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Zusammenfassung

In dieser Arbeit werden die globale Existenz und das Langzeitverhalten der Lösungen in
Chemotaxis-Systemen betrachtet. Zuerst konzentrieren wir uns auf das parabolisch-parabolische
Keller-Segel-Modell und untersuchen eine hinreichende Bedingung für die Existenz globaler
Lösungen. Auch die Beschränktheit und globale Existenz der Lösungen eines Chemotaxis-
Haptotaxis-Modells werden unter geeigneten Annahmen an die Parameter demonstriert. Wei-
terhin wird das Langzeitverhalten in einem Keller-Segel-Modell mit logistischer Quelle bewiesen.
Für den speziellen Fall, dass das logistische Keller-Segel-Modell ohne Wachstumsterm betrachtet
wird und mit einem zusätzlichen Konvektionsterm gekoppelt ist, wird eine optimale Konver-
genzabschätzung bewiesen. Schließlich wird die Existenz klassischer Lösungen eines Chemotaxis-
Navier-Stokes-Modells im zwei- und dreidimensionalen Fall unter geeigneten Kleinheitsbedingun-
gen an die Anfangsdaten erhalten.

Abstract

In this work, global existence and large time behavior of solutions in chemotaxis systems are
considered. We first focus on the fully parabolic Keller-Segel model and investigate a sufficient
condition for the existence of global solutions. The boundedness and global existence of solutions
in a chemotaxis-haptotaxis model are also demonstrated under suitable assumptions on the
parameters. Similarly, the long time behavior in a Keller-Segel model with logistic dampening
is identified. Particularly, when the logistic Keller-Segel model is without growth term and is
coupled with an additional convection term, an optimal decay estimate is given. In addition,
the existence of classical solutions of a chemotaxis-Navier-Stokes model in the two- and three-
dimensional cases is obtained under suitable smallness conditions on the initial data.
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1. Introduction

In recent decades, mathematical biology has been rapidly developed as an interdisciplinary
scientific subject receiving attention from both mathematicians and biologists. It aims at
mathematical modeling, analysis and simulation of biological processes by using mathematical
methods and techniques.
An important mathematical treatment is to convert biological processes into systems which are
composed of several partial differential equations (PDE for short) linked together. Therefore, a
study on the resulting PDE systems may contribute to a better understanding of these biological
processes; not only by possibly explaining evident experimental observations but also by possibly
predicting some properties beyond.
Especially since rather few meaningful differential equations could have explicit solutions due
to their complexity, mathematical tools can help us to gain some qualitative analysis on the
properties of solutions; some basic questions concerning these are: existence, uniqueness and
stability of the solutions.
In the present thesis, we are going to study a class of second order semilinear parabolic systems,
which arise in biological mathematics and are usually called chemotaxis models.

1.1. Taxis models

Taxis is the ability of organisms to motivate their movement in response to an external stimulus.
A celebrated taxis model called Keller-Segel model describes the evolution of cell populations and
their movement partly directed by a chemical signal produced by themselves. It was introduced
in 1970 by Keller and Segel in the style of the following initial-boundary value problem [45]:

ut = ∆u−∇ · (χu∇v), (x, t) ∈ Ω× (0, T ),

τvt = ∆v − v + u, (x, t) ∈ Ω× (0, T ),

∇u · ν = ∇u · ν = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.1)

Here, Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth boundary and ν is the outer normal
vector on ∂Ω, χ ∈ R and τ ≥ 0 are constants, and (u0, v0) is a pair of nonnegative functions. The
unknown functions u = u(x, t) and v = v(x, t) denote the density of the cell population and the
concentration of chemical substance, respectively. In the first equation, ∆u indicates that the
cells diffuse randomly, and −∇ · (χu∇v) reflects the hypothesis that cells move towards higher
densities of the signal, where the number χ measures the sensitivity of the chemotactic response
to the chemical gradients. The second equation models the assumptions that the chemical is
produced by the cells and degrades and also diffuses by itself.
A very special feature in this system is the appearance of the term −∇ · (χu∇v), which in
contrast to diffusion ∆u = ∇ · (∇u), is usually called cross-diffusion. Since this cross-diffusion
term models a process which may result in the aggregation of cells, the occurrence of a certain
blow-up phenomenon can be detected, namely, u becomes unbounded in respect to the spatial
L∞-norm.
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1. Introduction

The goal of this work is to develop mathematical methods of analyzing global bounded solutions
in several taxis models by ruling out such blow up phenomena. A proper estimate on the cross-
diffusion term −χ∇ · (u∇v) which is coupled with u and ∇v seems critical in the analysis. One
main technique we rely on is a result on maximal Sobolev regularity which links ∆v to u such
that u and ∇v can partly be decoupled; when attempting to study d

dt

∫
Ω
up (p ∈ R), ∇v would

appear, and then the maximal Sobolev regularity may help to control this term by u through
certain spatio-temporal integrals such that we can arrive at an inequality only containing u (see
Lemmata 2.4.1, 3.3.1 and 4.3.1 below for example). Compared with many previous works where
instead d

dt

∫
Ω
|∇v|q (q ∈ R) is additionally considered, this idea apparently provides a more

efficient way to estimate the Lp-norm of u. Since the equation for v already offers a degrading
structure, the maximal Sobolev regularity result for the second equation of (1.1) also involves a
time potential function, which turns out to be crucial to prove a temporarily uniform estimate.
This special version of maximal Sobolev regularity will be applied in different situations in this
work and will be first proven in the next part of this chapter.

In the main part of this thesis, chemotatic cross-diffusion will be treated in several particular
contexts. In Chapter 2, we give a sufficient condition for the existence of global and bounded
solutions of (1.1), which improves previous knowledge in this issue. In particular, the
outcome strongly relies on an interpolation inequality for equi-integrable functions which is an
improvement of a special case of the well-known Gagliardo-Nirenberg inequality.
If we consider a larger time scale, it is reasonable to include the effect of spontaneous proliferation
of cells, which is commonly given in the form of a logistic source g(u) := κu − µu2 with κ ≥ 0,
µ > 0. Thus the first equation is replaced by

ut = ∆u−∇ · (χu∇v) + g(u). (1.2)

Such logistic sources may be expected to restrain ultimate growth and to thus exert an opposite
effect compared to the cross-diffusion term. The competition within these two effects usually
results in colorful types of behaviors.
Chapter 3 is devoted to study the large time behavior of solutions in a parabolic-parabolic logistic
Keller-Segel model, that is, (1.1) with the first equation replaced by (1.2). We show that if the
ratio χ

µ is sufficiently small, the solution (u, v) converges to (κµ ,
κ
µ ) in the large time limit. The

approach depends on a result on maximal Sobolev regularity involving a potential function.
A similar idea is also used in Chapter 4 to prove boundedness of solutions in a chemotaxis-
haptotaxis model

ut = ∆u− χ∇ · (u∇v)− ξ∇ · (u∇w) + µu(1− u− w), (x, t) ∈ Ω× (0, T ),

τvt = ∆v − v + u, (x, t) ∈ Ω× (0, T ),

wt = −vw + ηw(1− u− w), (x, t) ∈ Ω× (0, T ),

(1.3)

where ξ ∈ R and η > 0. In addition to chemotaxis, here a new cross-diffusion term −ξ∇ · (u∇w)
appears in the first equation, meaning that the cells also orient their movement toward another
chemical whose density is denoted by w. This taxis mechanism is referred to as haptotaxis
because w is non-diffusible. The main result in this chapter demonstrates that chemotaxis
dominates the solutions behavior in certain parameter regions. Namely, the boundedness of
solutions is guaranteed when χ

µ is small and it is not depending on the haptotaxis sensitivity ξ.
In Chapter 5, we furthermore analyze the qualitative behavior of bounded solutions in a logistic
Keller-Segel model in a liquid environment,{

ut + U · ∇u = ∆u− χ∇ · (u∇v)− µu2, (x, t) ∈ Ω× (0, T ),

vt + U · ∇v = ∆v − v + u, (x, t) ∈ Ω× (0, T ),
(1.4)

2



1.2. A result from maximal Sobolev regularity theory

where U is a given fluid velocity which influences the migration of cells by means of transport.
We obtain an optimal decay rate for all bounded solutions in the sense that both upper and
lower estimates are given by the same rate.
A more comprehensive variant of (1.4) will also include a gravitational effect of cells in a liquid
environment. Thus the fluid is described by the full Navier-Stokes equation with an external
force u∇Φ, 

ut = ∆u−∇ · (uS(x, u, v) · ∇v)− U · ∇u, (x, t) ∈ Ω× (0, T ),

vt = ∆v − uv − U · ∇v, (x, t) ∈ Ω× (0, T ),

Ut = ∆U − κ(U · ∇)U +∇P + u∇Φ, (x, t) ∈ Ω× (0, T ),

∇ · U = 0, (x, t) ∈ Ω× (0, T ).

(1.5)

Since in the complicated fluid environment, some interactions between cells swimming speed and
direction have been detected experimentally, a matrix valued function S(x, u, v) is introduced to
represent a rotational effect while cells trying to tend to the signal. This brings significant
difficulties in mathematical analysis because mathematically useful gradient-like structural
properties, well-known as favorite features of e.g. (1.1), seem to be lacking for general choices
of S. In Chapter 6, we investigate a smallness condition on the initial data such that (1.5) with
N = 3 admits a global classical solution which approaches a constant steady state.
Chapter 7 considers the same problem in the two-dimensional case and κ = 0 in the three-
dimensional setting. Via a certain conditional functional approach, the previous results can
partly be improved.

1.2. A result from maximal Sobolev regularity theory

As we have announced in the last section that a version of maximal Sobolev regularity plays a
central role in dealing with the chemotactic cross-diffusion term, let us first introduce the well
known maximal Sobolev regularity for Laplacian associated with Neumann boundary condition,
which is an application of [34, Theorem 2.1]. Before going into details, we prepare the following
Ehrling type lemma.

Lemma 1.2.1. Let q > 1 and s ∈ (0, q). For any ε > 0, we can find C > 0 such that

‖ψ‖Lq(Ω) ≤ ε‖∆ψ‖Lq(Ω) + C‖ψ‖Ls(Ω) for all ψ ∈W 2,q(Ω) satisfying ∇ψ · ν = 0 on ∂Ω. (1.6)

Proof. First we know from [28, Theorem19.1] that there is a constant c1 > 0 such that

‖ψ‖Lq(Ω) + ‖∇ψ‖Lq(Ω) + ‖D2ψ‖Lq(Ω) ≤ c1(‖∆ψ‖Lq(Ω) + ‖ψ‖Lq(Ω)) (1.7)

for all ψ ∈W 2,q(Ω) satisfying ∇ψ · ν = 0 on ∂Ω. Noting that W 2,q(Ω) ↪→↪→W 1,q(Ω) ↪→ Ls(Ω),
we can apply Ehrling’s Lemma; given any ε > 0, let ε′ := ε

c1+c1ε
∈ (0, 1

c1
), there is a constant

Cε′ > 0 such that

‖ψ‖Lq(Ω) + ‖∇ψ‖Lq(Ω) ≤ ε′
(
‖ψ‖Lq(Ω) + ‖∇ψ‖Lq(Ω) + ‖D2ψ‖Lq(Ω)

)
+ Cε′‖ψ‖Ls(Ω)

≤ c1ε′(‖∆ψ‖Lq(Ω) + ‖ψ‖Lq(Ω)) + Cε′‖ψ‖Ls(Ω).

This implies that

‖ψ‖Lq(Ω) ≤
c1ε
′

1− c1ε′
‖∆ψ‖Lq(Ω) + Cε′‖ψ‖Ls(Ω)

= ε‖∆ψ‖Lq(Ω) + Cε‖ψ‖Ls(Ω).

Thus we complete the proof.
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1. Introduction

Lemma 1.2.2. Let q, r ∈ (1,∞). There exists C = C(q, r) > 0 with the property that for all
T > 0, if f ∈ C0(Ω× [0, T ]) and v ∈ C2,1(Ω× (0, T )) ∩ C0(Ω× [0, T )) is a classical solution to
the evolution problem 

vt = ∆v − 1
2v + f, (x, t) ∈ Ω× (0, T ),

∇v · ν = 0, (x, t) ∈ ∂Ω× (0, T ),

v(x, 0) = 0, x ∈ Ω,

(1.8)

then we have ∫ T

0

‖∆v(·, t)‖rLq(Ω)dt ≤ C
∫ T

0

‖f(·, t)‖rLq(Ω)dt. (1.9)

Proof. Letting A := ∆− 1
2 and applying [34, Lemma 2.1], we obtain a constant c1 > 0 such that∫ T

0

‖(∆− 1

2
)v(·, t)‖rLq(Ω)dt ≤ c1

∫ T

0

‖f(·, t)‖rLq(Ω)dt. (1.10)

Moreover, integrating the first equation over Ω implies that

d

dt
‖v(·, t)‖L1(Ω) +

1

2
‖v(·, t)‖L1(Ω) ≤ ‖f(·, t)‖L1(Ω) for all t ∈ (0, T ). (1.11)

Testing r‖v(·, t)‖r−1
L1(Ω) to the above inequality, using Young’s inequality and then integrating over

(0, T ), we obtain c2 > 0 and c3 > 0 such that∫ T

0

‖v(·, t)‖rL1(Ω)dt ≤ c2
∫ T

0

‖f(·, t)‖rL1(Ω)dt ≤ c3
∫ T

0

‖f(·, t)‖rLq(Ω)dt. (1.12)

According to Lemma 1.2.1, we conclude the existence of c4 > 0 such that

‖v(·, t)‖rLq(Ω) ≤ ‖∆v(·, t)‖rLq(Ω) + c4‖v(·, t)‖rL1(Ω) for all t ∈ (0, T ). (1.13)

Due to the fact that ∆v = (∆− 1
2 )v + 1

2v and (1.13), we see that∫ T

0

‖∆v(·, t)‖rLq(Ω)dt

≤ 2r−1

∫ T

0

‖1

2
v(·, t)‖rLq(Ω)dt+ 2r−1

∫ T

0

‖(∆− 1

2
)v(·, t)‖rLq(Ω)dt

≤ 1

2

∫ T

0

‖∆v(·, t)‖rLq(Ω) +
1

2
c4

∫ T

0

‖v(·, t)‖rL1(Ω)dt+ 2r−1c1

∫ T

0

‖f(·, t)‖rLq(Ω)dt

≤ 1

2

∫ T

0

‖∆v(·, t)‖rLq(Ω) + (
1

2
c4c3 + 2r−1c1)

∫ T

0

‖f(·, t)‖rLq(Ω)dt, (1.14)

which leads to (1.9) if we let C := 1
2c4c3 + 2r−1c1.

Now we adapt the above result to derive the following statement that will be an indispensable
ingredient i.e. for Lemmata 2.4.1, 3.3.1 and 4.3.1 below.
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1.2. A result from maximal Sobolev regularity theory

Lemma 1.2.3. Let τ > 0, q, r ∈ (1,∞). There exists C = C(q, r) > 0 with the following
property: For all T > 0, if f ∈ C0(Ω × [0, T ]) and v ∈ C2,1(Ω × (0, T )) ∩ C0(Ω × [0, T )) is a
classical solution to 

τvt = ∆v − v + f, (x, t) ∈ Ω× (0, T ),

∇v · ν = 0, (x, t) ∈ ∂Ω× (0, T ),

v(x, 0) = v0(x), x ∈ Ω,

(1.15)

then for any t0 ∈ (0, T ), we have∫ T

t0

e
r
2τ t‖∆v(·, t)‖rLq(Ω)dt ≤ C

∫ T

t0

e
r
2τ t‖f(·, t)‖rLq(Ω)dt+ Cτe

r
2τ t0‖v(·, t0)‖rW 2,q(Ω). (1.16)

Proof. For given t0 ∈ (0, T ), we know that ∂νv(·, t0) = 0 on ∂Ω. Let d := min{T−t04τ , 1} and let
χ ∈ C∞0 ([0,∞)) be a cut-off function satisfying χ(s) = 1, s = 0,

χ(s) ≤ 1, 0 < s < d,
χ(s) = 0, s ≥ d.

(1.17)

Moreover, |χ′(s)| ≤ 2
d for all s ∈ [0,∞). Let w(x, s) := e

1
2 sv(x, τs + t0) − χ(s)v(x, t0) for

(x, s) ∈ Ω× [0, T−t0τ ). We see that w solves the following equation
ws(x, s) = (∆− 1

2 )w(x, s) + e
1
2 sf(x, τs+ t0) + g(x, s), (x, s) ∈ Ω× (0, T−t0τ ),

∇w · ν = 0, (x, s) ∈ ∂Ω× [0, T−t0τ ),

w(x, 0) = 0, x ∈ Ω,

(1.18)

where g(x, s) := χ(s)∆v(x, t0)− χ′(s)v(x, t0)− 1
2χ(s)v(x, t0) in Ω× [0, T−t0τ ).

An application of the maximal Sobolev regularity result from Lemma 1.2.2 implies the existence
of Cq,r > 0 such that∫ T−t0

τ

0

‖∆w(·, s)‖rLq(Ω)ds

≤Cq,r
∫ T−t0

τ

0

‖e 1
2 sf(x, τs+ t0)‖rLq(Ω)ds

+ Cq,r

∫ T−t0
τ

0

‖χ(s)∆v(x, t0)− χ′(s)v(x, t0)− 1

2
χ(s)v(x, t0)‖rLq(Ω)ds

≤Cq,r
∫ T−t0

τ

0

‖e 1
2 sf(x, τs+ t0)‖rLq(Ω)ds+ 3r−1Cq,rd(

2

d
+

3

2
)‖v(·, t0)‖rW 2,q(Ω)

≤Cq,r
∫ T−t0

τ

0

‖e 1
2 sf(x, τs+ t0)‖rLq(Ω)ds+ 4rCq,r‖v(·, t0)‖rW 2,q(Ω).

Since e
1
2 s∆v(x, τs+ t0) = ∆w(x, s) + χ(s)∆v(x, t0), we have∫ T−t0

τ

0

e
rs
2 ‖∆v(·, τs+ t0)‖rLq(Ω)ds

5



1. Introduction

≤2r−1

∫ T−t0
τ

0

‖∆w(·, s)‖rLq(Ω)ds+ 2r−1

∫ T−t0
τ

0

‖χ(s)∆v(·, t0)‖rLq(Ω)

≤2r−1Cq,r

∫ T−t0
τ

0

‖e 1
2 sf(x, τs+ t0)‖rLq(Ω)ds+ 2r−1(4rCq,r + 1)‖v(·, t0)‖rW 2,q(Ω).

Upon changing variables, we obtain that

1

τ

∫ T

t0

e
r
2τ (t−t0)‖∆v(·, t)‖rLq(Ω)dt

≤1

τ
2r−1Cq,r

∫ T

t0

e
r
2τ (t−t0)‖f(·, t)‖rLq(Ω)dt+ (8rCq,r + 2r−1)‖v(·, t0)‖rW 2,q(Ω), (1.19)

where (1.16) follows by multiplying (1.19) by τe
r
2τ t0 and choosing C := 8rCq,r + 2r−1.
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2. A refined criterion for boundedness in
the classical Keller-Segel model

2.1. Introduction

In this chapter, we study the classical Keller-Segel model [46] to model chemotatic migration

ut = ∆u−∇ · (u∇v), (x, t) ∈ Ω× (0, T ),

vt = ∆v − v + u, (x, t) ∈ Ω× (0, T ),

∇u · ν = ∇u · ν = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(2.1)

Here Ω ⊂ RN (N ≥ 2) is a bounded smooth domain, T ∈ (0,∞], and ν denotes the outer
normal vector on ∂Ω. Let (u0, v0) be a nonnegative function pair, u and v denote the density
of cells and chemical concentration, respectively. As introduced in Chapter 1, the system (2.1)
describes an interaction between the cells and the chemical signal. This biological model plays
an important role in numerous biological processes such as wound healing, cancer invasion. It
also draws interests from many mathematicians, for surveys in this area we refer to [4, 39, 37]
and the references therein.
A striking feature of this model is the occurrence of a blow-up phenomenon caused by the
aggregation of cells, related research can be found in [36, 40, 66, 65, 109, 64]. The spatial
dimension seems crucial in the mathematical analysis of detecting blow-up. In the one
dimensional setting, blow-up never happens; all solutions are global and bounded. However,
considering the two-dimensional case, one can prove the existence of radial blow-up solutions if
the initial data (u0, v0) exceed the critical mass:

∫
Ω
u0 > 8π [64]; otherwise, the solution always

remains bounded [67]. In higher dimensions, whether a solution blows up does not depend on
the total mass any more; blow-up solutions are constructed with any small mass [109]. On the
other hand, looking for a sufficient condition which can prevent blow-up may be of some interest,
especially in two or higher dimensions.
Throughout this chapter, we consider the classical solution (u, v) of (2.1) on Ω × [0, Tmax)
emanating from the nonnegative initial pair (u0, v0) ∈ C0(Ω) × W 1,q(Ω) with q > N , where
Tmax ∈ (0,∞] denotes the maximal existence time of the solution. The local existence theory
concerning this issue is the following lemma. The proof can be found in many previous works
(see e.g. [4, Lemma 3.1]).

Lemma 2.1.1. Assume that Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary and
that the initial data (u0, v0) are nonnegative and satisfy u0 ∈ C0(Ω) and v0 ∈ W 1,q(Ω) with
q > N . There exists Tmax ∈ (0,∞] with the property such that the problem (2.1) possesses a
unique nonnegative classical solution (u, v) satisfying

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞loc([0, Tmax);W 1,q(Ω)).
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2. A refined criterion for boundedness in the classical Keller-Segel model

Moreover, if Tmax <∞, then

‖u(·, t)‖L∞(Ω) →∞, as t→ Tmax.

Beyond this, a well known sufficient condition for global solutions is the following [4, Lemma
3.2]:

Proposition 2.1.2. Let N ≥ 1 and p > N
2 . Assume that Ω ⊂ RN is a bounded domain with

smooth boundary and (u, v) is a nonnegative classical solution of (2.1) in Ω × (0, Tmax) with
maximal existence time Tmax ∈ (0,∞]. If

sup
t∈(0,Tmax)

‖u(·, t)‖Lp(Ω) <∞, (2.2)

then
sup

t∈(0,Tmax)

(
‖u(·, t)‖L∞(Ω)

)
<∞.

The proof is carried out either by using Neumann heat semigroup estimates or by studying a
coupled energy evolution of

∫
Ω
up and

∫
Ω
|∇v|2q with p, q sufficiently large [87, 27]. Generally,

the condition in the above proposition can not reach the borderline value p = N
2 . In the

special case when N = 2 and thus N
2 = 1, we already mentioned that blow-up can happen

even though
∫

Ω
u(·, t) =

∫
Ω
u0 is bounded [64]. Therefore, we cannot expect that boundedness

of ‖u(·, t)‖
L
N
2 (Ω)

can prevent blow-up. However, if we require a little more, namely that

{uN2 (·, t)}t∈(0,Tmax) is not only bounded with respect to the spatial L1-norm, but also enjoys an
additional equi-integrability property, we will be able to show global existence and boundedness
for the system. Accordingly, the main result in the chapter reads as follows:

Theorem 2.1.3. Assume that Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary,
and that the nonnegative initial data (u0, v0) satisfy u0 ∈ C0(Ω) and v0 ∈W 1,q(Ω) (q > N). Let
(u, v) be a nonnegative classical solution of (2.1) on Ω× (0, Tmax) with maximal existence time
Tmax ∈ (0,∞]. If

sup
t∈(0,Tmax)

‖u(·, t)‖
L
N
2 (Ω)

<∞, (2.3)

and {u(·, t)N2 }t∈(0,Tmax) is equi-integrable, (2.4)

then (u, v) is global and bounded.

Recalling the De la Vallée-Poussin Theorem, we obtain the following equivalent extension
criterion:

Corollary 2.1.4. Assume that (u, v) be a nonnegative classical solution of (2.1) on Ω×(0, Tmax)
with Tmax ∈ (0,∞]. Let f : [0,∞)→ [0,∞) be continuous and such that

lim
s→∞

f(s)

s
N
2

=∞.

If we have

sup
t∈(0,Tmax)

∫
Ω

f(u(·, t)) <∞, (2.5)

then (u, v) is global and bounded.
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The above corollary inter alia shows that the boundedness of
∫

Ω
u
N
2 log u is sufficient for our

conclusion, which is obviously not covered by Proposition 2.1.2.
On the other hand, Corollary 2.1.4 also improves the previous knowledge in the two-dimensional
Keller-Segel model; it is known that the boundedness of

∫
Ω
u log u and

∫
Ω
|∇v|2 can exclude blow

up [4, Lemma 3.3]. Now we can immediately remove the requirement on
∫

Ω
|∇v|2. Actually,

in the simplified parabolic-elliptic system where the second equation in (2.1) is replaced by
∆v−v+u = 0, a crucial elliptic estimate shows that the boundedness of

∫
Ω
|∇v|2 already results

from the boundedness of
∫

Ω
u lnu [93, Lemma A.4]. Thus we know the solution is bounded only if∫

Ω
u lnu is bounded without applying the current result. However, since a corresponding estimate

for
∫

Ω
|∇v|2 in a parabolic equation appears to be lacking, the outcome of the above corollary

seems not trivial in the fully parabolic model. Moreover, the condition can be weakened to the
boundedness of the L1-norm of essentially any superlinear functional of u, e.g.

∫
Ω
u log log (u+ e).

Additionally, by virtue of an equivalent definition of equi-integrability, Theorem 2.1.3 can be
rephrased in the following way:

Corollary 2.1.5. Let (u, v) be a classical solution of (2.1) on Ω× (0, Tmax). For all ε > 0 there
is δ > 0 such that for any measurable set E ⊂ Ω with |E| < δ, if we have

sup
t∈(0,Tmax)

∫
E

u
N
2 (·, t) < ε,

then
sup

t∈(0,Tmax)

‖u(·, t)‖L∞(Ω) <∞.

We note that this property resembles the feature of ε-regularity derived in [81] for a porous
medium type parabolic-elliptic Keller-Segel model in the whole space. This analogy is further
underlined in the following consequence describing the behavior of unbounded solutions.

Theorem 2.1.6. Assume that Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary.
Let (u, v) be a classical solution of (2.1) on Ω× (0, Tmax) with Tmax ∈ (0,∞]. Suppose that

sup
t∈(0,Tmax)

‖u(·, t)‖L∞(Ω) =∞.

Then {uN2 (·, t)}t∈(0,Tmax) is not equi-integrable. In other words, there are ε0 > 0, and x0 ∈ Ω
such that for all ρ > 0,

sup
t∈(0,Tmax)

∫
Bρ(x0)∩Ω

u
N
2 (·, t) > ε0.

2.2. An interpolation inequality

In the analysis of chemotaxis models, the Gagliardo-Nirenberg inequality is frequently used,
especially in the style of the following form

‖ϕ‖Lq(Ω) ≤ C1‖∇ϕ‖aLr(Ω)‖ϕ‖
1−a
Lp(Ω) + C2‖ϕ‖Lp(Ω) for all ϕ ∈W 1,r(Ω), (2.6)

where a =
N
p −

N
q

1−Nr +N
p

∈ (0, 1) [28, Theorem 10.1]. Here the constant C1 > 0 depends on p, q, r and

Ω. When applying the Gargliardo-Nirenberg inequality, we usually require the exponent a to be
strictly less than a given power in order to control a target term. One can imagine that if C1 > 0
could be chosen arbitrarily small, we would be able to deal with more subtle critical cases [5].
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2. A refined criterion for boundedness in the classical Keller-Segel model

The purpose of this section is to investigate a kind of interpolation inequality with the
aforementioned ambition that the constant C1 can be arbitrarily small. However, this is not
generally true. Following the idea from [60, Lemma 5.1], we actually show that such an
interpolation inequality holds for the class of equi-integrable functions. This is similar to that of
[5, Theorem 3] and [60, Lemma 5.1].

Lemma 2.2.1. Let Ω ⊂ RN be bounded with smooth boundary. Let r ≥ 1, 0 < q < Nr
(N−r)+

. For

any 0 < θ < q, we define

p :=

{
N( qr − 1), if q > r,
θ, if q ≤ r, q0 :=

{
q, if q > r,
r(1 + p

N ), if q ≤ r. (2.7)

a :=

N
p −

N
q

1− N
r + N

p

∈ (0, 1), b :=

1
p −

1
q

1
p −

1
q0

∈ (0, 1].

Let δ : (0, 1)→ (0,∞) be nondecreasing. Then for each ε > 0, we can find Cε > 0 such that

‖ϕ‖Lq(Ω) ≤ ε‖∇ϕ‖aLr(Ω)‖ϕ‖
1−b
Lp(Ω) + Cε‖ϕ‖

(1−Nr +N+r
q0

)b+(1−b)
Lp(Ω)

+ Cε‖ϕ‖Lp(Ω) + Cε‖ϕ‖1−bLp(Ω). (2.8)

is valid for any

ϕ ∈ Fδ :=

{
ψ ∈W 1,r(Ω)

∣∣∣∣ For all ε′ ∈ (0, 1), we have

∫
E

|ψ|p < ε′ for all measurable sets

E ⊂ Ω with |E| < δ(ε′)

}
. (2.9)

Proof. We first consider the case q > r, hence q
r − 1 > 0. We abbreviate s := Nr

N+r < min{N, r}.
Then according to the Sobolev embedding W 1,s

0 (RN ) ↪→ Lr(RN ), there is a constant c1 > 0 such
that

‖ψ‖rLr(RN ) ≤ c1‖∇ψ‖
r
Ls(RN ) (2.10)

for all ψ ∈ W 1,s
0 (RN ). Let Ω′ be a bounded open set such that Ω ⊆ Ω′. In light of Theorem

2.A.1 in section 2.A, we can find c2 > 0 and extend ϕ ∈ W 1,r(Ω) to ϕ̃ ∈ W 1,r
0 (RN ) in such a

way that

ϕ̃ = ϕ a.e. in Ω, supp ϕ̃ ⊂ Ω′,

‖ϕ̃‖Lq(Ω′) ≤ c2‖ϕ‖Lq(Ω), ‖∇ϕ̃‖rLr(Ω′) ≤ c2‖∇ϕ‖
r
Lr(Ω), (2.11)

and that there is a nondecreasing function δ̃ : (0, 1)→ (0,∞) such that

ϕ̃ ∈ Fδ̃ :=

{
ψ ∈W 1,r(Ω′)

∣∣∣∣ For all ε′ ∈ (0, 1), we have

∫
E

|ψ|p < ε′ for all measurable sets

E ⊂ Ω′ with |E| < δ̃(ε′)

}
. (2.12)

Given ε > 0, let ε′ :=
(

εq

2r( qr )rc1c2

)N
r

and let δ := δ̃(ε′) > 0. We have∫
B

|ϕ̃|p < ε′ (2.13)
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for any ball B ⊂ Ω′ and with radius no bigger than η :=
(

δ
wN

) 1
N

, where wN denotes the volume

of the unit ball in RN .
Since Ω is bounded, we can find a family of finite balls {Bj}1≤j≤M with radius not lager than
η to cover Ω with Ω ⊂ ∪

1≤j≤M
Bj ⊆ Ω′. Moreover, there exist c3 > 0 and a smooth partition of

unity for ∪
1≤j≤M

Bj given by a family of nonnegative functions {ζj}1≤j≤M satisfying

supp ζj ⊂ Bj , |∇ζj
1
r | < c3

η
for all 1 ≤ j ≤M, and

j=M∑
j=1

ζj = 1. (2.14)

We can invoke (2.10), and the elementary inequality

(a+ b)s ≤ 2s−1as + 2s−1bs for all s > 1 and a, b > 0,

to obtain that∫
Ω′
ϕ̃qζj = ‖ϕ̃

q
r ζ

1
r
j ‖

r
Lr(Bj)

≤ c1‖∇(ϕ̃
q
r ζ

1
r
j )‖rLs(Bj)

≤ c1‖
q

r
ϕ̃
q
r−1ζ

1
r
j ∇ϕ̃+ ϕ̃

q
r∇ζ

1
r
j ‖

r
Ls(Bj)

≤ c12r−1(
q

r
)r

(∫
Bj

|ϕ̃
q
r−1ζ

1
r
j ∇ϕ̃|

s

) r
s

+ c12r−1(
c3
η

)r

(∫
Bj

ϕ̃s
q
r

) r
s

. (2.15)

On applying Hölder’s inequality and (2.13), the first term on the right-hand side of (2.15) can
be estimated as

c12r−1(
q

r
)r

(∫
Bj

|ϕ̃
q
r−1ζ

1
r
j ∇ϕ̃|

s

) r
s

≤ c12r−1(
q

r
)r

(∫
Bj

|ϕ̃|s(
q
r−1) r

r−s

) r
s−1(∫

Ω′
ζj |∇ϕ̃|r

)

= c12r−1(
q

r
)r

(∫
Bj

|ϕ̃|N( qr−1)

) r
s−1 ∫

Ω′
ζj |∇ϕ̃|r

= c12r−1(
q

r
)r

(∫
Bj

|ϕ̃|p
) r
N ∫

Ω′
ζj |∇ϕ̃|r

≤ c12r−1(
q

r
)r(ε′)

r
N

∫
Ω′
ζj |∇ϕ̃|r ≤

εq

2c2

∫
Ω′
ζj |∇ϕ̃|r. (2.16)

Now we claim that for all r < q < Nr
(N−r)+

, there are positive constants cε, c4 and c5 such that

c12r−1(
c3
η

)r

(∫
Bj

|ϕ̃|s
q
r

) r
s

≤ εq

2c2M

∫
Ω′
|∇ϕ̃|r + cε‖ϕ̃‖

q−Nqr +N+r

LN(
q
r
−1)(Ω′)

+ c4‖ϕ̃‖q
LN(

q
r
−1)(Ω′)

+ c5ε
q2

q−r . (2.17)

If r < q < r(N+r)
N , let d =

1
q
r
−1
−Nrsq

1−Nr + 1
q
r
−1

, hence d ∈ (0, 1). Moreover, since s < r, we know that

dq < r. The Gagliardo-Nirenberg inequality thus implies the existence of c4 > 0 and cε > 0 such
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that

2r−1c1(
c3
η

)r

(∫
Bj

|ϕ̃|
sq
r

) r
s

≤ 2r−1c1(
c3
η

)r‖ϕ̃‖q
L
sq
r (Ω′)

≤ c4‖∇ϕ̃‖dqLr(Ω′)‖ϕ̃‖
(1−d)q

LN(
q
r
−1)(Ω′)

+ c4‖ϕ̃‖q
LN(

q
r
−1)(Ω′)

= c4

(∫
Ω′
|∇ϕ̃|r

) dq
r
(∫

Ω′
ϕ̃N( qr−1)

) (1−d)q

N(
q
r
−1)

+ c4‖ϕ̃‖q
LN(

q
r
−1)(Ω′)

≤ εq

2c2M

∫
Ω′
|∇ϕ̃|r + cε‖ϕ̃‖

q−Nqr +N+r

LN(
q
r
−1)(Ω′)

+ c4‖ϕ̃‖q
LN(

q
r
−1)(Ω′)

. (2.18)

If r(N+r)
N ≤ q < Nr

(N−r)+
, hence sq

r ≤ N( qr − 1). We can simply use Hölder’s inequality to obtain

a constant c5 > 0 fulfilling

2r−1c1(
c3
η

)r

(∫
Bj

|ϕ̃|s
q
r

) r
s

≤ 2r−1c1(
c3
η

)r|Ω′|1−
sq
pr

(∫
Bj

|ϕ̃|p
) q
p

≤ c5ε
q2

q−r .

Hence (2.17) holds for all r < q < Nr
(N−r)+

. Since (2.15), (2.16) and (2.17) and ϕ̃ ∈W 1,r(RN ) in

particular entail that for each 1 ≤ j ≤M , ϕ̃
q
r ζ

1
r
j ∈W

1,s
0 (Bj), we can invoke (2.10) and combining

it with (2.15-2.17), we see that for each 1 ≤ j ≤M ,∫
Ω′
|ϕ̃|qζj = ‖ϕ̃

q
r ζ

1
r
j ‖

r
Lr(Bj)

≤ c1‖∇(ϕ̃
q
r ζ

1
r
j )‖rLs(Bj)

≤ εq

2c2

∫
Ω′
ζj |∇ϕ̃|r +

εq

2c2M

∫
Ω′
|∇ϕ̃|r

+ cε‖ϕ̃‖
q−Nqr +N+r

LN(
q
r
−1)(Ω′)

+ c4‖ϕ̃‖q
LN(

q
r
−1)(Ω′)

+ c5ε
q2

q−r . (2.19)

Finally, we obtain from (2.19) and (2.14) that

‖ϕ‖qLq(Ω)

≤ ‖ϕ̃‖qLq(Ω′) =

∫
Ω′
|ϕ̃|q

j=M∑
j=1

ζj

 =

j=M∑
j=1

∫
Ω′
|ϕ̃|qζj

≤
j=M∑
j=1

(
εq

2c2

∫
Ω′
ζj |∇ϕ̃|r +

εq

2c2M

∫
Ω′
|∇ϕ̃|r + cε‖ϕ̃‖

q−Nqr +N+r

LN(
q
r
−1)(Ω′)

+ c4‖ϕ̃‖q
LN(

q
r
−1)(Ω′)

+ c5ε
q2

q−r

)

≤ εq

2c2

∫
Ω′
|∇ϕ̃|r

j=M∑
j=1

ζj


+M

(
εq

2c2M

∫
Ω′
|∇ϕ̃|r + cε‖ϕ̃‖

q−Nqr +N+r

LN(
q
r
−1)(Ω′)

+ c4‖ϕ̃‖q
LN(

q
r
−1)(Ω′)

+ c5ε
q2

q−r

)
≤ εq

2c2

∫
Ω′
|∇ϕ̃|r +

εq

2c2

∫
Ω′
|∇ϕ̃|r + cεM‖ϕ̃‖

q−Nqr +N+r

LN(
q
r
−1)(Ω′)

+ c4M‖ϕ̃‖q
LN(

q
r
−1)(Ω′)

+ c5Mε
q2

q−r

≤ εq
∫

Ω

|∇ϕ|r + c6‖ϕ‖
q−Nqr +N+r

LN(
q
r
−1)(Ω)

+ c6‖ϕ‖q
LN(

q
r
−1)(Ω)

+ c6

14



2.3. Preliminary

with some constant c6 > 0. Note that b = 1 if q > r, taking the q-th root on both sides leads to
(2.8) for the case q > r.

If q ≤ r, we see that q0 > r ≥ q > θ. The Hölder inequality with b =
1
θ−

1
q

1
θ−

1
q0

shows that

‖ϕ‖Lq(Ω) ≤ ‖ϕ‖bLq0 (Ω)‖ϕ‖
1−b
Lθ(Ω)

. (2.20)

Since q0 > r, we have already proven that for all ε > 0, there is c6 > 0 so that

‖ϕ‖Lq0 (Ω) ≤
(
ε
q0
b ‖∇ϕ‖rLr(Ω) + c6‖ϕ‖

q0−Nq0r +N+r

Lθ(Ω)
+ c6‖ϕ‖q0Lθ(Ω)

+ c6

) 1
q0

≤ ε 1
b ‖∇ϕ‖

r
q0

Lr(Ω) + c6‖ϕ‖
1−Nr +N+r

q0

Lθ(Ω)
+ c6‖ϕ‖Lθ(Ω) + c6,

which combined with the previous interpolation inequality (2.20) yields that

‖ϕ‖Lq(Ω) ≤
(
ε

1
b ‖∇ϕ‖

r
q0

Lr(Ω) + c6‖ϕ‖
1−Nr +N+r

q0

Lθ(Ω)
+ c6‖ϕ‖Lθ(Ω) + c6

)b
‖ϕ‖1−b

Lθ(Ω)
.

≤ ε‖∇ϕ‖
b· rq0
Lr(Ω)‖ϕ‖

1−b
Lθ(Ω)

+ c6‖ϕ‖
(1−Nr +N+r

q0
)b+1−b

Lθ(Ω)
+ c6‖ϕ‖Lθ(Ω) + c6‖ϕ‖1−bLθ(Ω)

We easily check that b · rq0 =
N
θ −

N
q

1−Nr +N
θ

, thus (2.8) is valid for q ≤ r as well.

Remark 2.2.2. The exponent a in (2.8) is exactly the one from the Gagliardo-Nirenberg
inequality

‖ϕ‖Lq(Ω) ≤ C‖∇ϕ‖aLr(Ω)‖ϕ‖
1−a
Lp(Ω) + C‖ϕ‖Lp(Ω) for all ϕ ∈W 1,r(Ω).

However 1− b 6= 1− a. In fact, following the proof we can find a+ 1− b < 1.

Remark 2.2.3. Given a family of functions {fj}j∈N such that {fpj }j∈N is equi-integrable, there
exists δ : (0, 1) → (0,∞) nondecreasing such that fj ∈ Fδ, where Fδ is defined in (2.9).
Therefore, we can apply Lemma 2.2.1 to a family of functions enjoying equi-integrability.

2.3. Preliminary

Before proving our main result, some basic knowledge on the Keller-Segel system is prepared.
The following properties can be easily checked by integrating.

Lemma 2.3.1. We have∫
Ω

u(·, t) =

∫
Ω

u0 and (2.21)∫
Ω

v(·, t) ≤ max

{∫
Ω

v0,

∫
Ω

u0

}
for all t ∈ (0, Tmax). (2.22)

Before going into details, let us first prepare the following embedding lemma.

Lemma 2.3.2. Let Ω ⊂ RN be a bounded domain with smooth boundary, and let α ∈ (1, N).
For all s ∈ (0,∞], there is C > 0 such that

‖∇ϕ‖
L

Nα
N−α (Ω)

≤ C‖∆ϕ‖Lα(Ω) + C‖ϕ‖Ls(Ω) (2.23)

for all ϕ ∈W 2,α(Ω) with ∇ϕ · ν = 0 on ∂Ω.
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2. A refined criterion for boundedness in the classical Keller-Segel model

Proof. Using the fact that with some c1 > 0, the estimates

‖ϕ‖W 2,α(Ω) ≤ c1(‖ϕ‖Lα(Ω) + ‖∆ϕ‖Lα(Ω))

holds for all ϕ ∈ W 2,α(Ω) with ∇ϕ · ν|∂Ω = 0 [28, Theorem 19.1], we obtain a constant c2 > 0

from the embedding W 2,α(Ω) ↪→W 1, NαN−α (Ω) that

‖∇ϕ‖
L

Nα
N−α (Ω)

≤ c2(‖∆ϕ‖Lα(Ω) + ‖ϕ‖Lα(Ω)). (2.24)

If s < α, let b =
N
s −

N
α

2+N
s −

N
α

∈ (0, 1). The Gagliardo-Nirenberg inequality together with Poincaré’s

inequality and Young’s inequality implies

‖ϕ‖Lα(Ω) ≤ c3‖∇ϕ‖b
L

Nα
N−α (Ω)

‖ϕ‖1−bLs(Ω) + c3‖ϕ‖Ls(Ω)

≤ 1

2c2
‖∇ϕ‖

L
Nα
N−α (Ω)

+ c4‖ϕ‖Ls(Ω) (2.25)

with some constant c3, c4 > 0 for all ϕ ∈W 2,α(Ω) with ∇ϕ · ν|∂Ω = 0. If s ≥ α, we use Hölder’s
inequality

‖ϕ‖Lα(Ω) ≤ |Ω|1−
α
s ‖ϕ‖Ls(Ω) (2.26)

instead of (2.25). Collecting (2.24-2.26) together yields (2.23).

2.4. Proof of Theorem 2.1.3

Now we are in a position to proceed the proof of our main ingredient. Having in hand Proposition
2.1.2, we see that it is sufficient to show that (2.2) holds for some p > N

2 .

Lemma 2.4.1. Assume that Ω ⊂ RN (N ≥ 2) is a bounded domain with smooth boundary. Let
(u, v) be a classical solution of (2.1) on Ω× (0, Tmax) with Tmax ∈ (0,∞] and let p ∈ (N2 , N). If

sup
t∈(0,Tmax)

‖u(·, t)‖
L
N
2 (Ω)

<∞ (2.27)

and {uN2 (·, t)}t∈(0,Tmax) is equi-integrable, (2.28)

then

sup
t∈(0,Tmax)

‖u(·, t)‖Lp(Ω) <∞. (2.29)

Proof. Let p ∈ (N2 , N). Let θ ∈ (1,∞) satisfy 1
θ = 1 + 2

N −
2
p ∈ (0, 1), and θ′ be such that

1
θ + 1

θ′ = 1. We test the first equation in (2.1) with pup−1 to obtain that

d

dt

∫
Ω

up + p(p− 1)

∫
Ω

up−2|∇u|2 = p(p− 1)

∫
Ω

up−1∇u · ∇v

≤ p(p− 1)

4

∫
Ω

up−2|∇u|2 + p(p− 1)

∫
Ω

up|∇v|2

for all t ∈ (0, Tmax). Applying Hölder’s inequality, we get

d

dt

∫
Ω

up +
3(p− 1)

p

∫
Ω

|∇u
p
2 |2 ≤ p(p− 1)

∫
Ω

up|∇v|2

16



2.4. Proof of Theorem 2.1.3

≤ p(p− 1)

(∫
Ω

upθ
) 1
θ
(∫

Ω

|∇v|2θ
′
) 1
θ′

(2.30)

for all t ∈ (0, Tmax). Let a :=
p− N

2θ

1−N2 +p
∈ (0, 1), and abbreviate 1

1−a =: λ > 1. The Gagliardo-

Nirenberg inequality implies the existence of c1 > 0 such that

p(p− 1)

(∫
Ω

upθ
) 1
θ

= p(p− 1)‖u
p
2 ‖2L2θ(Ω) ≤ c1‖∇u

p
2 ‖2aL2(Ω)‖u

p
2 ‖2(1−a)

L
N
p (Ω)

+ c1‖u
p
2 ‖2
L
N
p (Ω)

t ∈ (0, Tmax). Using Young’s inequality and the assumption (2.27), we find some constant c2 > 0
such that the right-hand side of (2.30) is estimated as

p(p− 1)

(∫
Ω

upθ
) 1
θ
(∫

Ω

|∇v|2θ
′
) 1
θ′

≤
(
c1‖∇u

p
2 ‖2aL2(Ω)‖u

p
2 ‖2(1−a)

L
N
p (Ω)

+ c1‖u
p
2 ‖2
L
N
p (Ω)

)
‖∇v‖2

L2θ′ (Ω)

≤ p− 1

p
‖∇u

p
2 ‖2L2(Ω) + c2‖∇v‖2λL2θ′ (Ω)

+ c2 (2.31)

t ∈ (0, Tmax). Due to the choices of θ and θ′, we know that p ∈ (1, N) and 2θ′ = Np
N−p , hence an

application of Lemma 2.3.2 yields c3 > 0 such that

c2‖∇v‖2λL2θ′ (Ω)
≤ c3‖∆v‖2λLp(Ω) + c3‖v‖2λL1(Ω) for all t ∈ (0, Tmax). (2.32)

We also recall from the Gagliardo-Nirenberg inequality that there is c4 > 0 fulfilling

p− 1

p

∫
Ω

|∇u
p
2 |2 ≥ λ

∫
Ω

up − c4 for all t ∈ (0, Tmax). (2.33)

Thus we conclude from the previous estimates (2.30-2.33) and Lemma 2.3.1 that

d

dt

∫
Ω

up + λ

∫
Ω

up +
(p− 1)

p

∫
Ω

|∇u
p
2 |2 ≤ c3‖∆v‖2λLp(Ω) + c2 + c4 + c3‖v‖2λL1(Ω) (2.34)

for all t ∈ (0, Tmax). Letting t0 ∈ (0, Tmax) and applying the variation-of-constants formula to
the above inequality, we find a constant c5 > 0 such that∫

Ω

up(·, t) ≤ e−λ(t−t0)

∫
Ω

up(·, t0)− (p− 1)

p

∫ t

t0

e−λ(t−s)
∫

Ω

|∇u
p
2 (·, s)|2ds

+ c3

∫ t

t0

e−λ(t−s)‖∆v(·, s)‖2λLp(Ω)ds+ c5 (2.35)

for all t ∈ (t0, Tmax). The maximal regularity result from Lemma 1.2.3 provides a constant c6 > 0
satisfying

c3

∫ t

t0

e−λ(t−s)‖∆v‖2λLp(Ω)ds ≤ c6
∫ t

t0

e−λ(t−s)‖u‖2λLp(Ω)ds+ c6 (2.36)

for all t ∈ (t0, Tmax).

Let d =
p−N2

1−N2 +p
and b =

p
N−

1
2

p
N−

p
2p+2

. We can easily check that 4λ
p d = 2. Since {uN2 (·, t)}t∈(0,Tmax) is

uniformly integrable, there exists nondecreasing δ : (0, 1)→ (0,∞) such that {uN2 (·, t)}t∈(0,Tmax)
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2. A refined criterion for boundedness in the classical Keller-Segel model

belongs to Fδ defined in (2.9) (with p = N
p ). Since (2.27),

ε :=

p−1
p

sup
t∈(0,Tmax)

‖u p2 ‖
4λ
p (1−b)

L
N
p (Ω)

> 0.

Applying Lemma 2.2.1 (in the case q = r = 2, and with θ = N
p < q by virtue of p > N

2 ), we can
find cε > 0 such that

c6‖u‖2λLp(Ω) = c6‖u
p
2 ‖

4λ
p

L2(Ω)

≤ εc6‖∇u
p
2 ‖

4λ
p d

L2(Ω)‖u
p
2 ‖

4λ
p (1−b)

L
N
p (Ω)

+ cε ≤
(p− 1)

p
‖∇u

p
2 ‖2L2(Ω) + cε (2.37)

for all t ∈ (0, Tmax), which leads to

c3

∫ t

t0

e−λ(t−s)‖∆v(·, s)‖2λLp(Ω)ds ≤
(p− 1)

p

∫ t

t0

e−λ(t−s)
∫

Ω

|∇u
p
2 (·, s)|2ds+ cε + c6 (2.38)

for all t ∈ (t0, Tmax). Adding this to (2.35) shows that∫
Ω

up(·, t) ≤ e−λ(t−t0)

∫
Ω

up(·, t0) + c5 + c6 + cε ≤
∫

Ω

up(·, t0) + c5 + c6 + cε

for all t ∈ (t0, Tmax). Since sup
t∈(0,t0]

‖u(·, t)‖Lp(Ω) < ∞ due to the local existence theory from

Lemma 2.1.1, this shows (2.29).

Proof of Theorem 2.1.3. Employing Lemma 2.4.1 and Proposition 2.1.2 proves

sup
t∈(0,Tmax)

‖u(·, t)‖L∞(Ω) <∞,

which combined with Lemma 2.1.1 implies that Tmax = ∞. Thus the solution is global and
bounded.

2.5. Blow-up behavior

From another aspect, the extension criterion in Theorem 2.1.3 also gives a characterization of
blow-up solutions.

Proof of Theorem 2.1.6. Suppose on contrary that {uN2 (·, t)}t∈(0,Tmax) is equi-integrable with
Tmax ∈ (0,∞]. We can apply Theorem 2.1.3 to show that there is a constant C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C,

for all t ∈ (0, Tmax), which is a contradiction.
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2.A. Appendix

2.A. Appendix

We claim a basic property of extension functions which we have used in the proof of Lemma
2.2.1. Namely, the extension function ϕ̃ ∈W 1,r(Ω′) is equi-integrable with respect to some power
in Ω′ provided ϕ has the same property in Ω. Since we can not find this precise result in any
reference, we also give a brief proof here.

Theorem 2.A.1. Assume that Ω ⊂ RN is a bounded domain with smooth boundary and that
r > 1, 1 ≤ q < Nr

(N−r)+
. Let Ω′ be a bounded smooth domain with Ω ⊂ Ω′. Then there is

C > 0 and for any nondecreasing function δ : (0, 1) → (0,∞), we can find δ̃ : (0, 1) → (0,∞)
nondecreasing such that we can extend any function ϕ ∈ W 1,r(Ω) to a function ϕ̃ ∈ W 1,r

0 (RN )
in such a way that

ϕ̃ = ϕ a.e. in Ω, supp ϕ̃ ⊂ Ω′, (2.39)

‖∇ϕ̃‖rW 1,r(Ω′) ≤ C‖∇ϕ‖
r
W 1,r(Ω), (2.40)

‖ϕ̃‖Lq(Ω′) ≤ C‖ϕ‖Lq(Ω). (2.41)

Moreover, if ϕ ∈ Fδ with

Fδ :=

{
ψ ∈W 1,r(Ω)

∣∣∣∣ For all ε′ ∈ (0, 1), we have

∫
E

|ψ|p < ε′ for all measurable sets

E ⊂ Ω with |E| < δ(ε′)

}
, (2.42)

then ϕ̃ ∈ Fδ̃ with

Fδ̃ :=

{
ψ ∈W 1,r(Ω′)

∣∣∣∣ For all ε′ ∈ (0, 1), we have

∫
E

|ψ|p < ε′ for all measurable sets

E ⊂ Ω′ with |E| < δ̃(ε′)

}
. (2.43)

Proof. First, (2.39) and (2.40) are precisely proven in [26, Theorem 5.4.1]. Now we recall the
construction of the extension function in the proof to show the remaining properties. Since ∂Ω
is compact, we can find finitely many points {xi}1≤i≤K ⊂ ∂Ω and open sets {Wi}1≤i≤K ⊂ Ω′

with xi ∈ Wi and W0 ⊂ Ω such that ∂Ω ⊂ ∪
1≤i≤K

Wi and Ω ⊂ W0 ∪ ( ∪
1≤i≤K

Wi) ⊂ Ω′. There

exist C1 diffeomorphisms Φi : Wi → RN (1 ≤ i ≤ K) which flatten out ∂Ω near xi; namely,
if we let Bi := Φi(Wi) be a ball, it satisfies B−i = Φi(Wi ∩ Ωc) = {y = (y1, ..., yN )| yN < 0},
B+
i = Φi(Wi ∩ Ω) = {y = (y1, ..., yN )| yN > 0}. Now we define linear transformations

Y1 : (y1, ..., yN ) ∈ B−i → (y1, ..., yN−1,−yN ) ∈ B+
i ,

Y2 : (y1, ..., yN ) ∈ B−i → (y1, ..., yN−1,−
1

2
yN ) ∈ B+

i .

Let ϕ′i(y) = ϕ(Φ−1
i (y)) (y ∈ Bi+, x = Φ−1

i (y) ∈Wi∩Ω). A first order reflection of ϕ′i(y) is given
by

ϕ̃′i(y) :=

{
−3ϕ′i(Y1(y)) + 4ϕ′i(Y2(y)), y ∈ B−i ,
ϕ′i(y), y ∈ B+

i and yn = 0.
(2.44)
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2. A refined criterion for boundedness in the classical Keller-Segel model

If we let {ζi}0≤i≤K be a partition of unity subordinate to {Wi}0≤i≤K , the associated extension
ϕ̃ : Ω′ → RN of ϕ is defined by converting ϕ̃′i back to Wi

ϕ̃(x) :=


ϕ(x), x ∈ Ω = ∪

0≤i≤K
W+
i ,

i=K∑
i=0

ζi(x)
{
−3ϕ(Φ−1

i (Y1(Φi(x)))) + 4ϕ(Φ−1
i (Y2(Φi(x))))

}
, x ∈ ∪

1≤i≤K
W−i ,

0, x ∈ Ω′\ ∪
0≤i≤K

Wi,

(2.45)
where W+

i := Φ−1
i (B+

i ), W−i := Φ−1
i (B−i ). Since the mappings Φi, Φ−1

i (1 ≤ i ≤ K), Yj
(j = {1, 2}) are C1, we can find a constant c1 > 0 such that |Φ−1

i (Yi(Φi(U)))| ≤ c1|U | for all
U ⊂ W−i (1 ≤ i ≤ K). For any measurable subset E′ ⊂ Ω′, let Ei := E′ ∩ W−i , We note
that Φ−1

i (Y2(Φi(Ei))) ⊂ Φ−1
i (Y1(Φi(Ei))) ⊂ Φ−1

i (B+
i ) ⊂ Ω. By changing variables, for each

1 ≤ i ≤ K, we have∫
Ei

|ϕ̃(x)|pdx =

∫
Ei

| − 3ϕ(Φ−1
i (Y1(Φi(x)))) + 4ϕ(Φ−1

i (Y2(Φi(x))))|pdx

=

∫
Φi(Ei)

| − 3ϕ(Φ−1
i (Y1(y))) + 4ϕ(Φ−1

i (Y2(y)))|p|det(DΦ−1
i (y))|dy

=

∫
Φi(Ei)

| − 3ϕ′i(y1, ..., yN−1,−yn) + 4ϕ′i(y1, ...yn−1,−
1

2
yn)|p|det(DΦ−1

i (y))|dy

≤ 2p−1

∫
Y1(Φi(Ei))

3p|ϕ′i(y)|p|det(DΦ−1
i (y))|dy

+ 2p−1

∫
Y2(Φi(Ei))

4p
1

2
|ϕ′i(y)|p|det(DΦ−1

i (y))|dy

≤ 6p
∫

Φ−1
i (Y1(Φi(Ei)))

|ϕ(x)|pdx+ 8p
∫

Φ−1
i (Y2(Φi(Ei)))

|ϕ(x)|pdx

According to (2.42), given ε′ > 0, we have that δ(ε′) > 0 such that
∫
E
ϕp < ε′

8p(3K)

for all E ⊂ Ω with |E| ≤ δ(ε′). We let δ̃ := 1
c1
δ such that if |E′| < min{δ̃, δ}, then

|Φ−1
i (Y1(Φi(Ei)))|, |Φ−1

i (Y2(Φi(Ei)))| < δ for all 1 ≤ i ≤ K, hence∫
E′
|ϕ̃(x)|pdx

=

∫
E′∩Ω

|ϕ(x)|pdx+

∫
E′∩Ωc

|ϕ̃(x)|pdx

≤
∫
E′∩Ω

|ϕ(x)|pdx+

i=K∑
i=1

∫
Ei

|ϕ(x)|pdx

≤
∫
E′∩Ω

|ϕ(x)|pdx+

i=K∑
i=1

(
6p
∫

Φ−1
i (Y1(Φi(Ei)))

|ϕ(x)|pdx+ 8p
∫

Φ−1
i (Y2(Φi(Ei)))

|ϕ(x)|pdx

)

≤ ε′

8p3K
+K(

6pε′

8p3K
+

8pε′

8p3K
) < ε′.

Therefore, ϕ̃ ∈ Fδ̃ is shown. Using
∫

Ω′
|ϕ̃|q =

∑
0≤i≤K

∫
Ei
|ϕ̃|q, (2.41) can be proven in a similar

way.
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3. Global solutions in a Keller-Segel model
with logistic source and their asymptotic
behavior

3.1. Introduction

In this chapter, we consider the following parabolic system

ut = ∆u− χ∇ · (u∇v) + κu− µu2, (x, t) ∈ Ω× (0, T ),

τvt = ∆v − v + u, (x, t) ∈ Ω× (0, T ),

∇u · ν = ∇v · ν = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(3.1)

where κ > 0, µ > 0, χ > 0 and τ > 0, Ω ⊂ RN (N ≥ 1) is a bounded domain with smooth
boundary and ν denotes the outward normal vector on ∂Ω. The initial distribution (u0, v0) is a
pair of nonnegative functions satisfying

u0 ∈ C0(Ω) with u0 6≡ 0, v0 ∈W 1,q(Ω) with q > N. (3.2)

In contrast to the classical Keller-Segel system, a logistic source has been included in (3.1) if
κ ≥ 0, µ > 0. One may expect that the interplay between diffusion, cross-diffusion and logistic
growth restriction can result in colorful dynamics [111, 52]. As far as we know, only few results
concerning finite time blow-up has been found except for that in [107], where N ≥ 5 is required.
It is also shown that the logistic source can prevent blow-up whenever N ≤ 2, or µ is sufficiently
large [96, 68, 106].
Going beyond the boundedness results, the study of global dynamics is a natural continuation
[110], we refer to [97, 80, 6] for Keller-Segel models including multiple species. We note that
(3.1) can be seen as a subsystem in a multiple species model. In the case τ = 0, the results
from [97, 80, 6] can be summarized as follows: If the quotient χ

µ is suitably small, (3.1) admits

a global classical solution and it converges to (κµ ,
κ
µ ).

Considering the fully parabolic system, that is τ > 0 in (3.1), [110] proves the same conclusion
under the restrictions that τ = 1 and Ω is convex, which are quite critical in the proof. Under
these assumptions, the combination y(x, t) = u+ χ

2 |∇v|
2 satisfies a scalar parabolic inequality

yt ≤ ∆y − y +
C

µ
(3.3)

with some C > 0 for all t > 0 [106]. The comparison principle immediately yields that

lim sup
t→∞

‖u(·, t)‖L∞(Ω) ≤ lim sup
t→∞

y(x, t) ≤ C

µ
. (3.4)
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With this information, one can finally show convergence on the basis of estimates for the Neuman
heat semigroup. However, if τ 6= 1, the first step already fails; we can not find any combination
like y(x, t) satisfying a single parabolic inequality on its own. In a recent paper [3], the authors

develop a functional approach to prove convergence for global bounded solutions if χ2

µ is small.
This approach also works for τ 6= 1.
It is our purpose in this chapter to investigate how the size of the quotient χ

µ affects the global

dynamics for any choice of τ > 0 and for a general domain Ω. We find a replacement of (3.4):

lim sup
t→∞

‖u(·, t)‖Lp(Ω) ≤
C

µ
(3.5)

with sufficiently large p and for some C > 0, which is sufficient for the conclusion in [110]. Our
main result reads as follows:

Theorem 3.1.1. Let N ≥ 1 and Ω ⊂ RN be a bounded domain with smooth boundary. Then
there exists θ0 > 0 with the property that if χ > 0, µ > 0, κ > 0 and satisfy

χ

µ
< θ0, (3.6)

then for all initial data (u0, v0) fulfilling (3.2), the system (3.1) possesses a global classical solution

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ∩ L∞loc([0,∞);W 1,q(Ω)).

Moreover, (u, v) satisfies

‖u(·, t)− κ

µ
‖L∞(Ω) → 0, ‖v(·, t)− κ

µ
‖L∞(Ω) → 0 as t→∞. (3.7)

3.2. Preliminaries

Before going into details, we introduce the local existence result for (3.1). Compared with (2.1),
an additional logistic term appears in (3.1), however, the following lemma is in the spirit of
Lemma 2.1.1.

Lemma 3.2.1. Suppose Ω ⊂ RN with N ≥ 1, is a bounded domain with smooth boundary, µ > 0
and χ > 0, and u0 ∈ C0(Ω) and v0 ∈ W 1,q(Ω) (with some q > N) both are nonnegative. Then
there exist Tmax ∈ (0,∞] with the property that the problem (3.1) possesses a unique classical
solution (u, v) satisfying

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞loc([0, Tmax);W 1,q(Ω)).

Moreover, if Tmax <∞, then

‖u(·, t)‖L∞(Ω) →∞, as t→ Tmax. (3.8)

3.3. Boundedness and large time behavior of Lp-norm

As already mentioned in the introduction, our first and the most important goal is to identify
the large time behavior of ‖u(·, t)‖Lp(Ω). The proof is very similar to that of Lemma 3.1 in [122].
We have
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3.3. Boundedness and large time behavior of Lp-norm

Lemma 3.3.1. Let (u0, v0) satisfy (3.2). For all p ∈ (1,∞), there exist θ1(p) > 0 and
C(κ, τ, p) > 0 such that if χ, µ are positive constants and satisfy χ

µ < θ1, then

‖u(·, t)‖Lp(Ω) ≤ C(κ, τ, p), for all t ∈ (0, Tmax). (3.9)

Moreover, if Tmax =∞, we have

lim sup
t→∞

‖u(·, t)‖Lp(Ω) ≤
C(κ, τ, p)

µ
. (3.10)

Proof. First we see that for any a, b > 0, Young’s inequality provides kp > 0 such that

ab ≤ 1

4
a
p+1
p + kpb

p+1. (3.11)

Let Cp+1 := C(p+ 1, p+ 1) denote the constant from Lemma 1.2.3 for p ∈ (1,∞). Now we can
find θ1 > 0 small enough such that

Cp+1kpθ
p+1 <

1

2
for all θ < θ1. (3.12)

We multiply the first equation in (3.1) by up−1 and integrate over Ω to obtain that

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

up−2|∇u|2

= (p− 1)χ

∫
Ω

up−1∇u · ∇v + κ

∫
Ω

up − µ
∫

Ω

up+1

= −p− 1

p
χ

∫
Ω

up∆v + κ

∫
Ω

up − µ
∫

Ω

up+1

= −p+ 1

2τp

∫
Ω

up − p− 1

p
χ

∫
Ω

up∆v +

(
κ+

p+ 1

2τp

)∫
Ω

up − µ
∫

Ω

up+1 (3.13)

for all t ∈ (0, Tmax). Now (3.11) implies that(
κ+

p+ 1

2τp

)∫
Ω

up ≤ µ

4

∫
Ω

up+1 + kpµ
−p
(
κ+

p+ 1

2τp

)p+1

|Ω|, (3.14)

−p− 1

p
χ

∫
Ω

up∆v ≤ µ

4

∫
Ω

up+1 + kpµ
−pχp+1

∫
Ω

|∆v|p+1. (3.15)

We see that (3.13)-(3.15) imply

d

dt

∫
Ω

up

≤ −p+ 1

2τ

∫
Ω

up − µp

2

∫
Ω

up+1 + kppµ
−pχp+1

∫
Ω

|∆v|p+1 + kppµ
−p
(
κ+

p+ 1

2τp

)p+1

|Ω|

for all t ∈ (0, Tmax). Let t0 ∈ (0, Tmax). Applying Gronwall’s inequality to the above inequality,
we obtain that∫

Ω

up(·, t) ≤ e−
p+1
2τ (t−t0)

∫
Ω

up(·, t0)− µp

2

∫ t

t0

e−
p+1
2τ (t−s)

∫
Ω

up+1(·, s)ds
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+ kppµ
−pχp+1

∫ t

t0

e−
p+1
2τ (t−s)

∫
Ω

|∆v(·, s)|p+1ds

+ kppµ
−p
(
κ+

p+ 1

2τp

)p+1

|Ω|
∫ t

t0

e−
p+1
2τ (t−s)ds

for all t ∈ (t0, Tmax). An application of Lemma 1.2.3 implies Cp+1 > 0 fulfilling

kppµ
−pχp+1

∫ t

t0

e−
p+1
2τ (t−s)

∫
Ω

|∆v(·, s)|p+1ds

≤ Cp+1kppµ
−pχp+1

∫ t

t0

e−
p+1
2τ (t−s)

∫
Ω

up+1(·, s)ds

+ Cp+1τkppµ
−pχp+1e−

p+1
2τ (t−t0)‖v(·, t0)‖p+1

W 2,p+1(Ω).

We therefore derive that∫
Ω

up(·, t) ≤ e−
p+1
2τ (t−t0)

∫
Ω

up(·, t0) + Cp+1τkppµ
−pχp+1e−

p+1
2τ (t−t0)‖v(·, t0)‖p+1

W 2,p+1(Ω)

− pµ

(
1

2
− Cp+1kp

(
χ

µ

)p+1
)∫ t

t0

e−
p+1
2τ (t−s)

∫
Ω

up+1(·, s)ds

+ kppµ
−p
(
κ+

p+ 1

2τp

)p+1

|Ω|
∫ t

t0

e−
p+1
2τ (t−s)ds

for all t ∈ (t0, Tmax). In view of (3.12) and the assumption that χ
µ < θ1, we have

−pµ
(

1

2
− Cp+1kp(

χ

µ
)p+1

)∫ t

t0

e−
p+1
2τ (t−s)

∫
Ω

up+1(·, s)ds ≤ 0.

Thus∫
Ω

up(·, t) ≤ e−
p+1
2τ (t−t0)

∫
Ω

up(·, t0) + Cp+1τkppµ
−pχp+1e−

p+1
2τ (t−t0)‖v(·, t0)‖p+1

W 2,p+1(Ω)

+ kppµ
−p
(
κ+

p+ 1

2τp

)p+1

|Ω|
∫ t

t0

e−
p+1
τ (t−s)ds

≤ e−
p+1
2τ (t−t0)

∫
Ω

up(·, t0) + Cp+1τkppµ
−pχp+1e−

p+1
2τ (t−t0)‖v(·, t0)‖p+1

W 2,p+1(Ω)

+ kppµ
−p
(
κ+

p+ 1

2τp

)p+1

|Ω|p+ 1

2τ

∫ p+1
2τ (t−t0)

0

e−σdσ

≤ e−
p+1
2τ (t−t0)

∫
Ω

up(·, t0) + Cp+1τkppµ
−pχp+1e−

p+1
2τ (t−t0)‖v(·, t0)‖p+1

W 2,p+1(Ω)

+ kppµ
−p
(
κ+

p+ 1

2τp

)p+1

|Ω|p+ 1

2τ
c1(p, τ)

for all t ∈ (t0, Tmax), where c1(p, τ) :=
∫∞

0
e−σdσ. This implies (3.9). Suppose that Tmax = ∞.

Letting t→∞, we obtain that

lim sup
t→∞

∫
Ω

up(·, t) ≤ C

µp

with C := kpp
(
κ+ p+1

2τp

)p+1

|Ω|p+1
2τ c1(p, τ). Taking the p-th root on both sides, we finish the

proof.
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3.4. Large time behavior of L∞-norm

Applying the variation of constants formula to the second equation in (3.1) and the Lp-Lq

estimate for the Neumann semigroup from Lemma 6.2.1, we readily have the following:

Lemma 3.4.1. Let p ≥ 1. Assume that{
r < Np

(N−p)+
, p ≤ N,

r =∞, p > N.
(3.16)

Then for all K > 0, there exists C(K, p, r) > 0 such that for all (u0, v0) satisfying (3.2) and all
χ, µ, κ > 0, if Tmax =∞, and

lim sup
t→∞

‖u(·, t)‖Lp(Ω) ≤
K

µ
, (3.17)

then

lim sup
t→∞

‖∇v(·, t)‖Lr(Ω) ≤
C(K, p, r)

µ
. (3.18)

Proof. Let p ≥ 1 and suppose Tmax =∞. For all K > 0, we can find t0 > t such that

‖u(·, t)‖Lp(Ω) ≤
2K

µ
, for all t > t0.

Due to the choice of r, we know that c1(p, r) :=
∫∞

0
σ−

1
2−

N
2 ( 1

p−
1
r )e−σdσ < ∞. According to

variation of constants formula for v,

v(·, t) = e
t−t0
τ (∆−1)v(·, t0) +

∫ t

t0

e
t−s
τ (∆−1) 1

τ
u(·, s)ds

for all t ∈ (t0,∞). We apply the Lp-Lq estimate for the Neumann heat semigroup from Lemma
6.2.1 to find c2 > 0 such that

‖∇v(·, t)‖Lr(Ω) ≤ ‖∇e
t−t0
τ (∆−1)v(·, t0)‖Lr(Ω) +

∫ t

t0

‖∇e
t−s
τ (∆−1) 1

τ
u(·, s)‖Lr(Ω)ds

≤ c2e−
t−t0
τ ‖∇v(·, t0)‖Lr +

∫ t

t0

c2(
t− s
τ

)−
1
2−

N
2 ( 1

p−
1
r )e−

t−s
τ

1

τ
‖u(·, s)‖Lp(Ω)ds

≤ c2e−
t−t0
τ ‖∇v(·, t0)‖Lr + c2

2K

µ

1

τ

∫ t

t0

(
t− s
τ

)−
1
2−

N
2 ( 1

p−
1
r )e−

t−s
τ ds

≤ c2e−
t−t0
τ ‖∇v(·, t0)‖Lr + c2

2K

µ

∫ ∞
0

σ−
1
2−

N
2 ( 1

p−
1
r )e−σdσ

≤ c2e−
t−t0
τ ‖∇v(·, t0)‖Lr + c2c1(p, r)

2K

µ

for all t ∈ (t0,∞). Letting t → ∞, we obtained the desired estimate by choosing C(K, p, r) :=
2Kc1c2.

Lemma 3.4.2. Let p > N
2 and (u0, v0) satisfy (3.2). Suppose that Tmax = ∞. For all K > 0,

there exists C(K, p, κ, θ) > 0 such that if

lim sup
t→∞

‖u(·, t)‖Lp(Ω) ≤
K

µ
, (3.19)
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then

lim sup
t→∞

‖u(·, t)‖L∞(Ω) ≤
C(K, p, κ, θ)

µ
, (3.20)

where θ := χ
µ .

Proof. Assume that p ∈ (N2 , N) without loss of generality. First we fix r ∈ (N, Np
N−p ), c1(K) > 0

and t0 > 0 such that

‖u(·, t)‖L1(Ω) ≤
c1(K)

µ
,

‖u(·, t)‖Lp(Ω) ≤
c1(K)

µ
,

‖∇v(·, t)‖Lr(Ω) ≤
c1(K)

µ

for all t > t0. Let s0 ∈ (t0,∞). Using the variation of constants formula for the first equation in
(3.1), we have

‖u(·, t)‖L∞(Ω) ≤ ‖e(t−s0)∆u(·, s0)‖L∞(Ω) + χ

∫ t

s0

‖e(t−s)∆∇ · (u∇v)(·, s)‖L∞(Ω)ds

+

∫ t

s0

‖e(t−s)∆(κu− µu2)(·, s)‖L∞(Ω)ds (3.21)

for all t ∈ (s0, s0 + 2). We begin with∫ t

s0

‖e(t−s)∆(κu− µu2)(·, s)‖L∞(Ω)ds ≤
∫ t

s0

sup
u≥0

(
κu− µu2

)
+
ds

≤
∫ t

s0

κ2

4µ
ds ≤ κ2

2µ

for all t ∈ (s0, s0 + 2). By the Lp-Lq estimate for the Neumann heat semigroup from Lemma
6.2.1 (i), there exists a constant c2 > 0 fulfilling

‖e(t−s0)∆u(·, s0)‖L∞(Ω) ≤ c2(t− s0)−
N
2p ‖u(·, s0)‖Lp(Ω) (3.22)

for all t ∈ (s0, s0 + 2). Let q satisfy 1
q ∈ ( 1

r ,
1
N ), we can find r′ > q such that 1

q = 1
r + 1

r′ ,

and a = 1 − 1
r′ ∈ (0, 1). Let M(t) = (t − s0)

N
2p ‖u(·, t)‖L∞(Ω). Using the Lp-Lq estimate for the

Neumann heat semigroup, the Hölder inequality and the interpolation inequality ‖u‖Lr′ (Ω) ≤
‖u‖aL∞(Ω)‖u‖

1−a
L1(Ω), we obtain c3 > 0 and c4 > 0 such that

χ

∫ t

s0

‖e(t−s)∆∇ · (u∇v)(·, s)‖L∞(Ω)ds

≤ c3χ
∫ t

s0

(t− s)−
1
2−

N
2q ‖u∇v(·, s)‖Lq(Ω)ds

≤ c3χ
∫ t

s0

(t− s)−
1
2−

N
2q ‖u(·, s)‖Lr′ (Ω)‖∇v(·, s)‖Lr(Ω)ds
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≤ c3χ
∫ t

s0

(t− s)−
1
2−

N
2q ‖u(·, s)‖aL∞(Ω)‖u(·, s)‖1−aL1(Ω)‖∇v(·, s)‖Lr(Ω)ds

≤ c3χ
∫ t

s0

(t− s)−
1
2−

N
2qMa(s)(s− s0)−a

N
2p

(
c1
µ

)1−a(
c1
µ

)
ds

≤ c1c3
(
χ

µ

)(
c1
µ

)1−a
{

sup
t∈(s0,s0+2)

M(t)

}a ∫ t−s0

0

(t− s0 − σ)−
1
2−

N
2q σ−a

N
2p dσ

≤ c1c3
(
χ

µ

)(
c1
µ

)1−a
{

sup
t∈(s0,s0+2)

M(t)

}a
· c4(t− s0)

1
2−

N
2q−

N
2pa (3.23)

for all t ∈ (s0, s0 + 2). Now we collect the above estimates (3.21-3.23) to see that

M(t) ≤ c2
(
c1
µ

)
+ (t− s0)

N
2p
κ2

2µ
+ c1c3c4(t− s0)

1
2−

N
2q+ N

2p (1−a)

(
χ

µ

)(
c1
µ

)1−a
{

sup
t∈(s0,s0+2)

M(t)

}a
Let M̃(s0) := sup

t∈(s0,s0+2)

M(t) and θ = χ
µ . We take the supremum on both sides of the above

inequality to obtain that

M̃(s0) ≤ c2
(
c1
µ

)
+ 2

N
2p
κ2

2µ
+ c1c3c42

N
2p+1θ

(
c1
µ

)1−a (
M̃(s0)

)a
for all s0 > t0.

Since a < 1, this implies the existence of c5(K, p, κ, θ) > 0 such that

M̃(s0) ≤ c5
µ

for all s0 > t0.

It also holds that

‖u(·, t)‖L∞(Ω) ≤
c5
µ

for all t ∈ (s0 + 1, s0 + 2). According to the choice of s0, we conclude the assertion.

For convenience, we introduce

U = u− κ

µ
, V = v − κ

µ
. (3.24)

It is easy to see that (U, V ) satisfies

Ut = ∆U − χ∇ · (u∇V)− κU − µU2, (x, t) ∈ Ω× (0, T ),

τVt = ∆V − V + U , (x, t) ∈ Ω× (0, T ),

∇U · ν = ∇V · ν = 0, (x, t) ∈ ∂Ω× (0, T ),

U(x, 0) = u0(x)− κ

µ
, V(x, 0) = v0(x)− κ

µ
, x ∈ Ω.

(3.25)

Here we note that (U0,V0) is not necessarily nonnegative.
We fix λ ∈ (0,min{1, κ}), and let A = Ap be the realization of −∆ + λ under Neumann
homogeneous boundary conditions. We know that A is sectorial in Lp(Ω) and possesses fractional
powers Aα for α > 0. The domain D(Aα) satisfies the embedding

D(Aα) ↪→W 2,∞(Ω), if 2α− N

p
> 2. (3.26)
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Moreover, A generates an analytic semigroup (e−tA)t≥0 and for all α > 0 there is c(p, α) > 0
such that

‖Aαe−tAϕ‖Lp(Ω) ≤ c(p, α)t−α‖ϕ‖Lp(Ω) (3.27)

for all t > 0 and ϕ ∈ Lp(Ω). We now follow Lemmata 4.1, 4.2 and 5.1 in [110] to prove that:

Lemma 3.4.3. Let (u0, v0) satisfy (3.2). Let p > N
2 and θ1(p) be defined as in Lemma 3.3.1.

There exists C(κ, τ, θ1) > 0 such that if χ, µ, κ are positive constants and satisfy χ
µ < θ1(p), then

Tmax =∞ and

lim sup
t→∞

‖∆v(·, t)‖L∞(Ω) ≤
C(κ, τ, θ1)

µ
. (3.28)

Proof. In view of the hypothesis, Lemma 3.3.1 implies that ‖u(·, t)‖Lp(Ω) (p > N
2 ) is bounded.

Thus we infer that (u, v) is bounded and Tmax =∞ [3, Lemma 2.6]. Moreover, Lemmata 3.3.1,
3.4.1 and 3.4.2 imply that there exist c1 > 0 and t0 > 0 fulfilling

‖u(·, t)‖L∞(Ω) ≤
c1(κ, τ, θ1)

µ
, (3.29)

‖∇v(·, t)‖L∞(Ω) ≤
c1(κ, τ, θ1)

µ
(3.30)

for all t > t0. Now we fix η ∈ (1, 3
2 ), then choose β ∈ (η − 1, 1

2 ) and

p >
N

2(η − 1)
. (3.31)

Applying the variantion of constants formula to the first equation in (3.25), invoking (3.29) and
(3.30), and employing the same argument used in [110, Lemma 4.2], we show that

lim sup
t→∞

‖AβU(·, t)‖Lp(Ω) ≤
c2
µ

(3.32)

with some c2(κ, τ, θ1) > 0. We again follow the idea of [110, Lemma 5.1] to find that

lim sup
t→∞

‖AηV(·, t)‖Lp(Ω) ≤
c3
µ

(3.33)

with some c3(κ, τ, θ1) > 0. By the embedding theorem (3.26), there is c4 > 0 such that

‖∆v‖L∞(Ω) = ‖∆V‖L∞(Ω) ≤ ‖V‖W 2,∞(Ω) ≤ c4‖AηV‖Lp(Ω). (3.34)

The proof is complete.

3.5. Refined estimate for u

In this section, we show that after suitably large time, u lies in a neighborhood of κµ whose radius

is measured by χ
µ . We can prove it by using maximum principle and the pointwise bound of ∆v.

Lemma 3.5.1. Let (u, v) be a global classical solution of (3.1) and (U ,V) be defined in (3.24).
For all K > 0 there exists C(K) > 0 such that if it holds that

lim sup
t→∞

‖∆v(·, t)‖L∞(Ω) ≤
K

µ
(3.35)
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then

lim sup
t→∞

‖U(·, t)‖L∞(Ω) ≤
C(K)θ

µ
, (3.36)

where θ := χ
µ .

Proof. According to the assumption, we can find t0 > 0 fulfilling

‖∆v(·, t)‖L∞(Ω) ≤
2K

µ
for all t ≥ t0. (3.37)

We use (3.37) and the first equation in (3.1) to estimate that

ut = ∆u− χ∇u · ∇v − χu∆v + κu− µu2

≤ ∆u− χ∇u · ∇v + χu
2K

µ
+ κu− µu2

≤ ∆u− χ∇u · ∇v + u (2Kθ + κ− µu) (3.38)

for all x ∈ Ω and t > t0, where we use θ = χ
µ . Let z := z(t) be the solution to

z′(t) = z(t)
(
2Kθ + κ− µz(t)

)
, t > t0,

z(t0) = sup
x∈Ω

u(x, t0).
(3.39)

It is easy to see that z(t0) > 0 by the strong maximum principle. The comparison principle
implies

u(x, t) ≤ z(t) for all x ∈ Ω, t > t0. (3.40)

Thus we can derive that

lim sup
t→∞

‖u(·, t)‖L∞(Ω) ≤ lim
t→∞

z(t) =
2Kθ

µ
+
κ

µ
.

This leads to

lim sup
t→∞

‖U+(·, t)‖L∞(Ω) ≤
2Kθ

µ
. (3.41)

Similarly (see also in [110, Lemma 6.1]), using the lower bound of ∆v in the first equation in
(3.1) and letting y(t) ∈ C1([t0,∞)) solve the following equation y′(t) = y(t)

(
− 2Kθ + κ− µy(t)

)
, t > t0,

y(t0) = inf
x∈Ω

u(x, t0) > 0,
(3.42)

we see that
u(x, t) ≥ y(t) for all x ∈ Ω, t > t0,

which implies that

lim sup
t→∞

‖U−(·, t)‖L∞(Ω) ≤
2Kθ

µ
. (3.43)

Combining (3.41) and (3.43), we establish (3.36) by choosing C(K) := 2K.
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3. Global solutions in a Keller-Segel model with logistic source and their asymptotic behavior

3.6. Decay of (U ,V)

In the last section, we prove that U is in a neighborhood of 0 after suitably large time. This
enables us to show that U in fact decays in the large time limit if θ is sufficiently small. At the
same time, the decay of V is also obtained. Letting λ1 be the first non-zero eigenvalue of −∆
associated with Neumann boundary conditions, we have the following:

Lemma 3.6.1. Suppose that κ > 0. Let (u0, v0) satisfy (3.2) and (U ,V) be defined as in (3.24).
Let 0 < ζ < min{ 1

τ , λ1, 1}. For all K > 0, there exists θ2 > 0 and C > 0 such that if χ > 0 and
µ > 0 satisfy θ := χ

µ < θ2 and

lim sup
t→∞

‖U(·, t)‖L∞(Ω) ≤
Kθ

µ
, (3.44)

then

‖U(·, t)‖L∞(Ω) ≤ Ce−ζt and (3.45)

‖V(·, t)‖L∞(Ω) ≤ Ce−ζt (3.46)

for all t ≥ 0.

The proof follows from [110, Lemma 7.1 and the proof of Theorem 1.1].

Proof of Theorem 3.1.1. Let p > N
2 , and θ1 := θ1(p) and θ2 be defined as in Lemmata 3.3.1 and

3.6.1, respectively. Let θ0 = min{θ1, θ2}. The condition that θ < θ0 implies the boundedness
and global existence of (u, v), thus Tmax =∞. We obtain (3.7) directly by Lemmata 3.4.3, 3.5.1
and 3.6.1.
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4. Boundedness in a chemotaxis-haptotaxis
model

4.1. Introduction

In Chapter 2 and 3, we have introduced the classical Keller-Segel model and the Keller-Segel
model with logistic source. Apart from those, a large number of variants has been proposed to
describe taxis phenomena in mathematical biology. Among them, a model for tumor invasion
mechanism was introduced by Chaplain and Lolas [18]. In this model, tumor cells are assumed
to produce a diffusible chemical substance, the so-called matrix-degrading enzyme (MDE), which
decays non-diffusible static healthy tissue (ECM). It is observed that both the enzyme and the
healthy tissue can attract the cancer cells in the sense that the cancer cells bias their movement
along the gradients of the concentrations of both ECM and MDE, where the former of these
processes, namely taxis toward a non-diffusible quantity, is usually referred as haptotaxis.
Additionally, the cancer cells compete for space with ECM, and at the considered time scales
moreover logistic-type cell kinetics need to be taken into account. If furthermore the ability of
ECM to spontaneously renew is included, the Chaplain-Lolas model becomes

ut = ∆u− χ∇ · (u∇v)− ξ∇ · (u∇w) + µu(1− u− w), (x, t) ∈ Ω× (0, T ),

τvt = ∆v − v + u, (x, t) ∈ Ω× (0, T ),

wt = −vw + ηw(1− u− w), (x, t) ∈ Ω× (0, T ),

(4.1)

where u, v and w denote the density of cells, the concentration of MDE and the density of
ECM, respectively, where the parameters ξ, χ, µ, η are positive constants and τ ≥ 0, and where
Ω ⊂ RN , N ≥ 1, denotes the physical domain under consideration.
Assuming w ≡ 0, (4.1) is reduced to the classical Keller-Segel system with logistic source, which
has extensively been studied during the past 20 years. Compared with the pure chemotaxis
system mentioned above, one may expect the logistic source and, especially, death terms to
enhance the possibility of bounded solutions. In fact, Tello and Winkler [96] proved that if τ = 0
and

µ >
(N − 2)+

N
χ, (4.2)

then for any regular initial data, the logistic Keller-Segel system a unique global classical solution
which is bounded. In the case τ = 1, it is known that bounded solutions exist in lower dimensions
(N = 1, 2) for any µ > 0 [68], and that the same result holds for µ > µ0 with some µ0(χ) > 0 in
higher dimensions [106]. More precisely, a careful inspection of the proofs therein shows that in
fact large values of the ratio µ

χ2 are sufficient to exclude blow up in either finite time or infinite
time.
Concerning (4.1) with possibly nontrivial w, the strong coupling between remodeling and
chemotaxis substantially complicates the situation, and accordingly the knowledge on this topic
is quite incomplete so far. To the best of our knowledge, global existence of weak solution is
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4. Boundedness in a chemotaxis-haptotaxis model

obtained in [79] for N ≤ 3, where (4.1) is included as a subsystem. And global solvability of
classical solutions in this full system is known only when τ = 0 and N = 2 [93]. Disregarding
the chemotaxis effect, the haptotaxis-only version with χ = 0, τ = 1 was studied in [84].
In real situations, the ECM degrades much faster than it renews, thus the remodeling effect can
be neglected, that is, we may assume η = 0. Under this hypothesis, the corresponding parabolic-
elliptic simplification τ = 0 has been studied by Tao and Winkler in [92], where it has been proved
that solutions stay bounded under the same condition as in the case w ≡ 0, that is, when (4.2)
holds. This shows that in this situation the haptotaxis term does not affect the boundedness of
solutions, and that accordingly the chemotaxis process essentially dominates the whole system.
A natural question is whether a similar conclusion holds in the fully parabolic system obtained
on letting τ = 1. In [85], Tao gives a partially positive answer in this direction by proving that
when N = 2, solutions remain bounded for any µ > 0, which thus parallels known results both
for τ = 0, and also for τ = 1 when w ≡ 0. As far as we can tell, however, despite a result on
global existence established in [86], the question of boundedness of solutions is completely open
in higher dimensions. It is the purpose of this work to furthermore establish a corresponding
parallel result for the three-dimensional parabolic-parabolic-ODE chemotaxis-haptotaxis model
in this direction.
Accordingly, we deal with the system

ut = ∆u− χ∇ · (u∇v)− ξ∇ · (u∇w) + µu(1− u− w), (x, t) ∈ Ω× (0, T ),

vt = ∆v − v + u, (x, t) ∈ Ω× (0, T ),

wt = −vw, (x, t) ∈ Ω× (0, T ),

(∇u− χu∇v − ξu∇w) · ν = ∇v · ν = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,

(4.3)

where Ω ⊂ RN (N ≥ 3) is bounded with smooth boundary and χ, ξ, µ > 0. We assume that the
initial data are regular enough and satisfy a standard compatibility condition in the sense that{

u0 ∈ C0(Ω), v0 ∈W 1,q(Ω) with q > N, w0 ∈ C2,α (Ω) (α ∈ (0, 1)),

∇w0 · ν = 0.
(4.4)

Then our main result says the following.

Theorem 4.1.1. Let N ≥ 3 and Ω ⊂ RN be a bounded domain with smooth boundary. There
exists θ0 > 0 such that whenever χ > 0, µ > 0 and ξ > 0 are such that χ

µ < θ0, for any initial

data (u0, v0, w0) fulfilling (4.4), there exists a unique global classical solution (u, v, w) satisfying

u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ∩ L∞loc([0,∞);W 1,q(Ω)),

w ∈ C2,1(Ω× [0,∞)).

Moreover, it is bounded in Ω× (0,∞).

We see that although our hypothesis on the parameters is not as explicit as (4.2) obtained for
the parabolic-elliptic counterpart, it still shows that again boundedness of solutions is enforced
by a condition merely referring to the interplay between chemotaxis and quadratic degradation
in logistic source.
Apart from this, we find it worth mentioning that our approach even shows a new result for

32



4.2. Preliminaries

the pure fully parabolic chemotaxis system with logistic source in the sense that when w ≡ 0,
N ≥ 3, the system admits a classical bounded solution if µ

χ is sufficiently large. Compared with

a similar conclusion under the alternative assumption that µ
χ2 be large [106], our result seems

more consistent with (4.2) for the parabolic-elliptic system where the linear ratio µ
χ is found to

determine the boundedness of solution.

4.2. Preliminaries

Although a haptotaxis term is included in (4.3), the local existence theory is in a similar spirit
as Lemma 2.1.1. The proof can be derived based on that in [91, Lemma 2.1].

Lemma 4.2.1. Let N ≥ 3, χ > 0, ξ > 0 and µ > 0. For (u0, v0, w0) satisfying (4.4), there is
Tmax ∈ (0,∞] such that (4.3) admits a unique classical solution

u ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)),

v ∈ C0(Ω× [0, Tmax)) ∩ C2,1(Ω× (0, Tmax)) ∩ L∞loc([0, Tmax);W 1,q(Ω)),

w ∈ C2,1(Ω× [0, Tmax)),

such that

u ≥ 0, v ≥ 0 and 0 < w ≤ ‖w0‖L∞(Ω) for all t ∈ [0, Tmax). (4.5)

Moreover, if Tmax <∞, then

‖u(·, t)‖L∞(Ω) →∞, as t→ Tmax.

According to the above existence theory, we know that if we fix any t0 ∈ (0, Tmax), then there
exists M > 0 such that

sup
s∈[0,t0]

‖u(·, s)‖L∞(Ω) + sup
s∈[0,t0]

‖v(·, s)‖W 2,∞(Ω) + ‖w(·, t0)‖W 2,∞(Ω) < M. (4.6)

Observing that w can be represented by v and w(x, t0), we can compute ∆w in a convenient
way. Upon a slight adaptation of [92, Lemma 2.2], we can prove a one-sided pointwise estimate
for ∆w as follows.

Lemma 4.2.2. Let (u0, v0, w0) satisfy (4.4) and (u, v, w) solve (4.3). We have

∆w(x, t) ≥ ∆w(x, t0) · e−
∫ t
t0
v(x,s)ds − 2e

−
∫ t
t0
v(x,s)ds∇w(x, t0) ·

∫ t

t0

∇v(x, s)ds

− 1

e
w(x, t0)− w(x, t0)v(x, t)e

−
∫ t
t0
v(x,s)ds

(4.7)

for all x ∈ Ω and all t ∈ (t0, Tmax).

Proof. Representing w(x, t) according to

w(x, t) = e
−
∫ t
t0
v(x,s)ds

w(x, t0) (4.8)

for all x ∈ Ω and t ∈ (t0, Tmax), we directly compute that

∆w(x, t) = ∆w(x, t0)e
−
∫ t
t0
v(x,s)ds − 2e

−
∫ t
t0
v(x,s)ds∇w(x, t0) ·

∫ t

t0

∇v(x, s)ds
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+ w(x, t0)e
−
∫ t
t0
v(x,s)ds|

∫ t

t0

∇v(x, s)ds|2 − w(x, t0)e
−
∫ t
t0
v(x,s)ds

∫ t

t0

∆v(x, s)ds.

Since ze−z ≤ 1
e for all z ≥ 0, by dropping some nonnegative terms, we obtain that

∆w(x, t)

≥ ∆w(x, t0)e
−
∫ t
t0
v(x,s)ds − 2e

−
∫ t
t0
v(x,s)ds∇w(x, t0) ·

∫ t

t0

∇v(x, s)ds

− w(x, t0)e
−
∫ t
t0
v(x,s)ds

∫ t

t0

(vs(x, s) + v(x, s)− u(x, s))

≥ ∆w(x, t0)e
−
∫ t
t0
v(x,s)ds − 2e

−
∫ t
t0
v(x,s)ds∇w(x, t0) ·

∫ t

t0

∇v(x, s)ds

− w(x, t0)e
−
∫ t
t0
v(x,s)ds

(v(x, t)− v(x, t0))− w(x, t0)e
−
∫ t
t0
v(x,s)ds

∫ t

t0

v(x, s)ds

≥ ∆w(x, t0)e
−
∫ t
t0
v(x,s)ds − 2e

−
∫ t
t0
v(x,s)ds∇w(x, t0) ·

∫ t

t0

∇v(x, s)ds

− w(x, t0)v(x, t)e
−
∫ t
t0
v(x,s)ds − 1

e
w(x, t0)

for all t ∈ (t0, Tmax). Thus the proof is complete.

With the aid of Lemma 4.2.2, we can furthermore prepare a preliminary estimate of an integral
related to the haptotactic interaction. This estimate will be used in different ways later on.

Lemma 4.2.3. Let χ > 0, ξ > 0, and assume that (4.4) holds. Then for any p > 1, the solution
of (4.3) satisfies

(p− 1)ξ

∫
Ω

up−1∇u · ∇w ≤ (3Mξ +
1

e
Mξ)

∫
Ω

up +Mξ

∫
Ω

upv + 2M(p− 1)ξ

∫
Ω

up−1|∇u| (4.9)

for all t ∈ (t0, Tmax), where M > 0 is as in (4.6).

Proof. Integration by parts and an application of Lemma 4.2.2 yield that

(p− 1)ξ

∫
Ω

up−1∇u · ∇w

= −p− 1

p
ξ

∫
Ω

up∆w

≤ −p− 1

p
ξ

∫
Ω

up
(

∆w(x, t0)e
−
∫ t
t0
v(x,s)ds − 2e

−
∫ t
t0
v(x,s)ds∇w(x, t0) ·

∫ t

t0

∇v(x, s)ds

− 1

e
w(x, t0)− w(x, t0)v(x, t)e

−
∫ t
t0
v(x,s)ds

)
dx

≤ (Mξ +
1

e
Mξ)

∫
Ω

up +Mξ

∫
Ω

upv − 2
p− 1

p
ξ

∫
Ω

up∇w(x, t0) · ∇e−
∫ t
t0
v(x,s)ds

dx

= (Mξ +
1

e
Mξ)

∫
Ω

up +Mξ

∫
Ω

upv + 2
p− 1

p
ξ

∫
Ω

up∆w(x, t0)e
−
∫ t
t0
v(x,s)ds

dx

+ 2
p− 1

p
ξ

∫
Ω

∇up · ∇w(x, t0)e
−
∫ t
t0
v(x,s)ds

dx
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≤ (3Mξ +
1

e
Mξ)

∫
Ω

up +Mξ

∫
Ω

upv + 2M(p− 1)ξ

∫
Ω

up−1|∇u|

for all t ∈ (t0, Tmax).

Lemma 4.2.4. Let χ > 0, ξ > 0 and µ > 0, and assume that (4.4) holds. Then there exists
C := C(|Ω|) > 0 such that ∫

Ω

u(·, t) < C,

∫
Ω

v(·, t) < C (4.10)

for all t ∈ (0, Tmax).

Proof. The first inequality can be proved by simply integrating the first equation in (4.3) on Ω
and using that (

∫
Ω
u)2 ≤ |Ω|(

∫
Ω
u2) due to the Cauchy-Schwarz inequality. The estimate of

∫
Ω
v

can be obtained in a similar way and with the aid of the first inequality.

4.3. An Lp estimate for u

In this section, we derive the claimed boundedness result via combining the above result on
maximum Sobolev regularity with a Moser-type iteration. We first estimate u in some appropriate
Lebesgue space, from which a certain suitable estimate of ∇v will follow. This approach will
be carried out to ensure that ∇v is bounded in L∞(Ω). Thereupon we can establish a series of
inequalities based on which a Moser iteration is performed to finally achieve boundedness of u in
L∞(Ω). An immediate consequence of Lemma 4.3.1 is that ∇v is bounded with respect to the
norm in L∞(Ω). Let us first provide an important ingredient for the estimate of ‖u(·, t)‖Lp(Ω)

with p ∈ (1,∞).

Lemma 4.3.1. Let (u0, v0, w0) satisfy (4.4). For all p ∈ (1,∞), there exist constants θp > 0
and C > 0 such that if χ, ξ > 0, µ > 0 are positive constants and satisfy χ

µ < θp, then∫
Ω

up(·, t) ≤ C for all t ∈ (t0, Tmax). (4.11)

Proof. Let p ∈ (1,∞). First we see that for any a, b > 0, Young’s inequality provides kp > 0
such that

ab ≤ 1

8
a
p+1
p + kpb

p+1. (4.12)

Let Cp+1 denote the constant from Lemma 1.2.3. Now we can find θp > 0 small enough such
that

Cp+1kpθ
p+1 <

1

2
for all θ < θp. (4.13)

Testing the first equation in (4.3) with up−1 (p > 1) and integrating by parts imply

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

up−2|∇u|2

= (p− 1)χ

∫
Ω

up−1∇u · ∇v + (p− 1)ξ

∫
Ω

up−1∇u · ∇w
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+ µ

∫
Ω

up − µ
∫

Ω

up+1 − µ
∫

Ω

upw

≤ p− 1

p
χ

∫
Ω

∇up · ∇v + (p− 1)ξ

∫
Ω

up−1∇u · ∇w + µ

∫
Ω

up − µ
∫

Ω

up+1

≤ −p− 1

p
χ

∫
Ω

up∆v + (p− 1)ξ

∫
Ω

up−1∇u · ∇w + µ

∫
Ω

up − µ
∫

Ω

up+1 (4.14)

for all t ∈ (t0, Tmax). We see that (4.9) and (4.12) entail the existence of c3(p,M) > 0 (M is as
in (4.6)) satisfying

(p− 1)ξ

∫
Ω

up−1∇u · ∇w

≤ c3ξ
∫

Ω

up + c3ξ

∫
Ω

upv + c3pξ

∫
Ω

up−1|∇u|

≤ c3ξ
∫

Ω

up +
µ

8

∫
Ω

up+1 + kpc
p+1
3 µ−pξp+1

∫
Ω

vp+1 +
p− 1

2

∫
Ω

up−2|∇u|2 +
c23ξ

2p2

2(p− 1)

∫
Ω

up

≤ (c3ξ +
c23ξ

2p2

2(p− 1)
)

∫
Ω

up +
µ

8

∫
Ω

up+1 +
p− 1

2

∫
Ω

up−2|∇u|2 + kpc
p+1
3 µ−pξp+1

∫
Ω

vp+1 (4.15)

for all t ∈ (t0, Tmax). From (4.12), we estimate that for all t ∈ (t0, Tmax),

−p− 1

p
χ

∫
Ω

up∆v ≤ χ
∫

Ω

up|∆v| ≤ µ

8

∫
Ω

up+1 + kpχ
p+1µ−p

∫
Ω

|∆v|p+1. (4.16)

Inserting (4.15) and (4.16) into (4.14) and some rearrangement yield

1

p

d

dt

∫
Ω

up +
p− 1

2

∫
Ω

up−2|∇u|2

≤ −3

4
µ

∫
Ω

up+1 +

(
c3ξ +

c23ξ
2p2

2(p− 1)
+ µ

)∫
Ω

up

+ kpµ
−pχp+1

∫
Ω

|∆v|p+1 + kpµ
−pξp+1

∫
Ω

vp+1

= −p+ 1

2p

∫
Ω

up +

(
p+ 1

2p
+ c3ξ +

c23ξ
2p2

2(p− 1)
+ µ

)∫
Ω

up − 3

4
µ

∫
Ω

up+1

+ kpχ
p+1µ−p

∫
Ω

|∆v|p+1 + kpc
p+1
3 µ−pξp+1

∫
Ω

vp+1 (4.17)

for all t ∈ (t0, Tmax). We again apply Young’s inequality to obtain that(
p+ 1

2p
+ c3ξ +

c23ξ
2p2

2(p− 1)
+ µ

)∫
Ω

up ≤ µ

4

∫
Ω

up+1 + c4(µ, ξ, p,M), (4.18)

where c4(µ, ξ, p,M) > 0. According to the assumption χ
µ < θp and (4.13), we know that 1

2 −
Cp+1kp(

χ
µ )p+1 > 0. Let ε ∈ (0, 1

2Cp+1kp(χµ )p+1 − kp). Lemma 1.2.1 implies a constant c5 > 0 such

that

kpc
p+1
3 µ−pξp+1

∫
Ω

vp+1 ≤ εµ−pχp+1

∫
Ω

|∆v|p+1 + c5‖v‖p+1
L1(Ω). (4.19)
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Upon (4.17)-(4.19), we infer that

d

dt

∫
Ω

up ≤ −p+ 1

2

∫
Ω

up − µp

2

∫
Ω

up+1 + (ε+ kp)pχ
p+1µ−p

∫
Ω

|∆v|p+1

+ c4(µ, ξ, p)p+ c5p‖v‖p+1
L1(Ω)

for all t ∈ (t0, Tmax). Applying the Gronwall inequality to the above inequality shows that∫
Ω

up(·, t) ≤ e−( p+1
2 )(t−t0)

∫
Ω

up(·, t0)− µ

2
p

∫ t

t0

e−( p+1
2 )(t−s)

∫
Ω

up+1(·, s)ds

+ (ε+ kp)pχ
p+1µ−p

∫ t

t0

e−( p+1
2 )(t−s)

∫
Ω

|∆v(·, s)|p+1ds

+

∫ t

t0

e−( p+1
2 )(t−s)(c4(µ, ξ, p)p+ c5p‖v(·, s)‖p+1

L1(Ω))ds

≤ e−( p+1
2 )(t−t0)

∫
Ω

up(·, t0)− µ

2
p

∫ t

t0

e−( p+1
2 )(t−s)

∫
Ω

up+1(·, s)ds

+ (ε+ kp)pχ
p+1µ−p

∫ t

t0

e−( p+1
2 )(t−s)

∫
Ω

|∆v(·, s)|p+1ds

+
2

p+ 1

(
c4(µ, ξ, p)p+ c5p sup

t∈(0,Tmax)

‖v(·, t)‖p+1
L1(Ω)

)
(4.20)

for all t ∈ (t0, Tmax). In order to estimate the third term therein, let us note that an application
of Lemma 1.2.3 results in

(ε+ kp)pχ
p+1µ−p

∫ t

t0

e−( p+1
2 )(t−s)

∫
Ω

|∆v(·, s)|p+1ds

≤ (ε+ kp)pCp+1χ
p+1µ−p

∫ t

t0

e−( p+1
2 )(t−s)

∫
Ω

up+1(·, s)ds

+ Cp+1(ε+ kp)pχ
p+1µ−pe−( p+1

2 )(t−t0)‖v(·, t0)‖p+1
W 2,p+1(Ω)

= (ε+ kp)pCp+1χ
p+1µ−p

∫ t

t0

e−( p+1
2 )(t−s)

∫
Ω

up+1(·, s)ds

+ Cp+1(ε+ kp)pχ
p+1µ−pe−( p+1

2 )(t−t0)Mp+1 (4.21)

for all t ∈ (t0, Tmax) and M as in (4.6). Combining (4.20) and (4.21), we finally arrive at∫
Ω

up(·, t)

≤ e−( p+1
2 )(t−t0)

∫
Ω

up(·, t0)− µp

(
1

2
− (ε+ kp)Cp+1

(
χ

µ

)p+1
)∫ t

t0

e−( p+1
2 )(t−s)

∫
Ω

up+1(·, s)ds

+ Cp+1(ε+ kp)pχ
p+1µ−pe−( p+1

2 )(t−t0)Mp+1

+
2

p+ 1

(
c4(µ, ξ, p) + c5 sup

t∈(0,Tmax)

‖v(·, t)‖p+1
L1(Ω)

)
(4.22)
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4. Boundedness in a chemotaxis-haptotaxis model

for all t ∈ (t0, Tmax). We see from Lemma 4.2.4 and the choice of ε that∫
Ω

up(·, t) ≤ C(µ, χ, ξ, p,M) (4.23)

for all t ∈ (t0, Tmax) upon an obvious choice of C(µ, χ, ξ, p,M) > 0. Thus the assertion is
derived.

Lemma 4.3.2. Let (u0, v0, w0) satisfy (4.4). Then there exist θ0 > 0 and C > 0 such that if
χ, ξ > 0, µ > 0 are positive constants and satisfy χ

µ < θ0, then

‖v(·, t)‖L∞(Ω) < C,

‖∇v(·, t)‖L∞(Ω) < C for all t ∈ (t0, Tmax).

Proof. Let p1 > N and θ0 = θp1
be defined as in Lemma 4.3.1. Since χ

µ < θ0, an application of

Lemma 4.3.1 implies a constant c1 > 0 such that ‖u(·, t)‖Lp1 (Ω) ≤ c1 for all t ∈ (t0, Tmax). Let

c2 :=

∫ ∞
0

(1 + σ−
1
2−

N
2p1 )e−σdσ.

Using the variation-of-constants formula for v, we note that a standard estimate for the Neumann
semigroup provides c3 > 0 such that

‖∇v(·, t)‖L∞(Ω) ≤ ‖∇et(∆−1)v(·, t0)‖L∞(Ω) +

∫ t

t0

‖∇e(t−s)(∆−1)u(·, s)‖L∞(Ω)

≤ e−t‖∇v(·, t0)‖L∞(Ω) +

∫ t

t0

c3(1 + (t− s)−
1
2−

N
2p1 )e−(t−s)‖u(·, s)‖Lp1 (Ω)ds

≤M + c1c3

∫ t−t0

0

(1 + σ−
1
2−

N
2p1 )e−σdσ

≤M + c1c2c3

for all t ∈ (t0, Tmax). Similarly, we can find c4 > 0 and c5 > 0 such that

‖v(·, t)‖L∞(Ω) ≤ ‖et(∆−1)v(·, t0)‖L∞(Ω) +

∫ t

t0

‖e(t−s)(∆−1)u(·, s)‖L∞(Ω)ds

≤ e−t‖v(·, t0)‖L∞(Ω) +

∫ t

t0

c4(1 + (t− s)−
N

2p1 )e−(t−s)‖u(·, s)‖Lp1 (Ω)ds

≤M + c1c4c5

for all t ∈ (t0, Tmax). Therefore, the proof is complete.

4.4. Boundedness of u

In the last section, we have already gained Lp-estimate for u with p > N . Since the estimate of
∇w still depends on time, it is not convenient to apply the Neumann heat semigroup estimates
to study the boundedness of u. Here we use the well-developed Moser iteration procedure to
show that u is bounded in L∞(Ω).
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4.4. Boundedness of u

Lemma 4.4.1. Let (u0, v0, w0) satisfy (4.4) and θ0 > 0 be defined as in Lemma 4.3.2. There
exists C > 0 such that if χ, ξ > 0, µ > 0 are positive constants and satisfy χ

µ < θ0, then

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (t0, Tmax). (4.24)

Proof. We first see Lemma 4.3.2 implies the existence of c1 > 0 such that

‖v(·, t)‖L∞(Ω) + ‖∇v(·, t)‖L∞(Ω) < c1 (4.25)

for all t ∈ (t0, Tmax). Testing the first equation in (4.3) with up−1 (p > 1), using (4.9), (4.25)
and Young’s inequality, we can find constants c2, c3 > 0 such that

1

p

d

dt

∫
Ω

up + (p− 1)

∫
Ω

up−2|∇u|2

= (p− 1)χ

∫
Ω

up−1∇u · ∇v + (p− 1)ξ

∫
Ω

up−1∇u · ∇w + µ

∫
Ω

up − µ
∫

Ω

up+1 − µ
∫

Ω

upw

≤ (p− 1)χ

∫
Ω

up−1∇u · ∇v + c2ξ

∫
Ω

up + c2ξ

∫
Ω

upv + c2ξ(p− 1)

∫
Ω

up−1|∇u|+ µ

∫
Ω

up

≤ p− 1

4

∫
Ω

up−2|∇u|2 + (p− 1)χ2

∫
Ω

up|∇v|2 + c2ξ

∫
Ω

up + c1c2ξ

∫
Ω

up

+
p− 1

4

∫
Ω

up−2|∇u|2 + c22ξ
2p

∫
Ω

up + µ

∫
Ω

up

≤ p− 1

2

∫
Ω

up−2|∇u|2 + c3p

∫
Ω

up

for all t ∈ (t0, Tmax), where c3 is independent of p. An obvious rearrangement implies

d

dt

∫
Ω

up + c4

∫
Ω

|∇u
p
2 |2 ≤ c5p2

∫
Ω

up (4.26)

for all t ∈ (t0, Tmax), where c4, c5 > 0 are independent of p.
Next, we use (4.26) to perform the classical Moser iteration procedure ([1]) to obtain the
boundedness of u.
Let pk = 2k, k ∈ N and Mk := sup

t∈(t0,Tmax)

∫
Ω
upk(·, t) < ∞ for all k ∈ N. Since pk ≥ 1, it is easy

to find c6 > 0 such that

d

dt

∫
Ω

upk +

∫
Ω

upk + c4

∫
Ω

|∇u
pk
2 |2 ≤ c5pk2

∫
Ω

upk +

∫
Ω

upk ≤ c6pk2

∫
Ω

upk (4.27)

for all t ∈ (t0, Tmax) and k ∈ N. By means of the Gagliardo-Nirenberg inequality, we see that∫
Ω

upk = ‖u
pk
2 ‖2L2(Ω) ≤ c7‖∇u

pk
2 ‖2aL2(Ω)‖u

pk
2 ‖2(1−a)

L1(Ω) + c7‖u
pk
2 ‖2L1(Ω) for all k ∈ N,

where a =
N
2

1+N
2

∈ (0, 1) and c7 > 0 is independent of k. Young’s inequality and the definition of

pk ensure that there are c8 > 0 and b > 0 satisfying

c6p
2
k

∫
Ω

upk ≤ c4
∫

Ω

|∇u
pk
2 |2 + c8

(
p2
k

) 1
1−a

(∫
Ω

upk−1

)2

+ c6c7p
2
k

(∫
Ω

upk−1

)2

≤ c4
∫

Ω

|∇u
pk
2 |2 + bkM2

k−1 for all k ∈ N. (4.28)
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4. Boundedness in a chemotaxis-haptotaxis model

Combining (4.27-4.28) we find that

d

dt

∫
Ω

upk +

∫
Ω

upk ≤ bkM2
k−1

for all t ∈ (t0, Tmax) and for all k ∈ N. The comparison theorem for the above ODE yields

Mk ≤ max{bkM2
k−1,

∫
Ω

upk(·, t0)} for all k ∈ N.

If bkM2
k−1 <

∫
Ω
upk(·, t0) is valid for infinitely many k, (4.24) is already derived. Otherwise, we

can find a constant h > b such that

Mk ≤ hkM2
k−1 for all k ∈ N.

Hence a direct induction entails

Mk ≤ h
∑j=k−1
j=0 2j(k−j)M2k

0 .

Taking 2k-th root on both sides leads to the assertion.

Now we are ready to prove Theorem 4.1.1.

Proof of Theorem 4.1.1. First we see that the boundedness of u and v follow from Lemma 4.4.1,
Lemma 4.3.2 and (4.6). Thereupon the assertion of Theorem 4.1.1 is immediately obtained from
Lemma 4.2.1.
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5. Sharp decay estimates of bounded
solutions in a bioconvection einviroment

5.1. Introduction

In this chapter, we consider nonnegative solutions of the boundary value problem

ut + U · ∇u = ∆u− χ∇ · (u∇v)− µu2, x ∈ Ω, t > 0,

vt + U · ∇v = ∆v − v + u, x ∈ Ω, t > 0,

∇ · U = 0, x ∈ Ω, t > 0,

∇u · ν = ∇v · ν = 0, U = 0, x ∈ ∂Ω, t > 0,

(5.1)

in a bounded domain Ω ⊂ RN with smooth boundary, where N ≥ 1, where χ > 0 and µ
are positive parameters, and where U : Ω × (0,∞) → Rn is a prescribed solenoidal vector
field. Systems of this type arise in the macroscopic modeling of chemotactic migration under
the influence of a liquid environment by transport through a given fluid, and in presence of
quadratic degradation such as appearing in logistic-type cell kinetics. Here we focus on situations
in which cell proliferation, in logistic models represented by linear production terms, can either
be neglected on the considered time scales, or is absent in principle. A prototypical example for
the latter arises in the context of coral broadcast spawning processes ([20], [48]) during which
eggs release a chemical signal, with concentration denoted by v = v(x, t), that attracts sperms,
where both eggs and sperms jointly consitute a population with density u = u(x, t), and where
the transporting incompressible ocean flow is represented through its velocity field U = U(x, t).

Already in the fluid-free case when U ≡ 0 a variety of previous results indicates quite a substantial
effect of the cross-diffusive mechanism in (5.1), going far beyond well-established knowledge on
the ability of the classical Keller-Segel system obtained on letting µ = 0, that is, of{

ut = ∆u− χ∇ · (u∇v),

vt = ∆v − v + u,
(5.2)

to generate singularities in the sense of finite-time blow-up of some solutions in two- and higher-
dimensional settings ([36], [109]). Indeed, also in situations when µ > 0 in{

ut = ∆u− χ∇ · (u∇v)− µu2,

vt = ∆v − v + u,
(5.3)

and related systems, the destabilizing action of cross-diffusion may still enforce quite a complex
solution behavior in comparison to the respective scalar absorptive parabolic equation, as
indicated by numerical experiments ([71]) and rigorously confirmed by results on spontaneous
emergence of large population densities at intermediate time scales ([116]; cf. also [111] and
[52] for similar findings on associated parabolic-elliptic simplifications). In fact, even the drastic
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5. Sharp decay estimates of bounded solutions in a bioconvection einviroment

phenomenon of finite-time blow-up has been shown to be suppressed by the presence of quadratic
degradation only when either N ≤ 2 ([68], [69]) or N ≥ 3 and µ is suitably large ([106]; see also
[96] for a precedent). The question how far such systems at all are globally solvable when N ≥ 3
and µ > 0 is small has only been partially been answered so far by a statement on global existence
of weak solutions, possibly unbounded but at least in the case N = 3 eventually bounded
and smooth and asymptotically decay in both components ([53]). Strong cross-diffusive effects
become manifest also in an example of blow-up despite certain subquadratic but yet superlinear
degradation terms in some appropriately high-dimensional chemotaxis systems ([107]).

In light of these premises, for the investigation of common large-scale qualitative features of
solutions to (5.1) in general N -dimensional frameworks it seems adequate to explicitly resort
to situations when solutions are globally regular. Upon a time shift if necessary this will in
fact cover widely arbitrary solutions to (5.3) in all physically relevant cases N ≤ 3, but this will
furthermore also capture more complex frameworks in which the fluid evolution itself is unknown,
affected e.g. by the cell population, and governed by appropriate equations from fluid mechanics
(cf. [4] for corresponding modeling aspects), at least in situations when the respectively obtained
chemotaxis-fluid system is globally solvable by suitably regular functions ([94], [95]). Accordingly,
the purpose of this work consists in describing the large time behavior of arbitrary global bounded
solutions to (5.1) in bounded domains for any N ≥ 1, thus ignoring the question under which
particular assumptions on supposedly prescribed initial data (u0, v0) ≡ (u(·, 0), v(·, 0)) such
solutions exist. Hence assuming to be given a sufficiently smooth vector field U and a nontrivial
global bounded classical solution (u, v) of (5.1), we will more precisely focus on deriving optimal
estimates for the decay rate of u(·, t) with respect to the norms both in L∞(Ω) and in L1(Ω),
bearing in mind the particular biological relevance of the latter as representing the total mass of
the considered population.

Previous work in this direction addresses the Cauchy problem in Ω = R2 for a simplified
parabolic-ellitpic variant of (5.1) which can be rewritten in form of the scalar nonlocal parabolic
equation

ut + U · ∇u = ∆u+ χ∇ · (u∇(∆)−1u)− µuq (5.4)

with the additional parameter q ≥ 2. For this problem with initial condition u(·, 0) = u0 ∈
L1(R2), in the case q > 2 any sufficiently regular nonnegative global solution u is known to satisfy∫
R2 u(·, t)→ m∞(χ, u0, U) as t→∞ with some m∞(χ, u0, U) > 0 fulfilling m∞(χ, u0, U)→ 0 as
χ→∞ ([48]). In the critical case q = 2, an influence of chemotaxis on the evolution of the total
mass functional, which then decays to zero in both cases χ > 0 and χ = 0, has been shown to
exist but to be of more subtle character, mainly relevant on finite time intervals ([47]).

Main results. It will turn out that in the presently considered framework of bounded domains,
unlike in the latter Cauchy problem the solution behavior in (5.1) is essentially unaffected by
chemotaxis at least on large time scales. Indeed, throughout the sequel assuming for simplicity
that

U ∈ C1,0(Ω× [0,∞);RN ) ∩ L∞(Ω× (0,∞);RN )

is such that ∇ · U ≡ 0 in Ω× (0,∞), and U ≡ 0 on ∂Ω× (0,∞), (5.5)

we shall see that for any given nontrivial and sufficiently regular bounded solution of (5.1), with
respect to the norms in either X := L1(Ω) or in L∞(Ω) the quantity ‖u(·, t)‖X can be estimated
from above and below by positive multiples, possibly depending on the solution e.g. through its
norm in L∞(Ω× (0,∞)), of 1

t+1 . More precisely, our main results read as follows.
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5.2. Upper decay estimates for u and v in L1(Ω)

Theorem 5.1.1. Let N ≥ 1 and Ω ⊂ RN be a bounded domain with smooth boundary, assume
that µ > 0 and that U satisfies (5.5), and suppose that (u, v) ∈ (C0(Ω×[0,∞))∩C2,1(Ω×(0,∞)))2

is a classical solution of (5.1) for which both u and v are nonnegative, and which is bounded in
the sense that u belongs to L∞(Ω× (0,∞)).

i) There exists C1 > 0 with the property that

1

|Ω|
‖u(·, t)‖L1(Ω) ≤ ‖u(·, t)‖L∞(Ω) ≤

C1

t+ 1
for all t > 0. (5.6)

ii) If furthermore u 6≡ 0, then one can find C2 > 0 such that

‖u(·, t)‖L∞(Ω) ≥
1

|Ω|
· ‖u(·, t)‖L1(Ω) ≥

C2

t+ 1
for all t > 0. (5.7)

We remark that we do not pursue here the question how the constants appearing in the above
statements depend on χ and µ, nor on the function U , thus leaving open whether chemotactic
cross-diffusion possibly influences a fine structure in the large time asymptotics of solutions.
In corresponding chemotaxis-fluid systems in which the fluid evolution itself is affected by the
presence of the other quantities e.g. through buoyant forces, the above results can directly be
applied to solutions which are a priori known to enjoy the above regularity and boundedness
properties; for two- and three-dimensional examples of situations when the latter in fact is
guaranteed for all reasonably regular initial data we refer to [95] and [94]. However, Theorem
5.1.1 is actually more general by considering widely arbitrary fluid fields not necessarily receiving
any feedback from the taxis components.

The main idea underlying our approach is directly motivated by the result to be finally achieved:
The goal pursued in our analysis consists in showing appropriate negligibility of the cross-diffusive
action in (5.1) in comparison to the further mechanisms therein. After establishing a preliminary
but fundamental decay information on solutions in L1(Ω) × L1(Ω) in Section 5.2, this will be
accomplished in Section 5.3 on the basis of the latter by means of a series of arguments relying on
the smoothing action of the heat semigroup in the second equation in (5.1). A first exploitation
of the outcome thereby achieved will yield the estimate from Theorem 5.1.1 i) in Section 5.4,
whereafter a second application thereof will show in Section 5.5 that also in the inequality

d

dt

∫
Ω

lnu ≥ −χ
2

4

∫
Ω

|∇v|2 − µ
∫

Ω

u, t > 0,

constituting the key step in or proof of Theorem 5.1.1 ii), the summand originating from the
taxis term in (5.1) decays suitably fast so as to become asymptotically irrelevant.

5.2. Upper decay estimates for u and v in L1(Ω)

The following basic one-sided decay estimates for the spatial L1 norms of both solution
components can be gained in quite an elementary way, and similar observations have previously
been made in [94, Lemma 5.1] already. Since they will be fundamental to our subsequent analysis,
and since in particular they already underline the difference between the case of bounded Ω and
the case Ω = RN in a quantitative manner, we include a short proof here.

Lemma 5.2.1. Let (u, v) be a nonnegative global classical solution of (5.1). Then∫
Ω

u(·, t) ≤ |Ω|
µ
· 1

t+ γ
for all t > 0 (5.8)
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and ∫
Ω

v(·, t) ≤ K

t+ 2
for all t > 0, (5.9)

where

γ :=
|Ω|

µ ·
∫

Ω
u(·, 0)

(5.10)

and

K := max

{
2

∫
Ω

v(·, 0) , 4

∫
Ω

u(·, 0) ,
2|Ω|
µ

}
. (5.11)

Proof. We only need to consider the case when u(·, 0) 6≡ 0, in which according to (5.1) and the
Cauchy-Schwarz inequality,

d

dt

∫
Ω

u = −µ
∫

Ω

u2 ≤ − µ

|Ω|

{∫
Ω

u
}2

for all t > 0,

which on integration readily implies (5.8) with γ as in (5.10).
Since from (5.1) we moreover see that

d

dt

∫
Ω

v = −
∫

Ω

v +

∫
Ω

u for all t > 0,

we therefore obtain that

d

dt

∫
Ω

v ≤ −
∫

Ω

v +
|Ω|

µ(t+ γ)
for all t > 0. (5.12)

Now with K as given by (5.11), y(t) := K
t+2 , t ≥ 0, satisfies y(0) = K

2 ≥
∫

Ω
v(·, 0) by (5.11) and

therefore

y′(t) + y(t)− |Ω|
µ(t+ γ)

= − K

(t+ 2)2
+

K

t+ 2
− |Ω|
µ(t+ γ)

=
K

t+ 2
·
{

1− 1

t+ 2
− |Ω|
Kµ
· t+ 2

t+ γ

}
≥ K

t+ 2
·
{

1− 1

2
− |Ω|
Kµ
·max

{ 2

γ
, 1
}}

=
K

2(t+ 2)
·
{

1− 1

K
·max

{
4

∫
Ω

u(·, 0) ,
2|Ω|
µ

}}
≥ 0 for all t > 0

due to (5.10) and the second and third restrictions contained in (5.11). By an ODE comparison,
we thus conclude from (5.12) that

∫
Ω
v(·, t) ≤ y(t) for all t > 0, and that hence indeed (5.9)

holds.

5.3. Boundedness and decay properties of ∇v
A crucial step toward both parts of Theorem 5.1.1 will consist in adequately identifying the
cross-diffusive term in (5.1) as asymptotically negligible relative to the diffusive action therein,
which basically amounts to deriving appropriate quantitative bounds for the chemotactic gradient
∇v. This will be achieved in this section by firstly making use of the L1 decay poperty of u
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from Lemma 5.2.1 in order to obtain decay of ∇v at an apparently optimal rate but in a yet
unfavorable topology, and by secondly investing our assumption on boundedness of u to establish
boundedness of v in certain higher norms but without any decay information. Interpolating
these two extremal results will finally yield a decay result for ∇v in arbitrary Lp spaces at a rate
which is probably far from optimal but sufficient for our purposes.

For what follows, let us recall that for p ∈ (1,∞), the realization A = Ap of −∆ + 1 under
homogeneous Neumann boundary conditions, that is, the operator defined by letting Apϕ :=
−∆ϕ + ϕ for ϕ ∈ D(Ap) := {ϕ ∈ W 2,p(Ω) |∇ϕ · ν = 0 on ∂Ω}, is sectorial in the space Lp(Ω),
with its spectrum contained in the half-line [1,∞). Accordingly, A possesses closed and densely
defined fractional powers Aβ for all β ∈ R, and Aβ is bounded whenever β < 0 ([35, Theorem
1.4.2]).

Now the space L1(Ω) is continuously embedded into suitable among the correspondingly obtained
spaces D(A−β), an explicit definition of which is actually not necessary and thus omitted here,
keeping the focus rather on an associated embedding inequality:

Lemma 5.3.1. Let p > 1 and β > N(p−1)
2p . Then there exists C > 0 such that

‖A−βϕ‖Lp(Ω) ≤ C‖ϕ‖L1(Ω) for all ϕ ∈ L1(Ω). (5.13)

Proof. Since β > N(p−1)
2p implies that p′ := p

p−1 satisfies 2β − N
p′ > 0, it follows from known

embedding results ([35, Theorem 1.6.1]) that D(Aβp′) ↪→ L∞(Ω), whence there exists c1 > 0 such
that

‖φ‖L∞(Ω) ≤ c1‖Aβφ‖Lp′ (Ω) for all φ ∈ D(Aβp′). (5.14)

Thus, given any ϕ ∈ C∞0 (Ω) and ψ ∈ C∞0 (Ω), using the self-adjointness of A−β in L2(Ω) we can
estimate∣∣∣∣ ∫

Ω

A−βϕ · ψ
∣∣∣∣ =

∣∣∣∣ ∫
Ω

ϕ ·A−βψ
∣∣∣∣ ≤ ‖ϕ‖L1(Ω)‖A−βψ‖L∞(Ω) ≤ c1‖ϕ‖L1(Ω)‖ψ‖Lp′ (Ω).

Therefore,

‖A−βϕ‖Lp(Ω) = sup
ϕ∈C∞0 (Ω)
‖ψ‖

Lp
′
(Ω)
≤1

∣∣∣∣ ∫
Ω

A−βϕ · ψ
∣∣∣∣ ≤ c1‖ϕ‖L1(Ω),

as claimed.

By appropriately making use of the latter in the course of an argument based on a variation-of-
constants representation of v, we see that with respect to the norm in Lp(Ω) for suitably small
p > 1, ∇v inherits the decay rate of the mass functional

∫
Ω
u from Lemma 5.2.1.

Lemma 5.3.2. Let (u, v) be a nonnegative global classical solution of (5.1). Then for all p ∈
(1, N

N−1 ) one can find C(p) > 0 such that

‖∇v(·, t)‖Lp(Ω) ≤
C(p)

t
for all t ≥ 2. (5.15)

Proof. Since N
N−2(1−α) →

N
N−1 > p as α ↘ 1

2 , it is possible to fix α ∈ ( 1
2 , 1) such that p <

N
N−2(1−α) , which means that

α+
N

2

(
1− 1

p

)
< 1. (5.16)
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We thereupon choose an arbitrary ε ∈ (0, α− 1
2 ) and pick β > N(p−1)

2p , so that since D(A
1
2 +ε
p ) ↪→

W 1,p(Ω) ([35, Theorem 1.6.1]), employing a well-known interpolation argument ([28, Theorem
14.1]) we can find c1 > 0 and c2 > 0 such that

‖∇v(·, t)‖Lp(Ω) ≤ c1‖A
1
2 +εv(·, t)‖Lp(Ω) ≤ c2‖Aαv(·, t)‖aLp(Ω)‖A

−βv(·, t)‖1−aLp(Ω) (5.17)

for all t > 0, where

a :=
1
2 + ε+ β

α+ β
∈ (0, 1).

Here the fact that β > N(p−1)
2p enables us to invoke Lemma 5.3.1 and thereafter apply Lemma

5.2.1 to find c3 > 0 and c4 > 0 such that

‖A−βv(·, t)‖Lp(Ω) ≤ c3‖v(·, t)‖L1(Ω) ≤
c3c4
t

for all t > 0. (5.18)

Now in order to derive (5.15), by means of a variation-of-constants representation of v we write

v(·, t) = e−Av(·, t− 1) +

∫ t

t−1

e−(t−s)Au(·, s)ds−
∫ t

t−1

e−(t−s)AU(·, s) · ∇v(·, s)ds, t ≥ 1,

and apply Aα to both sides to see that∥∥Aαv(·, t)
∥∥
Lp(Ω)

≤
∥∥∥Aαe−Av(·, t− 1)

∥∥∥
Lp(Ω)

+

∫ t

t−1

∥∥∥Aαe−(t−s)Au(·, s)
∥∥∥
Lp(Ω)

ds

+

∫ t

t−1

∥∥∥Aαe−(t−s)AU(·, s) · ∇v(·, s)
∥∥∥
Lp(Ω)

ds for all t ≥ 1. (5.19)

Here according to known smoothing properties of (e−τA)τ≥0 and Lemma 5.2.1, there exist c5 > 0
and c6 > 0 fulfilling∥∥∥Aαe−Av(·, t− 1)

∥∥∥
Lp(Ω)

≤ c5‖v(·, t− 1)‖L1(Ω) ≤
c6
t− 1

for all t ≥ 2, (5.20)

and making use of Lemma 5.2.1 and (5.16), once more by a standard semigroup estimate we can
find c7 > 0 and c8 > 0 such that∫ t

t−1

∥∥∥Aαe−(t−s)Au(·, s)
∥∥∥
Lp(Ω)

ds ≤ c7
∫ t

t−1

(t− s)−α−
N
2 (1− 1

p )‖u(·, s)‖L1(Ω)ds

≤ c8
∫ t

t−1

(t− s)−α−
N
2 (1− 1

p ) · 1

s
ds

≤ c8 ·
1

t− 1
·
∫ t

t−1

(t− s)−α−
N
2 (1− 1

p )ds

=
c8

1− α− N
2 (1− 1

p )
· 1

t− 1
for all t ≥ 2. (5.21)

To finally treat the last summand in (5.19) appropriately, let us introduce the numbers

M(T ) := sup
t∈(1,T )

{
t · ‖Aαv(·, t)‖Lp(Ω)

}
, T > 2,
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5.3. Boundedness and decay properties of ∇v

which are all finite due to our overall assumption that v ∈ C2,1(Ω× (0,∞)). In terms of M(T ),
by boundedness of U , (5.17) and (5.18), with some c9 > 0, c10 > 0 and c11 > 0 the integral in
question can be estimated according to∫ t

t−1

∥∥∥Aαe−(t−s)AU(·, s) · ∇v(·, s)
∥∥∥
Lp(Ω)

ds ≤ c9
∫ t

t−1

(t− s)−α
∥∥∥U(·, s) · ∇v(·, s)

∥∥∥
Lp(Ω)

ds

≤ c10

∫ t

t−1

(t− s)−α‖∇v(·, s)‖Lp(Ω)ds

≤ c2c10

∫ t

t−1

(t− s)−α ·
{
M(T )

s

}a
·
{
c3c4
s

}1−a

ds

≤ c11M
a(T )

∫ t

t−1

(t− s)−α · 1

s
ds

≤ c11M
a(T ) · 1

t− 1
·
∫ t

t−1

(t− s)−αds

=
c11

1− α
Ma(T ) · 1

t− 1
for all t ∈ [2, T ].

Combined with (5.19)-(5.21), in view of the fact that 1
t−1 ≤

2
t for all t ≥ 2 this shows that there

exists c12 > 0 such that for each T > 2,

t · ‖Aαv(·, t)‖Lp(Ω) ≤ c12 + c12M
a(T ) for all t ∈ [2, T ],

and that hence with the number

c13 := max

{
c12 , sup

t∈(1,2)

{
t · ‖Aαv(·, t)‖Lp(Ω)

}}
,

finite again by the inclusion v ∈ C2,1(Ω× (0,∞)) and the fact that α < 1, we have

M(T ) ≤ c13 + c13M
a(T ) for all T > 2.

As a < 1, by an elementary argument this implies that

M(T ) ≤ c14 := max

{
1 , (2c13)

1
1−a

}
for all T > 2

and thereby proves (5.15), because e.g. once more by (5.17) and (5.18) this yields the inequality

‖∇v(·, t)‖Lp(Ω) ≤ c2 ·
{
c14

t

}a
·
{
c3c4
t

}1−a

for arbitrary t ≥ 1.

We next modify the above argument but make use of different ingredients, in particular of the
boundedness of u, to derive the following higher-order boundedness property of v.

Lemma 5.3.3. Let (u, v) be a nonnegative global classical solution of (5.1) with the property
that u is bounded in Ω× (0,∞). Then for all p > 1 and each α ∈ ( 1

2 , 1) there exists C(p, α) > 0
such that

‖Aαv(·, t)‖Lp(Ω) ≤ C(p, α) for all t ≥ 1. (5.22)
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Proof. Following a variant of the strategy pursued in Lemma 5.3.2, we let

M(T ) := sup
t∈(1,T )

‖Aαv(·, t)‖Lp(Ω), T > 2,

and note that since α < 1, the inclusion v ∈ C2,1(Ω × (0,∞)) again warrants that M(T ) < ∞
for all T > 2.
To prepare an adequate estimation of M(T ) on the basis of variation-of-constants representation
associated with the second equation in (5.1), we once more invoke standard smoothing estimates
for (e−τA)τ≥0 to find c1 > 0 and c2 > 0 such that∥∥∥Aαe−Av(·, t− 1)

∥∥∥
Lp(Ω)

≤ c1‖v(·, t− 1)‖L1(Ω) ≤ c2 for all t ≥ 1, (5.23)

for Lemma 5.2.1 in particular warrants that (v(·, t))t≥0 is bounded in L1(Ω). Next, as u is
assumed to be bounded in Ω× (0,∞), there exist c3 > 0 and c4 > 0 such that∫ t

t−1

∥∥∥Aαe−(t−s)Au(·, s)
∥∥∥
Lp(Ω)

ds ≤ c3
∫ t

t−1

(t− s)−α‖u(·, s)‖Lp(Ω)ds

≤ c3c4
∫ t

t−1

(t− s)−αds

=
c3c4

1− α
for all t ≥ 1, (5.24)

because α < 1. Moreover, once more fixing any ε ∈ (0, α − 1
2 ) and β > N(p−1)

2p we may apply
known embedding and interpolation estimates along with Lemma 5.3.1 to gain positive constants

c5, c6, c7, c8 and c9 such that with a :=
1
2 +ε+β

α+β ∈ (0, 1) we have∫ t

t−1

‖Aαe−(t−s)AU · ∇v(·, s)‖Lp(Ω)ds ≤ c5
∫ t

t−1

(t− s)−α‖U(·, s)‖L∞(Ω)‖∇v(·, t)‖Lp(Ω)ds

≤ c6
∫ t

t−1

(t− s)−α‖∇v(·, t)‖Lp(Ω)ds

≤ c7
∫ t

t−1

(t− s)−α‖A 1
2 +εv(·, s)‖Lp(Ω)ds

≤ c8
∫ t

t−1

(t− s)−α‖Aαv(·, s)‖aLp(Ω)‖A
−βv(·, s)‖1−aLp(Ω)ds

≤ c9
∫ t

t−1

(t− s)−αMa(T )‖v(·, s)‖1−aL1(Ω)ds

≤ c10M
a(T )

∫ t

t−1

(t− s)−αds

≤ c10

1− a
Ma(T ) for all t ∈ [1, T ], (5.25)

again due to the fact that v belongs to L∞((0,∞);L1(Ω)) by Lemma 5.2.1.

Now using (5.23)-(5.25), we can estimate∥∥Aαv(·, t)
∥∥
Lp(Ω)

≤
∥∥∥Aαe−Av(·, t− 1)

∥∥∥
Lp(Ω)
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5.3. Boundedness and decay properties of ∇v

+

∫ t

t−1

∥∥∥Aαe−(t−s)Au(·, s)
∥∥∥
Lp(Ω)

ds

+

∫ t

t−1

∥∥∥Aαe−(t−s)AU(·, s) · ∇v(·, s)
∥∥∥
Lp(Ω)

ds

≤ c2 +
c3c4

1− α
+

c10

1− a
Ma(T ) for all t ∈ [2, T ],

so that with the evidently finite constant

c11 := max

{
c2 +

c3c4
1− α

,
c10

1− α
, sup
t∈(1,2)

‖Aαv(·, t)‖Lp(Ω)

}
we have

M(T ) ≤ c11 + c11M
a(T ) for all T > 1

and therefore

M(T ) ≤ max

{
1 , (2c11)

1
1−a

}
for all T > 1,

which proves the lemma.

A straightforward interpolation shows that the above two lemmata imply decay of∇v in Lebesgue
spaces with high summability powers, but at rates slower than that in Lemma 5.3.2. The following
statement on this will be applied to some large value of p and κ := 0 in proving the upper estimate
claimed in Theorem 5.1.1 i), and to p := 2 with some κ > 1

2 in Corollary 5.5.1 preparing the
proof of the lower bound for

∫
Ω
u in Theorem 5.1.1 ii).

Lemma 5.3.4. Let (u, v) be a nonnegative global classical solution of (5.1) such that u is bounded,
and let p > 1. Then for all κ < min{1, N

(N−1)p} there exists C(p, κ) > 0 such that

‖∇v(·, t)‖Lp(Ω) ≤
C(p, κ)

tκ
for all t ≥ 2. (5.26)

Proof. If p < N
N−1 , the claim immediately results from Lemma 5.3.2. In the case p ≥ N

N−1 ,

our assumption ensures that κ < N
(N−1)p , so that we can fix r ∈ [1, N

N−1 ) such that still κ < r
p ,

whence writing

q :=
(1− κ)pr

r − pκ
,

we can easily verify that q > p > r, and that

1
r −

1
p

1
r −

1
q

= 1− κ.

Therefore, the Hölder inequality says that

‖∇v(·, t)‖Lp(Ω) ≤ ‖∇v(·, t)‖1−κLq(Ω)‖∇v(·, t)‖κLr(Ω) for all t > 0, (5.27)

where picking any α ∈ ( 1
2 , 1) we infer from the continuity of the embedding D(Aαq ) ↪→ W 1,q(Ω)

([35]) and from Lemma 5.3.3 that

‖∇v(·, t)‖Lq(Ω) ≤ c1‖Aαv(·, t)‖Lq(Ω) ≤ c2 for all t ≥ 2
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with some c1 > 0 and c2 > 0. As moreover the inequality r < N
N−1 along with Lemma 5.3.2

yields c3 > 0 fulfilling

‖∇v(·, t)‖Lr(Ω) ≤
c3
t

for all t ≥ 2,

from (5.27) we readily derive (5.26).

5.4. Upper bound for u in L∞(Ω). Proof of Theorem 5.1.1 i)

On the basis of a Duhamel formula now associated with the first equation in (5.1), knowing that
cross-diffusive gradient ∇v is bounded in L∞((0,∞);Lp(Ω)) for any finite p > 1 we can then
turn the L1 decay information on u from Lemma 5.2.1 into a corresponding estimate in L∞(Ω).

Prooof Theorem 5.1.1 i). We fix an arbitrary p > N and recall that then by standard
regularization properties of the Neumann heat semigroup (eτ∆)τ≥0 on Ω ([105]) one can pick
c1 > 0 and c2 > 0 such that for all τ ∈ (0, 1) we have

‖eτ∆ϕ‖L∞(Ω) ≤ c1τ−
N
2 ‖ϕ‖L1(Ω) for all ϕ ∈ L1(Ω) (5.28)

and

‖eτ∆∇ · ϕ‖L∞(Ω) ≤ c2τ−
1
2−

N
2p ‖ϕ‖Lp(Ω) for all ϕ ∈ C1(Ω;Rn) such that ϕ · ν = 0 on ∂Ω.

(5.29)
Now in order to estimate the numbers

M(T ) := sup
t∈(0,T )

{
(t+ 1) · ‖u(·, t)‖L∞(Ω)

}
, T > 2,

we use that ∇ · U ≡ 0 in representing u(·, t) according to

u(·, t) = e∆u(·, t− 1)− χ
∫ t

t−1

e(t−s)∆∇ ·
(
u(·, s)∇v(·, s)

)
ds

− µ
∫ t

t−1

e(t−s)∆u2(·, s)ds−
∫ t

t−1

e(t−s)∆∇ ·
(
U(·, s)u(·, s)

)
ds for all t ≥ 1.

Since e(t−s)∆u2(·, s) is nonnegative in Ω for all t > 0 and s ∈ (0, t) due to the maximum principle,
by nonnegativity of u we therefore see that

‖u(·, t)‖L∞(Ω) ≤ ‖e∆u(·, t− 1)‖L∞(Ω)

+ χ

∫ t

t−1

∥∥∥e(t−s)∆∇ ·
(
u(·, s)∇v(·, s)

)∥∥∥
L∞(Ω)

ds

+

∫ t

t−1

∥∥∥e(t−s)∆∇ ·
(
U(·, s)u(·, s)

)∥∥∥
L∞(Ω)

ds for all t ≥ 1, (5.30)

where combining (5.28) with Lemma 5.2.1 we can find c3 > 0 such that

‖e∆u(·, t− 1)‖L∞(Ω) ≤ c1‖u(·, t− 1)‖L1(Ω) ≤
c3
t− 1

≤ 2c3
t

for all t ≥ 2. (5.31)

To relate the two rightmost integrals in (5.30) to M(T ), we first invoke (5.29) to obtain

χ

∫ t

t−1

∥∥∥e(t−s)∆∇ ·
(
u(·, s)∇v(·, s)

)∥∥∥
L∞(Ω)

ds ≤ c2χ
∫ t

t−1

(t− s)−
1
2−

N
2p ‖u(·, s)∇v(·, s)‖Lp(Ω)ds,
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for all t ≥ 1 and then twice use the Hölder inequality to infer that again due to Lemma 5.2.1,
and as a consequence of the boundedness of ∇v in Ω× (1, 2) and Lemma 5.3.4 when applied to
κ := 0, with some c4 > 0 and c5 > 0 and a := 1− 1

2p we have

‖u(·, s)∇v(·, s)‖Lp(Ω) ≤ ‖u(·, s)‖L2p(Ω)‖∇v(·, s)‖L2p(Ω)

≤ ‖u(·, s)‖aL∞(Ω)‖u(·, s)‖1−aL1(Ω)‖∇v(·, s)‖L2p(Ω)

≤
{
M(T )

s+ 1

}a
·
{

c4
s+ 1

}1−a

· c5

= c1−a4 c5M
a(T ) · 1

s+ 1
for all s ∈ (1, T )

and hence

χ

∫ t

t−1

∥∥∥e(t−s)∆∇ ·
(
u(·, s)∇v(·, s)

)∥∥∥
L∞(Ω)

ds

≤ c2c1−a4 c5χM
a(T )

∫ t

t−1

(t− s)−
1
2−

N
2p · 1

s+ 1
ds

≤ c2c1−a4 c5χM
a(T ) · 1

t
·
∫ t

t−1

(t− s)−
1
2−

N
2p ds

=
c2c

1−a
4 c5χ

1
2 −

N
2p

Ma(T ) · 1

t
for all t ∈ [2, T ], (5.32)

because p > N .
Likewise, combining (5.29) with the boundedness of U we obtain c6 > 0 such that∫ t

t−1

∥∥∥e(t−s)∆∇ ·
(
U(·, s)u(·, s)

)∥∥∥
L∞(Ω)

ds ≤ c2
∫ t

t−1

(t− s)−
1
2−

N
2p ‖U(·, s)u(·, s)‖Lp(Ω)ds

≤ c6
∫ t

t−1

(t− s)−
1
2−

N
2p ‖u(·, s)‖Lp(Ω)ds, (5.33)

for all t ≥ 1, where again by the Hölder inequality and Lemma 5.2.1, there exists c7 > 0 such
that

‖u(·, s)‖Lp(Ω) ≤ ‖u(·, s)‖bL∞(Ω)‖u(·, s)‖1−bL1(Ω)

≤
{
M(T )

s+ 1

}b
·
{

c7
s+ 1

}1−b

= c1−b7 M b(T ) · 1

s+ 1
for all s ∈ (1, T )

with b := 1− 1
p . Therefore, (5.33) implies that∫ t

t−1

∥∥∥e(t−s)∆∇ ·
(
U(·, s)u(·, s)

)∥∥∥
L∞(Ω)

ds ≤ c6c1−b7 M b(T )

∫ t

t−1

(t− s)−
1
2−

N
2p · 1

s+ 1
ds

≤ c6c1−b7 M b(T ) · 1

t
·
∫ t

t−1

(t− s)−
1
2−

N
2p ds

=
c6c

1−b
7

1
2 −

N
2p

M b(T ) · 1

t
for all t ∈ [2, T ],
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so that summarizing (5.30), (5.31) and (5.32) and using Young’s inequality yields c8 > 0 and
c9 > 0 such that

t · ‖u(·, t)‖L∞(Ω) ≤ c8 + c8M
a(T ) + c8M

b(T )

≤ c9 + c9M
a(T ) for all t ∈ [2, T ],

because b < a. Since u is bounded in Ω× (0, 2), this entails that for some c10 > 0 we have

M(T ) ≤ c10 + c10M
a(T ) for all T > 2

and thus

M(T ) ≤ max

{
1 , (2c10)

1
1−a

}
for all T > 2,

which readily yields (5.6), for T > 2 was arbitrary.

5.5. Lower bound for u in L1(Ω). Proof of Theorem 5.1.1 ii)

In deriving the lower bound for
∫

Ω
u claimed in Theorem 5.1.1 ii), we will make essential use

of the following consequence of Lemma 5.3.4 which strongly relies on the fact that the decay
exponent κ appearing therein can be chosen favorably large at least in the particular case p := 2.

Corollary 5.5.1. There exist λ > 1 and C > 0 such that∫
Ω

|∇v(·, t)|2 ≤ C

tλ
for all t ≥ 2. (5.34)

Proof. This immediately results from an application of Lemma 5.3.4 to any κ > 1
2 fulfilling

κ < min{1, N
2(N−1)}.

Now the fact that the function on the right of (5.34) is integrable over t ∈ (2,∞) enables us to
make sure that the taxis term in (5.1) becomes asymptotically negligible in the framework of the
following testing procedure.

Lemma 5.5.2. There exists C > 0 such that∫
Ω

lnu(·, t) ≥ −|Ω| ln(t+ γ)− C for all t ≥ 2, (5.35)

where γ > 0 is the constant defined in (5.10).

Proof. As u is positive in Ω × (0,∞) according to the strong maximum principle, we may test
the first equation in (5.1) against 1

u so as to see that

d

dt

∫
Ω

lnu =

∫
Ω

1

u
ut

=

∫
Ω

1

u
∆u− χ

∫
Ω

1

u
∇ · (u∇v)− µ

∫
Ω

u

=

∫
Ω

|∇u|2

u2
− χ

∫
Ω

∇u
u
· ∇v − µ

∫
Ω

u for all t > 0, (5.36)
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where by Young’s inequality,

−χ
∫

Ω

∇u
u
· ∇v ≥ −

∫
Ω

|∇u|2

u2
− χ2

4

∫
Ω

|∇v|2 for all t > 0. (5.37)

Now from Lemma 5.2.1 we know that

µ

∫
Ω

u ≤ |Ω|
t+ γ

for all t > 0,

whereas Corollary 5.5.1 provides λ > 1 and c1 > 0 satisfying

χ2

4

∫
Ω

|∇v|2 ≤ c1
tλ

for all t ≥ 2.

From (5.36) and (5.37) we therefore obtain the inequality

d

dt

∫
Ω

lnu ≥ − |Ω|
t+ γ

− c1
tλ

for all t ≥ 2,

which on direct integration shows that∫
Ω

lnu(·, t)−
∫

Ω

lnu(·, 2) ≥ −|Ω|
∫ t

2

ds

s+ γ
− c1

∫ t

2

ds

sλ

= −|Ω| ln(t+ γ) + |Ω| ln(2 + γ)− c1
2λ−1(λ− 1)

+
c1

(λ− 1)tλ−1

≥ −|Ω| ln(t+ γ)− c1
2λ−1(λ− 1)

for all t ≥ 2.

As
∫

Ω
lnu(·, 2) is finite by strict positivity of u(·, 2) throughout Ω, this establishes (5.35).

Thanks to the precise information on the multiple of ln(t+γ) appearing in (5.35), upon a simple
application of Jensen’s inequality we can turn this into a lower estimate for

∫
Ω
u involving exactly

the desired decay rate.

Lemma 5.5.3. There exists C > 0 such that∫
Ω

u(·, t) ≥ C

t+ 1
for all t > 0. (5.38)

Proof. From Lemma 5.5.2 we know that with γ > 0 taken from (5.10), for some c1 > 0 we have∫
Ω

lnu ≥ −|Ω| ln(t+ γ)− c1 for all t ≥ 2.

Since by Jensen’s inequality we can estimate∫
Ω

lnu = |Ω| ·
{

1

|Ω|

∫
Ω

lnu

}
≤ |Ω| · ln

{
1

|Ω|

∫
Ω

u

}
= |Ω| · ln

{∫
Ω

u

}
− |Ω| ln |Ω|

for all t > 0, this implies that∫
Ω

u ≥ |Ω| · e
1
|Ω|
∫
Ω

lnu
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≥ |Ω| · e
1
|Ω| ·
{
−|Ω| ln(t+γ)−c1

}
= |Ω|e−

c1
|Ω| · 1

t+ γ

≥ |Ω|e−
c1
|Ω| ·min

{ 1

γ
, 1
}
· 1

t+ 1
for all t ≥ 2.

Therefore, the proof is completed upon the observation that mint∈[0,2]

{
(t + 1)

∫
Ω
u(·, t)

}
must

be positive by continuity of u and the fact that u 6≡ 0.

We can thereby complete the proof of our main results.

Proof of Theorem 5.1.1 ii). For appropriately small C > 0, the second inequality in (5.7) is
precisely asserted by Lemma 5.5.3, whereas the first is obvious.
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6. A 3D Chemotaxis-Navier-Stokes Model

6.1. Introduction

Even simple life-forms, like certain species of bacteria, can exhibit a complex collective behavior.
One particular biological mechanism responsible for some instances of such demeanour is that of
chemotaxis, where the bacteria adapt their movement according to the concentration gradient of
a particular chemical in their neighborhood. If this process takes place in a liquid environment, it
is not unreasonable to take into account interactions with the surrounding fluid as well. Indeed,
as description for colonies of bacillus subtilis, chemotactic bacteria that are known to display
organized swimming and bioconvection patterns in a fluid habitat [38, 61, 77, 23], the following
model has been suggested in [99]:

ut = ∆u−∇ · (χ(v)u∇v)− U · ∇u,

vt = ∆v − uk(v)− U · ∇v,

Ut = ∆U − (U · ∇)U +∇P + u∇Φ,

∇ · U = 0,

(6.1)

where a prototypical choice for the functions χ and k is χ(v) = const = χ and k(v) = v. Herein,
u denotes the unknown population density of bacteria that move in part randomly and in part
as directed by chemotactic effects, and are transported by the surrounding fluid; v denotes the
concentration of oxygen, which again diffuses and is transported by the fluid, but at the same
time is consumed by the bacteria. The evolution of the velocity field U of the fluid, finally, is
governed by the incompressible Navier-Stokes equations, where the bacteria exert influence by
means of bouyant forces due to different densities of water with a high concentration of cells
versus low concentration. Using the Boussinesq approximation, this effect is incorporated into
the model via the gravitational potential ∇Φ, Φ ∈ C1+δ(Ω) for some δ ∈ (0, 1) being a given
function. The usual boundary conditions posed along with initial conditions to complement (6.1)
are

∇u · ν = ∇v · ν = 0, U = 0 on ∂Ω.

Let us remark that in this model the chemoattractant (oxygen) is consumed and not supplied by
the bacteria, which is in contrast to the celebrated Keller-Segel system of chemotaxis [45] and
its variants constituting the center of extensive mathematical investigations since the 1970s, see
e.g. the surveys [37, 39, 4] and references therein.
Since its introduction and first analytical results (asserting the local existence of weak solutions in
[59]), also the chemotaxis-fluid system has inspired several works addressing mainly the question
of existence of classical or weak solutions (the works mentioned below) and long-term behaviour
of solutions ([21, 16, 82, 112, 44, 124]).
Due to the difficulties associated with the Navier-Stokes equations in three-dimensional domains,
many of these works focus on the two-dimensional case ([112, 108, 89, 126, 124]) or more favorable
variants of the model, for example by resorting to the Stokes equation upon neglection of the
nonlinear convective term ([108, 25]) or by considering nonlinear instead of linear diffusion of the
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bacteria ([58, 21, 89, 90, 25, 19, 100]) and consider the three-dimensional case under smallness
conditions on the initial data ([24, 82, 123, 15]). Also in [49], where existence and uniqueness
of mild solutions to a model including (6.1) as a submodel in addition to Keller-Segel-type
chemotaxis, are proven for the full space in arbitrary dimensions, a smallness assumption (in this
case, in the scaling invariant space) is required.
Only recently, the existence of global weak solutions to the system (6.1) with large initial data
has been demonstrated for bounded three-dimensional domains in [117], see also [125] for even
milder diffusion effects, followed by studies of the long-term behaviour of any such “eventual
energy solution” [118], which, namely, become smooth on some interval [T,∞) and uniformly
converge in the large-time-limit.

With this model one further peculiar effect is still unaccounted for that can be observed in
colonies of Proteus mirabilis. Colonies of these bacteria form spiralling streams that always wind
counterclockwise [120]. A reason underlying this behaviour is that the swimming of the bacteria,
like that of the similar species E. coli , is biased, when they are close to a surface (cf. [54, 22]).
This can be reflected in chemotaxis equations by allowing for a more general, tensor-valued and
spatially inhomogeneous chemotactic sensitivity, so that the model reads

ut = ∆u−∇ · (uS(x, u, v) · ∇v)− U · ∇u, (x, t) ∈ Ω× (0, T ),

vt = ∆v − uv − U · ∇v, (x, t) ∈ Ω× (0, T ),

Ut = ∆U − (U · ∇)U +∇P + u∇Φ, (x, t) ∈ Ω× (0, T ),

∇ · U = 0, (x, t) ∈ Ω× (0, T ),

(6.2)

where the sensitivity S(x, u, v) = (si,j)N×N is a matrix-valued function. Indeed, when in [121] a
macroscale model for chemotaxis is derived from a velocity jump process rooted in a cell based
model incorporating a minimal description of signal transduction in single cells and accounting
for this swimming bias, in the chemotaxis term a contribution perpendicular to the concentration
gradient appears ([121, (5.26)]). (For tensor-valued sensitivities arising in chemotaxis equations
see also [70, sec. 4.2.1] or [119, eq.(3.3)].)
Mathematically, the introduction of these general sensitivities has the disadvantage that it
destroys the natural energy structure coming with (6.1). In point of fact, many results concerning
global existence of solutions to (6.1) rely on the use of an energy inequality featuring an upper
estimate of

d

dt

[∫
Ω

u log u+
1

2

∫
Ω

χ(v)

k(v)
|∇v|2

]
+

∫
Ω

|∇u|2

u
+

1

4

∫
Ω

k(v)

χ(v)
|D2ρ(v)|2 (6.3)

or very similar quantities, where ρ denotes a primitive of χ
k , see [108, Formula (3.11)], [112,

(2.15)], [24, (3.11)] or [118, (1.11)] or [15, (3.8)]. For the derivation of appropriate estimates,
more precisely for certain cancellations of contributions of the first and the second term in the
brackets to occur, it seems to be essential that the functions k and χ satisfy conditions like those
given in [112, (1.8)-(1.10)], [108, (1.7)-(1.9)], [24, (A)(iii)], [118, (1.7)] or even [15, (AA), (B)].
There is next to no hope of transferring such delicate cancellations to the case of functions χ
that are no longer scalar-valued.
Nevertheless, for some instances of such a system including a rotational sensitivity, the existence
of solutions could be shown: The fluid-free system, obtained from (6.2) upon setting U ≡ 0,
possesses global classical solutions for even more general equations modeling the consumption of
oxygen if posed in two-dimensional domains and under a smallness condition on initial data v0.
In this case, furthermore, these solutions converge to spatially homogeneous equilibria as t→∞
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([55]). Also in the case of degenerate diffusion the existence of global bounded weak solutions
was obtained for the two-dimensional fluid-free case in [12]. For large initial data and higher
spatial dimensions, generalized solutions have been shown to exist in [115].
In the presence of a Stokes-governed fluid in two-dimensional domains, global generalized
solutions that become smooth eventually and stabilize were constructed in [113]. The existence
of global weak solutions with bounded u-component for the full model including Navier-Stokes
equations for the fluid in two-dimensional domains is asserted in [42] under the assumption of
porous-medium-type diffusion with exponent m > 1 for the bacteria.
In three dimensions, the existence of a global classical solution to the model with a Stokes-
governed fluid was proven in [101] under the hypothesis that |S| ≤ C(1 +u)−α, with some C > 0
and α > 1

6 . A similar decay assumption on S, here with α > 0, made it possible to obtain global
existence and boundedness of classical solutions for the same model with the second equation
replaced by vt = ∆v − u+ v − U · ∇v in two-dimensional domains [102].
In [17], the chemotactic sensitivity and the diffusion coefficient for the bacterial motion, both
being u- and x-dependent, were even assumed to vanish for N = 1. By a semi-discretization
procedure, the existence of weak solutions was established for bounded domains of dimension up
to four and in the presence of either Navier-Stokes- or Stokes-fluid.
An alternative assumption prompting the existence of weak solutions in the 3D-Stokes-setting
is that of nonlinear diffusion of bacteria, that is, with ∆u replaced by ∇ · (um−1∇u), with an
exponent m > 7

6 , [114]. Also the long-term behaviour of solutions is examined there: they
converge to the semi-trivial steady state.
In the present article we consider (6.2) without decay assumptions on S and with Navier-Stokes
fluid in three-dimensional domains. The boundary conditions posed will be

∇v · ν = (∇u− uS(x, u, v) · ∇v) · ν = 0, U = 0, (x, t) ∈ ∂Ω× (0,∞), (6.4)

where ν denotes the outer unit normal. We concentrate on classical solutions and therefore pose
a smallness condition on the initial data. We then obtain global existence of classical solutions
and exponential convergence to a constant steady state. Unlike the study of mild solutions to
a Keller-Segel-Navier-Stokes system in [49], we are concerned with bounded domains and admit
non-scalar sensitivities.
The consideration of convergence rates seems to be new in the context of tensor valued (and
space-dependent) sensitivities, although convergence rates for solutions of the chemotaxis-fluid
model (6.1) in the full space have been reported in [24] and [82] and in [123] and also, for
Stokes fluid, in [16]. The only corresponding result for bounded domains, and thus the only one
giving exponential decay, is the recent work [124], where two-dimensional bounded domains are
considered. In the derivation of decay estimates in [124], it was possible to rely on the already
established existence ([108]) and convergence ([112]) of solutions. Contrasting this, in the present
work we additionally have to ensure global existence of the solutions we are working with and
will do so by using a continuation argument that has been used in a similar fluid-free context
in [105]. Moreover, our proof will entail an improvement of the convergence rate of the fluid
component if compared to [124].
For these tools and the local existence result to be employable, we will first have to restrict
our course of action to the case of S vanishing on the boundary. Only in a later step will we
approximate fully general sensitivity functions. With regards to this step, we will give more
detailed proofs, which have not been contained in any previous works concerned with rotational
sensitivities. We will focus on the three-dimensional case. However, since it is possible without
further labour, we will perform all calculations and state all results for N ∈ {2, 3}. The only
assumption we place on the domain Ω ⊂ RN is that it be bounded with smooth boundary.
Results concerning bounded domains often include a convexity assumption (see e.g. [108]),
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which is used to cope with boundary terms stemming from integration by parts when dealing
with an energy functional. By arguments relying on estimates from [43] or [62], it has become
possible to remove this assumption (cf. [44] or also [102, 101, 42]). Since our approach does not
involve such functionals, these terms will not arise in the first place.
In order to formulate our main result, let us briefly introduce the remaining necessary part of
the technical framework: On the sensitivity function S we will impose the conditions

S ∈ C2
(
Ω× [0,∞)× [0,∞),RN×N

)
and |S(x, u, v)| ≤ CS (6.5)

for any (x, u, v) ∈ Ω × [0,∞) × [0,∞), where CS is a given positive constant. The initial data
are assumed to satisfy 

u0 ∈ C0(Ω), u0 ≥ 0 on Ω,

v0 ∈W 1,q0(Ω), v0 > 0 on Ω,

U0 ∈ D(Aβ),

(6.6)

for some β ∈ (N4 , 1) and q0 > N , where A denotes the (L2-realization of the) Stokes operator
under Dirichlet boundary conditions in Ω.
Here and in the following, we will denote the first eigenvalue of A by λ′1, and by λ1 the first
nonzero eigenvalue of −∆ on Ω under Neumann boundary conditions. (For more details on
notation and the precise choice of q0 and β we refer to Sections 6.2 and 6.3 as well as Theorem
6.1.1.)
For T ∈ (0,∞] and initial data with the smoothness indicated in (6.6), a classical solution of
(6.2), (6.4) on [0, T ) is a quadruple of functions (u, v, U, P ) satisfying (6.2) and (6.4) in a pointwise
sense as well as u(·, 0) = u0, v(·, 0) = v0, U(·, 0) = U0 and exhibiting the following regularity
properties: 

u ∈ C0
(
Ω× [0, T )

)
∩ C2,1

(
Ω× (0, T )

)
,

v ∈ C0
(
Ω× [0, T )

)
∩ L∞

(
(0, T );W 1,q0(Ω)

)
∩ C2,1

(
Ω× (0, T )

)
,

U ∈ C0
(
Ω× [0, T )

)
∩ L∞

(
(0, T );D(Aβ)

)
∩ C2,1

(
Ω× (0, T )

)
,

P ∈ C1,0
(
Ω× (0, T )

)
(6.7)

It is called global solution if T =∞. The main result will be the following:

Theorem 6.1.1. Let N ∈ {2, 3}, p0 ∈ (N2 ,∞), q0 ∈ (N,∞) and β ∈ (N4 , 1). Let m > 0, CS > 0

and Φ ∈ C1+δ(Ω) with some δ > 0. Then for any α1 ∈ (0,min{m,λ1}) and α2 ∈ (0,min{α1, λ
′
1})

there are ε > 0, C > 0 such that for any initial data (u0, v0, U0) fulfilling (6.6) and

u0 =
1

|Ω|

∫
Ω

u0 = m, ‖u0 − u0‖Lp0 (Ω) ≤ ε, ‖v0‖L∞(Ω) ≤ ε, ‖U0‖LN (Ω) ≤ ε (6.8)

and any function S satisfying (6.5), system (6.2) with boundary condition (6.4) and initial data
(u0, v0, U0) has a global classical solution, which moreover satisfies

‖u(·, t)− u0‖L∞(Ω) ≤ Ce−α1t, ‖v(·, t)‖W 1,q0 (Ω) ≤ Ce−α1t, ‖U(·, t)‖L∞(Ω) ≤ Ce−α2t

for any t > 0.

Condition (6.8) in Theorem 6.1.1 could be replaced by

u0 =
1

|Ω|

∫
Ω

u0 = m, ‖u0‖Lp0 (Ω) ≤ ε, ‖∇v0‖LN (Ω) ≤ ε, ‖U0‖LN (Ω) ≤ ε. (6.9)
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without affecting the validity of the Theorem, thus exchanging conditions asking for the smallness
of oxygen concentration and some kind of uniformity in the distribution of bacteria by conditions
that indicate smallness of the bacterial concentration and a somewhat homogeneous dispersion
of oxygen. Let us state this alternative variant:

Theorem 6.1.2. Let N ∈ {2, 3}, p0 ∈ (N2 , N), q0 ∈ (N, ( 1
p0
− 1
N )−1), and β ∈ (N4 , 1). Let M > 0,

CS > 0 and Φ ∈ C1+δ(Ω) with some δ > 0. Then there exist ε > 0 and m0 < ε|Ω|−
1
p0 such

that for any m > m0, any α1 ∈ (0,min{m,λ1}) and α2 ∈ (0,min{α1, λ
′
1}) there is C > 0 such

that for any initial data (u0, v0, U0) fulfilling (6.6), (6.9) and ‖v0‖L∞(Ω) = M and any function
S satisfying (6.5), system (6.2) with boundary condition (6.4) and initial data (u0, v0, U0) has a
global classical solution, which moreover satisfies

‖u(·, t)− u0‖L∞(Ω) ≤ Ce−α1t, ‖v(·, t)‖W 1,q0 (Ω) ≤ Ce−α1t, ‖U(·, t)‖L∞(Ω) ≤ Ce−α2t

for any t > 0.

Remark 6.1.3. The condition m0 < ε|Ω|−
1
p0 ensures the existence of initial data to which the

theorem is applicable. For m > ε|Ω|−
1
p0 the conditions in (6.9) cannot be satisfied simultaneously.

We will not give a separate proof for Theorem 6.1.2 in detail, since it is very similar to that of
Theorem 6.1.1. In Remark 6.4.11 at the end of Section 6.4 we will indicate the necessary changes
in the proof; an appropriately adapted version of Lemma 6.3.1 will be given in the Appendix.
In order to derive these theorems, we will begin in Section 6.2 by recalling or providing a local
existence result and some useful estimates. In Section 6.3, we will then ensure the applicability of
these estimates and fix constants and parameters that will make it possible to prove Proposition
6.4.1, which is Theorem 6.1.1 for S = 0 on the boundary. The basic approach employed in
Section 6.4 partially parallels that from [29] and is moreover closely related to that of [105].
In Section 6.5 we ensure sufficient boundedness in appropriate spaces to pass to the limit in
an approximation procedure for more general sensitivity functions so that the last part of that
section, finally, can be devoted to the proof of Theorem 6.1.1.

6.2. Preliminaries

The purpose of this section is to provide the ground for estimates needed in the global existence
proof. Due to the central importance of semigroups in this undertaking, we next recall Lp-Lq

estimates for the Neumann heat semigroup as given in [105, Lemma 1.3]. In fact, we include a
small improvement on the statements in part (iii) and (iv). Here and in the following, by λ1 we
will denote the first nonzero eigenvalue of −∆ on Ω under Neumann boundary conditions and
by (et∆)t>0 we will denote the Neumann heat semigroup in the domain Ω.

Lemma 6.2.1. There exist k1, k2, k3, k4 > 0 which only depend on Ω and which have the
following properties:
(i) If 1 ≤ q ≤ p ≤ ∞, then

‖et∆w‖Lp(Ω) ≤ k1

(
1 + t−

N
2 ( 1

q−
1
p )
)
e−λ1t‖w‖Lq(Ω) for all t > 0 (6.10)

holds for all w ∈ Lq(Ω) with
∫

Ω
w = 0.

(ii) If 1 ≤ q ≤ p ≤ ∞, then

‖∇et∆w‖Lp(Ω) ≤ k2

(
1 + t−

1
2−

N
2 ( 1

q−
1
p )
)
e−λ1t‖w‖Lq(Ω) for all t > 0 (6.11)
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holds for each w ∈ Lq(Ω).
(iii) If 2 ≤ q ≤ p ≤ ∞, then

‖∇et∆w‖Lp(Ω) ≤ k3

(
1 + t−

N
2 ( 1

q−
1
p )
)
e−λ1t‖∇w‖Lq(Ω) for all t > 0 (6.12)

is true for all w ∈W 1,p(Ω).
(iv) Let 1 < q ≤ p <∞ or 1 < q <∞ and p =∞, then

‖et∆∇ · w‖Lp(Ω) ≤ k4

(
1 + t−

1
2−

N
2 ( 1

q−
1
p )
)
e−λ1t‖w‖Lq(Ω) for all t > 0 (6.13)

is valid for any w ∈ (Lq(Ω))N .

Proof. This is [105, Lemma 1.3]. The parts of Cases (iii) and (iv) which are missing there, are
proven in [7, Lemma 2.1].

Because of the third equation in (6.2), the Neumann Laplacian is not the only operator generating
a semigroup which is important for analyzing the solutions of (6.2). Before introducing the
Stokes operator and recalling estimates for the corresponding semigroup, however, let us briefly
familiarize ourselves with the appropriate spaces.
For p ∈ (1,∞) the spaces of solenoidal vector fields are defined as the Lp-closure of the set of
divergence-free smooth vector fields:

Lpσ(Ω) = C∞0,σ(Ω,RN )
‖·‖Lp(Ω)

= {ϕ ∈ C∞0 (Ω,RN );∇ · ϕ = 0}
‖·‖Lp(Ω)

.

Indeed, the space Lp(Ω,RN ) is the direct sum of this solenoidal space and a space {∇ϕ;ϕ ∈
W 1,p(Ω)} consisting of gradients and there exists a projection from Lp(Ω,RN ) onto Lpσ(Ω), the
so-called Helmholtz projection P. More precisely, we have the following:

Lemma 6.2.2. The Helmholtz projection P defines a bounded linear operator P : Lp(Ω,RN )→
Lpσ(Ω); in particular, for any p ∈ (1,∞) there is k5(p) > 0 such that

‖Pw‖Lp(Ω) ≤ k5(p)‖w‖Lp(Ω)

for every w ∈ (Lp(Ω))N .

Proof. See [30, Thm. 1 and Thm. 2].

The Stokes operator on Lpσ(Ω) is defined as Ap = −P∆ with domain D(Ap) = W 2,p(Ω) ∩
W 1,p

0 (Ω) ∩ Lpσ(Ω). Since Ap1 and Ap2 coincide on the intersection of their domains for p1, p2 ∈
(1,∞), we will drop the index p in the following without fearing confusion. This operator
generates a semigroup for which estimates similar to the previous ones hold:

Lemma 6.2.3. The Stokes operator A generates the analytic semigroup (e−tA)t>0 in Lrσ(Ω). Its
spectrum satisfies λ′1 := inf Reσ(A) > 0 and we fix µ ∈ (0, λ′1). For any such µ, the following
holds:
(i) For any p ∈ (1,∞) and γ ≥ 0 there is k6(p, γ) > 0 such that

‖Aγe−tAφ‖Lp(Ω) ≤ k6(p, γ)t−γe−µt‖φ‖Lp(Ω) (6.14)

holds for all t > 0 and all φ ∈ Lpσ(Ω).
(ii) For p, q satisfying 1 < p ≤ q <∞ there exists k7(p, q) > 0 such that

‖e−tAφ‖Lq(Ω) ≤ k7(p, q)t−
N
2 ( 1

p−
1
q )e−µt‖φ‖Lp(Ω) (6.15)
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holds for all t > 0 and all φ ∈ Lpσ(Ω).
(iii) For any p, q with 1 < p ≤ q <∞ there is k8(p, q) > 0 such that for all t > 0 and φ ∈ Lpσ(Ω)

‖∇e−tAφ‖Lq(Ω) ≤ k8(p, q)t−
1
2−

N
2 ( 1

p−
1
q )e−µt‖φ‖Lp(Ω). (6.16)

(iv) If γ ≥ 0 and 1 < q < p <∞ satisfy 2γ − N
q ≥ 1− N

p , then there is k9(γ, p, q) such that for

all φ ∈ D(Aγq )
‖φ‖W 1,p(Ω) ≤ k9(γ, p, q)‖Aγφ‖Lq(Ω). (6.17)

Proof. That A generates an analytic semigroup in Lrσ(Ω) was shown in [31]. The estimate in
(i) for its fractional powers is a consequence of this fact, see [35, Def. 1.4.7 and Theorem
1.4.3]. Estimates like those in (ii) and (iii) constitute another well-known property of the Stokes
semigroup, see e.g. [103, Chapter 6]. They can be proven by combining the Sobolev type
embedding theorem and an embedding result for domains of fractional powers of A with estimates
as in (i). Namely, according to [33, Prop. 1.4], D(Aγr ) ↪→ H2γ

r for any γ ≥ 0, where H2γ
r = F 2γ

r,2

is a Bessel potential space. Such spaces are covered by the embedding theorem [98, Thm. 3.3.1
(ii)], which states that F s0p0,q0(Ω) ↪→ F s1p1,q1(Ω), if s0 − N

p0
≥ s1 − N

p1
, 0 < p0 < ∞, 0 < p1 < ∞,

0 < q0 ≤ ∞, 0 < q1 ≤ ∞ and −∞ < s1 < s0 <∞. In particular,

D(A
N
2 ( 1

p−
1
q )

p ) ↪→ H
N( 1

p−
1
q )

p (Ω) = F
N( 1

p−
1
q )

p,2 (Ω) ↪→ F 0
q,2(Ω) = Lq(Ω)

and analogously D(A
1
2 +N

2 ( 1
p−

1
q )) ↪→ W 1,q(Ω), so that an application of (i) yields (ii) and (iii),

respectively. The same embedding results also readily ensure the validity of (iv).

The following lemma, giving elementary estimates for integrals that arise in calculations involving
semigroup representations of solutions, will find frequent use in the proof of Proposition 6.4.1.

Lemma 6.2.4. For all η > 0 there is C = C(η) > 0 such that for all α ∈ [0, 1−η], β ∈ [η, 1−η],
γ, δ ∈ R satisfying 1

η ≥ γ − δ ≥ η and for all t > 0, we have∫ t

0

(
1 + s−α

) (
1 + (t− s)−β

)
e−γse−δ(t−s)ds ≤ C(η)e−min{γ,δ}t

(
1 + tmin{0,1−α−β}

)
.

Proof. Since the statement is a minimally sharpened version of [105, Lemma 1.2], it is not
surprisig that its proof can be performed along the same lines as in [105, Lemma 1.2]. We
include a proof in the appendix of this chapter.

Remark 6.2.5. The roles of δ and γ can of course be exchanged if those of α and β are. The
constant C(η) becomes unbounded as η → 0+.

In cases where the previous lemma yields another than the desired exponent, the following
elementary fact may be of use:

Lemma 6.2.6. Let 0 ≥ a ≥ b and t > 0. Then (1 + ta) ≤ 2(1 + tb).

Proof. If t > 1, then 1 + ta ≤ 2 ≤ 2 + 2tb. If t ≤ 1, by the nonnegativity of a− b the inequality
ta−b ≤ 1a−b holds and hence 1 + ta ≤ 1 + tb = 1 + tbta−b < 2(1 + tb).

Another similarly elementary observation is the following:

Lemma 6.2.7. Let either a, b ≥ 0 or a, b ≤ 0. Then for any t > 0, the inequality (1+ta)(1+tb) ≤
3(1 + ta+b) holds.
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Proof. If a, b ≥ 0, for t ≥ 1, we have ta ≤ ta+b ≤ 1 + ta+b, whereas for t ≤ 1, ta ≤ 1 ≤ 1 + ta+b.
The same estimates hold for tb, and thus (1 + ta)(1 + tb) = 1 + ta + tb + ta+b ≤ 3(1 + ta+b). For
a, b < 0, one has to exchange the cases t ≥ 1 and t ≤ 1.

As final preparatory step, we include the following result on local existence of solutions:

Lemma 6.2.8. Let N ∈ {2, 3}, q > N , β ∈ (N4 , 1) and CS > 0, and let S be a function satisfying
(6.5). In addition assume that there exists a compact set K ⊂ Ω such that

S(x, u, v) = 0 for any u ≥ 0, v ≥ 0, x ∈ Ω \K. (6.18)

Assume that (u0, v0, U0) satisfy (6.6).
(i) There exist

τ =τ(q, β, ‖u0‖L∞(Ω), ‖v0‖W 1,q(Ω), ‖AβU0‖L2(Ω), CS) > 0 and

Γ =Γ(q, β, ‖u0‖L∞(Ω), ‖v0‖W 1,q(Ω), ‖AβU0‖L2(Ω), CS) > 0

(where for fixed β and q the value of Γ is nondecreasing in the arguments ‖u0‖L∞(Ω), ‖v0‖W 1,q(Ω),

‖AβU0‖L2(Ω), CS, and τ is nonincreasing with respect to them) and a classical solution (u, v, U, P )
of (6.2), (6.4) on [0, τ ] with initial data (u0, v0, U0) which satisfies

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q(Ω) + ‖U(·, t)‖D(Aβ) ≤ Γ for every t ∈ [0, τ ].

(ii) This solution can be extended to a maximal time interval, more precisely: There are Tmax > 0
and a classical solution (u, v, U, P ) of (6.2) in Ω× [0, Tmax) such that

if Tmax <∞, then ‖u(·, t)‖L∞(Ω) +‖v(·, t)‖W 1,q(Ω) +‖AβU(·, t)‖L2(Ω) →∞ as t↗ Tmax. (6.19)

Moreover, we have u > 0 and v > 0 on Ω × (0, Tmax). For any T ∈ (0, Tmax), this solution
is unique among all functions satisfying (6.7), up to addition of functions p̂, such that p̂(·, t) is
constant for any t ∈ (0, T ) to P .

Proof. Condition (6.18) removes any nonlinearity or inhomogeneity from the boundary condition
(6.4). Thus, a proof for a very similar system can be found in [108, Lemma 2.1, p. 324-328],
where this is shown by means of a Banach fixed-point argument. Differences mainly stem from
the presence of S, which can be estimated in the Frobenius norm by CS whenever necessary, so
that the reasoning there can almost word by word be applied to the current setting.

6.3. Constants and parameters

Given m, N , p0, q0, β, α1 and α2 as in Theorem 6.1.1, in this section we shall, mainly by
application of Lemma 6.2.4, produce constants C1, . . . , C8 (which, accordingly, will only depend
on m > 0, N , p0, q0, β and α1, α2) to be used in the continuation argument in the proof of
Proposition 6.4.1. We let k1, . . . , k9 denote the constants appearing in the estimates of Lemma
6.2.1, Lemma 6.2.2 and Lemma 6.2.3. As stated before, λ′1 and λ1 will be used to refer to
the smallest positive eigenvalues of the Stokes operator or the Neumann Laplacian in Ω. As in
Proposition 6.4.1 (or Theorem 6.1.1), we will rely on

m > 0, (6.20)

N ∈ {2, 3}, (6.21)
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N

2
< p0 < N, (6.22)

q0 > N and
1

q0
>

1

p0
− 1

N
, (6.23)

N

4
< β < 1, (6.24)

α1 ∈ (0,min{m,λ1}), (6.25)

α2 ∈ (0,min{α1, λ
′
1}) (6.26)

being satisfied, where we have included upper bounds on p0 and q0 in (6.22) and (6.23) that will
be used during Section 6.4. We pick µ ∈ (α1, λ

′
1) and will henceforth apply Lemma 6.2.3 with

this value of µ only.

We first note some elementary consequences of these choices that are nevertheless important as
they make it possible to use Lemma 6.2.4. Because α2 < min{α1, µ} and −N2 ( 1

p0
− 1
q0

) ∈ (− 1
2 , 0)

due to (6.23), Lemma 6.2.4 ensures the existence of C1 > 0 such that for all t > 0∫ t

0

(1 + s−
N
2 ( 1

p0
− 1
q0

))e−µ(t−s)e−α1sds ≤ C1e
−α2t. (6.27)

Since − 1
2 ∈ (−1, 0), −1 + N

2q0
∈ (−1, 0) and 1− 1

2 − 1 + N
2q0

= − 1
2 + N

2q0
< 0, Lemma 6.2.4 also

provides us with C2 > 0 such that∫ t

0

(t− s)− 1
2 (1 + s−1+ N

2q0 )e−µ(t−s)e−α2sds ≤ C2(1 + t−
1
2 + N

2q0 )e−α2t for all t > 0. (6.28)

Because −N2 ( 1
p0
− 1

q0
) ∈ (− 1

2 , 0) by (6.23) and 1 − 1
2 −

N
2 ( 1

p0
− 1

q0
) > 0 > − 1

2 , Lemma 6.2.4 in
combination with Lemma 6.2.6 yields C3 > 0 satisfying

∫ t

0

(t− s)− 1
2 (1 + s−

N
2 ( 1

p0
− 1
q0

))e−µ(t−s)e−α1sds ≤ C3(1 + t−
1
2 )e−α2t for all t > 0. (6.29)

As − 1
2 −

N
2q0
∈ (−1, 0) due to the choice of q0, −1+ N

2q0
∈ (−1, 0) and 1− 1

2 −
N
2q0
−1+ N

2q0
= − 1

2 ,
Lemma 6.2.4 makes it possible to find C4 > 0 such that for all t > 0∫ t

0

e−µ(t−s)(t− s)−
1
2−

N
2q0 (1 + s−1+ N

2q0 )e−2α2sds ≤ C4(1 + t−
1
2 )e−α2t. (6.30)

Since − N
2p0
∈ (−1, 0) and 1 − 1

2 −
N

2p0
≥ − 1

2 , Lemmata 6.2.4 and 6.2.6 warrant the existence of
C5 > 0 such that for any q ≥ q0 and any t > 0 we have∫ t

0

(1 + (t− s)− 1
2 )e−λ1(t−s)(1 + s−

N
2p0 )e−α1sds ≤ C5(1 + t−

1
2 )e−α1t. (6.31)

Moreover, − 1
2 −

N
2q0
∈ (−1, 0) since q0 > N , and 1− 1

2 −
N
2q0
− 1 + N

2q0
= − 1

2 . Hence it is possible
to find C6 > 0 such that for all t > 0,∫ t

0

(1 + (t− s)−
1
2−

N
2q0 )e−λ1(t−s)(1 + s−1+ N

2q0 )e−α1sds ≤ C6(1 + t−
1
2 )e−α1t. (6.32)
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Finally, for θ ≥ q0, − 1
2−

N
2 ( 1

q0
− 1
θ ) ∈ (− 1

2−
N
2q0
,− 1

2 ) ⊂ (−1, 0); by (6.23) also − 1
2−

N
2 ( 1

p0
− 1
q0

) ∈
(−1, 0), and 1 − 1

2 −
N
2 ( 1

q0
− 1

θ ) − 1
2 −

N
2 ( 1

p0
− 1

q0
) = −N2 ( 1

p0
− 1

θ ). Thus Lemma 6.2.4 provides
C7 > 0 such that for any θ ≥ q0∫ t

0

(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))e−λ1(t−s)(1 + s−

1
2−

N
2 ( 1

p0
− 1
q0

))e−α1sds

≤C7(1 + t−
N
2 ( 1

p0
− 1
θ ))e−α1t for all t > 0. (6.33)

Let

σ :=

∫ ∞
0

(1 + s−
N

2p0 )e−α1sds (6.34)

and observe that, by the condition (6.22) on p0, this is finite.

Lemma 6.3.1. Given m, N , p0, q0, β, α1 and α2 as in Theorem 6.1.1, it is possible to choose
M1,M2,M3,M4 > 0 and ε > 0 such that

k7(N, q0) + k5(q0)k7(q0, q0)(M1 + k1)C1‖∇Φ‖L∞(Ω)

+ 3k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)M3M4C2ε ≤
M3

2
, (6.35)

k8(N,N) + k8(N,N)k5(N)|Ω|
q0−N
Nq0 (M1 + k1)C3‖∇Φ‖L∞(Ω)

+ 3k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)C4M3M4ε ≤
M4

2
, (6.36)

k2 + C5k2(m+ (M1 + k1)ε)e(M1+k1)σε + 3k2M2M3C6ε ≤
M2

2
, (6.37)

3CSC7k4M2m|Ω|
1
q0 + 3CSC7k4M2(M1 + k1)ε+ 3(M1 + k1)C7k4M3ε ≤

M1

2
(6.38)

hold.

Proof. First let A > 0 and M2 > 0 be such that

k2 + C5k2me
A <

M2

4
. (6.39)

Then we fix M1,M3,M4 > 0 such that
3CSC7k4M2m|Ω|

1
q0 < M1

4 ,
k7(N, q0) + k5(q0)k7(q0, q0)(M1 + k1)C1‖∇Φ‖L∞(Ω) <

M3

4 ,

k8(N,N) + k8(N,N)k5(N)|Ω|
q0−N
Nq0 (M1 + k1)C3‖∇Φ‖L∞(Ω) <

M4

4 .

(6.40)

Finally, letting ε > 0 small enough satisfying

ε <min

{
A

(M1 + k1)σ
,

1

12k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)M4C2
,

1

12k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)M3C4
,

M2

4C5k2(M1 + k1)eA + 12k2M2M3C6
,

M1

12C7k4(M1 + k1)(CSM2 +M3)

}
,

we can easily check that (6.38), (6.37), (6.35) and (6.36) are true.
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6.4. Proof of a special case: Sensitivities vanishing near the
boundary

This section contains the core of the proof of Theorem 6.1.1, concerning global existence and
the convergence estimates both. Nevertheless, for the moment we will restrict ourselves to the
situation that the sensitivity function S vanishes close to the boundary. That has the considerable
advantage that the nonlinear boundary conditions posed in (6.4) reduce to classical homogeneous
Neumann boundary conditions and the existence theorem (Lemma 6.2.8) and standard results
concerning the heat semigroup (cf. Section 6.2) become applicable. The case of more general S
will be dealt with in Section 6.5.

Let us first state what we are going to prove. The main difference between this proposition and
Theorem 6.1.1 lies in the additional condition on S.

Proposition 6.4.1. Let N ∈ {2, 3}, p0 ∈ (N2 , N), q0 ∈ (N, ( 1
p0
− 1
N )−1), q1 ≥ q0 and β ∈ (N4 , 1).

Let CS > 0 and Φ ∈ C1+δ(Ω) with some δ > 0, m > 0. Then for any α1 ∈ (0,min{m,λ1}) and
α2 ∈ (0,min{α1, λ

′
1}) there are C8, C9, C10, C11 > 0 such that, with the same choice of ε > 0,

M1,M2,M3,M4 > 0 as in Lemma 6.3.1, the following holds: For any initial data (u0, v0, U0)
fulfilling (6.6) as well as v0 ∈W 1,q1(Ω) and

u0 =
1

|Ω|

∫
Ω

u0 = m, ‖u0 − u0‖Lp0 (Ω) ≤ ε, ‖v0‖L∞(Ω) ≤ ε, ‖U0‖LN (Ω) ≤ ε, (6.41)

and any function S satisfying (6.5) and

S(x, u, v) = 0 for any u ≥ 0, v ≥ 0, x ∈ Ω \K

for some compact set K ⊂ Ω, system (6.2) with boundary condition (6.4) and initial data
(u0, v0, U0) has a global classical solution, which, for any t > 0, moreover satisfies

‖u(·, t)− et∆u0‖Lθ(Ω) <M1ε

(
1 + t

−N2
(

1
p0
− 1
θ

))
e−α1t for all θ ∈ [q0,∞],

‖∇v(·, t)‖L∞(Ω) ≤M2ε
(

1 + t−
1
2

)
e−α1t,

‖U(·, t)‖Lq0 (Ω) ≤M3ε
(

1 + t−
1
2 + N

2q0

)
e−α2t,

‖∇U(·, t)‖LN (Ω) ≤M4ε
(

1 + t−
1
2

)
e−α2t, (6.42)

and

‖AβU(·, t)‖L2(Ω) ≤ C8e
−α2t, ‖U(·, t)‖L∞(Ω) ≤ C9e

−α2t,

‖u(·, t)− u0‖L∞(Ω) ≤ C10e
−α1t, ‖v(·, t)‖W 1,q1 (Ω) ≤ C11e

−α1t.

Lemma 6.2.8 asserts that there is a solution to (6.2), which is defined on some interval [0, Tmax).
We will denote this solution by (u, v, U, P ) in the following. Our main goal is to prove that
Tmax =∞. In order to show this and to achieve estimates (6.42), we define a number T > 0 as
follows:

Definition 6.4.2. With ε > 0, M1,M2,M3,M4 > 0, p0, q0, α1 and α2 as in Proposition 6.4.1,
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we let

T := sup


T̃ ∈ (0, Tmax)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

‖u(·, t)− et∆u0‖Lθ(Ω)≤M1ε
(
1 + t−

N
2 ( 1

p0
− 1
θ ))e−α1t

for all θ ∈ [q0,∞],

‖∇v(·, t)‖L∞(Ω) ≤M2ε
(
1 + t−

1
2

)
e−α1t,

‖U(·, t)‖Lq0 (Ω) ≤M3ε
(
1 + t−

1
2 + N

2q0

)
e−α2t,

‖∇U(·, t)‖LN (Ω) ≤M4ε
(
1 + t−

1
2

)
e−α2t

for all t ∈ [0, T̃ )


. (6.43)

By Lemma 6.2.8, T is well-defined and positive. Thus what we want to show is T =∞. In doing
so, we will proceed in several steps and at first derive estimates for the component u that are
satisfied on (0, T ). We will then show that all of the estimates mentioned in (6.43) hold true
with even smaller coefficients on the right hand side than appearing in (6.43) and finally conclude
that T = ∞. The derivation of these estimates will mainly rely on Lemma 6.2.1, Lemma 6.2.2
and Lemma 6.2.3 by means of the estimates from Section 6.3 and on the fact that the classical
solutions on (0, T ) can be represented as

u(·, t) = et∆u0 −
∫ t

0

e(t−s)∆(∇ · (uS(·, u, v)∇v) + U · ∇u
)
(·, s)ds, (6.44)

v(·, t) = et∆v0 −
∫ t

0

e(t−s)∆(uv + U · ∇v
)
(·, s)ds, (6.45)

U(·, t) = e−tAU0 −
∫ t

0

e−(t−s)AP
(
(U · ∇)U − u∇Φ

)
(·, s)ds, (6.46)

for all t ∈ (0, Tmax) as per the variation-of-constants formula.

Lemma 6.4.3. Under the assumptions of Proposition 6.4.1, for all θ ∈ [q0,∞] we have

‖u(·, t)− u0‖Lθ(Ω) ≤ (M1 + k1)ε
(

1 + t−
N
2 ( 1

p0
− 1
θ )
)
e−α1t for all t ∈ (0, T ). (6.47)

Proof. Since u0 is a constant, et∆u0 = u0 for all t ∈ (0, T ), and moreover due to
∫

Ω
(u0−u0) = 0,

Lemma 6.2.1(i), (6.43) and (6.41) show that

‖u(·, t)− u0‖Lθ(Ω) ≤ ‖u(·, t)− et∆u0‖Lθ(Ω) + ‖et∆(u0 − u0)‖Lθ(Ω)

≤M1ε
(

1 + t−
N
2 ( 1

p0
− 1
θ )
)
e−α1t + k1

(
1 + t−

N
2 ( 1

p0
− 1
θ )
)
e−λ1t‖u0 − u0‖Lp0 (Ω)

≤M1ε
(

1 + t−
N
2 ( 1

p0
− 1
θ )
)
e−α1t + k1

(
1 + t−

N
2 ( 1

p0
− 1
θ )
)
e−λ1tε

≤ (M1 + k1)ε
(

1 + t−
N
2 ( 1

p0
− 1
θ )
)
e−α1t

for all t ∈ (0, T ) and θ ∈ [q0,∞].

Lemma 6.4.4. Under the assumptions of Proposition 6.4.1, the second component of the solution
satisfies

‖v(·, t)‖L∞(Ω) ≤ e(M1+k1)σεεe−α1t for all t ∈ (0, T ) (6.48)

with σ taken from (6.34).
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Proof. We let p ≥ 1, multiply the second equation of (6.2) by pvp−1 and integrate over Ω, so
that we have

d

dt

∫
Ω

vp ≤ −p
∫

Ω

uvp on (0, T ). (6.49)

By an obvious pointwise estimate and (6.47) with θ =∞,

−u(x, t) ≤ ‖u(·, t)− u0‖L∞(Ω) − u0 ≤ (M1 + k1) ε
(

1 + t−
N

2p0

)
e−α1t − u0 (6.50)

for all x ∈ Ω, t ∈ (0, T ). Due to the nonnegativity of pvp, we infer that

d

dt

∫
Ω

vp ≤
(

(M1 + k1)ε(1 + t−
N

2p0 )e−α1t − u0

)
p

∫
Ω

vp (6.51)

for all t ∈ (0, T ). Thus we get∫
Ω

vp ≤ exp

(
p

∫ t

0

(
(M1 + k1)ε(1 + s−

N
2p0 )e−α1s − u0

)
ds

)∫
Ω

vp0 for all t ∈ (0, T ). (6.52)

Taking the p-th root on both sides, we are left with

‖v(·, t)‖Lp(Ω) ≤ ‖v0‖Lp(Ω)e
−u0t exp

(
ε(M1 + k1)

∫ t

0

(1 + s−
N

2p0 )e−α1sds

)
≤ ‖v0‖Lp(Ω)e

−u0te(M1+k1)σε for all t ∈ (0, T ),

which holds for arbitrary p ≥ 1 and where σ is as defined in (6.34). In the limit p → ∞, we
therefore obtain

‖v(·, t)‖L∞(Ω) ≤ ‖v0‖L∞(Ω)e
σ(M1+k1)εe−u0t (6.53)

for all t ∈ (0, T ) and may, due to (6.25), (6.41), conclude (6.48).

Lemma 6.4.5. Under the assumptions of Proposition 6.4.1, the component U of the solution
satisfies

‖U(·, t)‖Lq0 (Ω) ≤
M3

2
ε
(

1 + t−
1
2 + N

2q0

)
e−α2t for all t ∈ (0, T ). (6.54)

Proof. If we use that P∇Φ = 0 and apply the triangle inequality in the variation-of-constants
formula (6.46) for U , Lemma 6.2.2 and Lemma 6.2.3 (ii) yield

‖U(·, t)‖Lq0 (Ω) ≤k7(N, q0)t−
N
2 ( 1

N−
1
q0

)e−µt‖U0‖LN (Ω)

+

∫ t

0

k7(q0, q0)k5(q0)e−µ(t−s)‖u(·, s)− u0‖Lq0 (Ω)‖∇Φ‖L∞(Ω)ds

+

∫ t

0

k7( N

1+ N
q0

, q0)(t− s)−
N
2

( 1+ N
q0
N − 1

q0

)
e−µ(t−s)‖P(U · ∇U)(·, s)‖

L

N

1+ N
q0 (Ω)

ds

=:k7(N, q0)t−
1
2 + N

2q0 e−µt‖U0‖LN (Ω) + I1 + I2

for all t ∈ (0, T ). Here an application of estimate (6.47) for θ = q0 and (6.27) in the first integral
shows that

I1 ≤ k5(q0)k7(q0, q0)(M1 + k1)‖∇Φ‖L∞(Ω)

∫ t

0

ε
(

1 + s−
N
2 ( 1

p0
− 1
q0

)
)
e−µ(t−s)e−α1sds
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≤ k5(q0)k7(q0, q0)(M1 + k1)‖∇Φ‖L∞(Ω)εC1e
−α2t

≤ k5(q0)k7(q0, q0)(M1 + k1)‖∇Φ‖L∞(Ω)C1(1 + t−
1
2 + N

2q0 )e−α2tε

for all t ∈ (0, T ). Hölder’s inequality and Lemma 6.2.2 imply that

‖P(U · ∇U)(·, t)‖
L

N

1+ N
q0 (Ω)

≤ k5( N

1+ N
q0

)‖U(·, t)‖Lq0 (Ω)‖∇U(·, t)‖LN (Ω) for all t ∈ (0, T )

and the estimates for the latter two terms, which are valid by (6.43), give

I2 ≤ k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)

∫ t

0

(t− s)− 1
2M3M4ε

2e−µ(t−s)(1 + s−
1
2 + N

2q0 )e−α2s(1 + s−
1
2 )e−α2sds

≤ k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)M3M4ε
2

∫ t

0

(t− s)− 1
2 e−µ(t−s)3(1 + s−1+ N

2q0 )e−2α2sds

≤ 3k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)M3M4ε
2C2

(
1 + t−

1
2 + N

2q0

)
e−α2t for all t ∈ (0, T ),

where we have also used Lemma 6.2.7 and (6.28). Hence,

‖U(·, t)‖Lq0 (Ω) ≤k7(N, q0)t−
1
2 + N

2q0 e−µtε

+ k5(q0)k7(q0, q0)(M1 + k1)‖∇Φ‖L∞(Ω)C1

(
1 + t−

1
2 + N

2q0

)
e−α2tε

+ 3k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)M3M4ε
2C2

(
1 + t−

1
2 + N

2q0

)
e−α2t

≤
(
k7(N, q0) + k5(q0)k7(q0, q0)(M1 + k1)‖∇Φ‖L∞(Ω)C1

+ 3k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)M3M4C2ε

)
ε
(

1 + t−
1
2 + N

2q0

)
e−α2t

≤M3

2
ε
(

1 + t−
1
2 + N

2q0

)
e−α2t

for all t ∈ (0, T ), according to (6.35).

Also the estimate for the gradient is preserved:

Lemma 6.4.6. Under the assumptions of Proposition 6.4.1, we also have

‖∇U(·, t)‖LN (Ω) ≤
ε

2
M4

(
1 + t−

1
2

)
e−α2t, for all t ∈ (0, T ).

Proof. Starting from

∇U(·, t) = ∇e−tAU0 +

∫ t

0

∇e−(t−s)AP ((u(·, s)− u0)∇Φ) ds−
∫ t

0

∇e−(t−s)AP(U · ∇)U(·, s)ds

for all t ∈ (0, T ), we obtain from Lemma 6.2.3 (iii), Hölder’s inequality, Lemma 6.2.2 and (6.47)
that

‖∇U(·, t)‖LN (Ω)

≤ ‖∇etAU0‖LN (Ω) +

∫ t

0

k8(N,N)(t− s)− 1
2 e−µ(t−s)k5(N)‖(u(·, s)− u0)∇Φ‖LN (Ω)ds

68



6.4. Proof of a special case: Sensitivities vanishing near the boundary

+

∫ t

0

k8( 1
1
q0

+ 1
N

, N)(t− s)−
1
2−

N
2 ( 1

q0
+ 1
N−

1
N )e−µ(t−s)k5( 1

1
q0

+ 1
N

)‖(U · ∇)U(·, s)‖
L

1
1
q0

+ 1
N (Ω)

ds

≤ k8(N,N)t−
1
2 e−µt‖U0‖LN (Ω)

+ k8(N,N)k5(N)

∫ t

0

(t− s)− 1
2 |Ω|

q0−N
Nq0 ‖u(·, s)− u0‖Lq0 (Ω)‖∇Φ‖L∞(Ω)e

−µ(t−s)ds

+ k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)

∫ t

0

(t− s)−
1
2−

N
2q0 e−µ(t−s)‖U(·, s)‖Lq0 (Ω)‖∇U(·, s)‖LN (Ω)ds

=: k8(N,N)t−
1
2 e−µt‖U0‖LN (Ω) + I3 + I4 for all t ∈ (0, T ).

Here by (6.29), we have

I3 ≤ k8(N,N)k5(N)|Ω|
q0−N
Nq0 (M1 + k1)‖∇Φ‖L∞(Ω)ε

×
∫ t

0

(t− s)− 1
2 (1 + s−

N
2 ( 1

p0
− 1
q0

))e−µ(t−s)e−α1sds

≤ k8(N,N)k5(N)|Ω|
q0−N
Nq0 (M1 + k1)‖∇Φ‖L∞(Ω)εC3(1 + t−

1
2 )e−α2t for all t ∈ (0, T ).

Furthermore, by Lemma 6.2.7 and (6.30),

I4 ≤ ε2M3M4k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)

∫ t

0

e−µ(t−s)(t− s)−
1
2−

N
2q0 (1 + s−

1
2 + N

2q0 )(1 + s−
1
2 )e−2α2sds

≤ 3ε2M3M4k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)

∫ t

0

e−µ(t−s)(t− s)−
1
2−

N
2q0 (1 + s−1+ N

2q0 )e−2α2sds

≤ 3ε2M3M4k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)C4

(
1 + t−

1
2

)
e−α2t for all t ∈ (0, T ).

And thus finally, thanks to the above estimate and (6.36), we arrive at

‖∇U(·, t)‖N ≤k8(N,N)t−
1
2 e−µtε+ k8(N,N)k5(N)|Ω|

q0−N
Nq0 (M1 + k1)‖∇Φ‖∞εC3

(
1 + t−

1
2

)
e−α2t

+ 3ε2M3M4k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)C4

(
1 + t−

1
2

)
e−α2t

≤
(
k8(N,N) + k8(N,N)k5(N)|Ω|

q0−N
Nq0 (M1 + k1)C3‖∇Φ‖L∞(Ω)

+ 3k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)C4M3M4ε

)
ε
(

1 + t−
1
2

)
e−α2t

≤εM4

2

(
1 + t−

1
2

)
e−α2t

for all t ∈ (0, T ).

Lemma 6.4.7. Under the assumptions of Proposition 6.4.1, we have

‖∇v(·, t)‖L∞(Ω) ≤
εM2

2

(
1 + t−

1
2

)
e−α1t

for all t ∈ (0, T ).
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Proof. If we use the variation-of-constants formula (6.45) for v, we obtain from Lemma 6.2.1(ii)
that

‖∇v(·, t)‖L∞(Ω) ≤ ‖∇et∆v0‖L∞(Ω) +

∫ t

0

‖∇e(t−s)∆u(·, s)v(·, s)‖L∞(Ω)ds

+

∫ t

0

‖∇e(t−s)∆U(·, s) · ∇v(·, s)‖L∞(Ω)ds

≤ k2

(
1 + t−

1
2

)
e−λ1t‖v0‖L∞(Ω) +

∫ t

0

‖∇e(t−s)∆u(·, s)v(·, s)‖L∞(Ω)ds

+

∫ t

0

‖∇e(t−s)∆U(·, s) · ∇v(·, s)‖L∞(Ω)ds

=: k2

(
1 + t−

1
2

)
e−λ1t‖v0‖L∞(Ω) + I5 + I6 on (0, T ). (6.55)

In the first integral we can again apply Lemma 6.2.1 (ii), which gives

I5 ≤
∫ t

0

k2(1 + (t− s)− 1
2 )e−λ1(t−s)‖u(·, s)v(·, s)‖L∞(Ω)ds

≤
∫ t

0

k2(1 + (t− s)− 1
2 )e−λ1(t−s)‖u(·, s)‖L∞(Ω)‖v(·, s)‖L∞(Ω)ds

on (0, T ). At this point, Lemma 6.4.3, Lemma 6.4.4 and (6.31) lead to

I5 ≤
∫ t

0

k2(1 + (t− s)− 1
2 )e−λ1(t−s)(u0 + (M1 + k1)ε

)
(1 + s−

N
2p0 )εeσ(M1+k1)εe−α1sds

≤ C5k2

(
u0 + (M1 + k1)ε

)
e(M1+k1)σεε

(
1 + t−

1
2

)
e−α1t

for all t ∈ (0, T ).
Next, using Lemma 6.2.1 (ii) and Hölder’s inequality, we derive that

I6 ≤
∫ t

0

k2(1 + (t− s)−
1
2−

N
2q0 )e−λ1(t−s)‖U(·, s) · ∇v(·, s)‖Lq0 (Ω)ds

≤
∫ t

0

k2(1 + (t− s)−
1
2−

N
2q0 )e−λ1(t−s)‖U(·, s)‖Lq0 (Ω)‖∇v(·, s)‖L∞(Ω)ds for all t ∈ (0, T ).

If we insert estimates from (6.43) and employ Lemma 6.2.7 and (6.32), we see that

I6 ≤
∫ t

0

k2(1 + (t− s)−
1
2−

N
2q0 )e−λ1(t−s)M3ε(1 + s−

1
2 + N

2q0 )e−α2sM2ε(1 + s−
1
2 )e−α1sds

≤ 3

∫ t

0

k2(1 + (t− s)−
1
2−

N
2q0 )e−λ1(t−s)M3ε(1 + s−1+ N

2q0 )M2εe
−α1sds

≤ 3k2M2M3ε
2C6

(
1 + t−

1
2

)
e−α1t

for all t ∈ (0, T ). Combining the above inequalities, we obtain that

‖∇v(·, t)‖L∞(Ω) ≤
(
k2 + C5k2(u0 + (M1 + k1)ε)e(M1+k1)σε + 3k2M2M3εC6

)(
1 + t−

1
2

)
e−α1tε

≤ M2ε

2

(
1 + t−

1
2

)
e−α1t (6.56)

holds for all t ∈ (0, T ) by (6.37).

70



6.4. Proof of a special case: Sensitivities vanishing near the boundary

Having achieved these estimates for ∇v, we may re-examine the first solution component and
sharpen the estimate from Lemma 6.4.3.

Lemma 6.4.8. Under the assumptions of Proposition 6.4.1, finally also

‖u(·, t)− et∆u0‖Lθ(Ω) <
M1ε

2

(
1 + t−

N
2 ( 1

p0
− 1
θ )
)
e−αt

is valid for all t ∈ (0, T ) and for all θ ∈ [q0,∞].

Proof. Let θ ∈ [q0,∞]. Then

‖u(·, t)− et∆u0‖Lθ(Ω)

≤
∫ t

0

‖e(t−s)∆∇ · (uS(·, u, v)·∇v)(·, s)‖Lθ(Ω)ds+

∫ t

0

‖e(t−s)∆U(·, s) · ∇u(·, s)‖Lθ(Ω)ds

=: I7 + I8 for all t ∈ [0, T ].

According to Lemma 6.2.1 (iv) we have

I7 ≤
∫ t

0

k4(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))e−λ1(t−s)‖(uS(·, u, v)·∇v)(·, s)‖Lq0 (Ω)ds

≤ CS
∫ t

0

k4(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))e−λ1(t−s)‖u(·, s)‖Lq0 (Ω)‖∇v(·, s)‖L∞(Ω)ds.

Here we can employ the estimates provided by (6.47), (6.43) and Lemma 6.2.7 to gain

I7 ≤ CS
∫ t

0

k4(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))e−λ1(t−s)

× (u0|Ω|
1
q0 + (M1 + k1)ε)(1 + s−

N
2 ( 1

p0
− 1
q0

))M2ε(1 + s−
1
2 )e−α1sds

≤ 3CSk4M2

(
u0|Ω|

1
q0 + (M1 + k1)ε

)
ε

∫ t

0

(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))

× e−λ1(t−s)(1 + s−
1
2−

N
2 ( 1

p0
− 1
q0

))e−α1sds

≤ 3CSC7k4M2

(
m|Ω|

1
q0 + (M1 + k1)ε

)
ε
(

1 + t−
N
2 ( 1

p0
− 1
θ )
)
e−α1t.

As u0 is constant and ∇ · U = 0,

I8 =

∫ t

0

‖e(t−s)∆(U · ∇(u− u0)) (·, s)‖Lθ(Ω)ds =

∫ t

0

‖e(t−s)∆∇ · ((u− u0)U)(·, s)‖Lθ(Ω)ds

and hence, treating this integral similarly as I7 before, we obtain

I8 ≤
∫ t

0

k4(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))e−λ1(t−s)‖(u(·, s)− u0)U(·, s)‖Lq0 (Ω)ds

≤
∫ t

0

k4(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))e−λ1(t−s)‖u(·, s)− u0‖L∞(Ω)‖U(·, s)‖Lq0 (Ω)ds

≤
∫ t

0

k4(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))e−λ1(t−s)(M1 + k1)ε(1 + s−

N
2p0 )e−α1s

×M3ε(1 + s−
1
2 + N

2q0 )e−α2sds
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≤ 3(M1 + k1)k4M3ε
2

∫ t

0

(1 + (t− s)−
1
2−

N
2 ( 1

q0
− 1
θ ))e−λ1(t−s)(1 + s−

1
2−

N
2p0

+ N
2q0 )e−α1sds

≤ 3(M1 + k1)C7k4M3ε
2
(

1 + t−
N
2 ( 1

p0
− 1
θ )
)
e−α1t.

Using the choice of ε and (6.38) we arrive at

‖u(·, t)− et∆u0‖Lθ(Ω)

≤
(

3CSC7k4M2m|Ω|
1
q0 + 3CSC7k4M2(M1 + k1)ε+ 3(M1 + k1)C7k4M3ε

)
× ε
(

1 + t−
N
2 ( 1

p0
− 1
θ )
)
e−α1t

≤ M1ε

2

(
1 + t−

N
2 ( 1

p0
− 1
θ )
)
e−α1t

for all t ∈ (0, T ).

While we have obtained some estimates for u, one for ‖AβU(·, t)‖L2 is not yet among them,
although this is the quantity featured by the extensibility criterion in Lemma 6.2.8. We rectify
this in the next lemma:

Lemma 6.4.9. Given N , p0, q0, q1, β, CS, Φ, m, α1, α2, ε as in the statement of Proposition
6.4.1, it is possible to find C8 > 0 with the property asserted there. In particular, for any
t ∈ (0, T ), we have

‖AβU(·, t)‖L2(Ω) ≤ C8e
−α2t. (6.57)

Proof. We first define M(t) := eα2t‖AβU(·, t)‖L2(Ω) for t ∈ (0, T ). Moreover, let us pick r > N
such that

1

q0
+

1

N
>

1

r
≥ 1

N
+

1

2
− 2β

N
,

which is evidently possible due to 2β
N > 2

N ·
N
4 = 1

2 . If we set b := 1
q0
/( 1
q0

+ 1
N −

1
r ), we have

b ∈ (0, 1) and the Gagliardo-Nirenberg inequality and Lemma 6.2.3 (iv) provide us with c1 > 0
and c2 = k9(β, r, 2)c1 such that

‖ϕ‖L∞(Ω) ≤ c1‖ϕ‖bW 1,r(Ω)‖ϕ‖
1−b
Lq0 (Ω) ≤ c2‖A

βϕ‖bL2(Ω)‖ϕ‖
1−b
Lq0 (Ω)

for all ϕ ∈ Lq0(Ω) ∩W 1,r(Ω) ∩ L2
σ(Ω). In particular,

‖(U · ∇)U(·, s)‖L2(Ω)

≤ ‖U(·, s)‖L∞(Ω)|Ω|
1
2−

1
N ‖∇U(·, s)‖LN (Ω)

≤ c2|Ω|
1
2−

1
N ‖AβU(·, s)‖bL2(Ω)‖U(·, s)‖1−bLq0 (Ω)‖∇U(·, s)‖LN (Ω), s ∈ (0, T ). (6.58)

We set

t0 := τ(q0, β, ε, ε, ε, CS), Γ := Γ(q0, β, ε, ε, ε, CS)

as provided by Lemma 6.2.8 and choose c3 > 0 such that ‖ϕ‖Lq0 (Ω) ≤ c3‖Aβϕ‖L2(Ω) for all

ϕ ∈ D(Aβ). If we use that ‖u‖W 1,N (Ω) ≤ k9(β,N, 2)‖Aβu‖L2(Ω) according to Lemma 6.2.3 (iv),
(6.58) then shows that

‖(U · ∇)U(·, s)‖L2(Ω) ≤ c2|Ω|
1
2−

1
N Γbc3Γ1−b‖∇U(·, s)‖LN (Ω)
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≤ c2|Ω|
1
2−

1
N Γ2k9(β,N, 2) =: c4 (6.59)

for s ∈ (0, t0), and that

‖(U · ∇)U(·, s)‖L2(Ω)

≤c2|Ω|
1
2−

1
N e−α2bse−α2(1−b)sM b(s)

(
M3ε(1 + (t0/2)

− 1
2 + N

2q0 )
)(

M4ε(1 + (t0/2)−
1
2 )
)

=c5e
−α2sM b(s) (6.60)

for all s ∈ ( t02 , T ) for an obvious choice of c5 > 0. For t > t0 we now aim at estimating

‖AβU(·, t)‖L2(Ω) ≤ ‖Aβe−tAU0‖L2(Ω) +

∫ t

0

‖Aβe−(t−s)AP(u(·, s)− u0)∇Φ‖L2(Ω)

+

∫ t

0

‖Aβe−(t−s)AP(U · ∇U)(·, s)‖L2(Ω)ds (6.61)

and observe that

‖Aβe−tAU0‖L2(Ω) ≤ k6(2, β)t−βe−µt‖U0‖L2(Ω) ≤ k6(2, β)t−β0 |Ω|
N−2
2N e−α2t‖U0‖LN (Ω) (6.62)

for t ∈ [t0, T ).
Since β ∈ (0, 1) and −N2 ( 1

p0
− 1

q0
) ∈ (−1, 0) and 1 − β − N

2 ( 1
p0
− 1

q0
) > −1, Lemma 6.2.4 and

Lemma 6.2.6 provide c6 > 0 such that for all t > 0

∫ t

0

(t− s)−βe−µ(t−s)(1 + s−
N
2 ( 1

p0
− 1
q0

))e−α1sds ≤ c6
(
1 + t−1

)
e−α1t. (6.63)

From Lemma 6.2.3(i), Lemma 6.2.2, Lemma 6.2.4 and (6.47), we infer∫ t

0

‖Aβe−(t−s)AP(u(·, s)− u0)∇Φ‖L2(Ω)

≤ k6(2, β)k5(2)

∫ t

0

e−µ(t−s)(t− s)−β‖u(·, s)− u0‖L2(Ω)‖∇Φ‖L∞(Ω)ds

≤ k6(2, β)k5(2)

∫ t

0

e−µ(t−s)(t− s)−β |Ω|
1
2−

1
q0 ‖u(·, s)− u0‖Lq0 (Ω)‖∇Φ‖L∞(Ω)ds

≤ k6(2, β)k5(2)‖∇Φ‖L∞(Ω)|Ω|
1
2−

1
q0

∫ t

0

e−µ(t−s)(t− s)−β(M1 + k1)ε(1 + s−
N
2 ( 1

p0
− 1
q0

))e−α1sds

≤ k6(2, β)k5(2)‖∇Φ‖L∞(Ω)(M1 + k1)c6|Ω|
1
2−

1
q0 ε(1 + t−1)e−α1t

≤ k6(2, β)k5(2)‖∇Φ‖L∞(Ω)(M1 + k1)c6|Ω|
1
2−

1
q0 ε(1 + t−1

0 )e−α1t for all t ∈ [t0, T ). (6.64)

Moreover, from −β ∈ (−1, 0) and 0 ≥ min{0, 1 − β− 1
2}> − 1, by means of Lemma 6.2.4 and

Lemma 6.2.6 we conclude the existence of c7 > 0 such that∫ t

0

(t− s)−βe−µ(t−s)e−α2sds ≤ c7(1 + t−1)e−α2t (6.65)

holds for any t > 0. Furthermore, for any t ∈ [t0, T ) we have∫ t

0

‖Aβe−(t−s)A(P(U · ∇)U)(·, s)‖L2(Ω)ds
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≤ k6(2, β)k5(2)

∫ t0
2

0

(t− s)−βe−µ(t−s)‖(U · ∇U)(·, s)‖L2(Ω)ds

+ k6(2, β)k5(2)

∫ t

t0
2

(t− s)−βe−µ(t−s)‖(U · ∇U)(·, s)‖L2(Ω)ds,

where we can use (6.59) to estimate the first summand by∫ t0
2

0

(t− s)−βe−µ(t−s)‖(U · ∇U)(·, s)‖L2(Ω)ds ≤
∫ t0

2

0

(t0/2)
−β

e−µteµsc4ds

≤c4 (t0/2)
−β
(
eµt0/2 − 1

µ

)
e−α2t, (6.66)

whereas the integral concerned with larger times by (6.60) can be controlled according to∫ t

t0
2

(t− s)−βe−µ(t−s)‖(U · ∇U)(·, s)‖L2(Ω)ds ≤
∫ t

t0
2

(t− s)−βe−µ(t−s)c5e
−α2sM b(s)ds

≤ c5 sup
s∈(0,t)

M b(s)

∫ t

0

(t− s)−βe−µ(t−s)e−α2sds

≤ c5c7(1 + t−1
0 )e−α2t sup

s∈(0,t)

M b(s) (6.67)

for all t ∈ [t0, T ), due to (6.65). As to t ∈ (0, t0), we know from Lemma 6.2.8 that

‖AβU(·, t)‖L2(Ω) ≤ Γ ≤ Γeα2t0e−α2t for all t ∈ (0, t0). (6.68)

If we then insert (6.62), (6.64), (6.66) and (6.67) into (6.61) and take into account (6.68), we
obtain some c8 > 0 such that for all t ∈ (0, T )

‖AβU(·, t)‖L2(Ω) ≤ c8e−α2t + c8e
−α2t sup

t∈(0,T )

M b(t),

where multiplication by eα2t shows that

M(t) ≤ c8 + c8 sup
t∈(0,T )

M b(t) for all t ∈ (0, T )

Due to b < 1, we may hence infer the existence of C8 > 0 such that

C8 ≥M(t) = eα2t‖AβU(·, t)‖L2(Ω) for all t ∈ (0, T )

This entails (6.57).

In order to infer the decay asserted in Proposition 6.4.1, we have to combine the estimates from
Definition 6.4.2 with Lemma 6.2.8.

Lemma 6.4.10. Given N , p0, q0, q1, β, CS, Φ, m, α1, α2, ε as in the statement of Proposition
6.4.1, it is possible to find there are C9 > 0, C10 > 0 and C11 > 0 with the properties asserted
there. In particular,

‖U(·, t)‖L∞(Ω) ≤ C9e
−α2t, (6.69)

‖u(·, t)− u0‖L∞(Ω) ≤ C10e
−α1t (6.70)

and ‖v(·, t)‖W 1,q1 (Ω) ≤ C11e
−α1t (6.71)

for all t ∈ (0, T ).
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6.4. Proof of a special case: Sensitivities vanishing near the boundary

Proof. Since D(Aβ) ↪→ L∞(Ω) with β ∈ (N4 , 1), we can conclude the existence of C9 > 0 such
that (6.69) holds from Lemma 6.4.9. If we set

t0 := τ(q1, β, ε, ε, ε, CS), Γ := Γ(q1, β, ε, ε, ε, CS)

as provided by Lemma 6.2.8, we see that Lemma 6.2.8 ensures ‖u(·, t)‖L∞(Ω) ≤ Γ on [0, t0), and
thus

‖u(·, t)− u0‖L∞(Ω) ≤ ‖u(·, t)‖L∞(Ω) + ‖u0‖L∞(Ω) ≤ Γ +m for t ∈ (0, t0),

that is
‖u(·, t)− u0‖L∞(Ω) ≤ (Γ +m)eαt0e−α1t for t ∈ [0, t0).

At the same time, Lemma 6.4.3 asserts that

‖u(·, t)−u0‖L∞(Ω) ≤ (M1+k1)
(

1+t−
N

2p0

)
e−α1t ≤ (M1+k1)

(
1+t

− N
2p0

0

)
e−α1t, for t ∈ (t0, T )

so that with C10 = max

{
(Γ +m)eαt0 , (M1 + k1)

(
1 + t

− N
2p0

0

)}
, we have

‖u(·, t)− u0‖L∞(Ω) ≤ C10e
−αt for all t > 0.

Lemma 6.2.8 also guarantees that ‖v(·, t)‖W 1,q1 (Ω) ≤ Γ, and hence ‖v(·, t)‖W 1,q1 (Ω) ≤ Γeα1t0e−α1t

for all t ∈ [0, t0). Combining this with Lemma 6.4.7 and Lemma 6.4.4, which show that

‖∇v(·, t)‖L∞(Ω) ≤
εM2

2

(
1 + t−

1
2

)
e−α1t, ‖v(·, t)‖L∞(Ω) ≤ e(M1+k1)σεεe−α1t

for all t > 0, we can infer that

‖v(·, t)‖W 1,q1 (Ω) ≤ C11e
−α1t, for all t > 0.

where C11 = max
{

Γeαt0 , εM2|Ω|
1
q1

(
1 + t

− 1
2

0

)
, 2|Ω|

1
q1 e(M1+k1)σεε

}
.

Now we are ready to complete the proof Proposition 6.4.1.

Proof of Proposition 6.4.1. First we claim that the solution is global. In order to show this, we
observe that if Tmax < ∞, then according to the blow-up criterion in (6.19), the inequalities
required in the definition (6.43) of T , and Lemma 6.4.9, we have T < Tmax and one of the
following holds:

‖u(·, T )− eT∆u0‖Lθ(Ω) = M1ε
(

1 + T−
N
2 ( 1

p0
− 1
θ )
)
e−α1T ,

‖∇v(·, T )‖L∞(Ω) = M2ε
(

1 + T−
1
2

)
e−α1T ,

‖U(·, T )‖Lq0 (Ω) = M3ε
(

1 + T−
1
2 + N

2q0

)
e−α2T ,

‖∇U(·, T )‖LN (Ω) = M4ε
(

1 + T−
1
2

)
e−α2T ,

for some θ ∈ [q0,∞]. But these quantities continuously depend on t and hence each of these
items would contradict Lemma 6.4.8, Lemma 6.4.7, Lemma 6.4.5 or Lemma 6.4.6, respectively.
The same contradiction arises if Tmax = ∞ and T < ∞. Hence T = ∞ = Tmax. The remaining
estimates and assertions about convergence result from Definition 6.4.2 and Lemma 6.4.10.
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6. A 3D Chemotaxis-Navier-Stokes Model

Remark 6.4.11. After having shown Proposition 6.4.1, let us briefly indicate the changes that
are necessary in order to prove Theorem 6.1.2 instead of Theorem 6.1.1. Indeed, these are
confined to the proof of the counterpart of Proposition 6.4.1; the approximation procedure that is
to follow in Section 6.5 remains unaffected. We note that

m = u0 =
1

|Ω|

∫
u0 ≤ |Ω|−

1
p0 ‖u0‖Lp0 (Ω) ≤ |Ω|−

1
p0 ε (6.72)

and hence, in particular, ‖u0‖Lp0 (Ω) ≤ ε and ‖u0 − u0‖Lp0 (Ω) < 2ε so that in (6.47) (and by
extension, in all of Sections 6.3 and 6.4), replacing k1 by 2k1 is sufficient to retain the validity
of Lemma 6.4.3 and its consequences. The only remaining - but most noticable - place which
is affected by the change from (6.8) to (6.9) is Lemma 6.4.7. With the new condition, for the
estimate of the first term in (6.55), we invoke Lemma 6.2.1(iii) instead of Lemma 6.2.1(ii). In
the estimate of I5, we have to exchange a factor ε by ‖v0‖L∞(Ω) = M , but can, thanks to (6.72),

rely on the smallness of (u0 + (M1 + 2k1)ε) ≤ (|Ω|−
1
p0 +M1 + 2k1)ε instead, so that (6.56) would

read

‖∇v(·, t)‖L∞(Ω)

≤
(
k3 + C5k2

(
|Ω|−

1
p0 +M1 + 2k1

)
Me(M1+2k1)σε + 3k2M2M3C6ε

)(
1 + t−

1
2

)
e−α1tε

≤ M2

2
ε
(

1 + t−
1
2

)
e−α1t.

Of course, this mandates changes also in Lemma 6.3.1. We give an appropriately modified
version in the appendix of this chapter (Lemma 6.A.2).

6.5. System with rotational flux (general S)

In this section, we deal with the more general model, where S ∈ C2(Ω× [0,∞)2;RN×N ) is a more
arbitrary matrix-valued function, without the requirement of being zero close to the boundary. In
this case, we construct solutions by an approximation procedure. In order to make the previous
result applicable, we introduce a family of smooth functions

ρε ∈ C∞0 (Ω) and 0 ≤ ρε(x) ≤ 1 for ε ∈ (0, 1), ρε(x)↗ 1 as ε↘ 0 (6.73)

and given any function S satisfying the assumptions of Theorem 6.1.1, we let

Sε(x, u, v) = ρε(x)S(x, u, v). (6.74)

Using this definition, we regularize (6.2) as follows:

uεt = ∆uε −∇ · (uεSε(x, uε, vε) · ∇vε)− Uε · ∇uε, (x, t) ∈ Ω× (0, T ),

vεt = ∆vε − uεvε − Uε · ∇vε, (x, t) ∈ Ω× (0, T ),

Uεt = ∆Uε − (Uε · ∇)Uε +∇P + uε∇Φ, ∇ · Uε = 0, (x, t) ∈ Ω× (0, T ),

∇uε · ν = ∇vε · ν = 0, Uε = 0, (x, t) ∈ ∂Ω× (0, T ),

uε(x, 0) = u0(x), vε(x, 0) = v0(x), Uε(x, 0) = U0(x), x ∈ Ω.

(6.75)

We have chosen Sε in such a way that it satisfies the additional condition imposed in Proposition
6.4.1. Therefore the existence of solutions follows from the previous section:
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6.5. System with rotational flux (general S)

Lemma 6.5.1. Let N ∈ {2, 3}, p0 ∈ (N2 ,∞), q0 ∈ (N,∞), and β ∈ (N4 , 1). Let CS > 0,

Φ ∈ C1+δ(Ω) with some δ > 0, m > 0. Let α1 ∈ (0,min{m,λ1}) and α2 ∈ (0,min{α1, λ
′
1}).

Let (u0, v0, U0) satisfy (6.6) and (6.8). Then for any ε ∈ (0, 1) there is a global classical solution
(uε, vε, Uε, Pε) of (6.75) and there are constants C8, C9, C10, C11 > 0 such that for any ε ∈ (0, 1)
the estimates

‖vε(·, t)‖W 1,q0 (Ω) ≤ C11e
−α1t, ‖uε(·, t)−u0‖L∞(Ω) ≤ C10e

−α1t, ‖Uε(·, t)‖L∞(Ω) ≤ C9e
−α2t (6.76)

hold for any t > 0 and such that moreover the solutions satisfy

‖AβUε(·, t)‖L2(Ω) ≤ C8e
−α2t (6.77)

for any t > 0 and any ε ∈ (0, 1). Moreover there is C12 > 0 such that for any ε ∈ (0, 1) and
any t > 0

‖∇vε(·, t)‖L∞(Ω) ≤ C12

(
1 + t−

1
2

)
e−α1t. (6.78)

Proof. These assertions are part of Proposition 6.4.1 if we set C12 := εM2 in (6.42), at least for

p0 < N , q0 <
(

1
p0
− 1

N

)−1

. For larger values of p0 or q0, (6.8) entails the validity of (6.8) for

smaller p0, q0 if ε is adequately adjusted, and Lemma 6.5.1 still follows from Proposition 6.4.1,
if q0, p0 and q1 are suitably chosen therein.

From this family of approximate solutions we aim to extract a convergent sequence. Already
the frail manner of convergence of Sε, however, puts us far from the immediate conclusion that
the limiting object satisfies (6.2) in a pointwise sense. Accordingly, we will first ensure that it
is a weak solution; afterwards we will show that it is sufficiently regular so as to be a classical
solution. For this purpose, we require a definition of “weak solution”:

Definition 6.5.2. We say that (u, v, U) is a weak solution of (6.2) associated to initial data
(u0, v0, U0) which satisfy (u0, v0, U0) ∈ C0(Ω) × W 1,q0(Ω) × D(Aβ) for some q0 > N and
β ∈ (N4 , 1) as well as u0 ≥ 0 and v0 > 0 in Ω if

u, v ∈ L2
loc([0,∞),W 1,2(Ω)), U ∈ L2

loc([0,∞),W 1,2
0,σ (Ω)),

and for all ψ ∈ C∞0 (Ω× [0,∞)) and all Ψ ∈ C∞0,σ(Ω× [0,∞)) the following identities hold:

−
∫ ∞

0

∫
Ω

uψt −
∫

Ω

u0ψ(·, 0) = −
∫ ∞

0

∫
Ω

∇u · ∇ψ +

∫ ∞
0

∫
Ω

uS(x, u, v)∇v · ∇ψ

+

∫ ∞
0

∫
Ω

uU · ∇ψ,

−
∫ ∞

0

∫
Ω

vψt −
∫

Ω

v0ψ(·, 0) = −
∫ ∞

0

∫
Ω

∇v · ∇ψ −
∫ ∞

0

∫
Ω

uvψ +

∫ ∞
0

∫
Ω

vU · ∇ψ, (6.79)

−
∫ ∞

0

∫
Ω

U ·Ψt −
∫

Ω

U0 ·Ψ(·, 0) = −
∫ ∞

0

∫
Ω

∇U · ∇Ψ−
∫ ∞

0

∫
Ω

(U · ∇)U ·Ψ

+

∫ ∞
0

∫
Ω

u∇Φ ·Ψ.

Within this framework, we shall show the sequence of solutions to (6.75) to have a limit. We
begin the extraction of convergent subsequences with convergence of u and v in Hölder spaces
in the following lemma:

77



6. A 3D Chemotaxis-Navier-Stokes Model

Lemma 6.5.3. There are γ > 0, a sequence {εj}j∈N with εj ↘ 0 as j → ∞ and u, v ∈
C1+γ,γ
loc (Ω× (0,∞)) such that

uεj →u in C
γ, γ2
loc (Ω× (0,∞)) (6.80)

vεj →v in C
γ, γ2
loc (Ω× (0,∞)) (6.81)

as j →∞.

Proof. For any ε ∈ (0, 1) the function uε is a bounded distributional solution of the parabolic
equation

ũt − div a(x, t, ũ,∇ũ) = b(x, t, ũ,∇ũ) in Ω× (0,∞)

for the unknown function ũ, with a(x, t, ũ,∇ũ) = ∇ũ − uεSε∇vε − Uεuε, and b ≡
0, and a(x, t, ũ,∇ũ) · ν = 0 on the boundary of the domain. Defining ψ0(x, t) =
|uε(x, t)Sε(x, uε(x, t), vε(x, t))∇vε(x, t)|2 + |Uε(x, t)uε(x, t)|2 and ψ1 = |uεSε(·, uε, vε)∇vε| +
|Uεuε| we see that a(x, t, ũ,∇ũ)∇ũ ≥ 1

2 |∇ũ|
2 − ψ0 and |a(x, t, ũ,∇ũ)| ≤ |∇ũ| + ψ1. If we

let T > 0 and τ ∈ (0, T ), the regularity result [73, Thm 1.3] therefore asserts the existence of
γ1 ∈ (0, 1) and c1 > 1 such that ‖uε‖

Cγ1,
γ1
2 (Ω×(τ,T ))

≤ c1.

According to the aforementioned theorem, these numbers γ1 and c1 depend on ‖uε‖L∞(Ω×(τ,T ))

and the norms of ψ0, ψ1 in certain spaces Lp((τ, T ), Lq(Ω)), where p and q must be sufficiently
large, but need not be infinite. Such bounds have been asserted independently of ε in (6.76) and
(6.78) in Lemma 6.5.1, so that we can conclude the existence of γ1 ∈ (0, 1) and c1 > 0 such that

‖uε‖
Cγ1,

γ1
2 (Ω×[τ,T ])

≤ c1 for every ε ∈ (0, 1).

Moreover, since b ≡ 0, according to [73, Remark 1.3], γ1 is independent of τ . By a similar
reasoning applied to the second equation and again invoking [73, Thm 1.3], we can find γ2 ∈ (0, 1)
and c2 > 0 such that

‖vε‖
Cγ2,

γ2
2 (Ω×[τ,T ])

≤ c2 for every ε ∈ (0, 1).

If we now pick γ ∈ (0,min{γ1, γ2}), the compact embeddings Cγi,
γi
2 (Ω× [τ, T ]) ↪→↪→ Cγ,

γ
2 (Ω×

[τ, T ]), i ∈ {1, 2}, allow for extraction of a sequence such that (6.80) and (6.81) hold.

In order to achieve convergence in the third component of the solutions, we will combine estimates
we already have obtained with Theorem 2.8 of [34] and the embedding result [2, Thm 1.1], which
asserts that for γ ∈ (0, 1) the set of functions with ‖U‖Lp(0,T ;W 2,p(Ω)) and ‖Ut‖Lp(0,T ;Lp(Ω))

being bounded is a compact subset of Cγ(0, T ;C1+γ(Ω)) if p is large. The latter is an argument
employed also in [118, Cor. 7.7], the former also lies at the center of the proof of [118, Lemma
7.6], but is substantially easier here due to the estimates stated in Lemma 6.5.1.

Lemma 6.5.4. There are γ > 0, a subsequence {εj}j∈N with εj ↘ 0 as j →∞ of the sequence

given in Lemma 6.5.3 and U ∈ C1+γ,γ
loc (Ω× (0,∞);RN ) such that

Uεj → U in C1+γ,γ
loc (Ω× (0,∞)) (6.82)

as j →∞.

Proof. Let us fix τ ∈ (0,∞). We introduce a smooth, nondecreasing function ξ : R → R which
satisfies ξ(t) = 0 for t ≤ τ and ξ(t) = 1 for t ≥ 2τ and will consider the functions ξUε with
ε ∈ (0, 1) in the following. Given s ∈ (1,∞), [34, Thm. 2.8] provides c1 = c1(s,Ω) such that,
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6.5. System with rotational flux (general S)

for any ε ∈ (0, 1), ξUε, being a solution of the Stokes equation with right-hand side P(ξ(Uε ·
∇)Uε) + P(ξuε∇Φ) + P(ξ′Uε) satisfies∫ T

τ

‖(ξUε)t‖sLs(Ω) +

∫ T

τ

‖D2(ξUε)‖sLs(Ω)

≤ c1

(
0 +

∫ T

τ

‖P(ξUε · ∇)Uε + Pξ(uε − u0)∇Φ + Pξ′Uε‖sLs(Ω)

)

for any T > τ . From the exponential decay of ‖uε − u0‖L∞(Ω) and of ‖Uε(·, t)‖L∞(Ω) as stated
in (6.76) we obtain the existence of c2, c3 > 0 such that for any ε ∈ (0, 1)∫ T

τ

‖(ξUε)t‖sLs(Ω) +

∫ T

τ

‖D2(ξUε)‖sLs(Ω) ≤ c2 + c3

∫ T

τ

‖∇(ξUε)‖sLs(Ω) for any T > τ. (6.83)

Let s > N and fix r ∈ (1, s), so that 1
N + 1

r −
1
s > 0. Defining

a =
1
N + 1

r −
1
s

2
N + 1

r −
1
s

,

we then observe that a ∈ ( 1
2 , 1) and hence the Gagliardo-Nirenberg inequality yields a constant

c4 > 0 such that

‖∇(ξUε)(·, t)‖sLs(Ω) ≤ c4‖D
2(ξUε)(·, t)‖asLs(Ω)‖(ξUε)(·, t)‖

(1−a)s
Lr(Ω) for all t ∈ (0, T )

and an application of this together with the L∞-estimate for Uε from (6.76) and Hölder’s
inequality in (6.83) shows that there is c5 > 0 such that for any T > τ and any ε ∈ (0, 1)

∫ T

τ

‖(ξUε)t‖sLs(Ω) +

∫ T

τ

‖D2(ξUε)‖sLs(Ω) ≤ c2 + c5|T − τ |1−a
(∫ T

τ

‖D2(ξUε)‖sLs(Ω)

)a
,

and we can conclude boundedness of ‖D2(ξUε)‖Ls(τ,T ;Ls(Ω)) and then of ‖(ξUε)t‖Ls(τ,T ;Ls(Ω))

with bounds independent of ε.

All in all, for any s > 1 and any T > 2τ , there is c6 > 0 such that for any t ∈ (2τ, T ) and any
ε ∈ (0, 1)

‖Uεt‖Ls((t,T );Ls(Ω)) + ‖Uε‖Ls((t,T );W 2,s(Ω)) ≤ c6. (6.84)

Now, letting γ′ ∈ (0, 1), using appropriately large s and referring to [2, Thm 1.1], for any T > 0
we obtain a constant c7 > 0 so that

‖Uε‖C1+γ′,γ′ (Ω×(t,T )) = ‖ξUε‖C1+γ′,γ′ (Ω×(t,T )) ≤ c7 for all t ∈ (2τ, T ).

Therefore, for any τ > 0, T > 2τ we can find a subsequence of the sequence from Lemma 6.5.3
such that Uε → U and ∇Uε → ∇U in Cγ,γ(Ω×(t, T )) for some γ < γ′ and for any t ∈ (2τ, T ).

For U , this lemma already covers the convergence of first spatial derivatives. Also concerning
u and v, at least some kind of convergence of these quantities seems desirable. For the fluid
velocity field, in fact, slightly higher derivatives are of interest. We obtain convergence for these
in the following lemma:
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6. A 3D Chemotaxis-Navier-Stokes Model

Lemma 6.5.5. There exists a subsequence {εj}j∈N with εj ↘ 0 as j →∞ of the sequence from
Lemma 6.5.4 such that

∇vε
?
⇀ ∇v in L∞((0,∞), Lq0(Ω)), (6.85)

∇vε ⇀ ∇v in L2(Ω× (0,∞)), (6.86)

Uε
?
⇀ U in L∞((0,∞), D(Aβ)), (6.87)

∇uε ⇀ ∇u in L2(Ω× (0,∞)), (6.88)

uεS(·, uε, vε)∇vε ⇀ uS(·, u, v)∇v in L1
loc(Ω× (0,∞)), (6.89)

uεt ⇀ ut in L2((0,∞), (W 1,2
0 (Ω))∗), (6.90)

vεt ⇀ vt in L2((0,∞), (W 1,2
0 (Ω))∗), (6.91)

Uεt ⇀ Ut in L2((0,∞), (W 1,2
0,σ (Ω))∗). (6.92)

as ε = εj ↘ 0.

Proof. From (6.76) we know that there is c1 > 0 such that for all ε ∈ (0, 1)

‖∇vε‖L∞((0,∞),Lq0 (Ω)) ≤ c1.

Therefore we may conclude the existence of a sequence satisfying (6.85); this also entails (6.86).
By the same reasoning we can use the ε−independent bound on ‖Uε‖L∞((0,∞),D(Aβ)) given by
(6.77) to extract a subsequence satisfying (6.87).
Concerning convergence of ∇uε, we multiply the first equation of (6.75) by uε so as to obtain

1

2

d

dt

∫
Ω

u2
ε +

∫
Ω

|∇uε|2 =

∫
Ω

uεSε∇vε · ∇uε ≤
1

2

∫
Ω

|∇uε|2 +
1

2
‖uε‖2L∞((0,∞)×Ω)C

2
S

∫
Ω

|∇vε|2.

for any ε ∈ (0, 1) and on the whole time-interval (0,∞). Integrating this with respect to time
and taking into account the exponential bound on

∫
Ω
|∇vε|2 and the uniform L∞-bound on uε

from (6.76) , we establish that

sup
ε∈{εj}j∈N

∫ ∞
0

∫
Ω

|∇uε|2 <∞ (6.93)

and hence can find a subsequence of the previously extracted sequence {εj}j∈N along which (6.88)
holds.
Because by Lemma 6.5.3, uε → u and Sε(·, uε, vε)→ S(·, u, v) pointwise and uε and Sε(·, uε, vε)
both are bounded uniformly in ε due to (6.76) and (6.5) combined with (6.73), from Lebesgue’s
dominated convergence theorem we conclude that uεSε(·, uε, vε)→ uS(·, u, v) in L2

loc(Ω×(0,∞)).
Combined with (6.86), this gives (6.89). Turning our attention to the time derivatives, we let
ψ ∈ C∞0 (Ω) with ‖ψ‖W 1,2(Ω) ≤ 1 and test the first equation of (6.75) with ψ. We obtain∣∣∣∣∫

Ω

(uε)tψ

∣∣∣∣
=

∣∣∣∣− ∫
Ω

∇uε · ∇ψ +

∫
Ω

uεSε∇vε · ∇ψ +

∫
Ω

uεUε · ∇ψ
∣∣∣∣

≤

((∫
Ω

|∇uε|2
) 1

2

+ ‖uε‖L∞(Ω)CS

(∫
Ω

|∇vε|2
) 1

2

+ ‖uε‖L∞(Ω)

(∫
Ω

|Uε|2
) 1

2

)(∫
Ω

|∇ψ|2
) 1

2
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for all t ∈ (0,∞), ε ∈ (0, 1). From the definition of the norm in dual spaces and Young’s
inequality, we derive that∫ ∞

0

‖uεt‖2(W 1,2
0 (Ω))∗

≤ 3

∫ ∞
0

∫
Ω

|∇uε|2 + 3‖uε‖2L∞(Ω×(0,∞))C
2
S

∫ ∞
0

∫
Ω

|∇vε|2

+ 3‖uε‖L∞(Ω×(0,∞))
2

∫ ∞
0

∫
Ω

|Uε|2

for all ε ∈ (0, 1). Taking into account (6.93) and (6.76), we thus obtain c2 > 0 such that

‖uεt‖L2((0,∞),(W 1,2
0 (Ω))∗) ≤ c2, for all ε ∈ (0, 1),

and may extract a further subsequence such that (6.90) holds. The same reasoning applied to the
second equation of (6.75) leads to (6.91). As to the third equation, employing (6.76) and (6.77)
and repeating the procedure with some ψ ∈ C∞0 (Ω), we easily obtain uniform boundedness

of
∫∞

0
‖Uεt‖2(W 1,2

0,σ(Ω))∗
(where W 1,2

σ,0 (Ω) = C∞0,σ(Ω)
‖·‖W1,2(Ω)) and may conclude (6.92) along a

subsequence.

Lemma 6.5.6. The functions u, v, U from Lemma 6.5.3 and Lemma 6.5.4 form a weak solution
to (6.2) in the sense of Definition 6.5.2.

Proof. The convergence properties exhibited in (6.80), (6.88), (6.89), (6.82), (6.81) and (6.86)
enable us to pass to the limit in the integral identities (6.79) for (uε, vε, Uε) for any ϕ ∈ C∞0 (Ω×
[0,∞)).

Moreover, these weak solutions obey the desired decay estimates.

Lemma 6.5.7. With C8, C9, C10 and C11 as in Lemma 6.5.1, the functions u, v, U obtained from
Lemma 6.5.3 and Lemma 6.5.4 obey the estimates

‖v(·, t)‖W 1,q0 (Ω) ≤ 2C11e
−α1t, for almost every t > 0, (6.94)

‖u(·, t)−u0‖L∞(Ω) ≤ C10e
−α1t, for every t > 0, (6.95)

‖U(·, t)‖L∞(Ω) ≤ C9e
−α2t, for every t > 0, (6.96)

‖U(·, t)‖D(Aβ) ≤ C8e
−α2t, for almost every t > 0. (6.97)

Proof. The estimates (6.95), (6.96) and a corresponding estimate for ‖v(·, t)‖L∞(Ω) result from
(6.76) and the pointwise convergence entailed by Lemma 6.5.3 and Lemma 6.5.4. For t > 0 we
let χ[t,∞) denote the characteristic function of the interval [t,∞) and observe that due to (6.85)

also χ[t,∞)∇vε
?
⇀ χ[t,∞)∇v in L∞((0,∞), Lq0(Ω)) as ε = εj ↘ 0, and therefore

‖∇v‖L∞([t,∞),Lq0 (Ω)) = ‖χ[t,∞)∇v‖L∞((0,∞),Lq0 (Ω))

≤ lim inf
j→∞

‖χ[t,∞)∇vε‖L∞((0,∞),Lq0 (Ω) ≤ C11e
−αt

for all t > 0, so that (6.94) results. The estimate (6.97) follows from (6.87) and (6.77) by the
same reasoning.

Naturally, in our search for classical solutions we are much more interested in obtaining
smoothness of higher order than in these boundedness assertions.
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Lemma 6.5.8. The functions u, v, U from the previous lemmata satisfy

u ∈C2+γ,1+ γ
2

loc (Ω× (0,∞)), (6.98)

v ∈C2+γ,1+ γ
2

loc (Ω× (0,∞)), and (6.99)

U ∈C2+γ,1+ γ
2

loc (Ω× (0,∞)) (6.100)

for some γ > 0.

Proof. We fix τ > 0 and T > 3τ . Moreover we choose a smooth function ξ : R→ [0, 1] such that
ξ(t) = 0 for t ≤ 2τ and ξ(t) = 1 for all t ≥ 3τ . Then we consider the problem{

Lw = wt −∆w + U · ∇w = −ξv + ξu+ ξtv =: f on (τ, T )

w(·, τ) = 0, ∂ν(w)
∣∣
∂Ω

= 0

of which clearly w = ξv is a weak solution. The coefficients of the parabolic operator L are Hölder-
continuous in Ω × [τ, T ] by Lemma 6.5.4 and so is f (by Lemma 6.5.3). If combined with the
uniqueness result for weak solutions in [50, Thm. III.5.1], Theorem IV.5.3 of [50] therefore asserts

that ξv ∈ C2+γ1,1+
γ1
2 (Ω×[τ, T ]) for some γ1 > 0 and we conclude that v ∈ C2+γ1,1+

γ1
2 (Ω×[3τ, T ])

and finally (6.99).
When attempting to apply the same theorem to u (or ξu, similar as before), however, we face

the additional difficulty that it requires C1+γ, 1+γ
2 -regularity of the boundary values, whereas at

this point we cannot guarantee more than Cγ,
γ
2 -regularity because of the involvement of u in

the argument of S in the boundary condition. We apply (6.88) and (6.95) to see that u has the
regularity properties needed for an application of [56, Thm. 1.1], which then guarantees that

u ∈ C1+γ2,
1+γ2

2 (Ω × (0, T )) for some γ2 > 0 and with that we can use [50, Thm. IV.5.3] in the
same way as before and conclude (6.98).

Turning our attention to the function U we observe that ξ(U · ∇)U + ξu∇Φ + ξ′U ∈ Cγ3,
γ3
2 (Ω×

(0, T )) for some γ3 > 0 by Lemma 6.5.4 and (6.98) and hence the same holds true for
P(ξ(U · ∇)U + ξu∇Φ + ξ′U) by Lemma 6.A.1. Therefore the Schauder estimates for Stokes’
equation given in [78, Thm. 1.1], if combined with the uniqueness result in [76, Thm.
V.1.5.1], assert that ξU , being a solution to (ξU)t = ∆(ξU) + P[ξ(U ·∇)U + ξu∇Φ + ξ′U ],

∇ · (ξU) = 0, belongs to the space C2+γ3,1+
γ3
2 (Ω × (0, T )) for some γ3 > 0 and hence

u ∈ C2+γ3,1+
γ3
2 (Ω× [3τ, T ]), so that we finally arrive at (6.100).

Having obtained this smoothness, we can quickly fill in the missing information to see that u, v, U
are as regular as required of classical solutions.

Lemma 6.5.9. The functions u, v, U satisfy
u ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

v ∈ C0(Ω× [0,∞)) ∩ L∞((0,∞);W 1,q0(Ω)) ∩ C2,1(Ω× (0,∞)) and

U ∈ C0(Ω× [0,∞)) ∩ L∞((0,∞);D(Aβ)) ∩ C2,1(Ω× (0,∞)).

(6.101)

Proof. For each of the functions, C2,1-regularity follows from Lemma 6.5.8. That v ∈
L∞((0,∞),W 1,q0(Ω)) and U ∈ L∞((0,∞), D(Aβ)) is asserted by (6.94) and (6.97), respectively.
Therefore we are left with the task of proving the continuity at t = 0. From (6.94) and (6.91) we
know that for T > 0 we have v ∈ L∞((0, T ),W 1,q0(Ω)) and vt ∈ L2((0, T ), (W 1,2

0 (Ω))∗), where
W 1,q0(Ω) ↪→↪→ C0(Ω) ↪→ (W 1,2

0 (Ω))∗, so that a well-known embedding result (see e.g. [75, Cor.
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8.4]) assures us that v ∈ C0(Ω × [0, T ]). For U we observe that D(Aβ) ↪→↪→ C0(Ω) and (6.92)
and (6.97) once more make [75, Cor. 8.4] applicable. In order to show continuity of u at t = 0,
we note that according to (6.76), there is c1 > 0 such that ‖uεS(·, uε, vε)∇vε−Uεuε‖Lq0 (Ω) ≤ c1
for any ε ∈ (0, 1) and any t > 0. Consequently, for any ε ∈ (0, 1) and any t > 0, we have

‖uε(·, t)− et∆u0‖L∞(Ω)

≤
∫ t

0

‖e(t−s)∆∇ · (uεS(·, uε(·, s), vε(·, s))∇vε(·, s) + uε(·, s)Uε(·, s)) ‖L∞(Ω)ds

≤
∫ t

0

k4(1 + (t− s)−
1
2−

N
2q0 )e−λ1(t−s)

× ‖uε(·, s)S(·, uε(·, s), vε(·, s))∇vε(·, s) + uε(·, s)Uε(·, s)‖Lq0 (Ω)ds

≤ c1k4

(
t+

∫ t

0

s−
1
2−

N
2q0 ds

)
.

Given ζ > 0 we then fix δ > 0 such that ‖et∆u0 − u0‖L∞(Ω) ≤ ζ
3 and t +

∫ t
0
s−

1
2−

N
2q0 ds < ζ

3c1k4

for all t ∈ (0, δ). Then using the uniform convergence uεj (·, t) → u(·, t) as j → ∞ asserted by

Lemma 6.5.3 we pick εj such that ‖u(·, t)− uεj (·, t)‖L∞(Ω) ≤ ζ
3 . Then

‖u(·, t)−u0‖L∞(Ω) ≤ ‖u(·, t)−uεj (·, t)‖L∞(Ω) +‖uεj (·, t)−et∆u0‖L∞(Ω) +‖et∆u0−u0‖L∞(Ω) < ζ

for all t ∈ (0, δ). Thus the proof is complete.

In order to prove Theorem 6.1.1, we now only have to collect the results prepared during this
section:

Proof of Theorem 6.1.1. Approximating S by functions Sε as indicated in (6.74), Proposition
6.4.1 has ensured the existence of solutions (uε, vε, Uε, Pε) with the properties asserted in Lemma
6.5.1. From the family of these approximate solutions, in Lemma 6.5.3, Lemma 6.5.4 and Lemma
6.5.5 we were able to extract a subsequence that converges to functions (u, v, U) in a suitable
sense, which according to Lemma 6.5.6 form a global weak solution to (6.2) in the sense of
Definition 6.5.2, according to Lemma 6.5.9 have all regularity properties required of a classical
solution and by Lemma 6.5.7 exhibits the desired decay properties. The missing component
P can be obtained from [76, Thm. V.1.8.1]. In light of the smoothness of U , u, Φ, the third
equation of (6.2) asserts that ∇P ∈ C0(Ω× (0, T )).

6.A. Appendix

We have postponed the proof of Lemma 6.2.4, which mainly consists in elementary calculus, but
is too central to the reasoning of the present work to be left unproven. We begin the Appendix
by giving this proof. After that, we will take care of a result on the Helmholtz projection, which
was used as tool in the proof of Lemma 6.5.8. Finally, this appendix contains a variant of Lemma
6.3.1 adapted to the needs of the proof of Theorem 6.1.2.

Proof of Lemma 6.2.4. The assertion can be proven similarly as in [105, Lemma 1.2]. A simple
observation shows that for any t ∈ [0,∞)∫ t

0

(1 + s−α)(1 + (t− s)−β)e−δ(t−s)e−γsds ≤ e−δt
∫ t

0

e−(γ−δ)sds+ e−δt
∫ t

0

s−αe−(γ−δ)sds
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6. A 3D Chemotaxis-Navier-Stokes Model

+ e−δt
∫ t

0

(t− s)−βe−(γ−δ)sds+ e−δt
∫ t

0

s−α(t− s)−βe−(γ−δ)sds. (6.102)

In order to obtain estimates for the summands, independently of the values of α, β, γ, δ, we can
start with the observation that∫ t

0

e−(γ−δ)sds =
1

γ − δ
[1− e−(γ−δ)t] ≤ 1

η
, t ∈ [0,∞),

and continue by estimating∫ t

0

s−αe−(γ−δ)sds ≤
∫ 1

0

s−αds+

∫ ∞
1

e−(γ−δ)sds ≤ 1

1− α
+

1

γ − δ
≤ 2

η
for t ∈ [0,∞).

Also in the third term on the right hand side of (6.102) we can split the integral and use the
obvious estimates (t− s)−β ≤ 1 for s < t− 1 and e−(γ−δ)(t−σ) ≤ e−(γ−δ)(−σ)≤eγ−δ for σ ∈ (0, 1)
to obtain ∫ t

0

(t− s)−βe−(γ−δ)sds ≤
∫ t

0

e−(γ−δ)sds+

∫ 1

0

σ−βe−(γ−δ)(t−σ)dσ

≤ 1

γ − δ
+

1

1− β
eγ−δ ≤ 1

η
+

1

η
e

1
η

for any t ∈ [0,∞). The last integral can be rewritten as∫ t

0

s−α(t− s)−βe−(γ−δ)sds = t1−α−β
∫ 1

0

σ−α(1− σ)−βe−(γ−δ)σtdσ, t ∈ [0,∞), (6.103)

where we have∫ 1

0

σ−α(1− σ)−βe−(γ−δ)σtdσ ≤
∫ 1

0

σ−α(1− σ)−β

≤ 2β
∫ 1

2

0

σ−αdσ + 2α
∫ 1

2

0

σ−βdσ ≤ 2

1− α
+

2

1− β
≤ 4

η
,

so that (6.103) yields the estimate we are aiming for if 1−α−β ≤ 0 or if t < 1 and 1−α−β > 0.
As to 1− α− β > 0 and t ≥ 1, we estimate∫ 1

0

σ−α(1− σ)−βe−(γ−δ)σtdσ

≤
∫ 1

2 t
− 1−α−β

1−α

0

σ−α(1− σ)−βe−(γ−δ)σtdσ +

∫ 1

1
2 t
− 1−α−β

1−α
σ−α(1− σ)−βe−(γ−δ)σtdσ

≤ (1/2)
−β
∫ 1

2 t
− 1−α−β

1−α

0

σ−αdσ +

(
1

2
t−

1−α−β
1−α

)−α
e−(γ−δ) 1

2 t
1− 1−α−β

1−α
∫ 1

1
2 t
− 1−α−β

1−α
(1− σ)−βdσ

≤ 2β+α−1

1− α
t−(1−α−β) +

2α

1− β
t−(1−α−β)t1−

β
1−α e−

γ−δ
2 t

β
1−α

.

Here,

t1−
β

1−α e−
γ−δ

2 t
β

1−α ≤ 1 + te−
γ−δ

2 t
β

1−α
, t ∈ [1,∞),
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where we have
β

1− α
≥ β, t

β
1−α ≥ tβ ≥ tη,

because t ≥ 1, and hence

te−
γ−δ

2 t
β

1−α ≤ te−
γ−δ

2 tβ ≤ te−
η
2 t
η

, t ∈ [1,∞),

which in combination with the finiteness of supt>0 te
− η2 t

η

implies the assertion.

In order to obtain regularity of U , we have employed the following result in the proof of Lemma
6.5.8. Other than in [30], we are concerned with the impact of the Helmholtz projection on
Hölder-continuous functions (instead of on functions belonging to some Lp-space only.)

Lemma 6.A.1. Let Ω ⊂ RN be a bounded domain with ∂Ω ∈ C1+α for some α > 0, and let
T > 0. Moreover let g ∈ Cα,α2 (Ω× [0, T ]). Then g = h+ w, where ∇ · h = 0 in Ω and h · ν = 0
on ∂Ω and w = ∇Φ for some function Φ. Then h ∈ Cα,α2 (Ω× [0, T ]).

Proof. We have to find a decomposition g = h + w with ∇ · h = 0 in Ω and h · ν = 0 on ∂Ω
and w = ∇Φ for some function Φ. We will construct w and conclude from its smoothness that
Pg = h = g − w ∈ Cα,α2 (Ω× [0, T ];RN ). As preparation let us consider the elliptic problem

∆Φ = ∇ · f, ∇Φ · ν
∣∣
∂Ω

= f · ν
∣∣
∂Ω
,

∫
Ω

Φ = 0. (6.104)

Only assuming f ∈ Cα(Ω), we fix p > N and let q be such that 1
p + 1

q = 1. Then [74, Thm.

4.1], which mirrors the usual Lax-Milgram type result in the context of Lp-spaces also for p 6= 2,
asserts the existence of a unique weak solution Φ ∈ {Φ ∈W 1,p(Ω),

∫
Ω

Φ = 0} such that∫
Ω

∇Φ · ∇ϕ =

∫
Ω

f∇ϕ for all ϕ ∈W 1,q(Ω).

Moreover, this solution satisfies

c1‖Φ‖L∞(Ω) ≤c2‖Φ‖W 1,p(Ω) ≤ ‖∇Φ‖Lp(Ω)

≤c3 sup

{ ∣∣∫
Ω
f∇ϕ

∣∣
‖∇ϕ‖Lq(Ω)

; ϕ ∈W 1,q(Ω),∇ϕ 6≡ 0

}
≤ c3‖f‖Lp(Ω) ≤ c4‖f‖Cα(Ω) (6.105)

with positive constants c1, c2, c3 and c4 that are guaranteed to exist by the continuity of
the embedding W 1,p(Ω) ↪→ L∞(Ω), Poincaré inequality, [74, Thm. 4.1] and continuity of the
embedding Cα(Ω) ↪→ Lp(Ω), respectively. A standard elliptic regularity result (see [41, Thm.
2.8]) moreover asserts the existence of c5 > 0 such that C1+α-solutions Φ of (6.104) satisfy

‖Φ‖C1+α(Ω) ≤ c5(‖f‖Cα(Ω) + ‖Φ‖L∞(Ω))

and thus, taking into account (6.105),

‖Φ‖C1+α(Ω) ≤ c6‖f‖Cα(Ω)

with c6 := c5(1 + c4
c1

).

Approximating f ∈ Cα(Ω) by a sequence of functions {fn}n∈N ⊂ C∞(Ω) for which the existence
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of classical solutions Φn ∈ C2+α(Ω) is asserted by well-known results ([51, Thm. 3.3.2]), we see
that for f ∈ Cα(Ω) problem (6.104) has a unique solution Φ ∈ C1+α(Ω), which moreover satisfies

‖Φ‖C1+α(Ω) ≤ c6‖f‖Cα(Ω). (6.106)

For each t let Φ(·, t) denote the solution of

∆Φ(·, t) = ∇ · g(·, t), ∇Φ(·, t) · ν
∣∣
∂Ω

= g(·, t) · ν
∣∣
∂Ω
,

∫
Ω

Φ = 0,

and define w(·, t) := ∇Φ(·, t) and h(·, t) := g(·, t)−w(·, t), so that clearly ∇ · h = ∇ · g−∇ ·w =
∇ · g −∆Φ = 0 in Ω and h · ν = g · ν − w · ν = g · ν − ∂νΦ = 0 on ∂Ω. Concerning smoothness,
we see that Φ(·, t) ∈ C1+α(Ω) entails w(·, t) ∈ Cα(Ω) and for t1, t2 ∈ [0, T ] we have that
Φ(·, t2)− Φ(·, t1) = :Ψ solves

∆Ψ = ∇ · (g(·, t2)− g(·, t1)), ∇Ψ · ν
∣∣
∂Ω

= (g(·, t2)− g(·, t1)) · ν,
∫

Ω

Ψ = 0

so that by (6.106)

‖w(·, t2)− w(·, t1)‖Cα(Ω) ≤ ‖Ψ‖C1+α(Ω) ≤ c6‖g(·, t2)− g(·, t1)‖Cα(Ω).

By the known regularity of g, in conclusion we have w ∈ Cα,α2 (Ω × [0, T ]) and thus Pg = h =
g − w ∈ Cα,α2 (Ω× [0, T ];RN ).

The last statement we have postponed to this appendix is concerned with the adaptions necessary
for proving Theorem 6.1.2 instead of Theorem 6.1.1.

Lemma 6.A.2. Given M,N, p0, q0, β, CS as in Theorem 1.2 and some δ > 0, it is possible

to choose M1, M2, M3, M4, ε > 0, m0 < ε|Ω|−
1
p0 such that for all m > m0, for all α1 ∈

(m2 ,min{m,λ1 − δ}) and α2 ∈ (0,min{α1, λ
′
1 − δ}) the inequalities

k7(N, q0) + k5(q0)k7(q0, q0)(M1 + 2k1)‖∇Φ‖L∞(Ω)C1 + 3k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)M3M4C2ε ≤
M3

2
,

k8(N,N) + k8(N,N)k5(N)|Ω|
q0−N
Nq0 (M1 + 2k1)‖∇Φ‖L∞(Ω)C3

+ 3M3M4k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)C4ε ≤
M4

2
,

k3 + C5k2(|Ω|−
1
p0 +M1 + 2k1)Me(M1+2k1)σε + 3k2M2M3C6ε ≤

M2

2
and

3CSC7k4M2ε|Ω|−
1
p0 + 3CSC7k4M2(M1 + 2k1)ε+ 3(M1 + 2k1)C7k4M3ε ≤

M1

2

hold, where k1, k2, k3, k4, k5(·), k7(·, ·), k8(·, ·) are taken from Lemmata 6.2.1, 6.2.2 and 6.2.3,
and C1, C2, C3, C4, C5, C6, C7 are the constants defined in Section 6.3.

Proof. The condition m0 < ε|Ω|−
1
p0 that is used to ensure the existence of initial data satisfying

(6.9) compells us to choose m0 at the end of this proof, quite in contrast to the situation in
Lemma 6.3.1. Furthermore this makes it necessary to have the estimates during the proof hold
regardless of the values of α1, α2, which depend on m. Fortunately, C1, . . . , C7 indeed do not
depend on α1, α2 (and thus not on m), but – thanks to Lemma 6.2.4 – rather on (a lower bound
for) the differences between µ and α1, µ and α2 or λ1 and α1. (This is the purpose δ has been
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introduced for.) The only remaining parameter is σ = σ(α1) =
∫∞

0
(1 + s−

N
2p0 )e−α1sds, which is

decreasing with respect to α1. If we decide to concentrate on relatively “large” values of α1 only,
namely α1 >

m
2 , (which is of no effect to the generality of Theorem 6.1.2), given m > 0, for any

α1 ∈ (m2 ,min{m,λ1 − δ}), we may rely on

σ(α1) ≤
∫ ∞

0

(
1 + s−

N
2p0

)
e−

m
2 sds ≤ 2

∫ ∞
0

e−
m
2 sds+

∫ 1

0

s−
N

2p0 ds ≤ 4

m
+

2p0

2p0 −N
.

We pick arbitrary M1 > 0 and A > 1 such that

A > (M1 + 2k1)

(
8|Ω|

1
p0 +

1

1− N
2p0

)
. (6.107)

Moreover, we can choose M2 such that k3 +C5k2(|Ω|−
1
p0 +M1 + 2k1)MeAA ≤ M2

4 and M3 such

that k7(N, q0) + k5(q0)k7(q0, q0)(M1 + 2k1)‖∇Φ‖L∞(Ω)C1 ≤ M3

4 , and we choose M4

such that k8(N,N) + k8(N,N)k5(N)|Ω|
q0−N
Nq0 (M1 + 2k1)‖∇Φ‖L∞(Ω)C3 ≤ M4

4 . Then we let

0 < ε <min

{
A,

1

12k2M3C6
,

1

12M3k8( 1
1
q0

+ 1
N

, N)k5( 1
1
q0

+ 1
N

)C4
,

1

12k7( N

1+ N
q0

, q0)k5( N

1+ N
q0

)C2M4
,

M1

2(3CSC7k4M2(|Ω|−
1
p0 +M1 + 2k1) + 3(M1 + 2k1)C7k4M3)

, 1

}

Finally, we want to choose m0 < ε|Ω|−
1
p0 such that (M1 + 2k1)σ(α1)ε < A for all α1 ∈

(m2 ,min{m,λ1 − δ}), for all m > m0. This is indeed feasible, since σ( ε2 |Ω|
− 1
p0 ) < A

(M1+2k1)ε

due to

εσ
( ε

2
|Ω|−

1
p0

)
< ε

(
8

ε|Ω|−
1
p0

+
2p0

2p0 −N

)
≤ 8|Ω|

1
p0 +

2p0

2p0 −N
<

A

M1 + 2k1

and by continuity we can find m0 < ε|Ω|−
1
p0 so that σ(m0

2 ) < A
(M1+2k1)ε . With this choice, for

all α1 ∈ (m2 ,min{m,λ1 − δ}), for all m > m0, we have σ(α1) < σ(m2 ) < σ(m0

2 ) < A
(M1+2k1)ε .
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7. Boundedness enforced by small signal
concentrations in chemotaxis-fluid
models

7.1. Introduction

In this chapter, we continue to study the chemotaxis(-Navier)-Stokes system

ut = ∆u−∇ · (uS(x, u, v) · ∇v)− U · ∇u, (x, t) ∈ Ω× (0, T ),

vt = ∆v − uv − U · ∇v, (x, t) ∈ Ω× (0, T ),

Ut = ∆U − κ(U · ∇)U +∇P + u∇Φ, (x, t) ∈ Ω× (0, T ),

∇ · U = 0, (x, t) ∈ Ω× (0, T ),

∇v · ν = (∇u− S(x, u, v)∇v) · ν = 0, U = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), v(x, 0) = v0(x), U(x, 0) = U0(x), x ∈ Ω,

(7.1)

where T ∈ (0,∞], κ = 0, 1, Ω ⊂ RN (N = 2, 3) is a bounded domain with smooth boundary
and ν denotes the outward normal vector on ∂Ω. Here S(x, u, v) = (sij(x, u, v))i,j∈{1,..,N} is a

matrix-valued function and Φ ∈ C1+δ(Ω) for some δ ∈ (0, 1).

The purpose of the present chapter is to study this full chemotaxis-Navier-Stokes system with
tensor-valued sensitivity in dimension 2 and the corresponding chemotaxis-Stokes system in
dimension 3. When a natural Lyapunov functional (6.3) is lacking, we impose a smallness
assumption on the initial data to obtain some uniform bound for the solution. Under this
assumption, we can prove global existence of a classical solution and its large time behavior.
Compared with Chapter 6([13]), the smallness condition here is only on ‖v0‖L∞(Ω), meaning
that small concentration of oxygen can enforce stability. This result coincides with the fluid-free
system in [55]. The convexity of the physical domain is unnecessary in this paper since we use
an approach different from that in many previous works, e.g. [108].

Throughout this chapter, as in Chapter 6 we assume that

sij ∈ C2(Ω× [0,∞)× [0,∞)), (7.2)

|S(x, u, v)| := max
i,j∈{1,...,N}

|sij(x, u, v)| ≤ S0(v) for all (x, u, v) ∈ Ω× [0,∞)× [0,∞), (7.3)

where S0 is a non-decreasing function on [0,∞). Again A denotes the Stokes operator under
Dirichlet boundary conditions in Ω. The initial data are supposed to satisfy

u0 ∈ L∞(Ω),

v0 ∈W 1,q0(Ω), q0 > N,

U0 ∈ D(Aβ), for some β ∈ (N4 , 1),

(7.4)

89



7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

and

u0 ≥ 0, v0 > 0 on Ω. (7.5)

Under the above assumptions and notations, our main result is as follows:

Theorem 7.1.1. Let N ∈ {2, 3}, Ω ⊂ RN be a bounded domain with smooth boundary. Assume
that S fulfills (7.2-7.3) and that one of the following conditions holds
i) N = 2, κ = 1;
ii) N = 3, κ = 0.
Then there is δ0 > 0 with the following property: If the initial data fulfill (7.4-7.5) and are such
that

‖v0‖L∞(Ω) < δ0, (7.6)

then (7.1) admits a global classical solution (u, v, U, P ) with

u ∈ C0
(
Ω× [0,∞)

)
∩ C2,1

(
Ω× (0,∞)

)
,

v ∈ C0
(
Ω× [0,∞)

)
∩ L∞

(
(0,∞);W 1,q0(Ω)

)
∩ C2,1

(
Ω× (0,∞)

)
,

U ∈ C0
(
Ω× [0,∞)

)
∩ L∞

(
(0,∞);D(Aβ)

)
∩ C2,1

(
Ω× (0,∞)

)
,

P ∈ C1,0
(
Ω× (0,∞)

)
,

(7.7)

for which u ≥ 0 and v ≥ 0 in Ω× (0,∞). Moreover, one can find C > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,q0 (Ω) + ‖U(·, t)‖D(Aβ) ≤ C for all t > 0.

Remark 7.1.2. The uniqueness of classical solutions in the indicated class can be proved
similarly as in [108].

Apart from boundedness and global existence, we can also show the convergence of this clasical
solution to the homogenous equilibrium.

Corollary 7.1.3. Let the assumptions of Theorem 7.1.1 hold. Then (u, v, U) fulfills

‖u(·, t)− u0‖L∞(Ω) → 0, ‖v(·, t)‖W 1,q0 (Ω) → 0, and ‖U(·, t)‖L∞(Ω) → 0

as t→∞.

Remark 7.1.4. It is not difficult to show the convergence rates are exponential by using the
uniqueness of the solutions and applying Theorem 6.1.1.

We note that compared with the result in [112], Theorem 7.1.1 furthermore has restrictions on the
size of initial data in the form of (7.6). As a subcase of (7.1), known results on the corresponding
fluid-free version are not yet rich: Without assuming small data, the global generalized solutions
constructed in [115] still possibly become unbounded at intermediate times; only additionally
assuming ‖v0‖L∞(Ω) small, global classical solutions are known to exist and blow-up is entirely
ruled out [55]. When the system is coupled to fluid components, our results give the same
condition which guarantee the global existence of smooth solutions.

The plan of this chapter is as follows: In Section 7.2, we approximate the problem by a system
a priori known as globally well-posed (see (7.11) later). Sections 7.3-7.5 are devoted to studying
the boundedness of solutions to this regularized problem, and we will see that the bounds are
independent of the regularization parameter. Thus upon appropriate estimates, we can obtain
limit functions of solutions to the regularized problems. This procedure is carried out in Section
7.6, and then also these limit functions are shown to be smooth enough and solve (7.1) classically
for any positive time. In Section 7, the stabilization of the solution is given.
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7.2. Approximation

Since again it is convenient to deal with the Neumann boundary conditions for both u and v,
we employ the same approximation procedure as in Chapter 6 by fixing a family {ρε}ε∈(0,1) of
functions satisfying

ρε ∈ C∞0 (Ω) with 0 ≤ ρε ≤ 1 in Ω and ρε ↗ 1 in Ω as ε↘ 0, (7.8)

and defining

Sε(x, uε, vε) = ρε(x)S(x, uε, vε), x ∈ Ω, uε > 0, vε > 0. (7.9)

Then we have Sε(x, uε, vε) = 0 on ∂Ω and, by (7.3)

|Sε(x, uε, vε)| ≤ S0(‖v0‖L∞(Ω)) for all x ∈ Ω, uε > 0, vε > 0, (7.10)

for ε ∈ (0, 1). Now we consider the following regularized problem

uεt = ∆uε −∇ · (uεSε(x, uε, vε) · ∇vε)− Uε · ∇uε, (x, t) ∈ Ω× (0, Tmax,ε),

vεt = ∆vε − uεvε − Uε · ∇vε, (x, t) ∈ Ω× (0, Tmax,ε),

Uεt = ∆Uε − κ(Uε · ∇)Uε +∇Pε + uε∇Φ, (x, t) ∈ Ω× (0, Tmax,ε),

∇ · Uε = 0, (x, t) ∈ Ω× (0, Tmax,ε),

∇uε · ν = ∇vε · ν = 0, Uε = 0, (x, t) ∈ ∂Ω× (0, Tmax,ε),

uε(x, 0) = u0(x), vε(x, 0) = v0(x), Uε(x, 0) = U0(x), x ∈ Ω.

(7.11)

Without essential difficulty, we apply Lemma 6.2.8 to the above system to see its local solvability
in the classical sense. For convenience, we summarize as follows:

Lemma 7.2.1. Let N ∈ {2, 3}, Ω ⊂ RN be a bounded domain with smooth boundary, and κ ∈ R.
Assume that the initial data (u0, v0, U0) satisfy (7.4) and (7.5), and that S fulfills (7.2-7.3). Then
there exist Tmax,ε ∈ (0,∞] and a unique classical solution (uε, vε, Uε, Pε) to (7.11) satisfying

uε ∈ C0
(
Ω× [0, Tmax,ε)

)
∩ C2,1

(
Ω× (0, Tmax,ε)

)
,

vε ∈ C0
(
Ω× [0, Tmax,ε)

)
∩ L∞loc

(
[0, Tmax,ε);W

1,q0(Ω)
)
∩ C2,1

(
Ω× (0, Tmax,ε)

)
,

Uε ∈ C0
(
Ω× [0, Tmax,ε)

)
∩ L∞loc

(
[0, Tmax,ε);D(Aβ)

)
∩ C2,1

(
Ω× (0, Tmax,ε)

)
,

Pε ∈ C1,0
(
Ω× (0, Tmax,ε)

)
(7.12)

and uε > 0, vε > 0. Moreover, if Tmax,ε <∞, then

‖uε(·, t)‖L∞(Ω) + ‖vε(·, t)‖W 1,q0 (Ω) + ‖AβUε(·, t)‖L2(Ω) →∞ as t↗ Tmax,ε. (7.13)

In order to see the global existence and qualitative behavior of the solutions to the regularized
problem, it is sufficient to show boundedness for each quantity in (7.13). The following lemma
is obvious.

Lemma 7.2.2. Let (uε, vε, Uε, Pε) be a classical solution of (7.11). It follows that

‖uε(·, t)‖L1(Ω) = ‖u0‖L1(Ω) for all t ∈ (0, Tmax,ε), (7.14)

and ‖vε(·, t)‖L∞(Ω) ≤ ‖v0‖L∞(Ω) for all t ∈ (0, Tmax,ε). (7.15)
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Proof. The mass conservation (7.14) is obtained by integrating the first equation of (7.11) on Ω
and using the Neumann boundary condition. Since uε and vε are nonnegative, an application of
the maximum principle to the second equation yields (7.15).

We then obtain boundedness and global existence for the regularized problem (7.11).

Proposition 7.2.3. Assume that S fulfills (7.2-7.3) and that one of the following conditions
holds

(i) N = 2, κ = 1;

(ii) N = 3, κ = 0.

There exists δ0 > 0 with the following property: If the initial data fulfill (7.4-7.5), and

‖v0‖L∞(Ω) < δ0, (7.16)

then (7.11) admits a global classical solution (uε, vε, Uε). Moreover, there is C > 0 such that

‖uε(·, t)‖L∞(Ω) ≤ C, ‖vε(·, t)‖W 1,q0 (Ω) ≤ C, ‖AβUε(·, t)‖L2(Ω) ≤ C (7.17)

for all t ∈ (0,∞) and all ε ∈ (0, 1).

We will prove boundedness for the 2-dimensional and 3-dimensional cases in Section 4 and Section
5, respectively. However, the Lp(Ω) estimate for uε derived in the next section will be applied
to both.

7.3. An a priori estimate for uε

In this section, we obtain boundedness of uε in Lp(Ω) under the assumption that ‖v0‖L∞(Ω) is
suitably small. The approach is based on the weighted estimate of

∫
Ω
upεϕ(vε) with appropriate

choice of ϕ which has been developed in [104] and adapted to the consumed type signal in
[83, 112].

Lemma 7.3.1. Let N ∈ {2, 3} and κ ∈ R. For any p > 1, there are δ0 = δ0(p) > 0 and
C = C(p) > 0 with the following property: If the initial data satisfy (7.4)-(7.5) and

‖v0‖L∞(Ω) < δ0, (7.18)

then for all ε ∈ (0, 1) we have

‖uε(·, t)‖Lp(Ω) ≤ C for all t ∈ (0, Tmax,ε) (7.19)

and

∫ Tmax,ε

0

∫
Ω

up−2
ε |∇uε|2 ≤ C. (7.20)

Proof. Let p > 1 and 0 < h < p−1
12p . We then can find δ0 satisfying

3p(p− 1)δ2
0S

2
0(δ0) ≤ h(h+ 1) and (7.21)

3pδ0S0(δ0) ≤ h+ 1, (7.22)

where S0 is the non-decreasing function introduced in (7.3). Under the assumption of (7.18), we
can define ϕ(vε) = (δ0 − vε)−h according to (7.15), thus ϕ(vε) > 0. Elementary calculus shows
that

ϕ′(vε) = h(δ0 − vε)−h−1 > 0, (7.23)
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ϕ′′(vε) = h(h+ 1)(δ0 − vε)−h−2 > 0. (7.24)

Using the first two equations in (7.11), upon integrating by parts we obtain that for all ε ∈ (0, 1),

d

dt

∫
Ω

upεϕ(vε)

=

∫
Ω

pup−1
ε ϕ(vε)(∆uε −∇ · (uεSε · ∇vε)− Uε · ∇uε) +

∫
Ω

upεϕ
′(vε)(∆vε − uεvε − Uε · ∇vε)

= −
∫

Ω

∇uε · (p(p− 1)up−2
ε ϕ(vε)∇uε + pup−1

ε ϕ′(vε)∇vε)

+

∫
Ω

uεSε(x, uε, vε) · ∇vε ·
(
p(p− 1)ϕ(vε)u

p−2
ε ∇uε + pup−1

ε ϕ′(vε)∇vε
)

−
∫

Ω

pup−1
ε ϕ(vε)Uε · ∇uε −

∫
Ω

∇vε · (pup−1
ε ϕ′(vε)∇uε + upεϕ

′′(vε)∇vε)

−
∫

Ω

upεϕ
′(vε)Uε · ∇vε −

∫
Ω

up+1
ε vεϕ

′(vε)

= −p(p− 1)

∫
Ω

up−2
ε ϕ(vε)|∇uε|2 − p

∫
Ω

up−1
ε ϕ′(vε)∇uε · ∇vε

+ p(p− 1)

∫
Ω

up−1
ε ϕ(vε)Sε(x, uε, vε) · ∇vε · ∇uε + p

∫
Ω

upεϕ
′(vε)Sε(x, uε, vε) · ∇vε · ∇vε

− p
∫

Ω

up−1
ε ϕ′(vε)∇uε · ∇vε −

∫
Ω

upεϕ
′′(vε)|∇vε|2 −

∫
Ω

up+1
ε ϕ′(vε)vε (7.25)

for all t ∈ (0, Tmax,ε), where we have used the identity

−p
∫

Ω

up−1
ε ϕ(vε)Uε · ∇uε −

∫
Ω

upεϕ
′(vε)Uε · ∇vε = −

∫
Ω

ϕ(vε)Uε · ∇upε −
∫

Ω

upεUε · ∇ϕ(vε)

=

∫
Ω

upεϕ(vε)(∇ · Uε) = 0 for all t ∈ (0, Tmax,ε).

In light of (7.10), we find that for all t ∈ (0, Tmax,ε),

d

dt

∫
Ω

upεϕ(vε) + p(p− 1)

∫
Ω

ϕ(vε)u
p−2
ε |∇uε|2 +

∫
Ω

upεϕ
′′(vε)|∇vε|2

≤ p(p− 1)S0(‖v0‖L∞(Ω))

∫
Ω

up−1
ε ϕ(vε)|∇uε||∇vε|+ 2p

∫
Ω

up−1
ε ϕ′(vε)|∇uε||∇vε|

+ pS0(‖v0‖L∞(Ω))

∫
Ω

upεϕ
′(vε)|∇vε|2. (7.26)

Here Young’s inequality yields that

p(p− 1)S0(‖v0‖L∞(Ω))

∫
Ω

up−1
ε ϕ(vε)|∇uε||∇vε| ≤

p(p− 1)

4

∫
Ω

up−2
ε ϕ(vε)|∇uε|2

+ p(p− 1)S2
0(‖v0‖L∞(Ω))

∫
Ω

upεϕ(vε)|∇vε|2 (7.27)

and

2p

∫
Ω

up−1
ε ϕ′(vε)|∇uε||∇vε| ≤

p(p− 1)

4

∫
Ω

up−2
ε ϕ(vε)|∇uε|2 +

4p

p− 1

∫
Ω

upε
ϕ′2(vε)

ϕ(vε)
|∇vε|2 (7.28)

93



7. Boundedness enforced by small signal concentrations in chemotaxis-fluid models

for all t ∈ (0, Tmax,ε). We see that (7.26)-(7.28) imply that for all ε ∈ (0, 1),

d

dt

∫
Ω

upεϕ(vε) +
p(p− 1)

2

∫
Ω

up−2
ε ϕ(vε)|∇uε|2

+

∫
Ω

upε |∇vε|2
(
ϕ′′(vε)−

4p

p− 1

ϕ′2(vε)

ϕ(vε)
− p(p− 1)S2

0(‖v0‖L∞(Ω))ϕ(vε)− pS0(‖v0‖L∞(Ω))ϕ
′(vε)

)
≤ 0 (7.29)

for all t ∈ (0, Tmax,ε). Now using (7.21)-(7.22), and in view of the fact that S0(δ) is non-
decreasing, we obtain that

4p

p− 1

ϕ′2(vε)

ϕ(vε)
=

4p

p− 1
h2(δ0 − vε)−h−2 ≤ 1

3
ϕ′′(vε),

p(p− 1)S2
0(δ0)ϕ(vε) = p(p− 1)S2

0(δ0)(δ0 − vε)−h ≤
1

3
ϕ′′(vε)

and pS0(δ0)ϕ′(vε) = hpS0(δ0)(δ0 − vε)−h−1 ≤ 1

3
ϕ′′(vε) in Ω× (0, Tmax,ε).

As thus the term

∫
Ω

upε |∇vε|2
(
ϕ′′(vε)− 16

ϕ′2(vε)

ϕ(vε)
− p(p− 1)S2

0(δ0)ϕ(vε)− pS0(δ0)ϕ′(vε)

)
on

the right hand side of (7.29) is nonnegative, we immediately deduce that for all ε ∈ (0, 1),

d

dt

∫
Ω

upεϕ(vε) +
p(p− 1)

2

∫
Ω

up−2
ε ϕ(vε)|∇uε|2 ≤ 0, for all t ∈ (0, Tmax). (7.30)

Since
δ−h0 ≤ ϕ(vε) ≤

(
δ0 − ‖v0‖L∞(Ω)

)−h
in Ω× (0, Tmax,ε)

for all ε ∈ (0, 1), hence (7.19) and (7.20) result from the above inequality upon integrating on
(0, Tmax,ε).

7.4. Boundedness in the two-dimensional case (N = 2, κ = 1)

We expect that the Lp(Ω) estimate obtained in the last section guarantees boundedness of uε in
L∞(Ω) as in the fluid-free system. However, this iteration procedure is much more delicate due to
the appearance of the transport terms in the current case. Since the regularity of ∇vε is crucial,
which is also associated to the regularity of Uε, we will first derive some suitable regularity
information on Uε. More precisely, bounds for the L2(Ω) norm of ∇Uε imply boundedness of
‖Uε(·, t)‖Lp(Ω) for any p > 1. This is sufficient to prove boundedness of ‖∇vε(·, t)‖Lq0 (Ω).

7.4.1. Boundedness of ‖∇Uε(·, t)‖L2(Ω)

Lemma 7.4.1. Let N ∈ {2, 3}. Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖L2(Ω) <∞. (7.31)

Then there exists C > 0 such that for any ε ∈ (0, 1),

‖Uε(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax,ε) (7.32)

and∫ min{k+1,Tmax,ε}

k

∫
Ω

|∇Uε|2 ≤ C for all k ∈ Ñ := {s ∈ N, s ≤ [Tmax,ε]}. (7.33)
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Proof. Testing the third equation with Uε, integrating by parts and Young’s inequality yield that

1

2

d

dt

∫
Ω

|Uε|2 +

∫
Ω

|∇Uε|2 =

∫
Ω

uε∇Φ · Uε

≤ λ′1
2

∫
Ω

|Uε|2 +
1

2λ′1
‖∇Φ‖2L∞(Ω)

∫
Ω

u2
ε (7.34)

for all t ∈ (0, Tmax,ε). The Poincaré inequality combined with (7.31) implies the existence of
c1 > 0 such that

d

dt

∫
Ω

|Uε|2 + λ′1

∫
Ω

|Uε|2 ≤ c1 (7.35)

for all t ∈ (0, Tmax,ε). Thus, (7.32) is obtained by an ODE comparison theorem. Now we integrate

(7.34) on (k, k + 1) (k ∈ Ñ) to find that (7.33) holds due to (7.32).

Based on (4.17) in [108], with the aid of (7.33) we can prove that ‖∇Uε(·, t)‖L2(Ω) is bounded.
The assumption N = 2 is crucial here.

Lemma 7.4.2. Let N = 2. Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax)

‖uε(·, t)‖L2(Ω) <∞. (7.36)

Then there exists C > 0 such that for any ε ∈ (0, 1),

‖∇Uε(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax,ε). (7.37)

Proof. First we apply Lemma 7.4.1 to obtain c1 > 0 and c2 > 0 such that

‖Uε(·, t)‖L2(Ω) ≤ c1 for all t ∈ (0, Tmax,ε) (7.38)

and

∫ min{k+1,Tmax,ε}

k

∫
Ω

|∇Uε|2 ≤ c2 for all k ∈ Ñ := {s ∈ N, s ≤ [Tmax,ε]}. (7.39)

By the definition of A, we know that ‖A 1
2Uε‖L2(Ω) = ‖∇Uε‖L2(Ω). Testing the third equation by

AUε implies

1

2

d

dt

∫
Ω

|A 1
2Uε|2 +

∫
Ω

|AUε|2 =

∫
Ω

AUε(Uε · ∇)Uε −
∫

Ω

uε∇Φ ·AUε

≤ 1

4

∫
Ω

|AUε|2 +

∫
Ω

|Uε|2|∇Uε|2 +
1

4

∫
Ω

|AUε|2 + ‖∇Φ‖2L∞(Ω)

∫
Ω

u2
ε

≤
∫

Ω

|Uε|2|∇Uε|2 +
1

2

∫
Ω

|AUε|2 + ‖∇Φ‖2L∞(Ω)

∫
Ω

u2
ε (7.40)

for all t ∈ (0, Tmax,ε). By Young’s inequality, an interpolation inequality for ‖Uε‖L4(Ω) and
‖∇Uε‖L4(Ω) (see also in [108, proof of Theorem 1.1]), and the equivalence between the norms
‖A(·)‖L2(Ω) and ‖ · ‖W 2,2(Ω), we can find c3 > 0 and c4 > 0 such that∫

Ω

|Uε|2|∇Uε|2 ≤ (

∫
Ω

|Uε|4)
1
2 (

∫
Ω

|∇Uε|4)
1
2

≤ c3(

∫
Ω

|∇Uε|2)
1
2 (

∫
Ω

|Uε|2)
1
2 (

∫
Ω

|AUε|2)
1
2 (

∫
Ω

|∇Uε|2)
1
2
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≤ 1

2

∫
Ω

|AUε|2 + c4(

∫
Ω

|Uε|2)(

∫
Ω

|∇Uε|2)2 for all t ∈ (0, Tmax,ε). (7.41)

We see that (7.40) and (7.41) in conjunction with our assumption and (7.38) imply that there is
c5 > 0 fulfilling

d

dt

∫
Ω

|∇Uε|2 +

∫
Ω

|AUε|2 ≤ c5
(∫

Ω

|∇Uε|2 + 1

)2

(7.42)

for all t ∈ (0, Tmax,ε). Letting y(t) :=
∫

Ω
|∇Uε(·, t)|2 + 1, we thus see that y(t) satisfies

y′(t) ≤ c5y2(t) (7.43)

for all t ∈ [k,min{k + 1, Tmax,ε}).
If Tmax,ε > 1, for all k ∈ Ñ, Lemma 7.4.1 warrants the existence of c6 > 0 and sk ∈ [k, k + 1]
such that

y(sk) ≤ c6 and

∫ k+1

k

y(s)ds ≤ c6. (7.44)

We deduce from (7.43-7.44) that

y(t) ≤ ec5
∫ t
sk
y(s)ds

y(sk) ≤ ec5
∫min{k+2,Tmax,ε}
k y(s)dsy(sk) ≤ e2c5c6c6 (7.45)

for all t ∈ [k + 1,min{k + 2, Tmax,ε}] ⊂ [sk,min{k + 2, Tmax,ε}) (k ∈ Ñ). Thus, (7.45) holds for
all t ∈ [1, Tmax,ε). A similar reasoning gives

y(t) ≤ ec5
∫ 1
0
y(s)dsy(0) ≤ ec5c6y(0) for all t ∈ [0, 1]. (7.46)

If Tmax,ε < 1, it is easy to see that the above estimate still holds for t ∈ [0, Tmax,ε). Thus, the
proof is complete by letting C := max{e2c5c6c6, e

c5c6‖∇U0‖L2(Ω)}.

The following lemma is an immediate consequence of Lemma 7.4.2 and the Sobolev embedding
theorem for dimension 2.

Lemma 7.4.3. Let N = 2 and p ∈ [1,∞). Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖L2(Ω) <∞. (7.47)

Then there exists C > 0 such that for any ε ∈ (0, 1),

‖Uε(·, t)‖Lp(Ω) ≤ C for all t ∈ (0, Tmax,ε). (7.48)

7.4.2. Boundedness of ‖∇vε(·, t)‖Lq0 (Ω)

Now we are in a position to achieve higher regularity of ∇vε. The approach is carried out by
a fixed-point type argument involving Lp-Lq estimates for semigroups combined with a typical
integral estimate, which is again Lemma 6.2.4.

Lemma 7.4.4. Let N = 2. Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖L2(Ω) <∞. (7.49)

Then there exists C > 0 such that for any ε ∈ (0, 1),

‖∇vε(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax,ε).
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Proof. Let θ ∈ (1, 2) and θ′ ∈ (2,∞) satisfy 1
θ+ 1

θ′ = 1. Testing the second equation in (7.11) with
−∆vε, integrating by part and applying the Cauchy-Schwarz inequality and Hölder’s inequality,
we obtain that

1

2

d

dt

∫
Ω

|∇vε|2 +

∫
Ω

|∆vε|2

= −
∫

Ω

uεvε∆vε −
∫

Ω

∆vε(Uε · ∇vε)

≤ 1

4

∫
Ω

|∆vε|2 +

∫
Ω

u2
εv

2
ε +

1

4

∫
Ω

|∆vε|2 +

∫
Ω

|Uε|2|∇vε|2

≤ 1

2

∫
Ω

|∆vε|2 +

∫
Ω

u2
εv

2
ε +

∫
Ω

|Uε|2|∇vε|2

≤ 1

2

∫
Ω

|∆vε|2 + ‖uε‖2L2(Ω)‖vε‖
2
L∞(Ω) + ‖Uε‖2L2θ(Ω)‖∇vε‖

2
L2θ′ (Ω)

(7.50)

for all t ∈ (0, Tmax,ε). Let a = 1
θ ∈ ( 1

2 , 1). By applying Hölder’s inequality, the Gagliardo-
Nirenberg inequality and Young’s inequality we can find c1 > 0 and c2 > 0 such that

‖∇vε‖2L2(Ω) ≤ c1‖∇vε‖
2
L2θ′ (Ω)

≤ c2‖∆vε‖2aL2(Ω)‖vε‖
2(1−a)
L∞(Ω) + c2‖vε‖2L∞(Ω). (7.51)

Lemma 7.4.3 guarantees a constant c3 > 0 such that for all ε ∈ (0, 1), ‖Uε‖2L2θ(Ω) ≤ c3 for all

t ∈ (0, Tmax,ε). Therefore, we can fix c4 > 0 such that

‖Uε‖2L2θ(Ω)‖∇vε‖
2
L2θ′ (Ω)

≤ c3‖∇vε‖2L2θ′ (Ω)
≤ c2c3‖∆vε‖2aL2(Ω)‖vε‖

2(1−a)
L∞(Ω) + c2c3‖vε‖L∞(Ω)

≤ 1

4

∫
Ω

|∆vε|2 + c4 (7.52)

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Similarly, according to (7.51), there exists c5 > 0 fullfilling∫
Ω

|∇vε|2 ≤
1

4

∫
Ω

|∆vε|2 + c5. (7.53)

Collecting (7.50) (7.52) and (7.53), we obtain c6 > 0 satisfying

d

dt

∫
Ω

|∇vε|2 +

∫
Ω

|∇vε|2 ≤ c6

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1) due to (7.15) and (7.49). An application of ODE
comparison implies the assertion.

Lemma 7.4.5. Let N = 2. Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖L2(Ω) <∞.

Then there is C > 0 such that for any ε ∈ (0, 1),

‖∇vε(·, t)‖Lq0 (Ω) ≤ C for all t ∈ (0, Tmax,ε). (7.54)

Proof. The variation-of-constants representation of vε implies that

‖∇vε(·, t)‖Lq0 (Ω) ≤ ‖∇et∆v0‖Lq0 (Ω) +

∫ t

0

‖∇e(t−s)∆uε(·, s)vε(·, s)‖Lq0 (Ω)ds
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+

∫ t

0

‖∇e(t−s)∆(Uε(·, s) · ∇vε(·, s))‖Lq0 (Ω)ds (7.55)

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Recall that by the classical Lp-Lq estimates for the
Neumann heat semigroup, there is c1 > 0 such that

‖∇et∆v0‖Lq0 (Ω) ≤ c1‖∇v0‖Lq0 (Ω) (7.56)

for all t ∈ (0, Tmax,ε). Again an Lp-Lq estimate for the Neumann heat semigroup from Lemma
6.2.1, Lemma 6.2.4 and (7.15) imply constants c2 > 0 and c3 > 0 such that∫ t

0

‖∇e(t−s)∆uε(·, s)vε(·, s)‖Lq0 (Ω)ds

≤
∫ t

0

c1(1 + (t− s)−
1
2−( 1

2−
1
q0

))e−λ1(t−s)‖uε(·, s)vε(·, s)‖L2(Ω)ds

≤
∫ t

0

c1(1 + (t− s)−1+ 1
q0 )e−λ1(t−s)‖uε(·, s)‖L2(Ω)‖vε(·, s)‖L∞(Ω)ds

≤ c2
∫ t

0

(1 + (t− s)−1+ 1
q0 )e−λ1(t−s)ds ≤ c2c3 (7.57)

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Next we fix p1 ∈ (2,∞) satisfying 1
p1
∈ ( 1

q0
, 1

2 ). Let

p2 ∈ (2,∞) be such that 1
2 = 1

p1
+ 1

p2
and θ =

1
2−

1
p1

1
2−

1
q0

∈ (0, 1). From Lemmata 7.4.4, 7.4.3 and

6.2.4 we thereby obtain c3 > 0, c4 > 0 and c5 > 0 such that∫ t

0

‖∇e(t−s)∆(Uε(·, t) · ∇vε(·, t))‖Lq0 (Ω)ds

≤
∫ t

0

c1(1 + (t− s)−
1
2−( 1

2−
1
q0

))e−λ1(t−s)‖Uε(·, t) · ∇vε(·, t)‖L2(Ω)ds

≤
∫ t

0

c1(1 + (t− s)−1+ 1
q0 )e−λ1(t−s)‖Uε(·, t)‖Lp2 (Ω)‖∇vε(·, t)‖Lp1 (Ω)ds

≤
∫ t

0

c1(1 + (t− s)−1+ 1
q0 )e−λ1(t−s)‖Uε(·, t)‖Lp2 (Ω)‖∇vε(·, t)‖θLq0 (Ω)‖∇vε(·, t)‖

1−θ
L2(Ω)

≤ sup
s∈(0,t)

‖∇vε(·, s)‖θLq0 (Ω)c1c3c4

∫ t

0

(1 + (t− s)−1+ 1
q0 )e−λ1(t−s)ds

≤ c5 sup
s∈(0,t)

‖∇vε(·, s)‖θLq0 (Ω) (7.58)

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Let T ∈ (0, Tmax,ε) and M(T ) := sup
t∈(0,T )

‖∇vε(·, t)‖Lq0 (Ω).

Collecting (7.55)-(7.58), we thus obtain the existence of c6 > 0 such that for all ε ∈ (0, 1),

M(T ) ≤ c6 + c6M
θ(T ) for all T ∈ (0, Tmax,ε).

Since θ < 1, (7.54) is obvious by Young’s inequality.

7.4.3. Boundedness of uε

Lemma 7.4.6. Let N = 2. Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖L2(Ω) <∞.
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7.4. Boundedness in the two-dimensional case (N = 2, κ = 1)

Then there exists C > 0 such that for any ε ∈ (0, 1),

‖uε(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax,ε). (7.59)

Proof. Following the variation-of-constants formula for uε, we see that

‖uε(·, t)‖L∞(Ω) ≤ ‖et∆u0‖L∞(Ω) +

∫ t

0

‖e(t−s)∆∇ · (uεSε(·, uε, vε) · ∇vε)(·, s)‖L∞(Ω)ds

+

∫ t

0

‖e(t−s)∆Uε(·, s) · ∇uε(·, s)‖L∞(Ω)ds (7.60)

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). According to the maximum principle, the first term can
be estimated as

‖et∆u0‖L∞(Ω) ≤ ‖u0‖L∞(Ω) for all t ∈ (0, Tmax,ε). (7.61)

Now we pick p0 ∈ (2, q0) and p1 ∈ (p0,∞) such that 1
p0

= 1
p1

+ 1
q0

. Let a = 1 − 1
p1
∈ (0, 1).

Applying the Lp-Lq esatimates for the Neumann heat semigroup, Hölder’s inequality and
Lemmata 7.2.2, 7.4.5, Lemma 6.2.4, we obtain c1 > 0, c2 > 0 and c3 > 0 such that∫ t

0

‖e(t−s)∆∇ · (uεSε(·, uε, vε) · ∇vε)(·, s)‖L∞(Ω)ds

≤ c1
∫ t

0

(1 + (t− s)−
1
2−

1
p0 )e−λ1(t−s)‖(uεSε(·, uε, vε) · ∇vε)(·, s)‖Lp0 (Ω)ds

≤ c1S0(‖v0‖L∞(Ω))

∫ t

0

(1 + (t− s)−
1
2−

1
p0 )e−λ1(t−s)‖uε(·, s)‖Lp1 (Ω)‖∇vε(·, s)‖Lq0 (Ω)ds

≤ c1S0(‖v0‖L∞(Ω))

∫ t

0

(1 + (t− s)−
1
2−

1
p0 )e−λ1(t−s)

× ‖uε(·, s)‖aL∞(Ω)‖uε(·, s)‖
1−a
L1(Ω)‖∇vε(·, s)‖Lq0 (Ω)ds

≤ c2S0(‖v0‖L∞(Ω)) sup
s∈(0,t)

‖uε(·, s)‖aL∞(Ω)

(∫ t

0

(1 + (t− s)−
1
2−

1
p0 )e−λ1(t−s)ds

)
≤ c3 sup

s∈(0,t)

‖uε(·, s)‖aL∞(Ω) (7.62)

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Noting that Uε · ∇uε = ∇ · (uεUε), we pick p ∈ (2,∞)
and p2, p

′ ∈ (p,∞) such that 1
p = 1

p2
+ 1

p′ . Let b = 1− 1
p2
∈ (0, 1). A similar reasoning as in the

above inequality shows that∫ t

0

‖e(t−s)∆Uε(·, s) · ∇uε(·, s)‖L∞(Ω)ds =

∫ t

0

‖e(t−s)∆∇ · (uε(·, s)Uε(·, s))‖L∞(Ω)ds

≤ c4
∫ t

0

(1 + (t− s)−
1
2−

1
p )e−λ1(t−s)‖uε(·, s)Uε(·, s)‖Lp(Ω)ds

≤ c4
∫ t

0

(1 + (t− s)−
1
2−

1
p )e−λ1(t−s)‖uε(·, s)‖Lp2 (Ω)‖Uε(·, s)‖Lp′ (Ω)ds

≤ c4
∫ t

0

(1 + (t− s)−
1
2−

1
p )e−λ1(t−s)‖uε(·, s)‖bL∞(Ω)‖uε(·, s)‖

1−b
L1(Ω)‖Uε(·, s)‖Lp′ (Ω)ds

≤ c5
(∫ t

0

(1 + (t− s)−
1
2−

1
p )e−λ1(t−s)ds

)
sup
s∈(0,t)

‖uε(·, s)‖bL∞(Ω)
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≤ c6 sup
s∈(0,t)

‖uε(·, s)‖bL∞(Ω) (7.63)

with some c4 > 0, c5 > 0 and c6 > 0 for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1) due to (7.31)
and (7.48). Letting T ∈ (0, Tmax,ε) and M(T ) = sup

t∈(0,T )

‖uε(·, t)‖L∞(Ω), we therefore obtain a

constant c7 > 0 such that

M(T ) ≤ c7Ma(T ) + c7M
b(T ) + c7 for all T ∈ (0, Tmax,ε).

Since a, b ∈ (0, 1), elementary argument implies a constant c8 > 0 such that M(T ) ≤ c8 for all
T ∈ (0, Tmax,ε) and all ε ∈ (0, 1), and thereby proves the assertion.

7.4.4. Proof of (i) in Proposition 7.2.3

In order to prove global existence of the solution, it is left to show boundedness of
‖AβUε(·, t)‖L2(Ω).

Lemma 7.4.7. Let N = 2. Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖L2(Ω) <∞, sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖Uε(·, t)‖L2(Ω) <∞

and sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖∇Uε(·, t)‖L2(Ω) <∞.

Then there exists C > 0 such that for any ε ∈ (0, 1),

‖AβUε(·, t)‖L2(Ω) ≤ C for all t ∈ (0, Tmax,ε), (7.64)

where β is as in (7.4).

Proof. Let a = N
4β . From the Gagliardo-Nirenberg inequality and Lemma 6.2.3 we know that

there is constant c1 > 0 such that for all ε ∈ (0, 1),

‖Uε(·, t)‖L∞(Ω) ≤ c1‖AβUε(·, t)‖aL2(Ω)‖Uε(·, t)‖
1−a
L2(Ω) for all t ∈ (0, Tmax,ε). (7.65)

Applying Aβ to both sides of the third equation in (7.11), for all ε ∈ (0, 1), we have

‖AβUε(·, t)‖L2(Ω) ≤ ‖Aβe−tAU0‖L2(Ω) +

∫ t

0

‖Aβe−(t−s)AP(Uε · ∇)Uε(·, s)‖L2(Ω)ds

+

∫ t

0

‖Aβe−(t−s)APuε(·, s)∇Φ‖L2(Ω)ds for all t ∈ (0, Tmax,ε). (7.66)

By an estimate from [76, (1.5.16)] and (6.15), we find c2 > 0 such that

‖Aβe−tAU0‖L2(Ω) = ‖e−tAAβU0‖L2(Ω) ≤ c2‖AβU0‖L2(Ω) for all t ∈ (0, Tmax,ε). (7.67)

In view of the assumption, we can fix c3 > 0 such that ‖Uε(·, t)‖L2(Ω) ≤ c3, ‖uε(·, t)‖L2(Ω) ≤ c3
and ‖∇Uε(·, t)‖L2(Ω) ≤ c3 hold for all ε ∈ (0, 1) and all t ∈ (0, Tmax,ε), which together with
(6.14), (7.65) and Lemma 6.2.4 yields the existence of c4 > 0, c5 > 0 and c6 > 0 such that∫ t

0

‖Aβe−(t−s)AP(Uε · ∇)Uε(·, s)‖L2(Ω)ds
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≤
∫ t

0

c4(t− s)−βe−λ
′
1(t−s)‖(Uε · ∇)Uε(·, s)‖L2(Ω)ds

≤
∫ t

0

c4(t− s)−βe−λ
′
1(t−s)‖Uε(·, s)‖L∞(Ω)‖∇Uε(·, s)‖L2(Ω)ds

≤
∫ t

0

c3c4(t− s)−βe−λ
′
1(t−s)‖AβUε(·, s)‖aL2(Ω)‖Uε(·, s)‖

1−a
L2(Ω)ds

≤ c5 sup
t∈(0,Tmax,ε)

‖AβUε(·, t)‖aL2(Ω)

∫ t

0

(t− s)−βe−λ
′
1(t−s)ds

≤ c6 sup
s∈(0,t)

‖AβUε(·, s)‖aL2(Ω) (7.68)

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Furthermore, by Lemma 6.2.4 we can find c7 > 0 such
that for all ε ∈ (0, 1) ∫ t

0

‖Aβe−(t−s)APuε(·, s)∇Φ‖L2(Ω)ds

≤
∫ t

0

c3‖∇Φ‖L∞(Ω)(t− s)−βe−λ
′
1(t−s)‖uε(·, s)‖L2(Ω)ds

≤ c3c4‖∇Φ‖L∞(Ω)

∫ t

0

(t− s)−βe−λ
′
1(t−s)ds

≤ c7‖∇Φ‖L∞(Ω) for all t ∈ (0, Tmax,ε). (7.69)

Given T ∈ (0, Tmax,ε), we define M(T ) := sup
t∈(0,T )

‖AβUε(·, t)‖L2(Ω). Taking supremum on both

sides of (7.66) over (0, T ), by (7.67), (7.68) and (7.69) we find c8 > 0 such that for all ε ∈ (0, 1),
M(T ) satisfies

M(T ) ≤ c8 + c6M
a(T ) for all T ∈ (0, Tmax,ε). (7.70)

An application of Young’s inequality to the above inequality leads to the assertion.

Proof of Proposition 7.2.3 (i). Let p0 > 2 and let δ0 := δ(p0) be as defined in Lemma 7.3.1.
We immediately see from Lemmata 7.4.1-7.4.6 that there is C1 > 0 such that for all ε ∈ (0, 1),
‖uε(·, t)‖L∞(Ω) ≤ C1 for all t ∈ (0, Tmax,ε). Lemma 7.2.2 and Lemma 7.4.5 imply C2 > 0 such that
‖vε(·, t)‖W 1,q0 (Ω) ≤ C2 for all ε ∈ (0, 1) for all t ∈ (0, Tmax,ε). Also, Lemma 7.4.7 implies C3 > 0

with the property that ‖AβUε(·, t)‖L2(Ω) ≤ C3 for all ε ∈ (0, 1) and all t ∈ (0, Tmax,ε). According
to Lemma 7.2.1, we deduce that Tmax,ε =∞, thus the solution is global and bounded.

7.5. Boundedness in the three-dimensional case (κ = 0)

In this section, we deal with the chemotaxis-Stokes system in the three-dimensional setting.
We first give a sufficient condition for boundedness which in conjunction with Lemma 7.2.1 proves
Theorem 7.1.1. In fact, since Lemma 7.3.1 provides an Lp estimate for uε for any p > 1, we can
choose p sufficiently large to prove boundedness of uε in L∞(Ω). However, here we would like to
give an optimal condition for this extension critearion.

Proposition 7.5.1. Let N = 3 and p > N
2 . Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖Lp(Ω) <∞. (7.71)
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Then there exists C > 0 such that for any ε ∈ (0, 1),

‖uε(·, t)‖L∞(Ω) < C for all t ∈ (0, Tmax,ε). (7.72)

We will prove the proposition by several lemmata, which improve regularity for Uε and ∇vε in
suitable ways.

Lemma 7.5.2. Let N ∈ {2, 3}. There exists C > 0 such that for all ε ∈ (0, 1),∫ t

0

∫
Ω

|∇vε(·, s)|2ds ≤ C for all t ∈ (0, Tmax,ε).

Proof. We test the second equation with vε to obtain that for all ε ∈ (0, 1)

1

2

d

dt

∫
Ω

v2
ε +

∫
Ω

|∇vε|2 ≤ 0 for all t ∈ (0, Tmax,ε). (7.73)

Integrating over (0, t) and using Lemma 7.2.2, we achieve our goal.

Lemma 7.5.3. Let N = 3, p > N
2 and β′ ∈ (N4 ,min{1− N

2p + N
4 , 1}) such that β′ ≤ β. Suppose

that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖Lp(Ω) <∞. (7.74)

Then there exists C > 0 such that for any ε ∈ (0, 1),

‖Aβ
′
Uε(·, t)‖L2(Ω) ≤ C and (7.75)

‖Uε(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax,ε). (7.76)

Proof. The proof is similar to that of Lemma 7.4.7. We start with observing th at

‖Aβ
′
Uε(·, t)‖L2(Ω) ≤ ‖Aβ

′
e−tAU0‖L2(Ω) +

∫ t

0

‖Aβ
′
e−(t−s)APuε(·, s)∇Φ‖L2(Ω)ds

and fixing c1, c2 > 0 such that

‖Aβ
′
e−tAU0‖L2(Ω) ≤ c1‖Aβ

′
U0‖L2(Ω) ≤ c2‖AβU0‖L2(Ω) (7.77)

for all t ∈ (0, Tmax,ε). Lemmata 6.2.4, 7.3.1 and (6.14) imply the existence of c3, c4, c5, c6 > 0
such that ∫ t

0

‖Aβ
′
e(t−s)APuε∇Φ‖L2(Ω)ds

≤
∫ t

0

‖Aβ
′
e

(t−s)
2 A(e

(t−s)
2 APuε(·, s)∇Φ)‖L2(Ω)ds

≤
∫ t

0

c3

(
t− s

2

)−β′
e−

λ′1
2 (t−s)‖e

(t−s)
2 APuε(·, s)∇Φ‖L2(Ω)ds

≤
∫ t

0

c4

(
t− s

2

)−β′
e−

λ′1
2 (t−s)

(
t− s

2

)−N2 ( 1
p−

1
2 )

‖uε(·, s)‖Lp(Ω)‖∇Φ‖L∞(Ω)ds

≤ c5
∫ t

0

(t− s)−β
′− N

2p+N
4 e−

λ′1
2 (t−s)‖uε(·, s)‖Lp(Ω)‖∇Φ‖L∞(Ω)ds
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≤ c6‖∇Φ‖L∞(Ω)

∫ t

0

(t− s)−β
′− N

2p+N
4 e−

λ′1
2 (t−s)ds

≤ c7‖∇Φ‖L∞(Ω)

for all t ∈ (0, Tmax,ε). Therefore, we can find c8 > 0 with the property that ‖Aβ′Uε(·, t)‖L2(Ω) < c8
for all t ∈ (0, Tmax,ε) and for all ε ∈ (0, 1). Since β′ > N

4 , the embedding: D(Aβ
′
) ↪→ L∞(Ω)

implies (7.76). Thus the proof is complete.

Lemma 7.5.4. Let N = 3, p > N
2 and q ∈ (N, q0] such that q < Np

(N−p)+
. Suppose that

sup
ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖Lp(Ω) <∞. (7.78)

Then there exists C > 0 such that ε ∈ (0, 1),

‖∇vε(·, t)‖Lq(Ω) ≤ C for all t ∈ (0, Tmax,ε). (7.79)

Proof. The variation-of-constants of vε implies

‖∇vε(·, t)‖Lq(Ω) ≤ ‖∇et∆v0‖Lq(Ω) +

∫ t

0

‖∇e(t−s)∆(uεvε)(·, s)‖Lq(Ω)ds

+

∫ t

0

‖∇e(t−s)∆(Uε · ∇vε)(·, s)‖Lq(Ω)ds

for all t ∈ (0, Tmax,ε). From an Lp-Lq estimates for the Neumann heat semigroup and Hölder’s
inequality, we find some c1 > 0 such that such that

‖∇et∆v0‖Lq(Ω) ≤ c1e−λ1t‖∇v0‖Lq0 (Ω)

for all t ∈ (0, Tmax,ε). Since 1 < q < Np
(N−p)+

, we know that − 1
2 −

N
2 ( 1

p −
1
q ) > −1, thus by an Lp-

Lq estimate for the Neumann heat semigroup, our assumption on ‖uε(·, t)‖Lp(Ω), and Lemmata
6.2.4 and 7.2.2, we can fix c2 > 0 and c3 > 0 such that∫ t

0

‖∇e(t−s)∆uε(·, s)vε(·, s)‖Lq(Ω)ds

≤
∫ t

0

c2(1 + (t− s)−
1
2−

N
2 ( 1

p−
1
q ))e−λ1(t−s)‖uε(·, s)vε(·, s)‖Lp(Ω)ds

≤
∫ t

0

c2(1 + (t− s)−
1
2−

N
2 ( 1

p−
1
q ))e−λ1(t−s)‖uε(·, s)‖Lp(Ω)‖vε(·, s)‖L∞(Ω)ds ≤ c3

for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Now we fix q′ ∈ (2, q) satisfying q′ >
1+N

2 −
N
q

1
2 + N

2q−
N
q2

. Let

a =
1
q′−

1
q

1
2−

1
q

∈ (0, 1). It can be easily checked that
(
− 1

2 −
N
2 ( 1

q′ −
1
q )
)

2
2−a > −1. Moreover, the

Hölder inequality ‖∇vε(·, t)‖Lq′ (Ω) ≤ ‖∇vε(·, t)‖aL2(Ω)‖∇vε(·, t)‖
1−a
Lq(Ω) holds for all t ∈ (0, Tmax,ε)

and all ε ∈ (0, 1). Lemmata 6.2.1, 7.5.3, 6.2.4 and 7.5.2, Hölder’s inequality yield the existence
of c4 > 0, c5 > 0 and c6 > 0 such that for all ε ∈ (0, 1)∫ t

0

‖∇e(t−s)∆Uε(·, s) · ∇vε(·, s)‖Lq(Ω)ds
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≤
∫ t

0

c2(1 + (t− s)−
1
2−

N
2 ( 1

q′−
1
q )

)e−λ1(t−s)‖Uε(·, s)∇vε(·, s)‖Lq′ (Ω)ds

≤
∫ t

0

c2(1 + (t− s)−
1
2−

N
2 ( 1

q′−
1
q )

)e−λ1(t−s)‖∇vε(·, s)‖Lq′ (Ω)‖Uε(·, s)‖L∞(Ω)ds

≤
∫ t

0

c2(1 + (t− s)−
1
2−

N
2 ( 1

q′−
1
q )

)e−λ1(t−s)‖Uε(·, s)‖L∞(Ω)‖∇vε(·, t)‖aL2(Ω)‖∇vε(·, t)‖
1−a
Lq(Ω)ds

≤ c4 sup
s∈(0,t)

‖∇vε(·, s)‖1−aLq(Ω)

∫ t

0

(
1 + (t− s)−

1
2−

N
2 ( 1

q′−
1
q )
)
e−λ1(t−s)‖∇vε(·, s)‖aL2(Ω)ds

≤ c4 sup
s∈(0,t)

‖∇vε(·, s)‖1−aLq(Ω)

(∫ t

0

‖∇vε(·, s)‖2L2(Ω)ds

) a
2

×
(∫ t

0

(
1 + (t− s)−

1
2−

N
2 ( 1

q′−
1
q )
) 2

2−a
e−

2
2−aλ1(t−s)ds

) 2−a
2

≤ c5 sup
s∈(0,t)

‖∇vε(·, s)‖1−aLq(Ω)

(∫ t

0

(
1 + (t− s)

(
− 1

2−
N
2 ( 1

q′−
1
q )
)

2
2−a

)
e−

2
2−aλ1(t−s)ds

) 2−a
2

≤ c6 sup
s∈(0,t)

‖∇vε(·, s)‖1−aLq(Ω)

for all t ∈ (0, Tmax,ε). Let T ∈ (0, Tmax,ε) and M(T ) := sup
t∈(0,T )

‖∇vε(·, t)‖Lq(Ω). Combining the

above estimates, we find c7 > 0 such that M(T ) satisfies

M(T ) ≤ c7Ma(T ) + c7

for all T ∈ (0, Tmax,ε) and all ε ∈ (0, 1), which together with the fact that a < 1 implies the
assertion.

Now we are ready to prove boundedness for uε.

Proof of Proposition 7.5.1. The representation formula for uε yields that

‖uε(·, t)‖L∞(Ω) ≤ ‖et∆u0‖L∞(Ω) +

∫ t

0

‖e(t−s)∆∇ · (uεSε(·, uε, vε)∇vε)(·, s)‖L∞(Ω)ds

+

∫ t

0

‖e(t−s)∆∇ · (uε(·, s)Uε(·, s))‖L∞(Ω)ds (7.80)

for all t ∈ (0, Tmax,ε). First, using the maximum principle, we have

‖et∆u0‖L∞(Ω) ≤ ‖u0‖L∞(Ω) for all t ∈ (0, Tmax,ε). (7.81)

Let N < q < min{q0,
NP

(N−p)+
}, we can find p0 ∈ (N, q) and q1 ∈ (1,∞) such that 1

p0
= 1

q + 1
q1

.

Let a = 1− 1
q1
∈ (0, 1). By an Lp-Lq estimates for the Neumann heat semigroup and the Hölder

inequality, we obtain the existence of c1 > 0 and c2 > 0 such that for all ε ∈ (0, 1),∫ t

0

‖e(t−s)∆∇ · (uεSε(·, uε, vε) · ∇vε)(·, s)‖L∞(Ω)ds

≤
∫ t

0

c1(1 + (t− s)−
1
2−

N
2p0 )e−λ1(t−s)‖(uεSε(·, uε, vε) · ∇vε)(·, s)‖Lp0 (Ω)ds
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≤
∫ t

0

c1S0(‖v0‖L∞(Ω))(1 + (t− s)−
1
2−

N
2p0 )e−λ1(t−s)‖∇vε(·, s)‖Lq(Ω)‖uε(·, s)‖Lq1 (Ω)ds

≤
∫ t

0

c1S0(‖v0‖L∞(Ω))(1 + (t− s)−
1
2−

N
2p0 )e−λ1(t−s)‖∇vε(·, s)‖Lq(Ω)‖uε(·, s)‖aL∞(Ω)‖uε(·, s)‖

1−a
L1(Ω)ds

≤ c2 sup
s∈(0,t)

‖uε(·, s)‖aL∞(Ω) for all t ∈ (0, Tmax,ε). (7.82)

Now we pick p1 > N , and let b = 1 − 1
p1
∈ (0, 1). An Lp-Lq estimate for the Neumann heat

semigroup together with Lemma 6.2.4, 7.5.3 and 7.2.2 implies the existence of c3 > 0 and c4 > 0
such that for all ε ∈ (0, 1),∫ t

0

‖e(t−s)∆∇ · (uε(·, s)Uε(·, s))‖L∞(Ω)ds

≤
∫ t

0

c3(1 + (t− s)−
1
2−

N
2p1 )e−λ1(t−s)‖uε(·, s)Uε(·, s)‖Lp1 (Ω)ds

≤
∫ t

0

c3(1 + (t− s)−
1
2−

N
2p1 )e−λ1(t−s)‖uε(·, s)‖Lp1 (Ω)‖Uε(·, s)‖L∞(Ω)ds

≤
∫ t

0

c3(1 + (t− s)−
1
2−

N
2p1 )e−λ1(t−s)‖Uε(·, s)‖L∞(Ω)‖uε(·, s)‖bL∞(Ω)‖uε(·, s)‖

1−b
L1(Ω)ds

≤ c4 sup
s∈(0,t)

‖uε(·, s)‖bL∞(Ω) for all t ∈ (0, Tmax,ε). (7.83)

Let T ∈ (0, Tmax,ε) and M(T ) := sup
t∈(0,T )

‖uε(·, t)‖L∞(Ω). Finally, collecting (7.80)-(7.83), we

conclude a constant c5 > 0 such that for all ε ∈ (0, 1), M(T ) satisfies

M(T ) ≤ c5 + c5M
a(T ) + c5M

b(T )

for all T ∈ (0, Tmax,ε), which proves the assertion.

7.5.1. Proof of Proposition 7.2.3 (ii)

Combining Proposition 7.5.1 and Lemma 7.3.1 proves Proposition 7.2.3.

Proof of Proposition 7.2.3 (ii). Let p > 3
2 and let δ0 := δ0(p) as defined in Lemma 7.3.1. We see

that (7.16) implies a constant C1 > 0 such that for all ε ∈ (0, 1), we have ‖uε(·, t)‖Lp(Ω) ≤ C1

for all t ∈ (0, Tmax,ε), which combined with Proposition 7.5.1 yields a constant C2 > 0 such
that ‖uε(·, t)‖L∞(Ω) ≤ C2 for all t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Lemma 7.5.4 implies C3 > 0
fulfills that ‖∇vε(·, t)‖Lq0 (Ω) ≤ C3 for all ε ∈ (0, 1) and all t ∈ (0, Tmax,ε). Moreover, since
now sup

ε∈(0,1)

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖L2(Ω) < ∞, we apply Lemma 7.5.3 to find C4 > 0 such that

‖Aβu(·, t)‖L2(Ω) ≤ C4 for t ∈ (0, Tmax,ε) and all ε ∈ (0, 1). Therefore Lemma 7.2.1 implies that
Tmax,ε =∞ for all ε ∈ (0, 1), thus the solution is global.

7.6. Passing to the limit

We now wish to obtain a solution of (7.1) by taking ε → 0 in (uε, vε, Uε). In order to achieve
this, we shall first prepare some estimates for (uε, vε, Uε) which are independent of ε. Since we
cannot expect the regularity in C2+α,1+α

2 (Ω× (0,∞)) to be uniform in ε due to the construction
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of Sε, we will first show that the triple of limit functions solves (7.1) in the sense of distributions,
and then apply standard parabolic regularity result to conclude that it is actually a classical
solution. This procedure is similar to that in Chapter 6.

Let us first recall the definition of a weak solution, which is in the spirit of Definition 6.5.2.

Definition 7.6.1. We say that (u, v, U) is a global weak solution of (7.1) associated to initial
data (u0, v0, U0) if 

u ∈ L∞((0,∞)× Ω) ∩ L2
loc((0,∞);W 1,2(Ω)),

v ∈ L∞((0,∞)× Ω) ∩ L2
loc((0,∞);W 1,2(Ω)),

U ∈ L∞((0,∞)× Ω) ∩ L2
loc((0,∞);W 1,2

0,σ (Ω))

(7.84)

and for all ψ ∈ C∞0 (Ω× [0,∞);R) and all ζ ∈ C∞0,σ(Ω× [0,∞);RN ) the following identities hold:

−
∫ ∞

0

∫
Ω

uψt −
∫

Ω

u0ψ(·, 0) = −
∫ ∞

0

∫
Ω

∇u · ∇ψ +

∫ ∞
0

∫
Ω

uS(x, u, v) · ∇v · ∇ψ

+

∫ ∞
0

∫
Ω

uU · ∇ψ,

−
∫ ∞

0

∫
Ω

vψt −
∫

Ω

v0ψ(·, 0) = −
∫ ∞

0

∫
Ω

∇v · ∇ψ −
∫ ∞

0

∫
Ω

uvψ

+

∫ ∞
0

∫
Ω

vU · ∇ψ, (7.85)

and −
∫ ∞

0

∫
Ω

U · ζt −
∫

Ω

U0 · ζ(·, 0) = −
∫ ∞

0

∫
Ω

∇U · ∇ζ − κ
∫ ∞

0

∫
Ω

(U · ∇)U · ζ

+

∫ ∞
0

∫
Ω

u∇Φ · ζ.

Next we prepare some estimates required to obtain the above identities. The idea is based on
Section 6.5, but here we are going beyond to obtain some uniform Hölder estimates.

Lemma 7.6.2. There exists C > 0 such that for all ε ∈ (0, 1),∫ ∞
0

∫
Ω

|∇vε|2 ≤ C and (7.86)∫ ∞
0

∫
Ω

|∇uε|2 ≤ C. (7.87)

Proof. Since Tmax,ε = ∞, Lemma 7.5.2 implies (7.86). Testing the first equation in (7.11) with
uε and using Young’s inequality implies that

1

2

d

dt

∫
Ω

u2
ε +

∫
Ω

|∇uε|2 =

∫
Ω

uεSε∇uε · ∇vε

≤ 1

2

∫
Ω

|∇uε|2 +
1

2
‖uε‖2L∞(Ω)(S0(‖v0‖L∞(Ω)))

2

∫
Ω

|∇vε|2,

for all t > 0. Therefore, we establish (7.87) by (7.86) and Proposition 7.2.3.
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Lemma 7.6.3. There are γ ∈ (0, 1) and a sequence {εj}j∈N such that εj ↘ 0 as j → ∞, and
that as ε = εj ↘ 0, it holds that

uε → u in C
γ, γ2
loc (Ω× (0,∞)), (7.88)

vε → v in C
γ, γ2
loc (Ω× (0,∞)), (7.89)

Uε → U in Cγloc(Ω× (0,∞)), (7.90)

∇Uε → ∇U in Cγloc(Ω× (0,∞)). (7.91)

Moreover, there is C > 0 such that for all s ∈ [1,∞), we have

‖u‖
Cγ,

γ
2 (Ω×[s,s+1])

≤ C, (7.92)

‖v‖
Cγ,

γ
2 (Ω×[s,s+1])

≤ C and (7.93)

‖U‖C1+γ,γ(Ω×[s,s+1]) ≤ C. (7.94)

Proof. The first part (7.88)-(7.91) is precisely written in Lemma 6.5.3 and 6.5.4. In order to
prove the remaining part, it is sufficient to show that there is C > 0 such that for all ε ∈ (0, 1)
and s ≥ 1,

‖uε‖Cγ, γ2 (Ω×[s,s+1])
≤ C, (7.95)

‖vε‖Cγ, γ2 (Ω×[s,s+1])
≤ C and (7.96)

‖Uε‖C1+γ,γ(Ω×[s,s+1]) ≤ C. (7.97)

Let s ≥ 1. Let ξs ∈ C∞0 ((0,∞)) satisfy ξ = 0 on (0, s− 1
2 ) ∪ (s + 3

2 ,∞) and ξ = 1 on [s, s + 1],
and ξ′s ≤ 4 for all s ≥ 1. We see that ξuε is a weak solution of

(ξuε)t −∇ · (∇(ξuε)− ξuεSε(x, uε, vε)∇vε − uεUε) = ξ′uε, t ∈ [0,∞),

associated with Neumann boundary condition and ξuε(·, 0) = 0. Since (∇(ξuε) −
ξuεSε(x, uε, vε)∇vε−uεUε) ·∇(ξuε) >

1
2 |∇(ξuε)|2−u2

ε|Sε|2|∇vε|2−u2
ε|Uε|2, we see together with

the fact guaranteed in Lemma 7.4.5 and Lemma 7.5.4 that the norms of u2
ε|Sε|2|∇vε|2 + u2

ε|Uε|2
and ξ′uε are bounded in Lp((s − 1

2 , s + 3
2 );Lq(Ω)) for suitably large p or q and independent of

s and ε, thus Theorem 1.3 in [73] implies there are γ1 ∈ (0, 1) and c1 > 0 such that for every
ε ∈ (0, 1)

‖uε‖
Cγ1,

γ1
2 (Ω×[s,s+1])

≤ ‖ξuε‖
Cγ1,

γ1
2 (Ω×[s− 1

2 ,s+
3
2 ])
≤ c1 for all s ≥ 1,

where c1 depends on ‖ξuε‖L∞(Ω×(s− 1
2 ,s+

3
2 )) and the norms of u2

ε|Sε|2|∇vε|2 + u2
ε|Uε|2 in Lp((s−

1
2 , s + 3

2 );Lq(Ω)). A similar reasoning yields some γ2 ∈ (0, 1) and c2 > 0 such that for each
ε ∈ (0, 1)

‖vε‖
Cγ2,

γ2
2 (Ω×[s,s+1])

≤ c2 for all s ≥ 1.

The derivation of the regularity of Uε is similar to Lemma 6.5.4. We consider ξUε, which satisfies

(ξUε)t = ξtUε + ξUεt = ∆(ξUε)− κξ(Uε · ∇)Uε + ξuε∇Φ + ξ′Uε + ξ∇P, on (s− 1

2
, s+

3

2
),

with ξUε(·, 0) = 0 and ξUε = 0 on ∂Ω. Thus by an application of [34, Theorem 2.8], for any
r ∈ (1,∞), we deduce the existence of a constant c3 > 0 fulfilling∫ ∞

0

‖(ξUε)t‖rLr(Ω) +

∫ ∞
0

‖D2(ξUε)‖rLr(Ω)
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≤ c3κ
∫ ∞

0

‖P ((ξUε · ∇)Uε) + P (ξuε∇Φ) + P (ξ′Uε) ‖rLr(Ω)ds,

which, due to the definition of ξ and boundedness of Uε, uε, ξ
′, for all ε ∈ (0, 1)∫ s+ 3

2

s− 1
2

‖(ξUε)t‖rLr(Ω) +

∫ s+ 3
2

s− 1
2

‖D2(ξUε)‖rLr(Ω) ≤ c4κ
∫ s+ 3

2

s− 1
2

‖∇(ξUε)‖rLr(Ω) + c5

for all s ≥ 1 and for some c4 > 0, c5 > 0. Let q ∈ (0, r) and a =
1−Nr +N

q

2−Nr +N
q

∈ ( 1
2 , 1). Then the

Gagliardo-Nirenberg inequality yields c6 > 0 such that

‖∇(ξUε)(·, t)‖rLr(Ω) ≤ c6‖D
2(ξUε)(·, t)‖arLr(Ω)‖(ξUε)(·, t)‖

(1−a)r
Lq(Ω) for all t ≥ 0.

Integrating the above inequality on (s − 1
2 , s + 3

2 ) and using Young’s inequality guarantee the
existence of c7 > 0 and c8 > 0 fulfilling∫ s+ 3

2

s− 1
2

‖∇(ξUε)‖rLr(Ω) ≤ c7
∫ s+ 3

2

s− 1
2

‖D2(ξUε)‖arLr(Ω)

≤
∫ s+ 3

2

s− 1
2

(
1

2
‖D2(ξUε)‖rLr(Ω) + c8

)
. (7.98)

for all s ∈ [1,∞) and for every ε ∈ (0, 1). Combining the above estimates we see that there is
c9 > 0 such that for all s ≥ 1 and all ε ∈ (0, 1),∫ s+1

s

‖(Uε)t‖rLr(Ω) +

∫ s+1

s

‖D2Uε‖rLr(Ω) ≤ c9.

Let r ∈ (1,∞) be sufficiently large, the Sobolev embedding theorem implies the existence of
γ3 ∈ (0, 1), c10 > 0 such that

‖Uε‖C1+γ3,γ3 (Ω×[s,s+1]) ≤ c10

for all s ∈ [1,∞) and for every ε ∈ (0, 1). Choosing γ ∈ (0,min{γ1, γ2, γ3}) we have proved
(7.92)-(7.94).

Lemma 7.6.4. There is (εj)j∈N ⊂ (0, 1) such that εj ↘ 0 as j → ∞, and that as ε = εj ↘ 0,
it holds that

∇uε ⇀ ∇u in L2(Ω× (0,∞)), (7.99)

∇vε ⇀ ∇v in L2(Ω× (0,∞)), (7.100)

vε
?
⇀ v in L∞((0,∞);W 1,q0(Ω)), (7.101)

Uε
?
⇀ U in L∞((0,∞);D(Aβ)), (7.102)

Sε(x, uε(x, t), vε(x, t))→ S(x, u(x, t), v(x, t)) a.e. in Ω× (0,∞). (7.103)

Proof. First (7.99) and (7.100) follow from Lemma 7.6.2. Proposition 7.2.3 implies (7.102) and
(7.101). Due to the obtained convergence (7.88) and (7.89) and the continuity of S, we conclude
that (7.103) holds.
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7.6. Passing to the limit

Lemma 7.6.5. The functions u, v, U from Lemma 7.6.3 form a weak solution to (7.1) in the
sense of Definition 7.6.1.

Proof. We test (7.11) with ψ and ζ as specified in Definition 7.6.1. Lemma 7.6.4 allows us to
take the limit in each integral, thus we obtain the weak formulation.

Lemma 7.6.6. The functions u, v, U from Lemma 7.6.4 satisfy

u ∈ C2+γ,1+ γ
2

loc (Ω× (0,∞)), v ∈ C2+γ,1+ γ
2

loc (Ω× (0,∞)), U ∈ C2+γ,1+ γ
2

loc (Ω× (0,∞)) (7.104)

for some γ ∈ (0, 1). Moreover, there is a constant C > 0 such that for all s ≥ 2,

‖u‖
C2+γ,1+

γ
2 (Ω×[s,s+1])

≤ C, ‖v‖
C2+γ,1+

γ
2 (Ω×[s,s+1])

≤ C, ‖U‖
C2+γ,1+

γ
2 (Ω×[s,s+1])

≤ C. (7.105)

Proof. The property (7.104) is precisely proven in Lemma 6.5.8. It is left to show that (7.105)
holds. Taking ξs as in Lemma 7.6.3, we see that ξv is a weak solution of (ξv)t−∆(ξv) +u(ξv) +
U · ∇(ξv) − ξ′v = 0 on t ∈ (s − 1

2 , s + 3
2 ) associated with Neumann boundary condition and

ξv(·, s − 1
2 ) = 0. First [50, Thm IV.5.3] guarantees that ξv ∈ C2+γ,1+ γ

2 (Ω × [s − 1
2 , s + 3

2 ]).
Furthermore, [57, Thm 4.9] can be applied to show that the norm ‖ξv‖

C2+γ,1+
γ
2 (Ω×[s− 1

2 ,s+
3
2 ])

is

controlled by the corresponding Hölder norms of u and U , which are bounded due to Lemma
7.6.3.

For the regularity of u, we improve it similarly as v with slight changes since its boundary

condition also involves v. We first estimate the C1+γ, 1+γ
2 -norm of ξu, and its C2+γ,1+ γ

2 norm by
[57, Thm 4.8] and [57, Thm 4.9], respectively. Therefore, for all s ≥ 1, ‖u‖

C2+γ,1+
γ
2 (Ω×[s,s+1])

is

uniformly bounded.

Again, we consider ξU , which satisfies (ξU)t = ∆(ξU)− κξ(U · ∇)U + ξu∇Φ + ξ′U + ξ∇P with
Dirichlet boundary condition. Lemma 7.6.3 already ensures the Cγ,

γ
2 bound on the right hand

side. Thus [78, Thm 1.1] together with the uniqueness guaranteed in [76, Thm.V.1.5.1] implies
(7.105).

We have shown that the weak solution (u, v, U) of (7.1) also enjoys higher regularity as indicated
in Lemma 7.6.6. Therefore, it is actually a classical solution.

Proof of Theorem 7.1.1. Lemma 7.6.5 shows that the function (u, v, U) obtained as the limit of
(uε, vε, Uε) is a weak solution of (7.1) . Moreover, its smooth regularity is guaranteed by Lemma
7.6.6. Hence we know that it solves (7.1) classically. The boundedness of ‖u(·, t)‖L∞(Ω) can
be seen from Proposition 7.2.3 and (7.88). We see that (7.101) implies that ‖v(·, t)‖W 1,q0 (Ω) is
bounded for all t > 0. The associated component P is obtained by [76, Thm.V.1.8.1] and satisfies
∇P ∈ C0(Ω× (0,∞)) due to the smooth regularity of u, Φ. Moreover, U ∈ L∞((0, T );D(Aβ)) is
asserted by (7.102). The continuity up to the initial time can be proven similarly as [13, Lemma
5.8] (Lemma 6.5.9 in Chapter 6); first we prove that for T > 0, ut, vt ∈ L2((0, T ); (W 1,2(Ω))∗)
and Ut ∈ L2((0, T ); (W 1,2

0,σ (Ω))∗). In conjunction with (7.101) and (7.102), we can conclude the
assertions for v and U by the embedding [75, Cor. 8.4]. Using the continuity of uε and the
uniform convergence (7.88), the continuity of u at t = 0 can be done similarly as in [Lemma
6.5.9, Chapter 6]. Hence we have proved Theorem 7.1.1.
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7.7. Stabilization

In this section, we prove the large time behavior for each component of the solution (u, v, U)
obtained in the last section. Let us begin with the convergence of u, which will imply convergence
for v and U later.

Lemma 7.7.1. Let (u, v, U, P ) be a bounded classical solution of (7.1). We have∫ ∞
0

∫
Ω

|∇u|2 <∞.

Proof. The statement holds due to (7.87) and (7.99).

Lemma 7.7.2. Let (u, v, U, P ) be a bounded classical solution of (7.1). We have

‖u(·, t)− u0‖L∞(Ω) → 0, as t→∞. (7.106)

Proof. Suppose on contrary that there are c1 > 0 and a sequence tk →∞ such that

‖u(·, tk)− u0‖L∞(Ω) > c1 for k ∈ N. (7.107)

Now we define
gk(x, s) = u(x, s+ tk), (x, s) ∈ Ω× [0, 1].

By the regularity guaranteed in Lemma 7.6.6, we see that there are α ∈ (0, 1) and c2 > 0 such
that for all k ∈ N,

‖gk‖C2+α,1+α
2 (Ω×[0,1])

≤ c2.

The Arzelá-Ascoli theorem implies that {gk}k∈N is relatively compact in C1(Ω× [0, 1]). Thus we
can find a subsequence {gkj}j∈N and u∞ ∈ C1(Ω× [s, s+ 1]) such that

gkj → u∞ ∈ C1(Ω× [0, 1]), as j →∞. (7.108)

It is left to show u∞ = u0. From Lemma 7.7.1, we see that∫ 1

0

∫
Ω

|∇gkj |2 → 0 as j →∞,

which combined with (7.108) implies that∫ 1

0

∫
Ω

|∇u∞|2 = 0.

Since u∞ ∈ C1(Ω× [0, 1]), we deduce that u∞ ≡ L with some L ∈ R. Moreover, we have

|Ω| · L =

∫ 1

0

∫
Ω

u∞ = lim
j→∞

∫ 1

0

∫
Ω

gkj =

∫ 1

0

∫
Ω

u0.

Thus we conclude u∞ ≡ u0. This contradicts (7.107) by the definition of u∞.

Lemma 7.7.3. Let (u, v, U, P ) be a bounded classical solution of (7.1). For any 0 < η < u0,
there is C > 0 such that

‖v(·, t)‖L∞(Ω) ≤ Ce−ηt for all t ≥ 0. (7.109)
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Proof. For any 0 < η < u0, we can find T > 0 such that

u(x, t) ≥ η for all (x, t) ∈ Ω× (T,∞).

Thus the second equation of (7.1) can be written as

vt ≤ ∆v − ηv − U · ∇v for all t ≥ T.

The maximum principle yields that

‖v(·, t)‖L∞(Ω) ≤ ‖v(·, T )‖L∞(Ω)e
−ηt for all t ≥ T.

Since v is bounded in Ω×[0, T ) by Theorem 7.1.1, an obvious choice of C completes the proof.

Lemma 7.7.4. Let (u, v, U, P ) be a bounded classical solution of (7.1). Then we have

‖U(·, t)‖L2(Ω) → 0, as t→∞, (7.110)

‖U(·, t)‖L∞(Ω) → 0, as t→∞. (7.111)

Proof. First we know that there is C > 0 such that

‖U(·, t)‖L2(Ω) ≤ C, (7.112)

‖AβU(·, t)‖L2(Ω) ≤ C for all t > 0. (7.113)

Since (7.65) together with (7.113) and (7.110) implies (7.111), it is sufficient to prove (7.110).
Testing the third equation in (7.1) with U and integrating by part, we obtain

1

2

d

dt

∫
Ω

|U |2 +

∫
Ω

|∇U |2 =

∫
Ω

u∇Φ · U =

∫
Ω

(u− u0)∇Φ · U

≤ λ′1
2

∫
Ω

|U |2 +
1

2λ′1
‖∇Φ‖2L∞(Ω)

∫
Ω

|u− u0|2

for all t ∈ (0,∞). Using the Poincaré inequality, we obtain that

d

dt

∫
Ω

|U |2 + λ′1

∫
Ω

|U |2 ≤ 1

λ′1
‖∇Φ‖L∞(Ω)‖u− u0‖L2(Ω) for all t > 0. (7.114)

Since the right hand side is bounded, using an ODE comparison principle, we conclude that
‖U(·, t)‖L2(Ω) < c1 for some c1 > 0 and for all t > 0. Given ε > 0, we apply Lemma 7.7.2 to find
t0 > 0 large enough satisfying

‖u(·, t)− u0‖L∞(Ω) <
λ′1ε√

2‖∇Φ‖L∞(Ω)|Ω|
for all t > t0.

Again, (7.114) with Gronwall’s inequality implies that∫
Ω

|U(·, t)|2 ≤ e−λ
′
1(t−t0)

∫
Ω

|U(·, t0)|2 +

∫ t

t0

e−λ
′
1(t−s) 1

λ′1
‖∇Φ‖L∞(Ω)|Ω|‖u(·, t)− u0‖2L∞(Ω)ds

≤ e−λ
′
1(t−t0)c21 +

1

(λ′1)2
‖∇Φ‖L∞(Ω)|Ω| sup

t∈(t0,∞)

‖u(·, t)− u0‖2L∞(Ω)

≤ ε2

for all t > max{t0, 1
λ′1

ln eλ
′
1t0 2c21

ε2 }. Thus we have shown (7.110).
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Lemma 7.7.5. Let (u, v, U, P ) be a bounded classical solution of (7.1). Then we have

‖∇v(·, t)‖Lq0 (Ω) → 0 as t→∞. (7.115)

Proof. According to the Lp-Lq estimate for the Neumann semigroup, we can find c1 > 0 such
that

‖∇et∆ϕ‖Lq0 (Ω) ≤ c1(1 + t−
1
2 )e−λ1t‖ϕ‖Lq0 (Ω) (7.116)

for all t > 0 and ϕ ∈ Lq0(Ω). Theorem 7.1.1 guarantees a constant c2 > 0 such that

‖∇v(·, s)‖Lq0 (Ω) ≤ c2 for all s > 0. (7.117)

Let η′ ∈ {0,min{u0, λ1}}. Moreover, from Lemma 6.2.4 we obtain a constant c3 > 0 such that∫ t

0

(1 + (t− s)− 1
2 )e−ηse−λ1(t−s)ds ≤ c3e−ηt for all η ∈ [0, η′], t > 0. (7.118)

Given ε > 0, Lemma 7.7.4 implies the existence of t0 > 0 such that

‖U(·, s)‖L∞(Ω) ≤
ε

4c1c2c3
for all s > t0. (7.119)

Since v is a classical solution, we invoke the variation-of-constants formula of v to see that

‖∇v(·, t)‖Lq0 (Ω) ≤ ‖∇e(t−t0)∆v(·, t0)‖Lq0 (Ω) +

∫ t

t0

‖∇e(t−s)∆u(·, s)v(·, s)‖Lq0 (Ω)ds

+

∫ t

t0

‖∇e(t−s)∆(U(·, s) · ∇v(·, s)‖Lq0 (Ω)ds (7.120)

for all t > t0. Now (7.116) together with (7.117) implies c4 > 0 such that

‖∇et∆v(·, t0)‖Lq0 (Ω) ≤ c1(1 + t−
1
2 )e−λ1t‖∇v(·, t0)‖Lq0 (Ω) ≤ c4e−λ1t for all t > t0.

Thanks to Theorem 7.1.1 and Lemma 7.7.3, there is c5 > 0 such that ‖u(·, s)‖Lq0 (Ω) ≤ c5 and

‖v(·, s)‖L∞(Ω) ≤ c5e−η
′s for all s > 0. According to (7.116) and (7.118), we can find c6 > 0 such

that ∫ t

t0

‖∇e(t−s)∆u(·, s)v(·, s)‖Lq0 (Ω)ds

≤
∫ t

t0

c1(1 + (t− s)− 1
2 )e−λ1(t−s)‖u(·, s)‖Lq0 (Ω)‖v(·, s)‖L∞(Ω)ds

≤ c1c25
∫ t

t0

(1 + (t− s)− 1
2 )e−λ1(t−s)e−η

′sds

≤ c1c25c3e−η
′t for all t > t0.

Collecting (7.116)-(7.119), we can estimate that∫ t

t0

‖∇e(t−s)∆(U(·, s) · ∇v(·, s))‖Lq0 (Ω)ds
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≤
∫ t

t0

c1(1 + (t− s)− 1
2 )e−λ1(t−s)‖(U · ∇v)(·, s)‖Lq0 (Ω)ds

≤
∫ t

t0

c1(1 + (t− s)− 1
2 )e−λ1(t−s)‖U(·, s)‖L∞(Ω)‖∇v(·, t)‖Lq0 (Ω)ds

≤ ε

4c1c2c3
c1c2

∫ t

t0

(1 + (t− s)− 1
2 )e−λ1(t−s)ds

≤ ε

4
for all t > t0.

Therefore we conclude the existence of c6 > 0 fulfilling

‖∇v(·, t)‖Lq0 (Ω) ≤ c6e−η
′t +

ε

4

for all t > t0. Let T > max{t0,
ln( 4

ε c6)

η′ }. We see that ‖∇v(·, t)‖Lq0 (Ω) ≤ ε for all t > T , which

implies (7.115).

Proof of Corollary 7.1.3. According to Theorem 7.1.1, we know that (7.1) admits a classical
solution (u, v, U). Collecting Lemmata 7.7.2, 7.7.3, 7.7.4, and 7.7.5, we see that (u, v, U) enjoys
all the convergence properties indicated in Corollary 7.1.3. Thus the proof is complete.
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