangeLCAs (Algorithm 6.5)
is called in case the current placement contains more than one RCA. This
procedure aims at reducing the number of used RCAs by moving LCAs
from RCAs with few coordinated LCAs, starting with the one with least
coordinated LCAs, to RCAs with more coordinated LCAs, starting with the
one with most coordinated LCAs. Once an RCA has taken over an LCA,
it is no longer allowed to give away LCAs. Vice versa, an RCA that has
already given away an LCA is no longer allowed to take LCAs. Thus, the
procedure converges rather quickly. It has to be noted that the procedure
remRCAcontrol() automatically removes an RCA once it does no longer
coordinate any LCA.

6.2.3 Handling CA Host Failures

Finally, I describe how FlexCAPF deals with CAs suddenly disappearing from
the network, which can be caused by the unlikely event of a CA host failure
in a real-world implementation. According to my considered CA hierarchy,
the failure of an RCA will cause its coordinated LCAs to suddenly be unco-
ordinated and the failure of an LCA might cause its controlled nodes to be
uncontrolled, in case that they previously had only one LCA and/or its satis-
fied DFGs to be no longer satisfied. With the procedures of GreedyFCAPA,
which I presented in Section 3.5, however, handling such a situation is very
straightforward. The latter case, which results in uncontrolled nodes and/or
unsatisfied DFGs is already automatically dealt with, since FlexCAPF’s main
procedure CPgreedy will always attempt to find new LCAs for uncontrolled
nodes and unsatisfied DFGs (as already seen in Sections 6.2.1 and 6.2.2).
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In contrast, the case of uncoordinated LCAs does not exist in the initial CA
placement execution flow, but accounting for it is possible without much
additional effort. I have done this by extending CPgreedy to check for uncoor-
dinated LCAs initially (see Algorithm 6.6). If such LCAs exist, FlexCAPF uses
the findRCA procedure for each of them, which will find an RCA if possible
and automatically add a new RCA if necessary. If, however, finding an RCA
is not possible, an uncoordinated LCA will be removed and the resulting
uncontrolled nodes and unsatisfied DFGs will be handled in the remainder of
CPgreedy as described above.

Algorithm 6.6 CPgreedy() – extension
ULCA = {d ∈ LCAs, RCA(d) = None}
for d in ULCA do

c = findRCA(d)
if c is None then

removeLCA(d)
. . .

To close this section, Figure 6.1 summarizes the key aspects of FlexCAPF in a
flow chart.
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Figure 6.1: FlexCAPF flow chart
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6.3 Evaluation

In this section, I present the results from a dynamic network simulation to
evaluate FlexCAPF. In particular, I compare the results from FlexCAPF’s
flexible reassignment against the results obtained by recomputing a new CA
placement from scratch. Every simulation has been run 30 times with different
64-bit random seeds. All calculations are executed in single-threaded mode
on Intel® Xeon® E5-2695 v3 CPUs running at 2.30 GHz. All plots contain
confidence intervals at a 95% confidence level.

6.3.1 Evaluation Scenario

For this evaluation I have simulated the network operation using FlexCAPF
over the course of 48 simulated hours. To do this, I use four generated network
topologies, having either 36 or 100 nodes and backhaul links with mesh or ring
topology, which were generated according to the descriptions from Sections
3.6.1 and 5.4.1.
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Figure 6.2: Evaluation: daily load curve

Incoming DFGs are generated using a non-stationary Poisson process with
λ = |V| · loadlevel(t), simulated using the thinning method [99]. My daily
load curve loadlevel(t), with t being the current time in seconds, is derived
from [100] and shown in Figure 6.2. The duration of a DFG is determined
using an exponential variable with parameter 0.02 1

s , which results in an
expected DFG duration of 50 seconds and thus, according to Little’s law [101],
in an approximated (due to loadlevel(t) consistently changing with increasing
t) expected number of DFGs in the network of 50 · |V| · loadlevel(t∗) at time t∗.
The DFGs as such are generated according to the description in Section 3.6.1.
Regarding to the low-load parameters described in Section 6.2.2, I chose
Tlowload = 60 seconds and Llowload = 0.9, which gave good results during
initial evaluation runs.

All simulations are launched at t = −3600 seconds to start the 48-hour network
monitoring at t = 0 in a running state, skipping a warm-up period. To generate
the data for this evaluation, I have extracted the data from FlexCAPF each time
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the set of used CAs was modified in the course of the simulation, i.e. the cases
where incoming DFGs could be satisfied by an existing LCA are not included.
At these points, I also perform an initial controller placement on an empty
copy of the current network for comparison. This means, if a new incoming
DFG can quickly be satisfied by an existing LCA (i.e. browseLCAsForDFG
succeeded, see Section 6.2.1), I will not consider this a reassignment in the
following as the set of used CAs is not affected. For the sake of illustration,
Figure 6.3 contains the four used simulation networks.
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Figure 6.3: Simulation networks (with potential hosts highlighted)

I decided to not consider CA host failures for this evaluation as handling these
situations is mostly done by procedures already known from Section 3.5. Thus,
I do not expect additional insight by considering this, but rather unwanted
distortion of the data obtained for adding additional CAs and for low-load
handling.

6.3.2 Simulation Results

In this section, I summarize the results obtained from the simulations runs
as described in Section 6.3.1. Throughout all simulations, FlexCAPF has
generated valid solutions with only one RCA and all DFGs satisfied without
exceptions.
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Figure 6.4 summarizes the most important aspects. First, Figure 6.4a displays
the average number of LCAs used. It can be seen that the flexible reassign-
ment is clearly competitive with the from-scratch comparison considering the
number of used LCAs, using only very few LCAs more on average. This is a
good result since the reassignment is technically disadvantaged as it has to
build up on an already existing controller placement.
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Figure 6.4: Evaluation: FlexCAPF reassignment vs. initial CA placement

Next, Figures 6.4b to 6.4d give an impression of the reconfiguration overhead
caused by the newly calculated assignments. Figure 6.4b shows the average
number of added or removed LCAs compared to the set of active LCAs of the
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previous placement. Further, Figure 6.4c and Figure 6.4d depict the average
number of new LCA-to-node and DFG-to-LCA assignments. As can be seen,
the flexible reassignment significantly outperforms the from-scratch initial
placement for all these metrics. Hence, as I hoped, the flexible reassignment
saves a large amount of reconfiguration overhead caused by establishing new
assignments in the network.

Figure 6.4e shows a downside of the flexible reassignment. The plot illustrates
the average LCA control ratio in the networks, i.e. the average number of LCAs
a node is controlled by, which is visibly higher for the flexible reassignment
than for the initial CA placement. I recognize that this is a downside of flexible
reassignment based on a previous placement as described in Section 6.1.
Apparently, the approach of finding an LCA for a specific DFG pursued
by the flexible reassignment (Algorithm 6.1) leads to nodes being assigned
to multiple LCAs as usually not always the same LCAs are going to have
resources available to satisfy DFGs incoming at the same node. It has to
be recalled that the flexible reassignment does not rearrange DFGs between
LCAs to possibly save LCA-to-node assignments. The global view of the
initial controller placement, however, provides a smaller LCA control ratio as
an LCA is assigned to as many nearby nodes and the DFGs originating from
them as possible.

In total, this means that the flexible reassignment has to devote slightly more
network resources for the network control compared to the from-scratch initial
placement, taking away resources for processing DFGs in theory. While this
does not strongly affect the number of used CAs in my current evaluation
scenario, this might still be different for other evaluation scenarios where net-
work control requires more resources or if there are fewer resources available
in the network. Therefore, I will further investigate and try to improve this
aspect in Section 6.3.3.

Table 6.2: Simulation runtime statistics

Network: mesh36 ring36 mesh100 ring100

Average number of runs (total): 64.97 60.27 65.33 62.3
Average number of runs (HL): 33.2 30.9 37.37 35.87
Average number of runs (LL): 31.77 29.37 27.97 26.43
Average runtime (reass.): 0.013 s 0.01 s 0.131 s 0.127 s
Average runtime (HL): 0.007 s 0.006 s 0.038 s 0.04 s
Average runtime (LL): 0.019 s 0.014 s 0.255 s 0.245 s
Average runtime (scratch): 0.06 s 0.054 s 0.599 s 0.582 s

Finally, Figure 6.4f shows the runtimes of reassignment and scratch compar-
ison. It can be seen that the flexible reassignment runs significantly faster
than the initial from-scratch controller placement. Table 6.2 gives a more
fine-grained overview of the number of reassignment runs and the average
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runtimes recorded during the simulations for each topology. For the flexible
reassignment, I have also included separate numbers for reassignments due
to needing an additional LCA (HL) and due to low-load situations (LL). Espe-
cially for the HL case, where a quick reaction is particularly important, the
flexible reassignment runs about an order of magnitude faster than the initial
placement from scratch.

6.3.3 Optional DFG Rearrangement

In this section, I further discuss the higher LCA control ratio of the flexible
reassignment observed in the previous section and make an attempt to reduce
it. While it is a strength of flexible reassignment to reuse existing LCA-to-
node assignment, it is simultaneously one of its weaknesses with regard to
efficient resource usage. Once such an assignment is established, the flexible
reassignment will steadily reuse it. In particular, if a node v ∈ V requires
additional LCA-to-node assignments to satisfy the DFGs originating from
it at a certain point in time, the flexible reassignment will still be using
these assignments at a later point in time when they might no longer be
needed. In particular, the reassignment as presented so far does not modify
any existing DFG-to-LCA assignments to reduce the number of existing LCA-
to-node assignments. As a result, the LCA control ratio slightly increases
over time and network resources are wasted. For this reason, I decided to
make an attempt to counteract this trend by implementing an additional
procedure rearrangeDFGs (Algorithm 6.7) that rearranges DFGs between

Algorithm 6.7 rearrangeDFGs()
Vtmp = V
sort Vtmp descending by number of LCAs
for v in Vtmp do

if |LCAs(v)| = 1 then
break

LCAstmp = LCAs
sort LCAstmp ascending by number DFGs x satisfied with Wx,v = 1
for c in LCAstmp do

GiveAwayDFGs(c) = True, CanTakeDFGs(c) = True
for c in LCAstmp do

if GiveAwayDFGs(c) = False then
continue

Ftmp = {x ∈ F, Satc,x = 1, Wx,v = 1}
sort Ftmp descending by pflow // most demanding DFG first
for x in Ftmp do

for d in reversed(LCAstmp) do
if CanTakeDFGs(d) = False then

continue
if checkDFGsat(d, x) then

remDFGsat(x), addDFGsat(d, x)
GiveAwayDFGs(d) = False, CanTakeDFGs(c) = False
break
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existing LCAs to reduce LCA-to-node assignments. The procedure is included
in CPgreedy and will thus always be called when the network configuration
is changed.

For each node v ∈ V with multiple LCAs, rearrangeDFGs attempts to re-
arrange DFGs from LCAs that satisfy few DFGs originating from v to LCAs
that already satisfy many DFGs originating from v. Because the implementa-
tion of rearrangeDFGs follows a very similar strategy as rearrangeLCAs

(Algorithm 6.5), I omit a more detailed description. However, it is important
to recall that CPgreedy already includes the cleanupLCAcontrols routine,
which removes all obsolete LCA-to-node assignments. So if rearrangeDFGs

successfully rearranges all DFGs originating from v from one LCA c ∈ C to
different LCAs, the corresponding LCA-to-node assignment between c and v
will be removed afterwards.

To evaluate the effect of rearrangeDFGs on the LCA control ratio and the
other solution metrics, I ran additional simulations with the same random
seeds as used in Section 6.3.2 to compare flexible reassignment without
DFG rearrangement, flexible reassignment with DFG rearrangement and
reassignment by initial controller placement from scratch. The relevant results
can be seen in Figure 6.5.
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Figure 6.5: Evaluation: optional DFG rearrangement
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6.4 Observations

Since adding DFG rearrangement causes reassignments to happen at different
points in time, all plots in Figure 6.5 include both scratch comparisons, even
though the results of both scratch comparisons did not show any significant
differences. Similarly, the number of reassignments (total, HL and LL) did
not change significantly either, for which reason I am omitting a detailed
representation similar to Table 6.2.

First, Figure 6.5a shows the number of used LCAs and quickly reveals that
rearrangeDFGs has no significant influence on this metric. The number of
added or removed LCAs and new LCA-to-node assignments compared to
the previous placement did not change either. The corresponding plots are
omitted. Naturally, however, rearrangeDFGs causes a higher amount of new
DFG-to-LCA assignments as can be seen in Figure 6.5b. This number is still
way below the results obtained by the from scratch comparisons. Then, Fig-
ure 6.5c shows the targeted LCA control ratio. The use of DFG rearrangement
did indeed result in a decrease, closing the gap to the from-scratch compar-
isons about half way. But in turn, Figure 6.5d shows that rearrangeDFGs

results in an increased runtime compared to flexible reassignment without
rearrangeDFGs. While the runtime is still below the one of the scratch
comparison, the relative increase is clearly significant.

As a result, even though rearrangeDFGs brought a minor performance
improvement, I decided not to activate the procedure in the remainder of
the thesis because the relative runtime increase outweighs its benefit in my
opinion.

6.4 Observations

In this chapter, I have shown how GreedyFCAPA, my fast heuristic FCAPP
solution, can be extended into a flexible CA placement framework (FlexCAPF).
My evaluation has shown that FlexCAPF is able to adapt a given placement
very quickly and significantly faster than performing reassignment by calculat-
ing a new CA placement from scratch. Meanwhile, the loss in solution quality
is minimal and reconfiguration overhead is vastly reduced. Especially for new
incoming DFGs, FlexCAPF is able to react within very few milliseconds. As a
result, the framework can possibly be used in a real-world implementation
during network operation. I will come back to investigating this later in
Chapter 10.

But more generally, FlexCAPF fulfills the two criteria that I listed in Section 1.2
and thus allows to answer the corresponding research question in the affirma-
tive. However, there a lots of further aspects surrounding FCAPP that I have
not yet considered but which I will will address in the following chapters.
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7
Distributed Flow
Processing-aware Control
Application Placement

In the previous chapter, I have shown how FlexCAPF provides very convinc-
ing results for flexibly governing CA placement during network operation.
However, FlexCAPF is a centralized algorithm; it relies on the fundamental
assumption that all information about the network state is available in time
for centralized decision-making. Given that so far one RCA was always suffi-
cient in the previous evaluation parts, this information could potentially be
available via this RCA, provided that a CA placement is already given. But
providing all relevant information in real time, in particular information about
new DFGs in the network, is hard to realize.

For this reason, this chapter is devoted to investigating an alternative, dis-
tributed approach for tackling the same tasks as FlexCAPF. The result is a Dis-
tributed flow processing-aware Control Application Placement Algorithm (DistCAPA)
that places and flexibly reassigns CAs just like FlexCAPF. To simplify the
algorithm, DistCAPA considers only LCAs, omitting the additional coordina-
tion layer provided by RCAs unlike the previous FCAPP solution approaches.
DistCAPA has originally been created together with Dimitrij Pauls over the
course of his bachelor thesis [102] under my supervision and has subsequently
been considerably extended and refined by myself.

In the remainder of this chapter, I first state the modeling assumptions in
Section 7.1, in particular about the information available for each node in
the network. I then proceed by describing DistCAPA in Section 7.2 and by
presenting evaluation results in Section 7.3.

7.1 Modeling Assumptions

In this section, I explain the fundamental modeling assumptions regarding
information availability and algorithm execution for DistCAPA.
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7.1.1 Information Availability

As I elaborated in Section 2.2.2, distributed algorithms are usually unaware of
the entire system’s state during their execution. Each network node should
only be aware of its own local state and any additional information needs
to be obtained via communication with other nodes from the system. So in
contrast to FlexCAPF, it is essential to define for each node v ∈ V a suitable
subset of the entire FCAPP input parameters (Table 5.1 and Table 6.1) which
is available at v without communication effort.

For defining these subsets, I decided to divide the input parameters into
static information and fluctuating information. Static information comprises
all parameters which I consider to be static over the course of a simulation
run. Analogously, fluctuating information comprises all parameters that can
change (possibly very frequently) over the course of a simulation. First, static
information includes the parameters for the requirements of LCA control. I
also consider all information about the network deployment as static, i.e. the
sets of nodes, potential hosts and backhaul links and their fixed attributes,
assuming an error-free operation of all network devices and network links.
On the contrary, I consider all information about DFGs in the network as
fluctuating, because DFGs are assumed to change frequently over time as
described in Chapter 6.

With this partitioning of input parameters, I assume that all parameters related
to static information are known by all network nodes, while all parameters
related to fluctuating information are only known by directly affected network
nodes. For example, each node v ∈ V is only aware of the DFGs that either
originate from it or are satisfied by it (provided that v serves as an LCA).
Table 7.1 and Table 7.2 provide a complete list of both types of parameters.

Table 7.1: DistCAPA input parameters available to all network nodes

V set of nodes in the network
C ⊆ V set of potential hosts in the network
E set of all network links with E ⊆ V ×V
pnode(c) processing power for each node c ∈ C
bcap(v, w) maximum data rate for each link (v, w) ∈ E
lcap(v, w) latency of each link (v, w) ∈ E
bLCA data rate required from an LCA-to-node routing path
lLCA maximum acceptable LCA-to-node round trip latency
pLCA operations per control packet required for LCA control

It should be noted that not all static information is required in DistCAPA. For
example, no node v ∈ V ever uses the knowledge about pnode(c), c ∈ C unless
v = c. However, since I do not consider memory for storing this information
a problem, bounding the availability of static information to the portion that a
node really requires would not bring any benefit.
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Table 7.2: DistCAPA input parameters only available to v ∈ V

Fv set of DFGs with Wx,v = 1 or Satv,x = 1
Vx set of nodes DFG x ∈ Fv originates from
bflow(x) data rate required by each flow of DFG x ∈ Fv
lflow(x) maximum acceptable round trip latency for DFG x ∈ Fv
pflow(x) operations per packet required for processing DFG x ∈ Fv

But apart from the input parameters, it is also necessary to define where infor-
mation about the placement decisions is know. Certainly, all such information
has to be considered fluctuating. Table 7.3 summarizes which nodes are aware
of which placement decision during the execution of DistCAPA.

Table 7.3: DistCAPA: availability of information about placement decisions

LCAc,v only c and v know whether c ∈ C is an LCA for v ∈ V
isLCAc only c and all v ∈ V with LCAc,v = 1 know if c ∈ C is an LCA
Satc,x only c and all v ∈ V with Wx,v = 1 know if c ∈ C satisfies x ∈ F
fc,u,v,w only c and u are aware of the (v, w) ∈ E used for the routing

path from LCA c ∈ C to node u ∈ V
pLCA

c,v only c is aware of the processing capacity reserved at LCA c ∈ C
for controlling node v ∈ V

pDFG
c,x only c is aware of the processing capacity reserved at LCA c ∈ C

for processing DFG x ∈ F

All necessary information that is not available to a certain node according to
the tables above has to be retrieved via communication during the execution
of DistCAPA.

7.1.2 Execution Model

In contrast to centralized algorithms, which are assumed to be executed on a
single machine, distributed algorithms require the definition of an execution
model to describe the execution on multiple distributed machines. The model
that I adopt here is based on the widely employed CONGEST model [103].

The execution of DistCAPA is a sequence of synchronous rounds in which
each node performs the following steps:

1. receive an arbitrary amount of messages from other nodes,
2. perform an arbitrary amount of computation,
3. send an arbitrary amount of messages to other nodes.
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Every message sent is assumed to be received in the subsequent round,
independent of the distance or number of hops between sender and receiver.
In addition, nodes and links are assumed to be fault-free, i.e. messages are
always sent and received correctly and nodes never crash. Based on this
execution model, I will describe DistCAPA in the following section.

7.2 Distributed FCAPP Algorithm

DistCAPA can be divided into three key procedures:

1. node control,
2. DFG satisfaction,
3. LCA reassignment.

In the following parts, I first describe each procedure in more detail and
then describe the main procedure executed on every network node during
every round. To prevent repetitions in the following, I anticipate that all
ties occurring during sorting nodes or DFGs in procedures of DistCAPA are
resolved by choosing the node or DFG with the lowest ID.

7.2.1 Node Control

The first goal of each network node is node control, either by finding an LCA
that is able to control it or by becoming an LCA itself. The procedure for node
control has been inspired by an existing distributed algorithm for solving
the capacitated Facility Location Problem (FLP) [62]. However, there is an
important difference between node control in FCAPP and facility assignment
in FLP. While in the common FLP scenario, the set of nodes consists of two
disjoint sets of facilities and clients, the potential hosts in FCAPP can take
both the role of an LCA or the role of a normal node looking for an LCA.
Ignoring this problem would lead to the chaotic scenario of potential hosts
sending and receiving Node Control requests at the same time. The best way to
illustrate this problem is to look at an example of two neighboring potential
hosts c, d ∈ C. Assuming that all potential hosts always look for an LCA and
are ready to be an LCA at the same time, both c and d would send node
control requests to each other, then confirm to each other and eventually both
c and d would become LCAs with c controlling d and d controlling c. Of
course, this behavior is not desirable.

DistCAPA resolves this using two different states, the first state representing
the search for an LCA and the second state representing the collecting of
control requests, and randomization. Each potential host starts in searching
state and waits for a certain number of rounds, chosen uniformly at random
from {0, ..., sinit}, before switching to collecting state. Following this, the
two states are again switched continuously after a number of rounds chosen
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uniformly at random after each switch from Iswitch until a host is either
controlled or has become an LCA.

As a starting point for the node control procedure, the search distance dsearch
of each v ∈ V is initialized as the minimal distance (in number of hops) from
v to its nearest potential host (ignoring itself in case v is a potential host) –
information known from the static information. To explain the procedure, I
start with a high-level description of its communication phases:

Phase 1: Nodes in searching state without an LCA send control requests to
the potential hosts within their search distance (Node Control or Node
Control Urgent, their difference will be elaborated below).

Phase 2: Potential hosts that receive control requests check whether or not
the requesting node can be controlled. If yes, then there are two cases.
If the respective host is already an LCA it responds with Connect For
Free, otherwise it responds with Lock. If the requesting node cannot
be controlled, e.g. because of the host’s state or because of missing
resources, it responds with Node Control Reject.

Phase 3: Each searching node collects its positive replies and selects one of
the sending potential hosts, preferring Connect For Free over Lock replies.
Correspondingly, the node sends an acceptance message Connect For
Free Accept or Lock Accept to the selected host and waits for a reply to it.
If no positive reply was received, the search distance is increased and
new potential hosts are contacted with control requests.

Phase 4: LCAs that receive one or more Connect For Free Accept messages
or potential hosts that receive one or more Lock Accept messages once
more check whether or not the requesting nodes can be controlled (for
each node individually). This is necessary because additional work
could have been accepted in the meantime (see Phase 5). If the check
is successful, the corresponding node is accepted and notified (Node
Control Accept), otherwise it is rejected (Node Control Reject).

Phase 5: If a searching node receives a Node Control Accept reply to its accep-
tance message, it stores the sender as its LCA and is done with node
control. Otherwise, it goes back to Phase 3 and contacts the next best
host from which it already received a positive initial reply (Connect For
Free or Lock). This means that the number of rounds that may pass
between Connect For Free and Connect For Free Accept / Lock and Lock
Accept is not constant, which explains why the second resource check
at a host is required. If there is no such host, the search distance is
increased and new potential hosts are contacted with control requests
as already seen in Phase 3.

To give an overview, Figure 7.1 summarizes the message exchange that can
occur between a searching node v ∈ V and a potential host (or LCA) within
the search distance of v.

To provide more details of the node control procedure, I show the procedure
run by a node in searching state during every round in Algorithm 7.1. Ad-
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Figure 7.1: Node control: possible messages between a node and a potential host (or LCA)

ditionally, Algorithm 7.2 shows how the messages sent by a node v ∈ V are
processed at potential host (or LCA) c ∈ C.

Algorithm 7.1 Node control procedure of a searching node v ∈ V
if Crequested = Crejected and |Crequested| > 0 then

dsearch += 1
N = getNeighborhood(dsearch)
if ControlConformationSent = False then

if |Cfree| > 0 then
c = Cfree.pop(getClosestCandidate(Cfree))
send Connect For Free Accept to v
ControlConformationSent = True

else if |Clock| > 0 then
c = Clock.pop(getClosestCandidate(Clock))
send Lock Accept to v
ControlConformationSent = True

Nremaining = (N ∩ C)− Crejected
if |Nremaining| > 0 then

for c in N ∩ C if not c in Crequested do
send Node Control to c
Crequested.append(c)

else
if self.id in C then

self.isLCA = True, self.state = collecting, addLCAcontrol(self.id)
else

for c in N if not c in Curgent do
send Node Control Urgent to c
Curgent.append(c)

In Algorithm 7.1, node v ∈ V first increases its search distance dsearch if each
potential host to which a control request has been sent has rejected this request.
Next, an acceptance message (Phase 3) is sent if (1) v is not currently waiting
for a reply to an acceptance message and (2) there are hosts with positive
initial replies available. As described for Phase 3 above, v prefers already
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active LCAs that replied with Connect For Free (Cfree) over potential hosts that
are not yet LCAs (Clock). In both cases, the closest candidate is selected for
sending the corresponding acceptance message.

Finally, the last part of Algorithm 7.1 shows how the control requests are
sent, including the difference between Node Control or Node Control Urgent
messages on the side of a searching node. By default, v sends Node Control to
all potential hosts in its search distance it has not yet contacted. However, v
deviates from this default behavior if all potential hosts in its current search
distance have rejected controlling it. It is very important to note that this
can only occur if the search distance was already increased at the beginning
of the round and this increase did not result in any new potential hosts to
contact, i.e. v is rather isolated in the given network. Therefore, v finds itself
in an urgent need for an LCA. If that case occurs, which can be seen as a
kind of emergency case for preventing uncontrolled nodes, v will become an
LCA itself if v ∈ C. Otherwise, it will contact the potential hosts in its search
distance again by sending Node Control Urgent.

Algorithm 7.2 Node control message processing at host c ∈ C
receive Node Control from v or receive Node Control Urgent from v
if self.state = searching and message = Node Control then

send Node Control Reject to v
else

if checkLCAcontrol(v) = True then
if self.isLCA = True then

send Connect For Free to v
else

send Lock to v
else

send Node Control Reject to v

receive Connect For Free Accept from v or receive Lock Accept from v
Vaccept.append(v)

sort Vaccept ascending by shortest path
for v in Vaccept do

if checkLCAcontrol(v) = True then
addLCAcontrol(v)
send Node Control Accept to v

else
send Node Control Reject to v

Algorithm 7.2 includes three code fragments. The first part shows how
a potential host c ∈ C handles incoming control requests and reveals the
difference between Node Control or Node Control Urgent messages on a host’s
side. First, c rejects a control request if it is currently in searching state.
However, this only happens for Node Control requests. If this is not the case, c
checks if is has sufficient resources to control the requesting node. This check
is done based on the shortest path from c to the node, which is known from
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the static information. Then, c responds correspondingly as already described
above (Phase 3). In a nutshell, this means that a Node Control Urgent request
circumvents the searching state of a potential host and is only rejected if there
are insufficient resources. Therefore, this alternative type of control request
prevents nodes from being uncontrolled because of too many surrounding
potential hosts in searching state.

The second and third part of Algorithm 7.2 show how a potential host treats
acceptance messages. During every round, c first stores all nodes that sent
such a message and then successively performs the second control check
before notifying the corresponding nodes as elaborated further above (Phases
4 and 5), starting with the closest node first.

To conclude the node control procedure, any searching node is in the worst
case going to send one Node Control and one Node Control Urgent message
to every potential host in the network. Therefore, the procedure terminates
eventually and will result in a complete control structure unless the potential
hosts in the network do not have sufficient resources to achieve this.

7.2.2 DFG Satisfaction

Once a node v ∈ V is controlled, i.e. it has found an LCA or has become an
LCA itself, it starts to work towards satisfying its DFGs from Fv. However, it
is important to remember that according to the problem statement of FCAPP,
every DFG must be satisfied by at most one LCA. If every node would contact
LCAs for all of their DFGs, this could hence create a problematic situation for
DFGs that are originating from more than one network node. Therefore, for
each DFG x ∈ F originating from nodes Vx ⊆ V, only the node from Vx with
the lowest ID is allowed to contact LCAs for satisfying x. Since Vx is assumed
to be known by every v ∈ Vx (see Table 7.2) this approach completely avoids
additional communication effort between the nodes of such a DFG.

For describing the DFG satisfaction procedure of DistCAPA, I will refer to the
node with the lowest ID from Vx, x ∈ F as the main node of x in the following.
As in the previous section, I first provide a high-level description based on the
message exchange that can occur between a DFG’s main node and an LCA
(or potential host), depicted in Figure 7.2.

Since the goal of this procedure – finding an LCA for taking a certain task
– is fundamentally the same as for the node control procedure, the possible
message exchange is also quite similar. However, the procedure as such differs
in several aspects. Given a DFG x ∈ F with main node v ∈ Vx, the procedure
aimed towards satisfying x is as follows:

Phase 1: As soon as v is controlled, it contacts all of its LCAs with a request
to satisfy x (Flow Control), including all required information about x.
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Phase 2: An LCA c receiving a request for x checks whether or not it is able
to satisfy x. Since it is possible that x is originating from more nodes –
not necessarily controlled by c – this check also includes whether or not
c can also control the w ∈ Vx it does not yet control. According to the
check’s result, c responds positively (Flow Control Possible) or negatively
(Flow Control Impossible).

Phase 3: v collects all positive replies, sorts the senders by shortest distance
to itself, and sends a confirmation request (Flow Confirmation Request) to
the closest candidate and waits for a reply.

Phase 4: Similar to the node control procedure, it is possible that an LCA
is no longer able to satisfy x. Therefore, an LCA c receiving a flow
confirmation request for x rechecks if satisfying x is still possible. If
not, c rejects immediately (Flow Control Reject); otherwise it stores x as
a potential DFG to be accepted. Whether or not c will actually accept
x is decided in a separate procedure that I will describe further below.
For now, it is only important to state that if c eventually accepts x, c
will send an acceptance message to v and all other w ∈ Vx (Flow Control
Accept) and save the DFG satisfaction assignment accordingly.

Phase 5: v receives the reply to the confirmation request. In case of accep-
tance, x is ultimately satisfied and no further action from v is required
regarding x. All w ∈ Vx, w 6= v that receive an acceptance message from
c for x and were not yet controlled by c will add c as an LCA.
In case of a rejection, v will go back to Phase 3 if it has remaining LCAs
that initially replied with Flow Control Possible. Otherwise, all LCAs of v
have rejected to satisfy x and thus v starts to send Flow Control to other
LCAs and potential hosts that are not yet serving as LCAs, essentially
repeating Phases 1 to 5 until x is satisfied or until every c ∈ C has
rejected to satisfy x.

Flow Control

Flow Control Possible Flow Control Impossible

Flow Control Reject

done

Start

Flow Confirmation Request

Flow Control Accept

Legend:

sent by node

sent by pot. host / LCA

Flow Control

Flow Control Possible Flow Control Impossible

Flow Control Reject

Flow Confirmation Request

Flow Control Accept

Legend:

sent by node

sent by pot. host / LCA

Figure 7.2: DFG satisfaction: possible messages between a node and a potential host (or LCA)

In the latter case, v uses an individual search distance for x that is initialized as
the distance (number of hops) to the furthest LCA of v. Exactly as for the node
control procedure, this distance is increased once all potential hosts in the
current search distance have rejected satisfying x. Because of the procedure’s
similarity to the node control procedure in Algorithm 7.1, I skip a detailed
presentation of the DFG satisfaction procedure running on each node.
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Instead, I will elaborate on the procedure that each host c ∈ C employs to
satisfy DFGs (see Phase 4). This procedure (acceptDFGs) is executed during
every round by each c ∈ C, with an exception that I will elaborate on in
Section 7.2.4. The procedure is shown in Algorithm 7.3.

Algorithm 7.3 acceptDFGs() at host c ∈ C
sort Fpot ascending by average distance to all v ∈ Vx, x ∈ Fpot
for x in Fpot do

if checkDFGsat(x) = True then
addDFGsat(x)
for v in Vx do

send Flow Control Accept to v
else

send Flow Control Reject to mainNode(x)

After c ∈ C has first gathered the DFGs that it could potentially satisfy (Fpot)
instead of accepting them right away (see description of Phase 4 above), the
purpose of acceptDFGs is to accept these DFGs in a more structured order.
The idea behind this is that satisfying DFGs originating from nodes close to
c is preferable, so that other DFGs that can eventually not be satisfied by c
can be more easily satisfied by other LCAs. Of course, this is only relevant
for the DFGs c is asked to confirm within one execution round. c starts by
sorting Fpot by average distance to the nodes they are originating from. Then,
c successively rechecks whether the current x ∈ Fpot can be satisfied and if
yes, finally assigns it to itself. Rechecking the satisfaction constraints for every
DFG is necessary because the resources of c diminish with every previously
satisfied DFG. For each DFG, c then sends out the corresponding messages as
earlier described for Phase 4.

7.2.3 LCA Reassignment

After additional LCAs have been added during the DFG satisfaction proce-
dure, another crucial task is to deactivate no longer needed LCAs in case
of low-load situations. However, due to the myopic view of each network
node, DistCAPA cannot consider the load of the entire network like FlexCAPF
(Section 6.2.2) did, at least not without significant communication. There-
fore, DistCAPA follows a different approach based on a threshold parameter
Llowload ∈ (0, 1], set globally for all v ∈ V, and a relative load metric for all
LCAs:

load(c) =
pnode(c)− prem(c)

pnode(c)
= 1− prem(c)

pnode(c)
.

During every execution round of DistCAPA, each LCA c checks whether or
not its load is above or below Llowload. But in addition, I introduce a parameter
hlowload to ensure that c is not currently requested to control a node or to
satisfy a DFG. So in total, c regularly checks for the following conditions:
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1. load(c) ≤ Llowload,
2. no control request (Node Control or Node Control Urgent) has been received

in the past hlowload rounds,
3. no DFG satisfaction request (Flow Control) has been received in the past

hlowload rounds.

If all three conditions are fulfilled, c could handover its work to another active
LCA. However, having too many LCAs trying to handover their work at
the same time, possibly to each other, is not desirable. Assuming c starts a
handover attempt and receives a handover request by another LCA d, one
possibility could be that c aborts its own handover attempt to take the work
of d, e.g. if load(c) > load(d). But this can be problematic, for example, if
another LCA is already preparing to take the work from c. For this reason,
I have decided to not interrupt handover attempts in such a way. Instead,
the number of LCAs starting handover attempts concurrently is limited via
randomization as in Section 7.2.1. Thus, if the three conditions are fulfilled, a
handover is only attempted with a probability of pLL ∈ [0, 1].

Given an LCA c ∈ C, a handover attempt, i.e. the procedure for finding
another LCA to take the work of c, then works as follows:

Phase 1: c sends a take over request (Take Over) including information about
its controlled nodes and satisfied DFGs to all other d ∈ C. Simultane-
ously, c stops to accept any node control or DFG satisfaction requests
over the course of the handover attempt.

Phase 2: After receiving a Take Over request, each d ∈ C, d 6= c immediately
responds with a negative reply (Take Over Impossible) if it is either not an
LCA or currently attempting a handover itself. But if d is an LCA and
not attempting a handover, it checks whether or not it has the available
resources to control all nodes currently controlled by c and satisfy all
DFGs currently satisfied by c. According to the result, d either sends
a positive (Take Over Possible) or a negative (Take Over Impossible) reply
back to c.

Phase 3: c collects the replies and aborts its handover attempt if all replies
have been negative. Otherwise, c sends a confirmation request (Take over
Confirmation) to the closest LCA d ∈ C that has sent a positive reply.

Phase 4: After receiving a Take over Confirmation request, d now rechecks if
taking over the work of c is still possible, which might not be the case if
d has accepted additional work in the meantime or started a handover
attempt itself. If this second check is successful, d then takes the work
of c and notifies c (Take Over Accept). Further, d notifies all nodes that
were previously controlled by c (Took Over Work) that it took over from c.
Otherwise, d rejects the handover (Take Over Reject).

Phase 5: c now either receives a Take Over Accept or a Take Over Reject reply
by d. In the former case, c has succeeded handing over its work and
deactivates itself as an LCA. Simultaneously, each v ∈ V that has so far
been controlled by c receives the Took Over Work message by d. As a
result, each such v will remove c as one of its LCAs, add d (if v was not
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already controlled by d) and forward all of its DFGs that were previously
satisfied by c to d in the following. In the later case (d rejected c), c will
repeat Phase 3 with the next nearest LCA. The handover attempt ends,
once an LCA accepts the handover or all d ∈ C, d 6= c have rejected.

By way of illustration, Figure 7.3 summarizes the possible message exchange
between an LCA attempting a handover and another target LCA.
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Figure 7.3: LCA reassignment: possible message exchange

Unsurprisingly, the choice of the Llowload parameter has a high influence of
the performance of DistCAPA regarding number of used LCAs and will play
a major role in the evaluation in Section 7.3.

7.2.4 Node Main Procedure

After describing all three key procedures of DistCAPA in the previous section,
I explain how these and other procedures are executed within the main
procedure of each node v ∈ V, which is run during every round of DistCAPA.
This main procedure is shown in Algorithm 7.4.

During every execution round of DistCAPA a node v ∈ V first calls the
processMessages procedure. This procedure analyzes all received messages
and stores the corresponding information adequately, so that this information
can later be used within other processes. For example, as seen in Section 7.2.1,
a received Connect For Free message will cause the message’s sender to be
stored in Cfree. Next, v evaluates starting a handover attempt (Section 7.2.3)
if and only if v currently is an LCA. Afterwards, if and only if v ∈ C, v will
take care of adding accepted nodes (as seen in Algorithm 7.2) and accepting
DFGs (as seen in Algorithm 7.3). However, the latter only happens if v did not
receive any node control requests in the last hsat rounds, which is the exception
that I mentioned in Section 7.2.2. Similar to the nmin value of FlexCAPF, this
constraint has the purpose to ensure that nodes do not remain uncontrolled,
because potential hosts prematurely devote all of their resources to satisfying
DFGs. However, since node control requests no longer appear once that all
network nodes are controlled, this constraint is only in effect during initial
placement situations, but not during dynamic network operation.
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Algorithm 7.4 main procedure of every node v ∈ V
processMessages()
// determine if I will attempt to handover my work to another LCA
if self.isLCA = True then

if self.attemptHandover = False and checkLowLoadConditions() = True
then

if random([0, 1]) < pLL then
self.attemptHandover = True

if self.attemptHandover = True then
attemptHandover()

// add confirmed nodes and DFGs
if self.id in C then

acceptNodes()
if rlastControlRequest ≤ self.rounds− hsat then

acceptDFGs()
// if I am already controlled, take care of DFG satisfaction
if |self.LCAs| > 0 or self.isLCA = True then

DFGsatisfaction()
cleanupLCAcontrols()

else // else make sure that I get controlled
if self.id in C then

updateState()
if self.state = searching then

nodeControl()
self.rounds += 1

Finally, v either takes care of DFG satisfaction (Section 7.2.2) if v is an LCA or
has already found an LCA or works towards being controlled (Section 7.2.1)
otherwise. In the former case, the DFG satisfaction procedure is followed
by cleanupLCAcontrols, which removes no longer required LCA control
assignments and which works very similar as the procedure with the same
name that was already described in Section 3.5. Accordingly, an LCA c ∈ C is
only removed if and only if (1) c does not satisfy any DFG originating from
v and (2) v will still be controlled without having c as an LCA. If an LCA is
found to be no longer needed, v will send it a corresponding message (No
Deal) to let it know that it can remove v from its controlled nodes. In the latter
case, if v ∈ C, v first updates its state (collecting or searching) as described in
Section 7.2.1. If v is in searching state (which is always the case if v 6∈ C), it
will then execute the node control procedure. At last, the main procedure is
ended by increasing the round counter.

7.3 Evaluation

In this section, I compare the performance of DistCAPA against the initial
placement and continuous reassignment abilities of FlexCAPF. To do this, I
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used the same network instances as in Section 5.4 and Section 6.3. Further, for
FlexCAPF the RCA requirements have been removed, i.e. the data rate and
processing capacity requirements for RCA coordination were set to zero and
the RCA latency requirement has been set to a value exceeding the sum of all
link delays.

DistCAPA has been implemented using the ComplexNetworkSim package
for Python [104]. As before, all evaluation runs have been conducted with
different 64-bit random seeds, using the same seed for executing FlexCAPF
and DistCAPA on the same network instance. All calculations are executed in
single-threaded mode on Intel® Xeon® E5-2695 v3 CPUs running at 2.30 GHz.
All plots contain confidence intervals at a 95% confidence level.

During the whole evaluation, I choose the parameters of DistCAPA as follows:

• the upper bound for the number of rounds after which a node c ∈ C
initially changes from searching state to collecting state is set to sinit = 10,

• the set from which a potential host c ∈ C uniformly at random chooses
a number of rounds to wait before again switching its state is Iswitch =
{10, 11, ..., 20},

• the number of rounds that must have passed since the last received node
control request before accepting DFGs is set to hsat = 10,

• the number of rounds that must have passed since the last received node
control or DFG satisfaction request before starting a handover attempt
is set to hlowload = 10,

• the probability for a node c ∈ C to start a handover attempt after
fulfilling all conditions is set to pLL = 0.1.

All of these values have been determined during initial evaluation runs. Only
the low load threshold parameter Llowload will be varied in the following.

7.3.1 Initial Placement Evaluation

In this part of the evaluation, I compare FlexCAPF against DistCAPA regard-
ing initial CA placement, i.e. for networks without any given CA placement,
using networks with 36 or 100 nodes and mesh or ring topology and fixed
network states. For DistCAPA, I employ different Llowload values, i.e. 0.0, 0.125,
0.25, 0.375, 0.5, 0.625, 0.75.

Since DistCAPA is primarily designed for dynamic network operation, setting
the right execution conditions for an initial placement is no straightforward
task. After experimenting with several fixed limits for the number of rounds,
I concluded that low limits would always bring poor performance results for
larger instances while high limits would unnecessarily increase the runtime
for smaller instances. For this reason, I decided to successively execute 10
rounds for each instance until (1) the number of controlled nodes did not
increase, (2) the number of LCAs did not decrease and (3) the number of
satisfied DFGs did not increase over the course of 100 additional execution
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rounds. These 100 additional execution rounds have been subtracted in the
execution statistics that I am presenting later in this section.
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Figure 7.4: Evaluation: DFGs satisfied by FlexCAPF and DistCAPA

During this evaluation part, no instance remained unsolved, i.e. DistCAPA
produced a complete control structure for all instances. Figure 7.4 shows
the percentage of DFGs satisfied for the 36-node networks. In the 100-node
networks, all DFGs were satisfied, so these plots were omitted. It can be seen
that DistCAPA performs equally for all Llowload values – in fact, the plot lines
of DistCAPA for all Llowload values overlap perfectly. But this is not surprising
as the Llowload value has no direct influence on the node control and DFG
satisfaction procedures. DistCAPA performs slightly worse than FlexCAPF
but surprisingly well given its disadvantage in information availability. Only
once the network resources are getting scarce, DistCAPA starts to lose some
ground but manages to satisfy all DFGs before, just like FlexCAPF. Finally, in
this metric, there is no significant difference between the mesh and the ring
topologies.

Next, Figure 7.5 shows the number of used LCAs for all four network types.
The corresponding plots contain lots of interesting observations. First, which
comes as no surprise, DistCAPA with Llowload = 0.0 performs terribly in
this metric, since LCAs are never shut down once they are in place. Then,
the number of used LCAs visibly decreases with increasing Llowload up to
Llowload = 0.5; no further improvements can be seen for Llowload ∈ {0.625, 0.75}.
Thinking about it, this is very logical, as finding an LCA to take over work that
would need more than half of its resources is naturally very hard. Beforehand,
the curves for Llowload ∈ {0.125, 0.25, 0.375} show an interesting behavior
which can be seen best for Llowload = 0.125 in the 100-node topologies. For
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both mesh and ring topologies, the curve first raises very quickly before
flattening between 1000 and 2000 DFGs. Obviously, Llowload = 0.125 still
allows DistCAPA to reassign several LCAs for low networks loads, but with
increasing load the number of LCAs whose load falls below that threshold
diminishes very quickly.
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Figure 7.5: Evaluation: number of LCAs used by FlexCAPF and DistCAPA

Last but not least, Table 7.4 lists the average number of execution rounds for
this evaluation part as described at the beginning of this section. First, it can
be observed that the instances with 100 nodes required more execution rounds
than the networks with 36 nodes. This is of course not surprising because a
larger network results in a higher maximum search distance and/or a larger
number of candidates to contact for a certain task. Therefore, the number
of rounds needed for the individual procedures of DistCAPA increases. The
same reasoning can be applied to the observation that the ring topologies
needed slightly more execution rounds than the mesh topologies of the
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same size. Since the distance between nodes is always measured in number
of hops, a ring topology with fewer links compared to a mesh topology
generally increases the search distance accordingly. Finally, the number of
execution rounds also grows with increasing Llowload but seems to stagnate at
Llowload = 0.5. This observation corresponds to the observation for the number
of used LCAs based on Llowload for the previous plot: the lower the Llowload
value, the fewer LCAs are able to attempt a handover. For values above 0.5,
however, the chance for a successful handover does not increase any further.

Table 7.4: DistCAPA initial placement: execution statistics

Topology: mesh36 ring36 mesh100 ring100

Needed rounds (Llowload = 0.0): 37.91 39.03 33.53 33.8
Needed rounds (Llowload = 0.125): 48.18 50.27 58.15 58.06
Needed rounds (Llowload = 0.25): 52.49 55.39 65.73 67.83
Needed rounds (Llowload = 0.375): 57.16 58.93 80.29 84.77
Needed rounds (Llowload = 0.5): 58.42 61.0 89.23 99.95
Needed rounds (Llowload = 0.625): 57.57 58.81 88.89 95.26
Needed rounds (Llowload = 0.75): 57.46 59.33 91.65 99.59

Needed rounds (all): 52.74 54.68 72.5 77.04

7.3.2 Dynamic Network Simulation

In this evaluation part, I provide results for DistCAPA obtained from dynamic
network simulations with changing network load as already performed for
FlexCAPF in Section 6.3. Due to the observations in the previous section, I
decided to set DistCAPA’s low-load threshold parameter to Llowload = 0.5.

The evaluation scenario for the simulations are very similar to Section 6.3.
However, the simulations performed for this section only cover networks
with 36 nodes and a simulated time of 2 hours instead of 48 hours due to
the higher execution time required for emulating the distributed execution
of DistCAPA. Accordingly, I have scaled the load curve shown in Figure 6.2
from 24 hours to one hour to retain the effect of changing network load over
time. Still, incoming DFGs are generated using a non-stationary Poisson
process with λ = |V| · loadlevel(t), simulated using the thinning method [99],
where loadlevel(t), t being the current simulated time in seconds, denotes the
value of the scaled load curve. As in Section 6.3, the duration of a DFG is
determined using an exponential variable with an expected DFG duration of
50 seconds, giving an approximated expected number of 50 · |V| · loadlevel(t∗)
DFGs in the network at time t∗.

One crucial aspect of this evaluation part is that performing a dynamic
simulation with DistCAPA requires to somehow relate the concept of the
generated DFG inter-arrival times of the Poisson process for DFG generation
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to the synchronous round concept of DistCAPA. I decided to do this by
assuming an execution time of tround = 0.005 seconds (5 milliseconds) for every
execution round of DistCAPA. For every DFG arrival time tcurr generated by
the Poisson process, I then predetermine the subsequent DFG arrival time
tnext and calculate the number of rounds rcurr to be executed on the network
state following the DFG arrival at tcurr by

rcurr =

⌊
tnext − tcurr

tround
+ 0.5

⌋
.

This formula corresponds to rounding the inter-arrival time following to tcurr
divided by tround to the nearest integer value. Based on |V| = 36 in this
evaluation part, this leads to an expected number of executed rounds of

E(rcurr)(t) = (|V| · loadlevel(t) · tround)
−1 =

50
9
· loadlevel(t)−1,

which I have depicted in Figure 7.6.
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Figure 7.6: Evaluation: expected number of executed rounds

For both DistCAPA and FlexCAPF, the DFG generation is started at t =
−3600, while the algorithms start to be executed after passing t = −60. Thus,
the 2 hour network monitoring starting at t = 0 is not influenced by a warm-up
period.

The results of the simulations can be seen in Figure 7.7 and Table 7.5. Both
algorithms satisfied all DFGs during all simulations, for which reason there
is no illustration of DFG satisfaction. First, Figure 7.7a shows the number
of used LCAs by FlexCAPF and DistCAPA. It can be observed that the
difference between FlexCAPF and DistCAPA is similar to the one already
seen in Figure 7.5. This reveals that DistCAPA adapts well to changing
network load over time, just like FlexCAPF. Then, Figure 7.7b depicts the
average control ratio, i.e. number of LCAs per node, established by both
algorithms. It can be seen that the placements issued by DistCAPA feature a
higher LCA control ratio compared to FlexCAPF. This can be explained by
the main node concept used for satisfying DFGs originating from multiple
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nodes, through which nodes other than a DFG’s main node are sometimes
assigned additional LCAs. But the centralized view of FlexCAPF allows to
prefer LCAs that already control all or most nodes a DFG is originating from.
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Figure 7.7: Evaluation: FlexCAPF reassignment vs. DistCAPA reassignment

Table 7.5 provides the reassignment statistics of FlexCAPF and DistCAPA.
The first aspect that can be noticed is that DistCAPA performed far more
reassignments, i.e. changes in the set of LCAs, changed LCA-to-node assign-
ments or changed DFG-to-LCA assignments, than FlexCAPF, which is why
providing these metrics in form of a plot as in Section 6.3 would have been
very misleading. The reason for this is simple to explain: while FlexCAPF is
often able to prevent a reassignment because of its centralized view, DistCAPA
consistently operates with a myopic view of the network and willingly ap-
proves reassignments if that allows, for example, satisfying an additional DFG.
But in particular, the LCA reassignment certainly has a high influence on this
statistic. As described in Section 6.2.2, the LCA reassignment of FlexCAPF
heavily uses the information about the resource consumption of all LCAs in
the network and an LCA typically only gives up its work if the resulting net-
work load situation is rather stable subsequently, i.e. no other LCA will end up
being very close to its load limit. For DistCAPA, however, LCA reassignment
is handled only based on the load of a single LCA. Once an LCA attempts a
handover, it will give up its work right away once it finds another LCA that is
able to take it. But the LCA taking the work could be almost out of resources
subsequently, causing a new LCA to be required in its environment soon after.

Another notable observation relates to the differences between mesh and
ring topology. Obviously, FlexCAPF changes fewer LCA-to-node assignments
and DFG-to-LCA assignments in the ring topology, while DistCAPA affects
considerably more changes in it. Again, this is caused by the difference
between a centralized and a distributed algorithm. For FlexCAPF, a ring
topology implies fewer paths compared to a mesh topology and hence fewer
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options to make placement decisions. For DistCAPA, on the contrary, a ring
topology instead of a mesh topology means longer paths and hence less
information within a given search distances.

Table 7.5: FlexCAPF vs. DistCAPA: reassignment statistics

FlexCAPF DistCAPA

Network: mesh36 ring36 mesh36 ring36

Reassignments: 19.93 19.73 813.8 1041.9
LCA reassignments: 20.5 20.47 882.23 1134.33
Node reassignments: 148.17 150.77 3477.67 4623.7
DFG reassignments: 829.73 604.0 3314.97 4116.7

7.4 Observations

In this chapter, I have shown a distributed approach to solve FCAPP. The
outcome, DistCAPA, turned out to provide very good performance results
coming close to the solution quality of my centralized solution FlexCAPF. In
particular, DistCAPA was capable of flexibly adapting a given CA placement
in reaction to changing network load. So just like FlexCAPF, DistCAPA fulfills
the two initial criteria for an FCAPP solution from Section 1.2.

However, because of its disadvantage in information availability, DistCAPA
caused significantly more reconfiguration overhead compared to FlexCAPF.
Further, the behavior of a centralized algorithm can commonly be better
controlled and its execution is typically more convenient. Due to these reasons
and due to the fact that my wired backhaul scenario is not a classic scenario
where a distributed algorithm would be strictly required, I will consider
DistCAPA as a proof of concept solution for FCAPP and continue to further
analyze FCAPP based on FlexCAPF in the remainder of my thesis.
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8
Flow Processing-aware Control
Application Placement with
Backbone Extension

All work on FCAPP that I presented so far used the assumption that all back-
haul nodes are connected to the backbone network and that this connection
provides unlimited data rate and zero latency (see Section 3.2). Of course, this
assumption is a simplification and not realistic, but this has no effect on the
model as long as the DFGs are not forwarded to the backbone network. In
a mobile access network, however, the backbone network provides access to
services and constitutes the gateway to the global internet (see Section 2.1.1),
which is why it is reasonable to consider scenarios where DFGs need to be
forwarded to it.

Further, in contrast to my initial working assumption, only a few nodes within
the backhaul network provide the connection to the backbone network in
real-world deployments [28]. Therefore, data traffic needs to be routed to
these nodes to access the backbone network. These nodes are commonly
realized as Traffic Aggregation Points (TAPs) [105]. The main functionality
of a TAP is to receive data traffic from many nodes and forward it to the
backbone network [106].

As a result, this chapter rectifies my initial assumption for the backbone
connection and I describe how FCAPP can be extended employing TAPs to
take forwarding DFGs to the backbone network into account. The considered
extension has initially been created together with Rasha Al-Naseri over the
course of her master thesis [107] under my supervision and has later been
considerably refined by myself. After describing the extended problem state-
ment in Section 8.1, I present updated versions of OPTps and FlexCAPF that
take this extension into account in Sections 8.2 and 8.3. Finally, I provide
evaluation results for both approaches in Section 8.4 to measure the effect of
the backbone extension.
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8.1 Problem Statement

Extending FCAPP to incorporate possible backbone connections using TAPs
is a rather straightforward task. Compared to the initial FCAPP problem
statement from Section 3.2, an additional set T ⊆ V is defined as a first
step, which denotes the nodes serving as TAPs and thus provide access to
the backbone network. To keep the backbone extension model reasonably
simple, the connection to the backbone network with a TAP t ∈ T as start and
end is assumed to require a constant latency of lBB seconds. For illustration,
Figure 8.1 depicts an exemplary FCAPP scenario with TAPs providing access
to the backbone network.

LCA RCA LCA
TAP

TAP

Backbone Network

Figure 8.1: FCAPP scenario with TAPs providing access to the backbone network

Regarding the DFGs, it is assumed that not every DFG requires forwarding
to the backbone network, i.e. to a TAP. The set of DFGs in need of such a
backbone connection is denoted as FBB ⊆ F. So in total, a rather small number
of additional input parameters is required, which are summarized in Table 8.1.

Table 8.1: Additional input parameters for FCAPP with backbone extension

T ⊆ V set of TAPs that provide a backbone connection
FBB ⊆ F set of DFGs requiring forwarding to the backbone network
lBB delay time in the backbone network

Each DFG x ∈ FBB is defined just like every other y ∈ F \ FBB, but additionally
requires being forwarded from its LCA to a TAP. As a result, such a DFG’s
path delay is increased by the corresponding link delay and by the backbone
delay lBB. So in summary, a DFG x ∈ FBB is said to be satisfied by an LCA
c ∈ C if and only if
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(1) c controls all nodes v with Wx,v = 1,
(2) the routing paths from all nodes v with Wx,v = 1 to c have sufficient

resources to each provide a data rate of bflow(x),
(3) the routing path from c to a TAP t ∈ T has sufficient resources to provide

a data rate of bflow(x) ·∑v∈V Wx,v and
(4) c has sufficient processing capacity to ensure a round trip latency of

lflow(x), taking into account the backbone delay lBB and the path delay
of the routing paths from (2) and (3).

It is crucial to emphasize that the round trip latency for a DFG x ∈ FBB in
the network not only includes the time needed for processing x at c and the
routing paths delays as seen before, but also the additional backbone delay
lBB. Therefore, the time available for handling the required pflow(x) operations
per packet is reduced by both path delays and lBB. Depending on the choice
of lBB, this can lead to a substantial increase of required processing capacity
per DFG x ∈ FBB to achieve the required round trip latency lflow(x).

8.2 Optimization Model with Backbone Extension

In this section, I elaborate how OPTps from Section 5.2 is extended to incorpo-
rate the backbone extension. The resulting optimization model remains an
MIQCP and is further referenced as OPTBB. Before I present the additional
constraints that need to be ensured, Table 8.2 lists the additional variables
used to store the decisions about the LCA-to-TAP assignments.

Table 8.2: Additional MIQCP variables for backbone extension

TAPt,x ∈ {0, 1} determines if t ∈ T is the TAP of DFGs x ∈ FBB
hasTAPx ∈ {0, 1} determines if DFG x ∈ FBB has a TAP connection
hc,t,v,w,x ∈ {0, 1} determines if (v, w) ∈ E is included in the routing

path from LCA c ∈ C to TAP t ∈ T for x ∈ FBB

As a start, routing path constraints are required for the connections between
LCAs and TAPs similar to those already introduced for LCA-to-node and
DFG-to-LCA assignments (5.1–5.6).

However, the corresponding h variables require an additional index compared
to the previously used routing variables f and g to establish the connection
between a routing path and a DFG requiring backbone connection x ∈ FBB.
This increases the number of generated variables and constraints substantially
compared to OPTps. Consequently, constraints (8.1–8.3) guarantee for every
LCA-to-TAP routing path that starts at an LCA, ends at a TAP and that ingress
and egress are balanced.
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∑
(c,w)∈E

hc,t,c,w,x = Satc,x · TAPt,x, ∀c ∈ C, t ∈ T, x ∈ FBB, c 6= t (8.1)

∑
(v,t)∈E

hc,t,v,t,x = Satc,x · TAPt,x, ∀c ∈ C, t ∈ T, x ∈ FBB, c 6= t (8.2)

∑
(u,v)∈E

hc,t,u,v,x = ∑
(v,w)∈E

hc,t,v,w,x,
∀c ∈ C, t ∈ T, v ∈ V, x ∈ FBB,

c 6= t 6= v (8.3)

Next, each DFG must be assigned to at most one TAP (8.4) and the corre-
sponding decision variable needs to be set (8.5).

∑
t∈T

TAPt,x ≤ 1, ∀x ∈ FBB (8.4)

hasTAPx = ∑
t∈T

TAPt,x, ∀x ∈ FBB (8.5)

As for the DFG satisfaction, it is now important to distinguish between DFGs
that do and ones that do not require a backbone connection. DFGs x ∈ FBB
are only determined as satisfied if they are assigned to an LCA and to a TAP
(8.6). It should be noted that in this case, the Satc,x variables technically violate
their initial definition and are only used for the DFG-to-LCA part of the DFG
satisfaction. For all remaining DFGs x ∈ F \ FBB, the satisfaction constraint
remains unchanged (8.7).

isSatx = ∑
c∈C

Satc,x · hasTAPx, ∀x ∈ FBB (8.6)

isSatx = ∑
c∈C

Satc,x, ∀x ∈ F \ FBB (8.7)

Then, the backhaul link usage for LCA-to-TAP assignments has to be incorpo-
rated into the constraints governing the link capacity (8.8).

∑
c∈C,d∈V

fc,d,v,w ·
(

bLCA + ∑
x∈F

Wx,d · Satc,x · bflow(x)
)
+ ∑

c,d∈C
gc,d,v,w · bRCA

+ ∑
c∈C,t∈T,x∈FBB

hc,t,v,w,x · bflow(x) ≤ bcap(v, w), ∀(v, w) ∈ E (8.8)

Similarly, the delay of the LCA-to-TAP routing paths and the backbone delay
lBB have to be included into the constraints making sure that the required
round trip latency is met for each DFG x ∈ FBB (8.9). Because it is required
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to also iterate over T, this again results in additional constraints for the
optimization model. Again, nothing changes for the DFGs x ∈ F \ FBB (8.10).

pDFG
c,x ·

(
lflow(x)− ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

)
− lBB

− ∑
(v,w)∈E

hc,t,v,w,x ·
(

lcap(v, w) + lcap(w, v)
))
≥ Satc,x · TAPt,x · pflow(x),

∀c ∈ C, d ∈ V, t ∈ T, x ∈ FBB, Wx,d = 1 (8.9)

pDFG
c,x ·

(
lflow(x)− ∑

(v,w)∈E
fc,d,v,w ·

(
lcap(v, w) + lcap(w, v)

))
≥ Satc,x · pflow(x), ∀c ∈ C, d ∈ V, x ∈ F \ FBB, Wx,d = 1 (8.10)

Finally, it is necessary to add constraints to prevent loops for the LCA-to-TAP
connections (8.11–8.12), analogously to the already present loop prevention
constraints in OPTps (5.22–5.25).

∑
(v,c)∈E

hc,t,v,c,x = 0, ∀c ∈ C, t ∈ T, x ∈ FBB, c 6= t (8.11)

∑
(t,w)∈E

hc,t,t,w,x = 0, ∀c ∈ C, t ∈ T, x ∈ FBB, c 6= t (8.12)

All further constraints, as well as the objective function, can be adopted
unmodified from OPTps.

8.3 FlexCAPF with Backbone Extension

For extending FlexCAPF to also consider DFGs that require a backbone con-
nection, mainly two aspects have to be covered:

1. When evaluating whether or not an LCA c ∈ C can satisfy a DFG f ∈
FBB, it has to be checked simultaneously whether or not an appropriate
routing path can be found from c to a TAP.

2. For every DFG f ∈ FBB, the TAP connection has to be taken into account
when checking if the DFG satisfaction constraints are fulfilled and when
establishing the corresponding assignment.

To accomplish the first aspect, every occurrence of a DFG satisfaction check
(checkDFGsat) followed by adding the corresponding DFG-to-LCA assign-
ment if the check is successful (addDFGsat) – for example in Algorithm 3.5
or Algorithm 6.1 – is replaced by the code fragment shown in Algorithm 8.1.
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Algorithm 8.1 Code fragment for an LCA c and a DFG f
if f in FBB then

TAPpath = findTAP( f , c)
if path is not None then

addDFGsat(v, f ,TAPpath)
else

if checkDFGsat(v, f ) = True then
addDFGsat(v, f ,None)

The included procedure findTAP is presented in Algorithm 8.2. The benefit
of creating routing paths from LCAs to TAPs for each DFG individually is
that for each DFG a new, best routing path can be determined. Therefore, the
procedure first creates weights for each network link, 1 if the link has enough
remaining capacity to transfer all required data to a TAP, |E|+ 1 otherwise.
Then, I use the Dijkstra algorithm [108, 109] with these weights to determine
the shortest path to each TAP. The paths are then sorted by length and handed
over to checkDFGsat. findTAP finally returns the shortest path for which
the DFG satisfaction check succeeded, otherwise it returns None.

Algorithm 8.2 findTAP( f , c)
for e in E do

if brem(e) ≥ bflow( f ) ·∑v∈V W f ,v then
weight(e) = 1

else
weight(e) = |E| + 1

for t in TAPs do
paths = {dijkstraPath(source=c, target=t,weight=weight) for t in T}

sort paths by length of each path
for p in paths do

if checkDFGsat(c, f , p) = True then
return p

return None

The second aspect from above has been dealt with by extending the proce-
dures checkDFGsat and addDFGsat. The extended version of checkDFGsat,
whose presentation I had omitted in previous chapters, can be seen in Algo-
rithm 8.3. The addDFGsat procedure has been modified analogously, thus I
skip a separate representation.

As already mentioned in previous chapters, checkDFGsat is responsible for
checking whether or not satisfying a DFG f ∈ F is possible for an LCA c ∈ C.
For each node that f is originating from, the procedure first calculates the link
delays of the available LCA-to-node routing paths and additionally takes the
LCA-to-TAP path delay and lBB into account if f ∈ FBB. It then checks if the
given paths fulfill the latency requirements of f in accordance with constraints
(8.9) and (8.10) from OPTBB. While doing so, it also counts how many times
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each link e ∈ E is used and utilizes this to ensure that all used links provide
enough data rate compliant with constraint (8.8) from OPTBB.

Algorithm 8.3 checkDFGsat( f , c, TAPpath)
count = [0 for e in E]
for v in {v in V if W f ,v = 1} do

if TAPpath is not None then // therefore f in FBB
path = join(TAPpath,LCApath(c, v))
delay = 2 ·∑e∈path lcap(e) + lBB

else
path = LCApath(c, v)
delay = 2 ·∑e∈path lcap(e)

for e in path do
count[e] += 1

if delay + pflow( f )
prem(c ) > lflow( f ) then // DFG latency constraint

return False
for e in {e in E if count[e] > 0} do

if brem(e) < count[e] ·bflow( f ) then // DFG link capacity constraint
return False

return True

8.4 Evaluation

In this section, I analyze the effects of the presented backbone consideration
on the results for FCAPP and on the performance of my solution approaches.
The used evaluation scenario is based on the ones already used in previous
chapters and only extended by the additional backbone parameters. For all
instances, I initialize the set of TAPs T by generating a random sample of
d0.1 · |V|e unique nodes uniformly at random. The set of DFGs requiring
backbone connection FBB is initialized by adding every f ∈ F to FBB with a
probability of PBB. For the backbone delay lBB, I consider values of 0.0, 2.5
and 5.0 milliseconds throughout this section. While 0.0 ms is mostly included
to see what happens if the backbone connection comes without additional
delay (apart from the additional LCA-to-TAP path delays), 2.5 ms and 5.0
ms are chosen as exemplary values, corresponding to a quarter or half of
the maximum acceptable round trip latency of most DFGs in my evaluation
scenario (see Table 3.3).

As in previous chapters, all evaluation runs have been conducted with different
64-bit random seeds, using the same seed for all parameter settings for
FlexCAPF for each network instance. All calculations are executed in single-
threaded mode on Intel® Xeon® E5-2695 v3 CPUs running at 2.30 GHz. All
plots contain confidence intervals at a 95% confidence level. Unless otherwise
noted, every instance was solved using only one RCA.
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8.4.1 OPTBB vs. FlexCAPF

In this first evaluation part, I present results obtained from OPTBB for small
networks and compare them with results obtained by FlexCAPF’s initial
placement. Probably due to the large increase of variables and constraints from
OPTps to OPTBB, the optimization model turned out to execute very slowly. I
conducted evaluation runs for networks with 4 and 9 nodes and consistently
used PBB = 1.0, except for the comparison with PBB = 0.0. However, it was
impossible to solve 9-node networks for DFG counts that would have brought
interesting aspects in reasonable time, which is why the results presented here
are restricted to the 4-node networks. As in previous chapters, I limited the
execution time for each instance to one hour and fed them with the results
of FlexCAPF to converge faster, but with many DFGs, most instances with
PBB = 1.0 terminated without yielding a valid solution within the time limit. I
then restarted those instances up to 800 DFGs with a time limit of 10 hours.
The results are depicted in Figure 8.2.
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Figure 8.2: Evaluation: OPTBB vs. FlexCAPF (initial placement)

First, Figure 8.2a shows the percentage of DFGs satisfied. It can be seen that
for the instances with PBB = 1.0 and lBB = 5.0 not all DFGs can be satisfied
starting from 575 DFGs. But apart from that, a few other instances with
PBB = 1.0 and lBB ∈ {0.0, 2.5} left a few DFGs unsatisfied as a result from
exhausted links adjacent to the chosen TAP. Then, it is possible to observe
in Figure 8.2b, which shows the number of used LCAs, that FlexCAPF with
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backbone extension continues to provide optimal or very close to optimal
results, as was already seen for FlexCAPF without backbone extension in
Chapter 5. At last, the runtimes are depicted in Figure 8.2c. Apart from the
well-known runtime difference between optimization model and FlexCAPF,
the plot reveals that for FlexCAPF the backbone extension seems to slightly
increase execution time. I will also elaborate more on this is the following
evaluation part.

8.4.2 Initial Placement Evaluation

Following the results of OPTBB, I now provide results for the initial placement
of FlexCAPF for 36-node networks with mesh and ring topology. This time,
I show results for both PBB = 0.5 and PBB = 1.0 as well as PBB = 0.0 for
comparison. The results are illustrated in Figure 8.3.

Figures 8.3a and 8.3b offer the percentage of DFGs satisfied for the mesh and
ring topologies, along with several interesting observations. First of all, it
can be seen that with higher PBB and higher lBB, fewer DFGs are satisfied.
This comes as no surprise because the backbone delay lBB is part of a DFG’s
required round trip latency and thus a DFG f ∈ FBB requires more processing
capacity from its LCA. Then, for the mesh topologies, the instances with
PBB 6= 0.0 and lBB = 0.0 provide the exact same results as the instances with
PBB = 0.0. This makes sense because the additional link delays are small and
the mesh topologies provide vast link capacity. But in the ring topologies,
where link capacity is more limited, there is a significant influence. This is
most notable for the instances with PBB = 1.0. The ones with lBB = 0.0 leave
almost as many unsatisfied as the ones with lBB = 2.5. Obviously, the link
capacities of the links connected to a TAP are exhausted with so many DFGs.
The instances with lBB = 5.0 perform similarly to the mesh topologies though,
likely because their main bottleneck is still the processing capacity.

Next, Figures 8.3c and 8.3d depict the number of used LCAs. Neither plot
reveals new aspects but confirms my conclusions from above. Instances
with higher PBB and lBB require more LCAs, which is consistent with the
lower DFG satisfaction rates seen before. In addition, Figure 8.3d reveals
that the instances that performed worse for the ring topologies in terms of
DFG satisfaction also use fewer LCAs in the ring topologies than in the mesh
topologies. This verifies that DFGs cannot be satisfied because of missing
link capacity, otherwise additional LCAs would be added to satisfy them. In
fact, a few of these instances with PBB = 1.0 also resulted in solutions with a
second RCA, which is also a straightforward consequence of exhausted link
capacities.

Finally, Figure 8.3e exhibits the runtime results and confirms the observations
from Section 8.4.1. The more DFGs require a backbone connection, the higher
the runtime of the instances. The runtime increase was practically the same
for both mesh and ring topologies, which is why the plot for the latter has
been omitted here.
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Figure 8.3: Evaluation: initial placement with different backbone parameters

8.4.3 Dynamic Network Simulation

In the last part of this evaluation, I provide results for FlexCAPF with back-
bone extension in a dynamic network simulation. The used simulation parame-
ters are identical to the ones in previous chapters. I also included from-scratch
comparisons, like in Section 6.3.2. For this evaluation part, I used instances
with PBB = 0.5 only, except for the PBB = 0.0 comparison case of course. The
results can be seen in Figure 8.4.
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Since many aspects that can be observed in these plots have been covered in
the previous two evaluation parts, I will focus on the reassignment aspects
hereafter. Figure 8.4a shows the number of LCAs used. One aspect is that
flexible reassignment apparently copes with the backbone extension slightly
worse compared to the initial placement; the gap between reassignment and
from-scratch comparison is larger for the instances with PBB = 0.5 compared
to PBB = 0.0. A possible explanation for this minor effect could be that,
since DFGs with backbone connection require more resources for satisfaction,
reusing existing LCAs compared to placing new ones tailored for the current
DFGs has a slightly bigger impact.
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Figure 8.4: Evaluation: FlexCAPF reassignment with different backbone parameters
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8 Flow Processing-aware Control Application Placement with Backbone Extension

Then, the number of added or removed LCAs and new DFG-to-LCA assign-
ments compared to the previous placement (Figures 8.4b and 8.4d) appear
unaffected by the backbone extension. However, the number of new LCA-
to-node assignments is visibly higher for the instances with PBB = 0.5. This
can be explained similarly as before. With increased resource requirements of
DFGs x ∈ FBB, it is more likely that LCAs cannot satisfy new DFGs originating
from their controlled nodes. Hence, new LCA-to-node assignments have to
be created. This thought is confirmed by the average number of LCAs per
node shown in Figure 8.4e, which reveals that the control ratio is higher
for instances with PBB = 0.5. At last, the relative runtime increase for the
flexible reassignment was the same as for the initial placement, hence I skip
the corresponding plot.

8.5 Observations

In this chapter, I have described how FCAPP can be extended to employ TAPs
to forward DFGs to the backbone network. It turned out that depending on
the chosen backbone parameters, this extension has a significant influence on
the results obtained for FCAPP. Still, my solution approaches were able to
handle the extension very well and, after all, the deviations between previously
seen results could generally be explained by increased resource requirements
of DFGs in need of a backbone connection.

However, whether or not DFGs need to be forwarded to the backbone network
is very dependent on the type of considered DFG, or in other words, the sce-
nario modeled using my concept of DFGs. This naturally raises the question
how FCAPP would perform for evaluation scenarios completely different to
the ones used so far. Therefore, I will tackle this question in the following
chapter. As for the backbone extension, I will consider it to be a special use
case that is now covered and whose influence is now known, so I will refrain
from employing DFGs requiring a backbone connection in the remainder of
the thesis.
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9
CoMP-based Evaluation of
Flow Processing-aware
Control Application Placement
In the preceding chapters, I have studied multiple variations of FCAPP, I
have presented various solution approaches for those and I have evaluated
them using fixed networks and dynamic network simulations. But one sig-
nificant aspect has remained unchanged so far: the DFG evaluation scenario
introduced in Section 3.6.1 (that will be referred to as generic scenario in the
following) has been used consistently throughout all evaluation parts in my
thesis. Up to this point, doing this was convenient and allowed to analyze the
effects of my considered modifications to the FCAPP problem statement (such
as the backbone extension in the previous chapter) or to compare different
solution approaches.

The evaluation results obtained in the previous chapter revealed how much the
results for FCAPP could already be affected by an additional backbone delay
parameter. This naturally raises the question how FCAPP, or in particular
FlexCAPF, would perform for other types of DFGs, possibly very different
from those used in the generic scenario. For this sake, Coordinated Multi-
Point (CoMP) techniques present themselves as a base for an alternative
evaluation scenario. In previous chapters, CoMP has been mentioned and been
used as a motivation for my work several times, for example for the definition
of DFGs in Section 3.2. As a result, this chapter introduces a new DFG
evaluation scenario based on CoMP transmission/reception (Section 2.1.2) in
Section 9.1 and then analyzes its influence on FCAPP in Section 9.2.

9.1 Scenario Description

There are a number of different techniques summarized under the umbrella
term CoMP, achieving different gains and having different requirements for
the backhaul network. For this CoMP evaluation scenario, I will focus on
Joint Processing (JP) and Joint Scheduling (JS)/Joint Beamforming (JB), which
I introduced in Section 2.1.2.
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9 CoMP-based Evaluation of FCAPP

Each DFG is either of type JP or of type JS/JB, as shown in Table 9.1. I have
extrapolated the data for these types based on a deliverable of the NGMN
Alliance RAN evolution project CoMP evaluation and enhancement [110]. As
already done in Section 3.6.1, I employ a factor op(x) as a base for choosing the
pflow(x) parameters for each DFG, which describes the operational overhead
that arises during data processing. For all ranges listed in Table 9.1, the values
have been chosen uniformly at random.

Table 9.1: CoMP scenario: DFG types

type probability bflow lflow op(x)

JP 0.5 15 to 20 Mbit/s 2 to 4 ms 107

JS/JB 0.5 5 to 10 Mbit/s 2 to 4 ms 5 · 106

Based on this, the processing capacity requested by DFG x is determined by

pflow(x) = op(x) · ∑
v∈V

W f ,v.

Just as for the generic scenario, I pick random points in the grid and use
the GreenTouch connectivity model [92] to assign DFGs to nodes. I then
connect every DFG with up to three BSs providing the highest Signal to Noise
Ratios (SNRs) (or chosen uniformly at random in the very unlikely case of a
tie). This choice is compliant with existing CoMP studies [111, 112], where
three cooperating nodes with the highest SNR give the best results. However,
to add some variation to the number of data flows per DFG I decided to add
the third best one if and only if its SNR surpasses a threshold of 0.0 dB.

To give an impression of the number of data flows per DFG produced by this
evaluation scenario, I have generated 1000 DFGs for each network used in
Section 9.2. Rounded to one decimal place, 32.2% of the DFGs had two data
flows and 67.8% had three data flows, giving an average number of 2.678
data flows per DFG. This constitutes a significant difference compared to the
generic scenario, for which an identical sample analysis gave a result of 1.346
data flows per DFG in Section 3.6.1. Table 9.2 summarizes this and other key
differences between the new CoMP scenario and the generic scenario.

Table 9.2: Key differences between generic and CoMP scenario

generic scenario CoMP scenario

data flows per DFG (sample) 1.346 2.678
bflow (expected value) ∼ 3 Mbit/s 12.5 Mbit/s
lflow (expected value) 14 ms 3 ms
pflow (expected value/sample) ∼ 1.35 · 107 ∼ 2 · 107

124



9.2 Evaluation

In total, the presented CoMP scenario appears to be substantially more chal-
lenging compared to the previously used generic scenario since the produced
DFGs require more data rate, more processing capacity and shorter round trip
delays. More precisely, with the processing demands pflow being increased
by a factor of approximately 1.5 and the maximum round trip latency lflow
being decreased by a factor of 14

3 , each CoMP DFG will require approximately
1.5 · 14

3 = 7 times more processing capacity from an LCA to be satisfied. But
of course, this is just a rough estimate that ignores the link delays. In the
following section, I will evaluate how the results of FCAPP are influenced by
the CoMP scenario in practice.

9.2 Evaluation

In this section, I analyze the results of FCAPP based on the CoMP evaluation
scenario and discuss the observed effect, focusing on possibly different be-
havior compared to the previously used generic scenario. First, I compare
the results of OPTps and FlexCAPF in Section 9.2.1 to see if the different
characteristics of the CoMP scenario have an influence on the gap between
both solution approaches. Next, I evaluate FlexCAPF for larger networks with
fixed state in Section 9.2.2. Last, I present the results of dynamic network
simulation runs in Section 9.2.3.

Apart from the CoMP scenario for generating DFGs, I use the same evaluation
parameters and topologies as described in Sections 3.6.1, 5.4.1 and 6.3.1 –
except for a few differences that I will outline in the following subsections.
As before, all calculations are executed in single-threaded mode on Intel®
Xeon® E5-2695 v3 CPUs running at 2.30 GHz and all plots contain confidence
intervals at a 95% confidence level.

9.2.1 OPTps vs. FlexCAPF

To compare OPTps and FlexCAPF, I have generated mesh topologies with 4
and with 9 nodes, where each node is a potential host (to not unnecessarily
reduce the solution space of the small networks). The instances are generated
with multiples of 10 DFGs (i.e. 10, 20, 30,. . . ) as long as they could still be
solved within a 1-hour time limit. As in previous evaluation parts featuring
optimization models, I enhanced OPTps by feeding it with the results of
FlexCAPF for reducing the search space (as described in Section 3.6.2).

The results of these evaluation runs can be seen in Figure 9.1. Figure 9.1a
shows the percentage of DFGs satisfied in the 4-node networks and allows
to make two very interesting observations. First of all, it can be seen that the
DFG satisfaction drops below 100% at around 120 DFGs, which confirms that
satisfying CoMP DFGs requires way more network resources than satisfying
the generic DFGs in previous chapters. As a reminder, both OPTps and
GreedyFCAPAps (which corresponds to the initial placement functionality of
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9 CoMP-based Evaluation of FCAPP

FlexCAPF) were able to satisfy all generic DFGs for up to 1100 DFGs in the
network in the corresponding evaluation in Section 5.4.2. This means that the
number of DFGs satisfied dropped by a factor of 1100

120 ≈ 9.167, i.e. by more
than the factor of 7 estimated earlier. This difference can be explained by the
previously neglected link delays on the one hand and with additionally longer
routing paths for CoMP DFGs due to more data flows per DFG (all of which
have to be routed to the same LCA) on the other hand.

Then, it can be noted that FlexCAPF continues to provide great results in direct
comparison with OPTps, despite the vastly different DFG types. FlexCAPF
reliably satisfies all DFGs as long as OPTps does so and then continues to
satisfy as many DFGs as OPTps does before a small gap starts to appear at
around 150 DFGs. At 200 DFGs, FlexCAPF still satisfies only 5% less DFGs
than OPTps. Given that the new CoMP scenario includes around twice as
many data flows per DFG than the former generic scenario, it is definitely a
great result that FlexCAPF features such a stable behavior. The same plot for
the 9-node networks has been omitted because all DFGs were satisfied.
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Figure 9.1: Evaluation: OPTps vs. FlexCAPF (initial placement) for CoMP scenario

The pleasant conclusion about FlexCAPF from above is confirmed by Figures
9.1b and 9.1c, which depict the number of used LCAs in the 4-node and 9-
node networks. As in previous chapters, FlexCAPF uses the optimal number
of LCAs. Also, as for the corresponding evaluation part using the generic
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DFG scenario, the number of used LCAs scales in a very obvious way with
more DFGs in the network.

Last but not least, Figure 9.1d illustrates the execution times of OPTps and
FlexCAPF for the 4-node networks. I have omitted the corresponding plot for
the 9-node networks, as it would not bring any additional insight. Again, two
interesting aspects can be observed. First, it can be seen that the execution
time of OPTps increases drastically once no longer all DFGs can be satisfied – a
similar correlation could already be seen in previous evaluation parts but not
in such a clear manner. Apparently, the increased number of data flows per
DFG causes more interdependencies for OPTps to deal with to satisfy as many
DFGs as possible. The other observation concerns FlexCAPF. By comparing
Figure 9.1d with Figure 5.3d (which shows the runtime of the corresponding
evaluation using the generic scenario), it can be observed that both feature
an almost identical curve for up to 200 DFGs. I conclude that the runtime of
FlexCAPF is mainly affected by the number of DFGs in the network – not by
the number of data flows included in all DFGs in the network. This is another
pleasant result because it reveals again that FlexCAPF shows a stable behavior
for more difficult DFG types.

9.2.2 Initial Placement in Larger Networks

After looking at OPTps and FlexCAPF for smaller networks in the previous
section, I am now evaluating FlexCAPF using the CoMP scenario in larger
networks with fixed network state. To do this, I use the same 36-node and
100-node node networks with mesh or ring topology already used in previous
chapters with multiples of 50 DFGs.

While it would be desirable to compare the CoMP scenario and the generic
scenario directly, such a comparison is not reasonable because of the vast
differences between the two scenarios. Instead, I decided to run every instance
a second time, but considering each data flow of each DFG individually,
i.e. each data flow of a DFG is considered as an individual DFG with only
one data flow and can be assigned to different LCAs. The DFG’s required
processing pflow( f ) is shared equally between the single data flows. The
required data rate bflow( f ) and the required round trip latency lflow( f ), which
already apply to each individual data flow of every DFG anyways, remain
untouched.

The intention of doing so is twofold: on the one hand, I consider this a viable
comparison case since it features one data flow per DFG (and is hence not that
far away from the generic scenario) while maintaining the same theoretical
resource requirements, which enables a direct comparison. Arguably, this
comparison for the CoMP scenario is just as suitable to reveal behavioral
differences compared to the generic scenario as any possible attempt to scale
generic DFGs so that their resource requirements correspond more to those
of CoMP DFGs. On the other hand, it is a perfect opportunity to determine
the effect of my requirement that all data flows of a DFG have to be jointly
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9 CoMP-based Evaluation of FCAPP

assigned to one LCA, i.e. to evaluate one of the major conceptual decisions of
my thesis.

The most interesting results of this evaluation are illustrated in Figure 9.2.
This time, I have omitted the results of the 36-node networks, because they
exhibited the same behavior as the 100-node networks, albeit slightly less
prominent. At first, Figures 9.2a and 9.2b show the percentage of DFGs sat-
isfied in the network. It can be perceived that in both plots, the comparison
scenario yields more satisfied DFGs than the default CoMP scenario. More-
over, while the comparison scenario shows no visible difference between mesh
and ring topologies, there is a notable difference for the CoMP scenario that
has fewer DFGs satisfied in the ring topology. In particular, some individual
DFGs already remain unsatisfied with 750 DFGs in the network, while the
same only occurs in the mesh networks at around 1250 DFGs.
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Figure 9.2: Evaluation: FlexCAPF initial placement for CoMP scenario

The first conclusion to be drawn from this is that the essential requirement
of all data flows of a DFG to be jointly processed at the same LCA obviously
has a major influence on the obtained results and generally makes it harder
for DFGs to be satisfied. With exhausted network resources, some highly
demanding CoMP DFGs can no longer be satisfied. But treated individually,
some of them still can be satisfied, which is why the comparison satisfies
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more DFGs. This effect is particularly noticeable in the ring topologies, where
fewer backhaul links can lead to very long routing paths compared to a mesh
network and especially compared to data flows being processed individually.

To illustrate this, Figure 9.3 depicts a 36-node ring topology and three nodes
a DFG could originate from are highlighted. For this particular topology,
these three nodes represent a worst case, so that any LCA satisfying the
corresponding DFG would be at least five hops away from one of the nodes.
As a result, the path delay increases and an LCA needs to devote more
processing capacity to fulfill the required round trip latency of the DFG.
In a mesh topology, however, all three nodes would be interconnected and
commonly, an LCA significantly closer to all nodes can be found.

From an operator’s perspective, this means that a decision has to be made
between additional capital expenditure for additional backhaul links or addi-
tional operational costs for more required processing capacity and thus more
active LCAs. In this regard, FlexCAPF constitutes a powerful tool as it allows
to characterize the practical benefits of envisioned network extensions via
simulation before making a costly, final deployment decision.
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Figure 9.3: Ring topology: worst case example for a DFG originating from 3 nodes

Coming back to the evaluation results in Figure 9.2, Figures 9.2c and 9.2d show
the number of LCAs used in the mesh and ring topologies. As expected, it
can be seen that the CoMP scenario requires more LCAs than the comparison
case. Naturally, the same explanation that I elaborated already extensively
based on the DFG satisfaction plots applies here as well. However, it can
additionally be noticed that with exhausted network resources in the ring
topology, FlexCAPF even stops to utilize all LCAs for the CoMP scenario.
Since this can only happen if FlexCAPF is not able to satisfy additional DFGs
by doing so, this indicates that the higher data rate requirements of the CoMP
scenario are exhausting the backhaul links for many DFGs – in contrast to the
mesh topologies. At last, I have skipped runtime results for this evaluation
part because they showed the same similarity to previous evaluation parts as
I already described in Section 9.2.1.
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9 CoMP-based Evaluation of FCAPP

9.2.3 Dynamic Network Simulation

In this final evaluation part, I present results from dynamic network simulation
runs for the CoMP scenario to determine the effect of the new scenario on
the flexible reassignment of FlexCAPF. As in Section 6.3, I have simulated
the network operation using FlexCAPF over the course of 48 simulated hours
on the same four network topologies with 36 or 100 nodes and mesh or ring
topology (Figure 6.3). Further, I again perform a from-scratch comparison
on an empty copy of the current network each time the set of used CAs is
modified in the course of the simulation. The remaining evaluation scenario
is also identical to Section 6.3, except that the intensity of the non-stationary
Poisson process to generate DFGs is set to λ = 0.125 · |V| · loadlevel(t), i.e.
scaled by a factor of 0.125 to compensate for the higher resource demand of
the CoMP scenario.

The results of the simulation runs are depicted in Figure 9.4. As in all
simulations all DFGs were consistently satisfied, there is no illustration of
DFG satisfaction. Since I have already elaborated on the general reassignment
characteristics in previous chapters, I will focus on the key differences from
the reassignment results based on the generic scenario from Section 6.3.2 in
the following.

First, Figures 9.4a and 9.4b display the average number of LCAs used and
the average number of added or removed LCAs compared to the previous
placement. For both plots there is no notable difference compared to the
results from Section 6.3.2: the flexible reassignment uses only very few LCAs
more on average and affects the set of active LCAs far less. Then, Figure 9.4c
and Figure 9.4d show the average number of new LCA-to-node and DFG-to-
LCA assignments. The behavior is again roughly the same as in Section 6.3.2.
But it can be noticed that the absolute numbers of LCA-to-node assignments
are higher, while the absolute numbers of DFG-to-LCA assignments are lower.
This can, however, be explained since the CoMP scenario features fewer DFGs
but with more data flows per DFG. Therefore, it is less likely that there is
already an LCA controlling all nodes a new DFG is originating from, so that
new LCA-to-node assignments need to be established.

This is also expected to result in more LCAs per node on average, which
is confirmed by Figure 9.4e. The control ratio shown in this plot is indeed
slightly bigger compared to the results from Section 6.3.2. Surprisingly, the
gap between reassignment and from-scratch comparison is smaller in turn.
A possible explanation for this is that even the from-scratch placement has
to create new LCA-to-node assignments more often to satisfy DFGs due to
more data flows per DFG. At last, the runtimes illustrated in Figure 9.4f
are lower compared to those from Section 6.3.2 due to fewer DFGs in the
network, but the relation between reassignment and from-scratch comparison
also corresponds to the one already seen. In total, the flexible reassignment
seems to exhibit a very stable behavior just as the initial placement in the
previous section.
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Figure 9.4: Evaluation: FlexCAPF reassignment with CoMP scenario

Table 9.3 gives a more fine-grained overview of the number of reassignment
runs and the average runtimes recorded during the simulations for each
topology, including separate numbers for reassignments due to needing an
additional LCA (HL) and due to low-load situations (LL) for the flexible
reassignment.

As a matter of fact, the table reveals a considerable difference compared to the
numbers seen before in Section 6.3.2. Apparently, the CoMP scenario required
significantly more reassignments, about 10 to 15 times the ones needed for
the generic scenario. Likely, this is caused by the characteristic of the CoMP
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scenario having few but highly demanding DFGs. As a result, every expired
DFG frees and every new DFG requires considerably more resources than in
the generic scenario, which can more easily cause a low-load reassignment,
soon followed by adding an LCA again once new DFGs arrive in the network.

Table 9.3: Simulation runtime statistics

Network: mesh36 ring36 mesh100 ring100

Average number of runs (total): 640.6 640.27 1022.53 967.2
Average number of runs (HL): 355.77 356.7 725.27 690.23
Average number of runs (LL): 284.83 283.57 297.27 276.97
Average runtime (reass.): 0.003 s 0.003 s 0.039 s 0.043 s
Average runtime (HL): 0.002 s 0.002 s 0.018 s 0.021 s
Average runtime (LL): 0.004 s 0.004 s 0.089 s 0.098 s
Average runtime (scratch): 0.022 s 0.027 s 0.42 s 0.486 s

But while this behavior is certainly not desirable, it is not a general flaw of
FlexCAPF and can be corrected by adjusting the parameters of FlexCAPF
appropriately to the characteristics of the CoMP scenario. In Section 6.2.2,
I introduced a parameter Llowload ∈ (0, 1], which steers the intensity of the
low-load handling. This parameter had been set to 0.9 in Section 6.3.2,
provided good results for the generic scenario and was simply adopted for
this evaluation part. But for a scenario like CoMP, where individual DFGs
require more resources, a lower value would be more appropriate to avoid
too aggressive short-term estimates that do not hold up in the long run. To
confirm this hypothesis, I reran all simulations using Llowload = 0.8. The
relevant figures can be seen in Table 9.4.

Table 9.4: Simulation runtime statistics (Llowload = 0.8)

Network: mesh36 ring36 mesh100 ring100

Average number of runs (total): 180.47 180.57 123.43 114.87
Average number of runs (HL): 98.63 98.77 86.27 80.8
Average number of runs (LL): 81.83 81.8 37.17 34.07

Indeed, the number of reassignments dropped significantly, especially for the
100-node networks. This does not only confirm my assumption from above
but also showcases the flexibility provided by the Llowload parameter and
the importance of adjusting it appropriately to the given evaluation scenario.
Moreover, none of the metrics shown in Figure 9.4 changed for the worse. In
contrast, the control ratio of the flexible reassignment even improved slightly,
while there was no notable difference for all other plots (which is why I skip
these plots here). The former is easy to explain since fewer reassignments
result in fewer LCA-to-node assignments added due to instant need but
eventually not needed in the long run.
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9.3 Observations

In this chapter, I have introduced a new DFG evaluation scenario based on
CoMP transmission/reception, after consistently using the same generic DFG
types in all previous chapters. Doing this is an important step in this thesis
to prove that that my developed solution approaches do not just work well
for only one specific DFG scenario. The new scenario differs from the former
one in basically all relevant aspects as the CoMP DFGs have significantly
higher data rate and processing capacity requirements while requiring a lower
maximum round trip latency. In addition, CoMP DFGs feature around twice
as many data flows per DFG on average.

Using the CoMP scenario, I have extensively evaluated how FCAPP (in partic-
ular FlexCAPF) is influenced by the scenario’s different characteristics, with
very pleasant results. Overall, FlexCAPF proved to be very stable and con-
tinued to provide very good results compared to the reference optimization
model and also for larger networks. While the flexible reassignment first
revealed a non-desirable effect caused by the new scenario, this could be
compensated for by adjusting an already existing parameter steering the reas-
signment intensity. In total, these results indicate that FlexCAPF is perfectly
fit to handle all sorts of scenarios that can be expressed with my DFG concept.

But apart from evaluating the influence of the new DFG scenario, I also took
the opportunity to evaluate the influence of my DFG concept as such in
Section 9.2.2 by verifying what happens if the crucial requirement to jointly
process all data flows of one DFG at one LCA is neglected. The results
reveal that this key assumption of my work does indeed have a significant
impact and that DFG satisfaction is massively simplified if this requirement is
dropped.

133





10
SDN Testbed-based Evaluation
of Flow Processing-aware
Control Application Placement
All chapters of this thesis have included extensive evaluation results for the
presented approaches. These results were obtained by using simulations,
without real traffic and without taking into account possibly required re-
configuration effort in the network to affect the placement decisions of my
approaches. Of course, such aspects cannot be neglected in a real deployment.
In particular, for routing real traffic exactly as determined by my algorithms,
it is necessary to modify the routing entries in the underlying network.

In this chapter, I show as a proof of concept how FlexCAPF can be imple-
mented on top of a testbed with an emulated backhaul network that is based
on the Software-Defined Networking (SDN) approach (Section 2.1.3). The
underlying testbed has been developed just for this sake and features real traf-
fic, a real SDN controller to modify routing entries in the emulated network
and emulation of DFG processing. This work has been conducted together
with Tarun Kumar Sarkar over the course of his master thesis [113] under my
supervision.

In the remainder of this chapter, I first describe the structure and implementa-
tion of the testbed in Section 10.1 and then present and analyze the emulation
results obtained from it in Section 10.2. As the technical details of the testbed
setup are expansive and well documented in the aforementioned master thesis,
I will skip most of these details here and keep the description of the testbed’s
implementation on a concise, high level.

10.1 Testbed Description

The testbed employed in this chapter is designed as a proof of concept with
focus on the DFG concept by featuring real traffic that is routed according
to the decisions of FlexCAPF and by emulating of DFG processing at the
designated LCAs. However, the testbed is limited in other aspects and does, in
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particular, not include actual implementations of RCAs or LCAs. While RCAs
are not emulated at all, LCAs are emulated by running a simple application
that receives the packets of a data flow of a DFG and sends it back to its
source after emulating DFG processing (see Section 10.1.4).

The testbed setup can be divided into the following functional components
(also illustrated in Figure 10.1):

• FlexCAPF
• FCAPP SDN controller
• Emulated backhaul network
• Emulation module

FCAPP SDN Controller

Emulated Backhaul Network

FlexCAPF

Em
u

la
ti

o
n

 m
o

d
u

le

REST API

OpenFlow

Figure 10.1: FCAPP testbed: functional overview

In the following, I first describe these components in Sections 10.1.2–10.1.4
and then briefly describe the testbed’s hardware setup in Section 10.1.5.

10.1.1 FlexCAPF

The FlexCAPF version utilized within the testbed is essentially the FlexCAPF
algorithm as described in Section 6.2 extended by additional data structures to
store information about the emulated backhaul network (Section 10.1.3) and
with additional procedures to communicate with the FCAPP SDN controller
and the emulation module (Section 10.1.4).

To communicate with the FCAPP SDN controller, FlexCAPF accesses the
controller’s Representational State Transfer (REST) API (Section 10.1.2). On
the one hand, this happens once at the beginning of an emulation to retrieve
the information about the emulated backhaul network. On the other hand,
FlexCAPF regularly accesses the controller’s REST API during an emulation
to affect the necessary changes to the routing entries according to its CA
placement decisions.
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10.1.2 FCAPP SDN Controller

The FCAPP SDN controller is based on the Ryu SDN controller framework
[39], which has been extended by an additional REST API for accepting the
requests of FlexCAPF. In accordance with the description of an SDN controller
in Section 2.1.3, the FCAPP SDN controller fulfills mainly two purposes within
the testbed:

1. providing FlexCAPF with an abstract view of the emulated backhaul
network and

2. communicating with the SDN-enabled network devices within the emu-
lated backhaul network and modifying their routing tables upon request
by FlexCAPF.

Accordingly, the additional REST API includes functions to (1) send topology
information to FlexCAPF and (2) add/remove forwarding entries in the flow
table of a switch within the emulated backhaul network via OpenFlow (Sec-
tion 2.1.3). The topology information required for (1) is retrieved by exploiting
Ryu’s already built-in topology discovery mechanism that is based on the
OpenFlow Discovery Protocol (OFDP).

10.1.3 Emulated Backhaul Network

The backhaul network within the testbed setup is emulated using MaxiNet
[114, 115]. MaxiNet is an emulation environment for SDN that allows to
emulate larger networks by extending Mininet [116] to span the emulation
across multiple physical machines. MaxiNet technically works as a frontend
distributing an emulated network over a cluster of Mininet instances running
on different physical machines, which are called workers.

10.1.4 Emulation Module

At last, the emulation module includes the following processes to start and
steer an emulation run:

• Topology initialization,
• DFG request generation,
• DFG processing emulation,
• Traffic generation.

Topology initialization: At the start of an emulation, the emulated backhaul
network is generated based on a topology description file of the same type as
already used for storing the instances in previous chapters. Within the emu-
lated network, each node is represented by an OpenFlow-enabled switch that
has a host attached to it. The switch is needed to route traffic to and through
a node, whereas the attached host is required to run user processes, e.g. for
generating traffic with the corresponding node as source or for representing
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DFG processing (as described further below). While links between switches
are generated based on the parameters from the topology description file, the
links between a switch and its host are set up without any constraints. It
should be noted that it might not be necessary to emulate all network nodes
as such a pair in practice, since a node where no DFG ever originates from
does not need a host and leaf nodes where no traffic is routed through do not
need a switch. But since it is not always possible to predict if this would be
the case over the course of an emulation run, all nodes are homogeneously
emulated like that nonetheless.

As last step, the topology initialization launches a socat process on every
potential host. Socat [117] is a command line-based multipurpose relay utility
that, among others, includes the functionality for bidirectional data transfer
between two devices. During an emulation run, this process creates a child
process for every data flow of any satisfied DFG that duplicates every received
packet and sends it back to its source. This corresponds to the DFG round
trip assumptions made in the previous chapters.

DFG request generation: During an emulation, DFG requests are generated
using a Poisson process just as for the dynamic network simulations (e.g. in
Section 6.3.1). These requests are directly sent to FlexCAPF and will trigger
an execution of the algorithm to satisfy these DFGs. It is important to note
that the DFG requests are only virtual objects including all relevant DFG
parameters at this stage; the real traffic corresponding to their parameters is
generated at a later stage.

DFG processing emulation: In theory, three steps are necessary for each
individual packet of each data flow of each DFG to emulate DFG processing
in the testbed: (1) receiving the packet, (2) executing some processing logic on
the packet that corresponds to the processing requirements of its associated
DFG and (3) sending the packet back to its source. As described earlier, steps
(1) and (3) are already handled by socat. But for (2), implementing real data
processing is not a feasible option for this testbed due to hardware constraints.
Instead, DFG data processing is emulated by delaying each packet at an LCA
according to the delay that real processing would take before it is sent back to
its source. This is done by installing queues and filters at an LCA using the
Linux Traffic Control functionality [118] with NetEm [119, 120].

The delay for each DFG can directly be retrieved from FlexCAPF based on the
processing capacity assigned for a DFG. However, adopting these non-uniform
delays without modification practically results in a separate queue and filter
for each DFG. In an early development stage of the testbed, this approach
caused severe performance issues due to high memory consumption with
more and more generated DFGs over the course of emulation runs. Therefore,
every delay is now rounded up to the nearest tenth of a millisecond and I will
denote the resulting value as delay bin in the following. As a consequence,
only one queue and one filter is needed at each LCA for each delay bin, which
handle all DFGs with the corresponding delay bin. In total, this alternative
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approach trades a tiny bit of emulation accuracy for a significant performance
improvement.

During an emulation run, missing queues and filters that are not already in
place at an LCA are always set up once FlexCAPF has finished its execution
and accessed the REST API of the FCAPP SDN controller to change the
corresponding routing entries (Section 10.1.1).

Traffic generation: Ensuing the execution of FlexCAPF, the modification of
the flow entries in the emulated network and the setup of all missing queues
and filters, the real data traffic is finally generated in the network. This is done
using Iperf [121], which is a tool normally used for measuring the throughput
of the network and can create Transmission Control Protocol (TCP) and User
Datagram Protocol (UDP) data streams. In particular, its UDP mode allows to
generate data streams with a controlled data rate and for a specified duration,
which is used in the testbed to generate each data flow of each DFG with the
right data rate and the right duration. Accordingly, for each data flow of each
DFG one Iperf process is started on the host in the emulated network that
belongs to the source node of the data flow.

However, Iperf does not take any parameter to include user-specified infor-
mation in packets. For this reason, the Iperf version used in the testbed has
been customized to include a DFG’s delay bin into each of its packets. This
information is then retrieved by the earlier mentioned filters to put a packet
into the correct queue, i.e. to apply the correct delay before sending it back to
its source.

Last but not least, it is also necessary to account for the case that FlexCAPF
reassigns a DFG from one LCA to another one. In such a case, the correspond-
ing Iperf processes are killed and new Iperf processes are started as described
above, but only for the remaining duration of the corresponding DFG.

10.1.5 Hardware Setup

The hardware used for the testbed consists of four physical machines (PC1–
PC4), all with Intel® Core™2 Duo E8400 CPUs running at 3.00 GHz and
8 Gb RAM, which are interconnected by a 1 Gbit/s Ethernet switch. One
of the machines (PC1) is used to run the MaxiNet frontend, FlexCAPF, the
FCAPP SDN controller and all procedures from the emulation module. The
other three machines (PC2–PC4) are used as MaxiNet workers and form the
MaxiNet cluster that hosts the emulated backhaul network. For illustration,
the testbed’s hardware setup is depicted in Figure 10.2.

10.2 Evaluation

In this section, I present selected evaluation results obtained from conducting
emulation experiments on the testbed. Additional extensive evaluation results,
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Figure 10.2: FCAPP testbed: hardware setup

including proof of concept testing results for the correctness of emulated DFG
processing, traffic generation and traffic routing can be found in [113].

I first elaborate on the evaluation scenario in Section 10.2.1 and then present
evaluation results in Section 10.2.2.

10.2.1 Evaluation Scenario

As already stated in Section 10.1.4, incoming DFG requests are generated
using a non-stationary Poisson process as initially introduced for the dynamic
network simulations in Section 6.3.1. Due to the hardware limitations of the
testbed, the intensity of the Poisson process has been scaled (analogous to
Section 9.2.3) by a factor of 0.2 for the generic scenario and by a factor of 0.02
for the CoMP scenario. Further, the employed load curve has been scaled
from 24 hours to one hour as already done for the evaluation of DistCAPA in
Section 7.3.2.

Each emulation experiment is started at t = −1800.0 before starting mon-
itoring for 2 hours of system time at t = 0. The synchronization with the
emulation time t generated by the Poisson process is achieved by forcing the
DFG request generation script running the Poisson process to sleep after every
run of FlexCAPF if and only if the emulation time is ahead of the system time
that has passed since t = 0 was reached.

For the emulation experiments presented here, the emulated backhaul network
has been initialized based on the topology description file of the 36-node
network with mesh topology that was already used in Section 6.3. But to
compensate for the reduced number of generated DFGs, the backhaul link
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capacities and the available processing capacity per potential host have both
been scaled by a factor of 0.2, giving a link capacity of bcap(v, w) = 0.5 Gbit/s
for all links (v, w) ∈ E and a processing capacity of pnode = 40 GFLOPS for all
potential hosts c ∈ C. At last, the Llowload parameter steering the intensity of
the low-load handling of FlexCAPF has been set to 0.9 for the generic scenario
and to 0.8 for the CoMP scenario according to the assessments in previous
chapters.

10.2.2 Evaluation Results

Based on the evaluation scenario described in the previous section, I have
conducted two emulation experiments, one using the generic DFG scenario
and one using the CoMP DFG scenario. As for previous evaluations, I have
extracted the data from FlexCAPF after each CA reassignment, i.e. each time
the set of used CAs was modified during the course of the emulation.

First, Figures 10.3 and 10.4 show the number of LCAs used over time for both
experiments. For illustration, the plots also contain the loadlevel curve used
for the non-stationary Poisson process, which I have scaled by the maximum
number of LCAs observed each to fit the given value range.
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Figure 10.3: Emulation results: LCAs used (generic scenario)

In total, the results perfectly fit those already seen for the corresponding
simulations before. Both plots show that the number of LCAs is flexibly
adapted according to the current network load even with using real traffic
and working in real time. In accordance with the results from Section 9.2.3,
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it can also be seen that the CoMP scenario causes more CA reassignments
compared to the generic scenario. Additionally, the CoMP results also show
more fluctuation, which can be explained by the relatively low number of
DFGs in the network compared to the generic scenario, so that individual new
or expiring DFGs have a larger impact.
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Figure 10.4: Emulation results: LCAs used (CoMP scenario)

Next, Figures 10.5 and 10.6 illustrate results of a runtime analysis performed
for both experiments. In these plots, the runtime of FlexCAPF is treated
separately from the time needed for reconfiguring the emulated network
accordingly.

The first eye-catching aspect to note is that the network reconfiguration time
is significantly higher than the algorithm runtime. Still, it generally remains
below one second, which can be considered as a reasonable time range. In
particular, it has to be kept in mind that the entire network reconfiguration
in the testbed is done by a single FCAPP SDN controller running one one
physical machine. In a real-world deployment with actual CA realization, this
reconfiguration work would be handled by multiple LCAs and one or multiple
RCAs in parallel, each running on their individual physical machines.

Another notable observation to be made is that the network reconfiguration
time also seems to scale with the current network load. While the correlation
is not as obvious as for the number of LCAs, it is still clearly visible. The
explanation for this is rather simple, since more DFGs in the network naturally
provide more possibilities for necessary reconfiguration work. But in addition,
it should not be neglected that this might also be influenced by the fact that
a higher load in the emulated network consumes more testbed hardware
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resources, so that there are less available resources left for executing the
needed reconfiguration work.
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Figure 10.5: Emulation results: runtime analysis (generic scenario)
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Figure 10.6: Emulation results: runtime analysis (CoMP scenario)
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10.3 Observations

In this chapter, I have shown how FlexCAPF can be implemented on top an
SDN-based emulated backhaul network. The underlying testbed features
real traffic, which is routed in compliance with the placement decisions of
FlexCAPF. This is realized via a real SDN controller that modifies the routing
entries accordingly during network operation. Further, the testbed emulates
DFG processing by delaying each packet according to the processing delay
that would be caused by real data processing.

All of this serves as a proof of concept and shows that FlexCAPF, and more
generally FCAPP, can be realized in such a real-world deployment and at
the same time flexibly adapt CA placement to the current network load as
previously seen from simulation results.
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Conclusion and Future Research
Directions
In Section 1.2, I introduced my key research question: Is it feasible to

(1) efficiently decide CA placement considering all latency, data rate and
processing capacity constraints and

(2) do this within the order of seconds to milliseconds to flexibly adapt
placement decisions during network operation in reaction to traffic load
changes to maintain near-optimal network performance.

In this final chapter, I first summarize my work in Section 11.1 and conclude it
based on the question above. Afterwards, I outline future research directions
in Section 11.2.

11.1 Summary and Conclusion

In this thesis, I have investigated the problem of placing Control Appli-
cations (CAs) within the backhaul network of a mobile access network,
which I introduced as Flow processing-aware Control Application Placement Prob-
lem (FCAPP). To express the requirements of coordination mechanisms that
should be executed on CAs, I have also introduced the concept of Data
Flow Groups (DFGs) that are considered and whose resource demands are
attempted to be satisfied by FCAPP.

I have described several variations of FCAPP and developed solution ap-
proaches for all of them. In Chapter 3, I have provided a first formalization
of FCAPP based on equal-share processing scheduling. I presented an op-
timization model as reference solution and a multi-layer greedy heuristic
(GreedyFCAPA) to solve FCAPP fast and efficiently. Even though equal-share
scheduling later turned out to be replaced my a more efficient scheduling
approach, this first variation of FCAPP provided valuable insights into the na-
ture of FCAPP and allowed to prove that FCAPP is NP-hard. I then attempted
to improve the solution quality compared to GreedyFCAPA by assessing Ge-
netic Algorithms (GAs) in Chapter 4, which succeeded, but at the cost of a
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significant increase in execution time. I then looked for other improvement
opportunities and investigated FCAPP with proportional-share scheduling as
a more elaborate processing scheduling approach in Chapter 5. This turned
out to be a very good choice since the corresponding optimization model
resulted in vastly improved solution quality compared to equal-share schedu-
ling, while the modified version of GreedyFCAPA not only turned out to
run faster with proportional-share scheduling but also provided near-optimal
results compared to the optimization model.

At this point, I concluded that GreedyFCAPA with proportional-share schedu-
ling is able to efficiently decide CA placement considering all latency, data
rate and processing capacity constraints, so I focused on flexible reassignment
of CAs in reaction to changing network load over time. To do this, I built up
on GreedyFCAPA to create a flexible placement framework (FlexCAPF) that is
able to place and flexibly reassign CAs during network operation. Evaluation
by means of network simulation showed that FlexCAPF efficiently reassigns
CAs in reaction to changing network load and minimizes needed reconfi-
guration work by taking into account the previous placement. FlexCAPF also
ran significantly faster (within the order of milliseconds) with only a small
decrease in solution quality compared to a new CA placement from scratch
(which completely ignores the previous placement). As a result, FlexCAPF
represents a solution for FCAPP that allows to answer both parts of my key
research question in the affirmative.

In addition, there were several other aspects of FCAPP that I decided to tackle
and investigate. In Chapter 7, I dropped the assumption that an FCAPP
solution approach can be executed logically centralized and presented a
distributed algorithm for FCAPP (DistCAPA). Evaluation results showed that
DistCAPA places and flexibly reassigns CAs during network operation just
like FlexCAPF and with only a marginal decrease in solution quality. Then,
I presented an extended variation of FCAPP that appropriately takes the
backbone network into account in Chapter 8. This extension enables FlexCAPF
to deal with the possibility that DFGs require a backbone connection and
gave a lot of additional, interesting insight. The latter led me to exchange the
generic DFG evaluation scenario used so far for a very different one, based
on CoMP transmission and reception. In Chapter 9, I presented this DFG
scenario and studied its effect on the results of FlexCAPF. The results proved
that FlexCAPF had no problems to cope with the new scenario by showing a
very stable behavior. Finally, I provided a proof of concept for a real-world
implementation of FlexCAPF in Chapter 10 by showing how FlexCAPF can
be implemented on top of an SDN-based emulated backhaul network. The
results of emulation experiments revealed that FlexCAPF is still able to flexibly
adapt CA placements according to the current network load even with using
real traffic and working in real time. Further, the combined algorithm runtime
and network reconfiguration time still generally lied within an acceptable
range of below one second.
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In total, my work represents a unique contribution for understanding and
solving the problem of placing CAs in the backhaul network of mobile access
networks. Due to the DFG concept, it is possible to assess various types of
coordination mechanisms with my solution approaches. In particular, I have
developed two very powerful solution approaches for placing and flexibly
reassigning CAs, FlexCAPF and DistCAPA, where FlexCAPF should always
be preferred if a logically centralized execution is possible. But, moreover, the
application field of my approaches is not limited to live network operation
as it is also possible to use them to characterize the benefits of potential
network extensions via simulations before making a final deployment decision.
Overall, my work constitutes a valuable assistance for efficiently realizing
coordination mechanisms via virtualized control applications in future mobile
access networks – thus increasing their resource efficiency and reducing their
operational costs.

11.2 Future Research Directions

For future research, I propose the following directions for further investigation:

Refinement of modeling assumptions: Over the course of my work, I made
several modeling assumptions to limit the scope of my work. I have later
dropped some of these assumptions, e.g. logically centralized execution or a
simplified backbone connection, to investigate in the corresponding directions.
But other assumptions that might be worth to investigate were kept through-
out my work. An example for this is assuming link delay to be independent
of the network load and ignoring possible queuing delays. Extending FCAPP
by a more realistic queuing model might bring additional interesting insight
and improve the model’s accuracy.

Investigate other application scenarios: For the major part of my work, I
consider a generic DFG evaluation scenario. Even though I later introduced the
CoMP evaluation scenario and studied FCAPP for this very different scenario,
other possible application scenarios with again very different attributes might
give new insight for FCAPP and motivate additional improvements for my
solution approaches.

Assess other algorithmic concepts for FCAPP: In Chapter 4, I assessed
GAs for FCAPP, since GAs are known to often provide good heuristic results
for difficult optimization problems. But the same reasoning also applies to
other widely employed concepts, such as simulated annealing [122] or particle
swarm optimization [123]. Even though the presented GAs gave satisfactory
results for FCAPP, it would of course be possible that other concepts yield
better results with less execution time.

147



11 Conclusion and Future Research Directions

Hybrid FCAPP solution scheme: The aforementioned algorithmic concepts
all share the characteristic of storing intermediate solutions while trying
to improve solution quality until a termination criterion is reached. This
could be exploited to combine such a solution approach with FlexCAPF into
a hybrid solution scheme that is able to provide fast solutions if needed
but continuously optimizes the solution in the background. For example, it
would be possible to define a certain trade-off between operational benefit
and reconfiguration effort and to affect a reassignment if such a solution is
found – independent of immediate load changes.

Leverage prediction techniques for FCAPP: All of the presented approaches
for CA reassignment work in reaction to changing network load. However,
one very promising research direction would be to attempt anticipatory re-
assignment according to predicted load changes obtained from integrated
prediction techniques [124]. A detailed analysis of the trade-off between
additional resource consumption against reduced reconfiguration time would
certainly bring interesting results.

FCAPP prototype enhancements: The testbed presented in Chapter 10 re-
presents a first proof of concept for realizing FCAPP in a real-world deploy-
ment. But as stated in the same chapter, the scope of the existing testbed
is limited and does not include actual implementations of CAs or real DFG
processing. Extending the testbed into a prototype with actual CA implemen-
tations and real applications for DFG processing would require additional
hardware resources and a lot of additional effort but would definitely consti-
tute a valuable contribution for the investigation of FCAPP.

Integrate FCAPP into an existing NFV platform: Another fundamental
milestone for realizing FCAPP in a real-world deployment is the integration of
an FCAPP solution approach into an existing NFV platform. A very promising
orchestration platform for attacking this task is given by the SONATA service
platform [125]. This platform is capable of managing and orchestrating VNFs
(e.g. CAs) and also allows custom placement algorithms to be integrated
as so-called function- or service-specific managers, which only requires minor
extensions of an existing placement algorithm (e.g. FlexCAPF) to enable
communication with the used messaging system. Overall, such an integration
would already correspond to a real-world deployment of FCAPP.
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