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Zusammenfassung

EINE Dissertation beschéftigt sich mit dem Gathering Problem fiir
Schwérme von n punktférmigen Robotern auf einem Gitter, bei dem
sich alle Roboter des Schwarms auf einem zuvor nicht festgelegten

Punkt versammeln sollen. Besonderes Augenmerk liegt auf der starken Ein-
schrankung der Roboterfahigkeiten. Hierzu zdhlen insbesondere das Fehlen
einer globalen Steuerung, eines globalen Kompasses, einer globalen Sichtweite
und einer (globalen) Kommunikationsfdhigkeit. Dariiber hinaus sind alle
Roboter identisch. Den Robotern sind nur lokale Fahigkeiten gegeben. Hierzu
zdhlt etwa eine nur konstante Sichtweite. Die Roboter arbeiten alle vollstandig
synchron.

In der Arbeit prasentieren und analysieren wir drei unterschiedliche Gath-
eringstrategien unter verschiedenen Robotermodellen. Wir beweisen jeweils
formal Korrektheit und Gesamtlaufzeit: In Kapitel 4 liegt der Fokus auf der
Minimierung der zur Verfiigung stehenden Roboterfahigkeiten. Die zugrun-
deliegende Strategie schlieit das Gathering in Zeit O (n2) ab. In den darauffol-
genden Kapiteln 5 und 6 ist das Ziel die Optimierung der Gesamtlaufzeit unter
weiterhin ausschliefilich lokalen Roboterfahigkeiten: Wir erlauben zusatzlich
einen konstant grofsen Speicher und eine konstante Anzahl lokal sichtbarer
Status (Lichter, Flaggen). Fiir die Strategien beider Kapitel zeigen wir eine
asymptotisch optimale Laufzeit von O(n). Wahrend in Kapitel 4 und 5 Sicht
und Schwarmzusammenhang intuitiv tiber Nachbarschaften auf dem Gitter
definiert sind, unterscheidet sich dies in Kapitel 6: Hier sind die Roboter von

Beginn an zu einer Kette verbunden, bei der je zwei Kettennachbarn Abstand 1

Xi



Zusammenfassung

voneinander haben miissen. Ein Roboter kann dabei nur eine konstante Anzahl
seiner direkten Kettennachbarn sehen und auch nur mit diesen interagieren.
Aber auch unter diesem Modell ist Gathering in O(n) moglich.

Xii



Abstract

y dissertation deals with the Gathering problem for swarms of n
point-shaped robots on a grid, in which all robots of the swarm
are supposed to gather at a previously undefined point. Special

attention is paid to the strong limitation of robot capabilities. These include
in particular the lack of global control, a global compass, global visibility and
(global) communication skills. Furthermore, all robots are identical. The robots
are given only local abilities. This includes a constant range of vision. The
robots all work completely synchronously.

In this work we present and analyze three different Gathering strategies
in different robot models. We formally prove correctness and total running
time: Chapter 4 focuses on minimizing the available robot capabilities. The
underlying strategy completes the gathering in O (12) time. For the following
Chapters 5 and 6, the aim is to optimize the total running time under using only
local robot capabilities: We additionally allow a constant-sized memory and a
constant number of locally visible statuses (lights, flags). For the strategies of
both chapters we show an asymptotically optimal running time of O(n). While
in Chapters 4 and 5, vision and swarm connectivity are intuitively defined
by neighborhoods on the grid, this differs in Chapter 6: Here, the robots are
connected to a chain from the beginning, where two chain neighbors must
have a distance of 1 from each other. A robot can only see and interact with a
constant number of its direct chain neighbors. But also in this model, Gathering
is possible in O(n).
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CHAPTER 1

Introduction

MAGINE a space mission where one or more robots have to perform some
tasks on an outer planet. For example, missions to the Mars planet are
a popular topic. Here, the Opportunity and Curiosity rovers are good ex-
amples of successful inspecting mobile robots. They carry lots of sensors,
tools and computational power and can deliver many useful data. But landing
such a big and sensitive robot without crashing is an extremely difficult task.
Furthermore, over these large distances, the slow transfer rate of remote con-
trolling signals does not allow an even approximate real-time remote control.
The same applies to the remote controlled acting after the landing. These tasks
require the collective work of many high qualified researchers, engineers and
technicians.

Much less effort would be required if robots would be simpler, smaller,
lighter, and perform their tasks collectively as intelligent swarms and au-
tonomously, i.e., without the requirement of continuous remote control. Light-
er robots further require less fuel during transportation to the outer planet. If
robots are simpler, then clearly the manufacturing costs are reduced. This can
be continued if all robots are equal and furthermore do not even need to be
individually programmed.

Because no infrastructure is present on an outer planet, the robots can rely



1 Introduction

only on the local information that they can obtain by themselves.

A different, more futuristic scenario is medical technology: In the meantime,
the digestive system is sometimes examined using a small robot. If we farsight-
edly assume to examine blood vessels, then using only one robot would take
too much time to explore and robots must be even smaller. Swarms of tiny
robots are required, but precisely controlling them from outside the human’s
body is difficult. Also here autonomous acting is desired. While doing this,
robots have to rely on very restricted information about their environment.

In all cases, for being able to reasonably apply robot strategies also to big-
ger swarms, the robot strategies must be reasonably scalable concerning the
working speed.

Research on robot swarms commonly deals with formation tasks. Chris-
tensen et al. [CODO07] present a distributed algorithm with which a swarm
of mobile real robots—so-called “s-bots” [Mon+05]—can form big swarm
formation shapes, with a vision only up to a constant distance and without
communication. These robots are equipped with a gripper that allows them,
besides grabbing other objects, to cling to a neighboring robot.

In our community, robot swarms are considered from a higher abstraction
level. Robots are usually point-shaped or represented as circles. An important
question is the minimum requirements of robot capabilities (vision, commu-
nication, memory, ...) for solving basic formation tasks like circle and line
formation or the very basic gathering formation task, where all robots have
to gather at some previously undefined point. Feasibility is formally proven.
When minimizing robot capabilities, a common procedure is to restrict the
global information (vision, positioning, compass, communication) that is avail-
able to the robots.

Another important topic is the formal proofs of upper and lower bounds for
the total running time and moved distances that are needed for performing
the considered formation task.

A comprehensive collection of basic robot models and state-of-the-art strate-
gies, concentrating on formal analysis, can be found in the book of Flocchini,
Prencipe and Santoro [FPS12].

The focus of my research was the development of local swarm formation
strategies for point-shaped, anonymous, autonomous mobile robots, including

the formal proofs of their correctness and running times. I mainly considered



the most basic formation problem: the gathering. Under this topic, research is
mainly done for robots in the Euclidean plane. Unlike this, I always assume that
robots are located on a two-dimensional grid. This means that my strategies
are location- as well as time-discrete. On the one hand, using basic robot
models, I concentrated on the development of local strategies that optimize
the total running times. On the other hand, I focussed on the development of
local strategies that still work if the robot capabilities are even more restricted
concerning these local capabilities, while analyzing the impact on the total
running times.

Concerning robot capabilities, “local” means that a robot only has local
information about its environment (and can also execute only local operations).
The most important of these local properties are that a robot does not have a
global compass (and has no global sense of chirality) and can see other robots
only within a constant distance, which is often called the robot’s viewing radius.
The part of the environment (restricted by the viewing radius) that is visible to
a robot is called the robot’s viewing range.

For local strategies, the connectivity of the swarm is an important property.
If connectivity is given by vision, then the swarm’s connectivity would break if
it splits up into two subswarms such that no robot of one subswarm can see any
robot of the other subswarm. Then, these two subswarms could never “find”
each other for reassembling to only one swarm and the desired formation
cannot be formed. That is why our strategies ensure that connectivity does
not break.

Robot operations are commonly split into three steps [CP04]: look, compute,
move. In the look step, the robot gets a snapshot of its viewing range, i.e., the
current scenario from its own perspective, restricted by its constant viewing
radius. During the compute step, the robot computes its action, and eventually
performs it in the move step. We say it executes Look-Compute-Move or LCM
cycles. The time model defines how these steps of different robots are aligned.
In this thesis, we use the fully synchronous FSYNC time model, where all

robots execute their LCM cycles simultaneously.



1 Introduction

1.1 Results of the Thesis

We have developed and analyzed three different local gathering strategies for
point-shaped robots on a two-dimensional infinite grid.

Gathering Anonymous, Oblivious Robots on a Grid

In Chapter 4, we use the same time and Basic&Plain robot model as in the so
far fastest Euclidean plane strategy Go-To-THe-CenTER published by Degener
et al. [Deg+11] who use the algorithmic idea from Ando et al. [ASY95]. My
strategy instead works on the grid.

The robot actions of our strategy are rather simple. Instead the correctness
and running time proofs are very complicated. For this, a combination of three
different progress measures is required.

We prove that the worst-case running time of our OsLivious-GATHER grid
strategy matches the O (n?) bound of Go-To-Tue-Center under the same time
model and robot model.

The contents of this chapter have been published in the following paper:

D. Jung, M. Fischer and F. Meyer auf der Heide. “Gathering Anony-
mous, Oblivious Robots on a Grid”. In: Algorithms and Experiments
for Wireless Sensor Networks — 13th International Symposium, ALGO-
SENSORS 2017, Vienna, Austria, September 7-8, 2017. Proceedings, cf.
[FIM17a]

The full version of the paper can be found at:

D. Jung, M. Fischer and F. Meyer auf der Heide. “Gathering Anony-
mous, Oblivious Robots on a Grid”. In: CoRR abs/1702.03400 (2017),
cf. [FIM17b]

Asymptotically Optimal Gathering on a Grid

In Chapter 5, we significantly improve the running time by a factor of n to
O(n). For this, we allow two additional robot capabilities: a constant-sized
memory and a constant number of states that are locally visible to other robots
in viewing range (Extended Basic&Plain robot model).



1.1 Results of the Thesis

The presence of a (constant-sized) memory allows a robot to include its
actions from a constant number of previous LCM cycles when calculating its
next action. This enables much more complex and effective robot operations.
The memory allows robot tasks that take sequences of many sequential robot
operations until they finally enable a gathering progress. This significantly
complicates the strategy. As a reparation for this, the formal correctness and
running time proofs become more straightforward. We show that much of
the work can be parallelized so that the Grip-GATHER strategy significantly
improves the total running time needed for the gathering by a factor of n to
O(n), which is also asymptotically optimal for the problem in general. The
contents of this chapter have been published in the following paper:

D. Jung, A. Cord-Landwehr, M. Fischer and F. Meyer auf der Heide.
“Asymptotically Optimal Gathering on a Grid”. In: Parallelism in Al-
gorithms and Architectures — 28th ACM Symposium, SPAA 2016, Pacific
Grove, California, USA, July 11-13, 2016. Proceedings, cf. [Cor+16]

Gathering a Closed Chain of Robots on a Grid

In Chapter 6, we also use the additional capabilities constant-sized memory and
constant number of locally visible states for a different, more restricted connec-
tivity and visibility definition (Extended Basic&Plain Closed-Chain robot model):
Robots are always connected as an initially given, possibly self-intersecting
closed chain and also vision is restricted to chain neighborhoods.

This introduces the difficulty that robots which are located at the same or
close together located positions in general have completely different viewing
ranges and so also behave completely differently.

For the CrLoseD-CHAIN-GATHER strategy, we prove the asymptotically optimal
running time O(n). The contents of this chapter have been published in the

following paper:

D. Jung, S. Abshoff, A. Cord-Landwehr, M. Fischer and F. Meyer
auf der Heide. “Gathering a Closed Chain of Robots on a Grid”.
In: International Parallel and Distributed Processing — 30th IEEE Inter-
national Symposium, IPDPS 2016, Chicago, Illinois, USA, May 23-27,
2016. Proceedings, cf. [Abs+16]
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1.2 Animations

In order to get a better impression of the gathering strategies presented in this
thesis, we provide some video animations and, on the right page margin, a
flip book.

The simulators of the CLosep-CHAIN-GATHER and GRID-GATHER strategy have
been developed by André Graute and Marcel Stienemeier, whose bachelor
theses I supervised [Gral6; Stil6]. André Graute developed the simulator for
the CLosED-CHAIN-GATHER strategy. The Grip-GaTHER simulator was developed

by Marcel Stienemeier.

1.2.1 Flip book

The flip book animations, in order from top to bottom, show examples of the

OsLIvioUs-GATHER, GRID-GATHER and CLOsED-CHAIN-GATHER strategy.

OBLIVIOUS-GATHER strategy. In this example, the OLivious-GATHER strat-
egy is applied to some valid random swarm. The red marked robots perform
a hop. The green cells mark the target cells of the corresponding hops.

GRID-GATHER strategy. In this example, though the GriD-GATHER strategy
also works on arbitrary connected swarms, we chose an unfilled rectangle as
an example, because this shape gives a very good impression of behavior that
significantly increases the gathering speed. One can see that multiple moving
visible states that initiate hops are active in parallel and can also be nested.

Red arrows denote the moving directions of the visible states. Green arrows
point to the target cells of the initiated hops.

Concerning this strategy, one cannot get an impression of the functioning in
small examples, because the formal proofs require large constants. Therefore,
in the given flip book example, we reduced some of these constants. Ani-
mations of this strategy that use the correct constants are provided as online
videos (Section 1.2.2).

CLoseD-CHAIN-GATHER strategy. This example shows a simulation of the
CLoseED-CHAIN-GATHER strategy, applied to a valid random swarm. Grey dots
mark cells that contain more than one robot (intersections, overlappings).



1.2 Animations

Orange colored dots mark visible state positions with an arrow head pointing

in their moving directions. Green dots mark target cells of certain operations.

1.2.2 Video animations

The video animations can be found at YouTube (playlist):

https:/ /www.youtube.com/playlist?list=PLsqmqCMaaewCbdLLiDEhxNGISKIhXTiHA
and http:/ /roboterschubser.de

Every strategy is applied to a random and to a 200 x 200 square-shaped swarm.
We point out notable behavior:

OBLIVIOUS-GATHER strategy. In the 200 x 200 square example, the diagonal
edges seem to be flickering. Taking a closer look, one can notice that the cause
is that lots of robots hop back towards the swarm’s outside.

GRID-GATHER strategy. In contrast to the corresponding OsLivious-GATHER
animation, the 200 x 200 square is gathered in a very targeted way.

For sake of illustration, in the random example the swarm’s outer boundary
is marked in black color.

CLOSED-CHAIN-GATHER strategy. In the 200x200 square example the behav-
ior is quite similar to the corresponding Grip-GatHEr example. The reason is

that in this example the connectivity and vision are similar for both strategies.


https://www.youtube.com/playlist?list=PLsqmqCMaaewCbdLLiDEhxNGlSkIhXTiHA
https://www.youtube.com/playlist?list=PLsqmqCMaaewCbdLLiDEhxNGlSkIhXTiHA
http://roboterschubser.de




CHAPTER 2

Time Model and Robot Model

ONCERNING swarm formation problems, the available robot capability
types (robot model) and the alignment of the robots” operations (time
model) in general have a high impact on parameters like solvability,

running time and the distance that must be traveled by a robot.
In this chapter, we explain in detail the time model and the robot models

that are used in this thesis. We start with the time model.

2.1 Fully Synchronous Time Model

In the whole thesis, we consider the fully synchronous FSYNC time model.
Here, time is subdivided into equally sized rounds of constant lengths. All
robots are always active and perform all operations synchronously. In every
round all robots simultaneously execute their operations in the common look-
compute-move model [CP04], which divides one operation into three steps: In
the look step, the robot gets a snapshot of the current scenario from its own
perspective, restricted to its constant-sized viewing range. During the compute
step, the robot computes its action, and eventually performs it in the move step.
We say it executes Look-Compute-Move or LCM cycles.



2 Time Model and Robot Model

In contrast to asynchronous time models, the synchrony of the FSYNC

model allows meaningful running time estimations by counting these LCM

cycles. But synchrony also introduces many symmetry issues that, for example,

can break the swarm’s connectivity or lead to unwanted robot operations. This

significantly complicates strategy design.

2.2

Local Robot Model

My research only deals with so-called local strategies. In the following we will

substantiate the meaning of local in this thesis.

2.2.1 Common robot capabilities used in this thesis

I use a very restricted robot model. I assume that the robots

do not have a global vision

do not have a sense of global coordinates

do not have a global compass

do not have a global chirality sense

do not have a global control (autonomous)

are indistinguishable (anonymous)

cannot communicate

are oblivious (only in the OsLivious-GATHER strategy (Chapter 4))

are stateless (only in the OBLivious-GATHER strategy (Chapter 4))

Concerning present capabilities, I assume that the robots

10

have a local vision: robot vision only up to some fixed constant distance
that we call the viewing radius for the OLivious-GATHER and GRID-GATHER
strategy (Chapter 4 resp. 5) and viewing path length for the CLoseD-CHAIN-
GaTheR strategy (Chapter 6)



2.2 Local Robot Model

¢ have a constant number of states that are locally visible to other robots
(only in the GriD-GATHER and CLoseD-CHAIN-GATHER strategy). Concern-

ing visible states, see Section 2.2.2.

¢ can execute local operations: i.e.,

- can move at most a constant distance per step (It can hop to one of

its eight neighboring grid cells.)

— can merge with other robots (i.e., all but one is removed) if more
than one robot is located at the same position

- can set/unset its own visible states (only in the Grip-GATHER and

Crosep-CHAIN-GATHER strategy)

All these capabilities are local. We call the snapshot of the environment that
is visible to a robot, the robot’s viewing range. Note, that this is bounded by
the robot’s viewing radius and viewing path length, respectively. Because in
this thesis robots are located on a two-dimensional grid, the number of cells
respectively robot positions in a robot’s viewing range is upper bounded by a

fixed constant number.

2.2.2 Visible states

In all my strategies, I forbid communication. This means that a robot cannot
even locally communicate to other robots. A robot r can see other robots only
if they are located within its viewing range that is upper bounded by a fixed
constant distance to r. The only information that r gets about these visible
robots are their relative positions w.r.t. its own position and (local) compass,
and if included in the corresponding robot model, then also their visible states
(flags, lights).

In the CLosep-CHAIN-GATHER and the GriD-GaATHER strategy (Chapter 6 and
5) robots actually have a constant number of states that are locally visible to
other robots. This means that, in addition to the relative positions of the robots
within its viewing range, a robot can see their visible states. Such visible states
are often also called flags or lights. This robot capability has been suggested by
Peleg et al. [Pel05; EP07]. In literature, such robots are often called luminous.
There is some research done concerning the impact of this luminosity [Das+12;
Das+16; Lun+17].

11
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2 Time Model and Robot Model

In this thesis, in the OsLivious-GATHER strategy (Chapter 4), even visible

states are prohibited.

2.2.3 Basic&Plain robot model: OBLIVious-GATHER (Chapter 4)

For the OsLivious-GATHER grid strategy, we use the Basic&Plain robot model
that is used in the comparable Euclidean plane Go-To-THE-CENTER strategy (De-
gener et al. [Deg+11]). The OsLivious-GATHER strategy has the following char-
acteristics, compared to the common robot model, explained in Section 2.2.1.
A robot

¢ does not have visible states
¢ does not have memory (oblivious)
* has a viewing radius of 7, i.e., can see other robots up to L;-distance 7

In our strategy two robots are connected if they have L;-distance 1, i.e., are
located at vertically or horizontally neighboring grid cells.

For an example, see Figure 2.1.

If in the underlying time model and robot model multiple robots are located
on the same position, then they behave like one robot. For sake of simpler

analysis, we say they merge.

2.2.4 Extended Basic&Plain robot model: GRID-GATHER (Chap. 5)

For the GrID-GATHER strategy, we extend the Basic&Plain robot model that is
used in the comparable Euclidean plane Go-To-THe-CENTER strategy (Degener
et al. [Deg+11]) and in my OsLivious-GATHER strategy. We add a constant num-
ber of visible states and a constant memory and call it Extended Basic&Plain
robot model. The GriD-GATHER strategy has the following characteristics, com-
pared to the common robot model, explained in Section 2.2.1. A robot has

* a constant number of visible states

* aconstant-sized memory for remembering a constant number of previous

actions

¢ aviewing radius of 19, i.e., can see other robots up to L;-distance 19

12



2.2 Local Robot Model
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Figure 2.1: OBLivious-GATHER: A robot swarm. The fat robot calculates its actions only
on the basis of the robot positions in its viewing range (snapshot of the environment).
Because there is no global compass and no global chirality, the strategy must work
under any rotation and reflection of the snapshot. In this example, for sake of better
visualisation, we assume a viewing radius of 4.
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2 Time Model and Robot Model

In our strategy two robots are connected if they have L;-distance 1, i.e., are
located at vertically or horizontally neighboring grid cells.

Figure 2.2 shows an example for the GrID-GATHER strategy, where the robot
positions are the same as in the OsLivious-GATHER example.

If using the GriD-GATHER strategy with the underlying time and robot model
multiple robots are located on the same position, then they behave like one
robot. For sake of simpler analysis, we say they merge.

2.2.5 Extended Basic&Plain Closed-Chain robot model:
CLoseED-CHAIN-GATHER (Chapter 6)

The Extended Basic&Plain Closed-Chain model that we use for the CLosep-CHAIN-
GATHER strategy is very similar to the Extended Basic&Plain robot model (cf.
Section 2.2.4) that we use for the GriD-GaTHER strategy. The differences between
both robot models affect the connectivity and visibility definition: In the
Extended Basic&Plain Closed-Chain robot model, the robots are always connected
as an initially given closed chain, while consecutive chain neighbors must have
L,-distance 1, i.e., be located at vertically or horizontally neighboring grid
points. The CLoseED-CHAIN-GATHER strategy has the following characteristics,
compared to the common robot model explained in Section 2.2.1. A robot has

® a constant number of visible states
® a constant-sized memory

* avision that is restricted to chain neighbors, only. Other robots, even if

located at neighboring or the same grid cell, cannot be detected.

¢ aviewing path length of 11, i.e., can see the next 11 neighbors in both
directions along the chain

In the example of Figure 2.3, the same robot and flag positions are chosen as
in the example for the GriD-GATHER strategy, but the robots are connected by
some closed chain (blue). If the chain visits some cell k times, then also k robots
are located at this cell. These robots do not see each other if their distance
along the chain is bigger than the viewing path length. In the example, for sake
of better visualization, a robot can see its chain neighbors only up to distance
4 (viewing path length) instead of the actual value 11. The fat red line denotes
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Figure 2.2: GRip-GAaTHER: A robot swarm. The fat robot calculates its actions on the
basis of the robot positions and raised flags in its viewing range (snapshot of the
environment). Because there is no global compass and no global chirality, the
strategy must work under any rotation and reflection of the snapshot. In this
example, for sake of better visualisation, we assume a viewing radius of 4.
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2 Time Model and Robot Model

the viewing range of the fat robot. The dashed cell contains two robots. One is
visible in distance 2, one in distance 3. In contrast to this, on the dotted cell that
also contains two robots, only one of them is included in the viewing range,
because the distance along the chain of the other one is too big.

Interestingly, in contrast to OsLivious-GaTHER and GRID-GATHER, now robots
that occupy the same position see different viewing ranges and as a result also
behave differently.

We also want to have a merge operation in the CLosED-CHAIN-GATHER strategy.
Here, we also let two robots merge if they are located at the same grid point,
but only if they are furthermore direct neighbors on the chain. The design of
this merge operation additionally maintains/repairs the chain connectivity.
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Figure 2.3: CLosED-CHAIN-GATHER: A robot swarm. The fat robot calculates its actions
only on the basis of the robot positions and raised flags in its chain restricted viewing
range (snapshot of the environment) that is drawn in red color. Because there is no
global compass and no global chirality, the strategy must work under any rotation
and reflection of the snapshot. In this example, for sake of better visualisation, we
assume a viewing path length of 4.
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2 Time Model and Robot Model

2.2.6 Summarized robot models

OsLIvIOUS- CLoseD-CHAIN-
GATHER GRID-GATHER GATHER

Model properties Chapter4 | Chapter5 | Chapter6
no global vision 4 4 v
no sense of global coordinates 4 4 v
no global compass v v v
no global chirality sense 4 4 v
no global control (autonomous) v v v
indistinguishable (anonymous) 4 4 4
no communication v v v
no memory (oblivious) v - -
no (visible) states v - -
grid neighborhood connectivity v v -
chain neighborhood connectivity - - v
local vision (up to constant distance / v _
(viewing range) on the grid)
local vision (up to constant distance B B Y
(viewing path length) along the chain)
viewing range/viewing path length
(Ll—clisiioyaru:e)g oF ° 7 19 1
constant-sized memory - 4 4
constant number of locally visible ~ v v
states
hop to one of the 8 neighboring grid
cellljs ’ 58 Y Y v
merge with other robots at same grid v / ~
position
merge with direct chain neighbors at ~ ~ v
same grid position
set/unset its own visible states - v v
total running time On?) O(n) O(n)

All our strategies work in the FSYNC time model.
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CHAPTER 3

Related Work

HERE is vast literature on robot formation problems, researching how
specific coordination problems can be solved by a swarm of robots
given a certain limited set of abilities. Usually, the robots are point-

shaped (hence collisions are neglected) and positioned in the Euclidean plane.
They can be equipped with a memory or are oblivious, i.e., the robots do not
remember anything from the past and perform their actions only on their
current views. If robots are anonymous, they do not carry any IDs and cannot
be distinguished by their neighbors. Another type of constraint is the compass
model: If all robots have the same coordinate system, some tasks are easier to
solve than if all robots’ coordinate systems are distorted. In [Kat+07; Izu+12] a
classification of these two models and also of dynamically changing compass
models is considered, as well as their effects regarding the gathering problem

in the Euclidean plane.

Time models. The operation of a robot is considered in the look-compute-move
model [CP04]. We call this LCM cycles. Here, robot operations are split into
three steps: In the look step, a robot takes a snapshot of the environment from
its own perspective. Afterwards, in the compute step, it computes its action
on the basis of the snapshot. Finally, in the move step, the calculated action is
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executed.

Time can be synchronized in many different ways: In the asynchronous
ASYNC model ([Cie+03; CP04; Flo+05; Flo+14]), a robot can decide to become
inactive for a certain amount of time. Starting times of LCM cycles of active
robots are also not synchronous. Furthermore, the length of the LCM cycle
steps can vary individually for each robot. The length is only known to be
finite and can change over time. In general, the only guarantee is that every
robot becomes activated infinitely often.

A more synchronized time model is the semi-synchronous SSYNC model
[SY99]. There, robots synchronously follow a global clock of equally sized time
intervals. But robots can still be inactive. The case where all robots are always
active is given in the fully synchronous FSYNC model [ASY95; Dyn+06; SY99;
APO06]. In the synchronous time models, reasonable running time estimations
are possible by counting the number of time intervals or LCM cycles [Dyn+06;
Bra+13; KM09; Deg+11].

Robot shapes and movement models. Robots can have an extent or can
be point-shaped. In contrast to point-shaped robots, robots with an extent in
general cannot share the same position.

In the research area of so-called self-organizing particle systems, an amoeba
inspired model is used, where robots have certain additional capabilities
[Der+16; Der+14; Dol+13]: In the so-called geometric amoebot model, particles
can be located on the nodes of a triangular grid, and every particle can occupy
one or two nodes (if they are connected by an edge), and every node can be
occupied by at most one particle. If a particle occupies only one node, it is
called contracted, else they say it is expanded. It moves by alternatingly expand-
ing and contracting. Particles on adjacent nodes are connected. If a particle p
moves, connectivity is maintained as follows: (1) p expands to some node v
that is occupied by a currently expanded particle g, then it forces (“pushes”)
g to contract to leave v. (2) p contracts and frees some node v’, and forces
(“pulls”) a neighboring contracted particle 4° to expand to v. The particles are
anonymous, do not have a common compass, but have a common sense of
chirality. They have a constant memory with a shared part that can be read
and written by neighboring particles. A particle calculates its actions on the

basis of the contents of its own memory and the shared memories of its local
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neighbors.

The time model is asynchronous in such a way that only one particle is active
at a time [Der+16]. In the amoeba model of [Dol+13], particles are located on
a hexagonal grid and have a hexagonal shape.

A different model of robots with an extent is used in [Cor+11; Sha+17],
where robots are interpreted as circles.

Formations of point-shaped robots. While [Der+16; Der+15] use the amoe-
ba inspired model for shape formations, we now return to the more simple
robot model, where point-shaped robots can only hop to neighboring grid
points, instead of moving by contraction and expansion. Referring to such
robots, the authors of [LM14] present a strategy for building almost arbitrary
formations of point-shaped robots on a two-dimensional grid. Their strategy
requires that every robot knows its absolute position on the grid.

In the Euclidean plane, the circle formation is a common problem [DKO02;
CMNO04; Flo+14]. Under the restriction that robots must be very simple (no
global control, no common coordinate system, no IDs, no direct communica-
tion, no memory of the past (oblivious)), Flocchini et al. prove that the uniform
circle formation problem is (deterministically) solvable for any initial formation
[Flo+14]. Here, uniform means that in the final formation all n robots must be
located at the vertices of some regular n-gon.

One of the most natural formation problems is the gathering, where all
robots have to move to the same, previously unknown point. In the related
rendezvous problem only two robots have to meet or “gather” [Pel12; KKRO06].
A problem, very close to gathering, is convergence. In contrast to gathering,
where all robots have to exactly move to the same position, in convergence the
robots only need to become arbitrarily close to a position.

A collection of recent algorithmic results concerning distributed solving of
basic problems like gathering, convergence and pattern formation by using
robots with very limited capabilities, can be found in the book of Flocchini
et al. [FPS12].

Byzantine, faulty robots. The role of multiplicity detection. Concerning

faulty and byzantine robots, Défago et al. [Déf+16] provide a very good com-
prehensive collection of feasibility analysis of the gathering task under many

21

N
Bgiigy af
ILII

.rnll=-.=l--ll

- ll--==
]

I,



3 Related Work

relevant time models for deterministic as well as probabilistic algorithms. They
analyze many variants of faulty and byzantine robots and point out the impact
of the multiplicity detection robot capability. In contrast to faulty robots that
just do not work, byzantine robots behave adversarially concerning the desired
task. Multiplicity detection means that a robot can detect how many other robots
are located at a position. Else, it just can detect if it is occupied or not [DP12;
Izu+09]. Also weak and strong multiplicity detection can be distinguished
[Izu+09]. Here, weak means that a robot can only distinguish if there is no,

one or more than one robot located at a position (but not the actual number).

Communication Chains

One basic robot formation problem is the shortening and maintenance of a
communication chain between two fixed endpoints. The robots then only have
a local vision, no compass and a static connectivity, defined by neighborhoods
along the chain. For this problem several results have been published in
the FSYNC time model. The first shown runtime bound was O(n?log(n))
[Dyn+06]. Later, this has been improved [KM09]: In the Euclidean plane, the
Hopper strategy delivers a \/E—approximation of the shortest communication
chain in time O(n). Restricted to a grid, the Manhattan Hopper strategy delivers

an optimal solution in time O(n).

Gathering

A very basic natural problem is the already mentioned gathering, where all
robots have to gather at a single, previously undefined point. There, the swarm
usually consists of point-shaped, oblivious, and anonymous robots. The prob-
lem is widely studied in the Euclidean plane. Having point-shaped robots,
collisions are understood as merges/fusions of robots and interpreted as gath-
ering progress [DKM10]. In [Cie+03] the first gathering algorithm for the
ASYNC time model with multiplicity detection (i.e., a robot can detect if other
robots are also located at its own position) and global views is provided. Gath-
ering in the local setting was researched in [ASY95]. Degener et al. [Deg+11]
have shown a O(n?) running time bound for a local gathering strategy Go-To-
THE-CENTER in FSYNC that works in the Euclidean plane. Furthermore, they
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showed that for their strategy this bound is tight. In [Pre07] situations when
no gathering is possible are studied. The question of gathering on graphs
instead of gathering in the plane was considered in [Mar(09; Des+06;, KMPO0S].
In [SN13] the authors assume global vision, the ASYNC time model and fur-
thermore allow unbounded (finite) movements. They show optimal bounds
concerning the number of robot movements for special graph topologies like

trees and rings.

Gathering on a grid

Concerning the gathering on grids, in [DAn+12] it is shown that multiplicity
detection is not needed and the authors further provide a characterization of
solvable gathering configurations on finite grids. In [SN14], these results are
extended to infinite grids, assuming global vision. The authors characterize
gatherable grid configurations concerning exact gathering in a single point.
Under their robot model and the ASYNC time model, the authors present an
algorithm which gathers gatherable configurations optimally concerning the
total number of movements.

Local gathering. Assuming only local capabilities of the robots, especially
only local vision and no compass, makes gathering challenging. For example,
given a global vision, the robots could compute the center of the globally
smallest enclosing square or circle and just move to this point. Concerning
gathering with presence of a global compass, the authors in [SMM16] provide
a simple gathering algorithm for robots on a grid that needs only time O(n):
In their strategy, the robots from the left and right swarm boundaries keep
moving towards the swarm’s inside. In some kinds of degenerated cases,
robots from the top and bottom boundaries do this instead. But without the
presence of a global compass, certain arbitrarily scalable swarm formations
cannot be gathered using their strategy: e.g., swarms in vertically aligned
zigzag shapes do not work then.

Local gathering in FSYNC. In the FSYNC time model, the total running

time is a quality measurement of an algorithm. In this time model and addi-
tionally under the restriction that the robots do not have a compass and have
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3 Related Work

only local vision, i.e., they can only see other robots up to a constant distance
instead of a global vision of the whole scenery, there exist several results that
prove runtime bounds.

One of these are the above introduced strategies for shortening communi-
cation chains: The strategy of Dynia et al. [Dyn+06] needs time O (n? log(n)).
The one of Kutylowski et al. [KM09] needs time O(n) in the Euclidean plane as
well as on a grid. The CLosep-CHAIN-GATHER strategy in this thesis can be seen
as a transition from these open communication chain shortening strategies to
the gathering problem, because it performs the gathering by shortening the
closed chain that connects all robots [Abs+16] (Chapter 6 of this thesis). For
this strategy, we have proven an asymptotically optimal running time bound
of O(n).

For the more general gathering, i.e., using connectivity dynamically given by
local vision in the Euclidean plane, an O(n?) runtime bound has been shown
by Degener et al. [Deg+11] for their Go-To-THe-CENTER strategy, as already
mentioned above. There, every robot synchronously computes the smallest
enclosing circle only of the robots within its restricted viewing range and then
moves towards its center. Repeatedly executing this synchronous behavior
finally solves the gathering. The authors also prove that for their algorithm
the O(n?) bound is tight. For the problem itself, under this local model, a tight
bound for the running time is still unknown. In [Deg+11], Degener et al. use
a very minimalistic robot model: Besides the strictly local capabilities, their
robots do not have a memory (oblivious) and do not have visible states, lights or
flags. In our paper [F]M17a] (Chapter 4 of this thesis), we use the same minimal-
istic robot model, but on the grid. We prove a O(louter boundarylz) C O(n?)
upper running time bound for this OsLivious-GATHER strategy. This matches
the above one of Degener et al. [Deg+11]. Our simulations (cf. Section 4.7)
let us assume that at least for our strategy this upper bound is also tight. In
our paper [Cor+16] (Chapter 5 of this thesis), we tightened this bound to the
asymptotically optimal value of O(n). For this, we extended the robot model
by a constant-sized memory for remembering a constant number of previous

actions and a constant number of states that are locally visible to other robots.
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cHAPTER 4

Gathering Anonymous, Oblivious Robots on a Grid
OsBLIvious-GATHER Strategy
Basic&Plain Robot Model

E consider the results from Degener et al. [Deg+11]. The authors
showed for a very minimalistic local robot model that gathering
in the Euclidean plane can be solved in time O(n?). Their robot

model matches our Basic&Plain robot model. The authors” gathering strategy
Go-To-Tue-CenTER works in the fully synchronous FSYANC time model.

In the current chapter, we contribute the (to the best of our knowledge) first
gathering algorithm on the grid that works under the time model and the
same minimalistic robot model as this Euclidean plane strategy. We prove
its correctness and an O(n?) running time bound in the fully synchronous
FSYNC time model. This time bound matches the time bound of the best
known algorithm for the Euclidean plane mentioned above. We say gathering
is done if all robots are located within a 2 x 2 square, because in FSYNC such
configurations cannot be solved.

25

=l-ll=--“'ﬁllll=

L p—

P



4 Gathering Anonymous, Oblivious Robots on a Grid

4.1 Introduction

A basic desired global behavior of a swarm is the gathering process: All robots
have to gather at one (not predefined) place. Local algorithms for this problem
are defined and analyzed for a variety of models [Deg+11; DKM10; FPS12;
Cie+03; Cor+16; Abs+16].

A common local model for extremely simple robots is the following: There
is no global coordinate system. The robots have no common compass and no
global sense of chirality, only have a constant viewing radius, are autonomous
and indistinguishable, can move at most a constant distance in each step, cannot
communicate, are fully oblivious and do not have flags or lights to show a
state to others. In this very restricted robot model, a robot’s decision about its
next action can only be based on the current relative positions of the otherwise
indistinguishable robots in its constant-sized viewing range, and independent
of past decisions or information (oblivious). This is the model that we have
called Basic&Plain in the introduction of this thesis.

The only gathering algorithm (Go-To-THe-CenTER) under this robot model,
with known runtime bounds, needs O (n?) rounds and works in the Euclidean
plane [Deg+11]. The underlying time model for the algorithm is the fully
synchronous FSYNC model.

In the discretization of the Euclidean plane, the two-dimensional grid, no
running time bounds for gathering are known under the same time and
robot model. The concept of the Euclidean Go-To-THe-CeNTeR algorithm from
[Deg+11] furthermore cannot be transferred to the grid: In Figure 4.1, the fat
robot computes its next action of the Go-To-THe-CENTER strategy. It can see
only the robots within the fat circle (viewing range). Then, it computes the min-
imum enclosing circle of itself and these robots. Afterwards, it moves towards
this circle’s center point. This strategy does not work on the grid, because firstly
it must be possible to move to the exact position of the minimum enclosing
circle center point and secondly a robot must be able to move arbitrary short
distances. Both clearly is impossible on the grid. Instead, completely different
approaches are needed.

In our new OsLIvious-GATHER strategy, a robot compares the relative posi-
tions of the robots in its viewing range to several patterns. On the basis of the
matching pattern, it decides to hop onto a certain neighboring grid cell or stay
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Figure 4.1: Euclidean Go-To-THE-CENTER strategy: Every robot calculates its action
on the basis of the smallest enclosing circle that includes itself and all robots in its
viewing range.

at its current position. For an example, see Figure 2.1 on page 13.
Using this procedure in our model makes ensuring a reasonable behavior
hard for the following reasons:

1. Under the lack of knowledge of any global positions, a global compass
and a global chirality, the locally compared patterns must induce a rea-

sonable behavior under every rotation and mirroring.

2. On the grid, a constant viewing radius also means that a robot can see
only a fixed constant number of cells and robots, independent of the

global swarm size and progress of the gathering. —

h.-.=III-III-.-...'

3. The absence of memory (oblivious) implies that if a robot action leads
to gathering progress, then this progress must be achieved immediately
after the action is executed, because in the next LCM cycle the robots do
not remember their previous action.

The strategy itself is relatively easy to explain, but formally proving the %..
correctness and a total running time bound turned out to be difficult. We need :

to combine three different kinds of progress measures: Roughly speaking,
we measure the length of the swarm’s outer boundary, count the number of
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4 Gathering Anonymous, Oblivious Robots on a Grid

convex vertices on the outer boundary and measure the area that is covered
by the swarm.

To the best of our knowledge, we present the first local strategy under the
restricted Basic&Plain model, i.e., without memory (oblivious) and without
visible states, on the grid and prove a total running time of @ (1n?) rounds which
complies with the best known running time for the Euclidean strategies in this
model [Deg+11]. More precisely, the running time of our strategy depends
quadratically on the outer boundary length of the swarm. The outer boundary
is the seamless sequence of neighboring robots that encloses all the others
robots inside.

We conjecture that Q(1?) is a lower bound for the number of rounds needed
for our algorithm and, more generally, even for any algorithm within our
restricted model. At least for our algorithm, we conjecture that a worst case
instance is a configuration with robots on the boundary of an axis-parallel

square. Experiments support this conjecture (cf. Section 4.7).

4.2 Our Local Model

Our mobile robots need very few and simple capabilities: A robot moves on a
two-dimensional grid and can change its position to one of its eight horizontal,
vertical or diagonal neighboring grid cells. It can see other robots only within
a constant viewing radius of 7 (measured in L;-distance). We call the snapshot
of visible robot positions the viewing range. Within this viewing range, a robot
can see only the relative positions of the viewable robots. The robots have no
compass, no global control, and no IDs. They cannot communicate, do not
have any states and are oblivious.

Our algorithm uses the fully synchronous time model FSYNC, in which all
robots are always active and do everything synchronously.

The robots simultaneously execute their operations in the common look-
compute-move model [CP04], which divides one operation into three steps. Every
round contains only one cycle of these steps: In the look step, a robot gets a
snapshot of the current scenario from its own perspective, restricted to its
constant-sized viewing range. During the compute step, the robot computes
its action, and eventually performs it in the move step. We say it executes
Look-Compute-Move or LCM cycles.
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4.3 The Algorithm

In the current OsLivious-GATHER strategy, robot operations are very simple.
More precisely, they are finished after a single LCM cycle. We call this LCM
cycle a round that has a constant length. In order to estimate the running time,
we simply have to count these rounds.

If a robot has moved to an occupied grid cell, the robots from then on behave
like one robot. We say they merge and remove one of them.

We say gathering is done if all robots are located within a 2 x 2 square,
because such configurations cannot be solved in our time model.

The swarm must be connected. In our model, two robots are connected if
they are located in horizontal or vertical neighboring grid cells. The operations
of our algorithm do not destroy this connectivity.

4.3 The Algorithm

A robot decides to hop on one of its 8 neighboring grid cells only dependent on
the current robot positions within its viewing range. We distinguish diagonal
(Subsection 4.3.1) and horizontal /vertical (Subsection 4.3.2) hops. The hops
are intended to achieve the gathering progress by modifying the swarm’s outer
boundary. Figure 4.6.(i) defines the swarm’s boundaries: Black and hatched
robots are boundary robots. The boundary on which the black robots are located
borders the swarm and is called the swarm’s outer boundary. In the figure, all

other robots are colored grey. White cells are empty.

4.3.1 Diagonal hops

upper Diag-A b Diag-B

lower e ! jHE.DJ = :HHE_D,: (- (I

1
! . .
' ‘|;| | S s—Iirror axis
a <

(#) (i) (vi)

Figure 4.2: Hop patterns: One of the Diag-A or Diag-B Hop patterns must match the
relative robot positions within the black robot’s viewing range. This is the hop
criterion, necessary for allowing the black robot to perform the depicted diagonal
hop. In this chapter, the notation Diag-{A, B} means “Diag-A or Diag-B”.
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4 Gathering Anonymous, Oblivious Robots on a Grid

If a robot r (marked black in Figures 4.2 and 4.3) checks whether it can execute

a diagonal hop, it compares the patterns in Figure 4.2 and 4.3 to the robot

positions in its viewing range: Robot r checks if one of the Diag-{A, B} Hop

patterns matches the current scenario from its own perspective. Patterns that

are created by an arbitrary horizontal and vertical mirroring and an arbitrary

90 degree rotation of the three patterns in Figure 4.2 are also valid and have to
be checked.

Depending on the matching Hop pattern, the robot does the following:

1. If a Diag-A pattern matches, then robot r checks if, using the same

rotation and mirroring, any of the Inhibit patterns (cf. Figure 4.3) match
the upper-right area of its viewing range. If at least one Inhibit pattern
matches, then the Diag-A hop of robot  is not executed. Otherwise, if
none of the Inhibit patterns match, the robot r hops according to the

matching Diag-A pattern.

. If the Diag-B pattern matches, then the robot r checks if, using the same

rotation and mirroring, any of the Inhibit patterns match the upper-right
area or the lower-left area of its viewing range. However, in case of the
lower-left area, the Inhibit pattern has to be mirrored at the diagonal
mirroring axis D shown in Figure 4.2.(iii). If for both areas matching
Inhibit patterns have been found, then the Diag-B hop of robot r is not
executed. Otherwise the robot r hops according to the matching Diag-B

pattern.
upper o oo o
Inhibit 1 Inhibit 2 Inhibit 3
left A—I—v right P PN
lower ,___"_ _/: _---:"_E o :-:-‘:
L] ' E|_|| . L !

— — .
l ! \ ! 1
\= __,_I - -/ -— _—

Figure 4.3: Inhibit patterns: Patterns that, in case they match, inhibit the black robot’s

30

hop.



4.3 The Algorithm

4.3.2 Horizontal and vertical hops (HV hops)

Robots can also hop in vertical or horizontal direction (HV hop). We allow
these hops for length 1 and 2 (cf. Figure 4.4). For length 2, horizontal or vertical

hops, respectively, are a joint operation of two neighbouring robots. If for a

robot a horizontal and a vertical HV hop apply at the same time (see b* of Fig.

4.4), then it instead performs a diagonal hop as shown in the figure. After

a) before: after: b) before: after:
length 1: DED length 2: DEED
[ ||
; DDDD
. .

Figure 4.4: The black robots simultaneously hop downwards. Afterwards, robots that
are located at the same position merge.

a HV hop, every target cell contains at least two robots. We let these robots
merge, i.e., we remove all but one of the robots from the according cell.
Diag-{A, B} and HV hops are processed simultaneously by the robots. In

summary, all robots synchronously execute the algorithm, shown in Figure 4.5.

Every robot r in every round does the following:

Look: r takes a snapshot of the relative robot positions within its view-
ing range.

Compute: r checks which of the HV hop, Diag-{A, B} hop and Inhibit pat-
terns match the snapshot. On the basis of the matching patterns,
r decides if it either does not hop or on which neighboring grid
cell it will hop.

Move: If r has calculated a hop, it is now executed. Else, r does not
move.

Figure 4.5: The algorithm.
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4.4 Measuring the Gathering Progress

The gathering progress measures that we will use for the analysis of our
strategy are heavily dependent on the length and shape of the swarm'’s outer
boundary. In order to analyze these measures, we need to define the terms

boundary, outer boundary, length, as well as convex and concave vertices.

Swarm’s boundary. The swarm’s boundary is the set of all robots that have
at least one empty adjacent cell in a horizontal, vertical, or diagonal direction.
Figure 4.6.(i) shows an example: Black and hatched robots are boundary
robots. The empty cells contain no robot and are colored in white. When
speaking about a subboundary, we mean a connected sequence of robots of

some boundary.

Swarm’s outer boundary. The swarm’s outer boundary is the boundary
that borders on the outside of the swarm. In Figure 4.6.(i) the black robots
belong to the outer boundary. All other robots are not part of the boundaries,
i.e., they have an adjacent robot in all directions (horizontal, vertical, and

diagonal). In Figure 4.6.(i) they are colored grey.

Outer boundary’s length. We measure the outer boundary’s length as fol-
lows: We start at a cell of the outer boundary and perform a complete walk
along this boundary, while we define the length as the total number of steps
that we performed during this walk. This means that if the swarm is hourglass-
or cross-shaped, for example, some robots are counted multiple (up to four)
times (cf. Figure 4.6.(iii, iv)). Furthermore, robots on which a turn by +180° is
performed during the walk are counted twice (cf. Figure 4.6.(v)). We denote
this length by |outer boundary|.

Convex and concave vertices. On the boundary we further distinguish
convex and concave vertices. Depending on the relative positions of its neighbor
robots, a robot is called a convex/concave vertex: In Figure 4.6.(ii) fat curves
mark convex vertices of the swarm’s outer boundary, while the thin curves mark

the concave vertices of the swarm’s outer boundary.
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Figure 4.6: (i): Definition of the (outer) boundary. Outer boundary: black robots; (ii):
Definition of convex and concave vertex. Convex vertices: fat curves; (iii): Cross
shape. The “+” marked robot is counted four times; (iv): Hourglass shape: The
“%"” marked robots are counted twice; (v): +180° rotation. The “*” marked robot is
counted twice.

Outline of the running time proof — How we achieve gathering progress.
We distinguish three kinds of progress measures that help us to prove the
quadratic running time.

Boundary: Length of the swarm’s outer boundary.

Convex: Difference between the number of convex vertices on the swarm’s
outer boundary and its maximum value.

Area: Included area.

We have designed the hops in such a way that the length of the outer boundary
(Boundary) never increases. But it can remain unchanged over several rounds.
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4 Gathering Anonymous, Oblivious Robots on a Grid

Then, instead, we measure the progress by Convex. As we draw robots as
squares, the total number of convex vertices on the swarms’ outer boundary is
naturally upper bounded by its maximum value 4 - |outer boundary|. Convex is
the difference between this maximum value and the actual number of convex
vertices on the outer boundary. We will show that also Convex never increases.

In rounds in which both Boundary and Convex do not achieve progress,
we instead measure the gathering progress by Area. We measure Area as
the number of robots on the swarm’s outer boundary plus the number of
inside cells (occupied as well as empty ones). In contrast to the other progress
measures, Area does not decrease monotonically in general, but we show that it
decreases monotonically in rounds without Boundary and Convex progress. We
upper bound the size by that the Area can instead be increased during other
rounds and show that this makes the total running time worse by at most a
constant factor.

All three measures depend only on the length of the swarm’s outer boundary.
While Boundary and Convex are linear, Area is quadratic.

This then leads us to a total running time O(|outer boundarylz).

Section 4.8 shows an example that visualizes which of the three measures

have progress during the stepwise gathering of an empty square.

4.5 Correctness & Running Time

In this section, we formally prove the correctness of the progress measures
and finally the total running time (Theorem 4.4).

4.5.1 Progress measure Boundary
Lemma 4.1. During the whole gathering, Boundary is monotonically decreasing.

Proof. As the definition of HV hops requires that the robots hop onto occupied
cells, such hops naturally cannot increase the number of robots on the outer
boundary. So we consider Diag-{A, B} hops in which robots hop towards
the swarm’s outside. In order to increase the number of robots on the outer
boundary, the target cell of such hops must be empty. But then, the hopped
robot has also been part of the outer boundary before the hop, so that the
boundary length did not increase. O
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4.5 Correctness & Running Time

4.5.2 Impact of Inhibit patterns: Collisions

For the analysis of the progress measures Convex and Area, we need a deeper
insight why certain robot hops are inhibited by Inhibit patterns (cf. Figure 4.3).
When proving that Convex progress is monotonically decreasing (Lemma 4.2),
we analyze the change of the total number of convex vertices that is induced by
the robot hops. This is possible only if certain simultaneously hopping robots
are not too close together. Inhibit patterns ensure this minimum distance.

Cf. Figure 4.2 and 4.3. From a more global point of view, the Inhibit patterns
ensure that the black robot only performs its Diag-A or Diag-B hop, respectively,
if the next robot(s) at distance 2 along the boundary does (do) not perform a
hop in the opposite direction. If the hop of the black robot is blocked by Inhibit
patterns, we will say the robots collide. This will be used in the proofs of our
progress measures. Figure 4.7 shows significant collision examples: (i): For
both, r and r’ Diag-A matches. Without inhibition patterns, » would hop to
the lower right, while " would hop in the opposite direction to the upper left.
But the Inhibit 1 pattern inhibits the hop of r: r collides with 7. Analogously
also the hop of 7’ can be inhibited. (ii): If Diag-B matches for r, then the hop is
inhibited if concerning both r" and r” an inhibition pattern matches. In this
example, for " a Diag-A pattern and for " a Diag-B pattern could else enable
hops in the opposite direction than the hop of r, but the matching Inhibit 1 and
2 patterns inhibit the hop of r: 7 collides with r’,7”. A more detailed analysis
of collisions is provided in the proofs for Lemma 4.3.

Diag-A l,_J | Diag-B [
. " ibi
- %L N | /Inhlblt 1
o

Inhibit 1 I r
. r 0o |,
' - Inhibit 3 T
(4) (i)
Figure 4.7: Collisions. (i): For r, Diag-A and Inhibit 1 matches. » does not hop. (ii):
For r, Diag-B and Inhibit 1 and 3 match. » does not hop.

4.5.3 Progress measure Convex

Lemma 4.2. During the whole gathering, Convex is monotonically decreasing.
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4 Gathering Anonymous, Oblivious Robots on a Grid

Proof. 1f we say “convex/concave vertices”, we consider only the outer bound-
ary. First, we analyze the HV hops. Here, a HV hop can reduce the number of
convex vertices by at most 2. At the same time, the outer boundary becomes
shorter by at least 2. Then, Convex either remains unchanged or decreases.
Concerning the Diag-{A, B} hops, we look at Figure 4.8: The figure shows

round ¢ round ¢ + 1 round ¢ round ¢ + 1
!
OUTSIDE C O INSIDE
[a] @l L[a]
[ ] fixed (] D C fixed ] [ZIC
INSIDE #convex(i + 1) OUTSIDE #convex(i + 1)
= Fconvex(7) = #tconvex(i)
/
OUTSIDE C C INSIDE
O o @ Cla]
L oo W o
A*) fixed b ] fixed :l C
INSIDE E OUTSIDE m U C,/
#convex(i + 1) #convex(i + 1)
= #convex(i) + 1 = #convex(i) + 1
!
OUTSIDE C C INSIDE
T I
. R W HE
Xec Xec t
INSIDE #convex(i + 1) OUTSIDE #convex(i + 1)
= #convex(i) + 1 = #convex(i) + 1
OUTSIDE C C/
s eirhis Clauuly ® c Of
*
B ) |a/" E fixed g ) b U. —> b | |
INSIDE a @] 1o fixed @] o) [l
#convex(i + 1) OUTSIDE #convex(i + 1)
= #convex(i) + 1 = #tconvex(i) + 1

() (i4)

Figure 4.8: Local effect of all kinds of hops on the number of convex vertices on the
outer boundary. C,C’, C"” denote the counted convex vertices. #convex(i) denotes
the number of convex vertices in round i.

how the diagonal hops can (locally) change the number of convex vertices
on the outer boundary. (In the figure, (ii) shows the hops from (i), but for
switched INSIDE and OUTSIDE.) In all cases, the Inhibit patterns ensure that
the robots 4,4’ do not move. In the figure, we distinguish Diag-A and Diag-B
hops, where A, A* refer to Diag-A and B, B* to Diag-B. We distinguish the
case that robot b does not hop (A, B) and the other case, that it performs a hop
(A*,B*). The result of the case distinction is that in column (i) the number
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of convex vertices never decreases. In column (77), this is also the case if the
white marked cells s, ¢, u are empty. If instead not all of s, ¢, u are empty, the
number of convex vertices might also become smaller. But even in this case,
Convex progress still does not increase: We now show that then also |outer
boundary| becomes smaller as well as the maximum value 4 - [outer boundary|
for the total number of convex vertices, so that by definition Convex progress is
not increased, i.e., it still behaves monotonically. Figure 4.9 shows the relevant

round ¢ round 5+ 1 round ¢ round 5+ 1
INSIDE r—lzl\/ﬁxed @ INSIDE Wﬁxed a
A) - [rmZ. -~ [Brm .
] C [ 7
OUTSIDE Iboundary (i +1)| OUTSIDE Sy t
= |boundary (7)| — 2 [boundary (i + 1)|

< [boundary (7)|

INSIDE @/ﬁxed [
> (1R .
b\

] OUTSIDE @l t
bound i+ 1 B8
LTEEusgya(r%)\)L 2 [boundary (i + 1)|
- < |[boundary (i)
[af-" [ la]
o g T mee

OUTSIDE [boundary (i + 1)|
= |boundary (i)| — 2
INSIDE @/ﬁxcd DD
B*) f—\; > b | |
] 1b a]
( OUTSIDE "

[boundary (i + 1)|
= |boundary(i)| — 2

() (i)

Figure 4.9: Diagonal hops can change the outer boundary’s length. C, C’, C"” denote
relevant convex vertices. #boundary(7) denotes the outer boundary length in round
i

cases. With reference to Figure 4.8.(ii), all hops are performed towards the
swarm’s outside. In column (i), only the cell s contains a robot. There we see
that in all cases the outer boundary becomes shorter by at least 2. In case of A*,
this can be even more than 2 for the case that after the hop the cell below b (in
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4 Gathering Anonymous, Oblivious Robots on a Grid

Figure 4.8.(ii), this was the cell u) also contains a robot. Column (i7) shows the
cases where cell ¢ is (also) occupied. Because the swarm is always connected,
the hatched robot must be connected to the rest of the swarm. This can be
either via the subboundary «a or B. The hop shortens the outer boundary by
forming inner bubbles (Figure 4.10). O

Figure 4.10: During the gathering, inner bubbles can be developed.

4.5.4 Progress measure Area

The third progress measure Area does not behave monotonically. It can be
increased during rounds where we get Boundary or Convex progress. But we
use it for estimating the number of the remaining rounds (Lemma 4.3). And
in the proof of Theorem 4.4 we show that the increased amount of the Area

progress measure does not increase the asymptotic running time.

Lemma 4.3. If in a step of the gathering process neither Boundary nor Convex has

progress, then instead Area has progress by at least —8.

For the proof of Lemma 4.3, see Section 4.6.

4.5.5 Total running time

Now we can combine all three progress measures Boundary, Convex and Area

for the running time proof (Theorem 4.4).

Theorem 4.4. A connected swarm of n robots on a grid can be gathered in
O(|outer boundarylz) C O(n?) many rounds.

Proof. Let B be the initial length of the swarm’s outer boundary. We know from
Lemma 4.1 that Boundary decreases monotonically. Then, progress in Boundary
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happens at most B times. By Lemma 4.2, Convex also decreases monotonically.
As every robot on the swarm’s outer boundary can provide at most 4 convex
vertices, Convex progress happens at most 4B times.

We estimate the rounds without Boundary and Convex progress via the size
of the included area, i.e., the Area progress. By Lemma 4.3, we know that in
every round without Boundary and Convex progress, the area becomes smaller
by at least —8. However, Area is not a monotone progress measure, in rounds
with Boundary or Convex progress the included area can increase: While HV
hops cannot increase the included area, Diag-{A, B} hops can. First, we assume
that the according Diag-{A, B} hops do not change the outer boundary length.
Then, every time Convex has progress, the area can become larger by at most
B, because every robot hop on the outer boundary can increase the area by at
most 1. As Convex happens at most 4B times, this in total is upper bounded by
4B2.

If the outer boundary length changes, i.e., becomes shorter, then the included
area can increase (cf. proof of Lemma 4.2 and Figure 4.10). Then, a Boundary
progress by { can also increase the included area by AA < €2 < (B. But as
Boundary progress is monotonically decreasing, the sum of all these AA is
upper bounded by B>.

Summing it up, during the whole process of the gathering, the area can be
increased by at most (4 + 1)B% = 5B2. Together with the initial area of at most
B?, Area progress happens at most 6B2. Then, the gathering is done after at
most B + 4B + 6B? rounds. O

4.6 Proof of Lemma 4.3

In this section, we provide the proof of Lemma 4.3. In the following, we will
prove Lemma 4.7 and Lemma 4.8 whose combination immediately deliver
the proof of Lemma 4.3. Lemma 4.7 and 4.8 are given later, when we have

prepared for their proofs.

4.6.1 Outline of the proof

In Lemma 4.7, we assume that the swarm does not contain hourglass-shaped

parts, while in Lemma 4.8 the result is generalized to swarms that do contain
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4 Gathering Anonymous, Oblivious Robots on a Grid

hourglass-shaped parts. In Figure 4.17, hourglass-shaped parts are marked by
black robots. We call them bridges. A more detailed definition is given before
Lemma 4.7.

For the proofs, we will first construct a more abstract model of the swarm’s
outer boundary: During a walk along the swarm’s outer boundary one per-
forms rotations by 0° or +£90°. We subdivide the outer boundary into parts
(so-called supercorners) such that at both of their endpoints a Diag-{A, B} hop
can be performed and that during a walk along such a supercorner, a total
rotation by 0° or +90° is performed. We will argue that because a total ro-
tation by +360° is always performed during a complete counter-clockwise
walk along the swarm’s outer boundary, there must be 4 more +90° than —90°
supercorners. In our construction, robot hops of +90° supercorners are always
performed towards the swarm’s inside. This then proves the statement of
Lemma 4.7 that Area decreases by at least —8.

When generalizing this to Lemma 4.8, we first notice that bridges can hinder
hops towards the swarm’s inside. But we will argue that a single bridge
cannot hinder the total —8 Area decrease that is proven by Lemma 4.7, and
that at least two bridges are needed for this. We subdivide the swarm into
bridges and subswarms that are connected by bridges, as shown in Figure 4.17
on page 49. Then, we construct a tree such that every node represents a
bridgeless subswarm and every edge represents a bridge. The leaves of this
tree represent subswarms that only contain one bridge. The proof of Lemma 4.8
then mainly follows by the argument that every tree contains enough leaves
for compensating the non-decreasing Area progress of the subswarms that are

represented by its inner nodes.

4.6.2 Preparing for the proofs

Our arguments mainly consider only robots on the swarm’s outer bound-
ary. However, in general, a swarm also contains inside robots. The proofs of
Lemma 4.7 and 4.8 require that inside robots neither inhibit outer boundary
robots from hopping towards the swarm’s inside (Area decrease) nor enable ad-
ditional robot hops towards the swarm’s outside (Area increase). We formally
prove this in Lemma 4.5.
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4.6 Proof of Lemma 4.3

Lemma 4.5. Let dS be the outer boundary of some swarm S and S° be its interior
robots. We consider Diag-{A, B} hops:

1. If r € 9S hops towards the swarm’s inside, it also does this on S.
2. Ifr € 9dS does not hop towards the swarm’s outside, it also does not hop on S.

Roughly speaking, in the proof we analyze how Diag-{A, B} and Inhibit pat-
terns can be generated or destroyed by adding robots and prove that in situa-
tions in which this would lead to a contradiction of the lemma, this cannot be
done by adding robots only to the swarm’s interior. For the formal proof, see
Subsection 4.6.6.

For the Area progress proofs, we need a more formal description of the

swarm’s outer boundary.

Quasi lines.

Definition 4.6 (quasi line). We define a subboundary, called a horizontal quasi

line, as follows (cf. Figure 4.11):

1. It consists only of horizontal subboundaries of length > 3 that are con-
nected by stairways of height 1 or 2. (Definition of stairways, see below.)

2. It begins and ends with three horizontally aligned robots.

In Figure 4.11, stairways are marked by black robots. They are alternating left
and right turns. In the figure, their endpoints are marked by bicolored robots.

Stairways that do not match the quasi line Definition 4.6, i.e., are of height
> 2, connect two neighboring quasi lines that can be either both horizontal,
both vertical, or one horizontal and the other one vertical. Our algorithm
performs Diag-{A, B} hops at these connection points. In Figure 4.11, dashed
lines border the according patterns for quasi line 1.

In our proofs, we represent a horizontal quasi line by a horizontal line
segment and a stairway by a diagonal one. For the example in Figure 4.11, the

drawn polygon shows this construction for the given example swarm.
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quasi line 1 (horizontal) ———
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Figure 4.11: Example: Quasi lines and stairways and an abstract representation of the
shown boundary.

Corners. We call the connections between different quasi lines corners. These
are the fat drawn parts of the polygon. At their endpoints, the Diag-{A, B} Hop
patterns match. The formal definition of corners is the following (cf. Figure 4.12).

K* Corner includes a diagonal line segment and is convex (i.e., induces a
+90° rotation).

K~ Corner includes a diagonal line segment and is concave (i.e., induces a
—90° rotation).

L Corner includes a diagonal line segment and one end is convex and the
other one concave (i.e., induces 0 rotation).

M Corner does not include a diagonal line segment and is convex (i.e., in-
duces a +90° rotation).

M~ Corner does not include a diagonal line segment and is concave (i.e., in-
duces a —90° rotation).
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4.6 Proof of Lemma 4.3

-

convex: KT convex: N T
concave: [~ concave: N~

Figure 4.12: Definition of corners.

Supercorners. In our strategy, though the visible pattern of some robot
matches one of Diag-{A, B}, it does not execute its hop if suitable inhibition
patterns match. Remember the difference that if for a robot a Diag-A pattern
matches, only one matching inhibition pattern inhibits its hop, but for Diag-B

two (one in each direction) inhibition patterns are required. Figure 4.13 shows

(4) (i) (i)
Figure 4.13: Collisions in corner representation. (Significant examples)

significant examples for this: (i): r,7" do not hop. (ii): r,7" do not hop, but
the robot 7 does, because a colliding robot exists only in one direction on the
boundary (Diag-B pattern). (iii): r,' r execute their hops, because they both
hop downwards (no collision).

Now we construct supercorners X, Y, Z from consecutive K*, K=, L, M*, M~
corners in such a way that the supercorners have the property that only the two
(respectively the one for supercorners that only consist of a single M* corner)
endpoint robots actually perform their hops and the hops of all other included
K*,K=,L,M*, M~ endpoint robots are inhibited by collisions with neighbors.
Because the hops must be performed in opposite directions in order to collide,
the consecutive corners K, M along X, Y, Z must be alternately convex and
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4 Gathering Anonymous, Oblivious Robots on a Grid

concave. This means that we can define the supercorners analogously to
corners (cf. Figure 4.14). Here, ny+, np;+ denotes the number of K*, respectively
M corners of the according supercorner and ng-, 1y~ denotes the same but

for K~ and M, respectively.

Xt ng+ + npyp+ = ng- + np- + 1 (total +90° rotation)
X7 ng+ + npyp+ = ng- + ny- — 1 (total —90° rotation)
Y ng+ +np+ = Ug- + Hp- (no total rotation)
Zt:npye = Lngs, ng-,np- =0 (+90° rotation)

0 (

Z7inp- = Lngs, ng-, np+ = —90° rotation)

X Z Yy

Figure 4.14: Definition of supercorners X,Y, Z.

4.6.3 Bridges

In Lemma 4.7 and 4.8, we distinguish two kinds of swarms: the ones without
(Lemma 4.7) and the ones with bridges (Lemma 4.8). For the definition of
bridges, we start with a swarm (cf. Figure 4.15.(i)) which has the property that
it contains exactly two endpoints (hatched) from which the whole swarm can be
completely removed just by continuously executing HV hops. Figure 4.15.(ii):
We call such a subswarm a bridge if it connects two other subswarms (grey) at
its endpoints.

4.6.4 Area progress for swarms without bridges (Lemma 4.7).

Lemma 4.7. If a swarm S does not contain any bridges and neither Boundary nor
Convex has progress, then instead Area has progress.
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(i) ]

Figure 4.15: (i): The black subswarm can be completely removed by executing a
sequence of HV hops from its two endpoints (hatched). (ii): The bridge connects
two subswarmes.

Proof. During a walk along the outer boundary of the swarm, we perform a

total rotation of 360°. Using the above construction, it follows:
Ng+ + Npg+ = Ng- + Npp- +4,

where N+, Npr+, Ng-, Ny~ are the total numbers of Kt, M*, K~ and M~,
respectively. Because of the difference +4, there must exist neighboring corners
without collisions. Then, by construction, the above equation also holds for

supercorners:
Nx+ +Nz+ :Nx— +Nz— +4

By the prerequisites of the lemma, there is no Convex progress. So, N+ 2 0.
Note that N:- can be bigger than zero if the according hop is hindered by

inside robots. We get:
Nx+ :Nx— +Nz— +4:.

By construction, every X* executes two hops towards the swarm’s inside,
while X~ does the same towards the outside. Then, the included area behaves
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as follows:
AArea = —2(Ny+ — Ny-) = —=2(Nz- +4) < -8.

This finishes the proof. O

4.6.5 Area progress for swarms with bridges (Lemma 4.8).

Now we generalize Lemma 4.7 to a swarm that includes bridges.

Lemma 4.8. If a swarm S contains k > 0 bridges and neither Boundary nor Convex
has progress, then instead Area has progress.

Proof. We classify subswarms by the number of bridges by which they are
connected to the rest of the swarm.

#bridges = 1 (leaves). We first look at a subswarm S’ which is connected
by only one bridge B to the remaining part of S. Later, we will call a subswarm
with this property a leaf. For our analysis, we separate S’ from S by splitting B
into two parts (e.g., this could be done by removing < 2 robots). Afterwards,
we remove the part that is then connected to S’ by executing a sufficient number
of HV hops. The remaining subswarm S’ from S’ then only allows Diag-{A, B}
hops. Now we start with the same construction as in the proof of Lemma 4.7,
but this time applied only to the subswarm S’ Accordingly, we end up in the
equation:
NS, + NS, = NS~ + NS_ +4.

In contrast to the proof of Lemma 4.7, here N j; can be bigger than 0, in case B
hinders the hops of all existing Z* supercorners.

Now we estimate the worst case for the number of diagonal hops towards
the inside of S’ that could have been hindered by the bridge B. There are two
cases how B can hinder a diagonal hop:

1. It occupies white marked cells in the Diag-{A, B} patterns.

2. It produces a collision with a robot that wants to perform a Diag-{A, B}
hop.
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4.6 Proof of Lemma 4.3

Figure 4.16: A bridge hinders at most two hops towards the swarm’s inside.

As the width of B by definition is < 2, it can hinder at most two hops towards
the inside of §'. In Figure 4.16, we see that the Z* supercorners ((i)) provide
the worst case, because here we can hinder all hops of two convex +90° su-
percorners. If, e.g., hops of X* supercorners are hindered instead ((if)), then
afterwards still two of their robots hop towards the swarm’s inside.

For the worst case, we get the equation

N3, +N3. = NS +N2-+4
NY. +2 = N3-+N3Z- +4
N5, = N3 +N32- +2.

By construction, every X* executes two hops towards the swarm’s inside, while
X~ does the same towards the outside. As we, because of the prerequisites of
the lemma, do not have Convex progress, all Z~ hops are hindered by inside
robots (i.e., N §’_ might be > 0.). Then the included area behaves as:

IIF...E--.".--.II-I

..hlll=--..=--l’.-=

AArea® < —2(N5, — N5-) = —2(N3- +2) < —4.

Le., in S’ respectively S', the included area becomes smaller by at least 4 instead

8 for swarms without bridges. L peesfersensenned i ii
#bridges > 1. We can generalize this worst case construction to a subswarm ,, { W} }
S* that is connected by k > 1 bridges to the remaining swarm. For this, f X

analogously to the one-bridge-case, we first build $* from S* by removing the

47



4 Gathering Anonymous, Oblivious Robots on a Grid

bridges.

There, every bridge can still hinder at most 2 hops towards the subswarm’s
inside and, as before, the worst case means that these are Z* corners. We get
N; = 2k. So, in total

NS, +2k = NS-+NS_+4
NS, = NS +N3. +4-2k

and

AArea® < —2(N)5;1—N§(*,

= —2(NSL 4+4-2K)

(%)
< =844k,

where for N5- = 0 () becomes a strict equality (worst case).

This means that in the worst case, for 2 bridges the area does not change
and for > 2 bridges it even increases. We will compensate this by showing that
there are still enough subswarms that are only connected by a single bridge
(leaves).

For showing this, we first transform the swarm to a tree.

Tree. Cf. Figure 4.17. We divide the swarm into bridges and subswarms S;
(in the figure, the subswarms S; are named A, B, ..., G.). In the graph repre-
sentation, every S; becomes a node while every bridge is interpreted as an
edge. The resulting graph is a tree, because in our construction an existing
cycle would represent an “area”, i.e., one of the subswarms S;, and so would
contradict our construction in which every S; is a node.

Summarized Area progress. We estimate the total amount of area progress,
by inductively constructing this tree: We start with the root node vy, which has
degree ky. Then also kj leaves are connected to this node. We know that for this
vy in the worst case Area behaves like AArea” = —8 + 4k, which can be > 0.
But adding the area change of the leaves, we get AArea < (—8+4kq) —4ky = —8.

Now we inductively add the other inner nodes to the tree. Then one can

show that for every tree the following holds: Every inner node v of degree
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Figure 4.17: Transformation of a swarm with bridges to a tree.

k serves k — 2 additional leaves. If we associate these leaves to v, we get
AArea” < (=8 + 4k) — 4(k — 2) = 0. So v does not have any bad impact on the
change of total included area: AArea = AArea™ + AArea” < —8 + 0 = —8. This
finishes the proof. O

Lemma 4.7 and 4.8 immediately lead to Lemma 4.3.

4.6.6 Proof of Lemma 4.5

Proof. In this proof, if talking about collisions that inhibit hops, we often
analyze the case when, in the viewing range of a robot, a Diag-A pattern
changes to Diag-B and vice versa. This is relevant, because by definition a
Diag-B hop is inhibited only if two Inhibit patterns match at the same time
(one in each direction), while for Diag-A hops only one is needed. Now, we
start with the proofs:

1.) The hop of r can be hindered by inside robots by two reasons. a) The
Hop pattern of r changes: This is impossible, as for this outside robots must
be added.
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4 Gathering Anonymous, Oblivious Robots on a Grid
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Figure 4.18: Illustrations for the proof of Lemma 4.5.

b) Collisions: (i): r changes from Diag-B to Diag-A: This is not possible,
because of a).

(ii): Some robot r’ becomes part of an Inhibit pattern that makes him collide
with r: This is not possible, because if r checks for collisions, inhibition patterns
do not include inside robots.

2.) Cf. Figure 4.18. The bold polygonal line marks the outer boundary. The
hop of a robot r that shall hop towards the swarm’s outside can be enabled
by inside robots by two reasons. a) The robot positions in the viewing range
of r change: (i): r changes from Diag-A to Diag-B. Figure 4.18.(A): This is
not possible, because for this, s must be removed and t occupied. Both is not
possible.

(ii): r was located on a quasi line and changes to Diag-{A,B}. «): Fig-

ure 4.18.(B): r was located on a group of horizontally aligned robots. This
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4.7 Simulation Results

would require to remove at least the robot ¢. 8): Figure 4.18.(C): r was located
on a stairway of height 1. This would require to remove at least the robot s.
7): Figure 4.18.(D): r was located at an endpoint of a stairway of height 2.
This would require to remove one of the robots s, t. §): r could also not be lo-
cated inside a stairway, because then the white marked cells in the Diag-{A, B}
patterns are not both free and also cannot be emptied.

b) Collisions: (i): r was Diag-A and becomes Diag-B. This is not possible,
because of 2).(i). (ii): Previously, r collided with some robot r’ and after adding
inside robots, they do not collide anymore. Figure 4.18.(E): We assume that
for r a Diag-A pattern matches (The proof for Diag-B is the same.). Initially, the
Inhibit 1 pattern inhibits the hop. The cells u, " must stay empty because else
the Hop pattern for » would be destroyed. But we can change the occupancy
of the cells s, t: a): If we add a robot to t, while s stays empty, then the Inhibit
1 pattern becomes an Inhibit 2 pattern and the collision is still present. p): If
we add a robot to s, then, independent of ¢, the Inhibit 3 pattern matches and
the collision is still present. <): If initially an Inhibit 2 pattern induces the
collision ((F)), then adding a robot to s makes the Inhibit 2 pattern become an
Inhibit 3 pattern. This covers all variants, because Inhibit 3 patterns cannot be

transformed. ]

4.7 Simulation Results

We provided swarms that are shaped as empty (unfilled) squares of different
sizes as an input of our OsLIvious-GATHER strategy. (In case of the empty
square, the |outer boundary] also equals the number of robots that build the
corresponding swarm.)

We count the number of rounds needed for reaching two different events:
1. Gathering is done.

2. The smallest enclosing rectangle of the swarm becomes smaller the first

time.

In the plot of Figure 4.19 we have lower bounded both measures by functions
that are quadratic in |outer boundary]| in order to support that the simulative

results of both curves are in (2(Jouter boundarylz).
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4 Gathering Anonymous, Oblivious Robots on a Grid

Gathering an empty square
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|outer boundary|

== Round number when SER becomes smaller the first time.
=== total running time

1/133*|outer boundary[?
=== 1/338*|outer boundary[?

Figure 4.19: Simulation of the strategy, applied to an unfilled square, consisting of n
robots.

While the plot of 1. already shows that the total running time seems to be in
O (Jouter boundarylz), the plot of 2. is more noteworthy: The event when the
smallest enclosing rectangle of the swarm becomes smaller for the first time,
also marks the first occurrence of the linear Boundary progress. Firstly, this
already seems to take quadratic time Q(Jouter boundary|?). Secondly, reaching
this event already requires about half of the total time needed for the gathering.
On the swarm shapes that occur afterwards, the strategy works much faster.
That is why the empty square seems to be a worst-case input for our strategy.

If we look at the example in Section 4.8, where an empty square consisting of
68 robots is gathered, this effect is also visualized: In round 17 the first bound-
ary progress occurs and the smallest enclosing rectangle becomes smaller the
first time. If we continue the gathering in this example, then only 20 rounds
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4.7 Simulation Results

later, the whole gathering is done.
For a video animation of the gathering of a big square see also Section 1.2.2
on page 1.2.2.
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4.8 Simulation Results — Progress Analysis
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4.8 Simulation Results — Progress Analysis
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..finally Boundary
progress.
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CHAPTER B

Asymptotically Optimal Gathering on a Grid
GRID-GATHER Strategy
Extended Basic&Plain Robot Model

N this chapter, we deliver a strategy that significantly improves the O (1?)

upper running time bound of OsLivious-GaTtHEr (Chapter 4) by a factor of 7.

For this, we gently extend the robot model by a constant-sized memory and
states that are visible to local neighbors to the Extended Basic&Plain robot model.
We solve the local gathering problem of a swarm of n indistinguishable, point-
shaped robots on a two-dimensional grid in asymptotically optimal time O (1)
in the fully synchronous FSYNC time model. Given an arbitrarily distributed
(yet connected) swarm of robots, the gathering problem on the grid is to locate
all robots within a 2x2-sized area that is not known beforehand. Two robots are
connected if they are vertical or horizontal neighbors on the grid. The locality
constraint means that no global control, no compass, no global communication
and only local vision is available; hence, a robot can only see its grid neighbors
up to a constant L,-distance, which also limits its movements. A robot can
move to one of its eight neighboring grid cells and if two or more robots move
to the same location they are merged to be only one robot. The locality constraint

is the significant challenging issue here, since robot movements must not harm
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5 Asymptotically Optimal Gathering on a Grid

the (only globally checkable) swarm connectivity. For solving the gathering
problem, we provide a synchronous algorithm—executed by every robot—
which ensures that robots merge without breaking the swarm connectivity. In
our model, robots can obtain a special state, which marks such a robot to be
performing specific connectivity preserving movements in order to allow later

merge operations of the swarm.

5.1 Introduction

When developing the OsLivious-GaTheRr strategy (Chapter 4), our goal was to
supply a strategy that uses the same time model (FSYNC) and the same, very
minimalistic Basic&Plain robot model on the grid as Degener et al. [Deg+11]
used for Go-To-THe-CeNTER in the Euclidean plane. Our runtime bound
O(louter boundarylz) C O(n?), where |outer boundary| denotes the length of
the swarm’s outer boundary, matches the one of Go-To-THe-CENTER [Deg+11].

In the current chapter, we want to improve the total running time (FSYNC
time model).

Degener et al. [Deg+11] have proven that in the worst case their Euclidean
Go-To-THe-CENTER algorithm cannot perform faster than Q(n?). In Section 4.7,
our experiments confirm that (2(Jouter boundarylz) respectively 0O(n?) seems
also tight for our OsLivious-GATHER grid strategy. So a different gathering
strategy and an extended robot model seem to be required in order to improve
the total running time. In this chapter, we develop such a strategy that gathers
in time O(n) called GrRiID-GATHER.

Our intention for speeding up the gathering is to focus on the fast shortening
of the swarm’s outer boundary. In order to be fast, much work (robot hops)
must be done at the same time. In the FSYNC time model this cannot be
done easily, because we have to take care that simultaneous robot hops do
not break the swarm’s connectivity. Introducing (visible) robot states allows
many simultaneous hops without symmetry issues if, for example, only the
robots with active state are allowed to execute a hop. For this, we extend the
Basic&Plain robot model from OsLivious-GATHER by a constant-sized mem-
ory and a constant number of locally visible states to the already introduced
Extended Basic&Plain robot model. Figure 2.2 (page 15) shows an example.

Similar to the OsLivious-GATHER strategy, two robots are connected if they
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5.1 Introduction

are located at vertical or horizontal (but not diagonal) neighboring grid cells.
And vision is also restricted by a fixed constant L;-distance on the grid.

For our strategy, we adopt the idea of movable robot states from the MaNHAT-
TAN HoPPER strategy from Kutylowski et al. [KM09] that has been invented for

solving a completely different problem: shortening an arbitrary winding open

chain between two fixed (unmovable) and distinguishable endpoint robots. In
this strategy, the chain is built from statically connected robots, while chain
neighbors must be located at L-distance 1. The strategy uses movable, so-
called run states that can be generated by one of the endpoint robots. A run
moves step-wise along the chain and allows only the robot that currently owns
the run to perform a move/hop action. The authors show that for every started
run, several steps later one of the robots that receives the run can perform a
progress in the shortening of the chain. They further show that this even holds
if multiple runs are active simultaneously. This enables a very fast O(n) total
running time.

As mentioned, we want to do the gathering by fast shortening of the swarm’s
outer boundary. If we want to adopt the principle of movable run states, the
outer boundary can be interpreted as a closed robot chain.

Figure 5.1 shows swarms for both strategies that are represented as Euclidean
curves. White circles mark robots with active run state including an arrow that
shows the run’s moving direction.

We have to tackle several challenges:

#Boundaries: In general, more than one boundary exist. Inner
(dashed) and outer boundary cannot be distin-
guished

Run starting point: Positions of run starting points must be determined

by some local information (e.g., occupied cell pat-
tern in the viewing range.). As robots move, run
starting point positions change over time. Zero, one,
or more run starting points can exist at the same
time.

Run moving direction: Moving directions must be determined individual-
ly, depending on local information. As a conse-

quence, runs move in different directions.
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5 Asymptotically Optimal Gathering on a Grid

MANHATTAN HOPPER

®» open chain
run

fixed run

moving direction)

-

run
Every run achieves progress. fixed, distinguishable and

Runs never collide. unmovable run starting point

(44) S, GRID-GATHER
S6

“—outer boundary

all robots indistinguishable; all robots can move

Figure 5.1: Moveable run states. (i): MANHATTAN HOPPER strategy; (i7): GRID-GATHER
strategy
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5.1 Introduction

Boundary intersections: Overlapping robots merge (See boundary parts A, B
in Figure 5.1.(ii).). A robot can be part of different
boundaries (A) or different parts of the same
boundary (B) at the same time.

Collisions: Collisions are possible because of different moving
directions and overlappings: i.e., runs from the
same (51, Sy; Sg,S9; Sy4,S5) or different boundaries
(S3, Sg; S3,S9) can collide/intersect.

Gathering progress: Many started runs never achieve progress.

In the following, after we have given a precise model definition, we construct
closed chain substitutes from the swarm’s boundaries and develop an O(n)
gathering algorithm for the Extended Basic&Plain robot model.

Our local grid model. Our mobile robots need only simple capabilities: A
robot moves on a two-dimensional grid and can change its position to one
of its eight horizontal, vertical or diagonal neighboring grid points. A robot
can see other robots only within a constant distance that we call viewing radius
(measured in L;-distance). We call the range of visible robots viewing range.
The robots controlled by our algorithm need a viewing radius of L;-distance 19.
The robots have no compass, no global control, no IDs and no communication.
A robot has a fixed small amount of memory to store a constant number of
locally visible states. It can see the states of all robots inside the viewing range.
Note that though for sake of simplicity we say a robot r that currently owns a

rr

run state “moves its state/run to a neighboring robot r'”, this is implemented
the other way round: When r owns the run, then r’ can calculate on its own
that it will receive the run next, because it can see the active run state (including
its moving direction) of r. So, 1’ sets its run state on its own without requiring
further information from r. r just unsets its run state in the next round.

Our algorithm uses the fully synchronous time model FSYNC. Time is
subdivided into equally sized rounds of constant lengths. In every round all
robots simultaneously execute their operations in the common look-compute-
move model [CP04], which divides one operation into three steps. In the look
step the robot gets a snapshot of the current scenario from its own perspective,

restricted to its constant-sized viewing range. During the compute step, the
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5 Asymptotically Optimal Gathering on a Grid

robot computes its action, and eventually performs it in the move step.

Outline of the algorithm. As announced in the introduction, we start with
developing closed chain substitutes for the given swarms in our Basic&Plain
robot, connectivity and vision model. On the basis of these achievements we
then develop the fast O(n) GriD-GaTHER gathering strategy that benefits from
the concept of movable run states introduced in [KM09] (ManHATTAN HOPPER
strategy).

In the closed-chain based connectivity and vision model, each robot of a
chain has exactly two well-defined neighbors given as part of the input of the
problem.

Our substitute of this chain connectivity is the following: We call two robots
connected if they are horizontal or vertical (but not diagonal) neighbors on the
grid. This means that a robot is connected to at least one and at most four
robots. Initially, under the restriction that the swarm is connected, the robots
are arbitrarily distributed on the grid. A swarm is connected if the robots
cannot be separated into two subsets such that no robot of the one subset is
connected to any robot of the other subset and vice versa.

In order to find a substitute for the chain we define the so-called boundaries:
The boundaries consist of all robots that have at least one empty neighboring
grid cell. The black robots of Figure 5.2.(i) are part of the outer boundary and
the hatched robots are part of inner boundaries. By that definition the swarm
consists of one single outer boundary and typically multiple inner boundaries.
A robot can detect if it is located on some boundary of the swarm, but because
of its limited viewing range it does not know if it is located on the outer
boundary or on some inner boundary.

The goal of our algorithm is to shorten the outer boundary closed chain
substitute. However, the outer boundary does not have the same structure as
the chain because the outer boundary can have fringes or even be shaped like
an hourglass or overlap with inner boundaries, as the example in Figure 5.2.(if)
shows. Furthermore, because the robots can not distinguish between inner
boundaries and the outer boundary, our algorithm will also shorten the inner
boundaries.

Thus, our algorithm has to tackle two problems: First, we have to ensure that
the algorithm will actually shorten the outer boundary. Second, we have to
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5 Asymptotically Optimal Gathering on a Grid

ensure that the shortening of the inner boundaries does not disturb the short-
ening of the outer boundary. This is because runs from different boundaries
can also intersect (cf. Figure 5.1.(ii) (see boundary parts A and B)).

The main idea for our algorithm is the following: Our algorithm achieves
progress in the gathering by performing merge operations. A merge operation
is a hop of a robot located on the boundary onto the same grid cell as one of its
neighbors and the removal of one of them. A merge operation is only allowed
if it does not disconnect the swarm.

Sometimes no merge is possible without disconnecting the swarm. In that
case we want the robots of the boundary to reshape the swarm. Reshapement
means that the robots reach positions such that new merges become possible,
which does not break the connectivity. Reshapement operations consist of two
types: Starting a reshapement and continuing a reshapement.

Starting a reshapement is allowed only to a robot that is located on a bound-
ary and can see a certain configuration of robot positions in its viewing range.
The robots that are allowed to start a reshapement generate a so-called run state,
hop to another position, and give the run state to neighbors on the boundary.
Robots receiving the run state are called runners and are allowed to continue
the reshapement by hopping in the following round and giving/moving the
state to neighbors of the boundary. In that way the run state will be moved
along the boundary by the runners. If two certain runs converge until the
corresponding runners can see each other inside their viewing range, then a
merge can be performed. Gathering is finished when all robots are located
within a 2 x 2 square, since in our model that situation cannot be simplified
anymore.

For counting the progress of our algorithm, it is sufficient to consider the
merges of the outer boundary only, i.e., we look at the shortening of the outer
boundary. We will show that after a constant number of rounds either a merge
is possible or new run states will be generated. The latter will provide at least
two runs that converge and enable a merge after O(n) rounds. The runs move
in parallel and our strategy ensures that the runners do not disturb each other.
Different started run states result in different merges. Therefore the algorithm
gathers a swarm of 7 robots in time O(n). Our result is asymptotically optimal

for worst case swarms.
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5.2 The Algorithm

5.2 The Algorithm

In our model, merges/removals of robots mean progress of the gathering.
Then, at the latest after n — 1 removals the gathering is done. In our model, a
robot can be removed if two robots are located at the same grid cell. Then, one
of them is removed.

Because a robot’s viewing range is restricted to just a constant size, these
removals cannot be performed easily in general. Our algorithm performs two
basic operations. More precisely, we have to deal with two cases:

1. Some neighboring robots perform a single hop such that afterwards at
least two robots are located at the same position, while preserving the
swarm connectivity. Then, we remove one of them. This is a so-called

merge and further discussed in Section 5.2.1.

2. If on some parts of the swarm merges are impossible, we perform so-
called reshapements to reshape the swarm in order to prepare merges in
succeeding steps. These are explained in Section 5.2.2.

In Section 5.2.1, we now start with case 1. For the sake of simpler descriptions,
we use terms like horizontal, vertical, downwards, left,... Since our robots do
not have a common sense for this, the descriptions/figures are also to be

understood in a mirrored or rotated manner.

5.2.1 Merges

A merge operation, or simpler a merge, is the simultaneous local operation of
a sequence of neighboring robots that merges at least one robot, while not
harming the overall connectivity of the swarm. There are different merge
operations, all parametrized by a parameter k, as depicted in Figure 5.3. In the
figure, the case k = 1 denotes the simplest variant, where only a single robot
hops onto a grid cell occupied by another robot. Because the robot’s viewing
radiusis > 1, namely 19, also bigger merges are possible within the local vision.
Then, for not breaking the swarm’s connectivity, multiple robots (the black
ones in the figure) have to hop simultaneously: Using the local information
about the occupied and empty cells in its viewing range, every robot can
decide individually, on the basis of its local knowledge, if it participates in the
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5 Asymptotically Optimal Gathering on a Grid

simultaneous merge operation or not. Specifically, the marked white grid cells
must not contain any robot, any further marked cell must contain a robot, and
the maximal length k of a merge configuration is limited by the viewing radius.
Moreover, all not explicitly depicted cells are ignored for the decision.

The k robots that constitute a merge form a subboundary of the swarm.
When operating, these subboundary robots simultaneously hop one grid cell
in the same direction (in the illustration, this means downwards). The swarm’s
connectivity is ensured, since a merge is performed only if the depicted white
cells are empty. After the hops of the black subboundary robots at least one
cell contains two robots and hence at least one robot is removed, because in

the merge operation definition gray robots do not move.

before: after:

[ ]
length 1:
o W
" =

k

k

Figure 5.3: Robot subboundaries that allow progress hops (merge operations). The value
of the length k indicates the number of robots (the black ones) of the subboundary.
k is upper bounded by a robot’s constant viewing radius. The operations are
performed only if the cells, marked by white squares, are empty. Else, the swarm'’s
connectivity might break.

length k > 1: DEE ED

Possibly, several simultaneous merges can occur at different parts of the
swarm. The problematic cases we have to discuss are those where two of the
robot subsets participating in the merge operations, i.e., the subboundaries,
consisting of the black and gray robots of Figure 5.3, overlap (cf. Figure 5.4).
Precisely, two cases need a closer look. We refer to the black and gray robots
of Figure 5.3.:

1. The beginnings and endings of the subboundaries overlap by two robots.

2. The beginnings and endings of the subboundaries overlap by three

robots.
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5.2 The Algorithm

An example for 1. can be seen in Figure 5.4.a): (i): The robots of the sub-
boundaries 1, ..., 6 will all perform the hop as the black ones during the merge
operation (Figure 5.3). In order to ensure a merge in this special case, not
all of these subboundaries hop simultaneously: Every round, our algorithm
executes the Merge step two times: at first only for length 1 and afterwards
for all lengths > 1. Then, at first only the robots of the subboundaries 1 and 6
execute their merge hops. Here, two robots can be removed. Afterwards, the
robots of subboundaries 2, ..., 5 hop ((i7)): In the example of (ii), the special
case occurs that after the hop, the robot 4 is not located at the same position as
b and vice versa. So, no robot can be removed here. This does not matter, as
the robots on the target cells of the outermost hopping robots do not move, so
that there robots can be removed after the hop.

An example for 2. is shown in Figure 5.4.b). Here, the robot r belongs to
the both subboundaries 1 and 2: i.e., concerning subboundary 1, r would
hop downwards, but concerning subboundary 2 it would hop to the left. In
this case, r performs a diagonal hop to the lower left, while the other robots
perform their usual hops. Afterwards, ,a, b occupy the same grid cell and a, b
are removed without breaking the connectivity.

5.2.2 Reshapement of the swarm by runners

From the global perspective, if nowhere in the swarm the algorithm’s local
merge operation is possible, then we call it a Mergeless Swarm. In this case,
our goal is to perform certain reshapements of the swarm’s outer boundary in
order to make merge operations possible. Still considering the swarm from a
global perspective, if there is a subboundary as depicted in Figure 5.5 by the
black robots, then we continuously let an outermost robot of this subboundary
perform the depicted diagonal hops. Eventually, this will shorten the sub-
boundary enough to allow a (local) merge operation (cf. Figure 5.3). We say
these hops reshape the subboundary.

For an individual robot with its limited viewing range this raises some
challenges.

1. When a robot decides to start the reshapement, within its restricted
viewing range it does not know if its task of performing diagonal hops
will lead to merges (In Figure 5.5, this is the left outermost black one in
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a) (i)

before: subboundary 6
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Figure 5.4: Overlapping merges. (significant examples)



5.2 The Algorithm

round i.).

2. In the following rounds, due to the local viewing ranges and skewed
coordinate systems, the local view of an outermost black robot may be
the same as that of its gray neighbor. So, we have to ensure that the
reshapement is continued by the outermost black robots instead of by

their gray neighbors.

3. When robots decide to start the reshapement, symmetries of the sub-
boundary’s local shape may lead to breaking of the swarm’s connectivity.
In Figure 5.6 this is the case if both r and 7’ start the reshapement.

e O]
Daglllllllllll

i+1 | RN
HEEEEEEEEE
llil
L]

i+2 | HEEEEEEEEN
: ENEEEEEEN
llil
L]

Figure 5.5: If the length of the black subboundary (i.e., the value of k in Figure 5.3)
is larger than the robots’ viewing radius, we shrink it by letting one or both of the
outermost black robots perform diagonal hops. We indicate such hops by diagonal
arrows.

L]
[ 1]
I
L

Figure 5.6: If r and 7’ both start reshaping the subboundary, the connectivity might
break.

In the following, we tackle these challenges by introducing certain locally

69

gty
-||_|--|||.|||-
.
Ilr

L S

"
f

il
—lllll ll--=“-.'i




5 Asymptotically Optimal Gathering on a Grid

visible states of a robot, which we call the run states. We call a robot with an
active run state a runner and allow only runners to perform the reshapement

hops. Robots can achieve the run state in two different ways:

start runstate: If the local subboundary within a robot’s viewing range has
a certain configuration, i.e., the relative positions of other robots and
empty cells, then the robot decides on its own to generate the run state.
We say such a robot starts a run. On the basis of the configuration of the
local subboundary, the run state gets a fixed moving direction along the
boundary. A robot can start and store up to two run states at the same
time. Figure 5.8 shows how the local configurations must look like.

move runstate: A runner R(S) can move the run state S to its boundary
neighbor 7" in moving direction of S. We say the run state has moved
from R(S) to v, while its in “start runstate” initially set moving direction
always remains unchanged. Afterwards, ' is identified by R(S).

i

Once a run state has been started in “start runstate”, “move runstate” is exe-
cuted in every of the following rounds. This means that the run moves along
the boundary at constant speed and in the initially settled moving direction.
When starting runs, the shapes of Start-A and Start-B in Figure 5.8 ensure
that the run starts cannot break the swarm’s connectivity. For this, in a situation
like in Figure 5.6 we do not start any runs. We name subboundaries consisting
of shapes like in Figure 5.6 quasi lines. Figure 5.7 gives an example of a quasi

line. Definition 5.1 contains the formal definition.

first 3 robots DDDDDD DDDDD}&?E? e
o1 DDDD; I
im

quast lme endpomt

Figure 5.7: Example of a quasi line. The fat robots are its endpoints.

Definition 5.1 (quasi line). We call a subboundary a horizontal quasi line if the

following conditions hold:
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5.2 The Algorithm

1. At least its first and last three robots are horizontally aligned.

2. Allits subboundaries of horizontally aligned robots contain at least three
robots.

3. All its subboundaries of vertically aligned robots contain at most two
robots.

In a Mergeless Swarm, at both ends of a quasi line a run starting subboundary
Start-A or Start-B of Figure 5.8 in a matching rotation or reflection occurs. (If
the swarm is not mergeless, then the subboundaries outside the quasi line’s
endpoints may also have other shapes than these.)

The definition of a vertical quasi line follows analogously.

Start-A Start-B

robot with run state S: runner R(S)  two run states

run state ?—\Jrﬂl_:— _ ,Q:Jl_\'_ _
@ui G 1)
l_ |_I_—|_' moving direction of S —_|—

1
1
1 7 |
1, 1

(i) (i)

Figure 5.8: Run starting subboundaries: The robots marked by white circles decide to
start the run states, only on the basis of the relative positions of the marked robots
and empty cells. Here, gray squares denote robots, while white squares denote
cells that must be empty. The white arrows indicate the moving direction of the
runs. This is the notation we will use for marking a runner. R(S) identifies the
runner/robot which currently has the run state S; In (i7), Start-B, the robot marked

P

by the circle is the endpoint of a horizontally and a vertically aligned subboundary - -
at the same time. Here, we must start two runs moving in both directions along the H
boundary. L---=....=__ .=---='"'!

We let runs start at endpoints of quasi lines. We let them move along such

quasi lines and, while doing this, perform reshapements of the boundary. For L

this, depending on the local shape of the subboundary, we require the run

operations, shown in Figure 5.9. {

a) OP-A: The runner and at least the next 3 robots are located on a straight

line. Here, the runner first performs a diagonal hop, then moves the run
to the next robot.
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a) OP-A v) OP-B c) OP-C
round: HEN ] target 1] c/_t_a_ get
D ooEED DoEd | OOl
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] 'D'D’I
| i 0
(R <) CIEel ] CIEel
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Figure 5.9: a) OP-A: Reshapement by a runner. The operation takes only one round.
b) OP-B: No diagonal hops are performed until the target corner c is reached. ¢)
OP-C: Special case when new runs start: First, perform one diagonal hop, then no
diagonal hops until the target corner c is reached.
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5.2 The Algorithm

b) OP-B: The runner and only the next 2 robots are located on a straight line.
Then, for 3 times the runners just move the run to the next robot without

any diagonal hops. Afterwards, it is located at the target corner c.

¢) OP-C: This one is needed at most once for a new run, if started at the run
starting subboundary Start-B (Figure 5.8.(ii)).

These operations shall finally enable merges.

Two properties let multiple runs be active in parallel.

1. Usually, at different positions, the whole swarm contains multiple run

starting subboundaries (cf. Figure 5.8) at the same point in time.

2. No matter if previously started runs are still active, every constant num-
ber of L = 23 rounds all robots simultaneously check if they can start
new runs (cf. Figure 5.8) and if so, they do so.

Therefore, we have to deal with the event when two runs meet on a quasi line.

We distinguish two cases (cf. Figure 5.10). 4) This run pair has enabled the

before: after 1 more round:
)%DDDDDDS?
D%’ L] HENN NN

before: after 4 more rounds:
g target of Sy Sl
AEEECEE e
' : '%)k
HEAEEE
" target of S, [ fep-Ss

Figure 5.10: a) Merge operation: The reshapements of the runs Sy, S, have enabled a
merge. This merge is performed and both are stopped. The operation takes only
one round. b) Run passing operation: The runs S;, S, cannot enable a merge. If
their distance along the boundary is less or equal 3, then they pass each other
by only keeping moving but without making the runners perform diagonal hops.
Afterwards, i.e.,, when S, S, have reached their target robots/corners c,, ¢y, they
return to normal operation.

desired merge. b) This pair is oriented in a way that does not enable a merge.
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5 Asymptotically Optimal Gathering on a Grid

We let the runs of such pairs pass along each other. Figure 5.10.b) shows how
this is performed for the case that both runs are located on the same quasi line:
At the time when their distance along the boundary (i.e., the number of robots
on the subboundary connecting both +1) is 3 or less, they only keep moving
along the boundary, but the runners do not perform reshapement hops. We
call 3 the run passing distance. This is repeated until S; is located at its target
robot c; (then also S, is located at its target c¢1). We call this the run passing
operation. Afterwards, the normal reshapement operations are continued. In
Section 5.5, we provide a full explanation of all possible situations of needed
run passing operations. While in the easy case a viewing radius of 11 is the

minimum value that suffices, we then need the value of 19.

5.2.3 Stopping runs

. RO
QDDDDDDﬁ%QDD
(ESODDOD

Figure 5.11: The distance between S;, S is 8.

We use the example of Figure 5.11 for introducing some terms when speaking
about runs: Because S1, S, are moving in the same direction, we call them
sequent runs, while relative to their moving direction S, is located in front
of S. The distance between them is defined as the number of robots on the
subboundary connecting both +1. We say S; is visible to S, if the distance
between them is < 19.

In order to ensure that runs, that are active at the same time can work
correctly, some of them have to stop in certain situations. More precisely, we
let a runner R(S) stop/terminate its run S if one of the conditions of Table 5.1
is true.

We give some more detailed explanations concerning some of the conditions
of Table 5.1:

2) For example, because of merges two sequent runs may come too close to
each other, which then might hinder the reshapements and the pipelining
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5.2 The Algorithm

A runner stops/terminates its run if at least one of the following conditions
is true:

1. It was part of a merge operation.

2. It can see the next sequent run in front of it (This happens if sequent
runs have come too close to each other, e.g., because of merge opera-
tions.).

3. It can see the quasi line’s endpoint in front of it.

4. While it performs the run passing operation (Figure 5.10.b)), some
change of the subboundary’s shape prevents the operation from being
completed successfully. (This can happen because of a merge.)

5. While it performs the operation OP-B or OP-C (Figure 5.9), some
change of the subboundary’s shape prevents the operation from being
completed successfully. (This can happen because of a merge.)

6. While it performs the operation OP-A or OP-C, it has hopped onto an
occupied cell. (Then, one of both robots is removed.)

SommEmmmncy
I--=----l g “i

--h.-.hll-lllg-...r...

Table 5.1: Conditions that let a run terminate.
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(Section 5.3.2). The affected runners can detect this on their own. The
criterion for this is that the next sequent run in front of them becomes
visible. Then, the termination condition 2) matches and the run behind

stops.

4) We assume that in Figure 5.10.b) to the right of robot ¢, another run Ss,
moving in the same direction as S,, is located. During the rounds in
which §; and S, are performing their run passing operation, S3 keeps
moving towards c,. Now, for example, it may happen that because of
the reshapements of S3, c; becomes part of a merge operation. Then, c,
would hop downwards such that the corner shape does not exist anymore.
Because this corner has been the target of S;, S; could not continue its
reshapements after the run passing, so it terminates.

In summary, all robots synchronously execute the algorithm, shown in Fig-
ure 5.12.

5.3 Why the Strategy Produces Progress in Gathering

For measuring progress, we only consider runs started pairwise at both ends
of certain quasi lines. The kind of run pairs that in any case lead to a merge
are called good pairs.

5.3.1 Good pairs

Assume a newly started run pair, connected by a quasi line. We call this pair a
good pair if the following is true (cf. Figure 5.13): The exterior neighbors (the fat
bordered robots in the figure) of the run pair are both located downwards and
the whole (global) area above the connecting quasi line does not contain any
robot (The same definition analogously holds for any rotation.). Looking at
our run operations OP-A, OP-B and OP-C as well as the run passing operation
and merges, we notice that none of them could let a robot which is not part of
the considered quasi line hop into this empty area.

Such good pairs always enable a merge if they have been moving close
enough together and then terminate. Figure 5.14 shows an example of a good

pair where the shape of the quasi line connecting both is a straight line. The
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5.3 Why the Strategy Produces Progress in Gathering

Every robot r in every round checks the following three steps:

1. Merge: (In each round executed two times: First execution: Robots

perform merges only if length = 1. Second execution: The robots
perform merges only if length > 1.)
If r detects a possible merge within its viewing range then

¢ if r is one of the black robots in Figure 5.3, it hops downwards.
* if afterwards r is located at the same position as one of the gray

robots, the gray one is removed without breaking the connectivity.

2. Run Operations: If r is a runner, then

a) Its run terminates/stops if any of the conditions of Table 5.1 is
true.

b) Runner’s Movement and Reshapement
® Run passing:

— If r is currently in progress of executing the run passing
operation (Figure 5.10.b)), then this operation is contin-
ued.

— Else, if r can see a run in front of it, such that both are
moving towards each other and the distance between
them is less or equal than the run passing distance, then r
starts the run passing op.

e If r is not in progress of passing, then

— If r is in progress of executing a run operation OP-B or
OP-C (cf. Figure 5.9), which take more than one round,

then this one is continued. Y

1----5. unnnsd
NENEEEEEEES

— Else: r executes the matching new run operation OP-A,
OP-B or OP-C.

l-=..1-l

3. Start new runs: Every (L = 23)th round, r checks if it can start a new
run:
If 7 is one of the robots marked by circles of the run starting subbound-
aries Start-A or Start-B (cf. Figure 5.8), then it starts one resp. two
runs.

Figure 5.12: The algorithm.
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Figure 5.13: Pair of runs, connected by a quasi line. The runs are a good pair if the outer
subboundary neighbors (the fat robots) are both located downwards and globally
the whole area above does not contain any robots.

example of the figure shows that using runs, we solve the problem we have
had in Figure 5.5, where it was impossible to locally decide by the robots
which of them has to perform the reshapement hop. Figure 5.15 shows an
example for a more general case of a quasi line: Again, the black subboundary
will be reshaped for performing a merge. But now, several run operations
(cf. Figure 5.9) are needed until a runner arrives at an endpoint of the black
subboundary: Until round i + 4, the runners execute only the operation OP-A.
Afterwards, the runner R(S,) starts operation OP-B, while R(Sy) still executes
OP-A. After operation OP-B has been processed completely, S, finally is located
at the right end of the black subboundary (round i + 8). Now, its runners
start shortening this subboundary by executing OP-A until the merge can be
performed. Afterwards, Sy is still active and keeps moving and will stop at the
latest when an endpoint of the quasi line becomes visible.

Many of the started runs do not belong to good pairs. In Section 5.4, we will
prove the actual existence of good pairs.

5.3.2 Pipelining

We will show that even if multiple good pairs are nested into each other, dif-
tferent good pairs will enable different merges. This is what we call pipelining.
Figure 5.16 shows an example for the case that the quasi line has the shape of
a straight line. The more general case works analogous to this.

As runs are moving with constant speed, the runs of the inner good pair

will meet first and, as the result, first enable a merge and stop. Then, obviously
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Figure 5.14: A good pair of runs. In round i, the new runs start (cf. Figure 5.8). Af-
terwards, the action OP-A of Figure 5.9 is repeatingly executed. The runs move
closer and closer together. If the runs have moved close enough, a merge can be
performed.

the outer good pair will also enable a (different) merge, some rounds later.

5.4 Correctness and Running Time

Our basic argumentation for the total running time is the following: If every
round a merge can be performed, then the time needed for the gathering is
obviously upper bounded by 1, with n being the number of robots. If no merge
can be performed, then every L = 23 rounds a good pair can be started which
reshapes the swarm such that a merge can be performed after at most n further
rounds. As L is a constant, this then leads to a linear total running time O(n).

In this section, we give the formal proofs. Our goal is the proof of the
correctness and the linear running time (Theorem 5.4). In our main approach,
we want to enable merges by good pairs if else no merge could be performed.
The following two lemmas prove that this actually works. They are the base
for the proof of the theorem. The proofs of the lemmas can be found in
Sections 5.4.1 and 5.4.2.
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Figure 5.15: A good pair, started on a quasi line in order to shorten the black sub-
boundary. Several and different run operations are needed.
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Figure 5.16: Pipelining of runs. New runs are started every L = 23 rounds.
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Progress pairs. Because of the local vision, new runs and maybe also good
pairs are started every L = 23 rounds, regardless of whether or not somewhere
in the swarm merges can be performed. In the following analysis, we will
argue only with new good pairs that are started if during the last L — 1 and
the current round in the whole swarm no merge has been performed. We
distinguish such good pairs from others by calling them progress pairs.

Lemma 5.2. Every L = 23 rounds either a merge has been performed or else a new

progress pair is started.
Lemma 5.3. For all progress pairs the following properties hold.
a) Every progress pair enables a merge (after at most n rounds).
b) Different progress pairs enable different merges.
Using these two lemmas, we can now prove the total linear running time.

Theorem 5.4. Given a swarm of n robots. Then, after O (n) rounds gathering is done.

This is asymptotically optimal.

Proof. We subdivide time into intervals of lengths L, where L denotes a constant
number of rounds. Merges can be performed during at most 1 such intervals,
because every merge removes at least one robot. In all other intervals a new
progress pair starts (Lemma 5.2). Each of these progress pairs leads to a merge
(Lemma 5.3.a)). Because no two of them lead to the same merge (Lemma 5.3.b)),
the number of intervals without merges is also upper bounded by .

By Lemma 5.3, a progress pair needs at most n rounds until it has led to
a merge. We assume the worst case, which is that in the last of the 2 - n
intervals the last progress pair was started. Then the total running time is
upper bounded by 2n - L + n, which proves the upper bound of the theorem,
because L is a constant.

In our model, the diameter of the initial configuration provides the worst

case lower bound (2(n) for any gathering strategy. O

5.4.1 Proof of Lemma 5.2

Proof. The lemma requires that the swarm is a Mergeless Swarm. As the basis of
our proof, we start by showing that then the outer boundary of the swarm only
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5 Asymptotically Optimal Gathering on a Grid

consists of quasi lines and stairways (cf. Figure 5.17). First, we assume that
every robot is connected to only two other robots. Then, especially no robots
are located at the inside of the swarm, and the swarm consists only of its outer
boundary. We start with the assumption that merges are possible only up to
the length 2 (cf. Figure 5.3). Then, as by definition all horizontal subchains of
a horizontal quasi line consist of at least 3 robots, no merge can be performed
on them. In order to connect two horizontal or two vertical quasi lines without
enabling a merge, they must be connected by so-called stairways. Stairways
can have arbitrary length and are subchains of alternating left and right turns.
Figure 5.17 shows an example. The bicolored robots are the connection points

between the quasi lines and the stairway. All differently shaped connecting

HEEEN
O]
N ROOD oo

quast line 1 [ N quast line 2

COOIe ] I
DDDDD%%&. NN

stairway

Figure 5.17: Two quasi lines, connected by a stairway.

subchains would allow merges. Stairways can also connect a horizontal and a
vertical quasi line. Therefore, assuming that every robot is connected to only
two other robots, the whole outer boundary consists only of quasi lines and
stairways.

This is still correct if we extend the allowed merge operations to length > 2,
because executing such a merge operation on a quasi line does not harm the
quasi line property of the corresponding subchain (cf. Definition 5.1 (quasi
line) and Figure 5.3 (Merge operation)). Hence, this only reduces the number
of “allowed” quasi lines.

Now, we also allow connectivities bigger than 2, i.e., a robot can have more
than 2 horizontal or vertical neighbors. Then robots may also be located at the
swarm’s inside or different parts of the outer boundary may be neighboring
(i.e., if at that position the diameter = 2). Such robots can hinder merges.
Figure 5.18 shows examples for configurations with existing inside robots. In

the figure, the dashed bordered robots are part of the outer boundary. The
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Figure 5.18: The hatched robot prevents the merge.

hatched robots prevent the black ones from performing a merge for which the
black ones needed to hop upwards. So, although the swarm is mergeless, the
outer boundary may still contain mergable shapes. For merges of length > 2
((7) in the figure), the outer boundary then still is a quasi line. For merges of
length 1 and 2 ((iii, ii) in the figure), the black robots are not part of the outer
boundary. So, in every Mergeless Swarm, the outer boundary consists only of
quasi lines and stairways.

Now, we can show that in a Mergeless Swarm a progress pair always exists.

For this, we assume a global north and west and construct a vector chain along
the swarm’s outer boundary as follows. We consider the upper envelope of
the swarm and take its left- and rightmost robots s respectively t. Because s, t
must be located on the boundary of the swarm’s smallest enclosing rectangle
and furthermore the swarm is mergeless, below each of them two additional
robots must exist (cf. Figure 5.19). We start from the left at the vector 7
constructing a vector chain in clockwise orientation along the outer boundary
of the swarm, ending at the vector v,,. The figure shows a significant example
of this construction. Here, the gray colored robots denote the corresponding
part of the swarm’s outer boundary. Starting from its left end, we divide this
vector chain into longest x-monotone subchains. The vector, originated at s, by
construction points to the east. The second subchain starts when the first vector

points to the west. The third subchain starts when the first vector points to the

east again, and so forth. In the figure, these are the vectors v74 respectively v5.

The constructed vector chain may overlap itself at places where the diameter

of the swarm’s boundary amounts only 1, but cannot contain any crossings.

Because all constructed subchains are x-monotone, at least one of them is fully
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Figure 5.19: Constructing a vector chain along the swarm’s outer boundary.

part of the upper envelope. Let C denote this subchain. If we consider C then,
as the swarm is mergeless, both predecessors of its first vector must point to
the north, i.e., the corresponding robots are located downwards. By the same
arguments, both successors of its last vector must point to the south, i.e., the
corresponding robots are also located downwards. This also holds if s or t are
endpoints of this vector chain. Then, on both sides three neighboring robots
are on a vertical straight line. By Definition 5.1 of a quasi line, these robots
must be part of vertical quasi lines.

In contrast, if looking at the subchain C, then, because the swarm is mergeless,
C must contain at least two succeeding vectors, both pointing to the east. The
three connected robots then must be part of a horizontal quasi line. At the
transition between horizontal and vertical quasi lines, possibly connected by
stairways, the shape matches the starting subboundaries Start-A or Start-B
of Figure 5.8. As both vertical quasi lines are located downwards w.r.t. the
horizontal quasi line of C, a good pair can be started (cf. Section 5.3.1). Because
we have assumed that the swarm has been a Mergeless Swarm also during the

previous L — 1 rounds, this good pair is a progress pair. O

5.4.2 Proof of Lemma 5.3

For the proof, we need some run invariants stated in Lemma 5.5.
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Lemma 5.5. The value L = 23 and the value 19 for the viewing radius ensure that
for every run S until it terminates, the following invariants hold.

1. Every round, S moves one robot further in moving direction.

2. After the first three rounds after the start of S, the reshapements of the runner
R(S) do not violate the quasi line Definition 5.1 of its own quasi line.

3. The reshapements of R(S) do not violate the quasi line shape of other quasi lines
that belong to good pairs.

4. S cannot see other sequent runs in front of it.

5. S is either in progress of passing along another run or the runner R(S) executes
one of the operations OP-A, OP-B or OP-C (Figure 5.9 on page 72).

6. Good pairs stay being good pairs.
Now, we can prove Lemma 5.3:

Proof. a) : At the time, a progress pair S, S’ is started, the subboundary con-
necting both is a quasi line. Because of Lemma 5.5.2) and 3), this also does
not change if other runs are located on this quasi line or next to it. And also
merges preserve the quasi line properties. So, if not stopped, S and S" keep
moving towards each other (Lemma 5.5.1)). Because of Lemma 5.5.6) a merge
can be performed at the latest when they meet, which takes at most n rounds.

It remains to show that S, S’ are not stopped by the algorithm’s termination
conditions (Table 5.1 on page 75) before the merge could be performed. In the
following, we check all these conditions. In this proof, we denote the quasi
line on which S, S’ are located by the variable .

2): Let S* be the next sequent run in front of S. By definition of a progress
pair, no merge has been performed since the last time new runs have been
started. This means that if no run from outside the quasi line g has inter-
fered with g, the distance between S and S* is at least L — 3 (cf. the proof of
Lemma 5.5.5)), which is bigger than the viewing radius. (The same analo-
gously holds for §'.) So then, the runs of a progress pair cannot be stopped by
this termination condition. So, we assume that other runs have interfered with
g. If S* originates from a different quasi line, S and S* can only be oriented
in the way shown in Figure 5.20, because the run operations require the cells
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5 Asymptotically Optimal Gathering on a Grid

“above” to be empty. If these quasi lines shall meet, then at least one of them
cannot be y-monotone. But then a merge would have removed at least one
of them before both runs have come too close. So §* cannot originate from a

different quasi line.

LI
N

L]
]
]
]
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]
]
]
[
[]

68 O

Figure 5.20: Too close sequent runs cannot originate from different quasi lines.

So, a run on a different quasi line (lying alongside q) must have shortened
the part of g that connects S and S*. This can only have happened because of a
merge operation, but this is not possible, because S, S’ is a progress pair.

3): If a run of a progress pair can see an endpoint of the quasi line in front
of it then, because of Lemma 5.5.2) and 3), the other run of the progress pair
must have previously been stopped. As a run of a progress pair cannot be
stopped by condition 2), it instead must have been stopped because of a merge.
So, a termination because of condition 3) is allowed.

4,5): The change of the quasi line’s shape could either have happened
because of the reshapement of a sequent run or because of a merge operation.
Because we have ensured the minimum distance of two sequent runs to be
large enough, the first case cannot have happened. So, a merge must have
been the reason. Then, this merge must have been enabled by another run S*,
moving towards S. If S* is the partner run of S, then stopping is allowed. Else,
because progress pairs are nested into each other, S* either was not a run of a
progress pair or its partner run has previously been stopped. In the latter case,
because runs of progress pairs cannot be stopped because of condition 2), the
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5.4 Correctness and Running Time

run must have been stopped by an earlier merge. In both cases, the current
merge can be credited to the progress pair of S.
1): By the same arguments, this merge does not need to be also credited to a

different progress pair. This then also proves b) of the lemma. O

The missing proof of Lemma 5.5 can be found in Section 5.4.3.

5.4.3 Proof of Lemma 5.5

Proof. Let q be the quasi line S is located on and w.l.o.g. we assume that g
is a horizontal quasi line. 1): This directly follows by the run definition in
Section 5.2.2.

2): Cf. Figure 5.9 on page 72. OP-A ensures that on horizontal quasi lines
only horizontal subchains of lengths > 2 are shortened and vertical subchains
remain unextended. OP-B does not reshape. OP-C can be executed only during
the first three rounds after S has been started. Our design of the run passing
operation also ensures that the quasi line properties are maintained.

3): Because of the run stopping condition of Table 5.1.3) on page 75, R(S) can
only reshape a quasi line g* if 4* is also a horizontal one. As the run operation
OP-C cannot be applied inside g*, we only need to consider OP-A. If the cell
onto that R(S) hops is empty, then OP-A (because of the cells that are required
to be empty) can be executed only if S is also located on g*, because of the good
pair definition. But then, by the same arguments as in 2), the reshapements of
R(S) cannot violate the quasi line definition. If in contrast the cell onto which
R(S) hops is occupied by some of the robots of g%, then this operation does not
modify the shape of g*.

4): This is ensured by the run termination condition of Table 5.1.2).

5): Cf. Figure 5.9. All run operations OP-A, OP-B and OP-C ensure that if S
was located at some corner c; when the operation started, it afterwards either
is located at some other corner ¢, such that both corners are rotated equally
or terminates if the target corner has been removed during the operation
(cf. Table 5.1.5,4)). Then, because still located on a quasi line (cf. 2)), again
OP-A or OP-B can be applied or run passing is started.

The run passing needs a closer look because it interrupts other operations.

In order to ensure a regulated behavior, we chose the distance between sequent
runs big enough such that a run does not have to execute a new run passing
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5 Asymptotically Optimal Gathering on a Grid

operation before it has finished its previous one. As the value of the constant
L controls the length of the waiting intervals between the start of two sequent
runs and our stopping conditions maintain this minimum distance by stopping
a run if the next sequent run in front of it becomes visible, we need to settle
the values for these constants appropriately. At this place, we only analyze the
case that was explained in Section 5.2.2, i.e., all participating runs are located
on the same quasi line. The other cases (Section 5.5) can be proven similarly.
We look at two sequent runs S; and S7"° such that 55" has been started after
S1. Their distance D is at least L — 3. This value is achieved if at the start of S;
the operation OP-C and next, OP-B was executed.

Now, we chose the value for the constant D big enough for ensuring that
while some run S, is passing along S, 55%“ becomes visible to S, the earliest
when the passing operation with S; has been completed. Figure 5.21 shows
an example for the longest possible duration of a run passing operation. Here,

round i: round ¢ + 2:

LU EIEE

0 0
ﬂ@DDDDB%Q& ORI )
e e

target of Sy

Figure 5.21: Runs, passing along each other while the runner R(S;) is executing the
operation OP-B.

after the run passing has been started, it takes 6 rounds until S, has arrived at
its target corner. Because the run passing operation starts when the distance
between S; and S, is < 3, after the passing operation, the distance between
S, and S§¥°“ equals D — 9. We want this then to still be > 3 so that S5%““ is not
visible to S, before this point in time. So we choose D > 12 and together with
the above argumentation concerning the minimum distance between sequent
runs it follows L > 15. In order to detect that the distance has become smaller
than 12 (= D) in which case we have to stop a run (cf. Table 5.1.2)), the viewing
radius must be 11.

Using the same construction, but including all other possible cases of run
passings (Section 5.5), we can show that the values 7 for the run passing distance,
L = 23 and a viewing radius of 19 suffice.
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5.5 Run Passing Operation in Detail

6): When defining good pairs in Section 5.2.2, good pairs have been char-
acterized by the relative position of the outer direct neighbors of the good
pair according to the quasi line. The first part of the proof of 5) finishes the
proof. O

5.5 Run Passing Operation in Detail

If two runs S, S’ that are moving towards each other, but do not enable a merge,
have come too close to each other, then we let them pass along each other
with a constant movement speed but without performing diagonal hops, in
order to prevent the connectivity from breaking or destroying the quasi line
property. We call this the run passing operation. If they have become close
enough that the operation is needed, then also S can see S" within its constant
viewing range and vice versa. For the run passing operation, it is important to
assign a target corner to every such run so that it can continue its reshapements

afterwards. Cf. Figure 5.22. The subfigures show two runs S, S’ that need to

Figure 5.22: Classification of all possible cases that can occur if two runs need to pass
along each other.

pass along each other. The curve g, originating at S symbolizes the quasi line
that belongs to S. Analogously, the quasi line 4" belongs to S’. We can assume
that locally no robots are located in the area above g and below ¢’, because else
the corresponding run S respectively S’ could not be part of a good pair so
that it is allowed to stop itself. Then, the run passing is not needed anymore.
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5 Asymptotically Optimal Gathering on a Grid

If a run passing operation is necessary then, between the locations of S, S’, the

quasi lines g, 4" must in some way overlap. We now explain that in all possible

cases of overlappings always suitable target corners can be assigned to both of

the runs, so that they can continue their reshapements after the passing. We

refer to Figure 5.22.

90

a)

b)

d)

e)

q,q" are identical. Then the run passing operation executes in the way
explained in Section 5.2.2.

q,q" overlap at the location of S and at the location of S’. Then by the

same arguments as in a), the target corners ¢, ¢’ must exist.

q,q" are disjoint. Then the following reshapements of S, S" will either
make g and q' overlap or not. In the first case, the overlapping leads to
the removal of robots so that 5,5’ are allowed to stop at this point in
time. In the second case, S, S’ can proceed their normal reshapement
operations without interfering.

q,q" overlap only at the location of S". Then, the vertical distance between
S and S’ must be > 0 because else a merge would make a run passing
superfluous. As on the right, g’ is located below g, (d > 1), there must
exist some corner ¢* with the same rotation as the corner at that S’ is
located. The robots of 4" then reconfigure this way that c* is located at
the right endpoint of the sub quasi line. Afterwards, S’ can move to this
corner and then continue its reshapements. In contrast, S can simply

move to ¢’.

q,q" overlap but are disjoint at both endpoints. Then, by the same argu-
ments as in d), both target corners exist.



CHAPTER O

Gathering a Closed Chain of Robots on a Grid
CLOSED-CHAIN-GATHER Strategy
Extended Basic&Plain Closed-Chain Robot Model

E consider the following variant of the two-dimensional gathering
problem for swarms of robots: Given a swarm of n indistinguishable,
point-shaped robots on a two-dimensional grid. Initially, the robots

form a closed chain on the grid and must keep this connectivity during the
whole process of their gathering. Connectivity means that neighboring robots
of the chain need to be positioned at the same or neighboring points of the
grid. In our model, gathering means to keep shortening the chain until the
robots are located inside a 2 x 2 subgrid.

Our model is completely local (no global control, no global coordinates, no
compass, no global sense of chirality, no global communication or vision, ...).
Each robot can see only its next constant number of left and right neighbors on
the chain. This fixed constant is called the viewing path length. All its operations
and detections are restricted to this constant number of robots. Other robots,
even if located at neighboring or the same grid point, cannot be detected.
Only on the basis of the relative positions of its detectable chain neighbors
can a robot decide to obtain a certain state. On the basis of this state and their
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6 Gathering a Closed Chain of Robots on a Grid

local knowledge, the robots do local modifications to the chain by moving to
neighboring grid points without breaking the chain. These modifications are
performed without the knowledge whether they lead to a global progress or not.
We call the robot model Extended Basic&Plain Closed-Chain. For the time model,
we use the fully synchronous FSYANC model. For this problem, we present a
gathering algorithm that needs only linear time. This result generalizes the
result from [KM09], where an open chain with specified distinguishable (and
fixed) endpoints is considered.

6.1 Introduction

In Chapter 5, we developed a local O(n) strategy for solving the general gath-
ering of a swarm of 1 robots on the grid, using the Extended Basic&Plain robot
model. In contrast to the Basic&Plain robot model, Extended Basic&Plain in-
cludes a constant memory and locally visible states. In the current chapter,
we also develop and analyze a local O(n) gathering strategy on the grid, but
using a different definition of connectivity and vision: We use the Extended
Basic&Plain Closed-Chain robot model that we construct by modifying the Ex-
tended Basic&Plain robot model. We drop vision and connectivity that are
solely based on L;-distance and neighborhoods on the grid, respectively. In-
stead, we initially connect all robots as one arbitrary winding closed chain,
while two chain neighbors have L;-distance 1. Two robots are connected if
they are neighbors on the chain and their L;-distance is < 1. We maintain this
connectivity during the whole process of the gathering. Then vision is defined
as follows: A robot can see other robots only along the chain and only up to a
constant distance along the chain. Other robots, even if located at a short or
even zero L,-distance on the grid, are not visible to a robot. Overlappings and
self-intersections of the chain are allowed, but, because of our vision definition,
in general cannot be detected by the affected robots.

This significantly complicates the gathering, because robots that are located
at the same position now have different viewing ranges, i.e. see different robot
positions and states, and as a result clearly also behave differently.

For an example of the Extended Basic&Plain Closed-Chain definition, look at
Section 2.2.5 (page 14) where the corresponding Figure 2.3 is explained.

In our Extended Basic&Plain Closed-Chain robot model, gathering means to
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6.1 Introduction

keep shortening the chain, while maintaining the global chain connectivity
until the robots have gathered. Our robot model is completely local (no global
control, no global coordinates, no global compass, no global sense of chirality,
no communication, no global vision, ...).

The robots only have local vision. Each of the robots can see only the sub-
chain, consisting of itself and its next 11 chain neighbors, including their
relative positions and visible states, in both directions along the chain. We
call this the robot’s viewing range, with 11 being the viewing path length which
is the analog to the name viewing radius that we used for the Basic&Plain and
Extended Basic&Plain robot models. The locality of our strategy is given by
restricting all recognitions and actions of a robot to its constant-sized viewing
range. Other robots cannot be detected by a robot, even if they are located
at the same or neighboring grid points and furthermore do not restrain its
movements. The robots are indistinguishable, i.e., they do not have IDs.

Concerning the robots’ visualization, other than in the remaining chapters,
in the current chapter’s figures we draw robots located at grid points instead
of at grid cells. This is only for the sake of better readability of the chain
connectivity. It does not make any difference apart from that.

We use the fully synchronous time model FSYNC. Time is subdivided into
equally sized rounds of constant lengths. In every round all robots simultane-

ously execute their operations in the common look-compute-move model [CP04]

which divides one operation into three steps. In the look step the robot gets
a snapshot of the current scenario from its own perspective, restricted to its
constant-sized viewing range. During the compute step, the robot computes its

action, and eventually performs it in the move step. lis----f""‘-""q----z.
H
h

boring grid points, while our algorithm ensures that this does not disconnect = -

A robot can change its position to its horizontal, vertical or diagonal neigh-

Eannmunad™™

CommmEE.  mwEmesa

the chain. We say that the robot hops or performs a hop to the according posi-

tion. A hop can modify the structure of the chain. Figure 6.1 shows an example

for this: If two direct chain neighbors are located at the same grid point after ,..,.:m
the hop, then from then on we want them to behave like one robot. In our :
model, their neighborhoods are merged and one of both is removed. This merge s

operation shortens the chain by removing robots. This is also our progress
measurement of the gathering. Note that robots which are located at the same

grid point, but not being neighbors on the chain, are not merged /removed by

93



6 Gathering a Closed Chain of Robots on a Grid

this operation.

before: after:
T2 T3
‘ ‘ T2 T3
*—0  —0 0o
To Tt T4 Ts5 To Ts

Figure 6.1: Significant example of shortening the chain (merge): At the same time
both r, and 3 hop downwards while the other robots in the figure do not move.
After the hops, r; is located at the same position as 1 and r3 is located at the same
position as r4. Then the neighborhoods merge and the white robots can be removed.

We present a strategy without global information that solves the gathering
problem in time O(n). We say that gathering is solved when all robots are
located within a 2 x 2 square, since in our time and robot model this symmetry
cannot be broken. Our result is asymptotically optimal for worst-case closed
chains.

As mentioned, we want to do the gathering by shortening the chain. For

the same connectivity and vision model, but for an open chain between two

fixed (unmovable) endpoint robots, the first shown runtime bound for the
problem of shortening the chain was on? log(n)) [Dyn+06]. Later, this has
been improved [KMO09]: In the Euclidean plane, the Horper strategy delivers a
\/E—approximation of the shortest open chain in time O(n). Restricted to a grid,
the ManuATTAN HOPPER strategy delivers an optimal solution in time O (n).

Assuming that both endpoints of the open chain are located at the same
position, this problem looks similar to our closed chain problem. The gathering
of an open chain would furthermore be simple in general, as the endpoints
are always locally distinguishable and would simply sequentially hop onto
their inner neighbors. In our closed chain problem, none of the robots are
distinguishable, so these solutions cannot be applied.

Nevertheless, as we also did in Chapter 5 we adopt the concept of movable
robot states from the Hopper strategies. Roughly speaking, these strategies
work as follows: A fixed endpoint of the open chain sends out a state—which
we call run state—which then moves along the chain towards the other chain
endpoint. A robot that currently has the state can execute some certain action,
while the strategies ensure that for every started run the initiated action of at
least one of the subsequent chain robots continues the stepwise shortening of
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6.1 Introduction

the chain. The authors show that this even works if multiple runs are active
at the same time. So the endpoint sends out such a moving state multiple
times, started every constant number of timesteps, until the robots” actions
have, in the case of the MannAaTTAN HOPPER, Optimally shortened the chain
and reduced the number of robots to a minimal needed number. Note that
though for the sake of simplicity we will say a robot r that currently owns a

rr

run state “moves its state/run to a neighboring robot #'”, this is implemented
the other way round: When r still owns the run, then r’ can calculate that it
will receive the run next, because it can see the active run state (including its
moving direction) of r. So, r’ sets its run state on its own without requiring
further information from r.

Since the robots themselves are indistinguishable in our closed chain model,
no robot has the given special role to generate new run states. We instead do
a distinction depending on the relative positions of the constant number of
chain neighbors within the robots” local viewing ranges. Using this criterion,
the robots elect themselves to obtain the special role of sending out the states.
Using this approach, we have to deal with several difficulties. Cf. Figure 6.2.

¢ At the same time, more than just one robot obtain the special role.

¢ New runs obtain different moving directions along the chain. Collisions
(e.g., S1,S2) must be solved.

¢ Only some of the runs will actually achieve a shortening of the chain,
but the robots cannot detect this, because of the restricted local viewing

ranges.

* The ones that do not achieve a shortening of the chain shall not hinder
the work of the others.

¢ Because robots are moving, at different times different robots obtain the
special role. So new states start from different robots.

As already mentioned, in the chain-based vision and connectivity model
that is used in the current chapter, robots that are located close to each other
or even at the same position in general see completely different, independent
viewing ranges, and so they behave completely differently and independent of
each other. This clearly is a very destructive behavior for the objective to let all
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6 Gathering a Closed Chain of Robots on a Grid

MANHATTAN HOPPER

open chain

fixed run
moving direction

-

run
Every run achieves progress. fixed, distinguishable and

Runs connot collide. unmovable run starting point

(é4)

CLOSED-CHAIN-GATHER

collision

closed chain

all robots indistinguishable; all robots can move

Figure 6.2: Symbolic comparison of the (i): ManuHartan Hopper and the (i7): CLosep-
CHAIN-GATHER strategy.; The approach of movable run states cannot be adapted
easily for closed chains.
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6.2 Basic Idea of the Algorithm

robots move to the same position (gathering). (For example, in our OsLivious-
GatHEr and GRrip-GATHER strategies, arbitrary robots always merge to one robot
if they are located at the same position that then always means an irreversible
gathering progress.) As consequence, the correctness and running time proofs
of the current strategy become much more challenging. Furthermore, these
proofs require significantly different approaches than the corresponding proofs
of the GrRiD-GATHER strategy, which also uses the concept of movable robot

states.

6.2 Basic Idea of the Algorithm

Our measurement of progress is the shortening of the chain. Then, aftern — 1
shortenings the gathering is done. In our model, the chain can be shortened if
two chain neighbors are located at the same grid point. Then, one of them is
removed and for the other one the neighborhoods of both are combined and
assigned to it, which results in the shortening of the chain.

Because a robot’s viewing range is restricted to just a constant size, these
shortenings cannot be performed easily in general. Our algorithm performs
two basic operations. More precisely, we have to deal with two cases:

1. Some neighboring robots perform a single hop such that afterwards at
least two chain neighbors are located at the same position, while pre-
serving the chain connectivity. Afterwards, the shortening as explained
above can be performed. This is a so-called merge and further discussed

in Section 6.2.1.

2. If on some subchains merges are impossible, we perform so-called re-
shapements to reshape the chain in order to prepare merges in succeeding
steps. These are explained in Section 6.3.1.

In Section 6.2.1, we now start with case 1. For the sake of simpler descriptions,
we use terms like horizontal, vertical, downwards, left, ... Since our robots do
not have a common sense for this, the descriptions/figures are also to be
understood in a mirrored or rotated manner.
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6 Gathering a Closed Chain of Robots on a Grid

6.2.1 Merges

As introduced, the chain can be shortened if two chain neighbors are located
at the same grid point. Figure 6.3 shows how our algorithm manages that two
chain neighbors get located at the same grid point. In the figure, the black
robots hop downwards simultaneously. Afterwards, assuming that the length
k of the black subchain is bigger than 1, the both outermost of them are located
at the same grid point as the bordering white robots. Because at both ends the
robots are chain neighbors, we can remove the white ones without breaking
the chain. If k = 1, then after the hop also both white robots can be removed
without breaking the connectivity of the chain. We call these operations merge
operations or shorter: merges. Merge operations can be performed only if all
participating robots can see all black and white robots. This is necessary,
because otherwise not all of the black robots know that they must perform a
hop in order to prevent the chain from breaking. So the length k especially
cannot be larger than a robot’s constant viewing path length.

before: after:

length 1: l‘

length £ >1: — A ___—

Figure 6.3: Subchains that allow progress hops (merge operations). k = 1: Here, the
white robots are actually located at the same grid point and are drawn with a small
distance just for presentation reasons. The value of k indicates the length of the
black subchain. k is upper bounded by a robot’s constant viewing path length.

It may happen that at the same time more than just one merge can be per-
formed on different parts of the chain. Then, two cases need a closer look (We
refer to the black and white robots of Figure 6.3.):

1. The merge subchains, including the white robots, overlap by two robots.
2. The merge subchains, including the white robots, overlap by three robots.

An example for 2) is shown in Figure 6.4.b). Here, the robot r belongs to the
black robots of subchain 1 and 2. This requires an additional rule, because
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6.2 Basic Idea of the Algorithm

concerning subchain 1 r would hop downwards, but concerning subchain 2 it
would hop to the left. Instead, we let r perform a diagonal hop to the lower
left, while the other black robots perform their usual hops. Afterwards, r,a,b
are located at the same position and 4, b are removed without breaking the
chain.

An example for 1) can be seen in Figure 6.4.a). Here, all black robots perform
the same hop as the black ones in Figure 6.3. The difference is that afterwards,
for example, robot a is not located at the same position as b and vice versa.
So, there the chain cannot be shortened. If as in the example of Figure 6.4.2)
the outermost white robots do not move, then here the shortening can be
performed. For contradiction, we assume that the whole chain consists only

before: after:
subchain 1 .a subchain 3 b

a) ‘ b *.f t f ‘ o o o o —eo—o
subchain 2 @

subchain 1

Az

<=4
b) ¢ =4

o ®

¢ ureypqns

OT_‘

Figure 6.4: Cases for merges of subchains which are not node disjoint. (significant
examples)

of merge subchains. Figure 6.5: a) If only merges of length > 1 exist then,
starting from s, the chain could not be closed using only overlappings of Type 1).
Overlappings of Type 2) (marked by the dashed curve) must also exist. b) In
contrast, if merges of length 1 are allowed, overlappings of Type 2) are not
needed. In the algorithm, in two steps, the robots separately first perform only
merges of length 1 and afterwards only merges of length > 1, so that always
robots can be removed. In summary, because all cases of merge operations
lead to the removal of robots, i.e., shortening of the chain, all satisfy our

measurement of progress.
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6 Gathering a Closed Chain of Robots on a Grid

LD I 0 D A I Qﬂ

o e, same grid point

Figure 6.5: Chains, consisting only of merge subchains.

6.2.2 Reshapement of the chain, done by runners

round %:
round ¢ + 1:
round ¢ + 2:

?,\N—‘—‘—‘—* Pr

Figure 6.6: If the length of the black subchain (the value of k in Figure 6.3) is larger
than the robots” viewing path length, we shorten it by letting the outermost black
robots perform diagonal hops. We indicate such hops by diagonal arrows.

If because of the robot’s restricted viewing ranges a merge cannot be per-
formed anywhere on the whole chain, then we call the chain a Mergeless Chain.
We perform so-called reshapements to reshape the chain in order to prepare
merges in succeeding steps: We continuously let the outermost robots of the
black subchain perform diagonal hops in order to make it shorter (cf. Fig-
ure 6.6) until it becomes short enough for enabling the operation of Figure 6.3.
We say that these hops reshape the subchain. This task introduces two major
challenges:

1. When the outermost black robots of Figure 6.6 decide to start the reshape-
ment (round i), within their restricted viewing range they do not know

if their task of performing diagonal hops will lead to merges.
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6.2 Basic Idea of the Algorithm

2. In the following rounds, the subchain which an outermost black robot
can see in general locally looks the same as the one that is visible to its
white neighbor. So, we have to ensure that the reshapement is continued

by the outermost black robots instead of by their white neighbors.

In the following, we tackle these challenges. For this, we first introduce a
certain state of a robot, which we call the run state. We call a robot with an

active run state a runner. Robots can achieve this state in two different ways:

1. (start run state) If the local subchain within a robot’s viewing range has
a certain shape, then the robot decides on its own to generate the run
state. We say that such a robot starts a run. On the basis of the shape of
the local subchain, the run state gets a fixed moving direction along the
chain. A robot can start and store up to two run states at the same time.

Figure 6.7 shows how the local shapes must look like.

2. (move run state) A runner R(S) can move the run state S to its chain
neighbor " in the moving direction of S. We say that the run state has
moved from R(S) to r’, while its moving direction initially set in 1) always
remains unchanged. Afterwards, r’ is identified by R(S).

Start-A Start-B

robot with run state S: runner R(S) two run states

run state S

Figure 6.7: The encircled robots decide to start the run states, only on the basis of
the shape of the marked subchain within their viewing range. The large arrow
heads indicate the moving direction of the runs. This is the notation we will use for
marking a runner. R(S) identifies the runner/robot which currently has the run
state S. In (ii), the encircled robot is the endpoint of a horizontally and a vertically
aligned subchain at the same time. Here, we must start two runs moving in both
directions along the chain.

Once a run state has been started in 1), 2) is executed in each of the following

rounds. This means that the run moves along the chain at constant speed and
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6 Gathering a Closed Chain of Robots on a Grid

round 7: round 7 + 1:

L L

Figure 6.8: If in round 7 the local subchain looks like this, then the runner performs a
diagonal hop and the run state moves to the next robot in the moving direction.

in the initially settled moving direction. A runner can perform a diagonal
reshapement hop (and afterwards move the run state to its chain neighbor
in moving direction) if the chain locally looks like in Figure 6.8 (round i).
Figure 6.9.4) shows sequent operations. This solves the problem we have had
in Figure 6.6, where it was impossible to locally decide by the robots which of
them has to perform the reshapement hop. But not all run pairs started at the
endpoints of a horizontally aligned subchain actually do enable a merge. We
distinguish good pairs and non-good pairs.

good pairs: (Cf. Figure 6.9.a)) If the exterior neighbors (the fat robots in the
tigure) of the newly started run pair are both located on the same side of the
subchain, then the run pair is called a good pair. These pairs enable a merge if
they have been moving close enough together and then terminate.

non-good pairs: Figure 6.9.b) shows the opposite case, i.e., the fat robots are
located at different sides of the subchain. These pairs do not enable a merge.
We let the runs of such pairs pass along each other. Figure 6.10 shows how this
is performed: At the time when their distance (i.e., the number of edges on the
subchain connecting both) is 3 or less, they only keep moving along the chain,
but the runners do not perform reshapement hops. This is repeated until S; is
located at its target robot ¢, (then also S, is located at its target c1). We call this
the run passing operation. Afterwards, the normal reshapement operations
are continued. Note that depending on whether the distance between S; and
S, was odd or even, it happens that during this passing process at one time
both runs are located at the same robot. Then, this robot handles both runs
separately according to their movement directions.

6.2.3 Parallelizing runs: Pipelining

The total process of gathering needs the work of many good pairs. For sake

of a short running time, we let some of them work in parallel. Every constant
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6.2 Basic Idea of the Algorithm

)

round :

b Start A———, -1}

% )
round ¢ + 1:

round 7 + 2:

b

round : e
|

)k //* Start-AF\\

round ¢ + 6:

Figure 6.9: Run pairs, started at both ends of horizontally aligned subchains. a, b): In
round 7, the new runs start (cf. Figure 6.7). Afterwards, the actions of Figure 6.8 are
repeatedly executed. The runs move closer and closer together. a): The run pair is

a good pair. If the runs have moved close enough, then a merge can be performed.
b): No merge can be performed. Then the runs just pass along each other. (Details:

Figure 6.10)
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6 Gathering a Closed Chain of Robots on a Grid

before: after 4 more rounds:
Co (&)
S V{target of S 51
Sa
Cle— _ 52
target of Ss C1

Figure 6.10: Run passing operation: The runs S;, S, do not enable a merge. If their
distance along the chain is less or equal 3, then they pass each other by only keeping
moving but without making the runners perform diagonal hops. Afterwards, i.e.,
when S1, S, have reached their target robots/corners c,, ¢;, they return to normal
operation.

number of L = 15 rounds, all robots simultaneously check if they can start new
runs (cf. Figure 6.7) and if so, they do so. We will show that this procedure en-
sures that even if multiple good pairs are nested into each other, different good
pairs will enable different merges. This is what we call pipelining. Figure 6.11

round %:

R L
I 1

round 7 + L:

Sy
IS L robots o L robots

Figure 6.11: Pipelining of runs. New runs are started every L = 15 rounds.

shows an example of this. Because 51, S, are moving in the same direction, we
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6.2 Basic Idea of the Algorithm

call them sequent runs, while relative to their moving direction S is located

in front of S,. The distance between them equals the number of edges on the

subchain connecting both.

As runs are moving with constant speed, the runs of the inner good pair

will meet first and, as the result, first enable a merge and stop. Then, obviously

the outer good pair will also enable a (different) merge, some rounds later.

6.2.4 Stopping runs

In order to ensure that the pipelining works correctly, we let a runner R(S)

stop/terminate its run S if one of the following conditions is true:

1.

It can see the next sequent run in front of it. (This happens if sequent runs

have come too close to each other, e.g., because of merge operations.)

. It can see the end of the horizontally aligned subchain it is located on, in

front of it.
It was part of a merge operation.

While it performs the run passing operation of Figure 6.10, the target
corner is removed. (This can happen because of a merge operation.)

We give some more detailed explanations concerning some of the above

conditions:

Ly

4)

For example, because of merges two sequent runs may come too close to
each other, which then might hinder the pipelining. The affected runners
can detect this on their own. The criterion for this is that the next sequent
run in front of them becomes visible. Then, the termination condition 1)
matches and the run behind stops.

We assume that in Figure 6.10 to the right of robot ¢, another run S3, mov-
ing in the same direction as Sy, is located. During the rounds in which
S1 and S; are performing their run passing operation, S3 keeps moving
towards c,. Now it may happen that because of the reshapements of S,
c; becomes part of a merge operation. Then, c; would hop downwards
such that the corner shape does not exist anymore. Because this corner
has been the target of S1, S could not continue its reshapements after

the run passing, so it terminates.
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6 Gathering a Closed Chain of Robots on a Grid

6.2.5 Correctness and running time

If a merge can be performed every round, then the time needed for the gather-
ing is obviously upper bounded by n, with n being the number of robots. If
no merge can be performed, then the shape of the chain is reshaped by runs.
We have shown that good pairs enable merges. So we need to show that if no
merge is possible anywhere on the whole chain, always at least one new good
pair can be started.

A single good pair needs at most 7 rounds until a merge can be performed.
In Section 6.2.3, we have already noticed that if new good pairs are started
every L = 15 rounds, then different good pairs lead to different merges. The
last good pair is started at round L - n and finishes its work after at most n
further rounds. As L is a constant, we then get to the total linear running time
e O(n).

6.3 Algorithm in Detail

Now, we explain the complete strategy. In Section 6.2, we let runs move only
along strictly horizontally aligned subchains. But such subchains do not always
exist. We need to generalize them to so-called quasi lines (see Definition 6.1).
The main difference to the description of Section 6.2 is that we now let runs

move along such quasi lines. Figure 6.12 gives an example of a quasi line.

quast line last 3 robots

endpoint

Figure 6.12: Example of a quasi line. The fat robots are its endpoints.

Definition 6.1 (quasi line). We call a subchain a horizontal quasi line if the

following points hold:

1. At least its first and last three robots are horizontally aligned.

2. All its subchains of horizontally aligned robots contain at least three

robots.
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6.3 Algorithm in Detail

3. All its subchains of vertically aligned robots contain at most two robots.

In a Mergeless Chain, at both ends a subchain Start-A or Start-B (cf. Figure 6.7)
in a matching rotation or reflection occurs. (If the chain is not mergeless, then
the subchains outside the quasi line’s endpoints may also have other shapes
than these.)

The definition of a vertical quasi line follows analogously.

In Figure 6.12, the fat subchain connecting and including the fat robots at its
endpoints is called a quasi line.

Having introduced quasi lines we now have to analyze, how this affects the
merges, runs and pipelining we have explained in Section 6.2.

Merges remain exactly the same as in the basic description (Section 6.2.1),
i.e., they are only performed with black subchains, solely consisting of strictly
horizontally aligned robots as shown in Figure 6.3. So, we can continue with

Mergeless Chains and the analog to Section 6.2.2.

6.3.1 Reshapement of the chain, done by runners

The main approach remains the same as in Section 6.2.2: i.e., if in Figure 6.3
the black subchain is longer than the robots” viewing path length, we use
reshapement hops of runners for shortening this black subchain until a merge
becomes possible. We start new runs at the same subchains as in the basic
description (cf. Start-A and Start-B in Figure 6.7). The only difference is that
now these subchains are connected by a quasi line. Because of this, as one
can see in the example of Figure 6.15, the runs now have to move several
steps along the chain until arriving at the endpoints of the subchain, bordered
in the figure, which needs to be shortened for performing the merge. For
this movement, depending on the local shape of the subchain, we require
additional run operations: Figure 6.13.a) (OP-A) is the basic operation, while
b) (OP-B) and c) (OP-C) are the new ones.

a) OP-A: The runner and at least the next 3 robots are located on a straight
line. Here, the runner first performs a diagonal hop, then moves the run

to the next robot.

b) OP-B: The runner and only the next 2 robots are located on a straight line.
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6 Gathering a Closed Chain of Robots on a Grid

a) b)
OP-A OP-B
round i: v target
L
round 7 + 1:
. j‘@‘L
round ¢ + 2:
’—0%0_’_0 C
round ¢ + 3: T
L I
o !

Figure 6.13: a) (OP-A): Reshapement by a runner. The operation takes only one round.
b) (OP-B): No diagonal hops are performed until the target corner c is reached. ¢)
(OP-C): Special case when new runs start: First, perform one diagonal hop, then no
diagonal hops until the target corner c is reached.
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6.3 Algorithm in Detail

Then, for 3 times the runners just move the run to the next robot without

any diagonal hops. Afterwards, it is located at the target corner c.

¢) OP-C: This one is needed at most once for a new run if started at the
subchain of Figure 6.7.(ii) (page 101).

New runs always start pairwise at both endpoints of a quasi line. Good pairs
of runs are defined analogously to Section 6.2.2 by the relative position, con-
cerning the quasi line, of the outer chain neighbors (the fat robots) of the
endpoints of the quasi line (cf. Figure 6.14). We will show that also with quasi

Figure 6.14: Good pairs of runs, connected by a quasi line. The runs are a good pair

if the outer chain neighbors (the fat robots) are both located either downwards or
both upwards, i.e., on the same side of the quasi line.

Py ° ° ° ° ° Py
L g \ g @ & L g & @

lines, good pairs enable merges. And as before in Section 6.2.2, not all run
pairs are good pairs. Figure 6.15 shows an example of a good pair on a quasi
line: The bordered subchain will be reshaped for performing a merge. Until
round i + 4, the runners execute only the basic operation OP-A (Figure 6.13.a)).
Afterwards, the runner R(S,) starts operation OP-B, while R(Sy) still executes
OP-A. After operation OP-B has been processed completely, S, finally is located
at the right end of the bordered subchain (round i + 8). Now its runners start
shortening this subchain by executing OP-A until the merge can be performed.
Afterwards, Sy is still active and keeps moving and will stop at the latest when
an endpoint of the quasi line becomes visible.

If two runs that do not enable a merge meet each other, we execute the run
passing operation in a more generalized variant. As some of the operations of
Figure 6.13 now take more than just a single round, it may happen that such an
operation becomes interrupted by the run passing. Then, the target corners for
the run passing are settled with respect to the situation when the interrupted
operation has been started. Figure 6.16 shows an example: In round i the
runner R(S7) starts the execution of operation OP-B of Figure 6.13. In round
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6 Gathering a Closed Chain of Robots on a Grid

round 7 + 5:

I_A_A_A_A_A%—A—LI ’—:' ST
round 7 + 8: S,

Figure 6.15: A good pair, started on a quasi line in order to shorten the bordered
subchain. Several and different run operations are needed.
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6.3 Algorithm in Detail

i+ 2, this operation is still not finished, but the distance between S; and S, is 3
such that their runners both have to start the run passing operation. Then, the
target corner of S, is the corner c;. The target of S; as before is c,. Similar to
the basic run passing, both runs do not perform any reshapement hops before
arriving at their target corners. Other cases, e.g., if the runners of both runs

execute operation b), are analog to this one.

round i:
1»—0—0—0—(L_H
S ' S2
C1
round 7 + 2: Co

S

0—'—"C?/target of So

Figure 6.16: Runs passing along each other while the runner R(S;) is executing the
operation OP-B (Figure 6.13.D)).

L .
L

6.3.2 Parallelizing runs: Pipelining

eoa
EamEEmy_ gEEENGS

f
2
The pipelining works the same as in the basic explanation in Section 6.2.3. 5_
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6.3.3 Stopping runs

tended for working on quasi lines. We let a runner stop/terminate its run if

The basic stop/termination conditions for runs (Section 6.2.4) have to be ex- i i?’“’" . . e "* '

execute the algorithm, shown in Figure 6.17.

one of the conditions of Table 6.1 is true. In summary, all robots synchronously ; L

S
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6 Gathering a Closed Chain of Robots on a Grid

Every robot r every round checks the following three steps:

1. Merge: (In each round executed two times: First execution: Robots

perform merges only if length = 1. Second execution: The robots
perform merges only if length > 1.)
If r detects a possible merge within its viewing range then

e If r is one of the black robots in Figure 6.3, it hops downwards.

¢ If afterwards r is located at the same position as one of the white
robots, the white one is removed without breaking the chain. (If
it is located at the same position as both white robots, then both
white ones are removed.)

2. Run Operations: If r is a runner, then

a) Its run terminates/stops if any of the conditions of Table 6.1 is
true.

b) Runner’s Movement and Reshapement
* Run passing;:
- If r is currently in progress of executing the run pass-

ing operation (Figure 6.10 respectively 6.16), then this
operation is continued.

— Else, if r can see a run in front of it, such that both are mov-
ing towards each other and the distance between them is
less or equal 3, then 7 starts the run passing operation.

e If r is not in progress of passing, then

- If r is in progress of executing a run operation OP-B
or OP-C (Figure 6.13.b,¢)), which takes more than one
round, then this one is continued.

- Else: r executes the matching new run operation of Fig-
ure 6.13.

3. Start new runs: Every (L = 15)th round, r checks if it can start a new
run:
If 7 is one of the encircled robots of Figure 6.7.(i) (Start-A) respectively
(ii) (Start-B), then it starts one respectively two runs.

Figure 6.17: The algorithm.
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A runner stops/terminates its run if at least one of the following conditions
is true:

1. It was part of a merge operation.

2. It can see the next sequent run in front of it. (This happens if sequent
runs have come too close to each other, e.g., because of merge opera-
tions.)

3. It can see the endpoint of the quasi line in front of it.

4. While it performs the run passing operation of Figure 6.10, the target
corner is removed. (This can happen because of a merge operation.)

5. While it performs the operation OP-B or OP-C of Figure 6.13.b,¢),
the target corner is removed. (This can happen because of a merge
operation.)

Table 6.1: Conditions which let a run terminate.

6.4 Correctness and Running Time

In this section, our goal is the proof of the correctness and the linear running
time (Theorem 6.4). In our main approach, we want to enable merges by good
pairs if else no merge could be performed. The following two lemmas prove
that this actually works. They are the base for the proof of the theorem. The
proofs of the lemmas can be found in Section 6.4.1 and 6.4.2.

Because of the local vision, new runs and maybe also good pairs are started
every L = 15 rounds, regardless of whether or not at some other location on the
chain merges can be performed. In the following analysis, we will argue only
with new good pairs which are started if during the last L — 1 and the current
round on the whole chain no merge has been performed. We distinguish such
good pairs from others by calling them progress pairs.

Lemma 6.2. Every L = 15 rounds either a merge has been performed or else a new

progress pair is started.
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6 Gathering a Closed Chain of Robots on a Grid

Lemma 6.3. For progress pairs the following properties hold.
a) Every progress pair enables a merge (after at most n rounds).
b) Different progress pairs enable different merges.
Using these two lemmas, we can now prove the total linear running time.

Theorem 6.4. Given a closed chain of n robots, then after O(n) rounds gathering is
done. This is asymptotically optimal.

Proof. We subdivide time into intervals of lengths L, where L denotes a num-
ber of rounds. Merges can be performed during at most n such intervals,
because every merge removes at least one robot. In all other intervals a new
progress pair starts (Lemma 6.2). Each of these progress pairs leads to merge
(Lemma 6.3.1)). Because no two of them lead to the same merge (Lemma 6.3.0)),
the number of intervals without merges is also upper bounded by .

By Lemma 6.3, a progress pair needs at most n rounds until it has led to
a merge. We assume the worst case that in the last of the 2 - n intervals the
last progress pair was started. Then the total running time is upper bounded
by 2n - L + n, which proves the upper bound of the theorem, because L is a
constant.

In our model, the diameter of the initial configuration provides the worst-

case lower bound (2(n) for any gathering strategy. O

6.4.1 Proof of Lemma 6.2

Proof. The lemma assumes that the chain is a Mergeless Chain. Although our
viewing path length also allows larger values, for the proof we assume that
merges are only possible up to the length 2 (cf. Figure 6.3 on page 98). This
suffices, because if a chain is a Mergeless Chain for a bigger length, it also is a
Mergeless Chain for shorter lengths.

As by definition all horizontal subchains of a horizontal quasi line consist of
at least 3 robots, no merge can be performed on them. In order to connect two
horizontal or two vertical quasi lines without enabling a merge, they must be
connected by so-called stairways. Stairways can have arbitrary length and are
subchains of alternating left and right turns. Figure 6.18 shows an example. All
differently shaped connecting subchains would allow merges. If a horizontal
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L A g *—eo—o

1 J d

4 quast line 2

] ::Jl) - stairway

Figure 6.18: Two quasi lines, connected by a stairway.

and a vertical quasi line are connected, then this can also be done without any
stairway.

The above construction exactly leads to the run starting subchains (i, ii)
(Start-A, Start-B) of Figure 6.7 (page 101). In Figure 6.18, such subchains are
bordered by dashed curves. So new runs are always started at the endpoints
of quasi lines.

For being able to close the chain, there must exist both horizontal and vertical
quasi lines. We start on the left of Figure 6.19 at a robot s where a vertical
and a horizontal quasi line are neighbors. For simplicity, we assume that the
stairways connecting the quasi lines in the figure are of minimum length, and
we symbolize quasi lines by dashed line segments. The fat robots correspond
to the fat robots of Figure 6.14, i.e., they are the outer chain neighbors of quasi
lines. As in Figure 6.14, the run pairs are good pairs if the fat robots are both
located on the same side. So, if no good pair existed, they must instead lie
on alternating sides of the quasi lines. Figure 6.19 shows how a sequence of
horizontal quasi lines then must look like. Because we want to close the chain,
we need a second vertical quasi line. If no merge is possible, this quasi line
must point upwards, i.e., in an opposite direction than the first one. In this
proof, we show by contradiction that if this always is the case, then the chain
cannot be closed.

In Figure 6.20, we have grouped subchains of connected horizontal respec-
tively vertical quasi lines and symbolize such a group by a dashed curve. For
our argumentation, we take the robot s, which is the first robot of the first
horizontal quasi line, as the starting point. We define an orientation vector
which points from the second last robot of the last vertical quasi line to the

second robot of the subsequent horizontal one. (If between these two quasi

115

L .

iy T RRRSRRR— pay




6 Gathering a Closed Chain of Robots on a Grid

[ ]
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Figure 6.19: Proof idea: It is impossible that always both vertical quasi lines point to
opposite directions. Then, in the example at the last horizontal quasi line, a good
pair starts.

horiz.
quasi lines
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S3
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orientation vector

Figure 6.20: In a Mergeless Chain, good pairs do always exist.
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6.4 Correctness and Running Time

lines a stairway exists, then the orientation vector becomes longer than in the
tigure, but still points to the same direction.)

The orientation vector defines the half-plane H by orthogonally pointing
from the interior to its boundary. In order to close the chain, we must return to
s and for this, reenter H. This cannot be done using only horizontal quasi lines.
So, we look at the point where the first vertical quasi line of the next group of
vertical quasi lines occurs. Here, the orientation vector and the half-plane H’
are defined analogously to the previous ones. Because we assumed that the
fat black robots lie on different sides of the horizontal quasi lines, the vertical
quasi lines must point upwards. Then, the orientation vectors of H and H' are
parallel and H C H'. If we continue the argumentation for the vertical quasi
lines, we have to ensure that now the fat white robots are located at different
sides. Then the following horizontal quasi lines must point to the right again.
Then again the orientation vectors are parallel and we get H C H' C H".
Continuing this construction, we never get back to the robot s and so can never
close the chain. So, a good pair must exist. Because we have assumed that the
chain has been a Mergeless Chain also during the previous L — 1 rounds, this

good pair is a progress pair. O _éf
i
4 1
6.4.2 Proof of Lemma 6.3 ek g

“Ramal” Bfg, By, -

For the proof, we need the run invariants of Lemma 6.5. e oo

Lemma 6.5. The value L = 15 and the value 11 for the viewing path length ensure
that for every run S until it terminates, the following invariants hold:

1. Every round, S moves one robot further in moving direction.

2. After the first three rounds after its start S is always located on a quasi line (i.e.,

the reshapements of its runner do not violate the quasi line definition 6.1.).

3. S cannot see other sequent runs in front of it.

4. S is either in progress of passing along another run or the runner R(S) executes
one of the operations OP-A, OP-B, OP-C of Figure 6.13.

5. Good pairs stay being good pairs.
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6 Gathering a Closed Chain of Robots on a Grid

Now we can prove Lemma 6.3. The proof of the required Lemma 6.5 is provided

subsequently.

Proof. a) : At the time a progress pair S, S’ is started, the subchain connecting
both is a quasi line. Because of Lemma 6.5.2), this also does not change if
other runs are located on this subchain. And also merges preserve the quasi
line properties. So, if not stopped, S and S’ keep moving towards each other
(Lemma 6.5.1)). Because of Lemma 6.5.5) a merge can be performed at the
latest when they meet, which takes at most n rounds.

It remains to show that S, S” are not stopped by the algorithm’s termination
conditions (Table 6.1) before the merge could be performed. In the following,
we check all these conditions: 2): By definition of a progress pair, no merge has
been performed since the last time new runs have been started. This means that
the distance between S and its next sequent runs in front of it is at least L — 3
(cf. the proof of Lemma 6.5.4)) which is bigger than the viewing path length.
(The same holds for S'.) So the runs of a progress pair cannot be stopped by
this termination condition.

3): If a run of a progress pair can see an endpoint of the quasi line in front of
it, then the other run of the progress pair must have previously been stopped.
Because a run of a progress pair cannot be stopped by condition 2), it instead
must have been stopped because of a merge. So, a termination because of
condition 3) is allowed.

4,5): If arun S of a progress pair is stopped because of this, then its target
corner was removed. This could either have happened because of the reshape-
ment of a sequent run or because of a merge operation. Because we have
ensured the minimum distance of two sequent runs to be large enough, the
first case cannot have happened. So, a merge must have been the reason. Then,
this merge must have been enabled by another run S*, moving towards S. If
S* is the partner run of S, then stopping is allowed. Else, because progress
pairs are nested into each other, S* either was not a run of a progress pair or
its partner run has previously been stopped. In the latter case, because runs of
progress pairs cannot be stopped because of condition 2), the run must have
been stopped by an earlier merge. In both cases, the current merge can be
credited to the progress pair of S.

1): By the same arguments, this merge does not need to also be credited to a
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different progress pair. This then also proves b) of the lemma. O

Now we provide the omitted proof of Lemma 6.5.

Proof of Lemma 6.5.

Proof. 1): This directly follows by the run definition in Section 6.3.1.

2): Cf. Figure 6.13 on page 108. a) (OP-A) ensures that on horizontal quasi
lines only horizontal subchains of lengths > 2 are shortened and vertical
subchains remain unextended. b) (OP-B) does not reshape. c) (OP-C) can be
executed only during the first three rounds after S has been started.

3): This is ensured by the run termination condition of Table 6.1.2).

4): Cf. Figure 6.13. All these operations ensure that if S was located at some
corner c; when the operation started, it afterwards either is located at some
other corner ¢, such that both corners are rotated equally or terminates if the
target corner has been removed during the operation (cf. Table 6.1.5,4)). If not
terminated, then, because still located on a quasi line (cf. 2)), again a) (OP-A)
or b) (OP-B) can be applied or run passing is started.

The run passing needs a closer look, because it interrupts other operations.
In order to ensure a regulated behavior, we chose the distance between sequent
runs big enough such that a run does not have to execute a new run passing
operation before it has finished its previous one. We settle the values for the
constant L and the viewing path length appropriately. We look at two sequent
runs S; and S7%° such that 57" has been started after S;. Their distance D is
atleast L — 3. This value is achieved if at the start of S; the operation c) (OP-C)
and next, operation b) (OP-B) (Figure 6.13) was executed.

Now, we chose the value for the constant D big enough for ensuring that
while some run S, is passing along Sy, S7"°° becomes visible to S, the earliest
when the passing operation with S; has been completed. Figure 6.16 shows an
example of the longest possible duration of a run passing operation. Here, it
takes 6 rounds until S, has arrived at its target corner. Because the run passing
operation starts when the distance between S; and S, is < 3, after the passing
operation, the distance between S, and 55" equals D —9. We want this then to
still be > 3. So we choose D > 12 and together with the above argumentation

concerning the minimum distance between sequent runs it follows L > 15. In
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6 Gathering a Closed Chain of Robots on a Grid

order to detect that the distance has become smaller than 12 (= D) (and solve
this problem), the viewing path length must be 11 (cf. Table 6.1.2)).

5): When defining good pairs in Section 6.3.1, good pairs have been char-
acterized by the relative position of the outer direct neighbors of the good
pair according to the quasi line. The first part of the proof of 4) finishes the
proof. O
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CHAPTER 7

Conclusions & Outlook

£ now close the thesis by giving a short summary of our achievements

and envisioning future work in the topic of my research. For all our

results, we used the fully synchronous FSYNC time model. First,

we have formally shown that using an extremely simple and local robot model

gathering of n robots on a grid can always be solved and provided an upper

running time bound of O(n?). The tightness of this bound w.r.t. our strategy

was only informally shown by our suitable experiments. This also matches the

formal lower bound that Degener et al. [Deg+11] showed for the Euclidean
gathering strategy under the same robot and time model.

In the remaining part of the thesis, we extended the robot model by a
constant-sized memory and a constant number of locally visible states. First,
we formally proved an O(n) upper running time bound under this model,
solving the same gathering problem as above. We further formally proved its
asymptotic tightness.

Finally, we modified the connectivity and vision model to robots that are
always connected as one initially given closed chain. There, we also formally
proved an asymptotic optimal running time bound O(n), needed for the gath-
ering.

Interestingly, the only minimal additional robot capabilities of a constant

memory and constant number of locally visible states provided a huge im-
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provement of the total running times.

Outlook For the future work the first step would be to develop a fast gathering
strategy for the Euclidean plane that uses the robot model extension of constant-
sized memory and a constant number of visible states. If one would also try to
apply our concept of moving states (runs), this approach in principle could
work.

Using this concept in the Euclidean plane, the main difficulty is to find start-
ing positions for new runs: On the grid, we made use of the property that on
the grid asymmetries of the swarm shape always exist (no circle possible). We
used locally detectable asymmetries of the swarm shape for defining starting
positions for new runs. In contrast, in the Euclidean plane, circular shaped
swarms are possible, so that asymmetries cannot be used in order to settle run
starting positions. One could instead exclude fully symmetric starting swarm
configurations from valid inputs. But then the gathering process might still
run into a circle configuration instead of a gathering point. So this may require
some new concepts.

Assuming that for the Euclidean plane also an O(n) upper running time

could be formally shown, then a formal proof of a general lower bound for the

gathering under the extremely simple robot model that was used for our O(n?)
grid and for the O(n?) Euclidean strategy is a very interesting result. If this
general lower bound is actually Qn?), then one would have shown that a very
gentle extension (constant-sized memory and a constant number of locally
visible states) of the robot model is the actual reason for a huge running time

improvement.
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