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Abstract

The study on signed graphs have been one of the hot research fields in the
past few years. Theories on ordinary graphs have been generalized to signed
graphs in many major aspects, such as the areas of flows, circuit covers, ho-
momorphisms and so on. Graph colorings theory, which is strongly related to
these aspects, has a central position in discrete mathematics. However, there
are very few knowledges known on colorings of signed graphs so far.

The thesis is devoted to generalize a series of concepts, results and methods
on vertex colorings of graphs to signed graphs for the first time. In particular,
we introduce the notions of circular colorings and related integer colorings and
list colorings for signed graphs. Some fundamental results for each notion are
proved. Analogues of some classical results like Brooks’ Theorem and Hajés’
Theorem for signed graphs are presented. Moreover, the relation between
a signed graph and its underlying unsigned graph is investigated, especially
for chromatic numbers and list-chromatic numbers. Some exclusive features
for signed graphs such as the chromatic spectrum are studied. The thesis

concludes with a result on 3-coloring of unsigned planar graph.

Zusammenfassung

Signierte Graphen sind ein hochinteressantes und aktives Forschungsgebiet
der Graphentheorie mit vielfaltigen Anwendungen in anderen Disziplinen wie
z.B. der Physik oder der Soziologie. Viele graphentheoretische Konzepte, wie
z.B. Fliisse oder kiirzeste Kreisiiberdeckungen, wurden auf signierte Graphen
verallgemeinert. Unter diesem Aspekt sind Farbungen signierter Graphen von
besonderem mathematischen Interesse, da viele Konzepte, die fiir unsignierte
Graphen aquivalent sind, dies fiir signierte Graphen nicht sind.

In dieser Arbeit werden vornehmlich FEckenfarbungen auf signierten
Graphen studiert. Es wird das Konzept der zirkuldren Férbung von sig-

nierte Graphen eingefiithrt und die darauf basierenden Parameter wie z.B. die

iii



zirkulare chromatische Zahl, die chromatische Zahl und die listenchromatische
Zahl werden studiert.

Klassische Ergebnisse der Graphnetheorie, wie die Satze von Brooks und
Hajés werden auf signierte Graphen verallgemeinert. Das chromatische Spek-
trum signierter Graphen wird bestimmt. Die Beziehung zwischen der chro-
matischen Zahl des signierten und der chromatischen Zahl des unterliegen-
den unsignierten Graphen studiert. Weiterhin werden die unterschiedlichen
Farbungskonzepte verglichen. Die Arbeit schlieft mit einem Ergebnis zu un-

signierten 3-farbbaren planaren Graphen.
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Chapter 1

Introduction

1.1 Signed graphs, balances and switchings

The notion of signed graphs was first introduced by Harary [21I] in 1953, as
a mathematical model for certain problems in social psychology. The social
structure of a group of persons is often represented by a graph, for which each
vertex represents a person and two vertices are connected by an edge (i.e.,
adjacent) if and only if they know each other. The motivation for defining
signed graphs arise from the fact that psychologists sometimes describe the
relation between two persons as liking, disliking or indifference. A signed graph

7

is a graph together with a sign of “+” or “—" on each edge, representing
the emotion of liking or disliking. Hence, the notion of signed graphs is a

generalization of ordinary graphs.

The standard definitions used in the theory of graphs may be found in [54].
We consider a graph to be finite and simple, i.e., with no loops or multiple
edges. The vertex set of a graph G is denoted by V(G), and the edge set by
E(G). Let G be a graph and ¢: E(G) — {1,—1} be a mapping. The pair
(G, 0) is called a signed graph. We say that G is the underlying graph of (G, o)
and o is a signature of G. The sign of an edge e is the value o(e). An edge
is positive if it has a positive sign; otherwise, the edge is negative. The set
Ny, ={e: o(e) = —1} is the set of negative edges of (G, o) and E(G)— N, the

1



2 Chapter 1 Introduction

set of positive edges. A signature o is all-positive (all-negative, respectively)
if it has a positive sign (negative sign, respectively) on each edge. A graph
G together with an all-positive signature is called an all-positive signed graph
and denoted by (G, +). Similarly, (G, —) denotes an all-negative signed graph,
that is, a signed graph for which the signature is all-negative. Throughout
the paper, “a graph” is always regarded as an unsigned simple graph for the
distinction from “a signed graph” and “a multigraph”.

The balance of a signed graph has been an important topic since the very
beginning when the notion of a signed graph was first introduced. A circuit C
of a signed graph is balanced, if it contains an even number of negative edges;
otherwise we say that C' is unbalanced. A signed graph (G, o) is unbalanced,
if it contains an unbalanced circuit, otherwise we say that (G, o) is balanced.
A signed graph is antibalanced if every circuit contains an even number of
positive edges.

The concept of switchings, as well as balances, is an exclusive feature for
signed graphs. The generalization of notions of graphs to signed graphs are
often required to respect switchings. Let (G, o) be a signed graph. A switching
at a vertex v of G defines a signed graph (G, o) with o/(e) = —o(e) if e € E(v),
and o'(e) = o(e) if e € E(G) \ E(v). Two signed graphs (G,o) and (G, %)
are switching equivalent (briefly, equivalent) if they can be obtained from each
other by a sequence of switchings. We also say that ¢ and o* are equivalent
signatures of G.

It is well known (see e.g. [40]) that (G, o) is balanced if and only if it is
switching equivalent to an all-positive signed graph, and (G, o) is antibalanced
if and only if it is switching equivalent to an all-negative signed graph. The
former result is one of the earliest results on signed graphs, first proved in [21].

Note, that a balanced bipartite graph is also antibalanced.

The theory of graphs have been generalized to signed graphs especially in
the recent years in many aspects: the matroids of signed graphs [59], orienta-
tion of signed graphs [61], circular flows of signed graphs [40] [74], nowhere-zero

flows of signed graphs [25, 26, 36, 42], 55], homomorphisms of signed graphs



1.2 Colorings of signed graphs 3

[39], circuit covers of signed graphs [9, 34], the way signed graph arise from
geometry [62] and so on. However, so far there are only a few knowledges
known on colorings of signed graphs.

Graph coloring problems have gained more and more attention since the
proposal of the four-color problem in 1852. The theory of graph colorings has
a central position in discrete mathematics and it is closely related to other
areas such as flows, homomorphism, time tabling, and scheduling problems.
The thesis concentrates on the generalization of vertex colorings of graphs to

signed graphs.

1.2 Colorings of signed graphs

In the 1980s Zaslavsky [57, 58, [60] started studying vertex colorings of signed
graphs. The natural constraints for a coloring ¢ of a signed graph (G, o) are,
that c(v) # o(e)c(w) for each edge e = vw, and that the colors can be inverted
under switching, i.e. equivalent signed graphs have the same chromatic num-
ber. In order to guarantee these properties of a coloring, Zaslavsky [58] used
the set {—k,...,0,...,k} of 2k + 1 “signed colors” and studied the interplay
between colorings and zero-free colorings through the chromatic polynomial.

Recently, Macajové, Raspaud, and Skoviera [35] modified Zaslavsky’s ap-
proach as follows. If n = 2k + 1, then let M, = {0,£1,...,+k}, and if
n = 2k, then let M, = {£1,...,+k}. A mapping c from V(G) to M, is an
“n-coloring” of (G, o), if ¢(v) # o(e)c(w) for each edge e = vw. They defined
X+((G,0)) to be the smallest number n such that (G,o) has an n-coloring
and call it the “chromatic number” for signed graphs. This allows them to
study the behaviour of colourings of individual signed graphs. For example,
they proved an analogue of the Brooks’ theorem for signed graphs. However,
so far there are still few results on the invariant x4 ((G,0)).

Later on, another version of “chromatic number” of signed graphs, defined
by homomorphisms, was proposed by Naserasr, Rollovd and Sopena in [39].

Unfortunately, there is no further discussion on this definition.
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A definition of a “chromatic number” for signed graphs strongly depends
on properties of the colors, as those of the “signed colors” in the definitions of
Zaslavsky and of Macajova et al. Since every element of an additive abelian
group has an inverse element, it is natural to choose the elements of an additive
abelian group as colors for a coloring of signed graphs. The self-inverse ele-
ments of the group play a crucial role in such colorings, since the color classes
which are induced by self-inverse elements are independent sets. Hence, the

following statement is true.

Proposition 1.1. Let G be a graph and x(G) = k. If C is a set of k pairwise
different self-inverse elements of an abelian group (e.g. of Zy (k < 2")), then
every k-coloring of G with colors from C is a k-coloring of (G, o), for every
signature o of G. In particular, the chromatic number of (G, o) with respect

to colorings with colors of C is k.

This proposition shows that a coloring of a signed graph with colors from
a k-element abelian group is reduced to a k-coloring of its underlying graph if
each element of the abelian group is self-inverse.

A coloring parameter of an unsigned graph, where the colors are also the
elements of an abelian group, namely the cyclic group of integers modulo n,
and where the coloring properties are defined by using operations within the
group, is the circular chromatic number. This parameter was introduced by
Vince [48] in 1988, as “the star-chromatic number”. In 1992, Zhu [63] gave an
alternate definition of circular chromatic number by circular colorings instead
of (k,d)-colorings. The circular chromatic number is a natural generalization
of the chromatic number for unsigned graphs. For more details on the circular
chromatic number for unsigned graphs, we refer the readers to [63, (64, (65 [66]
68, [69] 71, [72, [73].

We combine these two approaches to define the circular chromatic number
of a signed graph, which extends its definition for unsigned graphs. More-
over, this implies a new notion of vertex colourings of signed graphs and the

corresponding chromatic number of signed graphs.
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For z € R and a positive real number r, we denote by [z], the remainder
of x divided by r, and define |z|, = min{[z],, [—z],}. Clearly, [z], € [0,7) and

2|y = | =zl

Definition 1.2. Let Z,, denote the cyclic group of integers modulo n, Z/nZ.
Let k and d be positive integers such that k > 2d. A (k,d)-coloring of a signed
graph (G, o) is a mapping ¢ : V(G) — Zj, such that for each edge e = vw,
d <lc(v) — o(e)e(w)|k. The circular chromatic number x.((G,0)) of a signed
graph (G,0) is inf{%: (G,0) has a (k,d)-coloring}. For a signed graph, a
(k,1)-coloring is also called a k-coloring. The minimum k such that a signed

(G,0) has a k-coloring is called the chromatic number of (G,o) and denoted

by x((G,0)).

To be distinct, we call the invariant x+((G,o)) and corresponding
n-colorings defined in [35] the signed chromatic number and the signed
n-colorings, respectively.

If we ask the signature o to be all-positive, then the definitions of (k, d)-
colorings, circular chromatic number and chromatic number for signed graphs
in Definition (1.2 are reduced to ones for unsigned graphs, respectively.

With these new notions, we are able to start building the theory for cir-
cular coloring of signed graphs, which will be presented in Chapter [2l Some
fundamental results are generalized to signed graphs. In particular, we first
improve the circular chromatic number as a infimum by definition to the one
expressed as a minimum. To be precise, we prove that for a signed graph

(G,0) on n vertices,
.k .
xc((G,0)) = mln{gz (G,0) has a (k,d)-coloring and k < 4n}.

Therefore, the circular chromatic numbers are always rational, and to calculate
Xc((G,0)), it is enough to consider those pairs of integers k and d such that
2d < k < 4n. If xc((G, o)) = ¥ with k and d being positive integers, then the

signed graph x.((G, o)) has a (k, d)-coloring.
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Next, we generalize the concept of circular r-colorings of graphs, first in-

troduced by Zhu [63], to signed graphs.

Definition 1.3. Let (G,0) be a signed graph and r be a real number at least
1. A circular r-coloring of (G, o) is a function f : V(G) — [0,r) such that for
any edge e with e = zy: if o(e) = 1 then 1 < |f(z) — f(y)| < r —1, and if
ole) =—1then 1 <|f(x)+ f(y)—7r| <r—1.

We prove the equivalence between (k, d)-colorings and circular r-colorings
in the context of signed graphs. Hence, the circular chromatic number of a

signed graph can be equivalently defined by circular r-colorings:
Xc((G,0)) =min{r: (G, o) has a circular r-coloring}.

We may choose different definitions for the convenience of proof when we are
studying on this invariant in the thesis.
At last, we provide a relation between the circular chromatic number and

the chromatic number: for every signed graph (G, o), we have

X(G,0)) =1 < xe((G,0)) < x((G, 9)).

In contrast to the unsigned case, for which we know from [68] that x(G) —1 <
Xc(G) < x(@Q), signed graphs (G,o) such that x((G,0)) — 1 = x.((G,0))
may have special meaning. We construct examples of such signed graphs for
every possible value of the chromatic number. Hence, the lower bound is
sharp. However, if the lower bound is not attained, then it can be improved
to: for every signed graph (G,o) with x((G,0)) — 1 # x.((G,0)), we have
(((G,0) 1) (14 1
xe((G,0)).

We go on with the discussion on the chromatic number of signed graphs

1) < x¢((G,0)), and in particular, x((G, o)) =145 <

in Chapter An advantage of the signed chromatic number x+((G,0)),
i.e. the definition by Macajova et al for the “chromatic number” of signed

graphs, is the generalization of Brooks’ Theorem to signed graphs. Here for the
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chromatic number x((G, o)), we generalize not only the Brooks’ theorem but
also the Hajos’ theorem to signed graphs. We then prove a relation between
the chromatic number of a signed graph and the one of its underlying graph:

for every signed graph (G, o), we have

x((G,0)) < 2x(G) — 2,

and the bound is sharp. Moreover, the chromatic spectrum is introduced.
For a given graph G, we show that possible values of x((G, o)) among all the
signature o of G form an interval. So the chromatic spectrum of a graph is

always an interval.

We also take a look at the signed chromatic number x4 ((G,0)) of signed
graphs, for which there are only a few results known so far. The results we
obtained on this invariant will be addressed in Chapter [df We prove that the
signed chromatic spectrum of a graph is always an interval and we also gener-
alize the Hajés’ theorem to signed graphs for x4 ((G, o)) by similar arguments
as what we apply for x((G,c)). The relation between these two non-equivalent
invariants x((G,0)) and x+((G,0)) are investigated. We show that for every
signed graph, either they are equal or the difference between them is precisely

1.

Besides the circular chromatic number, the list-chromatic number is an-
other major extension of the chromatic number for a graph. List colorings
and corresponding list-chromatic number (also named the choice number) of
graphs were first introduced by Erdés, Rubin and Taylor [14] in 1980. Com-
pared to the ordinary k-colorings of a graph, for which the color set for each
vertex is a uniform set of k distinct colors, list-colorings preassign a flexible
color set for each vertice not only on colors but also on the length of color list.
List colorings or the choosability of graphs have been extensively studied and

become one of the main topics in the theory of graph colorings.

In Chapter [5] we generalize the concepts of list-colorings and corresponding

list-chromatic number of unsigned graphs to signed graphs. As we talked
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before, there are several non-equivalent definitions for “the chromatic number”
of signed graph, all of them extend the chromatic number for unsigned graphs
in a certain sense. It seems easier for us to define a list-chromatic number for

signed graphs.

Definition 1.4. Given a signed graph (G, o), a list-assignment of (G, o) is a
function L defined on V(G) such that ) # L(v) C Z for each v € V(G). An
L-coloring of (G, o) is a proper coloring ¢ of (G, o) such that c(v) € L(v) for
each v € V(G). A list-assignment L is called a k-list-assignment if |L(v)| = k
for each v € V(G). We say (G,0) is k-choosable if it admits an L-coloring
for every k-list-assignment L. The list-chromatic number or choice number

xi1((G,0)) of (G,0) is the minimum number k such that (G, o) is k-choosable.

Notice that the difference between concepts of x((G,0)) and x+((G, o))
arises from the different choice of the color set, Z, for the former and M,
for the latter. Since a k-choosable signed graph asks for the existence of a
proper coloring for any k-list assignment which has only restriction on the
length of the color list, we can see that the list-chromatic number x;((G,0))
we define here extends both invariants x((G, o)) and x+((G,0)). Clearly, for
every signed graph (G, o), we have min{x((G,0)),x+((G,0))} < xi((G,0)).
We first provide an upper bound for the list-chromatic number of a signed
graph in terms of the list-chromatic number of its underlying graph: for every

signed graph (G, o), we have

xi((G,0)) < 2x(G).

Then we concentrate on the class of signed planar graphs. We generalize the
results of [I5 B1L [45] 46l 47, 52] to signed graphs. In particular, it is true
that every signed planar graph is 5-choosable. Other results we obtained are
concerned about sufficient conditions for 3- or 4-choosability. Moreover, we
construct some signed planar graphs that show the sharpness of these sufficient

conditions and on the other hand, that have different values of x;((G, o)) and
xi(G).
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Chapter [f] focuses on a particular problem on colorings of planar graphs
— the Steinberg conjecture. The conjecture was proposed by Steinberg [44]
in 1993. It states that every planar graph without cycles of length 4 or 5 is
3-colorable. A series of partial results to this conjecture were obtained mainly
following Erdos’ suggestion that forbids more kinds of cycles in the condition.
Though Steinberg Conjecture was disproved [10] very recently, it motived the
proposal of some related questions that are still open, so the study on this topic
is going on. In this chapter, we prove a result related to Steinberg Conjecture:
if the planar graph additionally has no cycles of length 8, then it is 3-colorable.
This result improves on some earlier results.

Some parts of our results in the thesis have been published already. The

results of
e Sections and except Theorems and are published
in

[29] Y. Kang and E. Steffen. Circular coloring of signed graphs. J. Graph
Theory. 2017; 00, 1-14. https://doi.org/10.1002/jgt.22147

e Sections [3.2] and [£.2] are published in
[28] Y. Kang and E. Steffen. The chromatic spectrum of signed graphs.
Discrete Math. 339 (2016) 2660-2663.

e Sections 3.4 and [£.3] are published in
[27] Y. Kang. Hajés-like theorem for signed graphs. European J. Com-
bin. 67 (2018) 199-207.

e Chapter [5] except Theorem are published in
[23] L. Jin, Y. Kang and E. Steffen. Choosability in signed planar graphs.
European J. Combin. 52 (2016) 234-243.

e Chapter [6] are published in
[22] L. Jin, Y. Kang, M. Schubert and Y. Wang. Plane graphs without 4-
and 5-cycles and without ext-triangular 7-cycles are 3-colorable. STAM

J. Discrete Math. 31-3 (2017) 1836-1847.
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Chapter 2

Circular chromatic number Yy,

of signed graphs

In this chapter, we generalize (k, d)-colorings, circular r-colorings and the cir-
cular chromatic number from unsigned graphs to signed graphs. We establish
some fundamental results on these new concepts. Moreover, we define the
chromatic number of signed graphs from the viewpoint of circular colorings.
The relation between circular chromatic number and chromatic number for
signed graphs is studied.

The structure of this chapter is arranged as follows. In Section |2.1) we
introduce (k, d)-colourings of a signed graph and define the circular chro-
matic number as an infimum on (k, d)-colourings. Some basic facts on (k, d)-
colourings are presented. Furthermore, the circular chromatic number is im-
proved to be a minimum; i.e. if x.((G,0)) = % then there exists a (k,d)-
coloring of (G, o). In Section we introduce circular colourings of a signed
graph and give an alternate definition of the circular chromatic number of
signed graphs by circular colorings. The relation between the circular chro-
matic number and its related chromatic number for a signed graph is studied
in Section In particular, we show that the difference between these two
parameters is at most 1. Indeed, there are signed graphs where the difference

is 1. On the other hand, for a signed graph on n vertices, if the difference is
11



12 Chapter 2 Circular chromatic number . of signed graphs

smaller than 1, then there exists €, > 0 such that the difference is at most
1 — €,. Finally, we introduce the interval chromatic number of signed graphs

and relate it to both the chromatic number and the circular chromatic number.

2.1 (k,d)-colorings of a signed graph

The results of this section have already been published in [29].

Let us first give the definitions of (k,d)-colorings, the circular chromatic
number and its related chromatic number for a signed graph.

For z € R and a positive real number r, we denote by [z],, the remainder
of z divided by r, and define |z|, = min{[z],, [-x],}. Hence, [z], € [0,r) and

2l = | — al,.

Definition 2.1. Let Z,, denote the cyclic group of integers modulo n, Z/nZ.
Let k and d be positive integers such that k > 2d. A (k, d)-coloring of a signed
graph (G, o) is a mapping ¢ : V(G) — Zj, such that for each edge e = vw,
d < |e(v) — o(e)c(w)|k. The circular chromatic number x.((G, o)) of a signed
graph (G, o) is inf{%: (G,0) has a (k,d)-coloring}. The minimum k such
that (G,o) has a (k,1)-coloring is the chromatic number of (G,o) and it is
denoted by x((G,0)).

One of the fundamental concepts on signed graphs is switching, by which
signed graphs can be classified into equivalent groups. In the following propo-
sition, we study (k, d)-colorings under switching and show that two equivalent

signed graphs have the same circular chromatic number.

Proposition 2.2. Let k,d be positive integers, (G, o) be a signed graph and c
be a (k,d)-coloring of (G,0). If (G,0) and (G,0’) are equivalent, then there
is a (k,d)-coloring ¢ of (G,d’). In particular, x.((G,o)) = x.((G,d")).

Proof. Let x € V(G) and (G, 0’) be obtained from (G, o) by a switching at
z. Define ¢ : V(G) — Zj with ¢(v) = c(v), if v # z, and d(x) = —c(z).
For every edge e with e = ww: If z ¢ {u,w}, then |c(u) — o(e)c(w)|r =

| (u) — o’(e)d (w)|, and if x € {u, w}, say x = w, then |/ (u) — o’(e)d (w)|x =
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le(u) — (—a(e))(—c(w))|x = |e(u) — o(e)e(w)|x. Hence, ¢ is a (k, d)-coloring of
(G,d"), and therefore, x.((G,0)) = x((G,d")). O

Note, that if (G, o) has a (k, d)-coloring, then by switching we can obtain
an equivalent signed graph (G, ¢’) and a (k, d)-coloring ¢’ on (G, ¢’) such that
d(v) €{0,1,...,| %]} for each v € V(Q).

Next, we determine the circular chromatic number x. and the related chro-
matic number y of some specific graphs. For n > 3, let C,, denote the circuit

with n vertices.

Proposition 2.3. Let k be a positive integer.
1. If (Cogs1,0) is balanced, then X.((Copt1,0)) = 2 + 3; otherwise,
Xc((Cogt1,0)) = 2. Furthermore, x((Cok+1,0)) = 3.
2. x((G,0)) = 2 if and only if G is bipartite. Furthermore, x((G,0)) =

Xc((G,0)) if G is bipartite.

Proof. 1. If (Cor41,0) is balanced, then (Coxy1,0) is switching equivalent
to (Coky1,+), hence, x.((Coky1,0)) = 2+ % If (Cogt1,0) is unbalanced,
then (Cogt1,0) is switching equivalent to Coy11 which has one negative edge
say, uv. Thus, we can assign to vertex u and v color 1, and to other vertices
colors 3 and 1 alternatively. We thereby get a (4, 2)-coloring of (Coxy1,0), i.€.,
Xc((Cag+1,0)) = 2. And it is easy to check (Coxy1,0) has a (3,1)-coloring,
but can not be colored properly by two colors, therefore, x((Coxy1,0)) = 3.
2. If G is bipartite, then it can be colored with colors 0 and 1 and there-
fore, x((G,0)) = 2. If x((G,0)) = 2, then, since both colors are self-inverse
in Zo, both color classes are independent sets. Hence, G is bipartite. Since
X((G,0)),xc((G,0)) > 2, it follows that x((G,0)) = x.((G,0)) if G is bipar-
tite. 0

2.1.1 A recoloring technique: Updating

We introduce and study a recoloring technique, namely updating, applied on
(k, d)-colorings of a signed graph. This technique will play a crucial role in

several proofs in the next subsection.
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Definition 2.4. Let ¢ be a (k,d)-coloring of a signed graph (G,o) in which
colors xo and its inverse k — xg are missing. Updating ¢ at xg is defined as
follows: if v is a vertex of color [xg + d|, then recolor v by [xo + d — 1]i;
and meanwhile, if u is a vertex of color [k — xg — d|i, then recolor u by [k —
xo —d + 1]k. Let r be a positive integer. Updating ¢ at a sequence of colors
xo, [ro + d)g, - - -, [xo + (r — 1)d]i is called updating c from xo by r steps. We
also say that a function ¢’ is obtained from ¢ by updating at xo (in r steps) if

d is the final function from V(QG) to Zy in this process.

Definition 2.5. Let k,d be two positive integers. We define
1 1 1
P(k,d) = {5(1’6 —2d+1), §(k —d+1), 5(2]@ —d+1)}.

Clearly, if both k and d are even, then Zy N P(k,d) = 0; otherwise, |Zy N
P(k,d)| = 2.

Lemma 2.6. Let (G,0) be a signed graph, ¢ be a (k,d)-coloring of (G, o),

and let ¢ be obtained from c by updating at xo. The following statements are
equivalent:

(1) Either zg ¢ P(k,d) or both colors [xo+d]x and [k —xo—d]i are not used
m c.

(2) ¢ is a (k,d)-coloring of (G, o) in which the colors xg, [xo + d]k, [k — zo]k

and [k — x¢ — d] are not used.

Proof. ((1) = (2)) If both [z¢+d]; and [k —z¢ — d];, are not used in ¢, then it
follows that ¢’ is the same coloring as ¢ since nothing happens in the updating
process. So we are done in this case.

Let zg ¢ P(k,d), and suppose to the contrary that ¢’ is not a (k, d)-coloring
of (G,0). Then there exists an edge e with two end-points u and v such that
| (u) — o(e)d (v)|x < d. Since ¢ is a (k,d)-coloring of (G, o), it follows that
le(u) — o(e)e(v)|r > d. Hence, the distance between the colors of u and v has
been decreased in the updating process. The distance can be decreased by at

most 2. Hence, we distinguish two cases.
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Case a: The distance between the colors of u and v decreases by 2. In
this case, both u and v have been recolored, say c(u) = [z¢ + d]; and ¢(v) =
[k — zo — d]i; and moreover, [c(u) — o(e)c(v)]r € {d,d + 1}. It follows that
o(e) = 1 and furthermore, [c(u) — o(e)c(v)]y = d + 1 since otherwise c(u)
and c¢(v) are in fact the colors [k — z¢]r and x¢ which are missing in ¢. By
simplification of this equality, we get [2(z¢ + d) — k]x = d + 1 and thus,

o € {E=gHL 2=t contradicting the assumption that zg ¢ P(k, d).

Case b: The distance between the colors of u and v decreases by 1. In
this case, exactly one of u and v has been recolored, say u; and moreover,
le(u) — a(e)c(v)|r = d. Without loss of generality, we may assume c(u) =
[zo + d]. It follows that c¢(v) = x¢, contradicting the fact that z¢ is not used

in c.

We obtain contradictions in both cases. Hence, ¢ is a (k,d)-coloring of
(G, o). Moreover, If the colors [zg + d]; and [k — zo — d] occur in ¢, then
they have been recolored by each other, which can happen in the only case
that k is odd and [z + d|x = o + d = % However, this case is impossible
since xg ¢ P(k,d). Finally, suppose to the contrary that the colors zp and
[k — 20k occur in ¢/. Since they are not used in ¢, they have been reused in the
updating process. Thus, [xg+d—1]x = [k —x0]x and so z¢ € {%, 2’“_72‘”1},

a contradiction.

((1) <= (2)) Suppose to the contrary that xy € P(k,d) and at least one
of [xg + d]x and [k — xo — d]; are used in c. Without loss of generality, say

[xo + d]i is used. We distinguish two cases according to the value of x.

Case 1: my € {%,%}. Thus, [xg + d — 1) = [k — o]k, which
implies that the color [k — zo]; has been reused in the updating process, a

contradiction.

Case 2: g = %. Thus, [zo+d]x = [k —x0—d]x+1, which implies that

the colors [xo+d]i and [k — ¢ — d];, have been exchanged, a contradiction. [
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2.1.2 Basic properties of (k,d)-colorings

. . k
(k,d)-colorings with smaller j

We first consider such a problem: given a signed graph (G, o), look for a (k, d)-
coloring of ((G,0)) with minimum s and subjecting to that, & is minimum.
The results we obtain to this problem will be used to prove Theorem [2.16
which is one of the main theorems on circular coloring of signed graphs.

We will need Updating technique which is introduced in section and

a lemma which follows from the rearrangement theorem of group theory, (see

e.g. [13], section 1.4).

Theorem 2.7 (Rearrangement theorem of group theory). Each row and each
column in the group multiplication table lists each of the group elements once

and only once.

From this, it follows that no two elements may be in the identical location
in two rows or two columns. Thus, each row and each column is a rearranged
list of the group elements. By the rearrangement theorem of group theory, we

have the following lemma.

Lemma 2.8. Let k,d and x be three integers with k,d > 0 and gcd(k,d) = 1.
IfA={0,1,....,k—1} and B ={[x +id]x: i € A}, then A= B.

Now, we are ready to prove some basic properties on (k,d)-colorings of

signed graphs.

Theorem 2.9. Let d, k,t be positive integers and t > 3, and let (G,0) be a
signed graph. If (G, o) has a (tk,td)-coloring, then it has a (tk — 2k, td — 2d)-

coloring.

Proof. Fori € {0,1,--- ,t—1},let A; = {i,i+t,i+2t,--- ,i+(k—1)t}. Clearly,
Ag, ..., A1 are t pairwise disjoint sets of colors whose union is exactly the
color set Z;,. We shall recolor each color in both sets A; and A;_1 by a color
of Ag as follows: for ¢ € Ay, recolor ¢ by ¢ — 1, and for ¢ € A;_1, recolor i by

i+ 1. We obtain a new (tk, td)-coloring of (G, o) in which no vertex receives a
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color from A; U A;_1. Let K’ = tk — 2k. Since the colors of the set A; U A;_1
are not used, we define a new coloring by renaming colors by elements of
Zys. Change color x (from Zu) to x — {y: y € At U A and y < z}
(interpreted as element in Zj/) to obtain a mapping ¢’ : V(G) — Zjs. Let
d = td — 2d. We claim that ¢’ is a (K, d’)-coloring of (G, o). Denote by I;
the set {j,7 +1,...,j + td — 1} which is an interval of Z;,. Each interval I;
contains exactly 2d elements of A; U A;_1, and any pair of mutually inverse
elements of Z;, has been recolored by a pair of mutually inverse elements of

Zy. Tt follows that ¢’ is a (K, d’)-coloring of (G, o), as required. O

Theorem 2.10. Let (G, o) be a signed graph on n vertices that has a (2k,2d)-
coloring and ged(k,d) = 1. If k > 2n, then (G, o) has a (k,d)-coloring.

Proof. Let ¢ be a (2k,2d)-coloring of (G,o). Since k > 2n, we may assume
that there is an odd zg, such that xg and k — zg are not used in c¢. Update
¢ from zg by k steps to obtain a function ¢. Denote by A the set of odd
elements of Zs. Since both 2k and 2d are even it follows with Lemma [2.8
that the colors of AN{c(v) : v € V(G)} have been recolored by colors of Zgy \ A
in the updating process. Hence, AN {cd(v) : v € V(G)} = 0, and by Lemma
¢ is a (2k, 2d)-coloring of (G, o). Thus, ¢ : V(G) — Zg with ¢(v) = +¢/(v)
is a coloring of (G, o). Let I; = {j,j+1,...,j +2d — 1} which is an interval
of Zgy. Each interval I; contains exactly d elements of A. Moreover, any pair
of mutually inverse elements of Zs; has been recolored by a pair of mutually

inverse elements of Zy. Hence, ¢ is a (k, d)-coloring of (G, o), as required. [J

Theorem 2.11. If (G,0) is a signed graph on n vertices that has a (k,d)-
coloring with ged(k,d) =1 and k > 4n, then (G, o) has a (K',d")-coloring with

/ K k

Proof. Since ged(k,d) = 1, we may assume that P(k,d) N Z; = {p,q} and
p<q.

Let f: Zp — Zj such that z = f(x)d (mod k). Lemma implies that
f is a bijection. Further, x and y are mutually inverse elements of Zj if and

only if f(x) and f(y) are mutually inverse ones, and |f(p) — f(q)|x = L%j
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Let ¢ be a (k,d)-coloring of (G,o). Since k > 4n we may assume that
xo € Zy, such that o and k — x¢ are not used in ¢, and that f(q), f(xo) and

f(p) are in clockwise order in Z.

Hence, ¢ can be updated from z¢ by [f(p) — f(x0)]x steps to obtain a
(k,d)-coloring ¢ of (G,o) in which colors p and k — p are not used. Let
r =min{[f(p) — f(k—p)lk, [f(q) — f(k—p)lk}, i.e., r is the minimum positive
integer such that

(%) either k —p+rd =p (mod k) or k —p+ rd = q (mod k).
Updating ¢’ from k — p by r steps, we obtain a function ¢”, which is a (k, d)-
coloring ¢ of (G, o) by Lemma We will show that no colors are reused in
this updating process.

Let A={[k—p+id]p: 0<i<r}and B={k—a: a € A}. By simplifying
the congruence expressions, we reformulate the minimality of r as: r is the
minimum positive integer such that

(1) either (r+1)d =1 (mod k) or (2r +2)d = 2 (mod k), if k is even;
(2) either (r +2)d =1 (mod k) or (2r + 3)d = 2 (mod k), if k is odd.

Claim. No element of AU B is used in coloring c”.

Proof of the Claim. Suppose to the contrary that A U B has a color o with
a€{lk—p+mnrdk—[k—p+rd} appearing in ¢’. Considering that the
color « is missing in the resulting coloring after exactly r1 steps in the updating
process, its appearance in ¢’ yields that it has been reused in some 7o step
with r > ro > r1. It follows that either k —p+rod =k —p+r1d+ 1 (mod k)
or k—p+mrd=—(k—p+rid)+1 (mod k).

In the former case, the congruence expression can be simplified as (ry —
r1)d =1 (mod k). Note that 0 < r9 — 71 < r+ 1. A contradiction is obtained
by the minimality of r.

In the latter case, the congruence expression can be simplified as (r1 +7r2+
1)d = 2 (mod k) if k is even and (r1 + 72 + 2)d = 2 (mod k) if k£ is odd. But
then 71 + 1o < 2r + 1 which is a contradiction to the minimality of r. This

completes the proof of the claim.
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We continue the proof of the theorem. We distinguish the following four
cases first by the parity of k and then by the condition (x) for the minimality
of r. In each case, we will define a (¥, d’)-coloring of (G, o) with S—; < s and

k' < k, as desired.
Case 1: k is even. In this case, p= 3(k—d+1) and ¢ = 3(2k —d + 1).

Case 1.a: k—p+rd = p (mod k). The colors [k—p+id]y and [k—p+(r—i)d]x
are mutually inverse, for 0 < ¢ < r. Thus, the set A consists of [%] pairs of
mutually inverse elements of Zj, and {0, %} ¢ A = B. Since the colors of AUB
are not used in ¢’ by the claim, we rename the other colors: if 0 ¢ A, then
change color = to x — |[{y: y € A and y < x}|; otherwise, change color z to
r—{y: ye Aandy < z}|— Lk_T‘A‘J Define k' = k—r —1. We thereby obtain
amapping ¢’ : V(G) — Zj. Denote by I; the set {j,j+1,...,j+d—1}, j # p,

which is an interval of Z;. Each interval I; contains at most ”H'kd_l elements

of A. Define d' = d — %. Moreover, any pair of mutually inverse colors
of Zj, has been recolored to mutually inverse colors of Z; and then has been
renamed to be mutually inverse colors of Zy/. Hence, ¢’ is a (k’,d’)-coloring

K k(k—r—1 k
Of (G,O'), and a = M < a-

Case 1.b: k—p+rd = q (mod k). We have that either 0 < f(q), f(k—p) < &
or ¥ < f(q), f(k —p) < k. Since |f(p) — f(q)|x = &, it follows that neither
{f(a) : @ € A} nor A contains any pair of mutually inverse colors. Thus,
A U B consists of r + 1 pairs of mutually inverse colors and O,% ¢ AU B.
Define ¥/ = k — 2(r + 1). Since the colors in the set A U B are not used
in ¢’ by the claim, we may rename the other colors, changing color = to
x—{y: y€ AU B and y < x}|, thereby obtain a mapping ¢' : V(G) — Zy.
Denote by I; the set {j,j +1,...,j +d — 1} which is an interval of Z;. Each
interval I; contains at most % elements of A. Define d’ =
w. By repeating the argument as in Case l.a, we get a (k',d’)-

coloring of (G, o). Furthermore, Z—; = % < %.

_ 2rd+2d—2 _
d . =

Case 2: k is odd. In this case, p = 2(k —2d+ 1), and ¢ = 3(k —d + 1)
when d is even and ¢ = £(2k — d + 1) when d is odd.
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Case 2.a: k—p+rd = p (mod k). The colors [p+id] and [p+ (r—1i)d]; are
mutually inverse for 0 < < r. Thus, A = B and A consists of [“}1] pairs of
mutually inverse colors of Zj. Since the colors of AUB are not used in ¢’ by the

claim, we may rename the other colors: if 0 ¢ A, then change x to z—|{y: y €

Aand y < z}| for each z < || and toz — [{y: y € Aand y < z}| — 1 for

cach z > | £]; otherwise, change z to z — [{y: y € Aand y < a}| — k;w +1

for each z < |5| and toz — |{y: y € Aand y < z}|— |foreach:c>L IE

The mutually inverse colors % and k“ of Zj, are not in A and they have

been renamed into the same color. Define ¥ = k —r — 2. We thereby obtain a
mapping ¢’ : V(G) — Zy. Denote by I; the set {j,j+1,...,j+d— 1} which

is an interval of Zy. Define d* = %(rd +2d — 1). For each interval I;, if both

k+1

colors 251 and belong to I;, then I; contains at most d* —1 elements of A;

T
otherwise, I; contains at most d* elements of A. Define d’ = d —d*. Moreover,
any pair of mutually inverse colors of Z; has been recolored to be mutually
inverse colors of Zj and then has been renamed to be mutually inverse colors

of Zys. Hence, ¢ is a (k',d")-coloring of (G, o), and Z—j = % <k

Case 2.b: k—p+rd = q (mod k). By similar argument as in Case 1.b, we
may assume that A contains no mutually inverse colors of Zy. Thus, AU B
consists of r + 1 pairs of mutually inverse colors and 0 ¢ AU B. Since the
colors of AU B are not used in ¢” by the claim, we may rename the other
colors: change x to x — [{y: y € A and y < z}| for each z < L%J and to

z—|{y: y€ Aand y < z}|—1 for each z > |£|. The mutually inverse colors

k-1 and

5 % of Z;, are not contained in the set A and have been renamed

into the same color. Define ¥’ = k — 2r — 3. We thereby obtain a mapping
¢ : V(G) — Zys. Denote by I; the set {j,7 + 1,...,j +d — 1} which is an

interval of Zj. Define d* = %(27’6[ + 3d — 2). Clearly, d* is a positive integer

because of the assumption of Case 2.b. For each interval I;, if both colors %

and k+1

belong to I;, then I; contains at most d* —1 elements of A; otherwise,
I; contains at most d* elements of A. Define d’ = d—d*. Any pair of mutually

inverse colors of Z; has been recolored to be mutually inverse colors of Zj, and
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then has been renamed to be mutually inverse colors of Z;,. Hence, ¢’ is a

(K',d')-coloring of (G, o), and & = % <k O

. . k
(k,d)-colorings with larger ¢

Lemma 2.12. If a signed graph (G,o) has a (k,d)-coloring, then for any

positive integer t, (G,o) has a (tk,td)-coloring.

Proof. Let ¢ be a (k, d)-coloring of (G, o). Define a (tk, td)-coloring ¢ of (G, o)
by
d(z) = te(x), for all z € V(G).

Lemma 2.13. If a signed graph (G, o) has a (k,d)-coloring and k' > k, where

k' is a positive integer, then (G,o) has a (k',d)-coloring.

Proof. Let ¢ be a (k, d)-coloring of (G, o). Define the mapping ¢ : V(G) — Zjy
by

c(x) if e(z) < |5],

c(x) + k' —k otherwise,

for all z € V(G). It is easy to check that ¢ is a (K’, d)-coloring of (G,0). O

Theorem 2.14. If a signed graph (G,o) has a (k,d)-coloring, and k' and d'

are two positive integers such that g < IC%, then (G, o) has a (K',d')-coloring.

Proof. By Lemma (G,0) has a (kd',dd')-coloring. Since & < Z—;, Lemma
implies that (G, o) has a (k'd — 1,dd’)-coloring and a (k'd, dd’)-coloring
as well. If d is odd, then by Theorem a (k'd,dd’)-coloring of (G, o) yields
a (K',d')-coloring of (G,0) and we are done. Let d be even and ¢’ be a

(k'd — 1,dd')-coloring of (G,0). Define the mapping ¢ : V(G) — {1 — 4,2 —
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4,...,k'd—1— 4} as follows. For x € V(G) let

'(z) — (K'd—1), ifc'(z)>kd—1-4,
c(x) =

d"(x), otherwise.
Define the mapping ¢’ : V(G) — Zy by
1
d(x) = L@ + §J, for all z € V(G).

d

We will show that ¢’ is a (k/, d’)-coloring of (G, o).

Consider an edge uv. First assume that o(uv) = 1. Without loss of
generality, let ¢(u) > ¢(v). Note that 1 < ¢(u) — ¢(v) < k'd — 2. Since ¢’ is a
(k'd — 1, dd")-coloring of (G, o),

dd < c(u) —c(v) < k'd—1—dd.

Therefore,
du) ) = (D T
<LH—J+4Q11+;}{%?+J
<K —d,
and
du) ) = D T
> Ld’+c(dv)+2j - chj)+J
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Next assume that o(uv) = —1. Note that 2 —d < ¢(u) +¢(v) < 2(k'd—1) — d.
Since ¢ is a (K'd — 1,dd")-coloring of (G, o), either

dd' < c(u) +c(v) < Kd—1—dd
or
Kd—1+dd <c(u)+c(v) <2(k'd—1)—dd.

In the former case,

¢+ =14 2 1y

and

In the latter case, by a similar calculation, we deduce
K+d <d(u)+d(v) <2k —d.

Therefore, ¢ is a (k',d’)-coloring of (G, o). O

. . k
(k,d)-colorings with the same 5

Proposition 2.15. If a signed graph (G,o) has a (k,d)-coloring with d odd,
and k' and d' are two positive integers such that % = ’;—:, then (G,o) has a

(k',d")-coloring.
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Proof. By Lemma (G,0) has a (kd',dd')-coloring, i.e., a (k'd,dd)-
coloring since & = ’;—:. Since d is odd, by Theorem (G,0) has a
(k',d")-coloring of (G, o). O

Proposition [2.15]is not true if d is assumed to be even instead. For example,
an antibalanced triangle has a (4, 2)-coloring, but it does not have a (2,1)-

coloring.

2.1.3 x.((G,0)): from infimum to minimum

Recall that the circular chromatic number x.((G, o)) of a signed graph (G, o)
is inf{%: (G, o) has a (k,d)-coloring}. We will show that it is further a mini-
mum, i.e., if x.((G,0)) = g, then there exists a (k, d)-coloring of (G, o). This

is one of the fundamental theorems on circular colorings of signed graphs..

Theorem 2.16. If (G, 0) is a signed graph on n vertices, then
.k .
Xc((G,0)) = mln{g: (G,0) has a (k,d)-coloring and k < 4n}.

Proof. By Theorems and if (G, o) has a (k, d)-coloring then it

has a (K, d')-coloring with k&’ < 4n and Z—: < s. Therefore,
ok .
Xc((G,0)) = 1nf{g: (G, o) has a (k,d)-coloring and k < 4n}.

Since the set {%: (G, o) has a (k,d)-coloring and k < 4n} is finite, the infi-

mum can be replaced by a minimum. O

2.2 Circular r-colorings of a signed graph

The results of this section have already been published in [29].
The name “circular coloring” was introduced by Zhu [63], and motivated
by the equivalence of (k, d)-colorings to r-colorings. For more information, we

refer the readers to [68, [73]. In this section we will show that this is also true
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in the context of signed graphs. Hence, the circular chromatic number can be

equivalently defined by circular r-colorings.

Definition 2.17. Let (G, o) be a signed graph and r be a real number at least
1. A circular r-coloring of (G, o) is a function f : V(G) — [0,r) such that for
any edge e with e = zy: if o(e) = 1 then 1 < |f(z) — f(y)] < r —1, and if
ole) =—1then 1 <|f(x)+ f(y) —7r| <r—1.

Clearly, if we identify 0 and r of the interval [0, r] into a single point, then
we obtain a circle with perimeter r. Let S™ be this circle. The colors are the
points on S, and the distance between two points a, b of S” is the shorter arc
of S connecting a and b, which is |a — b|,. For a € S” let r — a be the inverse

element of a. By this notation, Definition can be written as

Definition 2.18. Let (G, 0) be a signed graph and r be a real number at least
1. A circular r-coloring of (G,0) is a function f: V(G) — S" such that
|f(x) —a(e)f(y)|lr > 1 for each edge e with e = zy.

Note, that this definition also respects switchings. Let f be an r-coloring
of (G,0) and let (G,0’) be obtained from (G, o) by a switching at v € V(G).
Then [’ with f'(z) = f(z) if x € V(G) \ {v} and f'(v) = r — f(v) is an
r-coloring of (G,c"). As above we deduce that there is always a coloring on

an equivalent graph of (G, o), which only uses colors in the interval [0, Z].

Lemma 2.19. Let r and v’ be two real numbers and v’ > r. If a signed graph

(G,0) has an r-coloring, then (G,o) has an r'-coloring.

Proof. Let ¢ be an r-coloring of (G,0) and € = r’ — r. Define a function

d: V(G) = [0,r") as for each z € V(G),

We will show that ¢ is a circular r’'-coloring of (G, o). Let e = uv be an edge

of (G,0). Then
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and

€

[ (u) + ¢(v) = '] = |(e(u) + 5) + (e(v) + %) =7 = le(u) + ¢(v) = 7l.

Since c is a circular r-coloring of (G, ), by Definition 2.17} if o(e) = 1 then
1< |e(u) —c(v)| <r—1, and if o(e) = —1 then 1 < |¢(u) + c(v) — 7| <r —1.
Since r < 1/, we can deduce that if o(e) = 1 then 1 < |¢/(u) — ¢ (v)| <’ — 1,
and if o(e) = —1 then 1 < |c(u) + ¢(v) —r| < 1’ — 1. Therefore, ¢ is a circular

r’-coloring of (G, o), as required. O

The following theorem gives the equivalent relation between (k, d)-colorings

and circular r-colorings for a given signed graph.

Theorem 2.20. Let (G, o) be a signed graph and k,d be positive integers with
2d < k. (G,0) has a (2k,2d)-coloring if and only if (G,0) has a circular

k .
4 -coloring.

Proof. We give an analogous proof to the one for unsigned graphs (see Theo-
rem 1 in [63]).

Suppose that ¢ : V(G) — Zg is a (2k,2d)-coloring of (G,0). For each
v e V(Q) set f(v) = %. It is easy to verify that f is a circular %—coloring of
(G,0).

On the other hand, suppose that f is a circular r-coloring of (G, o) with
r =% and ged(k,d) = 1. Let S = {f(v): v € V(G)}. The cardinality of S
is finite since G is a finite graph. We first show that we can assume that all
elements of S are rational numbers. We will show that each irrational color
can be shifted to a rational color without creating a new pair of colors with
distance less than 1. Let s € S and suppose that s is not a rational number.
Let P = P,..., P, be the longest sequence of pairwise distinct points in [0, 7)
which satisfies the following constraints:

e s€ P, and

e {P,r—P}NS#0and P41 = [P; + 1], where P; is the element of P

in the ¢ place.
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Define @) to be the sequence consisting of the opposite points of P. More
precisely, Q; =7 — P;. Let P = SN P and Q = SN Q. Let € be a positive
real number such that s + ¢ is rational. We shift the colors in P together
by distance ¢ clockwise, and the ones in Q together by the same distance
anticlockwise. Choose ¢ to be small enough. It is easy to see that this shift
is the one required if we can show that the sequences P and ) contains no
common colors. If o is a common color of P and @, then s — « is an integer
and so does r — s — . It follows that r — 2s is an integer, contradicting the
fact that r is a rational number but s not.

Let m be a common denominator of all the colors in S. Then the mapping
' V(G) > Zpy defined as f'(v) = f(v)md is a (mk, md)-coloring of (G, o).
Since m can be chosen to be even it follows with Theorem that there is

(2k, 2d)-coloring of (G, o). O

The “(2k,2d)-coloring” in the previous theorem can not be replaced by
“(k,d)-coloring” since otherwise there exist counterexamples. An unbalanced
triangle is one of the signed graphs that has a circular 2-coloring but it has no

(2,1)-colorings.

Theorem 2.21. If (G,0) is a signed graph, then
Xc((G,0)) =min{r: (G,o) has a circular r-coloring}.

Proof. Since x. must be a rational number by Theorem let us as-
sume x.((G,0)) = k/d, where k and d are integers. Let R = {r
(G,0) has a circular r-coloring}. Then the theorem states that y. = min R.
What we have to show is that y. is the minimal element of R. Since (G,0)
has a (k, d)-coloring, by Lemma [2.12] it has a (2k, 2d)-coloring. So (G, o) has
a circular k/d-coloring by Theorem Therefore, . is an element of R.
Suppose that there is r € R with r < k/d. Then there is a rational
number 7’ such that » < ' < k/d. Let ' = k'/d', where k' and d’' are

integers. By Lemma (G,0) has a circular r’-coloring. Now, it follows
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with Theorem that (G, o) has a (2k',2d’)-coloring and g—’;: < x((G,0)),

a contradiction. O

This theorem shows that for signed graphs, the circular chromatic num-
ber x. can be equivalently defined by circular r-colorings and x. is again a
minimum.

The circular chromatic number and circular r-colorings seem to be very
natural notions for the coloring of signed graphs. Different from the color set
Zy, used by a (k,d)-coloring, the color set S” used by a circular r-coloring has

always two self-inverse elements, namely 0 and 3.

2.3 Relation between x.((G,0)) and x((G,0))

In this section, we will relate x and x. to each other. We prove that x((G,0))—
1 < xc((G,0)) < x((G,0)) for every signed graph (G,o). In contrast to the
corresponding result for unsigned graphs we show, that for each even k there
are signed graphs with circular chromatic number ¥ and chromatic number
k + 1, i.e. they do not have a (k, 1)-coloring. On the other hand, for a signed
graph on n vertices, if the difference between these parameters is smaller than
1, then there exists €, > 0, such that the difference is at most 1 — ¢,. Finally,
the concepts of interval colorings and corresponding interval chromatic number
x" of signed graphs are introduced, and it is proved that x’ ((G,0)) = x((G, 7))
for every signed graph (G, o).

The results of this section except Theorems and have already
been published in [29].

2.3.1 Relations in general

Theorem 2.22. If (G,0) is a signed graph, then x((G,0))—1 < x.((G,0)) <
x((G,0)).

Proof. By the definitions, we have x.((G,0)) < x((G,0)). On the other hand,
suppose to the contrary that x.((G, o)) < x((G,0))—1. Theorem implies
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that x.((G,0)) is a rational number. We may assume (G,o) has a (k,d)-
coloring with x.((G,0)) = %. By Theorem (G,o) hasa (x((G,0))—1,1)-

coloring, a contradiction. O

If G is an unsigned graph, then x(G) — 1 < x.(G) < x(G), see [48]. We
will show that there are signed graphs (G, o) with x((G,0)) — 1 = x.((G, 0)).
An example for the case x((G,0)) — 1 = x.((G,0)) = 2 is any antibalanced
triangle, which has no (2, 1)-colorings but has a (4,2)-coloring. Figure
shows a (3, 1)-coloring (left) and a (4, 2)-coloring (right) of an antibalanced

triangle.

/G o))=3 2.(G o)) =2

Figure 2.1: A signed graph (G, o) with x.((G,0)) = x((G,0)) — 1.

2.3.2 Signed graphs for which y. =y —1

First we give a sufficient and necessary condition for a signed graph (G,o)

having difference 1 between x((G, o)) and x.((G,0)).

Theorem 2.23. Let (G, o) be a signed graph with x((G,0)) =t+1 andt be a

positive integer. Then x.((G, o)) =t if and only if (G, o) has a (2t,2)-coloring.

Proof. (only if) Let x.((G,0)) = t. For each (k,d)-coloring of (G, o) with
s =t it follows that d > 1 since otherwise we would get a (¢, 1)-coloring. If d
is odd, then Theorem implies that there is (¢, 1)-coloring, a contradiction.
Hence, d is even and therefore, k as well. Again with Theorem [2.9] it follows
that there is a (2t,2)-coloring.

(if) Since (G, o) does not have a (t, 1)-coloring but it has a (2t, 2)-coloring,

it follows that x.((G,0)) =t = x((G,0)) — 1. =
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The following statement is a consequence of Theorem [2.23]

Theorem 2.24. Let (G, o) be a signed graph. Then x.((G,0)) = x((G,0))—1
if and only if there exists an integer k such that (G,o) has a (2k,2)-coloring

but has no (k,1)-colorings.

Proof.
(only if) A direct consequence of Theorem and the definition of x.
(if) Assume that such k exists. Thus, x.((G,0)) < kand x((G,0)) > k+1.
Since x((G,0)) —1 < x((G,0)) by Theorem we have x((G,0)) — 1 =
xe((G,0)) = k. O

Note that for every unsigned graph G, a (2k,2)-coloring of G yields a
(k,1)-coloring of G. Hence, if o is equivalent to an all-positive signature of G,

then x.((G,0)) > x((G,0)) — 1 for every G.

Theorem 2.25. The following two statements hold true.
1. If (G,o) is antibalanced and not bipartite, then x((G,0)) — 1 =

XC((Gv U)) =2
2. For every evenn > 2, there is a signed graph (G, o) with x((G,0))—1 =
Xc((G,0)) =n.
Proof.

1. The mapping ¢ from V(G) to Zs with ¢(v) = 1 is a 3-coloring of (G, o).
Hence, x((G,0)) < 3. Since (G, o) is not bipartite, x((G,0)) > 2. Therefore,
X((G,0)) = 3. If we consider ¢ as a mapping from V(G) to Zg4, then ¢ is a
(4,2)-coloring of (G, ). By Theorem [2.23], x.((G,0)) = 2.

2. Fori € {1,...,n} let (Gj,0") be a connected simple signed graph with
at least one edge and all edges negative. Take (G1,0'),...,(Gp,0™), and
for every j € {1,...,n} and every v € V(G;) connect v to every vertex of
(U, V(Gi)) — V(G;) by a positive edge. The resulting graph is denoted by
(K}, on), see Figure We complete the proof of Statement 2 by the claim
below.

Claim. If n is even, then x((K},0,)) =n+1 and x.((K},0p)) =n. If n is
odd, then x((K},on)) =n+2 and x.((K},0,)) =n+ 1.
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Proof of the claim. Clearly, the all positive subgraph K — N, has chromatic
number n. Since for all i € {1,...,n} the signed subgraph (G;,o?) has only
negative edges, and G; has at least one edge, it follows that all used colors
are not self-inverse. Since n is even, it follows that x((K},0,)) = n + 1.
Furthermore ¢ : V(K}) — Zgy, with c¢(v) = 2i — 1 if v € V(G;) is a (2n,2)-
coloring of (K}, 0,). Hence, x.((K},04)) = n.

If n is odd, the statement can be proved analogously, and the claim is

proved. O

(K;.0)

Figure 2.2: x((K},04)) — 1 = x.((K},04)) = 4.

Note, that Theorem does not apply to the graphs of Theorem
since the cardinality of the set of colors is smaller than the order of the graphs.
It would be of interest to know whether a statement like Theorem [2.25] 2. is
also true for odd k. Furthermore, is there a non-trivial characterization of
the signed graphs with x((G,0)) — 1 = x.((G,0))? These two questions were
addressed by Steffen and the author in [29]. Next we give a positive answer

to the first question.

Theorem 2.26. For every odd k > 3, there is a signed graph (G,o) with
X((G,0)) =1 =xc((G,0)) = k.

Proof. Let n be a positive integer. Take two copies (H',o') and (H',o?) of
the signed graph (K, o,,) that is defined in the proof of Theorem Take
any bipartite signed graph (7,or) having at least one edge. Denote by A!

and A? the two parts of T. For i € {1,2}, connect every vertex of A’ to every
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vertex of H' by a positive edge. The resulting graph is denoted by (Q%, o),
see Figure We complete the proof of the theorem by the claim below.

Claim. If n is even, then x((Q},0})) =n+2 and x.((Q},0)) =n+ 1.

Proof of the claim. Clearly, (K}, o,) has a (n + 1)-coloring ¢ such that no
vertices receive the self-inverse color 0. Give c to each (H?,¢"). Then for each
vertex u of H!, rename its color ¢(u) by 2¢(u); and for each vertex v of H?,
rename its color ¢(v) by [2¢(v) + n + 1]2p42. Finally, since T is bipartite, we
can properly color 7' by assigning the color 0 to each vertex of A' and the
color n + 1 to each vertex of A%2. We can see that the resulting coloring is a

(2n + 2, 2)-coloring of (Q%, o). Hence, x.((Q%,07)) <n+ 1.

nvn

Since x((@Q5,07)) — 1 < x.((Q},07)) by Theorem to complete the
proof of the claim, it suffices to show that x((QF,c)) > n + 2. Suppose to

n»-n
the contrary that (Q,o.) has a (n + 1)-coloring ¢. Clearly, the all-positive
subgraph Q;, — Nox — E(T') consists of two disjoint complete (n + 1)-partite
graphs. It follows that both A! and A? receive the self-inverse color 0, since for

any other part, its induced subgraph of ();, has an edge. However, @)}, has an

edge between A' and A2. So the coloring ¢ is not proper, a contradiction. [J

Qs 0.)

Figure 2.3: ((Q},0%)) — 1 = xe((Q. 0})) = 5.

2.3.3 Improved lower bound

The next theorem shows that if the lower bound in Theorem [2.22] is not at-

tained, then it can be improved.
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Theorem 2.27. Let (G,0) be a signed graph on m wvertices, then either
X((G,0)) =1 = x((G,0)) or (x((G,0)) = DA + —=) = xe((G,0)) <
x((G,0)). In particular, if X((G,0)) =1 # xc((G,0)), then x((G,0)) —
Xc((G7J)) <1- %

Proof. By Theorem[2.22] it suffices to show, that if x((G,0)) —1 # x.((G, o))
then (x((G,0)) — 1)(1 +

) < Xxc((G,0)). By Theorem [2.16, we may

In —1
assume that x.((G,0)) = E, where p and ¢ are coprime integers and p < 4n.
q

Then

_ Xc((G, 0)) > Xc((Ga U)) (2'1)

Xc((G7 U)) - (X((G,U)) - 1) > » = in

Q| =

By simplifying the inequality, we get

(X((G,0)) = D(1 + ) < xe((G, ).

dn — 1" —

Since 2q < p, it follows with the first inequality of Equation (2.1) that
X((G,0)) = xe((G,0)) <1 = 5. O

2.4 Signed graphs for which x. = x

It is of particular interests to construct signed graphs (G,o) for which
Xc((G,0)) = x((G,0)). For the unsigned case, this is one of the problems
posed by Vince [48] and investigated in many articles. It was shown by
Guichard [19] that it is NP-hard to determine whether or not an arbitrary
graph G satisfies x.(G) = x(G). Recall that (G,+) is a graph G together
with an all-positive signature. It is clear that, for every graph G with
Xe(G) = x(G), we have xc((G, +)) = x((G,+)).

In this section, we generalize the concept of interval colorings by Zhu [63]
from unsigned graphs to signed graphs and use it for the construction of signed

graphs having the same value of y and x..
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2.4.1 Interval colorings of signed graphs

Denote by C(S") the set of all open arcs of unit length on the circle S”.
Two arcs of C(S") are pairwise inverse if their middle points are pairwise
inverse on S”. The inverse of an arc a is written as —a. With these notions,
the definition of a circular r-coloring of a signed graph (i.e., Definition

restates as follows.

Definition 2.28. Let (G, 0) be a signed graph and r be a real number at least
1. A circular r-coloring of (G,0) is a function f : V(G) — C(S") such that
fx)nao(e)f(y) =0 for each edge e with e = zy.

Let I” be obtained from the circle S™ by cutting at the two points i%.
Clearly, I" consists of two intervals, one of length 1 and the other of length
r — 1. Analogously, denote by C(I") the set of all open arcs of unit length
on I". If we replace the circle S” in the definition of circular r-colorings of a
signed graph by I", we define an interval-coloring of a signed graph, and by
analogy, its interval-chromatic number. The concept of interval-colorings for
an unsigned graph was introduced by Zhu [63], and it sheds new light on the
relation between the circular chromatic number and the ordinary chromatic
number for unsigned graphs. We follow this approach to study the relation of

Xc and x for signed graphs.

Definition 2.29. Let (G,0) be a signed graph and r be a real number at least
1. An r-interval coloring of (G, o) is a function f : V(G) — C(I") such that
f(x)nole)f(y) = 0 for each edge e with e = xy. The interval-chromatic
number X' ((G,0)) of (G,0) is inf{r: (G,o) has an r-interval coloring}.

It is well-known [16] that for every unsigned graph G, the chromatic num-
ber of G is the least real number r such that there is an r-interval coloring of

G. We show that this is also true in the context of signed graphs.

Theorem 2.30. For every signed graph (G,o), we have Xx'((G,0)) =
xX((G,0)).
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Proof. Let x((G,0)) = k and let ¢ be a (k, 1)-coloring of (G, o). By replacing
each color z by the interval (z — %, x + %) and cutting S* at the two points

1
+3,

X'((G,0)) < x((G,0)).
On the other hand, let x!((G, o)) = r and let ¢ be an r-interval coloring of

we obtain a k-interval coloring of (G, o) from the coloring ¢. Hence,

(G,0). We will transform ¢ into an (|r], 1)-coloring of (G, o) by constituting

integers for open unit length arcs. Denote by I; and Is the two intervals of I”

1— 1=
r;L’"J T — T;LTJ). For each arc s

so that I has length 1. Rename I3 as (
of I, since s is of unit length, it covers at most one integer point. If s covers
precisely one integer point, then constitute this integer for s; otherwise, both
ends of s are integers and we take the one closer to the point 0 to constitute
for s. Since the ends of the interval I, are greater than 0, the color 0 has
not been used yet. For each arc s of I, s is exactly I; itself. We constitute
the color 0 for s. Now ¢ is transformed into an integer coloring, say ¢, using
colors from {0,1,...,|r|}. Moreover, we can see that pairwise inverse arcs of
c are transformed into pairwise inverse integers, and no two disjoint arcs of ¢
are transformed into the same integer. It follows that ¢’ is an (|r ], 1)-coloring.

Thus, x((G, o)) < X (G, 0)). O

2.4.2 Construction

Now we are ready to give a sufficient condition for a signed graph having
the same chromatic number and circular chromatic number. We will need the
results on interval colorings of signed graphs for the proof. A vertex of a graph

G is universal if it is adjacent to every other vertices of G.

Theorem 2.31. Let (G,0) be a signed graph having an universal vertez u.
Let x.((G,0)) =r. If (G,0) has a circular r-coloring for which u receives the

color 0, then x.((G,0)) = x((G,0)).

Proof. Since x.((G,0)) < x((G,0)) by Theorem it suffices to show that
Xc((G,0)) > x((G,0)). By Definition and the condition of the theorem,

(G, o) has a circular r-coloring ¢ with colors from C(S™) for which u receives
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the arc (—%,—i—%). Since u is an universal vertex, both points :l:% are not
covered by any other arc of ¢. Hence, we can cut S” at the points i% to obtain
I" and meanwhile, the coloring c is transformed into an r-interval coloring of
(G, o). Therefore, X' ((G,0)) <, that is, x((G,0)) < xc((G,0)) by Theorem

2.30) O



Chapter 3

Chromatic number Yy of

signed graphs

In Chapter [2| we introduced and studied circular colorings and related integer
colorings of signed graphs. In this chapter, we take a further look at integer
colorings and the corresponding chromatic number for signed graphs. Re-
sults on the chromatic spectrum are presented. Moreover, we generalize some
classical results on chromatic number of unsigned graphs to signed graphs,

including the Brooks’ theorem and the Hajos theorem.

3.1 Some basic properties

We recall the definitions of a k-coloring and the chromatic number x of a

signed graph as follows.

Definition 3.1. Let Zj, denote the cyclic group of integers modulo k, and the
inverse of an element x is denoted by —x. A function ¢ : V(G) — Zi is a
k-coloring of (G, o) if c(v) # o(e)c(w) for each edge e = vw. The chromatic
number x((G,0)) of a signed graph (G,o) is the smallest k such that (G, o)

has a k-coloring.

We say a signed graph (G, o) is k-chromatic, if (G, o) has chromatic number

37
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Let S be a set of vertices of a signed graph (G, o). Recall that S is an
independent set if there is no edge between any two vertices of S; S is an
antibalanced set if S induces an antibalanced subgraph.

By the previous definition, we can see that each nonempty color class
together with its inverse color class is an antibalanced set and in particular,
an independent set if they receive the self-inverse color. Hence, we have the

following statement.

Proposition 3.2. Let k be a positive integer and (G, o) be a signed graph.
1. For even k, (G, o) is k-chromatic if and only if V(G) can be divided into
two independent sets and % antibalanced sets, where all these sets may
be empty.
2. For odd k, (G, 0) is k-chromatic if and only if V(G) can be divided into
one independent set and % antibalanced sets, where all these sets may

be empty.

Now we investigate the relation between the chromatic number of a signed

graph and the chromatic number of its underlying graph.

Theorem 3.3. For every loopless signed graph (G, o), we have x((G,0)) <
2x(G) — 2. Furthermore, for every integer n > 2, there exists a signed graph
(G,0) such that x((G,0)) = 2x(G) — 2 and x(G) = n. Hence, the bound is
sharp.

Proof. Let ¢ be an n-coloring of a graph G with colors from {0,1,2,....n—1}.
For any signature o, we can see that ¢ is a (2n — 2)-coloring of the signed
graph (G, o). Hence, the required inequality holds.

In what follows, we will prove the sharpness of the bound, that is, we will
construct an infinite family of signed graphs (G, 0,,) such that x((Gy,0p)) =
2x(Gp) — 2 = 2n — 2. To construct (Gy,o0y,), we take one copy of the all-
positive signed complete graph (K, +), say (Hy,00), and n — 2 copies of the
all-negative signed complete graph (K,,—), say (Hi,01),...,(Hp—2,0n-2).
For i € {0,1,...,n — 2}, denote the vertices of H; by v;0,vi1,...,Vin—1. We

say that any two vertices v; ;, and v; 3, with ¢ # j are corresponding. Now insert
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a positive edge between any pair of non-corresponding vertices from distinct
copies, see figure 3.1

Since every two corresponding vertices is not adjacent, the color assignment
v;; — j for each i € {0,1,...,n —2} and j € {0,1,...,n — 1} defines an n-
coloring of Gy,. Thus, x(G,) < n. Moreover, G, contains a copy of the
complete graph K, as a subgraph, which implies x(G,) > n. Therefore,
X(Gn) =n.

We next prove that x((Gy, 0y)) = 2n—2. By the inequality of the theorem,
X((Gn,on)) < 2x(Gr) —2 = 2n — 2. Hence, we may suppose to the contrary
that x((Gn,0n)) < 2n — 3. Let ¢ be a (2n — 3)-coloring of (Gy,0y). Since
(Ho, 00) is a copy of (K, +), n distinct colors from Zsgy,_3, say ag, ag, . . ., ap_1,
have to be used for the vertices of Hy. For eachi € {1,...,n—2}, since (H;, 0;)
is a copy of (K, —), there exist two vertices u; and v; of H; receiving the same
color, say b;. Since each vertex of Hy is connected to at least one of u; and v;
by a positive edge, b; ¢ {ag,...,an—1}. Moreover, for each j € {1,...,i — 1},

u; is connected to at least one of w; and v; by a positive edge. Thus, b; ¢

{b1,...,b;—1}. Now we can conclude that ag,...,apn_1,b1,...,b,_2 are 2n — 2
pairwise distinct colors of Zsg,_3, a contradiction. ]
+ +
Vou Vi
+
(CHe)

Figure 3.1: A construction of (Gs, 03).
A similar relation between the signed chromatic number of a signed graph
and the chromatic number of its underlying graph was proved in [35].

Theorem 3.4 ([35], Theorem 2.1). For every loopless signed graph (G, o) we
have x+((G,0)) < 2x(G) — 1. Furthermore, this bound is sharp.
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3.2 Chromatic spectrum of a graph

In this section, we consider possible values of the chromatic number of a signed
graph (G, o) where the underlying graph G is fixed. So, we introduce the
chromatic spectrum of a graph and show that the chromatic spectrum is always
an interval.

The results of this section have already been published in [2§].

Definition 3.5. Let G be a graph and X(G) be the set of pairwise non-
equivalent signatures on G.  The chromatic spectrum of G is the set

{x((G,0)): o€ X(G)}, which is denoted by X,(G).

Define that M, (G) = max{x((G,0)): o € X(G)} and m,(G) =
min{x((G,0)): o € X(G)}. The following theorem is the main result in this

section.

Theorem 3.6. If G is a graph, then ¥, (G) = {k: my(G) <k < M,(G)}.

This theorem shows that the chromatic spectrum ¥, (G) is an interval
of integers for any graph G. Similarly, we can define the circular chromatic
spectrum X, (G) of a graph G as ¥, .(G) = {x.((G,0)): ¢ € £(G)}. For a
bipartite graph G, Proposition 2. shows that the chromatic spectrum of
G starts from 2, and so does the circular chromatic spectrum of G. Therefore,
it is an interesting problem to figure out the circular chromatic spectrum of

graphs.

3.2.1 Determination of m,(G)

Proposition 3.7. Let G be a nonempty graph. The following statements hold.
1. X, (G) = {1} if and only if m\(G) =1 if and only if E(G) = 0.
2. if E(G) # 0, then ¥,(G) = {2} if and only if m\(G) = 2 if and only if
G is bipartite.
3. If G is not bipartite, then m,(G) = 3.

Proof. Statements 1 and 2 are obvious. For Statement 3, consider (G, o)

where o is the signature with all edges negative. Then ¢: V(G) — Zs with
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c(v) =1 1is a 3-coloring of G. Since G is not bipartite, the statement follows

with Statements 1 and 2. O

3.2.2 Chromatic critical signed graphs

Definition 3.8. If (G, 0) is a signed graph and uw € V(G), then o, denotes the
restriction of o to G —u. A k-chromatic graph (G, o) is k-chromatic critical

if x((G —u,04)) <k, for every u € V(G).

Chromatic critical graphs are of particular interests for the studies of the
chromatic number of graphs, since that they possess additional properties by
the criticality and that it is often sufficient to consider chromatic critical graphs
for proofs. In this subsection, we will give some basic facts on k-chromatic

critical signed graphs. The complete graph on n vertices is denoted by K.

Proposition 3.9. Let (G,0) be a signed graph.
1. (G,0) is 1-critical if and only if G = K,
2. (G,0) is 2-critical if and only if G = K.
3. (G,0) is 3-critical if and only if G is an odd circuit.

Proof. Statements 1 and 2 are obvious. An odd circuit with any signature is
3-critical. For the other direction let G be a 3-critical graph. By Proposition
we have: (x) G — u is bipartite for every u € V(G). Since G is not
bipartite it follows that every vertex of G is contained in all odd circuits of
G, and by (x) every odd circuit C' is hamiltonian. C' cannot contain a chord,
since for otherwise G contains a non-hamiltonian odd circuit, a contradiction.

Hence, G is an odd circuit. O

Lemma 3.10. Let k > 1 be an integer. If (G, o) is k-chromatic, then x((G —
u,0q)) € {k,k — 1}, for every uw € V(G). In particular, if (G,0) is k-critical,
then x((G —wu,04)) =k —1.

Proof. For k € {1,2}, the statement follows with Proposition Hence, we
may assume that & > 3. Clearly, x((G — u,0,)) < x((G,0)) = k. Suppose
to the contrary that x((G — u,0y)) < k — 2, and let ¢ be a (k — 2)-coloring
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of (G —u,0,). We extend ¢ to a (k — 1)-coloring of (G, o). If k is odd, then
change color x to x 4+ 1 for each = > % and assign color % to vertex w,
and we are done. If k£ is even, then change color x to x + 1 for each x > %,
and assign color % to vertex u. If ¢p(v) = % for a vertex v and o(uv) = —1,
then recolor v with color % to obtain a (k — 1)-coloring of (G,o). Hence
X((G,0)) < k—1 < k, a contradiction. Clearly, if (G, o) is k-critical, then
X(G—u,04)) =k —1. O

The following theorem is a direct consequence of Lemma [3.10

Theorem 3.11. Let (G,0) be a signed graph and k > 1. If x((G,0)) = k,

then (G, o) contains an induced i-critical subgraph for each i € {1,...,k}.

3.2.3 Proof of Theorem [3.6]

Lemma 3.12. Let k > 3 be an integer and H be an induced subgraph of a
graph G. If k € £, (H), then k € £,(G).

Proof. If k € ¥, (H), then there is a signature o of H such that x((H,0)) = k.
Let ¢ be a k-coloring of (H,c). Define a signature ¢’ of G as follows. Let
e € E(G) with e = uv.

If e € E(H), then o'(e) = o(e);

Ifu,vg¢V(H)orifueV(H),v¢ V(H)and ¢(u) =1, then o'(e) = —1;

fueV(H),v¢V(H) and ¢(u) # 1, then o'(e) = 1.
It follows that ¢ can be extended to a k-coloring of (G, ¢’) by assigning color
1 to each vertex of V(G) \ V(H). Thus x((G,0")) < k. Moreover, (G,o’)
has (H,o) as a subgraph with chromatic number k, hence, x((G,c’)) > k.
Therefore, x((G,0')) = k and thus, k € ¥, (G). O

Theorem 3.13. Let k > 4 be an integer and G be a graph. If k € ¥,(G),
then k —1 € ¥, (G).

Proof. By Theorem (G,0) contains an induced k-critical subgraph
(H,o"), where ¢’ is the restriction of o to H. Since k > 4, it follows that

|V(H)| > 3. Hence, there is u € V(H) such that x(H — u,0,) = k — 1.
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Furthermore, H — u is an induced subgraph of G. Thus, k — 1 € X, (H — u),
and hence, k — 1 € X, (G) by Lemma [3.12}

Note that if k = 3, then by Proposition G is not a bipartite graph and
thus k£ can not be decreased to 2. O

Theorem [3.6] follows directly from Proposition [3.7] and Theorem [3.13

3.3 An analogue of Brooks’ Theorem for signed
graphs

This section is devoted to state and prove a signed version of one of the most
fundamental results on graph colourings, the famous Brooks’ theorem [§]. In
[35], the authors addressed a signed version of Brooks’ Theorem with respect
to the signed chromatic number y+. Later on, a list version of this result by
characterizing degree choosable signed graphs was proved in [43], following our
definition on list colorings of signed graphs given in Chapter 5} The result we
present here is an analogue of Brooks’ Theorem for signed graphs with respect

to the chromatic number Y.

Theorem 3.14. Let (G,0) be a simple connected signed graph. If (G,o) is
not a balanced complete graph or an odd circuit, then x((G,0)) < A(G).

The proof of this theorem follows a method from [I1] and [35]. However,
we apply new arguments for some cases in the proof. We will use the following

four lemmas for the proof.

Lemma 3.15. If (G,0) is a signed complete graph on n-vertices, n > 4, then

X((G,0)) < n. Furthermore, x((G,0)) = n if and only if (G, o) is balanced.

Proof. Tt is easy to see that if (G, o) is balanced, then x((G,0)) = n. So it is
sufficient to show that, if (G, o) is assumed to be unbalanced, then x((G, o)) <
n — 1. We distinguish two cases by the parity of n.

Case 1: assume that n is even. The proof for this case is done by induction.

For n = 4, since (G, o) is unbalanced and complete, there is an unbalanced
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triangle. Since an unbalanced triangle is antibalanced as well, we may use the
colors 1 and 2 of Z3 to properly color the triangle and the color 0 to color
the remaining vertex, obtaining a 3-coloring of (G, o). Hence, the conclusion
holds. Now we proceed to the induction process. Since (G, o) is unbalanced,
there is an unbalanced triangle T. Pick any two vertices z and y of (G, o)
that do not belong to T, and switch the signature of (G, o), if neccessary,
to make the edge xy is negative. Hence, the signed graph (G,o) — {z,y} is
an unbalanced signed complete graph on n — 2 vertices. By the induction
hypothesis, (G,0) — {z,y} has a (n — 3)-coloring, that is, its vertices can be
divided into one independent set and "7_4 many antibalanced sets. Since {z,y}
is an antibalanced set of (G, o), it follows that the vertices of (G, o) can be
divided into one independent set and ”T_Q antibalanced sets, that is, (G, o)
has a (n — 1)-coloring. Therefore, x((G,0)) < n — 1, the conclusion holds.
Case 2: assume that n is odd. Since a switching does not change the
chromatic number, we may assume that (G, o) has a vertex v incident with
negative edges only. We remove v and (G,0) — v is still unbalanced and
complete. By the conclusion of Case 1, (G,0) — v has a (n — 2)-coloring,
that is, its vertices can be divided into one independent set and "7_3 many
antibalanced sets. Take v as an independent set of GG, thus the vertices of
(G,0) can be divided into two independent sets and ”T_?’ antibalanced sets,
that is, (G,o0) has a (n — 1)-coloring. Therefore, x((G,0)) < n — 1, the

conclusion holds. O

The following lemma is a standard tool for coloring graphs greedily.

Lemma 3.16. The vertices of every connected graph G can be ordered in a
sequence xi,xa, ..., Ty S0 that x, is any preassigned vertex of G and for each

1 < n the vertex x; has a neighbour among Tiy1,T;12,...,Ty.

The following lemma is due to Lovasz and was crucial in his short proof
of Brooks’ theorem [32]. Its proof can also be found in [II] by Cranston and
Rabern.
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Lemma 3.17. Let G be a 2-connected graph with A(G) > 3. If G is not
complete, then G contains a pair of vertices a and b at distance 2 such that

the graph G — {a, b} is connected.

Lemma 3.18. Let (G,0) be a connected signed graph. If G is not regular,
then x((G,0)) < A(G).

Proof. Let u be a vertex of G with degree less than A(G). Take an ordering
r1,xo,...,T, of the vertices of G as in Lemma with z,, = u. We now
start coloring 1,9, ..., T, in the given order greedily with colors from Za.
For ¢ < n, each x; has a neighbor among its successors, so x; has at most A —1
neighbors previously colored. This is also true for x,, since x, has degree less
than A(G). Each colored neighbor forbids one color for z;, so Za still has a

color available for z; and finally, the same for z,. O
Now we are ready to prove Theorem [3.14

Proof of Theorem[3.1]). If the signed graph (G, o) is an unbalanced complete
graph, then the conclusion follows from Lemma [3.15} and if G is not regular,
then the conclusion follows from Lemma [3.18. The conclusion is also correct
whenever (G, o) is a path or an even circuit. Thus we may assume that (G, o)
is a simple connected signed graph of order n with maximum degree A > 3
which is regular but not complete. We distinguish two cases.

Case 1: The signed graph (G,o) is 2-connected. By Lemma, (G,0)
contains a path axb such that a is not adjacent to b and G—{a, b} is connected.
Switch at a and b if necessary so that both the edges ax and bx are positive.
Denote by n the order of G. Next, we take an ordering x1,z2, ..., Z,_o of the
vertices of G —{a, b} as in Lemma with z,—2 = . We now start coloring
(G, o) with colors from Za by assigning color 1 to both a and b. Then we color
Z1,%2,...,Tn—2 in the given order greedily. Since each z; # x has a neighbor
among its successors in G — {a, b}, z; has at most A — 1 neighbors previously
colored. Hence, there is at least one color from Za available for z;, and we

proceed up to x,_3. For the vertex z,_o (equivalently, ), since both a and



46 Chapter 3 Chromatic number y of signed graphs

b forbid the color 1 for xz, Za still has a color available for x. This completes

the proof of Case 1.

Case 2: The signed graph (G, o) has a cut-verter. Take a cut-vertex u of
G such that G — u has a component of minimum order. Denote by (H,ox)
this component. By switching if necessary, we may assume that w is incident
with positive edges only. By Lemma each component of (G,0) — u has
a A-coloring. To obtain a A-coloring of GG, we will recolor the component H
and take the coloring of all other components so that finally there is still a

color available for w.

Denote by S = {v1,...,v:} the set of neighbors of w in H. If ¢ = 1, then
vy is a cut-vertex of G whose removal from G yields a component of smaller
order than H, contradicting with the choice of u. Hence, t > 2. If every vertex
in S is a cut-vertex of H, then there exists an element of S whose removal
from H yields a component containing no other elements of S. It follows that
this element of S is a cut-vertex of G that will contradict with the choice of w.
Hence, S has a vertex that is not a cut-vertex of H. Without loss of generality,
let v1 be such a vertex. Thus, the signed graph (H, op) — vy is connected. Let
r be the order of H. We can choose an ordering x1, ..., z,._1 of the vertices of
H — vy as in Lemma [3.16| with x,._1 = v;. Let w be a neighbor of w not in H.
We now start recoloring H with colors from Za. First assign the color of w to
v1. Then we colour the vertices x1, o, ..., T,.—1 greedily in the given order. For
each i € {1,...,7 — 2}, ; has a neighbour among its successors in H — vy, so
x; has at most A — 1 neighbours previously coloured. Thus, we can properly
color x;. For the vertex z,_1, since it has a uncolored neighbour u, we can
properly color x,._;. Finally, since v has two neighbours v; and w of the same

color, we can properly color u. This completes the proof of Case 2. O
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3.4 First Hajos-like theorem for signed graphs

This section addresses an analogue of a well-known theorem of Hajés for signed
graphs. Throughout this section, “a graph” is always regarded as an unsigned
simple graph for the distinction from “a signed graph” and “a multigraph”.

The results of this section have already been published in [27].

3.4.1 Introduction

In 1961, Hajos proved a result on the chromatic number of graphs, which is one
of the classical results in the field of graph colorings. This result has several

equivalent formulations, one of them states as the following two theorems.

Theorem 3.19 ([20]). The class of all graphs that are not q-colorable is closed
under the following three operations:
(1) Adding vertices or edges.
(2) Identifying two nonadjacent vertices.
(8) Given two wvertex-disjoint graphs Gy and Go with a1by € E(G1) and
azby € E(G9), construct a graph G from G1 U Gy by removing a1by and
asbo, identifying a1 with as, and adding a new edge between by and bo

(see Figure|[3.9).

a a,
G, G, G

Figure 3.2: Operation (3)
Operation (3) is known as the Hajés construction in the literature.

Theorem 3.20 (Hajés’ Theorem [20]). Every non-q-colorable graph can be
obtained by Operations (1)-(3) from the complete graph Kqy;.
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The Hajés theorem has been generalized in several different ways. The
analogues of the Hajés theorem were proved for list-colorings by Gravier [17],
for circular colorings by Zhu [67, [70], for colorings of edge-weighted graphs by
Mohar [37], for group colorings by An and Wu [2], and for weighted colorings
by Araujo and Sales [3].

It is shown in this section that the Hajos theorem has a very natural and
simple generalization in the case of signed graphs for the chromatic number Y.
We call this generalization the Hajés-like theorem of signed graphs (briefly, the
Hajés-like theorem). Whereas the Hajos theorem needs three operations, the
Hajos-like theorem keeps the first two, uses an operation more general than the
third one, contains the operation of switchings for signed graphs, and needs
one more additional operation. Moreover, these operations of the Hajoés-like
theorem enable us to construct all signed graphs (G,X) with x((G,X)) > ¢
from copies of the all-positive complete signed graph (K, +) of order ¢, the
same graph we start from to construct all graphs G with x(G) > ¢ by the

Hajés theorem.

We will prove the Hajds-like theorem for signed multigraphs rather than
signed graphs (i.e., signed simple graphs). For vertex colorings of signed multi-
graphs, it suffices to consider signed bi-graphs, a subclass of signed multigraphs
in which no two edges of the same sign locate between same two vertices.
Clearly, signed bi-graphs contain signed graphs as a subclass. Hence, the

Hajés-like theorem holds particularly for signed graphs.

The structure of the rest of this section is arranged as follows. In Subsection
we give the definition of signed bi-graphs. In Subsection we design
five operations on signed bi-graphs and show that these operations are closed
in the class of non-g-colorable signed bi-graphs for any given positive integer
q. In Subsection we establish some lemmas necessary for the proof of
the Hajos-like theorem. In Section we propose the Hajos-like theorem
by using the operations that we defined before, and we address the proof of

the theorem.
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3.4.2 Signed bi-graphs

A bi-graph is a multigraph having no loops and having at most two edges
between any two distinct vertices. Let G be a bi-graph, w and v be two
distinct vertices of G. Denote by FE(u,v) the set of edges connecting u to
v, and let m(u,v) = |E(u,v)|. Clearly, 0 < m(u,v) < 2. A bi-graph G is
bi-complete if m(x,y) = 2 for any x,y € V(G), is complete if m(x,y) > 1 for
any x,y € V(Q), and is just-complete if m(z,y) = 1 for any z,y € V(G).

A signed bi-graph (G, o) is a bi-graph G together with a signature o of G
such that any two multiple edges have distinct signs. A bi-complete signed
bi-graph of order n is denoted by (K,,=£). It is not hard to calculate that
X((Kn,%)) = 2n — 2. The concepts of k-colorings, the chromatic number
and switchings of signed graphs are naturally extended to signed bi-graphs,
working in the same way, and the related notations are inherited.

Let (G, o) be a signed multigraph. Replace multiple edges of the same sign
by a single edge of this sign. We thereby obtain a signed bi-graph (G’,d”).
Clearly, G and G’ have the same vertex set. We can see that c is a k-coloring of
(G, o) if and only if it is a k-coloring of (G’, ¢’). Therefore, for vertex colorings

of signed multigraphs, it suffices to consider signed bi-graphs.

3.4.3 Graph operations on signed bi-graphs

Let k be a nonnegative integer. A signed bi-graph is k-thin if it can be obtained
from a bi-complete signed bi-graph by removing at most k& pairwise vertex-
disjoint edges. Clearly, A k-thin signed bi-graph is complete, and a signed
bi-graph is O-thin if and only if it is bi-complete.

Theorem 3.21. The class of all signed bi-graphs that are not q-colorable is
closed under the following operations:

(sbl) Adding vertices or signed edges.

(sb2) Identifying two nonadjacent vertices.

(sb3) Given two vertex-disjoint signed bi-graphs (G1,01) and (Ga,02), a vertex

v of G1 and a positive edge e of Go with ends x and y, construct a signed
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bi-graph (G, o) from (G1,01) and (Ga,02) by splitting v into two new
vertices v1 and ve, removing e and identifying v with x and v with y
(see Figure|3.5).

(sb4) Switching at a vertex.

(sb5) When q is even, remove a vertex that has at most 4 neighbors. When
q is odd, remove a negative single edge, identify its two ends, and add

signed edges (if needed) so that the resulting bi-signed graph is q;f—thm.

X =V,
_ X
\Y —_—
= y
y=v,
(Gl,al) (Gz’az) (G'G)

Figure 3.3: Operation (sb3)

Proof. Since Operations (sbl), (sb2), (sb4) neither make loops nor decrease the
chromatic number, it follows that the class of non-g-colorable signed bi-graphs
is closed under these operations.

For Operation (sb3), suppose to the contrary that (G, o) is g-colorable.
Let ¢ be a g-coloring of (G, o). Denote by 2’ and 3’ the vertices of G obtained
from x and y, respectively. If ¢(z’) = ¢(y’), then the restriction of ¢ into Gy,
where v is assigned with the same color as ' and ¢/, gives a g-coloring of
(G1,01), contradicting with the fact that (G1,01) is not g-colorable. Hence,
we may assume that c¢(z’) # ¢(y’). Note that e is a positive edge of (G, 03).
Thus the restriction of ¢ into Ga gives a g-coloring of (G, 02), contradicting
the fact that (Gg, 02) is not g-colorable. Therefore, the statement holds true
for Operation (sb3).

It remains to verify the theorem for Operation (sb5). For ¢ even, suppose
to the contrary that the removal of a vertex u from a non-g-colorable signed

bi-graph (G, o) yields the g-colorability. Let S = {0,%1,...,%£(3 —1),2
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and let ¢ be a g-coloring of (G, o) — u using colors from S. Notice that each
neighbor of 4 makes at most two colors unavailable for u. Since u has at most
4 neighbors, S still has a color available for u. Hence, we can extend ¢ to a
g-coloring of (G, o), a contradiction.

For the case that ¢ is odd, let (H', 0%;) be obtained from a non-g-colorable
signed bi-graph (H,op) by applying this operation to a negative edge e, and
suppose to the contrary that (H’, ¢’;) is g-colorable. Let 1) be a g-coloring of
(H', o%y) using colors from the set {0, £1,. .., :l:(qg—l)} Denote by z and y the
two ends of e and by z the resulting vertex from them. If ¢(z) # 0, then by
assigning x and y with the color 9 (z), we complete a g-coloring of the original
bi-graph (H, o), a contradiction. Hence, we may assume that ¢(z) = 0. For
0<i< q;21’ let V; ={v € V(G): |¢(v)| = i}. Clearly, each V; induces an
antibalanced signed graph and in particular, Vj is an independent set. Since

(H,op) is qg?’—thin, we can deduce that there exists p € {1,..., q;—l} such

that |V,| = 1. Exchange the colors between V) and V,, and then assign «’ and
y" with the same color as z, we thereby obtain a g-coloring of (H, o) from 1,

a contradiction. O

3.4.4 Useful lemmas

Operation (sb3) can be extended from unsigned graphs to signed bi-graphs as

follows.

(sb3') Let (G1,01) and (Ga,02) be two vertex-disjoint signed bi-graphs. For
each i € {1,2}, let e; be an edge of (G;,0;) with ends x; and y;. Make
a graph (G,o) from G; U Gy by removing e; and eg, identifying z;
with z9, and adding a new signed edge e between y; and yo such that

o(e) = o1(er)oa(e2).

Lemma 3.22. Operation (sb3') is a combination of Operations (sb3) and

(sbd).

Proof. We use the notations in the statement of Operation (sb3'). First assume

that at least one of e; and es is a positive edge. With loss of generality, say
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ey is positive. We apply Operation (sb3) to (G1,01) and (Ga, 02) where e; is
removed, x5 is split into two new vertices , and x4 with y, as the neighbor
of 2, and with all other neighbors of x2 as the neighbors of 2, and then a},
is identified with y; and zf is identified with ;. The resulting signed bi-
graph is exactly (G, o), we are done. Hence, we may next assume that both
e1 and ey are negative edges. Switch at x1 in (G1,01) and at x2 in (G, 02).
Since e is positive in the resulting signed bi-graph, we may apply Operation
(sb3) similarly as above, obtaining a signed bi-graph, which leads to (G, o) by

switching again at x; (equivalently, at z2). O

Let (G, o) be a signed graph. The sign product sp(H) of a subgraph H is
defined as sp(H) = [[.cpm)ole)-

Lemma 3.23. A just-complete signed bi-graph is antibalanced if and only if
the sign product of each triangle is —1, and it is balanced if and only if the

sign product of each triangle is 1.

Proof. For the first statement, since a just-complete signed bi-graph (G, o) is
exactly a complete signed graph, (G, o) is antibalanced if and only if the sign
product of each circuit of length k is (—1)*. Hence, the proof for the necessity
is trivial. Let us proceed to the sufficiency, which will be proved by induction

on k.

Clearly, the statement holds for & = 3 because of the assumption of the
lemma. Assume that k > 4. Let C be a circuit of length k. Since G is complete,
C has a chord e, which divides C' into two paths, together with e forming two
circuits C7 and Cy of length k1 and ke, respectively. Thus, k = k1 + ks —2. By
applying the induction hypothesis, we have sp(C;) = (—1)%. It follows that
sp(C) = sp(C1)sp(Ca) = (—1)¥, the statement also holds.

The second statement can be argued in the same way as for the first one.
We only have to pay attention to the equivalence between that (G, o) is bal-

anced and that the sign product of each circuit of length £ is 1. O
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A signed bi-graph of order 3r is V-complete if it can be obtained from
(K3, £) by removing r pairwise vertex-disjoint all-positive triangles. Clearly,

a V-complete signed bi-graph is complete.

Lemma 3.24. The V-complete signed bi-graph of order 3r can be obtained
from (Kary1,+) by Operations (sbl)-(sbb).

Proof. Take r + 1 copies of (K41, +), say (H;, +) of vertex set {v?, ... v?"
for 0 <i <r. For each j € {1,...,r}, switch at fug, and then apply Operation
(sb3") to Hy and Hj so that vgvgw and ’U?U?j are removed and that vg is
identified with v?, and finally identify vé with vg+r into a new vertex /.
The resulting signed bi-graph is denoted by (G, o). By Theorem since
(Kay41,+) is not 2r-colorable, (G, o) is not 2r-colorable either. Note that v
has precisely r neighbors in G. We can apply Operation (sb5) to vg, ie., we
remove v from (G, o). In the resulting signed bi-graph, for each 1 < k < 2r,
since v¥,...,vF are pairwise nonadjacent, we can apply Operation (sb2) to
identify them into a new vertex y*. Denote by (H,op) the resulting signed
bi-graph.

We can see that (H, og) is of vertex set {z!,... 2", y!,...,y* } and hence,
it is of order 3r. We can also see that (H, o) is complete and more precisely,
it has multiple edges between any two vertices from {z!,..., 2"} and a single
edge between any two other vertices of H. In particular, for 1 < j < r, the
set {x7,y%,y*~1} induces a just-complete triangle with the signs —, + and
+ on the edges 27y% 27y*~1 and y*y%~!, respectively. Switch at vertices
y' 3, ..., y* 1 and add signed edges as many as possible but keeping all
2j-1]

the triangles of the form [z7y*y just-complete. We thereby obtain the

V-complete signed bi-graph of order 3r from (H,op). O
Lemma 3.25. The signed bi-graph (K,,=+) can be obtained from (Kop—_o,+)

by Operations (sbl)-(sb5).

Proof. Let (G, o) be a copy of (Ka,_2,+) of vertices vy, ..., ve,_2. Since (G, o)
is not (2r — 3)-colorable, switch at v; and then we can apply Operation (sb5)

to v1vg so that vgvg, vsvg, . . ., Vor_5v2._4 are single edges. Since the resulting
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signed bi-graph is (r — 3)-thin, all other edges are multiple edges. For each
i €{2,3,...,r — 2}, switch at ve; and apply Operation (sb5) to ve;_1v2; so
that no new signed edges are added. The resulting signed bi-graph is exactly
(K, £). O

3.4.5 Proof of the theorem

We will need the following definitions for the proof of the Hajés-like theorem.

Let (G,0) be a signed bi-graph. An antibalanced set is a set of vertices
that induce an antibalanced signed graph. Let ¢ be a k-coloring of (G, o).
A set of all vertices v with the same value of |c(v)] is called a partite set of
(G,0). Thus, every partite set is an antibalanced set. Let U and V be two
partite sets. They are completely adjacent if m(u,v) > 1 for any v € U and
v € V, bi-completely adjacent if m(u,v) = 2 for any u € U and v € V, and
jJust-completely adjacent if m(u,v) =1 for any u € U and v € V.

Let (G,0) be a signed bi-graph. A sequence (z,vy,z) of three vertices of

G is a triple if there exist three integers a, b, ¢ satisfying the following three

conditions:
(i) a,b,c e {1,-1},
(ii) ab = c,
(i) a ¢ {o(e): e€ E(x,y)}, b ¢ {o(e): e€ E(x,2)}, and ¢ € {o(e): e €
E(y, 2)}.

The sequence (a, b, c) is called a code of (z,y, z). Note that a triple may have

more than one code.

Theorem 3.26 (Hajos-like theorem). Fvery signed bi-graph with chromatic
number q can be obtained from (K,,+) by Operations (sbl)-(sb5).

Proof. Let (G, o) be a counterexample with minimum |V(G)| and subjecting
to it, | E(G)| is maximum.

Claim 1: (G,0) is complete. Suppose to the contrary that G has two
non-adjacent vertices z and y. Let (G1,01) and (G2,02) be obtained from

a copy of (G,o) by identifying x with y into a new vertex v and by adding
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a positive edge e between x and y, respectively. Since (G, o) has chromatic
number ¢, it follows by Theorem that both (G1,01) and (Gg,02) have
chromatic number at least q. Note the fact that (K;,+) can be obtained from
(Kj,+) by Operation (sbl) whenever ¢ > j. Thus by the minimality of |V (G)|,
the graph (Gi,01) can be obtained from (K,,+) by Operations (sbl)-(sbb),
and by the maximality of |[E(G)|, so does (G2, 02). We next show that (G, o)
can be obtained from (Gi,01) and (G2,02) by Operations (sb2) and (sb3),
which contradicts the fact that (G, o) is a counterexample. This contradiction
completes the proof of the claim. Apply Operation (sb3) to (G1,01) and
(G2,02) so that e is removed and v is split into = and y. In the resulting
graph, identify each pair of vertices that corresponds to the same vertex of G

except x and y, we thereby obtain exactly (G, o).

Claim 2: (G,o) has no triples. The proof of this claim is analogous to
Claim 1. Suppose to the contrary that (G, o) has a triple, say (z,y,z). Let
(a,b,c) be a code of (x,y, z). Take two copies of (G,0). Add an edge e; with
sign a into one copy between x and y, obtaining (G’,¢’). Add an edge ey with
sign b into the other copy between z and z, obtaining (G”,¢”). Clearly, both
(G',0") and (G",0") have chromatic number at least ¢. By the maximality
of |[E(G)|, they can be obtained by Operations (sbl)-(sb5) from (K, +). To
complete the proof of the claim, it remains to show that (G, o) can be obtained
from (G',0") and (G”,0"”) by Operations (sb1)-(sb5). Note that Operation
(sb3') is a combination of Operations (sb3) and (sb4) by Lemma Apply
Operation (sb3") to (G’,0’) and (G”,0”) so that e; and ey are removed, 2’
is identified with 2, and an edge e is added between 3 and 2”. We have
o(e) = o(e1)o(e2) = ab = ¢ € E(y, z). By applying Operation (sb2) to each
pair of vertices that are the copies of the same vertex of G except z, we obtain
(G,0).

We continue the proof of the theorem by distinguishing two cases according
to the parity of q.

Case 1: Assume that q is odd. Since x((G,0)) = ¢, the vertex set V(G)

can be divided into k partite sets Vi,..., Vs, where k = %1, so that V; is an
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independent set and all others are antibalanced sets but not independent and
subjecting to it, |Vi| is minimum. For each i € {2,...,k}, since V; is not an
independent set, |V;| > 2. Moreover, since V; is an antibalanced set and (G, o)
is complete by Claim 1, V; induces a just-complete signed bi-graph, that is, a
complete signed graph.

(x) We show that any two of Va, ..., Vi are bi-completely adjacent. Suppose
to the contrary that there exists 2 < j < | < k such that V; and V; are not
bi-completely adjacent. Notice that |V;| +|Vi| > 3. If V; and V| are not just-
completely adjacent, then there always exist three vertices x,y, z, without loss
of generality, say x € Vj and y,z € Vi, such that m(x,y) =1 and m(z, z) = 2.
Since V) induces a complete signed graph, m(y,z) = 1. Thus, (y,z,z) is a
triple of (G,0), contradicting Claim 2. Hence, V; and V) are just-completely
adjacent. Recall that both V; and Vi induce complete signed graphs. Thus,
V; UV, induces a complete signed graph, say (Q,o0q), as well. By Claim 2,
every triangle in (Q,0q) has sign product —1. Thus, (Q,0q) is antibalanced
by Lemma and so V; UV, is an antibalanced set. The division of V(G),
obtained from Vi,..., Vi by constituting V; UV, for V; and V), yields that
X((G,0)) < q—2, a contradiction.

Recall that V; is an independent set. By Claim 1, |V3| < 1. Hence, we
distinguish two cases.

Subcase 1.1: Assume that |Vi| = 0. Thus, for each i € {2,...,k}, we have
|Vi| > 3, since otherwise, the division of V(G), obtained from {Vj,...,Vi} by
removing V; and splitting V; into two independent sets, yields x((G,0)) < ¢—1,
a contradiction. Take three vertices from each partite set except Vi, and
denote by (H,op) the signed bi-graph induced by all these vertices. Clearly,
\V(H)| = @. Recall that V3, ..., V) induce just-complete signed bi-graphs
and any two of them are bi-completely adjacent. Thus, (H, o) is a V-complete
signed bi-graph. By Lemma (H,on) can be obtained from (K, +) by
Operations (sbl)-(sb5) and therefore, so does (G, o), a contradiction.

Subcase 1.2: Assume that |Vi| = 1. We show that V; is bi-completely

adjacent to each of V4, ..., Vi, by applying the same argument as in (x), except
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that the final contradiction is obtained by the minimality of |V} | instead of the
decrease of x((G,0)). Take the vertex in V; and two arbitrary vertices from
each of Va,..., Vi. Let (H,op) be the signed bi-graph induced by all these
vertices. Clearly, |V(H)| = q. As we already proved, any two of Vi,...,Vj
are bi-completely adjacent and each of them induce a just-complete signed
bi-graph. It follows that (H,op) can be obtained from a bi-complete signed
bi-graph by removing disjoint edges and thus, from (K, +) by switching at
vertices and adding signed edges. Therefore, (G,0) can be obtained from
(K4, +) by Operations (sbl) and (sb4), a contradiction.

Case 2: Assume that q is even. Since x((G,0)) = q, the vertex set V(G)
can be divided into k non-empty partite sets Vi,..., Vs, where k = %, SO
that at least two of them are independent sets, say Vi and V5. It follows by
Claim 1 that |Vi| = V2| = 1.

Subcase 2.1: Assume that every two partite sets are bi-completely adjacent.
Take a vertex from each partite set. Clearly, these vertices induce (K aiz, +).
Hence, (G, o) can be obtained from (qui, +) by Operation (sbl). By Lemma
3.25 (K%, +) can be obtained from (K, +) by Operations (sbl)-(sb5) and
therefore, so does (G, o), a contradiction.

Subcase 2.2: Assume that there exist two partite sets V; and V; that are
not bi-completely adjacent.

By applying the same argument as in (x), we arrive at the conclusion
that V; UV, is an antibalanced set. It follows that x((G,0)) < ¢ — 2 when
{7,013 n{1,2}| = 0 and x((G,0)) < g — 1 when |[{j,} N {1,2}| = 1. Hence,
{j,1} = {1,2}. This implies that every other two partite sets are bi-completely
adjacent. Moreover, since |Vi| = |Va| = 1, it follows that V; U V5 induces two
vertices together with a single edge between them and so, it is an antibalanced
set. This implies that |V3|,...,|Vk| > 2 since otherwise, the division of V(G),
obtained from Vi,..., Vi by constituting V3 U V5 for Vi and Vs, yields that
X((G,0)) < g — 1, a contradiction.

Take a vertex from each of V7 and V5, and two vertices from each of the

remaining partite sets. We can see that the signed bi-graph, induced by these



58 Chapter 3 Chromatic number y of signed graphs

vertices, can be obtained from (K, £) by removing disjoint edges. Hence, it
can be obtained from (K, +) by adding signed edges and switching at vertices.
Therefore, (G, o) can be obtained from (K, +) by Operations (sbl)-(sb5), a

contradiction. O

Corollary 3.27. Every signed graph with chromatic number q can be obtained

from (K4, +) by Operations (sbl)-(sb5).



Chapter 4

Signed chromatic number Y4

of signed graphs

In this chapter, we focus on signed chromatic number of signed graphs, first
introduced by Macajové, Raspaud and Skoviera [35]. This invariant is a non-
equivalent notion to the chromatic number that we introduced and discussed
in the previous two chapters. The relation between these two invariants are
discussed. So for there is only few results on the signed chromatic number. We
presents results on signed chromatic spectrum and Hajos’ Theorem for this
invariant, in a similar way as we treated on the chromatic number of signed

graphs.

4.1 Preliminary

We first recall the definitions of signed k-colorings and the signed chromatic

number y of signed graph given in [35].

Definition 4.1. Let (G,0) be a signed graph. If n = 2k + 1, then let M,, =
{0,%+1,...,+k}, and if n = 2k, then let M, = {£1,...,£k}. A mapping c
from V(G) to M, is a signed n-coloring of (G, o), if c(v) # o(e)c(w) for each

edge e = vw. Define x+((G,0)) to be the smallest number n such that (G, o)
59
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has a signed n-coloring, and call it the signed chromatic number of (G, o). We

also say that (G, o) is signed n-chromatic.

So far, there are only a few results on x+((G,0)). In [35], the authors
proved that x+((G,0)) < 2x(G) — 1 for every graph G, and they proved an
extension of the Brooks’ theorem to signed graphs: every signed graph (G, o)
satisfies x+((G,0)) < A(G) + 1, where A(G) is the maximum vertex degree
of G. A further study on this extension was addressed in [43].

Following the way to study the chromatic number of signed graphs in
Chapter [3] we establish analogous results for the signed chromatic number
X+- In Section we show that the signed chromatic spectrum of a graph is
always an interval. In Section we prove an analogue of the Hajos’ theorem
with respect to the signed chromatic number for signed graphs. The difference

between these two parameters, x((G,o0)) and x+((G,0)), is investigated in
Section [4.41

4.2 Signed chromatic spectrum of a graph

The results of this section have already been published in [28].

In Section we studied the chromatic spectrum of a graph, which is
related to the chromatic number of signed graph. Recall that the chromatic
number and the signed chromatic number are two non-equivalent parameters
on vertex colorings of singed graphs. Hence, it is natural to define the signed
chromatic spectrum that is related to the signed chromatic number. We prove

a similar result that the signed chromatic spectrum is always an interval.

Definition 4.2. Let G be a graph and X(G) be the set of pairwise non-
equivalent signatures on G. The signed chromatic spectrum of G is the set

{x+((G,0)): o€ X(G)}, which is denoted by ¥, (G).

Define that M,, (G) = max{x+((G,0)): o € 3X(G)} and m, (G) =
min{x+((G,0)): o€ X(G)}.
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Proposition 4.3. Let G be a nonempty graph. The following two statements
hold true.

1. ¥,,(G) = {1} if and only if E(G) = 0.
2. if E(G) # 0, then my(G) = 2.

Proof. Statement 1 is obvious. For Statement 2, since GG has at least one edge,
G cannot be colored by using only one color. Hence, m,_ (G) > 2. Moreover,
let o be the all-negative signature of G, we have m,, (G) < m,_((G,0)) = 2.
Therefore, m,, (G) = 2. O

The following theorem is the main result in this section.

Theorem 4.4. If G is a graph, then ¥, (G) = {k:m,,(G) <k < M4 (G)}.

4.2.1 Signed chromatic critical graph

Definition 4.5. A signed k-chromatic graph (G, o) is signed k-chromatic crit-
ical if x+((G —u,04)) <k, for every u € V(G).

In [43] Schweser and Stiebitz defined a graph (G,o) to be critical with
respect to x+ if x+((H,0")) < x+((G,0)) for every proper signed subgraph
(H,0") of (G,0), where o is the restriction of o to E(H). However, for
trees and circuits the two definitions coincide. The analogue statement to

Proposition for signed colorings is due to Schweser and Stiebitz in [43].

Proposition 4.6 ([43]). Let (G,0) be a signed graph.
1. (G,o0) is signed 1-critical if and only if G = K
2. (G,o0) is signed 2-critical if and only if G = Kj.
3. (G, 0) is signed 3-critical if and only if G is a balanced odd circuit or an

unbalanced even circuit.

Lemma 4.7. Let k > 1 be an integer. If (G, o) is signed k-chromatic, then
X+((G —u,04)) € {k,k — 1}, for every u € V(G). In particular, if (G,0) is
signed k-critical, then x+((G — u,04)) = k — 1.
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Proof. For k € {1,2}, the statement follows with Proposition Hence,
we may assume that k& > 3. Clearly, x+((G — u,04)) < x+((G,0)) = k.
Suppose to the contrary that x+((G — u,0y)) < k — 2 and let ¢ be a (k — 2)-
coloring of (G — u,0,). We shall extend ¢ to a (k — 1)-coloring of (G, o).
If k is even, then assign color 0 to vertex u, we are done. If k is odd, then
assign color % to vertex u, and for each vertex v such that ¢(v) = 0 and
o(uv) = —1, recolor v with color %, and for each vertex v such that ¢(v) =0
and o (uv) = 1, recolor v with color —%51 to obtain a (k—1)-coloring of (G, o).
Hence x4+ ((G,0)) < k—1 < k, a contradiction. Clearly, if (G, o) is signed
k-critical, then x+((G —u,0,)) =k — 1. O

Theorem 4.8. Let (G, o) be a signed graph and k > 1. If x+((G,0)) = k, then

(G,0) contains an induced signed i-critical subgraph for each i € {1,...,k}.

4.2.2 Proof of Theorem [4.4]

Lemma 4.9. Let k > 2 be an integer and H be an induced subgraph of a graph
G. If ke ¥ (H), then k € £, (G).

The proof of this lemma is similar to the proof of Lemma [3.12

Theorem 4.10. Let k > 3 be an integer and G be a graph. If k € ¥, (G),
then k —1 € Xy, (G).

Proof. By Theorem (G, o) contains an induced signed k-critical subgraph
(H,o"), where ¢’ is the restriction of o to H. Since k > 3, it follows that
|V(H)| > 3. Hence, there is u € V(H) such that y+(H — u,0),) = k — 1.
Furthermore, H — v is an induced subgraph of G. Thus, k —1 € 3, , (H — u),
and hence, k —1 € 3, (G) by Lemma O

Theorem follows from Proposition [£.3] and Theorem [4.10

4.3 Second Hajoés-like theorem for signed graphs

The results of this section have already been published in [27].
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Section [3:4] is devoted to an analogue of Hajos’ theorem for the chromatic
number x of a signed graph. In this section, we present an analogue of Hajés’
theorem for the signed chromatic number y+ of a signed graph, and call it
the second Hajés-like theorem. The formulations and the proofs of these two
analogues are similar. However, for the sake of completeness, we address be-
low, for the latter analogue, the theorem together with its proof, emphasizing
the difference from the former analogue. In the next theorem, we recall the

Operations (sbl)-(sb4) defined in Subsection and define a new operation.

Theorem 4.11. The class of all signed bi-graphs that are not signed q-
colorable is closed under Operations (sbl)-(sb4) and the following operation:

(sbl) Adding vertices or signed edges.
(sb2) Identifying two nonadjacent vertices.

(sb3) Given two vertex-disjoint signed bi-graphs (G1,01) and (Ga,02), a vertex
v of G1 and a positive edge e of G2 with ends x and y, construct a signed
bi-graph (G, o) from (G1,01) and (Ga,02) by splitting v into two new
vertices v1 and vo, Temoving e and identifying vi with x and vy with y.

(sb4) Switching at a vertex.

(sb6) When q is even, remove a negative single edge and identify its two ends.

Proof. The proof for Operations (sbl)-(sb4) can be done in the same way as in

the proof of Theorem For Operation (sb6), let ¢ be a signed g-coloring of

the resulting signed bi-graph and z be the resulting vertex by identifying two
vertices x and y. Notice that the partite set with regard to ¢ that contains

z is an antibalanced set but not necessarily an independent set. We could

complete a signed ¢-coloring of the original signed bi-graph from ¢ by giving

the color of z to x and y. O

Lemma 4.12. The signed bi-graph (K,,=+) can be obtained from (Kop_1,+)
by Operations (sbl)-(sb4) and (sb6).

Proof. Let (G, o) be a copy of (Ka,_1,+) of vertices vy, ..., v9,._2. Since (G, o)
is not (2r — 2)-colorable, switch at v; and then apply Operation (sb6) to viva.
By Theorem the resulting signed bi-graph remains signed non-(2r — 2)-

colorable. Hence, for each ¢ € {2,...,7 — 1}, we could switch at vy; and then
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apply Operation (sb6) to vg;—1v9;, finally obtaining a signed bi-graph that is
exactly (K,,+). O

Theorem 4.13 (The second Hajés-like theorem). Ewvery signed bi-graph with
signed chromatic number q can be obtained from (K4,+) by Operations (sbl)-

(sb4) and (sb6).

Proof. Let (G, o) be a counterexample with minimum |V(G)| and subjecting
to it, |E(G)| is maximum. Claims 1 and 2 in the proof of Theorem still
hold true by the same proofs.
Claim 1: (G,0) is complete.
Claim 2: (G,0) has no triples.
We distinguish two cases according to the parity of q.

Case 1: Assume that q is odd.

Since x4 ((G,0)) = g, the vertex set V(G) can be divided into k nonempty
partite sets Vi, ..., Vi, where k = %, so that 17 is an independent set.

Since Claims 1 and 2 still hold true and since each partite set is non empty,
if there exist two partite sets Vi and V; that are not bi-completely adjacent,
then we could apply the argument (x) to Vs and V;, arriving at the conclusion
that Vs UV, is an antibalanced set. It follows that the division of V(G),
obtained from Vi,..., Vi by constituting Vi U V; for Vi and V;, yields that
X+((G,0)) <q—1when 1€ {s,t} and x+((G,0)) <q¢—2when 1 ¢ {s,t}, a
contradiction. Therefore, every two partite sets are bi-completely adjacent.

Take a vertex from each partite set. It follows that these vertices induce

the bi-complete signed bi-graph (K%l,:l:) of order qzil. By Lemma [4.12

(K g+1,%) can be obtained from (K, +) by Operations (sbl)-(sb4) and (sb6)
2

and therefore, so does (G, o), a contradiction.

Case 2: Assume that q is even. Since x4 ((G,0)) = ¢, the vertex set V(G)
can be divided into k partite sets Vi,...,V, of cardinality at least 2, where
k = 2. Thus, by the argument (), any two partite sets are bi-completely
adjacent. Take two vertices from each partite set and denote by (H,op) the

signed bi-graph induced by all these vertices. It follows that (H, o) can be
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obtained from (K,,=+) by removing k pairwise disjoint edges and hence, it
can be obtained from (K, +) by switchings and adding signed edges. There-
fore, (G,0) can be obtained from (K,,+) by Operations (sbl) and (sb4), a

contradiction. O

Corollary 4.14. FEvery signed graph with signed chromatic number q can be

obtained from (K4, +) by Operations (sbl)-(sb4) and (sb6).

4.4 Relation between y and y.

The results of this section have already been published in [29].
The following proposition describes the relation between the chromatic
number and the signed chromatic number for signed graphs. The difference

between these two parameters is shown to be at most 1.

Proposition 4.15. If (G,0) is a signed graph, then x+((G,0)) — 1 <
X((G,0)) < x+((G,0)) + 1.

Proof. Let x+((G,0)) = n and ¢ be an n-coloring of (G, o) with colors from
M,.

If n = 2k + 1, then let ¢ : Mojy1 — Zojpyq with ¢(t) = ¢ if t € {0,...,k}
and ¢(t) =2k +1+tift € {—k,...,—1}. Then ¢ is a (2k 4+ 1)-coloring of
(G, o) with colors from My q if and only if ¢ o ¢ is a (2k 4 1)-coloring of
(G,0). Hence, x((G,0)) < x+((G,0)). If n = 2k, then let ¢’ : Moy — Zop11

with ¢(t) =tift € {1,...,k} and ¢(t) =2k +1+tift € {—k,...,—1}. Then
¢ ocis a (2k + 1)-coloring of (G, o). Hence, x((G,0)) < x+((G,0)) + 1.
We analogously deduce that x+((G,0)) < x((G,0)) + 1. O

The next proposition shows that there exist signed graphs for which
X((G,0)) = x+((G,0)) + 1 (see Figure left) and signed graphs for which
X((G,0)) = x+((G,0)) — 1 (see Figure right). Hence, the bounds of

Proposition [4.15| cannot be improved.

Proposition 4.16. Let (G,0) be a connected signed graph with at least three

vertices.
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1. If (G,0) is antibalanced and not bipartite, then x+((G,0)) = 2 and

X((G,0)) = 3.
2. If (G,o0) is bipartite but not antibalanced, then x+((G,0)) = 3 and
x((G,0)) = 2.
-1 0 4 1 1L -l
+/ \+ +/ \+ —
+ +
1 11 1
- - 1t oo o T 1
2@G,0))=3 1.(G,0)) =2 1C,0))=2 2(G,06))=3

Figure 4.1: Two signed graphs with |y — x+| =1



Chapter 5

Choosability in signed graphs

In this chapter, we generalize the concept of list-colorings and list-chromatic
number of unsigned graphs to signed graphs. It is known that for unsigned
graphs, the list-chromatic number is an extension of the chromatic number.
The list-chromatic number of signed graphs we define here extends both the
chromatic number and the signed chromatic number. We provide bound for
this new invariant in terms of the list-chromatic number of its underlying
unsigned graph. We then focus on the choosability of signed planar graphs
and generalizes the results of [I5] 31} 45] [46], 47, [52] to signed graphs.

The results of this chapter except Theorem[5.4 have already been published
in [23].

5.1 Definitions and basic properties

We combine the approaches of [14], [29] and [35] to define list colorings of

signed graphs.

Definition 5.1. Given a signed graph (G,0), a list-assignment of (G,0) is a
function L defined on V(G) such that ) # L(v) C Z for each v € V(G). An
L-coloring of (G, o) is a proper coloring ¢ of (G, o) such that c(v) € L(v) for
each v € V(QG). A list-assignment L is called a k-list-assignment if |L(v)| = k

for each v € V(G). We say (G,0) is k-choosable if it admits an L-coloring
67
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for every k-list-assignment L. The list-chromatic number or choice number

xi1((G,0)) of (G,0) is the minimum number k such that (G, o) is k-choosable.

Clearly, if a signed graph is k-choosable, then it is also signed k-colorable.

Let (G,0) be a signed graph, L be a list assignment of (G, o), and ¢ be an
L-coloring of (G,0). Let X C V(G). We say o', L’ and ¢ are obtained from
o,L and ¢ by a switch at X if

/o) —o(e), ifeed(X),
ole), ifee E(G)\I(X);
{—a: o€ L(u)}, ifuelX,
L'(u) =
L(u), ifueV(G)\X;
—c(u), ifuelX,
d(u) =
\ c(u), ifueV(G)\X.

Recall that two signed graphs (G, o) and (G, 0*) are equivalent if they can
be obtained from each other by a switch at some subset of V(G). The proof

of the following proposition is trivial.

Proposition 5.2. Let (G,0) be a signed graph, L be a list-assignment of G
and ¢ be an L-coloring of (G,0). If o', L' and ¢’ are obtained from o, L and ¢ by
a switch at a subset of V(G), then ¢ is an L'-coloring of (G,d’). Furthermore,
two equivalent signed graphs have the same chromatic number and the same

choice number.

Let G be a graph. By definition, G and (G, +) have the same chromatic

number and the same choice number. Hence, the following statement holds.

Corollary 5.3. If (G,0) is a balanced signed graph, then x(G) = x((G,0))
and x1(G) = xi((G, 0)).

Now we investigate the relation between the list-chromatic number of a

signed graph and the list-chromatic number of its underlying graph.
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Theorem 5.4. For every signed graph (G, o), we have x;((G,0)) < 2x1(G).

Proof. Let k = x;(G) and L be an arbitrary 2k-list-assignment of (G, o). Since
switching a vertex does not change the choice number of (G, o) but change
the list of colors for this vertex into inverse ones, we may assume that L(v)
contains at least k positive colors for each v € V(G). Let us take a k-list-
assignment L’ of G such that L'(v) C (L(v) NZ™). Since G is k-choosable, G
has an L’-coloring, say c¢. Now we assign the signature o to G. Notice that ¢
uses positive colors only. Thus, no matter which sign is assigned to an edge
of G, the coloring c is still proper for the adjacency by this edge. Hence, c is
also an L-coloring of (G, o), giving x;((G,0)) < 2k = 2y, (G). O

5.2 Choosability in signed planar graphs

A planar graph is a graph that can be drawn in the Euclidean plane without
crossings, that is, so that no two edges intersect geometrically except at a
vertex. The coloring problems of planar graphs are one of the main topics in
the theory of graph colorings. In particular, the choosability of planar graphs
have been wildly discussed. In this section, we consider the choosability of
signed planar graphs. We generalizes the results of [15, 3], 45, [46] 47, 52] to
signed graphs.

The structure of this section is arranged as follows. Section proves
that every signed planar graph is 5-choosable. Furthermore, there is a signed
planar graph (G, o) which is not 4-choosable, but (G, +) is 4-choosable. Sec-
tionproves for each k € {3,4,5,6} that every signed planar graph without
k-circuits is 4-choosable. The main theorem of this section is proved by dis-
charging. See [12] for more details on this method. Section m proves that
every signed planar graph with neither 3-circuits nor 4-circuits is 3-choosable.
Furthermore, there exists a signed planar graph (G, o) such that G has girth
4 and (G, o) is not 3-choosable but (G, +) is 3-choosable. These two construc-
tions of signed graphs also show, that the choice number of a signed graph

(G, o) cannot be easily calculated from the choice number of G.
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We give some necessary notations and terminologies for this section. Let
G be a graph with vertex-set V(G) and edge-set E(G). We say a vertex u is a
neighbor of another vertex v if uv € E(G). If v € V(G), then d(v) denotes the
degree of v and furthermore, v is called a k-vertex (or k™ -vertex or k™ -vertex)
if d(v) = k (or d(v) > k or d(v) < k). Similarly, a k-circuit (or k™ -circuit or
k™ -circuit) is a circuit of length k (or at least k or at most k), and if G is
planar, then a k-face (or kT -face or k™ -face) is a face of size k (or at least
k or at most k). Let [z1...xy] denote a k-circuit with vertices z1,...,x in
cyclic order. If X C V(G), then G[X] denotes the subgraph of G induced by
X, and O(X) denotes the set of edges between X and V(G) \ X.

5.2.1 5-choosability
Theorem 5.5. FEvery signed planar graph is 5-choosable.

We use the method described in [45] to prove the following theorem which
implies Theorem A plane graph G is a near triangulation if the boundary

of each bounded face of G is a triangle.

Theorem 5.6. Let (G,0) be a signed graph, where G is a near-triangulation.
Let C be the boundary of the unbounded face of G and C = [vi...vp]. If
L is a list-assignment of (G,0) such that L(vi) = {a}, L(v2) = {B} and
a # fo(viva), and that |L(v)| > 3 for v € V(C) \ {v1,v2} and |L(v)| > 5 for
v e V(G)\V(C), then (G,0) has an L-coloring.

Proof. Let us prove Theorem by induction on |V (G)].

If [V(G)| = 3, then p = 3 and G = C. Choose a color from L(vs) \
{ao(v1v3), Bo(vevs)} for vs. So we proceed to the induction step.

If C has a chord which divides G into two graphs G; and Ga, then we
choose the notation so that G contains vivy, and we apply the induction
hypothesis first to G; and then to G3. Hence, we can assume that C has no
chord.

Let vi,u1,u2, ..., Un,vp—1 be the neighbors of v, in cyclic order around

vp. Since the boundary of each bounded face of G is a triangle, G' contains
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the path P: viug ... umvp—1. Since C has no chord, P U (C — vp) is a circuit
C’. Let v and 2 be two distinct colors of L(vp) \ {ao(vivp)}. Define L' (z) =
L(z) \ {m10(vpz),v20(vpx)} for € {uy,...,un}, and L'(z) = L(z) for z €
V(G) \ {vp,u1,...,um}. Let ¢’ be the restriction of o to G — v,. By the
induction hypothesis, signed graph (G — vy, ¢0’) has an L’-coloring. Let ¢ be
the color vertex v,_; receives. We choose a color from {v1,7v2} \ {co(vp—1vp)}

for vy, giving an L-coloring of (G, o). O

Non-4-choosable examples

Voigt [49] [50] constructed two planar graphs which are not 4-choosable. By
Corollary these two examples generate two groups of signed planar graphs

which are not 4-choosable. We extend this result to signed graphs.

Theorem 5.7. There ezists a signed planar graph (G, o) such that (G, o) is
not 4-choosable but G is 4-choosable.

Proof. We construct (G, o) as follows. Take a copy G of the complete graph
K4 and embed it into Euclidean plane. Insert a claw into each 3-face of G7 and
denote the resulting graph by Ga. Once again, insert a claw into each 3-face
of Go and denote by (3 the resulting graph. A vertex v of G5 is called an
initial-vertex if v € V(G1), a solid-vertex if v € V(G2) \ V(G1) and a hollow-
vertex if v € V(G3) \ V(G2) (Figure |5.1] illustrates graph G3). A 3-face of G3
is called a special 3-face if it contains an initial-vertex, a solid-vertex and a
hollow-vertex. Clearly, G3 has twenty-four special 3-faces, say 11, ..., T54.

Let H be the plane graph as shown in Figure [5.2] which consists of a
circuit [zyz| and its interior. For i € {1,...,24}, replace T; by a copy H; of H
such that x;,y; and z; are identified with the solid-vertex, hollow-vertex and
initial-vertex of Tj, respectively. Let GG be the resulting graph. Clearly, G is
planar.

Define a signature o of G as follows: o(P;Q;) = —1 for i € {1,...,24} and
ole)=1foreec E(G)\{PQ;: i€ {1,...,24}}.
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Figure 5.2: The graph H

Let L be a 4-list-assignment of signed graph (G, o) defined as follows:
L(v) ={1,2,3,4} for v € V(G3), and L(A;) ={1,2,6,7}, L(B;) = {2,4,6,7},
L(Cy) = {1,4,6,7}, L(D;) = {1,2,4,5}, L(M;) = {2,5,6,—6}, L(N;) =
{1,5,6,—6}, L(P;) = {2,3,6,—6} and L(Q;) = {1,3,6,—6} fori € {1,...,24}.

We claim that signed graph (G, o) has no L-colorings. Suppose to the
contrary that ¢ is an L-coloring of (G, o). By the construction of G3, precisely
one of the special 3-faces of G5 is assigned in ¢ color 1 to its solid-vertex,
color 2 to its hollow-vertex and color 3 to its initial-vertex. Without loss of
generality, let T7 be such a special 3-face. Let us consider ¢ in Hy. Clearly,
d(z1) = 1,¢(y1) = 2 and ¢(z1) = 3. It follows that ¢(D;1) € {4,5}. Notice
that the odd circuit [A;B1C4] is balanced and the even circuit [MyN1Q1P]

is unbalanced, and thus, both of them are not 2-choosable. It follows that if
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¢(D1) = 4, then ¢ is not proper in [A1B1C4], and that if ¢(D;) = 5, then ¢ is
not proper in [M;N1Q1P;]. Therefore, (G, o) has no L-colorings and thus, is
not 4-choosable.

Let L' be any 4-list-assignment of G. By the construction, it is not hard
to see that G3 is 4-choosable. Let ¢ be an L’-coloring of G3. Clearly, for
i € {1,...,24}, each of vertices z;,y; and z; receives a color in c¢. Let «
and S be two distinct colors from L(D;) \ {c(z;),c(y;)}. Choose a color from
L(Ci)\{«, B, c(x;)} for C;, and then vertices A;, B; and D; can be list-colored
by L' in turn. Since circuit [M;N;Q;P;] is 2-choosable, it follows that vertices
M;, N;, P; and Q; can also be list-colored by L’. Therefore, ¢ can be extended

to an L’-coloring of G. This completes the proof that G is 4-choosable. O

5.2.2 4-choosability

A graph G is d-degenerate if every subgraph H of G has a vertex of degree at
most d in H. It is known that every (d — 1)-degenerate graph is d-choosable.

This proposition can be extended for signed graphs.

Theorem 5.8. Let (G,0) be a signed graph. If G is (d — 1)-degenerate, then
(G, 0) is d-choosable.

Proof. (induction on |V (G)|) Let L be any d-list-assignment of G. The proof
is trivial if |V(G)| = 1. For |V(G)| > 2, since G is (d — 1)-degenerate, G has a
vertex v of degree at most d—1 and moreover, graph G—v is (d—1)-degenerate.
Let o/ and L’ be the restriction of o and L to G — v, respectively. By applying
the induction hypothesis to (G — v,0’), we conclude that (G — v,0’) is d-
choosable and thus, it has an L’-coloring ¢. Since v has degree at most d — 1,
we can choose a color « for v with a € L(v) \ {¢(u)o(uv): wv € E(G)}. We

complete an L-coloring of (G, o) with ¢ and a. O

It is an easy consequence of Euler’s formula that every triangle-free planar
graph contains a vertex of degree at most 3. Therefore, the following statement

is true:

Lemma 5.9. Planar graphs without 3-circuits are 3-degenerate.
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Moreover, we will use two more lemmas.
Lemma 5.10 ([52]). Planar graphs without 5-circuits are 3-degenerate.
Lemma 5.11 ([I5]). Planar graphs without 6-circuits are 3-degenerate.

Theorem 5.12. Let (G,0) be a signed planar graph. For each k € {3,4,5,6},
if G has no k-circuits, then (G, o) is 4-choosable.

Proof. For k € {3,5,6} we deduce the statement from Theorem together
with Lemmas and respectively. It remains to prove Theorem
(.12 for the case k = 4.

Suppose to the contrary that the statement is not true. Let (G,o) be a
counterexample of smallest order, and L be a 4-list-assignment of (G, o) such

that (G, o) has no L-colorings. Clearly, G is connected by the minimality of
(G, o).

Claim 5.12.1. §(G) > 4.

Let u be a vertex of G of minimal degree. Suppose to the contrary that
d(u) < 4. Let ¢’ and L’ be the restriction of o and L to G — u, respectively.
By the minimality of (G, o), the signed graph (G —u, ¢’) has an L’-coloring c.
Since every neighbor of u forbids one color for u© no matter what the signature
of the edge between them is, L(u) still has a color left for coloring u. Therefore,

¢ can be extended to an L-coloring of (G, o), a contradiction.

Claim 5.12.2. G has no 6-circuit C' such that C' = [ug...us] and upug €
E(G), and d(up) <5 and all other vertices of C are of degree 4.

Suppose to the contrary that G has such a 6-circuit C. Since G has no
4-circuits, ugug is the only chord of C'. There always exists a subset X of
V(C) such that all of the edges ugus, ujus and usus are positive after a switch
at X. Let ¢/ and L' be obtained from o and L by a switch at X, respectively.
Proposition implies that (G, o) has no L'-coloring. Hence, (G,0’) is also
a minimal counterexample. Let o1 and L; be the restriction of ¢/ and L’ to

G — V(CO), respectively. It follows that (G — V(C),01) has an Li-coloring ¢.
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We obtain a contradiction by further extending ¢ to an L’-coloring of
(G, ") as follows. By the condition on the vertex degrees of C, there exists a
list-assignment Lo of G[V(C)] such that La(u) C L'(u) \ {¢p(v)o'(uv): wv €
E(G) and v ¢ V(C)} for v € V(C), and |La(ug)| = 3 and |La(u)| = 2 for
u € V(C)\{ua}. Let La(uz) = {e, B,7}. Suppose that La(usz) has a color, say
a, that does not appear in at least two of the lists La(uq), La(u1) and La(us).
We color us with «, and then all other vertices of C can be list-colored by
Ly in some order. For example, if a does not appear in Lo(ug) and La(uq),
then we color V(C) in the order ug, us, ug, us, ug, u1. Hence, we may assume
that Lo(ug) = {a,v}, La(u1) = {e, B} and La(uz) = {8,~}. If 8 # vo'(upuy),
then color ug with ~, uy with 8, and us with «, and the remaining vertices
of C can be list-colored by Ls in the order us, ug, us. Hence, we may assume
B = ~vo'(uguy). Tt follows that o'(upu1) = —1 and g = —y £ 0. If o # 0,
then color both ug and w; with «, and the remaining vertices of C' can be
list-colored by Lo in the order us,uq, us,us. Hence, we may assume o = 0.
Now the color 0 is included in Lo(ug) but not in La(ug). Thus, there exists
an integer ¢ with ¢ € {3,4,5} such that 0 € La(u;11) and 0 ¢ La(u;) (index is
added modular 6). We color u;; with 0, and then the remaining vertices of

C' can be list-colored by Lo in cyclic order on C ending at u;.

Claim 5.12.3. G has no 10-circuit C such that C = [ug...ug] and
uous, ugug, ugur € FE(G), and uy has degree 6 and all other wvertices of

C have degree 4.

Suppose to the contrary that G has such a 10-circuit C. Let ¢’ and L’ be
the restriction of o and L to graph G — V(C), respectively. By the minimality
of (G, o), the signed graph (G—V(C'), 0’) has an L'-coloring ¢. A contradiction
is obtained by further extending ¢ to an L-coloring of (G, o) as follows. We
shall list-color the vertices of C by L in the cyclic order ug,uq,...,ug. For
i€{0,...,9}, let F; = {¢p(v)o(uv): wv € E(G) and v ¢ V(C)}. Clearly, F;
is the set of colors that are forbidden for u; by its neighbors, which are not

in V(C). Since d(up) = d(ug) = 4 and moreover, if there is any other chord
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of C, then the list F; will not become longer, it follows that |Fy| < 1 and
|Fy| < 2. Hence, we can let a and 8 be two distinct colors from L(ug) \ Fy.
Let v € L(ug) \ (Fo U {ao(ugug), Bo(ugug)}), and color vertex ug with ~y. For
i €{1,...,8}, vertex u; has at most three neighbors colored before u; in this
color-assigning process and thus, L(u;) still has a color available for u;. Denote
by ¢ the color of vertex ug. We complete the extending of ¢ by assigning a

color from {a, B} \ {Co(ugug)} to ug.

Discharging

Consider an embedding of GG into Euclidean plane. Let G denote the resulting
plane graph. We say two faces are adjacent if they share an edge. Two
adjacent faces are normally adjacent if they share an edge xy and no vertex
other than z and y. Since G is a simple graph, the boundary of each 3- or
5-face is a circuit. Since GG has no 4-circuits, we can deduce that if a 3-face
and a 5-face are adjacent, then they are normally adjacent. A vertex is bad if
it is of degree 4 and incident with two nonadjacent 3-faces. A bad 3-face is a
3-face containing three bad vertices. A 5-face f is magic if it is adjacent to
five 3-faces, and if all the vertices of these six faces have degree 4 except one
vertex of f.

We shall obtain a contradiction by applying discharging method. Let V' =
V(G), E = E(G), and F be the set of faces of G. Denote by d(f) the size of
a face f of G. Give initial charge ch(z) to each element x of V U F', where
ch(v) = 3d(v) — 10 for v € V, and ch(f) = 2d(f) — 10 for f € F. Discharge
the elements of V' U F' according to the following rules:

R1. Every vertex u sends each incident 3-face charge 1 if u is a bad vertex,
and charge 2 otherwise.

R2. Every 5-vertex sends % to each incident 5-face.

R3. Every 6-vertex sends each incident 5-face f charge 1 if f is magic, charge
% if f is not magic but contains four 4-vertices, charge % if f contains at
most three 4-vertices.

R4. Every 7*-vertex sends 1 to each incident 5-face.
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R5. Every 3-face sends % to each adjacent 5-face if this 3-face contains at
most one bad vertex.
R6. Every 5'-face sends % to each adjacent bad 3-face, where k is the number
of common edges between them.
Let ch*(x) denote the final charge of each element xz of V' U F when the

discharging process is over. On one hand, by Euler’s formula we deduce

> ch(zr) = —20. Since the sum of charge over all elements of V U F is
zeVUF
unchanged, we have Y. ch*(z) = —20. On the other hand, we show that
reVUF

ch*(x) > 0 for x € V U F. Hence, this obvious contradiction completes the
proof of Theorem [5.1

It remains to show that ch*(z) >0 for z € VU F.
Claim 5.12.4. Ifv € V, then ch*(v) > 0.

Let p be the number of 3-faces that contains v. Since G has no 4-circuits,
p < L@J Moreover, d(v) > 4 by Claim

Suppose d(v) = 4. We have p < 2. If p = 2, then v is a bad vertex and thus,
ch*(v) = 3d(v) — 10 — p = 0 by R1; otherwise, ch*(v) = 3d(v) — 10 —2p > 0
by R1 again.

If d(v) = 5, then p < 2 and thus, by R1 and R2, ch*(v) > 3d(v) — 10 —
2p—5(5—p) > 0.

Suppose that d(v) = 6. Thus, p < 3. By R1 and R3, if p < 2, then
ch*(v) > 3d(v) — 10 — 2p — (6 — p) > 0, and if v is incident with no magic
5-faces, then ch*(v) > 3d(v) — 10 — 2p — 2(6 — p) > 0. Hence, we may assume
that p = 3 and that v is incident with a magic 5-face f. For any other 5-
face f’ containing v than f, Claim implies that if f’ has size 5, then it
contains at most three 4-vertices, and thus, v sends at most % to f’ by R3.
Hence, ch*(v) > 3d(v) —10 -2 x3—1—1x2>0.

It remains to suppose d(v) > 7. By R1 and R4, we have ch*(v) > 3d(v) —
10 — 2p — (d(v) — p) > 2d(v) — 10 — [ 22| > 0.

Claim 5.12.5. If f € F, then ch*(f) > 0.
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Suppose d(f) = 3. Recall that in this case the boundary of f is a circuit.
We have ch*(f) > 2d(f) —104+2+2+1 -3 x ¢ = 0 by Rl and R5 when
f has at most one bad vertex, and ch*(f) > 2d(f) —10+2+1+1 =0 by
R1 when f has precisely two bad vertices. Hence, for the remaining we can
assume that f has precisely three bad vertices, that is, f is a bad 3-face. In
this case, f receives charge 1 in total from adjacent faces by R6, and charge 3

in total from incident vertices by R1. Hence, ch*(f) > 2d(f) —10+1+3 = 0.

Suppose d(f) = 5. Recall in this case that the boundary of f is a circuit and
that if f is adjacent to a 3-face, then they are normally adjacent. Let g be the
number of bad 3-faces adjacent to f. Clearly, f sends charge only to adjacent
bad 3-faces by R6, and possibly receives charge from incident 5*-vertices and
from adjacent 3-faces by rules from R2 to R5. Hence, ch*(f) > 2d(f)—10=0
if ¢ = 0. Claim implies that ¢ < 3 and that f contains a 5'-vertex wu,
which sends at least % to f. Hence, ch*(f) >2d(f) —10— 3+ % =0if ¢ =1.
First suppose ¢ = 2. If f has a 5"-vertex different from u, then we are done
by ch*(f) > 2d(f) — 10 — 2 x % +2 X % = 0. Hence, we may assume that f
contains four 4-vertices. It follows that if d(u) > 6, then f receives at least %
from v by R3 or R4 and we are done. Hence, we may assume that d(u) = 5.
Through the drawing of 3-faces adjacent to f, we can assume w is incident
with a 3-face [uvw] that is adjacent to f on edge wv. Claim implies
that d(w) > 5. Hence, f receives & from face [uvw] by R5, and we are done.
Let us next suppose ¢ = 3. We may assume f = [uv'w’z'y’] such that v'w’,
w'z’ and 2’y are the three common edges between f and bad 3-faces. Since
both vertices v’ and 3 are bad, edges uv’ and uy’ are contained in 3-faces
[uv't'] and [uy'z'], respectively. If d(u) = 5, then Claim implies that
d(t'),d(z") > 5, and thus, f receives 3 from each of faces [uv't'] and [uy'z] by
R5, and we are done. If d(u) > 7, then f receives 1 from u and we are done.
Hence, we may assume that d(u) = 6. If both ¢ and 2’ have degree 4, that
is, f is a magic 5-face, then f receives 1 from u by R3; otherwise, f receives
2 from u and 3§ from at least one of faces [uv't'] and [uy'z’] by R3 again. We

are done in both cases.
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It remains to suppose d(f) > 6. Recall that f has no charge moving in or
out except that it sends %d( f) in total to adjacent bad 3-faces by R6. Hence,
ch*(f) > 2 x d(f) — 10— Ld(f) > 0.

The proof of Theorem [5.12]is completed. 0

5.2.3 3-choosability

In 1995, Thomassen [46] proved that every planar graph of girth at least 5 is
3-choosable. And then in 2003, he [47] gave a shorter proof of this result. We
find out that the argument used in [47] also works for signed graphs. Hence,
the following statement is true. For the sake of completeness, we include the

proof.

Theorem 5.13. Fvery signed planar graph with neither 3-circuit nor 4-circuit

15 3-choosable.

We will prove the following theorem which is stronger than Theorem [5.13

but easier for us to prove.

Theorem 5.14. Let (G,0) be a signed plane graph of girth at least 5, and D
be the outer face boundary of G. Let P be a path or circuit of G such that
|[V(P)| <6 and V(P) C V(D), and o, be the restriction of o to P. Assume
that (P,op) has a 3-coloring c. Let L be a list-assignment of G such that
L(v) ={c(v)} ifve V(P), |L(v)] > 2 ifv e V(D)\V(P), and |L(v)| > 3 if
v e V(G)\ V(D). Assume furthermore that there is no edge joining vertices
whose lists have at most two colors except for the edges in P. Then c can be

extended to an L-coloring of (G, o).

Proof. The proof will be done by induction on the number of vertices. We

assume that (G, o) is a smallest counterexample and shall get a contradiction.
Claim 5.14.1. G is 2-connected and hence, D is a circuit.

We may assume that G is connected, since otherwise we apply the in-
duction hypothesis to every connected component of GG. Similarly, G has no

cutvertex in P. Moreover, G has no cutvertex at all. Suppose to the contrary
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that w is a cutvertex contained in an endblock B disjoint from P. We first
apply the induction hypothesis to G — (B — u). If B has vertices with only
two available colors joined to u, then we color each such vertex. These colored
vertices of B together with the edges joining them to u divide B into parts
each of which has at most three colored vertices inducing a path. Now we ap-

ply the induction hypothesis to each of those parts. This contradiction proves

Claim B.I14.11
Claim 5.14.2. For e € E(P), e is not a chord of D.

If some edge e of P is a chord of G, then e divides G into two parts, and we
apply the induction hypothesis to each of those two parts. This contradiction
proves Claim [5.14.2

By Claims and we may choose the notion such that D =
[v1...v;] and P = vy ... 0.

Let X be a set of colored vertices of GG. To save writing we just say “delete
the product colors of X from G” instead of “for v € V(G) \ X, delete all of

the colors in {c(u)o(uv): uw € X and uv € E(G)} from the list of v”.
Claim 5.14.3. P s a path, and ¢+ 3 < k.

If P = D, then we delete any vertex from D, and delete the product color
of that vertex from G. If P # D and k < ¢ + 3, then we color the vertices of
D not in P, we delete them together with their product colors from G.

Now we apply the induction hypothesis to the resulting graph G, if possi-
ble. As G has grith at least 5, the vertices with precisely two available colors
are independent. For the same reason, such a vertex cannot be joined to two
vertices of P. However, such a vertex may be joined to precisely one vertex of
P. We then color it. Now the colored vertices of G’ divide G’ into parts each
of which has at most 6 precolored vertices inducing a path. We then apply
induction hypothesis to each of those parts. This contradiction proves Claim

0. 14.5)

Claim 5.14.4. D has no chord.
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Suppose to the contrary that xy is a chord of D. Then xy divides G into
two graphs G1, G2, say. We may choose the notation such that G2 has no more
vertices of P than G; has, and subject to that condition, |V (G2)| is minimum.
We apply the induction hypothesis first to G1. In particular,  and y receive
a color. The minimality of (G5 implies that the outer cycle of G2 is chordless.
So G5 has at most two vertices which have only two available colors and which
are joined to one of z and y. We color any such vertex, and then we apply the

induction hypothesis to GGo. This contradiction proves Claim [5.14.4]

Claim 5.14.5. G has no path of the form v;uv; where u lies inside D, except
possibly when q = 6 and the path is of the form vqiuvy or vsuvg. In particular,

u has only two neighbors on D.

We define G; and G2 as in the proof of Claim We apply the
induction hypothesis first to G1. Although u may be joined to several vertices
with only two available colors, the minimality of G2 implies that no such vertex
is in G — {u,v;,v;}. There may be one or two vertices in Go — {u, v;,v;} that
have only two available colors and which are joined to one of v; and v;. We
color any such vertex, and then at most six vertices of G2 are colored. If
possible, we apply the induction hypothesis to Go. This is possible unless the
coloring of G is not valid in Ga. This happens only if P has a vertex in
G2 joined to one of v; and v;. This happens only if we have one of the two

exceptional cases described in Claim [5.14.5

Claim 5.14.6. G has no path of the form v;uwv; such that u and w lie inside
D, and |L(v;)| = 2. Also, G has no path viuwv; such that u and w lie inside
D, ’L(U’L)’ =3, andj € {17q}

Repeating the arguments in Claims and we can easily get
Claim

Claim 5.14.7. If C is a circuit of G distinct from D and of length at most

6, then the interior of C is empty.
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Otherwise, we can apply the induction hypothesis first to C and its exterior

and then to C' and its interior. This contradiction proves Claim

If |L(vg+2)| > 3, then we complete the proof by deleting v, and its product
color from G, and apply the induction hypothesis to G —v, and obtain thereby
a contradiction. So we assume |L(vg42)| < 2. By Claim |L(vg42)| =2
and thus |L(vg43)| > 3. If | L(vg44)| > 3, then we first color vy42 and vg41, then
we delete them and their product colors from G. We obtain a contradiction
by applying the induction hypothesis to the resulting graph. By Claims
and this is possible unless ¢ = 6 and G has a vertex u inside D joined
to both v4 and v7. In this case we color u and delete both v5 and vg before we

apply the induction hypothesis. Hence, we may assume that |L(vg44)| < 2.

We give vy43 a color not in {ao(vg43v444): @ € L(vg44)} and then color
vg+2 and vgy1, and finally we delete v; and the product color of v; from G for
i€{q+1,q+2,q+3}. We obtain a contradiction by applying the induction
hypothesis to the resulting graph. If ¢ = 6 and G has a vertex u inside D
joined to v4 and vz, then, as above, we color u and delete vs and vg before we
use induction. If ¢ = 6,9 + 3 = k, and G has a vertex v’ inside D joined to
v3 and vy, then we also color «' and delete v; and v2 before we use induction.
Finally, there may be a path vgy1wzve43 where w and z lies inside D. By
Claim this path is unique. We color w and z and delete them together
with their product colors from G before we use induction. Note that u and o/’
may also exist in this case. If there are vertices joined to two colored vertices,

then we also color these vertices before we use induction.

The colored vertices divide GG into parts, and we shall show that each part
satisfies the induction hypothesis. By second statement of Claim there
are at most six precolored vertices in each part, and they induce a path. Claim
5.14.5| and the first statement of Claim [5.14.6] imply that there is no vertex
with precisely two available colors on D which is joined to a vertex inside D
whose list has only two available colors after the additional coloring. Since G

has girth at least 5 and by Claim there is no other possibility for two
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adjacent vertices z and 2’ to have only two available colors in their lists, as
both z and 2’ must be adjacent to a vertex that has been colored and deleted.

This contradiction completes the proof. O

Theorem 5.15. There exists a signed planar graph (G,o) such that G has
girth 4 and (G, o) is not 3-choosable but G is 3-choosable.

Proof. Let T be a plane graph consisting of two circuits [ABC D] and [M N PQ)]
of length 4 and four other edges AM, BN,CP and D@, as shown in Figure
m Take nine copies Ty, ..., Tz of T, and identify Ay, ..., Ag into a vertex A’

and Cy,...,Cs into a vertex C’. Let G be the resulting graph. Clearly, G is

R
N

Figure 5.3: graph T’

planar and has girth 4.

Define a signature o of G as: o(e) = —1 for e € {M;N; : i € {0,...,8}},
and o(e) =1 for e € E(G) \ {M;N; :i € {0,...,8}}.

For i € {0,1,2}, let a; = ¢ and b; = i + 3. Define a 3-list-assignment
L of G as follows: L(A") = {ay,a2,a3}, L(C") = {b1,be,b3}; for i,j €
{0,1,2}, let L(Bsiyj) = L(Dsit;) = {ai,b;,6}, L(N3iy;) = L(Qsivj) =
{6,7, =7}, L(M3;4;) = {a;,7,—7} and L(P34;) = {b;,7,—7}.

We claim that signed graph (G, o) has no L-colorings. Suppose to the
contrary that c is an L-coloring of (G,0). Let ¢(A’) = a, and ¢(C') = by.
Consider subgraph T3,.,. It follows that ¢(Bspiq) = ¢(D3ptq) = 6. Fur-
thermore, the circuit [MsptqN3ptqPsp+q@3p+q] is unbalanced and thus not
2-choosable. Hence, T3, is not properly colored in ¢, a contradiction. This

proves that (G, o) has no L-colorings and therefore, (G, o) is not 3-choosable.
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We claim that graph G is 3-choosable. For any 3-list-assignment of G,
choose any color for vertices A’ and C’ from their color lists, respectively.
Consider each subgraph 7T; (i € {0,...,8}). Both vertices B; and D; can be
list colored. The 2-choosability of circuit [M;N; P;Q;] yields a list coloring of
T; and hence a list coloring of GG. This proves that G is 3-choosable. O



Chapter 6

3-colorings of planar graphs

In this chapter, we consider the vertex coloring of unsigned graphs. We prove
a result related to the famous Steinberg’s conjecture from 1976, which states
that every planar graph without cycles of length 4 or 5 is 3-colorable. Though
Steinberg’s Conjecture was disproved recently, we show that if the planar
graph additionally has no cycles of length 8, then it is 3-colorable. This result

improves on a series of earlier results.

The results of this chapter have already been published in [22].

6.1 Introduction

In the field of 3-colorings of planar graphs, one of the most active topics is a
conjecture proposed by Steinberg in 1976: every planar graph without cycles
of length 4 or 5 is 3-colorable. There had been no progress on this conjecture
for a long time, until Erdos suggested a relaxation of it (see Problem 9.2 in
[44]): does there exist a constant k such that every planar graph without cycles
of length from 4 to k is 3-colorable? Abbott and Zhou [1] confirmed that such
k exists and k£ < 11. This result was later improved to k£ < 9 independently by
Borodin [4] and by Sanders and Zhao [41], and to £ < 7 by Borodin, Glebov,

Raspaud and Salavatipour [7].

85
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Theorem 6.1 ([7]). Planar graphs without cycles of length from 4 to 7 are

3-colorable.

We remark that Steinberg’s Conjecture was disproved in [10] recently,
by constructing a counterexample to the conjecture. However, the question
whether every planar graph without cycles of length from 4 to 6 is 3-colorable
is still open. A partial result to this question was obtained in [53]. It was
proved there that every planar graph without cycles of length from 4 to 6 can
be decomposed into a matching and a 3-colorable graph.

Steinberg’s Conjecture motivated a lot of work in the literature (e.g. [30]),
in particular, the work on 3-colorability of planar graphs without cycles of
certain lengths, besides the results on the relaxation by Erdos. Due to the
theorem of Grotzsch [18] that planar graphs without triangles are 3-colorable,
triangles are always allowed in further sufficient conditions. Several papers

together contribute to the result below:

Theorem 6.2. For any three integers i,j,k with 5 <1 < j <k <9, it holds

true that planar graphs having no cycles of length 4,4,j or k are 3-colorable.

The following problem that strengthens this theorem was considered al-

ready, and partial results to this problem were obtained.

Problem 6.3. What is B: a set of pairs of integers (i,7) with 5 <i < j <9,

such that planar graphs without cycles of length 4,4 or j are 3-colorable?

It was proved by Borodin et al. [5] and independently by Xu [56] that
every planar graph having neither 5- and 7-cycles nor adjacent 3-cycles is 3-
colorable. Hence, (5,7) € B, which improves on Theorem More elements
of B were confirmed: (6,8) € B by Wang and Chen [51], (7,9) € B by Lu et
al. [33], and (6,9) € B by Jin et al. [24]. The result (6,7) € B is implied in

the following theorem, which reconfirms the results (5,7) € B and (6,8) € B.

Theorem 6.4 ([6]). Planar graphs without triangles adjacent to cycles of
length from 4 to 7 are 3-colorable.
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In this chapter, we show that (5,8) € B, which leaves four pairs of integers
(5,6),(5,9),(7,8), (8,9) unconfirmed as elements of B.

Recently, Mondal gave a proof of the result (5,8) € B in [38], where he ac-
tually proved a stronger theorem instead. Here we exhibit two couterexamples
to that theorem. Let C be a cycle of length at most 12 in a plane graph. C' is
terrible if it is of length 9 or 12 and the area inside C' has a partition into 3-
and 6-cycles; otherwise, C is nice. Mondal formulated the follows statement.
Statement [Theorem 2 in [38]]

Let G be a graph without 4-, 5-, and 8-cycles. If D is a nice cycle of G,
then every proper 3-coloring of D can be extended to a proper 3-coloring of the
whole graph G.

Counterexamples to the statement. One is a plane graph GG consisting of
a cycle C of length 12, say C' := [v; ... v12], and a vertex u inside C' connected
to all of v1,ve,vs. The graph G; contradicts the statement since any proper
3-coloring of C, where v, v9,vg receive pairwise distinct colors, cannot be
extended to GG1. A second is a plane graph G consisting of a cycle C' of
length 12 and a triangle T inside C, say C := [v1...v12] and T := [ujugus],
and three more edges u1v1, uovy, usvy. The graph Go contradicts the statement
since any proper 3-coloring of C' where vy, vy, v7 receive the same color cannot

be extended to G2 (see Figure [6.1)).

Figure 6.1: Two graphs as counterexamples to the statement

A problem that is more general than both Problem and Steinberg’s

Conjecture was formulated in [33] 24].

Problem 6.5. What is A: a set of integers between 5 and 9, such that for

i € A, every planar graph with cycles of length neither 4 nor i is 8-colorable?
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The disproof of Steinberg’s Conjecture yields that 5 ¢ A. So far no ele-

ments of A have been confirmed.

6.2 Notations and formulation of the main theorem

The graphs considered in this paper are finite and simple. A graph is planar
if it is embeddable into the Euclidean plane. A plane graph (G, Y) is a planar
graph G together with an embedding ¥ of G into the Euclidean plane, that is,
(G, ) is a particular drawing of G in the Euclidean plane. In what follows, we
will always say a plane graph G instead of (G, ), which causes no confusion
since no two embeddings of the same graph G will be involved.

Let G be a plane graph and C be a cycle of G. By Int(C) (or Ext(C)) we
denote the subgraph of G induced by the vertices lying inside (or outside) C.
The cycle C is separating if neither Int(C) nor Exzt(C) is empty. By Int(C)
(or Ext(C)) we denote the subgraph of G consisting of C' and its interior (or
exterior). Two cycles are adjacent if they have at least one edge in common.
The cycle C'is triangular if it is adjacent to a triangle other than C'; and C' is
ext-triangular if it is adjacent to a triangle T of Ext(C) other than C.

Now, we are ready to formulate the main result of this chapter.

Theorem 6.6. Plane graphs with neither 4- and 5-cycles nor ext-triangular

7-cycles are 3-colorable.

We remark that Theorem [6.6] reconfirms the known result that (5,7) € B.

Moreover, the following theorem is a direct consequence of Theorem

Theorem 6.7. Planar graphs without cycles of length 4, 5, 8§ are 3-colorable,
that is, (5,8) € B.

For the proof of Theorem we will use the technique on coloring exten-
sion. We first give some necessary notations.

Let v be a vertex, P be a path, C' be a cycle and f be a face of a plane
graph G. The length of P is the number of edges of P. Denote by d(v) the
degree of v, by |P| the length of P, by |C| the length of C' and by d(f) the
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size of f. v is a k-vertex (or kT-vertex or k™ -vertex) if d(v) = k (or d(v) >k
or d(v) < k). Similar notations are used for P, C' and f with |P|,|C| and d(f)
instead of d(v), respectively.

Let C be a cycle of a plane graph G. If S C V(G) or S C E(G),
then G[S] denotes the subgraph of G induced by S. A chord of C is an
edge of Int(C) that connects two nonconsecutive vertices on C. If Int(C)
has a vertex v with three neighbors v, ve,v3 on C, then G[{vvy,vve,vu3}]
is called a claw of C. If Int(C) has two adjacent vertices u and v such
that v has two neighbors ui,ue on C and v has two neighbors vy, vy on C,
then G[{uwv,uui,vug,vvr,vve}] is called a biclaw of C. If Int(C) has three
pairwise adjacent vertices u,v,w which has a neighbor v/, v, w’ on C, respec-
tively, then G[{uv,vw,uw,uu’,vv’',ww'}] is called a triclaw of C. If G has
four vertices x,u, v, w inside C and four vertices x1, x2,v1,w; on C such that
S = {uv, vw, wu, ux, xx1, TT, VU1, WW1 } C E(G), then G[S] is called a comb-

claw of C' (see Figure [6.2).

chord claw biclaw triclaw combclaw

Figure 6.2: Chord, claw, biclaw, triclaw and combclaw of a cycle

A good cycle is an 117 -cycle that has no claws, biclaws, triclaws or comb-
claws. A bad cycle is an 117 -cycle that is not good.
Instead of Theorem it is easier for us to prove the following stronger

one.

Theorem 6.8. Let G be a connected plane graph with neither 4- and 5-cycles
nor ext-triangular 7-cycles. If D, the boundary of the exterior face of G, s
a good cycle, then every proper 3-coloring of G[V(D)] can be extended to a
proper 3-coloring of G.

Theorem [6.8] implies Theorem Suppose to the contrary that Theorem
is true but Theorem is not. Let G be a counterexample to Theorem
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[6.6] with minimum order of G. By the theorem of Grotzsch, G contains a
triangle, say T. Take a proper 3-coloring ¢ of 1. By the minimality of G,
if T is a separating cycle, then ¢ can be extended respectively to proper 3-
colorings of Ezt(T) and of Int(T), which together yield a proper 3-coloring
of G, a contradiction. Hence, either Ezt(T) = 0 or Int(T) = 0. For the
former case, T is the boundary of the exterior face of G. By Theorem 10)
can be extended to a proper 3-coloring of GG, a contradiction. For the latter
case, we can reembed G into the Euclidean plane, obtaining a plane graph G’,
such that G’ has neither 4- and 5-cycles nor ext-triangular 7-cycles and that
T is the boundary of the exterior face of G’. Again by Theorem ¢ can be
extended to a proper 3-coloring of G’ (equivalently, of G), a contradiction.
The proof of Theorem will proceed by using the discharging method
that will be given in the next section. For more information on the discharging
method, we refer readers to [12]. The rest of this section provides other needed

notations.

Let C be a cycle of a plane graph and T be a chord, a claw, a biclaw, a
triclaw or a combclaw of C'. We call the plane graph H consisting of C' and
T a bad partition of C. The boundary of each interior face of H is called
a cell of H. In case of confusion, let us always order the cells ¢, -+, ¢ of
H in the way as shown in Figure [6.2l Let k; be the length of ¢;. Then T
is further called a (k1, k2)-chord, a (ki, ko, k3)-claw, a (ki, ka, k3, k4)-biclaw, a
(k1, ko, ks, kq)-triclaw or a (k1, ke, k3, k4, k5 )-combclaw, respectively.

A vertex is external if it lies on the exterior face; internal otherwise. A
vertex (or an edge) is triangular if it is incident with a triangle. We say that
a vertex is bad if it is an internal triangular 3-vertex; otherwise, it is a good
verter. A path is a splitting path of a cycle C if it has the two end-vertices on
C and all other vertices inside C. A k-cycle with vertices v1,...,v; in cyclic
order is denoted by [vy ... vg].

Let wvw be a path on the boundary of a face f of G with v internal. The
vertex v is f-heavy if both uv and vw are triangular and d(v) > 5, and is

f-Mlight if both wv and vw are triangular and d(v) = 4, and is f-Vlight if
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neither uv nor vw is triangular and v is triangular and of degree 4. A vertex
is f-light if it is either f-Mlight or f-Vlight.
Denote by G the class of connected plane graphs with neither 4- and 5-

cycles nor ext-triangular 7-cycles.

6.3 Proof of the main theorem

Suppose to the contrary that Theorem is false. From now on, let G be a
counterexample to Theorem with fewest vertices. Thus, we may assume
that the boundary D of the exterior face of G is a good cycle, and there
exists a proper 3-coloring ¢ of G|V (D)] which cannot be extended to a proper
3-coloring of GG. By the minimality of GG, we deduce that D has no chord.

6.3.1 Structural properties of the minimal counterexample G

Lemma 6.9. FEvery internal vertex of G has degree at least 3.

Proof. Suppose to the contrary that G has an internal vertex v with d(v) < 2.
We can extend ¢ to G — v by the minimality of G, and then to G by coloring
v differently from its neighbors. O

Lemma 6.10. G is 2-connected and therefore, the boundary of each face of

G is a cycle.

Proof. Otherwise, we can assume that G has a pendant block B with a cut
vertex v such that B —v does not intersect D. We first extend ¢ to G— (B —v)
by the minimality of GG, and then 3-color B so that the color of v remains the

same. =
Lemma 6.11. G has no separating good cycle.

Proof. Suppose to the contrary that GG has a separating good cycle C. We
extend ¢ to G — Int(C) by the minimality of G. Furthermore, since C is a
good cycle, again by the minimality of G, the coloring of C' can be extended

to its interior. O



92 Chapter 6 3-colorings of planar graphs

By the definition of bad cycles, one can easily conclude the following

lemma.

Lemma 6.12. IfC is a bad cycle of a graph in G, then C has length either 9 or
11. Furthermore, if |C| =9, then C has a (3,6,6)-claw or a (3,6,6,6)-triclaw;
if |C| = 11, then C has a (83,6,8)-claw, or a (3,6,6,6)- or (6,3,6,6)-biclaw, or
a (3,6,6,8)-triclaw, or a (3,6,6,6,6)-combclaw.

Notice that all 3-, 6- and 8-cycles of G are facial. The following statement

is a consequence of the previous lemma together with the fact that G € G.

Lemma 6.13. G has neither bad cycles with a chord nor ext-triangular bad

9-cycles.

Lemma 6.14. Let P be a splitting path of D which divides D into two cycles
D' and D". The following four statements hold true.

(1) If |P| = 2, then at least one of D' and D" is a triangle.

(2) Pl £3.

(3) If |P| = 4, then at least one of D' and D" is a 6- or 7-cycle.

(4) If |P| =5, then at least one of D' and D" is a 9~ -cycle.

Proof. Since D has length at most 11, we have |D’| + |D”| = |D| + 2|P| <
11+2|P).

(1) Let P = zyz. Suppose to the contrary that |D’|,|D"| > 6. By Lemma
y has a neighbor other than z and z, say y’. It follows that 3/ is internal
since otherwise D is a bad cycle with a claw. Without loss of generality, let v/
lie inside D’. Now D’ is a separating cycle. By Lemma D’ is not good,
i.e., either D’ is bad or |D’| > 12. Since every bad cycle has length either 9
or 11 by Lemma [6.12] we have |D’| > 9. Recall that |D’| + |D”| < 15, thus
|D'| =9 and |D”| = 6. Now D’ has either a (3,6,6)-claw or a (3,6,6,6)-triclaw
by Lemmal6.12 which implies that D has a biclaw or a combclaw respectively,
a contradiction.

(2) Suppose to the contrary that |P| = 3. Let P = waxyz. Clearly
|D'|,|D"| > 6. Let 2/ and 3 be a neighbor of z and y not on P, respec-

tively. If both 2’ and v’ are external, then D has a biclaw. Hence, we may
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assume that 2’ lies inside D’. By Lemmas and and the inequality
|D'| 4+ |D"| < 17, we deduce that D’ is a bad cycle and D" is a good 8 -cycle.
If o/ is internal, then ¢’ lies inside D’. It follows with the specific interior of a
bad cycle that 2’ = ' and D’ has either a claw or a biclaw, which implies that
D has either a triclaw or a combclaw respectively, a contradiction. Hence, 1/
is external. Since every bad cycle as well as every 6™ - or 8-cycle contains no
chords by Lemma we deduce that yy' is a (3,6)-chord of D”. Tt follows
that D' is an ext-triangular bad 9-cycle, contradicting Lemma

(3) Let P = vwzyz. Suppose to the contrary that |D'[,|D”| > 8. Since
|D'| 4+ |D"| < 19, we have |D’|,|D"”| < 11. Since G has no 4- and 5-cycles,
if G has an edge e connecting two nonconsecutive vertices on P, then the
cycle formed by e and P has to be a triangle, yielding a splitting 3-path of D,
contradicting the statement (2). Therefore, no pair of nonconsecutive vertices

on P are adjacent.

Let w’, 2,y be a neighbor of w, z, y not on P, respectively. The statement
(2) implies that 2’ is internal. Without loss of generality, let 2’ lie inside
D’. Thus D' is a bad 9- or 11-cycle. If D’ is a bad 11-cycle, then D" is a
facial 8-cycle, and thus both w’ and ¥/’ lie in Int(D'), which is impossible by
the interior of a bad cycle. Hence, D’ is a bad 9-cycle. By the statement
(1), if w' € V(D"), then G contains the triangle [vww'], which makes D’
ext-triangular, a contradiction. Hence, w’ ¢ V(D"). Moreover, since D' has
no chords by Lemma w' ¢ V(D'). Therefore, w' is internal. If w’ lies
inside D', then it gives the interior of D’ no other choices than w’ = 2z’ and
D’ has a (3,6, 6)-claw, in which case D has a splitting 3-path, a contradiction.
Hence, w’ lies inside D”. Similarly, 3/ lies inside D” as well. Notice that
|D"| € {8,9,10}, thus D" is a bad 9-cycle but has to contain both w’ and y’

inside, which is impossible.

(4) Let P = wwwayz. Suppose to the contrary that |D’'|,|D”| > 10. Since
|D'| + |D"| < 21, we have |D'|,|D"”| < 11. By a similar argument as in the

proof of statement (3), one can conclude that G' has no edges connecting two
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nonconsecutive vertices on P. Let v/,w’,2’,y’ be a neighbor of v, w, z,y not
on P, respectively.

The statement (2) implies that both w’ and 2’ are internal. Without loss
of generality, we may assume that w’ lies inside D’. So D’ is a separating
cycle and thus, it must be a bad 11-cycle by Lemma It follows that D"
is a good 10-cycle and thus, it is not a separating cycle. So 2’ also lies inside
D’. By Lemma and the fact that all 3-, 6- and 8-cycles are facial, we can
deduce that ' = w’ and D’ has either a (3,6,8)-claw or a (3,6,6,6)-biclaw. It
follows that ',y € V(D"). By the statement (1), G has the two triangles
[uvv’] and [yy'z], at least one of them is adjacent to a 7-cycle of Int(D’), a

contradiction. O

Lemma 6.15. Let G’ be a connected plane graph obtained from G by deleting
a set of internal vertices and identifying two other vertices. If we
(a) identify no two vertices of D, and create no edges connecting two vertices
of D, and
(b) create neither 6~ -cycles nor ext-triangular 7-cycles,

then ¢ can be extended to a proper 3-coloring of G'.

Proof. The item (a) guarantees that D is unchanged and bounds G’, and ¢
is a proper 3-coloring of G'[V(D)]. By item (b), the graph G’ is simple and
G’ € G. Hence, to extend ¢ to G’ by the minimality of G, it remains to show
that D is a good cycle of G’.

Suppose to the contrary that D is a bad cycle. Thus it has a bad partition
H in G'. By the specific structure of H, as depicted in Lemma we can
see that there exists a 6-cell C” of H such that the intersection of D and C’ is
a path vy ... vy of length k — 1 with & € {4,5}. Since we create no 6-cycles, C’
corresponds to a 6-cycle C' of the original graph G. Notice that only one pair
of vertices are identified and the resulting vertex is not from {wva,...,vx_1}
since otherwise G has a 4-cycle. It follows that the intersection of D and C
is a path P of form vy ...v; or vy...vk_1 or va...v,. Thus, |P| € {2,3,4}.

If |P| € {3,4}, then C' — E(P) contains a splitting 3- or 2-path of D in G,
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yielding a contradiction by Lemma Hence, |P| =2 and so k = 4. By the
existence of C’, H is not a (3,6,6)- or (3,6,8)-claw. If H is a (3,6,6,6)- or
(6,3,6,6)-biclaw or a (3,6,6,6,6)-combiclaw, then we can choose some other
C’ whose corresponding value of k is 5. By the same argument above, we
obtain a contradiction. Hence, H must be a (3,6,6,6)- or (3,6, 6, 8)-triclaw.
Now, H contains three splitting 3-paths of D in G’, at least one of which
does not contain the resulting vertex by identifying two vertices. Hence, this

splitting 3-path of D exists also in GG, contradicting Lemma, [6.14] O

Lemma 6.16. G has no edge uv incident with a 6-face and a 3-face such that
both u and v are internal 3-vertices and therefore, every bad cycle of G has

either a (3,6,6)- or (3,6,8)-claw or a (3,6,6,6)-biclaw.

Proof. Suppose to the contrary that such an edge uv exists. Denote by
[uvwzyz] and [uvt] the facial cycles of the 6-face and the 3-face, respectively.
Lemma[6.14] implies that not both w and z are external vertices. Without loss
of generality, we may assume that w is internal. Let G’ be the graph obtained
from G by deleting u and v and identifying w with y. Clearly, G’ is a plane
graph on fewer vertices than G. We will show that both items of Lemma [6.15]
are satisfied.

Since w is internal, we identify no two vertices on D. If we create an
edge connecting two vertices on D, then w has a neighbor w; not adjacent
to y and both y and w; are external. But now, Lemma implies that x
is external and thus, [ww;x] is a triangle which makes the 7-cycle [utvwzyz]
ext-triangular, a contradiction. Hence, item (a) holds.

Suppose we create a 6 -cycle or an ext-triangular 7-cycle C’. Thus the
original graph G has a 7~ -path P between w and y corresponding to C’. First
assume that z € V(P). The vertex x divides P into two paths, say Py,
and Py, between w and x and between x and y, respectively. Without loss
of generality, assume that |Py,| < |Pyy|. Since |Pyy| + [Pyl < 7, we have
|Pyz| < 3. If |Pyg| = 3, then G has a 4-cycle formed by P,, and wz, a

contradiction. If |P,,| = 2, then P,, together with wz forms a triangle that
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makes [utvwxyz| an ext-triangular 7-cycle of G, a contradiction. If |P,,| =1,
then P, coincides with the edge wz, which implies that C’ coincides with the
cycle Cyy of G formed by P,, and zy, contradicting the supposition that C’
is created.

Hence, we may assume that x ¢ V(P). The paths P and wzy form a
97 -cycle, say C. By Lemma d(xz) > 3. Let z1 be the neighbor of = other
than y and w. If 2y € V(P), then zz is a chord of C. By Lemma[6.13] C is a
good cycle. It follows that zz is a (3,6)- or (3,8)-chord of C', which makes the
7-cycle [utvwzyz| ext-triangular, a contradiction. Hence z1 ¢ V(P). Now, we
can see that C' is a separating cycle and thus, it is a bad 9-cycle. By Lemma
C is not ext-triangular. It follows that C’ is a 7-cycle of G’ and is not
ext-triangular, contradicting our supposition. Therefore, item (b) holds.

By Lemma the precoloring ¢ can be extended to G’. Since z and w
receive different colors, we can properly color v and u, completing the extension

of ¢ to G. O

We follow the notations of M-faces and M M-faces in [7], and define weak
tetrads. An M-face is an 8-face f containing no external vertices with bound-
ary [vi...uvs] such that the vertices vy, va,vs,vs,v6,v7 are of degree 3 and
the edges vive, v3vy, v4vs, vgUy are triangular. An M M-face is an 8-face f
containing no external vertices with boundary [v; ...wvs] such that vy and vy
are of degree 4 and other six vertices on f are of degree 3, and the edges
V1V2, UoU3, V4Us5, VgU7, U7vg are triangular. A weak tetrad is a path vy ...wvs on
the boundary of a face f such that both the edges v1vo and v3vy are triangular,

all of vy, v9, v3, v4 are internal 3-vertices, and vy is either of degree 3 or f-light.

Lemma 6.17. G has no weak tetrad and therefore, every face of G contains

no five consecutive bad vertices.

Proof. Suppose to the contrary that GG has a weak tetrad T following the
notation used in the definition. Denote by vy the neighbor of v; on f other
than vy. Denote by x the common neighbor of v and vy, and by y the common

neighbor of v and vy. If x = vg, then v is an internal 2-vertex, contradicting
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Lemma [6.9] Hence, x # vy and similarly, = # v3. Since G has no 4- and 5-
cycles, x ¢ {v4,v5}. Concluding above, x ¢ voUV (T'). Similarly, y ¢ voUV (T).
Moreover, x # y since otherwise [vivovsz] is a 4-cycle. We delete vy, ..., vy
and identify vy with y, obtaining a plane graph G’ on fewer vertices than G.

We will show that both the items of Lemma [6.15] are satisfied.

Suppose that we create a 6~ -cycle or an ext-triangular 7-cycle C’. Thus
G has a 7~ -path P between vy and y corresponding to C’. So, the paths P
and vovivavsy form an 117 -cycle, say C. If z € V(P), then the cycle formed
by P and vgvix has length at least 6 and the cycle formed by P and zwvousy
has length at least 8, which gives |P| > 9, a contradiction. Hence, z ¢ V(P).
Now, one of x and vy4 lies inside C' and the other lies outside C'. So C' is a
separating cycle and thus, it is a bad cycle. By Lemma C has either a
(3,6,6)- or (3,6,8)-claw or a (3,6,6,6)-biclaw. Notice that both the two faces
incident with vovs have length at least 8. Thus, C' has a bad partition owning
an 8-cell no matter which one of x and vy lies inside C. It follows that C has
a (3,6,8)-claw. If z lies inside C, then vix is incident with the 6-cell and a
3-face with d(vy) = d(z) = 3, contradicting Lemma Hence, vy lies inside
C. In this case, f is the 8-cell, and the 6-cell contains the path yvqvs. Thus,
we can deduce that vs is not f-light. Since T is a weak tetrad, d(vs) = 3. We
delete v5 together with other vertices of T' and repeat the argument above,
obtaining a contradiction. Therefore, item (b) holds.

Suppose that we identify two vertices on D or create an edge connecting
two vertices on D. Thus there is a splitting 4- or 5-path @ of D containing the
path vouivovsy. By Lemma Q@ together with D forms a 97-cycle which
corresponds to a 5~ -cycle in G’. Since we create no 6~ -cycle, a contradiction
follows. Hence, item (a) holds.

By Lemma the precoloring ¢ can be extended to G’. We first properly
color vs (if needed), v4 and v3 in turn. Since vy and vs receive different colors,

we can properly color v; and vy, completing the extension of ¢ to G. O

Lemma 6.18. G has no M -faces.
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Proof. Suppose to the contrary that G has an M-face f following the notation
used in the definition. For (4,j) € {(1,2),(3,4),(4,5),(6,7)}, denote by t;;
the common neighbor of v; and v;. By similar argument as in the proof of
the previous lemma, we deduce that the vertices t12, 34, t45,tg7 are pairwise
distinct and not incident with f. We delete vy, vo, v3, vs, vg, v7 and identify vy
with vg, obtaining a plane graph G’ on fewer vertices than G. We will show
that both items in Lemma [6.15] are satisfied.

Suppose that we create a 6~ -cycle or an ext-triangular 7-cycle C’. Thus
G has a 7~ -path P between vy and vg corresponding to C’. By the symmetry
of an M-face, we may assume that P together with the path vsvs...vg forms
an 117 -cycle C' that contains vy, ve,vs inside. So C'is a bad cycle containing
at least three vertices inside, which is impossible by the interior structure of
C' indicated by Lemma[6.16] Therefore, item (b) holds.

The satisfaction of item (a) can be proved in a similar way as in the proof
of the previous lemma. By Lemma the pre-coloring ¢ can be extended
to G’. We can properly color first v3 and then v; and vy since v3 is colored
different from wg. Similarly, we can properly color vs,vg and vy, completing

the extension of ¢ to G. O

Lemma 6.19. G has no M M -faces.

Proof. Suppose to the contrary that G has an M M-face f following the no-
tation used in the definition. For (i,j) € {(1,2),(2,3),(4,5),(6,7),(7,8)},
denote by t;; the common neighbor of v; and v;. Similarly to the proof of
Lemma [6.18] we deduce that the vertices ti9, tos, t45, tg7, t7g are pairwise dis-
tinct and not incident with f. We delete all the vertices of f and identify ¢19
with tg7, obtaining a plane graph G’ on fewer vertices than G. To extend ¢
to G, it suffices to fulfill item (a) of Lemma as we did in the previous
lemma.

Suppose that we create a 6 -cycle or an ext-triangular 7-cycle C’. Thus
G has a 7 -path P between t15 and tg7 corresponding to C’'. If tzg € V(P),

then both the cycles formed by P and ti5v1vgtrs and by P and trgv7tgr have
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length at least 8, which gives |P| > 11, a contradiction. Hence, t7g ¢ V(P).
The paths P and ti19v1vgvrtgr form an 117 -cycle, say C'. It follows that C is
a bad cycle containing either vo,...,vg or tyg inside. In the former case, C
contains at least five vertices inside, a contradiction. In the latter case, G has
either an ext-triangular bad 9-cycle (if |P| = 5) or an ext-triangular 7-cycle
(if |P| = 7), a contradiction.

We further extend ¢ from G’ to G as follows. Let a, 8 and 7 be the three
colors used in ¢. First, disregarding the edge vivg, we can properly color
v, v1, 3 and vy, vs, vg. If v1 and vg receive different colors and so do vg and
vg, then vy and vs can be properly colored; we are done. Hence, we may
assume that v; and vg receive the same color § (a similar argument as below
works for the case that vs and vg receive the same color). Let o be the color
assigned to t12 and tg7. Thus vy and vy are colored with + and t7g is colored
with a. We recolor vg, v7 and vg with «y, 5 and -, respectively. Now, v; and vg
receive different colors and so do v3 and vg. Again, v4 and v5 can be properly

colored; we are done. O

6.3.2 Discharging in G

Let V = V(G), E = E(G), and F be the set of faces of G. Denote by fy
the exterior face of G. Give initial charge ch(x) to each element z of V U F,
where ch(fo) = d(fo) +4, ch(v) = d(v) — 4 for v € V, and ch(f) = d(f) — 4
for f € F\ {fo}. Discharge the elements of V' U F' according to the following
rules:

R1. Every internal 3-face receives % from each incident vertex.

R2. Every internal 6 -face sends % to each incident 2-vertex.

win

R3. Every internal 6" -face sends each incident internal 3-vertex v charge

if v is triangular, and charge % otherwise.

Lol

R4. Every internal 6*-face f sends % to each f-light vertex, and receives
from each f-heavy vertex.
R5. Every internal 67-face receives % from each incident external 4*-vertex.

R6. The exterior face fy sends % to each incident vertex.
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We remark that the discharging rules can be tracked back to the one used in
[7.

Let ch*(x) denote the final charge of each element x of V U F' after dis-
charging. On one hand, by Euler’s formula we deduce > c¢h(z) = 0. Since
the sum of charges over all elements of V U F' is uncﬁggggi, it follows that

Y>> c¢h*(xz) = 0. On the other hand, we will show that ch*(z) > 0 for each
QGEU‘F/ U F\ {fo} and ch*(fo) > 0. Hence, this obvious contradiction com-
pletes the proof of Theorem It remains to show that ch*(z) > 0 for each

z e VUF\{fo} and ch*(fp) > 0.
Lemma 6.20. ch*(v) >0 forve V.

Proof. First suppose that v is external. Since D is a cycle, d(v) > 2. If
d(v) = 2, then since D has no chord, the internal face incident with v is not a
triangle and sends % to v by R2. Moreover, v receives % from fy by R6, which
gives ch*(v) = d(v) — 4 + % + % = 0. If d(v) = 3, then v sends charge to at
most one 3-face by R1 and thus ch*(v) > d(v) —4 — £ + 3 = 0. If d(v) > 4,
then v sends at most % to each incident internal face by R1 and RS, yielding
ch*(v) > d(v) — 4 — §(d(v) — 1) + 3 > 0. Hence, we are done in any case.

It remains to suppose that v is internal. By Lemma dv) > 3. If
d(v) = 3, then we have ch*(v) = d(v) —4 — 1 + 2 x2 = 0 by Rl and R3
when v is triangular, and ch*(v) = d(v) — 4+ § x 3 = 0 by R3 when v not. If
d(v) = 4, then v is incident with &k 3-faces with k < 2. By R1 and R4, we have
ch*(v) =d(v)—4—1x2+3x2=0whenk =2, ch*(v) =d(v)—4—3+1 =0
when k£ = 1, and ch*(v) = d(v) —4 = 0 when k = 0. If d(v) = 5, then v sends
charge to at most two 3-faces by R1 and to at most one 6*-face by R4, which
gives ch*(v) > d(v) —4 — 1 x 2 — 1 = 0. Hence, we may next assume that
d(v) > 6. Since v sends at most % to each incident face by our rules, we get

ch*(v) > d(v) — 4 — %d(v) > 0. O
Lemma 6.21. ch*(fy) > 0.

Proof. Recall that ch(fy) = d(fo) +4 and d(fy) < 11. We have ch*(fy) >
d(fo) +4 — 4d(fo) > 0 by R6. O
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Lemma 6.22. ch*(f) >0 for f € F\{fo}.

Proof. We distinguish cases according to the size of f. Since G has no 4- and
5-cycle, d(f) ¢ {4,5}.

If d(f) = 3, then f receives % from each incident vertex by R1, which gives
ch*(f) =d(f)—4+ 3 x3=0.

Let d(f) = 6. For any incident vertex v, by the rules, f sends to v charge
% if v is either of degree 2 or bad, and charge at most % otherwise. Since G has
no ext-triangular 7-cycles, f is adjacent to at most one 3-face. Furthermore,
by Lemma f contains at most one bad vertex. If f contains a 2-vertex,
say u, we can deduce with Lemma [6.14] that u is the unique 2-vertex of f and
the two neighbors of u on f are external 3*-vertices which receive nothing
from f. It follows that ch*(f) > d(f) —4— 2 — 2 — ¥ x 2 = 0. Hence, we may
assume that f contains no 2-vertices. If f has no bad vertices, then f sends
each incident vertex at most %, which gives ch*(f) > d(f) —4 — 3d(f) = 0.
Hence, we may let x be a bad vertex of f. Denote by y the other common
vertex between f and the triangle adjacent to f. By Lemma [6.16]| again, y is
not a bad vertex, i.e., y is either an internal 4T-vertex or an external 37-vertex.
By our rules, f sends nothing to y, yielding ch*(f) > d(f) —4 — % — % x4 =0.

Let d(f) = 7. Since G has no ext-triangular 7-cycles, f contains no bad
vertices. Moreover, by Lemma [6.14] we deduce that f has at most two 2-
vertices. Thus, ch*(f) > d(f) —4— 2 x2— 1 x5=0.

Let d(f) > 8. If f contains precisely one external vertex, say w, then
d(w) > 4 and so f receives % from w by R5. Furthermore, since f contains no
weak tetrad by Lemma f has a good vertex other than w and sends at
most # to it. Thus, ch*(f) > d(f) —4+ 3 — 3 — 2(d(f) —2) > 0; we are done.
If f contains at least two external vertices, then at least two of them are of
degree more than 2. Since f sends nothing to external 3*-vertices, it follows
that ch*(f) > d(f)—4— %(d(f) —2) > 0; we are done as well. Hence, we may
assume that all the vertices of f are internal. We distinguish two cases.

Case 1: Assume that d(f) = 8. Denote by r the number of bad vertices
of f. We have ch*(f) > d(f) — 4 — %r - %(d(f) —r) = % > 0, provided
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by r < 4. Since f contains no weak tetrad, » < 6. Hence, we may assume
that » € {5,6}. For r = 5, we claim that f has a vertex failing to take
charge from f, which gives ch*(f) > d(f) — 4 — % X 5 — % x 2 = 0. Suppose
to the contrary that no such vertex exists. Thus, the bad vertices of f can
be paired so that any good vertex of the path of f between each pair is f-
Mlight, contradicting the parity of r. For r = 6, since again f contains no
five consecutive bad vertices, these six bad vertices of f are divided by the
two good ones into cyclically either 3+3 or 24+4. We may assume that f has
a good vertex that is either f-light or of degree 3, since otherwise we are done
with ch*(f) > d(f) —4 — 2 x 6 = 0. Denote by u such a good vertex and
by v the other one. By the drawing of u and of the 3-faces adjacent to f, we
deduce that, for the case 343, f is an M-face, contradicting Lemma [6.18] and
for the case 2+4, if u is f-Mlight then either f is an M M-face or v is f-heavy;
otherwise f contains a weak tetrad. It follows with Lemmas [6.19] and
that v is f-heavy, which is the only possible case. Hence, f receives % from v
by R4, yielding ch*(f) > ch(f) —4-%x6+ 4 -1 =0.

Case 2: Assume that d(f) > 9. By Lemma we deduce that f contains
at least two good vertices, each of them receives at most % from f. Thus,
ch*(f) > d(f) —4—2(d(f) —2) — L x 2= W10 > 0 provided d(f) > 10,
It remains to suppose d(f) = 9. If f has at most six bad vertices, then
ch*(f) > d(f) —4— % X 6 — é x 3 = 0. Hence, we may assume that f has
precisely seven bad vertices. By the same argument as for the case d(f) = 8
and f has five bad vertices above, f has a vertex failing to take charge from

f, which gives ch*(f) >d(f) —4—2x7—-1=0. O
3 3

By the previous three lemmas, the proof of Theorem is completed.
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Conclusion and future work

This thesis concentrates on vertex coloring of signed graphs. The circular
coloring of graphs has been extensively studied in the literature. The thesis
generalizes the concept of circular coloring of graphs to signed graphs. This
is a very natural generalization, which we can see from the following points of

view:

(1) The circular chromatic number of unsigned graphs has two basic defi-
nitions that are equivalent. One is defined by (k,d)-colorings and the
other by circular r-colorings. We show that the circular chromatic num-
ber of signed graphs can also be equivalently defined by (k, d)-colorings

and circular r-colorings, that is,
ok .
xc((G,0)) = 1nf{g: (G, o) has a (k, d)-coloring}

The infimum in the definition is always attained, and hence can be re-
placed by the minimum, the same as the unsigned case.

(2) The circular coloring of signed graphs implies a new notion of chromatic
number of signed graphs, for which we prove an analogue of the famous

Brooks’ theorem and Hajos’ theorem.
103
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(3) By the relation x((G,0)) —1 < xc((G,0)) < x((G,0)) for every signed
graph (G, o), we can still take x.((G,0)) as a refinement of x((G,0))

and inversely x((G, o)) as an approximate of x.((G,0)).
Kang and Steffen propose a signed version of the four color theorem as a

conjecture.
Conjecture 7.1. Every signed planar graph is 4-colorable.

This conjecture is slightly different from another version [35] that every
signed planar graph is signed 4-colorable.

Besides the questions proposed before in the thesis, we can also consider
the followings as the future work:

(1) Analogues of the Hajés’ theorem for the circular chromatic number of
graph were proved in [67, [70]. So as the next step, it is natural but chal-
lenging to extend the Hajdés’ theorem for the circular chromatic number
of signed graphs.

(2) Different from the unsigned case that x(G) — 1 < x.(G) < x(G), the
lower bound can be attained for some signed graphs with any given Yy.
So it is of particular interest to give a characterization of signed graphs
with x((G,0)) — 1 = x((G,0)). Moreover, it was proved by Guichard
that it is NP-hard to decide whether a graph G attains the upper bound,
i.e., satisfies x.(G) = x(G). There are some known sufficient conditions
under which x.(G) = x(G). However, these conditions may not work for
signed graphs. Hence, the question is to figure out sufficient conditions
under which x.((G,0)) = x((G,0)) and in particular, those conditions
on the structure of G under which for any signature o of G, x.((G,0)) =
\(G,0)).

(3) We introduce list coloring of signed graphs and then focus on the choos-
ability of signed planar graphs. Hence there is still few knowledge on

the choosability of non-planar signed graphs.
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