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Zusammenfassung

In dieser Arbeit werden die globale Existenz und das Langzeitverhalten der Loésungen in
Chemotaxis-Systemen betrachtet. Zuerst konzentrieren wir uns auf das parabolisch-parabolische
Keller-Segel-Modell und untersuchen eine hinreichende Bedingung fiir die Existenz globaler
Losungen. Auch die Beschrinktheit und globale Existenz der Losungen eines Chemotaxis-
Haptotaxis-Modells werden unter geeigneten Annahmen an die Parameter demonstriert. Wei-
terhin wird das Langzeitverhalten in einem Keller-Segel-Modell mit logistischer Quelle bewiesen.
Fiir den speziellen Fall, dass das logistische Keller-Segel-Modell ohne Wachstumsterm betrachtet
wird und mit einem zusétzlichen Konvektionsterm gekoppelt ist, wird eine optimale Konver-
genzabschétzung bewiesen. SchliefSlich wird die Existenz klassischer Losungen eines Chemotaxis-
Navier-Stokes-Modells im zwei- und dreidimensionalen Fall unter geeigneten Kleinheitsbedingun-
gen an die Anfangsdaten erhalten.

Abstract

In this work, global existence and large time behavior of solutions in chemotaxis systems are
considered. We first focus on the fully parabolic Keller-Segel model and investigate a sufficient
condition for the existence of global solutions. The boundedness and global existence of solutions
in a chemotaxis-haptotaxis model are also demonstrated under suitable assumptions on the
parameters. Similarly, the long time behavior in a Keller-Segel model with logistic dampening
is identified. Particularly, when the logistic Keller-Segel model is without growth term and is
coupled with an additional convection term, an optimal decay estimate is given. In addition,
the existence of classical solutions of a chemotaxis-Navier-Stokes model in the two- and three-
dimensional cases is obtained under suitable smallness conditions on the initial data.
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1. Introduction

In recent decades, mathematical biology has been rapidly developed as an interdisciplinary
scientific subject receiving attention from both mathematicians and biologists. It aims at
mathematical modeling, analysis and simulation of biological processes by using mathematical
methods and techniques.

An important mathematical treatment is to convert biological processes into systems which are
composed of several partial differential equations (PDE for short) linked together. Therefore, a
study on the resulting PDE systems may contribute to a better understanding of these biological
processes; not only by possibly explaining evident experimental observations but also by possibly
predicting some properties beyond.

Especially since rather few meaningful differential equations could have explicit solutions due
to their complexity, mathematical tools can help us to gain some qualitative analysis on the
properties of solutions; some basic questions concerning these are: existence, uniqueness and
stability of the solutions.

In the present thesis, we are going to study a class of second order semilinear parabolic systems,
which arise in biological mathematics and are usually called chemotaxis models.

1.1. Taxis models

Taxis is the ability of organisms to motivate their movement in response to an external stimulus.
A celebrated taxis model called Keller-Segel model describes the evolution of cell populations and
their movement partly directed by a chemical signal produced by themselves. It was introduced
in 1970 by Keller and Segel in the style of the following initial-boundary value problem [45]:

uy = Au — V- (xuVv), (z,t) € 2 x(0,T),
T = Av — v+ u, (z,t) € 2 x(0,T),
Vu-v=Vu-v=0, (z,t) € 09 x (0,T),
u(z,0) =up(z), v(z,0)=wve(x), =€

(1.1)

Here, @ C RY (N > 1) is a bounded domain with smooth boundary and v is the outer normal
vector on 052, x € R and 7 > 0 are constants, and (ug, vo) is a pair of nonnegative functions. The
unknown functions v = u(z,t) and v = v(x,t) denote the density of the cell population and the
concentration of chemical substance, respectively. In the first equation, Awu indicates that the
cells diffuse randomly, and —V - (xuVv) reflects the hypothesis that cells move towards higher
densities of the signal, where the number x measures the sensitivity of the chemotactic response
to the chemical gradients. The second equation models the assumptions that the chemical is
produced by the cells and degrades and also diffuses by itself.

A very special feature in this system is the appearance of the term —V - (yuVwv), which in
contrast to diffusion Au = V - (Vu), is usually called cross-diffusion. Since this cross-diffusion
term models a process which may result in the aggregation of cells, the occurrence of a certain
blow-up phenomenon can be detected, namely, u becomes unbounded in respect to the spatial
L*°-norm.



1. Introduction

The goal of this work is to develop mathematical methods of analyzing global bounded solutions
in several taxis models by ruling out such blow up phenomena. A proper estimate on the cross-
diffusion term —xV - (uVv) which is coupled with « and Vv seems critical in the analysis. One
main technique we rely on is a result on maximal Sobolev regularity which links Av to w such
that v and Vv can partly be decoupled; when attempting to study % fQ u? (p € R), Vv would
appear, and then the maximal Sobolev regularity may help to control this term by u through
certain spatio-temporal integrals such that we can arrive at an inequality only containing u (see
Lemmata 2.4.1, 3.3.1 and 4.3.1 below for example). Compared with many previous works where
instead % fQ |[Vol|? (¢ € R) is additionally considered, this idea apparently provides a more
efficient way to estimate the LP-norm of u. Since the equation for v already offers a degrading
structure, the maximal Sobolev regularity result for the second equation of (1.1) also involves a
time potential function, which turns out to be crucial to prove a temporarily uniform estimate.
This special version of maximal Sobolev regularity will be applied in different situations in this
work and will be first proven in the next part of this chapter.

In the main part of this thesis, chemotatic cross-diffusion will be treated in several particular
contexts. In Chapter 2, we give a sufficient condition for the existence of global and bounded
solutions of (1.1), which improves previous knowledge in this issue. In particular, the
outcome strongly relies on an interpolation inequality for equi-integrable functions which is an
improvement of a special case of the well-known Gagliardo-Nirenberg inequality.

If we consider a larger time scale, it is reasonable to include the effect of spontaneous proliferation
of cells, which is commonly given in the form of a logistic source g(u) := xu — pu? with £ > 0,
@ > 0. Thus the first equation is replaced by

ug = Au — V- (xuVv) + g(u). (1.2)

Such logistic sources may be expected to restrain ultimate growth and to thus exert an opposite
effect compared to the cross-diffusion term. The competition within these two effects usually
results in colorful types of behaviors.

Chapter 3 is devoted to study the large time behavior of solutions in a parabolic-parabolic logistic
Keller-Segel model, that is, (1.1) with the first equation replaced by (1.2). We show that if the
ratio X is sufficiently small, the solution (u,v) converges to (£, %) in the large time limit. The
approach depends on a result on maximal Sobolev regularity involving a potential function.

A similar idea is also used in Chapter 4 to prove boundedness of solutions in a chemotaxis-
haptotaxis model

ug = Au — xV - (uVv) =€V - (uVw) + pu(l —u —w), (z,t) € @ x(0,T),
Tor = Av — v + u, (x,t) € Q x (0,T), (1.3)
wy = —vw + nw(l —u— w), (z,t) € 2 x(0,T),

where £ € R and > 0. In addition to chemotaxis, here a new cross-diffusion term —¢V - (uVw)
appears in the first equation, meaning that the cells also orient their movement toward another
chemical whose density is denoted by w. This taxis mechanism is referred to as haptotaxis
because w is non-diffusible. The main result in this chapter demonstrates that chemotaxis
dominates the solutions behavior in certain parameter regions. Namely, the boundedness of
solutions is guaranteed when X is small and it is not depending on the haptotaxis sensitivity &.
In Chapter 5, we furthermore analyze the qualitative behavior of bounded solutions in a logistic

Keller-Segel model in a liquid environment,
{ w+U-Vu = Au—xV-(uVv) — pu?, (z,t) € 2 x(0,T),

14
ve+U-Vvo = Av—v+u, (x,t) € Q x (0,7), 14
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where U is a given fluid velocity which influences the migration of cells by means of transport.
We obtain an optimal decay rate for all bounded solutions in the sense that both upper and
lower estimates are given by the same rate.

A more comprehensive variant of (1.4) will also include a gravitational effect of cells in a liquid
environment. Thus the fluid is described by the full Navier-Stokes equation with an external
force uV®,

u = Au—V - (uS(z,u,v) - Vo) =U - Vu, (x,t) € Qx(0,T),
v =Av—uv—U - Vo, (z,t) € 2 x(0,T), (1.5)
U, = AU — k(U - V)U + VP +uVe, (z,8) € Q % (0,T),
V-U=0, (x,t) € Q2 x (0,T).

Since in the complicated fluid environment, some interactions between cells swimming speed and
direction have been detected experimentally, a matrix valued function S(x,u,v) is introduced to
represent a rotational effect while cells trying to tend to the signal. This brings significant
difficulties in mathematical analysis because mathematically useful gradient-like structural
properties, well-known as favorite features of e.g. (1.1), seem to be lacking for general choices
of S. In Chapter 6, we investigate a smallness condition on the initial data such that (1.5) with
N = 3 admits a global classical solution which approaches a constant steady state.

Chapter 7 considers the same problem in the two-dimensional case and £ = 0 in the three-
dimensional setting. Via a certain conditional functional approach, the previous results can
partly be improved.

1.2. A result from maximal Sobolev regularity theory

As we have announced in the last section that a version of maximal Sobolev regularity plays a
central role in dealing with the chemotactic cross-diffusion term, let us first introduce the well
known maximal Sobolev regularity for Laplacian associated with Neumann boundary condition,
which is an application of [34, Theorem 2.1]. Before going into details, we prepare the following
Ehrling type lemma.

Lemma 1.2.1. Let ¢ > 1 and s € (0,q). For any e > 0, we can find C > 0 such that
9]l Lage) < el AV La) + CllYl| L) for all v € W9(Q) satisfying Vi - v =0 on 8. (1.6)
Proof. First we know from [28, Theorem19.1] that there is a constant ¢; > 0 such that

19l La) + IVl La) + 1D*PllLage) < cr(1A% ey + ¥l Lae)) (1.7)
for all v € W24(Q) satisfying V¢ - v = 0 on 9Q. Noting that W24(Q) < Wh4(Q) < L(Q),

we can apply Ehrling’s Lemma; given any € > 0, let ¢/ := —=— € (0, %), there is a constant

(&3] +(11€
C.r > 0 such that

9] oy + IVellLa) < & (19l La) + IVl Lae) + 1D*¢| Lacq)) + Cer ||
< e (|AY| o) + 1Yl La)) + Cor ]l Ls )

Ls(Q)

This implies that

01€l
Yl Lacy < 1 NAY | La) + O Y]l ()
— C1€
= || AY|| La(qy + Cell¥] L ()-
Thus we complete the proof. O
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Lemma 1.2.2. Let q,r € (1,00). There evists C = C(q,r) > 0 with the property that for all
T>0,if feC'(Qx][0,T)) andv e C*L(Qx (0,T))NCQ x [0,T)) is a classical solution to
the evolution problem

Uy :Avf%v+f, (z,t) € 2 x (0,T),

Vv-v =0, (z,t) € 9Q x (0,7), (1.8)
v(z,0) =0, x €Q,
then we have
T T
| 180t Oyt < € [ 1ROl (L.9)

Proof. Letting A := A — § and applying [34, Lemma 2.1], we obtain a constant ¢; > 0 such that

r 1 T 4 T
|1 = S Dl < ex [ IOt (1.10)

Moreover, integrating the first equation over €2 implies that

d 1
oGOl + St Ol <17 Ol forallt e (0,T). (1.11)

Testing r||v(-, t) ||TLT(19) to the above inequality, using Young’s inequality and then integrating over
(0,T), we obtain ¢y > 0 and ¢z > 0 such that

T T T
| et <ca [5Gl < e [ ISCON@d (12)
According to Lemma 1.2.1, we conclude the existence of ¢4 > 0 such that
Il Olza@ < IAVE Dlzeqe) +ealv Ol forall t € (0,1). (1.13)

Due to the fact that Av = (A — $)v + 1v and (1.13), we see that

T
A|mwwma@w

1 ! 1 T 1
<2 / ||—v(.’t)\|£q(mdt—|-27”* / (A — *)U(',t)HEq(Q)dt
o 2 o 2
1 [T 1 T i T
< 5/0 ||AU(7t)H2fZ(Q) + 504/0 ||’U(,t)”21(g)dt + o7 cl‘/o ||f(;t)||2q(ﬂ)dt
1 (T 1 . T
SQA W“@ﬂwmn+gw%+a“cné 1 £t oy, (1.14)
which leads to (1.9) if we let C := Lcacs + 27 Ley. 0

Now we adapt the above result to derive the following statement that will be an indispensable
ingredient i.e. for Lemmata 2.4.1, 3.3.1 and 4.3.1 below.
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Lemma 1.2.3. Let 7 > 0, q,r € (1,00). There ezists C = C(q,r) > 0 with the following
property: For all T > 0, if f € C°(Q x [0,T]) and v € C*1(Q x (0,7)) NC°(Q x [0,T)) is a
classical solution to

T =Av—v+ f, (x,t) € Q2x(0,T),

Vou-v =0, (z,t) € 002 x (0,T), (1.15)

v(x,0) = vo(z), x €,

then for any to € (0,T), we have

T T
| eI Dlladt <€ [ SOyt + Cres ool ) fnaey (116)

t(J tO

Proof. For given tg € (0,T), we know that d,v(-,t9) = 0 on 9Q. Let d := min{ T4_Tt° ,1} and let
X € C§°(]0,00)) be a cut-off function satisfying

X(S) =1, s=0,
x(s) <1, 0<s<d, (1.17)
x(s) =0, s>d.

Moreover, |x'(s)] < 2 for all s € [0,00). Let w(z,s) = e2%v(z, s + to) — x(s)v(z, to) for
(z,5) € Q x [0, T=2). We see that w solves the following equation

ws(x, s) = (A — %)w(x,s) + eésf(m,rs +1to) +g(x,s8), (x,8)€Qx(0, T;to),

Vw - v =0, (z,5) € 0Q x [0, T=te), (1.18)
w(z,0) =0, x €,

where g(z, s) 1= x(s)Av(z,to) — X' (s)v(z, to) — $x(s)v(z, to) in Q x [0, T;to).
An application of the maximal Sobolev regularity result from Lemma 1.2.2 implies the existence
of Cy, > 0 such that

T—tg
[Aw(:, 5) L) ds

T—tg

<Cy» / % f(, 75 + t0) [ a(ends
0

0

o 1
+Cor [T I(s)A0(ante) =X (90 t0) = (6Dl to) [ oy

+3)

<Cur [ 131075 )t 5o )

SCW/O ||€2Sf(z7 75 +10)|[La(a)ds + 4" Cor v t0)[[iy2.0(q)-

Since e2*Av(z, 7s + to) = Aw(z, s) + x(s)Av(z, ty), we have

T—tg

/ (| Av(, 75 + t0) [y s
0
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27“71 /

<21C,, / e £, 75 + ) [0 ) ds + 27 (4 e+ DlleC, t0) sy

T—tg T—tg

I8 )y + 27 [T o)A 0 e

Upon changing variables, we obtain that

: /Te; A 1)yt
T Li1(Q)
2T Cqr / eF T (- ) Laaydt + (8"Copr + 27 [0 (-, t0) [fy2.0(a, (1.19)
where (1.16) follows by multiplying (1.19) by Te37‘ and choosing C := 8"C,, . + 2" L. O
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2. A refined criterion for boundedness in
the classical Keller-Segel model

2.1. Introduction

In this chapter, we study the classical Keller-Segel model [46] to model chemotatic migration

us = Au — V - (uVv), (z,t) € 2 x(0,T),

vy =Av—v+u, (x,t) € Q x (0,T), @)
Vu-v=Vu-v=0, x,t) € 00 x (0,T),

u(z,0) = uo(z), v(z,0)=vo(z), =€

Here Q ¢ RY (N > 2) is a bounded smooth domain, 7' € (0,00], and v denotes the outer
normal vector on 9. Let (ug,vo) be a nonnegative function pair, v and v denote the density
of cells and chemical concentration, respectively. As introduced in Chapter 1, the system (2.1)
describes an interaction between the cells and the chemical signal. This biological model plays
an important role in numerous biological processes such as wound healing, cancer invasion. It
also draws interests from many mathematicians, for surveys in this area we refer to [4, 39, 37]
and the references therein.

A striking feature of this model is the occurrence of a blow-up phenomenon caused by the
aggregation of cells, related research can be found in [36, 40, 66, 65, 109, 64]. The spatial
dimension seems crucial in the mathematical analysis of detecting blow-up. In the one
dimensional setting, blow-up never happens; all solutions are global and bounded. However,
considering the two-dimensional case, one can prove the existence of radial blow-up solutions if
the initial data (ug,vg) exceed the critical mass: fQ up > 8w [64]; otherwise, the solution always
remains bounded [67]. In higher dimensions, whether a solution blows up does not depend on
the total mass any more; blow-up solutions are constructed with any small mass [109]. On the
other hand, looking for a sufficient condition which can prevent blow-up may be of some interest,
especially in two or higher dimensions.

Throughout this chapter, we consider the classical solution (u,v) of (2.1) on Q x [0, Tinax)
emanating from the nonnegative initial pair (ug,vo) € C°(Q) x W4(Q) with ¢ > N, where
Timax € (0,00] denotes the maximal existence time of the solution. The local existence theory
concerning this issue is the following lemma. The proof can be found in many previous works
(see e.g. [4, Lemma 3.1]).

Lemma 2.1.1. Assume that Q C RN (N > 2) is a bounded domain with smooth boundary and
that the initial data (ug,vo) are nonnegative and satisfy ug € C°(2) and vy € WH4(Q) with
q > N. There exists Tyax € (0,00] with the property such that the problem (2.1) possesses a
unique nonnegative classical solution (u,v) satisfying

u € CO(Q X [0, Tinax)) N C*H(Q x (0, Tnax)),
v € CYQ x [0, Tmax)) N C%H(Q x (0, Tiax)) N Li([0, Tinax); WH(Q)).

loc
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Moreover, if Tmax < 00, then
”u(vt)HLoo(Q) — 00, ast — Tax-

Beyond this, a well known sufficient condition for global solutions is the following [4, Lemma
3.2]:

Proposition 2.1.2. Let N > 1 and p > % Assume that Q C RN is a bounded domain with
smooth boundary and (u,v) is a nonnegative classical solution of (2.1) in Q x (0, Tnax) with
mazximal ezistence time Thax € (0,00]. If

sup [lu(-, )| Lo (o) < oo, (2.2)
t€(0,Tmax)

then

sup  ([Ju(t)[| (o)) < oo
t€(0,Tmax)
The proof is carried out either by using Neumann heat semigroup estimates or by studying a
coupled energy evolution of [, u? and [, |[Vv[*? with p, ¢ sufficiently large [87, 27]. Generally,
the condition in the above proposition can not reach the borderline value p = % In the
special case when N = 2 and thus % = 1, we already mentioned that blow-up can happen
even though [, u(-,t) = [, uo is bounded [64]. Therefore, we cannot expect that boundedness

of ||u(,t)\|L% (@) a0 prevent blow-up. However, if we require a little more, namely that

{u% (*+t) }te(0,Thayr) 18 nOt only bounded with respect to the spatial L'-norm, but also enjoys an
additional equi-integrability property, we will be able to show global existence and boundedness
for the system. Accordingly, the main result in the chapter reads as follows:

Theorem 2.1.3. Assume that @ C RN (N > 2) is a bounded domain with smooth boundary,
and that the nonnegative initial data (ug,vo) satisfy ug € C°(Q) and vg € WH4(Q) (¢ > N). Let
(u,v) be a nonnegative classical solution of (2.1) on X (0, Timax) with mazimal existence time
Tmax € (0,00} If

sup u(-,t)| . x < 00, 2.3
t€(0,Tmax) I )”L2 1) 23)

and {U(Ht)%}te(O,Tmax) is equi-integrable, (2.4)
then (u,v) is global and bounded.

Recalling the De la Vallée-Poussin Theorem, we obtain the following equivalent extension
criterion:

Corollary 2.1.4. Assume that (u,v) be a nonnegative classical solution of (2.1) on QX (0, Tiax)
with Tyax € (0,00]. Let f:]0,00) — [0,00) be continuous and such that

lim /(5) =

§—00 g

If we have

sup /Qf(u(,t)) < 00, (2.5)

t€(0,Tmax)

then (u,v) is global and bounded.

10



2.2. An interpolation inequality

The above corollary inter alia shows that the boundedness of fQ ur logw is sufficient for our
conclusion, which is obviously not covered by Proposition 2.1.2.

On the other hand, Corollary 2.1.4 also improves the previous knowledge in the two-dimensional
Keller-Segel model; it is known that the boundedness of fQ ulogu and fQ |Vv|? can exclude blow
up [4, Lemma 3.3]. Now we can immediately remove the requirement on fQ |Vol2. Actually,
in the simplified parabolic-elliptic system where the second equation in (2.1) is replaced by
Av—v+4u =0, a crucial elliptic estimate shows that the boundedness of |, |Vo|? already results
from the boundedness of [, uInwu [93, Lemma A.4]. Thus we know the solution is bounded only if
fQ ulnu is bounded without applying the current result. However, since a corresponding estimate
for fQ |[Vo]? in a parabolic equation appears to be lacking, the outcome of the above corollary
seems not trivial in the fully parabolic model. Moreover, the condition can be weakened to the
boundedness of the L'-norm of essentially any superlinear functional of u, e.g. fQ uloglog (u + e).
Additionally, by virtue of an equivalent definition of equi-integrability, Theorem 2.1.3 can be
rephrased in the following way:

Corollary 2.1.5. Let (u,v) be a classical solution of (2.1) on Q X (0, Tyax). For all e > 0 there
is 6 > 0 such that for any measurable set E C Q with |E| < ¢, if we have

N
sup / u? (-, t) <e,
t€(0,Tmax) JE
then
sup  Jlu(-,t)|| Lo (o) < oo.

t€(0,Tinax)

We note that this property resembles the feature of e-regularity derived in [81] for a porous
medium type parabolic-elliptic Keller-Segel model in the whole space. This analogy is further
underlined in the following consequence describing the behavior of unbounded solutions.

Theorem 2.1.6. Assume that Q C RN (N > 2) is a bounded domain with smooth boundary.
Let (u,v) be a classical solution of (2.1) on Q X (0, Tiax) with Tmax € (0,00]. Suppose that

sup ||U(',t)||L<>@(Q) = 0.
t€(0,Tmax)

Then {u%(yt)}te(o’q«mx) s not equi-integrable. In other words, there are eg > 0, and x¢ € §

such that for all p > 0,
N
sup / u? (-, t) > ep.
t€(0,Tmax) 7 By (z0)N2

2.2. An interpolation inequality

In the analysis of chemotaxis models, the Gagliardo-Nirenberg inequality is frequently used,
especially in the style of the following form

lellzag) < CillVllE- @ llellia) + Callellr ) for all ¢ € WHT(Q), (2.6)

N_N
where a = 2x-*x € (0,1) [28, Theorem 10.1]. Here the constant Cy > 0 depends on p,¢,r and
r T p

2. When applying the Gargliardo-Nirenberg inequality, we usually require the exponent a to be
strictly less than a given power in order to control a target term. One can imagine that if C7; > 0
could be chosen arbitrarily small, we would be able to deal with more subtle critical cases [5].

11



2. A refined criterion for boundedness in the classical Keller-Segel model

The purpose of this section is to investigate a kind of interpolation inequality with the
aforementioned ambition that the constant C; can be arbitrarily small. However, this is not
generally true. Following the idea from [60, Lemma 5.1], we actually show that such an
interpolation inequality holds for the class of equi-integrable functions. This is similar to that of
[5, Theorem 3] and [60, Lemma 5.1].

Lemma 2.2.1. Let Q C RY be bounded with smooth boundary. Letr > 1,0 < q < (NJX:)+. For
any 0 < 0 < q, we define

o N(E-1), ifg>r, .7 4, if g >,
p'{ 0, ifg<r, 7 r(l+ %), ifqg<r (2.7)
N_N 11
a=—"-"1=¢€(0,1), b:=L-2L¢€(0,1]
N N (] 1 1 )
I=5+% P W

Let 6 : (0,1) — (0,00) be nondecreasing. Then for each € > 0, we can find C. > 0 such that

o _ (1= X+ b4 (1-b)
”‘PHLQ(Q) < €||VQDHLT(Q)HSOH}JP€Q) + CEHSD”LP(Q) 0

+Ca||<P||LP(Q) +C€||90||1L;é79)~ (2~8)

1s valid for any

o€ F5i= {1/1 e Wwhr(Q) ’ For all €' € (0,1), we have / [YP < & for all measurable sets
B

E C Q with |E| < 5(5’)}. (2.9)
Proof. We first consider the case g > r, hence 2 —1 > 0. We abbreviate s := 3 - <min{N,r}.

Then according to the Sobolev embedding Wy '*(RN) < L"(RN), there is a constant ¢; > 0 such
that

||7/)||7LT(RN) < a|| Vi Zs(RN) (2.10)

for all ¢ € W&"S(RN). Let ' be a bounded open set such that  C Q'. In light of Theorem
2.A.1 in section 2.A, we can find ¢; > 0 and extend ¢ € Wh™(Q) to g € W, " (RY) in such a
way that
p=pae. inQ, suppp C Y,
[6llLary < e2llellia), VI

@) < e2llVellLr oy, (2.11)

and that there is a nondecreasing function 4 : (0,1) — (0, 00) such that
@€ Fz:= {z/J e whr(Q) ‘ For all &’ € (0,1), we have / |p|P < & for all measurable sets
E

EcQ%Mmm<&w} (2.12)

|2

Given € > 0, let &’ := (WL) " and let § := 6(¢’) > 0. We have

yrereo

/ﬁ@p<a (2.13)
B

12



2.2. An interpolation inequality

for any ball B C Q" and with radius no bigger than 7 := (i) N , where wy denotes the volume

wN
of the unit ball in RV,
Since  is bounded, we can find a family of finite balls {B;}1<;j<a with radius not lager than
n to cover Q with Q C U MB C Q. Moreover, there exist cs > 0 and a smooth partition of

unity for < U Bj glven by a family of nonnegative functions {(; }1<;j<n satisfying

=M
supp¢; C B, VG| < %3 forall 1<j <M, and Y ¢=L. (2.14)

j=1
We can invoke (2.10), and the elementary inequality
(a+0b)* <2°7'a® +2°71% for all s > 1 and a,b > 0,

to obtain that

~ ~a L
/Q 3G =184 15 s

g 1
<allVE ¢z,

q . a_ 1
<allgrTG

J Lg(BJ)
< 27’71 q.r, —1 s : r—1,C3\r ~s4d :
<c (;) N Fz C Vol + 12 (;) : oo | . (2.15)

J

On applying Holder’s inequality and (2.13), the first term on the right-hand side of (2.15) can
be estimated as

z £
r—1/9\r ~9_ 1, Lo ~s r—1/9\r ~1s(%—-1)"—— ~r
21 () (/ Ex 1@%) <2 1(d) (/ ELG >> ( cﬂw)
r B r B Q
L}
r—1/,9\r = 91— AT
o2 () ( / EAE 1>> / IV
T B]' /
=22y (/ |~|p> /ww

<az '@y @F [ giver< o [ Givar. @)
CQ Q/

Now we claim that for all r < ¢ < (Njfii)# there are positive constants c.,cq and c5 such that

r—1,63 ~154 ’
2t (B (/ 7 )
Ui B

2

SIHN+r s
< g IV GBI B g g s @D
1 _ Nr
Ifr<gqg< V(N'H) ,let d = ig%, hence d € (0,1). Moreover, since s < r, we know that
o

dgq < r. The Gagliardo-Nirenberg iflequality thus implies the existence of ¢4 > 0 and ¢. > 0 such

13



2. A refined criterion for boundedness in the classical Keller-Segel model

that
— C3 ~ 349 : _ C3 ~
or 1C ZONT / = < 9r 1C q
() ( N ) <2 (YA
5| (A—=d)a
< c4||v<,0‘ L"(Q/)”(IOHLN(%—U(Q/) +c 4”90”111\7(7—1)(9/)
dg (A—d)qg
_ ~r) ~N(2-1) ) NG
() () i,
< geip L IV elBI G e 4||so||LN(g,D(m (218)
If T(AJ[VH) <g< w ) , hence 22 < N(2 —1). We can simply use Hélder’s inequality to obtain

a constant c; > 0 fulﬁlhng

g

2r—1 073 r ~|sd ’ < 27"—1 c3 Q 1-22 =P ' < 4
ci(=) [l ] <27 a ( =) PP ] <esei.
n B; B,

Hence (2.17) holds for all < ¢ < x4~ Since (2.15), (2.16) and (2.17) and $ € W' (RY) in

particular entail that for each 1 < j < M, &+ Cj% € Wol’s (Bj), we can invoke (2.10) and combining
it with (2.15-2.17), we see that for each 1 < j < M,

b < V@ I s,)

/ 317G = 1347 |
Q/

el v el v
< = . =T = ~|r
- 262//<J| S0| +262M /s)/| SDI
St L 1 [ s, (2.19)
€ LN(**l)(Q/) LN(**l)(Q/)
Finally, we obtain from (2.19) and (2.14) that
Il
j=M j=M
< VBl = [ 180 (X ) =3 [ 1t
& j=1 j=1 7%
j X Mgy N+ q?
O -
< (5 [, 6199+ ggg [, 199+ I s+ o7 )
j=
j=M
< = T
<5 [ Ival >«
r 94 N4r il
oo (5o / VB + B vy + ealPl s g+ 567 )
el V3| r q T+ +r a2
<o | 1vere o / VA" + MBI G e + MBI gy g + s MET
r SEAN4r
<e / Vol call el nci sy + €oll el iy gy + o
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2.3. Preliminary

with some constant ¢g > 0. Note that b =1 if ¢ > r, taking the ¢-th root on both sides leads to
(2.8) for the case ¢ > r.

=

_1
-4 shows that

0

If ¢ <r, we see that gy > r > q > 6. The Holder inequality with b =

|-

lellzay < llellzao@llol ooy (2.20)

Since qo > r, we have already proven that for all € > 0, there is ¢g > 0 so that

1

0N+ “
"t callel ey + o

lellzo < (B 190l + callelsa)

N | N+4r

< bVl 2 Q)+06||<PHLM "

+ cllell Loy + cs,
which combined with the previous interpolation inequality (2.20) yields that

N | N+r

b
+ _
lellza@) < (€b||V<P||Lr(Q +06||90||Le(g * +cllellroe) +66> el Zogay-

1-b N4 b1-b 1—b
< eIVl 15T, + colellsoe, + collll o + collll ity
N_N
We easily check that b- & = 17ﬂ+"ﬂ, thus (2.8) is valid for ¢ < r as well. O
0

Remark 2.2.2. The exponent a in (2.8) is exactly the one from the Gagliardo-Nirenberg
inequality

lellLa) < CIVElL-@llellzaia) + ClellLee for all o € WH(Q).

However 1 —b#1—a. In fact, following the proof we can find a+1—b < 1.

Remark 2.2.3. Given a family of functions {f;}jen such that {ff}jeN is equi-integrable, there
exists § : (0,1) — (0,00) nondecreasing such that f; € Fs, where Fs is defined in (2.9).
Therefore, we can apply Lemma 2.2.1 to a family of functions enjoying equi-integrability.

2.3. Preliminary

Before proving our main result, some basic knowledge on the Keller-Segel system is prepared.
The following properties can be easily checked by integrating.

Lemma 2.3.1. We have

/Qu("t) :/QUO and (2.21)
/Qv(-,t) < max {/ﬂ vo,/Q uo} for all t € (0, Trax)- (2.22)

Before going into details, let us first prepare the following embedding lemma.

Lemma 2.3.2. Let Q C RY be a bounded domain with smooth boundary, and let o € (1, N).
For all s € (0,00], there is C > 0 such that

2
N-a(Q)

for all p € W2*(Q) with Vo -v =0 on 0.

< CllAgl| e (2.23)
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2. A refined criterion for boundedness in the classical Keller-Segel model

Proof. Using the fact that with some ¢; > 0, the estimates

lellw2e@) < calllllze@) + 1AelLa @)

holds for all ¢ € W2%(Q) with Vi - v|sq = 0 [28, Theorem 19.1], we obtain a constant cz > 0
from the embedding W2(Q) «— Whass (Q) that

< e2([[AglLe) + ll@lle@)- (2.24)

S~

Ifs<a,letb= . T —s N € (0,1). The Gagliardo-Nirenberg inequality together with Poincaré’s

inequality and Young S mequahty implies

[ellze(@) < 63||V<P||b

|| oll + callollLs @) (2.25)

- 2c LV ‘s ()

with some constant ¢z, cq > 0 for all p € W2%(Q) with Vo - v|sq = 0. If s > «, we use Holder’s
inequality
el pa@ < 1QF (2.26)

instead of (2.25). Collecting (2.24-2.26) together yields (2.23). O

2.4. Proof of Theorem 2.1.3

Now we are in a position to proceed the proof of our main ingredient. Having in hand Proposition
2.1.2, we see that it is sufficient to show that (2.2) holds for some p > %

Lemma 2.4.1. Assume that Q CRY (N >2) is a bounded domain with smooth boundary. Let
(u,v) be a classical solution of (2.1) on Q x (0, Tyax) with Trax € (0,00] and let p € (§,N). If

sup u( )| ~ < 00 2.27
e luC Oy (o (2.27)
and {U%(',t)}te(o,me) is equi-integrable, (2.28)

then
sup [[u(-,8)|[ (o) < oo (2.29)

t€(0,Tmax)

Proof. Let p € (§,N). Let 0 € (1,00) satisfy § = 1+ 2 — % € (0,1), and 6" be such that

# 4 2 = 1. We test the first equation in (2.1) with puP~! to obtain that

d /up+p( 1)/up_2|Vu|2:p(p—1)/up_IVu-Vv

—1
Spi(p )/UJ”_2|Vu|2—|—p(p—1)/up|Vv|2
4 Q Q

for all ¢t € (0, Tmax). Applying Holder’s inequality, we get
d 3p—1 P
7/ up+M/ |Vuz|? < plp — 1)/ uP|Vol|?
dt Jo P Q Q
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2.4. Proof of Theorem 2.1.3

<=0 ([w)" ([ oo’ (2.30)

for all t € (0, Thax). Let a := ﬁ_ﬂ%p € (0,1), and abbreviate X~ =: A > 1. The Gagliardo-
2

Nirenberg inequality implies the existence of ¢; > 0 such that

1
g P p 2(1—a
o= 1) ([ ) =0l = D1 Py < Ve B lE P2 ety

t € (0, Thmax)- Using Young’s inequality and the assumption (2.27), we find some constant ¢y > 0
such that the right-hand side of (2.30) is estimated as

L
97

. po 20’ < 2112a 2112(1-a) 212 2
wo-v ([ u) (L1ver)" < (alvat ol P +alf 2y Y ITl g,

p—1 2
< THVW H%Q(Q) + 02||Vv||i’}9,(m + co (2.31)
t € (0, Tiax). Due to the choices of § and 0, we know that p € (1, N) and 26’ = —p hence an
application of Lemma 2.3.2 yields c3 > 0 such that
cal| V|23 120 () < 03HA1)HLP(Q + 03Hv||%’}(9) for all t € (0, Tyax)- (2.32)

We also recall from the Gagliardo-Nirenberg inequality that there is ¢4 > 0 fulfilling
p—1 29
— [ |[Vu2|? >\ | uP —¢y for all t € (0, Tinax)- (2.33)
p Q Q

Thus we conclude from the previous estimates (2.30-2.33) and Lemma 2.3.1 that

d -1 »
—/ uP + )\/ uP + (pi)/ Vuz|? < 03HAUH2L’>(Q) +ept ey + 03||11H2L’}(Q) (2.34)
dt Jo Q P Ja

for all t € (0, Timax). Letting t9 € (0, Timax) and applying the variation-of-constants formula to
the above inequality, we find a constant c5 > 0 such that

— t p
/up(-,t) ée‘”t‘t°>/u”(~7to)—w/ e—W—”/ IVu? (-, s)|ds
Q Q p to Q

t
+03/ )| Au(-, ) [P gy ds + s (2.35)

to

for all ¢t € (to, Tmax). The maximal regularity result from Lemma 1.2.3 provides a constant cg > 0
satisfying

t
03/ A A gy ds < CG/ Nl ds + o (2:36)
to to

for all t € (to7 Tinax)-
Let d = and b = ﬁ%_% . We can easily check that %d — 2. Since {u> (-, ) }te(0, ) 18

+ ~N T 3pio
uniformly mtegrable7 there exists nondecreasing ¢ : (0,1) — (0, 00) such that {u% (1) e (0, Tmar)
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2. A refined criterion for boundedness in the classical Keller-Segel model

belongs to Fs defined in (2.9) (with p = %) Since (2.27),

p—1
[ P
€= =) > 0.
sup  fut 7y
t€(0,Timax) L ()

Applying Lemma 2.2.1 (in the case ¢ = r = 2, and with 6 = % < g by virtue of p > %), we can
find ¢, > 0 such that

p o 42
collullZae) = csllu?ll f2q @

L (1-b) (r—1)
<ec Vus u2 ¥ +ec <
oIV oty 1 7 o e <

IV 220 + e (2.37)

for all ¢t € (0, Tinax), which leads to

VA —-1)
03/ e I Av(-, 8) 170 0 ds (pp / Alt=s /|Vu2 )Pds +c.+cg  (2.38)

to

for all ¢ € (tg, Tmax). Adding this to (2.35) shows that

/ uP(-,t) < e Mt / uP (- to) + ¢5 4 ¢ + e < / uP (-, to) + ¢5 4 6 + Ce
Q Q Q

for all t € (to, Tmax). Since sup |[[u(-,t)|[zr) < 0o due to the local existence theory from
t€(0,to]
Lemma 2.1.1, this shows (2.29). O

Proof of Theorem 2.1.3. Employing Lemma 2.4.1 and Proposition 2.1.2 proves

sup ||U(',t)HLoc(Q) < 0,
t€(0,Tmax)

which combined with Lemma 2.1.1 implies that Tj,.x = oo. Thus the solution is global and
bounded. O

2.5. Blow-up behavior

From another aspect, the extension criterion in Theorem 2.1.3 also gives a characterization of
blow-up solutions.

Proof of Theorem 2.1.6. Suppose on contrary that {U%(',t)}te(o,me) is equi-integrable with
Tiax € (0,00]. We can apply Theorem 2.1.3 to show that there is a constant C' > 0 such that

lu(-, 1) o) < C,

for all ¢ € (0, Tinax), which is a contradiction. O
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2.A. Appendix

2.A. Appendix

We claim a basic property of extension functions which we have used in the proof of Lemma
2.2.1. Namely, the extension function ¢ € W (Q') is equi-integrable with respect to some power
in ' provided ¢ has the same property in €. Since we can not find this precise result in any
reference, we also give a brief proof here.

Theorem 2.A.1. Assume that Q@ C RN is a bounded domain with smooth boundary and that

r>11<g¢q< (N]X:)+. Let Q' be a bounded smooth domain with Q C Q'. Then there is

C > 0 and for any nondecreasing function & : (0,1) — (0,00), we can find & : (0,1) — (0, 00)
nondecreasing such that we can extend any function ¢ € WL (Q) to a function ¢ € Wol’T(RN)
in such a way that

P=y ae inQ, suppp C Y, (2.39)
HV(Z”;VW‘(Q’) < CHV@H};VLT(Q)v (2.40)
16l ey < CllellLae)- (2.41)

Moreover, if ¢ € F5 with
Fs = {¢ e Wt (Q) ‘ For all ' € (0,1), we have /E [Y|P < & for all measurable sets
E C Q with |E| < 5(5’)}, (2.42)
then ¢ € F5 with
Fs = {1/) c Wt () ’ For all €' € (0,1), we have /E|1/)|p < &' for all measurable sets
E C Y with |E| < S(e')}. (2.43)

Proof. First, (2.39) and (2.40) are precisely proven in [26, Theorem 5.4.1]. Now we recall the
construction of the extension function in the proof to show the remaining properties. Since OS2
is compact, we can find finitely many points {x; }1<i<x C 9Q and open sets {W; h<i<x C &

with x; € W; and Wy € Q such that 90 € U W, and Q Cc WoU( U W;) C Q. There
1<i<K 1<i<K

exist C! diffeomorphisms ®; : W; — RY (1 < i < K) which flatten out DO near x;; namely,
if we let B; := ®;(W;) be a ball, it satisfies B; = ®;(W,; N Q°) = {y = (y1,...,yn)| yv < 0},
Bf =&,(W;nQ) ={y = (y1,.-,yn)| yn > 0}. Now we define linear transformations

Yi:(y1,-yn) € B = (Y1, ., yn—1,—Yn) € B,

_ 1
}/2 : (yla"'ayN) € B’L - (y17~"7yN717_§yN) € B'L+

Let ¢ (y) = o(®; () (v € Bi+, z = ®; ' (y) € W;NQ). A first order reflection of ¢/ (y) is given
by

i (y), Y € Bi‘" and y, = 0.
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2. A refined criterion for boundedness in the classical Keller-Segel model

If we let {(;}o<i<k be a partition of unity subordinate to {W;}o<i<k, the associated extension
@ :Q — RY of ¢ is defined by converting @ back to W;

plz), ref= <K Wi
B =S ) {30 (@) + 4@ (a(@i@))}, z e U W
0’ re Q_/\_0<EJ<K Wi,
O (245)

where W,;© = & (B;}}), W, := ®;(B;). Since the mappings o, &7 (1 < i < K), Y
(j = {1,2}) are C', we can find a constant ¢; > 0 such that |®; " (Y;(® ( | < e1|U] for all
UcC W, (1 <i<K). For any measurable subset £ C ', let E;, := E' N W, , We note
that ®; ' (Ya(®;(E;))) € @; (Y1(®:(FE:))) € ®7'(B}') € Q. By changing variables, for each
1 <i < K, we have
| B@pds = [ 13007 (0(@:()) + 40(07 (@) P
= A " | = 3p(27 1 (Ya(y))) + 4p(27 ' (Ya(y)))[P| det(D®; () |dy
1
:/ ‘_3¢;(y17ayN—la_yn)+490;(yl7 “Yn— 1a_ )lpldet(Dé ( ))'dy
@i (E;)
<ot [ )l de DB () ldy
Y1(®i(E:))

— 1 o
Lop 1/ 472 |@h ()P det(DD; (y))|dy
Yo (® (E ))

<o [ el +s [ (ol
;7 (YV1(2i(E))) ;7 (Yo (@i (E)))

According to (2.42), given & > 0, we have that d(¢') > 0 such that [, ¢" < ﬁi’:K)
for all E C Q with |E| < 6(c/). We let 6 := %5 such that if [E’| < min{d,é}, then
|, (Y1(®:(E:))), | @5 (Ya(®4(E;)))| < 6 for all 1 < i < K, hence

() Pde
E/
[ etpdat [ ipla)pds
E'NQ E'NQe

1=K
<[ |+ /|w<x>\pdx
/E’OQ Zz::l E;

i=K
<[ letpds - (o [ pla)rdz + 8 [ [o(a)Pds
E'NQ i—1 o7 (Y1(2:(Ey))) @7 (Y2(2:(E)))

e 6P’ 8pe’
+ K + 8p3K) <e

< (
8P3K 8P3K
Therefore, ¢ € F5 is shown. Using [, [¢|9 = >[5 [#]9, (2.41) can be proven in a similar
0<i<K '

!

way. o O
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3. Global solutions in a Keller-Segel model
with logistic source and their asymptotic
behavior

3.1. Introduction

In this chapter, we consider the following parabolic system

up = Au— XV - (uVo) + wu — pu?,  (x,t) € Q x (0,7),

T = Av — v + u, (z,t) € 2 x(0,T), (3.1)
Vu-v=Vv-v=0, z,t) € 0 x (0,T),

u(z,0) = up(x), v(x,0) = vo(z), x €,

where K > 0, p >0, x >0and 7 > 0, @ € RY (N > 1) is a bounded domain with smooth
boundary and v denotes the outward normal vector on 9€2. The initial distribution (ug,vp) is a
pair of nonnegative functions satisfying

up € CO(Q) with ug # 0, vo € WH(Q) with ¢ > N. (3.2)

In contrast to the classical Keller-Segel system, a logistic source has been included in (3.1) if
k >0, p > 0. One may expect that the interplay between diffusion, cross-diffusion and logistic
growth restriction can result in colorful dynamics [111, 52]. As far as we know, only few results
concerning finite time blow-up has been found except for that in [107], where N > 5 is required.
It is also shown that the logistic source can prevent blow-up whenever N < 2/ or p is sufficiently
large [96, 68, 106].

Going beyond the boundedness results, the study of global dynamics is a natural continuation
[110], we refer to [97, 80, 6] for Keller-Segel models including multiple species. We note that
(3.1) can be seen as a subsystem in a multiple species model. In the case 7 = 0, the results
from [97, 80, 6] can be summarized as follows: If the quotient % is suitably small, (3.1) admits
a global classical solution and it converges to (7}, ).

Considering the fully parabolic system, that is 7 > 0 in (3.1), [110] proves the same conclusion
under the restrictions that 7 = 1 and 2 is convex, which are quite critical in the proof. Under

these assumptions, the combination y(z,t) = u + £|Vv|? satisfies a scalar parabolic inequality
C
Yy <Ay —y+— (3.3)
W
with some C' > 0 for all ¢ > 0 [106]. The comparison principle immediately yields that

= (3.4)

lim sup [[u(-, t)|| o (o) < limsupy(x,t) < —
t— o0 t—o0 1%
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3. Global solutions in a Keller-Segel model with logistic source and their asymptotic behavior

With this information, one can finally show convergence on the basis of estimates for the Neuman
heat semigroup. However, if 7 # 1, the first step already fails; we can not find any combination
like y(z,t) satisfying a single parabolic inequality on its own. In a recent paper [3], the authors
develop a functional approach to prove convergence for global bounded solutions if X; is small.
This approach also works for 7 # 1.

It is our purpose in this chapter to investigate how the size of the quotient % affects the global
dynamics for any choice of 7 > 0 and for a general domain Q. We find a replacement of (3.4):

. C
limsup [Ju(-, )| zr () < — (3.5)
t—o00 12
with sufficiently large p and for some C' > 0, which is sufficient for the conclusion in [110]. Our
main result reads as follows:
Theorem 3.1.1. Let N > 1 and Q C RY be a bounded domain with smooth boundary. Then
there exists 8y > 0 with the property that if x > 0, p > 0, kK > 0 and satisfy

X
= < B, 3.6
L <t (3.6)

then for all initial data (ug,vo) fulfilling (3.2), the system (3.1) possesses a global classical solution
u € CO(Q x [0,00)) N C*HQ x (0,00)),
v € COT x [0,00)) N C*A( x (0, 00)) N L0, 00); W1(02)).

Moreover, (u,v) satisfies

K K
lu(-t) — ;”LOO(Q) =0, |lv(,t)— ;HLW(Q) — 0 as t — oo. (3.7)

3.2. Preliminaries

Before going into details, we introduce the local existence result for (3.1). Compared with (2.1),
an additional logistic term appears in (3.1), however, the following lemma is in the spirit of
Lemma 2.1.1.

Lemma 3.2.1. Suppose 2 C RN with N > 1, is a bounded domain with smooth boundary, > 0
and x > 0, and ug € C°(Q) and vy € WH4(Q) (with some q > N ) both are nonnegative. Then
there exist Tmax € (0,00] with the property that the problem (3.1) possesses a unique classical
solution (u,v) satisfying

u E Co(ﬁ X [O7Tmax)) ﬂ C’Q’l(ﬁ X (O7Tmax))a

v € CYQ % [0, Tinax)) N CHH(Q x (0, Tinax)) N Lie ([0, Tinax); WH9(Q)).

loc

Moreover, if Thax < 00, then

||u(7t)HL°°(Q) — 00, ast — Thax- (38)

3.3. Boundedness and large time behavior of LP-norm
As already mentioned in the introduction, our first and the most important goal is to identify

the large time behavior of |lu(-, )| 1r(q). The proof is very similar to that of Lemma 3.1 in [122].
We have
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3.3. Boundedness and large time behavior of LP-norm

Lemma 3.3.1. Let (ug,v) satisfy (3.2). For all p € (1,00), there exist §1(p) > 0 and
C(k,T,p) > 0 such that if x, u are positive constants and satisfy % < 0y, then

lu(-, )| Lr ) < C(k,7,p), for all t € (0, Tinax)- (3.9)
Moreover, if Tyhax = 00, we have

. C(k,,
limsup [Ju(-, )| 1y ) < M (3.10)
t—00 1%

Proof. First we see that for any a,b > 0, Young’s inequality provides k, > 0 such that
et +1
ab < —a v + k0P (3.11)

Let Cpy1 :=C(p+ 1,p+ 1) denote the constant from Lemma 1.2.3 for p € (1, 00). Now we can
find #; > 0 small enough such that

1
Cpi1kptP Tt < 5 for all 6 < 6y, (3.12)

We multiply the first equation in (3.1) by uP~! and integrate over Q to obtain that

1d/ —2 2
—— [ uP+(p—1 /u” Vu
s L= [ww
:(p—l)x/UP_IVU-VU—H{/up—,u/up'*'1
Q Q Q
-1
:_pix/upAv—i—fi/up—,u/up'*'1
p Q Q Q
1 -1 1
_ bt /up—p— /upAv+<f<a+p+ )/u”—u/u”Jrl (3.13)
21p Jo p Q 27p Q Q

for all t € (0, Tynax). Now (3.11) implies that

+1
ptl p< M +1 - p+1\°
<= p kou™? —_— Q 3.14
<H+ QTP)/QU _4/Qu +fppt Rt 2Tp €2, ( )
p—1 PAy < H P+l 4 ko mPy Pt AoplPT1
—Tx | WA | + kpu~Px |[Av[PT, (3.15)
p Q Q Q

We see that (3.13)-(3.15) imply

.
dt Jg,

1 1 p+1
< _p+ / uP — @/ up+1 + kpp,ufpxpﬂ/ |Av|p+1 4 kpp,ufp K+ p+ |Q|
2T Q 2 0 [¢) 2Tp

for all t € (0, Tiax). Let tg € (0, Timax). Applying Gronwall’s inequality to the above inequality,
we obtain that

t
/up(.7t)Se_p;;l(t—to)/up(.,to)_@/ e—thl(t—s)/up+1(.7S)dS
Q Q 2 Ji Q
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3. Global solutions in a Keller-Segel model with logistic source and their asymptotic behavior

t
+kppu”’x”“/ S /IAU s)[P*ds

1\"* »
+kppu—P (/‘Q-i-])—i—) |Q|/ Jr1(1‘ s)

2
for all t € (to, Tmax). An application of Lemma 1.2.3 implies Cp 11 > 0 fulfilling

kppp PP / e~ 5 (12 / |Au(-, 5)[P*ds
to Q

t
§Cp+1kpp,u_pxp+l/ e b)/upﬂ('vs)ds
Q

to

_ p+1 1
+ Cpr17kppp po+1 (&= tO)HU( tO)”aj;,erl(Q)'

We therefore derive that

_ptly _
/ Up(',t) <e - (t—to) / up('vt()) + Op+17"l‘3pp,u XpJrl 5 (t=to) ||U('at0)||€[_/‘—21,p+1(9)
Q Q

1 X p+1 t b1
(S con (%) /( 2 /m,sms
2 1% Q

B p+1 p+1
—|—kppu p <K+2T) |Q|

for all ¢t € (tg, Tmax)- In view of (3.12) and the assumptlon that X x < 01, we have
1 +1 ! — Bt (t—s) +1
—pp | = — Cp1kp(= )p o wPT(e, s)ds < 0.
H to Q
Thus

/up(-,t) < e BEL (4 tO)/up(-7t0)+Cp+1Tkpp/L_ e~ B (- to)”,U( t0)||€;21,p+1(9)
Q Q

1 p+1 t »
+ kppu? (n + p+> Q] [ e (=9)gs
271p to

<O [ (to) + Cparhypu e
Q

1\ P+l 1 [ (t—to)
+ kppu™? (n + p+> \Q|p + / e %do
0

1
( 0)||€;;L2,p+1(9)

271p 2T

1
p+(

_ P+l _
<e e tO)/Up('atO)"‘Cp-HTkppM po+1 = tO)”U( t0)||11;[—/~_21,p+1(g)
Q

_ p+1\"*! p—|—1
+ kpppt p<ﬁ+2p> €

C1 (pa T)

for all ¢ € (to, Timax), where ¢1(p,7) := fooo e %do. This implies (3.9). Suppose that Tiax = 00.
Letting t — oo, we obtain that

limsup/ uP(-,t) < c
Q

t—o0 p

=

p+1
with C' := k,p (n + Z—H) |2 ¢q (p, 7). Taking the p-th root on both sides, we finish the

TP

proof. O
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3.4. Large time behavior of L*°-norm

3.4. Large time behavior of L°°-norm

Applying the variation of constants formula to the second equation in (3.1) and the LP-L4
estimate for the Neumann semigroup from Lemma 6.2.1, we readily have the following:
Lemma 3.4.1. Let p > 1. Assume that

Np
{ r<w-pr P (3.16)
r =00, p> N.

Then for all K > 0, there exists C(K,p,r) > 0 such that for all (ug,vo) satisfying (3.2) and all
X Hs K> 0, Zf Thax = 00, and

. K
limsup [|u(-, )| zr @) < —, (3.17)
t—o00 1%
then
. C(K,p,r
limsup | Vo (-, t) | r ) < Q (3.18)
t—o0 1%

Proof. Let p > 1 and suppose Ty ax = oo. For all K > 0, we can find ¢ty > t such that

2K
[u(, O)lzr @) < 7, for all ¢ > tg.

Due to the choice of r, we know that ¢;(p,r) := fooo o272 G0y < 00. According to
variation of constants formula for v,

t
bt tos 1
v(t) = e T A Dy (1) + / ¢ = (A1 2y (., 5)ds

to T

for all ¢ € (tp,00). We apply the LP-LY estimate for the Neumann heat semigroup from Lemma
6.2.1 to find ¢o > 0 such that

t—s

t
t=to A 1l
IVo(-, 8| pr oy < Ve =& ”v(',to)llmw/t Ve = (& ”;u(~,s>\|mmds
0

t—s 1

t—s. _1_nN(1
272 (3

t
< coe™ Vo to) 1 + / o

to

—t 2K1 [t t— 1 11y s
sch*%Wv(-,tonurmf*/< 2) G e s
w7 to

1 N

t—t 2K &
< cge” 7 ||Vl to)l e + cz—/ o2 G e g
K Jo

bt 2K

<ee” 7 [Vl to)ll L + ez (p, T)7
for all t € (tp,00). Letting ¢ — oo, we obtained the desired estimate by choosing C (K, p,r) :=
2K6102. O
0,

Lemma 3.4.2. Let p > % and (ug,vo) satisfy (3.2). Suppose that Tynax = 0o0. For all K >
there exists C(K, p, k,0) > 0 such that if
K

limsup [[u(-, 1) o) < —, (3.19)
t—o00 1%
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3. Global solutions in a Keller-Segel model with logistic source and their asymptotic behavior

then

. C(K,p,k,0
timsup (1)) < S0, (3.20)
t—o0 1%
where 0 1= %
Proof. Assume that p € (4, N) without loss of generality. First we fix r € (N, NN—_’;), c(K)>0
and tg > 0 such that

s}

K
s 8) ey < 28D

lu(, )l Lr) < ;

V(- t)[|Lr ) <

for all t > to. Let sg € (tp,00). Using the variation of constants formula for the first equation in
(3.1), we have

t
(s )Ly < e¥7*%u(-, s0)l| L= o) +x/ AV - (Vo) (-, 5)| L~ () ds
S0

t
+/ [e=2 (ku — pu?) (-, 8)|| Lo () ds (3.21)
S0

for all ¢ € (sg, so + 2). We begin with

t t
[ 163 e = ) )y < / sup uu2)+ ds
S0

5011,

—ds g pha
2p

for all t € (sg,s0 + 2). By the LP-L9 estimate for the Neumann heat semigroup from Lemma
6.2.1 (i), there exists a constant ¢y > 0 fulfilling

_N
e =208 u(-, 50) || L () < ot — 50) 2 [[ul-, 50) || Lo (e (3.22)
for all t € (so,so + 2). Let g satisfy % € (%, +), we can find 7' > ¢ such that - + T/,

and a =1— = € (0,1). Let M(¢t) = (t — so)%Hu(-,t)HLm(Q). Using the LP-L4 estimate for the
Neumann heat semigroup, the Holder inequality and the interpolation inequality ||ul] @) <

||u||‘}400(Q)||uH1LI(“Q)7 we obtain ¢z > 0 and ¢4 > 0 such that

t
X[ 1T @T0) 5 m(ods

t
< ca / (t = 5)" 3 JuTo(, 5) | ooy ds

S0

t
_1_ N
< ex / (t = )53 u 9) | o g | V0 9l s

S0

26



3.4. Large time behavior of L*°-norm

t
_1_N a _
SCsX/ (t = )72 72 Jul, 8) | T o0 (@ 1o 8) [ Ly VU, 8) |20y ds

S0

t —a
< CSX/ (t — )72 80 M%(s)(s — s0) % <01> (cl) ds
S0 L [
X C1 1=a @ t—so . .
= e <) <> sup  M(?) / (t—s0—0) 2 200 “2rdo
/K t€(s0,50+2) 0

l1-a @
<cics <X> <Cl> sup  M(t) p -eq(t — so)%f%f%“ (3.23)
IJ’ /’I’ te(50,80+2)

for all ¢t € (sg, so + 2). Now we collect the above estimates (3.21-3.23) to see that
2

l1—a a
M) < ex (L) (0 o) o cncsen(e— oot E e (X)) () { sup M(t)}
W te(

2 7 7 50,50+2)

Let M(so) := sup M(t) and 6 = %. We take the supremum on both sides of the above
t€(s0,50+2)
inequality to obtain that

~ 2 l-=a a
M(so) < co (Cl> + 2%; + 0103042%“9 (q) (M(so)) for all sg > to.
[ [ I

Since a < 1, this implies the existence of ¢5(K,p, k,0) > 0 such that
M(so) < 5 for all sg > to.
I
It also holds that
cs
u(,t)|[ L) < —
| @ =,
for all t € (so + 1,80 + 2). According to the choice of sg, we conclude the assertion. O

For convenience, we introduce

U=u—", v=v-L (3.24)
[ [
It is easy to see that (U, V) satisfies
U = AU — XV - (uVV) — kU — pld?, (z,t) € Q x (0,T),
TV, =AYV -V +U, (x,t) € Q2 x(0,T),
VU v =VV-v=0, (1) € 99 x (0, T), (3.25)
u<$,0)=uO<$)—g7 V(:U,O):vo(x)—g, x € Q.

Here we note that (Up, Vo) is not necessarily nonnegative.

We fix A € (0,min{1,«}), and let A = A, be the realization of —A + X under Neumann
homogeneous boundary conditions. We know that A is sectorial in LP(£2) and possesses fractional
powers A for a > 0. The domain D(A®) satisfies the embedding

D(A%) — W2=(Q), if 2a — N (3.26)
p
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3. Global solutions in a Keller-Segel model with logistic source and their asymptotic behavior

Moreover, A generates an analytic semigroup (e_tA)tZO and for all & > 0 there is ¢(p,a) > 0
such that

147l 1oy < elpr @l zogen (3.21)
for all t > 0 and ¢ € LP(2). We now follow Lemmata 4.1, 4.2 and 5.1 in [110] to prove that:

Lemma 3.4.3. Let (ug,vo) satisfy (3.2). Let p > & and 61(p) be defined as in Lemma 3.3.1.
There exists C(k,T,01) > 0 such that if x, u, k are positive constants and satisfy % < 01(p), then
Tmax = 00 and
C 0
limsup || Av(-, £)]| Lo (e < Clwm,61) (3.28)
t—o00 12
Proof. In view of the hypothesis, Lemma 3.3.1 implies that [u(-, )|y (p > %) is bounded.
Thus we infer that (u,v) is bounded and T,ax = oo [3, Lemma 2.6]. Moreover, Lemmata 3.3.1,
3.4.1 and 3.4.2 imply that there exist ¢; > 0 and ¢ty > 0 fulfilling

0
aCer ) ey < (M) (3.29)
0
Vel e < 2D (3.30)
for all t > to. Now we fix 5 € (1, 2), then choose 8 € (n— 1, 1) and
> L (3 31)
" - |

Applying the variantion of constants formula to the first equation in (3.25), invoking (3.29) and
(3.30), and employing the same argument used in [110, Lemma 4.2], we show that

lim sup ||A5u(',t)HLP(Q) < @ (3.32)
t—00 1%

with some cy(k,7,601) > 0. We again follow the idea of [110, Lemma 5.1] to find that

C3

limsup [[ATV(:, 1) || L) < — (3.33)
t—o00 12

with some c3(k,7,61) > 0. By the embedding theorem (3.26), there is ¢4 > 0 such that
[Av][Le () = [|AV]| L= () < [VIiwz= () < cal|[AV][Lr(0)- (3.34)

The proof is complete. O

3.5. Refined estimate for «

In this section, we show that after suitably large time, u lies in a neighborhood of ﬁ whose radius
is measured by % We can prove it by using maximum principle and the pointwise bound of Aw.

Lemma 3.5.1. Let (u,v) be a global classical solution of (3.1) and (U,V) be defined in (3.24).
For all K > 0 there exists C(K) > 0 such that if it holds that

h?lsup”A'U(',t)HLoo(Q) < (3.35)
—00

w
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3.5. Refined estimate for u

then

. C(K)o
limsup |[U(-, 1) L= (o) < (%) , (3.36)
t—00 12

where 0 := %

Proof. According to the assumption, we can find ¢y > 0 fulfilling
2K
|Av (-, 1) o) < e for all ¢ > tg. (3.37)

We use (3.37) and the first equation in (3.1) to estimate that
u = Au — xVu - Vv — Yulv + ku — pu’
2K )
< Au—xVu-Vu+ xyu— + ku — pu
L
< Au—xVu-Vv+u(2K0 + k — pu) (3.38)
for all z € © and ¢ > to, where we use 6 = %. Let z := z(t) be the solution to

2'(t) = z(t) (2K0 + Kk — ,uz(t)), t > to,
z(tg) = sup u(zx, tp). (3.39)
z€eN

It is easy to see that z(tg) > 0 by the strong maximum principle. The comparison principle
implies

u(z,t) < z(t) for all x € Q, ¢ > to. (3.40)

Thus we can derive that

2K0 &k
limsup [|u(-, t)|| feo() < lim 2(t) = — + —
HOOPH ()L < lim z(2) R
This leads to
. 2K0
limsup [|Uy (-, 1) || oo (@) < ——- (3.41)
t—o0 /~L

Similarly (see also in [110, Lemma 6.1]), using the lower bound of Av in the first equation in
(3.1) and letting y(t) € C*([to, o0)) solve the following equation

y'(t) = y(t)(— 2K0 + K — uy(t)), t > to,

_ (3.42)
y(to) - xuelgu(xvto) > Oa
we see that
u(z,t) > y(t) for all z € Q,t > ¢,

which implies that

. 2K0

limsup [[U-(-,)[[ L (0) £ —. (3.43)

t— 00 12

Combining (3.41) and (3.43), we establish (3.36) by choosing C'(K) := 2K. O
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3. Global solutions in a Keller-Segel model with logistic source and their asymptotic behavior

3.6. Decay of (U,V)

In the last section, we prove that U is in a neighborhood of 0 after suitably large time. This
enables us to show that U/ in fact decays in the large time limit if 0 is sufficiently small. At the
same time, the decay of V is also obtained. Letting A; be the first non-zero eigenvalue of —A
associated with Neumann boundary conditions, we have the following:

Lemma 3.6.1. Suppose that k > 0. Let (ug,vo) satisfy (3.2) and (U, V) be defined as in (3.24).
Let 0 < ¢ < min{%,)\l, 1}. For all K > 0, there exists 02 > 0 and C > 0 such that if x > 0 and
>0 satisfy 6 := % < 6y and

Ko

limsup [[U(, )| o) < — (3.44)
t—o0 1%
then
UG )| ooy < Ce S and 3.45
Q)
V()| ey < Ce™ ¢! (3.46)
for allt > 0.

The proof follows from [110, Lemma 7.1 and the proof of Theorem 1.1].

Proof of Theorem 3.1.1. Let p > %, and 67 := 01 (p) and 63 be defined as in Lemmata 3.3.1 and
3.6.1, respectively. Let 6y = min{6f;,62}. The condition that § < 6y implies the boundedness
and global existence of (u,v), thus Ti.x = co. We obtain (3.7) directly by Lemmata 3.4.3, 3.5.1
and 3.6.1. O
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4. Boundedness in a chemotaxis-haptotaxis
model

4.1. Introduction

In Chapter 2 and 3, we have introduced the classical Keller-Segel model and the Keller-Segel
model with logistic source. Apart from those, a large number of variants has been proposed to
describe taxis phenomena in mathematical biology. Among them, a model for tumor invasion
mechanism was introduced by Chaplain and Lolas [18]. In this model, tumor cells are assumed
to produce a diffusible chemical substance, the so-called matrix-degrading enzyme (MDE), which
decays non-diffusible static healthy tissue (ECM). It is observed that both the enzyme and the
healthy tissue can attract the cancer cells in the sense that the cancer cells bias their movement
along the gradients of the concentrations of both ECM and MDE, where the former of these
processes, namely taxis toward a non-diffusible quantity, is usually referred as haptotaxis.
Additionally, the cancer cells compete for space with ECM, and at the considered time scales
moreover logistic-type cell kinetics need to be taken into account. If furthermore the ability of
ECM to spontaneously renew is included, the Chaplain-Lolas model becomes

u = Au—xV - (uVv) =€V - (uVw) + pu(l —u —w), (x,t) € 2 x(0,7),
T = Av — v + u, (z,t) € 2 x(0,T), (4.1)
wy = —vw +nuw(l —u —w), (z,t) € 2 x(0,T),

where u, v and w denote the density of cells, the concentration of MDE and the density of
ECM, respectively, where the parameters &, x, u, 1 are positive constants and 7 > 0, and where
Q c RN, N > 1, denotes the physical domain under consideration.

Assuming w = 0, (4.1) is reduced to the classical Keller-Segel system with logistic source, which
has extensively been studied during the past 20 years. Compared with the pure chemotaxis
system mentioned above, one may expect the logistic source and, especially, death terms to
enhance the possibility of bounded solutions. In fact, Tello and Winkler [96] proved that if 7 =0
and

(N —-2)¢

~ X, (4.2)

o>
then for any regular initial data, the logistic Keller-Segel system a unique global classical solution
which is bounded. In the case 7 = 1, it is known that bounded solutions exist in lower dimensions
(N =1,2) for any p > 0 [68], and that the same result holds for u > po with some po(x) > 0 in
higher dimensions [106]. More precisely, a careful inspection of the proofs therein shows that in
fact large values of the ratio % are sufficient to exclude blow up in either finite time or infinite
time.

Concerning (4.1) with possibly nontrivial w, the strong coupling between remodeling and
chemotaxis substantially complicates the situation, and accordingly the knowledge on this topic
is quite incomplete so far. To the best of our knowledge, global existence of weak solution is
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4. Boundedness in a chemotaxis-haptotaxis model

obtained in [79] for N < 3, where (4.1) is included as a subsystem. And global solvability of
classical solutions in this full system is known only when 7 = 0 and N = 2 [93]. Disregarding
the chemotaxis effect, the haptotaxis-only version with x = 0, 7 = 1 was studied in [84].

In real situations, the ECM degrades much faster than it renews, thus the remodeling effect can
be neglected, that is, we may assume 1 = 0. Under this hypothesis, the corresponding parabolic-
elliptic simplification 7 = 0 has been studied by Tao and Winkler in [92], where it has been proved
that solutions stay bounded under the same condition as in the case w = 0, that is, when (4.2)
holds. This shows that in this situation the haptotaxis term does not affect the boundedness of
solutions, and that accordingly the chemotaxis process essentially dominates the whole system.
A natural question is whether a similar conclusion holds in the fully parabolic system obtained
on letting 7 = 1. In [85], Tao gives a partially positive answer in this direction by proving that
when N = 2, solutions remain bounded for any g > 0, which thus parallels known results both
for 7 = 0, and also for 7 = 1 when w = 0. As far as we can tell, however, despite a result on
global existence established in [86], the question of boundedness of solutions is completely open
in higher dimensions. It is the purpose of this work to furthermore establish a corresponding
parallel result for the three-dimensional parabolic-parabolic-ODE chemotaxis-haptotaxis model
in this direction.

Accordingly, we deal with the system

up = Au—xV - (uVv) =€V - (uVw) + pu(l —u —w), (x,t) € Q x(0,7),

vy =Av—v+u, (x,t) € Q x (0,7),

wy = —vw, (z,t) € 2 x(0,T), (4.3)
(Vu — xuVv — &uVw) - v = Vv - v =0, x,t) € 00 x (0,7T),

u(z,0) = up(z), v(z,0)=uwvo(x), w(z,0)=w(x), x €,

where Q C RV (N > 3) is bounded with smooth boundary and x, &, 4 > 0. We assume that the
initial data are regular enough and satisfy a standard compatibility condition in the sense that

{ ug € CY(Q), vo € WH4(Q) with ¢ > N, wo € C** (Q) (a € (0,1)), (4.4)

Vuwg - v =0.
Then our main result says the following.

Theorem 4.1.1. Let N > 3 and Q C RN be a bounded domain with smooth boundary. There
exists 6y > 0 such that whenever x > 0, p > 0 and £ > 0 are such that % < b, for any initial
data (ug,vo,wo) fulfilling (4.4), there exists a unique global classical solution (u,v,w) satisfying

we COQ x [0,00)) N C2LQ x (0, 00)),
v e COQ x [0,00)) N CL(Q x (0,00)) N L5 ([0, 00); WH(Q)),
we CHQ x [0,00)).

Moreover, it is bounded in Q x (0, 00).

We see that although our hypothesis on the parameters is not as explicit as (4.2) obtained for
the parabolic-elliptic counterpart, it still shows that again boundedness of solutions is enforced
by a condition merely referring to the interplay between chemotaxis and quadratic degradation
in logistic source.

Apart from this, we find it worth mentioning that our approach even shows a new result for
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the pure fully parabolic chemotaxis system with logistic source in the sense that when w = 0,
N > 3, the system admits a classical bounded solution if % is sufficiently large. Compared with

a similar conclusion under the alternative assumption that % be large [106], our result seems
more consistent with (4.2) for the parabolic-elliptic system where the linear ratio ‘i is found to

determine the boundedness of solution.

4.2. Preliminaries

Although a haptotaxis term is included in (4.3), the local existence theory is in a similar spirit
as Lemma 2.1.1. The proof can be derived based on that in [91, Lemma 2.1].

Lemma 4.2.1. Let N >3, x >0, £ > 0 and p > 0. For (ug, vy, wy) satisfying (4.4), there is
Tinax € (0,00] such that (4.8) admits a unique classical solution

u € CO(Q x [0, Thax)) N C*H(Q x (0, Tnax)),
v € COQ x [0, Tmax)) N C*H(Q x (0, Trax)) N LEZ([0, Tinax); WH(Q)),
w e C?PHQ x [0, Thax)),

such that
u>0, v>0 and O0<w< ||lwollp=) forall te(0,Tnax) (4.5)
Moreover, if Tynax < 00, then
lu(-, )| Lo (@) —+ 00, as t — Tiax.

According to the above existence theory, we know that if we fix any tg € (0, Tinax), then there
exists M > 0 such that

sup [lu(, s)llze(@) + sup [[o(;8)llwze @) + [w( to) w2 @) < M. (4.6)
s€[0,to] s€[0,to]

Observing that w can be represented by v and w(z,tp), we can compute Aw in a convenient
way. Upon a slight adaptation of [92, Lemma 2.2], we can prove a one-sided pointwise estimate
for Aw as follows.

Lemma 4.2.2. Let (ug,vo,wo) satisfy (4.4) and (u,v,w) solve (4.3). We have

t t t
Aw(z,t) > Aw(z, to) - e Jio @8 g™ Sy Vs, 0 1) / Vu(z, s)ds

to
1 — |, v(x,s)ds
— “w(a,to) = w(, to)o(z, the” ") (4.7)
for allx € Q and all t € (to, Tinax)-
Proof. Representing w(x,t) according to
w(z,t) =e Jio U(I’S)dsw(a:,to) (4.8)

for all x € Q and t € (tg, Tmax), we directly compute that

t t t
Aw(z,t) = Aw(z, to)e Jig v@)ds _ 9= Jig v(z’s)dSVw(x,to) . / Vo(z, s)ds
to
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4. Boundedness in a chemotaxis-haptotaxis model

t t
+ w(z, to)e Jio U(I’S)ds| / Vo(z, s)ds|* — w(z,to)e” Jig vas)ds / Av(z, s)ds.
to to

Since ze™* < % for all z > 0, by dropping some nonnegative terms, we obtain that
Aw(z,t)

t
> A’lU(l‘,to)e_ ftto v(z,s)ds 2¢~ ftto U(I7S)dSV’LU($,t0) . / vv(x, S)dS
to

. ¢
—w(z,to)e” Jrg viwss)ds / (vs(m,8) + v(x,s) — u(w, s))
to
t t t
> Aw(z,to)e Jio V@) _ 9= g 7J(m’s)dSVw(gc, to) - | Vo(z,s)ds
to

t " t
— (e to)e O w(a,t) = ol to) — wiato)e T [ e, s)ds
to
t t )ds t
> Aw(z,tg)e Jig v@)ds _ 9= Jig U(x’é)dSVw(:c,tO) : / Vo(zx,s)ds

to

— [t w(zx,s)ds 1
—w(z, to)v(z,t)e Jig v@a)ds _ gw(m,to)

for all ¢ € (tg, Timax). Thus the proof is complete.

O

With the aid of Lemma 4.2.2, we can furthermore prepare a preliminary estimate of an integral

related to the haptotactic interaction. This estimate will be used in different ways later on.

Lemma 4.2.3. Let x >0, £ > 0, and assume that (4.4) holds. Then for any p > 1, the solution

of (4.3) satisfies

(p — 1)§/Qu”_1Vu~Vw < (3M§+2M£)/Qup+Mf/Qupv—&—QM(p— 1)§/Qu”_1|Vu| (4.9)

for all t € (to, Tmax), where M > 0 is as in (4.6).

Proof. Integration by parts and an application of Lemma 4.2.2 yield that

(p—l)f/upﬂVu-Vw
Q

— _Eg/ P Aw
b Q
t

-1 — [t v(w,s)ds — [t v(z,s)ds
< —LS/ up(Aw(a;,to)e Jio v@9)ds o= i vi@ss)d Vw(z,to) - [ Vou(z,s)ds
p Q to
1 ot
— —w(x, ty) — w(z, to)v(z, t)e Sty v(x,s)ds>dx
e
1 p—1 — [} v(x,s)ds
< (ME+-ME) | vP+ ME | vPv—2——¢ | uPVw(z,tp) - Ve 7o 07 dy
e Q Q p Q
1 - 1 — t v\x,s S
= (M§+*M§)/ up—i-Mf/ upv+2p—§/u”Aw(ac7t0)e Jig v@)ds g
€ Q Q p 0

-1 — [ v(x,s)ds
+ 2p7p §/ VuP - Vw(z,to)e Jig v(m)ds gy
Q
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< (3M§+éMg)/QuMMg/Qu%HM(p—1)§/Qup—1wu|

for all ¢ € (tg, Tmax)- O

Lemma 4.2.4. Let x > 0, £ > 0 and p > 0, and assume that (4.4) holds. Then there exists
C :=C(|Q]) > 0 such that

/Qu(-,t) <, /Qv(-,t) <C (4.10)

for all t € (0, Tmax)-

Proof. The first inequality can be proved by simply integrating the first equation in (4.3) on Q
and using that ([, u)? < [Q|( [, u?) due to the Cauchy-Schwarz inequality. The estimate of [, v
can be obtained in a similar way and with the aid of the first inequality.

4.3. An L? estimate for u

In this section, we derive the claimed boundedness result via combining the above result on
maximum Sobolev regularity with a Moser-type iteration. We first estimate u in some appropriate
Lebesgue space, from which a certain suitable estimate of Vv will follow. This approach will
be carried out to ensure that Vo is bounded in L*°(£2). Thereupon we can establish a series of
inequalities based on which a Moser iteration is performed to finally achieve boundedness of u in
L>(€Q). An immediate consequence of Lemma 4.3.1 is that Vv is bounded with respect to the
norm in L°°(Q2). Let us first provide an important ingredient for the estimate of ||u(-,t)[|z»(q)
with p € (1, 00).

Lemma 4.3.1. Let (ug,vo,wy) satisfy (4.4). For all p € (1,00), there exist constants 6, > 0
and C > 0 such that if x,€ > 0, > 0 are positive constants and satisfy % < 0p, then

/ uP(-,t) < C  for allt € (to, Tmax)- (4.11)
Q

Proof. Let p € (1,00). First we see that for any a,b > 0, Young’s inequality provides k, > 0
such that

1 p
ab < ga%l + kbt (4.12)

Let Cp41 denote the constant from Lemma 1.2.3. Now we can find 6, > 0 small enough such
that

1
Cpi1kpoP Tt < 5 for all 6 <6, (4.13)

Testing the first equation in (4.3) with u?~! (p > 1) and integrating by parts imply
1d
—— | uP+ p—l/u”_QVu2
e R e

=(p-— 1)X/ uP Vu - Vo + (p — 1)5/ uP Vu - Vo
Q Q
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4. Boundedness in a chemotaxis-haptotaxis model

+u/up—u/up+1—u/upw

<—X/Vup Vo + ( —1§/u” 'Vu - Vw-i—u/up—u/u’“”l

<_pTX/u”Av+( —15/“p V- Vw+u/“p—ﬂ/“p+l (4.14)
Q Q

for all t € (to, Tmax). We see that (4.9) and (4.12) entail the existence of c3(p, M) > 0 (M is as
n (4.6)) satisfying

(p—l)g/uPAVu-Vw

Q

gcgé/ up+c3£/ upv+(:3p£/ uP =Vl
Q Q Q

1 2422
§C3f/ Up'f‘ﬁ/ up+1+kpC§+1M_p§p+l/ Up+1+L/ up_2|Vu|2+c3§7p/ uP
@ Q 2 Ja 2(p—1) Ja

2 2 _
< (b + 222 Jura [t 22 [ wup s g urerst [ ot 4s)
2p—-1)" Jo 8 Ja 2 Q Q

for all t € (to, Tax). From (4.12), we estimate that for all ¢ € (tg, Tinax)

—1
—Lx/ uPAv < x/ uP|Av| < %/ uPt +kpxp+1u_p/ |Av[PHL, (4.16)
p Q Q Q Q

Inserting (4.15) and (4.16) into (4.14) and some rearrangement yield
1 d p— 1 p—2 2
— \Y%
ot P4 5 /Qu |Vul

. AP
= 4M/Qup ( £+ 2(p — 1)+M /Qup

_,_kp’ufpxzﬂrl/ |Av‘p+1+kp’ufp£p+l/vp+l

Q
p+1/p<+1 2e2p? )/ 3/+1
= T w = Zp [ wP
2p Ja 2p st 2(p—1) a Q i Q
T [ A ke et [t )

for all ¢ € (tg, Tmax). We again apply Young’s inequality to obtain that

p+1 38%p° K
<2+ H*@ )HOLM§4AMH+MMMMH (4.18)

where c4(u, &, p, M) > 0. According to the assumption % < 6, and (4.13), we know that % —

Cpy1kp(X)PT > 0. Let & € (0, W —kp). Lemma 1.2.1 implies a constant c5 > 0 such
that
Cp+1 —pgp-l—l /Q,U;D-i-l < ELL X;D-i-l/ ‘Av|p+l + 65”1}”1[77:(10 (419)
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Upon (4.17)-(4.19), we infer that

d 1

— [ uP < _prl / uP — @/ uPt 4 (e + kp)po+1M_p/ |AU\T’+1

dt Jq 2 Jq 2 Jq o
+ ca(p, &, 0)p + espllv] g

for all ¢t € (tg, Timax). Applying the Gronwall inequality to the above inequality shows that

t
/up(',t) < e_(%ﬂ)(t‘to)/up(-,to) - Hp/ e_(pTH)(t‘s)/ uPt(-, 5)ds
Q Q 27 Ji Q
t
ekt [0 [ jau s
to Q

t
s [ e e+ a9y s

to

t
ge—<%“><t—fo)/up(-,to)—ﬁp/ e—(%“)(w)/ WP 8)ds
Q 2 to Q

t
et bt [ [ jau gt
to Q

2 +1
+ —— | awé&pp+cesp sup  o(-, 1|70 4.20
P ( ( ) ey ICICY N (4.20)

for all t € (tg, Tmax)- In order to estimate the third term therein, let us note that an application

of Lemma 1.2.3 results in

t
e+ kot [ [ sty
to Q
t
< (E+kp)pcp+lxp+1u—p/ e—("—#)(t—w/ WL 5)ds
to Q

oy —(PpELlyp_
+Cp+1(€+k’p)po+1M pe= () tO)HU('atO)||€{/‘_21,p+1(Q)

t
= (e kG [ R [t syas
to Q

+ Cpaa (e + kp)py? L Pe () (10 yotd (4.21)

for all t € (tg, Tmax) and M as in (4.6). Combining (4.20) and (4.21), we finally arrive at

YR

. 1 PRt ‘
< e—(%)(t—to)/ uP (- to) —pp [ = — (e +kp)Cpia <X> / e~ (B3 (t=s) / uPt(-,s5)ds
Q 2 H t Q

0

+ Cpia(e+ kp)po+1M_p€_(pT+l)(t_tO)Mp+1

n 2
p+1

p+1

<C4(,U,7§,p) + Cs sup |U(7t)||L1(Q)> (422)

t€(0,Tmax)
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4. Boundedness in a chemotaxis-haptotaxis model

for all t € (t9, Tmax). We see from Lemma 4.2.4 and the choice of & that

/Q uP(-11) < O x,€.p, M) (4.23)

for all t € (to, Tmax) upon an obvious choice of C(u,x,&,p, M) > 0. Thus the assertion is
derived. O

Lemma 4.3.2. Let (ug,vo,wp) satisfy (4.4). Then there exist 6y > 0 and C > 0 such that if
X,& > 0, > 0 are positive constants and satisfy % < B, then

[o(, )l L) < C,
IVu(, t)||Loe () < C for all t € (to, Tmax)-

Proof. Let p; > N and 0y = 0,, be defined as in Lemma 4.3.1. Since % < By, an application of
Lemma 4.3.1 implies a constant ¢; > 0 such that [|u(-, )| 1ri (o) < c1 for all t € (o, Tinax). Let

o 1N
co 1= / (1+o0 2721 )e %do.
0

Using the variation-of-constants formula for v, we note that a standard estimate for the Neumann
semigroup provides cg > 0 such that

t
V(- 1)l oo () < V"B Du(e t0) || Lo o) +/t Ve =) A" u(. 5)| ()
0

t
_1_ N
< e—t”Vv(.,to)HLoc(Q) —|—/ cs(1+ (t—s) 3= Sy )6_(t‘s)||u(-,8)||Lp1(g)ds

to

N

t—to

< M+81C3/ (l—l—a_%_?m Je~ %do
0

<M + creacs

for all t € (t9, Tax). Similarly, we can find ¢4 > 0 and ¢5 > 0 such that
t
lo(-, )l L) < ||€t(A71)U('7750)||L°°(Q) +/ ||€(t78)(A71)U('7S)HLOC(Q)dS
t
P e
< e7t||v(.7t0)||Loo(Q) +/ ca(1+ (t—s) 2, )ef(t*s>||u(~, 8)|| o1 () ds
to

< M + cieqcs

for all ¢t € (tg, Timax). Therefore, the proof is complete. O

4.4. Boundedness of u

In the last section, we have already gained LP-estimate for v with p > N. Since the estimate of
Vw still depends on time, it is not convenient to apply the Neumann heat semigroup estimates
to study the boundedness of u. Here we use the well-developed Moser iteration procedure to
show that u is bounded in L*°(£2).
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Lemma 4.4.1. Let (ug,vo,wp) satisfy (4.4) and 6y > 0 be defined as in Lemma 4.3.2. There
ezists C' > 0 such that if x,&€ > 0, > 0 are positive constants and satisfy % < by, then

lu(-,t)|| o) < C for all t € (to, Trmax)- (4.24)
Proof. We first see Lemma 4.3.2 implies the existence of ¢; > 0 such that
||'U(',t)||Loo(Q) + ||Vv(-,t)|\Loo(Q) < (4.25)

for all t € (to, Timax). Testing the first equation in (4.3) with uP~! (p > 1), using (4.9), (4.25)
and Young’s inequality, we can find constants ¢y, c3 > 0 such that

1d
p 1 p72v 2
bt u—|—( )/Qu [Vu|

:(p—l)x/up*1Vu~Vv+(p—1)§/up*1Vu~Vw+u/up—u/up“—u/u”w

Q Q Q

<(p—1)x /up 'V - VercQﬁ/uercQg/uperch( 71)/1#’ 1\Vu|+u/up
Q

<7/ P22\ Vul? 4 (p— 1) 2/up\Vv|2+02§/up+clcQE/up
Q Q Q
1
+p—/u”*zlvuluc%fzp/u"w/ztp
4 Jo Q Q

1
SL/UP72|VU|2+63P/UP

2 Ja Q

for all t € (tg, Tmax), Where c3 is independent of p. An obvious rearrangement implies

d p
— [ uP+ C4/ |Vuz|? < C5p2/ uP (4.26)
dt Jo ) Q

for all ¢ € (tg, Timax), where c4,c5 > 0 are independent of p.
Next, we use (4.26) to perform the classical Moser iteration procedure ([1]) to obtain the
boundedness of u.

Let pr, = 2F, k € Nand M, :=  sup Jo uP*(-,t) < oo for all k € N. Since p, > 1, it is easy
tE(to,Tmax)
to find ¢g > 0 such that

uP +/ uP* +C4/ Vu® §65pk2/ uP +/u”’“ §06pk2/ uPr (4.27)
Q Q Q Q Q Q

for all ¢ € (tg, Tmax) and k € N. By means of the Gagliardo-Nirenberg inequality, we see that

[ = 10 gy <l Va3 e F 15 + crlla [ o for all k€ N,
Q

N
where a = 725 € (0,1) and ¢7 > 0 is independent of k. Young’s inequality and the definition of
2
pr ensure that there are cg > 0 and b > 0 satisfying

1 2
Cﬁpi/ uP* < 04/ Va2 + s (pF) (/ Upk_l) + cocrpy </ Upk_l)
Q Q Q Q

< 04/ V' |2 + b"M2_| for all k € N. (4.28)
Q

2
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Combining (4.27-4.28) we find that

d
- upk_|_/upk SbkM]§,1

for all ¢ € (tg, Timax) and for all k € N. The comparison theorem for the above ODE yields
My, < max{bkM,gfl,/ uP*(-,t0)} for all k € N.
Q

If FMP_ | < [, uP*(-,to) is valid for infinitely many k, (4.24) is already derived. Otherwise, we
can find a constant h > b such that
My, < h*ME_| for all k € N.
Hence a direct induction entails
My, < hZﬁi’S—l?j(k—j)Mgk_
Taking 2*-th root on both sides leads to the assertion. O
Now we are ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. First we see that the boundedness of u and v follow from Lemma 4.4.1,
Lemma 4.3.2 and (4.6). Thereupon the assertion of Theorem 4.1.1 is immediately obtained from
Lemma 4.2.1. O
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5. Sharp decay estimates of bounded
solutions in a bioconvection einviroment

5.1. Introduction

In this chapter, we consider nonnegative solutions of the boundary value problem

uw+U-Vu = Au—xV - (uVv) — pu?, €N, t>0,
nw+U-Vvo = Av—v+u, zeQ, t>0,

V.U = 0 xeQ, t>0, o1
Vu-v=Vv-v=0, U=0, r e i, t>0,

in a bounded domain Q C RY with smooth boundary, where N > 1, where x > 0 and pu
are positive parameters, and where U : Q x (0,00) — R™ is a prescribed solenoidal vector
field. Systems of this type arise in the macroscopic modeling of chemotactic migration under
the influence of a liquid environment by transport through a given fluid, and in presence of
quadratic degradation such as appearing in logistic-type cell kinetics. Here we focus on situations
in which cell proliferation, in logistic models represented by linear production terms, can either
be neglected on the considered time scales, or is absent in principle. A prototypical example for
the latter arises in the context of coral broadcast spawning processes ([20], [48]) during which
eggs release a chemical signal, with concentration denoted by v = v(z,t), that attracts sperms,
where both eggs and sperms jointly consitute a population with density u = u(x,t), and where
the transporting incompressible ocean flow is represented through its velocity field U = U(x, t).

Already in the fluid-free case when U = 0 a variety of previous results indicates quite a substantial
effect of the cross-diffusive mechanism in (5.1), going far beyond well-established knowledge on
the ability of the classical Keller-Segel system obtained on letting 1 = 0, that is, of

{ ug = Au — xV - (uVv), (5.2)

vy = Av — v+ u,

to generate singularities in the sense of finite-time blow-up of some solutions in two- and higher-
dimensional settings ([36], [109]). Indeed, also in situations when p > 0 in

ug = Au — xV - (uVov) — pu?,
{ t ( ) — h (5.3)

vy = Av— v+ u,

and related systems, the destabilizing action of cross-diffusion may still enforce quite a complex
solution behavior in comparison to the respective scalar absorptive parabolic equation, as
indicated by numerical experiments ([71]) and rigorously confirmed by results on spontaneous
emergence of large population densities at intermediate time scales ([116]; cf. also [111] and
[52] for similar findings on associated parabolic-elliptic simplifications). In fact, even the drastic
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phenomenon of finite-time blow-up has been shown to be suppressed by the presence of quadratic
degradation only when either N < 2 ([68], [69]) or N > 3 and p is suitably large ([106]; see also
[96] for a precedent). The question how far such systems at all are globally solvable when N > 3
and g > 0 is small has only been partially been answered so far by a statement on global existence
of weak solutions, possibly unbounded but at least in the case N = 3 eventually bounded
and smooth and asymptotically decay in both components ([53]). Strong cross-diffusive effects
become manifest also in an example of blow-up despite certain subquadratic but yet superlinear
degradation terms in some appropriately high-dimensional chemotaxis systems ([107]).

In light of these premises, for the investigation of common large-scale qualitative features of
solutions to (5.1) in general N-dimensional frameworks it seems adequate to explicitly resort
to situations when solutions are globally regular. Upon a time shift if necessary this will in
fact cover widely arbitrary solutions to (5.3) in all physically relevant cases N < 3, but this will
furthermore also capture more complex frameworks in which the fluid evolution itself is unknown,
affected e.g. by the cell population, and governed by appropriate equations from fluid mechanics
(cf. [4] for corresponding modeling aspects), at least in situations when the respectively obtained
chemotaxis-fluid system is globally solvable by suitably regular functions ([94], [95]). Accordingly,
the purpose of this work consists in describing the large time behavior of arbitrary global bounded
solutions to (5.1) in bounded domains for any N > 1, thus ignoring the question under which
particular assumptions on supposedly prescribed initial data (ug,v9) = (u(-,0),v(-,0)) such
solutions exist. Hence assuming to be given a sufficiently smooth vector field U and a nontrivial
global bounded classical solution (u,v) of (5.1), we will more precisely focus on deriving optimal
estimates for the decay rate of u(-,t) with respect to the norms both in L*(Q) and in L(£2),
bearing in mind the particular biological relevance of the latter as representing the total mass of
the considered population.

Previous work in this direction addresses the Cauchy problem in Q = R? for a simplified
parabolic-ellitpic variant of (5.1) which can be rewritten in form of the scalar nonlocal parabolic
equation

u + U -Vu=Au+xV - (uV(A) " u) — pul (5.4)

with the additional parameter ¢ > 2. For this problem with initial condition u(-,0) = ug €
L'(R?), in the case ¢ > 2 any sufficiently regular nonnegative global solution u is known to satisfy
f]RQ u(+,t) = meo(X, ug, U) as t — oo with some mq, (X, v, U) > 0 fulfilling meo (), uo, U) — 0 as
X — oo ([48]). In the critical case ¢ = 2, an influence of chemotaxis on the evolution of the total
mass functional, which then decays to zero in both cases x > 0 and x = 0, has been shown to
exist but to be of more subtle character, mainly relevant on finite time intervals ([47]).

Main results. It will turn out that in the presently considered framework of bounded domains,
unlike in the latter Cauchy problem the solution behavior in (5.1) is essentially unaffected by
chemotaxis at least on large time scales. Indeed, throughout the sequel assuming for simplicity
that

U e CHO(Q x [0,00); RY) N L®(9 x (0,00); RY)

is such that V-U =0 inx (0,00), and U =0 on 99 x (0,00), (5.5)
we shall see that for any given nontrivial and sufficiently regular bounded solution of (5.1), with
respect to the norms in either X := L}(Q2) or in L®°(Q) the quantity |Ju(-,t)|x can be estimated

from above and below by positive multiples, possibly depending on the solution e.g. through its
norm in L= (9 x (0, 0)), of t% More precisely, our main results read as follows.
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5.2. Upper decay estimates for u and v in L*(Q)

Theorem 5.1.1. Let N > 1 and Q C RY be a bounded domain with smooth boundary, assume
that ;> 0 and that U satisfies (5.5), and suppose that (u,v) € (C°(Q2x]0,00))NC*(Qx (0, )))?
is a classical solution of (5.1) for which both u and v are nonnegative, and which is bounded in
the sense that u belongs to L (2 x (0, 00)).

i) There exists Cy; > 0 with the property that

1 Cy
@”U('at)”Ll(Q) < uC )| L) < 1 for all t > 0. (5.6)

it) If furthermore u # 0, then one can find Cy > 0 such that

lu( Dlle@) = o7 - lul Bl for all't > 0. (5.7)

1 2
> -
19] —t4+1
We remark that we do not pursue here the question how the constants appearing in the above
statements depend on x and p, nor on the function U, thus leaving open whether chemotactic
cross-diffusion possibly influences a fine structure in the large time asymptotics of solutions.
In corresponding chemotaxis-fluid systems in which the fluid evolution itself is affected by the
presence of the other quantities e.g. through buoyant forces, the above results can directly be
applied to solutions which are a priori known to enjoy the above regularity and boundedness
properties; for two- and three-dimensional examples of situations when the latter in fact is
guaranteed for all reasonably regular initial data we refer to [95] and [94]. However, Theorem
5.1.1 is actually more general by considering widely arbitrary fluid fields not necessarily receiving

any feedback from the taxis components.

The main idea underlying our approach is directly motivated by the result to be finally achieved:
The goal pursued in our analysis consists in showing appropriate negligibility of the cross-diffusive
action in (5.1) in comparison to the further mechanisms therein. After establishing a preliminary
but fundamental decay information on solutions in L'(Q) x L'(£2) in Section 5.2, this will be
accomplished in Section 5.3 on the basis of the latter by means of a series of arguments relying on
the smoothing action of the heat semigroup in the second equation in (5.1). A first exploitation
of the outcome thereby achieved will yield the estimate from Theorem 5.1.1 i) in Section 5.4,
whereafter a second application thereof will show in Section 5.5 that also in the inequality

d 2
L mu> X |VU|2—,u/u, t>0,
dt Jo 4 Jo Q

constituting the key step in or proof of Theorem 5.1.1 ii), the summand originating from the
taxis term in (5.1) decays suitably fast so as to become asymptotically irrelevant.

5.2. Upper decay estimates for u and v in L'(Q)

The following basic one-sided decay estimates for the spatial L' norms of both solution
components can be gained in quite an elementary way, and similar observations have previously
been made in [94, Lemma 5.1] already. Since they will be fundamental to our subsequent analysis,
and since in particular they already underline the difference between the case of bounded €2 and
the case Q = RY in a quantitative manner, we include a short proof here.

Lemma 5.2.1. Let (u,v) be a nonnegative global classical solution of (5.1). Then

(9] 1
u(,t) < — - —— forallt >0 5.8
/Q( ) oottty (5:8)
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5. Sharp decay estimates of bounded solutions in a bioconvection einviroment

and ®
L)< .
/QU(’t)_t—i—Q for allt >0, (5.9)
where Q)
= 5.10
and 0l0)
K= max{Q/ v(~,0),4/ u(-,0), |} (5.11)
Q Q K

Proof. We only need to consider the case when u(-,0) # 0, in which according to (5.1) and the
Cauchy-Schwarz inequality,

d 2 K / 2
= = < - for all t > 0
AR WO

which on integration readily implies (5.8) with v as in (5.10).
Since from (5.1) we moreover see that

d
— UZ—/U+/U for all t > 0,
dt Jo Q Q

d / €2
— [ v— [ v+ —— for all ¢ > 0. (5.12)
dt Jo o  ut+7)

Now with K as given by (5.11), 7(t) := H%’ t > 0, satisfies 7(0) = & > [, v(,0) by (5.11) and
therefore

we therefore obtain that

L
u(t +7) (t+2)? t+2 p(t+7)
_ K 1 9] 42
O t+2 t+2 Kup t+nv
K 1 1Q 2
S S P O R )
t+2 2 Kup y
K 1 210
= 1= 4 .0), 222
2 +2) { e {1 f w0 % }}
> 0 forallt >0

due to (5.10) and the second and third restrictions contained in (5.11). By an ODE comparison,
we thus conclude from (5.12) that [, v(-,t) < g(t) for all ¢ > 0, and that hence indeed (5.9)
holds. O

5.3. Boundedness and decay properties of Vv

A crucial step toward both parts of Theorem 5.1.1 will consist in adequately identifying the
cross-diffusive term in (5.1) as asymptotically negligible relative to the diffusive action therein,
which basically amounts to deriving appropriate quantitative bounds for the chemotactic gradient
Vu. This will be achieved in this section by firstly making use of the L' decay poperty of u
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5.3. Boundedness and decay properties of Vv

from Lemma 5.2.1 in order to obtain decay of Vv at an apparently optimal rate but in a yet
unfavorable topology, and by secondly investing our assumption on boundedness of u to establish
boundedness of v in certain higher norms but without any decay information. Interpolating
these two extremal results will finally yield a decay result for Vv in arbitrary L spaces at a rate
which is probably far from optimal but sufficient for our purposes.

For what follows, let us recall that for p € (1,00), the realization A = A, of —A + 1 under
homogeneous Neumann boundary conditions, that is, the operator defined by letting A,p :=
—Ap +p for ¢ € D(Ap) = {p € W2P(Q) |[Vp-v =0 on 99}, is sectorial in the space LP(2),
with its spectrum contained in the half-line [1,00). Accordingly, A possesses closed and densely
defined fractional powers A® for all 3 € R, and A® is bounded whenever 3 < 0 ([35, Theorem
1.4.2)).

Now the space L(§2) is continuously embedded into suitable among the correspondingly obtained
spaces D(A™), an explicit definition of which is actually not necessary and thus omitted here,
keeping the focus rather on an associated embedding inequality:

Lemma 5.3.1. Letp > 1 and g > %p_l). Then there exists C > 0 such that

1A llo) < Cllellpi)  for all o € LH(9). (5.13)

Proof. Since § > N(é’;l) implies that p’ = p’%l satisfies 23 — g > 0, it follows from known

embedding results ([35, Theorem 1.6.1]) that D(Af,) — L*°(), whence there exists ¢; > 0 such
that

(8l < 1l Al ) for all ¢ € D(4y). (5.14)
Thus, given any ¢ € C5°(Q2) and ¢ € C5°(£), using the self-adjointness of A=# in L2(Q) we can

estimate

\ [ A%w] — \ / wAﬁw' < el lA bl e @) < erllelore 1l -

Therefore,
140l = s | [ 470 v] <aldlo,
D1 7 gy <1
as claimed. O

By appropriately making use of the latter in the course of an argument based on a variation-of-
constants representation of v, we see that with respect to the norm in LP(2) for suitably small
p > 1, Vv inherits the decay rate of the mass functional fQ u from Lemma 5.2.1.

Lemma 5.3.2. Let (u,v) be a nonnegative global classical solution of (5.1). Then for all p €
(1, i) one can find C(p) > 0 such that

C
Vo, t)|| ey < # for allt > 2. (5.15)

Proof. Since % — % > pas a N\ %, it is possible to fix o € (%,1) such that p <

m, which means that

a—&-E(l—l) <1 (5.16)
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5. Sharp decay estimates of bounded solutions in a bioconvection einviroment

1
We thereupon choose an arbitrary € € (0, — %) and pick 5 > N(gzjl), so that since D(A2 +6) —

WhP(Q) ([35, Theorem 1.6.1]), employing a well-known interpolation argument ([28, Theorem
14.1]) we can find ¢; > 0 and ¢z > 0 such that

1 € (03 a — —a
IVo( ) ey < eallAZH ()l ri) < 2| A%0(, D)l1F0 @ [A™ 0 D)0 (5.17)
for all ¢ > 0, where
1
5+et+p
a:=2——-"¢(0,1).
a+p (0.1)
Here the fact that 5 > %p_l) enables us to invoke Lemma 5.3.1 and thereafter apply Lemma
5.2.1 to find ¢3 > 0 and ¢4 > 0 such that
_ csc
IA=Pu(, )| ey < esllv( )iy < 374 for all ¢ > 0. (5.18)

Now in order to derive (5.15), by means of a variation-of-constants representation of v we write
t t
v(-,t) = e_Av(~,t -1) +/ e_(t_S)Au(-, s)ds — / e_(t_s)AU(-, s) - Vu(-, s)ds, t>1,
t—1 t—1

and apply A% to both sides to see that

[A%0 () 1) < HA%_AU("t — 1)(

Lr(Q)
t

+/ HAae_(t_s)Au(~7s)‘
t—1

o[ et ot
t—1

LP(Q)

ds for all t > 1. (5.19)
Lr(Q)

Here according to known smoothing properties of (e~74),>¢ and Lemma 5.2.1, there exist c5 > 0
and cg > 0 fulfilling

HAae—Av(.,t - 1)H < eslolt—1) o < % for all £ > 2, (5.20)

Lr(Q)

and making use of Lemma 5.2.1 and (5.16), once more by a standard semigroup estimate we can
find ¢7 > 0 and cg > 0 such that

t t
/ Hzﬁl‘l.e_(t_s)Au(7 s)‘ ds < 07/ (t—s)" 2073 ||u(-, s)|L1()ds
t—1 Lr(Q) t—1
¢ Ly 1
t—1 5
Sy - s s
e for all ¢ > 2. (5.21)

l—a-H(1-3) t-1
To finally treat the last summand in (5.19) appropriately, let us introduce the numbers

M(T) = swp {t A%, Ol f T >2,
te(1,T)
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5.3. Boundedness and decay properties of Vv

which are all finite due to our overall assumption that v € C*1(Q x (0,00)). In terms of M(T),
by boundedness of U, (5.17) and (5.18), with some ¢ > 0, ¢19 > 0 and ¢;; > 0 the integral in
question can be estimated according to

t

ds < 09/ (t—s)™@
Lr(Q) t—1

t
< e10 / (t — ) V(- )| oy ds
t

—1

§02010/tt1(t5)0‘~{]\4£T)}a~{(:3:l}1ad3

¢
1
< cha(T)/ (t—s) < gds
¢

ds

t
A% =AU (L s) - V(- s ‘
/ H () - Vol ) e

U(-s)- Vv(-,s))

t—1
C11 1

~1
1 t
< MYT) —— / (t—s)"%“ds
t—1

Combined with (5.19)-(5.21), in view of the fact that ;25 < 2 for all ¢ > 2 this shows that there
exists ¢1o > 0 such that for each T > 2,

t- ||AaU<',t)||Lp(Q) <ci2+ ClgMa(T) for all t € [2,T],

and that hence with the number

c13 ‘= max {012, sup {t~ ||AaU('7t)||Lp(Q)}},

te(1,2)
finite again by the inclusion v € C%1(Q x (0,00)) and the fact that o < 1, we have
M(T) < e13 + c13M(T) for all T > 2.

As a < 1, by an elementary argument this implies that
M(T) < ¢14 := max {1, (2013)12} forall T > 2

and thereby proves (5.15), because e.g. once more by (5.17) and (5.18) this yields the inequality

a 1—a
V(- )| oo SQ.{C?} {@,;4}

for arbitrary ¢ > 1. O

We next modify the above argument but make use of different ingredients, in particular of the
boundedness of u, to derive the following higher-order boundedness property of v.

Lemma 5.3.3. Let (u,v) be a nonnegative global classical solution of (5.1) with the property
that u is bounded in 2 x (0,00). Then for all p > 1 and each o € (3,1) there exists C(p, ) > 0
such that

| A% (-, t)|| Lr () < C(p, @) for allt > 1. (5.22)
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5. Sharp decay estimates of bounded solutions in a bioconvection einviroment

Proof. Following a variant of the strategy pursued in Lemma 5.3.2, we let

M(T) := sup [[A%(,t)||Le(0), T>2,
te(1,T)

and note that since o < 1, the inclusion v € C%1(Q x (0,00)) again warrants that M (T) < oo
for all T > 2.

To prepare an adequate estimation of M (T') on the basis of variation-of-constants representation
associated with the second equation in (5.1), we once more invoke standard smoothing estimates
for (e_TA)TZO to find ¢; > 0 and ¢y > 0 such that

HAO‘e_Av(~,t— 1)‘

o) <cillv(,t =1 < e for all t > 1, (5.23)

for Lemma 5.2.1 in particular warrants that (v(-,%)):>o is bounded in L'(Q). Next, as u is
assumed to be bounded in Q x (0, 00), there exist ¢3 > 0 and ¢4 > 0 such that

t
/ HAozef(tfs)Au(_’S)‘
t—1

t
ds<es [ (69 ul,9)rioyds
t—1

Lr(Q)

t
< 6304/ (t —s)"“ds
t—1

. 1‘33_‘3‘; for all t > 1, (5.24)

because o < 1. Moreover, once more fixing any € € (0,0 — 1) and 8 > %}:1) we may apply
known embedding and interpolation estimates along with Lemma 5.3.1 to gain positive constants

cs, Cg, C7, g and cg such that with a := 2+E+5 € (0,1) we have

t
/ | A%~ =AU - Vo, 5)|| Loy ds < s $)" U 8) |z @I Vo, D) e ()ds
t—1

5) Vo (-, 1) r()ds
S Oé”AﬁJ'_€ ( S)HLP(Q)dS

s) a||AaU('73)||%p(9)||A_5U('7S)H};;?Q)ds

[
o f o
o f o
o f

ch/t 1(t—s) CMT)|v(-, s )HlleIQ ds

t
< clOMa(T)/ (t—s)"“ds
t—1

< %MG(T) for all ¢ € [1,7], (5.25)

again due to the fact that v belongs to L>((0,00); L}(Q)) by Lemma 5.2.1.

Now using (5.23)-(5.25), we can estimate

| A% (- HAQ v(-t— 1)‘
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5.3. Boundedness and decay properties of Vv

t
+ / HAO‘ef(tfs)Au(-, s)’
t—1

. /t HA%*(FS)AU(" 3) . Vv(~, 5)’
-1

t

C3C4q €10 a
S mM (T)  forallte[2,T),

S
L ()

ds
Lr(Q)

<co+

so that with the evidently finite constant

BH A sup A% )| ey

C11 := max {62 + s }
l-—a 1-a a9

we have
M(T) < e11 + 11 M(T) forall T > 1

and therefore
M(T) gmax{L (2c11)11a} forall T > 1,

which proves the lemma. O

A straightforward interpolation shows that the above two lemmata imply decay of Vv in Lebesgue
spaces with high summability powers, but at rates slower than that in Lemma 5.3.2. The following
statement on this will be applied to some large value of p and k := 0 in proving the upper estimate
claimed in Theorem 5.1.1 i), and to p := 2 with some x > % in Corollary 5.5.1 preparing the
proof of the lower bound for fQ w in Theorem 5.1.1 ii).

Lemma 5.3.4. Let (u,v) be a nonnegative global classical solution of (5.1) such that u is bounded,

and let p > 1. Then for all Kk < min{1, ﬁ} there exists C(p, k) > 0 such that

V0 ()l ooy < % for all t > 2. (5.26)

Proof. If p < %, the claim immediately results from Lemma 5.3.2. In the case p > %,
our assumption ensures that k < ﬁ, so that we can fix r € [1, %) such that still £ < 27
whence writing
1—&)pr
YD
r—pK
we can easily verify that ¢ > p > r, and that
1_1
r_p
— 1 = 1— k.
r g
Therefore, the Holder inequality says that
IVo( )l Lr@) < IVOC D (o Vo Oy forallt >0, (5.27)

where picking any o € (3, 1) we infer from the continuity of the embedding D(AY) < W14(Q)
([35]) and from Lemma 5.3.3 that

IVo(-, )llLa) < cill A% ()|l Laq) < co forall t > 2

49



5. Sharp decay estimates of bounded solutions in a bioconvection einviroment

with some ¢; > 0 and co > 0. As moreover the inequality r < % along with Lemma 5.3.2
yields ¢z > 0 fulfilling

V0 (-, 8)| iy < %3 for all ¢ > 2,
from (5.27) we readily derive (5.26). O

5.4. Upper bound for u in L>*(Q2). Proof of Theorem 5.1.1 i)

On the basis of a Duhamel formula now associated with the first equation in (5.1), knowing that
cross-diffusive gradient Vo is bounded in L ((0,00); L?(Q2)) for any finite p > 1 we can then
turn the L' decay information on u from Lemma 5.2.1 into a corresponding estimate in L>°(£2).

Prooof Theorem 5.1.1 i). We fix an arbitrary p > N and recall that then by standard
regularization properties of the Neumann heat semigroup (e™2),>q on € ([105]) one can pick
¢1 > 0 and ¢y > 0 such that for all 7 € (0,1) we have

le™® @l o) < e~ % @l forall p € LY(SQ) (5.28)
and

€72V - || oo () < CoT 2% llell e o) for all ¢ € C*(£;R™) such that ¢ - v = 0 on 9.
(5.29)
Now in order to estimate the numbers

M(T)i= swp {(t+ 1) [ul D=} T>2,
te(0,T)

we use that V- U = 0 in representing u(-,t) according to

u(-t) = eu(,t —1) — X/t et=9)Ay. (u(, s)Vo(-, s))ds

t—1
¢ ¢
— ,u/ et=)2y2(. 5)ds — / et=9)Ay. (U(', s)u(-, s))ds for all ¢ > 1.
t—1 t—1

Since e(*=*)24;%(, 5) is nonnegative in Q for all t > 0 and s € (0, ) due to the maximum principle,
by nonnegativity of u we therefore see that

[u(-, )| Loe ey < lleful,t = 1)L
+ X/til He(t_s)AV . (u(, $)Vo(-, s))

t
+ /t_l He(t_s)AV- (U(-,s)u(-,s))

where combining (5.28) with Lemma 5.2.1 we can find ¢z > 0 such that

[,

H ds forall t > 1, (5.30)
Lo ()

leAu(-,t — Dllze) < allut =1l < for all ¢ > 2. (5.31)

To relate the two rightmost integrals in (5.30) to M (T), we first invoke (5.29) to obtain
t

g
-1
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5.4. Upper bound for u in L*°(Y). Proof of Theorem 5.1.1 i)

for all £ > 1 and then twice use the Holder inequality to infer that again due to Lemma 5.2.1,
and as a consequence of the boundedness of Vv in © x (1,2) and Lemma 5.3.4 when applied to
Kk := 0, with some ¢4 >0 and ¢5s >0 and a :=1 — % we have

[ul- ) Vol s)llr@) < ul )l @ Vo 8)ll L2

< s ) 150 o 1, )73y VU (-, 8) |22

a 1—a
< M(T) ) Cq .
“ls+1 s+1
1
=cy “esM(T) - e for all s € (1,7)

and hence

X/tt1 HG(FS)AV' (U(~,s)vv(.75)> HLOO(Q)dS

t
< cack s M*(T) / (t—s) 5.
t—1

1 t
<o e (D) 5 [ s Fas
t7

t
l1—a
cac; CsX 1
:ﬁM“(T)-; for all t € [2,T), (5.32)
2 2p

because p > N.
Likewise, combining (5.29) with the boundedness of U we obtain ¢g > 0 such that

t

t
/t_1 He(t—s)Av. (U(-,S)u(~,8)) HL&(Q)ds < CQ/t (t— 5)7%*%||U(~,S)u(-,s)||,;p(g)ds

-1

t
gcﬁ/ (t— ) Ful9)llods,  (5.33)
t

-1

for all ¢ > 1, where again by the Holder inequality and Lemma 5.2.1, there exists ¢; > 0 such
that

-, )l ) < lut, )70 o Il ),

) )

S
= cl=tMP(T) - sj—l for all s € (1,7)
with b:= 1 — 5. Therefore, (5.33) implies that
/t Hemsmv. (U(-,s)u(.vs)> H ds < et MO(T) /t s L,
t—1 L (9) - por)
<k a1 [ a9t s
- gGi%é\l: M*(T) - % for all t € [2,T],
P
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so that summarizing (5.30), (5.31) and (5.32) and using Young’s inequality yields cg > 0 and
cg > 0 such that

tful, )| L) < s+ csM*(T) + csM(T)
<cg+coM*(T)  forallte[2,T],

because b < a. Since u is bounded in © x (0, 2), this entails that for some c;o > 0 we have
M(T) < ¢19 + c1o0M(T) forall T > 2

and thus
M(T) < max {1, (2010)11“} for all T > 2,

which readily yields (5.6), for T' > 2 was arbitrary. O

5.5. Lower bound for v in L'(2). Proof of Theorem 5.1.1 ii)

In deriving the lower bound for [, u claimed in Theorem 5.1.1 ii), we will make essential use
of the following consequence of Lemma 5.3.4 which strongly relies on the fact that the decay
exponent x appearing therein can be chosen favorably large at least in the particular case p := 2.

Corollary 5.5.1. There exist A > 1 and C > 0 such that

C
/ |Vo(-,1)]? < = for all t > 2. (5.34)
Q
Proof. This immediately results from an application of Lemma 5.3.4 to any x > % fulfilling
Kk < min{1, 2(1\1,\11)}. O

Now the fact that the function on the right of (5.34) is integrable over ¢ € (2, 00) enables us to
make sure that the taxis term in (5.1) becomes asymptotically negligible in the framework of the
following testing procedure.

Lemma 5.5.2. There exists C > 0 such that
/ Inu(-,t) > —|QIn(t +v) - C for allt > 2, (5.35)
Q

where v > 0 is the constant defined in (5.10).

Proof. As u is positive in  x (0, 00) according to the strong maximum principle, we may test
the first equation in (5.1) against L so as to see that

i/l _/l
dt Qnu- Quut
1 1
:/fAu—X/fV-(qu)—u/u
Qu Qu Q

2
:/leuz _X/Q%.Vv_u/ﬂu for all ¢ > 0, (5.36)
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5.5. Lower bound for u in L*(2). Proof of Theorem 5.1.1 ii)

where by Young’s inequality,

2 2
—x/ V“-Wz—/ [Vl _&/ IVol?2  forall t > 0. (5.37)
Q U o u? 4 Jo

Now from Lemma 5.2.1 we know that

Q
u/ugi for all £ > 0,
o +v
whereas Corollary 5.5.1 provides A > 1 and ¢; > 0 satisfying
X 2_ 0
Z/Q|Vv| Stj‘ for all t > 2.
From (5.36) and (5.37) we therefore obtain the inequality
d Q
f/muzflf‘i for all ¢ > 2,
dt Jq t+y

which on direct integration shows that

t t
d d
/ Inw(-,t) — / Inwu(-,2) > —|Q| 5 ¢ —f
Q Q 2 S+ 2 8
= —|QIn(t +7) + Q@+ 7) — ot
7 TToE—1) T (- -t
1

As [, Inu(-,2) is finite by strict positivity of u(-,2) throughout €, this establishes (5.35). O

Thanks to the precise information on the multiple of In(¢+ ) appearing in (5.35), upon a simple
application of Jensen’s inequality we can turn this into a lower estimate for fQ u involving exactly
the desired decay rate.

Lemma 5.5.3. There exists C > 0 such that

/ (> foralt>0 (5.38)

u(- — or a . .
o T t+1
Proof. From Lemma 5.5.2 we know that with v > 0 taken from (5.10), for some ¢; > 0 we have
/lnuZ—|Q\ln(t+'y)—cl for all t > 2.
Q

Since by Jensen’s inequality we can estimate

/anu:my{é'/glnu}qg.1n{é|/gu}:Q|.1n{/ﬂu}—9|1n|9

for all ¢ > 0, this implies that

/ w> ‘Q| . eﬁ JoInu
Q
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-{fmlln(m)fcl}

o

Z |Q| ~6H|
= Qe T - b
4+
_ 1 . 1 1
> Qe T -mln{al} — for all t > 2.
v t+1

Therefore, the proof is completed upon the observation that min,c g {(t +1) fQ u(, t)} must
be positive by continuity of u and the fact that u # 0. O

We can thereby complete the proof of our main results.

Proof of Theorem 5.1.1 ii). For appropriately small C' > 0, the second inequality in (5.7) is
precisely asserted by Lemma 5.5.3, whereas the first is obvious. O
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6. A 3D Chemotaxis-Navier-Stokes Model

6.1. Introduction

Even simple life-forms, like certain species of bacteria, can exhibit a complex collective behavior.
One particular biological mechanism responsible for some instances of such demeanour is that of
chemotaxis, where the bacteria adapt their movement according to the concentration gradient of
a particular chemical in their neighborhood. If this process takes place in a liquid environment, it
is not unreasonable to take into account interactions with the surrounding fluid as well. Indeed,
as description for colonies of bacillus subtilis, chemotactic bacteria that are known to display
organized swimming and bioconvection patterns in a fluid habitat [38, 61, 77, 23], the following
model has been suggested in [99]:

uy = Au— V- (x(v)uVv) = U - Vu,
vy = Av —uk(v) — U - Vo,

U =AU - (U-V)U+ VP +uVo,
V-U=0,

(6.1)

where a prototypical choice for the functions x and k is x(v) = const = x and k(v) = v. Herein,
u denotes the unknown population density of bacteria that move in part randomly and in part
as directed by chemotactic effects, and are transported by the surrounding fluid; v denotes the
concentration of oxygen, which again diffuses and is transported by the fluid, but at the same
time is consumed by the bacteria. The evolution of the velocity field U of the fluid, finally, is
governed by the incompressible Navier-Stokes equations, where the bacteria exert influence by
means of bouyant forces due to different densities of water with a high concentration of cells
versus low concentration. Using the Boussinesq approximation, this effect is incorporated into
the model via the gravitational potential V®, ® € C'*+9(Q) for some § € (0,1) being a given
function. The usual boundary conditions posed along with initial conditions to complement (6.1)
are
Vu-v=Vv-v=0, U=0 on 0f).

Let us remark that in this model the chemoattractant (oxygen) is consumed and not supplied by
the bacteria, which is in contrast to the celebrated Keller-Segel system of chemotaxis [45] and
its variants constituting the center of extensive mathematical investigations since the 1970s, see
e.g. the surveys [37, 39, 4] and references therein.

Since its introduction and first analytical results (asserting the local existence of weak solutions in
[59]), also the chemotaxis-fluid system has inspired several works addressing mainly the question
of existence of classical or weak solutions (the works mentioned below) and long-term behaviour
of solutions (|21, 16, 82, 112, 44, 124]).

Due to the difficulties associated with the Navier-Stokes equations in three-dimensional domains,
many of these works focus on the two-dimensional case ([112, 108, 89, 126, 124]) or more favorable
variants of the model, for example by resorting to the Stokes equation upon neglection of the
nonlinear convective term ([108, 25]) or by considering nonlinear instead of linear diffusion of the
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6. A 3D Chemotaxis-Navier-Stokes Model

bacteria ([58, 21, 89, 90, 25, 19, 100]) and consider the three-dimensional case under smallness
conditions on the initial data ([24, 82, 123, 15]). Also in [49], where existence and uniqueness
of mild solutions to a model including (6.1) as a submodel in addition to Keller-Segel-type
chemotaxis, are proven for the full space in arbitrary dimensions, a smallness assumption (in this
case, in the scaling invariant space) is required.

Only recently, the existence of global weak solutions to the system (6.1) with large initial data
has been demonstrated for bounded three-dimensional domains in [117], see also [125] for even
milder diffusion effects, followed by studies of the long-term behaviour of any such “eventual
energy solution” [118], which, namely, become smooth on some interval [T, 00) and uniformly
converge in the large-time-limit.

With this model one further peculiar effect is still unaccounted for that can be observed in
colonies of Proteus mirabilis. Colonies of these bacteria form spiralling streams that always wind
counterclockwise [120]. A reason underlying this behaviour is that the swimming of the bacteria,
like that of the similar species E. coli, is biased, when they are close to a surface (cf. [54, 22]).
This can be reflected in chemotaxis equations by allowing for a more general, tensor-valued and
spatially inhomogeneous chemotactic sensitivity, so that the model reads

ur = Au—V - (uS(z,u,v) - Vo) =U -Vu, (z,t)€Qx(0,T),
ve=Av—uv —U - Vo, (z,t) € 2 x(0,T),
U =AU — (U-V)U + VP +uV®, (2,t) € Q x (0,T), (6.2)
vV-U=0, (x,t) € Q x (0,T),

where the sensitivity S(z, u,v) = (s;j)Nxn Is a matrix-valued function. Indeed, when in [121] a
macroscale model for chemotaxis is derived from a velocity jump process rooted in a cell based
model incorporating a minimal description of signal transduction in single cells and accounting
for this swimming bias, in the chemotaxis term a contribution perpendicular to the concentration
gradient appears ([121, (5.26)]). (For tensor-valued sensitivities arising in chemotaxis equations
see also [70, sec. 4.2.1] or [119, eq.(3.3)].)

Mathematically, the introduction of these general sensitivities has the disadvantage that it
destroys the natural energy structure coming with (6.1). In point of fact, many results concerning
global existence of solutions to (6.1) rely on the use of an energy inequality featuring an upper
estimate of

d {/ 1/ x(v) 2} [Vul® 1/ k() | e 2
— ulogu + - Vol | + + - |D*p(v)] (6.3)
dt |Jo 2 Ja k(”)' | o u 4 Ja x(v)

or very similar quantities, where p denotes a primitive of £, see [108, Formula (3.11)], [112,

(2.15)], [24, (3.11)] or [118, (1.11)] or [15, (3.8)]. For the derivation of appropriate estimates,
more precisely for certain cancellations of contributions of the first and the second term in the
brackets to occur, it seems to be essential that the functions k and y satisfy conditions like those
given in [112, (1.8)-(1.10)], [108, (1.7)-(1.9)], [24, (A)(iii)], [118, (1.7)] or even [15, (AA), (B)].
There is next to no hope of transferring such delicate cancellations to the case of functions y
that are no longer scalar-valued.

Nevertheless, for some instances of such a system including a rotational sensitivity, the existence
of solutions could be shown: The fluid-free system, obtained from (6.2) upon setting U = 0,
possesses global classical solutions for even more general equations modeling the consumption of
oxygen if posed in two-dimensional domains and under a smallness condition on initial data vy.
In this case, furthermore, these solutions converge to spatially homogeneous equilibria as t — oo
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([55]). Also in the case of degenerate diffusion the existence of global bounded weak solutions
was obtained for the two-dimensional fluid-free case in [12]. For large initial data and higher
spatial dimensions, generalized solutions have been shown to exist in [115].

In the presence of a Stokes-governed fluid in two-dimensional domains, global generalized
solutions that become smooth eventually and stabilize were constructed in [113]. The existence
of global weak solutions with bounded u-component for the full model including Navier-Stokes
equations for the fluid in two-dimensional domains is asserted in [42] under the assumption of
porous-medium-type diffusion with exponent m > 1 for the bacteria.

In three dimensions, the existence of a global classical solution to the model with a Stokes-
governed fluid was proven in [101] under the hypothesis that |S| < C(1+u)~%, with some C' > 0
and o > % A similar decay assumption on S, here with a > 0, made it possible to obtain global
existence and boundedness of classical solutions for the same model with the second equation
replaced by vy = Av —u+ v — U - Vv in two-dimensional domains [102].

In [17], the chemotactic sensitivity and the diffusion coefficient for the bacterial motion, both
being u- and x-dependent, were even assumed to vanish for N = 1. By a semi-discretization
procedure, the existence of weak solutions was established for bounded domains of dimension up
to four and in the presence of either Navier-Stokes- or Stokes-fluid.

An alternative assumption prompting the existence of weak solutions in the 3D-Stokes-setting
is that of nonlinear diffusion of bacteria, that is, with Au replaced by V - (¢"~'Vu), with an
exponent m > %, [114]. Also the long-term behaviour of solutions is examined there: they
converge to the semi-trivial steady state.

In the present article we consider (6.2) without decay assumptions on S and with Navier-Stokes
fluid in three-dimensional domains. The boundary conditions posed will be

Vo-v=(Vu—uS(z,u,v) - Vv)-v=0, U=0, (z,t) € 90 x (0, 00), (6.4)

where v denotes the outer unit normal. We concentrate on classical solutions and therefore pose
a smallness condition on the initial data. We then obtain global existence of classical solutions
and exponential convergence to a constant steady state. Unlike the study of mild solutions to
a Keller-Segel-Navier-Stokes system in [49], we are concerned with bounded domains and admit
non-scalar sensitivities.

The consideration of convergence rates seems to be new in the context of tensor valued (and
space-dependent) sensitivities, although convergence rates for solutions of the chemotaxis-fluid
model (6.1) in the full space have been reported in [24] and [82] and in [123] and also, for
Stokes fluid, in [16]. The only corresponding result for bounded domains, and thus the only one
giving exponential decay, is the recent work [124], where two-dimensional bounded domains are
considered. In the derivation of decay estimates in [124], it was possible to rely on the already
established existence ([108]) and convergence ([112]) of solutions. Contrasting this, in the present
work we additionally have to ensure global existence of the solutions we are working with and
will do so by using a continuation argument that has been used in a similar fluid-free context
in [105]. Moreover, our proof will entail an improvement of the convergence rate of the fluid
component if compared to [124].

For these tools and the local existence result to be employable, we will first have to restrict
our course of action to the case of S vanishing on the boundary. Only in a later step will we
approximate fully general sensitivity functions. With regards to this step, we will give more
detailed proofs, which have not been contained in any previous works concerned with rotational
sensitivities. We will focus on the three-dimensional case. However, since it is possible without
further labour, we will perform all calculations and state all results for N € {2,3}. The only
assumption we place on the domain @ C R¥ is that it be bounded with smooth boundary.
Results concerning bounded domains often include a convexity assumption (see e.g. [108]),

57



6. A 3D Chemotaxis-Navier-Stokes Model

which is used to cope with boundary terms stemming from integration by parts when dealing
with an energy functional. By arguments relying on estimates from [43] or [62], it has become
possible to remove this assumption (cf. [44] or also [102, 101, 42]). Since our approach does not
involve such functionals, these terms will not arise in the first place.

In order to formulate our main result, let us briefly introduce the remaining necessary part of
the technical framework: On the sensitivity function S we will impose the conditions

S e C?(Qx[0,00) x [0,00), RY*N) and  [S(z,u,v)| < Cs (6.5)

for any (z,u,v) € Q x [0,00) x [0,00), where Cls is a given positive constant. The initial data
are assumed to satisfy o B

Up € OO(Q), ug > 0 on Q,

vg € WH(Q), vy >0 on Q, (6.6)

Uy € D(Aﬂ),
for some 3 € (4,1) and gy > N, where A denotes the (L%-realization of the) Stokes operator
under Dirichlet boundary conditions in ).

Here and in the following, we will denote the first eigenvalue of A by |, and by Ay the first
nonzero eigenvalue of —A on Q under Neumann boundary conditions. (For more details on
notation and the precise choice of gy and 8 we refer to Sections 6.2 and 6.3 as well as Theorem
6.1.1.)
For T € (0,00] and initial data with the smoothness indicated in (6.6), a classical solution of
(6.2), (6.4) on [0, T) is a quadruple of functions (u, v, U, P) satisfying (6.2) and (6.4) in a pointwise
sense as well as u(-,0) = wug, v(-,0) = vy, U(+,0) = Up and exhibiting the following regularity
properties:

uwe CO(Qx[0,T)NC* (Qx(0,T)),

v e CO(Qx[0,T)) NL>®((0,T); Whe(Q)) N C>! (Q x (0,T)),

UeC®(Qx[0,T))NL>((0,T); D(AP)) nC** (Q x (0,T)),

PeCH (2 x(0,7))
It is called global solution if T = co. The main result will be the following:

Theorem 6.1.1. Let N € {2,3}, po € (%,oo), go € (N,00) and B € (%,1). Letm >0,Cgs >0
and ® € C*°(Q) with some § > 0. Then for any oy € (0, min{m, \1}) and az € (0, min{ay, \}})
there are e > 0, C' > 0 such that for any initial data (ug,vo, Up) fulfilling (6.6) and

1 p—
Ty = @/ ug=m, |uo —Tollrro) <€ |vollL=@) <€ |Uollr) <e (6.8)
Q

and any function S satisfying (6.5), system (6.2) with boundary condition (6.4) and initial data
(uo,vo,Up) has a global classical solution, which moreover satisfies

lu(t) = Tollze(@) < Ce™, (s H)llwra @) < Cem ™ UG H)|[poe(e) < Cem !
for any t > 0.
Condition (6.8) in Theorem 6.1.1 could be replaced by

_ 1
Uy = @/ up =m, luollzro) <€, [[Vooly) <6 Uolly) <e (6.9)
Q
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without affecting the validity of the Theorem, thus exchanging conditions asking for the smallness
of oxygen concentration and some kind of uniformity in the distribution of bacteria by conditions
that indicate smallness of the bacterial concentration and a somewhat homogeneous dispersion
of oxygen. Let us state this alternative variant:

Theorem 6.1.2. Let N € {2,3}, py € (5, N), g0 € (N, (p%f%)’l), and B € (4,1). Let M > 0,
Cs > 0 and ® € C**°(Q) with some 6 > 0. Then there exist ¢ > 0 and mo < e|Q|7% such
that for any m > mg, any oy € (0, min{m, \1}) and az € (0,min{ay, A} }) there is C > 0 such
that for any initial data (uo,vo,Uo) fulfilling (6.6), (6.9) and |[vo||r=) = M and any function
S satisfying (6.5), system (6.2) with boundary condition (6.4) and initial data (ug,vo, Uy) has a
global classical solution, which moreover satisfies

[u(-,t) = TollLe() < Ce™,  [o(, ) wra (@) < Ce™™ [JU(,t)|[p= () < Cem
for any t > 0.

1
Remark 6.1.3. The condition mo < €|2| " Po ensures the existence of initial data to which the

theorem is applicable. For m > e|Q\7% the conditions in (6.9) cannot be satisfied simultaneously.

We will not give a separate proof for Theorem 6.1.2 in detail, since it is very similar to that of
Theorem 6.1.1. In Remark 6.4.11 at the end of Section 6.4 we will indicate the necessary changes
in the proof; an appropriately adapted version of Lemma 6.3.1 will be given in the Appendix.
In order to derive these theorems, we will begin in Section 6.2 by recalling or providing a local
existence result and some useful estimates. In Section 6.3, we will then ensure the applicability of
these estimates and fix constants and parameters that will make it possible to prove Proposition
6.4.1, which is Theorem 6.1.1 for S = 0 on the boundary. The basic approach employed in
Section 6.4 partially parallels that from [29] and is moreover closely related to that of [105].
In Section 6.5 we ensure sufficient boundedness in appropriate spaces to pass to the limit in
an approximation procedure for more general sensitivity functions so that the last part of that
section, finally, can be devoted to the proof of Theorem 6.1.1.

6.2. Preliminaries

The purpose of this section is to provide the ground for estimates needed in the global existence
proof. Due to the central importance of semigroups in this undertaking, we next recall LP-L4
estimates for the Neumann heat semigroup as given in [105, Lemma 1.3]. In fact, we include a
small improvement on the statements in part (iii) and (iv). Here and in the following, by A; we
will denote the first nonzero eigenvalue of —A on €2 under Neumann boundary conditions and
by (e'®);~0 we will denote the Neumann heat semigroup in the domain .

Lemma 6.2.1. There exist ki, ko, ks, ks > 0 which only depend on €2 and which have the
following properties:
(i) If 1 < q < p < oo, then

et wl| 1o () < k1 (1 + t—%%—%)) e MY wl| pagoy for allt >0 (6.10)
holds for all w € LI(Q) with [,w = 0.
(i) If 1 < ¢ < p < o0, then
Ve wl|Lr(a) < ko (1 + tféfg(%*%)) e M| w| a(ey for allt >0 (6.11)
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holds for each w € L1(Q).
(it3) If 2 < ¢ < p < o0, then

N (1 1
2

Ve wl| o) < ks (1 +t‘*(3_5)) e M|V w| Laqqy for allt >0 (6.12)

is true for all w € WHP(Q).
(iv) Let 1 < g <p<ooorl<qg<ooandp=oo, then

1

|2V - w||zr ) < ka (1 + t*%*T(%*E)) €7A1t||’IUHLq(Q) forallt >0 (6.13)

is valid for any w € (L1(Q))N.

Proof. This is [105, Lemma 1.3]. The parts of Cases (iii) and (iv) which are missing there, are
proven in [7, Lemma 2.1]. O

Because of the third equation in (6.2), the Neumann Laplacian is not the only operator generating
a semigroup which is important for analyzing the solutions of (6.2). Before introducing the
Stokes operator and recalling estimates for the corresponding semigroup, however, let us briefly
familiarize ourselves with the appropriate spaces.

For p € (1,00) the spaces of solenoidal vector fields are defined as the LP-closure of the set of
divergence-free smooth vector fields:

)H'”LP(Q)

L2(Q) = Cgo (O, RN — (P (RN V =0 1@,

Indeed, the space LP(Q,RY) is the direct sum of this solenoidal space and a space {Vi;¢ €
WLP(Q)} consisting of gradients and there exists a projection from LP(Q, RY) onto L2 (), the
so-called Helmholtz projection &?. More precisely, we have the following;:

Lemma 6.2.2. The Helmholtz projection & defines a bounded linear operator 2 : LP(,RY) —
L2(Q); in particular, for any p € (1,00) there is ks(p) > 0 such that

[Zwl|Le ) < ks(P)l|w]ze o)
for every w € (LP(2))N.
Proof. See [30, Thm. 1 and Thm. 2]. O

The Stokes operator on L2(2) is defined as A, = —ZA with domain D(A4,) = W?2?(Q) N

WP () N LE(Q). Since A, and A,, coincide on the intersection of their domains for p;,ps €
(1,00), we will drop the index p in the following without fearing confusion. This operator
generates a semigroup for which estimates similar to the previous ones hold:

Lemma 6.2.3. The Stokes operator A generates the analytic semigroup (e=*4)y~q in L7 (Q). Its
spectrum satisfies N} := inf Reco(A) > 0 and we fix p € (0,\}). For any such p, the following
holds:

(i) For any p € (1,00) and v > 0 there is ke(p,v) > 0 such that

A7 || Lo () < ko (p, V)t Lo (o) (6.14)

holds for all t > 0 and all ¢ € LE(Y).
(i) For p,q satisfying 1 < p < q < oo there exists kz(p,q) > 0 such that

1

_N(1_1 _
le™* 4| La(e) < kr(p, @)t (G=3)e |l Lo () (6.15)
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holds for allt > 0 and all ¢ € LE(Q).
(#i) For any p,q with 1 < p < q < oo there is kg(p,q) > 0 such that for allt > 0 and ¢ € LL(Q)

1 1

_1_N(1_1 _
IVe™ 46| Loy < ks(p, )t 2~ TG0 e 6] 1ogq)- (6.16)

(iv) If y> 0 and 1 < g < p < oo satisfy 2y — % >1- %, then there is ko(v,p,q) such that for
all 9 € D(AY)
lollwrry < oy, Q) I|AY D o) (6.17)

Proof. That A generates an analytic semigroup in L7 () was shown in [31]. The estimate in
(i) for its fractional powers is a consequence of this fact, see [35, Def. 1.4.7 and Theorem
1.4.3]. Estimates like those in (ii) and (iii) constitute another well-known property of the Stokes
semigroup, see e.g. [103, Chapter 6]. They can be proven by combining the Sobolev type
embedding theorem and an embedding result for domains of fractional powers of A with estimates
as in (i). Namely, according to [33, Prop. 1.4], D(A}) < H>Y for any v > 0, where H?" = F-}
is a Bessel potential space. Such spaces are covered by the embedding theorem [98, Thm. 3.3.1
(ii)], which states that Ff0 (Q) — F2* (), if sg — pﬂo > 51 — pﬂﬂ 0<py<o0,0<p < oo,

Po,q0 P1,q91 -
0<qp<00,0<q <ooand—0o < s; < 8g < oo. In particular,

N 1_1 1_1
D(Apz(p q)) N H;V(p q (Q) _FN(p q)(Q) ‘%F(?Q(Q) :Lq(Q)

- p2

and analogously D(A%+%(%_%)) — W14(Q), so that an application of (i) yields (ii) and (iii),
respectively. The same embedding results also readily ensure the validity of (iv). O

The following lemma, giving elementary estimates for integrals that arise in calculations involving
semigroup representations of solutions, will find frequent use in the proof of Proposition 6.4.1.

Lemma 6.2.4. For alln > 0 there is C = C(n) > 0 such that for all« € [0,1—n], 5 € [n,1—1],
v,6 € R satisfying % >y —9>n and for all t > 0, we have

t
/ (1 + S—a) (1 + (t _ 8)—6) e—’yse—é(t—s)ds < 0(77)6_ min{~y,0}¢ (1 _’_tmin{o,l—a—ﬁ}) )
0

Proof. Since the statement is a minimally sharpened version of [105, Lemma 1.2], it is not
surprisig that its proof can be performed along the same lines as in [105, Lemma 1.2]. We
include a proof in the appendix of this chapter. O

Remark 6.2.5. The roles of § and vy can of course be exchanged if those of o and [ are. The
constant C(n) becomes unbounded as n — 07 .

In cases where the previous lemma yields another than the desired exponent, the following
elementary fact may be of use:

Lemma 6.2.6. Let 0 > a>b andt > 0. Then (1 +t%) < 2(1+t°).

Proof. If t > 1, then 1 4+ t* < 2 < 2+ 2t*. If t < 1, by the nonnegativity of a — b the inequality
to=b < 197b holds and hence 1 +t* < 14 t* = 1 4+ tP970 < 2(1 + t7). O

Another similarly elementary observation is the following:

Lemma 6.2.7. Let either a,b > 0 ora,b < 0. Then for anyt > 0, the inequality (1+t*)(1+1%) <
3(1 4 t**Y) holds.
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Proof. If a,b > 0, for t > 1, we have t* < t*t0 <1 4 ¢t%t0 whereas for t < 1, ¢t < 1 < 1 4 t**0,
The same estimates hold for #, and thus (14 ?)(1 + %) = 14+ * +* + 20 < 3(1 +t+?). For
a,b < 0, one has to exchange the cases t > 1 and ¢t < 1. O

As final preparatory step, we include the following result on local existence of solutions:

Lemma 6.2.8. Let N € {2,3}, ¢ > N, S € (%, 1) and Cs > 0, and let S be a function satisfying
(6.5). In addition assume that there exists a compact set K C Q such that

S(z,u,v) =0 for anyu>0,0v>0,2€Q\ K. (6.18)

Assume that (ug,vo, Up) satisfy (6.6).
(i) There exist

7 =7(q, 8, |uollz= (0. [lvollwr.a): |A°Uoll 2y, Cs) >0 and
I =T'(q, B, |[uol| = (), l[vollwr.a), |A°Uo| 120, Cs) > 0

(where for fived 8 and q the value of T' is nondecreasing in the arguments |luo|| L), [[vollwi.a(),

||A5U0||L2(Q), Cs, and T is nonincreasing with respect to them) and a classical solution (u, v, U, P)
of (6.2), (6.4) on [0, 7] with initial data (uo,vo, Uy) which satisfies

[u( Dl @) + oGO llwra@) + UG B)lpas) ST for every t € [0,7].

(ii) This solution can be extended to a mazimal time interval, more precisely: There are Tyax > 0
and a classical solution (u,v,U, P) of (6.2) in  x [0, Tiax) such that

if Trnax < 00, then ||u(-,t)|| o) + V(- 1) [[wia(q) + ||A’8U(~,t)||L2(Q) — 00 ast / Thnax- (6.19)

Moreover, we have u > 0 and v > 0 on Q X (0, Tynax). For any T € (0, Taz), this solution
is unique among all functions satisfying (6.7), up to addition of functions p, such that p(-,t) is
constant for any t € (0,T) to P.

Proof. Condition (6.18) removes any nonlinearity or inhomogeneity from the boundary condition
(6.4). Thus, a proof for a very similar system can be found in [108, Lemma 2.1, p. 324-328],
where this is shown by means of a Banach fixed-point argument. Differences mainly stem from
the presence of S, which can be estimated in the Frobenius norm by C's whenever necessary, so
that the reasoning there can almost word by word be applied to the current setting. O

6.3. Constants and parameters

Given m, N, po, qo, B, a1 and as as in Theorem 6.1.1, in this section we shall, mainly by
application of Lemma 6.2.4, produce constants C, ..., Cs (which, accordingly, will only depend
onm > 0, N, po, go, 8 and a3, as) to be used in the continuation argument in the proof of
Proposition 6.4.1. We let k1, ..., kg denote the constants appearing in the estimates of Lemma
6.2.1, Lemma 6.2.2 and Lemma 6.2.3. As stated before, A\ and A\; will be used to refer to
the smallest positive eigenvalues of the Stokes operator or the Neumann Laplacian in 2. As in
Proposition 6.4.1 (or Theorem 6.1.1), we will rely on

m > 0, (6.20)
N € {2,3}, (6.21)
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% <po <N, (6.22)

go > N and — > L l, (6.23)
@0 po N

% < B <1, (6.24)

aq € (0,min{m, A1 }), (6.25)

as € (0,min{a, \|}) (6.26)

being satisfied, where we have included upper bounds on pg and go in (6.22) and (6.23) that will
be used during Section 6.4. We pick p € (a1, A]) and will henceforth apply Lemma 6.2.3 with
this value of p only.

We first note some elementary consequences of these choices that are nevertheless important as
they make it possible to use Lemma 6.2.4. Because as < min{ay, p} and —%(pio - q%) €(—3,0)

due to (6.23), Lemma 6.2.4 ensures the existence of C; > 0 such that for all ¢ > 0

¢ —p *—1) —p(t—s) ,—aas —ant
(I4+s 2 ro a0 )e™# e" s < Cre™ 2. (6.27)
0
Since —3 € (=1,0), =1+ 50~ € (=1,0) and 1 — § — 1+ 5= = =5 + 5= < 0, Lemma 6.2.4 also

provides us with Cy > 0 such that
t
/ (t—s)"3(1+s o )e =025 gs < Ch(1+¢ 270 )e 2t forallt >0.  (6.28)
0

Because —%(pio - q%) € (—1,0) by (6.23) and 1 — § — %(p% - qio) > 0> —%, Lemma 6.2.4 in

combination with Lemma 6.2.6 yields C'5 > 0 satisfying

t 1 _ N1 _ ) 1
/ (t—s)"2(14s 20 w))e =)™ m50s < C3(14+t77)e @2t forallt >0. (6.29)
0

As —%—% € (—1,0) due to the choice of qo, —1—&—% € (-1,0) and 1—%—%—14—% = —%7
Lemma 6.2.4 makes it possible to find C4 > 0 such that for all ¢ > 0
' t -3 —14+550 2 1 t
/ e h=5) (p — ) E B (14 51 Y2005 < Cy(1 4 1)L, (6.30)
0
Since —5- € (—=1,0) and 1 — 5 — % > —3, Lemmata 6.2.4 and 6.2.6 warrant the existence of
Cs >0 such that for any q > qo and any ¢ > 0 we have
¢ 1 A __N 1
/ (14 (t—s)"2)e MO (1 4 5720 )e13%ds < Cy(1 + 17 2)e” Mt (6.31)
0
Moreover, —% — % € (—1,0) since go > N, and 1 — % — % -1+ % = —%. Hence it is possible
to find Cg > 0 such that for all ¢t > 0,
¢ S1oN N 1
/ (14 (t — ) 7 2a0)e =91 4 571200 )e™150s < Cp(1 4 172 )™t (6.32)
0
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6. A 3D Chemotaxis-Navier-Stokes Model

Finally, for 6 > qo, _*_%(q%_%) € (—%—%,—%) C (—1,0); by (6.23) also —%—%(p%—q%) €
(-1,0), and 1 — % — %(qi - %) —1- %(pio - q%) = 7%(;)% — %). Thus Lemma 6.2.4 provides

_ﬂ(i_L) it
<Cr(1 4+t 2P0 0))e™ " for all £ > 0. (6.33)
Let -
o= / (1+ s_%)efalsds (6.34)
0

and observe that, by the condition (6.22) on pg, this is finite.

Lemma 6.3.1. Given m, N, po, qo, B, a1 and as as in Theorem 6.1.1, it is possible to choose
My, My, M3, My > 0 and € > 0 such that

k7(N, qo) + k5(q0)k7(qo0, q0) (M1 + k1) C1[| V|| oo ()

+ 3o (25 s () Mo M e < J‘g (6.35)
ks(N, N) + ks(N, N)ks(N) Q| a0 (M, + k1)03||vq>||mm
+ 3ks ( i s V) ks ( i) CalMsMae < z\g (6.36)
ko + Cska(m + (M + ky)e)eMiHFIoe 4 30 My My Ce < % (6.37)
8CsCrka Mym|Q® + 3CsCrkaMa(My + k1 )e + 3(My + k) Cikiy Mae < % (6.38)
hold.
Proof. First let A > 0 and My > 0 be such that
kg 4 Cskyme® < %. (6.39)

Then we fix My, M3, My > 0 such that

3CsCrky Mom|Q|70 < M,
k7(N,qo) + ks5(qo)k7(qo, QO)(Ml + k1)01|\V<I>||Loc @ < i (6.40)
k}g(N N)+kg(N N) ( |Q‘ N‘10 (Ml —l—kl)CgHV(I)HLm(Q

Finally, letting ¢ > 0 small enough satisfying

. A 1 1
€ <min
{(Ml +ki)o’ 12k (2 . 2 40) ks (P p: YMaCy” 12ks (-~ ,N)kés(i L) MOy
My My }
4C5k2(M1 + kl)eA + 12]@2M2M3C’6, 1207]€4(M1 + kl)(CSMz + Mg)

we can easily check that (6.38), (6.37), (6.35) and (6.36) are true. O
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6.4. Proof of a special case: Sensitivities vanishing near the boundary

6.4. Proof of a special case: Sensitivities vanishing near the
boundary

This section contains the core of the proof of Theorem 6.1.1, concerning global existence and
the convergence estimates both. Nevertheless, for the moment we will restrict ourselves to the
situation that the sensitivity function S vanishes close to the boundary. That has the considerable
advantage that the nonlinear boundary conditions posed in (6.4) reduce to classical homogeneous
Neumann boundary conditions and the existence theorem (Lemma 6.2.8) and standard results
concerning the heat semigroup (cf. Section 6.2) become applicable. The case of more general S
will be dealt with in Section 6.5.

Let us first state what we are going to prove. The main difference between this proposition and
Theorem 6.1.1 lies in the additional condition on S.

Proposition 6.4.1. Let N € {2,3}, po € (§,N), g0 € (N, (pio—%)_l), @1 > qo and B € (§,1).

Let Cs > 0 and ® € C**(Q) with some § >0, m > 0. Then for any a; € (0, min{m, \;}) and
as € (0,min{ay, Aj}) there are Cs,Cq,C19,C11 > 0 such that, with the same choice of € > 0,
My, My, M3, My > 0 as in Lemma 6.3.1, the following holds:  For any initial data (ug,vo,Up)
fulfilling (6.6) as well as vy € W% (Q) and

1
Uy = |Q/ Up = m, HUO 7EO||LPO(Q) <e ||UO||L°°(Q) <, ||U0HLN(Q) <e (641)
Q

and any function S satisfying (6.5) and
S(z,u,v) =0 for anyu>0,v>0,2 € Q\ K

for some compact set K C ), system (6.2) with boundary condition (6.4) and initial data
(ug,vo, Up) has a global classical solution, which, for any t > 0, moreover satisfies

1

lu(-t) — etAU/OHLG(Q) <Mje (1 + tg(Plo@)> e ™ for all§ € [qo, 0],

IV (-, )| oo () <Mae 1+t**) emont,

(U 8) || Lao () <M3e (1 +t +2f10) g0zt
VU )y ) <Mae ( + t") e~ o2t (6.42)
and
APty < Cae™, U)o < Coe™™,
[u(-, t) = ol Loe () < Croe™ Y, o0, )l ) < Care k.

Lemma 6.2.8 asserts that there is a solution to (6.2), which is defined on some interval [0, Tiax)-
We will denote this solution by (u,v,U, P) in the following. Our main goal is to prove that
Tinax = 00. In order to show this and to achieve estimates (6.42), we define a number T' > 0 as
follows:

Definition 6.4.2. With ¢ > 0, M7, My, M3, My > 0, pg, qo, a1 and ao as in Proposition 6.4.1,
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6. A 3D Chemotaxis-Navier-Stokes Model

we let
a1 1) = el oy <Me(1 + 1 % G5 —9))ement
for all 6 € [qo, 9],

~ [Vo(, )l () < M26(1 + t—%)e_‘)‘lt7
T = sup § T € (0, Tinw) . (643)
U (- )| oo () < Mae(1 + ffr%)e_"?t7
VUG 8)] L) < Mae(1 417 %) 0t

for all t € [0,7)

By Lemma 6.2.8, T is well-defined and positive. Thus what we want to show is 7' = co. In doing
so, we will proceed in several steps and at first derive estimates for the component u that are
satisfied on (0,7"). We will then show that all of the estimates mentioned in (6.43) hold true
with even smaller coefficients on the right hand side than appearing in (6.43) and finally conclude
that T" = co. The derivation of these estimates will mainly rely on Lemma 6.2.1, Lemma 6.2.2
and Lemma 6.2.3 by means of the estimates from Section 6.3 and on the fact that the classical
solutions on (0,T") can be represented as

u(-,t) = e ug — /t =BV - (uS (-, u,v) V) + U - V) (-, 5)ds, (6.44)
0
v(-,t) = ety — /t elt=9)A (wv + U - V) (-, s)ds, (6.45)
0
U(,t) = e 40U, — /t e AP (U -V)U — uVd) (-, 5)ds, (6.46)
0

for all ¢t € (0, Tmax) as per the variation-of-constants formula.

Lemma 6.4.3. Under the assumptions of Proposition 6.4.1, for all 6 € [go, 00| we have
(-, t) = Toll ooy < (My + ky)e (1 + t—%%—%)) et for all t € (0,T). (6.47)

Proof. Since Ty is a constant, e'>%y = Uy for all ¢ € (0,7), and moreover due to [, (uo—o) = 0,
Lemma 6.2.1(i), (6.43) and (6.41) show that

|u(-,t) —Toll Loy < llu(-,t) — emUo||L6(Q) + [l (uo — o) Lo ()

_N(1 _ 1 ot SN(L 1y 5y _
SMle(lth 2 b0 ")6 ! +k1(1+t 2 po ")6 Yo — ol Lro (@)
< M1€ (1 +t—%(%—§)> e—a1t —|—]<J1 (1 +t—%(%—y)) e—)qte

,E(L,L) —aqt
S(M1+k1)€<1+t 2P0 9)6 !

for all t € (0,T) and 6 € [go, o0]. O
Lemma 6.4.4. Under the assumptions of Proposition 6.4.1, the second component of the solution
satisfies

[0(-s ) || poo () < eMrHRr)oceemcnt for allt € (0,T) (6.48)

with o taken from (6.34).
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Proof. We let p > 1, multiply the second equation of (6.2) by pvP~! and integrate over Q, so
that we have

4 P < —p/ uv? on (0,7). (6.49)

By an obvious pointwise estimate and (6.47) with 6 = oo,
—uz, ) < () — Tol| e (@) — To < (M + k1) € (1 + f%) et _ g (6.50)

for all z € Q,t € (0,T). Due to the nonnegativity of pvP, we infer that

P < ((M1 + k1)6(1 + t_%)e_alt — ﬂo) p/ vP (651)

dt Jo Q

for all t € (0,7). Thus we get

t N
/ VP < exp <p/ ((M1 + ky)e(1+ s 2r0)e” 1% — ﬂo) ds> / vh for all t € (0,T). (6.52)
Q 0 Q

Taking the p-th root on both sides, we are left with

_ t N )
lv(- )| Leo) < Hv0||Lp(Q)e_"°texp <e(M1 + kl)/ (1+ s~ 20 )e_o‘léds)
0
< |Jvo| Lo (qye "™t eMiTRITE for all ¢ € (0,T),

which holds for arbitrary p > 1 and where o is as defined in (6.34). In the limit p — oo, we
therefore obtain B
()l < ||Uo||L°o(Q)€U(M1+k1)€€7"Ot (6.53)

for all t € (0,T) and may, due to (6.25), (6.41), conclude (6.48). O

Lemma 6.4.5. Under the assumptions of Proposition 6.4.1, the component U of the solution
satisfies

M- 14N
|\U(~,t)||Lq0(Q)§7‘36 <1+t %+2i¥o)e*azt for all t € (0,T). (6.54)

Proof. If we use that ZV® = 0 and apply the triangle inequality in the variation-of-constants
formula (6.46) for U, Lemma 6.2.2 and Lemma 6.2.3 (ii) yield

_N L,L)

[U(, )| Lao ) <kz(N,qo)t™ 2"V "5 e " ||Ug|| v (0

t
Jr/ k7(g0, 90)ks (q0)e 7 Ju(-, s) — o[ oo () [ VP L2 (02)ds
0

t _n(Mag 1 e
4 [ k- 9 H R 20 vyl Ly, ds
0 ) LHE(Q)

_ 1, N _
=:k7 (N, qo)t ™2 20 e M |Upl v oy + [ + I

for all t € (0,T). Here an application of estimate (6.47) for § = ¢o and (6.27) in the first integral
shows that

i —S(E—-1)\ _—u(t—s) —ais
Il S k‘5(q0)k7(q0,qo)(M1 =+ k)l)HVcI)HLoo(Q) € (1 +s 2'po a0 ) e 13 e 19ds
0
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< ks5(q0)k7(q0, go) (M1 + k1) | V| oo () eCre*?
N
< ks5(g0)k7(go; qo) (M1 + k1)|| V| oo () Cr (1 + ¢~ 2200 e~ 2"e

for all t € (0,T). Holder’s inequality and Lemma 6.2.2 imply that

12O - VOO v < ks(ZE)IVC Do @l VUG Oy forallt € (0,T)
L 70 (Q) a0

and the estimates for the latter two terms, which are valid by (6.43), give

t
Iy < kr( 5 q0) ks (5 )/0 (t— S)_%M3M4626_“(t_8)(1 + 87%+%)€_028(1 + s_%)e_azsds
q0

1+%
t
< kr( 2 qo)ks (2 ) Mz Mye? /o (t— 8)7%67”(t78)3(1 + S_H%)e*m”ds
0

< Bk (2, @o)s () Ma Ma*Co (1 n t‘%+%) et forall £ € (0,T),
a0 a0
where we have also used Lemma 6.2.7 and (6.28). Hence,
_l_;’_L —put
NUC )l Lo @) <k7(N,qo)t 2" 2we e
N
+ k5(qo0)k7(q0, 0) (M1 + k1) [V || Lo () C1 (1 +t 2+2“°) e 2te

+ 3k7(ﬁ7%)k5( & )M3M4€202 (1 +t7%+%) e—a2t
0

1+%
< (k7(N7 q0) + k5(q0)k7(q0, q0) (M1 + k1) V@[ L= 0y C1

+ 3]97(14:\]1\,,(]0)I€5(1+NN)M3M4026>6 (1 + tiéJF%) e o2t
a0 q0
s%e (1 + t‘%+%) g2t
for all ¢ € (0,T), according to (6.35). O

Also the estimate for the gradient is preserved:

Lemma 6.4.6. Under the assumptions of Proposition 6.4.1, we also have
€ -1 —aipt
VU )| L~ () §§M4 (1+t 2)6 2t forallt € (0,T).
Proof. Starting from
t t
VU(- ) = Ve AT, +/ Ve =94 5 ((u(-, 5) — Tip) VD) ds — / Ve =94 B(17 . V)U(-, s)ds
0 0

for all t € (0,T), we obtain from Lemma 6.2.3 (iii), Holder’s inequality, Lemma 6.2.2 and (6.47)
that

VU D)~

t
< [|Ve" sl o) +/ ks (N, N)(t = )72 ks (N) | (u(-, 8) = W) V| v 0y ds
0
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/ks N)(t—s)H

< ks(N, N)t_ie_utHUOHLN(Q)

w2

IS I s
(ot~ =) mhli- >k5< -Vl oy ds
L3N ()

K 1 20 —N
+ k(N NR(V) [ (0= )OI a1 8) = Tol oo TRl w oy
0

¢ N
+k‘8(ﬁ+%72\7)k5(i)/0(t—8)_§ 20 e MU (s 8)||Lao () IVU (-, 8)|| L () ds

=: kg(N, N)t_§€—l‘t||U0||LN(Q) + I3+ 1y for all t € (O,T)

Here by (6.29), we have

a0 =N
I3 < kg(N, N)ks(N)[€ oo™ (My + k1) [|[ V@[ o ()€
N

¢
></ (t—s)_%(l+877(%7%))6_”“_5)6_0‘15(13
0

< ks(N, N)ks(N)[9] ¥50 (My + k)| V|| oo (eCa(1 + £~ 3)e2t  for all t € (0, T).

Furthermore, by Lemma 6.2.7 and (6.30),

S

Iy < 2 M5 Myk L k ' —pu(t—s) (4 _ "3~ 395 1 —%-i-% 1 -1 —2a2s ]
4 < € MyMaks( =+ T )5(1+N) e (t—s) a0 (1+ s 0 )(1+s"2)e s
0

a0

t
< 3¢ M3Maks (L, N)ks(—r) / e P (t — g) T2 %0 (1 4 57 TP )20 s
0

1
a0 " 9 ' N

2

< 36 M3M4k8( T T 7N)k5( 1

’-1’0

;
qu

2

)Cy (1 + f%) e 2t for all t € (0,7).
And thus finally, thanks to the above estimate and (6.36), we arrive at

IVUCDlly <hs(N, N)E 5 et 4 kg (N, N)ks (N)[Q] 550 (My + k) [V JoweCy (14173 ) 702t

+ 362 M3 Muks (v, N)ks( )04(1“*%)(3*“21t

1, 1
9 TN

T

i
a0 +w

S(k‘s(N, N) + k‘s(N, N)k5(N)‘Q|qR7;0 (M1 + kl)C3HV(I>||Loc(Q)

)C4M3M4e)e (1 + t_%) ezt

L
q0 ™

for all t € (0,7). O

Lemma 6.4.7. Under the assumptions of Proposition 6.4.1, we have

eM: o
IV0( )l ey < 52 (1+178) e

for allt € (0,T).
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Proof. If we use the variation-of-constants formula (6.45) for v, we obtain from Lemma 6.2.1(ii)
that

t
V0 ()l @) < Vel (o) +/0 IVe=%u(, 5)o(, )] L~ () ds

t
+/ Vel =AU (-, 5) - Vu (-, 8)|| oo () ds
0
1 At ‘ t—s)A
<k (1 ¢75) ™ o]l o) + / Vet =2, $)0(-, )| 1o oy s
0

t
4 [T IBU ) Tl s)mrds
0

=: ko (1 + tié) 67A1t||’t}0||Loo(Q) + I5 + I on (O,T) (655)

In the first integral we can again apply Lemma 6.2.1 (ii), which gives
t
Iy < / ka(1+ (t —8)72)e™ 1 E|u(, 8)o(-, 8)|| oo () ds
0

t
S/O Fa(1+ (t = 5)72)e ™ ) u(, 8)|| oo @ |00 8) | e (@ ds

n (0,7). At this point, Lemma 6.4.3, Lemma 6.4.4 and (6.31) lead to

t
I; < / ka(1 4 (t — s)_%)e_’\l(t_s) (wo + (M1 + ky)e) (1 + Siﬁ)ee“(Mﬁkl)ee_msds
0
< Csky (ﬂo + (M + k‘l)e) e(Mit+ki)oe, (1 + t_%) et

for all t € (0,7).

Next, using Lemma 6.2.1 (ii) and Hoélder’s inequality, we derive that
t
Iy < / Ba(L+ (t — 5737 30)e MU (-, 5) - Vo (-, )| ooy ds
0

' —3 245\ p—A1(t—s)
< [ k(LA (E =) 220 )em METUC )| Lo ) [ VO (s )l e (@ ds
0

If we insert estimates from (6.43) and employ Lemma 6.2.7 and (6.32), we see that

for all t € (0, 7).

t CLN _1y N 1y
I6§/ ko(14 (t—s) "2 200 )e M=) Mae(1 4 s 2200 )e ™25 Mye(1 + s72 e %ds
0

t
< 3/ ]{2(1 + (t — 5)757%)6_)\1“_5)1\436(1 + SilJr%)MgE@_alst
0
< 3ko My Mse2C (1 + t—%) "

for all ¢t € (0,T). Combining the above inequalities, we obtain that

||V’U(-, t)”Loo(Q) < (kg + C5k2(ﬂo + (Ml + kl)G)e<M1+k1)0’E + 3]{}2M2M3€C6) (1 4 t*%) e 1te

M-
< 726 (1 + t*%) emont (6.56)
holds for all t € (0,T) by (6.37). O
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Having achieved these estimates for Vv, we may re-examine the first solution component and
sharpen the estimate from Lemma 6.4.3.

Lemma 6.4.8. Under the assumptions of Proposition 6.4.1, finally also

Mie /. w11
l[u(-,t) — e ull Loy < 716 (1 20 é)) et

is valid for all t € (0,T) and for all § € [qo, o0].
Proof. Let 0 € [qo,o0]. Then

lu(-,t) — e uoll oo

t t
< / €AY - (uS (-, u,v) V) (-, 8) || Loy ds +/ [T (-, s) - Vul-, )| poq)ds
0 0
=:I;+ Ig for all t € [0,T].
According to Lemma 6.2.1 (iv) we have

1

¢ C1ON(L_1y g
I7§/ ka(1+ (=) 7272 a0 =0 )em O (wS(-, 1, 0)-Vo) (- 8)|| Lo () ds
0

1

' ~3-F (D = halt-s)
< Cg k4(1—|—(t—8) 2 2%a 9 )6 e ||u('7S)HLQO(Q)"vv('v5>||L°°(Q)d8'
0

As Ty is constant and V- U = 0,

t t
Iy = / e =AU -V (u — o)) (-, 8) || o (yds = / [e=AY - (w — W)U (-, 8)| oy ds
0 0
and hence, treating this integral similarly as Iy before, we obtain

t
Is < / ka(1+(t— s)_%_T %_5))67/\1@78)”(11,(',8) —0)U (-, 8)| oo () ds
0

1 1

t
—1_NcL1_1 — —s —
< [l = o) B EGTD ANl 5) = Ty o [0 s
0

N (1 1

! -1-5(X-3 N = A1 (E— — 2B
S/ k(14 (t—s) 2 2w #))e 1( S)(M1+k1)6(1—|—s 25 )e~1°
0
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Using the choice of € and (6.38) we arrive at

[u(-,t) — e uol| Lo (o
< (3csc7k4M2m|m% + 3CsCrky My (M + ki )e + 3(M; + k1)07k4M36>
N 1 1
X € (1 + 2 ) et
< M1€
=7
for all t € (0,7). O

While we have obtained some estimates for u, one for ||APU(-,t)||z> is not yet among them,
although this is the quantity featured by the extensibility criterion in Lemma 6.2.8. We rectify
this in the next lemma:

Lemma 6.4.9. Given N, po, qo, q1, B, Cs, ®, m, a1, as, € as in the statement of Proposition
6.4.1, it is possible to find Cs > 0 with the property asserted there. In particular, for any
€ (0,T), we have

|APU (-, )] 2(0) < Cge™ 2" (6.57)

Proof. We first define M (t) := e“2*||APU(-,t)||12(q) for t € (0,T). Moreover, let us pick r > N
such that

L1 11 1 23
@@ N r= N 2 N’
which is evidently possible due to % > % . % = % If we set b :=

D—‘Q‘H

/( + & — 1), we have
) prov1de us with ¢ > 0

b € (0,1) and the Gagliardo-Nirenberg inequality and Lemma 6.2.3 (i
and ¢o = ko(8,7,2)cq such that

lell o) < etlleltyrr@lellaw) < 21472 @) 10l a0
for all p € L% (Q) N WLHT(Q) N L2(Q). In particular,
(U - VU, 8)ll2(0)
11

<NUC s)llpee @127V [[VUC, )l v o)

< QTN [APUC )20 UG 9) a0y IVU G $)llin ey, s € (0,7). (6.58)
We set

tO = T(q07ﬂ767676703)7 F:: F(q07ﬂ767€76705)

as provided by Lemma 6.2.8 and choose ¢z > 0 such that [|¢[pw@) < csl|A%¢|r2q) for all
¢ € D(AP). If we use that |[ul|w1.x ) < ko(B, N, 2)[|A%ul| 12(q) according to Lemma 6.2.3 (iv),
(6.58) then shows that

(U - U 9)2) < ol @2 ¥ T VU 8) | v o)
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< Q2T T%kg(B, N, 2) =: ¢4 (6.59)
for s € (0,tp), and that
(U -V)U(, 8)ll22(0)
eal @A et 020N (5) (Mie(1 + (10/2) 7250 ) (Mae(1+ (tof2) )
=cse 2" M (s) (6.60)

for all s € ( %’, T) for an obvious choice of ¢5 > 0. For t > t; we now aim at estimating
¢
||AﬁU('at)”L2(Q) < HAﬁeftAUOHB(Q) +/ |APe= (=04 P (u(-, s) — ) V|| L2 ()
0
t
+/ [APe= =AU - VU)(-, 8)|| 1202y ds (6.61)
0

and observe that

B N2 g
|APe M AUg| L2y < ko(2, B)t e ||Usll L2() < ko(2, B)tg QT e~ 2! |Upllpny  (6.62)

for ¢t € [to,T).
Since 8 € (0,1) ar.1d _%(p% - q%) €(-1,0)and 1 — 5 — g(pio - q%) > —1, Lemma 6.2.4 and
Lemma 6.2.6 provide c¢g > 0 such that for all ¢ > 0
¢ _N(L_1
/ (t—s)Pe =91 4+ 5720 ") )em %05 < ¢4 (1+t 1) e, (6.63)
0

From Lemma 6.2.3(i), Lemma 6.2.2, Lemma 6.2.4 and (6.47), we infer
t
[ 1412w, 9) ~ 1) V1200
0
¢
< b2 Dks(2) [ €M = 5) P ut,) — ol oo [V ooy
0

t
< k6(276)k5(2)/ e M= (1 — 8) 7P| w0 ||u(-, 8) — Tol| pao (o) | VR Lo () ds
0

t
< Ko (2, B)ks(2)|| VR Lo )| 2]2 0 / e (t — )P (My + ky)e(1+ s 2 (5o a0) e~ 1% ds
0

1

< ko(2, B)ks ()P oo (0 (M + k1 )eo|Q|? "m0 (1 4t~ H)e ot

1

< ko(2, B)ks (2)[| V| oo () (M + k1 )eo| Q2 "m0 e(1+ 15 )e ™t forall t € [to,T).  (6.64)

Moreover, from —f3 € (—1,0) and 0 > min{0,1 — 8—3}> — 1, by means of Lemma 6.2.4 and
Lemma 6.2.6 we conclude the existence of ¢; > 0 such that

t
/ (t —s) Pe =) em25 s < cr(1 4t V)e 2! (6.65)
0
holds for any ¢ > 0. Furthermore, for any ¢ € [tg,T) we have

t
| 1470 P )08 s
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6. A 3D Chemotaxis-Navier-Stokes Model

o

< o2 Dhs(2) [ (6= 9) P W VU 9) paoyds
0

ko2, B)ks(2) [ (¢ = 5) I (U TO) 8 2oy,

z
where we can use (6.59) to estimate the first summand by

tg t

o
2 2
/ (t —s) Pert=9)| (U - VU)(-, s)||z2(q)ds S/ (to/2) P e~ Hets cyds
0 0
nto/2 1
S ) LR )
I
whereas the integral concerned with larger times by (6.60) can be controlled according to

t t
t—8) Pe M=) \(U - VU)(-, 8)|| 2(onds < t—s) PeHt=9) coem25 NP (5)ds
(®)
to

tg

2 2

t
<c¢5 sup Mb(s)/ (t —s)Perlt=s)gmazs g
s€(0,t) 0

< eser(L+tgh)e ™2t sup MP(s) (6.67)
s€(0,t)

for all t € [to,T), due to (6.65). As to t € (0,%9), we know from Lemma 6.2.8 that
[APU ()| 2y < T < Te*™e " for all t € (0, o). (6.68)

If we then insert (6.62), (6.64), (6.66) and (6.67) into (6.61) and take into account (6.68), we
obtain some cg > 0 such that for all ¢ € (0,7)

HAﬁU('at)HL?(Q) < cge ! 4 cgem ! sup MP(t),
te(0,T)

where multiplication by e“2* shows that

M(t) < cg +cg sup MP(t) for all t € (0,7T)
te(0,T)

Due to b < 1, we may hence infer the existence of C's > 0 such that
Cg > M(t) = €a2t||A6U(~,t)||L2(Q) for all t € (0, T)
This entails (6.57). O

In order to infer the decay asserted in Proposition 6.4.1, we have to combine the estimates from
Definition 6.4.2 with Lemma 6.2.8.

Lemma 6.4.10. Given N, pg, qo, q1, B, Cs, ®, m, a1, ag, € as in the statement of Proposition
6.4.1, it is possible to find there are Cg > 0, C19 > 0 and C11 > 0 with the properties asserted
there. In particular,

(U 1) Lo ) < Coe™ 2, (6.69)
l[u(-,t) = Tol| oo () < Croe™ (6.70)
and |[[v(:,t)|lwrar (@) < Crie™ ! (6.71)

forallt € (0,T).
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6.4. Proof of a special case: Sensitivities vanishing near the boundary

Proof. Since D(A%) — L>(Q) with 8 € (£,1), we can conclude the existence of Cy > 0 such
that (6.69) holds from Lemma 6.4.9. If we set

to ::T(Q1557€7636505)7 F::F(q1’6’67676’c‘5)

as provided by Lemma 6.2.8, we see that Lemma 6.2.8 ensures |[u(-,t)||L~ ) < T on [0,1o), and
thus
[u(,t) = Toll L= (@) < llu D)l[e@) + [TollL=@ <T+m  fort e (0,t),

that is
u(-,t) =gl oo (o) < (T +m)e*oe™ ! for t € [0, t).

At the same time, Lemma 6.4.3 asserts that

__N
||u(.’t) 7%0”[]00(9) < (M1+/€1)(1+t_%)e*a1t < (M1+k1)<1+t0 2Po)67a1t’ for t € (to,T)

N
so that with Cy¢ = max {(F +m)e*o (My + kq) (1 + 1ty 70 ) }, we have

Ju(-t) = Tol| oo (o) < Croe™* for all ¢t > 0.

Lemma 6.2.8 also guarantees that [[v(-,)|ly1.0: () < T, and hence [[o(-, t) ||y, () < Te®rfoe 1t
for all ¢ € [0,%p). Combining this with Lemma 6.4.7 and Lemma 6.4.4, which show that

eM. -3 o ce,_—a
I90C, e € 52 (1467H) €7 ol Dl gy < ORI eeem ot

for all ¢ > 0, we can infer that

Hv('»t)”WLﬂ(Q) < C’116_alt7 for all t > 0.

1
where C1; = max {Feo‘to, €M2|Q|% (1 +ty 2) ,2\Q|ﬁe(M1+k1)‘"e}. O
Now we are ready to complete the proof Proposition 6.4.1.

Proof of Proposition 6.4.1. First we claim that the solution is global. In order to show this, we
observe that if Ti,ax < oo, then according to the blow-up criterion in (6.19), the inequalities
required in the definition (6.43) of T, and Lemma 6.4.9, we have T" < Tpax and one of the
following holds:

(s T) = ™o | ogay = Mre (14T~ %700 =T,
Vo, T) (@) = Mae (1+T7F) em7,
U T Lao () = Mse (1 + T*%J“%) el

||VU(7T)HLN(Q) = Mye (1 —+ Tﬁé) 67062T7

for some 6 € [gg,00]. But these quantities continuously depend on ¢ and hence each of these
items would contradict Lemma 6.4.8, Lemma 6.4.7, Lemma 6.4.5 or Lemma 6.4.6, respectively.
The same contradiction arises if Tinax = 00 and T' < oo. Hence T' = 00 = Tyax. The remaining
estimates and assertions about convergence result from Definition 6.4.2 and Lemma 6.4.10. [
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6. A 3D Chemotaxis-Navier-Stokes Model

Remark 6.4.11. After having shown Proposition 6.4.1, let us briefly indicate the changes that
are mecessary in order to prove Theorem 6.1.2 instead of Theorem 6.1.1. Indeed, these are
confined to the proof of the counterpart of Proposition 6.4.1; the approzimation procedure that is
to follow in Section 6.5 remains unaffected. We note that

m =ug =

1 1
[ 0 <197 uollm e < 127 (6.72)
and hence, in particular, |[To||Lro) < € and ||ug — To||Lro) < 2€ so that in (6.47) (and by
extension, in all of Sections 6.3 and 6.4), replacing ki by 2k; is sufficient to retain the validity
of Lemma 6.4.3 and its consequences. The only remaining - but most noticable - place which
is affected by the change from (6.8) to (6.9) is Lemma 6.4.7. With the new condition, for the
estimate of the first term in (6.55), we invoke Lemma 6.2.1(iii) instead of Lemma 6.2.1(ii). In
the estimate of I, we have to exchange a factor € by |lvo| L) = M, but can, thanks to (6.72),

rely on the smallness of (g + (M7 + 2k1)e) < (|Q|_% + My + 2k )e instead, so that (6.56) would
read

IVu( )l ()

< (k3 + Csky (|Q|—% + M+ 2k1) MeMit2ke | 3k2M2MgCﬁe) (1 + f%) e ote
< %e (1 + t*%) et

Of course, this mandates changes also in Lemma 6.3.1. We give an appropriately modified
version in the appendiz of this chapter (Lemma 6.A.2).

6.5. System with rotational flux (general S)

In this section, we deal with the more general model, where S € C2?(Q x [0, 00)?; RV X)) is a more

arbitrary matrix-valued function, without the requirement of being zero close to the boundary. In
this case, we construct solutions by an approximation procedure. In order to make the previous
result applicable, we introduce a family of smooth functions

pe € C5° () and 0 < p(x) <1 fore € (0,1), p(z) S 1ase N0 (6.73)
and given any function S satisfying the assumptions of Theorem 6.1.1, we let
Se(x,u,v) = pe(x)S(x,u,v). (6.74)

Using this definition, we regularize (6.2) as follows:

Uey = Aue — V- (ueSe(x, ue, ve) - Vo) — Ue - Vg, (z,t) € Q2 x (0,7),

Vey = Av. —uv. — Ue - Vg, (z,t) € 2 x (0,7),

Uy =AU — (U -V)U: + VP +u. VO, V- -U.=0, (x,t) € 2 x(0,T), (6.75)
Vu, -v=Vu.-v=0, U, =0, x,t) € 90 x (0,7T),

ue(z,0) = ug(z), ve(z,0)=vo(x), U (z,0)=Up(z), z €.

We have chosen S in such a way that it satisfies the additional condition imposed in Proposition
6.4.1. Therefore the existence of solutions follows from the previous section:
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6.5. System with rotational flux (general S)
Lemma 6.5.1. Let N € {2,3}, py € (%,oo), qo € (N,00), and 8 € (%,1). Let Cg > 0,
® € C'O(Q) with some 6 > 0, m > 0. Let a; € (0,min{m, \1}) and as € (0,min{ay, \}}).
Let (uo, vo, Up) satisfy (6.6) and (6.8). Then for any e € (0,1) there is a global classical solution
(te,ve,Ue, P.) of (6.75) and there are constants Cs, Cy, C1g,C11 > 0 such that for any e € (0,1)
the estimates

[ve (-, ) lwr.00 ) < Crie™ ", [Jue (-, £) =Tol| Lo ) < Croe™ M, Ue (-, 1) || oo () < Coe™ 2" (6.76)
hold for any t > 0 and such that moreover the solutions satisfy
|APU (-, 1) L2 () < Cge™ 2" (6.77)

for any t > 0 and any € € (0,1). Moreover there is C12 > 0 such that for any € € (0,1) and
anyt >0

Ve (-, 1) Lo (@) < Crz (1 +t*%) et (6.78)

Proof. These assertions are part of Proposition 6.4.1 if we set C5 := eM> in (6.42), at least for

—1
po < N, qo < (pio — %) . For larger values of py or qg, (6.8) entails the validity of (6.8) for

smaller pg, qo if € is adequately adjusted, and Lemma 6.5.1 still follows from Proposition 6.4.1,
if go, po and ¢; are suitably chosen therein. O

From this family of approximate solutions we aim to extract a convergent sequence. Already
the frail manner of convergence of S., however, puts us far from the immediate conclusion that
the limiting object satisfies (6.2) in a pointwise sense. Accordingly, we will first ensure that it
is a weak solution; afterwards we will show that it is sufficiently regular so as to be a classical
solution. For this purpose, we require a definition of “weak solution”:

Definition 6.5.2. We say that (u,v,U) is a weak solution of (6.2) associated to initial data
(uo,v0,Up)  which satisfy (uo,vo,Up) € C°(Q) x Wheo () x D(AP) for some go > N and
B e (f,1)as well as up > 0 and vy > 0 in Q if

0 € Lioe([0,00), WH2(2)),U € Li, ([0, 00), Wy 5 (),

and for all ¢ € C§°(Q x [0,00)) and all ¥ € C§%,(Q x [0,00)) the following identities hold:

—/OOO/QWM—/QUM/J(' //VU Vw—i-//ququv Vi
) e
_/0 /vat—/gv(ﬂﬁ(-,O):—/o /QVU-Vw—/O /Qum/H—/O /QUU-Vw, (6.79)
—/OOO/QU-\I/t—/QUm\II(-,O):—/OOO/QVU~V\I/—/OOO/Q(U~V)U-\II
—i—/ooo/QuV@-\Il.

Within this framework, we shall show the sequence of solutions to (6.75) to have a limit. We
begin the extraction of convergent subsequences with convergence of u and v in Holder spaces
in the following lemma:
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6. A 3D Chemotaxis-Navier-Stokes Model

Lemma 6.5.3. There are v > 0, a sequence {€;}jen with ¢; \, 0 as j — oo and u,v €
CH7(Q % (0,00)) such that

loc

U, —U in C’W’%(ﬁ x (0, 00)) (6.80)

loc

Ve, = in C’V’%(ﬁ x (0,00)) (6.81)

loc
as j — 00.

Proof. For any € € (0,1) the function . is a bounded distributional solution of the parabolic
equation
uy — div a(z,t,0, Vu) = b(x, t,u, V) in  x (0, 00)

for the unknown function u, with a(z,t,%,Vu) = Vu — u.S:Vv. — Ucu, and b =
0, and a(x,t,u,Vu) - v = 0 on the boundary of the domain. Defining to(x,t) =
|ue (2, 1) Se (2, ue(z,t), ve (2, 1)) Voo (2, 1) |2 + |Ue(z, t)uc(x,t)]? and o1 = |ucSe(:,ue,v-)Voe| +
|U.u.| we see that a(z,t, @, Va)Vu > 1|Vaul> — ¢ and |a(z,t, @, Va)| < |Va| + ¢. If we
let T > 0 and 7 € (0,T), the regularity result [73, Thm 1.3] therefore asserts the existence of

~v1 € (0,1) and ¢; > 1 such that Hug”c”l%(ﬁx(r ™) <ec.

According to the aforementioned theorem, these numbers v, and ¢; depend on |[uc ||z (o x (1))
and the norms of 1y, ¥ in certain spaces LP((7,T), L1(f2)), where p and ¢ must be sufficiently
large, but need not be infinite. Such bounds have been asserted independently of ¢ in (6.76) and
(6.78) in Lemma 6.5.1, so that we can conclude the existence of v, € (0,1) and ¢; > 0 such that

< for every € € (0,1).

el @iy <

Moreover, since b = 0, according to [73, Remark 1.3], v, is independent of 7. By a similar
reasoning applied to the second equation and again invoking [73, Thm 1.3], we can find v2 € (0,1)
and ¢y > 0 such that

<co for every € € (0,1).

10ell gz % (i <

If we now pick v € (0, min{7;,72}), the compact embeddings C7 % (Q x [r, T]) <> C7% (Q x
[7,T)), @ € {1, 2}, allow for extraction of a sequence such that (6.80) and (6.81) hold. O

In order to achieve convergence in the third component of the solutions, we will combine estimates
we already have obtained with Theorem 2.8 of [34] and the embedding result [2, Thm 1.1], which
asserts that for v € (0,1) the set of functions with ||Ul|zs0,ryw2r()) and [|Uellze(o, 100 (0))
being bounded is a compact subset of C7(0,T; C1*7(Q)) if p is large. The latter is an argument
employed also in [118, Cor. 7.7], the former also lies at the center of the proof of [118, Lemma
7.6], but is substantially easier here due to the estimates stated in Lemma 6.5.1.

Lemma 6.5.4. There are v > 0, a subsequence {c;}jen with €; ;0 as j — oo of the sequence
given in Lemma 6.5.3 and U € C777(Q x (0,00); RN) such that

U, U in CHE7(Q % (0,00)) (6.82)
as j — 00.

Proof. Let us fix 7 € (0,00). We introduce a smooth, nondecreasing function £: R — R which
satisfies £(t) = 0 for ¢ < 7 and £(¢) = 1 for ¢ > 27 and will consider the functions £U. with
e € (0,1) in the following. Given s € (1,00), [34, Thm. 2.8] provides ¢; = ¢1(s, ) such that,

78



6.5. System with rotational flux (general S)

for any € € (0,1), &U., being a solution of the Stokes equation with right-hand side Z2(£(U.
V)Ue) + Z(uV®) + P (¢'U.) satisfies

T T
[ MU+ [ IDHEU @
T
< (0 +/ H‘@(gUe : V)Ue + t@g(us - EO)VCI) + f@gUs'is(Q))

for any T' > 7. From the exponential decay of |[u. — o[ 1= (q) and of [|Uc(-, 1) 1= (q) as stated
in (6.76) we obtain the existence of cq, c3 > 0 such that for any € € (0,1)

T T T
| WMy + [ NPy < caben [ VU forany T > 7. (653)

Let s > N and fix r € (1,s), so that 3 + 2 — 1 > 0. Defining

Z|o| 2|
3 \»—l 3 \»—l
® |=|® =

+

+

we then observe that a € (%, 1) and hence the Gagliardo-Nirenberg inequality yields a constant
¢4 > 0 such that

IV UGl ) < call DAEU 5 0 I €U )1y for all £ € (0,T)

and an application of this together with the L*°-estimate for U. from (6.76) and Holder’s
inequality in (6.83) shows that there is ¢5 > 0 such that for any 7" > 7 and any € € (0,1)

T a
/ TCANE zsm)) ,

and we can conclude boundedness of ||D?(EU.)||Ls(rr;15(0)) and then of ||(€U:)¢||Ls(r ;e (0)

with bounds independent of €.

All in all, for any s > 1 and any T > 27, there is ¢g > 0 such that for any ¢ € (27,7T) and any
€(0,1)

T
Le Q)+/ | D?(EU) |5 <02+C5|T—T|1 ¢ (/ | D?(£U.)|

[Ue|

Lo ()L () T 1Uells (w2 0)) < . (6.84)

Now, letting v € (0,1), using appropriately large s and referring to [2, Thm 1.1], for any T > 0
we obtain a constant ¢; > 0 so that

||U€||Cl+’Y"’Y/(§><(t,T)) = ||£U5||Cl+7/v7'(§><(t,T)) <cy for all t € (27‘, T)

Therefore, for any 7 > 0, T > 27 we can find a subsequence of the sequence from Lemma 6.5.3
such that U. — U and VU, — VU in C"7(Qx (¢,T)) for some v < 4" and for any ¢t € (27,7). O

For U, this lemma already covers the convergence of first spatial derivatives. Also concerning
u and v, at least some kind of convergence of these quantities seems desirable. For the fluid
velocity field, in fact, slightly higher derivatives are of interest. We obtain convergence for these
in the following lemma:
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6. A 3D Chemotaxis-Navier-Stokes Model

Lemma 6.5.5. There exists a subsequence {e;}jen with €; \, 0 as j — oo of the sequence from
Lemma 6.5.4 such that

Vo, = Vo in L>=((0,00), L9(Q)), (6.85)

Ve = Vo in L*(Q x (0, 00)), (6.86)

U.>U in L°°((0, 00), D(A?)), (6.87)

Vu. = Vu in L?(9 x (0,00)), (6.88)
ueS(+, ue, ve ) Ve = uS(-, u,v)Vo in L},.( x (0,00)), (6.89)
Uep — Uy in L2((0,00), (Wy2(2))%), (6.90)

Vep — Uy in L2((0,00), (Wg2(2))%), (6.91)

Uey — Ut in L*((0,00), (Wg:2(2))"). (6.92)

ase=-¢; \(0.

Proof. From (6.76) we know that there is ¢; > 0 such that for all € € (0,1)

Ve || Los ((0,00), L90 () < €1

Therefore we may conclude the existence of a sequence satisfying (6.85); this also entails (6.86).
By the same reasoning we can use the e—independent bound on ||U€||Loo((0’oo)’D(Aﬁ)) given by
(6.77) to extract a subsequence satisfying (6.87).

Concerning convergence of Vu,, we multiply the first equation of (6.75) by u. so as to obtain

1d 2 2 1 9 1 9 ) )
§£/QUE+/Q|VUE| :/QU/ESEV'UE-VUggi/Q|vu6‘ +§||u5||L°°((O,OO)><Q)CS Q|VUE| .

for any € € (0,1) and on the whole time-interval (0,00). Integrating this with respect to time
and taking into account the exponential bound on [, [Vv.[* and the uniform L*-bound on u.
from (6.76) , we establish that

sup / / |Vu|? < oo (6.93)
EG{Ej}jeN 0 Q

and hence can find a subsequence of the previously extracted sequence {¢; };en along which (6.88)
holds.

Because by Lemma 6.5.3, u. — v and S¢ (-, ue, ve) = S(-, u,v) pointwise and u. and Se (-, ue, ve)
both are bounded uniformly in & due to (6.76) and (6.5) combined with (6.73), from Lebesgue’s
dominated convergence theorem we conclude that u.S. (-, u-,v.) — uS(-,u,v) in L2 (2x(0,00)).

loc

Combined with (6.86), this gives (6.89). Turning our attention to the time derivatives, we let
Y € C§°(Q2) with [[¢|lw1.2(0) < 1 and test the first equation of (6.75) with 1. We obtain

/Q(Us)ﬂ/)‘

:‘—/VUE-Vw—i-/u555VvE-V¢+/uEUE-Vw‘
Q Q Q

- ((/Q'VW) oy Cs ([ 1902) "+ uclimeo [ 102 )( [ vur)
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6.5. System with rotational flux (general S)

for all t € (0,00), e € (0,1). From the definition of the norm in dual spaces and Young’s
inequality, we derive that

> 2 > 2 2 2 >~ 2
| ey <3 [ [ 190 8t o €2 [ [ 190

+3||“8||L°°(Q><(0}oo))2/ /|Ua|2
0 Q

for all € € (0,1). Taking into account (6.93) and (6.76), we thus obtain ¢y > 0 such that
||u5tHLQ((O’OO)’(Wg,z(Q))*) < ¢q, for all € € (0,1),

and may extract a further subsequence such that (6.90) holds. The same reasoning applied to the
second equation of (6.75) leads to (6.91). As to the third equation, employing (6.76) and (6.77)
and repeating the procedure with some ¢ € C§°(£2), we easily obtain uniform boundedness

of [° ||U5t||(2W&,2(Q))* (where W,5(Q) = CS?U(Q)H'HWI'Z(Q)) and may conclude (6.92) along a

subsequence. O

Lemma 6.5.6. The functions u,v,U from Lemma 6.5.3 and Lemma 6.5.4 form a weak solution
to (6.2) in the sense of Definition 6.5.2.

Proof. The convergence properties exhibited in (6.80), (6.88), (6.89), (6.82), (6.81) and (6.86)
enable us to pass to the limit in the integral identities (6.79) for (u.,ve,U.) for any ¢ € C§° (€2 x
[0, 00)). O

Moreover, these weak solutions obey the desired decay estimates.

Lemma 6.5.7. With Cs,Cy,C1g and C11 as in Lemma 6.5.1, the functions u,v,U obtained from
Lemma 6.5.3 and Lemma 6.5.4 obey the estimates

(-, )l (@) < 2C11€ Y, for almost every t > 0, (6.94)
Ju(-, t)=To| Lo (o) < Croe™ 7, for every t >0, (6.95)
(U 8)|| Lo ) < Coe™ 2, for every t > 0, (6.96)

NU ) peaey < Cge™ 2, for almost every t > 0. (6.97)

Proof. The estimates (6.95), (6.96) and a corresponding estimate for [[v(-, )| (q) result from
(6.76) and the pointwise convergence entailed by Lemma 6.5.3 and Lemma 6.5.4. For ¢ > 0 we
let X[¢,00) denote the characteristic function of the interval [t, c0) and observe that due to (6.85)

also X(¢,00) Ve R Xit,00) VU in L((0, 00), L% (£2)) as € = &5\, 0, and therefore

Voll Loe (12,00), 290 (2)) = 1 X[t,00) VI L0 ((0,00),L90 (92))

< hjﬂ_l}iofolf 1Xt,00) Ve | Lo ((0,00), Lo0 () < Crie™

for all ¢ > 0, so that (6.94) results. The estimate (6.97) follows from (6.87) and (6.77) by the
same reasoning. O

Naturally, in our search for classical solutions we are much more interested in obtaining
smoothness of higher order than in these boundedness assertions.
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6. A 3D Chemotaxis-Navier-Stokes Model

Lemma 6.5.8. The functions u,v,U from the previous lemmata satisfy

u €Cit @ % (0,00)), (6.98)
v €O TR (@ x (0,00)), and (6.99)
U eCp™ 3@ x (0,00)) (6.100)

for some v > 0.

Proof. We fix 7 > 0 and T > 37. Moreover we choose a smooth function £: R — [0, 1] such that
&(t) =0 for t <27 and &(t) =1 for all ¢ > 37. Then we consider the problem

{,Cw:wt—Aw—i—U-Vw:—§v—|—£u—|—§tv=:f on (7,7T)
w(-,7) =0, (91,(w)|8Q =0

of which clearly w = &wv is a weak solution. The coefficients of the parabolic operator £ are Holder-
continuous in Q x [7,7] by Lemma 6.5.4 and so is f (by Lemma 6.5.3). If combined with the
uniqueness result for weak solutions in [50, Thm. II1.5.1], Theorem IV.5.3 of [50] therefore asserts
that £v € C2H71+2 (Qx [r, T)) for some 7, > 0 and we conclude that v € C2H7:13 (Qx [37, 7))
and finally (6.99).

When attempting to apply the same theorem to u (or &u, similar as before), however, we face
the additional difficulty that it requires CH‘%HTW—regularity of the boundary values, whereas at
this point we cannot guarantee more than C72-regularity because of the involvement of u in
the argument of S in the boundary condition. We apply (6.88) and (6.95) to see that u has the
regularity properties needed for an application of [56, Thm. 1.1], which then guarantees that
w € CH12757% (@) x (0,T)) for some 42 > 0 and with that we can use [50, Thm. IV.5.3] in the
same way as before and conclude (6.98).

Turning our attention to the function U we observe that (U - V)U +£uV® 4+ ¢'U € C7 5 (Q x
(0,T7)) for some 73 > 0 by Lemma 6.5.4 and (6.98) and hence the same holds true for
PEU-V)U + &uVP + 'U) by Lemma 6.A.1. Therefore the Schauder estimates for Stokes’
equation given in [78, Thm. 1.1}, if combined with the uniqueness result in [76, Thm.
V.1.5.1], assert that &U, being a solution to ((U); = A(EU) + Z[E(U-V)U + &uVd + ¢'U],
V - (€U) = 0, belongs to the space C2T3:1+% (Q x (0,7)) for some v3 > 0 and hence
u e C*H13:145 (Q x [37,T)), so that we finally arrive at (6.100). O

Having obtained this smoothness, we can quickly fill in the missing information to see that u, v, U
are as regular as required of classical solutions.

Lemma 6.5.9. The functions u,v,U satisfy
u € COQ x [0,00)) N C%L(Q x (0,00)),
v € CON % [0,00)) N L>®((0,00); Whe () N C*1(Q x (0,00)) and (6.101)
U € C%Q x [0,00)) N L>®((0,00); D(A%)) N C%1(Q x (0, 00)).
Proof. For each of the functions, C?%!-regularity follows from Lemma 6.5.8. That v €
L>((0,00), Wh(Q)) and U € L>®((0,00), D(A?)) is asserted by (6.94) and (6.97), respectively.
Therefore we are left with the task of proving the continuity at ¢ = 0. From (6.94) and (6.91) we

know that for T' > 0 we have v € L>((0,T), W% (Q)) and v, € L*((0,T), (W3 2(9))*), where
Who () s CO(Q) — (Wy2(2))*, so that a well-known embedding result (see e.g. [75, Cor.
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8.4]) assures us that v € C°(Q x [0,7]). For U we observe that D(A?) << C°(Q) and (6.92)
and (6.97) once more make [75, Cor. 8.4] applicable. In order to show continuity of u at ¢ = 0,
we note that according to (6.76), there is ¢; > 0 such that [JucS(-, ue,ve) Ve — Ustc| oo (o) < €1
for any ¢ € (0,1) and any ¢ > 0. Consequently, for any € € (0,1) and any ¢ > 0, we have

U\, 1) — € Uo||L>(Q)
lue (-, £) — eS|

t
< / €AV - (uoS (-, uc(-, 8), v (-, 8)) Ve (-, 8) 4+ ue(-, 8)Us(+, 5)) | oo () ds
0

N

t
S / k'4(1 + (t — 5)_5_2(10 )e*)q(tfs)
0

X lue (-, 8)S (- u (-, 8), v (-, 8)) Ve (-, 8) 4 uc (-, $)Uc(+, 8) || ao () ds

bt N
< ciky <t—|—/ s 2 2q0ds>.
0

1 N
Given ¢ > 0 we then fix § > 0 such that [e"®ug — uo||p~ (o) < % and ¢ + fg 5 2 2a0ds < ﬁ

for all ¢ € (0,0). Then using the uniform convergence u.,(-,t) — u(-,t) as j — oo asserted by
Lemma 6.5.3 we pick ¢; such that [[u(-,t) — uc,; (-, )| Lo () < % Then

-, 8) = ol v () < lluls ) = e, (Ol e (@) + lue, (1) = € ol v () + € o —uo | L) < ¢
for all ¢ € (0,6). Thus the proof is complete. O

In order to prove Theorem 6.1.1, we now only have to collect the results prepared during this
section:

Proof of Theorem 6.1.1. Approximating S by functions S. as indicated in (6.74), Proposition
6.4.1 has ensured the existence of solutions (u,, ve, Ue, P.) with the properties asserted in Lemma
6.5.1. From the family of these approximate solutions, in Lemma 6.5.3, Lemma 6.5.4 and Lemma
6.5.5 we were able to extract a subsequence that converges to functions (u,v,U) in a suitable
sense, which according to Lemma 6.5.6 form a global weak solution to (6.2) in the sense of
Definition 6.5.2, according to Lemma 6.5.9 have all regularity properties required of a classical
solution and by Lemma 6.5.7 exhibits the desired decay properties. The missing component
P can be obtained from [76, Thm. V.1.8.1]. In light of the smoothness of U, u, ®, the third
equation of (6.2) asserts that VP € C°(Q2 x (0,T)). O

6.A. Appendix

We have postponed the proof of Lemma 6.2.4, which mainly consists in elementary calculus, but
is too central to the reasoning of the present work to be left unproven. We begin the Appendix
by giving this proof. After that, we will take care of a result on the Helmholtz projection, which
was used as tool in the proof of Lemma 6.5.8. Finally, this appendix contains a variant of Lemma
6.3.1 adapted to the needs of the proof of Theorem 6.1.2.

Proof of Lemma 6.2.4. The assertion can be proven similarly as in [105, Lemma 1.2]. A simple
observation shows that for any ¢ € [0, c0)

t t t
/ (145 )1+ (t—s) Pe =9 73ds < e_ét/ e~ (mDsgs 4 e“”/ s (193
0 0 0
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t t
+ e / (t—s)Pe0=93gs 4 70 / 5Tt —s)Pem (793, (6.102)
0 0

In order to obtain estimates for the summands, independently of the values of «, 3,7, 4, we can

start with the observation that

t
/‘e4vﬁwdszgglg{1_efmf®q§
0 y—90

t €[0,00),

| =

and continue by estimating

t 1 [e’s)
1 1 2
/ s~ (s gg < / s %ds +/ e sge< —— 4~ <Z forte [0, 00).
0 0 1 l—a -4 n

Also in the third term on the right hand side of (6.102) we can split the integral and use the
obvious estimates (t —s)~# <1 for s <t—1and e~ (7=0(=9) < =(1=0)(=9) <79 for o € (0,1)

to obtain

t t 1

/ (t—s)_ﬁe_('y_‘s)sds S/ e_(7_5)5d5+/ o Be—(r=0)(t=0) 4,
0 0 0

1 1 1 1

<——+— < -+ =

y—0 1-p noon

1
en
for any t € [0,00). The last integral can be rewritten as

t 1
/ sTt—s)Pem00sds = 1P / 0 (1 —0)Pe 795 te[0,00), (6.103)
0 0

where we have

1 1
/ 071 — o) Pem Dty < / o1 —-0)""
0 0
3 z 2 2 4
SQB/ o_ada—|—2a/ o Pdo < +— < -,
0 0 l-a 1-87"1n

so that (6.103) yields the estimate we are aiming for if 1 —a—f <Qorift<land 1—a—3 > 0.
Astol —a— > 0andt > 1, we estimate

1
/ 0 %1 — o) Pe =Dy
0

1—a—¢3
147 1—a 1
2
< / O'ia(l o 0)*[36*(7*5)015(10, +/ s O.fa(l _ 0’)7567(775)07:6[0'
0 Et_ T—o
L 71;.17
3t 1@ 1 1a-s) @ 1-lzezs el
< (1/2)—ﬂ/ o~ %o + (2t—11aﬁ> e~ (=85t T / (1 o) Pdo
0 1t T
26+a—1 2¢ s B
< t—(1—a=p) —(A—a=pf) -y — 5 ti=e
=1 "a 13 ¢
Here,

18 a7 _a=sToa
t TTae 2 <l+te 2 , t €1, 00),
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where we have

= B, te =P >t
l—a ™ -
because t > 1, and hence
_ﬂt% _ =848 _nym
te” 2 <te T ' <te 2", t €[l,00),
which in combination with the finiteness of sup,.,te~?"" implies the assertion. O

In order to obtain regularity of U, we have employed the following result in the proof of Lemma
6.5.8. Other than in [30], we are concerned with the impact of the Helmholtz projection on
Hélder-continuous functions (instead of on functions belonging to some LP-space only.)

Lemma 6.A.1. Let Q C RY be a bounded domain with 9§ € Cre for some o > 0, and let
T > 0. Moreover let g € C*%(Q x [0,T]). Then g = h+w, where V-h=0inQ and h-v =0
on 0Q and w = V& for some function ®. Then h € C*%(Q x [0,T)).

Proof. We have to find a decomposition ¢ = h+ w with V-h =0in Q and h-v = 0 on 0
and w = V@ for some function ®. We will construct w and conclude from its smoothness that
Pg=h=g—weC»3(Qx[0,T];RN). As preparation let us consider the elliptic problem

AP =V.f, VO v, =F Vs /chzo. (6.104)

Only assuming f € C*(Q), we fix p > N and let ¢ be such that % + % = 1. Then [74, Thm.
4.1], which mirrors the usual Lax-Milgram type result in the context of LP-spaces also for p # 2,
asserts the existence of a unique weak solution ® € {® € WP(Q), Jo ® = 0} such that

VO -Vo= [ fVp  forall p € WH(Q).
Q Q

Moreover, this solution satisfies

ci|| @~y <c2(|®llwrr) < IV Lr (o)

Ve
<cgsup M; e Wh(Q), Vo £0 ¢ < csl fllri) < call fllgagm (6-105)
Vel Lae)

with positive constants ¢y, c2, c3 and ¢4 that are guaranteed to exist by the continuity of
the embedding W1P(Q) < L (), Poincaré inequality, [74, Thm. 4.1] and continuity of the
embedding C*(2) — LP(Q), respectively. A standard elliptic regularity result (see [41, Thm.
2.8]) moreover asserts the existence of c5 > 0 such that C1*%-solutions ® of (6.104) satisfy

[@llcreaie) < cs(lfllca@) + [Pl (2)
and thus, taking into account (6.105),
||(I>||cl+a(§) < CGHf”ca(ﬁ)

with Ce ‘= C5(1 + %)
Approximating f € C*(Q) by a sequence of functions { f,, }nen C C°°(Q) for which the existence
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of classical solutions ®,, € C***(Q) is asserted by well-known results ([51, Thm. 3.3.2]), we see
that for f € C*(2) problem (6.104) has a unique solution ® € C'T%(Q), which moreover satisfies

”(I)”CHQ(Q) < CGHf”ca(ﬁ)- (6.106)

For each t let ®(-,t) denote the solution of
A(I)(7t):Vg(at)7 vq)(zt)y|aQ:g(7t)V|aﬂa /(2(1):07

and define w(-,t) := V®(-,t) and h(-,t) := g(-,t) — w(-,t), so that clearly V-h =V .-g -V -w =
Vig—A?=0inQand h-v=g-v—w-v=g-v—0,2 =0 on IN. Concerning smoothness,
we see that ®(-,¢t) € C(Q) entails w(-,t) € C*(Q) and for t1,to € [0,T] we have that
D(-,ty) — D(-, t1) = : ¥ solves

AU =V (g(:t2) =g( 1)), VI -v]pq = (g(-t2) = g( 1)) -1, /Q\I/=0
so that by (6.106)
[w(-t2) —w(- t1)llca@) S N¥llerram < collglt2) = g(t)llca )

By the known regularity of g, in conclusion we have w € C*%(Q x [0,T]) and thus g = h =
g—w € C¥3(Q x [0,T);RN). O

The last statement we have postponed to this appendix is concerned with the adaptions necessary
for proving Theorem 6.1.2 instead of Theorem 6.1.1.

Lemma 6.A.2. Given M, N,pg,qo,B,Cs as in Theorem 1.2 and some § > 0, it is possible

to choose My, My, Ms, My, € > 0, my < e\Q|7% such that for all m > my, for all ay €
(%5, min{m, \; — ¢}) and as € (0,min{a1, \] —J}) the inequalities

M.
k7(N,qo) + ks(qo)k7(qo, qo) (M1 + 2k1) || V|| Lo (0)C1 + 3k7 (L, qo) ks (25 ) M3 My Cae < =3,

N N
1+<10 1+‘10 2

(M1 + 2k1)[|[V®| Lo (2)Cs

kS(Nv N) + k8(N7 N)kS(N)

M.
+ BMsMyks( 2, N)ks( L1 )Cae < 74

a "N a0

a1 M.
ks + Cska(|Q) ™70 + My + 2k; ) MeMi+2600¢ 4 3k Mo M3 Coe < 72 and

a1 M
3CSC7I<J4M2€|Q| 1’10 + 3CSC7I<J4M2(M1 + 2]{‘1)6 + 3(M1 + 2k1)07k4M3€ < 71

hold, where k1, ko, ks, ka, k5(-), k7(-,-), ks(-,-) are taken from Lemmata 6.2.1, 6.2.2 and 6.2.3,
and Cy, Cy, Cs, Cy, C5, Cg, C7 are the constants defined in Section 6.3.

Proof. The condition my < e|Q|7% that is used to ensure the existence of initial data satisfying
(6.9) compells us to choose mg at the end of this proof, quite in contrast to the situation in
Lemma 6.3.1. Furthermore this makes it necessary to have the estimates during the proof hold
regardless of the values of aq, g, which depend on m. Fortunately, C4,...,C7 indeed do not
depend on aj, oz (and thus not on m), but — thanks to Lemma 6.2.4 — rather on (a lower bound
for) the differences between p and oy, p and as or A\; and «;. (This is the purpose 6 has been
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introduced for.) The only remaining parameter is o = o(ay) fo (1+s 2vo) ~@15ds, which is
decreasing with respect to a;. If we decide to concentrate on relatively “large” values of oy only,
namely a7 > 2t (which is of no effect to the generality of Theorem 6.1.2), given m > 0, for any
ar € (% mln{m A1 — 40}), we may rely on

o) o) 1
N m m 4 2
o(ar) < / (1 +s 21:0) e 2% s < 2/ 6_78d5+/ s Tods < — —+ U
0 0 0 2po — N

We pick arbitrary M; > 0 and A > 1 such that

2po

BN 1
A > (M + 2k;) <SQ|P0 + ~ ) . (6.107)

Moreover, we can choose My such that k3 + C5k2(|Q|_Po + M1 + 2k1)MeAA < 2> and Mj; such
that k7 (N, qo) + ks5(qo)k7(qo, q0) (M1 + 2k1)||V<I>HLoo(Q C1 < #2, and we choose M4

such that ks(N, N) + ks(N, N)ks(N)|Q| B (M + 2k1)HV<I>||Loo(Q)Cg < 2 Then we let

1 1 1
12k M3Cs” 12M3ks (L1, N)ks(—+)Cs” 12k7 (2 s ,40) ks (2

+w qO

M, }
1
2(3CsCrka My (1Q) 70 + My + 2ky) + 3(My + 2ky)Crky Ms)

0<e<miny A,
{ )02M4

Z\H

;
a0

Finally, we want to choose mgy < e|Q|_% such that (M + 2k1)o(ar)e < A for all oy €
512 ,min{m, Ay — d}), for all m > myg. This is indeed feasible, since O’(§|Q|7%) < m
ue to

€, . _1 8 2pg 2po A
LY P)< + < 8|Q 7o +3
"(2' [ €<E|Q|—;O 2poN> [ N M+ 2k

and by continuity we can find mg < e|Q\_% so that o(%52) < m With this Ch01ce for
all a1 € (%, min{m, \; — 6}), for all m > my, we have (o) < o(F) < o(%52) < m O
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7. Boundedness enforced by small signal
concentrations in chemotaxis-fluid
models

7.1. Introduction

In this chapter, we continue to study the chemotaxis(-Navier)-Stokes system

ug = Au — V- (uS(x,u,v) - Vo) = U - Vu, (z,t) € 2 x (0,7),

vy =Av —uv — U - Vo, (z,t) € Q2 x (0,7),

Uy =AU — k(U -V)U+ VP +uV, (z,t) € Q x (0,T), (71)
V.-U=0, (z,t) € Q x (0,T),
Vu-v=(Vu—-S(z,u,v)Vv) -v=0,U =0, (z,t) € 00 x (0,T),

u(z,0) = up(x),v(x,0) = vo(x),U(x,0) = Up(z), =€,

where T' € (0,0¢], K = 0,1, Q@ C RY (N = 2,3) is a bounded domain with smooth boundary
and v denotes the outward normal vector on 9. Here S(x,u,v) = (sij(x,u,v)); jeq1,.., N} IS &
matrix-valued function and ® € C'*+9(Q) for some § € (0, 1).

The purpose of the present chapter is to study this full chemotaxis-Navier-Stokes system with
tensor-valued sensitivity in dimension 2 and the corresponding chemotaxis-Stokes system in
dimension 3. When a natural Lyapunov functional (6.3) is lacking, we impose a smallness
assumption on the initial data to obtain some uniform bound for the solution. Under this
assumption, we can prove global existence of a classical solution and its large time behavior.
Compared with Chapter 6([13]), the smallness condition here is only on ||vo| (), meaning
that small concentration of oxygen can enforce stability. This result coincides with the fluid-free
system in [55]. The convexity of the physical domain is unnecessary in this paper since we use
an approach different from that in many previous works, e.g. [108].

Throughout this chapter, as in Chapter 6 we assume that

si; € C%(Q x [0,00) x [0,00)), (7.2)
|S(x,u,v)| == r{r}ax N |sij(z,u,v)| < Sp(v) for all (z,u,v) € Q x [0,00) x [0,00), (7.3)
,7€1,...,

where Sy is a non-decreasing function on [0,00). Again A denotes the Stokes operator under
Dirichlet boundary conditions in 2. The initial data are supposed to satisfy

Uug € LOO(Q)7
Vo € W ko (Q), qo > N, (74)
Uy € D(AP), for some 3 € (%, 1),
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and
ug >0, v9 >0 on Q. (7.5)
Under the above assumptions and notations, our main result is as follows:

Theorem 7.1.1. Let N € {2,3}, Q C RY be a bounded domain with smooth boundary. Assume
that S fulfills (7.2-7.8) and that one of the following conditions holds

i) N=2,k=1;

it) N=3, k=0.

Then there is 69 > 0 with the following property: If the initial data fulfill (7.4-7.5) and are such
that

[voll L= () < do (7.6)

then (7.1) admits a global classical solution (u,v,U, P) with

ue CO(Qx[0,00)) NC%! (2 x (0,00)) ,

b€ O (T x [0,00)) N L ((0, 50); W0 (©2)) A G2 (€ x (0, 00)) .

UeC®(Qx[0,00)) NL>((0,00); D(A?)) N C%! (2 x (0,00)) ,

Pecio(@x (0,5)),
for which w >0 and v > 0 in Q x (0,00). Moreover, one can find C > 0 such that

[l O)llzee (o) + [loC Dllwrao @) + 1UC D pasy < C for all t > 0.

Remark 7.1.2. The uniqueness of classical solutions in the indicated class can be proved
similarly as in [108].

Apart from boundedness and global existence, we can also show the convergence of this clasical
solution to the homogenous equilibrium.

Corollary 7.1.3. Let the assumptions of Theorem 7.1.1 hold. Then (u,v,U) fulfills
[u(-t) =TollL=@) =0, v D)llwra@) =0, and [[U(,t)|[L=(@) =0
ast — oo.

Remark 7.1.4. It is not difficult to show the convergence rates are exponential by using the
uniqueness of the solutions and applying Theorem 6.1.1.

We note that compared with the result in [112], Theorem 7.1.1 furthermore has restrictions on the
size of initial data in the form of (7.6). As a subcase of (7.1), known results on the corresponding
fluid-free version are not yet rich: Without assuming small data, the global generalized solutions
constructed in [115] still possibly become unbounded at intermediate times; only additionally
assuming |lvg|| e () small, global classical solutions are known to exist and blow-up is entirely
ruled out [55]. When the system is coupled to fluid components, our results give the same
condition which guarantee the global existence of smooth solutions.

The plan of this chapter is as follows: In Section 7.2, we approximate the problem by a system
a priori known as globally well-posed (see (7.11) later). Sections 7.3-7.5 are devoted to studying
the boundedness of solutions to this regularized problem, and we will see that the bounds are
independent of the regularization parameter. Thus upon appropriate estimates, we can obtain
limit functions of solutions to the regularized problems. This procedure is carried out in Section
7.6, and then also these limit functions are shown to be smooth enough and solve (7.1) classically
for any positive time. In Section 7, the stabilization of the solution is given.
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7.2. Approximation

Since again it is convenient to deal with the Neumann boundary conditions for both u and v,
we employ the same approximation procedure as in Chapter 6 by fixing a family {pc}.¢(0,1) of
functions satisfying

pe €CF(N) with 0<p.<1in and p. S 1in Qase 0, (7.8)
and defining
S (2, ue,v2) = pe(2)S(,ue,ve), T € Que > 0,v. > 0. (7.9)
Then we have Sc(z,us,ve) = 0 on 9Q and, by (7.3)
|Se (2, ue, ve)| < So([[vollpe(q)) forallz € Q, us >0, v. >0, (7.10)
for € € (0,1). Now we consider the following regularized problem

Uy = At — V - (ueSe(, e, ve) - Vo) — U - Vg, € Q% (0, Tinax,e),

( )

€ Q% (0, Tmax,e),
( )

),

)

Vey = Ave, — uv: — U, - Vg,

)

(z,t
(z,t
Uy = AU, — k(U - V)U. + V. + u.V, (2,1) € Q (0, Tonae.c
(x,t
(z,t

)
)
)
) € Q x (0, Tiax.e
)
Q.

)

o0 —0 (7.11)

Vu. -v=Vov.-v=0, U. =0,
ue(2,0) = ug(x), ve(x,0) = vo(z), Us(2,0) = Up(x), x €

)

€ 09 x (0, Tmax.c ),

)

Without essential difficulty, we apply Lemma 6.2.8 to the above system to see its local solvability
in the classical sense. For convenience, we summarize as follows:

Lemma 7.2.1. Let N € {2,3}, Q C RY be a bounded domain with smooth boundary, and k € R.
Assume that the initial data (ug,vo, Uy) satisfy (7.4) and (7.5), and that S fulfills (7.2-7.3). Then

there exist Tinax,e € (0,00] and a unique classical solution (us,ve,Us, P:) to (7.11) satisfying

ue € C° (Q % [0, Tinax,e)) N C*! (Q x (0, Thax,e)) 5
ve € CO (% [0, Tinax,)) N L5S, ([0, Tnax,e); W () N C3 (2 x (0, Tinax,e)) »

- _ (7.12)
Ue € 0 (Q X [Omiax,E)) N Lloooc ([Ovaax,e); D(Aﬁ)) next (Q X (O7Tmax,a)) )
P.e C™0 (ﬁ X (07Tmax,5))
and ue > 0, v. > 0. Moreover, if Tinax,e < 00, then
[ue (-5 t) | oe () + [[ve (- ) lwao () + [APU ()| p2@) = 00 ast 7 Tax,e- (7.13)

In order to see the global existence and qualitative behavior of the solutions to the regularized
problem, it is sufficient to show boundedness for each quantity in (7.13). The following lemma
is obvious.

Lemma 7.2.2. Let (ue,ve, Ue, P.) be a classical solution of (7.11). It follows that

||Ug(', t)”Ll(Q) = Hu0||L1(Q) fO’I" allt € (O,Tmax75), (714)
and |[ve (-, )|l L) < [Jvollze(q) for allt € (0, Tmax,e)- (7.15)
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Proof. The mass conservation (7.14) is obtained by integrating the first equation of (7.11) on Q
and using the Neumann boundary condition. Since u. and v, are nonnegative, an application of
the maximum principle to the second equation yields (7.15). O

We then obtain boundedness and global existence for the regularized problem (7.11).

Proposition 7.2.3. Assume that S fulfills (7.2-7.3) and that one of the following conditions
holds

(i) N=2, r=1;
(i) N=3, x=0.
There exists 6o > 0 with the following property: If the initial data fulfill (7.4-7.5), and
lvoll e (@) < 0, (7.16)
then (7.11) admits a global classical solution (ue,ve,U:). Moreover, there is C > 0 such that
e ()l 0) < O, lve( O)llwraooy < €, APV 1) 120) < C (7.17)
for allt € (0,00) and all € € (0,1).

We will prove boundedness for the 2-dimensional and 3-dimensional cases in Section 4 and Section
5, respectively. However, the LP(Q) estimate for u. derived in the next section will be applied
to both.

7.3. An a priori estimate for u.

In this section, we obtain boundedness of u. in LP(€2) under the assumption that [|v| () is
suitably small. The approach is based on the weighted estimate of fQ uP(v.) with appropriate
choice of ¢ which has been developed in [104] and adapted to the consumed type signal in
[83, 112].

Lemma 7.3.1. Let N € {2,3} and k € R. For any p > 1, there are §o = do(p) > 0 and
C = C(p) > 0 with the following property: If the initial data satisfy (7.4)-(7.5) and

llvoll Lo () < do, (7.18)
then for all e € (0,1) we have
lue (-, )| ey < C for allt € (0, Tax,e) (7.19)
and / / uP | Vu.|* < C. (7.20)
Proof. Let p > 1 and 0 < h < 2. We then can find d, satisfying
3p(p — 1)6252(09) < h(h +1) and (7.21)

where Sy is the non-decreasing function introduced in (7.3). Under the assumption of (7.18), we
can define p(v:) = (69 — v.) ™" according to (7.15), thus ¢(v.) > 0. Elementary calculus shows
that

¢’ (ve) = h(8o —v) "1 >0, (7.23)
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7.3. An a priori estimate for u,

¢ (ve) = h(h 4 1)(6 —vo) "2 > 0. (7.24)

Using the first two equations in (7.11), upon integrating by parts we obtain that for all € € (0,1),

= / puP "t o(v)(Aue — V- (ueS. - V) — Us - Vu,) —l—/ )(Ave — ueve — Us - V)
Q

= — Vug - (p(p - 1)“? 2 (Ue)vue +pup ! /( )vve)
Q
+/ e Sz (2, ue,ve) - Vg - (p(p — Dp(v)ul™2Vu, + pul™ ' (v )VUE)
Q
; / pu€71¢(vs)Us - Vg 7/ Ve ( up ! ,( )VUE Jruzs)@ (Us)vvs)
Q Q
— / uPo' (v)Us - Vo, — / u§+1v5<p/(vs)
Q Q
——plp=1) [ () Ve ~p [ a2 (0 Ve V.
Q Q
+p(p— 1)/ ué’*lcp(vs)Ss(x,us,vg) -V, - Vug +p/ uP ¢’ (ve)Se (2, ue, ve) - Voe - Ve
Q Q
—p [V Vo - [ a2 @IV - [ a2t e, (7.25)
Q Q Q
for all t € (0, Tihax,e), where we have used the identity
[ e Ve - [ gt Voo == [ gt vaz - [ wt. V()
Q Q Q Q
= / ulo(ve)(V - Ue) =0 for all ¢ € (0, Tiax.e)-
Q

In light of (7.10), we find that for all ¢ € (0, Tinax,s),

d _
4 )+ po— 1) / (vl 2|V, | + / a2 (02)| Vv 2
dt Jq Q Q
< p(p — DSo(lltoll 2~ (o) / WP (02) Ve ||V + 2p / WP ! (02) | Ve || V|
Q Q
+ pSo(leo =) / Wl (0.)| Vv 2. (7.26)
Q
Here Young’s inequality yields that
_ pp—1

o= DSu(lunlle) | w2 eVl Fod < PEED [ 2ot

+p(p— 1S5 ([voll L= @ wPo(ve)|Vu®  (7.27)
and
12

uf™"p(
))/Q
=

1 3
o [ IVl 9ol < P22 [ oo vl + wZ LI (29
Q Q

p o(ve
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7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

for all ¢ € (0, Thyax,c). We see that (7.26)-(7.28) imply that for all £ € (0, 1),

d -1
N ug(p(vs) + p(p2)/ﬂug_2@(vs)|vu52

dt o,
4 12 ,UE

+ / |V, (so”m) _ A 970 1S (ol ey o) —PSO(||U0||L<>C(Q))<P/(UE)>
Q p—1 (P(Ua)

<0 (7.29)

for all t € (0,Thmax,e)- Now using (7.21)-(7.22), and in view of the fact that Sy(J) is non-
decreasing, we obtain that

4p ‘Plz(vs) 4p 2 —h—2 1,
= h*(6g — < fgal
p—1 <p(v5) p—1 ( 0 vs) -3 (UE)’

plp = 1S3 (30)p(v2) = plp — DS3E) G0 — v) ™ < 36 ()

1
and pSo(do)¢’ (ve) = hpSo(89) (6o — ve) 71 < gga”(vg) in Q x (0, Tinaxe)-

9‘;(5}3) —p(p —1)55(60)p(ve) — pSo(5o)s0’(ve)) on

the right hand side of (7.29) is nonnegative, we immediately deduce that for all € € (0,1),

As thus the term / ul| Vo, |? (L,DN(U5> — 16
Q

d -1
—/ ulp(ve) + I%/ ul™2p(v:)|Vue|? <0, for all t € (0, Tinax)- (7.30)
Q Q

Since .
55" < p(ve) < (0 — llvoll=(ay) " in Q% (0, Timax.c)

for all € € (0,1), hence (7.19) and (7.20) result from the above inequality upon integrating on
(0, Tinax,e)- [

7.4. Boundedness in the two-dimensional case (N =2, k = 1)

We expect that the LP(Q) estimate obtained in the last section guarantees boundedness of u. in
L>(Q) as in the fluid-free system. However, this iteration procedure is much more delicate due to
the appearance of the transport terms in the current case. Since the regularity of Vv, is crucial,
which is also associated to the regularity of U., we will first derive some suitable regularity
information on U.. More precisely, bounds for the L?(2) norm of VU. imply boundedness of
|Ue(-,t)| Lr(e) for any p > 1. This is sufficient to prove boundedness of || Vv, (-, )| £ ()-

7.4.1. Boundedness of | VU.(-,1)| 12

Lemma 7.4.1. Let N € {2,3}. Suppose that

sup  sup Jue(, )| 2oy < oo (7.31)
€€(0,1) t€(0,Tmax,c)

Then there exists C > 0 such that for any ¢ € (0,1),

||U5(',t)||L2(Q) <C forallte (O,Tmaxﬁ) (7.32)
and
min{k+1,Tmax,e } _
/ / IVU|> <C forallkeN:={s€N,s < [Tnaxel}- (7.33)
k Q

94



7.4. Boundedness in the two-dimensional case (N =2, Kk =1)
Proof. Testing the third equation with U, integrating by parts and Young’s inequality yield that
1d
—— [ |U)? VU2:/ Ve - U,
2dt/sz| g +/sz| g ng :
<M e+ Ll 2 (7.34)
=2 Jo ¢ 2)\; L= J, e :

for all t € (0, Tmax,c)- The Poincaré inequality combined with (7.31) implies the existence of
¢1 > 0 such that

d

f/ |U5|2+X1/ U)* < e (7.35)
for allt € (0, Tinax,e)- Thus, (7.32) is obtained by an ODE comparison theorem. Now we integrate
(7.34) on (k,k+ 1) (k € N) to find that (7.33) holds due to (7.32). O

Based on (4.17) in [108], with the aid of (7.33) we can prove that ||[VU.(-,t)|[12(q) is bounded.
The assumption N = 2 is crucial here.

Lemma 7.4.2. Let N = 2. Suppose that

sup sup ||u€(~, t)”Lz(Q) < 00. (7'36)
€€(0,1) t€(0,Tmax)

Then there exists C > 0 such that for any € € (0,1),
IVU(-, )l z2() < C for all t € (0, Thax,e)- (7.37)
Proof. First we apply Lemma 7.4.1 to obtain ¢; > 0 and ¢y > 0 such that
NU(, )| 22(0) < 1 for all t € (0, Tinax,c) (7.38)

min{k+1,Tmax,ec } _
and / / IVU.|? <cy forall ke N:={s€N,s < [Taxc]}- (7.39)
k Q

By the definition of A, we know that ||A%U€HL2(Q) = [|VU:||12(). Testing the third equation by
AU, implies

1d
5%/ |A%U5|2—|—/ |AU€‘2:/AUE(U5V)UE_/U&*V@AUE
Q Q Q Q

1 1
<5 [avp s [UPoup g [ 1AUE 4 [T [ o
4 Ja Q 4 Ja Q
1
< [W0PIVUL+ 5 [AUE+ [V [ 0)
Q Q Q
for all £ € (0,Tmax,c). By Young’s inequality, an interpolation inequality for |Uc|/ps(q) and

[VU:|| L1y (see also in [108, proof of Theorem 1.1]), and the equivalence between the norms
|A()|l2() and || - |lw2.2(q), we can find c3 > 0 and ¢4 > 0 such that

Aer\ZIVUEI2§(/§l|UE|4) (/Q|VU€\4)%
<ol [ IV 0 [ 1avpif o

=

95



7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

1
< 7/ |AU5|2+C4(/ |U5|2)(/ VU.12)2 for all £ € (0, Toae). (741
2 Q Q Q

We see that (7.40) and (7.41) in conjunction with our assumption and (7.38) imply that there is

cs > 0 fulfilling
d 2
—/ |VU5|2+/ |AU.|* < ¢5 /lVU8|2—|-1 (7.42)
dt Jo Q Q

for all ¢ € (0, Tiax,c)- Letting y(t) := [, |[VU(+,)|* + 1, we thus see that y(t) satisfies

Y (t) < csy?(t) (7.43)

for all t € [k, min{k + 1, Thyax,c })-
If Thwaxe > 1, for all £ € N, Lemma 7.4.1 warrants the existence of ¢g > 0 and si € [k, k + 1]
such that

k41
y(sk) < cg and / y(s)ds < cg. (7.44)
k

We deduce from (7.43-7.44) that

min{k+2,Tmax,e }

t
y(t) < o f% y(s)dsy(sk) < e I y(s)dsy(sk) < 62856606 (7.45)

for all ¢t € [k + 1, min{k + 2, Tmax.c }] C [sk, min{k + 2, Tmax.c}) (k € N). Thus, (7.45) holds for
all t € [1,Tiax,c). A similar reasoning gives

y(t) < e Jo v()dsy(0) < ee5%y(0) for all ¢ € [0,1]. (7.46)

If Thaxe < 1, it is easy to see that the above estimate still holds for ¢ € [0, Tinax,c). Thus, the
proof is complete by letting C' := max{e?*>“cg, €5 ||V U|| 2(0) }- O

The following lemma is an immediate consequence of Lemma 7.4.2 and the Sobolev embedding
theorem for dimension 2.

Lemma 7.4.3. Let N =2 and p € [1,00). Suppose that

sup  sup |lue(:, 1) L2y < oo (7.47)
€€(0,1) t€(0,Tmax,)

Then there exists C > 0 such that for any € € (0,1),
HUE('vt)HLP(Q) <C forallte (OaTmax,s)~ (748)

7.4.2. Boundedness of | Vu.(-,t)| L0(0)

Now we are in a position to achieve higher regularity of Vv.. The approach is carried out by
a fixed-point type argument involving LP-L? estimates for semigroups combined with a typical
integral estimate, which is again Lemma 6.2.4.

Lemma 7.4.4. Let N = 2. Suppose that

sup sup  lue(+, 1) z2 () < oo. (7.49)
€€(0,1) t€(0,Tmax,<)

Then there exists C > 0 such that for any ¢ € (0, 1),
[Voe (-, )|l 2) < C for all t € (0, Tinax,e)-
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7.4. Boundedness in the two-dimensional case (N =2, Kk =1)

Proof. Let 6 € (1,2) and ¢’ € (2, 00) satisfy §+ 4 = 1. Testing the second equation in (7.11) with
—Avwg, integrating by part and applying the Cauchy-Schwarz inequality and Hoélder’s inequality,

we obtain that
1d 9
a 14 € A52
2dt/|Vv|+/\ Ve |

/UE’UEAUE /AU6 U. - Vu.)

< [1ael+ [+ g [1anp+ [ pver
<5 [1ank+ [+ [ wper
2 Ja
1
N T T A LA X (7.50)

for all t € (0,Tmax,c)- Let a = % € (%, 1). By applying Holder’s inequality, the Gagliardo-

Nirenberg inequality and Young’s inequality we can find ¢; > 0 and ¢; > 0 such that

2(1—a)

IVvelZe) < el Voellam ) < call Avel|7 o) lve 7 () + c2llvellis o)- (7.51)

Lemma 7.4.3 guarantees a constant ¢z > 0 such that for all € € (0,1), HUEHiQG(Q) < ¢3 for all
t € (0, Tax,e). Therefore, we can fix ¢4 > 0 such that

2(1—a
|Ue ||L29(Q ”vvsHLze’(Q) < CSHVUE”LM’ ) < CZCSHAUEH Q)HUEHL(OO(Q; +0203||”6HL°°(Q)
1
<1 / Avf? + e (7.52)
4 /o

for all t € (0, Tinax,e) and alle € (0,1). Similarly, according to (7.51), there exists ¢5 > 0 fullfilling

1
/\vue\‘l < Z/ |Av. 2 + 5. (7.53)
Q Q

Collecting (7.50) (7.52) and (7.53), we obtain ¢g > 0 satisfying

V. Vo |* <c
G el [ v <

for all t € (0,Tax,) and all € € (0, 1) due to (7.15) and (7.49). An application of ODE
comparison implies the assertion. O

Lemma 7.4.5. Let N = 2. Suppose that

sup  sup  [luc(-,t)||L2(q) < oo
€€(0,1) t€(0,Tmax,e)

Then there is C > 0 such that for any ¢ € (0,1),
Ve (-, )l a0y < C for all t € (0, Tinax,e)- (7.54)

Proof. The variation-of-constants representation of v. implies that

t
V(. ) || Loo () < Ve vo]| pao () +/ Vet =920, (-, $)ve (-, 8) || Lao (2
0
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t
+ / IVet=93 (U, 5) - Tor (-, 5))]| o s (7.55)
0

for all ¢t € (0,Tmax,e) and all € € (0,1). Recall that by the classical LP-L? estimates for the
Neumann heat semigroup, there is ¢; > 0 such that

Ve vl a0y < 1l Vool e (q) (7.56)

for all t € (0, Tmax,e). Again an LP-L? estimate for the Neumann heat semigroup from Lemma
6.2.1, Lemma 6.2.4 and (7.15) imply constants ¢z > 0 and ¢3 > 0 such that

t
/ IVt (-, 8)ve (-, 8)|| oo 2y ds
0

1 1

t
< / 1L+ (t—s) 727 E 7w ))e )y (- 5)v. (-, 8) || 120y ds
0
t
_ 1 _ —s
< / cr(L+ (¢ — )7 50)e ™D u (-, 8)|| oo l0e (-, 8) || oo () ds
0
t
SCQ/ (1+ (t— ) "Fa0)e 1) ds < cyeq (7.57)
0

for all ¢ € (0,Tmax,e) and all € € (0,1). Next we fix p1 € (2,00) satisfying p% € (q%’ 1). Let

p2 € (2,00) be such that 1 = p% + p% and § = 3—25 € (0,1). From Lemmata 7.4.4, 7.4.3 and

1_
2

6.2.4 we thereby obtain cs > 0, ¢4 > 0 and ¢5 > 0 Suoch that

t
/O Ve =2 (U (1) - Vo (-, 1)) || Lao () ds

(1 1

E e MO, (1) Vo) e
t
_ 1 — —s
S/ Cl(1+(t_s) 1+LIO)€ A1 (t )HUE(',t)HLT’Z(Q)HVUE("t)HLPI(Q)dS
0
t
S/O Cl(l+(t_S)_1+E)67)\1(t75)||U€(,’t)HLPQ(Q)HV’UE(-,t)”%‘lo(ﬂ)||V'Ua(~7t)H};fQ)

t

TS R

< S?p)||Vvs(.7s)||%q0(ﬂ)clc304/ (14 (t — )" e (t=9)gg
s€(0,t 0

<cs sup Vel 8)] a0 (7.58)
s€(0,t)

for all t € (0, Tinax,e) and alle € (0,1). Let T € (0, Tmax,e) and M(T) := sup ||[Vve(, )| L0 ()-
te(0,T)
Collecting (7.55)-(7.58), we thus obtain the existence of ¢g > 0 such that for all € € (0,1),
M(T) < cg 4 cgMO(T) for all T € (0, Tnax.c)-

Since 6 < 1, (7.54) is obvious by Young’s inequality. O

7.4.3. Boundedness of u.
Lemma 7.4.6. Let N = 2. Suppose that

sup  sup  Jluc(-,t)|| L2 ) < oo
€€(0,1) t€(0, Trmax.c)
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7.4. Boundedness in the two-dimensional case (N =2, Kk =1)

Then there exists C > 0 such that for any € € (0,1),
lue (-, )| Lo () £ C for all t € (0, Tiax,e)- (7.59)

Proof. Following the variation-of-constants formula for u., we see that
¢
e (1) || L ) < ll€"Puol| Lo +/ €AY+ (ueSe (-, ue, ve) - Ve) (-, 8) || oo () ds
0

¢
+/ He(t_s)AUE(-,s) “Vue(, 8)|| Lo ()ds (7.60)
0

for all t € (0, Tinax,e) and all € € (0,1). According to the maximum principle, the first term can
be estimated as

lle"®uol| oo () < lluollp=(q)y for all t € (0, Tmax,e)- (7.61)

Now we pick pg € (2,q0) and p1 € (pg, o) such that p% = p% + q%' Let a = 1— % € (0,1).
Applying the LP-L9 esatimates for the Neumann heat semigroup, Holder’s inequality and

Lemmata 7.2.2, 7.4.5, Lemma 6.2.4, we obtain ¢; > 0, ¢co > 0 and c¢3 > 0 such that
/Ot [ DAY - (ueSe (-, e, v2) - Ve ) (-, 8)| Lo () ds
<c /Ot(l + (t— s)f%fﬁ)e_’\l(t_s)||(u55’5(-, Ue,ve) - VUe ) (-, 8)|| Lro () ds
< c15o([voll = (o) / (14 (= 97O () o 7)oy

t
_1_ 1 _ _
§0150(||7}0||Loo(ﬂ))/ (1+(t—s) 2 po)e A1 (t—s)
0
X e (-, 811 o 2y 12t (-5 8) | ey V0 (-5 8) | o () ds

¢ P S _
< 280(||vol| () sup ||u€(.75)||aLw(Q) (/0 (I14+(t—s) 2" 2)e A1 (t s)d8>

s€(0,t

<cz sup |lue(s, 8)[|7 ) (7.62)
s€(0,t)

for all ¢ € (0, Thax,c) and all € € (0,1). Noting that U, - Vu, = V - (u.Ue), we pick p € (2,00)
and po,p’ € (p,00) such that % = piz + ;. Letb=1-— p% € (0,1). A similar reasoning as in the
above inequality shows that

t t
/ He(t’S)AUe(" s) - Vue(-, 5)||Lx(9)ds = / ||e(t*5)AV (ue(- 8)U (-, 8))|| oo () ds
0 0
t

<o [ 9N sl U)oy
0

vl

t
<o / (L4 (=) F5)e 0 e ()] o U () | o
t
_1_1 _ _ —
<o / (U (= 8) 30 e () e g e )y [T 8)] oy s

t
<es ( / (1+<t—s>—2—p>e*1<ts>ds) sup Jlte ()l
0

s€(0,t)
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7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

<cs sup fue(-8)| (o (7.63)
s€(0,t)

with some ¢4 > 0, ¢ > 0 and ¢ > 0 for all ¢ € (0,Thax,e) and all € € (0,1) due to (7.31)

and (7.48). Letting T' € (0, Tiax,e) and M(T) = sup |luc(:,t)|[(q), we therefore obtain a
te(0,T)

constant ¢; > 0 such that

M(T) < ez M*(T) + ¢ MP(T) + ¢ for all T € (0, Tinax.c)-

Since a,b € (0,1), elementary argument implies a constant cg > 0 such that M(T) < cg for all
T € (0, Thax,e) and all € € (0,1), and thereby proves the assertion. O

7.4.4. Proof of (i) in Proposition 7.2.3

In order to prove global existence of the solution, it is left to show boundedness of
|APU (-, )| L2 (0)-

Lemma 7.4.7. Let N = 2. Suppose that

sup sup  [[ue(,?)[[r2(0) < oo, sup sup  [[Ue(:0)[|p2(0) < o0
86(071) te(077—‘max,5) 56(071)t€(07Tmax,5)

and sup sup  [[VU(:,t)[|L2(q) < oo
£€(0,1) t€(0,Tmax,c)

Then there exists C > 0 such that for any e € (0,1),
[APU (- ) || 2y < C for all t € (0, Tnax.c), (7.64)
where B is as in (7.4).

Proof. Let a = %. From the Gagliardo-Nirenberg inequality and Lemma 6.2.3 we know that

there is constant ¢; > 0 such that for all € € (0,1),
HUE('vt)HLOC(Q) < CIHABUE("t)llaLQ(Q)||U6('7t)|‘},gzlg) for all t € (Ovaax,E)- (7'65)
Applying A® to both sides of the third equation in (7.11), for all ¢ € (0,1), we have
t
|APU (-, 1) |22y < 1A%~ Up]| 12 () +/ |APe= =92 P (U, - VYU (-, )| 120y ds
0
t
+/ |APe= =) A Py (- $)V | 12(yds for all t € (0, Trmax,c).  (7.66)
0

By an estimate from [76, (1.5.16)] and (6.15), we find ¢z > 0 such that
|‘Aﬁ67tAU0HL2(Q) = ||67tAABU0HL2(Q) < C2||ABUO||L2(Q) for all ¢t € (O,Tmaxvg). (7.67)
In view of the assumption, we can fix c3 > 0 such that ||Uc(-,t)||r2() < €3, [|ue(-,t)|lz2(0) < 3

and |[|[VU:(:,t)||2(q) < c3 hold for all ¢ € (0,1) and all ¢ € (0, Tiyax,c), Which together with
(6.14), (7.65) and Lemma 6.2.4 yields the existence of ¢4 > 0, ¢5 > 0 and ¢g > 0 such that

t
/ 1A% e 94 DU - YU (- 8)| 2y ds
0
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7.5. Boundedness in the three-dimensional case (k =0)

t

ca(t — 8)Pe M) |(UL - V)UL(, )| 120y ds

IN

IA
— S S—

t
ca(t —5) " Pe MU, 8) | (@) VU 8) [ 22 () ds

t

caca(t — ) Pe 1 APUL (-, 8) 120y U=, 5) | oy ds

t

<o s AUl [ (£ 0) PN
te(07Tmax,s) 0

<5 sup [APUL(9) ) (7.68)
s€(0,t)

for all ¢ € (0, Tmax,e) and all € € (0,1). Furthermore, by Lemma 6.2.4 we can find ¢7 > 0 such
that for all € € (0,1)

t
/HABe*(t*S)A(@uE(',s)V(I)HLZ(Q)ds
0
t
< [ eal Tyt = )P0 e 5) 2 s
0

t
< aer |Vl [ (= 5) e N0y
0
< 7||[V®|| poo()  for all t € (0, Timax,e)- (7.69)

Given T € (0, Tinax,c), we define M(T) := sup |[|[APU.(:,t)||r2(). Taking supremum on both
te(0,T)

sides of (7.66) over (0,T"), by (7.67), (7.68) and (7.69) we find ¢g > 0 such that for all € € (0,1),
M (T) satisfies

M(T) <cg+ceM*T) forall T € (0, Tiax,c)- (7.70)
An application of Young’s inequality to the above inequality leads to the assertion. O

Proof of Proposition 7.2.3 (i). Let pg > 2 and let dy := d(py) be as defined in Lemma 7.3.1.
We immediately see from Lemmata 7.4.1-7.4.6 that there is C; > 0 such that for all € € (0,1),
lue (-, )| oo () < C1 forallt € (0, Thnax,e). Lemma 7.2.2 and Lemma 7.4.5 imply Cy > 0 such that
v (-, ) lw 100 () < Co for all € € (0,1) for all £ € (0, Tinax,c). Also, Lemma 7.4.7 implies C3 > 0
with the property that [|APU.(:,t)[|12(q) < Cs for all € € (0,1) and all t € (0, Timax,c)- According
to Lemma 7.2.1, we deduce that T .« = 00, thus the solution is global and bounded. O

7.5. Boundedness in the three-dimensional case (x = 0)

In this section, we deal with the chemotaxis-Stokes system in the three-dimensional setting.
We first give a sufficient condition for boundedness which in conjunction with Lemma 7.2.1 proves
Theorem 7.1.1. In fact, since Lemma 7.3.1 provides an LP estimate for u. for any p > 1, we can
choose p sufficiently large to prove boundedness of u. in L>°(Q2). However, here we would like to
give an optimal condition for this extension critearion.

Proposition 7.5.1. Let N =3 and p > % Suppose that

sup  sup[|ue( 1) ooy < oo (7.71)
€€(0,1) t€(0,Tmax,e)
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7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

Then there exists C > 0 such that for any € € (0,1),
lue (-, )| Lo () < C for all t € (0, Tiax,e)- (7.72)

We will prove the proposition by several lemmata, which improve regularity for U, and Vv, in
suitable ways.

Lemma 7.5.2. Let N € {2,3}. There exists C > 0 such that for all € € (0,1),

t
/ / |Vve(-,8)[2ds < C  for all t € (0, Tnax.c)-
0o Jo

Proof. We test the second equation with v. to obtain that for all € € (0,1)

1d
77/ v? +/ |V | <0 for all ¢ € (0, Tinax.c)- (7.73)
Integrating over (0,t¢) and using Lemma 7.2.2, we achieve our goal. O

Lemma 7.5.3. Let N =3, p > % and ' € (%,min{l - % + %, 1}) such that 8/ < . Suppose
that

sup  sup  Jlue(,t)|| L) < oo (7.74)
€€(0,1) t€(0,Tmax,e)

Then there exists C > 0 such that for any ¢ € (0,1),

|AP U (1) 20y < C and (7.75)
U (- 8) || Ly < C for all t € (0, Tax,c)- (7.76)

Proof. The proof is similar to that of Lemma 7.4.7. We start with observing th at
t
AP U (-, 1) 2y < 1A% e Up]| L2 () +/ | A% e =9 A Doy (-, )V B|| 12 () ds
0

and fixing ¢, ¢y > 0 such that
1A% e AU || p2(0) < 1| A7 Ul (o) < 2l APUoll 120 (7.77)

for all ¢t € (0, Tax,c)- Lemmata 6.2.4, 7.3.1 and (6.14) imply the existence of cg, c4,c5,¢6 > 0
such that

t
/ | A7 DA Py V| 120y ds
0

t —s t—s
< [ 147 AT P )T 2oy
0

t -8 ’

t— A t—s

S/ 03< 28> efT(FS)He%Aﬂue(g5)V<I)||L2(Q)ds
0

+ t_s _B/ )\/1 , t—s —%(5—5)
s/ C4< 2 ) e (2) l[ue (-5 9l Lo (@) VR e () ds
0

N

K _BNLN M
§05/ (t =) T e T ue ()| () | V] e () ds
0
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7.5. Boundedness in the three-dimensional case (k =0)

N

t ) N

ScﬂV¢mwgD/Xt_syﬂf%+jgﬁqu%
0

S C7||V(I)||Loe(9)

for allt € (0, Timax,e). Therefore, we can find cg > 0 with the property that ||Aﬂ/ Us( )l 2 (0) < cs8

for all t € (0, Tinax,-) and for all £ € (0,1). Since 3’ > &, the embedding: D(AP") < L>(Q)
implies (7.76). Thus the proof is complete. O

Lemma 7.5.4. Let N =3, p > % and q € (N, qo] such that q < (Nf\_filz))n_ Suppose that

sup  sup [luc(+t)]|Lr() < oo (7.78)
£€(0,1) t€(0,Tmax,e)

Then there exists C > 0 such that € € (0,1),
IVu(-, )l Lag) £ C for all t € (0, Tiax,e)- (7.79)

Proof. The variation-of-constants of v. implies
t
IV (-, )| ey < Ve o]l Lo (o +/O Ve =92 (uv.) (-, 8)|| Loy ds

t
+/vaﬂmwav%NJWMQ@
0

for all t € (0, Tymax,e). From an LP-L9 estimates for the Neumann heat semigroup and Hélder’s
inequality, we find some ¢; > 0 such that such that

Ve vl Loy < cre™ Vgl Lo ()

for all ¢ € (0, Tinax,e)- Since 1 < ¢ < (N]llif)”, we know that —1 — ﬂ(% — E) > —1, thus by an LP-
L% estimate for the Neumann heat semigroup, our assumption on ||u. (-, )| z»(q), and Lemmata

6.2.4 and 7.2.2, we can fix ¢5 > 0 and ¢3 > 0 such that

t
/||Ve<t—S>Au5(-,s)ve(~78>||m<ﬂ>d3
0

1

t
L1 N(1_ 1y, 5)
S/ oL+ (t =) 272 0))e 1 g ( 5)oe (-, 8)| o) ds
0

t
1 _Nel1_ 1 —
< [Cealt (6= 9 EEGT A 5) ooyl ey < e
0

for all ¢t € (0, Tmax,c) and all € € (0,1). Now we fix ¢’ € (2,q) satisfying ¢’ >
1 1

a= "1 f (0,1). Tt can be easily checked that (—l i l)) 52— > —1. Moreover, the

Holder mequahty Vo (, )l Lo () < V(5 )] 720 Ve (- )HLQ(Q holds for all ¢ € (0, Tinax,e)

and all € € (0,1). Lemmata 6.2.1, 7.5.3, 6.2.4 and 7.5.2, Holder’s inequality yield the existence
of ¢y >0, c5 > 0 and cg > 0 such that for all € € (0,1)

+
7+ . Let

Wl
“\z m\z
%\zﬂ \2

t
/ Vet =AU (-, 5) - Vo (-, 8)|| pa()ds
0
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7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

t 1
S/ ea(14 (t—s) 2 @) MO (5 §)V (-, 8)l| or () ds
0
t 1
S/O (14 (t—5) 2 2@ T ()] o ) U 8) o (0 s

t _1_N L_, _ s a a
< [ a4 (=9 H G NI )| T Ol [Tl oy

t —5= % (=) g~ M(t—s) a
<cy S?Opt) |Voe(-,s )”Lq Q) ( +(t—s) 2 27 a )e ||VU5('7S)||L2(Q)dS
se(0,
C4 SUp U& , S L‘IQ UE ,S L2 S
= IV @ ||v )220
s€(0,t)
’ N1 1)\ 72 25
X (/ (14_(15_3)*5*7(7*;)) e 2a>\1(ts)ds>
0
t 2;11
< sup [[Vee(,s )”Lq(g) </ (1—5-(??—8)(%];((11’3)22a)e—2»2(1>\1(t—3)d8>
s€(0,t) 0

< Cg Sup ||VU€(7 )”L‘Z ()
36(0775)

for all t € (0, Timax,c). Let T € (0, Thax,e) and M(T) := sup ||[Vve(:,t)||La(q). Combining the
te(0,T)
above estimates, we find ¢; > 0 such that M(T') satisfies
M(T) < esM*(T) 4 ¢

for all T € (0,Timax,c) and all ¢ € (0,1), which together with the fact that a < 1 implies the
assertion. O

Now we are ready to prove boundedness for u..

Proof of Proposition 7.5.1. The representation formula for u. yields that
e (-, )l L @) < llePuol| e () + / eV - (1S (-, ue, v) Vo ) (-, ) || oo () ds

/ [ =DAY - (ue (-, $)Ue (-, 8))|| oo () A (7.80)
for all ¢ € (0, Tinax,c)- First, using the maximum principle, we have
e 2 uol| () < |luollp=() for all t € (0, Tmax,c)- (7.81)

Let N < ¢ < min{qo, ﬁ}, we can find py € (N,q) and g1 € (1,00) such that p% = % + qil.
Leta=1- q% € (0,1). By an LP-L? estimates for the Neumann heat semigroup and the Holder
inequality, we obtain the existence of ¢; > 0 and ¢z > 0 such that for all € € (0,1),

t
/ ||e(t75)Av (ueSe (v, ue, ve) - Ve ) (-, S)HL‘”(Q)d‘S
0

N

t
g/ (14 (t— 8) 3 B0)e MO (0,8 e, 2) - Vo) ()| ooy ds
0
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7.6. Passing to the limit

N

t
_1_ g (f—s
S/ c1So([|voll e (@) (1 + (¢ = )27 20)e 2= |V (-, 8) | po(ey l[ue (-, 8) | Lor () s
0

‘ - —s a —a
S/O c1So([[voll Loe (@) (1 + (t = 5) 77720 )e 1=V (-, 8) | Lagy e (-, 8) | F oo gy e (5 8) [ 1 ey s

<cz sup ue(s, 8)|| 70 (q) for all ¢ € (0, Timax.e)- (7.82)
s€(0,t)

Now we pick p; > N, and let b = 1 — p% € (0,1). An LP-L7 estimate for the Neumann heat
semigroup together with Lemma 6.2.4, 7.5.3 and 7.2.2 implies the existence of c¢3 > 0 and ¢4 > 0
such that for all € € (0,1),

t
/o ||e(t_s)AV (ue (-, 8)Uc (v, 8)) | oo () ds

N

t
g/ es(1+ (t — )75 B0 M) () U 5) o s
0

N

t
< / cs(L4 (¢ =) 72720 )e M fua (-, 8)l[ o () U (- 8)l o0 0y ds
0

< K 1 _ —%—% 7)\1(1575) U b 1-b d
= /. cs(1+(t—s) re 1U<(s )l o @ lle (5 8) 700 (@) 1 (-5 9)l| iy ds
<ecy sup |lue(s s)||l£oo(m for all t € (0, Tinax,e)- (7.83)

s€(0,t)

Let T € (0,Twmax,c) and M(T) := sup |juc(-,t)| (). Finally, collecting (7.80)-(7.83), we
te(0,T)
conclude a constant ¢ > 0 such that for all e € (0,1), M(T) satisfies

M(T) < ¢5 + cs M*(T) + cs M*(T)

for all T' € (0, Tiax,e ), which proves the assertion. O

7.5.1. Proof of Proposition 7.2.3 (ii)

Combining Proposition 7.5.1 and Lemma 7.3.1 proves Proposition 7.2.3.

Proof of Proposition 7.2.3 (ii). Let p > 3 and let &y := do(p) as defined in Lemma 7.3.1. We see
that (7.16) implies a constant Cy > 0 such that for all € € (0,1), we have |Juc(-, )| rr) < C1
for all ¢t € (0,Tmax.e), which combined with Proposition 7.5.1 yields a constant Cy > 0 such
that |Juc(:,t)||Le(q) < C2 for all t € (0, Tinax,c) and all € € (0,1). Lemma 7.5.4 implies C3 > 0
fulfills that [|[Vve(:,t)||Law0) < C3 for all e € (0,1) and all ¢ € (0, Tinax,c). Moreover, since

now sup sup  luc(+,t)|lz2(0) < oo, we apply Lemma 7.5.3 to find C4y > 0 such that
€€(0,1) t€(0,Tmax,<)

|APu(-,t)|| z2(0) < Cy for t € (0, Tax,e) and all € € (0,1). Therefore Lemma 7.2.1 implies that
Tmax,e = 0o for all € € (0,1), thus the solution is global. O

7.6. Passing to the limit

We now wish to obtain a solution of (7.1) by taking ¢ — 0 in (ue, v, Ue). In order to achieve
this, we shall first prepare some estimates for (uc,ve,U:) which are independent of €. Since we
cannot expect the regularity in C2+®1+% (Q x (0,00)) to be uniform in ¢ due to the construction
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7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

of S¢, we will first show that the triple of limit functions solves (7.1) in the sense of distributions,
and then apply standard parabolic regularity result to conclude that it is actually a classical
solution. This procedure is similar to that in Chapter 6.

Let us first recall the definition of a weak solution, which is in the spirit of Definition 6.5.2.

Definition 7.6.1. We say that (u,v,U) is a global weak solution of (7.1) associated to initial
data (ug,vo, Up) if
u € L*>®((0,00) x Q)N L3

loc

((0,00); WH2(92))
v e L>®((0,00) x Q)N LE _((0,00); WH2(Q))

U € L*=((0,00) x Q) N L2,.((0, 00); Wy 2 ()

),
),

(7.84)

and for all ¢ € C§°(2 x [0,00);R) and all ¢ € C§%, (2 x [0,00); RY) the following identities hold:

/OOO/Qm/,t/Quoi/,(.’o)—/OOO/QVU.Vq/)Jr/OOO/QuS(x,u,v)~Vv'V1/J
+/Ooo/QuU~V1/1,

_/Ooo/gmj;t—/ﬂvow(',()):—/OOO/QVU~V1/)—/OOC/QW¢

+/OOO/QuU-vw, (7.85)

and —/OOO/QU-Q—/QUO-C(-,O):—/OOO/QVU~VC—/</OOO/Q(U~V)U-C
+/OOO/QUV<I>-C.

Next we prepare some estimates required to obtain the above identities. The idea is based on
Section 6.5, but here we are going beyond to obtain some uniform Holder estimates.

Lemma 7.6.2. There exists C > 0 such that for all € € (0,1),

/ /\quPgC and (7.86)
0 Q
/ /\wsﬁ’ga (7.87)
0 Q

Proof. Since Trax,e = 00, Lemma 7.5.2 implies (7.86). Testing the first equation in (7.11) with
u. and using Young’s inequality implies that

1d 9 2_/
Zdt/ﬂug—i—/Q\Vug| = QuESEVuE V.

1 1
< 5/ |vu€|2+5HUE||%°°(Q)(SO(||’UO||L°°(Q)))2/ [Vue|?,
Q Q

for all ¢ > 0. Therefore, we establish (7.87) by (7.86) and Proposition 7.2.3. O
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7.6. Passing to the limit

Lemma 7.6.3. There are v € (0,1) and a sequence {€;};en such that €; \, 0 as j — oo, and
that as € = €; \( 0, it holds that

e = u in C)F (2 x (0,00)), (7.88)

ve = v in C02 (0 x (0,00)), (7.89)

Us = U in C] (2 x (0,00)), (7.90)

VU. = VU in C}} (Q x (0,00)). (7.91)

Moreover, there is C > 0 such that for all s € [1,00), we have

ull o3 @xossry < © (7.92)

||U||C’Y’%(§X[s,s+1}) < C and (7.93)

1U 1 @i s, 1)) < C- (7.94)

Proof. The first part (7.88)-(7.91) is precisely written in Lemma 6.5.3 and 6.5.4. In order to
prove the remaining part, it is sufficient to show that there is C' > 0 such that for all € € (0,1)
and s > 1,

3 @xfssr) = O (7.95)

Vel 3 (@i o0y < € and (7.96)

1Uell o1 @ s,y < C- (7.97)

Let s > 1. Let & € C§°((0,00)) satisfy € = 0 on (0,s — 3) U (s+ 2,00) and £ = 1 on [s,s + 1],

and £, < 4 for all s > 1. We see that {u. is a weak solution of

(Cu)y — V- (V(€ue) — EucSe(x,ue, v ) Ve —uUe) = E'ue, t € ]0,00),

e ||

associated with Neumann boundary condition and &u.(-,0) = 0. Since (V(€ue) —
EucSe(z,ue, v:) Vo, —uUs) - V(€ue) > 2V (€ue)? — u2|Se[*| Ve |? — u2|U.|*, we see together with
the fact guaranteed in Lemma 7.4.5 and Lemma 7.5.4 that the norms of u?2|S. |*|Vve|? + u2|U|?
and ¢u. are bounded in LP((s — 3, s + 3); L9(Q)) for suitably large p or ¢ and independent of
s and ¢, thus Theorem 1.3 in [73] implies there are v; € (0,1) and ¢; > 0 such that for every
e€(0,1)

||u5||071’771(§><[s,s+1]) < HSUEHC”PWTI(ﬁx[sfé,s+g]) <c forall s >1,

2

%,s(—i— g;;Lq(Q)). A similar reasoning yields some v2 € (0,1) and ¢z > 0 such that for each
€€ (0,1

where ¢; depends on [|§uc|| L (x (s— 1,5+ 2)) and the norms of u?]S:|?| Ve ? +u2|Uc|? in LP((s —

HUEHCVZ‘W%(EX[S,SH]) < ¢g for all s > 1.

The derivation of the regularity of U, is similar to Lemma 6.5.4. We consider £U,, which satisfies

(EU2)0 = &UL. + Uy = A(EUL) — RE(U- - VUL + 6V + €U + EVP, on (s — 5,5+ 5),

with EU.(-,0) = 0 and £U; = 0 on 99Q). Thus by an application of [34, Theorem 2.8], for any
r € (1,00), we deduce the existence of a constant cs > 0 fulfilling

/O TG AN / ID2€U) 50
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7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

< cn / |2 (V. - V)UL) + 2 (EueV®) + 2 (EU.) [} s,

which, due to the definition of £ and boundedness of U, u., &', for all € € (0,1)

s+3

s+3 s+3 3
[0+ [ DMUMoy < s [ IV Uiy + s

1 1
2 2

2

NN

for all s > 1 and for some ¢4 > 0, ¢5 > 0. Let ¢ € (0,7) and a = ;_&+§ € (4,1). Then the

Gagliardo-Nirenberg inequality yields cg > 0 such that
r ar 1—a)r
IV (€U )17y < c6ll D2 (EU) (5 )18 1 (ET) (- ) ) for all ¢ > 0.

Integrating the above inequality on (s — 1,5 + 2) and using Young’s inequality guarantee the
existence of ¢; > 0 and cg > 0 fulfilling

s+% s+% )
/ IV UGy < 7 / D20 | 0

1 1
-3 $ST3

S-‘r% 1

1
2

for all s € [1,00) and for every € € (0,1). Combining the above estimates we see that there is
cg > 0 such that for all s > 1 and all € € (0,1),

s+1 s+1
[ 1@l + [ 1Dy < e

Let r € (1,00) be sufficiently large, the Sobolev embedding theorem implies the existence of
~v3 € (0,1), c10 > 0 such that

||U5||C1+73»73(§><[5’5+1]) < ci10

for all s € [1,00) and for every € € (0,1). Choosing v € (0, min{v1,v2,7v3}) we have proved
(7.92)-(7.94).
O

Lemma 7.6.4. There is (5)jen C (0,1) such that €; \ 0 as j — oo, and that as e = ¢; \, 0,
it holds that

Vu, — Vu in L*(Q x (0,00)), (7.99)

Ve — Vo in L?(Q x (0,00)), (7.100)

ve = v in L((0,00); WH(Q)), (7.101)

U. 2 U in L°((0,00); D(A)), (7.102)

Se(x,ue(x, t),ve(x, b)) = S(z,u(x,t),v(x,t)) a.e. inQx (0,00). (7.103)

Proof. First (7.99) and (7.100) follow from Lemma 7.6.2. Proposition 7.2.3 implies (7.102) and
(7.101). Due to the obtained convergence (7.88) and (7.89) and the continuity of S, we conclude
that (7.103) holds. O
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7.6. Passing to the limit

Lemma 7.6.5. The functions u,v,U from Lemma 7.6.8 form a weak solution to (7.1) in the
sense of Definition 7.6.1.

Proof. We test (7.11) with ¢ and ( as specified in Definition 7.6.1. Lemma 7.6.4 allows us to
take the limit in each integral, thus we obtain the weak formulation. O

Lemma 7.6.6. The functions u,v,U from Lemma 7.6.4 satisfy

247,14+ 3%
ueC,,

(@ x (0,00)), U e CFIIT2

loc

(€ x (0,00)), v e CIITITE

loc

(Qx (0,00)) (7.104)
for some v € (0,1). Moreover, there is a constant C > 0 such that for all s > 2,

<

||u||C2+’Y'1+%(§><[s,s+l]) <C, HUHC“””H%@X[S,5+1]) <C, ||U||C2+v,1+% <C. (7-105)

(Qx[s,s+1]) —

Proof. The property (7.104) is precisely proven in Lemma 6.5.8. It is left to show that (7.105)
holds. Taking &, as in Lemma 7.6.3, we see that {v is a weak solution of (§v); — A(&v) +u(&v) +
U-V(v)—¢v=0onte (s— 2% s+ 3) associated with Neumann boundary condition and
(s — 1) = 0. First [50, Thm IV.5.3] guarantees that &v € C?* 143 (Q x [s — 1 s+ 2]).
Furthermore, [57, Thm 4.9] can be applied to show that the norm ||£UHC2+%1+%(§X[3_%784_%]) is
controlled by the corresponding Holder norms of v and U, which are bounded due to Lemma
7.6.3.

For the regularity of u, we improve it similarly as v with slight changes since its boundary
condition also involves v. We first estimate the 175" -norm of &u, and its C2*71+3 norm by

[57, Thm 4.8] and [57, Thm 4.9], respectively. Therefore, for all s > 1, ||u|\02+%1+%(§x[g a41) is

uniformly bounded.
Again, we consider £U, which satisfies (€U )y = A(EU) — k€(U - V)U + EuV® + £'U + EV P with
Dirichlet boundary condition. Lemma 7.6.3 already ensures the C7>2 bound on the right hand
side. Thus [78, Thm 1.1] together with the uniqueness guaranteed in [76, Thm.V.1.5.1] implies
(7.105).

O

We have shown that the weak solution (u,v,U) of (7.1) also enjoys higher regularity as indicated
in Lemma 7.6.6. Therefore, it is actually a classical solution.

Proof of Theorem 7.1.1. Lemma 7.6.5 shows that the function (u,v,U) obtained as the limit of
(te, v, Ue) is a weak solution of (7.1) . Moreover, its smooth regularity is guaranteed by Lemma
7.6.6. Hence we know that it solves (7.1) classically. The boundedness of ||u(-,?)|[z~(q) can
be seen from Proposition 7.2.3 and (7.88). We see that (7.101) implies that [[v(-,)|[y1.90(q) is
bounded for all £ > 0. The associated component P is obtained by [76, Thm.V.1.8.1] and satisfies
VP e C%0 x (0,00)) due to the smooth regularity of u, ®. Moreover, U € L>=((0,T); D(A?)) is
asserted by (7.102). The continuity up to the initial time can be proven similarly as [13, Lemma
5.8] (Lemma 6.5.9 in Chapter 6); first we prove that for T > 0, u;,v; € L2((0,T); (W12(2))*)
and U; € L2((0,7T); (Wolg(Q))*) In conjunction with (7.101) and (7.102), we can conclude the
assertions for v and U by the embedding [75, Cor. 8.4]. Using the continuity of u. and the
uniform convergence (7.88), the continuity of u at ¢ = 0 can be done similarly as in [Lemma
6.5.9, Chapter 6]. Hence we have proved Theorem 7.1.1. O
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7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

7.7. Stabilization

In this section, we prove the large time behavior for each component of the solution (u,v,U)
obtained in the last section. Let us begin with the convergence of u, which will imply convergence
for v and U later.

Lemma 7.7.1. Let (u,v,U, P) be a bounded classical solution of (7.1). We have

/ / |Vul|? < oo.
o Ja

Proof. The statement holds due to (7.87) and (7.99). O
Lemma 7.7.2. Let (u,v,U, P) be a bounded classical solution of (7.1). We have

|u(-,t) — ol L@y — 0, ast — oo. (7.106)
Proof. Suppose on contrary that there are ¢; > 0 and a sequence t; — oo such that

lu(-,tr) —WollLe()y > 1 for ke N. (7.107)

Now we define -
gk (z,8) = u(z, s+ tg), (z,s) € Q x[0,1].

By the regularity guaranteed in Lemma 7.6.6, we see that there are a € (0,1) and ¢o > 0 such
that for all £ € N,

gk HC““’H%(QX 0,1)) < ca.

The Arzela-Ascoli theorem implies that {gx }ren is relatively compact in C*(Q x [0,1]). Thus we
can find a subsequence {gi, }jen and us € C*(Q x [s, s 4 1]) such that

Gk, — Use € CT (2 x [0,1]), as j — oo. (7.108)

It is left to show uo = Ug. From Lemma 7.7.1, we see that

1
//\ngj|2—>0asj—>oo,
0 Ja

which combined with (7.108) implies that

1
//|Vuoo|2:0.
0o Jo

Since us € C1(Q x [0,1]), we deduce that u., = L with some L € R. Moreover, we have

1 1 1
Q|- L :/ /uoo = lim / /gkj :/ /uo.
0 Ja =7 Jo Ja 0 Jo

Thus we conclude uy, = . This contradicts (7.107) by the definition of . O

Lemma 7.7.3. Let (u,v,U, P) be a bounded classical solution of (7.1). For any 0 < n < Ty,
there is C' > 0 such that

(-, t)]| oo () < Ce™ for all t > 0. (7.109)

110



7.7. Stabilization

Proof. For any 0 < n < ug, we can find T' > 0 such that

u(z,t) >n for all (z,t) € Q x (T, 00).
Thus the second equation of (7.1) can be written as

nw<Av—nv—-U-Vov forallt>T.
The maximum principle yields that

(- D)) < v(T) || Leeye” " forall ¢ > T.

Since v is bounded in  x [0, T) by Theorem 7.1.1, an obvious choice of C' completes the proof. [
Lemma 7.7.4. Let (u,v,U, P) be a bounded classical solution of (7.1). Then we have

U, )l2) — 0, as t — oo, (7.110)
NUC )| o) — 0, ast — oo. (7.111)

Proof. First we know that there is C' > 0 such that

UG Ol < C, (7.112)
JAPU (- t)|| 12y < C for all t > 0. (7.113)

Since (7.65) together with (7.113) and (7.110) implies (7.111), it is sufficient to prove (7.110).
Testing the third equation in (7.1) with U and integrating by part, we obtain

/\UF /\VU\2 /uV<I>'U:/(ufﬂo)V<I>~U
2dt o

1
1 2 2 — 12
<3 [ 102+ g1Vl [ -l

for all ¢t € (0,00). Using the Poincaré inequality, we obtain that

d 1 _
7/ |U|2+)\/1/ ‘U|2 < f/”V(P”Loo(Q)H’U,—UOHLZ(Q) for all ¢ > 0. (7114)
dt Jo Q M

Since the right hand side is bounded, using an ODE comparison principle, we conclude that
U, )|l z2(0) < c1 for some ¢; > 0 and for all £ > 0. Given € > 0, we apply Lemma 7.7.2 to find
to > 0 large enough satisfying

u\ -, 0| Loe
© ) V 2” v I||L‘>°(Q)|“|

Again, (7.114) with Gronwall’s inequality implies that

/Q U 8)[2 < e X(t-t) / U to)? + / s L SVl @ (1) = ol s

for all t > tq.

1
< e Mlt—t0) 2 V| e sup  |u(-,t) —To||%
< 51 (/\,1)2“ | oo (o) |t€(t0’oo) [, t) = Toll 7 ()

< €2

for all t > max{to, 3 1ne 0 2% 1} Thus we have shown (7.110).
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7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

Lemma 7.7.5. Let (u,v,U, P) be a bounded classical solution of (7.1). Then we have
IVu(,t)||Lao) — 0 ast — oo. (7.115)

Proof. According to the LP-L9 estimate for the Neumann semigroup, we can find ¢; > 0 such
that

19 ol @) < ex(1+ e gl o ey (7.116)
for all ¢ > 0 and ¢ € L%(Q). Theorem 7.1.1 guarantees a constant ¢z > 0 such that
Vu(-, 8)||Lao (o) < c2 for all s > 0. (7.117)

Let ' € {0, min{uo, A\1}}. Moreover, from Lemma 6.2.4 we obtain a constant ¢z > 0 such that
t 1
/ (14 (t—s)"2)e e M09 ds < ez for all 5 € [0,7/],t > 0. (7.118)
0

Given € > 0, Lemma 7.7.4 implies the existence of ¢y > 0 such that

NU(-, 8)llee ) < for all s > tg. (7.119)

- 401 CoC3

Since v is a classical solution, we invoke the variation-of-constants formula of v to see that
t
IV, 8)| Loy < Ve %0 (-, t) || Lao ) +/ Ve =1 %u(-, )v(-, 8)|| Lao () ds
to
t
+ / VI3, 5) - Vo, 8) ooy ds (7.120)
to

for all ¢ > ty. Now (7.116) together with (7.117) implies ¢4 > 0 such that
||V€tA'U('7tO)||LQU(Q) <e(1+t72)e M|V, t0)||Lao () < cae™ ™ for all t > t.

Thanks to Theorem 7.1.1 and Lemma 7.7.3, there is ¢5 > 0 such that [u(-,s)| pew0 @) < c5 and

lv(-;8)|| Lo (@) < cse™ ' for all s > 0. According to (7.116) and (7.118), we can find ¢g > 0 such
that

t

||Ve(t—5)Au(-, S)U(.7 3)||Lq0(9)d5
to
t

< / cr(1+ (L= 5)72)e 7 lul, 5) | pao @) [0 (-, 8) | 10 ) ds

to

t
g Clcg/ (]_ + (t — s)_%)e—/\l(t—s)e_n Sds

to

< clc§03e_"/t for all t > tg.

Collecting (7.116)-(7.119), we can estimate that

t
[ DA W) Tty
to
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7.7. Stabilization

S/ (t =)~ 2)e (U - V) (-, 8)|| oo ) ds
to
< / (14 (t— )" 2)e" MU (-, 8)|| oo (o) VO (-, 1) Lao () D5
t 1
< 0102/ (1 + (t - s)—é)e—h(t—s)ds
4010203 to
<

i for all ¢ > .

Therefore we conclude the existence of ¢g > 0 fulfilling

/ €
||VU('7t)||qu(Q) S 066_77 ¢ + i
for all t > tg. Let T > max{to, ln(ji,ce)} We see that ||Vu(:,t)||La0) < € for all £ > T, which
implies (7.115). O

Proof of Corollary 7.1.8. According to Theorem 7.1.1, we know that (7.1) admits a classical
solution (u,v,U). Collecting Lemmata 7.7.2, 7.7.3, 7.7.4, and 7.7.5, we see that (u,v,U) enjoys
all the convergence properties indicated in Corollary 7.1.3. Thus the proof is complete. O
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