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Abstract

The study on signed graphs have been one of the hot research fields in the

past few years. Theories on ordinary graphs have been generalized to signed

graphs in many major aspects, such as the areas of flows, circuit covers, ho-

momorphisms and so on. Graph colorings theory, which is strongly related to

these aspects, has a central position in discrete mathematics. However, there

are very few knowledges known on colorings of signed graphs so far.

The thesis is devoted to generalize a series of concepts, results and methods

on vertex colorings of graphs to signed graphs for the first time. In particular,

we introduce the notions of circular colorings and related integer colorings and

list colorings for signed graphs. Some fundamental results for each notion are

proved. Analogues of some classical results like Brooks’ Theorem and Hajós’

Theorem for signed graphs are presented. Moreover, the relation between

a signed graph and its underlying unsigned graph is investigated, especially

for chromatic numbers and list-chromatic numbers. Some exclusive features

for signed graphs such as the chromatic spectrum are studied. The thesis

concludes with a result on 3-coloring of unsigned planar graph.

Zusammenfassung

Signierte Graphen sind ein hochinteressantes und aktives Forschungsgebiet

der Graphentheorie mit vielfältigen Anwendungen in anderen Disziplinen wie

z.B. der Physik oder der Soziologie. Viele graphentheoretische Konzepte, wie

z.B. Flüsse oder kürzeste Kreisüberdeckungen, wurden auf signierte Graphen

verallgemeinert. Unter diesem Aspekt sind Färbungen signierter Graphen von

besonderem mathematischen Interesse, da viele Konzepte, die für unsignierte

Graphen äquivalent sind, dies für signierte Graphen nicht sind.

In dieser Arbeit werden vornehmlich Eckenfärbungen auf signierten

Graphen studiert. Es wird das Konzept der zirkulären Färbung von sig-

nierte Graphen eingeführt und die darauf basierenden Parameter wie z.B. die
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zirkuläre chromatische Zahl, die chromatische Zahl und die listenchromatische

Zahl werden studiert.

Klassische Ergebnisse der Graphnetheorie, wie die Sätze von Brooks und

Hajós werden auf signierte Graphen verallgemeinert. Das chromatische Spek-

trum signierter Graphen wird bestimmt. Die Beziehung zwischen der chro-

matischen Zahl des signierten und der chromatischen Zahl des unterliegen-

den unsignierten Graphen studiert. Weiterhin werden die unterschiedlichen

Färbungskonzepte verglichen. Die Arbeit schließt mit einem Ergebnis zu un-

signierten 3-färbbaren planaren Graphen.
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Chapter 1

Introduction

1.1 Signed graphs, balances and switchings

The notion of signed graphs was first introduced by Harary [21] in 1953, as

a mathematical model for certain problems in social psychology. The social

structure of a group of persons is often represented by a graph, for which each

vertex represents a person and two vertices are connected by an edge (i.e.,

adjacent) if and only if they know each other. The motivation for defining

signed graphs arise from the fact that psychologists sometimes describe the

relation between two persons as liking, disliking or indifference. A signed graph

is a graph together with a sign of “ + ” or “ − ” on each edge, representing

the emotion of liking or disliking. Hence, the notion of signed graphs is a

generalization of ordinary graphs.

The standard definitions used in the theory of graphs may be found in [54].

We consider a graph to be finite and simple, i.e., with no loops or multiple

edges. The vertex set of a graph G is denoted by V (G), and the edge set by

E(G). Let G be a graph and σ : E(G) → {1,−1} be a mapping. The pair

(G, σ) is called a signed graph. We say that G is the underlying graph of (G, σ)

and σ is a signature of G. The sign of an edge e is the value σ(e). An edge

is positive if it has a positive sign; otherwise, the edge is negative. The set

Nσ = {e : σ(e) = −1} is the set of negative edges of (G, σ) and E(G)−Nσ the

1



2 Chapter 1 Introduction

set of positive edges. A signature σ is all-positive (all-negative, respectively)

if it has a positive sign (negative sign, respectively) on each edge. A graph

G together with an all-positive signature is called an all-positive signed graph

and denoted by (G,+). Similarly, (G,−) denotes an all-negative signed graph,

that is, a signed graph for which the signature is all-negative. Throughout

the paper, “a graph” is always regarded as an unsigned simple graph for the

distinction from “a signed graph” and “a multigraph”.

The balance of a signed graph has been an important topic since the very

beginning when the notion of a signed graph was first introduced. A circuit C

of a signed graph is balanced, if it contains an even number of negative edges;

otherwise we say that C is unbalanced. A signed graph (G, σ) is unbalanced,

if it contains an unbalanced circuit, otherwise we say that (G, σ) is balanced.

A signed graph is antibalanced if every circuit contains an even number of

positive edges.

The concept of switchings, as well as balances, is an exclusive feature for

signed graphs. The generalization of notions of graphs to signed graphs are

often required to respect switchings. Let (G, σ) be a signed graph. A switching

at a vertex v of G defines a signed graph (G, σ′) with σ′(e) = −σ(e) if e ∈ E(v),

and σ′(e) = σ(e) if e ∈ E(G) \ E(v). Two signed graphs (G, σ) and (G, σ∗)

are switching equivalent (briefly, equivalent) if they can be obtained from each

other by a sequence of switchings. We also say that σ and σ∗ are equivalent

signatures of G.

It is well known (see e.g. [40]) that (G, σ) is balanced if and only if it is

switching equivalent to an all-positive signed graph, and (G, σ) is antibalanced

if and only if it is switching equivalent to an all-negative signed graph. The

former result is one of the earliest results on signed graphs, first proved in [21].

Note, that a balanced bipartite graph is also antibalanced.

The theory of graphs have been generalized to signed graphs especially in

the recent years in many aspects: the matroids of signed graphs [59], orienta-

tion of signed graphs [61], circular flows of signed graphs [40, 74], nowhere-zero

flows of signed graphs [25, 26, 36, 42, 55], homomorphisms of signed graphs
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[39], circuit covers of signed graphs [9, 34], the way signed graph arise from

geometry [62] and so on. However, so far there are only a few knowledges

known on colorings of signed graphs.

Graph coloring problems have gained more and more attention since the

proposal of the four-color problem in 1852. The theory of graph colorings has

a central position in discrete mathematics and it is closely related to other

areas such as flows, homomorphism, time tabling, and scheduling problems.

The thesis concentrates on the generalization of vertex colorings of graphs to

signed graphs.

1.2 Colorings of signed graphs

In the 1980s Zaslavsky [57, 58, 60] started studying vertex colorings of signed

graphs. The natural constraints for a coloring c of a signed graph (G, σ) are,

that c(v) 6= σ(e)c(w) for each edge e = vw, and that the colors can be inverted

under switching, i.e. equivalent signed graphs have the same chromatic num-

ber. In order to guarantee these properties of a coloring, Zaslavsky [58] used

the set {−k, . . . , 0, . . . , k} of 2k + 1 “signed colors” and studied the interplay

between colorings and zero-free colorings through the chromatic polynomial.

Recently, Máčajová, Raspaud, and Škoviera [35] modified Zaslavsky’s ap-

proach as follows. If n = 2k + 1, then let Mn = {0,±1, . . . ,±k}, and if

n = 2k, then let Mn = {±1, . . . ,±k}. A mapping c from V (G) to Mn is an

“n-coloring” of (G, σ), if c(v) 6= σ(e)c(w) for each edge e = vw. They defined

χ±((G, σ)) to be the smallest number n such that (G, σ) has an n-coloring

and call it the “chromatic number” for signed graphs. This allows them to

study the behaviour of colourings of individual signed graphs. For example,

they proved an analogue of the Brooks’ theorem for signed graphs. However,

so far there are still few results on the invariant χ±((G, σ)).

Later on, another version of “chromatic number” of signed graphs, defined

by homomorphisms, was proposed by Naserasr, Rollová and Sopena in [39].

Unfortunately, there is no further discussion on this definition.
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A definition of a “chromatic number” for signed graphs strongly depends

on properties of the colors, as those of the “signed colors” in the definitions of

Zaslavsky and of Máčajová et al. Since every element of an additive abelian

group has an inverse element, it is natural to choose the elements of an additive

abelian group as colors for a coloring of signed graphs. The self-inverse ele-

ments of the group play a crucial role in such colorings, since the color classes

which are induced by self-inverse elements are independent sets. Hence, the

following statement is true.

Proposition 1.1. Let G be a graph and χ(G) = k. If C is a set of k pairwise

different self-inverse elements of an abelian group (e.g. of Zn2 (k ≤ 2n)), then

every k-coloring of G with colors from C is a k-coloring of (G, σ), for every

signature σ of G. In particular, the chromatic number of (G, σ) with respect

to colorings with colors of C is k.

This proposition shows that a coloring of a signed graph with colors from

a k-element abelian group is reduced to a k-coloring of its underlying graph if

each element of the abelian group is self-inverse.

A coloring parameter of an unsigned graph, where the colors are also the

elements of an abelian group, namely the cyclic group of integers modulo n,

and where the coloring properties are defined by using operations within the

group, is the circular chromatic number. This parameter was introduced by

Vince [48] in 1988, as “the star-chromatic number”. In 1992, Zhu [63] gave an

alternate definition of circular chromatic number by circular colorings instead

of (k, d)-colorings. The circular chromatic number is a natural generalization

of the chromatic number for unsigned graphs. For more details on the circular

chromatic number for unsigned graphs, we refer the readers to [63, 64, 65, 66,

68, 69, 71, 72, 73].

We combine these two approaches to define the circular chromatic number

of a signed graph, which extends its definition for unsigned graphs. More-

over, this implies a new notion of vertex colourings of signed graphs and the

corresponding chromatic number of signed graphs.
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For x ∈ R and a positive real number r, we denote by [x]r the remainder

of x divided by r, and define |x|r = min{[x]r, [−x]r}. Clearly, [x]r ∈ [0, r) and

|x|r = | − x|r.

Definition 1.2. Let Zn denote the cyclic group of integers modulo n, Z/nZ.

Let k and d be positive integers such that k ≥ 2d. A (k, d)-coloring of a signed

graph (G, σ) is a mapping c : V (G) → Zk such that for each edge e = vw,

d ≤ |c(v)− σ(e)c(w)|k. The circular chromatic number χc((G, σ)) of a signed

graph (G, σ) is inf{kd : (G, σ) has a (k, d)-coloring}. For a signed graph, a

(k, 1)-coloring is also called a k-coloring. The minimum k such that a signed

(G, σ) has a k-coloring is called the chromatic number of (G, σ) and denoted

by χ((G, σ)).

To be distinct, we call the invariant χ±((G, σ)) and corresponding

n-colorings defined in [35] the signed chromatic number and the signed

n-colorings, respectively.

If we ask the signature σ to be all-positive, then the definitions of (k, d)-

colorings, circular chromatic number and chromatic number for signed graphs

in Definition 1.2 are reduced to ones for unsigned graphs, respectively.

With these new notions, we are able to start building the theory for cir-

cular coloring of signed graphs, which will be presented in Chapter 2. Some

fundamental results are generalized to signed graphs. In particular, we first

improve the circular chromatic number as a infimum by definition to the one

expressed as a minimum. To be precise, we prove that for a signed graph

(G, σ) on n vertices,

χc((G, σ)) = min{k
d

: (G, σ) has a (k, d)-coloring and k ≤ 4n}.

Therefore, the circular chromatic numbers are always rational, and to calculate

χc((G, σ)), it is enough to consider those pairs of integers k and d such that

2d ≤ k ≤ 4n. If χc((G, σ)) = k
d with k and d being positive integers, then the

signed graph χc((G, σ)) has a (k, d)-coloring.
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Next, we generalize the concept of circular r-colorings of graphs, first in-

troduced by Zhu [63], to signed graphs.

Definition 1.3. Let (G, σ) be a signed graph and r be a real number at least

1. A circular r-coloring of (G, σ) is a function f : V (G)→ [0, r) such that for

any edge e with e = xy: if σ(e) = 1 then 1 ≤ |f(x) − f(y)| ≤ r − 1, and if

σ(e) = −1 then 1 ≤ |f(x) + f(y)− r| ≤ r − 1.

We prove the equivalence between (k, d)-colorings and circular r-colorings

in the context of signed graphs. Hence, the circular chromatic number of a

signed graph can be equivalently defined by circular r-colorings:

χc((G, σ)) = min{r : (G, σ) has a circular r-coloring}.

We may choose different definitions for the convenience of proof when we are

studying on this invariant in the thesis.

At last, we provide a relation between the circular chromatic number and

the chromatic number: for every signed graph (G, σ), we have

χ((G, σ))− 1 ≤ χc((G, σ)) ≤ χ((G, σ)).

In contrast to the unsigned case, for which we know from [68] that χ(G)−1 <

χc(G) ≤ χ(G), signed graphs (G, σ) such that χ((G, σ)) − 1 = χc((G, σ))

may have special meaning. We construct examples of such signed graphs for

every possible value of the chromatic number. Hence, the lower bound is

sharp. However, if the lower bound is not attained, then it can be improved

to: for every signed graph (G, σ) with χ((G, σ)) − 1 6= χc((G, σ)), we have

(χ((G, σ))−1)(1+
1

4n− 1
) ≤ χc((G, σ)), and in particular, χ((G, σ))−1+ 1

2n <

χc((G, σ)).

We go on with the discussion on the chromatic number of signed graphs

in Chapter 3. An advantage of the signed chromatic number χ±((G, σ)),

i.e. the definition by Máčajová et al for the “chromatic number” of signed

graphs, is the generalization of Brooks’ Theorem to signed graphs. Here for the
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chromatic number χ((G, σ)), we generalize not only the Brooks’ theorem but

also the Hajós’ theorem to signed graphs. We then prove a relation between

the chromatic number of a signed graph and the one of its underlying graph:

for every signed graph (G, σ), we have

χ((G, σ)) ≤ 2χ(G)− 2,

and the bound is sharp. Moreover, the chromatic spectrum is introduced.

For a given graph G, we show that possible values of χ((G, σ)) among all the

signature σ of G form an interval. So the chromatic spectrum of a graph is

always an interval.

We also take a look at the signed chromatic number χ±((G, σ)) of signed

graphs, for which there are only a few results known so far. The results we

obtained on this invariant will be addressed in Chapter 4. We prove that the

signed chromatic spectrum of a graph is always an interval and we also gener-

alize the Hajós’ theorem to signed graphs for χ±((G, σ)) by similar arguments

as what we apply for χ((G, σ)). The relation between these two non-equivalent

invariants χ((G, σ)) and χ±((G, σ)) are investigated. We show that for every

signed graph, either they are equal or the difference between them is precisely

1.

Besides the circular chromatic number, the list-chromatic number is an-

other major extension of the chromatic number for a graph. List colorings

and corresponding list-chromatic number (also named the choice number) of

graphs were first introduced by Erdős, Rubin and Taylor [14] in 1980. Com-

pared to the ordinary k-colorings of a graph, for which the color set for each

vertex is a uniform set of k distinct colors, list-colorings preassign a flexible

color set for each vertice not only on colors but also on the length of color list.

List colorings or the choosability of graphs have been extensively studied and

become one of the main topics in the theory of graph colorings.

In Chapter 5, we generalize the concepts of list-colorings and corresponding

list-chromatic number of unsigned graphs to signed graphs. As we talked
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before, there are several non-equivalent definitions for “the chromatic number”

of signed graph, all of them extend the chromatic number for unsigned graphs

in a certain sense. It seems easier for us to define a list-chromatic number for

signed graphs.

Definition 1.4. Given a signed graph (G, σ), a list-assignment of (G, σ) is a

function L defined on V (G) such that ∅ 6= L(v) ⊆ Z for each v ∈ V (G). An

L-coloring of (G, σ) is a proper coloring c of (G, σ) such that c(v) ∈ L(v) for

each v ∈ V (G). A list-assignment L is called a k-list-assignment if |L(v)| = k

for each v ∈ V (G). We say (G, σ) is k-choosable if it admits an L-coloring

for every k-list-assignment L. The list-chromatic number or choice number

χl((G, σ)) of (G, σ) is the minimum number k such that (G, σ) is k-choosable.

Notice that the difference between concepts of χ((G, σ)) and χ±((G, σ))

arises from the different choice of the color set, Zn for the former and Mn

for the latter. Since a k-choosable signed graph asks for the existence of a

proper coloring for any k-list assignment which has only restriction on the

length of the color list, we can see that the list-chromatic number χl((G, σ))

we define here extends both invariants χ((G, σ)) and χ±((G, σ)). Clearly, for

every signed graph (G, σ), we have min{χ((G, σ)), χ±((G, σ))} ≤ χl((G, σ)).

We first provide an upper bound for the list-chromatic number of a signed

graph in terms of the list-chromatic number of its underlying graph: for every

signed graph (G, σ), we have

χl((G, σ)) ≤ 2χl(G).

Then we concentrate on the class of signed planar graphs. We generalize the

results of [15, 31, 45, 46, 47, 52] to signed graphs. In particular, it is true

that every signed planar graph is 5-choosable. Other results we obtained are

concerned about sufficient conditions for 3- or 4-choosability. Moreover, we

construct some signed planar graphs that show the sharpness of these sufficient

conditions and on the other hand, that have different values of χl((G, σ)) and

χl(G).
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Chapter 6 focuses on a particular problem on colorings of planar graphs

– the Steinberg conjecture. The conjecture was proposed by Steinberg [44]

in 1993. It states that every planar graph without cycles of length 4 or 5 is

3-colorable. A series of partial results to this conjecture were obtained mainly

following Erdös’ suggestion that forbids more kinds of cycles in the condition.

Though Steinberg Conjecture was disproved [10] very recently, it motived the

proposal of some related questions that are still open, so the study on this topic

is going on. In this chapter, we prove a result related to Steinberg Conjecture:

if the planar graph additionally has no cycles of length 8, then it is 3-colorable.

This result improves on some earlier results.

Some parts of our results in the thesis have been published already. The

results of

• Sections 2.1, 2.2 and 2.3 except Theorems 2.24 and 2.26 are published

in

[29] Y. Kang and E. Steffen. Circular coloring of signed graphs. J. Graph

Theory. 2017; 00, 1-14. https://doi.org/10.1002/jgt.22147

• Sections 3.2 and 4.2 are published in

[28] Y. Kang and E. Steffen. The chromatic spectrum of signed graphs.

Discrete Math. 339 (2016) 2660-2663.

• Sections 3.4 and 4.3 are published in

[27] Y. Kang. Hajós-like theorem for signed graphs. European J. Com-

bin. 67 (2018) 199-207.

• Chapter 5 except Theorem 5.4 are published in

[23] L. Jin, Y. Kang and E. Steffen. Choosability in signed planar graphs.

European J. Combin. 52 (2016) 234-243.

• Chapter 6 are published in

[22] L. Jin, Y. Kang, M. Schubert and Y. Wang. Plane graphs without 4-

and 5-cycles and without ext-triangular 7-cycles are 3-colorable. SIAM

J. Discrete Math. 31-3 (2017) 1836-1847.
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Chapter 2

Circular chromatic number χc

of signed graphs

In this chapter, we generalize (k, d)-colorings, circular r-colorings and the cir-

cular chromatic number from unsigned graphs to signed graphs. We establish

some fundamental results on these new concepts. Moreover, we define the

chromatic number of signed graphs from the viewpoint of circular colorings.

The relation between circular chromatic number and chromatic number for

signed graphs is studied.

The structure of this chapter is arranged as follows. In Section 2.1, we

introduce (k, d)-colourings of a signed graph and define the circular chro-

matic number as an infimum on (k, d)-colourings. Some basic facts on (k, d)-

colourings are presented. Furthermore, the circular chromatic number is im-

proved to be a minimum; i.e. if χc((G, σ)) = k
d then there exists a (k, d)-

coloring of (G, σ). In Section 2.2, we introduce circular colourings of a signed

graph and give an alternate definition of the circular chromatic number of

signed graphs by circular colorings. The relation between the circular chro-

matic number and its related chromatic number for a signed graph is studied

in Section 2.3. In particular, we show that the difference between these two

parameters is at most 1. Indeed, there are signed graphs where the difference

is 1. On the other hand, for a signed graph on n vertices, if the difference is

11
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smaller than 1, then there exists εn > 0 such that the difference is at most

1− εn. Finally, we introduce the interval chromatic number of signed graphs

and relate it to both the chromatic number and the circular chromatic number.

2.1 (k, d)-colorings of a signed graph

The results of this section have already been published in [29].

Let us first give the definitions of (k, d)-colorings, the circular chromatic

number and its related chromatic number for a signed graph.

For x ∈ R and a positive real number r, we denote by [x]r, the remainder

of x divided by r, and define |x|r = min{[x]r, [−x]r}. Hence, [x]r ∈ [0, r) and

|x|r = | − x|r.

Definition 2.1. Let Zn denote the cyclic group of integers modulo n, Z/nZ.

Let k and d be positive integers such that k ≥ 2d. A (k, d)-coloring of a signed

graph (G, σ) is a mapping c : V (G) → Zk such that for each edge e = vw,

d ≤ |c(v)− σ(e)c(w)|k. The circular chromatic number χc((G, σ)) of a signed

graph (G, σ) is inf{kd : (G, σ) has a (k, d)-coloring}. The minimum k such

that (G, σ) has a (k, 1)-coloring is the chromatic number of (G, σ) and it is

denoted by χ((G, σ)).

One of the fundamental concepts on signed graphs is switching, by which

signed graphs can be classified into equivalent groups. In the following propo-

sition, we study (k, d)-colorings under switching and show that two equivalent

signed graphs have the same circular chromatic number.

Proposition 2.2. Let k, d be positive integers, (G, σ) be a signed graph and c

be a (k, d)-coloring of (G, σ). If (G, σ) and (G, σ′) are equivalent, then there

is a (k, d)-coloring c′ of (G, σ′). In particular, χc((G, σ)) = χc((G, σ
′)).

Proof. Let x ∈ V (G) and (G, σ′) be obtained from (G, σ) by a switching at

x. Define c′ : V (G) → Zk with c′(v) = c(v), if v 6= x, and c′(x) = −c(x).

For every edge e with e = uw: If x 6∈ {u,w}, then |c(u) − σ(e)c(w)|k =

|c′(u)−σ′(e)c′(w)|k, and if x ∈ {u,w}, say x = w, then |c′(u)−σ′(e)c′(w)|k =
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|c(u)− (−σ(e))(−c(w))|k = |c(u)−σ(e)c(w)|k. Hence, c′ is a (k, d)-coloring of

(G, σ′), and therefore, χc((G, σ)) = χc((G, σ
′)).

Note, that if (G, σ) has a (k, d)-coloring, then by switching we can obtain

an equivalent signed graph (G, σ′) and a (k, d)-coloring c′ on (G, σ′) such that

c′(v) ∈ {0, 1, . . . , bk2c} for each v ∈ V (G).

Next, we determine the circular chromatic number χc and the related chro-

matic number χ of some specific graphs. For n ≥ 3, let Cn denote the circuit

with n vertices.

Proposition 2.3. Let k be a positive integer.

1. If (C2k+1, σ) is balanced, then χc((C2k+1, σ)) = 2 + 1
k ; otherwise,

χc((C2k+1, σ)) = 2. Furthermore, χ((C2k+1, σ)) = 3.

2. χ((G, σ)) = 2 if and only if G is bipartite. Furthermore, χ((G, σ)) =

χc((G, σ)) if G is bipartite.

Proof. 1. If (C2k+1, σ) is balanced, then (C2k+1, σ) is switching equivalent

to (C2k+1,+), hence, χc((C2k+1, σ)) = 2 +
1

k
. If (C2k+1, σ) is unbalanced,

then (C2k+1, σ) is switching equivalent to C2k+1 which has one negative edge

say, uv. Thus, we can assign to vertex u and v color 1, and to other vertices

colors 3 and 1 alternatively. We thereby get a (4, 2)-coloring of (C2k+1, σ), i.e.,

χc((C2k+1, σ)) = 2. And it is easy to check (C2k+1, σ) has a (3, 1)-coloring,

but can not be colored properly by two colors, therefore, χ((C2k+1, σ)) = 3.

2. If G is bipartite, then it can be colored with colors 0 and 1 and there-

fore, χ((G, σ)) = 2. If χ((G, σ)) = 2, then, since both colors are self-inverse

in Z2, both color classes are independent sets. Hence, G is bipartite. Since

χ((G, σ)), χc((G, σ)) ≥ 2, it follows that χ((G, σ)) = χc((G, σ)) if G is bipar-

tite.

2.1.1 A recoloring technique: Updating

We introduce and study a recoloring technique, namely updating, applied on

(k, d)-colorings of a signed graph. This technique will play a crucial role in

several proofs in the next subsection.
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Definition 2.4. Let c be a (k, d)-coloring of a signed graph (G, σ) in which

colors x0 and its inverse k − x0 are missing. Updating c at x0 is defined as

follows: if v is a vertex of color [x0 + d]k, then recolor v by [x0 + d − 1]k;

and meanwhile, if u is a vertex of color [k − x0 − d]k, then recolor u by [k −

x0 − d + 1]k. Let r be a positive integer. Updating c at a sequence of colors

x0, [x0 + d]k, . . . , [x0 + (r − 1)d]k is called updating c from x0 by r steps. We

also say that a function c′ is obtained from c by updating at x0 (in r steps) if

c′ is the final function from V (G) to Zk in this process.

Definition 2.5. Let k, d be two positive integers. We define

P (k, d) = {1

2
(k − 2d+ 1),

1

2
(k − d+ 1),

1

2
(2k − d+ 1)}.

Clearly, if both k and d are even, then Zk ∩ P (k, d) = ∅; otherwise, |Zk ∩

P (k, d)| = 2.

Lemma 2.6. Let (G, σ) be a signed graph, c be a (k, d)-coloring of (G, σ),

and let c′ be obtained from c by updating at x0. The following statements are

equivalent:

(1) Either x0 /∈ P (k, d) or both colors [x0 +d]k and [k−x0−d]k are not used

in c.

(2) c′ is a (k, d)-coloring of (G, σ) in which the colors x0, [x0 + d]k, [k− x0]k

and [k − x0 − d]k are not used.

Proof. ((1)⇒ (2)) If both [x0 +d]k and [k−x0−d]k are not used in c, then it

follows that c′ is the same coloring as c since nothing happens in the updating

process. So we are done in this case.

Let x0 /∈ P (k, d), and suppose to the contrary that c′ is not a (k, d)-coloring

of (G, σ). Then there exists an edge e with two end-points u and v such that

|c′(u) − σ(e)c′(v)|k < d. Since c is a (k, d)-coloring of (G, σ), it follows that

|c(u)− σ(e)c(v)|k ≥ d. Hence, the distance between the colors of u and v has

been decreased in the updating process. The distance can be decreased by at

most 2. Hence, we distinguish two cases.
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Case a: The distance between the colors of u and v decreases by 2. In

this case, both u and v have been recolored, say c(u) = [x0 + d]k and c(v) =

[k − x0 − d]k; and moreover, [c(u) − σ(e)c(v)]k ∈ {d, d + 1}. It follows that

σ(e) = 1 and furthermore, [c(u) − σ(e)c(v)]k = d + 1 since otherwise c(u)

and c(v) are in fact the colors [k − x0]k and x0 which are missing in c. By

simplification of this equality, we get [2(x0 + d) − k]k = d + 1 and thus,

x0 ∈ {k−d+1
2 , 2k−d+1

2 }, contradicting the assumption that x0 /∈ P (k, d).

Case b: The distance between the colors of u and v decreases by 1. In

this case, exactly one of u and v has been recolored, say u; and moreover,

|c(u) − σ(e)c(v)|k = d. Without loss of generality, we may assume c(u) =

[x0 + d]k. It follows that c(v) = x0, contradicting the fact that x0 is not used

in c.

We obtain contradictions in both cases. Hence, c′ is a (k, d)-coloring of

(G, σ). Moreover, If the colors [x0 + d]k and [k − x0 − d]k occur in c′, then

they have been recolored by each other, which can happen in the only case

that k is odd and [x0 + d]k = x0 + d = k+1
2 . However, this case is impossible

since x0 /∈ P (k, d). Finally, suppose to the contrary that the colors x0 and

[k−x0]k occur in c′. Since they are not used in c, they have been reused in the

updating process. Thus, [x0 +d−1]k = [k−x0]k and so x0 ∈ {k−d+1
2 , 2k−d+1

2 },

a contradiction.

((1)⇐ (2)) Suppose to the contrary that x0 ∈ P (k, d) and at least one

of [x0 + d]k and [k − x0 − d]k are used in c. Without loss of generality, say

[x0 + d]k is used. We distinguish two cases according to the value of x0.

Case 1: x0 ∈ {k−d+1
2 , 2k−d+1

2 }. Thus, [x0 + d − 1]k = [k − x0]k, which

implies that the color [k − x0]k has been reused in the updating process, a

contradiction.

Case 2: x0 = k−2d+1
2 . Thus, [x0 +d]k = [k−x0−d]k+1, which implies that

the colors [x0 +d]k and [k−x0−d]k have been exchanged, a contradiction.
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2.1.2 Basic properties of (k, d)-colorings

(k, d)-colorings with smaller k
d

We first consider such a problem: given a signed graph (G, σ), look for a (k, d)-

coloring of ((G, σ)) with minimum k
d and subjecting to that, k is minimum.

The results we obtain to this problem will be used to prove Theorem 2.16,

which is one of the main theorems on circular coloring of signed graphs.

We will need Updating technique which is introduced in section 2.1.1 and

a lemma which follows from the rearrangement theorem of group theory, (see

e.g. [13], section 1.4).

Theorem 2.7 (Rearrangement theorem of group theory). Each row and each

column in the group multiplication table lists each of the group elements once

and only once.

From this, it follows that no two elements may be in the identical location

in two rows or two columns. Thus, each row and each column is a rearranged

list of the group elements. By the rearrangement theorem of group theory, we

have the following lemma.

Lemma 2.8. Let k, d and x be three integers with k, d > 0 and gcd(k, d) = 1.

If A = {0, 1, . . . , k − 1} and B = {[x+ id]k : i ∈ A}, then A = B.

Now, we are ready to prove some basic properties on (k, d)-colorings of

signed graphs.

Theorem 2.9. Let d, k, t be positive integers and t ≥ 3, and let (G, σ) be a

signed graph. If (G, σ) has a (tk, td)-coloring, then it has a (tk− 2k, td− 2d)-

coloring.

Proof. For i ∈ {0, 1, · · · , t−1}, let Ai = {i, i+t, i+2t, · · · , i+(k−1)t}. Clearly,

A0, . . . , At−1 are t pairwise disjoint sets of colors whose union is exactly the

color set Ztk. We shall recolor each color in both sets A1 and At−1 by a color

of A0 as follows: for i ∈ A1, recolor i by i − 1, and for i ∈ At−1, recolor i by

i+ 1. We obtain a new (tk, td)-coloring of (G, σ) in which no vertex receives a
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color from A1 ∪At−1. Let k′ = tk − 2k. Since the colors of the set A1 ∪At−1

are not used, we define a new coloring by renaming colors by elements of

Zk′ . Change color x (from Ztk) to x − |{y : y ∈ A1 ∪ At−1 and y < x}|

(interpreted as element in Zk′) to obtain a mapping φ′ : V (G) → Zk′ . Let

d′ = td − 2d. We claim that φ′ is a (k′, d′)-coloring of (G, σ). Denote by Ij

the set {j, j + 1, . . . , j + td − 1} which is an interval of Ztk. Each interval Ij

contains exactly 2d elements of A1 ∪ At−1, and any pair of mutually inverse

elements of Ztk has been recolored by a pair of mutually inverse elements of

Zk′ . It follows that φ′ is a (k′, d′)-coloring of (G, σ), as required.

Theorem 2.10. Let (G, σ) be a signed graph on n vertices that has a (2k, 2d)-

coloring and gcd(k, d) = 1. If k > 2n, then (G, σ) has a (k, d)-coloring.

Proof. Let c be a (2k, 2d)-coloring of (G, σ). Since k > 2n, we may assume

that there is an odd x0, such that x0 and k − x0 are not used in c. Update

c from x0 by k steps to obtain a function c′. Denote by A the set of odd

elements of Z2k. Since both 2k and 2d are even it follows with Lemma 2.8

that the colors of A∩{c(v) : v ∈ V (G)} have been recolored by colors of Z2k\A

in the updating process. Hence, A ∩ {c′(v) : v ∈ V (G)} = ∅, and by Lemma

2.6, c′ is a (2k, 2d)-coloring of (G, σ). Thus, φ : V (G)→ Zk with φ(v) = 1
2c
′(v)

is a coloring of (G, σ). Let Ij = {j, j + 1, . . . , j + 2d− 1} which is an interval

of Z2k. Each interval Ij contains exactly d elements of A. Moreover, any pair

of mutually inverse elements of Z2k has been recolored by a pair of mutually

inverse elements of Zk. Hence, φ is a (k, d)-coloring of (G, σ), as required.

Theorem 2.11. If (G, σ) is a signed graph on n vertices that has a (k, d)-

coloring with gcd(k, d) = 1 and k > 4n, then (G, σ) has a (k′, d′)-coloring with

k′ < k and k′

d′ <
k
d .

Proof. Since gcd(k, d) = 1, we may assume that P (k, d) ∩ Zk = {p, q} and

p < q.

Let f : Zk → Zk such that x ≡ f(x)d (mod k). Lemma 2.8 implies that

f is a bijection. Further, x and y are mutually inverse elements of Zk if and

only if f(x) and f(y) are mutually inverse ones, and |f(p)− f(q)|k = bk2c.
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Let c be a (k, d)-coloring of (G, σ). Since k > 4n we may assume that

x0 ∈ Zk such that x0 and k − x0 are not used in c, and that f(q), f(x0) and

f(p) are in clockwise order in Zk.

Hence, c can be updated from x0 by [f(p) − f(x0)]k steps to obtain a

(k, d)-coloring c′ of (G, σ) in which colors p and k − p are not used. Let

r = min{[f(p)− f(k− p)]k, [f(q)− f(k− p)]k}, i.e., r is the minimum positive

integer such that

(∗) either k − p+ rd ≡ p (mod k) or k − p+ rd ≡ q (mod k).

Updating c′ from k − p by r steps, we obtain a function c′′, which is a (k, d)-

coloring c′′ of (G, σ) by Lemma 2.6. We will show that no colors are reused in

this updating process.

Let A = {[k−p+id]k : 0 ≤ i ≤ r} and B = {k−a : a ∈ A}. By simplifying

the congruence expressions, we reformulate the minimality of r as: r is the

minimum positive integer such that

(1) either (r + 1)d ≡ 1 (mod k) or (2r + 2)d ≡ 2 (mod k), if k is even;

(2) either (r + 2)d ≡ 1 (mod k) or (2r + 3)d ≡ 2 (mod k), if k is odd.

Claim. No element of A ∪B is used in coloring c′′.

Proof of the Claim. Suppose to the contrary that A ∪ B has a color α with

α ∈ {[k − p+ r1d]k, k − [k − p+ r1d]k} appearing in c′′. Considering that the

color α is missing in the resulting coloring after exactly r1 steps in the updating

process, its appearance in c′′ yields that it has been reused in some r2 step

with r > r2 > r1. It follows that either k− p+ r2d ≡ k− p+ r1d+ 1 (mod k)

or k − p+ r2d ≡ −(k − p+ r1d) + 1 (mod k).

In the former case, the congruence expression can be simplified as (r2 −

r1)d ≡ 1 (mod k). Note that 0 < r2 − r1 < r + 1. A contradiction is obtained

by the minimality of r.

In the latter case, the congruence expression can be simplified as (r1 +r2 +

1)d ≡ 2 (mod k) if k is even and (r1 + r2 + 2)d ≡ 2 (mod k) if k is odd. But

then r1 + r2 < 2r + 1 which is a contradiction to the minimality of r. This

completes the proof of the claim.
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We continue the proof of the theorem. We distinguish the following four

cases first by the parity of k and then by the condition (∗) for the minimality

of r. In each case, we will define a (k′, d′)-coloring of (G, σ) with k′

d′ <
k
d and

k′ < k, as desired.

Case 1: k is even. In this case, p = 1
2(k − d+ 1) and q = 1

2(2k − d+ 1).

Case 1.a: k−p+rd ≡ p (mod k). The colors [k−p+id]k and [k−p+(r−i)d]k

are mutually inverse, for 0 ≤ i ≤ r. Thus, the set A consists of d r+1
2 e pairs of

mutually inverse elements of Zk and {0, k2} * A = B. Since the colors of A∪B

are not used in c′′ by the claim, we rename the other colors: if 0 /∈ A, then

change color x to x − |{y : y ∈ A and y < x}|; otherwise, change color x to

x−|{y : y ∈ A and y < x}|−bk−|A|2 c. Define k′ = k−r−1. We thereby obtain

a mapping φ′ : V (G)→ Zk′ . Denote by Ij the set {j, j+1, . . . , j+d−1}, j 6= p,

which is an interval of Zk. Each interval Ij contains at most rd+d−1
k elements

of A. Define d′ = d − rd+d−1
k . Moreover, any pair of mutually inverse colors

of Zk has been recolored to mutually inverse colors of Zk and then has been

renamed to be mutually inverse colors of Zk′ . Hence, φ′ is a (k′, d′)-coloring

of (G, σ), and k′

d′ = k(k−r−1)
d(k−r−1)+1 <

k
d .

Case 1.b: k−p+rd ≡ q (mod k). We have that either 0 < f(q), f(k−p) < k
2

or k
2 < f(q), f(k − p) < k. Since |f(p) − f(q)|k = k

2 , it follows that neither

{f(a) : a ∈ A} nor A contains any pair of mutually inverse colors. Thus,

A ∪ B consists of r + 1 pairs of mutually inverse colors and 0, k2 6∈ A ∪ B.

Define k′ = k − 2(r + 1). Since the colors in the set A ∪ B are not used

in c′′ by the claim, we may rename the other colors, changing color x to

x− |{y : y ∈ A ∪B and y < x}|, thereby obtain a mapping φ′ : V (G)→ Zk′ .

Denote by Ij the set {j, j + 1, . . . , j + d− 1} which is an interval of Zk. Each

interval Ij contains at most 2rd+2d−2
k elements of A. Define d′ = d− 2rd+2d−2

k =

(k−2r−2)d+2
k . By repeating the argument as in Case 1.a, we get a (k′, d′)-

coloring of (G, σ). Furthermore, k′

d′ = k(k−2r−2)
d(k−2r−2)+2 <

k
d .

Case 2: k is odd. In this case, p = 1
2(k − 2d + 1), and q = 1

2(k − d + 1)

when d is even and q = 1
2(2k − d+ 1) when d is odd.
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Case 2.a: k−p+rd ≡ p (mod k). The colors [p+id]k and [p+(r−i)d]k are

mutually inverse for 0 ≤ i ≤ r. Thus, A = B and A consists of d r+1
2 e pairs of

mutually inverse colors of Zk. Since the colors of A∪B are not used in c′′ by the

claim, we may rename the other colors: if 0 /∈ A, then change x to x−|{y : y ∈

A and y < x}| for each x ≤ bk2c and to x − |{y : y ∈ A and y < x}| − 1 for

each x > bk2c; otherwise, change x to x− |{y : y ∈ A and y < x}| − k−|A|
2 + 1

for each x ≤ bk2c and to x− |{y : y ∈ A and y < x}| − k−|A|
2 for each x > bk2c.

The mutually inverse colors k−1
2 and k+1

2 of Zk are not in A and they have

been renamed into the same color. Define k′ = k− r− 2. We thereby obtain a

mapping φ′ : V (G)→ Zk′ . Denote by Ij the set {j, j + 1, . . . , j + d− 1} which

is an interval of Zk. Define d∗ = 1
k (rd+ 2d− 1). For each interval Ij , if both

colors k−1
2 and k+1

2 belong to Ij , then Ij contains at most d∗−1 elements of A;

otherwise, Ij contains at most d∗ elements of A. Define d′ = d−d∗. Moreover,

any pair of mutually inverse colors of Zk has been recolored to be mutually

inverse colors of Zk and then has been renamed to be mutually inverse colors

of Zk′ . Hence, φ′ is a (k′, d′)-coloring of (G, σ), and k′

d′ = k(k−r−2)
d(k−r−2)+1 <

k
d .

Case 2.b: k− p+ rd ≡ q (mod k). By similar argument as in Case 1.b, we

may assume that A contains no mutually inverse colors of Zk. Thus, A ∪ B

consists of r + 1 pairs of mutually inverse colors and 0 /∈ A ∪ B. Since the

colors of A ∪ B are not used in c′′ by the claim, we may rename the other

colors: change x to x − |{y : y ∈ A and y < x}| for each x ≤ bk2c and to

x− |{y : y ∈ A and y < x}|− 1 for each x > bk2c. The mutually inverse colors

k−1
2 and k+1

2 of Zk are not contained in the set A and have been renamed

into the same color. Define k′ = k − 2r − 3. We thereby obtain a mapping

φ′ : V (G) → Zk′ . Denote by Ij the set {j, j + 1, . . . , j + d − 1} which is an

interval of Zk. Define d∗ = 1
k (2rd + 3d − 2). Clearly, d∗ is a positive integer

because of the assumption of Case 2.b. For each interval Ij , if both colors k−1
2

and k+1
2 belong to Ij , then Ij contains at most d∗−1 elements of A; otherwise,

Ij contains at most d∗ elements of A. Define d′ = d−d∗. Any pair of mutually

inverse colors of Zk has been recolored to be mutually inverse colors of Zk and
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then has been renamed to be mutually inverse colors of Zk′ . Hence, φ′ is a

(k′, d′)-coloring of (G, σ), and k′

d′ = k(k−2r−3)
d(k−2r−3)+2 <

k
d .

(k, d)-colorings with larger k
d

Lemma 2.12. If a signed graph (G, σ) has a (k, d)-coloring, then for any

positive integer t, (G, σ) has a (tk, td)-coloring.

Proof. Let c be a (k, d)-coloring of (G, σ). Define a (tk, td)-coloring c′ of (G, σ)

by

c′(x) = tc(x), for all x ∈ V (G).

Lemma 2.13. If a signed graph (G, σ) has a (k, d)-coloring and k′ > k, where

k′ is a positive integer, then (G, σ) has a (k′, d)-coloring.

Proof. Let c be a (k, d)-coloring of (G, σ). Define the mapping c′ : V (G)→ Zk′

by

c′(x) =


c(x) if c(x) ≤ bk2c,

c(x) + k′ − k otherwise,

for all x ∈ V (G). It is easy to check that c′ is a (k′, d)-coloring of (G, σ).

Theorem 2.14. If a signed graph (G, σ) has a (k, d)-coloring, and k′ and d′

are two positive integers such that k
d <

k′

d′ , then (G, σ) has a (k′, d′)-coloring.

Proof. By Lemma 2.12, (G, σ) has a (kd′, dd′)-coloring. Since k
d <

k′

d′ , Lemma

2.13 implies that (G, σ) has a (k′d − 1, dd′)-coloring and a (k′d, dd′)-coloring

as well. If d is odd, then by Theorem 2.9, a (k′d, dd′)-coloring of (G, σ) yields

a (k′, d′)-coloring of (G, σ) and we are done. Let d be even and c′′ be a

(k′d − 1, dd′)-coloring of (G, σ). Define the mapping c : V (G) → {1 − d
2 , 2 −



22 Chapter 2 Circular chromatic number χc of signed graphs

d
2 , . . . , k

′d− 1− d
2} as follows. For x ∈ V (G) let

c(x) =


c′′(x)− (k′d− 1), if c′′(x) > k′d− 1− d

2 ,

c′′(x), otherwise.

Define the mapping c′ : V (G)→ Zk′ by

c′(x) = bc(x)

d
+

1

2
c, for all x ∈ V (G).

We will show that c′ is a (k′, d′)-coloring of (G, σ).

Consider an edge uv. First assume that σ(uv) = 1. Without loss of

generality, let c(u) > c(v). Note that 1 ≤ c(u)− c(v) ≤ k′d− 2. Since c′′ is a

(k′d− 1, dd′)-coloring of (G, σ),

dd′ ≤ c(u)− c(v) ≤ k′d− 1− dd′.

Therefore,

c′(u)− c′(v) = bc(u)

d
+

1

2
c − bc(v)

d
+

1

2
c

≤ bk′ − d′ + c(v)− 1

d
+

1

2
c − bc(v)

d
+

1

2
c

≤ k′ − d′,

and

c′(u)− c′(v) = bc(u)

d
+

1

2
c − bc(v)

d
+

1

2
c

≥ bd′ + c(v)

d
+

1

2
c − bc(v)

d
+

1

2
c

= d′.
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Next assume that σ(uv) = −1. Note that 2− d ≤ c(u) + c(v) ≤ 2(k′d− 1)− d.

Since c′′ is a (k′d− 1, dd′)-coloring of (G, σ), either

dd′ ≤ c(u) + c(v) ≤ k′d− 1− dd′

or

k′d− 1 + dd′ ≤ c(u) + c(v) ≤ 2(k′d− 1)− dd′.

In the former case,

c′(u) + c′(v) = bc(u)

d
+

1

2
c+ bc(v)

d
+

1

2
c

≤ bk′ − d′ − c(v) + 1

d
+

1

2
c − bc(v)

d
+

1

2
c

≤ bk′ − d′ − 1

d
+ 1c.

= k′ − d′,

and

c′(u) + c′(v) = bc(u)

d
+

1

2
c+ bc(v)

d
+

1

2
c

≥ bd′ − c(v)

d
+

1

2
c+ bc(v)

d
+

1

2
c

= d′.

In the latter case, by a similar calculation, we deduce

k′ + d′ ≤ c′(u) + c′(v) ≤ 2k′ − d′.

Therefore, c′ is a (k′, d′)-coloring of (G, σ).

(k, d)-colorings with the same k
d

Proposition 2.15. If a signed graph (G, σ) has a (k, d)-coloring with d odd,

and k′ and d′ are two positive integers such that k
d = k′

d′ , then (G, σ) has a

(k′, d′)-coloring.
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Proof. By Lemma 2.12, (G, σ) has a (kd′, dd′)-coloring, i.e., a (k′d, dd′)-

coloring since k
d = k′

d′ . Since d is odd, by Theorem 2.9, (G, σ) has a

(k′, d′)-coloring of (G, σ).

Proposition 2.15 is not true if d is assumed to be even instead. For example,

an antibalanced triangle has a (4, 2)-coloring, but it does not have a (2, 1)-

coloring.

2.1.3 χc((G, σ)): from infimum to minimum

Recall that the circular chromatic number χc((G, σ)) of a signed graph (G, σ)

is inf{kd : (G, σ) has a (k, d)-coloring}. We will show that it is further a mini-

mum, i.e., if χc((G, σ)) = k
d , then there exists a (k, d)-coloring of (G, σ). This

is one of the fundamental theorems on circular colorings of signed graphs..

Theorem 2.16. If (G, σ) is a signed graph on n vertices, then

χc((G, σ)) = min{k
d

: (G, σ) has a (k, d)-coloring and k ≤ 4n}.

Proof. By Theorems 2.9, 2.10 and 2.11, if (G, σ) has a (k, d)-coloring then it

has a (k′, d′)-coloring with k′ ≤ 4n and k′

d′ ≤
k
d . Therefore,

χc((G, σ)) = inf{k
d

: (G, σ) has a (k, d)-coloring and k ≤ 4n}.

Since the set {kd : (G, σ) has a (k, d)-coloring and k ≤ 4n} is finite, the infi-

mum can be replaced by a minimum.

2.2 Circular r-colorings of a signed graph

The results of this section have already been published in [29].

The name “circular coloring” was introduced by Zhu [63], and motivated

by the equivalence of (k, d)-colorings to r-colorings. For more information, we

refer the readers to [68, 73]. In this section we will show that this is also true
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in the context of signed graphs. Hence, the circular chromatic number can be

equivalently defined by circular r-colorings.

Definition 2.17. Let (G, σ) be a signed graph and r be a real number at least

1. A circular r-coloring of (G, σ) is a function f : V (G)→ [0, r) such that for

any edge e with e = xy: if σ(e) = 1 then 1 ≤ |f(x) − f(y)| ≤ r − 1, and if

σ(e) = −1 then 1 ≤ |f(x) + f(y)− r| ≤ r − 1.

Clearly, if we identify 0 and r of the interval [0, r] into a single point, then

we obtain a circle with perimeter r. Let Sr be this circle. The colors are the

points on Sr, and the distance between two points a, b of Sr is the shorter arc

of Sr connecting a and b, which is |a− b|r. For a ∈ Sr let r− a be the inverse

element of a. By this notation, Definition 2.17 can be written as

Definition 2.18. Let (G, σ) be a signed graph and r be a real number at least

1. A circular r-coloring of (G, σ) is a function f : V (G) → Sr such that

|f(x)− σ(e)f(y)|r ≥ 1 for each edge e with e = xy.

Note, that this definition also respects switchings. Let f be an r-coloring

of (G, σ) and let (G, σ′) be obtained from (G, σ) by a switching at v ∈ V (G).

Then f ′ with f ′(x) = f(x) if x ∈ V (G) \ {v} and f ′(v) = r − f(v) is an

r-coloring of (G, σ′). As above we deduce that there is always a coloring on

an equivalent graph of (G, σ), which only uses colors in the interval [0, r2 ].

Lemma 2.19. Let r and r′ be two real numbers and r′ > r. If a signed graph

(G, σ) has an r-coloring, then (G, σ) has an r′-coloring.

Proof. Let c be an r-coloring of (G, σ) and ε = r′ − r. Define a function

c′ : V (G)→ [0, r′) as for each x ∈ V (G),

c′(x) = c(x) +
ε

2
.

We will show that c′ is a circular r′-coloring of (G, σ). Let e = uv be an edge

of (G, σ). Then

|c′(u)− c′(v)| = |(c(u) +
ε

2
)− (c(v) +

ε

2
)| = |c(u)− c(v)|
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and

|c′(u) + c′(v)− r′| = |(c(u) +
ε

2
) + (c(v) +

ε

2
)− r′| = |c(u) + c(v)− r|.

Since c is a circular r-coloring of (G, σ), by Definition 2.17, if σ(e) = 1 then

1 ≤ |c(u)− c(v)| ≤ r − 1, and if σ(e) = −1 then 1 ≤ |c(u) + c(v)− r| ≤ r − 1.

Since r < r′, we can deduce that if σ(e) = 1 then 1 ≤ |c′(u)− c′(v)| < r′ − 1,

and if σ(e) = −1 then 1 ≤ |c(u) + c(v)− r| < r′− 1. Therefore, c′ is a circular

r′-coloring of (G, σ), as required.

The following theorem gives the equivalent relation between (k, d)-colorings

and circular r-colorings for a given signed graph.

Theorem 2.20. Let (G, σ) be a signed graph and k, d be positive integers with

2d ≤ k. (G, σ) has a (2k, 2d)-coloring if and only if (G, σ) has a circular

k
d -coloring.

Proof. We give an analogous proof to the one for unsigned graphs (see Theo-

rem 1 in [63]).

Suppose that c : V (G) → Z2k is a (2k, 2d)-coloring of (G, σ). For each

v ∈ V (G) set f(v) = c(v)
2d . It is easy to verify that f is a circular k

d -coloring of

(G, σ).

On the other hand, suppose that f is a circular r-coloring of (G, σ) with

r = k
d and gcd(k, d) = 1. Let S = {f(v) : v ∈ V (G)}. The cardinality of S

is finite since G is a finite graph. We first show that we can assume that all

elements of S are rational numbers. We will show that each irrational color

can be shifted to a rational color without creating a new pair of colors with

distance less than 1. Let s ∈ S and suppose that s is not a rational number.

Let P = P1, . . . , Pn be the longest sequence of pairwise distinct points in [0, r)

which satisfies the following constraints:

• s ∈ P , and

• {Pi, r − Pi} ∩ S 6= ∅ and Pi+1 = [Pi + 1]r, where Pi is the element of P

in the i place.
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Define Q to be the sequence consisting of the opposite points of P . More

precisely, Qi = r − Pi. Let P = S ∩ P and Q = S ∩ Q. Let ε be a positive

real number such that s + ε is rational. We shift the colors in P together

by distance ε clockwise, and the ones in Q together by the same distance

anticlockwise. Choose ε to be small enough. It is easy to see that this shift

is the one required if we can show that the sequences P and Q contains no

common colors. If α is a common color of P and Q, then s − α is an integer

and so does r − s − α. It follows that r − 2s is an integer, contradicting the

fact that r is a rational number but s not.

Let m be a common denominator of all the colors in S. Then the mapping

f ′ : V (G) 7→ Zmk defined as f ′(v) = f(v)md is a (mk,md)-coloring of (G, σ).

Since m can be chosen to be even it follows with Theorem 2.9 that there is

(2k, 2d)-coloring of (G, σ).

The “(2k, 2d)-coloring” in the previous theorem can not be replaced by

“(k, d)-coloring” since otherwise there exist counterexamples. An unbalanced

triangle is one of the signed graphs that has a circular 2-coloring but it has no

(2,1)-colorings.

Theorem 2.21. If (G, σ) is a signed graph, then

χc((G, σ)) = min{r : (G, σ) has a circular r-coloring}.

Proof. Since χc must be a rational number by Theorem 2.16, let us as-

sume χc((G, σ)) = k/d, where k and d are integers. Let R = {r :

(G, σ) has a circular r-coloring}. Then the theorem states that χc = minR.

What we have to show is that χc is the minimal element of R. Since (G, σ)

has a (k, d)-coloring, by Lemma 2.12, it has a (2k, 2d)-coloring. So (G, σ) has

a circular k/d-coloring by Theorem 2.20. Therefore, χc is an element of R.

Suppose that there is r ∈ R with r < k/d. Then there is a rational

number r′ such that r < r′ < k/d. Let r′ = k′/d′, where k′ and d′ are

integers. By Lemma 2.19, (G, σ) has a circular r′-coloring. Now, it follows
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with Theorem 2.20 that (G, σ) has a (2k′, 2d′)-coloring and 2k′

2d′ < χc((G, σ)),

a contradiction.

This theorem shows that for signed graphs, the circular chromatic num-

ber χc can be equivalently defined by circular r-colorings and χc is again a

minimum.

The circular chromatic number and circular r-colorings seem to be very

natural notions for the coloring of signed graphs. Different from the color set

Zn used by a (k, d)-coloring, the color set Sr used by a circular r-coloring has

always two self-inverse elements, namely 0 and r
2 .

2.3 Relation between χc((G, σ)) and χ((G, σ))

In this section, we will relate χ and χc to each other. We prove that χ((G, σ))−

1 ≤ χc((G, σ)) ≤ χ((G, σ)) for every signed graph (G, σ). In contrast to the

corresponding result for unsigned graphs we show, that for each even k there

are signed graphs with circular chromatic number k and chromatic number

k + 1, i.e. they do not have a (k, 1)-coloring. On the other hand, for a signed

graph on n vertices, if the difference between these parameters is smaller than

1, then there exists εn > 0, such that the difference is at most 1− εn. Finally,

the concepts of interval colorings and corresponding interval chromatic number

χI of signed graphs are introduced, and it is proved that χI((G, σ)) = χ((G, σ))

for every signed graph (G, σ).

The results of this section except Theorems 2.24 and 2.26 have already

been published in [29].

2.3.1 Relations in general

Theorem 2.22. If (G, σ) is a signed graph, then χ((G, σ))−1 ≤ χc((G, σ)) ≤

χ((G, σ)).

Proof. By the definitions, we have χc((G, σ)) ≤ χ((G, σ)). On the other hand,

suppose to the contrary that χc((G, σ)) < χ((G, σ))−1. Theorem 2.16 implies
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that χc((G, σ)) is a rational number. We may assume (G, σ) has a (k, d)-

coloring with χc((G, σ)) = k
d . By Theorem 2.14, (G, σ) has a (χ((G, σ))−1, 1)-

coloring, a contradiction.

If G is an unsigned graph, then χ(G) − 1 < χc(G) ≤ χ(G), see [48]. We

will show that there are signed graphs (G, σ) with χ((G, σ))− 1 = χc((G, σ)).

An example for the case χ((G, σ)) − 1 = χc((G, σ)) = 2 is any antibalanced

triangle, which has no (2, 1)-colorings but has a (4, 2)-coloring. Figure 2.1

shows a (3, 1)-coloring (left) and a (4, 2)-coloring (right) of an antibalanced

triangle.

 



0

11

3)),((  G 2)),((  Gc

 

3 3

1

Figure 2.1: A signed graph (G, σ) with χc((G, σ)) = χ((G, σ))− 1.

2.3.2 Signed graphs for which χc = χ− 1

First we give a sufficient and necessary condition for a signed graph (G, σ)

having difference 1 between χ((G, σ)) and χc((G, σ)).

Theorem 2.23. Let (G, σ) be a signed graph with χ((G, σ)) = t+1 and t be a

positive integer. Then χc((G, σ)) = t if and only if (G, σ) has a (2t, 2)-coloring.

Proof. (only if) Let χc((G, σ)) = t. For each (k, d)-coloring of (G, σ) with

k
d = t it follows that d > 1 since otherwise we would get a (t, 1)-coloring. If d

is odd, then Theorem 2.9 implies that there is (t, 1)-coloring, a contradiction.

Hence, d is even and therefore, k as well. Again with Theorem 2.9 it follows

that there is a (2t, 2)-coloring.

(if) Since (G, σ) does not have a (t, 1)-coloring but it has a (2t, 2)-coloring,

it follows that χc((G, σ)) = t = χ((G, σ))− 1.
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The following statement is a consequence of Theorem 2.23.

Theorem 2.24. Let (G, σ) be a signed graph. Then χc((G, σ)) = χ((G, σ))−1

if and only if there exists an integer k such that (G, σ) has a (2k, 2)-coloring

but has no (k, 1)-colorings.

Proof.

(only if) A direct consequence of Theorem 2.23 and the definition of χ.

(if) Assume that such k exists. Thus, χc((G, σ)) ≤ k and χ((G, σ)) ≥ k+1.

Since χ((G, σ)) − 1 ≤ χc((G, σ)) by Theorem 2.22, we have χ((G, σ)) − 1 =

χc((G, σ)) = k.

Note that for every unsigned graph G, a (2k, 2)-coloring of G yields a

(k, 1)-coloring of G. Hence, if σ is equivalent to an all-positive signature of G,

then χc((G, σ)) > χ((G, σ))− 1 for every G.

Theorem 2.25. The following two statements hold true.

1. If (G, σ) is antibalanced and not bipartite, then χ((G, σ)) − 1 =

χc((G, σ)) = 2.

2. For every even n ≥ 2, there is a signed graph (G, σ) with χ((G, σ))−1 =

χc((G, σ)) = n.

Proof.

1. The mapping c from V (G) to Z3 with c(v) = 1 is a 3-coloring of (G, σ).

Hence, χ((G, σ)) ≤ 3. Since (G, σ) is not bipartite, χ((G, σ)) > 2. Therefore,

χ((G, σ)) = 3. If we consider c as a mapping from V (G) to Z4, then c is a

(4, 2)-coloring of (G, σ). By Theorem 2.23 , χc((G, σ)) = 2.

2. For i ∈ {1, . . . , n} let (Gi, σ
i) be a connected simple signed graph with

at least one edge and all edges negative. Take (G1, σ
1), . . . , (Gn, σ

n), and

for every j ∈ {1, . . . , n} and every v ∈ V (Gj) connect v to every vertex of

(
⋃n
i=1 V (Gi)) − V (Gj) by a positive edge. The resulting graph is denoted by

(K∗n, σn), see Figure 2.2. We complete the proof of Statement 2 by the claim

below.

Claim. If n is even, then χ((K∗n, σn)) = n+ 1 and χc((K
∗
n, σn)) = n. If n is

odd, then χ((K∗n, σn)) = n+ 2 and χc((K
∗
n, σn)) = n+ 1.
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Proof of the claim. Clearly, the all positive subgraph K∗n−Nσn has chromatic

number n. Since for all i ∈ {1, . . . , n} the signed subgraph (Gi, σ
i) has only

negative edges, and Gi has at least one edge, it follows that all used colors

are not self-inverse. Since n is even, it follows that χ((K∗n, σn)) = n + 1.

Furthermore c : V (K∗n) −→ Z2n with c(v) = 2i − 1 if v ∈ V (Gi) is a (2n, 2)-

coloring of (K∗n, σn). Hence, χc((K
∗
n, σn)) = n.

If n is odd, the statement can be proved analogously, and the claim is

proved.

),( 4
*
4 K

Figure 2.2: χ((K∗4 , σ4))− 1 = χc((K
∗
4 , σ4)) = 4.

Note, that Theorem 2.10 does not apply to the graphs of Theorem 2.25

since the cardinality of the set of colors is smaller than the order of the graphs.

It would be of interest to know whether a statement like Theorem 2.25 2. is

also true for odd k. Furthermore, is there a non-trivial characterization of

the signed graphs with χ((G, σ))− 1 = χc((G, σ))? These two questions were

addressed by Steffen and the author in [29]. Next we give a positive answer

to the first question.

Theorem 2.26. For every odd k ≥ 3, there is a signed graph (G, σ) with

χ((G, σ))− 1 = χc((G, σ)) = k.

Proof. Let n be a positive integer. Take two copies (H1, σ1) and (H1, σ2) of

the signed graph (K∗n, σn) that is defined in the proof of Theorem 2.25. Take

any bipartite signed graph (T, σT ) having at least one edge. Denote by A1

and A2 the two parts of T . For i ∈ {1, 2}, connect every vertex of Ai to every



32 Chapter 2 Circular chromatic number χc of signed graphs

vertex of H i by a positive edge. The resulting graph is denoted by (Q∗n, σ
∗
n),

see Figure 2.3. We complete the proof of the theorem by the claim below.

Claim. If n is even, then χ((Q∗n, σ
∗
n)) = n+ 2 and χc((Q

∗
n, σ

∗
n)) = n+ 1.

Proof of the claim. Clearly, (K∗n, σn) has a (n + 1)-coloring c such that no

vertices receive the self-inverse color 0. Give c to each (H i, σi). Then for each

vertex u of H1, rename its color c(u) by 2c(u); and for each vertex v of H2,

rename its color c(v) by [2c(v) + n + 1]2n+2. Finally, since T is bipartite, we

can properly color T by assigning the color 0 to each vertex of A1 and the

color n + 1 to each vertex of A2. We can see that the resulting coloring is a

(2n+ 2, 2)-coloring of (Q∗n, σ
∗
n). Hence, χc((Q

∗
n, σ

∗
n)) ≤ n+ 1.

Since χ((Q∗n, σ
∗
n)) − 1 ≤ χc((Q

∗
n, σ

∗
n)) by Theorem 2.22, to complete the

proof of the claim, it suffices to show that χ((Q∗n, σ
∗
n)) ≥ n + 2. Suppose to

the contrary that (Q∗n, σ
∗
n) has a (n + 1)-coloring φ. Clearly, the all-positive

subgraph Q∗n − Nσ∗n − E(T ) consists of two disjoint complete (n + 1)-partite

graphs. It follows that both A1 and A2 receive the self-inverse color 0, since for

any other part, its induced subgraph of Q∗n has an edge. However, Q∗n has an

edge between A1 and A2. So the coloring φ is not proper, a contradiction.

),( *
4

*
4 Q

Figure 2.3: χ((Q∗4, σ
∗
4))− 1 = χc((Q

∗
4, σ
∗
4)) = 5.

2.3.3 Improved lower bound

The next theorem shows that if the lower bound in Theorem 2.22 is not at-

tained, then it can be improved.
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Theorem 2.27. Let (G, σ) be a signed graph on n vertices, then either

χ((G, σ)) − 1 = χc((G, σ)) or (χ((G, σ)) − 1)(1 +
1

4n− 1
) ≤ χc((G, σ)) ≤

χ((G, σ)). In particular, if χ((G, σ)) − 1 6= χc((G, σ)), then χ((G, σ)) −

χc((G, σ)) < 1− 1
2n .

Proof. By Theorem 2.22, it suffices to show, that if χ((G, σ))−1 6= χc((G, σ))

then (χ((G, σ)) − 1)(1 +
1

4n− 1
) ≤ χc((G, σ)). By Theorem 2.16, we may

assume that χc((G, σ)) =
p

q
, where p and q are coprime integers and p ≤ 4n.

Then

χc((G, σ))− (χ((G, σ))− 1) ≥ 1

q
=
χc((G, σ))

p
≥ χc((G, σ))

4n
. (2.1)

By simplifying the inequality, we get

(χ((G, σ))− 1)(1 +
1

4n− 1
) ≤ χc((G, σ)).

Since 2q < p, it follows with the first inequality of Equation (2.1) that

χ((G, σ))− χc((G, σ)) < 1− 1
2n .

2.4 Signed graphs for which χc = χ

It is of particular interests to construct signed graphs (G, σ) for which

χc((G, σ)) = χ((G, σ)). For the unsigned case, this is one of the problems

posed by Vince [48] and investigated in many articles. It was shown by

Guichard [19] that it is NP-hard to determine whether or not an arbitrary

graph G satisfies χc(G) = χ(G). Recall that (G,+) is a graph G together

with an all-positive signature. It is clear that, for every graph G with

χc(G) = χ(G), we have χc((G,+)) = χ((G,+)).

In this section, we generalize the concept of interval colorings by Zhu [63]

from unsigned graphs to signed graphs and use it for the construction of signed

graphs having the same value of χ and χc.
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2.4.1 Interval colorings of signed graphs

Denote by C(Sr) the set of all open arcs of unit length on the circle Sr.

Two arcs of C(Sr) are pairwise inverse if their middle points are pairwise

inverse on Sr. The inverse of an arc a is written as −a. With these notions,

the definition of a circular r-coloring of a signed graph (i.e., Definition 2.18)

restates as follows.

Definition 2.28. Let (G, σ) be a signed graph and r be a real number at least

1. A circular r-coloring of (G, σ) is a function f : V (G) → C(Sr) such that

f(x) ∩ σ(e)f(y) = ∅ for each edge e with e = xy.

Let Ir be obtained from the circle Sr by cutting at the two points ±1
2 .

Clearly, Ir consists of two intervals, one of length 1 and the other of length

r − 1. Analogously, denote by C(Ir) the set of all open arcs of unit length

on Ir. If we replace the circle Sr in the definition of circular r-colorings of a

signed graph by Ir, we define an interval-coloring of a signed graph, and by

analogy, its interval-chromatic number. The concept of interval-colorings for

an unsigned graph was introduced by Zhu [63], and it sheds new light on the

relation between the circular chromatic number and the ordinary chromatic

number for unsigned graphs. We follow this approach to study the relation of

χc and χ for signed graphs.

Definition 2.29. Let (G, σ) be a signed graph and r be a real number at least

1. An r-interval coloring of (G, σ) is a function f : V (G)→ C(Ir) such that

f(x) ∩ σ(e)f(y) = ∅ for each edge e with e = xy. The interval-chromatic

number χI((G, σ)) of (G, σ) is inf{r : (G, σ) has an r-interval coloring}.

It is well-known [16] that for every unsigned graph G, the chromatic num-

ber of G is the least real number r such that there is an r-interval coloring of

G. We show that this is also true in the context of signed graphs.

Theorem 2.30. For every signed graph (G, σ), we have χI((G, σ)) =

χ((G, σ)).
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Proof. Let χ((G, σ)) = k and let φ be a (k, 1)-coloring of (G, σ). By replacing

each color x by the interval (x − 1
2 , x + 1

2) and cutting Sk at the two points

±1
2 , we obtain a k-interval coloring of (G, σ) from the coloring φ. Hence,

χI((G, σ)) ≤ χ((G, σ)).

On the other hand, let χI((G, σ)) = r and let c be an r-interval coloring of

(G, σ). We will transform c into an (brc, 1)-coloring of (G, σ) by constituting

integers for open unit length arcs. Denote by I1 and I2 the two intervals of Ir

so that I1 has length 1. Rename I2 as (1−r+brc
2 , r − 1−r+brc

2 ). For each arc s

of I2, since s is of unit length, it covers at most one integer point. If s covers

precisely one integer point, then constitute this integer for s; otherwise, both

ends of s are integers and we take the one closer to the point 0 to constitute

for s. Since the ends of the interval I2 are greater than 0, the color 0 has

not been used yet. For each arc s of I1, s is exactly I1 itself. We constitute

the color 0 for s. Now c is transformed into an integer coloring, say c′, using

colors from {0, 1, . . . , brc}. Moreover, we can see that pairwise inverse arcs of

c are transformed into pairwise inverse integers, and no two disjoint arcs of c

are transformed into the same integer. It follows that c′ is an (brc, 1)-coloring.

Thus, χ((G, σ)) ≤ χI((G, σ)).

2.4.2 Construction

Now we are ready to give a sufficient condition for a signed graph having

the same chromatic number and circular chromatic number. We will need the

results on interval colorings of signed graphs for the proof. A vertex of a graph

G is universal if it is adjacent to every other vertices of G.

Theorem 2.31. Let (G, σ) be a signed graph having an universal vertex u.

Let χc((G, σ)) = r. If (G, σ) has a circular r-coloring for which u receives the

color 0, then χc((G, σ)) = χ((G, σ)).

Proof. Since χc((G, σ)) ≤ χ((G, σ)) by Theorem 2.22, it suffices to show that

χc((G, σ)) ≥ χ((G, σ)). By Definition 2.28 and the condition of the theorem,

(G, σ) has a circular r-coloring c with colors from C(Sr) for which u receives
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the arc (−1
2 ,+

1
2). Since u is an universal vertex, both points ±1

2 are not

covered by any other arc of c. Hence, we can cut Sr at the points ±1
2 to obtain

Ir and meanwhile, the coloring c is transformed into an r-interval coloring of

(G, σ). Therefore, χI((G, σ)) ≤ r, that is, χ((G, σ)) ≤ χc((G, σ)) by Theorem

2.30.



Chapter 3

Chromatic number χ of

signed graphs

In Chapter 2 we introduced and studied circular colorings and related integer

colorings of signed graphs. In this chapter, we take a further look at integer

colorings and the corresponding chromatic number for signed graphs. Re-

sults on the chromatic spectrum are presented. Moreover, we generalize some

classical results on chromatic number of unsigned graphs to signed graphs,

including the Brooks’ theorem and the Hajós theorem.

3.1 Some basic properties

We recall the definitions of a k-coloring and the chromatic number χ of a

signed graph as follows.

Definition 3.1. Let Zk denote the cyclic group of integers modulo k, and the

inverse of an element x is denoted by −x. A function c : V (G) → Zk is a

k-coloring of (G, σ) if c(v) 6= σ(e)c(w) for each edge e = vw. The chromatic

number χ((G, σ)) of a signed graph (G, σ) is the smallest k such that (G, σ)

has a k-coloring.

We say a signed graph (G, σ) is k-chromatic, if (G, σ) has chromatic number

k.

37
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Let S be a set of vertices of a signed graph (G, σ). Recall that S is an

independent set if there is no edge between any two vertices of S; S is an

antibalanced set if S induces an antibalanced subgraph.

By the previous definition, we can see that each nonempty color class

together with its inverse color class is an antibalanced set and in particular,

an independent set if they receive the self-inverse color. Hence, we have the

following statement.

Proposition 3.2. Let k be a positive integer and (G, σ) be a signed graph.

1. For even k, (G, σ) is k-chromatic if and only if V (G) can be divided into

two independent sets and k−2
2 antibalanced sets, where all these sets may

be empty.

2. For odd k, (G, σ) is k-chromatic if and only if V (G) can be divided into

one independent set and k−1
2 antibalanced sets, where all these sets may

be empty.

Now we investigate the relation between the chromatic number of a signed

graph and the chromatic number of its underlying graph.

Theorem 3.3. For every loopless signed graph (G, σ), we have χ((G, σ)) ≤

2χ(G) − 2. Furthermore, for every integer n ≥ 2, there exists a signed graph

(G, σ) such that χ((G, σ)) = 2χ(G) − 2 and χ(G) = n. Hence, the bound is

sharp.

Proof. Let c be an n-coloring of a graph G with colors from {0, 1, 2, ..., n− 1}.

For any signature σ, we can see that c is a (2n − 2)-coloring of the signed

graph (G, σ). Hence, the required inequality holds.

In what follows, we will prove the sharpness of the bound, that is, we will

construct an infinite family of signed graphs (Gn, σn) such that χ((Gn, σn)) =

2χ(Gn) − 2 = 2n − 2. To construct (Gn, σn), we take one copy of the all-

positive signed complete graph (Kn,+), say (H0, σ0), and n− 2 copies of the

all-negative signed complete graph (Kn,−), say (H1, σ1), . . . , (Hn−2, σn−2).

For i ∈ {0, 1, . . . , n − 2}, denote the vertices of Hi by vi,0, vi,1, ..., vi,n−1. We

say that any two vertices vi,k and vj,k with i 6= j are corresponding. Now insert
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a positive edge between any pair of non-corresponding vertices from distinct

copies, see figure 3.1.

Since every two corresponding vertices is not adjacent, the color assignment

vi,j 7→ j for each i ∈ {0, 1, . . . , n − 2} and j ∈ {0, 1, . . . , n − 1} defines an n-

coloring of Gn. Thus, χ(Gn) ≤ n. Moreover, Gn contains a copy of the

complete graph Kn as a subgraph, which implies χ(Gn) ≥ n. Therefore,

χ(Gn) = n.

We next prove that χ((Gn, σn)) = 2n−2. By the inequality of the theorem,

χ((Gn, σn)) ≤ 2χ(Gn) − 2 = 2n − 2. Hence, we may suppose to the contrary

that χ((Gn, σn)) ≤ 2n − 3. Let c be a (2n − 3)-coloring of (Gn, σn). Since

(H0, σ0) is a copy of (Kn,+), n distinct colors from Z2n−3, say a0, a2, . . . , an−1,

have to be used for the vertices of H0. For each i ∈ {1, . . . , n−2}, since (Hi, σi)

is a copy of (Kn,−), there exist two vertices ui and vi of Hi receiving the same

color, say bi. Since each vertex of H0 is connected to at least one of ui and vi

by a positive edge, bi /∈ {a0, . . . , an−1}. Moreover, for each j ∈ {1, . . . , i− 1},

uj is connected to at least one of ui and vi by a positive edge. Thus, bi /∈

{b1, . . . , bi−1}. Now we can conclude that a0, . . . , an−1, b1, . . . , bn−2 are 2n− 2

pairwise distinct colors of Z2n−3, a contradiction.

v

0,0v

2,0v1,0v

0,1v

1,1v 2,1v

),( 33 G

Figure 3.1: A construction of (G3, σ3).

A similar relation between the signed chromatic number of a signed graph

and the chromatic number of its underlying graph was proved in [35].

Theorem 3.4 ([35], Theorem 2.1). For every loopless signed graph (G, σ) we

have χ±((G, σ)) ≤ 2χ(G)− 1. Furthermore, this bound is sharp.



40 Chapter 3 Chromatic number χ of signed graphs

3.2 Chromatic spectrum of a graph

In this section, we consider possible values of the chromatic number of a signed

graph (G, σ) where the underlying graph G is fixed. So, we introduce the

chromatic spectrum of a graph and show that the chromatic spectrum is always

an interval.

The results of this section have already been published in [28].

Definition 3.5. Let G be a graph and Σ(G) be the set of pairwise non-

equivalent signatures on G. The chromatic spectrum of G is the set

{χ((G, σ)) : σ ∈ Σ(G)}, which is denoted by Σχ(G).

Define that Mχ(G) = max{χ((G, σ)) : σ ∈ Σ(G)} and mχ(G) =

min{χ((G, σ)) : σ ∈ Σ(G)}. The following theorem is the main result in this

section.

Theorem 3.6. If G is a graph, then Σχ(G) = {k : mχ(G) ≤ k ≤Mχ(G)}.

This theorem shows that the chromatic spectrum Σχ(G) is an interval

of integers for any graph G. Similarly, we can define the circular chromatic

spectrum Σχc(G) of a graph G as Σχc(G) = {χc((G, σ)) : σ ∈ Σ(G)}. For a

bipartite graph G, Proposition 2.3 2. shows that the chromatic spectrum of

G starts from 2, and so does the circular chromatic spectrum of G. Therefore,

it is an interesting problem to figure out the circular chromatic spectrum of

graphs.

3.2.1 Determination of mχ(G)

Proposition 3.7. Let G be a nonempty graph. The following statements hold.

1. Σχ(G) = {1} if and only if mχ(G) = 1 if and only if E(G) = ∅.

2. if E(G) 6= ∅, then Σχ(G) = {2} if and only if mχ(G) = 2 if and only if

G is bipartite.

3. If G is not bipartite, then mχ(G) = 3.

Proof. Statements 1 and 2 are obvious. For Statement 3, consider (G, σ)

where σ is the signature with all edges negative. Then c : V (G) → Z3 with



3.2 Chromatic spectrum of a graph 41

c(v) = 1 is a 3-coloring of G. Since G is not bipartite, the statement follows

with Statements 1 and 2.

3.2.2 Chromatic critical signed graphs

Definition 3.8. If (G, σ) is a signed graph and u ∈ V (G), then σu denotes the

restriction of σ to G − u. A k-chromatic graph (G, σ) is k-chromatic critical

if χ((G− u, σu)) < k, for every u ∈ V (G).

Chromatic critical graphs are of particular interests for the studies of the

chromatic number of graphs, since that they possess additional properties by

the criticality and that it is often sufficient to consider chromatic critical graphs

for proofs. In this subsection, we will give some basic facts on k-chromatic

critical signed graphs. The complete graph on n vertices is denoted by Kn.

Proposition 3.9. Let (G, σ) be a signed graph.

1. (G, σ) is 1-critical if and only if G = K1

2. (G, σ) is 2-critical if and only if G = K2.

3. (G, σ) is 3-critical if and only if G is an odd circuit.

Proof. Statements 1 and 2 are obvious. An odd circuit with any signature is

3-critical. For the other direction let G be a 3-critical graph. By Proposition

3.7, we have: (∗) G − u is bipartite for every u ∈ V (G). Since G is not

bipartite it follows that every vertex of G is contained in all odd circuits of

G, and by (∗) every odd circuit C is hamiltonian. C cannot contain a chord,

since for otherwise G contains a non-hamiltonian odd circuit, a contradiction.

Hence, G is an odd circuit.

Lemma 3.10. Let k ≥ 1 be an integer. If (G, σ) is k-chromatic, then χ((G−

u, σu)) ∈ {k, k − 1}, for every u ∈ V (G). In particular, if (G, σ) is k-critical,

then χ((G− u, σu)) = k − 1.

Proof. For k ∈ {1, 2}, the statement follows with Proposition 3.7. Hence, we

may assume that k ≥ 3. Clearly, χ((G − u, σu)) ≤ χ((G, σ)) = k. Suppose

to the contrary that χ((G − u, σu)) ≤ k − 2, and let φ be a (k − 2)-coloring
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of (G − u, σu). We extend φ to a (k − 1)-coloring of (G, σ). If k is odd, then

change color x to x + 1 for each x ≥ k−1
2 and assign color k−1

2 to vertex u,

and we are done. If k is even, then change color x to x + 1 for each x ≥ k
2 ,

and assign color k
2 to vertex u. If φ(v) = k−2

2 for a vertex v and σ(uv) = −1,

then recolor v with color k
2 to obtain a (k − 1)-coloring of (G, σ). Hence

χ((G, σ)) ≤ k − 1 < k, a contradiction. Clearly, if (G, σ) is k-critical, then

χ((G− u, σu)) = k − 1.

The following theorem is a direct consequence of Lemma 3.10.

Theorem 3.11. Let (G, σ) be a signed graph and k ≥ 1. If χ((G, σ)) = k,

then (G, σ) contains an induced i-critical subgraph for each i ∈ {1, . . . , k}.

3.2.3 Proof of Theorem 3.6

Lemma 3.12. Let k ≥ 3 be an integer and H be an induced subgraph of a

graph G. If k ∈ Σχ(H), then k ∈ Σχ(G).

Proof. If k ∈ Σχ(H), then there is a signature σ of H such that χ((H,σ)) = k.

Let φ be a k-coloring of (H,σ). Define a signature σ′ of G as follows. Let

e ∈ E(G) with e = uv.

If e ∈ E(H), then σ′(e) = σ(e);

If u, v /∈ V (H) or if u ∈ V (H), v /∈ V (H) and φ(u) = 1, then σ′(e) = −1;

If u ∈ V (H), v /∈ V (H) and φ(u) 6= 1, then σ′(e) = 1.

It follows that φ can be extended to a k-coloring of (G, σ′) by assigning color

1 to each vertex of V (G) \ V (H). Thus χ((G, σ′)) ≤ k. Moreover, (G, σ′)

has (H,σ) as a subgraph with chromatic number k, hence, χ((G, σ′)) ≥ k.

Therefore, χ((G, σ′)) = k and thus, k ∈ Σχ(G).

Theorem 3.13. Let k ≥ 4 be an integer and G be a graph. If k ∈ Σχ(G),

then k − 1 ∈ Σχ(G).

Proof. By Theorem 3.11, (G, σ) contains an induced k-critical subgraph

(H,σ′), where σ′ is the restriction of σ to H. Since k ≥ 4, it follows that

|V (H)| > 3. Hence, there is u ∈ V (H) such that χ(H − u, σ′u) = k − 1.
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Furthermore, H − u is an induced subgraph of G. Thus, k − 1 ∈ Σχ(H − u),

and hence, k − 1 ∈ Σχ(G) by Lemma 3.12.

Note that if k = 3, then by Proposition 3.7, G is not a bipartite graph and

thus k can not be decreased to 2.

Theorem 3.6 follows directly from Proposition 3.7 and Theorem 3.13.

3.3 An analogue of Brooks’ Theorem for signed

graphs

This section is devoted to state and prove a signed version of one of the most

fundamental results on graph colourings, the famous Brooks’ theorem [8]. In

[35], the authors addressed a signed version of Brooks’ Theorem with respect

to the signed chromatic number χ±. Later on, a list version of this result by

characterizing degree choosable signed graphs was proved in [43], following our

definition on list colorings of signed graphs given in Chapter 5. The result we

present here is an analogue of Brooks’ Theorem for signed graphs with respect

to the chromatic number χ.

Theorem 3.14. Let (G, σ) be a simple connected signed graph. If (G, σ) is

not a balanced complete graph or an odd circuit, then χ((G, σ)) ≤ ∆(G).

The proof of this theorem follows a method from [11] and [35]. However,

we apply new arguments for some cases in the proof. We will use the following

four lemmas for the proof.

Lemma 3.15. If (G, σ) is a signed complete graph on n-vertices, n ≥ 4, then

χ((G, σ)) ≤ n. Furthermore, χ((G, σ)) = n if and only if (G, σ) is balanced.

Proof. It is easy to see that if (G, σ) is balanced, then χ((G, σ)) = n. So it is

sufficient to show that, if (G, σ) is assumed to be unbalanced, then χ((G, σ)) ≤

n− 1. We distinguish two cases by the parity of n.

Case 1: assume that n is even. The proof for this case is done by induction.

For n = 4, since (G, σ) is unbalanced and complete, there is an unbalanced
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triangle. Since an unbalanced triangle is antibalanced as well, we may use the

colors 1 and 2 of Z3 to properly color the triangle and the color 0 to color

the remaining vertex, obtaining a 3-coloring of (G, σ). Hence, the conclusion

holds. Now we proceed to the induction process. Since (G, σ) is unbalanced,

there is an unbalanced triangle T . Pick any two vertices x and y of (G, σ)

that do not belong to T , and switch the signature of (G, σ), if neccessary,

to make the edge xy is negative. Hence, the signed graph (G, σ) − {x, y} is

an unbalanced signed complete graph on n − 2 vertices. By the induction

hypothesis, (G, σ) − {x, y} has a (n − 3)-coloring, that is, its vertices can be

divided into one independent set and n−4
2 many antibalanced sets. Since {x, y}

is an antibalanced set of (G, σ), it follows that the vertices of (G, σ) can be

divided into one independent set and n−2
2 antibalanced sets, that is, (G, σ)

has a (n− 1)-coloring. Therefore, χ((G, σ)) ≤ n− 1, the conclusion holds.

Case 2: assume that n is odd. Since a switching does not change the

chromatic number, we may assume that (G, σ) has a vertex v incident with

negative edges only. We remove v and (G, σ) − v is still unbalanced and

complete. By the conclusion of Case 1, (G, σ) − v has a (n − 2)-coloring,

that is, its vertices can be divided into one independent set and n−3
2 many

antibalanced sets. Take v as an independent set of G, thus the vertices of

(G, σ) can be divided into two independent sets and n−3
2 antibalanced sets,

that is, (G, σ) has a (n − 1)-coloring. Therefore, χ((G, σ)) ≤ n − 1, the

conclusion holds.

The following lemma is a standard tool for coloring graphs greedily.

Lemma 3.16. The vertices of every connected graph G can be ordered in a

sequence x1, x2, . . . , xn so that xn is any preassigned vertex of G and for each

i < n the vertex xi has a neighbour among xi+1, xi+2, . . . , xn.

The following lemma is due to Lovász and was crucial in his short proof

of Brooks’ theorem [32]. Its proof can also be found in [11] by Cranston and

Rabern.
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Lemma 3.17. Let G be a 2-connected graph with ∆(G) ≥ 3. If G is not

complete, then G contains a pair of vertices a and b at distance 2 such that

the graph G− {a, b} is connected.

Lemma 3.18. Let (G, σ) be a connected signed graph. If G is not regular,

then χ((G, σ)) ≤ ∆(G).

Proof. Let u be a vertex of G with degree less than ∆(G). Take an ordering

x1, x2, . . . , xn of the vertices of G as in Lemma 3.16 with xn = u. We now

start coloring x1, x2, . . . , xn in the given order greedily with colors from Z∆.

For i < n, each xi has a neighbor among its successors, so xi has at most ∆−1

neighbors previously colored. This is also true for xn since xn has degree less

than ∆(G). Each colored neighbor forbids one color for xi, so Z∆ still has a

color available for xi and finally, the same for xn.

Now we are ready to prove Theorem 3.14.

Proof of Theorem 3.14. If the signed graph (G, σ) is an unbalanced complete

graph, then the conclusion follows from Lemma 3.15; and if G is not regular,

then the conclusion follows from Lemma 3.18. The conclusion is also correct

whenever (G, σ) is a path or an even circuit. Thus we may assume that (G, σ)

is a simple connected signed graph of order n with maximum degree ∆ ≥ 3

which is regular but not complete. We distinguish two cases.

Case 1: The signed graph (G, σ) is 2-connected. By Lemma 3.17 , (G, σ)

contains a path axb such that a is not adjacent to b and G−{a, b} is connected.

Switch at a and b if necessary so that both the edges ax and bx are positive.

Denote by n the order of G. Next, we take an ordering x1, x2, . . . , xn−2 of the

vertices of G−{a, b} as in Lemma 3.16 with xn−2 = x. We now start coloring

(G, σ) with colors from Z∆ by assigning color 1 to both a and b. Then we color

x1, x2, . . . , xn−2 in the given order greedily. Since each xi 6= x has a neighbor

among its successors in G− {a, b}, xi has at most ∆− 1 neighbors previously

colored. Hence, there is at least one color from Z∆ available for xi, and we

proceed up to xn−3. For the vertex xn−2 (equivalently, x), since both a and
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b forbid the color 1 for x, Z∆ still has a color available for x. This completes

the proof of Case 1.

Case 2: The signed graph (G, σ) has a cut-vertex. Take a cut-vertex u of

G such that G − u has a component of minimum order. Denote by (H,σH)

this component. By switching if necessary, we may assume that u is incident

with positive edges only. By Lemma 3.18, each component of (G, σ) − u has

a ∆-coloring. To obtain a ∆-coloring of G, we will recolor the component H

and take the coloring of all other components so that finally there is still a

color available for u.

Denote by S = {v1, . . . , vt} the set of neighbors of u in H. If t = 1, then

v1 is a cut-vertex of G whose removal from G yields a component of smaller

order than H, contradicting with the choice of u. Hence, t ≥ 2. If every vertex

in S is a cut-vertex of H, then there exists an element of S whose removal

from H yields a component containing no other elements of S. It follows that

this element of S is a cut-vertex of G that will contradict with the choice of u.

Hence, S has a vertex that is not a cut-vertex of H. Without loss of generality,

let v1 be such a vertex. Thus, the signed graph (H,σH)−v1 is connected. Let

r be the order of H. We can choose an ordering x1, . . . , xr−1 of the vertices of

H − v1 as in Lemma 3.16 with xr−1 = vt. Let w be a neighbor of u not in H.

We now start recoloring H with colors from Z∆. First assign the color of w to

v1. Then we colour the vertices x1, x2, ..., xr−1 greedily in the given order. For

each i ∈ {1, . . . , r − 2}, xi has a neighbour among its successors in H − v1, so

xi has at most ∆− 1 neighbours previously coloured. Thus, we can properly

color xi. For the vertex xr−1, since it has a uncolored neighbour u, we can

properly color xr−1. Finally, since u has two neighbours v1 and w of the same

color, we can properly color u. This completes the proof of Case 2.
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3.4 First Hajós-like theorem for signed graphs

This section addresses an analogue of a well-known theorem of Hajós for signed

graphs. Throughout this section, “a graph” is always regarded as an unsigned

simple graph for the distinction from “a signed graph” and “a multigraph”.

The results of this section have already been published in [27].

3.4.1 Introduction

In 1961, Hajós proved a result on the chromatic number of graphs, which is one

of the classical results in the field of graph colorings. This result has several

equivalent formulations, one of them states as the following two theorems.

Theorem 3.19 ([20]). The class of all graphs that are not q-colorable is closed

under the following three operations:

(1) Adding vertices or edges.

(2) Identifying two nonadjacent vertices.

(3) Given two vertex-disjoint graphs G1 and G2 with a1b1 ∈ E(G1) and

a2b2 ∈ E(G2), construct a graph G from G1 ∪G2 by removing a1b1 and

a2b2, identifying a1 with a2, and adding a new edge between b1 and b2

(see Figure 3.2).

1b

1a
1G

2b

2a
2G

1b

1 2a a

G

2b

Figure 3.2: Operation (3)

Operation (3) is known as the Hajós construction in the literature.

Theorem 3.20 (Hajós’ Theorem [20]). Every non-q-colorable graph can be

obtained by Operations (1)-(3) from the complete graph Kq+1.
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The Hajós theorem has been generalized in several different ways. The

analogues of the Hajós theorem were proved for list-colorings by Gravier [17],

for circular colorings by Zhu [67, 70], for colorings of edge-weighted graphs by

Mohar [37], for group colorings by An and Wu [2], and for weighted colorings

by Araujo and Sales [3].

It is shown in this section that the Hajós theorem has a very natural and

simple generalization in the case of signed graphs for the chromatic number χ.

We call this generalization the Hajós-like theorem of signed graphs (briefly, the

Hajós-like theorem). Whereas the Hajós theorem needs three operations, the

Hajós-like theorem keeps the first two, uses an operation more general than the

third one, contains the operation of switchings for signed graphs, and needs

one more additional operation. Moreover, these operations of the Hajós-like

theorem enable us to construct all signed graphs (G,Σ) with χ((G,Σ)) ≥ q

from copies of the all-positive complete signed graph (Kq,+) of order q, the

same graph we start from to construct all graphs G with χ(G) ≥ q by the

Hajós theorem.

We will prove the Hajós-like theorem for signed multigraphs rather than

signed graphs (i.e., signed simple graphs). For vertex colorings of signed multi-

graphs, it suffices to consider signed bi-graphs, a subclass of signed multigraphs

in which no two edges of the same sign locate between same two vertices.

Clearly, signed bi-graphs contain signed graphs as a subclass. Hence, the

Hajós-like theorem holds particularly for signed graphs.

The structure of the rest of this section is arranged as follows. In Subsection

3.4.2, we give the definition of signed bi-graphs. In Subsection 3.4.3, we design

five operations on signed bi-graphs and show that these operations are closed

in the class of non-q-colorable signed bi-graphs for any given positive integer

q. In Subsection 3.4.4, we establish some lemmas necessary for the proof of

the Hajós-like theorem. In Section 3.4.5, we propose the Hajós-like theorem

by using the operations that we defined before, and we address the proof of

the theorem.
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3.4.2 Signed bi-graphs

A bi-graph is a multigraph having no loops and having at most two edges

between any two distinct vertices. Let G be a bi-graph, u and v be two

distinct vertices of G. Denote by E(u, v) the set of edges connecting u to

v, and let m(u, v) = |E(u, v)|. Clearly, 0 ≤ m(u, v) ≤ 2. A bi-graph G is

bi-complete if m(x, y) = 2 for any x, y ∈ V (G), is complete if m(x, y) ≥ 1 for

any x, y ∈ V (G), and is just-complete if m(x, y) = 1 for any x, y ∈ V (G).

A signed bi-graph (G, σ) is a bi-graph G together with a signature σ of G

such that any two multiple edges have distinct signs. A bi-complete signed

bi-graph of order n is denoted by (Kn,±). It is not hard to calculate that

χ((Kn,±)) = 2n − 2. The concepts of k-colorings, the chromatic number

and switchings of signed graphs are naturally extended to signed bi-graphs,

working in the same way, and the related notations are inherited.

Let (G, σ) be a signed multigraph. Replace multiple edges of the same sign

by a single edge of this sign. We thereby obtain a signed bi-graph (G′, σ′).

Clearly, G and G′ have the same vertex set. We can see that c is a k-coloring of

(G, σ) if and only if it is a k-coloring of (G′, σ′). Therefore, for vertex colorings

of signed multigraphs, it suffices to consider signed bi-graphs.

3.4.3 Graph operations on signed bi-graphs

Let k be a nonnegative integer. A signed bi-graph is k-thin if it can be obtained

from a bi-complete signed bi-graph by removing at most k pairwise vertex-

disjoint edges. Clearly, A k-thin signed bi-graph is complete, and a signed

bi-graph is 0-thin if and only if it is bi-complete.

Theorem 3.21. The class of all signed bi-graphs that are not q-colorable is

closed under the following operations:

(sb1) Adding vertices or signed edges.

(sb2) Identifying two nonadjacent vertices.

(sb3) Given two vertex-disjoint signed bi-graphs (G1, σ1) and (G2, σ2), a vertex

v of G1 and a positive edge e of G2 with ends x and y, construct a signed
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bi-graph (G, σ) from (G1, σ1) and (G2, σ2) by splitting v into two new

vertices v1 and v2, removing e and identifying v1 with x and v2 with y

(see Figure 3.3).

(sb4) Switching at a vertex.

(sb5) When q is even, remove a vertex that has at most q
2 neighbors. When

q is odd, remove a negative single edge, identify its two ends, and add

signed edges (if needed) so that the resulting bi-signed graph is q−3
2 -thin.

1b

1a
1G

1b

2a
2G

1b

1 2( )a a

G

2b

 1 1,G   2 2,G   ,G 

v

x

y

1x v

2y v

Figure 3.3: Operation (sb3)

Proof. Since Operations (sb1), (sb2), (sb4) neither make loops nor decrease the

chromatic number, it follows that the class of non-q-colorable signed bi-graphs

is closed under these operations.

For Operation (sb3), suppose to the contrary that (G, σ) is q-colorable.

Let c be a q-coloring of (G, σ). Denote by x′ and y′ the vertices of G obtained

from x and y, respectively. If c(x′) = c(y′), then the restriction of c into G1,

where v is assigned with the same color as x′ and y′, gives a q-coloring of

(G1, σ1), contradicting with the fact that (G1, σ1) is not q-colorable. Hence,

we may assume that c(x′) 6= c(y′). Note that e is a positive edge of (G2, σ2).

Thus the restriction of c into G2 gives a q-coloring of (G2, σ2), contradicting

the fact that (G2, σ2) is not q-colorable. Therefore, the statement holds true

for Operation (sb3).

It remains to verify the theorem for Operation (sb5). For q even, suppose

to the contrary that the removal of a vertex u from a non-q-colorable signed

bi-graph (G, σ) yields the q-colorability. Let S = {0,±1, . . . ,±( q2 − 1), q2}
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and let φ be a q-coloring of (G, σ) − u using colors from S. Notice that each

neighbor of u makes at most two colors unavailable for u. Since u has at most

q
2 neighbors, S still has a color available for u. Hence, we can extend φ to a

q-coloring of (G, σ), a contradiction.

For the case that q is odd, let (H ′, σ′H) be obtained from a non-q-colorable

signed bi-graph (H,σH) by applying this operation to a negative edge e, and

suppose to the contrary that (H ′, σ′H) is q-colorable. Let ψ be a q-coloring of

(H ′, σ′H) using colors from the set {0,±1, . . . ,±( q−1
2 )}. Denote by x and y the

two ends of e and by z the resulting vertex from them. If ψ(z) 6= 0, then by

assigning x and y with the color ψ(z), we complete a q-coloring of the original

bi-graph (H,σH), a contradiction. Hence, we may assume that ψ(z) = 0. For

0 ≤ i ≤ q−1
2 , let Vi = {v ∈ V (G) : |ψ(v)| = i}. Clearly, each Vi induces an

antibalanced signed graph and in particular, V0 is an independent set. Since

(H,σH) is q−3
2 -thin, we can deduce that there exists p ∈ {1, . . . , q−1

2 } such

that |Vp| = 1. Exchange the colors between V0 and Vp, and then assign x′ and

y′ with the same color as z, we thereby obtain a q-coloring of (H,σH) from ψ,

a contradiction.

3.4.4 Useful lemmas

Operation (sb3) can be extended from unsigned graphs to signed bi-graphs as

follows.

(sb3′) Let (G1, σ1) and (G2, σ2) be two vertex-disjoint signed bi-graphs. For

each i ∈ {1, 2}, let ei be an edge of (Gi, σi) with ends xi and yi. Make

a graph (G, σ) from G1 ∪ G2 by removing e1 and e2, identifying x1

with x2, and adding a new signed edge e between y1 and y2 such that

σ(e) = σ1(e1)σ2(e2).

Lemma 3.22. Operation (sb3′) is a combination of Operations (sb3) and

(sb4).

Proof. We use the notations in the statement of Operation (sb3′). First assume

that at least one of e1 and e2 is a positive edge. With loss of generality, say
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e1 is positive. We apply Operation (sb3) to (G1, σ1) and (G2, σ2) where e1 is

removed, x2 is split into two new vertices x′2 and x′′2 with y2 as the neighbor

of x′2 and with all other neighbors of x2 as the neighbors of x′′2, and then x′2

is identified with y1 and x′′2 is identified with x1. The resulting signed bi-

graph is exactly (G, σ), we are done. Hence, we may next assume that both

e1 and e2 are negative edges. Switch at x1 in (G1, σ1) and at x2 in (G2, σ2).

Since e1 is positive in the resulting signed bi-graph, we may apply Operation

(sb3) similarly as above, obtaining a signed bi-graph, which leads to (G, σ) by

switching again at x1 (equivalently, at x2).

Let (G, σ) be a signed graph. The sign product sp(H) of a subgraph H is

defined as sp(H) =
∏
e∈E(H) σ(e).

Lemma 3.23. A just-complete signed bi-graph is antibalanced if and only if

the sign product of each triangle is −1, and it is balanced if and only if the

sign product of each triangle is 1.

Proof. For the first statement, since a just-complete signed bi-graph (G, σ) is

exactly a complete signed graph, (G, σ) is antibalanced if and only if the sign

product of each circuit of length k is (−1)k. Hence, the proof for the necessity

is trivial. Let us proceed to the sufficiency, which will be proved by induction

on k.

Clearly, the statement holds for k = 3 because of the assumption of the

lemma. Assume that k ≥ 4. Let C be a circuit of length k. SinceG is complete,

C has a chord e, which divides C into two paths, together with e forming two

circuits C1 and C2 of length k1 and k2, respectively. Thus, k = k1 +k2−2. By

applying the induction hypothesis, we have sp(Ci) = (−1)ki . It follows that

sp(C) = sp(C1)sp(C2) = (−1)k, the statement also holds.

The second statement can be argued in the same way as for the first one.

We only have to pay attention to the equivalence between that (G, σ) is bal-

anced and that the sign product of each circuit of length k is 1.
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A signed bi-graph of order 3r is O-complete if it can be obtained from

(K3r,±) by removing r pairwise vertex-disjoint all-positive triangles. Clearly,

a O-complete signed bi-graph is complete.

Lemma 3.24. The O-complete signed bi-graph of order 3r can be obtained

from (K2r+1,+) by Operations (sb1)-(sb5).

Proof. Take r + 1 copies of (K2r+1,+), say (Hi,+) of vertex set {v0
i , . . . , v

2r
i }

for 0 ≤ i ≤ r. For each j ∈ {1, . . . , r}, switch at vj0, and then apply Operation

(sb3′) to H0 and Hj so that vj0v
j+r
0 and v0

j v
2j
j are removed and that vj0 is

identified with v0
j , and finally identify vj0 with vj+r0 into a new vertex xj .

The resulting signed bi-graph is denoted by (G, σ). By Theorem 3.21, since

(K2r+1,+) is not 2r-colorable, (G, σ) is not 2r-colorable either. Note that v0
0

has precisely r neighbors in G. We can apply Operation (sb5) to v0
0, i.e., we

remove v0
0 from (G, σ). In the resulting signed bi-graph, for each 1 ≤ k ≤ 2r,

since vk1 , . . . , v
k
r are pairwise nonadjacent, we can apply Operation (sb2) to

identify them into a new vertex yk. Denote by (H,σH) the resulting signed

bi-graph.

We can see that (H,σH) is of vertex set {x1, . . . , xr, y1, . . . , y2r} and hence,

it is of order 3r. We can also see that (H,σH) is complete and more precisely,

it has multiple edges between any two vertices from {x1, . . . , xr} and a single

edge between any two other vertices of H. In particular, for 1 ≤ j ≤ r, the

set {xj , y2j , y2j−1} induces a just-complete triangle with the signs −,+ and

+ on the edges xjy2j , xjy2j−1 and y2jy2j−1, respectively. Switch at vertices

y1, y3, . . . , y2r−1 and add signed edges as many as possible but keeping all

the triangles of the form [xjy2jy2j−1] just-complete. We thereby obtain the

O-complete signed bi-graph of order 3r from (H,σH).

Lemma 3.25. The signed bi-graph (Kr,±) can be obtained from (K2r−2,+)

by Operations (sb1)-(sb5).

Proof. Let (G, σ) be a copy of (K2r−2,+) of vertices v1, . . . , v2r−2. Since (G, σ)

is not (2r − 3)-colorable, switch at v1 and then we can apply Operation (sb5)

to v1v2 so that v3v4, v5v6, . . . , v2r−5v2r−4 are single edges. Since the resulting
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signed bi-graph is (r − 3)-thin, all other edges are multiple edges. For each

i ∈ {2, 3, . . . , r − 2}, switch at v2i and apply Operation (sb5) to v2i−1v2i so

that no new signed edges are added. The resulting signed bi-graph is exactly

(Kr,±).

3.4.5 Proof of the theorem

We will need the following definitions for the proof of the Hajós-like theorem.

Let (G, σ) be a signed bi-graph. An antibalanced set is a set of vertices

that induce an antibalanced signed graph. Let c be a k-coloring of (G, σ).

A set of all vertices v with the same value of |c(v)| is called a partite set of

(G, σ). Thus, every partite set is an antibalanced set. Let U and V be two

partite sets. They are completely adjacent if m(u, v) ≥ 1 for any u ∈ U and

v ∈ V , bi-completely adjacent if m(u, v) = 2 for any u ∈ U and v ∈ V , and

just-completely adjacent if m(u, v) = 1 for any u ∈ U and v ∈ V .

Let (G, σ) be a signed bi-graph. A sequence (x, y, z) of three vertices of

G is a triple if there exist three integers a, b, c satisfying the following three

conditions:

(i) a, b, c ∈ {1,−1},
(ii) ab = c,

(iii) a /∈ {σ(e) : e ∈ E(x, y)}, b /∈ {σ(e) : e ∈ E(x, z)}, and c ∈ {σ(e) : e ∈

E(y, z)}.

The sequence (a, b, c) is called a code of (x, y, z). Note that a triple may have

more than one code.

Theorem 3.26 (Hajós-like theorem). Every signed bi-graph with chromatic

number q can be obtained from (Kq,+) by Operations (sb1)-(sb5).

Proof. Let (G, σ) be a counterexample with minimum |V (G)| and subjecting

to it, |E(G)| is maximum.

Claim 1: (G, σ) is complete. Suppose to the contrary that G has two

non-adjacent vertices x and y. Let (G1, σ1) and (G2, σ2) be obtained from

a copy of (G, σ) by identifying x with y into a new vertex v and by adding
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a positive edge e between x and y, respectively. Since (G, σ) has chromatic

number q, it follows by Theorem 3.21 that both (G1, σ1) and (G2, σ2) have

chromatic number at least q. Note the fact that (Ki,+) can be obtained from

(Kj ,+) by Operation (sb1) whenever i > j. Thus by the minimality of |V (G)|,

the graph (G1, σ1) can be obtained from (Kq,+) by Operations (sb1)-(sb5),

and by the maximality of |E(G)|, so does (G2, σ2). We next show that (G, σ)

can be obtained from (G1, σ1) and (G2, σ2) by Operations (sb2) and (sb3),

which contradicts the fact that (G, σ) is a counterexample. This contradiction

completes the proof of the claim. Apply Operation (sb3) to (G1, σ1) and

(G2, σ2) so that e is removed and v is split into x and y. In the resulting

graph, identify each pair of vertices that corresponds to the same vertex of G

except x and y, we thereby obtain exactly (G, σ).

Claim 2: (G, σ) has no triples. The proof of this claim is analogous to

Claim 1. Suppose to the contrary that (G, σ) has a triple, say (x, y, z). Let

(a, b, c) be a code of (x, y, z). Take two copies of (G, σ). Add an edge e1 with

sign a into one copy between x and y, obtaining (G′, σ′). Add an edge e2 with

sign b into the other copy between x and z, obtaining (G′′, σ′′). Clearly, both

(G′, σ′) and (G′′, σ′′) have chromatic number at least q. By the maximality

of |E(G)|, they can be obtained by Operations (sb1)-(sb5) from (Kq,+). To

complete the proof of the claim, it remains to show that (G, σ) can be obtained

from (G′, σ′) and (G′′, σ′′) by Operations (sb1)-(sb5). Note that Operation

(sb3′) is a combination of Operations (sb3) and (sb4) by Lemma 3.22. Apply

Operation (sb3′) to (G′, σ′) and (G′′, σ′′) so that e1 and e2 are removed, x′

is identified with x′′, and an edge e is added between y′ and z′′. We have

σ(e) = σ(e1)σ(e2) = ab = c ∈ E(y, z). By applying Operation (sb2) to each

pair of vertices that are the copies of the same vertex of G except x, we obtain

(G, σ).

We continue the proof of the theorem by distinguishing two cases according

to the parity of q.

Case 1: Assume that q is odd. Since χ((G, σ)) = q, the vertex set V (G)

can be divided into k partite sets V1, . . . , Vk, where k = q+1
2 , so that V1 is an
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independent set and all others are antibalanced sets but not independent and

subjecting to it, |V1| is minimum. For each i ∈ {2, . . . , k}, since Vi is not an

independent set, |Vi| ≥ 2. Moreover, since Vi is an antibalanced set and (G, σ)

is complete by Claim 1, Vi induces a just-complete signed bi-graph, that is, a

complete signed graph.

(∗) We show that any two of V2, . . . , Vk are bi-completely adjacent. Suppose

to the contrary that there exists 2 ≤ j < l ≤ k such that Vj and Vl are not

bi-completely adjacent. Notice that |Vj | + |Vl| ≥ 3. If Vj and Vl are not just-

completely adjacent, then there always exist three vertices x, y, z, without loss

of generality, say x ∈ Vj and y, z ∈ Vl, such that m(x, y) = 1 and m(x, z) = 2.

Since Vl induces a complete signed graph, m(y, z) = 1. Thus, (y, x, z) is a

triple of (G, σ), contradicting Claim 2. Hence, Vj and Vl are just-completely

adjacent. Recall that both Vj and Vl induce complete signed graphs. Thus,

Vj ∪ Vl induces a complete signed graph, say (Q, σQ), as well. By Claim 2,

every triangle in (Q, σQ) has sign product −1. Thus, (Q, σQ) is antibalanced

by Lemma 3.23, and so Vj ∪ Vl is an antibalanced set. The division of V (G),

obtained from V1, . . . , Vk by constituting Vj ∪ Vl for Vj and Vl, yields that

χ((G, σ)) ≤ q − 2, a contradiction.

Recall that V1 is an independent set. By Claim 1, |V1| ≤ 1. Hence, we

distinguish two cases.

Subcase 1.1: Assume that |V1| = 0. Thus, for each i ∈ {2, . . . , k}, we have

|Vi| ≥ 3, since otherwise, the division of V (G), obtained from {V1, . . . , Vk} by

removing V1 and splitting Vi into two independent sets, yields χ((G, σ)) ≤ q−1,

a contradiction. Take three vertices from each partite set except V1, and

denote by (H,σH) the signed bi-graph induced by all these vertices. Clearly,

|V (H)| = 3(q−1)
2 . Recall that V2, . . . , Vk induce just-complete signed bi-graphs

and any two of them are bi-completely adjacent. Thus, (H,σH) is a O-complete

signed bi-graph. By Lemma 3.24, (H,σH) can be obtained from (Kq,+) by

Operations (sb1)-(sb5) and therefore, so does (G, σ), a contradiction.

Subcase 1.2: Assume that |V1| = 1. We show that V1 is bi-completely

adjacent to each of V2, . . . , Vk, by applying the same argument as in (∗), except
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that the final contradiction is obtained by the minimality of |V1| instead of the

decrease of χ((G, σ)). Take the vertex in V1 and two arbitrary vertices from

each of V2, . . . , Vk. Let (H,σH) be the signed bi-graph induced by all these

vertices. Clearly, |V (H)| = q. As we already proved, any two of V1, . . . , Vk

are bi-completely adjacent and each of them induce a just-complete signed

bi-graph. It follows that (H,σH) can be obtained from a bi-complete signed

bi-graph by removing disjoint edges and thus, from (Kq,+) by switching at

vertices and adding signed edges. Therefore, (G, σ) can be obtained from

(Kq,+) by Operations (sb1) and (sb4), a contradiction.

Case 2: Assume that q is even. Since χ((G, σ)) = q, the vertex set V (G)

can be divided into k non-empty partite sets V1, . . . , Vk, where k = q+2
2 , so

that at least two of them are independent sets, say V1 and V2. It follows by

Claim 1 that |V1| = |V2| = 1.

Subcase 2.1: Assume that every two partite sets are bi-completely adjacent.

Take a vertex from each partite set. Clearly, these vertices induce (K q+2
2
,±).

Hence, (G, σ) can be obtained from (K q+2
2
,±) by Operation (sb1). By Lemma

3.25, (K q+2
2
,±) can be obtained from (Kq,+) by Operations (sb1)-(sb5) and

therefore, so does (G, σ), a contradiction.

Subcase 2.2: Assume that there exist two partite sets Vj and Vl that are

not bi-completely adjacent.

By applying the same argument as in (∗), we arrive at the conclusion

that Vj ∪ Vl is an antibalanced set. It follows that χ((G, σ)) ≤ q − 2 when

|{j, l} ∩ {1, 2}| = 0 and χ((G, σ)) ≤ q − 1 when |{j, l} ∩ {1, 2}| = 1. Hence,

{j, l} = {1, 2}. This implies that every other two partite sets are bi-completely

adjacent. Moreover, since |V1| = |V2| = 1, it follows that V1 ∪ V2 induces two

vertices together with a single edge between them and so, it is an antibalanced

set. This implies that |V3|, . . . , |Vk| ≥ 2 since otherwise, the division of V (G),

obtained from V1, . . . , Vk by constituting V1 ∪ V2 for V1 and V2, yields that

χ((G, σ)) ≤ q − 1, a contradiction.

Take a vertex from each of V1 and V2, and two vertices from each of the

remaining partite sets. We can see that the signed bi-graph, induced by these
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vertices, can be obtained from (Kq,±) by removing disjoint edges. Hence, it

can be obtained from (Kq,+) by adding signed edges and switching at vertices.

Therefore, (G, σ) can be obtained from (Kq,+) by Operations (sb1)-(sb5), a

contradiction.

Corollary 3.27. Every signed graph with chromatic number q can be obtained

from (Kq,+) by Operations (sb1)-(sb5).



Chapter 4

Signed chromatic number χ±

of signed graphs

In this chapter, we focus on signed chromatic number of signed graphs, first

introduced by Máčajová, Raspaud and Škoviera [35]. This invariant is a non-

equivalent notion to the chromatic number that we introduced and discussed

in the previous two chapters. The relation between these two invariants are

discussed. So for there is only few results on the signed chromatic number. We

presents results on signed chromatic spectrum and Hajós’ Theorem for this

invariant, in a similar way as we treated on the chromatic number of signed

graphs.

4.1 Preliminary

We first recall the definitions of signed k-colorings and the signed chromatic

number χ± of signed graph given in [35].

Definition 4.1. Let (G, σ) be a signed graph. If n = 2k + 1, then let Mn =

{0,±1, . . . ,±k}, and if n = 2k, then let Mn = {±1, . . . ,±k}. A mapping c

from V (G) to Mn is a signed n-coloring of (G, σ), if c(v) 6= σ(e)c(w) for each

edge e = vw. Define χ±((G, σ)) to be the smallest number n such that (G, σ)
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has a signed n-coloring, and call it the signed chromatic number of (G, σ). We

also say that (G, σ) is signed n-chromatic.

So far, there are only a few results on χ±((G, σ)). In [35], the authors

proved that χ±((G, σ)) ≤ 2χ(G) − 1 for every graph G, and they proved an

extension of the Brooks’ theorem to signed graphs: every signed graph (G, σ)

satisfies χ±((G, σ)) ≤ ∆(G) + 1, where ∆(G) is the maximum vertex degree

of G. A further study on this extension was addressed in [43].

Following the way to study the chromatic number of signed graphs in

Chapter 3, we establish analogous results for the signed chromatic number

χ±. In Section 4.2, we show that the signed chromatic spectrum of a graph is

always an interval. In Section 4.3, we prove an analogue of the Hajós’ theorem

with respect to the signed chromatic number for signed graphs. The difference

between these two parameters, χ((G, σ)) and χ±((G, σ)), is investigated in

Section 4.4.

4.2 Signed chromatic spectrum of a graph

The results of this section have already been published in [28].

In Section 3.2, we studied the chromatic spectrum of a graph, which is

related to the chromatic number of signed graph. Recall that the chromatic

number and the signed chromatic number are two non-equivalent parameters

on vertex colorings of singed graphs. Hence, it is natural to define the signed

chromatic spectrum that is related to the signed chromatic number. We prove

a similar result that the signed chromatic spectrum is always an interval.

Definition 4.2. Let G be a graph and Σ(G) be the set of pairwise non-

equivalent signatures on G. The signed chromatic spectrum of G is the set

{χ±((G, σ)) : σ ∈ Σ(G)}, which is denoted by Σχ±(G).

Define that Mχ±(G) = max{χ±((G, σ)) : σ ∈ Σ(G)} and mχ±(G) =

min{χ±((G, σ)) : σ ∈ Σ(G)}.
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Proposition 4.3. Let G be a nonempty graph. The following two statements

hold true.

1. Σχ±(G) = {1} if and only if E(G) = ∅.

2. if E(G) 6= ∅, then mχ±(G) = 2.

Proof. Statement 1 is obvious. For Statement 2, since G has at least one edge,

G cannot be colored by using only one color. Hence, mχ±(G) ≥ 2. Moreover,

let σ be the all-negative signature of G, we have mχ±(G) ≤ mχ±((G, σ)) = 2.

Therefore, mχ±(G) = 2.

The following theorem is the main result in this section.

Theorem 4.4. If G is a graph, then Σχ±(G) = {k : mχ±(G) ≤ k ≤M±(G)}.

4.2.1 Signed chromatic critical graph

Definition 4.5. A signed k-chromatic graph (G, σ) is signed k-chromatic crit-

ical if χ±((G− u, σu)) < k, for every u ∈ V (G).

In [43] Schweser and Stiebitz defined a graph (G, σ) to be critical with

respect to χ± if χ±((H,σ′)) < χ±((G, σ)) for every proper signed subgraph

(H,σ′) of (G, σ), where σ′ is the restriction of σ to E(H). However, for

trees and circuits the two definitions coincide. The analogue statement to

Proposition 3.9 for signed colorings is due to Schweser and Stiebitz in [43].

Proposition 4.6 ([43]). Let (G, σ) be a signed graph.

1. (G, σ) is signed 1-critical if and only if G = K1

2. (G, σ) is signed 2-critical if and only if G = K2.

3. (G, σ) is signed 3-critical if and only if G is a balanced odd circuit or an

unbalanced even circuit.

Lemma 4.7. Let k ≥ 1 be an integer. If (G, σ) is signed k-chromatic, then

χ±((G − u, σu)) ∈ {k, k − 1}, for every u ∈ V (G). In particular, if (G, σ) is

signed k-critical, then χ±((G− u, σu)) = k − 1.
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Proof. For k ∈ {1, 2}, the statement follows with Proposition 4.3. Hence,

we may assume that k ≥ 3. Clearly, χ±((G − u, σu)) ≤ χ±((G, σ)) = k.

Suppose to the contrary that χ±((G− u, σu)) ≤ k − 2 and let φ be a (k − 2)-

coloring of (G − u, σu). We shall extend φ to a (k − 1)-coloring of (G, σ).

If k is even, then assign color 0 to vertex u, we are done. If k is odd, then

assign color k−1
2 to vertex u, and for each vertex v such that φ(v) = 0 and

σ(uv) = −1, recolor v with color k−1
2 , and for each vertex v such that φ(v) = 0

and σ(uv) = 1, recolor v with color −k−1
2 to obtain a (k−1)-coloring of (G, σ).

Hence χ±((G, σ)) ≤ k − 1 < k, a contradiction. Clearly, if (G, σ) is signed

k-critical, then χ±((G− u, σu)) = k − 1.

Theorem 4.8. Let (G, σ) be a signed graph and k ≥ 1. If χ±((G, σ)) = k, then

(G, σ) contains an induced signed i-critical subgraph for each i ∈ {1, . . . , k}.

4.2.2 Proof of Theorem 4.4

Lemma 4.9. Let k ≥ 2 be an integer and H be an induced subgraph of a graph

G. If k ∈ Σχ±(H), then k ∈ Σχ±(G).

The proof of this lemma is similar to the proof of Lemma 3.12.

Theorem 4.10. Let k ≥ 3 be an integer and G be a graph. If k ∈ Σχ±(G),

then k − 1 ∈ Σχ±(G).

Proof. By Theorem 4.8, (G, σ) contains an induced signed k-critical subgraph

(H,σ′), where σ′ is the restriction of σ to H. Since k ≥ 3, it follows that

|V (H)| ≥ 3. Hence, there is u ∈ V (H) such that χ±(H − u, σ′u) = k − 1.

Furthermore, H − u is an induced subgraph of G. Thus, k− 1 ∈ Σχ±(H − u),

and hence, k − 1 ∈ Σχ±(G) by Lemma 4.9.

Theorem 4.4 follows from Proposition 4.3 and Theorem 4.10.

4.3 Second Hajós-like theorem for signed graphs

The results of this section have already been published in [27].
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Section 3.4 is devoted to an analogue of Hajós’ theorem for the chromatic

number χ of a signed graph. In this section, we present an analogue of Hajós’

theorem for the signed chromatic number χ± of a signed graph, and call it

the second Hajós-like theorem. The formulations and the proofs of these two

analogues are similar. However, for the sake of completeness, we address be-

low, for the latter analogue, the theorem together with its proof, emphasizing

the difference from the former analogue. In the next theorem, we recall the

Operations (sb1)-(sb4) defined in Subsection 3.4.3 and define a new operation.

Theorem 4.11. The class of all signed bi-graphs that are not signed q-

colorable is closed under Operations (sb1)-(sb4) and the following operation:

(sb1) Adding vertices or signed edges.

(sb2) Identifying two nonadjacent vertices.

(sb3) Given two vertex-disjoint signed bi-graphs (G1, σ1) and (G2, σ2), a vertex

v of G1 and a positive edge e of G2 with ends x and y, construct a signed

bi-graph (G, σ) from (G1, σ1) and (G2, σ2) by splitting v into two new

vertices v1 and v2, removing e and identifying v1 with x and v2 with y.

(sb4) Switching at a vertex.

(sb6) When q is even, remove a negative single edge and identify its two ends.

Proof. The proof for Operations (sb1)-(sb4) can be done in the same way as in

the proof of Theorem 3.21. For Operation (sb6), let φ be a signed q-coloring of

the resulting signed bi-graph and z be the resulting vertex by identifying two

vertices x and y. Notice that the partite set with regard to φ that contains

z is an antibalanced set but not necessarily an independent set. We could

complete a signed q-coloring of the original signed bi-graph from φ by giving

the color of z to x and y.

Lemma 4.12. The signed bi-graph (Kr,±) can be obtained from (K2r−1,+)

by Operations (sb1)-(sb4) and (sb6).

Proof. Let (G, σ) be a copy of (K2r−1,+) of vertices v1, . . . , v2r−2. Since (G, σ)

is not (2r− 2)-colorable, switch at v1 and then apply Operation (sb6) to v1v2.

By Theorem 4.11, the resulting signed bi-graph remains signed non-(2r − 2)-

colorable. Hence, for each i ∈ {2, . . . , r − 1}, we could switch at v2i and then
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apply Operation (sb6) to v2i−1v2i, finally obtaining a signed bi-graph that is

exactly (Kr,±).

Theorem 4.13 (The second Hajós-like theorem). Every signed bi-graph with

signed chromatic number q can be obtained from (Kq,+) by Operations (sb1)-

(sb4) and (sb6).

Proof. Let (G, σ) be a counterexample with minimum |V (G)| and subjecting

to it, |E(G)| is maximum. Claims 1 and 2 in the proof of Theorem 3.26 still

hold true by the same proofs.

Claim 1: (G, σ) is complete.

Claim 2: (G, σ) has no triples.

We distinguish two cases according to the parity of q.

Case 1: Assume that q is odd.

Since χ±((G, σ)) = q, the vertex set V (G) can be divided into k nonempty

partite sets V1, . . . , Vk, where k = q+1
2 , so that V1 is an independent set.

Since Claims 1 and 2 still hold true and since each partite set is non empty,

if there exist two partite sets Vs and Vt that are not bi-completely adjacent,

then we could apply the argument (∗) to Vs and Vt, arriving at the conclusion

that Vs ∪ Vt is an antibalanced set. It follows that the division of V (G),

obtained from V1, . . . , Vk by constituting Vs ∪ Vt for Vs and Vt, yields that

χ±((G, σ)) ≤ q − 1 when 1 ∈ {s, t} and χ±((G, σ)) ≤ q − 2 when 1 /∈ {s, t}, a

contradiction. Therefore, every two partite sets are bi-completely adjacent.

Take a vertex from each partite set. It follows that these vertices induce

the bi-complete signed bi-graph (K q+1
2
,±) of order q+1

2 . By Lemma 4.12,

(K q+1
2
,±) can be obtained from (Kq,+) by Operations (sb1)-(sb4) and (sb6)

and therefore, so does (G, σ), a contradiction.

Case 2: Assume that q is even. Since χ±((G, σ)) = q, the vertex set V (G)

can be divided into k partite sets V1, . . . , Vk of cardinality at least 2, where

k = q
2 . Thus, by the argument (∗), any two partite sets are bi-completely

adjacent. Take two vertices from each partite set and denote by (H,σH) the

signed bi-graph induced by all these vertices. It follows that (H,σH) can be
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obtained from (Kq,±) by removing k pairwise disjoint edges and hence, it

can be obtained from (Kq,+) by switchings and adding signed edges. There-

fore, (G, σ) can be obtained from (Kq,+) by Operations (sb1) and (sb4), a

contradiction.

Corollary 4.14. Every signed graph with signed chromatic number q can be

obtained from (Kq,+) by Operations (sb1)-(sb4) and (sb6).

4.4 Relation between χ and χ±

The results of this section have already been published in [29].

The following proposition describes the relation between the chromatic

number and the signed chromatic number for signed graphs. The difference

between these two parameters is shown to be at most 1.

Proposition 4.15. If (G, σ) is a signed graph, then χ±((G, σ)) − 1 ≤

χ((G, σ)) ≤ χ±((G, σ)) + 1.

Proof. Let χ±((G, σ)) = n and c be an n-coloring of (G, σ) with colors from

Mn.

If n = 2k + 1, then let φ : M2k+1 → Z2k+1 with φ(t) = t if t ∈ {0, . . . , k}

and φ(t) = 2k + 1 + t if t ∈ {−k, . . . ,−1}. Then c is a (2k + 1)-coloring of

(G, σ) with colors from M2k+1 if and only if φ ◦ c is a (2k + 1)-coloring of

(G, σ). Hence, χ((G, σ)) ≤ χ±((G, σ)). If n = 2k, then let φ′ : M2k → Z2k+1

with φ(t) = t if t ∈ {1, . . . , k} and φ(t) = 2k+ 1 + t if t ∈ {−k, . . . ,−1}. Then

φ′ ◦ c is a (2k + 1)-coloring of (G, σ). Hence, χ((G, σ)) ≤ χ±((G, σ)) + 1.

We analogously deduce that χ±((G, σ)) ≤ χ((G, σ)) + 1.

The next proposition shows that there exist signed graphs for which

χ((G, σ)) = χ±((G, σ)) + 1 (see Figure 4.1 left) and signed graphs for which

χ((G, σ)) = χ±((G, σ)) − 1 (see Figure 4.1 right). Hence, the bounds of

Proposition 4.15 cannot be improved.

Proposition 4.16. Let (G, σ) be a connected signed graph with at least three

vertices.
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1. If (G, σ) is antibalanced and not bipartite, then χ±((G, σ)) = 2 and

χ((G, σ)) = 3.

2. If (G, σ) is bipartite but not antibalanced, then χ±((G, σ)) = 3 and

χ((G, σ)) = 2.
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Figure 4.1: Two signed graphs with |χ− χ±| = 1



Chapter 5

Choosability in signed graphs

In this chapter, we generalize the concept of list-colorings and list-chromatic

number of unsigned graphs to signed graphs. It is known that for unsigned

graphs, the list-chromatic number is an extension of the chromatic number.

The list-chromatic number of signed graphs we define here extends both the

chromatic number and the signed chromatic number. We provide bound for

this new invariant in terms of the list-chromatic number of its underlying

unsigned graph. We then focus on the choosability of signed planar graphs

and generalizes the results of [15, 31, 45, 46, 47, 52] to signed graphs.

The results of this chapter except Theorem 5.4 have already been published

in [23].

5.1 Definitions and basic properties

We combine the approaches of [14], [29] and [35] to define list colorings of

signed graphs.

Definition 5.1. Given a signed graph (G, σ), a list-assignment of (G, σ) is a

function L defined on V (G) such that ∅ 6= L(v) ⊆ Z for each v ∈ V (G). An

L-coloring of (G, σ) is a proper coloring c of (G, σ) such that c(v) ∈ L(v) for

each v ∈ V (G). A list-assignment L is called a k-list-assignment if |L(v)| = k

for each v ∈ V (G). We say (G, σ) is k-choosable if it admits an L-coloring

67
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for every k-list-assignment L. The list-chromatic number or choice number

χl((G, σ)) of (G, σ) is the minimum number k such that (G, σ) is k-choosable.

Clearly, if a signed graph is k-choosable, then it is also signed k-colorable.

Let (G, σ) be a signed graph, L be a list assignment of (G, σ), and c be an

L-coloring of (G, σ). Let X ⊆ V (G). We say σ′, L′ and c′ are obtained from

σ, L and c by a switch at X if

σ′(e) =


−σ(e), if e ∈ ∂(X),

σ(e), if e ∈ E(G) \ ∂(X);

L′(u) =


{−α : α ∈ L(u)}, if u ∈ X,

L(u), if u ∈ V (G) \X;

c′(u) =


−c(u), if u ∈ X,

c(u), if u ∈ V (G) \X.

Recall that two signed graphs (G, σ) and (G, σ∗) are equivalent if they can

be obtained from each other by a switch at some subset of V (G). The proof

of the following proposition is trivial.

Proposition 5.2. Let (G, σ) be a signed graph, L be a list-assignment of G

and c be an L-coloring of (G, σ). If σ′, L′ and c′ are obtained from σ, L and c by

a switch at a subset of V (G), then c′ is an L′-coloring of (G, σ′). Furthermore,

two equivalent signed graphs have the same chromatic number and the same

choice number.

Let G be a graph. By definition, G and (G,+) have the same chromatic

number and the same choice number. Hence, the following statement holds.

Corollary 5.3. If (G, σ) is a balanced signed graph, then χ(G) = χ((G, σ))

and χl(G) = χl((G, σ)).

Now we investigate the relation between the list-chromatic number of a

signed graph and the list-chromatic number of its underlying graph.
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Theorem 5.4. For every signed graph (G, σ), we have χl((G, σ)) ≤ 2χl(G).

Proof. Let k = χl(G) and L be an arbitrary 2k-list-assignment of (G, σ). Since

switching a vertex does not change the choice number of (G, σ) but change

the list of colors for this vertex into inverse ones, we may assume that L(v)

contains at least k positive colors for each v ∈ V (G). Let us take a k-list-

assignment L′ of G such that L′(v) ⊆ (L(v) ∩ Z+). Since G is k-choosable, G

has an L′-coloring, say c. Now we assign the signature σ to G. Notice that c

uses positive colors only. Thus, no matter which sign is assigned to an edge

of G, the coloring c is still proper for the adjacency by this edge. Hence, c is

also an L-coloring of (G, σ), giving χl((G, σ)) ≤ 2k = 2χl(G).

5.2 Choosability in signed planar graphs

A planar graph is a graph that can be drawn in the Euclidean plane without

crossings, that is, so that no two edges intersect geometrically except at a

vertex. The coloring problems of planar graphs are one of the main topics in

the theory of graph colorings. In particular, the choosability of planar graphs

have been wildly discussed. In this section, we consider the choosability of

signed planar graphs. We generalizes the results of [15, 31, 45, 46, 47, 52] to

signed graphs.

The structure of this section is arranged as follows. Section 5.2.1 proves

that every signed planar graph is 5-choosable. Furthermore, there is a signed

planar graph (G, σ) which is not 4-choosable, but (G,+) is 4-choosable. Sec-

tion 5.2.2 proves for each k ∈ {3, 4, 5, 6} that every signed planar graph without

k-circuits is 4-choosable. The main theorem of this section is proved by dis-

charging. See [12] for more details on this method. Section 5.2.3 proves that

every signed planar graph with neither 3-circuits nor 4-circuits is 3-choosable.

Furthermore, there exists a signed planar graph (G, σ) such that G has girth

4 and (G, σ) is not 3-choosable but (G,+) is 3-choosable. These two construc-

tions of signed graphs also show, that the choice number of a signed graph

(G, σ) cannot be easily calculated from the choice number of G.
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We give some necessary notations and terminologies for this section. Let

G be a graph with vertex-set V (G) and edge-set E(G). We say a vertex u is a

neighbor of another vertex v if uv ∈ E(G). If v ∈ V (G), then d(v) denotes the

degree of v and furthermore, v is called a k-vertex (or k+-vertex or k−-vertex )

if d(v) = k (or d(v) ≥ k or d(v) ≤ k). Similarly, a k-circuit (or k+-circuit or

k−-circuit) is a circuit of length k (or at least k or at most k), and if G is

planar, then a k-face (or k+-face or k−-face) is a face of size k (or at least

k or at most k). Let [x1 . . . xk] denote a k-circuit with vertices x1, . . . , xk in

cyclic order. If X ⊆ V (G), then G[X] denotes the subgraph of G induced by

X, and ∂(X) denotes the set of edges between X and V (G) \X.

5.2.1 5-choosability

Theorem 5.5. Every signed planar graph is 5-choosable.

We use the method described in [45] to prove the following theorem which

implies Theorem 5.5. A plane graph G is a near triangulation if the boundary

of each bounded face of G is a triangle.

Theorem 5.6. Let (G, σ) be a signed graph, where G is a near-triangulation.

Let C be the boundary of the unbounded face of G and C = [v1 . . . vp]. If

L is a list-assignment of (G, σ) such that L(v1) = {α}, L(v2) = {β} and

α 6= βσ(v1v2), and that |L(v)| ≥ 3 for v ∈ V (C) \ {v1, v2} and |L(v)| ≥ 5 for

v ∈ V (G) \ V (C), then (G, σ) has an L-coloring.

Proof. Let us prove Theorem 5.6 by induction on |V (G)|.

If |V (G)| = 3, then p = 3 and G = C. Choose a color from L(v3) \

{ασ(v1v3), βσ(v2v3)} for v3. So we proceed to the induction step.

If C has a chord which divides G into two graphs G1 and G2, then we

choose the notation so that G1 contains v1v2, and we apply the induction

hypothesis first to G1 and then to G2. Hence, we can assume that C has no

chord.

Let v1, u1, u2, . . . , um, vp−1 be the neighbors of vp in cyclic order around

vp. Since the boundary of each bounded face of G is a triangle, G contains
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the path P : v1u1 . . . umvp−1. Since C has no chord, P ∪ (C − vp) is a circuit

C ′. Let γ1 and γ2 be two distinct colors of L(vp) \ {ασ(v1vp)}. Define L′(x) =

L(x) \ {γ1σ(vpx), γ2σ(vpx)} for x ∈ {u1, . . . , um}, and L′(x) = L(x) for x ∈

V (G) \ {vp, u1, . . . , um}. Let σ′ be the restriction of σ to G − vp. By the

induction hypothesis, signed graph (G − vp, σ′) has an L′-coloring. Let c be

the color vertex vp−1 receives. We choose a color from {γ1, γ2} \ {cσ(vp−1vp)}

for vp, giving an L-coloring of (G, σ).

Non-4-choosable examples

Voigt [49, 50] constructed two planar graphs which are not 4-choosable. By

Corollary 5.3 these two examples generate two groups of signed planar graphs

which are not 4-choosable. We extend this result to signed graphs.

Theorem 5.7. There exists a signed planar graph (G, σ) such that (G, σ) is

not 4-choosable but G is 4-choosable.

Proof. We construct (G, σ) as follows. Take a copy G1 of the complete graph

K4 and embed it into Euclidean plane. Insert a claw into each 3-face of G1 and

denote the resulting graph by G2. Once again, insert a claw into each 3-face

of G2 and denote by G3 the resulting graph. A vertex v of G3 is called an

initial-vertex if v ∈ V (G1), a solid-vertex if v ∈ V (G2) \ V (G1) and a hollow-

vertex if v ∈ V (G3) \ V (G2) (Figure 5.1 illustrates graph G3). A 3-face of G3

is called a special 3-face if it contains an initial-vertex, a solid-vertex and a

hollow-vertex. Clearly, G3 has twenty-four special 3-faces, say T1, . . . , T24.

Let H be the plane graph as shown in Figure 5.2, which consists of a

circuit [xyz] and its interior. For i ∈ {1, . . . , 24}, replace Ti by a copy Hi of H

such that xi, yi and zi are identified with the solid-vertex, hollow-vertex and

initial-vertex of Ti, respectively. Let G be the resulting graph. Clearly, G is

planar.

Define a signature σ of G as follows: σ(PiQi) = −1 for i ∈ {1, . . . , 24} and

σ(e) = 1 for e ∈ E(G) \ {PiQi : i ∈ {1, . . . , 24}}.
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Figure 5.1: The graph G3
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Figure 5.2: The graph H

Let L be a 4-list-assignment of signed graph (G, σ) defined as follows:

L(v) = {1, 2, 3, 4} for v ∈ V (G3), and L(Ai) = {1, 2, 6, 7}, L(Bi) = {2, 4, 6, 7},

L(Ci) = {1, 4, 6, 7}, L(Di) = {1, 2, 4, 5}, L(Mi) = {2, 5, 6,−6}, L(Ni) =

{1, 5, 6,−6}, L(Pi) = {2, 3, 6,−6} and L(Qi) = {1, 3, 6,−6} for i ∈ {1, . . . , 24}.

We claim that signed graph (G, σ) has no L-colorings. Suppose to the

contrary that φ is an L-coloring of (G, σ). By the construction of G3, precisely

one of the special 3-faces of G3 is assigned in φ color 1 to its solid-vertex,

color 2 to its hollow-vertex and color 3 to its initial-vertex. Without loss of

generality, let T1 be such a special 3-face. Let us consider φ in H1. Clearly,

φ(x1) = 1, φ(y1) = 2 and φ(z1) = 3. It follows that φ(D1) ∈ {4, 5}. Notice

that the odd circuit [A1B1C1] is balanced and the even circuit [M1N1Q1P1]

is unbalanced, and thus, both of them are not 2-choosable. It follows that if
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φ(D1) = 4, then φ is not proper in [A1B1C1], and that if φ(D1) = 5, then φ is

not proper in [M1N1Q1P1]. Therefore, (G, σ) has no L-colorings and thus, is

not 4-choosable.

Let L′ be any 4-list-assignment of G. By the construction, it is not hard

to see that G3 is 4-choosable. Let c be an L′-coloring of G3. Clearly, for

i ∈ {1, . . . , 24}, each of vertices xi, yi and zi receives a color in c. Let α

and β be two distinct colors from L(Di) \ {c(xi), c(yi)}. Choose a color from

L(Ci)\{α, β, c(xi)} for Ci, and then vertices Ai, Bi and Di can be list-colored

by L′ in turn. Since circuit [MiNiQiPi] is 2-choosable, it follows that vertices

Mi, Ni, Pi and Qi can also be list-colored by L′. Therefore, c can be extended

to an L′-coloring of G. This completes the proof that G is 4-choosable.

5.2.2 4-choosability

A graph G is d-degenerate if every subgraph H of G has a vertex of degree at

most d in H. It is known that every (d− 1)-degenerate graph is d-choosable.

This proposition can be extended for signed graphs.

Theorem 5.8. Let (G, σ) be a signed graph. If G is (d− 1)-degenerate, then

(G, σ) is d-choosable.

Proof. (induction on |V (G)|) Let L be any d-list-assignment of G. The proof

is trivial if |V (G)| = 1. For |V (G)| ≥ 2, since G is (d− 1)-degenerate, G has a

vertex v of degree at most d−1 and moreover, graph G−v is (d−1)-degenerate.

Let σ′ and L′ be the restriction of σ and L to G−v, respectively. By applying

the induction hypothesis to (G − v, σ′), we conclude that (G − v, σ′) is d-

choosable and thus, it has an L′-coloring φ. Since v has degree at most d− 1,

we can choose a color α for v with α ∈ L(v) \ {φ(u)σ(uv) : uv ∈ E(G)}. We

complete an L-coloring of (G, σ) with φ and α.

It is an easy consequence of Euler’s formula that every triangle-free planar

graph contains a vertex of degree at most 3. Therefore, the following statement

is true:

Lemma 5.9. Planar graphs without 3-circuits are 3-degenerate.
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Moreover, we will use two more lemmas.

Lemma 5.10 ([52]). Planar graphs without 5-circuits are 3-degenerate.

Lemma 5.11 ([15]). Planar graphs without 6-circuits are 3-degenerate.

Theorem 5.12. Let (G, σ) be a signed planar graph. For each k ∈ {3, 4, 5, 6},

if G has no k-circuits, then (G, σ) is 4-choosable.

Proof. For k ∈ {3, 5, 6} we deduce the statement from Theorem 5.8, together

with Lemmas 5.9, 5.10 and 5.11, respectively. It remains to prove Theorem

5.12 for the case k = 4.

Suppose to the contrary that the statement is not true. Let (G, σ) be a

counterexample of smallest order, and L be a 4-list-assignment of (G, σ) such

that (G, σ) has no L-colorings. Clearly, G is connected by the minimality of

(G, σ).

Claim 5.12.1. δ(G) ≥ 4.

Let u be a vertex of G of minimal degree. Suppose to the contrary that

d(u) < 4. Let σ′ and L′ be the restriction of σ and L to G − u, respectively.

By the minimality of (G, σ), the signed graph (G−u, σ′) has an L′-coloring c.

Since every neighbor of u forbids one color for u no matter what the signature

of the edge between them is, L(u) still has a color left for coloring u. Therefore,

c can be extended to an L-coloring of (G, σ), a contradiction.

Claim 5.12.2. G has no 6-circuit C such that C = [u0 . . . u5] and u0u2 ∈

E(G), and d(u0) ≤ 5 and all other vertices of C are of degree 4.

Suppose to the contrary that G has such a 6-circuit C. Since G has no

4-circuits, u0u2 is the only chord of C. There always exists a subset X of

V (C) such that all of the edges u0u2, u1u2 and u2u3 are positive after a switch

at X. Let σ′ and L′ be obtained from σ and L by a switch at X, respectively.

Proposition 5.2 implies that (G, σ′) has no L′-coloring. Hence, (G, σ′) is also

a minimal counterexample. Let σ1 and L1 be the restriction of σ′ and L′ to

G− V (C), respectively. It follows that (G− V (C), σ1) has an L1-coloring φ.
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We obtain a contradiction by further extending φ to an L′-coloring of

(G, σ′) as follows. By the condition on the vertex degrees of C, there exists a

list-assignment L2 of G[V (C)] such that L2(u) ⊆ L′(u) \ {φ(v)σ′(uv) : uv ∈

E(G) and v /∈ V (C)} for u ∈ V (C), and |L2(u2)| = 3 and |L2(u)| = 2 for

u ∈ V (C)\{u2}. Let L2(u2) = {α, β, γ}. Suppose that L2(u2) has a color, say

α, that does not appear in at least two of the lists L2(u0), L2(u1) and L2(u3).

We color u2 with α, and then all other vertices of C can be list-colored by

L2 in some order. For example, if α does not appear in L2(u0) and L2(u1),

then we color V (C) in the order u2, u3, u4, u5, u0, u1. Hence, we may assume

that L2(u0) = {α, γ}, L2(u1) = {α, β} and L2(u3) = {β, γ}. If β 6= γσ′(u0u1),

then color u0 with γ, u1 with β, and u2 with α, and the remaining vertices

of C can be list-colored by L2 in the order u5, u4, u3. Hence, we may assume

β = γσ′(u0u1). It follows that σ′(u0u1) = −1 and β = −γ 6= 0. If α 6= 0,

then color both u0 and u1 with α, and the remaining vertices of C can be

list-colored by L2 in the order u5, u4, u3, u2. Hence, we may assume α = 0.

Now the color 0 is included in L2(u0) but not in L2(u3). Thus, there exists

an integer i with i ∈ {3, 4, 5} such that 0 ∈ L2(ui+1) and 0 /∈ L2(ui) (index is

added modular 6). We color ui+1 with 0, and then the remaining vertices of

C can be list-colored by L2 in cyclic order on C ending at ui.

Claim 5.12.3. G has no 10-circuit C such that C = [u0 . . . u9] and

u0u8, u2u6, u2u7 ∈ E(G), and u2 has degree 6 and all other vertices of

C have degree 4.

Suppose to the contrary that G has such a 10-circuit C. Let σ′ and L′ be

the restriction of σ and L to graph G−V (C), respectively. By the minimality

of (G, σ), the signed graph (G−V (C), σ′) has an L′-coloring φ. A contradiction

is obtained by further extending φ to an L-coloring of (G, σ) as follows. We

shall list-color the vertices of C by L in the cyclic order u0, u1, . . . , u9. For

i ∈ {0, . . . , 9}, let Fi = {φ(v)σ(uiv) : uiv ∈ E(G) and v /∈ V (C)}. Clearly, Fi

is the set of colors that are forbidden for ui by its neighbors, which are not

in V (C). Since d(u0) = d(u9) = 4 and moreover, if there is any other chord
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of C, then the list Fi will not become longer, it follows that |F0| ≤ 1 and

|F9| ≤ 2. Hence, we can let α and β be two distinct colors from L(u9) \ F9.

Let γ ∈ L(u0) \ (F0 ∪ {ασ(u0u9), βσ(u0u9)}), and color vertex u0 with γ. For

i ∈ {1, . . . , 8}, vertex ui has at most three neighbors colored before ui in this

color-assigning process and thus, L(ui) still has a color available for ui. Denote

by ζ the color of vertex u8. We complete the extending of φ by assigning a

color from {α, β} \ {ζσ(u8u9)} to u9.

Discharging

Consider an embedding of G into Euclidean plane. Let G denote the resulting

plane graph. We say two faces are adjacent if they share an edge. Two

adjacent faces are normally adjacent if they share an edge xy and no vertex

other than x and y. Since G is a simple graph, the boundary of each 3- or

5-face is a circuit. Since G has no 4-circuits, we can deduce that if a 3-face

and a 5-face are adjacent, then they are normally adjacent. A vertex is bad if

it is of degree 4 and incident with two nonadjacent 3-faces. A bad 3-face is a

3-face containing three bad vertices. A 5-face f is magic if it is adjacent to

five 3-faces, and if all the vertices of these six faces have degree 4 except one

vertex of f .

We shall obtain a contradiction by applying discharging method. Let V =

V (G), E = E(G), and F be the set of faces of G. Denote by d(f) the size of

a face f of G. Give initial charge ch(x) to each element x of V ∪ F , where

ch(v) = 3d(v) − 10 for v ∈ V , and ch(f) = 2d(f) − 10 for f ∈ F . Discharge

the elements of V ∪ F according to the following rules:

R1. Every vertex u sends each incident 3-face charge 1 if u is a bad vertex,

and charge 2 otherwise.

R2. Every 5-vertex sends 1
3 to each incident 5-face.

R3. Every 6-vertex sends each incident 5-face f charge 1 if f is magic, charge

2
3 if f is not magic but contains four 4-vertices, charge 1

3 if f contains at

most three 4-vertices.

R4. Every 7+-vertex sends 1 to each incident 5-face.
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R5. Every 3-face sends 1
3 to each adjacent 5-face if this 3-face contains at

most one bad vertex.

R6. Every 5+-face sends k
3 to each adjacent bad 3-face, where k is the number

of common edges between them.

Let ch∗(x) denote the final charge of each element x of V ∪ F when the

discharging process is over. On one hand, by Euler’s formula we deduce∑
x∈V ∪F

ch(x) = −20. Since the sum of charge over all elements of V ∪ F is

unchanged, we have
∑

x∈V ∪F
ch∗(x) = −20. On the other hand, we show that

ch∗(x) ≥ 0 for x ∈ V ∪ F . Hence, this obvious contradiction completes the

proof of Theorem 5.12.

It remains to show that ch∗(x) ≥ 0 for x ∈ V ∪ F .

Claim 5.12.4. If v ∈ V , then ch∗(v) ≥ 0.

Let p be the number of 3-faces that contains v. Since G has no 4-circuits,

p ≤ bd(v)
2 c. Moreover, d(v) ≥ 4 by Claim 5.12.1.

Suppose d(v) = 4. We have p ≤ 2. If p = 2, then v is a bad vertex and thus,

ch∗(v) = 3d(v) − 10 − p = 0 by R1; otherwise, ch∗(v) = 3d(v) − 10 − 2p ≥ 0

by R1 again.

If d(v) = 5, then p ≤ 2 and thus, by R1 and R2, ch∗(v) ≥ 3d(v) − 10 −

2p− 1
3(5− p) ≥ 0.

Suppose that d(v) = 6. Thus, p ≤ 3. By R1 and R3, if p ≤ 2, then

ch∗(v) ≥ 3d(v) − 10 − 2p − (6 − p) ≥ 0, and if v is incident with no magic

5-faces, then ch∗(v) ≥ 3d(v)− 10− 2p− 2
3(6− p) ≥ 0. Hence, we may assume

that p = 3 and that v is incident with a magic 5-face f . For any other 5+-

face f ′ containing v than f , Claim 5.12.3 implies that if f ′ has size 5, then it

contains at most three 4-vertices, and thus, v sends at most 1
3 to f ′ by R3.

Hence, ch∗(v) ≥ 3d(v)− 10− 2× 3− 1− 1
3 × 2 > 0.

It remains to suppose d(v) ≥ 7. By R1 and R4, we have ch∗(v) ≥ 3d(v)−

10− 2p− (d(v)− p) ≥ 2d(v)− 10− bd(v)
2 c > 0.

Claim 5.12.5. If f ∈ F , then ch∗(f) ≥ 0.
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Suppose d(f) = 3. Recall that in this case the boundary of f is a circuit.

We have ch∗(f) ≥ 2d(f) − 10 + 2 + 2 + 1 − 3 × 1
3 = 0 by R1 and R5 when

f has at most one bad vertex, and ch∗(f) ≥ 2d(f) − 10 + 2 + 1 + 1 = 0 by

R1 when f has precisely two bad vertices. Hence, for the remaining we can

assume that f has precisely three bad vertices, that is, f is a bad 3-face. In

this case, f receives charge 1 in total from adjacent faces by R6, and charge 3

in total from incident vertices by R1. Hence, ch∗(f) ≥ 2d(f)− 10 + 1 + 3 = 0.

Suppose d(f) = 5. Recall in this case that the boundary of f is a circuit and

that if f is adjacent to a 3-face, then they are normally adjacent. Let q be the

number of bad 3-faces adjacent to f . Clearly, f sends charge only to adjacent

bad 3-faces by R6, and possibly receives charge from incident 5+-vertices and

from adjacent 3-faces by rules from R2 to R5. Hence, ch∗(f) ≥ 2d(f)−10 = 0

if q = 0. Claim 5.12.2 implies that q ≤ 3 and that f contains a 5+-vertex u,

which sends at least 1
3 to f . Hence, ch∗(f) ≥ 2d(f)− 10− 1

3 + 1
3 = 0 if q = 1.

First suppose q = 2. If f has a 5+-vertex different from u, then we are done

by ch∗(f) ≥ 2d(f) − 10 − 2 × 1
3 + 2 × 1

3 = 0. Hence, we may assume that f

contains four 4-vertices. It follows that if d(u) ≥ 6, then f receives at least 2
3

from v by R3 or R4 and we are done. Hence, we may assume that d(u) = 5.

Through the drawing of 3-faces adjacent to f , we can assume u is incident

with a 3-face [uvw] that is adjacent to f on edge uv. Claim 5.12.2 implies

that d(w) ≥ 5. Hence, f receives 1
3 from face [uvw] by R5, and we are done.

Let us next suppose q = 3. We may assume f = [uv′w′x′y′] such that v′w′,

w′x′ and x′y′ are the three common edges between f and bad 3-faces. Since

both vertices v′ and y′ are bad, edges uv′ and uy′ are contained in 3-faces

[uv′t′] and [uy′z′], respectively. If d(u) = 5, then Claim 5.12.2 implies that

d(t′), d(z′) ≥ 5, and thus, f receives 1
3 from each of faces [uv′t′] and [uy′z′] by

R5, and we are done. If d(u) ≥ 7, then f receives 1 from u and we are done.

Hence, we may assume that d(u) = 6. If both t′ and z′ have degree 4, that

is, f is a magic 5-face, then f receives 1 from u by R3; otherwise, f receives

2
3 from u and 1

3 from at least one of faces [uv′t′] and [uy′z′] by R3 again. We

are done in both cases.
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It remains to suppose d(f) ≥ 6. Recall that f has no charge moving in or

out except that it sends 1
3d(f) in total to adjacent bad 3-faces by R6. Hence,

ch∗(f) ≥ 2× d(f)− 10− 1
3d(f) ≥ 0.

The proof of Theorem 5.12 is completed.

5.2.3 3-choosability

In 1995, Thomassen [46] proved that every planar graph of girth at least 5 is

3-choosable. And then in 2003, he [47] gave a shorter proof of this result. We

find out that the argument used in [47] also works for signed graphs. Hence,

the following statement is true. For the sake of completeness, we include the

proof.

Theorem 5.13. Every signed planar graph with neither 3-circuit nor 4-circuit

is 3-choosable.

We will prove the following theorem which is stronger than Theorem 5.13

but easier for us to prove.

Theorem 5.14. Let (G, σ) be a signed plane graph of girth at least 5, and D

be the outer face boundary of G. Let P be a path or circuit of G such that

|V (P )| ≤ 6 and V (P ) ⊆ V (D), and σp be the restriction of σ to P . Assume

that (P, σp) has a 3-coloring c. Let L be a list-assignment of G such that

L(v) = {c(v)} if v ∈ V (P ), |L(v)| ≥ 2 if v ∈ V (D) \ V (P ), and |L(v)| ≥ 3 if

v ∈ V (G) \ V (D). Assume furthermore that there is no edge joining vertices

whose lists have at most two colors except for the edges in P . Then c can be

extended to an L-coloring of (G, σ).

Proof. The proof will be done by induction on the number of vertices. We

assume that (G, σ) is a smallest counterexample and shall get a contradiction.

Claim 5.14.1. G is 2-connected and hence, D is a circuit.

We may assume that G is connected, since otherwise we apply the in-

duction hypothesis to every connected component of G. Similarly, G has no

cutvertex in P . Moreover, G has no cutvertex at all. Suppose to the contrary
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that u is a cutvertex contained in an endblock B disjoint from P . We first

apply the induction hypothesis to G − (B − u). If B has vertices with only

two available colors joined to u, then we color each such vertex. These colored

vertices of B together with the edges joining them to u divide B into parts

each of which has at most three colored vertices inducing a path. Now we ap-

ply the induction hypothesis to each of those parts. This contradiction proves

Claim 5.14.1.

Claim 5.14.2. For e ∈ E(P ), e is not a chord of D.

If some edge e of P is a chord of G, then e divides G into two parts, and we

apply the induction hypothesis to each of those two parts. This contradiction

proves Claim 5.14.2.

By Claims 5.14.1 and 5.14.2, we may choose the notion such that D =

[v1 . . . vk] and P = v1 . . . vq.

Let X be a set of colored vertices of G. To save writing we just say “delete

the product colors of X from G” instead of “for v ∈ V (G) \ X, delete all of

the colors in {c(u)σ(uv) : u ∈ X and uv ∈ E(G)} from the list of v”.

Claim 5.14.3. P is a path, and q + 3 ≤ k.

If P = D, then we delete any vertex from D, and delete the product color

of that vertex from G. If P 6= D and k < q + 3, then we color the vertices of

D not in P , we delete them together with their product colors from G.

Now we apply the induction hypothesis to the resulting graph G′, if possi-

ble. As G has grith at least 5, the vertices with precisely two available colors

are independent. For the same reason, such a vertex cannot be joined to two

vertices of P . However, such a vertex may be joined to precisely one vertex of

P . We then color it. Now the colored vertices of G′ divide G′ into parts each

of which has at most 6 precolored vertices inducing a path. We then apply

induction hypothesis to each of those parts. This contradiction proves Claim

5.14.3.

Claim 5.14.4. D has no chord.
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Suppose to the contrary that xy is a chord of D. Then xy divides G into

two graphs G1, G2, say. We may choose the notation such that G2 has no more

vertices of P than G1 has, and subject to that condition, |V (G2)| is minimum.

We apply the induction hypothesis first to G1. In particular, x and y receive

a color. The minimality of G2 implies that the outer cycle of G2 is chordless.

So G2 has at most two vertices which have only two available colors and which

are joined to one of x and y. We color any such vertex, and then we apply the

induction hypothesis to G2. This contradiction proves Claim 5.14.4.

Claim 5.14.5. G has no path of the form viuvj where u lies inside D, except

possibly when q = 6 and the path is of the form v4uv7 or v3uvk. In particular,

u has only two neighbors on D.

We define G1 and G2 as in the proof of Claim 5.14.4. We apply the

induction hypothesis first to G1. Although u may be joined to several vertices

with only two available colors, the minimality of G2 implies that no such vertex

is in G2−{u, vi, vj}. There may be one or two vertices in G2−{u, vi, vj} that

have only two available colors and which are joined to one of vi and vj . We

color any such vertex, and then at most six vertices of G2 are colored. If

possible, we apply the induction hypothesis to G2. This is possible unless the

coloring of G1 is not valid in G2. This happens only if P has a vertex in

G2 joined to one of vi and vj . This happens only if we have one of the two

exceptional cases described in Claim 5.14.5.

Claim 5.14.6. G has no path of the form viuwvj such that u and w lie inside

D, and |L(vi)| = 2. Also, G has no path viuwvj such that u and w lie inside

D, |L(vi)| = 3, and j ∈ {1, q}.

Repeating the arguments in Claims 5.14.4 and 5.14.5, we can easily get

Claim 5.14.6.

Claim 5.14.7. If C is a circuit of G distinct from D and of length at most

6, then the interior of C is empty.
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Otherwise, we can apply the induction hypothesis first to C and its exterior

and then to C and its interior. This contradiction proves Claim 5.14.7.

If |L(vq+2)| ≥ 3, then we complete the proof by deleting vq and its product

color from G, and apply the induction hypothesis to G−vq and obtain thereby

a contradiction. So we assume |L(vq+2)| ≤ 2. By Claim 5.14.3, |L(vq+2)| = 2

and thus |L(vq+3)| ≥ 3. If |L(vq+4)| ≥ 3, then we first color vq+2 and vq+1, then

we delete them and their product colors from G. We obtain a contradiction

by applying the induction hypothesis to the resulting graph. By Claims 5.14.4

and 5.14.5 this is possible unless q = 6 and G has a vertex u inside D joined

to both v4 and v7. In this case we color u and delete both v5 and v6 before we

apply the induction hypothesis. Hence, we may assume that |L(vq+4)| ≤ 2.

We give vq+3 a color not in {ασ(vq+3vq+4) : α ∈ L(vq+4)} and then color

vq+2 and vq+1, and finally we delete vi and the product color of vi from G for

i ∈ {q + 1, q + 2, q + 3}. We obtain a contradiction by applying the induction

hypothesis to the resulting graph. If q = 6 and G has a vertex u inside D

joined to v4 and v7, then, as above, we color u and delete v5 and v6 before we

use induction. If q = 6, q + 3 = k, and G has a vertex u′ inside D joined to

v3 and vk, then we also color u′ and delete v1 and v2 before we use induction.

Finally, there may be a path vq+1wzvq+3 where w and z lies inside D. By

Claim 5.14.7, this path is unique. We color w and z and delete them together

with their product colors from G before we use induction. Note that u and u′

may also exist in this case. If there are vertices joined to two colored vertices,

then we also color these vertices before we use induction.

The colored vertices divide G into parts, and we shall show that each part

satisfies the induction hypothesis. By second statement of Claim 5.14.6, there

are at most six precolored vertices in each part, and they induce a path. Claim

5.14.5 and the first statement of Claim 5.14.6 imply that there is no vertex

with precisely two available colors on D which is joined to a vertex inside D

whose list has only two available colors after the additional coloring. Since G

has girth at least 5 and by Claim 5.14.7, there is no other possibility for two
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adjacent vertices z and z′ to have only two available colors in their lists, as

both z and z′ must be adjacent to a vertex that has been colored and deleted.

This contradiction completes the proof.

Theorem 5.15. There exists a signed planar graph (G, σ) such that G has

girth 4 and (G, σ) is not 3-choosable but G is 3-choosable.

Proof. Let T be a plane graph consisting of two circuits [ABCD] and [MNPQ]

of length 4 and four other edges AM,BN,CP and DQ, as shown in Figure

5.3. Take nine copies T0, . . . , T8 of T , and identify A0, . . . , A8 into a vertex A′

and C0, . . . , C8 into a vertex C ′. Let G be the resulting graph. Clearly, G is

planar and has girth 4.

A

B

C

D

M

N

P

Q

Figure 5.3: graph T

Define a signature σ of G as: σ(e) = −1 for e ∈ {MiNi : i ∈ {0, . . . , 8}},

and σ(e) = 1 for e ∈ E(G) \ {MiNi : i ∈ {0, . . . , 8}}.

For i ∈ {0, 1, 2}, let ai = i and bi = i + 3. Define a 3-list-assignment

L of G as follows: L(A′) = {a1, a2, a3}, L(C ′) = {b1, b2, b3}; for i, j ∈

{0, 1, 2}, let L(B3i+j) = L(D3i+j) = {ai, bj , 6}, L(N3i+j) = L(Q3i+j) =

{6, 7,−7}, L(M3i+j) = {ai, 7,−7} and L(P3i+j) = {bj , 7,−7}.

We claim that signed graph (G, σ) has no L-colorings. Suppose to the

contrary that c is an L-coloring of (G, σ). Let c(A′) = ap and c(C ′) = bq.

Consider subgraph T3p+q. It follows that c(B3p+q) = c(D3p+q) = 6. Fur-

thermore, the circuit [M3p+qN3p+qP3p+qQ3p+q] is unbalanced and thus not

2-choosable. Hence, T3p+q is not properly colored in c, a contradiction. This

proves that (G, σ) has no L-colorings and therefore, (G, σ) is not 3-choosable.
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We claim that graph G is 3-choosable. For any 3-list-assignment of G,

choose any color for vertices A′ and C ′ from their color lists, respectively.

Consider each subgraph Ti (i ∈ {0, . . . , 8}). Both vertices Bi and Di can be

list colored. The 2-choosability of circuit [MiNiPiQi] yields a list coloring of

Ti and hence a list coloring of G. This proves that G is 3-choosable.



Chapter 6

3-colorings of planar graphs

In this chapter, we consider the vertex coloring of unsigned graphs. We prove

a result related to the famous Steinberg’s conjecture from 1976, which states

that every planar graph without cycles of length 4 or 5 is 3-colorable. Though

Steinberg’s Conjecture was disproved recently, we show that if the planar

graph additionally has no cycles of length 8, then it is 3-colorable. This result

improves on a series of earlier results.

The results of this chapter have already been published in [22].

6.1 Introduction

In the field of 3-colorings of planar graphs, one of the most active topics is a

conjecture proposed by Steinberg in 1976: every planar graph without cycles

of length 4 or 5 is 3-colorable. There had been no progress on this conjecture

for a long time, until Erdös suggested a relaxation of it (see Problem 9.2 in

[44]): does there exist a constant k such that every planar graph without cycles

of length from 4 to k is 3-colorable? Abbott and Zhou [1] confirmed that such

k exists and k ≤ 11. This result was later improved to k ≤ 9 independently by

Borodin [4] and by Sanders and Zhao [41], and to k ≤ 7 by Borodin, Glebov,

Raspaud and Salavatipour [7].

85
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Theorem 6.1 ([7]). Planar graphs without cycles of length from 4 to 7 are

3-colorable.

We remark that Steinberg’s Conjecture was disproved in [10] recently,

by constructing a counterexample to the conjecture. However, the question

whether every planar graph without cycles of length from 4 to 6 is 3-colorable

is still open. A partial result to this question was obtained in [53]. It was

proved there that every planar graph without cycles of length from 4 to 6 can

be decomposed into a matching and a 3-colorable graph.

Steinberg’s Conjecture motivated a lot of work in the literature (e.g. [30]),

in particular, the work on 3-colorability of planar graphs without cycles of

certain lengths, besides the results on the relaxation by Erdös. Due to the

theorem of Grötzsch [18] that planar graphs without triangles are 3-colorable,

triangles are always allowed in further sufficient conditions. Several papers

together contribute to the result below:

Theorem 6.2. For any three integers i, j, k with 5 ≤ i < j < k ≤ 9, it holds

true that planar graphs having no cycles of length 4, i, j or k are 3-colorable.

The following problem that strengthens this theorem was considered al-

ready, and partial results to this problem were obtained.

Problem 6.3. What is B: a set of pairs of integers (i, j) with 5 ≤ i < j ≤ 9,

such that planar graphs without cycles of length 4, i or j are 3-colorable?

It was proved by Borodin et al. [5] and independently by Xu [56] that

every planar graph having neither 5- and 7-cycles nor adjacent 3-cycles is 3-

colorable. Hence, (5, 7) ∈ B, which improves on Theorem 6.1. More elements

of B were confirmed: (6, 8) ∈ B by Wang and Chen [51], (7, 9) ∈ B by Lu et

al. [33], and (6, 9) ∈ B by Jin et al. [24]. The result (6, 7) ∈ B is implied in

the following theorem, which reconfirms the results (5, 7) ∈ B and (6, 8) ∈ B.

Theorem 6.4 ([6]). Planar graphs without triangles adjacent to cycles of

length from 4 to 7 are 3-colorable.
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In this chapter, we show that (5, 8) ∈ B, which leaves four pairs of integers

(5, 6), (5, 9), (7, 8), (8, 9) unconfirmed as elements of B.

Recently, Mondal gave a proof of the result (5, 8) ∈ B in [38], where he ac-

tually proved a stronger theorem instead. Here we exhibit two couterexamples

to that theorem. Let C be a cycle of length at most 12 in a plane graph. C is

terrible if it is of length 9 or 12 and the area inside C has a partition into 3-

and 6-cycles; otherwise, C is nice. Mondal formulated the follows statement.

Statement [Theorem 2 in [38]]

Let G be a graph without 4-, 5-, and 8-cycles. If D is a nice cycle of G,

then every proper 3-coloring of D can be extended to a proper 3-coloring of the

whole graph G.

Counterexamples to the statement. One is a plane graph G1 consisting of

a cycle C of length 12, say C := [v1 . . . v12], and a vertex u inside C connected

to all of v1, v2, v6. The graph G1 contradicts the statement since any proper

3-coloring of C, where v1, v2, v6 receive pairwise distinct colors, cannot be

extended to G1. A second is a plane graph G2 consisting of a cycle C of

length 12 and a triangle T inside C, say C := [v1 . . . v12] and T := [u1u2u3],

and three more edges u1v1, u2v4, u3v7. The graph G2 contradicts the statement

since any proper 3-coloring of C where v1, v4, v7 receive the same color cannot

be extended to G2 (see Figure 6.1).

Figure 6.1: Two graphs as counterexamples to the statement

A problem that is more general than both Problem 6.3 and Steinberg’s

Conjecture was formulated in [33, 24].

Problem 6.5. What is A: a set of integers between 5 and 9, such that for

i ∈ A, every planar graph with cycles of length neither 4 nor i is 3-colorable?
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The disproof of Steinberg’s Conjecture yields that 5 /∈ A. So far no ele-

ments of A have been confirmed.

6.2 Notations and formulation of the main theorem

The graphs considered in this paper are finite and simple. A graph is planar

if it is embeddable into the Euclidean plane. A plane graph (G,Σ) is a planar

graph G together with an embedding Σ of G into the Euclidean plane, that is,

(G,Σ) is a particular drawing of G in the Euclidean plane. In what follows, we

will always say a plane graph G instead of (G,Σ), which causes no confusion

since no two embeddings of the same graph G will be involved.

Let G be a plane graph and C be a cycle of G. By Int(C) (or Ext(C)) we

denote the subgraph of G induced by the vertices lying inside (or outside) C.

The cycle C is separating if neither Int(C) nor Ext(C) is empty. By Int(C)

(or Ext(C)) we denote the subgraph of G consisting of C and its interior (or

exterior). Two cycles are adjacent if they have at least one edge in common.

The cycle C is triangular if it is adjacent to a triangle other than C; and C is

ext-triangular if it is adjacent to a triangle T of Ext(C) other than C.

Now, we are ready to formulate the main result of this chapter.

Theorem 6.6. Plane graphs with neither 4- and 5-cycles nor ext-triangular

7-cycles are 3-colorable.

We remark that Theorem 6.6 reconfirms the known result that (5, 7) ∈ B.

Moreover, the following theorem is a direct consequence of Theorem 6.6.

Theorem 6.7. Planar graphs without cycles of length 4, 5, 8 are 3-colorable,

that is, (5, 8) ∈ B.

For the proof of Theorem 6.6, we will use the technique on coloring exten-

sion. We first give some necessary notations.

Let v be a vertex, P be a path, C be a cycle and f be a face of a plane

graph G. The length of P is the number of edges of P . Denote by d(v) the

degree of v, by |P | the length of P , by |C| the length of C and by d(f) the
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size of f . v is a k-vertex (or k+-vertex or k−-vertex) if d(v) = k (or d(v) ≥ k

or d(v) ≤ k). Similar notations are used for P , C and f with |P |, |C| and d(f)

instead of d(v), respectively.

Let C be a cycle of a plane graph G. If S ⊆ V (G) or S ⊆ E(G),

then G[S] denotes the subgraph of G induced by S. A chord of C is an

edge of Int(C) that connects two nonconsecutive vertices on C. If Int(C)

has a vertex v with three neighbors v1, v2, v3 on C, then G[{vv1, vv2, vv3}]

is called a claw of C. If Int(C) has two adjacent vertices u and v such

that u has two neighbors u1, u2 on C and v has two neighbors v1, v2 on C,

then G[{uv, uu1, uu2, vv1, vv2}] is called a biclaw of C. If Int(C) has three

pairwise adjacent vertices u, v, w which has a neighbor u′, v′, w′ on C, respec-

tively, then G[{uv, vw, uw, uu′, vv′, ww′}] is called a triclaw of C. If G has

four vertices x, u, v, w inside C and four vertices x1, x2, v1, w1 on C such that

S = {uv, vw,wu, ux, xx1, xx2, vv1, ww1} ⊆ E(G), then G[S] is called a comb-

claw of C (see Figure 6.2).

chord claw biclaw triclaw

1c

2c

1c 2c

3c

1c

2c

3c

4c

1c
2c 3c

4c

combclaw

1c

2c 4c

5c

3c

Figure 6.2: Chord, claw, biclaw, triclaw and combclaw of a cycle

A good cycle is an 11−-cycle that has no claws, biclaws, triclaws or comb-

claws. A bad cycle is an 11−-cycle that is not good.

Instead of Theorem 6.6, it is easier for us to prove the following stronger

one.

Theorem 6.8. Let G be a connected plane graph with neither 4- and 5-cycles

nor ext-triangular 7-cycles. If D, the boundary of the exterior face of G, is

a good cycle, then every proper 3-coloring of G[V (D)] can be extended to a

proper 3-coloring of G.

Theorem 6.8 implies Theorem 6.6. Suppose to the contrary that Theorem

6.8 is true but Theorem 6.6 is not. Let G be a counterexample to Theorem
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6.6 with minimum order of G. By the theorem of Grötzsch, G contains a

triangle, say T . Take a proper 3-coloring φ of T . By the minimality of G,

if T is a separating cycle, then φ can be extended respectively to proper 3-

colorings of Ext(T ) and of Int(T ), which together yield a proper 3-coloring

of G, a contradiction. Hence, either Ext(T ) = ∅ or Int(T ) = ∅. For the

former case, T is the boundary of the exterior face of G. By Theorem 6.8, φ

can be extended to a proper 3-coloring of G, a contradiction. For the latter

case, we can reembed G into the Euclidean plane, obtaining a plane graph G′,

such that G′ has neither 4- and 5-cycles nor ext-triangular 7-cycles and that

T is the boundary of the exterior face of G′. Again by Theorem 6.8, φ can be

extended to a proper 3-coloring of G′ (equivalently, of G), a contradiction.

The proof of Theorem 6.8 will proceed by using the discharging method

that will be given in the next section. For more information on the discharging

method, we refer readers to [12]. The rest of this section provides other needed

notations.

Let C be a cycle of a plane graph and T be a chord, a claw, a biclaw, a

triclaw or a combclaw of C. We call the plane graph H consisting of C and

T a bad partition of C. The boundary of each interior face of H is called

a cell of H. In case of confusion, let us always order the cells c1, · · · , ct of

H in the way as shown in Figure 6.2. Let ki be the length of ci. Then T

is further called a (k1, k2)-chord, a (k1, k2, k3)-claw, a (k1, k2, k3, k4)-biclaw, a

(k1, k2, k3, k4)-triclaw or a (k1, k2, k3, k4, k5)-combclaw, respectively.

A vertex is external if it lies on the exterior face; internal otherwise. A

vertex (or an edge) is triangular if it is incident with a triangle. We say that

a vertex is bad if it is an internal triangular 3-vertex; otherwise, it is a good

vertex. A path is a splitting path of a cycle C if it has the two end-vertices on

C and all other vertices inside C. A k-cycle with vertices v1, . . . , vk in cyclic

order is denoted by [v1 . . . vk].

Let uvw be a path on the boundary of a face f of G with v internal. The

vertex v is f -heavy if both uv and vw are triangular and d(v) ≥ 5, and is

f -Mlight if both uv and vw are triangular and d(v) = 4, and is f -Vlight if
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neither uv nor vw is triangular and v is triangular and of degree 4. A vertex

is f -light if it is either f -Mlight or f -Vlight.

Denote by G the class of connected plane graphs with neither 4- and 5-

cycles nor ext-triangular 7-cycles.

6.3 Proof of the main theorem

Suppose to the contrary that Theorem 6.8 is false. From now on, let G be a

counterexample to Theorem 6.8 with fewest vertices. Thus, we may assume

that the boundary D of the exterior face of G is a good cycle, and there

exists a proper 3-coloring φ of G[V (D)] which cannot be extended to a proper

3-coloring of G. By the minimality of G, we deduce that D has no chord.

6.3.1 Structural properties of the minimal counterexample G

Lemma 6.9. Every internal vertex of G has degree at least 3.

Proof. Suppose to the contrary that G has an internal vertex v with d(v) ≤ 2.

We can extend φ to G− v by the minimality of G, and then to G by coloring

v differently from its neighbors.

Lemma 6.10. G is 2-connected and therefore, the boundary of each face of

G is a cycle.

Proof. Otherwise, we can assume that G has a pendant block B with a cut

vertex v such that B−v does not intersect D. We first extend φ to G−(B−v)

by the minimality of G, and then 3-color B so that the color of v remains the

same.

Lemma 6.11. G has no separating good cycle.

Proof. Suppose to the contrary that G has a separating good cycle C. We

extend φ to G − Int(C) by the minimality of G. Furthermore, since C is a

good cycle, again by the minimality of G, the coloring of C can be extended

to its interior.
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By the definition of bad cycles, one can easily conclude the following

lemma.

Lemma 6.12. If C is a bad cycle of a graph in G, then C has length either 9 or

11. Furthermore, if |C| = 9, then C has a (3,6,6)-claw or a (3,6,6,6)-triclaw;

if |C| = 11, then C has a (3,6,8)-claw, or a (3,6,6,6)- or (6,3,6,6)-biclaw, or

a (3,6,6,8)-triclaw, or a (3,6,6,6,6)-combclaw.

Notice that all 3-, 6- and 8-cycles of G are facial. The following statement

is a consequence of the previous lemma together with the fact that G ∈ G.

Lemma 6.13. G has neither bad cycles with a chord nor ext-triangular bad

9-cycles.

Lemma 6.14. Let P be a splitting path of D which divides D into two cycles

D′ and D′′. The following four statements hold true.

(1) If |P | = 2, then at least one of D′ and D′′ is a triangle.

(2) |P | 6= 3.

(3) If |P | = 4, then at least one of D′ and D′′ is a 6- or 7-cycle.

(4) If |P | = 5, then at least one of D′ and D′′ is a 9−-cycle.

Proof. Since D has length at most 11, we have |D′| + |D′′| = |D| + 2|P | ≤

11 + 2|P |.

(1) Let P = xyz. Suppose to the contrary that |D′|, |D′′| ≥ 6. By Lemma

6.9, y has a neighbor other than x and z, say y′. It follows that y′ is internal

since otherwise D is a bad cycle with a claw. Without loss of generality, let y′

lie inside D′. Now D′ is a separating cycle. By Lemma 6.11, D′ is not good,

i.e., either D′ is bad or |D′| ≥ 12. Since every bad cycle has length either 9

or 11 by Lemma 6.12, we have |D′| ≥ 9. Recall that |D′| + |D′′| ≤ 15, thus

|D′| = 9 and |D′′| = 6. Now D′ has either a (3,6,6)-claw or a (3,6,6,6)-triclaw

by Lemma 6.12, which implies that D has a biclaw or a combclaw respectively,

a contradiction.

(2) Suppose to the contrary that |P | = 3. Let P = wxyz. Clearly

|D′|, |D′′| ≥ 6. Let x′ and y′ be a neighbor of x and y not on P , respec-

tively. If both x′ and y′ are external, then D has a biclaw. Hence, we may
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assume that x′ lies inside D′. By Lemmas 6.11 and 6.12 and the inequality

|D′|+ |D′′| ≤ 17, we deduce that D′ is a bad cycle and D′′ is a good 8−-cycle.

If y′ is internal, then y′ lies inside D′. It follows with the specific interior of a

bad cycle that x′ = y′ and D′ has either a claw or a biclaw, which implies that

D has either a triclaw or a combclaw respectively, a contradiction. Hence, y′

is external. Since every bad cycle as well as every 6−- or 8-cycle contains no

chords by Lemma 6.13, we deduce that yy′ is a (3,6)-chord of D′′. It follows

that D′ is an ext-triangular bad 9-cycle, contradicting Lemma 6.13.

(3) Let P = vwxyz. Suppose to the contrary that |D′|, |D′′| ≥ 8. Since

|D′| + |D′′| ≤ 19, we have |D′|, |D′′| ≤ 11. Since G has no 4- and 5-cycles,

if G has an edge e connecting two nonconsecutive vertices on P , then the

cycle formed by e and P has to be a triangle, yielding a splitting 3-path of D,

contradicting the statement (2). Therefore, no pair of nonconsecutive vertices

on P are adjacent.

Let w′, x′, y′ be a neighbor of w, x, y not on P , respectively. The statement

(2) implies that x′ is internal. Without loss of generality, let x′ lie inside

D′. Thus D′ is a bad 9- or 11-cycle. If D′ is a bad 11-cycle, then D′′ is a

facial 8-cycle, and thus both w′ and y′ lie in Int(D′), which is impossible by

the interior of a bad cycle. Hence, D′ is a bad 9-cycle. By the statement

(1), if w′ ∈ V (D′′), then G contains the triangle [vww′], which makes D′

ext-triangular, a contradiction. Hence, w′ /∈ V (D′′). Moreover, since D′ has

no chords by Lemma 6.13, w′ /∈ V (D′). Therefore, w′ is internal. If w′ lies

inside D′, then it gives the interior of D′ no other choices than w′ = x′ and

D′ has a (3, 6, 6)-claw, in which case D has a splitting 3-path, a contradiction.

Hence, w′ lies inside D′′. Similarly, y′ lies inside D′′ as well. Notice that

|D′′| ∈ {8, 9, 10}, thus D′′ is a bad 9-cycle but has to contain both w′ and y′

inside, which is impossible.

(4) Let P = uvwxyz. Suppose to the contrary that |D′|, |D′′| ≥ 10. Since

|D′| + |D′′| ≤ 21, we have |D′|, |D′′| ≤ 11. By a similar argument as in the

proof of statement (3), one can conclude that G has no edges connecting two
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nonconsecutive vertices on P . Let v′, w′, x′, y′ be a neighbor of v, w, x, y not

on P , respectively.

The statement (2) implies that both w′ and x′ are internal. Without loss

of generality, we may assume that w′ lies inside D′. So D′ is a separating

cycle and thus, it must be a bad 11-cycle by Lemma 6.11. It follows that D′′

is a good 10-cycle and thus, it is not a separating cycle. So x′ also lies inside

D′. By Lemma 6.12 and the fact that all 3-, 6- and 8-cycles are facial, we can

deduce that x′ = w′ and D′ has either a (3,6,8)-claw or a (3,6,6,6)-biclaw. It

follows that v′, y′ ∈ V (D′′). By the statement (1), G has the two triangles

[uvv′] and [yy′z], at least one of them is adjacent to a 7-cycle of Int(D′), a

contradiction.

Lemma 6.15. Let G′ be a connected plane graph obtained from G by deleting

a set of internal vertices and identifying two other vertices. If we

(a) identify no two vertices of D, and create no edges connecting two vertices

of D, and

(b) create neither 6−-cycles nor ext-triangular 7-cycles,

then φ can be extended to a proper 3-coloring of G′.

Proof. The item (a) guarantees that D is unchanged and bounds G′, and φ

is a proper 3-coloring of G′[V (D)]. By item (b), the graph G′ is simple and

G′ ∈ G. Hence, to extend φ to G′ by the minimality of G, it remains to show

that D is a good cycle of G′.

Suppose to the contrary that D is a bad cycle. Thus it has a bad partition

H in G′. By the specific structure of H, as depicted in Lemma 6.12, we can

see that there exists a 6-cell C ′ of H such that the intersection of D and C ′ is

a path v1 . . . vk of length k− 1 with k ∈ {4, 5}. Since we create no 6-cycles, C ′

corresponds to a 6-cycle C of the original graph G. Notice that only one pair

of vertices are identified and the resulting vertex is not from {v2, . . . , vk−1}

since otherwise G has a 4-cycle. It follows that the intersection of D and C

is a path P of form v1 . . . vk or v1 . . . vk−1 or v2 . . . vk. Thus, |P | ∈ {2, 3, 4}.

If |P | ∈ {3, 4}, then C − E(P ) contains a splitting 3- or 2-path of D in G,
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yielding a contradiction by Lemma 6.14. Hence, |P | = 2 and so k = 4. By the

existence of C ′, H is not a (3, 6, 6)- or (3, 6, 8)-claw. If H is a (3, 6, 6, 6)- or

(6, 3, 6, 6)-biclaw or a (3, 6, 6, 6, 6)-combiclaw, then we can choose some other

C ′ whose corresponding value of k is 5. By the same argument above, we

obtain a contradiction. Hence, H must be a (3, 6, 6, 6)- or (3, 6, 6, 8)-triclaw.

Now, H contains three splitting 3-paths of D in G′, at least one of which

does not contain the resulting vertex by identifying two vertices. Hence, this

splitting 3-path of D exists also in G, contradicting Lemma 6.14.

Lemma 6.16. G has no edge uv incident with a 6-face and a 3-face such that

both u and v are internal 3-vertices and therefore, every bad cycle of G has

either a (3,6,6)- or (3,6,8)-claw or a (3,6,6,6)-biclaw.

Proof. Suppose to the contrary that such an edge uv exists. Denote by

[uvwxyz] and [uvt] the facial cycles of the 6-face and the 3-face, respectively.

Lemma 6.14 implies that not both w and z are external vertices. Without loss

of generality, we may assume that w is internal. Let G′ be the graph obtained

from G by deleting u and v and identifying w with y. Clearly, G′ is a plane

graph on fewer vertices than G. We will show that both items of Lemma 6.15

are satisfied.

Since w is internal, we identify no two vertices on D. If we create an

edge connecting two vertices on D, then w has a neighbor w1 not adjacent

to y and both y and w1 are external. But now, Lemma 6.14 implies that x

is external and thus, [ww1x] is a triangle which makes the 7-cycle [utvwxyz]

ext-triangular, a contradiction. Hence, item (a) holds.

Suppose we create a 6−-cycle or an ext-triangular 7-cycle C ′. Thus the

original graph G has a 7−-path P between w and y corresponding to C ′. First

assume that x ∈ V (P ). The vertex x divides P into two paths, say Pwx

and Pxy, between w and x and between x and y, respectively. Without loss

of generality, assume that |Pwx| ≤ |Pxy|. Since |Pwx| + |Pxy| ≤ 7, we have

|Pwx| ≤ 3. If |Pwx| = 3, then G has a 4-cycle formed by Pwx and wx, a

contradiction. If |Pwx| = 2, then Pwx together with wx forms a triangle that
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makes [utvwxyz] an ext-triangular 7-cycle of G, a contradiction. If |Pwx| = 1,

then Pwx coincides with the edge wx, which implies that C ′ coincides with the

cycle Cxy of G formed by Pxy and xy, contradicting the supposition that C ′

is created.

Hence, we may assume that x /∈ V (P ). The paths P and wxy form a

9−-cycle, say C. By Lemma 6.9, d(x) ≥ 3. Let x1 be the neighbor of x other

than y and w. If x1 ∈ V (P ), then xx1 is a chord of C. By Lemma 6.13, C is a

good cycle. It follows that xx1 is a (3,6)- or (3,8)-chord of C, which makes the

7-cycle [utvwxyz] ext-triangular, a contradiction. Hence x1 /∈ V (P ). Now, we

can see that C is a separating cycle and thus, it is a bad 9-cycle. By Lemma

6.13, C is not ext-triangular. It follows that C ′ is a 7-cycle of G′ and is not

ext-triangular, contradicting our supposition. Therefore, item (b) holds.

By Lemma 6.15, the precoloring φ can be extended to G′. Since z and w

receive different colors, we can properly color v and u, completing the extension

of φ to G.

We follow the notations of M -faces and MM -faces in [7], and define weak

tetrads. An M -face is an 8-face f containing no external vertices with bound-

ary [v1 . . . v8] such that the vertices v1, v2, v3, v5, v6, v7 are of degree 3 and

the edges v1v2, v3v4, v4v5, v6v7 are triangular. An MM -face is an 8-face f

containing no external vertices with boundary [v1 . . . v8] such that v2 and v7

are of degree 4 and other six vertices on f are of degree 3, and the edges

v1v2, v2v3, v4v5, v6v7, v7v8 are triangular. A weak tetrad is a path v1 . . . v5 on

the boundary of a face f such that both the edges v1v2 and v3v4 are triangular,

all of v1, v2, v3, v4 are internal 3-vertices, and v5 is either of degree 3 or f -light.

Lemma 6.17. G has no weak tetrad and therefore, every face of G contains

no five consecutive bad vertices.

Proof. Suppose to the contrary that G has a weak tetrad T following the

notation used in the definition. Denote by v0 the neighbor of v1 on f other

than v2. Denote by x the common neighbor of v1 and v2, and by y the common

neighbor of v3 and v4. If x = v0, then v1 is an internal 2-vertex, contradicting
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Lemma 6.9. Hence, x 6= v0 and similarly, x 6= v3. Since G has no 4- and 5-

cycles, x /∈ {v4, v5}. Concluding above, x /∈ v0∪V (T ). Similarly, y /∈ v0∪V (T ).

Moreover, x 6= y since otherwise [v1v2v3x] is a 4-cycle. We delete v1, . . . , v4

and identify v0 with y, obtaining a plane graph G′ on fewer vertices than G.

We will show that both the items of Lemma 6.15 are satisfied.

Suppose that we create a 6−-cycle or an ext-triangular 7-cycle C ′. Thus

G has a 7−-path P between v0 and y corresponding to C ′. So, the paths P

and v0v1v2v3y form an 11−-cycle, say C. If x ∈ V (P ), then the cycle formed

by P and v0v1x has length at least 6 and the cycle formed by P and xv2v3y

has length at least 8, which gives |P | ≥ 9, a contradiction. Hence, x /∈ V (P ).

Now, one of x and v4 lies inside C and the other lies outside C. So C is a

separating cycle and thus, it is a bad cycle. By Lemma 6.16, C has either a

(3,6,6)- or (3,6,8)-claw or a (3,6,6,6)-biclaw. Notice that both the two faces

incident with v2v3 have length at least 8. Thus, C has a bad partition owning

an 8-cell no matter which one of x and v4 lies inside C. It follows that C has

a (3,6,8)-claw. If x lies inside C, then v1x is incident with the 6-cell and a

3-face with d(v1) = d(x) = 3, contradicting Lemma 6.16. Hence, v4 lies inside

C. In this case, f is the 8-cell, and the 6-cell contains the path yv4v5. Thus,

we can deduce that v5 is not f -light. Since T is a weak tetrad, d(v5) = 3. We

delete v5 together with other vertices of T and repeat the argument above,

obtaining a contradiction. Therefore, item (b) holds.

Suppose that we identify two vertices on D or create an edge connecting

two vertices on D. Thus there is a splitting 4- or 5-path Q of D containing the

path v0v1v2v3y. By Lemma 6.14, Q together with D forms a 9−-cycle which

corresponds to a 5−-cycle in G′. Since we create no 6−-cycle, a contradiction

follows. Hence, item (a) holds.

By Lemma 6.15, the precoloring φ can be extended to G′. We first properly

color v5 (if needed), v4 and v3 in turn. Since v0 and v3 receive different colors,

we can properly color v1 and v2, completing the extension of φ to G.

Lemma 6.18. G has no M -faces.



98 Chapter 6 3-colorings of planar graphs

Proof. Suppose to the contrary that G has an M -face f following the notation

used in the definition. For (i, j) ∈ {(1, 2), (3, 4), (4, 5), (6, 7)}, denote by tij

the common neighbor of vi and vj . By similar argument as in the proof of

the previous lemma, we deduce that the vertices t12, t34, t45, t67 are pairwise

distinct and not incident with f . We delete v1, v2, v3, v5, v6, v7 and identify v4

with v8, obtaining a plane graph G′ on fewer vertices than G. We will show

that both items in Lemma 6.15 are satisfied.

Suppose that we create a 6−-cycle or an ext-triangular 7-cycle C ′. Thus

G has a 7−-path P between v4 and v8 corresponding to C ′. By the symmetry

of an M -face, we may assume that P together with the path v4v5 . . . v8 forms

an 11−-cycle C that contains v1, v2, v3 inside. So C is a bad cycle containing

at least three vertices inside, which is impossible by the interior structure of

C indicated by Lemma 6.16. Therefore, item (b) holds.

The satisfaction of item (a) can be proved in a similar way as in the proof

of the previous lemma. By Lemma 6.15, the pre-coloring φ can be extended

to G′. We can properly color first v3 and then v1 and v2 since v3 is colored

different from v8. Similarly, we can properly color v5, v6 and v7, completing

the extension of φ to G.

Lemma 6.19. G has no MM -faces.

Proof. Suppose to the contrary that G has an MM -face f following the no-

tation used in the definition. For (i, j) ∈ {(1, 2), (2, 3), (4, 5), (6, 7), (7, 8)},

denote by tij the common neighbor of vi and vj . Similarly to the proof of

Lemma 6.18, we deduce that the vertices t12, t23, t45, t67, t78 are pairwise dis-

tinct and not incident with f . We delete all the vertices of f and identify t12

with t67, obtaining a plane graph G′ on fewer vertices than G. To extend φ

to G′, it suffices to fulfill item (a) of Lemma 6.15, as we did in the previous

lemma.

Suppose that we create a 6−-cycle or an ext-triangular 7-cycle C ′. Thus

G has a 7−-path P between t12 and t67 corresponding to C ′. If t78 ∈ V (P ),

then both the cycles formed by P and t12v1v8t78 and by P and t78v7t67 have
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length at least 8, which gives |P | ≥ 11, a contradiction. Hence, t78 /∈ V (P ).

The paths P and t12v1v8v7t67 form an 11−-cycle, say C. It follows that C is

a bad cycle containing either v2, . . . , v6 or t78 inside. In the former case, C

contains at least five vertices inside, a contradiction. In the latter case, G has

either an ext-triangular bad 9-cycle (if |P | = 5) or an ext-triangular 7-cycle

(if |P | = 7), a contradiction.

We further extend φ from G′ to G as follows. Let α, β and γ be the three

colors used in φ. First, disregarding the edge v1v8, we can properly color

v2, v1, v3 and v7, v8, v6. If v1 and v8 receive different colors and so do v3 and

v6, then v4 and v5 can be properly colored; we are done. Hence, we may

assume that v1 and v8 receive the same color β (a similar argument as below

works for the case that v3 and v6 receive the same color). Let α be the color

assigned to t12 and t67. Thus v2 and v7 are colored with γ and t78 is colored

with α. We recolor v8, v7 and v6 with γ, β and γ, respectively. Now, v1 and v8

receive different colors and so do v3 and v6. Again, v4 and v5 can be properly

colored; we are done.

6.3.2 Discharging in G

Let V = V (G), E = E(G), and F be the set of faces of G. Denote by f0

the exterior face of G. Give initial charge ch(x) to each element x of V ∪ F ,

where ch(f0) = d(f0) + 4, ch(v) = d(v) − 4 for v ∈ V , and ch(f) = d(f) − 4

for f ∈ F \ {f0}. Discharge the elements of V ∪ F according to the following

rules:

R1. Every internal 3-face receives 1
3 from each incident vertex.

R2. Every internal 6+-face sends 2
3 to each incident 2-vertex.

R3. Every internal 6+-face sends each incident internal 3-vertex v charge 2
3

if v is triangular, and charge 1
3 otherwise.

R4. Every internal 6+-face f sends 1
3 to each f -light vertex, and receives 1

3

from each f -heavy vertex.

R5. Every internal 6+-face receives 1
3 from each incident external 4+-vertex.

R6. The exterior face f0 sends 4
3 to each incident vertex.



100 Chapter 6 3-colorings of planar graphs

We remark that the discharging rules can be tracked back to the one used in

[7].

Let ch∗(x) denote the final charge of each element x of V ∪ F after dis-

charging. On one hand, by Euler’s formula we deduce
∑

x∈V ∪F
ch(x) = 0. Since

the sum of charges over all elements of V ∪ F is unchanged, it follows that∑
x∈V ∪F

ch∗(x) = 0. On the other hand, we will show that ch∗(x) ≥ 0 for each

x ∈ V ∪ F \ {f0} and ch∗(f0) > 0. Hence, this obvious contradiction com-

pletes the proof of Theorem 6.8. It remains to show that ch∗(x) ≥ 0 for each

x ∈ V ∪ F \ {f0} and ch∗(f0) > 0.

Lemma 6.20. ch∗(v) ≥ 0 for v ∈ V .

Proof. First suppose that v is external. Since D is a cycle, d(v) ≥ 2. If

d(v) = 2, then since D has no chord, the internal face incident with v is not a

triangle and sends 2
3 to v by R2. Moreover, v receives 4

3 from f0 by R6, which

gives ch∗(v) = d(v) − 4 + 2
3 + 4

3 = 0. If d(v) = 3, then v sends charge to at

most one 3-face by R1 and thus ch∗(v) ≥ d(v) − 4 − 1
3 + 4

3 = 0. If d(v) ≥ 4,

then v sends at most 1
3 to each incident internal face by R1 and R5, yielding

ch∗(v) ≥ d(v)− 4− 1
3(d(v)− 1) + 4

3 > 0. Hence, we are done in any case.

It remains to suppose that v is internal. By Lemma 6.9, d(v) ≥ 3. If

d(v) = 3, then we have ch∗(v) = d(v) − 4 − 1
3 + 2

3 × 2 = 0 by R1 and R3

when v is triangular, and ch∗(v) = d(v)− 4 + 1
3 × 3 = 0 by R3 when v not. If

d(v) = 4, then v is incident with k 3-faces with k ≤ 2. By R1 and R4, we have

ch∗(v) = d(v)−4− 1
3×2+ 1

3×2 = 0 when k = 2, ch∗(v) = d(v)−4− 1
3 + 1

3 = 0

when k = 1, and ch∗(v) = d(v)− 4 = 0 when k = 0. If d(v) = 5, then v sends

charge to at most two 3-faces by R1 and to at most one 6+-face by R4, which

gives ch∗(v) ≥ d(v) − 4 − 1
3 × 2 − 1

3 = 0. Hence, we may next assume that

d(v) ≥ 6. Since v sends at most 1
3 to each incident face by our rules, we get

ch∗(v) ≥ d(v)− 4− 1
3d(v) ≥ 0.

Lemma 6.21. ch∗(f0) > 0.

Proof. Recall that ch(f0) = d(f0) + 4 and d(f0) ≤ 11. We have ch∗(f0) ≥

d(f0) + 4− 4
3d(f0) > 0 by R6.
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Lemma 6.22. ch∗(f) ≥ 0 for f ∈ F \ {f0}.

Proof. We distinguish cases according to the size of f . Since G has no 4- and

5-cycle, d(f) /∈ {4, 5}.

If d(f) = 3, then f receives 1
3 from each incident vertex by R1, which gives

ch∗(f) = d(f)− 4 + 1
3 × 3 = 0.

Let d(f) = 6. For any incident vertex v, by the rules, f sends to v charge

2
3 if v is either of degree 2 or bad, and charge at most 1

3 otherwise. Since G has

no ext-triangular 7-cycles, f is adjacent to at most one 3-face. Furthermore,

by Lemma 6.16, f contains at most one bad vertex. If f contains a 2-vertex,

say u, we can deduce with Lemma 6.14 that u is the unique 2-vertex of f and

the two neighbors of u on f are external 3+-vertices which receive nothing

from f . It follows that ch∗(f) ≥ d(f)− 4− 2
3 −

2
3 −

1
3 × 2 = 0. Hence, we may

assume that f contains no 2-vertices. If f has no bad vertices, then f sends

each incident vertex at most 1
3 , which gives ch∗(f) ≥ d(f) − 4 − 1

3d(f) = 0.

Hence, we may let x be a bad vertex of f . Denote by y the other common

vertex between f and the triangle adjacent to f . By Lemma 6.16 again, y is

not a bad vertex, i.e., y is either an internal 4+-vertex or an external 3+-vertex.

By our rules, f sends nothing to y, yielding ch∗(f) ≥ d(f)−4− 2
3 −

1
3 ×4 = 0.

Let d(f) = 7. Since G has no ext-triangular 7-cycles, f contains no bad

vertices. Moreover, by Lemma 6.14, we deduce that f has at most two 2-

vertices. Thus, ch∗(f) ≥ d(f)− 4− 2
3 × 2− 1

3 × 5 = 0.

Let d(f) ≥ 8. If f contains precisely one external vertex, say w, then

d(w) ≥ 4 and so f receives 1
3 from w by R5. Furthermore, since f contains no

weak tetrad by Lemma 6.17, f has a good vertex other than w and sends at

most 1
3 to it. Thus, ch∗(f) ≥ d(f)− 4 + 1

3 −
1
3 −

2
3(d(f)− 2) ≥ 0; we are done.

If f contains at least two external vertices, then at least two of them are of

degree more than 2. Since f sends nothing to external 3+-vertices, it follows

that ch∗(f) ≥ d(f)− 4− 2
3(d(f)− 2) ≥ 0; we are done as well. Hence, we may

assume that all the vertices of f are internal. We distinguish two cases.

Case 1: Assume that d(f) = 8. Denote by r the number of bad vertices

of f . We have ch∗(f) ≥ d(f) − 4 − 2
3r −

1
3(d(f) − r) = 4−r

3 ≥ 0, provided
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by r ≤ 4. Since f contains no weak tetrad, r ≤ 6. Hence, we may assume

that r ∈ {5, 6}. For r = 5, we claim that f has a vertex failing to take

charge from f , which gives ch∗(f) ≥ d(f) − 4 − 2
3 × 5 − 1

3 × 2 = 0. Suppose

to the contrary that no such vertex exists. Thus, the bad vertices of f can

be paired so that any good vertex of the path of f between each pair is f -

Mlight, contradicting the parity of r. For r = 6, since again f contains no

five consecutive bad vertices, these six bad vertices of f are divided by the

two good ones into cyclically either 3+3 or 2+4. We may assume that f has

a good vertex that is either f -light or of degree 3, since otherwise we are done

with ch∗(f) ≥ d(f) − 4 − 2
3 × 6 = 0. Denote by u such a good vertex and

by v the other one. By the drawing of u and of the 3-faces adjacent to f , we

deduce that, for the case 3+3, f is an M -face, contradicting Lemma 6.18, and

for the case 2+4, if u is f -Mlight then either f is an MM -face or v is f -heavy;

otherwise f contains a weak tetrad. It follows with Lemmas 6.19 and 6.17

that v is f -heavy, which is the only possible case. Hence, f receives 1
3 from v

by R4, yielding ch∗(f) ≥ ch(f)− 4− 2
3 × 6 + 1

3 −
1
3 = 0.

Case 2: Assume that d(f) ≥ 9. By Lemma 6.17, we deduce that f contains

at least two good vertices, each of them receives at most 1
3 from f . Thus,

ch∗(f) ≥ d(f) − 4 − 2
3(d(f) − 2) − 1

3 × 2 = d(f)−10
3 ≥ 0, provided d(f) ≥ 10.

It remains to suppose d(f) = 9. If f has at most six bad vertices, then

ch∗(f) ≥ d(f) − 4 − 2
3 × 6 − 1

3 × 3 = 0. Hence, we may assume that f has

precisely seven bad vertices. By the same argument as for the case d(f) = 8

and f has five bad vertices above, f has a vertex failing to take charge from

f , which gives ch∗(f) ≥ d(f)− 4− 2
3 × 7− 1

3 = 0.

By the previous three lemmas, the proof of Theorem 6.8 is completed.



Chapter 7

Conclusion and future work

This thesis concentrates on vertex coloring of signed graphs. The circular

coloring of graphs has been extensively studied in the literature. The thesis

generalizes the concept of circular coloring of graphs to signed graphs. This

is a very natural generalization, which we can see from the following points of

view:

(1) The circular chromatic number of unsigned graphs has two basic defi-

nitions that are equivalent. One is defined by (k, d)-colorings and the

other by circular r-colorings. We show that the circular chromatic num-

ber of signed graphs can also be equivalently defined by (k, d)-colorings

and circular r-colorings, that is,

χc((G, σ)) = inf{k
d

: (G, σ) has a (k, d)-coloring}

The infimum in the definition is always attained, and hence can be re-

placed by the minimum, the same as the unsigned case.

(2) The circular coloring of signed graphs implies a new notion of chromatic

number of signed graphs, for which we prove an analogue of the famous

Brooks’ theorem and Hajós’ theorem.

103
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(3) By the relation χ((G, σ)) − 1 ≤ χc((G, σ)) ≤ χ((G, σ)) for every signed

graph (G, σ), we can still take χc((G, σ)) as a refinement of χ((G, σ))

and inversely χ((G, σ)) as an approximate of χc((G, σ)).

Kang and Steffen propose a signed version of the four color theorem as a

conjecture.

Conjecture 7.1. Every signed planar graph is 4-colorable.

This conjecture is slightly different from another version [35] that every

signed planar graph is signed 4-colorable.

Besides the questions proposed before in the thesis, we can also consider

the followings as the future work:

(1) Analogues of the Hajós’ theorem for the circular chromatic number of

graph were proved in [67, 70]. So as the next step, it is natural but chal-

lenging to extend the Hajós’ theorem for the circular chromatic number

of signed graphs.

(2) Different from the unsigned case that χ(G) − 1 < χc(G) ≤ χ(G), the

lower bound can be attained for some signed graphs with any given χ.

So it is of particular interest to give a characterization of signed graphs

with χ((G, σ)) − 1 = χc((G, σ)). Moreover, it was proved by Guichard

that it is NP-hard to decide whether a graph G attains the upper bound,

i.e., satisfies χc(G) = χ(G). There are some known sufficient conditions

under which χc(G) = χ(G). However, these conditions may not work for

signed graphs. Hence, the question is to figure out sufficient conditions

under which χc((G, σ)) = χ((G, σ)) and in particular, those conditions

on the structure of G under which for any signature σ of G, χc((G, σ)) =

χ((G, σ)).

(3) We introduce list coloring of signed graphs and then focus on the choos-

ability of signed planar graphs. Hence there is still few knowledge on

the choosability of non-planar signed graphs.
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